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Preface: CERME 11 in lovely Utrecht historic sites 

Susanne Prediger  & Ivy Kidron 

ERME President ERME Vice-President 

Dortmund (Germany)  Jerusalem (Israel) 

Each second year, the European Society for Research in Mathematics Education (ERME) 

organises a conference. The 11th Congress of ERME (CERME 11) took place in Utrecht (The 

Netherlands), in February, 6 to 10, 2019. The conference was hosted by the Freudenthal 

Group, in collaboration with the Freudenthal Institute, of Utrecht University. The participants 

of the conference were offered an excellent academic environment in a place in which 

important blocks in the foundation of mathematics education research were laid fifty years 

ago by Freudenthal and his collaborators.  

CERME is getting larger from congress to congress: from 774 participants at CERME 10 to 

900 participants at CERME 11 -  the highest number of participants in comparison with the 

previous CERMEs. In order to avoid overflow (more than 300 more people were interested in 

participating), the ERME board had to decide to stop the growth tendencies with stopping at 

900 participants. Most participants at CERME 11 are European researchers, but CERME is 

getting increasingly international with 152 researchers from outside Europe: Asia (30), North 

–America (54), South-America (40), Australia/New Zealand (9), Africa (19). The European

researchers are essentially from Germany (169), Norway (82), United Kingdom (57), Sweden

(54), Italy (40), The Netherlands (39), Israel (36), Spain (36), France (33), Portugal (31),

Denmark (27), Turkey (26), Greece (23), Ireland (19), Austria (14), Finland (13), Cyprus

(11), Hungary (8), Czech Republic (6), Croatia (5), Switzerland (4), Iceland (3), Slovakia (3),

and Poland (2), and many other countries with one participant each.

A conference with such a huge number of participants requires a perfect organization in order

to be successful, and indeed it was a real success. All the members of the Local Organizing

Committee contributed to the excellent organization, especially the chair of the LOC, Marja

van den Heuvel-Panhuizen, and her co-chair, Michiel Veldhuis. They did a wonderful work.

They paid attention to all the small details before and during the conference. Both paid

attention to all the specific needs of each participant. They dealt successfully with all the

issues, challenges (small and big), and always with a smile. We thank both of them so deeply!

Inclusion and quality is an integral part of the CERME spirit. The success of the conference is

tightly connected with the quality of the scientific program, which was excellent. We address

our sincere thanks to the International Program Committee, especially to the chair of the IPC,

Uffe Thomas Jankvist, and his co-chair, Miguel Ribeiro, for their excellent work before,

during and after the conference, taking into account ERME principles: selecting deep and

interesting plenaries, organizing a panel discussion, organizing the distribution of Thematic

Working Groups and the publication process of the proceedings.

In his plenary lecture, Paul Drijvers offered a deep reflection on a promising integrative

approach to tool use, called embodied instrumentation, which is based on three lenses: a

Realistic Mathematics Education view; instrumental approaches, and embodied views on
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cognition. In the second plenary lecture, Kathleen M. Clark offered a thoughtful analysis of 

examples in which research on the use of history of mathematics contributed to the broader 

landscape of research in mathematics education. The examples address the role of history of 

mathematics in the learning of different mathematical concepts, ranging from the function 

concept to determinants of matrices, as well as topics in analysis and abstract algebra. The 

third plenary talk was given by Sebastian Rezat. Using the transition from natural numbers to 

integers as an exemplary case, Rezat delineated an insightful analysis on transitions from one 

number system to the other with a particular interest in continuities and discontinuities in the 

teaching of these number systems. Rezat integrated the results in an approach to achieve 

learner-centered coherence in the learning of number. Three papers corresponding to these 

three plenary addresses are included in the proceedings. 

On the occasion of the 20th anniversary of ERME, the IPC organized an anniversary panel 

chaired by Konrad Krainer and Hanna Palmer. The panel offered a deep reflection on ERME 

contribution to research in mathematics education. Barbara Jaworski and Susanne Prediger 

(past and current ERME president), Paolo Boero and Simon Modeste (representatives of 

YESS and YERME - Young Researchers in ERME), and Tommy Dreyfus and Jana Žalská 

(editor and reader of the ERME book) made up the panel.  

The work done in the plenaries and the panel contributed substantially to the success of the 

conference. 

The core and the heart of each CERME are the Thematic Working Groups and the serious 

work which is done in all of them. In the TWGs, the collaboration between experienced and 

young researchers supports the scientific development of the young researchers. At CERME 

11, 575 papers and 152 posters were accepted. 26 TWGs were organized with 8 TWGs which 

were divided in two subgroups due to the large number of participants. Our sincere thanks are 

adressed to the 34 working group leaders and 99 co-leaders for their huge and wonderful 

work. Before the conference, the leaders and co-leaders organized the review process and 

devoted much time in planning the program of the TWG. As a result, they were able to lead 

excellent discussions during the work of the TWG  at the conference. A wonderful 

atmosphere and a lot of motivation characterized the work in the working groups. Every 

participant was involved in the work. After the conference, the authors had the possibility to 

further revise their papers, integrating significant changes which emerged in the discussions in 

the TWGs. The leaders and co-leaders organized this final review process. 

 The work done by all the organizers and deep involvement of the TWG leaders, IPC 

members, LOC members and ERME board members contributed to the success of the 

conference. We thank everybody who has contributed to this success. Specific thanks go to 

Uffe Thomas Jankvist, Miguel Ribeiro, Marja van den Heuvel-Panhuizen and Michiel 

Veldhuis for all their work with a wonderful result. 

We encourage interested researchers to meet us at the next CERME that will take place in 

February 2021 in Bolzano (Italy).  

Susanne Prediger & Ivy Kidron 

ERME President ERME Vice-President 
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About CERME11 

The Eleventh Congress of European Research in Mathematics Education (CERME 11) took place in 

Utrecht, the Netherlands from 5th to 10th of February 2019. Uffe Thomas Jankvist (Denmark) was 

the chair of the International Programme Committee (IPC), which comprised Miguel Ribeiro 

(Portugal/Brazil, IPC Co-chair), Marianna Bosch (Spain), Therese Dooley (Ireland), Eirini Geraniou 

(UK/Greece), Ghislaine Guedet (France), Jeremy Hodgen (UK), Bożena Maj-Tatsis (Poland), Angel 

Mizzi (Germany/Malta), Aoibhinn Ni Shuilleabhain (Ireland), Marja van den Heuvel-Panhuizen (The 

Netherlands, LOC chair), and Stefan Zehetmeier (Austria). Marja van den Heuvel-Panhuizen and 

Michiel Veldhuis were chair and co-chair, respectively, of the Local Organizing Committee (LOC). 

CERME11 hosted 26 Thematic Working Groups, listed in the table below. The TWGs 07, 25, and 26 

were new TWGs, created following a call launched just after CERME10, and a selection process 

involving the CERME11 IPC and the ERME board. They have all been very successful, and all but 

one (TWG11) will be part of CERME12 in February 2021. Eight of the TWGs recieved so many 

submissions they had to be split in two – more precisely the TWGs 01, 05, 09, 14, 16, 18, 19 and 20 

– and more TWG leaders and co-leaders had to be invited. In the end, CERME11 had 34 TWG leaders

and 99 TWG co-leaders.

Thematic Working Group Leader Co-Leaders 

TWG 01a 

Argumentation and Proof 

Gabriel J. Stylianides (UK) Anita Valenta (Norway) 

Viviane Durand-Guerrier 

(France) 

TWG 01b 

Argumentation and Proof 

Andreas Moutsios-

Rentzos (Greece) 

Orly Buchbinder (USA) 

Jenny Cramer (Germany) 

TWG 02 

Arithmetic and Number 

Systems 

Elisabeth Rathgeb-

Schnierer (Germany) 

Beatriz Vargas Dorneles 

(Brazil) 

Renata Carvalho (Portugal) 

Judy Sayers (Sweden) 

TWG 03 

Algebraic Thinking 

Reinhard 

Oldenburg (Germany) 

Dave Hewitt (UK) 

Heidi Strømskag (Norway) 

Maria Chimoni (Cyprus) 

Proceedings of CERME11 3

Introduction

mailto:utj@edu.au.dk
mailto:m.vandenheuvel-panhuizen@uu.nl
mailto:m.vandenheuvel-panhuizen@uu.nl
mailto:m.vandenheuvel-panhuizen@nord.no
mailto:m.veldhuis@uu.nl
mailto:m.veldhuis@ipabo.nl


TWG 04 

Geometry Teaching and 

Learning 

Joris Mithalal (France) Michela Maschietto (Italy) 

Keith Jones (UK) 

Chrysi Papadaki (Germany) 

TWG 05a 

Probability and Statistics 

Education 

Caterina Primi (Italy) Sibel Kazak (Turkey) 

Orlando Rafael González 

(Thailand) 

TWG 05b 

Probability and Statistics 

Education 

Aisling Leavy (Ireland) Pedro Arteaga (Spain) 

Daniel Frischemeier 

(Germany) 

TWG 06 

Applications and Modelling 

Berta Barquero (Spain) Susana Carreira (Portugal) 

Katrin Vorhölter (Germany) 

Geoff Wake (UK) 

Jonas Bergman Ärlebäck 

(Sweden) 

Britta Jessen (Denmark) 

TWG 07 

Adult Mathematics Education 

Kees Hoogland (The 

Netherlands) 

Beth Kelly (UK) 

Fiona Faulkner (Ireland) 

Javier Diez-Palomar (Spain) 

TWG 08 

Affect and the Teaching and 

Learning of Mathematics 

Stanislaw 

Schukajlow (Germany) 

Inés M. Gómez-Chacón 

(Spain) 

Çiğdem Haser (Turkey) 

Peter Liljedahl (Canada) 

Karen Skilling (UK) 

Hanna Viitala (Norway) 

TWG 09a 

Mathematics and Language 

Núria Planas (Catalonia-

Spain) 

Marie Therese Farrugia 

(Malta) 

Kirstin Erath (Germany) 

TWG 09b 

Mathematics and Language 

Jenni Ingram (UK) Marcus Schütte (Germany) 

TWG 10 

Diversity and Mathematics 

Education: Social, 

Cultural and Political 

Challenges 

Hauke Straehler-

Pohl (Germany) 

Anette Bagger (Sweden) 

Laura Black (UK) 

Anna Chronaki (Greece) 

David Kollosche (Austria) 

TWG 11 

Comparative Studies in 

Mathematics Education 

Paul Andrews (Sweden) Eva Jablonka (Germany) 

Jeta Kingji (Slovenia) 

Constantinos Xenofontos 

(Cyprus) 

TWG 12 

History in Mathematics 

Education 

Renaud Chorlay (France) Aline Bernardes (Brazil) 

Tanja Hamann (Germany) 

Antonio M. Oller-Marcén 

(Spain) 

TWG 13 

Early Years Mathematics 

Ingvald Erfjord (Norway) Esther Levenson (Israel) 

Bożena Maj-Tatsis (Poland) 

Marianna Tzekaki (Greece) 

Priska Schöner (Germany) 
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TWG 14a 

University Mathematics 

Education 

Alejandro S. González-

Martín (Canada/Spain) 

Ghislaine Gueudet (France) 

Imène Ghedamsi (Tunis) 

Jason Cooper (Israel) 

TWG 14b 

University Mathematics 

Education 

Irene Biza (UK) Olov Viirman (Sweden) 

Alon Pinto (Israel) 

Vilma Mesa (USA) 

TWG 15 

Teaching Mathematics with 

Technology 

and Other Resources 

Alison Clark-Wilson (UK) Ornella Robutti (Italy) 

Iveta Kohanová 

(Norway/Slovakia) 

Melih Turgut (Turkey) 

TWG 16a 

Learning Mathematics with 

Technology 

and Other Resources 

Hans-Georg 

Weigand (Germany) 

Ana Donevska-Todorova 

(Germany/Macedonia) 

Eirini Geraniou (UK) 

TWG 16b 

Learning Mathematics with 

Technology 

and Other Resources 

Nathalie Sinclair (Canada) Eleonora Faggiano 

(Italy) 

Osama Swidan (Israel) 

TWG 17 

Theoretical Perspectives and 

Approaches 

in Mathematics Education 

Research 

Angelika Bikner-

Ahsbahs (Germany) 

Arthur Bakker (The 

Netherlands) 

Esther Chan (Australia) 

Heather Johnson (USA) 

TWG 18a 

Mathematics Teacher 

Education 

and Professional Development 

Stefan Zehetmeier (Austria) Laurinda Brown (UK) 

Maria Mellone (Italy) 

TWG 18b 

Mathematics Teacher 

Education 

and Professional Development 

Joao Pedro da Ponte (Portugal) Libuse Samkova (Czech 

Republic) 

Marita Friesen (Germany) 

Janne Fauskanger (Norway) 

Àngela Buforn (Spain) 
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Sakonidis (Greece) 

Rukiye Didem Taylan 

(Turkey) 
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Ribeiro (Brazil/Portugal) 
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Francesca Martignone (Italy) Sebastian Kuntze (Germany) 

Kirsti Rø (Norway) 
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Paola Iannone (UK) Michal Ayalon (Israel) 

Johannes Beck (Germany) 

Jeremy Hodgen (UK) 

Francesca Morselli (Italy) 

TWG 22 

Curricular Resources and Task 

Design 

in Mathematics Education 

Birgit Pepin (The Netherlands) Seán Delaney (Ireland) 

Andreas Eckert (Sweden) 

Nataly Essonnier (France) 

Andreas Stylianides (UK) 

TWG 23 

Implementation of Research 

Findings in Mathematics 

Education 

Mario Sánchez 

Aguilar (Mexico) 

Kjersti Wæge (Norway) 

Ana Kuzle (Germany) 

Morten Misfeldt (Denmark) 

TWG 24 

Representations in 

Mathematics 

Teaching and Learning 

Anna Baccaglini-Frank (Italy) Carla Finesilver (UK) 

Christian Mercat (France) 

Samet Okumus (Turkey) 

Michal Tabach (Israel) 

TWG 25 

Inclusive Mathematics 

Education – 

Challenges for Students with 

Special Needs 

Petra Scherer (Germany) Evelyn H. Kroesbergen (The 

Netherlands) 

Hana Moraová (Czech 

Republic) 

Helena Roos (Sweden) 

TWG 26 

Mathematics in the Context 

of STEM Education 

Behiye Ubuz (Turkey) Michelle Stephan (USA) 

Koeno Gravemeijer (The 

Netherlands) 

Patrick Capraro (Germany) 

Editorial information 

These proceedings are available as a complete volume online on the ERME website and each 

individual text is also available on the HAL open archive, where it can be found through keywords, 

title or author name. This has been the practice since CERME9, to increase the visibility of the huge 

work done in CERME conferences.  

This volume begins with texts corresponding to the four plenary activities of CERME11: the plenary 

lecture by Paul Drijvers (The Netherlands) on “Embodied instrumentation: combining different views 

on using digital technology in mathematics education”; the plenary lecture by Kathleen M. Clark 

(USA) on “History and pedagogy of mathematics in mathematics education: History of the field, the 

potential of current examples, and directions for the future”; the plenary lecture by Sebastian Rezat 

(Germany) on “Extensions of number systems: continuities and discontinuities revisited”; and finally 

the “ERME anniversary panel on the occasion of the 20th birthday of the European Society for 

Research in Mathematics Education” by Konrad Krainer (Austria), Hanna Palmér (Sweden), Barbara 

Jaworski (UK), Susanne Prediger (Germany), Paolo Boero (Italy), Simon Modeste (France), Tommy 

Dreyfus (Israel), and Jana Žalská (Czech Republic). 

After the plenaries, the reader will find 26 chapters corresponding to the work done in the TWGs of 

CERME11 (all the split TWGs chose to do combined introductions). These chapters follow a similar 
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structure: they start with an introduction; then the long contributions (8-page papers) and the short 

contributions (2 pages) are presented – in alphabetical order by first author’s name. However, TWG17 

has chosen a different order, corresponding to subthemes in the group. 

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions 

(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, an 

analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 06, 

07, 09, 14, 15, 17, 19, 22, 23, 25 and 26 have chosen this form of long introduction. 

The publication of these proceedings is the result of a collaborative work, involving CERME11 IPC, 

the TWG leaders and co-leaders, and the LOC co-chair. We warmly thank all these people for their 

involvement, and hope that this volume will contribute to the development of mathematics education 

research in Europe and beyond. 
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Embodied instrumentation: combining different views on using digital 

technology in mathematics education  

Paul Drijvers 

Utrecht University, the Netherlands; 

 HU University of Applied Sciences Utrecht, the Netherlands; p.drijvers@uu.nl 

The potential of digital technology for mathematics education has been widely investigated in recent 

decades. Still, much remains unknown about how to use tools to foster mathematics learning. To 

address this issue, I first consider the didactical functionalities of digital technology in mathematics 

education, and the overall modest effects of using these tools for learning. Next, to find possible 

explanations of these findings I address three relevant views: (1) a Realistic Mathematics Education 

(RME) view on tool use, (2) an instrumental approach to tool use, and (3) an embodied view on 

cognition. As a conclusion, I claim that all three lenses share a focus on mathematical meaning. 

Whereas the RME view provides important general guidelines, an integrative approach to tool use, 

which I label embodied instrumentation, and which includes the careful alignment of embodied and 

instrumental experiences, seems promising to generate powerful learning activities.  

Keywords: Digital technology, Embodied instrumentation, Embodiment, Instrumental approach, 

Mathematics education, Realistic mathematics education.  

An introduction to tool use 

Since the origin of mankind, humans have been using tools to extend their scope and to carry out 

tasks more easily and more efficiently. A wide range of tools has been developed over time. The most 

basic ones, such as a stone axe for chopping wood, enabled their users to go beyond their physical 

limitations to achieve specific goals. The tools were not always designed as such. In some cases, 

people – or animals, as tool use is not limited to the human species – appropriated objects for a 

specific task, and in this way ‘turned objects into tools’. For example, one could use a tree branch to 

hit somebody harder than one could do with bare hands, but the branch did not grow from the tree to 

facilitate beating. 

Over time, tools have become more sophisticated and have been designed to address cognitive tasks. 

Think, for example, of clay tablets to capture calculations (Proust, 2012). Writing down calculations 

assumes ways to represent numbers and operations, which are quite abstract mathematical notions; 

these representations themselves can be considered tools already (Monaghan, Trouche, & Borwein, 

2016).  Since clay tablets, many other tools for mathematics have been designed and used over the 

centuries. Physical artefacts such as the abacus and compasses respectively facilitated calculations 

and geometrical constructions.  

Gradually, new types of tools emerged, such as mechanical tools – think of Pascal’s Pascaline 

(Maschietto & Soury-Lavergne, 2013) – and digital tools. Nowadays, digital technology such as 

calculators, tablets (but no longer made from clay), smartphones and smart watches, gives access to 

a wide range of mathematical features, including sophisticated computer algebra engines and 

statistical packages. In many cases, the mathematics embedded in the latter types of software has a 
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non-transparent black-box character. In addition to this, the role of mathematics under the hood of 

advanced tools, such as search engines, navigation tools and credit cards, to mention just some 

examples, is becoming more and more invisible. 

As education prepares for future private and professional life, the development and widespread 

availability of sophisticated mathematical tools affects mathematics education. These tools transform 

mathematical activity (Hoyles, 2018). However, much is still unknown about how to exploit the 

potential of these powerful technologies for mathematics learning. In spite of the available body of 

literature (for overviews see Ball et al., 2018; Hoyles & Lagrange, 2010; Trgalová, Clark-Wilson, & 

Weigand, 2018), the mathematics education community is still struggling with the integration of 

digital technology in teaching and learning. The question of how the use of digital technology may 

foster mathematics learning and which theoretical lenses may guide us, is waiting to be answered.  

To address this question, I will first globally address the didactical functionalities of digital 

technology in mathematics education, and the overall modest effects of using these tools for learning. 

To consider possible explanations of these findings, I will then address three relevant theoretical 

views in more detail: (1) a Realistic Mathematics Education view on tool use, (2) an instrumental 

approach to tool use, and (3) an embodied view on cognition. Finally, I will claim that these three 

lenses share a focus on mathematical meaning. Whereas the RME view provides important general 

guidelines, an integrative approach to tool use, which I will label embodied instrumentation, and 

which includes the careful alignment of embodied and instrumental experiences, seems promising to 

generate powerful learning activities. 

Digital tools in mathematics education 

A taxonomy of digital tools 

In the last decades, a myriad of digital tools for mathematics education has been developed. These 

tools show a wide variety with respect to mathematical focus, didactical functionality, user-

friendliness, and other features. All, however, come with affordances and limitations, with 

opportunities and constraints. Let me try to sketch an overview of the fragmented landscape of digital 

technology in mathematics education. A first dimension, of course, is the tool’s mathematical 

functionality. A categorization of the mathematical functionality of a tool can be close to a 

categorization of the field of mathematics itself. Digital tools can carry out algebraic work, graphing 

tasks, statistical analyses, calculus procedures, and geometric jobs. The traditional domains of school 

mathematics (e.g., number, ratio, algebra, geometry, calculus, statistics) may do for globally 

classifying the mathematical functionality of digital tools for mathematics education. It goes without 

saying that a specific digital tool may cover a range of these domains and as such serve more than 

one mathematical functionality, but this mathematical categorization still seems to work. 

Slightly more complicated is a taxonomy of the didactical functionality of a digital tool, all the more 

as this is not just a matter of the tool itself, but also highly depends on the type of tasks and on the 

way the use is embedded and orchestrated in the teaching and learning processes. In spite of this 

evident limitation, I do feel that the very global model presented in Figure 1 (Drijvers, Boon, & Van 

Reeuwijk, 2011; Drijvers, 2018b) may help teachers and educators to prepare their teaching with 

technology, and to be explicit about their main goals and corresponding choices with respect to the 
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tool to use. The first didactical functionality in Figure 1 is to “do mathematics”. This functionality 

does not target the heart of the mathematical activity itself, but concerns outsourcing part of the work 

to relieve the student’s mind. In this way, energy can be saved for the core matter; a division of labour 

between student and machine, so to say. Next, Figure 1 shows two types of didactical functionality 

that focus on learning. With respect to learning through practicing mathematical skills, digital tools 

may offer variation and randomization of tasks, and automated and intelligent feedback. As such, the 

digital tools form a personal environment in which one can safely make mistakes and learn from 

them. Finally, tool use for concept development involves using a digital tool to explore phenomena 

that invite conceptual development. This is probably the most challenging and subtle didactical 

functionality to exploit, as concept development can be considered a higher-order learning goal.  

Of course, the categories in this didactical functionality taxonomy are not mutually exclusive; in many 

cases, the “developing concepts” didactical functionality rests on the outsourcing function for doing 

mathematics. Also, the didactical function of a digital tool is just a tool feature to a lesser extent than 

the mathematical functionality is; it also depends on the type of tasks and student activity, and the 

educational setting. This being said, the model may help to identify some main roles of digital 

technology in the learning of mathematics. 

Figure 1: Didactical functionality of digital technology in mathematics education (Drijvers, Boon, & 

Van Reeuwijk, 2011; Drijvers, 2018b) 

The benefits of tool use 

After this global sketch of the mathematical and didactical landscape, one might wonder about the 

benefits of using digital technology in mathematics education. How much evidence is there for the 

learning gains? Recently, OECD was not very optimistic about this evidence: 

Despite considerable investments in computers, internet connections and software for educational 

use, there is little solid evidence that greater computer use among students leads to better scores 

in mathematics and reading. (OECD, 2015, p. 145) 

To further investigate this, I revisited some review studies in this domain (Drijvers, 2018a). While 

doing so, a main source was a second-order meta-analysis carried out by Young (2017), who, 

interestingly enough, took the didactical functionality typology shown in Figure 1 as a starting point. 

Including 19 meta studies, Young finds a significant positive effect of the use of technology in 

mathematics education with a small to moderate average effect size of 0.38 (Cohen, 1988). In his 

calculation, Cohen’s d and Hedges g are considered comparable. This average varies slightly over the 
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three different didactical functions: 0.47 for the “do mathematics” role, 0.42 for the “practice skills” 

role, and 0.36 for the “develop concepts” role. This not surprising to me, as the latter functionality 

usually requires more student reflection than the other two do. For studies in which the different 

didactical functionalities are combined, however, the average effect size is lower, namely 0.21.  

An interesting finding by Young (ibid.) is that the reported average effect size seems to decrease with 

the increasing quality of the meta-analyses included. Quality here refers to both the meta-analysis 

itself and to the quality of the studies included in it. For example, the three review studies mentioned 

in Table 1 are the only ones rated high quality and they show relatively low effect sizes. A more 

detailed look at these studies also reveals that the effect sizes reported in the different research reports 

do not significantly increase over time, whereas one might hope that technological tools are 

improving, along with teachers’ ability to exploit them in teaching. A possible explanation might be 

that a possible positive development over time is compensated by other factors, such as more rigorous 

study designs and methods, and bigger sample sizes.   

Study 
Number of 

effect sizes 
Average effect size 

Global conclusion according 

to the authors 

Li & Ma, 2010 85 d = 0.28 (weighted) 
Moderate significant 

positive effects 

Cheung & Slavin, 2013 74 d = 0.16 
A positive, though modest 

effect 

Steenbergen-Hu & Cooper, 

2013 
61 g range 0.01 – 0.09 

No negative and perhaps a 

small positive effect 

Table 1: Effect sizes reported in in three high-quality meta review studies (based on Drijvers, 2018a) 

Of course, this zooming out approach suffers from important limitations. The review studies are based 

on older research, so the picture might have changed since then. Also, the review studies only include 

experimental, quantitative studies and neglect qualitative or design-based research. And, finally, 

overviews such as these do not distinguish educational levels, types of technology used, and other 

educational factors that may be decisive. 

Still, it would be too easy to ignore the above findings because of these limitations. The effect sizes 

are not overwhelming and the OECD quote at the start of this section seems appropriate. Why is the 

integration of digital technology in mathematics education not the success that one might have hoped 

for? In my opinion, the question “does ICT work in mathematics education?” is too broad. If we 

would replace “ICT” by “textbook”, for example, no one would be surprised to get an answer like “it 

just depends on the quality of the textbook”. In a similar way, exploiting the full potential of digital 

tools in mathematics education is a complex issue that requires more detailed insights into the learning 

processes that play a role, into the targeted mathematical content, and in the ways in which the 

mathematical activity is affected by the use of the tool. Therefore, I will now zoom in on three 

theoretical and more nuanced views on the use of digital tools in mathematics education, that may 

offer principles and frameworks to better tackle the subtlety of the topic. 
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A Realistic Mathematics Education view 

Even though the theory of Realistic Mathematics Education (RME) applies to mathematics education 

in general, it might also shed some light on the possible benefits of using digital technology in 

mathematics education. Let me first explain some general RME features. RME is an instruction 

theory for the teaching and learning of mathematics that was developed in the Netherlands. A starting 

point was Freudenthal’s (1973) view on mathematics as a human activity, i.e., mathematics should 

be experienced as meaningful, authentic, sensemaking and real by the students. The following quote 

stresses that the word “realistic” should not be understood as “real world”: 

Although ‘realistic’ situations in the meaning of ‘real-world’ situations are important in RME, 

‘realistic’ has a broader connotation here. It means students are offered problem situations which 

they can imagine. This interpretation of ‘realistic’ traces back to the Dutch expression ‘zich 

REALISEren’, meaning ‘to imagine’. It is this emphasis on making something real in your mind 

that gave RME its name. Therefore, in RME, problems presented to students can come from the 

real world, but also from the fantasy world of fairy tales, or the formal world of mathematics, as 

long as the problems are experientially real in the student’s mind. (Van den Heuvel-Panhuizen & 

Drijvers, 2014, p. 521). 

This starting point is elaborated in some key concepts, including the activity principle, 

mathematization, and didactical phenomenology. Let me briefly elaborate on each of these three.  

- The activity principle links to the view of mathematics as a human activity and highlights

that students should have the opportunity to explore and to re-invent mathematics, and in

this way build up their mathematical knowledge.

- In line with this, mathematization refers to the activity of doing mathematics. Treffers

(1987) distinguishes horizontal and vertical mathematization. Horizontal mathematization

concerns mathematizing reality and the process of formulating a mathematical description,

involving the transfer between different domains. Vertical mathematization concerns

mathematizing mathematics and the process of reorganization within the mathematical

system, involving the genesis of mathematical objects and relations between them.

- A didactical phenomenology is an analysis of “how mathematical thought objects can help

organizing and structure phenomena” (Van den Heuvel-Panhuizen, 2014, p. 175). It

identifies phenomena that beg to be organized with the specific mathematical means that are

the topic of the learning, and as such may “show the teacher the places where the learner

might step into the learning process of mankind” (Freudenthal, 1983, p. ix). It invites the

development of the mathematics at stake and gives meaning to it. As said before, these

phenomena can come from different “worlds” as long as they are experientially real to the

students (Gravemeijer & Doorman, 1999). Such an analysis on the one hand asks for a

thorough analysis of the mathematical topic, and on the other hand for a clear view on the

targeted audience of the teaching.

How do these RME principles inform the use of digital technology in mathematics education? First, 

the interpretation of the word “realistic” in the sense of experientially real suggests that students 

should experience the activity with the digital technology as meaningful. In line with Ainley, Pratt 

and Hansen (2006), students may perceive an activity as meaningful if they are aware of its purpose 
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and its utility, where purpose refers to the activity leading to a “meaningful outcome for the pupil, in 

terms of an actual or virtual product, or the solution of an engaging problem” (p. 29), and utility to 

“the ways in which those mathematical ideas are useful” (p. 30). I expect that a certain level of 

transparency of the tool would foster meaning in terms of experienced purpose and utility.  

Second, the activity principle and the human activity view suggest that the digital tool should offer 

the students opportunities to explore, and to be an actor rather than a passive user. I expect that a 

degree of ownership and the feeling of being in control may invite this. From a mathematization 

perspective, being in control also includes the opportunity to easily express yourself mathematically 

with the amount of freedom that one also has while doing paper-and-pen mathematics. This requires 

a sound mathematical basis for the tool in use.  

Third and final, taking a didactical phenomenology perspective leads me to expect that the 

phenomena may change in a technology-rich classroom: the digital environment itself may be a 

meaningful phenomenon to study. For example, if students regularly use digital tools like graphing 

calculators or software for dynamic geometry, these environments really become part of the 

classroom environment and as such may elicit inspiring phenomena that invite further investigation. 

Also, as many students nowadays are familiar with games and tools, digital environments may be 

quite natural and authentic to them, which offers opportunities to better realize this RME principle.  

Let me illustrate these principles through the example of an online lesson series on arrow chains and 

functions for grade 8 (14-year-old students), implemented in the Freudenthal Institute’s Digital 

Mathematics Environment1 (Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012; Drijvers, 

Doorman, Boon, Reed, & Gravemeijer, 2010). In this lesson series, students first explore chains of 

operations in meaningful contexts. As an example, they figure out how the breaking distances of 

different types of vehicles, the distance needed to stop in case of emergency, depend on their velocity. 

Next, they act out the chaining by standing next to each other, creating an input-output-chain in which 

each student is responsible for performing one of the operations, to prepare for the work in the digital 

environment.  

Figure 2 shows some snapshots of the work in the digital environment that follows. The first row 

shows how students can chain operations to calculate the breaking distance in meters of a scooter 

with an initial velocity of 40 km/hour. Of course, after their previous experience with series of 

numerical calculations, the construction of these chains should be experienced by the student as a 

meaningful way to organize these calculations. In the second row, the breaking distance is 

investigated as function of the initial velocity, and a graph is added. In the third row, these breaking 

distance functions are compared for scooters, cars and lorries. As the window got too full, the user 

has collapsed the function chains into single boxes, allowing for a good comparison of the three 

graphs.  

Even if these activities are described only briefly, some RME principles can be recognized. As for 

the reality principle, the students have been introduced to arrow chains to organize calculations in 

1 See https://app.dwo.nl/en/student/ -> Old -> Secondary education -> Algebra -> Lesson function and arrow chains. 
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whole-class and paper-and-pen activities, so these have become meaningful ways to capture 

calculations. The open character of the environment, with a big empty window as exploration room 

for students, is meant to provide the students with means to freely build, change and organize arrow 

chains and to be in control of what is happening. Horizontal mathematization is addressed through 

the task of modelling the arrow chains for the case of the breaking distances, and vertical 

mathematization comes into play as soon as the three quadratic functions and their relationships are 

compared, independently from the initial breaking distance problem situation. The option to collapse 

function chains into boxes is intended to support an object view on function. A didactical 

phenomenology lens led the designers to consider the breaking distance context as a phenomenon 

that can very well be organized through mathematical functions and arrow chains.  

To summarize, the example illustrates how the general RME principles can be applied to the specific 

situation of using digital tools in a meaningful way, and as such provide guidelines and criteria for 

sensible tool use. In this way, the RME lens may offer a nuanced view on using digital technology in 

mathematics education, even if it is not dedicated to this particular case.  

A function as an input-output 

assignment: braking distance as 

a function of velocity 

Investigation of the co-variation 

of velocity and braking distance 

through tracing the graph 

Investigation of a family of 

functions, representing braking 

distances for three different 

vehicles 

Figure 2: Snapshots from the Function and Arrow Chains material (from Drijvers, Boon, Doorman, 

Bokhove, & Tacoma, 2013). See https://youtu.be/OMDjC5yVlr0 for an animation. 
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An instrumental approach 

In addition to the general guidelines offered by RME, a more detailed view on the interplay between 

mathematics and tool use is needed. A first, somewhat naive view on digital tools and their use in 

mathematics education might be that tools are just “objective” mathematical assistants that help us to 

carry out tasks, to “do the jobs”: using them reduces solving mathematical tasks to pressing buttons, 

and as such simplifies our lives. However, things turn out to be not that straightforward. Tools are 

not as neutral as one might hope, but come with affordances and constraints, with opportunities and 

obstacles, and as such guide the user’s mathematical practices: 

Tools matter: they stand between the user and the phenomenon to be modelled, and shape activity 

structures. (Hoyles & Noss, 2003, p. 341) 

For example, drawing a circle with physical compasses is quite different from drawing it in a dynamic 

geometry environment such as GeoGebra. In the first case, one really experiences a circular 

movement, after deciding on the centre and the radius. In the latter case, the focus is on setting the 

centre and the radius, but while enlarging the radius, the circle is growing, and the circular movement 

is no longer needed. Different tools lead to different techniques, and as such to different views on the 

same underlying mathematical concept. 

Indeed, in line with Vygotsky (1978), tools mediate between human activity and the environment. As 

a consequence, using digital tools for learning and doing mathematics is not just a matter of directly 

transforming mathematical thinking into tool commands. On the one hand, the user shapes the 

techniques for using the tool, but on the other hand the tool shapes and transforms the user’s 

mathematical practice. These considerations gave rise to the development of a new theoretical view, 

called the instrumental approach to tool use. Key in this approach are the notions of artefact, 

instrument, instrumental genesis, scheme, and technique. Let me briefly explain these notions. 

A starting point in instrumental approaches is the distinction between artefact and instrument 

(Rabardel, 2002; Vérillon & Rabardel, 1995). The artefact is the object that is used as a tool. In our 

case, graphing calculators or dynamics geometry software are artefacts, even if we also might want 

to look in more detail, and consider the graphing window in GeoGebra an artefact, or the Solver 

option in a graphing calculator. An instrument consists of an artefact and “one or more associated 

utilization schemes” (Verillon & Rabardel, 1995, p. 87). So, besides the artefact, the instrument also 

involves the schemes that the user develops and applies while using the artefact for a specific class 

of instrumented activity situations, in our case often involving a type of mathematical tasks. To 

summarize this in a somewhat simplified ‘formula’: Instrument = Artefact + Scheme. The process of 

an artefact becoming part of an instrument is called instrumental genesis (Artigue, 2002; Trouche & 

Drijvers, 2010).  

What are these schemes, key in instrumental genesis? Based on the work by Piaget (1985) and others, 

a scheme is considered a more or less stable way to deal with specific situations or tasks. Vergnaud 

claims that “the sequential organization of activity for a certain situation is the primitive and 

prototypical reference for the concept of scheme” (Vergnaud, 2009, p.84). Referring to the scheme 

of counting in particular, Vergnaud (1987, p.47) speaks of “a functional and organized sequence of 

rule-governed actions, a dynamic totality whose efficiency requires both sensorimotor skills and 
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cognitive competencies.” Later, Vergnaud (2009) prefers to speak about percepto-gestual schemes 

rather than of sensorimotor schemes, as to go beyond the purely biological level and to highlight the 

close relationship between perception and gesture on the one hand, and conceptualization on the 

other. In agreement with these ideas, the term sensorimotor scheme in this rest of this text should be 

interpreted in this wider sense.  

Scheme development involves the intertwined development of sensorimotor skills and cognition. As 

we see a scheme here as part of an instrument, we speak of an instrumentation scheme. Artigue (2002) 

highlights the pragmatic and epistemic value of schemes: the pragmatic value in the sense of their 

productive potential to “get things done”, and the epistemic value in the sense of contributing to the 

meaning and understanding of the mathematics involved. 

The observable parts of an instrumentation scheme, the concrete interactions between user and 

artefact, are called instrumented techniques. Instrumented techniques are more or less stable 

sequences of technical interactions between the user and the artefact with a particular goal. As such, 

an instrumentation scheme consists of one or more observable instrumented techniques, that are 

guided by the opportunities and constraints the artefact offers, and by the students’ knowledge. In the 

meantime, the techniques may also contribute to the development of this knowledge. As such, 

techniques can be seen as actions that reflect students’ knowledge. And, even more important, 

techniques and knowledge may co-emerge. It is this co-emergence that forms the heart of instrumental 

genesis and that reflects the main educational potential of using the artefact in a given situation. 

In the instrumental approach, a scheme depends on the subject, the artefact and the task. Three 

comments should be made here. First, this implies that carrying out a similar task with different 

artefacts is likely to lead to different schemes. The compasses case described above shows that 

different instrumental geneses will take place. It is interesting to use different artefacts for similar 

tasks and to confront and compare the different schemes that emerge (Maschietto & Soury-Lavergne, 

2013). As a consequence, mathematical practices transform through the use of digital artefacts 

(Hoyles, 2018). Second, instrumental genesis is not just an individual process, but is part of social 

learning processes and institutionalization within the specific educational context. Through teachers’ 

instrumental orchestration (Trouche, 2004), a collective instrumental genesis is taken care of, to 

assure the convergence towards shared instruments and shared mathematical knowledge. In fact, 

teachers are involved in a double instrumental genesis, including their personal development of 

schemes on the one, and schemes for use in teaching their students on the other. Third, some artefacts 

are more suitable for specific types of instrumental genesis than others. Haspekian (2014) introduced 

the notion of instrumental distance to stress the change in mathematical practice that may emerge as 

a result of some type of tool use. If the distance between regular or targeted mathematical practices 

on the one hand, and techniques invited by the artefact on the other is too big, instrumental genesis 

might be not productive for the learning process. 

The importance of this instrumental view for the use of mathematical tools in mathematics education 

lies not only in the acknowledgement of the subtlety and complexity of the issue, but also in the 

concrete guidelines it offers for a fruitful use: as teachers and educational designers, we should set up 

activities for students and choose appropriate artefacts that together lead to instrumental genesis 
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processes in which the targeted mathematical knowledge is developed in a meaningful and natural 

way. A mismatch between the task, the affordances of the artefact, and the mathematical knowledge 

at stake will not be effective. Outlining these three elements is the game to play; it includes being 

explicit about the instrumental genesis and scheme development that is aimed for. 

Figure 3: Intersecting graphs to solving equations with two different tools 

As an example of such scheme development, Figure 3 shows two ways in which an equation can be 

solved graphically through an Intersect procedure, one using a graphing calculator (screens on the 

left) and one using GeoGebra (screen on the right). This equation, 
𝑥2+100

2𝑥+20
= 4.5, appeared in a realistic

problem situation in a national examination task in the Netherlands, in which students used a graphing 

calculator. Technically speaking, the procedure comes down to entering the left-hand side and the 

right-hand side of the equation separately as functions in the graphing tool. Next, a viewing window 

should be set so that the two graphs show an intersection point. Then the intersect procedure is called, 

through selecting the two graphs. This will lead to the coordinates of such an intersection point. 

Finally, its first coordinate is a solution of the equation. Phrased this way, the technique sounds very 

straightforward and procedural.  

However, several conceptual elements are involved, First, the student needs to be aware of the 

relationship between solutions of an equation and graphical intersection points. Second, while setting 

the viewing window dimensions, the student needs to have an idea of where intersection points can 

be found, which requires some reasoning (or some trial-and-error behaviour). Third, the result 

consists of not one but two numerical values, and a solution is a numerical, approximated value. 

Fourth and final, the procedure leads to one, single solution; the procedure needs to be repeated for 

equations with multiple solutions, that can be visible in the current viewing window, but may also 

exist outside its boundaries. Again, some reasoning is needed to consider the option of other 

intersection points outside the current view. Eventually, this technique can be complemented by 
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zooming in at intersection points, by zooming out to get an overview, or by generating tables of 

function values.  

It is this intertwinement of technical and conceptual elements that makes me speak of an Intersect 

instrumentation scheme. The development of this scheme impacts on students’ view on equation 

solving in a subtle and somewhat implicit way. Solving an equation is no longer a matter of exact 

algebraic manipulation while maintaining equivalence, but is replaced by a functional, graphical view 

that leads to approximated values. As such, the tool use affects the mathematical content. The 

Intersect scheme, therefore, integrates techniques and mathematical ideas, and this is exactly what 

instrumental genesis is about. 

The instrumentation schemes that students develop depend on the digital tool in use. In Figure 3, the 

left part shows two screens of a graphing calculator, here a Texas Instruments model (Drijvers & 

Barzel, 2012). The right-hand side shows a similar screen in GeoGebra, which offers a larger screen 

and higher resolution. The techniques are also slightly different: GeoGebra does not ask for a starting 

value, but immediately comes up with a point. This makes the procedure more efficient, but it also 

makes it harder to find the coordinates of the second intersection point. Also, whether the coordinates 

are displayed depends on the settings in GeoGebra. The two tools – again, in the default setting – 

provide the results with different accuracy. 

To summarize, this example illustrates the interplay between techniques for using a digital tool, and 

the related mathematical knowledge involved; an interplay that fundamentally affects the 

mathematics, but in the meantime is subtle to study. The example shows, to rephrase the quotation 

by Hoyles and Noss (2003) earlier in this section, that tools and techniques are not neutral, but may 

highlight or even require specific mathematical views on the task at stake. As a consequence, tool use 

is less simple than it might seem. Instrumental views are helpful to become aware of this complexity 

and to identify the interplay between artefacts and tasks, between techniques and schemes. 

Recognizing instrumental genesis as a path to learning mathematics, and probably also different 

mathematics, is an important step forward to fostering learning while using digital tools. 

An embodied view on cognition 

The instrumental approach to tool use has proved valuable in understanding the interplay between the 

technical and the conceptual when learners use artefacts. So far, however, it focused mostly on higher-

level mathematics such as pre-university streams, and on sophisticated digital tools such as computer 

algebra and dynamic geometry systems. It is maybe due to these foci that mathematics is approached 

as a cerebral activity, and that the bodily foundations of cognition tend to be neglected. To do justice 

to the latter aspect, I now consider an embodied view on cognition as a third lens to look at the use 

of digital technology in mathematics education.  

A general starting point here is that body and mind cannot be separated and that a dualistic view on 

them is inappropriate. Cognition is not considered an exclusively mental affair, but based on bodily 

experiences, that take place in interaction with the physical and social world (e.g., see Radford, 2009; 

Lakoff & Núñez, 2000; de Freitas & Sinclair, 2014; Ferrara & Sinclair, 2016). Embodiment “is the 

surprisingly radical hypothesis that the brain is not the sole cognitive resource we have available to 
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us to solve problems” (Wilson & Golonka, 2013, p.1). Phrased differently, Alibali and Nathan (2012) 

claim:  

According to this perspective, cognitive and linguistic structures and processes – including basic 

ways of thinking, representations of knowledge, and methods of organizing and expressing 

information – are influenced and constrained by the particularities of human perceptual systems 

and human bodies. Put simply, cognition is shaped by the possibilities and limitations of the human 

body. (p. 250)  

Also for the case of mathematics, often considered a highly abstract and mental subject, cognition is 

more and more acknowledged to be rooted in sensorimotor activities, and mathematical objects to be 

grounded in sensorimotor schemes. Two special issues−57(3) and 70(2)−of Educational Studies in 

Mathematics, dedicated to embodiment in mathematics education, testify to the growing interest of 

mathematics education research in this perspective. Many embodied approaches take “the four E’s” 

of embodied, extended, embedded and enactive cognition2 as a starting point. In these terms, the 

initial views on tool use in this paper highlight the role of tools to extend the body; now the focus 

shifts towards the other E’s, and to digital technology providing opportunities to create embodied 

experiences in particular. 

At first glance, a tension might seem to exist between this embodied view on cognition and the use 

of digital technology in mathematics education. Digital tools such as spreadsheets, computer algebra 

software and dynamic geometry systems embed an impressive amount of mathematical knowledge. 

As these tools are not transparent, they seem to “hide this knowledge under the hood”, which may 

create a distance between user and mathematics used. And, even more importantly, ways to interact 

with these tools have not so far been ‘body-based’, as the interaction mainly took place through 

keyboard strokes in the more remote past, and through mouse movements in the more recent past. 

Recent technological developments, however, open up new horizons to do justice to the 

multimodality of mathematical knowledge. Maybe partly due to the need for embodied experiences, 

improved user interfaces − think of multitouch screen technology, handwriting recognition, motion 

sensors, and virtual and augmented reality − have been developed, offering new opportunities to 

investigate an embodied approach to tool use. For example, some researchers studied students who 

“walk graphs” using a motion sensor, and in this way create embodied experiences of distance, speed 

and acceleration changing over time (Duijzer, Van den Heuvel-Panhuizen, Veldhuis, Doorman, & 

Leseman, 2019; Robutti, 2006). 

In line with the didactical engineering tradition within my institute (Margolinas & Drijvers, 2015), 

the work done in this field by my colleagues an myself within my institute follows an embodied 

design approach (Abrahamson, 2009; Abrahamson, Shayan, Bakker, & Van der Schaaf, 2016). We 

use “design genres” (Abrahamson, 2014; Bakker, Shvarts, & Abrahamson, 2019) in which activities 

in digital environments. In these activities, students can engage in bodily experience and develop 

mathematical cognition. Let me illustrate this embodied design approach with two examples. 

2 https://4ecognitiongroup.wordpress.com/ 
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As a first example, Figure 4 shows a task designed by Shvarts (2018) in the Digital Mathematics 

Environment. The left screen shows a fixed base line and a small, fixed black point. The larger grey 

dot is projected onto the base line. The three points together define a triangle, which in the left screen 

is red. The student can move the big grey point with her finger, and the triangle changes accordingly. 

Suddenly, the triangle becomes green (right screen). The triangle turns green when it is isosceles, 

otherwise it is red. As a consequence, the triangle is green if the grey, moveable point lies on the 

parabola which has the base line as directrix and the fixed point as focus. This dashed parabola, 

however, is not shown to the student, but it is included here for the reader. 

Figure 4: The parabola task (Shvarts, 2018; Shvarts & Abrahamson, 2019). See 

https://youtu.be/JHiHlFdUGtw for an animation. 

The task, now, is to constantly move the grey point so that the triangle remains green. When the 

students become fluent in their movements, they are asked about the rule that determines the colour 

of the triangle. The task is challenging from different perspectives. From an embodiment perspective, 

the sensorimotor coordination is quite complex, as the direction to move should be constantly checked 

with the orientation of the triangle’s base. Eye-tracking data indeed show many eye movements 

jumping between the movable grey point and the midpoint of the base, along the triangle’s median 

(Shvarts & Abrahamson, 2019). These iterative jumps reveal the most important “attentional anchors” 

(Duijzer, Shayan, Bakker, van der Schaaf, & Abrahamson, 2017). From a mathematical perspective, 

the property that makes the triangle green is it being isosceles. As one vertex of the triangle is fixed 

to a point and another runs through a line, this task provides students with sensorimotor experiences 

that in the future learning might feed the notion of parabola. At a higher mathematical level, and this 

goes beyond how the example is presented here, one might elaborate this activity towards reflection 

on the locus of the grey point for the case that the triangle remains green (Shvarts, 2018). As the 

triangle is isosceles, and one of the sides is perpendicular to the base line (directrix), we can recognize 

the property of a conic: the distances to the focus and the directrix remain equal, so the locus is a 

parabola! This example shows how sensorimotor experiences may draw students’ attention to the 

notion of a triangle being isosceles as preparation to the notion of parabola. Of course, many design 

decisions need to be taken, such as on how to phrase the task, which support to offer (do we display 

coordinates, or a grid), how to sequence different variations on this task, how to foster the notion of 

parabola, et cetera. The learning effect of such tasks may to an important extent depend on these 
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subtle design decisions, but goes beyond the scope of the present example. Digital design is a 

relatively new phenomenon, which puts high demands on the designers (Leung & Baccaglini-Frank, 

2017). 

The second example concerns handwriting recognition. Writing mathematics by hand, whether it is 

on an old, dusty chalk board or on a tablet, involves hand movements and gestures that may provide 

a sensorimotor experience to students. Therefore, the Digital Mathematics Environment now has a 

handwriting recognition module, that allows for the integration of the human experience of hand 

movements while writing, and the software’s intelligence to interpret the handwriting and to evaluate 

mathematical correctness for the sake of feedback.  

Figure 5: Handwriting recognition in the Digital Mathematics Environment. See 

https://youtu.be/YKtrr1IxWaA for an animation. 

To summarize, the two examples illustrate how an embodied design approach may lead to tasks in 

which sensorimotor experiences form the basis of mathematical cognition, a view that is not explicitly 

present in the two views presented earlier. 

Embodied instrumentation 

Instrumental and embodied views on the use of digital tools in mathematics education may seem quite 

different. On the one hand, instrumental approaches in many cases focus on the development of 

individual, mental schemes – even if collective instrumental genesis is acknowledged −, on high-level 

conventional mathematics, and on sophisticated digital tools. Embodied views, on the other hand, 

focus on sensorimotor schemes, on bodily experiences, on basic mathematical ideas, and make use 

of dedicated software tools; the convergence to conventional mathematical cognition and techniques 

sometimes receives less attention. From a networking theory perspective (Bikner-Ahsbahs & 

Prediger, 2014), however, it seems interesting to compare, contrast, combine and coordinate these 

different views.   

The claim I want to make here is that, in spite of these apparent differences, embodied and 

instrumental approaches both highlight the complexity of user-tool interaction, share some similar 

theoretical bases, and can be coordinated and aligned in a meaningful way. In line with researchers 
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who in the past have been exploring the interface between embodied and instrumental approaches 

(e.g., Artigue, Cazes, Haspekian, Khanfour-Armale, & Lagrange, 2013; Arzarello, Paola, Robutti, & 

Sabena, 2009; Maschietto & Bartolini-Bussi, 2009), I argue for an embodied instrumentation 

approach, to reconcile the embodied nature of instrumentation schemes and the instrumental nature 

of sensorimotor schemes. As such, an embodied instrumentation approach explores the co-emergence 

of sensorimotor schemes, tool techniques and mathematical cognition, and offers a design heuristic 

for ICT activities which align the bodily foundations of cognition and the need for instrumental 

genesis. 

As for the shared theoretical basis, embodied and instrumental approaches share a theoretical 

foundation in ideas from Vygotsky (1978) on tool use and from Piaget (1985) on schemes, and both 

approaches acknowledge the subtlety of tool mediation in meaningful mathematical activity. In the 

meantime, the two approaches can be complementary, in the sense that embodied approaches so far 

have not overstressed the convergence of tool techniques and conventional mathematical notions, 

whereas instrumental approaches have tended to neglect the sensorimotor view on schemes and the 

embodied nature of cognition. 

Concerning the coordination and alignment of the two approaches, I can image productive learning 

trajectories on fundamental mathematical concepts, in which the development of sensorimotor 

schemes may gradually go hand in hand with, or even be part of instrumental genesis. Such a 

trajectory might lead to schemes in which embodied experiences still form the basis, and through a 

process of reflective abstraction (Abrahamson, Shayan, Bakker, & van der Schaaf, 2016) lead to 

instrumental genesis. In this way, embodied and instrumental approaches might be aligned: the 

process of instrumental genesis is fostered by embodied activities. As students advance in a learning 

trajectory, the tool techniques and mathematical knowledge emerge from an instrumental genesis 

process, and the embodied basis may move more to the background. Ensuring coordination between 

the development of sensorimotor schemes and instrumental genesis might be a strong design heuristic 

for technology-rich tasks in mathematics teaching. 

Figure 6: MIT-T tasks (Alberto, Bakker, Walker-van Aalst, Boon, & Drijvers, 2019). See 

https://youtu.be/1eOU4XyyHmg for an animation. 

Let me illustrate this embodied instrumentation approach in a final example. Figure 6’s left screen 

shows the so-called MIT-T app, where the abbreviation stands for Mathematics Imagery Trainer – 

Trigonometry (Alberto, Bakker, Walker-van Aalst, Boon, & Drijvers, 2019). It shows a unit circle 

and a sine graph, with a movable point on each of them. As a first task, students use the multitouch 

screen to simultaneously move the two points and, similar to the case in the parabola example 
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presented above, to explore when the frame around the graphs becomes green. This is the case if a 

correct match is made between the sine of an angle in the unit circle and the function value of the sine 

in a point on the horizontal axis, so if the two points are at equal height. The activity of “keeping the 

frame green” clearly invites appropriate sensorimotor coordination of keeping two points at the same 

height and is expected to induce a “feeling” for the coordination of the two movements. As was the 

case for the parabola task (Fig. 4), this may lead to many follow-up activities, each requiring design 

decisions and subtle arrangements of tasks and tools. As a possible end point of such a sequence, 

Figure 6’s right-hand screen shows the additional tool of a horizontal line, which can be moved up 

and down through the central big grey point with label its height, 0.5, thus implementing the 

coordination that just was enacted. Now both the unit circle and the sine graph can be used to solve 

the equation sin a = 0.5: in the unit circle, one can move the point to meet the intersection of circle 

and line, and similarly in the graph. Of course, these two techniques need to be coordinated as well: 

if the two intersection points do not match, the feedback frame will not become green. In a later phase, 

one might want to drop the unit circle and focus on the sine graph. At that stage, the task in fact comes 

down to graphically solving equations of the form f(x) = c, which is exactly the example shown at the 

end of the instrumental view section (see Figure 3).  

To summarize, this example illustrates how embodied and instrumental approaches may be 

coordinated and aligned in a learning trajectory. In this design, the embodied experiences mediated 

by digital tools prepare for instrumental genesis. Of course, more research is needed to decide whether 

such alignments would lead to higher effect sizes than the ones reported earlier. Speaking in general, 

both the common theoretical bases of embodied and instrumental views, and their complementarity 

make exploring their potential alignment, as expressed in the notion of embodied instrumentation, a 

highly interesting enterprise.  

Conclusion 

In this paper, I first outlined a taxonomy for the didactical functionality of digital technology in 

mathematics education. This taxonomy guided a second-order meta-analysis, the results of which 

suggest that the effect sizes of technology-rich interventions are significantly positive, but small to 

moderate. This led to the idea of looking in more detail at three views on tool use in mathematics 

education. As a first lens, Realistic Mathematics Education theory highlights that students should 

experience mathematics as meaningful. Applied to tool use, this implies that tools should be 

transparent and should provide the students with authentic ways to express themselves 

mathematically. More specifically focusing on tool use, the second lens of instrumentation stresses 

the intertwinement of techniques for using the tool and the mathematical knowledge involved. 

Techniques and mathematical meaning co-emerge in processes of instrumental genesis. The third lens 

of embodied cognition claims that sensorimotor activities form the basis of cognition, and, more than 

the other two approaches, highlights the need to root mathematical knowledge in bodily experiences. 

A key guiding principle shared by all three approaches is mathematical meaning, even if each 

approach stresses different aspects of it: RME highlights the idea of mathematics being 

“experientially real”, instrumentation theory points to the mathematical meaning embedded in 

techniques for using tools, and embodied views see sensorimotor schemes as the foundation of 
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mathematical meaning. This stress on meaning makes sense: if we do not manage to incorporate 

digital technology in students’ mathematical practices in a way that they experience as meaningful, 

it is a useless enterprise.  

As a conclusion, in my opinion the three views have much to offer for technology-rich mathematics 

education. The RME view provides some important general guidelines, which may inform 

instrumental and embodied approaches. As for the interplay between embodied and instrumental 

views, I strongly believe that the two can be coordinated and aligned in a so-called embodied 

instrumentation approach. Embodied and enacted experiences, so present in the embodied cognition 

approach, can form the basis for learning. As such, these experiences are the foundations on which 

instrumental genesis can build; a bodily-based instrumental genesis during which tool techniques and 

mathematical cognition co-emerge.  

Of course, this argument for an embodied instrumentation approach needs further elaboration on 

several aspects. First, the RME lens may reveal possible tensions between its reality principle and the 

instrumental approach’s focus on tool techniques. Similarly, the alignment of sensorimotor schemes 

and tool techniques is a subtle one, even if the examples in Figures 4, 5 and 6 provide some possible 

approaches. Also, a body of empirical evidence for positive effects of such an embodied 

instrumentation approach is lacking so far. In spite of these limitations, I do believe that the three 

lenses do justice to three main elements in the “landscape” of mathematics education: the world 

around us, our bodily interaction with it, and the tools we use to facilitate this interaction. As such, I 

suggest that embodied instrumentation, seen as an integrated embodied and instrumental approach in 

which sensorimotor schemes, tool techniques and mathematical cognition co-emerge, deserves 

priority in the research agenda of those interested in the use of digital technology in mathematics 

education. 
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History and pedagogy of mathematics in mathematics education: 

History of the field, the potential of current examples, and directions 

for the future 

Kathleen M. Clark 

Florida State University, School of Teacher Education, Tallahassee, Florida USA; kclark@fsu.edu 

The field of history of mathematics in mathematics education—often referred to as the history and 

pedagogy of mathematics domain (or, HPM domain)—can be characterized by an interesting and 

rich past and a vibrant and promising future. In this plenary, I describe highlights from the 

development of the field, and in doing so, I focus on several ways in which research in the field of 

history of mathematics in mathematics education offers important connections to frameworks and 

areas of long-standing interest within mathematics education research, with a particular emphasis 

on student learning. I share a variety of examples to serve as cases of what has been possible in the 

HPM domain. Finally, I propose fruitful future directions that call for the contributions of both 

established and emerging scholars in the field. 

Keywords: History of mathematics, mathematics education research, primary historical sources, 

qualitative research. 

Introduction 

George Sarton (1884–1956), a Belgian-born American historian of science, said: 

The main duty of the historian of mathematics, as well as his fondest privilege, is to explain the 

humanity of mathematics, to illustrate its greatness, beauty and dignity, and to describe how the 

incessant efforts and accumulated genius of many generations have built up that magnificent 

monument, the object of our most legitimate pride as men, and of our wonder, humility and 

thankfulness, as individuals. The study of the history of mathematics will not make better 

mathematicians but gentler ones, it will enrich their minds, mellow their hearts, and bring out their 

finer qualities. (Sarton, 1936, p. 28) 

Putting aside that to Sarton—in this example—only men experienced this “legitimate pride” (perhaps 

due to the academic fabric of the 1930s), he beautifully captures one of the often-cited effects of 

studying the history of mathematics: that such a use of history1 of mathematics has the ability to 

humanize the subject, by way of appealing on some aesthetic or non-academic level to the added 

value of the discipline. 

I first experienced this humanistic element of studying the history of mathematics from the desire to 

provide a different perspective regarding mathematics for my students. At the time some 20 years 

ago, I was teaching mathematics to students in grades 11 and 12 at a publicly-funded residential 

school for academically talent students in Mississippi in the United States. I was most concerned 

about the content that would comprise a history of mathematics course that I was tasked to teach as 

part of the school’s mathematics course electives. In preparation for teaching the course I became 

1 As part of the plenary talk (and paper), I plan to highlight the different notions of “use of history” —as the variants of 

“use” (e.g., “incorporate,” “include,” etc.) may be a point of contention for some.   
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involved with the Institute of the History of Mathematics in its Use in Teaching (IHMT), and my 

world of mathematics changed forever. As a result of that experience, I not only gained access to 

materials that would inform the first history of mathematics course I taught, I also acquired a new 

lens on teaching mathematics in general. Although I was teaching students who chose to attend a 

school focused on mathematics and science (e.g., the Mississippi School for Mathematics and Science 

in Columbus, MS), not all of the students had a positive relationship with mathematics. For many, 

they had become trained to view mathematics as a set of procedures to acquire a numerical answer 

for a “problem.” As a high school mathematics teacher, I felt that I was living the embodiment of 

what Glaisher (1848–1928) described: “I am sure that no subject loses more than mathematics by any 

attempt to dissociate it from its history” (1890, p. 466). However, continued participation in IHMT 

and my eventual doctoral work would provide me with new perspectives, tools, and a community 

with which to view, study, and teach mathematics. Therefore, in this talk, I hope to share with you a 

small part of the development of the community—its history, if you will—as well as its exciting 

present and promising future. 

Plan for the plenary paper 

In this paper, I will first situate the field of history of mathematics in mathematics education—often 

referred to as the history and pedagogy of mathematics domain (or, HPM domain) within 

mathematics education, with careful attention to the development leading up to establishing the 

International Study Group on the Relations between the History and Pedagogy of Mathematics (HPM 

Group) in 1976. Precipitated by the creation of the HPM Group, research in the HPM domain has 

continued to grow in last 40-plus years, and includes all levels of learners and teachers. Part of this 

growth has been marked by the creation of a thematic working group on history in mathematics 

education, beginning with CERME6 in 2009. Next, I will provide examples of approaches and 

frameworks that are useful in empirical research in the HPM domain and I will highlight a collection 

of specific examples in which research on the use of history of mathematics contributes to the broader 

landscape of research in mathematics education and will do so with respect to two frameworks useful 

to mathematics education research. As a first example, I will discuss contributions of working with 

primary historical sources on pre- and in-service teachers’ mathematical knowledge for teaching. As 

a second example, I discuss the application of Sfard’s (2008) thinking as communicating framework 

in research, including work by colleagues in Denmark and Brazil, as well as that currently undertaken 

within the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources 

(or, TRIUMPHS) project in the United States. Finally, after a brief analysis of ongoing discussions 

for calls to strengthen empirical work in the HPM domain in light of certain pitfalls and dilemmas 

facing the field, I will propose directions for future research and the ways in which various CERME 

thematic working groups can contribute to bridging research in this important field with the broader 

mathematics education research community 

Development of HPM: A study domain and a group 

What is now known as HPM was established as part of the second International Congress on 

Mathematical Education (ICME) in 1972 in Exeter, UK, first as an official working group there 

(EWG 11) and then as an official study group (with the onerous original name of International Study 

Group on Relations between History and Pedagogy of Mathematics, cooperating with the 
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International Commission on Mathematical Instruction; simplified to the HPM Study Group and later 

as just the HPM Group) subsequent to ICME3 in Karlsruhe, Germany in 1976. The principle aims of 

the group were perhaps a description of the culmination of efforts focused on integrating or using 

history of mathematics in teaching in different contexts around the world since the end of the 19th 

century. In particular, the principle aims given by the HPM Study Group were: 

1. To promote international contacts and exchange information concerning:

a. Courses in History of Mathematics in Universities, Colleges and Schools.

b. The use and relevance of History of Mathematics in mathematics teaching.

c. Views on the relation between History of Mathematics and Mathematical Education at

all levels.

2. To promote and stimulate interdisciplinary investigation by bringing together all those

interested, particularly mathematicians, historians of mathematics, teachers, social scientists

and other users of mathematics.

3. To further a deeper understanding of the way mathematics evolves, and the forces which

contribute to this evolution.

4. To relate the teaching of mathematics and the history of mathematics teaching to the

development of mathematics in ways which assist the improvement of instruction and the

development of curricula.

5. To produce materials which can be used by teachers of mathematics to provide perspectives

and to further the critical discussion of the teaching of mathematics.

6. To facilitate access to materials in the history of mathematics and related areas.

7. To promote awareness of the relevance of the history of mathematics for mathematics teaching

in mathematicians and teachers.

8. To promote awareness of the history of mathematics as a significant part of the development

of cultures. (Fasanelli & Fauvel, 2006, p. 2; originally in May, 1978, p. 76)

It is important to note that the essence of these eight aims have remained relevant and present in 

subsequent HPM-related meetings and remain a source of motivation for research and practice for 

many in the field today. It is also important to note that when appropriate, the aims apply to all levels 

of learners and teachers (e.g., primary (elementary), secondary, tertiary, and teacher education).  

After the establishment of the HPM Study Group in 1976, the community continued to grow in 

important ways, including a focus on practitioners (e.g., school teachers) who wished to humanize 

mathematics in school teaching but to also engage students with historical materials, methods, and 

problems in their learning of mathematics. A classic example of the recommendations that were 

offered to teachers are given by Fauvel (1991) and which resulted from a brief historical look through 

curriculum documents for school mathematics teachers in the UK. In his introduction, Fauvel noted 

that for “decades if not centuries now, a few voices in each generation have urged the value and 

importance of using history in teaching mathematics—but so far without this insight taking firm and 

widespread root in the practice of teaching” (p. 3). National curriculum documents echoed a similar 

call for history of mathematics in both the UK and US in 1989: 

Pupils should develop their knowledge and understanding of the ways in which scientific ideas 

change through time and how the nature of these ideas and the uses to which they are put are 
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affected by the social, moral, spiritual and cultural contexts in which they are developed. (Science 

in the National Curriculum, 1989; as cited in Fauvel, 1991, p. 4).  

Students should have numerous and varied experiences related to the cultural, historical, and 

scientific evolution of mathematics so that they can appreciate the role of mathematics and the 

disciplines it serves…. It is the intent of this goal—learning to value mathematics—to focus 

attention on the need for student awareness of the interaction between mathematics and the 

historical situations from which it has developed and the impact that interaction has on our culture 

and lives. (NCTM, 1989, pp. 5–6) 

However, policy statements and reform efforts tell only one side of the story and to actually enable 

teachers with materials, techniques, skills, etc., is quite another. Still, in the decades since the HPM 

Group’s establishment, the community grew in ways that brought together different stakeholders— 

mathematicians, mathematics historians, mathematics teachers, mathematics education researchers, 

and others—for the purpose of sharing research, historical materials, and examples of pedagogical 

practice in which history of mathematics informed the teaching of mathematics. The first HPM Group 

satellite meeting (associated with an ICME) took place in 1984 at the Stuart campus of the University 

of Adelaide, and the satellite meetings have taken place every four years (as with ICME) since then. 

Additional supports to the international community were also established. For example, also in 1984, 

a meeting took place at University High School in San Francisco, CA, in which the creation of an 

Americas Section of the HPM Group was planned. The aim for an “HPM Americas” section was to 

“have a more active presence in the mathematics education community than was forthcoming from 

the international organization” (Fasanelli & Fauvel, 2006, p. 6). In 1993, the first of regularly-

occurring meetings called European Summer University (ESU), were organized by the Institutes of 

Research in Mathematics (IREM) and took place in Montpellier, France. The ESU was held every 

three years until 20102, when it was decided that they would occur every four years and would be 

staggered by two years from the quadrennial ICME/HPM satellite meeting pair. 

HPM within CERME 

Of course, the inclusion of a working group on history of mathematics in mathematics education at 

CERME may be the international venue of most interest to the present audience. The working group 

made its first appearance at CERME6 (Working Group 15: Theory and Research on the Role of 

History in Mathematics Education), and since then, it was established as Thematic Working Group 

(TWG) 12, History in Mathematics Education. The TWG has focused on a wide array of concerns to 

the field, which are represented by nine overarching themes taken from the “call for papers” since 

2009: 

1. Theoretical, conceptual and/or methodological frameworks for including history in

mathematics education;

2 There was a five-year gap between the 1999 ESU-3 held in Leuven and Louvain-la-Neuve, Belgium and the 2004 joint 

ESU-4 and ICME-10 satellite meeting of HPM held in Uppsala, Sweden. 
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2. Relationships between (frameworks for and empirical studies on) history in mathematics

education and theories and frameworks in other parts of mathematics education [this point

featured only from CERME 7 onwards];

3. The role of history of mathematics at primary, secondary, and tertiary level, both from the

cognitive and affective points of view;

4. The role of history of mathematics in pre- and in-service teacher education, from cognitive,

pedagogical, and/or affective points of view;

5. Possible parallelism between the historical development and the cognitive development of

mathematical ideas;

6. Ways of integrating original sources in classrooms, and their educational effects, preferably

with conclusions based on classroom experiments;

7. Surveys on the existing uses of history in curricula, textbooks, and/or classrooms in primary,

secondary, and tertiary levels;

8. Design and/or assessment of teaching/learning materials on the history of mathematics;

9. The possible role of history of mathematics/mathematical practices in relation to more general

problems and issues in mathematics education and mathematics education research. (Jankvist

& van Maanen, 2018, p. 242)

Table 1 provides the titles and authors of sample papers (and the CERME meeting in which they 

were presented) corresponding to the nine themes given, as a way to exhibit the variety and context 

in which work in HPM is conducted within the CERME community. 

TWG 123 

theme 

Sample paper 

1 “The Teaching of Vectors in Mathematics and Physics in France During the 20th 

Century” (Ba & Dorier; CERME6) 

2 
“Uses of History in Mathematics Education: Development of Learning Strategies and 

Historical Awareness” (Kjeldsen; CERME7) 

3 
“The Role of History of Mathematics in Fostering Argumentation: Two Towers, Two 

Birds and a Fountain” (Gil & Martinho; CERME9) 

4 
“Mathematical Analysis of Informal Arguments: A Case-Study in Teacher-Training 

Context” (Chorlay; CERME10) 

5 
“Teaching the Concept of Velocity in Mathematics Classes” (Möller; CERME9) 

6 
“Designing Teaching Modules on the History, Application, and Philosophy of 

Mathematics” (Jankvist; CERME7) 

3 Again, for CERME6 only, this was Working Group 15. 
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7 
“The Implementation of the History of Mathematics in the New Curriculum and 

Textbooks in Greek Secondary education” (Thomaidis & Tzanakis; CERME6) 

8 
“The Development of Place Value Concepts to Sixth Grade Students via the Study of 

the Chinese Abacus” (Tsiapou & Nikolantonakis; CERME8) 

9 
“Lessons from Early 17th Century for Current Mathematics Curriculum Practice” 

(Krüger, CERME7) 

Table 1: Sample collection of CERME papers presented in TWG 12 

Jankvist and van Maanen (2018) noted that TWG 12 seeks to “create a forum and a platform for 

fostering empirical studies in the field of history in/of mathematics education and to also better link 

research in this field with research in mathematics education in general” (p. 241, emphasis added). 

In the examples that follow, I especially focus on themes 2, 3, and 4 in the list summarized by Jankvist 

and van Maanen.  

History in mathematics education: A very brief history of early research 

Early scholarship4 (e.g., conducted before 2000) in the field of history in mathematics education was 

primarily focused on (a) anecdotal reports of interventions used with students; (b) historical research 

on topics that could serve as the focus of classroom instruction; and (c) survey research, including 

research on students’ or teachers’ attitudes and beliefs related to history of mathematics. A classic 

example of empirical research is that of McBride and Rollins (1977), in which, as part of McBride’s 

doctoral dissertation, they examined the effects of studying mathematics history on attitudes of 

college algebra students toward mathematics. The research was motivated by the lack of research 

reports (available at the time) that studied “the problem of determining the effectiveness” (p. 57) of 

“incorporating items from the history of mathematics into classroom discussions of mathematical 

topics” (p. 57). For McBride and Rollins, the “incorporation” of items was restricted to the use of 

vignette material to introduce or comment on mathematical topics in the college algebra curriculum. 

The authors found a significant increase in attitude (particularly since the attitudes of the treatment 

group increased and the those of the control group decreased); however, several limitations were 

identified, including the notion that the teacher effect may have been significant. Limitations aside, 

the McBride and Rollins contribution represented two impacts for subsequent research in the field of 

history in mathematics education. First, it placed the potential of history in mathematics education 

on the radar of future researchers (myself included). And, their use of existing research—that on 

attitudes towards mathematics by Aiken (such as his early work in the Journal for Research in 

Mathematics Education in 1974)—exemplified the fruitful connections for research on history in 

mathematics education within the broader landscape of mathematics education research. In more 

recent years, scholarship has begun to shift to capitalize on empirical methods that are more 

mainstream, and for which researchers seek a broader application of the interventions that have been 

the focus of their research. In the following, I discuss more recent examples of different approaches 

4 Apologies to my colleagues around the globe: for the purposes of this plenary talk (and paper), I focus on English-

language scholarship. 
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and frameworks that are useful in empirical research in the HPM domain, including mathematical 

knowledge for teaching and thinking as communicating. 

Mathematical knowledge for teaching and HPM 

Mathematical knowledge for teaching (MKT) is a practice-based theory of the domains of knowledge 

that are considered necessary for the work of teaching mathematics. The framework itself (often 

relegated to the “egg model” diagram; see for example, Ball, Thames, and Phelps (2008)) has been 

applied in a variety of research contexts around the world since the early 2000s and has its foundation 

in the work of the Learning Mathematics for Teaching (LMT) Project. However, it is important to 

keep in mind that rather than taking the egg model too literally (as in, trying to situate all relevant 

and possible knowledge for teaching mathematics into the original six domains of knowledge), the 

practiced-based theory of MKT comprises two key aspects: knowledge of content in the discipline of 

mathematics and the recognition that teaching is at the core, and this brings with it the notion that 

mathematics teaching can be decomposed into tasks of teaching, of which there are many. 

In my own early work with prospective mathematics teachers (PMTs), I was struck by the idea that 

the MKT framework could provide ways to problematize (or clarify) the ways in which studying 

history of mathematics informs PMTs’ knowledge of topics they would soon teach. In one study 

(Clark, 2012), I analyzed reflection journal entries of 80 students enrolled in a “Using History in the 

Teaching of Mathematics” course, across four semesters. In the particular investigation, I examined 

15 weeks of journal entries for each of the 80 students for their reference to solving quadratic 

equations using completing the square. In the course, students worked with English translations of 

primary source material as part of investigations designed to engage them with the historical 

development of a mathematical concept, and which would provide them with opportunities to expand 

their mathematical and pedagogical knowledge, and to consider ways in which student learning may 

benefit from incorporating content similar to what they worked with in the “Using History” course. 

The source excerpt was taken from Fauvel and Gray (1987, p. 229): 

Roots and squares are equal to numbers: for instance, ‘one square, and ten roots of the same, 

amount to thirty-nine dirhems’; that is to say, what must be the square which, when increased by 

ten of its own roots, amounts to thirty-nine? The solution is this: you halve the number of the roots, 

which in the present instance yields five. This you multiply by itself; the product is twenty-five. 

Add this to thirty-nine; the sum is sixty-four. Now take the root of this, which is eight, and subtract 

from it half the number of the roots which is five; the remainder is three. This is the root of the 

square you sought for; the square itself if nine. […] 

When students elected5 to discuss course tasks from al-Khwarizmi’s text on solving quadratic 

equations in their reflection journals, they revealed what it contributed to their mathematical learning 

and how they would consider incorporating such content in their future teaching. Brad’s reflection of 

5 For the reflective journal assignments, students made the choice of what to include in their journals. However, regardless 

of content selection (typically driven by course readings, tasks, and assignments), PMTs needed to respond to at least one 

of six fixed reflection prompts, e.g., In what ways has your understanding of {mathematical topic} changed as a result 

of considering the history of the topic?, or, In what ways do you envision being able to incorporate the history of 

{mathematical topic} in your teaching?  
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his prior and current experience (with respect to his mathematical learning) was representative of the 

tenor of the PMTs’ reflection of the al-Khwarizmi tasks: 

I remember learning the quadratic formula in 8th grade. I was in Algebra I and Mrs. Horst had 

politely drilled the “opposite of b plus or minus the square root of b squared, minus four ac, all 

over two a” routine into our heads. All I recall knowing is that I could apply this formula to solve 

polynomials of a 2nd degree. [T]he lesson and activity we completed...were particularly influential 

to my understanding. This was essentially the first proof of any sort that I’ve experienced relevant 

to the formula itself. It was this part where I really had the “a-ha” feeling. As I began to compose 

the area relationships using algebraic notation, I could see the beginnings of the quadratic formula; 

I realized that this was actually going to work! More importantly I began to view the quadratic 

equation as less of an algebraic equation and more of a geometric relationship. (Clark, 2012, p. 

78) 

From another view, Hillary described her idea for the ways in which she might consider history of 

mathematics informing her future teaching: 

If I were going to use this in my classroom I would be sure to explain to them how al Khwarizmi 

used his vast knowledge of many subjects to work with these numbers and develop a similar 

quadratic formula, one that is like that of ours today, except for the use of the negative numbers. I 

would show them that with a few simple manipulations and algebraic transformations, we would 

have the same equation and we could even have groups each try a different method but with the 

same equation, then compare answers; that way students can find which method suits them the 

best.... I feel that math has so many possibilities, so many ways in which something can be taught 

and or understood, so why not provide those so the students can make sense of what to them might 

be complicated mathematics. (Clark, 2012, p. 80)  

As a result of studying PMTs’ reflections of course content and engagement with materials using 

history of mathematics in teaching, I claimed that the work on the part of teachers to incorporate 

history of mathematics in teaching is a component of the “something else” that Ball and her 

colleagues (2008) described as knowledge for teaching beyond the obvious knowledge of “topics and 

procedures that [teachers] teach” (p. 395). As part of their definition of horizon content knowledge, 

Ball et al. concentrated on “how teachers need to know that content” (p. 395) and they sought to 

“determine what else teachers need to know about mathematics and how and where teachers might 

use such mathematical knowledge in practice” (p. 395). My study of PMTs’ work to develop 

knowledge of history of mathematics—and, therefore of mathematics that they were tasked to teach—

pointed to the strong potential of the history of mathematics to contribute to the “what else” described 

by Ball et al. and how this specialized knowledge contributes to PMTs’ future practice. I also made 

the claim, by using Boero and Guala’s (2008) component of the “cultural analysis of the content to 

be taught” (p. 223), that engaging in the mathematical, historical, and cultural aspects of a 

mathematical concept is an important way in which teachers need to know the content that they teach. 

Thus, although the call to “focus attention on the need for student awareness of the interaction 

between mathematics and the historical situations from which it has developed and the impact that 
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interaction has on our culture and lives” (NCTM, 1989, p. 6) seems to be a distant memory6, situating 

an analysis of what PMTs’ claim as a contribution to their mathematical knowledge within the MKT 

framework enables researchers to make decisions regarding the development of prospective 

mathematics teachers, as well as the role that history of mathematics plays in that important work. 

There are still too few studies that capitalize on investigating the role that the study of history of 

mathematics, organized in meaningful and powerful ways to inform not only PMTs’ disciplinary 

content knowledge but the multiple forms of tasks of teaching that they will perform in their future 

teaching. However, the contribution of history of mathematics on the MKT of practicing teachers is 

also productive for research in mathematics education.  

Additional contexts for the application of MKT 

There is further potential for the application of MKT in the HPM domain. Recent scholarship reveals 

multiple contexts and applications in which the linkages between MKT and the use of history of 

mathematics in the development of prospective and practicing teachers further contribute to research 

on teacher knowledge and the work of mathematics teachers. Two examples are worth noting here. 

Smestad, Janviskt, and Clark (2014) investigated components of horizon content knowledge (HCK) 

within MKT in relation to curricular demands that teachers experience in general, and with regard to 

curricular transition periods in particular; that is, when the transition taking place involves “the 

inclusion of elements of history of mathematics in new curricula and accompanying textbooks” (p. 

180). We approached the three cases of interest with a focus on a dual aspect of HCK. For example, 

“concrete inclusions of history of mathematics…calls for an already developed [HCK] of a teacher” 

(p. 174), which can be considered “a priori HCK.” Yet this inclusion of history of mathematics in a 

teacher’s practice may itself contribute to [a] teacher’s HCK—which might then be referred to as “a 

posteriori HCK.” 

The three cases (Denmark, Norway, and the US) discussed in Smestad et al. (2014) each stemmed 

from concrete directives (yet still considered rhetoric) calling for the inclusion of history of 

mathematics in school curriculum, and which represented a continuum of curricular demands for 

teachers in delivering their instruction while heeding the various directives. These particular 

transitions—for example, shifting the extent to which inclusion of elements of history of mathematics 

in new curricula or textbooks—impact a teacher’s HCK. For example: 

In the transition phase from one curriculum not including elements of history of mathematics to 

another which does, in-service teachers often lack the associated CCK, KCC7, etc. And, at this 

particular time, in this particular transition period while implementing the new curriculum and 

training in-service teachers, a priori HCK comes to play a more crucial role. (p. 180)  

This example highlights the dynamic nature of a model (MKT) for understanding the nature of the 

practice (and perhaps, the purpose) of mathematics teaching. Furthermore, there is a synergetic 

6 By 2000, when NCTM issued its new Principles and Standards for School Mathematics, what was originally recognized 

as a goal for learning mathematics was now reduced to identification of a feature of mathematics, Mathematics as a part 

of cultural heritage: “Mathematics is one of the greatest cultural and intellectual achievements of humankind, and citizens 

should develop an appreciation and understanding of that achievement…” (p. 4). 

7 Common content knowledge (CCK), knowledge of content and curriculum (KCC), etc. 
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relationship between research on history of mathematics in teacher education and the evolution of 

models for understanding teacher knowledge. As Jankvist, Mosvold, Fauskanger, and Jakobsen 

(2015) observed, “the MKT framework provides a powerful language to communicate results from 

research on the uses of history of mathematics to researchers in other areas of mathematics education 

research” (p. 495).  

Thinking as communicating and HPM research 

In an attempt to resolve certain quandaries related to mathematical thinking and learning, Sfard 

(2008) operationally defined thinking as a personalized version of communication. Given the 

collective nature of communication, she introduced the term commognition to highlight the 

communicative nature of activities in our minds, emphasizing that individual cognitive processes 

(thinking) and interpersonal communication are “but different manifestations of basically the same 

phenomenon” (Sfard, 2008, p. 83). Using this communicative, or discursive lens, Sfard (2008) 

determined that “mathematics begins where the tangible real-life objects end and where reflection on 

our own discourse about these objects begin” (p. 129). That is, what identifies the objects of 

communication in mathematics is their discursive nature: they come to exist as we talk about them. 

Thus, taken from this viewpoint, mathematics is seen as a highly situated human activity which 

generates itself. As a result, the learner of mathematics faces an interesting and paradoxical situation: 

How can a person join a discourse for which familiarity with the discourse is a precondition for 

participation in that discourse? 

Yet further complications exist. Sfard (2008) noted that participation in any discourse requires 

adopting the rules that govern that discourse, in addition to becoming familiar with the objects of the 

discourse. She referred to the former rules as meta-level, or metadiscursive, and the latter as object-

level. For instance, asserting that a particular function is differentiable constitutes an object-level 

narrative about functions. However, a student’s method of justifying this assertion (e.g., sketching a 

graph versus an 𝜖 − 𝛿 proof) would be indicative of the metadiscursive rules that govern her discourse 

about functions. Despite the usual implications of the word rule as being invariable and strictly 

deterministic, metadiscursive rules are subject to change in time and space, and they possess certain 

characteristics; they are tacit, contingent, constraining, flexible, value-laden, and are difficult to 

change. Sfard posits that these characteristics render meta-level learning possible only through direct 

encounters with a new discourse that is governed by meta-level rules different from those governing 

the learner’s current discourse (p. 256). Furthermore, such encounters generally entail a 

commognitive conflict when the discursants unknowingly operate under completely different meta-

level rules. 

Given their role in governing the actions of the participants in a mathematical discourse, researchers 

have paid particular attention to factors that affect the learning of metadiscursive rules in 

mathematics. In a number of these studies, the history of mathematics, and primary source readings 

in particular, emerged as an instructional approach with strong potential to promote such learning.  

Example from Denmark 

In their study of university mathematics students, Kjeldsen and Blomhøj (2012) showed that a careful 

selection of historical sources can help students learn about the metadiscursive rules that govern 

mathematicians’ discourse about functions and can allow them to recognize that these rules changed 
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during the development of that concept. This meta-level learning, they argued, fostered students’ 

learning of mathematics at the object-level as well. The authors shared an in-depth analysis of project 

reports produced by two groups of students, which were based on project work designed and carried 

out as part of the mathematics bachelor’s and master’s programs at Roskilde University. The reports 

result from semester-long work in which students operate within particular project constraints; in the 

case of the two projects described by Kjeldsen and Blomhøj, these belong to the “mathematics as a 

discipline” constraint. The projects exemplified were “Physics’ influence on the development of 

differential equations and the following development of theory” and “Fourier and the concept of a 

function – the transition from Euler’s to Dirichlet’s concept of function.” In their analyses of student 

projects, Kjeldsen and Blomhøj brought attention to the incongruent discourses of their students when 

compared to the primary source texts. For example, for the group whose project was “Physics’ 

influence…,” students read and studied three original sources from the 1690s: 

In order to answer their questions, the students had to read and understand the sources within the 

mathematical discourse of the time. On one hand, this is a difficult task because the students’ 

points of departure in dealing with the sources are their own mathematical discourses, which are 

different from the discourse of the authors of the sources. On the other hand, this is exactly the 

reason why history, and working with original sources, can serve as an effective method for meta-

level learning. (p. 336) 

In their discussion of students’ project work—for both project examples—Kjeldsen and Blomhøj 

(2012) beautifully situate the power of primary historical sources to promote students’ ability to 

reflect upon metadiscursive rules of mathematics: 

Didactically, it is important to find and identify historical sources that are suitable for provoking 

discussion in classrooms among students and with their teachers about different meta-discursive 

rules. Likewise, it is important to perform research about how this can be done, how teaching 

activities that support such discussions and reflections can be designed and how the effectiveness 

of such teaching and learning situations can be evaluated in practice. (p. 347) 

Example from Brazil 

In a similar way and drawing upon the work of Kjeldsen and Blomhøj (2012) and Kjeldsen and 

Petersen (2014), as well as Sfard’s theory of thinking as communicating, Bernardes and Roque (2018) 

conducted two experiments with a small group of undergraduate students in a mini-course focused 

on the topic of “Different roles of the notion of matrix in two episodes of the history of matrices” (p. 

219). The course included two teaching modules which introduced students to original source 

materials from J. J. Sylvester (1814–1897) and Arthur Cayley (1821–1895). In a similar way to 

Kjeldsen’s empirical work with colleagues, Bernardes and Roque’s research consisted of three goals, 

in which they sought to investigate: 

(1) how historical sources encourage reflections about metarules related to matrices and

determinants;

(2) how reflections about metarules impact students’ conceptions about matrices and

determinants; and

(3) the development of a historical consciousness in the students. (p. 211)
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In their analysis, Bernardes and Roque (2018) found that students were able to discuss and reflect on 

the historical metarules present in the primary source texts; as well, they identified three metarules in 

the student participants’ discourse. Furthermore, Bernardes and Roque highlighted the occurrence of 

commognitive conflicts – that is, “conflicting narratives in which the…participants and the historical 

sources were guided by different metarules” (p. 224). The combination of these outcomes prompted 

the researchers to question the order in which they teach topics in a Linear Algebra course. For 

example, they questioned whether it is appropriate to begin such a course with the “concept of a 

matrix as an object in itself” (p. 226). In their proposal for a future instructional sequence, Bernardes 

and Roque observed that historical episodes showed that the introduction and development of the 

concept of matrix was driven by a need for such a representation (e.g., introduction of multiplication 

of matrices in conjunction with composition of linear transformations). Thus, in addition to the use 

of primary sources promoting students’ reflection of metalevel rules governing their mathematical 

discourse, such an innovation has the potential for guiding instructional changes which can serve to 

impact students’ mathematical learning. 

Example from the United States: The TRIUMPHS Project 

As part of a large grant project, several colleagues and I have begun a study to further investigate the 

potential that “history can have a profound, perhaps even indispensable, role to play in teaching and 

learning mathematics from the point of view of learning proper meta-discursive rules” (Kjeldsen and 

Blomhøj, 2012, p. 328). Before describing features of that work, it is perhaps helpful to describe the 

greater context in which the research is taking place. 

In 2015, the National Science Foundation (NSF) in the United States funded a seven-institution 

collaborative project to design, test, and evaluate curricular materials for teaching standard topics in 

the university mathematics curriculum via the use of primary historical sources. The goal of the 

project is to assist students in learning and developing a deeper interest in and appreciation of 

mathematical concepts by creating educational materials in the form of Primary Source Projects 

(PSPs) based on original historical sources written by mathematicians involved in the discovery and 

development of the topics being studied. The project, Transforming Instruction in Undergraduate 

Mathematics via Primary Historical Sources, or TRIUMPHS, is developing PSPs which contain (1) 

excerpts from one or several historical sources, (2) a discussion of the mathematical significance of 

each selection, and (3) student tasks designed to illuminate the mathematical concepts that form the 

focus of the sources. PSPs are designed to guide students in their explorations of these original texts 

in order to promote their own understanding of those ideas. 

The numerous PSPs are indeed the life force of the TRIUMPHS project. During the grant-funded 

effort, the principal investigators (PIs) promised that some 50 PSPs (which span the undergraduate 

mathematics curriculum, from basic statistics and trigonometry, to real analysis, abstract algebra, and 

topology) will be developed, tested, and evaluated. Of the 50 PSPs, 20 are planned to be “full-length” 

and 30 are what we refer to as “mini-PSPs.” Full-length PSPs are designed to typically encompass at 

least two to four class sessions, which represents the same amount of time that it normally takes to 

teach the mathematical topic of focus within the PSP. However, among the full-length PSPS there 
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are also longer ones that could be used by instructors to comprise an entire course’s content8. 

Alternatively, “mini-PSPs” can be completed in one to two class sessions and each of the mini-PSPs 

have been developed to teach a particular topic or concept in mathematics that would normally be 

addressed in a single class session, but which will be done via a primary historical source. To date, 

33 full-length PSPs and 28 mini-PSPs have been developed. Though we have exceeded our 

commitment to develop 20 full-length PSPs, there are additional full-length PSPs in development, as 

well as the remaining, promised mini-PSPs. 

In Fall 2015 the first PSPs were tested9 in two undergraduate mathematics classrooms in the United 

States; in Year 3 (academic year 2017–18), 46 distinct site testers tested one or more PSPs in 

undergraduate mathematic classrooms. However, in total, by the end of Year 3, 53 instructors have 

site tested PSPs as part of the TRIUMPHS project, with some one-third of those serving as repeat 

testers. In the first semester of Year 4, we have 20 student data collection site testers; again, of these, 

we have several repeat site testers, where 13 are new to site testing TRIUMPHS PSPs. 

Whereas this progress across almost four years of a large NSF grant project may seem to some as 

modest, it is important to note that as only one of three such grants ever funded on this level in the 

United States, this represents significant progress with regard to efforts designed to promote the 

teaching of undergraduate mathematics via primary historical sources. The two previous grants – to 

which three of the seven TRIUMPHS PIs and one of the advisory board members contributed – also 

produced a number of primary source projects. Table 2 summarizes the origin and availability of 

these projects. 

Years Name of funded project (URL) Number of projects 

developed (and tested in 

classrooms) 

2003–2006 Teaching Discrete Mathematics via Primary 

Historical Sources; Pilot Grant 

(https://www.math.nmsu.edu/hist_projects/) 

14 

2008–2012 Learning Discrete Mathematics (LDM) and 

Computer Science via Primary Historical 

Sources; Expansion Grant 

(https://www.cs.nmsu.edu/historical-

projects/) 

20 

2015–present Transforming Instruction in Undergraduate 

Mathematics via Primary Historical Sources; 

Collaborative Grant 

(http://webpages.ursinus.edu/nscoville/TRIU

MPHS.html) 

61, to date 

8 In fact, this was done recently (Spring 2018) by Janet H. Barnett, in an Abstract Algebra course. 

9 By “tested” we mean that we collected student data from the implementation of PSPs in these classrooms. 
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Table 2: PSP development, 2003–2018 

There are two features unique to TRIUMPHS when compared to the two previous grants. First, it 

was difficult to recruit site testers for the projects that were developed. The Pilot Grant (2003–2006) 

involved only five total site testers and in the Expansion Grant (2008–2012), a total of 10 site testers 

participated. However, in the TRIUMPHS project we have developed mechanisms to recruit site 

testers through a variety of outreach efforts, including presentations at conferences, three-day 

TRIUMPHS-focused workshops (particularly focused on instructors who might not have previously 

included primary sources in their teaching), mini-courses and short workshops at conferences, and 

listserv announcements via professional organizations with members who may share interests in 

history of mathematics and its use in teaching10. In advance of each autumn and spring semester we 

advertise the site testing opportunity and accept applications for two different site tester streams: 

those who will serve as student data collection site testers and those who will serve as instructor-only 

data collection sites. 

The second feature unique to TRIUMPHS (when compared to the previous grant efforts) is the 

evaluation-with-research (EwR) component of the grant project. The two previous grants included 

only an evaluation component, which resulted from the analysis of surveys completed by students at 

the beginning and end of courses at the particular participating institutions “in any course in which a 

historical project could be used, regardless of whether a project [was] actually used or not” 

(“Instructions for testers,” LDM, n.d.). The surveys asked students to respond to approximately 30 

questions: 18 “Need for Cognition Scale” items, 10 “Understanding Computer Science Scale” (and/or 

Mathematics, depending upon the course) items, and two open-ended items:  

In your opinion, what are the benefits of learning Mathematics (and/or Computer Science) from 

historical sources? 

In your opinion, what are the drawbacks of learning Mathematics (and/or Computer Science) from 

historical sources? 

Thus, in the evaluation of the funded grant projects just prior to TRIUMPHS, assertions were made 

only with regard to students’ self-reported understanding of mathematics or computer science 

concepts broadly and beliefs about their problem solving and cognitive efforts. That said, student 

responses to the two open-ended items did provide the PI team with confirmation that the use of 

primary historical projects was a worthwhile inclusion in the teaching of mathematics and computer 

science courses. Typical student responses (LDM, n.d.) include: 

I really enjoyed it. I found it to be very intriguing. 

As a student you get to see where the math we do today came from and engage in the kind of 

thinking that was necessary to create it. 

It’s a perfect way to given math some context in the world. Historical sources teach you the math 

while simultaneously fitting math into history and give you meaning for why the math was and is 

10 We have also advertised training opportunities and site testing via inquiry-based learning (IBL) audiences, since 

mathematics faculty interested in active learning strategies in undergraduate mathematics courses may find PSPs provide 

useful materials for promoting active learning, particularly in upper-division mathematics courses. 
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important. Historical sources also break up the monotony of textbooks, making math more 

accessible for a wider variety of students. 

I think that it gives the student a [deeper] understanding of the subject. 

The TRIUMPHS Project: Metadiscursive rules investigation (MDRI) 

It is important to point out that the EwR component of the TRIUMPHS project was built after the 

formulation of the main focus; that is, the development and dissemination of the PSPs was the 

primary focus of the grant effort. Therefore, evaluation questions were constructed that would enable 

the PI team to report several metrics to the funding agency (in this case, the NSF in the US) regarding 

the successful completion of the goals and sub-goals of the project. However, developing research 

questions about what can be learned from TRIUMPHS—given that the design of the development of 

the PSPs was fixed first—proved difficult in both the development of the grant proposal and the “pilot 

year” of the project. In particular, the PIs working on the EwR component11 strongly believe that 

TRIUMPHS provides a unique opportunity to contribute to mathematics education research more 

broadly, especially given the potential that a large collaborative grant project affords, including 

working with a variety of university teaching contexts (e.g., two-year colleges and four-year colleges 

and universities) and student populations. And, in response to the NSF prior to receiving funding, we 

highlighted the importance of the development of communication skills—and all modes of this: 

written, verbal, reading—as part of students’ mathematical learning was an area of potential impact. 

After several iterations, the EwR working group decided that the thinking as communicating 

framework (Sfard, 2008) would provide the most fruitful lens for our research. 

Our investigation builds on prior research concerning the potential of primary source readings for 

mathematics education (e.g., Bernardes & Roque, 2018; Kjeldsen & Blomhøj, 2012) that has been 

conducted within the framework of Sfard’s participationist theory of “learning as discourse” (Sfard, 

2008). In particular, we focus on the role played within that framework by the metadiscursive rules 

which govern the actions of the participants in a mathematical discourse. When considering the 

research literature available which contains similar emphases with regard to using primary historical 

sources in the teaching and learning of mathematics, we have been empowered with a strong 

conviction—as have others—that, under the right conditions, the use of history does promote the 

learning of metadiscursive rules in mathematics. Our goal, within the EwR component of the 

TRIUMPHS project, is to contribute to the important work of identifying what occurs for student 

learning under what conditions, work which is important to both the researcher who is interested in, 

for instance, how the learner is thinking along the way, and to the practitioner, for whom the 

educational setting that motivates meta-level learning opportunities for students is of paramount 

importance.  

Thus, we launched a metadiscursive rules investigation (MDRI), in which we posed the following 

research questions: 

11 There are actually three foci of the EwR component of TRIUMPHS: “student change,” “faculty expertise,” and 

“development cycle.” 
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What is the evidence of students’ progress in “figuring out” (Sfard, 2014, p. 201) the meta-level 

rules that govern a new mathematical discourse as a result of studying specific mathematical 

concepts when using primary source projects? 

To what extent do students’ actions (e.g., verbal, written), both during and after engagement with 

the primary source projects, provide evidence of their acceptance of a new discourse? 

The construction of our research questions was heavily influenced by Sfard’s (2014) observation that 

university mathematical discourse is “far removed from what the student knows from school as a 

discourse can be” (p. 200). Thus, in our work, we investigate an alternative to lecturing that makes 

use of the history of mathematics (e.g., via PSPs) in order to provide a learner with the opportunities 

for “watching a mathematician in action and imitating his moves while also trying to figure out the 

reasons for the strange things he is doing” that Sfard suggests “may be the only way to come to grips 

with [the] objects [that she is supposed to operate upon]” (Sfard, 2014, p. 202; emphasis added).  

We are also strongly influenced by the agenda articulated by Kjeldsen and Blomhøj (2012): 

Didactically, it is important to find and identify historical sources that are suitable for provoking 

discussion in classrooms among students and with their teachers about different meta-discursive 

rules. Likewise, it is important to perform research about how this can be done, how teaching 

activities that support such discussions and reflections can be designed and how the effectiveness 

of such teaching and learning situations can be evaluated in practice. (p. 347)12 

In particular, our MDRI research draws upon three semesters of undergraduate mathematics 

instruction that took place at one institution during the Autumn 2016 (Introduction to Analysis; 11 

consenting students), Spring 2017 (Number Theory; 8 consenting students), and Spring 2018 

(Abstract Algebra; 15 consenting students). The contexts, student populations, and PSPs used are 

somewhat different across the three semesters13. However, the data sources were similar in each 

instance, and included: 

• Video recordings of all class sessions;

• Audio recordings of each group during small group work;

• Students’ written work on all PSPs implemented during the courses and related “Reading and

Study Guides” (RSGs);

• Instructor class notes;

• Pre- and post-PSP student interviews14; and

• Responses to four surveys per student (pre- and post-course surveys, and two post-PSP

surveys).

12 This passage was previously quoted in this paper, but it bears repeating here because it is particularly critical for the 

MDRI work as part of TRIUMPHS.  

13 However, there was a small subset of students (8) who participated in two of the three courses. 

14 Not all consenting students were interviewed pre- and post-PSP, due to students’ class and work schedules. 
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An example from the Autumn 2016 course (Introduction to Analysis), which contained source 

material “suitable for provoking discussion in classrooms among students and with their teachers 

about different meta-discursive rules” (Kjeldsen & Blomhøj, 2012, p. 347), was the first PSP of the 

semester (and which students met during the second week of the course): Why Be So Critical: 

Nineteenth Century Mathematics and the Origins of Analysis (Barnett, 2017a). This project explored 

the question of: Why, after nearly 200 years of success in the development and application of calculus 

techniques, did 19th-century mathematicians feel the need to bring a more critical perspective to the 

study of calculus? – and did so through selected excerpts from the writings of the nineteenth century 

mathematicians who led the initiative to raise the level of rigor in the field of analysis (Barnett, 2017a, 

p. 1).

The project includes excerpts from four mathematicians: Bolzano, Cauchy, Dedekind, and Abel. In 

the PSP, Barnett (2017a) provided oriented students to the various primary sources with: “…these 

mathematicians expressed their concerns about the relation of calculus (analysis) to geometry, and 

also about the state of calculus (analysis) in general. As you read what they each had to say, consider 

how their concerns seem to be the same or different” (p. 1). For example, Figure 1 displays an excerpt 

from Dedekind. 

Figure 1: Excerpt from Barnett, 2017a (source: Dedekind, 1901) 

In keeping this excerpt in mind, we found evidence that such sources can prompt classroom 

discussion around the metadiscursive rules that we see at the time of Dedekind—which constituted a 

shift from what had been in place—and that are different still from what students were trying to 

reconcile. 

Some weeks later—approximately seven weeks into the course—students spent approximately two 

weeks working on the second PSP in this analysis course: Rigorous Debates over Debatable Rigor: 

Monster Functions in Introductory Analysis (Barnett, 2017b). In the project, students are introduced 

to the correspondence between Gaston Darboux (1843–1917) and Jules Houël (1823–1886), in which 
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Houël has requested feedback on early drafts of his intended textbook on differential calculus. 

Throughout the correspondence, however, Darboux “offered various counterexamples in a (vain) 

attempt to convince Houël of the need for greater care in certain of his (Houël’s) proofs” (Barnett, 

2017b, pp. 2–3). Examples of this correspondence are provided in Figures 2 and 3. 

Figure 2: Excerpt (A): Darboux correspondence with Houël (Barnett, 2017b, p. 6) 

Figure 3: Excerpt (B): Houël correspondence with Darboux (Barnett, 2017b, p. 6) 

Two project tasks related to these excerpts were: 

Do you agree with Houël about this being what the word ‘derivative’ means? Why or why not? 

How does what Darboux said in the excerpt (A) seem to be different from what Houël is saying 

here [excerpt (B)]? 

The intensive work on how to analyze the data in order to address our original research questions is 

just beginning. We produced a preliminary report on an initial discussion of methodological issues 

that we experienced in our first review of the Autumn 2016 data. In our report (Can, Barnett, & Clark, 

2018), we addressed two questions: 

1. How can we characterize the nature of students’ participation in mathematical discourse in

their written work related to primary source projects?

2. What constitutes evidence of students’ noticing of meta-level rules in this written work?

Since our research report was quite preliminary (and page-limited), we focused on analyzing 

students’ written work from just one PSP15 (and associated RSGs) that was implemented in the 

Introduction to Analysis course we studied in Autumn 2016. We sought to document evidence of 

15 For the purposes of the preliminary report, we focused on the PSP, Rigorous Debates over Debatable Rigor: Monster 

Functions in Introductory Analysis (Barnett, 2017b). 
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students’ noticing of metadiscursive rules in the form of meta-level reflections of two kinds: on either 

the mathematical objects under discussion (what we called object-reflection) or the discourse itself 

(what we called discourse-reflection). In the sample student’s reflection (given in Figures 4a, 4b, 5a, 

and 5b), we identified the student’s ‘talk’ as object-reflection, in which she provided meta-level 

narrative about mathematical objects (i.e., derivative). 

Figure 4a: Student object-reflection (meta-level) 

Do you agree with Houël about this being what the word ‘derivative’ means? Why or why 

not? 

I disagree with Houël about 
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
− 𝑓′(𝑥) < 𝜖 is the

derivative because we use 𝑓′(𝑥) to define the derivative & you

would have to find this first before even using the equation above. 

How does what Darboux said in the excerpt at the bottom of page 4 seem to be different from 

what Houël is saying here? 

It’s a way to [describe] what Houël [is] trying to do but is 

not a derivative; they use the derivative in it. 

Figure 4b: Transcription of task and student response given in Figure 4a 

Figure 5a. Student discourse-reflection (meta-level) 

Write at least one question or comment about these three excerpts. 
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Darboux really seems to hate Houël’s proof.  

The third excerpt, however, was a bit confusing to me,  

Especially when it says “hypothesis is identified with that 

of the existence of a derivative.” 

Figure 5b: Transcription of task and student response given in Figure 5a 

We intended the further application of our definitions for object-reflection and discourse-reflection 

to serve as tools to characterize the nature of students’ participation in mathematical discourse in 

other course artifacts (e.g., small group work, whole-class discussion, interviews), but we have since 

found that a we need an analytical framework that includes at least two components. One component 

of the analytical framework is the set of metadiscursive rules that we have identified for each of the 

PSPs that students used in a given course; it is imperative that our analysis attends to and is informed 

by the relevant metadiscursive rules present in the PSPs used. The second component is the criteria 

for evidence of students’ “figuring out” the meta-level rules governing a new mathematical discourse. 

We believe these two components in tandem will enable us to capture a critical perspective in the 

work surrounding the role of primary sources (and in this case, specifically, the PSPs); that is, the 

implemented PSPs were intended to promote the mathematical learning goals of a given course. And, 

given the nature of the Introduction to Analysis course curriculum, these included both object- and 

meta-level learning goals. That said, the data analysis for the research described here is ongoing, and 

our particular struggle at the moment is figuring out what we mean by “figuring out,” as suggested 

by Sfard (2014, p. 202), in order to move forward through our data to determine not only the progress 

made by students but what such progress could signal for changing instructional practice at the 

undergraduate level. This work is complex and draws upon multiple perspectives from mathematics, 

history, and mathematics education, and consequently, possesses ample opportunity for future 

collaborations and contexts in mathematics education research. 

Calls for the future: Future contributions 

Need for collaboration 

There has been exciting progress in research conducted in the HPM domain in the last 40 years, and 

in the last 20 years, this is particularly true. As I shared earlier in this paper, at some point not so 

many years ago, empirical work (available in the English language) in the field of history in 

mathematics education was predominantly anecdotal in nature. With the growth of professional 

conferences—HPM, ICME, ESU, and now CERME—collaboration with colleagues around the world 

has not only afforded but has increased the demand for ways in which research on history in 

mathematics education can inform and be informed by research in mathematics education more 

broadly.  

To this end, I would like to end with proposing two areas of research that I believe are particularly 

important and interesting (and necessary?), which draw upon the themes of different CERME 

thematic working groups and which present opportunities for fruitful collaboration in the future. 

History of mathematics in mathematics teacher education 

An overarching question that requires careful and thorough study is: 
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How does a historical perspective contribute to the mathematical and pedagogical development 

of mathematics teachers (at all levels, and both pre-service and in-service)?  

And, there are numerous questions it motivates, including: 

What are the different ways in which history of mathematics is used in the education of teachers? 

What are the different challenges (e.g., historical, mathematical, attitudinal, philosophical, 

methodological, institutional) for each? 

Are the outcomes of teachers’ study of history of mathematics seen in their classroom practice in 

explicit ways, and if so how?  If not, why? Are the implicit ways equally meaningful? 

Although these questions represent only a small sample of what is yet unknown to any extent in the 

HPM domain, the collaboration with other domains represented by CERME TWGs could provide 

the means to increase efforts to conduct research in concerted ways. Some of the TWGs, in addition 

to contributions from TWG 12, well poised to do so include: 

TWG 18: Mathematics Teacher Education and Professional Development 

TWG 19: Mathematics Teaching and Teacher Practice(s) 

TWG 20: Mathematics Teacher Knowledge, Beliefs and Identify 

TWG 22: Curricular Resources and Task Design in Mathematics Education 

TWG 23: Implementation of Research Findings in Mathematics Education 

History of mathematics in the teaching and learning of mathematics 

Research on the many ways in which history of mathematics can be used in the teaching and learning 

of mathematics seems boundless. There are many open questions in the field, yet when considering 

educational standards set by different countries around the globe and the persistent (primary and 

secondary) teacher lament that “there is not enough time to teach history of mathematics”16 in 

mathematics lessons, addressing the questions through different research efforts can be problematic. 

Part of the issue with conducting research on the use of history in teaching and learning mathematics 

is the need to make clear the potential for student learning that research in the HPM domain has 

shown. Thus, a question of particular interest is: How do we encourage, enable, and enlighten large-

scale research on the ways in which using history of mathematics in teaching impacts learning? 

Similar to proposing research on history of mathematics in mathematics teacher education, inquiry 

on teaching and learning of mathematics informed by history of mathematics can be addressed by the 

expertise represented within several CERME TWGs. For example, for research focused on how 

16 Many classroom teachers perceive of “using history” as being equivalent to teaching the history of mathematics. 

However, this is often a misguided idea. That is, many who propose to use history of mathematics call for robust ways to 

do so, such as using historical methods to solve problems and to help make sense of the procedures many students find 

difficult, or reading, interpreting, and applying historical sources in learning mathematics, and not to simply teach who 

was the first to discover a particular mathematical concept. 
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history of mathematics can contribute to student learning and engagement with mathematics, 

collaboration amongst the following TWGs (again, in addition to TWG 12) is valuable: 

TWG 1: Argumentation and Proof 

TWG 2: Arithmetic and Number Systems 

TWG 3: Algebraic Thinking 

TWG 4: Geometry Teaching and Learning 

TWG 8: Affect and the Teaching and Learning of Mathematics 

TWG 14: Undergraduate Mathematics Education 

Furthermore, investigating ways in which history of mathematics can connect tools and technologies 

in the teaching and learning of mathematics may benefit from the expertise of: 

TWG 6: Applications and Modelling 

TWG 9: Mathematics and Language 

TWG 15: Teaching Mathematics with Technology and Other Resources 

TWG 16: Learning Mathematics with Technology and Other Resources 

And, finally, under the purview of TWG 21 (Assessment in Mathematics Education), there are 

considerable opportunities to address concerns held by many regarding whether teaching 

mathematics informed by history of mathematics actually contributes to student learning. 

An additional consideration: Flipping the research perspective 

A large proportion of research conducted on questions regarding the use and impact of history of 

mathematics has been focused either pre-service or in-service teachers (at the elementary and 

secondary level) and their students. However, investigating another population of teachers is a 

promising direction to pursue: teachers of teachers (e.g., university educators). Povey (2014) 

conducted research conversations with four university instructors designed to address the following 

research question: What can studying the history of mathematics with initial teacher education 

students offer us? (p. 148). In her analysis, Povey determined four broad themes, two which seem 

aligned with affective dimensions and two which are situated more with content and mathematical 

understanding. The thematic categorizations of the instructors’ responses were: 

• to deepen mathematical understanding;

• to broaden and humanize mathematics;

• to develop critical thinking; and

• to provide motivation and fun for learners. (Povey, 2014, p. 148)

Povey (2014) provided the foundation for what I believe could promote research that focuses on 

educators of teachers, who can provide opportunities “for studying history of mathematics [that] sets 

up a productive relationship with the subject and deepens mathematical understanding” (p. 154). 

From application and further extensions of existing frameworks such as MKT and Mathematical 

Knowledge for Teaching Teachers (MKTT; see for example Jankvist, Clark, & Mosvold, 2019), 
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mathematics education research and history in mathematics education can both capitalize on what 

many in the field know (as in, instinctually know): that historical content, problems, and perspectives 

in mathematics teaching “requires the development of such critical skills and can develop disposition 

towards enquiry based on questions posing and evidence” (Povey, p. 155). However, it is imperative 

that researchers seek to legitimize what has been known for decades, and to do so in concrete and 

robust ways so that mathematics educators, teachers, and learners can benefit from ways of knowing 

mathematics to which history of mathematics uniquely contributes. An interesting “flipping” of the 

research perspective begins with extending research that Povey began with teacher educators, and 

from what is learned, it is possible to build on these new perspectives coupled with guidance from 

existing frameworks to develop new knowledge. We may find, as Jo (one of the teacher educators) 

did: 

[finding out about the history of mathematics] has made me realise that there are many more 

questions to ask than I ever thought about before and there’s probably no end to that, and I think 

that’s a good thing for maths teachers to know. (Povey, 2014, p. 155) 

More importantly, once teacher educators experience this shift, it can permeate their practice with 

pre-service teachers, which can in turn be impactful in their future practice. The greatest imperative, 

however, is that we must make research in history in mathematics education part of the research 

landscape, as much as say, how the field has investigated the educational benefit of use of technology 

in teaching and learning mathematics, or ways to improve concept building in learning algebra. 

Wanted: A few good researchers 

As previously described, there are numerous perspectives from which researchers can approach 

important questions regarding teaching and learning of mathematics, of which an historical 

perspective is just one. Though empirical literature in the field of history of mathematics in 

mathematics education is much more prevalent today than some 40 years ago, there are several 

approaches, frameworks, and methodological lenses that are can and should be employed in order to 

strengthen and expand current examples. 

In addition to the examples I have provided, there are other calls for research that have recently been 

issued and investigated to some degree. However, the potential for future research is significant and 

importantly, within the field of history in mathematics education, there are applications across age of 

learners, level of teachers, and mathematical concepts. For example, there are examples for which 

design-based research seems well-suited, as in the study described by Wang, Wang, Li, and Rugh 

(2018), in which they proposed a framework to make sense of “how to help teachers…who lack 

experience in [integrating the history of mathematics in teaching] IHT, use historical materials in 

their teaching” (p. 135). Wang et al. concluded that  

Although the framework provides a new pathway for teachers’ professional development in IHT 

and a new opportunity for the theoretical development of IHT, it still requires further empirical 

studies to confirm its educational value in the future. It is also essential that researchers closely 

collaborate with teachers and historians as suggested by the dynamic pyramid model. (p. 153, 

emphasis added) 
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In closing, I have attempted to provide a broad landscape of questions, approaches, and collaborative 

contexts in which educational research of interest to the CERME community is possible and 

motivated by the field of history of mathematics in mathematics education. I challenge mathematics 

education researchers to embrace and pursue these questions, approaches, and contexts and to 

contribute to the expanding perspectives that move teaching and learning of mathematics forward. 
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The extension of number systems from natural to rational and real numbers and related arithmetic is 

a prominent theme in mathematics from primary to upper secondary education. In parallel to the 

development of the number concept and the extension of number systems, students need to proceed 

from arithmetic to algebra. Students’ difficulties in mastering both, the extension from one number 

system to another and the progression from arithmetic to algebra are well documented. The paper 

focuses on the extension from natural numbers to integers with a particular interest in the relationship 

to the progression from arithmetic to algebra. Continuities and discontinuities in the alignment of 

these two parallel curricular developments are analyzed from three different perspectives, namely an 

epistemological, a psychological, and a pedagogical perspective. This analysis will include work 

from TWG02 “Arithmetic and Number Systems”, which gives a flourishing account of the 

multifaceted issues related to the teaching and learning of different number systems since its 

foundation at CERME7 in 2011 and also draws on the work of TWG03 “Algebraic Thinking”. 

Finally, conclusions will be drawn from the analysis of the relationship between the extension from 

natural numbers to integers and algebraic thinking in terms of the construction of a more coherent 

curriculum regarding these two developments.  

Keywords: number systems, integers, negative numbers, algebraic thinking, coherence 

Introduction 

From the beginning of their lives and throughout schooling, students have to develop their number 

concept and related number sense. The extension of number systems from natural numbers to rational 

and real numbers1 and related arithmetic is an endeavor that students are involved in from primary to 

upper secondary education in mathematics. In parallel to the development of the number concept and 

the extension of number systems, students need to proceed from arithmetic to algebra, i.e. from 

operating with known quantities to operating with unknowns, from the particular to the general, from 

numbers to symbols.  

A large body of research shows that learners experience gaps and discontinuities related to both, the 

learning of number systems (Van Dooren, Lehtinen, & Verschaffel, 2015) and the learning of algebra 

(Hodgen, Oldenburg, & Strømskag, 2018; Kaput, 2008). In terms of the development of the number 

concept the transition from natural numbers to non-negative rational numbers (i.e. fractions and 

decimals) has received much attention. Research has unraveled the problems students encounter at 

1 There are ambiguities in the use of the terms natural number, rational number, and integers in the literature. I use the 

term natural number to refer to set ℕ = {1, 2, 3, …}. The term integer is used to refer to the set ℤ comprising positive 

natural numbers including zero and their additive inverses, while with the term rational number, I refer to the set ℚ 

comprising all positive and negative fractions and decimals respectively (and therefore also ℕ and ℤ).  

Proceedings of CERME11 56

Plenary lecture



this transition. In particular, it shows that the extension from natural numbers to non-negative rational 

numbers requires changes in the basic understanding of what numbers can do and what effect 

operations have on numbers. The problems at this transition exemplify that natural number 

knowledge on the one hand is a prerequisite for the learning of other number systems, but on the other 

hand has manifold adverse effects (Vamvakoussi, 2015). This phenomenon is so pervasive that it has 

been termed the whole or natural number bias (Ni & Zhou, 2005). Consequently, students’ prior 

knowledge that was developed with respect to the set of natural numbers has to be reorganized in 

such a substantial way that Vosniadou and Verschaffel (2004) speak of a “conceptual change” that is 

necessary at the transition from natural numbers to non-negative rational numbers. 

In terms of the transition from arithmetic to algebra, the difficulties that students experience with 

operating on the unknown led Linchevski and Herscovics (1996) to speak of a “cognitive gap” 

between arithmetic and algebra. Kaput (2008) calls the separation of arithmetic and algebra in terms 

of “a computational approach to school arithmetic and an accompanying isolated and superficial 

approach to algebra” the “algebra problem”. The answer to this problem has been to foster what has 

been termed algebraic thinking, relational thinking, functional thinking, or early algebra in the 

context of arithmetic, in order to provide students with ways of thinking that are crucial for school 

algebraic contexts.  

Both of these long-term developments require a careful construction of the curriculum in order to 

facilitate students’ understanding of these central mathematical ideas. However, researchers criticize 

the lack of a coherent vision for the teaching and learning of number systems and related transitions 

(Bruno & Martinon, 1999). This also seems to be the case for the link of the extension of number 

systems and the progression from arithmetic to algebra. Both, the discourse on the extension of 

number systems and the discourse on algebraic thinking only seem to be loosely related. This is also 

noticeable in CERME in that negative numbers are rarely considered in TWG03 on algebraic 

thinking.  

Therefore, the goal of this paper is to unfold the relationship between the extension of number systems 

and the progression from arithmetic to algebra in order to analyze continuities and discontinuities in 

the alignment of these two curricular progressions. For reasons that will become obvious later, I will 

focus on the extension from natural numbers to integers in my analysis. In particular, I seek to answer 

the following questions: 

1) What is relationship between the development of the negative number concept and algebra?

2) How could the teaching and learning of the extension from natural numbers to integers be

aligned with the teaching and learning of algebraic thinking?

In order to answer these questions, I will analyze the transition from natural numbers to integers from 

different perspectives: a) epistemological; b) pedagogical; and c) psychological. The epistemological 

perspective will mainly serve to answer the first question. I will show that the development of the 

negative number concept and the development of algebra were mutually related. In fact, negative 

numbers play a crucial role in these two developments. The pedagogical and psychological 

perspective will yield answers to the second question.  
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Based on my analysis of the relation between the extension from natural numbers to integers and the 

progression from arithmetic to algebra from the three different perspectives, I will draw conclusions 

regarding the construction of curricula, in which both, the extension of number systems and the 

progression from arithmetic to algebra are more coherently aligned.  

Epistemological perspective 

In this section, I will show that the same cognitive achievements which underlie the development of 

algebra were also crucial for the development and acceptance of the negative number concept. I start 

with a summary of the main cognitive achievements that have been pointed out as characteristic and 

crucial for the development of algebraic thinking. I will then show, how these cognitive achievements 

also have been crucial for the development of the negative number concept. However, I will not be 

able to give a comprehensive overview of this mutual related historical development of the negative 

number concept and algebra. An analysis of the obstacles in the historical development of the negative 

number concept was provided by Glaser (1981). Schubring (2005) gives an overview of the historical 

development of the negative number concept and its relation to the development of algebra.  

Hodgen et al. (2018) regard algebraic thinking as the human activity from which algebra emerges. It 

focuses on generalization and the expression of generalization in increasingly systematic and 

conventional symbol systems as one core aspect of algebra rather than on syntactically guided actions 

on symbols (Kaput, 2008). The main cognitive achievements that have been pointed out as being 

characteristic and crucial for the development of algebraic thinking and algebra are: 

1. Algebra deals with objects of indeterminate nature (unknowns, variables, parameters)

(Radford, 2010)

2. Indeterminate objects are dealt with in analytic manner (Radford, 2010).

3. The development of algebraic thinking is characterized by a transition from an operational to

a structural or relational perspective, i.e. by “reification“ (Sfard 1995) or “objectification“

(Radford, 2010) of processes into mathematical objects.

4. The new mathematical objects are detached from their original content meanings and achieve

a formal character.

In the development of algebra and algebraic thinking, these four aspects are mutually related and 

difficult to consider in isolation. However, for the sake of clarity I elaborate on them separately.  

Algebra deals with objects of indeterminate nature 

The epistemological development of algebra is closely related to dealing with objects of indeterminate 

nature. These indeterminate objects yielded the concepts of variable and parameter. It was also in the 

realm of dealing with indeterminate objects in the context of solving (systems of) equations that 

negative numbers became relevant (Gallardo, 2002; Glaser, 1981; Hefendehl-Hebeker, 1991). 

According to Damerow (2007, p. 49) the use of variables “opens a potential means of representation 

for a higher level of meta-cognitive insights such as the recognition that the natural numbers can be 

complemented with negative numbers to the system of whole numbers”. Diophantus was one of the 

first who solved equations based on transformation methods. Applying these methods also yielded 
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negative solutions. For example, in his Arithmetica, Diophantus referred to the equation 4 = 4x + 20 

as absurd, since it would give the solution x = –4.  

It was not until the second half of the 19th century that negative numbers were accepted as autonomous 

mathematical objects. However, in solving equations they were already accepted as auxiliary means, 

which had to be interpreted correctly after the equation was solved. A famous example is the problem 

discussed by D’Alembert in the article Négatif from Diderot’s Encyclopedia: 

suppose that we are looking for the value of a number x which when added to 100 yields 50 

According to the rules of algebra; we have x + 100 = 50, so that x = –50. This shows that the 

magnitude x is 50 and that instead of being added to 100 it must be subtracted. This means that 

the problem should have been formulated as follows: find a magnitude x which when subtracted 

from 100 leaves the remainder 50; if the problem had been formulated in this manner, then we 

would have 100 – x = 50 and x = 50, and the negative form of x would cease to exist. Thus, in 

computations, negative magnitudes actually stand for positive magnitudes that were guessed to be 

in the wrong position. The sign “–“ before a magnitude is a reminder to eliminate and to correct 

an error made in the assumption, as the example just given demonstrates very clearly. (D'Alembert 

as cited in Hefendehl-Hebeker, 1991). 

D’Alembert does not except the existence of a magnitude with value “–50” in his argumentation. To 

him, this solution only indicated an error made that had to be corrected. 

Another way of making sense of negative solutions was to interpret them metaphorically by the 

opposite magnitude. This metaphorical interpretation of negative solutions by the opposite magnitude 

developed into the concept of opposite quantities, which cancel each other out: 

“Quantities of the same kind which are considered under conditions that one diminishes the other 

shall be called opposite quantities. E.g., assets and debts, walking forward and walking backward. 

One of these quantities, as one likes, shall be called positive or affirmative, and its opposite 

negative or denying” (Kästner as cited in Schubring 2005, 134). 

A similar understanding as “something being opposed to something familiar” was also crucial for the 

development of the concept of variable. There, it was the dualistic opposition to a known or constant 

quantity. This concept of variable was first overcome by Euler, who replaced this dichotomy by the 

universal concept of variable (Schubring, 2005). Similarly, the concept of negative quantity was for 

a long time conceptualized as an opposite quantity and had to be overcome by the formal concept of 

number. 

Indeterminate quantities are dealt with in analytic manner 

As a second important characteristic of algebraic thinking, Radford (2010) points out that 

indeterminate quantities are dealt with in an analytic manner, i.e. it is calculated with these 

indeterminate quantities as if they were known by referring to their mutual relationships and the 

relationships to known quantities. (Hefendehl-Hebeker & Rezat, 2015; Radford, 2010). 

As negative numbers occurred in the context of solving equations they result from calculations in 

which indeterminate quantities were treated as if they were known by referring to their mutual 

relationships and the relationships to known quantities. This aspect is especially apparent in the 
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formulation of the rules for calculating with negative numbers. For example, although not accepting 

negative solutions, Diophantus formulated the rules minus times minus gives plus and plus times 

minus gives minus (Tropfke, 1980). However, these rules were derived from calculating with complex 

expressions, such as (a – b) (c – d), by analyzing the internal relationships. The explanation of the 

rule for subtracting negative numbers by Bernard Lamy (1640–1715) is a revealing example. He 

explains that when subtracting complex quantities like c + f and b – d. One did not want to subtract 

from c + f the entire b, thus c + f – b, but somewhat less. One thus had to change the algebraic sign 

of d from – into +, so as to perform the operation c + f – b + d (Schubring, 2005, p. 76). Consequently, 

the expression −(−𝑏) = +𝑏 in solving the brackets is given sense in its relations to b and of (b – d) 

to (c + f).  

Reification and Objectification 

It has been pointed out that “reification” (Sfard, 1994, 1995) or “objectification” (Radford, 2010) of 

operations or—more generally—processes into mathematical objects had been crucial in the 

development of algebra. Just as the expression 4x + 20 can be seen either as a sequence of operations 

or as a mathematical object such as a representation of a number or as a function, the expression a – 

b can be seen as the operation of subtracting b from a or as the number resulting from this subtraction. 

From this perspective, the construction of negative numbers as autonomous mathematical objects 

required a transformation of mathematical processes into mathematical objects, which is visible in 

the step from carrying out the “hypothetical” subtraction a – b omitting the restriction b ≤ a and 

accepting the negative number as an own entity. In fact, it may be regarded as one of the cognitive 

roots of negative numbers (Hefendehl-Hebeker & Rezat, 2015; Sfard, 1994, 1995) that carrying out 

fictive operations such 50 – 100 was actually considered as a possibility. Peacock refers to this 

generalization of operations as the move from arithmetical to symbolical algebra (Chiappini, 2011). 

While in arithmetical algebra the operations on symbols underlie the same restrictions as in arithmetic 

(of natural numbers), the operations with symbols in symbolic algebra are defined according to the 

properties of the operations. 

According to Schubring (2005), it was Euler who first constructed the series of negative numbers by 

“perpetually subtracting unity”. Later, Hankel used the term a – b to construct negative numbers 

(Tropfke, 1980). It was also Hankel who noticed that it is sufficient to use 𝑎 = 0 and name the 

resulting number by −𝑏. 

The new mathematical objects are detached from content meanings and achieve a formal 

character.  

Descartes’ achievement to develop a symbolic language, which primarily relied on the relationships 

among the symbols and not on justifications through arithmetic or geometry is regarded to be a crucial 

step in the development of the symbolic language of algebra (Scholz, 1990). This can be understood 

as a detachment of the mathematical objects from content meanings.  

Although at a very different time, the detachment of the number concept from content meanings was 

crucial for the acceptance of negative numbers. Schubring (2005) points out that the separation 

between numbers on the one hand and quantities or magnitudes on the other is decisive for 

understanding the historical development of negative numbers. He shows that in the history of 
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mathematics the epistemological limitation of the concepts of quantity and magnitude impeded the 

generalization of operations and thus the development of the negative number concept. As long as 

the concept of negative numbers was subordinated to that of magnitude, negative magnitudes were 

not accepted as autonomous mathematical objects. As already shown in the example by D’Alembert, 

the problems and their solutions were reinterpreted in the domain of positive numbers in order to 

avoid negative solutions. This view restricted the applicability of negative numbers to operations with 

“subtractive” or “opposite” quantities, which have a “natural element of opposition as giving and 

taking” (Schubring, 2005, p. 106). According to Schubring (2005), Euler was the first to consistently 

present algebra as a science of numbers and to conceptually separate numbers clearly from quantities 

and magnitudes. However, it was not until the 19th century that these obstacles imposed by the 

subordination of number to the concept of quantity and magnitude were overcome by a shift of view: 

The change consisted in the transition from the concrete to the formal viewpoint, which was advanced 

by Ohm, Peacock and Hankel. Subsequently, the concept of number could be introduced in a purely 

formal manner without consideration of the concept of magnitude. Hankel, who advanced this 

viewpoint argues: 

Thus, the condition for the construction of a general arithmetic is that it be a purely intellectual 

mathematics detached from all intuition, a pure science of forms in which what are combined are 

not quanta or their number images but intellectual objects to which actual objects, or relations of 

actual objects, may, but need not, correspond (Hankel as cited in Hefendehl-Hebeker, 1991) 

Accordingly, the underlying epistemology of justification changed from realism to that of internal 

consistency (Pierson Bishop et al., 2014). While operating with negative quantities and the related 

rules were known and used confidently already for a long time, the consistent system of rules for 

manipulating negative numbers is not deduced from reality, but from the basic rules of natural number 

arithmetic based on the permanence principle.  

Hefendehl-Hebeker (1991) argues that the “separation of the construction of number systems from 

content considerations did not mean that the extended number systems were detached from content 

meanings” (p. 31) and provides some examples were negative numbers were successfully applied to 

real phenomena. The difference is that in these cases the concept of magnitude is subordinated to that 

of number and numbers are used as modelling tools for real-life situations.  

In summary, I argued that the development of the negative number concept and the development of 

algebra are mutually related. The cognitive achievements, which have been emphasized as being 

crucial for the development of algebra, also underlie the development of the negative number concept. 

In particular, these are the possibility of carrying out fictive operations with indeterminate quantities 

in analytic ways, the “reification” (Sfard, 1994, 1995) and “objectification” (Radford, 2010) of 

mathematical processes, and the detachment of mathematical objects from content meanings and 

related formalization. According to Schubring (2005, p. 149), negative numbers “challenged the 

traditional first understanding of mathematics, its first ‘paradigm’ in Kuhn’s terms, its understanding 

of being a science of quantities: of quantities that, while being abstracted to attain some autonomy 

from objects of the real world, continued at the same time to be epistemologically legitimized by the 

latter” until a formal algebraic introduction and justification of these numbers and their operations 
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was achieved. Therefore, from the epistemological perspective, negative numbers seem to play a 

crucial role in the development of number systems aligned with the development of algebraic 

thinking. This is the reason, why I focus on the case of negative numbers in my analysis of the relation 

between the extension of number systems and the transition from arithmetic to algebra. 

Psychological perspective 

Although negative magnitudes are nowadays a natural part of our daily life as relative magnitudes on 

thermometers and other scales, research has shown that students struggle with the same obstacles that 

characterize the epistemology of negative numbers. Gallardo (2002) observes the same levels of 

acceptance of negative numbers that she found in the historical development in students 

understanding of the concept. However, she points out that the levels of acceptance do not follow a 

strict chronological order in the students and that the same student might show different levels of 

understanding dependent on the context of the task. In line with the historical development of negative 

numbers, Pierson Bishop et al. (2014) identify the magnitude-based perspective on numbers together 

with their understanding as cardinal numbers as an obstacle, because then negative numbers are 

perceived in a non-tangible way as less than nothing. This is also an obstacle for the understanding 

of operations with negative numbers.  

Different studies show that students have difficulties with the order of integers. Students exhibit more 

difficulties in tasks that involve only negative numbers than in tasks with positive and negative 

numbers (Bofferding & Farmer, 2018). The main problem is that the size of a negative number is 

determined based on the absolute value or the opposite magnitude respectively. For example, students 

regard –10 as ‘bigger’ than –5, because –10 is colder than –5. This mirrors the understanding of 

negative numbers as opposite magnitudes, which was persistent throughout the historical 

development of the negative number concept. The extent to which these difficulties are shown also 

depends on the language used in comparison tasks (hottest/most hot/least cold vs. coldest/most cold/ 

least hot) (Bofferding & Farmer, 2018). Schindler, Hußmann, Nilsson, and Bakker (2017) and Yilmaz 

and Isiksal-Bostan (2017) argue that it is important to consider students reasoning related to their 

answers. Their studies show that even correct answers might be based on faulty reasoning, which 

builds on prior experiences from the natural numbers.  

Students also have difficulties with the different meanings of the minus sign. While in the set of 

natural numbers the minus sign only denotes subtraction, it additionally obtains a unary function as a 

structural signifier to denote a relative number and a symmetrical function as an operational signifier 

to denote the inverse in the set of integers. Vlassis (2004) shows that students do not assign any other 

meaning to the minus sign than that of subtraction in polynomial expressions. Their procedures of 

simplifying polynomials can be understood as strategies of making sense of the expressions and being 

able to carry out simplifications by adhering to this one meaning of the minus sign that originates 

from the natural numbers. When solving equations students have difficulties to find negative solutions 

in particular in situations with two successive signs, such as −6 ∙ 𝑥 = 24 (Vlassis, 2008). 

In summary, as in the case of the transition from natural numbers to fractions, a natural number bias 

is also apparent at the transition from natural numbers to integers. The empirical findings of students’ 

difficulties in understanding the negative number concept mirror the obstacles that characterize the 
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epistemological development of the negative number concept. However, the studies aiming at 

identifying students’ obstacles vary in the degree, in which they consider students’ prior experiences 

when learning negative numbers. The participants of many studies already learned integer arithmetic. 

Consequently, how they were introduced to negative numbers might have an effect on their 

understanding of them. In order to unveil continuities and discontinuities in the learning of the number 

concept, it would be important to understand how the obstacles that students experience in the 

learning of the negative number concept relate to the way they have been introduced to the concept 

and to their prior experiences in the set of natural numbers. Referring to the results from the 

epistemological analysis, the effects of early algebra on the learning of the negative number concept 

would be a matter of particular interest. However, studies analyzing students’ understanding of 

negative numbers usually do not control for prior experiences.  

Pedagogical perspective 

In the epistemological analysis I have shown that there are parallels in the development of algebraic 

thinking and the negative number concept. Therefore, it seems natural to align the teaching and 

learning of the extension from natural numbers to integers with ideas of algebraic thinking. From the 

psychological perspective, it is not yet clear, if the teaching and learning of the negative number 

concept aligned with ideas of algebraic thinking has positive effects on students’ understanding of 

the concept. 

Algebraic thinking is promoted in mathematics curricula for the elementary grades across the world 

and thus has become an important goal in the teaching and learning of natural number arithmetic (Cai, 

Ng, & Moyer, 2011; Venkat et al., 2018). The vast majority of tasks, learning trajectories and studies 

related to algebraic thinking is carried out in the domain of natural numbers. Only rarely are integers 

and other number systems considered related to algebraic thinking. As already mentioned in the 

introduction, the scientific discourses on the extension of number systems and on algebraic thinking 

only rarely seem to be related to each other.  

Approaching the transition from natural numbers to integers from a pedagogical perspective, I seek 

to answer the question how the teaching of the transition from natural numbers to integers could be 

aligned with the teaching of algebraic thinking. In my presentation, I focus on two aspects: 1) didactic 

models, which align the extension of number systems and algebraic thinking; and 2) number sense as 

an important goal related to natural number arithmetic and algebraic thinking.  

Didactic models for integers and algebraic thinking 

Within the scope of this article, I can only briefly sketch my understanding of didactic models. Space 

does not allow to elaborate on the rich theory behind it. I refer to an understanding of didactic models 

as representations of abstract mathematical concepts or structures. Thus, they reflect essential aspects 

of the mathematical concepts or structures. By allowing students to act upon the tangible or 

symbolically represented mathematical objects, they are used as tools in the meaning of cultural 

artifacts (Wartofsky, 1979; Wertsch, 1998) to foster students’ conceptual development. I adopt the 

broad notion of models in Realistic Mathematics Education, in which models have different 

manifestations. From this perspective hands-on-materials, sketches, paradigmatic situations, 

schemes, or diagrams can serve as models (Van den Heuvel-Panhuizen, 2003). An important aspect 
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with regard to transitions is that didactic models need to be flexible in order to be applied to more 

advanced, sophisticated or abstract levels and thus support vertical mathematization (Van den 

Heuvel-Panhuizen, 2003).  

Different categorizations of didactic models for integers have been suggested. Janvier (1983) 

distinguishes number-line-models and equilibrium models. While number-line models depict 

negative numbers and related operations on one continuous number line, equilibrium models 

introduce two separate (magnitude) representations for positive and negative numbers, e.g. black and 

red stones. These equilibrium models refer to the meaning of negative numbers as opposite quantities. 

Operations in equilibrium models are based on the principle of compensation between positive and 

negative numbers, i.e. the neutralization of equal amounts of opposites, e.g. of black and red stones. 

Another categorization of didactic models for integers has been suggested by Steinbring (1994). He 

distinguishes three categories: 1) real-life context as modelling structures; 2) models based on 

geometric or arithmetic permanence; 3) models providing autonomous representations of negative 

numbers. Temperatures, assets and depths, elevation, and the elevator model are typical examples of 

the first category. Freudenthal (1983) was a proponent of models of the second category, which aim 

to provide plausible reasons for the expansion of rules from the natural numbers to integers. The two 

categories distinguished by Janvier (1983) both belong to Steinbring’s (1994) third category.  

As Fischbein (2002) points out, there is no didactic model of negative numbers, which at the same 

time is intuitive and consistently represents all the algebraic properties of negative numbers. A model, 

which consistently represents the algebraic properties of negative numbers always needs to build on 

artificial conventions. Therefore, research has tried to identify the affordances and constraints of 

particular models in learning integer arithmetic (Hativa & Cohen, 1995; Linchevski & Williams, 

1999; Stephan & Akyuz, 2012). Many researchers prefer the number line model for representing 

operations with integers (Altiparmak & Özdoğan, 2010; Bruno & Martinon, 1999; Hativa & Cohen, 

1995). Other research highlights the power and importance of contextual knowledge from real-life 

situations for the understanding of negative numbers (e.g. Linchevski & Williams, 1999; Stephan & 

Akyuz, 2012). However, in real-life situations the understanding of negative numbers as opposite 

magnitudes is also identified as an obstacle (Schindler & Hußmann, 2013). Students need well 

developed mental networks that relate the opposite magnitudes and their order (Schindler & 

Hußmann, 2013; Yilmaz & Isiksal-Bostan, 2017).  

Due to the artificial conventions that are necessary to develop didactic models for negative numbers 

(Fischbein, 2002), there is a tendency to develop games (e.g. Hattermann & vom Hofe, 2015; 

Linchevski & Williams, 1999) and artificial contexts (Altiparmak & Özdoğan, 2010; Streefland, 

1996) as didactic models. As opposed to real-life contexts, artificial contexts and games facilitate the 

implementation of formal rules. On the contrary, most recent textbooks introduce negative numbers 

in real-life contexts such as temperature, assets and depts, or elevation in order to support the 

understanding of the negative number concept (Whitacre et al., 2015). Whitacre et al. (2015) show 

that students solve problems in the context of assets and depts without using negative numbers, but 

most of them were capable to relate negative numbers to the context if asked to do so. 
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Only rarely are didactical models for integers discussed in terms of their affordances to foster 

algebraic thinking. A few examples are Chiappini (2011); Gallardo (2002); Peled and Carraher 

(2008); Rezat (2014); and Schumacher and Rezat (in press). These authors exploit the potential of 

particular didactic models for the learning of integers aligned with algebraic thinking. Linchevski and 

Williams (1999) do not explicitly relate to algebraic thinking, but address reification as a main 

problem of learning integers, which was shown as being equally important for both, algebraic 

thinking and understanding the negative number concept. Therefore, their approach is also relevant 

in the present context. I will exemplify the different approaches by providing an example of each. 

Gallardo (2002) builds on the historical-critical method as described by Filloy, Puig, and Rojano 

(2008). This approach is characterized by recurrent movements between the analysis of historical 

texts and empirical work in the classroom. Learning sequences are developed based on the historical 

analysis of the development of concepts. In her study, Gallardo (2002) uses word problems from 

historical sources, e.g. D’Alembert’s problem.  

Peled and Carraher (2008) criticize that most word problems, which involve negative numbers do not 

require the formal rules for manipulating negative numbers and consequently can be solved correctly 

while circumventing operations with negative numbers. Their main approach may be characterized 

by generalizing arithmetic problems in the realm of real-life contexts as modeling structures. They 

adjust problems using real-life contexts in order to foster algebraic thinking when learning integers 

and illustrate how these algebraic problems are more suited than arithmetic problems to promote 

meaningful learning of negative numbers.  

An example from Peled and Carraher (2008, p. 309f) may illustrate their approach. The example 

juxtaposes to formulations of the same problem: an arithmetical formulation and an algebraic 

formulation.  

An arithmetical trip: Anne drove 40 kilometers north from her home to an out of town meeting. She 

then drove back going 60 kilometers out to another meeting. After both meetings were over, she 

called home asking her husband, Ben to join her. 

a) How far will Ben have to go and in what direction?

b) Write an expression for writing the length of Bens’ trip.

An algebraic trip: Anne drove a certain number of kilometers north from her home to an out of town 

meeting. She then drove back going 60 kilometers out to another meeting. After both meetings were 

over, she called home asking her husband, Ben to join her. 

a) Write an expression for writing the length of Bens’ trip.

b) Could Anne have driven less than 60 kilometers north on her first trip? If not, explain why. If she

could have, give an example and explain its meaning.

The example shows that the main idea is to formulate real-life problems in a generalized way in order 

to foster algebraic solutions which comprise negative numbers. Referring back to my epistemological 

analysis, their algebraic didactical model seems to be closer to the epistemological roots of negative 

numbers than the arithmetical counterpart. There, I pointed out that negative numbers became 

meaningful in the context involving subtractions with variables such as 𝑥 − 60. 
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Chiappini (2011) exemplifies how the number line model can be used in a digital environment to 

foster algebraic thinking. He presents the algebraic line in the digital tool AlNuSet as a didactic model, 

which is supposed to mediate reification (Sfard, 1994) or objectification (Radford, 2010) of negative 

numbers in the context of the operation a – b. Different values of a and b can be chosen by dragging 

the corresponding points on the number line. The corresponding value of the expression a – b is 

shown by the system as a point on the number line (Fig. 2).  

Fig 2: Algebraic line from AlNuSet (Chiappini, 2011, p. 433) 

This didactical model focuses on the core operation, which led to the introduction of negative 

numbers in the history of mathematics and offers a representation for the result. However, it is not 

clear how this model is to be extended to other operations with integers.  

Linchevski and Williams (1999) use the double abacus related to a real-life problem and a dice game. 

They conclude that by recording scores of a dice game on the double abacus and by operating on 

them „integers are encountered as objects in social activity, before they are symbolized 

mathematically, thus intuitively filling the gap formerly considered a major obstacle to reification“ 

(Linchevski & Williams, 1999, p. 144).  

Rezat (2014) exploits the potential of a model building on the permanence principle. In an ongoing 

design research project, Rezat (2014) and Schumacher & Rezat (in press) developed a learning 

trajectory for the learning of integers and the operations with them. In the learning trajectory, they 

aim to implement a didactical model based on the permanence principle building on pattern 

generalization tasks. In this learning trajectory, negative numbers are introduced through the idea of 

counting backwards beyond zero. Based on this idea and the representation of negative numbers on 

the number line, the order of integers and the operations with integers are consecutively introduced 

in the following order: 

1. Introduction of negative numbers

2. Order of negative numbers

3. Subtraction of positive numbers from negative numbers

4. Addition

5. Subtraction of negative numbers from negative numbers

6. Multiplication
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Each section has an analogous structure. It begins with pattern generalization tasks followed by 

analyzing and exploring task relations within and among operations.Finally, the rules of calculating 

with integers are abstracted from these explorations. I will provide a more detailed account of this 

structure using the example of subtracting negative numbers.  

Each chapter starts with pattern generalization tasks such as represented in Fig. 3. 

… 

Fig. 3: Pattern generalization tasks for the subtraction of integers 

Pattern generalization tasks are widely incorporated in German textbooks for primary level. The aim 

of these tasks is to foster students’ recognition of patterns and their understanding of number relations. 

By generalizing the patterns, students can discover basic rules of arithmetic, e.g. that a difference 

remains constant when both, minuend and subtrahend are lowered or increased by the same number. 

Pattern generalization tasks are widely acknowledged to foster algebraic thinking (Radford, 2008; 

Rivera, 2013). Freudenthal (1983) also proposed to use them for learning the operations with integers. 

Although they are already used in this context, their full potential has only rarely been exploited. In 

their learning trajectory, Rezat (2014) and Schumacher & Rezat (in press) make intensive use of these 

tasks in order to support the learning of integer arithmetic aligned with algebraic thinking. 

Students are supposed to analyze the relation of the tasks, complete the empty fields in the tasks, 

solve the tasks, and describe the structure of the pattern. The first three tasks in Fig. 3 a) should be 

easily solvable for students since they ask students to perform a simple natural number subtraction. 

Whereas in the fourth task, students encounter the subtraction of a negative number from another 

number for the first time. It is expected that students draw on their prior knowledge of this task type 

and derive the solution of this unfamiliar task from the pattern that the minuend remains constant, the 

subtrahend is lowered by one, and consequently, the result increases by one. In these patterns, students 

encounter the difficult situations, which incorporate two successive signs (Vlassis, 2008). Drawing 

on the structure of the pattern, they should be able to conjecture that 3 – (–1) equals 4. In that, the 

prior knowledge of the task type provides a tool for solving tasks involving the subtraction of negative 

numbers. After more exploration and related reflection, a conjecture about the rule for the subtraction 

of negative numbers that is consistent with their prior knowledge should be possible. Deeper 

reflection reveals also new insights, such as that subtraction does not always lower the result. In other 

structures of task sequences students can encounter the different cases of the subtraction of negative 

numbers, such as the subtraction of a negative number from a negative number as shown in Fig. 3 e). 

In our empirical investigation of students’ behavior when working on these tasks we find both, 

students who solve the tasks correctly based on the pattern (Fig. 4, left) and students, who solve each 
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task separately and show a natural number bias, which relates to the lowering effect of subtraction 

(Fig. 4, middle and right): 

Fig. 4. Three exemplary student solutions of the task in Fig. 3. 

After completing these pattern generalization tasks students are supposed to transfer these tasks into 

a table such as depicted in Fig. 5.  

Fig. 5: Subtraction table for negative numbers 

The table shown in Fig. 5 is an extension of the rotated diagram shown in Fig. 6 to the negative case. 

Tables such as the one shown in Fig. 6 are recommended by German mathematics educators in order 

to display the relations between all the tasks with summands up to 10 and to support effective 

memorization of the basic tasks in the early primary grades (Schipper, Ebeling, & Dröge, 2015; 

Wittmann & Müller, 1997). The structure of the table is supposed to foster students‘ understanding 
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of task relations. Based on their understanding of this structure, students should be able to derive the 

result of a task from a task, which is memorized as a basic fact. For example, the solution of the task 

5 + 4 might be derived from the (memorized) doubling task 5 + 5 by diminishing the result by one, 

since one of the summands is also diminished by one. 

Fig. 6: Basic addition-table (Wittmann & Müller, 2012) 

Similarly, students are supposed to complete the table in Fig. 5 by drawing on number relations and 

thus deriving the contents of the empty fields from adjacent fields. Again, the tasks relate to familiar 

tasks from the set of natural numbers and students can relate the “new” numbers to their prior 

knowledge by relying on number relations. 

In order to explicate the rules for subtracting negative numbers, students explore number relations in 

excerpts from different tables as shown in Fig. 7.  

Fig. 7: Comparison of subtraction and addition table excerpts 

By comparing tasks and results, they can find, for example, that the two tasks 5 – (–5) and 5 + 5 both 

equal ten. By exploring and analyzing adjacent tasks they can identify the same phenomenon. 

Therefore, they can conjecture that 5 – (–5) = 5 + 5. After confirming this relation with more tasks, 
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they are asked to generalize their findings and formulate a rule for the subtraction of negative 

numbers.  

The learning trajectory by Rezat (2014) and Schumacher and Rezat (in press) was evaluated in a 

comparative study with a learning trajectory based on real-life contexts as modelling structures. 

Results are going to be published elsewhere.  

Comparing the presented didactical models that introduce negative numbers aligned with algebraic 

thinking reveals that all of them relate to important cognitive achievements in the epistemology of 

negative numbers. Chiappini (2011) directly relates to the generalization of the expression a – b and 

its representation on the number line, which played a crucial role in the epistemological development 

of negative numbers. Gallardo (2002) uses historical problems and Peled and Carraher (2008) argue 

for generalizations of word problems. As was shown in the epistemological analysis, problems of this 

type and their solution played an important role in the historical development of negative numbers. 

Rezat (2014) and Schumacher and Rezat (in press) relate to the permanence principle, which was the 

cognitive achievement that led to the formal understanding of negative numbers and their final 

acceptance as numbers.  

While Chiappini (2011) and Peled and Carraher (2008) only present some isolated examples, which 

might be incorporated in a learning trajectory for negative numbers, Gallardo (2002) as well as 

Schumacher and Rezat (in press) present didactic models, which consistently make use of one core 

idea to foster the learning of negative numbers aligned with algebraic thinking.  

The epistemological analysis has shown that it was crucial in the development of the negative number 

concept to overcome the understanding of negative numbers as magnitudes. The understanding of 

negative numbers as opposite magnitudes was persistent whenever negative numbers appeared in the 

solution of real-life-problems. It was not until the formalization of the number concept in the 19th 

century that negative numbers were accepted as autonomous quantities. Therefore, it is questionable 

if the teaching of the negative number concept solely based on real-life contexts as modelling 

structures is an appropriate approach to develop an algebraic understanding of negative numbers. 

According to genetic epistemology it might be appropriate to introduce negative numbers in such 

contexts, but it equally seems important to proceed towards an algebraic understanding of negative 

numbers and their operations based on the permanence principle as Rezat (2014) and Schumacher 

and Rezat (in press) suggest. However, learning trajectories that coherently align the development of 

the negative number concept and algebraic thinking are still missing in the research literature.  

Number sense 

So far, I have analyzed the epistemological relation between the negative number concept and algebra 

as well as didactic models for negative numbers that explicitly relate to algebraic thinking. I will now 

turn to number sense, a construct that is of interest for the scope of this article for two reasons: 1. 

Like early algebra, number sense usually relates to children’s abilities with natural numbers and is 

rarely used in the context of other number systems; 2. Number sense and algebraic thinking share 

some commonalities, which are rarely related. In order to unveil continuities and discontinuities in 

the learning of the number concept, I will firstly elaborate on the question, whether it makes sense to 
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consider number sense in other number domains. Secondly, I will briefly analyze the relation between 

number sense and algebraic thinking. 

The development of number sense is a commonly shared goal for the learning of natural numbers. It 

is mentioned about 50 times in the publication of the 23rd ICMI Study on whole numbers in the 

primary grades (Bartolini Bussi & Hua Sun, 2018). Many papers in TWG02 “Arithmetic and number 

systems” at CERME stress that the presented research is devoted to the development of number sense. 

The very number sense is used to denote different concepts (Rezat & Rye Ejersbo, 2018). Number 

sense in the meaning that is commonly shared in the psychological community refers to a persons’ 

foundational innate core systems to process quantities. Verschaffel elaborated on the facets of this 

psychological notion of number sense in his plenary talk at CERME 10 (Verschaffel, Torbeyns, & 

De Smedt, 2017). In mathematics education, number sense broadly refers to “the well-organized 

conceptual network that enables one to relate number and operation properties and to solve number 

problems in flexible and creative ways” (Sowder, 1992, p. 381).  

There is a fundamental difference between the two perspectives. While the psychological perspective 

considers children’s innate abilities, which are not subject to learning, the perspective on number 

sense in mathematics education relates to abilities that children can develop through learning. Sayers 

and Andrews (2015) integrate three different perspectives on number sense and offer a model that 

comprises different conceptualizations of number sense at different stages in children’s learning 

history. In this paper, I refer tothe didactical perspective on number sense.  

An aspect that has been discussed repeatedly in TWG02 at CERME related to number sense is flexible 

and adaptive use of strategies in mental calculation (Carvalho & da Ponte, 2013; Morais & Serrazina, 

2013; Rezat & Rye Ejersbo, 2018). Flexibility and adaptiveness in mental calculation require a deep 

understanding of number and operation relationships and knowledge of basic facts. These are core 

aspects of number sense (Threlfall, 2002; Rathgeb-Schnierer & Green, 2013). Therefore, number 

sense is regarded as both, a prerequisite and a goal for flexible and adaptive strategy use in mental 

calculation (Rezat & Rye Ejersbo, 2018).  

Number sense and flexible and adaptive mental calculation usually relate to children’s abilities related 

to natural numbers. According to the definition by McIntosh, Reys, and Reys (1992) it seems 

desirable to develop number sense in other number domains. In their framework of number sense, 

McIntosh et al. (1992) include the understanding of the effect of operations with fractions and 

decimals. However, flexible mental calculation and number sense have been rarely investigated in 

other number domains. A slightly increasing interest in these issues related to fractions is noticeable 

(Markovits & Pang, 2007), which was also discussed in TWG02 at CERME (e.g. Carvalho & da 

Ponte, 2013). In terms of mental calculation related to number sense these studies differentiate 

between rule-based or instrumental / procedural strategies and number-sense or conceptual strategies, 

which are based on equivalence, numerical relationships and properties of operations (Lemonidis, 

Tsakiridou, & Meliopoulou, 2018; Yang, Hsu, & Huang, 2004). Reys, Reys, Nohda, & Emori (1995) 

and Carvalho & da Ponte (2013) find that students tend to apply rule based strategies, where students 

perform the formal rule mentally. On the contrary, Yang et al. (2004) show in an intervention study 

how students are able to develop number-sense mental calculation strategies, which are based on 
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equivalence, numerical relationships and properties of operations. Rezat (2011) also explored 

students’ strategies in mental calculation tasks with integers. He also finds that students transform the 

problem with integers into a problem with natural numbers and determine the sign of the result 

separately applying a procedural and rule-based strategy for calculation with integers. Consequently, 

all mental calculation tasks including integers were solved referring to mental calculation strategies 

from the set of natural numbers.  

These findings give rise to the question of the relevance of mental calculation in other number sets 

than the natural numbers. If mental calculation in other number sets is reduced to the mental 

application of the rules for calculating in these domains and by transformation to problems with 

natural numbers the relevance for fostering number sense has to be questioned. However, Yang et 

al.’s findings indicate that it is possible to foster students’ number-sense based mental calculation 

strategies related to fractions. Further investigation of mental calculation strategies, which are 

associated with number sense is needed. In general, the meaning and conceptualization of number 

sense related to fractions and integers requires further clarification and differentiation.  

I will now turn to the relation of algebraic thinking and number sense. These two constructs are rarely 

related. While number sense is situated in the discourse of the development of the number concept, 

algebraic thinking is situated in the discourse of the development of algebra. However, in the latter 

context, constructs such as structure sense (Hoch & Dreyfus, 2004, 2006) and symbol sense (Arcavi, 

1994, 2005), which seem to relate to number sense, have been suggested. Within the scope of this 

article, I am not able to analyze the relationship between number sense, structure sense, and symbol 

sense. I can only briefly outline some similarities between number sense and algebraic thinking.  

McIntosh et al. (1992) have provided a framework of generally agreed components of basic number 

sense, which gives an account of the richness of the construct. This framework distinguishes between 

three major areas of number sense: 1. Knowledge of and facility with numbers; 2. Knowledge of and 

facility with operations; and 3. Applying knowledge of and facility with numbers and operations to 

computational settings. Each of these areas is divided into several categories.  

Among the categories that characterize basic number sense we find several aspects that are repeatedly 

used to characterize algebraic thinking. In particular, these are related to knowledge of and facility 

with operations. A number of studies on early algebra focuses on students understanding of operations 

in terms of relational thinking (Bastable & Schifter, 2008; Carpenter, Colm, & Franke, 2003; Empson, 

Levi, & Carpenter, 2011; Russell, Schifter, & Bastable, 2011), i.e. “using fundamental properties of 

number and operations to transform mathematical expressions rather than simply calculating an 

answer following a prescribed sequence of procedures” (Carpenter, Levi, Franke, & Zeringue, 2005). 

An example, Carpenter et al. (2003, p. 4) provide to illustrate relational thinking is Robin’s solution 

of the open number sentence 18 + 27 = [  ] + 29: “29 is two more than twenty 27, so the number in 

the box has to be two less than 18 to make the two sides equal. So it’s 16”. This way of applying 

associativity in this context is exactly what would be expected from a child, who exhibits number 

sense.  

Due to the similarities of number sense and algebraic thinking in terms of relational thinking, Pittalis, 

Pitta-Pantazi, and Christou (2016, 2018) argue that number sense has an innate algebraic dimension. 
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They have empirically validated a model of the structure and development of basic number sense by 

incorporating an algebraic dimension, which refers to algebraic arithmetic and quantitative relations. 

In their study, they validate their model, in which number sense is conceptualized as a second order 

theoretical construct made up of three first order latent factors, namely (a) elementary number sense, 

(b) conventional arithmetic, and (c) algebraic arithmetic.

This is a first and important step in understanding the relationship between number sense and 

algebraic thinking. Further research needs to deepen this understanding by also taking constructs like 

structure sense and symbol sense and their relation to number sense into consideration.  

Conclusions 

I have focused on the relationship between the extension from natural numbers to integers and the 

transition from arithmetic to algebra. From an epistemological perspective on this transition, I have 

shown that the development of the negative number concept is closely linked to core algebraic ideas, 

such as indeterminate objects and their analytic treatment, reification and objectification, and a 

detachment from content meanings in order to proceed to a formalized view.  

The psychological analysis showed that the same obstacles characterize students‘ learning of the 

negative number concept regardless of their prior knowledge and their prior experiences in the set of 

natural numbers. So far, the effects of early algebra on students’ understanding of negative numbers 

has not been investigated.  

The analysis from the pedagogical perspective has shown that two important goals related to the 

learning of natural numbers, namely the development of algebraic thinking and the development of 

number sense, are rarely considered in the domain of integers. I presented a few didactical models 

that have been suggested in the research literature in order to align the learning of integers and the 

development of algebraic thinking. However, the alignment seems to be quite loose so far and is 

rarely developed into coherent learning trajectories for the learning of integers. An analysis of didactic 

models of negative numbers and their potential to foster algebraic thinking in textbooks might 

complement the analysis and draw a more comprehensive picture.  

In the introduction, I mentioned that the extension of number systems and the transition from 

arithmetic to algebra are two long-term developments that require a careful construction of the 

curriculum and related learning-trajectories. Many scholars stress the importance of curricular 

coherence in the construction and implementation of curricula in general (Confrey, Gianopulos, 

McGowan, Shah, & Belcher, 2017) and in particular related to goals of the number curriculum (Bruno 

& Martinon, 1999; Van den Heuvel-Panhuizen, 2008). Curricular coherence is defined differently 

according to the principles that are used in order to provide it (Confrey et al., 2017). While, for 

example, Bruner (1960) and Schmidt, Wang, and McKnight (2005) refer to the structure of the 

discipline as the means to provide curricular coherence, Confrey et al. (2017) argue for learner-

centered curricular coherence, which they define as 

an organizational means to promote a high likelihood that each learner traverses one of many 

possible paths to understanding target disciplinary ideas. The goal is that students achieve 

demonstrable and justifiable proficiency in the meanings, relationships, and utility of those target 
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ideas by building on and continuously broadening and modifying their ideas and experiences. (p. 

719)  

Looking at the curriculum in terms of the extension of number systems and the transition from 

arithmetic to algebra yields that there is a close relation of arithmetic and algebraic thinking in the set 

of natural numbers. However, this close alignment does not seem to be coherently continued in the 

extension of number systems. Further development of algebraic thinking in the domain of integers 

(and also in the domain of fractions) seems to be almost suspended. In terms of curricular coherence, 

it could be important for the learning of the negative number concept and for the learning of algebra 

to continuously foster algebraic thinking throughout the extension of number systems. Continuously 

unfolding number sense aligned with algebraic thinking throughout the extension of number systems 

might also be a means to provide continuity in a content domain where students‘ experience of 

discontinuity has been substantiated by a large body of research.  
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The general aim of the panel was to offer a reflection on the genesis and the contribution of the 

European Society for Research in Mathematics Education (ERME) to research in mathematics 

education, regarding its past, present and future. After a short introduction, the panel focused on three 

topics: The ERME society, presenting a historical and present view; YERME and YESS, highlighting 

history and current developments related to supporting young researchers; the ERME book, focusing 

on its evolution, spirit and results. Each topic started with an input by two panel members who also 

answered questions by participants of CERME 11 sent in advance or raised during the panel. The 

panel was concluded by the president and the two co-chairs of the panel. 

Keywords: Europe, mathematics education, collaboration, cooperation, communication, quality, 

inclusion, promoting young researchers 

1 Introduction (Hanna Palmer and Konrad Krainer) 

An important step for establishing a European Society for Research in Mathematics Education 

(ERME) was done in a meeting in Osnabrück (Germany) from 2 to 4 May 1997. Representatives 

from 16 European countries met in Haus Ohrbeck (Figures 1 and 2). The aim was to establish a new 

society, ERME, that promotes communication, cooperation and collaboration in mathematics 

education research in Europe. It was also decided that ERME will launch periodical conferences 

(CERME). At CERME 1, again held in Osnabrück, from 27-30 August 1998 (coordinated by Elmar 

Cohors-Fresenborg and Inge Schwank), the foundation of ERME took place. In 1999, the three 

volumes of the first CERME proceedings were published (Schwank 1999a,b; Krainer, Goffree & 

Berger, 1999). In 2018, the ERME book (Dreyfus, Artigue, Potari, Prediger & Ruthven, 2018) 

appeared on the occasion of the 20th birthday of ERME. The ERME anniversary panel was held during 

CERME 11 in Utrecht (The Netherlands) in the Dom Church (Figure 3) on February 2019.  

Figure 1 (E. Thoma):   Figure 2 (private photo):  Figure 3 (free photo): 

Haus Ohrbeck, Osnabrück Elmar Cohors-Fresenborg, Host Dom Church, Utrecht 
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In preparation for the panel, the community was asked to send questions about ERME research, 

questions about ERME itself (its role, its possible activities …) and to share memories on ERME 

(anecdotes, narratives, pictures …) by using twitter or mail (Figure 4). The aim with this was to make 

the panel as dynamic as possible with discussions between speakers, high-level scientific content 

mixed with narratives and anecdotes about CERME experiences.  

Figure 4 (H. Palmér): Examples of pre-sent tweets 

Some of the anecdotes included memories from those who had participated at almost every CERME. 

During the introduction of the panel, those who had participated at the first CERME in Osnabrück, 

1998, were asked to stand up and there were actually about 12 people. In many anecdotes, CERME 

was described as a conference where people met others and became friends and research colleagues. 

Through the years there has been a substantial number of research collaborations initiated at CERME. 

Many people first visited CERME during their PhD and valued the welcoming atmosphere with its 

dynamic mix of experienced researchers and newcomers.  

After a short introduction, the panel focused on three topics: The ERME society, presenting a 

historical and present view; YERME and YESS, highlighting history and current developments 

related to supporting young researchers; the ERME book, focusing on its evolution, spirit and results. 

Answers to present questions were addressed in the pre-prepared presentations of the panel speakers 

and further questions were provided by the audience at the conference.  

In the following, we elaborate on these three topics (for a summary of relevant data about ERME see 

also Section 10). 

Figure 5 (personal photos): The first board members of ERME - Paolo Boero, Marianna Bosch, Elmar 

Cohors-Fresenborg, Jean-Philippe Drouhard, Konrad Krainer, Jarmila Novotná, João Pedro da 

Ponte, Leo Rogers and Julianna Szendrei (see details in Section 10) 
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2 The ERME society: A historical view (Barbara Jaworski) 

Probably the first thing to say in the history of ERME is that ERME is an AMAZING success story! 

From early times to the present it has proved attractive to researchers throughout Europe and beyond 

and it has blossomed and grown. 

The very first meeting in Osnabrück, in 1997, set the scene for what has followed, and the 

conceptualizations emerging from that meeting have been established and faithfully preserved while 

simultaneously developing in scale and extent. 

In response to an open invitation by German colleagues, representatives from 16 European countries 

discussed what a European society might involve. We saw here democracy in action as the delegates 

from across Europe presented their ideas and debated possibilities. Clearly, we were focusing on 

research in Mathematics Education – our name would be ERME – European Society for Research in 

Mathematics Education. We wanted there to be a conference, every two years, and we wanted very 

strongly to support new researchers who should be the future of our society. 

There was much debate about the nature of the conference. We already had a range of conferences in 

our community – particularly PME and ICME – the ERME conference should be different with a 

more European identity. We wanted a research conference, to be called CERME – Conference of 

ERME – to enable the sharing, understanding and working together of/on research in mathematics 

education: three principles emerged 

• Communication with our colleagues throughout Europe

• Cooperation in and around research topics

• Collaboration in designing and doing research together

These principles quickly became known as “The Three Cs” and “The CERME Spirit”: they were the 

foundation on which our community was based and on which our conference developed. The 

conference should enable participants really to work on areas of research, forming research groups, 

with a significant amount of time to communicate their research and develop cooperative and 

collaborative relationships. Also, ERME should provide a means of educating and supporting young 

researchers and research students – bringing young researchers centrally into the community. 

In the early years of ERME, an ERME board was initiated to guide developments in ERME, and the 

conference, CERME, was introduced to take place every two years. For young researchers in ERME, 

the YERME group was initiated.  

The first CERME took place appropriately in the same location as our founding meeting, in Haus 

Ohrbeck in Osnabrück (Germany). There were around 50 participants and just seven working groups 

– the groups would have 12 hours for their work over the days of the conference. It was a time of

getting used to this new kind of conference environment.

At the beginning of this first conference, a well-known researcher asked “what are we going to do 

with 12 hours? How are we going to use all this time?” At the end of the conference, she said “I am 

amazed. The time just disappeared as we discussed our work and debated issues in research.” It was 

clear that we were learning in practice about possibilities and ways of working; trying out ideas and 

developing (or rejecting) them in practice. 
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Thus, CERME was planned as a different kind of conference (from PME, ICME and others). It 

became a working conference with small working groups in research areas led by ‘experts’ in the 

field (at least 12 hours). It should be open and inclusive to all researchers in the field. It should have 

published proceedings of high scientific quality. There should be quality support for, and education 

of research students, with a dedicated day before each conference.  

The importance placed on educating research students led to the provision of summer schools in years 

alternating with CERME. These were led by ‘experts’ in key research areas (The YESS – YERME 

Summer Schools) and should be open, inclusive and encouraging full participation. 

Key words in planning and development were Quality and Inclusion. Principles of openness and 

inclusion permeated principles and practice. ALL researchers in mathematics education (from 

anywhere in the world) should be welcome participants – no barriers to inclusion. The working 

language would be English – but sincere attempts should be made to include other languages where 

necessary. There should be principles of high quality in scientific exchange and publication. Group 

leaders should ensure the highest quality of academic engagement and publication.  

These principles led to issues and questions relating to practices in the working groups regarding 

quality and inclusion,  

• Should ALL papers submitted to a group be accepted? Do principles of inclusion require this?

• What if papers are not of a sufficiently high standard? How can group leaders ensure that what

is published is of the high quality we seek?

By the time of CERME 6 in Lyon, France, these issues had become central and potent. Thus, a small 

group from within the initiating team were tasked by the ERME board to do some research to establish 

the views of CERME participants. A survey was designed and conducted, and interviews were held 

with CERME participants. The results of this analysis exposed a wide range of views and highlighted 

the main issues (see Jaworski, da Ponte & Mariotti, 2011). Clearly the majority wanted to maintain 

both quality and inclusion, but practical suggestions were made as to how this could be possible. It 

became practice that most papers submitted for presentation would be accepted to include as many 

researchers as possible, but there would be additional reviews after the conference through which 

only papers of high quality would be selected for published proceedings. As CERME has grown in 

size beyond these early conferences, it has become necessary to review how quality and inclusion can 

continue to be maintained in practice. 

Figure 6 (personal photos): The presidents of ERME - Jean-Philippe Drouhard, Paolo Boero, 

Barbara Jaworski, Ferdinando Arzarello, Viviane Durand Guerrier and Susanne Prediger 

(see details in Section 10) 
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3 The ERME society: A present view (Susanne Prediger) 

20 years after the founding of ERME, we can be very happy that ERME has succeeded in establishing 

the three C’s: 

• Communication is consequently established in the Thematic Working Groups due to the great

work of the TWG leaders and co-leaders. Even in a conference with 26 TWGs (and 8

subgroups), communication was guaranteed by the rule of “30 minutes per contribution”.

Additionally, we extended the opportunities for communication by ERME Topic Conferences

(ETC, see Section 10), six of them have already taken place.

• Collaboration was initiated and is evidenced by many joint publications among ERME

members (see overview in Dreyfus et al., 2018). However, we feel that collaboration can still

be fostered more.

• also Cooperation takes place in more stable contexts, for example in joint research and PD

projects (funded by EU Horizon 2020 or Erasmus or bilateral foundations such as the German-

Israeli foundation). For further deepening also the institutionalized cooperation across

European countries, initiating collaboration and following it up is crucial, for the future.

Within the last twenty years, the ERME policy of inclusion and quality has successfully been 

installed, especially the TWG leaders and co-leaders do an enormous job in enhancing quality. During 

these years, inclusion has been interpreted as allowing all interested people to participate. However, 

ERME has not yet achieved to include all European countries, as we still have regional unbalances 

and emerging communities which are not yet present at the conference.  

At the same time, CERME has experienced a massive growth, from 550 participants in 2013 to more 

than 900 in 2019 (see Figure 7). This success shows that the founders’ choice to design CERME as 

a „thematic working space" (with the possibility of improving submitted texts before and after the 

conference) is very appreciated, not only in Europe, but also within the world community of 

mathematics educators. Among the 900 participants at CERME 11, 150 came from other continents. 

Thus, the founders’ idea of offering CCC opportunities to researchers has been successfully spread 

to other continents, with the possibility of enriching exchanges. On the one hand, we can celebrate 

this as a huge success that more and more researchers from all over the world are interested in 

participating in the conference. However, CERME’s success is ERME’s challenge, as the growth of 

the conferences endangers both, quality and inclusion. That is why the ERME board has taken the 

decision that eternal growth is not desirable, and 900 participants is the maximum we can take. For 

the next conference, the ERME board and the IPC will develop new review procedures for selecting 

papers. 
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Figure 7: Increasing number of participants for the last conferences 

This new situation requires a new interpretation of inclusion in the ERME policy: We must overcome 

a mainly quantitative interpretation of inclusion (as allowing every interested person to participate). 

Instead, the future inclusion strategies will focus on the heterogeneity of participants and develop 

approaches for supporting underrepresented groups for finding new balances 

• between novices and experts

• between countries

• between well-established communities and newly emerging communities.

At the same time, we will enhance the interpretation of quality: In the future we will not only work 

on quality of individual contributions, but also on enhancing the three C’s. Especially, we will search 

for new ways of supporting collaboration and cooperation across countries and research groups.  

4 YERME and YESS: A historical view (Paolo Boero) 

Figure 8 (H. Palmér): Example of pre-sent tweet 

This spontaneous contribution to our panel from an ERME member well represents the “YESS spirit” 

and its aims, and more generally the orientation of all the ERME initiatives (YESS, YERME, the 

YERME day) addressed to people who enter the domain of research in mathematics education. 

From the very beginning, one of the main ERME goals was to create a community of young 

researchers, who might grow up as EUROPEAN researchers in the WORLD context, each of them 

bringing the richness of her cultural, educational and research traditions, to be acknowledged as 

relevant contributions by the colleagues, each of them being willing (and able!) to Communicate, 

Collaborate and Cooperate with the other EUROPEAN and WORLD researchers. This goal was 

coherent with the general perspective, according to which ERME was founded (the “CCC spirit”). At 

CERME 2 in Mariánské Lázně, a meeting of young researchers was initiated where 22 of them 
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(mostly PhD students) and six senior researchers met in order to discuss young researchers’ recent 

situation and to allocate suggestions to improve the situation. Finally, the young researchers were 

invited to meet as a group during the conference and to formulate their ideas and needs. A subgroup 

(Michele Cerulli, Petra Frantova and Jukka Törnroos, supported by Konrad Krainer) met, negotiated 

essential basic points and finally presented them at a plenary discussion at the end of the conference. 

For example, it was fixed that the group of young researchers was named YERME, that it will have 

three contact persons and will produce a contact list. It was recommended that, in the future, CERMEs 

could have a young researchers’ day; in addition, a summer school (with workshops and feedback 

sessions) was proposed. In both cases, young researchers offered to be active in programme 

committees. Based on these suggestions, the ERME board started to design a summer school for 

young researchers (later named YESS) to be held every two years (starting 2002) and to start each 

CERME with a YERME day (starting 2005, formally decided 2003 at CERME 3).  

YESS 1 and its design 

The first summer school was planned in a meeting held in Klagenfurt in June, 2001 (see reports by 

Borromeo Ferri, Roth & Reinhold, 2002; Krainer, 2003). Two representatives of YERME were there, 

together with three members of the ERME board and three members of the University of Klagenfurt 

(which offered to host the first summer school). The design of the summer school was based on the 

following guidelines: 

• The Working Group (WG) structure as the main feature of the summer school, and the request

to all WG participants to prepare a written contribution related to the advancement of their

research projects. These choices were coherent with the original planning of CERME, based

on thematic WGs. A common theme would have allowed WG participants to better share

experiences, readings, method and content choices. The request of a 4-6 pages summary on

the personal stage of PhD studies (be it initial, or near to the conclusion, or even post-doc)

was conceived with three aims: To favor a personal balance of the acquisitions and the needs,

in the perspective of sharing them with the other participants; to let participants know in

advance the interests and research orientations of the other WG members; to let the expert in

charge of the WG prepare suggestions, references, etc. for each member, and plan the WG

sessions, in order to tackle common or near problems/topics in each session.

• The role of the “expert” in each WG: Strong expertise in research and in the supervising of

newcomers in the field was necessary. But it was not sufficient. An expert had not to be

conceived as PhD super-supervisor! She had to play another, complex role: To provide the

newcomers in the field with the opportunity of communicating their projects, preliminary

results, needs in a CCC climate; to favor productive exchanges between participants; to

provide them with “method” and “content” helps and suggestions (according to her research

experience); to ensure a pluralistic vision on theoretical and method choices.

YESS, YERME and the YERME day 

The interactions between experts, organizers and students in YESS 1 (2002) allowed the ERME board 

to better focus (and take precise decisions) on two kinds of needs, that had already been considered 

in more generic terms in the previous years: 
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• There was a challenge to create and prepare discussion spaces, within YESS and in the

occasion of ERME conferences, where participants with interests in different areas of

mathematics education could meet together and with experts to deal with topics related to the

level of advancement of their PhD studies (e.g. how to choose and read a research paper? How

to choose and formulate a research problem and the related research questions? What about

the theoretical framework? How to choose a research methodology to deal with the research

questions? How to write a research paper? Etc). This need brought to plan in advance

Discussion Group sessions within YESS (in order to share the task of better coordinating and

supporting them among the experts and the more experienced members of the programme

committee); and to implement the idea of the YERME day (it was finally decided that it should

consist of two half days of work for young participants in CERME, before the starting of

CERME). The first official initiative involving young researchers took place in CERME 3

(2003) as a YERME meeting within the conference; the name YERME day was adopted for

the two half days that preceded CERME 4 (2005) and all the subsequent CERMEs. In the two

cases (YESS Discussion Groups and YERME day before CERME), the aim is to provide

participants with occasions for dealing in depth, with the support of experts, on subjects (like

those listed above, gradually made more precise and specific in the programme of subsequent

summer schools) of common interest in each stage of the development of PhD studies and

research projects. New formats will be found for the future, for example, the ERME Topic

Conferences (ETC) can be opened with a YERME day, for discussing individual projects or

a survey of the topic at stake, available before an ETC, as an introduction to the conference.

• There was a constant work on further developing YERME, with its autonomy, its tasks related

to YESS and the YERME day, and also to CCC specificity for young researchers and to career

needs (e.g. information on research jobs opportunities). During YESS, two time slots are

dedicated to special Discussion Groups organized and led by the YERME representatives

within the programme committee. The discussions concern the participants’ challenges as

PhD students, as participants in YESS, and their perspectives as regards the post-doc

employments. During the YERME day, a special event is the plenary speech of a young

researcher who recently entered a research career. She presents an account of the problems

met by her during her PhD studies, of how she tackled them, and of how she succeeded in

finding an employment opportunity after her PhD.

• At CERME 7 (2011), the ERME general assembly decided to strengthen the YERME voice

in the ERME policy making. The ERME byelaws were modified to include two YERME

representatives for four years, each from CERME 8 (2013) on.

Conclusion 

The increased number of applicants to YESS (from 47, almost all from Europe, in the case of YESS 

1, to more than 110, including those from America, Africa and Asia in the case of YESS 5, to 136 in 

the case of YESS 9 – always with candidates from other continents) encouraged the organizers to 

maintain and strengthen the original features of YESS. The number of WGs was increased from five 

in YESS 1 to six; the accepted participants have been 72 in the last editions, and will be 84 in YESS 

10. In particular, participation of students from other continents is considered as an added value for
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YESS (the same as for ERME!). Indeed the participation of young researchers from other research 

traditions, and with different cultural needs, was, is and will be an occasion for putting into practice 

the original reason for the existence of ERME (and YESS as well): A community of researchers, 

based on the positive evaluation of the rich European diversity, and coherently open to the 

constructive dialogue with other diversities in the CCC spirit. 

Figure 9 (personal photos): Some mentors of YERME - Paolo Boero, Konrad Krainer, 

Dina Tirosh, João Pedro da Ponte and Viviane Durand-Guerrier 

5 YERME and YESS: A young researcher’s view (Simon Modeste) 

As a young researcher and a participant in CERME, YERME and YESS events, I would like to 

describe my trajectory, as a testimony for this panel and illustrating the previous section. 

My first contact with ERME and the YERME group was in CERME 7 in 2011. I was in the topic 

group on “Proof and argumentation”. Looking at the “famous” names in the participants of the group 

(Paolo Boero was one of them), I was quite intimidated. I think this is the case for many young 

researchers before their first CERME. Fortunately, I had the opportunity to participate in the YERME 

day. This day, before the conference, is very important for newcomers. It allows young researchers 

to meet together, as a small group, to discuss, start knowing each other, share experiences and benefit 

from experts’ workshops. Paolo Boero was one of the experts (for many generations of young 

researchers, Paolo is associated to YERME activities) and I attended his “famous” workshop on 

writing articles, where he makes you analyse and criticize one of his first articles. This is YERME 

spirit, and contributes to make you more comfortable as a young researcher in the community. 

Another important thing is that YERME day is oriented towards stimulating communication (in 

particular regarding the language issue for non-native English speakers). After the YERME day, you 

can join the conference and the working groups with much less stress. You meet known faces from 

the YERME day during the conference and can share experiences from the various groups. You have 

the feeling that you are part of the group of the European young researchers in mathematics education. 

In 2012, I participated in YESS 6 in Faro (Portugal). It was six months before my PhD defence, and 

my dissertation was not written yet. I was very stressed, and meeting with other young researchers, 

benefiting from the pieces of advice from the expert of my workgroup, sharing experiences during 

the Discussion Groups have been very comforting and motivating. And I went back to work on my 

PhD with more energy. 

Participating in YESS is sharing a week with young researchers and experts from ERME, where you 

feel like cut off from the rest of the world, focused on scientific activities. This is very pleasant and 

it is a luxury in a young researcher’s life. The truth is that I don’t know any event for young 

researchers which would be equivalent to YESS. 
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I also want to write briefly about the network of YERME. It is through this network that I was aware 

of post-doc positions and got the opportunity to be a post-doc researcher in another country. This 

permitted me to discover another school system, and another research culture. It brought me an 

international experience. I think that this is exactly the kind of opportunities that YERME wants to 

foster, by promoting international collaborations. 

In 2018, I had the possibility to contribute to YERME activities, by organizing YESS 9. I was very 

proud to organize it after my rich experience from YESS 6. In collaboration with the ERME board 

and the scientific committee, I tried to base on this experience as a young researcher in the ERME 

community, to implement an organization that stimulates the interactions between young researchers. 

During the summer school, I have seen the group bonded, and the YERME community has 

strengthened during the week. 

At YESS 9 in Montpellier, we had 136 applications for 72 places (6 working groups of 12), experts 

from different parts of Europe. The participants came from many countries in the world, representing 

all continents (of course, the majority from Europe). Figure 10 shows the whole group of participants 

at YESS 9. 

Figure 10 (S. Modeste): Participants of YESS 9, Montpellier 

Finally, I would like to summarize some important aspects of YESS, YERME and YERME day, and 

to add some new information (http://www.mathematik.uni-dortmund.de/~erme/). Essentially, 

YERME activities comprise two main events, each recurring every two years: The YERME day, and 

the YERME summer school (YESS). Each YESS has a programme committee, which consists of a 

scientific coordinator, two ERME Board representatives, three YERME representatives, two 

representatives from local organizers. Up to now, ERME has organized 9 YESS, the tenth is already 

fixed (see Section 10). Other YERME activities comprise participation in the ERME board and 

communication about YERME and relevant activities for young researchers. Two young researchers 

have seats in the board of ERME to represent the interest of YERME. Recently, these members are 

Dorota Lembrér, Norway (term ends in 2023) and Andrea Maffia, Italy (term ends in 2021). YERME 

is active on social media, in particular Facebook and Twitter. The official Facebook page for YERME 

is: https://www.facebook.com/YoungResearchersERME, a Twitter account with the same infor-

mation can be found at https://twitter.com/YERMEeurope. 
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6 ERME book: Evolution, spirit and results (Tommy Dreyfus) 

Upon the initiative of João Pedro da Ponte, the ERME board and its president Viviane Durand-

Guerrier (Figure 11) decided that ERME should, on the occasion of its 20th anniversary, publish a 

book presenting ERME to mathematics educators world-wide.  

Figure 11 (personal photos): The initiators - João Pedro da Ponte, 

Viviane Durand-Guerrier and the 2015 Board 

The board named Tommy Dreyfus, Michèle Artigue, Despina Potari, Susanne Prediger and Kenneth 

Ruthven as editors (Figure 12), with Tommy as coordinating editor and Susanne as liaison person to 

the ERME board.  

Figure 12 (personal photos): The editors - Tommy Dreyfus, Michèle Artigue, 

Despina Potari, Susanne Prediger and Kenneth Ruthven 

The editors met in September 2015, and decided that the aim of the book shall be to present the most 

important directions, developments and trends of European Research in Mathematics Education in a 

highly readable text. Hence the book shall report on the main lines of development in ERME in the 

course of the past 20 years, showing the spirit of communication, cooperation, collaboration in the 

process; 

• showcase past and current European research for audiences inside and outside Europe;

• and establish shared understandings in which to ground future European research in

mathematics education.

Since the scientific interaction in ERME happens in the TWGs, a book structure was designed with 

an introduction by the presidents of ERME, 18 core chapters reflecting the work of the TWGs, and 

commentaries by two eminent scholars from outside Europe, Marcelo Borba and Norma Presmeg 

(Figure 13). 
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Figure 13 (personal photos): The commentary chapter authors - Marcelo Borba and Norma Presmeg 

The editors chose a writing team for each chapter from among the leaders of the relevant TWGs – 

overall more than 60 authors contributed. It is notable that every single person who was asked 

accepted to contribute, and that the writing teams were very responsive to our editorial suggestions. 

They were also exemplary in keeping the schedule; this was especially crucial toward CERME 10, 

where the chapters were discussed in the relevant TWGs, so that the process of writing the book was 

a paradigmatic case of CCC.  

The work on the book, and the commentary chapters in particular, raised some general comments and 

questions about ERME and research within ERME. A few of them will be raised here.  

Borba, in his commentary, describes the dynamics of the creation, life and, in some cases 

disappearance of TWGs in ERME as a response to crises, for example crises in algebra learning and 

teaching, the integration of technology in classroom, or the low presence of modeling in school 

mathematics. He observed that some themes like the philosophy of mathematics education, distance 

education, and assessment were not or under-represented at CERMEs. While in the case of distance 

education, this may be due to the geographical nature of Europe, and in the case of assessment a TWG 

has recently been created, there does not seem to be an obvious reason for the absence of the 

philosophy of mathematics education. 

A striking and possibly typically European phenomenon is that all 18 core chapters relate to theories 

or models. This begs the question whether the theoretical work of each TWG feeds back to the crisis 

Borba sees at the origin of the TWG? And it has led Presmeg to ask, in her commentary, whether 

ERME makes an effort to link the work of different TWGs, and whether theories can possibly serve 

to link the work of different TWGs, for example if one TWG attempts to understand what other TWGs 

mean by theory.  

Presmeg also noted that the CCC spirit may support such links: Theories are designed in a specific 

context; they express particular world-views. A common research agenda, on the other hand, implies 

spelling out research paradigms, theories and methodologies, and therefore requires one to suspend 

or step outside of one’s “natural” attitude (or habits). Work in ERME thus led researchers to use 

different theories as complementary lenses that provide alternative views of the same phenomenon. 

But it led far beyond this: A paradigmatic case of CCC with respect to theories was realized within 

ERME: The theory TWG was initiated at CERME 5; at a serendipitous meeting on the last day of the 

conference, a group of members of this TWG decided to further explore the issue of connections 

between theories – a case of communication. That group has then cooperated over 8 years, at CERME 

conferences and elsewhere; they developed collaboration on four case studies of links between 

theories, links of different kinds and strengths; and a book resulted from their efforts (Bikner-Ahsbahs 

& Prediger, 2015). This book would have fit very well into a book series under ERME’s auspices. 
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Finally, is ERME international? And in what ways does ERME offer a distinctly “European” 

perspective on research in mathematics education? While there is no definitive answer to this, 

international participation at CERME grows from conference to conference; on the other hand, some 

specifically European aspects of work within ERME have been pointed out in the previous 

paragraphs; in particular, research traditions that have grown nationally have undergone a process of 

networking. ERME presents a healthy tension between national, European and international 

contributions. 

The ERME book titled Developing Research in Mathematics Education: Twenty Years of 

Communication, Cooperation and Collaboration in Europe (Figure 14) appeared with Routledge (a 

division of Taylor and Francis) in 2018, on ERME’s 20th anniversary. In parallel to the creation of 

the book, the ERME board has decided to launch an ERME book series (e.g. including volumes 

initiated by researchers at ERME topic conferences). Hence, the “ERME book” has become the 

inaugural volume of the ERME book series. 

     Figure 14: The ERME book        Figure 15 (H. Palmér): Example of pre-sent tweet 

The editors hope that the book shows readers from Europe and beyond how research in ERME has 

developed, that book chapters are useful to introduce young researchers to areas active in ERME, that 

the ways in which ERME promotes research through CCC emerge, and that the book will serve as a 

close companion to each ERME member in their research. The tweet in Figure 15 is a small indication 

that these hopes are at least to some extent realistic. 

7 ERME book: A young researcher’s view (Jana Žalská) 

The ERME book “Developing research in mathematics education“ will serve as an enriching volume 

to any researcher in the field of mathematics education. As a young researcher and a participant in 

CERME, YERME and YESS events, I appreciated especially its value in providing the valuable sense 

of context (historical, geographical and cultural), and of the organic and dynamic aspects of the field’s 

epistemic development.  

Making sense of the context 

The introductory chapter of the book helps to situate ERME’s endeavors in research, introducing the 

roots and development of ERME, and explaining not only its guiding values and principles but also 

the rationale behind them.  
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Secondly, the core chapters provide overviews on specific areas of research, so they might establish 

a context for a research question we may pursue. The texts often refer to the geographical (national) 

context of particular research developments in specific areas of mathematics education, use and 

developments of concepts and theoretical frameworks etc.  

Thirdly, reading about comparable contexts gives us a notion of our own local (e.g., national) context, 

even when not specifically mentioned through the chapters. It may be an essential contribution to 

understanding, identifying and describing our own local educational and research context in a similar 

way. 

All of the above contextual notions are vital in determining the direction we envision in participating 

in the research endeavors within ERME. At the same time, the two commentary chapters bring the 

activities and principles of ERME under a broader lens, that is to say, zooming out on the bigger 

picture and reminding us of its current limits and shape. 

Organic growth and inclusiveness 

The sense of organic growth of the body of knowledge in the community permeates each of the book’s 

content chapters. Finally, Chapter 20 reassures us that striving for "unity in diversity" (Dreyfus et al., 

2018, p. 285) is attainable through such an endeavor. For me as a young researcher, this means 

encouragement in the belief that my own research matters, and the confidence that I, too, am part of 

this process. 

Finally, this book has succeeded in making a significant step toward molding further an identity of a 

unique community. The book’s strong emphasis on reflection and the process of convergent thinking 

is a tremendous effort of this community to understand itself as much as to understand its subject of 

research.  

8 Conclusion and further directions (Susanne Prediger) 

The discussion was insightful and provided hints to promising future activities of ERME in all areas 

of work, initiating communication, collaboration and cooperation, promoting young researchers, 

strengthening the visibility of European mathematics education research and increasing inclusion by 

supporting underrepresented countries. We will think about  

• how to keep all the good tradtions that were praise by so many members

• how to enhance the CERME programme structure for initiating collaboration

• how to strengthen the three C’s between conferences

• how to engage young researchers in the work of the TWGs and to

• elaborate our contacts to mathematicians

• especially, we will explore how to support mathematicians to enter the field of mathematics

education research.

Future directions might be as listed in Figure 16. 
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Figure 16: Future directions for ERME work (S. Prediger’s final slide from the panel) 

9 Resume (Hanna Palmér and Konrad Krainer) 

The panel was ended as it started, by concluding that ERME, CERME and YERME are AMAZING 

success stories. Through these events the community share, work on and develop research in 

mathematics education. Thus, the initial three C’s have been kept,  

• Communication with our colleagues throughout Europe, but also beyond

• Cooperation in and around research topics

• Collaboration in designing and doing research together

This fantastic history is presented in all CERME proceedings and also in the ERME book. During the 

panel a new C was introduced – Challenge. The challenges raised were connected to inclusion, 

quality, regional unbalances, emerging communities and, maybe also the initiative to use twitter to 

increase the dynamics of the panel. However, it was concluded that challenges only become obstacles 

if we bow to them. 

The success of ERME, YERME, CERME and its publications has many fathers, mothers, sisters, 

brothers, friends, etc. A whole network of engaged people and organizations is needed. 

The most important people are the participants, YOU! In addition, we need people who take 

responsibility for working groups, thematic conferences or a CERME itself. Without group leaders, 

subgroup leaders, IPCs and LOCs, a society cannot live. The young people will shape the future, all 

others need to take actions that they can do that! Without a strong YERME, we don’t will have a good 

future. A society needs relevant others, like our home institutions like universities, and sponsors etc.; 

but we need institutional friends like ICMI, PME and other organizations. This means to enact the 

CCC spirit not only on the individual level, but also on an organizational level. 

And of course, we need people who take responsibility for the whole, for ERME as a scientific 

society. The board has both, the task to live our goals, but also to further develop it, in continuous 

negotiation with its members. 
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Having observed the development of ERME from the very beginning, we feel that we can hopefully 

look into the future! All of you have contributed to the success! 

10 Some relevant data about the ERME society (Konrad Krainer and Susanne Prediger) 

A variety of background information about ERME can be found at http://www.mathematik.uni-

dortmund.de/~erme/ (ERME, 2019). In the following, some relevant data are presented: 

ERME conferences (for proceedings see ERME website) 

o CERME 1 in Osnabrück, Germany (1998)

o CERME 2 in Mariánské Lázně, Czech Republic (2001)

o CERME 3 in Bellaria, Italy (2003)

o CERME 4 in Sant Feliu de Guíxols, Spain (2005)

o CERME 5 in Larnaca, Cyprus (2007)

o CERME 6 in Lyon, France (2009)

o CERME 7 in Rzeszow, Poland (2011)

o CERME 8 in Antalya, Turkey (2013)

o CERME 9 in Prague, Czech Republic (2015)

o CERME 10 in Dublin, Ireland (2017)

o CERME 11 in Utrecht, The Netherlands (2019)

o CERME 12 will take place in Bolzano, Italy (2021)

YERME summer schools 

o YESS 1 in Klagenfurt, Austria (2002)

o YESS 2 in Poděbrady, Czech Republic (2004)

o YESS 3 in Jyväskylä, Finland (2006)

o YESS 4 in Trabzon, Turkey (2008)

o YESS 5 in Palermo, Italy (2010)

o YESS 6 in Faro, Portugal (2012)

o YESS 7 in Kassel, Germany (2014)

o YESS 8 in Poděbrady, Czech Republic (2016)

o YESS 9 in Montpellier, France (2018)

o YESS 10 on Rhodos, Greece (2020)

ERME topic conferences 

o ETC 1 on Anthropological Theory of the Didactic in Castro-Urdiales, Spain (2016)

o ETC 2 on University Mathematics Education in Montpellier, France (2016)

o ETC 3 on Mathematics Teacher Education in Berlin, Germany (2016)

o ETC 4 on Mathematics and Language in Dresden, Germany (2018)

o ETC 5 on Mathematics Education in the Digital Age in Copenhagen, Denmark (2018)

o ETC 6 on University Mathematics Education in Kristiansand, Norway (2018)

o ETC 7 on Language in the Mathematics Classroom in Montpellier, France (2020)

o ETC 8 on University Mathematics in Bizerte, Tunisia (2020)

o ETC 9 on Arithmetic and Number systems in Leeds, United Kingdom (2020)

o ETC 10 on Mathematics Education in the Digital Age in Linz, Austria (2020)
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ERME book series 

o Volume 1: Dreyfus, Tommy, Artigue, Michèle, Potari, Despina, Prediger, Susanne &

Ruthven, Kenneth (Eds.). (2018). Developing Research in Mathematics Education: Twenty

Years of Communication, Cooperation and Collaboration in Europe. London: Routledge.

o Volume 2: Bosch, Marianna, Chevallard, Yves, García, Francisco Javier & Monaghan, John

(Eds.). (2020). Working with the Anthropological Theory of the Didactic in Mathematics

Education: A Comprehensive Casebook. London: Routledge.

o Volume 3: Zehetmeier, Stefan, Ribeiro, Miguel & Potari, Despina (Eds., in prep.).

Mathematics Teaching, Resources and Teacher Professional Development. London:

Routledge.

o Volume 4: Durand-Guerrier, Viviane, Hochmuth, Reinhard, Nardi, Elena & Winsløw, Carl

(Eds., in prep.): Research and Development on University Mathematics Education

(preliminary title). London: Routledge.

o Volume 5: Planas, Nuria, Schütte, Marcus & Morgan, Candia (Eds., in prep.): Classroom

Research on Mathematics and Language. London: Routledge.

o Volume 6: Clark-Wilson, Alison, Donevska-Todorova, Ana, Fagiano, Eleonora, Trgalova,

Jana & Weigand, Hans-Georg (Eds., in prep.): Mathematics Education in the Digital Age:

Learning, Practice and Theory. London: Routledge.

The ERME book series editors are Viviane Durand Guerrier, Konrad Krainer, Susanne Prediger and 

Nad’a Vondrova. 

The first ERME board members 

o 1998-2005 Paolo Boero (Italy)

o 1998-2005 Marianna Bosch (Spain)

o 1998-2005 Elmar Cohors-Fresenborg (Germany)

o 1998-2001 Jean-Philippe Drouhard (France)

o 1998-2003 Konrad Krainer (Austria)

o 1998-2003 Jarmila Novotná (Czech Republic)

o 1998-2001 João Pedro da Ponte (Portugal)

o 1998-2001 Leo Rogers (United Kingdom)

o 1998-2003 Julianna Szendrei (Hungary)

ERME presidents 

o 1997-2001 Jean-Philippe Drouhard (France)

o 2001-2005 Paolo Boero (Italy)

o 2005-2009 Barbara Jaworski (United Kingdom)

o 2009-2013 Ferdinando Arzarello (Italy)

o 2013-2017 Viviane Durand Guerrier (France)

o since 2017 Susanne Prediger (Germany)
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Introduction 
The role and importance assigned to argumentation and proof in the last decades internationally has 
led to a variety of approaches to research in this area, which is reflected in the growing number of 
submissions to Thematic Working Group 1 (TWG1) on “argumentation and proof”. The 30 papers 
and 11 posters presented in TWG1 come from 16 countries and offer a wide spectrum of 
perspectives. These contributions intertwine educational issues with explicit references to 
mathematical, logical, historical, philosophical, epistemological, psychological, curricular, 
anthropological, and sociological viewpoints. 

Taking into account this diversity, the paper contributions were presented and discussed in working 
sessions (some of which were parallel) organized under the following themes: (1) argumentation 
and proof at the school level, (2) argumentation and proof in teacher education, (3) tools for 
analysing argumentation and proof, (4) task design in argumentation and proof, (5) theoretical and 
philosophical issues of argumentation and proof, (6) assessment issues of argumentation and proof, 
and (7) intervention studies on argumentation and proof. Since the themes are intertwined, a paper 
could be assigned to multiple themes. Therefore, the assignment of papers to themes was guided by 
a “best fit” approach, as well as practical considerations.  

In this introductory chapter, we organize our subsequent discussion across three broad topics that 
emerged from the discussions we had in our TWG and cut across the aforementioned themes. These 
topics are the following: (1) argumentation and proof in the society, (2) argumentation and proof in 
school, and (3) argumentation and proof in research. We will briefly discuss each topic separately. 
In our discussion, we will refer to a few papers that help illustrate broader points, but it was not our 
intention here to refer to or discuss all the papers. Rather, we hope that this discussion will spark the 
readers’ interest to explore all the papers in the Proceedings under TWG1.  

Discussion of Papers 
Argumentation and proof in the society 

Argumentation and proof can be considered within a purely mathematical realm, but such a view 
might be limited when one considers a larger purpose for the role of argumentation, reasoning, and 
proof in the society. These considerations would ultimately affect the teaching and learning of proof 
as a way to achieve certain societal goals. However, a first step in this direction is clarifying what 
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we mean by argumentation and proof. This critical question has been historically addressed by 
TWG1 members since the group was established back in 1998, however the focus of the discussion 
has shifted from trying to reach a consensus towards identifying key features and factors that affect 
our understanding of the concepts of argumentation and proof. Specifically, the group discussed the 
cultural origins of our perception of proof, including cultural differences in what types of arguments 
are considered as proof. In this regard, the role of proof by contradiction has been a focus of several 
group discussions fostered by the papers of Turiano and Boero, and of Hamanaka and Otaki.  

Another key feature of argumentation and proof addressed by the group participants was the 
relationship between logic and proof with connection to socio-cultural linguistic structures. The 
different grammar and/or syntax of different (natural) languages may affect the transition between 
oral and written communication, influence how students understand statements, their proofs, as well 
as the relationships between definitions and proofs. These issues were reflected in the works of 
Hein, of Kempen, Tebaartz and Krieger, and of Dilberoglu, Haser, and Cakiroglu. Furthermore, the 
influence of culture and language on the perception of proof was considered broadly in the TWG1 
discussions, as initiated by various papers, including those of Stubbemann and Knipping, of 
Asenova, and of Shinno, Miyakawa, Mizoguchi, Hamanaka, and Kunimune. Reference was made 
not only to the differences between countries and languages, but also to the differences between 
formal and informal uses of argumentation and proof, as well as to the use of natural logic in 
everyday life contrasted with academic settings that require greater formalism. Further distinctions 
were made with regard to its use in pure mathematical courses and in teacher preparation courses. 

It is important to consider the relationships of argumentation and proof with society, in particular, 
when considering the goals of teaching proof to pre-university students who are the citizens of the 
future societies. Why foster proof? Is our goal mainly technical or do we, as a society, seek to 
influence students’ thinking about how (mathematical) truths are established and, hence, do we 
mean to foster critical reasoning (for example, when making inferences about statistical data as 
illustrated in the study of Krummenauer and Kuntze)? Though the group seemed to agree that 
logical reasoning, argumentation, and proof might provide students with valuable tools for active 
citizenship, the question of appropriately developing those reasoning competencies to foster a 
harmonious transfer within and outside of mathematics remains open. 

Argumentation and proof in school 

The second broad topic, argumentation and proof in school, was a common theme in many of the 
papers and posters presented in the group, but from different perspectives. In particular, the 
following four perspectives were raised in the discussions across the presentations. 

Why foster proof? Besides the above-mentioned societal considerations and the fact that proof is 
central to modern mathematics, the explanatory role of proof, as discussed in the paper of Müller-
Hill, is also prominent in school mathematics. The reasoning behind teaching mathematical proof to 
all students, however, needs to be more clearly conceptualized and justified.  

What is proof? There are different understandings of what proof is or can be, depending on personal 
experience, but also on factors such as specific area of mathematics considered and/or the 
educational level – primary school students’ reasoning (see for example Jablonski and Ludwig’s 
contribution) is very different from secondary school students’ work on geometry. Proof requires 
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mathematical meta-knowledge (see, for example, Stubbemann and Knipping’s paper), and our 
group discussed that it would be valuable to develop instructional approaches that promote learners’ 
meta-mathematical knowledge in proving. 

Role of the teacher. It is the teacher who, implicitly or explicitly, implements different socio-
mathematical norms in a classroom, highlights key ideas in work with proof and can assign value to 
certain perspectives in mathematics. The studies of Lee, of Bersch and of Lekaus take up different 
aspects of teachers’ views on the role of argumentation and proof in, respectively, Hong Kong, 
Germany and Norway, while Larsen and Østergaard discuss how teachers’ questioning influences 
students’ opportunities to reason. Moreover, the role of the teacher with respect to both the official 
and shadow education systems was considered in the study by Moutsios-Rentzos and Plyta. Despite 
the teachers’ efforts, proving is difficult for students to learn and master, and, as a result, students 
often struggle with it and may not value work on proof in mathematics classrooms. Studies in 
TWG1, such as the one by Yan and Hanna, provide an insight into students’ views about proofs.   

Task design – how can it foster proof? There are several critical questions to be considered in 
designing of proof tasks: For whom? For what purpose? In what culture? Tasks need to be designed 
in order to foster the need for arguments, as discussed for example in the study presented by 
Cramer. Kempen, Tebaartz, and Krieger examine in their study how the phrasing of a proving task 
influences students’ proof productions, while Komatsu, G. Stylianides, and A. Stylianides propose 
principles for the design of tasks that promote assumptions in mathematical activity. However, 
promoting reasoning and proving in school demands more than good tasks, as for example shown in 
the study of Buchbinder and McCrone. To support teachers’ practices, there is a need for 
appropriately designed material that help teachers to enact the tasks in classroom. 

Argumentation and proof in research 

During the conference, there were many discussions on argumentation and proof in mathematics 
education research. A main issue concerns methodological challenges and the choice of theoretical 
models in approaching the proof and proving phenomena, including theorising and analysing. 
Toulmin’s model has been used widely in mathematics education research projects on proof and 
proving (see paper by Jablonski and Ludwig). Due to its frequent application, the reasons for using 
this model in a given research are not often discussed. We collectively agreed on the importance of 
justifying methodological decisions for several reasons. First, the epistemic dimension of the 
mathematical subject area involved in the research and the role of data in the model are depending on 
the subject area (e.g. statistical versus geometrical reasoning). Finally, Toulmin’s model has not been 
developed to be applied specifically for mathematics. While an advantage of this model lies in its 
opportunities to connect everyday argumentation to mathematical argumentation, in some cases (e.g. 
for looking at logical relations) other models more mathematically-oriented might be more suitable. 
These questions have been discussed in this TWG in previous CERMEs, as presented in Chapter 6 of 
the ERME anniversary book, Developing research in mathematics education, were the authors recall 
the proposal by Boero and his colleagues to articulate Toulmin’s model with Habermas’s rationality 
model (for the latter see Boero and Turiano’s paper). Considering proof at the interface between 
mathematics and computer sciences raised also the need for appropriate methodological tools such as 
that developed in the paper by Modeste, Beauvoir, Chappelon, Durand-Guerrier1, León, and Meyer.  
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When we move to proof at elementary school level, new questions arise, necessitating to reconsider 
the definition of proof and the possibility to identify students’ practices that can be qualified as proof 
and proving. Epistemological considerations motivate the consideration of proof at the elementary 
school level: looking for what is invariant is at the core of doing mathematics and, thus, proof is 
important at all grades. Nevertheless, we need to conceptualize proof in a broader meaning to discuss 
its role and possibilities in elementary school mathematics. In this respect, the work by Balacheff on 
the Theory of Didactical Situations and Lakatos’ work on Proofs and Refutations may offer an 
appropriate proof development from the empirical to the intellectual through the generic. There seem 
to be few studies recognizing and investigating opportunities for proof and proving in the elementary 
school (see, for example, the works of Arnesen, Enge, Rø, and Valenta, and of Datsogianni, Ufer, 
and Sodian).  
 
Conclusions and Future Directions for TWG1 
We believe that the TWG on argumentation and proof has offered the participants the richness of 
diversity in this research domain and the opportunity for fruitful discussions. In the last session of 
the TWG, the participants engaged in a discussion to identify areas in which they would like, and 
hope, to see more research in future CERMEs. The following areas were identified: 

The teaching of proof and argumentation in both school and university settings, including in teacher 
education with particular emphasis on argumentation and proof at the elementary school level. This 
area covered also developmental perspectives and learning trajectories, the study of the classroom 
implementation of tasks rich in argumentation and proof, and how teachers can be prepared to 
scaffold students’ learning and to respond to unexpected student responses to help develop all 
students’ learning of argumentation and proof.  

Issues of language in argumentation and proof, including: the role of representations, structure, oral 
and written language, the relationship between mathematical language and natural language, as well 
as the relationship between the grammatical aspects of language and logic. Due to the complexity of 
this question, this could be studied in an international group emerging from CERME, in collaboration 
with colleagues involved on this topic in the TWG9 -Mathematics and Language, and with linguists.  

Argumentation and proof in policy documents and curriculum frameworks, including the place and 
role of argumentation and proof in them, expectations and recommendations, and whether these are 
research-informed, etc. 

The identification of these broad areas is aimed at describing the state of the art of the field, without 
suggesting prioritizing certain areas of research. The TWG1 is committed to representing the 
diversity of perspectives and research areas on argumentation and proof in future CERMEs. 
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Understanding geometric proofs: scaffolding pre-service mathematics 
teacher students through dynamic geometry system (dgs) and flow-

chart proof 
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The objective of this paper is to discuss the pedagogic potential that is offered by the use of a flow-
chart proof with open problems and a Dynamic Geometry System in understanding geometric proofs 
by pre-service mathematics student teachers at an Indonesian university. Based on a literature 
review, we discuss aspects and levels of understanding of geometric proof and how to assess students’ 
understanding of the structure of deductive proofs, and how the use of a Digital Geometry System 
may support students’ understanding of geometric terms and statements, including definitions, 
postulates, and theorems. The pedagogic focus consists of exploiting the semiotic potential of a DGS, 
especially the use of GeoGebra tools that may function as tools of semiotic mediation to understand 
the geometry statements and the scaffolding potential of flow-chart proof with open problems in 
identifying the structure of deductive geometry proofs. 

Keywords: Understanding, geometry, proof. 

Introduction 
Proof plays essential roles in mathematics and mathematics education. Proofs help mathematicians 
understand the meaning of statements or theorems and their validity within a framework. Through 
the process of proving, mathematicians discover or create new results or meanings (Samkoff & 
Weber, 2015; Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 2012). In the context 
of mathematics learning, understanding proof is an essential component of mathematics competence 
as it offers powerful ways of developing and expressing mathematical understanding (NCTM, 2000).  
However, research has demonstrated that students at all levels have difficulties to deal with 
understanding and constructing proofs (Doruk & Kaplan, 2015; Güler, 2016; Knapp, 2005; Weber, 
2002). 

This paper presents some findings of the literature review we conducted aiming at developing a 
theoretical framework, which will underpin the design of a learning intervention. This intervention 
will foster understanding of Euclidean geometry proof by mathematics preservice teacher students. 
The students are first year students at an Indonesian university and will become teachers for secondary 
school. In this stage, students start to learn formal mathematical proof for the first time. This paper 
describes the aspects and levels of understanding of geometric proof and elaborate the use of a digital 
geometry system (DGS) and flow-chart proof representation as scaffolds in order to understand the 
structure of proof based on our literature review findings. We focus on these issues because they are 
relevant for our research project regarding the topic (geometric proof in undergraduate level), context 
and characteristics of participants, Indonesian university students, who have a little mathematical 
proof background. 
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Method 
This paper presents some parts of the outcomes of our literature study which focuses on the 
understanding of proof and the use of DGS and flow-chart proof to support students’ understanding 
of proof. The methodological process of the literature study is anasynthesis (coined from the words 
analysis and synthesis) adapted from Legendre’s method (as cited in Jeannotte & Kieran, 2017). First, 
we create a corpus from a search in three databases of research, namely ERIC, MathEduc, and Web 
of Science, and select articles/papers having mathematical proof as keywords or associated keywords 
by entering ‘mathematic* proof’ or ‘mathematical prov*’ and ‘geometric* proof’ or geometrical 
prov*’ as keywords. It is followed by selection and un-doubling. To assure the quality of the sources, 
we characterized the papers regarding their relevance of method and findings for education, quality 
of author (the number of citations) and quality of journal (impact factor). By the end of the process, 
32 English texts (books, chapters, articles, and research reports in proceedings) constituted the corpus 
(modified corpus).  

Secondly, the resulting corpus is analyzed for relevant information, namely definitions of 
mathematical proof, structure of proof, learning difficulties, interventions, role of teacher, successful 
approaches. In order to analyze, we created a matrix of the resulting corpus consisting of four main 
aspects: source, research context, method, outcomes/conclusions. Thirdly, the information is then 
synthesized to check convergences, divergences, and to identify the theoretical gaps. Underpinned by 
this research, we developed a framework and prototype for a teaching intervention to foster 
prospective teacher’s geometrical proof competence. We present this process of analysis and 
synthesis as linear, but the reader should consider that it is a cyclical process, see Figure 1.  

 
Figure 1: Cyclic process of an Anasynthesis (adapted from Jeannotte & Kieran, 2017) 

Framework underpinning understanding of geometrical proof 
While the ability to understand, construct and validate proofs is central to mathematics, student 
difficulties with understanding of proof are well-recognized internationally. In order to help students 
to understand, teachers need to know levels of understanding to be achieved by their students, and 
also potential tools and tasks scaffolding their thinking. This information is helpful for the 
teachers/researchers in designing their learning goals and a sequence of learning activities fostering 
students’ understanding of proofs. As a result of our literature review, we present, in this part, our 
framework regarding aspects and levels of understanding as frameworks to develop an assessment 
model to capture students’ understanding of geometrical proof, and, next to that, potential tools and 
methods which can be implemented in the classroom intervention to scaffold students’ thinking in 
constructing geometric figure, emerging the meaning of geometric concepts, axioms and theorems. 

Understanding of geometrical proof 

Based on literature on reading comprehension of geometry proofs (Yang & Lin, 2008), the assessment 
model of proof comprehension for undergraduate students (Mejia-Ramos, Fuller, Weber, Rhoads, & 
Samkoff, 2012), and students’ understanding of the structure of deductive proof (Miyazaki, Fujita, & 
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Jones, 2017), we distinguish three essential aspects in understanding proofs, namely a functional 
aspect, a structural aspect, and a communicative aspect. These three aspects are inspired by three 
main aspects of proof and proving proposed by Miyazaki et al. (2017): “understanding a proof as a 
structural object, seeing proof as intellectual activity and the role, functions, and meaning of proof 
and proving” (Miyazaki, Fujita, & Jones, 2017, page 225).  

First of all, the functional aspect regards roles or functions of proofs. The ‘function’ of proof means 
the meaning, purpose and usefulness of a proof. In the context of learning, students should regard 
proof as a meaningful activity, experiencing the functionality (usefulness) of the activities, they are 
involved in. Second, the structural aspect refers to the deductive structure of proofs. Miyazaki et al. 
(2017) see the structure of a proof as a network of singular and universal propositions between 
premises and conclusions, connected by universal instantiation and hypothetical syllogism, see 
Figure 2. That means that the singular propositions are universally instantiated from universal 
proposition and then these singular propositions are connected by a hypothetical syllogism. Students 
need to know the meaning of these terms and statements (e.g. axioms, theorems) involved in a proof, 
recognize the status of the statements (e.g. premises, conclusions), to be able to justify the claim.  

 
Figure 2: An example of flow-chart of proof visualizing the structure of proof  

(adapted from Miyazaki, Fujita, & Jones, 2015) 

The last aspect, the communicative aspect regards to students’ intellectual activity to read and 
comprehend proofs, and to justify and persuade others about the validity of a proof. Through a 
validating process, students determine the truth of a proof by line-by-line checking or step-by-step 
checking of multi-step proofs using their understanding of the structure of deductive proofs. We 
interpret that this level of understanding relates to a holistic comprehension of proof where the proof 
is understood in terms of main ideas, methods and applications in other contexts.  

Related to the level of understanding, we elaborate two models of understanding of proofs by Mejia-
Ramos and colleagues (2012) and by Miyazaki and colleagues (2017). In their model of levels of 
structural proof understanding, Miyazaki and colleagues distinguish three levels of understanding of 
proof structure, namely ‘Pre-structural’ level, ‘Partial-structural’ level, and ‘Holistic-structural’ 
level. Then, they break down the second level into two sub-levels, ‘Elemental’ and ‘Relational sub-
level’. At the first level (Pre-structural), students see a proof as a collection of meaningless symbolic 
objects. When students start to consider the components, they are at the second level, particularly the 
Partial-structural Elemental sub-level. At the Partial-Structural Relational sub-level, students 
understand hypothetical syllogisms and universal instantiations and are able to use theorems, axioms 
and definitions as supporting their reasoning. At the third level of understanding (holistic-structural), 
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students understand the components, inter-relationships between those components and how to 
connect them. Then, they are able to reconstruct the proof and become aware of the hierarchical 
relationship between theorems and will be able to construct their own proofs. 

Mejia-Ramos et al.(2012) have developed a model of assessment for proof comprehension in 
undergraduate mathematics. They distinguish two levels of understanding of proof, namely a local 
and a holistic understanding. The local understanding refers to knowing of basic terms and statements 
in the proof, knowing the logical status of statements in proof and the logical interrelationship 
between them and the statement which will be proved, and able to justify oh how the claims in the 
proof follows from the previous statements. Meanwhile, the holistic understanding regards being able 
to summarize the main idea of the proof, to identify the sub-proofs and the logical relationship 
between them, to adapt the idea and procedures of proof to solve other proving tasks, and to illustrate 
the proof regarding its relationship to specific examples.  

A semiotic potential of the use of dynamic geometry system (dgs) 

In terms of the structural aspects of understanding proof, several studies confirmed that the use of a 
Dynamic Geometry System (DGS) may help students not only solve construction problems but also 
helped them to understand geometrical postulates, definitions and theorems of Euclidean geometry, 
which are elements of the structure of proof (Jiang, 2002; Mariotti, 2012, 2013). Mariotti (2013) 
summarized that the semiotic potential of the features of DGS relates to specific mathematical 
meanings, namely “(1) the dragging test can be related to the theoretical validation of a geometric 
construction, (2) specific tools can be related to specific elements of the corresponding geometry 
theory: postulates, theorems; (3) actions concerning the management of the DGS’s menu can be 
related to fundamental meta-theoretical actions concerning the construction of a theory, such as the 
introduction of a new theorem or a definition.” (Mariotti, 2013, pp. 444-445). In the following 
paragraph, we elaborate two studies about the use of DGS in supporting students’ ability in proving. 

A study by Jiang (2002) investigates learning processes of two pre-service teachers, Lisa and Fred, 
in exploring geometry problems using the dynamic geometry software Geometer’s Sketchpad (GSP) 
to develop mathematical reasoning and proof abilities. They use a constant comparison approach in 
order to analyze participants’ pre-tests, post-tests, and teaching interviews indicating that the 
geometer’s Sketchpad can not only encourage students to make conjectures but also enhances 
students’ mathematical reasoning and proof abilities. Particularly, the use of a Dynamic Geometry 
System (DGS) improves students’ level of geometric thinking in terms of van Hiele levels (e.g. Lisa’s 
level increased from level 3 to level 4) and positively changes students’ conceptions of mathematics 
and mathematics teaching. Jiang argues that pre-service teachers’ experience in using DGS to foster 
their mathematical reasoning and proof abilities helps them to recognize the need to improve students’ 
knowledge of geometry, to develop their own mathematical power and their ability to develop 
teaching innovations.  

A theoretical study by Mariotti (2012) discusses the potential offered by the use of DGS in supporting 
and fostering 9th and 10th grade student’s proof competence in geometry. The theoretical framework 
used to support the use of DGS, Cabri Geometer, is her own Theory of Semiotic Mediation (TSM). 
In this context, students’ personal meanings emerge and then evolve from personal meanings towards 
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mathematical meanings, when students use an artefact for accomplishing a task through social 
interaction. Particularly, the specific DGS tools can also be related to geometrical axioms and 
theorems. Meanings emerging from the use of virtual drawing tools for solving geometry tasks can 
be related not only to the theoretical meaning of geometry construction but also the meaning of 
theorems. 

Mariotti (2012) argues that the DGS could support not only the conjecturing process, but also mediate 
the mathematical meaning of conjectures, particularly premises/singular propositions in the context 
of geometry proofs. Particularly, the dragging feature provided by DGS (Cabri software) supports the 
emergence of different meanings related to the notion of conjecture as a conditional statement relating 
a premise and a conclusion. Mariotti also discusses findings by Baccaglini-Frank (2010) focused on 
the analysis of the process of exploration that can be expected by using Maintaining Dragging (MD). 
Baccaglini-Frank’s teaching experiment involves students from three high schools (aged 15-18), 
which used Cabri in the classroom. Mariotti concludes that this teaching experiment indicates that 
the DGS tools and dragging activities help students to solve construction tasks and to understand the 
notion of theorems; particularly the mathematical meaning of conditional statements such as 
expressing the logical dependency between premises and conclusions. 

GeoGebra as another DGS is an open-source well-developed tool with a stable interface familiar to 
many users and works in any operating system. The software has a number of features such as 
dynamic geometry which can help students in steps of problem solving towards a proof (Botana et 
al., 2015). Botana et al. (2015) conclude that GeoGebra tools provide some useful features. Firstly, 
GeoGebra could not only give yes/no answers but could also show step-by-step explanations. 
Secondly, GeoGebra could identify properties on the construction of geometric figures. Thirdly, 
GeoGebra could give a counterexample to check the truth of a statement. However, research findings 
by Doruk, Aktumen, and Aytekin (2013) show that some preservice teachers highlighted some 
limitations, such as difficulties in translating mathematical expressions into GeoGebra. Preservice 
teachers thought that GeoGebra is a complicated program and that it would take a long time and needs 
a big effort to become competent in GeoGebra.  

A scaffolding potential of the use of flow-chart proof form with open problems 

A flow-chart proof form is a means to visualize the deductive connections from premises to 
conclusion by identifying singular and universal propositions in the chart, see Figure 2. Flow-chart 
proofs show a storyline of the proof starting with premises from which the conclusion is deduced and 
includes the theorems or/and axioms being used, how the premises/hypotheses and conclusion are 
connected, and so on (Miyazaki et al., 2015). Gardiner (2004, cited in Miyazaki, Fujita, & Jones, 
2017) claims that this format is a good starting point to learn other formats of proofs such as narrative 
proofs and two-column proofs.  

Miyazaki, Fujita, and Jones (2012) developed a learning progression based on flow-chart proving 
aimed at providing a basis for introducing the structure of proof in Grade 8 school geometry. Based 
on the theoretical underpinning of the design, researchers proposed three phases of learning 
progression: (1) constructing flow-chart proofs in an open problem, (2) constructing a formal proof 
by reference to a flow-chart proof in a closed situation, (3) refining formal proofs by placing them 
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into a flow-chart proof format in a closed situation. The term ‘open’ refers to a situation where 
students can construct more than one suitable proof. In the open problem task, students are given a 
conclusion of the proof in the form of flow-chart proof format, and they are asked to determine the 
suitable statements to fill in the blank boxes of the flow-chart so the proof is complete. Based on three 
phases of learning progression, the authors designed nine lessons considering open/closed situations, 
varying steps of deductive reasoning, and different problems and contexts. The results from a Math 
test of Japanese Survey Item shows that students who followed the nine lessons are more likely to 
plan and construct a proof in accordance with their plan. This is due to (a) their experience with open 
problems that encourage them to think backward and forward to identify assumptions and conclusions 
in proof, (b) they could grasp the structure of proofs better through using flow-chart proofs. 

Another research by Miyazaki et al. (2015), as follow-up of their previous study (Miyazaki, Fujita, & 
Jones, 2012), showed the role of flow-chart with open problem as scaffolding to support Grade 8 
students’ learning about geometrical proofs. The results of data analysis of students’ activities during 
a classroom intervention indicates that flow-chart proof with open problems as scaffolding enhances 
students to understand the structure of proof by providing a visualization of both the connection 
between singular propositions (via hypothetical syllogism) and the connections between a singular 
proposition and the necessary universal proposition in the form of universal instantiation. 

Concluding Remarks 
We distinguish two levels of proof understanding which are proposed by Mejia-Ramos et al.: a local 
understanding related to knowing the definition of basic concepts/terms, knowing the logical status 
of statements in proof, knowing how and why each statement connects to previous statements. and a 
holistic understanding when students are able to summarize the main idea of the proof, to identify 
the sub-proofs and how these relate to the proof structure, to transfer the idea of proof to others, and 
instantiate the proof with examples (Mejia-Ramos et al., 2012; Miyazaki et al., 2017). Classroom 
interventions, supporting students’ activities in understanding the structure of proofs including the 
elements of proofs such as singular propositions (premises/geometric statements), universal 
proposition (geometric definition, axioms, theorems) and hypothetical syllogism (the inter-
relationship of these elements), are needed to help students reach both levels of proof understanding. 

Several studies confirmed that the use of a Dynamic Geometry System (DGS), such as Geometer’s 
Sketchpad, Cabri and Geogebra, may help students not only solve construction problems but also 
may help them identify properties on the construction of geometric figures, understand geometrical 
axioms, definitions and theorems of Euclidean geometry, which are elements of the structure of proof, 
and universal propositions (Botana et al., 2015; Jiang, 2002; Mariotti, 2012, 2013).  

The use of the flow-chart proof form may provide opportunities for students to understand the 
structure of proof and may help students identify the components of proofs and the inter-relationship 
among the components (Miyazaki et al., 2015; Miyazaki et al., 2017). The use of open problems 
provides an opportunity for students to construct multiple solutions by deciding about the given 
statements and intermediate propositions necessary to deduce a given conclusion. This ability 
promotes student thinking forward and backward interactively when constructing a proof under the 
flow-chart proof format (Cheng & Lin, 2007; Heinze et al., 2008). 
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A study by Miyazaki et al. (2017) suggests that the level of understanding of the structure of proof as 
a part of local understanding should be taken into consideration in designing an effective learning 
intervention. Mariotti (2012) also recommends future research to better describe how the complex 
web of meanings emerging from activities with the DGS may be transformed into mathematical 
meanings such as geometric definitions, axioms and theorems. Hence, the findings presented in this 
paper indicate our future promising research direction for the study on designing a learning 
intervention which implements the use of DGS, GeoGebra, as semiotic tools and flow-chart proof 
format as a scaffolding tool to support a local and holistic understanding of prospective mathematics 
teachers who have little mathematical proof background.  
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Based on a commognitive framework, we analyse the reasoning-and-proving processes of two 
teachers, and we identify the actions and routines that are visible when working on a given task. The 
data consist of video recordings of the teachers’ attempts to validate a stated hypothesis involving 
multiplicative reasoning. Six categories of what characterises the teachers’ initiation into a 
reasoning-and-proving discourse are identified. The findings reveal that some actions related to 
substantiation routines seem to be applicable for novice teachers. Examples of this include 
questioning validity and the use of words related to deductive reasoning. However, the teachers’ 
participation in the discourse is characterised by ritualised actions, as in their use of visual 
mediators. Furthermore, the analysis discloses the teachers’ tendency to use construction-related 
actions in what was designed to be a validating activity. 

Keywords: mathematical discourse, reasoning and proving, elementary school teacher education 

Introduction 
Reasoning and proving are central aspects of mathematics as a discipline, and many researchers have 
argued that they should be a central part of school mathematics at all grades and in all topics. In this 
paper, we use a broad definition of the word proof (Reid, 2010), to denote mathematical reasoning 
involved in the process of making sense of and establishing mathematical knowledge. Hence, we 
follow Stylianides (2008), who used the term ‘reasoning-and-proving’ to denote the activities 
involved in this process: identifying patterns, making conjectures and providing arguments. 

The reasoning-and-proving process is difficult to learn and difficult to teach. In exploring ways to 
teach proof, a number of studies have shown the crucial role that a teacher plays in helping students 
identifying the structure of a proof, presenting arguments and distinguishing between correct and 
incorrect arguments (see e.g. Stylianides, 2007). Researchers have found that elementary school 
teachers tend to rely on external authorities, such as textbooks, college instructors or more capable 
peers, as the basis of their conviction. They also believe it is possible to affirm the validity of a 
mathematical generalisation using a few examples (see Martin & Harel, 1989). Similarly, Stylianides, 
Stylianides, and Philippou (2007) revealed that pre-service teachers had two main types of difficulties 
with proof: the lack of understanding of the logic mathematical underpinnings of different modes of 
argumentation and the inability to use different modes of representations appropriately.  

As exemplified above, research in mathematics education has shed light on different aspects of pre-
service teachers’ work on reasoning-and-proving, such as their beliefs related to proofs and proving, 
the challenges they face when deducing proofs and their use of modes of reasoning. However, more 
knowledge is needed about how pre-service teachers learn to teach reasoning-and-proving, as well as 
how teacher education can support their learning. A vital part of teachers’ learning how to teach 
reasoning-and-proving is learning how to reason and prove in school-relevant mathematical areas 
(e.g. multiplicative reasoning). That learning is the topic of our study.  
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We examine two elementary school teachers’ work on a reasoning-and-proving task during a 
professional development course. Like Remillard (2014), we consider mathematics to be a specific 
type of discourse where reasoning-and-proving is essential. Thus, mathematics learning is seen as 
participation in the discourse (Sfard, 2008). The two teachers whose work we analyse have limited 
experience of reasoning-and-proving in mathematics, and we are interested in their initiation into that 
discourse. Our research question is: What characterises two in-service teachers’ initial participation 
in a mathematical discourse on reasoning-and-proving in elementary school teacher education?  

Theoretical framework 
Within a commognitive framework1, Sfard (2008) take the position that learning mathematics is 
learning to participate in a specific discourse. Here, discourse is a special type of communication 
within a specific community that is made mathematical by that community’s use of words, visual 
mediators, narratives and routines. The use of words in mathematics includes the use of ordinary 
words that have a special meaning in mathematics, like function and proof, and mathematical words, 
like fraction and axiom. Furthermore, people participating in mathematical communication use visual 
mediators to identify the object about which they are talking. These visual mediators are often 
symbolic, but they also include graphs, illustrations and physical artefacts. Within a discourse, any 
sequence of utterances, spoken or written, that describes the properties of objects or the relationships 
between objects is called a narrative. Mathematical narratives can be numerical, e.g. “½ is equivalent 
to 2/4”, or more general, e.g. “addition is commutative”. Narratives are subject to endorsement or 
rejection, that is, being labelled as true or false, based on specific rules defined by the community. 
Endorsement of narratives is the main goal of the mathematics discourse; this includes the processes 
of constructing new endorsable narratives, substantiating them and recalling them in new situations.  

Routines are well-defined practices that a given community regularly employs in a discourse. Sfard 
(2008) describe routines as patterns that are guided by two sets of rules: those telling the participants 
how to act, and those indicating when to do the given action. In contrast to rules on the object-level, 
which describe regularities on actions on and relations of objects, routines describe the participants’ 
patterns of actions in a given discourse, and they can be considered to be rules on a meta-level. Lavie, 
Steiner, and Sfard (2019) emphasise the role of routines when participating in a specific discourse, 
and they suggest that learning routines can be seen as the routinisation of actions in a given discourse. 
Thus, on their way to new routines, learners must pass, if only briefly, through the stage of ritualised 
performance or imitation (Sfard, 2008). Here, rituals are understood to be socially oriented; they are 
acts of solidarity with co-performers. At this transitory stage, learners may become very familiar with 
the how of the new routine, but they will be much less aware of when it is used.  

Our research question focuses on participation in a mathematical discourse on reasoning-and-proving, 
involving the processes of identifying patterns, making conjectures and providing arguments for 
whether or not conjectures are true. Hence, from a discursive stance, we are primarily interested in 
the routines associated with the construction and substantiation of narratives. New narratives are 
constructed mainly through operations on previously endorsed narratives. To substantiate a 
constructed mathematical narrative, one produces a proof—a sequence of endorsed narratives, each 

1 The term “commognition” is a combination of the words “communication” and “cognitive”, and it stresses that thinking 
is a way of communicating with oneself and others. 
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of which is deductively inferred from previous ones, the last of which is the narrative that is being 
endorsed. Thus, learning to reason and prove in mathematics is about individualising both the when 
and the how of the construction and substantiation routines. In this paper, we focus on substantiation 
routines as framed by a task in which a hypothesis is already given. 

To obtain insight into how individuals learn about reasoning-and-proving, it is useful to delineate the 
possible patterns of the processes and actions involved in constructing and substantiating narratives. 
Applying a commognitive perspective, Jeannotte and Kieran (2017) have developed a conceptual 
model of mathematical reasoning based on exhaustive analyses of mathematics education research. 
They propose the following definition of mathematical reasoning through commognition lenses: 
“Mathematical reasoning processes are commognitive processes that are meta-discursive, that is, that 
derive narratives about objects or relations by exploring the relations between objects” (Jeannotte & 
Kieran 2017, p. 9). Because their notion of mathematical reasoning involves proving, it coincides 
with our use of reasoning-and-proving. However, we use the latter to indicate that we look at a special 
kind of reasoning that is used when validating mathematical hypotheses, as mathematical reasoning 
per se does not necessarily include proving. Furthermore, Jeannotte and Kieran (2017) 
distinguishbetween processes related to the search for similarities and differences and processes 
related to validating. Searching for similarities and differences includes generalising, conjecturing, 
identifying a pattern, comparing and classifying. All these processes infer narratives about 
mathematical objects or relations (although on a partly different basis); thus, they are related to the 
routine of constructing narratives (Sfard, 2008). The processes related to validating include 
validating, justifying, proving and formal proving (defined inclusively, with an increasing degree of 
deductive structure and stringency). These processes aim to change the epistemic value (e.g. true, 
false) of a given narrative; therefore, they are related to substantiation routines (Sfard, 2008). 

This study investigated two teachers’ initial participation based on their utterances and actions in a 
mathematical discourse on reasoning-and-proving in elementary school teacher education. We aim 
to illustrate how key concepts from the commognitive framework proposed by Sfard (2008) can 
provide insight into how mathematics teachers learn about the process of reasoning-and-proving. 

Method 
The two elementary school teachers, Sandra and Nora (pseudonyms), who participated in the research 
study, were part of a professional developmental course in mathematics for teachers in grades 1–7 in 
Norway that was held by two of the authors of this paper. Both teachers are 45-50-year-old females, 
and both completed general teacher education with less than 15 ECST credits in mathematics 
education. Sandra and Nora represent typical teachers attending the course, due to their age, 
educational background, gender and having more than 10 years of experience as general teachers. 

The course contained materials on mathematics and mathematics education, and it was organised as 
six, three-day seminars distributed over one year, in addition to the teachers’ individual work on 
literature and assignments. The topics were sense-making in mathematics, pattern seeking and 
exploration, use of different representations (e.g. the array model for multiplication) and reasoning-
and-proving (in particular, representation-based proofs). The participants noted that the coursework 
invited them to use new ways of thinking about and working with mathematics. This paper presents 
an analysis of the data collected through video recordings (in total 24 minutes) of Sandra and Nora 
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working on a task (Teddy’s hypothesis, see Figure 1) on the second day of the fourth seminar of the 
course. The day before data collection, the topic was multiplication: different properties, strategies, 
models and reasoning-and-proving.  

The task was chosen for the purpose of reasoning-and-proving, starting with a hypothesis proposed 
by Teddy, an imaginary student (Figure 1). The first step of the task (part a) involves validation of 
the hypothesis; the second step of the task (part b) entails both stating and validating the new 
hypotheses. In our analysis, we study validation processes, as exemplified by Sandra and Nora’s work 
on the first step of the task (part a). 

Teddy is a grade 5 student. He and his classmates are working on square and cubic numbers. After completing some 
tasks, Teddy says to the teacher: “Look here, if you multiply … take two numbers and multiply… and both numbers 
end with 5… then the result also will end with 5”. 
a) Give a proof that shows that Teddy’s observation is correct for all such numbers.
b) The situation can be used to propose and solve other problems, for instance:

1. Is it only when both numbers end with 5 that the result ends with 5?
2. Does the result hold only for 5, or when two numbers ending with the same digit are multiplied, does the

product also end with that same digit?
3. Which digits can square numbers end with?

Figure 1. Teddy’s hypothesis task (adapted from Skott, Jess, & Hansen, 2008, pp. 223–224) 

Teddy’s hypothesis can be proved by using a generic example and array model of multiplication. 
Given any two numbers, both ending with 5, say 125 and 35, one can use the array model for 
multiplication to represent the multiplication 125x35, as shown in Figure 2.  

Figure 2. The array model for multiplication used in a representation-based proof of the hypothesis 

Every cell in this array, except the cell with 5x5, is a multiple of 10. Thus, these cells do not contribute 
to the ones in the product. Only the cell with 5x5 does, and since 5x5 equals 25, we find that the 
product ends with 5. There is nothing special about the two numbers (35 and 125) in the example. 
The product of any two numbers both ending with 5 will have the same structure; thus, the number 
resulting from such a multiplication will end with 5. 

Data analysis 
The video recordings of Sandra and Nora’s work on the task were transcribed, and then coded. The 
coding was guided by the research question. The aim was to describe the actions and utterances in 
the teachers’ work, rather than to evaluate the mathematical and logical correctness of their 
arguments. Four researchers made a descriptive coding of the collected data, individually (Miles & 
Huberman, 1994). Next, the researchers compared and contrasted their coding and grouped the codes 
into six categories describing the two teachers’ reasoning-and-proving efforts. The following 
categories were agreed upon: confirming; proposing hypotheses; questioning validity; warranting; 
searching for patterns; and making drawings.  

To illustrate the categories and our findings, we present the teachers’ work from part a of the 
hypothesis task. However, the above-mentioned categories apply to the teachers’ discussions on all 
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the given tasks. The teachers’ utterances are sometimes imprecise and difficult to interpret, and we 
tried to preserve this in the translation. In the analysis presented below, we use italics to emphasise 
the categories. 

Sandra and Nora start their work by reading the hypothesis proposed by Teddy. 

1 N: It is true, what he says. 
2 S: Yeah.  
3 N: So, the argument is correct.  
4 S: Yes, it is, eh; but it’s more. It works for all odd numbers; so, the answer is 5.  
5 N: Yes, exactly.  
6 S: As long as one is a 5, one of …  
7 N: Yes, in the 5 times table, no matter what you multiply with something with a 

5 in, then you’ll get a 5 at the end of the answer.  
8 S: Yes, ehm …  
9 N: But, that’s also because 5 is an odd number. 
10 S: Yeah, but do you have an argument that shows that Teddy is correct? Yes, it 

is, but is it ... is it enough? Now, we have actually, sort of gone further. 
The category confirming in our analysis is a social act of support. Examples of this are seen in turns 
[2] and [5]. Furthermore, two new hypotheses are proposed in this excerpt of the discussion, one in
turn [4] and another in [7]. Both hypotheses are related to Teddy’s, but they are partly different, as
[4] is more general than Teddy’s hypothesis and [7] concerns properties of the 5 times table. In turn
[9], the teachers warrant the hypothesis stated in turn [7]; in turn [10], they question the validity of
Teddy’s hypothesis. A few turns later, the discussion continues, as follows:

17 N: Because, eh, when you, right, in the 5 times table [S: Yeah], when you 
multiply with an odd number, you’ll always end with 5, [S: Yeah] the answer 
will, the sum will always end, the answer will always be 5, thus …  

18 N: And, anything that ends with 5 is an odd number, so if you multiply… 35 is 
an odd number, right. 

19 S: Yes, yes, because of the 5.  
20 N: Yes, so because of the 5 there it will be an odd number. 
21 S: Yeah.  
22 N: And, therefore, it will end with 5. 
23 S: Yeah.  
24 S: Yeah, but, but, if one should have made such a, representation-based proof 

for it, is that what they want? Or is it enough that we … it is probably not 
enough that we say this. [N: [laughs]] Believe me [in English]. 

In the utterance in turn [17] a new hypothesis is proposed (stating that when multiplying any odd 
number by 5, the product always ends with 5), which can be seen as a generalisation of the hypothesis 
proposed in turn [7]. At the same time, the purpose of the utterance in turn [17], and also several other 
utterances in this excerpt ([18, 19, 20, 22]), is warranting, as recognised by their use of the words 
“because” and “therefore”. The utterance in turn [24] questions the validity of the argument given 
(“is it enough”). Following her own request for a representation-based proof, Sandra is making 
drawings of arrays on a sheet of graph paper (Figure 3). 
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26 S: Yeah, but if you have a, 1-2-3-4-5, [N: Yes] (draws a 1x5 array on the sheet), 
that’s there. How do I draw this here, then? Eh … So, you have … (draws a 
2x5 array) 

27 N: So, each 5 you’ll get… Now, there it is an even number. [S: Yeah (draws a 
3x5 array)] Then, there is an odd number. 

28 S: Yeah, do we get a … pattern? (draws a 4x5 array) 
29 N: Yes… even number. 
30 S: Yeah (draws a 5x5 array).  

Figure 3. Sandra’s drawings for part a of the hypothesis task 

31 N: Odd number. 
32 S: Yeah. But it’s a … eh, even number (writes e below the 1x5 array). No, 

(corrects to the letter o below the 1x5 array) odd number. Odd number plus 
odd number is always … even number [N: even number, yeah] (writes o+o=e 
below the 2x5 array. And here it’s [N: odd number] odd number plus odd 
number plus odd number, equals odd number (writes o+o+o=o below the 3x5 
array, then o+o+o+o=e below the 4x5 array) 

33 N: And five is an odd number. 
34 S: Yeah, … Shall we drop this now, and try the next question? 

While drawing the arrays, the teachers are searching for patterns. The patterns they discuss concern 
even and odd numbers in the 5 times table [32]. After turn [34], the teachers leave the task in step a, 
and proceed to step b. It is not clear if they are dissatisfied with the pattern discovered or if they are 
finding it difficult to identify a way to use the pattern to prove the hypothesis in turn [17] or Teddy’s 
hypothesis, when they choose to leave the task. 

Results and discussion 
Our analysis shows that Sandra and Nora use several actions related to construction and substantiation 
routines. According to Sfard (2008), one of the distinct characteristics of discourses is the keywords 
that are used. In a mathematical reasoning-and-proving discourse, these keywords relate to deductive 
reasoning, which is “the only form of reasoning that can change the epistemic value of mathematical 
knowledge from likely to true” (Jeannotte & Kieran, 2017, p. 8). Sandra and Nora use words that are 
distinctive of a reasoning-and-proving discourse, namely their warranting of statements by their use 
of the word “because” followed by “then” or “therefore”, as seen in excerpts [18–23]. Moreover, the 
teachers question the validity of the arguments they provide, and they make drawings and search for 
patterns. In general, the use of drawings as visual mediators is one of the main aspects of mathematical 
discourse, and its role in reasoning-and-proving was emphasised in the professional development 
course. Sandra and Nora’s drawings and their search for patterns is initiated by their act of questioning 
the validity of the arguments, which is part of the process of convincing (oneself or another) and is 
fundamental to mathematical reasoning (Jeannotte & Kieran, 2017).  

At the same time, Sandra and Nora’s explicit reference to representation-based proving (as seen in 
statement [24]), within the framework of Sfard (2008) and Lavie, Steiner, and Sfard (2019), indicate 
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that the teachers’ participation is ritualised. As previously explained, rituals are understood to be 
socially oriented; they are acts of solidarity with co-performers or authorities. With their questioning 
of validity, Sandra and Nora express what they assume to be expected by the community, i.e. the 
teacher educators, regarding substantiation routines (“is that what they want?” [24]). The making of 
drawings and the search for patterns emerge in the teachers’ work as a result of stating this question. 
This stands in contrast to questioning validity on the basis of the given hypothesis and a discussion 
of what narratives can be considered to already be endorsed by the community. Apart from the 
question referring to the teacher educators, Sandra and Nora also frequently confirm each other’s 
contributions. Because their questioning of the validity and confirming each other’s statements 
appears to be an attempt to gain social acceptance rather than their need to support and strengthen 
their substantiation of Teddy’s hypothesis, their initial participation in the reasoning-and-proving 
discourse appears to be ritualised.  

Our analysis also reveals ritualised participation in terms of how to act, in particular, how to use 
drawings. As shown in Figure 3, Sandra has made a drawing based on her own request for a 
representation-based proof of Teddy’s hypothesis. The drawing and the following search for a pattern 
are related to the teachers’ hypothesis (as seen in [17]), and not Teddy’s hypothesis. Nevertheless, 
the chosen drawing does not advance the teachers ‘reasoning-and-proving process. 

Sandra and Nora’s actions related to construction and substantiation of narratives also indicate 
ritualised participation in terms of when to do a given action. As previously discussed, meta-
discursive processes of reasoning-and-proving can be divided into processes of searching for 
similarities and differences (constructing narratives) and validating processes (substantiation of 
narratives). Throughout Sandra and Nora’s conversation, these processes seem to intersect: several 
actions that they use, e.g. proposing hypotheses and searching for patterns, are mainly related to the 
processes of construction of narratives, and they are not appropriate for modifying the epistemic value 
of a narrative from likely to true. In a substantiation routine, a sequence of endorsed narratives is 
used, each of which is deductively inferred from previous narratives. Sandra and Nora propose several 
new hypotheses during their work (e.g. in [17]), and they are not explicit about whether the new 
narratives are (or can be seen to be) endorsed by the community and how they connect to Teddy’s 
hypothesis. Moreover, Sandra and Nora search for patterns related to even and odd numbers, and it 
seems that the aim of this action is proving a hypothesis given in [17]. However, their search for 
patterns does not help them validate the hypothesis, and they leave the task. It is worth noting that the 
teachers’ use of actions related to the construction of narratives happens, even though the Teddy’s 
hypothesis task was designed to direct the teachers to participate in the validating process. 

Conclusions and implications 
Ritualised participation and challenges in knowing how and when a given action can be used are not 
surprising results when studying novices’ initial participation in a given discourse (Sfard, 2008). Yet, 
within the frames of commognition, we have highlighted that some reasoning-and-proving actions 
seem to be more visible and applicable for novice participants than other actions; thus, they are easier 
to imitate. The teachers in this study employed several actions that are not directly related to 
substantiation but are regularly applied in a mathematical discourse. They search for patterns, propose 
a hypothesis and make drawings. They also perform actions related to substantiation routines, such 
as warranting and questioning validity. Yet, other actions related to substantiation of narratives seem 
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to be more hidden. For example, being critical is central to substantiation routines; however, Sandra 
and Nora continuously confirmed each other’s contributions.  

Moreover, the analysis discloses the two teachers’ tendency to use construction-related actions 
(searching for patterns, proposing hypotheses) in what was designed to be a validating activity. Thus, 
the findings imply a need in teacher education to be more explicit about what actions are specific for 
reasoning-and-proving, and also, to be explicit about changes in actions when moving from 
construction to substantiation of narratives.  

In this paper, we have reported on the characteristics of two in-service teachers’ learning of reasoning-
and-proving in a professional development context in the field of elementary education. Nevertheless, 
our study is limited by the number of participants, and further research from a commognitive 
standpoint is needed to shed more light on elementary education teachers’ learning of reasoning-and-
proving. For example, longitudinal studies are needed to learn more about teachers’ evolving routines. 
Another topic for further research is the role of visual mediators in a reasoning-and-proving context, 
and how participants can routinise the use of visual mediators in the discourse. 
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The paper examines the epistemological evolution of the concept of proof in the Western tradition, 
highlighting three important epistemological obstacles whose consideration can have significant 
consequences on the teaching and learning of proof. 
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Introduction 
Bachelard (1938) identifies in the act of knowing the causes of stagnation of the evolution of scientific 
thought; he calls the psychological causes of inertia in this evolution epistemological obstacles. 
According to the author (Bachelard, 1938), the epistemologist must endeavor to grasp the scientific 
concepts in an actual, i.e. in a progressive, psychological syntheses, establishing, concerning every 
notion, a scale of concepts, which shows how one concept has produced another; moreover, the 
epistemologist must necessarily take a normative point of view, while the historian usually has to 
avoid it, and what must attract his attention and guide his research is the search for rationality and 
construction in the evolution of scientific thought. “The epistemologist must take the facts as ideas, 
inserting them into a system of thoughts. A fact misinterpreted in an era remains a fact for the 
historian. It is, at the discretion of the epistemologist, an obstacle, it is a counter-thought” (Bachelard, 
1938, p. 17). It is clear that in the construction of the epistemological trajectory it will not be possible 
to provide (nor would it make sense to ask for) a proof of uniqueness; what such a reconstruction can 
produce is an argument, effective because of its coherence and its explanatory capacity, which 
testifies in favour of its one existence. 

Brousseau (1989) gives to the concept of epistemological obstacle the meaning of knowledge (not a 
lack of knowledge) that has been effective previously, in a given context, which at a certain point 
begins to generate answers judged to be false or inadequate and produces contradictions. Moreover, 
an epistemological obstacle has the characteristic of being resistant and of presenting itself 
sporadically even after having been overcome; its overcoming requires the passage to a deeper 
knowledge, which generalizes the known context and requires that the student becomes explicitly 
aware of it (Brousseau, 1989). According to Brousseau (1989), this reasoning can be applied to 
analyse either the historical genesis of knowledge or its teaching or the spontaneous cognitive 
evolution of student’s conception. The search for epistemological obstacles can occur using two 
approaches: the first is, according to Bachelard, based on historical research by adopting an 
epistemological lens; the second one is based on the search for recurring errors in the learning process 
of a mathematical concept; the two research lines are intertwined: the historical-epistemological 
evolution can help in the identification of possible hidden models and can provide suggestions on the 
construction of appropriate learning situations to overcome a given obstacle; on the other hand, 
students’ errors and recurring difficulties can suggest the presence of epistemological obstacles. 
Given students' enormous difficulty in understanding proof, it seems to us that the identification of 
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possible epistemological obstacles can be useful in teaching and learning practice and, even before, 
in teachers’ training, providing awareness of teachers’ own epistemology and of the possible gap 
between their own and students’ conceptions. 

The historical-epistemological investigations on the concept of proof are not new in Mathematics 
Education. Barbin (1994) traces briefly a history of proof, highlighting its different meanings in 
different eras. The author identifies two fractures, one relative to the convincing-explaining contrast 
and one relative to the role of contradiction, but does not clearly highlight the origins of proof as a 
conviction from an epistemological point of view; moreover, in the identification of the second 
fracture, she assumes that modern axiomatization is the result of a need for greater proof rigor, while 
we intend to show that it arises from the very nature of mathematics. Barbin concludes that deduction 
constitutes an obstacle and that its overcoming can be achieved through the revaluation of proof as a 
method. Another historical analysis that takes at times interesting epistemological aspects is that of 
Grabiner (2012), in which the author mainly aims to highlight the non-absoluteness of the concept of 
rigor and proof, without however proposing an evolutionary trajectory in which, as Bachelard states, 
it should become clear how one conception follows from the other (Bachelard, 1938). A last 
contribution that we take briefly into consideration is that of Longo (2012), in which the author 
emphasizes the pre-eminence of two fundamental principles for mathematical proof, which have 
cultural and historical roots: symmetry and order, and highlights the need for an approach in 
opposition to Hilbert’s formalism, which should avoid recourse to actual infinity. Longo’s approach 
is interesting but it is posed in a perspective of synthetic philosophy, which is not however the one 
on which the current foundation of mathematics is based. 

None of the contributions examined searches explicitly for epistemological obstacles, taking at the 
same time a position in line with the current foundational aspects of mathematics, which are those on 
which teachers’ training is based on and which are transposed in textbooks. Our aim is to understand 
if there is a path in the epistemological evolution of the object proof in the ancient Greek (and then 
the Western) tradition that could show changes in the modes proof was considered able to provide 
knowledge and about the characteristics of that knowledge. 

The epistemological evolution of the concept of proof 
Ancient Greek tradition 

One of the most interesting aspects of proof in the path of ancient Greek tradition is related to its 
origin in an axiomatic system. Even when analyzing various other aspects, Grabiner (2012) identifies 
at least the reason of what she calls “a logical proof”, in Greek mathematicians’ need to be able to 
prove things that are not evident: “[…] visual demonstration did not suffice for the Greeks. […]. Such 
proofs are necessary when what is being proved is not apparent.” (Grabiner, 2012, p. 148). We believe 
that from an epistemological point of view the answer of the question is a bit more complex and 
should be searched upstream, in Eleatics’ rejection of the epistemological validity of the experience 
of the senses, which led them to assume logical indicators of clarity and necessity as criteria of truth. 
We will explain our point of view in the next paragraph, following the original sources. 

According to Parmenides, the Being is the only reality and the convincement, in the sense of 
persuasion through thought, is the only way that allows us to acquire reliable knowledge. Parmenides’ 
conception of thought is that of reasoning, of logos, of what can be called “logical reasoning”, which 
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produces necessary true conclusions, because when investigating truth (i.e. the Being), we start 
always from the Being which is not only an unchanging, indestructible whole, but is also connected: 
“observe how what is far away is reliably approached by your mind because it [the mind] will not 
separate the Being from the context of Being, nor in such a way that it [the Being] loosen anywhere 
in its structure nor in such a way that it masses together. Then Being is indeed connected, regardless 
of where I start [the research] that's where I'll be back again.” (Diels, 1906, p. 116). The last sentence 
shows exactly the conception of knowledge acquirement in Parmenides: logical reasoning, starting 
from necessary true premises is convincing and this kind of convincement is the only way that leads 
to knowledge of truth. Instead the way of investigating the Not-Being, which is not necessary, is the 
way of opinion linked to the senses: “the only thinkable ways of research are the following: the way 
of Being, which is and which is impossible but be, is the way of conviction (since it follows the truth); 
but the other one, that it [the Being] isn’t and that this Not-Being is necessary, is a completely 
inscrutable path since the Not-Being cannot be neither recognized (it is in fact unfeasible) nor 
pronounced” (Diels, 1906, p. 116). The fundamental Eleatic dialectic is then the dialectic between 
certain knowledge (and the way of convincement which allows to acquire it) on the one part, and 
opinion (and the way of the senses which allows to acquire it) on the other part. 

Eleatics used different modes of conviction to carry out Parmenides’ “way of truth”: Zeno of Elea 
used the proof by reductio ad absurdum (or proof by contradiction) as method to destroy the 
arguments of the opponents showing that their premises led to contradictions, while other Eleatics, 
like Melissus, tended to prove arguments also starting from undoubtedly certain premises. 
(Cambiano, 2004). Zeno’s way of reductio ad absurdum is coherent with the Eleatic philosophy 
because there is not only a distinction of Being (real, true) and Not-Being (not real, false), that 
excludes the possibility of a third value, but also the fact that for the Being not be is impossible, that 
represents the double negation. Like outlined by Antonini and Mariotti (2008), in the past, starting 
from 16th and 17th centuries and up to the 20th century, there was a debate about the fact that proof by 
contradiction collides with the Aristotelian position that causality should be the base of scientific 
knowledge and that such a proof cannot reveal the causes since it is not based on true premises. We 
state that in the perspective of Eleatic philosophy, proof by contradiction fits perfectly with the role 
it has in this philosophy: the role to get knowledge of the truth of a statement by following a 
convincing logical thought that shows that it is necessarily so and it cannot be in another way. This 
is just what Zeno probably wanted to do, using such proofs, because they are not suitable to explain, 
but they are suitable to convince. 

The Eleatic dialectic was of great importance for the subsequent development of philosophy and 
science. Plato’s thinking was strongly influenced by Parmenides (Cambiano, 2004) and so all the 
Western philosophy. 

Other important aspects in the epistemological evolution of proof are the roles played by the Megarian 
school and by the Sophists. The Megarian philosophical school flourished in the 4th century BCE and 
some of the successors of Euclid of Megara, its founder, developed logic to such an extent, 
maintaining the Eleatic epistemological assumptions about the importance of conviction in 
knowledge acquirement, that they became a school in its own (Cambiano, 2004). 

In the 5th century BCE the Greek society experienced a period of rapid socio-cultural transformation 
that led to a new politic system based on democratic principles; in this new society the need to provide 
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education for the children of the emerging classes arose and Sophists satisfied it (Cambiano, 2004). 
The ability to convince was considered one of the most important abilities for the citizen who wanted 
to participate in the political life of the polis. Sophists wanted to show that with the art of rhetoric and 
dialectic, even “weak” speeches could be made “strong”, since it would have been possible to reject 
even the most evident statements. This was a turning point to relativism with respect to Eleatic 
doctrine because Sophists negates the existence of absolute truth: truth is a form of knowledge always 
related to the subject and its experience; they are as multitude of truths as subjects. The dialectic 
methods used by the Sophists for their argumentations were the same used by the Eleatics: 
confirmation by proof conduced in rigorous logic steps and refusal by proof of the falsity of the 
antithesis, but Sophists perfected them; dialectic influenced deeply rhetoric, shifting attention to the 
persuasive force of speeches.  

The Sophists’ relativism pushed many philosophers, e.g. Plato, to look for a transcendent objective 
basis on which to base behavior and moral conduct but also influenced the way of exposing scientific 
knowledge, particularly the mathematical one. It becomes clear that the Euclidean axiomatic system 
was developed at a time when it was necessary to place mathematical knowledge on unquestionable 
bases. This point of view is clearly expressed for instance by Clairaut: “this geometrician [Euclid] 
had to convince obstinate Sophists who were proud to reject the most obvious truths” (Clairaut, 1741, 
pp. 10–11). Hoüel remarks furthermore that Euclid’s frequent recourse to indirect proofs is also 
motivated by the need to prevent critics due to Sophists’ relativism: “[…] hence his [Euclid's] habit 
of always proving that a thing cannot be, instead of showing that it is” (Hoüel, 1867, p. 7). 

The need to avoid any critic as the tread in organizing the mathematical knowledge can also be 
detected in the attention placed by Euclid on avoiding arguments which involve concepts that might 
leave some room for criticism, instead of using direct proofs which involve only subjects conceptually 
close to the statement to be proved. An example in this sense is the proof of proposition CXVII of 
book X of the Elements which states that in a square the diagonal and the site are incommensurable. 
In order to prove the statement Euclid uses an indirect proof that involves not only geometrical but 
also arithmetical arguments (e.g. concepts of odd and even number, of divisibility etc.) instead of 
using the proposition II of book X, introduced just before, which applies to segments the arithmetical 
method used in book VII to establish if two numbers are coprime (Barbin, 1994). A proof conducted 
using the latter method would be direct and would refer only to geometric concepts, but the problem 
is that it would involve an infinite procedure and might be exposed to the criticism of who asked what 
is, for example, the limit of the succession of squares that is built.  

According to Barbin (1994) we can state that Euclid’s main concern is to be able to persuade and to 
avoid considerations that might leave room for critiques; an axiomatic system is a good solution to 
do this. Of course, the methods that could be applied to isolate the axioms might have already been 
highlighted by Hippocrates of Chios, “who wrote the best logically structured Elements of Geometry 
until Euclid wrote his own Elements 150 years afterwards” (Grabiner, 2012, p. 150), but the real 
motivation to do this should be detected in the philosophical and cultural environment of the time.  

In our analysis we cannot avoid to mention Aristotle because of his influence in shaping medieval 
scholarship, not only in the Western but also in the Islamic world. Aristotle, starting initially from a 
Platonist position, reversed later in a certain sense the ontological question advocated by the Eleatics 
and then by his master Plato. Aristotelian ontology, like the Platonic one, distinguishes between 
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Universal and Particular, but while for Plato universal forms are separate from particular 
manifestations, for Aristotle the Universal is in the Particular and the only way to access the Universal 
is through the Particular, using the perception of the senses, in particular the eye, because in 
perceiving the world we prefer the sight to all the other senses (Aristotle, 1973). One might wonder 
why the Aristotelian doctrines have not changed the idea of proof and why there is no trace of them 
in the Elements and why the concept of proof contained in the Elements remained the prototype of 
(not only) mathematical proof for a lot of time. We can say that while the ontological aspect is 
reversed, Aristotle’s epistemology remains similar to the Platonic one. Indeed, both, Plato and 
Aristotle, are interested in the knowledge of Universals though the way to reach them is different: 
Aristotle’s empirical approach is linked to exploration, which can also refer to induction or abduction, 
but its aim is to arrive at “true” knowledge; this last way is nonetheless deductive and proof is the 
final step of the process of knowledge acquirement (Cambiano, 2004). 

Enlightenment and the “small steps”: the first crisis 

Until the 17th century the concept of proof in mathematics remained linked to the idea of proof in an 
axiomatic system such as that of geometry presented in Euclid’s Elements, even if, due to the lack of 
adequate mathematical tools, attempts to axiomatize other fields of mathematics remained sporadic 
and ineffective for a long time (Lolli, 2004). The 17th century was a particular historical and cultural 
period during which there were a lot of important discoveries and innovative and courageous stances 
in science. Alongside of Galileo’s scientific method, new general mathematical methods were 
developed in order to satisfy the need to describe the physical phenomena, like Cavalieri’s principle 
of indivisibles, the Cartesian method, Newton’s method, Monge’s projective method etc. In these 
rapid innovations the ancient Greek writings, first of all Euclid’s Elements, were exposed to a hard 
criticism by the mathematicians. They accused ancient Greek geometer to be more interested in 
persuasion and in validation than in explanation and discovery. What is criticized is not the content 
but the form, the setting and the role attributed to proof. In Arnauld’s and Nicole’s La logique ou l’art 
de penser the authors expose the widespread feeling among their contemporaries summarizing as 
follow the errors attributed to Greek geometers: (1) to pay more attention to certainty than to evidence 
and to the conviction of the mind than to its enlightenment; (2) to prove things that have no need of 
proof; (3) to demonstrate by impossibility; (4) to conduce far-tetched demonstrations; (5) to pay no 
attention to the true order of nature; (6) to employ no divisions and partitions (Arnauld & Nicole, 
1850). The critiques are basically two. The first, which contains the first four errors, concerns the 
single results and can be summarized in the question: “Is it more important to convince or to 
enlighten?”. The second, which involves the whole structure of the text, is the accusation of a lack of 
method (the sixth error can be regarded as the consequence of the fifth one). 

With regard to the new methods elaborated by mathematicians during the 17th century there was an 
important epistemological aspect that mathematicians of the time were already asking themselves: 
the problem of the validity of the new methods. Barbin summarizes as follows the doubt in this regard: 
"these methods illuminate, clarify the spirit, as they show the way to which we have passed and lead 
to evidence [...] but what is made evident can be considered as demonstrated?” (Barbin, 1994, p. 223). 
Thus, for example, Cavalieri’s method of indivisibles, which already carried the idea of the integral, 
aroused some suspicion because of its resort to actual infinity, despite its operational superiority 
compared to Archimedes’ method of exhaustion. 
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One method that initially does not raise suspicion was instead the Cartesian method which essentially 
led to a general algebraic conception of proof. The method described by Descartes in his Discours de 
la Méthode (1966), his small steps, his long chains of reasons, all simple and easy, were the attempt 
to provide a method of discovery to mathematics which quickly imposed itself on a large scale even 
though it posed some practical difficulties and mathematicians found it difficult to resort to it in 
practice (Lolli, 1988). We should however keep in mind that there are two different layers of evidence 
in Descartes’ conception: the one is related to the physical evidence of the axioms in Euclidean 
geometry, which is the basis of mathematics and that remains undisputed; the other is related to the 
evidence of the starting point and of the “small steps” of reasoning that should be so simple and 
evident to be intuitively accepted by anybody without any doubt about their correctness. Both these 
evidences will be questioned by the subsequent development of mathematics. 

Mathematical proofs, physical reasons and the second crisis 

At the end of 17th and beginning of 18th centuries, with the growing of Analysis, it becomes more and 
more clear that the algebraic conception of proof was insufficient for the type of investigation 
mathematics was going to face [see for instance the need to deal with functions and infinitesimals 
and in general with infinite entities (Lolli, 1988)] and that requires a purely mathematical definition 
of the involved objects. Furthermore, the development of abstract algebra allowed a new, structural 
organization of mathematical knowledge. All these reasons allow the take-off of pure mathematics 
which does not (should not and could not) refer to physical evidence. On the other hand, the birth of 
non-Euclidean geometries led to a subsequent loss of authority of geometry as foundation of 
mathematics, based before on the physical evidence of its axioms. The birth of general theories with 
multiple interpretations and the need to give a unitary organization of mathematics led to increasing 
awareness of the importance of the definition of mathematical objects trough interrelations of formal 
axioms, which allows multiple interpretations; all this finally led to the modern axiomatic model. 

Axiomatization implies an important change of perspective: a change in concept and role of 
contradiction: in ancient Greek mathematics the contradiction intervened in a social act and was used 
to convince: to prove means to convince; the modern conception of contradiction is very different: 
contradiction intervenes in a system of mathematical propositions and it is used for producing 
mathematical results: to prove means to make evident the non-contradictoriness of a statement within 
an axiomatic system. The concept of evidence makes no sense in this formalistic conception of 
mathematics: the objects are real inasmuch they are defined by the relations between them; there is 
no need for physical or metaphysical reality to refer to. The only way to deal with such abstract formal 
objects is formal reasoning: implicit definition and formal logical principles are needed for the new 
conception of proof, based on non-contradictoriness; the new axiomatic model is not due to a perverse 
and arbitrary will of formalization but to the formal character of mathematics (Lolli, 2015). 

Modern axiomatization and the need for interpretation 

Modern axiomatization underpins and highlights the special ontological condition of mathematical 
objects to which an ostensive cross-reference is impossible and shows clearly the essentially semiotic 
nature of mathematical activity; but it poses an important problem: in a formal axiomatic conception 
of mathematics asking for meaning of mathematical objects makes no sense. The only way to give 
meaning to them is dealing with them in an interpretation of the formal theory. An interpretation 
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needs a language that allows to express the relations of the objects occurring in it. Bourbakism 
rendered clear that set theory is a formal language which is most similar to natural language and that 
allows to construct mathematical discourses, giving a meaning to mathematical activity. Experts in 
mathematics are able to give a meaning to a discourse in set-theoretical language (they are able to use 
it, enriching its expressivity by natural language without losing its mathematical meaning) and so 
they are usually convinced of the unity between mathematical and natural languages; but this 
competence is only the confirmation of the fact that the metalanguage (natural language) has 
successfully fulfilled its role as constructing tool for the object language (mathematical language). 

Conclusions 
Our analysis shows three epistemological obstacles which forcefully impose themselves in the 
examined path: (1) the belief that the proof concept in Euclidean Geometry may be used to explain 
mathematical reasoning; (2) the belief that contradiction in mathematics has the role of convincing 
and that to prove means to convince somebody of the truth of an utterance and not the role to establish 
the consistency in an axiomatic system, i.e. to establish its validity; (3) the supposition that 
mathematics is not a discourse in itself but one that is telling something about something that really 
exists and that to prove means to prove the truth of a statement and not it’s validity in a metalanguage 
as well the subsequent supposition of the unity between natural language and mathematical language 
and the consequent lack of awareness of the complex relation between them. 

All three obstacles represent important topics related to the teacher’s epistemological believes and 
the way in which teachers implement the didactic transposition of the mathematical object "proof". 
Moreover, we stress that against the third obstacle, the whole teaching of modern mathematics 
collides. Without the awareness of the latter, at school we will continue to teach only Euclidean 
mathematics and the concept of proof present in it, believing that the modern axiomatic method is 
only a generalization of the Euclidean one.  

Furthermore, while the first two obstacles can be considered as obstacles already crystallized in 
Western culture, the third is an obstacle of very recent formation and it is still little perceived and not 
recognized. This obstacle also places the cultural aspect in the foreground as it can have very different 
cultural declensions. Indeed, while the general semiotic aspects might have a general characterization, 
semiotic aspects related to the natural language can be specific (Lolli, 2015). While the overcoming 
of the first two obstacles requires the entry into a certain culture of mathematical thought (which has 
its roots in ancient Greek tradition), the overcoming of the third obstacle requires a specific 
transposition, dependent on the peculiarities of the natural language of reference. 

Concerned to the usefulness of the epistemological obstacles in Mathematics Education, we can say 
that within Brousseau’s (constructivist) theory of didactic situations, acquiring knowledge means 
adapting to a specially designed situation that has that given knowledge as optimal solution 
(Brousseau, 1989); it is therefore worth to identify the epistemological obstacles in order to help 
teachers to construct situations in which the student is forced to use a type of knowledge that leads 
her/him to overcome the obstacles, supported by teacher’s mediation choices. In a socio-cultural 
perspective, instead, the interpretation of the notion of epistemological obstacle could present some 
difficulty because of the specificity of mathematical cultural production (D'Amore, Radford, & 
Bagni, 2006). Nevertheless, also in a socio-cultural perspective, the institutional meaning of 

Thematic Working Group 01

Proceedings of CERME11 126



mathematical objects refers to a certain cultural tradition which could hide eventual epistemological 
obstacles. 
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Teachers’ perspectives on mathematical argumentation, reasoning and 
justifying in calculus classrooms 
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An interview study on mathematical argumentation (in a broad sense) was conducted with teachers 
of upper-secondary calculus classrooms. This paper describes the study’s methods and its results. By 
using qualitative text analysis, four major categories were created to depict the current state of 
mathematical argumentation in calculus classrooms. Two dominant problem areas were revealed: 
Students’ language difficulties and the heterogeneity of students. To address these problems, a 
learning environment was designed and evaluated in a follow-up study. 

Keywords: Argumentation/Reasoning/Justifying, calculus, secondary school teachers, semi-
structured interviews, learning environment. 

Introduction and theoretical background 
Mathematical argumentation, reasoning, justifying and proof indisputably constitute an important 
field of mathematical competencies. Nevertheless, the 1995 and 1999 TIMMS Video Studies found 
that reasoning did not occur frequently in mathematics classes of the examined countries (Hiebert et 
al 2003, p. 73-75). Since 2003, the Bildungsstandards set by the KMK1 have functioned as an 
important framework for teaching mathematics in Germany. One of the process-related competences 
they specify is Mathematisch Argumentieren (approximately corresponding to mathematical 
argumentation). This term is used as an umbrella term for working with mathematical conjectures 
and statements by employing a range of argumentations, from arguments of plausibility through 
justifications to formal proofs (KMK 2012, p. 14). In the United States, the Principles and Standards 
for School Mathematics were published by the National Council of Teachers of Mathematics 
(NCTM) in 2000 as one of the first sets of standards for mathematics teaching. One of the Process 
Standards set by the NCTM is Reasoning and Proof, which also comprises reasoning, proving, using 
conjectures, argumentation and justification (NCTM, 2000). In this paper, mathematical 
argumentation is used in a broad sense, including all aspects used by the KMK and the NCTM. In 
addition, pre-formal or semi-formal mathematical activities of argumentation, reasoning and 
justifying are considered suitable for mathematics in school and useful, necessary steps to formal, 
deductive proving as an essential mathematical activity. The term formal is “referring to the standard 
language used to talk about mathematics, which encodes the meanings of mathematics” (Barwell 
2016, p. 333). Mastering this standard language is considered its own learning item for students. 
Pericleous similarly states that “explanation, justification and argumentation […] provide a 
foundation for […] developing deductive reasoning” (2015, p. 226). However, the level of formality 
and deductive reasoning that should be acquired in school is open to debate. 

                                                 
1 The Bildungsstandards are Educational Standards set by the Conference of Ministers of Education and Cultural Affairs 
in Germany (KMK) 
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Teachers’ perspectives on argumentation in class are of great importance, because teachers are 
responsible for providing learning environments and tasks for students (Buchbinder, 2017, p. 107). 
They have gained significant experience with students’ processes of acquiring competencies. Yet, 
there is little research on argumentation from a teachers’ perspective to date. The discussed study 
investigates the role and importance of mathematical argumentation in calculus classrooms, explores 
teachers’ attitudes and ideas about mathematical argumentation and reveals problems and difficulties 
teachers face when training students’ mathematical argumentation competencies. Interviews with 14 
teachers of different schools teaching upper-secondary students in calculus were conducted and 
analysed using qualitative text analysis2. In a follow-up study, a learning environment was developed 
and evaluated based on the results of the interview study. In this paper, the interview study is 
described in detail including its methods and findings. The paper concludes with a short outlook on 
the follow-up study. 

Methods 
There were two main research questions: (1) Which role does mathematical argumentation play in 
current calculus classrooms? (2) Which problems and difficulties do teachers face with regard to 
mathematical argumentation in calculus classrooms? To answer these questions, semi-structured 
interviews were conducted with 14 upper-secondary school teachers. The interview manual had four 
parts with different thematic foci. The participants had been informed that the topic would be calculus 
teaching. However, the emphasis on mathematical argumentation was not mentioned before the 
second part of the interview, because the first part was about calculus teaching in general and 
argumentation was only focused on in the other three parts.  

14 upper-secondary school teachers, 5 female and 9 male, were chosen from 7 different schools (6 in 
Bavaria, Germany; 1 in Hesse, Germany), teaching different subjects in addition to mathematics. 
Their age ranged from 30 to 64 years with teaching experience from 4 to 36 years.  

The analysis of the interviews used a combination of methods of qualitative content analysis 
(Mayring, 2015) and thematic qualitative text analysis (Kuckartz, 2014). First, a selection criterion 
was applied to detect all passages of the interviews concerning the topic of mathematical 
argumentation. Then, major categories were created deductively according to the interview guidelines 
and the research questions. After applying them to the data, they were further differentiated into 
subcategories inductively using the codes of each major category. Processes of subsumption and 
clustering were used to establish the final category system with various levels for the analysis. 

Results 
Figure 1 presents an overview of the category system. The major categories are Understanding 
Concepts, Current Implementation in Class, Positive Aspects and Problems and Difficulties. The 
numbers in brackets state the numbers of respondents (out of 14) whose statements contained 
segments for the respective subcategories. Each category is described separately in the following.  

2 A rough overview of the interview study is being published in (Scheffler, 2018) and parts of the results have been 
published in (Scheffler, 2017). 
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Figure 1: Major categories of the qualitative text analysis of the interviews 

Understanding Concepts 

The major category Understanding Concepts comprises segments from which it can be concluded 
what teachers mean when speaking of argumentation, reasoning, justifying or proving3. Segments 
within this category were categorized throughout all parts of the interviews, because the participants 
were not directly asked about their understanding of the terms. Various ideas could be found and 
subdivided into two subcategories: Ideas about the Content of Argumentation and ideas about the 
Form/Type of Argumentation. The teachers’ statements do not only contain ideas about their actual 
teaching but also about their general understandings of argumentation. Both subcategories 
demonstrated a wide range of understandings. The most frequent opportunities for mathematical 
argumentation mentioned were situations in which students needed to justify their approaches when 
dealing with any mathematical exercise or task or justify certain mathematical theorems, rules or 
formulas. In addition, it was described that students reason when working with properties of various 
functions or when modelling mathematically. More generally, the teachers stated that mathematical 
relations or issues can be used for mathematical argumentation in class. 

In the subcategory Form/Type of Argumentation, it is striking that most teachers talked about formal 
proving but mostly commented on the lacking feasibility of using proofs in class. Other ways of 
mathematical argumentation mentioned by several teachers were justifying using calculation, 
explaining or elucidating, verbal justification and justification supplemented by sketches. This results 
in a varied field of teachers’ understandings of how argumentative competencies can play a role in 
calculus classrooms and what mathematical content can be used for these purposes. These findings 

                                                 
3 In the interviews, I used the German terms Argumentieren and Begründen (approximately corresponding to 
argumentation and justification in English) as synonyms and avoided the term Beweis (proof) as it has negative 
connotations for some teachers. For the category Understanding Concepts, all segments of the interviews were used which 
showed understandings of any of the terms Argumentieren, Begründen or Beweisen.  
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correspond to the broad understanding of the term used in the German KMK Bildungsstandards and 
in the NCTM standards. 

Current Implementation in Class 

Descriptions of what the teachers actually do in class concerning mathematical argumentation are 
collected in the subcategory Current Implementation in Class. Each case was analysed separately by 
summarising and abstracting the main ideas. The following overall tendencies about the current state 
of mathematical argumentation and proof in calculus classrooms could be found:  

- Tasks in which students are asked to give reasons play a significant role.
- Formal proving, theoretical justifying and systematic derivations only occur occasionally,

with most argumentations and justifications being informal, oral and not written.
- Teachers reason and justify more than their students.
- Argumentation and reasoning seem to be opposed to standard techniques which are trained

mainly for the final examinations.

These practical tendencies are based on teachers’ attitudes towards argumentation and reasoning in 
calculus classrooms. These attitudes are connected to the reasons teachers have to train their students’ 
argumentative competencies. These reasons can be deduced from positive remarks about 
argumentation collected in the major category Positive Aspects. On the other hand, Problems and 
Difficulties with argumentation in calculus classrooms concern reasons why teachers use fewer 
opportunities for mathematical argumentation in their classes than they ideally should.  

Positive Aspects 

The positive statements about mathematical argumentation in calculus classrooms can be divided into 
5 subcategories: Segments showing that mathematical argumentation is important for the teachers 
themselves (1) or for the students (2), segments explaining that mathematical argumentation is a good 
way for diagnosing students’ skills (3), segments in which teachers state mathematical argumentation 
to be an essential part of mathematics (4) and segments in which teachers express that employing 
mathematical argumentation results in good discussions in class (5). The most interesting results can 
be found in the subcategory Importance for Students (2) which includes segments in which teachers 
explain how mathematical argumentation in class has positive effects for the students. In their 
opinion, mathematical argumentation is crucial for the students’ content-related competence. It is also 
considered important for the students’ future in mathematics and beyond. Teachers point to students 
who really like reasoning and to more proficient students who can demonstrate their skills with 
justification tasks.  

Problems and Difficulties 

Nevertheless, there are many problems and difficulties with mathematical argumentation in calculus 
classrooms. As it has been explained above, there is a reluctance to use formal proofs for different 
reasons which are not focused on in the study. For this reason, remarks stating difficulties and 
problems specifically with formal proofs were not coded in the major category Problems and 
Difficulties. Emphasis was put on argumentation in general. As Figure 1 and Figure 2 show, 4 
subcategories could be created inductively in the major category Problems and Difficulties. All 
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teachers mentioned problems and difficulties concerning the Students and nearly all teachers have 
problems with the External Conditions they face. In addition, there are problems and difficulties in 
the area of Teaching and difficulties for the Teachers themselves. Notably, difficulties for the 
Teachers themselves all deal with grading mathematical argumentation tasks. Problems with 
Teaching arise because teachers do not consider reasoning and justifying tasks suitable for 
examinations, and training standard calculation techniques has priority in their teaching. External 
Conditions that cause most problems for teachers are the restricted time available for teaching and 
the requirements of the centrally organised final examinations. 

 
Figure 2: Part of the category system with a focus on Problems and Difficulties 

The subcategory Students contains by far the most difficulties and problems that were mentioned by 
the teachers. It is further subdivided into Problems Concerning Students and Difficulties of Students. 
Due to their size, these subcategories were further subdivided:  

Firstly, by far the largest subcategory of the subcategory Problems Concerning Students is 
Heterogeneity. Segments in this subcategory are about problems that arise because of students’ 
different performance levels. While teachers are of the opinion that low achieving students have 
serious problems with mathematical argumentation tasks, such tasks are seen as a particular challenge 
for high achieving students. Consequently, teachers do not know how to cope with the great span and 
often decide not to use justification tasks in class. An example segment within the subcategory 
Heterogeneity is the following:  

First of all, I often think that these justification tasks are only accessible for a part of the students 
so that another part of the students is left behind by these justification tasks. And for them, it is 
important to do tasks in which they can use their learnt strategies. So, I would not use 45 minutes 
just for training argumentation, because after some time I would sit there just talking to five 
students and the other 20 are looking into the air (Interview 8, paragraph 58, own translation). 

Other Problems Concerning Students result from students’ aversion to argumentation amongst others. 

Secondly, within the other subcategory, Difficulties of Students, a dominant subcategory evolved as 
well: Language. This subcategory contains segments dealing with problems students have with, for 
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example, terminology, formulations, and especially writing down argumentations and justifications. 
An example segment within the subcategory Language is the following:  

And of course language, that’s an important point, whether mathematical language or German 
language, stringing two sentences together. What is given? So, what can be concluded? That is 
what causes most problems (Interview 9, paragraph 56, own translation). 

Apart from language problems, there are other issues students have problems with when working on 
argumentation tasks: the general validity of mathematical statements, mathematical precision and 
accuracy, recognizing the expectations and technical contents amongst others.  

The interview study showed that teachers have a wide range of ideas about which aspects of 
mathematical argumentation exist and their attitude towards argumentation in calculus classrooms is 
positive to a large extent. However, teachers state that there is little formal argumentation and proof 
in their classrooms. Training standard techniques is far more important than training argumentation 
competencies. In addition, many varied problems and difficulties concerning the training of 
argumentation competencies could be gathered. As Heterogeneity and Language could be found as 
being dominant problem areas, developing a proposal for facing these problems was the aim of a 
follow-up study.   

Follow-up study: Development and evaluation of a learning environment 
To address the dominant problem areas found in the interview study, students’ Language 
difficulties and the Heterogeneity of students, a calculus learning environment4 with justification 
tasks was designed and given to 15 teachers for application and subsequent evaluation.5 Language 
support is provided by a toolbox in two versions, based on ideas of Meyer and Prediger (2012), 
among others. To cope with the students’ heterogeneity, potential for differentiation is given by a 
task structure orientated towards Bruder and Reibold’s concept of Blütenaufgaben6 (2011). To 
support students who have problems with argumentation in general on the one hand and students 
with problems concerning language on the other hand, there is a prepended worked-out example. A 
study of Reiss et al indicates that “self-explaining heuristic worked-out examples are a qualified 
instrument for improving students’ achievement on reasoning and proof in the mathematics 
classroom” (2008, p. 463).   

The learning environment was evaluated using written interviews. The analysis of these interviews 
showed that the learning environment is suitable for differentiation and the language support works 

4 The term learning environment is used for a large task with several subtasks embedded in a lesson plan together with 
instructions and additional material bound together by one central idea. This is based mainly on (Hirt & Wälti, 2008). 

5 The design principles of the learning environment and first results of study 2 have been published in (Scheffler, 2018). 

6 Blütenaufgaben (literal translation: blossom tasks) open like flower heads, which means their subtasks have different 
requirement levels and vary from closed to open-ended tasks. The subtasks are independent, though (Bruder & Reibold, 
2011). 
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if a suitable version of the learning environment is chosen. As a result, it is important that teachers 
have distinct diagnostic competencies to be able to support their students. 

Discussion and Conclusions  
This paper presented an interview study with teachers about mathematical argumentation in upper-
secondary calculus classrooms. The qualitative and explorative character of the study provided an 
insight into current practices of argumentation in calculus teaching. The results might be used to 
generate possible hypotheses which could be examined quantitatively to learn more from the teachers’ 
perspective. Whether the results can be transferred to other sections of mathematics teaching in upper-
secondary school, is debatable. The complexity of calculus in comparison to stochastics and analytic 
geometry indicate that automatic transfer is not possible. What could be shown is that the interviewed 
teachers have a wide understanding of mathematical argumentation. They include different aspects 
of argumentation and reasoning in their calculus classrooms, but they hesitate to incorporate 
justifications in a written way or let students do so. They are also reluctant to use formal 
argumentations such as proofs, which is a bit surprising because teachers spoke of the upper-
secondary level. This, however, can be justified as long as pre- or semi-formal mathematical 
argumentation is seen as pre-stage to proving, interested students are able to encounter formal 
arguments as well, and a realistic and representative view of mathematics is conveyed. Although the 
KMK Bildungsstandards have set a framework for teaching mathematics on an upper-secondary level 
in Germany, argumentation does not seem to play a role in mathematics teaching as much as it ideally 
should. Teachers basically have a positive attitude towards training argumentative competencies in 
their calculus teaching, but they also face a wide range of problems and difficulties. Two dominant 
problem areas could be found: Students have difficulties with language, especially when writing 
down their justifications, and teachers have problems dealing with the heterogeneity of their students. 
To work on these problems, a learning environment with differentiating character and language 
support has been developed and evaluated in a follow-up study. It could be shown that taking action 
is possible and that it is important for teachers to choose suitable teaching material for their students. 
More material should be developed to assist teachers and hence to help students develop 
argumentative competencies. It is a good basis that the interview study suggests that teachers consider 
argumentation in calculus classrooms important. 
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Integrating Euclidean rationality of proving with a dynamic approach 
to validation of statements: The role of continuity of transformations 
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During a long-term teaching experiment aimed at developing 10th grade students’ culture of theorems 
through a pathway in Euclidean plane geometry, some students’ autonomous reasoning moved 
towards non-Euclidean proofs based on continuity of transformation of geometric figures. Based on 
the use of existing analytical tools to analyze such episodes, the aim of this paper is to outline a wider 
scope for synthetic geometry in order to make it more suitable for students’ approach to the culture 
of theorems. Through the introduction of a continuity principle to legitimate such extension, the paper 
suggests how to exploit students’ potential in transformational reasoning, and to bridge the gap 
between synthetic geometry and analytic geometry rationalities in classroom work. 
Keywords: Euclidean geometry, transformational reasoning, continuity principle, rationality. 

Introduction 
Since 2016 we are engaged in designing and implementing in 10th-grade classes a teaching and 
learning pathway in Euclidean geometry aimed at promoting students’ approach to the culture of 
theorems (Bartolini Bussi, Boero, Ferri, Garuti, & Mariotti, 2007) – i.e. at developing not only the 
knowledge of statements, proofs and their applications, but also autonomous proving and the 
awareness of crucial meta-knowledge about theorems (the role of hypotheses and thesis, the 
requirements of proof, etc.). Such aim is not easy to attain; the question that originated the study 
reported in this paper was: is it possible to lessen the students’ difficulties with proving by 
legitimating some spontaneous ways of solving geometry problems and validating statements? Let us 
consider an episode, a single case of a wider phenomenon observed in the three classes where the 
experiments on our pathway have been performed. Its role is to put into evidence the potential 
inherent in students’ dynamic approach to solving theoretical problems in geometry. Students have 
already learnt to construct a circle tangent to both sides of an angle, and to justify the construction. 
In interaction among them and with the teacher, students have learned to build up the circle with 
center chosen on the bisector and ray derived from the following construction: to draw the 
perpendicular line from the chosen center to one side of the angle; to consider its intersection with 
that side, and the segment joining it with the center as the ray of the circle. They have proved (with 
the help of the teacher) that the drawn circle is tangent to both sides of the angle through the steps of 
Euclid’ validation of the same construction. Some weeks later they are asked to construct a circle 
tangent to the three sides of a given triangle. They have at their disposal a worksheet with a drawn 
triangle, the ruler and the compass. 

 

One student (Ale) draws the bisector of the angle ABC, then he tries to 
choose a point on the bisector as the center of a circle by taking different 
points on the bisector and adapting the width of the compass to the sides of 
the triangle. Finally, he draws the circle S (the arrow and S are added to the 
original figure). Ale is not satisfied with his drawing. After a while he makes 
a free-hand drawing of a circle near to B, then other circles more and more 
near to AC. Finally, he stops and observes the worksheet for several seconds. 
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Figure 1 
Then he starts writing: “The solution of the problem is when the circle, which 
is tangent to the sides of the angle B, meets the third side”. The participant 
observer (PO: the first author of this paper) starts an interaction with Ale: 

PO: May you explain your reasoning to me? 

Ale: The tangent circle becomes bigger and bigger, and a certain moment a circle will meet the 
third side. It will be the solution! 

PO: Why? Are you sure that it is tangent to the three sides of the triangle? 

Ale: Yes, when I move the center on the bisector the circle is (pause) the circle becomes bigger 
and bigger, and remains tangent to the two sides of the bisector (pause) 

PO: Are you sure that it becomes tangent to the third side? 

Ale: Because the circle (pause) if I continue moving the point on the bisector, one part of the circle 
will go outside the triangle (pause) Therefore there will be ONE (emphasis) point 
to get the contact, (pause) the tangency with the third side. 

PO: And if the circle becomes bigger and bigger? 

Ale: It will be no more tangent to the sides of the triangle, but… No, if I come back, the two 
intersections finally join in the tangency point. 

Given that the circle exists (by such continuity considerations) it is easy to prove that its center 
belongs to the three bisectors - provided that students already know that if a point is equidistant from 
the sides of an angle, it belongs to the bisector of the angle, and that the tangent straight line is 
perpendicular to the ray in the point of tangency. Hence the ruler and compass construction may be 
easily made by using the intersection point of two bisectors and the perpendicular straight line from 
it to one side of the circle. In this case the method of construction derives from the reasoning used to 
prove the existence of the tangent circle and the knowledge of its properties. Note that performed 
exploration might result in the construction of a theoretical justification (cognitive unity of theorems: 
see later), once Ale’s reasoning by continuity would be legitimated. 

In Book IV of the Elements (prop.4) Euclid describes how to construct a circle tangent to the three 
sides of a given triangle and provides a theoretical justification for it.  

PROPOSITION 4 (book 4, Heath’s translation) 

In a given triangle to inscribe a circle.  
Let ABC be the given triangle; thus it is required to inscribe a 
circle in the triangle ABC.  
Let the angles ABC, ACB be bisected by the straight 
lines BD, CD [I. 9], and let these meet one another at the point D; 
from D let DE, DF, DG be drawn perpendicular to the 
straight lines AB, BC, CA.  
Now, since the angle ABD is equal to the angle CBD, and the 
right angle BED is also equal to the right 
angle BFD, EBD, FBD are two triangles having two angles equal 
to two angles and one side equal to one side, namely that 
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Figure 2 
subtending one of the equal angles, which is BD common to the 
triangles; therefore they will also have the remaining sides equal 
to the remaining sides;  

[I. 26], therefore DE is equal to DF. For the same reason DG is also equal to DF. Therefore the three 
straight lines DE, DF, DG are equal to one another; therefore the circle described with centre D and 
distance one of the straight lines DE, DF, DG will pass also through the remaining points, and will 
touch the straight lines AB, BC, CA, because the angles at the points E, F, G are right. 

For, if it cuts them, the straight line drawn at right angles to the diameter of the circle from its 
extremity will be found to fall within the circle : which was proved absurd; [III. 16] therefore the 
circle described with centre D and distance one of the straight lines DE, DF, DG will not cut the 
straight lines AB, BC, CA; therefore it will touch them, and will be the circle inscribed in the 
triangle ABC. [IV. Def. 5]. Let it be inscribed, as FGE.  

Euclid’s line of thinking is different from Ale’s. Euclid describes how to solve the problem of the 
circle inscribed in a triangle by finding candidates to be the center of the circle and three of its rays, 
then a theoretical justification for the chosen solution follows, which relies on definitions and 
previously proved theorems, and results in a proof of the existence of the inscribed circle. No 
continuity or transformational considerations are made.  

Based on the above episode and other episodes that will be shortly presented later, and with reference 
to some constructs in mathematics education literature, integrated with a principle of continuity to 
legitimate the widening of the scope of synthetic geometry, we will present and discuss the potential 
inherent in students’ transformational reasoning (Simon, 2006) in the approach to the culture of 
theorems, once that principle is assumed. 

Theoretical background 
Transformational reasoning, and the continuity principle 

Transformational reasoning was defined by Simon (1996) as:  
The mental or physical enactment of an operation or set of operations on an object or set of objects 
that allows one to envision the transformations that these objects undergo and the set of results of 
these operations. Central to transformational reasoning is the ability to consider, not a static state, 
but a dynamic process by which a new state or a continuum of states are generated (p. 201). 

In past research of our group this construct was already used, in particular, to characterize one of the 
types of generation of conditionality of statements (Boero, Garuti, & Lemut, 1999). In this paper it 
will be used to describe processes of discovery of the reason why a statement is true, or strategies to 
solve a construction problem in Euclidean geometry.  

In our toolkit we will integrate the construct of transformational reasoning with a principle of 
continuity. Continuity provides students not only with hints for the solution of a construction problem 
or a proving problem, but also, in some cases, substantial elements for the validity of the construction 
and the proof. For instance, in the episode presented in the Introduction, Ale “by continuity” proves 
the existence of the tangent circle. Thus a principle of continuity as a criterion for the epistemic 
validity of a conclusion derived through transformational reasoning might widen the scope of 
acceptable proofs, with positive consequences for the approach to the culture of theorems (see 
Discussion).   How to formulate the continuity principle within the perspective of synthetic geometry 
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(i.e. geometry theory based on constructions performed with ruler and compass)? Continuity axioms 
(including Archimedes’ axiom) were among the axioms added by Hilbert to Euclid’s axioms 
(Trudeau, 1987), but it is not easy to formulate a consequence of them which in simple operational 
terms accounts for the truth of the “existence theorem” proved by Ale. However, it is possible to 
provide a formulation of the continuity principle in operational terms by making reference to analytic 
geometry:  

The continuity principle guarantees the solution of a synthetic geometry problem through 
transformational reasoning provided that the translation of the problem and the related 
transformational strategy into analytic terms (by using algebraic expressions) allows a treatment 
which brings to the solution thanks to the continuity of the set of real numbers. 

As an example, consider the episode presented in the Introduction. As a generic example (Mason & 
Pimm, 1984) of the situation, we may assume B=(0,0), a represented by x=0, b represented by y=0, 
and the side AC represented by y=-2x+3. Then the system y=-2x+3  & (x-K)2+(y-K)2=K2 , will 
represent the circle centered in the point (K, K) of the bisector, which is tangent to a and b. By varying 
K we represent the situations of no intersection with the straight line y=-2x+3, of tangency (two 
possibilities, including tangency from the exterior), and of intersection in two points. 

We will use the above criterion as a provisional solution for the characterization of the continuity 
principle; further research (and the analysis of more episodes!) is needed to formulate it in more 
precise and effective terms. 
Theorems 

Mariotti (2001) defined a Theorem as a statement and its proof with reference to a theory (and related 
inference rules). With reference to Guala & Boero (2017), Mariotti’s definition  

encompasses theorems related to various kinds of theories throughout history (e.g., Euclid’s, as 
well as Hilbert’s, geometry; graph theory, with its crucial reference to visual objects; 19th-century 
classical probability theory as well as Kolmogorov’s axiomatic theory, etc.), together with the 
different ways of considering proof since the Greeks (Grabiner, 2012) along with the cultures these 
ways came from (Siu, 2012) (p. 210). 

In this paper we use the construct of Theorem to consider different, possible ways of proving the 
same theorem with reference to different theories and different inference rules. 

Cognitive unity of theorems 

After having found some cases of theorems (in geometry, and in elementary arithmetic) for which 
students behaved in a similar way, Garuti, Boero and Lemut (1998) defined “cognitive unity of 
theorem” what happens for some theorems when:  

during the production of the conjecture, the student progressively works out his/her statement 
through an intensive argumentative activity functionally intermingled with the justification of the 
plausibility of his/her choices. During the subsequent statement-proving stage, the student links 
up with this process in a coherent way, organizing some of the previously produced arguments 
according to a logical chain (p. 345). 

The cognitive unity construct was also extended to the case of the relationships between the 
exploratory phase of proving a theorem, and the subsequent construction of a proof for that theorem 
(Garuti et al., 1998): indeed, the exploratory phase of proving shares some common aspects with 
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conjecturing (as re-construction of the meaning, and appropriation, of a statement; and identification 
of elements for its validity).  

The cognitive unity construct may be used to account for what happens when students produce, thanks 
to transformational reasoning, arguments that may be re-arranged in a proof (be it Euclidean, or based 
on a continuity principle: see the episode in the Introduction).  
Rationality 

Many cultural activities (including mathematical ones) may be described as discursive activities 
sharing some common features: First, criteria to establish truth and falsity of propositions, and 
validity of reasoning. Second, strategies to attain the goal of the activity, which can be evaluated. 
Third, a specific language for social interaction and self- dialogue. 

The rationality construct elaborated by Habermas (1998) may be exploited to move from such a 
superficial description to a deeper treatment of discursive activities. According to Habermas’ 
construct, rational behavior is characterized by: conscious taking in charge of truth and validity 
criteria (epistemic rationality), of strategies to attain the goal (teleological rationality), and of 
communication means (communicative rationality); and by dynamic links between knowing, doing 
and communicating in the rationality perspective (for a discussion of potential and limitations of 
Habermas’ construct as it was adapted to mathematics education, see Boero & Planas, 2014).  

Where the episodes come from 
We think that it is important to put into evidence some salient features of the long term teaching 
experiment that provided us with the elements for the theoretical elaboration of this paper (in 
particular, Ale’s and other episodes like those presented here); in particular we agree with Simon 
(1996) when he says that transformational reasoning is a natural way of thinking, which needs to be 
“nurtured” - thus suitable cultural and educational choices must be performed in order to allow 
students to develop it. 

A teaching-learning pathway to the culture of theorems 

We have chosen to base the approach to the culture of theorems in grade X of high school on the 
Euclid’s plane geometry for the following reasons: First, in Italy, since the end of the XIX century   
and for several decades Euclidean geometry was the main subject intended to allow secondary 
students to meet theorems, proofs, proving. Second, Euclidean geometry offers the possibility to 
approach different kinds of proof (including proof by contradiction – the preferred indirect proof in 
Euclid’s Elements). Third, through the alternation of “theorems” and “constructions to be validated” 
in Euclidean geometry the teacher is offered the opportunity of stressing the relevance of theoretical 
thinking in mathematics – in particular the distinction between a drawing and a geometric figure, and 
the need of moving from visual truth to theoretical truth (even if in Euclid’s elements the goal of 
going beyond visual evidence to validate statements is not completely accomplished: see Trudeau, 
1987. However, in our design we have not followed any path taken as such from Euclid’s Elements; 
we have chosen only some constructions and some theorems. In the case of theorems with a thesis 
consisting of more than one claim we have chosen only one claim (this is in the case of the theorem 
considered in the second and third episodes below).  
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The educational context of the episodes 

The episodes presented in this paper happened within a pathway to the culture of theorems in the 
domain of Euclidean geometry that had been experimented for the first time in the year 2016-17 in a 
10th-grade class of a scientific oriented high school, and in the year 2017-18 in two 10th-grade classes 
of the same school, with two 50’ lessons per week from October to May (out of 5 hours devoted also 
to other mathematics subjects: algebra, probability and statistics). Classroom activities were based on 
an alternation of individual activities, in some cases preceded by a constructive interaction with the 
teacher, and collective activities. Individual activities concerned six kinds of tasks: solution of 
construction problems, conjecturing, proving, analyzing, evaluating and improving some 
schoolfellow’s productions, close activities regarding proof texts. Collective discussions were 
orchestrated by the teacher and in most cases concerned the comparison and the critical analysis of a 
few students’ individual productions selected by the teacher. According to the aim of developing 
competencies related to the culture of theorems, the assessment method consisted of: the individual 
revision of individual work at the end of each of the three parts in which the pathway was divided, 
with careful identification and remediation of “what does not work” in each individual production, 
and an overall synthesis on the individual itinerary concerning difficulties met, still obscure points, 
reasons for mistakes, emotional problems, etc.  This evaluation method was derived and adapted from 
a similar method currently adopted in several Genoa University courses for pre-service teacher 
education aimed at developing professional competencies of cultural analysis of the content to be 
taught (see Guala & Boero, 2017, for more information on the assessment method and its 
motivations).  

Further episodes 
We have chosen three further episodes. Like that presented in the Introduction, they concern relations 
among circles and straight lines. They show different roles that may be plaid by transformational 
reasoning and continuity in the field of plane geometry, and how to legitimate them within the 
proposed theoretical framework, in particular through the continuity principle. 
The rolling circle 

Students are requested to find if it exists a position of a given circle, such that the circle is tangent to 
two sides of an angle, and to justify the answer. Some students imagine to roll the circle on one line 
towards the second line and they discover that “Yes, it exists, because there is a moment in which the 
rolling circle starts to touch the second line; in that moment it is tangent to both lines”. This intuition 
of the rolling circle facilitates also the discovery that, in the found position of the circle, the center of 
the circle is the point of intersection of the two straight lines that are parallel to the sides of the angle 
at the distance of the ray of the circle. Students “see” the movement of the center of the circle in 
parallel with the first line, and (after the tangency position) with the second line.  

By considering the generic case of the straight lines y=0 and y=x and of the rolling circle (x-K)2+y2=1, 
the continuity principle may be applied to legitimate the solution find by the students. 

All this suggests a way both to find the center of the circle when it is tangent to both lines (a heuristic 
function for the solution of a construction problem), and to explain why in that position it is tangent 
to both lines (a proving function, once the continuity principle is adopted) – in a perspective of 
cognitive unity of theorems. 
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Comparing the length of the chords of a circle 

The diameter of a circle is its longest chord, and the length of the chord increases when its middle 
point approaches the center of the circle. 

This is part of proposition 15 of Book 3 of the Elements: 
Of straight lines in a circle the diameter is greatest, and of the rest the nearer to the centre is always 
greater than the more remote.  

Euclid proof is rather complex- it needs the proof of 6 intermediate statements. 

Figure 3 

A student produces a reasoning that may be reported this way: he fixes a point on the circle and 
considers a chord on that side of the circle “which is opposite to it”, with corresponding angles at the 
center of the circle. He imagines to move the chord towards the center and he observes that the nearer 
the chord is to the center, the bigger is the corresponding angle –till when the chord becomes the 
diameter by collapsing on the two aligned rays. This is not yet a proof of the theorem, but the student’s 
line of reasoning might be integrated with elements that allow to prove that the length of the chord 
increases when the chord approaches the diameter. Indeed, the triangles obtained by joining the 
extremities of the chord with the center of the circle have two sides of equal length (the ray of the 
circle) and the width of the angle between them increases, thus also the length of the side opposite to 
the center increases. This may suggest to exploit the triangular inequality –the chord is shorter than 
the sum of the rays– to prove that the diameter (two rays long) is the longest chord; and it may 
suggests also to use Pythagoras’ theorem in order to prove that the length of the chords increases 
when the distance between the chord and the center of the circle decreases, or to find the length  
2√1-K2 of the chord intersected by y=K on the generic circle  x2+y2=1: the length of the chord attains 
its maximum value 2 when K=0, i.e. when the chord becomes a diameter. 

Tangency between a straight line and a circle. 

By composing two statements of Euclid’s Elements, we get the following statement: 
Given a circle centered in C and a straight line a intersecting the circle in the point T, the straight 
line a is tangent to the circle (i.e. T is their only common point) if and only if the straight line is 
perpendicular to CT. 

While trying to prove the “if” part of the statement, students were suggested by the teacher to reason 
by contradiction; they were also invited to consider a second point of intersection T’. Some students 
reacted to the discovery of a contradiction (an isosceles triangle with two rectangular angles) by 
imagining to make CT’ collapse on CT by rotating it around C. This movement might be exploited 
to expand their reasoning through the consideration of the isosceles triangle TCT’ and its height CH. 
The identity CH = √(CT2-TH2)  (Pythagoras theorem) allows to prove (by continuity) that TT’ is 0 
(i.e. there is only one point of intersection – which means tangency) if and only if the height CH of 
the triangle collapse on CT, i.e. if and only if CT is perpendicular to the straight line a. 
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In this case transformational reasoning produced by some students might play a double heuristic role: 
first, to suggest the necessity of the condition of perpendicularity for the tangency while proving its 
sufficiency; second, to suggest the way to get a proof (by the continuity principle) of the “if and only 
if” statement – still, cognitive unity might allow to arrange a valid, simple proof. 

Discussion 
Transformational reasoning combined with the continuity principle may play three roles for the 
approach to the culture of theorems and, more generally, for the development of students’ 
mathematical rationalities: first, it may help solving a construction problem and simplifying its proof, 
in comparison with the Euclid’s proof (like in the episode presented in the introduction). Second, it 
may play a heuristic function by suggesting a method of proving in Euclidean geometry, or eventually 
a method of proving by relying on the continuity principle (like in the last two episodes). Third, it 
may allow to compare different ways of proving the same theorem in synthetic geometry, thus 
contributing to the development of the culture of theorems and at the same time to an initial 
understanding of the fact that a theorem may be tackled with different strategies and according to 
different criteria of truth and of validity of proving methods. Concerning the second and the third 
role, we may observe how the adoption of a principle of continuity would imply changes in the 
rationality of the discursive activity of proving, in comparison with Euclidean rationality. On the 
epistemic side: a new criterion of truth is introduced. On the teleological side:  for a construction 
problem, the existence of the solution may be got through transformational reasoning; for the proof 
of a theorem, transformational reasoning in several cases (see our episodes) guarantees the possibility 
of the cognitive unity between the exploration phase and the proving phase. On the communicative 
side, new verbs and expressions are necessary to account for the specificities of transformational 
reasoning, in comparison with the language of Euclidean geometry. In the perspective of rationality, 
the principle of continuity might allow to compare (for some theorems) methods of proof 
corresponding to Euclid’s ones with methods of proof which depend not only on Euclids’ axioms and 
theorems,  but also on the additional principle, thus contributing to the culture of theorems and prepare 
students to move to other theories – in particular, Analytic geometry – and help to “cross the borders” 
between the two domains (and the inherent rationalities: see Boero, Guala, & Morselli, 2013). We 
observe how, in the problem situations of our episodes, the principle of continuity may be easily 
related to the algebraic modelization of the situations at stake. For instance, in the case of the last 
episode we may consider the circle of center (0,0) and ray 1, whose equation is x2+y2=1, and its 
intersections with the straight line of equation y=kx+1, which meets the circle in the point (0,1). The 
algebraic treatment of the system of the two equations offers an immediate answer to the problem of 
tangency by discussing the solutions of the second degree equation: (1+k2)x2+2kx=0 derived from 
the system. The equation has the solutions (x-coordinates of the intersection points) x=0, x=k/(1+k2).  
They are coincident (i.e. tangency, in terms of analytic geometry) for k=0, i.e., when the straight line 
of equation y=kx+1 becomes perpendicular to the ray of the circle with extremities (0,0) and (0,1). 
Conversely, including the principle of continuity in synthetic geometry might allow to give sense to 
the algebraic expressions that are used in the algebraic modeling process of geometry problems, 
particularly as regards the role of the variable(s) – which not only are signs to be dealt with according 
to the syntactic rules of the algebraic language, but also represent dynamic phenomena (in our case, 
geometric transformations). 
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In this section we have used the expressions “may”, “might allow” several times to outline possible 
directions for studies, intended to develop the culture of theorems in the classroom on the reflective 
and on the operational sides, once the continuity principle (possibly, after further elaboration) is 
assumed to legitimate an extension of the scope of synthetic geometry and the inherent rationality.  
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Motivation 
It is a desideratum that mathematical argumentation should be integrated into today’s mathematics 
teaching. In reality, opportunities for learning mathematical argumentation are infrequent. 
Algebraic language is often understood only as a series of signs that can be transformed according 
to certain rules and the same applies to algebraic argumentation (Pedemonte, 2008). Such 
argumentations present an epistemological challenge for students because they are detached from 
concrete examples. The integration of mathematical argumentation into teaching and the 
appreciation of different types of arguments is therefore of crucial relevance. The role of the teacher 
in this needs to be clarified.  

The aim of my PhD project is to investigate the role of the teacher in the development of structure-
based argumentations in classroom practice. What kind of support can teachers in mathematics 
education give their students in order to guide their argumentation from concrete examples to 
general structures? How does this support influence the students’ argumentation and their 
conception of algebraic language? For this purpose, a learning environment at the transition from 
arithmetic to algebra was designed and implemented in three eighth-grade classes in Germany. The 
main ideas of my teaching design and learning environment will be presented in this poster.  

Theoretical framework 
Sfard (1991) distinguishes between an operational and a structural conception of mathematical 
objects. In an operational conception, mathematical objects are perceived as a process. In a 
structural conception mathematical objects are conceived as static constructs, objects. Reification is 
necessary to conceive mathematical objects structurally. There are different types of mathematical 
arguments. Structure-based arguments use properties of the involved objects instead of only 
calculation-oriented transformations of algebraic expressions without relation to the content. Mason 
(1996) describes that, as a first step, learners should investigate examples and their structure in 
order to be able to develop general arguments using symbolic language. This idea guided the 
construction of the learning environment in my project. Connections between the conception of 
algebraic language and the development of structure-based argumentations are examined as well. 

All in all, the teacher has an important role in mathematical argumentation. Conner, Singletary, 
Smith, Wagner and Francisco (2014) describe three different types of support for collective 
argumentation by teachers: “Direct contributions to arguments”, “Asking questions” and “Other 
supportive actions” (e.g., evaluating, repeating). In addition to that, it is interesting how teachers 
enact written tasks in classrooms. This can lead students to an interpretation of tasks that can 
provide rich opportunities for argumentation or create obstacles. Whether and how this support can 
affect the arguments of pupils has been researched little so far and is a focus of this study. 
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Research project and methodology 
First, tasks for eighth-grade classes and teacher prompts are theoretically constructed, which are 
supposed to stimulate a structure orientation and provide opportunities for mathematical 
argumentation. Then, a learning environment is designed and empirically enacted. Two interviews 
with teachers are conducted to get insights into the teachers’ understanding of mathematical 
argumentation and into their experiences with the designed learning environment. Then, from 
transcripts of the lessons, argumentation processes and students’ conceptions are reconstructed and 
analysed with a focus on the prompts of the teacher that promote a structure orientation. All this 
will inform a revision of the learning environment. The following research questions guide my 
study: How can teachers constructively support their students in developing structure-based 
argumentations? How do a teaching design and a learning environment for the development of 
structure-based argumentations in mathematics lessons look? 

Structure of the learning environment  

An intervention of four lessons (90 min each) was designed and performed. All tasks provide 
opportunities for mathematical argumentation. The teaching environment and tasks are designed in 
a way that allows students to build on concrete examples, examine the structure of these examples, 
and finally develop structure-based arguments. All tasks support this strategic approach to 
argumentation: 1. Observe; 2. Assume; 3. Analyse and check; 4. Justify. Learners are not simply 
asked to do calculations in the tasks, but to observe and reflect the mathematical structures of the 
numbers to support structure orientation (see Wittmann, 1985; Mason, 1996). In the first two 
lessons, the students get to know four different types of arguments (explanatory arguments in form 
of a dot pattern; generic examples; algebraic and narrative arguments) and have to solve conjecture-
and-proving tasks. In the third and fourth lesson, the students learn to argue in a new format and 
more sophisticated arguments are demanded in context of “arithmogons”: the sum of two corners is 
a side (Wittmann, 1985).  

All in all, this learning environment should provide students opportunities to learn mathematical 
argumentation and to establish a structure orientation. How teachers enact this learning 
environment, support their students and which impact this support has will be analysed in my study. 

References 

Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher 
support for collective argumentation: A framework for examining how teachers support 
students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 
401–429. 

Mason, J. (1996). Expressing Generality and Roots of Algebra. In N. Bednarz, C. Kieran, & L. Lee 
(Hrsg.), Approaches to Algebra (pp. 65–86). Dordrecht, Netherlands: Springer. 

Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM, 40(3), 385–400. 

Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on Processes and 
Objects as Different Sides of the Same Coin. Educational Studies in Mathematics, 22(1), 1–36. 

Wittmann, E. C. (1985). Objekte-Operationen-Wirkungen: Das operative Prinzip in der 
Mathematikdidaktik. Mathematik lehren, 11, 7–11. 

Thematic Working Group 01

Proceedings of CERME11 146



Prospective teachers enacting proof tasks in secondary mathematics 
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We use a curriculum design framework to analyze how prospective secondary teachers (PSTs) 
designed and implemented in local schools, lessons that integrate ongoing mathematical topics with 
one of the four proof themes addressed in the capstone course Mathematical Reasoning and Proving 
for Secondary Teachers. In this paper we focus on lessons developed around the conditional 
statements proof theme. We examine the ways in which PSTs integrated conditional statements in 
their lesson plans, how these lessons were implemented in classrooms, and the challenges PSTs 
encountered in these processes. Our results suggest that even when PSTs designed rich lesson plans, 
they often struggled to adjust their language to the students’ level and to maintain the cognitive 
demand of the tasks. We conclude by discussing possible supports for PSTs’ learning in these areas. 

Keywords: Reasoning and Proving, Preservice Secondary Teachers, Lesson Plans, Task Design   

Integrating reasoning and proving in secondary schools has been an elusive goal of the mathematics 
education community. Despite agreement of the importance of reasoning and proving in school 
mathematics among scholars and policy makers, proof has been shown to be a “hard-to-teach and 
hard-to-learn” concept (Stylianides & Stylianides, 2017, p. 119). Areas that have been identified as 
being persistently difficult for students, but also critically important for proof production and 
comprehension, are the following: (1) understanding the role of examples in proving including 
recognition of the limitation of supportive examples as proofs and the role of a single counterexample 
as refuting evidence, (2) conditional statements, (3) argument evaluation, and (4) indirect reasoning 
(e.g., Antonini & Mariotti, 2008; Durand-Guerrier, 2003). We term these areas “proof themes”. Our 
choice of these four proof themes stems from the literature and our own experience as instructors 
observing prospective secondary teachers’ (PSTs’) challenges in university coursework. Our study 
rests on the assumption that these proof themes can be integrated into secondary school mathematics 
in “intellectually honest” ways that are true to the discipline of mathematics and honor students as 
learners (Bruner, 1960; Stylianides, 2007). Towards this end we developed and systematically studied 
a capstone course Mathematical Reasoning and Proving for Secondary Teachers, which intended to 
support PSTs in developing robust knowledge and pedagogical skills for integrating proof in their 
classroom practices.  

The course aimed to increase PSTs’ awareness of the logical aspects of proof and the place of proof 
in secondary curricula, expose PSTs to common student difficulties with proof, and provide PSTs 
with pedagogical tools to create or modify tasks that integrate reasoning and proving. In the practical 
component of the course, PSTs developed lessons on each of the four proof themes and taught them 
in local schools. In this paper, we focus on two PSTs’ lessons plans that successfully integrated the 
conditional statements proof theme and analyze how these lessons were enacted in classrooms. Our 
analysis reveals the aspects of lesson enactment that were successful and those that posed challenges 
to PSTs. In the discussion, we contemplate potential reasons for these challenges and how we, as 
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teacher educators, can further support PSTs in the process of integrating proof in their teaching 
practices. 

Theoretical Perspectives 
We adopt Stylianides and Stylianides’ (2017) definition of proof as “a mathematical argument for or 
against a mathematical claim that is both mathematically sound and conceptually accessible to the 
members of the local community where the argument is offered” (p. 212). By “proving” we mean 
processes such as conjecturing, generalizing and making valid arguments grounded in mathematical 
deductions rather than authority or empirical evidence (Ellis, Bieda, & Knuth, 2012). Implicit in this 
definition is that students must develop understanding of what a deductive argument is, and that 
teachers must provide opportunities for students to develop such understanding through instructional 
activities. Teachers, on their part, rely on curriculum materials to facilitate student learning of proof.     

Stein, Remillard and Smith (2007) distinguish between the written curriculum, which includes written 
artifacts that teachers and students use, the intended curriculum, which is the teacher’s lesson plan, 
and the enacted curriculum that is the lesson as it unfolds in the classroom (Fig. 1).  

 
Figure 1: Phases of curriculum. Adapted from Stein, Remillard, & Smith, 2007, p.322  

From the perspective of a secondary teacher aiming to integrate reasoning and proof into the 
mathematics curriculum, we find that each element of this model (Fig. 1) presents unique challenges. 
First, written curricula in the United States, such as textbooks, offer limited proof-related tasks outside 
high-school geometry (e.g., Thompson, Senk, & Johnson, 2012). Thus, it becomes the work of the 
teacher to design tasks and develop an intended curriculum. Next, as the teacher enacts the lesson in 
the classroom, he/she must use appropriate language and conceptual tools that are within the reach of 
secondary students to highlight mathematical ideas. Here, again, curriculum materials offer little 
guidance to teachers on how to enact proof tasks in classrooms (Stylianides, 2008) in ways that 
support development of students’ conceptions which are in line with conventional mathematics. Thus, 
much of the curriculum design and implementation around proof rests on teachers’ own knowledge 
and beliefs about the importance of proof for their students’ mathematical learning.  

Supporting PSTs in developing such knowledge and productive dispositions towards proof were the 
goals of the capstone course. In Buchbinder and McCrone (2018) we describe the course structure 
and its theoretical underpinnings. Here, we illustrate the design features of the course that were 
intended to support PSTs in development and enactment of a lesson on conditional statements. We 
use conditional statements as an example, but our analyses apply to all four proof themes mentioned.  

Setting 

The course Mathematical Reasoning and Proving for Secondary Teachers contains four modules, 
each addressing one of the proof themes. In the Conditional Statements module, PSTs first engaged 
in activities designed to strengthen their knowledge of conditional statements. This knowledge 
includes understanding that a conditional statement has the form: 𝐼𝐼𝐼𝐼 𝑃𝑃 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑄𝑄 (𝑃𝑃 ⇒ 𝑄𝑄), where P is 
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a hypothesis and Q is a conclusion; how to determine truth-value of such a statement; its equivalent 
forms such as a contrapositive (~𝑄𝑄 ⇒ ~𝑃𝑃) and non-equivalent forms, such as a converse (𝑄𝑄 ⇒ 𝑃𝑃).  

PSTs then examined excerpts of hypothetical student work related to conditional statements, analyzed 
students’ conceptions, and contemplated ways to address students’ difficulties. Next, the PSTs 
reviewed a sample of mathematics textbooks to examine where conditional statements appear in the 
school curriculum. These activities aimed to equip PSTs with the background for creating their own 
lessons integrating conditional statements with mathematical topics taught in local schools.  

During the lesson development stage, PSTs shared ideas and received feedback on their lesson plans 
from their peers and the course instructor. The lessons were 50-minutes in length, and were intended 
for small groups of 5-8 students rather than the whole class. All lessons were videotaped with 360° 
cameras to capture both the PSTs’ actions and the students’ participation. PSTs then watched their 
videos and wrote a reflective report. Sharing lesson plans with peers was intended to support PSTs’ 
enactment of their lesson, while reflection reports and instructor’s feedback on it aimed to serve as a 
mechanism for future improvement. Despite multiple means of support embedded in the course 
design, PSTs experienced challenges in developing and enacting lessons on conditional statements, 
as we will show in the results section.  

Methods: Participants, Data Sources and Analysis  
Fifteen PSTs in their last year of university studies took part in the research. Prior to the capstone 
course the PSTs completed most of the required courses in mathematics and pedagogy.   

The data sources for the analysis reported in this paper comprise the PST-developed lesson plans on 
conditional statements, the video recordings of the enacted lessons, and PSTs’ reflective reports. The 
lesson plans were analyzed in terms of their focus on the conditional statements proof theme, and 
assigned a rating of high, medium or low. The low focused lesson plans included no more than 3 
conditional statements and the activity only required students to determine their truth value. For 
example, Chuck’s (all names in the paper are pseudonyms) 8th grade lesson on exponents had three 
true or false questions, such as: “If a negative number is raised to an even power, the result will be a 
positive number.” This question offers opportunities to discuss what is needed to prove or disprove 
such a statement and use the rules of exponents to produce a generic proof accessible to 8th graders. 
Yet, Chuck’s plan merely expected students to produce a “proof” by example, such as (-2)2 = (-2)(-
2) =4, missing the opportunity to attend to a misconception about the limitations of empirical evidence 
as proof and even enforcing it. Lesson plans with high focus on the proof theme contained more than 
three conditional statements along with a clear plan on how they would be used to advance students’ 
knowledge of conditional statements (as examples in the results section will show). A lesson plan 
with medium focus would be located between these two extremes, for example, Rebecca’s lesson on 
logic riddles dealt with reasoning and justifying, but the place of conditional statements was unclear.  

The classroom videos were analyzed using Schoenfeld’s (2013) Teaching for Robust Understanding 
(TRU) rubric which was slightly modified to reflect aspects of teacher work and student interaction 
that are specific to proving. The revised rubric had five dimensions, four related to teacher actions: 
(a) Accuracy, language, and connections, (b) Explicating reasoning and proof theme, (c) Actions to 
promote student engagement, (d) Maintaining cognitive demand; and one dimension related to (e) 
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Student engagement. Each video was divided into thematic episodes, no more than 5 minutes long, 
and each episode was assigned a score of 3 (high), 2 (medium), 1 (low) on each dimension. In the 
results section we illustrate the different dimensions of the rubric and the scoring system.  

Results 
The intended curriculum: Lesson plans  

The analysis of the lesson plans in terms of prevalence of the conditional statements revealed 3 plans 
with low focus on the proof theme, 1 medium and 11 high. Below are examples of two lesson plans 
with a high focus on the conditional statements theme, developed by Bill and Dylan for students in 
grade 10. We chose these lessons to illustrate creative integration of conditional statements with 
regular content in algebra and geometry; as well as the challenges that PSTs encountered while 
enacting the lessons in classrooms.    

Bill’s lesson plan integrated conditional statements with triangle geometry. Each pair of students had 
two sets of notecards: yellow cards had hypotheses written on them (e.g., a triangle is equilateral), 
and green cards had conclusions (e.g., a triangle is isosceles). Students had to create conditional 
statements by matching hypotheses to conclusions. Bill intended to use student-produced statements 
in a whole class discussion to introduce such concepts as domain of a statement and a counterexample. 
Bill also planned to have students physically switch between hypothesis and conclusion cards as a 
way to introduce a converse. The lesson plan did not contain any exposition about what a conditional 
statement is, how it is structured, and what is needed to prove or disprove it. Bill hoped that these 
ideas would come out naturally as the students engaged in and discussed the card-matching activity.   

Dylan’s lesson integrated conditional statements with evaluating expressions and solving simple 
algebraic equations. First, the concept of conditional statements and key vocabulary such as truth 
value, domain and proposition (in lieu of hypothesis and conclusion) was introduced through non-
mathematical examples such as “If a motor vehicle has four wheels then it’s a car.” Next, students 
practiced identifying domain, proposition and determining the truth-value of four statements: (1) If a 
number is divisible by 10, then it is divisible by 5; (2) If a number is not divisible by 10, then the 
number is not divisible by 5; (3) If a number is not divisible by 5, then it is not divisible by 10; and 
(4) If a number is divisible by 5, then it is divisible by 10. Notating the first one as 𝑃𝑃 ⇒ 𝑄𝑄, the other 
statements have the forms: ~𝑃𝑃 ⇒ ~𝑄𝑄, ~𝑄𝑄 ⇒ ~𝑃𝑃, and 𝑄𝑄 ⇒ 𝑃𝑃, respectively, which allows making 
interesting connections. The third task had students identify domain and proposition in statements 
related to evaluating expressions, such as: “If we have the equation 11x – 12 = 1, then the solution of 
x is a whole number”, or “If the side length of a cube is a whole number, then the volume is also a 
whole number.” The students worked on these tasks in pairs and then discussed as a group.  

Both lesson plans meaningfully integrated conditional statements with the mathematical topics Bill 
and Dylan planned to teach. The tasks in the lessons were of high cognitive demand (Silver et al., 
2009) as they required formulating statements, exploring and justifying claims. In the next section 
we examine the transition from the intended to enacted curriculum in Bill’s and Dylan’s lessons.  
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The enacted curriculum: Classroom implementation 

Both Bill’s and Dylan’s lessons were enacted in 10th grade classrooms with a group of 4 students. 
The description of the enactment below follows the five dimensions of the modified TRU rubric. 

Bill’s enacted lesson. Within the dimension of Accuracy, language and communication we 
distinguish between accuracy related to geometry, in which Bill’s performance was impeccable, 
versus accuracy related to the proof theme. Bill’s lesson plan suggested that he intended to build on 
students’ contributions to elicit ideas about conditional statements. Thus, throughout the lesson Bill 
tried to avoid unfamiliar vocabulary and only used informal language. For example, when introducing 
the card matching activity Bill instructed students to match “if-cards” with “then-cards” to create “if-
then” statements. He never introduced the concept of conditional statement and referred to hypothesis 
and conclusion as the “if-part” and “then-part” of the statement throughout the entire lesson. The lack 
of proper mathematical language complicated the classroom communication. Towards the end of the 
lesson Bill wrote a statement and its converse next to each other on the board and asked the students: 
“what changed?” One student responded by saying “the ‘then’ became the ‘if’.” This is a correct 
observation on behalf of the student, which signals the lack of language to describe it. While intending 
to build on student knowledge, Bill missed the opportunity to introduce vocabulary that could help to 
streamline the communication around conditional statements.  

In terms of explicating the conditional statements proof theme, Bill seemed to follow a similar 
strategy of minimizing his input. The mathematical task lent itself naturally to discussing such 
important ideas as generality of a conditional statement and how to determine if it is true or false. 
Yet, the only concept Bill introduced in the lesson was a counterexample, which he informally defined 
as an example that “does not fit the statement and disproves it.” Bill initiated a discussion on how to 
distinguish between examples that support, disprove or are irrelevant to the statement. For the latter 
point he used the statement: “If an angle in a triangle is 45°, then the measure of the third angle is 
45°,” and drew a triangle with no 45° angles. Students were initially confused whether this triangle 
constitutes a counterexample to the statement, so Bill explained that a counterexample must satisfy 
the “if-part” but not the “then-part”. Overall, Bill explicated multiple aspects related to conditional 
statements, but his insistence on using only informal language kept the discussion at a basic level.  

In terms of actions to promote student engagement, Bill’s lesson was rated very high. He encouraged 
participation by asking multiple questions, pushing students to provide explanations and justify their 
thinking. He was attentive to student body language and when he sensed that some students did not 
follow the discussion, he asked a student to repeat what was said in their own words. Bill made sure 
that each student contributed something to the conversation, however the level of student engagement 
was rather moderate. Although all students were listening attentively, they appeared uncomfortable 
when pushed to speak in full sentences, only responding in a few words. As a result, Bill often had to 
break down his questions to a set of simpler ones, lowering the cognitive demand of the tasks. The 
aggregate scores for Bill along the five dimensions are shown in Figure 2a. 

Dylan’s enacted lesson. Similar to Bill, Dylan’s Accuracy, language and communication was 
different when talking about solving equations versus aspects related to conditional statements. The 
latter was often imprecise or not properly adjusted to the students’ level. For example, Dylan said that 
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“when we prove the statement is false, we are providing a counterexample - something that does not 
fulfill the statement.” But since he did not provide a clear explanation of what it means to “not fulfill 
the statement” students occasionally confused an irrelevant example for a counterexample.  

Dylan explicated the conditional statement proof theme much stronger than Bill. Dylan introduced 
some key concepts related to conditional statements, and even some logical notation, e.g., 𝑃𝑃 ⇒ 𝑄𝑄, 
which contributed to more seamless communication. However, Dylan missed multiple opportunities 
to draw connections among the concepts. For example, each of the four conditional statements on 
divisibility by 10 and by 5 was treated as a separate entity during the lesson. We are not claiming that 
Dylan should have delved deeper into logical notation or introduced a contrapositive, which could 
have been overwhelming for the students. However, Dylan missed the opportunity to draw students’ 
attention to the fact that that statements (2) and (4) are disproved by the same counterexample or that 
statements (1) and (3) require a general proof that uses the same key idea of 5 being a factor of 10. In 
his lesson reflection Dylan wrote how impressed he was with the students being able to identify the 
domain and proposition, and correctly justify the truth-value of statements that included negations, 
the converse, and the contrapositive. However, his lesson plan did not mention any of these 
connections, suggesting that the missed opportunity occurred at the planning stage.  

Dylan did a good job in promoting students’ engagement by ensuring that students were on task, 
following up on students’ input, asking questions and pressing for explanations. For their part, 
students participated in the lesson in meaningful ways such as sharing ideas, responding to prompts, 
and justifying their work. As the lesson progressed, and its focus shifted to conditional statements 
involving equations, Dylan payed less attention to the logical aspects, focusing almost entirely on 
solving equations, possibly because students appeared to have difficulties in this area. While trying 
to support student thinking, Dylan often took over the explanation, thus lowering the cognitive 
demand of the tasks. The aggregate scores for Dylan along the five dimensions are shown in Figure 
2b (four on teacher actions and the fifth on student engagement). 

       
Figure 2a: Bill’s enacted lesson.                                2b: Dylan’s enacted lesson 

Figure 2 allows us to compare the various dimensions of Bill’s and Dylan’s enacted lessons. Both 
written lesson plans were rated high on explicating the conditional statements theme, however, Bill’s 
insistence on using informal language resulted in lower scores in the areas of Language and 
Explicating Conditional Statements. Also, as described above, Bill put more effort into promoting 
student engagement, which is reflected in the high score for Promote Engagement (Fig. 2a). For the 
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Cognitive Demand dimension, both Bill and Dylan scored about 2.5 on the three-point scale, 
reflecting the fact that they both tried but did not completely succeeded in maintaining the cognitive 
demand of their intended tasks when enacting their lessons. The Student Engagement dimension was 
also about 2.5 for both Bill and Dylan. We emphasize that in our setting it is not possible to draw 
direct connections between teacher actions and student engagement. Students’ active participation, 
or the lack of thereof, could be in response to the change in their learning routine, by having a standard 
mathematics lesson replaced by one taught by a PST. Nevertheless, we include the student 
engagement dimension in the analysis to show the feasibility of having secondary students participate 
meaningfully in lessons that integrate conditional statements with the ongoing mathematical topics. 

Discussion 
Our goal in this paper was to trace how PSTs who participate in the capstone course Mathematical 
Reasoning and Proving for Secondary Teachers developed and implemented, in real classrooms, 
lessons that integrate aspects of conditional statements with the regular mathematics curriculum. Our 
analysis was grounded in Stein et al. (2007) curriculum framework. Overall, we were impressed with 
the fact that 11 out of 15 PST-developed lesson plans rated high on the prevalence of the conditional 
statements proof theme in them. This is a non-trivial outcome, especially given the limited access to 
pre-existing proof-oriented tasks in traditional US mathematics textbooks (i.e., the written 
curriculum). The majority of our PSTs were able to overcome this limitation, with the appropriate 
instructional support, and use knowledge and skills acquired in the capstone course creatively to 
develop lesson plans (i.e., the intended curriculum) that integrate logical aspects of proof with a 
variety of standard mathematical topics.   

Despite many of the lesson plans having high focus on the conditional statements proof theme, the 
actual enactment of the lesson was often challenging for PSTs, as Bill’s and Dylan’s lessons illustrate. 
The main difficulties observed were adjusting the language to the student audience and clearly 
explicating the proof theme. These difficulties can be due to the fact that the PSTs did not know the 
students prior to the lesson, which impeded their ability to anticipate how students would respond to 
the conditional statements content. We addressed this issue in the subsequent iteration of the course, 
by including a requirement that PSTs provide in their lesson plans a list of mathematical-logical 
concepts they plan to use during the lesson and write a verbatim description of how they intend to 
introduce these concepts to students. The intention is to have the PSTs play out these aspects of the 
lesson plans more explicitly, prior to their enactment, so that their lessons are more likely to match 
the intended curriculum. 

Based on the structure of the course, most PSTs taught a different group of students each time; this 
lack of continuity impedes our ability to make claims about student learning across time. However, 
our analysis showed relatively high levels of student engagement with proving during the PSTs’ 
enacted lessons. Although we cannot attribute this completely to the PSTs’ pedagogical actions, we 
assume that, if the content of the lessons was completely outside students’ interest or conceptual 
reach, we would be seeing much lower levels of student participation.  

The challenges encountered by the PSTs in our study can be partially explained by PSTs’ lack of 
teaching experience. However, we assert that teaching conditional statements, or proof themes, in 

Thematic Working Group 01

Proceedings of CERME11 153



 

 

general, is inherently challenging. Identifying specific areas of challenge for PSTs can help us, as 
mathematics teacher educators, to develop support structures that promote PSTs’ competence in 
enacting reasoning and proof in their future classrooms. Some of these support structures were tested 
in our course design. Through repeated cycles of planning lessons that integrate proof themes within 
regular school curriculum, enacting these lessons in classrooms, and reflecting on them, the PSTs 
gained valuable experiences and developed a sense of feasibility of engaging students in proving.  
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The purpose of this paper is to examine the effects of an intervention study which aimed at improving 
pre-service mathematics teachers’ pedagogical content knowledge (PCK) of proof schemes. Sowder 
and Harel’s (1998) framework of proof schemes constitutes the conceptual framework of this paper. 
To explore twenty-two pre-service teachers’ PCK, we designed a survey using a scenario. The 
quantitative findings of the study revealed that the intervention had a meaningful and large effect on 
participants’ PCK of proof schemes. The qualitative findings of the study indicated that participants 
had difficulties identifying especially symbolic, example-based, transformational and axiomatic proof 
schemes prior to intervention, but they had overcome these difficulties after the intervention. 

Keywords: Proof, proof schemes, pedagogical content knowledge, pre-service mathematics teachers 

Introduction 
Teaching proof is a extremely difficult matter for teachers to overcome (Heinze & Reiss, 2004). For 
teaching proof effectively, teachers should be able to determine types of justification used by their 
students and help them enhance their justification types to be able to reach the axiomatic level. In 
other words, they should have pedagogical content knowledge (PCK) of proof. In this paper, we are 
particularly interested in proof schemes which could be described as cognitive characteristics of 
proving processes (Harel & Sowder, 1998). However, there is a gap in the literature which explores 
or aims to develop PCK of proof schemes which is crucial for pre-service mathematics teachers.  In 
order to address this problem, mathematics teacher educators should look for different ideas to teach 
proof in teacher preparation courses (Stylianides & Stylianides, 2017). Lack of such courses and 
instructional materials in pre-service mathematics teacher education programs call for intervention 
studies that foster PCK of proof.  

Conceptual Framework of the Study: PCK of Proof Schemes 
The conceptual framework of this study adopts two different frameworks: pedagogical content 
knowledge (Shulman, 1987) and proof schemes (Harel & Sowder, 1998; Sowder & Harel, 1998).  
Shulman (1987, p. 8) describes PCK as an “amalgam of content and pedagogy that is uniquely the 
province of teachers”. Various researchers describe different components of PCK. Among them, 
knowledge of students’ thinking has been extensively studied in teacher education literature 
(Depaepe, Verschaffel, & Kelchtermans, 2013). Knowledge of students’ thinking in a specific domain 
such as proof has a topic-specific dimension in it. With this regard, Lesseig (2016) created the "MKT 
for Proof" framework by adapting the Mathematical Knowledge for Teaching (MKT) framework 
developed by Ball, Thames, and Phelps (2008). She defines a subdomain of PCK as the knowledge 
of content and students (KCS) for proof which involves “knowledge of students’ typical conceptions 
or misconceptions of proof as well as an understanding of developmental sequences” (p. 256). More 
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specifically, it is the knowledge of “characteristics of external, empirical and deductive proof 
schemes, students’ tendency to rely on authority or empirical examples, typical progression from 
inductive to deductive proof” (p. 257). In this study, we focus on PCK of proof schemes, knowledge 
of students’ proving processes and identifying students’ proof schemes in particular.   

Proof schemes are cognitive characteristics of the proving process and describe one’s methods of 
justification. Harel and Sowder (1998, p. 244) discovered undergraduate students’ categories of proof 
schemes each of which “represents a cognitive stage and intellectual ability in students’ mathematical 
development”. They offered three main categories and their sub-categories: 

The first category, external proof schemes, points out to an external source that convinces the student. 
Also, students persuade others by referring to these external sources. When this source is an authority 
(e.g. a teacher or a textbook), it is called authoritarian proof scheme. The external source might also 
be the form or appearance of arguments e.g. proofs in geometry must be in two columns. In this case, 
it is called ritual proof scheme. The last sub-category of an external proof scheme is symbolic proof 
schemes which refer to meaningless manipulations of symbols (Harel, 2007). 

The second category is empirical proof schemes. For this scheme, “conjectures are validated, 
impugned, or subverted by appeals to physical facts or sensory experiences” (Harel & Sowder, 1998, 
p. 252). This could be in two ways: (a) relying on evidence from one or more examples (example-
based proof schemes) or (b) relying on intuition or perception to convince or to be convinced 
(perceptual proof schemes) (Harel, 2007).  

The third category is analytical proof schemes which is at the highest level of justification. In this 
case, conjectures are validated by means of logical deductions. It has two sub-categories: 
transformational and axiomatic proof schemes. Transformational proof schemes have three 
characteristics: generality, operational thought, and logical inference. (Harel, 2007). Generality is 
concerned with justifying “for all”. Operational thought takes place when a student “forms goals and 
subgoals and attempts to anticipate his/her outcomes during the proving process” (Harel, 2007, p. 
67). Finally, logical inference requires mathematical justification based on the rules of logical 
inference. In addition to these three characteristics, in the axiomatic proof scheme, proving processes 
are built upon an axiomatic system, therefore must start from accepted principles  (Harel, 2007).  

The aim of the study and the research question 
This study is part of a PhD thesis which aims to design an undergraduate course for developing pre-
service mathematics teachers’ (PSMTs) view, content and pedagogical content knowledge of proof. 
The aim of this study is to report the findings of an intervention study which aims to develop pre-
service teachers’ knowledge of proof schemes. As part of the course, a module on proof schemes, 
was implemented and our research question is as follows: “How does the module affect pre-service 
mathematics teachers’ pedagogical content knowledge of proof schemes?” 

Methodology 
This study used designed-based research (DBR) and specifically ADDIE (Analysis, Design, 
Development, Implementation, and Evaluation) model (Branch, 2009). In the analysis phase, the 
needs analysis was made based on the literature. Calls for the design and analysis of interventions 

Thematic Working Group 01

Proceedings of CERME11 156



that foster PCK of proof and proving, proof schemes in particular, in the context of pre-service teacher 
education were considered. The objectives and learning outcomes of the course were determined. 
One of them was related to proof schemes: “PMTs will be able to describe and identify students’ 
proof schemes”. In the design phase, a 15-week course consisting of various modules (i.e. modern 
components of proof, proof methods, identifying proof schemes, student difficulties with proving, 
reasons behind student difficulties, teaching strategies that can overcome student difficulties) was 
prepared and expert opinion was taken. In the development phase, learning and teaching situations 
were organized. For the module on proof schemes, the classification of proof schemes by Sowder and 
Harel (1998) were explained to participants using two scenarios. Participants worked both 
individually and in groups to identify students’ proof schemes using the scenarios. After the 
intervention, the learning outcome related to proof schemes was evaluated using a different scenario. 
In the evaluation phase, the effect of the module on the learning outcome related to proof schemes 
was evaluated. 

Participants are twenty-two PMTs who are in the second year of a teacher education program in a 
state university in Istanbul, Turkey. To explore PCK of proof schemes, we designed a survey called 
Pedagogical Content Knowledge of Proof Survey (PCK-P survey) using a scenario (See Appendix). 
The scenario includes an excerpt of a hypothetical discussion among a mathematics teacher and ten 
9th grade students (age of fifteen). Prior to the intervention the PMTs were asked to describe student 
thinking; after the intervention, the PMTs were specifically asked to describe students’ proof 
schemes. The topic is set theory which is a typical topic in 9th grade curriculum in Turkey and the 
class discusses the truth of a proposition. Sowder and Harel’s (1998) proof schemes are illustrated by 
excerpts of students (See Table 2 for which student has each scheme). For validity concerns, the 
number of students was chosen to be ten which is bigger than seven (which is the number of proof 
schemes) to prevent participants from matching students’ work to the proof schemes. The teacher 
presents a proposition and asks students whether this proposition is true or false and justify their 
answers: “Let 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍 be sets. If 𝑋𝑋 ⊂ 𝑌𝑌and 𝑌𝑌 ⊂ 𝑍𝑍 then 𝑋𝑋 ⊂ 𝑍𝑍”. The survey includes the following 
questions concerning the scenario: “Describe how students S1,...,S10 justify their answers to the truth 
of the proposition. Is the proof correct”. To increase the validity of the findings, the scenario used as 
data collection tool was chosen to be different from the scenario used during the module. The topic 
was also different. PMTs filled the PCK-P survey before and after the intervention (fifteen weeks 
later). In the second implementation, PMTs were directly asked to identify proof schemes of students. 

We analyzed qualitative data to explore the effectiveness of the module and obtained quantitative 
findings which will also be supported with written explanations of participants. Each participant 
identified ten students’ proof schemes, therefore there is a total of 220 answers. 220 answers from 22 
participants were coded as “correct”, “incorrect” or “no response”. We used the Wilcoxon Signed 
Rank Test (Wilcoxon, 1945) to investigate whether the module significantly affected participants’ 
PCK. The effect size was calculated using the formula 𝑟𝑟 = 𝑍𝑍 √𝑛𝑛⁄ .  

Findings 
Table 1 below presents the frequencies and percentages for correct, incorrect and no response 
categories. Percentages were calculated out of a total of 220 answers. As can be seen in Table 1, 
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findings indicate a development of PCK of proof schemes. The percentage of correct answers is 
61.4% before the intervention and it increases to 96.4% after the module implementation. The number 
of correct answers increased by 77 which represents 35%.  

 Correct Incorrect No Response Total 

Pre-intervention f (%) 135 (61.4%) 82 (37.3%) 3 (1.4%) 220 (100%) 

Post-intervention f (%) 212 (96.4%) 8 (3.6%) 0 (0.0%) 220 (100%) 

Table 1: Frequencies and percentages for answers before and after the intervention 

Mean, standard deviation, minimum and maximum points were also calculated (over 10 which is the 
number of questions) considering answers to the survey before and after the intervention. The mean 
value increased from 6.14 to 9.64, minimum value increased from 3.00 to 8.00 and maximum value 
increased from 9.00 to 10.00. Standard deviation decreased to 0.58 from 1.49.  

Student 
no 

Type of Proof Scheme Correct 
(Pre-/Post-) 

Incorrect 
(Pre-/Post-) 

1 Authoritarian  19/18 2/4 

2 Authoritarian 19/22 3/0 

3 Perceptual 17/22 5/0 

4 Ritual 18/22 4/0 

5 Symbolic 0/20 22/2 

6 Example-based (a single example of finite sets) 21/22 1/0 

7 Example-based  (a single example of infinite sets) 13/21 9/1 

8 Example-based (multiple) 14/21 8/1 

9 Transformational 2/22 19/0 

10 Axiomatic 12/22 9/0 

Table 2. Frequencies of answers for proof schemes before and after intervention 

We used the Wilcoxon Signed Rank Test to decide whether differences in PCK scores is significant. 
A Wilcoxon signed rank test showed that there was a significant difference (𝑍𝑍 = −4.144, 𝑝𝑝 < 0.001) 
between scores obtained before and after the intervention. Outputs for mean ranks of difference scores 
and sum of ranks imply that this significant effect is in favor of positive ranks, in other words, post-
intervention. In addition, all participants’ scores of PCK after intervention are higher than their scores 
prior to intervention. Effect size (r) was found as −0.88. Since the absolute value of effect size is 
0.88 which is greater than 0.50, it can be said that the module has a large effect size on the scores of 
PCK with regard to proof schemes in favor of post-intervention (Cohen, 1988). 
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As Table 2 shows, participants had difficulties to identify symbolic, example-based, transformational 
and axiomatic proof schemes before the intervention. They had overcome most of these difficulties 
after the intervention. Below, we present examples of these cases. 

Student 5 has a symbolic proof scheme. He justified his answer considering the number of elements 
(See the lines 21-22 in Appendix): “𝑆𝑆(𝑋𝑋) < 𝑆𝑆(𝑍𝑍) then 𝑋𝑋 ⊂ 𝑍𝑍”. Using this statement which is wrong, 
Student 5 uses a shallow symbolic manipulation. None of the participants correctly identified that this 
student has a symbolic proof scheme because participants also thought that it is a valid proof. After 
the intervention, 20 out of 22 participants identified Student 5’s proof scheme correctly. They used 
the terminology of proof scheme framework. 

In the scenario, we prepared three different cases of an example-based proof scheme using (a) a single 
example of finite sets (Student 6), (b) a single example of infinite sets (Student 7) and (c) multiple 
examples (student 8). Before the intervention, 21 out of 22 participants noticed that Student 6 relied 
on only one example. After the intervention, all participants identified the proof scheme of Student 6 
correctly. For the cases of (b) and (c), frequencies of correct answers increased considerably after the 
intervention (See Table 2). For (b), after the teacher called out for a more general example, Student 
7 justified his answer using the sets N, Z, and R which are infinite (See the lines 32-34 in Appendix). 
We consider this as an “example-based proof scheme using a single example” as in the case of (a) 
except the fact that N, Z, and R are infinite sets. However, before the intervention, nine participants 
could not identify the proof scheme in the case of (b) because they thought that this is a generalization. 
Since they considered the student’s scheme as a generalization rather than example-based scheme, 
we coded their responses as incorrect. However, after the intervention, they improved in identifying 
this scheme (21 out of 22 participants correctly answered).   

Student 8 suggested each student find one example so that there would be many examples to justify 
the truth of the proposition (See the lines 36-37 in Appendix). 8 out of 22 participants could not 
identify Student 8’s scheme correctly as “example-based” before the intervention.  The main reason 
is that they thought multiple examples are convincing for a generalization:  

PMT13: He reaches a generalization by a different example for each one in the class. 

PMT17: He justifies by making a generalization and uses many examples that show the truth 
of the proposition so many times. 

After the intervention, 21 out of 22 participants correctly identified Student 8’s justification as 
“example-based”.  

Student 9 has transformational proof scheme since he reached a generalization through operational 
thought based on logical inference (See the lines 42-43 in Appendix). Before the intervention, only 
two participants could  identify the proof scheme correctly, because others did not refer to any 
components of this scheme (generalization, operational thought or logical inference) in their 
explanations about Student 9’s justification. After the intervention, all participants identified the proof 
scheme correctly.  

Student 10 has axiomatic scheme since he started the proof by using the definition of a subset and 
successfully completed the proof as can be seen in the scenario in Appendix (See the lines 47-48). 
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Before the intervention, 12 out of 22 students could  identify this scheme. Others just mentioned that 
it was a mathematical proof. After the intervention, all participants identified the proof scheme 
correctly because Student 10 used the modern components of an axiomatic system. 

Discussion and Conclusion 
Data indicated that the course module had significantly affected participants’ scores of PCK of proof 
schemes. The intervention was effective especially in overcoming difficulties with identifying 
symbolic, example-based, transformational and axiomatic proof schemes. Before the intervention, 
participants could not identify students’ shallow symbolic manipulation. Instead, they were probably 
convinced that the proof was valid just because it included symbols. For symbolic proof scheme, the 
course module included discussions of many examples of meaningless symbolic manipulation. After 
the intervention, participants improved in identifying this scheme. In the scenario, we expanded the 
notion of example-based proof schemes and included three cases (a single example of finite sets or 
infinite sets and multiple examples) and participants performed differently in each case. Before the 
intervention, participants found it more convincing compared to a proof with a single example which 
includes finite sets. In sum, although they identified an example-based proof scheme, they had 
difficulties in identifying proof schemes of students who used infinite sets and multiple examples. 
These findings indicate the importance of teachers’ awareness of how students may view examples 
and noticing aspects of example use (Tsamir, Tirosh, Barkai, & Levenson, 2017). The module which 
included different cases of example-based proofs helped them overcome their difficulties.  

The module was also effective for overcoming participants’ difficulties in identifying 
transformational proof scheme by focusing on practices of generalizations using rules of logical 
inference and operational thought. Participants were more successful with identifying axiomatic proof 
schemes when compared to transformational scheme probably because they were more familiar with 
the modern components of proof such as definitions and axioms. However, before the intervention, 
they did not refer to these components to explain students’ proving processes.  

Considering the potential of scenarios to investigate PCK of proof schemes as implied by the findings 
of this study, we suggest that future studies could design scenarios focusing on proofs in different 
content areas. We also suggest that scenarios could be used in transition courses in undergraduate 
mathematics programs as well as teacher preparation programs. However, one should consider 
potential limitations of assessing the knowledge of identifying proof schemes using scenarios which 
could not reflect the complexity of a classroom. The second cycle of intervention could focus on 
teaching and learning situations in real classroom settings. Using Sowder ve Harel’s (1998) notion of 
proof schemes which is a psychological construct, we focused on the psychological aspects of proof. 
Future studies could consider epistemological and sociological aspects of a mathematical proof.  
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Appendix. The scenario used in the PCK-P survey 

Teacher: Is the proposition below true or false? If true, why? If false, why? Justify your answer.  
Proposition: “Let 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍 be sets. If 𝑋𝑋 ⊂ 𝑌𝑌and 𝑌𝑌 ⊂ 𝑍𝑍 then 𝑋𝑋 ⊂ 𝑍𝑍” 
Student 1: I think, it is false. We’ve seen a lot of rules about sets. But I don’t remember this one.  
Teacher: OK. We haven’t seen it in a lesson. Couldn’t it be still true?  
Student 1: I’ve never heard of a rule like this. Therefore, I think it’s false. 
Student 2: Teacher, it is true. Because this theorem is in our maths textbook. So, it is definitely true. 
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Teacher: Do you think this is enough for a justification? You didn’t write or do anything about it.  
Student 2: I think it’s enough. Why do we need another kind of justification if it’s in the textbook?  
Teacher: It’s very important for us to reason about truth or falsity of a proposition.   
Student 3: Teacher. May I draw a picture?   
Teacher: Of course, you can. 
Student 3: I think it’s obvious from the picture. 
Teacher: (heading towards the class) Is it enough for a proof? Just to draw a picture?   
Student 4: Well, in fact. Every element in 𝑋𝑋 is also an element of set 𝑌𝑌.  Every element in set 𝑌𝑌 is 
also an element of 𝑍𝑍. I can express truth of the theorem. But we should do something mathematical. 
But I can’t do it. Theorems should be proven using mathematical statements. But it shouldn’t be. 
Verbal expressions, like I use, convince me much more.    
Teacher: How did you come to this conclusion that proofs consist of mathematical statements only? 
Student 4: Because proofs I’ve seen so far are just like that. 
Teacher: Is there anyone who could use mathematical statements?  
Student 5: If 𝑋𝑋 ⊂ 𝑌𝑌 then 𝑆𝑆(𝑋𝑋) < 𝑆𝑆(𝑌𝑌) and if 𝑌𝑌 ⊂ 𝑍𝑍 then 𝑆𝑆(𝑌𝑌) < 𝑆𝑆(𝑍𝑍). Therefore 𝑆𝑆(𝑋𝑋) < 𝑆𝑆(𝑍𝑍) that 
is 𝑋𝑋 ⊂ 𝑍𝑍. 
Teacher: If the number of elements of a set is smaller than the number of elements of another set, 
then does it mean that the first set is a subset of the second set? 
Student 6: I think not. I think that there is an easier way. 
Teacher: What is that?  
Student 6: Let 𝑋𝑋 ⊂ 𝑌𝑌 and 𝑌𝑌 ⊂ 𝑍𝑍. Let 𝑋𝑋 = {1,2}, 𝑌𝑌 = {1,2,3} and 𝑍𝑍 = {1,2,3,4}.  
Since {1,2} ⊂ {1,2,3} ⊂ {1,2,3,4} then 𝑋𝑋 ⊂ 𝑍𝑍. 
Teacher: Well. Do you think that this example is sufficient? 
Student 6: Now it is true. I think it is sufficient. 
Teacher: (heading towards the class) Do you think that this is sufficient? 
Student 7: Not that example. But it would be sufficient if we justify with a more general example. 
Teacher: For example? 
Student 7: 𝑁𝑁 ⊂ 𝑍𝑍 and 𝑍𝑍 ⊂ 𝑅𝑅. Therefore 𝑁𝑁 ⊂ 𝑅𝑅. 
Teacher: That is a more general example. But still, it is not sufficient for generality issue of a proof. 
Student 8: Teacher! If each one of us in the class finds an example to show the truth (of the 
proposition), then we can reach a generalization. 
Teacher: When I talk about a generalization, it means it is true for all 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍. We can reach a 
generalisation through the rules of logical inference and operational thought. That is, using other rules 
we should reach a judgement from a hypothesis through operational thought. Is there anyone who 
could reach a generalization using what we’ve done in our previous lessons?  
Student 9: Let 𝑋𝑋 ⊂ 𝑌𝑌 and 𝑌𝑌 ⊂ 𝑍𝑍. Considering the rules we mentioned in our lessons, if 𝑌𝑌 ⊂ 𝑍𝑍 then 
𝑌𝑌⋃𝑍𝑍 = 𝑍𝑍. 𝑋𝑋 ⊂ 𝑌𝑌 then 𝑋𝑋⋃𝑍𝑍 = 𝑍𝑍. If 𝑋𝑋⋃𝑍𝑍 = 𝑍𝑍 then 𝑋𝑋 ⊂ 𝑍𝑍. 
Teacher: That is correct. However, it is better if we think of the modern components of proof. It is 
appropriate to start a proof with definitions and axioms. Is there anyone who could prove it using the 
definition of a subset?   
Student 10: Let 𝑋𝑋 ⊂ 𝑌𝑌and 𝑌𝑌 ⊂ 𝑍𝑍. In this case, from the definition of a subset, if 𝑋𝑋 ⊂ 𝑌𝑌 then for ∀𝑎𝑎 ∈
𝑋𝑋 𝑎𝑎 ∈ 𝑌𝑌. If 𝑌𝑌 ⊂ 𝑍𝑍 then for ∀𝑎𝑎 ∈ 𝑋𝑋 𝑎𝑎 ∈ 𝑍𝑍. Therefore, since for ∀𝑎𝑎 ∈ 𝑋𝑋 𝑎𝑎 ∈ 𝑍𝑍 then 𝑋𝑋 ⊂ 𝑍𝑍. It’s proven. 

Z
Y

X
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Games as a means of motivating more students to participate in 
argumentation 

Jenny Cramer 

University of Bremen, Germany; cramerj@math.uni-bremen.de 

Mathematical argumentation and proof require students to engage in complex thought processes in 
which they explore logical connections, solve problems, and learn to trust their own assertions. While 
in most mathematics classrooms there are some students who show an aptitude for trusting their own 
reasoning and making logical inferences, this does not generally hold true for the majority of 
students. In the context of playing games, however, many students overcome such obstacles and 
become motivated to use logical reasoning and argumentation. In this paper I examine the potential 
of exploiting logical structures in games as a means of fostering the motivation of students to engage 
in inner-mathematical argumentation. A three-step-approach leading from a board game into 
argumentation in calculus is introduced and indications towards the usefulness of the approach for 
fostering students’ motivation are presented.  

Argumentation, logical games, calculus, motivation.  

Argumentation – a mathematical activity for the few? 
Mathematics is a discipline based on logical thinking and inferences, with argumentation and proof 
at its heart. Proving activities in mathematics provide opportunities to autonomously discover 
mathematical knowledge and reach a deeper understanding (de Villiers, 1990) and can therefore 
promote an experience of empowerment to students. They may also teach us how to reason logically 
outside of mathematics (Grabiner, 2012). The mathematics classroom should thus aim at engaging 
all students in “suitable mathematical activities of argumentation and proof” (Boero, 2011, p. 1). This 
demand is even more pressing in the light of existing gaps in the accessibility of high level 
mathematical activities for students from different backgrounds (Boaler, 2016, p. 173). 
Argumentation and proof threaten to act as social filters that may increase performance gaps between 
students of different backgrounds if they are only accessible to few students (Knipping, 2012).  

Being important mathematical activities, argumentation and proof have been receiving increasing 
attention in mathematics education and in school curricula for decades. However, in spite of efforts 
made to promote argumentation in class, only one in three students reported in the PISA study of 
2012 that they like to engage in complex problem solving activities (OECD, 2013, p. 67f), and about 
30% of students reported a feeling of helplessness when doing mathematics problems (OECD, 2013, 
p. 88f). While problem solving is not synonymous to arguing and proving, such tasks almost always
rely heavily on logical reasoning, and the results may be taken as an indication for students’ attitudes
towards argumentation activities: few students appear to enjoy such activities, and a significant
number of students is reluctant to engage in them at all. This is surprising, as more than half of the
same students questioned for PISA 2012 stated that they sought explanations for things and could
easily link facts together (OECD, 2013, p. 67f), and both of these skills are crucial for argumentation.
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Mathematical argumentation is a discursive practice, into which students need to be introduced in 
order to be able to participate (Boaler, 2000). Logical games and puzzles may provide a suitable way 
of overcoming obstacles to participation, as they require forms of logical, deductive reasoning similar 
to the reasoning used in mathematical argumentation and proof. Clear rules, balanced starting 
positions for all players, and the limited scope of knowledge required for argumentation in a game 
context may help to facilitate students’ participation in discourse as they provide circumstances which 
may support fulfilling discourse ethical requirements (Habermas, 1990). These potential positive 
aspects of games have been discussed before (Cramer, 2014).  

Another positive aspect of games lies in their potential to appeal to the intrinsic motivation of 
students. High motivation in games can be explained by the needs for competency, autonomy and 
relatedness postulated by Deci & Ryan’s (1993) self-determination theory. The motivational potential 
of games has been well documented for video games (Rigby & Ryan, 2011), and similar effects may 
be expected for board games. The need for competency describes an inner desire to master challenges 
and new situations. Games provide such challenges to their players. A fulfillment of the need for 
autonomy is given when we perceive our actions as self-guided. While this is generally difficult to 
achieve in a school setting, a playful approach may help to fulfill this need. Lastly, the need for 
relatedness describes a need for meaningful social interaction. Board games are characterized by 
interaction and could prove even more helpful in this area than video games.  

From game to graph: A three step approach  
In this paper, a three-step approach to fostering the motivation of students to engage in argumentation 
is presented. It includes several rounds of the logical game Uluru, puzzles in the logical game 
environment, and puzzles in the area of calculus that aim at finding the graph of a function based on 
certain requirements. The research was conducted in a regular mathematics class with 15-16 year-old 
students in their tenth year of education (E-Phase) at a German high school (Gymnasium) over the 
course of five double lessons on four school days. Results are based on students’ responses to three 
questionnaires at different points of the study. Figure 1 shows a timeline of the intervention. 

 
Fig 1: Temporal overview of the study 

Step 1: Playing Uluru 

In the first step of the intervention, the game Uluru (by Lauge Luchau, published by Kosmos) was 
presented to the students. In Uluru’s scenario, animals in Australia transform into dream birds of 
different colors (white, yellow, orange, pink, red, green, blue and black) at night and fly towards 
Uluru (Ayers Rock). There are exactly eight spots around the Uluru on which birds may be placed. 
Each player receives bird tokens in the eight different colors and a game board. At the beginning of 
each round, wishes are randomly generated from a set of cards to guide the placement of the dream 
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birds. The wishes correspond either to positions around the Uluru (e.g. “on the short edge”) or to 
positions relative to birds of other colors (e.g. “next to the green bird”). Situations can arise in which 
not all wishes can be fulfilled. All players simultaneously try to place their birds according to the 
wishes within a set time limit. When the time has run out, points are given to the players according 
to the number of birds correctly placed. The game is played in several rounds.  

The types of arguments generated in Uluru are very similar to typical argumentation patterns in 
mathematics. When evaluating the positions of the birds that each player has found, it is easy to tell 
whether the requirements given by the wish for a certain bird have been fulfilled or not, and the only 
possible results of this evaluation are true or false. Furthermore, the game naturally leads to questions 
characteristically mathematical, such as: “(Why) is this the only possible constellation?”, “Is it 
possible to fulfill all wishes?”, or “Why can’t all conditions be met at the same time?”. Thus, the 
game naturally provokes argumentation between players at the end of each round, especially in 
situations in which no player found a solution yielding eight points or when different solutions occur. 

Step 2: Solving Uluru puzzles 

For the second step of the intervention, I created eight different puzzles in which different wish 
constellations were depicted. Students were given the task to figure out the maximum of achievable 
points for each situation. Two of the puzzles could be solved in exactly one way, two could be solved 
in different ways, three puzzles had a maximum of seven possible points, and in one puzzle six points 
were the maximum. The students were asked to record and justify their solutions on a protocol sheet. 
They were allowed to use the game board and the bird tokens to find a solution.  

Fig 2: An example for an Uluru-puzzle (colors annotated) 

In the example puzzle shown in Figure 2, three wishes (white, pink and green) refer to positions 
around the Uluru and five wishes (yellow, orange, red, blue and black) refer to birds of other colors. 
This puzzle has a unique solution. Due to the wishes of the red snake and the black emu, red and 
yellow need to be placed on adjacent spots and the black bird must be placed opposite the red bird. 
The blue bat’s wish means that black and blue need to be on adjacent spots. The orange kangaroo’s 
bird must be placed opposite the blue bird and thus on the same side as yellow and red. There is only 
one side of the Uluru that has three spots (cf. Figure 3). The wishes of the yellow dingo (shared corner 
with pink) and the pink lizard determine the corner in which these two dream birds must be placed. 

white       pink   yellow  orange   red   green   blue black 
 

pink 

blue 

yellow black 

red 
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Combined with the already discussed wishes of the other animals, there 
remains only one spot of the places defined by the wish of the white 
echidna. The green bird token takes the remaining spot.  

The students were allowed to work on these puzzles with a partner. They 
handed in their protocols at the end of the lesson. The examination of 
students’ answers showed that while they were almost always capable of 
finding the best possible solution, many students had problems with 
justifying their answers. Before resuming work on Uluru puzzles in the next 
lesson, a plenary phase was initiated in which proof by exhaustion of cases 
and proof by contradiction were discussed in the context of Uluru puzzles.  

 Step 3: f(u)-luru puzzles 

In a third step, the concept of f(u)-luru puzzles was introduced. In these puzzles, the animals of 
Australia wished for properties of the graph of a function. The puzzles followed the game design. To 
develop the graph, the students received a laminated coordinate system in a design inspired by the 
game board, as well as removable foil pens. Table 1 gives an example for conditions of a puzzle.  

white pink yellow orange red green blue black 

𝑓𝑓(−1) = −0.5 exactly 1 
maximum 

𝑓𝑓′′(0) > 0 𝑓𝑓(−2) = 0 𝑓𝑓′(0) = 0 symmetrical 
to y-axis 

𝑓𝑓(0) = 1 minimum 
for 𝑥𝑥 = −1.5 

Table 1 Conditions in the f(u)-luru-"lightning puzzle" (simplified design) 

For this puzzle, a maximum of 7 points can be achieved. The wish of green combined with the wishes 
of orange, white and black provide additional points 𝑓𝑓(2) = 0, 𝑓𝑓(1) = −0.5 and another minimum 
for 𝑥𝑥 = 1.5. The blue and red wishes define the y-intercept as a local maximum or minimum. As the 
black and green wishes define two minima, pink’s wish determines that the y-intercept must be a 
maximum. This contradicts yellow’s wish 𝑓𝑓′′(0) > 0. Thus, not all conditions can be fulfilled 
simultaneously. As seven is the second largest number of achievable points, this is an ideal solution 
to this puzzle. Figure 4 shows the solution. 

Fig 4: Solution to the puzzle (7 points) Fig 5: Excerpt from the “wishes”-overview for f(u)-luru 

To help students determine possible solutions and formulate arguments, they received an overview 
which served to clarify and simplify the possible wishes in the f(u)-luru puzzles and to make the 
mathematical task more playful. Figure 5 shows an excerpt of the overview. The students also 

Fig 3: Unique solution 
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received protocol sheets in a design analogous to the protocol sheets for the Uluru puzzles to 
document their solutions. Like in the Uluru puzzles, the students were again allowed to work in pairs. 
The puzzles did not ask the students to find an algebraic solution (no functional equations were 
expected from the students). 

From game to graph: A three step approach 
To assess motivation, the Intrinsic Motivation Inventory (IMI, McAuley et al., 1989) was used. It is 
a suitable tool to measure motivation based on the needs postulated by self-determination theory. The 
questionnaire consists of 18 items and covers the dimensions interest-enjoyment (int-enj), perceived 
competence (perc-comp), effort-importance (eff-imp) and tension-pressure (tens-pres). For each 
item, agreement or disagreement was measured on a 7-point Likert-scale. Assessments took place at 
three points during the intervention. All examined tasks target solving a problem involving a variety 
of conditions that require reasoning and justifying. The students answered to the questionnaires using 
a pseudonym, allowing them to freely utter criticism (the researcher being their teacher).  

Questionnaire 1 (Q1) was given to the students before the intervention to act as a point of comparison 
for later responses (cf. Field & Hole, 2003, p. 68). It was coupled to a task from the math textbook in 
which the graph of a function was to be created from certain requirements. This task had briefly been 
discussed in class in a lesson before the intervention. Q1’s purpose was to facilitate capturing 
students’ attitudes towards tasks in the regular mathematics classroom involving reasoning.  

The second questionnaire (Q2) was given after the students had played the game Uluru and after they 
had been working on Uluru-puzzles for approximately one hour. I decided to forego an assessment 
of motivation after playing so as not to overstrain students with too many questionnaires.  

The students responded to the third questionnaire (Q3) after approximately one hour of f(u)-luru-
puzzles. This last questionnaire also covered some free text questions and items focusing on an 
evaluation of the intervention by the students, which were not statistically validated and can thus only 
give an indication concerning students’ attitudes towards the intervention.  

The setting of the evaluation is as a repeated measures design (Field & Hole, 2003, p. 183ff) with 
interdependent data, which necessitates an analysis of variance (Rasch et al., 2010). Nineteen students 
participated in all three questionnaires (n=19). Shapiro-Wilk tests allow the assumption of normally 
distributed results for all dimensions except tension-pressure (p<0.05) in Q2. Levene’s test allows to 
assume homogeneity of variances except in the dimension of perceived competence. 

Results 
The needs dimension of interest-enjoyment is a measure of perceived intrinsic motivation. Results 
for this dimension are thus very interesting, as they refer directly to how students perceived the tasks. 
A non-significant Mauchly-test (𝑝𝑝 = 0.53) and the clearly significant analysis of variance (𝐹𝐹(2,36) =
7.80;  𝑝𝑝 < 0.01) justify the use of t-tests. Bonferroni-corrected values show significant (𝑝𝑝 < 0.01) 
differences between Q1 and Q2 and between Q2 and Q3. The boxplot in Figure 6 shows a positive 
shift of means from the first (𝑀𝑀1 = 3.63;  𝑆𝑆𝑆𝑆 = 1.22) to the second assessment (𝑀𝑀2 = 5.51;  𝑆𝑆𝑆𝑆 =
0.83). The third mean (𝑀𝑀3 = 4.39; 𝑆𝑆𝑆𝑆 = 1.06) lies between the others. Interest and enjoyment 
decreased in f(u)-luru puzzles compared to the Uluru puzzles. However, the histograms of 
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questionnaires 1 and 3 (Figures 7 and 8) also show a considerable decrease of very negative 
evaluations (scale range 1–2).  

Fig 6: Boxplot int-enj for Q1-Q3   Fig 7: Histogram int-enj Q1     Fig 8: Histogram int-enj Q3 

These results can be interpreted as a positive tendency that students preferred the f(u)-luru puzzles 
over classic mathematical tasks. However, this tendency needs to be treated with care as working 
arrangements were different for the mathematical task and for the f(u)-luru puzzles.  

For the dimension of perceived competence, homogeneity of variances cannot be assumed. A closer 
look at the data shows that this can be explained by the high mean and small standard deviation in 
Q2. A comparison of means of questionnaires Q1 (𝑀𝑀1 = 3.93; 𝑆𝑆𝑆𝑆 = 1.85), Q2 (𝑀𝑀2 = 5.94; 𝑆𝑆𝑆𝑆 =
0.77), and Q3 (𝑀𝑀3 = 4.4; 𝑆𝑆𝑆𝑆 = 1.75) shows an increase in perceived competence for the Uluru-
puzzles, followed by a decreased for f(u)-luru; the pairwise differences between Q1 and Q2 and Q2 
and Q3 are significant (p<0.05). The means for perceived competence did not increase significantly 
between Q1 and Q3. However, as in the dimension of interest-enjoyment, the distributions of students 
for the lower scores are instructive. In the classic mathematical task covered in Q1, eight students 
perceived themselves as scarcely competent (scale range 1–2), whereas only two students gave this 
response in Q3 for the f(u)-luru puzzles. Taking into consideration that the latter were comparatively 
harder, this can be taken as an indication that students who otherwise trust little in their abilities might 
have benefited from the intervention.  

Results for effort-importance show significant differences (𝑝𝑝 < 0.01) between Q1 (𝑀𝑀1 = 3.8; 𝑆𝑆𝑆𝑆 =
0.77) and the means of Q2 and Q3 (𝑀𝑀2 = 4.95; 𝑆𝑆𝑆𝑆 =  1.15 and 𝑀𝑀3 = 4.7; 𝑆𝑆𝑆𝑆 = 1.02; Mauchly-test 
𝑝𝑝 = 0.38, ANOVA 𝐹𝐹(2,36) = 7.80 𝑝𝑝 < 0.01). The students appear to have put greater effort into both, 
solving Uluru-puzzles and f(u)-luru puzzles. These results could point to an increase in students’ 
readiness to get deeply involved in a given task.  

Results do not allow to assume normally distributed results for the dimension of tension-pressure in 
Q2. However, this dimension was rated low in all assessments (𝑀𝑀1 =  2.88;𝑀𝑀2 =  2.01;𝑀𝑀3 = 3.06). 
The students apparently did not perceive themselves under pressure during the intervention.  

The students were asked in Q3 to comment on whether they had liked f(u)-luru puzzles better than 
classic problems in mathematics. Some notable answers:  

I liked the f(u)-luru puzzles more, because is was possible to visualize and understand better.  

Yes, because it was something different. Not so “dry”, but another method to do math problems. 

I liked it better because for some reason I was more motivated. 

The majority of students responded positively. Only one student replied: “I personally liked the Uluru 
puzzles better, because you didn’t need to show mathematical understanding like in the f(u)-luru 
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puzzles. The f(u)-luru puzzles were just as tiresome as normal mathematical problems.” While this 
answer shows that the intervention did not manage to motivate all students equally to engage in 
mathematics, it underlines the positive effects of the second step of the intervention.  

In addition to the IMI-questions, Q3 also covered items aimed at a more direct evaluation of the 
intervention, which were rated on the same 7-point Likert scale. The students’ answers to these 
questions show a positive evaluation. Table 3 shows the items and the means.  

Item mean 

I had fun playing Uluru (the game) 6.65 

I had fun solving Uluru puzzles 6.15 

I had fun solving f(u)-luru puzzles 4.9 

I was motivated by the game Uluru to make an effort in Uluru puzzles 5.55 

I was motivated by Uluru puzzles to make an effort in f(u)-luru puzzles 4.53 

Table 3 Evaluation items in questionnaire 3 and their means 

Discussion 
The three-step intervention described in this paper covered only a brief timespan of five double 
lessons, so only small effects may be expected. Furthermore, different working arrangements at 
different stages of the intervention must be considered when examining the results. However, the 
results presented here may be taken as an indication that game-based approaches may have 
motivational benefits for students. The quantitative evaluation of students’ answers yields a 
significant and noticeable increase of motivation for the Uluru-puzzles. While results for the f(u)-luru 
puzzles are not as unequivocally positive, the distribution of student responses compared to their 
assessment of the mathematical task in the dimensions of interest-enjoyment and perceived 
competence allows for the tentative assumption that the f(u)-luru puzzles are more likely to get a 
larger number of students involved in mathematical thinking than classic problems. Further research 
is needed, both to determine the effect of the different conditions in this study (e.g. working 
arrangements, difficulty of the tasks in Q1 and Q3) and to look at potential long-term effects. 

While this paper shows potential motivational benefits of game-based approaches, this study did not 
include an evaluation of students’ argumentation quality in the Uluru puzzles or in the f(u)-luru 
puzzles. Therefore, it is unclear whether the intervention managed to actually improve mathematical 
argumentation skills. This question needs to be tackled in future research. For an evaluation in this 
regard, a consideration of Hintikka logic can prove helpful (Soldano & Arzarello, 2017).  

Interventions like the one presented in this paper can be first steps towards a better integration of 
more students into argumentation discourse in the classroom. Observations in class and student 
responses to Q3 show that students worked on all given tasks in a highly concentrated way, which 
naturally included arguments and justifications. Clearly positive reactions of students to the game and 
the game-based puzzles show that most students like to engage in logical thinking. Exploiting logical 
games and puzzles as a stepping stone for more students to get involved in mathematical argument 
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seems a promising path towards more equally distributed student participation and might provide a 
means of tackling existing gaps in students’ access to argumentation discourse.  
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This paper discusses theoretical and methodological considerations which have emerged from 

reviewing the literature related to my PhD research project which adopts an interactional perspective 

on the development of the argumentation process in primary school mathematics. This led me to 

distinguish the factors involved in mathematics classroom interaction during the development of the 

argumentation process, as well as to examine the possible relations and interrelations of these 

factors. The outcome of this process was, first, to clarify theoretical aspects and, second, to create a 

preliminary model, called the “Mathematics Classroom Interactional Model” (MCIM), positing two 

levels of classroom interaction and the possible relations within each of them and between them.  

Keywords: Socio-mathematical norms, participation, mathematical argumentation, mathematical 

communication, mathematics classroom interaction   

Introduction 

In the field of Mathematics Education, according to the related literature review, the notions of 

argument and of mathematical argument can be found in two different strands. The first strand relates 

to socio-mathematical norms and participation in the learning environment (e.g. Yackel & Cobb, 

1996; Wood, 2002), mostly based on situated learning theory in the research (e.g. Lave & Wenger, 

1991; Greeno, 1997; Boaler, 2000) and the second strand relates to mathematical argumentation and 

classroom interaction (e.g. Steinbring, 2005; Stylianides, 2007). However, so far, the literature does 

not seem to have made any clear attempt to develop a coherent theoretical framework and 

methodological tools emerging from the two strands. Thus, in my study, I focus on the development 

of the argumentation process in primary mathematics classrooms, considering the norms, the 

interactions and the role of the participants in learning and teaching practices. In this paper, I discuss 

aspects related to mathematical argument, argumentation and participation from the two strands of 

the literature to formulate the preliminary central research questions of the study, as well as to discuss 

the coherence –both compatibility and complementarity– of the two strands. On this basis, I develop 

a preliminary model, called the “Mathematics Classroom Interactional Model” (MCIM), of the 

concepts and their possible relations that will guide the scope of the study. 

Socio-mathematical norms and participation in the learning environment 

Lave and Wenger (1991) describe learning as a social phenomenon that is constituted in the real world 

through a process of legitimate peripheral participation in communities of practice which are in 

development. This means that pupils are members of wider worlds that are socially and culturally 

formed, so developing links that cross the identities of ethnicity, gender, religion, etc., acts in 

classrooms, schools and communities and the practices that govern all these environments. The word 

“knowledge” has been replaced by the word “knowing” that declares an action. This fundamental 
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shift indicates that activities cannot be considered independent of the context. The “practice” is 

mainly characterized by the terms “discourse” and “communication” which implies that a pupil 

should be regarded as a person interested in participation in certain types of activities not only in the 

accumulation of knowledge (Sfard, 1998). 

While the learning process in the current study is regarded in terms of the participation metaphor 

(Sfard, 1998), what is important is the person’s participation in activities influenced by the context. 

The underlying theory is that of Vygotsky’s (1978) socio-cultural approach, considering learning as 

an outcome of interaction with others, while theoretical approaches in situated learning are 

preeminent in contextualizing and describing classroom communities.  These approaches, according 

to Lave and Wenger (1991) and Bransford, Zech, Schwarz, Barron and Vye (2000), have led to 

situated learning theories, in which knowledge is situated in particular forms of experience that arise 

in specific situations, and are understood in a relational way as something shared between people, 

activities and environments rather than as a fixed, individual characteristic (Boaler, 2000). Hence, 

mathematical knowledge, as a dynamic process of mathematization, is “still being open and not fixed 

in advance of the learning and acquisition processes” (Steinbring, 2005, p. 48).  

According to Greeno (1997), many researchers based on situated perspectives study the development 

of classroom activities which involve pupils participating “in the discourse of the subject matter, 

including formulating and evaluating hypotheses, conjectures, arguments, evidence, examples, and 

conclusions” (Hatano & Lambert, 1990; Inagaki, 1991; Cobb et al., 1993; Cohen et al., 1993; 

Schoenfeld, 1994 as cited in Greeno, 1997, p. 99). A situated view suggests that activities of different 

practices are important, for instance involving pupils in classroom discussions is a way of pupils 

learning not only the content knowledge but also to participate in discourse practices (Greeno & 

MMAP, 1998 as cited in Boaler, 2000). Pupils learn not only methods and processes in the 

mathematics classrooms, but they are trained in mathematics, and the learning of content knowledge 

cannot be separated from the classroom interaction, as they are two reciprocal components (Boaler, 

2000). One question posed in the situated learning theory is whether the pupil’s pattern of 

participation can be a potential obstacle to his/her membership of the classroom community. 

Wood (2002) states that classroom culture consists of a set of social norms, a specific structure of 

participation, as well as characteristic forms of discourse that support both social norms and the 

structure of participation. A participatory structure refers to the specific characteristics of the 

classroom that affect pupils’ participation in the classroom: who is involved, when and how. Wood 

recognizes three types of culture that characterize a classroom of inquiry and can lead to different 

patterns of participation. The first relates to the development of alternative resolution strategies, the 

second relates to a culture of exploration of the strategies developed by their classmates, and the third 

to a culture of argumentation where social norms require pupils to justify or defend the methods of 

solution they choose. Wood, Williams and McNeal (2006) investigated primary mathematics 

classroom interactions and the development of mathematical thinking. One of the most important 

results was the finding that only in an inquiry/argument classroom culture were there opportunities 

for all children to be involved in meaning making and shared understanding. Nevertheless, as Klein 

(2001) points out, participation in cultures such as the above may be problematic for pupils who either 

have not conquered the tools of defending or challenging ideas through discussion (e.g. language or 
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norms such as what constitutes a different answer) or lack the self-confidence or self-image expected 

by an apprentice working in a collaborative learning environment.  

Many researchers attach importance to the role of classroom culture, providing cooperative learning 

opportunities and, in particular, developing the intellectual autonomy of pupils. They focus on socio-

mathematical norms and argumentative skills in the constitution of mathematical meaning in the 

classroom. Yackel and Cobb (1996), investigating the role of communication as a cultural tool, 

concluded that social norms (e.g. explanation and justification of a solution) directly affect the 

patterns of participation, a conclusion also supported by Sfard (1998), while socio-mathematical 

norms (e.g. which answer is considered mathematically different) provide equal opportunities to all 

pupils in that particular structure and regulate mathematical arguments. Finally, Kazemi and Stipek 

(2001) recognized, defined and described four categories of social norms and socio-mathematical 

norms respectively. The authors, in their discussion, emphasize the need for future research with 

longitudinal data that may reveal other norms, how socio-mathematical norms are created and 

sustained, and how they influence pupils’ mathematical understanding.  

The discussion so far led me to consider the connection between social and socio-mathematical norms 

relating to argumentation in the mathematics classroom. It seems that the mediator in this connection 

is the specific structure of the patterns of participation that allows (or not) the social norms to be 

transformed, created and sustained as socio-mathematical norms. Thus, the first preliminary central 

research question which emerged is: “what social and socio-mathematical norms relating to 

argumentation are established in the mathematics classroom, and how are these expressed in terms of 

patterns of participation?”. 

Mathematical argumentation and classroom interaction 

In the field of Mathematics Education, Krummheuer (2007, 2015) started off using Toulmin’s (2003) 

argumentation scheme to analyse classroom-based mathematical arguments. However, Krummheuer 

(2007, 2015) used a reduced version (conclusion, data, warrants and backings) of Toulmin’s full 

scheme of argumentation (conclusion, data, warrants, backings, modal qualifier and rebuttal). Many 

researchers (Yackel, 2001; Hoyles & Küchemann, 2002; Evens & Houssart, 2004; Cabassut, 2005; 

Pedemonte, 2005; Weber & Alcock, 2005) as cited in Inglis, Mejia-Ramos and Simpson (2007) 

appear to have followed Krummheuer in using the reduced scheme. While Inglis et al. (2007) 

concluded that without using Toulmin’s full scheme of argumentation it may be difficult to accurately 

formulate the full range of mathematical arguments, on the other hand Mariotti, Durand-Guerrier and 

Stylianides (2018) mention that difficulties of pupils to organize arguments in a deductive chain in 

the form of proof cannot be fully explained by Toulmin’s model.  

Despite the widespread use and proven usefulness of Toulmin’s scheme of argumentation over the 

last two decades, researchers in Mathematics Education do not use this scheme in a consistent way. 

Besides different emerging interpretations, limitations can be identified. Thus, I studied further the 

related literature to find a model created in the field of Mathematics Education that could serve both 

aspects of mathematical argumentation and classroom interaction.  

Stylianides (2007) developed a theoretical framework about proof and proving in the context of K-

12 mathematics. “Proof is a mathematical argument, a connected sequence of assertions against a 
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mathematical claim” (Stylianides, 2007, p. 191). Any given argument can be broken down into three 

major components: the set of accepted statements, the modes of argumentation and the modes of 

argument representation. The distinction between base arguments and ensuing arguments could 

provide the context in which instructional analysis and instructional interventions by teachers 

influence classroom interactions and vice versa. In terms of this distinction, it is worth to be 

mentioned that in everyday mathematics classrooms situations, where the learning process is 

considered in terms of a participation metaphor (Sfard, 1998), the participants could produce a range 

of arguments, for example, “relatively sophisticated arguments” or “explications of elements of an 

argument” (Krummheuer, 2015, p. 53). Thus, the basic assumption is that mathematical 

argumentation can only emerge through interaction and mathematical communication within the 

classroom culture. Steinbring (2005) developed an analytic framework to examine the relation 

between mathematical knowledge and mathematical communication. While, “language is the central 

medium for the creation of possible connections between communication and consciousness” 

(Steinbring, 2005 p. 53), proof is the communication medium of invisible mathematical objects and 

the mediator between communication and consciousness (Heintz, 2000 as cited in Steinbring, 2005; 

Steinbring, 2005). 

Instructional school-mathematical interaction is expected to contribute to introducing individuals 

into mathematical communication practice, and thus to increase these individuals’ ability to 

participate in (mathematical) communication in the society. (Steinbring, 2005, p. 74) 

This interaction could be understood by the term “situational”. 

My perspective is situational, meaning here a concern for what one individual can be alive to at a 

particular moment, this often involving a few other particular individuals and not necessarily 

restricted to the mutually monitored arena of a face-to-face gathering. (Goffman, 1974, p. 8)  

According to Krummheuer (2007), the term “situational” refers not only to a particular situation that 

could be characterized as “situated”, but to anything that can happen in the interaction between 

people. Thus, for example, if during a lesson the pupils solve an activity on their own it may be a 

“situated learning” process (Lave & Wenger, 1991) which is shaped by the pre-knowledge that allows 

them to face similar activities. The action changes into a “situational” process if the pupils take 

initiatives to act with their classmates. Levinson (1988) extended the ideas of Goffman (1981) and 

Krummheuer (2007, 2015) by adapting the concepts of participants’ (speakers’) roles in Mathematics 

Education: “author”, “relayer”, “ghostee” and “spokesman”. Although Krummheuer’s (2007, 2015) 

approach to participation in argumentation offers insights on the way that participation is performed 

in mathematical argumentation, the mechanism of being in one role or another is not obvious and 

cannot explain the obstacles in pupils’ participation in the developing of mathematical arguments, 

something also claimed by Cramer and Knipping (2018). Cramer and Knipping (2018) highlight the 

importance of participation in mathematics classroom argumentation, considering the discursive and 

social processes that affect argumentation. Thus, participation is not only a discourse but the practice 

of constructing arguments through the social order of participants’ interactions in the classroom which 

can be constructed, maintained and transformed. Cramer and Knipping (2018) mention an interesting 

case of pupils’ implicit participation (pupil’s initially spoken idea developed further in the classroom 
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discourse but the pupil’s voice disappeared), to describe possible obstacles for participation in 

argumentation and possible interventions by a teacher. 

The discussion so far led me to consider the connection between mathematical argumentation and 

classroom interaction. It seems that the mediator in this connection is the specific role of the 

participant that regulates the participation in mathematical argumentation. Thus, the other two 

preliminary central research questions which emerged are: “how do pupils’ interactions contribute to 

the development of the base arguments?” and “how do teachers’ instructional interventions influence 

pupils’ activity in the developing of ensuing arguments?”. 

Discussion 

The ideas about socio-mathematical norms and participation in the learning environment and those 

about mathematical argumentation and classroom interaction seem to be related. Socio-mathematical 

norms seem to be a major factor that regulates classroom interaction in developing arguments. 

Especially, pupils’ and teachers’ roles in developing base and ensuing arguments are related to socio-

mathematical norms that could foster (or not) mathematical argumentation and participation in the 

classroom. Thus, I decided to create the preliminary MCIM model, of the basic concepts and their 

relations as considered in the previous two sections and expressed in terms of the three preliminary 

central research questions.  

In this model, Figure 1, I posit two levels of classroom interaction. The first (basic) level of classroom 

interaction is defined by the relations among the social norms, the socio-mathematical norms and the 

classroom culture. These are the predominant factors that characterize classroom interaction and are 

defined fully through the review of the first strand of the literature. The socio-mathematical norms 

established in the classroom culture are affected by social norms. The second (advanced) level of 

classroom interaction is defined by the relations among the participation, the mathematical 

argumentation and the participants’ roles. This level includes, A: the three factors as a structural unit 

(participation, mathematical argumentation, participants’ roles) and B: three sub-structures: 1) socio-

mathematical structure: participation-mathematical argumentation, 2) argumentation structure: 

mathematical argumentation-participants’ roles, 3) social structure: participants’ roles-participation. 

Each of these (sub)structures presupposes the connection of the factors at the basic level. Thus, the 

common ground of the structures at the advanced level is the connection among the three factors at 

the basic level. When a researcher or a teacher in the classroom would like to understand, investigate 

and further develop the advanced level, they should firstly understand, consider, and develop the 

connection of the social norms, socio-mathematical norms and the classroom culture, the factors at 

the basic level.  

According to the related literature, the main connection between the two levels rests on social norms 

and socio-mathematical norms that regulate mathematical arguments, defining participation in the 

classroom culture (e.g. Yackel & Cobb, 1996; Wood, 2002; Wood et al., 2006). Therefore, in order 

to define this model with consistency, I consider theoretical and methodological frameworks to get 

access to mathematical argumentation and classroom interaction. 
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Figure 1: Mathematics Classroom Interactional Model (MCIM) 

Stylianides (2007) framework could serve as an analytic tool in order to examine the development of 

mathematical argumentation and teachers’ actions, through the processes of instructional analysis and 

instructional intervention. Especially, the distinction between base and ensuing arguments and the 

possible differentiation between them and in each of them could be related with the patterns of 

participation which emerge through the socio-mathematical norms. Nevertheless, it seems that the 

focus of the framework is from the teachers’ perspectives rather than on pupils’ and teachers’ 

interactions and their roles in the classroom culture. Stylianides uses the notion of classroom 

community in the definition of proof with a perspective different from that usually found in the 

literature, and from the one I have taken in my study. He regards the pupils as the main members of 

the classroom community, giving the teacher a special membership status and distinct role, while in 

my study I focus on the dynamic of the classroom interactions and the power of the relationships that 

shape the participation in the classroom community. Thus, I elaborate Steinbring’s (2005) framework 

of mathematical knowledge and communication where the interactions and communication among 

participants are presented as predominant in the classroom. In this context, the reference to the role 

of the language in mathematical communication and argumentation in the classroom is very 

interesting and this leads me to consider frameworks through which I could get insights on the 

utterance of the mathematical argumentation through the participants’ roles. Levinson’s (1988) 

categorization of speakers’ roles seeks to offer insights on the patterns of participation. However, 

Krummheuer (2007, 2015) does not seem to undertake or investigate the limitations described by 

Levinson (1988), where multiplicity and alteration of the participants’ roles in some utterance events, 

as well as new roles, could be recognized, defined and re-defined. Moreover, Cramer’s and 

Knipping’s (2018) evidence of implicit participation is an interesting aspect related to participants’ 

roles in mathematical argumentation and could be investigated further, either as forms of participation 
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or non-participation. Considering the roles of the participants and interactions among pupils and 

teachers in the classroom culture, it could be possible to examine pupils’ interactions in developing 

base arguments and explain teachers’ actions in influencing pupils’ activity to develop ensuing 

arguments.  

Finally, the way that the socio-mathematical norms and the social order, related to the development 

of mathematical arguments and argumentation, are created, sustained and transformed could provide 

the context of an interactional perspective on argumentation in school mathematics through the 

MCIM model. However, this model has still to be considered and defined fully through empirical 

research to be conducted, developing the methodological context and the research protocols that fulfil 

the goal of the study. 

References 

Boaler, J. (2000). Mathematics from another world: Traditional communities and the alienation of 

learners. Journal of Mathematical Behavior, 18(4), 379–397. 

Bransford, J., Zech, L., Schwarz, D., Barron, B., & Vye, N. (2000). Designs for environments that 

invite and sustain mathematical thinking. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing 

and communicating in mathematics classrooms (pp. 275–324). Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Cramer, J. C., & Knipping, C. (2018). Participation in argumentation. In U. Gellert, C. Knipping and 

H. Straehler-Pohl (Eds.), Inside the mathematics class: Sociological perspectives on participation,

inclusion, and enhancement (pp. 229–244). Cham, Switzerland: Springer Nature.

Goffman, E. (1974). Frame analysis. An essay on the organisation of experience. Cambridge, MA: 

Harvard University Press. 

Goffman, E. (1981). Footing. In Forms of talk (pp. 124–159). Philadelphia, PA: Penn Press. 

Greeno, J. G. (1997). Theories and practices of thinking and learning to think. American Journal of 

Education, 106(1), 85–126. 

Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The 

importance of qualification. Educational Studies in Mathematics, 66(1), 3–21. 

Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary 

mathematics classrooms. The Elementary School Journal, 102(1), 59–80. 

Klein, M. (2001). A poststructuralist analysis of mathematics inquiry in a year 6 classroom: The 

rhetoric, realisation and practical implications. In J. Bobis, B. Perry, & M. Mitchelmore (Eds.), 

Proceedings of the 24th annual conference of the Mathematics Education Research Group of 

Australasia: Numeracy and Beyond (pp. 347-354). Sydney, Australia: MERGA. 

Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. 

Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–

82.  

Thematic Working Group 01

Proceedings of CERME11 177



Krummheuer, G. (2015). Methods for reconstructing processes of argumentation and participation in 

primary mathematics classroom interaction. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg 

(Eds.), Approaches to qualitative research in mathematics education (pp. 51–74). Dordrecht, The 

Netherlands: Springer. 

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, 

United Kingdom: Cambridge University Press. 

Levinson, S. C. (1988). Putting linguistic on a proper footing: Explorations in Goffman’s concepts of 

participation. In P. Drew, A. Wootton, & G. Ervin (Eds.), Exploring the interaction (pp. 161–227). 

Cambridge, United Kingdom: Polity Press.  

Mariotti, M. A., Durand-Guerrier, V., & Stylianides, G. J. (2018). Argumentation and proof. 

In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing research in 

mathematics education: Twenty years of communication, cooperation and collaboration in 

Europe (pp. 75–89). London, United Kingdom: Routledge. 

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational 

Researcher, 27(2), 4–13. 

Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction: An 

epistemological perspective. New York, NY: Springer Science & Business Media. 

Stylianides, A. (2007). Proof and proving in school mathematics. Journal for Research in 

Mathematics Education, 38(3), 289–321. 

Toulmin, S. (2003). The uses of argument. Cambridge, United Kingdom: Cambridge University 

Press. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. (M. 

Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Cambridge, MA: Harvard University 

Press. 

Wood, T. (2002). What does it mean to teach mathematics differently? In B. Barton, K. C. Irwin, M. 

Pfannkuch, & M. O. J. Thomas (Eds.), Proceedings of the 25th annual conference of the 

Mathematics Education Research Group of Australasia: Mathematics education in the South 

Pacific (pp. 61–67). Sydney, Australia: MERGA. 

Wood, T., Williams, G., & McNeal, B. (2006). Children’s mathematical thinking in different 

classroom cultures. Journal for Research in Mathematics Education, 37(3), 222–255. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 

mathematics. Journal for Research in Mathematics Education, 27(4), 458–477. 

Thematic Working Group 01

Proceedings of CERME11 178



A pilot study on elementary pupils’ conditional reasoning skills 
and alternatives generation skills in mathematics 

Anastasia Datsogianni1, Stefan Ufer1 and Beate Sodian1 
1University of Munich (LMU); Anastasia.Datsogianni@psy.lmu.de, 

ufer@math.lmu.de, Sodian@psy.lmu.de  

Keywords: Conditional reasoning, alternative generation, mathematics, primary students. 

Background and rationale 

One of the main aspects of logical reasoning is conditional reasoning, i.e. reasoning with if-
then statements. Conditional reasoning tasks usually present a rule of the form “if p then q” as 
a major premise, and a minor premise. Four minor premises differentiate four possible logical 
forms of inference: p is true (Modus Ponens, MP), p is false (Denial of the Antecedent, DA), 
q is true (Affirmation of the Consequent, AC), and q is false (Modus Tollens, MT). Definite 
conclusions can be drawn for MP (“q is true”) and MT (“p is false”), while AC resp. DA do 
not allow definite conclusions. Even very young children can show conditional reasoning 
skills in familiar everyday contexts (Markovits & Thomson, 2008). However, a link between 
conditional reasoning and mathematics has been found only in adolescents and adults in the 
context of proof (Stylianides & Stylianides, 2007).  

According to Mental Model Theories, inferences are drawn by constructing mental models 
that encode information about specific situations in which the conditional is valid (Johnson-
Laird & Byrne, 2002). The reasoners’ ability to generate alternative models (beyond a model 
representing “p and q”) for the given conditional is considered a crucial prerequisite to draw 
valid inferences. Studies on conditional reasoning in the everyday context (De Chantal & 
Markovits, 2017) have shown that the alternative generation skills do predict early 
development of conditional reasoning. This raises the question, if the ability to generate 
multiple alternative models for a given mathematical premise, has an influence on students’ 
conditional reasoning with these concepts. 

Methods 

Our study aimed at examining the relation between primary students’ skills in conditional 
reasoning with mathematical concepts, and their performance on the corresponding, 
alternative generation tasks. Participants were 55 elementary students (4th graders n=13: 
M=9.5 years, 6th graders n=42: M=11.5 years) from a public school in Cyprus. Their 
conditional reasoning skills were assessed in two conditional reasoning tasks including 
mathematical concepts (Datsogianni, Ufer, & Sodian, 2018). Each task contained one item for 
each logical form (MP, MT, DA, AC). For example, one conditional reasoning task focused 
on the circumference of rectangles in a context of dwarf houses. It was explained that dwarf 
houses always consist of several aligned rows, all with the same number of same-sized 
quadratic rooms. The major rule in this task was “If a dwarf house has exactly 2 rows of 4 
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rooms each, then it has 12 windows”. The alternative generation tasks asked students to 
generate many examples satisfying the conclusion of the major premise (i.e. “Draw as many 
dwarf houses as possible, that have 20 windows!”).  

Results and discussion 

Students’ solved 62.7% of the mathematics conditional reasoning items correctly, illustrating 
early conditional reasoning skills under specific conditions. Regarding the first alternative 
generation task 62% of students gave 4 to 6 correct alternative solutions (M= 3.42, Mdn= 
4.00). The second alternative generation task seemed to be more difficult since only 20% of 
students gave 4 to 5 correct solutions (M= 1.81, Mdn= 1.00). This indicates that the 
alternative generation tasks are feasible, but not too easy for our target sample. The number of 
generated alternatives correlated with students’ reasoning performance (task 1: ρ=0.358, 
Sig.=0.001, task 2: ρ=0.343, Sig.=0.003), supporting our assumption that mathematical 
conditional reasoning is based on alternatives generation. Some first insights of our main 
study, which followed the above one, confirm that alternative generation in mathematics 
predicts correct logical reasoning and especially with AC form. 

The results showed that the applied instrument is accessible to students while they replicate 
early conditional reasoning skills reported in studies from developmental psychology (e.g. 
Markovits & Thompson, 2008). This study replicates also previous results (De Chantal & 
Markovits, 2017) regarding the significant relation between alternative generation skills and 
students’ conditional reasoning skills, extending these results to tasks that involve 
mathematical concepts. The small sample size forbids taking far-reaching conclusions. 
However, our future research will be based on these developed tasks to describe the role of 
mathematical knowledge in conditional reasoning with mathematical concepts in more details 
investigating also whether alternative generation training could be one approach to support 
students’ conditional reasoning in mathematics. 
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The research reported here is part of an ongoing study3 in which prospective middle school 
mathematics teachers’ conceptions of definition are investigated through their responses to semi-
structured interview questions about defining quadrilaterals. Here we present findings from their 
responses to a subset of the interview questions, with the purpose of understanding what they mean 
by the expression “definitions can be proved”- an expression commonly referenced, and considered 
as erroneous in the research literature. Analysis of the responses, through using thematic coding 
and Toulmin’s (1958) scheme, revealed that participants attributed two different meanings to the 
phrase: (1) proving the claim that a written definition accurately designates an intended concept 
and (2) proving the concept being defined (erroneous). Based on our findings, we point to a 
reconsideration of the phenomenon by the research community. 

Keywords: Meta-mathematical knowledge, conception of proof, conception of definition, 
prospective middle school mathematics teachers 

Introduction 
Most teacher education programs offer college level mathematics courses to strengthen prospective 
teachers’ mathematical preparation. Although these courses provide rich mathematics content and 
experience of working with definitions and proofs, they do not include explicit information about 
mathematics at the meta-level (Azrou, 2017). Especially, learning to prove becomes a difficult task 
for university students (Stylianides & Stylianides, 2009). Previous studies highlight that students at 
all grade levels experience difficulties related to proofs (e.g., Azrou, 2017; Fiallo & Gutiérrez, 
2017), which is most of the time considered as a consequence of an inaccurate understanding of 
what constitutes a proof (Weber, 2001). Various studies have also informed that prospective 
teachers lacked an accurate understanding of mathematical definitions (Leikin & Zazkis, 2010; 
Levenson, 2012). Indeed, that many teachers and students cannot differentiate between definitions 
and proofs or consider definitions as provable is a robust research finding (Edwards & Ward, 2004; 
Leikin & Zazkis, 2010; Levenson, 2012). 

In this study, we delve deep into prospective teachers’ reasoning about if definitions need to be 
proved or not. In case of occurrence, we investigate prospective teachers’ expressions and 
examples, in order to find out what they mean by the expression “definitions can be/need to be 
proved.” By using Toulmin’s (1958) model of arguments, we look for the existence of concrete 
claims in participants’ proof-related attempts, because their responses to interview questions 
provide the key information on “what is being proved” in their perspectives. By detecting the actual 

3 The research is funded by Middle East Technical University Research Fund GAP-501-2018-2714. 
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“proven”, we aim to find out underlying reasons of using this erroneous expression; which might be 
a first step in developing proper ways of remediation in teacher education programs. 

We also refer to arbitrariness aspect of mathematical definitions (not of definitions, but of concepts) 
in answering our research question: What meaning do prospective mathematics teachers attribute to 
“proving/proof of a definition”? Since defining in mathematics is arbitrarily naming concepts 
(Vinner, 1991), concepts do not possess inherent truth-values. They are neither true nor false 
(Edwards & Ward, 2008). However, by “arbitrariness” we do not mean that definitions are adopted 
on a complete random base. Rather, we acknowledge that they are open to intelligent refinements 
through successive work of mathematicians (Lakatos, 1976). In this study, we position that both the 
concepts and definitions are “arbitrary”, in the sense we use the word. Concepts are “agreed upon 
conventions” (Levenson, 2012, p. 209); that is why they are arbitrarily named. On the other hand, 
definitions can arbitrarily be chosen among multiple equivalent definitions of a concept. We use the 
former in the case we report here. 

Background 
Two theoretical foundations were employed in this study. The concept definition-concept image 
distinction and Toulmin’s (1958) model of arguments are introduced in the next sections. 

Concept Definition/Concept Image 

Concept image is the collection of all mental representations associated with a particular concept in 
one’s cognitive structure; while the concept definition is the mathematical statement that designate 
that concept (Tall & Vinner, 1981). Although a concept definition is expected to connote the same 
meaning to everyone, concept image is specific to the individual and may not be fully compatible 
with the formal definition. In our study, the distinction between concept image and concept 
definition is a theoretical keystone for understanding prospective teachers’ hidden claims 
underlying their use of the erroneous expression “proving a definition”.  

Toulmin’s (1958) Model of Arguments 

Toulmin (1958) proposed a schema for describing an argument by identifying three main 
components. The model describes the connection between the claim (C) - that is desired to be 
established- and the data (D) - the fact, which can serve as a basis for establishing that claim. For 
the argument to take the arguer from the data to the claim, another element is defined: The warrant. 
Warrants can be rules, principles or inference-licenses entitled to “show that, taking these data as a 
starting point, the step to the original claim or conclusion is an appropriate and legitimate one” 
(Toulmin, 2003, p.91). The three elements constitute the simplest form of the model. The complete 
model includes additional elements of backing (B), modal qualifier (Q), and the rebuttal (R). 
Backing is a further evidence for the connection between data and claim, modal qualifier associates 
a degree of confidence to the conclusion made; and rebuttal states the conditions under which the 
conclusion is not valid. However, not all arguments have to contain these latter three elements.  

Given that proof is a mathematical argument produced with the purpose of convincing oneself and 
others of the truth of a mathematical statement (Fiallo & Gutiérrez, 2017), we apply Toulmin’s 
model on prospective teachers’ productions of exemplary proofs, in order to identify the actual 
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claims they aim to prove, while expressing it as “proving a definition”. Since our focus is on 
identifying any existing claims in participants’ examples, we use the simplest form of the model, 
consisting only of the three elements data (D), claim (C) and warrant (W). 

Method 
Basic qualitative research methods were used in this study. 

Context and Participants of the Study 

Participants of the study were six senior (4th-year) prospective middle school mathematics teachers 
in a four-year teacher education program. The program, prepared around 40 mathematics teachers 
each year to teach at the grade levels from 5 to 8, by offering college-level mathematics courses 
mostly in the first two years and concentrating more on the teaching-related courses in the last two 
years. Participants were selected based on their active participation in the educational courses, their 
inclination to express and discuss mathematical ideas and the variation in their knowledge of 
mathematics, as observed in the teaching related courses by the authors. All six participants 
volunteered to participate in the study as an out-of-class activity. Since the data were collected 
through the end of the academic year, they had nearly completed all the courses in the program. 
Although the program included the study of undergraduate level mathematics courses (offered by 
the Mathematics Department) in which definitions and proofs played important roles, students had 
not been offered any specific information about meta-mathematical constructs of definitions and 
proofs in these courses. Also, it may worth to highlight that a detailed chapter on the geometry 
terms, especially the hierarchical way of defining quadrilaterals were covered in the mathematics 
teaching methods course that participants took in their third year. 

Data Collection and Analysis 

In semi-structured interviews conducted by the first author in one-to-one settings, prospective 
teachers responded to a broad range of verbal and task-based questions aimed at revealing their 
understanding of mathematical definitions. After completing an initial open-ended task about 
defining quadrilaterals (participants were asked to propose a sequence for introducing 
quadrilaterals, by supplying their own definitions), they were asked questions such as “What is a 
mathematical definition for you?” and “Why do we state definitions in mathematics?” One of the 
questions asked participants to explain their thinking about the relationship between definitions and 
proofs. They were explicitly asked to indicate if definitions need/have proofs or not, and explain 
their reasoning. In case of accepting definitions as provable, they were requested to give an 
example. Participants’ responses were analyzed through thematic coding procedure (Braun & 
Clarke, 2006) and Toulmin’s (1958) model of arguments was used to describe their examples. 
Findings 
Analyses of prospective teachers’ explanations and examples resulted in two different 
interpretations of the expression “proving a definition”. In particular, prospective teachers 
considered “proving a definition” as (1) justifying the claim that a written definition accurately 
designates an intended concept (which would be an appropriate action in the discipline of 
mathematics) and (2) justifying the concept being defined (which remains ambiguous in meaning).  
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Table 1 presents a summary of each participant’s thinking about the phrase, as inferred from their 
verbal explanations and concrete examples, which were mostly different from what they explicitly 
said. A representative quotation from each participant is given in order to reveal their use of words 
in their conversations. Two separate rows are used for the participant (P5) who displayed both type 
of interpretations. 

PST Sample Wording PST Used 
Meaning Inferred from 
Further Explanations 
(through thematic coding) 

Meaning Inferred from 
Example Case (through  
Toulmin’s scheme) 

P1 “I am proving the triangle (definition).” Proving the claim Proving the claim 

P2 “I proved the truth of this definition.” Proving the claim Proving the claim 

P3 “Definitions should be proved." Proving the claim (Did not provide) 

P4 “I could not understand what you 
mean?” 

Proving the claim (if such a 
thing exists) Proving the claim 

P5 “By ..., we can prove definitions.” Proving the claim Proving the claim 

P5 “After the shape square has been 
proved." Proving the concept (Did not provide) 

P6 “If I am definining a concept, it has 
nothing to do with proving.” 

Proving the concept (non-
existent) (Not applicable) 

Table 1: Meaning attributed to the phrase of “proving a definition” in prospective teachers’ (PST) 
explanations and examples 

The two types of interpretation resulting from participants’ responses are described in the following 
sections. In the reporting of quotations and examples, brackets are used for indicating the authors’ 
insertions, and square brackets are used either for indicating excluded parts of the interview (with 
ellipsis: […]) or for specifying the components of the participant’s arguments (i.e., [data], [claim], 
and [warrant]). 

Interpretation I: “Proving a definition” as “proving the claim that a written definition 
designates the intended concept” 

Four of the six prospective teachers (P1, P2, P3, and P5) indicated that definitions “can be proved” 
(P1) or “need to be proved” (P3). Although their wording did not reflect the existence of an explicit 
claim to be proved (e.g., “proving the triangle (definition)” (P1); “I will give a definition and prove 
it.” (P2)), their explanations and examples revealed that what they considered provable was an 
actual claim. In particular, they were talking about proving that a written definition truly reflects the 
image of the intended concept in their minds. Following scripts from P1 and P2 illustrate the case.  

Researcher: The proof you thought of there… What exactly is that proof of? 

P1: Of the triangle (definition), in fact. 

Researcher: How is that? Could you open this up a little? 
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P1: Of the triangle (definition). It is about the shape of the triangle. I mean, in our 
minds there is a shape about… the shape of the triangle and we are trying to make 
this definition fit to it. With the proof, we check if it fits the shape or not. 

Researcher: Is there a relationship between definition and proof? 

P2: Yes. In order to prove that the definition we create is true, we do proofs. I mean I 
create a definition; but to what extent is that true, when it holds? Maybe under 
some conditions it does not hold. For proving this, proofs are written. 

Their examples were based on proving concrete claims as well. They were basically comparing a 
written definition with the corresponding concept image in their minds to evaluate their congruence. 

Researcher: Now, what exactly is that you try to prove here? […] Can you give me an 
example? 

P2: I will give a definition and prove it. Hmm… Let me take the parallelogram. 
Opposite sides need to be equal in length and parallel (reads the definition she 
wrote in a previous task), I say. I will prove this. (Draws the figure that satisfies 
the given conditions.) [data] Actually, by drawing this (points to the figure she 
drew) [warrant: the figure fits into her concept image] I proved it [claim].  

Researcher: What is that you proved here? 

P2: Properties of the parallelogram. I try if it does hold for the given definition. I do 
some trials and then I see that it holds for this definition. And I proved the truth of 
this definition, I mean. 

Figure 1 presents P2’s example case of “proving” by using Toulmin’s (1958) model arguments. 

Data: Draws a quadrilateral that ensures 
the conditions stated in the definition. 
(P2: Opposite sides need to be equal in 
length and parallel.) 

So Claim: “A quadrilateral wih 
oposite sides equal and parallel” 
defines the parallelogram. Since 

Warrant: The obtained figure matches with her concept image of parallelogram. 

(P2: Actually, by drawing this (points to the shape she drew) I proved it.) 

Figure 1: An argument schema for P2’s example 

On the other hand, the idea of “proof of a definition” did not make any sense to P4 first. However, 
when she thought over it by the help of an example case, she ended up with the same interpretation 
as the previous participants:  

P4: Let me think about this. Here, I had written something for rectangle (in a previous 
task). There I have defined rectangle as the parallelogram with a right angle. Now, 
am I required to prove that this definitely defines the rectangle?  
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Her exemplary proof attempt provided an accurate representation of the participants’ thinking. 

P4: I know what a parallelogram is (Draws a parallelogram-angles very close to 90°). 
[data] Now, I should have drawn a real rectangle. It is OK, if I do not. One of the 
angles is 90 degrees [data], I started here (marks one of the angles with the 
perpendicularity symbol). I know that in a parallelogram opposite sides are 
parallel. Then, these (two adjacent angles) add up to 180 degrees. This is also 90 
(degrees). […] Then, its all interior angles are 90 degrees. Opposite sides are 
parallel, equal and so forth… It satisfies all the properties of rectangle. 
[warrant][…] I mean, I can prove that this definition is rectangle. [claim] 

Interpretation II: “Proving a definition” as “proving the concept being defined” 

Two of the prospective teachers perceived “proving a definition” differently.  They maintained the 
odd wording of “proving a concept” in their explanations (e.g., “proving the shape square” (P5)). 
However, their approaches to this idea were different from each other’s. P5 thought that it was a 
possible action to “prove a concept”. Although she could not elaborate much on this idea of her, 
since she demonstrated two different meanings at the same time (both proving the claim and 
proving the concept) it was evident that she was talking about an issue different than proving the 
claim in the following dialog: 

Researcher: Is there a relationship between definition and proof? 

P5: I cannot say absolutely there is, but I think should be. […] After the shape square 
has been proved, it must have fit to its definition. Otherwise, if we do not know 
what is the thing that we call square, without proving this, we cannot make the 
definition. 

Researcher: What is it that we prove here? 

P5: Which shapes we call “square”? How does the square come into existence? 

Researcher: Can you give me an example of this? 

P5: I do not know. Now… I can’t find. 

Immediately after, when she was asked if definitions were provable or not, she demonstrated the 
same understanding of “proving a claim”, similar to what the previous participants did:  

P5: We draw the multiple shapes of what we do (define), I mean by looking for 
counterexamples, we can prove definitions. 

Her example also supported that she was proving a claim (whether a given definition of square 
would actually define square or not), although she relied on empirical reasoning in her argument. 

P5: Let me think with square again. More than one person draws its definition [data], 
because it may not represent the same thing to everyone. We check if it does 
represent the same thing to everyone. If one person draw a thing that is different 
from what we try to explain [warrant], then that means the definition we have is 
not correct or not clear, erroneous [claim]. In this way, I think we can prove it. 
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Unlike P5, P6 seemed to be aware of the fact that “defining was arbitrarily naming concepts” and 
hence definitions (concepts) needed no justification.  

P6: Of course there may be (a relationship in between), but if I am trying to name 
something, if it is something like a term… You see, here when I am trying to 
define the trapezoid, I am not proving the properties of the trapezoid […] Because 
I am just giving it a name. 

As we consider that they are the concepts which are arbitrary, rather than the defining statements (in 
our case), we name this second type of interpretation with the phrase “proving the concept being 
defined”. Both P5 and P6 seem to be thinking about proving “why concepts exist in mathematics as 
they are”. While P6 correctly rejects this kind of thinking about definitions, P5 seem to consider it 
as a necessity. Also, P5’s erroneous understanding may still be residing in other participants’ minds, 
as prospective teachers may not be aware of arbitrariness aspect of definitions. 

Discussion and Implications 
Findings of the study provide insights into participating prospective teachers’ conceptions of proof. 
Although at the first glance they seem to be trying to prove a non-claim, existence of a real claim in 
their arguments reveals that they have an implicit (because they do not say so) insight about what 
needs a proof in mathematics. This is an unexpected finding and a positive outcome for teacher 
education programs compared to previous research findings, because no such claims were proposed 
by the participants of other studies who communicated that definitions could be proved (Levenson, 
2012) or who could not distinguish between a theorem and a definition (Edwards & Ward, 2004; 
Leikin & Zazkis, 2010). However, this finding does not necessarily mean that participants are also 
sure of what cannot be proved in mathematics. P5’s explanations displayed that one of the things 
she tried to prove was a claim (Interpretation I), while the other was not (Interpretation II). The 
same might be the case for all of the participants of the study, except P6; but might have remained 
uncovered in our interviews, because no participants other than P6 mentioned the arbitrariness 
aspect of defining concepts in their responses. They did not reveal any thinking about if concepts 
were provable or not, as P5 and P6 did. This addresses that while interviewing prospective teachers, 
handling the nature of proofs and definitions concurrently and from multiple aspects might provide 
a more complete picture of their meta-mathematical knowledge. Otherwise we might end up with 
unrealistic judgments of prospective teachers’ knowledge and understandings. 

On the other hand, our observation that most of the prospective teachers attributed the same 
acceptable meaning (Interpretation I) to the principally imperfect phrase of “proving a definition,” 
have important implications about the common practice of using the words “proof” and “proving” 
imprecisely. Besides not questioning the misuse of the word “proving” in the question we directed 
to them (P4 did only); most of the participants consistently used unclear wordings such as “proving 
the triangle” (P1) in their explanations. Also, the inconsistency between what they do (or think) and 
how they talk about it was striking; which would probably have a negative influence on their future 
students’ learning of mathematics at the meta-level. Previous studies acknowledge the need for 
discussing notions of definition and proof in teacher education programs, along with the other meta-
mathematical constructs such as assumptions and axioms, and the interrelationships among them 
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(Levenson,  2012). Based on the findings of our study, we want to point out to the importance of 
using the meta-mathematical terms “proof” and “definition” rigorously within such discussions. 
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Introduction 
Mathematical reasoning (MR) is recognized as one of the fundamental aspects of mathematics 
learning (NCTM, 2000), however, in the literature, sometimes this concept is not clearly defined. 
From a review of literature, Jeannotte and Kieran (2017) synthetized converging features of MR and 
developed a conceptual model for MR in school mathematics. According to these researchers, MR is 
a process of communication that allows to infer mathematical statements from other mathematical 
statements and that encompasses five processes regarding students’ search for similarities and 
differences (generalising, conjecturing, identifying a pattern, comparing, and classifying) and three 
processes regarding students’ aim for validation (justifying, proving, and formal proving). In this 
study, we aim to analyse 5th grade students’ justifications of a conjecture on the properties of triangles, 
during a teaching intervention to promote students’ MR. 

Theoretical framework 

For the purpose of this study, we will use the term justification as an argument that guarantees (or 
disproves) the truth of an statement and uses mathematical forms of reasoning accepted as universal 
in the classroom community. This way of defining justification is similar to the one by Staples, Bartlo 
and Thanheiser (2012) but to which we add the focus on the community. Therefore justification 
consists in the process of searching for data and guarantees that allows the change of the epistemic 
value of a narrative (Jeannotte & Kieran, 2017) and it is supported by the discourse of the community. 
However, according to these authors, that change does not occur “necessarily from likely to true” but 
“from likely to more likely” (p. 12) and, as such, this process does not require a deductive structure. 
In order to analyze students’ justifications, we use in this study a framework based on Balacheff 
(1988) and Harel and Sowder (1998), with five levels hierarchically organized. At level 1 – external 
authority – the justification is based on an element considered as an authority, which can be the 
teacher, a colleague or the textbook. At level 2 – empiricism naïf – we consider two categories: 
perceptual naïf empiricism, when a justification is based on perceptual observations, showing a 
drawing or gesturing; and inductive naïf empiricism, when a justification is based on the verification 
of some examples. At the intermediate level – crucial experience – a justification is grounded on a 
carefully selected example, revealing intentionality in the choice. At level 4 – generic empiricism – 
operations are used, based on the properties of objects, for justification, however, the student does 
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not identify or justify the applicability of the property used in the operation. At the most sophisticated 
level – mental empiricism – the justification is based on the properties and relations between objects. 

Methods 

The study was carried out in a 5th grade class with 30 students, during a teaching intervention on 
geometry conducted by the first author. The focus of this poster are the students’ justifications of a 
conjecture presented by one student (Mariana) who stated that “If two triangles have the same 
perimeter, they are equal”, when they were working on the topic of congruence of triangles. Students 
were asked by the teacher to validate or refute the conjecture individually and then to discuss their 
ideas with whole class. The methodology of the study is qualitative with data coming from students’ 
written productions and the collective discussion of their work. In this poster we use the 5-level 
justification framework referred above to analyse the justifications of four students, whose solutions 
were selected by the teacher to be collectively discussed in order to clarify the refutation of the 
conjecture and the importance of the counterexample used in this refutation. 

Results 

The analysis shows that students’ justifications of the conjecture are at the second and third levels 
according with the adopted framework. At the second level, justifications are based on perceptual or 
intuitive observations. These students perceive other possibilities of different lengths for the sides of 
the triangle from which an equal perimeter can result, without the triangles being equal, however, the 
counterexample they present does not take into consideration the triangular inequality. At the third 
level, students use carefully selected examples, such as two triangles of different lengths and with the 
same perimeter, that they draw rigorously using the compass and the ruler, and which they present as 
a counterexample to refute the conjecture. Still, there is evidence that students are producing 
arguments that may lead to a more general conclusion by making important connections with 
triangular inequality to choose the counterexample. The analysis of this classroom episode also 
emphasizes the importance of the teacher’s role in promoting the development of MR processes. The 
fact that the conjecture was based on a wrong assumption was seen by the teacher as an opportunity 
to trigger MR validation processes and, more generally, for promoting students’ MR. 
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The teaching of proof by contradiction involves a didactical paradox: students’ efficient use of this 
proving method is hard to achieve in mathematics classes, although students’ argumentation using 
this method can occasionally be observed in extra-mathematical contexts. To address this issue, 
Antonini (2003) proposed a task of the non-example-related type that could lead students to produce 
indirect proofs. The aim of this paper is to propose a new type of tasks and situations related to 
counterexamples that can lead students to argument by contradiction, not by contraposition. 
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Introduction 
This paper reports some results of developmental research on the teaching and learning of proof by 
contradiction. Despite the various studies on the subject, in general, mathematical proving seems to 
remain difficult to learn for most students over the world, especially regarding proving by 
contradiction. In Japan, mathematical proof is learned in lower secondary school, while more delicate 
proof methods are learned in senior secondary school. Proof by contradiction, one such delicate 
method, can be rather difficult to learn, as reported by several authors (Antonini & Mariotti, 2008; 
Reid, 1998). In particular, from the didactical and cognitive perspective, it involves curious 
conflicting aspects. On one hand, it would be far from a desirable understanding of the subject just to 
learn the fact that proof by contradiction is a correct method and the manner to build such proofs, 
since students could not be convinced of the conclusions in such proofs unless they understood why 
this method works. On the other hand, it has been observed that students sometimes spontaneously 
use the method of proof by contradiction as argumentation in extra-mathematical contexts, even 
before they develop any notions regarding this method (e.g. Freudenthal, 1973, p. 629). 

To manage this paradoxical issue, Antonini (2003) proposed tasks and situations that can help 
students to generate the idea of indirect argumentations and proof (i.e. tasks involving non-examples, 
which shall be addressed in the second section). This proposal is based on the notion of cognitive 
unity, which emphasizes the similarity between processes of argumentation and proof construction 
(Garuti, Boero, & Lemut, 1998). The developmental principle of cognitive unity claims the 
importance of preceding argumentations to produce the conjecture, before the stage of proof 
construction. In summary, Antonini (2003) conducted a task design for the teaching of indirect proof 
using of the principle of cognitive unity. Our study follows this same line. 

First, we clarify the notion of proof by contradiction especially confirming how it differs from proof 
by contraposition. Then, we review the preceding result of Antonini (2003) and identify its focus on 
proving by contraposition rather than by contradiction. Therefore, the main objective of this paper is 
to propose new tasks and situations that can lead students to argumentation using the idea of proof by 

Thematic Working Group 01

Proceedings of CERME11 191



contradiction, beyond proofs by contraposition. We present the task designed for this study and 
investigate some results of a teaching experiment with this task. 

Preliminary analysis for the design of a new task with proving by contradiction 
The authors’ position on proof by contradiction 

This section confirms the definition of proof by contradiction and summarizes its relation to indirect 
proof. As Chamberlain & Vidakovic (2017) point out, some studies do not distinguish proof by 
contradiction from that by contraposition. While Lin, Lee, & Wu Yu (2003) attribute proof by 
contradiction to the law of contraposition, Antonini & Maritotti (2008) refer to such proof methods 
as ‘indirect proving’, which may also include the method of proof by contraposition. Logically 
speaking, the method by contradiction to indirectly prove the statement ‘𝑃𝑃 → 𝑄𝑄’ is to directly prove 
the statement ‘𝑃𝑃⋀¬𝑄𝑄 →⊥’1. This method is based on the law of excluded middle, which claims that 
‘𝑄𝑄 ∨ ¬𝑄𝑄’ is true. In addition, the method by contraposition to indirectly prove ‘𝑃𝑃 → 𝑄𝑄’ is to directly 
prove ‘¬𝑄𝑄 → ¬𝑃𝑃 ’. This method is based on the principle that ‘𝑃𝑃 → 𝑄𝑄 ’ and ‘¬𝑄𝑄 → ¬𝑃𝑃 ’ are 
equivalent. Here, we observe that (𝑃𝑃 → 𝑄𝑄) → (¬𝑄𝑄 → ¬𝑃𝑃) is true, even in the intuitionistic logic, 
although (¬𝑄𝑄 → ¬𝑃𝑃) → (𝑃𝑃 → 𝑄𝑄) requires the law of excluded middle. Moreover, it is known that 
the law of excluded middle can be verified conversely using this contraposition rule with the 
intuitionistic logic. Thus, from the logical perspective, we can consider these proving methods 
interchangeable, in the sense that adding either the law of excluded middle or the contraposition 
principle to the intuitionistic logic 
results in the same classical logic. 
In fact, we can show proof 
diagrams in which the two proving 
methods, support each other 
(Figure 1). 

However, from the cognitive or epistemological perspective, we can point out certain differences. 
How should the argumentation by contraposition against the statement ‘𝑃𝑃 → 𝑄𝑄’ begin? It would be 
natural to begin the generation of argumentation by contraposition with the question ‘what if 𝑄𝑄 is not 
true?’, while it is desirable to begin argumentation by contradiction with the question ‘is there any 
situation where “𝑃𝑃” and “not 𝑄𝑄" is possible?’. In addition, the middle processes of both types of 
argumentations have differences. In the case of contraposition, the argumentation starting from the 
assumption ‘not 𝑄𝑄’ would not result in any contradiction but in the conclusion ‘not 𝑃𝑃’. Thus, the 
instances in this argumentation are possible and real under this assumption ‘not 𝑄𝑄’. On the other hand, 
the argumentation starting from the assumption ‘if “𝑃𝑃” and also “not 𝑄𝑄” are possible’ would lead to 
a contradiction. Therefore, the argumentation in the middle process deals with impossible cases. 
Moreover, we can see differences in the goal of the argumentations. In the case of contraposition, the 
conclusion to be reached can be specified as ‘not 𝑃𝑃’ from the beginning, while, in the case of 
contradiction, the conclusion can be any type of contradiction. Therefore, the goal of this type of 

1 The symbol ⊥ means the contradiction, which is unconditionally false. 

Figure 1: Two proving methods mutually supported 
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argumentation is not specified in the beginning and proof by contradiction seems to be more difficult 
than that by contraposition. 

Despite these differences, both proving methods tend to be integrated as indirect proofs. We believe 
this to stem from a didactical reason, instead of a reason based on compatibility in logic. The principle 
of contraposition in the school mathematical context is not an axiom, but a meta-theorem that can be 
verified somehow. In fact, faced the question of why ‘𝑃𝑃 → 𝑄𝑄’ can be implied from ‘not 𝑄𝑄 → not 𝑃𝑃’, 
they can possibly use the method by contradiction: ‘if 𝑄𝑄 is not true under 𝑃𝑃…’ Thus, it is didactically 
natural to verify the method of proof by contraposition based on contradiction, although the inverse 
is verifiable by logic. Therefore, from the didactic and cognitive perspectives, we consider that proof 
by contradiction is more fundamental and supports the method of proof by contraposition, which can 
be acknowledged as an application of proof by contradiction. 

From investigation of non-example to non-existence of counterexample  

As mentioned in the first section, Antonini (2003) proposed tasks involving non-examples against 
almost the same research question. Given a property 𝐴𝐴, non-example is an instance that negates 𝐴𝐴, 
while an ordinary example is one that verifies 𝐴𝐴. Antonini (2003) argues that, faced with a question 
such as ‘given a hypothesis 𝐴𝐴, what can you deduce?’, students tend to generate examples and (or) 
non-examples and, through the observation of non-examples that verifies 𝐵𝐵 but does not satisfy 𝐴𝐴, 
students can assume that ‘if 𝐵𝐵 is true, 𝐴𝐴 is not true’. From this argumentation, students may be led to 
obtain ‘if 𝐴𝐴 is true, 𝐵𝐵 cannot be true’, which is an indirect argumentation. Although such tasks and 
processes are reasonable enough, we would like to indicate room for further improvements: the 
argumentations that would be observed in these processes are proofs by contraposition, not by 
contradiction. Such argumentations certainly include ways of thinking such as ‘… if it were not so, it 
would happen that…’. However, because this argumentation starts from the observation of a non-
example (not satisfying 𝐴𝐴), such thinking necessarily has the form ‘if 𝐵𝐵 is true, 𝐴𝐴 cannot be true’, 
which certainly corresponds to an argumentation by contraposition.  

In contrast, our hypothesis is that the principle of non-existence of counterexample yields 
argumentation by contradiction. Generally speaking, the intension to disprove some statement may 
lead to the pursuit of its counterexample. However, it is difficult to prompt disproving activities in 
mathematics classes, which are usually filled by the requirement for proof. In the following 
subsection, we discuss a favourable condition involving counterexample towards argumentation by 
contradiction. 

Judgement of truth and proof by contradiction 

In the former part of this section, we defined the method of proof by contradiction. However, it is 
written in propositional logic, while there are many propositions of predicative logic that will be 
addressed in mathematics in upper secondary school or higher. In fact, in Japan, many common 
propositions to be proved in mathematics are universal propositions. Let 𝑆𝑆 be a proposition such as 
‘for any 𝑥𝑥, if 𝑃𝑃(𝑥𝑥) is true, 𝑄𝑄(𝑥𝑥) is true’, and consider a task such as ‘is this proposition 𝑆𝑆 true?’, that 
is, the judgement of the proposition 𝑆𝑆. Facing this type of task, what types of argumentations occur 
naturally? As a form of naïve argumentation, one may try to verify 𝑆𝑆 in an empirical way: each 
instance 𝑥𝑥  verifying 𝑃𝑃(𝑥𝑥) is examined to verify whether it satisfies 𝑄𝑄(𝑥𝑥) or not. Then, the more 
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instances one checks, the more plausible 𝑆𝑆 would be. In addition, this operative work might prompt 
students to understand what the negation of the statement 𝑆𝑆 is. If the above examination of each 
instance 𝑥𝑥 fails even once, in other words, if one finds an instance 𝑥𝑥 satisfying 𝑃𝑃(𝑥𝑥) but not 𝑄𝑄(𝑥𝑥), 𝑆𝑆 
turns out to be false. In class, the task of proving 𝑆𝑆 makes it unquestionable, because such a task 
implicitly means that 𝑆𝑆 is true. However, against the task of judgement, one may suspect its negation 
quite naturally. Moreover, in this type of task, which will be proposed in the following section, this 
suspicion is important and can lead students to the idea of proof by contradiction, as this suspicion is 
the initial point of the proving method by contradiction: if one doubts the truth of 𝑆𝑆, he or she can 
start argumentation from the assumption of the counterexample’s existence, that is, an instance 𝑥𝑥 
satisfying 𝑃𝑃(𝑥𝑥) but not 𝑄𝑄(𝑥𝑥). If this argumentation comes to a contradiction, the non-existence of a 
counterexample can be deduced; furthermore, it claims the truth of 𝑆𝑆, which is an argumentation by 
contradiction. 

Regarding the proving by contradiction, Antonini & Mariotti (2010) point out two difficulties: the 
treatment of impossible mathematical objects and the link between the contradiction and the statement 
to be proved. In fact, when proving by contradiction, one should think of impossible and absurd cases 
and deduce a contradiction. One may not make sense of a contradiction from an absurd assumption 
that looks trivial and from which nothing is likely to be deduced. This is similar to the low assessment 
by students of proof of a trivial theorem, such as ‘the base angles of an isosceles triangle are equal’. 
Likewise, in proof by contradiction, if the provisional assumption is apparently absurd, the deduced 
contradiction would make no persuasive argument. Thus, to promote students’ argumentation by 
contradiction, it is important that the provisional situation, where the hypothesis is true but the 
conclusion is false, is unknown to be possible or impossible, and its possibility should be the focus 
of the discussion. This is exactly the case in the proposed tasks of judgement. 

Proposal of the task and situations 
First, it is necessary to recall the characterisations of a parallelogram (i.e. sufficient conditions for a 
quadrilateral to be a parallelogram). Although Japanese lower secondary schools do not use the word 
‘sufficient’, they adopt the following five conditions in classes as ‘conditions for a parallelogram’: 

– Two pairs of opposite sides are parallel. (Definition) 

– Two pairs of opposite sides are equal in length. 

– Two pairs of opposite angles are equal in measure. 

– One pair of opposite sides are parallel and equal in length. 

– The diagonals bisect each other. 

Each of these five conditions consists of two conditions out of the following: 

– a pair of opposite sides is parallel 

– a diagonal bisects the other 

– a pair of opposite sides is equal in length 

– a pair of opposite angles is equal in measure 

Apart from the previous five sufficient conditions, various combinations of two out of the conditions 
specified above are possible. In particular, we adopt the following combination and the task in 

 
Figure 2: Parallelogram with Labels 
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connection with it: for a quadrilateral ABCD with its diagonals crossing at M, does the condition of 
∠A=∠C and BM=MD make this quadrilateral a parallelogram? (See Figure 2.) 

Since this condition is actually a necessary condition to make the quadrilateral a parallelogram, the 
figure of a parallelogram may give an impression that this condition is also sufficient. Thus, one may 
try to prove its sufficiency directly. In such an attempt to prove it, it would be natural to focus on a 
congruence of triangles, namely△AMB and △CMD. Verifiable facts concerning these triangles from 
the given condition are BM=DM and ∠AMB=∠CMD. If one could claim that AM=MC, it is easy to 
conclude that this quadrilateral is a parallelogram using the congruence of triangles, although no more 
properties concerning △AMB and △CMD can be obtained directly from the assumption. 

If this was against the task of proving a statement 
suggested by a teacher, which would be considered 
correct previously, then this proving attempt would end 
here and no further argumentation would hardly 
continue. However, in the task of judgement, one can 
proceed this argumentation as such a stagnation of 
verifying argumentation implies the possibility of a 
counterexample. A student can suspect the congruence 
of △AMB and △CMD. In particular, if AM=MC is true, they are congruent and the quadrilateral 
ABCD turns out to be a parallelogram. Thus, one can imagine an instance satisfying ∠A=∠C and 
BM=MD, but AM≠MC, or AM<MC. If one tries to draw a figure of an instance satisfying BM=BD, 
AM<MC and also ∠A=∠C, the impossibility of such an instance comes apparent. This might be seen 
by intuition (See Figure 3) and can also be verified as follows: if one take C’ on MC with AM=MC’, 
we can see ∠A=∠BC’D > ∠C and obtain contradiction. This is proof by contradiction. 

Teaching experiment 
In this section, we report a teaching experiment in a typical upper secondary school in Japan. This 
experiment was mainly designed to investigate the learning about wide logical concepts through 
inquiries, not limited to the idea of proof by contradiction. The 40 students in our study are first years 
at a typical upper secondary school in Japan (15-16 years old) and, in general, students in this school 
are not highly competent in mathematics. The students were about to study logical notions in the 
small unit of ‘sets’ and had never studied proof by contradiction, not even the concepts of 
counterexample, sufficient condition, or necessary condition. They were divided into 12 groups of 
three or four students each. A main element of this experiment is the inquiry against the following 
task (Figure 4) given to the groups (cf. Hamanaka & Otaki, to appear). 

There is a quadrilateral ABCD with its diagonals crossing at M. 
Find combinations of two out of the following eight conditions as 
many as you can, each of which makes this quadrilateral ABCD a 
parallelogram: (a) AB = CD, (b) AD = BC, (c) ÐA = ÐC, (d) ÐB = 
ÐD, (e) AM = MC, (f) BM = MD, (g) AB // DC, (h) AD // BC. 

Figure 2: Task given in the teaching experiment 

Figure 1: Impossibility of a counterexample
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Among the 28 possible combinations of conditions, 16 are sufficient to make a quadrilateral a 
parallelogram, while12 are not. Among the sufficient combinations, {(c), (f)} and {(d), (e)} are 
relatively difficult to be justified, and their proofs could involve proof by contradiction. The teaching 
experiment was carried through two teaching terms. While the first term was dedicated to students to 
do their own inquiries around the task, the second term was devoted to their reflection. 

In fact, because of its difficulty, we did not expect the generation of the idea of proof by contradiction 
at the beginning. However, we could observe the generation of argumentation using that method in 
their inquiries as we report below. The following is a part of the conversation during the inquiries by 
a group of three students (A, B, and C) in the first term, which was mainly recorded by a voice 
recorder and partly by a video recorder. We were not able to identify their voices clearly and the 
speaker of the speech below was partly unspecified (Indicated as Student X). They were considering 
the case where ∠A=∠C and BM=MD.  

Student X: As these lengths [BM and MD] are specified from the beginning and if we set that 
these angles [∠A and ∠C] are the same, I think it must be a parallelogram, right? 

Student A: If we change these lengths [AM and MC], these angles [∠A and ∠C] must also 
change…  

Student A: So, if we change these lengths [AM and MC] and also fix these angles [∠A and 
∠C], these edges cannot meet. 

Student A: Wait, yes. If the angles [∠A and ∠C] are specified and the lengths [AM and MC] 
are different, it cannot be. Under these conditions [∠A=∠C and BM=MD], it is 
impossible. 

Student B: Well, why is it impossible? (A short silence follows.) 

Student A: Well, listen. If we change the lengths [AM and MC], they [the edges CD and AD] 
cannot meet, can they? Let’s see, if we keep these angles [∠A and ∠C] having the 
same measure, and also if we make this part [MC] longer… 

Student C: Oh, they [CD and AD] will not meet… it [CD] cannot reach [D]. 

The final worksheet did not retain the figures 
used at the time of the above argumentation. It 
is assumed that Figure 4 illustrates the 
situation described by Student A. At that time, 
she was looking for a counterexample, that is, 
an instance that satisfies the given condition 
but is not a parallelogram. This idea led her to 
the argumentation ‘if MC is longer than AM’. 
Their argumentation continued as follows: 

Student B: Then, let’s draw the figure (of the considered situation). 

Student A: No way. We cannot draw it because it is impossible. 

 
Figure 3: The situation in Student A’s description 
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Student B: Oh, right. I see. 

Student C: Oh, we cannot draw it… 

These protocols clearly show that their argumentation involves contradiction: a situation that can be 
considered but cannot be possible. Then, she organized her idea, draw a new figure (see Figure 6), 
and spoke as follows: 

Student A: The answer is yes [sufficient] for this case. Because … Let us use this line [set AC 
on this line], [under the assumption BM=MD] then look at these lengths [AM and 
MC]. If these lengths are different and if one is 
even one block longer, then these angles [∠A 
and ∠C] cannot be the same in measure. Thus, 
if we assume that these angles [∠A and ∠C] 
are same, these lengths [AM and MC] are 
definitely the same, too! 

This shows how confident Student A finally was at the 
correctness of her argumentation and illustrates the possibility of 
generating the idea of proof by contradiction through this type of 
argumentation that judges the truth of a universal proposition. 

Discussion and conclusion 
Although we admit the weakness of our empirical evidence as our teaching experiment was not 
limited to proof by contradiction, we could observe small but specific data of successful 
argumentation in the teaching experiment. We would like to discuss how this proposed task relates 
to the generation of such argumentation. Moreover, this research is highly inspired by the research 
by Antonini (2003), which also describes that the non-example argumentation is not the only process 
for the generation of indirect proving. There is also a request for further research that develop other 
processes and related tasks. Since this paper is one of possible responses to such request, we also 
compare and discuss the differences between the argumentations by contradiction observed above 
and the indirect argumentations involving non-examples proposed by Antonini (2003). 

As mentioned by Antonini (2003), in the students’ argumentations, non-examples may work as 
generic examples; their observation, which indicates ‘if 𝐵𝐵 is true, it cannot be an example’, can be 
generalized or expanded to the universal proposition of ‘for any case, if 𝐴𝐴 is true, 𝐵𝐵 cannot be true’. 
This generalization is possible because the instances in consideration are real. On the other hand, 
although the proposed argumentation in this paper is also related to a universal proposition, nothing 
in the argumentation works as a generic example. The principle of this argumentation is the assertion 
of the non-existence of counterexamples, and it does not involve the effects of generalization or 
expansion. In fact, they deal with an impossible instance which can hardly be generalized or expanded. 
Thus, these two types of argumentations are entirely different. This difference comes from the fact 
that the proposed argumentation is directly based on proof by contradiction, not by contraposition. 

In addition, the proposed argumentation essentially requires predicate logic: it is necessary to consider 
the negation of the predicate statement ‘for any 𝑥𝑥, 𝑃𝑃(𝑥𝑥) implies 𝑄𝑄(𝑥𝑥)’, that is, ‘for some 𝑥𝑥, 𝑃𝑃(𝑥𝑥) and 

Figure 4: The final diagram 
 in their work sheet 
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not 𝑄𝑄(𝑥𝑥) are true’, while, in the non-example argumentation, the phrase ‘for any 𝑥𝑥’ is hidden or 
always prepositional. Although it seems rather complex at first glance, such an argumentation is 
supported by the features of the related task: first, this is not a proving task but a judgement task; 
second, this task may prompt the empirical verification activity that can stimulate the understanding 
of the negation of a universal proposition. This fact seems to be a reason of the didactic paradox of 
proof by contradiction mentioned in the introduction: between spontaneous proving by contradiction 
in extra-mathematical situations and the difficulty of understanding it in school mathematical 
situations. In the classroom, both the judgement task (or disproving task) and the empirical 
verification usually live in a narrower space than the proving task with theoretical ways. 
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Argumentation in mathematics education 
In recent years, there has been increased interest in the nature and role of argumentation in 
mathematics education. Engaging in argumentation can lead to a deeper understanding of 
mathematics. In the context of mathematics education, argumentation can be defined as:  

a term which is generally used to describe the discourse or rhetorical means (not necessarily 
mathematical) used by an individual or a group to convince others that a statement is true or false. 
(Stylianides, Bieda, & Morselli, 2016, p. 316) 

The teacher plays a key role in establishing mathematical quality of the classroom environment 
(Yackel & Cobb, 1996). The teachers are representing the mathematical community in the classroom, 
and their personal mathematical beliefs, values, mathematical knowledge and understanding are 
important. Research on teachers’ knowledge about mathematical argumentation has focused on 
identifying problems and challenges (for example teachers’ lack of mathematical knowledge) rather 
than finding solutions to these problems (Stylianides et al., 2016).  

The Norwegian curriculum is currently under review and in the latest draft reasoning and 
argumentation is one of six core areas in mathematics (Utdanningsdirektoratet, 2018). 

The aim of my PhD research is to investigate preservice primary school teachers’ views on, and use 
of, argumentation in mathematics education. I have three research questions:   

1. How do preservice primary teachers argue when evaluating mathematical arguments?
2. How do preservice primary school teachers argue when teaching mathematics in primary

school?
3. How do preservice primary school teachers engage primary school students in argumentation

when teaching mathematics?

Method 
My study focuses on students enrolled in the Norwegian teacher education for Grades 1 – 7, age 6-
12. It is a five-year program with an integrated master’s degree. After graduation, these students will
be qualified to teach mathematics, Norwegian and one subject of their own choice. The education
comprises 30 mandatory credits in mathematics, which equals half a year of full-time study. The
mandatory mathematics courses are taught in the second and third semester of the education. Later,
the students can choose to do 30 more credits of mathematics, and to do their master’s thesis in
mathematics education. I will collect data when the students are in their third and fourth semester of
their education, i.e. I will follow them in their last semester of mandatory mathematics course and
following semester.
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The research has a qualitative approach. I will do video observation of student teachers when teaching 
mathematics during practice training and audio-recorded interviews with both student teachers and 
their practice training supervisor. The students will be interviewed in their practice training groups. 
The interview will focus on their mathematical argumentation, and on their argumentation when 
teaching mathematics. I will give the students a statement and several ways of defending this 
statement. Through a discussion about what is the best way of convincing others that the statement is 
true, I will get the data to answer research question 1. I will also interview the students about situations 
from their practice teaching using video clips. Together with the observations, these data will be 
valuable when answering research question 2 and 3.       

The interviews with the practice training supervisors will aim at finding out what development the 
supervisor observes, encourages and disapproves with the student teachers. This will give me 
information about the background for the students’ choices, to what extent they are students’ own 
independent choices or a result of the supervisors’ guidance.    

The recordings will be transcribed and analysed. I will identify the discourse by which the student 
teachers construct mathematical arguments for themselves and for school students; and what 
discursive space, including gestures and use of artifacts, they provide for their school students 
engagement with mathematical argumentation. Processes of argumentation will be analysed with 
methods that are based on Toulmin’s theory of argumentation (Toulmin, 1958), as described by 
Krummheuer (2015).  

Research result and implications 
The research will contribute to a deeper understanding of student teachers’ ability to teach 
argumentation in primary school classrooms. This can form the basis of future research on how to 
support student teachers to teach argumentation in primary school classrooms.   

The poster will present the design of the study and some preliminary results. I find this poster 
particularly relevant for the Theme Working Group 1 (Argumentation and Proof).   
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The Toulmin model and the systemic functional grammar are combined to analyse logical relations 
and their linguistic forms in students’ written proofs for identifying obstacles and possibilities to 
foster the understanding of proofs. The qualitative analysis of 63 students’ products reveals a 
parallelism between syntactical and content-related explications and condensations. In particular, 
the use of conjunctions seems to support more options 1.) to make explicit logical relations between 
premise and warrant or conclusion, 2.) to combine several steps of a proof, and 3.) to recycle 
conclusions as new premises. The logical relation from the warrant to the conclusion is often only 
made explicit using causal prepositions as linguistic condensed forms of relations. 

Keywords: Formal proof, logical relations, Toulmin model, linguistic analysis 

Introduction 
There is still a lack of knowledge about the concrete language demands for specific topics, although 
the importance of identifying academic language and the epistemic role of language has been 
explored (e.g. Schleppegrell, 2004). For these reasons, a linguistic analysis of the classroom discourse 
to support teaching-learning processes should be pursued for several subjects and topics, in particular 
mathematics (Schleppegrell, 2007). Especially, for the challenging topic of proof and proofing an 
analysis of students reasoning is important (e.g. Mariotti, Durand-Guerrier, & Stylianides, 2018, p. 
80), in particular, the analysis of logical rules and their linguistic forms, which cannot be translated 
from formal language directly (Durand-Guerrier, 2004, p. 2). Within the logical structures, the 
“implicit logical relationships” (Schleppegrell, 2007, p. 141) in their linguistic forms are one of the 
major challenges in proof. Because of the high density of academic language, it is demanding for the 
students to be aware of and to understand the academic language. Therefore, it is important to unpack 
the meanings in more explicit language (O’Halloran, 1998). The suggestion for teachers is to be 
explicit and to hold syntactic control within their own language during teaching logic (Durand-
Guerrier, Boero, Douek, Epp, & Tanguay, 2011).  

As a first step, a linguistic analysis is needed for analysing the language demands of logical relations. 
The structural and linguistic analysis of students’ products in this study follows the above mentioned, 
general suggestions to identify language demands in logical structures, here for logical relations. It 
pursues three research questions: 1) How can logical relations and their linguistic forms be analysed? 
2) Which pattern can be seen in the interplay between the logical relations and their linguistic forms?
3) Which linguistic forms of logical relations can be used to make logical relations explicit? The first
two sections present the theoretical background and methodology of the analysis. The outcome of the
qualitative analysis of the written proofs is presented afterwards illustrated by case studies of two
texts.
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Theoretical background: Logical relations and their linguistic forms 
In line with Mesnil (2013), the interaction between logic and language and the importance of 
explicitness of the language in teaching and learning proof is assumed. This study focuses on the 
logical relations as one challenging part of the language of proof (Schleppegrell, 2007). For this 
reason, the study aims at identifying the linguistic forms of logical relations.   

Logical elements 

For the analysis of proofs, the Toulmin model (1958) is often applied, although it was developed to 
describe everyday argumentations. Within mathematics education the structural analysis with the 
Toulmin model was also applied to analyse mathematical classrooms (Krummheuer, 1995), the 
structure gap between argumentation and proofs (Pedemonte, 2007), and for proofs with several steps 
(e.g. Knipping & Reid, 2015), even if there are limits for the analysis of proofs and proofing (also 
discussed in Mariotti et al., 2018, p. 78). In the structure model of Toulmin, the function of the logical 
elements as premise etc., not their relations, is crucial. This becomes more important when it is 
applied for the logical structure analysis of proof. This article refers to the short versions of Toulmin’s 
model and considers premise, warrant and conclusion as the relevant logical elements within 
deductive steps. These logical elements are connected more or less implicitly by logical relations, 
which need to be unpacked, here.  

Logical relations 

In this article, logical relations are understood as relations between logical elements. In deductive 
proofs, the relations between premise, warrant and conclusion are crucial (as described by Duval 
1991, p. 235), but also within a warrant with the logical form of implication or equivalence (Selden 
& Selden, 1995). In particular, the logical relation from premise to warrant is crucial for the 
verification of the premises (Duval, 1991). These logical relations are often implicit in the language, 
creating an obstacle for students (Schleppegrell, 2007) as they have to be unpacked in order to 
understand them (Selden & Selden, 1995).  

Different linguistic forms 

Logical relations are often expressed in natural language by logical connectives such as “because”, 
“due to” or “if…, then….” (Clarkson, 2004). These logical connectives can be classified as causal-
conditional principal markers by the systemic functional grammar of Halliday (1985), describing 
language from a functional perspective. They have different linguistic forms such as causal 
conjunctions (“because”), conditional conjunctions (“if... then….”) or causal prepositions (“due to”). 
However, there is still a research lack of the analysis of the combination of logical relations and their 
linguistic forms (e.g. Durand-Guerrier et al., 2011; Schleppegrell, 2007). 

Methodology for the analysis of written proofs 
Data collection 

The students’ texts of written proofs have been generated within a teaching-learning arrangement on 
deductive reasoning in grade 8-12 all with angle sets (Hein & Prediger, 2017; Prediger & Hein, 2017). 
In the teaching-learning arrangement conjunctions were used to express logical relations. The 
students were also asked to reason why a theorem can be applied (premises are met). In this paper, 
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the learning process and the effects of the teaching-learning arrangement are not analysed. Instead, it 
focuses only on the written products of the teaching-learning arrangement in order to investigate the 
interplay between logical relations and their linguistic forms. The data corpus consists of 63 written 
texts from 48 students (20 in grade 8, 6 in grade 9, 4 in grade 10, 18 in grade 12). The result section 
presents the results of two cases with texts of the twelfth graders Linus and Petra.  

Methods for qualitative data analysis 

The qualitative analysis of logical relations and their linguistic forms in the written products combines 
two analysis models: (1) Toulmin model: The Toulmin model in its short version (1958) is applied 
for the logical structure analysis to identify the addressed logical elements (premise, warrant, 
conclusion) (Pedemonte, 2007) and to disentangle the several steps of the proof (Knipping & Reid, 
2015). (2) Systemic functional grammar: The linguistic analysis of the logical connectors as language 
means for logical relations draws upon systemic functional grammar (Halliday, 1985), which can also 
be used to identify linguistic challenges in mathematics education (Schleppegrell, 2007). The analysis 
approach systematically identifies lexis used for logically connecting sentences or elements within 
sentences and classifies their syntactical forms as conjunction (con) respectively prepositions (pre). 
For these, the English functional grammar (in which the products are presented here) and the German 
functional grammar (the original language of the products) resonate with each other. For example, 
causal conjunctions can be described in English and German with conjunctions and prepositions and 
function in a similar way. Here, first the existence of a logical relation as links between logical 
elements and then their grammatical form (conjunctions such as “therefore” or preposition such as 
“according to”) are identified. 

Figure 1: Analysis tool with Toulmin for several steps and both linguistic forms for logical relations 

Empirical insights into the cases of Petra’s and Linus’ written proofs 
Petra’s and Linus’ texts were chosen for illustrating the results because their texts contain typical 
linguistic forms for the logical relations – condensed and non-condensed – which were also found in 
many other written proofs about angle sets. The students work on the proof for the sum of angles in 
a triangle (Figure 2). Before starting to write individually, they discuss the proof, identify which 
theorems have to be applied and draw the sketch printed in Figure 3 to which both texts refer.  

If there is a triangle, then these three 
angles in total measure 180 degree.  
(Line k which is parallel to the        
side AC can be used as an  
auxiliary line). 

Sketch of Petra & Linus 
within their pair work 

Figure 2: Mathematical statement to be proven by Petra and Linus      Figure 3: Students’ joint sketch 
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Analysis of activated mathematical statements: Both students refer to the same mathematical 
statements, the alternate interior theorem (Step 1 and 2), supplementary angle theorem (Step 3), 
calculating with angles theorem (Step 4), but both texts show substantial differences with respect to 
making the logical relations and their linguistic forms explicit. Presentation of the structural and 
linguistic analysis: The logical elements are illustrated with colours (green: premises (P); blue: 
warrant (W), orange: conclusion (C)), both in the text and the graphical representations. Only partly 
explicated logical elements are illustrated with * in the text and with dashed boxes in the graphics. 
The logical relations (R) (conjunctions (con), prepositions (pre)) are illustrated in black and by arrows 
in the graphical presentations (continuous arrow for conjunctions, dashed arrow for prepositions).  

Linus’ text with causal prepositions for the logical relations  
Step Translated (and original) text  Structural and linguistic analysis 

 
1+2 The triangle ABC has the angles α:= ∡CAB; β:=  ∡ 

ABC, γ:= ∡ BCA. 
Additionally, a line passes through point B. 
Additionally, the angle π is located at line k and at 
𝐴𝐴𝐴𝐴���� and δ is located at line k and the side 𝐴𝐴𝐵𝐵����. (p*: 
Parallelism of k to BC is missing.) 
According to (R/pre) the alternate interior angle 
theorem (W), the angles α and π have the same measure 
and δ and γ have the same measure. (C) 
(German Original: Das Dreieck ABC hat die Winkel 
α:=∡ CAB, β:=  ∡ ABC, γ:= ∡ BCA. Zusätzlich geht 
durch den Punkt B eine Gerade. Zusätzlich liegt der 
Winkel π an der Geraden k und an 𝐴𝐴𝐴𝐴���� und δ liegt an 
der Geraden k und an der Seite 𝐴𝐴𝐵𝐵����. Gemäß des 
Wechselwinkelarguments sind die Winkel α und π 
gleich groß und δ und γ gleichgroß.) 

 
The detailed explicated premises (without 
parallelism) are not verbally connected with the 
warrant. 

With “According to” the warrant (alternate interior 
angle theorem) is connected with the conclusion. 

“According to” is a preposition within one sentence. 

 

3 According to (R/pre) the supplementary angle theorem 
(W), the angles β, π and δ sum to 180 degree (C). 

(German Original: Gemäß des Nebenwinkelarguments 
sind die Winkel β, π und δ zusammen gleich 180 Grad 
groß.) 

 
“According to”: analysis analogue to Step 1+2  

4 π can be substituted by α and δ can be substituted by γ 
(P*: Conclusion of step 3 as new premises is missing.). 
According to (R/pre) the calculating argument (W), the 
interior angles α, β and γ have a measure of 180 degree 
(C).  

(German Original: Für π kann α eingesetzt werden und 
für δ γ eingesetzt werden. Gemäß des 
Rechenarguments sind die Innenwinkel α, β und γ 
gleich 180 Grad groß.) 

Linguistically, it is not marked as previous 
conclusion of Step 1+2 (implicit recycling). 
Conclusion from Step 3 is not explicitly used.  
“According to” connects the theorem with the 
conclusion with a preposition. 

Table 1: Analysis of Linus’ text 

In Linus’ first sentences, the 
premises for the Steps 1, 2 and 
3 are almost explicated. In 
further sentences, the warrants 
and the conclusions for Step 1, 
2, 3 and 4 are explicated. The 

 

 

Figure 4: Summary of the analysis of Linus’ text 
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recycling of the conclusions from Step 1, 2 and 3 to new premises in Step 4 is not made explicit. 
However, logical relations between these elements are only explicated from the warrant to the 
conclusions, whereas the logical relations from the premises to the warrants or to the conclusions are 
not explicated. In each occurrence of logical connectives, Linus activates prepositions such as 
“according to”.  

Petra’s text with more causal conjunctions for the logical relations 
Step Translated (and original) text Structural and linguistic analysis 

1 A triangle with α, β and γ is given. The line k is 
parallel to line k and crosses point B. To identify 
the measures of the angles α and γ (crossed out), at 
the point B to the angle β the angles π and δ are 
defined (P). Because (R/con) the line k and the 
side AC are parallel and are crossed by the side AB 
(P), the angle theorem (W) can be applied. 
Therefore, (R/con) α = π (C). 
(German Original: Es ist ein Dreieck mit α, β und 
γ gegeben. Die Gerade k ist parallel zu der 
Geraden k und schneidet den Punkt B. Um die 
Größe der Winkel α und γ (durchgestrichen) zu 
erfahren, definiert man an dem Punkt B zu dem 
Winkel β die Winkel π und δ. Da die Gerade k und 
die Seite AC parallel sind und durch die Seite AB 
geschnitten wird, kann man das Winkelargument 
anwenden. Daraus folgt, dass α = π.) 

„Because… can be applied“ connects the premise with the 
theorem. “Because” is a causal conjunction (within one 
sentence). 
“Therefore” connect the warrant (here angle theorem) 
with the conclusion. 
“Therefore” is a causal conjunction and connects two 
sentences.  

2 Additionally, the side BC crosses the parallel line 
k to the side AC (P), therefore (R/con) γ = δ (C) 
reasoned by (R/prep) the alternate interior angles 
theorem (W). 
(German Original: Außerdem schneidet die Seite 
BC die parallele Gerade k zu der Seite AC, deshalb 
ist γ = δ begründet durch das Wechselwinkel-
argument.) 

With „therefore“ (causal conjunction), the conclusion is 
drawn. “Reasoned by” is used at the end of the sentence 
to add the logical relation from the warrant to the 
conclusion. 

3 By the fact that (R/prep) Ω and δ are 
supplementary angles (Ω = β+π) (P), β, π and δ 
=180°(C), according to (R/prep) the 
supplementary angle argument (W). 

(German Original: Dadurch dass Ω und δ 
Nebenwinkel sind Ω = β+π, sind β, π und δ =180°, 
laut dem Nebenwinkelargument.) 

With „By the fact that…“, the conclusion from the premise 
is drawn. “By” is a preposition. The premises are 
condensed to an object with “as a fact” which is explained 
in a sub-clause. “According to” (preposition) is used at 
the end of the sentences to add the logical relation from 
the warrant to the conclusion. 

4 So, if (R/ con) β+π+δ= 180 degree and α=π and 
γ=δ (P), then (R/ con), according to (R/ prep) the 
calculating argument (W), β+γ+α= 180 degree 
(C).  

(German Original: Wenn also β+π+δ= 180 Grad 
und α=π und γ=δ, dann sind nach dem 
Rechenargument β+γ+α= 180 Grad.) 

With „If…, then” (conditional conjunction) the warrant is 
applied to the case. With “so” there is a reference to the 
previous conclusion, which is used as new premise 
(recycling). For “According to…“, see Step 3. 

Table 2: Analysis of Petra’s text 
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In her text, Petra 
addresses the premises, 
the warrant with the name 
of the theorems and the 
conclusions as Linus. For 
making the logical 
relations explicit, she 
connects the premises 
with the warrants or the 
conclusions with causal 
conjunctions such as 
“because” and “there-
fore”. In one case, Petra 
connects the premise with the conclusion by a preposition (Step 3). Petra also uses prepositions such 
as “due to” by adding the expression “due to the ...-argument” as last part of the sentences after 
connecting the premise to the conclusion (Step 3 and 4).  

Comparison of the case studies of Linus and Petra 

In both texts, almost all contents of the elements of the short Toulmin Model are explicated, even 
Linus only mentions the premises partly at the beginning, respectively not completely in Step 4. The 
conclusions as new premises in Linus’ example are not explicated in their function, in particular, the 
logical relations from the premises to the warrant or conclusion. The linguistic analysis shows that 
causal conjunctions such as “because” and “therefore” of logical relations are only used in Petra’s 
text, where also the logical relations from the premises to the warrant respectively conclusions and 
the recycling of previous conclusions are expressed. These findings are in line with those of other 
written products (see Prediger & Hein, 2017). According to Halliday (1985) conjunctions are non-
condensed forms for relations as in everyday language (called by him as coherent). In this case, these 
conjunctions were also used to make explicit the logical relations from the premises to the warrant or 
from the premises to the conclusion. With causal prepositions such as “according to”, “due to“ or 
“by”, virtually nothing but the logical relations between the warrant and the conclusion are made 
explicit. This was also found in other texts (Prediger & Hein, 2017). Only in Step 3 of Petra’s text, 
the relation from the premises to the conclusion is made explicit with a preposition (“by the fact 
that…”). Here, the content of the premises is expressed by a sub-clause. One reason for virtually 
explicating nothing but the logical relation from the warrant to the conclusion (exception: Step 3 in 
Petra’s text) may be that prepositions need nominalizations and here only the warrant is condensed 
to a nominalization by its name and can be easily integrated by a preposition (“due to the …-
theorem”). By adding the phrase with the preposition (“…. according to the …-argument.”) at the 
end of the sentences (such as in Step 3 and Step 4 of Petra’s text), the logical relations from the 
premises are also made explicit in the same sentence. In all other cases, in sentences with prepositions 
only the logical relation from the warrant to the conclusion is expressed. Prepositions are 
linguistically condensed forms of logical relations (called metaphorical by Halliday, 1985). This kind 
of linguistic phenomena is one of the most important characteristics of academic language to increase 
lexical density. However, these condensed forms (e.g. prepositions for logical relations) are 
challenging for students (Martin, 1999) and have to be unpacked first into non-condensed forms 

 

Figure 5: Summary of the analysis of Petra’s text 
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before students can understand their meaning (O’Halloran, 1998, p. 382). In the context of this case 
study, mainly the logical relations between warrant and conclusion are articulated by condensed 
forms of prepositions instead of conjunctions. The qualitative analysis shows that the prepositions 
provide not only challenges to understand the logical relations, they also seem to hinder the 
explication of logical relations, from the premises to the warrant or to the conclusion or within a 
theorem. Prepositions also seem to be obstacles for combining several logical elements and steps. 

Conclusion 
The analysis of students’ products reveals three main findings: 1) The Toulmin model has not only 
limits for analysing proofs in general (Mariotti et al., 2018, p. 78), but in particular, for capturing the 
logical relations. 2) The linguistic analysis here suggests that in non-condensed forms some aspects 
are more often expressed than in condensed forms. This finding can be used to be more explicit on 
language while teaching proof as Mesnil (2013) has recommended. 3.) For these reasons, it might be 
useful to first offer non-condensed linguistic forms (conjunctions), before condensed forms 
(prepositions) are used in the classroom. This approach resonates with Martin’s (1999) observations 
regarding the challenging condensed forms in academic language.  

Of course, this case study has significant methodological limits as only 63 texts were analysed, that 
were produced within the specific setting and content. It has not yet been taken into account how the 
setting and the content influence the students’ articulations. Future research is required to overcome 
these limits. Furthermore, the texts are written in German and not in English, so every interpretation 
can only be made in the original. 
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Being defined as a main learning goal of mathematical education, arguments and argumentative 
skills are of high relevance. The development of these skills in the context of a deeper understanding 
is an important aspect for mathematical teaching and the support of mathematically gifted students, 
whose interest in mathematics should be increased. To focus more in detail on arguments in the 
context of mathematical giftedness, the paper poses the question whether it exists a relation between 
mathematical giftedness on the one hand, and mathematical argumentations on the other hand. For 
this purpose, the arguments of primary students from an enrichment program for mathematically 
gifted and interested students are gathered in an interview setting and analyzed by means of the 
Toulmin scheme. The results show that giftedness might influence the content and quality of 
arguments, but not the need for argumentations. 

Keywords: argumentation, giftedness, Toulmin 

Introduction 
For curricular, societal and mathematical reasons, argumentative skills are claimed as central learning 
goals in mathematical education. Especially the view on mathematics as a deductive organized system 
with theorems and proofs forces fundamental skills in argumentation (e.g. Hanna, 2000). 
Nevertheless, former research shows that (German) students have deficits in formulating arguments 
in written and oral form (Cramer, 2011). It is therefore an important aim to support the development 
of argumentative competences, not solely, but also with regards to mathematical giftedness. The idea 
that gifted students perform better in the formulation of mathematical arguments seems legitimate, 
even though the relation is not clear (Fritzlar, 2011). In this context, the study focuses on this relation 
through analyzing gifted students’ oral arguments.  

Theoretical Framework 
Arguments in Mathematical Education 

Not only in every day’s communication, but also in mathematical education, arguments are of high 
relevance. The aim of an argumentation is to convince the communication partner with the help of 
shared respected statements (Cramer, 2011). Nevertheless, real disputes in mathematical education 
are rare, so that argumentations are best described in the context of a problem solving process as “a 
type of dialogical or dialectical game […] that is associated with collaborative meaning-making.” 
(Baker, 2003, p. 48). In mathematical education, the process of an argumentation involves activities 
such as to formulate assumptions on mathematical characteristics, to reason on relations, as well as 
to question assumptions (Bezold, 2009). The paper defines the term ‘argument’ as a product which 
results from the processes of former described activities. With this product-oriented focus, it is 
possible to analyze arguments among different categories, e.g. structure and content. 
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According to Toulmin (1958/2003), every argument can be structured through different functional 
elements. Toulmin describes Data (D) as “facts we appeal to as a foundation for the claim” and 
Conclusion (C) as claim “whose merits we are seeking to establish” (Toulmin, 2003, p. 90). The step 
from D to C often requires further considerations, asking for “general, hypothetical statements, which 
can act as bridges, and authorize the sort of step to which our particular argument commits us” 
(Toulmin, 2003, p. 91). These kind of statements are called Warrant (W). Figure 1 presents the core 
of the Toulmin scheme. 

Figure 1: Core of the Toulmin Scheme (Toulmin, 1958/2003) 

 

 

 

 

 

Apart from a structural analysis, it is furthermore necessary to analyze arguments according to their 
content as the analysis by means of the Toulmin scheme does not state anything on the argument’s 
quality, e.g. whether a warrant is based on authority or a mathematical rule (Koleza, Metaxas & Poli, 
2017). Following Toulmin’s definition, an argument is called analytic if W includes all relevant 
information for the step from D to C (Toulmin, 2003), e.g. mathematical rules or laws that are 
adequate in the specific context. Arguments that do not fulfil this condition are claimed as substantial 
(Toulmin, 2003). These arguments leave open or fail to answer (further critical) questions (Koleza, 
Metaxas, & Poli, 2017), e.g. “My calculation is correct, because Anna has the same result” could be 
rebutted by the question “But what if both of you did a wrong calculation?” (Fetzer, 2012). 

Mathematical Giftedness   

Mathematical giftedness is a complex construct that lacks a standardized definition and diagnosis as 
it is not directly observable (Bardy, 2013). It is more a potential that might develop into an outstanding 
mathematical performance by means of an advantageous interplay of genetic and environmental 
factors (Käpnick, 1998). Therefore, the construct is approximated by means of lists of characteristics, 
including special skills such as the memorizing and transferring of mathematical structures, creativity 
and problem solving competences (Käpnick, 1998).  

State of the Art 
A main interest of studies on argumentations in the educational context is on the analysis of arguments 
with help of frameworks and models in order to make characteristics observable (e.g. Nussbaum, 
2011). Mostly, studies observe arguments in classroom interactions and collaborative argumentations 
(e.g. Forman, Mccormick, & Donato, 1997). For this purpose, the Toulmin scheme, and especially 
its core, is often used (e.g. Koleza, Metaxas, & Poli, 2017). Further studies focus on the evaluation 
of argumentative skills by means of models and methods to improve them (e.g. Bezold, 2009). The 
studies show quite consistently that arguments in primary school have a low significance and real 
disputes are rare, so that the teacher has to initiate arguments and show the need for arguments 
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(Schwarzkopf, 2000). With regards to Toulmin, arguments by primary school children are typically 
characterized by the missing of a warrant and by substantial arguments (Fetzer, 2012). Koleza, 
Metaxas & Poli (2017) assume that primary students are able to formulate arguments which can be 
analyzed using the Toulmin scheme, even though basic elements are not mentioned through a lack of 
need for argumentation. Focusing on argumentative skills of mathematically gifted students, the 
relation is not explicitly clarified (Fritzlar, 2011). On the one hand, Fritzlar (2011) assumes that 
mainly other factors apart from giftedness influence argumentative skills and the need for 
argumentations. Other models see the potential of gifted students (inter alia through supportive 
characteristics, such as creativity) to develop outstanding argumentative skills, which can be forced 
through training (Bardy, 2013).  

Research Questions and Methodology 

Based on this theoretical outline and former research findings, the research questions of this paper is 
formulated as follows: What are the characteristics of mathematically gifted and interested primary 
students’ arguments? In how far do they differ from general research findings on the arguments of 
primary students with special regards to the Toulmin scheme and the need for arguments?  

The research question is answered in a qualitative study. The sample is taken from the participants of 
the extra-curricular enrichment program “Young Math Eagles Frankfurt”. The aim of the program is 
to support mathematical interested and gifted students and to increase their mathematical interest and 
joy on a regular and long-term level. In the school term 2017/2018, about 50 students between 8 and 
10 years from 14 schools participate in the program after nomination of their teachers.  

To focus on the characteristics of the oral arguments of the participants, task-based and problem-
orientated interviews are created (Goldin, 2000). This interview form is characterized by the openness 
of answers while focusing on a special problem. The interview material includes tasks that emphasize 
arguments and ask primary students to formulate warrants through irritation or the task itself (Bezold, 
2009). The task formats focus on number pyramids and numerical lattices with regard to special 
number relations. The formats can be expected to be known by the primary students and do not ask 
for difficult calculations. Therefore, the task formats’ focus is basically on argumentation and it can 
be expected that the students are able to use their findings on number relations as basis for warrants 
that can be analyzed by means of the Toulmin scheme. In each interview, different components of 
the formulation of arguments are included. In particular, the students are asked to comment on a 
wrong assumption e.g. through giving a counter example, to argue on different mathematical relations 
and to generalize their detections.  

Figure 2: Task formats number pyramid (left) and numerical lattices (right) 
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One task is to answer the question how the basic stones of the number pyramid/the arrow numbers of 
the numerical lattices have to be arranged in order to maximize the top of the pyramid/the result of 
the numerical lattices (see Figure 2). Every interview is done individually and includes four tasks 
which are done within 15 minutes. To make the interviews comparable, they are directed with help 
of a guideline. The interviews are transcribed on the basis of an audio recording and an observational 
protocol. 

The task formats, as well as the guideline were tested during the pilot phase regarding their 
appropriateness in terms of the students’ age, needed time and mathematical content. Further, they 
were analyzed according to the need for argumentations. The results show that the formats are 
adequate in the named categories. Most students were able to identify relevant mathematical 
characteristics and some were even able to generalize them to some extent. In all interviews, the 
students formulated arguments which could be reconstructed with the Toulmin scheme. Therefore, 
the piloting could confirm that the tasks emphasize arguments, which shows the suitability of the 
tasks for the research question. Nevertheless, many arguments were initiated by the interviewer. 
Through these initiation processes in the interview, it is therefore possible to analyze the 
independence of and need for arguments.  

On the basis of the results in the piloting and the theoretical framework, a scheme for the analysis of 
the arguments within the interviews is created. The analyzed categories within this paper are  

(1) Structure of Arguments: Within this part, it is analyzed which of the elements Data, Conclusion 
and Warrant could be observed during the focus on the specific task. 

(2) Independency of Arguments: Here the focus is led to whether a warrant is initiated by the 
interviewer through questions/given after mediation, or given on an independent level. 

(3) Content of Arguments: This part involves a categorization of the warrant in terms of its 
mathematical content (inacceptable/wrong, substantial, analytic). 

The use of the Toulmin scheme as a basis for the analysis can be legitimated as the results are to be 
compared to former research findings on arguments in the primary age and the Toulmin layout is 
frequently used in these studies. Through adapting the independency and the content, its limitations 
apart from a structural analysis for this setting are recognized. 

During May and June 2018, 32 participants (all students with parental consent form and presence 
during the interview dates) were interviewed. Within the interviews, 128 argumentation tasks are 
analyzed. Beforehand, no special training in the formulation and awareness of arguments or an 
education on the formulation of analytic warrants took place. Argumentation and reasoning tasks 
were part of some lessons, but not to a greater extent than the focus on other competences, such as 
problem solving. First observations within the enrichment program did not seem to show obvious 
differences in the need for argumentations. Nevertheless, the detection of mathematical findings, 
might be an important influence on the arguments of gifted children. The following results from the 
analysis should specify the relation of argument and giftedness on a systematic level.  
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Results 
Table 1 shows an example of an interview extract with a functional analysis according to the elements 
of the core of the Toulmin scheme. At the date of the interview, the student (S) was in ten years old. 
His interview bases on the task format numerical lattices. The sample analysis focuses on the task 
within the interview, in which the participant has to argue in which case the result is the highest. In 
advance, he does calculations with changed orders of the arrow numbers and concludes that the results 
change. Through initiation of the interviewer, he gives a substantial warrant for the relation of the 
basic elements and result. His argumentation bases on the order of the boxes of the numerical lattices 
and the switch of numbers comparing both tasks.  

On the basis of this observation (which is coded as Data for the following task), he is able to identify 
the case in which the result is the highest, namely when the arrow with the higher number shows 
downwards (see Figure 2). Without initiation, he uses a substantial warrant and through initiation he 
supports a conclusion through an analytic warrant by transforming it to a general case.  

Table 1: Extract from the transcript (translated from German by the author) 

I: […] In which case do you receive the highest result? You can use your 
former calculation. 

Introduction of 
Task 

S: When the higher number is taken plus here (shows on arrow downwards of 
numerical lattices).  

Conclusion 

Because here, there are three and here there are solely two (shows on boxes of 
numerical lattices). […] 

Warrant 
(substantial) 

I: Do you think this is always the case or solely in our example? Initiation 

S: Well, I think this is in every example like this. Conclusion 

I: Can you tell me why this is the case or/? Initiation 

S: (shows on arrows of numerical lattices) Because when you calculate here the 
higher number plus at the arrow downwards, then there is one box more, where 
you can calculate plus and here on top, there is no more  

Warrant 
(analytic) 

and therefore I think, this is always like that. Conclusion 

With the former task as data, a conclusion is drawn and supported through a warrant. The task is 
therefore coded as Data – Conclusion – Warrant. For the warrant, the highest observable category 
before initiation is substantial, and after initiation analytic. The development of the warrant after 
initiation can be observed frequently, so correspondingly, two phases within each interview task are 
distinguished for the following analysis: Phase 1 describing the argument respectively the warrant on 
an independent level, and Phase 2 after an initiation of a warrant. 

Table 2 shows the results from the structural analysis of all interview tasks through categorization 
according to the included elements on an independent level, namely without a question as initiation 
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of reasoning (Phase 1). Without initiation processes, only 24.2% of all analyzed tasks include a 
warrant on an independent level. In the majority of the tasks, a conclusion is drawn, but ungrounded. 
Taking those tasks that are coded within the category Conclusion or Data – Conclusion on an 
independent level and in which a warrant was initiated afterwards, in 87%, a warrant could be 
formulated after being initiated. By combining the independently formulated and initiated arguments, 
within 98 of all 128 tasks the complete core according to the Toulmin scheme (Data – Conclusion – 
Warrant) could be reconstructed. Nevertheless, within 67 of these 98 tasks, the warrant was only 
formulated after being initiated. 

Table 2: Structural categorization according to the Toulmin scheme on independent level 

N=128 No Conclusion Conclusion or 

Data – Conclusion 

Data – Conclusion – 
Warrant  

Argument on an 
independent level  

6 (4.7%) 91 (71.1%) 31 (24.2%) 

To focus more in detail on the mathematical content of the arguments, the tasks including a warrant 
are categorized as not acceptable/wrong, substantial and analytic. Again, the highest observable 
category is coded, e.g. a task including a substantial and an analytic warrant before initiation is coded 
as analytic. In Table 3, the independently given warrants from Table 2 are categorized (N=31). In 
addition to the former finding that in about 75% of all tasks no warrant is coded on an independent 
level, one can observe that two thirds of the independently given warrants are substantial. 

Table 3: Content-related analysis of the tasks with an independently formulated warrant 

N=31 Not acceptable Substantial Analytic  

Independent Warrants 3 (9.7%) 21 (67.7%) 7 (22.6%) 

In Table 4, a further categorization is made before and after initiation (Phase 1 and 2) for those tasks 
in which an initiation of a warrant is coded (N=95). Even though in 10.5% of initiated tasks still no 
warrant is coded, this number decreases significantly after initiation. In addition, it becomes obvious 
that the proportion of analytic warrants increases after a question on (further) reasoning is posed.  

Table 4: Content-related analysis of the tasks with initiation 

N=95 No warrant Not acceptable Substantial Analytic  

Before initiation  77 (81.0%) 2 (2.1%) 15 (15.8%) 1 (1.1%) 

After initiation  10 (10.5%) 7 (7.4%) 42 (44.2%) 36 (37.9%) 

 
Discussion and Conclusion  
A comparison of the results with former research findings gives different insights into the arguments 
of mathematically gifted and interested primary students. On the one hand, the results can confirm 
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the general conclusion by Schwarzkopf (2000) that arguments have to be initiated at least partly. In 
two thirds of all tasks including a warrant, the warrant was only mentioned after initiation of the 
interviewer. Therefore, one can assume that gifted primary students do not seem to have an 
exceptionally sensible need for reasoning and arguing. Without initiation processes, the research 
findings by Fetzer (2012) on the lack of a warrant in primary students’ arguments seem to be accurate 
for this sample. Also the independently formulated warrants are mostly substantial what fits the 
findings by Fetzer (2012). On the other hand, it is nevertheless noticeable that nearly 40% of the 
analyzed tasks with initiation involve an analytic warrant after an initiation process took place. 
Further, only in 10.5%, still no warrant is mentioned after initiation. The focus on initiation 
emphasizes the hypothesis that a large group of the students is able to formulate (analytic) warrants 
after being forced to. Nevertheless, only the minority of the students formulates (analytic) warrants 
on an independent level.  

With special regard to the research questions, one can formulate the hypothesis that mathematical 
giftedness might not influence the need for argumentations. Nevertheless, most of the gifted students 
are able to formulate warrants after initiation, some of them even analytic. Mathematical giftedness 
therefore might have an impact on the mathematical basis for the formulation of analytic warrants in 
order to support (creative) detections and findings. So, incomplete arguments without initiation do 
not seem to be caused by a lack of ability, but by the low significance of arguments’ needs or the 
missing of structural knowledge of arguments. This finding is further supported by the fact that the 
students were not taught on arguments in advance. Hereby, former studies of mathematically gifted 
students’ intuition (e.g. Käpnick, 2010) might be relevant in order to explain the low need of giving 
warrants. In the interpretation of these findings, one has to take some limitations of the study into 
consideration. The interviews were analyzed on a qualitative level without a control group as it was 
not possible to exclude many different influencing factors (e.g. differences in school, teacher, 
language skills and mother tongue). Therefore, the comparison was built on former research findings 
and studies by different researchers, which mostly show consent in the analyzed categories and 
therefore allow a certain generalization of the findings for different settings. The comparison 
nevertheless has to be seen under varying task formats and different settings.  

We take up the findings as a basis for a longitudinal study on the changes of the arguments of the 
students in terms of the structure and content, as well as the need for arguments. During this, the focus 
will be laid on the individual changes in arguments of the children with special regards to their 
environmental background in terms of language and family. Moreover, the study focuses on the 
question whether mathematical giftedness as a potential for outstanding mathematical performance 
can further be a potential for arguments. 
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“Using geometry, justify (…)”. Readiness of 14-year-old students to 
show formal operational thinking 
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The article contains information about the preliminary results of pilot studies carried out by the 
author on 127 students aged 14 years in the period 2017-2018. The aim of the research was to 
check students' readiness to use formal operations while solving mathematical problems, as well as 
to check the correctness of the tool construction by means of which the author attempted to search 
for answers to the questions posed. 

Keywords: Piaget's theory, Formal operations, Argumentation, Geometry, Geometric reasoning. 

Introduction and theoretical framework 
The development of mathematical concepts in school students is inseparable from their intellectual 
development. The order and methodology of their learning by a young person is organized in 
advance because learners at school work in accordance with curriculum programs planned by the 
authors of the textbooks which set the basis for development and cognition in each of the school 
subjects.  

Development is a constant struggle with what we know and with new information on the path 
of adaptation, by balancing two processes of assimilation and accommodation. The first one is 
adapting new information of external origin to what the person already knows and is acquainted 
with, the second is adapting his knowledge to new information. Man builds new patterns, his 
intelligence develops. There is a kind of competition between accommodation and assimilation 
based on comparison, a process which is an important basis for the development of mental 
operations. According to Piaget, the child's development depends primarily on itself, on the actions 
it undertakes, which underlie thinking, or the continuous cognitive process. It consists of intellectual 
operations, mental operations as an action which is interiorized and, therefore, runs in the mind 
(Piaget, 1952; Piaget, 1973, 2005a, 2005b). 

As claimed by Piaget, this internalization takes place in four separate stages of the development 
of intelligence, linearly following one after another: sensorimotor stage, preoperative stage, 
concrete operations and formal operations. Everyone, regardless of their place of residence and the 
environment in which they grow up, goes through all the above-mentioned stages of development, 
in which reasoning changes from simple forms, strongly related to perception and performed 
activities, to forms implemented in the mind, abstract and hypothetical. These are qualitative 
changes, not quantitative changes, new behaviors are built on previous ones without eliminating the 
old forms but complementing and correcting them. 

Piaget's research shows that not all people, regardless of where they live and what they do, reach the 
level of formal operations; it is also true that many of us do not use formal operations for many 
aspects of their lives (Przetacznik-Gierowska&Tyszkowa, 2000). 

A person who thinks at the level of formal operations is characterized by: 
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- abstract thinking, i.e. the ability to logically use symbols in relation to abstract concepts 
(without the need to link them with reality), hypothetical-deductive reasoning, and 
the development of thinking about abstract objects, 

- metacognition, or the skill of parallel reasoning and its monitoring; it is the ability 
to constantly reflect on one's own cognitive process, 

- the ability to logically and methodically solve problems, in particular those of mathematics. 

In summary, the process of changing the way of solving problems, starting from specific-
operational thinking and ending with formal-operational thinking, is long and tedious, begins at the 
age of 12 and lasts until 16-17. The manifestations of these changes are connected with the students 
using a different method of tackling tasks and problems (not only mathematical ones), adopting a 
different, new attitude open to hypothetical-deductive thinking. A student who solves a 
mathematical task becomes open to correct inference based on mathematical facts and theories with 
detachment from the specifics, is able to put forward hypotheses and tries to verify them, attempts 
to generalize his judgments. In his statements, he uses phrases such as "maybe" and "if", he is 
characterized by the ability to think logically and critically, displays the tendency to conduct 
discussions and disputes and to make inquiries. 

The pace of changes in the process of cognitive maturation as well as the final effect of these 
changes are closely related to the natural and school environment in which the student was matured. 
The moment, the type and the strength of the stimulus which becomes provocation and motivation 
for development is important. Geometry is a perfect area for the observation of changes in the 
cognitive development process of a student. Being one of the oldest disciplines of mathematics, due 
to which the concept of proof and formal thinking developed, it is the foundation of many activities 
characteristic for mathematical formal thinking. Freudenthal wrote: "Greek geometry was the first 
proper embodiment of the idea of mathematics. Although mathematical activity, both in algebra and 
geometry, began two or three thousand years before Euclid, words such as theorem, assumption, 
proof, analysis, theory, axiom postulate, definition, and concepts that they signify are an invention 
of Greek mathematics" (Freudenthal, 1966, p. 83). 

Today geometry still plays a secondary role in Poland, especially in the process of mathematics 
education. Its presence is more frequent than in 1964 but is still insufficient in the programs of 
mathematical studies and studies for teachers and corresponds with merely 120 hours during the 
whole 5 years of study (https://cutt.ly/MITprog). In elementary schools the geometry issues account 
for 30% of the content of textbooks. It is mentioned in the comments to the current curriculum that: 
“The second branch of mathematics which supports learner’s mathematical development is 
geometry. Although it was indispensable to limit the teaching content in geometry (due to time 
constraints) the main its part, namely mathematical proofs, was kept in the elementary school 
curriculum” (Brodzik & Pruszyńska, n.d.). 

Geometry requires many competences: imagination, ability to draw logical and rational inference, 
to reason, to form hypotheses, and to read the content of mathematical tasks with comprehension, as 
well as being acquainted with all representations of mathematical language - words, symbols and 
graphics. There is always a fear that illustrations will overshadow the awareness of rational, logical 
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and deductive reasoning, based on the consciously used definition of the concept under 
examination, and not on the perception of its features based on a picture – ready-made or drawn on 
one’s own. 

In every mathematical discipline, but here in particular, each of three types of mathematical 
reasoning can be used when solving a mathematical problem. Full formal-operational reasoning is 
characteristic only for the formal reasoning, but the formal operations also occur in the intuitive 
reasoning, and their manifestations - in the empirical reasoning. Krygowska defines these types of 
reasoning as follows:  empirical inference at the level of school education is the formulation of a 
mathematical hypothesis based on observation and experience in a specific physical space or on 
inductive tests already in the field of mathematics itself; student's reasoning is treated as intuitive in 
the field of mathematics if in the course of solving a certain problem he uses, above all, 
imagination, i.e. images of concepts which he considers, regardless of their formal definitions and 
carries out brief reasoning based on obvious premises, regardless of their correspondence within the 
given system; finally, we consider a student's reasoning as formal if in the course of solving the 
problem he realizes the accepted basis of deduction and tries to consciously derive any subsequent 
conclusions as precisely as possible from previously made claims and given definitions within a 
given system; uses definitions and theorems properly (Krygowska, 1977, pp. 441-45). 

In his theory of intellectual development, Piaget determined that most students over the age 
of 12 apply formal operational thinking in a form specific for its early stage. However, research 
carried out in the 1970s in a sample of 10,000 British 14-year-old children revealed that the 
overwhelming majority of them, namely 80%, do not reach this stage (Shayer, Küchemann, 
& Wylam, 1976). 

It is necessary to check the present situation and determine the level at which Polish 14-year-old 
students currently reason, particularly now when we are in the curse of implementing curriculum 
and organizational reforms which aim at strengthening the development of application of reasoning 
and critical thinking. Professor Edyta Gruszczyk-Kolczyńska, who has been observing children 
demonstrating exceptional mathematical abilities and those who struggle with difficulties when 
learning mathematics for many years, writes in her books that one of the possible impediments in 
creative development of mathematics in case of Polish children can be a delay in developing formal 
thinking. The author has not come across any research containing discussion on these matters in 
Poland in recent years (Gruszczyk-Kolczyńska, 1992; Gruszczyk-Kolczyńska, 2012). She 
undertook to study the manifestations of formal thinking characteristic of Polish students. 

Some research and articles in world literature attach crucial importance to the choice of concepts 
of teaching geometrical terms at every educational level which aim at the activation of reasoning 
and, later, providing correct and formal justification. Proofs and formal reasoning applied on the 
grounds of geometry are treated as a tool supporting the assessment of students’ knowledge 
(Swoboda & Vighi, 2016; Koleza, Metaxas, & Poli, 2017; Pericleous & Pratt, 2017; Soldano & 
Arzarello, 2017; Mączka, 2016). Training in teaching geometry is also emphasized as teachers, 
applying particular teaching techniques and organizational skills used to create active educational 
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environment, are responsible for provoking appropriate attitudes of students (Mata-Pereira & Ponte, 
2017). 

Goals, organization, methodology and tools 
The article will present the results of some pilot studies. They were conducted in two rounds: in 
2017 on a group of 100 students from one junior high school in Poznań (these studies were part of 
the research carried out for the diploma thesis of Mrs. Monika Drgas, prepared under the 
supervision of the author of the article). The second part of the research was carried out in 2018 on 
a group of 27 pupils at the 7th grade from one primary school in Poznań. 

Both pupils from elementary schools and students from junior high schools were surveyed at the 
same age, being 14 years old, and in the same period of the school year, i.e. in the second part of 
summer semester. In Poland an educational reform is currently implemented and it influences both 
the organization of the teaching process and the content of the curriculum. The foregoing 6-grade 
elementary school was transformed into 8-grade elementary school and existing junior high schools 
are being phased out. In 2017 14-year-old children were in the first year of junior high schools and, 
one year later, in the seventh year of elementary schools. The main criterion for the sample groups 
selection was age, then it was the textbook ensuring knowledge required to tackle the tasks and, 
obviously, the agreement of school directors, teachers and parents or legal guardians for children’s 
participation in the survey. The research tool in the first round of tests consisted of three tasks, all of 
them come from a textbook for class 1, Gdańsk Educational Publishing. The goal of each of these 
tasks was to provoke students' reasoning to check or justify a certain mathematical regularity or 
fact. 

The aim of the study, apart from checking the correctness of the tool's construction in order to 
develop a proper research tool, was to check the readiness of Polish students at the age of 14 to use 
formal operations during their mathematical reasoning provoked by geometry tasks requiring 
students to justify some statements. The tool used in the second stage of the study consisted of 6 
tasks, all geometrical ones, two of the tasks from the first stage were used in the second study and 
one of them will be analyzed in this article. In each of the stages participants had exactly 45 minutes 
to solve the problems. 

Task 

 

 
This task checked the ability to carry out a full and correct analysis of the conditions of the task 
where all data was provided in the figure attached thereto, and then the way of following the 
instruction through the adopted reasoning and with the use of acquired knowledge. None of the 
variables needed to carry out the reasoning was given or named. Viewing the figure suggests the 
same length of certain segments but this fact is not stated in an obvious way (i.e. by using the same 
color, describing the length with the same variable). Therefore, the task enforces applying the 
formal operational thinking with reference to known facts, definitions and theorems, dependencies 
regarding the areas of flat figures, and test it. 

Check what is the ratio of the area of shaded 
figures to the area of the rectangle. 
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As one can see in the task, the use of symbolic language of mathematics as well as of prior 
knowledge, and applying hypothetical-deductive reasoning, were indispensable to achieve a full, 
correct and formal solution. But was the formal-operational reasoning applied by the students? 

Here there is a proposition (there are obviously more possibilities; they will not be all presented due 
to article length constraints) of a correct task solution reflecting capabilities of students 
at the 7th grade (at the age of 14) and containing some manifestations of formal operations, such as 
logical usage of symbols, deductive reasoning, reflection and usage of abstract objects. This 
solution has been proposed by a student - future teacher of mathematics. 

Figure 1: The example of the correct solution 

The article presents brief description of the results and more detailed analysis of the selected 
students' solutions which represent different types of reasoning used by students. Due to the aim of 
the research, attention will be focused on the description of manifestations of formal operations. 

Stage 1 

Junior high school students mostly provided correct answers. More than half of the students wrote 
that the area of the shaded figure is half of the area of the rectangle, but they could not justify it. 

Among 100 students participating in the survey, only 12 described the course of their reasoning in 
the answer sheet; hence only 12 cases were included in the table.  

Feature 

logically use 
symbols 

reason hypothetically 
and deductively 

think about abstract objects / perceive / perform 
activities 

Number of 
students 

5 - yes 
7 – no 

4 – no 
6 - manifestations 
2 – yes 

3 – abstraction 
9 - perceive 

Number of 
pupils 

9 - yes 
2 – no 

7 – no 
4 - manifestations 

1 – abstraction 
1 - perceive 
10 - perform activities 

Table 1: Features of formal reasoning - junior high school students and pupils of grade 7 

Stage 2 

Out of 27 participating in the study, only 11 pupils attempted to solve the task, not every one of 
them answered the question posed in the task, and those who did it, answered correctly. Most of the 
pupils did not carry out correct and full reasoning, certainly it was not the formal reasoning, 
students were not able to use symbolic language, the conclusions were based on intuition - often 
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infallible but not supported by knowledge - and on specific activities, i.e. measuring the length of 
segments and indicating certain facts or approximate values. 

Analysis of selected student works 
Example 1 

 
Figure 2: Student’s solution – example 1 

The student introduces his own indications corresponding to the areas; however, it is unclear why it 
is done. The student makes certain assumptions and does not explain this step. In addition, his 
observations are completely false, do not justify the equality of areas which do not look similar. The 
student combines a symbolic record with the text, equating them. He puts forward a hypothesis or a 
thesis on the basis of false premises. He does not attempt to prove the observed regularities and uses 
phrases - "when combined". In the process of reasoning one can notice some manifestations of 
formal operations and unsuccessful attempts to use them. 

Example 2 

 
Figure 3: Student’s solution – example 2 

Reasoning fully based on the perception of the figure treated as a specific object to be measured and 
explored. The student calculated the areas of shaded triangles, calculated the area of the rectangle 
and subtracted from it the sum of the areas of previously calculated triangles. The calculations do 
not confirm the fact which was to be proved. There is no reflection or comment, no other attempt to 
solve the task that could confirm or refute the results. 

Exemplar solutions, the correct ones proposed by students and those provided by pupils, are 
available at https://drive.google.com/drive/folders/1HFo22kdJeG0SnhkwM7eM_lMCIqt9wDrZ 
Due to article length constraints they could not have all been included in the paper. 

Conclusions 
The conclusions presented below are related to manifestations of formal operations in the process of 
solving the problem selected by two groups of children participating in two stages of pilot studies. 
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The author refers to the type of reasoning applied by students and to manifestations of formal 
operations, i.e. logical usage of mathematical symbols, deductions, reflection and the types of 
actions performed in order to find a solution of the problem. 

After the analysis of given responses, it appears that students: 

- mostly gave the correct answer, 
- sometimes worked out solutions based on formal operations, but nevertheless 
- answers in the vast majority were not a result of formal / abstract reasoning, 
- answers were due to the perception of certain regularities which students perceived in the 

figure, 
- answers were often a consequence of specific actions performed with the use of a ruler, the 

segments were measured and although the results were often different, the correct answer 
was given, 

- pupils apparently saw no need to justify their statements, 
- students applied faulty reasoning, 
- students did not apply the rules of deductive reasoning, 
- pupils could not separate their reasoning from the specifics given in the figure, 
- pupils’ intuition was often infallible but they were not able to give it up and apply formal 

reasoning. 

Summary 
The article presents the results of the pilot studies and conclusions drawn on their basis. It describes 
the readiness of students at the age of 14 to go through the process of solving a selected geometrical 
problem applying reasoning with the use of formal operations. To make it possible, students must 
know the properties of the figures as well as be sufficiently mature to conduct theoretical research 
and reflect upon it. Students should be able to use logical arguments, definitions and statements. 
Initial conclusions are unambiguous, the vast majority of students are not ready to reason 
deductively detaching from specifics, imaginary operations and specific activities, although 
according to Jean Piaget's theory of intellectual development after the age of 12 it should take place 
in mathematical thinking of students. 

The analysis of the material collected during the proper research and an answer to the question 
whether the hypothesis formulated here will be strengthened or refuted is still ahead of the author. 
The proper tests were carried out on a sample of 1200 students. 
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The research presented in this paper is about the question, if and how the phrasing of a proving task 
influences students’ proof productions. In our study, 381 first-year preservice teachers were asked to 
work on a proof questionnaire involving two proving tasks, where the phrasings “prove that”, “show 
that”, “reason”, and “explain” were used alternatively. Students’ proof productions were analyzed 
concerning the kind of reasoning, the use of algebraic variables and the number of words used. While 
we found statistically significant differences in the proof productions for the easier first task, there 
were no remarkable differences in the case of the harder second task. 

Keywords: Proof, argumentation, socio-mathematical norms, semiotic norms. 

Introduction 
The learning about proof and proving is considered to be a main hurdle for beginning university 
students. Several studies have been conducted to describe and to analyze the low proving compe-
tences of freshmen (see Gueudet (2008) for a good overview). Despite these results, only little effort 
has been made to investigate the relationship between research results, the teaching of proving and 
the proving tasks used in research. Dreyfus (1999) gives a description of several aspects that have to 
be considered in the teaching of proving. Dreyfus concludes (p. 103): 

The examples in Section 2 provide ample room for questioning what is expected by the different 
formulations used, including ‘explain’ [..], ‘justify’ [..], ‘prove’ [..], and ‘show that’ [..]. Does 
‘show that’ mean ‘formally prove’ or ‘use an example to demonstrate that’ (or something interme-
diate between these two)? Does ‘explain’ mean explain to a fellow student or explain in such a 
way as to convince the teacher that you understand the reasoning behind the claim?  

It was this idea of Dreyfus that made us conduct a study on how students’ proof constructions vary 
due to the phrasing of the proving tasks. We chose the four phrasings “prove that”, “show that”, 
“reason” and “explain“ to investigate possible systematic differences concerning students proof pro-
ductions. While “prove that” and “show that” are genuine phrasings in proving tasks, “reason” and 
“explain” are also phrasings that are used in studies to investigate students’ proof competencies. In 
this paper, we will describe our research project and outline the main results of this study. 

Theoretical background 
There are various phrasings that can be used to formulate a mathematical proving task. In the German 
school system for example, the concrete phrasings are meant as follows (KMK, 2012; our translation; 
the added words in quotation marks are the German translation of the former phrasing):  
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· to prove [“beweisen”]: to verify statements mathematically by using known facts and deduc-
tion, starting from the assumptions given 

· to show [“zeigen”]: to verify statements by using valid forms of reasoning, calculations, deri-
vations or logical connections 

· to reason [“begründen“]: to trace data back to principles or to causal connections by using rules 
and  mathematical relationships 

· to explain [“erklären”]: to clarify and to make comprehensible data by using personal 
knowledge and to arrange it reasonably into mathematical relationships 

So, there are some definitions or specific requirements combined with these phrasings. Following this 
differentiation, the mathematical solutions could vary in some detail due to the phrasing used to for-
mulate a mathematical task. 

In the mathematical classroom, the meaning of the different phrasing of a mathematical proving task 
can be considered to be an aspect of sociomathematical norms in the sense of Yackel and Cobb 
(1996). In the concrete learning contexts, the teacher and the students negotiate what is accepted, 
when a reasoning, an explanation, or a proof is asked for. Accordingly, the students learn in their 
daily mathematical class, what they have to do, when dealing with a task starting with “prove”, 
“show”, “reason”, and “explain”. In this sense, the way students are responding to a specific mathe-
matical (proving) task is a result of a socialization process. This perspective offers the very possibility 
of existing effects concerning students’ proof productions when using different phrasings in proving 
tasks and also makes it possible to give an explanation for them. 

In line with the theory of sociomathematical norms, semiotic norms have to be considered. The con-
cept of semiotic norms covers the idea that people may develop preferences concerning communi-
cating ideas (e.g. with mathematical symbols, using representations or giving concrete examples) 
when being confronted with a given and known formulation of a task. Kempen and Biehler (2015) 
transferred the idea of Dimmel and Herbst (2014) to explain students’ preference of using algebraic 
variables when being asked “to prove” a mathematical statement. There are some suggestions in the 
literature that the phrasing of a mathematical task influences students’ solutions. Schupp (1986) dis-
cusses the ‘problem of points’ and gives several examples how students’ solutions may vary in refer-
ence to a specific phrasing of the task. Knipping et al. (2015) adopt this idea and compare several 
phrasings of the same task to discuss different solutions obtained in different studies. The authors 
also consider the influence of sociological factors: students’ solutions in different school contexts 
(grammar school class and comprehensive or mixed school [“Oberschule”]) differed clearly from 
each other. Finally, it seems reasonable to link the phrasing of a mathematical task with emotions on 
students’ side. Hemmi (2006, p. 145) showed that while most of the students felt positive when being 
asked to solve a task starting with “Show that…”, about 40% of them stated a negative feeling. One 
might conclude that a negative feeling concerning a given task may lead to the result that a student 
might not seriously try to answer the task. 
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Research questions 
The theoretical considerations above led us to consider several hypotheses. Students may link differ-
ent phrasings of proving tasks with different mathematical activities. According to the meaning of 
the phrasing “show that” in common speech (in German it is “Zeigen Sie”), this phrasing may lead 
to an answer of a proving task, where a student is justifying a given claim by only testing one or more 
examples. Whereas this phrasing might lead to an empirical-inductive answer, a phrasing like “rea-
son” is considered to evoke the formulation of arguments (compare research question 1). In line with 
the idea of semiotic norms, the different phrasings of proving tasks may lead to the use of different 
notational systems. One might assume that “prove that” may lead to the use of algebraic variables, 
whereas “explain” might be combined with the use of (verbal) language (compare research questions 
2 and 3). For a deeper analysis of the data we also considered social factors (like gender, age, former 
math courses at school, …) and also investigated the data concerning the use of word variables, the 
use of representations, the use of concrete examples, quality of deductive approach and the structure 
of the proof. But due to the length of this paper, we will only report on the aspects “kind of reasoning”, 
“use of algebraic variables” and “number of words used”.  

We finally came up with the following research questions: 

1. In how far do students’ proof attempts vary significantly concerning the kind of reasoning used
(empirical-inductive or deductive) with respect to the phrasing of the task?

2. In how far does the occurrence of (algebraic) variables vary significantly with respect to the
phrasing of the task?

3. In how far does the number of words students used vary significantly with respect to the phras-
ing of the task?

Methodology 
Following the winter term in October 2015 in Germany, 381 mathematical freshmen, who took part 
in a degree program leading to different teacher accreditations at the Universities of Gießen, Münster 
and Paderborn, participated in this study. These students were asked to work voluntarily on an anon-
ymous entrance test. All students were told, that their results would not affect their marks in any ways. 

The mathematical statements used in this survey arise from the field of elementary number theory. 
Both tasks were chosen due to their manageable amount of mathematic operations as well as their 
contiguousness to topics dealt with in German grammar schools and are as follows: (1) The sum of 
an odd natural number and its double is always odd and (2) The product of three consecutive natural 
numbers is always divisible by 6. Each proving task allows for different approaches, e.g. generic or 
formal solutions. The first statement can easily be proven by making use of generic examples, by 
using figurate numbers, or by using algebraic variables (see for example Kempen and Biehler (2015)). 
We felt the need to include a task that is as easy to understand as the first one, but harder to prove, 
because in the case of the second task, the mere use of algebraic variables and respective computations 
does not automatically lead to a proof of the statement (𝑛𝑛 ∙ (𝑛𝑛 + 1) ∙ (𝑛𝑛 + 2) = 𝑛𝑛3 + 3𝑛𝑛2 + 2𝑛𝑛). 
Here, some additional arguments are necessary to prove the given claim. In this case, a narrative 
justification seems to be the simplest way of proof. One possible narrative proof for this task might 
be: If you have three consecutive numbers, one will be a multiple of 3 as every third number is in the 
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three times table. Furthermore, at least one number will be even and all even numbers are multiples 
of 2. If you multiply the three consecutive numbers together, the answer must have at least one factor 
of 3 and one factor of 2. Accordingly, the result will always be divisible be 6 (compare with Healy & 
Hoyles, 2000). Each statement was introduced with one of the phrasings “Proof”, “Show”, “Justify”, 
and “Explain”. This allowed for twelve different questionnaire versions in total, as identical operators 
were excluded. Furthermore, in order to prevent cheating, different colored sheets of paper were as-
signed to the twelve versions of the questionnaire. Having developed an initial questionnaire, this 
prototype was piloted in mathematical courses for teacher education at the Justus Liebig University 
Giessen and the Westphalian Wilhelms-University Münster in May 2015 (N=48). We used the fol-
lowing set of categories to identify the kind of reasoning (see research question 1). Here, the category 
“empirical-inductive” comprises two aspects. Any mere testing of one or more concrete examples 
without further arguments or ideas is located in this category. Furthermore, inductive approaches, 
where the truth of the given statement is asserted on the basis of purely empirical considerations, 
belong to this category. We combined these two aspects to one category to stress the overall difference 
to deductive approaches. It has to be mentioned that this distinction of empirical-inductive and de-
ductive reasoning is independent from the correctness respectively the completeness of the argument 
given; an incorrect deductive argument still counts as deductive. 

name explanation example (taken from students’ answers) 

empirical-
inductive 

The answer is just a verification 
by one or more examples. No 
more arguments or ideas are 
mentioned. (Example: 3 + 2 ∙ 3 = 3 ∙ 3         

                  3 +  6  =  9) 

deductive The student mentions ideas or 
further arguments that could be 
used to prove the statement. 

Moreover, the mere use of alge-
braic symbols is considered to be 
a kind of deductive reasoning. 

(two times odd equals even  

odd + even equals odd  

accordingly, the claim is proved) 

Table 1: Set of categories to investigate the "kind of reasoning" 

Concerning the use of algebraic variables, we applied this code if any algebraic variable had been 
presented in the answer to a proving task or not. While the use of algebraic variables is measured as 
a category to code its appearance, we also counted the number of words used in students’ proving 
attempts. In this case, we were not only interested in the appearance of words, because more or less 
any proof attempt will make use of some words somehow. Accordingly, we had to count the words 
to investigate a special kind of shift in students’ proof attempts leading to more narrative approaches. 
When counting the number of words used in an answer of the proving tasks, we did not count the 
words for structuring the proof production (like “example:”, “proof:” or “q.e.d”) or symbols (like “+” 
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or “…”). Following this categorization, the first example given above in table 1 is considered to be 
an empirical-deductive answer, with no use of variables and zero words. The second example is a 
deductive answer without variables containing 14 words. 

Results 
The following results are based on the answers of 381 first-year preservice teachers at the University 
of Gießen, Münster and Paderborn. The results concerning the kind of reasoning in accordance to the 
given phrasings are shown in Figure 1.  

Figure 1: Results concerning the “kind of reasoning” 

Concerning proving task (1), the percentage of empirical-inductive answers is the highest for the 
phrasing “show that” (26%) and the lowest for “explain” (17%). This difference is statistically sig-
nificant with small effect size [Chi²-test, p=.021 with Cramer’s V=.167]. In the second task, the re-
sults are quite different. Around half of the students give empirical-inductive answers. In this case, 
there is no statistically significant difference between the kind of reasoning in accordance to the dif-
ferent phrasings of the task. This might be due to the fact that the second task is harder to prove (see 
above). Accordingly, students might have only given examples because they did not know how to 
proceed otherwise.  

When analyzing the data concerning the use of variables and the number of words used, we only 
referred to the answers making use of a deductive approach, as the ‘empirical-inductive’ proof at-
tempts will obviously include no variables and contain fewer words. The results concerning the use 
of algebraic variables with regard to the deductive attempts in accordance to the given phrasings are 
shown in figure 2. Having a look at the answers to the first proving task, the phrasing “prove that” 
leads to the highest percentage of the use of algebraic variables (76%), followed by “show that” with 
62%. Concerning students’ proof productions for task (1), there are several statistically significant 
differences considering the use of algebraic variables with small and medium effect size (see table 
2). One might assume that something like an implicit semiotic norm would lead to these differences. 
In task (2), the minor differences concerning the use of algebraic variables in accordance to the given 
phrasings are not statistically significant (Chi²-test). Here again, the students’ problem in dealing with 
the second proving task can be considered as an explanation why no differences concerning the use 
of algebraic variables in accordance to the given phrasings could be observed. However, the results 
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concerning task (1) hint that a construct like semiotic norms should be considered, because there, the 
use of algebraic variables differs in accordance to the given phrasings.  

 
Figure 2: Results concerning the “use of algebraic variables” 

 P value (Chi²-test) effect size (Cramer’s V) 
“prove that” vs. “show that” .021 .158 
“prove that” vs. “reason” <.001 .391 
“prove that” vs. “explain” <.001 .376 
“show that” vs. “reason” <.001 .241 
“show that” vs. “explain” .003 .225 

Table 2: Statistical data concerning the differences about the “use of algebraic variables” in accord-
ance to the given phrasings. P value (Chi²-test) and effect size (Cramer’s V) 

Students used 25.68 words on average to answer task (1) and 18.83 to answer task (2) (see table 3). 
Having a look at the arithmetic means of number of words used in accordance to the given phrasings 
in task (1), there are remarkable and statistically significant differences (see table 4). Whereas the 
phrasings “reason” and “explain” lead to an increased use of words (27.35 respectively 27.52 on 
average), “prove that” and “show that” lead to a minor use of words (14.83 respectively 13.11 on 
average). In this case, we consider the phenomenon of an increased use of words due to the phrasing 
of a proving task as a matter of semiotic norms. 

 task (1) [arithmetic mean] task (2) [arithmetic mean] 
“prove that” 17.91 16.46 
“show that” 17.11 21.93 
“reason” 32.63 17.16 
“explain” 31.60 20.91 
overall arithmetic mean 25.68 18.83 

Table 3: Arithmetic means concerning the number of words used in students proof productions in ac-
cordance to the given phrasings 
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P value (t-test) effect size (Cohen’s d) 
“prove that” vs. “reason” <.001 1.02 
“prove that” vs. “explain” <.001 .83 
“show that” vs. “reason” <.001 1.05 
“show that” vs. “explain” <.001 .85 

Table 4: Statistical data concerning the differences about the “number of words used” in proving task 
(1) in accordance to the given phrasings. P value (t-test) and effect size (Cohen’s d)

Summary and final remarks 
The focus of this paper is on if and how the phrasing of a proving task might influence students’ proof 
productions. In the case of the easier proving task (1) about the claim that the sum of an odd number 
and its double is always odd, remarkable differences could be observed. Here, the phrasing “show 
that” led to statistically significant more answers consisting only of empirical evidence compared to 
the phrasing “explain”. While “show that” and “prove that” evoked the use of algebraic variables, 
“reason” and “explain” led to an increased use of words. While these differences could be observed 
in the case of the first task, there were no such results in the case of the second task. One explanation 
might be that the second task (about the divisibility by six of the product of three consecutive natural 
numbers) was too hard for the students. If the students do not know how to solve a problem in any 
way, they cannot vary concerning the way they prove the claim. This possible explanation is sup-
ported by the fact that much more students only gave empirical-inductive arguments to answer the 
second proving task (44% vs. 18% in the case of the first task). 

Following our theoretical considerations, the differences in students’ proof attempts in the context of 
task (1) can be explained by the framework of sociomathematical norms (in the sense of Yackel and 
Cobb, 1996). Students had acquired throughout their daily (school) life and their mathematics classes 
what they are expected to do when being asked “to prove” a statement, “to show” that something is 
true, “to reason” or “to explain” a given fact. The emergence of respective sociomathematical norms 
evolves from the (implicit and explicit) discourse taking part in the classroom, where students and 
teachers negotiate their expectations and requirements. In the case of task (1), the phrasing “show 
that” led to statistically significant more empirical-inductive approaches than the phrasing “explain”. 
As a result of sociomathematical norms, semiotic norms can be developed. Students might link a task 
or the phrasing of a task with the use of certain semiotic resources. In this study, the phrasings “prove 
that” and “show that” led to an increased use of algebraic variables, whereas “explain that” led to an 
increased use of words. While we claim, that certain sociomathematical norms have been developed 
concerning the area of proof and reasoning, we can only guess, which experiences have led to respec-
tive phenomena. Here, classmates and (mathematics) teachers will have played a decisive role when 
negotiating norms. However, other influences from real life might also have affected students’ atti-
tude and behavior.  

To sum up, the phrasing of a proving task can influence students’ proof productions. In this study we 
could identify differences concerning the kind of reasoning, the use of algebraic variables and the 
number of words used. This result should be considered in the teaching of proof and in the research 
in this domain. The teachers at school and at university should be aware of the fact that students seem 
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to combine different (implicit) norms for phrasings of a proving task when designing tasks for their 
students. Researcher should consider the fact that the phrasing of a proving task might affect their 
research results when analyzing the data. But more research has to be done to get deeper into the 
effects different phrasings may evoke. Beside the formulation of task, also other aspects have to be 
considered, like social and sociological factors, individual preferences or mathematical thinking 
styles. These considerations have to be investigated by future research. Finally, as was shown above, 
the findings of this study seem to be closely related to the two tasks used in this study. More research 
is needed to confirm or to specify the results obtained in the context of different proving tasks in 
different domains. 
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Mathematics education researchers have highlighted the importance of assumptions in school 
mathematics given their vital roles in mathematical practice. However, there is scarcity of research 
aiming at enhancing students’ recognition of different roles that assumptions play in mathematical 
activity. In this paper, we begin to address this issue by formulating two task design principles and 
reporting on the implementation of a classroom intervention where lower secondary school students 
in two classes worked, with the same teacher, on a task designed following the proposed principles. 
Our analysis shows how the task, together with the purposeful teacher’s actions in implementing it, 
led to students’ developing appreciation of two roles that assumptions play in mathematical activity.  

Keywords: Assumptions, Task design principles, Classroom intervention, Teacher’s role. 

Introduction 
Assumptions refer to statements that doers of mathematics use or accept (often implicitly) and on 
which their claims are based (Stylianides & Stylianides, 2017). Several researchers in mathematics 
education have highlighted the importance of helping students be more aware of the roles that 
assumptions play in mathematics, especially in relation to the notion of proof. For example, Fawcett 
(1938), who treated proof as a key notion in school mathematics, listed four criteria for checking 
students’ understanding of the nature of proof, among which two are closely related to assumptions: 
students understand “[t]he necessity for assumptions or unproved propositions” and “[t]hat no 
demonstration proves anything that is not implied by assumptions” (p. 10). 

Despite the importance of assumptions in school mathematics, assumptions have received little 
research and pedagogic attention in school mathematics. Furthermore, existing studies (e.g., Fawcett, 
1938; Jahnke & Wambach, 2013; Komatsu, 2017) have mainly focused on geometry at the secondary 
school level. Research in other mathematical domains is needed that will build on and widen the 
scope of application of prior research in geometry, given also the recent calls for curriculum reform 
(see, e.g., NGA & CCSSO, 2010, in the United States) to introduce proof-related mathematical 
activity across content areas as well as in primary school (e.g., Stylianides, 2016).  

To develop students’ recognition of the roles of assumptions in mathematical activity, we focus on 
the design of mathematical tasks, which have potential to affect significantly students’ experiences 
with and understanding of the subject. Specifically, in this paper we propose two principles that can 
be used to support task design in the area of assumptions, we report on an intervention implemented 
in two classes where lower secondary school students worked on a task designed following the 
proposed principles, and we discuss the influence on students’ understanding of the roles of 
assumptions in mathematical activity.  
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Task design principles for the roles of assumptions 
Types of assumptions 

Assumptions often refer to statements that are accepted as true without proofs, and their typical 
examples are axioms like the fifth postulate in Euclidean geometry whose modification led to the 
formation of non-Euclidean geometries. To expand the opportunity for students to experience the 
relativity of truth in mathematics, we extend the mainstream notion of assumptions to include two 
additional types of assumptions, both related to mathematical tasks and their formulation: (1) 
conditions of tasks (including premises of statements mentioned in tasks), and (2) definitions of terms 
mentioned in tasks. This paper reports on an intervention concerning the former type in the context of 
a function task. We are in the process of designing another intervention addressing the latter type. 

Roles of assumptions  

Assumptions play multiple roles in the discipline of mathematics. Their primary role has been to 
introduce the relativity of truth, i.e., whether a proposition is true or false cannot be absolutely 
determined, but hinges on assumptions (Fawcett, 1938). For example, Euclidean geometry was 
originally accepted as the standard form of geometry that was deemed to be true in an absolute sense. 
However, following mathematicians’ unsuccessful attempts to deduce the fifth postulate from other 
postulates, mathematicians created new geometries, the non-Euclidean geometries, by adopting 
axioms different from the fifth postulate. It was thus recognised that some propositions in Euclidean 
geometry are true only under the set of Euclidean axioms, and that the conclusions are different under 
different sets of axioms.  

A second role is to mediate disputes that occur concerning the truth of conjectures; mathematicians 
have managed to resolve such disputes and reach consensus by delving into the assumptions 
underlying the conjectures. Consider, for example, the conjecture that the limit of any convergent 
series of continuous functions is itself continuous. According to Lakatos (1976), while Cauchy 
provided a proof for this conjecture in the 19th century, a counterexample to the conjecture was found 
in Fourier’s work. Mathematicians attempted various explanations for this puzzling situation where 
the proof for and counterexamples against the conjecture coexisted. Eventually, Seidel analysed 
Cauchy’s proof and discovered a hidden lemma, which once incorporated into the conjecture as a 
condition (related to the concept of uniform convergence), validated the conjecture. 

Learning goals 

Considering the importance of promoting authentic mathematical practice in school mathematics 
(Lampert, 1992), our study aims to help cultivate students’ sense of the two roles of assumptions we 
discussed earlier. Specifically, we set up the following two learning goals for the intervention in our 
study (similar to the goals discussed in Stylianides & Stylianides, 2017, for prospective teachers): 

Learning Goal 1: To recognise that a conclusion is dependent on the assumptions on which the 
argument that led to it was based. 

Learning Goal 2: To recognise that making the underlying assumptions explicit is crucial for 
reaching a consensus on the conclusion. 
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Task design principles 

Based on our previous studies (Komatsu, 2017; Komatsu & Jones, 2019; Stylianides, 2016, chapter 4; 
Stylianides & Stylianides, 2017), we formulated the task design principles below in order to address 
the above learning goals: 

Principle 1: Designing tasks that are subject to different legitimate assumptions by leaving 
purposefully some of the assumptions of tasks implicit or unspecified. 

Principle 2: Allowing tasks to have different legitimate answers based on different legitimate 
assumptions about the tasks. 

At the centre of these principles is the deliberate act of keeping some of the assumptions of the tasks 
implicit or unspecified. The typical way of showing a task to students and promptly clarifying its 
assumptions eliminates the possibility of multiple interpretations of these assumptions and reinforces 
the intuitive connection between the clarified assumptions and the expected answer. In our on going 
research (part of which we report here), we intend to break this norm by creating a situation where an 
assumption of a task is purposefully unstated by the teacher so that the students can work on the task 
under their own (implicit and potentially varied) assumptions. We anticipate that the disagreement in 
the proposed answers likely to emerge in the whole-class discussion will prompt the students to 
explore the reasons for the inconsistency. This discussion, purposefully orchestrated by the classroom 
teacher, is expected to help students realise that their answers depend on their respective assumptions 
and that an explicit assumption is needed to justify each answer.  

Method 
Task design 

Based on the principles stated above, we designed a task shown in Figure 1, which we adapted from a 
task implemented in the 2016 National Assessment of Academic Ability in Japan (NIEPR, 2016). 
With respect to Principle 1, the functional relationship between x and y is not specified in the task so 
that students can work on the task under different assumptions about functional relationships. With 
respect to Principle 2, the answer to the task is, for example, y = 6 if y is inversely proportional to x, 
and y = – 6 if y is a linear function of x. Despite the divergence between these answers (as well as an 
infinite number of other legitimate answers not discussed here), both of them are, or can be, correct as 
long as the respective functional relationship is assumed.  

The table below represents y-values corresponding to the given x-values. Find the y-value when x = 6. 

x … 2 3 … 6 … 

y … 18 12 … … 

Figure 1: The designed task, which we adapted from a task derived from NIEPR (2016) 

Participants 

We conducted an intervention study using the task in Figure 1 in two ninth-grade classes 
(approximately 40 students in each class, aged 14–15 years) in a Japanese lower secondary school 

Thematic Working Group 01

Proceedings of CERME11 235



 

 

affiliated with a national university. The intervention consisted of one lesson (50 minutes) and was 
implemented in the two classes by the same teacher who had five years of teaching experience. 

We worked together with the teacher in planning the intervention. Specifically, the first author 
showed to the teacher the task in its original form from the national assessment, and also discussed the 
intended learning goals and task design principles we presented in the previous section. The teacher 
then created a lesson plan and discussed it with the first author. Based on the discussion, we decided 
to use the task as in Figure 1 that was modified from the original form. The teacher then implemented 
the task following closely the lesson plan as outlined below. The participating students were not 
introduced to the notion of assumptions before, but they were familiar with the definition of functions 
and several kinds of functions: proportion (y = ax), inverse proportion (y = a/x), linear function (y = ax 
+ b), a special case of quadratic function (y = ax2), and step function.  

Data collection and analysis 

The data include the transcripts of the videotaped lessons, the students’ worksheets, and the field 
notes taken by the first author during the lessons. The data analysis aimed to determine whether the 
learning goals described earlier were achieved in each class. We focused our analysis on the 
whole-class discussions to examine the learning trajectory of each class as a whole, rather than 
attempting to trace individual students’ thinking. Due to space limitations, results from analysis of 
students’ worksheets are referred to only for triangulation, complementing the results pertaining to 
the whole-class activity. Because the two classes followed nearly identical paths, we report only the 
results from one class (38 students) in this paper. All student names are pseudonyms. 

Classroom intervention 
The relative correctness of answers 

The teacher began the lesson by presenting the task in Figure 1; the students individually worked on it 
for about five minutes. During this work, some students provided the answer y = 6, while others the 
answer y = – 6. This disagreement surfaced during the subsequent whole-class discussion. Misaki 
first said, “I think y is 6”, but a student objected to her answer, “That’s wrong”. Aoi then said, “[y =] 
– 6”, but Shun questioned her answer saying “What?” After that, the teacher posed to the students the 
pre-planned question of which answer, y = 6 or y = – 6, was actually correct: 

31 Teacher: Well, now there are two answers. Which is a correct answer? 
32 Students: Both are correct answers. 
33 Teacher: Really? Are both correct answers? Please think everyone. […] [The students 

start to discuss with their neighbours.]  
34 Nanami: What? What is the conclusion? 
35 Takumi: I don’t know.  

As seen in this interaction, an anticipated sense of confusion emerged among students. While some of 
them considered both answers to be correct (line 32), others had no idea about which the correct 
answer was (lines 34, 35). To address this confusion, the teacher then asked students to think more 
about whether both answers were correct and to write their thoughts on their worksheets. The students 
then shared their thoughts in the whole-class discussion: 
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39 Ren: Um, I think both [answers] are correct. These two. Since we don’t know what 
the function of this graph is, since we can interpret it as both an inverse 
proportion and a linear function, I think both are correct.  

40 Teacher: You’ve described your opinion that both are correct. Well, let’s listen to 
another student. Riko, can you share [your opinion]? What do you think? 

41 Riko: Um, I also think both are correct. If we change how we read the table, it 
becomes an inverse proportion and also a linear function. 

Ren and Riko’s responses (lines 39, 41) are representative of students’ responses and are relevant to 
Learning Goal 1: recognising that a conclusion is dependent on the assumptions on which the 
respective argument that led to it was based. That is, these students understood that the correctness of 
their answers was relative to their assumptions, implying that y is 6 if y is inversely proportional to x, 
and y is – 6 if y is a linear function of x. All students in the class agreed that both answers could be 
correct and most students shared or wrote similar thoughts. For example, Mizuki wrote on her 
worksheet, “the answer is 6 if we interpret it as an inverse proportion, but – 6 if it is a linear function”. 
Similarly, Nanami wrote, “The graph becomes a curve where the y-value becomes 6, and also 
becomes a line where the y-value becomes – 6, so I think both values are correct depending on how 
we think about it”. These students’ responses show that the task has afforded them the opportunity to 
recognise the connection between different answers and respective assumptions.  

Two ways for pinning down the answer 

While the students recognised the relativity of their answers, they started to feel dissatisfied with the 
task they worked on: Nanami said, “That’s not good. I don’t know what I am solving”. The teacher 
responded to the students’ feeling of dissatisfaction by posing two pre-planned questions (written on 
the blackboard): “(1) What are the reasons for the answer to be ambiguous? (2) What can we do to 
address the ambiguity?” The students were given approximately ten minutes to tackle these 
questions, before sharing their thoughts in the whole-class discussion. The students’ responses can be 
divided into two groups, of which Kenta’s and Shun’s contributions are representative: 

75 Kenta: Um, um, [regarding question] number 1, [this] is because there is no 
explanation about whether y is proportional to x or inversely proportional. 
Um, if there are only points (2, 18) and (3, 12), equations are possible both for 
y = 6 and – 6. Um, if we interpret it as the graph of the inverse proportion of y 
= 36/x, um, we have 6. If we interpret it as the graph of the proportion of – 6x 
+ 30, we have – 6, I think. Well, [regarding question] number 2, I think, we 
should add an explanation, like when y is proportional to x or when y is 
inversely proportional to x. [Kenta misspoke here. He meant linear functions 
when he talked about proportions.] 

88 Shun: Um, because there are only two given points, the answer changes depending 
on whether we connect two points with a line or connect [them] with a curve. 
[Regarding question] Number 2, I think, if we determine the values of more 
than two points, the answer will be [uniquely] determined. 

According to first group of students (illustrated by Kenta’s comment), the reason for the answer to the 
task to be ambiguous was the absence from the task description a specification of the functional 
relationship between x and y; the way this group suggested to address the ambiguity was to clarify the 
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relationship in the task. According to the second group of students (illustrated by Shun’s comment), 
the ambiguity was because only two pairs of values were given in the task; the way this group 
suggested to address the ambiguity was to provide in the task more points with given values. 

Recognition of the necessity of assumptions 

The teacher had anticipated these two kinds of student responses and made a planned move to address 
them, beginning with the second group’s suggestion to increase the number of points with given x- 
and y-values. He plotted the points (2, 18) and (3, 12) on the coordinate plane on the blackboard and 
said: “Suppose that in the case of […] 4, we have 6 [meaning y = 6 for x = 4]. Is this a linear function? 
We know three points.” Here the teacher selected (4, 6), because the y-value is 6 when x = 4, if the 
function is assumed to be linear. 

The alternative possibility of step functions was then proposed by Shota. Shota’s suggestion greatly 
surprised other students, who later began to agree with him and acknowledged that, even if three pairs 
of x- and y-values were given, the function in the task could not be uniquely determined. Below is the 
whole-class discussion after Shota drew the graph shown in Figure 2. 

 
Figure 2: Step function drew by Shota (the dotted vertical line was added later by the teacher) 

138 Teacher: Well, in this case, what happens? This, this, well, what did you draw? 
139 Shota: A step function.  
140 Teacher: Oh, yes, thank you. Is this a linear function? 
141 Students: No. 
142 Teacher: Yeah. […] In the case of 6, this 5, 6, the point in this case… [The teacher 

added the dotted vertical line in Figure 2, and suggested a question asking the 
y-value when x = 6.] 

143 Nanami: Anything [would be] okay [meaning that the y-value can be any values]. 
144 Teacher: Can you predict [the value of y]? 
145 Nanami: Anything [would be] okay. 
146 Moe: Like quite suddenly [it is] changing. 
147 Nanami: It could change suddenly, it is changing. 

In the above interaction, the students stated that even if another point (4, 6) was added to the table 
(Figure 1), the function could be a step function rather than linear, and that in this case, the y-value 
when x = 6 could not be uniquely determined (lines 143, 145–147). The class thus realised that 
increasing the number of points was not a viable option to address the ambiguity in the task. The 
consideration of step functions motivated the class to seek another way to pin down the answer, 
returning to the way that was represented earlier by Kenta (line 75), i.e., specifying the functional 
relationship between x and y in the task. At the end, the teacher summarised the lesson as follows: 
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194 Teacher: Making this clear [meaning to specify the functional relationship] is good. I 
introduce this [pointing “in the case of a linear function” and “in the case of 
an inverse proportion” written on the blackboard], this, the one shown at the 
beginning is, […] this is called an assumption, assumption. So, I believe you 
see that the answer becomes definite by this assumption.  

In this comment, the teacher introduced the term assumption and clarified that the conditions, such as 
“y is a linear function of x”, were assumptions one could make based on the task’s phrasing. He also 
mentioned that making the assumptions explicit was crucial for reaching a consensus answer. This is 
relevant to Learning Goal 2, which was reached by the class as illustrated by students’ comments at 
the end of the lesson when they summarised their learning. For example, Takumi said, “If there is no 
assumption [made explicit], even if we know many points, the graph cannot be fixed into one 
function’s graph”. Similarly, Yuka said, “If there is no assumption, different functions can be 
considered. So, when we want to make the answer definite, we write the assumption”.  

Discussion 
In this paper, we described a classroom intervention involving ninth-grade students with a particular 
mathematical task (Figure 1), designed based on two principles (Principles 1 and 2). Our analysis 
showed that the task and its purposeful implementation were useful for stimulating the students to 
recognise that the correctness of their answers was relative to their respective assumptions (Learning 
Goal 1), and that it was necessary to make the assumption of the task explicit to reach a consensus 
answer (Learning Goal 2). Hence, the principles can be regarded as helpful for designing tasks that 
aim to help students appreciate the roles of assumptions in mathematical activity. 

Although in this paper we focused on the role of task design in promoting particular learning goals, 
the results of our intervention highlight also the important role that the teacher played for achieving 
these goals. Prior to the intervention, we held meetings with the teacher to discuss the task, the two 
design principles, and to explain the task’s intended purpose. The teacher well appreciated the 
learning goals of the task and was able to devise a detailed lesson plan where he anticipated students’ 
responses to the task and planned some questions strategically, preparing himself to capitalise on 
these responses during the lesson so as to effectively manage students’ contributions and steer class 
progression towards the learning goals. The intervention played out in both classrooms as expected, 
thereby limiting the need for teacher to improvise and make in-the-moment decisions; the lesson 
naturally progressed towards the learning goals, while the students’ contributions were respected and 
were integrated into the discussions (Sherin, 2002). 

A significant aspect of the teacher’s role was asking probing questions. For example, in response to 
students’ different answers (y = 6 and – 6), the teacher asked, “What are the reasons for the answer to 
be ambiguous? What can we do to address the ambiguity?” These questions triggered students’ 
interest in exploring ways to obtain a consensus answer, and created an “intellectual need” (Harel, 
1998) for the class to be introduced to the notion of assumptions. Another important aspect of the 
teacher’s role was orchestrating whole-class discussions (Stein, Engle, Smith, & Hughes, 2008). 
When planning the intervention, the teacher had predicted that some students would come up with 
responses similar to Kenta’s (line 75) and Shun’s (line 88). When implementing the intervention, the 
teacher ‘filtered’ and ‘sequenced’ the students’ responses (Sherin, 2002; Stein et al., 2008) so that 
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Shun’s and Kenta’s ideas were examined, one at a time, in the whole-class discussion. When the 
students understood that Shun’s idea was not viable, he helped students recognize the advantage of 
Kenta’s idea (line 75) to make explicit the functional relationship in the task.  
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Fostering students’ competencies of reasoning and argumentation is an overarching goal of the math-
ematics classroom with relevance also for statistical contents. However, students’ argumentation 
based on statistical data appears to have received less attention so far. In particular primary stu-
dents’ abilities concerning evaluating and generating their own data-based arguments have hardly 
been investigated. Our analysis of N=167 answers of primary students addresses this need for re-
search and gives insights into students’ abilities in generating data-based arguments and students’ 
possible difficulties. The results, therefore, provide an evidence base that can inform subsequent in-
tervention studies. 

Keywords: Argumentation, statistics, primary school, scientific reasoning. 

Introduction 
Statistical data are often used as evidence for decision making in various domains of modern societies 
so that data plays a key role in decision-related argumentation. It thus can be seen as an important 
goal for the mathematics classroom to encourage primary students to enter into data-based argumen-
tation. With the term data-based argumentation we refer to the process by which students critically 
evaluate data-related statements, and develop arguments, based on statistical data. In a prior study 
with N=385 fourth-graders (Krummenauer & Kuntze, 2018) we found that about one-third of the 
sample was able to develop at least one data-based argument. Consequently, as there is evidence that 
primary students can be able to develop data-based arguments, our earlier findings opened up the way 
to investigating now more closely students’ abilities and the obstacles students encounter when they 
develop data-based arguments in different task-related contexts. For this reason, we newly designed 
a set of tasks adapted to the target group in order to further explore primary students’ data-based 
argumentation. In this paper, we report on our analysis of an exemplary task of our newly developed 
test. In the following section, we first describe the theoretical background on key aspects of data-
based argumentation and requirements students have to deal with when they develop data-based ar-
guments. After having specified the research interest, we will report on sample and methods for a 
coding that afforded the analysis of students’ answers. Finally, we present the results which will be 
discussed in a concluding section.  

Theoretical Background 
One of the core aims of argumentation in general is ‘to convince others that a statement is true or 
false’ (Stylianides, Bieda, & Morselli, 2016, p. 316). Data-based argumentation can be seen as a 
specific case of argumentation in which statistical data is used to convince someone that a statement 
is true or false. In comparison to other argumentation situations such as mathematical proving (e.g. 
Boero, 1999; Hanna, 2000), data-based argumentation differs in nature, mainly due to the empirical 
methods used in the data gathering process. Moreover, dealing with phenomena related to statistical 
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variation (e.g. Watson & Callingham, 2003) leads to specific forms of data-based reasoning and ar-
gumentation; even seemingly contradictory statistical interpretations of data can be justified on the 
base of the same data set. A well-known example for this is the Simpson’s paradox (e.g. Blyth, 1972). 

However, there are also commonalities of data-based argumentation with generating mathematical 
proofs. In Toulmin’s (2003) approach of analysing arguments, two basic elements of an argument are 
distinguished: the datum and the conclusion. The conclusion is a statement that should be substanti-
ated by the argument. The datum is a set of facts which are taken to be true (p. 89–92). So, a core-
structure characteristic of arguments is the distinction between available evidence on the one side and 
the statement that is being supported by the argument on the other side. Inspired by Toulmin’s ap-
proach, we can structure data-based arguments in a similar way. In data-based arguments, the state-
ment being supported by the argument is often an interpretation of data, or an evaluation of a given 
statement. The statement then is supported by statistical data, which takes the function of Toulmin’s 
datum. Thus, a consistent connection of a statement with supporting statistical data is the core element 
of a data-based argument. Additional elements in Toulmin’s framework, such as the warrant and the 
backing, which can be used to clarify why the conclusion results from the datum, can be assigned to 
analogous structures of data-based arguments.  

These thoughts about the structure of arguments already point to a set of requirements for generating 
data-based arguments, which can be developed further. As laid out in Krummenauer & Kuntze 
(2018), requirements of data-based argumentation can be described under a scientific reasoning per-
spective (e.g. Bullock & Ziegler, 1999; Klahr & Dunbar, 1989; Kuhn, Amsel & O’Loughlin, 1988; 
Zimmermann, 2007). When students have to generate a data-based argument for evaluating a given 
statement (as is required in the task in Figure 1, for example), they have to consider the statement as 
separate from the statistical evidence contained in the available data. According to scientific reason-
ing, the statement has to be treated as a hypothesis which has to be rejected in case of contradiction 
with the data. For evaluating the statement on the basis of the statistical evidence the students also 
have to find out whether the evidence is confirming, contradicting, or irrelevant to the statement (cf. 
Sodian, Zaitchik & Carey, 1991). In case of relevance, if the data provide evidence contradicting the 
statement, the statement has to be rejected.  

At first sight, these requirements appear as very complex. In particular, it might be expected that 
younger children lack the necessary skills for mastering such requirements. However, prior empirical 
research has shown that even primary students already have prerequisites for scientific reasoning and 
that fostering such skills is possible in primary school (cf. Bullock & Ziegler, 1999; Kuhn, 1989; 
Sodian et al., 2006; Zimmerman, 2007). On the other hand, these and other studies also show that 
children often use deficient strategies, such as a positive test strategy, which means that they may 
seek only for evidence which confirms their prior assumptions. It also has been observed that children 
tend to accept hypotheses too hastily (e.g. Kuhn et al., 1988; Bullock & Ziegler, 1999; Klahr & Dun-
bar, 1989) and that they are influenced by their prior views, knowledge and preferences when they 
evaluate a statement. In contrast, an important strategy for dealing with data-based statements is to 
challenge them actively by searching for aspects in the data which contradict the statement (Kuntze 
et al., 2013).  
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Against the background of such findings it appears as a feasible endeavour to foster primary students 
in their data-based argumentation, so that the above-mentioned goals can be considered as realistic. 
Still, the successful development of learning environments requires a fundamentally sound empirical 
knowledge base about students’ abilities and their answering patterns when having to develop data-
based arguments.   

Research aim 
Our analysis consequently addresses this research need. The core aim is to investigate primary stu-
dents’ abilities with respect to data-based argumentation and the obstacles that might prevent them 
from developing consistent data-based arguments. This leads to the following research questions: 

(1) To what extent do primary students generate consistent data-based arguments?
(2) Is it possible to assign those answers, which do not fulfil the requirements, to categories which
represent different types of answers?

Design and Sample 
The analysed task, shown in Figure 1, is part of a newly designed test instrument used in a test with 
N=167 students from southern Germany at the end of the fourth grade (91 female, 76 male; average 
age M=10.4, SD=0.57). The task requires to evaluate whether the headline matches the diagram. As 
a justification is asked (‘Justify your answer’), the students have to develop at least one consistent 
argument based on the data, as these are the only appropriate source of evidence for the required 

evaluation. The meaning of the word ‘justify’ was 
explained in a standardised instruction before the 
test. 

The analysis of the students’ answers to the task 
combines a top-down coding (double coded, inter-
rater reliability: κ=.91), which is derived from a 
coding we had already successfully applied in a 
prior study (cf. Krummenauer & Kuntze, 2018), 
with a bottom-up analysis for exploring possible 
difficulties of the participants. To answer the first 
research question, we analysed in a first step 
whether the students’ answers comply with the re-
quirements of the task. Therefore, we analysed the 
structure of the arguments in the answers with a 

scheme inspired by Toulmin’s (2003) approach. A successful answer was expected to contain, at a 
minimum, one data-based argument consisting of a conclusion expressing a negative evaluation (e.g. 
‘no’, or ‘the headline does not match the diagram’) as well as a datum in the form of a consistent 
reference to aspects of the data which are appropriate to substantiate the conclusion. Additional ele-
ments like a warrant or a backing are not required if a consistent connection between the datum and 
the conclusion can be clearly reconstructed in the context of the task. In a second step, all answers 
which did not fulfill these requirements were subjected to an interpretive bottom-up analysis to pro-
vide answers to the second research question. For developing a set of distinct categories we followed 

Figure 1: Analysed task (translated) 
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Mayring’s (2015) approach of inductive category formation; again, taking into account the key ele-
ments of Toulmin’s (2003) approach.  

Results 
The top-down coding shows that 40% of the participants gave an answer which completely met the 
requirements of a successful answer described in the prior section. Figure 2 shows an answer from 
this category: 

  
Figure 2: Example of a successful answer (1) 

The answer starts with the statement ‘no’ which is to be taken as a direct response to the question in 
the task. Following the key elements of Toulmin’s terminology, the statement ‘no’ functions as a 
conclusion and signalizes that the headline in the task has to be rejected. The second part of the answer 
(‘from 1948 until 1957 the gasoline price was the same’) contains a statement which refers to aspects 
of the given diagram. With the conjunction ‘because’ the student connects the conclusion with the 
reference to the datum and indicates that the reference substantiates the student’s conclusion. There-
fore, the reference to the data functions as a datum to substantiate the conclusion.  

Figure 3 shows another example of an answer rated as successful. It also starts with a conclusion ‘no’ 
and also gives a reference to the given data set (‘the prices also decreased from time to time’). In spite 
of the fact that there are no concrete points of data mentioned, in consideration of the given diagram 
the analysis yields that the student refers to several points of the data set where the trend line de-
creases. In contrast to the answer in Figure 2, there is no conjunction which links the conclusion with 
the reference to the data, but the function of the reference as a datum appears as it was asked for a 
justification in the task. 

  
Figure 3: Example of a successful answer (2) 

In both cases shown above, the reason why the datum substantiates the conclusion remains partly 
implicit. For example, to understand the argument in Figure 3, the contradiction between the state-
ment (‘gasoline prices always have been rising’) and the temporary decline of the prices found in the 
data has to be considered.  

In this context, we would like to note that it is not always necessary to give a warrant or a backing 
for all connections with data, and that in cases of an evident contradiction between given statement 
and data the justification required for an argument can be rated as successful. Following Jahnke & 
Ufer (2015) it is neither helpful nor even possible to refer to all single necessary steps of inference 
within an argument (cf. p. 332–333). Therefore, the appropriateness of an argument is not only a 
question of consistency of the argument, but also a question of social convention on what level of 
justification an argument can be accepted as evident (ibid.). As stated in the previous section, an 

Translation:  
‚No! The prices also de-
creased from time to time.’ 

Translation:  
‚No, because from 1948 until 
1957 the gasoline price was the 
same’. 
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argument was rated as successful if it contains at least: 1) a conclusion; 2) a consistent reference to 
the data; and, 3) if the logical connection of conclusion and datum in the context of the task can be 
reconstructed. 

Besides such answers rated as successful we were able to identify several sub-categories within the 
answers which did not fulfil the requirements of the task. 5.4% of the sample gave no answer at all; 
9.0% were assigned to the category of non-codable answers, which means that the answer was un-
readable or the content of the student’s answer could not be reconstructed in the context of the task. 
Further, 9.6% gave an evaluation whether the statement in the headline matches the diagram, but 
without any justification of their answer; 5.4% gave a context-based answer which means that their 
answers are based on considerations concerning the context without a reference to the given data. 
Further, 0.6% developed a mixed data-based and context-based argumentation; 22.8% of the analysed 
answers were assigned to the category confirmatory argumentation with selective use of data. This 
category includes all answers in which selective aspects of the data are used to generate a confirma-
tory argument supporting the statement in the headline. In a further 3.6% of the answers, aspects of 
the data were mentioned in a consistent way, but an inconsistent conclusion is drawn. Another 1.2% 
of the answers also contained a consistent mentioning of the data, but no clear implication for the 
evaluation of the statement in the headline is provided. 2.4% of the students’ based their argumenta-
tion on an inconsistent interpretation of the data set. For example, one of the students who committed 
this error interpreted the scale on the ordinate axis as the development of the prices. Figure 4 gives 
an overview of the composition of all analysed answers. In the following we give more detailed in-
sights into examples of students’ answers for the most frequent categories developed in the bottom-
up analysis.  

Figure 4: Combined results of the top-down coding and bottom-up coding (N=167) 

Figure 5 shows an example of the category ‘Evaluation without justification’. In Toulmin’s terminol-
ogy, the answer only contains a conclusion (‘Yes the headline is ok’) but no other element of an 
argument. The student does not justify his evaluation of the given headline in any way. 

Figure 5: Evaluation of the statement without substantiating by argumentation 

0% 10% 20% 30% 40% 50%

Translation:  
‚Yes the headline is ok.’ 

Successful answer (example in Figure 2 and 3)  

Confirmatory argumentation with selective use of the data (ex. in Figure 7) 

Evaluation without justification (ex. in Figure 5) 

Non-codable answer 

No answer 

Context-based answer (ex. in Figure 8) 

Correct mentioning of data, but wrong conclusion is drawn (ex. in Figure 6) 

Inconsistent interpretation of the data set is used for argumentation 

Correct mentioning of data without a clear implication 

Mixed data-based and context-based argumentation 
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Figure 6 shows an example of a category of answers in which correct data is mentioned but a false 
conclusion regarding the evaluation of the statement is drawn. In the first part of the answer (‘some-
times, they went down but they also went up often’) a reference to the data is given. The conjunction 
‘so’ indicates that the student draws a conclusion (‘the headline is correct’) based on the mentioned 
data. However, this conclusion is not consistent with the given reference to the data as the observation 
that the prices sometimes ‘went down’ contradicts the statement that the gasoline prices always have 
been raising. Thus, the criterion of a consistent 
connection of the data and the evaluation of the 
statement in the headline is not met.  

Figure 7 shows an answer, in which a student 
connects her conclusion with particular aspects 
of the data-set, providing confirming evidence 
for the conclusion given by the student. How-
ever, the student’s analysis of the data remains incomplete, as the word “always” in the given state-
ment shown in the headline implies that all the data in the diagram needs to be considered. This 
student mentions two values of the data set which support the statement of the headline. The fact that 
the mentioned data is correct (30ct and 1.70€) suggests that the student was able to read data from 
the diagram and to understand this data in the context. At the same time, the student appears to neglect 
other data which would have been necessary to consider in order to generate a consistent argumenta-
tion. In this case, the argumentation attempt does not fit to the meaning of the statement presented in 
the headline (“always”), which makes it inconsistent with what had to be justified. The student might 
not fully have understood the statement given in the headline. Other possible interpretations are that 
the student has not searched for counter-evidence in the data but for confirming evidence only or that 
she might have ignored the counter-evidence as it contradicted her own view.  

 
Figure 7: Selective use of aspects of data to confirm the statement  

An important aspect in (data-based) argumentation is the choice of a source of evidence. Figure 8 
shows an example of a category of answers in which the students do not use the given data as evidence 
but their own considerations about the context. The answer in Figure 8 starts with a conclusion (‘yes’) 
which is connected by the word ‘because’ with a context related statement ‘today cars consume more 
fuel than in the past’. The conjunction ‘because’ indicates that the statement may be intended to 
function as a datum. However, the task is designed in such a way that the given data needs to be used 
as the source of evidence: The task does not require the student to evaluate the statement in the head-
line in general, but to evaluate whether the statement matches the diagram. Therefore, the given con-
text-related explanation is not an appropriate datum to substantiate the required evaluation. However, 
the student apparently had the opinion that his context-based explanation is relevant to justify his 
evaluation. It is to assume that the given conclusion might not refer to the asked question, but to an 
evaluation of the statement in the headline in general. The given context-based explanation, from a 
scientific reasoning perspective, also can be seen as a hypothesis which was too hastily accepted.  

Translation:  
‚Yes it [the headline] fits because the 
prices increased from 30ct to 1.70€’ 

Translation:  
‚Sometimes, they went down but they also went up often, 
so yes, the headline is correct.’ 
Figure 6: Correct mentioning of data, but wrong 
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Figure 8: Context-based argumentation 

Discussion and Conclusions 
The results show that 40% of the sample were able to evaluate a statement by generating a data-based 
argument. This shows that these students were not only able to apply basic activities such as reading 
data from a diagram but that they were able to use statistical evidence for evaluating a statement by 
developing a data-based argument. Against the background that the data of this study were gathered 
without a preceding intervention, it appears as a feasible endeavour to further foster primary students 
in their data-based argumentation. For this, the results from the bottom-up analysis provide a starting 
point to inform prospective interventions for fostering primary students with this concern.  

The analysis revealed that about a quarter of the sample used selective aspects of the data to confirm 
the statement given in the headline despite the fact that there is pertinent counter-evidence against the 
statement. The answers of these students show that they are principally able to understand the given 
statement, to read data from the diagram, and to draw the logical conclusion that the aspects of data 
they quote confirm the statement. The difficulty of these students might be located on a meta-
knowledge level: We assume that they did not challenge the given statement actively and did not 
search for counter-evidence in the given data. Answers containing context-based argumentation and 
those with an inadequate conclusion drawn on the basis of adequately mentioned data also indicate 
difficulties which can be explained from the scientific reasoning perspective as described in the the-
oretical background section. As we found indications for similar answering patterns already in our 
prior study (Krummenauer & Kuntze, 2018), fostering students’ meta-knowledge related to scientific 
reasoning appears to be a promising approach which will be investigated in an intervention study.  

As the participants of our study were tested at the end of year four of primary school, the question 
arises how their abilities might differ from those of students from lower grades. To this, we already 
started a follow-up study with a sample of 42 third-graders which solved the same task as the fourth-
graders. A first top-down coding of the answers shows that a similar percentage of the sample were 
able to develop data-based arguments as required in the task. Further in-depth analysis of the students’ 
answers is in progress. Beyond this, an interview study with first graders at the time of their entry in 
school is in preparation to investigate to what extent students at the beginning of their first year in 
primary school are already able to develop arguments based on statistical data. 
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Questions and answers … but no reasoning! 
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Statistical reasoning has often been used synonymously with statistical thinking. In this paper, we 
focus on the reasoning part and we analyse mathematic lessons about statistics in a primary school 
class, using a construct from the Anthropological Theory of Didactics approach, called Study and 
Research Paths. By comparing the a priori tree-diagram of the course with the a posteriori tree-
diagram of the observed teaching, it becomes clear that the teacher’s questions never make the 
students engage in statistical reasoning and the students’ questions are more concerned with 
practical and organizational issues than with obtaining a greater understanding of statistical 
reasoning.  

Keywords: Mathematical reasoning, statistical reasoning, study and research path. 

Introduction 
Teaching reasoning and justification requires more than just asking students to explain their answers 
or to pose open problems (Ball & Bass, 2003). Teachers’ and students’ questions and answers are 
crucial. This paper contributes further insight into teaching reasoning in elementary mathematics 
classrooms by analysing a teacher and students’ questions and answers during a statistics course. We 
aim to contribute to a more systematic methodology to study what actually takes place in the 
classroom and to determine if it is possible to do this by looking at the questions and answers of 
students and teachers during their lessons. 

To analyse the students’ reasoning processes in the classroom, we will use a tool from the 
Anthropological Theory of Didactics (ATD), namely, Study and Research Paths (SRP). SRP provides 
to model mathematical knowledge from a didactical perspective (Chevallard, 2006). The analysis 
needs detailed information about context, contents, order of questions and answers. In the last decade 
several studies has focused on the potentials of SRP; Winsløw, Matheron, and Mercier (2013) 
examine how SRP and a new diagrammatic representations can be used to analyse didactic processes; 
Barquero, Bosch, and Romo (2015) illustrate how SRP can be used in professional programs for 
teachers; and (Jessen, 2017) studies how SRP can support the development of knowledge in 
bidisciplinary settings.  

We investigate whether the teacher and the students ask questions and answer questions in a way that 
allows the students to engage in mathematical reasoning related to statistics; we also reflect on the 
potentials and limitations we found when using SRP as an analytical tool. More precisely, we ask the 
following research question: What is the content of the students’ and teachers’ questions and answers 
in the “Youngsters and ICTs” intervention, and does it support the students’ opportunities to produce 
statistical reasoning? 
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Theoretical considerations: mathematical and statistical reasoning  
Researchers and educators around the world have advocated that a primary goal of mathematics 
education for all grades should be the development of mathematical reasoning (Ball & Bass, 2003). 
Nevertheless, there is no consensus about the definition of mathematical reasoning in the research 
literature (Jeannotte & Kieran, 2017; Mariotti, Durand-Guerrier, & Stylianides, 2018). Reasoning in 
statistics can be seen as a particular form of reasoning in mathematics. del Mas (2004) argues that 
mathematical and statistical reasoning should place similar demands on a student and should display 
similar characteristics when the students are asked to reason with highly abstract concepts. At first, 
mathematical and statistical reasoning appear to be similar, but the nature of the tasks in statistics and 
mathematics are somewhat different. In mathematical reasoning, context may not play a large role, 
but in the practice of statistics, the inquiry will always be dependent on data and typically grounded 
within a context (del Mas, 2004). Statistical reasoning is often used to define the same capabilities as 
statistical thinking, but Ben-Zvi and Garfield (2004) try to separate the two concepts. They define 
statistical reasoning as “understanding and being able to explain statistical processes and being able 
to fully interpret statistical results” (p. 7). Statistical thinking, on the other hand, involves an 
understanding of why and how statistical investigations are conducted, and also when to use 
appropriate methods of data and analysis. Both statistical thinking and reasoning can be involved 
when working on the same task, so the two types of activities cannot necessarily be separated. del 
Mas (2004), however, writes that it is possible to distinguish them through the nature of the task: “For 
example, a person who knows when and how to apply statistical knowledge and procedures 
demonstrates statistical thinking. By contrast, a person who can explain, why a conclusion is justified 
demonstrates statistical reasoning.” (p. 85). Brousseau and Gibel (2005) argue that the teaching of 
reasoning used to be conceived as a presentation of model proofs, which then had to be faithfully 
reproduced by the students. Teachers today see reasoning as an activity, which cannot be learned as 
a simple recitation of a memorized proof; instead, it is necessary to confront students with problems, 
where they naturally engage in reasoning. If students are presented with model-proofs today, they are 
meant to serve as a model of others’ reasoning, which students then can use to produce their own 
original or creative forms of reasoning. However, as Brousseau and Gibel (2005, p. 14) noted, “There 
is always the risk of reducing problem solving to an application of recipes and algorithms, which 
eliminates the possibility of actual reasoning”. When it comes to statistical reasoning, most teachers 
tend to teach concepts and procedures and hope that reasoning will develop as a result (Cobb & 
McClain, 2004). Cobb and McClain (2004) argue that, in statistical reasoning, students must reason 
about data rather than attempt to recall procedures for manipulating numerical values. 

Study and Research Paths 
Study and Research Paths (SRP) is a recent construct in the Anthropological Theory of Didactics 
(ATD) (Chevallard, 2006). Within ATD SRP were introduced as a design tool for teaching within the 
paradigm of “Questioning the world” (Chevallard, 2006). The aim is to focus on important and 
meaningful “big” questions and not just “visit monuments”, meaning a set of rules prescribing, what 
is to be studied with no place to raise “What for?” or “So What?” questions (Chevallard, 2006).  

Thematic Working Group 01

Proceedings of CERME11 250



The fundamental dialectics between questions and answers are at the root of the idea of SRP 
(Winsløw, 2011). A group or an individual develops knowledge as a result of working with an overall 
question, Q. Students identify the “official” knowledge that can help them answer Q; the students use 
this “studying” to justify their answers to Q by engaging in reasoning, which is the “research” about 
Q. Elaborating on Q generates the “path” (Winsløw et al., 2013). SRP is normally used to design
lesson plans but Winsløw et al. (2013) introduce SRP as a modelling tool to analyse didactic
processes. Jessen (2014) argues that a tree-diagram of the SRP is a strong tool for analysing didactical
processes. We will use a tree-diagram (an example can be seen in figure 1) to make a SRP analysis
in an elementary mathematics classroom. Conducting a SRP a priori
analysis entails exploring what questions and answers could occur from
one particular overall question (the generating question, called Q0). The
tree-diagram refers to the possible path the students could follow after
generating Q0. The Q0 must be so strong that students can derive new
questions, Qi, from it. The answers to the derived questions add up to an
answer to the original question, Q0. The Q0 must be of real interest to 
the students. This continues with more questions and more answers and 
could leads to a tree-diagram of pairs of questions and answers (Jessen, 2014). The questions in black
are ask by the teachers, and the questions in white are made by the students. The grey-coloured
questions are those that are created in collaboration between the teacher and the students. The
numbers next to the questions and answers indicate the order of the questions. In the SRP-process the
media-milieus dialectics must be taken seriously:  the information the teacher brings into the class;
the answers available through different books, articles, videos or online resources; and the classroom
milieu where the teacher and students manage to establish meaningful actions.

“Youngsters and ICTs” 
“Youngsters and ITCs” is a 15-lesson statistics course, which is taught over 3 weeks and intended for 
grade 6 students; it was designed by C. K. Skott and the second author of this paper, (Skott & 
Østergaard, 2016)1. Before teaching the course, the teacher participated in a professional development 
workshop (6 lessons) that focused on statistical reasoning and digital technologies. The purpose of 
the course is to improve students’ reasoning in statistics. The course frames and proposes ways that 
teachers can engage students in statistical investigations; formulate statistical problems; generate, 
analyse, and reason about data; interpret results; and disseminate them both inside and outside of a 
school context. The emphasis of the course is to create new habits of classrooms interactions, in which 
the students raise questions and explore the context with their teacher, who challenges them to come 
up with new questions and reflect further on possible answers. This approach breaks away from 
teaching a succession of more or less independent “chapters” where only “small” questions are raised. 

1 The lesson plan (in Danish) is available at: 
http://auuc.demonstrationsskoler.dk/materialer/innovation/forloeb3/faser/hvordan-bruges-statistik-i-hverdagen. 

Figure 1: An example
of a SRP tree-diagram
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Methodological approach  
We employ a micro ethnographic design; this kind of approach is well-suited for describing, 
analysing, and interpreting a specific aspect of a group’s shared behaviour (Garcez, 1997). We use a 
case study research design to obtain a thick description of the observed teaching and to understand, 
how all the questions and answers in the classroom operate together in this context, which is part of 
a complex system (Stake, 1995).  

Within a two-year period, we observed a teacher in 31 classroom lessons; 16 observations from the 
course and 15 from before or after the course. All the observed lessons were video-recorded. Four 
audio-recorded semi-structured interviews with the teacher were conducted. The choice of semi-
structured interviews was chosen to get a deep understanding of the background of the classroom 
context. All the interviews were transcribed, and 15 lessons selected from the observations were 
transcribed. 

"Children and young people spend too much time on media ... or?" 
“Youngsters and ITCs” was not originally designed as an SRP project. The course was designed by 
the five design principles by Cobb and McClain (2004) including using technology to support 
students development of statistical reasoning, establishing norms for students statistical 
argumentation  and the importance of making students explore realistic data - in this case questioning 
the students media habits, which can be compared with “Questioning the World”. The overall 
question that “Youngsters and ITCs” asks is: “Children and young people spend too much time on 
media ... or?” (Q0). To answer the overall question, the students must explore the TV patterns and 
the media habits of each student in their class through a circular working process, which entails 
collecting data, analysing data, and making conjectures about habits to discuss whether or not the 
students spend too much time on media. A really important part of the work is to justify how and why 
the students’ conjectures are accurate or true.  

The institutional framework for the lessons analysed and presented in this paper is a small elementary 
school in Denmark. The teacher, Ea, is an experienced mathematics teacher. Her normal teaching is 
dominated by working with skills framed by a textbook or by iPad exercises. Ea characterizes herself 
as “a bit old-fashioned. I think it is most important they have skills”. When describing dialogs in the 
classroom, Ea explains, “I fail to tell them anything in twenty minutes ... I do not think they listen 
when I stand at the blackboard”.  

In the present article we analyse two lessons (2x45 minutes) of the course (Q3). In this section, the 
students investigate a set of data that includes 49 students’ TV-consumption. They analyse and 
interpret the data, and make a conclusion, based on that background, about whether the students watch 
too much TV. The idea is, that the students can use their experiences from the smaller dataset in (Q3), 
when they work with the authentic and more motivational question Q0. The students are explicitly 
asked to explain and justify their conclusions.  

Presentation of the a priori and a posteriori diagrams 
A comparison between the a priori and a posteriori diagrams illustrates (respectively, Figure 2 and 
Figure 3) how the intended teaching goals and the actual enacted lessons are different: 
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Figure 2: The a priori tree-diagram of the course, Youngsters and ICTs, for Q3 

In Figure 2, it is evident that we expect the students to consider and ask many questions in 
collaboration with the teacher. All the questions from Q3,1 to Q3,9 have extensions like the one 
shown for Q3,8 to the right. The expectation is that the students’ answers will include an explanation 
of their results and of their choices of models/representations, and that students will use statistical 
arguments to justify their claims when they generalise about conjectures.  

Figure 3: The a posteriori tree-diagram for Q3 in the observed classroom 
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The posteriori tree-diagram of the observed classroom is constructed by analysing the collected 
observations from the classroom. Q3 is a question from the teacher Ea, which give rise to three quick 
answers from the students (A3,1, A3,2, & A3,3) and one new question from Ea (Q3,1). Q3,1 produces 
six answers (A3,1,1- A3,1,6), and six new questions (Q3,1,1 – Q3,1,8), all with no connection to 
mathematics. We only see a few questions from the students that focus on specific solutions and 
procedures (e.g. Q3,1,3,3,1 – Q3,1,3,3,2).  

Comparing the a priori tree-diagram with the posteriori tree-diagram 
In comparing the two tree-diagrams we do not see any of the expected questions (Q3,1-3,9) from the 
a priori tree-diagram. Ea does not ask many questions in this lesson, although she does ask a 
interpretative questions such as Q3,1.1: “Would the students’ parents agree with your conclusions?” 
The questions Ea asks, do not enable the students to elaborate, explain, or justify their choices. Instead 
the students answer Ea’s questions with examples from their everyday life and their beliefs about 
what parents think. In the posteriori tree-diagrams, it also becomes clear that the students ask many 
questions that are organizational and procedural, including Q3,1,8 (“How do we upload in 
Showbie?”) and Q3,1,7 (“What do you want me to say [in the presentation]?”). Studying the students’ 
answers in the posteriori tree-diagram, it is possible to see that there are not any answers that include 
statistical argumentation like the questions in the a priori tree-diagram Q3,8. Mostly, the students use 
their own rationale as argumentation: “19 hours a week is ok, but 20 hours is way too much” 
(A3,1,1,1). However, some answers include calculations of different descriptors, like A3,1,3: “The 
greatest value is 30, the minimum value is 0, the average is 9,3 and the most common number is 6.”  

Discussion 
The tree-diagrams reveal a lot of answers that indicate that the students may be unaware of the 
purpose of the generating question, how to ask questions, and how to answer those questions. The 
students answer the question, Q3, immediately without any inquiry and without any mathematical 
argumentations. For example, they say, “yes, [children watch too much TV] if the weather is good” 
(A3,1), or “yes, [children watch too much TV] if they watch a series” (A3,2). These quick answers 
could indicate that the students have not understood the premise about “inquiry” that is crucial to this 
type of investigative work, and the SRP does not contribute to establish a milieu with new norms for 
working with statistical argumentation. The tree-diagram indicates that the students do not discuss 
appropriate statistical descriptors. The students simply repeat an approach to analyse data that they 
have made in earlier lessons by calculating descriptors. Most of the students found the average 
number of hours spent on media without using any argumentation whatsoever for why it makes sense 
to calculate the average number of hours or what the average actually says about the dataset. The 
interpretation of what actually happens in this class may be characterized as ‘model reasoning’ 
(Brousseau & Gibel, 2005). Overall, the a posteriori tree-diagram does not indicate any joint dialogue 
in which the students raise questions and explore the context in collaboration with their teacher, who 
challenges them to create and reflect further on their statistical reasoning. However, we do see that 
the students apply statistical knowledge and procedures and demonstrate statistical thinking, e.g. 
when the students draw up charts (A3,1,6), fill tables (A3,1,4), and calculate descriptors (A3,1,3,2). 
Therefore, this approach can be seen more as “visiting monument” than “questioning the world” 
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(Chevallard, 2006). To understand the students’ development of statistical reasoning, it was 
rewarding to use SRP as an analytical tool. It helped us to distinguish different strategies for raising 
and answering questions and to interpret the content in the questions and answers. However, the SRP 
model has not helped us to clarify the amount of time spent on the different questions and answers 
and to know if certain areas received a greater focus. The teacher's treatment of students’ answers and 
the possible feedback of students' answers are not visible. Finally, in the model we do not explicit 
focus on medias and the lack of integrating new medias, and we do not include the teacher’s 
explanations and introductions; e.g. Ea explicitly explained how to make a frequency-table: “So you 
start counting how many one hours there are in the survey, and then you type the number 
here…[points at the Excel sheet].” Ea also explicitly explains how to calculate the average: “… to 
figure out how much the average is in this week per day - you just sum it together and divide it by 
seven.” To make the diagrams, the teacher explains: “Just get Excel to make the diagrams for you by 
plotting the numbers in the sheet.” These instructions can possibly be seen as a basis for ‘model 
reasoning’ and are therefore very important for the interpretation of the students’ reasoning processes.   

The gap between the a priori and the a posteriori tree-diagrams is in many ways not surprising. Ea 
participated in the 6-lesson professional development workshop and she worked collaboratively with 
her colleague during this program, but the intended statistical course is very different compared to 
Ea’s normal teaching method and the milieu established in the classroom, which mostly focuses on 
mathematical skills. It is also important to notice, that the students also experience a very different 
way of learning mathematics; an approach, which no matter what, stresses some adaptation. The 
statistical course challenged Ea’s view of classroom dialogs and it was difficult for her to establish 
new practices: “We'll take the arguments afterwards, because we'll first see all the presentations.” 
However, in the end of the lesson Ea did not prioritize to hear the argumentation from the students.  

Conclusion 
The comparison of the two SRP tree-diagrams displaying the teacher and the students’ questions and 
answers show that the content was focused more on ‘model reasoning’ and statistical thinking and 
that the course in many ways did not support the students' opportunities for production of statistical 
reasoning. The SRP tree-diagram has been found to be a convincing tool for analysing classroom 
practice. A comparison of the two diagrams provides a rich view of the questions and answers in the 
classroom, which is closely connected to the students’ development of statistical reasoning; however, 
the use of the model had limitations, in the sense that we did not directly include media aspects as 
feedback, explanations, and introductions. It could nevertheless be interesting to design a “tree 
diagram” including not only question and answers, but which also include feedback, explanations and 
introductions and study if this model in any way gives a deeper understanding. Furthermore, it could 
be interesting also to focus on the processes and relations between the questions and the answers – to 
explore why the students respond as they do? 
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Factors influencing teachers’ decision making on reasoning-and-
proving in Hong Kong 
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A project is ongoing to develop an intervention that promotes the teaching and learning of reasoning-
and-proving in teacher education in Hong Kong. Since the area of reasoning-and-proving in Hong 
Kong has not been widely studied, this paper reports the first research cycle of the project: to 
investigate the potential factors that limited reasoning-and-proving activities in Hong Kong 
classrooms. In this cycle, seven secondary mathematics teachers were interviewed. The participating 
teachers’ perceptions of reasoning-and-proving, students and learning cultures in Hong Kong were 
examined, and the results indicate factors that may contribute to the marginal situation of reasoning-
and-proving in Hong Kong school mathematics. 

Keywords: decision making, Hong Kong, reasoning-and-proving, teachers’ perceptions 

Introduction 
Proof can verify the truth of a mathematical statement and may also promote students’ sense making 
and conceptual understanding in mathematics by providing epistemological justifications (Harel, 
2018; Knuth, 2002). Consequently, many mathematics educators suggest that teaching and learning 
proof and proof-related reasoning activities should spread through school mathematics at different 
levels and in different content areas. Noting that teachers are the key decision makers of what the 
students will experience in the classrooms, many studies have been conducted to examine teachers’ 
knowledge and perceptions of proofs (e.g. Knuth, 2002). Yet, reasoning-and-proving (RP, see 
Stylianides, 2008) tends to have a marginal place in school mathematics. Whilst Western mathematics 
educators attribute this situation to teachers’ counterproductive mathematical knowledge and beliefs 
about RP, and established mathematical cultures of the schools (e.g. Stylianides, Stylianides, & 
Shilling-Traina, 2013), studies on factors that influence teachers’ decisions around RP activities are 
scarce in East-Asian countries (e.g. Hong Kong, Singapore, South Korea). The author has begun a 
project aimed at developing an intervention that promotes teaching and learning RP in teacher 
education in Hong Kong. Since the area of RP in Hong Kong has not been widely studied, the first 
research cycle focused on the context, Hong Kong. This paper intends to report the findings of this 
cycle. This cycle aimed at investigating the factors that limited the teachers’ decisions on teaching 
and learning RP in the situation of Hong Kong classrooms. 

The context: Hong Kong 
According to the official documents of the Education Bureau, the mathematics education curriculum 
in Hong Kong aims to develop students’ “(a) ability to think critically and creatively, to conceptualise, 
inquire and reason mathematically, […]; (b) ability to communicate with others and express their 
views clearly and logically in mathematical language; […]” (CDC & HKEAA, 2015, p. 2). Despite 
the lack of an explicit statement, readers may find some implicit indications of teaching RP among 
these curricular aims. 
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Like other East-Asian countries, teachers in Hong Kong are often the primary decision makers of 
what students would experience in mathematics class through lesson preparation and in-the-moment 
teaching approaches. Teachers’ decisions can be influenced by their perceptions and interpretation of 
the situation, for example, mathematics and RP, students, and the learning culture (Stylianides et al., 
2013). Whilst learning culture in Hong Kong is said to be examination-oriented, which may have 
influenced decisions on school curriculum and assessments (Brown, Kennedy, Fok, Chan, & Yu, 
2009; Choi, Lam, & Wong, 2012), studies have not been widely conducted in Hong Kong to 
investigate how a teacher’s lesson preparation and in-the-moment teaching approaches are influenced 
by this culture. This study aims at examining the factors limiting or promoting teachers’ decisions 
around teaching and learning RP, with respect to their perceptions of teaching RP, students and the 
learning culture. As a research cycle of a design-research project, the findings in this study will inform 
the development of an intervention. 

Theoretical backgrounds 
To investigate teachers’ decision making around teaching, researchers often examined the 
relationship between teacher’s beliefs, knowledge and practice. Conner (2017) examined the 
differences in argumentation between two U.S. classes, and suggested these differences might be 
attributed to the teachers’ intentions regarding the components of rationality. Kempen and Biehler 
(2015) investigated 12 pre-service teachers’ perceptions of the generic proof, and reported that 
participants’ preference for formal proof over generic proof in a task might be attributed to the 
situations that they adopted the construction of a formal proof as a norm for solving the task during 
their time in school, or they (mis)interpreted that construction of a formal proof was asked in the task. 
These results indicated that teachers’ belief constructs could be complex and influenced teachers’ 
teaching practices. However, the process of decision making and transition from teachers’ belief 
constructs to practices were not thoroughly discussed. 

 
Figure 1: Model of teacher’s decision adopted from Blömeke et al (2012) and Schoenfeld (2011) 

Blömeke, Gustafsson, and Shavelson (2012) and Schoenfeld (2011) attempted to model teachers’ 
decision making. In the model of Blömeke et al. (2012), when teachers’ perceptions are affected by 
their belief and knowledge constructs, their interpretation of the context may mediate between their 
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perceptions and decision making (and practices). Schoenfeld (2011) further elaborated the process of 
transition and decision making using the conceptualisation of goals, orientations and resources; he 
defines resources (with a focus on knowledge) as “the set of intellectual, material, and contextual 
[information] available to the teacher” (p. 10) and orientations as “an inclusive term encompassing a 
group of related terms such as dispositions, beliefs, values, tastes, and preferences” (p. 29, italics 
added). I adopted the models of Blömeke et al. (2012) and Schoenfeld (2011): if teaching RP is a 
routine practice of a teacher, the teacher will continue this routine practice; otherwise, if teaching RP 
is an unfamiliar practice of the teacher, the teacher will perform a cost‒benefit analysis on different 
options using the variables (perceptions and interpretation), and the decision will be based upon the 
outcomes of the calculation of expected values on the options. Figure 1 depicts a model of a teacher’s 
decision adopted from Blömeke et al. (2012) and Schoenfeld (2011). 

Methods 
Seven secondary mathematics teachers participated in this study. These teachers were selected 
because: (a) they obtained related undergraduate degrees and gained their teacher qualification 
through postgraduate teacher training programmes; (b) they have been serving local schools differed 
on locations, school cultures and students’ academic achievements: in Hong Kong, secondary 
public/government-aided schools and students are divided into three school bands regarding their 
academic achievement. One participant was serving high-achieving schools, two in mid-achieving 
schools, two in low-achieving schools, and two were serving private schools that do not belong to 
any school band; (c) they had worked at schools for at least three years; and (d) they had served at 
least two schools. Their diverse backgrounds resulted in responses that covered a range of concerns 
of teachers when considering teaching and learning RP in the situation of Hong Kong classrooms. 

The teachers participated in task-based interviews. The tasks and questionnaire items were adopted 
from the studies of Almeida (2000), Keceli-Bozdag, Ugurel and Bukova-Guzel (2014), Kotelawala 
(2007), and Yoo (2008) to capture teacher’s knowledge, attitudes and beliefs about RP and their 
instructional practices. Table 1 lists some sample items. Each interview lasted about an hour, and was 
conducted and audio-recorded in Cantonese, the teachers’ mother tongue to enable them to express 
their opinions easily and effectively. The teachers were asked to complete the questionnaire and tasks 
using think-aloud strategy and then respond to follow-up queries. 

Origins of the items Sample items 
Almeida, 2000 Decide which ‘proofs’ you find (a) convincing, (b) not convincing, or (c) incorrect. 

Proposition: (1 + 1/2 + 1/22 + 1/23 + … + 1/2n) → 2 as n → ∞. 
Assumptions/assertions that may be used in the proofs: 
A1. If |a| < 1, then an → 0 as n → ∞. 
‘Proof’ 1 
Let Sn = 1 + 1/2 + 1/22 + 1/23 + … + 1/2n. 
S5 can be represented in the figure as a 
portion of 2 squares. S5 is 2 less a 
remainder R5 as shown: 
Clearly, the figure shows that R5 becomes 
smaller as n increases. That is, Rn → 0 as 
n → ∞. It now follows that Sn → 2 as n → ∞. 
This proves the proposition. 

Table 1: Sample items of the tasks 
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  ‘Proof’ 2 

Let S = 1 + 1/2 + 1/22 + 1/23 + … + 1/2n + … (1) 
Multiplying both sides of the equation above by 1/2 gives 
S/2 = 1/2 + 1/22 + 1/23 + … + 1/2n + …  (2) 
Subtracting equation (2) from (1) gives: S/2 = 1 → S = 2. 
This proves the proposition. 

 

Keceli-Bozdag et 
al., 2014 

I think that theorems and proofs are the foundations of mathematics. 
Strongly 
agree 

Agree Neutral Disagree Strongly 
disagree 

 

Kotelawala, 2007 Please divide 100 units of time among the following activities, consider a typical 
junior secondary mathematics class (12‒15 years old) that you teach. 

Items Units of time 
1. Receiving instructions from teacher on how to solve a problem  
2. Practising calculations for recall, accuracy, and/or speed  
3. Student solving problems using steps from the day’s lesson or 
the weeks lessons 

 

4. Students formulating conjectures  
5. Student explaining to group why their answers or steps make 
sense 

 

6. Students working on their own methods for solving unfamiliar 
problems 

 
 

Yoo, 2008 Ideally in a proof-based mathematics lesson, students should (a) make conjectures, 
investigate them, and construct their own proofs, or (b) practise proving statements or 
conjectures that they know have been proven to be true before by an expert. 

(a) towards (a) both towards (b) (b) neither 
1 2 3 4 5 6 7 8 

 

Table 1(con’t): Sample items of the tasks 

The audio-recorded data were transcribed into written Chinese. The transcripts were then analysed 
using the model of the teacher’s decision (Figure 1) regarding two themes: (a) teachers’ perceptions 
of RP and teaching and (b) their interpretation of the contexts. Based on the teachers’ responses, their 
interpretations of the contexts were further divided into (i) interpretation of students as learners and 
(ii) interpretation of learning cultures. To report the findings, selected excerpts were further translated 
into English using word-to-word strategy (that is, English grammatical rules are not strictly followed) 
assisted with appropriate interpretation. 

Results 
Perceptions of RP and teaching 

All participants related proofs to logical reasoning and its promotion. For example, when asked which 
items of learning activities are related to proof, Participant 2 stated, “if the activities enable to develop 
[students’] logical reasoning, I think the options are [formulating conjecture], [explaining why 
answers or steps make sense] and [working on one’s own methods for solving unfamiliar problem].” 
He also added that making a conjecture may be a precursor of a proof. 

Participant 2: Like Pythagoras’ theorem, he (the prover) makes a conjecture. If he did not have a 
conjecture, he would not have tried to prove [it]. Therefore, [we] must first have 
conjectures. 

Participant 4 perceived that, through teaching and learning proofs, students may be provided with 
epistemological justification of a mathematical statement for promoting conceptual understanding in 
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mathematical facts and ideas. When discussing ‘proofs’ of “square root of 6 is an irrational number”, 
Participant 4 expressed his intention and motivation of teaching the proof: to foster students’ 
conceptual understanding of irrationality of a number: 

Participant 4: … because learning a proof like this means to understand what “irrational” [an 
irrational number] is… because something is true… like this then [we] can dig out 
the meaning of “irrational”. Therefore, I will teach [the proof]. 

The realisation of educational values of proofs may initiate teachers’ motivation, like Participant 4, 
of teaching RP: the teachers initiated the process of benefit‒cost analysis on teaching RP, but their 
interpretation of students and learning cultures may mediate between their perceptions, and decisions. 

Interpretation of students as learners 

Most participants perceived that their students were not capable of nor interested in learning any proof 
of a mathematical proposition in general. 

Participant 1: … because [in] my school, not many people “accept” (prefer) proofs. They often 
[prefer], for example Pythagoras’ theorem… it is enough for them to use [the 
theorem]. Yes, they barely care or think about how this formula was derived. Since 
they do not want to know, I am not urged to explain. Also, their capability is weak; 
it will be a trouble if I finish explaining [it] but they still do not understand. 
Therefore, proofs are relatively limited. 

Participant 7: … Let me say it this way, in my views, [the] ideal [RP lessons] should train 
(develop) their (students’) that (RP-related) reasoning. Training their logical 
[reasoning] But in actual lessons, this [training], however, was not emphasised… I 
think students’ attitudes [towards learning mathematics] are important. In fact, 
many students are not… enthusiastic [over learning mathematics]. So, I think [if I] 
keep on asking them (students) to make a conjecture, in fact they are not really 
making any conjecture. Yes… but if ideally they really can… that is, [if] I ask them 
to do… use [their] brains to think (make a conjecture)…, then they think. Then, I 
think [this] is fine. But, in real life, then… in fact, perhaps, not the whole class 
[would] do (make a conjecture). [I] sometimes, perhaps, find some smarties, and 
then ask them to do this conjecturing. Therefore, the proportion [of making 
conjectures] would be far less… in the real life (my actual teaching practices). 

To facilitate some RP activities in classroom, the teachers tended to select proofs that they found easy 
to understand, but there were no systematic selection criteria; instead, the teachers selected a proof 
by their feelings of its length and complexity. 

Participant 5: [I prefer proofs that are] easy to “see”. [The students] all can “see”; that is, easy to 
explain and understand. 

Participant 1: [I choose to teach proofs which are] simple and easy to follow. [Interviewer: What 
do you mean by simple and easy to follow?] This depends on [my] feelings… This 
is sometimes my feelings… If, if I am a teacher and have a judgement, if I see this 
[proof] and I think this can be understood by the majority, from my gut feeling… 
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Of course, I have to know the characters of my class, then I will evaluate if they can 
understand what I say… evaluate if they will “accept” (be convinced by and/or 
understand) this proof. If, after I complete the evaluation, I think [it is] worth saying 
(teaching) [it], then I will try to say (teach) [it]. If, after evaluation, I think [it is] not 
worth saying (teaching) [it], then I won’t. 

Whilst teachers’ realisation of the educational values of teaching RP (perceptions) may promote their 
use of RP when teaching (decisions), the participants demonstrated how teachers’ counterproductive 
interpretation of students’ learning capabilities and attitudes may mediate between their perceptions 
and practices of teaching RP. Participant 1 demonstrated that his counterproductive interpretation 
interacted with his perception of what students needed to learn/master and teacher-centred 
disposition. The choice of a “simple and easy” proof (decision) may refer to his interpretation that (a) 
the length and complexity of the selected proof were aligned with students’ capabilities, and/or (b) 
the main purpose of the selected proof was to convince students of the truth of a proposition with less 
effort. Participant 7 demonstrated that he developed a positive perception of teaching RP and an ideal 
practice, but his counterproductive interpretation contributed to investing less in involving students 
in RP activities (e.g. making a conjecture). As a result, teaching RP was limited in their classes. 

Interpretation of learning cultures 

Apart from their interpretation of students, teachers’ interpretation of the learning cultures where they 
are situated may also mediate between their perceptions of RP and teaching, and decision making. 
Like other East-Asian countries, examination-oriented culture is well established in Hong Kong 
(Brown et al., 2009; Choi et al., 2012). The participating teachers’ responses revealed that this 
examination-oriented culture greatly influenced their decisions on teaching RP and mathematics. 

Participant 4: [My lessons tend to be] exam-oriented! Even if I do not want to be like this, 
students’ expectation and parents’ expectation are like this… because [we] have 
examination; [so, we] have drilling exercises… The tasks in examination are not 
proof-related, so [we] cannot spend much time [on proofs]. If [students] can 
understand, then understand; if not, then keep on drilling, or solve problems… 

Participant 4’s responses suggested a connection between his interpretation of students’ expectation 
(attitudes) and that of the examination-oriented learning culture. Participant 7 added that the 
examination-oriented culture has also contributed to the discrepancy between his ideal RP lesson 
(perceptions of RP and teaching) and his actual implementation. 

Participant 7: … But [the actual lessons focused] more on whether they could “do the maths” 
(solve the problem tasks), which is more about examination. Of course, I am not 
completely saying [that my lessons are] examination-oriented; my lessons are really 
not so examination-oriented. However, [my lessons] in fact tend more to be the side 
of calculation. Yes, therefore, when having the term “ideally” here, my… my 
[ideal] practice will be a bit different [from the actual practice]. 

The participating teachers perceived that preparing students for public examinations is a main role of 
being a teacher in Hong Kong (a goal); they also held an interpretation that the public examination in 
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Hong Kong was calculation-oriented. Any decision that may strengthen students’ accurate calculation 
and problem-solving skills was prioritised over the teachers’ ideal practices if the decision and the 
ideal practices were different. For example, Participant 4 perceived that the examination-oriented 
culture was deeply rooted in his teaching environments, and, as a result, students expected 
mathematics class to be oriented towards examination preparation. He prioritised the goal of 
preparing his students for examination highly over the goal of fostering students’ conceptual 
understanding of mathematics. Since teaching RP was not his routine practice, according to 
Schoenfeld’s (2011) model, a “cost‒benefit” calculation was performed by Participant 4. His cost of 
practising RP in his mathematics class outweighed the benefits that he perceived when teaching RP. 
Therefore, he found it difficult to practise any RP activity in his mathematics class. Therefore, they 
invested more in involving students in calculation and problem-solving activities, rather than RP. 

Discussion 

This study examined the three interrelated factors that may influence Hong Kong secondary 
mathematics teachers’ decisions around RP: teacher’s perceptions of teaching RP, interpretation of 
their students as learners, and interpretation of the learning cultures. Whilst the teachers’ productive 
perceptions of teaching RP, for example, recognising that teaching proofs may foster students’ 
conceptual understanding of mathematical ideas and logical reasoning, may promote and develop 
their ideal practices, their counterproductive interpretation of students’ learning needs: in particular, 
they did not think proofs are needed or suitable for all students (cf. Frasier & Panasuk, 2013; 
Varghese, 2009), and the learning cultures (examination-oriented culture) may interact with each 
other and mediate between their perceptions (of students’ learning needs) and actual practices. 

The teachers perceived examination-oriented culture to be a main factor that limited their decisions 
on teaching RP; this culture influenced the teachers’ interpretation of students’ attitudes and their 
learning needs. Examination-oriented culture is deeply embedded in Hong Kong school mathematics 
and teachers’ interpretation, and the public examination in Hong Kong is interpreted as calculation-
oriented. As a result, the teachers deviated from researchers’ expectation of making RP spread 
through school mathematics, and prioritised calculation-oriented teaching materials over RP. If 
teachers avoid RP in their teaching because they perceive that proofs are less important and/or not 
suitable for all students in understanding mathematics and preparing for examination, professional 
development should address teachers’ interpretation of students’ learning needs and the social 
contexts (school and learning cultures) and be focused on fostering teachers’ reflection on their 
teaching philosophy and broadening their horizons for learning other trends and visions. Educational 
reforms including frameworks of public examination and teacher education may also be considered 
when RP activities should be central of mathematics education in Hong Kong, and worldwide. 
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On teachers’ experiences with argumentation and proving activities in 
lower secondary mathematics classrooms 

Silke Lekaus 
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This article presents an analysis of reports about developmental work written by 23 lower-secondary 
school teachers from Norway who planned, implemented and reflected upon a lesson involving 
elements of exploration, argumentation, and proving. An analysis of the tasks that the teachers 
designed for their students and the scaffolding that they provided during the classroom 
implementation, revealed that there was little variation in the choice of task and that opportunities 
for investigation were reduced by providing subtasks and hints. Some teachers also experienced that 
the unpredictability of the students’ contributions and the mathematical content, time constraints and 
large classes were challenging when leaving traditional teaching practice.  

Keywords: Proof, proving, argumentation. 

Introduction 
The functions that proofs have for mathematicians and within mathematics as a discipline are 
important to bear in mind when teaching proof (de Villiers, 1990). In addition to the verification of 
the validity of a statement, de Villiers suggested to consider other functions of proof like explanation, 
systematization, discovery and communication. In the same spirit, Hanna (2000, p. 6) stated that “in 
the classroom the key role of proof is the promotion of mathematical understanding, and thus our 
most important challenge is to find more effective ways of using proof for this purpose”. Following 
Stylianides (2016), in this article proving is understood in a wide sense, including auxiliary activities 
such as exploration, pattern identification, making and testing conjectures, and reasoning by analogy. 

Teachers’ own knowledge about proof seems not to guarantee meaningful proving activities in the 
classroom. Schwarz et al. (2008) investigated the pedagogical knowledge about proof of three groups 
of preservice teachers’ from Germany, Hong Kong and Australia. The preservice teachers from Hong 
Kong and Australia tended to consider preformal proving an atypical part of mathematics teaching 
and did not fully appreciate its potential in the classroom. Schwarz et al. (2008, p. 808) concluded 
that “even future teachers with strong mathematical backgrounds are not necessarily experiencing 
proof in such a manner that they can convey a complete image of proving at the lower secondary 
level”. Similarly, Knuth (2002a, p. 404) stated: “Future research needs to explore more fully the 
conceptions of proof that teachers must have as they help students learn to reason mathematically”. 
More knowledge is thus needed about how to prepare future teachers to create meaningful 
opportunities for students to engage in exploration, generalization, argumentation and proving.  

Despite long reform efforts and studies confirming successful changing efforts, traditional models of 
mathematics education seem to be persistent in many classrooms (Jacobs et al., 2006). As for the 
topic of reasoning and proving, it was found that none of the US lessons from the 1999 TIMSS video 
study showed evidence of developing a rationale, making generalizations, or using counter examples. 
Similar findings about discrepancies between an intended reform curriculum and persistent traditional 
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classroom practice were made in earlier studies (Spillane & Zeuli, 1999). A number of studies focused 
on the already established patterns of teacher practice in collaborative inquiry classroom communities 
(Walshaw & Anthony, 2008). Less research seems to be done that tries to reveal the challenges that 
teachers face when trying to transform existing traditional practices characterized by brief 
demonstrations of procedures and computational tasks.  

This article looks at reform efforts in a Norwegian context.  Following criticism about focus on 
routine exercises and rote learning (Mellin-Olsen, 1996), communicative skills, conceptual 
understanding, reasoning and argumentation have become important goals in the Norwegian 
curriculum that has been valid without major changes since 2006: All students are supposed to take 
part in explorative activities, pattern exploration in both geometry and arithmetic, and to acquire so 
called basic skills, among them oral skills and mathematical writing, which include the ability to 
“forming opinions, asking questions and using argumentation with help from informal language, 
precise terminology and the use of concepts” and the ability to build up “comprehensive 
argumentation concerning complex relationships” (Ministry of education and research, 2013). These 
are proving activities in the sense of Stylianides (2016).  

While other studies were based on interviews with teachers or preservice teachers (Furinghetti & 
Morselli, 2011; Knuth, 2002a, 2002b; Schwarz et al., 2008), this article is based on reports about 
developmental work written by 23 teachers who participated in a reform oriented teacher 
development program during which they planned and implemented a lesson involving elements of 
exploration, argumentation, and proving. The main research questions addressed in this article are: 
What were the mathematical properties of the tasks designed by the teachers? How were the tasks 
structured and implemented in the classroom and which impact did this have on the opportunities for 
exploration, argumentation and proving? What were the teachers’ reflections about challenges that 
arose during the implementation of the proving tasks in the classroom? 

Theoretical perspectives 
In this section, three different models for the classification of tasks are introduced that allow to 
analyze both mathematical properties of tasks and aspects of their implementation with respect to the 
creation of opportunities to engage in exploration, argumentation and proving. 

Classification of tasks 

Stylianides (2016) classified proving tasks based on mathematical criteria namely the number of cases 
to be considered in the task (single, finite, infinite) and the purpose of the task that can either require 
to verify or to refute a statement. This gives a classification into six cases that can be helpful in order 
to make teachers aware of different types of proving problems that will require different proving 
techniques and can potentially result in different types of proving activities in the classroom. The 
number of cases and the purpose of the task need not necessarily be made explicit to the student.  

The same mathematical problem or topic can be implemented in different ways in the classroom, and 
the model by Stylianides (2016) does not capture this aspect. For example, statements can be given 
by the teacher or textbook or students can develop their own conjectures, for instance through pattern 
identification (Stylianides, 2008). Skovsmose (2001) classified tasks according to their openness, 
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ranging from the traditional exercise paradigm to landscapes of investigation, and whether they are 
purely mathematical, giving a pseudo-application or are real-world problems. The property of being 
a landscape of investigation exceeds the initial formulation of the task. It depends on the students to 
accept the invitation to explore and on the communication between teachers and students during the 
working process: the teacher should provide questions, hints and suggestions rather than solutions 
and explanations. Yeo (2007) distinguished the following five dimensions of openness of a task: 

· Goal: A standard computational task has a closed goal: finding the one correct answer. An
exploratory task has a more open goal since different properties of a notion can be discovered.

· Answer: A standard computational task is closed with respect to the answer since it has one
correct answer. A modelling task, for example, can result in several different, but meaningful
models.

· Solution method: Most tasks can be solved in different ways, but it is not unusual that
textbooks or teachers close tasks by prescribing the method to be used.

· Scaffolding: Many textbook tasks provide subtasks guiding to a solution. A task can be more
or less open based on the density of subtasks that lead the students to the final solution.

· Extensions: All tasks can be extended, but students are not necessarily aware of this, for
example because the extension of tasks is not a usual thing to do within the classroom norms.

Method 
The data collected for this article consisted of 26 reports about developmental work written by 
teachers enrolled in a teacher development program who planned and carried out a lesson including 
elements of exploration, argumentation, and proving in lower secondary school, i.e. years 5 – 10. 
These teachers were not mathematics specialists, but taught several different subjects in lower 
secondary school. Three reports had to be removed from the data material because the teachers did 
not give the permission to use them. The teachers were encouraged to run the lesson in a group work 
setting in order to facilitate active student communication. The reports contained a description of the 
designed task, observations made during the implementation in class, and reflections about the 
support provided to the students and any challenges that the teachers experienced.  

When starting the analysis of the reports, the mathematical properties of the proving tasks were 
examined: three categories were generated from Stylianides’ (2016) framework about the 
mathematical properties of the tasks (proving finitely/infinitely many cases, disproving); in addition, 
it was analyzed whether the students got an opportunity to make their own conjectures or whether the 
statements to be proved were provided by the teacher. After a first reading of the data material, it 
became clear that mathematically similar tasks had been formulated and implemented in different 
ways, such that the original coding was refined using the model of Yeo (2007) in order to analyze 
different dimensions of openness.  

During the final coding, four additional aspects of the material were investigated: the goal of the 
tasks, the scaffolding provided to the students, the role assigned to argumentation and proving in the 
classroom, and potential benefits, challenges and obstacles that teachers experienced during the 
classroom practice. Only the first two aspects are addressed in this article. Examples of codes 
characterizing the goal of the tasks were generalize pattern, find a proof, make conjectures, 
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investigate, and justify special case. Examples of codes characterizing the scaffolding were division 
into subtasks, teaching proving technique (with subcategories creating additional examples, 
systematize results), visually aided proving.  

Results and discussion 
Half of the teachers wrote that their usual teaching was characterized by the exercise paradigm 
(Skovsmose, 2001), i.e. that they usually demonstrated a method and that their students worked with 
exercises afterwards. The following comment by a teacher is representative: “I do know that I often 
use tasks that have a clear solution method and one correct answer (T12).” Although the Norwegian 
curriculum, in action since 2006, requires that “argumentation”, “sharing ideas with others”, 
“problem solving” are to be both methods in classroom and competence aims (Ministry of education 
and research, 2013), the exercise paradigm seems to be persistent in many classrooms. This is 
consistent with research done after reform efforts in other countries (Spillane & Zeuli, 1999). 

Properties of the proving tasks and their implementation in the classroom 

Goals: Two goals were predominant, pattern generalization and proof or proving as a topic. Almost 
half of the proving tasks asked the students to find generalizations based on examples revealing a 
pattern. Task 1 and Task 3 in Figure 1 are typical examples. Four teachers designed tasks about the 
interior angles sum of polygons guiding the students to note a pattern starting from triangles, 
quadrilaterals and pentagons. The generalized formula was not provided a priori such that the students 
got the opportunity to make conjectures about it. Five teachers designed tasks about number 
sequences and figurative numbers for students in 8th, 9th and 10th grade that required to continue 
sequences when the first few elements were given, as in Task 3 in Figure 1. None of the teachers 
discussed the fact that the number sequences could possibly be continued in different ways since only 
(pictures of) few elements were given and no rule was stated. Thus, the most obvious rule was applied 
without any discussion, called the plausible pattern by Stylianides (2008). Several of the number 
sequences were quite simple and already known to students of these grades, for instance the sequence 
of natural numbers, even and odd numbers, quadratic numbers and figures composed of these. The 
general formulas were easy to see from the defining properties such that no need to prove naturally 
arose from these tasks. Stylianides (2016) gave examples of elementary arithmetic problems that can 
make students aware of the distinction between empirical and mathematically valid arguments such 
as generic arguments. Several of the given tasks about number sequences lacked the potential of 
revealing such distinctions to the students. Only in one case, the relationship between quadratic 
numbers and the sequence of odd numbers was elaborated during the classroom activity and explained 
by a visually aided proof.  

Several teachers made the learning of proving an explicit goal of the task. Four teachers introduced 
the proving task as an imaginary dialogue between two fictive characters wondering about a problem 
(Wille, 2017), in order to stimulate oral argumentation and to exemplify the type of activity that was 
expected from the students. Task 2 in Figure 1 is an example of this. Only the problem is introduced 
in the imaginary dialogue while no hints to the solution method are given. The teacher’s report about 
the implementation in the classroom confirmed that the goal of the task was to learn about exploration 
and proving techniques: she encouraged the students to systematize results and to formulate and test 
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preliminary conjectures. A genuine need to investigate seemed to be a requirement for the students’ 
engagement in proving: A teacher in 9th grade, who had similar intentions to give the students the 
“possibility to train to think mathematically and explore proving” (T09), chose the already well-
known statement that the sum of two odd numbers is even for designing a proving task. She 
consciously lowered the mathematical demands since the students were “not used to working with 
mathematics in this way”. But, lacking the need for investigation, the students found it difficult to 
understand why they should “prove something that was already known and true”.  

Task 1: (9th grade) 
1) Knowing that the sum of angles in a triangle

is 180˚, can you find the sum of angles in a
hexagon?

Hint: Divide the hexagon into triangles. Make 
drawings and explain your thinking. 
2) Using the same method as in 1), find the sum

of angles in a pentagon and a heptagon.
3) Knowing the sum of angles in a triangle,

quadrilateral, pentagon, hexagon and
heptagon, can you find a pattern?

Can you then make a formula for the sum of 
angles in an n-sided polygon? 

Task 3: (8th grade) 
You have to lay quadratic tables with enough 
space for one person on each side. Tables for 
more persons are put together as shown in the 
drawing.  

a) How many persons can sit around the tables?
Fill inn:

Number of 
tables 

Number of 
persons 

1 
2 
3 
4 
5 
20 
100 
n 

b) Do you see a pattern how the number of
persons is changing? Explain.
c) Explain how you calculated the number of
persons when using 20 tables.
d) Explain how you can find the number of
persons when you use n tables.
e) Can you make a formula for table nr. n?

Task 2: (7th grade) 
Lisa and Per have learned about some properties 
of numbers (…).  
Lisa: We’ve learned that all numbers that finish 

with an even number, are divisible by 2. 
Like 12, 14 and 16 that are divisible by 2, 
because they finish with 2, 4 and 6. 

Per:  Yes, that’s easy when we can just look at 
the last digit. 

Lisa: How can we know if a number is divisible 
by four? 

Per:  Well, that’s worse. But there must be a 
rule. Let’s find out. 

Help Lisa and Per. Continue to write the 
dialogue. 

Figure 1: Examples of proving tasks 

Some teachers experienced that the amount of time needed to do investigative activities was in 
conflict with requirements to cover curricular content: “This implies also that one uses time to 
investigate, one can’t make plans as with other teaching methods that one will use one hour and then 
be finished with the topic (T01).” Time constraints and “large classes” (T07) were challenges when 
teachers had to evaluate students’ understanding in order to adapt mathematical content to the 
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individual student: “It is challenging with respect to the available resources to manage to talk to all 
student pairs and to adapt the tasks to the level they are on and moving towards (T03).” 

Scaffolding: Many teachers provided a lot of scaffolding in the written text, dividing the task into 
subtasks that led the students to the discovery of patterns or an appropriate argumentation, see Task 
1 and 3 in Figure 1. For example, all tasks designed about the interior angles sum of polygons started 
by guiding the students to note a pattern starting from triangles, quadrilaterals and pentagons. After 
hints to use visual representations, they resulted in visually aided proofs that showed a division of 
polygons into triangles. Similarly, a teacher who designed a task about the area formulas of 
quadrilaterals consciously chose the order of the quadrilaterals to be considered such that the proofs 
could build on each other. In 14 of 23 reports, at least part of the scaffolding described by the teachers 
was coded as “guiding the students through an argumentation”, i.e. students’ occasions to do their 
own explorations were limited. Teaching practices related to proof differ widely and can be divided 
roughly into two groups, either focusing on the proving process or on the final product, the proof 
(Furinghetti & Morselli, 2011). One teacher who had designed a task leading the students step by step 
through an argumentation became aware of the fact that this deprived the task of its explorative 
character and hindered the students from working like a mathematician: “(…) by designing the task 
like this, I guided the students in the ‘right’ direction. I took away the possibility of making mistakes, 
which is an important part of working like a mathematician (T15).” Other teachers reflected about 
their support during group work having been too leading, depriving the given task of its investigative 
character, by funneling or by imposing their own argumentation on the students.  

About a third of the teachers started the implementation of their activities with a repetition of 
definitions and properties of the relevant notions in a whole-class setting. These teachers seemed to 
consider a lack of knowledge about related notions an obstacle for proving that had to be avoided, 
rather than to look at proving as an opportunity to explore these notions: “It is important to ensure a 
common understanding of the notions we are using and some of their properties before we start 
(T01).” Similarly, the following teacher provided precise definitions in order to prevent 
misunderstandings in the students’ communication: “Whenever I have to explain a notion to students, 
I make sure that the definitions are such that everyone understands them in the same way. Only then 
they are useful for communication.” Though precise definitions are important in mathematics, it can 
be of great value for students’ understanding of concepts to use tasks with ambiguous conditions and 
let students explore the consequences of different assumptions or definitions. The learning 
opportunities that can arise from such proving tasks in the elementary classroom are discussed by 
Stylianides (2016), while Zaslavsky (2005) investigated the learning opportunities evoked by 
uncertainty in mathematical tasks on secondary level.  

Extension: Several of the teachers claimed to have designed landscapes of investigation (Skovsmose, 
2001), but none of the activities strictly speaking fulfilled the criteria, since many hints about proof 
ideas were provided and there was little opportunity for students to extend tasks or to explore their 
own questions or conjectures.  

Underlying mathematical properties of the tasks: There was little variety in the proving tasks when 
compared to the model by Stylianides (2016). The major part of the proving tasks required 
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justification in infinitely many cases. Only two proving tasks treated a finite number of cases, for 
example a task about the probability to get certain sums of points when throwing two or three dice. 
None of the tasks required to disprove a statement. As the nature of the proving task influences the 
nature of the proving activity (Stylianides, 2016), this might have restricted the diversity of activities 
that were developed in the classrooms. Of course, each teacher designed only one task such that we 
have no information about the variety of tasks in a single teacher’s classroom. It might however reveal 
a general tendency that proving tasks might mostly be associated with infinitely many cases.  

Despite the fact that proving tasks with infinitely many cases were predominant and a number of 
proving tasks used geometric representations, none of the teachers made ICT tools available to the 
students during their investigation. Hanna (2000) wrote that “dynamic geometry software can be used 
to enhance the role of heuristics, exploration and visualization in the classroom”. Given that the ability 
to use digital tools, also for purposes of exploration, is among the competence aims of the Norwegian 
curriculum and considering their potential with respect to exploration and conjecturing, it was 
surprising that none of the teachers based their classroom activity on digital tools. 

Final remarks 
Most teachers provided a lot of scaffolding, both in the task formulation and during group work. This 
might be related to the teachers’ conceptions of the role of proof in school mathematics (Knuth, 
2002b), apparently emphasizing systematization and explanation as the functions of proof. Many 
teachers provided definitions and properties of notions beforehand in order to avoid 
misunderstandings. Proving tasks with ambiguous conditions were not designed by any teacher. ICT 
tools were not used either which can strengthen the impression that there was some more focus on 
systematization, explanation of concepts, and support to build arguments than on exploration and 
conjecturing. There was little variation in the proving tasks when compared to the model of 
Stylianides (2016), and this might have restricted the diversity of proving activities that arose in the 
classrooms. In our teacher education courses, we might therefore have to pay special attention to the 
variation of tasks, and to discussing the value of exploration and the learning opportunities provided 
by ambiguous proving tasks for students’ understanding of mathematical concepts and notions.  

All teachers reported that their experience with the implementation of the proving activity was mainly 
positive. Benefits that were mentioned, included the acquisition of relational understanding, 
communicative skills, student autonomy, and higher student motivation than usual. Despite of that, 
several teachers expressed that it would be challenging to work with argumentation and proving in 
the everyday school reality. They had concerns about the unpredictability of students’ contributions 
and the mathematical content, making it difficult to follow up students’ contributions and being in 
conflict with obligations to cover a specific curricular content, time constraints and large classes that 
restrict the possibilities to support students individually. In addition to the fact that half of the teachers 
were still mainly used to the traditional exercise paradigm, the teachers’ choices about scaffolding 
might be related to such concerns. These are important factors that deserve further investigation.  
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The recent introduction of computer science contents in the mathematics programs for French high 
schools raises several questions about the means and objectives of such a curricular shift: which 
concepts are relevant for mathematics and computer science? Are these concepts viewed in the same 
way by both disciplines? What are the didactical consequences of the potential similarities and 
differences? These questions are studied within the scope of the ANR DEMaIn research project 
(Didactics and Epistemology of interactions between Mathematics and Computer Science). 

In our thesis, taking place as a part of this project, we concentrate on the notions of mathematical 
induction (MI) and recursion. We choose them as they are (i) pervasive both in mathematics and 
computer science, (ii) usually present in high school or first-year undergraduate curricula, and (iii) 
problematic from a didactical point of view, as abundant literature shows (Michaelson, 2008; 
Rinderknecht, 2014). 

We conjecture that recursion and MI are closely related to each other and that their joint study might 
help solve some of these didactical problems, an idea that is supported by the existing literature (see, 
for example, Drysdale, 2011). Methodologically, we adopt the approach of didactic engineering 
(Artigue, 2014), which prompts us to initially perform an epistemological analysis of both notions. 
In particular, we would like to pinpoint the different conceptions of recursion and MI that 
mathematicians and computer scientists have. Therefore, we pose the following research questions: 

1. What meanings can be found for recursion and MI in the fields of mathematics and computer 
science? 

2. What relations exist between these two notions? 

Methodology 
To address these questions, we proceed in three steps: 

1. We consult various academic books, either exemplifying or discussing the points of view of 
mathematics, computer science or logic on recursion and MI. We intend to identify the contexts 
in which the words “recursion” and “mathematical induction” are used and the links between 
them that are implicitly or explicitly assumed. 

2. We complement these findings with the information obtained from interviews with 
mathematicians and computer scientists, in order to gain insight on practices related to recursion 
and MI that are less visible in the books. 

                                                 
1 Communication supported by the French National Research Agency <ANR-16-CE38-0006-01>. 
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3. We develop a characterization of recursion and MI that is in accordance with the academic
literature and expert usage, and appropriate for subsequent didactical analysis.

The books for step 1 have been selected considering that they should be exemplary of a specific look 
at recursion and MI, that the study of these concepts should take place on an important portion of the 
book, and that it is desirable for them to have been cited repeatedly in the academic literature.   It was 
not a pre-requisite for them to address undergraduate students, as the epistemological study aimed at 
characterizing advanced usage.  

The choice of experts for step 2 has been made according to availability criteria, and also trying to 
cover a broad spectrum of research areas. The format of the interview is semi-directed, based on a 
flexible questionnaire, so as to be able to deepen in specific aspects of the use of the concepts that 
could appear spontaneously during the conversations. 

Results 
We discuss preliminary results from the analysis of the first five books and four interviews. New 
books and interviews will be incorporated into the study before tackling step 3, whose results we also 
expect to present at CERME. 

While the concept of MI seems relatively stable, recursion appears as a weave of fuzzy meanings. 
Interviewed researchers find it difficult to specify a definition of recursion. Books addressing 
computability theory will usually put forward the precise mathematical definition of recursive 
functions, relations, and sets, but even here one can find some ambiguity: “recursive” might also 
mean, more generally, that something is being defined in terms of (a simpler version of) itself. 
Computer science books present yet another aspect of the concept, by highlighting its connection with 
the notions of nested loops or structures: recursion is here viewed as a convenient way to organize 
procedures or data when certain regularities are observed. 

Additionally, the close link between recursion and MI is also noticeable both in the discourse of 
researchers and book authors, as words like “inductive”, “recurrent” and “recursive” are sometimes 
used interchangeably, depending on the context. 
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Explanatoriness as a value in mathematics and mathematics teaching 
Eva Müller-Hill 

University of Rostock, Germany; eva.mueller-hill@uni-rostock.de 

In this foremost philosophical paper, I propose a rather holistic idea of (re)establishing mathematical 
proof in school mathematics by explicating and enacting the particular merits of mathematical proof 
with respect to a variety of mathematical activities, e.g.: observation, systematic variation of example 
cases, informal argumentation, defining, hypothesising, inductive and abductive reasoning. Such 
activities are connected naturally to proving in practices of mathematics, with “practice” referring 
both to mathematics as a human endeavor in general, and to mathematics a (scientific) discipline. To 
this end, a concept of “mathematical value” from the philosophy of mathematical practice is 
employed. I focus exemplarily on the value of explanatoriness, which is both a core merit of good 
proof in scientific mathematical practice, and an important didactical goal of teaching proof.  

Keywords: explanation, mathematical value, proof, philosophy, mathematical practice. 

Introduction 
From the perspectives of mathematics education research and curriculum development, it is widely 
agreed to date that mathematical proving shall be encouraged and fostered in school mathematics 
throughout all content areas and grade levels. At the same time, at least in Germany, standards of 
rigor and formalization in classroom proving changed rapidly in comparison to, e.g., the traditional 
Euclidean paradigm of proof in elementary geometry, or to algebraic proving in the 𝜀𝜀 − 𝛿𝛿 − calculus, 
and developed into content-oriented, depictive, or intuitive ways of argumentation. In spite of the 
efforts to make mathematical proving an integrated core element throughout the curriculum, the 
demand for more proving in German mathematics classrooms frequently produces teachers’ 
complaints: the curriculum is too dense, time is too short, and after all, proof is not that relevant for 
the final exams; pupils don’t like proof, they are afraid they cannot handle it and fall into blockade, 
and after all, proof is not that relevant for students’ future lives. This phenomenon can, probably and 
partly, be explained as an enduring symptom of a perceived “false dichotomy” (Sierpinska, 2005) of 
mathematical proving on the one hand, and other kinds of mathematical activities on the other. Such 
a dichotomy may have been over-emphasized by both the traditional university part of mathematics 
teacher education (at least in Germany), and by the former, strong curricular focus on proofs in the 
context of elementary geometry, with a sustainable effect on teaching attitudes and beliefs that cannot 
be simply suppressed by declarations of curricular intent (compare also Knuth, 2002) for similar 
aspects of teachers’ proof conceptions and attitudes towards teaching proof in the U.S.). Hence, there 
appears to be an ongoing need for clarification of a reasonable interpretation of the call for more 
proving in mathematics classrooms. This need was already expressed by Stylianides (2007), together 
with the proposal of defining a framing core concept of mathematical proof to be explicated and 
enacted in classroom (pp. 291f.), which can be coherently specified both with regard to different loops 
of the curricular spiral, and to different fields of mathematical content, and which allows for a clear 
distinction from inductive, “empirical“ (p. 298) arguments. In recent years, the awareness of this need 
has also led to a deep discussion in mathematics education about diverging and common aspects of 
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mathematical proof and argumentation (Mariotti et al. 2018). A substantial part of this debate is 
devoted to logical or cognitive aspects, including the role of deductive vs. other forms of inferential 
reasoning, of argumentation base, of language, symbolism, or other semiotic elements (ibid.), e.g., 
the analysis of structural and referential aspects of argumentations and proofs that provide cognitive 
unity in conjecturing-and-proving learning settings (Fiallo & Gutierrez 2017), or the examination of 
the coordination of different registers in the transition from argumentation to proving (Duval, 2007; 
with a different reading of “epistemic value” than I will use in the following). 

Focus and rationale of this paper 
The approach I want to propose here is, in a way, a complementary one. One main difference is that 
it does not aim at a closed definition of what mathematical proof is, nor at an emphasis of a clear-cut 
distinction of proving vs. non-deductive forms of mathematical activities, e.g., inductive or abductive 
argumentation based on variation of example cases. A second main difference is the idea that an 
investigation of mathematical proving and related activities that sticks to the logical and cognitive 
aspects, might not suffice to grasp all epistemologically relevant facets, which may partially conform 
to approaches employing Habermas’ model of rational behavior (reported in Mariotti et al. 2018). 
The term “false dichotomy” cited above refers to Michael Otte’s view of complementary facets of 
proving in mathematics (Otte, 1990, p. 59ff.), and emphasizes intuitive, social, and metaphorical 
facets of proof which cannot be properly modeled with regard to the logic and cognitive functioning 
of proof or argumentation. Several much more recent studies from different fields suggest that, in a 
similar vein, issues of epistemic values essentially connected to mathematical proving, like 
explanatoriness, transcend the scope of logical and cognitive matters, due to a discursive character, 
to non-reducible pragmatic and affective aspects, and also to the metaphysics of mathematical 
proving; compare, e.g., (Müller-Hill, 2011) on the epistemic role(s) of formalizability as a feature of 
discursive proving actions, (Novaes, 2018) on explanatoriness within a dialogical conceptualiziation 
of mathematical proof, (Andersen, 2018) on a socio-empirically informed view on acceptable gaps in 
proofs, (Johansen & Misfeldt, 2016) on argumentation and problem choice as mathematical values, 
or (Dawkins & Weber, 2017) on the integral role of values like "increasing mathematical 
understanding" for the “apprenticeship of students into proving practice” (p. 123). Thus, a focus on 
explanatoriness as an epistemic value does not mean to exclude other perspectives than the 
epistemological one, but is inclusive to, e.g., sociological, communicative, and pragmatic 
perspectives. The following sections aim at indicating first steps into the direction of a program which 
consists of (1) explicating the particular epistemic merits of the idea of proof that become manifest 
in the activity of proving in mathematical practice, (2) understanding these coherently in view of the 
whole process of hypothesizing, generating and communicating proof, (3) emphasizing aspects and 
features of what counts as proof in mathematical practice that play a particular role in achieving these 
merits, and (4) indicating elements of a variety of mathematical activities, particularly the generation, 
operation with, and variation of examples, that already correspond to these aspects and features of 
proof. In the next two sections, a number of useful concepts, conceptions and results have to be 
introduced in quite curtate descriptions. First, I provide conceptual considerations as well as 
exemplary socio-empirical evidence for an understanding of explanatoriness as a core epistemic value 
of scientific mathematical practice in the sense described above. This goes hand in hand with the 
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stance that the epistemic nature of the scientific discipline of mathematics, understood as a human 
practice and endeavor which generates, communicates and imparts mathematical knowledge and 
skills, is relevant to the teaching and learning of mathematics for principal reasons. I then sketch a 
philosophically informed didactical model of mathematical explanation, developed in (Müller-Hill, 
2017), and a model of the interplay of deduction, induction, and abduction in explanation processes. 
I shortly review the socio-empirical insights on the background of these models, and finish with a 
glimpse on future work in enacting explanatoriness as a value in school mathematics. 

Explanatoriness as an epistemic value in scientific mathematical practice 
I employ a concept of value here that emerged in recent discussions within philosophy of mathematics 
(see Larvor, 2016). I follow Ernest’s understanding of value as something that is “expressed through 
the action of valuing”, and “manifested in both the prizing of certain characteristics and in the making 
of fundamental choices” (Ernest, 2016, p. 190), including besides ontic, aesthetic, and ethical values 
also epistemic values (p. 191). Ernest discusses the epistemic values of truth, provability, 
universalism, objectivism, and rationalism (pp. 193ff.).  Explanation is a well-known and frequently 
discussed function of mathematical proof, both from the point of view of philosophy and of 
mathematics education. Frequently proposed features of explanatory proofs are, e.g., surveyability 
(Müller-Hill, 2013), reference to characteristic features of the involved mathematical entities and 
structures (Steiner, 1978), or width (Hanna, 2014). These are more or less intrinsic features of 
mathematical proofs as objects. Understanding explanatoriness as a fundamental value, which 
manifests itself particularly in activities related to mathematical proving, somehow changes the 
perspective: Explanatoriness is conceptualized rather dialectically by looking for traces of valuing 
actions (like prizing and choice-making) directed at proving in mathematical practice that may 
indicate this value. The issue of (epistemic) values in mathematics has, with exceptions like 
(Lorenzen, 1974, pp. 152ff.), rather been neglected by philosophy of mathematics until recently 
(Ernest 2016, p. 191) due to the methodological paradigm of classical analytical philosophy, which 
also dominated philosophy of mathematics for quite a long time. Accordingly, philosophy can 
contribute to an epistemology of mathematics by conceptually grasping epistemic features of proof 
through semantic analysis of, e.g., knowledge attributions, resulting in truth-conditions. Concerning 
the question of epistemic values in actual mathematical practice, a different approach is needed that 
can take concrete valuing actions like prizing and choice-making of practicing mathematicians into 
account. Valuing actions directed to mathematical proving may include the way in which examples 
are chosen and exploited during a proving process, the prizing of alternative hypotheses, the choice 
of definitions and methods, the degree of formalization and abstraction, the representations used, or 
the fine-grainedness of the argumentation. Philosophy of mathematical practice, a transdisciplinary 
endeavor at the intersection of philosophy and sociology of mathematics, has developed conceptual 
and methodological frameworks that allow appropriate investigation of such issues.  

Results from a socio-empirically informed epistemological study 

In this paragraph, I will review exemplary empirical results from an interview study (Müller-Hill, 
2011) conducted with mathematicians of high standing, from various fields of professional 
specialization areas, under the lenses of explanatoriness as an epistemic value in mathematical 
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practice (for further methodological details and results of this study, see also (Müller-Hill, 2013)). In 
general, the interviewees thoroughly point to a strong relation between explanatory proofs and 
understanding why the proven theorem holds (ibid.; particularly aspects (2)-(4)). This is in line with 
the close relationship of explanation and understanding which is widely agreed upon in philosophical 
as well as in didactical discussions (see, e.g., the still prominent, well-differentiated discussion in 
(Sierpinska, 1994), or the very recent (Dawkins & Weber 2017)). Furthermore, selected quotes from 
(Müller-Hill, 2011) display that prizing and choice-making within processes of generating, 
communicating and assessing proofs in mathematical practice happens with respect to the robustness 
of hypotheses and arguments under local and global attacks, e.g., when “try[ing] to shoot holes in it” 
and “ask questions why it is true, why it works this way, not that way” (Interview 4, p. 246). This 
appears to be particular relevant in review processes, as “the right way of understanding the 
contribution that [a] new proof brings” is to ask “what is really the new idea” that “makes something 
work that previously did not work”, and to find “the key argument that made the proof work”, or 
instead, “where it breaks”. If the proof is “non breaking” under attacks, one “would see the spark of 
[a] new idea that finally makes it work” (Int. 5, p. 246). It also includes variation of perspective or 
context, to look at a hypothesis or an argument “from different directions, through different angles” 
(Int. 4, p. 246). Also, “in the process of understanding it happens that you have a definition, and that 
you think you understand it, and that you come back to it for one reason, or somebody tells you 
something about it, and that you realize that you never understood it at all” (Int. 6, p. 246). In prizing 
and choice-making actions, the balance between establishing a “big picture” and “the details” is 
also valued. The “big picture” conveys “the real understanding of why it is true” (Int. 5, S. 199), a 
“global idea” of “why it works like that”, an “overview of the proof” (Int. 4, S. 179), which also 
affects the consistency with already established results. On the other hand, there are “the details, to 
follow the proof from step to step, the logical consequences” (Int. 4, S. 179), and “the process of 
writing down these details”, which are sometimes not valued as equally important to the global picture 
because “not all people are good in this“ though they “really know mathematical truths” (Int. 5, pp. 
171, 199). A well-balanced proof, in this sense, also makes it easier to “be able to look at it at a later 
time, and still be able to reproduce the arguments” (Int. 4, p. 179), which is taken as an indicator for 
understanding (see also (Hanna, 2014)). The different aspects have a context-dependent impact on 
concrete valuing actions: “So one thing: maths is in a sense something personal. […] When do I think 
I understand something?” (Int. 4, p. 246), which can be influenced by “deep personal involvement 
with [a] proof” (Int. 2, p. 313).  

Explanatoriness within a didactical model of nomic mathematical explanation 
Insights gained from the interview study appear to be in line with the concept of so-called nomic 
mathematical explanation (Müller-Hill, 2017). In this view, an explanation provides a general pattern, 
expressed by a general conditional sentence, from which a phenomenon can be inferred as a regular 
consequence under certain conditions. Moreover, an explanatory, nomic pattern has to fulfill certain 
conditions on form (ibid., p. 181) and content. 

Conditions on form: Basic structure of an explanatory pattern  
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Whenever manifestation condition(s) ℳ = {𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑛𝑛}  would be fulfilled, the event 𝐸𝐸 would 
take place (as a manifestation of certain properties of the involved objects) and whenever 
manifestation condition(s) ℳ = {𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑛𝑛}  would not be fulfilled (but condition(s) ℳ′ 
instead), the event 𝐸𝐸 would not take place (but the event 𝐸𝐸′). 

The second part of the pattern is usually not formulated explicitly. An example pattern discussed in 
(ibid., p. 202) was reconstructed from a student’s explanation of why the sum of three consecutive 
natural numbers is divisible by three: Whenever we would take three consecutive numbers a, b, c, and 
move 1 from the biggest number 𝑐𝑐 to 𝑎𝑎, we would get three times 𝑏𝑏.  

Conditions on content: Basic invariance criteria for an explanatory pattern  

Some philosophical contributions on the concept of mathematical explanation (see Hanna, 2018) 
provide ontic conditions, like reference to “a characterizing property” or “salient feature“ of the 
involved mathematical entities, for an argument to qualify as explanatory. Such conditions serve to 
explicate the conceptual meaning of „explanation“. The account of nomic mathematical explanation 
developed in (Müller-Hill, 2017) complements the ontic conditions by spelling out epistemic 
invariance conditions as search keys, test and quality conditions for explanatory patterns. It is to a 
good extent compatible with ideas of explanatory unification and causal explanation that are at the 
heart of well-established views of scientific explanation (Kitcher 1989). Table 1 reports and illustrates 
conditions that are relevant to grasp the aspects of explanatoriness resulting from the interview study. 

Table 1: Invariance criteria for explanatory patterns (Müller-Hill 2017) 

Functional invariance is necessary for an explanatory pattern. However, there can be explanatory 
patterns with different degrees of functional invariance, which affects the pattern’s informativity: the 
more differentiated the intervention relation, the more informative the pattern. Scope invariance has 
different specifities (object, contextual/representational, embedding), each of which can also occur 
with different degrees. The degrees of scope invariance affect a pattern’s systematization power.   

The process of explanation generation  

The process of generating a nomic explanation can be described as an iterative cycle of phases of 
abduction, deduction and induction (Figure 1), starting with abducting a potential explanatory pattern.  

Functional invariance  Invariance under intervention at the manifestation conditions: pattern gives correct 
information, if ℳis fulfilled or not (e.g., regarding the example pattern above: What if 
I intervene at 𝑀𝑀𝑖𝑖 by taking non-consecutive numbers a, b, c). 

Scope 
invariance 

  

  

Object 
invariance 

Pattern also gives correct information when the involved objects are varied (e.g., by 
varying the chosen tripel (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)). 

Contextual & 
representation-
nal invariance 

Pattern also gives correct information when the used contexts and/or employed 
representations are varied (e.g., by changing from symbolic to figurative 
representations of 𝑎𝑎, 𝑏𝑏, 𝑐𝑐). 

Embedding 
invariance 

Pattern is consistent with corresponding patterns for an embedded or expanded pool of 
related phenomena (e.g., with the transition from natural numbers a, b, c to integers). 
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The abduction may be creative, that is, on the basis of experience gained by working with and varying 
test cases, the subject identifies a (by her) formerly unknown pattern to explain the phenomenon (e.g., 

by exploring 1 + 2 + 3, 2 + 3 + 4, …). But it may 
also be rather selective, that is, the subject already 
knows one or several alternative patterns that are 
explanatory for a class of somehow related, 
familiar phenomena, and identifies (by partial 
analogy, e.g., to familiar opposite-change task 
formats on addition) one of these that could 
potentially also explain the phenomenon in 
question (Magnani, 2001).  

Figure 1: Interplay of abduction, induction and deduction 

The cycle continues with choosing and varying test cases for the pattern (e.g., for “Whenever we 
would take three consecutive natural numbers a, b, c, and take 1 from the biggest number 𝑐𝑐 and pass 
it to 𝑎𝑎, we would get three times 𝑏𝑏”.) Via hypothetical deduction, instances of the proposed pattern 
are produced for each test case (e.g., (1 + 1) + 2 + (3 − 1) should be equal to 3 ⋅ 2,…). These test 
instances are then compared with “reality”, thereby inductively backing or weakening the pattern 
(e.g., (1 + 1) + 2 + (3 − 1) = 2 + 2 + 2 =  3 ⋅ 2,…). If the pattern appears to be sufficiently 
backed up by inductive evidence, one can exploit the experiences already made to collect ideas for a 
deductive justification of the pattern’s general validity (e.g., by replacing concrete test values for a, 
b, and c by generic figurative or general symbolic representations), or enter the cycle again with a 
variation of the former test cases to find a more general or more informative pattern (e.g., by trying 
out equidistant instead of consecutive number tripels). If not, one may iterate the whole cycle.   

Reviewing the results from the interview study 

We can now distinguish between explanatoriness in a situated sense, and explanatoriness in a 
systematic sense (see Table 2), which are complementary.  

Abduction Quality of invariance Informativity/systematization 

Explanatoriness in 
a situated sense  

creative Emphasis on functional invariance, detailed and 
detailed differentiated manifestation conditions 

More informative, less 
systematizing power 

Explanatoriness in 
a systematic sense 

selective Emphasis on scope invariance, generalized 
manifestation conditions 

Less informative, more 
systematizing power 

Table 2: Situated and systematic sense of explanatoriness 

Employing this distinction, the interview study results reported above suggest that prizing and 
decision making within mathematical activities related to proving in scientific mathematical practice 
happens with regard to explanatoriness both in the situated and in the systematic sense, with context 
dependent weighting. This includes, particularly, the balancing of informativity and systematization 
power, as two complementing aspects of explanatoriness. 
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Outlook and future work: Enacting explanatoriness in class  
Regarding educational issues, the framework presented in this paper is meant both as a model and 
tool for researchers to reconstruct, analyze and understand explanation and valuing processes in 
mathematics and mathematics teaching, and as a basis for task design, and for initiating such 
processes in classroom. In this sense, the program formulated at the beginning of this paper entails at 
least two core messages: under an epistemic reading, „mathematical proof” in any strong sense is an 
ideal construct that is paradigmatic regarding the virtues and validity claims of the discipline of 
mathematics (that is one reason why we should still teach about it). However, various kinds of actual 
mathematical activities directed to providing proofs can and should already be driven and regulated 
with respect to these virtues and validity claims (that is why they work effectively in mathematical 
practice, and that is how we should teach them). The paper provides a rough impression of how these 
programmatic aims can be pursued, regarding exploratoriness as an epistemic value connected to 
proving. Though tersely presented, the reported results already indicate some opportunities and types 
of activities related to mathematical proving that can be appropriate to enact explanatoriness as a 
value in class. As a simple example, think of tasks like the following that could be tackled when 
introducing the concept of mean value (in German Gymnasium, e.g., in grade six): Starting with a 
given data set of natural numbers, think of ways to vary the set in order to increase, lower, or leave 
invariant its mean value. Justify your answers. Pilot runs with corresponding learning environments 
in the form of written tasks produced data that we actually evaluate to revise the learning environment 
design. However, it needs well-trained teachers to exploit such opportunities properly (compare, e.g., 
Lesseig, 2016a; 2016b). The next step in our work is to gain and analyse video-data from 
implementations of the revised learning environments. The results will also be used for developing a 
video-vignette based teacher training for secondary in-service teachers. 
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After analyzing the relation between mathematics and computer science and the place given to 
proof, logic and reasoning, we propose and discuss a framework for the study of their interactions 
based on the ck¢ model. Then, we exemplify this model in the analysis of a problem, making explicit 
a mathematical solution and an algorithmic solution. 

Keywords: Mathematics, computer science, proof, reasoning, problem solving. 

The research presented in this paper is part of a research project funded by the French National 
Research Agency, called DEMaIn (Didactics and Epistemology of the interactions between 
Mathematics and Informatics). This project, started in 2017, aims at better understanding the 
relations between mathematics and computer science, from an epistemological view, in order to 
tackle didactical issues (Modeste, 2016). It follows from two observations. On the institutional side, 
computer science enters many curricula at different levels and in many countries (for France, see 
Gueudet, Bueno-Ravel, Modeste, & Trouche, 2017). On the epistemological side, computer science 
and mathematics share many concepts and methods (Modeste, 2016) and their frontier is rather 
blurry. One of the main topics of the project deals with logic, language, proof and reasoning in 
mathematics, computer science and their interactions. In this paper, we provide epistemological 
insights regarding this topic and a framework for analyzing proof and reasoning in problem-solving 
situations in mathematics and computer science, suited to analyze students activities in these fields, 
including computer-assisted situations. 

Proof, reasoning and logic in mathematics and computer science 
Mathematics and computer science share common foundations, based on logic. Logic makes 
explicit the language and the validation rules in both disciplines. This directly relates to the nature 
of proof and reasoning in mathematics and computer science. In previous works we have shown 
that the role of proof and reasoning is rather similar in mathematics and computer science, but with 
an emphasis on different kinds of properties (Meyer & Modeste, 2018; Ouvrier-Buffet, Meyer, & 
Modeste, 2018). Some specific types of proofs are particularly important at the interface of the two 
disciplines, like mathematical induction, and its variations. 

                                                 
1  Communication supported by the French National Research Agency <ANR-16-CE38-0006-01>. 
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We consider that the activities in mathematics and computer science share common aspects, in 
particular the central role of problem solving. Various models in logic can be used to describe and 
structure the activities in mathematics or computer science. Following Durand-Guerrier (2008), we 
consider that First-order logic (namely Predicate Calculus) is a relevant epistemological reference 
for analyzing mathematical activity in a didactic perspective, allowing to take in consideration the 
articulations between syntax and semantics. We have provided evidence in (Durand-Guerrier, 
Meyer, & Modeste, to appear) that it is also the case for computer science. 

In this paper, we will focus on four concepts and their relations: proof, formal proof, algorithm and 
program. 

Proof. We call proof (in mathematics or computer science) a finite sequence of statements organized 
according to some determined rules (explicitly or implicitly) in order to convince someone of the 
truth of a statement (Balacheff, 1987). The level of details of the proof generally depends on the 
source and the recipient of the proof. 

Formal proof. A formal proof is a text consisting of a finite sequence of statements, expressed in a 
well defined formal language, where the statements are deduced from the previous ones or from 
axioms following predefined deduction rules. Most of the proofs could be expressed as formal 
proofs (if the axioms and deduction rules were made explicit). Nowadays, formal proofs are often 
produced by or for software called proof checkers which can automatically validate a proof. 

Algorithm. An algorithm is a finite sequence of organized instructions, that describes how to solve a 
problem, that is, how to obtain a defined goal starting from given data. The steps must be 
considered as elementary by the recipient of the algorithm, and the algorithm must not be 
ambiguous. In other words, the producer of the algorithm and its recipient must agree on the 
granularity of the details of the algorithm. 

Program. A program is a text consisting of a finite sequence of instructions, written in a well 
defined (programming) language, that is, having a precise syntax (structure of the language) and 
semantics (effect of each instruction). An algorithm can be described with a program. 

These definitions make clear the fact that the relations between proof and formal proof and between 
algorithm and program are pretty similar, with, on one side, an informal description, more suitable 
to human interactions (but also driven by some rationality) and on the other side, a formal language 
with a precise syntax and semantic, that can be interpreted and checked by computer. 

In previous work about algorithmics (Modeste, 2012; Modeste & Ouvrier-Buffet, 2011), we have 
made explicit the links between algorithm and proof. In particular, any (constructive) proof can be 
interpreted as an algorithm. In a more formal context, the Curry–Howard isomorphism states there 
is a strict correspondence between programs and formal proofs. 

We hypothesize that it is valuable taking into consideration these four concepts for questioning the 
place of proof and reasoning in mathematics, computer science and their interactions. 

Finally, let us precise what we will consider as reasoning. We enclose in reasoning, in mathematics 
and computer science, all the human activities that permit to solve problems and increase the 
epistemic value of properties or problem solutions. Reasoning is clearly at the origin of the building 
of proofs, formal proofs, algorithms and programs, and is strongly related to logic. Indeed, logic is 

Thematic Working Group 01

Proceedings of CERME11 285



built in order to model the way of reasoning and reasoning is based on a (not completely explicit) 
set of logical rules (e.g. Mesnil, 2017). 

This leads us to formulate the following research questions: What place and role do proof, formal 
proof, algorithm and program have in the teaching and learning of mathematics, computer science 
and their interactions? What is the nature of reasoning in computer science in comparison to 
mathematics and how can we analyze this reasoning in problem-solving and proving activities? 

To answer these questions, we are currently developing a framework that permits to analyze 
problems, problem-solving and proving activities in mathematics and computer science. We will 
first introduce our framework and then illustrate its possible use by an example. Finally, we will 
briefly discuss the future development of this framework, in relation with our project’s goals. 

A framework for analyzing reasoning and proving in problem-solving activity 
Our framework is based on a specific definition of problem, on a framework called concept-
problem and on the ck¢ model. 

The central notion of problem 

The notion of problem and problem solving is central in mathematics and computer science. In the 
literature, problems attest of the questions of the two fields and, in practice, they structure the 
research activity. The notion of problem also carries the issue of generality, important in 
mathematics and computer science. For our purpose, we will use a definition of problem, based on 
theoretical computer science and computability and complexity theory (see, for instance, Garey & 
Johnson, 1979). We consider a problem as a pair (I, Q) where I is a set of instances and Q a question 
that can be instantiated on any of the element of I (Modeste, 2013). Solving a problem P=(I,Q) is 
finding the answer to the question Q for any element i of I. This answer can be given by a formula 
depending on i, any characterizations of the subsets of I for which the answer is a given value, an 
algorithm that permits to construct the answer for any i, etc. In all cases, a proof can be given that 
the proposed solution to P is correct, that is, for all i in I, the answer given to Q(i) is correct. This 
definition is general enough to describe any problem. 

In Modeste (2012, 2013) we have shown that this definition allows to conveniently analyze 
curricula, textbooks and activities in algorithmics, in particular concerning the place given to proof. 
Giroud (2011), has used a similar definition to develop what he called the “concept-problem”, in 
order to study the problem-solving activities of students, mainly based on the Theory of Conceptual 
Fields (Vergnaud, 2009). We will rely on Giroud’s idea that different problems can be related to the 
main problem p studied (called by Giroud the situations “giving meaning to p”) and follow his idea 
of representing problem solving with flowcharts between related problems. 

The ck¢ model to analyze proof and reasoning 

The ck¢ model (Balacheff, 2013) is an enrichment of Vergnaud’s Theory of Conceptual Fields. It 
considers a concept as composed of four elements: a set P of the problems that give meaning to the 
concept and a representation system L (the signifier), similarly to the model of Vergnaud; but it 
separates the invariants in two types: a set R of operators that permit to transform a problem in 
another one; and a set Σ of controls that permit to decide whether an operator r applies to a given 
problem p, and to determine whether or not a problem is solved. 
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The ck¢ model has been designed to study proof and reasoning (this motivated the separation 
between operators and controls) and to be appropriate for analyzing computer-assisted learning 
situations. This leads us to use it in our research project for describing concepts and conceptions. 

Description of the framework for analyzing problems 

We use the ck¢ model, to describe concept-problems. For us, a concept-problem on a given problem 
p will be described with: 

· a set P of the problems that give meaning to the problem p, that is having a link with p, 

· a set R of operators that transform a problem in another problem, we will denote p2=r(p1) if 
the operator r transforms p1 in p2 or p1 →r p2, 

· a set Σ of controls that describe if an operator r is relevant to apply on a problem or if a 
problem is solved; 

· a representation system L, that permits to describe elements of P, R and Σ. 

In (Durand-Guerrier et al., to appear; Modeste, 2012) we have used such a framework to analyze 
the concept “algorithm” and its relation to proof. We proposed to distinguish two levels of 
problems, to bring to light a tool-object dialectic, and to differentiate the situations where proof 
concerns the controls level (elements of Σ) and the situations where the studied problem p consists 
in proving something. In this second case, the operators concern proving strategies and the controls 
of Σ concern logic rules (Σ can remain mostly implicit while controlling the use of the operators). 

In this paper, we extend this framework to any situation in mathematics and computer science, 
including problem-solving and proving situations, assisted or not with a computer. The framework 
will allow us to focus on proof and reasoning in these activities. 

Finally, we consider that the operators and controls occur at two (intertwined) levels: syntactic and 
semantic. It is clear that the presence of a computer (programming tool, proof assistant or many 
other tools2), brings some new controls (including feedback) that have a strong syntactic dimension. 
For example, a very basic control can come from what is called syntactical analysis which checks if 
an expression (formula, program, logic statement…) is well-formed with respect to the grammar of 
the language. This kind of feedback from the computer can be considered as a purely syntactic 
control. On the other hand, any interpretation (by the user) of the expression in terms of the objects 
represented or for specific values of the variables would be considered as a semantic control. 

Example of problem analysis 
Tin this section, we illustrate the use of our framework for problem analysis, focusing on analyzing 
the problem itself, the a priori analysis (analysis of students’ solving of the problem is one of our 
next perspectives). We have selected a problem from a well-known website called Project Euler: 
“Project Euler is a series of challenging mathematical/computer programming problems that will 
require more than just mathematical insights to solve. Although mathematics will help you arrive at 
elegant and efficient methods, the use of a computer and programming skills will be required to 
solve most problems.” (https://projecteuler.net/). These problems, at the interface between 

                                                 
2  For example CAS or softwares like Aplusix: www.aplusix.com/ 
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mathematics and computer science, seem interesting to us to confront our framework. We will 
consider the following problem: 

Problem 1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 
and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. 

In our framework, the problem can be described as an instance of the general problem P3-5=(I,Q) 
with I the set of all natural numbers and Q(i) the question “What is the sum of all the multiples of 3 
or 5 below i?”. Although the problem consists in solving P3-5(1000), the value 1000 is large enough 
to require to think about the general problem while solving it.  

Here, we will describe with flowcharts two ways of solving the problem3, one considered as more 
“mathematical” and the other considered as more “algorithmic”. In the flowcharts, problems are 
represented in blue and arrows between them represent the transformations under the action of an 
operator (in green) selected according to a control in red (controls on operators and on the status of 
problems). Sometimes, an operator can generate several problems. We will not give details about 
the representation system L in this paper. 

A “mathematical” solution 

This solution is based on the observation that if we want to sum all the multiples of 3 and 5 under 
1000, we can count the multiples of 3 and the multiples of 5, and only multiples of 15 will be 
counted twice. Since we can derive from the formula of the sum of the first integers a formula for 
the sum of the first multiples of any n, we can solve P3-5(1000). In the end, we can write: 

  

The solving process is described more precisely by the flowchart in figure 1. 

An “algorithmic” solution 

This solution is based on an enumeration of the numbers below n, a test of the property “being a 
multiple of 3 or 5” and an accumulation of the values satisfying the property. This can lead to this 
algorithm (in a pseudo-code, close to the programming language Python): 

 

                                                 
3  Due to space constraints, we cannot show all the solutions that we have identified in our a priori analysis. 
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The solving process is described more precisely by the flowchart in figure 2. 

Figure 1: A mathematical solving 

Discussion and comparison of the 2 solutions 
The two solving processes analyzed show two very different (correct) strategies. We can clearly 
distinguish the types of operators and controls that take part in the solutions. In the mathematical 
solving process, we can notice how the use of algebraic operators (factorization, formula...) are 
controlled and chosen regarding the sub-problem studied. In the algorithmic solving process, we 
can notice operators and controls that make clearer the way decisions can be taken about choosing 
algorithmic tools (“for” loop, “if” structure). Although operators and controls are different between 
the two solving processes, we can notice that the framework allows to describe finely both of them. 
This supports our claim that there are many common aspects of the problem-solving process in 
mathematics and computer science. 

Conclusion and perspectives 
Or framework permits to analyze problem-solving strategies in mathematics and computer science, 
with an emphasis on proof and reasoning. On the epistemological side, it puts light on the controls 
in mathematics and computer science and will permit to discuss their differences and common 
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points, which can be taken into account in a didactical perspective. The framework should also 
permit to describe and analyze problem-solving strategies developed by students, in particular faced 
with problems that can be solved with mathematics and computer science. Another goal is to be 
able to use this framework for situations that integrate formal tools (computer-assisted situations) – 
by detailing syntactic controls and their use, which needs to detail the role of the system of 
representations L – and for situations of proof and proving (by taking into account different levels 
of control, as aforementioned). In the next step of the DEMaIn project, we will use this framework 
in the design, analysis and experimentation of didactical situations at the interface of mathematics 

and computer science. 

Figure 2: A algorithmic solving 
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In this paper, we discuss the views that the high school students of a school unit hold about proof in 
geometry. We consider the school unit as an open system that in Greece functions at the interaction 
of the official and the shadow education system. We mapped aspects of the institutional discourse 
that are visible to the students: the school teachers, the geometry textbook and the shadow 
education teachers. We focused on five different types of reasoning that may appear as a proving 
argument (acceptable or not): empirical, narrative, abductive, reductio ad absurdum, formal. The 
results of the mixed methods data collection and analysis revealed complex interactions of the two 
systems on the students’ views and on their mathematical identity construction. 

Keywords: Proof, geometry, complexity, high school, shadow education. 

Proof in high school geometry: official and shadow education systems 
Though proof and proving lies at the heart of modern mathematics, research findings suggest that 
the high school students experience limited opportunities to be engaged in rich proving practices 
(Otten, Gilbertson, Males, & Clark, 2014). The geometry course may potentially give the high 
school students opportunities to deal with different types of proof (Hanna & de Bruyn, 1999), but 
this feature seems not to be exploited in the geometry classroom, where the vast majority of the 
experienced proofs seem to be of the form: a deductive argument written in formal mathematical 
language (Battista & Clements, 1995). Furthermore, though abductive reasoning is at the crux of the 
proving process (Arzarello, Andriano, Olivero, & Robutti, 1998), the students seem to struggle 
using an abductive argument in the formulation of a deductive proof (Pedemonte & Reid, 2010). 
Considering the language of proof, Weber (2010) differentiated the deductive arguments expressed 
in a narrative form (using everyday language) from the formal ones (using necessary mathematical 
relationships for the proof theorem and linking words without explanation steps or texts). Moreover, 
the students seem to mainly choose an argument that is expressed in a mathematically acceptable 
way (valid or not), in order to satisfy a teacher, rather than themselves (Hoyles & Healy, 2007).  

Drawing upon the fact that a significant number of high school students in Greece attend private 
tutoring lessons (Bray, 2011; which increases as the students approach the national exams to enter 
university), our study attempted to map the perceived effect to the students’ views about proof in 
geometry, with respect to both the official education system and the shadow education system. 
‘Shadow education’ refers to the private tutoring, which complements the official school teaching 
and is focussed on improving the students’ performance in the official education system (Bray, 
2011; Mazawi, Sultana, & Bray, 2013; Mori & Baker, 2010). In this study, we employ the term 
institutional discourse to refer to all the sources of mathematical authority that are visible to the 
students, which may communicate to the students what a high school acceptable proof in geometry 
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should be. The school teachers and the textbook communicate what the students perceive as an 
officially acceptable proof (Bieda, 2010), but the effect that an un-official source authority (such as 
the teachers of the shadow education system) would have on their views about an acceptable proof 
in geometry remains an open question. 

In line with our previous studies (Moutsios-Rentzos & Pitsili-Chatzi, 2014; Moutsios-Rentzos & 
Korda, 2018), we focus on the school unit as an open system interacting with the broader 
educational system: official and shadow. Considering that the elements and the subsystems of a 
system are in a reciprocal relationship, constantly changing themselves and the system, we posit 
that the students in a school classroom who attend private tutoring lessons constitute a sub-system 
of the school unit, affecting and being affected by the official and the shadow institutional 
discourse, thus affecting the whole school unit. A similar role is played by the school textbook, 
which constitutes a seemingly common reference point for both official and shadow teaching. 
Nevertheless, the teachers’ personal views and practices are mediators of the textbook knowledge to 
the students (Hanna & de Bruyn, 1999). This is a complex situation, since teachers (official or 
shadow) may choose to differentiate their teaching content from official textbooks (Tarr, Chavez, 
Reys, & Reys, 2006), whilst at the same time they are influenced by their own views or beliefs 
about geometry when it comes to teaching practices (Stipek, Givvin, Salmon, & MacGyvers, 2001). 

Following these, we adopted a systemic approach to investigate the high school students’ views 
about what constitutes an acceptable proof in high school geometry. We focussed on what is visibly 
communicated to the students as the institutional discourse about proof in geometry, in a three-
faceted model: the school teacher practices and the textbook (representing the official education 
system discourse), as well as the private tutoring school teacher practices (representing the shadow 
education system discourse). In this study, our conceptualisation of the institutional discourse about 
proof includes the different proving methods and argument types employed in the proving 
argument, as well as the language employed in expressing the argument. In order to gain deeper 
understanding about the wholistic impact that the official and shadow education institutional 
discourses may have on the students’ relationship with mathematics, we investigated the students’ 
mathematical identity, contrasting their self-identification with their being identified by the others 
(Abreu & Cline, 2003; Kafoussi, Moutsios-Rentzos, & Chaviaris, 2017). In this case, the significant 
‘others’ were the school and private tutoring school teachers. The construct of mathematical identity 
allows us to obtain a measure of the qualitative relationship that the student has with mathematics, 
as well as of its links with the authority figures of the official and the shadow education system. 
Consequently, we address the following questions: a) What aspects of proof and proving practices 
are identified in the three-faceted institutional discourse (the school geometry textbook, the school 
teachers’ practices and the shadow education teachers’ practices)? b) How do the students relate 
these aspects of proof with the three-faceted institutional discourse? c) How do the students identify 
themselves with respect to mathematics and the three-faceted institutional discourses? 

Methods and procedures 
The study was conducted with the students attending the first grade (16 years old) of a public Greek 
“Lykeio” (high school). We included in the study only the students who took private tutoring 

Thematic Working Group 01

Proceedings of CERME11 293



 

 

lessons (N=47; out of 76), their geometry teachers (with the pseudonyms Petros, Katia and 
Michalis) and the private tutoring school teachers (with the pseudonyms Thaleia, Nikolas, Dionysis) 
of a private tutoring school that is chosen by the vast majority of the students. Finally, we 
considered the official geometry textbook (Argyropoulos, Vlamos, Katsoulis, Markatis, & Sideris, 
2010). The data collection was conducted close to the end of the first high school year, including:  

1) School textbook analysis with the task (of both theory and applications) being the unit of the 
content analysis. We drew upon Otten et al. (2014) and Weber (2010) to investigate the 
following: a) proving methods including: direct proof, the Euclidean-type of proving in 
geometry analysis and synthesis (drawing from Pappus; see, for example, Heath, 1956, p. 
442), and reductio ad absurdum; b) argument type including: deductive, empirical, an 
outline of the proof, explicit indication that is already proven elsewhere or that it will be 
proved later (past or future), no argument but explicitly left to be proven by the students, 
and no argument; c) deductive proof language (see Weber 2010): formal (containing mainly 
symbolic language) or narrative (containing mainly natural language).  

2) Structured observations of the school teachers’ teachings (the private tutoring school did not 
give us permission to conduct any observations), in order to obtain a mapping of the proving 
practices communicated in the school class by the teachers. We focused on the teachers’ 
practices about proof reasoning and proof language in the school class.  

3) Semi-structured interviews with the school and the shadow education teachers to investigate 
their proof teaching practices; based on Almeida (2000), Bieda (2010), Moutsios-Rentzos 
and Korda (2018). 

4) Students’ views about proof in geometry questionnaire, to identify their views about which 
proving argument is more likely to appear in the school textbook, the school class or the 
shadow education. We chose a theorem from the school textbook (with no proof included) 
and five arguments (Balacheff, 1988; Weber, 2010): deductive-narrative, deductive-formal, 
abductive, reductio ad absurdum, empirical (see Figure 1).  

5) Being good at maths questionnaire, investigating the way that the students’ identity is 
constructed, contrasting self-identification (“I am … at maths”) and being identified by the 
teachers of the two systems (“My school teacher considers me to be … at maths”, “My 
shadow education teacher considers me to be … at maths”) on a five-point Likert scale (with 
“3”= “average”). 

Mapping the official and shadow education systems in a school unit 
The geometry textbook 

The geometry school textbook includes mainly deductive arguments (see Table 1), which appear in 
the form of direct proof, with reductio ad absurdum and analysis-synthesis proofs having fewer 
appearances. Concerning language, students encounter deductive arguments in narrative form in the 
theory part of the book, while the applications are both in narrative and formal form. Thus, proof in 
the Greek Geometry textbook is communicated mainly as a direct proof, containing deductive-
narrative arguments, which accords with the findings of the analysis of the Greek Algebra textbook 
of the same Lykeio grade (Moutsios-Rentzos & Pitsili-Chantzi, 2014). 
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Appearances of proof and proving Theory Applications Total 

Argument type 

Deductive 73 32 105 

Empirical 6 0 6 

Outline 3 0 3 

None - Past or future 1 0 1 

None - Left for students 4 0 4 

None 35 0 35 

Proving method 

Direct 63 27 90 

Analysis-Synthesis 2 3 5 

Reductio ad absurdum 10 0 10 

Deductive proof language 

Narrative 45 18 63 

Formal 28 14 42 

Table 1: Appearances of proof and proving in the school geometry textbook. 

The school teachers’ proof teaching practices 

Considering their teaching practices, as well as the type of arguments and expected students’ 
activity, deductive reasoning came up with the highest appearance in the school classroom. The 
teachers were mainly asking students about deductive, yet isolated, arguments rather than a 
complete proof, which later were collected and written by the teacher to constitute the proof. In case 
of the students’ having difficulties in finding arguments or synthesising the proof, the teachers 
asked additional questions, feeding the students’ abductive argumentation. In general, abductive 
arguments were quite common, but they were not present in the written proof, as they did not 
include reasoned conjectures (Herbst & Arbor, 2004). No reductio ad absurdum or empirical 
arguments were included in the teachings we observed: neither by the teachers, nor in the students’ 
responses. Considering the language of the arguments, we noticed a divergence between verbal and 
written arguments: the teachers constructed the proof in a more narrative form, while the arguments 
written were closer to formal. The teachers justified this choice, as a result of the limited instruction 
time within the classroom. Moreover, considering types of reasoning, all three teachers stressed the 
importance of abductive reasoning in their teaching, as abductive arguments help students to focus, 
think and find the “right solution”. Nevertheless, their reluctance to include them in the written 
proof is evident, as, for example, Katia stated that she prefers to use the “formal way”, indicating 
the type of arguments used in the official textbook. Commenting about the rest of deductive forms 
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used in the school textbook, the school teachers noted that reductio ad absurdum alienates students, 
as it is not commonly found in the textbook and the teachers themselves don’t use it in the 
classroom. Finally, all teachers agreed that empirical arguments are employed in the school 
classroom, but they all said that they emphasise to the students the fact that the idea “it’ s right 
because it looks like so” is not acceptable in geometry. 

 

Figure 1: One statement, five arguments 

The shadow education teachers’ proof teaching practices 

Considering the shadow education system, the private tutoring school teachers also chose to talk 
especially about abductive reasoning and the abductive arguments they use in the classroom. 
Referring to deductive proofs, they made a special reference to reductio ad absurdum and the 
difficulties the students face, because of their lack of knowledge of mathematical logic. All three 
agreed that they use this proof type only when it’s absolutely necessary in a school textbook case 
and nowhere else. Finally, they also agreed with the school teachers that they make absolutely clear 
in their students that they must reject empirical arguments in geometry, because “it says prove that 
they are parallels, not see that they are parallels” (Nikolas). Considering the argumentation form, 
the teachers stated that while they accept all argumentation forms that their students would produce, 
they prefer to use more narrative and less formal arguments. They also expressed their preference 
for narrative arguments, commenting about textbook’s proofs: “I write it the way I think of it at that 
time or the way my student uses…I want to keep close to the textbook’s proof, but I think the 
language used is very formal and students don’t understand it written this way” (Dionysis). 

The students’ views: the school teacher, the shadow education teacher, the textbook 

Considering the students’ evaluations about the five argument types, it seems that when focussed on 
the official discourse (school textbook and teaching), the students evaluate the presented arguments 
as not to statistically significantly differ from the theoretical neutral, with only the empirical 
argument getting a statistically significant lower evaluation (Mdn=2.0, P=0.005; One-sample 
Wilcoxon Signed Rank Test). Considering the unofficial institutional discourse, three arguments 
(Narrative, Abductive, Reductio ad absurdum) were evaluated as looking statistically significantly 
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closer to what the students encounter in the private tutoring school teachings (respectively, 
Mdn=4.0, P=0.001, Mdn=4.0, P=0.006, Mdn=4.0, P=0.001; One-sample Wilcoxon Signed Rank 
Test). When considering both official and shadow education, the Friedman’s ANOVAs (followed 
by Wilcoxon Signed Ranks Tests with Bonferroni correction applied) revealed that the students 
considered three argument types (Abductive, Reductio ad absurdum, Empirical) to be statistically 
significant more like the ones they encounter in the shadow education teaching in comparison with 
the official system: Abductive (teaching and textbook; respectively, P=0.024, P=0.001), Reductio 
ad absurdum (only textbook; P=0.001), Empirical (teaching and textbook; respectively, P=0.497, 
P=0.003). No statistical differences were identified in the Deductive and Narrative arguments. 

Concerning the students’ mathematical identity about their ‘being good at maths’, the students 
thought that their school teacher’s identifying them as being good at maths, would not statistically 
differ from “Average” (see Table 2). In contrast, their self-identification and their being identified 
by the shadow education teacher is statistically significantly higher than the “Average’. When 
considering both systems, it is revealed that the students’ self-identification does not statistically 
significantly differ from their school teacher’s identification, but it is statistically significantly lower 
than their shadow school teacher’s identification. 

Being identified by the … M Mdn P a P b school classc shadow education 

school class teacher 3.15 3.00 0.340 <0.001   

shadow education teacher 4.17 4.00 <0.001  <0.001  

Self-identification 3.38 4.00 0.028  0.312 <0.001 

Notes. a One-sample Wilcoxon Signed Rank Test (Median = ‘3’: “Average”). b Friedman’s 
ANOVA. c Wilcoxon Signed Ranks Test (with Bonferroni correction applied). 

Table 2: Student’s identification about their “being good at math” 

Re-visiting the complexity in the school unit: concluding remarks 
Considering the institutional discourse, the school teachers and the textbook seem to converge. The 
textbook analysis revealed the dominance of deductive, narrative arguments, in the type of direct 
proof, with few appearances of proof by analysis-synthesis or reductio ad absurdum. The same 
argument types are evident in the observed proving practices of the school teachers, though they 
state the importance of abductive arguments in the conjecturing phase of proving. Considering the 
shadow education teachers’ reported practices (since no observations were conducted), we 
identified a bigger variety of the type of arguments and the language used. While they uphold the 
view of geometry proof as a deductive argument, they explicitly stated that most of the times the 
teacher has to add more ideas and to differentiate the argument or the language used, in order for 
the solution to be more transparent and accessible to the students. Furthermore, they agreed with the 
school teachers about the importance of abductive reasoning and argumentation in teaching, as well 
as about their stressing to the students that empirical arguments are not acceptable in geometry. 

The students’ views seem to converge with the institutional discourse, as the empirical and the 
reductio ad absurdum argument are the least likely to be chosen by the students. Furthermore, the 
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fact that the institutional discourse favours the narrative form is evident in the students’ views. The 
students’ views also support the private tutoring schools claims for a richer proof repertoire, as three 
arguments types (Narrative, Abductive, Reductio ad absurdum) were evaluated as being statistically 
significantly looking closer to what they encounter in the private tutoring school teachings than the 
school class teaching. Though the empirical argument was not evident in our observations and the 
teachers strongly argued against its being a valid argument, the students’ views revealed that for 
them it is an argument that was missing only in the school textbook.  

The students’ self-identification about their being good at math converges with their school teacher, 
even though they think that their private tutoring school teacher would think higher of them. Thus, 
though both teachers are sources of mathematical authority, the students’ self-identification seems 
to be aligned with the teacher of the official system. The importance of this alignment lies on the 
general nature of the phrase “being good at math”, which embodies the students’ positioning about 
mathematics. Hence, the students identify themselves as being good at mathematics or not, in line 
with the school teachers’ sociomathematical norms. 

Consequently, the complex relationship of the two systems is evident on their links with the 
students’ views about proof. The shadow education system seems to offer a richer proof experience, 
which remains essentially unofficial, in meaning it does not significantly affect the students’ 
mathematics identity construction. Further research should be conducted to map these relationships, 
as they develop through the three Lykeio grades; especially in the last grade of Lykeio, where the 
national exams (required to enter university) are a third pole of authority that transcends all school 
units, thus affecting the authority of both the shadow education teacher and the school teacher. 
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Introduction 
In proving processes, it would be important for us to focus not only on proofs but also on definitions. 
For example, if the same mathematical object can be defined differently, the chosen definition plays 
a crucial role in proving different results on properties of the object. The previous studies related to 
definition and defining focus on interactions between concept images and concept definitions (Vinner, 
1991; Zandieh & Rasmussen, 2010), or interactions between examples and definitions (Zaslavsky & 
Shir, 2005; Zazkis & Leikin, 2008). While it is important for us to focus on the role of the example, 
it is also important to notice the Meta-Knowledge about Definition (MKD). MKD would be 
characterized as a controller of constructing definitions. Therefore, it is necessary to answer the 
question: How can Meta-Knowledge about Definition foster students’ defining activities? 

Method 
The method is theoretical exemplification for prospective empirical investigation, which is the 
construction a framework and the use it through some examples. When we define mathematical 
objects, the definitions would be controlled by some criteria. Here, the definitions themselves are 
described by object-language and the criteria of definitions are described by meta-language. Van 
Dormolen & Zaslavsky (2003) proposed the seven criteria of definition: hierarchy, existence, 
equivalence, axiomatization, minimality, elegance, and degenerations. Table1 is proposed by 
reorganizing these criteria as MKD. It is expected to characterize students’ defining activities from 
the perspectives of definitions, examples, and MKD.  

Purpose: Define it relatively according to the purpose or the context. 

Existence: Confirm the object to define exists in a system.  
Equivalence: Construct equivalent statements about the object to define. 
Arbitrariness: Define it by selecting a statement from the equivalent statements. 
Coherence: Define it by using undefined terms and defined terms. 
Non-circularity: Define it not to make definitions circular reasoning. 
Non-contradiction: Define it not to be a contradiction to other definitions.  
Minimality: Define it by minimal conditions for the existence. 
Elegance: Define it more nicely, more simply, or more applicably. 
Exactness: Define it exactly to exclude examples not to expect.  

Table1: The components of Meta-Knowledge about Definition 
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Result and Conclusion 
By using the components of meta-definition, we defined ten special quadrilaterals: (1) Square, (2) 
Rectangle, (3) Rhombus, (4) Parallelogram, (5) Isosceles trapezoid, (6) Kite, (7) Cyclic quadrilateral, 
(8) Trapezoid, (9) Ellipse quadrilateral, (10) Tangential quadrilateral (See Figure 1). The purpose of
defining was to construct a hierarchical classification focusing on sides and angles. According to the
elegance, we defined these quadrilaterals focusing on duality between sides and angles. The
quadrilaterals of (3), (6), (9), and (10) were defined by focusing on equality of sides, while the
quadrilaterals of (2), (5), (7), and (8) were defined by focusing on equality of angles. Furthermore,
according to the exactness, the definition that “A kite is a quadrilateral in which two pairs of adjacent
sides are equal” was not accurate. It was necessary to correct “two pairs” to “distinct two pairs” for
exact definition. As a result, we constructed the hierarchical classification focusing on sides and
angles, and discovered the ellipse quadrilateral which is an unfamiliar figure but should exist certainly.

It is concluded that students’ mathematical defining activities could be fostered through some 
processes in which mathematical definitions are controlled by MKD. We could use the components 
of MKD as a framework for analyzing students’ mathematical defining activities. The implication for 
mathematical practice is to pay attention not only to the interactions between example and definition 
but also to the role of MKD. It is important for teachers to prepare teaching materials that will 
facilitate students’ activities of examining definitions at a meta-level.   
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In tertiary education, proof comprehension, that means reading and understanding written proofs, is 
an important activity in learning processes. However, to our knowledge there are no (empirical) 
studies analyzing the influence of reading strategies and the students’ individual characteristics on 
proof comprehension, yet. We developed a proof comprehension test in analysis based on an 
assessment model of Mejia-Ramos et al. (2012) to test the relation of students’ individual 
characteristics to proof comprehension. To get a first in-depth look which factors influence proof 
comprehension we analyzed the data of 64 students in their second semester in university. 
Additionally, we asked the students about their use of reading strategies. The results show that proof 
comprehension correlates with prior knowledge and with the use of single reading strategies. 
Possible consequences for mathematical higher education are discussed.   

Keywords: Proof comprehension, reading strategies, individual characteristics. 

Introduction 
Learning how to prove is one of the main components students have to encounter in tertiary 
mathematics programs. In order to understand, what a proof is and how to construct proofs, students 
read many proofs for example in their lectures or in their text books. Those proofs are given to the 
students by their lecturers, not only to show them, that an assumption is true, but also to teach proof 
methods and general ideas of mathematics that are used in the proof (Mejia-Ramos, Fuller, Weber, 
Rhoads, & Samkoff, 2012; Weber 2012). In many papers, understanding proof covers and is 
measured by different aspects like comprehending the written text, validating if a given argument can 
be categorized as a proof, evaluating of given arguments or even constructing a new proof. Stylianides 
(2015) questioned the validity and comparability of those different research findings: 

“Take, for example, a study that draws conclusions about students’ understanding of proof based 
on students’ argument constructions in response to a number of proving tasks. This study is likely 
to report a poorer picture of students’ understanding of proof than another study that considered 
also students’ evaluations of their own constructions (…)” (Stylianides, 2015, p. 213) 

Selden and Selden (2015) mention four concepts related to proof or proving in mathematics education 
research literature: proof construction, proof validation, proof evaluation, and proof comprehension. 
Proof construction is about doing proofs of given statements. Distinguishing if a written argument is 
a (correct) proof is defined as proof validation, and assessing if a given proof is nicely written is 
meant by proof evaluation. Lastly proof comprehension means to understand a written and correct 
proof. In this contribution, we focus on proof comprehension in the field of “analysis”, concrete which 
individual characteristics and reading strategies may influence proof comprehension.  
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Theoretical Framework and related literature 
The definition of proof comprehension has to cover many different aspects and is connected to the 
question of how to measure proof comprehension. A first approach in this direction was done by 
Mejia-Ramos et al. (2012) by developing an assessment model for proof comprehension. Their model 
consists of seven dimensions, divided into two categories without a hierarchical order. Understanding 
a proof on a local basis includes to understand the meaning of the proof’s terms and statements, the 
logical status of statements and proof framework and the justifications of claims. To understand the 
proof on a holistic basis, one has to summarize the proof via the high-level ideas, identify the proof’s 
modular structure, transfer the general ideas or methods to another context and illustrate the proof 
with examples. Based on this assessment model, Mejia-Ramos and colleagues constructed proof 
comprehension tests and also gave an instruction manual on how to develop and validate such proof 
comprehension tests (Mejia-Ramos, Lew, La Torre, & Weber, 2017; Mejia-Ramos et al., 2012). 
Likewise, Hodds, Alcock, & Inglis (2014) developed proof comprehension tests and measured a 
positive influence of their self-explanation training on the proof comprehension of undergraduate 
students. To solve items of a proof comprehension test correctly, learners have to read the proof and 
sometimes to combine the content of the proof with prior knowledge. Items should be avoided that 
can be solved by referring to the prior knowledge only and not to the proof. These items would only 
assess prior knowledge and not proof comprehension. 

In order to analyze students’ behavior while trying to comprehend written proofs, Weber (2015) 
videotaped and analyzed four excellent students in their senior year while reading proofs. He 
identified five strategies which the students used to foster proof comprehension: “(i) trying to prove 
a theorem before reading its proof, (ii) identifying the proof framework being used in the proof, (iii) 
breaking the proof into parts or sub-proofs, (iv) illustrating difficult assertions in the proof with an 
example, and (v) comparing the method used in the proof with one’s own approach” (Weber, 2015, 
p. 289). In a follow-up study reported in the same paper, Weber asked 83 mathematicians, whether 
they desired their students to implement those strategies, and most mathematicians did. In a separated 
study, Weber & Mejia-Ramos (2013) found similar strategies while watching major students read 
proofs and also present results indicating that a majority of students claimed not to use these 
strategies. In contrast to this Weber & Mejia-Ramos (2011, 2014) interviewed mathematicians why 
and in which way they read proofs. One reason to read proofs was to discover the proofs’ methods 
which may be useful for the mathematicians own research. To get the main ideas, the mathematicians 
zoom in on a proof’s problematic parts and zoom out and look at the high-level structure. 

As far as we are aware, there is no (empirical) study analyzing whether the use of those strategies has 
indeed an influence on proof comprehension and whereas students benefit from the strategies 
mathematicians use. Psycho-linguistic studies showed that general reading comprehension correlates 
with prior knowledge and the use of reading strategies (e.g. Carell, 1983; Crowley & Azevedo, 2007; 
Pearson, Hansen, & Gordon, 1979;). We find similar results in mathematics education research 
referring to other concepts of proving. For example, Sommerhoff et al. (2016) analyzed the influence 
of domain specific and domain general cognitive student prerequisites on proof validation and 
showed, that conceptual mathematical knowledge influences the students’ proof validation skills. 
Those results suggest a possible relation between prior knowledge and the use of reading strategies 
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on proof comprehension. Additionally, psycho linguistic researchers looked at the relation between 
individual characteristics and reading or text comprehension. For example, individual interest has a 
positive influence on text comprehension (see e.g. the overview of Schiefele, 1992). Despite this, we 
have not yet found an analysis concerning the relation between individual characteristics like interest 
or self-concept and proof comprehension. 

All in all, we assume that the analysis of the relationship between reading strategies, individual 
characteristics and proof comprehension provide a deeper insight into the role of proof 
comprehension in undergraduate learning processes. Besides, such an analysis probably contributes 
to develop interventions supporting undergraduate students improving their proof comprehension.  

Research questions 
In this study we analyze the relation between proof comprehension, the use of reading strategies, and 
individual characteristics like interest in proof. Therefore, we focus on the following research 
questions: 

1. Are proof reading strategies correlated with proof comprehension?  
According to the results of Weber (2015) and Weber & Mejia-Ramos (2013) we expected the 
above mentioned five reading strategies to influence proof comprehension. In addition, we 
expected some influence of the reading strategies based on the self-explanation training of 
Hodds et al. (2014). 

2. Do individual characteristics (like self-concept, interest or prior knowledge) correlate with 
proof comprehension? 
General reading comprehension research showed relations between reading comprehension, 
prior knowledge and some individual characteristics, especially interest. We expected prior 
knowledge to influence significantly proof comprehension and we assumed at least a little 
relation between proof comprehension and interest in proof or interest in university 
mathematics. 

Method 
Sample 

Our sample consist of 64 students (21 students in a bachelors’ program, 34 students in a teacher 
education program, to 9 students we have no information concerning their study program) in their 
second semester at a German university. Both types of students heard the same lectures till now. The 
mean value theorem, which was used in the proof comprehension test, was part of their Analysis I 
lecture, but with a slightly different proof. 

Measuring proof comprehension 

Based on the assessment model of Mejia-Ramos et al. (2012), we developed a proof comprehension 
test to the mean value theorem, which states that if f is a continuous function on a closed interval 
[𝑎𝑎, 𝑏𝑏] ⊂ ℝ and differentiable on the open interval (𝑎𝑎, 𝑏𝑏), then there exists a point 𝑐𝑐 ∈ (𝑎𝑎, 𝑏𝑏), such that 
the tangent in the point c equals the secant through the endpoints a and b of the interval. The proof of 
the theorem uses a helper function h, and distinguishes two cases, h constant and h not constant, to 
show the assertion. 
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As the proof is not written in detail, for example not all justifications are explained, we could develop 
items based on the assessment model of Mejia-Ramos et al. (2012). First, we constructed open-ended 
items for every dimension of the assessment model. Then we wanted to change most of the items to 
multiple-choice items because the objectivity of the test is raised in this way. Still, most of the items 
remained as open items, because it was not possible to create good distractors. The first version of 
the test was given to experts of the khdm (Kompetenzzentrum für Hochschuldidaktik in Mathematik, 
in english: Centre for Higher Mathematics Education) for a review. We improved the test based on 
their answers and comments. Afterwards the new version was given to 52 students at the end of their 
first semester in an analysis lecture. Their answers were analyzed, and the test again revised. The 
final test had 10 items, 5 items referring to a more local comprehension and 5 to holistic 
comprehension. Four of them were multiple-choice Items. This is an example of a multiple-choice 
item referring to holistic comprehension: 

 We prove ℎ(𝑎𝑎) = ℎ(𝑏𝑏). Why is this useful in the proof? 

ℎ(𝑎𝑎) = ℎ(𝑏𝑏) shows that ℎ is differentiable in (𝑎𝑎, 𝑏𝑏). (13.0%) 

If ℎ(𝑎𝑎) ≠ ℎ(𝑏𝑏), then the maximum or minimum of ℎ could be on the endpoints 
of [𝑎𝑎, 𝑏𝑏]. (right answer, 53.7%) 

If ℎ(𝑎𝑎) ≠ ℎ(𝑏𝑏), then we could exclude the case „ℎ constant“. (24.1%) 

ℎ(𝑎𝑎) = ℎ(𝑏𝑏) shows 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏) and therefore 𝑓𝑓 could be constant. (9.3%) 

 Figure 1: Item in the proof comprehension test (percentage of chosen answers, N = 62) 

We took care, that the items could not be answered by prior knowledge only. Each item was scored 
dichotomously, i.e. one point for a solution which was accepted as correct and zero points for other 
solutions. Concerning the multiple-choice items only one answer was correct (1 point). The open 
items were coded separately by two people given 1 point for a correct answer with only small mistakes 
(for example a missing declaration of variables used in the answer) and zero points for wrong answers. 
A missing answer was coded zero points if the student still answered items afterwards so that we 
assumed that the student had have enough time for answering the question. 

Measuring the use of proof-reading strategies 

In addition to the proof comprehension test, we developed different scales to assess students’ use of 
proof-reading strategies on a four-point Likert scale from 1 (disagree) to 4 (agree). In total we 
developed 22 items covering different kinds of reading strategies, using ideas from a German reading 
comprehension test (Schlagmüller & Schneider, 2007), the self-explanation training from Hodds et 
al. (2014), and the expected effective reading strategies (i) – (iii) from the study of Weber (2015) 
mentioned above. We assigned the proof-reading strategies to 5 different scales, which are listed in 
table 1. 

Scale Example 

Before reading (4 items) “I think about the assertion before I read the proof.” 
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While reading (4 items) “While reading the text, I highlight important propositions.” 

Elaborated reading (5 items) “I build connections between the different ideas of the proof.” 

Reproductive reading (4 items) “I sum up each line of the proof in my own words.” 

After reading (5 items) “I discuss the proof with my learning group.” 

Table 1: Learning strategies sorted in scales 

Measuring individual characteristics 

Afterwards the students got a test to examine their prior knowledge in analysis (Rach & Heinze, 
2017). The eight test items were coded dichotomously and students could gain up to 8 points in this 
test. The sum of their answers was computed to a test score for further analysis. Moreover, we asked 
the students to state their German and mathematics school grades and their grade of their analysis I 
course. At last we asked the students to estimate statements about other individual characteristics. 
They rated statements covering their interest in school and university mathematics (Ufer, Rach, & 
Kosiol, 2017), their interest in proof (Ufer, Rach, & Kosiol, 2017), their self-concept referring to 
proof (Ufer, Rach, & Kosiol, 2017) and to school respectively university mathematics in general 
(Ufer, Rach, & Kosiol, 2017) and their satisfaction referring to their university career (Schiefele & 
Jacob-Ebbinghaus, 2006). Because of practical constraints, some characteristics were only covered 
by one item. The scales of the individual characteristics (interest and self-concept) had good till very 
good reliabilities, so the individual mean value of a single student on a scale was computed if the 
student answered half of the items of the scale at least. In contrast, the reliabilities of the predicted 
scales for the proof-reading strategies were not good, so we only inserted single items in the analysis. 

Results 
The reliability of the proof comprehension test (M = 3.59, SD = 1.83, Max = 10 points, α = .57) was 
medium. The single items’ mean value was M = .15 - .76 (SD = 0.36 - 0.50, Max = 1). An explorative 
factor analysis did not show any empirical evidence for different factors of proof comprehension, a 
local or a holistic understanding, so we measured proof comprehension by the sum of the whole test 
items as a test score. The following correlations were analyzed with Pearson correlation coefficient.  

RQ 1: Are proof reading strategies correlated with proof comprehension? 

Analyses show that there were only two correlations between proof comprehension and the use of 
single proof-reading strategies (negative correlation: “I skim read the proof and concentrate on 
important aspects” (r = -.28, p < .05), positive: “I divide the proof into coherent parts” (r = .27, 
p < .05)). The positive correlation refers to Weber’s (2015) third suggested useful proof-reading 
strategy. The correlation between Weber’s (ii) proof reading strategy and proof comprehension is 
nearly significant (r = .21, p < .1). As there are not many correlations, we looked at the mean values 
of the proof-reading strategies for further analysis. The absolute interpretation of mean values is 
dangerous but carefully interpreting, it can give us a first insight into students reading strategies. 
Some of the proof-reading strategy items have high mean values, meaning that nearly all students 
said they do this while reading the proof, for example “I think about the assertion, before I read the 
proof” or “I read the proof several times”. Whereas the use of other strategies was only mentioned by 
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a few people, for example “I prove the assertion on my own before reading the proof” which is the 
first of Weber’s (2015) assumed, useful reading strategies. 

RQ 2: Do individual characteristics (like interest, self-concept or prior knowledge) correlate 
with proof comprehension? 

As expected, proof comprehension correlates positively with the grade in the last analysis lecture 
(r = .39, p < .01) and with the prior knowledge in analysis (r = .46, p < .01). There is no correlation 
of the students’ final school grade or their last mathematics school grade. The proof comprehension 
only correlates negatively with the students’ interest in school mathematics (r = -.27, p < .05), there 
were no other significant correlations.  

Discussion 
Proof comprehension is an important activity in university mathematics, however students struggle a 
lot by performing this activity. To get a better insight into proof comprehension, we developed a proof 
comprehension test in the field of analysis to analyze the relation between proof comprehension and 
students’ individual characteristics, based on the assessment model of Mejia-Ramos et al. (2012). Our 
results show no empirical evidence for a separated local or global comprehension of proof. This 
supports the results of our first study (Neuhaus & Rach, 2018) we made with students at the beginning 
of their university career. We cannot see any differences between local or holistic items concerning 
the students’ answers. Mejia-Ramos et al. (2012) also don’t view the different types of their 
assessment model as part of a hierarchy. So while an empirical distinction between local and holistic 
proof comprehension might be difficult, we think that a theoretical separation is still helpful to get 
the whole picture of proof comprehension and to develop items for proof comprehension tests.  

The correlation of the proof comprehension with prior knowledge was expected and shows that 
undoubtedly, for understanding proofs, a solid basis of concept understanding in the field is needed. 
However, there were no positive correlations between proof comprehension and the students’ interest 
in university mathematics or their mathematical self-confidence, which is somewhat surprising. We 
assumed that at least interest in proofs would predict proof comprehension with a small influence. 
Instead of this, a negative correlation between interest in school mathematics and proof 
comprehension suggests that interest in school mathematics and interest in university mathematics 
have to be analyzed separately.  

Only one of Weber’s (2015) expected useful proof-reading strategies and none of the reading 
strategies based on Hodds et al.’s self-explanation training (2014) correlate with proof 
comprehension, but as only single items were included in the analysis, further studies need to be done. 
Another difference is, that Weber (2015) looked at good students reading proofs and predicted the 
used reading strategies to be useful to generate proof comprehension, but maybe only better students 
can benefit from those strategies. Thus, for the practical context, one should be aware that not for 
every student every strategy is helpful. In addition, only few students declared to use one of Weber’s 
suggested helpful strategies and some other strategies, fitting the results of Weber & Mejia-Ramos 
(2013). Maybe the strategies need to be given to and practiced by the students in advance so they 
could benefit more from proofs given to them in their lectures.  
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Our proof comprehension test only refers to one proof in one mathematical topic (in this case 
analysis). For a broader view, proof comprehension has to be measured by different proofs in different 
topics. Additionally, we only assessed a partial part of the students’ proof comprehension as they 
were allowed to look at the proof while answering the proof comprehension test and maybe the 
questions indicated them to look to the proof in more detail. Furthermore, the sample is rather small 
and the students only report a self-estimation for their individual characteristics and their use of the 
proof reading strategies. There is no real evidence in which way and how often they really use the 
strategies. That’s why we want to reproduce the presented results with a bigger sample. Additionally, 
research is needed on the effectiveness of proof-reading strategies, the correlations between proof 
comprehension and other concepts of proving, like proof validation, and proof comprehension in 
different topics. With our study, we did a first step to get a deeper look into the concept of proof 
comprehension that may help us in the future to support students in this activity. 
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Abduction can function in argumentation and proving processes in different ways. In this paper we 
focus on the ways in which abductive arguments, taking place in argumentation and proving 
processes, can be reconstructed in the frame of a Global Argumentation Structure (GAS). We 
propose two different ways to model abductive arguments within a GAS, with a forward or a 
backward flow, depending on the function of these arguments in the whole argumentation. 

Keywords: Abduction, argumentation, proof, Toulmin-model, Global Argumentation Structure. 

Introduction 
Researchers in mathematics education have seen abduction either as process of reasoning 
backwards (a kind of reversed deduction) (Pedemonte, 2002; Knipping, 2003) or as a process for 
creating hypotheses (Peirce, 1878; Pease & Aberdein, 2011). The purpose of this paper is to 
examine the ways in which abductive arguments have been modelled up to now and to propose two 
different ways of modelling them, depending on their function in the argumentation. We are 
interested in modelling abductive arguments in the frame of the whole Global Argumentation 
Structure (Knipping, 2003) of the argumentation or proving process taking place, rather than in 
isolation from the other arguments taking place (as done for example by Pedemonte, 2002).  

Abduction in argumentation and proof 
Abduction is an area of research that has received increasing emphasis in mathematics education, in 
reference to a number of different processes. Here we discuss abduction in mathematical 
argumentation. As we consider mathematical proof to be a kind of argumentation, our discussion 
includes also abduction in mathematical proof.  

A simple way to distinguish between abduction and deduction is to consider how they connect a 
case to a result via a rule. An example often cited in the mathematics education literature comes 
from an article Charles Saunders Peirce published in Popular Science Monthly in 1878. At this time 
he referred to abduction as “hypothesis”, and characterised the two processes as shown in Table 1 
below. From this example it is evident that abduction can be thought of as a reversed deduction, 
reasoning from a Result via a Rule to a Case, rather than from a Case via a Rule to a Result. 

Deduction. Hypothesis. [Abduction.] 

Rule.—All the beans from this bag are white.  
Case.—These beans are from this bag.  
∴ Result.—These beans are white. 

Rule.—All the beans from this bag are white.  
Result.—These beans are white.  
∴ Case.—These beans are from this bag.  

Table 1: Peirce’s syllogisms for deduction and abduction (1878, p. 472; CP 2.623) 
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Toulmin (1958) provides a model that can be used to analyse arguments in general, not only 
deductive arguments. In his model (see Figure 1), an argument includes the following elements: 

C (claim or conclusion) the statement of the speaker, D (data) are data justifying C, W (warrant) the 
inference rule that allows data to be connected to the claim, B (backing) is reason to believe W, Q 
(qualifier) expresses how much to believe C, R (rebuttal) tells you when belief in C is not supported  

Figure 1: The Toulmin model of an argument (1958) 

Toulmin considered only two types of reasoning when he created his model, namely deduction and 
induction. There are however, several cases in the literature of researchers modelling abduction 
using Toulmin’s model in different ways. In Table 2 we use Peirce’s example and terminology as a 
common reference in order to describe and depict the different ways in which abduction has been 
modelled using Toulmin’s terminology. 

Peirce Pease & Aberdein (2011) Pedemonte (2002) Knipping (2003) 

Rule W W W 

Result D C C 

Case C D? D 

Function of 
abduction 

Generating hypothesis Reasoning backwards Reasoning backwards 

Structure of 
abduction (Flow) 

Forward Forward Backwards 

Table 2: Peirce’s abduction modelled with Toulmin’s terminology 

Pease and Aberdein (2011) keep the forward flow (arrows pointing from left to right) of Toulmin’s 
model but they characterise as a datum the Result that is known and needs no justification, and the 
claim as the Case that is inferred. They express the uncertainty of the claim by employing a 
qualifier (the word “probably”) before the claim (see Figure 2). Pedemonte (2002) was the first 
researcher in mathematics education to use Toulmin’s model to describe abduction. She too models 
an abductive argument with a forward flow but reverses Pease and Aberdein’s (2011) placement of 
data and claim. She considers a claim to be the known target of the inference (Result) and the datum 
to be the unknown fact (Case), which must hold in order for the claim to stand. She denotes the 
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status of the unknown datum with a question mark next to the letter D representing the datum. The 
difference between Pease and Aberdein’s, and Pedemonte’s modelling of abduction may arise 
because of the different functions they attribute to it. Pease and Aberdein see abduction as a process 
of generating a hypothesis, whereas Pedemonte sees it as a reversed deductive process, as 
“reasoning backwards”. It is also important to note that these researchers model individual 
arguments, in isolation from other arguments.  

 
Figure 2: Structure of an abductive argument, Pease and Aberdein (2011, p.12) 

In contrast Knipping (2003, 2008) describes a way of linking together arguments analysed using the 
Toulmin model to describe larger structures of argumentation. She reconstructs the whole 
argumentation of students, building a Global Argumentation Structure (GAS), which reveals a 
complete overview of the argumentation that took place. For example, Figure 3 shows her analysis 
of the argumentation in a lesson in which the Pythagorean theorem was proven. Knipping (2003), 
like Pedemonte, sees the function of abduction as “reasoning backwards”. She reconstructs complex 
deductive argumentation processes, which may contain some abductive arguments. The flow of the 
overall GAS is a forward one, but the flow of the abductive arguments is a backward one (see 
Figures 3 and 4). Like Pedemonte (2002) she considers the claim to be the Result of the inference 
and the datum to be the Case, which must hold in order for the claim to stand. But she marks the 
abduction differently, by reversing the arrow to indicate the backward flow, and she does not use a 
question mark next to the letter D to indicate the unknown fact.  

 
Figure 3: GAS of discussion on the Pythagorean theorem, Knipping (2008, p. 437) 

The arrow in AS-X in Figure 3 marks the abduction. The students know they want to conclude that 
ABCD is a square, and they use abduction to go from this desired conclusion to the datum 
(BCD=90°) needed. The dotted line marks the shift in focus to finding an argument for the 
conclusion (BCD=90°). Through AS-2 and AS-3 they establish BCD=90° and combining this 
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datum with the previous established statement ABCD is a rhombus, they deduce the desired 
conclusion, ABCD is a square. 

Figure 4: Abductive argument reconstructed with a backward flow, Knipping (2003, p.8) 

Methodology of the data analysis 
In the following we compare two Global Argumentation Structures developed following the 
procedures outlined in Knipping and Reid (2013). They describe a three-stage process: 
reconstructing the sequencing and meaning of classroom talk; analyzing arguments and 
argumentation structures; and comparing argumentations to reveal their rationale. 

Here we are chiefly interested in comparing two Global Argumentation Structures that emerged in 
two mathematics classrooms and which have some interesting differences regarding the abductive 
arguments taking place in them. We will describe each context and the abductions that occurred 
before comparing the two. 

Ms James’ classroom 
The abduction described here occurred in Ms James’ grade 9 (age 14-15 years) classroom in 
Canada. The class was trying to explain why two diagonals that are perpendicular and bisect each 
other define a rhombus. The students had discovered and verified this property while working in a 
Dynamic Geometry Environment (DGE). 

Figure 5 shows the reconstructed argumentation stream that occurred after the class had identified 
the given information in the situation and had recorded it in the diagram Ms James was drawing on 
the board. She then asked the class what information was needed to show that a shape is a rhombus, 
given the definition. This stream is interesting because the statements that were made first 
chronologically, appear last, on the right hand side, and vice versa. This is similar to the abductive 
stream described by Knipping (2003) in that the argument goes backwards from the intended 
conclusions to the data needed to deduce that conclusion. It differs, however, as it involves several 
abductive steps connected in a stream.  

There are linguistic markers of what is going on in the transcript. For example, Ms James says: 
Ms James: If I can prove that that is the same length as that, is the same length as that, 

is the same length as that [draws in the segments AB, BC, CD, and DA]. If I 

can prove that, I’m done. Rhombus. [Statement T-28 in Figure 5] 
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The phrase “If I can” marks this as an abduction. In a classroom proving process, where the main 
flow of the argument is deductive, it makes sense to diagram such abductions in this way, as if they 
were deductions, but marking them with arrows showing the flow of the argument in the opposite 
direction. This is shown in the GAS in Figure 6.  

 
Figure 5: The abductive argumentation stream from Ms James’ class (the parenthetical comments 

after each statement indicate speaker and transcript line) 
 

 
Figure 6: The GAS from Ms James’ class. The shaded area is the abductive stream shown in Figure 5 

 

Axel and Dave  
In the case presented here two 10th grade students (Axel and Dave) in a German classroom worked 
together on a geometry task designed in a DGE. All the students in the classroom worked on the 
geometrical tasks in pairs and at the end all the tasks were discussed in a whole-class discussion 
with the focus being the argumentation the students provided to justify their answers. In the task the 
DGE window was divided into two sub-windows (see Figure 7). On the right sub-window (3D 
Graphics) there was a 3D coordinate system in which a solid had been constructed and hidden, and 
the plane xOy. On the left sub-window there were three sliders (h for height, n for tilt and d for spin) 
that the students could manipulate in order to move the invisible solid, and a two-dimensional 
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depiction of the intersection of the solid with the xOy plane. The main question set to the students 
was: “What solid do you think this could be, judging from its cross-sections?”. The students were 
provided with a worksheet, which included an Exploration Matrix with specific (h, n, d) slider-
positions they could use if they wanted. They were asked to justify their answers in writing. The 
students were not told how to justify their conclusions, only that they should attempt to explain the 
validity of their conclusions and to be as complete (leaving no doubts) as possible. There was no 
requirement that they follow a deductive structure, or that they produce a formal proof. 

  
Figure 7: Task in DGE – Position (h=0,55, n=90°, d=0°) of hidden solid 

The GAS presented here (Figure 8) represents Axel and Dave’s argumentation that took place in 
their discussion during their pair work alone, before the classroom discussion. Axel and Dave used 
the positions in the Exploration Matrix for their explorations. They started by generating four 
hypotheses and during their exploration they refuted step-by-step three out of the four hypotheses. 
The remaining hypothesis (H16) became then a claim (Cl23-25), which they would later provide an 
argument for, in order to verify it. After the verification the epistemic value (Duval, 2007) of the 
statement “The solid is a cone” changes and from a claim it becomes a conclusion (C118.2-120). This 
GAS has two phases (Argumentation Streams). In the first phase (AS-1) belongs the process of 
generating hypotheses, during which the students suggest possible solutions to the problem, basing 
their decisions on the data they gather. This is then followed by the second phase (AS-2), during 
which more data are provided to support the claim (Cl23-25). With the support of these new data, the 
claim is then treated by the students as a conclusion (C118.2-120).  

The abduction here (AS-1) is not represented as reasoning backwards, rather a process of 
suggesting multiple possible solutions to a problem all of which, at least initially, seem plausible. 
Here the chronological flow of the statements made corresponds to their logical function in the 
argumentation. For example, the conclusion C118.2-120 (which is usually the last inference drawn in 
an argumentation) comes last both chronologically (in the argumentation) as well as structurally (in 
the GAS). In such cases, in which speculation is required and the students engage in hypothetical 
reasoning, it makes sense to diagram abduction with a forward flow. 

In the case of Axel and Dave, unlike in that of Ms James’ classroom, there are no warrants in the 
GAS. This should not be interpreted as that the students had no warrants in mind when creating 
hypotheses or drawing conclusions. The absence of warrants is merely the result of our 
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methodology according to which, what is depicted in the reconstructed argumentation is only what 
the students state explicitly, and not what they may have been thinking but have not said. 

 
Figure 8: The GAS in Axel and Dave’s discussion 

 

Conclusions 
Abduction has two different functions, explaining and exploring, and depending on the function that 
it has in argumentation, the reconstructed Global Argumentation Structure is also different.  

In Ms James’ classroom abduction was used to reason backwards from a desired conclusion to the 
data needed to deduce it. The students know that the shape is a rhombus and they are seeking data 
that can connect that conclusion to what they know about the diagonals. They are using abduction 
in order to explain the known conclusion.  Most of the arguments in the GAS are deductive, and it 
is important to note that the final ‘official’ proof omits the abductive steps. Having abduced the 
necessary data, they then establish it deductively from other data they already know, and then use it 
to deduce their desired conclusion. In the case of Axel and Dave, abduction is used to generate 
hypotheses.  They are exploring to discover something new. Their hypotheses are then tested in the 
second phase of their argumentation, through comparison with data generated in the DGE.  

The differences in the GASs in these two situations reveal an important difference in the way 
abduction functions in them. This shows how such an analysis can reveal not only the presence of 
an abduction but also the role it plays in the overall argumentation. The ways in which the 
abductions in Ms James’ classroom and Axel and Dave’s pair work were represented, as flowing 
backwards or forwards, reflect the functions of the abductions. When abductions are used to 
explain, the flow is backwards to the facts that explain the conclusion. When abductions are used to 
explore, the flow is forwards, from data that has been collected to possible results, and includes 
qualifiers to mark the epistemic value of the inference. The role of qualifiers is vital in order to keep 
a forward flow for the abduction in an overall abductive GAS. 

AS-1 

AS-2 
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These differences in function, in turn, depend on the nature of the mathematical tasks. In the case of 
Axel and Dave the geometrical object the students are asked to work with is unknown and they are 
not told that they need to prove anything. The focus of their argumentation is the generation and 
justification of hypotheses, rather than proof production. It is not even possible for them to 
deductively prove a hypothesis is correct; they can only disprove false hypotheses. In Ms James’ 
case the task was explicitly to find a proof of a given statement. The status of the statement as a 
conclusion is already established, by the students empirical explorations earlier and by the teacher’s 
authority. In such a proof production task it is clear that the overall structure must be deductive, and 
abductive argument is incidental, not essential to the argumentation. The final proof could have 
been produced without using abduction. 

We have shown in this paper how Pease and Aberdein’s (2011) way of modelling abduction 
(forward flow of the abductive argument) can be embedded into GASs reconstructed using 
Knipping’s (2003, 2008) methodology, when the function of the abduction is exploring. We are not 
claiming that the two ways that abduction has been modelled in the GASs we described are all the 
possibilities. Research in other contexts will no doubt reveal other ways in which abduction is 
embedded in argumentation structures. However, our describing and distinguishing these two ways, 
along with the associated functions of the abductions in the argumentation, is a contribution to 
research in this area. 
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There are different meanings of proof-related words and their connotations in different languages. 
This study aims to reveal issues of the relationship between natural and mathematical language in 
the teaching of mathematical proof. For this purpose, we examine the grammatical characteristics of 
language from Japanese and international perspectives, as well as linguistics issues associated with 
statements with quantifications. A pilot study shows that natural language may influence how 
statements are formulated by students in mathematical discourse. 

Keywords: Mathematical proof, statement, quantification, ordinary language, theory. 

Introduction 
Proof-related words such as “proof” and “argumentation” are used by different people in different 
ways. According to recent publications within mathematics education research, the meaning of “proof” 
is still a subject of debate among researchers (e.g. Balacheff, 2008; Cabassut et al., 2012; Mariotti, 
Durand-Guerrier, & Stylianides, 2018; Reid, 2015; Reid & Knipping, 2010; Stylianides, Bieda, & 
Morselli, 2016). In an international context, it is especially important for researchers to consider 
cultural dimensions that may affect the use of such words in different countries (e.g. Reid, 2015; 
Sekiguchi & Miyazaki, 2000). As discussed by Shinno et al. (2018), there are two words for “proof” 
used in Japan: shōmei and ronshō, as follows. 

Some Japanese works distinguish the word ronshō from shōmei by referring to their relationship 
with the system of mathematics. […], such that shōmei is related to deriving consequences from 
premises for establishing the truth of a proposition, while ronshō is related to the (axiomatic) 
system in which logical relations between propositions take place. (Shinno et al., 2018, p. 26) 

Sometimes, ronshō is used as a special type of shōmei (Shinno et al., 2018). This distinction is similar 
but not identical to the distinction between the French words: preuve and  démonstration, as Balacheff 
(1987) discussed. According to this distinction by Balacheff, preuve and démonstration are translated 
as the English words “proof” and “mathematical proof”, respectively. As a commentary on Shinno et 
al. (2018), Koichu (2018) also discusses two proof-related words in Hebrew: hohaha and hanmaka. 

Two Hebrew words are frequently used in the official Israeli mathematics curricula: hohaha 
(translates as proof) and hanmaka (translates as both argumentation and reasoning). Similarly to 
Japan, Israeli curricula treat hohaha as a particular case of hanmaka where the former notion 
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presumes mathematical rigor and the latter one is somewhat vague and alludes to providing an 
argument without strictly prescribing what type of argument may be used. (Koichu, 2018, p. 26) 

Identifying such proof-related terminologies and their differences and similarities across languages 
might reveal underlying cultural issues in the educational system or curricula of different countries. 
For Japan, the word ronshō indicates an emphasis on a systematic approach to mathematics, and the 
word shōmei is reserved for validating a general statement (Shinno et al., 2018). This is likely due to 
the quasi-axiomatic nature of the content and sequencing of the Japanese geometry curriculum and 
to the fact that all statements required to be proven in the textbook relate to general objects 
(Miyakawa, 2017). In the case of Hebrew, “the hohaha and hanmaka notions are complementary in 
Israeli middle school textbooks, as well as in the intermediate-level high school curriculum” (Koichu, 
2018, p. 26). Koichu also mentions that in Miyakawa’s (2017) finding, it “sounds as if the idea of 
shōmei was put forward in Israeli textbooks, but ronshō was in the minds of the textbook writers as 
part of their horizon knowledge” (p. 26). Thus, a linguistic or terminological comparison of the 
teaching of proof in different countries might be possible. In doing so, it behooves researchers to 
investigate how such linguistic differences may affect curricula and textbooks (or classroom teaching) 
in each country.  

The meaning of proof-related words differs from culture to culture, depending on the language used 
in a specific country. Nevertheless, it is possible for researchers to identify similar connotations across 
different languages. In order to further discuss cultural and linguistic dimensions of proof, the present 
study attempts to reveal issues concerning the relationship between natural and mathematical 
language on the teaching of mathematical proof. 

Theoretical background and methodology 
Mariotti (2006) states, “it is not possible to grasp the sense of a mathematical proof without linking 
it to the other two elements: statement and theory” (p. 184). Within this triad (statement, proof, and 
theory), the first two elements, statement and proof, can be subjected to investigation in terms of their 
different linguistic formulations; the third element, theory, is of a more epistemological nature. A 
model (a reference epistemological model) proposed by Shinno et al. (2018) consists of three layers 
—“real-world logic”, “local theory”, and “axiomatic theory”—which are characterized in terms of 
the epistemological nature of theory, wherein the statement is formulated, and the proof is carried out. 
For the purposes of international discourse, it is important for researchers to make a distinction and/or 
connection between the linguistic formulation (representation) of the statement/proof and its 
epistemological nature (Balacheff, 2008). For example, the linguistic distinction between shōmei and 
ronshō can be understood through the epistemological distinction between local and axiomatic theory 
(Shinno et al., 2018).  

This paper pays special attention to linguistic formulations of the statement to be proven in Japanese 
textbooks. Concerning the linguistic aspects of proof, it is important to take into account the 
relationship between natural and mathematical language, because word usage in natural language 
may influence how statements and proofs are formulated and understood by students in mathematical 
discourse. This topic has been discussed in various ways (e.g. Barton & Nevillle-Barton, 2004; 
Cousin & Miyakawa, 2017; Duval, 2017; Mejia-Ramos & Inglis, 2011; Pimm, 1987; Planas, Morgan, 
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& Schütte, 2018). In this paper, we analyse some typical statements from Japanese textbooks to clarify 
how ordinary Japanese language is used in mathematical discourse. We also present a pilot study 
which allowed us to investigate Japanese undergraduate students’ difficulties with linguistics issues 
related to statement with quantifications.  

The relation between natural and mathematical language in Japanese textbooks 
The grammatical characteristics of the Japanese language 

Mathematics sentences such as 5 + 3 = 8 are introduced at the beginning of the first grade (6- to 7-
year-old students) in Japan. As seen in Figure 1, the textbook (both Japanese and English versions) 
shows how to read the sentence (“5 plus 3 equals 8”), alongside other representations such as blocks. 

           
Figure 1: Math sentence in a Japanese textbook (Shimizu & Funakoshi, 2011, p. 39) 

The sentence “5 plus 3 equals 8” is seen as mathematical discourse in English, which translates as 
“5 tasu (たす) 3 wa (は) 8” in Japanese. Here “tasu” refers to “plus”, and “wa” refers to “equals”. 
From a grammatical point of view, however, this Japanese sentence is not proper. In ordinary 
Japanese, it should be “5 ni 3 wo tasu to 8 ni naru” (please focus on only the bold words in this 
sentence, since others are particles which have no counterparts in the English sentence). Here, “tasu” 
means “plus (or add)”, but “naru” means “makes (or becomes)” which can be the same as “equals”. 
This is because, in Japanese grammar, the verb generally appears at the end of the sentence. If the 
sentence “5 ni 3 wo tasu to 8 ni naru” above is translated literally into mathematical symbols, it 
would be like “5 3 + 8 =” which contradicts the syntax of mathematics (Hirabayashi, 1994). This fact 
can be seen as a linguistic peculiarity of Japanese grammatical characteristics. This may cause an 
obstacle in the understanding of mathematical sentences on the basis of Japanese language, because 
grammatical order of some statements, which appears at a more advanced level such as AE and EA 
statements, is crucial for interpreting what a given statement mean in mathematical discourse.  

Difficulties related to the linguistic and logical aspects from an international perspective 

One characteristic of statements in Japanese textbooks for lower secondary schools is that the 
statement to be proven is considered a universal proposition (Miyakawa, 2017). However, universal 
quantification using ordinary language and words such as “any” and “all” is rarely encountered in 
lower secondary textbooks across domains; that is to say, universality is rarely formulated in written 
form. Therefore, Japanese students and teachers are required to interpret a universal proposition 
without any quantification. This is probably because the Japanese language does not use articles 
(Shinno et al., 2018). As Pimm (1987) comments, the situation is similar in Russian, in which 

there is no article marker distinguishing a from the, the definite from the indefinite. Yet this 
language contains a sophisticated mathematics register fully capable of distinguishing the meaning 
‘there exists’ from ‘there exists a unique’. (Pimm, 1987, p. 81)  
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Japanese does not have such “a sophisticated mathematics register”, at least in secondary school 
textbooks. Additionally, according to Durand-Guerrier et al. (2016), it is difficult even for people who 
speak English (and many European languages) to distinguish an implicit universal quantifier from 
other meanings of an indefinite article: 

A well-known difficulty is related to the meaning of ‘a’ that can either refer to an individual, a 
generic element, or an implicit universal quantifier. (Durand-Guerrier et al., 2016, p. 89) 

Beyond the grammatical aspects of a given language, this issue is related to students’ interpretations 
of universal quantifications. We will develop this issue when introducing the pilot study. 

Most Japanese students have few opportunities to consider quantification in their own language. Most 
do not encounter quantifiers formulated in mathematical terms or symbols such as “∀” or “∃”, based 
on predicate logic, until they reach university. To this point, and as a reply to Shinno et al. (2018), 
Czocher, Dawkins, and Weber (2018) argue that “universal statements in American classrooms are 
often not explicitly quantified, either” (p. 25). Further, Czocher et al. (2018) introduce an excerpt 
from a textbook used in the United States: 

In a popular undergraduate textbook, Hammack (2013) directly addressed this point:  
Now we come to the very important point. In mathematics, whenever P(x) and Q(x) are open 
sentences concerning elements x in some set S (depending on context), an expression of form 
P(x)⇒Q(x) is understood to be the statement ∀x∈S(P(x)⇒Q(x)). In other words, if a 
conditional statement is not explicitly quantified then there is an implied universal quantifier 
in front of it. This is done because statements of the form ∀x∈S, P(x)⇒Q(x) are so common 
in mathematics that we would get tired of putting the ∀x∈S in front of them. (Hammack, 
2013, p. 46).  

We interpret this excerpt to mean that a focus on universal statements is an invariant part of 
mathematical practice. (Czocher et al., 2018, p. 25) 

While we agree with both Hammack’s assertion, “if a conditional statement is not explicitly 
quantified then there is an implied universal quantifier in front of it”, and Czocher et al. (2018)’s 
commentary, it seems to us that this book is intended to introduce undergraduate students to predicate 
logic. At the undergraduate level, Japanese students also need to pay attention to the similar point 
made in the excerpt. We wonder if this phrase still holds true for general statements taught at lower 
grades in the United States. It might be difficult to examine, however, because “proving opportunities 
are limited or non-existent in the curriculum as enacted in many American classrooms” (Czocher et 
al., 2018, p. 24), even though, as they also mention, it is important to make empirical comparisons of 
the usage of universal quantifications across different countries. 

As described above, most students do not encounter quantifiers formulated in mathematical terms or 
symbols until they reach the undergraduate level. It is worth investigating whether language 
influences students’ understanding in the transition from secondary school to university. Here, we 
focus on the linguistic aspects of universal and existential quantifications to be formulated in a given 
statement, so-called AE and EA statements, as below (e.g. Dubinsky & Yiparaki, 2000)).  
- AE statement: For every x, there exists a y such that f(x, y). 
- EA statement: There exists an x such that for every y, f(x, y) 
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Previous studies, conducted in English-speaking countries, reported that students faced difficulties in 
distinguishing the two kinds of statements (e.g. Dubinsky & Yiparaki, 2000). Difficulties related to 
AE/EA statements are also prevalent in the Japanese mathematics (education) community, and there 
is an assumption that these difficulties are affected by ordinary language (e.g. Hosoi, 1981). These 
difficulties are related to what Selden and Selden (1995) call “unpacking (logical structure of) 
informal statements”. Let us briefly explain the linguistic issues of the universal and existential 
quantifiers of AE/EA statements. In terms of English, they can be explained as follows.  

In everyday language, statements where the words ‘there is’ precede the words ‘for every’ are 
almost always interpreted as if the words ‘for every’ precede the words ‘there is’. (Durand-
Guerrier et al., 2012, p. 376) 

Unlike in ordinary English sentences, it is difficult to interpret this exchange between the words “there 
is” and “for every” in Japanese. In English, both phrases precede the variables such as “for every X” 
and “there is Y”. In Japanese, the words “for every” precede the variable, but the phrase “there is” 
does not precede. Thus, the grammatical order of the English phrase, “there is Y”, is not preserved in 
Japanese (cf. Hosoi, 1981), because “is” or “exist” cannot precede the object “Y”. Rather, the phrase 
“x exists” is more natural than “there exists x”. Due to this linguistic issue, it is unusual for Japanese 
speakers to read and write the words according to the order of EA statements, as in English. In 
Japanese, when we intend to write two kinds of statements in a distinct way, different formulations 
or representations by ordinary Japanese are possible, but all of them contain vague words or additional 
notations (like brackets) to preserve the order.  

A pilot study: Japanese students’ interpretations of AE and EA statements 
To investigate Japanese undergraduate students’ difficulties or gaps associated with their 
interpretations of statements involving multiple quantifiers, we conducted a pilot study targeting 47 
undergraduate students (as native Japanese speakers) who had already learnt mathematical statements 
with multiple quantifiers. The questionnaire included both AE and EA statements formulated in two 
ways: mathematical and English. The participants were asked to translate each statement into 
Japanese and to judge whether a given statement was true or false. Figure 2 indicates the two types 
of questions. Different formulations of the same statement are found in 1A and 2A and 1B and 2B; 
1A and 2A are AE statements (true), while 1B and 2B are EA statements (false). 

The participants were divided into two groups. Twenty-four participants were asked to translate 1A 
and 1B into the Japanese form, while 23 participants were asked to translate 2A and 2B into the 
Japanese form. Both groups were then asked to judge whether a given statement was true or false and 
to write down their justifications. The results are shown in Table 1. 

- Type 1: Mathematical form → Japanese form (N=24) 
1A: ∀𝑛𝑛 ∈ ℕ,  ∃𝐾𝐾 ∈ ℕ,  2𝑛𝑛 < 𝐾𝐾  
1B: ∃𝑥𝑥 ∈ ℝ,  ∀𝑦𝑦 ∈ ℝ,  𝑥𝑥 + 𝑦𝑦 = 0  

- Type 2: English form → Japanese form (N=23) 

2A: For every natural number n, there exists a natural number K such that 2𝑛𝑛 < 𝐾𝐾  
2B: Let x and y be real numbers. There exists an x such that for every y, 𝑥𝑥 + 𝑦𝑦 = 0  
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Figure 2: Two types of questions 

1A (true) 1B (false) 2A (true) 2B (false) 

True 23 2 21 20 

False 1 22 2 3 

Table 1: Result of participants’ true/false judgments 

These results show that most participants could adequately interpret AE statements (both 1A and 2A). 
However, there are considerable variations in their interpretations of EA statements. Although many 
participants could judge that statement 1B (in mathematical form) was false, most of them (20/23) 
failed to interpret statement 2B (in English form) in their own language. It is worth noting how 
ordinary language influenced their discrepant interpretations. Figure 3 shows a typical example of 
this confusion, wherein the participant interpreted the false EA statement (2B) as a true AE statement 
in Japanese. The box on the right in Figure 3 provides our back-translation. It is important to note that 
this translation is not “correct” in terms of the English language, because the order of Japanese phrases 
is preserved, and the term “tonaru (となる)” which corresponds to “such that” is not translated. The 
point here is that the condition which comes after “such that” in English precedes “tonaru” in ordinary 
Japanese language, and Japanese people may not clearly know from this sentence whether the first 
phrase “For every y” is included in the condition of the existential proposition (EA statement) or not 
(AE statement). The meaning of the sentence would be clearer if we put the two first phrases into 
brackets or quotations, but this is not common.  

(Japanese translation): 
Let x and y be real numbers. 
For every y, x + y = 0, x exists. 

(True/False): True 
(Justification): Set x = –y, the statement holds. 

Figure 3: A typical example of incorrect interpretation 

Conclusion 
The logical difference between AE and EA statements may not always be preserved when the two 
statements are written in everyday Japanese sentences. The pilot study shows that many students are 
not very conscious of this linguistic characteristic; therefore, most of them failed to interpret EA 
statements (English) in the Japanese language. To create an opportunity for further international 
comparative study, it is important to elaborate a meta theoretical language (e.g., a reference 
epistemological model) for research from international perspectives, since a researcher may need to 
use different languages for different purposes (Chellougui, Thu, & Winsløw, 2016). Without such a 
common ground, it would be more challenging for international readers to share “invariant aspects of 
mathematical reasoning” (Czocher et al., 2018) which we initially associated with a Japanese context. 
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Introduction 
Generalizing is a key element in mathematical reasoning as well in early algebra and algebraic 
thinking (Kaput, 2008). However, students find it difficult to understand the meaning of 
generalized arguments, which means that teachers need to support students to develop their 
generalized argument (Stylianides & Stylianides, 2017). A way to increase teachers’ 
possibilities to support students’ reasoning may be through intervention studies. Stylianides and 
Stylianides (2013) write about the importance of research-based interventions of proof and 
proving in teaching. Since generalized arguments can be seen as a part of proof and proving 
(Stylianides & Silver, 2009), intervention studies also about generalized arguments should be 
important. Similar reflections have emerged in the Argumentation and proof group at CERME 
where a lack of design-based studies promoting investigation in the classroom and a need to 
shift research focus from the learners to the teacher is emphasized (Mariotti, Durand-Guerrier, 
& Stylianides, 2018). This poster will exemplify a part of a cyclically recurring intervention 
process by answering the question: What challenges do teachers meet when trying to understand 
a given Design Principle (DP) (McKenney & Reeves, 2012) and design and implement teaching 
based on it? 

Mathematical reasoning and algebraic thinking  
One part of mathematical reasoning and early algebra as well as of algebraic thinking is the 
structure and the understanding of relationships in quantities (Kaput, 2008); these relationships 
could be embedded in figural repeating patterns. Patterns and pattern identification could be 
seen as essential components in elementary school when working with the activity of reasoning-
and-proving (Stylianides & Silver, 2009). Teaching patterns can provide students’ 
understanding and support their arguments why things work the way it do. Mulligan, 
Mitchelmore, English and Crevensten (2013) make similar assumptions, pointing out that 
teaching and learning mathematics through patterns and structure as well as generalized 
approaches may provide students with a deep understanding of mathematics. 

Methodology 
The frame of this study is based on educational design research, as well as an intervention 
inspired by classroom design research (Stephan, 2015). In the implementation of the 
intervention, DPs will be used to address the specific foci in this case, strategies for 
mathematical reasoning and proving in algebra. Three mathematics teachers (grade 1 and 6) 
and the author are part of this intervention. DPs are used to guide the content of the interventions 
and the DPs are used as a framework in the initial analyses. The DPs will guide and give the 
intervention a theoretical foundation in the ongoing process (three recurring cyclical phases): 
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first designing the intervention and the teaching, second the three teachers implementing the 
intervention and the third, the reflection after the implemented intervention. To stimulate 
mathematical reasoning, and proving in teaching and learning of pattern, six DPs have been 
created from previous research, and one of them is presented in this poster.  

DP1 The students will have possibilities to identify a pattern, to structure the pattern 
and to generalize the pattern (Mulligan et al., 2013; Stylianides & Silver 2009).  

Preliminary results from a part of the design research process 
Preliminary results show the complexity involved in teachers’ understanding of teaching and 
learning patterns relating to DP1. The complexity becomes visible when teachers discuss and 
try to understand the concepts; identify, structure, and generalize patterns in relation to their 
own practice. Teachers try to exemplify what it means to identify, structure and generalize, and 
thereby become aware that the concepts overlap. Results also show that teachers’ understanding 
of generalization develops during the discussion; from equalizing generalization with general 
formulas to generalizations as something possible to show with different representations such 
as describing with words or showing with concrete material and pictures. In the classroom, 
teachers meet challenges when trying to challenge students’ understanding of a generalized 
pattern, for example by asking them to explain what is behind a general formula.  
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Proving processes are often complex and difficult. Problems during the phase of proof finding are 
not unheard of. The ability to find out which knowledge and strategies we need to prove a given 
statement and how to use knowledge and strategies in proving is called metacognition. A study with 
pairs of pre-service teachers shows that content knowledge is an important factor whether or not 
metacognitive activities like monitoring can help handling problems in the proving process. 

Keywords: Metacognition, monitoring, proving processes, pre-service teachers. 

Introduction 
To be able to successfully prove a geometrical statement, one needs more than just subject-specific 
knowledge and methodological knowledge of proving procedures (Heinze & Reiss, 2003). It is 
important to know if what one is doing makes sense, is promising and productive. This ability to 
reflect on one’s own knowledge is called metacognition, which is important in general life as well as 
in mathematics and allows one to find out what knowledge and strategies are needed to solve a 
problem and how to use knowledge and strategies in proving.  

In mathematics education a lot of research exists about metacognition in problem-solving (e.g. Kuzle, 
2013; Schoenfeld, 1987, 1992). But there is little research about the significance of metacognitive 
activities for proving processes, in particular there is nearly no research on pre-service primary school 
teachers’ metacognitive activities, even though they will later in their classrooms be responsible to 
establish the basis for argumentation. Our research project addresses the need of future teachers to be 
able to understand and perform proving processes, as well as to perceive their argumentation basis. 
Metacognitive competences can in our view be useful and fruitful, if taken care of in a sensible way.  

The metacognitive activity of monitoring is the focus of this paper. How monitoring is in play during 
the proving process of students, particularly in what we call loops, elongations, circular reasoning 
and wanderings is of interest to us. We look specifically at what role content knowledge plays in this 
and what impact content knowledge has on monitoring. 

Theoretical background  
The colloquial meaning of metacognition is approximately “reflections on cognition or thinking about 
your own thinking” (Schoenfeld, 1987, p. 189). Schraw (1998) divides metacognition into two big 
fields. Knowledge of cognition is the knowledge about one’s own cognition or about cognition in 
general. The regulation of cognition is an accumulation of activities that help to control one’s own 
learning. It includes monitoring, which is the activity of controlling and evaluating one’s 
understanding and one’s own performance during a process, in our case the proving process. 
According to Heinze and Reiss (2003) the ability to prove a statement includes metacognition. 
Wittmann (2014) focusses on two things that are important for proving statements, factual knowledge 
and metaknowledge about proofs. According to Wittmann students often do not have sufficient 
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metaknowledge about proof, which includes knowledge of the functions of proof, characteristics of 
proving as well as knowledge of how to prove. 

The difference between proving as a process and proof as a product is important as well. Wittmann 
(2014) sees the process of proving as the activity of finding a proof. The process is complex, needs 
creativity and problem solving competencies. It can go in leaps and bounds and includes sudden 
success as well as phases where one does not know what to do. The proof product on the other hand 
is the final product of the proving process. It is succinctly verbalised and neatly written down. 
Looking at the written proof one cannot see the efforts of the proving process. 

Empirical methods 
The base of this research project are case studies of four pairs of pre-service primary school teachers. 
These students participated in a lecture course on elementary geometry in the third semester of their 
Master Studies. Participation in the study was voluntary and took place in the spring of 2018. Video 
recorded interviews are the basis of the case studies. The students worked in pairs on proof tasks so 
that discussions between them provided insight into their metacognitive activities. In the first part of 
the semi-structured interview, questions about their own proving experiences and proving in general 
were asked. Then the students were given two statements from plane geometry, one after the other, 
which could be proven with knowledge from the lecture. Afterwards the process of finding the proof 
was discussed with the students. 

The transcripts of the interviews were looked through for obstacles that can occur in the proving 
process. In a second step these obstacles were scanned for monitoring activities, which were then 
coded with a system for categorizing metacognitive abilities developed by Cohors-Fresenborg and 
Kaune (2007a), that divides monitoring into eight subcategories, e.g. the controlling of calculations 
and the controlling of argumentation. This allowed us a differentiated view on monitoring activities. 
After coding the data, the effect of monitoring in the identified phases with obstacles were analysed. 
Particularly the influence of content knowledge was focused on in order to clarify the impact of the 
assumed relationship between monitoring and content knowledge for the proving processes and 
specifically their successful performance. 

Prototypes for obstacles in proving processes 
Proving processes are rarely linear. Having difficulties, getting stuck or trying something that is not 
constructive is normal. After looking through the data we can distinguish four specific obstacles that 
the students encountered in their proving processes: loops, elongations, circular reasoning and 
wanderings. In the following we are going to characterise these obstacles with data from all four 
groups. With these examples we explain to what extent monitoring influences these obstacles and 
show the important role of content knowledge. 

Loops 

Loops are one type of obstacle in proving processes. In a discussion one might have a kind of side 
discussion that is still part of one’s proof idea and attempt, but that is not really constructive for the 
proof. To resolve a loop situation one must rein in this discussion and pursue the original proof idea 
instead. 
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A typical example for a loop is the following discussion of Pia and Charlotte (Group 3). The two 
students attempt to prove the second statement: “A parallelogram is a rectangle if and only if its 
diagonals have the same length.” During their discussion they draw a rectangle and a parallelogram 
and argue whether or not they should use the drawing of the parallelogram to prove the statement or 
if they should use the drawing of the rectangle instead. While Pia is arguing that in a parallelogram 
the diagonals cannot have the same length, Charlotte suddenly has a new idea; here a loop starts. 
Charlotte wants to change the statement they have to prove to the following: “A parallelogram is a 
square if and only if its diagonals have the same length”. She describes her thinking.  

At that moment Pia uses the definitions of a square and a parallelogram and the connections and 
differences between the two (every square is a parallelogram, but not every parallelogram is a square). 
She intends to make clear to Charlotte why her idea, to substitute the rectangle in the statement with 
a square, is not helpful for the proof of the original statement. Pia’s behaviour is a reaction to a 
monitoring activity, which is the examination of her partner Charlotte’s understanding of 
mathematical objects and their role for their argumentation. According to the system of Cohors-
Fresenborg and Kaune (2007b) this can be categorized as the monitoring activity M4c: “Controlling 
of Argumentation – uncovering mistakes in the argumentation” or M2b: “Controlling of an 
assessment of (assumed) mistakes – uncovering one’s own false ideas or those of others”. Charlotte 
then applies this knowledge to squares and rectangles and understands why her idea will not work 
out as a proof. Both students are back at the “starting point” (arguing about which drawing to use for 
their argumentation), the loop is closed. Their side discussion ends, they do not lose themselves in it. 
They are back on to their original path. 

In this example of a loop, Pia’s monitoring activities match the “problem” Charlotte has (Why can 
we not use a square in our argumentation?) and helps them to end their side discussion. They go back 
to their original proof idea. Their monitoring was quite precise regarding the comprehension of the 
geometrical objects square, rectangle and parallelogram. Pia showed that she possessed the content 
knowledge necessary to make use of the monitoring activity and improve their work. 

Elongations 

An elongation in a proving process occurs when one does not pursue the shortest possible way, but 
instead substitutes several steps for one step. 

Elongation simply means to lengthen an action or a process. Often 
these are hard to determine in data, as a shortest possible way needs 
to be defined first, in order to be able to find variations of it. To 
define this, one has to consider (theoretically) available knowledge 
which may differ between people and in time. The shortest way of 
a grade 5 student may differ from that of a university professor; the 
shortest way in a first proof of a new theorem may be an elongation 
later on, when shorter ways have evolved.  

The first statement our students had to prove was: “Given is an angle 
with arms g and h. If you draw a line k parallel to arm g that crosses arm h, then h and k together with 
the angle bisector form an isosceles triangle”. The shortest way to prove the statement that one might 

Figure 1: Drawing for the first 
statement (Group 4) 
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follow is using the Alternate Interior Angles Theorem with the angle α
2
 to show that the base angles 

have the same size, then the Isosceles Triangle Theorem can be used. Nina and Maja (Group 1), as 
well as Daria and Leonie (Group 4), proved the statement using the Corresponding Angles Postulate 
with the angle α (see Figure 1). Then supplementary angles and the Triangle Postulate are used to be 
able to show that the base angles are equal. This is an example of an elongation, as the students had 
the same basic idea, but for the elongated proof more steps are used than needed. 

Neither in the proving process of Group 1 nor in the process of Group 4 a monitoring activity could 
be found that triggered an elongation. The cause of the observed elongation seems instead to be the 
angle the students focussed on (α instead of the angle α

2
) and therefore more steps were needed to 

show that the base angles of the triangle are equal. No indication was found why a group decided to 
focus on α instead of α

2
. Sufficient content knowledge seems to be the reason that the groups were still 

able to prove the statement. The students applied all necessary theorems and did not get to a point 
where they did not know how to proceed. 

Circular reasoning 

While involved in the proving process circular reasoning is hard to see for the students engaged in 
proving. Circular reasoning makes it impossible to produce a correct proof, because one falsely 
assumes what is meant to be proven by the proof.  

Dennis and Julius (Group 2) showed circular reasoning in their 
‘proof’ for the first statement. After the exploration and discussion 
of the statement, Dennis and Julius began to write down their 
‘proof’. In the first part of their text the students attempted to show 
that two of the angles in the triangle had the same size. Julius had 
noted that the angle bisector divided the angle α into two angles of 
the same size, labelled as base angles of the triangle in his drawing 
(see the two “1

2
α” written in red, Figure 2), instead of labelling them 

as two halves of α (two equal parts of an angle bisector). His 
argumentation was questioned by Dennis: “Then the question is, 
whether we can assume that they [Dennis is pointing more at the 
base angles than at the sides h and k] have the same length”.  

His question shows a monitoring activity, as Dennis is checking what they are doing while they are 
still in the proving process. Both students have just started writing down the proof. With his question 
Dennis controls the effectiveness of their approach and if they are still on target. According to the 
system of Cohors-Fresenborg and Kaune (2007b) this is the monitoring activity M4a: “Controlling 
of Argumentation – local examination”. As a reaction to the monitoring question Julius writes a 
second explanation about why the base angles have the same size. As a reason he mentions the 
equality of the two sides of the triangle. This explanation is unfortunately circular as he assumes that 
the length of the two sides of the triangle are equal, which still needs to be proven. 

In circular reasoning monitoring affects the proving process differently than in the loop. Dennis and 
Julius end up with a circular argument in their proof of the first statement because of a monitoring 

Figure 2: Drawing for the first 
statement with “red angles” 
(Group 2)
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activity. While in the loop the monitoring brings the students back to a reasonable way. Dennis’ 
monitoring activity is also rather imprecise, more like a bad feeling instead of a well-founded 
suspicion, and the reason for the circular reasoning. Both students lack the necessary content 
knowledge and cannot not use monitoring activities to their advantage. Their monitoring activity did 
not improve the quality of their proof, but instead guided the students into circular reasoning, which 
also demonstrates their lack of knowledge about logic and the structure of a proof. 

Wanderings 

The abandoning of a good proof idea in favour of ideas that are not constructive is what we call 
wandering. An example of wandering is shown by Pia and Charlotte (Group 3). During their 
discussions Pia and Charlotte have a productive idea to prove the first statement. They use the 
Alternate Interior Angles Theorem to show that the base angles of the triangle are equal. For the next 
step in their proof they need to show that a triangle with two equal base angles has two sides of the 
same length. For this they have the idea to use the Isosceles Triangle Theorem. But Pia is not sure, if 
the theorem can be used in both directions and asks: “Can you say that?”, which is actually a 
monitoring question. According to the system of Cohors-Fresenborg and Kaune (2007b) this would 
be the monitoring activity M5a: “Determination of position: naming of Deficiency of Understanding 
– defined step”. This labelling of a deficiency in her understanding is an important monitoring activity 
as Pia can only follow and support their argumentation if she understands the concepts and the 
connections between them.  

In this case the monitoring question is the starting point for the wandering. Because of Pia’s 
monitoring question her partner Charlotte is now insecure in her belief and understanding of the 
Isosceles Triangle Theorem. Even though Pia affirms that she believes that they are allowed to use it, 
Charlotte abandons this proof idea in favour of another idea. Their new idea does not work out; their 
written proof is more a construction protocol with a proof idea but not a proof. For this statement, 
both first have a good idea how to prove it, but then they discard their idea and start with new ideas 
which in the end do not work out. They end in a wandering.  

Like in the loop, and in contrast to the circular reasoning, Pia’s monitoring here is quite precise. She 
questions the use of one specific theorem, the Isosceles Triangle Theorem, which is important for 
their proof. Unfortunately, both students lack the necessary content knowledge, in this case the 
content of the theorem, to make use of their monitoring. 

Preliminary results 
One can raise the question whether or not metacognitive activities, especially monitoring activities, 
can help students to prevent problems in their proving processes. In theory, monitoring one’s work 
and progress should help students to prevent or find problems and mistakes. 

Our prototypes can be systematized in a fourfold table along the dimension “monitoring” and “content 
knowledge” (see Table 1). Loops are in the field of monitoring and content knowledge, elongations 
in the field of content knowledge without monitoring. Circular reasoning and wanderings are in the 
area of monitoring, but with no content knowledge. In the area without monitoring or content 
knowledge we suspect another prototype, dry spells. A dry spell is a part of one’s proving process 
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where one hits a barrier and does not know how to go on for quite some time. Not actively working 
at the proof anymore can be a sign for a dry spell, as well as remaking drawings, calculating something 
or recapping what one already knows in the hope of getting a new idea. Looking at the success that 
is (or not) shown in the proving process, it is possible to group the observed obstacles (loops, 
elongations, circular reasoning and wanderings). Both loops and elongations are parts of a proving 
process where one still reaches the proof in the end, but not in the shortest or easiest way as one’s 
ideas would have allowed. These two are detours in the proving process. Circular reasoning and 
wanderings are parts of one’s proving process where one follows an idea that does not end in a proof. 
These are drifts in the proving process. Dry spells can be seen as a third group where the proving 
process pauses, but this still remains to be looked at in our data. 

Content knowledge 
yes no 

M
on

ito
ri

ng
 

yes 

loops: 
side discussion 
that gets back 
to the original 
discussion and 
proof idea 

circular reasoning: 
using things that 
are yet to be proven 

wanderings: 
abandoning good 
ideas in favour of 
proof ideas that do 
not work out 

no 

elongations:  
using several 
steps when one 
step would 
have been 
possible. 

dry spells: 
parts of a proving 
process where one 
does not know how 
to go on or what to 
do for a longer 
period 

 

Table 1: Overview of the obstacles and the relation to monitoring and content knowledge 

Whether or not one follows detours or drifts in a proving process seems to depend on one’s monitoring 
activities. Looking at the monitoring activities described above, one can see that monitoring has many 
different facets, for example controlling an argument, naming problems in the comprehension of 
arguments and their connection or uncovering deficiencies in understanding. But our examples show 
that the mere existence of monitoring activities is not enough to indicate the success of a proving 
process. There seem to be differences in the way that monitoring activities are expressed. Monitoring 
formulated in a general way like “Is that possible? Is that right?” like the example of a circular 

detours 
dry spells 

drifts

Thematic Working Group 01

Proceedings of CERME11 333



 

 

reasoning by Dennis and Julius (Group 2) seem to be about a gut feeling that something is not quite 
right, without knowing exactly what. This type of monitoring activities we shall call lower-level 
monitoring. It is not specific enough to help pinpoint a concrete mistake and correct it. Dennis’ 
question “Then the question is, whether we can assume that they have the same length” is one example 
for this. What we call higher-level monitoring is a metacognitive activity that is more precise and 
aims at specific parts of an explanation or argumentation. For example, if one can use a specific 
theorem the way it is used in the argumentation or if the comprehension of a specific geometric object 
is correct. Pia and Charlotte (Group 3) showed higher-level monitoring in both cases, in the loop and 
in the wandering. In one case Pia questioned the use of a specific theorem, the Isosceles Triangle 
Theorem, at a specific point of their argumentation. In the other case Pia monitored and corrected 
Charlottes’ understanding of the definition of and the connection between squares, rectangles and 
parallelograms. These interventions were precise and specific and therefore higher-level monitoring.  

The level of monitoring does not seem to be the only factor influencing the quality of a proof as one 
reason for ending up in drifts can be monitoring activities. In cases where the monitoring could not 
be used profitably, monitoring activities seem to have a negative effect on the proving process. 
Looking at the two examples of drifts, in one case, Dennis and Julius (Group 2) show lower-level 
monitoring, the other students, Pia and Charlotte (Group 3) demonstrate higher-level monitoring. 
Nevertheless, both groups ended up in a drift. Content knowledge is the other factor that influences 
the success of the proving process. The circular reasoning in Dennis and Julius’ proof of the first 
statement happens because they do not know how to prove the equality of the base angle in the triangle 
(and lack the logical and methodological awareness that you cannot use what you want to prove). Pia 
and Charlotte end up in a drift after Pia’s monitoring activity, because both cannot remember all of 
the content of the Isosceles Triangle Theorem, which led them to abandoning their proof idea. 
Looking at detours, monitoring activities can also show a positive effect, for example ending detours 
by closing loops. Here the monitoring and the content knowledge used afterwards ended the side 
discussion and brought the students back to their original proof idea, thereby helping them not to end 
in a drift. Thinking about these examples, content knowledge seems to be what enables one to find a 
solution to the obstacles that monitoring activities reveal. One can only benefit from monitoring 
activities if one has the content knowledge necessary to “fix the problems”, for example to discern 
the problematic parts, to recognise what is wrong or missing or to see possible corrections. Without 
content knowledge one is less likely to find and correct mistakes, misunderstandings or errors through 
monitoring.  

Monitoring is important in mathematics and especially in proving. It allows to control and evaluate 
one’s own performance and understanding during the process. In the proving process three different 
categories of obstacles can appear: detours, drifts and dry spells. The interviews with the pre-service 
primary school teachers show that monitoring activities have a relevant influence. But not every 
monitoring activity has the same influence on proving processes. One can differentiate between 
monitoring of a lower and a higher level. Whether monitoring activities support or inhibit the success 
of the proving process is also highly dependent on one’s content knowledge. 
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We present a case study whose aim is to describe argumentation’s features of a high school 
mathematics’ teacher. The data was collected in a geometry class, while the teacher and her students 
discussed the straight line. In this paper we describe features of class discourse, associated with a 
conception of argumentation linked to both argumentation and speech acts. Among the findings we 
point out both the educational purpose of the teacher in promoting argumentation in her class and 
the uses of argumentation by the teacher.  

Keywords: Argumentation, teacher’s knowledge, class speech 

Introduction 
Current research in Mathematics Education recognizes the importance of favoring argumentation in 
class (Ayalon & Hershkowitz, 2018; Staples & Newton, 2016). It also recognizes the teacher’s role, 
the task’s design, opportunities for participation, or the analysis of arguments. However, few studies 
consider argumentative features of the mathematics teacher while teaching. In this paper, we present 
some results of a research that we are developing where we are interested in both identifying features 
of mathematics’ argumentation in class and analyzing the influence of the teacher's knowledge on the 
characteristics argumentation. 

Theoretical background 
Like different authors in educational research (e.g. Asterhan & Schwarz, 2016), we assume the 
definition of the argumentation theory presented by Eemeren and his colleagues (1996): 

Argumentation is a verbal and social activity of reason aimed at increasing (or decreasing) the 
acceptability of a controversial standpoint for the listener or reader, by putting forward a 
constellation of propositions intended to justify (or refute) the standpoint before a rational judge 
(p. 5). 

Even though this definition was not developed in the context of mathematics education, we find it 
very useful for us to study argumentation in mathematics class. This definition, concerning 
argumentation, recognizes ‘complex interactions’ in mathematics class, where teacher and students 
discuss tasks’ solutions. It also implies that we try to move away from the traditional stance, where 
argumentation is assumed as a set of premises and conclusions formulated with the help of formal 
symbols whose meaning is established beforehand. 

The definition of Eemeren and colleagues suggests that in a math class one can construct claims, 
provide evidence to support claims, and evaluate this evidence to judge the validity of the claims. 
This definition puts the argumentation in a social environment. Argumentation not only is part of the 
class discourse, but also offers opportunities for the articulation of alternative ideas, reflection and 
reasoning, favoring learning (Ayalon & Hershkowitz, 2018). 
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Methodology  
In order to observe the argumentation in a class context we carry out a case study with a high-school 
mathematics teacher. The data were obtained in a 9th grade course (15-year-old students), in a public 
school in Medellin (Colombia), where the teacher and her students discuss the properties of straight 
lines. The teacher has 8 years of experience in high school mathematics teaching, is a mathematics 
graduate and holds a master's degree in Mathematics Education. She voluntarily agreed to participate 
in the study. We observed two classes in September 2017, which were recorded in audio and video. 
The researchers were just listeners and without intervening during or after the class. The teacher was 
informed of the purpose of the research; she selected the group and the classes to be observed. 

Result and implications 
We have discussed two class segments to support the case study. We emphasize the features of the 
argumentation of mathematics’ teacher, on one hand, related to the conception or definition of the 
argumentation and on the other hand, to the uses of the argumentation on the part of the teacher. 

We can identify argumentative features that respond to the verbal, social, rational and educational 
intentions that the mathematics’ teacher spontaneously expresses in the natural environment of the 
classroom when teaching mathematics. Although we describe a particular case, it is important to 
describe and analyze other cases of mathematics teachers at different school levels, which could 
enrich our definition of argumentation, show us other features and possible uses, and generate 
concepts that could contribute to the study of argumentation in mathematics class. 

The description of argumentation’ features have allowed us to identify possible links of the teacher's 
argumentation to mathematics knowledge. We also express the limitations of our study, which seems 
only descriptive, but which attempts to expand and adapt it to his use in the complex environments 
of the mathematics class. It seems that more tests and a longitudinal study are needed to validate the 
findings. 
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In this paper, we aim to contribute to the discussion on the students’ cognitive processes inherent in 
proof by contradiction in geometry, particularly as concerns the role played by images. We will 
present an episode from a one-year experimental pathway in Euclidean geometry designed to develop 
the culture of theorems in 10th grade: in crucial moments of proof by contradiction, we observed some 
students’ gestures and reasoning aimed to restore the harmony between visual and conceptual 
aspects, which had been broken by conflicts due to specific features of that proof in geometry. The 
students’ need of keeping such harmony poses didactical questions, which, if conveniently taken in 
charge by the teacher, might contribute to design smoother pathways to the indirect proofs. 

Keywords: Culture of theorems, euclidean geometry, indirect proofs, figural concepts, meta-
knowledge of proof 

Introduction 

The development of students’ competencies concerning theorems is one of the most important goals 
in the high school. Its relevance is stressed by the Italian national guidelines for curricula in the high 
school (MIUR, 2010), according to the current definitions of competency (European Community, 
2018), in particular, its requirements of autonomy and awareness. In this perspective, developing 
Culture of Theorems (CoT; Bartolini Bussi et al., 2007) means to acquire, not only knowledge, but 
also meta-knowledge about theorems: the kind of statements (declarative or hypothetical); the role of 
hypothesis and thesis; the different methods of proving; the role of previously validated statements 
and axioms; the distinction between the construction of a conjecture (based on different processes: 
induction, abduction, analogy, etc.) and the construction of a proof (within a theory). Therefore, 
autonomy and awareness are two co-present basic requirements in the activities inherent in CoT: 
exploring to get conjectures; tackling construction problems and their theoretical validation; 
constructing proofs. We chose the Euclidean geometry as a domain to set up a learning environment 
suitable for the development of the CoT in two 10th grade scientific oriented classes. In Italian school, 
the passage from intuitive to deductive geometry takes place in the 9th grade: the students must be 
educated to justify geometrical facts and to prove theorems. These goals require an evolution in the 
students’ ways of looking at geometrical figures and their awareness of links between a proof of the 
statement and the theory within which the proof makes sense. Thus, we chose the construct of figural 
concepts (Fischbein, 1993) and the definition of mathematical theorem (Mariotti, 2001) to frame our 
experimental pathway. In agreement with the literature, in our pathway the indirect proofs (by 
contraposition and by contradiction) posed specific cognitive and didactical problems that had been 
absent in situation of direct proof. We tried to deal with them by using the model for indirect proof 
elaborated by Antonini and Mariotti (2008). In particular, in this paper we consider a classroom 
episode concerning proof by contradiction, in which the analysis of students’ behaviors, performed 
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according to that model, allowed us to identify specific instances of the obstacles deriving from the 
drawings that should support the reasoning in its different phases, and some spontaneous students’ 
ways to escape them. The discussion will concern the choice of suitable tasks for smoother 
approaches to proof by contradiction, and some aspects of the potential and limitations of Euclidean 
Geometry, as the privileged field to approach the culture of theorems in high school and, in particular, 
the issues related to indirect proofs. 

Theoretical background 

The Theory of Figural Concepts (TFC; Fischbein, 1993) highlights that geometrical figures possess 
simultaneously conceptual qualities (controlled by constrains within the realm of an axiomatic 
system) and images features (based on the perceptive-sensorial experience). The interplay between 
image component of a drawing and theoretical knowledge may (and should) implement a harmonious 
fusion between concept and image: the theoretical knowledge transforms the image into a geometrical 
figure. Fischbein calls Figural Concept this complete harmonious fusion. TFC is a suitable construct 
for our study for at least three reasons: to investigate how and if the students manage to deal with the 
relationships between different components in the geometrical figures; to interpret the difficulties 
deriving from a missing or incomplete fusion; to explain different students’ behaviors concerning 
proof by contradiction, when they deal with it in two different domains: elementary number theory 
(e.g. when proving the irrationality of  √2), Euclidean geometry.  

Mariotti (2001) defines a theorem as the triad (S-P-T) statement-proof-theory: a statement, its proof, 
and a theory (as a system of shared principles and deduction rules) within which this proof makes 
sense. Antonini and Mariotti (2008) refine this triad in order to better describe and explain the process 
involved in an indirect proof, due to its logical structure. According to them, proving by indirect 
method requires two phases: 1) a shift from a statement S (called principal) toward a statement S* 
(called secondary, which is proved by a direct method) obtained assuming as hypothesis the negation 
of the thesis of the principal one (in proof by contradiction) or of its thesis (in proof by contraposition), 
and as thesis, respectively, a contradiction or the negation of the hypothesis of the principal one; 2) 
the validity of the implication S*àS depends on the logical theory, that is external to the theory in 
which the principal and secondary statements are formulated. The two authors call meta-statement 
S*àS, meta-proof the proof of S*àS, meta-theory the logical theory into which the meta-proof 
makes sense. Then, any theorem with indirect proof consists of a couple of subtheorems belonging 
to two different levels: the level of the mathematical theory and the level of the logical theory. 
Unfortunately, usually teaching practice takes for granted the meta-theorem. 

Method 

Euclidean geometry as a suitable domain for a teaching-learning pathway to the CoT 

We chose Euclid’s plane geometry to make 10thgrade students approach the CoT for at least three 
reasons: 1) in Italy, since the end of the XIX century, Euclidean geometry has been considered to be 
the most suitable domain to allow high school students to tackle theorems, proofs, proving; 2) 
Euclidean geometry offers the possibility to deal with different kinds of proof; 3) the validation task 
of a geometric constructions provides the teacher with the opportunity of making the students aware 
of the nature and relevance of theoretical thinking in mathematics.  
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The structure and tasks of the pathway 

In the schoolyear 2016-17 our project was designed and implemented for the first time in a 10th class 
scientific-oriented. It took about 46 hours. In the same school, in the next year, the experiment 
involved two 10th classes (named 2A and 2D, respectively of 31 and 20 students). It was 7 months 
long, 2 school-hours (100 minutes) per week, summing up to about 56 hours. All the lessons were 
held by the same teacher (the first author), in the same day: first in 2A, then in 2D; a researcher (the 
second author) played the role of participant observer. The pathway was divided into 3 modules: 1) 
from the construction of a tangent circle to the two sides of a given angle, to the construction of the 
tangent circle inside a given triangle; 2) from conjecturing about sufficient conditions that create 
different kinds of triangles inscribed in a circle, to the proof of the relation between inscribed angle 
and central angle that subtends the same arc; 3) given a circle, from exploring and proving the 
relationships between its tangent and intersecting straight lines, to solving some problems concerning 
inscribed and circumscribed quadrilaterals. The classroom activities alternated individual tasks 
(presented on worksheets to be filled by the students – enough time was allocated to them, in order 
to develop specific linguistic skills) and collective discussions orchestrated by the teacher. They were 
addressed to identify gaps, mistakes, linguistic issues and elements of meta-knowledge of proof; and 
to reflect on different strategies of proof and on the organization of the proof text according to its 
specific structural constraints. In some cases, the discussion concerned also the comparison and the 
analysis of a few students’ individual productions, selected and made anonymous by the teacher. The 
individual activities concerned different kinds of tasks: construction problems and related theoretical 
justifications; proving of produced conjectures (after having been shared and refined under the guide 
of the teacher in collective discussions); analysing and refining some mates’ productions; cloze 
activities on proof texts; identifying salient meta-mathematical aspects of produced texts. At the end 
of each module, the summative assessment was made up of two parts: 1) a homework including: a) 
the written revision of all the personal worksheets, with careful identification of gaps or mistakes, 
comments on their specific causes of difficulties, with correction or reconstruction; b) a written report 
on her own experience: if she met difficulties during the work of the module, and when and how (and 
if) she overcame them; 2) a classroom work: the students were asked to correct and refine 3 
worksheets, chosen by the teacher: one produced by a schoolmate, two produced by herself.  

The collected data consist of all the individual productions (including home-works and self-reflective 
reports) and audio-recordings and field notes taken by the teacher and the participant observer. 

The student’s specific background on proof  

The pathway followed a curricular 9th grade geometric course (triangles and quadrilaterals), 
approaching the basic notions of CoT, included construction problems and theorems with direct 
proofs. The teacher estimated that more than 65% of the students were at ease with this kind of proof.  

The episode: a construction problem for the approach to proof by contradiction 

From the first module of 2017/18 pathway we focus on an episode, which concerns the validation of 
the construction of a circle tangent to the sides of a given angle; it consists of 5 steps carried out in 
parallel in the two classes. The related Euclid’s proof by contradiction consists of a few steps, and 
most students already knew all the theorems and definitions used in this proof, including Euclid’ 
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definition of tangent to a circle (only one point of intersection). They were also familiar with the 
construction of the bisector of a given angle. Therefore, in our a priori analysis, we judged that proof 
suitable for beginners’ first approach to proof by contradiction in geometry, and we predicted that at 
least some students would have been able to perform such mathematical reasoning. Here, we report 
only that part of Euclid’s proof which proves by contradiction that if we assume EA perpendicular to 
diameter BA (see Figure 1) then it meets the circle in only one point. We didn’t show it to the students. 

Euclid’ Statement (proposition 16 in Book 3): The straight line drawn at right angles to the 
diameter of a circle from its extremity will fall outside the circle. (Heath’s translation) 

 

(Proof) For suppose it does not, but, if possible, let it fall within as CA, 
and let DC be joined. Since DA is equal to DC, the angle DAC is also 
equal to the angle ACD (prop. I.5). But the angle DAC is a right angle; 
therefore, the angle ACD is also right: thus, in the triangle ACD, the 
two angles DAC, ACD are equal to two right angles; which is 
impossible (prop. I-17). Therefore, the straight line drawn from the 
point A at right angles to BA will not fall within the circle.  Figure 1 

First step: construction of the tangent circle to both sides of a given angle 

Lesson 1 (50’). We didn’t propose any method of construction and let the students propose it. We 
collected their worksheets.  

Lesson 2 (100’). By collective discussion, we analyzed all their methods (be they right or wrong) and, 
among them, we chose the following one, because it was aligned with the classroom background: 

 

1) Take a point C on the bisector of the angle aVb.  
2) From C draw the perpendicular line to side a 

and name T1 the intersection point.  
3) From C draw the perpendicular line to side b 

and name T2 the intersection point.  
4) Draw the circle of center C and radius CT1: it is 

tangent to both the sides of the angle given.  
Figure 2 

Second step: theoretical justification of the construction  

Lesson 3 (100’). Here is the text of the proof task; two hints are added: 

By using definitions and theorems that you know, explain why (i.e. prove that) the obtained circle 
is tangent to both sides of the angle.  

Hints: 1) In the 3rd step of the construction we took for granted that also T2 belongs to the 
constructed circle. Now you must prove that CT1 =CT2. 2) Given the definition of tangent line, in 
order to prove that each side of the angle is tangent to the circle, you must prove that each side of 
the angle has only one point in common with the circle: the side a has, in common with the circle, 
only T1, the side b has, in common with the circle, only T2. Try to find a reasoning by contradiction 
about only one side; for the second one you can re-use it.  

Thematic Working Group 01

Proceedings of CERME11 341



 

 

Lesson 3) in the 2A class: we observed that almost all students proved that CT1 =CT2, but no one was 
able to continue. The difficulty was to find the starting point of proving by contradiction, so, we 
decided to offer it: “Let us suppose that the circle has two points, T1 and T1

*, in common with side a. 
What consequence can you derive from this new figure?”. While we were waiting for some 
contributions, we observed gestures simulating reciprocal position of triangle and line, and listened 
fragments of speech left open. But, the situation reached a stalemate. Thus, the teacher drew the 
Figure 2 on the blackboard, added the segment CT1

* (like in figure 3 – see later), and said: “Let’s look 
at the angles: in T1 and in T1

*. Which kind of angles do you think they are?”. Her goal was to hint an 
isosceles triangle, due to two equal angles (opposite to equal sides). She suggested the students to 
think about the kind of the resulting triangle, based on the reasoning, in spite of how it looked. But 
most students saw a scalene one. They looked very uncomfortable, because of the conflict (cf. TFC) 
between the drawing and the reasoning guided by the teacher. She observed that Fed was slowly 
moving his index and medium fingers, a scissors-like movement; she interpreted it as a representation 
of CT1

* that was collapsing on CT1. She asked him the meaning of his gesture. He said: “I see an 
isosceles triangle, then it has two right angles, (…), I must refuse it; (…)?”. Thus, the teacher mirrored 
that gesture and asked: “In which case, could the angle in C be the zero angle? Look at your fingers 
moving”. Fed: “If the two sides collapse in one… and T1

* in T1.”. Fed smiled. This interpretation 
spread quickly in the classroom and revitalized the atmosphere: almost all the students restarted to 
work. But, the lesson-time ended: we had to stop and collect their worksheets. 

Lesson 3) in 2D: we decided not to distribute the hints sheet, because it had interfered in an ineffective 
way with the students’ reasoning, and to guide in interaction with students the construction of the 
proof by contradiction in a smooth way, drawing the side CT1

*. We proposed to consider the triangle 
CT1T1

* as isosceles. Suddenly, Bea said: “CT1
* can’t be a radius of the circle. It’s the hypotenuse!”. 

By collective interaction, the teacher replied the same gesture made in 2A: several students saw in it 
the zero angle and carried on their work. Meanwhile, Fra showed his worksheet to the teacher, where 
he had written: “if there were two points of intersection, then CT1 would have not been perpendicular 
to side a (the negation of the hypothesis)”. The teacher told him that his reasoning was the incipit of 
another kind of proof and encouraged him to complete it. However, the teacher did not share it with 
the class, in order to not interfere with another way of reasoning, especially because, in that moment, 
her goal was the proof by contradiction. The discussion was oriented in that direction.  

Analysis of the texts: only 6 students out of 51 produced a rather complete proof by contradiction. 
Students’ difficulties to deal with the impossible figure at the beginning of the proving process were 
well represented by three students who, when they had to draw the CT1T1

* triangle, wrote that they 
choose T1

* “very near” to T1. Concerning the subsequent phase of proving,  in some cases, students’ 
words resonated with the gesture of closing the two sides of the angle: “The triangle must become 
the radius CT1”; “The angle goes to 0 and the triangle does not exist anymore”. Some students wrote 
that the triangle was impossible, because the width of one angle was 0; other students transformed 
the “impossible” triangle by making it collapse on the segment CT1, because “the measure of the 
angle T1CT1

* must be 0”.  

Third step: reviewing some proofs produced by mates.  
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Lesson 4) (100’). In both classes, students were provided with the photocopies of proofs produced by 
some of them: 2 for the first part of the task, and 5 proofs for the part that concerned proof by 
contradiction. They were asked to review, correct and improve their mates’ proof texts. Most students 
worked in a rather exhaustive way on the first group of productions (direct proofs), while they had 
difficulties with the other five productions. A collective discussion followed, still oriented in the 
direction of putting proving by contradiction into evidence. 

Fourth step: individual written refining the proof 

Lesson 5) (50’). Task: “Taking into account the discussion, write down in an accurate and complete 
way the theoretical justification that the circle is tangent to both sides of the angle.”  

First part: 

The circle of 
center C and radius 
CT1 meets side b 
in a point T2 

Second part: 

The circle of center C 
and radius CT1 is 
tangent to the side a of 
the angle.  

Figure 3: the two parts of the statement 

This time, more than one third of students produced more or less exhaustive proofs by contradiction, 
but in some cases the texts looked like mere transcripts of what the teacher had put into evidence.  

Lesson 6) (50’). We provided students with a written theoretical justification of the construction; all 
the steps were reported, but their justifications were lacking. The conclusion after the emergence of 
the contradiction was already complete. The drawings of Figure 3 were reported on the worksheet. 
The students were requested to complete the text by writing the justifications of the statements, which 
they considered lacking. In this case, most productions were exhaustive and satisfactory.  

Interpreting students’ difficulties 

According to Antonini and Mariotti’s (2008) model of indirect proofs, the students were expected to 
meet difficulties due to the transition from a direct proof initiated by falsifying the thesis of the 
theorem, to the management at the meta-level of the resulting contradiction. But another, strong 
difficulty intervened at the beginning of the reasoning: the existence of an impossible figure T1

*, 
which contrasted with perceptual evidence (hence the choice of two “very near” points T1 and T1

*). 
It is like if the choice of very near points might make the existence of a second meeting point between 
line a and the circle more reasonable! In this case, a complementary interpretation of students’ 
difficulties might be provided by TFC, particularly when Fischbein (1993, p. 148) says: “There is 
certainly a conflict here generated by the fact that the two systems, the figural and the conceptual, did 
not yet blend in genuine figural concepts […]. The figural effect is too strong and it seems to cancel 
the conceptual constraints”. Accordingly, in our case, we might interpret students’ difficulties in 
accepting the impossible figure by considering the conceptual assumption of the existence of two 
points of intersection as the starting point of the direct reasoning that brings to the contradiction, and 
the conflict with its figural representation. Indeed, in the case of the proof of irrationality of √2, most 
of the same students had easily accepted to start their reasoning from the assumption that √2=m/n, 
with m and n coprime integers. The direct proof could be developed up to the conclusion that m and 
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n should have had 2 as a common factor. Then, the transition to the logic meta-level inherent in the 
management of the contradiction made some students hesitant just for a while, without preventing 
them from reaching a conclusion. On the contrary, in our geometric case the transition to the logic 
meta-level was problematic: another “impossible figure” worked again as an obstacle, and some 
students felt the need of collapsing that figure to eliminate the source of the contradiction, instead of 
accepting the contradiction and coming to the conclusion of refuting the negation of the thesis. 

Discussion 

The 2017/18 teaching experiment allowed us to better understand some reasons for the difficulties 
met by students approaching proof by contradiction through a typical theorem of Euclidean geometry. 
The difficulties in two different phases of proving depended on the figures of the (necessary) visual 
support to develop the proof (impossible figures!), intertwined (in the second phase) with the 
difficulties inherent in the management of the contradiction at the meta-level. In order to deal in the 
future with the approach to proof by contradiction in Euclidean geometry we are now considering 
three possibilities:  

First, to lessen the difficulty inherent in the impossible figure by changing the geometry theorem at 
stake. Tall et al. (2012) suggest a proving situation related to the proof that the angular bisector of 
any angle in any triangle intersects the axis of the opposite side in a point that cannot be internal to 
the triangle. The proof is based on the assumption of an internal point of intersection, and on the 
consequent reasoning that brings to the conclusion that all the triangles are isosceles.  

Second, to approach indirect proofs in geometry through a different treatment of the same situation 
considered in this paper: the starting point would be to prove that a secant line meeting the circle in 
T1 and T1

* cannot be perpendicular to the radius CT1 (like the student Fra. did). By this way students 
would learn to move to the meta-level of logic considerations inherent in indirect proofs without the 
obstacle of impossible figures; then they might move to a proof by contradiction for another theorem.  

Third, to take into account some students’ tendency to reason dynamically1, in order to escape the 
contradiction related to the impossible figures, and to show how it may result in a valid proof; and 
then to move either to a proof by contraposition, or to a proof by contradiction as another way of 
proving the same theorem by reasoning on the impossible figure.  

These possibilities are not mutually exclusive. More generally, we may ask ourselves if the domain 
of Euclidean geometry is suitable for students’ approach to indirect proofs. Indeed, in the literature 
many examples of such approach concern other domains, and even the first encounter of our students 
happened in the arithmetic field, without any relevant difficulty. For us, two reasons still suggest to 
privilege Euclidean geometry for a full-fledged approach to indirect proof (in particular, to proof by 

                                                 
1 Students’ dynamical reasoning might result (through a suitable mediation by the teacher) in a direct proof: let us consider 
the distance between C and the secant line, as the segment of perpendicular CH drawn from the center of the circle to the 
secant line; the identity: CH=�CT12 − T1H2 results in the fact that the distance CH approaches the length of the radius of 

the circle (and thus the radius becomes perpendicular to the straight line) if and only if T1H2 goes to 0, i.e. the triangle 
CT1T2 collapse on CT1. 
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contradiction). First, the nature of proof by contradiction: the obstacle of the “impossible figure”, if 
conveniently dealt with thanks to a suitable preparation, might put into better evidence the nature of 
the proof by contradiction and the necessity to move to the meta-level (Antonini and Mariotti, 2008). 
Second, during the process of proving by contradiction, impossible figures do not intervene only in 
Euclidean geometry, but also in other fields of mathematics (e.g. in Calculus) when students represent 
the negation of the thesis. Thus, it would be good that students meet impossible figures and deal with 
them in high school. Moreover, we may add that proof by contradiction entered Western mathematics 
through Euclid’s elements, while it was absent in other important historical developments of the 
discipline (like in the case of Chinese mathematics; see Siu, 2012). Thus, it is a cultural product that 
needs a suitable teacher’s mediation. The field of Euclidean geometry seems to be suitable for it, 
provided that a smooth approach to indirect proofs is planned.  
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The mathematics education literature reveals an ongoing interest in fostering students’ ability to 
construct and reconstruct proofs. One promising tool is the concept of “key idea”. This study 
examined the relationships between how well students identified and formulated key ideas of the 
proof the irrationality of √k for non-square k and their subsequent ability to reconstruct the proof. 
The findings show that students’ proof reconstructions were closely aligned with key ideas that they 
identified. Very few students were able to use precise language and point to an idea that helped 
them both understand the proof and reconstruct it. The findings suggest that mathematics 
educators, in their desire to see students enhance their understanding of proof and proving by the 
use of key ideas, need to create opportunities for key idea identification and proof reconstruction 
with attention to students’ differing approaches to reconstructing a proof.  

Keywords: Key idea, proof reconstruction, undergraduate mathematics. 

Introduction 
Since Hanna (1990) highlighted the distinction between proofs that prove and proofs that explain, it 
has been widely accepted that the purpose of using proof in the classroom is not merely to convince 
students that a mathematical statement is true, but also, and more importantly, to provide them with 
mathematical insights (e.g., Hanna, 1995; Mariotti, Durand-Guerrier, & Stylianides, 2018; Mejia-
Ramos, Fuller, Weber, Rhoads, & Samkoff, 2012; Stylianides, Stylianides, & Weber, 2017; 
Thurston, 1995). Closely associated with the notion of “proofs that explain” is that of a key idea in a 
proof. For some scholars this term refers to a central mathematical idea, method, or strategy used in 
a proof, whereas for others it connotes the outline, overview or architecture of a proof. Despite 
these different interpretations of key idea, this notion has had pedagogical implications that are 
consistently aligned with the promotion of students’ ability to undertake proof construction and 
reconstruction on the basis of richer understanding (Detlefsen, 2008; Duval, 2007; Gowers, 2007; 
Hanna & Mason, 2014; Koichu & Zazkis, 2013; Raman, 2003; Robinson, 2000). 

Despite the increasing interest among mathematics educators in fostering the ability of students to 
construct and reconstruct proofs, and in proof reconstructability in particular, there are limited 
studies that investigated how university mathematics students go about identifying the key idea(s) 
of a proof, consciously or unconsciously, or how key idea(s) are actually used to help students grasp 
the overall structure of a proof or the mathematical insights embedded in it. Of those empirical 
studies that have investigated students’ comprehension of proof (e.g., Weber & Mejia-Ramos, 
2011), very few have probed the identification of key ideas as a factor that promotes the ability of 
undergraduate university mathematics students to construct and reconstruct proofs. This paper 
examines the relationships between the students’ ability to identify and formulate key ideas of a 
proof and their subsequent ability to reconstruct the proof, with specific reference to the use of key 
ideas.  
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Theoretical underpinnings 
Practicing mathematicians have paid considerable attention to the concepts of understanding, 
remembering, and reconstructing proofs (Byers, 2010; Manin, 1998; Thurston, 1995). Gowers 
(2007), a Fields medalist, suggests that focusing on the main idea(s) of a proof would enhance its 
memorability and reconstructability. 

Key ideas 

The notion of key idea in proof construction and reconstruction stems from both mathematical and 
pedagogical considerations. Lai and Weber (2014) reveal that mathematicians value and emphasize 
the presentation of the main ideas of a proof over that of a completely rigorous proof. Similarly, 
mathematics educators have discovered that to help students understand and remember proofs it is 
more beneficial to put an emphasis on the main ideas contained in the proofs than to teach the 
students how to build valid sequences of logical steps (Durand-Guerrier, Boero, Douek, Epp, & 
Tanguay, 2012; Hanna & Mason, 2014; Hemmi, 2008; Knipping, 2008; Malek & Movshovitz-
Hadar, 2011). Furthermore, Duval (2007) suggests using main ideas to overcome students’ mental 
blocks in proof construction. Such ideas described above are “key ideas” which carry the flow of 
information in mathematical proof (Detlefsen, 2008) and capture the gist of a proof (Robinson, 
2000).  

The term key ideas may mean different things to different people. Some scholars refer by that term 
to the most important mathematical ideas, methods, or strategies used in a proof, whereas others 
have in mind an outline, overview or architecture of a proof. The former maintain that a proof can 
foster understanding more successfully if it is constructed on the basis of well understood and 
internalized key mathematical ideas (Gowers, 2007; Hanna & Mason, 2014; Mason, Burton, & 
Stacey, 1985). The latter, while also focusing on the central constructive idea, propose a general 
approach in which a proof task is broken into chunks to highlight its overall structure (Leron, 1985; 
Mejia-Ramos et al., 2012; Robinson, 2000; Selden & Selden, 2015). Robinson (2000) suggests that 
it is essential to ignore low-level details while highlighting the overall structure of the proof. Selden 
and Selden (2015) suggest the construction of a proof framework or outline specifically to reduce 
the burden on the working memory of the mathematician or student. Raman (2003) understands the 
term key idea differently. For her, it refers to a heuristic idea that one can map to a formal proof 
with an appropriate degree of rigor.  

In this study, the term key idea in a proof was presented to the students as an idea, such as 
mathematical fact or concept, a specific proving approach or technique that one actually needs to 
remember in order to know how to go about re-constructing a proof. One might ask “why 
reconstruction?” At the undergrad level, students often apply a previously learned proof to 
reconstruct a proof of that type on a new problem. In this sense, proof reconstruction is an outcome 
measure of the power of key idea. 

Here are examples of key ideas. 1) To prove that √2 is irrational, a key idea might be: to start with a 
minimal fraction p/q and look for a smaller such fraction. 2) To prove that the sum of the first n 
positive integers, S(n), is equal to n(n+l)/2, a key idea might be: to notice that each pair (1 + n), (2 + 
(n-1)), (3 + (n-2)) ... has the same sum; another key idea might be: to represent S(n) in a triangular 
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form of dots. 3. To prove Viviani’s theorem, a key idea might be: to use the fact that the area of a 
triangle is half its base times its height.   

Method 
Both qualitative and quantitative methods were used in the larger exploratory study on the key ideas 
of proofs. This paper reports the results based mainly on the qualitative data collected from 17 first 
year undergraduate mathematics students, who attended a transition-to-proof class in the honours 
program of mathematics or mathematics education at an urban university in central Canada. The 
age range of the participants was from 19 to 38.  

Data Collection and Analysis 

The purpose of the quantitative survey’ was to gather data on the use of key idea(s) in proof 
construction and reconstruction. For example, students’ agreement to some statements about key 
ideas were as follows: 1) When I read a proof, I try to identify its key ideas (76%); 2) After 
constructing a proof, I tend to identify the key ideas used in it (59%); 3) When I reconstruct a proof, 
I am less likely to get lost if I already know the key idea used in the proof (53%). Student work was 
the major source for investigating how students identify key ideas in a proof and how they use the 
key ideas to reconstruct it. It included worksheets, individual assignments, group work, mid-term 
tests, final exams, as well as snapshots of students’ proving products on a board or on paper. Five 
complete proofs were used for students to identify and formulate key ideas. The paper focuses on 
the proof of irrationality of √k for non-square k for investigation and discussion.  

The proof of the irrationality of √k for non-square k (see Figure 1) was selected from the book 
Charming Proofs: A Journey into Elegant Mathematics (Alsina & Nelsen, 2010).  

Figure 1: The proof shown to the students 
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This proof was given to the students who attended “Problem, Conjectures and Proofs” course as an 
in-class exercise which consisted of three components: 1) reading the proof, 2) responding to seven 
prompt questions such as, “What is the method of the proof?”; “Explain how to use 𝑝𝑝 < 𝑚𝑚

𝑛𝑛
< 𝑝𝑝 + 1

to prove that 0 < 𝑚𝑚 − 𝑛𝑛𝑝𝑝 < 𝑛𝑛 and 0 < 𝑘𝑘𝑛𝑛 − 𝑝𝑝𝑚𝑚 < 𝑚𝑚. What is the relevance of these inequalities?”; 
and “What is the idea of the proof? Limit yourself to three or four sentences”, and 3) reconstructing 
the proof. The instructor gave the students approximately 40 minutes to read the proof and to 
respond to the prompt questions designed by the instructor. After the students handed in the 
worksheets, they had approximately 30 minutes to reconstruct the proof. For all the three 
components of the exercise, the students were asked to work individually.  

Fifteen responses were collected. At the end of the course, follow-up question sheets designed to 
gather more information about students’ perceptions of the notion of key idea were also collected. 
Email discussions were also conducted with three participants.  

Findings 
The findings are based on the work of 15 students for whom there is complete data. The students’ 
work on this proof is organized by the relationship between how well the students identified and 
formulated the key ideas of the proof and how well they subsequently used them to reconstruct the 
proof (see Table 1). Each of four qualified judges (two mathematics educators and two 
mathematicians) assessed the students’ responses independently and then the four settled on a 
grouping of the responses into three categories: 1) clear key ideas (well-formulated mathematical 
ideas useful in the proof), 2) unclear key ideas (imprecisely formulated mathematical ideas with no 
clear way to use them in the proof), and 3) unhelpful key ideas (well-formulated mathematical ideas 
irrelevant to the proof). The main criteria used to categorize how well the students identified and 
formulated the key ideas of the proof were relevance and clarity in stating where the contradiction 
comes from in the proof.  

Proof Reconstruction Identification of Key Idea Total Clear Unclear Unhelpful 
Successful 2 1 3 
Unclear 3 3 
Problematic 9 9 
Total 2 3 10 15 

Table 1: Relationships between key idea identification and proof reconstruction 

Nine out of 15 students identified the key ideas of the proof inappropriately and were unsuccessful 
in reconstructing the proof. These key ideas, irrelevant to the proof presented, fall into three 
categories (see Table 2). The first two types reflect students’ misunderstandings of the proof: 5 out  

Type What key ideas focused on Number of Students 
1 Properties of straight lines or linear function 5 
2 Well ordering property 3 
3 Mechanical procedures 1 
Total 9 

Table 2: Types of unhelpful key ideas 
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of 9 students improperly considered that the key idea of the proof involved the properties of straight 
lines or linear functions, while 3 students claimed incorrectly that the Well Ordering Property was 
used in the proof. The third type “mechanical procedures” shows that the student simply listed the 
procedures to be followed to complete the proof without addressing the mathematical ideas used.  

Student Kathy displayed a clearly identified key idea of the proof followed by a successful 
reconstruction. As shown in Figure 2, she offered a well-articulated key idea of the proof by 
breaking down the key idea into three related elements: 1) an assumption being made – “assume √𝑘𝑘 
can be presented as a rational number 

𝑚𝑚
𝑛𝑛

 in lowest terms”, 2) the consequence of the assumption –

“then point (n, m) should be the closet point to the origin on the line 𝑦𝑦 = 𝑚𝑚
𝑛𝑛 𝑥𝑥 for x and y integers”, 

and 3) what contradicts the assumption – “point (m-pn, kn-pm) is also on the line and that (m-pn) 
and (km-pm) are both integers less than n and m respectively, so there is a contradiction”. The 
logical progression of the three elements was clearly stated and well presented.   

In Kathy’s proof reconstruction (see Figure 3), the same structure and wording of the key ideas 
appeared. In fact, the reconstruction was an expanded version of the key ideas with adequate details 
of reasoning and verifying. Notice that, from the instructor’s perspective, the proof could have 
stopped when Kathy reached the point where “the point (m-pn, kn-pm) has integer coordinates and 
is closer to the origin than (n, m)”. However, Kathy continued on to explain that  “𝑦𝑦 = 𝑚𝑚

𝑛𝑛 𝑥𝑥 is linear

Figure 2: Kathy’s key idea of the proof of the irrationality of √𝑘𝑘 

and passes through the origin then 
𝑘𝑘𝑛𝑛−𝑝𝑝𝑚𝑚
𝑚𝑚−𝑛𝑛𝑝𝑝

= 𝑚𝑚
𝑛𝑛

 and 
𝑘𝑘𝑛𝑛−𝑝𝑝𝑚𝑚
𝑚𝑚−𝑛𝑛𝑝𝑝

 is in lower terms 
𝑚𝑚
𝑛𝑛

 ”, which did not 

appear in the original proof presented to the students. It seemed that in order to come to the 
conclusion, Kathy needed to see the integer coordinates of the two points in the form 

𝑘𝑘𝑛𝑛−𝑝𝑝𝑚𝑚
𝑚𝑚−𝑛𝑛𝑝𝑝

 = 
𝑚𝑚
𝑛𝑛

 to

argue that now a new point was found such that √𝑘𝑘 = 
𝑘𝑘𝑛𝑛−𝑝𝑝𝑚𝑚
𝑚𝑚−𝑛𝑛𝑝𝑝

in lower terms than 
𝑚𝑚
𝑛𝑛

. This intention 

and action to be more explicit and transparent than the original proof shows that the student 
reconstructed a proof that she understood, and needed to communicate with herself and the 
instructor about what she considered critical to reach the contradiction.  
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Figure 3: Kathy’s reconstruction of the proof of the irrationality of √𝒌𝒌 

When asked to reflect on what led to the success in understanding and communicating the key ideas 
of the proof, Kathy stated that:  

I have to break the proof into related steps so that I can understand it when I am reading it, 
and communicating that is just the process of putting the ideas of those steps back into 
words. When doing this, I choose phrasing that would help me to understand the proof 
better. So I think that I did well on those questions because they are similar to my own 
process of understanding the proofs presented. 

There was one case of an incorrect key idea followed by a successful reconstruction. A student 
stated that, “The main idea of this proof is we won’t have a line when the slope of it is irrational. 
The graph will be a curve.” However, his reconstruction of the proof was complete and clear, 
despite the mis-identified main idea. To probe what was going on in the student’s mind, attempts 
were made to discuss the work with him. Unfortunately, the student was not interested in such 
discussions. 

Discussion 
The findings indicate that compared to the original proof, students’ proof reconstructions varied in 
some ways. These variations deserve some pedagogical attention given the fact that a deep 
understanding of a proof often leads to a personal interpretation of the proof. In Kathy’s case, she 
deliberately added some details that did not appear in the original proof. The “unnecessary 
verification” served her as a necessary self-explanation to make a strong argument. Similarly, 
another student interpreted “a closer point to the origin” presented in the original proof as the 
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integral coordinates “below m and n” so that he could link the point (m-pn, kn-pm) back to the 
straight line.  

Three out of 15 participants identified the key ideas and reconstructed of the proof with limited 
success, while nine students did not manage to state a key idea clearly. Consequently, these nine 
students’ reconstructions of the proof tended to lack clarity as well. What seems to have thwarted 
their ability to reconstruct the proof was their lack of success in identifying clearly a key idea of the 
proof with the intention of re-using it in future reconstruction. The inadequate level of clarity in 
these students’ work might be due to a lack of full or partial understanding of the proof, or simply 
due to a struggle with being precise in expressing their ideas.  

The findings are somewhat in line with Raman, Sandefur, Birky, Campbell, & Somer (2009) in that 
a proof should not be thought as having only one particular key idea: “We refer to “a” key idea 
rather than “the” key idea, because it appears that some proofs have more than one key idea” (p. 2–
156). The findings do support Gowers’ (2007) view that a key idea provides not only a clue how to 
remember a proof but also to write it up. In fact, the findings bring evidence that the students’ proof 
reconstructions were closely aligned with the key ideas they themselves identified – varied in type 
as those key ideas may have been. It is therefore important for mathematical educators to be aware 
of these variations so as to understand students’ work better. In addition, instructors could be 
attentive to students’ differing approaches to reconstructing a proof and aim at creating more 
opportunities for students to identify key ideas and engage in proof reconstruction. 
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Introduction  
Working Group 2 was formed in 2011 and has developed as a forum for discussing theoretical and 
empirical research on the teaching and learning of arithmetic and number systems. Our common work 
targets to gain and enhance knowledge about students’ understanding and meaningful learning in this 
content area regarding different age and achievement levels. The scope of the TWG comprises 
kindergarten to 12th grade, and emphasizes research-based specifications of domain specific 
frameworks, concepts and goals, analysis of learning processes and learning outcomes in different 
classroom cultures, as well as innovative teaching and diagnostic approaches that balance procedural 
and conceptual knowledge.  

Learning arithmetic and number systems from Kindergarten to High School is a very broad field with 
a great variety of themes and research approaches. This year, the group intensively discussed twenty 
papers and four posters that reflected the richness of the field. According to the path we pursued at 
CERME 10, we had the chance to broaden our discussion by regarding the same topics from different 
perspectives; cognitive phycologists and mathematics education researchers. In comparison to the 
TWG work of the last years, there was also a change regarding the research approaches. Whereas the 
last two CERME conferences were dominated by design based research, this year was characterized 
by a good balance of qualitative and quantitative approaches.  

Overview on discussed papers and posters 
The various presented and discussed papers can be pooled in four groups of themes: The role of 
manipulatives in learning processes in early arithmetic, learning and teaching numbers and operations 
in kindergarten to first grade, learning and teaching arithmetic in second to sixth grade, as well as 
different foci on learning rational numbers. Additionally, there was one paper on metacognition.  

Role of manipulatives 

Natividad Adamuz-Povedano, Elvira Fernández-Ahumada, Teresa García-Pérez and Rafael Bracho-
López reported on an exploratory study of 25 students using manipulative materials to develop 
number sense understanding in 6 year olds by presenting two activities, jumping frogs and skip 
kangaroo. The findings illustrated how effective active behaviors from the students had enhanced. 

Doris Jeannotte and Claudia Corriveau explored the use of manipulatives by children, in particular 
based-ten blocks and abacus, for solving arithmetical tasks. Considering the concept of affordance, 
as related to interactions between an individual and the environment, they analyzed both, the use of 
manipulatives and the affordance in two grade 3 classes, as inseparable units of teaching and learning.  
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Numbers and operations in early arithmetic 

Camila P. Nogues and Beatriz V. Dorneles explored deeper into the skills of number estimation and 
quantitative reasoning through the discussion of the relationship between these two important 
concepts of understanding. They found indeed a correlation between grades 3 and 4 students’ 
performance in the quantitative reasoning task and number line estimation tasks.  

Évelin Assis and Luciana Vellinho Corso presented an intervention study in Brazil which involved 
136 first-grade students in the teaching and understanding of counting principles. A key product of 
this experiment was to analyze the efficiency of the intervention in order that it could be used in any 
first grade classroom. 

Pernille Sunde and Peter Sunde investigated the development of mental strategies in single-digit 
addition in 83 first grade students. The used strategies were assessed by two interviews that were 
conducted in a period of five month. Surprisingly, quantitative analysis revealed no influence of 
instruction for strategy change.   

Michael Gaidoschik discussed the “structure-genetic didactical analysis” paradigm, which 
emphasizes the need of children explore and internalize part-whole relations between numbers. He 
questioned the role of counting in early math classrooms, and offered a didactic alternative in line 
with the needs of the children as well as the subject matter.  

Luciana V. Corso and Évelin Assis analyzed teacher’s perceptions of their first grade students’ 
profiles including students’ behavior, attention, interaction and knowledge by area of mathematics 
writing and reading. The findings presented teachers perceptions related very closely to student 
achievement in a counting principle test, but only for students with a good performance.  

Learning arithmetic in second to sixth grade 

Joana Brocardo, Catarina Delgado, Fátima Mendes and Jean M. Kraemer presented a teaching 
experiment with grade 3 students in the domain of partitive division. It aimed to explore how students 
adapt personal knowledge to varying task conditions. Data analysis confirmed that variation 
influences students’ strategies, and allowed to designate three critical aspect of the learning process.  

Ems Lord and Andreas J. Stylianides presented results of a mixed methods study that focused on 
calculation flexibility and written algorithm on Year 6 students. Results revealed that formal 
algorithms were the most frequently selected strategy, and gender, prior attainment and confidence 
were all significant predictors of the use of formal algorithms. 

Robert Gunnarson and Ioannis Papadopoulos analyzed written solutions for arithmetic expressions 
of Swedish and Greece students (grades 5 and 6) focusing on the order of operation (addition, 
subtraction and multiplication) and the precedence rules. Data showed that paring is as frequently 
used as sequential calculations. Thereby, three qualitatively different types of pairing were identified.   

An analysis of four popular German textbooks (grades 2 and 3) with a focus on developing and 
consolidation of understanding of multiplication was presented by Sandra Gleißberg and Klaus-Peter 
Eichler. Using their own conceptual framework based on the work of Bruner, the analysis showed 
that the vast majority of tasks require working on the non-verbal-symbolic level alone.  
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Different foci on learning rational numbers 

Lalina Coulange and Grégory Trains’ study aimed to understand the role of register of numeration 
units (tenths, hundredths) for teaching and learning decimal numbers at primary level in France. Their 
findings revealed students’ difficulties in unit-conversions and in associating the numeration units 
with the decimal notation. A new perspective on teaching is suggested to prevent those difficulties.   

Ioannis Papadopoulos, Styliani Panagiotopoulou and Michail Karakostas investigated strategies 
used by primary, secondary and tertiary education students to calculate mentally operations involving 
rational numbers. The findings revealed the mental form of the written algorithm as dominant strategy 
across all educational levels.  

Pernille L. Pedersen and Peter Sunde investigated the relationship between 99 fourth-grade students’ 
ability to compare fractions and to solve tasks all four operations. Data analyzes showed that 
comparative rational number tasks are correlated with division and multiplicative items, and therefore 
suggested that understanding of fractions is closely connected to multiplicative reasoning.  

A summary of fours studies on secondary students’ conceptual and procedural knowledge of fractions 
was presented by Xenia Vamvakoussi, Maria Bempeni, Stavroula Poulopoulou and Ioanna Tsiplaki. 
The researchers developed and evaluated an instrument to measure both knowledge types, and 
identified students’ individual differences in combining procedural and conceptual knowledge.  

Carlos Valenzuela Garcia and Olimpia Figueras designed a teaching model for fractions based on 
applets aiming to support the development of fraction mental objects in elementary students. The 
performance of two students, described in the paper, showed that working with the applet lead to an 
enhanced notion of fractions, e.g., from fractions as fracturer to fractions as number and as measurer.    

Sofia I. Graça, João P. Ponte and António Guerreiro developed a study that aimed to identify grade 
5 students’ knowledge of rational number operations and number sense before and after a teaching 
experiment. Results indicated that students’ performance changed; at the beginning it based on their 
whole number knowledge, later they exhibited conceptual knowledge, number and operations sense.  

Carvalho, Renata and João P. Ponte surveyed grade 6 students’ strategies in mental computation in 
rational numbers within a qualitative design research approach including three phases. Data analysis 
allowed to describe typical strategies regarding tasks with different cognitive demands, and revealed 
that, e.g., memorized rules are mostly applied without meaning.    

Maria T. Sanz Garcia, Olimpia Figueras and Bernardo Gómez focused on students’ performance (15 
and 16 years old) in solving particular fraction word problems, and measured their difficulties by 
accuracy.  Results suggested that the increase of steps in a problem leads to the increase of students’ 
difficulties caused by insufficient basic fraction knowledge.   

Metacognition in problem solving 

Aikaterini Vissariou and Despina Desli investigated metacognitive strategies used by sixth graders 
solving a non-routine mathematics problem. Despite the fact that students reported the use of 
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metacognition, their demonstration of the used strategies was quite low. Additionally, their successful 
solution to a problem was not necessarily connected to the employment of metacognitive strategies.  

Discussed posters 

Évelin Assis and Luciana V. Corsos’ poster depicted well their analysis of the intervention pilot study 
discussing the adaptations that needed to occur on route. Alix Boissière presented a board game 
around the notion of fractions for grades 4 to 6. It was developed based on the theory of didactical 
situations and pretested in several classrooms. Kazuhiro Kuriharas’ poster introduced a theoretical 
framework for analyzing the development of students’ understanding the algebraic structure. Hereby, 
the focus is on the extension of number sets. Charlotte Rechtsteiner analyzed flexible mental 
calculation skills of freshmen and graduates. Results indicated that the flexibility scores are not 
adequate for prospective primary teachers.  

Summary and outcomes 

The great variety of papers was challenging, but also the strength of this TWG since it ensured 
interesting and often animated discussions in a supportive quizzical environment. Thereby, we went 
far beyond the specific topics of the single papers, worked out differences and commonalities of used 
terms, concepts, theoretical frameworks and methodological approaches. We realized once more 
different conventions in different counties of naming numbers and operations, as well as partly 
conflicting views of quantitative and qualitative approaches. Altogether, we broadened our own 
culturally influenced perspectives and drew new inspiration for further research. The aspects we 
discussed reflected the whole spectrum of arithmetic in primary and secondary level and comprised 

· the importance of counting in different cultures and curricula, as well as a critical reflection on 
counting for developing strategies in mental calculation. 

· the influence of instruction and the need to design learning environments based on our knowledge 
of students’ strategies, conceptions and misconceptions. 

· the importance of supporting students’ conceptual knowledge regarding numbers and operations 
in different number systems. 

· the clarification of methodology in terms of what is measured, why is a measure used, what does 
a result mean, and how does it contribute to better understanding of teaching and learning. 

· the meaning of ‘number estimation’ as positioning natural numbers in a segment, and its 
connection to relational thinking. 

· the challenges of transition between number systems, between representations, and from 
intervention research to students understanding (long term) 

Reflecting our work in a conclusive discussion, we agreed that our various research is driven by a 
common goal: Supporting all student’s understanding and meaningful learning to develop conceptual 
knowledge, number sense and structure sense in different number systems, as well as flexible and 
adaptive expertise in calculation strategies in all operations. Our further work is directed towards 
specifying terms and work on common understanding of number sense, structure sense, flexibility, 
manipulatives and mental calculation. Furthermore, we want to advance our methodological 
approaches and bridge the gap between quantitative and qualitative by triangulation.  
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Promoting experiences to develop the so-called number sense since early school years has become a 
focus of interest in mathematics education research. By number sense we mean a broad concept that 
refers to a deep understanding of the decimal number system, the relationships between numbers and 
operations, and the development of capabilities such as flexible mental calculation, numerical 
estimation and quantitative reasoning. This paper is an exploratory study (25 pupils), part of an on-
going research, where a methodological approach, based on the use of manipulative materials for 
developing in six-year-old students’ number sense is explored. Particularly, in this study, we present 
and analyse two activities, in which a jumping frog and a kangaroo are used as conceptual metaphors 
for the acquisition of calculation strategies that encourage number sense development.  

Keywords: Number sense, Conceptual metaphor, Primary Education, Manipulative resource. 

Introduction. 
Expressions such as "number sense", "numerical consciousness" or "numerical thinking" are being 
imposed with force in the current studies on mathematical knowledge. In general terms it refers to 
several important abilities that involve mastering a wide range of skills with numbers. For McIntosh, 
Reys and Reys (1992) numerical thinking is a person's overall understanding of numbers and 
operations along with the ability and inclination to use this understanding in flexible ways to make 
mathematical judgments and to develop useful strategies for managing numbers and operations. 

In the Curriculum and Evaluation Standards for Mathematics Education of the National Council of 
Teachers of Mathematics (NCTM, 1989), five components that characterize numerical sense were 
identified: (1) correctly understand the meaning of numbers; (2) be aware of the multiple relationships 
that exist between numbers; (3) recognize the relative magnitude of the numbers; (4) know the relative 
effect of numerical operations; (5) have reference points for measurements of common objects and 
situations in the environment. In the same line, Sowder (1992) expresses that number sense is 
developed when students understand the size of numbers, they think about them and represent them 
in different ways, they use numbers as references and develop accurate insights into the effects of 
operations with numbers. 

Although there is still no general consensus on the concept and operation of numerical thinking, many 
authors (Berch, 2005; Godino, Font, Konic, & Wilhelmi, 2009) are trying to define it, identify the 
keys to its development, establish criteria to evaluate it and analyse its repercussions on children's 
learning. 
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The school context is a privileged place to work with the possibilities offered by this powerful tool. 
Teachers must consider the number sense as an essential objective and articulate the resources and 
activities necessary to develop it.  

Manipulative resources provide us with very advantageous visualizations to present, know and 
materialize both numbers and operations. To the visual properties of the resources must be added 
their sensory and motor properties, as they invite manipulation and movement. In this sense, another 
way of teaching and learning mathematics appears, because it is recognized that mathematical 
cognition is embodied and is intimately linked to our sensorimotor functioning (Gallese & Lakoff, 
2005).  

The matching of symbolic mathematics, initially quite abstract and apparently less close for students, 
with insights from the real world, helps to forge links between conceptual and procedural knowledge, 
which is critical to success in mathematics (Siegler, 2003). Conceptual metaphors are, among others, 
methodological strategies that facilitate neurological mechanisms that allow us to adapt the activated 
neuronal systems through the sensory-motor experience, making possible the seemingly complicated 
journey from the concrete to the abstract (Lakoff & Johnson, 2003). Thus, there arises a new way of 
conceiving the teaching and learning of mathematics associated with embodied mathematical 
cognition linked to sensory-motor functioning, departing from Piaget's theory of cognitive 
development, which separated motor-sensory development from conceptual development, basing the 
second on the first, but without the parallel development that we defend.  

Conceptual metaphors provide a transition from one mode of representation to another or from a 
concept that is part of our knowledge to a more abstract one. Consequently, they value the three levels 
of representation of Bruner (1972): enactive, iconic and symbolic, putting into play and relating the 
four dimensions of mathematical thought (mathematical contents, non-rational processes, strategies 
and procedures and perception). Of course, this journey between the three types of representation 
does not have to be unidirectional and without return, from the enactive to the symbolic 
representation, passing through the iconic, but it can go back or advance through the levels on its way 
to conceptual consolidation. Conceptual metaphors do not only respond to a final objective of a 
cognitive nature, but also contribute to a didactic enrichment by providing resources and useful tools 
to address complex problem situations (Soto-Andrade, 2007), which makes them even more valuable 
for the construction of mathematical knowledge and the development of the competences associated 
with it.  

This paper is part of an on-going research, where a methodological approach for developing six-year-
old students’ number sense is explored. The proposal is based on the use of manipulative materials, 
rigorously structured (García-Pérez & Adamuz-Povedano, 2016), that keep the relationship number-
space very present, giving students a numerical support for the learning of the decimal numbering 
system, as well as an arithmetic support for operations. Here we present two activities, as specific 
examples of the use of a variety of conceptual metaphors (maps, routes, characters...) that play an 
important role for number sense development, as motivating and facilitating elements, both in the 
teaching and learning processes. In the design of these activities we take into account the limits that 
Cole and Sinclair  (2017) show relative to the use of conceptual metaphors. 
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Teaching materials 
As we mentioned before, this proposal is based on the use of manipulative materials, rigorously 
structured, which we describe: 

- Number line: it is a tape in which part of the set of natural numbers is presented. It starts with zero, 
a number that we will need to represent different situations: starting point, absence of counting 
elements, total loss, etc., and it ends in 100 example see figure 1.  

 
Figure 1: Detail of the number line 

With it we can practice progressive and regressive recitation, form the first series and perform simple 
addition and subtraction operations. We can also compare positions on both sides of the 10 to begin 
the observation of regularities and changes. 

The tape shows, with great consistency, the numerical order, the pattern that generates numbers and 
distances. The numbers colored in red, in addition to meaning exact tens, are privileged positions, 
strategic enclaves when planning routes that take us from one number to another. 

- Numerical panel: it presents the numbers from zero to ninety-nine by families (figures 2 and 3). 
This format enhances the display of numbers on the tape expanding the possibilities of analysis and 
relation. 

  

Figure 2: Collective numerical panel Figure 3: Individual numerical panel 

As in the case of the tape, the complete tens are highlighted with a red background, facilitating their 
location and indicating they are essential elements within our numbering system. The number-space 
association in the panel shows very clearly the patterns and regularities of our decimal number 
system. On this "precise map of the numbers" it is also possible to perform many addition and 
subtraction operations by tracing horizontal paths (we move forward or backward through the rows) 
and vertical (we raise or lower the columns by multiples of ten). 

- Numbering box: this material facilitates full exploration and manipulation of numbers, favoring a 
correct understanding of decimal numeration system. It consists of abundant plastic sticks and red 
and green rubber bands, see figure 4 below. The work with the numbering box produces a qualitative 
leap in the understanding of the decimal structure of the number and its size, since it provides a 
concrete and faithful model to the visible reality, which gives meaning to the use of written symbols 
and concepts. Regarding place value, in addition, we should move from that understanding to much 
more flexible forms. We can achieve this by removing the tens and units from the box and exploring 
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other groups with total freedom, leaving or removing the rubber bands of the tens. Regarding the 
calculation, the numbering box directly connects with breakdown strategies and facilitates the graphic 
transcription that is derived from the manipulation of quantities. 

 
Figure 4: Numbering box 

Selected activities 
In this paper we only show two activities focused on the number line resource. However, the 
methodology implies the implementation of other activities based on the use of the other resources. 
This provides students with greater flexibility in reasoning about numbers, an aspect directly related 
to the quality of their numerical sense. 

Activity 1: Saltarina, the frog 

The convenient breakdown of numbers is a fundamental skill to give agility and efficiency to thought 
calculation, so let children show some characteristics of development of their number sense. Young 
children find it difficult to acquire because they require complex skills such as observation and 
analysis of the complete operation, reflection and planning of the tactics to be used, and also a good 
handling of numbers at the mental and written level. To work on this awareness of what may be 
suitable for the proposed calculation we use the conceptual metaphor of the jumping frog, it is a frog 
that jumps forward and backwards through the number line. In addition, Saltarina has a fixation with 
the colour red: whenever she can, she boots in the numbers coloured in red (see figure 5 below). 

Teacher: This is Saltarina, a very funny frog that comes and goes on the number tape jumping 
without stopping. Do you know what her favourite colour is? ... It's red! ... and the numbers that 
have this colour look like springboards to take energy to jump higher. You can be sure that 
whenever she has the opportunity she bounces on them. Today, Saltarina jumps eight, do you 
know how she will do that if she is on thirty-six? 

 
Figure 5: Saltarina is on 36 

Student 10: She will jump four to land on forty and later she will jump another four. 
Teacher: Very good! Let's check it! 

The real movement is made, taking the clamp with the frog that bounces onto forty and ends the jump 
on forty-four. 

Teacher: She has reached forty-four! Now let's say in writing what has happened. 
Teacher: Say with me, please. 
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Teacher and students: Saltarina was on thirty-six [she writes 36 on the blackboard figure 6], first 
she has made a leap forward of four to reach forty [she writes +4] and then she has made another 
leap of four [she writes+4]. It has reached forty-four. 

 
Figure 6: Saltarina's jump 

Teacher: She has reached forty- four! ... What if she now adds eight again? 
Student 10: Now she has to jump six to fifty and then two. 
Teacher: And how do we express it with numbers and signs? 

On the board, teacher writes the jump in two movements and the arrival number: 44 + 8 =, and below 
44 + 6 + 2 = 52 

In Figure 7, we have examples of two students’ activities, one in which Saltarina adds eight and 
another which goes back six. In both, the empty number line has been used as a scheme for the 
representation of forward and backward: 

 
Figure 7: Saltarina's worksheet 

Next, we analyse some examples showing different strategies that take part of what we have 
denominated tactical calculation (Adamuz-Povedano & Bracho-López, 2017), shows the operation 
63-24 see figure 8, the student rewrites the operation explaining the plan he will follow, removing 
three units, then two tens and finally one unit. Since he is not still self-confident in mental calculation 
he makes partial annotations. 

  

Figure 8: Work out 63-24 Figure 9: Work out 45+29 

 

In Figure 9 the student rewrites the followed mental route to get the result, again Saltarina’s strategy 
appears adding 5 to get 50 and then adds 24 in a convenience way. 
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Activity 2. Skip Kangaroo! 

In this activity we will use the number tape as if it were a numbered track in which a kangaroo makes 
jumps of different magnitude passing from one family to another. The objective is to reinforce 
operations in which there is change of tens, i.e. operations of adding and subtracting with taken. The 
kangaroo should overcome a fence that is placed in an exact ten and can jump progressing in the 
numerical sequence (we will relate it to the expression "+") or going backwards (expression " -"). The 
connection between movement in space and numerical operation is being established. This activity 
places students in front of the control of phenomena and develops their relational thinking. With the 
tape and the Kangaroo, we configure a "mathematical scenario" in which we can experiment with 
different possibilities to relate the numbers of two families. Children should determine the starting 
point, the direction and magnitude of the jump, and the arrival number. They should then insert these 
data into an arithmetic structure. Very important processes such as estimation, decision making and 
the translation of each specific situation into the language of numbers and signs, which favour the 
development of the numerical sense, are involved in all this work.  

 
Figure 7: Kangaroo on the number tape 

In this episode, see figure 10 above, the kangaroo is at number seventy-eight and it will jump until it 
reaches some number in the family of the eighties. First, we analyse the situation from a broader 
perspective, asking the group questions such as: What jumps shall not exceed the fence? It means, 
how far can he go without going over 80? What will be the minimum jump length? And the 
maximum? 

Student 1: At least he has to jump three, up to eighty-one. 
Student 1: And the most you can give is a jump from eleven to eighty-nine. 

Then, with the contributions of all, we will be expressing verbally each of the possible solutions and 
their corresponding written expression. 

Student 3: If it takes a jump of five, it reaches eighty-three. 
We check on the number tape whether this is a correct solution 

Teacher: How will we express this by writing what you have just said? (We write on the board at 
the same time we relate) 

Teacher and Students: it begins at seventy-eight (78), jumps forward five (+5) and reaches eighty-
three (= 83).  

On the board will be written: 78 + 5 = 83. We will continue exploring other possibilities from the 
same starting position. So, we will collect all the arithmetic structures on the board: 78+3=81, 
78+6=84, 78+9=87, 78+4=82, 78+7=85, 78+10=88, 78+5=83, 78+8=86 and 78+11=89. Then, we 
will observe them as a whole, becoming aware that with them we have translated each event into the 
language of numbers and signs. Moving forward with this observation, the teacher can bring the 
attention to the amounts that remain and to which they change, thus intuitively introducing the 
concept of a variable: 
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Teacher: From what number has the kangaroo always jumped? What jumps has it made? With 
what jumps did it stay close to the start? With which did it get very far? ... 

Two sessions were developed with the dynamics showed; the kangaroo was introduced, working only 
with components in a sensorimotor and verbal level until we were sure that the whole group 
understood the proposal. In each participation, the student had to decide first the direction of the jump 
and the magnitude of the jump; then choose the exit number. These decisions inform the teacher about 
the students’ number sense much more than the calculation itself. Then, the movement was actually 
made on the number tape verifying that it was feasible and, finally, the operation explaining the jump 
was verbalized. In the third session this activity is made on written level. To ensure the accessibility 
of all the students, an image of the tape with the corresponding numerical section was included in the 
worksheet. Below, we show two cases with interesting results. In figure 11 it is appreciated that the 
student discovers how to control the situation, the control of phenomena that is so present in the 
relational thinking, so that the number of arrival is always 41. In figure 12, the student ends, according 
to his own words, with "a jump from end to end"(that it is to say from 49 to 31) 

 

Figure 8: Example of Kangaroo’s worksheet 

 

Figure 9: Example of Kangaroo’s worksheet 

The number tape section showed in this activity is a great help for students with difficulties because 
it reduces anxiety about the calculations (they can do the count directly) and focuses attention on the 
reflection and written expression of events. On the other side, there are students that are soon aware 
of ways to control numerical relationships (i.e. the student who experiments with the arrival at 41 
from different positions in Figure 8). The implementation of these activities shows that the 
sensorimotor experience is very positive since practically the whole group correctly identifies the 
operation (addition or subtraction) that corresponds to each jump. Although there are students who 
work more slowly and do not manage to complete the twelve required possibilities, those that do, do 
it correct. 

Final comments 
This work is a first approach to the development of number sense by using conceptual metaphors. 
Authors are aware that evidences should be tested empirically through wider research, but some 
interesting aspects already arise from this work. Among others, it may be said that (1) the activities 
proposed develop the relational thinking. They imply an active behaviour of children, provoking 
reflection on what they should do, and how they are going to solve it. This way of acting involves the 
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knowledge that children have of numbers and how numbers relate to each other through operations, 
fostering relational thinking in flexible contexts that admit more than one solution to the challenge 
posed. (2) It also promotes transparent algorithms for calculation. Our approach, the tactical 
calculation, shows the reflection and planning designed by the student. (3) A communicative 
approach is given to mathematical language. The classroom becomes a place where students can talk, 
expose their plan and discuss the decisions they are making. This oral language gives shape and 
meaning to expressions with numbers and signs. Children are building an interactive dictionary full 
of meanings that all share. (4) Working memory is reinforced. Having the number line and the 
position of the characters in view gives confidence to the students and helps them to concentrate on 
the choice of tactics and graphic representation. Then, in the absence of resources, these visualizations 
(already in the mental plane) will be fundamental to solve problems and calculations. 
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Development of the intervention program: 
This study was designed considering the need of developing effective interventions that could help 
basic education teachers to favor their students’ learning process. The objective of this study was to 
develop and intervention program focused on teaching counting principles for first-grade-children 
and to evaluate its applicability through a pilot study. The planning of the program was based on the 
guiding principles established by researchers of the field (Clarke, Doabler, Nelson & Shanley, 2015; 
Fuchs & Fuchs, 2001) and in intervention studies (Dyson, Jordan & Glutting, 2011; Praet & Desoete, 
2013; Toll & Van Luit, 2013). 

Method of the Pilot Study 
The objective was to evaluate the applicability condition of the intervention program in terms of: the 
quality of the proposals, duration of the sessions and the functionality of the idealized dynamics 
through the pilot study. Participated in this study 10 first-grade students from a public school located 
in Porto Alegre, Brazil. The application of the intervention occurred in 4 sessions of approximately 
1h30 (2 sessions of 45 minutes in each meeting). In total, there were 8 sessions, each one with focus 
on a specific counting principle. All sessions were structured with the same dynamics (previous 
motivation, contextualization, activity and systematization) and were applied by the researcher. The 
researcher registered the progress of the intervention using a field dairy.  

Results: with regard to the quality of the proposals, the researcher´s notes indicated that most of them 
worked properly, but needed some kind of adaptations. This could have occurred for two reasons: 
first, the sample of 10 children ended up being too large, which was an obstacle to maintain the group 
attention and to give more individualized attention to the students; second, the participating children 
had good previous knowledge, completing the tasks faster than expected once they understood the 
instructions of the researcher. Regarding the duration of the sessions, the 45 minutes idealized weren’t 
fully used because the intervention took place in the children’s regular classroom and also because 
they were fast to complete the activities. Finally, the idealized dynamics for the sessions worked well, 
with the initial moments (previous motivation and contextualization) acting positively to engage the 
previous knowledge of the students. The final moment of systematization was repeatedly pointed out 
as needing to be reorganized. All the researcher’s notes helped to reformulate the intervention 
program, culminating in its second version (presented below) to be tested as an experimental study. 
A paper presenting the experimental study, with the final intervention program in counting principles, 
was submitted to the TWG2. 

 

 

Thematic Working Group 02

Proceedings of CERME11 367



 

 
Guiding questions: Tasks: 
Session 1: stable order, one-to-one correspondence and 
cardinality. 
- where do we find numbers? 
- what are their purpose? 
- how can we count them? 
- is there a right way to count? Which one? 
- what can we do to know how many things there are in a set? 

- observation of the room to search 
for numbers and their purposes; 
- analyses of journals and magazines 
to search for numbers and then 
ordering them; 
- game: “which one is missing?” 

Session 2: stable order, one-to-one correspondence, cardinality 
and order irrelevance. 
- how can we count without getting lost? 
- how can we know if we already counted one item? 
- how can we count a set that is not organized? 

- demonstration of counting marbles 
in figures by the researcher; 
- demonstration of counting marbles 
in figures using little papers;  
- individual practice. 

Session 3: stable order, one-to-one correspondence, cardinality, 
abstraction and order irrelevance. 
- what can we count? 
- where do we begin to count? 

-game board: “color game”; 
- game board: “two hands”. 

Session 4: stable order, one-to-one correspondence, cardinality, 
abstraction and order irrelevance. 
- how can we count in our heads? 
- how can we organize numbers when we’ll count? 
- how can we find out what number is without knowing its name? 

- bingo of numbers; 
- closing questions: (can you say one 
thing you learnt during the 
intervention? Which task was easy? 
Which task was difficult?). 

Table 1: Intervention post adjustments 
Conclusions 
The pilot study was important and helpful for testing the initial version of the intervention program. 
It was possible to analyze the activities, structure and time planned to the intervention program and 
to make improvements culminating in its second version that was applied as an experimental study.  
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Abstract: The objective of this article is to present an experimental study of intervention in counting 
principles, aiming to investigate its efficacy. The experimental study involved 136 first-grade 
students, from 3 public schools located in Porto Alegre, Brazil. The students were divided into control 
group (n=76) and experimental group (n=60). The intervention occurred 2 times per week, during 2 
weeks, with the experimental group, while the control group remained with regular instruction. The 
results point to the efficacy of the intervention program in counting principles, with students in the 
experimental group showing higher statistically significant advances in the post-test (counting 
principles evaluation task) than the students in the control group. Some educational implications are 
addressed. 
Keywords: Counting principles. Intervention. Experimental study. 

 

Number sense and counting principles have been evidenced as important predictive factors of 
posterior mathematical achievement (Jordan, Glutting & Ramineni, 2010; Martin, Cirino, Sharp & 
Barnes, 2014; Passolunghi, Vercelloni & Schadee, 2007; Stock, Desoete & Roeyers, 2009). Besides, 
both, when less developed, appear as characteristics of the group of children that presents 
mathematical learning difficulties - MD (Bull & Johnston, 1997; Cirino, Fuchs, Elias, Powell & 
Schumacher, 2013; Dorneles, 2006; Vukovic, 2012). In regard to counting, studies show that children 
with MD use immature counting strategies (fingers or verbal counting) for a longer period (Bull & 
Johnston, 1997; Dorneles, 2006) and have difficulties to retrieve basic facts from memory (Cirino et 
al., 2013). Research results such as these emphasize the importance of helping students to consolidate 
the counting principles in the beginning of the school years, which in turn, will help them develop 
efficient strategies and procedures to count efficiently and, thereby, prevent the development of 
arithmetical difficulties.  

Counting is an important knowledge that begins to be developed informally by children, through 
everyday experiences. Nunes & Bryant (1997) point that many teachers recognize their students get 
to the classroom knowing a lot of things, including counting. Its relevance is highlighted by several 
authors and Dorneles (2004) synthesizes well this idea by stating that counting is a cognitive tool 
important not only to comprehend posterior contents, but also to develop more elaborated 
mathematics skills. Knowing the relevant role of counting, it is necessary to pay attention to the 
development of this ability. While children learn to count, they need to put in practice some principles 
that guide this action, as well as comprehend what is the purpose of counting and the way of doing it 
correctly (Nunes & Bryant, 1997). Gelman & Gallistel (1978) studied this learning process and 
established five guiding principles of counting, which must be consolidated by children in order to 
develop other mathematical knowledge. The principles are: stable order, one-to-one correspondence, 
cardinality, abstraction and order irrelevance. The first three principles are classified as “how to 
count”, the fourth is denominated as a definer of what is countable and the fifth one consists of a 
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synthesis of the application of the other ones. Those five principles are the bases of the children’s 
posterior numerical construction (Dorneles, 2004). 

The current study 

Considering the extreme relevance the counting principles have in relation to mathematical learning 
and that most children who have difficulties in this area present problems, specifically, with counting 
strategies and the retrieval of basic facts,  justifies the need of the development and  implementation 
of  intervention programs focusing on counting principles. Such an approach, put into practice in the 
beginning of formal schooling, can facilitate the students’ learning process. Besides, most 
intervention studies developed in the mathematical field  focused on number sense (Aragón-
Mendizabal, Aguilar-Villagrán, Navarro-Guzmán & Howell, 2017; Bryant et al., 2011; Dyson, 
Jordan & Glutting, 2011; Fuchs et al., 2010; Praet & Desoete, 2013), which points to the lack of 
intervention instructions in counting principles. 

Method 
This is an experimental intervention study focusing on teaching the counting principles to first-grade 
students. It has the objective of evaluating the effectiveness of a short intervention, comparing the 
achievement of the experimental and the control groups. 

Participants 

The study included 136 first-grade students (63 girls and 73 boys), aged between 6 and 7 years old, 
from 10 classes, belonging to 3 public schools located in Porto Alegre, Brazil. They were divided in 
control group (n=76) and experimental group (n=60), both groups were statistically equivalent and, 
through the analysis of students’ performance case by case, were formed by children with different 
levels of performance in a counting principles task. The parents of all participating students gave their 
authorization through the signing of the Free and Informed Consent Form and the Dissent Form. 
Approval for this study was obtained from the Research Ethics Committee of Universidade Federal 
do Rio Grande do Sul. The intervention was offered to the experimental group, by the researcher, 
while the control group remained with regular instruction. Unfortunately, it wasn’t possible to follow 
teachers’ regular instruction during the execution of this study, so we do not have data about the 
control group’s learning, although, we hypothesize that there was less focus on mathematics and more 
on literacy, because this is the main concern of first year teachers in Brazil. 

Procedures 

In august 2017, a pilot study was conducted to evaluate the applicability of the intervention program, 
that culminated in its second version, the one used in this study. From September to December 2017, 
the pre-test, intervention and post-test procedures were done. The interval between the pre-test and 
the intervention was one month and between the intervention and the post-test was 20-30 days. 

Instruments 

Counting principles task (as pre and post-test): this task was administered individually, by the 
researcher, in an interview format (see Table 1). The instrument was used to evaluate the construction 
of the counting principles by the students. It is the same task used by Dorneles (2004, 2006). For each 
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principle, the students were classified into three groups: principle consolidated (Y – yes); in 
construction (IC); not consolidated (N). Some criteria were established to classify the children in each 
group because some of the questions (like 2, 3 and 5) are formed by more than one query. In this case, 
the child’s answer was classified as “Y” if he/she answered all the solicitations in each question 
correctly; “IC” if only one part of the question was correctly answered; “N” if the student did not 
answer any part of the question correctly.   

Principle: Solicitation: 

Stable order 
The experimenter asks the child: “until how much can you count?” and tell him 
or her to count out loud until the number said. 

One-to-one 
correspondence 

The experimenter shows 10 chips in a row and asks “how many chips are there?”. 
Then, shows 10 chips misaligned and asks “how many chips are there?”. This 
procedure is repeated with 15 chips. 

Cardinality 
By the end of counting 15 items, the experimenter asks “how many are there in 
total? Can you give me 10?” 

Abstraction 
The experimenter asks “if you were counting 15 candies, would you count the 
same way you counted the chips?”. 

Order 
irrelevance 

The experimenter asks the child to count the 15 chips, arranged in a row, in a 
different order, that is, initiating by another chip. Then, the child is asked to say 
how many chips would remain if the row was undone. After, the experimenter 
asks the child to count 8 chips of the set, separating them aside, and then, to count 
the remaining 7 chips of the row. By the end, the child has to say how many chips 
there are in the total. 

Table 1: Counting principles task 
Intervention in counting principles 

In regard to the intervention, whose development is described in detail in the poster submitted to the 
TWG2, some guiding principles are on its bases, as the ones presented by Clarke, Doabler, Nelson & 
Shanley (2015): engaging  children’s  previous knowledge , through “warming up” exercises in the 
beginning of the sessions to help them establish connections between previously learned contents and 
the new ones; promoting interactions, through the gradual responsibility  of the students with their 
learning processes by considering their previous knowledge and the knowledge needed to complete 
the tasks by themselves successfully; and providing mathematical verbalizations, in a way that it was 
possible for the students to use specific  mathematical language and have the opportunity to speak 
and think mathematically. 

Besides those ideas, the principles established by Fuchs & Fuchs (2001) also contributed to the 
development of the intervention program in counting principles: fast pace, varied activities and 
engaging, challenge the patterns of achievement, self verbalization and visual and physical 
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representations (primary level, to be done with whole classes); adaptations easy to adopt so the 
teacher can incorporate it in the class routine, adaptations that are adequate for the targeted students 
as well as for other students (secondary level to help children with more difficulties); focus on the 
student as unity for instruction and decision making, intensive instruction and explicit instruction of 
basic skills (tertiary level, as an individual and intensive intervention). 

The intervention sessions consisted mainly in providing children with opportunities to work with and 
practice the counting principles, helping them to be aware of how counting works and how to do it 
correctly. They occurred twice a week, during two weeks, for 20-35 minutes, including the dislocation 
time of the children. The sessions were made with small groups (5 students maximum), in a room 
provided by the schools and were conducted by the researcher see table 2 below.  

Guiding questions: Tasks: 

Session 1: stable order, one-to-one 
correspondence and cardinality. 
- where do we find numbers? 
- what are their purpose? 
- how can we count? 
- is there a right way to count? Which one? 
- what can we do to know how many things  
there are in a set? 

- observation of the room to search for numbers 
and their purposes; 
- analyses of journals and magazines to search 
for numbers and then ordering them; 
- game: “which one is missing?” 

Session 2: stable order, one-to-one 
correspondence, cardinality and order 
irrelevance. 
- how can we count without getting lost? 
- how can we know if we already counted 
one item? 
- how can we count a set that is not 
organized? 

- demonstration of counting marbles in figures 
by the researcher; 
- demonstration of counting marbles in figures 
using little papers;  
- individual practice. 

Session 3: stable order, one-to-one 
correspondence, cardinality, abstraction and 
order irrelevance. 
- what can we count? 
- where do we begin to count? 

-game board: “color game”; 
- game board: “two hands”. 

Session 4: stable order, one-to-one 
correspondence, cardinality, abstraction and 
order irrelevance. 
- how can we count in our heads? 
- how can we organize numbers when we’ll 
count? 
- how can we find out what number is 
without knowing its name? 

- bingo of numbers; 
- closing questions: (can you say one thing you 
learnt during the intervention? Which task was 
easy? Which task was difficult?). 
 

Table 2: Intervention in counting principles 

Results 
The data analyses were made through the Z test of proportion comparison. This test was chosen 
because the objective was to compare two proportions: the proportion of progress of the intervention 
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group and of the control group. The data related to the intervention result will be presented next Table 
3. The stable order were not considered in the analysis because all children had consolidated this 
principle. 

 

Principle Group Progress (%) p-value 

One to one correspondence 
Control 29 35,37 0,0016 

Experimental 39 59,09   

Cardinality 
Control 9 11,69 0,0138 

Experimental 17 26,15 
 

Abstraction 
Control 14 17,07 0,1093 

Experimental 17 25,37   

Order irrelevance 
Control 38 43,18 0,0001 

Experimental 53 71,62   

Table 3: Results of the intervention 

It’s possible to observe that in activity A (one-to-one correspondence), the improving rate in the 
principles construction by the experimental group was of 59,09%, being statistically superior (p-
value=0,0016) in relation to the control group (35,37%). In activity B (cardinality), again the 
experimental group demonstrated a bigger improving rate (26,15%) than the control group (11,69%), 
being statistically significant (p-value=0,0138). In activity C (abstraction), the students in 
experimental group also got superior improving rate (25,37%) when compared to the  control group 
(17,07%), but this improvement did not show statistical superiority (p-value=0,1093). In activity D 
(order irrelevance), the experimental group once again evidenced a bigger improving rate (71,62%) 
than the control group (43,18%), being statistically significant (p-value=0,0001). 

Discussion 
Both groups showed advances, which was expected, since even the children that did not participate 
in the intervention process were having regular instruction, and so, they were learning. The results 
demonstrated that the improving rates of the experimental group were superior to the rates of the 
control group in all principles analyzed. Besides that, in three counting principles (one-to-one 
correspondence, cardinality and order irrelevance) this improvement was statistically superior. This 
result points to the effectiveness of the intervention program focusing on counting principles with 
short duration (2 sessions per week during 2 weeks). Besides that, it is important to highlight that the 
program effectiveness can be attributed not only to the tasks, but also to the type of teaching that was 
offered and the principles underlying the development of the intervention.  

This finding is in agreement with other intervention studies that also compared control and 
experimental groups. Fuchs et al. (2010) developed an intervention in counting practice and 
evidenced that the three groups of participants (experimental with practice, experimental without 
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practice and control) improved their achievement, with the children that received some kind of 
intervention showing more advances than the ones in the control group. 

In the same way, Dyson, Jordan & Glutting (2011) indicated that students with low income 
participating in a intervention condition in number sense showed more improvements than the 
subjects of the control group in the post-test. Praet & Desoete (2013) also pointed to similar findings: 
both experimental groups in their study demonstrated better achievement than the control group after 
getting intervention. Mononen & Aunio (2016) conducted an intervention research on counting 
abilities to children with low achievement. Their results indicated that the students in the experimental 
group improved their counting abilities significantly in comparison to the students in the control 
group, after the intervention. Other authors evidenced that specific interventions, designed to small 
children, involving one or more aspects of number sense, are effective and promote improvements in 
mathematical achievement (Aragon-Mendizábal et al., 2017; Bryant et al., 2010; Dowker & Sigley, 
2010; Dyson, Jordan & Glutting, 2011; Fuchs et al., 2010; Mononen & Aunio, 2016; Praet & Desoete, 
2013). 

Implications for education 

Our findings have important implications for teaching and learning. It highlighted a fundamental 
aspect of mathematical learning (counting principles), how to teach them (intervention) and how to 
help students to participate actively in their learning processes.  It is urgent to help teachers to promote 
pedagogical actions that support students’ learning process in relation to mathematics, area in which 
a lot of students show difficulties. It is important to act positively in this scenario: helping both 
students, through the teaching of specific strategies to facilitate learning, and teachers, through 
encouraging their monitoring of teaching and learning mathematics.  

Considering these aspects, we believe the study presented here could reached some teachers’ needs. 
The intervention was developed based on guiding principles that need to be incorporated into regular 
instruction. Besides that, the intervention program used is brief, being developed in a short period of 
time, and could be included in the teachers’ planning of instruction. The materials used by the 
researcher to conduct the intervention sessions were given to all teachers participating in the study, 
making it possible their further use by them. The results demonstrated that even a short investment 
in counting principles caused improvements in the children’s performance, showing that it is possible 
to promote significant learning through concise and quality interventions dedicated to certain content 
area in the pedagogical planning.  

Limitations of the study 

The research results described in this paper should be considered in the context of some limitations. 
First, the time available to conduct this research was limited due to the fact that this study is part of 
the masters dissertation work of one of the authors and there was a deadline for its development and 
conclusion. Second, the counting principles task used was selected because it is a short and practical 
instrument, however, we believe that a broader task could elucidate more aspects to be analyzed and 
discussed. Another limitation concerns the choice of statistical analysis that was conducted. It is 
possible that different findings would have emerged if, besides the Z-test, the study included the 
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association of different statistical tests, which could have made it possible to reinforce or question 
some of the results found or even to elucidate other possible outcomes. 

  

Conclusions 

The study demonstrated improvement in the children’s performance in the counting principles task, 
from pre to post-test, with the participants showing good advances rates. This improvement was 
attributed to the intervention program because the students in the experimental group showed a bigger 
proportion of progress than the ones in the control group, showing statistical superiority in three of 
the four principles analyzed. Also, it is important to highlight the duration of the intervention: it was 
a short investment of time specifically devoted to the work with the counting principles, with carefully 
planned opportunities for the students to deal with and practice counting using the principles 
established by Gelman and Gallistel (1978). The results of this study point to the need of continuing 
to investigate interventions that target counting principles which consist of a fundamental knowledge 
to be learnt in the beginning of formal schooling. 
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Introduction 
In 2014, the French ministry of education launched a strategy for teaching mathematics. It favored 
the use of games to “enhance student motivation and encourage them to be autonomous”1. But games 
can also be used to facilitate learning itself. Pelay (2011) showed that Brousseau’s theory of didactical 
situations (TDS) has an intrinsic play-based dimension articulated to the didactic one and introduced 
the crucial concept of the didactic and play-based contract. Our PhD project continues Pelay’s work 
both on the theoretical aspects and implementation ones.  

The didactic and play-based contract  
One of the key concepts of the TDS is the didactic contract, the set of behaviors coming from the 
teacher and expected by the student and vice-versa (Brousseau, 1997). During his PhD, Pelay 
observed that in some cases the play-based stakes were more important than the didactic ones. He 
showed that it was impossible to analyze summer camps’ activities using only the concept of the 
didactic contract. This led him to develop the concept of didactic and play-based contract:  

The didactic and play-based contract is defined as the set of rules and behaviors, both explicit and 
implicit, between an activity leader and one or several participants in a project that links explicitly 
or implicitly playing and learning (Pelay, 2011, p.278).1 

Pelay studied how the contract is set up and how it evolves when the rules are changed. Furthermore, 
he introduced the concept of didactic and play-based engineering, grounded on the methodology of 
didactic engineering (Artigue & Perrin-Glorian, 1991). 

Back to the school context 
Our research project originates on the hypothesis that the concepts developed by Pelay in the summer 
camp context are also relevant in the school context: the play-based dimension of the TDS might 
offer new perspectives to the study of teacher and student interactions when games are used in the 
teaching and learning of mathematics. We aim to develop a didactic and play-based engineering that 
will be implemented both in a laboratory setting and in classrooms, taking into account the 
articulation between the didactic and play-based dimensions from the start. 

Methodology 
In order to develop a didactic and play-based engineering to use in class, we need to take into account 
the transmission and reproducibility stakes. Perrin-Glorian (2011, p.68) introduced the didactic 
engineering of the second kind as “an engineering aiming to produce resources for teachers and study 

 
1 My translation 
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the impact of research on ordinary teaching”1. It consists of planning for two levels of study: a first 
one, in a laboratory setting, to test the theoretical validity of the situations, and a second one to test 
the adaptability of the situations to teaching. The preliminary studies, conception and a priori analysis 
are common to the two levels of study, and they will differ by their experimentations, a posteriori 
analysis and validation. The first step to our research was the design of a board game to be the core 
of the didactic engineering.  

Designing a game on fractions 
Relying on previous research (Pelay, 2011), we hypothesized that board games are likely to favor the 
active engagement of students in didactic situations build around them. We chose to develop a game 
that could be used from grades 4 to 6, as it is at the transition between elementary and middle school in 
France. The notion of fraction was one of the possible topics. The epistemological study has showed 
different aspects to this notion. We chose to address it from the point of view of size ratio and the 
composition and decomposition of surfaces. We collaborated with teachers to make sure that the game 
would be adapted from grades 4 to 6. We ended up creating “L’atelier des potions”, a game in which 
the students follow recipes for “magical potions”. The game and the choices made in the design will be 
presented in the poster. 

Perspectives  
Pretests of the game have been made in a dozen of classes throughout the year and we have developed 
teaching activities around the game. We are now developing a didactic and play-based engineering 
around the game and activities. 
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Adaptive use of meaningful knowledge is widely adopted as key learning objective in the changing 
society. This paper presents the results of a teaching experiment in the domain of partitive division. 
It is designed to explore how grade-3 students do adapt personal knowledge to the variation in task 
conditions. They can use 52 unifix cubes to model the process directly. The second condition requires 
that they mentally anticipate the results of sharing the same quantity of carts between respectively 
two and three children. The study shows that the variation in conditions combined with classroom 
climate challenge a great part of the students to use adaptively “pieces of knowledge” acquired in 
different areas of reasoning in equal group situations. 

Keywords: multiplicative thinking, adaptive expertise. 

Introduction 
By the turn of the century, “Mathematical proficiency” is proposed as basis for a large consensual 
agreement about the goal of mathematics instructions in the changing society (Kilpatrick, Swafford, 
& Findell, 2001). Globally said, primary school students should develop and organize domains of 
meaningful knowledge in such a way that it should be used adaptively to tackle and solve new or less 
familiar problems.  

According to Hatano & Inagaki (1986), it is “domains-specific knowledge” that develops along the 
accumulation of learning experiences, and what adapts to constraints of new situation are, according 
to Vergnaud (2009), the “schemes for reasoning”. Considering the crucial role of developing these 
schemes for reasoning, we explore in our research (i) what grade-3 students know about the 
quantitative and numerical relationships involved by combining, sharing, and segmenting in equal 
groups setting, and (ii) how they do adapt meaningful personal knowledge to well-chosen variations 
of task-conditions. 

Theoretical framework 
Our framework connects four aspects of students’ expertise involved in the exploration of the process 
of partitioning in grade 3 required to analyze the relationship between the conditions of the tasks and 
the personal way of tackling and solving these tasks (Threlfall, 2002).  

Schemes of reasoning 

Combining n equal groups to obtain an intended quantity of “things” (e.g. 5 bags with 6 cookies each) 
constitutes children’s earlier encounter with an application for multiplication (Greer, 1992). Children 
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extract from their activities the notion of number as composite unit and the invariant relationship 
between the number of groups and the number of units per group that constitute the conceptual base 
of the arising scheme “multiplicative double counting” (Tzur et al., 2013). 

According to Freudenthal’s (2002) phenomenological analysis of division as mental act, division 
arises in three ways, as (i) continually taking away (by repeated subtractions), (ii) distributing in equal 
parts (distributing cyclically the same share to several persons), and (iii) inverting a multiplication. 
The first and second one correspond to the difference made between quotative division (measurement; 
ratio) and partitive division, and between the two associated schemes of reasoning: segmenting and 
partitioning (e.g. Tzur et al., 2013; Thompson & Saldanha, 2003). The third variant consists in 
figuring out the effect of both segmenting (e.g. 52 cookies into bags of 6 cookies each) and 
partitioning (e.g. distributing 52 cookies between 6 children) by constructing an appropriate 
arithmetical sequence of repeated addition (or multiples). In this case, the remainder represents the 
four simple steps left to reach 52 after 8 steps of 6 on the (mental) number line. 

Research results show that sharing one-by-one is rarely used, and that students prefer to build-up the 
quantity (inverting multiplication by repeated additions) instead of subtracting repetitively (e.g. 
Heirdsfield, Cooper, Mulligan & Calvin, 1999). Taking advantage of this tendency and adopting the 
idea that students must observe variation in key variables to constitute deep understanding (Lo, 2012), 
we focus students’ activity on exploring the critical differences among partitioning problems 
(variation in total number of objects, number of persons/parts, number of objects in each part; 
remainder) in relation to the invariant multiplicative structure (a = q x d (+ r)) of any partition. We 
conjecture that this relationship should function as tie between partitioning and combining on the one 
hand (Greer, 2012), and between partitioning and segmenting on the other hand (Thompson & 
Saldanha, 2003).  

Mathematical principles and numerical relations  

Towards the learning process, we conjecture that to reach the highest level of comprehension, 
students should (1) formulate the numerical equivalence of a × b = c and c ÷ a = b and (2) use it 
explicitly to derive unknown quotients from memorized correspondent products (e.g. 100 ÷ 25 via 4 
× 25 = 100), as well as tackling and solving partitioning problem using appropriate patterns of 
multiples (e.g. 13 x 4 = 52; 52 ÷ 4 = 13; 4 × 13 = 52; 52 = 13 × 4) knowing that each number and 
consequently each operation can be composed and decomposed in different ways (Gray & Tall, 1994; 
Tall, 2013). Last but not least, understanding the product (mn) as being in multiple reciprocal 
relationships to n and to m, they should derive a lot of quotients from familiar numerical relations 
(e.g. 60 ÷ 15 via 15 = ¼ of 60) (Thompson & Saldanha, 2003). We expected differences in reasoning, 
computing and symbolization in function of the progression through the well-documented sequence 
of multiplication procedures: from counting all strategies, through sequences of repeated addition and 
doubling procedures, to using patterns in numbers and operations, and finally, to deriving unknown 
products from surrounding memorize facts (e.g. Verschaffel, Greer & de Corte, 2007).  

Strategic skills  

Adopting Threlfall´s (2002) conception of flexible mental calculation as interaction between noticing 
and knowledge, we conjecture that an appropriate variation of task conditions should motivate and 
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foster students to adapt the above domain-specific knowledge to the constraints of situations 
(Vergnaud, 2009; Hatano & Inagaki, 1986). In this perspective, specific tasks should give students 
the opportunity to develop particular strategic skills: (i) relating the numbers of problems to other 
familiar situations, (ii) composing and decomposing numbers multiplicatively, (iii) using patterns of 
multiples and (iii) transforming multiplication and division.  

Classroom culture 

It is well known that classroom climate motivates students to reflect about how they should tackle the 
situation taking advantage of what is met before. This factor is included in the following three 
conditions proposed by Hatano and Inagaki (1986) for promoting adaptive expertise: (i) variability 
inherent to the task environment, (ii) variability permitted in the individual´s procedural application 
and (iii) variability of explanation permitted by the culture. 

Methodology 
This article reports part of a research project that follows a design research methodology, specifically 
a teaching experience (Gravemeijer & Cobb, 2006) that has the objective to understand how students 
can develop the ability to tackle and solve problems, adapting personal knowledge to new situations’ 
constrains.  

The project team developed two teaching experiences: one focused in addition/subtraction and the 
other one focused on multiplication/division. Each teaching experience included a set of tasks that 
was designed and reformulated using a three-step cyclic process: (1) design tasks, (2) analyse what 
children noticed in the numbers and how they use their knowledge about numbers and operations to 
solve the task presented in the class or along clinical interviews and (3) reformulate the previous task.  

We present part of the teaching experiment on multiplication/division that involved a third grade class 
(students age 8-9) with 20 students. The underlying “conjectural hypothetical theory” (Gravemeijer 
& Cobb, 2006) for this experiment concerns a possible learning process between the construction of 
the products of the multiplication tables and related quotients (start point) and elementary forms of 
reasoning proportionally (end point). 

The first three tasks of this teaching experiment that involved a total of nine tasks, intend to help 
students to see the multiplicative structure of equal group situations as “some numbers of composed 
units”. This paper focuses the second task: What is sharing? The objective is to observe how these 
students adapt personal knowledge to the variation in task conditions. The invariant condition is the 
number of objects distributed (52 stickers). The variant conditions are: (1) possibility to use (part 
one), or not (part three) concrete material, (2) the number of persons/parts and (3) with or without 
remainder. 

The teacher of the class analysed and discussed with the researchers all the underlying justifications 
for the tasks, classroom organization and proposed focus for discussion with students. This teacher’s 
practice promotes reflective discussions based on students’ proposals to solve the tasks.  

Data was collected through video recordings of the classroom work, researchers’ field notes and 
students’ written answers. According to the task design, the teacher organized the class into two 
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groups of 4 and two of 6 students. In the first part of the task students could model the process of 
distributing 52 stickers1 using 52 unifix cubes and register their shares in a given table.  

The objective of the second part of the task is to register and connect the numbers of the distribution 
on a given diagram (Figure 1, two left images) and to symbolize the structure of the distribution using 
the expression a = qd + r (distributions with rest) or with a = qd (distributions without rest).  

 
Figure 1: Distribution numbers 

In the third part (Figure 1, two images on the right), students must envision the result of partitioning 
connecting the numbers of the new partition with those of the first one (Figure 1, two images on the 
left). 

We formulated the following conjectures: (1) as students know that they can approach and solve the 
task in their own way and that the work will be discussed in a final phase, we expect them to use what 
they already know, adapting it to the task conditions (Hatano, 2003); (2) as they have 52 objects, we 
expect students to distribute them in two different ways: one by one or two by two (an intuitive way 
of distributing); (3) the second part of the task allows students to discern the meaning of the different 
numbers of the distribution and to connect them in an appropriate way that represents the underlying 
structure (multiplicative structure of partitioning);(4) as the number of people is half of the number 
of people in the part 1 of the task, we expect that most students will deduct the part they each receive 
using the double / half ratio (idea of proportional relations). 

The following categories for analysing data were constructed from the theoretical framework: (1) 
way of modelling connected to (2) the representation of the distribution, and (3) the numbers relations 
and operations used to calculate the unknown. 

We elaborated a detailed written description of how each group of students solved the task, integrating 
their written productions with video recordings and transcription of episodes that illustrated students’ 
discussion and approach to solve the task. Those descriptions were used to characterize the variation 
in reasoning and calculations as defined in the categories of data analysis. The results that we 
synthetize in the following section reflect the interpretation of the observed variation.  

                                                 
1 In Portugal children often have collections of Panini stickers 
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Results 
Distributing in equal parts 

Confirming our conjecture, some groups cyclically distribute the same amount of objects (one or two) 
to each element of the group. However, some groups did not model the situation as expected and 
followed a personal way of acting, reasoning and representing.  

One of the groups with 4 students organized the cubes in 13 bars with 4 cubes each (see figure 2). 
They explained:  

Student 1: We only need the first round. 

Teacher: Why?  

Student 2: We formed groups of 4 and we counted. 

(…) 

Student 1: We formed groups of 4 and we counted them. We have 13.  

Teacher: And what does this mean? 

Student 2: Each one with 13. 

Teacher: Each one has ... 

Student 3: 13 stickers.  

Teacher: Why did you form groups of 4? 

Student 1: Because we had to divide 52 by 4.  

The other group with 4 students used the relation “to divide by 4 is the same as half of the half”. One 
student explained “First of all the number of rounds is 13. It was a quarter of 52. The number of 
objects distributed in the 13 (points to the thirteenth round) is 52”.  

As expected, understanding what happens when some cubes remain, originated some hesitations and 
discussion within the two groups with six students. For instance, one of the groups understood that 
there were 4 cards left but still continued to pose other possibilities for the number of cards that each 
could receive:     

Students: We have 4 left. 

Teacher: Ok. We have 4 left. And can we have another round? 

Student 1: No. We had to rip the card.  

Teacher: We do not usually rip cards, do we? 

Student 2: And if we give 7 cards to each of us?  

Teacher: And if we give 7 cards to each of us? What happens?  

Student 3: And if we give 6 cards? 

Teacher: And if we give 7 cards to each of us? What happens?  
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Student 2: There are more left. 

The register of the distribution of the 52 objects in the table originated some mistakes. For instance, 
some of them register the sequence of multiples of 4 instead of the numbers of objects distributed in 
each round.   

Analysed data shows that the table presented in the task was not adequate to register the reasoning 
used by the groups that modelled the distribution via “one fourth is half of the half” or that related 
distributing one by one to the final distribution of 8 to each one:  

 

 
Figure 2: Adapted registration 

Relating the numbers of the distribution to control the outcome 

It was expected that students, in the extension of the modelling, would recognize and register correctly 
the meaning of the numbers of both distribution on the dispensed diagram. Relating the number of 
groups to the numbers of objects per group and what remains, they would understand that the 
outcomes of both “division” can be controlled by symbolizing the multiplicative structure of the 
distribution with the adequate sequence of repetitive additive and the corresponding decomposition 
of 52 into a = qd (+r). 

 

        
                           Figure 3: Meaning of the numbers          Figure 4: Multiplicative structure 

The video recording, registration of the meaning (Figure 3) and representations of the distribution 
(Figure 3 and Figure 4) on the individual worksheets show that, in open reflection and discussion 
under direction of the teacher, all the students succeed to control the outcomes as expected. 

Thematic Working Group 02

Proceedings of CERME11 384



 

 

 

Deriving distributing by 2 and 3 from distributing by 4 and 6 

The results confirm our conjecture: students do not use cubes and deduce the part that receives each 
one using the rule that if we have half of the persons each one receives twice as many objects.  All 
students apply the rule by comparing the two distributions without rest: 52 ÷ 2 with 52 ÷ 4, halving 
the number of person goes with doubling the number of objects per person.  

However, some groups apply this relationship to 52 ÷ 6 without considering the 4 remaining objects 
and give the incorrect answer of 16 objects per person. 

Discussion 
Data analysis confirms the conjecture that varying conditions of the task (whether concrete material 
is used or not; different number of persons/parts; division with or without remainder) stimulates the 
adaptive use of the knowledge and procedures that the students already have, which favours the 
possibility of adapting the acquired knowledge and procedures to the numbers involved in the task. 
This complex situation of sharing gives students the opportunity to explore ways of thinking that 
allow them to take advantage of what they already know. Also, it allows the teacher to promote 
students’ reflection on different ways of understanding the multiplicative relationship involved in this 
task.  

Data analysis suggests three critical aspects of the learning process in this domain that we propose 
for further investigation and discussion: 

- Envisioning the process and the result of dividing instead of directly modelling. The fact that some 
groups do not distribute objects cyclically suggests that modelling with objects does not make sense 
because students already have an idea of the inverse relationship between combining and dividing 
that allows a more abstract approach. Our new conjecture is to give only 4 (or 6) cubes to envision, 
and represent numerically the process of sharing 52 by 4 (or 6) persons. 

- Exploring remainder patterns using the inverse relation. Several divisions without rest and with rest 
raise the question "what explains this difference?". Using the knowledge of the inverse relationship 
between combining and sharing/segmenting students could investigate 'from where the remains come' 
(divisibility).  

- Understanding the ambiguity of symbolization with numerical expressions. Segmenting/distributing 
can be represented with different numerical expressions. Giving students the opportunity to think 
multiplicatively in the context of division to explore numerical patterns can promote the ability to 
compose and decompose numbers using operations to represent them (12 is 3 × 4, 12 is a quarter of 
48, 4 is 48 to divide by 12). 
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Mental computation provides a good environment to develop students’ strategies in division of 
rational numbers. In this paper, we seek to analyze mental computations strategies in rational number 
division used by grade 6 students, during a teaching experiment. The teaching experiment emphasizes 
collective discussions and was based on tasks involving number sentences and word problems with 
the four basic operations. The methodology was design-based research with two experimental cycles 
involving two teachers and 39 students. All lessons were audio and video recorded. The results show 
that students mostly use numerical relationships strategies supported by propositional 
representations in rational number division. Initially, students’ strategies are based on applying a 
procedure and evolve to strategies that relate division and multiplication.  

Keywords: Mental computation, students’ strategies, rational numbers, division. 

Introduction 
Learning mathematics is not just about memorizing and replicating a set of procedures. A deep 
understanding of concepts is needed to learn mathematics with meaning and to develop mathematical 
proficiency. The development of mathematical proficiency stands on the interrelation between five 
strands: conceptual understanding, procedural fluency, strategic competence, adaptive reasoning and 
productive dispositions (Kilpatrick, Swafford, & Findell, 2001). Procedural fluency needs to be built 
based on conceptual understanding. The development of students’ mental computation skills with 
rational numbers, using word problems and number sentences, can provide a good environment to 
achieve such conceptual understanding. The discussion of mental computation strategies allows teachers 
to understand students’ thinking about rational numbers, their conceptual understanding. Furthermore, it 
helps students to construct and reconstruct new knowledge based on what they previously learned. In 
this paper, we seek to analyze what mental computation strategies grade 6 students use in rational 
numbers division during a teaching experiment. The teaching experiment emphasizes collective 
discussions and was based on mental computation tasks involving number sentences and word problems 
with the four operations  

Division of rational numbers 
For students, division is a difficult operation. It begins with whole numbers and becomes more complicated 
with fractions and decimals. According to Sinicrope, Mick and Kolb (2002), division has different 
meanings that students need to learn and understand. In fact, division can be used to: (a) determine the 
number of groups (measurement division – when dividing 2 ÷ 1/2 , we find the number of times 1/2 
falls within 2); (b) determine the size of each group (partitive division – when dividing 3/4 of a pie equally 
by 3 people, we find the amount of pie for each person); (c) determine the dimension of a rectangle array 
(inverse of a Cartesian product – we find one dimension, in a problem of area in which the total area and 
other dimension are known). When working only with fractions, the authors add two more meanings: (d) 
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to determine a unit rate (a printer can print 100 pages in two and one-half minutes. How many pages does 
it prints in one minute?), and (e) as the inverse of multiplication. A deep understanding of rational number 
division involves understanding all these meanings, but, Siebert (2002) emphasizes the key importance of 
measurement and partitive division. Usually, students use the “invert and multiply” rule to divide fractions 
focusing only in procedures. For this author, this algorithm does not seem to be associated with division, 
since it has no signs of division and it is not in line with students’ understanding of what division means 
(finding the number of groups or finding the size of each group). Sinicrope et al. (2002) consider these 
meanings important, but highlight the importance of connecting the context of a problem with the algorithm 
to be used, since each context triggers a set of procedures to solve a problem. In line with this perspective, 
Siebert (2002) stresses that division with fractions must be explored using real-life contexts to help students 
to create images and make connections between the solutions of these problems and the knowledge they 
have about division with whole numbers, as this allows students to extend their knowledge. After 
constructing these images with meaning, they are prepared to understand the “invert and multiply” rule. 

Mental computation with rational numbers 
In this study, mental computation is seen as an exact computation made mentally in a quick and 
effective way, using mental representations and involving number facts, memorized rules, and 
relationships between numbers and operations (Carvalho & Ponte, 2017). In addition, students need 
to understand the size and value of numbers and the effect of an operation on a number, as well as to 
be able to make estimates to check the reasonableness of solutions (Heirdsfield, 2011). When 
computing with rational numbers, notably with fractions, a reconceptualization is needed because, 
multiplying and dividing fractions not always produces a product bigger that the factors or a quotient 
smaller that the dividend. As computing with rational numbers involves more complex reasoning than 
computing with whole numbers, we assume that the use of memorized rules (e.g., application of 
procedures such as multiplying/dividing by powers of 10) may sometimes support students’ 
computation and the establishment of numerical relationships. Number facts used by students in 
mental computation can involve knowledge about results of some operations (sums, differences, 
products, and quotients) or relationships among numbers and operations that they have stored in their 
memory throughout school experiences. Using numerical relationships, involves a deep 
understanding of numbers and operations, the capacity to use fundamental properties of operations 
and the notion of equality to analyse and solve problems (Empson, Levi, & Carpenter, 2010). Some 
numerical relationships strategies used by students are related to the change of rational number 
representations (Carvalho & Ponte, 2017) (e.g., fractionàdecimal; decimalàfraction or a rational 
number to a whole number concerning 10/100), to equivalences between mathematical expressions 
and to inverse relationship between operations. Number facts and memorized rules can emerge as 
mental computation strategies, per se, but they also arise as a support in establishing relationships 
between numbers and operations and vice-versa.  

In the perspective of Dehaene (1997), memory plays a central role in mental computation, not only 
for its ability to store number facts, but also for the mental models that it creates, based on previous 
knowledge, supporting students’ reasoning. In mental computation we use mental representations 
from the world that surrounds us, in sense making and in making inferences. According to the theory 
of mental models (Johnson-Laird, 1990), such mental representations may be: (i) mental models, if 
they are general perceptions of the world (e.g., using a general context of fair sharing to share a given 
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quantity); (ii) mental images, if they involve a more specific perception of the real world where some 
characteristics are considered (e.g., relating the symbolic representation 1/2 to a pizza divided in two 
parts taking only one part); and, (iii) propositional representations, if they represent true or false 
statements that play an important role in the inference process (e.g., to compute 1/4 ÷? = 1/2, we 
realize that if 1/2 × 1/2 = 1/4 then the missing value is 1/2).  

Research methodology  
This study is qualitative and interpretative with a design research approach (Cobb et al., 2003). As a 
developmental study, it seeks to solve problems identified from practice, mainly the difficulties in 
learning rational numbers and near absence of mental computation with this number set. It bases on 
a teaching experiment with mental computation tasks that provide opportunities for discussing 
students’ strategies. It includes three phases: preparation; experimentation and analysis. In the 
preparation phase (2010) we undertook a preliminary study in grade 5 (conducted by the first author 
in her classes) to understand students’ strategies when computing mentally with rational numbers, 
and to figure out practical aspects of students’ mental computation strategies, important for planning 
the teaching experiment. Such planning also considered the research on rational numbers and mental 
computation with rational numbers. In the second phase (2012-13), cycle 1 (CI) and 2 (CII) were 
carried out involving two teachers and two grade 6 classes (39 students) from two different schools 
selected according to teacher’s availability to participate in the study, with the first author as a 
participant observer. During this phase some refinements were made in the teaching experiment (e.g., 
changing the sequence of tasks). Data were collected through video and audio recordings of the 
classroom work with mental computation. Finally, in the analysis phase, the dialogues recording 
students’ strategies were transcribed. In this paper we will focus on students’ strategies to compute 
with division of rational numbers with fractions and decimals. To analyze data, we defined three main 
categories of strategies and several subcategories (Table 1) that we relate with students’ mental 
representations (images, models and propositional representations). These categories emerged from the 
data informed by the literature review. 

Categories 

 Numerical relationships Number facts  Memorized rules 

Su
bc

at
eg

or
ie

s Change representation 

Part-whole comparison 

Relation between operations 

Two halves make a unit 

A half of a half is a quarter 

 

Rule to add/subtract fractions  

Invert and multiply rule 

Table 1. Categorization of mental computation strategies with rational numbers 

The categorization was made according to the strongest notion involved in students’ strategy. For 
example, if there is a strong use of numerical relationships, as the change of representation, we coded 
this strategy in the category “numerical relationships” and subcategory “change representation”.  

The teaching experiment 
The teaching experiment relies on the conjecture that a systematic work with mental computation 
tasks with rational numbers represented as fractions, decimals and percent, and whole class 
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discussions may contribute to the development of students’ mental computation strategies and 
understanding of their errors. Before the teaching experiment, the students already had worked with 
rational numbers in different representations and operations, with emphasis on algorithms. The 
teaching experiment included ten mental computation tasks with rational numbers (with several 
number sentences or word problems each) to carry out weekly All tasks were provided by the first 
author and discussed in detail with the participating teachers. These tasks were presented at the 
beginning of a class by using a timed PowerPoint to challenge students to compute mentally in a 
faster way. The students had 15 seconds to solve each number sentence and 20 seconds to solve each 
word problem individually. The results were recorded on paper. Each task has two parts, both with 5 number 
sentences or 4 word problems. Upon finishing each part, there was a collective discussion of students’ 
strategies. These mental computation lessons lasted 30 to 90 minutes. The discussion moments were 
regarded as very important. They allowed students to show how they think and which strategies they 
use to compute mentally in tasks with different cognitive demands. These moments were important 
for students to think, reflect, analyze, make connections, share, and extend mental computation 
strategies, as well as to identify skills that they should develop about numbers and operations.  

The students began to compute mentally with fractions (addition/subtraction in task 1 and 
multiplication/ division in task 2), then with decimals and fractions with the four basic operations (task 
3), and then only with decimals (addition/subtraction in task 4 and multiplication/division in task 5). 
Subsequently, they solved word problems in measurement and comparison contexts involving fractions 
and decimals (task 6). Percent was used in task 7, as the teacher begun working with statistics. Then, 
students used decimals, fractions and percent in tasks 8, 9 and 10. In task 10 they solved word problems. 
The tasks were designed following three principles and considering previous research on mental 
computation and rational numbers: Principle 1. Use contexts to help students to give meaning to 
numbers. A structured knowledge is associated with the context in which it was learned and, most of 
the time, it is difficult for a student to bridge this knowledge to new situations. Principle 2. Use multiple 
representations of rational numbers. We used fractions, decimals, and percent representations in the 
same task and in several tasks along the teaching experiment (e.g., 2,4 ÷ 1/2). We used even numbers 
and multiples of 5 and 10, benchmarks such as 25% or 1/2 to facilitate equivalence between decimals, 
fractions and percent, and to stress numerical and part-whole relationships. Principle 3. Use tasks with 
different levels of cognitive demand. For example, taking into account mental computation levels 
(Callingham & Watson, 2004) we designed tasks in which the students have to use the concept of half 
(e.g. 50% of 20 or 1/2+1/2) or need to use a more complex numerical relationships (e.g., 20% of ? = 8), 
to do the computation. When planning the lessons, we sought to anticipate students’ possible strategies 
to better prepare the collective discussions. All classroom activities were led by the teachers, with the 
first author making occasional interventions to ask students to clarify their strategies.  

Students’ metal computation strategies for division of rational numbers  
In this section we analyse students’ mental computation strategies in dividing rational numbers with 
fractions and decimals. The examples selected (Table 2) are representative for the strategies used by 
students in CI and CII. We begin with questions using division by 1/2 because we think this is an 
essential step to understand the division of rational numbers, especially the relation between dividend, 
divisor and quotient. We used other benchmarks as 1/4 or the division between a fraction and a whole 
number to support students’ extension of knowledge from the division of whole numbers.  
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Mental computation 
question 

Mental computation strategies 
Mental 

representation 
Students’ meaning 

of division  

Ta
sk

 2
 

4
8

÷
1
2

=? 
Rita (C I): Memorized rules (invert and 
multiply rule) 

Mental image 
Application of a 
procedure 

1
4

÷? =
1
2

 

Ana (C I): Numerical relationship 
(relation between expressions- 
multiplication and division) and number 
facts (half of a half is a quarter) 

Propositional 
representation 

Inverse relationship 
between 
multiplication and 
division 

3
4

÷? =
1
4

 

António (C II): Numerical relationship 
(relation between expressions- 
division/multiplication/ repeat addition) 
and number facts (quotient known) 

Mental model 
Propositional 
representation 

Partitive division 

Ta
sk

 5
 

2.1 ÷? = 8.4 

Maria (C I): Numerical relationship 
(relation between numbers and 
expressions- division/multiplication) 
and number facts (time table) 

Propositional 
representation 

Inverse relationship 
between 
multiplication and 
division 

Ta
sk

 6
 

A tank has the 
capacity of 22.5 l. 
How many 1/2 l 
buckets do you 

need to completely 
fill the tank? 

Eva (C I): Numerical relationship 
(relation between operations - ½ and the 
multiplication by 2; part-whole 
relationship) 

Propositional 
representation 

Measurement 
division 

Ta
sk

 1
0 

0.75 ÷? = 3 

Rui (C II): Numerical relationship 
(change representation 
decimalàfraction; relation between 
numbers) 

Propositional 
representation 

Inverse relationship 
between 
multiplication and 
division  

Table 2: Synthesis of Students strategies in rational numbers division 

In task 2, students compute mentally with fractions in number sentences and open number sentences. 
To solve “4/8 ÷ 1/2 =? " students could simply identify that dividend and divisor represent 
equivalent fractions, so the quotient is 1. However, most of the students apply the “invert and 
multiply” rule as Rita did: “I inverted the 2 with the 1. I did 4 times 2 and get 8 and 8 times 1 and get 
8. I get the unit. I wrote 1”. Rita used a memorized rule probably supported by mental images of 
procedures that she knows. In the 2nd part of task 2, Ana’s strategy to compute “1/4 ÷? = 1/2” and 
António’s strategy to calculate “3/4÷?=1/4” led to discuss another way of thinking about dividing 
rational numbers. Ana explained: “I just know that 1/2 times 1/2 is 1/4. So, I put immediately 1/2”. 
She used a numerical relationship strategy (relation between expressions) based on a propositional 
representation (if 1/2×1/2=1/4 so1/4÷1/2=1/2) supported by a number fact (half of a half is a 
quarter). Her strategy emphasizes the relationship between multiplication and division as inverse 
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operations. To compute “3/4÷?=1/4” António explained: “I thought of 3€. I forgot the 4 [in the 
denominator]. 3€ dividing by 3 persons is equal 1€ to each person… 3/4 dividing by 3 persons is 1/4 
. . . I thought 1/4+1/4+1/4 [is] 3/4”. António used a numerical relationship strategy (relations between 
expressions). He relates division (3/4÷3) with multiplication through repeated addition 
(3×1/4=1/4+1/4+1/4). António uses the context of money (mental model) to share money between 3 
persons, and so, he “forgot the 4” from the denominator to make an extension of what he knows about 
whole numbers division. He probably searched in his quotients repertoire, one that gives 1 (number 
facts), and validated his strategy using a propositional representation (if 3/4÷?=1/4 and 3÷3=1, so, 
?=1/4 because 1/4+1/4+1/4=3/4). António’s strategy shows how a partitive division context that he 
knows can be a model to think and compute the given mathematical expression. 

In task 5, Maria explained her strategy to compute “2.1÷?=8.4”, showing flexibility in working with 
equivalent representations of rational numbers:” I did 2 times 2.1 and then 4 times and I get it [8.4]. But 
we must divide. The inverse of 4 is 1/4 that is 0.25”. She used a numerical relationship strategy (relation 
between numbers and operations) supported by number facts and propositional representations. To find 
the missing number, Maria used number facts (time table of 2 and 4) to find the multiplicative 
relationship between the 2.1 and 8.4. The given operation was division and she used multiplication 
(inverse operation) to think. So, she needs to answer using the “inverse of 4 is 1/4 that is 0.25”. Her 
strategy could be supported by the propositional representations: if 2.1÷?=8.4 and 2.1×4=8.4 so 
2.1×4=2.1÷1/4=8.4. A sequence of true statements leads to the correct answer. 

The word problem presented in Table 2 (task 6) can be solved by using the expression 22.5÷1/2. 
Eva’s strategy was: “It is 45 baskets. I only multiply 22.5 by 2”. Questioned why she multiplied by 
2, she answered: “Because of ½. To get the unit we must add five tenths twice, so we multiply by 2”. 
This was used to discuss division sense when using a divisor less than 1, since the quotient gets bigger 
then the dividend, and not smaller as it happens with whole numbers. Eva used a numerical relationship 
strategy (relations between operations and part-hole relationship). She understood that two halves 
make a unit and explained it using two equivalent representations (1/2 and 0.5). This gives meaning 
to the multiplication by 2 instead of the division by 1/2. Understanding this, she supported her strategy 
in a propositional representation (if 1/2=0.5 and 0.5×2=1, so, 22.5÷1/2=22.5×2=45). The meaning 
of the “invert and multiply” rule was discussed using Eva´s explanation. 

In task 10, the last task of the teaching experiment, Rui computed “0.75 ÷? = 3” explaining: “I 
changed 75 hundredths to 3/4 because it’s equivalent. So, 3/4 divided by a number that I don’t know 
to get 3… 3/4 dividing by 1/4 is equivalent to 3.3 divided by 1 is equivalent to 3 and 4 divided by 4 
is equivalent to 1”. He changed representation from decimals to fractions (numerical relationships) 
and this was essential to see that there is a multiplicative relationship between dividend and quotient 
(3/4÷?=3). He was not explicit about this relation, but when he stated “3/4 dividing by 1/4” he 
assumed that the result is 1/4, and this could come from 3×1/4=3/4. To validate his strategy, Rui 
solved the operation (3/4÷1/4) after knowing the result 3. Since the denominators are equal he divided 
numerators and denominator to get the answer 1/4. His strategy could be supported by a propositional 
representation that gives meaning to his way of thinking (if 0.75=3/4 so 0.75÷?=3 is equivalent to 
3/4÷?=3. If 3×1/4=3/4, then, 3/4÷1/4=3 because 3÷1/4÷4=3/1). Interestingly, Rui always used the 
word “equivalent” to talk about the equal sing. This shows that he understood it as a sign of 
equivalence and not as a sign that requires a solution. 

Thematic Working Group 02

Proceedings of CERME11 392



Discussion and conclusion 
In this paper we share and analyze the most representative mental computation strategies in division 
of rational numbers, used by students in CI and CII of our study. To develop students mental 
computation strategies, we designed tasks that include benchmarks, different rational number 
representations (Kilpatrick et al., 2001), different levels of cognitive demand and contexts to support 
students to connect number sentences with world problems and vice-versa (e.g., Sinicrope et al., 
2002). This allows students to give meaning to number representations and extend previous 
knowledge about whole numbers. 

In the beginning of the study (task 2) most students use memorized rules such as “invert and multiply” 
two divide two fractions. This is a procedure that most students use, certainly without meaning, 
because it does not seem to be associated with division (Siebert, 2002). To divide fractions, students 
multiply most of the time without relating these two operations. When challenged to compute 
mentally in open number sentences they use numerical relationships strategies, with an emphasis on 
the change of representation. Decimal division was more difficult for students than fraction division, 
probably because they learned a rule to divide fractions and not to divide decimals. Therefore, 
students prefer to change decimals to fractions to use the rule or to relate division and multiplication 
(as did Maria and Rui). In open number sentences it is not possible to use directly the “invert and 
multiply” rule. The use of this kind of task in the teaching experiment was an important step in the 
development of students’ mental computation strategies in division, since they need to relate numbers 
and operations instead of applying rules, where mental representations play an important role. Mental 
representations as propositional representations support students’ reasoning while several 
relationships are made, and mental models can provide real-life contexts with meaning for students, 
so they can solve mathematical expressions (as did António). During the teaching experiment, several 
word problems were used and related with number sentences to help students to create mental 
representations and make connections between real-life contexts and mathematical expressions 
(Siebert, 2002). For example, in task 5 we used the expression 12.2 ÷ 0.5 to relate later with the 
problem shown in task 6 (see Table 2). The use of word problems was another important step in the 
development of students’ strategies as it gives a real-life context where students need to search for an 
operation to solve it. This search allows students to find mathematical expressions where the contexts 
facilitate an understanding of relationships previously discussed in the classroom. Eva’s strategy to 
solve a word problem in a measurement context represented an opportunity to give meaning to the 
relationship between dividing by 1/2 and multiplying by 2 as well to the “invert and multiply” rule, 
used several times by students.  

This study shows whenever students apply a memorized rule they mostly apply a procedure without 
meaning. They explained a set of procedures (as Rita did) where no meaning of division is shared. 
When students use numerical relationships strategies they use multiplication to solve a division, 
stressing the relation between these two operations. The inverse relation between these operations 
emerged in a strong way in students’ strategies, especially in open number sentences tasks. The 
missing value was the divisor that can be calculated dividing dividend and quotient, but students 
solved it by searching for a known relationship (as Ana did) or the relation between dividend and 
quotient (as Maria and Rui did). On one side, the use of multiplication can be a sign of students’ 
difficulty in dividing rational numbers, so they search a more familiar operation to solve the problem. 
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On the other side, the use of multiplication emphasizes multiplicative relationships between numbers 
and the inverse relation between division and multiplication (e.g., Sinicrope et al., 2002). Partitive 
division meaning was introduced by António when he used a money context to share equally 3€ by 3 
people. He drew his knowledge from division of whole numbers and extended it to rational numbers. 
He used a known context to model the resolution of a number sentence. António’s self-validation of his 
answer shows a strategy made with understanding. The measurement meaning of division was provided 
in the basket problem, where Eva’s strategy was very useful to give meaning to some relations 
previously made by students as we already stressed above.  

To conclude, this is a singular study in Portugal that provides suggestions to teachers who want to 
develop students’ mental computation strategies in rational numbers division. Sharing and discussing 
students’ strategies with the whole class presents an opportunity for teachers to understand students’ 
reasoning, but also to construct collectively an understanding about the division of rational numbers 
where several relationships can be explored. Further research focusing mental computation with 
rational numbers involving different representations is needed, as well as their contributions for the 
transition between arithmetic and algebra in students learning process. 
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Abstract: The research field about teachers’ perceptions on students’ performance highlights the 
importance of understanding this approach in order to help students to improve their learning 
outcomes. This study aims to contribute to this discussion. It involved 136 first-grade students, from 
10 classes of 3 Brazilian public schools. The teachers participated by filling out a questionnaire about 
the students’ learning profile, including aspects such as: behavior, attention, social interaction and 
knowledge by area (mathematics, reading and writing). The teachers’ answers were related to the 
students’ achievement in a counting principles task. The results show that teachers have correct 
perceptions about the students who master the counting principles, but the same is not true for the 
ones who did not consolidate or were still developing the principles. The educational implication of 
the study is pointed out. 

Keywords: Teachers’ perceptions. Counting principles. Learning profile. 

 
Teachers’ role in the learning process of the students is often recognized by researchers in the 
mathematics field, especially when they present the research outcomes and reflect on its educational 
implications (Hoge & Coladarci, 1989; Südkamp, Kaiser, & Möller, 2012). Studies focusing on this 
perspective provide important data concerning teachers’ perceptions on students’ learning which 
brings implications for the way teachers plan their pedagogical actions (Hoge & Coladarci, 1989; 
Südkamp, Kaiser, & Möller, 2012). In this sense, the knowledge provided by this field of research 
allows to better comprehend and favor the teaching and learning processes.  

This research involves the investigation of teachers’ perceptions about the learning profile of first 
year students and seeks to verify if there is a relation between the teachers’ perceptions and the 
students’ actual performance in a counting principles task. The counting principles, established by 
Gelman and Gallistel (1978), are the basis for children’s learning how to count with success. The 
principles are: stable order, one to one correspondence, cardinality, abstraction and order irrelevance. 
As evidenced by Stock, Desoete & Roeyers (2009), children with good achievement in counting by 
the end of kindergarten presented good performance in arithmetical abilities in the first year, pointing 
to the predictive value of the counting principles. 

In 1989, Hoge and Coladarci conducted a systematic review on teacher judgments about their 
students’ achievement. Initially, the authors contextualized teacher judgments through two 
perspectives: the cognition of teachers and their assessment. The first one addresses the decision-
making of educators (in relation to planning, for example), noting that this process is influenced by 
their judgment on their students. The second involves thinking about the importance of the accuracy 
of teacher judgments in the context of assessment: educational decisions are made on the basis of the 
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educators' assessment and their judgment is an important source of information about the students 
(Hoge & Coladarci, 1989). 

In 2012, 23 years after the review mentioned, Südkamp, Kaiser & Möller also studied the precision 
of teachers' judgment about the performance of their students, conducting a meta-analysis on this 
subject. The authors pointed out that teacher judgment is one of the primary sources of information 
about students' academic performance, as Hoge and Coladarci (1989) highlighted. An accurate 
assessment of students' performance is a prerequisite for educators to be able to adapt their 
pedagogical practices, make decisions and support the students’ development of an appropriate 
academic self-concept (Südkamp, Kaiser, & Möller, 2012). 

The literature showed studies involving teachers' judgment/perception with different objectives: to 
verify predictors of performance (Teisl, Mazzocco & Myers, 2001), to identify students with 
difficulties in mathematics (Nelson, Norman, & Lackner, 2016), and to observe the relationship 
between teacher perceptions and students’ performance in mathematics, specific math skills, student 
feeling, motivational factors, and activities choices (Eds & Potter, 2013; Martinez, Stecher, & Borko, 
2009, Schappe, 2012).  

Although these works show divergences in some aspects, they generally point to a positive relation 
between the teachers' perceptions on students’ performance and the students’ actual learning 
outcomes. The authors note the need for research on this relationship, highlighting the importance of 
teacher judgment for students’ evaluation, pedagogical planning and decision making. The present 
study seeks to contribute to this discussion. The purpose of this study is to investigate the relationship 
between teachers' perceptions about the learning profile of their 1st year students and the students’ 
actual performance in a counting principles task. 

Method 
Participants 

The study included 136 Brazilian students (63 girls and 73 boys), aged between 6 and 7 years old, 
from 10 groups of 1st year of Elementary Schools. It involved 3 public schools. This group of children 
was participating in an intervention research, entitled "Intervention in counting principles for 
elementary school students", submitted as a paper to TWG2, this year.  Students were assessed in a 
counting principles task and their teacher filled out a questionnaire focusing on their perceptions 
about the students’ academic achievement. Therefore, besides the students, their teachers (n=10) also 
took part in this study. All of them were graduated in Pedagogy and 9 had post-graduation in the 
Education area. Regarding the teaching experience with first year of Elementary School: 1 teacher 
had 6 months, 1 teacher had 2 years, 2 teachers had 3 years, 1 teacher had 5 years, 1 teacher had 9 
years, 1 teacher had 18 years, 1 teacher had 28 years, 1 teacher had 31 years and 1 teacher had 36 
years. The parents of all participating students gave their authorization through the signing of the Free 
and Informed Consent Form and the Dissent Form. Approval for this study was obtained from the 
Research Ethics Committee of Universidade Federal do Rio Grande do Sul.  
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Procedures 

The researcher administered the counting principles task, between September and December 2017, 
individually to each child in a room provided by the schools. The teachers received the questionnaire 
at the beginning of the data collection and returned it according to their availability. 

Instruments 

1) Counting principles task: The task is conducted in an interview format. There are specific questions 
to assess each principle. The questions were asked in the following order: stable order (“Until how 
much can you count?” “Count out loud up to the number you said, please”); one to one 
correspondence (The experimenter shows 10 chips in a row and asks “how many chips are there?” 
After, the researcher shows 10 chips misaligned and asks “how many chips are there?”. The same 
procedure is repeated with 15 chips. This activity will be called “A”); cardinality (by the end of 
counting 15 items, the experimenter asks “how many are there in total? Can you give me 10?” This 
activity will be called “B”); abstraction (the experimenter asks “if you were counting 15 candies, 
would you count the same way (in the same order) you counted the chips?” This activity will be called 
“C”); order irrelevance (the experimenter asks the child to count the 15 chips, arranged in a row, in a 
different order, that is, starting from another chip. Then, the child is asked to say how many chips would 
remain if the row was undone. After, the experimenter asks the child to count 8 chips of the set, 
separating them aside, and then, to count the remaining 7 chips of the row. By the end, the child has 
to say how many chips there are in total. This activity will be called “D”). For each principle, the 
subjects were classified into three groups: principle consolidated (Y – yes); in construction (IC); not 
consolidated (N). Some criteria were established to classify the children in each group. Some of the 
questions (2, 3 and 5) are formed by more than one query. In this case, the child’s answer was 
classified as “Y” if he/she answered all the solicitations in each question correctly; “IC” if only one 
part of the question was correctly answered; “N” if the student did not answer any part of the question 
correctly. 

2) Teachers’ questionnaire: The teachers received a questionnaire, adapted by the author, based on 
the scale of "Strengths and Weaknesses of Attention-Deficit / Hyperactivity-symptoms and Normal-
behaviors - SWAN" (Swanson et al., 2005), containing questions about attention, behavior, 
knowledge by area (mathematics, writing and reading) and social interaction. The objective of the 
questionnaire, presented in the table below, was to investigate the teachers' perceptions about the 
general learning profile of their students. For each statement, teachers could select one of four 
frequency options: often, sometimes, rarely, or never. 

1 - Shows interest for the proposals 14 – Shows difficulties in writing  

2 - Pays attention to the explanations 15 - Shows difficulties in reading 

3 - Keeps the materials organized 16 - Shows difficulties in mathematics 

4 - Complies with  the teacher's requests 17 - Avoid tasks involving numbers  

5 - Interactes well to colleagues 18 –Shows counting knowledge 

6 - Manages well the time attributed to accomplish a task 19 – Shows difficulties in socializing 
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7 - Engages in activities 20 – Shows difficulty in understanding instructions 

8 - Knows to take turns: when to speak and when to listen 21 - Plays together with colleagues at playtime 

9 - Questions when in doubt 22 - Complaints about the class proposals. 

10 -Requires a lot of attention from the teacher 23 - Demonstrates slowness to finish the tasks 

11 - Moves a lot during class  24 – Is easily distracted 

12 - Forgets about making the homework 25 - Expresses him/herself well 

13 – Does not comply with the rules  

Table 1: Teachers’ questionnaire  

Results 
The relationship between the questionnaires of the teachers and the performance of the children in 
the counting principles task was investigated. In order to do the analyses, it was necessary to make 
an adjustment in the questions of the questionnaire. Although all of them counted with the same 
frequency for answers, there were distinct kinds of affirmation, which meant that the same frequency 
attributed to two different questions resulted in opposite answers. For example: the “often” frequency 
is a positive answer to question number 1 (“shows interest for the proposals”), but negative for the 
question number 20 (“shows difficulty in understanding instructions”). Considering this fact, before 
running the analyses, it was necessary to transform the answers so they kept the same direction of 
association. They were classified as positives (1 to 9, 18, 21, 21 and 25), which had maintained the 
frequency (often, sometimes, rarely, never), and negatives (10, 12 to 17, 19, 20, 22 and 24), which 
suffered the transformation (never, rarely, sometimes, often). In this way, the frequency “often” for 
the positive question number 7 (“engages in activities”) had the same effect of the frequency “never” 
for the negative question number 23 (“demonstrate slowness to finish the task”)”. The box-plots, 
shown below, were constructed to highlight the frequency of distribution of the teachers’ answers in 
relation to the students’ constructs. It can be seen that most of the graphs below shows increasing 
frequency throughout the answers, with few occurrence in "never" and a gradual increase in the 
following answers. The only graph that does not follow this pattern is related to the construct "IC" 
(in construction principle) in activity C: this may be due to the fact that only 6 children presented this 
construct, making the analysis difficult due to the scarcity of data for this variable.  
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 Figure 1: Box-plot graphs 

Considering the information presented in the graphs, the Kruskal-Wallis test was applied to verify if 
the median of performance of the children in the counting principles task, between the four groups of 
frequencies (never, rarely, sometimes and often), was different, that is, if the oscillations in the graphs 
were statistically significant (p <0.05). The samples were independent, so if one group has a high 
median, it does not interfere in the median of another group (high or low).  

 
Figure 2: Kruskal-Wallis test results 

Construct 
of the 

principle

Number 
of 

students
Answers of 

the teachers Median p-value sig

Construct 
of the 

principle

Number 
of 

students
Answers of 

the teachers Median p-value sig
29 Never 0 0,0843 6 Never 1 0,6615

Rarely 2 Rarely 4,5
Sometimes 7 Sometimes 5,5
Often 12 Often 9,5

50 Never 2 0,0188 a 17 Never 0 0,089
Rarely 4 b Rarely 3
Sometimes 6 c Sometimes 6
Often 12 d Often 12

57 Never 1 0,0446 a 113 Never 1 0,0003 a
Rarely 4 b Rarely 3 b
Sometimes 6 c Sometimes 6 c
Often 11 d Often 12 d

Construct 
of the 

principle

Number 
of 

students
Answers of 

the teachers Median p-value sig

Construct 
of the 

principle

Number 
of 

students
Answers of 

the teachers Median p-value sig
14 Never 1 0,3114 63 Never 1 0,0061 a

Rarely 6 Rarely 4 b
Sometimes 6,5 Sometimes 6 c
Often 9 Often 11 d

6 Never 4,5 0,2873 46 Never 0,5 0,2982
Rarely 8,5 Rarely 3
Sometimes 4,5 Sometimes 6
Often 4 Often 12

116 Never 1 0,0001 a 27 Never 2 0,0096 a
Rarely 3 b Rarely 3 a
Sometimes 6 c Sometimes 5 b
Often 12 d Often 11 c

IC IC

Y Y

Y Y

Abstraction Order Irrelevance

N N

One to one correspondence Cardinality

N N

IC IC
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As observed above in figure 2, in the one to one correspondence principle the medians of the "N"(not 
consolidated) construct were the same, since their p-value was greater than 0.05. In the "IC" (in 
construction) and "Y" (consolidated) constructs there was a difference between the medians, indicated 
by p-value less than 0.05, the medians of each response being different from each other. Although a 
numerical difference was observed between the medians of “N” construct responses, a statistical 
significance was not found (at 5% level) due to the low sample size. The number of students with the 
"IC" and "Y" constructs, which presented a significant difference, was 50 and 57 respectively, while 
the "N" construct had 29 students. 

In the cardinality principle, it was possible to observe difference between the four medians only for 
the "Y" construct (p <0.05), with the "N" and "IC" constructs not showing statistically significant 
differences. Again, this can be attributed to the size of the sample of each construct, since 113 children 
showed mastery of the cardinality principle, while only 17 were constructing it and 6 did not 
demonstrate its consolidation. In the abstraction principle, the "N" and "IC" constructs, with 14 and 
6 subjects, respectively, did not present differences between the medians of the responses. The "Y" 
construct, with 116 students, showed to be statistically significant (p <0.05) with the four medians 
differing from each other. In the irrelevance of the order principle, the construct "N", with 63 subjects, 
was shown to be statistically significant (p <0.05), with the four medians being different. The "Y" 
construct, although with a small number of students, 27, was also evidenced as statistically significant 
(p <0.05). The answers "Never" and "Rarely” presented median equality, as indicated by the letters 
in the table. The construct "IC", in turn, even with a larger sample than the previous one, with 63 
subjects, was not statistically significant, showing equal medians. 

Discussion 
It was expected that the results of the data analysis, relating the teachers’ perceptions about their 
students’ general learning profiles and the constructs presented by the students in the assessment of 
the counting principles, would show that children who did not consolidate a certain principle would 
present a very frequent occurrence of "Never" or "Rarely” answers in the questionnaires; students  
who were constructing the principles would have "Sometimes" answers more frequently; children 
who demonstrated a "yes" construct for the counting principles, supposedly, would present a large 
occurrence of "Often” answers in the teaching questionnaires. In general, it is possible to consider 
that there was little differentiation in the occurrence of responses for almost all constructs: both those 
who did not consolidate the principles and those who were constructing them, or who already 
mastered them, obtained the same types of answers in the questionnaires, varying in the number of 
times they received them. 

The results raise some possibilities of analysis. First, the relationship between teachers’ perceptions 
about the students' learning profiles was in agreement with the performance of the students only in 
the cases of those who showed consolidation of the counting principles. Such a result converges with 
other studies demonstrating that teachers’ judgements, through rating scales, are good predictors of 
students’ academic performance, more specifically, in relation to students who did not develop 
learning difficulties in mathematics (Teisl, Mazzocco & Myers, 2001). Another possibility concerns 
how teachers answered the questionnaires: once they received the documents and were able to fill 
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them out without the presence of the researcher, it is not known exactly how they did it, what criteria 
they used to choose a response in to the detriment of another, whether they filled out quickly or 
dedicated time to think about the issues raised there. A third point refers to the number of students 
per class. The classes involved in this study had a maximum of 25 students. Although it seems a small 
number, it is complex for a teacher, alone, to have complete knowledge of all his/her students. Even 
though the questionnaire was delivered in the second half of the year, a period of time when teachers 
would have had time to get to know their students, it is difficult to know, precisely, how much and 
what each teacher knew about their pupils. 

Limitations 

The research results described in this paper should be considered in the context of some limitations. 
First, the counting principles task used was selected because it is a short and practical instrument, 
however, we believe that a broader task could elucidate more aspects to be analyzed and discussed. 
The same must be said in relation to the Swan questionnaire.  Another limitation concerns the choice 
of statistical analysis that was conducted. It is possible that different findings would have emerged if 
the study included the association of different statistical tests, which could have made it possible to 
reinforce or question some of the results found or even to elucidate other possible outcomes. 

Conclusion 
This study showed that the teachers have correct perceptions of their students when it comes to 
students with good performance, that is, those with "Y" construct in the counting principles. Students 
who do not present consolidation or who are constructing the principles were perceived by the 
teachers in a way that did not correspond to the students’ performance in the counting task used in 
this study. 

This work points to the need and importance of deepening and expanding the development of teacher 
studies and their perceptions. More importantly, it is extremely relevant to investigate how teachers 
form their perceptions, what criteria they consider when evaluating students and how they see their 
students. 

This study shows that there are still many aspects that need to be discussed between researchers and 
teachers, seeking to establish a significant link between theory and practice. It is imperative that 
teachers, especially those responsible for the early years of Elementary School, acquire knowledge 
about the factors involved in learning the initial mathematics: knowing how the learner learns will 
help them to identify aspects related to not learning and, therefore, perhaps their perceptions are 
clearer and they can recognize children who are facing problems. It is imperative that the link between 
researchers and teachers be built and used in favor of student learning, allowing the two sides to 
dialogue and understand how academic conceptions can contribute to pedagogical practices and vice 
versa. 
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We focus on the teaching and learning of decimal numbers at primary level (grades 4 and 5) in 
France. We are especially interested in the role played by registers of semiotic representation. Three 
classroom episodes are analyzed by considering the role played by the discursive register of 
numeration units in conceptualizing decimal numbers. 

Keywords: Decimal numbers, registers of semiotic representation, numeration units. 

This paper focuses on the teaching and learning of decimal numbers at primary school (grades 4 and 
5) in France. Many authors underline errors specific to decimal numbers (Baturo, 2000; Durkin & 
Rittle-Johnson, 2015; Steinle & Stacey, 2003). We rely on the theory of registers of semiotic 
representation by considering a crucial role played by registers (discursive, symbolic, iconic or 
material) in teaching and learning processes (Duval, 1995, 2017). We grant particular importance to 
the register of numeration units (tens, units...) or numeration-units-numbers. Most studies (Chambris, 
2015; Houdement & Tempier, 2015; Van de Walle, 2010) have highlighted the potential of this 
register for teaching and learning whole numbers. In our study, we question the extension of these 
results to decimal numbers. We aim to tackle the role of this register of numeration units (tenths, 
hundredths…) for teaching and learning decimal numbers. The focus is on case studies based on 
classroom episodes the illustrate both difficulties and levers in teaching and learning decimal numbers 
with respect to the role played by this register.  

Theoretical frame: registers of semiotic representation of decimal numbers 
In Duval’s framework, a given mathematical object has multiple representations depending on 
registers of semiotic representation (discursive, symbolic, iconic or material) that express specific 
properties of the object while never embodying the object. These registers open the possibility of two 
fundamental cognitive activities: the activity of treatment (a transformation inside a given register), 
the activity of conversion (mobilization from one register into another). Duval (1995, 2017) discusses 
the double designation of mathematical object inside registers, that is, representations of a 
mathematical object that may be associated and have different functionalities. Duval considers this 
process a fundamental part of mathematics. Using this approach, we have identified different registers 
of semiotic representation of decimal numbers. These registers may be used in various teaching 
situations, sometimes simultaneously: symbolic (fractional notation, in particular those of the type 1

10
, 

1
100

, 1
1000

, decimal notation and the sums associated to these symbolic writings); discursive (where 
numeration units - tenths, hundredths, thousandths - and numeration-units-numbers are involved 
which can be verbalized or written); mixed (in notations of the form 1 unit + 3 tenths + 2 hundredths 
or in place value chart); iconic, figurative, or material (such as a square made of 100 tiles 25 of which 
are grey). These registers may be used both verbally and on paper. For instance, we can “verbalize” 
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symbolic decimal fractional notation as numeration units ( 1

10
  as one tenth or 15

10
 as fifteen tenths). We 

grant particular importance to the representation register of numeration units. This discursive register 
of numeration units allows conversions between different types of numeration units (Chambris, 2015; 
Houdement & Tempier, 2015) or reunitizing strategies (Baturo, 2000) possible by grouping units 
such as “10 tenths gives 1 unit” or “10 hundredths gives 1 tenth” or partitioning units “partitioning 1 
unit into ten equal parts gives 1 tenth” or “partitioning 1 tenth into ten equal parts gives 1 hundredth”. 
We will name these conversions unit-conversions to distinguish them with conversions in Duval’s 
meaning. These unit-conversions provide various justifications of comparison and computation with 
decimal and whole numbers while shining light on decimal and positional principles (Ross, 1989). 
We hypothesize that the register of representation related to numeration units has specificities with 
respect to decimal numbers that may provide potential levers or difficulties in teaching and learning. 

Methodology 
The research study takes place in a French primary school, with a voluntary group of 4 experienced 
and reflexive teachers involved in a collaborative research effort about the teaching of decimal 
numbers at primary school. A total of 50 decimal numbers lessons taught in 9 classes of grade 4 or 5 
were recorded during 4 years. In this collaborative study, most of the time, teachers have been 
responsible for the design of tasks for students and researchers have been in charge of the analysis of 
the mathematical activities of both students and teachers. Even if this methodology differs from 
engineering design, we have used classical methodological tools such as confrontation between a 
priori analyses of tasks and a posteriori analysis of data collected (Artigue, 1992; Hodgson, Kuzniak, 
& Lagrange, 2016). According to our theoretical point of view we have focused on classroom 
episodes in which register of numeration units or numeration-units-numbers was specifically used. 
We focus on both the activity of treatment inside the register of numeration units and the activity of 
conversion from this register to others (Duval, 2017). Particular classroom episodes allow us to 
illustrate three types of phenomena related to the use of semiotic register of representation 
(summarized in the Table below). These episodes are also about different steps in the teaching 
decimal numbers and symbolic notations, related to the French curriculum.  

episodes tasks phenomena indicators 

1 

(grade 4) 
place decimal fractions 
on number line 

difficulties in invoking 
relations between a unit and 
its subdivisions 

registers: fractional 
notations, numeration units 

unit-conversions 

2 

(grade 5) 
compare decimal 
numbers 

difficulties in coming back 
to the register of numeration 
units in order to justify 
comparison techniques  

registers: decimal notations, 
numeration unit  

unit-conversions 

3 

(grade 4) 

convert sums of 
decimal fractions 
(length measurements) 
to decimal notations. 

potential for bringing 
together numeration units 
and measurement units 

registers: decimal and 
fractional notations, 
numeration units, 
measurement units 
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Table 1: Tasks, phenomena and indicators used in the analysis process 

First classroom episode: unit-conversions and decimal numbers 
According to the French curriculum, students of grade 4 begin to learn decimal numbers as decimal 
fractions. In this first episode, students have made a decimal number line marked in hundredths. 
Hundredths have already been introduced as follow: if we divide a unit into one hundred equal parts, 
one hundredth is one part of these parts. Similarly, tenths arise from partitioning one unit into ten 
equal parts. Students are able to place five hundredths, both used verbally (five hundredths) and on 
paper ( 5

100
) on this number line. They should place “15

10
 – fifteen tenths” on the number line marked in 

hundredths. Such a mathematical task seems to be difficult for most students. In the transcript below, 
a student solves the problem on the board. An incorrect response is first proposed as students have 
mistaken hundredths for tenths (count 15 hundredths instead of 15 tenths).  

Teacher:  What can we try to plot? 

Student:  Fifteen tenths [teacher writes 15
10

  on the whiteboard]. 

Teacher:  How did you do?  
Student:  We count on fifteen. 
Teacher:  You count on fifteen? […] Ok, if I count on fifteen, you said, the number you stop 

at fifteen hundredths [teacher writes 15
100

 on the blackboard] But we want fifteen 
tenths. How do we do? 

Then, students use unit-conversions, in grouping point of view (such as ten tenths is equivalent to one 
unit and a hundred of hundredths is equivalent to one unit): fifteen tenths are equivalent to one unit 
and five tenths. A student notices “it only needs five”, allowing students to focus on five tenths. A 
brief exchange between the teacher and students points out that five tenths is equivalent to fifty 
hundredths. Other students seem to be confused about this unit-conversion, both in symbolic register 
of fractional notation and verbal register of numeration units. 

Student:  Five tenths are equivalent to fifty hundredths. We add fifty hundredths and get 
fifteen tenths. 

Teacher:  OK [she is writing 5
10

 = 50
100

 on the whiteboard] What do you think about it? Is that 
true?  

Student:  It is the same thing. Ten hundredths are equivalent to one tenth.  
Teacher:  Show me five tenths […]  
Teacher:  Good to you. How many hundredths in one tenth? […]  
Teacher:  OK. To make five tenths, we need fifty hundredths.  

Students have difficulties with unit-conversions involved in this task. This task relies on 
understanding relationship between tenths and hundredths (ten hundredths is one tenth). Such a 
relationship relies on relationship between tenths and units (hundredths and units) built in grouping 
way, that is, not in the way (partitioning way) they have been introduced. In that way, decimal 
numbers differ from whole numbers in regard to numeration units. For whole numbers, numeration 
units are necessarily introduced in grouping way and partitioning way and grouping units for 
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reunitizing (Baturo, 2000) can be seen as more evident for students. For decimal numbers, as 
numeration units (tenths, hundredths…) are introduced in a partitioning way, it is necessary to teach 
explicitly the grouping of such numeration units in order to allow treatments as reunitizing or units-
conversions inside this register. Students seem not to be able to (re)build it by themselves. 

Second classroom episode: unit-conversion and comparison of decimal numbers 
This second episode takes place in a class of grade 5: students have already been introduced to 
decimal notation and are used to work with it. In this episode (see the transcript and the Figure 1 
below), students have to place decimal numbers in ascending order. Decimal numbers are represented 
in the semiotic register of symbolic writing, using decimal notation. The teacher tries to lead students 
to justify how they compare decimal numbers. More precisely, she asks a student why he added zeroes 
ending “1,9” to compare this number to “1,589”. Such a strategy of “similar writing” can be seen as 
treatment inside the symbolic register of decimal notations. It is possible to justify this treatment by 
a discourse about unit-conversion in the verbal register of numeration unit: “nine tenths” is converted 
to “nine thousandth” because “one tenth is the same as a hundred of thousandths”. 

Student:  So for example here [E points the decimal notation 1,589 at the interactive 
whiteboard] it is not because there are more digits that it is greater than one comma 
nine. 

 
Figure 1: Compare decimal numbers  

 […]  because the tenths, it is what we are looking at first in order to know if it is less than. For 
example / Here we see [Student points the digit “5” of the decimal notation 
“1,589”] five tenths and here nine. 

Teacher:  How could you justify to someone who believes that five hundred eighty nine is 
greater than nine? Because five hundred eighty nine thousands is greater than… 

Student:  Nine is nine tenths. 
Teacher:  How could we see it? What could prove us it is the greater? 
Student:  We add two zeroes [by drawing with his finger at interactive whiteboard] if for nine 

we can put two zeroes / and then he will understand that nine is greater than one 
comma five hundred eighty nine [Another student: Yes I agree]. 

Teacher:  And what is it useful for? Putting these zeroes as he did? For example? 
Another student:  To do the same… the same numbers at each side/ to make easier the// 

During this episode, discursive register of numeration units seems to be used by a student to justify 
the comparison of “1,9” and “1,589” (nine tenths and five tenths). Nevertheless his mathematical 
explanation remains incomplete and related to place values. Then, the student is not able to justify 
why it is possible to put two ending “0” at the decimal notation “1,9” by using the unit-conversion 
from tenths to thousandths. After this classroom episode, most of the students have taken the action 
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of “adding zeroes” to decimal notations in order to achieve symbolic writings with similar numbers 
of digits. However, such a transformation of symbolic writings seems to be deprived of mathematical 
possible reasons. In order to specially focus on the use of unit-conversions, with the help of the 
researchers, the teacher designed a set of tasks, as follow. Such tasks make various symbolic and 
discursive semiotic registers appear: 

Exercise 1: Compare 45 tenths and 440 thousandths 

Exercise 2: Compare 2 + 34
100

 and 2,034 

Exercise 3: Compare 0,17 and 0,2 

Exercise 4: Compare 3 + 4
10

and 4 – 7
10

 

Exercise 5: Compare 5 + 37
100

 and 54
10

 

First, most of the students convert given representations of numbers to decimal notations (converting 
45 tenth to 4,5). The former session that was devoted to decimal notations and the fact that such tasks 
(with diverse representations of decimal numbers) may be unusual for French students highlight this 
point. Furthermore, some of treatments in symbolic register of decimal notations are invalid. For 
example, a group of students concludes that “2 + 34

100
” is equal to “2,034” after adding a “0” in front 

of the “3” of “2,34”. This confirms students’ difficulties in treatments related to comparison of 
numbers, in symbolic register of decimal notation. It also seems difficult for students to formulate 
justifications in the register of numeration units even if the teacher or the researchers try to seek 
explanations about their strategy of comparison. The transcript and Figure 2 below (related to 
interactions between a researcher and a small group of students) illustrate it is not so easy for students 
to explain why they can add an ending “0” at the decimal notation “5,4” to compare this number to 
“5,37”. At the end, students manage to formulate the unit-conversion in register of numeration units, 
saying that four tenth is the same as forty hundredths but it is tough to lead them to this point. 

Student 1:  The greater would be that one [by pointing 5,4 at the whiteboard].  
Student 2:  Because here, you add a zero [by adding a zero / writing 5,40 at the white board].  
Researcher:  But what does it mean that zero that you are adding?  
Student 1:  Actually, it is the hundredths. It is zero thousandth here and seven hundredths here. 
Student 2:  It is to get the same number of digits in the decimal part. 
Researcher:  Wait, I look at the end [...] when I hide that [the researcher hides the integer part 

and the comma] what do you do when you are adding a zero?  

 
Figure 2: Hide the integer part and the comma  

Student 1:  Then it makes forty and thirty seven. Actually we can’t add the thing [by pointing 
the zero].  

Student 2:  Yes you can as it doesn’t add anything. No…  
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Researcher:  But why does it add nothing?  
Student 2:  So it is zero. It is… ha [...] because it is as if it was zero hundredth more [...] 
Student 1:  But it doesn’t mean anything at all, zero hundredth more! [...] 
Researcher:  You see. If I want to explain to a friend why I am allowed to add a zero.  
Student 1:  The zero it does not add anything.  
Researcher:  Yes but what can I say? The zero that adds nothing, you agree that it is not so, as 

you earlier explained it.  
Student 1:  Yes! Because the four is the same as forty hundredths [Researcher: The four what?]. 
Student 1:  Four tenths is the same as forty hundredths [Researcher: And why?].  
Student 1:  Because... ten hundredths, it makes one, one tenth.  

Third classroom episode: numeration units and measurement units 
This third episode takes place in grade 4: students have to build relations between decimal fractional 
notation and decimal notation. The teacher has introduced a mixed numeration place value and length 
measurements chart. The columns of this chart are fixed and related to numeration units (hundreds, 
tens, units, tenths and hundreds) and the units of length measurement (decimeters, centimeters and 
millimeters) move inside these columns. For example, the centimeters can be fixed in the unit column 
if a length measurement is given in centimeters or in the tenths columns if the measurement is given 
in decimeters. This mixed chart has already been used by students to convert given decimal notations 
of length measurements (as for example “18,2 cm”) to length measurements units values (as for 
example “1 dm – 8 cm – 2 mm”) and vice versa. During this classroom episode, students use the chart 
to convert sums of decimal fractions (corresponding to length measurements) to decimal notations. 
This trajectory is not so easy: under this innovative scenario, the conversion of fractional notations to 
decimal notations has not been taught before. First students convert “3 + 5

10
 cm” to “3,5 cm”. The 

transcript and Figure 3 illustrate how the mixed chart numeration place value and length 
measurements is then used by students to convert the sum “1 + 2

10
 + 8

100
  dm” to “1,28 dm”.  

                  
Figure 3: mixed numeration place value and length measurements chart 

Teacher:  You can indicate here, measurement units, one is. 
Student:  It is decimeters.  
Teacher:  One is decimeters [Student is adding “DM” over the “1” in the column of units of 

the place value chart]. Two you told me. Two tenths of decimeters. It is [Student: 
Centimeters] Centimeters [Student is adding “CM” over the “2” in the column of 
tenths of the place value chart]. And hundredths remain. 

Student:  Millimeters [Student is adding “MM” over the “8” in the column of hundredths of 
the place value chart]. 
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Teacher:  I agree. So we would have on centimeter, one decimeter, plus two tenths of 
decimeters, it is the same as two centimeters, plus eight hundredth of decimeters. 
OK and where is comma, yes, just after units […] thus it would make one? 

Student:  One comma twenty eight […] Centimeters. 

Such an innovative scenario of decimal notations teaching reveals that the role of the comma “,” in 
symbolic registers of decimal notations as numbers or as length measurements may be different. In 
the case of measurement units, the comma of a decimal notation indicates the measurement unit that 
is the point of reference. This reference can change (being centimeters or decimeters, etc.). The 
mobile place of measurement units in the columns of the place value chart highlights this property. 
At the opposite, in the case of numbers and numeration the comma always refers to the “same” 
numeration unit, the unit. It is the positional mark of the place of the unit and then, of the other 
numeration units (as hundreds, tens, tenths, hundredths, etc.) in decimal notations. So if numeration 
and measurements units have similarities, they also have differences that it is important to consider. 

Conclusion and discussion 
Our work unravels the conditions under which results obtained regarding the register of numeration 
units on whole numbers (Chambris, 2015; Houdement & Tempier, 2015; Van de Walle, 2010) can 
be extended to decimal numbers. First, the semiotic register of numeration units is linked to the earlier 
introduction of decimal fractions defined as parts of a whole unit. However, unit-conversions in this 
register remain difficult. Such treatments inside this register rely on a deep conceptual understanding 
of relationship between unit, tenths, hundredths... To allow unit-conversions and reunitizing (Baturo, 
2000), a more explicit teaching of grouping meaning is needed, especially in the case of reunitizing 
– these numeration units being built in a sharing meaning in French curriculum. Second, it seems 
difficult for students to associate the numeration units with the decimal notation. Once this symbolic 
representation has been introduced, it is commonly verbalized as a couple of integers. For example, 
the decimal notation “2,58” is mostly verbalized as “two comma fifty eight” and not “two units and 
fifty eight tenths” by students. Then, the support of the discursive register of numeration units is 
difficult to make appear in order to justify strategies of decimal numbers comparison. The 
verbalization of “writing gestures” related to transformations of decimal notations takes precedence 
in students’ discourse. Those “writing gestures” are also deprived of justifications and coming back 
to unit-conversions is not so easy. It seems to be important that discursive register remains in use and 
that they are not replaced by a verbalization of decimal notation with couples of integers. From this 
point of view, conversions between symbolic register of decimal notation and register of numeration 
units must be reinforced in technique justification (comparison, calculus…). Third, even if it is 
possible to think about closer ties between symbolic registers of decimal notations as numbers and as 
length measurements, we have to be careful with the asymmetric role played by comma for either, or 
both these two registers. New perspectives to bring measurements units and numeration units closer 
in the teaching of decimal numbers can be outlined: with the design of specific tasks particularly 
related to the use of an unusual numeration place value chart mixing the use of numeration units and 
the units of length measurement.  
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In this paper, we present an analysis of four teaching materials of grades 2 and 3, which are widely 
used in Germany. We analyzed the tasks in these textbooks and workbooks with a focus on developing 
and consolidating the operational understanding of multiplication. For this purpose, we present a 
framework developed by us. Its foundations are the levels of representation according to Bruner and 
the fact that mathematical terms are concepts. The analysis shows a homogeneous picture across all 
four textbooks and workbooks: Already in class 2, the vast majority of tasks require working on the 
non-verbal–symbolic level alone. Only a small part of the tasks promotes connections to the iconic, 
to the enactive or to the verbal-symbolic level and challenges students to intermodal translations 
from one level of representation to another. In grade 3, compared to grade 2, an even larger 
proportion of tasks are limited to the non-verbal–symbolic level. 

Keywords: Elementary school mathematics, multiplication, textbook analysis. 

Context of the study. 
Multiplication is a core content of teaching mathematics in primary school. The learning objectives 
in regard to multiplication are that students firstly should acquire a conceptual understanding of the 
operation multiplication, secondly, should be able to solve any task using different strategies and 
finally they should be able to retrieve more and more basic multiplication facts directly from memory 
(e.g., Kling & Bay-Williams, 2015; CCSSI, 2010 p. 23; KMK, 2004, p. 9). 

There seems to be an international consensus nowadays that students should both acquire a sound 
conceptual understanding of multiplication and eventually solve all basic tasks accurately and 
effortlessly (Gaidoschik, 2017, p. 2). 

However, three problems can very often be observed up to the secondary school level. First, there 
are deficits in the mastery of the basic facts1, i.e. in their retrieval as fact knowledge. Often students 
have forgotten basic multiplication facts they have once memorized and are unable to reconstruct this 
knowledge. This can be seen, for example, if they are unable to reduce fractions in secondary school 
because they cannot identify common factors. 

Second, while students are often able to reproduce the basic task equations from memory, they are 
unable to solve multiplication tasks with a factor greater than 10. 

Third, we repeatedly observe difficulties with the conceptual understanding of multiplication: 
students know that 5 × 4 = 20, but they are unable to justify this because they do not know the 
meaning of this term. Often, they just argue that 5 × 4 is a shortened notation for the addition task 
4 + 4 + 4 + 4 + 4. 

                                                 
1 Basic fact means in this paper an equation of multiplication in which both factors are less than 10 or equal 10. 
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All three problems have the same reason: A lack of the conceptual understanding of multiplication. 
In light of these observations, it is necessary to investigate the causes and to provide information to 
improve the teaching and its results. We are sure that no teacher works with the intention of bad 
results. There are obviously factors with a negative influence on teaching and its results. Such a factor 
is, for example, practicing with spontaneously chosen tasks, in which subjectively important, 
especially familiar or widespread tasks dominate, and the exercise then does not meet the need. In 
our opinion, teachers are obviously not aware of the negative influence of such factors. 

Undoubtedly, the success of teaching depends on the selection of tasks and the way teachers work 
with them (cf. Fanghänel, 2000). One essential source of such tasks is the teaching material2. 
Therefore, the impact of teaching materials such as textbooks and workbooks is given. That is why 
we investigated four teaching materials of grades 2 and 3 which are widely used in Germany. The 
objective of our analysis is the suitability of the tasks contained in the materials in regard to promote 
understanding of the operation multiplication. 

About the matter: Understanding multiplication. 
Terms like 3 × 4 or 6 × 8 are non-verbal–symbolic representations of concepts. They are mental 
reflections of objective reality and describe classes of situations. In this sense, the product m × n can 
be represented both by the union of m equal and pairwise disjunctive sets with the cardinality n or by 
a combinatorial representation:  

Def.: If a, b Î N and a = |A|, b = |B|, than is a × b = |A × B| the product of a and b3. 

Def.: If a, b Î N and |B1| = |B2| = |B3| = … = |Ba| = b and  " i, k mit i ≠ k: Bi Ç Bk = Æ, 
than is a × b = | B1 È B2 È B3 È … È Ba | the product of a and b. 

Both possibilities of representation can be spatial-simultaneous as well as temporal-successive. 

This is consistent with the findings of Anghileri and Johnson (1992). They identify six key aspects of 
multiplication (and division): equal grouping, allocation/rate, number line, array, scale factor, 
Cartesian product. Regarding the so-called “axiomatic” definition of multiplication as a repeated 
addition, Park and Nunes (2001, p. 771) emphasize “that the origin of children’s understanding of 
multiplicative relations is in their schema of one-to-many correspondence.” and that the „repeated 
addition is only a procedure for solving multiplication problems, not its conceptual basis” (ibid.).  

Content-related understanding of a concept means to be able to identify, realize and systematize it. 
When identifying a term like 3 × 4, an appropriate example is found in an enactive, an iconic, or a 
verbal-symbolic representation. Realizing a term such as 3 × 4 means to create an enactive 
representation (e.g., an action), an iconic representation (e.g., a picture) or a verbal-symbolic 
representation (e.g., a suitable story, a word problem), which is consistent with this term. This is 
illustrated in Figure 1. When students systemize terms, they find relationships between two terms. 

                                                 
2 The terms “teaching material“ and “program” mean in this paper the unity of textbook and workbook. 

3 |M| means the cardinality of the set M. 
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This can be referenced with an 
enactive or an iconic 
representation. Often this 
relationship is created without 
any references only on the non-
verbal–symbolic level. 

The importance of the 
conceptual understanding of the 
operation multiplication consists 
on the one hand in the fact that 
students can apply this 
knowledge to describe reality, 

e.g., to solve word problems. On the other hand, it enables students to solve every multiplication task, 
especially those with factors greater than 10, by drawing e.g., dots and skip counting, laying e.g., 
cubes and skip counting and deriving answers using reasoning strategies based on known facts. 
(Baroody, 2006, Kling & Bay-Williams, 2015). 

Mastery of the basic facts of multiplication must be distinguished from fluently multiplying: Fluently 
multiplying means to solve tasks using strategies, properties of the operation, means determine the 
value of a term by calculating at skill level (Kling & Bay-Williams, 2015, p. 550). Mastery of all the 
basic tasks of multiplication means to be able to retrieve from memory all products of two one-digit 
numbers. In our opinion, mastery is indispensable at the latest in middle of grade 3 because then this 
knowledge is needed as a tool for solving tasks with factors greater than 10.  

Even if the final goal here is to retrieve the facts from memory, the ability to solve the basic tasks of 
multiplication is the basis for this and must consequently be secured before memorizing the basic 
tasks of multiplication. Only if students have a conceptual understanding of the operation 
multiplication and are able to determine the value of the terms, they can reconstruct forgotten basic 
facts. The reconstruction of forgotten facts can be done by using connections to other facts, e.g., by 
using properties of multiplication, by activities with manipulatives or by using mental representations. 

Framework for the classification of tasks for the consolidation of arithmetic 
operations. 
Because a suitable work with tasks in the sense of Fanghänel (cf. 2000) is essential for the quality of 
teaching and its results, we examined this work with tasks and the selection of tasks in more detail. 
The choice of tasks undoubtedly depends on the range of tasks offered by published programs 
(textbooks, workbooks etc.). To assess this offer of tasks, we analyzed four widely used programs4. 
We decided to analyse textbooks and workbooks for both grade 2 and grade 3 because teachers 

                                                 
4 There were the programs „Fredo Mathematik“ and Super M (both Cornelsen Schulbuchverlag) as well as „Denken 

und Rechnen“ and „Welt der Zahl“ (both Bildungshaus Schulbuchverlage). 

Figure 1: Levels of representation according Bruner (1964) 
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usually use these materials anyway. Supplementary materials such as software or online resources 
were therefore not analyzed.  

Many frameworks exist for analyzing textbooks regarding different aspects. A short overview gives 
for example O’Keeffe (2013). A specific framework which focusses the appropriation of arithmetic 
operations and takes in consideration that terms like 3 × 4 are concepts was not available until now. 
We developed the following framework to classify tasks for the appropriation of multiplication. It is 
generally usable for all arithmetic operations. This framework is not limited to analyzing printed 
materials. It can also be used to analyze educational software etc. The understanding of the operation 
multiplication must be promoted. Therefore, we were looking for tasks which emphasize the 
identification, realization, and systematization of concepts, e.g., of terms. In ggrades 2 and 3, 
mastering the basic number sentences by memory should be supported. Finally, we determined the 
number of tasks which aim to determine the value of the term. So, we classified the tasks in the 
programs as follows: 

ICE: Tasks for the Identification of the Concept starting from the Enactive level of representation. 
These are tasks such as ‘Place five times three cubes and write a matching task.’ (The word ‘task’ 
here means a term in the mathematical sense of the word.) 

ICI: Tasks for the Identification of the Concept starting from the Iconic level of representation. 
In these tasks, a picture is given and the students should give a task that matches the picture. (The 
word ‘task’ here means a term in the mathematical sense of the word.) 

ICV: Tasks for the Identification of the Concept starting from the Verbal–symbolic level of 
representation. These are tasks such as ‘Three rows of five knights each come out of the castle. 
Write a suitable task’ or ‘Clown August has five trousers and three jackets. How many different 
possibilities does he have to be dressed?’ 

RCE: Tasks for the Realization of Concepts to the Enactive level of representation. These are 
tasks such as ‘Lay with cubes matching 4 × 3’. 

RCI: Tasks for the Realization of Concepts to the Iconic representation level. These are tasks such 
as ‘Draw a picture matching 4 × 3’. 

RCV: Tasks for the Realization of Concepts to the Verbal–symbolic level of representation. These 
are tasks like ‘Write a story matching 4 × 3.’ 

SCE: Tasks for Systematizing Concepts with reference to the Enactive representation level. These 
are tasks such as ‘How do you go from 5 × 4 to 6 × 4? Lay with cubes and explain’. 

SCI: Tasks for Systematizing Concepts with reference to the Iconic representation level. These 
are tasks such as ‘How do you go from 5 × 4 to 6 × 4? Draw and explain’. 

SCW: Tasks for Systematizing Concepts Without reference to the enactive or to the iconic level 
of representation. Such tasks are, for example, ‘You know 10 × 8. How can you then calculate 
9 × 8?’ Tasks like those shown below are also tasks for systematization without a reference to the 
enactive or to the iconic level of representation: 
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1 0 × 7 =    5 × 8 =    2 × 3 =    5 × 7 =   
 1 × 7 =    2 × 8 =    4 × 3 =    7 × 5 =   
 9 × 7 =    7 × 8 =    8 × 3 =          

VT: All tasks where the Value of a Term must be determined without any reference. 

Our framework offers the possibility to validly classify all tasks in teaching materials, as we 
implemented all possible forms of representation as well as all steps of the process of learning 
concepts, as described above. 

We are well aware that the determination of term values is indispensable in math lessons. Similarly, 
it is essential to establish relations between equations without always referring them in enactive or 
iconic mode. Mastering both requirements - determining the value of a term and establishing the 
connection between two terms - at skill level is crucial for successful work in the next grades. We use 
the term skill level as described in the IDMT assessment framework (cf. Brendefur et al., 2016, pp. 
177). Nevertheless, these skills can only be used meaningfully if students can represent non-verbal–
symbolic expressions at the enactive or the iconic level. The present study, therefore, focuses on those 
tasks that challenge students to an intermodal translation between the levels of representation. 

Findings. 
The findings of our analysis are presented in more detail in table 1 below: 

 program 1 program 2 program 3 program 4 
grade 2 grade 3 grade 2 grade 3 grade 2 grade 3 grade 2 grade 3 

tasks 1368 368 1421 585 1147 430 1499 731 
1 ICE 57 0 0 0 21 3 9 4 
2 ICI 175 21 164 0 104 3 175 8 
3 ICV 31 3 35 30 94 10 51 12 
4 RCE 5 0 0 0 16 10 6 0 
5 RCI 62 3 181 0 20 0 54 0 
6 RCV 0 0 0 0 7 1 3 10 
7 SCE 0 0 0 0 0 0 0 0 
8 SCI 0 0 0 0 3 0 0 0 
sum (l-8) 330 27 380 30 265 27 298 34 

ratio 24.1% 7.3% 26.7% 5.1% 23.1% 6.3% 19.9% 4.7% 
9 SCW 279 66 82 58 212 57 318 128 

10 VT 759 275 959 497 670 346 883 569 
(9) + (10) 1038 341 1041 555 882 403 1201 697 

ratio 75.9% 92.7% 73.3% 94.9% 76.9% 93.7% 80.1% 95.3% 

Table 1: Tasks of multiplication offered in four different programs (textbooks and workbooks) 

Table 1 shows the results of our analysis. It shows that the offer of tasks across all four analyzed 
programs is approximately equal, one-sided and qualitatively unsatisfactory. 

Findings of our analysis of second grade programs. 

The result of our analysis shows that tasks requiring translations between the levels of representation 
are significantly under-represented in all four programs. The only tasks to be found are those in which 
the students are challenged to draw a matching picture for a given term (RCI). Not every program 
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contains tasks that require the students to lay or build something with material suitable to a given 
term (RCE). In three of the programs, there are 5, 16, and 6 tasks. The total number of these tasks is 
far too small. 

Tasks that challenge students to represent a term verbal-symbolically (RCV) are extremely rare. Only 
two of the programs offer such tasks at all and this only seven respectively three times. This finding 
explains the well-known shortcomings of the students in solving word problems. 

The four programs contained 0, 0, 3, 0 tasks for systematization with reference at the iconic level. 
Not one of the four programs meets our expectations. The systematization of the basic number 
sentences on a purely non-verbal–symbolic level plays a major role in all four programs: 279, 82, 212 
and 318 tasks are represented here. The tasks of systematization on a purely non-verbal–symbolic 
level are wrapped in different manners. According to the mathematical core, they are tasks like the 
ones shown below. 

3 × 8 = 24 Þ 6 × 8 = 48 (doubling), 
5 × 8 + 1 × 8 = 6 × 8 or 10 × 7 – 1 × 7 = 9 × 7 (so-called neighbourhood tasks), 
5 × 8 = 8 × 5 (so-called commutativity tasks). 

Such tasks are undoubtedly essential and indispensable. In solving these tasks, however, the students 
do not have to think about the meaning of the operation. They can undoubtedly use these tasks to 
acquire networked knowledge, the meaning of which they do not necessarily have to grasp: New 
equations are developed from equations. For quite a few students, this is exactly the picture of 
mathematics lessons: lessons in which new strings are created from existing strings. Hence it is not 
surprising that some students consider multiplication as a trick of mathematicians to shorten long 
equations of addition. 

Findings of our analysis of third grade programs. 

First of all, it is apparent that the range of tasks offered for multiplication in third grade is considerably 
less than in second grade: In total there are 368, 585, 430, and 731 tasks for multiplication. This is 
not even half of the amount that is offered in second grade. The rate of tasks that promote the 
understanding of the content of the operation by establishing references to the enactive, iconic or 
verbal–symbolic level drops markedly: the four programs contain only 27 (7.3%), 30 (5.1%), 27 
(6.3%) and 34 (4.7%) of such tasks. Tasks that support an active construction of meaning are thus 
almost completely missing. 

The emphasis is on the determination of term values. With regard to networked memorization, it 
should be noted that, as in second grade, the systematization of equations is always carried out only 
at the non-verbal–symbolic level. Tasks that promote the development of memorizing techniques, 
thematize such techniques, etc. are in fact not included: In all four programs there are altogether only 
4 (!) such tasks. 

Discussion. 
The operation multiplication is acquired in grade 2. Here, the focus is first of all on the conceptual 
understanding of multiplication. This is usually developed on the basis of contexts. Therefore, it is to 
be expected that the programs of this grade will offer a qualitatively and quantitatively wide range of 
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tasks with reference to the enactive or iconic level, to ensure the understanding of the meaning of the 
operation. We expected, that also the grade 3 programs would contain a variety of tasks to systematize 
and to consolidate the meaning of the operation. We hoped to find a lot of tasks for identification, 
realization or systematization with reference to the enactive or iconic level.  

Accordingly, there are – as expected – in grade 2 many tasks in all the programs in which students 
have to identify a suitable term, particularly to pictures and – more rarely – to actions.  

Because the cognitive process that takes place in mathematics lessons only finds a preliminary, 
relative completion when applying the acquired knowledge, we expected to see many tasks in which 
the students have to realize the term. We expected that students would be challenged to draw a picture 
that represents a term, to represent the term using manipulatives or to tell a story fitting the term. The 
evaluation of the four programs in grade 2 shows that in the programs are only 67 (5%), 181 (12%), 
43 (4%), and 63(4%) such tasks and that the tasks are mostly from the type ICI. 

The range of tasks that support a conceptual understanding is insufficient in both grades, while the 
dominance of tasks which aim determining the value of a term is remarkable.  It starts in second grade 
and dominates in third grade. In each of the investigated programs, the teacher must use additional 
tasks that she/he chooses from other sources or that she/he independently develops. 

Right from the development of the first basic facts onwards, it makes sense to network these and build 
up connected, systematic knowledge. Therefore, we expected already in second grade many tasks that 
promote the systematization of the basic number sentences with reference to images (iconic level - 
SCE) or actions (enactive level - SCI). The analysis of the programs shows that such systematization, 
in fact, did not take place. Not one of the four programs contained a task with a suggestion for 
systematization with an enactive reference. 

If the teacher does not supplement the range of tasks offered by the programs, the students have too 
little opportunity to grasp the meaning of multiplication and to consolidate this knowledge. 

The analysis of the grade 3 programs shows that if a child in grade 2 has not understood the meaning 
of the operation multiplication, the materials in grade 3 hardly offer any chance for building up this 
understanding. 

Based on our findings we cannot draw conclusions regarding classroom practice. But, we can assume 
that the examined materials are a basis for learning multiplication in math classrooms. The teacher 
always can compensate deficits of the materials. Therefore, further research is needed, especially the 
teachers’ choice of tasks has to be analyzed. 
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Considerations on developmental stage models, learning trajectories 
and maybe better ways to guide early arithmetic instruction 

Michael Gaidoschik 

Free University of Bozen – Bolzano, Italy, michael.gaidoschik@unibz.it 

Current learning trajectories and stage models of arithmetic development advocate the elaboration 
of counting on as an intermediate computation strategy. At the same time, there is empirical evidence 
that a considerable share of children fail to overcome this procedural approach to addition and 
subtraction, with damaging effects to their further mathematical thinking. This theoretical essay 
argues that it is fundamentally faulty to justify instructional measures by stage models that claim to 
capture a development without considering that its stages themselves reflect the conditions of 
children’s learning, inter alia: the very instructional measures. As an alternative, the paper uses 
structure-genetic didactical analysis to delineate a teaching design that derives addition and 
subtraction out of part-whole thinking from the very beginning, rendering counting on superfluous.  

Keywords: Early arithmetic instruction, counting on, computation without counting, part-whole 
thinking, derived facts strategies. 

Preliminary remarks  
In this paper, “early arithmetic instruction” refers to contents and aims that are constitutive for first 
grade primary school in German speaking countries. Thus, I write about 6–7-year-old children who, 
as a rule, have attended kindergarten before; but to what extent and in which ways they have already 
received targeted mathematic education, will differ considerably – within and between German 
speaking countries – due to different educational plans and levels of specific competences of 
kindergarten staff. To enable colleagues from other nations to compare with their respective 
educational systems, I shortly outline just three important areas of goals for first grade arithmetic 
instruction that (besides others) seem to be widely accepted in the pertinent German literature (cf. 
Gaidoschik, 2010, pp. 207–232, for details): 

First, building upon the rather heterogeneous competences they have thereto already acquired, 
children should (further) develop and consolidate their knowledge about natural numbers. This starts 
from being able to count forward and backward fluently and to establish quantities by counting, and 
should reach the comprehension of numbers as being composed of other numbers at least up to 10, if 
not 20 (part-whole concept of numbers, cf., e.g., Schipper, Ebeling, & Dröge, 2015). 

Second, and connected with the former, children should understand addition and subtraction as two 
arithmetic operations inverse to each other, and learn how to add and subtract fluently within the 
number range up to 20. More precisely: up to 20, they should learn how to compute without counting 
already within year one (cf., e.g., Schipper et al., 2015; Häsel-Weide & Nührenbörger, 2013). 

Third, together with all this, they should (further) develop a positive attitude towards mathematics as 
a worthwhile activity for which it is constitutive to deal with problems which include detecting, 
exploring, carrying forward, communicating and arguing about patterns and structures, not only but 
also in the field of natural numbers (cf., e.g., Krauthausen, 2018). 
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As far as my knowledge of international mathematics education reaches, these goals are widely 
accepted in other nations as well, even if institutional frameworks and time expectations may be quite 
different. Therefore, for some nations, the following considerations might count for children slightly 
younger or older than those who attend first grade in German speaking countries; but they should 
count for them at some time of their educational career, if they are of any relevance at all. 

Some critical notes on current stage models and learning trajectories  
Shortcomings of “developmental stage models” that disregard instructional influences 

Within the German speaking literature, in the last decade two competing, quite similar stage models 
of arithmetic development have been widely noted, both developed by psychologists (Krajewski & 
Schneider, 2009; Fritz & Ricken, 2008). Fritz, Ehlert and Leutner (2018) recently claimed to have 
validated the latter by longitudinally testing children between 9 months before and 8 months after 
school-entry. Now this is not the place to discuss these models in detail (see Gaidoschik, 2010, for a 
critique on a former version of Fritz & Ricken, 2008). This paper is about the question whether and 
in what way stage models of that kind can be helpful for mathematics educators and pedagogues in 
supporting children to learn arithmetic. In this vein, I outline in the following the construction of Fritz 
and Ricken (2008) as a paradigmatic example of a certain approach to mathematical learning. 

The model in question encompasses six “levels” that its authors do not want to be interpreted as 
following strictly distinctly one after the other, but rather in the sense of “overlapping waves”, a 
metaphor also used by Siegler for his models of strategy development (cf. Siegler & Alibali, 2005). 
According to Fritz et al. (2018), children, on Level 1, would learn how to establish quantities precisely 
by counting within a certain number range. On that same level, they would be able to subitize small 
quantities. Only on Level 2 would children relate numbers to each other by ordering them on a 
“mental number line”. Building upon this, they now would be able to solve additions and subtractions 
by “counting all”. “Counting on”, however, would be characteristic for Level 3. Fritz et al. (2018, p. 
15) state that only on that stage children would grasp cardinality and the irrelevance of order principle. 
Cardinal understanding would include knowing that numbers can be composed of and decomposed 
into other numbers. On Level 3, however, this understanding would be restricted to situations where 
children use manipulatives, whereas on Level 4 they would “transfer” this concept on a “symbolic-
algebraic level” (Fritz et al., 2018, p. 16). However, this would not encompass the understanding of 
“relationality”. Only on Level 5, children would use numbers to state precisely the difference between 
two numbers. This, together with Level 6 (bundling and unbundling), would form an indispensable 
precondition for understanding multiplication, division, and place value (Fritz et al., 2018, p. 17). 

Fritz et al. finish their publication with “didactic implications” that remain on a rather general level, 
yet demand that school instruction should follow the “hierarchy of arithmetic concepts” as described 
by the model. As children would go through that hierarchy at different pace, this would include the 
need of differentiating within a class (Fritz et al., 2018, pp. 35–37). 

The mathematics education community will certainly acknowledge the latter. However, before taking 
a closer look at how to apply such a model, let us reflect upon its epistemological status. What does 
it really tell us about children’s thinking? Fritz et al. (2018) claim to capture a development within a 
certain time span. They describe single stages referring to children’s performance in certain tasks, 
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and interpret what children might be able or not to conceptualize on that level. From the mathematics 
education point of view, at least some of their interpretations lack clearness and coherence. For 
instance, the model is rather vague about what might distinguish the number concept of a child on 
Level 3 from that on Level 4, as well as on Level 4 and 5. It seems to be that the authors are more 
interested in differentiating levels of test performance than really of arithmetical concepts.  

What is more fundamental is the model’s lack of consideration of the fact that children develop their 
ideas while constantly dealing with inputs coming from adults as well as from other children. As for 
counting on, which constitutes Level 3 of the model in question: There is ample evidence that in many 
countries pedagogues in kindergarten and primary school, and presumably parents as well, encourage 
children and in fact show them how to solve addition problems by counting on instead of counting all 
(cf. Gaidoschik, 2019). They certainly do so because they think this to be conducive. I will gather 
some evidence that casts doubt on this assumption in the following paragraph. What has to be stated 
at this point, is a fundamental theoretical shortcoming of any model of learning development that 
disregards the possibility that what the model claims to be “normal” or even “necessary” within the 
presumed “nature of children” might rather be the consequence of circumstances that are man-made. 

Counting on: A “natural” stage that still needs to be pushed by learning trajectories? 

There is a logical inconsistency in this shortcoming that becomes even more apparent in the case of 
“The Learning Trajectories Approach” (Clements & Sarama, 2009) or stage models that are directly 
formulated to guide teacher’s actions, such as the “Mathematics programme of study” (UK 
Department of Education, 2013) or the “Number framework” (New Zealand Ministry of Education, 
NZME, 2008, 2012). All three guidelines stress that eventually children should learn to add and 
subtract fluently without counting. The “Number framework” is especially clear in that point: 

It is important for you to recognise that part-whole thinking is seen as fundamentally more complex 
and useful than counting strategies. One reason is that counting methods are strictly limited, 
whereas part-whole methods are more powerful. Counting strategies are an inadequate foundation 
for these ideas, and this means that for counters, many advanced number ideas are inaccessible. 
Therefore, your major objective is to assist students to understand and use part-whole thinking as 
soon as possible. (NZME, 2008, p. 7) 

Nevertheless, all three guidelines recommend that teachers actively work out counting on as a short-
cut strategy for addition, and analogue counting strategies for subtraction with their classes. Thus, if 
a teacher who follows the “Number framework” notices a child to add by counting all using materials 
(Stage 2), s/he should work with that child so that it first reaches Stage 3 (“Counting from One by 
Imaging”) and then Stage 4 (“Advanced Counting”). For that purpose, the teacher should orchestrate 
activities so that children learn to put “the bigger number first” and count on when confronted with 
an addition problem (NZME, 2012, p. 36). Only after having reached that stage, the teacher should 
guide children further to Stage 5 where they should “develop the idea” that “addition and subtraction 
problems can be solved by part-whole strategies instead of counting” (NZME, 2012, p. 37).  

I did not find an explicit justification for this recommendation in the pertinent publications I reviewed, 
but it seems to be that the authors deem it indispensable to intentionally guide children from one stage 
to the next and not skip a single of these stages as defined by the underlying stage model.  
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Thus, these models extract stages of “development” from the evidence that many children progress 
from counting all over counting on to finally computing without counting. Nota bene: Many children 
progress in that way; yet, a considerable number stick to counting strategies in higher grades (Cowan 
et al., 2011; Hopkins & Bayliss, 2017), and doing so forms an essential part of learning difficulties 
(Gaidoschik, 2019). Then, there is evidence that the share of children who finally quit counting on 
strongly relates to instruction. In nations with a tradition of not encouraging children to count on, but 
rather use derived facts strategies already at an early stage, this share seems to be much higher (Geary, 
Bow-Thomas, Fan, & Siegler, 1996). Intervention and field studies indicate that putting the focus of 
early instruction on derived facts strategies instead of counting on, will reduce the number of children 
who cling to counting for computing (e.g., Steinberg, 1985; Gaidoschik, Fellmann, Guggenbichler, 
& Thomas, 2017). Notwithstanding all this, the cited models postulate a quasi-natural progression: 

“Children follow natural development progressions in learning and development. As a simple 
example, they learn to crawl, then walk, then run […] They follow natural developmental 
progressions in learning math, too […].” (Clements & Sarama, 2009, p. 2) 

Thus, on the one hand, the authors regard counting on as part of a “natural development”. On the 
other hand, they take their model as a justification to instruct children how to count on. However, 
doing so is a didactic decision, and by no way “natural” nor necessary, as I will argue in the following. 
Presumably, the authors would deny intervening in this way in a supposedly inevitable process to be 
logically inconsistent and put forward their endeavor to “promote children’s growth” (Clements & 
Sarama, 2009, p. 5), so that what is “natural” may move forward without avoidable impediments. 
Yet, as stated above, research indicates that in fact it may impede children when teachers quite 
artificially guide them to count on for addition and subtraction problems (Gaidoschik, 2019). 

An alternative approach: Structure-genetic didactical analysis  
Whereas learning trajectories and stage models suggest teachers stick to what is supposedly inherent 
in the “nature” of children, Wittmann’s (2015) “structure-genetic didactical analysis” advises 
instruction to follow the “nature of mathematics”. Of course, Wittmann not at all advocates 
disregarding what empirical research indicates about the ways children learn mathematics, the 
difficulties they meet, and the misunderstandings that may arise based on their “prerequisite 
knowledge” as well as on what happens in the classroom. He explicitly rejects the ‘“broadcast’ 
method of transmitting knowledge from the teacher to the student” that he ascribes to “the traditional 
‘subject matter mathematics’” dominant in German mathematics education for a long time 
(Wittmann, 2015, p. 17). Therefore, his idea is not that we would only need to unfold the logic of any 
subject matter to children in order to secure they grasp it step by step. Still he insists that what a 
subject matter “is about and how it should be introduced in the classroom, cannot be decided by 
means of empirical methods imported from psychology, but should be based on a sound mathematical 
and epistemological analysis” (Wittmann, 2015, p. 7). 

In the following, I will try to delineate in brief what, in my understanding, such an analysis would 
imply for the subject matter in focus of this paper, i.e. the introduction of addition and subtraction. In 
doing so, I take into account the pertinent empirical research, but without considering immutable 
what might rather be consequence of a certain type of instruction that we could at least try to change. 
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Deriving addition and subtraction out of part-whole thinking: A sketch 

“Emerging from the [mathematical] subject” (Wittmann, 2015, p. 6), addition and subtraction are 
inverse operations, with the laws of commutativity and associativity being central for addition. 
Applying these laws allows for powerful computation strategies. Subject matter analysis as well as 
empirical evidence indicate that in order to grasp these concepts, it is crucial to think numbers as 
composed of numbers. Young children encounter numbers in many ways, but counting is dominant 
in the first years. For a child who uses numbers primarily to count quantities, numerical part-whole 
relations are not at all obvious; rather, the child might take any number as a single entity, so that e.g. 
six is conceptualized as being before seven, rather than being a part of it (cf. Gaidoschik, 2010).  

Therefore, if early arithmetic instruction strives to help children acquire a solid fundament of addition 
and subtraction, it seems sensible first to focus on activities that foster part-whole understanding of 
numbers. Only on that basis, we can and should convey addition and subtraction as two ways of 
operating with parts and wholes that supplement each other. Following that order, which is of course 
not dictated by stage models, but advocated by subject matter analysis, we have a good chance to 
render computation by counting superfluous from the very beginning (Gaidoschik, 2019).  

In more detail: In order to be able to explore and internalize part-whole relations, when quantities 
exceed subitizing (see below), a child needs to know how to determine the number of the quantity by 
counting. Therefore, one main-topic (A) of early arithmetic activities certainly should be counting as 
a means to establish precisely how many of whatever you have. This includes the targeted working 
out of the “counting principles” described by Gelman and Gallistel (1978). Any first-year classroom 
or group of kindergarteners will be quite heterogeneous in that respect. As a basis for the steps to 
follow, all children should at least consolidate counting skills and knowledge up to 10, the basis of 
our number system; most children will exceed that number by far, so there is a need for differentiation.  

At the same time (B), it is important to build upon what children, partly independently from their 
counting competences (cf. Fritz et al., 2018), have already acquired in the field of subitizing of 
quantities up to four and perceptual subitizing of bigger quantities structured in a way that allows for 
establishing their number without counting (cf. Clements & Sarama, 2009). This could start with 
numbers up to five (number of fingers on a hand) or six (maximum of dots on one side of a die). Yet, 
we would gain little for the following if a child identifies these quantities with a glance but without 
noticing them as composed (four as two and two or three and one, five as four and one or three and 
two, etc.). Thus, activities should focus on the structured perception of these quantities. Schultz and 
Gerster (2017) delineate how this could form the starting point of targeted elaboration of part-whole 
thinking: We may request children to construe operations of joining, separating, missing addend etc. 
as just different interpretations of dot structures, for example, “I see five dots altogether. If I take 
away the outer four, the central one will remain.” We may then encourage the children to transfer 
these nuclei of number knowledge to real-world situations: “I’ve got one Euro. If mummy gives me 
four more, I will have five.” Note that the intention of such early activities is not that children solve 
these problems by counting, but by referring to the part-whole interpretation of structured dots, first 
supported by seeing the dots, then by knowingly imagining their structures (Schultz & Gerster, 2017).  
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A third “construction site” (C) of early activities, once again building upon the rather diverse 
competences that children will already have acquired in that field, is comparing quantities and 
numbers. As a precondition for further arithmetic, children should learn and/or consolidate that two 
quantities are the same number if it is possible to establish a continuous one-to-one correspondence 
between their items; no counting is needed for that. On that basis, they should learn that “one more” 
means that a mapping of the items results in one item left for the bigger quantity (Gaidoschik, 2007).  

I use the metaphor “construction sites” to indicate that we should work with children in all three Fields 
A to C more or less concurrently, which is, bearing on German speaking countries, within the first 
weeks of grade one. Certainly, we may concentrate activities on only one site for some days, but 
switch to another the next day or even combine working on all sites on the same day. This is sensible, 
as many children in single areas will need quite a lot of practice over a longer period to reach the 
level required as a basis for next steps. Yet, to achieve desirable automatisms, e.g. in counting forward 
and backward, it would not help to stick to one single theme for too long in a row, but rather provoke 
tedium. More importantly, the sites relate to each other. We should link counting to comparing, to 
help children realize that each number in the sequence is “one more” than its predecessor (and not 
only “the next number”, see above). Working on perceptual subitizing should include comparing, etc. 

Such as the three sites merge into one another, the next important step is only an extension of the 
above-mentioned exercises: advanced activities that fit for exploring and internalizing part-whole 
relations, but now for all numbers at least up to 10. Gaidoschik (2007) describes in detail how the use 
of fingers which are not being counted nor unfolded one by one, but moved and perceived in groups 
simultaneously, could form a starting point for first acquiring mental pictures and finally automatized 
knowledge of at least some important compositions of all numbers up to 10. Thus, children could first 
learn how to “stretch out eight fingers without counting”, then describe how they would do so without 
really doing it (“I need one full hand and three more fingers”). Then, if already available to the child 
(see below), s/he could use symbols to record the action (5+3=8), think about what could be done 
subsequently (“So this is eight fingers. What if you take away the one full hand?”), and record that 
action as well (8-5=3). Already at that stage, children can and should try to apply this knowledge to 
real-world situations, for instance by inventing word problems. In that way, the acquisition of part-
whole knowledge is (almost) from the beginning closely linked to addition and subtraction.  

Note that I am not talking about writing equations from the very start, but operating with real, then 
imagined material. Fingers are very useful “material” at the beginning, as they allow to experience 
clearly and convincingly the difference between using structure-knowledge (take away five means 
take away one full hand at once) and counting (take away quite tediously one single finger after the 
other). In the following, for some purposes, ten-frames are useful, then twenty-frames and 100 dot 
arrays. Also with these materials, yet, it is paramount to work out how to see and use structures, how 
to relate other numbers to 5 and 10; only this enables to operate without having to count one by one. 

Fingers might be most convincing to work out the five-plus-x structures of the numbers 6 to 10. 
Another indispensable structure that should be in the focus of early activities are doubles and halves 
(6 as 3+3, 8 as 4+4 etc.). Therefore, a next step could be to concentrate on these very structures, and 
again connect them with tasks that elicit their application in solving addition and subtraction tasks. 
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Once more, it will turn out that counting is superfluous to solve these tasks. Presumably, some 
children might still apply counting strategies; yet, in this context there is high probability that the 
teacher or other children will convince these children that there is a better, much easier way, by 
thinking about and applying knowledge of the part-whole structure of the numbers involved. 

Closing remarks 
This is not the place to unfold a detailed guideline for teaching early arithmetic. The aim of the above 
sketch is to illustrate the paper’s main message: Structure-genetic didactical analysis allows 
developing a teaching design that avoids engaging children in using counting on for computation 
from the very beginning. It does so in full consideration of pertinent research on how children develop 
their thinking under certain conditions. However, it strives to change these conditions where analysis 
shows that they may lead to unnecessary delay, if not continuing problems. Research indicates that 
the widespread tradition to foster counting on is such an unfavorable condition. Structure-genetic 
didactical analysis opens an alternative in line with the needs of the children as well as of the subject 
matter. Of course, an indispensable next step would be to implement these ideas in classrooms, and 
evaluate and further develop them based on reflected experience – a clear case for educational design 
research. I have started such research on a small scale, yet this paper is deliberately not about the 
ongoing pilot study. I had rather put the basic concept up for international discussion. After all, it 
would not make sense to trial on larger scale a design that does not withstand careful scrutiny. 

References 

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math. The learning trajectories 
approach. New York, USA/London, UK: Routledge. 

Cowan, R., Donlan, C., Shepherd, D., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic 
calculation proficiency and mathematics achievement in elementary school children. Journal 
of Educational Psychology, 103(4), 786–803. 

Fritz, A., Ehlert, A., & Leutner, D. (2018). Arithmetische Konzepte aus kognitiv-
entwicklungspsychologischer Sicht. Journal für Mathematikdidaktik, 39(1), 7–41. 

Fritz, A., & Ricken, G. (2008). Rechenschwäche. Stuttgart, Germany: UTB. 

Gaidoschik, M. (2007). Rechenschwächen vorbeugen – Erstes Schuljahr: Vom Zählen zum Rechnen. 
Das Handbuch für LehrerInnen und Eltern. Wien, Austria: Verlag öbv-hpt. 

Gaidoschik, M. (2010). Wie Kinder rechnen lernen – oder auch nicht. Frankfurt am Main, Germany: 
Peter Lang. 

Gaidoschik, M. (2019). Didactics as source and remedy of mathematics learning difficulties. In A. 
Fritz, V. Haase, & P. Räsänen, P. (Eds.), The international handbook of math learning 
difficulties: from the lab to the classroom (pp. 73-89). Cham, Switzerland: Springer. 

Gaidoschik, M., Fellmann, A., & Guggenbichler, S. (2016). Computing by counting in first grade: It 
ain’t necessarily so. In K. Krainer & N. Vondrová, Proceedings of the Ninth Congress of the 
European Society for Research in Mathematics Education CERME 9 (pp. 259–265). Prague: 
Charles University, Faculty of Education. 

Thematic Working Group 02

Proceedings of CERME11 425



 

 

Gaidoschik, M., Fellmann, A., Guggenbichler, S., & Thomas, A. (2017). Empirische Befunde zum 
Lehren und Lernen auf Basis einer Fortbildungsmaßnahme zur Förderung nicht-zählenden 
Rechnens. Journal für Mathematik-Didaktik, 38(1), 93–124. 

Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. (1996). Development of arithmetical 
competences in chinese and american children: influence of age, language, and schooling. 
Child Development, 67, 2022–2044. 

Gelman, R., & Gallistel, C.R. (1978). The child‘s understanding of number. Cambridge, USA: 
Harvard University Press. 

Häsel-Weide, U., & Nührenbörger, M. (2013). Replacing Counting Strategies: Children´s Constructs 
on Number Sequences. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 
Eight Congress of the European Society for Research in Mathematics Education CERME 8 
(pp. 303–312). Ankara: Middle East Technical University. 

Hopkins, S., & Bayliss, D. (2017). The prevalence and disadvantage of min-counting in seventh 
grade: problems with confidence as well as accuracy? Mathematical Thinking and Learning, 
19(1), 19–32. 

Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a 
precursor of mathematical school achievement and mathematical difficulties: findings from a 
four-year longitudinal study. Learning and Instruction, 19(6), 513–526. 

Krauthausen, G. (2018). Einführung in die Mathematikdidaktik – Grundschule (4. Auflage). Berlin, 
Germany: Springer. 

New Zealand Ministry of Education (2008). Getting started. Wellington, New Zealand: Crown. 

New Zealand Ministry of Education (2012). Teaching addition, subtraction, and place value. 
Wellington, New Zealand: Crown. 

Schipper, W., Ebeling, A., & Dröge, R. (2015). Handbuch für den Mathematikunterricht an 
Grundschulen. 1. Schuljahr. Braunschweig, Germany: Schroedel. 

Schultz, Jakob, & Gerster, H.D. (2017). Teile-Ganzes-Denken über Zahlen und Operationen:  
Herausforderung und Leitidee des Anfangsunterrichts. In A. Fritz, S. Schmidt, & G. Ricken 
(Eds.), Handbuch Rechenschwäche (pp. 206-224). Weinheim, Germany: Beltz. 

Siegler, R.S., & Alibali, M.W. (2005). Children’s thinking. Englewood Cliffs, USA: Prentice Hall. 

Steinberg, R. (1985). Instruction on derived facts strategies in addition and subtraction. Journal for 
Research in Mathematics Education, 16(5), 337–355. 

UK Department of Education (2013). Mathematics programme of study: key stages 1 and 2. Retrieved 
from https://www.gov.uk/government/publications/national-curriculum-in-england-
mathematics-programmes-of-study 

Wittmann, E. Ch. (2015). Structure-genetic didactical analyses - empirical research of the first kind. 
In P. Błaszczyk, B. Pieronkiewicz, & M. Samborska (Eds.), Mathematical Transgressions 
2015 (pp. 5–19). Kraków, Poland: PWN. 

Thematic Working Group 02

Proceedings of CERME11 426



Rational number operations: What understandings do children 
demonstrate? 

Sofia Graça1, João Pedro da Ponte1 and António Guerreiro2 
1Instituto de Educação, Universidade de Lisboa, Portugal; soffiagraca@hotmail.com; 

jpponte@ie.ulisboa.pt 
2Escola Superior de Educação e Comunicação, Universidade do Algarve, Portugal; 

aguerrei@ualg.pt 

This qualitative and interpretative study aims to identify grade 5 students’ knowledge of rational 
number operations in order to ascertain their rational number sense and operation sense before and 
after a teaching experiment. Data was gathered using two tests and four individual semi-structured 
interviews. The results show that, in the pre-test, children performed rational number operations 
based on their whole number knowledge. In the post-test, after the teaching experiment, they showed 
conceptual understanding of the operations, demonstrating rational number sense and operation 
sense. 

Keywords: Rational numbers, fractions, fractions operations. 

Introduction 
Rational numbers are important mathematical entities, with an important place in the mathematics 
curriculum, particularly in early years. They involve complex ideas, which represent conceptual 
obstacles for children (Behr & Post, 1992). Mathematics education researchers have identified 
difficulties in children’s work with these numbers, for example, regarding operations (Hansen, 
Drews, Dudgeon, Lawton, & Surtees, 2014). Teaching methods used in schools, typically oriented 
towards the application of rules, lead students to perform sequences of procedures without 
understanding their meaning (Braithwaite, Pyke, & Siegler, 2017), for example, obtain equal 
denominators and then add or subtract numerators; multiply numerators and denominators on fraction 
multiplication; and “invert and multiply” on fraction division. Consequently, children do not develop 
rational number sense (Lewis & Perry, 2014) nor operation sense (Huinker, 2002). Thus, this study 
aims to identify grade 5 students’ knowledge of rational number operations in a pre-test, before a 
teaching experiment, and in a post-test, after that teaching experiment, in order to ascertain their 
rational number sense and operation sense. 

Rational number operations 
General aspects 

Students often demonstrate not understanding what happens when they add, subtract, multiply or divide 
fractions because the teaching of this topic is typically based on the presentation of rules that they do 
not understand. Usually, they apply their knowledge of integers on rational number operation tasks, and 
they operate with rational numbers as if they were integers. Thus, children make mistakes that 
demonstrate misunderstandings in their conceptual understanding: “strategy errors”, for example, 
applying the operation to numerators and denominators, independently; and “execution errors”, for 
example, incorrect performing a calculation procedure or failing to change numerators or denominators 
when attempting to obtain equivalent fractions (Braithwaite et al., 2017). 
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Rational number understanding involves rational number sense, that is, understanding: (i) that a 
fraction is a number; (ii) partitioning fractions; (iii) the meaning of denominators; (iv) knowing what 
is the whole; (v) fraction size; and (vi) fractions can represent quantities greater than one (Lewis & 
Perry, 2014). Operation sense is another component of rational number sense. According to Huinker 
(2002), it includes the following understandings: (i) meanings and models for operations, e. g., 
rectangular, circular or area models, used to represent the operations; (ii) ability to recognize and 
describe real-world situations for specific operations; (iii) meaning of symbols and formal 
mathematical language; and (iv) knowledge the effects of operation on numbers. In the perspective 
of Brown and Quinn (2006), gaps in the conceptual understanding of rational number operations are 
the cause of poor student performance in these operations. Both number and operation sense represent 
a way of thinking about numbers and their operations. Problem solving allows children to explore 
and understand rich mathematical situations, in which operations arise. Thus, problems can more 
easily assign operations meaning and promote meaningful learning. The use of models can help 
children to understand the conceptual basis of each operation. As they establish a relationship between 
models and algorithms, children can understand what each step of an algorithm represent in practice 
(Behr & Post, 1992). 

Addition and subtraction 

Fraction addition and subtraction are often taught based on the use of procedures, such as, 
“denominators have to be equal, and then you can add or subtract the numerators”. However, students 
often do not understand the need of common denominators or the role of equivalent fractions, which 
constitute fundamental understandings in these operations (Behr & Post, 1992). This procedure-based 
approach does not promote the conceptual understanding of fraction addition and subtraction. 
Together with the prior knowledge of whole numbers, it leads children to make common mistakes, 
because they confuse the procedures. In addition, children have more difficulty understanding 
questions involving subtraction than involving addition. Sometimes, they do not identify the correct 
operation (Behr & Post, 1992). Braithwaite et al. (2017) refer that most children’s difficulties are 
associated with the nature of denominators. When they are equal, children usually just add or subtract 
numerators; when they are different, they usually make independent whole number errors, that is, 
apply the operations to numerators and denominators (strategy errors). Behr and Post (1992) point 
out that the use of models can help children to understand the involved concepts when they add or 
subtract fractions. 

Multiplication 

Multiplication is usually viewed as successive addition of “equal groups”. However, in the rational 
number field, this is an inappropriate idea because the product can be smaller than both factors and 
this is not compatible with an additive procedure (Greer, 1992). Tasks with a “multiplicative relation” 
meaning can be useful on learning rational number multiplication so that children overcome this 
misunderstanding. The use of models allows children to understand how the unit change during the 
problem and that the product is not always greater than each of the factors (Behr & Post, 1992). 
Children multiply both fractions but they do not understand how and why the algorithm works. 
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Division 

The division operation is often linked to sharing situations. In these situations, the goal is to get the 
unit value. However, learning division only based on this meaning leads students to the incorrect idea 
that division always decreases or that the dividend should be greater than de divisor (Greer, 1992). 
The meaning “measure” of division is another way to think about this operation, requesting the 
number of groups instead the unit value. This meaning allows a more robust understanding of 
division. The use of models makes it easier for children to understand this meaning of division and 
allows them to verify how many times the divisor go into the dividend. The common denominator 
algorithm is an interesting strategy to help children understand this situation and how the algorithm 
works because it represents the way children reason about this meaning of division.  

Research methodology 
This is a pre-test-intervention-post-test study (carried out in 2017/18). Participants are four grade 5 
students from a public school in Portugal, from a disadvantaged socioeconomic environment. They 
were selected because of their ease in oral communication and the fact that their performances on 
tasks were representative of the remaining class, as they had different performance levels. A pre-test, 
applied before a teaching experiment, involved different rational number concepts. Data analysis in 
this paper focuses on fraction addition and subtraction because these are contents already learns in 
previous years, so, children already had this knowledge. A post-test was applied after that teaching 
experiment (in the following lesson) and also involved different rational number concepts. However, 
the focus were all four operations because multiplication and division operations were addressed 
during the teaching experiment since multiplication and division were new contents in this grade. The 
children solved the tests, individually, for 50 minutes, and then they were individually interviewed in 
order to explain their reasoning in each question. The interviews took place in the same day they 
solved tests and the following day. 

The teaching experiment lasted six weeks, consisting of eighteen tasks (45 questions in total). The 
tasks involving all four operations were the last eleven ones. Addition, subtraction, multiplication and 
division, in problem solving situations, were addressed separately, in this specific order. These tasks 
involved 27 questions (13 questions involved the use of models). The teaching experiment followed 
an exploratory approach (Ponte & Quaresma, 2016), that is, tasks were presented to children and they 
worked individually, followed by a group discussion and synthesis. To solve the tasks, in an initial 
phase, the children were guided to use (circular or rectangular) models, provided in the task 
statements. The actions performed in the models were accompanied by the corresponding numerical 
sentence (numerical sentences changed as the models changed), so that the children understood the 
relationship between them. At a later stage, they could choose the solution strategy they preferred. 
The goal was to progress from the use of models to symbolic manipulation with understanding. On 
fraction addition, the children had two circular models to represent the quantities to be added. The 
denominators of fractions and the number of divisions in the models were equal, so, they just had to 
add the number of pieces. Later, the denominators of fractions and the number of divisions were 
different, so, they had to make divisions in the models because they could not add pieces with 
different sizes. Lastly, models had no division and the denominators of fractions were different so, 
the children had to make their own (equal) divisions to get the result. Subtraction of fractions followed 
the same procedure. Circular and rectangular models were used to promote understanding about these 
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operations, allowing to understand the need of equal denominators and the role of equivalent 
fractions. 

On fraction multiplication (meaning “multiplicative relation”), a rectangular model was used. This 
model allowed the children to understand the role of different fractions when they are multiplied, for 
example, the role of operator and the change of the reference unit throughout the problem. When 
children are asked to solve 1

4
 × 1

2
, they find a half because is the initial quantity and then they find 1

4
 

of that part. Faction division focused on the “measure” meaning and the common denominator 
algorithm was addressed. The rectangular model was effective in understanding this meaning of 
division and allowed to conceptually understand the algorithm. For example, “Luísa had 2𝟏𝟏

𝟐𝟐
 meters of 

tape to put in hats and each hat takes 𝟏𝟏
𝟒𝟒
 meters. In how many hats can she put tape?” The children 

represented the dividend in models by shading and then they could verify how many 1
4
 are in 2𝟏𝟏

𝟐𝟐
.  

For data analysis, the interviews were all audiotaped, transcribed and analysed in depth, as well as 
the children solution strategies in both tests. These two methods of data collection allowed us to 
analyse students’ rational number sense and operation sense according to the Lewis and Perry (2014) 
and Huinker (2002) categorizations, respectively, before and after the teaching experiment. These 
methods also allowed to ascertain how they evolved from pre- to post-test, and the role of the models 
in the development of children conceptual understanding. 

Results 
Pre-test 

A fraction addition operation was involved in the question “Pedro, João and Gonçalo started running 
a path with 6 km in a park near their school but none of them got to the end. Pedro stopped after 2

6
, 

João run only 2
3
 and Gonçalo 1

2
. What fraction represents the travelled distance by the three friends 

together?” Although most children had identified the implicit operation in the story problem, their 
performance was quite weak. They often added numerators and denominators independently, to get 
the result (strategy error), and presented the result 5

11
. When they were asked if it would be possible 

to add fractions with different denominators, they demonstrated not understand the question. Just one 
child, Ana, tried to use a rectangular model to support her reasoning, but it was not correctly built and 
she left the question unanswered. In a fraction subtraction question, “What is the difference between 
the boy who ran the longest distance and the boy who ran the shortest distance?”, again, the children 
subtracted numerators and denominators independently, to get the result (strategy error). Ana 
(Figure 1), again, tried to use rectangular models to reason about the question, however, these were 
not correctly built. She could not identify which operation should use. 
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Figure 1: Ana’s solution 

Post-test 

In the post-test, an addition question was posed to children “Clara, Maria and Gabriela started a path. 
Clara stopped to rest after 2

5
 of the path, Maria stopped after 4

10
 and Gabriela after 3

5
. What fraction 

represents the distance travelled by the three friends together until the moment they stopped to rest?” 
Most of children were successful both in identifying the operation and applied the correct algorithm. 
They demonstrated to understand the situation through the following statements “Here below not 
everything was the same size. I made it to be and I started here, with 10. […] Then, I added all parts 
and left the bottom number which represents the size of the parts that are here!” (Ana), or “The whole 
course had five parts and all together made seven of these parts, seven bits of 1

5
!” (David). Just one 

child, Pedro, did not correctly add the numerators after obtaining equivalent fractions. He obtained 
the fraction 10

10
 and said it was equal to one unit (Figure 2), making an execution error.  

 
Figure 2: Pedro’s solution (i) 

During the interview, Pedro identified and corrected his error and, after the new result 14
10

, he wrote 
that “together they did more than a whole path!” or “I think this is so because this boy made six. 
These only made four!” Fraction subtraction question was posed to children “In the end of the course, 
they decided to eat sweets from a bag with 3

4
 kg. Together they ate 1

3
 kg. How much did they leave in 

the bag?” Most children identified the correct operation and used it as solution strategy. They 
demonstrated understanding its meaning saying that “It’s a subtraction operation! If they eat 1

3
 [Kg] 

from the whole bag, we have to get that part […] but we can’t do three minus one because the parts 
are not equal and they have to be! We need equal fractions!” (David). Just one child, Pedro, tried to 
solve this question using a model (Figure 3). 

“The difference is 
that the 2

6
 smaller 

than the 2
3
” 
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Figure 3: Pedro’s solution (ii) 

He justified that “each friend ate 1
3
, so, since it is one of three, I counted one because it represents 

what they ate, and it is one of three because they were all the sweets they had!” Thus, he referred that 
six sweets were left, because it is the number of unshaded circles. Pedro considered the initial quantity 
as a continuous entity, as shown by the model that he tried to use, but considered the withdrawn part 
as a discrete entity. We do not know how much candy is in the bag but its weight. The child considered 
continuous and discrete quantities as measured with the same unit. 

The division as measure was underlying in the following question: “Maria is making chocolate cakes 
for her sister’s birthday. She has 21

4
 kg of sugar and each recipe of chocolate cake takes 1

8
 kg of this 

ingredient. How many chocolate cake recipes can she make?” Most of children had a good 
performance in this question. They identified the correct operation to be used in the problem, using 
the common denominator algorithm as solution strategy and demonstrated to understand its meaning 
“Here, I divided to see how many 1

8
 fit in 21

4
 […] she can make eighteen cakes!” (David). Only Ana 

did not identify the correct operation in this situation. She added both amounts and justified her choice 
saying that, “she wanted to make a cake with the whole amount, so, I made an addition!” This child 
also demonstrated difficulties regarding fraction simplification. 

The following fraction multiplication question (multiplicative relation) was posed to children: “To 
decorate a cake, Maria put chocolate in 5

10
 of the whole cake and coconut in 2

3
 of the part that had 

chocolate. What fraction of the whole cake has both decorations?” Only David identified and used 
multiplication operation as solution strategy. He justified that “Maria put coconut over the chocolate 
part, so, I multiplied because it’s one part of another! 2

6
 is the shaded parts twice!” When asked about 

the relationship between the operation and the model, he said “2 is the number of pieces and 6 is the 
size of the pieces. It’s just a little bit. […] So, we have to multiply numerators and denominators!” 
The remaining children had a poor performance in this question. Nara subtracted both quantities, 
however, during the interview, she said that “ 5

10
 means there was half of the cake, but 2

3
… well… it 

was in that part [ 5
10

]! I think it was not to subtract, it was to multiply!” So, she demonstrated some 
understanding about this meaning of multiplication. Pedro and Ana attempted to solve the problem 
using circular models but they demonstrated some difficulties in understanding this question. They 
also demonstrated misunderstandings related to divisions in the models. Horizontal and vertical 
divisions were made in the circular model. Pedro, after representing 5

10
 on his model, said: 

Pedro: Then it was 2
3
 with coconut… 

“They left 6 sweets” 
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Researcher: Where could we shadow this amount (2
3
)?  

Pedro: Here [unshaded part]! 
Researcher: Don’t forget the coconut was in the chocolate part! 

Pedro: Ah! I think I had to split this part [ 5
10

]… To put the coconut on top because it is 

“of”! Its 2
3
 of 5

10
! 

Although Pedro was unable to solve the problem correctly, during the interview he showed better 
understanding about the question as well as its relation with the fraction multiplication.  

Discussion and conclusion 
The children who participated in this study had already learned fraction addition and subtraction in 
previous years. However, in the pre-test, their performance in questions involving these operations 
were very weak. They added and subtracted numerators and denominators to get the result, which 
constitutes a common mistake especially when denominators are different (Braithwaite et al., 2017). 
This solution strategy demonstrates lack of understanding that a fraction represents a single number. 
It also shows misunderstanding related to meaning of the denominator, since they added and 
subtracted fractions with different denominators, for example, on fraction addition (2

6
 + 2

3
 + 1

2
 = 5

11
). 

These mistakes show that these children were unaware of the relationship between numerator and 
denominator, as in the study of Hansen et al. (2014), reflecting weaknesses in their rational number 
sense. Children’s solutions also show that they did not conceptually understand these operations. 
Similar results were found in the study of Brown and Quinn (2006), which suggests that the poor 
performance is a consequence of gaps in the conceptual understanding of operations. These children 
did not understand the meaning of the operations and they have very limited knowledge of models to 
represent them, as shown in Figure 1. They also did not reason about the results obtained, which they 
did not understand to be inadequate in relation to the situation. Thus, their operation sense also had 
serious shortcomings. Their responses showed that they learned to solve operations applying rules 
(that they generalized in a wrong way from whole number operations) without understanding their 
meaning. 

In the post-test, the children showed a better understanding of rational number addition and 
subtraction, compared to the pre-test. On these operations, they demonstrated to understand the use 
of equal denominators and what they represent, which was possible due to the use of models during 
the teaching experiment. The children know that it is not possible to add or subtract fractions with 
different denominators, as reported by Ana. That is, they understood that a fraction represents a 
number and not two independent numbers. This is an important understanding of student’s rational 
number sense. Knowledge concerning to the meaning of the denominator, another component of 
rational number sense, was also observed, for example, “I kept the value down, which tells the size 
of the parts that are here!” (Ana). Justifications such as “The whole course had five parts and together 
they travelled seven of these parts. Seven bits of 1

5
!” (David), showed that these children know the 

fraction size and that a fraction can represent quantities larger than one. Regarding operation sense, 
they began to understand the different meanings of operations and to assign meaning to the symbols. 
The reasoning “Here I divided to see how many times this [1

8
] fits in 21

4
” (David), was possible due to 

Thematic Working Group 02

Proceedings of CERME11 433



the use of models. He showed that he conceptually understood this meaning of division. He reflected 
in the quantities and how they are related and also identified the appropriate operation. The children 
also demonstrated understanding the effect of operations on numbers when they analysed the 
reasonableness of results: “I think it is this way because this boy made six. These only made four!” 
(Pedro) or “2

6
 are the pieces shaded twice. […] It’s just a little bit!” In general, these children 

demonstrated conceptual understanding of formal mathematical language. The division operation as 
measure and the multiplication operation as multiplicative relation, used in this teaching experiment, 
allowed a deep understanding of these operations. The children overcome the misconception that 
multiplication always increases and division always decreases. This was possible due to the use of 
models during the lessons, especially in an initial phase, as recommended by Behr and Post (1992). 
Therefore, we conclude that this teaching experiment based on the use of models, allowed the students 
to construct the algorithm from the models, and led them to develop some components of their rational 
number sense and operation sense. This study represents an alternative way of approaching rational 
number operations, promoting students’ conceptual understanding, which often does not occur. 
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We have analyzed the written solutions to four arithmetic expressions comprising 
addition/subtraction and multiplication of 4 to 7 numbers from 235 students (112 in Greece and 123 
in Sweden, 11-12 years old). Beside the order-of-operations and sequential (left-to-right) 
calculations, several students seem to calculate in an unconventional way by pairing numbers. That 
is, there are students who combine the numbers two-and-two, seemingly regardless of the operations, 
and then operate on these pairs when evaluating an expression. In our data, pairing seems to be as 
frequent as sequential calculations. We identify the characteristics of three qualitatively different 
ways of pairing. The different ways seem to be applied independent of the length of the numerical 
expression.  

Keywords: Arithmetic, Order of operations, Precedence rules. 

Introduction and theoretical background 
In mathematics, we use conventions for arithmetic expressions to be unambiguously perceived. 
However, to design successful teaching on how to perceive and calculate arithmetic expressions, we 
need to first learn what ideas are present among the students. In this report, we present a study of 
those ideas and can show that evaluating numerical expressions by number pairing seems to be more 
significant in students’ ideas than previously reported, and that it can emerge in different types.  

Without the mathematical conventions like, e.g., the rules for the order of operations, there would be 
different ways in which numerical expressions can be evaluated. Accordingly, it has been shown that 
students who have not yet internalized these conventions use different ways in their calculations 
(Blando, Kelly, Schneider, & Sleeman, 1989; Glidden, 2008; Gunnarsson, 2016; Headlam, 2013; 
Libenberg, Linchevski, Sasman, & Olivier, 1999). This might result in errors such as exchanging a 
number with another number, exchanging an operation with another operation, or, simply, making 
computational errors. Blando et al. (1989) call these errors “careless” and “substitution errors”. But, 
there are also errors that are more related to the structure of the expression. Linchevski and Livneh 
(1999) showed that students, while being inconsistent in the computational aspects, can be very 
consistent in these structural errors.  

There has been substantial research devoted to students’ handling of arithmetic expressions from 
perception and cognitive points of view. It has been shown in several studies that the mere proximity 
of two numbers can result in that these are calculated first, regardless of the operator in between 
(Gómez et al., 2014; Jiang, Cooper, & Alibali, 2014; Landy & Goldstone, 2010; Rivera & Garrigan, 
2016). More generally, it has been shown that the visual appearance of the mathematical notation can 
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cause students to disregard mathematical rules (Kirshner & Awtry, 2004). A particular effect of the 
visual appearance was pointed out by Linchevski and Livneh (1999). They showed that some students 
can dissociate two parts of an expression, often induced by an operation sign (typically minus), like, 
e.g., when 50 − 10 + 10 + 10 is evaluated as 50 − (10 + 10 + 10). 

In addition, there are several educational research studies showing that students can perceive the 
structure of numerical expressions in different ways. Kieran (1979) has shown that the rule ‘to be 
calculated first’ can be perceived as ‘to be put to the left’. Conversely, it appears as if students 
perceive what is read first (i.e., to the left, if that is the reading order) should be calculated first. At 
least, several studies describe that students calculate expressions sequentially from left to right 
(Blando et al., 1989; Headlam, 2013; Liebenberg et al., 1999).  

There have also been brief reports that some students pair up numbers when processing arithmetic 
expressions (Gunnarsson, 2016; Liebenberg et al., 1999; de Villiers, 2015). While de Villiers (2015) 
mentions it as one type of erroneous calculation (without further discussion) where order of 
operations should have been used, Liebenberg et al. (1999) describe students who break up 
expressions in parts. As example, they find students calculating 4 + 5 + 5 × 2 × 6 + 4 by grouping 
numbers in pairs and then processing these pairs as  4 + 5 + 5 × 2 × 6 + 4 → (4 + 5) +
(5 × 2) × (6 + 4) = 9 + 10 × 10. However, we have noted that, apart from the example above, the 
expressions used in most previous studies are quite short and contain two (or maximum three) 
different operators. Typically, the numerical expressions are of the form 𝑎𝑎 + 𝑏𝑏 × 𝑐𝑐, occasionally 𝑎𝑎 +
𝑏𝑏 × 𝑐𝑐 + 𝑑𝑑. The exception found in the study of Liebenberg et al. (1999) with longer expressions (up 
to seven numbers, thus six operations), may have enabled them to observe a breaking-up-into-parts 
effect. Hence, in this study we would like to explore this effect further by using long expressions. 

Therefore, with the idea that teaching arithmetic conventions must take its point of departure in 
students’ actual ideas on how calculations should be completed, the aim of this study is to further 
explore students’ idea of pairing when calculating arithmetic expressions. In short, we would like to 
find what forms of pairing mechanism occur when students evaluate arithmetic expression. This study 
is part of a larger project to design teaching to improve students’ arithmetic computational 
competence.  

Method 
This study engaged 112 Greek students and 123 Swedish students, 11-12 years old (grade 5 in 
Sweden, grade 6 in Greece). In total students from nine different schools (five Greek schools and four 
Swedish schools) were included. The schools were chosen from mixed background to represent all 
achievement levels. According to the curriculum and the teaching traditions in the two countries, the 
students should have been taught the rules for the order of operations prior to the study. The students 
were given a written test and sufficient time (no time limit) to answer it.  The test comprised several 
tasks, all typeset with the equation editor of a conventional word-processor, to avoid unintended 
influence from the visual appearances of the expressions. The test was aimed to test students’ 
understanding of arithmetic conventions. Four of the tasks were specifically designed to explore 
students understanding of the order of operations by expressions of different lengths. These tasks are 
shown in Figure 1. 
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Figure 1: The four different numerical expressions used in this study (in the Greek version of the test, 

the expressions were numbered a, b, g, d, respectively) 

The data, comprising the students’ written answers to the test – their written evaluations of the 
expressions in Figure 1 – was subject to a qualitative content analysis as described, e.g., by Leedy 
and Ormrod (2015). In the analysis, the correctness of the answers was not considered, instead the 
underlying mathematical idea were in focus for each solution of a numerical expression. In the first 
step we were looking for well-known ideas, like following the order of operations, sequential 
calculations (left-to-right), detachment (from Linchevski & Livneh, 1999), and signs of pairing. 
Hence, data, for each task separately, was first divided into different groups depending on what ideas 
seemed to have governed the students while solving the task. In some cases, the students used 
different ways throughout the process of evaluating a single expression. Then, the different groups 
were combined based on the main underlying mathematical idea the solutions seemed to be based on. 
This resulted in a few different categories of foundational mathematical ideas.  

In the second round of analysis, we focused only on the solutions that have a character of number 
pairing. Here, no fixed categories were defined prior to the categorization. The categories of ways of 
pairing numbers emerged from the data in the analysis process. Data were examined separately by 
the two researchers and discussed to resolve discrepancies. We did not see any significant difference 
in the data of Swedish and Greek students. Hence, in this study we have not separated the data of the 
groups. The numbers below are the combined total numbers for the entire data set. 

Results and discussion 
First, we note that only a minor part of the errors in the students’ solutions is due to arithmetic errors. 
We do find the same type of errors as reported in previous studies (like, e.g., by Headlam, 2013), such 
as changing operators (e.g., multiplication is replaced by addition), changing numbers and simple 
arithmetic errors. But, the major part of the operations explicitly described in the data is correctly 
calculated. Even in the cases of changing numbers or simple arithmetic errors we find that it is easy 
to trace back the intention of the operation – the actual underlying mathematical idea. This is in 
agreement with the findings of Linchevski and Livneh (1999). Hence, we can conclude that to a large 
extent the data (the result of the evaluated numerical expressions) originate from students’ ideas on 
how numerical expressions should be evaluated.  

Second, we find three main ‘ideas’ that seem to influence students’ solutions: order of operations, 
sequential calculation and pairing. In our data, we find students who follow the convention and use 
the (correct) order of operations, and we find students who use a sequential calculation (left-to-right), 
see Figure 2. As an example, a student that would have calculated the second expression (b in Figure 
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1) according to (((((5 × 4) × 3) + 6) × 2) + 1) is considered to have followed a left-to-right, 
sequential, strategy. This does not mean that the specific student is always following that strategy, 
but at least did so in this specific expression. 

 
Figure 2: Strategies used to evaluate the different numerical expressions 

Some students indeed are consistent in their calculations, in the sense that they calculate all four 
expressions in the same way, or with the same apparent idea behind the calculation. Most of the 
students who are consistent have used the order of operations. But there are also students who 
consistently have used a sequential calculation on all four expressions. For instance, two students 
consistently used one specific type of pairing (which we denote ‘entangled pairing’ further down in 
the report). In total, we find that the order of operations was used in 47% of all expressions, sequential 
calculations in 12% of the expressions, and that pairing seemed to be the main idea in 16% of the 
expressions in the students’ solutions. 

Typically, students’ difficulties with numerical expressions from other aspects of precedence, like 
e.g. detachment (as from Linchevski & Livneh, 1999) or visual salience (Kirshner & Awtry, 2004), 
are included in the category named “other”. In task c, 2 × 3 × 5 − 4 × 2 + 6, we note that many 
students evaluate the expression as (2 × 3 × 5) − (4 × 2 + 6). We believe this is directly related to 
the detachment-effect reported by Linchevski and Livneh (1999). However, the number of solutions 
that seem to be based on detachment is also the reason why the “other” category is relatively much 
more frequent for the (c) expression, as shown in Figure 2.  

Additionally, as will be shown further down (Fig 4 c), there are examples in the data where students 
have used a pairing strategy in the first term (2 × 3 × 5), but then, seem influenced by detachment 
and used that in the continuation of the calculation. Hence, it could be a combined pairing and 
detachment effect. In Figure 2, these examples have been counted as “pairing”. 

Particularly, in the data from the first task we found several students’ responses that could be 
described as due to pairing. Although, we cannot exclude the possibility that there are other ideas that 
have influenced the students’ behavior and made them evaluate the expression as (9 − 2) × (3 − 2). 

When we explored the mathematical ideas, we found that the pairing mechanism can come in 
qualitatively different forms. 
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Pairing overall 

The first type, and perhaps the easiest to separate from the others, is a mechanism of pairing 
throughout the entire expression. It is a pairing that goes overall. This occurs when the pairs span 
across different operations. It seems as when one pair of numbers has been “used”, the attention is 
directed to the next pair. No consideration is taken to the precedence of operations. Instead, it seems 
that numbers are the focus of the attention. Figure 3 shows three different examples where students 
have used pairing overall to evaluate the expressions. The brackets were made spontaneously by the 
students. 

 
Figure 3: Three examples of students’ answers where pairs have been formed across the entire 

expression without consideration of what operation should precede the other (“pairing overall”) 

This type was particularly evident when there was an even number of numbers in the expression, as 
in the expressions a – c (cf. Figure 1). We also find examples where students seem to have started 
with the pairing approach in the expression d with odd number of numbers. One such example is 
shown in Figure 3(c). Here, the student has paired all the numbers, except the last, which could not 
form a pair in the same way. However, we also find examples in the data of students’ solutions that 
indicate that single numbers are explicitly included in the later step of the calculation, as, e.g., the 
student who explicitly writes (5 × 3) + (2 × 4) × (5 + 3) × 2 = (15 + 8) × (8 × 2) = 23 × 16 =
368, with brackets inserted by the student. Hence, the student has indicated pairing as a mechanism 
that is applied overall the entire solution. 

Pairing within terms 

Another type of pairing-mechanism observed in the data is pairs formed within the terms, that is, not 
across different operations. To some extent, this preserves the order of operations, not breaking the 
rule that multiplication should precede addition/subtraction. In that respect, this category appears to 
be some intertwining of the order of operations and the pairing mechanism. Figure 4 shows three 
examples of pairing within terms that we attribute to this category. 
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Figure 4: Examples of student answers indicating pairing considered within terms 

Pairing within terms is particularly evident when three factors are to be multiplied. Then many 
students seem to invent some pair where one number is disregarded, as in Figure 4(a), or 
added/multiplied in the end, similar to the pairing mechanism reported by Liebenberg et al. (1999). 
However, some students used the numbers twice, as in Figure 4(b, c). Hence, in the latter two 
examples, there is a double counting of one of the numbers (the centre factor of the term). In Figure 
4(b), the number “4” is used both in 2 × 4 and in 4 × 5, separately. In Figure 4(c), the number “3” is 
double counted. To us, it appears as if this type of pairing can be such a strong idea in the students’ 
minds that they form pairs regardless if the numbers are used more than once, as in Figure 4(b, c).  

Unfortunately, our test did not include any term with four factors. We did not foresee this alternative. 
If such example would be used, we hypothesize that one could find students who paired the factors 
within that term without the invention of double-counting. 

Entangled pairing 

In our data, we find students who are operating with each adjacent pairs of numbers. So far, we have 
only seen two students do like this, but, on the other hand, they are very consistent in this strategy. In 
this type of pairing mechanism, the operations are subordinate. No consideration is taken to what 
operations there are in the expression. In the end, the pairs are added. Examples of this type of idea 
of how numbers should be paired is shown in Figure 5.  

Hence, compared to the “pairing overall”-strategy, this type of pairing disregards the operations even 
more, as pairing is conducted across all operations. In addition, similarly to the “pairing within 
terms”-type of strategy, double counting of numbers does not seem to be a problem for these students. 
In this “entangled”-strategy all numbers (except the first and last) are operated with twice. 
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Figure 5: Three examples of where each adjacent pair of numbers are evaluated in an entangled way. 

In the end, the results of each operation are added 

 
Concluding remarks 
Apart from Liebenberg et al. (1999) and a short example by de Villiers (2015), previous research on 
students’ solutions to numerical expressions have focused on arithmetic errors and on sequential (left-
to-right) strategies. However, our data suggest that pairing is a much more abundant idea in students’ 
evaluation of numerical expressions than previously shown, at least for longer expressions. We find 
that 16%, as an average over all students’ solutions, are solved with pairing being the underlying 
mathematical idea. Hence, it seems that the idea of pairing could be as frequent as the idea of 
sequential calculations.  

Moreover, we find three qualitatively different types of pairing ideas. We find ways of pairing bound 
within terms, and ways of pairing applied in the expressions overall. In addition, we have shown that 
expressions with an odd number of numbers in the terms can trigger an apparent adaption of the 
pairing to the order of operations – the double counting of numbers within terms. The origin of pairing 
seems a deeply rooted idea. We find that despite being taught the order of operations, a considerable 
amount of the students apply the idea of pairing nevertheless. In addition, as previous research has 
shown, the mere proximity of numbers can trigger these to be calculated first (Gómez, et al., 2014; 
Jiang, Cooper & Alibali, 2014; Landy & Goldstone, 2010). Hence, pairing could be closely related 
to deep cognitive processes. Nonetheless, pairing is a persistent and strong idea and needs to be 
considered and handled when designing teaching on how to perceive and calculate arithmetic 
expressions. 
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In this paper, we explore the use of manipulatives in the classroom to solve an arithmetical task via 
the concept of affordance. Manipulatives are part of the elementary class culture in different 
countries, and even if some studies question the efficacy of manipulatives, there seems to have a 
consensus around the necessity of using it. However, little is known about how mathematics is done 
with manipulatives. The analysis of pupils’ actions helps put to light different affordances of two 
manipulatives: base-ten blocks and abacus, in a classroom setting where the operations of addition 
and subtraction are explored with pupils. 

Keywords: Elementary School Mathematics, Arithmetic, Manipulatives, Affordance. 

Introduction 
Research and mathematics education communities at elementary level agree that using manipulatives 
promote pupil learning (Moyer, 2001). Some researchers see the use of manipulatives as a less 
abstract way of reasoning than with formal mathematical symbols (Lett, 2007, Özgün-Koca, & 
Edwards, 2011). According to Domino (2010), Piaget (1964), Bruner (1977) and Diènes’ (1973) 
theories support most of the work on the uses of manipulatives. These theories of learning are based 
on the idea that manipulatives are necessary for the development of mental images that pupils may 
eventually summon in situations without manipulatives. In a way, the need, more over the benefit, of 
manipulatives seems to be taken for granted by many researchers. It leads to many other assumptions 
such as “doing math with manipulative is a concrete version of doing math” or “manipulatives should 
support the construct of mathematical objects”. In our research about manipulatives uses, we 
challenge these assertions. Doing math with or without manipulatives aren’t the same activity. Based 
on this premise, we developed a project called MathéRéaliser, in which, we want to understand what 
it is to do mathematics with manipulatives in a school setting. 

Indeed, research shows that the context used to do mathematics structures mathematical activities 
(e.g. Lave, 1988; Nunès, Schliemann, & Carraher, 1993). These studies, mainly conducted in 
nonacademic contexts, highlight the situated aspect of mathematical knowledge (Noss, 2002). For 
example, Pozzi, Noss, and Hoyles (1998) mention that in the professional context (nursing, banking, 
engineering, etc.), the tools and objects available to actors shape their mathematical activity. In other 
words, mathematical reasoning is developed in coordination with the “noise” of the situations in 
which it takes place (Noss, 2002). In this perspective, doing mathematics with manipulatives could 
be something very different from a concrete version of doing mathematics without them (Corriveau 
& Jeannotte, 2015). Kosko and Wilkins (2010) were able to show that the use of manipulatives colors 
the mathematical discourse developed with it. This aligns with a sociocultural point of view where 
mathematical learning is shaped by the historical culture of the community where the learning takes 
place and by the learners’ culture and experiences themselves (Sfard, 2008). Manipulatives when 
available during a mathematical activity bear a certain culture and shape the learner experiences. 
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In this paper, we aim to better understand what it is doing mathematics with manipulative in a 
calculation task at the elementary level. To do so, the concept of affordance is convoked to identify 
the potentialities of manipulatives in developing number sense through arithmetical operations.  

Conceptual Clarification 
Manipulatives and arithmetic 

In the context of arithmetic, a plethora of manipulatives are available for elementary school. Poirier 
(2001) classified manipulatives used for developing number sense in three categories. The first 
category refers to manipulatives where units are visible and accessible. For example, if we use 3 free 
tokens and four transparent bags of 10 tokens to represent the number 43, the tens, represented by 
bags that contain 10 tokens, can be “broken” into 10 units (by ungrouping a bag). The second category 
refers to manipulatives where units are still visible but not accessible (not breakable). Base-ten blocks 
are a good example of this kind of manipulatives: we have to physically exchange one long for 10 
units because the longs are usually unbreakable. The third category refers to symbolic manipulatives, 
where units are not visible in tens, nor in hundreds, etc. (e.g. abacus, money).  

Furthermore, manipulatives can become a support or a constraint for the pupils’ mathematical 
activity. On the one hand, it can support pupils reasoning. For example, base-ten blocks may help to 
explain why an algorithm works. On the other hand, it can be considered as a constraint if we impose 
a certain manipulative to solve a task (Jeannotte & Corriveau, 2015). By imposing manipulatives, the 
task may gain in complexity.  

Affordance 

Affordances is linked to interactions between an individual and the environment. Environmental 
characteristics (classroom setting, properties of the manipulatives, etc.) cannot be detached from 
pupils (their perceptions, their experiences, etc.). They form an inseparable pair. According to Clot 
and Béguin (2004), affordances are characterized, on the one hand, by the fact that objects are 
significant, the user’s experience relates on this signification. On the other hand, by its praxis value: 
“an object is immediately associated with a signification for action” (p. 53). Also, “[w]hether or not 
the affordance is perceived or attended to will change as the need of the observer changes, but being 
invariant, it is always there to be perceived” (Gibson 1977, in Brown et al., 2004, p. 120). So, 
depending on the needs, the uses and the properties exploited of manipulatives may vary. e.g., the 
base-ten blocks have been designed to help pupils perceived the structure of our numeration system. 
As an adult, we can see these properties and exploit them to expose some mathematical patterns. “We 
are seeing concepts that we already understand” (Ball, 1992, p. 5). What pupils see is also related to 
what they know. Since manipulatives aren’t solely used by pupils, but also by teachers, what teachers 
do with manipulatives is also inherently part of pupils’ experiences. Thereby, the concept of 
affordance can not only offer an insight on learning processes but also on teaching processes.  

Methodology  
For the aims of this paper, we focus only on a part of the data collected from the MathéRéaliser 
Project. We conducted a collaborative research that solicits the participation of teachers. As Corriveau 
and Bednarz (2016) uphold:  
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[t]his perspective leads us to re-think […] the relations between the researcher, as being the expert, 
and the teacher, as being the novice or the user, as frequently conceived in research in mathematics 
education […] [T]he teacher is assumed to be reflective and knowledgeable (pp. 1–2). 

In collaborative research, the concept of “double relevance” (Desgagné, 1998) is fundamental and 
refers to the construct of argumentation relevant to both communities, research and practice. A 
“double relevance” underlines every choice made in the collaborative work. For example, if a task is 
chosen to be experimented with pupils, it means that it makes sense for teachers and researches 
according to their respective sensible arguments.  

Description of the Task 

The task we experimented is inspired by Cobb (1994). Three similar questions to the following were 
answered by the pupils. The task was presented orally. 

“Represent 1009 with your manipulative and then, I’ll ask you a question. [Wait for the pupil 
to represent 1009 with base-ten blocks or homemade abacus.] I had a number, I subtracted 
453. [Write it on the blackboard.] I now have 1009. How much did I have at the beginning?” 

Description of the co-constructed Lesson 

The task was experimented with two grade 3 classes (9–10 years old) of 19 and 18 pupils. They 
already had learned an algorithm using drawing of base-ten blocks. They were not familiar with the 
abacus. Pupils worked by two using either base-ten blocks or homemade abacus. After teamwork, a 
whole class discussion took place about 1) the different answers obtained and 2) the strategies used 
to resolve the task. Table 1 presents the double-relevance of this task and its experimentation. 

Plausible use of the task for teachers Relevance of the task for researchers 

Task congruent with curriculum expectations (choice of 
operation, adding and subtracting 3–4 digit numbers). 

Curriculum fosters the use of manipulatives.  

Opportunity to reflect on the use of manipulative by 
their pupils. 

Manipulatives seen as a support to solve the task.  

Task that could lead to mathematical argumentation 
(see Cobb, 1994).   

Manipulatives seen as a constraint in this particular 
task. Since pupils used to operate by drawing base-
ten blocks, asking them to operate with real base-ten 
block or abacus is unfamiliar to them. This 
introduction of foreign elements may serve as a 
breaching experiment (Garfinkel, 1967) to put to 
light usual ways of doing. 

Table 1. Double-relevance of the task 

Characteristics of the manipulatives 

To perform the task, two manipulatives were available. Either pupils worked with base-ten blocks or 
with a homemade abacus (see Figure 1).  

                         
Figure 1: Base-ten blocks and homemade abacus  
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As each manipulative has his own properties, we can conjecture that each manipulative, in relation 
with pupils and the whole class generates different affordances in the classroom (see Table 2). 

Base-ten blocks Homemade abacus 
· Proportional model; 
· Units visible but not accessible (not 

breakable); 
· The value does not depend on the 

arrangement of the manipulatives; 
· The same manipulative “object” can only 

take one value. 

· Non-proportional model; 
· Symbolic manipulatives (units not visible 

nor breakable); 
· The value depends on the arrangement of 

the manipulatives; 
· The same manipulative “object” can 

change value. 

Table 2: Characteristics of each manipulatives  

Analysis and Results 
Data analysis has involved three stages. First, to explore the affordance in the use of manipulatives 
by the pupils, we watched the videos multiple times (Powell, Francisco, & Maher, 2003). Secondly, 
we extracted every pupil’s actions we observed. Every action was then described in association with 
the characteristics of the manipulatives. Finally, we grouped actions related to three different 
mathematical activities involved with the task and the classroom setting (the use of manipulatives).  
One may think that the main difficulties of this task is to choose the good operation and we are aware 
that using manipulatives do not help the pupils with this choice. However, in this experimentation, it 
did not appear as an issue. Moreover, the use of base-ten blocks and the abacus helped the teacher to 
see at a glance who chose the right operation. Actually, most errors arose from counting strategies. 
Table 3 presents the analysis of pupils’ actions in relation to the characteristics of each manipulatives. 
We grouped the different actions according to the mathematical activity involved: representing, 
operating and interpreting.  

When representing numbers, most pupils were able to exploit the manipulatives. For base-ten blocks, 
they associated the right blocks (units, longs, flats, etc.) to each position. Nevertheless, few of them 
disposed the blocks in a way they can “recognize” rapidly the number in front of them. For the abacus, 
some pupils struggle with choosing the right column when representing the second term of the 
operation. Furthermore, more pupils relied on visual patterning, thus helping them later interpreting 
the number.  

When operating, other than counting mistakes, difficulties arose from converting strategies. Even if 
pupils referred to changing 10 ones for 1 ten (for example) in their discourse, we observed more than 
once pupils changing eleven units for 1 long. When using the abacus, to convert a ten into ones, they 
move one chip from the tens column to the ones column AND add ten new chips in the ones column.  

One pupil worked with the abacus inconsistently: he represented one thousand nine from right to left, 
he managed the calculations, but when interpreting the result, he read the number from left to right. 
This gave the opportunity to the teacher to talk about communication in mathematics. 
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Maths 
Activities 

Base-ten blocks characteristics and actions 
observed 

Homemade abacus characteristics and 
actions observed 

Representing 

· Counting the blocks needed for each 
“place value”: cubes, flats, longs, units. 

· Disposing the blocks so the highest 
value is far left and the other ones on its 
right (no empty spaces for zero values). 

· Piling the blocks (e.g. 9 units on a cube 
represent 1009). 

· Using the space to differentiate 
positions: e.g. ten flats (instead of a 
cube), then the other flats, etc. 

· Counting correctly or not the chips and 
disposing them in the right or wrong 
column. 

· Disposing the chips in the same order we 
read numbers. Only one pupil disposed it 
in the opposite order. 

· In each column, using or not visual pattern 
disposition when placing chips in each 
column (e.g. 3 rows of 3 to represent 9). 

Operating  

 

A
lg

or
ith

m
 

· Place value dealing 
o Dealing with positions where no 

exchange is required first 
o Operating from left to right 
o Calking the taught algorithm (from 

units to cubes) 
o Mixed strategies 

· Intermediary calculations 
o Counting (e.g.: when adding 4 longs 

to 8 longs, regroup all longs and 
count them) 

· Place value dealing 
o First, dealing with columns where no 

exchange is required  
o Using the taught algorithm (from ones 

to thousands) 
· Intermediary calculations 

o Counting (e.g.: when adding 4 chips to 
8 chips, regrouping all the chips in one 
column and count the result) 

o Mental math, articulating 
manipulatives and number facts 
correctly or not. 

C
on

ve
rt

in
g 

· Changing one long into ten units (or ten 
units into one long)  
o by counting correctly or not ten 

units; 
o (from ten units to one long) by 

removing all the units counted or not; 
o changing eleven units for a long.   

· Changing one chip into ten chips in 
another column (vice versa) 
o by counting correctly or not ten chips  
o (from one ten to ten ones) by moving 

one chip from the tens to the ones 
column and adding 10 new chips. 

o (From ten ones to one ten) by 
removing all the chips counted or not.   

· By placing in the right or wrong column 
the chips exchanged. 

Interpreting · Associating the right value to each sort 
of block. 

· Associate the right column to each 
position 

· Changing the reading direction from the 
one used when representing 

Table 3: Actions made by pupils in relation to the characteristics of each manipulatives  

Discussion 
With the table presented above, we have tried to better understand what it means to do mathematics 
with manipulatives when developing calculation abilities at the elementary level. By examining the 
characteristics associated with action, we put to light different affordances. Even if some affordances 
are shared, some others are specific to only one of the manipulatives. In this section, we discuss 
further one idea that emerged from our analysis. This idea allows to put to light some differences in 
pupils’ actions that are related to manipulatives characteristics. Also, speaking of affordance is 
speaking of seeing what could be observed but is not. Both, what is observed and what is not can 
inform of the manipulative practices in the classroom. 
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Counting Over and Over 

In the first grades of the elementary, children are used to count to solve problems. The teachers then 
try to enrich their number sense and to complexify their counting strategies (with number facts, 
adding to ten, visual pattern disposition, etc.). However, for most pupils, the counting aspect brought 
by the use of manipulatives clearly took over other calculation abilities and some control was lost in 
their mathematical activities. When using base-ten blocks, most pupils counted the blocks even for 
small quantities. For example, when adding three to nine units, we observed pupils counting three 
units, then counting nine units, putting them together, counting the total, obtaining twelve units, 
counting ten units to trade them for one long. This may seem trivial insofar as the counting strategy 
is achieved with success; it does not mean there is a lack of control. Nevertheless, we have observed 
several errors that arise from this way of doing even if pupils know their numerical facts. For example, 
a pupil took eight units, but counted nine. Thus, when he added three units and counted the total, he 
obtained eleven units (and not twelve). He continued his calculations with eleven units and obtained 
a very close answer, but the wrong one. However, we observed him mentioned to another pupil, 
further in the video, that nine and three give twelve. 

Also, even if pupils are able to group by tens and ungroup, they do not rely on this property yet visible 
in the base-ten blocks. They rather count. For example, again, to add three to nine units, pupils could 
have taken one long and kept only two units directly, but they count as we described it above. 
However, while we observed the same way of doing with an abacus, we also saw more complex 
strategies. For example, when adding nine and three, a pupil added to ten. However, he was not able 
to coordinate his action with the abacus and the mental operation.  

In short, the main action observed during the task was counting. Counting over and over seemed to 
divide the global task into counting sub-tasks. After each sub-task, most pupils had to think again 
about what they were doing sinking into a vicious cycle: thinking about the global task made them 
forget about the counting they did and counting again made them forget about the global task. With 
manipulatives, it is difficult, for pupils, to keep track of what is done and what has to be done.  

Does this mean that using manipulatives only suggest this way of doing things for those pupils? There 
is more than one answer to that question. On the one hand, it does because even if it is not necessary 
all the time, there is always some counting to do. Using manipulatives to add or subtract involve 
counting physical objects. The physical aspect of manipulatives asks for this way of doing. However, 
counting is not always the most efficient strategy to use here. Of course, the environment, i.e. the 
usual class activities, certainly contributes to reinforcing this strategy. On the other hand, as 
mentioned years ago by researchers (e.g. Bednarz & Janvier, 1982), the tasks performed with the help 
of manipulatives relate essentially to number representation and “translation”, a work on the number 
representation in our numeration system. As pupils presumably used base-ten blocks to count in the 
first place and less to operate coordinating other strategies as well, we can think that the praxis of this 
manipulative associate it immediately to counting. While we tend to believe that the use of 
manipulatives supports mathematical reasoning, in this case, we rather observed that pupils refer to 
more basic reasoning than they could have used.  

In fact, we observed more advanced strategies with the less familiar abacus than with base-ten blocks 
used since first grade. For McNeil & Jarvin (2007), working with familiar manipulatives might drive 
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the attention of pupils in the wrong. In our case, it is not a wrong direction, but it seems to lead to 
more basic strategies and to some lack of control. We could conjecture that using a less familiar 
manipulative does not drive pupils to usual uses. Indeed, in terms of affordance, the meaning 
constructed in the interactions between the abacus and pupil is less constraint by the experiences. It 
gives leeway to integrate skills in a new situation (e.g. visual patterning, use of number facts, etc.). 

Conclusion 
Carbonneau, Marley & Selig (2013) said that “specific instructional variables either suppress or 
increase the efficacy of manipulatives suggests that simply incorporating manipulatives into 
mathematics instruction may not be enough to increase student achievement in mathematics” (p. 397). 
Looking at affordance help understand that not only the instructional setting, but the culture of the 
class and pupils’ experiences also play a role when talking about learning with manipulatives. As 
manipulatives used to solve this task are by definition physical object, counting can’t be detached 
from it. Doing math with manipulatives was not the same activity in this particular case. We observed 
that pupils rely mostly on what they used to do with a specific kind of manipulatives rather than what 
they used to do without them. The question is then how to help the pupils rely on other characteristics 
of these manipulatives? Drijvers (2003) stressed that the affordance that could be realized in the 
classroom rely not only on the tool itself, but rather on the exploitation of these affordances the 
educational context and the teacher drive that. As base-ten blocks are often used in grades 1 and 2 
when pupils don’t master the table facts, the teachers’ role is here quite important. They have to help 
pupils go beyond counting and perceived the power of organizing manipulatives by exploiting the 
space to “see” table fact and not solely rely on it to count and to represent numbers. To do so, teachers 
could organize the educational context around manipulatives to provide wider learning opportunities 
for the pupils. 
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Introduction 
Skemp (1976) made a distinction between “instrumental understanding” and “relational 
understanding”. This paper focuses on understanding in mathematics education and aims to construct 
models for grasping the condition and process of mathematical understanding of students. 
Understanding models can be roughly divided into two types: the condition model and the process 
model. First, the condition model describes the condition that students already understand. Second, 
the process model describes the process of students’ understanding. This process model has included 
transcendent recursion that Pirie and Kieren (1989) showed. Pirie and Kiren (1989) asserted that 
“what is needed is an incisive way of viewing the whole process of gaining understanding” (p.7), and 
argued the necessity of the process model. As stated above, it is important to analyze the process of 
understanding, and it is necessary to clarify the object. In our project we focus on the algebraic 
structure because we think that understanding the algebraic structure is a crucial prerequisite for 
students’ systematic understanding of mathematics, and helps them learning mathematics more 
deeply. The aim of this study is to clarify the process of understanding the algebraic structure of 
leaners. This study targets student from seventh grade to twelfth grade and focuses on the extension 
of number sets in school mathematics. 

Method 
This paper reflects a theoretical study. One of the main claim is to construct the theoretical framework 
for the empirical research (see Figure 1). Therefore, we reviewed and interpreted literature about the 
algebraic structure that Bourbaki (1943/1974) showed, and the dual nature of mathematical 
conceptions that Sfard (1991) showed. The mathematical 
structure is compounded of a set, an operation between 
elements and an axiom of structure. Bourbaki (1943/1974) 
defined the algebraic structure by the laws of composition 
and laws of action. Assuming that a set is S, an operation 
is ＊, an axiom of structure is P, and these three elements 
are paired, (S,＊,P) indicates the structure. Sfard (1991) 
argued that mathematical conceptions can be grasped in 
two different methods. One of the two different methods 
is to think structurally as object and the other is to grasp 
operationally as process. She grasped the duality of 
mathematical conceptions and claimed that mathematical conceptions are developed by repeating the 

Figure 1: The theoretical framework 
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transition from operational conceptions to structural conceptions. Then, we focus on closure under an 
operation in the algebraic structure and clarify the process of understanding the algebraic structure. 

Results and Discussion 
The generalized model of conception formation by Sfard (1991) shows that transition from 
operational conceptions to structural conceptions is repeated. We clarify the process of understanding 
the algebraic structure in the relation between sets focusing on the extension of number sets. So, we 
take an extension from the set of natural numbers to the set of integers and we focus on the general 
model of conception formation that Sfard 
(1991) showed. In the process of 
understanding the algebraic structure with the 
extension of the set of natural numbers to the 
set of integers four stages are included (see 
Figure 2). At each stage the students transfer 
from the operational conception to the 
structural conception. In the first stage 
students add and subtract with natural 
numbers, and then they understand the result 
of subtraction of natural numbers is not 
necessarily a natural number. In the second 
stage they calculate with a concrete number to confirm whether the set of natural numbers is closure, 
thereby understanding that the set of natural numbers is not closure under subtraction if a subtrahend 
is bigger than a minuend. In the third stage they introduce new numbers to ensure that the set of 
natural numbers is closure under subtraction, and then they can calculate even if a subtrahend is bigger 
than or equals a minuend. In the fourth stage they do addition and subtraction with positive numbers, 
zero and negative numbers, and then, they can calculate in new number set. We show there are four 
stages in the process of understanding the algebraic structure with the extension the set of natural 
numbers to the set of integers. In this process of understanding the algebraic structure, the recognition 
that the set is closure under an operation is crucial. The second stage is the stage of understanding 
whether the set of natural numbers is closure under an operation, and the third stage is the stage of 
introducing a new number from viewpoint that the set is closure under an operation.  
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Although making appropriate strategy choices is arguably a key indicator of calculation fluency, 
recent curriculum reforms in England prioritise the teaching of formal algorithms. The impact of this 
policy on students’ calculation choices is currently unknown. This paper, which derives from a wider 
sequential mixed methods explanatory study, consisting of a large-scale survey (N=590) followed by 
individual interviews (n=23), casts some light on this issue by investigating the strategy choices of 
the first cohort of Year 6 students (10–11-year-olds) studying under the curriculum reforms. The 
survey findings showed that gender, prior attainment and confidence were all significant predictors 
of the use of formal algorithms. The interview findings revealed knowledge of multiple strategies and 
a willingness to choose alternative strategies as other key variables. 

Keywords: Calculation, strategy, fluency, gender, confidence. 

Background 
This study was motivated by recent curriculum reforms in England (DfE, 2013a) which compelled 
schools to prioritise the teaching formal algorithms (Figure 1) over and above other calculation 
strategies. Those reforms signposted a dramatic shift away from previous policy that had encouraged 
the teaching of a wider range of calculation strategies (DfES, 2007).  

 
Figure 1: Formal algorithms for the four operations (DfE, 2013a, pp. 46-47) 

Alongside the curriculum reforms (DfE, 2013a), corresponding adjustments were made to the 
assessment procedures; incorrect calculations would receive half marks if and only if students 
attempted a formal algorithm. The reforms swiftly appeared to have an impact on classroom 
pedagogy: McClure (2014, para. 3) noted that “Many schools are already interpreting this as practice, 
practice, practice of formal algorithms.” Although procedural fluency is recognised as a key factor of 
calculation fluency, the relevant literature highlights other factors too.  

Theoretical framework 
The notion of calculation fluency (also known as computational fluency) has been defined in the 
literature as requiring students to satisfy several different criteria. For example, the US-based National 
Council of Teachers of Mathematics (NCTM, 2000) stated: 
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Students exhibit computational fluency when they demonstrate flexibility in the computational 
methods they choose, understand and can explain these methods, and produce accurate answers 
efficiently. (NCTM, 2000, p. 152) 

The NCTM’s definition was consistent with the way we conceptualised calculation fluency in this 
study as requiring accuracy, efficiency, flexibility and understanding of the chosen strategy. In light 
of the DfE’s (2013a) reforms prioritising formal algorithms, flexibility received special attention in 
our work; due to the particular curricular context and policies, students in this study were deemed to 
be working flexibly when they deviated from choosing the formal algorithm. Examining the impact 
of teaching formal algorithms on 9–10-year-old boys in Belgium (N=21), Torbeyns and Verschaffel 
(2013) reported that most of the students prioritised formal algorithms within a year of their 
introduction to those strategies, even for calculations suited to other strategies such as 482 – 299. 

The DfE’s (2013a) reforms prioritising formal algorithms in primary schools were accompanied by 
an increased focus on problem-solving in secondary schools. The DfE’s reforms across both levels 
of schooling appeared to assume that they satisfied the needs of all students. However, Villalobos 
(2009) argued that the gender differences in mathematical attainment observed in US schools could 
be explained by the different curricula that students experienced in their primary and secondary 
schooling. Her model predicted that young girls might respond positively to the increased focus on 
formal algorithms but their early success might hamper their later mathematical attainment studying 
under a problem-solving curriculum. Indeed, significant gender differences already existed in UK 
schools before the reforms; the DfE (2013b) released data indicating that similar numbers of girls and 
boys consistently achieved age-related expectations in primary mathematics, yet boys were 
outperforming girls at higher levels. Examination of the assessment descriptors (DCSF, 2009) 
revealed that pupils working at age-related expectations were expected to satisfy objectives 
addressing number recall and performing written calculations whereas pupils working above age-
related expectations were expected to demonstrate more problem-solving skills.  

The literature also revealed gender differences in calculation strategies. For example, Carr and Davis 
(2001) conducted a choice/no-choice study with 6–7-year-old students in the US (N=84) comparing 
their addition and subtraction strategies; the boys tended to prefer counting in their heads whereas the 
girls were more likely to choose counting on their fingers. Also, Hickendorff, Van Putten, Verhelst, 
and Heiser (2010), investigating the division calculations of 12-year-old students in the Netherlands 
(N=362), reported that boys tended to prefer informal written calculation strategies whereas girls were 
more likely to adopt formal strategies. Furthermore, when the researchers asked the students to record 
their division strategies, the boys tended to record fewer steps and work more intuitively than the 
majority of the girls in the sample. However, the reforms (DfE, 2013a) adopted a ‘one size fits all’ 
model which ultimately expected all pupils to use the formal algorithm and did not appear to take 
into account the differences described above. Moreover, the Programme for International Student 
Assessments (OECD, 2009) confirmed that 15-year-old English students had one of the largest gender 
differences favouring boys in mathematical performance.  

The role of confidence in the calculation choices of boys and girls remained unexplored in the 
literature despite evidence revealing that confidence could interact with gender in shaping students’ 
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dispositions, decisions, or achievement. For example, Brown, Brown and Bibby (2008) reported that 
almost twice as many UK 16-year-old girls than boys indicated that they would not consider studying 
mathematics post-16 because it was perceived as ‘too difficult.’ Moreover, US-based Heilbronner 
(2013) found that confident students were more likely to continue studying mathematics post-16 than 
their less confident counterparts. Exploring the factors surrounding gender participation in the various 
STEM-related career paths, Heilbronner also reported a gender imbalance across the STEM-related 
subjects where females were less likely to choose engineering or mathematics than males. Hence 
confidence was regarded as a key issue in this study. For the purposes of this study, we adopted the 
definition of mathematical confidence as being an individual’s belief in their ability to ‘do’ 
mathematics (Fishbein & Azjen, 1975). 

Research design was another concern. Prior calculation studies tended to adopt choice/no-choice 
designs which limited their opportunities to explore calculation choices. Few studies explored the 
reasons behind the strategy choices of the students. Moreover, the DfE’s (2013a) reforms prioritised 
formal algorithms for the four operations but prior studies tended to focus on a single operation, such 
as addition. The limited number of studies which did address all of the four operations did not consider 
gender or confidence. Hence this study adopted a sequential explanatory mixed methods research 
design which addressed the following research question: To what extent do gender, prior attainment 
and confidence predict use of formal algorithms across all of the four operations? 

Method 
Participants 

For the quantitative phase, 19 schools were randomly selected from a larger cohort taking part in a 
regional Mathematics Specialist Teacher (MaST) programme, an initiative which aimed to place a 
Master-level trained teacher in every primary school. This approach resulted in a potential sample of 
670 10–11-year-olds. The actual sample consisted of 590 students (324 boys, 266 girls) with 79 
students removed (35 - newly arrived in the UK with English as a second language, 33 - working 
below the required level, 6 - absent, 1 - poor behaviour and 4 - no evidence of parental permission).  

Data collection 

The quantitative survey consisted of a workbook containing 16 calculations, a mathematics 
Confidence Questionnaire (CQ) and the prior attainment scores from students’ most recent national 
assessment at age 7 (Level 1 = below average, Level 2 = average, Level 3 = above average). The class 
teachers delivered the materials under national assessment test conditions.  

The workbooks reflected the overall focus of the study by including some calculations which were 
deemed suitable for using formal algorithms (456+372, 5412+2584, 632-154, 27x63, 568x34 and  
517÷19) and others which were regarded as suitable for other approaches, such as rounding to the 
nearest multiple of ten or counting the difference between two numbers (299+532, 245+256, 500-76, 
702-695, 382-199, 20x46, 35x99, 693÷3, 480÷20 and 401÷25). The draft workbooks were piloted, 
revised and validated by five education professionals who were asked to confirm their suitability for 
the use of formal algorithms or alternative strategies; they were also asked to confirm their age-
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appropriateness, and their scores exceeded the minimum score of 0.8 recommended for new measures 
(Rubio, Berg-Weger, Tebb, Lee, & Rauch, 2003).  

The CQ was adapted from an existing measure which addressed mathematical competence as well as 
views on the importance of mathematics (Eccles, Wigfield, Harold, & Blumenfeld, 1993). The 
original version consisted of ten questions with a five-point Likert-style response scale which had 
been extensively trialed with similar age groups. For example, students were asked ‘How well do you 
expect to do in math this year?’ and ‘How good in math are you?’ The questionnaire could be 
efficiently administered by teachers to their whole class, but the terms math and student were replaced 
for my UK-based study. The internal consistency of the revised questionnaire was confirmed using 
Cronbach Alpha testing, achieving a high rating (10 items; α=0.88). 

Twenty-four potential interviewees (12 boys, 12 girls) were drawn from three of the schools from the 
initial phase. This purposeful sample consisted of 12 high attaining students (6 boys, 6 girls) and 12 
low confidence students (6 boys, 6 girls). One student, a high attaining girl, was absent which resulted 
in an actual sample of 23 interviewees. Each pupil was individually interviewed by the first author 
and the interview was audio recorded (video recording was not possible due to school policies). Since 
the purpose was to elicit the reasons underlying the students’ strategy choices, semi-structured 
interviews were deemed the most suitable approach; after a few introductory questions to confirm 
their name and willingness to participate in the project, the students were asked a series of questions 
addressing different aspects of their calculation fluency such as the reasons behind their strategy 
choices, their knowledge of alternative strategies and their checking procedures.  

Data analysis 

The initial quantitative data analysis informed the subsequent qualitative analysis. Each workbook 
was checked for accuracy and the individual calculations were coded according to the chosen strategy. 
An individual’s flexibility was determined by the total number of times they chose formal algorithms 
across the 16 calculations. Quantitative analysis was conducted using ANOVA to compare the 
accuracy rates of different strategies and Multiple Linear Regression (MLR) to predict flexibility; the 
three predictor variables were gender, prior attainment and confidence, and the dependent variable 
was their use of formal algorithms.  

The interviews were transcribed and coded using framework analysis (Richie & Spencer, 1994). This 
accommodated a priori issues from the quantitative phase as well as other themes emerging during 
the analysis. It began with a familiarisation stage, reading and re-reading the transcribed notes in 
order to become totally immersed in the data. The a priori themes were calculation accuracy, use of 
the formal algorithm (which reflected the flexibility aspect of calculation fluency), conceptual 
understanding, efficiency and the most accurate calculation strategies. The notes taken during this 
stage were organised into a draft thematic framework which was trialled and refined with a limited 
number of the transcripts, and the revised framework retained its original themes. Charting the data 
moved the analysis from working with individual transcripts towards analysing the whole data set. 
Each chart represented a single theme and the data was organised into the sub-themes identified in 
the previous stages of the process – these completed charts allowed the data to be analysed both 
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vertically (by sub-theme) and horizontally (by individual pupil). The charts enabled counting of the 
total number of coded items as well as consideration of the actual text. 

Findings 
Although formal algorithms were the most frequently selected strategy for each of the sixteen 
calculations, ANOVA tests confirmed that other strategies were significantly more accurate for three 
of those calculations (702 – 695, 401 ÷ 25 and 517 ÷ 19) and formal algorithms for two others (456 
+ 372 and 693 ÷ 3). The MLR analysis revealed a statistically significant regression equation (F (4, 
585) = 11.98, p<0.001), R2 = 7.57% (Table 1) for predicting use of the formal algorithm. 

Use of formal algorithm = 5.5212 + 0.8893(girl) – 1.3026(Level 2) – 1.6688(Level 3) + 
0.1439(Confidence). 

The MLR analysis confirmed that gender, prior attainment and confidence were all significant 
predictors of flexibility, but the most significant factor was confidence. If a student rated their 
mathematics confidence with the maximum score of 50, then their predicted use of formal algorithms 
increased by seven calculations. However those findings did not explain why the confident students 
tended to choose formal algorithms. Nor did they either explain why the girls tended to choose formal 
algorithms for one more calculation than the boys, or explain why the high attaining pupils tended to 
choose formal algorithms for two fewer calculations than the others. Due to the sequential nature of 
this study, each issue was addressed in the subsequent qualitative analysis. Moreover, the regression 
model indicated that just under 8% of the variance in choosing formal algorithms was explained by 
the three predictor variables so the qualitative phase also offered an opportunity to explore other 
possible variables to account for the remaining variance.  

Coefficient Estimate Standard 
Error 

t-value p-value 

Intercept 5.5212 0.9884 5.5862 3.56E-08 

Girl 0.8893 0.3091 2.877 0.0040 

Level 2 -1.3026 0.5379 -2.4217 0.0158 

Level 3 -1.6688 0.6225 -2.6806 0.0076 

Confidence 0.1439 0.0229 6.2793 6.63E-10 

Table 1: Summary of revised coefficients for predicting use of the formal algorithm 

Consider the quantitative finding that the more confident students tended to choose formal algorithms: 
this finding might imply that those students were either confident in their abilities to apply those 
strategies or they felt confident because they were following their teacher’s approach. Alternatively, 
this finding might appear to imply that the low confidence students drew upon a wider range of 
calculation strategies than their counterparts by not relying on formal algorithms. However, the 
interviews revealed that the situation was more complex than it initially appeared; two-thirds of the 
low confidence interviewees admitted that they only knew a single strategy for some of their 
operations, some of them had yet to encounter formal algorithms and others were unwilling to attempt 
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such strategies due to their lack of practice with the strategies. In particular, when asked to suggest 
another strategy for working out their answers, most of the low confidence students struggled to name 
an alternative strategy for multiplication or division calculations.  

For gender, the quantitative findings showed that the girls were more likely to choose formal 
algorithms than the boys, and the interviews revealed that the girls preferred to use the same strategy 
for calculating and checking too. When the girls did know another strategy, such as rounding for 
35 x 99, several of them either did not identify suitable opportunities to apply it or were reluctant to 
apply it. Several students stated that their choice of strategy was influenced by their knowledge of the 
assessment procedures for national tests.  However, most of the boys were willing to adopt different 
strategies such as applying their knowledge of divisibility rules or checking their answers using 
inverses.  

The quantitative findings also showed that the high attaining students were less likely to choose 
formal algorithms than other students, and their interviews revealed that they knew a greater range of 
strategies than the other students which enabled them to select alternative approaches. This was most 
noticeable when the high attaining students were discussing how they checked their answers; half of 
them employed more than one checking procedure or estimated their answers. Their flexibility 
ensured that they had a higher mean accuracy score than the other students too. 

The interviews also shed further light on the unaccounted for variance in the regression model. 
Knowledge of multiple strategies and checking procedures emerged as important factors to consider 
regarding use of formal algorithms. More specifically, the transcripts revealed that students checked 
their calculations in different ways and at different times, and that those differing strategies might 
account for different accuracy rates too. The most accurate students were the minority who checked 
at least some of their answers using multiple strategies such as divisibility rules and using inverses; 
the majority simply checked each of their calculations by repeating their initial strategy. The students 
also checked their answers at different times but most of them checked as they went along. Around a 
fifth of the students, mostly boys, delayed checking their answers until they had finished all of their 
questions. However, the findings relating to the optimum time for checking their calculations were 
inconclusive, due to the small numbers of students involved. The interviews also highlighted the 
potentially negative influence of national testing on calculation flexibility; several students said that 
their choice of formal algorithms was influenced by national tests. 

Discussion 
Exploring different calculation strategies offers an opportunity for young students to experience 
working flexibly in the mathematics classroom, rather than relying exclusively on formal algorithms. 
However, the findings revealed that formal algorithms were the most frequently selected strategy for 
each of the 16 calculations in this study, including those deliberately included due to their suitability 
for other strategies. The subsequent interviews revealed that less confident students tended to be 
unaware of multiple strategies for multiplication or division calculations, possibly indicating that the 
renewed emphasis on formal algorithms might have steered some schools towards teaching a 
narrower range of strategies. The interviews also revealed that failing to recognise an opportunity to 
work flexibly often resulted in students choosing a less efficient, potentially error-prone, strategy. 
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The finding that the girls were more likely to choose formal algorithms than the boys was consistent 
with the early stages of Villalobos’ (2009) theoretical model whereby young girls experience strategy 
socialization when they choose to follow algorithms. If the model is correct, those girls may struggle 
to adapt to the demands for more flexible approaches of later mathematics courses, such as those 
related to problem-solving. The results also showed that the high attaining students were less likely 
to choose formal algorithms than others. Their willingness to work flexibly would present a clear 
advantage for those high attaining students when problem-solving; knowing more than one strategy 
would enable them to adopt a different strategy if they got stuck (Russell, 2000).  

Moreover, the most accurate students were the minority who checked at least some of their answers 
using multiple strategies, including estimation which was highlighted as important in the literature 
(e.g., Doreneles, Duro, Rios, Nogues, & Pereira, 2017). Readiness to consider other strategies was 
also recognised as a key aspect of fluency (McClure, 2014); comparing two answers from different 
strategies would allow students to identify any possible errors which might not have been noticed by 
simply repeating their initial strategy. 

All study designs have their limitations. Although this project focused on gender, prior attainment 
and confidence, we accept that future studies might address social class or the enacted curriculum. 
Due to financial and time restraints, the student interviews were limited to three schools; widening 
the range of schools might uncover further factors too. 

The above findings have clear implications for schools, researchers and policy makers. The decision 
to focus on all four operations, contrary to most prior research, exposed differences in the extent of 
students’ knowledge of multiple strategies between operations. Also the sequential explanatory mixed 
methods research design, another notable difference from most prior research, enabled further 
exploration of the initial quantitative results by revealing potential issues arising from focusing too 
heavily on formal algorithms. Such issues include: low confidence students lacking knowledge of 
multiple strategies, restricting their options when they encounter difficulties; girls prioritising 
algorithmic fluency above all other aspects of mathematics, possibly to the detriment of their future 
mathematical development; and, students limiting themselves to a single calculation and checking 
procedure, reducing their opportunities to spot errors. Next steps in this study involve disseminating 
these findings to a variety of audiences, especially policy makers through contributions towards 
parliamentary access groups, national conferences and teaching publications. 
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Number line estimation and quantitative reasoning: two important 
skills for mathematical achievement1 
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Number estimation and quantitative reasoning have been indicated as significant skills for 
mathematical achievement. In this sense, this paper aims to analyse the students’ performance in 
these two skills and verify possible relations between both. For that, 143 students from 3rd and 4th 
grades of elementary school were evaluated using two number line estimation tasks. Results showed 
that there is a direct relation between children’s performance in both abilities. From this, it is 
suggested that both number estimation and quantitative reasoning tasks can be used in daily 
classroom activities to promote the learning of initial mathematics concepts considering the 
importance of estimation in daily activities. 

Keywords: Number estimation, quantitative reasoning, mathematical learning. 

Introduction 
Mathematics is an important area of knowledge for children's cognitive development, as it involves 
several domain-specific skills related to numerical knowledge. Learning mathematics requires the 
understanding of initial concepts about numbers, quantities and relations, and the ability to make 
connections between these concepts (Nunes, Bryant, Sylva, & Barros, 2009). Therefore, it is 
important to provide different teaching and learning situations with the intention of promoting 
children’s mathematical development. In this sense, our study highlights two skills indicated in the 
literature as significant for mathematical learning: number estimation and quantitative reasoning. 
Number estimation is a cognitive ability that has been studied and pointed out as important for 
mathematical performance (Geary, 2011; Moore & Ashcraft, 2015; Schneider et al., 2018; Siegler & 
Booth, 2004; Siegler, Thompson, & Opfer, 2009). The evidence is that the ability to estimate is related 
to arithmetic, number categorization and numerical magnitudes (Laski & Siegler, 2007; Link, Nuerk, 
& Moeller, 2014; Schneider et al., 2018; Siegler et al., 2009). In number estimation tasks, students 
identify numerical magnitudes and perform number decompositions. More than that, studies have 
shown that children’s ability to accurately locate numbers on a number line is predictive of later 
mathematical achievement (Geary, 2011; Siegler & Booth, 2004). The number line estimation task, 
in the version number-to-position (NP), is the task most commonly used to evaluate the ability to 
estimate numerical magnitudes. In this task, participants are given a number, in the form of Arabic 
numerals, and are asked to locate that number on a line usually bounded in a numerical range. This 
task has been used to trace the development of the pupil's comprehension of numerical magnitude 
throughout the school grades (Booth & Siegler, 2006; Schneider et al., 2018; Siegler & Opfer, 2003). 

                                                 
1 This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) 
- Finance Code 001 
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An alternative version of the number line estimation task has also been proposed. The intention of 
this version is to investigate estimation accuracy differences between tasks and to gain a broader 
understanding of the development of the ability to estimate. In this version, called position-to-number 
(PN), participants are asked to estimate a number corresponding to a location on a number line also 
bounded by a numerical range. Figure 1 shows examples of NP and PN tasks. 

 
Figure 1: Examples of the number estimation tasks NP and PN  

These two versions of the number line estimation task are complementary since they embody the 
central property of the ability to estimate, which is the translation between numerical and spatial 
representations (Siegler & Opfer, 2003). 

Regarding quantitative reasoning, we can say that it is essential for the construction of initial 
mathematical concepts, since it is based on the understanding of the relations between quantities, for 
example, if they are increasing or decreasing (Nunes, Dorneles, Lin, & Rathgeb-Schnierer, 2016). 
Evidence indicates that quantitative reasoning developed from the beginning of elementary school 
contributes significantly to mathematical achievement and that understanding the relation between 
quantities is essential for learning numerical and arithmetic representations (Nunes et al., 2007; 
Nunes, Bryant, Barros, & Sylva, 2011). Quantitative reasoning is divided into two categories, additive 
and multiplicative reasoning, which are classified by situations according to the relation established 
between quantities (Nunes et al., 2016). Additive reasoning is characterized by the ability to join or 
separate quantities from a total quantity (quantity composition problems), to recognize the inverse 
relation between addition and subtraction (transformation problems), and to understand comparative 
situations (comparison problems). Multiplicative reasoning involves the ability to perform one-to-
many correspondence and to perform distributions equally. It is classified in situations of direct or 
inverse relations between quantities and product of measures, in which a third quantity is formed by 
two other quantities (Nunes et al., 2016). Examples or these quantitative reasoning tasks that were 
used in this study are presented in Figure 2.  

 
Figure 2: Examples of quantitative reasoning problems 

Thematic Working Group 02

Proceedings of CERME11 462



 

 

Thus, we perceive that different quantitative relations are necessary in order to understand 
mathematical concepts and operations. When students understand the relation between quantities and 
operations, it becomes easier to correctly decide the strategies and schemes to be used to solve the 
problems. Consequently, this understanding will have a direct influence on mathematical 
achievement. 

Concluding this review, some studies on this topic have been presented in a previous edition of 
CERME. About number estimation, we found a comparison study between two estimation tasks in 
2nd and 3rd graders´ performance (Dorneles, Duro, Rios, Nogues, & Pereira, 2017), and another 
comparing preschool children’s performance in a number line estimation task with initial math skills 
(Elofsson, 2017). On quantitative reasoning, we highlight a study carried out with 2nd graders 
checking their solution strategies when solving transformation situations to support the development 
of their mathematical thinking (Serrazina & Rodrigues, 2017). 

In this sense, what was intended in this study was to analyse the performance of 3rd and 4th grade 
students on number estimation and quantitative reasoning and to investigate the relation between their 
performance in these abilities. This relation, as far as we know, has not yet been the focus of studies. 
Therefore, this research fills a gap in the literature and provides more evidence of cognitive abilities 
important to mathematical performance. 

Method 
The sample comprised a total of 143 children (62 girls and 81 boys) from two public elementary 
schools in Porto Alegre/Brazil. Schools were chosen by criteria of convenience, number of students 
and attending to communities of similar socioeconomic classes. The students were 3rd and 4th graders 
(76 from 3rd and 67 from 4th grade), and ages between 8 to 11 years old (M=9.8, SD=.74). They were 
evaluated using two number line estimation tasks (NP and PN) and one quantitative reasoning task. 
The 3rd and 4th school grades were chosen because in these grades the students are in similar moments 
of learning considering the curricular contents, especially in relation to numerical knowledge. And 
the tasks used require some numeric knowledge established to be solved, like the understanding of 
the numerical system and of the four mathematical operations. It is important to say that estimation 
and problem solving are part of the curriculum in Brazil, but these tasks specifically of number 
estimation and quantitative reasoning are not usual in classrooms. Even though, the children were 
able to solve the tasks after the researcher’s explanation. 

To evaluate number estimation ability, two number line tasks were used adapted from Siegler and 
Opfer (2003). The first one was number-to-position (NP) task, which consists in locating the position 
of a number on a number line bounded by 0 on the left and 100 on the right. The second one was 
position-to-number (PN) task, which consists of estimating a value that corresponds to a mark 
indicated on a number line also bounded by 0 and 100. There were 22 numbers to be estimated (2, 3, 
5, 8, 12, 17, 21, 26, 34, 39, 42, 46, 54, 58, 61, 67, 73, 78, 82, 89, 92, 97), taken from the study by 
Laski and Siegler (2007). These numbers were presented in a random order and children wrote down 
their estimates in a notebook containing a number line and a number to be estimated on each page. 
The task was applied in groups of 10 students and lasted about 30 minutes per group. 
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The quantitative reasoning task was adapted from Nunes (2009) and aimed to evaluate children’s 
arithmetic reasoning in problem solving. The quantitative relations involved were additive reasoning 
(including composition of quantities, situations of transformation and comparison) and multiplicative 
reasoning (containing situations of direct and inverse relations between quantities and product of 
measures). The task was composed of 18 situations, nine of each kind of reasoning. Task application 
occurred collectively in groups of 10 students. Each participant received a notebook containing one 
situation per page, in which only illustrations were presented without written information. The 
instructions were given orally by the assessor, so the children did not depend on their reading ability. 

The analysis of performance in number estimation was determined by calculating the accuracy with 
which the students estimated each number requested, that is, by calculating the percentage of absolute 
error of each child´s estimate. This computation is adapted from Siegler and Booth (2004) and can be 
explained by dividing the difference between the child's estimate and the number to be estimated by 
the number line scale (which in this task is 100). For example, consider that the number to be 
estimated was 40 and the child made a mark on the number line corresponding to number 30, then 
the computation will be done as follows: |30-40|/100, obtaining an accuracy of 0.1. Therefore, the 
lower is the value found, the more accurate is the estimation made by the participant. 

For the quantitative reasoning task, the total score of correct answers in the task and the hits per 
reasoning category (additive and multiplicative reasoning) were considered. 

Initially, the quantitative analyses were conducted to identify any differences in performance on 
number estimation and quantitative reasoning tasks according to gender, age and school grade. Then, 
an association analysis between the performance in the two types of number line estimation tasks was 
conducted. After which, the children’s performance in quantitative reasoning and number line 
estimation tasks was compared. 

Results 
Firstly, the results are presented by task type, describing the students’ performance in number line 
estimation tasks and in the quantitative reasoning task. Finally, the results for the correlation between 
both math abilities evaluated are shown. 

The ability to estimate was evaluated using two number line estimation tasks (NP and PN tasks). The 
performance in both tasks was organized according to the mean accuracy of each child by task. 

In a first analysis, the performance in each of the two number line estimation tasks was related with 
gender, age and school grade, and a statistically significant difference was only found (NP: 𝑈𝑈=1827, 
𝑝𝑝<.05; PN: 𝑈𝑈=1767.5, 𝑝𝑝<.05) with school grade. This indicates that 4th graders accuracy (mean 
NP=.086, SD=.038; mean PN=.074, SD=.037) was better than 3rd graders (mean NP=.11, SD=.055, 
mean PN=.099, SD=.056) in both tasks. After this, from a correlation analysis, accuracy of NP 
(M=.10; SD=.05) and PN (M=.09, SD=.06) showed a moderate but significant correlation (rs=.66, 
𝑝𝑝<.01), indicating that, the better is the accuracy in NP task, the better it is in PN task. A descriptive 
analysis was also conducted to identify which proposed numbers the participants estimated more 
accurately. From this, we can observe (Figure 3) that children were more accurate in numbers at the 
ends of the number line (numbers 2, 3, 5 and 97).  
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Figure 3: Accuracy mean on NP and PN tasks 

Quantitative reasoning 

The quantitative reasoning task assessed the children's ability to solve situations involving arithmetic 
reasoning using the four fundamental mathematical operations. The results were computed by the 
total of correct answers in the task and by the number of correct answers in each reasoning category 
(additive reasoning and multiplicative reasoning). In general, students presented a mean of 10.55 hits 
(SD=3.22). When scores were verified according to the reasoning category, the students obtained 
better scores in additive reasoning (M=6.03, SD=1.92) than in multiplicative reasoning (M=4.51, 
SD=1.81). When correlating performance in the quantitative reasoning task with the variables gender, 
age and school grade, there was a statistically significant difference with school grade (𝑈𝑈=3256, 
𝑝𝑝<.05) and a direct but weak correlation with age (rs=.18, 𝑝𝑝<.05). These results indicate that there 
was an increase in total score from 3rd to 4th grades (3rd grade: M=9.74, SD=3.32; 4th grade: M=11.46, 
SD=2.87). However, this increase was significant (𝑈𝑈=3486.5, 𝑝𝑝<.05) only for additive reasoning (3rd 
grade: M=5.42, SD=2.06; 4th grade: M=6.73, SD=1.47).  

When analysing the situations involved in both additive and multiplicative reasoning (Figure 4), there 
is a higher percentage of correct answers in situations of additive reasoning involving quantities 
composition and transformation. Concerning situations of multiplicative reasoning, students obtained 
higher scores in situations involving direct and inverse relations between quantities. 

 
Figure 4: Scores Organized by Category of Problem Types 
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Number line estimation and quantitative reasoning 

A correlation analysis was conducted to verify associations between the measures of number line 
estimation and quantitative reasoning. Thereby, moderate and significant correlations were found 
between quantitative reasoning total score and both the NP task (rs=-.39, 𝑝𝑝<.01) and PN task 
(rs=--.42, 𝑝𝑝<.01). In the same way, there were also moderate and significant associations between 
score by reasoning category and accuracy in both number line estimation tasks. Correlations index 
can be seen in Table 1. 

 Number Estimation Quantitative Reasoning 
Measures 1 2 3 4 5 
1. NP 1     

2. PN 0,660** 1    

3. AR -0,378** -0,394** 1   

4. MR -0,292** -0,328** 0,502** 1  

5. QR – Total -0,389** -0,420** 0,857** 0,864**  1 
*p<0,05; **p<0,01      

Table 1: Correlation between number estimation and quantitative reasoning 

Discussion and conclusions 
The aim of this research was to verify the relation between number estimation and quantitative 
reasoning performance of a third and fourth graders group, as well as to analyse their performance in 
each of these abilities. For this, two number line estimation tasks (NP and PN tasks) and a quantitative 
reasoning task were used. 

Among the research results, we can highlight the significant difference found between the school 
grades, with 4th graders performing significantly better than 3rd graders in both abilities. These 
findings indicate that experience and increased schooling improve accuracy in number line tasks, as 
found in previous studies (Booth & Siegler, 2006; Laski & Siegler, 2007; Siegler & Opfer, 2003). 
This is a consequence of children becoming more aware of numbers and their relations, learning that 
larger numbers are located to the right on a number line, and that the distance between 10 and 20 is 
the same as that between 80 and 90, for example (Friso-van den Bos et al., 2015; Laski & Siegler, 
2007). 

An association was also found between children’s performance in both number line estimation tasks, 
that is, participants who performed well in the NP task also performed well in the PN task. When 
analysing the numbers in which children obtained better performance, it was found that in the NP and 
PN tasks the numbers with the best precision (2, 3, 5 and 97) are close to the extremities of the number 
line. The worst performances were found in different numbers for each task. Nevertheless, in both 
cases, the majority of the numbers are located between 25 and 50 and between 50 and 75. This result 
is similar to previous studies that indicate that children up to the 4th grade are not very accurate in 
numbers far from the extremities of the number line, (Laski & Siegler, 2007; Siegler & Opfer, 2003). 
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In quantitative reasoning task, 4th graders scored better than 3rd graders as expected. When analysing 
the reasoning categories separately, 4th graders presented better scores in both additive and 
multiplicative reasoning, but this difference was only significant for additive reasoning. This indicates 
that due to the similarity of contents proposed in the Brazilian school curriculum in these grades, 
students are learning multiplicative reasoning, that is, the relations between multiplication and 
division operations, which may explain the fact that the difference between 3rd and 4th graders was 
not significant for these types of reasoning. 

A direct association between number line estimation and quantitative reasoning was found. Students' 
performance in the quantitative reasoning task showed a correlation with both number line estimation 
tasks, specifically additive reasoning, which had the highest correlation index in both NP and PN 
tasks. 

However, one limitation of the research must be considered: the collective application of the tasks 
proposed. Nevertheless, the findings of this study contribute to the planning of tasks that may improve 
abilities that are not currently approached in classrooms, such as number estimation. As previously 
mentioned, the development of the ability to estimate can improve students’ skills in arithmetic 
computations. There are several daily situations when an estimation is enough, without the need to 
get an exact answer, for example, to choose the smallest cashier row in a supermarket, or if it is 
necessary to run to get to school on time. Therefore, in mathematics teaching it is important to 
highlight the use of alternative strategies to solve problems, allowing students to increase their set of 
solution methods. In this way, the use of number estimation in mathematics classes is an option to 
develop ability in arithmetic computations and may help to explain and to check the results of 
computations, while allowing students to establish their own solution strategies and appropriate 
different ways to solve mathematical tasks. 

These results add new elements to the discussion of the role of number estimation in math 
achievement and provide evidence regarding estimation ability. However, future research on the 
subject is needed, such as longitudinal studies that describe the development of the ability to estimate 
and studies that verify the strategies used by students in each school grade. 
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In this study primary, secondary and tertiary education students try to calculate mentally the very 
same tasks involving operations with rational numbers (mainly fractions and mixed numbers). The 
aim was to record the range of strategies used by the students and at the same time to examine how 
these strategies are distributed across these three educational levels. The findings give evidence that 
no matter the educational level, the dominant strategy is the use of mental form of the written 
algorithm. All the other strategies are underrepresented. Moreover, it seems that the use of rational 
numbers in mental calculation is in itself an obstacle for the students since a great percentage of them 
either did not give any answer or the answers they gave were incorrect or non-codable.   

Keywords: Mental calculations, rational numbers, written algorithm.  

Introduction 
Mental calculations in arithmetic refers to the process of calculating the exact result of an arithmetical 
expression given that the solvers use neither a calculating device nor any kind of writing and which 
usually demands an application of mental strategies. In 1924, the well-known mathematician 
Carathéodory, during a lecture he delivered for the Hellenic Mathematical Society highlighted the 
vital importance of the students’ ability “to calculate mentally instead of merely writing down, for 
example, simple subtractions or multiplications” (p. 87). The main interest of the majority of the 
relevant research studies lies particularly in identifying and organizing the strategies the solvers use. 
A considerable body of these studies examines mental calculation in the realm of whole numbers and 
their four basic operations (Rezat, 2011). Lately, researchers express a growth interest on the mental 
calculations in the set of rational numbers concerning either comparison of rational numbers (Yang, 
Reys & Reys, 2009) or operations with rational numbers (Caney & Watson, 2003).  

In this study our focus lies on the strategies used by students across all the educational levels when 
they mentally make calculations that involve rational numbers. More precisely, our research questions 
are:  

· What is the range of the strategies used by the solvers while they mentally make operations 
that involve rational numbers? 

· How are these strategies distributed across the three different educational levels and what 
similarities or/and differences are identified? 

Research literature 
Cathy Seeley (2005), NCTM president for 2004-2006, in her “Do the Math in Your Head!” article is 
making a call to the educational community to realize the significance of the ability to perform mental 
calculations. She associates mental math with both the students’ ability to perform calculations 
quickly, and their conceptual understanding and problem solving. Furthermore, mental calculations 
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constitute a useful means for calculations, given that they are used by almost everyone on a daily 
basis, as a direct and quick way of calculating. According to relevant studies (McIntosh, 2006) over 
three quarters of the mathematical operations performed by individuals in their daily lives are based 
on mental calculations. Moreover, they promote creative and independent thinking, develop sound 
number sense, constitute the basis for developing estimation skills, and finally they facilitate a natural 
progression through informal written methods to standard algorithms (Thompson, 2010).   

As it has already been mentioned, the majority of the research studies focus on mental calculations 
involving whole numbers, and a wide variety of strategies associated to the four operations has been 
recorded. However, the corresponding body of research concerning mental calculations with rational 
numbers is rather limited. A systematic documentation of the strategies used by students in primary 
and secondary education in operations with fractions, decimals and percentages have been realized 
by Caney and Watson (2003). One main finding of their study was that many of the strategies used 
in operations with whole numbers are also used for operations with rational numbers. Furthermore, 
they identified two kinds of strategies for mental calculations with rational numbers: instrumental and 
conceptual strategies. The instrumental work refers to the use of procedural strategies learned by rote. 
Moreover, this work is not accompanied by an explanation displaying conceptual understanding of 
the involved processes. On the contrary, conceptual work takes place when students make use of their 
knowledge on the specific set of numbers and operations to calculate mentally. Finally, Caney and 
Watson (2003) added the ‘mixed’ strategy in case the students combine a rote procedure with a 
conceptual explanation. In their study they identified a series of strategies the students used to solve 
12 problems. More specifically, the students ‘changed operation’ (division to multiplication, 
subtraction to addition), ‘changed representation’ (fractions to decimals and vice versa, percent to 
fractions), ‘used equivalents’ (use of equivalent fractions), ‘used known facts’ (times table), ‘repeated 
addition/multiplication/division’ (by doubling, halving), ‘used bridging’ (bridged to one/whole), 
‘worked with parts of a second number’ (split by place value or by parts), ‘worked from the left/right’, 
‘used mental picture’, ‘used mental form of written algorithm’ and ‘used memorized rules’. Carvalho 
and da Ponte (2015) examined grade-6 students’ mental calculations involving fractions, decimals 
and percentages. They found that students mainly changed representations (fractions to decimals) or 
used the relationship between numerical representations when possible. Moreover, data analysis 
showed that pupils utilized depictive representations such as models or images and descriptive 
representations like the propositional representations in the sense that these mental models arise as a 
representation of the real world (i.e., the students used the context of money, clocks, pizzas, etc.). 
Callingham and Watson (2004) working with students in grades 3 to 10 found that fractions items 
were easier than decimals and percents and that multiplication and division operations with fractions 
were more difficult for students than addition and subtraction, thus mirroring similar findings for 
whole numbers. In the same spirit Lemonidis, Tsakiridou and Meliopoulou (2018) found that teachers 
exhibit a lack of flexibility in the use of strategies in mental calculations with rational numbers. 
McIntosh (2006) examined the errors students make during mental calculations with rational numbers 
and identified two different kinds: procedural and conceptual errors. Procedural errors are connected 
with simple operations between the terms of fractions. They are mostly careless errors or errors that 
appear while carrying a step of a strategy even though the steps are known to the student. For example, 
the student knows that multiplication of fractions means to multiply separately the numerators and 
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denominators of the participating fractions but calculates mistakenly the product of these terms. So, 
if the numerators of the fractions are 6 and 7 the student might find that 6x7=48.  Conceptual errors 
are connected with a limited understanding of the rational numbers or the operations they have to 
execute.  

In this context our study focuses mainly on the strategies (rather than on the errors, although they 
have been recorded) used by primary, secondary and tertiary education students given that all of them 
had to calculate mentally the very same operations involving rational numbers.   

Study design and methodology 
The participants were 295 students on a voluntary basis from all the three educational levels (primary, 
secondary and tertiary education). More specifically, there were 78 grade-6 students [SP], 97 grade 
10-12 students [SS] and 120 University students (63 from the Department of Primary Education 
[SU1] and 57 from the Mathematics Department and the Faculty of Engineering [SU2]). These last 
ones were chosen due to their strong mathematical background that would provide flexibility in their 
strategies. The tasks and the process were identical for all the three different groups.  

Eleven tasks (Figure 1) were posed and the participants were asked to calculate mentally their results. 
The tasks included all the four operations and their design incorporated two main principles. First, 
the answers can be calculated in more than one way thus giving freedom to the participants to work 
in the way they feel more familiar. Second, the tasks are amenable to a fast and easy calculation if 
the correct mental strategy is chosen. For example, in task-a the answer is obvious if the solver can 
see that it is about the sum of two halves. Similarly, in task-f the wanted operation is 2 x 3.5. Aiming 
to cover a variety of different combinations within the spectrum of the operations with rational 
numbers we included operations between fractions, whole numbers and fractions, mixed numbers 
and fractions, mixed and whole numbers. The criterion for each task was always to meet the standards 
for primary school students. 

 
Figure 1: Tasks posed to the students 

Individual interviews where used and each participant was asked to solve one-by-one the whole 
collection of tasks in the order presented in Figure 1. The students were asked to vocalize their 
thoughts while solving the tasks and were prohibited from taking notes or making written 
calculations. There was not time limitations and the duration of the interviews varied from 4 to 9 
minutes since the solvers could skip tasks they couldn’t solve. Neither help nor any feedback were 
provided to them. The only clarification that was given concerned mixed numbers since they are used 
mainly in primary education and the older students confuse mixed numbers with the case of 
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multiplication in algebra. Given that 2x means the multiplication 2 times x, in a similar way the 3 1
4
 

was mistakenly translated as 3 × 1
4
. All interviews were recorded and transcribed. These transcribed 

protocols constituted our data. The students’ efforts were coded according to the following two levels: 
(i) whether the answer was correct, incorrect, left unanswered, or non-codable, and (ii) whether the 
strategy used by the student fits to a certain category of the Caney and Watson (2003) model. 

The data were coded independently by the authors and validity and reliability were established by 
comparing sets of independent results, clarifying codes and re-coding data until agreement. 

Results and Discussion 
Table 1 summarizes the distribution of the total number of answers (3274 answers in total) across the 
various categories of strategies according to the categories of Caney and Watson (2003). It is worth 
mentioning that not all their strategies were identified in our sample and also a new one has been 
added. We’ve been able to identify the ‘changed representation’, ‘used equivalents’, ‘used known 
facts’, ‘repeated addition/ multiplication’, ‘worked with parts of a number’, ‘used a mental picture’, 
and ‘used mental form of written algorithm’ strategies. The new one is named ‘used reduction’. 
Finally, the incorrect, non-answered and non-codable strategies have also been recorded. 

Strategy Changed 
representation 

Equivalents Known 
facts 

Repeated 
add/ multip 

Parts of a 
number 

Mental 
picture 

Frequency 56 (1.71%) 59 (1.80%) 43 (1.31%) 3 (0.09%) 31 
(0.95%) 

30 (0.92%) 

Strategy Written 
algorithm 

Reduction Incorrect Non-
answered 

Non-
codable 

 

Frequency 1406 
(42.95%) 

177 
(5.41%) 

907 
(27.7%) 

519 
(15.85%) 

43 
(1.31%) 

 

Table 1: Distribution of answers across strategies 

The ‘changed representation’ strategy refers to the conversion of a fraction or a mixed number to 
decimal. Some students considered 1 1

2
− 1

4
 (task-e) as  1.5 − 0.25. In task-b some prefered to use also 

decimal numbers to calculate 4 × 3
4

= 4 × 0.75 = 3. In a similar way some students made use of this 
strategy to reach faster the answer in task-f converting the product 3 4

8
× 2 to 3.5 × 2 = 7. We identified 

the ‘used equivalents’ strategy when a fraction is replaced by an equivalent with an explicit reference 
to this. Some students’ mental solution for task-a was 1

2
+ 4

8
= 1

2
+ 1

2
, but this was not because they 

made an immediate reference to the fact that there are two halves but to the fact that ½ is equivalent 
of 4/8. The ‘used known fact’ strategy was mostly used in task-h (3

4
 𝑜𝑜𝑜𝑜 20) since the solvers made use 

of their knowledge of the times table. They started reciting the multiples of 5 and they noticed that 
4 × 5 = 20 and 3 × 5 = 15 which made them to say that the answer is 15. All the three strategies 
presented until now had a very low frequency (less than 2%). This frequency becomes even lower for 
the next three strategies. ‘repeated addition/multiplication’ was only used by two participants in three 
different tasks. The first example is from task-b. The solver’s reaction to the task was to calculate the 
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product 4 × 3
4
 as follows: 3

4
+ 3

4
+ 3

4
+ 3

4
. The next example is drawn from another student’s effort to 

cope with task-g ( 3 1
4
− 1

2
). The solver considered more convenient to substitute 3 with 4

4
+ 4

4
+ 4

4
 . This 

substitution facilitated the addition that follows since all the fractions have now the same 
denominator. 

SS14.7.1: I will substitute 3 with 4
4

+ 4
4

+ 4
4
.  

SS14.7.2: Then, 4
4

+ 4
4

+ 4
4

+ 1
4

= 13
4

 .  

SS14.7.3: And then, 13
4
− 2

4
= 11

4
  

The ‘used parts of the numbers’ strategy was recorded only in task-e and task-f. In the first case the 
solvers decomposed the mixed number to its parts, (i.e., the whole number and the fraction) and then 
made use of the equality 𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐 = 𝑎𝑎 + (𝑏𝑏 − 𝑐𝑐): 1 1

2
− 1

4
= 1 + �1

2
− 1

4
�. In the second case the students 

decomposed again the mixed number and applied the distributive property of multiplication over 
addition: 3 4

8
× 2 = (3 × 2) + (4

8
× 2) = 6 + 1 = 7. The ‘mental picture’ strategy is connected to the 

solvers’ effort to visualize the activity as a means to mentally calculate the result (Carvalho & da 
Ponte, 2015). So, some students while trying to solve task-h preferred to consider 20 as a whole unit, 
‘like a circular pie’ which was divided mentally in 4 equal pieces and 3 of them were taken.  

SS17.8.1: I am thinking of a circular pie and draw its 3
4
.  

 However, the strategy that dominated with extremely high percentage (42,95%) was the ‘used mental 
form of written algorithm’ strategy. Solvers worked mentally in a way that appeared to reflect the 
written algorithm. For task-d a relevant reaction was” “I will make sure that denominators are the 
same… 5

6
+ 4

3
= 15

18
+ 24

18
= 39

18
” (SP7.4.1). For task-f the students converted the mixed number to 

fraction and then they followed the rule for multiplying a whole number with a fraction: “3x8=24, 
plus 4…28, times…56, 56/8…therefore, 7” (SU1.55.6.1). The ‘used reduction’ strategy was the one 
added by the research team. Instances of this strategy were identified in three tasks. The students 
simplified the whole number (in tasks b, c and h) with the denominator of the fraction. So, in task-b, 
they simplified the 4s: 4 × 3

4
= 3. In task-c, the simplification (4 and 8 were divided by 4) resulted in 

a fraction equal to one: 4 × 2
8

= 2
2

= 1 . In task-h, the word ‘of’ was translated as ‘times’ and then the 
whole number was again simplified with the denominator: 3

4
 𝑜𝑜𝑜𝑜 20, which means 3

4
 ×  20 = 3 ×  5 =

15 (20 and 4 were divided by 4).  
Sometimes it seems to exist an overlapping between the ‘used reduction’ strategy and strategies such 
as the ‘used equivalence’ or the ‘written algorithm’. But it was the solver’s aim as this was expressed 
verbally that made us to decide if the solution is associated with one strategy or another. For example, 
in task-a, the solution 1

2
+ 4

8
= 1

2
+ 1

2
= 2

2
= 1 might be considered as the ‘use of equivalence’. However, 

the student’s wording reveals pure use of fraction reduction: “I will simplify the fraction 4/8 which…I 
divide by 2… is 2/4 which in turn is ½. Therefore, ½ + ½” (SU1.45.1.1). In the same spirit, for the 
same task, the answer 1

2
+ 4

8
= 4

8
+ 4

8
= 8

8
= 1 sometimes was considered as ‘use of equivalence’ and 

others as ‘written algorithm’ (see below extracts SU1.9.1.1-2 and SU1.58.1.1-3 respectively)  
SU1.9.1.1: I will make two equivalent fractions. I will multiply both the numerator and 

denominator by 4. 
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SU1.9.1.2: It makes  4
8

+ 4
8

= 8
8

= 1  

…………………………………………….. 

SU1.58.1.1: I will make fractions with the same denominator and I will add them. 

SU1.58.1.2: I need the Least Common Multiple which is 8. 

SU1.58.1.3: It becomes 4
8

+ 4
8

… 8
8
 , therefore 1. 

Errors were surprisingly the second most popular result (McIntosh, 2006). Both procedural and 
conceptual errors were detected. Procedural errors were mainly due to miscalculations, for example:  
5
6

+ 4
3

= 5
6

+ 8
6

= 12
6

. Conceptual errors were mirroring students’ limited understanding and 
misconceptions relevant to fractions. We could mention the flawed idea that when we add fractions 
we just add separately numerator and denominators,  5

6
+ 4

3
= 9

9
 (task-d) or 1

2
+ 4

8
= 5

10
 (task-a). We could 

also add the misconception that when we multiply a whole number with a fraction then the whole 
number must be multiplied by both the nominator and the denominator:4 × 3

4
= 12

16
. Moreover, some 

the students hesitated or were not able to give an answer. Almost 16 out of 100 instances were actually 
non-answered. Finally, we sorted as non-codable answers that did not reveal any kind of thought. In 
this category we also included efforts that were based in a strategy that was not suitable for the specific 
task. In task-k some solvers tried to calculate the results as 1 3

4
× 1

4
= 1.75 ×  0.25. This last 

multiplication was quite demanding, and the students decided to abandon the task. 
 
 SP (Primary) SS (Secondary) SU1 (stud. teachers) SU2 (Math, Engin) 
Changed 
representation –  3 (0.28%) 17 (2.41%) 36 (5.63%) 

Equivalents 2 (0.23%) 3 (0.28%) 25 (3.55%) 29 (4.54%) 
Known facts 12 (1.40%) 11 (1.03%) 13 (1.85%) 7 (1.10%) 
Repeated 
add/multip – 1 (0.09%) 2 (0.28%) – 

Parts of number – 5 (0.47%) 22 (3.13%) 4 (0.63%) 
Mental picture 8 (0.93%) 7 (0.65%) 13 (1.85%) 2 (0.31%) 
Written 
algorithm 

373 (43.42%) 330 (30.78%) 326 (46.31%) 377 (58.99%) 

Reduction 12 (1.40%) 24 (2.24%) 40 (5.68%) 101 (15.81%) 
Incorrect 296 (34.46%) 406 (37.87%) 147 (20.88%) 58 (9.08%) 
Non-answered 151 (17.58%) 264 (24.63%) 88 (12.50%) 16 (2.50%) 
Non-codable 5 (0.58%) 18 (1.68%) 11 (1.56%) 9 (1.41%) 

Table 2: Number of total responses per strategy per group 
It is more than evident the dominance of the written algorithm approach over the remaining strategies. 
This might raise questions about the effectiveness of the way we teach. This becomes more interesting 
if we take account of the incorrect, non-answered and non-codable answers. The total percentage of 
these three categories is 44.86% which actually is more than the percentage of the algorithm. If we 
consider together these two broad groups of participants (those who used the written algorithm and 
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those who had difficulties in answering) then it can be said that almost 9 out of 10 participants either 
used the written algorithm or were unable to solve the tasks (42.95% + 44.86% = 87.81%). 

Table 2 presents in detail how students’ answers are distributed across the groups in the different 
educational levels. The percentages in each column correspond to the specific group of students and 
not to the total sample and confirm the strong influence of the written algorithm in each group. A 
closer look reveals also some interesting issues. On the one hand it appears that both groups of 
university students rely more than primary and secondary students to the written algorithm (which by 
far dominates the landscape). Forty five out of 100 preservice teachers and 6 out of 10 Mathematics 
and Engineering students resorted back to the written algorithm to respond to the tasks. Moreover, it 
is seeming paradox that the highest percentage for algorithmic use (Table 2) is got by students from 
the Mathematics Department and the Faculty of Engineering [SU2] who are the ones with the 
strongest mathematical background.   

On the other hand, it appears that as we move from primary to tertiary education there is an increased 
variety of the correct strategies used (though very small number of instances compared to the total 
number of answers). We refer to all but the ‘written algorithm’ correct strategies. In total 3.96% of 
the primary school students’ answers used these strategies. This percentage is more or less the same 
for secondary education students (5.04%). However, for the tertiary education students this becomes 
almost three times bigger (13.07%). This is not because the use of the ‘written algorithm’ strategy 
has been reduced. On the contrary, the relevant percentages of the algorithmic use for SU1 and SU2 
students are extremely high and greater than the corresponding ones for younger students. It is the 
number of the incorrect answers that became smaller. 

Having said that, it remains impressive that the main finding of this study is the dominance of the 
algorithmic use across all the educational levels (Rezat, 2011). This students’ preference becomes 
more interesting because the tasks were designed to be amenable to a variety of strategies for their 
solution. For example, task-f (3 4

8
× 2) can be solved directly if one notices that the wanted is the 

double of 3 and half. But there are other possibilities also. According to the ‘changed representation’ 
this can be seen as 3.5 × 2. According to ‘written algorithm’ it is 3 4

8
× 2 = 28

8
× 2 = 56

8
= 7. There is 

also the case of the ‘worked with parts’ strategy: (3 × 2) + �4
8

× 2� = 6 + 1 = 7 or its modified version 
(3 × 2) + (1

2
× 2). In this last version the fraction 1

2
 might be the result of the ‘equivalence’ or the 

‘reduction’ strategies. However, for this specific task, according to our data, 3 out of 4 who answered 
correctly preferred the ‘written algorithm’ which obviously is not a straightforward calculation. On 
the contrary it is rather demanding and time consuming. The situation is more or less similar for the 
total set of the tasks. This highlights the students’ obsession with the use of the written algorithm 
which disqualifies the core idea of mental calculations. 

Conclusions  
Given the importance of the ability to execute mental calculations involving rational numbers it 
became evident that although the students exhibit a broad range of different strategies the majority of 
these strategies is underrepresented. The students mainly follow the steps of the written algorithm. 
Moreover, it seems that this is not an age-dependent reaction. Very interestingly, the ‘written 
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algorithm’ strategy was the most frequent choice for primary, secondary, and tertiary education 
students. We do not doubt that possibly the solvers were aware of alternative strategies and able to 
use them for mentally calculating the results. What can be said on the basis of the data is that their 
first choice was the application of the written algorithm. Moreover, there was a great number of 
participants (44.86%) who either did not give any answer or the answer they gave was incorrect or 
non-codable. This makes evident the difficulty the students have with rational numbers especially 
when they are invited to handle them mentally. Additionally, it seems that university students exhibit 
flexibility in their choice of strategies but in an extremely small percentage. All these deepen our 
understanding of the topic but at the same time challenge us for a future study that will try to give 
answers to questions such as: Why do they choose these strategies? What alternative strategies do 
they know? Why do they not use those alternative strategies? Would the results be the same if the 
students were asked to solve written the same tasks? 
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In this paper, we investigate the relationship between 99 fourth-grade students’ ability to compare 
fractions (1

4
= 2

8
 and 5

11
< 

3
5
) and solve tasks in each of the four operations (68 + 753, 547 − 64, 12 

× 72 78 ÷ 3) in a Danish primary school. The students faced more challenges answering the question 
where the fractions were equal compared to the non-equal fraction items (32% vs 49% correct 
answers) although the probability of solving the two types of questions were significantly positively 
associated (odds ratio = 11.0). Relative to the four operations items, solving the non-equal fraction 
item associated significantly positively with solving the multiplication (odds ratio = 4.5) and division 
item (odds ratio = 3.9) while the correct solving of the equal fraction associated significantly 
positively with the solving of the division item (odds ratio = 2.6). These results support the notion 
that the understanding of fractions is closely connected to multiplicative reasoning. 

Keywords: Arithmetic, whole number division, fractions. 

Introduction 
Research has shown that students’ knowledge of fractions in middle school greatly affects their 
overall progression in general mathematics (e.g., Bailey, Siegler, & Geary, 2014). There is also 
evidence that students need to have mathematical proficiency in the four operations of whole numbers 
to enable them to effectively comprehend rational numbers (Behr & Post, 1988). Additionally, 
multiplicative reasoning seems especially connected to the development of students’ understanding 
of fractions (Thompson & Saldanha, 2003). Therefore, it is relevant to further investigate the variety 
of associations between the students’ proficiency in the four operations and in fractions. This paper 
aims to uncover the fourth grade students’ abilities to answer equations that require an understanding 
of fractions as well as the relationship between their abilities to answer tasks and their understanding 
of the four operations. The primary research question for this paper is: How do students’ abilities to 
solve arithmetic tasks in the four operations (e.g., division) relate to their abilities to answer items 
that require them to compare fractions? 

We expect that the students’ proficiency in division and multiplication, but not their capability related 
to addition and subtraction, will show a strong association to their ability to answer fraction equations 
because we assume that an understanding of fractions is closely connected to multiplicative 
reasoning. This paper primarily focuses on students’ difficulties with comparing fractions and how 
this is associated with the four operations. Therefore, the theoretical framework is based on theories 
of fractions and how these are connected to, for example, multiplicative reasoning. 
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Theoretical framework  
Over the last three decades, several researchers, such as Bailey, Siegler and Geary (2014), Behr and 
Post (1988), and Ni (2001), have studied aspects of students’ understanding of fractions and the 
complexities related to teaching and learning these concepts. For example, Kieren (1976) described 
how fractions can be seen as a multifaceted construct. He characterized the understanding and 
knowledge of rational numbers as sets of sub-constructs, which have since been further developed by 
Behr, Lesh, Post, and Silver (1983). They defined these sub-constructs as: Part-whole, decimal, ratio, 
quotient, operator, and measure. They recommended that the sub-construct part-whole should be 
considered to be distinct from the others as a fundamental scheme. Although we are aware of the 
limitation, in this paper we choose to focus on the sub-construct of quotient even though rational 
numbers are a more complex system of sub-constructs, and we are aware of for example the 
importance of ratio in the proportional understanding of fraction (Behr, Lesh, Post, & Silver, 1983; 
Behr & Post, 1988).  

Quotient 

For the sub-construct quotient, the denominator designates the amount of recipients, and the 
numerator represents the amount of quantities that have to be shared (Behr & Post, 1988; Toluk & 
Middleton, 2001). Thus, the sub-construct of quotient has a connection to partitive division, also 
known as sharing division, where an object or a group of objects are divided into a number of equal 
parts (Fischbein, Deri, Nello, & Marino, 1985). Moreover, division is the only one of the four 
operations where a rational number can be the outcome. Therefore, division can be regarded as an 
integral part of an understanding of rational numbers; hence students must develop an understanding 
of the connections between division and fractions (Behr & Post, 1988; Toluk & Middleton, 2001). 
Toluk and Middleton (2001) conducted a case study of students’ development of fraction schemes 
and the importance of division in the progression from the part-whole sub-construct to the 
conceptualisation of the quotient sub-construct. They illustrated the developmental process from 
Fraction-as-Part-Whole and Whole Number Quotient Division-as-Operation to the final stage, which 
was Division-as-Number (a ÷ b = a/b, " a/b) (Toluk & Middleton, 2001). When comparing fractions, 
it is necessary to understand that the magnitude depends on the relation between the two quantities; 
the denominator and the nominator (Ni & Zhou, 2005), rather than simply viewing the fraction 
notation as two independent cardinal numbers above and below a bar (Stafylidou & Vosniadou, 
2004). 

Equivalent fraction 

Overall, there is substantial support that students’ whole number multiplicative understanding is an 
important resource for developing fraction knowledge (Hackenberg & Tillema, 2009). In addition, 
multiplicative reasoning appears to be essential for the effective understanding and accurate 
representation of equivalent fractions. One basic fraction perception is to understand fraction 
equivalence (Ni, 2001). Fraction equivalence can be explained as the constancy of a quotient and as 
the constancy of the multiplicative relationship between the numerator and the denominator (Behr, 
Harel, Post, & Lesh, 1992). Here, the quotient is involved in an understanding of equivalence; for 
example, 1

2
 can be viewed as a division, which represents the equivalence between 1

2
 and 0,5 (Behr, 
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Lesh, Post, & Silver, 1983). Each fraction belongs to a unique equivalence class represented by a 
multiplicative equation. Each class denotes a distinct rational number; for example 1

2
 = 2

4
. Difficulties 

related to the understanding of equivalent fractions have been connected to the students’ lack of 
multiplicative reasoning (Ni, 2001). If the students do not develop this understanding of equivalence, 
they will view for example tasks that involve adding two fractions with different denominators as a 
purely technical algorithm (Arnon, Nesher, & Nirenburg, 2001). Therefore, both multiplication and 
division of whole numbers might be more closely connected to understanding fractions than 
additional reasoning. Hence, we expect to find an association between the fraction equations and the 
multiplication and division items, meaning that if the students can solve items involving the two 
operations correctly, they will more likely be able to solve the fraction equations. However, if the 
students have not developed a proficiency with multiplication and division, we expect that those 
students will experience difficulties answering the fraction equations correctly, especially the 
equivalent fraction equations. We will analyse how the two fraction items differ in proportion of 
correct answers as well as whether and how they differ in association with the four operations.  

Methods and analysis 
Data consisted of answers provided by fourth-grade students (ages 10–11) on a computerised test. 
The test consisted of 110 items, including problems on the four operations, fractions, and algebra as 
well as word problems. The test was time restricted (45 minutes), so not all students finished all of 
the items. The questions on fractions included in the analysis were items 50 and 52, and only the 
students who answered these items within the timeframe were included in the analysis. However, we 
are aware of the constraints of interpreting the students’ answers on a computerised test in which the 
student just enters the answer to the item. This only allows us to review a student’s correct or incorrect 
answers and not the working process itself. In addition, we are aware that neither a whole number 
multiplication nor a division item can be seen as a strong indicator of student’s multiplicative 
reasoning. A quick review of these answers showed that the students who answered this section were 
generally quick at calculating and, on average, had the highest scores in the first section of the test 
(whole number arithmetic operation tasks). In other words, the students who reached the fraction 
items (items 50 and 52) scored above average on the test (N = 99). The items we chose to analyse 
were items where the students were asked to compare 1

4
 to 1

5
, 5
11

 to 3
5
, and 1

4
 to 2

8
. The students could 

choose between the following three symbols: <, >, and = (Figure 1). 

A.  

 

B. 

 

 

Figure 1: The items used in the analysis. Translated to: A. Choose the right symbol: >, < or =. (No 
symbol was preselected). B. Calculate the task 
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Earlier in the test, the students were asked to solve a whole number equation using the same symbols. 
There were not any significant differences found in the items containing the equal sign. The first item 
was created to see the students’ answers on a unit fraction equation. Often, students have whole 
number biases in their learning processes of fractions such that they look at the biggest digit and 
conclude that this is the largest number; for example 5 is larger than 4 (Ni & Zhou, 2005). The second 
item, 5

11
 compared to 3

5
, was likewise designed to examine the students’ answers on an item where 

there is a whole number bias since both 5 and 11 are bigger than 3 and 5. In the solving process of 
this item, the student might use a different strategy, such as the benchmark strategy where 5

11
 is smaller 

than a half and 3
5
 is bigger than a half (Clarke & Roche, 2009). We considered this item to be the most 

difficult item for the students to solve because of the different numerator and denominator as well as 
the fact that the item did not contain any unit fraction. The last item was the equal fraction item where 
1
4

 is equal to 2
8
. This item included the unit fraction 1

4
, which we considered to be a commonly used 

fraction in the fourth-grade curriculum. Therefore, we assumed that the students might have a god 
mental representation of this fraction. As for the analysis of the relationship between the four 
operations, we have selected one whole-number problem from each of the operations (68 + 753, 547 
− 64, 12 × 72, 78 ÷ 3) based on the following criteria: The item where the students had the fewest 
correct answers, the most wrong answers, and the most times it was not answered, in that order. Each 
of the arithmetic items was designed to evoke solution strategies based on number sense approaches. 
For example, in the case of item 12 × 72, it involves breaking up one of the factors 12 into a 10 and 
a 2 and then multiply it in parts (10 × 72) + (2 × 72).  

Analysis 
The analysis focused on how the students’ answers to one fraction equation associated to the other 
fraction equation and to answers on the four operations items. The association between the probability 
of returning a correct answer as opposed to an incorrect one or omitting an answer for one item in 
relation to whether the student answered another item correctly was analysed as a binary logistic 
regression (Logistic procedure in SAS 9.5) function. Logistic regression models yield similar p-
values for statistical significance of associations as conventional 2 x 2 contingency c2-tests as well 
as additionally producing predictions of the conditional probabilities of returning a correct answer for 
one item in relation to whether the student had answered the other item correctly. The difference 
between these two predicted probabilities on a logit scale (coefficient of the difference between the 
two levels in the regression equation) furthermore serves as a coefficient of association in the response 
patterns between the two items.  

The anti-log of this coefficient (the odds ratio ‘OR’) equals how many more times a student is likely 
to answer item Y (e.g., 1

4
= 2

8
) correctly if he/she has answered item X (e.g., 78 ÷ 3 =) correctly as 

compared to if he/she has not answered X correctly. Hence, an association coefficient of 1.0 indicates 
that the students answering item X correctly are exp. (1.0) = 2.71 times more likely to answer item Y 
correctly as compared to the students who did not answer item X correctly. Note that the ORs derived 
from the logistic regression equation exceeds the ORs calculated from the arithmetic values of the 
probabilities because of the infinite state space on the logit scale, whereas values are on the arithmetic 
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scale Î [0;1]. The conditional probabilities of getting correct answers as a function of correct vs. 
incorrect or missing answers in other item types were modelled and illustrated graphically for the 
item 1

4
= 2

8
 as a function of the item 5

11
< 3

5
 and 1

4
> 1

5
. The same was modelled and illustrated for the 

item 5
11

 < 
3
5
 as a function of item 1

4
 > 

1
5
. A matrix table of association coefficients between items that 

represent the different concepts of fractions, addition, subtraction, multiplication, and division was 
calculated for each of the items. 

Results 
When analysing data from the test, it was found that the students showed difficulties solving items 
involving equivalent fractions. Only 32% of the students answered 1

4
= 2

8
 correctly while 49% 

answered 5
11

< 3
5

 correctly (Figure 2). Overall, the two non-equal fraction equations were similar in 
their answer patterns since both had about 50% correct, about 30% incorrect, and 20% with no  
answer. 

 

 

 

 

 

Figure 2: Percent of correct, incorrect or no answer to the three fraction items (N = 99) 

When comparing, the probability of answering the three items representing equation problems 
correctly were all strongly and highly statistically significantly associated (Figure 3, association 
coefficient values: 2.4–4.0, i.e. ORs: 11–54).  

 
Figure 3: Percent of correct answers on one item type conditional to whether the student answered 

another item type. Error bars indicate 95% confidence intervals. All differences were highly 
significant (p < 0.0001) 

The two non-equal fraction items showed the same pattern when compared to the equal fraction. 
Hence, in all comparisons, the probability of answering correctly on the item 1

4
= 2

8
 was about 90% if 

the student had answered the predictor item 5
11

< 3
5
 correctly compared to about 50% if they had 
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answered it incorrectly (Figure3). When comparing the two non-equal fraction items, we found that 
if the students had answered the predictor item 1

4
 > 

1
5
 correctly, only about 10% could then not solve 

5
11

 < 
3
5
. Therefore, we chose to focus on the equal fraction item 1

4
= 2

8
 and the non-equal fraction item 

5
11

< 3
5

. When comparing all problem types (Table 1), correct solutions were most strongly associated 
with the two equation problems (OR = 11.0, p < 0.0001), followed by the association between the 
addition and subtraction (OR = 6.8, p < 0.0001), multiplication and division (OR = 5.4, p < 0.0001), 
and subtraction and multiplication (OR = 5.0, p = 0.001) items, respectively. The results of the 
equation item 5

11
< 3

5
 were highly significantly positively associated with the results of the 

multiplication (OR = 4.5, p = 0.0009) and division items (OR = 3.9, p = 0.003). The results of the 
equation item 1

4
= 2

8
 only associated positively with the division item (OR = 2.6 p = 0.02) (Table 1). 

The lowest associations (all non-significant) were found between the results of two equation items 
and the results of addition and subtraction items (all four ORs 1.7–2.4), between equation item 1

4
= 2

8
, 

and the multiplication item (OR = 2.1) (Table 1).  
  1/4 = 2/8 5/11<3/5 68+753 547–64 12×72 78÷3 

5/11<3/5 2.40 ****                     

68+753 0.85   0.53                   

547–64 0.75   0.88   1.91 ****             

12×72 0.72   1.51 *** 0.83   1.60 ***         

78÷3 0.96 * 1.36 ** 1.02 * 0.68   1.68 ****     

           

N items: 99   99   142   142   142   142  

N correct items: 50 51% 67 68% 32 23% 49 35% 98 69% 87 61% 

Table 1: Coefficients of association (log odds ratios) of correct vs. incorrect/missing answers of 
different problem items: The higher the coefficient value, the more likely a correct answer of one item 
type associated with a correct answer of the other item type. Significance levels: * p < 0.05, ** p < 0.01, 

*** p < 0.001, **** p < 0.0001. (A log odds ratio of 1 equals a difference of exp (1) = 2.7)  

Discussion  
This statistical investigation of the two fraction items’ differences and their associations to the four 
operations revealed the following three results: Firstly, when comparing the three items with each 
other, the students’ answers showed that the equal fraction item (30% correct answers) was more 
difficult than the two non-equal fraction items (50% correct). This was unexpected since one of the 
fractions in the equal item was a commonly referenced unit fraction of 1

4
. It is a fraction which is 

common in the introduction of fractions in the fourth grade, whereas 5
11

 is a rare fraction notation in 
school curriculums. As referred to earlier, we therefore expected the item to be easier than the other 
one. The students’ difficulties with the equal item could indicate that the students have difficulties 
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understanding fractions as an equivalence class made by a multiplicative equation (Ni, 2001). This is 
emphasized by the results in Figure 3, which show that the probability of answering correctly on the 
item 1

4
 = 2

8
 was still only 50% if the student had answered 5

11
 < 3

5
 incorrectly. However, a probability 

of only 10% was found for answering 5
11

< 3
5
 correctly if they had answered 1

4
> 1

5
 incorrectly, which 

indicates that the comparison of equal fraction items differed. This could be due to the fact that when 
solving the equivalent fraction items, the students have a whole number bias (Ni & Zhou, 2005), the 
equivalence can be difficult for the students to comprehend because it is the first time they have 
experienced numbers that can be labelled differently and still refer to the same numerical quantity.  
Secondly, we found that the result of the non-equal 5

11
< 3

5
 fraction was highly associated with the 

result for both the multiplication (OR = 4.3) and the division (OR = 3.9) items, whereas there was no 
significant association with the results of the addition and subtraction items. This result coheres well 
with the theory that fractions have a stronger connection to multiplicative reasoning than to additive 
reasoning (Thompson & Saldanha, 2003). According to this theory, one should have expected a closer 
association with division than with multiplication (Toluk & Middleton, 2001). A possible explanation 
might be that the result patterns of the two operations were also closely related (OR = 5.4), suggesting 
that the basis of the understanding necessary for solving division and multiplication problems is so 
closely related that they could not be discriminated in the analysis.  

Thirdly, we found that the results of the non-equal item correlated more strongly and significantly 
with the results of the division and multiplication items than was the case for the result of the equal 
fraction item (that only associated modestly with the result of the division item). Thus, there is a 
component of the equal fraction item making this more difficult for the students to answer. An 
explanation could be that students have not yet developed the conceptualisation of the quotient as 
Division-as-Number (Toluk & Middleton, 2001). Hence, when students look at equal fractions, they 
can see a quotient as a division, which represents the equivalence between both 1

4
, 2
8
 and 0.25 (Behr, 

Lesh, Post, & Silver, 1983). Overall, these results support the notion that the understanding of 
fractions is closely connected to multiplicative reasoning; however, it is essential to pursue further 
investigation since there seems to be a different pattern in the students’ proficiency in the equivalence 
concept. Otherwise, they will experience difficulties in understanding other concepts, like common 
denominators (Arnon, Nesher, & Nirenburg, 2001). Further research should collect qualitative data 
to examine the students’ working process to overcome the strong limitations of a computer test, which 
can only offer limited insights. We need to investigate further ways in which the students experience 
difficulties in the equal fraction task. It may be that this is strongly connected to their understanding 
of the equal sign or that there is a connection to a whole number bias. On the one hand, the students’ 
whole number multiplicative understanding might support their understanding in some fraction 
contexts, and on the other hand, the students’ understanding of whole numbers can distract them in 
other fraction contexts. 
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Theoretical Framework 
Researchers and mathematics educators agree on the importance of flexibility in mental calculation, 
and in the last two decades a lot of research on students’ development in flexible mental calculation 
was conducted (brief overview see Rathgeb-Schnierer & Green, 2017). Torbeyns et al. (2011) 
investigated flexibility and adaptivity in adults and revealed that they frequently and efficiently apply 
indirect addition on subtraction problems up to 100. 

Baumert & Kunter (2011) describe four professional competences: beliefs, motivational orientations, 
self-regulation and professional knowledge. Professional knowledge is again subdivided in five 
category groups. The performance of flexible mental calculation can be considered as content 
knowledge. During their teacher training program students should acquire the competences which are 
important for their future teaching activity. Therefore, it is necessary to know about students’ 
knowledge at the beginning and the end of university. 

Regarding the described aspects, we summarize that teachers are supposed to be flexible in mental 
calculation. Furthermore, we expect all students who currently entered university to perform flexibly 
since this has been a central aim in German primary schools for the last 15 years. 

Overview on the Project 
Due to the fact that there is hardly any research on teachers’ professional knowledge regarding 
flexibility in mental calculation, this study focuses on this aspect. Thereby, there is a special focus on 
the comparison of freshmen and graduate students as well as students with mathematics as major and 
minor subject. Three questions are posed in this study: Do freshmen and graduates use adaptive 
expertise? Do students with mathematics as major subject perform better than students with 
mathematics as minor subject? Can we find differences both between freshmen and graduates and 
between students with mathematics as subject and those with mathematics as basic education? 

Design 

A CRF 2x2 experimental design is used to test the research hypothesis. There are two independent 
variables: the area of studies (Factor A: a1 = mathematics as major; a2 = mathematics as minor) and 
the length of study (Factor B: b1 = freshman, b2 = graduate). The dependent variable is a survey with 
ten different tasks to solve up to 1000. 

Procedure and data analyses  

The sample size is determined with a type II power analysis – N as a function of power (1-β), Δ, and 
α. The desired power (1-β) is 0.99, and medium effects (Δ = 0.50) in relation to the dependent variable 
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are classified as significant; the significance level is α=0.05. Our sample were drawn from the 
university courses for freshmen and graduates, and comprised 77 freshmen and 75 graduates. 

We used seven tasks with special problem characteristics (851–426, 960–320, 923–398, 906–891, 
999–699, 672–335, 853–497). Firstly, every task was coded with a range zero to three. Therefore, the 
maximum benchmark for flexibly solving all seven tasks was 21, the minimum benchmark for 
correctly solving all seven tasks was seven. Secondly, we developed a score for flexible mental 
calculation from one to six. Score one represents high flexibility, and score six rigidity. This score 
for flexibility was subsequently mapped with the points of the coding.  

For analyzing our empirical data four steps were carried out: (1) First, we screened the data and 
replaced missing data by the multiple imputation approach. (2) Second, we analyzed the data 
descriptively. (3) Third, we conducted a two-way ANOVA in accordance with the CRF 2×2 design. 
(4) We did a posteriori t-tests to analyze several factor levels. 

Results and Discussion 
The main effects A (area of studies) and B (length of study) were significant at the α level of .05 
(F1,148 = 4.38, p < .04; F1,148 = 14.40, p < .01). The corresponding AH0  and BH0  were rejected in favor 
of AH1  and BH1

. According to the mapping score, the results show as well that students with mathematics 
as a major subject start with the mean score of 3,95 and improve to 3,00. Likewise do students with 
mathematics as minor subject: They improve from 4,16 to 3,61 in mean. Regarding these score-levels, 
there is an improvement in both groups. However, the reached scores are not adequate at all for 
prospective primary teachers. Our results suggest a modification of the teacher training program in 
math courses as well as math education courses in terms of targeting teaching towards flexibility. 
This could be accomplished by focusing on inherent structures and discussing them on a meta-level 
in arithmetic and algebra classes, as well as by collaboration of teacher trainees and school students 
in classes which explicitly emphasize flexible mental calculation.  
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In this paper a tool to evaluate students' performance in solving particular fraction word problems 
is described. It is a pencil and paper test with seven tasks, which have been designed ad-hoc from a 
previous historical-epistemological study of this kind of problems. The tasks have in common that all 
of them involve iterative processes to calculate part of the part complement. The test was validated 
through reliability and content validity. The difficulty of each task was obtained through the 
resolution success probability based on the analysis of the responses of 202 Mexican students 
between 15 and 16 years old. Difficulty of the task is increased when its structure is more complex. 
Suprisingly, only a small number of students used algebra to solve the problems.  

Keywords: Fraction word problems, part of part of a whole, problem solving methods, validation 
test. 

Introduction 
Currently, problem solving emerges with renewed interest in curricular proposals because it is 
considered a basic competence, particularly in the development of arithmetic and algebraic thinking. 
An example of this assertion is that it appears explicitly in the curriculum of basic education of various 
countries (i.e., in Mexico (SEP, 2011)). Word problems have played a central role in the school 
context (Puig & Cerdán, 1988). Textbooks include a wide range of these problems, whose wording 
includes a setting, which is not expected to give answer to some practical situation. In Polya’s 
typology (cited by Puig & Cerdán, 1988) such problems are refer as “finding problems” –it is 
requested that, under certain conditions, a quantity be determined from others that are therefore 
known–. 

The fact that they appear in school curriculum does not imply that their teaching or learning is simple. 
A big number of authors have studied how this type of problems is a source of serious difficulties for 
many students (Korpershoek, Kuyper, & Van der Werf, 2015; Nesher & Teubal, 1975; Riley, Greeno, 
& Heller, 1983; Verschaffel, De Corte, & Pauwels, 1992). Daroczy, Wolska, Meurers, and Nuerk 
(2015) show that difficulties can be caused by: a) the linguistic complexity of the statement, b) the 
numerical complexity, or c) the relationship between the linguistic and numerical complexity. Other 
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authors consider the problem difficulty as the probability to solve them correctly (Ivars Santacreu & 
Fernández-Verdú, 2015; Riley, Greeno, & Heller, 1983). 

More often than not, these studies about word problems are based on statements that involve whole 
numbers. However, in the case of fraction word problems the literature is scarce, both regarding its 
classification, and the identification of students’ difficulties encountered when solving them. This 
lack in the literature leads us to the first aim of the study described in this paper: To characterize 
students’ performance when solving particular fraction word problems and to measure their difficulty 
through the probability of solving them correctly. 

The word problems chosen for this research have a common feature: an unknown quantity, which is 
partitioned into parts expressed by fractions. These problems repeatedly appear in the history of 
Mathematics, in books from different times and cultures, often solved in different ways (Gomez, 
Sanz, & Huerta, 2016). In this report, we chose to focus on problems with the common syntagma “of 
what remains”, that is referred to a part of another part, which is the complement to the unit. The 
following is an example of this type of problems:  

 I found a stone, but I did not weight it; after taking away a 1⁄7 and then a 1⁄13 [of what remains], 
I found that its weight was 1 manna. What was the original weight of the stone? (Mesopotamian 
origin, Katz 2003, p. 27) 

The common syntagma is often repeated, as in the next example:  
 A pilgrim carried a certain amount of money. He gave away half the amount (to Brahmins) at 

Prayaga. He spent two-ninths of the remaining amount in Kashi. One-fourth of the remainder 
was paid as duty. He spent the 6/10 th part of the remainder in Gaya. Finally, he returned home 
with 63 niskas. If you know the fractional residues, find the amount he carried. (Lilavati, 
1150/2006, p. 59) 

This situation allows us to raise the second aim of the research: To determine if the increase of steps 
in the statement entails an increase in the problem difficulty. 

Methodology 
Students between 15 and 16 years old were considered for the research. In the inquiry carried out in 
a public school at Mexico City a sample of 202 individuals was formed. 

For data collection, a paper and pencil test was designed with seven fraction word problems of the 
type aforementioned. A previous study was taken into account in which those problems were 
classified and mathematical elements necessary for their resolution identified (see Gómez, Sanz, & 
Huerta, 2016). 

In a 90-minute session, students completed individually the test. They were allowed to use a pen, but 
not calculators, or correctors that could interfere with qualitative analysis that was going to be carried 
out. 

The answers to the tasks were categorized following the guidelines of Taylor and Bogdan (1987), and 
a validation of the test was carried out according to Lacave, Molina, Fernández and Redondo (2016), 
as well as an analysis of the answers with a descriptive approach using IBM SPSS Statistics 22. 

Design of the test 
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Paper and pencil test design was structured taking into account two aspects: a Historical and 
Epistemological Analysis (hereinafter HEA) and a Didactic Analysis (hereinafter DA). According to 
Gómez (2003), the first aspect allows to investigate how the teaching of mathematics has been 
configured at different moments in history. In particular, regarding the solving of fraction word 
problems, it provides information about structure, context, quantities involved and solving methods 
that most relevant authors have included on documentary sources. The second aspect has the purpose 
to identify analytical readings, that is, the quantities involved in a problem and relationships between 
them (Puig & Cerdán, 1988). 

Test problems 

To design the test’s tasks, previous work is considered. Gómez, Sanz, and Huerta (2016) and Sanz 
and Gómez (2018) made a classification of fraction word problems through an HEA study. In Figure 
1, part of this classification is shown; in it, the problems under study in this inquiry are included. 

 

Figure 1: Classification of word problems of the type: “of what remains” 

Table 1 shows the problems used in the test, they are an adaptation of the classical problems identified 
through HEA. Despite the fact that P1 and P2 have the same structure (see Table 1), P1 needs two 
steps to be solved, and P2 needs three. Given that the easier type was initially considered due to its 
analysis-synthesis scheme, it was decided to explore a possible change of students’ performances 
when introducing an additional step (aim 2 of this research). 

P1. A pole is painted in red, blue and black. The black part is a 1/3 of the length of the pole, the part in red is 
2/3 of what remains, and the blue part measures 2.70 meters. How long is the pole? 
P2. Miguel plays a video game. He has to end it in the time indicated on the screen. He plays one-third of the 
time scheduled, pauses the game and goes to have dinner. When he comes back, he moves up one-fifth of what 
remains. After supper, he moves up one-seventh of what remains. A message appears on the screen: ‘32 
minutes left’. What time was indicated on the display at the beginning of the game? 
P3. A thief went into a palace and found a bag full of coins. When he tried to escape, a palace doorman caught 
him; the thief offered him half of the coins to let him escape. The doorman gave back 80 coins to the thief and 
let him go. Another doorman took the thief by surprise, and again the thief offered half of the coins of what 
remained in the bag to let him escape. The second doorman received the number of coins but he gave 50 coins 
back. Finally, when the thief goes out, he has 200 coins in the bag. How many coins were there in the bag at 
the beginning? 
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P4. A man who has been picking up some oranges returns to his hometown. He visited two friends and he gave 
to one of them half of the oranges and half an orange. He gave half of the rest of oranges plus the other half 
orange to his second friend. After his visit, he left 10 oranges. How many oranges had he picked up? 
P5. Carlos has a glass of wine and drinks 1/4 of it. He fills it with water and drinks 1/3 of the mixture. He 
refilled it with water and drank 1/2 of the liquid obtained. What part of pure wine does he have left to drink? 
P6. Juan went on an excursion and took a bottle of water. When he found a faucet, he duplicated the content 
of the bottle and drank 1 9⁄10 dl. Later, he doubled the content that he had left and drank 1 9⁄10 dl. Surprise! 
The bottle was empty. How much water was in the bottle at the beginning of the excursion? 
P7. A man made his will and divided the heritage among his sons. One received a thousand pesos and 1/7 of 
the rest; other received 2000 thousand pesos and a 1/7 of the rest; another received 3000 thousand pesos and a 
1/7 of the rest, and so successively for all his sons. One of his sons said the distribution was not fair, but the 
father said all had the same amount of money.  How much did each son receive? How many sons did the man 
have?  

Table 1. Fractions word problems included in the paper and pencil test 

Theoretical resolution of problems (analysis-synthesis) 

The analysis of students’ performances took into account ways to solve problems. In order to obtain 
all possible strategies that a student can follow in a problem solving procedure, an AD was carried 
out through an Analysis-Synthesis (A-S) scheme (Puig & Cerdán, 1988) using the graphic symbols 
employed by Cerdán (2007), see Figure 2.  

 
Figure 2: Symbols for A-S: (a) Unknown quantities, (b) Known quantities, (c) Relationships among 

them, (d) Operation/relationship between them, and (e) Nesting between quantities 

In order to show the process followed, an analysis of problem P1 is recorded. Two A-S schemes of 
the first task (P1 in Table 1) are included in Figure 3 to show that solving procedures are not unique 
and that each one represents a form of reasoning, a way to relate the quantities involved. For the case 
of P2, the process starting from Q (see Figure 3) is repeated (due to shortage of space in this paper, 
the A-S scheme of P2 is not included). 

a)  b)  

Figure 3: A-S Scheme for P1. a) x=total pole, p1=part painted in black, Q=the rest after painting in 
black, p2=part painted in red. b) x=total pole, p1=part painted in black, Q=the rest painted in red and 

black, p2=part painted in red, q1=the rest after painting in black 
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Categorization for the analysis of resolutions 

The A-S scheme allows us to categorize the task resolutions. These categories will enable to identify 
profiles of students’ performances and to carry out a subsequent qualitative analysis of the answers. 
In addition, the quantitative analysis, both descriptive and inferential (to be done with a large amount 
of data), requires this type of categorization in order to obtain more precise analysis.  

Table 2 shows an example of the categories and encoded resolutions for a task, in this case P1 (Table 
1). There are two different types of categories. On the one hand, the C3, C4, C5 and C6 codes are 
related with the analysis of students’ solving procedures through A-S schemes. For example, C3 is 
related with p1 (see Figure 3) or C4 is related with Q (in Figure 3). On the other hand, C1, C2 and C7 
codes have the intention to collect other types of information. For example, the method used in C1 
could be: graphic, direct arithmetic, algebraic, inverse arithmetic, or trial and error (methods 
identified by Gómez, Sanz and Huerta (2016) using HEA).  Moreover, if a graphic support is used 
for solving the problem, C2 has been included, since the literature shows how graphic support during 
solving procedure leads to greater success in finding the solution (Greeno & Hall, 1997). Finally, a 
category is introduced to value the numerical results obtained, C7, that is, if the solution is correct or 
not.  

It should be pointed out that ‘Nothing’ is included in all categories; there are students who do not 
write anything or who wrote calculations, but without any answer highlighted, and this situation must 
be considered in the analysis. 

 C1 C2 C3 C4 C5 C6 C7 
Code Method Graphic 

support 
Part of a 
whole 

What 
remains 

Part of a 
part 

What 
remains 

Correct 
Solution 

0 Graphic No No No No No No 
1 Direct Arithmetic Yes Yes Yes Yes Yes Yes 
2 Algebraic Nothing Nothing Nothing Nothing Nothing Nothing 
3 Inverse Arithmetic       
4 Trial and Error       
5 Nothing       

Table 2. Categories and encoded resolutions for Problem P1 

Test Validation 
As mentioned before test validation is done according to Lacave, Molina, Fernández and Redondo 
(2016). Reliability was tested with the Alpha Cronbach coefficient as a measure of the internal 
consistency, obtaining 0.9248. The selected coefficient is higher than 0.90 (George & Mallery, 2003, 
p.231), so reliability is excellent. In addition, the homogeneity index was calculated to decide if any 
task had to be eliminated, but it was not necessary. Content validity was made through a peer 
discussion with nine colleagues from different educational levels in México. They modified the 
wording to adapt it according to students’ use of Spanish in Mexico City, but the content and structure 
of the problems was not modified. 
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Results 
The measure of the difficulty (d) of the fraction word problems (those in Table 1) is shown in Table 
3. It is calculated as the probability of solving them correctly according to 𝑑𝑑 = 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝐶𝐶𝑟𝑟𝑇𝑇𝑇𝑇−𝑁𝑁𝐶𝐶𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖
, where 

Correct is the number of students who obtained the correct answer; Total is the sample size; and 
Nothing is the number of students who have left the problem without an answer. 

 P1 P2  P3 P4 P5 P6 P7 
Correct 25 8 54 6 35 11 1 
Nothing 7 58 24 17 14 51 51 
Total 202 202 202 202 202 202 202 
d 0.128 0.056 0.303 0.032 0.186 0.073 0.007 

Table 3: Summary of correct solutions by problem 

From results of Table 3 it can be asserted that for Mexican students between 15 and 16 years old, P1 
is easier than P2 (d1=0.128>0.056=d2), this confirms the second aim of this study: to add a step in 
the statement of the fraction word problems makes its resolution more difficult. 

To expand the study about students’ performances, a detailed analysis, related to the categorization, 
for problem P1 is shown. Table 4 exhibits details of the analysis’ categories for such problem. C3, 
C4, C5, and C6 are subsequent categories, that is, if a student reaches C5 it means that C3 and C4 
have been achieved. Beside absolute frequencies, percentages are in brackets. Even though the A-S 
scheme indicated that P1 was the most straightforward problem, only twenty-five students gave a 
correct solution. 

Code 0 1 2 3 4 5 Total 
C1 Method 24 (11.88) 162 (80.20) 8 (3.96) 0 0 8(3.96) 202 
C2 Graphic support 77 (38.12) 117 (57.92) 8 (3.96)    202 
C3 Part-whole 140 (69.31) 54 (26.73) 8 (3.96)    202 
C4 What is left 147 (72.77) 47 (23.27) 8 (3.96)    202 
C5 Part-part 150 (74.26) 44 (21.78) 8 (3.96)    202 
C6 What is left 163 (80.69) 31 (15.35) 8 (3.96)    202 
C7 Pole height 164 (81.19) 25 (12.38) 13 (6.44)    202 

Table 4: Students’ frequencies in each category of analysis, percentage is shown in parenthesis 

Seventy-seven students used graphical representations, but always as support for the resolution; the 
part of a part can be seen only in twenty-four cases. The rest is as indicated: a rectangle is divided 
into three parts, and each is painted in one colour without pointing out a relationship between them. 

Regarding category C7, incorrect answers were very varied, among them the following are 
highlighted: a) No answer (8/202); b) Pole height 8.10 m (34/202); in this case students considered 
all parts as equal, 2.7 m long, and since the pole was divided into three parts, they multiplied 3 times 
2.7; c) Pole height 3.7 m (46/202), students added 1/2 plus 2/3 plus 2.7 m. They could not identify 
that such fractions did not represent a number but an operator; d) Pole height 10.8 m (16/202), in this 
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case students computed the part of the whole and the part of the part but could not accomplish 
correctly the last step of what is left to reach the solution. 

Conclusion and Future Research 
This research is a part of a project with a general aim: to include this type of problems in an Intelligent 
Tutorial System (ITS) to help students accomplish learning, by predicting their performance in a 
following task. A mathematical model to predict student’s performance and to provide a sequence of 
problems adapted to his capabilities will be used. This model will be build up from data obtained 
from the ITS, but it is necessary to dispose previous information, for instance, the difficulty of each 
problem, diverse solving methods, previous fraction knowledge, learning comprehension or student’s 
age. Such information is collected by means of paper and pencil tests, and in this paper, we present 
some of them. 

With the tool described in this paper, information about solving a particular word fraction problem 
was collected, which have a common characteristic, in its statement the syntagma “what remain” 
appears. The mathematical meaning of this syntagma refers the part of the part of the complement. 
The information provided is diverse. On the one hand, the difficulty of each problem increases when 
the steps of the problem as mentioned before increases. This result will be used in the mathematical 
model as initial information to start the specific sequence for each student. On the other hand, the 
different solving methods for the same problem have been obtained through the different A-S scheme. 
This information will be written in the ITS to help the student when they choose one way to solve the 
task. 

Other kind of results obtained in this study remark the arithmetic solving methods in contrast to a 
remarkable lack of an algebraic approach, even though students had previous contact with algebra in 
secondary education (SEP, 2011). Moreover, difficulties with fraction knowledge learned in primary 
and secondary, such as graphic representation or operations, were observed. This result leads us to 
believe that basic fraction knowledge should be examined previously and therefore, the relationship 
between them and the solving of fraction word problems should be investigated further. 

Finally, note that this research is done with a sample of Mexican students between 15 to 16 years old. 
But, the ITS can be used by students with different ages and different nationalities, then other random 
and statistically significant student samples of different ages should be studied.  
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In this paper, we aim to quantify students’ development of mental strategies in single-digit addition 
over a five months period in six Danish year one classes dependent on their initial stage based on 
assessment interviews of 83 year one students’ strategy use when answering 36 single-digit addition 
tasks. Students were interviewed twice (autumn and spring). Students using direct retrieval the least 
at interview 1 had the highest increase in proportional use at interview 2, whereas students using it 
the most showed no mean increase. For counting and derived fact, the change from interview 1 to 2 
was constant irrespective of initial use. Analysis of how much of the variation in change in 
proportional use of different strategies was explained by different factors showed that 60-83% of the 
total variation was explained by the students’ initial strategy use. Factors attributable to the specific 
learning environment and instructional practice did not explain any significant variation. 

Keywords: Mental computation, addition, primary education, individual differences. 

Background 
Whole number arithmetic is a foundational subject in early years’ mathematics. The first arithmetic 
operation students encounter in school is addition and simple arithmetic, which is related to number 
sense according to Gersten, Jordan, and Flojo (2005). Thus, knowledge on students’ early use and 
development of strategies in addition contributes to the understanding of students’ development of 
arithmetic proficiency in general (e.g., Laski, Ermakova, & Vasilyeva, 2014). Furthermore, students’ 
early qualitative use of strategies in mental arithmetic has been shown to influence development of 
mathematics competence and to be a valid predictor of later mathematical achievement and 
difficulties (Carr & Alexeev, 2011; Dowker, 2014; Gersten et al., 2005; Ostad, 1997).  

Strategies for single-digit mental addition can be divided into three categories as described by 
Carpenter and Moser (1984): (1) Direct modelling strategies with fingers or physical objects, where 
counting sequences are used to count all concrete objects. (2) Counting strategies, where mental 
counting is used in counting-all or counting-on from either the first or, later, the largest addend. (3) 
Number fact strategies, which involve either a) direct retrieval, which is the direct recalling of the 
sum, or b) derived fact strategies, where known facts are used to derive the answer. Interesting to note 
that derived fact strategies has been the focus for many recent studies (e.g. Dowker, 2014; Gaidoschik, 
2012; Laski et al., 2014). 

Students strategy use in arithmetic is influenced by many factors related to the individual student, for 
example working memory (e.g., Imbo & Vandierendonck, 2007) and gender (e.g., Carr, & Alexeev, 
2011), as well as the learning environment, such as instructional practice (e.g., Timmermans, Van 
Lieshout, & Verhoeven, 2007), and parents and teachers’ strategy preferences (Carr, Jessup, & Fuller, 
1999). Thus, Carr et al. (1999) found  that boys  would  use  the  strategies  their  parents  use,  which  
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include the use of retrieval strategies. These strategies were also those their teachers were more likely 
to teach them. 

Furthermore, students tend to use the strategies they are confident with in a feedback loop as described 
by Bailey, Littlefield, and Geary (2012), where early preference for a strategy predicts later use, which 
in turn predicts later preference. Students, who primarily use counting in early arithmetic at the 
expense of derived fact strategies, will get less practise in working flexibly with numbers. As a 
consequence, they will have fewer options to develop the more complex comprehension required in 
advanced arithmetic (Gersten et al., 2005). Thus, students change in strategy use are found to be 
dependent on individual factors, such as gender and initial strategy use, as well as factors related to 
the learning environment and learning opportunities, such as instructional practice. 

The study of Gaidoschik (2012) is an example of a study where students’ development of strategies 
for single-digit addition in year one are investigated in relation to both, students’ prior knowledge 
and teachers’ instructional practice. Gaidoschik (2012) found that strategy development was 
significantly related to students’ prior number knowledge. Furthermore, he found in a qualitative 
analysis that although teachers’ instructional practice focussed on counting strategies in year one, 
many students developed derived facts and automatized sums. This finding indicates instructional 
practice had minor influence on these students development of strategies. Although several studies 
have documented effects of students’ prior knowledge and instructional practice, there is less 
evidence on the relative contribution of individual differences and instructional practice for students’ 
development of strategies. 

The current study 
The data presented here are part of a larger project on the relationship between students’ development 
of mental strategies in single-digit addition, teachers’ perceptions of the learning of number and 
arithmetic in year one, and classroom instruction. In this paper, we aim to quantify students’ 
development of mental strategies in single-digit addition over a five month period in six Danish year 
one classes dependent on their initial strategy use. Furthermore, we investigate how much different 
variance components contribute to the overall variation in year one students’ development of 
strategies. We are specifically interested in quantifying how much of the total variation in the 
students’ strategy use at time 2 that could be explained by their strategy use at time 1, instruction time 
and possible differences between classes in general as well as in interaction with time as the latter 
would include all variation due to possible effects of instruction.  

Methods and analyses 
The study and participants 

The study consisted of 155 assessment interviews on strategy use for single-digit addition conducted 
on 83 year one students (46 girls; age 7) from six Danish year one classes. In each class, between 11 
and 18 students were selected randomly though balanced with respect to gender. 72 students were 
interviewed in November 2015 and April 2016. 11 students were interviewed only once due to 
absence. To evaluate differences and similarities in the learning environment of the six classes, the 
six teachers (three female and three male) were interviewed on the teaching and learning of arithmetic 
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and number. Furthermore, their instructional practice was documented through classroom video 
observations. These data will be analysed and discussed in detail elsewhere, but initial analysis 
indicated the teachers differed with respect to emphasis on teaching mental strategies for arithmetic 
and focus on procedural as opposed to conceptual knowledge. For example, two teachers emphasised 
rote learning of facts and procedural learning of counting strategies, two teachers focussed on 
students’ skilled use of derived fact strategies and taught these explicitly, and two teachers were 
conscious of both rote learning of facts and derived fact strategies but did not emphasise one over the 
other. Furthermore, a previous study showed that the teachers’ expectations for their year one 
students’ development in number and arithmetic differed substantially (with one to two years of 
learning) (Sunde & Sayers, 2017). Thus, with respect to differences in teachers approach to teaching 
and learning arithmetic the six classes represents a continuum from high level of focus on explicit 
instruction of strategies with conceptual understanding to an instructional practice focussing on 
automatization of facts and procedural understanding. 

Assessment of students’ strategy use 

Students’ use of mental strategies for single-digit addition was assessed in one-to-one assessment 
interviews where students were presented with flashcards of the 36 addition tasks with numerals 2-9, 
including doubles. Manipulatives, paper and pencil were not accessible for the student. The flashcards 
were presented with tasks of increasing difficulty to avoid less confident students to give up or only 
use counting if presented with difficult questions at the beginning of the interview. Interviews took 
place in a quiet room at the school and each session lasted 10-30 minutes. We asked the student to 
explain how he or she found the answer. Based on students’ explanations and the interviewer’s 
observation, answers were categorised in four categories. ‘Error’ was used if the student gave up or 
miscalculated. For correct answers ‘Counting’ included all variations of counting procedures on 
fingers, verbal or self-report as mental counting, ‘Direct retrieval’ was used for automatized sum, and 
‘Derived fact’ included all variations of decomposing addends and using automatized sums to 
calculate the answer (e.g. 4+5 = 4+4+1 or 5+5-1) (for more detail see Sunde, Sunde, & Sayers, 2019). 

For each assessment interview, we calculated a strategy use profile on the basis of the proportion of 
answers (denoted ‘proportional strategy use’ hereafter) to the 36 addition tasks scored as ‘error’, 
‘counting’, ‘direct retrieval’, and ‘derived fact’. Hence, if a student used ‘counting’ to solve 6 of the 
36 tasks, the proportion for counting, pcounting, was 6/36 = 0.1667. Original values were logit 
transformed prior to the analysis (logit pi = ln[pi/{1-pi}]). Before transformation, we substituted zero 
values (not defined on the logit scale) by 0.01, which is 2.8 times lower than the minimum achievable 
value larger than 0 (1 of 36 items = 0.028). 

Analysis of change in proportional strategy use 

Development in mean use of each of the four strategies over half a school year was analysed by 
modelling proportional strategy use in the second assessment interview (pi2) as a linear regression 
function of the students’ proportional strategy use in the first assessment interview (pi1) five months 
earlier. From this regression function (�̂�𝑝i2= β0 + β1pi1) the mean change in (logit-transformed) pi from 
a given level in autumn to the next spring could be derived as the vertical distance between the 
regression line and the reference line y=x that indicated no change in mean strategy use between the 
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two test sessions. Hence, the more students increases the proportional use of a given strategy from 
autumn to spring, the higher above the y=x line will the data points and the regression line be located 
and vice versa. From the slope of the regression line, it is furthermore possible to test whether the 
change in use of a given strategy is conditional on how much it was used in the first interview. If the 
mean change in proportional use (on logit scale) of a given strategy from interview one to interview 
two is equal for all students irrespective of how much they used the strategy on the first assessment 
interview, the slope of the regression line would not be significantly different from 1. On the contrary, 
a slope < 1 indicate a greater change in proportional use of a strategy by those students that used the 
strategy least in the first interview whereas a slope >1 would indicate the opposite, i.e. that those 
students that used a strategy least in interview one are also those that have developed relatively less 
from interview one to interview two. 

Before the linear regression functions were established, we tested for possible quadratic and cubic 
relationships between pi2 and pi1, as well as for possible effects of class (for the case development in 
strategy use varied between classes between interview one and two) and sex (for the case boys and 
girls differed in change of strategy use between interview one and two) without finding any significant 
effects of those predictors. 

Analysis of variance components 

We quantified how much of the variance in proportional use of each strategy was explained by 
different factors. The factors were time (difference between interview one and two), student identity 
nested within class (the systematic difference between students over the two interviews within a given 
class), class (the systematic difference between students in different classes) and the interaction 
between class and time (systematic differences in how much students from different classes changed 
from interview one to two).  We calculated variance components as each of the aforementioned 
factors’ sum-of-square compared to the total sum-of-squares in General linear models with all 155 
interview results as observation units and the aforementioned variables and interaction terms as fixed 
effects. In this respect, the interaction term class*time encompasses all variation that could be 
explained by differential instructional practice because it represents the time a student has received 
instruction in a specific classroom. We derived statistical significances of each factor from F-tests. 

Results 
Change in proportional strategy use: Conditional on initial strategy use 

As expected, mean use of all four strategies significantly changed from autumn to spring (all p-values 
≤ 0.001) as the proportions of errors and counting decreased and direct retrieval and decomposition 
increased. The coefficients of determination (R2) when modelling results from assessment interview 
two as functions of the results from interview one showed that the changes in the students’ 
proportional use of a strategy was highly conditional on initial strategy use (Figure 1: R2-values: 0.26-
0.69). The slopes of the regression lines were significantly < 1 for ‘error’ (t71 = 6.52, P < 0.0001) and 
‘direct retrieval’ (t71 = 2.18, P = 0.03), but did not differ from 1 for ‘derived facts’ (t71 = 1.75, P = 
0.08) and ‘counting’ (t71 = 0.6, P = 0.4). 
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For ‘error’, the slope lower than 1 indicates that students with the highest error rates in interview one 
displayed the highest reduction in error rates between assessment interview one and two, probably as 
the mere result of the vast majority of the students solving all items correctly in general and especially 
in interview two. For ‘counting’ and ‘derived fact’ slopes not significantly different from 1 indicated 
that the mean change in use of these two strategies from interview one to two (decrease in counting, 
increase in derived fact) were constant no matter how much the strategies were used in the first 
assessment interview situation. For ‘direct retrieval’ a slope lower than 1 and inspection of the 
confidence zones of the regression line suggested that students using direct retrieval least in the first 
interview expressed the highest increase in use of this strategy in interview two. Whereas, students 
with the highest use of this strategy in interview one did not show any mean increase in use of this 
strategy in interview two. 

Figure 1: Proportional use (logit-scale: zero-values replaced by 0.01 before transformation) of 
strategies of 72 year one students in spring (April) plotted against their results achieved in the same 

assessment interview the preceding autumn (November) 

From inspection of Figure 1, one can see that girls generally used counting substantially more than 
boys, and boys significantly used derived fact more than girls. These sex differences that were already 
present at interview one are dealt with elsewhere (Sunde et al., 2019). As regards changes from 
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interview one to interview two, boys and girls did not differ for any of the strategies (additive effect 
of sex if included in regression models: all p-values > 0.2). 

Variance components: Effect of individual differences, time and class 

The half school year represented by the mean difference in strategy use between assessment interview 
one and two explained 3-6 % of the total variation in use of the four strategies, as compared to 60-
83% explained by student identity nested within class (all p-values ≤ 0.001) and 3-12 % by class 
(statistically significant for ‘error’, ‘counting’ and ‘derived facts’: Figure 2). The time-by-class 
interactions (representing specific instructional practice) explained 0-1 % indicating no measurable 
class differences in mean progression from interview one to two (Figure 2).  

Figure 2: Variance components in terms of Type 3 sum-of-squares of strategy use assessed twice in 
year one (autumn and spring), derived from general linear models  

Discussion 
This statistical investigation of strategy use in single-digit addition amongst year one students 
revealed the following three results worth noting. First, the slopes of the regression lines of strategy 
use at interview two as function of strategy use at interview one demonstrates that in at least two of 
four strategies the mean change in strategy use from interview one to two differed significantly 
between those students who used the strategy most and least. In the present case those students with 

ns: p ≥ 0.05 
*: p < 0.05 
**: p < 0.01 
***: p < 0.001, 
****: p < 0.0001 

Fixed effects: 

Time: Difference between 
autumn and spring, i.e. 5 
months, df=1 

Student (Class): Student 
identity nested within class, 
df=77 

Class: The specific class the 
student attend df=5 

Time*Class: the interaction 
between class and time, df=5 
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highest proportion of errors in interview one expressed the largest reduction in error frequency in 
interview two five months’ later. Those who used direct retrieval least in the first interview expressed 
the highest increase in use of this strategy to interview two. For counting, the mean change in strategy 
use did not differ significantly between students with high and low initial use. This corresponds with 
Bailey et al.’s (2012) feedback loop of relationship between skills and preference for specific 
strategies. 

Considering that use of derived fact strategies are related to high arithmetic ability (Dowker, 2014) 
and the relationship between excessive use of counting and mathematical difficulties (Ostad, 1997), 
it is concerning that the students with high initial proportional use of counting do not decrease the use 
of this strategy more than students with a low initial use. These findings underline the importance of 
analysing and reporting changes in strategy use (or any other achievement measure) as function of a 
given time period or intervention type differentially for student groups with different start level. In 
that respect, the here used graphical and statistical method based on testing the nil-expectation of a 
slope = 1, may provide an easily used and comprehendible method. One implication for practice of 
these results is that instruction should support students in developing a diverse strategy use. 

Second, albeit mean use of all four strategies significantly changed over the five months between 
interview one and two (as expected), these changes, reflecting the fundamental ‘effect’ of learning 
and maturation, were modest compared to the variation in strategy use between students (evident as 
the high correlation coefficients of the scatter plots in Figure 1, as well as the amount of variance 
components explained by student ID in Figure 2). This illustrates the importance of acknowledging 
the long known but sometimes implicitly forgotten notion that students within a class may vary in 
strategy use patterns equalling several years’ education time.  

Third and finally, our analysis revealed that for Danish primary school children little variation (1-
7%) appeared to exist between classes in general (main effect of class), and even less (0-1%) between 
classes and time (class-by-time interaction). Given that the five months’ time span represents a big 
part of the students’ first formal mathematics education, we find it interesting that the different classes 
in effect appeared to develop similarly between interview one and two despite considerable 
differences in teaching practice.  

We want to stress that from this, one cannot conclude that differential teaching practices do not 
influence learning outcome, just that such differences were barely measurable over a time scale of 
five month’s education time. A delayed effect of different instructional practices in year one on later 
arithmetic ability is thus possible. It is also important to notice that effects of differential teaching 
practices may have occurred before November, when interview one took place. Significant main 
effects of class for counting and especially derived fact indicate that this might have been the case. 

In conclusion, Danish year one students’ developmental change of strategy use for single-digit 
addition is primarily determined by their strategy use when entering year one. Development patterns 
were similar between classes, suggesting no influence of instructional practice, but mean change in 
error rate and use of direct retrieval differed for students with high or low initial use.  The relatively 
small influence of five months teaching on strategy use patterns and the lack of difference between 
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classes with different instructional practice is stunning. The findings call for qualitative research on 
what role different instructional practice play in year one students’ development of strategy use. 
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As part of a general study, a teaching model for fractions based on applets created with GeoGebra 
and the number line as a conceptual and didactical resource was designed. The model has eight 
stages; each one is composed of an interaction-exploration part, and questions to favour students’ 
thinking about their interaction with the applets. The purpose of the model is to contribute to the 
building up of better fraction mental object of students who finished elementary school. The 
performances of two students are characterized in this paper; both improved their fraction mental 
object. Before the teaching experiment, they only had ideas related to the use of fractions as fracturer. 
After working with the applets, those ideas changed. Both students could do tasks related to fractions 
as number and as measurer, particularly, they could represent fractions on the number line, identify 
which of two fractions was bigger, and distinguish proper and improper fractions. 

Keywords: Aspects of fractions, applets for teaching, fractions on number line, teaching models.  

Introduction 
Investigating the processes of teaching and learning fractions has been a significant theme in the field 
of mathematics education. The previous statement can be linked to the fact that fractions are part of 
the basic education curriculum in the world (NCTM, 2000; SEP, 2011). Nevertheless, fractions have 
been considered as one of the complex concepts studied in basic education (Siegler, Fazio, Bailey, & 
Zhou, 2013), and as a consequence, students have low performance in mathematics. Therefore, it is 
necessary to design tools that promote the improvement of students’ fraction mental object, in 
Freudenthal’s (1983) sense; since a good mental object of this concept will allow pupils to have 
adequate performance in mathematics from elementary to high school (Siegler, Duncan, Davis-Kean, 
et al., 2012). Due to the inclusion of digital technologies as a cognitive resource for teaching 
mathematics (Drijvers, 2013), the design of a teaching model based on the aforementioned resources 
is one of the main purposes of the research described in this paper. 

Research objectives  

The main objective is to construct a teaching model in order to enrich the current one for Mexican 
elementary school. In this context, two particular purposes for students who finished elementary 
school are 1) to characterize their fraction mental object, and 2) to promote the building up of better 
fraction mental objects. The aim of this paper is to show evidence of the purposes defined above.  

Theoretical framework and related literature  
The Local Theoretical Model (LTM) (Filloy, Rojano, & Puig, 2008) is used as a theoretical and 
methodological framework. The LTM serves to focus on an object of study through four interrelated 
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components: (1) formal competence, (2) teaching models, (3) models for cognitive processes, and (4) 
models of communication. These components serve to design a teaching model. 
The formal competence component. From the example of the didactic phenomenology of fractions 
elaborated by Freudenthal (1983), and taking into account ideas of other authors, for example, those 
of Kieren (1992) and Behr et al. (1983), the formal component of the LTM is constructed. This 
component is summarized in a scheme by means of which uses and aspects of fractions and their 
relationships are identified from everyday language to formalization through mathematical 
constructions. The aspects of fractions that are considered according to Freudenthal (1983) are 
descriptor, fracturer, comparer, measurer, operator, and number. For more about those uses and 
aspects of fractions see Valenzuela, Figueras, Arnau and Gutiérrez-Soto (2017a). 

The teaching models component. A characterization of the teaching model of the last cycle of the 
Mexican primary school - 5th and 6th grades, children between 11 and 12 years old- was made. Results 
allowed the identification of situations in which all aspects of fractions underlie, and different 
representations and models are used. However, greater emphasis is placed on fractions as fracturer 
and as number. This led to design a new teaching model based on technology and focusing on 
fractions as measurer and as number; in particular, the emphasis is placed on notions of equivalence, 
order, density and the characterization of proper and improper fractions. To obtain the link for using 
the teaching model write to the authors (an English version will be available soon). 

The cognitive processes component. As part of this component, reference is made to errors, 
difficulties, and students' actions when they use fractions. An important purpose of this study is to 
have a catalogue that serves as a reference for analysis of students' performances. Among the 
difficulties students have, informed by other researchers, are the following: 1) difficulties to identify 
a fraction represented in a figure with more than one fractional unit (Saxe, Taylor, McIntosh, & 
Gearhart, 2005); 2) difficulties to identify improper fractions (Tzur, 1999); 3) consideration of the 
whole as the entire segment and not the defined unit segment in segments of a number line with more 
than one unit (Ni & Zhou, 2005); and 4) lack of association of a fraction with a point or the right end 
of the segment on the number line (Petitto, 1990). 

The communication component. This component is related to the processes of communication 
between different actors in a teaching and learning situation. In this case, the fundamental process 
considered is established between the teacher/researcher and the students via their interaction with 
the applets. Figure 1 shows how technological tools in this research are designed to promote the 
communication process. Through a series of codes, the teacher/researcher provides information to 
students; this favours interaction between student and applet. Students' information provided through 
applet interaction is saved in a database, which is used for the analysis of their behaviour. 
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Figure 1: The communication process between Teacher/Researcher-Applet-Student 

The teaching model 
The final teaching model is formed by eight phases (see Figure 2); in each one, students' interaction 
is similar as the description in Figure 1, but every phase has a different purpose, related to the study 
of order, equivalence, density, and characteristics of proper and improper fractions. The design of the 
first two applets is described in Valenzuela, Figueras, Arnau and Gutiérrez-Soto (2017b). 

 
Figure 2. Screenshot of teaching model sequence offline 

Population and method 
The experimentation component of the study had two phases. A pilot study; 45 students (4 groups) 
of a public secondary school located in a troubled zone of Valencia, Spain, took place. It helped to 
validate the teaching sequence, modify questions and verify applets’ operation, and was considered 
necessary to realize an introductory activity to explore GeoGebra. In the main trial, 10 pupils of a 
public primary school in a marginalized zone of Zacatecas, México participated. In both, students 
worked individually and no help was given. Teachers only participated when applying the initial and 
final paper and pencil tests (evaluation and validation instruments). For analysis, the evidence stored 
in the computer as a product of the student-applet interaction was used. This report concerns Alvaro 
and Fernanda’s performances. Alvaro is a 13-year-old student with low grades who participated in 

1) Representing fractions: use as measurer 
and as fracturer. 
2) Comparing fractions: use of number, 
related to order. 
3) Fractions, points, and segments: use as 
measurer and as fracturer. 
4) Proper and improper fractions: use as 
number.  
5) Proper and improper fractions 
comparison: use as number (order).  
6) Fractions between numbers: use as 
number and as measurer, related to order 
and density. 
7) Equivalent fractions: use as number 
(equivalence). 
8) Locate fractions: use as fracturer, as 
measurer, and as number. 
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the pilot study, he had already used a computer before the experimentation. Fernanda is 12 years old, 
and has medium-high grades, she participated in the main trial and had never used a computer. 

The pilot study was carried out in 5 sessions of 45 minutes each, the main trial in 6 sessions from 60 
to 90 minutes, including the activity to explore GeoGebra. In both approaches, an initial test was 
applied, the teaching sequence was carried out, and a final test was used. The tests are employed as 
evaluation instruments that help to validate the teaching sequence, in which aspects of fraction as 
measurer, as number and as fracturer are taught. Tests have 6 tasks. The first three assesses aspects 
related to the use of fraction as fracturer in continuous and discrete models. In task 4, the uses of 
fraction as measurer and as fracturer in the number line model are evaluated. Task 5 deals with the 
use of fraction as number, and in task 6, different uses of fractions appear in a context of problem-
solving. Following this order, Alvaro’s and Fernanda’s performances are described below. 

Alvaro’s performance  
Alvaro's answers in the initial test, confirms that his fraction mental object allows him to establish a 
fracturing relation in a graphic representation of a fraction, particularly when using discrete and area 
models. In Figure 3, the processes to establish the fracturing relation is shown, the student extends 
the linear partitions to identify the minor fractional unit (items b, e, f, and h). The trace of the pen 
allows seeing that there is a tendency to count the number of parts, especially when the partition has 
a “large” number of parts (items d and f). 

 
Figure 3: Alvaro’s answers to represent fractions symbolically in an area model, initial test 

Alvaro is also successful representing graphically fractions from a symbolic expression (proper and 
improper), except in the case of a triangle to represent 1/3, see Figure 4. In the processes of 
partitioning, Alvaro estimates the equality of the parts by congruence. He has technical difficulties to 
make a partition, but not conceptual ones as sustained by Streefland (1991). 

 
Figure 4: Alvaro’s answers to represent fractions in an area model, initial test 

Alvaro was not able to represent fractions on the number line. Apparently, he fails to transfer his 
knowledge about partitioning in an area model to a linear model -number line-. He attempts to answer 
task 5, however, there is a tendency to use decimal numbers to provide fractions between two integers, 

Instructions: In the following figures, 
what fraction represents the part that is 
painted? Write your answer on the line in 
the box. 

Instructions: In the following figures, 
represent the indicated fractions.  
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but has difficulties to supply fractions. He does not recognize the terminology of proper and improper 
fractions and faces difficulties in solving problems; he did not answer task 6. 

Answers given by students during the interaction with the applets in the teaching sequence are 
analysed to identify: 1) processes they follow to represent fractions on the number line, 2) recognition 
and justification of fraction comparison, 3) recognition of equivalent fractions, and 4) characterization 
of proper and improper fractions.  

During the teaching sequence, Alvaro did not achieve the purpose of stage 1. A tendency to dissociate 
numerator and denominator in his interpretation of symbolic and graphic representations of fractions 
on the number line was identified. But, this idea changed. In stage 3 he recognized a fracturing 
relationship between part and whole. In stage 2 the student wrote three proper fractions (1/2, 2/3 and 
2/4) but no improper ones. To justify the order of fractions he focuses on the length of the segment 
that represents a fraction; he justifies his answer writing: “2/4 is smaller because it occupies less than 
the others”. In stage 4, Alvaro faces difficulties to express characteristics of proper and improper 
fractions, but in stage 5 characterizes an improper fraction, comparing the numerator and 
denominator, he wrote: “the numerator is larger than the denominator”. In the teaching sequence, the 
student only managed to identify two equivalent fractions: 4/1 and 40/10. 

As mentioned in the initial test, Alvaro failed to represent fractions on the number line, but after 
exploring the applets of the teaching sequence, in the final test (solved in a paper), he succeeded 
locating fractions on the number line, as shown in Figure 5. 

 
Figure 5: Alvaro’s answers in the final test to represent fractions on the number line 

As observed, the student makes the complete partition for representing each fraction. One strategy he 
uses is to make stripes of different sizes to distinguish the different fractional units. In addition, a 
trace of counting the parts is observed.  

Also in Figure 6, there is evidence that Alvaro improved his partitioning processes to represent 
fractions in tasks related to an area model, although this was not the focus of the teaching sequence. 

 
Figure 6: Alvaro’s answers to represent fractions in an area model, final test 

Fernanda’s performance 
In the initial test, Fernanda showed solid ideas about fraction as a fracturer, both to establish a 
fracturing relation in continuous (Figure 7) and discrete models, as well as its use in a fracturing 

Instructions: Represent the following 
fractions on the number line.  

Instructions: In the following figures, 
represent the indicated fractions.  
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operator aspect (Figure 8). She only faced difficulties in establishing a fracturing relation in graphic 
models where the difference in the size of the parts is not so evident (items e and f of Figure 7). But 
after studying the teaching sequence, the student managed to respond even to this type of situations. 

 
Figure 7: Fernanda’s answers to represent fractions symbolically from area model, initial test 

The processes used by Fernanda to establish the fracturing relation are based on counting the number 
of parts (items d, f, and g). In fact, in item f she did not distinguish the differences between the sizes 
of parts. The student also extends the partitions to identify the minor fractional unit (items b, e, and 
h). In item e, probably she had a counting error. Moreover, Fernandas’ fraction mental object allowed 
her to use partitioning processes to establish a fracturing relation in a graphic representation from a 
symbolic expression of a fraction (see Figure 8).  

 
Figure 8: Fernanda’s answers to represent fractions in an area model, initial test 

Fernanda could express the fracturing relationship in continuous models, but did not manage to extend 
the model to represent improper fractions (item b), she changed numerator by the denominator. She 
also showed difficulties in fracturing a whole in a large number of parts -12 -. With respect to the 
number line, Fernanda was not able to transfer her knowledge about partitioning in an area model to 
a linear model -number line-. In the initial test, she did not answer tasks related to representing 
fractions on the number line, nor those regarding the use of fractions as a number. 

Fernanda’s performance in the teaching sequence was among the best in her group. She only showed 
less ability in stage 2, the criteria used to establish order between fractions was a comparison of 
numerical values of a fraction, which led to errors. However, with respect to the other subjects taught, 
she was more successful in stages 1 and 3, related to fractions as fracturer and as measurer. She also 
managed to characterize proper and improper fractions comparing numerator with denominator. 
Fernanda was able to establish several equivalent fractions during her interaction with the applets in 
the teaching sequence, but also later, since in the final test she showed skills to write equivalent 
fractions of some given fraction. After studying the teaching sequence, in the final test, Fernanda was 
able to answer correctly tasks related to fraction’s uses as measurer and as number. Particularly, she 
managed to represent fractions on the number line (see Figure 9). 

Instructions: In the following figures, 
what fraction represents the painted part? 
Write your answer on the line in the box. 

Instructions: In the following figures, 
represent the indicated fractions.  
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Figure 9: Fernanda’s answers in the final test to represent fractions on the number line 

In the process to represent fractions, Fernanda made lines of different sizes to distinguish partitions. 
Apparently, she did not split all the unit segments. For example, to represent fraction 7/3, only a third 
part was indicated in the interval [2, 3]. Also, she expressed 2/12 and 1/6 in the same place, which 
shows that she recognizes their equivalence, and she puts 2/10 to the right of 1/6, an idea about order 
between fractions. Additionally, the student improved her partitioning processes to establish a 
fracturing relation in both static and dynamic processes.  

Conclusions 
Although in the experimentation a small period of time was devoted to interacting with the applets, 
there is evidence that students learned other aspects of fractions, mainly those related to their location 
on the number line. In the initial test, it was observed that Alvaro and Fernanda’s fraction mental 
object allowed them to solve mainly tasks related to the use of fracturer in continuous and discrete 
models. However, this knowledge could not be transferred to represent fractions in a linear model. 
So the teaching in a single approach is not a guarantee for students to be able to transfer that 
knowledge to solve tasks where other uses of fractions are required. The proposal to use new 
technological resources that allow visualization and manipulation of actions that are done on the 
objects (fracturing, comparing and ordering) helped students to improve their ideas related to 
fractions as measurer and as number. Moreover, there is evidence that despite the fact that in the 
teaching model emphasis is not placed on the area model, students were able to improve their partition 
processes in order to establish a fracturing relation in this type of models. That is, a teaching model 
based on the number line and the use of applets helps students to improve their ideas about the use of 
fraction as fracturer in an area model. The use of a computer in a marginalized community did not 
involve difficulties in the teaching model, in fact, students were able to transfer ideas from the 
manipulative computer task to the “non-manipulative” paper task. 
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We present an overview of four studies investigating secondary students’ conceptual and procedural 
knowledge of fractions qualitatively as well as quantitatively. We draw on these studies and their 
results to discuss the problem of measuring conceptual and procedural knowledge; the issue of 
individual differences in conceptual and procedural fraction knowledge; and related educational 
implications. 

Keywords: Fractions, conceptual/procedural knowledge, individual differences, instruction. 

Conceptual and procedural knowledge in mathematics learning 
The distinction between procedural and conceptual knowledge has elicited considerable research and 
discussion among researchers in the fields of cognitive-developmental psychology and mathematics 
education. Procedural knowledge is typically defined as the ability to execute action sequences to 
solve problems and is usually tied to specific problem types, whereas conceptual knowledge is 
defined as knowledge of concepts pertaining to a domain and related principles (Rittle-Johnson & 
Schneider, 2015). This definition has been contested on the grounds that it depicts a very narrow 
picture for procedural knowledge as something that one either has, or does not have, ignoring different 
qualities that such knowledge may have (Star, 2005). Still, this definition captures the distinction 
between carrying out a procedure that pertains to a domain, and understanding of the entities (e.g., 
mathematical objects and mathematical relations) that are involved in the procedure. This distinction 
is valuable, particularly from the point of view of mathematics education that has been tantalized by 
the phenomenon of procedural skill without understanding before acknowledging that conceptual and 
procedural knowledge are equally important for students’ mathematical development (e.g., De Corte, 
2004). 

The relation between the two types of knowledge has been difficult to establish empirically, in 
particular with respect to the order of acquisition (i.e., which type of knowledge develops first).The 
current prevailing model is the iterative model that assumes that there is a bi-directional relation 
between conceptual and procedural knowledge and accounts for many empirical findings, notably the 
well-documented finding that the two types of knowledge are typically highly correlated (Rittle-
Johnson & Schneider, 2015). However, such correlations found at group level do not accurately 
reflect what happens at the individual level. Indeed, research shows that there are individual 
differences in the way students combine the two kinds of knowledge putting a challenge to the 
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iterative model (e.g., Canobi, 2004; Hallett, Nunes, & Bryant, 2010; Hallett, Nunes, Bryant, & 
Thrope, 2012). In particular, Hallett and colleagues (2010, 2012) were the first to systematically study 
such individual differences in the area of fraction learning. They assessed conceptual and procedural 
knowledge of students at Grade 4 and 5 (2010) as well as at Grade 6 and 8 (2012) and they identified 
groups of students who were either strong or weak in both types of knowledge. However, they also 
consistently traced two substantial groups of students for whom there was discrepancy between the 
two types of knowledge (i.e., students in one group exhibited stronger procedural fraction knowledge, 
compared to their conceptual knowledge, and vice versa for students in the other group). Hallett and 
colleagues found that such discrepancies became less salient with age. 

Before more progress can be made in understanding the relations between conceptual and procedural 
knowledge, more attention should be paid to the validity of measures of conceptual and procedural 
knowledge (Rittle-Johnson & Schneider, 2015). This is a challenging endeavor, particularly with 
respect to conceptual knowledge, which is considered a multi-dimensional construct; and it becomes 
even more challenging when it comes to the concept of fraction, itself a multifaceted construct 
pertaining to a vast variety of situations (Moss, 2005). 

In this paper we present an overview of four studies investigating secondary students’ conceptual and 
procedural knowledge of fractions qualitatively as well as quantitatively. We reflect on the challenges 
we met and we draw on the findings to discuss the problem of measuring conceptual and procedural 
knowledge; the issue of individual differences in conceptual and procedural fraction knowledge; and 
related educational implications. 

Conceptual and procedural fraction knowledge of Greek secondary students 
Study 1: General trends 

In this study (Bempeni & Vamvakoussi, 2014) we looked at the development of conceptual 
knowledge of fractions in the first three years of secondary level (7th to 9th grade in Greece). We 
administered an open-ended questionnaire to 80 seventh and ninth graders. The questionnaire 
consisted of 24 items targeting many aspects of fraction knowledge. The tasks included interpreting 
and constructing fraction representations using the area model and the number line; fraction 
magnitude estimation and estimation of outcomes of arithmetical operations; fraction comparison 
tasks that could be tackled with conceptual strategies (e.g., comparing 3/2 and 13/27, for which 1 can 
be used as benchmark); tasks targeting the inappropriate transfer of natural number knowledge to 
fractions (e.g., “how many numbers are there between 2/5 and 3/5?”); and contextualized problems 
where physical quantities were involved, requiring understanding of the unit of reference(see Task 1 
in Figure 1 for an example of the latter, albeit in multiple-choice format). The difficulty of items 
varied, from very simple ones (e.g., representing a proper fraction using the area model) to quite 
challenging ones (i.e., items targeting the dense ordering of fractions). In addition, the questionnaire 
included 4procedural items on standard school-taught procedures, namely on fraction operations 
(e.g., “compute the sum 10/63+8/9”). The students were asked to solve the conceptual tasks and 
explain their solutions; and to carry out the fraction operations. 

The results showed no significant difference between the two age groups’ overall performance, and 
no significant difference in the overall performance for conceptual tasks, norfor procedural tasks. 
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However, we found that older students relied significantly more on procedural strategies (i.e., school-
taught procedures). Looking at each task separately, we found that ninth graders performed 
significantly better in 3 conceptual tasks, albeit relying on transformation strategies. For example, 
they converted fractions into decimals in order to place them on the number line; and they converted 
3/2 and 13/27 into similar ones in order to compare them. Performance in procedural tasks was fairly 
good (at least 70% succeeded in each task), whereas performance in conceptual tasks varied widely 
(as expected). An interesting pattern emerged: Although the great majority of students were apt to 
carry out the four fraction operations, about 60% failed in tasks targeting conceptual understanding 
of the operations (e.g., in estimating the sum 12/13+7/8). In addition, although practically all students 
were able to construct an area model for a proper fraction, about 25% asserted that a shaded part of a 
shape that was partitioned in 3 unequal parts was “one-third”; and more than half of the students 
failed to represent an improper fraction, or explicitly stated that “it is not possible to take five parts 
out of three”. Further, about half asserted that “eating 3/5 of a pie” necessarily means “eating 3 pieces 
of a pie” (see Task1, Figure 1). Finally, we also traced some students who were flawless in the 
procedural tasks, but failed in even the simplest conceptual tasks, indicating an asymmetry between 
the two types of knowledge. We focused on this issue in Study 2. 

Study 2: Individual differences in conceptual and procedural knowledge of fractions 

In Study 2 (Bempeni & Vamvakoussi, 2015) we recruited 7 ninth graders to participate in in-depth 
interviews. The selection of the participants was not random. First, based on their school grades, all 
participants could be characterized as medium to high level students in mathematics. Second, they 
shared the same mathematics tutor. Based on information provided by their tutor, we had reasons to 
expect some variation in their conceptual and procedural knowledge of fractions. We used an 
instrument with 30 fraction open-ended tasks, adjusting and extending the collection of conceptual 
tasks used in Study 1, and adding few procedural tasks (e.g., operations with mixed numbers). We 
added one more task focusing on the role of the unit of reference, in contexts where physical quantities 
were involved (see Task 2 in Table 1, albeit in multiple choice format). We also explicitly asked 
students not to apply typical school taught procedures in certain fraction comparison tasks that could 
be tackled with conceptual strategies (e.g., one proper and one improper fraction). The participants 
were asked to solve the tasks thinking aloud and explaining their answers.  

Based on the analysis of their responses in terms of accuracy and strategy used 
(procedural/conceptual), the participants were distributed in three profiles. The Conceptual-
Procedural profile consisted of three students who showed advanced conceptual knowledge of 
fractions, combined with procedural fluency. The Procedural profile consisted of three students who 
succeeded in practically all tasks that could be solved via the use of procedures taught at school (e.g., 
fraction and mixed numbers operations), but failed systematically in conceptual tasks (e.g., in 
representing an improper fraction; or in comparing dissimilar fractions when they were not allowed 
to apply the typical procedure). All three failed in both tasks targeting the role of the unit of reference. 
Finally, the Conceptual profile was represented by one student that failed in all tasks requiring 
procedural knowledge but managed to deal successfully with most of the conceptual tasks, including 
the ones targeting the role of the unit of reference.  
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Thus the findings of Study 2 are consistent with the findings of Hallett et al. (2010, 2012), indicating 
that there are individual differences in the way students combine the two types of knowledge. 
Moreover, they illustrated the possibility that these differences can be extreme, even at grade 9. In 
following studies, we attempted to further investigate this issue, shifting from qualitative to 
quantitative methods.  

Study 3: Developing and evaluating an instrument to measure for conceptual and procedural 
knowledge 

Bearing in mind Rittle-Johnson and Schneider’s (2015) plea for valid measures of procedural and 
conceptual knowledge, we developed a new instrument measuring conceptual and procedural 
knowledge of fractions (Bempeni, Poulopoulou, Tsiplaki, & Vamvakoussi, 2018). In its initial form, 
the instrument consisted of 39 items, 12 procedural items and 27 conceptual items, a total of 39 items. 
The procedural ones were paper-and-pencil tasks requiring knowledge of procedures taught at school 
(e.g., to carry out fractions operations and operations with mixed numbers, to find an equivalent 
fraction, to cross-multiply, to simplify complex fractions, and to compare dissimilar fractions using 
the standard procedure).The conceptual tasks were based on extensive literature review (e.g., Baroody 
& Hume, 1991; Van Hoof, Verschaffel, & Van Dooren, 2015) and on our materials from Study 1 and 
Study 2 which were adjusted and enriched when necessary, based on our experience with testing these 
tasks with students. First, we opted for multiple-choice items, instead of open ones (see also Van 
Hoof et al., 2015), with a view to discourage the use of procedural strategies in conceptual tasks (e.g., 
in comparison tasks), an issue that is highlighted in the literature (e.g., Rittle-Johnson & Schneider, 
2015) and was noticeable in Study 1. Second, we added more tasks on fraction representations that 
proved good indicators of conceptual knowledge (or the lack thereof) in our previous studies (see, for 
example, Task 4 in Figure 1). 

We conducted a clinical pilot study with 61 students and asked 6 mathematics education experts to 
assist in the evaluation of the instrument. The instrument was assessed with respect to a) face validity 
and content validity, through the experts’ feedback on clarity, accuracy, and relevance of the 
instrument; b) convergent and divergent validity, via multitrait analysis; c) internal consistency, 
calculating Cronbach’s alpha; and d) external consistency with the test-retest method, calculating the 
intra-class correlation coefficient. 

The instrument showed strong face validity given that tall items were assessed as clear and accurate 
by the experts, who were also highly consistent with each other in rating the relevance of each item 
to the aim of the instrument (Content Validity Index =1>.83). All items of the procedural scale 
showed convergent validity and divergent validity by demonstrating high correlation with the 
procedural scale and low correlation with the conceptual scale, respectively. However, eight items of 
the conceptual scale showed low correlation with the conceptual scale or higher than expected 
correlation with the procedural scale. Further, the value of intra-class correlation coefficient was high 
(above 0.8) for all procedural items, but below 0.5 for five conceptual items.  

The problematic items were removed, resulting in an instrument consisting of 14 conceptual and 12 
procedural tasks, with good indicators of validity, reliability, and objectivity, which we used in 
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Study 4. However, removing conceptual items from the questionnaire is not an insignificant matter, 
and we will come back to this issue in the discussion.  

 
Figure 1: Examples of conceptual tasks 

Study 4: Individual differences in conceptual and procedural knowledge of fractions: a 
quantitative study 

In Study 4 (Bempeni et al., 2018) we administered the aforementioned instrument to 126 ninth graders 
and we analyzed the data using cluster analysis, testing for individual differences. Following Hallett 
and colleagues (2010, 2012), we used in the analysis the residualized scores of the procedural and the 
conceptual scales, the raw scores being the percentages of correct answers out of the total of answered 
questions. This is because the two scales are expected to be correlated (Rittle-Johnson & Schneider, 
2015), and this method provides a way to exclude the common part of variation from both scales 
(Hallett et al., 2010, 2012). It should be noted that these scores do not represent absolute magnitudes 
of each type of knowledge; rather, they indicate discrepancies between the two types of knowledge. 
For example, a positive residual with respect to procedural knowledge means that a person’s 
procedural knowledge is stronger than expected given their conceptual knowledge, and vice versa for 
negative residuals. 

The cluster analysis used the k-means method and Euclidean distance as a distance measure and the 
optimal number of clusters was determined via statistical methods to be four. Two of these clusters 
comprised students who did not show great discrepancies between the two types of knowledge and 
their performance was either rather high in both type of tasks (N=22, 17.5%) or rather low in both 
types of tasks (N=31, 24.6%). On the contrary, the two remaining clusters comprised students who 
either performed better than expected in conceptual tasks given their performance in procedural 
tasks(Conceptual Profile, N=21, 16.7%); or performed better in procedural tasks given their 
performance in conceptual tasks(Procedural Profile, N=52, 41.3%). 
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These results supported the hypothesis that there are individual differences in the way that students 
combine the two type of knowledge and were consistent with the findings of our previous studies, 
and also with the results of Hallett et al. (2010, 2012). Moreover, our findings provided evidence that 
these differences may persist and remain salient for older students.  

We note that within the Procedural Profile, we traced few extreme cases of students who excelled in 
the procedural items, but showed a severe lack of conceptual understanding, similar to students in 
Study 2. For example, one student achieved 100% score in the procedural tasks but only 14.29% in 
conceptual tasks, failing even in some of the simplest ones. However, we did not trace extreme cases 
within the Conceptual Profile. 

Conclusions - Discussion 
In a series of studies we examined secondary students’ conceptual and procedural knowledge of 
fractions, qualitatively as well as quantitatively. The findings of these studies converge on the 
conclusion that there are individual differences in the way that students combine these types of 
knowledge (i.e., there are students who exhibit stronger procedural than conceptual knowledge, and 
vice versa); that these differences remain salient up to ninth grade; and that they may even be extreme 
(Study 2, Study 4). These findings put a challenge to the assumption that conceptual and procedural 
knowledge develop in a hand-over-hand manner (Rittle-Johnson & Schneider, 2015). 

The findings are strengthened by the fact that we measured conceptual and procedural fraction 
knowledge reliably and validly via a new instrument (Study 4). However, there were several 
theoretical and methodological issues that we had to tackle in the process of developing the 
instrument, and some difficult decisions to make. First, measures of procedural knowledge were easy 
to construct and validate. However, this is due to the fact that we adopted a simple, perhaps over-
simplified, definition of procedural knowledge (Star, 2005), as discussed in the introduction. 

Second, measures of conceptual knowledge were particularly challenging. On the one hand, it is 
important to address various aspects of conceptual knowledge (Rittle-Johnson & Schneider, 2015), 
which requires the use of a great variety of tasks. On the other hand, this variety makes it difficult to 
construct a measure with good indicators of convergent validity, resulting to the exclusion of tasks 
(Study 3). Further, the use of multiple-choice items does not exclude the possibility that students in 
fact use procedural strategies when dealing with conceptual tasks, which was observable in Studies 1 
and 2, but not in Studies 3 and 4. This might be an explanation for the fact that some conceptual tasks 
showed higher correlation with the procedural scale than expected (Study 3), and they also needed to 
be excluded. For example, locating fractions on the number line were among the problematic 
conceptual tasks in Study 4, presumably because the students, similarly to the students in Study 1, 
used transformation strategies to deal with the task. Excluding items may result in a more robust 
instrument; however, a lot of useful insights in students’ understandings are lost. Consider, for 
example, the three first tasks in Figure 1. These tasks address students’ understanding of the role of 
the unit of reference, in a context where it is necessary to take it into account (Baroody & Hume, 
1991). All three had to be removed from the instrument, because the great majority of students, even 
the ones with overall good performance, failed. Thus, these tasks were not useful in discriminating 
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between “conceptual” and “procedural” students but removing them meant ignoring an important 
aspect of conceptual knowledge that students appear to lack. 

This brings us to a consistent finding across all four studies: Students fail in elementary, yet 
fundamental conceptual tasks. Consider Task 1 (Figure 1) which was used in all studies. This task 
was challenging for half the students in Study 1; for three out of seven middle-to-high level students 
(based on their school grades) in Study 2; and for the great majority of students who participated in 
Study 3. This raises certain issues for instruction. First, Study 1 indicates that conceptual knowledge 
does not improve from seventh to ninth grade, despite the fact that during these years Greek students 
recapitulate content regarding fractions and are introduced to rational numbers. However, what seems 
to change is that students tend to rely more on procedural strategies. This may conceal their lack of 
conceptual fraction understanding is some cases (e.g., when placing fractions of the number line), but 
not in tasks that cannot be tackled with school-taught procedures (e.g., Tasks 1-3 in Figure 1). Second, 
it appears that students with very poor understanding of fractions still manage to get good grades at 
school (Study2). Third, the majority of the students in Study 4 was placed in the Procedural profile 
(i.e., they did better in the procedural tasks, than one would expect based on their performance in the 
conceptual tasks). These are quite strong indications that students’ school experiences are more 
favorable to the development of procedural knowledge. In other words, instruction appears to still 
over-emphasize procedural knowledge, neglecting students’ conceptual difficulties with fractions 
(Moss & Case, 1999).  

This assumption cannot, however, explain the existence of (fewer) students who have stronger 
conceptual than procedural knowledge. In a more general fashion, the source of individual differences 
in conceptual and procedural knowledge is still an open question, despite the fact that several 
hypotheses have been formulated. Factors such as prior knowledge in the domain (Schneider, Rittle-
Johnson, & Star, 2011), cognitive profile (Gilmore & Bryant, 2008; Hallett et al., 2012), general 
conceptual of procedural ability as well as school attendance at different schools have been tested 
(Hallett et al., 2012), with unsatisfactory results. Further theorizing and research is needed in this 
respect.  
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This paper describes a study that investigated the metacognitive strategies used by fifteen Year 6 
children while working individually on a non-routine mathematics problem. After attempting the 
problem, the students completed a questionnaire that elicited their retrospective reports on the 
metacognitive strategies they had employed while working on the problem. The analysis of the 
participating students’ written work and questionnaire responses revealed that independently of how 
many metacognitive strategies were observed; children’s problem solving success was not 
guaranteed. Interestingly, children’s use of metacognitive strategies was found particularly low. 
Educational implications for metacognition in both mathematical problem solving and in the learning 
of mathematics are discussed.     

Keywords: Metacognition, Non-routine problem, Problem solving, HISP inventory. 

 

Introduction 
In the last decades, metacognition and its development have been identified as having an important 
role in education and thus underlay in the center of primary and secondary school curricula. 
Metacognition is popularly defined as ‘knowledge, awareness and deeper understanding of one’s own 
cognitive processes and products’ (Desoete, 2008, p. 190) and as ‘thinking about thinking’ (Anderson, 
2002). It is often presented as comprising three phenomena: metacognitive knowledge, metacognitive 
experiences and metacognitive skills (Efklides, & Vlachopoulos, 2012). Moreover, it is commonly 
divided into two components: knowledge of cognition and regulation of cognition. Knowledge of 
cognition refers to the individuals’ awareness of their own knowledge and includes their declarative, 
procedural and conditional knowledge. Regulation of cognition, on the other hand, pertains to the 
procedural aspect of knowledge that enables the effective linking of actions needed to perform a given 
task. It includes planning, monitoring and regulation, and evaluation. 

Of central concern for researchers and educators is the crucial role that metacognition plays in 
children’s academic performance in general as well as in mathematical achievement in particular 
(Desoete, 2009). Fostering metacognition, students avoid “blind calculations” or a superficial 
“number crunching” approach in mathematics (Verschaffel, 1999) and learn how to use the acquired 
knowledge in a flexible way. Through metacognition, students become able to effectively discern 
information they know from those they do not know and retain new information (Dunning, Johnson, 
Ehrlinger, & Kruger, 2003). Metacognitive learners have an increased understanding of the control 
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over their thinking, they employ this control and, thus, they are able to thrive across the curriculum 
(Zimmerman, 2008).  

Different procedures and measures have been used to assess mathematical metacognition. A 
systematic review of the metacognition assessment in children aged 4–16 years over a 20-year period 
made by Gascoine, Higgins, and Wall (2017) revealed that the off-line methods, namely the self-
reports measures, are the more commonly used, mainly because these measures are perceived as valid, 
reliable, easy to use and their application doesn’t require much time. However, Desoete (2008) asserts 
the importance of distinguishing the use of different tools or methods when examining different facets 
of metacognition in relation to other factors such as children’s age range among others. Her statement 
‘how you test is what you get’ (p. 204) highlights this importance. 

Mathematical metacognition is often examined in terms of monitoring skills with respect to solving 
problems (Desoete, 2009, 2008; Panaoura, Philippou, & Christou, 2004). Children demonstrating 
metacognitive functions are usually aware of their own learning and are able to control their learning 
process. Associated learning skills like these are essential to the development of effective problem-
solving ability as well as to academic success in mathematics (Magno, 2009). When working 
metacognitively students are able to correctly represent and solve mathematics problems, evaluate 
the effectiveness of strategies and recognize mistakes. In addition, they learn to clarify goals, 
understand concepts, monitor their understanding, predict outcomes and choose appropriate actions 
(Pappas Schattman, 2005). 

Wilson and Clarke (2004) view children’s problem solving as the purposeful alternation between 
cognitive and metacognitive activities. In particular, the completion of a mathematical problem is a 
cognitive process that requires the use of cognitive strategies (e.g., adding up). The selection and use 
of these cognitive strategies, however, shows the solver’s reflection on her existing knowledge (e.g., 
what do I know about the problem to help me work it out?). This is when metacognitive behavior is 
coming to the fore.  

It is possible that school practice could inhibit the development of metacognition during problem 
solving, since the mathematics problems used within school context are often solved by means of a 
known method or formula. It is of great interest to study children’s engagement in metacognitive 
activity when solving problems that are unfamiliar to them, like ‘non-routine’ problems. These 
problems ‘make cognitive demands over and above those needed for solution of routine problems, 
even when the knowledge and the skills required for their solution have been learned’ (Mullis et al., 
2003, p. 32). Because non-routine problems require a flexible and strategic way of thinking, children 
often have difficulties and appear low success (Elia, Van den Heuvel-Panhuizen, & Kolovou, 2009). 
Interestingly, even good calculus students are not able to solve non-routine problems successfully. 
Such a failure does not necessarily result from restricted mathematical knowledge, but may be linked 
to ineffective use of that knowledge (Van Streun, 2000).  

Based on the hypothesis that metacognitive functions are more likely to employ during challenging 
tasks and knowing that metacognition and problem solving is usually studied with older students and 
adults (Schneider, & Artelt, 2010), the present study aimed to investigate the relationship between 
metacognition and non-routine problem solving in primary school children. Investigating young 
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children - apart from providing us with information concerning their ability to reflect upon their 
problem solving - will make us more sensitive about how metacognition might be further fostered. 
Research questions are as follows: a) to what extend do children use metacognitive strategies when 
solving a non-routine mathematics problem?, b) is there an association between children’s success in 
problem solving and their deployment of metacognition?  

 

Method 
Participants 

Fifteen Year 6 children (8 male, 7 female), coming from the same class of a state primary school in 
a Greek island, participated in the study. They were randomly selected as they covered from low to 
high socioeconomic and academic statuses. The average age of the students was 11 years and 8 
months (range: 11 years and 4 months - 12 years). The participating students had not received any 
training on metacognition. 

Design of the study - Instrument 

All participants were presented with a non-routine mathematics problem that was designed for the 
purpose of the study in order to examine children’s mathematical achievement as well as to establish 
a situation for revealing their problem solving strategies. The problem was also used as a basis for 
participating students’ reflections on their metacognitive strategies. After attempting the problem, the 
students completed a questionnaire that asked them to report retrospectively on the metacognitive 
strategies they had used while working on the particular problem.   

More specifically, the non-routine problem used in the present study (see Figure 1) did not require a 
particular algorithm to be applied neither was connected to a specialized mathematical concept. 
Because it is recognized that routine mathematics problems often require little student reflection, it 
was tried to follow the criteria that define the non-routine problems and reveal solvers’ critical 
thinking (e.g, Kolovou, Van den Heuvel-Panhuizen, & Bakker, 2009).   

The questionnaire was based on the ‘How I Solve Problems’ measurement tool of metacognition 
developed by Fortunato, Hecht, Tittle, and Alvarez (1991), after taking into consideration relevant 
instruments for measuring metacognition compiled from the literature (e.g., Jr MAI developed by 
Sperling et al., 2002). The particular instrument was chosen as it is considered valid for research and 
useful for assessment and intervention in classrooms (Gascoine et al., 2017; Sperling et al., 2002). A 
few modifications were done to the original version of the tool, mainly concerning rewording a few 
items in order to make the questionnaire more appropriate for younger children. In the present study, 
the questionnaire consisted of twenty-one action statements, as many as in the original version. The 
statements covered a range of likely metacognitive activities during problem solving process. 
Students were asked to respond to these statements using a five-point Likert scale (ranging from 
‘1=never to 5=always”) based on their way of working when solving the mathematics problem.    

 

 
‘The cost of the theater ‘Avlea’ with 250 seats for a two-hour play is 750€. Last Sunday 30% of the seats 
were empty. Which will be the profit of the theater if the cost of the ticket for the audience is 9 € each?’ 
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Figure 1: The problem used in the present study 

 

The questionnaire was subdivided into four sections. He first, named ‘Before you started to solve the 
problem’ section referred to reading and understanding the problem as well as planning of a solution 
method (6 statements). The second, the ‘As you worked on the problem’ section involved employment 
of the solution method when working on the problem (5 statements). The third, the ‘After you finished 
working on the problem’ section presented with ways of confirming and checking for the solution (4 
statements) And the ‘Ways of working on the problem’ section listed particular heuristics as strategies 
that a student might have used when working on the problem (6 statements).  

 

Procedure 

All participants were asked to solve the problem and answer the questionnaire individually in their 
classroom during school hours. Their anonymity was ensured. 

They were initially required to read carefully the non-routine mathematics problem. The first section 
of the questionnaire was then given and a 30 minutes period was allocated for solving the mathematics 
problem. The students were provided with a specific area on a paper in which they were asked to 
write their working and solution. Immediately after solving the problem, the rest of the questionnaire 
was administered: the students were required to respond to the statements that were included in the 
last three sections of the questionnaire regarding specific metacognitive strategies they might have or 
might have not used.  

 
Results 
Problem solving success  

Of the fifteen students who attempted the problem, only eight solved it correctly and, for the purposes 
of the data analysis, they are called ‘successful students’, whereas those who failed in solving the 
problem (seven students) were called ‘unsuccessful students’. Although children’s problem solving 
strategies were recorded, their analysis will not be described as it goes beyond the purpose of the 
present paper.  

In order to examine whether the successful and unsuccessful students provided similar or different 
responses to the questionnaire regarding their metacognitive strategies, an independent samples t-test 
was conducted. The analysis revealed that, although the overall metacognitive level mean score of 
the successful students (3,46) was higher than that of the unsuccessful students (3,09), this difference 
was not found statistically significant (t=-1,159, df=13, p=.267). When the same analysis was 
repeated for each questionnaire section separately, the original results were confirmed (t=-1,182, 
df=13, p=.258, t=-1,100, df=13, p=.291, t=-,383, df=13, p=.708 and t=-,926, df=13, p=.371 for 
Sections A, B, C and D, respectively). Thus, no statistical significant differences were observed in 

Thematic Working Group 02

Proceedings of CERME11 522



 

 

children’s responses to the total of the statements in each section of the questionnaire among 
successful and unsuccessful students. Table 1 shows these findings. 

The mean level of students’ metacognitive strategy for the ‘Ways of working’ section (Section D) 
was the lowest mean level of all the sections for both successful and unsuccessful students (3,02 and 
2,76, respectively). This finding shows that the heuristics listed for children to indicate whether they 
had used when working on the problem were rather under-recognized. In particular, more than 80% 
of the students reported that they never/ rarely draw a picture or a diagram for the better understanding 
of the problem (55, 3% and 26, 7%, respectively for never/rarely).  

 

Questionnaire 
Sections 

Problem Solving Success Total 

Successful Unsuccessful 

A. Before you started 3,62 (0,93) 3,07 (0,87) 3,34 (0,91) 

B. As you worked 3,5 (0,93) 3,03 (0,69) 3,26 (0,81) 

C. After you finished 3,85 (0,58) 3,71 (0,73) 3,78 (0,65) 

D. Ways of working 3,02 (0,69) 2,76 (0,29) 2,89 (0,49) 

Overall 3,46 (0,66) 3,09 (0,54) 3,27 (0,61) 

Table 1: Mean scores1 (and standard deviations) for children’s metacognitive level in the questionnaire 
by their success in problem solving  

 

On the contrary, children’s response rates for the ‘After you finished’ section (Section C) that might 
imply their use of strategies for verifying their solutions were quite high (3,85 and 3,71 for successful 
and unsuccessful students, respectively). For example, 53% of the students said that they always go 
back and check if their calculations are correct. However, no participant was found to say that she 
always thinks about a different way to solve the problem. 

Correlation between metacognitive strategies and problem solving success 

Aiming to investigate the existence of correlations between children’s responses to the statements in 
the four sections of the questionnaire (metacognitive strategies) as well as between children’s 
questionnaire responses and their written working of the problem (problem solving success), 
correlation analysis was conducted, as presented in Table 2. Interestingly, no correlations were found 
either between problem solving success and overall metacognition (Pearson’s r=.306, p=.267) or 
between problem solving success and metacognitive strategies at each questionnaire section 
separately (Pearson’s r=.312, p=.258, Pearson’s r=.292, p=.291, Pearson’s r=.106, p=.708 and 
Pearson’s r=.249, p=.371, for sections A, B, C and D, respectively). However, participants’ overall 
metacognition was positively correlated to their responses to each questionnaire section (Pearson’s 
r=.953, p<.01, Pearson’s r=.817, p<.01, Pearson’s r=.869, p<.01 and Pearson’s r=.691, p<.01, for 
                                                 
1 Responses were measured on a scale from 1 (Never) to 5 (Always) 
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sections A, B, C and D, respectively) This result shows that participants who responded highly to 
statements at one section tended to respond highly to statements at any other section. 

General Discussion 
The present study has attempted to investigate the metacognitive strategies used by sixth graders 
while working on a non-routine mathematics problem. The analysis of students’ written work and 
questionnaire responses revealed two main findings. First, students reported that they are using 
metacognition. However, their demonstration of metacognitive strategies is quite low both in general 
and at different stages of the solution process. In particular, a few reported that they greatly made 
connections to their previous experiences, reviewed their progress towards the problem solution, 
checked their calculations while they worked, attempted to verify the accuracy and sense of their 
answer to the problem. Additionally, an unequal use of metacognitive strategies at different stages of 
the solution process was also observed. 

 Overall 
Metacognition 

Section Α Section B Section C Section D 

Problem 
Solving Success 

.306 .312 .292 .106 .249 

Section A .953**  .684** .854** .603* 

Section B .817**   .657** .338 

Section C .869**    .430 

Section D .691**     

         *Significant correlation at the p<.05 level     **Significant correlation at the p<.01 level 
Table 2: Correlations between overall metacognition and problem solving success  

 

Second, a successful solution to the problem was found not necessarily connected to the employment 
of metacognitive strategies. Although a challenging problem was chosen for use in this study –mainly 
because it would raise the opportunity for metacognitive strategies to be called into play- so few 
students succeeded in obtaining a complete solution. This finding is consistent with previous studies 
in which the success in a mathematical problem is considered a cognitive process that requires the 
use of cognitive strategies (e.g., Wilson & Clarke, 2004); thus, low metacognitive strategies during 
problem solving do not undoubtedly lead to failure. This issue further reveals that even if students 
behave metacognitively (e.g., they are able to recognize when they are stuck), their difficulty with 
solving the problem remains (e.g., they fail to solve the problem). It is possible that their worthy 
efforts for metacognitive strategies will be restricted if they are unable to identify alternative 
successful strategies in the problem solving process. More needs to be known about the impact of the 
school practice on the development of problem solving and metacognitive strategies in children and 
implications for teaching should be considered.  

From a methodological perspective, it is important to note that a self-report questionnaire as the one 
used in the present study might provide only a little about children’s metacognitive strategy use.  
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Further research with larger samples is required in order to get detailed information on both children’s 
actual problem solving behavior and children’s actual use of metacognitive strategies. Multi-method 
approaches (Desoete, 2008), such as on-line procedures, might work towards this aim. Interestingly, 
metacognitive instruction leads not only to the empowerment of students’ metacognition but also to 
the development of the practices from the part of the teachers concerning metacognition in both 
mathematical problem solving and in the learning of mathematics (Magno, 2009). As many factors 
as possible need to be further considered in order that any teacher intervention on metacognitive 
engagement can be informed and effective.  
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The working group 
In CERME11, the Thematic Working Group 3 “Algebraic thinking” continued the work carried out 
in previous CERME conferences. There was a total of 23 papers and 4 posters with a total of 33 group 
participants representing countries from Europe and other continents: Germany, Cyprus, Finland, 
Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, UK, and USA. 

Structured overview of papers 
Papers presented at TWG3 show a broad range of methods, subjects and theoretical underpinnings. 
It is thus not an easy task to cluster them in a fashion that reflects the structure of the field, however, 
we have identified the following clusters: Technology innovations and curriculum development; 
Early algebra; Empirical research in secondary algebra; Conceptual development; and Theoretical 
issues.  

Technological innovations and curriculum development have been discussed in several papers. 
Ricardo Nemirovsky et al. investigated in “Body motion and early algebra” young students who graph 
their distance to a wall together with the sum or difference graphs of two sensors. In the conception 
phase different kinds of abstraction were used to guide the design. James Gray, Bodil Kleve and 
Helga Tellefsen evaluated in “Students’ expected engagement with algebra based on an analysis of 
algebra questions on 10th grade exams in Norway from 1995 till 2018” national exams and found a 
decrease of context, but an increase of the amount of text and moreover a decrease of decisions to be 
made by students. What kind of tasks work well in teacher education? Iveta Kohanova and Trygve 
Solstad gave some answers to this question in “Linear figural patterns as a teaching tool for preservice 
elementary teachers – the role of symbolic expressions” by identifying problems preservice teachers 
had in finding symbolic rules.  

Early Algebra is of central interest and several papers from this research tradition investigated this 
further. This was done by Margarida Rodrigues and Lurdes Serrazina who showed young students’ 
ability to establish quantitative relationships involving unknowns in “Dealing with the quantitative 
difference: A study with 2nd graders” showed young students’ ability to establish quantitative 
relationships involving unknowns. Similarly, Denise Lenz in “Relational thinking and unknown 
quantities” monitored the increase in ability to express relations between known and unknown 
quantities of marbles in boxes from kindergarten to grades 2 and 4. María D. Torres González et al. 
looked at 2nd graders functional thinking in “Structures identified by second graders in a teaching 
experiment in a functional approach to early algebra”. While the 2nd graders could think 
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symbolically, they also had the tendency to stick to the structural form (e.g. x+x) that reflected the 
original problem structure. Eder Pinto et al. in “Representational variation among elementary grade 
students: A study within a functional approach to early algebra” found that the variety of types of 
representations used by students was wider when they worked with specific values than with the 
general case. Thus, the importance of teaching representations explicitly was highlighted. Anna-
Susanne Steinweg reported on an unusual experiment in “Short note on algebraic notations: First 
encounter with letter variables in primary school” where she found that about one out of six primary 
school pupils without any introduction to formal algebra could spontaneously interpret algebraic 
expressions for figural patterns  in a sensible way.  

Empirical research in secondary algebra formed another cluster. Mara Otten et al. showed in “Fifth-
grade students solving linear equations supported by physical experiences” that the use of a physical 
balance can improve performance in solving systems of linear equations. In “Students in 5th and 8th 
grade in Norway understanding of the equal sign”, Hilde Opsal showed that the operational 
understanding of the equal sign still dominates in 5th and even the 8th grade. Per Nilsson and Andreas 
Eckert showed exactly what the title “Time-limitation and colour-coding to support flexibility in 
pattern generalization tasks” indicates. Marios Pittalis and Ioannis Zacharias in “Unpacking 9th grade 
students’ algebraic thinking” and Maria Chimoni et al. in “Investigating early algebraic thinking 
abilities: A path model” both performed confirmatory factor analysis to bring out the structure of 
algebraic competence. The first paper found that functional thinking and meta-algebra (e.g. proving) 
are similar, so they concluded that there are three components: generalized arithmetic, 
transformational ability and meta-algebra. The second paper mainly agreed but used modeling as a 
third factor. Obviously, this asks for unification. On College level, Claire Wladis et al. in 
“Relationships between procedural fluency and conceptual understanding in algebra for 
postsecondary students” showed by latent class analysis that college students showing procedural 
fluency in standard problem contexts still often lack deeper conceptual understanding. 

Next is the group of papers on conceptions and conceptual development. Joana Mata-Pareira and João 
Pedro da Ponte documented how abductive reasoning can be triggered in “Enhancing students’ 
generalizations: a case of abductive reasoning”. The context was that of students solving linear 
equations and discovering the fact that not all of them have solutions. Peter Kop et al. in “Graphing 
formulas to give meaning to algebraic formulas” used graph drawing by hand and card sorting to 
improve recognition of function types and graph features and qualitative reasoning about functions. 
For younger students, Eva Arbona et al. in “Strategies exhibited by good and average solvers of 
geometric pattern problems as source of traits of mathematical giftedness in grades 4-6” found that a 
variety of factors influence the way students solve problems. Simon Zell noted student’s inflexibility 
in performing algebraic tasks and gave in “Provoking students to solve equations in a content-oriented 
fashion and not using routines” not only empirical evidence, but also suggested how tasks can be used 
to improve on this. 

Several papers considered theoretical issues. Dave Hewitt’s contribution “Never carry out any 
arithmetic” argued for more complex examples where learners are discouraged from counting and 
instead are urged to identify structure in figures. Cecilia Kilhamn and Kajsa Bråting, in “Algebraic 
thinking in the shadow of programming”, reported on ideas to implement computational thinking in 
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school and especially use programming in algebra and algebraic thinking in the Swedish mathematics 
curricula. While these activities are computer oriented, for Christof Weber in “Comparing long 
division and log division algorithms as a way to understand them” the important aspects of algorithms 
were the insight they provide and the mental models they formulate. Norbert Oleksik considered in 
“Transforming equations equivalently? – Theoretical considerations of equivalent transformations of 
equations” different mental models of equivalence relations based on the German tradition of 
‘Grundvorstellungen’ and Tall’s notions of concept image and concept definition. Reinhard 
Oldenburg, in “A classification scheme for variables”, started from the idea to differentiate 
Grundvorstellungen further according to the linguistic categories of syntax, semantics and pragmatics 
and claims that there are different kinds of variables (e.g. container vs. reference) that can be 
identified using these lenses. 

Outlook 
The discussions in the group identified several questions that cannot be answered in a satisfactory 
manner based on the current state of research. An eclectic sample of these questions may give an idea 
about this and may provide motivation for further research.  

Figural patterns remain an active domain of investigation. Yet, many discussions showed that not all 
aspects are understood well enough to guarantee consensus between researchers. One question 
concerned what kind of tasks might be motivating for what kind of students. Another, and intensively 
discussed, question concerned the structuring process and how it can be supported. Papers presented 
at TWG3 already provided important insights in this but still a deeper understanding would be helpful, 
e.g. concerning the transformation from the visual structure to the algebraic structure.  

Work is still going on to build a competence model of algebraic thinking that can be tested by 
confirmatory factor analysis. Especially Kaput’s model (2008) attracted researchers and proved to be 
a good basis for empirical research (with slight modification). It would be interesting if this model 
can also be confirmed with college level students.  

How are continuous and discrete relations related? We had papers that investigated how students 
dealt with relations of the form 𝑎𝑎 − 𝑏𝑏 = 1 both in a discrete context (number of marbles in boxes) 
and in a continuous application (distance measurement). So the question arises, if the same logical 
structure extends to students’ thinking so that students who master one of these domains will also 
perform well in the other domain and if training in one can boost understanding in the other.  

What benefits do algorithms and programming provide for algebra? After the Logo and Basic period 
the interest in programming in math education declined partly in reaction to research that showed 
mostly disappointing (but maybe from too high expectations) effects on algebraic understanding. But 
now there are several reasons to reinvestigate the issue. First, in several countries programming 
entered the curriculum for reasons outside of mathematics and this offers opportunities for linking 
the two subjects without the demand on mathematics to invest time to introduce programming. We 
had a report on ongoing work in Sweden that explores the possibilities. As many approaches are 
possible, research needs to investigate them and identify more effective ones. Second, tools are more 
sophisticated today and hence one might expect students to have less frustrating experiences. And 
third, the view on algorithms today is more elaborate. On the one hand, they are part of the bigger 
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concept of computational thinking that still gains momentum. On the other hand, there is a meta-
mathematical view on algorithms, i.e. reflecting on algorithms can provide mental models of 
mathematical concepts. The potential of this has to be explored in much more detail than the important 
first existing examples on the concepts of long and log division that we discussed in the group.  

Another issue that was raised during discussions in TWG 3 is related to task design and the role of 
tasks in research on algebraic thinking. Accounts of principles for task design, and epistemological 
analyses of the knowledge aimed at by the tasks, would strengthen the justification of research results. 
Several other topics could be mentioned but we leave this open – future TWG3 meetings will certainly 
shed light on some of these and many other issues. We have not yet discussed in the group the 
longterm effects of early algebra, i.e. how do students that encountered algebra in the first grade 
perform in the middle grades (Dougherty has done some work on this), in high school, and in the long 
run, in university?   
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Background of the study  
Teachers are the key stakeholders of the prekindergarten-12th grade algebra reform and their 
conceptions about algebra is utmost important. Stephens (2008) working with elementary preservice 
teachers found that they held narrow conceptions of algebra centered around symbols and symbol 
manipulation. This study aimed to investigate in-service teachers’ conceptions of algebra and their 
knowledge of task purposes across three tasks that focused on equivalence and equations, functional 
thinking, and variable. 

Theoretical framework 
Kaput (2008) defined two core aspects of algebra as “a) algebra as systematically symbolizing 
generalizations of regularities and constraints” “(b) algebra as syntactically guided reasoning and 
actions on generalizations expressed in conventional symbol systems” (p. 11). This framework was 
used in the study to help categorize teachers’ conceptions of algebra. 

The second framework used in the study was Mathematical Knowledge for Teaching (MKT) (Ball, 
Thames, & Phelps, 2008). This study investigated teachers’ knowledge of task purposes (their 
awareness to engage students in algebraic thinking) which can be categorized under the pedagogical 
content knowledge (PCK) of the MKT framework across three tasks that focused on algebra. 

Methods 
The study was conducted with five female mathematics teachers who were working at the same 
school with the first author. Three teachers were teaching at the primary and middle school levels and 
two were teaching at the middle school level. Semi-structured individual interviews were conducted. 
The interview protocol comprised of three parts and developed based on Stephens (2008), and a 
functional thinking task was taken from Blanton et al. (2015). The first part included demographic 
information. The second part focused on understanding teachers’ conceptions of algebra including 
the open-ended question “How would you describe what algebra is to someone who has never heard 
of it before?” This part also included three tasks. Teachers were asked the possible aims of the task. 
Also, teachers were asked to categorize the tasks as algebraic or not with their justifications. The last 
part included two student solutions provided to each of the three tasks. Participants were asked to 
categorize these student solutions as algebraic or not by explaining their reasoning.  

The coding was conducted according to a coding scheme that was developed in previous studies (see 
Alapala, 2018; Stephens, 2008). The second author coded a randomly selected 20% of the data and 
the agreement between the coders was found as 80%. The disagreements were resolved, and changes 
were reflected to the analysis. 
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Figure 1: Task 1 

Results and discussion 
When teachers were asked the possible of aims of each task, their awareness regarding the 
opportunities to engage students in algebraic thinking varied from task to task. For instance, in Task 
1 (see Figure 1) while four teachers focused on having students find the unknown using a 
computational approach, one teacher focused on the relationship between numbers in her response. 
When they were asked how they would describe what algebra is to someone who has never heard of 
it before, the majority of the teachers focused on the presence of an unknown or an equation in their 
responses. Teachers’ categorizations of tasks as algebraic or not providing their justifications revealed 
a similar finding. They mentioned surface features such as the presence of an unknown or an equation 
in their categorizations. For instance, all teachers categorized Task 1 as “algebraic” because of the 
presence of an unknown or an equation. T4 said “I think it is an algebra task because there is an 
unknown. We didn’t say x, y but we used an empty box.” Lastly, teachers’ categorizations of student 
solutions indicated that the majority of the teachers ranked student solutions that included 
manipulations and equations as “algebraic” while they ranked solutions that focused on the structure 
of the equations and patterns as “non-algebraic.” For example, in Task 1, while all teachers rated the 
student response who used a computational approach to find the unknown as “algebraic,” only one 
teacher rated the response that focused on the relationships between numbers (indicating relational 
thinking) as “algebraic.” Therefore, even though teachers demonstrated some awareness regarding 
the opportunities the tasks can offer in terms of algebraic thinking (PCK regarding algebra), their 
conceptions were mostly aligned with Kaput’s (2008) manipulation of formalisms. This was similar 
in Stephens (2008). Given what teachers see as “algebra” could be foregrounded in the classroom, 
researchers should pay further attention to teachers’ conceptions of algebra and pose tasks and 
hypothetical student responses that help uncover these conceptions. 
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What number goes in the box? 

37 + 54 =           + 55 
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We describe and analyse the strategies used by students in primary grades 4, 5 and 6 to solve linear 
and affine geometric pattern problems. Based on two problems posed in a teaching experiment, we 
have identified several profiles of strategies used by students to solve the problems. We consider the 
profiles of students who were good geometric pattern problem solvers as traits that may help identify 
mathematical giftedness. Our results show that average students used very often incorrect functional 
strategies and were consistent in using incorrect proportional strategies along the grades. On the 
other hand, good geometric pattern problem solvers tended to use correct functional strategies, alt-
hough, when they had difficulties in identifying the structure of a pattern, they tended to switch to 
correct recursive strategies, because they are easier to apply and more reliable. 

Keywords: Early algebra, geometric pattern problems, mathematical giftedness, primary school. 

Introduction 
Learning algebra is a very fruitful way to boost mathematical abilities of all primary school students, 
in particular mathematically gifted students (gifted students hereafter). Algebra is also an essential 
tool in secondary school, since it is needed to solve problems in the different areas of mathematics. 
However, most secondary school students have difficulties to understand and learn algebra, which 
hinder their mathematical progress. Some of those difficulties are understanding the meaning of let-
ters and the equal sign, distinguishing between the notions of variable and unknown, and transforming 
word statements into algebraic expressions (Banerjee & Subramaniam, 2012; Jupri, Drijvers, & Van 
den Heuvel-Panhuizen, 2015). 

In the early grades, algebra can be introduced through algebraic thinking that allows working and 
operating with variables and unknowns, avoiding the use of symbolic alphanumeric expressions (Rad-
ford, 2011a). The context of geometric pattern problems (gp problems hereafter) has proved to be 
successful in developing algebraic thinking in primary school (García-Reche, Callejo, & Fernández, 
2015; Rivera, 2013). 

Gp problems (Figures 1 and 2) present a graphical representation of the first few terms of an increas-
ing sequence of natural numbers and ask for values (V) or positions (n) of specific terms of the 
sequence. These problems are especially useful to facilitate the access of gifted students to basic 
algebraic concepts. Furthermore, gp problems are an adequate context to identify possible gifted stu-
dents, since they have to use their abilities for generalization, abstraction and symbolization. Those 
abilities are important components of mathematical reasoning, more developed in gifted students than 
in the majority of students of the same age or the same school grade (we refer to them as average 
students) (Krutetskii, 1976). Amit and Neria (2008) analysed strategies used by gifted students in 
grades 6 and 7 when solving gp problems, while Fritzlar and Karpinski-Siebold (2012) distinguished 
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a set of five components of algebraic thinking by observing algebraic abilities of gifted and non-gifted 
primary school students when identifying and generalising patterns. However, there is little research 
reporting mathematically gifted students’ behaviour when solving gp problems, so it is of interest to 
inform on traits of mathematical giftedness in the specific context of gp problems. 

Teachers should provide all their pupils with opportunities to develop high order thinking. In partic-
ular, gifted students require more complex problems compared to average students; thus, it is 
important to provide teachers with tools to identify their gifted students. Students’ solutions to gp 
problems may be very diverse, depending on the ways of reasoning and performing calculations used, 
since they reflect different levels of mathematical talent. Gifted students are unusually good problem 
solvers compared to average students, so a reliable way to identify gifted students, used by most 
researchers, is to observe their problem solving profiles. 

In this context, we present results from a research project aimed to identify and analyse profiles of 
good gp problem solvers in grades 4, 5 and 6 when solving linear and affine gp problems, to charac-
terise profiles that could differentiate gifted students from average students, and also gifted students 
in different school grades. The specific objectives of the part of the research presented here are: 

· To identify differences between profiles of good gp problem solvers and average students in
their solutions of gp problems, as possible traits of mathematical giftedness.

· To identify differences in students’ strategies along 4, 5 and 6 primary school grades.

Theoretical framework 
Gp problems present realistic contexts to help students give meaning to the pictorial representations 
of sequences and their numerical values and answer questions (Billings, Tiedt, & Slater, 2007). Direct 
questions ask for values of immediate, near and far terms (Stacey, 1989), i.e., the number of pieces 
in the graphical representation of those terms, and also ask to write a general rule and an algebraic 
expression to calculate the value of any term of the sequence. Inverse questions ask for the position 
of the term with a given value (Rivera, 2013). Here we focus on answers to direct questions. 

Gp problems could have several levels of complexity depending on their characteristics. Friel and 
Markworth (2009) analysed 18 different geometric patterns and ordered them from less to more com-
plex, the most basic patterns being those based on linear relationships V=an (Figure 1). Patterns based 
on affine relationships V=an±b (Figure 2) increase their difficulty. Lastly, patterns based on quadratic 
relationships V=an2±bn±c are more complex than the previous ones. 

Several authors (García-Reche, Callejo, & Fernández, 2015; Radford, 2011b; Stacey, 1989) have 
identified different strategies used by students to solve direct questions in linear or affine gp problems. 
As some strategies are labelled differently by those authors, we have merged them into a single cate-
gorization of students’ answers: the counting strategy is based on drawing the graphical representation 
of the term asked and counting its pieces. The recursive strategy uses the constant difference between 
the values of two consecutive terms to calculate the value of another term, by adding this difference 
to the value of a known term as many times as necessary. The proportional strategy assumes that 
there is a proportional relationship between the positions of a known term (n) and the asked term (m) 
and their values, V(n) and V(m): if m=a×n, with a∈ ℕ, then V(m)=a×V(n). The functional strategy 
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consists of calculating the value of a term by using an arithmetic or algebraic expression based only 
on the position of the term in the sequence, and not on the value of a known term. The counting, 
recursive, and functional strategies give the correct answer if applied properly, while the proportional 
strategy is correct for linear problems but it is wrong for affine problems. 

Gifted students are those who show “a unique aggregate of mathematical abilities that opens up the 
possibility of successful performance in mathematical activity” (Krutetskii, 1976, p. 77), their prob-
lem solving abilities being higher than those of average students. Greenes (1981), Krutetskii (1976), 
and Miller (1990) detailed several characteristics that gifted students can present, some of them being 
particularly important to solve gp problems, like identifying patterns and relationships among ele-
ments, generalising and transferring mathematical ideas or knowledge between numeric and algebraic 
contexts, locating the key of problems, abbreviating solution processes, or inverting mental proce-
dures in mathematical reasoning. 

The experimental part of our research took place in ordinary classrooms, where, quite often, there are 
gifted students who have not been identified by their teachers. We did not have any external way to 
identify gifted students in the sample of our research (e.g., their IQ), so we looked for good gp prob-
lem solvers. By comparing the solutions provided by the good gp problem solvers and the other 
students in their classrooms, we aim to identify specific good gp problem solvers’ solution profiles 
that could be considered as traits of mathematical giftedness and used, together with other procedures, 
to identify gifted students in ordinary classrooms. 

Research methodology 
We present results from a study based on grades 4, 5 and 6. These are the last grades in Spanish 
primary schools, just before students start learning algebra, in grade 7. Two classroom groups in each 
grade followed an experimental teaching unit for early algebra based on gp problems. There were 43, 
34, and 41 students in grades 4, 5, and 6, respectively. 

The teaching unit took place during three 45-minutes ordinary mathematics classes. It was aimed to 
work on: i) the generalisation of functional relationships from the geometric representations, ii) the 
meaning and use of basic algebraic concepts and symbols, like letter notations and the translation of 
verbal expressions into algebraic ones, and iii) the reinforcement of the algebraic contents previously 
learned. The teaching unit was based on linear and affine gp problems similar to those shown in 
Figures 1 and 2. Students solved individually about 3 problems in each session, depending on their 
ability and quickness. The teacher (the first author) provided some guidelines to the students; after 
they had solved each problem, she collected the students’ answers, encouraging them to share on the 
blackboard their different strategies and debate whether they were correct or wrong. Finally, the 
teacher explained why the wrong strategies did not work. In this paper, we analyse two problems 
(Figures 1 and 2) posed in the third session of the experiment. 

The two problems are based on the same well-known context of tables and chairs. Both have the same 
wording (Figure 1), with 2 direct questions (a, b), an algebraic generalisation question (c), another 
direct question (d) aimed to check their generalisation, and an inverse question (e). However, they 
have a difference: the first problem (Figure 1) presents tables (T) with chairs (C) only at the sides, so 
the sequence is linear (C=2T); the second problem (Figure 2) presents tables with chairs both at the 
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sides and the ends, so the sequence is affine (C=2T+2). The problems were posed to induce students 
to generalise the relationships, write an algebraic expression, and use it. 

María is organising her birthday party with her friends and relatives. She wants to calculate how many 
tables and chairs she needs to sit people as in the pictures: 

                 
 1 table 2 tables 3 tables 

a) How many people will sit around 6 tables? How do you know it? 

b) How many people will sit around 50 tables? How do you know it? 

c) Explain to a friend how she can calculate how many people will sit depending on the number of 
tables. Write down the formula you have mentioned. 

d) Use the previous formula to find how many people will sit around 15 tables. 

e) If there are 22 people sitting, how many tables will be? How do you know it? 

Figure 1: The linear gp problem 

    
 1 table 2 tables 3 tables 

Figure 2: The affine gp problem, with the same wording as in Figure 1 

After analysing the answers to the direct questions in the problems (a, b, and d), we have identified 
different profiles of students’ solutions, depending on which strategies were used. For example, the 
recursive-functional profile identifies those students who used a recursive strategy in the linear gp 
problem and a functional strategy in the affine one. 

Analysis of students’ answers 
We have analysed the types of students’ strategies in the direct questions in both gp problems. We 
have considered as good gp problem solvers those students who solved correctly, or with minor er-
rors, all the gp problems in the teaching unit. We identified as good gp problem solvers three students 
in grade 4, four in grade 5, and three in grade 6. Table 1 shows the number of good gp problem solvers 
and average students in each grade that used each profile to answer the direct questions. In the average 
students’ profile functional-functional, we use brackets to show the number of their correct answers. 

In grade 4, two out of the three good gp problem solvers based their solutions to both problems on 
functional strategies. On the other hand, 23 average students in grade 4 used functional strategies in 
both problems, but only 7 students solved them correctly. The other students used a diversity of com-
binations of functional and proportional strategies, all incorrect. 
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Linear problem 

Student 5B-13: 6×2 = 12 
Because you must multiply the 
table x2. 

 Affine problem 

Student 5B-13: 14 
Because I’ve been adding. 

Figure 3: Functional and recursive strategies in a good gp problem solver’s answers to question a 

In grade 5, the good gp problem solvers provided solutions based on functional and recursive strate-
gies, half of them changing from using the functional strategy in the linear problem to the less 
complex recursive strategy in the affine problem (Figure 3), or vice versa. On the other hand, average 
students mostly used the functional strategy in both problems, but only 8 students produced correct 
answers in both problems. The change of strategy made by the good gp problem solvers seems illog-
ical, but it allowed them to succeed in solving the problem. On the contrary, the average students used 
the same strategy in both problems, maybe because they were comfortable using it or considered that 
both problems were analogous, but many average students produced incorrect answers (Table 1). 

Profiles of solutions  Good gp problem solvers  Average students 

Linear Affine  4th 5th 6th  4th 5th 6th 

Recursive Functional  0 1 0  0 0 0 
Functional Recursive  0 1 0  0 0 0 
Functional Functional  2 2 3  23 (7*) 20 (8*) 27 (22*) 
Functional Proportional  0 0 0  6 2 0 

Proportional Proportional  0 0 0  3 2 6 
Other solutions  1 0 0  8 6 5 

Total  3 4 3  40 30 38 
(*) Number of average students in this profile producing correct solutions to both problems. 

Table 1: Profiles of solutions to the direct questions (a, b, and d) in both problems 

In grade 6, all good gp problem solvers and most average students used functional strategies in both 
problems, with a few average students using such strategies incorrectly. As in the other grades, some 
average students used proportional strategies. The fact that all good gp problem solvers in grade 6 
used correct functional strategies, while a part of the average students used wrong proportional and 
functional strategies, points to traits of mathematical giftedness in the context of gp problems, namely 
identification of patterns and relationships among different elements, and generalising and transfer-
ring mathematical ideas from a numeric context to an algebraic one. 

A profile typical of students when they start solving gp problems is that they tend to move from a 
strategy to another in the consecutive questions of the same problem (Gutiérrez, Benedicto, Jaime, & 
Arbona, 2018). However, as the problems we are analysing were posed in the third class session of 
the teaching experiment, the students had already learned that the final aim of the gp problems was 
to state a generalisation. Then, all students but one in the sample used the same strategy for all direct 
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questions in each problem, although some students used different strategies for the linear and affine 
problems, showing diverse profiles in their solutions. Students had also learned that recursive strate-
gies are efficient only for the immediate or near terms. 

After comparing the data in Table 1 for the different grades, we get the following conclusions: 

i) The good gp problem solvers used, in each problem, a strategy with which they felt confident and
that they were sure it was correct, even using a different strategy in each problem (Figure 3). They
were more successful than average students in using simpler recursive strategies, and avoided the
proportional strategy even in the linear problems, were it provides a correct answer. The good gp
problem solvers also became more efficient along the grades using functional strategies.

ii) Average students in all grades used mostly functional strategies, with an increase of the percentage
of correct answers along the grades, but we do not observe a reduction in the use of (incorrect)
proportional strategies in the affine problem.

Due to the relevant number of average students using the same strategy in the linear and affine gp 
problems, we have analysed the errors caused by this profile. We have identified three types: 

Constancy of proportional relationship 

Some average students used a (correct) proportional strategy in the linear problem and they used it 
again in the affine problem, although now it was wrong. Students did not analyse the whole pattern, 
but only one term: they calculated proportionally the value of the term requested, considering only 
the number of guests sitting around one table in the first or the second term of the pattern. Figure 4 
shows the written answers of an average student who only considered the number of chairs around 
the table in the first term. 

Linear problem 

Student 5A-6: 50×2 = 100 
Because there are twice as 
many guests as tables. 

Affine problem 

Student 5A-6: 50×4 = 200 
Because, if there are 50 tables, 
there are 4 guests for each table. 

Figure 4: Constancy of proportional relationship in an average student’s answers to question b 

Constancy of recursive relationship 

Some average students identified the difference between the values of two consecutive terms and 
used it in a repeated addition or a multiplication. In Figure 5, the student did not pay attention to the 
chairs at the ends of the tables in the affine problem and used the increment of 2 chairs (“two more 
chairs”) as proportional ratio. 

Error of analysis of diagrams 

 Some average students did not analyse correctly the parts of the patterns. They identified a wrong 
difference between the linear and the affine patterns and used it to create a wrong formula. In Figure 
6, the student did not identify correctly the chairs at the ends of the tables and, furthermore, he did 
not use correctly the number of chairs around the first table (4). 
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Linear problem 

Student 5A-11: 50×2 = 100 
Because each time there are 2 
[more] chairs and 50 tables 
[multiplied] by 2 chairs too. 

 Affine problem 

Student 5A-11: 50×2 = 100 
I multiply the number of tables 
by 2 more chairs. 

Figure 5: Constancy of recursive relationship in an average student’s answers to question b 

Linear problem 

Student 5A-1: 50×2 = 100 
Because, each time, 2 chairs are 
added with one table. 

 Affine problem 

Student 5A-1: 50×2 = 100; 100+3=103 
Because there are 4 guests in 1 
table, but 2 guests are added 
each time. 

Figure 6: Error of analysis of diagrams in an average student’s answer to question b 

Conclusions 
We have presented a comparative analysis of strategies of solution used by a sample of good gp 
problem solvers and average students in grades 4 to 6 when solving direct questions in a linear (V=an) 
and an affine (V=an+b) gp problems posed as part of an experimental teaching unit. The analysis of 
students’ answers to those problems shows some significant and original findings: most students used 
mainly functional strategies, although good gp problem solvers showed a tendency to follow profiles 
using functional and recursive strategies, which were less complex but more successful than the pro-
files followed by average students, based on functional and proportional strategies. There is a 
tendency of average students in all grades to use wrong proportional strategies. According to Van 
Dooren, De Bock, Hessels, Janssens, and Verschaffel (2005), students are prone to apply proportional 
strategies when they should not be applied. The frequency of such strategies seems to be higher when 
students start learning proportional reasoning, which, in Spain, usually happens in grade 4. 

The analysis of the data collected suggests a difference between the profiles of good gp problem 
solvers and average students in the use of recursive strategies of solution in the (more difficult) affine 
problem. Data also seem to show a clear difference between the profiles of both types of students in 
the use of proportional strategies, even when they were correct. Hence, a contribution of this research 
is the suggestion that a trait of giftedness in solving gp problems seems to be the use of correct recur-
sive and functional strategies and the absence of proportional strategies to solve gp problems. 

Respect to the differences between grades, we have observed an increment in the amount of solutions 
based on functional strategies, and an increment in the percentage of correct functional strategies. 
However, it is not apparent a (expected) reduction in the use of incorrect proportional strategies. 

Acknowledgments 

The results presented are partially funded by the research projects EDU2017-84377-R (AEI/ERDF, 
EU) and GVPROMETEO2016-143, and by the predoctoral aid FPU16/04513 (Spanish Ministry of 

Thematic Working Group 03

Proceedings of CERME11 540



 

 

Science, Innovation and Universities), aimed to train new university teachers. 

References 
Amit, M., & Neria, D. (2008). “Rising to the challenge”: using generalization in pattern problems to 

unearth the algebraic skills of talented pre-algebra students. ZDM, 40, 111–129. 

Banerjee, R., & Subramaniam, K. (2012). Evolution of a teaching approach for beginning algebra. 
Educational Studies in Mathematics, 80, 351–367. 

Billings, E. M. H., Tiedt, T. L., & Slater, L. H. (2007). Algebraic thinking and pictorial growth pat-
terns. Teaching Children Mathematics, 14(5), 302–308. 

Friel, S. N., & Markworth, K. A. (2009). A framework for analysing geometric pattern tasks. Math-
ematics Teaching in the Middle School, 15(1), 24–33. 

Fritzlar, T., & Karpinski-Siebold, N. (2012). Continuing patterns as a component of algebraic think-
ing – An interview study with primary school students. Paper presented at the 12th International 
Congress on Mathematical Education (ICME 12). Seoul, South Korea. 

García-Reche, A., Callejo, M. L., & Fernández, C. (2015). La aprehensión cognitiva en problemas de 
generalización de patrones lineales. In C. Fernández, M. Molina, & N. Planas (Eds.), Investigación 
en Educación Matemática XIX (pp. 279–288). Alicante, Spain: SEIEM. 

Greenes, C. (1981). Identifying the gifted student in mathematics. Arithmetic Teacher, 28(6), 14–17. 

Gutiérrez, A., Benedicto, C., Jaime, A., & Arbona, E. (2018). The cognitive demand of a gifted stu-
dent’s answers to geometric pattern problems. In F. M. Singer (Ed.), Mathematical creativity and 
mathematical giftedness (pp. 169–198). Cham, Switzerland: Springer. 

Jupri, A, Drijvers, P., & Van den Heuvel-Panhuizen, M. (2015). Improving grade 7 students’ achieve-
ment in initial algebra through a technology-based intervention. Digital Experiences in 
Mathematics Education, 1(1), 28–58. 

Krutetskii, V. A. (1976). The psychology of mathematical abilities in school-children. Chicago, USA: 
The University of Chicago Press. 

Miller, R. C. (1990). Discovering mathematical talent. Washington, DC: Eric. 

Radford, L. (2011a). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai, & E. Knuth (Eds.), 
Early algebraization (pp. 303–322). Heidelberg, Germany: Springer. 

Radford, L. (2011b). Embodiment, perception and symbols in the development of early algebraic 
thinking. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 4, pp. 17–24). Ankara, Turkey: PME. 

Rivera, F. D. (2013). Teaching and learning patterns in school mathematics. New York: Springer. 

Stacey, K. (1989). Finding and using patterns in linear generalizing problems. Educational Studies in 
Mathematics, 20(2), 147–164. 

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is 
proportional: effects of problem type and age on propensities for overgeneralization. Cognition 
and Instruction, 23(1), 57–86. 

Thematic Working Group 03

Proceedings of CERME11 541



 

 

Investigating early algebraic thinking abilities: a path model 
Maria Chimoni, Demetra Pitta-Pantazi and Constantinos Christou 

University of Cyprus, Department of Education, Nicosia, Cyprus; chimoni.maria@ucy.ac.cy, 
dpitta@ucy.ac.cy, edchrist@ucy.ac.cy 

The introduction of algebra in the elementary school mathematics is expected to navigate students 
from concrete, arithmetical thinking to increasingly complex, abstract algebraic thinking required in 
secondary school mathematics and beyond. Yet, empirical studies exploring this idea are relatively 
scarce. Drawing on a sample of 684 students from grades 4, 5, 6, and 7, this study explored a path 
model which tested associations between students’ abilities in solving different types of early 
algebraic tasks: generalized arithmetic, functional thinking, and modeling languages. Results 
emerging from latent path analysis showed that students were more successful in generalized 
arithmetic tasks and only when this was achieved they were able to solve functional thinking tasks; 
once these were achieved, they could proceed to solve modeling languages tasks. Qualitative analysis 
of students’ solutions provided further insight into these findings.  

Keywords: Early algebraic thinking, generalized arithmetic, functional thinking, modeling 
languages, path model.   

Introduction  
While the traditional arithmetic-then-algebra curricula have been proved to be unsuccessful in 
developing deep understanding of abstract algebra in the secondary grades, it has been suggested that 
algebra should become a cohesive thread in mathematics curriculum from K to 12 grades (Carraher 
& Schliemann, 2007). Yet, introducing algebra in the early grades does not mean to move the content 
of secondary algebra courses to elementary mathematics. Instead, it means setting the ground for 
students to develop ways of thinking that can support the later learning of algebra. To make this idea 
more clear, different approaches have been pursued, ranging from the identification of core algebra 
content strands, such as generalized arithmetic, functional thinking, and modeling languages (Kaput, 
2008), to the examination of fundamental algebraic concepts, such as the equals sign (Matthews et 
al., 2012), to the analysis of essential algebraic processes, such as generalization and representation 
(Blanton & Kaput, 2005). Moreover, several researchers examined developmental paths where 
intuitive forms of algebraic thinking become more sophisticated through the mediation offered by 
appropriate instruction in specific areas of early algebra (e.g. Radford, 2014; Stephens et al., 2017). 

The findings of these studies imply that the development of early algebraic thinking lies in the 
extension of arithmetic that is typically taught in elementary school so that students become aware of 
its underlying structure and properties and gradually develop the ability to identify and describe 
functional relationships between quantities that co-vary. Yet, more studies are needed to empirically 
test this idea. Towards this end, this study aimed to investigate the validity of an algebraic thinking 
path model which describes early algebraic thinking abilities that students seem to develop first and 
the way these are associated to other abilities that students seem to develop later on.  

The rest of this manuscript is structured as follows: The next section provides an overview of studies 
that explored the nature of early algebraic thinking, its processes and mathematical content. Following 
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that, the research question is presented and the hypothesis tested. The methodology, including 
information about the participants, tasks, and analyses, is outlined next. After presenting the main 
findings, conclusions and implications for practice are discussed.  

Theoretical Framework 
Algebraic processes that mark the emergence of early algebraic thinking 

A critical issue within the field of early algebra has been the way in which early algebraic thinking 
might occur and be expressed by students. Several researchers tend to agree that students exhibit early 
algebraic thinking by the time they begin to formulate generalizations about mathematical 
relationships, properties, and structure (Blanton & Kaput, 2005). Particularly, the process of 
generalizing is considered as an undisputed characteristic of early algebraic thinking. Generalizing is 
interrelated with the process of representing, as students make efforts to articulate and represent their 
generalizations (Blanton et al., 2015). At the same time, a variety of other processes frame 
generalizing and representing, such as noticing, hypothesizing, and validating (Blanton et al., 2011).  

Algebraic processes are not developed or expressed by students in a mere single way (Stephens et al., 
2017). For example, students’ use of natural language, gestures or diagrams might be an indicator for 
the emergence of early algebraic thinking, which will in turn mediate the long-term development of 
alphanumeric symbolism. Particularly, Radford (2003) exemplified that the way students 
communicate generalizations might differ, varying from concrete numerical actions (factual 
generalization), to situated descriptions of the objects of the actions (contextual generalization), to 
actions with symbols or signs (symbolic generalization). Summing up, algebraic processes seem to 
be central to students’ engagement with early algebraic tasks. The following section describes further 
the content areas in which these processes and forms of thinking are expected to emerge and grow.  

Core algebra content strands and concepts 

Kaput (2008) suggested that three core content strands involve algebraic thinking from K to 12 
grades: generalized arithmetic, functional thinking, and application of modeling languages. These 
strands, which are interconnected with the processes described in the previous section, provide a 
unified framework for analyzing the multidimensional and complex nature of early algebraic thinking 
(Chimoni, Pitta-Pantazi & Christou, 2018).  

Generalized arithmetic refers to the study of structure and relationships that are inherent to numbers 
and arithmetical operations. The emphasis in this strand is about looking at the structure of 
arithmetical expressions and computations rather than their results (Kaput, 2008). In generalized 
arithmetic, students are expected to use the properties of operations and relationships on classes of 
numbers, interpret the equals sign relationally, and solve single-variable equations and inequalities.  

Functional thinking involves generalizing relationships between quantities that co-vary and 
representing them through multiple tools, such as natural language, alphanumeric symbols, pictures, 
function tables, and graphs (Blanton et al., 2017). Central in this strand are the concepts of variable 
and functional relationships, such as recursive patterns, co-variational relationships, and 
correspondence relationships (Stephens et al., 2017). 
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Modeling languages refers to the application of a cluster of modeling languages both inside and 
outside mathematics (Kaput, 2008). In this strand students begin with problem situations and make 
attempts to mathematise the regularities that are implicitly presented through the situation, using 
appropriate models, such as verbal expressions, equations, and graphs. 

Research question and hypothesis 

The research question that guided this study was the following: Is there a consistent trend in the level 
of difficulty across generalized arithmetic, functional thinking, and modeling languages tasks that 
describes students’ early algebraic thinking abilities? In addressing this question and based on 
theoretical implications described in the previous section, this study tested the following hypothetical 
path model: Students are able to solve generalized arithmetic tasks first. Once this is achieved, they 
proceed to solve functional thinking tasks. Solving modeling languages tasks is achieved last.  

Participants  

A convenience sample of 684 students was involved in the study. The sample consisted of 170 fourth-
graders (10 years old), 164 fifth-graders (11 years old), 184 sixth-graders (12 years old) and 166 
seventh-graders (13 years old). The selection of these grades was done purposefully, since some of 
the concepts embedded in the three algebra content strands are not covered in earlier grades; at the 
same time, formal algebra is taught in later grades. Moreover, the existence of four age-groups 
enabled the examination of the stability of the path model or possible changes across age-groups. 

Test  

The test used to measure students’ early algebraic thinking abilities consisted of 18 tasks that were 
adapted from previous research studies (e.g. Blanton & Kaput, 2005). The test included generalized 
arithmetic, functional thinking, and modeling languages tasks. Table 1 presents indicative examples.  

Table 1: Examples of tasks included in the algebraic thinking test 

Considering that students had adequate time to complete the test during administration, tasks with no 
response were graded with 0 marks. For the multiple choice tasks which had four alternative 

Example Strand 
Is the value of the following expressions the same or not? Justify your answer. 
 

Generalized 
Arithmetic 

At a table that has the shape of a trapezium, 5 children can be seated. If two tables are 
connected, then 8 children can be seated. 

 
(a) How many children can be seated at 3 tables? Justify your answer. 
(b) How many children can be seated at 10 tables? Justify your answer. 

Functional 
thinking 

Joanna will take computers lessons twice a week. Which is the best offer? Justify your 
answer. 
Offer Α: €8 for each lesson 
Offer B: €50 for the first 5 lessons of the month and then €4 for every additional lesson 

Modeling 
languages  

7 +  5 7 +  5 +  2 − 2 
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responses, one mark was given to each correct response and zero marks were given to each incorrect 
response. For the tasks that had sub-questions, partial credit was given, considering the maximum 
sum of the marks of the sub-questions to be equal to 1. In the tasks where students had to justify their 
answers, the scoring was as follows: 0 mark for fully incorrect responses, 0.50 for giving a correct 
answer without justifying the answer or giving a wrong justification and 1 mark for giving a correct 
answer and a proper justification. In some tasks, where students were expected to use various 
strategies to solve them, a second identification mark was given based on the strategy used. Yet, the 
variation in students’ strategies is not under investigation in the current paper.  

Analysis  

To analyze the quantitative data collected from the test, Latent Path Analysis was used. This kind of 
analysis is part of a more general class of techniques called Structural Equation Modeling (SEM). 
Specifically, Latent Path Analysis is used for testing whether a set of factors that are measured from 
multiple indicators (latent factors) are connected via directional regression paths. In this study, Latent 
Path Analysis was used for testing whether the three algebra content strands are connected via a 
specific path model. The analysis was conducted separately for each age-group and for the whole 
sample as well.  

Firstly, the model described in the study’s hypothesis was examined (Model 1). Moreover, two 
alternative models were also examined (Models 2 & 3). Model 2 assumed that students are able to 
solve both generalized arithmetic and functional thinking tasks first, and then they proceed to solve 
modeling languages tasks. Model 3 assumed that students are able to solve modeling languages tasks 
first, then they proceed to solve functional thinking tasks, and finally they are able to solve generalized 
arithmetic tasks.  

Three fit indices were computed for each model: the chi-square to its degree of freedom ratio (x2/df), 
the comparative fit index (CFI) and the root mean-square error of approximation (RMSEA). For a 
model to be validated, the observed values for x2/df should be less than 2, the values for CFI should 
be higher than .9, and the RMSEA values should be close to or lower than .08. The analysis was 
carried out using the MPLUS software (Muthén & Muthén, 1998).  

In order to better interpret the quantitative results and illustrate examples of students’ thinking in each 
strand, qualitative information from students’ tests was analyzed: ten students were selected and their 
solutions were examined. The selection of these students was based on the method of purposeful 
sampling (Patton, 2002) which suggests the selection of cases that provide rich information about the 
phenomenon under investigation.  

Results 

The results of the Latent Path Analysis suggested that the best fitting model was Model 1, since it had 
the best fitting indices and high regression coefficients for each of the three latent factors. This result 
was the same for each of the four age-groups and for the whole sample. Figure 1 presents the structure 
of the model and the regression coefficients, as resulted from the Latent Path Analysis conducted to 
the data of the whole sample. Specifically, the fitting indices were adequate to provide evidence that 
supports the structure implied in the model (CFI=.959, x2=201.853, x2/df=1.73, RMSEA=.033). This, 

Thematic Working Group 03

Proceedings of CERME11 545



 

 

supports the hypothesis of the existence of a consistent trend. Particularly, it appears that students are 
first able to solve generalized arithmetic tasks, such as using properties of numbers and operations, 
solving equations and inequalities, and analyzing expressions that involve symbols and numbers. 
Once they develop these abilities, they are able to solve functional thinking tasks, such as identifying 
distant terms in patterns, analyzing tables that represent correspondence relationships, and 
interpreting graphs. Generalized arithmetic and functional thinking appear as stepping stones for 
students to move on to modeling languages, where they are able to identify relationships between 
quantities that are presented through a situation and mathematize the situation using an appropriate 
model. 

              
Note. *p<.01, The first number indicates the regression coefficient and the number in parenthesis indicate the proportion of variability 

that can be explained (r2) 

Figure 1: Associations between students’ abilities in different types of early algebraic tasks 

The results of descriptive statistics analyses showed that the students’ highest performance mean was 
in generalized arithmetic tasks (M=.530). The second highest mean score was in functional thinking 
tasks (M=.507). Students’ lowest mean score was in modeling languages tasks (M=.303), indicating 
that these tasks were more difficult for them.  

The qualitative analysis of students’ responses to specific tasks provided insights into the way 
students develop and apply the processes of generalizing and representing in each content strand. At 
the same time, these data allow further interpretation of the trend outlined from the latent path 
analysis. Figure 2 presents indicative examples of students’ responses to three different tasks. 

In the generalized arithmetic task (Fig. 2a), the student seems to directly recognize that the value of 
each expression is the same, without performing computations and comparing their results. The 
student expresses verbally the observed structure and seems to use the numbers -2 and +2 in a general 
way, as “quasi-variables” (Fujii & Stephens, 2001), to represent a regularity. Student’s response 
shows that a familiar context, as the one of arithmetical expressions, enables noticing structure and 
regularities, generalizing from these regularities, and using means other than alphanumeric symbols 
to represent these generalizations, such as verbal descriptions. 

The abilities developed within a generalized arithmetic perspective seem to facilitate students to begin 
making “factual” generalizations from concrete actions (Radford, 2003). Based on the quantitative 
data, these abilities seem to prompt students to look for structure and relationships in more complex 
contexts. As shown in Figure 2b, in a figural pattern, the student approaches the first question based 
on numerical actions, by drawing the next table and seats and probably counting the number of seats. 
The student seems to focus on one variable (the number of seats) and finds the answer based on the 
identification of a recursive pattern. Yet, the second question prompts the student to reason about two 
quantities that co-vary, since drawing and counting would not be a convenient strategy for finding a 
far term. The student seems to notice the pattern’s structure and the relationship between the number 

Functional 
thinking 

Generalized 
arithmetic 

Modeling 
languages 

.884 (.781) .883 (.780) 
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of tables and the number of seats. In this case, the student recognizes that tables at the edges always 
have 4 seats each and tables in the middle always have 3 seats each, and writes two distinct 
expressions to reach the final answer. However, the student seems to acknowledge that there is a 
general rule, despite the fact that there is no use of alphanumeric symbols. The student’s 
generalization at this point seems to be, in terms of Radford (2003), a “contextual” generalization 
based on a situated description. 

Figure 2: Indicative examples of students’ responses 

In the modeling languages task (Fig. 2c), the student identifies first the quantities involved: the 
dependent variable (the monthly cost of the lessons) and the independent variable (the number of 
lessons during a month); the student considers the number of monthly lessons to be 8. Furthermore, 
the student formulates expressions for Offer A and B, taking into consideration all variables described 
in the problem. In this sense, the student develops the processes of generalizing and representing in 
order to establish a general mathematical relationship that fits the situation. The student’s response 
implies that arithmetical expressions are used to build a “contextual” generalization (Radford, 2003). 

a. Generalized arithmetic task

Is the value of the following expressions the same or not? Justify your answer. 

Yes because 7+5 is the same in both expressions and -2+2=0. 

b. Functional thinking task

(a) How many children can be seated at 3 tables? Justify your answer.

(b) How many children can be seated at 10 tables? Justify your answer.

children 

children 

2 edges 

8 between 

c. Modeling languages task

Joanna will take computers lessons twice a week. Which is the best offer? Justify your answer. 
Offer Α: €8 for each lesson 
Offer B: €50 for the first 5 lessons of the month and then €4 for every additional lesson 

1 month = 4 weeks 

1st offer= €64 
2ndt offer= €62 

Offer B is more advantageous  
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Discussion and Conclusions  

In this study, we attempted to validate a path model which describes early algebraic thinking abilities 
that students seem to develop first and the way these are associated to other abilities that students 
seem to develop later on. The abilities examined were extracted from Kaput’s (2008) theoretical 
framework about the three core algebra content strands: generalized arithmetic, functional thinking, 
and modeling languages. The results of the quantitative analyses provide evidence that there is a 
consistent trend in the level of difficulty across the three strands. It appears that students find it first 
easiest to solve generalized arithmetic tasks, and then functional thinking tasks. Once this is achieved, 
they can proceed to solve modeling languages tasks. These results complement but also extend the 
findings of previous studies that reported the significant role of content strands, such as generalized 
arithmetic and functional thinking in setting foundations in elementray mathematics for the longterm 
development of students’ algebraic thinking (e.g. Carraher et al., 2006). Particularly, the findings of 
this study verify the ideas of a number of researchers (e.g. Fujii & Stephens, 2001) that the 
development of early algebraic thinking lies in the arithmetic that is taught in elementary school so 
that students pay attention to its underlying structure and properties and gradually develop the ability 
to identify and describe functional relationships between quantities that co-vary.  

The data from the qualitative analysis exemplify the nature of students’ thinking while they try to 
solve these types of tasks. Moreover, these data provide a plausible explanation for the idea that, in 
generalized arithmetic, students’ pre-acquired arithmetical knowledge serves as a turning point for 
introducing them to early algebraic thinking. Generalized arithmetic encompasses familiar contexts 
that allow students to develop the processes of generalization and representation, without necessarily 
using alphanumeric symbols. The strand of functional thinking seems to strengthen the interplay 
between arithmetic and algebra, by introducing students to the concept of functions (Radford, 2014). 
Modeling languages appear to involve more advanced forms of algebraic thinking (Blanton & Kaput, 
2005) that require the use of algebra as a tool in order for students to generalize, model, and justify 
relationships that are implicitly presented through problem situations.  

Overall, this study provides empirical data that document students’ capability to develop essential 
forms of early algebraic thinking that are foundational for the development of formal and abstract 
algebraic thinking. Moreover, the results imply that a comprehensive and sustained early algebra 
approach must build on developing students’ abilities not only on one specific content strand but 
across the strands of generalized arithmetic, functional thinking and modeling languages. It should 
be noted that the model proposed in this study was formulated based on Kaput’s theoretical 
framework and involved a sample of students with specific mathematical experiences. Future studies 
may examine the stability of this model in earlier or later grades of schooling. Following recent 
suggestions (e.g. Blanton et al., 2017), future studies might also confront generalized arithmetic and 
equation solving as two seperated strands and test the associations between them as well as with the 
strands of functional thinking and modeling languages. 
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Using the definition of algebra from the TIMSS framework, algebra questions were identified on a 
sample of Norwegian mathematics examinations for 10th grade students from 1995 to 2018. These 
questions were then analysed using a discursive framework to look at the specialisation of the 
mathematical language. The analysis revealed consistency in the density of the language, a 
decreasing expectation of the depth of engagement with real world contexts, and a recent tendency 
to processes that direct the students in solving problems. It is argued that this gives an indication of 
the expected engagement with and implementation of the algebra curriculum in Norwegian schools. 

Keywords: Algebraic thinking, Assessment, Specialised and non-specialised mathematics discourses.  

Background and context 
An ongoing issue in debates about Norwegian students’ performance in mathematics is related to 
performance on algebraic tasks. On TIMSS tests since 2011, Norwegian 5th grade students were 
among the top performers in mathematics in Europe (Bergem, 2016). They performed significantly 
higher than students in the other Nordic countries. However, the performance of 9th grade students on 
the most recent TIMSS test in 2015 was at an intermediate level in a European perspective. Overall 
this was an improvement on previous years, but it was “particularly due to low scores in Algebra” 
(Bergem, 2016 p.22), which have decreased since 2011 and were at a very low level in 2015. 

In Norway, the only externally set high-stakes written examination based on the mathematics 
common curriculum occurs at the end of grade 10. We consider tasks on these mathematics 
examinations to be important with regard to how students are expected to engage with the 
mathematical discourse. Like Morgan and Tang (2016), we assume that mathematics examinations 
mirror how mathematics curricula are implemented in the classroom (Broadfoot, 1996). From a 
discursive perspective, Morgan and Tang (2016) investigated differences in the language used in 
mathematics questions on examinations in England and Wales. The identified changes are discussed 
in the light of debates about ‘standards’, highlighting engagement with algebraic manipulations and 
independent problem solving. It is interesting to see if similar changes have occurred in other 
countries, to which our study may contribute. 

Within this context, we investigated how algebra questions on the 10th grade examinations have 
developed since 1995. During this period, there have been several curricula (M87, L97 and LK 06 
introduced in 1987, 1997 and 2006 respectively), which differ substantially in their treatment of 
algebra and contextualisation. In M87 (Mønsterplan for grunnskolen: M87, 1987) “Algebra and 
Functions” was one topic and “Mathematics in everyday life” was integrated into all topics. L97 
(1999) had the following as separate topics: “Algebra and Number”; “Graphs and Functions”; and 
“Mathematics in everyday life”. In the current curriculum LK 06 (Kunnskapsdepartementet, 2006), 

Thematic Working Group 03

Proceedings of CERME11 550



there is an emphasis on basic skills. In contrast to M87 and L97, in which the goals were knowledge 
oriented, each main area in LK 06 is formulated in terms of competence goals. As in L97, “Numbers 
and Algebra” and “Functions” are still separate topics. Mathematics in everyday life is no longer a 
separate topic, but integrated into all topics, as it was in the M87. 

In light of this, we will investigate the following research question: 

How has the nature of students’ expected application of algebra in both mathematical and non-
mathematical contexts developed since 1995 in 10th grade school mathematics in Norway? 

Theoretical framework 
As analytical framework, we have drawn on the work of Morgan, Sfard, and Tang (Morgan & Sfard, 
2016; Morgan & Tang, 2016). Related to their project The Evolution of the Discourse of School 
Mathematics (EDSM), they developed a substantial conceptual framework for analysing 
examinations. This framework has a theoretical foundation in social semiotics and Sfard’s 
communicational theory (Sfard, 2010). For the purposes of this paper, it is sufficient to say that 
mathematics being a human activity is defined in terms of the discourse that one engages in when 
doing mathematics. Morgan and Tang (2016) argue that the language used on the exams is crucial 
and that the language use in examinations may change the nature of the mathematics students are 
expected to engage with.  Dowling (2001) emphasised how the language used in school mathematics 
may both enable and deny access to mathematics. By analysing the language students used when 
telling stories about their own learning in mathematics Kleve and Penne (2016) found that students 
who were successful in mathematics, used the subject specific language to a greater extent than those 
less successful. That is, the successful students were inside the mathematical discourse. 

In our project, we aim to apply the whole EDSM framework to our selection of algebra questions. 
This paper will report on just one section of the framework. It is intended that the framework can be 
used in this way, and we are following the work of Morgan and Tang (2016) in focusing on the part 
of the framework that deals with specialisation of the discourse. 

To analyse the algebra questions, nouns and verbs were allocated as SM (specialised to the discourse 
of school mathematics) or NSM (non-specialised). Specialised to the discourse of mathematics means 
that they were “used in accordance with mathematical definitions or in ways distinctive to school 
mathematics” (Morgan & Tang, 2016, p. 145). Then the whole questions could be classified as 
(entirely) SM, (entirely) NSM or Mixed (both SM and NSM). Although NSM was not included as a 
question code in the EDSM framework it was revealed during our analysis. Questions classified as 
SM were termed Abstract. Whole Questions classified as NSM or Mixed were further classified 
according to the depth of engagement with the context in terms of Ritual (repetitive exercise or 
following patterns widely used in text-books), Mundane (containing some unfamiliar elements, 
however requiring minimal engagement) and Deep (demanding more extensive engagement to 
determine how specialised mathematical discourse should be used). Illustrative examples of these 
categories appear in Morgan and Tang (2016). With regard to vocabulary, we identified objects in 
terms of nouns, and processes in terms of verbs, coding each word as either SM or NSM.  
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Method 
To explore our research question we needed a representative sample of examinations. We took 
examinations every five years from 1995 together with the most recent examination from 2018. This 
yielded a sample that was manageable within the remit of our project, had an even coverage of the 
study period, and that included an early and a late examination in each curriculum cycle. The sampled 
examinations and the curricula reforms are illustrated on the timeline below. 

 
Figure 1: Timeline showing sampled examination years (dots), and curricular reforms 

To identify the algebra questions from each paper the authors made an initial selection individually. 
The selections were compared and the selection criteria discussed. It is now common to distinguish 
between algebra as cultural artefact and algebraic thinking as a human activity (Hodgen, J., 
Oldenburg, R., & Strømskag, H., 2018). Ideally, we would be able to pick out the questions that the 
majority of students would be expected to use algebraic thinking. However, we do not have access 
the thoughts of the candidates and examination setters so we could not identify questions by this 
criteria. We considered the curricula, but these did not provide us with an adequate definition because 
algebra has been grouped with different topics in the different curricula (see Background and context). 
Our project is partially motivated by the poor results in algebra in TIMSS (see Background and 
context), so we decided to use their definition of algebra to guide our selection ("TIMSS 2019 
Mathematics Framework," 2017). For example, the questions asking students to use the Pythagorean 
theorem to work out the length of one side of a triangle were categorized as geometry and not algebra 
(as they are in the published TIMSS questions). An example of an algebra question involving 
geometry is given at the end of the Findings and analysis section. Using the definition from TIMSS, 
the authors adjusted their initial selection and reached a consensus. 

Questions were coded as SM, mixed or NSM, and then mixed and NSM questions were coded as 
ritual, mundane or deep (see Theoretical framework). Working individually, one of the authors coded 
all the questions in the sample of examinations and the other two shared the sample. Revision and 
recoding of all the data set was then done by two authors in consultation with one another. Similarly 
at the level of specialised vocabulary. One of the authors coded the process (verbs) as SM or NSM 
and the other two coded the object (nouns) as SM or NSM. The authors consulted each other during 
this process so that difficulties could be resolved by a consensus decision. Inter-rater reliability was 
not calculated because the purpose of the project is to compare examinations and for each coding 
category each data set was coded completely by one of the authors. 

Findings and analysis 
Proportion of algebra questions and degree on contextualisation 

Figure 2 shows the percentage of algebra questions on each of the examination papers. In the 
examinations in 2000 and 2005, candidates were given a choice of six questions from 22 (covering a 
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range of topics) in the last part of the examination. In each of these years, it was possible to avoid, or 
choose almost exclusively, algebra questions in this part. These two extremes are shown in Table 1, 
and in Figure 2 by two data points for each of these years. We do not have any data about how many 
algebra questions a student would typically choose. We note that candidates had the opportunity to 
make a significant reduction in the proportion of algebra questions in these years, and from the 
authors’ experience, it is very unlikely that many chose the highest proportion possible. 

Year 1995 2000 2005 2010 2015 2018 
Number of questions on examination 56 32 40 64 55 53 

Number of algebra questions (% of questions) 18 (32%) 6 (19%)–12 (38%)  6 (15%)–11 (28%) 16 (25%) 21 (38%) 20 (38%) 

Table 1: The number of questions and algebra in each examination in the sample 

LK06 was revised in 2013 and more algebra was included (Utdanningsdirektoratet, 2014). The 
proportion of algebra questions on the examinations in our sample has also increased significantly 
since 2013. For comparison, the target proportion for algebra in the TIMSS assessment is 30%. The 
examination in 1995 was approximately at this level. The examinations in 2005 and 2010 were below 
this level, whereas the examinations in 2015 and 2018 were above this level. 

 
Figure 2: The percentage of algebra questions in each examination in the sample.  

Figure 3 shows the number of questions coded as abstract, ritual, mundane and deep, and these as a 
proportion of all of the algebra questions. In the years 2000 and 2005, we have included all the algebra 
questions that the students could choose in the last part of the examination. (In the year 2000, 
candidates could not do more than twelve algebra questions, but the figure shows the results for all 
fourteen algebra questions.) If we exclude the last part of these examinations, there were six abstract 
and one ritual questions in 2000, and eight abstract and one mundane questions in 2005. (There were 
fewer questions in total on the examinations under the curriculum L97, but the time given to the 
candidates has remained constant for all the examinations in the sample.) Thus, there was only one 
compulsory contextualised algebra question for candidates in each of these years. 

There were no questions coded as deep in the examinations after 2005 in our sample. Moreover, the 
questions coded as deep in 2005 were all in the last part where the candidates had a choice of 
questions. Thus, the examination in 1995 was the only one in our sample where candidates were 
expected to engage in ‘deep’ algebraic context. 

The proportion and number of ritual questions has increased significantly in the examinations in our 
sample that occurred after the introduction of the present curriculum (2010, 2015 and 2018). In 
addition, the proportion of abstract questions has decreased. This indicates a trend where there are 
more contextualised algebra questions, but that the degree of depth with which the students are 
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expected to engage with the context has fallen. We noted earlier that the proportion of algebra 
questions had increased significantly in the last two years of our sample. If the motivation for doing 
this was to raise standards in algebra, then our data indicates that the quality as well as the quantity 
of algebra questions needs to be addressed. This may be related to the emphasis placed on algebra in 
the curricula referred to above. However, it is beyond the scope of this paper to go into this further.  

     
Figure 3. The degree of contextualisation 

Specialised and non-specialised processes and objects 

The first two rows of Tables 2 and 3 shows the frequency and rate per question of SM processes 
(verbs) and objects (nouns) respectively. The rate of SM processes and objects per question is lower 
in 2005 which will be discussed more below. In the other years, the rate of SM processes is similar 
over the sample. There is more variation in the percentage of SM objects, and the rate of SM objects 
per question. These appear to increase after each curriculum reform and then decrease, but a larger 
sample would be required to confirm this.  

 1995 2000 2005 2010 2015 2018 
SM (% of all processes) 29 (64%) 23 (66%) 13 (42%) 24 (52%) 42 (62%) 34 (60%) 
Rate of SM per question 1.6 1.6 1.2 1.5 2 1.8 
Distinct SM processes (rate per question) 18 (1.0) 14 (1.0) 11 (1.0) 14 (0.9) 19 (0.9) 17 (0.9) 

Table 2: Specialised processes 

The number distinct SM processes and SM objects are shown in the third rows of Tables 2 and 3 
respectively. This measure gives an indication of richness of the discourse, and the data indicates that 
this has remained constant over the sample. The number of SM symbolic objects as a percentage of 
the SM objects is an indicator of the mathematical density of the discourse. This has also remained 
constant over the sample period apart from the year 2005. 

 Table 3: Specialised objects 
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 1995 2000 2005 2010 2015 2018 

SM (% of all objects) 68 (64%) 70 (80%) 39 (60%) 118 (90%) 140 (83%) 109 (57%) 
Rate of SM objects per question 2.5 3.1 1.8 4.6 4.4 3.5 
Distinct SM non-symbolic object 
words (rate per question) 

24 (1.3) 25 (1.8) 14 (1.3) 30 (1.9) 35 (1.7) 30 (1.5) 

SM objects in symbols (% of all 
SM objects) 

23 (34%) 26 (37%) 19 (49%) 45 (38%) 48 (34%) 39 (36%) 

Total objects (rate per question) 106 (5.9) 88 (6.3) 65 (5.9) 131 (8.2) 169 (8.1) 190 (9.5) 
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The examinations in the sample under the present curriculum (2010–2018) contained a larger total 
number of objects, and a larger number of objects per question. However, the number of distinct 
object words has not increased proportionately to this. This indicates a more lengthy written style and 
not a richer expected discourse. A recurring feature in these examinations is supplementary 
information in the text with for example historical notes about mathematicians. This may be a 
consequence of the greater emphasis on basic skills (in this case reading) in LK 06 
(Kunnskapsdepartmentet, 2006).  

In 2005, the rate of SM processes and objects per question is lower than the other years. A closer 
inspection of the data revealed that the rate of SM processes was similar with other years on abstract 
questions. However, the only SM processes on a mixed question was find which occurred just one 
time. In addition, there were only six SM objects in total on the mixed questions. Thus the algebra 
questions in 2005 were either almost entirely SM or NSM. This may be a consequence of the 
curriculum having “Mathematics in everyday life” as a separate topic and not integrated into other 
topics (L97, 1999). The lack of specialisation in the language on mixed questions meant that 
candidates were required to engage with the content, so all of these questions were coded as either 
mundane or deep (see Figure 4). However, as noted earlier, students could choose not to do these 
questions and so these questions may have had less impact on teaching and learning. 

Sorting the data by year revealed that, of the 18 distinct SM processes in 1995 and 17 in 2018, there 
were just seven of these that occurred in both years. This change in language was the result of 
incremental changes over the sample period. There were, for example, no significant introductions of 
new processes with the curricular reforms. For objects, there were 17 common objects out of the 24 
distinct SM objects in 1995 and 30 in 2018. When the objects were sorted by topic and the largest 
category was geometry with a total of 25 objects. Nine of these occurred in the exams under the 
previous curricula, whereas 20 of these occurred in the exams under the current curriculum. This 
shows the increased use of geometry as a context for algebra questions.  

1995 2000 2005 2010 2015 2018 
Solve 2 3 2 6 8 4 
Calculate 4 3 1 1 7 1 
Use 1 1 0 4 5 6 
Show (illustrate) 4 1 0 2 2 7 
Draw 2 3 1 2 1 2 
Find 6 0 1 0 1 0 
Show (prove) 1 1 0 1 2 2 
Make 0 1 0 1 2 3 
Set 3 1 1 1 0 0 
 Determine 0 0 0 0 2 4 

 Table 4: Frequency of the most commonly occurring SM processes 

The frequencies of the most commonly occurring SM processes are shown in Table 4. Find and 
calculate are the most commonly occurring instructions in 1995. These have not been used so 
frequently in recent years. The current examination guidelines (Utdanningsdirektoratet, 2014) state 
that candidates can choose their own solution method when answering questions that are formulated 
with find, solve or determine. Questions that are formulated with calculate require the candidate to 
use algebraic methods. (Although calculate was used as an instruction seven times in 2015, it was 
only used twice to indicate symbolic manipulation. The other five times were to evaluate expressions, 
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e.g. “Calculate which Pythagorean triple you get if 𝑛𝑛 = 6” (2015 paper, p.11).) The data appears to 
show a tendency away from find and calculate (regn ut) over to solve and determine (bestemme) in 
algebra questions. The word for determine in Norwegian (bestemme) is also used to mean decide, 
and thus we would argue that determine belongs to a less specialised discourse than the other 
instructions. 

The verb use has occurred significantly more often since the last curriculum reform. This is often in 
formulations such as “Use the [given] formula to calculate Monica’s maximum pulse rate” (Question 
6, 2018 examination, our translation), and “Use a graph tool to…”. Such formulations give more 
explicit instructions to candidates, and may also reduce candidates’ role in decision making (Morgan 
& Tang, 2016, p. 53). Another consequence is that the question becomes an instruction to complete 
a process, rather than solve a problem. That is, that the discourse becomes one that is about performing 
actions rather than engaging in mathematics. This reflects the formulation of the current curriculum 
which is formulated in terms of competency goals and has an emphasis on basic skills (see 
Background and context). ICT is one of the basic skills (Kunnskapsdepartementet, 2006), so explicit 
instructions to use ICT tools have been included on the examination (Utdanningsdirektoratet, 2014). 

An illustrative example 

The following question appeared in the 2018 examination. It contained a picture of Archimedes (not 
reproduced here), the diagram shown in Figure 4, and each sentence was on a separate line. 

A sphere has diameter equal to 2𝑟𝑟. A cone and a cylinder both have height equal to 2𝑟𝑟. Archimedes 
showed that the volume of the cylinder is equal to the combined volume of the sphere and the 
cone. Use the formulas below, and show that this holds. (2018 examination, our translation) 

 
Figure 4: Diagram from question 19 on the 2018 examination 

This question was coded as abstract: there is a context for algebra, but it is within the SM discourse. 
Our analysis suggests that geometry contexts have been more prevalent under the current curriculum. 
The last sentence directs the student as to how to solve the problem. This is further emphasised by 
the use of the plus sign and equals sign in Figure 4. These prompts reduce the candidates expected 
engagement with the discourse of the question. The mention of Archimedes is not essential to the 
question and his picture may be a distraction, especially for weaker candidates (Dowling, 2001). 

This example shows that our analysis gives us insight into some of the changes in the expected 
mathematical discourse of 10th grade students in Norway. However, we see the importance of other 
factors such as the use of diagrams, and the role of human actors in the discourse. These factors can 
be analysed by other parts of the EDSM framework, and will be part of our further research. 
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Concluding remarks 
Our sample indicates that the proportion of algebra questions on 10th grade examinations in Norway 
has increased since the last curriculum reform in 2006.  The quantitative analysis at the question level 
suggests that the expected engagement in real-world contexts has become more ritual. At the level of 
objects and processes, the analysis suggests that the density of the discourse has remained constant 
over the sample period. The examination questions have contained more objects under the present 
curriculum, and the processes have become more directive. This indicates a discourse that reduces 
the need for decision making on the part of the student. These factors may contribute to the ongoing 
underperformance of Norwegian students in algebra on international test, but an inspection of the 
examination questions reveal many more factors that are in play. These need to be researched and 
synergised with our results to gain a better understanding of Norwegian students’ algebra discourse. 
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“Never carry out any arithmetic”: the importance of structure in 
developing algebraic thinking  

Dave Hewitt 

Loughborough University, Centre for Mathematics Education, UK; d.p.hewitt@lboro.ac.uk 

The use of tasks which ask learners to find general rules for growing figural patterns is 
widely reported in the algebra research literature. Such tasks are sometimes seen as a way to 
develop early algebra thinking. This paper looks at examples of such activities from the 
literature and presents a theoretical argument against the common practice of learners 
creating a table of values and seeking patterns within the numbers. Instead an argument is 
made for learners to focus on more complex examples where learners are discouraged from 
counting and turning the original figures into numbers.  Instead, it is suggested that learners 
seek structure within complex examples and express what they see without carrying out any 
arithmetic but instead just writing down what arithmetic they would do. 

Keywords: Early algebra, pattern spotting, algebraic thinking, structure. 

Introduction 
The difference between arithmetic and algebra has been discussed at some length in the 
literature. For example, Filloy and Rojano (1989) talked about a didactic cut existing when a 
letter appears on both sides of an equation. This is, of course, an attribute of the equation 
rather than a statement about ways of thinking which might differentiate between arithmetic 
and algebraic thinking. Herscovics and Linchevski (1994) spoke about the need for learners 
to work with the unknown for something to be considered as algebraic activity. This places a 
greater emphasis on the learner rather than the object, such as the form of an equation, with 
which they are working. With the emphasis on a learner, Radford (2010a) talked of a zone of 
emergence of algebraic thinking where expressions of generalisation can be expressed in a 
variety of forms such as gesturing and actions as well as writing. For Radford, there was not a 
need for letters to be present for algebraic thinking to be emerging. Kieran (2004) allowed the 
possibility of thinking algebraically about something even if that something is not explicitly 
on the list of algebra content within the curriculum. This allows for algebraic thinking to 
happen in many different areas of the curriculum, one of which is number. In this paper I 
argue for the case to place structure at the forefront of developing the algebraic thinking of 
learners. Several researchers have included structure as a key aspect of algebra work, 
including Kieran (2004). Usiskin (1988) included the study of structures within his four 
conceptions of algebra; Kaput (1995) did the same within his five aspects of algebra; and 
NCTM’s (1998) discussion document included structure within four organizing themes for 
school algebra. Yet, I will argue that a number of reported teaching practices do not assist 
learners in placing their attention on structure; indeed often practices do the opposite and turn 
attention away from structure and onto what I would consider to be more arithmetic thinking. 

Radford (2000) posited that algebraic thinking differed from arithmetic thinking in the form 
of the mathematical practice in which learners were engaged. For him it was about the focus 
being on, for example, investigating and expressing the general term of a pattern. At one 
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level, arithmetic is involved in generality in that 3+4=7 is an expression of generality: it does 
not matter what we are talking about, 3 things plus 4 more of the same things result in 7 of 
those things. This is true no matter what those things are. However, algebra, as generalised 
arithmetic, requires a second level of generalisation. It stresses the structure of the given 
situation rather than a ‘result’. Thus, 3+4=4+3 can be judged to be correct through arithmetic 
thinking, by carrying out calculations and stressing the similarity of the results from both 
sides of the equation (both sides result in 7). Algebraic thinking will stress the structure 
inherent within the operation of addition, that of commutativity; the two sides are the same 
because it does not matter which way round you do addition. Thus algebraic thinking stresses 
operations as objects of attention and structure whereas arithmetic thinking stresses processes 
and with the results being the object of attention. Linchevski and Livneh (1999) introduced 
the notion of structure sense and since then other authors have developed the notion further 
(e.g., Hoch & Dreyfus, 2004; Mulligan & Mitchelmore, 2009). In particular, they have in 
common the idea of pattern, connections and relationships. Mulligan and Mitchelmore (2009) 
offered an example of seeing a 3 by 5 rectangle as three rows of five columns or as five 
columns of three rows. Each of these views placed a structured way of seeing the object 
rather than seeing it just as a whole. My own definition of algebraic structure which will be 
used in this paper is: 

A way of viewing an object or expression such that it is seen as a combination of 
recognizable parts along with recognizable patterns which connect those parts together. Such 
a way of viewing results in an expression of the object in terms of the parts and connections 
which places the object as a particular example of a more general type.  

The use of figural patterns (either based upon quasi-real life situations, such as the number of 
chairs around a line of tables, or purely geometrical, such as the length of the perimeter of a 
line of regular hexagons joined together) is widely reported in the literature (e.g., 
Montenegro, Costa & Lopes, 2018; Blanton et al., 2015b). I will analyse some examples of 
such tasks and consider ways in which the students have worked towards trying to find a 
functional rule for a given initial figural growth pattern. I will argue that taking students’ 
attention away from the original figural situation and onto numbers generated from those 
patterns reduces the likelihood of students finding functional rules. A key to generalising is to 
keep attention with the figurative context and to focus on noticing structure. Carrying out 
arithmetic hides any inherent structure which had been noticed and thus reduces still further 
the opportunity to express generality. I start off by looking at the common practice of looking 
at the first few cases of a figural grown pattern and creating a table of values. 

Tables of values 
Asking learners to create a table of values for the first few cases is a common strategy which 
is either suggested by teachers or included in the task instructions. Transferring learners’ 
attention from the original problem situation to a table of values means that they can lose 
contact with three important elements to assist with generality. Firstly the structural 
properties inherent within the original situation can be lost as learners stare only at numbers. 
Secondly, the nature of a classic table of values is that it is structured to be in term order from 
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1 onwards. This brings a natural temporal aspect where recursive rules are more likely to be 
articulated. Thirdly, if a functional rule is found for the numbers, there can never be certainty 
by looking at the table of values that the rule will apply to the original situation. I will now 
consider each of these three elements in turn. 

Losing connection with the context 

In Blandon et al.’s (2015b) study, one task involved finding the number of people sitting 
round a certain number of square tables which were joined in a line. Drawings of the first two 
cases were given and then the learners were asked to record their results in a table of values. 
They were asked to find patterns in the table. One 1st grade learner noticed a pattern in their 
table of values (Figure 3) where the numbers were the same along diagonals. Whilst this is, 
indeed, a pattern in the table, Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens 
(2015a) report that this could have been any symbol set where the symbols were the same 
along a diagonal and was not an observation which necessarily related to a sense of number 
let alone the contextual situation. Indeed, the creation of a table of values takes away the 
context within which those numbers were generated. 

I observed a group of lower attaining 12-13 year olds spending half an hour building 
examples of the first few cases of a ring of tiles surrounding a 1 by n rectangle. The task was 
to find a general rule for how many tiles would be needed to surround such a rectangle. They 
began by making the first few cases with multi-link cubes and constructed a table of values 
for these first few cases. They then spent a long time looking at the numbers in the table and 
not getting further than noticing the recursive rule of the numbers going up in twos. They did 
not turn their attention back to the multi-link cubes but instead kept staring at the numbers in 
the table of values. I will say more about how this activity was concluded in a later section. 
The point here is that they no longer paid attention to the original situation. 

These examples are in contrast to when learners’ attention remains with the original context 
and where a structured way of viewing that context can lead to finding a functional rule, as 
can be seen from the following example. For example, Ferrara and Ferrari (2017) discussed a 
group of 10-11 year olds working on finding the number of circles in further terms of the 
sequence shown in Figure 1. 

 

 

Figure 1: A figural pattern of dots 

They were also asked to explain to someone from another class how to find the number of 
circles in any term in this sequence. An example of work from a group of three students 
showed how they justified their rule by seeing the figural patterns in a structured way. For 
example, Figure 2 shows a link between the notational expression and the pictorial situation 
for the 6th term. 
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Figure 2: Re-drawn version of a learner’s response from Ferrara & Ferrari (2017, p. 28)  

They also showed an alternative way of structuring the geometric figure when one of them 
explained that “The figure is made of two rows: First row, second row, which, the second 
row is equal to the first row, plus 1” (p. 28). The written explanation for the 6th term (Figure 
2) and the more verbal articulation in terms of the two rows, reveal two ways of imposing a 
structured way of viewing the geometric figure rather than seeing it as a single collection of 
circles. Both of these ways of viewing reveal a sense of generality where I feel confident they 
would be able to calculate the number of circles for any term in this sequence. 

The seduction towards finding recursive rules 

The second concern I have about tables of values is that their usual sequential nature can 
seduce students into noticing recursive rules rather than functional rules. Recursive rules give 
a way in which the next term can be generated from the previous term. This can involve the 
carrying out of a long series of arithmetic operations if a ‘far’ term in a sequence is to be 
found. Learners can also find it difficult to make use of a recursive rule in order to generate a 
functional rule; recall, for example, the case of the learners trying to find a rule for a ring of 
tiles surrounding a 1 by n rectangle. They had a recursive rule but this did not help them 
towards finding a functional rule. 

Montenegro et al. (2018) described a class of 18 Portuguese students aged between 10 and 13 
working on a sequence of growing geometric figures in the shape of an ‘L’. Two of the four 
groups were not able to find a functional rule even though they had found a recursive rule. 
All groups had turned their attention to working with numbers from the first six cases as this 
had been encouraged from the questioning of the task. The teacher decided that the students 
had missed the potential within the visual representation of the ‘L’ shapes and focused their 
attention on the shapes; asking students to say what was the same and what was different 
about the figurative representations. This led to students making comments such as “Figure 
15 has one common square and 15 on each side” and “figure n will have a common square 
and n squares on each side”. This led to an exclamation of “Ahhhhh!” (p. 102) and the 
students were able to quickly find the functional rule. The focus being turned from trying to 
find patterns in numbers to looking for structure within the original geometric context was 
significant in the success obtained by those students. 

The sequential nature of a table of values encourages learners to see a recursive rule, which is 
often ‘easier’ than a functional rule as it is usually additive rather than multiplicative, linear 
rather than quadratic, etc. It also does not always help with finding a functional rule. 
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Is the rule correct? 

The third concern I have about tables of values is that even if a functional rule is found for 
the data in the table, students can never know from the table alone if that rule is correct for 
the original contextual situation. For example, without me telling you, you would not know 
the context which the table in Figure 4 represented. The contextual situation has disappeared 
and the activity becomes one of pure number pattern spotting. There is a danger that this can 
lead to little awareness of the mathematical situation from which those numbers originated 
(Hewitt, 1992). Some patterns spotted may not actually apply to the general situation from 
which the numbers originated. The table in Figure 4 gives a strong sense of the rule 2n-1, 
however if the numbers came from the first five cases of looking at the maximum number of 
regions formed within a circle when n points on the circumference are joined to each other by 
chords, then this rule would not be correct. The case for six points produces a maximum 
number of 31 regions and not the 32 which might be expected from looking only at the table 
of values. 

Justification or proof is never possible when attention is solely with a table of values. Palatnik 
and Koichu (2017) reported a pair of 9th grade students who obtained formulae connected 
with the problem of finding the maximum number of pieces a pizza can be cut into with n 
straight ‘cut’ lines. The students had a sense that their formulae were correct as they fitted 
with the numbers in the table of values. However, when challenged to work on why the 
formulae worked, the students had to return to the context of the problem to articulate reasons 
for why they were correct. So, the common practice of encouraging learners to construct a 
table of values (e.g., Blanton et al., 2015a; Blanton et al., 2015b) restricts any pattern spotting 
to the level of conjecture at best. Any sense of certainty of generality requires attention to be 
on the structure of the original problem situation, not a table of numbers. 

 

p x 

3 4 

4 5 

5 6 

6 7 

Figure 3: Numbers on a diagonal are the same 

1 1 

2 2 

3 4 

4 8 

5 16 

Figure 4: A table of values. What is the rule?

 
Never carry out any arithmetic 
I will now return to the story of the lower attaining students who were trying to find a functional 
rule for the number of tiles surrounding a 1 by n rectangle. They spent a long time looking at their 
table of values without getting anywhere towards finding a functional rule. After a long while 
observing them, I asked them how many tiles there would be in a situation where the rectangle was 
47 long. They replied quickly that it would be two lots of 47 plus 3 for each end. Within one minute 
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they had expressed the rule of 2n+3+3. The articulation of 2x47+3+3 rather than the single number 
of 100, which would be the result of carrying out the arithmetic of that expression, meant that the 
structured way in which they viewed the tiles was contained within that expression. The stressing of 
the structure allowed them to see the generality that, however long the rectangle was, they needed 
two lots of that length plus another two sets of three tiles. A significant aspect of this anecdote is 
that the rectangle was long enough so that they would not attempt to build this and count the 
number of tiles. As Radford (2010b) noted, it is important to work with a case where the numbers 
involved are too big for a learner to carry out arithmetic or to count. This forces the need to seek 
structure. Indeed I go further and say that in order to head towards algebra in such situations, all 
arithmetic should be avoided. 

Figure 5: Chairs round tables 

Chimoni, Pitta-Pantazi & Christou (2018) give an indicative answer from a group of 10-13 year 
olds who were successful in solving all the tasks given to them. In this case they were asked to find 
how many children could be seated around a group of 10 trapezoidal tables (see Figure 5 for the 
first two cases). The answer was presented similar to N10 = 5+(9x3) = 32. The number 32 may be 
seen as the answer to the question but it is the expression 5+(9x3) which reveals the structural way 
of seeing the situation. It is this expression, not the 32, which offers the insight to go on to express a 
general rule of 5+((n-1)x3), which may be written in the conventional form of 5+3(n-1). I argue that 
in order to head towards general algebraic statements learners should never do any arithmetic, just 
write down the arithmetic they would do. This is another reason why a table of values is often not as 
helpful as it might initially be considered to be; arithmetic is carried out in order to enter each value 
into the table. This means that any structural insights obtained are lost. Ferrara and Sinclair (2016) 
describe a teacher who worked with a class of grade 3 learners to see if they could work out the 
position number of 26 in the sequence 2, 4, 6,… The teacher stressed that this was not to be done by 
counting. After a while several children were clear that doubling was involved. The teacher asked 
what number would be in position 99. One learner answered “Hum, I don’t know the double of 99” 
(p. 13). For algebra, I argue that you do not need to know the double of 99, you just need to express 
the arithmetic you would do (i.e. 2 x 99). This then leads towards an articulation of 2xn, or 2n. In 
some ways a learner might struggle to carry out some arithmetic whilst just writing down what 
arithmetic they would do can feel easier. In that sense expressing an algebraic structure in written 
form can feel easier than having to carry out any arithmetic involved. 

Summary and implications 
The research literature has shown a frequent practice of presenting learners with figural diagrams 
and encouraging them to construct a table of values for the first few terms. This results in learners’ 
attention being focused on to numbers rather than the context from which those numbers arose. The 
activity for learners then becomes number pattern spotting and there are examples of students 
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finding patterns in the numbers which can be detached from the contextual situation. The nature of 
a table of values is such that recursive rules are likely to be found and students do not always find it 
easy to translate such rules into a general functional rule. The argument I have made is that it may 
be preferable to stay with the contextual situation and encourage learners to find ‘structural ways of 
seeing’. This is supported by Strømskag (2015), who identified staying with the context as 
important for a successful pattern-based approach to algebra. Indeed, learners who stayed focused 
on the original figures were more likely to take a functional approach (El Mouhayar & Jurdak, 
2016) and find several important connected features (El Mouhayar, 2018), whereas those who 
focused on numbers were more likely to take a recursive approach and noticed features which were 
disconnected with each other. 

The principle of never carrying out any arithmetic but just writing down what arithmetic you would 
do can allow the structured way of seeing to be expressed within a written expression. Such 
expressions, and their associated ways of seeing, are a step towards seeing generality through a 
particular example (Mason, 1987). To aid this process of not carrying out any arithmetic and 
stressing structure instead, it is worth teachers considering offering just one example for learners to 
work on. This example should be one which is sufficiently complex so that learners are not able to 
count and are unlikely to be able to do any necessary arithmetic (Radford, 2000). This will increase 
the likelihood of learners expressing the structure they observe and writing it in a form which 
preserves that structure. Since a large number will be involved, this acts as a quasi-variable (Fujii & 
Stephens, 2001) in which the number acts as if it were a variable as learners have a sense that this 
could be any other number and the expression would still be true. 
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Algebraic thinking in the shadow of programming 
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This paper calls attention to how the recent introduction of programming in schools interacts with 
the teaching and learning of algebra. The intersection between definitions of computational thinking 
and algebraic thinking is examined, and an example of a program activity suggested for school 
mathematics is discussed in detail. We argue that students who are taught computer programming 
with the aim of developing computational thinking will approach algebra with preconceptions about 
algebraic concepts and symbols that could both afford and constrain the learning of algebra. 

Keywords: Algebra, algebraic thinking, programming, computational thinking. 

Introduction and background 
In the wake of introducing programming into school mathematics curricula (Mannila et al., 2014) we 
have identified the intersection of algebraic thinking and computational thinking as an important area 
to explore (Figure 1). Specifically, this intersection has come to the fore in Sweden, where 
programming has been inserted into the national mathematics curriculum as part of the core content 
of algebra. Computational thinking (CT) is a fairly new concept in educational research, first 
introduced by Papert in 1996. The term involves the kind of thinking skills needed to understand and 
capitalize on computers. Since Wing launched CT as a didactical term in 2006, researchers in 
computational science as well as mathematics education have attempted to define it. For example, 
Hoyles and Noss (2015) describe CT as incorporating four central thinking skills: decomposition, 
pattern recognition, abstraction and algorithmic thinking. Programming, on the other hand, can be 
seen as a problem-solving activity that can be used to address the different aspects of CT (Manilla et 
al, 2014). Although CT is generally considered to encompass more than programming, teaching 
programming requires the use of CT (Hickmott, 2017). Moreover, programming is a feature of CT 
that does not necessarily involve writing code in any particular computer language (Bocconi, 
Chioccarello & Earp, 2018). Programming is thus a more inclusive term than coding, and seen as an 
activity in which students develop computational thinking. In this paper, we limit the discussion to 
aspects of CT that can be developed through programming. The aim of this paper is to raise the 
question of how programming in schools, with the goal of developing CT skills, may potentially 
interact with, afford or constrain students’ development of algebraic thinking.  

 

Figure 1: The intersection of CT and AT 

A contemporary international movement in school development is to implement programming in the 
curriculum. This has been done in various ways (Mannila et al., 2014). For instance, in England, 
“Computing” was introduced as a new subject in the curriculum, while Finland and Sweden adopted 
a blend of cross-curriculum and single subject integration with the strongest link to mathematics 
(Bocconi et al., 2018). Unlike other countries, Sweden included programming in the mathematics 
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curriculum in close connection to algebra through all grade levels. The curriculum change was 
released in August 2017 and was taken in effect throughout the country by August 2018. There is 
extensive literature from the last three decades tackling issues of teaching and learning programming 
at university level (Grover & Pea, 2013), but except for the early work on LOGO programming there 
are few studies of teaching programming in the early school years (Blikstein, 2018; Hickmott, Prieto-
Rodriguez & Holmes, 2018). Furthermore, most educational research about programming concerns 
the learning of programming per se, rather than learning mathematical ideas through programming. 
One exception is the ScratchMaths research program, which in light of the recent curriculum changes 
in England, set out to explore the relationship between computational thinking and mathematical 
thinking in general, identifying mathematical ideas such as place value, proportional relationships, 
coordinate systems, symmetry and negative numbers in ScratchMath activities (Benton, Hoyles, 
Kalas, & Noss, 2017). We wish to broaden the discussion about “learning to program” or 
“programming to learn” by raising questions about how learning (and knowing) programming 
influences the learning of algebraic thinking. Until now, research on computational thinking and 
algebraic thinking has run on separate tracks, but the Swedish case offers a great opportunity to 
investigate the intersection of these two research domains in the wake of programming activities. 

Programming activities in Swedish schools 
The description of programming in the Swedish revised curricula and on-line material provided by 
the government,1 focuses in grades 1-3 on the use of symbols to construct and follow stepwise 
instructions either without computers (unplugged) or with simple robots such as Bee Bots or screen 
equivalents such as Lightbot.2 In grades 4-6 algorithms are created in visual programing environments 
such as Scratch.3 and in grades 7–9 other programming languages are introduced. In the visual 
environments, an algorithm is often described as a “recipe” or a “function”, and if variables are 
introduced, they are mostly non-numerical. While a function is described as a correspondence 
between two sets in abstract algebra, a function in school algebra is commonly interpreted as a co-
variation of numerical values possible to represent in a graph (Usiskin, 1988). If students in the early 
grades meet functions as a correspondence between non-numerical input and output variables in 
programming activities, they will have experiences that may challenge the school algebra conception 
of function where one quantity is said to vary depending on another quantity, represented in a 
cartesian graph. Due to the limited space of this paper, we leave to the side further investigations of 
early programming activities in relation to algebra and focus our discussion on programming in text-
based environments commonly included in later grades.  

Algebraic thinking and programming 
As algebraic thinking (AT) slowly made its way to the early school years during the last decades, the 
definition of what algebra is and what comprises algebraic teaching has become wider and more 
inclusive (Kieran, 2018). A broad definition of AT based on work with young children is suggested 
by Radford (2018) who describes AT as analytically dealing with indeterminate quantities using 

1 https://larportalen.skolverket.se/#/moduler/1-matematik/Grundskola/Lärare%20i%20matematik 
2 https://www.bee-bot.us; http://lightbot.com 
3 http://scratched.gse.harvard.edu 
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culturally and historically evolved modes of symbolizing. Although this definition excludes operating 
on specific numbers, it includes generalized arithmetic such as analyzing properties of addition and 
multiplication or analyzing the structure of an algorithm (for example using the distributive property 
to work out the partial products in a multiplication algorithm). We set out to investigate if this 
definition of algebraic thinking excludes or includes aspects of computational thinking that are at the 
heart of programming. We note that in a contemporary state-of-the-art publication written by 
members of an ICME topic study group on the teaching and learning of early algebra at ICME 13 
(Kieran, 2018) there is no discussion at all about the connections between the learning of algebra and 
computer programming. The word “programming” is never mentioned and “computer” appears only 
in one paragraph (out of 17 chapters), where Mason claims that computer languages have emerged 
from algebra, and that these “expressive and manipulable languages […] invoke algebraic thinking 
and algebraic awareness” (Mason, 2018, p. 335). Kaput (2008) describes early algebra in terms of 
three content strands including: i) the study of structures; ii) the study of functions; and iii) the 
application of a cluster of modelling languages both inside and outside of mathematics. In addition, 
symbolizing is described as core aspects of algebra (ibid). We find that all three content strands could 
also be aspects of computer programming. As an example, constructing code to generate all odd 
numbers presupposes reflection on what an odd number is and how it could be described and 
represented. Such an exercise is a study of structure, modelled in a specific programming language. 
Although the study of structure in algebra (e.g. generalized arithmetic) is emphasized in more recent 
work (e.g. Kieran, 2018), such structures have not been related to structures that becomes visible 
when breaking down complex calculations into small steps in a computer program. Although 
structure seems to be fundamental in both domains, little has been said in previous research literature 
about the study of structures embedded in computer algorithms in relation to the study of structure 
described as an aspect of algebraic thinking. 

Investigating the intersection between computational and algebraic thinking.  
For the purpose of comparison, we have tried to illustrate similarities between two definitions of CT 
and two definitions of AT by aligning them in Table 1. The definitions are chosen as examples of 
contemporary definitions in the respective areas, proposed by researchers often cited in the literature. 
We see that both CT and AT deal with structure, generalization and symbolization in various ways, 
describing culturally developed organized symbol system where structures can be studied and 
generalizations made. Questions that arise are if structure, symbolization and generalization represent 
the same thing in the two domains, and if the syntax and semantics of programming languages are 
aligned with or divert from corresponding algebraic symbolism. Surprisingly, the definitions of CT 
do not explicitly mention functions or variables, which are fundamental concepts for AT (see Table 
1). In programming activities, these concepts appear up front, where an algorithm in a program is 
often described as a function, and variables are omnipresent. Perhaps they are simply taken for 
granted in CT. Algorithmic thinking is not mentioned as part of AT, although it involves features that 
are fundamental in algebra, such as the ability to analyze a problem, specify it precisely, and find 
adequate basic actions (Futschek, 2006). Further, Futschek mentions the ability to construct a correct 
algorithm using the basic actions, to think about possible special and normal cases, and to improve 
the efficiency of an algorithm. We see such abilities as prominent when algebra is used as a problem-
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solving tool where the basic actions are for example rules of equation solving or symbolic 
manipulation. Finally, according to Futschek, “algorithmic thinking has a strong creative aspect”, 
which undoubtedly should be true for algebraic thinking as well. Can we assume that students who 
develop their algorithmic thinking skills through programming also develop their algebraic thinking 
skills? Could algebra teaching explicitly relate to and build on algorithmic thinking? Note that 
algorithmic thinking in CT concerns the how and why of algorithms, as opposed to what Hiebert 
(2003) calls algorithmic reasoning, which is to recall a solution algorithm based on “rote thinking”. 

Table 1: Some features of contemporary definitions of CT and AT that are found in the intersection 

Features in the 
intersection 

Computational thinking (CT) Algebraic thinking (AT) 

Grover & Pea 
2013 

Hoyles & Noss 
2015  

Radford 2018 Kaput 2008 

Structure Structured 
problem 
decomposition 
(modularizing) 

Decomposition. 
Pattern 
recognition.  

Deals with 
indeterminate quantities 
in an analytical manner 

The study of structures 

Symbolization Symbol systems 
and 
representations 

Using idiosyncratic or 
specific culturally and 
historically evolved 
modes of symbolizing 

Acting on symbols within 
an organized symbol 
system through an 
established syntax 

Generalization and 
abstraction 

Abstractions and 
pattern 
generalizations. 
Conditional logic. 

Entailing 
abstraction 

Deals with 
indeterminate quantities 
in an analytical manner  

Systematically symbolizing 
generalizations 

Functions and 
variables * * 

The study of functions, 
relations and joint variation 

Algorithms Algorithmic 
notions of flow of 
control 

Algorithmic 
thinking ** ** 

* there is no mention of functions or variables in these definitions of CT 
** there is no mention of algorithms in these definitions of AT

Next, we give an example of a programming activity in order to highlight some points of intersection 
with AT, in particular the issue of symbolization, taken from government-provided teaching materials 
available on line in connection to the revised curriculum in Sweden (Rolandsson, 2018).  

An example of differences in syntax and semantics in algebra and programming 
In this activity, the students are going to write a short computer program inspired by the algorithm of 
“Sieve of Erastothenes”, i.e., an algorithm for finding prime numbers. Examples are given in two 
programming languages: Python and Javascript. The latter is given in Figure 2 below. By using this 
algorithm, one can find out if a given integer is a prime number or not. We have highlighted six places 
in the code that illustrate some crucial passages regarding syntax and semantics. These places are 
circled and marked from 1-6 in Figure 2 and will be discussed next.  

Let us begin to consider the equal sign. At the places 1, 2, 3 and 5 in Figure 2 the equal signs all 
represent assignments of different values to variables. For instance, at place 2 the program declares 
the variable a and assigns it the value 2, i.e., gives the variable the value 2. This usage of the equal 
sign differs from how it is normally used in algebra, where the equal sign is a symbol for an 
equivalence relation, and different from arithmetic, where pupils tend to interpret the equal sign as 
an operator symbol (5 + 3 equals 8) rather than a relation (Kieran, 1981).  
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In algebra, it would be meaningless to write 𝑎𝑎 = 𝑎𝑎 + 1, since it is not true for any value of 𝑎𝑎. 
However, in programming the expression 𝑎𝑎 = 𝑎𝑎 + 1 makes sense since the equal sign is understood 
as the assignment “add 1 to the value 𝑎𝑎” (see place 3 in Figure 2). This is often used when a program 
needs to loop through a range of consecutive integers, as in Figure 2 when the program loops from 2 
to the input value stored in the variable “number”.  

Let us now consider place 4 in Figure 2, where we have two consecutive equal signs (==). This is the 
only place in this code where the equal sign is not used as an assignment. Instead, == is used as a 
relational operator that tests if two entities are equal. In our example the program tests if the result of 
the modulo operation “number % a” is equal to 0, i.e. if the remainder is equal to 0 after dividing the 
input value “number” with the loop variable 𝑎𝑎. Here, the double equal sign is used in a similar way 
as the relational equal sign in algebra. 

Many instructions in programming, such as for and if, have built-in checks for truthfulness that 
closely corresponds to the algebraic equality without including an equal sign in the syntax. An 
example of this can be seen at place 6 in Figure 2 where the instruction if(check) should be 
understood as ‘if the variable check is equal to “true”, then…’. Perhaps one might argue that in 
programming the relational equality sometimes is applied although it is invisible in the code, similar 
to the convention in algebra where we write 4 ∙ 𝑎𝑎 as 4𝑎𝑎 (Hewitt, 2012).  

 
Figure 2: An algorithm for deciding if a given integer is a prime number  

Let us now demonstrate some differences regarding the meaning of the variable concept in 
programming and algebra. First, in programming variables can be used to hold non-numbers such as 
in places 1 and 5 where the variable check holds the Boolean value “true” and then “false”. Second, 
in programming a variable can change value during the execution of the program. This is illustrated 
at the places 1, 3 and 5 in Figure 2. As already mentioned, at place 3 the variable 𝑎𝑎 increases with 1 
for every execution (𝑎𝑎 = 𝑎𝑎 + 1). This means that if, for instance, 𝑎𝑎 is equal to 3, the computer 
calculates the value 3+1 and then 𝑎𝑎 is assigned the new value 4, i.e. 𝑎𝑎 changes value from 3 to 4. As 
we are about to see this differs from the algebraic context. In algebra, the concept of a variable is 
broad and has been further categorized as unknown, variable (in a more nuanced meaning) and 
placeholder (Ely & Adams, 2012). The term unknown corresponds to a determinate quantity in an 
equation that remains to be solved. Clearly, an unknown cannot change its value as it is predetermined 
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from the equation. The term variable is meant to correspond to a varying quantity, typically 𝑥𝑥 and 𝑦𝑦 
in the equation 𝑦𝑦 = 𝑥𝑥2 + 1. It can be perceived that the variables in this equation can change value, 
but the change is related to different cases of the problem. E.g. “Case 1: we assume 𝑥𝑥 is 1, then 𝑦𝑦 will 
be 2”, and then “Case 2: we assume 𝑥𝑥 is 2, then 𝑦𝑦 will be 5”. Within each of these cases we allow the 
variable 𝑥𝑥 to have a determinate value which will make 𝑦𝑦 into an unknown (that can be easily 
resolved). Observe that we cannot assign 𝑥𝑥 the value 1 and later derive another value for 𝑥𝑥 within the 
same case, that would constitute a contradiction (𝑥𝑥 = 1 and 𝑥𝑥 = 2 imply 1 = 2) and force us to 
eliminate this case. The same argument can be applied for the term placeholder. This is different from 
programming where instructions are executed in order, one after the other. When an instruction 
assigns a new value to a variable 𝑥𝑥 it does not constitute a new case, instead we are just changing the 
value recorded in a specific place in the memory of the machine (referred to by the variable).  

Discussion 
We have shown above how programming activities can interact with students’ development of 
algebraic thinking in different ways. One of these concerns symbolization. In algebraic thinking, the 
use of culturally and historically evolved modes of symbolizing (Radford, 2018) is described as a 
prominent feature. Notice the plural, indicating that algebraic thinking is not exclusively bound to 
alphanumerical symbols and conventional algebraic syntax, and could thus hypothetically incorporate 
also programming languages. While many programming languages use similar, but not equivalent, 
symbol systems, there is no common syntax. For example, in some languages the short hand 
notation 𝑎𝑎++ (the increment operator) is used instead of 𝑎𝑎 = 𝑎𝑎 + 1. Nevertheless, the differences 
between the established algebraic symbol system and new programming languages could potentially 
entail difficulties for students learning algebra.  

In order to clarify some of these differences we have, from the example in Figure 2, compiled three 
categories regarding the meaning of some operations (the semantics) and the symbolic representations 
of these operations (the syntax) that appear in algebra and programming: 1) Different symbols 
represent the same meaning: e.g., the modulus operation, represented by 𝑚𝑚𝑚𝑚𝑚𝑚 in algebra and % in 
programming; 2) The same symbol represents different meanings: e.g., the equal sign (=) representing 
relational equality in algebra and assignment in programming; 3) Symbols with no corresponding 
meaning in the two domains: e.g., approximately equals (≈) in algebra and increment with one (++) 
in programming. These differences could afford the development of algebraic thinking through 
contrasting examples and awareness of accuracy, or constrain it if the teacher is unaware of the 
different experiences students have. In particular, the equal sign in algebra is already a cause for much 
didactical effort in helping students switch from an operational to a relational meaning (Kieran, 1981, 
2018). When programming introduces yet another meaning, this could cause more confusion. In 
contrast, the use of different symbols to represent the same meaning could help students understand 
that the meaning of a mathematical concept does not depend on the symbol used to represent it. 

The meaning of variable is another issue found in the intersection of CT and AT. The use of non-
numerical variables (such as true/false) in programming affords a wider understanding of the concept 
of variable than the traditional use of variables as quantities, and does not correspond to the school 
algebra idea that letters always represent numbers.  
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The focus on algorithms and operational execution of instructions in programming may interact with 
the focus on structure in algebra. As shown in Table 1, both CT and AT value the study of structure, 
decomposition and pattern recognition. Approaching questions about structure from two perspectives 
could serve as an affordance for developing AT if differences in structure are noticed, contrasted and 
discussed. Algorithms are important in programming but absent in descriptions of AT. In school 
mathematics, the idea and use of algorithms have changed greatly since the introduction of digital 
tools in the 1980’s when traditional algorithms were replaced by an increased emphasis on number 
sense and conceptual understanding. The fact that the term algorithm was removed from the 
description of arithmetic in the Swedish national curriculum in 2011 and re-inserted in 2017 as an 
aspect of the core content of algebra in connection to programming, implies a shift of emphasis from 
a procedural use of algorithms, to a conceptual understanding in terms of “algorithmic thinking” 
(Futschek, 2006). An open question for further empirical research is, if this newly awoken interest in 
algorithms will induce a study of the structures embedded in algorithms, and as such afford the 
development of algebraic thinking in terms of increased focus on structure and generalizations, or if 
it will tip over towards a more procedural approach to mathematics as a whole, thus working as a 
constraint to AT.   

We argue that future algebra students who are taught programming in school, will encounter working 
with variables, structure and patterns, and engage in simplifying, generalizing and symbolizing in 
computer related contexts. We therefore urge for an awareness of what these experiences might do to 
how algebra is conceptualized and talked about in school, and what preconceptions teachers need to 
be aware of. We trust that empirical research into the intersection of AT and CT, as programming 
evolves in school practices, will highlight possible pitfalls and supply algebra teaching with new 
input. 
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Linear figural patterns as a teaching tool for preservice elementary 
teachers – the role of symbolic expressions 

Iveta Kohanová1 and Trygve Solstad2 
1NTNU, Department of Teacher Education, Trondheim, Norway; iveta.kohanova@ntnu.no 
2NTNU, Department of Teacher Education, Trondheim, Norway; trygve.solstad@ntnu.no 

Figural patterns connect several aspects of mathematical activity central to the work of teaching 
mathematics. In this pilot study, we investigated the solutions of 16 preservice elementary teachers 
to linear figural patterns of different levels of complexity after the completion of a series of six 
teaching sessions of a course in mathematics education. We found that a) most students were able to 
generalize and find the figural number of an arbitrary figure in the sequence; b) about half of the 
students produced mathematically imprecise formulas when translating from an arbitrary number 
into a general algebraic expression; c) the formulas students produced frequently lacked structural 
correspondence with the figural patterns and d) students had difficulties in interpreting figural 
patterns that are more complex. These results indicate that although the course successfully trains 
students to generalize with linear figural patterns, more attention to precisely formulating 
mathematical ideas and to interpretation of more difficult patterns can further improve the training 
of preservice elementary teachers.  

Keywords: generalization, prospective elementary teachers, algebraic thinking, figural patterns. 

Introduction 
Research on students’ algebraic thinking has drawn considerable interest over the past decades. For 
Blanton and Kaput (2011), experiences in building, expressing and justifying mathematical 
generalizations constitute the heart of algebra and algebraic thinking. Mason, Burton & Stacey (2010) 
highlight the importance of the generalization process in mathematics when stating that 
“generalizations are the life-blood of mathematics. Whereas specific results may in themselves be 
useful, the characteristically mathematical result is the general one” (p.8). The placement of algebraic 
content within the mathematics curriculum has received considerable attention. For example, 
documents from the National Council of Teachers of Mathematics (2000) in the United States, the 
Department for Education (2014) in England and The Norwegian Directorate for Education and 
Training (2013) recommend the development of algebraic ideas at elementary and middle school 
levels through activities such as generalizing number and figural patterns. Several authors have 
researched algebraic generalizations, but in most cases the target group were pupils in primary or 
middle school (e.g. Carpenter, Franke & Franke, 2003; Becker & Rivera, 2005; Rivera & Becker, 
2009; Rivera, 2010). There is less research on generalization of pre-service elementary teachers 
(PSETs). A study by Yeúilderea & Akkoç (2010) indicated that PSETs, when trying to find the 
general term of number patterns, described number pattern rules in relation to differences between 
terms and used visual models without a purpose. The study of Rivera & Becker (2003) suggests that 
PSETs who used figural reasoning acquired a better understanding of the generalizations they 
constructed than PSETs who reasoned numerically, even if relationships among numerical values had 
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greater contribution to similarity between the compared entities than the figural patterns. Måsøval 
(2011) studied the factors that constrain PSETs’ establishment and justification of formulae and 
mathematical statements that represent generality in different quadratic shape patterns. Her findings 
indicate three such constraints: The first constraint is related to a limited feedback potential in 
situations where the students are supposed to solve the mathematical tasks without teacher 
intervention. The second constraint is related to obstacles the students face when they transform 
informal mathematical statements expressed in natural language into formal algebraic notation. The 
third constraint is related to challenges with justification of formulae and mathematical statements 
that the students have proposed. Hallagan, Rule & Carlson (2009) found that after a problem solving-
based teaching intervention, PSETs improved in their ability to generalize, however, they encountered 
more difficulty with determining the algebraic generalization for items arranged in squares with 
additional single items as exemplified by x2+1, than with multiple sets of items, as exemplified by 
4x. Callejo & Zapatera (2016) characterised profiles of the teaching competence “noticing students’ 
mathematical thinking” in the context of pattern generalization. PSETs named various mathematical 
elements to describe the students’ answers but did not always use them to interpret the understanding 
of pattern generalization of each student. Their findings allow one to generate descriptors of the 
development of this teaching competence and provide information for the design of interventions in 
teacher education addressed to support the recognition of evidence of students’ mathematical 
understanding. 

To meet the goals of teaching in the elementary school curriculum, we need to understand more about 
how to better prepare PSETs for this undertaking. As part of a formative evaluation of the 
mathematics education course design, we set out to identify aspects within the course module about 
generalization that require increased attention and emphasis. Specifically, we asked: Which are the 
most common challenges that PSETs still face when solving problems with generalizations of linear 
figural patterns after completing our six-session course module about algebraic generalization?   

Theoretical framework 
According to Radford (1996), the goal of generalizing spatial or numerical patterns is to find an 
expression representing the conclusion derived from the observed facts (concrete numbers). Radford 
claims that the obtained expression is in fact a formula, which is constructed on the basis, not of the 
concrete numbers in the sequence, but on the idea of a general number. Radford asserts that “general 
number” appears as preconcepts to the concept of variable. Hence, he claims that the notion of letter 
as variable is consistent with a generalizing approach to algebra, aiming at establishment of relations 
between numbers. The point is constructing formulae where the symbols represent generalized 
numbers (Radford, 1996). He highlights that one of the most significant characteristics of 
generalization is its logical nature, which makes the conclusion possible. This means that the process 
of generalization is closely connected to that of justification and proof. The underlying logic of 
generalization can be of various types, depending on the student’s mathematical thinking. Radford 
(2008) distinguish between arithmetic and algebraic generalization of the pattern. While in both 
domains some generalizations do certainly occur, in algebra, a generalization will lead to results that 
cannot be reached within the arithmetic domain. Algebraic pattern generalization involves the 
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students in (1) grasping a commonality, (2) generalizing this commonality to all the terms of the 
sequence, and (3) providing a rule that allows them to directly determine any term of the sequence 
(Figure 1; Radford, 2008).  

 

Figure 1: Radford’s (2008) architecture of algebraic pattern generalizations 

Rivera and Becker (2009) extended Radford’s definition by including the necessity of justification at 
the middle school level. “Students have to provide some kind of explanation that their algebraic 
generalization is valid by a visual demonstration that provides insights into why they think their 
generalization is true.” (p.213-214) Rivera (2010) claims that meaningful pattern generalization 
involves the coordination of two interdependent actions, as follows: (1) abductive–inductive action 
on objects, which involves employing different ways of counting and structuring discrete objects or 
parts in a pattern in an algebraically useful manner; and (2) symbolic action, which involves 
translating (1) in the form of an algebraic generalization.  

Methodological approach 
After a six-session module on algebraic generalization as part of a course in mathematics education, 
16 PSETs completed a digital survey with six tasks about generalization of figural patterns. Before 
data collection, the background of the study and research questions were presented to the PSETs. 
Participation was voluntary and anonymous. Answers were in the form of multimodal digital texts 
including text and freehand drawings. Subsequent to data collection, PSETs’ responses were 
downloaded from the server and sorted according to task. A content analysis was performed 
independently by both authors in order to identify categories of common challenges in the PSETs’ 
algebraic pattern generalization process. 

Course content 

The Mathematics 2 course is an optional course which integrates mathematics and didactics. The 
content of the course previous to data collection was: Rich mathematics conversations, 
Argumentation and proof, Representations, Algebraic thinking, Generalization, Figural numbers, 
Equality, Relational thinking, Models for negative numbers, Realistic Mathematics Education, 
Fractions – multiplication and division, Decimal numbers, Percent, Difficulties in Mathematics.  

A module with six sessions of 180 minutes was devoted to these topics: algebraic thinking, 
generalization, figural numbers, equality and relational thinking. These six sessions were taught in 
English and gave the PSETs the opportunity to discuss several tasks about generalization (not only 
with figural patterns), their different solutions, and challenges for pupils. PSETs also discussed 
several research papers on generalization, equality and relational thinking (e.g. Carpenter, Franke & 
Franke, 2003; Kaput & Blanton, 2005; Becker & Rivera, 2006; Mason, 1996) under the guidance of 
the course instructor.  

Thematic Working Group 03

Proceedings of CERME11 576



Prior to the Mathematics 2 course, in 2016, the PSETs had completed a two-semester compulsory 
Mathematics 1 course whose main content was: Numbers and the number line; Counting; The 
position system; Addition and subtraction; Multiplication and division; Fractions – models, 
comparison, estimation, addition, subtraction; Probability and statistics in primary school.  

Survey 

The survey consisted of six tasks; for the purpose of this paper we focus only on three of them (Figures 
2, 3, 4).  

Figure 2: Task 1 

Figure 3: Task 2 

Figure 4: Task 4   

Participants 

PSETs were in their third year of a 4-year undergraduate teacher education program for Grades 1-7 
at Department of Teacher Education, NTNU in Trondheim, Norway. The whole group consisted of 
67 students, but only 20 were present in the last session. For technical reasons we only received 
answers from 16 students. In the third teaching session, PSETs were given a figural pattern task to 
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solve on their own. Most PSETs did not complete an answer to the first question about near 
generalization, and all of them gave up answering any of the following questions. All PSETs who 
answered the survey were present at almost all teaching sessions and the majority of them was 
participating quite actively during the course. Hence, the subjects in this study were likely among the 
most highly motivated students in the class.  

Findings 
Pattern generalization  

The majority of students gave satisfactory answers to most of the figural pattern questions, requiring 
both finding the first few figural numbers (near generalization), as well as generalizing to figure 
number 50 or 100 (far generalization). This requires successful abductive-inductive action and shows 
that the PSETs in the study had learned to generalize the figural patterns. This is indeed an 
encouraging result considering that none of the PSETs could solve figural pattern tasks at the 
beginning of the course. At the same time, it is likely that the sixteen PSETs who participated in the 
survey were also among the highest attaining students in the class.  

Imprecise symbolic action 

For items involving the construction of formulas, typically around half of the subjects formed 
symbolic expressions containing mathematical imprecisions, indicating a potential for improvement 
in symbolic action.  

Answers from task 1 illustrate this point well. While in task 1 (Figure 2) 75 % of PSETs provided 
valid generalizations to pattern number 100, only 50 % of PSETs wrote accurate algebraic formulas. 
Answers from the subjects who did not provide mathematically precise formulas fell into two 
categories: a) inaccurate use of variables, and b) improper use of the equal sign.  

Although the problem text specified that the letter n denotes the figure number, 4 PSETs chose to use 
the letter x for their formula without defining what x denotes. As for subject 3: 

S3:  General formula: N=3*x+1; Because we always want to start with 3 since this is 
the "bush" [that makes up the base of the continuing pattern], then we have to 
multiply this "bush" with x since we do not know which day we want to find. Finally 
we must add 1 since all these shapes have only one "stem". 

The notation F(n) could be used to denote the figural number while the letter x was used instead of n 
to denote the figure number. Subject 11: 

S11:  100* 3 + 1 Corresponding formula: fn= x*3 +1 

These inaccuracies indicate an inflexibility in the students’ appropriation of variables, which might 
be rooted in an experience with solving equations where x stands for the unknown.  

In some answers, PSETs gave the same variable name to the figural number and the figure number, 
as for subjects 5 and 10 below:  

S5:  General formula: N = (Nx3)+1; This expression is correct because figure number 
N will have N number of triangles. These triangles have to be multiplied by 3, since 
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each triangle consists of three sticks. Then one has to add 1, which corresponds to 
the stick at the bottom. 

S10:  General formula: n = n x 3 + 1; Because in each triangle one needs 3 matches, so to 
make 4 triangles one needs 4x3 (12) matches, and to make 100 triangles one needs 
100x3 (300) matches. Therefore n x 3. In the end one needs to add the one match 
which stands, and then it finally becomes +1. 

These responses indicate a lack of attention to equality and the meaning of the equal sign. It appeared 
not only in solutions of task 1, but also in task 4, as shown in the example below for subject 15 (task 
4c, Figure 4).  

S15  Here he divides into parts where he circles the same dot twice. n = n + ((n + 1) x 4) 
– 2. Have to subtract 2 since this is counted twice. 

Lack of structural correspondence with figural pattern 

Finally, both for correct and incorrect answers, the structure of the formulas given by the PSETs often 
did not correspond to the figural pattern.  

For instance, subjects 5 and 13 responded with the same formula for all three different decompositions 
of the figure in task 4 (Figure 4):  

S13: N = n+2+(nx4); n+2 is the body; nx4 is the arms 

Decomposition c) in task 4 contained overlapping regions that were to be subtracted. Still, subject 7 
provided the formula in reduced form, reinterpreting the figure from the second decomposition of the 
same figure: 

S7:  n*5+2; n is the figural number, 5 is the number that it increases by for each figure, 
+ 2 are the circles that are overlapping encircled, that are constant 

While all students wrote some formula for decompositions in task 4a) and 4b), in task 4c) six students 
wrote “I don’t know”. We could see a similar phenomenon in task 2 (Figure 3). While all students 
gave adequate answers to tasks 2a) and 2b), five students answered task 2c with “I don’t know”. 
Slightly more difficult structures of figural patterns (overlapping regions or the two colors, which add 
a layer of complexity) seem to be challenging for PSETs.    

Discussion and conclusion 
In this paper we investigated sixteen preservice elementary teachers’ solutions to linear figural pattern 
generalization tasks. The analysis of these solutions showed that although PSETs typically recognized 
the underlying structure of linear figural patterns, their algebraic notation and syntax of algebra was 
often imprecise. This observation corresponds to the second constraining factor identified in Måsøval 
(2011), related to formalizing mathematical ideas expressed in natural language. Most of the formulas 
that PSETs provided were meaningful, i.e. the formulas conveyed the underlying structure in the 
figural patterns. However, several solutions were characterized by imprecise mathematical language. 
Variable names commonly were not defined or not used consistently, and indicated a lack of attention 
to equality and to what a variable represented. The fact that it wasn’t an interview, where PSETs were 
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not asked for further and detailed explanations of their answers, might support the assumption that 
this is how their notation and argumentation will look like in the classroom.  

A meaningful pattern generalization must be accompanied by a symbolic action (Rivera, 2010). In 
the study of Hill et al. (2008), mathematical errors, including errors in language (conventional 
notation, technical language, general language for expressing mathematical ideas), proved the most 
strongly related to teacher knowledge. In further research we will investigate whether increased 
attention to equivalence, symbolic notation, dependent and independent variables, variable names 
and the accuracy of the mathematical language during teaching sessions on generalization might 
benefit the development of PSETs’ teacher knowledge and better prepare PSETs for teaching 
generalization in real classrooms. The recent decision to incorporate programming into the 
Norwegian mathematics curriculum is also an invitation to investigate the role of programming in 
developing the concept of variables and symbolic action in pattern generalization.  
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Many students have difficulties giving meaning to algebra.  In this study, we investigated how graphing 
formulas by hand can help grade 11 students to give meaning to algebraic formulas, defined as the 
ability to “read through” an algebraic formula: i.e., to recognize its structure and to link it to 
graphical features. During five 90-minute lessons, 21 students worked on graphing tasks focusing on 
recognition and heuristic search. To assess the effects of this intervention, a graphing task, and a card-
sorting task were administered to the students. In addition, six students were asked to think aloud 
during the graphing task. The results of the card-sorting task showed that 14 students used categories 
similar to the ones experts use, but had trouble in consistently categorizing all formulas. The thinking-
aloud protocols showed that the students improved their recognition of basic functions and graph 
features, and their qualitative reasoning, which allowed them to give meaning to algebraic formulas. 

Keywords: Algebra, giving meaning to algebraic formulas, graphing formulas. 

Introduction 
Many secondary school students have problems with algebraic formulas, which are very abstract for 
them (Arcavi, Drijvers, & Stacey, 2017; Kieran, 2006; Thompson, 2013). Students, also those in 
upper secondary school, have difficulties giving meaning to algebraic formulas: they lack symbol 
sense. Symbol sense has to do with the ability to read through a formula, to recognize its structure 
and its characteristics (Arcavi, 1994) and would allow students to give meaning to algebraic 
formulas. It is insufficiently known how to teach these aspects of symbol sense (Arcavi et al., 2017; 
Hoch & Dreyfus, 2010). In regular education, teaching for giving meaning often starts with realistic 
contexts and manipulation of formulas. In the current study, we used graphs to give meaning to 
formulas and used basic functions as building blocks in reasoning with and about algebraic 
formulas.   
Theory 
Giving meaning to algebraic formulas 

Acquiring meaning is synonymous with assimilating to a cognitive schema, which is a (hierarchal) 
network of concepts and procedures. Assimilation is the integration of new information into a 
schema, which results in an adjusted schema (Thompson, 2013). To give meaning to algebraic 
formulas, different sources are suggested in the literature: for instance, via the problem context, via 
the algebraic structure of the expression, via multiple representations, and via linguistic activity, 
gestures, body language, metaphors, etc. (Kieran, 2006). Ernest (1990) used a syntactical analysis to 
decompose algebraic expressions into meaningful sub-expressions (building blocks). Hoch and 
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Dreyfus (2010) used structure sense to describe the ability to recognize familiar structures by using 
compound terms as single entities. Janvier (1987) and many others have shown that functions can 
be investigated by linking different representations. We chose to link algebraic formulas to graphs, 
which seem to be more accessible for students than formulas (Leinhardt, Zaslavsky, & Stein, 1990), 
as they appeal more to the Gestalt aspect of a function and visualize the “story” that an algebraic 
formula tells. Therefore, graphs can be used to give more meaning to algebraic formulas (Eisenberg 
& Dreyfus, 1994; Kieran, 2006; Heid, Thomas, & Zbiek, 2013). To link formulas to graphs in order 
to give meaning to the formulas, graphing tools such as graphic calculators can be used (Heid et al., 
2013). Using these tools, it seems easy to make a graph from a formula. However, research has 
shown that one must know what aspects of graphs to look for (Stylianou & Silver, 2004), and that 
students establish the connection between formula and graph more effectively when they do 
graphing by hand than when they only perform computer graphing (Goldenberg, 1988).  

The aim of the current study was to improve students’ abilities to give meaning to algebraic 
formulas by teaching them to graph formulas by hand. We defined giving meaning to algebraic 
formulas as the ability to “read through” an algebraic formula: that is, to recognize its structure and 
to link it to graphical features.  

Teaching graphing formulas for giving meaning 

In expertise research, it has been established that for effective and efficient problem solving one 
needs recognition, and heuristics when recognition falls short (Chi, Feltovich, & Glaser, 1981). 
Based on this idea, a two-dimensional framework to describe strategies for graphing formulas was 
formulated (Kop, Janssen, Drijvers, Van Driel, & Veenman, 2015). In this framework, one 
dimension is about levels of recognition: from complete or function family recognition, to no 
recognition of the graph. The other dimension is about heuristic search, from strong heuristics, 
which provide information about large parts of the graph (e.g., qualitative reasoning about infinity 
behaviour and/or symmetry), to weak heuristics, which give only local information (e.g., calculating 
points). See Figure 1.
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B B1. Recognition of family 
(with characteristics) 

B2. Search for ‘parameters’ of 
the graph 

B3. Investigate the family 
characteristics, for 
instance via zeroes 

C C1. Split formula in sub-
formulas  

C2. Compose the graphs by 
qualitative reasoning  

C3. Compose the graphs 
by making a table 

D D1. Graph unknown; 
Characteristic aspect of 
graph is recognized. 

E E1. Graph unknown; 
strategic exploration of 
algebraic formula   

E2. Qualitative reasoning 
about domain, or vertical 
asymptote, or symmetry, or 
infinity behaviour, …  

E3. Algebraic 
manipulation 

E4. Strategic 
search, for 
zeroes or 
extreme values 

E5. Calculate 
strategically 
chosen point(s)  

F F1. No recognition at all F2. Standard repertoire of 
research 

F3. Make random  table  

Figure 1: Two-dimensional framework for strategies to graph formulas 

For recognition, a repertoire of basic function families and knowledge of attributes to describe 
graphs are needed (Eisenberg & Dreyfus, 1994; Slavit, 1997). Kop, Janssen, Drijvers, and Van 
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Driel (2017) found, using a card-sorting task, that experts’ repertoires of basic function families 
resembled the basic function families taught in secondary school, like exponential, logarithmic, and 
polynomial functions. Experts seem to have linked prototypes of these function families to a set of 
critical graph attributes. For instance, a prototypical logarithmic graph has a vertical asymptote, 
only positive x-values as a domain, and is concave down. They use their repertoire of basic function 
families as building blocks in working with formulas, for instance, when decomposing complex 
functions into simpler basic functions and when reasoning about characteristic graph features from 
formulas (Kop et al., 2015, 2017).  

Experts often start with a global perspective that enables high levels of recognition (Even, 1998). 
With the global perspective the whole function and/or graph is in view, whereas with a local 
perspective only a part is in view. The global perspective is more powerful and gives a better 
understanding of the relation between formulas and graphs, but the pointwise approach is needed to 
monitor naïve and/or immature interpretations (Even, 1998; Slavit, 1997).  

The question in the current study was whether we could teach these experts’ strategies to students. 
This led to the following research question: How can graphing formulas based on recognition and 
heuristic search help pre-university students to develop a knowledge base to give meaning to 
algebraic formulas? 
Method 
The teaching experiment was performed in a grade 11 mathematics B class, a regular class of 21 
students who were 16- and 17-years old. Mathematics B is a course that prepares students in the 
Netherlands for university studies in mathematics, science, and engineering. The intervention took 
place during five lessons of 90 minutes. The students were obliged to work in pairs or groups of 
three which required them to exchange ideas. Each day, the lesson started with a short plenary 
discussion (max. 10 minutes) with general feedback on the students’ work, reflection on the tasks, 
and modelling of expert thinking processes aloud. During the rest of the lesson, the students worked 
on tasks, related to the levels of recognition of the two-dimensional framework (Figure 1). These 
tasks were formulated as exploratory whole tasks with help, concluded with a reflection question. 
After the lesson, each pair and group handed in their work for feedback.  

To assess the effects of the intervention, we collected students’ responses to a written graphing task 
in a pre-test, post-test, and retention-test (four months after the intervention). Each graph in these 
graphing tasks was reviewed as correct (score=1) or incorrect (score=0), and a total score was 
calculated for each student.  

Written tests give only limited information about the students’ thinking processes. Therefore, six 
students were asked to think aloud during the graphing task in the pre-test and post-test. These 
protocols were transcribed and analyzed based on the two-dimensional framework (Figure 1): that 
is, on the use of recognition (function families, formula decomposed into sub-formulas, and/or 
graph features), qualitative reasoning, and calculation (points and/or derivatives).   

In addition, a card-sorting task was assigned in the post-test to gather information about the 
students’ knowledge base of function families. The students were asked to categorize 40 formulas 
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according to their rough graph, using as many categories as they wished. In addition, the students 
were asked to give a description and a prototypical formula for each of their categories. Card-
sorting tasks are often used in eliciting structured knowledge (Chi et al., 1981). To analyze the card-
sorting task, an expert categorization with 12 main categories, similar to the one found by Kop et al. 
(2017), was constructed and used as the criterion categorization. For each categorization, the 
student’s categories were compared with those of the criterion categorization and it was established 
which formulas were not consistently categorized. Each corresponding category was graded with a 
score of two points and an extra point if a distinction between increasing and decreasing had been 
made. Then the number of correct formulas (consistent with the category) was graded. This method 
of analysis has been used by others (Ruiz-Primo & Shavelson, 1996); the total score should be an 
indication of the correctness of a student’s categorization.  

Results  
For the card-sorting task, we found that 14 out of the 21 students used categories almost similar to 
those in the expert categorization, although different names were used for the categories, like 
“having a horizontal and vertical asymptote” (linear broken functions), or “only a vertical 
asymptote” (logarithmic function). Many students made mistakes in categorizing distractors like 

  and often no distinction was made 
between increasing and decreasing log-functions.  

To illustrate the results, we report about two students: K (a high-achieving student) and M (an 
above-average-achieving student). Student K's categorization is shown in the Appendix. S/he 
distinguished increasing and decreasing exponential, root, and polynomial functions. S/he 
categorized only a few formulas inconsistently, but s/he did not make a distinction between 
logarithmic and root functions, which resulted in a total score of only 45 points. Student M’s 
categories also resembled those of the criterion categorization. When categorizing the formulas, 
student M used predominantly zeroes and max/min with polynomial functions, like in 

, asymptotes (horizontal and vertical for broken functions, horizontal for 
exponential functions and vertical for logarithmic functions), and edge points for root-functions. 
Although, s/he had more inconsistently categorized formulas, her/his categorization had a total 
score of 44 points.  

The thinking-aloud protocols on the graphing tasks showed that, in the pre-test, the students had 
trouble recognizing (basic) functions, and only high-achieving students were successful now and 
then because of their reasoning abilities. In the post-test, these students had improved their 
recognition of basic function families with their characteristics and their qualitative reasoning.   

In the pre-test, K scored 9 correct graphs out of 14. As a high-achieving student, s/he was able to 
compensate for a lack of recognition through qualitative reasoning. However, s/he often had to 
calculate many points of the graph. We give two citations to illustrate K’s strategies in the pre-test. 
K did not recognize the global shape of a logarithmic function and used calculations and reasoning 
about the inverse function to sketch the graph of ln( 3)y x= - correctly:  
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“I do not know the ln-graph anymore. When , then …… When , then , so 
. At x-as the x-axis is intersected. When x is increasing then y increases, so the graph 

increases. When x is negative … (thinking). Because something to the power of e (e….) does not 
give negative y-values. So, 3x -  cannot be negative; the graph only exists from 3x = , larger than 
3. So, at 3x =  a tangent (asymptote?) and outcomes smaller when x is in the neighbourhood of 3”.  

At first K showed a correct global shape by gesturing, however her calculating of individual points 
resulted in an incorrect sketch of :  

“…root-functions go like this (makes a correct gesture); the fact that it is 6-2x means that the 
function only exists for negative values of x, to the point where x is 3; for x larger than 3 the 
argument is negative; when x=3 than y=0; when x=0, y= 6 , which is about 2.5; when x is more 
negative, the argument becomes larger; …, 10 3.3» , 12 3.5» , differences become larger (and 
sketches a graph concave up)” 

In the post-test, K’s recognition of basic functions had improved and s/he still used her/his abilities 
of qualitative reasoning, resulting in a score of 13 out of 14. Again, two citations give an 
illustration. 

K sketching  correctly: “ln(x) graph goes like this; , so 4 to the right.”  

K used qualitative reasoning to compose two graphs while sketching  correctly: 

 “2x goes like this;  goes like this (sketch); here it is 0; here negative, here 0, and after this it 
is steeper”.  

In the pre-test student, M had many problems with graphing formulas. S/he did not know basic 
function family characteristics, and did not recognize graph features like zeroes and turning points. 
This resulted in a score of only 2 out of 14. Two citations illustrate her/his strategies. 

M recognized the parabola-shape but did not know how to proceed while sketching 4( 3) 9y x= - -  
(not finished):  
“…at 3, 9= = -x y . (After some time) The larger x is, the larger y, so it increases. It is a parabola. 
(S/he stopped talking for a while; after a couple of minutes) I do not know how to proceed.” 

M recognized a translation but not the shape of the ln(x)-graph; s/he tried to construct the graph of 
ln( 3)y x= - via the inverse function (not finished):  

“…graph of ln( )x  that is translated 3 to the right (s/he did not use this but writes 
). This is an asymptote; x cannot be 3; ….; when 

 (drew point (4,0) and stopped)”.  

In the post-test, M’s repertoire of basic function families and her/his qualitative reasoning had 
improved, resulting in a score of 10 out of 14. Two citations illustrate this. In the post-test M 
recognized more graph features like zeroes and turning points; for instance, while sketching              

 correctly: “…goes downwards; zeroes at 0, 2, 5. At 1 it is negative”.  

M in the post-test, sketching  correctly:  
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“…asymptotes at 2 and -2; zero at ; no, no zeroes, because 2x cannot be negative; when x is 
smaller than 2, then it is positive here, and negative here, so it is negative; when x is a bit larger than 
2, positive here, positive here, so positive; the same for -2”.  
Not only had these two students improved their scores in the post-test, but the results of all students 
showed a significant improvement in scores, with a large effect-size, from a mean score of 3.1 (SD 
= 2.6) in the pre-test to a mean score of 8.6 (SD = 2.8) in the post-test (t(20) = 10.40, p < .001, 
d = 2.27). As expected, the scores in the retention-test dropped: a mean score of 6.3 (SD = 3.4). 
This result is significant when compared with the pre-test scores: t(14) = 3.15, p = .007, d = 0.81.  

Conclusion and discussion 
The aim of the current study was to enable students to give meaning to algebraic formulas in terms 
of a graph. A knowledge base of basic function families with their characteristics is needed for this. 
In the intervention, students learned to graph formulas through recognition and qualitative 
reasoning. The results of the thinking-aloud protocols showed that in the pre-test students were 
either unable to link formulas to graphs or needed to use a lot of time-consuming reasoning and 
error-prone calculations. Therefore, without explicit teaching, students might not link formulas to 
graphs. The post-test results of the graphing task showed that the students had improved their 
recognition of basic function families and, in general, their reasoning about formulas. In terms of 
the two-dimensional framework: in the pre-test the students mostly used recognition level E, 
whereas in the post-test they often used higher levels of recognition (recognition of function 
families, decomposition of the formula, and recognition of graph features).  

The categorizations gave an impression of the knowledge base and thinking processes of the 
students. The students’ categorizations showed that they used more or less the same categories as 
experts, but still had problems with categorizing less familiar functions, like 

Student M used zeroes, asymptotes 
(horizontal and/or vertical), and edge points as main strategies when categorizing. In the post-test 
graphing task, s/he often used these same strategies. Student K’s categorization was very detailed, 
although s/he combined root- and log-functions. However, in the post-test graphing task s/he 
showed that s/he knew the differences well (see sketching   and   in the 
results section). In the post-test graphing task, K used her/his repertoire of function families often. 
Both students’ categorizations seemed to allow them to recognize function families and use these 
function families as building blocks in reasoning with and about formulas: these function families 
are objects that they can use to give meaning to algebraic formulas. 

These findings suggest that teaching graphing of formulas based on recognition and heuristic search 
might enable students to develop a repertoire of basic function families, to identify the structure of 
formulas, to (qualitatively) reason with and about algebraic formulas, and to link formulas to 
graphical features. This could allow students to “read through” an algebraic formula, that is, to give 
meaning to algebraic formulas.  
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The following research design combines relational thinking as an aspect of algebraic thinking with 
the understanding of variables. In clinical interviews, 5 to 10 years old children were confronted with 
tasks that required the description of relations between known and unknown quantities. Their answers 
were examined regarding the ways in which relations are described and thereby variables are seen.  

Keywords: Algebraic thinking, relational thinking, unknowns, primary school.  

Introduction 
This paper reports parts of a research focused on the abilities of young children to establish 
relationships between unknown quantities. The aim is to investigate how young children describe 
relations between known and unknown quantities that are represented with different colored boxes 
and marbles and how they understand the unknown quantities. First of all, relational thinking as an 
aspect of algebraic thinking will be described as well as important aspects of variables.  

Theoretical Framework 
Algebraic thinking and relational thinking 

It is hard to give a comprehensive description of what algebraic thinking means. However, many 
researchers (e.g. Kieran, 2011) highlighted that relational thinking is seen as an important part of 
algebraic thinking. 

Relational thinking refers to students’ recognition and use of relationships between elements in 
number sentences and expressions. When using relational thinking, students consider sentences as 
wholes (instead of a process to be carried out step by step), analyze them, discern some detail and 
recognize some relations, and finally exploit these relations to construct a solution strategy. 
(Molina, Ambrose, Castro, & Castro, 2009, p. 122)  

In addition to the understanding of relational thinking regarding equations and formal expressions, 
this can also be extended to the recognition and use of relations between quantities. It enriches the 
learning of arithmetic and can be a foundation for smoothing the transition to algebra (Carpenter, 
Levi, Franke, & Koehler Zeringue, 2005). 

Aspects of variables 

Radford (2011) described algebraic thinking as dealing with indeterminate quantities conceived of in 
analytic ways. So dealing with indeterminacy is an important part of algebraic thinking. This 
indeterminacy leads to different aspects of variables. At least, three different kinds can be 
distinguished: unknowns, variables, and general numbers. Unknowns describe a specific, but 
undetermined number, whose value can be evaluated, i.e. the 𝑥𝑥 in the equation 10 + 𝑥𝑥 = 30 (e.g. 
Freudenthal, 1973; Usiskin, 1988). Variables describe a range of unspecified values and a relationship 
between two sets of values, i.e. variables appear in statements about a functional relationship and 
indicate how one value depends on another value (e.g. Küchemann, 1981; Usiskin, 1988). General 
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numbers describe indetermined numbers which appear in generalizations, such as descriptions of 
properties of a set, i.e. the commutative law of addition can be represented by the equation 𝑎𝑎 + 𝑏𝑏 =
𝑏𝑏 + 𝑎𝑎. In contrast to the variable aspect of the unknown, this is not about specifying a value for the 
letters 𝑎𝑎 and 𝑏𝑏. The meaning of general numbers lies precisely in the general expression of the 
relationship found (e.g. Freudenthal, 1973; Usiskin 1988). In addition to these three aspects of 
indeterminacy, empirical data provide further classifications. Children often use quasi-variables to 
express generality before they develop the capability to use algebraic language (e.g. Fujii & Stephens, 
2001): general structures are expressed through the use of examples which stand for the general. For 
example, children use the number sentence 78 + 49 − 49 = 78 to express that the number sentence 
𝑎𝑎 + 𝑏𝑏 − 𝑏𝑏 = 𝑎𝑎 is true whatever other number is taken away and added again. In this sense, they have 
an understanding of indeterminacy and can express a general number without the symbolic algebraic 
expression. 

Research interest 

Studies focused on relational thinking usually refer to relationships in formal representations (e.g. 
Carpenter, Levi, Franke, & Koehler Zeringue, 2005). In equations with an unknown, students have 
the opportunity to calculate. If there are two unknowns, this possibility is not given. It can be assumed 
that the use of several unknowns increases the use of relational thinking. A study by Stephens and 
Wang (2008) showed that 6th and 7th-graders use relational thinking in the following task: In each of 
the sentences below, you can put numbers in Box A and Box B to make each sentence correct. For 
example:  

18 + □ = 20 + □ 

      Box A           Box B 

Based on students responses to tasks like above, they described three stages of relational thinking: 
established relational thinking, consolidating relational thinking, and emerging relational thinking. 
Established relational thinkers specify the relationship between the numbers in the two boxes with a 
clear reference to the numbers, including the magnitude and direction of the difference between them. 
These characteristics decrease in the other two categories. In terms of task design, they found that 
tasks with two unknowns served the purpose of moving students beyond computations to more in-
depth thinking (Stephens & Wang, 2008). Research by Schliemann, Carraher, and Brizuela (2005) 
showed that even younger children aged 7 to 11 years old are capable of understanding equivalence 
and solve linear equations with unknown quantities. In that case, the tasks were represented with 
concrete objects or told as little stories. In contrast to formal representations, concrete materials have 
the chance to prompt even younger children such as kindergarteners to show their capabilities of 
relational thinking while handling unknown quantities. Melzig (2013) tested a task design with boxes 
and beans with 7th graders and found that the boxes can play a meaningful role in developing a viable 
idea of variables.  

The following study addresses the question: How do young children describe relations between 
known and unknown quantities that are represented with concrete materials? How do they 
understand the represented unknown quantities (e.g. as unknowns, as variables…)? 
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Methodology 
The following interview-study was performed on 82 children aged from 5 to 10 years old. The sample 
consisted of 5 to 6 years old kindergarteners (n=27), 7 to 8 years old 2nd graders (n=28) and 9 to 10 
years old 4th graders (n=26). The children did not receive any special algebra lessons or instructions 
before. 

In order to capture children’s competencies describing relations between known and unknown 
quantities, an exploratory design was created based on the representation of boxes and marbles (e.g. 
Melzig, 2013; Affolter et al., 2003). The concept of the tasks was to translate different kinds of 
equations with one or two unknowns into a representation that young children could handle. Known 
quantities were represented as marbles and unknown quantities were represented as boxes which 
contained an unknown number of marbles (see table 1). A story was told: “Here you see two children: 
Tino and Anna. They are playing with marbles. Some marbles are packed up in different colored 
boxes and some marbles are separate. Boxes with the same color always contain the same amount of 
marbles.” The study includes 12 tasks of four different kinds. Kindergarteners got 10 of the 12 tasks, 
2nd and 4th graders got all of them.  

Type of task Examples  

A: “The same?”: Children have to decide if both children have 
the same amounts of marbles or not. 

A1: boy: 𝑥𝑥 + 1 girl: 𝑥𝑥 + 2 

B: “How many?” (known): The children have to specify how 
many marbles are in a box so that both children have the same 
number of marbles. Children can answer with a specific number. 

B2: boy: 4      girl: 𝑥𝑥 + 𝑥𝑥 

 

C: “How many?” (unknown): In type C a relationship between 
two unknowns can be stated.  

Task C1: How many marbles have to be in the boy’s box so that 
both children have the same amounts of marbles? 

C1: boy: 𝑦𝑦  girl: 𝑥𝑥 + 1 

 

D: “Make them equal”: Both children have the same amounts of 
marbles. The interviewer makes a transformation. Children have 
to decide what amounts of marbles they have to give to one 
child or take away to the interviewer, to make the quantities 
equal again.  

D1: boy: 𝑥𝑥 + 𝑥𝑥  girl: 𝑦𝑦 + 𝑦𝑦 + 2 
à The boy gives one of his 
boxes (x) to the interviewer. 
How much does the girl have to 
give to the interviewer? 

Table 1: Overview of the types of tasks used in the study. The variables in the last column represent 
the unknowns, which were represented as colored boxes. Each variable was represented with another 

color 
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To get an insight into children’s thinking, clinical interviews (Selter & Spiegel, 1997) were 
conducted. Various semi-standardized questions aimed to let children think more about the tasks. 
Each child worked on each of the tasks in an individual interview. The request “How did you get your 
answer?” helped to get an insight into children’s way of thinking. The interviews were videotaped 
and transcripted. 

Analysis and results 
After the transcription of children's answers, the diversity of children's solutions to the individual 
tasks was compiled. The tasks of type A were answered correctly by nearly all of the children. The 
correct answers of type B tasks varied between 40 to 72 % by kindergarteners, 72 to 97 % by 2nd 
graders and 92 to 97 % by 4th graders. Particularly interesting was the evaluation of the tasks of type 
C, where relations between two unknowns had to be established. The following presentation of results 
refers to the answers of the children to the task C1 (see table 1).  

Categories of the first answers 

In task C1, the children were confronted for the first time with two unknown quantities. In contrast 
to the last task, no concrete value can be given. Therefore, the first spontaneous answers of children 
to task C1 are of interest. Table 2 presents the categories of children’s answers. 

Category: Kinder-
garten 

2nd 
grade 

4th 
grade 

State a relationship: Children describe a relationship between the 
amounts of marbles in the boxes. 

0% 4% 11,5% 

Describe a dependency: Children describe that the amounts of 
marbles in both boxes depend on each other.  

0% 12,5% 30,8% 

Numerical values: Children mention values for the amounts of 
marbles in one or both boxes.  

96% 58% 38,5% 

… as examples: The values are meant as examples. 12,5% 57% 90% 

… as fixed values: The values are meant as fixed numbers. 41,6% 29% 10% 

… not to classify exactly: At this point of analysis, it is not clear if 
the mentioned values are meant as examples or not.  

45,8% 14% 0% 

Unintended answers: The children interpret the task differently. E.g. 
children want to change the amounts of given marbles in the task to 
give an answer. 

0% 12,5% 0% 

No answer: Children give no answer. 4% 8% 7,7% 

Not possible to evaluate: The answers of the children cannot be 
evaluated more precisely at this point. 

0% 4% 11,5% 

Table 2: Categories of children’s first spontaneous answers to task C1 
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The overview shows that most children first enter numerical values for the content of the green box. 
But there are also clear differences between different age groups. While the majority of kindergarten 
children indicate numerical values, some children in grades 2 and 4 are already able to describe 
relationships or dependencies. Of particular importance at this point are the interviewer's following 
requests, which encourage children to overlook different numerical values and consider the 
relationship of possible numbers of marbles in the boxes. This is especially the case with some 
children, who initially cannot answer, but often show a deep understanding of relationships in the 
process of the interview. It can be assumed that the children were unaware that "a marble more" may 
be an appropriate answer. 

Further data analysis 

The answers of the children after the requests of the interviewer were very different. Since the task 
design suggests making relationships between unknowns, the children's responses can be categorized 
in two directions: establishing relationships and dealing with unknowns, whereas the boxes had to be 
interpreted as variables. Regarding relational thinking, there are three ways to recognize relationships 
(children describe a relationship or display the dependency or neither describe a relationship nor a 
dependency). Regarding the question how children handle the unknown quantities, there were two 
ways to get the categories: first in a deductive way, because the theoretical framework gave various 
categories about aspects of variables (as unknowns, as a general number, as a variable, and as a quasi-
variable); secondly, the categories are found in an inductive way, because the data also revealed 
categories that could not previously be found in the theoretical framework. These were interpretations 
of the boxes as an absolute number and undeterminable. 

Children’s answers regarding relational thinking 

Some children directly describe a relationship between the two unknown quantities as in types of task 
C (table 1). The 4th grader Luca said: “In the green box is always one marble more than in the orange 
box”. Other children describe that the two unknowns depend on each other, but without describing 
the relation more precisely. The 4th grader Kathy answered: “It depends on how many marbles are in 
the orange box”. Other children neither describe a relationship nor describe a dependency between 
the amounts of marbles in the boxes. There are very different answers in this category. Some children 
mentioned specific quantities or wanted to shake the boxes to find out how many marbles are in them. 

Children’s answers regarding the understanding of the represented unknown quantities 

Children have very different answers by describing the unknowns in tasks of type C. These different 
types of understanding the unknown quantities are the following: 

The unknown amounts of marbles in the boxes as a general number: children see the amounts of 
marbles in the boxes as an unknown, indeterminate number, which cannot be determined and 
therefore has to be stated as a general relationship. The 4th grader Luca says: “In the green box is 
always one marble more than in the orange box”. The unknown amounts of marbles in the boxes as 
quasi-variables: children describe the general relationship between the amounts of marbles in the 
boxes with the aid of examples. The difference to the former is less in the recognition of the 
relationship than in the linguistic expressiveness. The 6 years old kindergartener Adam says: “...if 
there are eight or nine marbles in the orange box, then I take one marble more, that’s nine or ten 
marbles for the green box”. The unknown amounts of marbles in the boxes as variables: children 
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describe the dependency of the amounts of marbles between the different colored boxes. Children say 
that there is a relation, but they do not specify it. In contrast to the interpretation as a general number, 
the dependence of both values is indeed recognized, but cannot be described as a fixed relation. 
Although the children are able to assume different values for the number of marbles in the boxes, 
they are not able to give a general relationship. The 4th grader Anton says: “There are various 
possibilities because I don’t know how many marbles are in the orange box”. The unknown amounts 
of marbles in the boxes as an absolute number: the children give a specific number of marbles, 
sometimes without considering the amount of marbles in the other box. The kindergartener Clara 
says: “Four. Because the box is so small, there just fit four marbles in”. The unknown amounts of 
marbles in the boxes as an undeterminable: This category results from the empirical data and finds 
no equivalent in the theoretically elaborated aspects of variables. Children who see the unknown 
amounts of marbles in the boxes as an undeterminable answer that the amounts of marbles in the 
boxes can’t be determined without to open it. The 2nd grader Rob answers: “I have to open the box”. 

Putting both together: Relational thinking and understanding unknown quantities 

The design of the tasks allows putting both dimensions together: relational thinking and the 
understanding of unknown quantities. The following evaluation schema shows all the combinations 
found in the data. They indicate that the two dimensions are intertwined. Children who describe 
relationships between the unknown quantities understand them as either a general number or a quasi-
variable. Children who describe dependency take the unknown quantities as a variable. Children who 
neither establish a relationship nor describe a dependency understand the unknown quantities as either 
an absolute number or an undeterminable. The interviewer's requests encourage the children to think 
more profoundly about the tasks 1 . After requests of the interviewer, 12% of the children in 
kindergarten describe a relationship between the unknown quantities and describe them as a general 
number. This increases to 17% in the second grade up to 73% in the fourth grade. 12% of kindergarten 
children describe a relationship with the help of quasi-variables. This is also the case for almost 17% 
of 2nd graders and almost 4% of 4th graders.  

Figure 1: Evaluation scheme 

1 Case studies and their application to the evaluation scheme can be viewed in Lenz (2016) and in Steinweg, Akinwunmi, 
& Lenz (2018). 
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It should be mentioned that the fields shown in the evaluation scheme are not to be seen as a fixed 
classification of individual children. Rather, the analysis scheme describes a single answer in the 
course of the interview and is not seen as a stable attribution to a child. 

Conclusion 
The analysis indicates that the task design is actually designed to encourage children to establish 
relationships between unknown quantities. Particularly interesting is the transition between task types 
B and C which seems to be a special breaking-point in the use of variables. The role of the unknown 
amounts of marbles in the boxes changes from an unknown that can be determined to a variable 
whose value cannot be known but can be described as a relation. It must be distinguished in which 
way the children interpret the unknown number of marbles in the boxes.  

The evaluation scheme allows two dimensions of algebraic thinking to be linked: relational thinking 
and understanding unknown quantities. The analysis has shown that children from the age of 5 years 
old as well as primary school children are able to show relational thinking about unknown quantities. 
However, there are also children who understand the number of marbles in the boxes as an absolute 
number. A possible reason for this might be due to the concrete representation of the boxes. It is 
important to investigate whether this would be still the case of representing photos of the tasks. A 
difficulty is to see in the limitation of the linguistic expressiveness of the children. In particular, the 
children of the kindergarten found it difficult to express their thoughts in words. They often made 
gestures and facial expressions to help, which requires further investigation. On an active level, all 
children have the opportunity to get started with the tasks. Although the task design looks very simple, 
it allows for variation in primary school and secondary level. For example, tasks with limit value 
determination or case distinctions can also be created. The design allows continuing these tasks on a 
formal level. Placeholders, symbols, or letters can replace the boxes. This study can be seen as a 
starting point to develop classroom lessons that allow relational thinking in elementary school 
mathematics lessons and a first approach to dealing with different variable aspects. The common 
exchange in the classroom can be seen as particularly profitable.  
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The aim of this paper is to understand how a path of teacher’s actions leads to students’ 
generalization. Generalization, as a main process of mathematical reasoning, may be inductive, 
abductive, or deductive. In this paper, we focus on an abductive generalization made by a student. 
The study is carried out in the third cycle of design of a design-based research involving lessons 
about linear equations in a grade 7 class. Data is gathered by classroom observations, video and 
audio recorded, and by notes made in a researcher’s logbook. Data analysis focus on students’ 
generalizations and on teacher’s actions during whole-class mathematical discussions. The results 
show a path of teacher’s actions, with a central challenging action, that allowed an extending 
abductive generalization, and also a subsequent deductive generalization. 

Keywords: Generalization, Abductive reasoning, Mathematical reasoning, Teacher’s actions. 

Introduction 
Generalizing in algebra is a highly relevant aspect of mathematical teaching and learning as it is an 
essential part of algebra (Kaput, 2008). In addition, generalizing is a central mathematical reasoning 
process. As such, what the teacher does in the classroom to enhance students’ generalizations is of 
great importance. To enhance students’ mathematical reasoning in the classroom, and hence 
generalizations, involves setting a challenging learning environment that goes beyond proposing 
exercises to solve using well-known procedures. In this research, we address mathematical whole-
class discussions, unleashed by exploratory tasks (Ponte, 2005), as privileged moments to promote 
students’ mathematical reasoning. Seeking to develop knowledge about how teachers can help 
students to engage in mathematical reasoning, we conduct a design-based research (Cobb, Jackson, 
& Dunlap, 2016). In this paper, we focus on a specific situation of the third cycle of design, aiming 
to understand how a path of teacher’s actions, supported by design principles that focus on 
generalization, lead to students’ generalization, particularly in a case of an abductive generalization. 

Mathematical reasoning 
There are several definitions of mathematical reasoning, but most of them gravitate around the idea 
of making justified inferences (e.g. Aliseda, 2003; Pólya, 1954; Rivera & Becker, 2009). What differs 
in those various definitions is the path that takes place from prior knowledge to new knowledge. As 
such, the perspectives on mathematical reasoning accommodate both logical and intuitive aspects, 
providing a scope that includes deductive, inductive and abductive inferences. Deductive inference, 
characterized by a logic perspective, has two main characteristics: (1) certainty, that refers to the 
necessary relationship between premises and conclusion, where the conclusion follows necessarily 
from a set of premises, and (2) monotonicity, related to the irrefutability of conclusions, i.e., a valid 
inference remains valid when additional premises are added (Aliseda, 2003). Deductive inference, 
despite being often presented as the paradigm of mathematical reasoning (Aliseda, 2003) is not 
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necessarily the single path to carry out mathematical reasoning. There are other rigorous forms of 
reasoning, such as inductive and abductive inferences (Jeannotte & Kieran, 2017; Rivera & Becker, 
2009), although they do not provide the same certainty and irrefutability as deductive inferences 
(Aliseda, 2003). Russell (1999) stresses that mathematical reasoning consists in thinking about 
properties of a mathematical object and developing generalizations that apply to a broad class of 
objects, thus underlining the inductive aspect of mathematical reasoning. On one hand, inductive 
inferences occur essentially when predictions are made or conjectures are formulated (Aliseda, 2003), 
and are also associated with generalization from the identification of a certain characteristic common 
to several cases (Rivera & Becker, 2009). On the other hand, abductive inferences have mainly an 
explanatory role, but also have a knowledge-building role. Thus, abductive inferences aim to construct 
hypotheses for unknown phenomena, being a reasoning used to explain something intriguing (Aliseda, 
2003) or to discover something (Magnani, 2001). In this sense, abductive reasoning is identifiable with 
the formulation of a generalization based on relations between aspects of a given situation and its 
conclusions are plausible in the context of the situation (Rivera & Becker, 2009). 

Generalizations 

Given its complex nature, mathematically reasoning involves a variety of processes that are evidenced 
in the students’ individual thinking and sense making, in their classroom work, and in the interactions 
that take place during whole-class discussions (Brodie, 2010). These processes include formulating 
questions and solving strategies, formulating and testing generalizations and other conjectures, and 
justifying them. From these reasoning processes, we hereby highlight generalization as a key process 
of mathematical reasoning and, hence, of algebraic thinking. Generalizing, by stating that an idea, 
property or procedure is valid to a given set of objects (Dörfler, 1991; Ellis, 2007), is the basis of 
many mathematical ideas and concepts. On a day-to-day basis, students are naturally predisposed to 
generalize (Becker & Rivera, 2005). However, it is important to note that in the classroom, 
generalizations may be incorrect or only implicit presented (Becker & Rivera, 2005; Reid, 2002). 
Thus, to promote students’ mathematical reasoning, it is necessary to create situations in which 
generalization plays a central role (Kieran, 2007), in order to lead students to present generalizations 
based on mathematical ideas, concepts and properties. 

Generalizations that students present or use in the classroom may emerge from different approaches 
and at different levels. To develop the capacity of formulating generalizations, both in empirical and 
deductive approaches, students may act at three levels: factual, contextual and symbolic (Radford, 
2003). Factual generalization comes from empirical observation or particular cases that are applied 
to new cases in the same set of mathematical objects. Contextual generalization, also based on 
empirical observation or particular cases, presumes an extension to a new set of mathematical objects. 
Symbolic generalization emerges from the use and understanding of symbolic language. Within this 
scope of levels, students’ generalizations may emerge from (a) relating, when students create a 
relation or make a connection between situations, ideas or objects; (b) searching, when students 
search for an element of similarity, or (c) extending, when students go beyond the situation or case, 
which originated the generalization (Ellis, 2007). Moreover, as highlighted by Jeannotte and Kieran 
(2017), generalizing is a process related with the search for similarities and differences. As such, 
when a student generalizes, it is possible to identify either a continuing phenomenon, an element of 
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sameness, or a general principle (Ellis, 2007). Generalizations refer to a continuing phenomenon 
when the students identify properties that go beyond a particular instance. When an element of 
sameness is at stake, the students identify either a common property, the same objects or 
representations or the same situations. Regarding generalizing by stating a general principle, the 
students may identify general rules, patterns, strategies and global rules. 

Teacher’s actions during whole class discussions 
To promote generalization at different levels, and subsequently to contribute to students’ competence 
of a proper use of inductive, abductive and deductive reasoning, teacher’s actions are a central aspect. 
These teacher’s actions to promote mathematical reasoning in the classroom should consider the 
different moments of the lesson. In lessons framed by exploratory teaching (Ponte & Quaresma, 
2016), whole-class discussion moments that stand out as very promising to enhance students’ 
mathematical reasoning (Ponte, 2005). Ponte, Mata-Pereira, and Quaresma (2013) identify four main 
categories of teacher’s actions that can be distinguished during whole class discussions and that are 
directly related to mathematical processes: (i) inviting actions – leading students to engage in the 
discussion, (ii) guiding/supporting actions – conducting students along the discussion in an implicit 
or explicit way in order to continue the discussion; (iii) informing/suggesting actions – introducing 
information, providing an argument or validating students’ interventions; and (iv) challenging actions 
– leading students to add information, provide an argument or evaluate an argument or a solution. 
Guiding/supporting, informing/suggesting, and challenging actions, are main supports to develop 
whole class mathematical discussions, and involve key mathematical processes such as (i) 
representing – provide, revoice, use, change a representation (including procedures), (ii) interpreting 
– interpret a statement or idea, make connections, (iii) reasoning – raise a question about a claim or 
justification, generalize a procedure, a concept or a property, justify, provide an argument, and (iv) 
evaluating – make judgments about a method or solution, compare different methods.  

Methodology 
This paper reports part of the third cycle of a research study that follows a design-based research 
(Cobb et al., 2016) aiming to develop a local theory about enhancing students’ mathematical 
reasoning in the classroom. Before this third cycle of design, a first cycle took place in lessons about 
sequences and a second cycle in lessons about linear equations. In order to achieve the overall aim of 
this research, we establish a set of design principles (Cobb et al., 2016) based on the literature and on 
previous cycles of design focusing on tasks and on teacher’s actions to enhance students’ 
mathematical reasoning, particularly emphasizing generalizing and justifying. Due to the focus of 
this paper, here we specifically focus on three principles for teacher’s actions that aim to enhance 
students’ generalizations, indicating that the teacher should (a) promote situations that prompt 
students to share ideas, namely considering and valuing invalid or partially valid contributions, 
deconstructing, complementing or clarifying them, (b) support or inform students in order to highlight 
reasoning processes, particularly generalizing, and (c) challenge students to go beyond the task. 

The episodes reported in this paper took place in a Portuguese public school in a grade 7 class with 
27 students (12-13 years old), and involved nine lessons about linear equations. These were students’ 
first approach to equations, and connections between functions and equations had not yet been 
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addressed. The particular episodes presented are from lesson 3 and lesson 6 and regard the number of 
solutions of a linear equation, with a specific focus on equations with no solutions. The main goal of 
lesson 3 was to introduce the property of invariance of equality by multiplying and the proposed 
exploratory task included solving an equation in order to generalize this property. In lesson 6, the main 
goal was to discuss the number of solutions of an equation, particularly in impossible equalities. In 
order to do this, students are proposed to solve some equations, including 3𝑥𝑥 + 6 − 𝑥𝑥 − 15 = 2𝑥𝑥 + 9. 
Both lessons were directly observed and video and audio recorded, and notes were made in a 
researcher’s logbook. A detailed plan of each lesson, prepared by the first author and discussed in 
detail with the teacher, was made attending to the tasks to propose and considering teacher’s actions 
to enhance students’ mathematical reasoning. The participating teacher was selected because of her 
experience, commitment to professional development, and availability to consider changes in her 
practice. All participants in this study are volunteers, have fictitious names and have given their 
informed consent to participate. Data analysis is centered on students’ generalizations and focus on 
the design principles and the conceptual framework regarding teacher’s actions.  

An unexpected generalization 
After a whole class discussion about the task that aimed to introduce the property of invariance of 
equality by multiplication, the teacher begins to register this property on the board. However, while 
writing down the property, the teacher realizes that during the discussion, the exception of zero was 
not taken into account. As such, she poses a question to students, regarding possible exclusions: 

Teacher: Let us register the multiplication property of equality that says that, if one multiplies 
or divides each member of the equation by the same number… Any number? Or do 
I have to ensure something? If we multiply or divide both members of the equation 
by the same number, my question is, by any number? Or is there any number that I 
have to exclude? 

As the task that students had previously worked on and discussed did not include any question 
regarding this exclusion, by posing this question to students, the teacher is challenging them to go 
beyond the proposed task (principle c). This question receives an immediate answer from Clara, one 
of the students. However, the teacher decides on going further on the discussion by challenging 
students to present for a justification (principle c). 

Clara: Zero. 

Teacher:  Why? 

Gabriel: Because it is neutral, is neutral! Is the neutral element. 

Gabriel provides an invalid justification based on his previous knowledge of the formal properties of 
operations. At this point, teacher opts on guiding students to deconstruct the invalid statement 
(principle a): 

Teacher: Easy there, is the neutral element of which operation? 

Several students: Addition. 

Teacher: But are we talking about addition? 
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Leonardo: Oh, no, is about multiplication. 

Teacher: Is the… Element, how is it called? 

Gabriel: Neutral! 

Leonardo: No, is the one that absorbs everything. 

Clara: Absorbing. 

After some students’ interventions, one of them presents a justification that is considered by the 
teacher as being partially correct. However, the teacher keeps guiding students in order to go further 
on their justification (principle a). 

Teacher: Absorbing element. So, can I… Can I divide by zero? 

Several students: No. 

Teacher:  No, it doesn’t make sense. Can I multiply? What is the problem of multiplying both 
members by zero? 

Several students: Is going to be zero. 

Teacher: I will get zero equals zero and I will not be able to move forward. So, [continuing 
to write the property] distinct from zero, the solution-set is preserved. 

At this point of the discussion, the teacher informs students in order to conclude the introduction to 
the multiplication property of equality (principle b). 

After clarifying why zero has to be excluded in this property, and straight after writing down the 
property, Clara asks to intervene: 

Clara: Teacher, I don’t know why, but after you wrote down that [the property of 
invariance of equality by multiplication] I believe… I have this feeling that not all 
equations have a solution. 

Supported by the property of invariance of equality by multiplication, Clara generalizes that not all 
equations have a solution. In this generalization, Clara relates aspects of the property that is being 
discussed with what she knows so far about equations, without relying on a particular example, 
presenting an abductive generalization. By its relations to the particular property and also by 
expanding its scope, this generalization is a general principle of a contextual and extending nature. 
This was not an expected generalization at this moment, however, the teacher challenges Clara to 
elaborate on her statement (principle c). 

Teacher: Why did this [multiplication property of equality] lead you to believe that not all 
[equations] have a solution? 

Clara: I don’t know, but… 

Teacher: But I got curious, why did anything that I have said here… 

Clara: I do not know it myself… I think it is because of zero… I don’t know, but I get the 
feeling that not all of them have. . . .  
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Teacher: Look [Clara], hold back, if necessary take a register . . . Stating that this made you 
think that it might have equations that do not have a solution. When we discuss this 
issue, that won’t be right now, we will see. 

As Clara cannot go further on her justification, the teacher begins by challenging this student again 
to present a justification (principle c), but then quits to obtain such justification and informs the class 
that Clara’s idea will be discussed later. 

Validating Clara’s generalization 
A few lessons after, the teacher proposed a task to students in order to introduce the classification of 
linear equations according to the number of solutions. While the students were solving an equation 
proposed in the task using the properties of equality, the equation 0𝑥𝑥 = 18 emerged, triggering the 
discussion that follows: 

Leonardo: But that will keep having an infinity of solutions. 

Teacher: Will it? 

Leonardo: Oh, no, no, it won’t work for every number. 

Teacher: Won’t work for every number? . . . 

Leonardo: No, because no number times zero equals 18! . . . So, isn’t this a false equality? Is, 
isn’t it? This is a false equality, because any number times zero will equal zero. 

Teacher: And? 

Gustavo: This one doesn’t have a solution, teacher. . . Is impossible! . . . 

Leonardo: So, this means that there are equations with no solution! 

As a previous equation of the task had infinite solutions, Leonardo wrongly generalizes that this 
equation also has it. By being wrong, this generalization is factual and of a searching nature, as the 
student considers that it belongs to the same set of mathematical objects, looking for an element of 
sameness. However, instead of telling the student that he is wrong, the teacher challenges him to 
evaluate his statement (principle a), which he properly does. Once more, the teacher questions the 
student challenging him to justify his statement (principle c), which he does. By guiding the student 
to continue (principle a), students generalize that there are equations with no solutions, based on the 
example of the equation that they are working with. This generalization, by going beyond the previous 
set of mathematical objects is of a contextual level and has a relating nature. Moreover, it refers to a 
continuing phenomenon as it identifies a property that does not apply only to this particular instance. 
After concluding this segment of the discussion, Clara intervenes, recalling that she had already sated 
this generalization: 

Clara: Teacher, do you remember that lesson in which I had… That thing that we had 
regarding the multiplication property of equality, that I said that… Because I hear 
about zero and it was… 

Teacher: Exactly, it was because of zero. That is why I asked you what made you think [that]. 
Because it was when we talked about zero that you did that observation. . . 
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Clara: It was because of zero, but I couldn’t [explain]. 

At this point, teacher informs that it was valid and that the argument was also correct, despites 
incomplete, as Clara was not able to justify her statement (principle b). 

Discussion and conclusion 
Generalizations on both episodes emerged from a path of teacher’s actions with a central challenging 
action. These paths include this central action followed by other challenging actions or by guiding 
actions and end up with an informing action from the teacher. These teacher’s actions are strictly 
related to the design principles of the study as challenging. Guiding actions mostly relate to situations 
where a partially valid or invalid contributions emerge or to situations where the students are 
challenged to go beyond what was initially proposed. In addition, informing actions have a 
relationship with situations where the teacher highlights a generalization. 

Whereas the paths of actions oriented by the design principles lead, in both episodes, to 
generalizations, the nature of the generalizations that emerged is not the same. In the first episode, 
Clara, supported by the discussion around the property of invariance of equality by multiplication, 
presents an abductive generalization as she relates aspects of the situation being presented, despite 
not being able to justify her statement. This generalization, is a contextual and extending 
generalization of a general principle. As Ellis (2007) indicates, this type of generalization is what 
researchers seek. In the second episode, the valid generalization that emerges is more deductive. This 
generalization, by its logical form, only needs an example to be valid. As such, the students properly 
realize that not all equations have a solution. This generalization, despites also being of a contextual 
level, is considered as a relating generalization of a continuing phenomenon. 

This study shades light to what generalizations of different nature can look like in the classroom and 
particularly on what paths of teacher’s actions can lead to such generalizations. In doing so, the framework 
for teacher’s actions proposed by Ponte, Mata-Pereira, and Quaresma (2013) as well as the design 
principles have a central role. Another aspect highlighted by this study is the idea that developing algebraic 
thinking does not have to be immediate, as this competence should include the intellectual patience to 
embrace a partial understanding and the confidence that, with future actions, knowledge will advance 
(Arcavi, 2007). As such, not only opportunities for deductive generalizations should be considered, 
but also there should be opportunities for students to generalize abductively and inductively. 
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This paper focuses on the emergence of abstraction through the use of a new kind of motion 
detector — WiiGraph — with 11-year old children. In the selected episodes, the children used the 
sensor to create three simultaneous graphs of position vs. time: two graphs for the motion of each 
hand and a third one corresponding to their difference. They explored relationships that can be 
ascribed to an equation of the type A – B = C. We propose two distinct paths for the attainment of 
abstraction, one focused on working with unknowns lacking sensible qualities, and another that 
involves navigating a surplus of sensible qualities. This study is a case study for the latter, which we 
portray as a process of opening channels of flow and exchange among sensible qualities, such that 
these cease to be self-enclosed and start to configure a plane of unity, which, far from denying their 
differences, brings them into mutual circulation.   

Keywords: Body motion, sensors, early algebra, abstraction. 

Introduction  
Learning mathematics is often seen as a progression from the concrete to the abstract. This 
progression amounts to a passage across emphases, from the sensible to the intelligible. An 
archetypal example is that of the straight line. Out of countless acts of drawing, touching straight 
edges, tracing on the sand, or using tools, a sense grows for physical straightness. There is still a 
major gap between the latter and a geometric straight line involving a massive drawing out of 
sensible qualities, such as color, length, material, and thickness, to envision an entity that is 
intelligible but not sensible. Hence abstraction is depicted as a subtractive process, along which 
more and more qualities are taken out until a spectral remainder is left that is not amenable to being 
touched, seen, or heard, and is devoid of causal powers, whose presence is only indirectly evoked 
by diagrams and formulae. Numerous researchers in mathematics education have questioned this 
traditional image for the attainment of abstraction (Clements, 2000; de Freitas, 2016; Dreyfus, 
2014; Hershkowitz, Schwarz, & Dreyfus, 2001; Noss, Hoyles, & Pozzi, 2002; Roth & Hwang, 
2006).   

Concluding his commentaries about multiple mythical narratives, such as the one of Thales 
measuring the height of an Egyptian pyramid by the shadow of a stick, or the use of the gnomon in 
ancient Babylonia, Serres (2017) insists: “Yes, its abstraction is a sum and not a subtraction” (p. 
210), and introduces the image of white light: “Geometry integrates all our practical or ideal 
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habitats the way white light sums up all the colors, in transparency or translucency” (p. 210). This 
remark has inspired us to distinguish paths for the realization of abstraction corresponding to white 
and black light. Whereas the path of black light is abstraction by means of subtraction of sensible 
qualities, the path of white light meanders in the midst of a surplus of sensible qualities. In this 
paper, we aim at investigating a particular case of the pursuit of abstraction along a path of white 
light.   

Generals and Unknowns  
To illustrate the difference between abstracting paths of white and black light we invoke Peirce’s 
distinction between a general and an unknown. Let us start with the notion of a general: 

A sign is objectively general, in so far as, leaving its effective interpretation indeterminate, it 
surrenders to the interpreter the right of completing the determination for himself. “Man is 
mortal.” “What man?” “Any man you like.” (Peirce, 1994) 

A theorem proving a property of triangles, for example, deals with triangles as a general. A general 
is genuinely indeterminate, which makes the logic principle of the excluded middle invalid: Is the 
triangle isosceles?: no; is the triangle not-isosceles?: no. In contrast to generals, Peirce characterized 
unknowns — particulars with certain but unspecified traits — as “vague.” We are uncertain whether 
the eye color of a friend is green or brown, but we know that it is not, say, red. The vagueness of her 
eye color includes infinite shades of brown and green and excludes redness. Together with such 
vague sense of eye color, we may also presume that her eyes are of a particular color, which is the 
key character of an unknown: its traits are determined but we know them only vaguely.   

Grappling with an unknown entails relating to an entity that lacks, perhaps only momentarily, 
certain sensible qualities both in itself (e.g. her eye color) or in its signs (e.g. a textual description of 
her eye color). On the other hand, we navigate a general, such as mortals or triangles, by immersing 
ourselves in a vast and familiar terrain of sensible variations and differences, such as mortals of 
different age, sex, species, bodies, and behaviors; or triangles differing in shape, size, angles, 
perimeters, and colors. The question we strive to address in this study is precisely: What kind of 
navigation arrives at abstraction across a surplus of sensible qualities, that is, of the white light type 
(in terms of generals)? We examine this question through selected episodes in which children 
explore the kinesthetic production of graphical expressions, for a general that can be named by the 
equation: A – B = C. We situate our study within the growing field of early algebra (Kieran, Pang, 
Schifter, & Fong Ng, 2016). The emphasis of the early algebra work tends to be on the logic of 
unknowns and on generalizing processes with respect to patterns, variables, structures and relational 
thinking (Blanton et al., 2016; Bodanskii, 1969/1991; Carraher, Schliemann, Brizuela, & Earnest, 
2016; Kaput, 2008; Kaput, Blanton, & Moreno, 2008; Ng & Lee, 2009; Radford, 2014). While 
generals are different from the recursive-empirical reasoning often associated with generalizing, 
they are also significant in the early algebra literature (see Bodanskii, 1969/1991, which discusses 
Davidoff’s vision of early algebraic thinking — perhaps the closest to engaging children with 
generals). The work described in this paper belongs to early algebra, we suggest, because algebra 
can be taken to be the symbolic treatment of unknowns and generals 
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Sensors, Kinesthesia and Method 
In this paper, we attend to the kinesthetic production of graphical expressions by means of a 
particular mathematical instrument. By “mathematical instrument” we refer to a material implement 
used interactively by means of individual or collective continuous body movements, to obtain and 
transform mathematical expressions (Nemirovsky, Kelton, & Rhodehamel, 2013). “WiiGraph” is a 
mathematical instrument we have used in our study. Among its many possible settings, there is one 
in which the distances between two hand-held Wiimotes (remotes) and a LED sensor bar are 
graphed over time, while a third graph, corresponding to the differences between these two 
distances, is also displayed in real time. The color of each position vs. time graph corresponded to 
the color of the Wiimote being recorded (i.e. light blue and pink; the presence of two large dots with 
these colors on the screen indicates the sensor as connected to the Wiimotes), or a different one for 
the case of the difference graph (i.e. dark blue; see Figure 1). WiiGraph belongs to a family of 
mathematical instruments based on motion detection, which work at body-scale involving wide 
body movements like walking or overarm gestures and are responsive to two movements occurring 
simultaneously, whether performed by one or two people at a time.  

 
Figure 1: A child generating two position vs. time graphs and their difference graph 

In the study, we worked with a group of four children aged 11 years, who did not previously know 
each other, over three sessions. The children had been recruited as volunteers through a network of 
families practicing home schooling education. They do not attend regular lessons at school, 
therefore we cannot infer about their mathematical background. The participants were filmed with 
two fixed cameras during each session and two of them wore a head-based Go-Pro camera. During 
the first two sessions they explored position vs. time graphs generated by two children, each 
moving a Wiimote. In addition to free explorations, they engaged in diverse activities anticipating 
and matching body motions and graphical shapes of position vs. time. In the third session three 
children worked by holding both the remotes individually, one remote in each hand. As opposed to 
a pair of children each handling one Wiimote, the one-in-each-hand arrangement differs markedly, 
among other reasons because of the centrality it confers to relative arm motion (Nemirovsky, 
Kelton, & Rhodehamel, 2012). The instructor chose to turn on the difference graph, displayed in 
dark blue, as a significant way of exploring relationships between graphs symbolically, beginning 
the episodes we examine in the next section. We have selected these episodes because they span the 
students’ production and exploration of the difference graph. The first two authors were both 
present in the episodes (respectively, RN and NA below; D, M and Z refer to the children).  
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Selected Episodes 
Episode 1: Introducing the difference graph and trying to keep it on zero 

RN: (…) the computer also generates another line [turns on the difference graph] that is, em, 
dark blue, [points at the dark blue graph; Figure 2] (…) so we’ll investigate what 
this third line is doing there, what it is showing. So the first thing we will try… 

M: It’s called, it’s called minus because that, that purple [dark blue] line, line is, is, is pink minus 
blue.  

RN: OK, how do you know that? 

M: It’s real, it’s quite obvious, where it says pink minus blue [points to the screen, note the area 
pointed at with a black arrow in Figure 2] at the top of the screen. 

RN: Aha (…) So you move [showing the Wiimotes to move with], you do whatever you want, 
[moves alternately right and left hands] but try to keep the dark blue on zero 
[points to the dark blue line], on this line [left hand runs along the x axis]. 

Figure 2: Graphical display in which the dark blue difference graph is displayed for the first time 

M begins his first difference graph: he starts with the pink remote in his left hand and the blue one 
in his right hand. At the beginning of the experiment, the pink remote is kept slightly ahead of the 
blue one, and then the two are slowly switched in their positions. Holding the two remotes 
separated, he then walks forward (see Figure 3).  

Figure 3: M’s first attempt to create a difference graph 

During the last seconds of the graph production (see Figure 3), he says: 

M: I’m trying as hard as possible not to make the things go opposite.  

Thematic Working Group 03

Proceedings of CERME11 609



 

 

Commentary 

The appearance of a third graph prompted M to examine the screen seeking for additional signs that 
could name or account for it. There was none with a dark blue color. However, the sign at the top of 
the screen “pink minus blue,” which had been displayed from the beginning of this session but had 
remained unused, offered him a compelling interpretation (“it’s obvious”): the dark blue line “it’s 
called minus.” Besides the two remotes with clear referents, the minus was a third component, 
which was immediately clasped by the third graph. The dark blue graph seemed to announce its 
name. M was eager to be the first to use WiiGraph to obtain a dark blue graph that remained on the 
horizontal axis. M generated the graph shown in Figure 3 slowly moving the pink and blue 
Wiimotes back and forth in opposite directions. He seemed to move his arms exerting an effort, as 
if he had to push them back and forth. Perhaps RN’s prior example, in which he had moved his 
arms in that way, had tacitly suggested to M that this is the kind of motion to perform. However, 
upon seeing that the dark blue graph refused to stay on zero, except for an interval around the 7th 
second, his arms tensed as if trying to push the dark blue graph to the center. M reflected on this 
sense of effort (“trying as hard as possible”) as striving “not to make the things go opposite”. 
Among other possibilities, this “going opposite” might have been the dark blue graph shifting in a 
direction opposite to the desired one. This episode suggests how the kinesthetic interpretation of a 
symbolic expression that we would consider algebraic (i.e. pink minus blue) is not “given” on its 
own, but demands novel interpretive acts involving matters of a qualitatively different nature, such 
as the fastness and slowness, or the proximity and remoteness, of his hands. A pattern of motion is 
not there to be seized, but needs to be created. The use of WiiGraph incorporates body motion — a 
complex realm of sensibility and performance — to generate graphical shapes, dramatically 
broadening the sensory qualities at play in obtaining intended and unintended graphical shapes. 
Furthermore, kinesthesia inherently awakens bodily feelings. How is a minus responsive to 
kinesthetic actions? In our interpretation, the graph called minus was not just a visual display out 
there, but also a curve that resisted physical efforts seeming to possess a will of its own.  

Episode 2: D works with the difference graph 

After M obtained several additional graphs, he gives the Wiimotes to D, who starts a new graph. He 
stands still in the same position for all the session, keeping steadily the remotes at the same distance 
from the sensor (See Figure 4). 

 
Figure 4: D generates a graph staying still with the Wiimotes next to each other 

RN: So that, that’s a perfect zero [around the 8th second, everyone laughs] 
[ending his graph, D relaxes his position, shrugs his shoulder and smiles]. 
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NA: This is one way to get it. 

RN: (…) try to do it while you walk [D generates the graph shown in Figure 5]. 

 
Figure 5: D keeps the difference graph on zero while walking  

D: (…) You don’t have to keep the remotes in (…) one position. 

RN: Like, keeping [them] together? 

D: keep them at the same level. 

Commentary 

D came to create a difference graph with a clear plan: stay still with the two remotes next to each 
other. He had a well-defined sense that a dark blue graph on the horizontal axis “converted” into the 
two Wiimotes being equally distant from the sensor. Moreover, D easily showed in Figure 5 that 
that condition was indifferent to his walking distance from the sensor (“You don’t have to keep the 
remotes in one position”). The point, he said, was to “keep them at the same level.” His choice of 
words (“same level”) reflects a phenomenon, we think, of great significance: “level” is customarily 
a term for height, which was relevant to the light blue and pink graphs being at the same height, but 
not necessarily to the Wiimotes that could be at different heights while keeping equal distances to 
the sensor. D articulated an instance of a type of semiotic sliding between qualities of the graph and 
qualities of the remotes, such that they could apply indistinctly to one or the other. 

Episode 3: Z works with the difference graph above and below the x-axis  

In between Episodes 2 and 3 the children generated graphs to either keep the dark blue graph above 
or below the horizontal axis. Along that sequence, Z generated the graph shown in Figure 6. 

 
Figure 6: Z generates a graph in which the difference graphs goes above and below zero 

RN: So, how did you change [the dark blue line] from below to above? 

Z: Em, by changing which controller was in front. 
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RN: So which one was in front here? [points to the dark blue graph around the 4th second] 

Z: Em, [light] blue. 

RN: (…) And do you have a sense for why for the blue, for the dark blue line, to be below [the x-
axis] then the pink has to be below [the light blue graph]? 

Z: Em, yep. Em, it’s something to do with like maths and, like, because on there, it says the 
[likely pointing at the light blue one remote on the screen] has been taken away 
and then it’s hard to tell because it’s not actual numbers but if you have more on 
one side, that will be a negative number… then, then, if you have them on the 
other side, it’ll be a positive number, which is that [points to the screen with the 
remote]. 

Commentary 
In this exchange Z describes qualitative differences of one kind (i.e. graphical configurations on the 
computer screen) and qualitative differences of another kind (i.e. bodily motions and postures) 
percolating onto each other. Sometimes these qualitative differences mutually communicate along 
critical points, such as the blue and pink Wiimotes being next to each other, as the condition that 
tips the cases of the minus graph being positive or negative. In other cases, the qualitative 
differences of each kind adopt corresponding ordinal arrangements along more or less, such as a 
Wiimote being closer or farther to the sensor bar matching its graph being higher or lower on the 
screen. Some of these qualitative differences can, in principle, be located on a metric scale, such as 
the distance between each remote and the sensor or the height of each graph at a given time. 
However, in this episode Z does not operate with metric scales. He said, for instance, “if you have 
more on one side, that will be a negative number” or “it’s not actual numbers.” Or he distinguished 
which remote is on front, rather than estimating distances between them. The focus of this 
commentary is to foreground ordinal arrangements of qualitative differences of unlike kinds, via 
critical points or corresponding alignments of more and less.     

Discussion 
In the introduction we distinguished the attainment of abstraction along paths of white or black 
light. Whereas the mode of white light calls for navigating a surplus or overabundance of sensible 
qualities, the case of dark light is one of deficit of sensible qualities enabling zones of vagueness.  
In the episodes described above, the radical expansion of relevant sensible qualities encompasses 
the infinite nuances of kinesthesia. In our commentary for Episode 1, we described such kinesthetic 
expansion as a vivid broadening of the sensory qualities at play.   

The introduction also stated the question of this study: What kind of navigation arrives at 
abstraction across a surplus of sensible qualities, of the white light type (in terms of generals)? Our 
commentary to Episode 2 suggested a type of semiotic sliding between qualities of the graph and 
qualities of the remotes, such that they could apply indistinctly to one or the other. Additionally, in 
the commentary to Episode 3 we considered the notion of qualitative differences of dissimilar kinds 
percolating onto each other, either via critical points cutting across them or mutual exchanges 
between corresponding ordinal arrangements of differences of degrees (i.e. more/less). All these 
processes amount to opening channels of flow and exchange among sensible qualities, such that 
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these cease to be self-enclosed and start to configure a plane of unity, which, far from denying their 
differences, brings them into mutual circulation and, therefore, speaks directly to navigating 
generals.   
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Color-coding as a means to support flexibility in pattern 
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This study investigates how color-coding can support processes of flexibility in figural pattern 
generalization tasks. A lesson from a Grade 8 class serves the case for our investigation. The lesson 
is part of a larger research project, which is based on the iterative research methodology of design 
experiments and involves a total of six lessons, distributed over two classes (three lessons in each 
class). The study shows how coloring can encourage students to move from recursive strategies, 
like successive addition, and support processes of flexibility in linking algebraic expressions and 
the meaning of n to visual structures of an expanding figural pattern.  

Keywords: Pattern generalization, visualization, color-coding, time-limitation, flexibility. 

Introduction 
In the development of algebraic thinking, students need to learn to see connections between the 
structure of a pattern and how the pattern can be described by a general algebraic expression 
(Rivera, 2010). It is crucial to discern a pattern unit when making such connections, around which a 
pattern structure can be modeled in relation to the place order of the elements in a pattern series 
(Nilsson & Juter, 2011).  

Based on a constructivist methodology, educational research in mathematics has significantly 
contributed to our developing understanding of how students may obtain algebraic generalizations 
involving figural and numerical patterns. However, our knowledge is less extensive on how 
teaching can support the learning of pattern generalization (Rivera, 2010). In other words, if 
students need to learn to connect visual and symbolic elements effectively in relation to a structural 
unit, there is a need for further investigations on learning activities that can support that 
coordination to take place (Rivera, 2010). In this study we aim at making a contribution to such 
investigations by investigating how color-coding in task design (Watson & Ohtani, 2015) can 
support students’ pattern flexibility in the visualization of structures in figural pattern 
generalizations (Figure 1). We address the research question: How can color-coding be 
implemented in task design to support flexibility in students’ visual structure reasoning, in order to 
reach a general expression of a figural pattern? 

Theoretical background  
Individuals see patterns differently depending on how they perceive the structure of the pattern and 
conceptualize pattern-units (Rivera, 2010). Investigating 8-13 year old students’ generalization of 
linear pattern Stacey (1989) found that the constant difference property was largely recognized and 
used as a unit to find the nth element by a recursive process of successive addition of this property. 
Stacey also found that some students were using proportional reasoning, according to the constant 
difference property. However, when adopting proportional reasoning, Stacey saw that students may 
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tend to ignore additive elements of a pattern; a significant number of students used a direct 
proportional method, determining the nth element as the nth multiple of the difference. For instance, 
the constant difference is three in Task 5 (Figure 1). Applying a direct proportional method of the 
nth multiple of the difference results in the generalization 3n, which excludes the extra dot that must 
be added. 

Successive addition of the constant difference property is limited to linear patterns. To develop 

general expressions of patterns where the difference between subsequent elements in the pattern is 
not constant (e.g. quadratic patterns) one needs to adopt visual structure reasoning (cf. Rivera, 2010; 
Stacey, 1989). In Task 5, the constant difference is three and, applying the strategy of successive 
addition, the number of dots for the fourth figure is found from 4+3+3+3. If we generalize this 
strategy we reach the expression 3n+1. However, in visual structure reasoning we define the unit by 
partitioning the figures in appropriate parts, in relation to the place order of the figures (El 
Mouhayar & Jurdak, 2015). In Task 5 we can visually structure the third figure in threes. In other 
words, the third figure of the pattern is composed by three threes plus one extra dot. Similarly we 
find out that the fourth figure of the pattern consists of three fours, plus one extra dot. Obviously we 
come to the same general expression, 3n+1, as in the additive situation. However, important to note 
is that n has a different meaning in the two situations. In successive addition n gains meaning as the 
number of constant differences, related to the place value of the nth element in the series, whilst in 
visual structure reasoning n is a structural feature of a figure. 

Generalization tasks are often grouped in near generalization tasks and far generalization tasks (El 
Mouhayar & Jurdak, 2015). Near generalization tasks involve finding the value of a step that is 
close to previous steps and far generalization tasks consist of determining the value of a step that is 
relatively far from given steps. Previous research reports that while near generalization tasks are 
accessible to a majority of the students, solving far generalization tasks is not. In the present study 
we will use both near and far generalization tasks, to challenge pattern flexibility, towards the 
formulation of a general expression, which is based on visual structure reasoning. 

It has been observed that, once students have fixed on a pattern in a certain way, it can be hard for 
them to give up their perception (Lee, 1996). The key to success of seeing an algebraically 
recordable pattern seems to be at the first stage of pattern perception, where a certain flexibility is 
necessary to hit on a mathematically recordable pattern (Zazkis & Liljedahl, 2002). Visualizations 

figure 1 figure 2 figure 3 
1 + 2 + 1 2 + 3 + 2 3 + 4 + 3 

Figure 1: Color-coding in the expansion of a chair 

a. 2•n+n+n
b. n+(n+1)+n
c. n+1+n+n
d. None of the above

Task 5. Miriam was thinking according to the picture. Pick the 
expression you believe best matches her picture. 
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of a pattern can provide strong support for the symbolic representation of a pattern (Healy & 
Hoyles, 1999). Perception, or visualization, in pattern generalization is however not a passive 
process (Nilsson & Juter, 2011). Getting insight to a problem situation includes an operative, 
analytical activity (Deliyianni, Elia, Gagatsis, Monoyiou, & Panaoura, 2009; Duval, 1998), like 
structuring a figure into appropriate parts and/or transforming a figure into another figure (Rivera, 
2010). In the present study we will investigate how a teacher can use color-coding as a visual means 
for supporting flexible, visual structure reasoning, to reach a general expression for a figural 
pattern. 

Method 
Design research methodology 

This study is part of a larger research project that investigates teaching and learning of pattern 
generalization. The project follows the methodology of design experiments (Cobb, Confrey, Lehrer, 
& Schauble, 2003), involving a lesson series of three consecutive lessons. The project team consists 
of two researchers, the authors of the paper, and two teachers (Teacher A and Teacher B). Teacher 
A taught a class of 13-year old students and Teacher B taught a class of 14-year old students. All 
lessons were developed and analyzed according to prospective, reflective and retrospective analyzes 
(Cobb et al., 2003). Each lesson was conducted twice: First in Teacher A’s class and then in 
Teacher B’s class. The changes made to Teacher B’s teaching were based on reflective analyses of 
what happened in the corresponding lesson of Teacher A’s teaching. In the present study we focus 
exclusively on Lesson 1. 

Lesson 1 involved seven tasks, distributed through Socrative1, and aimed to support flexibility in 
visual structure reasoning in pattern generalization. All tasks in Lesson 1 were situated in the task 
context of the growing chair-pattern (Figure 1) (Rivera, 2010). In Lesson 1, a time-limited far 
generalization task and color-coding were at the heart of the lesson. We focus, particularly, on 
Lesson 1B (Teacher B’s class). However, the results of the study are based on a retrospective 
analysis of both Lesson 1A and Lesson 1B, and the relationship between them. All lessons were 
video-recorded from three different positions; one placed at back of the classroom, one at front of 
the classroom and one zooming in on a specific group. 

The answers of each task were made available to both the teacher and the students, which were 
intended to reveal students’ reasoning and create an opportunity for whole class discussion where 
students could react on each other’s reasoning. No color-coding was added to the first four tasks. 
The first task was a near generalization task. Here the students were asked to figure out the number 
of dots in the 4th figure of the chair-pattern. The second task was a semi-far generalization task, 
where students were asked to figure out the number of dots in the 9th figure. The third task and 
follow up question were far generalization tasks about the number of dots in figure 1000. In the 
third task the students had a limited amount of time. They were asked to reflect on whether it was 

                                                 
1 Socrative is an online student response system where teachers post questions that show up on students’ devices and 
allows them to post answers. Answers become instantly available to the teacher, which s/he can choice to make 
available to the students.  
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possible for them to complete the task within a minute with the method they had been using in the 
second task. Until now the students were expected to reason according to the constant difference 
property, since that was how they had solved similar tasks in the past. Task four asked students 
about the meaning of n in pattern tasks. The task was supposed to challenge the students to start to 
reflect on how n can be connected to place order in a pattern. Figure 1 shows the fifth task, with a 
color-coded visual structure, designed to stimulate students’ visual structure reasoning. The sixth 
and seventh task flipped task 5 around and asked the students to color-code different versions of 
algebraic expressions. First the students were asked to apply n+(n+1)+n on the seventh figure; then, 
in task seven, they color-coded for example (n+1)+(n-1)+(n+1). The tasks, and their relationship, 
aimed at furthering the students’ flexible reasoning; to be flexible in ways of discerning visual 
structure units by reversing and expanding their reasoning in task 5. To open up for whole class 
discussions, the students were asked to share their color-coding by publishing them in Padlet2.  

Method of analysis 

The analysis aimed to investigate how color-coding can support flexibility in students’ visual 
structure reasoning, in order to reach a general expression of a figural pattern.  

The analysis followed in chronological order, according to the sequence of the seven tasks. In the 
first step, we coded and grouped the data according to the ways in which students distinguished and 
built their reasoning on a pattern unit and connected a pattern unit to n, to the place order of the 
figure in question. Next, we investigated how they changed their way of reasoning about the chair-
pattern during the lesson. Particularly, we looked in detail at how color-coding supported students 
to move from the strategy of successive addition to discern a unit in the visual structure of a pattern, 
connected to n, i.e. to the place order of the figure in question. 

Result and analysis 
Successive additive reasoning and n as a symbol for place order of any figure in the pattern 

In the first task, 75% of the students claimed that the fourth figure contained 13 dots. Many students 
discerned three as the constant difference property of the pattern and used this property in 
successive addition. In order to challenge successive addition and to prompt proportional reasoning 
the teacher introduced Task 2 and 3. In Task 2 the students were asked to determine the number of 
dots in the ninth figure. While the students were working on the task, the teacher walked around in 
the classroom and listened to the groups. He noted that most students conclude that the ninth figure 
contains 28 dots and that they reached this by successively adding up by three. In order to challenge 
successive additive reasoning, the students were asked figure out the number of dots in the 1000th 
figure within one minute, based on the strategy they used in Task 2. This task stimulated monitoring 
processes (Stylianou, 2002); it challenged the students to reflect on their strategies and how 
efficient they were. The students submitted their individual answers in Socrative and about 40% of 
the students believed that they could not determine the number of dots in figure number 1000 within 
one minute. Strategies that the student found too time-consuming were, for instance, to draw all 

2 Padlet is an online virtual pinboard that allows students to publish contributions that can be instantly available for the 
whole class on the white board or on students’ own devices.  
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figures and count the dots or to successively add threes. The formula 3n+1 had not yet been 
expressed by the teacher or any student. But from students’ group-work the teacher observed that 
some students expressed aspects of such reasoning. The teacher asked Charlie to explain: 

Charlie: Because, as it [the pattern] constantly increases by three, you need to multiply 
thousand by three and then plus one. 

Charlie gives further reasons for his strategy by showing how it works in an example were the 
number of dots of a figure is known to the class or can be visually confirmed: 

Charlie: For instance, if we look at figure 3 [within Figure 1 above], it [the pattern] constantly 
increases by three, and we take three times three it will be nine and then, as it is ten 
[dots] there [pointing at the board], you need to add one more. And, then it is the 
same with the other; thousand multiplied by three plus one. 

After the three first tasks we have reason to believe most students in the class came to understand 
that they can multiply the number of a given figure with three and then add one to reach the number 
of dots of any figure. However, a general algebraic expression involving n had not yet been 
formulated. In Task 4 the students were asked to post the meaning of n in Socrative. The most 
common posts were expressions of 3n+1 and that n stands for any figure. The teacher asked, “Do 
we agree, everyone who agrees raise their hands, that n stands for any figure?” Almost all students 
raised their hands. That the students had a sense of n, as a symbol that stands for any figure, was 
assumed to be necessary for moving on to Task 5. Task 5 introduced color-coding as a means for 
supporting students to discern a unit in the visual structure of a figure, in relation to the place order 
of the figure in question. 

Supporting structural flexibility by color-coding  

The symbol n was now understood by most students in the class, as a symbol for place order of any 
figure in the pattern. However, up until now, n was seen as a variable, determining how many 
constant differences one should multiply to reach the number of dots in any figure. Tasks 5, 6 and 7 
were designed to change perspective on n. The tasks were designed to stimulate students’ pattern 
flexibility by pushing them to make sense of n in the visual structure of the expanding chair-pattern. 

The students posted individual answers on Task 5 in Socrative. The result were rather even between 
alternative b) and c) (Figure 1). The students were then asked to discuss in their groups and to 
explain to each other how they were reasoning. After the group-discussion the students were asked 
to post an individual answer again and now the majority of students chose alterative b). George was 
asked to present his reasoning at the whiteboard: 

George: I thought I would figure this out first [pointing to (n+1) in the expression]. First I 
was thinking n plus one. It is this [pointing to the two blue dots in the first figure of 
the pattern]. This is the blue, one could say. n plus one. And, both of them [pointing 
to the two red dots in the first figure] are n. 

According to flexible processes, George then said that alternative c), displaying n+1+n+n, is the 
same as alternative b). The only difference is the order of the signs. He implicitly manipulated the 
expression by visualizing a bracket in the expression (n+1)+n+n. 
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A number of students answered a), displaying 2•n+n+n. The teacher asked why alternative a) was 
chosen. Charlie responded: 

Charlie: It works for the first figure but not for the other. 

We believe this is a relevant interpretation made by Charlie and, supported by his observation, we 
also suggest that deciding on alternative a) is based on calculations rather than on visual structural 
reasoning like the one George showed an example of. The color-coding implemented in the design 
of Task 5 helped George to externalize and show in public his way of reasoning. The design 
supported George to make sense of n in the visual structure of the pattern and to communicate his 
meaning making to the class by visually linking parts of the expression to the corresponding parts 
of the figure.  

The class turned to Task 6, to color the seventh figure of the pattern according to n+(n+1)+n. In 
Task 5 the class observed and followed how George linked an algebraic expression to the color-
structure of the pattern figures. Task 6 aimed at letting students make sense of and generalize this 
idea according to a new figure. The students worked in pairs. As they finished, they posted and 
made their solutions public at the whiteboard. The group-solutions witnessed the fact that several 
students had changed perspective of the meaning of n, to see n in the structure of the figures. The 
teacher picked out Rikki’s solution to Task 6, where the link between the algebraic expression and 
the coloring was evident and proper according to the task (Figure 2).  

Rikki: First I was taking n+1 [saying something audible] and, then I draw that in the middle 
[The teacher points to the vertical line of eight dots that Rikki has colored in blue]. n 
is the number of the figure, thus seven [the teacher is nodding in confirmation]. But 
then it was plus one so, then I did eight. And then it was n on the other sides. Seven 
down and seven up [the teacher moves his hand over the picture to illustrate down 
and up of the seven dots Rikki is referring to]. 

In Task 7 the students were working in pairs and used Paint to color other expressions in the 
pattern. The teacher noted that Rikki solved the first subtask of Task 7, coloring (n+1)+(n-1)+(n+1). 
For some reason the teacher did not succeed in presenting Rikki’s own solution on the board. 
Instead, he showed an uncolored picture of the three first figures of the pattern and asked Rikki to 
guide him through the coloring of (n+1)+(n-1)+(n+1) in the second figure of the pattern (Figure 3). 
That the teacher failed in up-loading Rikki’s solution became something positive from a teaching 

Figure 3: Rikki’s color-solution to Task 7 

 
Figure 2: Rikki’s color-solution to Task 6 
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perspective. Now Rikki was forced to give details of her reasoning so the teacher was able to 
understand how he should color the figure. Moreover, in the dialogue between the teacher and 
Rikki, the rest of the class was provided an opportunity to follow, in detail, how the solution was 
constructed. 

Concluding discussion 
In this paper we addressed the research question: How can color-coding be implemented in task 
design to support flexibility in students’ visual structure reasoning, in order to reach a general 
expression of a figural pattern? In answering the research question, we have shown how coloring in 
pattern generalization can stimulate processes of flexibility (Stacey, 1989) in linking algebraic 
expressions and, particularly, the meaning of n to visual structures of expanding figural patterns. 
The present study sheds new light on task-design to support reflection on visual structures (Rivera, 
2010) and pattern flexibility (Nilsson & Juter, 2011). In pattern generalization, the first stage of 
pattern perception is crucial, where a certain flexibility is necessary to hit on a mathematically 
recordable pattern (Zazkis & Liljedahl, 2002). To move beyond linear pattern generalizations one 
needs to discern a unit from the visual structure of a pattern, connected to the place order of the 
pattern-figures (El Mouhayar & Jurdak, 2015). The present study shows how color-coding can 
support such processes of flexibility by turning students’ attention to the relationship between an 
algebraic expression and visual structures of the pattern. The color-coding prompted the students to 
change perspective of n, from a number variable (how many threes to multiply) to a visual unit in 
the structure of a figure. In particular, the analysis shows how implementing coloring in pattern 
generalization task, supported students in discerning and making sense of n in the relationship 
between n in the structure of a general expression and n in the structure of a figure. 

The role of far generalization tasks, and the added condition of time-limitation, has not been the 
main focus in the present study because of limited empirical evidence. However, the analysis 
indicates that it might be worth re-considering the role of far generalization tasks in the learning of 
pattern generalization. Previously, research has focused on students’ difficulties to account for far 
generalization tasks and how students find them more difficult than near generalization tasks (El 
Mouhayar & Jurdak, 2015). Near generalization tasks can be handled by recursive reasoning, which 
is not as applicable to far generalization tasks. Recursive reasoning necessitates that the preceding 
value of the pattern is known. So, to determine the value of the 1000th figure, one needs to know the 
value of figure number 999. The present study also shows that students find a far generalizing task 
more difficult than near generalization task due to recursive reasoning, coming in the form of 
successive addition. Challenging students to a far-generalization task did not support multiplicative, 
proportional, reasoning in a direct sense. However, the analysis shows how it made students reflect 
on and examine limitations of a recursive, additive approach and come to be responsive to 
proportional reasoning. Hence, instead of just accounted for students’ difficulties, the far 
generalization task provided the teacher a context for exposing the limitation of successive additive 
reasoning and for highlighting and emphasizing multiplicative structures. In the present study the 
teacher created such a context by making Charlie's reasoning in Task 2 public. 

The outcome of the present study calls for further research in the realm of task and lesson design 
(Watson & Ohtani, 2015). Still many questions are open on a patterning approach to algebra. We 
need to know more about tasks that challenge students’ flexible reasoning and engage students in 
visual structure reasoning. We encourage research to further explore coloring as principles for 

Thematic Working Group 03

Proceedings of CERME11 620



 

 
designing tasks in authentic practices of algebra teaching. The current study also indicates the need 
to carefully sequence tasks in pattern activities, in order to encourage processes of reflection and 
flexibility that move students’ understanding towards multiplicative, structural, reasoning, which 
can be used to handle patterns that go beyond linear patterns.  
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This theoretical paper presents a framework for the classification of variables (as used in school) 
that goes beyond traditional classifications by clustering variables according to their syntactical, 
semantical and pragmatical properties. Moreover, the paper associates certain emotional qualities 
to these aspects of variables and indicated how they help in understanding students’ misconceptions. 
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Introduction 
Several variable classifications have been proposed. Küchemann (1979) has distinguished 
empirically several ways to use letters. The question what these letters are from an ontological point 
of view is not in the focus. Usiskin (1988) describes four conceptions of algebra and the use of 
variables in each conception. The discussion of what a variable is and how it is used is mixed up. In 
the German speaking countries, the work of Malle (1993) has been influential who defined three 
aspects of variables: Variables as placeholders, as calculus elements and as objects. Ely & Adams 
(2012) describe three usages of variables: unknown, placeholder, variable. Other topics of interest 
have been the ability to see structure and connections to computer science (Arcavi 1994; Heck 2001). 
A common defect of these approaches is that there is no clear distinction between the question of 
what a variable is and how it is used. Moreover, a perspective on the concept development is missing. 

Linguistic as a basis 
Starting with C. W. Morris (1938) linguistics distinguishes three aspects of language: syntax, 
semantics and pragmatics. Syntax comprises the formal rules that govern how signs are arranged and 
treated. Semantics deals with the references to objects and clarifies what is meant by syntactically 
well-formed expressions. Pragmatics is about the use of language that is adequate in certain situations. 

The syntax of languages can be described by grammars. But knowing the syntax of algebra is neither 
sufficient nor fully necessary to be successful in algebra (Hodgen, Küchemann & Oldenburg, 2011).  

Understanding the semantics is the next building block. Semantics is about the interpretation of signs, 
especially it clarifies how signs refer to objects (cf. Honderich, 1995, p. 820). In algebra inadequate 
semantic ideas held by students are e.g. that variables stand for real world objects or that different 
occurrings of the same variable can stand for different objects. 

The last aspect is that of pragmatics. In linguistics this is a somewhat fuzzy concept. In (Honderich, 
1995) the following definition is given: “The study of language which focuses attention on the user 
and the context of the language use rather than on reference, truth or grammar.” Levinson (2013) 
discusses several possible definitions, e.g. “Pragmatics is the study of those relations between 
language and context that are … encoded in the structure of the language.”; that is, the language 
reaches out in a sense to link with the situation. This high-lights the importance of context! 

These three aspects of language will now be used to analyze different notions in turn. 
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Detailed analysis of the concept of variable 
While a lot has been written about variables, it is not that clear what questions are answered. From 
the perspective of language levels one may ask three questions about variables (here variables is used 
in a wide sense, including all symbolic uses of letters, not just varying quantities): 

· What do variables look like? (syntax)

· What do they mean, i.e. what are they and how are they related to other entities? (semantics)

· How (and to what end) are variables used? (pragmatics)

From this perspective, one sees that the various authors answer different questions. Küchemann 
(1979) describes how letters are used, but nevertheless his classification is not purely pragmatical but 
also semantical. Malle (1993) uses the word “aspect” and claims that all variables can be seen under 
each of his three aspects. This suggests that he discusses different pragmatical ways of variable use 
too, but in fact his aspects (placeholder, object, symbol) are semantical in nature. Heck (2001) states 
that variables can hardly be defined because there are so many different uses of them. Among the 
semantical considerations in the literature, many are somewhat unclear. One example is the 
conception that a variable represents a set of numbers simultaneously (Malle, 1993). As I shall show, 
this is at odds with sound logical semantics of variables. Summarizing, it seems that most authors 
give diverse answers to the question what variables are, even on the semantical level. In this paper I 
start from scratch and give an exposition that covers, I hope, all relevant aspects on all levels. 

The syntax of variables 

Little is to be said about the syntactical aspect of variable: In most cases, they are letters, on others 
they are compound symbols such as 𝑥𝑥1, 𝑥𝑥𝑖𝑖, 𝑓𝑓(𝑥𝑥). (Syntax of expressions is richer, of course.) 

The semantics of variables 

What are variables? I have partially answered this question in (Oldenburg, 2015) and will build upon 
this in this paper. It turns out that there are two questions that distinguish different kinds of variables: 

1. Is the variable a part of language used to talk about mathematical objects, or is it a
mathematical object itself?

2. How is the variable linked to its value? Is it a container for or a reference to something?

Here “something” is typically a number or other mathematical object (e.g. vectors, functions, points). 

Now, from the two 2-fold distinctions a table can be presented: 

Variable is… Container C Reference R 

An object in its own right: OLA Placeholder that may contain a 
number or something: OLA-C 

A symbolic object with properties like 
domain, current value etc.: OLA-R 

An element of the language used to 
speak about objects: LLA 

A gap in a sentence to fill in the name 
of a number or something: LLA-C 

A symbol without properties, its only 
function is to refer: LLA-R  

Table 1: Four semantical kinds of variables. (OLA=Object Level Alg., LLA=Language Level Alg.) 
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Before looking in more detail on this four kinds of variables, I state the hypothesis that there are no 
more kinds necessary. Especially, concepts like parameters or unknowns are best distinguished on 
the pragmatic level as will be explained in the next section.  

The distinction in this table separates kinds of variables by ontology: They are different not only in 
their usage but in their being, as I shall show. Yet, all these four kinds are variables in the sense that 
variables used in mathematics books can be classified into this table and all cells are non-empty. 

The upper row (variables as objects) will be called object level algebra (OLA) and the lower row 
language level algebra (LLA). With this distinction I build on the one of (Oldenburg 2015) but using 
a somewhat adapted terminology. Moreover, the columns are abbreviated by an appendix C 
(container) or R (reference) so that the four cells are OLA-C, OLA-R, LLA-C, LLA-R. 

OLA-C: Given the equation 5+  =8 one inserts 3 into the placeholder to get 5+3 =8. Here the 
placeholder contains the number, and it is a real object. It still exists after insertion of the number and 
one may move it around, e.g. to get 3+5=8. One could operate on these objects, e.g. by drawing 
different kinds of boxes and moving them as in     +□ = □+   .. This kind of variables are sometimes 
introduced by textbooks using ten metaphor that the variable is a match box (an object) that contains 
a certain number of matches – the variable’s value. 

LLA-C: Given the equation 5+  =8 one replaces the placeholder to get 5+3 =8. Here the placeholder 
was only a language element, a marker of a spot to complete an expression. 

LLA-R: Variables are like flexible names, they name some objects, but are not objects themselves. A 
typical example is given in Fig. 1: Variables there are letters that refer to certain values - they have 
no further properties, they are just names that link to (i.e. refer to) a value.  

Figure 1: LLA-R use in a German grade 5 school book (Formel 5, Buchner Verlag) 

OLA-R: Consider the idea of variation with typical questions such as “how do x and y change 
together?” If 𝑥𝑥,𝑦𝑦 where just (not yet fixed) names for numbers in the sense of LLA-R, then one could 
substitute them with their referents, but it would be senseless to ask e.g. “ how do 5 and 9 change 
together?”. Hence, these are objects of thought with their own properties. The same holds true in 
sentences like “x increases”. 

This distinction solves question 1 from above: In case of LLA, the set {𝑥𝑥,𝑦𝑦} (over ℝ) has one or two 
elements (numbers), depending on 𝑥𝑥 = 𝑦𝑦, in OLA it has two elements, namely two variables (that 
may have the same value).  
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Note that the standard view of mathematical logic – basically coined by Tarski, see (Tourlakis,  2003) 
– is that of LLA-R1. In modern logic, variables are syntactical elements of the language of logic. The 
semantics is defined in terms of interpretations which link each variable to an object it refers to. It 
should be noted that every horizontal row of Figure 1 gives an interpretation for the variables of the 
expression so that this seemingly abstract concept from logic is very graspable for students. 

LLA variable are used in most programming languages (C, Java2, Python, Prolog). Most variables 
are of reference types, but not all.3 That most programming languages don’t use OLA follows from 
the simple fact, that the symbols (the variable names) are usually not contained in the compiled 
binaries and that they cannot be stored in data structures (only their values can). In contrast, the 
languages of computer algebra systems usually allow variables to be stored in lists and sets and so 
they are (first class, in computer slang) objects and hence OLA variables. This argument is technical, 
but it shows several important things: First, the distinction can be clearly applied in this area. Second, 
it lies not in the eye of the observer what kind a variable is, it is not a question of how the variable is 
used or viewed, but it depends on the way semantics is realized by the language. Third, taking into 
account the details given in the footnote one sees that all four kinds are realized in languages.  

A tricky point comes from the fact one may have LLA-variables that refer to OLA-variables. This is 
the case e.g. when one considers polynomial rings: In a formula like 𝑝𝑝 = 2𝑥𝑥2 − 1 ∈ ℤ[𝑥𝑥] the 𝑝𝑝 is a 
language reference LLA-R while 𝑥𝑥 is an object in the sense of OLA, because the domain of objects 
is ℤ[𝑥𝑥]. Note that the variable 𝑥𝑥 of ℤ[𝑥𝑥] cannot be LLA, because it can be assigned as a value to other 
variables. Moreover, 𝑥𝑥2 + 𝑥𝑥 ∈ ℤ2[𝑥𝑥] cannot be build up from a LLA variable, because for all objects 
from ℤ2that 𝑥𝑥 may refer to or stand for or contain, the value is 0: 12 + 1 = 0, 02 + 0 = 0. Thus, if 𝑥𝑥 
was just a language element that refers to some element of ℤ2  then this polynomial would be just 0.  

While for logic that deals with established math LLA-R (where some special domains like the 
polynomials my contain OLA-R variables) is sufficient, I suppose that in the process of developing 
mathematics the upper row is important as well and I suppose that learners initially have least 
problems with OLA-C (match box metaphor). This is also supported by the following empirical 
observation: When asking students, teachers and mathematicians what they see in their mind after 
inserting the solution into 5+  =8, most students say ‘three in the box’, teachers are undecided and 
most mathematicians opt for ‘three without box’ – supporting that this is a question of expertise level. 

                                                 

1 There has been some discussion about LLA-C as an alternative to LLA-R for variables in first order logic, see (Quine, 
1974) for a thoughtful discussion which finally rejected LLA-C. This discussion is interesting from an educational point 
of view, but I have to skip it due to limited space. 

2 In Java, a statement like int n=1; clearly defines a LLA-R variable. However, there is a subtle trick to have a kind 
of OLA-C variable: Integer m= new Integer(5); defines a LLA-R variable m which refers to an unnamed 

object which is in fact a OLA-C variable, namely a container for a value.  

3 For example in the C programming language one may define the maximum of two numbers either by a function int 
max(int a, int b) {return a>b?a:b} or by a macro #define max(a,b) {a>b?a:b}. In the first 
version a and b are LLA-R, in the second LLA-C variables.  
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One should note that these different kinds of variables are present in the literature, but it seems that 
they are mixed up with the use of variables (which I will deal with in the next section) and on the 
other hand, often authors claim that one view is the correct one, while the claim of this paper is that 
these are different kinds of variables. Container types being typical for young learners while the 
reference types are more common among educated mathematicians. Within the reference types the 
two kinds of variables (OLA-R, LLA-R) is changing according to the development status of the 
theory. The object variables are more typical for math in the phase of development, while the language 
view is typical, when the domain of objects is completely understood and well-constructed.  

This subsection closes with some quotes that illustrate how different researchers’ positions can be 
located within the theoretical framework outlined above. Bardini et al. (2005) take the view that 
variables are objects (in the sense of OLA-R): “In the generalization of patterns, letters such as ‘x’ or 
‘n’ appear as designating particular objects - namely, variables. A variable is not a number in the 
arithmetic sense. […] A variable is an algebraic object.”. Moreover, they distinguish different kinds 
of these objects: “Yet, the algebraic object ‘variable’ should not be confounded with another algebraic 
object –the ‘unknown’”. For Linchevski (2001), on the other hand, variables are transparent language 
elements in the sense of LLA, not objects in their own right: “Operating on and with the unknown 
implies understanding that the letter is a number. It does not only symbolize a number, stand for a 
number, and it does not only tag/label/sign for an unknown number.” (p. 143). Epp (2005, p. 54) 
states: “variables are best understood as placeholders“, which follows the standard mathematical logic 
but may be problematic in educational contexts. Summing up, there is no consensus of what variables 
are, but I claim that the four types constitute a sound basis for didactical research.  

The pragmatics of variables 

What most publications on variables discuss, is not what variables are (the semantics), but how 
variables are used, in what context and for what purposes, i.e. the pragmatics of variables.  

A pragmatical distinction from the logic literature that plays only a modest role in educational texts 
is that between bound and free variables. The point here is simply that the quantification does not 
alter the variable. The variable itself has the same semantics, regardless of it being free or bound. 

There is, however, still a lot to say about the pragmatics of variables. Let’s first make a detour into 
research on computer science education. Sajaniemi (2002) has introduced the notion of a “role of a 
variable” in (procedural) programming languages. He identified (by analyzing code written by a large 
number of programmers) several roles, e.g. fixed value (constant), stepper (stepping through a 
succession of values), follower (a variable that always gets its new value from the value of another 
variable), most-wanted holder (a variable holding the best value encountered so far). All these roles 
can be taken by the very same variables of a programming language. The variables’ semantics is fixed 
by the language – the difference here is thus not on semantics but on the pragmatical level. Sajaniemi 
found that explicitly teaching these roles to novice programmers boosts their learning process. It 
seems likely that the same may be achieved in mathematics education.  

So, what could be variable roles in elementary algebra? The literature gives many hints on this and 
without tracing back every role to the various studies that have dealt with it, I’ll simply present:  
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· Variable used as a fixed number: r=5, π=3,141.., often such variables are called constants or
parameters, depending on the extent to which one expects their reference to be changed.

· Unknown. A number (or more general object) that is (not yet) known
o It may be a number to be detected (e.g. as the solution of an equation – non-

uniqueness causing some troubles eventually).
o It may be a reference used to argue about it (“tentative number”), e.g. the length of

some segment in a construction.
· General number: A reference to or container for many possible values. This can be:

o an open form (e.g. an odd number 2𝑛𝑛 + 1,𝑛𝑛 ∈ ℕ0).
o a changing quantity (e.g. the value of an observable (like time, charge, money,…)).

It is a nice exercise to go through all these uses and imagine how they can be realized on the 
semantical bases of each of the four types of variables.  

Some more issues 

Working successfully on problems requires competences on all three aspects. To illustrate this, I take 
the example to choose between two car rental offerings with ingredients like base price and a price 
per driven kilometer. On a pragmatical level one asks: What is the adequate mathematical tool? Table, 
graph, equation, inequation? Let’s choose the latter. Then to semantics: Reference to relevant 
quantities are to be fixed: Let 𝑛𝑛 be the number of kilometers to be driven. Then the prices of the two 
offerings are linear expressions in 𝑛𝑛 and the condition that the first offering is better is e.g. 50 +
1.5𝑛𝑛 < 30 + 2𝑛𝑛. Now it comes to syntax (transformation according to rules). At the end one goes 
back to semantics (the meaning is to be clarified) and pragmatics (is it useful after all?).  

The structure of this is displayed in the following table. 

Phase 
Aspect 

1 2 3 4 5 6 

Situation Problem 

Pragmatics Choice of math Application 

Semantics Fix references Interpretation 

Syntax Work formally 

Table 2: Phases of mathematical problem solving 

In each phase the higher aspects guide work on the lower ones. The situation guides the pragmatical 
decisions and they in turn the semantical decisions. Finally, syntactical work is guided by semantics. 

There is a certain analogy with the modelling circle of (Blum & Leiss 2005). This is not by accident: 
Modelling is essentially a translation process and hence language aspects come into play. Setting up 
the real world model requires pragmatic arguments, setting up the mathematical model is a semantical 
activity. Working inside a formalism is syntactical. When going back to real world, semantical issues 
come in again and in validation one has to deal with pragmatical issues.  

One may object that assigning the labels syntax/semantics/pragmatics to the modelling circle does 
not give new insights but just groups together phases that are labeled by more specific concepts from 
the modelling theory such as mathematicising and validation. However, combined with the table 
above one may get a deeper understanding of the control flow inside modelling processes.  
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Emotional dimensions 

The theory of somatic markers (Damasio, 1996) assigns emotions the task to guide decisions. The 
word „decision“ has been used in the presentation above several times. This is not by accident. Doing 
math means taking a lot of decisions, e.g.: Table or Graph? Introduce one or two variables? Factorize 
or expand? To decide quickly on such cognitive questions emotions are important. Teacher 
experience is that students hold strong feelings for certain mathematical objects or situations. 
Research on emotions and math is mostly devoted to negative emotions (fear) and not specific to 
mathematical objects itself (cf. discussion in Trezise & Reeve (2014)). Trezise and Reeve view this 
as a shortcoming and they investigate emotional influence on doing algebra, not the direct connection 
between mathematics and emotions. However it seems plausible that there are emotions (in the 
generalized sense of (Silvia, 2009)) aligned with specific mathematics. I suggest: 

Aspect Emotion(al source) Examples of situations with positive (p) and negative (n) emotions 

Pragmatics Utility p: full decision tree, that handles all cases gives satisfaction 
n: Table that misses some obvious cases  

Semantics Logical soundness, clarity p: successful check 
n: paradoxes 

Syntax Beauty, well-formedness, 
conformity 

n: 3(4+)) looks ‚broken‘ 
p: 1+x+x²+x³   looks well ordered 

Table 3: Language aspects and emotions 

While this table cannot discuss the issue completely (e.g. neglects individual differences) I suppose 
that the role of emotions in guiding algebraic actions might provide a deeper understanding of 
algebraic thinking. Research mathematicians use the words beautiful/ugly very often. Related is the 
notion of algebra sense (e.g. Arcavi, 1994) that may have an emotional basis too. 

More algebraic examples 

Here I show that linguistic levels are useful in interpreting students’ errors. Consider the task to set 
up and solve an equation for this situation: “There are 84 balls of two colors and there are 10 more 
red than blue.” It was found that even university level teacher students had problems of 3 categories: 
1st: Pragmatic difficulties: Use of function (e.g. 𝑓𝑓(𝑟𝑟, 𝑏𝑏) = 𝑟𝑟 + 𝑏𝑏 + 10) or other in-adequate math.  
2nd: Semantic difficulties: Many students worked with unclear references, e.g. 𝑟𝑟 + (𝑟𝑟 + 10) = 84. 
3rd: Syntactic difficulties: E.g. from the correct system 𝑏𝑏 + 𝑟𝑟 = 84, 𝑟𝑟 = 10 + 𝑏𝑏 one student 
concluded 𝑟𝑟 = 𝑏𝑏 − 84 and thus 𝑏𝑏 − 84 = 10 + 𝑏𝑏 which, surprisingly, turned out to have no solution. 
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Although algebraic transformations of equations are commonly used to identify solutions of 
equations, it remains unclear, which transformations are explicitly considered to be equivalent 
transformations, and which are not. Therefore, equivalent transformations of equations are analyzed, 
by using the notions of concept image, concept definition, aspect, and Grundvorstellungen, as well 
as their relations to each other.  Different formal concept definitions of equivalent transformations 
of equations are examined to get a first impression of possible characteristics of concept images. As 
a further approach, Grundvorstellungen are derived from aspects of the equivalence of equations and 
put in relation to the theory of concept images. Different contradictions can be identified using these 
notions, which are possible sources of misconceptions. 

Keywords: Grundvorstellungen, aspects, mathematical concepts, mathematics education. 

Equivalent transformations of equations 
Learners of mathematics are being introduced to equations in primary school. Simple arithmetic 
equations are to be solved by adding, subtracting, multiplying, and dividing numbers. In secondary 
schools, with the shift from arithmetic to algebra, variables are expressed by the use of letters. This 
is usually when pupils are introduced to more formal techniques of solving equations. They are 
transformed to other equivalent equations, so that a formula can be applied, or the solution is apparent 
(as in the case of the equation 𝑥𝑥 = 3). Since equivalent transformations of equations are a central tool 
for solving equations, the concept of equivalent transformations of equations should be well defined 
and known to every mathematician and teacher of mathematics. When considering the following two 
equations, the question whether the initial equation was transformed equivalently provides room for 
discussion: 

𝑥𝑥2 = 4      (𝑥𝑥 ∈ ℝ)  

𝑥𝑥4 = 16      (𝑥𝑥 ∈ ℝ) 

Squaring the expressions of an equation is usually not considered to be an equivalent transformation 
of an equation (e.g. Vollrath & Weigand, 2007, p. 214), although it may lead to an equivalent 
equation, as in the example above. In order to analyze why some transformations are considered to 
be equivalent transformations, while others are not, even though they share the feature of leading to 
an equivalent situation, the theory of concept image and concept definition by Tall and Vinner (1981) 
is used. This theory will then be related to Grundvorstellungen, which has a long tradition in 
Germany, due to the works of vom Hofe (2016), using a model provided by Greefrath, Oldenburg, 
Siller, Ulm, and Weigand (2016), which offers a further approach to the concept image. Subsequently 
the geometric model for teaching transformations of equations as described by Filloy, Puig, and 
Rojano (2008) is being discussed in regard to the following theoretical considerations. 
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Concept image and concept definition 
An individual’s view on a mathematical idea is not only shaped by the subject matter itself but also 
by further experiences. Therefore, Tall and Vinner (1981) differentiate between mathematical 
concepts and cognitive processes which resemble an individual’s understanding of the concept. For 
the latter the term concept image is used “to describe the total cognitive structure that is associated 
with the concept” (Tall & Vinner, 1981, p. 152). When looking at the two equations above one may 
associate functions, variables, or something else with them. Given that within literature squaring is 
not considered to be an equivalent transformation of equations, it seems rather unlikely that the 
concept of equivalent transformation of equations is associated with the two equations above. It may 
even be declined to consider this as an equivalent transformation. Which leads to the assumption that 
the individuals concept image of equivalent transformations does not contain the operation of 
squaring. The question that naturally raises, from this little theoretical discourse, is how equivalent 
transformations of equations are defined. For this matter the term concept definition is used, which is 
“a form of words used to specify that concept” (Tall & Vinner, 1981, p. 152). A concept definition 
of an individual is referred to as personal concept definition and is not necessarily correct or existent 
(Tall & Vinner, 1981, p. 152). In contrast to the possibly erroneous personal concept definition, the 
formal concept definition is “accepted by the mathematical community at large” (Tall & Vinner, 
1981, p. 152). It should be mentioned, that one can be able to state a “correct formal concept definition 
whilst having an inappropriate concept image” (Tall & Vinner, 1981, p. 153). It is the concept image 
that gives meaning to the concept definition (Greefrath et al., 2016, p. 103), while the definition may 
be just a memorized sequence of words. Prior to planning an empirical investigation of individual 
concept images and personal concept definitions of the concept of equivalent transformations of 
equations, it seems wise to examine the concept of these transformations theoretically by comparing 
different formal concept definitions. 

Formal concept definitions of equivalent transformations of equations 
Equivalent transformations of equations can be defined as transformations which do not alter the 
solution set (Vollrath & Weigand, 2007, p. 242). In this definition no further information is given 
about the characteristics of a transformation. The key is the property of not losing or adding any 
solutions of (or to) the equation, which is crucial when it comes to solving equations. This would lead 
to the conclusion that the example above is an equivalent transformation of equations. 

Walz (2017, p. 361) defines equivalent transformations of equations in contrast to transformations 
which possibly alter the solution set, which justifies the claim of squaring not being an equivalent 
transformation. When taking this condition into account, which is rarely made explicit, there are only 
few types of transformations left to be considered as equivalent transformations of equations. Adding 
(and subtracting) numbers, as well as multiplying (and dividing by) numbers other than zero always, 
lead to equivalent equations (Langemann & Sommer, 2018, p. 172). This demand for generality of 
not altering the solution set can only partially be granted when it comes to adding or multiplying 
expressions containing variables. One might accidently divide by zero and lose one or more solutions: 

𝑥𝑥2 = 𝑥𝑥 

𝑥𝑥 = 1 
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Another definition highlights the reversibility of the transformation and states that transformations, 
which can be reversed, without changing the meaning are equivalent transformations (Langemann & 
Sommer, 2018, p. 172). Since it is not explicitly stated what meaning refers to in this context, this 
definition appears rather doubtful. Considering that an equation containing variables determines a set 
of elements for which it becomes a true statement (Kirsch, 1987, p. 106), it can be assumed, that 
meaning refers to the solution set as well. Drouhard and Teppo (2004) translate the German term 
“Bedeutung” (with respect to Frege), as denotation (instead of meaning as done in the translation 
above) as a subdomain of meaning and refers also to the truthfulness of equations (pp. 232–234). 
Therefore, it can be assumed that this is the case in this definition. None the less it is interesting in 
the manner that it highlights reversibility as a property of equivalent transformations. 

When comparing these different definitions, it appears crucial, that the solution set does not change 
when an equivalent transformation is applied. This is the defining property of an equivalent 
transformation, in the first definition discussed. The second one extents it by demanding a certain 
generality and claiming it never alters the solution set. Although the third definition is not quite clear, 
it highlights another characteristic: equivalent transformations have to be reversible. It is noteworthy, 
that all of these definitions relate, more or less explicitly, to the solution set. 

Aspects and Grundvorstellungen an additional approach to the concept image 
Given that (formal) concept definitions are the basis of concept definitions (Greefrath et al., 2016,  
p. 103) predictions about possible individual concept images can be derived from them. In order to 
draw further conclusions of possible characteristics of concept images the construct is approached by 
using the idea of Grundvorstellungen (GV) as an addition to the concept definition, which may also 
be part of a concept image (Greefrath et al., 2016, p. 103). Greefrath et al. (2016, p. 101) defined the 
term in the following manner: “A Grundvorstellung of a mathematical concept is a conceptual 
interpretation that gives it meaning” (for a more detailed discussion, see vom Hofe & Blum, 2016). 
Unlike the concept image, a GV relates to aspects of mathematical concepts (Greefrath et al., 2016,  
p. 101), while the concept image describes the whole cognitive structure that is associated with a 
mathematical context. The term aspect of a mathematical concept is defined as “a subdomain of the 
concept that can be used to characterize it on the basis of mathematical content” (Greefrath et al., 2016, 
p. 101). Because of these relations, identifying and examining aspects of equivalent transformations of 
equations offers new insights into possible characteristics of a concept image. Since the equivalence of 
equations appears to be the defining property of the equivalent transformations of equations and therefore 
characterizes it, it will be examined in greater detail in the following section. 

Aspects of equivalence of equations 

Equivalence of two equations means that they share the same solution set (Kirsch, 1987, p. 108). 
Another possibility to determine the equivalence of two equations is by transforming one equation into 
the other using valid transformations (Oldenburg, 2016, p. 11). Since this takes into account 
transformational activities, the focus will be on this aspect of equivalence, which from here on will 
be referred to as transformational equivalence. This aspect of equivalence requires defining valid 
transformations. For this matter, two similar but different types of rule sets are described in the 
following. 
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Balance rules 

One type of rulesets for transforming equations are the balancing rules, which are expressed in regard 
to expressions (Malle, 1993, p. 219): 

𝐴𝐴 = 𝐵𝐵 ⇔ 𝐴𝐴 + 𝐶𝐶 = 𝐵𝐵 + 𝐶𝐶 𝐴𝐴 = 𝐵𝐵 ⇔ 𝐴𝐴 − 𝐶𝐶 = 𝐵𝐵 − 𝐶𝐶 

𝐴𝐴 = 𝐵𝐵 ⇔ 𝐴𝐴 ∙ 𝐶𝐶 = 𝐵𝐵 ∙ 𝐶𝐶 (𝐶𝐶 ≠ 0) 𝐴𝐴 = 𝐵𝐵 ⇔ 
𝐴𝐴
𝐶𝐶

= 
𝐵𝐵
𝐶𝐶

(𝐶𝐶 ≠ 0) 

The main feature of this ruleset is, that the two expressions on each side of the equal sign is being 
modified in the same way. The procedure is often visualized, by using scales, which stay in balance 
when the same amount of weight is added to or withdrawn from both sides. This is the reason why 
Malle (1993, pp. 220–221) refers to them as balancing rules. It should be noted though, that these 
rules can be visualized in various other ways as well.  

Elementary transformation rules 

Another set of rules are the elementary transformation rules, which are again expressed in regard to 
expressions (Malle, 1993, p. 219): 

𝐴𝐴 + 𝐵𝐵 = 𝐶𝐶 ⇔ 𝐴𝐴 = 𝐶𝐶 − 𝐵𝐵 𝐴𝐴 − 𝐵𝐵 = 𝐶𝐶 ⇔ 𝐴𝐴 = 𝐶𝐶 + 𝐵𝐵 

𝐴𝐴 ∙ 𝐵𝐵 = 𝐶𝐶 ⇔ 𝐴𝐴 = 
𝐶𝐶
𝐵𝐵

(𝐵𝐵 ≠ 0) 
𝐴𝐴
𝐵𝐵

= 𝐶𝐶 ⇔ 𝐴𝐴 = 𝐶𝐶 ∙ 𝐵𝐵 (𝐵𝐵 ≠ 0) 

These rules may appear very similar to the balancing rules but require three expressions to perform a 
transformation of an equation. The given expressions of an equation therefore determine what kind 
of transformations can be performed. This may be seen as an advantage for choosing this ruleset over 
the balancing rules when teaching (Malle, 1993). 

In contrast to the elementary transformation rules, the balancing rules allow working with additional 
expressions, while the elementary transformation rules only allow using the given expressions. The 
latter may be considered as special kinds of balancing rules, which require fewer calculations (Malle, 
1993) as can be seen in the following example: 

𝑥𝑥 + 1 

(𝑥𝑥 + 1) − 1 

𝑥𝑥 

= 

= 

= 

5 

5 − 1 

4 

𝑥𝑥 + 1 

𝑥𝑥 

𝑥𝑥 

= 

= 

= 

5 

5 − 1 

4 

Grundvorstellungen and aspects of equivalent transformations of equations 
An aspect is the basis of an individual GV, while at the same time the GV gives the subject meaning 
to the aspect (Figure 1). When applying this idea to equivalent transformations of equations, two 
different GVs can be derived, from the aspects described previously (Figure 1). It should be noted, 
that any GV that is derived from the balance rules can also be derived from the elementary 
transformation rules, given that they can be considered a shorter version of the balancing rules, which 
cover only certain cases. 
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Figure 1: Relations between aspects and GVs (extracted from Greefrath et al., 2016, p. 103) applied to 
equivalent transformations of equations 

Transposing GV 

Using elementary transformation rules, the transformation may be perceived as a transposition of the 
expression according to the “change side – change sign rule” (Kieran, 1992, p. 400). This means that 
you exchange the operator in front of an expression with the inverse operation, while moving the 
expression to the other side of the equation. This idea of transposition appears to be coherent with the 
findings of Henz, Oldenburg, and Schöllhorn (2015), in which their hypotheses, that algebraic 
manipulations take place in an algebraic symbol space (and is linked to movement) is empirically 
supported. The scheme of this rule can be represented in the following manner (Malle, 1993, p. 218): 

∎
∎

= ∎     ⇔  ∎ = ∎ ∙ ∎ 

Balancing GV 

The balance rules may be interpreted as “doing the same thing on both sides”. This can be represented 
visually by a scale that keeps the balance or as a more abstract scheme: 𝐴𝐴 = 𝐵𝐵 ⇔  𝐴𝐴 ∘ 𝐶𝐶 = 𝐵𝐵 ∘ 𝐶𝐶. 
Overly generalizing a scheme, may lead to errors in performance (Malle, 1993, pp. 172–175). In this 
case it may lead to the misconception, that squaring two expressions of an equation always leads to 
an equivalent equation. This demonstrates how problematic generalizations of a scheme may be, if 
no further knowledge is being acquired about when it is appropriate to apply a certain rule.  

Example: geometric model and GVs 
So far models for teaching equivalent transformations of equations have only been mentioned, 
without discussing them in greater detail. One well known model is the balance model using scales 
which highlights that operations should be carried out on both sides of an equation and therefore may 
foster the balancing GV. In addition to this model, Filloy, Puig, and Rojano (2008) propose a 
geometric model for visualizing linear equations and algebraic transformations of these equations (p. 
100). Within this model “algebraic expressions are represented as lengths and areas of rectangles (x 
and its coefficients are lengths, and their products and the independent terms are areas)” (Filloy et al., 
2008, pp. 100–101) (see Figure 2). The purpose of this model within the study is to teach early algebra 
learners how to transform an equation, with the variable occurring on both sides of the equation, such 
as 𝐴𝐴 ∙ 𝑥𝑥 + 𝐵𝐵 = 𝐶𝐶 ∙ 𝑥𝑥 (with 𝐴𝐴,𝐵𝐵,𝐶𝐶 being positive integers and 𝐶𝐶 > 𝐴𝐴) into the equation  
𝐵𝐵 = (𝐶𝐶 − 𝐴𝐴) ∙ 𝑥𝑥 (Filloy et al., 2008). This can be done by coloring and comparing areas (see 
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Figure 2). Ideally followed by the conclusion, that the two left over areas must be of the same size 
(Filloy et al., 2008).  

Figure 2: 𝑨𝑨 ∙ 𝒙𝒙 + 𝑩𝑩 = 𝑪𝑪 ∙ 𝒙𝒙 in the geometric model, with 𝑨𝑨 ∙ 𝒙𝒙 being colored (Filloy et al., 2008, p. 102) 

Considering that the colored areas can be faded out, while focusing on the white areas, it seems like 
this approach embodies a subtraction of 𝐴𝐴 ∙ 𝑥𝑥 from both sides of the equation and therefore leads to 
the assumption that this model fosters the balancing GV (“doing the same thing on both sides”). At 
the same time the transformation 𝐴𝐴 ∙ 𝑥𝑥 + 𝐵𝐵 = 𝐶𝐶 ∙ 𝑥𝑥 ⇔  𝐵𝐵 = (𝐶𝐶 − 𝐴𝐴) ∙ 𝑥𝑥 appears to rather fit the 
elementary transformation rule 𝐴𝐴2 + 𝐵𝐵 = 𝐶𝐶2 ⇔  𝐵𝐵 = 𝐶𝐶2 − 𝐴𝐴2 than the balancing rules. Taking a 
closer look at the examples provided by Filloy et al. (2008) from their interviews, it is noticeable that 
the interviewee appears to move the expression from the left side of the equation, to the right side, 
while changing the sign (e.g. Figure 3). Therefore the, geometric model seems to rather foster the 
transposing GV than the balancing GV according to the data samples provided (Filloy et al., 2008, 
pp. 108–110; Filloy & Rojano, 1989, pp. 22–23).  

Figure 3: Example of a learner operating on the unknown, prior to being introduced to formal 
techniques of transforming equations (Filloy & Rojano, 1989, p. 110) 

All in all, it is not possible to draw a general conclusion on what GV is fostered by the use of the 
geometric model. Especially when considering that the data examined here was not intended to 
answer which GV it fosters. None the less it should be noted that GVs are not necessarily a question 
of model, but of what is made of it by the individual.  It is possible that another person understands 
this model as subtracting the same expression from both sides of an equation. 

Summary and discussion 
Squaring is usually not considered an equivalent transformation of equations, although it may lead to 
an equivalent equation. Since this seems to be contradictory it raises the question, what does one 
consider to be an equivalent transformation of equations? In order to approach this question, the 
cognitive structure, that leads to certain assumptions, is described as concept image. Different formal 
definitions of equivalent transformations of equations were examined, all of which contained the idea 
of not altering the solution sets. Since this demand is fulfilled by squaring in the first example, this 
might not be what individuals consider as defining property. What seems more suitable in this case 
is the demand of generality, that an equivalent transformation does always maintain the solution set. 

The second approach to identify factors that influence the concept image is, by using the notions of 
aspects and GVs. Considering that the equivalent transformations of equations should lead to 
equivalent equations, the transformational equivalence is examined in greater detail. This aspect 
requires defining valid operations, in this case the elementary transformation and the balance rules. 
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These two rule sets are the basis of the transposing GV and the balancing GV. Using these rules, it 
can be argued that squaring is not covered by them and therefore might not be captured within the 
aspect of transformational equivalence. Then again it can be considered using the balancing GV, that 
it is an equivalent transformation of equations, even then when it is not, because “you do the same 
thing on both sides”. Judging in which cases a transformation leads to an equivalent equation, requires 
the ability to recognize the equivalence of equations. 

Figure 4: Relations between aspect, Grundvorstellung, concept definition, concept, and concept image 
(by Greefrath et al., 2016, p. 103) applied to equivalent transformations of equations 

Discussing the geometric model of equations and transformations of equations, it was pointed out 
that it is not necessarily the model that indicates a certain GV, but the individual’s interpretation and 
use of the model. Rather than formulating a GV for every model, the approach used within this paper 
suggests deriving them from aspects of a given concept. This seems useful, given that different 
models may affect our transformation processes in the same manner. However, models cannot be 
abandoned, if we want to avoid that algebra learners simply perform meaningless transformations. 
Therefore, the GVs which are described in a rather schematic manner need to be linked to a model. 
It is rather the reasoning accompanying the model, than the model itself which is important.  

Considering that algebraic transformations of equations are located at the transition from arithmetic 
to algebraic thinking (Filloy et al., 2008, p. 96), it seems like very little attention has been paid to this 
topic in recent research. Simply addressing it with reference to a certain model or a certain set of rules 
does not seem to be sufficient. More importantly is the link between models, the underlying concept 
and the individual, which needs to be addressed with closer regard in the future. It appears useful to 
examine the concept of equivalent transformations of equations in greater detail. As the discussion 
above shows, definitions of the concept do not necessarily grasp what is meant by equivalent 
transformations. But if we do not make explicit what we mean, when we talk about equivalent 
transformations of equations, it carries the risk that this implicit information is not acquired by the 
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learner. Does it not make learning and teaching more difficult? The considerations presented within 
this article can help identifying sources of misconceptions and give an insight to educators about 
limitations of definitions, rules and models describing equivalent transformations of equations. 
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Having a relational understanding of the equal sign is seen as important to students in 
algebra in lower secondary school. The basis for their understanding of the equal sign is laid 
in elementary school. This paper presents results from two studies in Norway, a quantitative 
survey and a qualitative task-based interview. In both studies, students in 5th and 8th grade 
solved an equal sign task. 1230 students participated in the survey and 8 students were 
interviewed. These latter students also responded to questions about the meaning of the equal 
sign. Results from both studies show that a majority of the students in 5th grade have an 
operational understanding of the equal sign, while a majority of those in the 8th grade have a 
relational understanding of the equal sign. 

Keywords: Equal sign, operational understanding, relational understanding. 

Introduction 
According to Ma (1999, p. 111) the equal sign is “the soul of mathematical operations” and 
Falkner, Levi, & Carpenter (1999) say that to understand the meaning of the equal sign is a 
core element to understanding algebra. In Norway, the results from TIMSS show that a major 
problem in mathematics is the weak results in algebra, with a significant decline in students’ 
performances from 2011 to 2015 in 8th grade (Grønmo, Hole, & Onstad, 2017). To prepare 
students in elementary school for algebra in lower secondary school, it is important to work 
with their understanding of the equal sign. The aim of this paper is to examine how students 
in 5th and 8th grade in Norway understand the equal sign.  

Operational and relational understanding of the equal sign 
According to Kieran (2004), one aspect of going from arithmetical thinking to algebraic 
thinking is for the students to refocus the meaning of the equal sign. Prediger (2010) 
distinguishes between six different meanings of the equal sign, grouped into three main 
categories: operational meaning, relational meaning and specification. In this paper, the focus 
will be on the first two categories. The operational meaning is an asymmetric use of the equal 
sign. In elementary arithmetic, we often have a calculation to perform on the left-hand side of 
the equal sign that gives an answer on the right-hand side. By looking at the equal sign as 
“add the numbers” or “the answer”, students have an operational understanding (Knuth, 
Alibali, Hattikudur, McNeil, & Stephens, 2008). In the relational meaning of the equal sign, 
the focus is on a symmetric use of the sign. Students with a relational understanding realize 
that “the equal sign [is] symbolizing the sameness of the expressions or quantities represented 
by each side of an equation” (Matthews, Rittle-Johnson, McEldoon, & Taylor, 2012, p. 222). 
In arithmetic contexts, the symmetric use of the equal sign can both help to express general 
relations, and also numerical identities (Prediger, 2010).  
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Knuth, Alibali, McNeil, Weinberg, and Stephens (2005, p. 69) claim that “in algebra, students 
must view the equal sign as a relational symbol”. This is especially important when they learn 
to solve equations with operations on both sides of the equal sign. In order to understand that 
the transformations performed when solving an equation preserve the equivalence relation, it 
is essential to have a relational understanding of the equal sign. In a study of middle school 
students’ (6th to 8th grade) understanding of equivalence, they found that “students who have a 
relational view of the equal sign outperformed their peers who hold alternative views on a 
problem that requires use of the idea of mathematical equivalence” (Knuth et al., 2005, p. 74). 

Rittle-Johnson, Matthews, Taylor, and McEldoon (2011) have made a construct map for 
knowledge of the equal sign as an indicator of mathematical equality, from rigid operational 
on level 1 to comparative relational on level 4. Students at level 1 are only successful at 
solving task “equations-equals-answer” and giving an operational definition of the equal sign. 
At level 2, flexible operational, students are successful at solving, evaluating and encoding 
atypical equation structures, for example tasks with the operations to the right of the equal 
sign. At level 3, basic relational, students can handle operations on both sides of the equal 
sign in equations. They can also recognize and generate a relational definition of the equal 
sign. At level 4, students can successfully solve and evaluate equations “by comparing the 
expressions on the two sides of the equal sign, including using compensatory strategies and 
recognizing that performing the same operations on both sides maintains equivalence” (Rittle-
Johnson et al., 2011, p. 87). After using this construct map in the analysis of students’ 
understanding of equivalence, they comment that “describing children as having an 
operational or relational view of equivalence is overly simplistic” (Rittle-Johnson et al., 2011, 
p. 97). There may be students who are in the transition between an operational and a relational
understanding of equivalence. They also noted that it was more difficult for students to give a
relational definition of the equal sign than to solve equations with operations on both sides of
the equal sign. In another study they also mention that the use of letters as variables instead of
using blanks, may add difficulty to a task (Matthews et al., 2012).

Rittle-Johnson et al. (2011) claim that 35 years of research on elementary school students’ 
understanding of the equal sign shows that a majority of them have an operational 
understanding of the equal sign. It seems that if they get a task such as , they 
either add the numbers to the left of the equal sign or they add all numbers. According to 
Molina and Ambrose (2006), tasks like this one can only be solved correctly if the students 
have a “broad” understanding of the equal sign. In this study, I focus on how students 
answered a similar task. They were also asked about the meaning of the equal sign. Hopefully 
this study will provide further knowledge of the transition between an operational and a 
relational understanding of the equal sign. My research question is: how do students in 5th and 
8th grade in Norway understand the equal sign? 

Methods 
The data in this paper comes from two projects, one quantitative survey study and a 
qualitative interview study. In 2013, 1230 students in 5th and 8th grade (age 10 and 13) from 
two different municipalities in Norway completed a mathematics test as part of a large 
classroom study (Haug, 2017). The test had 40 tasks for the students in 5th grade and 52 tasks 
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for those in 8th grade (the same tasks as in 5th grade and in addition 12 others). Results from 
584 students in 5th grade and 646 students in 8th grade will be presented in this paper. In 2018, 
a task-based interview (Goldin, 1993) was conducted of 8 students from other schools in 
Norway, 4 from 5th grade and 4 from 8th grade. The tasks used in these interviews were all 
multiple-choice tasks picked from the survey study. All of them had seven response 
alternatives, including “don’t know”. In addition to the correct answers, the rest were so-
called distractors. These interviews also form part of this paper.  

In this paper I mainly focus on students’ responses to one of the tasks (Figure 1). In this task 
they are asked about which number is hidden behind the smiley face to make the arithmetic 
correct. A student with an operational understanding of the equal sign may answer 9 that 
matches “operation equal answer” or 16 that corresponds to “add all” (taking the subtract 5 to 
be negative five). A student who answers correctly (2) probably has a relational understanding 
of the equal sign. It may also be possible for those who answer 7 or 12 to have a relational 
understanding. By ignoring subtraction of 5, 7 will be a correct answer and if they do not 
notice that there are different signs on the left- and the right-hand sides and think there is 
addition on both sides of the equal sign, 12 will be correct. It is unclear how students get 0 in 
response to this task. 

Figure 1: The English translation of the question is: Which number must hide behind the smiley 
to make the arithmetic (equation) correct? “Vet ikke” in English “Don’t know” 

Results 
The results from the survey in the equal sign task (Figure 1) show that 29.6% of the students 
in 5th grade and 62.2% in 8th grade gave a correct answer (2) to this task (Table 1). 

7 12 0 16 2 9 Don’t 
know 

Total 

N % N % N % N % N % N % N % N 

5th 14 2.4 13 2.2 0 0.0 100 17.1 173 29.6 250 42.8 34 5.8 584 

8th  13 2.0 8 1.2 3 0.5 42 6.5 402 62.2 149 23.1 29 4.5 646 

Table 1: Result of the equal sign task in the survey study 

These students probably have a relational understanding of the equal sign. The result shows 
also that the answer that most students in 5th grade have chosen is 9 (42.8%). This 
corresponds to calculating what is on the left of the equal sign. Of the 8th grade students, 
23.1% chose this answer. We also note that the answer with the second highest percentage of 
incorrect answers among the students is 16, which corresponds to “add all”. In total, 17.1% in 
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5th grade and 6.5% in 8th grade chose this incorrect answer. This means that approximately 
60% of students in 5th grade and 30% of those in 8th grade in this study probably have an 
operational understanding of the equal sign. 

There are 4.6% in 5th grade and 3.2% in 8th grade who answer either 7 or 12. Since only 3 
students in 8th grade answer 0, this may indicate that there are few students just guessing an 
answer. If many students had simply guessed, this answer option would probably also have 
been chosen by more of them. 

As mentioned earlier, a task-based interview was conducted where 8 students were asked to 
solve the equal sign task. Their names are fictional and the transcripts are translated into 
English by the author. First, all students were given another task: Calculate  . 
Three of those in 5th grade and all four in 8th grade solved this task without any difficulties. 
One student, Knut, had problems performing the subtraction algorithm he had chosen to use.  

The second task they were given was the equal sign task (Figure 1). First, I will present the 
results from the students in 5th grade.  

The first student, Leif, answered 16. 

Leif: Ok … 14 minus one 5 is equal … plus … yes ok … 14 minus 5 that’s 9 and 
9 plus 7 is 16 [ticks the box with 16] … ... … 

Interviewer: That sign there [points to the equal sign in the task] … what does that mean? 
… the sign before the smiley 

Leif: Equals? [In Norwegian: Er lik] 

Interviewer: Equals. What does that mean? 

Leif: It means that it will be … it’s equal … it should be just the same answer as 
it is on the other side 

Leif then suggested the answer 7, before stating “this was difficult”. When the student solved 
this task, he showed an operational understanding of the equal sign. But when explaining the 
meaning of “equals”, he said that it should be similar to what is on the other side, seeing a 
relation between the left- and the right-hand side of the equal sign. Based on only this one 
task it is difficult to say whether he has an operational or relational understanding of the equal 
sign. Perhaps he is a student in the transition between operational and relational 
understanding.  

Olav answered 9 in the equal sign task 

Interviewer: How did you think? 

Olav: Because 14 minus 5 it becomes 9 … … … 

Interviewer: What does that sign mean? 

Olav: Equals 

Interviewer: Equals. What does that mean? Do you know … can you say anything more 
than that means equals? 
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Olav: Like, if you take 1 plus 1 … then you always have equals because there 
should be some answer 

Interviewer: In order for there to be some answer, yes … when there is 7 at the end there, 
what does it mean? Did you> 

Olav: < It means that the answer is 9, but then you add 7 afterwards … then it will 
be 16 

Olav showed an operational understanding of the equal sign both when solving the task and 
when explaining the meaning of the equal sign. For him the answer was on the right-hand side 
and the operations on the left of the equal sign. Another student, Knut, showed an operational 
understanding of the equal sign. He “added all numbers” and answered 16 in this task. On the 
question of what equals means, he responded “the answer is there”.  

Arne answered 12 in the equal sign task.  

Interviewer: How did you think? 

Arne: Em … since 4 minus 5 is 9 … then the answer must be something … which 
is under 10 … so then I thought … I don’t know, I just chose something 

Interviewer: You just chose 12? 

Arne confirms it with a “yes”. Interviewer then asks about the meaning of the equal sign. 

Arne: Equals? 

Interviewer: Equals. What does that mean? 

Arne: For example, if there is 3 plus 3 then it’s 6 … so then you take equals and 
then 6 

Interviewer: … That plus 7 there [points to the task] … 

Arne: Mm … I just thought that … but I think I thought wrong because that … I 
thought I took 2 from there [points to 14 in the task] and gave it to the five 
and then it became 7 and then I thought what was there then it became 12. 
But it is … it’s a bit wrong 

This student at first tried to explain his thinking when solving the task, then he said he just 
picked an answer. When asked about the meaning of equals, he gave a concrete example, 
indicating an operational understanding of the equal sign. Afterwards, he came up with a new 
explanation of how he solved this task. By subtracting 2 from 14 and adding this 2 to 5 to get 
7, he had 7 on both sides of the equal sign. Since he now had 12 on the left-hand side of the 
equal sign, he thought the answer must be 12. This would be a correct answer if there were 
addition on both sides of the equal sign. What Arne explained here is an attempt to make the 
left- and right-hand sides of the equal sign equal. This second explanation indicated that he 
might have a relational understanding of the equal sign.  

Three of the four interviewed students in 8th grade gave a correct answer to this task. These 
three connected the task to solving an equation, something they know how to do. I will only 
present a short extract of what they said that shows this. 
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Lise: [write 2] Well, I thought of the smiley as an x. Then I used the move-swap 
rule and changed plus 7 to minus 7. Then I took 14 minus 5 minus 7 

… 

Kari: … 4 minus 5 is 9. In order for it to be 9 on the other side, there must be 2 … 

Interviewer: Yes, what did you mean by 9 on the other side? 

Kari: 14 minus 5, that is 9 …and an equation … equal on both sides 

… 

Nils: … equation yes … 14 minus 5 is equal … yes 14 minus 5 it’s now 11 … 4 
mi [interrupt] no … 14 minus 5 no not 11, 9 is … and then it must be 2 

These three students could solve tasks with calculations on both sides of the equal sign. Two 
of them said that we must have the same on both sides of the equal sign. Lise solved the task 
by using rules she had learned about how to solve equations. She was not asked about the 
meaning of the equal sign. The fourth student in 8th grade, Sven, had problems solving this 
task. After reading the task he first asked about the “plus 7”. Afterwards, he commented that 
he had seen such tasks before, and then he answered 9 because “14 minus 5 equals 9”. At the 
end of the interview, we returned to this task and asked him more about it. First the 
interviewer reminded him about the answer he gave earlier. 

Interviewer: But what does plus 7 means? 

Sven: No, I don’t know … oh yes, I’ll add 7 or something … … … 

Interviewer: If you look at the sign before the smiley [points to the equal sign], what 
does that sign mean? 

Sven: Equals 

Interviewer: Yes … and what does equals mean? 

Sven: Aa … no, I have never thought about that. I don’t know 

Interviewer: No … when you see such a sign in your book, what do you think? 

Sven: That I will write the answer before 

It looks as if this student has an operational understanding of the equal sign. He has not 
thought about the meaning of the equal sign, even though he has most likely been taught how 
to solve simple equations. 

Discussion, conclusion and implications 
In order to answer the question as to how students in 5th and 8th grade in Norway understand 
the equal sign, I have presented results from a quantitative survey. These show that 
approximately 60% of the students in 5th grade and 30% in 8th grade give an answer to an 
equal sign task which corresponds to “operational equal answer” or “add all”. These students 
most probably have an operational understanding of the equal sign, according to Rittle-
Johnson et al. (2011).  29.6% of the students in 5th grade and 62.2% in 8th grade respond 
correctly to this task. These students have a “broad” understanding of the equal sign, most 
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likely a relational understanding (Molina & Ambrose, 2006). These results are in line with 
what 35 years of research have shown (Rittle-Johnson et al., 2011). A higher percentage of 
students in 8th grade than in 5th grade respond correctly to this task. The reason for this may be 
that those in 8th grade have worked more with equations and in so doing they might have 
developed a relational understanding of the equal sign. It may also be the case that they have 
acquired a mechanical way of solving this kind of tasks (which maybe Lisa has).  

The results from the task-based interviews showed that there were students who displayed an 
operational understanding of the equal sign, both in the way they solved this equal sign task 
and in the explanation they gave of what the equal sign means. What is more interesting is 
what was revealed in the interviews with the students Leif and Arne. In solving this task, Leif 
showed an operational understanding of the equal sign. But when asked what the sign means, 
he came up with an explanation saying that the left- and right-hand sides of the equal sign 
must be equal. For Arne, it is the opposite. He explained the equal sign with a concrete 
example, indicating an operational meaning of the equal sign. But when he solved the equal 
sign task, he seemed to confuse the subtraction sign with an addition sign on the left-hand side 
of the equal sign. That gave him a wrong answer, but the explanation he gave would be 
correct with the correct calculation sign.  Leif and Arne were the two interviewed students in 
5th grade who seemed to be closest to a relational level. With these two students we saw there 
was a difference between using a relational strategy when solving equal sign tasks and 
expressing a relational understanding of the equal sign. 

Based on the construction map for knowledge of the equal sign as indicator of mathematical 
equality, developed by Rittle-Johnson et al. (2011), we saw that all the students who 
completed the first task in the interviews were at least at the rigid operational level. They were 
able to solve a task with an operation on the left-hand side and the answer on the right-hand 
side of the equal sign. Of the four interviewed in the 8th grade, three were able to solve the 
equal sign task and two of them used argumentation about the two sides being equal. These 
two students were probably at a relational level (either level 3 or 4). They are able to solve a 
task with operations on both sides of the equal sign and they reveal a relational understanding 
of the equal sign. Two of the 5th grade and one of the 8th grade students interviewed may be in 
the transition between operational and relational understanding of the equal sign. 

Despite many years of research on the importance of students at early age developing a 
relational understanding of the equal sign, this study shows that it does not appear that there 
has been any progress in Norway with regard to students’ understanding of the equal sign. In 
today’s curriculum, the equal sign is not explicitly mentioned. But in Norway, a new 
curriculum will come into effect in 2020 that applies to 1st to 13th grade. A first draft of the 
new curriculum was out for consultation in the autumn of 2018. One of the competence aims 
for 3rd grade states that the students should be able to use equality and inequality in comparing 
quantities, expressions and numbers, using the equal sign and unequal sign and giving reasons 
for their choice. If the proposal for a new competence goal is passed, then perhaps we can 
hope that more students will acquire a relational understanding of the equal sign. 
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The aim of this study was to investigate the effect of a six-lesson teaching intervention on fifth-
grade students’ linear equation solving abilities. A hanging mobile, a balance model consisting of a 
horizontal beam with on each side a number of bags hanging on a chain, played a central role in 
this intervention. In total, 213 fifth-graders participated in one of the two intervention conditions or 
in the control condition. The intervention conditions differed with respect to the type of hanging 
mobile; either a physical hanging mobile that students could manipulate or a static version on 
paper. Preliminary analyses of the scores on the pre- and post-test seemed to show an improvement 
in students’ linear equation solving abilities for students in both intervention conditions. Students, 
who worked in an embodied learning environment with a physical hanging mobile, seemed to show 
more improvement than students who worked with a paper-based mobile. 

Keywords: Early algebra, linear equation solving, balance model, physical experiences, embodied 
cognition theory. 

Introduction 
The importance of laying the foundation for learning algebra at a young age is increasingly being 
emphasized. (e.g., Kaput, Carraher, & Blanton, 2008; National Council of Teachers of Mathematics 
[NCTM], 2000). A large number of studies have provided evidence that, by taking students’ natural, 
intuitive ideas and informal reasoning as an entry point, students of primary school age can already 
engage in algebraic thinking (e.g., Kaput et al., 2008). Research in this area of early algebra has 
revealed that several algebraic concepts such as equivalence, expressions, equations, inequalities, 
generalized arithmetic, functional thinking, variable, and proportional reasoning can be taught to 
young students (Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015). In the current study, we 
investigated how linear equation solving of fifth-graders can be fostered. 

Teaching linear equation solving 

Studies on early algebraic thinking often investigated students’ linear equation solving ability. 
These studies generally found positive results. It was for example found that third-grade students 
can successfully deal with equation-related concepts such as equality and the equal sign, crucial for 
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learning to solve linear equations (e.g., Bush & Karp, 2013), can solve simple equations such as 
3 × n + 2 = 8, and can use letters to represent unknown quantities (Blanton et al., 2015). Moreover, 
when starting from a meaningful context, 10-year old students were found to be able to represent, 
meaningfully discuss, and solve equations with unknowns on both sides of the equal sign (Brizuela 
& Schliemann, 2004), and, through informal reasoning, sixth- and seventh-grade students have even 
shown themselves able to solve systems of linear equations (Van Amerom, 2003; Van Reeuwijk, 
1995). However, there are only a limited number of studies in which young students had to solve 
systems of equations and those that were carried out were not set up systematically and contained 
small samples of students.  

A frequently used model to make linear equation solving more accessible to young students is the 
balance model. This model can support students in different ways when solving linear equations 
and is particularly deemed suitable for grounding the equality aspect of an equation, as such 
enhancing the conception of the equal sign as a symbol for representing equality (Otten, Van den 
Heuvel-Panhuizen, & Veldhuis, 2019). The balance model also can assist students in providing a 
language base for solving problems, as was shown by Warren and Cooper (2005) in a study 
involving third-grade students. Furthermore, by means of providing a meaningful context, it can 
help students to handle problems with unknowns (Gavin & Sheffield, 2015). 
Role of physical experiences in learning mathematics 

Considering the role of physical experiences for learning has a long tradition. For example, Piaget 
(Piaget & Inhelder, 1967) already assumed that actions form the basis for learning and are important 
for understanding abstract ideas. A recent study on the efficacy of teaching mathematics through the 
use of manipulatives, showed benefits for instruction with manipulatives especially for children 
aged 7-11 and for the mathematical domain of algebra, compared to children that received abstract 
symbolic instruction (Carbonneau, Marley, & Selig, 2013). Using manipulatives has also been 
found to be beneficial for young students to learn to solve simple symbolically presented equations 
(Sherman & Bisanz, 2009). 

Since the emergence of theories of embodied cognition, the attention for physical experiences in 
learning has been renewed (De Koning & Tabbers, 2011). According to embodied cognition 
theories, bodily experiences are essential for cognitive learning processes (e.g., Wilson, 2002) and 
abstract higher-order cognitive processes, such as mathematics, are assumed to be grounded in 
action and perception (Barsalou, 1999). Hence, embodied learning environments are regarded as 
important for learning mathematics (Abrahamson & Lindgren, 2014). 

Current study 

In the current study, we investigated the effects of an intervention, consisting of a six-lesson 
teaching sequence, on fifth-grade students’ linear equation solving abilities. The intervention was 
based on the idea that embodied learning environments can be beneficial for learning mathematics. 
A hanging mobile, a balance model consisting of a horizontal beam with on each side a number of 
bags hanging on a chain, played a central role in this intervention. In this study, we formulated the 
following research questions: (1) What is the effect of an intervention based on a balance model on 
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students’ linear equation solving performance? and (2) What is the difference between the effect of 
an intervention based on a balance model with a manipulable physical hanging mobile from that 
with a static hanging mobile on paper on students’ linear equation solving performance? 

Method 
Research design 

To investigate these questions, we set up a classroom experiment based on a staged comparison 
design consisting of two intervention conditions and a control condition. In the first intervention 
condition, a physical hanging mobile was used that students could manipulate. In the second 
intervention condition, a paper-based hanging mobile was used. For each condition there were three 
cohorts, which differed in the timing of the intervention. In each cohort the students’ performance 
on linear equation solving was measured four times (see Table 1). Each measurement contained the 
same test items. Making use of a staged comparison design made it possible that the same teacher 
taught all the lessons of the interventions.  

Condition Cohort (n) Measurement 1 
Oct. 2016 Nov.-Dec. 2016 Measurement 2 

Dec. 2016 Feb.-March 2017 Measurement 3 
March 2017 May-June 2017 Measurement 4

June 2017 
Intervention Condition 1 Cohort 1 (n=22) M1 Intervention M2 M3 M4 

Cohort 2 (n=18) M1 M2 Intervention M3 M4 

Cohort 3 (n=25) M1 M2 M3 Intervention M4 

Intervention Condition 2 Cohort 1 (n=22) M1 Intervention M2 M3 M4 

Cohort 2 (n=21) M1 M2 Intervention M3 M4 

Cohort 3 (n=25) M1 M2 M3 Intervention M4 

Control Condition Cohort 1 (n=25) M1 Control 
intervention  M2 M3 M4 

Cohort 2 (n=30) M1 M2 Control 
intervention  M3 M4 

Cohort 3 (n=25) M1 M2 M3 Control 
intervention  M4 

Table 1: Research design. For the current study we focus on the measures in bold 

Participants 

Participants included 213 students (47% boys), with ages ranging from 9 to 11 (M = 10.04, 
SD = 0.49) from nine fifth-grade classes in seven schools in the Netherlands. The classes were 
selected by convenience. Three classes participated in Intervention Condition 1 (n = 65), three 
classes in Intervention Condition 2 (n = 68), and the final three classes formed the Control 
Condition (n = 80). Students had received no prior instruction on equation solving or other algebra 
topics. 

Intervention program 

In both intervention conditions students were taught linear equation solving by means of the same 
four-episode (six lessons) teaching sequence (see Figure 1). The lessons were taught by the first 
author of this paper. The overall aim of this sequence was to elicit algebraic reasoning related to 
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(informal) linear equation solving. In each of the episodes the aim was to provide students with 
opportunities to develop algebraic strategies related to linear equation solving, such as restructuring 
strategies (e.g., change the order of terms in an expression, exchange the expressions on both sides 
of the equation), isolation strategies (i.e., strategies to isolate an unknown, such as taking away 
similar things on both sides), and substitution strategies (i.e., replacing unknowns by other 
unknowns or by values). In the first episode, students worked with one hanging mobile to discover 
relationships between unknowns and were thus reasoning about one equation. Students’ main task 
was to discover all possible ways to maintain the balance of the mobile, for example by exchanging 
the bags of the left and right side of the mobile, by taking away similar bags from both sides, or by 
substituting one color of bags by another color. From Episode 2 on, the information from two 
equations had to be combined to discover relationships between unknowns to solve the problems. 
Students were thus reasoning about a system of equations, first still in the context of the hanging 
mobile (Episode 2) and then in new contexts such as a tug-of-war situation (Episode 3). From 
Episode 3 on, students were additionally challenged to use more symbolic notations. In the final 
episode, Episode 4, students had to find the values of unknowns in a system of two symbolically 
notated linear equations.  

The two intervention conditions differed as regards whether students gained physical 
experiences during the teaching sequence (Figure 1). In the first episode of Intervention 
Condition 1, an embodied learning environment was created in which students worked in small 
groups (2-3 students) with a physical hanging mobile. While trying to maintain the balance of the 
mobile, the tilting beam could be in or out of balance, thus providing students real-time feedback on 
their actions while manipulating the bags. In Episode 2, students in Intervention Condition 1 
worked with paper-based hanging mobiles. The physical hanging mobiles were, however, still 
present in front of the classroom in this episode, but not all students worked on them. Instead, the 
physical hanging mobiles were used during classroom discussions by the teacher or by some 
students to make their reasoning processes explicit. Also, in Episodes 3 and 4 the physical hanging 
mobile was present in front of the classroom. 

Figure 1: Schematic representation of the intervention (for both intervention conditions) 
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In Intervention Condition 2, students received the exact same lessons with the exact same 
assignments; only the physical hanging mobile was replaced by a paper-based hanging mobile so 
that these students did not gain physical experiences during the lessons. Lastly, students in the 
Control Condition were not taught any lessons on linear equation solving. Instead they participated 
in a control intervention consisting of a six-lesson teaching on probability – a topic which is also 
not taught at primary schools in the Netherlands. Students were taught the probability lessons as a 
control group, so that possible differences between the intervention and control conditions could not 
be attributed to the fact that only in the intervention conditions students received additional lessons 
on a (to them) new mathematical topic. 

Test for linear equation solving 

Students’ performance on linear equation solving was assessed by a paper-and-pencil test, 
consisting of four items in which students had to solve (a system of) linear equations (see Figure 2). 
The same test was administered to the students repeatedly before and after the intervention (see 
Table 1, Measurement 1-4). The items were formulated in such a way that prior instruction on linear 
equation solving was not essential to solve the problems. The algebraic strategies that students 
developed during the lessons (i.e., restructuring, isolation, and substitution strategies) could be used 
to solve the problems. The open-ended questions explicitly invited students to explain their thinking 
and to reveal their reasoning. 

Figure 2: Test items on linear equation solving 

Data analysis 

Each linear equation solving performance item (Figure 2) was scored as incorrect (0) or correct (1), 
resulting in a total correctness score with scores ranging from 0 to 4. Items 2 and 4 were only scored 
as correct when both sub questions were answered correctly. Students’ explanations were 
categorized by means of a coding scheme. In each test item, students had to solve the problem by 
combining the information of two equations. Taking the information from both equations into 
account and reasoning on the basis of both equations was crucial for solving these problems. In the 
coding scheme, we therefore coded students’ level of reasoning based on their ability to incorporate 
information from the different equations in their reasoning process. More specifically, we 
distinguished between students who did not use any of the equations in the description of their 
reasoning (Level R0), students who reasoned on the basis of only one of the two given equations  
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(Level R1), and students who reasoned on the basis of both given equations by combining the 
information of both of them (Level R2).  

For the current paper, we focus on the data of the tests directly before and after the interventions 
(see Table 1, measures in bold), consisting of students’ correctness and reasoning scores. Mean 
values and standard deviations were calculated for both scores on the pre- and post-test. Effect sizes 
(Cohen, 1988) were also calculated for each condition.  

First results 
For both intervention conditions, students’ correctness scores increased. For Intervention 
Condition 1, the correctness scores increased from M = 2.31 (SD = 1.17) on the pre-test to M = 3.22 
(SD = 0.91) on the post-test (d = 0.87) For Intervention Condition 2, the correctness scores 
increased from M = 2.43 (SD = 1.21) on the pre-test to M = 3.15 (SD = 0.93) on the post-test 
(d = 0.67). In contrast, students of the Control Condition almost showed no improvement on 
correctness scores, going from M = 2.65 (SD = 1.26) on the pre-test to M = 2.72 (SD = 1.33) on the 
post-test (d = 0.05). Students’ reasoning also improved for both intervention conditions (see 
Figure 3). When comparing pre- and post-tests, a decrease in percentage of the lowest level of 
reasoning (Level R0) was observable, while there was an increase in the highest level of reasoning 
(Level R2). The percentages of the intermediate level of reasoning (Level R1) remained more or 
less stable.  

Figure 3: Percentage of students showing each level of reasoning on the pre- and post-test 

When comparing both intervention conditions, students in Intervention Condition 1 showed a 
somewhat larger improvement than students in Intervention Condition 2, both on correctness scores 
and level of reasoning. For both intervention conditions, there was a decrease in percentage of the 
lowest level of reasoning (R0) and an increase in the highest level of reasoning (Levels R2), with a 
somewhat larger decrease of Level R0 and a somewhat larger increase of Level R2 for Intervention 
Condition 1. The percentages of the intermediate level of reasoning (Levels R1) remained more or 
less the same for both conditions. For the Control Condition, the percentages of all levels of 
reasoning (almost) did not change.  

To provide an example of an individual learning process of one of the students, we zoom in on the 
on the pre- and post-test answers to Item 4 of Omar, who participated in Intervention Condition 1. 
On the pre-test, Omar gave an incorrect answer to this item, with the explanation “I don’t know”. 
This response was categorized as Level R0, because he did not use any of the given equations in his 
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explanation. His answer on the post-test is shown in Figure 4. Here, Omar interestingly represented 
the equations as hanging mobiles. Then he doubled the second equation (S + P = 10) to substitute 
this in the first equation (S + S + S + P + P = 27), so that unknown S was isolated. In this way he 
found that S equals 7 and then used the second equation to find the value of P. Omar’s solution 
strategy was categorized as Level R2, because he reasoned on the basis of both given equations by 
combining the information from both equations.  

Figure 4: Solution strategy of Omar (translated from Dutch) on the post-test; categorized as Level R2 

Discussion 
Based on these first results, we can draw the tentative conclusion that our six-lesson intervention in 
which the balance model in the form of a hanging mobile plays a central role, can improve students’ 
linear equation solving abilities. Moreover, our descriptive data indicate that when this intervention 
took place in an embodied learning environment in which the students could work with a physical 
hanging mobile instead of with a version on paper, the performance gain was even larger. This latter 
finding is in line with the idea that embodied learning environments are beneficial for learning 
mathematics (e.g., Abrahamson & Lindgren, 2014), and it could add to the use of these 
environments in whole classroom settings. To be more certain about what we can learn from our 
study more advanced statistical analyses will be carried out. 
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Representational variation among elementary school students. A study 
within a functional approach to early algebra 
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This paper describes the differences in the types of representations used by eight third-grade (8 to 9-
years-old) and eight fifth-grade (10 to 11-years-old) students when working with problems that 
involve different linear functions. We present an analysis of students’ written and oral answers during 
a Classroom Teaching Experiment (CTE) and semi-structured interviews from a functional approach 
to early algebra. The study examines how students’ representations varied when working with 
different types of linear functions (𝑦𝑦 = 𝑥𝑥 + 𝑎𝑎; 𝑦𝑦 = 𝑎𝑎𝑥𝑥; 𝑦𝑦 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏), when solving for specific values, 
and when generalizing. The findings show that students in both grades primarily used the 
representation present in the problem. The type of linear function involved appears to have had no 
effect on either group’s use of one representation or another.  

Keywords: Representation, generalization, linear functions, functional thinking. 

Introduction 
Functional thinking—which has been found to facilitate the introduction of algebra in the early 
grades—focuses on the relationships between two or more covarying quantities (Blanton, Brizuela, 
Gardiner, Sawrey, & Newman-Owens, 2015); these relationships can be expressed through different 
representations. Representations, which form an integral part of how students think about functions, 
“can denote and describe material objects, physical properties, actions, and relations, or things that 
are far more abstract” (Goldin & Shteingold, 2001, p. 4). Therefore, representations help to structure 
and expand students’ thinking (Brizuela & Earnest, 2008). Broadly, our interest is focused on types 
of representations used by elementary students when working with covarying quantities. 

Some researchers have described how elementary school students working with problems that involve 
single linear functions use, represent, and understand the relationships involved in a given problem 
(e.g., Brizuela & Earnest, 2008). The originality of this study lies in the exploration of the types of 
representations used by elementary school students when working with problems involving different 
types of linear functions. More specifically, this paper analyzes the answers given by eight third- and 
eight fifth-grade students participating in a CTE, and their answers in semi-structured interviews, 
after the CTE. The research question is: how do students’ representations vary when working with 
different types of linear functions? Based on this research question, we define two specific aims to 
describe the type of representations used by these students when: (a) solving problems which involved 
three types of functions: y=x+a; y=ax; and y=ax+b; and (b) answering questions regarding specific 
values and when asked to generalize the relationship between variables. 

Background 
The relationship between generalization and representation is central: both are intrinsic to algebraic 
thinking and consequently to functional thinking. According to Kaput, Blanton, and Moreno (2008), 
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representations—a socio-cultural vehicle used to generalize—enable students to build and complete 
the ideas that help them reason about general statements and compress multiple instances into the 
unitary form of a single statement that symbolizes the multiplicity. Thus, generalization is the “act of 
creating that symbolic object” (p. 20). 

Several studies highlighted the role of representations in generalizing the relationship between two 
variables. According to some findings, 8 to 10-years-old students, instructed to use algebraic notation, 
represented the linear relationship y=x+a by mainly using algebraic notation rather than natural 
language (Carraher, Schliemann, & Schwartz, 2008), while other studies reported that fifth graders 
(10 to 11-years-old) spontaneously used algebraic notation to generalize a problem that involve 
y=mx+b (Pinto & Cañadas, 2018). Another study distinguished between the representations used by 
students when working with specific values and when generalizing, concluding that students who do 
not use algebraic notation when they represent a generalization do “not yet have a representational 
means to compress multiple instances into a unitary form that could symbolize these instances” 
(Blanton et al., 2015, p. 542). Further research is therefore needed on how the representations used 
by students vary when working with different linear functions, and how they differ depending on 
whether they are working with specific values or generalizations. 

The types of representations that can be used by elementary school students to solve problems 
involving linear functions include: (a) natural language – oral; (b) natural language – written; (c) 
pictorial; (d) numerical; (e) algebraic notation, (f) tabular; and (g) graphic (Carraher et al., 2008). 
Considering the suggestions of early algebra literature, we stress the role of natural language because 
it is considered as a useful scaffold to understand symbolic representations (Kaput, 1987; Radford, 
2003), and helps to broaden students’ understanding about functions, improving their abilities to solve 
problems (MacGregor & Stacey, 1995). 

Method 
This study forms part of a broader project that explores functional thinking among elementary school 
students in Spain. 

Students 

Two groups were intentionally selected for the first year of the study: 24 third-grade (8 to 9-years-
old) and 24 fifth-grade (10 to 11-years-old) students. The students had not worked previously with 
such problems. Then, we interviewed eight students in each group to obtain a deeper understanding 
of how they responded to problems involving relationships between two variables.  

Data collection: CTE and interviews 

The data were collected during the CTE and individual interviews. The CTE and interviews objectives 
were to: (a) explore how students relate the variables involved in a problem involving a linear 
function; (b) introduce different types of representations to express functional relationships; and (c) 
explore students’ generalization when working with functional thinking tasks. 

 A four-session CTE was designed for each grade during the last term of 2014/2015 period, with each 
session lasting approximately 60 minutes. Each CTE session was divided into three parts. First, we 
introduced the context of the problem, highlighted the representations given and asked the students 
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questions about specific values to ascertain whether they had understood it. Second, the students were 
given individual worksheets with questions about specific values and generalization related to the 
problem. Third, the researchers led a classroom discussion around the responses to some of the 
questions on the worksheets. During the 2015/2016 period, eight students from each grade were 
interviewed in two 30-minute interviews. The interviewees were deliberately selected to include 
children who had performed differently during the CTE and it provided a way to more closely detail 
individual students’ representations from the CTEs. Table 1 shows the general context of problems 
posed, types of functions, and types of representations introduced during the CTE and interviews.  

Timing Problem posed 
CTE 
 

Third 
Session 1. María and Raúl are brother 
and sister. María is the elder. We know 
that María is 5 years older than Raúl 
(y=x+5) (natural language – written and 
table).  
Sessions 2 and 3. Carlos earns 3 euros 
for each T-shirt he sells (y=3x) (natural 
language – written, table, and graphic).  
Session 4. Different corridors are 
composed of white and grey tiles. All the 
tiles are square and of the same size and 
are to be laid in the following pattern: 
(y=2x+6) (natural language – written, 
and pictorial) (Küchemann, 1981). 
 
 
 
 

Fifth 
Session 1. Carlos earns 3 euros for each T-shirt 
he sells (y=3x) (natural language – written and 
table).  
Session 2. Carla earns 3 euros for each T-shirt 
she sells, while Daniel earns double that amount 
for each T-shirt and has saved 15 euros (y=3x; 
y=2x+15) (natural language – written and 
table). 
Session 3. A grandmother tells her grandson 
that she has some money to give him and 
proposes two deals (y=2x; y=3x–7) (natural 
language - written) (Adapted from Brizuela & 
Earnest, 2008). 
Session 4. Different corridors are composed of 
white and grey tiles. All the tiles are square and 
of the same size and are to be laid in the 
following pattern: (y=2x+6) (natural language 
– written and pictorial) (Adapted from 
Küchemann, 1981). 

Interviews Fourth 
Interview 1. It costs 2 euros to enter a 
car park and 1 euro per hour to park there 
(y=x+2) (natural language- oral, 
algebraic notation). 
Interview 2. Elsa conducts a train. Three 
passengers get on at each stop (y=3x+1) 
(natural language – oral, algebraic 
notation). 

Sixth 
Interview 1. A geometric pattern with a 
different number and arrangement of points 
(y=4x+1) (natural language – oral, algebraic 
notation, and pictorial). 
Interview 2. Two telephone rates have different 
costs (y=10x; y=5x+60) (natural language – 
oral and algebraic notation). 

Table 1: Problems posed in CTE and interviews  

The problems proposed involved different linear functions (y=x+a, y=ax, and y=ax+b); some of 
them were selected from previous studies and others were designed by the research team, considering 
different types of linear functions. The questions concerning each problem were sequenced according 
to the inductive reasoning model of Cañadas and Castro (2007), which structures questions from 
specific values to generalization. For instance, the fourth task for third and fifth grade included 
questions regarding: 

· Specific values. For example, “How many grey tiles do they need for a corridor with 10 white 
tiles?”, and  
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· Generalization. For example, “The workers always lay the white tiles first and then the grey
tiles. How can they calculate how many grey tiles they need in a corridor where they’ve
already laid the white ones?”

The data analyzed in this paper were the students’ CTE and interview worksheets and the 
transcriptions of the video-recorded interviews. 

Data and analysis categories. 

The first step was identifying the types of representations used by the students. Figure 1 gives an 
example of each type of representations1 used by students when they answered in different tasks. 

Natural language - oral 
(Fourth grade, Interview 
2) 
Interviewer: How would 
you find the number of 
passengers for any 
number of stops? 
Student: (…) 
multiplying that number 
times three plus one.  

Natural language – 
written (Third grade, 
CTE, session 1) 
We found a picture of 
Raúl’s birthday party and 
all you can see are the 
candles on the cake. How 
could you find María’s 
age?  

I add five to Raúl’s age. 

Pictorial (Sixth grade, 
Interview 1) 

Numerical (Third 
grade, CTE, session 1) 
When Raúl is 15, how 
old will María be? 
Raúl’s 15 and María’s 
20. 
How did you find your 
answer? 15+5=20  

Algebraic notation 
(Fifth grade, CTE, 
session 4) 
How many grey tiles do 
they need for a floor with 
five white tiles? They 
need 16 grey tiles. 
Formula: (X x 2)+6=16. 
X = number of grey tiles  

Tabular (Fourth grade, 
Interview 1) 

Graphic (Third grade, 
CTE, session 3) 

Figure 1: Examples of types of representation in students’ answers 

The representations used by the students to solve problems were first identified and then analyzed 
considering: the type of linear function in each problem (y=a+x, y=ax, and y=ax+b), and the 
students’ answers when working with specific values and when generalizing. 

Results and Discussion 
We present the findings for the types of representations used by each group of students, considering 
our research questions. 

Third and fourth grades 

Table 2 lists the frequency for each type of representations used by students in CTE and interviews, 
considering different linear functions and when working with specific values and when generalizing. 

1 Which were not mutually exclusive. 
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Representation 
CTE Interview 

y=x+a y=ax y=ax+b y=x+a y=ax+b 
Specific values N-oral    8* 7* 

N-written 2* 4* 5*   
Pictorial      
Numerical 4 7 6 1 7 
Algebraic 4* 5*    
Tabular    1 2 
Graphic      

Generalization N-oral    7* 6* 
N-written 5* 2* 2* 1  
Pictorial      
Numerical      
Algebraic    6* 5* 
Tabular      
Graphic      

 * = representation introduced in the problem itself 

Table 2: Representations used by third- and fourth-graders 

As the data in Table 2 shows, the students tended to use the representation introduced in the problem 
itself, regardless of the type of linear function involved. Specifically, oral and written natural language 
prevailed in this group of eight students. Mario’s response during the first interview to a problem with 
a function of the type y=x+b is an example. 

Interviewer: Let’s suppose I don’t know how many hours I’m going to park, but I tell you that 
I’m going to be there for x hours (…). How can I know how much it’s going to cost 
me? 

Mario: (…) Well, if you’re there for x hours, you add 2. For all the hours [the car is parked] 
you add 2. 

As exemplified in the above extract, the prevalence of oral language is an essential element in learning 
to recognize and understand a function (MacGregor & Stacey, 1995). The use of a numerical 
representation was also observed at least once in all the problems involving specific values. This 
makes sense, since students were being asked about specific, and not general values. Numerical 
representation was as frequent as natural language in students’ answers to problems with functions 
of the form y=ax+b.  

During the interviews one year later, some students spontaneously arranged the values of the variables 
in tabular form. Figure 2 shows how Susana arranged the data to explore the specific values in a 
problem of the type y=mx+b (interview 2).  

 
Figure 2: Susana’s answer when working with specific values 
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As Figure 2 shows, Susana arranged the specific values in two columns separated by a dash (-). She 
listed the number of stops on the left and the number of people on the train on the right. This table, 
according to Martí (2009), shows that “data be organized (categorization, establishing 
correspondences) in a certain spatial layout” (p. 134). Susana’s table is a novel way to represent, 
relate and understand the values involved in the problem. Spontaneous tabular representations were 
observed during the interviews in the problems involving functions such as y=x+a and y=ax+b.  

The eight students used different representations depending on whether they were working with 
specific values or generalizing. During the CTE, the variety of representations was wider when they 
were exploring the relationship with specific values (written natural language, numerical, algebraic 
notation) than when generalizing, when they used written natural language only. One possible 
explanation for this difference may lie in the complexity inherent in generalizing the relationship 
between two variables, as suggested by other authors (e.g., Radford, 2003). Nonetheless, natural 
language would appear to be the way these students explain general rules. During the interviews, the 
students used the representation present in the problem to generalize the relationship, whereas for 
specific values they used numerical and tabular representations as well.  

Fifth and Sixth Grades 

Table 3 lists the types of representations used by the eight students in this group, when solving the 
problems posed. 

 
Representation 

CTE Interview 
y=x+a y=ax y=ax+b y=x+a y=ax y=ax+b 

Specific values N-oral    1 1* 1* 
N-written 1*  5*    
Pictorial   3* 5*   
Numerical 5 2  2 4 4 
Algebraic   1    
Tabular    6* 3* 4* 
Graphic       

Generalization N-oral    4* 3* 3* 
N-written 3* 4* 7*    
Pictorial       
Numerical  1 1 1 1 1 
Algebraic 2* 3* 2 5* 3 4* 
Tabular       
Graphic       

Note. * = representation introduced in the problem itself 

Table 3: Representations used by fifth and sixth graders 

We can see in Table 3 that these students tended to use the same type of representation as introduced 
in the problem. Significantly, in the tiles problem (CTE, y=mx+b type function), two of the students 
used algebraic notation spontaneously. Camila’s answer to the first question associated with that 
problem is reproduced in Figure 3. 
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1. How many grey tiles do they need for a floor with five white tiles? 
They need 16 grey tiles. Formula: (X x 2)+6=16. X = number of grey tiles 

Figure 3: Camila’s answer to the tile problem (CTE, session 4) 

Camila used a representation not introduced in the problem. Although some of the questions posed 
in the earlier sessions involved the use of algebraic notation, here the student used it to express the 
general rule, although she was answering a question about a specific value. This type of representation 
was also observed in the interviews, specifically in four students’ answers to the problem in the 
second interview, in which the functions were of the type y=ax and y=ax+b. That spontaneous use 
of algebraic notation differed from the findings for the third- and fourth-grade students and suggests 
that some of the sixth graders were quicker to adopt the use of algebraic notation to express general 
relationships between two variables. 

Most of the students in fifth and sixth grades generalized using (oral or written) natural language or 
algebraic notation, whereas for specific values they used a wider variety of representations (oral and 
written natural language, pictorial, numerical, algebraic notation and tabular). Numerical 
representation prevailed in these students’ solutions to the specific value questions. Once again, this 
make sense given that were being asked about specific values. 

Conclusions 
This paper seeks to shed light on how the representations used by intermediate and upper elementary 
school students (8 to 12-years-old) vary when solving problems that involve different types of linear 
functions. Specifically, in both groups, when the students generalized the functional relationship, they 
used the same type of representation as introduced in the problem (natural language or algebraic 
notation). The variety of representations was broader when they worked with specific values. These 
findings reveal that while they were aware of different types of mathematical representations (used 
when working with specific values), when generalizing they only used two. As noted by other authors 
(e.g., Brizuela & Earnest, 2008), this highlights the importance of teaching representations in 
elementary school to enable students to gradually assimilate them as they are constructing meaning 
for different types of representations when generalizing and grasping the meaning of functional 
relationships.  

Concerning this study’ specific objectives, no major differences were observed in the representations 
used in one type of function or another by either third- and fourth- or fifth- and sixth-graders. That 
may be because both groups had participated in a CTE in which they solved problems involving 
different linear functions. Tabular representations appeared spontaneously in some of the third/fourth-
grade students’ answers, whereas algebraic notation appeared among the fifth/sixth-graders. 
Significant use of numerical representation was found in both groups and it was consistent with what 
the problem asked them. The major difference between the two groups was in the types of 
representations used when working with specific values and when generalizing. When generalizing, 
the third- and fourth-graders used a narrower variety of representations than the older group of 
students. This seems to suggest that in this sample, the students in the higher grades of elementary 
school had more resources from which to draw when expressing general rules. 
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The purpose of the present study was to propose and empirically validate a model describing 
secondary school students’ algebraic thinking. Based on a synthesis of the literature, a model for 
Grade 9 students’ algebraic thinking was formulated. The major constructs incorporated in this 
model were “generalized arithmetic”, “transformational ability” and “meta-algebra”. The study 
involved one hundred fourteen students. Data analysis validated the hypothesized model and 
suggested a sequential effect between the three factors. Transformational ability had a direct effect 
on generalized arithmetic and the latter had a direct effect on meta-algebra.  

Keywords: Algebra, algebraic thinking, secondary school algebra, functional thinking. 

Introduction 
Recently, there is a growing consensus that algebra is the gateway to school mathematics reform for 
the next century and school algebra should be reformulated as a K-12 strand of thinking (Kaput, 2008; 
National Council of Teachers of Mathematics, 2000; Stephens, Ellis, Blanton & Brizuela, 2017). 
Algebraic thinking can be coherently conceptualized as a synthesis of different content strands, 
concepts, processes or  forms of reasoning that relate to the ideas of equivalence, generalized 
arithmetic, variable, proportional reasoning, modelling, and functional thinking (Blanton, Stephens, 
Knuth, Gardiner, Isler, & Kim, 2015; Chimoni, Pitta-Pantazi, & Christou, 2018).  

A number of researchers provided diverse conceptualizations of algebraic thinking, focusing on 
different parameters (Drijvers, Coddijn, & Kindt, 2011). One of the most influential developments of 
the past decades in respect to conceptualizing the notion of algebraic thinking is Kaput’s organizing 
framework (Stephens et al., 2017). Kaput (2008) suggested that algebraic thinking consists of two 
core aspects: (a) generalizing and representing generalizations and (b) syntactically guided reasoning 
and actions on generalizations represented in conventional symbolic systems (Stephens et al. 2017). 
Kieran (2004), adopting a different methodology, conceptualized algebra as a multifaceted activity 
that encompasses various types of tasks and ways of thinking. Kieran offered a slightly different view 
by arguing that algebraic thinking is not only about using symbols in order to express generality; 
algebraic thinking arises when individuals make use of any kind of representations when they try to 
manipulate quantitative situations in a relational way. Drijvers, Coddijn and Kindt (2011) provided a 
different conceptualization of algebraic thinking giving emphasis on the role of functional thinking 
and solving equations and in-equalities with reference to specific constraints. 

Thus, researchers’ efforts to describe algebraic thinking through several perspectives are 
characterized by diversity and there is not a consensus regarding the dimensions of students’ algebraic 
thinking in secondary school (Carraher, Martinez & Schliemann, 2008). In addition, the existing 
models are based mainly on theoretical conceptualizations of students’ algebraic thinking.  The aim 
of this study is the development of a better understanding of the notion of secondary school students’ 
algebraic thinking by proposing a model that takes into consideration existing and well-accepted 
theoretical frameworks (Kaput, 2008; Kieran, 2004). Thus, the proposed model is founded by 
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utilizing aspects of algebraic thinking that are well-accepted in the existing literature. In addition, the 
proposed model will be validated based on empirical data.  

Literature Review 
Several researchers made efforts to analyse the nature and content of algebraic thinking. There are 
differing views on what constitutes algebraic thinking, but many agree that a fundamental element is 
generalization, that is the ability to see the general in the particular (Kaput, 2008; Kieran, 2004; 
Wilkie, 2016). Generalization is a cornerstone of mathematical structure, while symbolization is a 
catalyst of algebraic thinking development. In this paper, we examine Kaput and Kieran’s models of 
algebraic thinking, which are considered of the most influential in recent literature (Stephens et al., 
2017). Kaput (2008) asserted that generalizing and symbolizing are tightly linked in that symbols 
allow generalizations to be expressed in a stable and compact form, throughout three strands: (a) 
generalized arithmetic, (b) functional thinking and (c) modelling. Generalized arithmetic, as a way 
for applying algebraic thinking in arithmetical settings, involves the use of letters for generalizing 
rules about relations between numbers, manipulating numbers and operations properties, examining 
number structure, understanding the equals sign in number relations, notice relationships in 
operations on classes of numbers and reasoning with forms and representations of equivalence. The 
generalizations that students make in the realm of generalized arithmetic can serve as a context for 
developing students’ abilities to represent mathematical ideas symbolically. Functional thinking 
refers to the identification and description of functional relations between independent and dependent 
variables in different forms of representation and the manipulation of covariance and correspondence 
relations. Finally, modelling involves the use of symbols for developing models, manipulating 
variables, and re-translating between models and situations. Emphasis is placed on exploring 
modelling problems that are derived from complex realistic situations (Blanton et al, 2015). 

Kieran’s (2004) model for conceptualizing algebraic activity denotes that algebra is not just a topic 
in mathematics curriculum, but a multifaceted activity that encompasses various types of tasks and 
ways of thinking. Kieran asserted that algebraic thinking is considered as an approach to quantitative 
situations that seeks to look for relationships and structure with means that are not strictly letters-
symbolic. Kieran, compared to Kaput, emphasized that algebraic thinking is a way for introducing 
students to the more abstract aspects of formal algebra and pointed out that her model tries to unfold 
the kinds of meaning that secondary students make when they are engaged with algebraic tasks. This 
model involved three types of activities: “generational” activities, “transformational” activities, and 
“global, meta-level” activities. The generational activities refer to the generation of equations and 
expressions in various situations and involve exploration of problem situations and numerical and 
geometrical patterns that lead to the formulation of generalization, and exploring numerical 
relationships. The transformational activities refer to the transformation of expressions by applying 
specific rules and involve conceptual understanding of algebraic objects. The global, meta-level 
activities are not strictly algebraic in nature, but algebraic tools are needed to be investigated and 
involve general mathematical processes, such as proving, studying functional relationships and 
identifying structure.  

In conclusion, Kaput and Kieran’s models examine algebraic thinking under a different perspective. 
Kaput (2008) emphasized the role of generality and symbols by explaining algebraic reasoning under 
two core lenses: (a) symbolization that serves purposive generalization and (b) reasoning with 
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symbolized generalizations. Thus, in Kaput’s model the use of symbols is a fundamental aspect, while 
in Kieran’s model the use of symbols is not a prerequisite. For instance, Kieran’s meta-level activities 
may be solved without using algebraic symbols at all. In this study, we will synthesize the two 
frameworks and propose a model that describes students’ algebraic thinking in an explicit and 
parsimonious way. The synthesis of the two frameworks makes possible the combination of the 
salient parameters of each model to provide a comprehensive description of students’ algebraic 
thinking. In addition, it provides a more accurate conceptualization of students’ algebraic thinking by 
adopting the parameters of each model that are described in a more concrete way. For instance, 
transformational activities are implicitly integrated in the strands of Kaput’s model, while in Kieran’s 
model they are described as a separate type of algebraic activity. In the following section, we explain 
the rationale of including each parameter in the proposed model. 

The Present Study 
The purpose of the present study was to propose and empirically validate a model describing Grade 
9 students’ algebraic thinking. In particular, the aims of the study were: (a) to propose a theoretical 
model describing the dimensions of 9th grade students’ algebraic thinking based on a synthesis of the 
literature, (b) to examine the validity of the proposed model by using empirical data and (c) to 
examine the relations between the dimensions of algebraic thinking.  

The Proposed Model 

The development of the proposed model describing students’ algebraic thinking dimensions took into 
consideration Kaput’s (2008) and Kieran’s (2004) frameworks. To do so, we thought appropriate to 
include in the model the common types of thinking of each model and the parameters of each model 
that are involved to a greater extent in 9th grade algebra. Based on a synthesis of the literature, we 
hypothesized that 9th grade students’ algebraic thinking consists of four distinct, but interrelated 
factors: (a) Generalized arithmetic, (b) Functional thinking, (c) Transformational ability, and (d) 
Modelling-meta-algebra. The dimension of generalized arithmetic is a common component of 
Kieran’s (2004) and Kaput’s (2008) models. Functional thinking is one of the main components of 
Kaput’s model, while it is a sub-component of meta-algebra in Kieran’s model. We included 
functional thinking as a separate component of the model because functions are a top priority topic 
in secondary school algebra. Transformational ability is a synthesis of transformational activities in 
Kieran’s model and formalizations of Kaput’s model and a fundamental type of activity in secondary 
school. Finally, the dimension of modelling-meta-algebra is a synthesis of components from both 
models. It includes Kieran’s global, meta-level activities and Kaput’s modelling dimension. In 
particular, it was hypothesized that generalized arithmetic involves applying algebraic thinking in 
arithmetical settings, by manipulating numbers and operations and exploring their properties, 
understanding the equal sign in numerical relations and becoming aware of the structure of arithmetic. 
Functional thinking refers to the identification and description of functional relationships between 
independent and dependent variables, by manipulating the concept of change and variation and 
generalizing patterns. Transformational ability refers to the transformation of numeric and algebraic 
expressions and solving equations by applying specific rules. Modelling-meta-algebra conceptualizes 
problem solving by using modelling, proving, manipulating variables in problem-solving situations 
and using symbols to represent situations. 
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Table 1: Functional Thinking Tasks 

Measures 

The test items were adopted or developed based on previous research studies. The test items were 
evaluated by three experts in mathematics education who provided feedback on the content validity. 
The multiple choice tasks were corrected as correct or incorrect, while the open tasks were given 
partial marks for incomplete correct answers. Three types of tasks were used to measure the factor 
“generalized-arithmetic” (Kaput, 2008): (a) Properties and relationships of numbers and operations 
(Tasks 1-3), (b) Structure of numbers and numerical expressions (Tasks 4-6), and (c) Equality and 
inequality (Tasks 7-9). In Tasks 1-3 students had to use number and operation properties to calculate 
numerical expressions (e.g., find the result of −1245 ∙ 15 + 245 ∙ 15). In Tasks 4-6 students had to 
treat numbers as placeholders and attending the structure of numbers rather than relying on 
computations (e.g., find the remainder of the division (946 +  950 +  952 +  960)÷ 950, and 
examine whether the number 3400 is divisible by 9). In Tasks 7-9 students explored equality and 
inequality situations (e.g., for what value of a is the inequality - 10 > (-5)a valid). Three types of tasks 

Type of Task Example 

Patterns How many triangles are needed to construct the 10th figure? 

Relation between variables Which of the following equations corresponds to the 
relation of the variables in the table? 

y=2x y=2x+1 

y=x2+1  y= x2+x 

x y
0 1
1 2
2 5
3 10 
4 17

Relation between variables in 
a graph 

Which graph corresponds to the following situation? 

“Water is being poured into a tank with a constant rate. The faucet 
is closed for a while and then it is opened again. The rate that the 
task is now being filled is slower than the initial one”.   
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were used to measure the “transformational ability” factor: (a) Numerical transformations (Tasks 10-
11), (b) Algebraic transformations (Tasks 12-13), and (c) Solving equations (Tasks 14-15). In Tasks 
10 and 11 students had to make complex calculations with fractions and roots (e.g., 

). In tasks 12 and 13 students had to simplify algebraic expressions 
(e.g., A = (a – 2b)(a + b) – (a + b)(a – a)+b(b + a)). Finally, in Tasks 14 and 15 students had to solve 
fractional equations. Three types of tasks were used to measure functional thinking factor (see Table 
1): (a) Finding the remote or general term of a pattern (Tasks 16-18), (b) Finding the relation between 
variables (Tasks 19-20), and (c) Finding the relation between variables in a graph (Tasks 21-22). 
Finally, we used two types of tasks to measure “modelling-meta-algebra” factor. In the modelling 
tasks (Tasks 23-25) students had to construct a mathematical model to solve a real-life problem, 
translate a word-situation to an algebraic expression using symbols and to represent a numerical 
relation using a bar-model (see Table 2). In the meta-algebra tasks (Tasks 26-27) students had to solve 
a complex problem involving inequalities and to make a proof (see Table 2). 

Table 2: Modelling-Meta-Algebra Tasks 

Participants, Procedure and Data Analysis 

One hundred fourteen 9th grade students (55 males and 59 females) were the subjects of the study 
from one private secondary school in Athens, Greece. The tasks of the study were randomly split into 
two parts. Each part was administered in the form of a written test during one school period. The two 
parts were administered in two successive weeks. The instructions were provided in written and 
verbal form. Confirmatory factor analysis was used to examine the validity of an a priori model, based 
on past evidence and theory. CFA was conducted by using MPLUS (Muthén & Muthén, 1998-2007). 
To evaluate model fit, three widely accepted fit indices were computed: x2/df should be <2; the 
Comparative Fit Index should be >.9; and the root mean-square error of approximation (RMSEA) 
should be <.08. The Cronbach’s alpha index of internal consistency was very good (a=.83). 

 

Type of Task Example 

Modelling Which of the following corresponds to the relation: “One less than 
the double of a number is equal to five more than a second 
number”.     

Meta-Algebra Prove that the product of an even number by an odd number is an 
even number. 
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Results 
Confirmatory factor analysis (CFA) was used to evaluate the construct validity of the model; by 
validating that the a-priori model matched the data set of the present study and determined the 
“goodness of fit” of the hypothesized latent construct. The results of the study showed that the fit-
indices were not satisfactory and the hypothesized model could not be supported (χ2/df>2, CFI<.95, 
και RMSEA=.08). Examining the results of the study, we noticed that the correlation between 
functional thinking and modelling-meta-algebra factors was too high. Thus, we decided to examine 
the validity of an alternative model hypothesizing students’ variances in functional thinking and 
modelling-meta-algebra tasks compose a unified factor. Analysis showed that the fit-indices of the 
alternative model were excellent (χ2/df=1.07, CFI=.97, and RMSEA=.03), validating empirically the 
fit of the structure of the alternative model to the empirical data. CFA showed that the factor loadings 
of the tasks employed in the present study were statistically significant and most of them were rather 
large (see Figure 1). The factor loadings ranged from .38 to .84, giving support to the assumption that 
all latent factors were adequately measured by the observed variables. Thus, in accordance with our 
theoretical assumption, all algebraic thinking measures were clustered into three first-order factors in 
the expected factor-loading pattern.  

 
Figure 1: The Algebraic Thinking Model 

Thus, analysis showed that algebraic thinking consists of three interrelated factors that is (a) 
generalized arithmetic, (b) transformational ability and (c) meta-algebra. The factor “meta-algebra” 
is a synthesis of students’ variances in functional thinking tasks, modelling and proving tasks. The 
correlations between the three factors were significant. In particular, the correlation between the 
factors “generalized arithmetic” and “transformational ability” was 0.78 (p<0.05), the correlation 
between “transformational ability” factor and “meta-algebra” factor was 0.60 (p<0.05) and the 
correlation between “generalized arithmetic” factor and “meta-algebra” factor was 0.76 (p<0.05). 
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To investigate the relations between the three algebraic thinking factors, we examined the fit to the 
data of alternative structural models, hypothesizing a direct sequential path between the three factors. 
The model that had the best fitting indices (χ2/df=1.04, CFI=.98, and RMSEA=.02) showed that 
“transformational ability” factor has a direct effect on “generalized arithmetic” factor and the latter 
predicts “meta-algebra” factor (see Figure 2). The regression coefficient of transformational ability 
factor on generalized arithmetic factor was 0.79 (p<0.05), while the regression coefficient of 
generalized arithmetic on meta-algebra was 0.78 (p<0.05). 

 
Figure 2: The Relation between Algebraic Arithmetic Factors 

Discussion 
The contribution of the study lies on the empirical evaluation of a proposed model that unpacks the 
dimensions of 9th grade students’ algebraic thinking. The results of the study showed that 9th grade 
students’ variances in algebraic situations might be modelled by three distinct and interrelated latent 
factors. The first factor involves students’ capacity in generalized arithmetic tasks, the second factor 
in transformational situations, while the third factor reflects students’ capacity in meta-algebra and 
functional tasks. The structure of the validated model is in line with the fundamental types of algebraic 
tasks suggested by Kieran (2004) and integrates ideas from Kaput’s model (2008). In particular, the 
validated model showed that meta-algebra factor is a synthesis of algebraic thinking parameters 
suggested by Kieran (2004) and Kaput (2008) and consists of functional thinking, modelling in 
various situations and proving. The inclusion of functional thinking in meta-algebra factor can be 
interpreted by the fact that in problem solving situations modelling activities prerequisite 
understanding the implied functional relations. Analysis showed that functional thinking can be 
described by adopting Kaput’s (2008) conceptualization that is generalization of patterns and 
manipulation of relations of variables in different representational forms. In conclusion, the 
empirically validated model that synthesized existing models in mathematics education could be a 
valid measurement model of 9th grade students’ algebraic thinking.  

Analysis showed that there is a sequential effect between the three factors. Students’ capacity in 
transformational situations has a direct effect on their capacity in generalized arithmetic tasks and the 
latter affects directly meta-algebra. This is in line with research findings suggesting that modelling 
and meta-algebra tasks are the most difficult algebraic activities (Blanton et al, 2015). The finding 
that students’ capacity in transformational activities predicts generalized arithmetic might be 
explained by the fact that in 9th grade transformational tasks are mostly procedural  and manipulating 
algebraic structures in a flexible way may help students conceptualize and express arithmetic 
structures in a generalized way more efficiently. Students’ advancement in transformational tasks 
might enhance their further development in generalized arithmetic by enhancing awareness of the 
structure of numeric and algebraic procedures, algebraic language and rules and applying 
generalizations strategically. Then, students’ advancement in generalized arithmetic might contribute 
in further enhancing their capacity in meta-algebra tasks, by developing generalization processes and 
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manipulating numbers and quantities relations strategically in different forms of representation. The 
aforementioned sequential relation might indicate a possible learning trajectory based on the fact that 
transformational ability and the ability to use algebraic language are essential so the students are 
successful in using algebraic structures for generalizing arithmetic tasks. Then students could succeed 
in meta-algebra that consists of more demanding tasks. Teachers should give students the opportunity 
to have systematic experience with transformational and generalized-arithmetic activities that lay the 
foundation to work with symbols and algebraic expressions that build up to an understanding of more 
abstract tasks. Moreover, teachers should take into consideration the aforementioned learning 
trajectory, which suggests a specific instructional sequence and the identification of key tasks 
designed to promote learning for each dimension of algebraic thinking. A future research could 
examine alternative learning trajectories in different populations and grades to get a further insight of 
students’ difficulties and progression.   

References 
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development 

of children's algebraic thinking: The impact of a comprehensive early algebra intervention in third 
grade. Journal for Research in Mathematics Education, 46, 39-87. 

Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical 
generalization. ZDM, 40, 3-22. 

Chimoni, M., Pitta-Pantazi, D., & Christou, C. (2018). Examining early algebraic thinking: insights 
from empirical data. Educational Studies in Mathematics, 98, 57-76. 

Drijvers, P., Goddijn, A., & Kindt, M. (2011). Algebra education: Exploring topics and themes. In P. 
Drijvers (Ed.), Secondary algebra education (pp. 5–26). Rotterdam: Sense Publishers. 

Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. W. Carraher, & M.L. 
Blanton (Eds), Algebra in the early grades (pp. 5-17). New York: Routledge. 

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics 
Educator, 8(1), 139-151. 

Muthén L. K., & Muthén, B. O. (1998-2007). Mplus user’s guide (5th ed.). Los Angeles: Authors. 
National Council of Teachers of Mathematics (2000). Principles and standards for school 

mathematics. Reston, VA: NCTM. 
Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. (2017). Algebraic thinking in the elementary 

and middle grades. In J. Cai (Ed.), The Compendium for Research in Mathematics Education (386-
420). Reston, VA: NCTM. 

Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional 
relationships prior to secondary school. Educational Studies in Mathematics, 93, 333-361. 

Thematic Working Group 03

Proceedings of CERME11 669



 

 

Portuguese and Spanish prospective teachers’ functional thinking on 
geometric patterns 

Irene Polo-Blanco1, Hélia Oliveira2 and Ana Henriques2 
1Departamento Matesco, Universidad de Cantabria, Santander, Spain; irene.polo@unican.es  
2Instituto de Educação, Universidade de Lisboa, Lisboa, Portugal; hmoliveira@ie.ulisboa.pt, 

achenriques@ie.ulisboa.pt  

Keywords: Algebraic thinking, functional thinking, geometric patterns, teacher knowledge. 

Generalization of patterns and regularities to describe functional relationships is a way for students 
to develop functional thinking, a core expectation in mathematics curriculum orientations (Blanton, 
Levi, Crites, & Dougherty, 2011; NCTM, 2000). Thus, it is important to provide students with 
opportunities to interpret variables and relations between variables, and to use co-variation and 
correspondence approaches to generalization. The promotion of functional thinking in primary 
school requires a specific preparation of prospective teachers (PTs), which in turn claims to assess 
their knowledge on the subject at the beginning of the teacher education programs they are 
attending. Taking this into account, a study was developed to analyze how Portuguese and Spanish 
PTs identify and express generalization in a task involving geometric patterns. 

The data was collected through a questionnaire which included 6 tasks to evaluate relevant aspects 
of algebraic thinking. The questionnaire was applied to 94 Spanish and 70 Portuguese PTs attending 
the 1st year of a degree in primary education teaching, respectively at a public university in north of 
Spain and at two public schools of education in the center of Portugal. The PTs were not familiar 
with this kind of tasks and had received no instruction in algebraic thinking before the test. One of 
the tasks, that is focus on this poster, is a problem of generalization of a geometric growing pattern 
(linear) intending to assess PTs’ functional thinking. Based on the first four terms of a pictorial 
sequence, made up of squares and indicating the number of vertices of each figure, the PTs are 
required to provide two possible strategies to find the number of vertices of a distant term of the 
sequence and to identify a generalization of the functional relation between the number of vertices 
and the number of squares of the figures of the sequence.  

For a descriptive and interpretative analysis of the PTs’ responses to this task, the following 
categories of strategies for obtaining distant terms and general rule were established (adapted from 
Barbosa, 2010):  (1) difference-recursive: continues the sequence using the pattern or the numerical 
difference between consecutive terms (e.g. “with each new square we have to increase the number 
of vertices by 3”); (2) difference-covariation: uses the difference between consecutives terms as a 
multiplicative factor (e.g. “we add three more vertices in each step, so the general term for the 
number of vertices is 4+3(n-1), with n the number of squares”); (3) multiplicative reasoning-
missing value: uses the rule of three to find distant terms (e.g. “if a figure with two squares has 7 
vertices, then a figure with 25 squares has 7x25/2”); (4) multiplicative reasoning-proportional 
reasoning: uses multiplicative strategies, starting from one known term of the sequence to find 
distant terms or a general rule (e.g. “the number of vertices is x times the number of squares”); and 
(5) correspondence: expresses a relation between the two varying quantities, based on the numerical 
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or pictorial sequence (e.g.“v=3n+1 where v is the number of vertices, and n the number of 
squares”).  

In the poster, we will present a complete analysis of the PTs’ strategies for obtaining distant terms 
and a general rule, providing a table with the percentage of PTs’ answers displaying each of the 
described strategies, both for Spanish and Portuguese contexts, as well as examples of those 
answers. Those results, in summary, indicate that in 62% of the Portuguese PTs’ answers they used 
a correct strategy to find a distant term of the sequence. In most of these cases they used a recursive 
strategy but also privileged the difference between consecutives terms as a multiplicative factor to 
obtain distant terms and the correspondence strategy. As expected, the PTs revealed more 
difficulties to find a generalization of a functional relation, since 50% of them did not answer and 
only 31% of their answers were correct. In these answers, they used difference-covariation and 
correspondence strategies. Almost half (48%) of their generalizations of a functional relation were 
based on a recursive strategy. However, in this case it resulted on incorrect generalizations.       

Spanish results show that only 43% of the PTs’ answers were correct for computing the distant 
term, most of them based on a correspondence strategy. The recursive strategy was also quite 
frequent for obtaining distant terms (25%), although unlike in the case of Portugal, it led in most 
cases to incorrect results. One third of the Spanish PTs did not provide any answer to the question 
about generalization. Among those who did, correspondence and difference-recursive strategies 
were predominant, with only 20% of correct responses.  

Moreover, it was seen that PTs of both countries adopted both visual and numerical approaches in 
the generalization of patterns, although they have privileged the former, and that, in general, they 
took into account the strategies used to find a distant term in the far generalization. However, the 
results related to the geometric pattern show important gaps in the algebraic reasoning of the PTs 
evaluated in both countries. These results provide information about the reasoning of PTs in tasks 
involving functional thinking and reveal the main difficulties they faced. In view of these results, 
possible considerations could be taken into account, like the benefits of including this type of tasks 
when designing courses of mathematical contents to help PTs develop their functional thinking.  
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Background to the Study 
Algebra has long been identified as an area of difficulty in the teaching and learning of 
mathematics. In Ireland such difficulties have traditionally been attributed to an over reliance on 
transformational-based activities when teaching the domain. These activities place a high emphasis 
on manipulating expressions and equations in a rote fashion, without a sound conceptual 
understanding of algebraic concepts. Bale (1999) describes conceptual understanding as an 
associative or connected body of knowledge, rather than a procedurally based knowledge, which 
can be applied to a variety of diverse contexts. To address this issue a reformed algebra strand was 
introduced to all post-primary schools in September 2011. In a shift from the transformational-
based approach, the reformed strand followed the lead of several countries and advocated a 
functions-based approach to teaching the domain. This functions-based approach involves 
understanding the notion of change and making generalizations about how two or more varying 
quantities such as patterns of number sequences are related (Tanışlı, 2011). However, a study by 
Prendergast and Treacy (2018) found that not all teachers had successfully adopted the functions-
based approach in their own teaching. As well as a reluctance to deviate from the transformational-
based approach, teachers identified a lack of uniformity in the teaching and learning of algebra, 
particularly between primary and post-primary education. With such findings in mind, this study 
follows on from that research and focuses on teachers’ insights into their teaching of algebra, 
particularly during the transition from primary to post-primary school. Data generated in this 
research specifically investigates upper primary and lower post-primary school teachers’ conceptual 
understanding of algebra and, more particularly, linear equations. 

Methodology 
The study was qualitative in nature and involved two phases of semi-structured interviews with a 
cohort of upper primary (10 – 12 years) and lower post-primary (12 – 15 years) school teachers. 
Participants were recruited through a purposive sample method from one local education authority 
in Ireland. The first phase of interviews took place in January 2018 and involved 15 teachers (9 
primary [P1-P9] and 6 post-primary [S1-S6]) from 8 different schools (6 primary and 3 post 
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primary). The second phase of interviews took place in May 2018 and involved 13 of the same 
teachers from Phase 1 (8 primary and 5 post-primary). For the purpose of this submission, the 
authors investigate teachers’ conceptual understanding of linear equations. This proposal focuses on 
one question asked of teachers in Phase 1 and the related follow up question posed in Phase 2:  

Phase 1 Question: Take a look at the following equation: 2x + 6 = 10. How would you typically 
explain to your students how to solve this equation? 

Phase 2 Question: In the pre-interview, a number of teachers indicated that they would instruct their 
students to bring the six across the equals sign and it would change sign to become a minus. Are 
there any issues that you see with such an explanation? What changes (if any) would you make to 
the explanation? 

Preliminary Findings 
Preliminary analysis conducted utilising the domain of expressions and equations as an organising 
framework (Bush & Karp, 2013), indicates a lack of conceptual understanding of linear equations 
on behalf of participating teachers and a prevailing over-reliance on ‘rules without reason’ when 
teaching algebra. For the Phase 1 Question, four out of the fifteen post-primary teachers effectively 
demonstrated conceptual knowledge of solving such a linear equation (S4: So what I would start 
here is gain the notion of equality. Whatever we do to the left-hand side must be done to the right 
hand side). Four of the primary teachers were either unable to generate a response or gave an 
inappropriate response (P5: Let’s see. Right well I would explain to them we need to find what x is… 
we haven’t done these yet so…). The other seven teachers’ responses (five primary and two post-
primary) were procedural in nature and all focused on the notion of numbers moving across the 
equals sign and then changing signs. (P1: If it is a plus it becomes a minus and if it’s a minus it 
becomes a plus).  The issue of moving across the equals sign and changing sign was probed further 
in Phase 2 and there were a variety of responses from the eleven teachers (8 primary and 5 post-
primary). Three of the primary teachers did not see any issue with such an explanation (P6: no I 
don’t see anything wrong with it). Four of the primary teachers could see where issues might arise 
but were unable to give an appropriate suggestion on how they would change the explanation (P2: 
the biggest thing for me would be how is the +6 changing to a -6?). While these findings are 
preliminary, the initial results raise concerns about participating teachers’ conceptual understanding 
of algebra and, more specifically, linear equations. This research is intended to inform mathematics 
teacher education programmes in Ireland, particularly in the transition from primary to post-primary 
mathematics.  
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The main goal of this paper is to understand students’ reasoning when solving a task that involves 
quantitative difference. A qualitative methodology was used within the modality of teaching 
experiment. The data collection was done through the participant observation supported by video 
and audio recording of the work developed by two pairs of second graders, as well as the records of 
whole class discussions. To analyse data, we organized them into two categories: additive 
comparisons and complex additive relationships. The results show that these students were able to 
deal with quantitative difference, establishing relationships between quantities, even in a situation 
where initial numbers were unknown. 

Keywords: Quantitative difference, quantitative additive reasoning, algebraic thinking. 

Introduction 
This paper reports part of the research developed by a project focused on flexible calculation and 
quantitative reasoning developed by teachers of the Higher Education Schools of Lisbon, Setúbal and 
Portalegre in Portugal. The main goal of the project is to build knowledge about the development of 
quantitative reasoning and calculation flexibility of students from 6 to 12 years old. The paper aims 
to understand second graders' reasoning when exploring and discussing a task that involves 
quantitative difference (Thompson, 1993). Specifically, the study aims to contribute to the knowledge 
of how early years students are capable of modelling situations focusing on their structures, 
abstracting from computation. 

Theoretical framework and empirical studies 
Nowadays, algebra is viewed as a generalizing activity (Mason, 2008) with instruments that represent 
the generality of mathematical relationships, patterns, and rules. According to Kaput (2008), there 
are two essential aspects of algebraic thinking: (a) generalization and the expression of 
generalizations in increasingly systematic, conventional symbol systems, and (b) syntactically guided 
action on symbols within organized systems of symbols. The aspect (b) is developed later than aspect 
(a). These two aspects are embodied in three strands of algebra: 

1. Algebra as the study of structures and systems abstracted from computations and relations, 
including those arising in arithmetic (algebra as generalized arithmetic) and in quantitative 
reasoning. 
2. Algebra as the study of functions, relations, and joint variation. 
3. Algebra as the application of a cluster of modeling languages both inside and outside of 
mathematics. (Kaput, 2008, p. 11) 

The first strand is the primary route into algebra. In the early years, it is important to approach 
arithmetic focusing on number and operations properties or relationships, thus building 
generalizations from them. It is also fundamental to focus on mathematical processes (not on the final 
product), in order to put relationships and transformations as objects of study (Cusi & Malara, 2007). 
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Such an approach is conducive to the development of students’ algebraic thinking. There is another 
approach within this first strand that is based on quantitative reasoning. This kind of reasoning is not 
based on the arithmetic of numbers but rather on quantities. 

Quantitative reasoning is defined as an analysis of a situation into a network of quantities and 
quantitative relationships (Thompson, 1993). This kind of reasoning is related with the algebraic 
reasoning insofar as the focus is on the description and modelling of situations. It involves the 
relationships between quantities. As argued by Smith and Thompson (2008), situations involving 
complex additive relationships, that is to say, situations with more than three related quantities, could 
be fundamental for the development of students' quantitative reasoning. And this development 
prepares students for algebra in multiple ways. "If we want students to learn and use algebra as a 
sensible tool for expressing their thinking and solving problems, then work with complex problems 
must come first" (Smith & Thompson, 2008, p. 113). Quantitative reasoning has two roles: (i) to 
provide the content for algebraic expressions; and (ii) to support a flexible and general reasoning not 
necessarily relied on symbolic expressions (Smith & Thompson, 2008). Therefore, quantitative 
reasoning is foundational for both arithmetic and algebra, providing meaning and content for 
numerical and algebraic expressions. 

There is a conceptual difference between quantity and number. According to Thompson (1993), "a 
person constitutes a quantity by conceiving of a quality of an object in such a way that he or she 
understands the possibility of measuring it" (p. 165). For instance, we can reason about the lengths 
of two objects and the amount by which one is longer than the other without having the numerical 
values of their measures. Furthermore, numerical difference is not synonymous with quantitative 
difference. Numerical difference is the result of subtracting, while quantitative difference is the 
excess found when one compares two quantities additively (Smith & Thompson, 2008; Thompson, 
1993). For example, 9 is a numerical difference when we subtract 6 from 15 (doing a computation), 
and it is a quantitative difference when we compare the quantities 15 and 6, assuming it is the amount 
by which 15 exceeds of 6 or 6 falls short of 15. Besides this, we can reason about 9 as a quantitative 
difference without having absolute numbers, conceiving 9 as a relative change related to variables. 

Several studies have reported results related with additive quantitative reasoning (e.g. Schliemann, 
2015; Thompson, 1993). Schliemann (2015) referred to a study conducted through interviews with 
second graders and showed that they were able to understand that the equality of two quantities 
relative to concrete sets of objects, with known or unknown number of elements, remains after 
performing identical transformations in the two compared quantities. She also reported the results of 
longitudinal studies from third to fifth graders in USA about algebraic reasoning and function 
representations. In these studies, the verbal representation of functions emerged from the 
consideration of relationships between physical quantities and situations of daily life, and involved 
additive comparison. She concluded that the students, from the age of 8 years old, showed 
understanding of quantitative relationships which was fostered by the discussion on those functional 
relations. The students used informal strategies for solving early algebra problems. Examples of such 
problems are: to represent additive comparison in a situation of having physically two chocolate 
boxes with equal quantities but unknown absolute number and 3 more chocolates above one of the 
boxes; to represent additive operations as movements along a line marked with N-3, N-2, N-1, N, 
N+1, N+2, N+3, N+4,... to solve problems where initial value was unknown. The evaluation of the 

Thematic Working Group 03

Proceedings of CERME11 675



intervention impact, at the end of 5th grade, demonstrated that the performance of the intervention 
group in the written test was significantly better in the items related to the intervention and similar to 
that of the control group in the other items. Another study, driven by a teaching experiment that 
involved 5th-grade students (Thompson, 1993), showed students' trouble with the distinction between 
the quantitative operation of comparing two quantities additively and the arithmetical operation of 
subtraction: they conceived a quantitative difference as an invariant numerical relationship. Thus, 
they assumed relative change as an absolute amount and needed to know absolute values before they 
could make comparisons. These studies allow us to compare the respective results with those of the 
study of our project. On the one hand, comparing results with second and third graders in similar 
early algebra problems but in more concrete conditions, and on the other hand, comparing results 
with fifth graders, looking at the difficulties or facilities in the performances of students of different 
grades in similar algebra problems. Hence, this confrontation allows a deeper understanding of the 
effective quantitative reasoning abilities of second graders, through the extension to progressively 
more abstract situations not based on arithmetic computation. 

Methodology 
The project follows a qualitative approach framed in an interpretative paradigm (Bogdan & Biklen, 
1994). It is focused on the educational processes and the meanings of the study’s participants. It 
adopts the modality of teaching experiment conceived with the purpose to develop students’ 
flexibility for calculation and quantitative reasoning. The Project team defined a sequence of nine 
tasks involving additive structure and discussed it with the classroom teacher.  

The task “More? Or Less?” was the fifth task in the sequence and was created by the Project team. 
It has a context of games with marbles and it was presented after another task that had the same 
context. It is composed by three parts. The first and the second parts are identical but the first one, 
besides involving different numbers, presents, in the middle, empty and white squares, while the 
second one presents black squares. The second part aimed to focus on quantitative difference 
corresponding to the excess found when gains and losses are compared. Figure 1 presents one 
example of each part. 
  

 
 
 
 
 
 
 
 

Figure 1: The first and second parts of the task 

The 3rd part aimed to focus on the balance between gains and losses and it does not present the 
absolute initial number of marbles (see Figure 2). At the end, students were asked to circle the face 
at the end of two days (Monday and Tuesday) and at the end of three days (Monday, Tuesday, and 
Wednesday). The students were requested to circle a smiley or a sad face depending on their sense of 
whether there were more gains or more losses at the end of the day(s). Besides this, the students were 
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expected to find the quantity representing how many marbles have been gained or lost at the end of 
the day(s), that is, the final quantitative difference. It should be noted, that they had not worked with 
notation of negative numbers before this task. 

Monday Tuesday Wednesday 

+5
-2
+1
+2

+3
-2
-4
+6

-7
-1
-9
+9

Monday 

Monday Tuesday 

Tuesday Wednesday 

At the end of 
two days 

At the end of 
three days 

Figure 2: The third part of the task 

The data reported in the current article were collected during two lessons of one hour and a half each 
that took place in the same class and they were conducted in the same way, within an exploratory 
teaching approach. The names of the students have been changed to ensure confidentiality. The data 
collection was done through the participant observation of the authors of this article, complemented 
with field notes and videotaping of the lessons. The students' productions were also collected. In the 
part of the exploration of the task, the videotaping focused on two pairs of students, Luís and Lúcia, 
and Paulo and João, selected because they habitually verbalized their reasoning among themselves. 

The analysis focused on students' productions, field notes, video recordings and their transcriptions. 
To analyse data we defined categories built from the theoretical framework of Thompson (1993): (i) 
additive comparison; and (ii) complex additive relationship. The first one is illustrated for example 
by comparing 8 gains and 5 losses and determining 3 as the quantitative difference (there are 3 more 
gains than losses) or by comparing 6 gains and 10 losses and determining 4 as the quantitative 
difference (there are 4 more losses than gains). The second corresponds, for example, to the balance 
between several gains (+3, +4) and several losses (-8, -6) conceived as quantities without the necessity 
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of having the absolute number of marbles in situations with more than three related quantities: at the 
end, the quantitative difference is -7. 

Results 
During the first lesson, the pair Luís and Lucía explored the first and second parts of the task in a 
consecutive manner, prior to the discussion of the first part. Luís asked: "Why is it here black?". 
Although informed that they should write nothing there, Luis wrote the various results within the 
black squares, despite Lucia's reaction ("We cannot!"), thus addressing the second part in the same 
way as the first one. To do the calculations, they used compensation strategies, adding first 10. For 
example, for calculating 12+8, they did: 12+10=22; 22-2=20. Also the pair Paulo and João performed 
all the calculations, as in the first part.  

In the whole class discussion, the teacher asked different pairs to go to the blackboard to present their 
solutions for the first part of the task.  

Nádia: Here is 15. Then we added another 8 that gives 23. Minus 5 gives 18. 

Teacher: Yes? ... So how did you find the bottom one? 

Nádia: Because here (pointing to 15) to reach the 18 is 3 more. 

Teacher: So the first and the last were enough; the jumps above do not matter? 

Maria hesitates. 

Teacher: I want to know if the jumps above also help. 

Paulo: Yes, they help. 

Teacher: Why? 

Paulo: (goes to the blackboard) Because if from 8 you take out 5, you get only 3 from here 
(points to the bottom square). And knowing that only 3 were missing, here from the 
first to reach the last we only needed 3 more. For the last. 

Teacher: So did they gain or lose? 

Guilherme: They gained because they got 3 more. 

The students were able to focus on the balance between gains and losses of marbles, rather than on 
numerical calculations with the help of the teacher's questioning. The classroom discourse was 
centered on quantitative difference ("3 more") instead of absolute number of marbles (15 and 18). 

During the second lesson, the teacher gave the second part of the task. Since Luís and Lúcia had 
already done it in the previous lesson, the teacher asked them to talk to each other about how they 
had done it. When the teacher approached the pair, she asked: 

Teacher:  Do you need this middle square? 

Luís and Lúcia: No. 

Teacher: Tell me another way to reach this without saying the number in the middle. If 
it's painted of black, maybe it would not be necessary.  

Luís:  8 minus 5 gives 3 (pointing to the arrows). 
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Teacher:  Gains or losses? 

Luís:  Gains. 3 more. 

Teacher:  And here? (pointing to the situation below) 

Luís:  15 + 9... 

Teacher:  But is the middle square necessary? 

Luís:  Plus 9, minus 10. 

Teacher:  Okay. (the teacher moves away) 

Luís erased the numbers written in the black squares, indicating that he followed the teacher's 
guidance that these numbers would not be necessary. Luís seemed to be able to focus on quantitative 
difference between gains and losses in both games, as encouraged by the teacher. However, in the 
other situation, he began verbalizing the numerical computations and just after the teacher's 
intervention, he focused on quantitative difference resulting from additive comparison ("Plus 9, 
minus 10"). 

With regard to the other pair, Paulo showed the ability to focus on the balance between gains and 
losses. He decided to invent two other situations, asking João to determine the jumps. When the 
researcher got closer, Paulo explained the "-6+4" situation: "It's 6 minus 4. It's going to give a negative 
number". Probably Paulo used a vocabulary from his home context since the teacher had not used 
this expression in classroom in the previous lessons. 

At the moment of whole class discussion, the teacher asked: 

Teacher:  Why do you think the square is painted of black? 

Student:  It's to guess the number and keep it in our head. 

Teacher:  Does it make sense? 

Gil:  To not write. 

Maria:  To help us think. 

Paulo:  The square is painted because the number under that square should not interest. 

Teacher:  So how does it solve? 

Luís:  It's +8-5 that gives +3. 

Teacher:  Gained or lost, Gil? 

Gil:  Gained +3. 

Teacher:  Without looking to the jumps, how can we see if he gained? 

Students:  We see in the numbers, from 12 to 15. 

With the help of the teacher's guidance, the students were able to relate the balance between gains 
and losses with the quantitative difference between 15 and 12 ("It's +8-5 that gives +3; "Gained +3"; 
"We see in the numbers, from 12 to 15"). Then the teacher introduced the third part of the task: 

Teacher:  What if there were no numbers neither at the beginning nor at the end? 
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Luís:  It's just to find out if you gain or lose and how much. 

Teacher: This new proposal has only the gains and losses in different games. Let's see 
what happens at the end of each day. 

Paulo seemed to deal easily with quantitative difference whether it is an excess or a deficit. He did 
this part very quickly, in two minutes. When the researcher got closer, Paulo explained: "these annul 
each other" (for example, -2, +2), having calculated only the remaining ones. His solution presents 
positive and negative numbers notation (with the signals + and -) and it can be seen in Figure 3. 

 
Figure 3: Paulo's resolution of the third part of the task 

The pair Luís and Lúcia approached the third part using a different strategy. They added the gains, 
added the losses, and then did the additive comparison. In the Wednesday's situation, the students 
surrounded the sad face, understanding that at the end of the day, the player lost 8 marbles. They 
registered "-17; +9" and "-8" below the sad face. 

In the whole class discussion, the most presented strategy was the one used by Luís and Lúcia: to add 
the gains and the losses, and then determine the quantitative difference. For example, for Tuesday, 
the pair Marta and Monica quickly recorded on the blackboard "+9–6=+3" and drew a ‘smile’. The 
students concluded: "The difference between 9 and 6 is 3 to gain". 

Teacher:  Is there another explanation? 

Paulo: Yes, the +6, -4 and -2 annul themselves. (The teacher records on blackboard: 
+6-4-2=0) 

Paulo:  And only +3 left over. 

This idea of 'annulling' was used by other students in situations that followed and many of them used 
it correctly. 

Conclusion 
The students were able to focus on difference as a quantitative structure, looking at gains and losses. 
Thus, on the contrary to what happened with fifth-grade students in the study of Thompson (1993), 
these second graders were able to conceive a quantitative difference independently of numerical 
information about quantities (Smith & Thompson, 2008); they did not need to know the initial number 
of marbles, in the third part of the task, to be able to think about gains and losses. These students were 
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able to focus on quantities, building relationships from them as stated by Cusi and Malara (2007) and 
as happened in the studies reported by Schliemann (2015). Hence, they conceived difference as a 
relative change independently of actual values, considering them as variables within a relational 
dimension.  

This study stresses the fundamental importance of modeling the situations, revealing their structure. 
Both structural and relational dimensions are key elements of algebraic thinking. The results highlight 
the easy way in which students manipulated the quantitative differences attributing a contextual 
meaning, and also suggest the potential of a work focused on quantitative relationships to enhance 
early algebraic thinking. They open new lines for research in order to understand the multiple factors 
that may influence students’ learning, namely the role of task design, in particular the black square 
and the final part with unknown initial numbers, as well as the role of teacher's questioning, in 
particular the funneling questioning, in the development of students’ quantitative reasoning.  
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Short note on algebraic notations: 
First encounter with letter variables in primary school 
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Algebraic thinking often requires generalisation processes. Generalisations of patterns are one 
frequently used design in early algebra settings in research and practise. Symbolical letter variables 
are not common in primary school and actually not needed by the children to articulate their pattern 
generalisations. Nevertheless, from a research perspective it is interesting to explore children’s 
spontaneous interpretations of letter notations. The reactions of 3rd-and 4th-graders, who participated 
in an explorative study presented here, might provide a starting point to sensible appreciate the 
individual thoughts and ideas about letter variables in further studies. 

Keywords: Early algebra, generalisation, symbolic notations, variables.  

Introduction 
Algebraic thinking in all its possible facets are described in detail in several studies (Kieran, 2018). 
One of the major aspects of algebraic thinking –especially in early algebra– is generalising from given 
cases to rules and description of the patterns found. Symbolical notations in letter variables can 
condense these rules in algebra lessons in secondary schools. 

In some research approaches, based on the so-called Elkonin-Davydov curriculum, algebraic thinking 
is assumed as equal to using letter notations (Dougherty & Simon, 2014; Dougherty, 2008; 
Freudenthal, 1974). Others follow the way to re-invent algebra by the children (Amerom, 2002). 
Nowadays, almost everyone involved in early algebra research might agree on the fact that the 
children will not invent letter notations on their own.  

Teachers need to introduce unfamiliar terms, representations, and techniques, despite the irony 
that in the beginning students will not understand such things as they were intended. The initial 
awkwardness vis-à-vis new representations should gradually dissipate, especially if teachers listen 
to student’s interpretation and provide students with opportunities to expand and adjust their 
understandings. (Carraher, Schliemann, & Schwartz, 2008, p. 237) 

Notation in letter variables does not emerge. It also holds true that letter notation is not needed to 
adequately describe patterns found (Akinwunmi, 2012). However, a suitable verbal description of 
complex patterns is sometimes tough to find. Letter notation is therefore a useful condensation and 
last not least a cultural heritage or an aspect of enculturation: “Enculturation into a mathematical 
expectation” (Mason, Stephens & Watson, 2009, p. 14). The study described here aims to receive an 
impression of primary children’s initial interpretations of a vis-à-vis confrontation with letter 
notations, and listen to these ideas. The findings might base teaching advices and further research. 

Theoretical framework 
Letter notations use variables. Variables have at least three different aspects and features. They can  

· represent quantities (Kieran, 2004) as an unknown (Strømskag, 2015; Freudenthal, 1983) in 
an equation like 5+x=8,  
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· express rules of numerical relationships (Kieran, 2004) like in a+b=b+a, which Strømskag 
(2015) identifies as parameters and Freudenthal (1983) as indeterminate,  

· express generality arising from patterns (Kieran, 2004) as variables (Strømskag, 2015; 
Freudenthal, 1983) like n®2n+2 (cf. Figure 1), which are the main focus in the study 
presented in this paper. 

 
Figure 1: Pattern Sequence n®2n+2 

Working on pattern sequences, like the one given in Figure 1, allows at least four different 
approaches, which can be summarised in the ReCoDE (Recognise-Continue-Describe-Explain) 
model (Steinweg, 2014). As mentioned above early algebraic thinking deeply depends on 
generalisations. A typical task implicitly challenges the children to generalise already whilst 
recognising the regularities: “Generalizing starts when you sense an underlying pattern, even if you 
cannot articulate it” (Mason, Burton, & Stacey, 2010, p. 8). Nevertheless, the articulation or even 
notation is a substantial element in the development of algebraic abilities. Experienced learners may 
use variables to articulate and to communicate findings with others in describe- or explain- phases.  

When students perform a pattern generalization, it basically involves mutually coordinating their 
perceptual and symbolic inferential abilities so that they are able to construct and justify a plausible 
and algebraically useful structure that could be conveyed in the form of a direct formula. (Rivera, 
2010, p. 298) 

Dörfler (2006) regards notation as mathematical object itself, through which mathematical learning 
can be initiated. In any case letter notation has to be interpreted by the learner. This, of course, is the 
fact for every mathematical object like digits and operations signs. In line with Steinbring (2015) one 
has to keep in mind, that “the elements of the mathematical world cannot be perceived directly by 
our senses but consist of ‘invisible structures’ and relations” (p. 292). Hence, mathematical thinking 
depends on working on mental objects: 

I speak of the constitution of mental objects, which in my view precedes concept attainment and 
which can be highly effective even if it is not followed by concept attainment (…) The fact that 
manipulating mental objects precedes making concepts explicit seems to me more important than 
the division of representations into enactive, iconic, and symbolic. (Freudenthal, 1983, p. 33) 

The need for individual interpretation of mathematical objects and operations by images and 
explanatory models is fundamental for mathematical learning (Hofe & Blum, 2016). The 
interpretation of letters as notation of variables is nothing else than this usual habit. Rivera (2013) 
identifies the guessing of a rule of a given figural pattern as abductions and therefore as a fundamental 
mathematical activity. Of course ‘symbol sense’ is crucial for algebra because it allows 

to see algebra as a tool for understanding, expressing and communicating generalizations, for 
revealing structure, and for establishing connections and formulating mathematical arguments 
(proofs). (Arcavi, 1994, S. 24). 

In the study presented here pattern sequences as “arbitrary patterns” (Strømskag, 2015, p. 475) and 
no figurate numbers (e.g. square numbers) are used. The given pattern in predefined coloured dots 
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expects the learners to see a double structure or “a regularity that involves the linkage of two different 
structures: one spatial and the other numerical” (Radford, 2011, p. 19). In an explicit notation of the 
underlying rule the commonly used letter (n) corresponds with the position (ordinal) of the figure in 
the pattern as a whole. The cardinal amount of black and white dots needs to be set in relation to this 
ordinal number. The explicit formula represents in a direct approach “a functional relationship 
between position and numerical value of an element” (Strømskag, 2015, p. 475). As mentioned earlier 
the letter notation is in a way independent from generalising the pattern: 

The difference between finding rules and expressing those rules in formal notation highlights a 
difference I see between these two aspects of mathematics. Spotting patterns and finding rules is 
algebraic in nature whereas how to express those rules is a matter of language and notation. 
(Hewitt, 2009, p. 43)  

Thus, Hewitt (2012) differentiates between the necessary and the arbitrary in algebraic notations. The 
notation of spotted regularities also depends on (school) experiences (Radford, 2002). The didactical 
dilemma is, that “notation is not an afterthought, but rather an inherent part of mathematical activity” 
(Hewitt, 2016, p. 168).  

Some pitfalls of educational approaches to letter notations are well documented. If tasks and learning-
teaching-environments encourage pupils to match letters to word beginnings as abbreviation of names 
for objects in context situations (so-called fruit-salad-algebra (Thomas & Tall, 2001), or positions in 
the alphabet, these ideas hinder a deeper understanding of algebraic variables: “This ‘letter–as–
object’ misconception can haunt students in their efforts to set up equations throughout their algebra 
careers” (Arcavi, Drijvers, & Stacey, 2017, p. 52). 

A recent teaching-experiment study in two first grade classes worked on functional relations in 
context problems (Blanton et al. 2017). The findings indicate levels of understanding and make clear, 
that the letters are sometimes viewed as representing the context objects. The context situation 
therefore might hinder an interpretation of letters as mathematical object. Nevertheless, children in 
primary school of course need something to refer to while making sense of letter variables. The 
mediator chosen in this study is dots and dot pattern sequences. 

The German situation concerning algebraic thinking is very special because algebra is not a curricular 
content (Steinweg, Akinwunmi, & Lenz, 2018). Patterns are mentioned in the syllabi and are therefore 
suitable for German primary school children, even though pattern sequences (like Fig. 1) are not 
frequently used. The study here tries to figure out the reactions to letter variables of German pupils 
with –under these conditions assumed– minor or none prior algebraic knowledge and whether the 
findings on children’s understanding of letters correspond to international findings: 

· What kind of spontaneous interpretations of letter notations of a pattern sequence (n®kn+t 
in ℕ) can be categorised? 

· Does the age of the pupils or the pattern sequence given effect the interpretations? 
· Are there any correlations between continuing the sequence, finding the 100th figure, and 

the ability to interpret the letter notation? 

Methodology and Design 
The study is an explorative one-shot written test design with no teaching experiments. Five mixed-
age classes 3rd- and 4th-grader (8 to 10-year-olds) and in total 96 children participated in the study. 

Thematic Working Group 03

Proceedings of CERME11 684



The designed written test uses three different versions, each focusing on one pattern sequence 
(n®2n+2, n®2n+1, and n®3+n) in order to allow each child an independent reaction to the task in 
the classroom setting. Each test version is therefore worked on by 32 children. 

Each test version includes only three tasks on one sheet of paper. The first two tasks are placed on 
the top half of the sheet, the third on the bottom half. The task sheet was folded in the middle, so that 
the children only see the first two tasks. They are permitted to unfold the sheet only after working on 
these two tasks.  

Each child gets one of the pattern sequences and is asked to drawn the next figure (like in Figure 1). 
The second task asks to describe how to find the 100th figure in this sequence. After unfolding the 
tasks sheet the third task appears. It is a confrontation with one possible algebraic letter notation for 
the given relation (example Figure 2). This task invites the child to think about this unfamiliar 
symbolic letter description and to comment on it. The reactions might reveal mental images the 
children use.  

Figure 2: Confrontation-task with the algebraic letter notation 

The design follows the idea to embed the confrontation with the letter notation in a useful way in a 
purposeful task. Purposeful is meant here against the background of the definition by Ainley, Bills 
and Wilson (2003) alongside with utility which is understood as “knowing how, when and why that 
idea is useful” (p. 2). It is hoped for that the learner sees the connection of the letter symbols after 
working on the pattern individually. The letter notation, at best, condenses the idea of generalisation 
of the pattern the child already used in the 2nd task (100th figure in the pattern). 

statement none 

individual 

partly 

fully 

Figure 3: Categories and examples of reactions of the algebraic notation 2n+2 

The answers to the first two tasks are analysed in a common way. The continuations are categorised 
in none, individual, correct without coloration, and correct. The description of the 100th figure in the 
pattern are categorised in none, individual, initial approaches, and correct. The reactions to the letter 
notation are the main focus of the study. Here a wide range of answers are found (Figure 3). The 

I don‘t know 

+2 painted ··

+2 are the 2 black
dots. The n is again

Yes!! 

I think 2×n+2 means  
2 normal [twos] 2s +2 = 4 
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categories none, individual, partly, and fully are suitable. Additionally, the category statement is 
needed, because the task allows yes-or-no-answers, which are frequently used.  

Findings and Discussion 
Quantitative Results 

78 % of the children are able to continue the pattern correctly and over one third (35 %) describes the 
100th figure correctly. Taking into account that pattern tasks –not even on Recognise-Continue-
Describe level– are not common in German primary schools, these results are quite pleasing. 

The duration of schooling of the participating children differs between just started the 3rd year or 
rather 4th year. This might have an effect on the reactions. Although, it should be mentioned again, 
pattern tasks are not frequently used in German mathematics lessons. At first sight it seems like 4th-
grades are getting better, because the numbers of no answers are dropping (Table 1). But it may only 
be the case that the older the children the more cheeky or assertive they are, because the number of 
statements increases inversely. 

  

 Table 1: Impact of duration of schooling  Table 2: Impact of the pattern 

Furthermore, an impact of the given pattern, illustrated in Table 2, is visible. The number of full 
interpretations of the pattern n®2n+1 is considerably higher than the others. Simultaneously the 
number of no answers is the largest as well. The n®3+n pattern triggers the most partly 
interpretations and the highest number of statements. 

  
Table 3: Bivariate analysis interpretation of letter notation and finding the 100th figure 

Additionally, correlations between the reactions to the first two tasks and the ability to interpret the 
formula are proved. It can be shown that the ability to continue the pattern correctly is necessary but 
not sufficient for a suitable interpretation. This means, every child who gives a full interpretation of 
the letter notation continued the pattern correctly, but not every child who correctly continued the 
pattern sequence is able to interpret the symbolical letter notation. Moreover, correlations between 
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the experiences and reactions to the generalising task before (100th figure in the pattern) and the 
interpretation of the letter notation could be expected –particularly with regard to the focus on 
generalising in various research studies in early algebra. The bivariate analysis (Table 3) indicates 
that –although the number of children who are able to read the letter notation fully is quite small– it 
is striking that 9% of them have no clue how to find the 100th figure in the pattern sequence. Regarding 
the partly-readers of the letter notation, the amount of children who have not mastered a suitable 100th 
figure grows up to 51%. Apart from that, 52% of the children who give individual interpretations of 
the letter notation have found the 100th figure in the pattern sequence beforehand. The expected causal 
relation –that generalising the pattern by finding the 100th figure in the sequence directly influences 
the ability to interpret the letter notation– therefore cannot be confirmed in this study. 

Qualitative Findings 

The reactions of the children categorised as individual or partly are of great interest to understand 
children’s first-encounter-interpretations of letter variables of relations in ℕ (n®kn+t). One striking 
aspect is, that none of the partly interpretations refer to the multiplicative part of the term (kn) but in 
each case the additional part (constant element t) is described (a typical example is given in Figure 
3). A recursive idea is read into the explicit letter notation by two other children. One of these children 
explicitly specifies +2 as the two dots increase from pattern to pattern and does not assign the painted 
dots (constant element) to +2.  

The individual reactions try to assign an individual meaning to the given letter. Some regard the 
variable as an unknown, which has a certain value like 2 (Figure 3). Five children strongly suggest 
changing the n to an h, because it means 100 in their eyes. This might be a result triggered by the 
second task, which asks for the 100th figure of the pattern. Two others match n to 14, because n is the 
14th letter in the alphabet. One child expects n to equal nine, because nine (‘Neun’) starts with an N. 
These interpretations are of special interest against the background of fruit-salad-algebra (Thomas & 
Tall, 2001) and ‘letter–as–object’ misconception (Arcavi, Drijvers, & Stacey, 2017).  

Closing Remarks 
The study presented here is limited, because research about the importance of “perceptual diversity” 
(Rivera, 2013, p. 5), the possibility of different colouring, and various individual interpretations of 
possible structures (Twohill, 2018) are not taken up in the design. The tasks only involve one 
predefined explicit formula at a time and recursive thinking is somewhat ignored – even though two 
children stick to their recursive approach anyway. This small study can only be seen as a starting 
point for verifying or falsifying the results. In summary, the striking findings are: 

· The impact of the pattern used in the tasks is noticeable but not coherent. 
· Age and duration of schooling might have an effect. 
· The ability to continue patterns is necessary but not sufficient for the interpretation of letter 

notations (symbolic terms). 
· The ability to generalise patterns (find the 100th one) seems not necessarily engender 

(sound) formula interpretations.  

Especially the latter result requests further studies. These studies are thinkable in two ways: Larger 
studies to proof possible correlations or smaller study with a focus on interviews and qualitative 
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analysis. Some interviews in different age-groups are carried out currently. The deeper inside in 
children’s thoughts while interpreting the letter-symbols will be most interesting. 
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We describe structures and generalisation in four second graders (7- to 8-year-old) at the beginning 
and end of a classroom teaching experiment involving an early algebra-related functional context. 
No significant differences were found in their ability to identify structures and generalise at the 
beginning and at the end of the teaching experiment. All the identified structures in the questions 
involving specific cases and all the students generalised when they were explicitly prompted. 

Keywords: Functional thinking, structures, generalisation, teaching experiment. 

Background and conceptual framework 
Traditionally, algebra is not introduced until secondary school in most countries, Spain is one 
example (Ministerio de Educación Cultura y Deporte, 20141). That approach has induced failure in 
many students who react to the difficulties encountered by rejecting algebra and mathematics in 
general (Kieran, 2004). In early algebra the discipline is introduced in the first few years of schooling 
by working, among others, with the generalisation of functional relationships, known as the functional 
approach to early algebra. Children and adults both generalise by identifying regularity in inter-
variable relationships. Notions such as generalisation and the structures in functional relationships 
are key elements in the study of students’ functional thinking (Twohill, 2018). This paper addresses 
second-year primary school students’ ability to identify structures and generalise in a functional 
approach to early algebra. 

Functional thinking, as an approach to introduce algebra in the early grades, involves the relationship 
between two or more variables, and is based on the construction, description and representation about 
functions and their constituent elements (Cañadas & Molina, 2016). Patterns and regularities are of 
significant importance in the study of such thinking, for they interrelate the variables in a situation. 
Earlier studies reported that primary school students of different ages with no specific prior training 
were able to perform tasks involving functional thinking (Blanton, Brizuela, Gardiner, Sawrey and 
Newman-Owens, 2017). The notion of structure acquires different meanings in early algebra (Molina 
& Cañadas, 2018). In the functional approach, it is associated with how inter-variable regularity is 
organised, which pupils may represent in different ways when working with specific values as well 
as when generalising the relationship between variables (Pinto & Cañadas, 2017a). Structures can be 
semantically equivalent. For example, in algebraic symbolism, x + 4, x + 2 + 2 and x + 1 + 1 + 1 + 1 
are equivalent expressions (equivalent semantic structures) because these expressions are the same 
thing through arithmetic computations, but their external structure is different.  

Limited studies have addressed these notions in primary education students. Pinto and Cañadas 
(2017a, 2017b), in research on structures and generalisation in third and fifth-year students, described 
differences in the amount and variety of the structures identified, both of which were greater among 
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the younger children. Third-year students tended to work with specific cases while those in fifth-year 
were able to establish generalizations; most of them generalised structures and used the same structure 
for both specific situations and the general case and their answers were more coherent. Three of the 
fifth-year students generalised in tasks involving specific cases. The authors also distinguished two 
types of generalisation: spontaneous (when students generalised in tasks describing specific 
situations) and prompted (when they generalised when asked to do so in connection with the general 
case). Tasks or worksheets were designed assuming that generalisation would arise in a later stage, 
so these students evidenced prompted generalisation (Pinto & Cañadas, 2017a). Generalisation and 
structure are not independent notions. Identifying structure, whether through specific or general 
situations, is requisite to generalising. We take generalising to mean seeing general patterns in 
specific situations (Mason, 1996). The inductive model proposed by Cañadas and Castro (2007) was 
implemented here to foster this kind of abstraction. At the outset, we used specific situations 
(variables with specific values), aiming to prompt generalisation (of the functional relationship) 
through the detection of regularities. Structures and generalisation may be represented in different 
ways by primary school pupils: natural language, algebraic symbolism, tables or graphs (Radford, 
2018). The present study explored the identification of structures and generalisation in second year 
primary school students at the beginning and at the end of a teaching experiment involving functional 
thinking.  

Method 
In this paper, we focus on part of a broader teaching experiment (Steffe & Thompson, 2000), about 
functional thinking in second grades (7-8 years old). We present different problems during the five 
sessions of the teaching experiment and the two interviews. Three of the purposes of the teaching 
experiment were to: (a) explore how students relate the variables involved; b) identify structures on 
students’ responses; (c) explore students’ generalization process. This paper analyses the information 
gathered in two interviews: one held after the first session and the second after all the sessions were 
completed. The data were analysed to ascertain differences between the first and second interviews 
in terms of the structures identified and generalisation expressed by students. 

Participants 

The subjects were four 7- to 8-year-old, second graders from a Spanish school. They had not been 
previously exposed to generalisation tasks involving linear functions. Their prior knowledge included 
the numbers from 0 to 399, addition with carrying and subtraction with borrowing. After the first 
session of the teaching experiment, in which a worksheet was administered to the entire class (24 
pupils), the students were classified into two groups (intermediate and advanced). Students in 
advanced group generalized the functional relationship; students in intermediate group did not 
generalized. Four students, two from each group, were selected for the interviews. The subjects 
selected in each group were chosen by the classroom teacher considering that they should be 
participative.  

Information gathering instrument 

The five classroom sessions conducted were video-recorded. In each session we posed one or two 
tasks in different contexts involving different functions. Each task was described on a separate 
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worksheet. Two semi-structured individual interviews were held with the four students selected, one 
after the first session and the other after the last.  
Classroom sessions 
A contextualized task involving a linear function was posed in each session. In all sessions, students 
first worked with specific cases of the function from which, after identifying the structure, they could 
pose new specific cases or generalise. Some of the tasks were original and others taken from the 
studies cited in section 1 above. The context and function addressed in each session are listed in Table 
1. We first involved an additive structure (it is supposed to be easier following previous studies) and 
then we combined the additive and multiplicative structures. We observed that the students had more 
difficulties to reach the generalization in the later, so we involved only multiplicative structure. We 
selected contexts close to the students’ experiences according to the students’ teacher. The objective 
of each session was to explore students’ generalization within different contexts. 

Context Functional relationship 

Session 1: ball dispenser  
Session 2: amusement park 1 

y = x+3 

Session 3: amusement park 2 y = 2x+1 

Session 4: birthday  
Session 5: train stations  

y = 2x 

 

Table 1: Characteristics of session tasks 

The dynamics were the same throughout the experiment. Three members of the research team were 
present in the classroom: the teacher-researcher (he was not the usual teacher), a support researcher 
and a researcher who video-recorded the session. Each session was divided into several parts: first 
we explained the task to the whole class, then we distributed the session-specific worksheets and 
lastly the task was discussed by the group as a whole. The students received no feedback on their 
replies. The worksheet used in the first session is described below as example and because the 
interviewees were selected on the grounds of their performance in that session.  
Session 1 worksheet 
The session 1 worksheet contained five questions about a ball dispenser that when fed balls returned 
a certain number further to the functional relationship f(x) = x+3. We introduced the context to the 
students as follows: “we have a machine in which we introduce and leave balls”. Four questions 
involving specific cases were posed as shown in Figure 1. We organized the balls in such a way that 
did not facilitate the structures identification through visualization. 

How many balls will come out from the machine if we feed it 8 balls? ____balls 

 

 

Figure 1. Specific case question 
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The last question, involving generalisation, is shown in Figure 2. 

Now we’re going to play a game. The winner has to figure out how the machine 
works. How can you tell how many balls will come out? 

Figure 2. General case question 

This worksheet helped to classify the students into two groups based on their answers: intermediate 
and advanced. The first group included students who had identified regularity in several of the 
questions and the other students who were able to generalise. The classroom teacher then chose two 
students from each category (intermediate, S2, S1; advanced, S4, S3). Hereafter, the students are 
identified by the letter S and a randomised number for anonymity purposes.  

Interviews 

We designed two semi-structured interviews, each with a different protocol. Two tasks involving 
additive linear functions were designed for each interview. In the first the context was the same as in 
session 1 (𝑦𝑦 =  𝑥𝑥 + 3). In the second interview the context was the age of two superheroes, one 
4 years older than the other (𝑦𝑦 =  𝑥𝑥 + 4). The structure was the same in the two interviews: We 
began with specific, non-consecutive (to avoid recursive patterning in students’ answers) situations 
and progressed inductively toward generalisation. The design of the second interview, which built on 
the first, also involved an addition function to ensure inter-sessional comparability of the students’ 
replies. The guides for the two interviews were analogous. The guide for the second interview is 
presented in Figure 3. We note that in the last question about generalization, letters were random 
values that served to express examples, the question did not involve or asked for symbolic letters. 

1. Exploration of specific cases

· Identify the functional relationship

· Apply the functional rule in different specific cases
1. Specific cases

When Iron Man was 5 years old, Captain America was 9.
When Iron Man was 7 years old, Captain America was 11.
When Iron Man was 3 years old, Captain America was 7.

2. Specific cases proposed by the student

Give me an age for Iron Man (__). If he’s that old, how old is Captain America?

2. Generalisation

· Express the generalisation

How would you explain to a friend what she has to do to figure out Captain America’s age?

· Reason with the generalisation
One of your classmates said that ‘When Iron Man is XX, Captain America is YY’. Do you agree?

Figure 3. Protocol for the second interview 
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Data analysis  

The data gathered during the two interviews were analysed with a system of categories based on the 
structures identified by the students in both specific and general cases. Students were considered to 
have identified a structure when they answered two or more questions referred to the same task with 
the same regularity or generalised a regularity.  

Results 
Table 2 summarises the results for the specific and general cases posed in the first interview. The 
analogous information for the second interview is given in Table 3. The structures identified by the 
students as they worked are listed in tables 2 and 3 in the order in which they were observed and 
expressed using algebraic symbolism, although the students did not use that system.  

Student Specific cases General case 

S1 y = x + 3 y = x + 3 

S2 y = x + 3 
y = x + x 

y = x + 3 

S3 y = x + 3 y = x + 3 

S4 y = x + x 
y = x + 3 
y = x + x 

y ˃ x 

 

Table 2: Structures identified in the first interview  

Further to the data in Table 2, each student identified one or two structures for the specific cases 
during the interview. Overall, three types of structures were observed in the particular and general 
cases, namely: x+x, x+3 and y˃x. In the following extract of the interview, S4 identified different 
structures for the specific cases, as listed in the table in chronological order. 

I (Interviewer):  What happened when you put 8 balls in the machine? 

S4 (Student 4):  If there were 8, we add another 8, 16 balls. 

I:  I’m going to write down the numbers you give me. When we put 5 balls in, 
how many came out?  

S4:   8 

I.   And if we put 2 in, how many came out? 

S4:   4, I add 2+2  

All four students generalised the functional relationship verbally (Table 2, last column). Three 
identified the structure as y = x+3, which they expressed verbally in different ways. S1 and S3 
generalised both the specific cases (spontaneous generalisation) and the general case (prompted 
generalisation). S2 and S4 generalised only when they were prompted. S1 first gave examples of 
specific cases and then generalised by adding that the answer was found by adding 3: ‘1 ball we get 
3, 2 balls we get 5, 3 balls we get 6, 4 balls we get 7. You always have to add 3. One million, you get 
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1 million and three.’ That answer was classified as prompted generalisation because the student 
formulated it when asked the general case question (Figure 2). S4, in turn, noted that ‘more balls 
come out than went in’, generalising without quantifying: ‘I know the machine spits out identical 
balls and what I know is that inside it has lots more balls’ (prompted generalisation). The other two 
students’ answers showed that they were thinking in terms of x+3. Three students identified the 
structure correctly (x+3) in both the general and the specific cases. Table 3 lists the structures 
identified in the second interview.  

Student Specific cases General case 

S1 y = x + 4 y = 4x 
y= x + 4 

S2 y = x + x 
y = x + 4 

y =x + 4 

S3 y = x + 4 y =x + 4 

S4 y = x + 4 
y = x + x 

y ˃x 

Table 3: Structures identified in the second interview 

As in the first interview, students identified one or two structures for the specific cases. Three types 
of structures, including the ones given for the general case, were found: x+4, 4x and x+x. S2 and S4 
exhibited the same type of structures as in the first interview, identifying the relationship in the 
specific cases to consist in doubling the value given. Generalisation was expressed verbally by all 
four students. The structures observed in their generalisations were: 4x and x+4. The second was 
identified by all the interviewees. S1’s initial assertion that the age of the older superhero was found 
by ‘multiplying by four’ was indicative of their difficulty in distinguishing between addition and 
multiplication. Student S4 generalised the relationship to be x+4 saying: ‘you have to add plus 4’. S2 
and S3 both instantly answered that what they had to do was ‘add plus 4’. S1 generalised both the 
specific cases (spontaneous generalisation) and the general case (prompted generalisation). S2, S3 
and S4 generalised only when prompted. The following extract exemplifies S1’s spontaneous 
generalisation when answering questions about specific situations. 

I (Interviewer): when Iron Man was 5 years old Captain America was 9, when Iron Man was 
7 Captain America was 11 and when Iron Man was 3 Captain America was 7. 
Can you tell me how those numbers are related? 

S1 (Student 1):  Captain America always wins: he’s 4 years older. 

Comparison of interviews 
In the first and second interviews, S1 and S3 identified only one structure, correctly in both cases. S2 
and S4 both identified more than one structure, likewise in both interviews. In the second interview 
S2 continued to identify x+x, although in the specific cases only, ultimately identifying the right 
structure as the interview proceeded. The contrary was observed in S4, who incorrectly identified the 
structure x+x in the second interview. Fewer differences were observed around the general case. S2 
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and S3 correctly identified the structure, whereas S1 initially identified a multiplicative structure in 
the second interview, 4x, despite having correctly identified the structure in the first. In the second 
interview S4 correctly identified the relationship between the variables, having failed to do so in the 
first. All the students correctly identified at least one structure in the specific or general cases and all 
expressed generalisation in at least one case. In the second interview, however, only one student, S3, 
identified the sole same structure in the specific and general cases. Two students did so in the first 
interview. While seeing no clear structure in the specific cases, S4 correctly identified it in the general 
case. Generalisation was expressed in various ways in both interviews. In the second interview, only 
S1 generalised spontaneously, whilst in the first both S1 and S3 did so.  

Discussion and conclusions  
This paper presents evidence of functional thinking in second-year primary school students. Like the 
fifth-year primary students who participated in the Pinto and Cañadas (2017a) study, most of the 
second-year pupils in our survey generalised structures, identifying the same structure in the specific 
and the general cases in the first and second interviews. Their answers were found to be coherent. 
The number and variety of the structures identified were greater in the first interview. Although the 
students might have identified 2x instead of x+x for the specific cases in both interviews, none did. 
Students evidenced the x + x structure more easily than the 2x because of the kind of structure 
(additive versus multiplicative structure). All the students expressed generalisation verbally, a finding 
consistent with the Cañadas and Fuentes (2015) results. All the students generalised in both the first 
and the second interview. That finding differed from the results reported by Pinto and Cañadas 
(2017b) for third-year students, only one of whom generalised. In the second interview generalisation 
was consistently and simply phrased as ‘adding plus 4’. In our study generalisation was normally 
prompted. In one case, S4 in the first interview, expressed the general relationship as y>x. This 
student was able to see that ‘y is always greater’, without quantifying to what extent is greater.  

Whilst differences between the intermediate and advanced groups was not explored in this study, the 
findings showed that students’ classification in one or the other had no impact on their ability to 
correctly identify structures. In other words, the advanced students did not correctly identify more 
structures than the others. In fact, the contrary was found: S1, an intermediate group student, was the 
only one to correctly identify the structure involved in the specific and general cases in both 
interviews. Work to enlarge on this study is ongoing to determine how the working sessions might 
have affected the differences between the two interviews.  

Acknowledgement 
This study was funded by Spain’s Ministry of the Economy and Competitiveness under National 
R&D Plan project EDU2016-75771-P. 

References  

Blanton, M., Brizuela, B., Gardiner, A., Sawrey, K., & Newman-Owens, A. (2017). A progression in 
first-grade children’s thinking about variable and variable notation in functional relationships. 
Educational Studies in Mathematics, 95, 181-202. 

Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. 
PNA, 1(2), 67-78. 

Thematic Working Group 03

Proceedings of CERME11 696



Cañadas, M. C., & Molina, M. (2016). Una aproximación al marco conceptual y principales 
antecedentes del pensamiento funcional en las primeras edades [Approach to the conceptual 
framework and background of functional thinking in early years]. In E. Castro, E. Castro, J. L. 
Lupiáñez, J. F. Ruíz, & M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a 
Luis Rico (pp. 209-218). Granada, Spain: Comares. 

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 
18(1), 139-151. 

Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee 
(Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65-86). Dordrecht, 
The Netherlands: Kluwer. 

Molina, M., & Cañadas, M. C. (2018). La noción de estructura en early algebra [The notion of 
structure in early algebra]. In P. Flores, J. L. Lupiáñez, & I. Segovia (Eds.), Enseñar Matemáticas, 
homenaje a los profesores Francisco Fernández y Francisco Ruiz (pp. 129-141). Granada, Spain: 
Atrio. 

Ministerio de Educación, Cultura y Deporte. (2014). Real Decreto 126/2014 del 28 de febrero por el 
que se establece el currículum básico de la Edicación Primaria [Royal Decree 126/2014, of 
February 28, which establishes the basic curriculum of Primary Education]. BOE, 52, 19388-
19393. Spain 

Pinto, E., & Cañadas, M. C. (2017a). Generalization in fifth graders within a functional approach. In 
B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49-56). Singapore: 
PME.  

Pinto, E., & Cañadas, M. C. (2017b). Functional thinking and generalization in third year of primary 
school. In T. Dooley, & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European 
Society for Research in Mathematics Education (pp. 472−479). Dublin, Ireland: DCU Institute of 
Education and Erme. 

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran 
(Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of 
an emerging field of research and practice (pp. 3-25). New York, NY: Springer. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles 
and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and 
science education (pp. 267- 307). Hillsdale, NJ: Erlbaum. 

Twohill, A. (2018). Observations of structure within shape patterns. In C. Kieran (Ed.), Teaching and 
learning algebraic thinking with 5- to 12-year olds (pp. 213-235). Cham, CH: Springer. 

Thematic Working Group 03

Proceedings of CERME11 697



 

 

Comparing the structure of algorithms: 
The case of long division and log division  
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This paper is a theoretical contribution to the comprehension of logarithms by means of comparing 
algorithms. First an algorithmic approach to the logarithm (so-called log division) is introduced, 
which then is compared with the standard division algorithm (long division). By working out mathe-
matical correspondences and differences between the two algorithms, this approach focuses on 
structural aspects of two mathematical operations and their relations. Comparing algorithms in 
classrooms is proposed as a way of algorithmic thinking that would go beyond rote memorization.  

Keywords: Mathematical algorithms, logarithms, long division, comparison, algorithmic thinking. 

Introduction 
Algorithms have played a central role in mathematics since antiquity. Examples such as Heron's 
method (for computing square roots) and the Euclidean algorithm (for computing the greatest com-
mon divisor) are impressive evidence of this. Their development is still an integral part of mathe-
matical research (Chabert, 1999; Ziegenbalg, 2016). Accordingly, mathematics education until the 
late Middle Ages was primarily computational education, that is, the teaching and practice of com-
putational methods (Graumann, 2002; Ziegenbalg, 2016). Still today in school instruction of algo-
rithms occupy an important place. In every case algorithms are “a finite sequence of explicitly de-
fined, step-by-step computational procedures which ends in a clearly defined outcome” (Wu, 2011, 
p. 57). It is hardly surprising, then, that algorithms and also dealing with algorithms is sometimes 
regarded as one of the “central ideas” for mathematics education (Heymann, 2003). 

As can be seen from the above examples, each algorithm always solves a whole class of structurally 
related computational problems. Another strength is that we do not have to worry about how it 
works or validate the result since it turns a problem into a routine task. This is a substantial relief for 
the user and effectively clears the way to tackle new, unresolved issues. The flip side of this liberat-
ing mindlessness is that users can also mechanically execute an algorithm without being able to 
justify it, to know the limits of its applicability, etc. Thus, learning algorithms takes place within a 
field of tension between mechanical memorizing and meaningfully acquiring, in short: memoriza-
tion by rote vs. conceptual understanding (Baroody, 2003; Wu, 1999).  

The dangers of rote learning have been empirically established in several studies in the case of 
standard algorithms for the four arithmetic operations (e.g. Kamii & Dominick, 1998). This could 
also be the reason why some authors contrast knowledge of standard algorithms with conceptual 
understanding (Baroody, 2003; Fan & Bokhove, 2014), or why the term “algorithmic thinking” is 
sometimes understood rather in a negative sense. Occasionally, a reduction or even a banishment of 
certain standard algorithms from the curriculum is advocated (for instance in Canada, see Fan & 
Bokhove, 2014, p. 482, or in North Rhine-Westphalia / Germany, see Krauthausen, 2018, p. 91). 
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Understanding algorithms in the classroom and in teacher education 
However, not all authors go so far, but rather focus on the role of the teacher: “[Rote learning might 
take place] when the teacher does not possess a deep enough understanding of the underlying math-
ematics to explain it well. The problem of rote learning then lies with inadequate professional de-
velopment and not with the algorithm” (Wu, 1999, p. 6). To defuse this problem, there are different 
suggestions for classroom instruction and teacher education. They can be divided into two strands:  

1. A first strand of proposals recommends that students not be provided with ready-made algo-
rithms and detailed directions for their use. Instead, they should be encouraged to invent their
own methods and individual strategies for solving computational problems. In mathematics edu-
cation at primary school level, this includes informal mental arithmetic as well as informal pen-
cil-and-paper arithmetic. The point is, then, that students develop individual strategies in which
they operate not with the individual digits of numbers but always with “numbers as wholes”, that
are decomposed in meaningful ways. In the case of the division, this could mean subtracting easy
multiples of the divisor from the dividend until the dividend has been reduced to zero or the re-
mainder is less than the divisor, then adding together the partial quotients to obtain the quotient
(“partial quotient division”, Kilpatrick, Swafford, & Findell, 2001, p. 221).

2. Another strand of suggestions recommends comparing standard algorithms or individual strate-
gies in the classroom as a way to understand why they work. For example, Bass (2003) suggests
that students in the classroom compare standard with alternative algorithms in terms of their
generality or efficiency, while Simonsen and Teppo (1999) suggest this kind of comparison in
teacher training programs. Empirical studies of Durkin, Star and Rittle-Johnson (2017) show in
which way learners can benefit from comparing different worked-out strategies for solving the
same linear equation. There is also a certain tradition in teacher education that elementary teach-
er trainees must compare standard algorithms such as long division in base-10 with the same al-
gorithm in other number bases in order to understand better the connection between number ba-
ses and algorithms (Padberg & Büchter, 2015). The aim is to see the algorithm not only as a rec-
ipe and to perform it fluently, but also to see it in its relation to other algorithms by focusing on
certain structural aspects.

The present article focuses on the second approach, the comparison of algorithms, in the context of 
the teaching and learning of logarithms. This calls forth in particular the following questions: 

· How can the logarithm be described algorithmically?

· What is the mathematical relation between the algorithmic description of logarithms and that of
division? In what respect do the two algorithms correspond, and in what respect do they differ?

Comparing log division with long division 
Primary students learn that division of integers can be seen as partitive (fair-sharing) division as 
well as quotative (measurement) division (Greer, 1992). It is the measurement interpretation that 
allows the division to be conceived as an algorithm: in the long division algorithm, the divisor is 
repeatedly subtracted from the dividend until the remainder is as close to zero as possible (for a 
justification see Wu, 2011, pp. 110–122). Mathematically, this has to do with the fact that the divi-
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sion is the inverse operation of multiplication and multiplication can be conceived as repeated addi-
tion (at least for whole numbers). Now, as logarithms are an inverse of powers, and powers are re-
peated multiplication, the logarithm can be treated algorithmically in a similar way—as a repeated 
division (Vos & Espedal, 2016; Weber, 2016). This allows logarithmic values to be calculated algo-
rithmically. In keeping with the name of the standard division algorithm, “long division”, I call the 
corresponding algorithm “log division”. It is described now in order to then compare it with long 
division. 

Log division: description of the algorithm 

Repeated subtraction and repeated division can be naturally applied to calculate quotients and loga-
rithms that come out even and yield integer answers: 8 : 2 equals 4 since , and 

in the same way, log28 equals 3 since . Relying on repeated division, I now give a 

step-by-step description of how the log division algorithm works (Goldberg, 2006; Weber, 2016). 
Suppose you have to compute log1632 (see Figure 1): 

Step 1: Calculate how many times the argument (32) can be divided by the base (16) before the re-
sult is less than the base. In our case, 32 can be divided by 16 only one time (because dividing 32 
by 16 two times, the quotient would be less than 1). You record this result of 1 above the bracket 
(noted as . in Figure 1). 

Step 2: Next, you calculate the base raised to this result: 161 = 16. You place this number beneath 
the argument of the logarithm and divide (instead of subtracting as in long division) the argu-
ment by this value (32 : 161). Note the result (2) as a remainder underneath.  

Step 3: You raise the remainder to the 10-th power (recall that in the same step in long division you 
bring down a further digit from the dividend, in effect multiplying the original remainder by 10). 
Note the result as the new argument: 210 = 1024. 

Step 4: If (as in our example) the new argument does not equal 1, go back to the Step 1, if it equals 
1 (not 0 as in long division), the process has come to an end. 

Conclusion: By cycling through the steps 1 to 4 until arriving at the argument 1, you obtain the sin-
gle digits of the decimal expansion of the result. In our example, you reach the remainder of 1 af-
ter two additional cycles (producing 1, 2, 5 as the successive exponents of 16.) Stringing the 
numbers together, the decimal expansion of log1632 is found to be to be 1.25. 

Figure 1 shows not only the computation of log1632 digit by digit, but also the corresponding loga-
rithmic expressions that reveal what the algorithm actually “does.” It also shows that the algorithm 
works not only for natural, but also for non-integer results. In order to emphasize the mathematical 
analogy to division, those who use the colon “:” notation for long division (for instance in countries 
where Romance languages or German are spoken) could use the non-standard tricolon “ ” notation 
for log division, for instance  (for the historical background, see Weber, 2016). 

Thematic Working Group 03

Proceedings of CERME11 700



 

 

Those who use the bracket notation “⟌” (for instance in English-speaking countries, Mexico or Ja-
pan) could use the notation “⟌⟌” for log division,  (Weber, 2019). 

 

  

  

 

 

 

 

Figure 1: Log division algorithm (applied to log16 32) – to the left. Stepwise explanation – to the right 

 

Comparing the mathematical structure 

In order to not only explain the algorithms by means of examples, an approach to a more thorough, 
mathematical justification is given now, in two steps: To start with, I explain why division is equiv-
alent to repeated subtraction and why finding the logarithm is equivalent to repeated division, which 
allows us then to compare the respective algorithms with each other. 

For this we first consider the following mathematical equivalence relations: 

· For the division of a whole number b by a whole number a ( ) one has:  

 

· For the logarithm of a natural number b to a natural-number base a ( ) one has:  

 

From these relations follow several conclusions: 

1. The quotient  gives (in the context of whole numbers) “how many a’s are in b” as a sum-
mand (Wu, 2011, p. 103). On the other hand, the logarithm logab (or , respectively) gives 
how many a’s are in b as a factor.  

2. The two equivalence relations structurally resemble each other, since they are each based on a 
respective inverse operation. In this respect, they are analogous to each other. However, they op-
erate at different hierarchy levels: while division and multiplication are second-level operations, 
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built upon the first-level operation of subtraction, logarithms and powers are third-level opera-
tions, built upon the second-level operation of division (see Figure 2). 

  
 

 
Third level: Exponentiation ⟵       is the inverse of ⟶ Taking logarithms 
  |   | 
  is repeated   is repeated 
  ↓   ↓ 
Second level: Multiplication ⟵       is the inverse of ⟶ Division 
  |   | 
  is repeated   is repeated 
  ↓   ↓ 
First level: Addition ⟵       is the inverse of ⟶ Subtraction 
 

Figure 2: Hierarchy levels of arithmetic operations 
 

3. According to conclusion 1 above, algorithms can be derived to calculate the value of the corre-
sponding quotient or the corresponding logarithm. Thus, the algorithm for long division counts 
how many times the number a is subtracted from the number b. The log division, on the other 
hand, counts how many times the number a divides the number b. Because of conclusion 2, the 
two algorithms are also analogous to one another; in particular the individual calculation steps 
correspond: 

· Analogous to the fact that in the long division the remainders are multiplied by 10 (a second 
level operation), the remainders in the log division must be raised to the power 10 (see the 
corresponding third level operation) (see Step 3, above). 

· The algorithm of long division ends as soon as the repeated subtraction leads to the remainder 
0 (the additive identity). Accordingly, log division terminates as soon as the repeated division 
leads to the “remainder” 1 (the multiplicative identity) (see Step 4). If this occurs, the result is 
an integer or a finite decimal expansion (see Figure 1), otherwise not. 

In addition to this analogy and its consequences, there are also two significant differences between 
the two algorithms that should be kept in mind: 

1. Numbers are usually encoded as decimal numbers, meaning they are decomposed as a series of 
digits, each weighted by a power of ten, and added together. As with all standard algorithms of 
arithmetic, the strength of the long division is that it does not divide the dividend as a whole, but 
essentially digit by digit (Wu, 2011, p. 56). That this can be done is due to the fact that division 
distributes over addition, . In order to make the division algorithm 
more accessible in the classroom, it is sometimes suggested to discuss the already-mentioned 
partial quotient method, which treats the dividend as a whole entity, from which easy multiples 
of the divisor are subtracted (see above). 
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Unfortunately, logarithms do not distributive over addition, . 

Hence it is not possible to march along, calculating one digit of the logarithm for each digit of 
the argument as with division: While 32 = 30 + 2, log 32 ≠ log 30 + log 2. As a result, you have 
to pay attention from the beginning to all the digits of the number, similar to the partial quotients 
division (see Step 1). 

2. The multiplication operation, for example , can be inverted in two ways: Either you are
interested in the first factor , or the second factor ( ). While the first factor can be 
found via repeated subtraction (measurement interpretation), , the second ques-

tion corresponds to the fair-sharing (partitioning interpretation), , an equation 

that can only be immediately solved by guessing. Since however multiplication is commutative, 
the question of the second factor can always be handled as a question regarding the first factor:

. To sum up: Since multiplication is a binary operation, finding its inverse can be un-
derstood in two ways, but due to its commutativity, both lead in the end to one and the same op-
eration, division. (Wu, 2011, pp. 99–100) 

In the same way the operation of exponentiation, for example, , can be inverted in differ-
ent ways, depending on whether you are interested in finding the exponent , or the base

. The answer to the first question can be calculated through repeated division step-by-
step: , while the second question leads to the equation . In contrast 

to multiplication, the one form of inverse cannot be applied to find the other one, since exponen-
tiation is not commutative. In other words: On account of its non-commutativity ( ), expo-
nentiation has two distinct inverse operations: taking the logarithm, , as well as ex-
tracting the root, . Accordingly, the method of repeated division can only be applied to 
solve inverse questions regarding the exponent of a power, but not those concerning its base. 

Conclusion and questions 
There is a certain tradition in mathematics education to place concepts of elementary mathematics 
into meaningful contexts in order to make them easier to learn, and to promote efficient and flexible 
application later on (e.g., for long division, see Pratt, Lupton & Richardson, 2015). For secondary 
schools, the situation is a bit different. So while it may be possible to occasionally identify mean-
ingful contexts, with increasingly abstract content this is not necessarily desired. For concepts such 
as the logarithm, which can be conceptualized algorithmically, it therefore makes sense to compare 
them with other mathematical algorithms in order to make them accessible and to understand why 
they work (Bass, 2003). While I have described the algorithmic approach of “log division” previ-
ously, the correspondences and differences between the algorithms seem to have never been worked 
out before. 

This paper also raises various questions. First of all, the question of the mathematical generalization 
of the log division from natural to rational bases and arguments remains open. The question of the 
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explanatory power of the log division is also not covered here, that is, in which situations our algo-
rithmic conceptualization of logarithms can serve as a basis for solving tasks and for reasoning (for 
instance, one could argue that logarithms are not defined for negative arguments because a negative 
number divided repeatedly by the positive basis will never yield 1, see Weber, 2016). Another 
group of questions is empirical in nature and asks about the effects and pitfalls that an algorithmic 
approach combined with comparison would have in teacher education and in subsequent classroom 
instruction (for a classroom teaching experiment to introduce logarithms by log division, see Weber 
2019). In particular, in which ways might comparing the structure of algorithms foster conceptual 
understanding? 

Algorithmic and algebraic thinking 

Last but not least, the results of this contribution might be used to clarify the construct “algorithmic 
thinking” in mathematics education: comparing algorithms might be a way of dealing with algo-
rithms in the classroom beyond just learning to perform them. For instance, in order to bring out 
further aspects of the construct, the cognitive processes of students and teachers could be studied 
when they work on the new algorithm of log division by relating it to the familiar long division. 

Teaching algorithms by comparing them, as outlined above, focuses on seeing structure and rela-
tionships between mathematical operations. While seeing structure in numerical expressions can be 
seen as algebraic thinking at primary level (Kaput, 2008), comparing algorithms might be seen as a 
specific form of algebraic reasoning at the secondary level (Kieran, 2018). Kaput’s view that “the 
heart of algebraic reasoning is comprised of complex symbolization processes that serve purposeful 
generalization and reasoning with generalizations” (2008, p. 8), raises more questions related to the 
contents of this paper. For instance, at primary and secondary school, algorithms are never ex-
plained or justified in full generality, but by generic examples. To what extent is this characteristic 
similar to teaching early algebraic reasoning by generic arguments? Furthermore, any given algo-
rithm does not solve just a single task, but a class of multiple problems. To what extent is this char-
acteristic similar to algebraic reasoning, understood as “reasoning with generalizations”? Future 
research will have to clarify and answer these and several other questions. 
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In this study we use latent class and distractor analysis as well as qualitative analysis of 
cognitive interviews to investigate how student responses to concept inventory items may reflect 
different patterns of algebraic conceptual understanding and procedural fluency. Our analysis 
reveals three groups of students, which we label “similar to random guessing”, “some 
procedural fluency with key misconceptions”, and “procedural fluency with emergent conceptual 
understanding”. Student responses also revealed high rates of misconceptions that stem from 
misuse or misunderstanding of procedures, and whose prevalence correlates with higher levels of 
procedural fluency. 

Keywords: Elementary algebra in college, conceptual understanding, concept inventory. 

In the US, elementary algebra and other developmental courses have consistently been identified 
as barriers to student degree progress and completion in college, with only as few as one fifth of 
students ever successfully completing a credit-bearing math course (e.g., Bailey, Jeong, & Cho, 
2010). There is evidence that students struggle in these courses because they do not understand 
fundamental algebraic concepts (e.g., Givvin, Stigler, & Thompson, 2011; Stigler, Givvin, & 
Thompson, 2010), and many research studies have documented the negative consequences of 
learning algebraic procedures without any connection to the underlying concepts (e.g., Hiebert & 
Grouws, 2007). However, developmental mathematics classes currently focus heavily on recall 
and procedural skills without integrating reasoning and sense-making (Goldrick-Rab, 2007; 
Hammerman & Goldberg, 2003). This focus on procedural skills in isolation may actually be 
counter-productive, in that students may often attempt to use procedures inappropriately because 
they lack understanding of when and why the procedures work (e.g., Givvin et al., 2011; Stigler 
et al., 2010). 

In this paper we explore student responses to conceptual questions at the end of an elementary 
algebra course in college. We combine quantitative analysis of responses (using latent class 
analysis and distractor analysis) with qualitative analysis of cognitive interviews to better 
understand different typologies of student reasoning around some basic concepts in algebra, and 
to better understand how conceptual understanding and procedural fluency may relate to one 
another in this context. 

Research questions 

Is there a latent class structure that adequately represents the heterogeneity of item responses on 

Thematic Working Group 03

Proceedings of CERME11 706



an algebra concept inventory among college developmental algebra students? If so, are patterns 
observed with distractor analysis, procedural assessment scores, and qualitative analysis of 
cognitive interviews consistent with the class structure, and can they contribute to class 
interpretation? 

Theoretical framework 
In this paper we use Fishbein’s (1994) typology of mathematics as a human activity as a 
framework for analyzing student responses and thinking about how conceptual understanding and 
procedural fluency might inform one another. Fishbein outlines three basic components of 
mathematics as a human activity: 1) the formal component (which we call conceptual 
understanding), which consists of axioms, definitions, theorems and proofs, which need to be 
“invented or learned, organized, checked and used actively” (p. 232) by students; 2) the 
algorithmic component (which we call procedural fluency), which consists of skills used to solve 
mathematical problems in specific contexts and stems from algorithmic practice; and 3) the 
intuition component, which is an “apparently” self-evident mathematical statement that is 
accepted directly with the feeling that no justification is necessary. 

In this study we use the term conceptual understanding not only to denote a formal understanding 
of abstract concepts (e.g. axioms), but also of how, when, and why procedures can be used. This 
is in contrast to procedural fluency in standard problem contexts, in which a student may be able 
to quickly solve particular types of standard problems correctly but may not understand of how, 
why, or when these methods work. We say that an item tests conceptual understanding if a 
student must use logical reasoning grounded in mathematical definitions to answer correctly, and 
it is not possible to arrive at a correct response solely by carrying out a procedure or restating 
memorized facts. We define a procedure as a sequence of algebraic actions and/or criteria for 
implementing those actions that could be memorized and applied correctly with or without a 
deeper understanding of the mathematical justification. Using these definitions, no question is 
wholly conceptual or procedural, but falls on a spectrum. We recognize that the definition of 
conceptual understanding and its relationship to procedural fluency has been much debated in the 
research community with no clear consensus (e.g., Baroody, Feil, & Johnson, 2007; Star, 2005), 
and that the two forms of knowledge are interrelated (e.g., Hiebert & Lefevre, 1986; National 
Research Council, 2001). 

In fact, each of Fishbein’s three components may interact. Intuition may facilitate learning when 
it is consistent with logically justifiable truths (i.e. the formal component) but may also be an 
obstacle to learning in cases where it is inconsistent. In this paper we explore how students who 
develop algorithmic/procedural skills in isolation from formal/conceptual understanding may be 
prone to developing intuitions that are inconsistent with logically justifiable truths, and as a 
result, may exhibit simultaneously increased procedural fluency in standard problem contexts and 
decreased conceptual understanding. We consider how student justifications of answer choices 
may exhibit intuition components (which may be either correct or incorrect), and we consider 
how these intuitions may relate to both the processes of developing procedural fluency as well as 
conceptual understanding. 

Methods 
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This study focuses on student responses to the multiple choice questions on the Elementary 
Algebra Concept Inventory (EACI). For details on the development and validation of the EACI, 
see Wladis et al. 2018). Here we focus on 698 students who took the inventory at the end of their 
elementary algebra class in 2016-2017. In order to supplement quantitative data, 10 cognitive 
interviews were conducted towards the end of the semester with students who were enrolled in an 
elementary algebra class and were analyzed using grounded theory (Glaser & Strauss, 1967), 
although a full qualitative analysis is not presented here due to space constraints. All students 
currently enrolled in the course were recruited via email to complete the EACI and then to be 
interviewed about their thinking immediately afterwards. The distribution of interviewees among 
the three classes was not significantly different from the whole quantitative sample. 

In this paper we used latent class analysis (LCA) of the nine binary scored (right/wrong) 
multiple- choice items on the inventory. LCA is a latent variable model that presumes that items 
are locally independent conditional on a discrete nominal latent variable (e.g., Collins & Lanza, 
2010). 

Description of the classes 
Latent class analysis on binary (correct/incorrect) scoring of the items was used to look for 
common response patterns among the students in the quantitative sample, and this analysis 
revealed three distinct classes of students. While latent class analysis was used to generate the 
three classes, more fine-grained analyses was needed to generate potential interpretations of each 
class. After the initial classes were generated by latent class analysis, item response patterns, 
distractor analysis, and qualitative coding of cognitive interviews were used to generate 
characterizations of each class, and evidence was found among these different complementary 
approaches for the following potential characterizations of each class. The remainder of this 
paper describes in more detail the different approaches that were used to develop the class 
interpretations presented here: 

· C1 (27%): Answers to most items are indistinguishable from random guessing, likely due 
to low procedural/conceptual knowledge, low self-efficacy, and/or low motivation. 

· C2 (28%): Likely have some procedural skills but limited conceptual understanding. 
· C3 (45%): Likely have procedural skills and emergent conceptual understanding. 

These descriptions emerged from different analyses of the data. Firstly, we consider the response 
patterns of students from each of the three classes, and we see some clear trends (see Figure 1). 

 
 
 
 
 
 
 
 

Figure 1: LCA profiles of student responses in each class 

Student responses in class 1 do not vary much from what would be expected for random guessing 
on four-option multiple choice items. While all of the items on the test were designed to test 
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= 0.000). 

conceptual understanding, some of them (items 2, 3, 5, and 6) use more abstract or non-standard 
formulations of algebraic ideas. Class 2 answers significantly worse than chance on questions 2 
and 6 because of the presence of attractive distractors that likely tap into misconceptions related 
to the misuse of procedures. Classes 2 and 3 are distinguished by improved performance on the 
items overall as well as different proportions of key misconceptions. Students who passed the 
class were most likely to be in class 3, then class 2, and least likely to be in class 1. An end of 
course standardized assessment that measures procedural fluency in standard problem contexts 
showed a similar outcome. To illustrate how different response patterns distinguish these three 
classes, we performed a distractor analysis and analyzed cognitive interviews for three 
exemplars: items 2, 4, and 6. We used the Bayes modal assignment to determine the class 
membership of interviewees. 

Three example questions: illustrating different class response patterns 

First we consider Item 4: 

4. Which of the following is a result of correctly substituting 𝑥𝑥 − 4 for y in the equation 3𝑦𝑦 − 2 = 𝑦𝑦2 + 1
a. 3𝑥𝑥 − 4 − 2 = 𝑥𝑥 − 42 + 1
b. 3𝑥𝑥 − 4 − 2 = 𝑥𝑥2  − 42  + 1
c. 3(𝑥𝑥 − 4) − 2 = (𝑥𝑥 − 4)2 + 1
d. 3𝑥𝑥 − 3 ⋅ 4 − 2 = 𝑥𝑥2(−4)2  + 1

The correct answer is c. C1’s responses are scattered in a pattern consistent with random guessing 
(see Figure 2). By contrast, C2 and C3 have a high probability of choosing the correct response, 
with C3’s probability significantly higher than C2. This item is behaving the way we would 
expect if C1, C2, and C3 were ordered on conceptual ability. Selecting c is also highly correlated 
with scores on the procedural exam, corresponding to a score that is higher by 10.8 percentage 
points.   (𝑝𝑝=0.000) 

Figure 2: Item 4 Distractor Analysis 

Looking at student interview responses reinforces our interpretation of the three classes, and 
reveals how higher classes appear to have more robust and correct intuitions about substitution. 

C1 (chose B):  It says 𝑥𝑥 − 4 for 𝑦𝑦, this is what I think like because 𝑦𝑦2.  It could be like
changed to a 42.  I put together like 3𝑥𝑥 − 4 − 2 = 𝑥𝑥2  − 42  + 1.  [I  didn’t  pick
c  or  d because] they [pointing to the 𝑥𝑥 − 4 in the item stem] didn't have no 
bracket around them. [I picked B with the 𝑥𝑥2 in it instead of A, which doesn’t
have the 𝑥𝑥2]  because 𝑥𝑥 equals  𝑦𝑦2 so  it  has  to  have  an 𝑥𝑥2 in  it  because the
𝑦𝑦 is  squared there. 

C2 (chose C): So usually when a math question says, “substituting” that’s basically putting the 
numbers that they give you into 𝑥𝑥 or 𝑦𝑦 that they say to put it. I automatically 
substituted it in, and my correct answer was 3(𝑥𝑥 − 4) − 2… I didn’t pick any 
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other answer, because I didn’t see the parentheses. 

C3 (chose C): I didn't choose A because when trying to multiply the 𝑦𝑦, which is 𝑥𝑥 − 4, you 
have to put the parenthesis behind 3, unless you already multiplied 3 times 𝑥𝑥 − 
4… [choice D] does have parenthesis on −4, but then, it will be missing the 
complete equation for 𝑦𝑦 because −4 is not the only equation that equals to 𝑦𝑦𝑦𝑦 is 
𝑥𝑥 − 4. 

In these examples, the C1 student demonstrates an intuition about substitution that the 𝑦𝑦 should 
be replaced with 𝑥𝑥 − 4 in the equation, but this does not include an awareness of the equation 
structure (e.g., that the 𝑥𝑥 − 4 must be treated as a single unit). The C2 student also demonstrates a 
partially- correct intuition that parentheses must be used around whatever is being substituted, 
but doesn’t execute this procedure completely correctly on both sides, and doesn’t demonstrate 
any awareness of why the parentheses are necessary. In contrast, the C3 student shows both an 
awareness of the need for the parentheses and an understanding of why the parentheses are 
logically necessary— because without them, the structure of the equation will be altered. Now we 
consider item 6, which shows a different pattern of responses: 
6.  A student is trying to simplify two different expressions:  

i. (𝑥𝑥2𝑦𝑦3)2       ii. (𝑥𝑥2  + 𝑦𝑦3)2 

Which one of the following steps could the student perform to correctly simplify each expression? 
a. For both expressions, the student can distribute the exponent. 
b. The student can distribute the exponent in the first expression, but not in the second expression. 
c. The student can distribute the exponent in the second expression, but not in the first expression. 
d. The student cannot distribute the exponent in either expression. 

 
 
 
 
 
 
 

Figure 3: Item 6 distractor analysis 

The correct answer is b. C2 and C3 were strongly attracted to option a (see Figure 3), likely 
because they have intuitions stemming from their experiences with procedures associated with 
the distributive properties, but they do not recognize the critical differences between distributing 
multiplication versus exponents—likely because they have no deeper conceptual understanding 
of how the distributive property works. Unlike item 4, selecting the correct answer is negatively 
correlated (and selecting the attractive distractor was positively correlated) with scores on the 
procedural exam—students who selected the incorrect option a scored on average 7.1 percentage 
points higher on the procedural exam (𝑝𝑝 < 0.000) than others. This suggests that in this context 
(where procedures are typically taught in isolation from concepts) procedural fluency in standard 
problem contexts can be inversely related to conceptual understanding of the distributive 
properties. 

Looking at student interview responses reinforces our interpretation of the three classes, and 
sheds light on how intuitions developed from procedural practice may impede conceptual 
understanding. 
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C1 (chose B): [The difference between the first and second equation] is that there's a plus 
right there [pointing to the second equation]. I think for this one [pointing to the 
second equation], you have to add and for this one [pointing to the first 
equation] you don't…. Actually, I think like over here [pointing to the second 
equation] you add a 3. 3 plus 2.  [For the first one] you do 𝑥𝑥2 times 𝑥𝑥2 and 𝑦𝑦3 

times 𝑦𝑦3. 

C2 (chose A): I feel like that’s correct because in order to solve 𝑥𝑥² and 𝑦𝑦, you have to 
distribute…. Because I’ve seen problems like this 
before and it’s like you have to solve it, there is 
no not solving it because there is no … there is 
no solution. 

C3 (chose A): That’s how you kind of get rid of the parenthesis and get rid of the outer 
exponents by distributing it in the inside. Whether it’s with another exponent or 
with a number… You want to add or multiply that exponent [outside the 
parentheses] to the ones inside the parentheses but I can’t remember whether 
you add or multiply… 

In these examples, the C1 student notices that there is a difference between the two equations and 
has an intuition that it is important, but doesn’t actually know how to perform the distribution 
correctly. For the C2 and C3 students, we see a number of ways in which students are citing 
incorrect intuitions that stem from algorithmic experience—we have included only a few samples 
here. None of the students interviewed was able to describe when and why it is possible to 
distribute—they all cited incorrect intuitions related to procedural methods that they had learned 
in class. Next we consider item 2, which reveals another interesting pattern of responses: 

2. Consider the equation x + y = 10. Which of the following statements must be true? 

a. There is only one possible solution to this equation, a single point on the line 𝑥𝑥 + 𝑦𝑦 = 10. 
b. There are an infinite number of possible solutions, all points on the line x + y =10 
c. This equation has no solution. 
d. There are exactly two possible solutions to this equation: one for 𝑥𝑥 and one for 𝑦𝑦. 

For this question, the correct answer is b, (the most popular choice for students in classes 1 and 
3) but no examinee in class 2 chose it (see Figure 4). 

Figure 4: Item 2 distractor analysis 

They were strongly attracted to option d, which was also the second most popular choice for 
students in both of the other classes, although at a much lower rate. Option d is a common 
response from students asked to solve a system of linear equations for x and y, which may explain 
its popularity. Both C2 and C3 were attracted to option d, again suggesting they are attempting to 
apply inappropriate procedural reasoning. This item is responsible for the notable separation 
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between C2 and C3 because no examinee in C2 chose the option b, the correct response. Looking  
at student interview responses reinforces our interpretation of the three classes, and sheds light on 
students’ reasons for choosing both correct and incorrect options. 

C1 (originally chose C, but drifted towards B in the interview): 𝑥𝑥 + 𝑦𝑦 equals nothing so it 
can't be 10. Right?... [Maybe infinite means] what could be like possible? I 
don't know. Like equal number maybe? 𝑥𝑥 + 𝑦𝑦 = 10. It could be possible like it 
equals 10. [D isn’t correct] maybe because x and y could be equal to anything? 

C2 (chose D): What I assumed was the x term and the y term, you would have to substitute. 
And I know there are certain numbers that will add up to ten, so there could be 
two solutions, since there's only a x term and a y term… Like x could equal 5, y 
could equal 5… since it is two terms, so you could say two different solutions. 

C3 (chose B): Ten could equal to many things. Like five plus five could equal ten. Nine plus  
one could equal ten. Seven plus three. That's why I chose that, because it could 
be any number that will equal to ten. It's not just one certain number. 

The C1 student initially chose “no solution” because they didn’t know what x and y could be, but 
as they discussed their answer, they started to relate this to the idea that x and y could be 
“anything”. While their reasoning is not strictly correct, they are beginning to explore the idea 
that x and y may have many possible values, and they show no evidence of faulty intuitions 
stemming from procedural practice. The C2 student exhibits an intuition about what the equation 
means (perhaps from standard substitution problems) to find a single solution, but they do not 
explore whether there might be others. They also confuse the number of solutions with the 
number of variables in the solution set, suggesting that their intuitions about the definition of a 
solution set are likely incorrect. The student from C3 describes how this equation could have 
multiple solutions, demonstrating some conceptual understanding of solution sets, including the 
fact that they describe the relationship between the two variables. 

Discussion and Limitations 
This study revealed several trends. Firstly, roughly one quarter of students at the end of the 
course appeared to guess somewhat randomly on conceptual questions, likely because of low 
knowledge, self-efficacy, or motivation. However, cognitive interviews suggest that these 
students may be able to make some progress towards conceptual understanding by relying 
initially on more naïve reasoning and that they are not typically hindered by incorrect intuitions 
stemming from misuse of procedures. About one quarter of students demonstrated some mastery 
of procedures in standard problem contexts, but demonstrated many misconceptions related to 
misuse of procedures. In contrast, roughly half the class showed evidence of emergent 
conceptual understanding, with lower frequency of misconceptions related to misuse of 
procedures. For a number conceptual questions, particularly those that were more abstract or non-
standard, conceptual understanding and procedural fluency were significantly strongly inversely 
related. Cognitive interviews revealed that this may happen when students develop incorrect 
intuitions stemming from the use of procedures. 

Both local observation of courses at the research site, and national research literature on 
developmental mathematics classes in college (e.g., Goldrick-Rab, 2007; Hammerman & 
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Goldberg, 2003) provides evidence that almost all instruction in this context teaches procedures 
isolated from underlying concepts, so this research may be revealing patterns specific to this type 
of instruction— it may be that repeated procedural practice in isolation may worsen certain kinds 
of conceptual understanding. We note that this study did not attempt to link student response 
patterns to specific types of instruction—there is a pressing need for future research to examine 
this relationship in order to determine which types of instruction impact student growth in 
conceptual understanding. 
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Introduction 
Transforming and solving quadratic equations, such as −2𝑥𝑥2 = −8, is part of the curriculum taught 
in school. To support the learning process of equations and their equivalent transformations, models 
such as the balance scale-, the box or the strip model, can be and are usually used in class (see 
Holzäpfel/ Barzel, 2010). The work and the support thereby reach its limits when dealing with 
negative coefficients in quadratic equations or by multiplying/dividing with negative numbers (see 
Vlassis, 2002). On the one hand its whole variety of formal expressions of quadratic equations and 
its equivalent transformations cannot be supported and visualized with the above mentioned 
models. On the other hand the work with the suggested models can lead to inadequate conceptions 
(misconceptions) of the mathematical concepts: E. g. facing problems to be able to interpret formal 
expressions such as 2𝑥𝑥² + 2 = 𝑥𝑥² or 2 = 3 as equations as well (with an empty set of solutions). 
E.g. regarding the division of both sides of the equation by 𝑥𝑥 or the extraction of the square root as 
an equivalent transformation. But working with models and forming content adequate conceptions 
for the learning process is indispensable. According to vom Hofe/ Blum (see 2016) the formation of 
basic conceptions (Grundvorstellungen) belongs to a competent and sensible dealing with 
mathematical concepts. But which basic conceptions, that students are about to form in the learning 
process, can be cited up? Two basic conceptions are cited normatively and visualized in a model 
further down. They allow to interpret a quadratic equation and its equivalent transformations 
illustratively in a graphical (or tabular) way and consequently grasp the core of understanding 

 
Model  

Figure 1: Graphical visualization of basic conception 1 (GV1) 

𝑓𝑓(𝑥𝑥) 

Basic conception 1: 
 
A quadratic equation as an intersection of two functions, 
whereby at least one has to be quadratic. To determine the 
set of solutions the x-coordinate of the intersections 𝑆𝑆1 and 
𝑆𝑆2 has to be considered. 
 
Example:     𝕃𝕃 = {−2; 2} 

−2𝑥𝑥² = −8               𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥)    
  𝑔𝑔(𝑥𝑥) 

𝑆𝑆1(−2; 8) 

 

𝑆𝑆2(+2; 8) 
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Study design 
To evaluate if these normatively cited basic conceptions can be formed by students and hence can 
be proved empirically, special learning assignments have to be designed. Aim of the presented 
study is thus to develop a learning environment and subsequently to investigate if those basic 
conceptions can be formed by students. For this purpose, a teaching sequence of 2x45 minutes was 
designed. Both sets of 45 minutes dealt with one basic conception. Each set consists of a specially 
designed common starter with a subsequent individual working phase of 4 learning assignments. 
The utilized exercises in the working phase were supplementary designed with regard to a high 
potential of diagnosis implying a written response in addition to the actual task. 

Preliminary results and outlook 
A first postprocessing of students’ solutions of the learning assignments revealed to evaluate the 
collected data quantitatively through a deductive procedure. 
This leads with regard to the formation process of the first basic conceptions to the following 
preliminary results:  The solution quote over the first 4 learning assignments amounts up to 81%. 
In summary, it could be said, that the dealing with the exercises for the formation of the first basic 
conception (GV1) worked out well.  Missing percentages are due to a lack of time, inaccurate 
drawing of graphs and mistakes in reading off exactly the relevant coordinates and distinguishing 
both from each other. 
The evaluation of the learning assignments for the formation of the second basic conception (GV2) 
showed up to be more difficult. The used tasks were created too open and required for its processing 
the correct and precise use of mathematical language. These circumstances made the students’ 
solutions difficult to evaluate. The tasks are now going to be revised more closely. The following 
study is going to be carried out once again, under the revisions of the exercises, this year.  
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𝑆𝑆2(+2; 4) 

Basic conception 2: 

An equivalent transformation keeps the x-coordinate (the 
set of solutions) constant and simultaneous leads to a 
change of the functional value of the intersections. 

Example: 

− 2𝑥𝑥² = −8         𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) 

⇔ −𝑥𝑥2  = −4   ⇔  ℎ(𝑥𝑥) =  𝑖𝑖(𝑥𝑥) 

𝑔𝑔(𝑥𝑥) 

ℎ(𝑥𝑥) 𝑓𝑓(𝑥𝑥) 

 𝑖𝑖(𝑥𝑥) 

𝑆𝑆1(−2; 4) 

𝑆𝑆1(−2; 8) 𝑆𝑆2(+2; 8) 

Figure 2: Graphical visualization of basic conception 2 (GV2) 
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A lot of time in algebra lessons is spent on solving equations using routines. It is assumed that after 
many hours of training, these routines will be easily recalled and performed fluently. A study of 480 
students in grade 10, which was undertaken at the beginning of a school year, showed that many 
students had forgotten these routines and were not able to reconstruct (alternative) solutions for 
simple equations. Content-oriented solving, which does not involve algorithms, is one way of helping 
students to solve equations using insight. Results from the same study indicate that this kind of 
problem solving can be promoted if standard tasks are modified slightly. 

Keywords: Solving equations, content-oriented solving, concept of function. 

Introduction 
Students solve a great number of equations by using routines. Once a repertoire for these basic 
procedures has been established, a teacher can consider more challenging tasks in terms of solving 
equations. However, overemphasizing reproducing procedures monotonously can also be 
counterproductive (Arcavi, Drijvers, & Stacey, 2017). It may lead to making students inflexible when 
solving equations. If standard procedures are varied slightly, students cannot adapt the changes to the 
procedures they know. Solving tasks by routine and insight should be integrated. “In algebra teaching, 
therefore, procedures should be linked to an understanding of their meaning and to a flexible choice 
of solution methods; routine and insight go hand in hand and should be reconciled” (Arcavi, Drijvers, 
& Stacey, 2017, p. 92). Tasks should involve practising skills, but also address students’ thinking, 
alertness and creativity. Another approach which can support students’ thinking and alertness is 
solving tasks in a content-oriented fashion. It is a counterpart of solving tasks by routines. One 
example illustrates this way of solving. In the first week of semester, 30 beginning students of 
mathematics education were asked by the author to solve the equation (x – 2)²= –9. Everybody 
calculated the equation by expanding the brackets, using equivalence transformation and the quadratic 
formula. Finally, they came up that there is no solution. All of them have noticed the square and 
triggered the procedure to solve it by the formula. Nobody had taken a closer look at the equation and 
noticed that on the left side there was a square and on the right there was a negative number, therefore 
the equation had no solution. The alternative solution can be defined as a content-oriented approach. 
The algebraic structure was consciously analysed and theoretical knowledge about square numbers 
was applied. Analogous to the example above, solving  1 − 1

𝑥𝑥
= 0 the routine way takes quite some 

time. Solving that equation content-oriented by analysing the structure, instead of just noticing an 
equation involving fractions can be much quicker and done with more understanding. A content-
oriented way of solving could be: The difference has to be zero, therefore 1

𝑥𝑥
  must be one, therefore x 

is equals one. All these steps can be done by mental arithmetic. In both examples the content-oriented 
approach is the more insightful way of solving. Especially when solving equations students stick to 
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the routines. Promoting content-oriented solving of equations in class could break students’ behaviour 
of using routines unrelatedly, and making them look at the equations given, using definitions or 
reflecting on methods already known and help them to solve equations with more understanding. 
Hence there is a need to find appropriate tasks or task assignments to enhance content-oriented 
solving.    

Solving equations content-oriented 
Content-oriented solving is one part of a large framework that characterizes mathematical tasks in 
school. After analysing hundreds of mathematics lessons, Fanghaenel (1984) concluded that solving 
mathematical tasks in school should be organized in such a way that all students develop high mental 
activity by themselves as much as possible (p. 189). His detailed categorization of mathematical tasks 
has been used to analyse a great number of tasks in schoolbooks. One category describes a method 
for solving tasks. In addition to following routines, he distinguishes direct and indirect transfer of 
procedures and content-oriented solving (ibid., p. 98). Content-oriented solving (in German, 
inhaltliches Loesen) is realized if the person solving the task gains a clear understanding of the given 
situation by realizing characteristics and relationships, interpreting symbols and using theoretical 
knowledge, and then employs these to solve the given task. It stands in contrast to using routines, 
which are appropriate for solving a definite set of tasks. 

Arcavi, Drijvers, and Stacey (2017) describe a class situation experienced by a teacher. After teaching 
14-year-old students about quadratic equations, the equation (x – 3)² + 5 = 30 was still on the board. 
The 12-year-old students entering the room for the next class could solve the equation without 
knowing the formal algorithms. They concluded that the number within the bracket had to be 25, 
therefore x = 8 or x = –2. Whereas the 14-year-olds were struggling with the algebraic operations, the 
12-year-olds were analysing the structure of the equation and making conclusions. This phenomenon 
can be explained by the concept of content-oriented solving.  The 14-year-olds have had an 
introduction of formal procedures to solve quadratic equations. According to Fanghaenel (1984) they 
followed routines or have used a direct transfer, i.e. the equation is identified as a very similar task, 
which has been solved before and will be solved in the same way. The 12-year-old students couldn’t 
do that, so they needed to apply theoretical knowledge. This way of solving can be identified as 
content-oriented, since they didn’t know the procedure. If they do the same procedure several times, 
the solving behaviour can change from content-oriented to routine. Hence content-oriented solving 
depends on the reference field of a student and the tasks given, i.e. the same solution of a task can be 
seen as a routine or content-oriented, depending on a student’s previous knowledge on solving the 
given task. Therefore tasks have to be chosen carefully to identify content-oriented solving in a 
written task. 

Content-oriented solving is not the same as solving tasks semantically, although there are many 
commonalities. Kaput (1989) defines semantic actions or elaborations as ones that “are guided by the 
features of a reference field for the symbol system rather than by its syntax (using the syntax 
implicitly)” (p. 175). Content-oriented solving encompasses more than semantic approaches. Tasks 
that are asking for an interpretation of an object are semantic actions, but they do not require content-
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oriented solving because only factual knowledge can be used. Tasks which require indirect transfer 
require semantic approaches and can be assigned to a semantic task. 

Content-oriented solving of an equation occurs if students gain a clear concept of given preconditions 
and their deductions and consciously use these to determine a solution (Flade, Goldberg, and 
Mounnarath, 1992). A characteristic of solving equations that way is the use of heuristics (Rosin, 
1984). Sill et al. (2010) characterize content-oriented solving as the solving of equations or 
inequalities without the use of routines. The regular use of this approach will continuously develop 
students’ ability to identify term structures. Hence, they will become familiar with variables, terms 
and equations and tend to operate less with unknown symbols. Considering the variety of ways to 
solve a task content-oriented, it is likely that this type of solving will lead to a more comprehensive 
view of terms and equations. 

The uses and objectives of content-oriented solving vary from lower grades to higher grades (Flade 
et al., 1992). Whereas in lower grades it can be applied to elementary equations, involving addition 
and multiplication, to help students in comprehending the elementary concepts of equations, it can be 
used at the upper secondary level to offer students creative approaches and allow them to solve 
mathematical tasks systematically and reflectively. 

Seventh-grade students whose teachers promoted content-oriented solving even solved routines 
slightly better than students whose classes put more emphasis on routines (Fanghaenel, 1976). This 
result is remarkable because students in the experimental group had less time for practising routines 
and got slightly better results. However, the major effect of that study was seen in a test at the 
beginning of the following school year. In the control group (routines), results decreased significantly, 
whereas, in the experimental group (content-oriented), correct results increased. Emphasizing 
content-oriented solving led students to work out forgotten routines by themselves. 

Such students, who have no formal knowledge of procedures, are forced to solve content-oriented. In 
elementary school, students are able to solve simple equations like 18 – x = 13 or 3(x + 2) = 36. The 
first one can be solved content-oriented by trying out different values randomly or systematically or 
by asking oneself ‘Which number subtracted from 18 will equal 13?’ The second equation can be 
solved similarly by asking oneself ‘Three times how much will be 36? 3 times 12 equals 36, therefore 
x must be 10’. Such students do not use an algorithm. They solve it by analysing the structure of the 
equation and using theoretical knowledge. The equation is solved with understanding because the 
given structure is analysed consciously. According to Fanghaenel’s (1976) definition, content-
oriented solving can also comprise (un)consciously reflecting on the possible procedures and 
choosing the most appropriate one. One result could be a student’s decision to use a routine to solve 
a specific task. In that case, the essential difference to using routines is that a student (un)consciously 
analyses the given structure and reflects on possible approaches to solving a task.  

In contrast to using routines, content-oriented solving enhances students’ ability to create, combine, 
and vary mental images of mathematical structures. Therefore, this type of solving should be part of 
algebra lessons. 
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How to implement content-oriented solving in class 
Whenever a procedure is not yet known, students have to solve problems content-oriented 
(Fanghaenel, 1984). However, once routines are introduced, using a content-oriented approach can 
be ignored easily, as Freudenthal (1983) notes: “sources of insight can be clogged by automatism” 
(p. 469). To maintain student alertness when solving equations, unusual elements can be included in 
a set of exercises (Arcavi, et al., 2017). Another way to maintain content-oriented approaches is to 
lead students to constantly check every equation to be solved content-oriented (Sill et al., 2010). This 
method strongly relies on teachers’ patience and persistence. Hence, it is useful to find other ways to 
promote content-oriented solving that are more independent of teachers’ methodologies. To highlight 
the advantage of solving tasks content-oriented, all tasks need to be of the type that can be solved 
much more quickly in this way than by using a routine. 

Provoke students to solve content-oriented by suitable tasks 
As part of a study to promote content-oriented solving, research questions included how well students 
were able to solve equations in that fashion and how the task assignment influenced students’ solving 
behaviour. For this study, a test was given at the beginning of the school year in September 2017. A 
total of 480 students in grade 10 at eight different Gymnasiums (schools for higher-skilled students) 
took part in the 45-minute test. The test included solving linear, quadratic, and exponential equations. 
All equations were set up with simple numbers and simple structures, i.e., they could be solved 
content-oriented by analysing the structure, using mental arithmetic and faster than using routines. 
Some of the items were written in a standard form, such as ‘solve the equation’, and other items were 
varied slightly. 

All items were checked and validated in advance by members of the mathematics department at the 
University of Education Schwaebisch Gmuend and tested on 149 grade 10 students in nine classes at 
three different schools in January 2017 (Zell, 2017). As a result, small changes were made to two 
items and validated by interviews with students attending the University of Education. The coding of 
students’ solutions was differentiated in routine and content-oriented approaches. Within these 
categories it was distinguished into correct, incorrect and incomplete. Approaches, in which no 
routine or meaningful answer could be derived, were classified to other approaches. These categories 
were created by the author and cross-checked by members of the mathematics department and by the 
answers of the pre-test. Students are not given any instruction how to write down the solution. They 
were confronted with these tasks as in a regular testing. The first four tasks follow the familiar 
assignment “solve the equation”. Task 1c and 1d are slightly modified by not allowing the standard 
routine to force students solving these equations content-oriented. 

Task 1: Determine the solution(s) of the following equations. 

a) x2 + 4 = 0 
b) 2x + 1 = 16 
c) Determine the solution of 3(x – 2) = 81 without using logarithms. 
d) Determine the solution of 2(x – 2) = –32 without using logarithms. 
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The first two tasks can be solved by both routine and content-oriented. A students’ solution was 
considered content-oriented, if he or she didn’t follow the routine introduced in class. For tasks 1b-
1d using/comparing the exponents to solve the equation was the expected content-oriented solution. 
This way was not mandatory taught in school and therefore considered content-oriented. 

Task 2 had a modified assignment. Students had to give a reason for a statement. Because no concrete 
solution was demanded, there were more possible ways of solving each task. All tasks could be solved 
by using both routine and content-oriented approaches. 

Task 2: Give a reason for these statements. 

a) 2(x – 4) = 0 has a positive solution. 
b) f(x) = x² + 2x + 1 has no positive zeros. 
c) x² – 10x + 25 = 0 has only one solution. 

Hence, if the assignment of a task matters, the percentage of content-oriented approaches on these 
modified tasks should be considerably different. 

Results 
The range of correct solutions is from 13.3% solving the equation 2x – 2 = –32 to 63.1% solving    2(x 
– 4) = 0. Students’ answers for four tasks are shown in more detail. Looking at the results for Task 
1a shows how using a routine dominated (see Table 1).  

Task 1a: Determine the solution(s) of x² + 4 = 0 

Solved  correctly incorrectly incompletely total 

by routine (taking the square root) 32.5% 52.1% 0% 84.6% 

Content-oriented (using term structure) 0.2% 0% 0% 0.2% 

by writing down the solution without calculation 5.4% 0% 0% 5.4% 

by using incorrect other approaches 0% 6.7% 0% 6.7% 

nothing by giving no response  0% 0% 3.1% 3.1% 

Table 1: Types of solutions for Task 1a 

Only one out of 480 students solved it content-oriented by writing down an explanation. Twenty-six 
who just wrote down the solution might have solved it content-oriented. Because the test was done 
in a real classroom setting, some students might have copied their neighbour’s answer. Consequently, 
only one student has solved that task content-oriented. Having a more open perspective, 5.6% solved 
the equation content-oriented. It is possible that they have seen the answer just by looking at the 
equation, like experts in mathematics do. Those students who solved the equation by using the square 
root tended to make mistakes. The most common mistakes were taking the square root of the left-
hand side, which resulted in x + 2, or taking the square root of –4. 

When solving Task 1b, only a small number of students remembered how to use logarithms to solve 
exponential equations (see Table 2). Because the numbers used in that task were simple, students had 
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the chance to solve it content-oriented by noticing that 24 is 16 and therefore x must be 3, or they 
could compare the exponents formally. These students who were able to take a content-oriented 
approach, tended to make less mistakes. 

Task 1b: Determine the solution(s) of 2x + 1 = 16 

Solved correctly incorrectly incompletely total 

by routine (using logarithm) 17.7% 6.6% 1.5% 25.8% 

Content-oriented (looking at the exponents) 19.0% 3.1% 0.2% 22.3% 

by writing down the solution without calculation 18.1% 0% 0% 18.1% 

by using incorrect other approaches 0% 16.9% 0% 16.9% 

nothing by giving no response 0% 0% 16.9% 16.9% 

Table 2: Types of solutions for Task 1b 

The equation structure in Task 1c is the same as in Task 1b, but using logarithms was not allowed. 
54% of all students tried to look at the exponents, and 48.9% of them solved it correctly. Results in 
Task 1d are similar: 39.8% tried to solve it content-oriented, 13.3% of them correctly. Not allowing 
the standard procedure made the students to attempt solving the task content-oriented. 

Task 2a contains a slight modification to the standard design ‘solve the equation’. Not asking for the 
solution, but instead, the reason why the solution must be positive, had an effect on students’ answers. 
Here, 27.9% of all students solved the task content-oriented, and 63.4% of these students did it 
correctly. 27.9 % is still a low percentage, but it is five times higher than the percentage that solved 
Task 1a content-oriented. Some examples of content-oriented solutions follow: 

· “x must be positive, because having a negative solution, the result would be a negative value,
because 4 is subtracted of x.”

· “Yes, because of product equals zero theorem: When multiplying one number with 0, the
product is 0 as well; to attain 0, x must be 4, i.e. positive.”

· “2(4-4)=0 has a positive solution, if x is greater than 4.”

Analysing the solutions to Task 2b (see Table 3), only 19.0% attempted to recall the formula on paper, 
and only 13.3% of them did so correctly. Only six students used the binomial formula, 23 students 
tried to solve it by considering parabolas, and 55 students used the term structure. The majority 
(51.2%) did not write anything down. Many students had forgotten the quadratic formula and were 
not able to reconstruct given knowledge to come up with a solution.  

A small number of students used a content-oriented approach. Some examples will serve to exemplify 
the approaches used: 

· “True, since the whole equation is an addition, the solution is always greater than 0, if one
uses positive numbers.”

· “True, since using x = 0, f(x) will be the result. All positive x-values are too large.”
· “There are no positive zeros because 1 is always added at the end of the equation.”
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· “Because this function has a y-intercept of 1 and because the slope equals 2, it cannot have 
zeros in the positive section.” 

Task 2b: Give a reason for this statement: 𝑓𝑓 (𝑥𝑥 ) = 𝑥𝑥² + 2 𝑥𝑥 + 1 has no positive zeros. 

Solved correctly incorrectly incompletely total 

by routine (formula for quadratic equations) 13.3% 5.7% 0% 19.0% 

Content-oriented by using binomial 1.3% 0% 0% 1.3% 

Content-oriented by using parabola 0.2% 3.5% 1.3% 5.0% 

Content-oriented by using term structure 2.7% 5.2% 3.5% 11.4% 

by using incorrect other approaches 0% 0% 14.6% 14.6% 

nothing by giving no response  0% 0% 48.7% 48.7% 

Table 3: Types of solutions for Task 2b 

The content-oriented answers of tasks 2a and 2b show how a deep understanding of term structure 
can be promoted. Incorrect answers can show teachers what types of misconceptions the students 
have. Hence such tasks are very suitable for exercises recalling routines having been learnt long 
before. When discussing the students’ solutions, not only are routines repeated but also content-
oriented solutions. These solutions can show the meaning and properties of all the concepts involved. 
Students who have forgotten the routine needed also have a chance to find a solution. 

Conclusion 
The results show that the content-oriented solving of equations is used by only a small minority of 
students. The more familiar a procedure is, the more routines dominate and alternative ways are less 
taken into consideration. But changing the tasks slightly has an effect on students’ solutions, the 
percentage of content-oriented solutions increases. Hence, setting up tasks which contain easy 
numbers does not automatically make students consider alternative approaches. But adding features 
like asking for reasons, not demanding concrete solutions, forbidding routines on tasks and 
consciously using functions makes students solve equations content-oriented more frequently. As 
students’ solving behaviour gets socialised during a longer time, regular implementation of such tasks 
may help students to consider content-oriented approaches more often. 

Besides confronting students with unknown tasks (Fanghaenel, 1984) or make them trying to solve 
every equation content-oriented (Sill et al., 2010), slight modifications of standard tasks can promote 
this type of solving, too. The additional solutions are a fruitful element in a class discussion. So all 
students are able to see how equations can be solved in a different way and with more insight. These 
slight modifications can be created easily; therefore this approach to promoting content-oriented 
solving is a realizable one. Arcavi, et al.’s (2017) demand for more alertness and flexible use, when 
solving an equation, can be met by having such slightly modified tasks. When students are to solve 
similar tasks in the same content-oriented alternative, this approach might become a routine. 
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However, it is still better having students to choose between two routines than only having one. To 
prevent such behaviour, suitable tasks for content-oriented solving should be varied appropriately.  

The aim of this paper is not to lower the importance of using routines. They are a necessary part of 
mathematics lessons. The intention is to break the dominance of using algorithms by helping students 
to be more reflective about a given structure and making them think about it. Then, when looking at 
an equation, instead of initially starting the routine, a(n) (unconscious) process of consideration of 
how to solve it appropriately might be initiated. Suitable tasks for content-oriented solving are a 
possible and a realisable way to reach that goal. 
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Introduction 
Around 25 participants attended the Thematic Working Group 4 sessions during CERME 11. 75% of 
them were Europeans, and the other 25% came from the Middle East or from Australia. Five 
discussion sessions were dedicated to specific topics (manipulation, artifacts, visualization, teacher 
education), and each contribution (in total 18 papers and 3 posters) was presented and discussed 
during 20 minutes. The last two sessions were dedicated to small-group debates that supported the 
writing of the final report that was presented on the final day of the conference. 

The call for papers, the contributions, and the discussions, addressed classical issues in geometry 
education such as the role of manipulation, instruments, investigation and modeling, the ways of 
describing and training visualization processes or spatial skills, and the role of language in geometry, 
including problem solving, argumentation or proof. It appeared that the multiple frameworks or 
methods that helped in addressing these issues were sometimes very close, or sometimes shed 
different lights upon the phenomena we observed. In order to benefit from these multiple viewpoints, 
we decided that, rather than summarizing our work following each initial issue, we should identify 
general questions that reflected the heart of the discussions; these were: 

· How is it possible to describe how space intervenes in “doing geometry”? 
· What is at stake in learning geometry, from cognitive and didactical points of view? 
· Which transversal competencies have to be taken into account in the teaching of geometry, 

and how are they interrelated? 

The way we addressed these questions shows continuity in the group’s work across the CERME 
conferences. Schematically speaking, we could say that CERME 8 was more about what geometry 
is, CERME 9 about what is at stake when doing geometry, and CERME 10 about the various 
theoretical approaches of these questions. We built our discussion on this basis. We managed to 
address more efficiently these questions, and to understand better the similarity or complementarity 
of the participants’ points of view. 

Space in “doing geometry” 
One of the toughest theoretical issues was about space, and the mutual understanding between 
psychology and mathematics education. We identified during CERME 11 that, on the one hand, 
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psychology considered that visualization was a part of “spatial skills” and that, on the other hand, to 
mathematics education spatial skills were a part of the visualization process. It seemed that this was 
not only a matter of word meaning, and we tried to investigate these opposite points of view. 

We used the identification by Perrin & Godin (2018)1 of three spaces involved in doing geometry: 
the physical one, the graphical one, and the geometrical2 one (see Fig. 1). In a way, geometry consists 
in establishing relations between these spaces, and solving geometry problems needs to “grasp space” 
and to make the information usable in another kind of space. 

 
Figure 1: three spaces involved in doing geometry, two points of view on it. 

On the one hand, psychological points of view in the group (see Heil; Conceicão) were mainly used 
in order to explore the articulation between physical and graphical space: How do children manage 
to represent physical space? What are the difficulties? How does it intervene in their solving physical 
space problems? This point of view put forth representational issue. Visualization is one of the ways 
to grasp and interpret information; then it is no more than one of the components of the spatial skills. 

On the other hand, mathematics education traditionally focuses on the links between graphical and 
geometrical space. The main issue is the correct use of graphical information to elaborate concepts 
or to work on ideal objects, or the graphical representation of idealities (see previous TWG4 reports 
and Downton; Gridos; Jones; Palatnik). In this way, visualization also embraces geometrical 
knowledge or specific treatments of graphical space. Spatial skills are one of the treatments performed 
on the graphical space, so in this case they are just a part of visualization. 

This clarification aims at improving mutual understanding, and then collaboration, not only by 
explaining the discrepancies but also by identifying complementary issues and showing that these 
points of view are in fact two sides of general matters about space.  

                                                 
1 Perrin-Glorian, M.-J., & Godin, M. (to be published). Géométrie plane : pour une approche cohérente du début de l’école 
à la fin du collège. In proceedings of the CORFEM, Ressources pour la formation des professeurs. Savoirs mathématiques 
à enseigner au collège et au lycée. A preliminary version is available on https://hal.archives-ouvertes.fr/hal-
01660837v2/document 

2 By geometrical space, we refer to ideal objects and their relations, which are mainly elaborated by/in discourse. 
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We can add that we do not pretend that the relations between physical and geometrical space are not 
relevant, and some of the works presented in the group examined it (Favilla, Luppi & Maschietto). 
They highlighted the potential of such direct geometrical interpretation of physical experience, 
including an instrumental point of view. In this case, though, neither visualization nor spatial skills 
are at the core of the studies. 

Learning geometry 
The second main focus of our work was about “learning geometry”. It has to be noted that, even if 
specific learning topics were examined, the group discussions investigated how general competencies 
(such as creativity, flexibility, fluency, language, beliefs, etc.) may affect the learning of these specific 
topics (see Brunheira; Favilla; Gridos; Mendes; Palatnik). In this perspective, the role of everyday 
life, physical experience, manipulation or spatial skills in creating mental images or developing 
abstract concepts was more strongly highlighted than in the previous topic (Brunheira; Heil; Palatnik). 
The role of tools and artefacts was also discussed, highlighting, on the one hand, the limitation of 
their use (because of difficult instrumental genesis, but also for intrinsic reasons), and on the other 
hand, their potential, including higher education where it appears that tools, games, and manipulatives 
are very helpful but generally seen as something that is not needed (Bjørkås; Katter). 

Language, and more specifically the emergence of geometrical lexicon, appeared as one great issue 
in the learning of geometry (Bulf, Favilla, Haj Yahya). Many contributions pointed out that 
constructing the meanings of the words used in geometry is a long and complex process that cannot 
be reduced to “vocabulary” issue. These meanings are the result of more general practices (including 
manipulation), negotiation, social interaction in problem solving contexts, combined to the cultural 
background – including everyday meaning that influences the understanding of the words. This 
dynamic and progressive learning of specific lexicon and meanings was coherent with the works on 
mathematical discourse, but it has to be noted that discourse itself was not studied in this case. This 
remains an open discussion field in this group. 

It was connected to many contributions (Albano; Bernabeu; Brunheira; Gridos; Jones; Palatnik, 
Vieira da Silva) about argumentation, justification, reasoning or proving. This topic combined various 
levels of considerations, embracing the multiple facets of proof: required operation for proving in 
geometry (such as the analysis of figures as components and relations), relations between arguing, 
reasoning and justifying, or about the specific writing process that is required by formal proof. One 
contribution proposed a general overview, showing variations of the type of language used during the 
proving process. 

Teaching geometry and teacher education 
These two issues have been unified into one only discussion group, as many contributions addressed 
general topics, relevant for both of them. The participants raised four great topics involved in the 
teaching of geometry: problem solving, manipulation with tools (including drawings), visualization, 
and proof (see Fig. 2). Language has been added considering some contributions showing how it is 
linked to manipulation with tools and to visualization. 
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Some contributions used these topics to analyze precisely the pre-service and in-service teachers’ 
geometrical knowledge, focusing on specific parts of the diagram we propose (Brunheira; Bulf; 
Nechache; Haj Yahya; Mendes). It has to be noted that the contributions mixed analysis about 
specific, local, geometrical knowledge, and more general concerns as described in Fig.2, in a very 
convincing way. 

 
Figure 2. Topics involved in teaching geometry and teacher education 

Other contributions proposed results about the relations between these topics (Bjorkas; Boavida; Bulf; 
Delgado; Mendes; Palatnik). The proving process needs the pupils to identify relations in the 
drawings, so both manipulation and visualization should be considered in the teaching of proof, and 
in the teacher training curricula. Moreover, by using specific artifacts (e.g. geoboard), by promoting 
specific strategies or by giving access to multiple solutions of a single problem, teachers promote 
efficient manipulation and visualization and, consequently, support solving problems skills 
development and the understanding of geometrical concepts. Then, teaching sequence design may 
take into account the relations we indicated in the diagram, and the difficulty to coordinate multiple 
poles of geometrical activity that was raised by some contributions, and by previous works in the 
group (e.g. about Geometrical Working Space or language). In a general way, this indicates that 
neither teaching nor teacher training should be only focused on mathematical contents or on a specific 
pole, but it should embrace the coordination between many of these poles. 

Ultimately, we would like to mention that these general components involved in the teaching of 
geometry were less intertwined with specific topics, and then were helpful when examining how 
interactions with other fields (such as arts education) may be productive. 

Perspectives and conclusion 
As is clear in the papers that follow this introduction, the participants contributed to enrich the 
understanding of some classical issues in geometry education, and to develop more topical ones. We 
hope that a careful reading of these papers may also reflect that the work and the discussions promoted 
mutual understanding about both the frameworks and the issues they address. This seemed to be more 
productive than seeking a unified and unique framework, and we believe this to be a major 
contribution of CERME in general, to be continued over the next sessions of the group. 

Thematic Working Group 04

Proceedings of CERME11 728



A computer-based environment for argumenting and proving in 

geometry 

Giovannina Albano1, Umberto Dello Iacono1 and Maria Alessandra Mariotti2 

1University of Salerno, Italy, galbano.udelloiacono@unisa.it 
2University of Siena, Italy, mariotti21@unisi.it 

In this paper, we face the issue of argument and proving in geometry. Overcoming difficulties 
encountered by the students when moving from argumentation to proof may require suitable 
didactical interventions. Our contribution to research concerns the design of a specific computer-
based didactic environment. We report how 14-15 years old students from high school conjecture 
and prove within the designed environment and we discuss the preliminary findings. 
Keywords: Geometry, argumentation, technology integration, design. 

Introduction and theoretical framework 
For what geometry concerns, Sinclair, Bartolini Bussi, Villiers, Jones, Kortenkamp, Leung, & 
Owens (2016), among main strands of contributions to the geometry education they found in 
reviewing the literature since 2008, identified in particular the understanding of the teaching and 
learning of definitions and of the proving process. Geometry theorems are a logical consequence 
derived from an available theory, that is from a set of axioms, theorems previously validated, and 
definitions, necessary to avoid logical circularity (Fujita, Jones, & Miyazaki, 2018). As reported in 
the survey by Sinclair et al. (2016), one of the major threads in geometry education concerns 
understanding of the teaching and learning of definitions, in particular for triangle and quadrilateral. 
Definitions comes into play when the students try to construct mathematical proofs, meant as 
“logical sequence of implications that derive the theoretical validity of a statement” (Mariotti, 2006, 
p. 182). Moore (1994) highlights that students do not necessarily understand the content of the 
definitions and how to use them (Moore, 1994).  
Boero, Garuti and Mariotti (1996), while not denying the distance between argument and proof, do 
not consider it an obstacle. Researchers, in fact, highlight a continuity between argument and proof, 
called cognitive unity. During the problem solving process, argumentative activity usually produces 
a conjecture. The hypothesis underlying the concept of cognitive unity is that there is a continuity 
between the argument produced and the proof, which means that the argument can be used by the 
student in the construction of the proof, reorganizing it appropriately according to a logical scheme. 
In this sense, open problems (Arsac, Germain, & Mante, 1991), which require conjecture for their 
resolution, appear to be extremely effective in introducing the concept of proof, as the proofing 
process is favored by the argumentative one (Boero et al., 1996). However, the analysis of cognitive 
unity does not cover all aspects of the relationship between argument and proof. Pedemonte (2007) 
points out that cognitive unity does not take into account the structural continuity between 
argumentation and proof, when the inferences in argumentation and proof are linked together 
through the same structure (abduction, induction or deduction) (Pedemonte, 2007).  
Difficulties can arise when moving from argumentation to proof, as it requires radical changes in 
the structure, such as moving from abductive to deductive structures.  Facing such difficulties and 
overcoming them constitute an education goal that may require specific didactical interventions. 
Our research study intends to contribute to this issue with the design and the experimentation of a 
specific didactic environment.  
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The experimental design 
In the following, we are describing the experiment. The aim is to explore the educational potential 
of a certain working environment with respect to the process of producing conjecture and proving it. 
The setting of the environment have brought to identify three types of working environment that 
can be combined. In each of them we tried to create elements that would implement certain 
hypotheses, based on the theoretical framework. 
Hypothesis 1. The use of open problems, i.e. problems where conjecturing is required. This is 
consistent with various studies (Arsac at al., 1991; Boero, Garuti, & Lemut, 1999; Hadas, 
Hershkowitz, & Schwarz, 2000; Pedemonte, 2008). 
Hypothesis 2. The shift from spontaneous arguments - arisen during and/or after the process of 
producing a certain conjecture - to the proof may present some difficulties both in terms of 
reference system and in terms of structure. The formalization environment has been designed to 
provide support with respect to the expected difficulties. This latter hypothesis is consistent with the 
results of different studies based on the notion of cognitive unity (Pedemonte, 2002, 2007) 
Hypothesis 3. The importance of exploratory talk in collaborative situations is crucial for improving 
the rise of conjectures and their formalization. This fits the dialogic approach in collective 
geometrical thinking (Fujita, Doney, & Wegerif, 2017). That is why the design foresees to alternate 
individual and social tasks where students act “as critical friends”. 
The aim of our research study is that of exploring the educational potentialities of a computer-based 
environment with respect to support students in solving a conjecturing open problem, and 
subsequently providing a proof of the conjecture. According to the Hypotheses, a computer-based 
environment was designed offering an organized environment where students work alone and with 
peers for solving conjecturing problems, producing conjectures and their justifications and formal 
proofs. 
In the following, we describe the main components of the computer-based environment, together 
with the rationale of their design, and an overview of the methodology; then we present some 
preliminary findings concerning only one of the three experimental settings.  
The computer-based environment 
According to Hypothesis 1 we selected a conjecturing problem: 
Given a parallelogram ABCD, draw a parallel to the diagonal BD passing through one of the other 
vertices. Extend one of the sides of the parallelogram that does not contain that vertex until it meets 
the drawn parallel. Which quadrilaterals can be identified in this figure? What kind are they? 
Please justify your statements. 
The student is required to construct the figure, following the given instructions, then to answer to 
the posed question concerning the identification of specific quadrilaterals and justify her 
conjectures. Starting from the parallelogram ABCD and drawing the parallel to BD through A, two 
different figures can arise: the first one obtained by extending the side BC (Figure 1.a) and the 
second one by extending the CD side (Figure 1.b). 
The mathematical theory related to this problem concerns the definition of parallelogram, trapezoid 
and rectangle. It is expected that the students recognize the characteristics of a certain figure and 
use the definition in the direction that allows to derive the name of the figure from its 
characteristics. 
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Figure 1: Two possible constructions 

The computer-based working environment consists of three working spaces: Working alone, 
Working with others and Assessing the others, composed of various tasks, some individual and 
others social. In individual tasks the student does not communicate with her teammates and answers 
the proposed question herself. In social tasks the student answers individually but discusses with 
teammates in a forum (Figure 2). The computer-based working environment so designed exploits 
the potential of the Moodle platform in terms of built-in resources (Questions and Answers Forum, 
GeoGebra Task, Chat) and of integration of new digital applications (such as ISQ), together with 
the overcoming of space-time constraints. This allows the design of new activities, inconceivable 
without the use of the technology - level of Redefinition in the SAMR model (Romrell et al., 2014).  
Moreover, the automatic reports of the platform allow the teacher to take advantages of an 
augmented reality for what concerns the students’ actions and thinking. 

 
Figure 2: the design of the learning activity 

We are detailing only the Working alone environment, on which we focus in this paper. It consists 
only of individual tasks, more precisely, the following two individual tasks: 
- Problem solving: the student is asked to face the above problem.  She is equipped with a 
“blank” GeoGebra page, predefined by the teacher/designer., suitably customized in order to show 
only the needed GeoGebra commands. The student submits her answer, consisting in: i) a figure 
constructed according to the given instructions, in particular the student is required to name the 
vertices fitting such instructions; ii) the identification of the quadrilaterals; iii) the justification of 
such identification. Using the Moodle Task module, the figure related to her GeoGebra construction 
is attached as the ggb file and the answer is given as a plain text in a blank box. 
- Formalizing: the student is required to prove her conjectures reorganizing the justifications 
previously given according to a logical scheme. At beginning, the student is asked to choose one of 
the two figures shown in Figure 1, if it is the same of the one she constructed, or if it is not the case, 
she is required to upload her own gbb file. Therefore, starting from her own construction, for each 
quadrilateral identified, she is expected to prove her statements rearranging her own arguments into 
a logical chain. Such formalization is supported by a device consisting in a GeoGebra application, 
called ISQ (Interactive Semi-open Question), integrated into Moodle. It consists of digital language 
tiles that can be drag and juxtaposed in order to construct a sentence that represents the answer to a 
given question (Albano & Dello Iacono, 2018). In this case the ISQ has been enriched by some 
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fixed digital tiles constituting some kind of “Bank of Theory” which contains definitions, 
properties, theorems that are useful for proving the mathematical concepts at stake. In our case it 
contains only the definitions of parallelogram, trapezoid and rectangle. We have chosen to write the 
definitions, distinguishing explicitly between the two directions of the equivalence. This choice 
aims to make students aware of the existence of the two directions and of the fact that sometimes it 
is useful to use one direction and sometimes the other direction (Figure 3). For consistency, we 
always used the formulation “If ... then” and in particular indicated with Def #a the direction "If 
DEF then PROPERTY" and with Def #b the direction "If PROPERTY then DEF". The construct 
“If … then…” has been implemented as “PROPERTY => DEF” and “DEF => PROPERTY”.  
Concerning the digital tiles, we have chosen to merge the verb “to be” to the next adjective if it has 
the meaning of “to have the property of” (e.g. “is isosceles” is equivalent to saying “has the 
property of being isosceles”). Moreover, causal conjunctions constitute digital tiles in themselves to 
highlight the causal structure. 

 
Figure 3: ISQ in the Formalizing task 

The ISQ contains several overlapped copies of each digital tiles, in order to let using the same tile 
several times. The available digital tiles allow to build various sentences that can be correct or not 
correct as well as complete or incomplete answers. The digital tiles, labelled with Def #, allow the 
production of sentences recalling definitions reported in the Bank of Theory (see on the left of 
Figure 3).  
The methodology  
We assume a design based approach with the intention to develop an artifact, i.e. the learning 
computer-based environment including new developed digital application such as ISQ, which is 
supposed to be optimized according to the findings of performed empirical studies. 
In order to analyze the contribution of the various components of the computer-based environment, 
we decided to draw three different experimental settings:  

1) a setting without collaboration but with the support of ISQ, i.e. Working alone, to 
understand the actual contribution of this ISQ device; 

2) another setting in which students can collaborate with each other, but without the support of 
ISQ, i.e. Working with others, to understand the actual contribution of collaboration; 

3) the complete setting, with the possibility for students to be supported in the individual phase 
by the ISQ and, subsequently, to collaborate with each other, so as to be able to observe the 
contribution of the toolkit and of the collaboration at the same time. 

The experimentation involved 72 9th-10th grade students from two different scientific high schools, 
distributed into the above experimental settings according to the random choice of the teacher. All 
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the data have been collected by means of the platform’s reports and they have been analysed from a 
qualitative point of view.  
In this paper we focus on the setting Working alone, for investigating what the ISQ device shows 
about the students’ way of reasoning. To this aim, we have compared the students’ transcripts 
before and after the use of the ISQ device.  

Preliminary findings 
In this paper we focus on the ISQ device and its functioning within the Working alone setting. We 
report the analysis of the data and report some findings.  
The analysis of the data shows interesting relationships between freely expressed arguments and the 
corresponding formalized arguments, organized through the use of the predefined digital tiles. 
We will discuss in more details the outcomes of three students: Fromix, Antonio and Denisa. For 
each of them we are considering the figures they freely constructed by GeoGebra (first) and chose 
among the available (then) and their answer to the question posed by the given problem, in an open-
answer mode (first) and by the digital tiles offered by the ISQ (then).  
Let us analyze the answer produced by Fromix. He attaches the following GeoGebra figure: 

 
Figure 4: Fromix’s GeoGebra construction 

and writes the following in the available blank box of the Moodle Task module: 
1 Fromix: We can highlight as many as 3 figures: 
2  ABCD : that is the given parallelogram. 
3  DBCI : another parallelogram, since it has pairs of sides congruent and 

parallel  and we can also notice one of its 2 diagonals (DC). 
4  AEBC : scalene trapezoid having a longer base parallel to the smaller one 

and 2 not congruent sides. 
Then, Fromix chooses the Figure 1.b and, using the digital tiles (highlighted by grey background) 
provided by the ISQ, writes the following sentences: 

5 Fromix: A E B C is a trapezoid by hypothesis because it has two parallel sides 
6  A B C D is a parallelogram because it has the opposite parallel sides so by 

Def. 1a 
7  D B C E is a parallelogram because it has two opposite parallel sides so by 

Def. 1a 
Fromix individuates three quadrilaterals that he classifies as two parallelograms and a trapezoid 
according to their properties.  
We can note that Fromix, moving into the Formalizing task through the use of the digital tiles, does 
not literally translate the statements freely produced. Some properties that appeared in the first 
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expressions are neglected, whilst the reference to the definition emerges. According to our 
hypotheses, the availability of specific digital tiles seems to have determined a shift of attention on 
the characterizing properties, that is having two parallel sides (row 5), disregarding the presence of 
two non-congruent sides (row 4). Fromix does not make explicit reference to the digital tiles of the 
definition of trapezoid. Thus we can interpret this phenomenon as a contribution of the ISQ device 
that induces the student to analyze the content of the definitions. However, the formalized version is 
not logically consistent: as matter of fact, it seems that she uses the definition 1a to derive the 
parallelism of the opposite sides.  
Let us analyze the answer produced by Antonio. He attaches the following GeoGebra figure: 

 
Figure 5: Antonio’s GeoGebra construction 

and writes the following in the available blank box of the Moodle Task module: 
8 Antonio: In this figure it is possible to identify the following quadrilaterals: ABCD, 

BCED, ABCE.  
9  The quadrilaterals ABCD and BCED are two parallelograms because the 

opposite sides (AB, CD- BC, AD-DB,  CE-CB,DE) are parallel, 
10  while the quadrilateral ABCE is a trapezoid because it has two parallel sides 

(AE,CB) and two opposite oblique sides (AB, CE). 
Then, Antonio chooses the Figure 1.a and, using the digital tiles provided by the ISQ, writes:  

11 Antonio: A B C D is a parallelogram by Def. 1.a  
12  E A D B is a parallelogram by Def. 1.a 
13  A D C E is a trapezoid because it has parallel opposite sides  

We can see that Antonio, using the digital tiles, makes explicit reference to the definition of 
parallelogram given in the ISQ (rows 11 and 12). Anyway, switching from the free formulation to 
the one supported by the digital tiles, he loses one step of the argument and it remains unclear  how 
the definition is used, i.e. which are the observed parallel sides needed to apply the definition (row 
9), although the digital tiles would have been available to do that. On the contrary, comparing row 
10 and 13, we can observe that the characterizing property is expressed but the reference to the 
definition is missing. Moreover, in any case, moving from the free expression to the formalization, 
any reference to the specific figure is lost. As in the case of Fromix, we can notice again that the 
ISQ device seems to divert attention from the non-parallel sides of the trapezium (row 10 and 13). 
Let us analyze the answer produced by Denisa. She attaches the following GeoGebra figure: 
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Figure 6: Denisa’s GeoGebra construction 

and writes the following in the available blank box of the Moodle Task module: 
14 Denisa: In the figure there are two parallelograms,  
15  because by constructing the parallel to the diagonal BD and extending the 

side, we have the intersection of the two lines to form another triangle 
equivalent to half of the initial parallelogram. 

Denisa uploads her own figure and, using the ISQ, writes the following sentences: 
16 Denisa: A B C D is a parallelogram by Def. 1.a it has parallel opposite sides  
17  B E C D is a parallelogram by Def. 1.a it has parallel opposite sides  
18  A B C E is a trapezoid by Def. 2.a it has parallel opposite sides  

In the free answer environment Denisa individuates two quadrilaterals, that she identifies as two 
parallelograms, providing a justification referring to the construction made.  
In Denisa’s case the change from the free response version and the ISQ-driven version is more 
evident than in the other cases. First of all, she notices a third figure (a trapezoid) who had not 
initially identified (rows 18). Furthermore, in the free answer she does not differentiate the two 
parallelograms and does not provide any real argument to justify the classification, just repeating 
the construction commands. On the contrary, in the ISQ-driven version, she names the 
parallelograms and provides arguments referring both to definitions and to the properties (rows 16-
17-18). Similarly to Fromix, the use of definition is not logically consistent. 

Discussion and conclusions 
The previous analysis points out the influence of the ISQ device on the transition from the free 
expression to the formalized expression, as a matter of fact we can notice a change which highlights 
interesting elements. On the one hand, the students focus and select the relevant properties, 
neglecting the others ones, not distinctive. This can be interpreted as due to the availability of the 
definitions’ formulation that shows only the distinctive properties. On the other, formalization is not 
a simple transcription but it implies a “logical” interpretation of what is expressed in natural 
language and a transcription of that interpretation into the language using the digital tiles and in 
particular the connective “⇒”. Here we can observe how the interpretation of why as explanation is 
translated by the connective “⇒”, even if this translation is not consistent with the formal language. 
What appears is the fact that all students (not only the ones reported above), in the transition to the 
use of digital tiles, use the wrong direction of the definition. It would seem that they interpret the 
symbol “⇒” according to the verbal structure used in the free formulation of the answer. More 
precisely, comparing the free explanations, it would seem that they reproduce the verbal structure 
“FIGURE is X because Y” as “FIGURE is X ⇒ Y”. that is, they replace "because" with “⇒”, so 
that in the argument the premise follows the claim. 
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We want to underline that the logically correct use of the sign “⇒” is not spontaneous, nor the 
transition from the use of “because” in informal language to the use of “⇒” in formal language. The 
fact that the ISQ device makes evident such difficulty allows the teachers to identify such kind of 
obstacle and to intervene opening a discussion on the mathematical meaning of definitions. 
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We conducted a teaching experiment of ten lessons with third-grade students (9-years-olds) to 
analyse the evolving understanding of the relationships among geometrical shapes. In the teaching 
experiment, pupils recognized, described, represented, built and classified two-dimensional figures. 
Analysis of pre-/post assessments showed some changes in students reasoning about how they began 
making sense of the relationships among the geometrical shapes. However, the use of formal 
definitions of geometrical shapes constituted a challenge for students since they imposed linguistics 
conditions to how the relationships among figures could be established. The results show that 
understanding the relationships among geometrical shapes is a slow process and depends on the 
logical terms used in the formal definitions.  

Keywords: Geometrical thinking, primary school, geometrical shapes, relationships among 
geometrical figures. 

Introduction 
Students develop the comprehension of geometrical figures in a progressive way, initially, they 
recognise the figures by perceptual similarity, continue with the recognition of attributes and finally 
they base their thinking on concept based on the definition (Satlow & Newcombe, 1998). Recognizing 
attributes and relating them to make classifications is considered a relevant aspect in the development 
of geometrical thinking (Clements, Swaminathan, Hannibal, & Sarama, 1999; Elia & Gagatsis, 2003; 
Levenson, Tirosh, & Psamir, 2011). Classification of geometrical shapes, links to definition and the 
analyse of attributes of different geometrical shapes to distinguish between critical and non-critical 
attributes. Classification process can be hierarchical or partitive (de Villiers, 1994; de Villiers, 
Govender, & Patterson, 2009).  

By the term hierarchical classification is meant here the classification of a set of concepts in such 
a manner that more particular concepts form subsets of the more general concepts. […] In contrast 
to a hierarchical classification there also exists the possibility of a partition classification of 
concepts. In such a classification however, the various subsets of concepts are considered to be 
disjoint from one another (de Villier, 1994, p. 11–12). 

It has been shown that students have difficulties in the transition from the recognition of the attributes 
and distinguish critical and non-critical aspects to perform classifications, especially hierarchical 
classifications of the quadrilaterals (Bernabeu, Moreno, & Llinares, 2018; Erez & Yerushalmy, 2006; 
Gal & Linchevski, 2010; Jones 2000). To try to better understand this transition in students’ primary 
school, we investigated third-grade students’ evolving understanding of the relationships among 
geometrical shapes, especially to know how pupils understand geometrical figures and establish 
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relationships among these geometrical figures, that is, consider whether a geometrical figure belongs 
or no to a figure class. 

Theoretical perspectives 
The relationship between levels of geometrical thinking and figure comprehension 

According to Van Hiele's theory (Clements & Battista, 1992; Battista, 2007), the development of 
students’ geometrical thinking is divided into progressive levels. The first three levels describe the 
process up to the comprehension of relationships among geometrical shapes: 

· Level 1: Visual. Students identify the figures in relation to their appearance. To recognize 
figures, they do so through familiar prototypes (e.g. saying that a rectangle "looks like a 
door"). They are not aware of the properties of geometrical figures. The reasoning of students 
is dominated by perception. 

· Level 2: Analytic/Componential (Battista, 2007). Students identify shapes according to their 
properties and they can characterize the figures by their attributes. Battista (2007) refined this 
level proposing three sub-levels. He theorized that students begin with “visual-informal 
componential reasoning” where they begin to focus on parts of shapes and doing visual, 
informal and imprecise descriptions. Pupils advance to “informal and insufficient-formal 
componential reasoning” where they use formal terms and informal descriptions, but they 
make definitions with unnecessary attributes. Occasionally, students advance to “sufficient 
formal property-based reasoning” where they make descriptions with formal geometrical 
terms for all the properties of the geometrical figures. The change from insufficient to 
sufficient definitions is a gradual shift from seeing the figures as a whole to focusing on the 
parts of these to see the figure as a coherent structure (Pegg & Davey, 1998).  

· Level 3: Abstract/Relational. Students identify relationships among shapes and give informal 
arguments to justify their classifications (e.g., a square is a special type of parallelogram). 
They can discover properties of kinds of figures by informal deduction. Therefore, it is 
considered that the hierarchical classification is at this level. 

The dual nature of geometrical figures 

Tall and Vinner (1981) developed the ideas of concept image and concept definition. Concept image 
is used to describe, "the total cognitive structure that is associated with the concept, which includes 
all the mental images, properties, and associated processes" (Tall & Vinner, 1981, p.152). Concept 
image may include images that are inappropriate and contradict the definition of the concept 
(Hershkowitz, Bruckheimer, & Vinner, 1987; Vinner, 1991; Levenson et al., 2011). On the other 
hand, concept definition is "a discursive description to specify that concept" (Tall & Vinner, 1981, 
page 152) accepted by the mathematical community. One relevant aspect in the relationship between 
concept image and concept definition is to become to recognize the attributes of the definition as a 
sufficient condition. This dual nature of geometrical shapes in which concept and image are 
interrelated is underlined by the notion of “figural concept” (Fischbein, 1993).   

In the understanding of this dual nature of geometrical figures, the sufficient conditions to recognize 
or to represent examples of geometrical shapes can be revealed by the transformations among various 
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semiotic representations. Duval (1995a, 1999) indicates how his theory of registers of semiotic 
representation can be used as a tool to analyse the cognitive processes through which pupils develop 
the geometrical thinking. Duval (2017) indicates that we can analyse the students’ productions in 
terms of registers regarding the coordination between different apprehensions: perceptual, discursive 
and operative. Perceptual apprehension is the ability to recognize a figure in a global way; the 
discursive apprehension is the ability to link mathematical properties with the parts of the figure; and 
operational apprehension is the ability to modify or construct a figure to solve the task (change 
orientation, decompose it). Duval (1995b, 2006) defined two of such transformations: Treatment and 
Conversion. Treatments are transformations of representations that happen within the same register: 
for example, completing a figure using perceptual criteria of connectivity or symmetry. Conversions 
consist of transformations of representations from one register to another (such as from the visual 
register to the discursive one), without changing the objects that denote. The association of a figure 
with mathematical statements, can be done in both directions: from the visual to the discursive (from 
the figure to the definition) and from the discursive to the visual (from the definition to recognize the 
geometrical figure) (Duval, 1995b). This translation is the one that allows linking the process of 
defining a geometrical figure giving a minimum set of relevant attributes. However, there are no 
descriptors of the cognitive processes through which students develop the geometrical thinking. 
Therefore, we propose to identify descriptors of the development of geometrical thinking about 
geometrical figures in 9-year-old pupils, and specifically, 

· How students understand geometrical figures and, 
· How reasoning about the relationships among them? 

Method 
Context 

Participants were fifty-nine third-grade pupils (9-years-old) from an elementary school located in an 
area of average socioeconomic status in Spain. This study was conducted as a teaching experiment 
designed to allow pupils establish relationships among geometrical shapes. A researcher of the 
research group performed the role of the teacher in both classes during the instruction. 

Teaching experiment 

In each class, we carried out ten sessions, two per week from May to June during the academic year 
2017-2018. Pupils were asked for: recognizing and analysing attributes of different shapes, 
identifying critical and non-critical attributes, establishing relationships between attributes of shapes. 
They also had to represent and/or construct the shapes according to the given conditions or classify 
attending to criteria. Contents used during all sessions are shown in Table 1. 

First 
week 

 

First session. Polygon attributes: closed, 
straight and non-intersecting sides. 
Polygons according to the number of sides 

Second session. Diagonals. Concave and 
convex polygons 

Second 
week 

Third session. Symmetry axis. 
Symmetrical figures 

Fourth session. Acute, right and obtuse 
angle 
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Third 
week 

 

Fifth session. Types of triangles according 
to their sides: equilateral, isosceles and 
scalene triangle. Hierarchical relations: the 
equilateral is an isosceles 

Sixth session. Types of triangles according 
to their angles: acute, right and obtuse 
triangle 

Fourth 
week  

 

Seventh session. Types of triangles 
according to their sides and angles 

Eighth session. Types of lines: parallel and 
non-parallel. Types of quadrilaterals: 
parallelograms, trapezes and trapezoids 

Fifth 
week 

 

Ninth session. Types of parallelograms: 
square, rhombus, rectangle and rhomboid. 
Hierarchical relations: the square is a 
rhombus, and the square is a rectangle 

Tenth session. Properties of 
parallelograms: equal opposite sides and 
angles; diagonals cut in half 

Table 1. Conceptual characteristics of the sessions of the Teaching Experiment 

During the sessions, pupils built different shapes with resources such as mecano or geoboard. For 
working the classification tasks, we used digital board, so students could share their resolution with 
the whole group. Next, students individually solved other tasks. We used hierarchical definitions. For 
example, we defined the isosceles triangle as a triangle with two equal sides. In this case, we consider 
that an equilateral triangle is an isosceles triangle since it has two equal sides. Furthermore, we 
defined a trapezium as a quadrilateral with one pair of parallel sides. In this case, a parallelogram is 
a trapezium (British version) (Fujita & Jones, 2007).  

For this report, data come from the initial and the final test. The aim was to get evidences about 
pupils’ understanding of geometrical figures. Students’ answers were codified and agreed by the 
research group. For the analysis of the data and the creation of the scheme of emergent codes that we 
generate from the answers of the students, we rely on van Hiele levels (Clements & Battista, 1992; 
Battista, 2007); Duval’s theory (1995a, 1995b, 1999) that considers the transformations of the 
registers and the coordination of the apprehensions, the relationships between image concept and 
definition concept (Tall & Vinner, 1981), and the way that geometrical figures were related (to 
classify a shape in different ways and label it with different names) (Erez & Yerushalmy, 2006).  

Results 
The code schemes 

The emergent coding scheme changed to accommodate the features that pupils included in their work 
and regarding the specificity of the tasks (Table 2). We compared the responses to the initial and final 
test and developed the emergent coded schemes as follow: 

· Students identified geometrical figures by their appearance: what that it means that the 
recognition of geometrical figures is purely perceptual. For example, concerning to task 5: “It 
is a normal and ordinary triangle”; “The same figure as the " figure a"; “All the figures are 
triangular”; and in the Task 6: “Yes, because it is the same”. 

· Students recognized some attributes of geometrical figures without establishing relationships 
among attributes that define the general set: that it, students could recognize some attributes 
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of geometrical figures as number of sides, names of figures or types of figures, but they still 
made mistakes when they related them to its definition and perform relationships among 
geometrical figures. The apprehensions are not still coordinated correctly. For example, in 
task 5: “It has three vertices”; “It is a triangle”; and in task 6: “It has four sides”; “It is a 
square”. 

· Students were able to establish relationships among figures by recognizing that a figure 
belonged to a general set. That is it, pupils related the definition to the parts of plane shapes 
to realize relationships (hierarchical and partitive relations). They began to coordinate the 
apprehensions. For example, in the hierarchical relation, concerning to task 5: “Yes, because 
an equilateral is an isosceles” and in task 6: “Yes, because at least has 2 parallel sides”. 
Conversely, regarding partitive relation, in task 5 a pupil said: “No, because an equilateral is 
not an isosceles” and in task 6 another said: “No, because it has all parallel sides” (not 
including the parallelogram as a trapezium). 

Initial and Final test: Progression of thinking about relationships among geometrical shapes 

To report the progress of the understanding of plane geometrical figures, we present the answers to 
two tasks from the initial and final test. In both tasks we had a "Drawing Machine" that could make 
a set of figures with common conditions (Battista, 2012). In one task, we provided a set of isosceles 
triangles (a triangle with two sides equals) that the machine could make and a set of scalene triangles 
(triangles with the three sides different) that the machine could not make. The question was that if the 
Drawing Machine (Figure 1) could draw an equilateral triangle (visual example). 

 
Figure 1. Figures of Triangles in the Task 5 

In another task, a verbal description of the shape was given: The Drawing Machine can make 
“quadrilaterals (polygon with four-sided) with two parallel sides" and it was asked if the 
parallelogram (square) (visual example) could be made by the machine (Figure 2). 

 
Figure 2. Figure of Quadrilateral in the Task 6 

These tasks tried to show how students establish relationships among figures and use the logical 
relationships among the attributes identified in the figure. In this paper, we present the frequencies of 

Thematic Working Group 04

Proceedings of CERME11 741



 

 

codes of both tasks (118 answers, that is, 59 of each task) that reflect the progress from perceptual to 
analytic recognition, and the initial understanding of the relationships among figures (Table 2). The 
frequency of the students’ answers has shown a development in the reasoning of elementary school 
pupils about geometrical figures and it has also shown how they reason about the relationships among 
these figures. 

Codes (n=118) Initial-Test Final-Test 

1. Students identify the figures in relation to their appearance 26 (22%) 12 (10%) 

2. Recognize some attributes of geometrical figures (but without 
established relationships with attributes that define the general set) 

28 (24%) 48 (41%) 

3. The relationship 
among figures 
(recognize a 
figure belong to 
a general set) 

3.1.Recognize the attribute defines the set 
(recognize hierarchical relationship) 

10 (8%) 26 (22%) 

3.2.Recognize the only partitive relationship 2 (2%) 7 (6%) 

4. Others (meaningless or blank answers) 52 (44%) 25 (21%) 

Table 2. Frequency of codes 

The development of the understanding of geometrical figures 

Analysis of data has shown that students have modified their way of reasoning from the initial test to 
the final. First, the purely perceptual recognition decreased from 22% to 10% after the teaching 
experiment. Also, the recognition of attributes in the figures presented in both tests increased from 
24% to 41%. On the other hand, concerning the relationships among geometrical figures, it has been 
possible to verify how in the final tests, these relationships have been accentuated, since in the 
hierarchical relations had 8% in the initial test, and this rose to 22% in the final test. Regarding 
partisan relationships, these results rose by 2% in the initial to 6% in the final test. On the other hand, 
another positive data is the decrease of the frequencies in the code of "others", in which we coded 
answers that did not make sense with what was demanded in the statement or this was blank. This 
code decreased by 44% in the initial test to 22% in the final. In conclusion, the frequencies of the 
final test, compared with the initial test, provide us with information to intuit that pupils begin to 
develop their understanding of geometrical figures. 

Reasoning about the relationships among geometrical figures 

Initially, 12% of the answers were linked to the relationships among geometrical figures to the general 
set provided in the tasks. However, after the teaching experiment this percentage increased to 33%, 
where it was intended to develop the recognition of the critical attributes of the figures so that they 
could make relationships among geometrical figures. Of this total, regarding the hierarchical 
relations, the answer increased from 8% to 22%. Regarding to partitive relations, it increased from 
2% to 6%. These data lead us to think that students begin to develop the relationships among 
geometrical figures. 

Thematic Working Group 04

Proceedings of CERME11 742



 

 

Discussion 
The aim of this study is to know how students understand geometrical figures and how they reason 
about the relationships among them. We used a teaching experiment to check how geometrical 
thinking evolved if we introduced vocabulary and definitions related to hierarchical relationships. As 
well as, we analysed two tasks, from an initial and a final test, to verify this development of the 
understanding of geometrical figures. Data has shown us that many pupils answered the tasks 
perceptually without considering the relationships of the figures or the definition of the concept, in 
the initial test. In contrast, after the teaching experiment, in the final test, most of pupils began to 
identify attributes to the plane geometrical figures and to reason about the relationships among them. 
These data lead us to think that the development of the understanding of geometrical figures is 
progressive (Pegg & Davey, 1998; Satlow & Newcombe, 1998).  

From these data, we have been able to begin to comprise the progress of the understanding of the 
plane geometrical figures in relation to Duval's theory (1995a, 1995b, 1999). Because students at the 
beginning did not know how to coordinate the apprehensions and after the teaching experiment, they 
began to coordinate the apprehensions making the necessary transformations, the relationships among 
attributes and the use of minimum attributes of the definition for doing the relationships among 
geometrical figures. In this way, while developing an understanding of geometric figures and how to 
relate them. They began to develop the personal figural concept (Fujita & Jones, 2007). Thus, we can 
intuit that the realization of the hierarchical classifications depends on the language that is used in the 
definitions of the geometrical concepts, which can help identify the minimum attributes to recognize 
a type of geometrical figure. 
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In this paper we report about a small-scale classroom experiment on teaching area measurement 
with a digital geoboard. The two-lesson teaching sequence that was developed, was tested in two 
sixth-grade classes and was aimed at teaching students using measurement strategies in a flexible 
way. The pre- and posttest data were analysed both on task and student level. The results show that 
most of the students developed more flexible strategies, but many of them did not use them accurately. 
Our results indicate that apart from working on the ability of students to find correct answers, also 
the flexible use of strategies can be realized through education. 

Keywords: Measurement, area, digital geoboard, strategies. 

Introduction 
Students often say that area “is length times width”. This suggest both that the conceptual 
understanding of area is lacking, and that they only have one strategy available for finding the area 
of figures, even if they have learned about finding area by counting units earlier:  “It [...] is typical of 
many learning processes, especially in mathematics – that the original sources of insight have been 
clogged, and the way back to insight is blocked by the processes of algorithmising and automatising.” 
(Freudenthal, 1983, p. 209). In the new curriculum for Norwegian primary school, in-depth learning 
is important, and among other things the students are expected do “construct a robust and flexible 
understanding” (Ministry of Education and Research, 2015). Therefore, it is important to develop 
teaching that supports the learning of flexible strategies for area measurement.  

Theoretical framework and research question 
Knowledge about measuring the area of polygons consists of both conceptual and procedural 
knowledge which are mutually supportive and should both be fostered (Rittle-Johnson, Schneider, & 
Star, 2015). Having a good understanding of measuring area means that students have several 
strategies available to determine the area of polygons. For example, they may count square units 
and/or half square units, make a multiplication to find the area of rectangles, decompose polygons 
into smaller, simpler polygons and use addition, may embed a polygon into a larger, simpler polygon 
and use subtraction, and may be able to apply a formula to calculate the area. Essential is that students 
can apply these strategies in a flexible way fitting to the problems at hand. However, there is evidence 
(Huang & Witz, 2011) that primary school students fail often in area measurement problems and have 
difficulties in flexibly handling area measurement problems. According to Huang and Witz (2011) 
this finding is considered to be linked to the emphasis that in teaching is put on formula memorization 
rather than on conceptual understanding and explaining your reasoning. Further, students who 
develop flexibility in problem solving use or adapt existing strategies to unfamiliar problems, and 
show a greater understanding of concepts (Star, Rittle-Johnson, Lynch, & Perova, 2009). Therefore, 
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it is important to investigate how students’ flexible use of strategies in measuring area and their 
awareness of using them can be supported. 

Most of the research on strategy flexibility or strategy adaptivity has been on mental calculation (e.g., 
Threlfall, 2009; Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009) or on solving non-routine word 
problems (Elia, van den Heuvel-Panhuizen, & Kolovou, 2009). In the study of Verschaffel et al. 
(2009) a distinction is made between task, subject, and context adaptivity of strategies. In the present 
study we built on this research and explored how task flexibility of strategies for finding the area of 
polygons can be taught. We will not use the term “adaptivity” in this paper because although we will 
discuss appropriateness of strategies with the students, the main goal is to teach multiple strategies 
and discuss the relationship between them. Further, we will focus on inter-task flexibility in the tests 
(Elia et al., 2009), investigating whether students change their strategies from pre- to posttest.  

One tool that is sometimes used for teaching measurement of area is the geoboard. However, there 
are only a limited number of empirical studies on this topic. For example, Bair and Cady (2014) 
observed that by means of a geoboard students could find Pick’s theorem and the study of Britton and 
Stump (2001) showed that students could develop cut-and-paste strategies. To our knowledge, no 
research has been carried out to investigate whether the geoboard is suited to foster the development 
of flexible strategies. Therefore in this study our research question was: Does working with the 
geoboard help students to use flexible strategies for measuring area? 

Method 
To answer the research question, a small-scale classroom experiment comprising a pre-post-retention-
test research design was carried in two sixth-grade classes with 46 students during the period of 
February-July 2017. For this experiment we designed and tested a teaching sequence of two 75-
minute lessons on reasoning about area measurement based on working with a digital geoboard. 

The digital geoboard (“Geoboard [Computer software],” 2017) is an app for a tablet or computer that 
resembles the physical geoboard. Students can manipulate polygons and write computations or 
explanations on the digital geoboard, and they can share their work with the teacher through a sharing 
platform (“Showbie [Computer software],” 2018) or show it on a projector in the classroom. This 
makes it possible to select and present students’ strategies to emphasize the connections between 
different strategies and give value to different strategies for the same task. 

The lessons were taught by the researcher in the presence of the classroom teacher. In the lessons 
whole-class discussions led by the researcher were interchanged with students’ individual work on 
the geoboard. In the discussions the use of different measurement strategies was stimulated, both 
strategies proposed by the students and strategies planned by the researcher, and students were made 
aware of the relationships between the different strategies. To support these relationships, the 
strategies were represented visually by drawings on the geoboard. To encourage students to think 
about their strategies it was emphasized that it is very important to be aware of the used strategy and 
that good understanding means that one can explain how the answer was found. This encouragement 
was given to the students both during their individual work and the whole-class discussions. 
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Type of task Description 
Task included in 

Pretest Posttest Retention test 

Blue task Rectangle with sides parallel to 
the axes of the geoboard 

ü ü ü 

Red task Rectangle with sides 45˚ to the 
axes of the geoboard 

ü ü ü 

Brown task Polygon in which partitioning 
into triangles and squares can 
be used 

ü ü ü 

Table 1: Overview of the tasks in the tests which are used in the paper  
 

The pre-, post-, and retention tests were administered in Week 5, 7 and 22 respectively. They 
contained several types of measurement tasks presented on paper-and-pencil test sheets. Table 1 
shows which type of task is included in which test. In every test, for each type of task the to be 
measured area was varied a bit in order to avoid retest effect. 

Figure 1 shows an example of how the tasks in the retention test were presented to the students. The 
question asked to the students was: «Can you find the area of the shape? Write how you were thinking. 
You may use the picture to explain.». The yellow square was given as an area unit. On a next page 
the students were asked to to give a justification for their result. During the pretest it turned out that 
after giving this prompt it was for most students easy to say what their thinking was, but writing this 
down was harder for them. Therefore, the teacher and the researcher made clear to the student that 
they just had to write down what they said orally. 

  
Figure 1: Test sheet with the polygons and the questions the students have to answer 

The data from the test sheets were entered into NVivo. Both the students’ measurement results and 
their explanations of the used strategies (see for examples Figure 2 and 3) were coded. When the 
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students found the correct area, the answer was coded as “1” and an incorrect answer was coded as 
“0”. Based on these codes we divided the students per task into four classes: the “00” students 
(incorrect answer in pretest and posttest), the “01” students (incorrect answer in pretest, correct 
answer in posttest), the “10” students (correct answer in pretest, incorrect answer in posttest), and the 
“11” students (correct answer in pretest and posttest). For coding the strategies, we used three main 
categories, namely “counting”, “multiplication”, and “restructuring” (decomposing or embedding 
strategies). Furthermore, we had two additional categories, namely “other” and “no strategy 
information available”. 

Results 
Table 2 shows for each type of task and for each test the percentage of correct answers. For all the 
tasks which were both in the pre- and posttest, the students improved their performance of which the 
most gain was obtained for the Blue task. In the retention test this progress continued only for the 
Red and the Brown task.  

Type of task 
% correct 

Pretest 
(n = 43) 

Posttest 
(n = 41) 

Retention test 
(n = 43) 

Blue task 70% 95% 88% 

Red task 44% 51% 58% 

Brown task 72% 80% 88% 

Table 2: Percentage of students who gave correct answers to the different types of tasks 

Even if the overall performance on each task was increasing, individual students showed both 
progress and deteriorating performance on each individual task. Using the red task as an example: Of 
the 36 students that participated on both the pre- and posttests, 11 students got the answer wrong on 
the pretest but right on the posttest, but 8 students got the answer right on the pretest but wrong on 
the posttest. Complete results are in table 3.  

 

Type of task 
Number of students belonging to a class of students 

“00” student “01” student “10” student “11” student 

Blue task 0 8 2 26 

Red task 8 11 8 9 

Brown task 3 5 3 25 

Table 3: Number of students (n = 36) belonging to a particular class of students split out for the three 
types of tasks included in the pre- and posttest 
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The next step in our analysis was figuring out what strategies the students used to find the area of the 
polygons and how flexible they were in using these strategies. We analyse the Red task as an example, 
because this is in our view the most interesting task that was on both the pre- and the posttest.  

The strategies used in the Red task (see Table 4) were counting (in this case the number of squares 
and triangles), multiplication (length × width; leading to mistakes because diagonal distances cannot 
be measured by counting), and restructuring. In the lessons it was made clear that this latter way of 
measuring the area for this task is very suitable, and we also showed why the multiplication strategy 
could not work easily. 

Used strategy in the Red task in 
Pretest à Posttest 

Number of students belonging to a class of students 
Total “00” 

student 
“01” 

student 
“10” 

 student 
“11” 

student 
Counting à Counting 0 3 3 5 11 

Counting à Restructuring 0 0 4 3 7 

Multiplication à Counting 1 7 0 1 9 

Multiplication à Restructuring 2 0 0 0 2 

Multiplication à Multiplication 1 0 0 0 1 

Other 2 1 1 0 4 

No strategy in pre- and/or posttest 2 0 0 0 2 

Table 4: Students’ (n = 36) strategies in the pre- and posttest applied in the Red task 

For this Red task, no student used the restructuring strategy before the lessons. Yet, after the lessons, 
nine students tried to apply this strategy, of which three got the correct answer. The work of one of 
these students is shown in Figure 2. 

                        
Figure 2: Test sheets of students using restructuring as a strategy applied in the Red task in the 

posttest resulting in a correct answer, and in the Brown task in the pretest making an error 

The six students who got a wrong answer made various mistakes. Four of them give a clear 
explanation of the procedure of embedding the rectangle in a larger square and “subtracting what is 
in the corners which is not in the red [rectangle]”, but proceeded with computing the wrong area of 
the square (one student got 7 × 7 as a result) or computed the wrong area that had to be subtracted 
(three students). Of the other two students the source of the error is unclear. 
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The fact that four “10” students go from correctly using a counting strategy to making mistakes with 
a restructuring strategy, is possibly related to the value we gave to this strategy in the plenary parts 
of the lessons. 

 

Task type Strategy 
Number of students belonging to a class of students 

Total 
“00” student “01” student “10” student “11” student  

Blue Same 0 6 1 18 25 

Different 0 2 1 5 8 

Red Same 1 3 3 5 12 

Different 3 7 4 4 18 

Brown Same 1 1 0 16 18 

Different 1 2 1 2 6 

Total Same 2 10 4 39  

Different 4 11 6 11  

Table 5: Number of students using the same or a different strategy in the pre- and posttest split out 
per task type 

Table 5 summarizes the findings of the correctness of the answers per type of task and whether there 
was a change in strategy between the pre- and posttest. In the Blue and the Brown task more students 
retained the same strategy than in the other tasks. Moreover, they even did not change the strategy 
when they got a wrong result in the pretest. In the Red task more changes happened. Here 60% of the 
students changed their strategy. We see in this table that many students use different strategies in the 
pre- and posttest, for instance 18 students changed strategies in the red task, but 7 (3+4) did not come 
up with the correct answer. 

Table 6: Number of students who showed a particular strategy flexibility 

 

Taking again the perspective of the students, we could identify for 22 students their strategy flexibility 
in the pre- and posttest over the Blue, Red, and Brown task. As it is revealed by Table 6, a few students 
only used one strategy, but most students changed their strategy from the pretest to the posttest. Note, 

Student’s strategy flexibility for the Blue, Red, and Brown task Number of students 
(n = 22) 

Using only one strategy 3 

Not changing strategy between pre- and posttest but changing it over tasks 2 

Changing strategy between pre- and posttest in one task 11 

Changed strategy between pre- and posttest in two tasks  6 
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that in this analysis the students which applied a strategy that could not be classified or was not 
available in the pre- and/or the posttest are not taken into account. 
 
Student’s inter-task flexibility Pretest Posttest 

Using the same strategy on all tasks 7 5 

Using two different strategies 15 14 

Using three different strategies 0 3 

Table 7: Student’s inter-task flexibility on the blue, red and brown tasks (N=22) 

We also analysed whether students used the same strategies or different kinds of strategies on the 
three tasks on the pretest, and the same question on the posttest, to investigate the inter-task flexibility 
of the students. We see that the inter-task flexibility of the students have increased on the posttest 
relatively to the pretest (table 7).  

Discussion 
In this study, we investigated whether working with the geoboard could help students use flexible 
strategies for measuring area of polygons.  

The problems on the pretest and posttest were routine in the sense that the polygons were shapes that 
the students could have worked with before. However, the problems were given on a grid and without 
rulers and calculators that the students might be use to have when measuring areas of rectangles. The 
students showed some inter-task strategy flexibility already at the pretest, choosing between 
multiplication and counting strategies. This is in contrast to the situation where students are given 
unfamiliar, complex problems, where the unfamiliarity and complexity of the problems may hinder 
the flexible change of strategies (Elia et al., 2009). However, the pretest also showed that some 
students chose inappropriate strategies, e.g. multiplication on tasks where this could not lead to a 
correct answer, even though they showed that they knew how to use a counting strategy that would 
have been appropriate. 

Working with the geoboard, the students tried different strategies and shared with each other through 
whole-class discussion. They also tried the strategies that the researcher emphasized or introduced, 
e.g. counting or different rearranging strategies. The pre- and posttest results taken together (table 6 
and 7) show that many students have developed their inter-task flexibility. Heinze et al. (Heinze, 
Marschick, & Lipowsky, 2009) raise the question whether the “investigative approach” that was used 
in the teaching, where students discuss and practice selected strategies, “prevent students from 
choosing strategies adaptively because they tend to ignore problem characteristics”. Because the 
posttest items are related to tasks which were discussed in the teaching, we can’t address this question 
with certainty; however, the results show that many students on the posttest used more appropriate 
strategies e.g. on the Red task, even if they didn’t use them accurately.  
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Conclusion 
Considering that this was only a small-scale classroom experiment with an intervention consisting of 
only two lessons, it was hard to draw conclusions. Nevertheless, although the students did not 
substantial improve their performance in measuring area, we can say that we have experienced that 
most of the students were active in thinking and trying out strategies for measuring area which were 
new to them, so working with the geoboard and discussing strategies in whole class helped many 
students develop their inter-task flexibility for measuring area. This made us more aware that apart 
from working on the ability of students to find correct answers, also the development of the flexible 
use of strategies is an important goal in mathematics education to work on. 

In further work, we will do a controlled design experiment where the teaching period is longer, to be 
able to compare working with the geoboard with the ordinary curriculum, and to give the students the 
opportunity to develop more accuracy and strategy adaptivity.  
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This paper reports research based on a K-6 prospective teacher education experiment carried out in 
a geometry course in the 2nd year of studies. The study aims to understand how participants justify 
generalizations about families of geometric figures in a context of exploratory teaching. Data were 
collected by audio and video records and from participants’ written productions. In the analysis, 
special attention was given to the kind of arguments, their degree of generality, and the aspects that 
contribute for the learning of the justification process. The results show that initially the participants 
had difficulties in understanding how to justify generalizations. They progressed by using valid 
arguments, but they struggled in fully providing arguments and reasoning beyond specific cases. An 
improvement of justifications was achieved by the careful design of tasks, the interaction in the 
classroom and by relating the process of justification to understanding why a statement is true. 

Keywords: Geometry, Reasoning, Justification, Generalization, Preservice Teachers Education.  

Introduction 
Lo and McCrory (2009) argue that prospective elementary teachers need to learn proof: a) as a tool 
to show or verify that something is true or false; b) as a mathematical object that is regulated by some 
rules and standards; and c) as a factor of students’ development. These levels correspond to knowing 
how to proof, understand the nature of proof and to adapt proof to different students’ developmental 
levels. However, Stylianides and Stylianides (2009) refer several studies showing that prospective 
elementary teachers have predominantly misconceptions about proof, particularly regarding the role 
of empirical arguments. Also Lin et al. (2012) add that, for many of these teachers, their belief in a 
result rests more on the authority of external entities than on their reasoning.  

For Stylianides, Bieda and Morselli (2016), in the last decade, some research studies sought ways to 
support students in argumentation and proof, particularly in geometry. In teacher education, according 
to Lin et al. (2012), some studies suggest guidelines to improve the knowledge of prospective teachers 
in proof: solve tasks individually or in small groups; hold collective discussions; share and criticize 
one another’s proofs; promote cognitive challenges. In geometry, the use of DGS and of suitable tasks 
may motivate the search for justifications to explain why conjectures are true (Christou, Mousoulides, 
Pittalis & Pitta-Pantazi, 2004). However, as Stylianides et al. (2016) suggest, in this area, there is still 
a need for research in designed interventions that focus on the development of prospective teachers’ 
mathematical knowledge about proof. Assuming this, our paper addresses the need to support future 
teachers in the process of justification in geometry. Its purpose is to understand how they justify 
generalizations about families of geometric figures. We analyse the following questions: what kind 
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of arguments do participants use to justify generalizations about families of geometric figures? What 
are the obstacles and the facilitating aspects of learning to justify suggested by the experience? 

Mathematical reasoning and the process of justification 
Lannin, Ellis e Elliot (2011) consider mathematical reasoning as an evolving process of conjecturing, 
generalizing, investigating why, justifying and refuting assertions. For these authors, generalizing is 
about identifying common elements or extending the reasoning beyond the range in which it 
originated. Investigating why involves investigating factors that may explain why a generalization is 
true or false. A valid justification constitutes a logical sequence of statements, each relying on 
established knowledge, in order to arrive at a conclusion; it must use general language demonstrating 
that it applies to more than one particular case, even if it is based on generic examples. In the context 
of teaching, a successful justification shows that a statement is true and explains why it is true. 

Considering this characterization, we find the concepts of justification and proof to be very close, 
which results from the several meanings attributed to proof, both in research in mathematics education 
(Stylianides et al., 2016) and in mathematics, where there are many conflicting opinions about the 
role of proof and what makes a proof acceptable (Hanna, 2000; Harel & Sowder, 2007). Stylianides 
(2007) presents a definition based on the literature on the philosophy of mathematics and mathematics 
education that addresses mathematics teaching from the first years of schooling: 

A proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: 1. It uses statements accepted by the 
classroom community (set of accepted statements) that are true and available without further 
justification; 2. It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and 3. It is communicated with 
forms of expression (modes of argument representation) that are appropriate and known, or within 
the conceptual reach, of the classroom community. (p. 291) 

Considering that we focus on justifying1 generalizations concerning geometrical objects, the 
statements must relate to the geometrical structure of the objects. In this sense, we call on the ideas 
of Battista (2009), suggesting that reasoning involves spatial structuring—a special type of 
abstraction corresponding to the mental act of constructing an organization or form for an object or 
set of objects by identifying its components, combining them into spatial composites, and identifying 
the way they combine and relate—and geometric structuring (GS), which describes spatial structuring 
using formal concepts. Also, we should also consider Balacheff’s (1988) “generic example” as a form 
of reasoning particularly suitable for justifying geometrical generalizations, as it “involves making 
explicit the reasons for the truth of an assertion by means of operations or transformations on an 
object that is not there by its own right, but as a characteristic representative of its class” (p. 219). 

Methodology 
This paper addresses an investigation with an intervention, in order to change practices and enhance 
teachers’ preparation in geometry. The research focus is on learning in context, starting from the 
                                                 
1 From now on, instead of “proof”, we use the term “justification”. 

Thematic Working Group 04

Proceedings of CERME11 754



 

 

conception of strategies and teaching tools, following a design-based research as methodology, in the 
form of a prospective teacher experiment (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) in 
which the teacher also plays the role of researcher. This approach is referred by Stylianides et al. 
(2016) as “a promising approach to respond to the need for developing effective ways to address 
students’ and teachers’ difficulties with argumentation and proof” (p. 344). Two of the design 
principles of the experience influence directly the tasks that we report in this paper: (i) make use of 
the intimate relation between sense making and the activity of reasoning and proving to promote 
learning with understanding; (ii) promote flexible reasoning, providing tools for prospective teachers, 
including different ways of justifying (Stylianides & Stylianides, 2006). 

The data were collected during the second cycle of the study, involving a group of 25 trainees who 
attended a Geometry course (2nd year of the Basic Education Bachelor’s Degree). The tasks were 
solved in groups of 4/5 elements. Data gathered includes the participants’ records of two tasks solved 
in the classroom and audio and video recordings of the groups’ interaction.  

We present a framework to analyse the justification of generalizations (Table 1) taking in account, 
first, the nature of the arguments regarding the geometric structuring of objects which relate mainly 
to the properties stated and, second, the degree of generalization of the justification. 

Level Argument’s nature Properties / procedures Degree of generalization 

GS3 

Based on the correct 
geometric structuring 
of the family of 
figures 

States relevant and 
established properties 

Uses a generic language about the family 
of figures 
It focuses on a generic example 
It focuses on one or more figures without 
generalizing 

GS2 

Based on the 
incomplete 
geometric structuring 
of the family of 
figures  

States relevant and 
established properties, but 
omits others 

Uses a generic language about the family 
of figures 

It focuses on a generic example 

It focuses on one or more figures without 
generalizing 

GS1 

Based on the 
incorrect geometric 
structuring of the 
family of figures  

States irrelevant, non-
existent or non-established 
properties  

Uses a generic language about the family 
of figures 
It focuses on a generic example 
It focuses on one or more figures without 
generalizing 

GS0 

Without resorting to 
the geometric 
structuring of the 
family of figures 

States numerical relations 
without connection to the 
structuring of the figures  

It focuses on one or more figures  

Tests the generalization It focuses on one or more figures 
Uses an external source of 
validation  

Does not apply 

Table 1: Levels for justifications of generalizations about families of figures 
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Results and discussion 
In this section, we discuss results from two tasks, one about the congruence of the vertically opposite 
angles and another about the sum of the amplitudes of the internal angles of a polygon. In a previous 
lesson, the participants used GeoGebra to conjecture about these relationships, but they were not 
supposed to use it in these tasks.  

Task A – Vertically opposite angles  

Previously you discovered that two vertically opposite angles have the 
same amplitude. Find a justification explaining why this relationship is 
always true. 

Figure 1: Task for the justification of the congruence of vertically opposite angles 

This task was not the first asking for a justification involving angles, but it was the first one using a 
generalization in which no value was given, so the reaction of the participants was very different from 
the previous ones. There were only two written answers, one of them from Helena (Figure 2): 

Figure 2: Helena’s justification for task A 

Helena’s answer refers to a characteristic of vertically opposing angles, but her justification does not 
resort to geometric structuring because, by stating “any way we put the straight lines,” she is drawing 
on her prior experience with GeoGebra. In this way, her justification implicitly refers to an external 
source to validate the claim, so the justification is incorrect (level GS0). Although based on empirical 
experience, the software represents the authority in which Helena trusts. 

The other written answer is similar to most reactions, illustrated by the following dialogue: 

Marina:  They have to be equal because they have the vertex in common and the sides of one 
angle are the sides of the other. 

Teacher:  But what you are saying to me is almost the definition of vertically opposite angles. 
This statement does not justify the claim. 

Marina:  So how do we justify it? 

In an attempt to help the group, the teacher suggests introducing a value: 

Teacher:  Imagine that a is equal to 30º. Try to find the values of the other angles without 
using the property. 

Marina:  Which property? 

Teacher:  The one that you want to justify. That vertically opposing angles are congruent. 
Find the other values from other relationships. 

As the vertically opposite angles have the same vertices (the straight lines always pass through the 
same point) any way we put the straight lines (any orientation), the angles were always equal. 
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Marina:  Oh! So... c is 150... because adding a it gives 180 degrees. They are... 
supplementary. 

Teacher:  OK... 

Marina:  Then b is 30 because it is vertically opposite to a. 

Teacher:  Attention! We agreed that we can not use this property. Do you understand why? 
You cannot justify that a property a true if you are using it in your reasoning. 

Marina:  OK... Hum, b is 30 because it’s supplementary to c, which is 150. 

Teacher:  OK. As you can see you discovered the values 30 and 150 without using the 
property. Now, try to use a similar reasoning without using a specific value. 

Marina shows some difficulties. On the one hand, she does not distinguish the characterization of the 
vertically opposing angles from the justification of their congruence. This problem may be due to the 
strong perception that angles have to be congruent by the way they are constructed. On the other 
hand, the simplified version of the problem using a specific value also shows that Marina does not 
know she cannot use the property she is seeking to. The group made an effort to continue the task, 
but they struggled to generalize the justification. Thus, this episode shows an answer based on an 
incomplete geometric structuring of the family of figures (EG2) which focused on a particular figure 
without generalizing. 

Task B – Sum of the amplitudes of the internal angles of a polygon 

You have found a generalization for the sum of the internal angles of a polygon using GeoGebra. 
Let's try to justify it. To do this, look at the following hexagons. Each one suggests a possible 
strategy. Use one of the strategies to write the justification.  

 

Figure 3: Task for justification of the sum of internal angles of a polygon 

In the beginning, the prospective teachers struggled again with the absence of values because some 
thought that they would need the value of each angle, but the teacher then stressed that they should 
continue the strategies presented. This time, all the groups were able to produce some justification. 

The first hexagon is divided into 4 triangles. All vertices of each triangle cover all the internal 
angles of the polygon. If we know that the sum of the internal angles of a triangle is equal to 
180º, we can multiply 180 by 4 (4 triangles) and we obtain the amplitude of the whole polygon. 
The expression that generalizes is (n-2)×180. If a polygon has 10 sides, it is possible to draw 8 
triangles; if you have 6 sides, we draw 4 triangles. If we have n sides, we draw n-2 triangles. 
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Figure 4: Celia’s justification using the strategy of the first figure 

Celia’s answer (Figure 4) is based on the correct geometric structuring because it identifies two 
relevant properties (the sum of the amplitudes of the internal angles of a triangle and the 
decomposition the polygon into n-2 triangles). Celia uses the hexagon and the decagon with the 
intention to treat them like generic examples, because it explicitly indicates properties of the class. In 
this way, her justification is at level GS32. 

All groups used the strategy initiated in the first figure, but most of them decided to follow the other 
strategies as well. The next answer (Figure 5) belongs to Anita: 

 
 

 

 

Figure 5: Translated reproduction of Anita’s justification 

Anita’s justification is based on a correct geometric structuring, using relevant and established 
properties, although she does not explain the relation between the number of sides of the polygon and 
the number of triangles. In addition, the properties concern only the case of the hexagon, which is not 
used as a generic example, and are not explained properly, so the justification is incomplete and refers 
to level GS2. The restriction to the hexagon is a common problem addressed by the teacher: 

Teacher:  But that’s for the hexagon. What about other polygons? For example, a decagon? 

Isabel:  We use... 8 triangles. We took two sides. 

Teacher:  So? 

Isabel:  Exactly. Then it gives (n-2) × 180! 

Andreia:  And for the other we do 6 × 180 and then we take two triangles. 2 × 180. 

Teacher:  And why do you take the angles of two triangles? 

Isabel:  Yeah... This is you forcing to give the same result... 

Teacher:  That’s it. If you have to take something, some value, that has to make sense... 

                                                 
2 We are only considering the quality of the arguments regardless of language errors.  

180×(6-2)=720º 

180×6=1080º 
1080-360=720º 

180×6=1080º 
1080-360=720º 

Sum of the 
external angles 

6 sides 
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In this dialogue, we observe that the participants are trying to extend the first strategy to the second 
case without understanding why. When the teacher confronts them, they recognise their problem. 

Conclusion 
Task A showed trainees’ difficulties related to two factors: the nature of the statement to be justified 
—a generalization—supported by a generic representation with no values; the principles of a 
justification, namely the impossibility of using a single example or relying on cyclic reasoning. The 
fact that the participants are able to solve a similar task by introducing a value shows that difficulties 
may not arise from the identification of relevant and established properties, but from the construction 
of an argument that applies this structuring to the entire family of figures. This means that the 
prospective teachers showed difficulties both in justifying and in understanding the nature of 
justification (Lo & McCrory, 2009). 

The solutions of task B show a correct geometric structuring of the family of figures, using valid 
arguments, even if incomplete. Most justifications tend to be supported by specific examples, but in 
some cases, the participants try to present them as generic. The teacher suggests that the justifications 
shows why the relation is true and participants seem to accept that suggestion.  

Thus, the two tasks show some differences with respect to the type of arguments used by the 
participants to justify generalizations, since they started to rely more on the correct structuring of the 
geometric figures. These differences may derive from the specificity of tasks, but may also 
correspond to a more correct conception of what a justification means. However, the solutions from 
task B show that there are two important aspects to attend. On the one hand, it is necessary to 
overcome the resistance in constructing an argumentative discourse, which we observe in 
justifications that are reduced to the schematic interpretation of expressions or visual representations, 
in order to value the communicative dimension of this process (Yackel & Hanna, 2003). On the other 
hand, it is important to raise the degree of generality of the discourse which, in some cases, is overly 
supported by particular examples and does not show that generalization applies to the whole domain 
of figures (Lannin et al., 2011). In fact, there is an unclear line between presenting a generic example 
that is representative of the domain (an acceptable strategy to justify) and supporting a justification 
by empirical examples, which corresponds to a common error and a misconception about the role of 
empirical results in the validity of a justification (Stylianides & Stylianides, 2009). 

The results presented refer only to two tasks used to promote the ability to justify generalizations. 
However, they confirm the relevance of relating the process of justification to understanding why a 
statement is true, suggested by several authors (e.g., Harold & Sowder, 2007; Lannin et al., 2011; 
Stylianides et al., 2016). In particular, the design of tasks that promote the construction and 
confrontation of different justifications and representations, as well as an environment of peer 
interaction, seem to be contributing factors in the development of the ability to justify. 
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This paper aims to describe the professional actions of beginning teachers in the context of 
teaching and learning geometry. Using different theoretical tools, our research is based on the 
observation of lessons (with students aged between 6 and 11) delivered by beginning teachers in 
France. The paper seeks to show how the specific context of geometry impacts on professional 
actions especially among beginning teachers.  

Keywords: Geometry education, teacher professional actions, beginning teachers. 

The first part of the article describes the theoretical background and research questions. The second 
part is dedicated to the methodology and results from several observations of novice teachers in the 
context of teaching geometry. The final part of the article is an opportunity to discuss with new 
perspectives in the context of pre and in-service teacher training. 

Theoretical framework in terms of teacher professional actions  
This research takes part of a bigger collaborative research which deals with different fields 
(mathematics, literature, sciences…); the goal is to study conditions of development of teacher 
professional actions through the follow-up of a cohort of dozen of beginning teachers. In order to 
compare analyses we need a common theoretical framework, we describe it in next part. 

Jorro (2002) distinguishes generic teaching actions from professional actions1. The former are 
attached to a collective culture shared by a community such as stereotyped actions (writing on the 
blackboard, calling a student up to the black-board, putting a finger to the lips meaning quiet, etc.) 
while the latter are more a singular and contextual conception. We refer mainly to Bucheton and 
Soulé (2009) to define more precisely teacher professional actions. These authors define 
professional actions as teacher’s acts (physical or verbal) and the permanent “adjustments” in 
relation to student activity and knowledge at stake. These authors describe their organization and 
dynamics through the “multi-agenda of entrenched concerns [our traduction]” (Ibid., p.32; schema 1 
for an adapted version). The five concerns are: 

– leading the lesson (organization and coherence of the lesson, through its material, spatial and 
functional dimensions); 

– atmosphere (maintaining dialogical spaces); 

– linking (making connections with what pupils already know or connections between other 
knowledges); 

                                                 
1 Our traduction from Jorro’s original notions of « geste du métier » and « geste professionnel ».  
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– scaffolding according to Bruner’s meaning i.e. helping pupils do and say things without doing it 
for them (Bruner, 1983); 

– the targeted knowledge (central component). 

For us, professional actions are specific, situated, on a given context and moment, and led through 
didactical intention(s) (that means these “intentions” are more or less with direct and conscious 
links with the teaching project). It is important to notice now this theoretical framework’s goal is 
not about to give a binary classification generic/specific we recuse. What seems rightly interesting 
in the use of this general theoretical framework is that it can be mobilized in order to analyze any 
classroom session. Therefore, this is interesting in the cross of didactical analysis from different 
fields, which is the goal of the bigger research in which our collection of data fits. This paper deals 
with professional actions of beginning teachers in the context of teaching geometry. 

Focus on beginners 

In this framework, the dynamical organization of professional actions determines teachers’ 
“postures of scaffolding2” some of which can be exaggerated among beginning teachers. The 
“posture of control”, for example, is frequently observed because they try above all to organize their 
work in relation to time and space, without taking into account the students’ potential activity. 
“Linking is rare. Pupils are usually addressed collectively and the atmosphere is relatively tense 
[our traduction]” (Bucheton & Soulé, 2009, p. 40). Furthermore, Robert and Rogalski (in 
Vandebrouck, 2013) define teacher’s practices as complex, stable and coherent. According to these 
considerations, it is therefore relevant to study the practices of teacher since their beginning to 
better understand the conditions of genesis and development of professional teacher actions. 
Especially since the generic teaching actions have been identified as being the ones that beginning 
teachers will try to incorporate into their practices (Jorro, 2002). How do the teacher actions 
become professional and relevant? What impact do the specificities of teaching geometry have on 
the implementation and articulation of these actions? What impact on potential students’ learning? 

The specific context of teaching and learning geometry 

A lot of works relate the difficulties of teaching and learning geometry. Indeed, geometry is unique 
and complex in terms of the role of material activity (using instrument, manipulation, modeling…), 
visualization and language for the construction of mathematical concepts, as described in previous 
CERME (Jones & Al., 2017). We assume in our work there are mutual influences (and not 
subordinated one to another) between visualization (according to Duval’s meaning, 2005), 
instrumental action (graphical register) and language (Bulf, Mathé & Miltalal, 2011). In doing so 
we seek to describe teacher’s actions more precisely in our analysis, taking into account the 
different manifestations of geometrical concept (graphical register, verbal formulation, coding, 
physical gesture, etc.). According to Duval’s framework (2005), we refer to the “dimensional 
deconstruction” to analyze geometrical object at stake in terms of figural units (2D for surface, 1D 
for line and 0D for point as intersection of lines), and relations between these different units. In 

                                                 
2 “Accompaniment, control, letting go, teaching-conceptualization, magician” (Bucheton & soulé, 2009, p. 41) 
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other words, this is our additional and specific theoretical background to take into account the 
context of teaching and learning geometry.  

The goal of this paper is to highlight the fact that professional actions are formed early (as 
mentioned at the beginning of this paper) but, depending on the task assigned to students in the 
context of teaching geometry, that they may hinder understanding of the geometrical concepts under 
consideration. We try to describe the reasons of these misunderstanding because, precisely, same 
professional actions could be, on the contrary, relevant in other context of teaching. That’s why our 
theoretical framework seems particularly interesting because it contributes to show clearly the limits 
of dichotomy genericity / specificity of professional actions in pre and in-service teachers training. 
We summarize our theoretical framework in the schema 1. The central component (from Bucheton 
and Soulé’ framework) is here the geometrical knowledge at stake, and therefore according to our 
theoretical framework, it is observed in activity through three dimensions: visual, oral and 
instrumental. 

 
Schema 1. “multi-agenda of entrenched concerns” (Bucheton and soulé, 2009, p.33) adapted to the 

context of teaching geometry. 

The specific context of geometry teaching with beginning teachers allow us to highlight obstacles or 
potential levers to better understanding professional development of teacher. This paper tries to 
answer to the research questions : How do the specificities of teaching geometry (in terms of 
visualization, instrumental action and language) have an impact on the implementation and 
articulation of professional actions (schema 1) ? What impact on potential students’ learning? 

Methodology and results  
Our corpus is composed of several videos and transcripts of lessons, visit reports, professional 
writings, interviews, etc. collected during pre-service teachers and during the first years of practice 
of a dozen of beginning teachers since 2013. In the present contribution we chose to refer to the 
professional actions of three teachers, Maya, Emilie and Celine observed in 2016 and 2017. We 
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think these case studies are representative of novice teachers’ practices in the context of teaching 
and learning geometry3. 

Our analysis methodology is qualitative and based on classical models in the French field of 
didactics of mathematics, known as a priori or a posteriori analysis according to the Theory of 
didactical situations in mathematics (Brousseau, 1997). A priori analysis is an epistemological 
reasoning which does not have a predictive sense, but instead a causal one; it involves describing 
various possible (and therefore potentially reproductible) phenomena in teaching session. Our a 
posteriori analysis places contingent facts in the context created by the a priori analysis. 
Furthermore, our data are analyzed in accordance with our theoretical framework, which means we 
describe geometrical activity (a priori and a posteriori) through its differents manifestations: visual, 
instrumental or verbal (as already described in previous paragraph). We infer from these analyzes 
hypotheses in terms of professional actions as we have described in our general theoretical 
framework (schema 1). We pay attention on the different type of teacher’s scaffolding, leading, 
linking and atmosphere own to these teachers in relation with the geometrical knowledge at stake. 

Over-scaffolding through different dimensions (verbal / visual / instrumental) of geometrical 
activity 

This episode is frequently encountered in classes ; it's about talking collectively about a figure on 
the blackboard. We refer here to a observation occurred in 2017 in Celine’s class (with students 
aged 8 to 9). Students have to reproduce the figure given on the left extremity of the figures 1.  

 

 

Figures 1. Different ways of seeing one side of the square 

The different ways of seeing one side of the square as also the diameter of the half-circle4 is the key 
to solve this problem. It is necessary to go beyond a first vision as a simple border line between two 
juxtaposed figures: 

- this side is perpendicular to 2 other sides (relationship between 2 objects of dimension 1D); 

- this side is a segment, which is also a diameter of the half-circle. The middle of this segment is the 
center of the circle (different objects 1D and 0D, and their relationships). 

These different ways of seeing this “simple” figure are not self-evident because it involves different 
figural units (lines, points) and different kind of relationships (belonging, middle, perpendicular, 

                                                 
3 Given what we have observed and analyzed so far in our previous researches and in the corpus for this research 
(corpus made up of a dozen novice teachers). 

4 « double designation » (Duval, 2014, p.5) of a figural unit. 
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equal distance...). If we focus on the center of the circle, there is a priori a lot of different ways to 
understand it (without being exhaustive): 

- a point belonging to the side of the square (which requires to see a line as a set of – infinite–  
points, but it is far from being acquired for students of this age); 

- the middle of a segment of which the ends are the vertices of the square: here coexist two ways to 
see points (vertex / end of segment); 

- the center of the circle is where we will put one branch of compass ; 

- the center is the point located to equidistant from the line (or points) defining the half-circle; 

- the center is the junction point of the union of two rays in the same direction (here); 

-…. 

At the beginning of the session, Celine tries to explain the task by making the students talk about 
the instrumented actions. It is kind of over-scaffolding without linking the different possible ways 
of seeing the side of the square and the center of the circle: 

Celine: How do I put my compass on my square? 

Student: on the board there is a line in the middle to put the starting mine in the middle of 
the line 

Celine: then in the middle of the line you speak about side [She sweeps the side with a 
hand gesture and points the middle of the side, figure 2] okay what is it in relation 
with our circle /// you remember where he is the center of the circle? // How is it 
called? [Sweeps the side of a hand gesture like the moment before from top to 
bottom] /// all of this / yes it is the diameter / there [gap between the auriculare 
and the thumb, figure 3] it is the radius / you remember the center of circle 
[pointing finger, figure 2] it is the middle of the diameter/ it shares the diameter in 
2 radius. 

 

 

 

Figure 2. physical gesture of pointing finger Figure 3. physical gesture of finger spacing 

In less than two minutes, there are 9 different oral designations (square, side, line, diameter, radius, 
middle of the line, center of the circle, middle of the diameter, this-there) and 3 different physical 
actions that all rely on the same graphical sign on the blackboard. The same sweeping movement of 
the hand sometimes refers to the diameter of the circle or the side of the square or the radius (if the 
amplitude is shorter). The pointing finger indicates at the same time where to put the branch of the 
compass, the center of the circle, the middle of the diameter, the middle of the side of the square, 
the junction between two rays. This kind of scalfodding, both verbal and physical, characterizes the 
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teacher’s will to help student through multiple designations, reformulations,… and as the beginners 
think they should provide. But this exemple is, in our opinion, representative of potential 
misunderstandings on the construction of meaning through these teaching actions. Indeed, different 
ways of thinking of the same objects are consciously mobilized, but it is as if going from one vision 
to another is self-evident, without linking: we move from the designation of objects to their 
relationships and their operationalization through instruments. At this student’s age all these 
connections are not yet built. Here we are one of classical teacher interventions in geometry 
teaching, not especially with novice... The big question is : how to manage the complex specificity 
of geometrical activity : the way of seeing a figure, the way of acting with geometrical tools or not, 
the way of speaking ? We refer here to researches already exposed in previous CERME (Bulf, 
Mathé, Mithalal, 2011) (Barrier, Hache, Mathé, 2013) ; they proposed different theoretical tools to 
analyse geometrical activity in this way. 

Different impacts on students’ learning from scaffolding on the necessary and sufficient 
conditions for building a square  

Two novice teachers, Maya and Emilie, in 2016 prepared together a lesson (for students aged 8 to 9 
years old). The students have to reproduce a square of 10 cm of side. At the end of the collective 
phase, both teachers chose to proceed by “dictation to the adult” that means students gives oral 
instructions and the teacher executes them to build the figure. An interesting moment happens when 
three sides of 10 cm and 2 right angles are correctly drawn at blackboard with expected geomerical 
tools. Both teachers ask to students « do we need set square to close the square ? » which is, in both 
cases, a spontaneous move. The question is : is it a relevant professional action ? 

In Maya’s class, she retains the one who talk about the set square to finish the construction. But 
Maya asks to students about the validity of another student’s proposal who suggests to draw the line 
directly without the set square. This student, Nicolas, is also a student usually in difficulty. 

Maya: Would Nicolas's technique have worked? Nicolas can you explain why it would 
have worked? […] So you tell me we did not need the set square to draw the last 
line we could do directly with the rule to draw the last line. 

The students do not validate Nicolas’s technic because precisely it does not use the set square. On 
one hand they may reply this because it corresponds to what is worked precisely in this lesson, this 
is the didactical contract (Brousseau, 1997) and on the other hand probably because Nicolas is a 
student usually in difficulty… But here teacher's question is about the necessary and sufficient 
conditions for building a square, which is out of didactical contract for these students at this age. 
The teacher is stuck because Nicolas is right, it is mathematically correct. Therefore Maya chose to 
validate it and she concludes with theoretical argument: « As long as I have 3 sides of the same 
length and 2 right angles », which is, actually out of contract but in the same time it is also an 
opportunity to value this student (atmosphere concern). 

Maya: Nicolas' proposal it would have worked / I connected well / I took my rule and my 
set square to do it but if I had connected this first line that I had done with it, it 
would have made me too the 2 right angles in the case ok where I already had the 
2 right angles and the 3 sides which made the same length. Alright ... With my set 
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square I did the same thing as Nicolas proposes, I connected the 2 parts of the 
line, I did it with the square but we could do it directly with the rule . 

Whereas in Emilie’s class, Emilie also relies on a student’s proposal but the student stands on a 
graphical argument that Emilie resumes directly : « yes you have already drawn both lines you need 
to connect» « I just have to connect». We stay in a primary school contract strongly linked to 
graphical register.  

Conclusion, discussion and perspectives about pre and in-service teacher 
training  
From the previous paragraph, we pointed out the necessary and sufficient conditions (here to 
recognize a square) are usually not anticipated by novice teachers and this may has a direct impact 
on teacher's scaffolding and therefore on student’s learning. In one case, students may are confused 
at the end of the session on the contract at stake about the use of set square whereas in the other 
case, we stay in a contract in a paradigm of Geometry I (Kuzniak, 2018) that means validation is 
doing within a graphical register. 

This paper is also based on other case studies. We described at the beginning of the paper how 
Celine was overwhelmed by the managing of different dimensions own to geometrical activity  
(way of speaking, way of seeing and way of acting -with geometrical tools or not) about graphical 
figure. This is a typical novice’s teacher action : novice teachers want to help students (when they 
give instructions at the beginning of the lesson) with multiple designations, reformulations,… but in 
the geometrical context, this may involves over-scaffolfing through all registers in the same time 
(graphical, visual, discursif) and brings more confusion than help. 

In previous work (Bulf 2016), we described how novice teachers try to play school teacher through 
the embodiment of « caricatural » teaching actions with an over-leading about rigor on semiotic 
representation of geometrical objects (vocabulary, coding, or quality of drawing5).  

We believe these teacher’s actions with novice teachers are actually not reserved for novices…  
That’s why our research gives perspectives for pre-service and in-service teacher training to better 
understand the conditions of professional development in geometry teaching but not only. Our 
research in progress crosses results with other fields. We think this kind of research gives the 
opportunity to discuss the limit about a theoretical framework based on genericity of teaching 
actions. Indeed, in our different examples we may recognize teachers’ actions shared by teacher 
community (have students talk about the validity and rigor of their production; to explain in 
different ways the same thing ; to compare opinions between students etc.) but it seems important to 
highlight the fact that these actions may be rich in potential misunderstandings in the context of 
teaching geometry. Even more, our study, in the context of teaching and learning geometry, 
suggests that it makes no sense to consider teacher’s actions from a generic point of view because 

                                                 
5 This is quite typical for beginning teacher in France. We suppose that may comes from the fact the competive exam 
that these young teachers had to pass requires a theoretical and deductive hypothetico reasoning of the Euclidean 
geometry. 
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each teaching actions are always specific and connected to a specific knowledge which requires its 
own and specific actions. This opens the more theoretical discussion of theoretical frameworks that 
seek to model teaching activities. 
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Abstract. The present study investigates students’ instrumentation processes while solving open 
geometry problems in a dynamic geometry environment. It aims at developing an analytical and 
comprehensive model of students’ conceptual schemes and strategies built around the use of the tools 
available in DGE. The study was conducted in a grade-10 math class in a Lebanese school. Data 
were collected through whole-class observation with analysis of paper-based data and closer 
observation of 12 pairs of students. The analysis focused on the instrumentation process that occurred 
during the construction and manipulation of geometric figures. The results suggest the development 
of a three-phase model of the instrumentation process. 

Keywords: Instrumental genesis, instrumentation process, dynamic geometry, grade 10. 

Introduction  
For the past few decades, research has investigated students’ interactions with digital curriculum 
materials, analyzing the nature of tasks employed and the ways students act and react in such 
environments. The Instrumental Approach, elaborated by Verillon and Rabardel (1995) provides an 
adequate context to analyze such interactions. They made an important distinction between an artifact 
and an instrument. An instrument does not exist by itself. An artefact, which is the physical object, 
becomes an instrument when the user appropriates pre-existing schemes, or constructs personal 
schemes and integrates the artifact within his/her activity. Beguin and Rabardel (2000) and Trouche 
(2004) defined the concept of instrumental genesis to encompass two dimensions that contribute to 
the construction and advancement of an instrument: (1) instrumentation: it is subject-oriented and it 
entails the artifact printing its mark on the subject, i.e. it allows him/her to construct and enhance 
operative utilization schemes. (2) Instrumentalization, which concerns the development of the artifact 
component of the instrument.  

Many researchers (Alqahtani & Powell, 2016; Artigue & Mariotti, 2014; Baccaglini-Frank & 
Mariotti, 2010) have used the Instrumental Approach to analyze the use of DGE tools in learning 
situations. According to Artigue and Mariotti (2014, pp.338) “representations play a fundamental role 
in the “generation” of mathematical meanings, and this role is assumed to be crucial in the 
teaching/learning of mathematics. Digital artifacts can provide representations of mathematical 
objects with a clear potential of generating mathematical meanings.” These shared theories 
concerning artifacts and mathematical representations highlight the essential role that digital tools 
play in learning mathematics and hence the importance of understanding the way students instrument 
these tools in a DGE to create geometrical meanings. Alqahtani and Powell (2016) and Baccaglini-
Frank and Mariotti (2010) studied the instrumentation process of the dragging tool. The analysis 
showed that the appropriation and application of the dragging tool started with random dragging and 
then looking at the characteristics of the objects being dragged in order to understand properties of 
dynamic constructions. The retroactions of the DGE that occurred while dragging different objects 
helped in identifying and understanding geometrical relationships such as invariants and 
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dependencies in the figure. While appropriating the use of the dragging tool, the construction of the 
dynamic figures came last. 

Given that in the literature the primary focus in the process of instrumental genesis has been on the 
role of DGE tools and their impact on students’ learning, this study, focuses on the instrumentation 
process, and aims at developing an analytical and comprehensive model of students’ conceptual 
schemes and strategies built around the use of the tools available in DGE by answering the following 
question: “How do grade 10 students develop and structure their conceptual schemes and strategies 
while constructing a geometric figure using DGE tools?” The study consisted of a series of 
observations of 12 pairs of 10 graders (15-17 years old) who worked on open geometrical proof 
problems within Geogebra. Data were collected using video-recording and collection of materials, 
namely any paper trace (sketches, scribblings, conjecture or proof formulations) generated by 
students, together with their GeoGebra files. This paper presents students’ work on two problems 
previously used by Olivero (2002) and Arzarello et. al. (2002): 

Problem 1 (Olivero, 2002) 

Let ABCD be a quadrilateral. Consider the bisectors of its internal angles and the intersection points 
H, K, L, and M of pairs of consecutive angle bisectors. 

1) Drag ABCD, considering different configurations, and explore how HKLM changes in 
relation to ABCD. 

2) Write down conjectures and prove them.  

Problem 2 (Arzarello et. al., 2002) 

Given a triangle ABC, consider P the midpoint of [AB] and the two triangles APC and PCB.  

1) Explore the properties of the triangle ABC which are necessary so that both APC and PCB are 
isosceles (in this case, the triangle ABC is called “separable”).  

2) Write down conjectures and prove them.  

The chosen problems: 1) are in accordance with the definitions of open problems; 2) are problems 
whose nature is not changed by the DGE, which simply acts as a visual amplifier facilitating the 
mathematical task; 3) lie in a mathematical conceptual domain familiar to the students, their difficulty 
does not reside in the understanding of the wording and meaning of the given of the problem; 4) were 
selected from other studies that analyzed students’ work in a DGE.  

Analysis of the Instrumentation Process 
The observations and analyses showed that, through their interaction with the tool, students gained 
new geometrical knowledge indigenous to the DGE. These gains were built in a continuous process 
of exerting intentional actions, processing feedback and adapting techniques. When students 
employed a certain tool among those offered by the DGE for the first time, or when they employed a 
tool known to them in a novel context, they processed the feedback it provided and adapted their 
techniques accordingly. The analysis of the 12 cases helped us identify three phases through which 
instrumentation and resulting geometric knowledge indigenous to DGE were developed. We illustrate 
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these three phases using the following examples, chosen among the 12 cases as they are the most 
representative examples: 

Example 1 

While working on problem 1, a pair of students started their work by constructing two segments [AB] 
and [AD] and selected the Parallel Line tool to complete the parallelogram ABCD. 

Phase 1: The students clicked on D, the point through which the parallel line to (AB) should be 
constructed, and waited, expecting the parallel line to appear. They were not aware of the fact that 
the construction needed another input, i.e. the line that determines the direction of the parallel line.  

It is observed that the students were not familiar with the type and nature of inputs required by the 
Parallel Line tool. Their choice of input, namely point D, was purely experimental, based on the way 
they would construct a parallel line through D in the paper-and-pencil environment, i.e. placing the 
ruler to pass through D in a parallel direction to (AB), without explicitly invoking (AB). 

Phase 2:  They refined their input by incorporating the line to which the parallel line should be 
constructed but they started by clicking on (AB), thus the line appeared confounded with [AB]. They 
still needed to select the point through which the parallel line should pass. They dragged the line and 
adjusted it visually till it passed by D and constructed a point C, through which the parallel line passes, 
by placing it as the fourth vertex of the parallelogram ABCD based on perceptual approximation (Figure 
1). Although the parallel line appeared to be constructed in the correct position, but the figure did not 
hold under dragging since it was based on visual approximation. Therefore, they proceeded by 
constructing a parallel line to [AB] through D, a parallel line to [AD] through B and constructed C as 
the intersection point of these two lines (Figure 2). In this phase, the students adapted their use of the 
Parallel Line tool to the feedback provided by the tool itself. This adaptation was based on 
progressively gained knowledge and understanding of the nature of the input requirements for the 
parallel line to be constructed, rather than on speculations as they did previously. 

Phase 3: By the end of the process, the students learned the two defining elements that determine a line 
parallel to another through a point. They understood the technical functioning of the Parallel Line tool. 
They succeeded in internalizing the utilization scheme of the Parallel Line tool since the input was 
refined based on understanding; their new knowledge was validated for them by the fact that the figure 
held under dragging. 

 
Figure 1: Adapting the use of the Parallel 

Line tool based on the tool’s feedback 

 
Figure 2: Using the Parallel Line tool based 

on conceptual understanding 
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Example 2 

In problem 2, based on a paper sketch, a student hypothesized that ABC is separable when it is right 
isosceles. They decided to test her hypothesis in DGE.  

Phase 1: They constructed a right isosceles triangle ABC by taking C as the intersection point of the 
perpendicular bisector of [AB] and the circle centered at P, the midpoint of [AB], with radius [PB] 
(Figure 3). They selected the dragging tool and attempted to drag C on the circle. We note that the 
choice of the right isosceles condition and the attempt to drag C on the circle were both experimental 
processes that needed to be refined. 

Phase 2: When C could not be dragged on the circle, the students discussed and analyzed what they 
observed and deduced that, since C is an intersection point, it could not be dragged on the circle. This 
novel understanding led them to adapting their construction by considering C as a point on the circle, 
without belonging to the perpendicular bisector of [AB] as well (Figure 4). They dragged C on the 
circle and observed that ABC is separable when it is a right triangle. 

Phase 3: The students were able to develop novel understanding based on the interaction with the 
dragging tool: 

· They understood that intersection points could not be dragged as they are dependent on other 
objects. This concept is indigenous to the DGE since in the paper-and-pencil environment 
students are not trained to distinguish dependent from independent points. 

· The students were also able to understand that ABC right triangle at C is a sufficient condition 
for the triangle to be separable; it does not need to be isosceles as well. 

 
Figure 3: Constructing C based on 

experimental choices 

 

Figure 4: Refining the construction of C 
based on conceptual understanding  

Example 3 

A pair of students who worked on problem 2, attempted to measure  using the Angle tool. 

Phase 1: They selected only the vertex of the angle, which does not produce the desired result and 
keeps the DGE waiting for more input. Then, they selected the three points of the angle but in random 
order, which, in this case, resulted in displaying the measure of the outer angle. 

Phase 2: To solve this problem and find the measure of the inner angle the students read the measure 
of the outer angle and subtracted it from 360º to find the measure of the inner angle. Here, the students 
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did not rely totally on the tool, neither did they try to adapt their use of the tool. Instead they solved 
the problem at hand using a previously acquired geometrical property. They did not attempt to 
understand the behavior of the Angle tool and to adapt their work accordingly. 

Phase 3: The students were not able to develop conceptual knowledge indigenous to DGE; although 
prior geometrical knowledge was used to reach the result that the DGE failed in providing, that 
knowledge was not novel and was not indigenous to the DGE neither was it invested to build a new 
knowledge indigenous to the DGE. 

The three-phase model of the instrumentation process 

From these examples we can identify a common structure for the instrumentation process of DGE 
tools. Each exploration in each example went through three phases: a phase of heuristic application 
of the tool, followed by a phase of contextualized adaptation leading to the third phase of conceptual 
understanding. These phases suggest the development of a three-phase model of the instrumentation 
process defined as follows: 

Phase 1– Heuristic Application: The students choose a certain tool, and then select the object(s) they 
believe to fit the required nature and order of input. The choice of input is experimental based on 
students’ experiences in a paper-and-pencil environment and on assumptions and speculations rather 
than formal knowledge.  

Phase 2 – Contextualized Adaptation: After heuristic application of the tool, students build on the 
feedback it provides to adapt their strategies to the situation at hand. This adaptation can be based 
either on geometrical understanding (i.e. epistemic adaptation) or on practical considerations (i.e. 
pragmatic adaptation).   

· Epistemic adaptation: Heuristic application of the tool evolves into epistemic adaptation as 
students benefit from the feedback provided by the tool to improve their strategies and 
construct new meanings. The utilization scheme of the tool is formalized by the mediation of 
the heuristic experiments carried out in the first phase.  

· Pragmatic adaptation: Students manage to accomplish the given task but in a way that is based 
on practical considerations; the heuristic experiences do not evolve into mathematically 
grounded application of the tool. In this case, the construction of geometrical knowledge 
indigenous to the DGE, i.e. phase 3, is limited or even non-existent. 

Phase 3 – Conceptual Understanding: The epistemic adaptation generates new understanding 
imprinted on the student by the tool. This understanding is not totally gained in phase 3; instead it is 
gradually constructed as of the first phase. The conceptual understanding is relevant to: 

· The functioning of the tool: Students construct an understanding of the behavior of the tool, 
i.e. the type of input required, the context in which the input applies and the outcome that the 
tool provides.  

· Dynamic geometry i.e. geometrical knowledge indigenous to the DGE: Students construct 
first-hand understanding of the geometry underlying the tool, which may be, in some cases, 
fundamentally different from the geometry learned in the paper-and-pencil environment. 
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Through these three phases, students gradually conceptualize a new type of geometry, the dynamic 
geometry. 

The following diagram (Figure 5) illustrates the three-phase model of the instrumentation process. 

 
Figure 5: The three-phase model of the instrumentation process 

Discussion and Conclusion 
According to Beguin and Rabardel (2000), the instrumentation process, which is learner-oriented, 
entails the artifact printing its mark on the learner; it thus leads to the construction and development 
of utilization schemes. Therefore the three-phase model of the instrumentation process can be 
perceived as a more formalized utilization scheme for DGE tools. Beguin and Rabardel define these 
utilization schemes as contingent upon the meanings attributed by the individual to a situation; this 
subjective involvement of the students, while using technology, explains why technology does not 
have the same power and potential for all students. In fact, in phase 2 of the structure, the 
contextualized adaptation is contingent upon the meaning that students give to the situation; this is 
why some students are able to develop a contextualized epistemic adaptation and exploit the 
potentialities of the technological environment, whereas others can only develop a contextualized 
pragmatic adaptation limiting the potential of the DGE. Beguin and Rabardel add that utilization 
schemes are active structures as they are adapted to an expanding range of situations and their 
construction necessitates the intelligent use of both conceptual and technical knowledge. This idea is 
illustrated in phase 3 of the structure presented above, where students adapt their use of the tool to 
different situations and gain conceptual and technical knowledge of dynamic geometry.  

We now compare this structure to a model developed by Leung (2011, 2017). The purpose of this 
techno-pedagogic task design model is to serve as a heuristic to design mathematical teaching and 
learning tasks in a technological environment. It is useful to compare these two structures in order to 
verify whether the way a task should be designed in DGE (i.e. according to Leung’s model) is in fact 
consistent with the way students solve a task in DGE (i.e. according to the common structure of 
instrumentation processes developed in this study). These two structures are compared and contrasted 
in Table 0.1. 

Phase 3

Phase 2

Phase 1 Heuristic application

Contextualized 
Epistemic adaptation

Conceptual 
understanding 

of DG

Conceptual 
understanding of 

the tool's 
functioning

Contextualized 
Pragmatic adaptation

Limited or nonexistent 
conceptual 

understanding
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Table 0.1 
A comparative summary of the common structure of instrumentation processes identified in the 
current study and the techno-pedagogic task design model 

 

The common structure of 
instrumentation processes 
(identified in this study) 

The techno-pedagogic task design model (Leung, 
2011, 2017) 

Ph
as

e 
1 

Step 1– Heuristic application: The 
choice of input for a specific tool is 
based on students’ personal 
understanding of what is required to 
define a geometric object and of 
what is necessary in terms of the 
nature and order of input. 

Establishing Practices Mode (PM) 

PM1 Construct and manipulate mathematical objects 
using tools embedded in a technology-rich environment 

PM2 Interact with the tools in a technology-rich 
environment to develop (a) skill-based routines; (b) 
modalities of behavior; (c) modes of situated dialogue.  

Ph
as

e 
2 Step 2 – Contextualized adaptation:  

Epistemic adaptation or pragmatic 
adaptation.  

Critical Discernment Mode (CDM) 

Observe, record, re-present (re-construct) patterns of 
variation and invariant. 

Ph
as

e 
3 

Step 3 – Conceptual understanding: 
The epistemic adaptation generates 
new understanding of geometrical 
concepts indigenous to the DGE 
and/or of the technical functioning 
of the tool. 

Establishing Situated Discourses Mode (SDM) 

SD1 Develop inductive reasoning leading to making a 
generalized conjecture. 

SD2 Develop discourses and modes of reasoning to 
explain or prove. 

In phase 1 of both structures, students practice the use of the tool and develop modes of 
interaction between them and the tool. Thus the process of instrumentation begins where the student 
acts on the tool and the tool shapes the student’s knowledge thus creating an artefactual and 
psychological instrument. 

In phase 2 of both structures, namely contextualized epistemic adaptation and CDM, the 
process of instrumentation continues; the students shift their attention from establishing routine usage 
of the tool to constructing mathematical meaning. A process of internalization takes place where 
technical tools are transformed into psychological tools for the purpose of shaping new meanings. 
However, the common structure of instrumentation processes includes a step, namely pragmatic 
adaptation, which takes into consideration the case where students fail in transforming the tool into 
a psychological/cognitive one and do not construct new meaning. 

Phase 3 of both structures serves as a connection to the theoretical field. In the techno-
pedagogic task design model the theoretical field consists of deductive and inductive reasoning, 
which leads to developing conjectures and proofs. In the common structure of instrumentation 
processes, the theoretical field consists of dynamic geometry concepts or technical functioning of 
DGE tools, which also reflects geometrical understanding relative to DGE. 

Based on the results of this study, we make the following recommendations for future research: 
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· Investigate whether the conceptual understanding of geometrical knowledge indigenous to the 
DGE developed by the students can be detached from the DGE and become formal 
geometrical knowledge used in other environments. 

· Explore whether the three-phase model of the instrumentation process can be seen as a cycle 
where the newly gained conceptual understandings in phase 3 can be used later in further 
explorations at the first phase of heuristic application and pass again through the same phases 
to reach new conceptual understandings, and so forth; thus suggesting a three-phase 
instrumentation cycle.  
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Theoretical framework 
Spatial structuring, according to Battista (2008), “is the mental act of constructing an organization 
of form for an object or set of objects” (p.138). It consists in identifying components of shapes, 
establishing relationships among components into composites and establishing relationships 
between components, composites and the whole (Battista, 2012). Battista (2008) presents a different 
perspective on the development of geometric reasoning based on the idea of structuring. Spatial 
structuring is the first level of geometric reasoning and allows the students to understand the 
structures of shapes before geometric structuring, when students start to use geometric concepts. 

In the early grades, constructions (composing and decomposing) and operations with shapes 
(geometric transformations) are special kinds of tasks that entail spatial structuring, allowing 
students to explore relationships among components and between components and the whole 
(NCTM, 2000). 

According to Battista and Clements (1996), students’ spatial structuring is either local or global. 
Local structuring is related to the identification of components and a possible establishment of 
relationships among components, but students cannot yet relate components and the whole. In 
global structuring, students have a mental scheme for the object that enables them to establish 
relationships among components, composites and the whole. To a better understanding how spatial 
structuring is characterized, we referred to the work of Sarama and Clements (2009), related to 
composition and decomposition of 2D and 3D shapes, where they describe the levels of 
relationships students can establish among components. According to these authors, students 
progress along several levels: pre-composer (0-3 years old), piece assembler (4 years old), picture 
maker, simple decomposer and shape composer (5 years old), substitution composer and shape 
decomposer (6 years old), shape composite repeater and shape decomposer with imagery (7 years 
old) and shape composer using units of units and shape decomposer with units of units (8 years 
old). This progression concerning composing and decomposing also highlights a trajectory closely 
related to spatial structuring. In both cases, the students start by dealing with units, then they begin 
to establish relationships and form composites, and, in a final stage, they can deal with superunits 
and relate them with the whole. 

Method 
This study follows a design-based research approach, where, along two cycles of research, we aim 
to deepen our understanding of how students develop spatial structuring of 2D and 3D shapes and 
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how it is related to the learning context proposed for the learning experiment. Through this, we seek 
to contribute to a further understanding of students spatial structuring. 

The results presented in this poster concern a preliminary study, developed during the learning 
experiment preparation phase. This study had the purpose of testing tasks and manipulatives 
adequacy and of gathering some information about strategies 1st grade students use to solve the 
tasks. We selected one task concerning 2D shapes and, for our analysis, we compare constructions 
and drawings using Battista and Clements’ (1996) local and global structuring, with attention to 
location and orientation of components. 

Results 
The results of preliminary study, where students had to compose different two-dimensional 
constructions using four triangles, reveal that students show different levels of structuring, maybe 
influenced by the type of constructions and the type of components. Namely, triangles seem to 
present a higher level of difficulty for students, since the possibilities of combining several isosceles 
triangles are wider, influenced by their orientation and position.  

During this preliminary study we also found differences between students’ constructions using 
manipulatives and the drawings of their constructions. Drawing seems more demanding for students 
to perform, however, the search for relationships between constructions and drawings allow 
students to deepen their understanding about the relationships among components.  

Acknowledgment 

This work is supported with national funds provided by FCT - Foundation for Science and 
Technology by a scholarship granted to the first author (SFRH/BD/130505/2017). 

References 

Battista, M. T. (2008). Development of the shape makers’ geometry microworld. In G. W. Blume & 
M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Cases 
and perspectives (vol. 2, pp. 131–56). Charlotte, NC: Information Age. 

Battista, M. T. (2012). Cognition-based assessment & teaching of geometric shapes: Building on 
students' reasoning. Portsmouth, NH: Heinemann. 

Battista, M. T., & Clements, D. H. (1996). Student’s understanding of three-dimensional 
rectangular arrays of cubes. Journal for Research in Mathematics Education 27(3), 258–292. 

National Council of Teachers of Mathematics (2000). Principles and standards for school 
mathematics. Reston, VA: NCTM.  

Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning 
trajectories for young children. New York and London: Routledge. 

Thematic Working Group 04

Proceedings of CERME11 778



 

 

The development of geometrical knowledge starting from arts 
education 

Catarina Delgado1, Fátima Mendes2 and Filipe Fialho3  
1 Escola Superior de Educação, IPS de Setúbal, Portugal; catarina.delgado@ese.ips.pt 

 2 Escola Superior de Educação, IPS de Setúbal, Portugal; fatima.mendes@ese.ips.pt 
3 Escola Superior de Educação, IPS de Setúbal, Portugal; filipe.fialho@ese.ips.pt 

Keywords: Geometrical knowledge, Arts education, interdisciplinary tasks. 

This poster is focused on the development of students’ geometrical knowledge through connections 
with arts education. More specifically, we present a set of didactic activities and tasks for elementary 
school students that involves geometry and arts, in an interdisciplinary perspective, and we also 
analyze and discuss their potentialities in the development of students’ geometrical knowledge. 

Theoretical framework 
The teaching of geometry should contribute to the development of the geometric knowledge of the 
students since the kindergarten, namely with regarding to the characteristics and properties of 
geometric forms and the relationships between them, the spatial relations and corresponding 
representation systems and the geometric transformations (NCTM, 2000). As Freudenthal (1973) 
point out “Geometry is grasping space. And since it is about the education of children, it is grasping 
that space in which the child lives, breathes and moves. The space that the child must learn to know, 
explore, conquer, in order to live, breathe and move better in it” (p. 403). In this sense, there is a 
dialogical relationship between the development of geometric ideas and the full exploration and 
experience of space. These geometrical ideas are useful in representing and solving problems in other 
areas of mathematics and in real-world situations (NCTM, 2000). In parallel to these ideas, research 
indicates that when students can recognize and use connections among mathematical ideas and can 
recognize and apply mathematics in contexts related with other subjects, their understanding is deeper 
and more lasting (NCTM, 2000). Mathematics are embedded in several tasks that students do at 
elementary school, so it is crucial that teachers integrate subject areas. When teachers connect 
mathematics with others content areas the students perceive that they explore more mathematics then 
they would work in a specified time only for this subject (Bamberger & Oberdorf, 2007).  

Research question and method 
This poster has underlying the researches developed by two preservice elementary teachers in a 
context of internship (Nunes, 2017; Sobral, 2015). The goal of these researches is to describe and 
analyze how students deepen their mathematical knowledge and their knowledge about arts education 
through the exploration of tasks with interdisciplinary characteristics. From a methodological point 
of view, the study is of a qualitative nature (Patton, 2012). The participants are second grade students, 
from two classes, that solved different tasks proposed by their teachers (prospective teachers). In one 
of that classes were proposed four tasks that have as starting point the observation of famous artist’s 
paintings. In the other class were also proposed four tasks, but in this case these tasks have as context 
the body expression activities. The data collection was realized in the probationary period, along four 
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weeks. The data include the solutions of the students, field notes and transcriptions videorecorder 
excerpts of the task’s exploration in the classes. 

Results 
The results revealed that (i) students increased their spatial sense, in particular they were able to 
identify geometric figures embedded in work of art; (ii) they had some difficulties in identifying 
symmetries of reflection; (iii) students produced "works of art" correctly using plastic expression 
techniques; (iv) students increased some geometrical ideas through the integration of movement with 
mathematical tasks, in particular, they were able to use geometry specific terms to describe the 
movements of their own body.  

Summing up, it is possible to develop mathematical ideas and deepen knowledge about arts education 
in an articulated way. Moreover, learning through reflexive tasks about mathematics and arts 
education is an adequate approach in elementary school that help students to think in an integrated 
way. 
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Our research concerns the relationship between spatial and geometrical knowledge, assuming that 
it is essential to have information on the children’s stored linguistic and conceptual experience 
associated with the terms defining geometrical concepts. This paper presents the first phase of a 
design experiment in which 8-year-old pupils are involved in two discussions about going straight, 
before and after the experience of leaving footprints. The analysis provides some elements about 
pupils’ conceptualization when approaching geometrical concepts.  

Keywords: Alignment, line, linguistic, space, trace.  

Introduction. 
In Working Group 4 at CERME10 (Jones, Maschietto, & Mithalal-Le Doze, 2017) various papers 
focus on the relations between spatial sense, spatial knowledge and geometrical knowledge. For 
instance, Houdement (2017) discusses the different perspectives in which research on the relation of 
a subject with the world is carried out, highlighting the use of non homogeneous terminology. Other 
authors, as Vandeira and Coutat (2017), point out the institutional request of working on shapes and 
space from a perceptive approach at kindergarten and a subsequent rupture when the attention is put 
on geometry, above all between primary and secondary school education. In their work, they propose 
tasks of shape recognition in different spaces (micro-space and meso-space, following Berthelot and 
Salin, 1993), taking into account semiotic and manipulative aspects.  

In our work, we are interested in the analysis of pupils’ construction of geometrical concepts and in 
the relationship between spatial and geometrical knowledge (Berthelot & Salin, 1993) at primary 
school in real-world experiments recalled in the call for paper of this WG4. We propose a point of 
view on tackling geometry at primary school, which takes into account the ways in which people 
communicate and think about space and shapes, both verbally and nonverbally, in order to study how 
to enhance geometrical understanding. For this reason, we refer to the theory of word learning 
(Tomasello, 2003), in which learning can be facilitated by the “exposition” to a wide range of 
linguistic contexts and experiences that elicitate those contexts, in order to enrich the children’s 
linguistic and conceptual experience and favor the construction of increasingly richer and connected 
semantic representations.  

This paper presents a preliminary analysis of a case study, corresponding to the first phase of a design 
experiment on points and lines, planned in cooperation with a teacher of Italian at grade 3 of an Italian 
primary school. 

Research perspective. 
Several studies in mathematics education concern the analysis of cognitive processes involved in 
mathematical thinking, paying increasingly more attention to the role of movement – considered in a 
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large sense, not only in gesture by hands – and conceptual constructions – as metaphors, in the 
learning and teaching of mathematical concepts. For instance, Nemirovsky (2003) assumes an 
indissoluble link between perception, motion and thinking, highlighting that perceptuo-motor activity 
is a constitutive element in the conceptualization of mathematics. This is reinforced by works based 
on a multimodal approach to mathematics knowledge and on embodied mathematics (Arzarello & 
Robutti, 2004). Radford (2009) highlights that mathematical meanings are constituted of actions 
accomplished by the subjects on material objects: thinking also occurs through a semiotic 
coordination of speech, body, gestures, symbols and tools. These perspectives involve an 
epistemological dimension related to the debate on mathematics foundations.  

The next two sections present some basic components of our theoretical background: epistemological 
elements for mathematics, in particular for point and line, and a theory of word learning.  

Mathematics. 

In his reflection on mathematics foundation, Longo (2016) proposes to avoid an axiomatic vision of 
mathematics, arguing that mathematics is primarily the analysis of the invariants and transformations 
that keep them. Following Poincaré’s philosophical position, Longo states that mathematics is not 
grounded on arbitrary conventions, but that these conventions correspond to the most convenient 
choices for human beings, who live in a certain world with a specific biological structure. In this 
sense, mathematical concepts are constructed in the interaction between us and the world around us. 
In particular, Longo (1997) discusses the origin of geometry, which is considered   

as a science of action and of prediction of movement in space: line segments, curves, circles are 
neither the “abstract form” (?) of a material object, nor “ideal shapes” (?), but rather the prediction 
of a path. And a prediction is in itself an abstraction; the trajectory that is predicted or anticipated 
by gaze and gesture is abstract (Ib., p. 29, italic in the original text; our transl.). 

In the analysis of the conceptualisation of line and point, Longo (2016) claims that: “The "big-bang" 
of Western mathematics is perhaps in Euclid’s Definition b: A line is a breadthless length” (Ib., p. 1, 
our transl.). He also suggests that it is possible to reconstruct the gesture at the core of this invention: 

Such a notion of line can only be told and written, in the language, and it is the result of a 
philosophy of ideas, but its sense, its continuity is a practice of gesture, of drawing: if we want to 
understand it, we have to restart the sense, go back to the line drawn by the first teacher on the 
blackboard, to her/his gesture-trajectory in the space (Ib., p. 2, our transl.).  

Concerning the meaning of point, Longo asserts that the point in Euclid’s Elements is considered as 
a position on a line or as the intersection of two lines, a letter of the alphabet at the ends of a segment. 
In this perspective, the line is not necessarily made of points, as for Cantor, since the points are “put 
by the geometer or obtained from lines” (Ib., p. 3, our transl.). This type of analysis allows to shift 
the attention to the structure: the line and the point-sign are the structures at the origin of geometry. 
They are borderline objects, away from every tangible experience, but they exist in their relation to 
space referring to the experience. In his writings, Longo suggests a different perspective on 
mathematics, focusing not only on the objects but also on the processes of their construction.  
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Giusti (1999) supports the strong assumption that mathematical objects are derived by a process of 
“objectification of procedure” (Ib., p. 26). In this hypothesis, the line could be derived by the 
procedure of pulling a rope between two pegs, following the rope on the ground by a stick, and the 
points as the positions of the two pegs on the ground.  

In the educational perspective of integrating the perceptive-motor and symbolic-reconstructive 
modalities, Arzarello, Danè, Lovera, Mosca, Nolli, and Ronco (2012) suggest to expose students to 
the cognitive and cultural roots of mathematical concepts. In the analysis of the concept of line they 
identifie three roots: symmetry, going straight and the shortest line between two points/positions.   

Linguistics: context and contrast in the “miracle of word learning”. 

The geometrical concepts of point and line can be considered in a continuum with other concepts 
associated to the same terms in different contexts, as well as in actions and experiences of everyday 
life. In fact, when 8-year-old children meet these lexical labels at school during their first geometry 
lessons, they do not hear them for the first time, as they have already met them in various everyday 
expressions and situations, both in literal and figurative sense. Even without having any idea of what 
geometry is, they should for instance have some kind of conceptualization connected to the word  
punto (point), not only because they have probably learnt that it is used to refer to those small black 
marks that in English are called dots and spots, but also because they have met it when learning to 
write letters and to use punctuation (in Italian the dot on the vowel ‘i’ is called puntino and the word 
“point” is used in many punctuation marks, such as full stop or period, colon, semi-colon, exclamation 
and question mark, etc.), and also because of the wide use of this word in many frequent expressions, 
such as “meeting point”, “starting point”, “take stock of the situation” (fare il punto della situazione).  

If we consider how children and human beings in general learn to associate meanings and concepts 
to lexical labels, we should not undervalue the fundamental role of the exposition to the different 
contexts in which words are used: as Tomasello (2003) points out, rarely do children learn words in 
pointing-and-naming games, with words proposed isolated from other words, as during a vocabulary 
lesson in a foreign language classroom. And this is particularly true if we consider that vocabulary 
learning does not include only concrete and content words, clearly associable to a picture, but a wider 
range of words and expressions, such as, for instance, prepositions or articles, and also abstract words 
and words used in a metaphorical way. In the process that Tomasello defines the “miracle of word 
learning” (Ib., p. 44), most of the words are learnt by experience in everyday interactions with adults, 
and the children hear them used in different types of utterances and situations, mixed with other words 
and expressions and without special explanations by the adults. According to the so-called social-
pragmatic theory of word learning adopted by Tomasello, this miracle is allowed by a series of factors. 
Among these, one important factor is the children’s ability to conceptualize different aspects of their 
experiential worlds. In later stages of word learning, when the task becomes more complex and 
concerns more difficult words and expressions, two other factors become crucial: “context” and 
“contrast”. On the one hand, children learn quite early to exploit their knowledge of the other words 
present in the utterance in order to understand words that they do not know; on the other hand, they 
also learn to use their knowledge of other words present in the utterance that might contrast with a 
word they do not know. 
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Research questions. 

Research in mathematics education investigates the relationships between physical and geometrical 
space, highlighting a gap in the teaching practice between an approach by physical experiences and 
the entrance in geometry (Kuzniak, 1995). This seems evident in some Italian textbooks, in which 
there is a sort of “Euclidean entrance” into the world of geometry, through the definition and 
representation of the fundamental geometrical entities.  

Our hypothesis is that some expressions used in geometry teaching are associated with expressions 
and experiences in mathematical and non-mathematical contexts. In this perspective, it is essential to 
have information on the children’s stored linguistic and conceptual experience associated with the 
terms that define these geometrical concepts, considering that their conceptual representations do not 
necessarily coincide with the adults’ representations. This investigation is not generally carried out 
when the geometrical concepts are introduced to the pupils. Our broad research questions are: (a) 
what are the linguistic and conceptual experiences associated with geometrical concepts in 3-grade 
pupils before the Euclidean entrance discussed above? (b) how could those elements emerge? In other 
words, what kind of experiences can foster the pupils’ exposition to the different graphical, verbal 
and gestural representations associated with geometrical concepts?  

Our working hypothesis is that the emergence of these elements can be fostered by offering 
educational situations in which the pupils can work in different spaces (micro, meso and macro, 
Berthelot & Salin, 1993), not necessarily with the teacher labelled as the mathematics teacher.  

Methods. 
We have planned a design experiment composed of five phases, with physical experiences and 
collective discussions about them. According to the theoretical framework, after every new 
experience carried out with the class, the pupils should be helped to reflect and discuss on what they 
have done, seen and learnt, so as to re-order their mental representations and link their new conceptual 
experiences to their linguistic and conceptual knowledge. For this reason, class discussions are 
considered the central focus of all the activities that we propose.  

The first phase, upon which we focus in this paper, is dedicated to “going straight”. It has been opened 
by a collective discussion on the pupils’ personal perception on the meaning of going straight, then 
the pupils have been invited to experience their ability to go straight, by leaving their footprints on a 
roll of paper using tempera, and finally they have been taken back to the initial question in a collective 
class discussion. The footprint activity has been carried out in the hall of the school, corresponding 
to a meso-space for the pupils. The other phases were: activities with the Bee-bot used to program 
paths (line and polygonal) (Phase 2); finding the shortest path between two positions by using a rope 
and two pegs in the macro-space of the school garden (Phase 3); activities of alignment (Phase 4); a 
session with a perspectograph in the lab of mathematical machines (mmlab.unimore.it) on the 
meaning of point of view and of line as modelling the visual ray (Phase 5). 

The activities were carried out in two classes (42 pupils, Grade 3, ages 8-9) in the second half of the 
school year. They were videotaped and all the pupils’ worksheets have been conserved. All the 
sessions were managed by the same Italian language teacher of the two classes, both because we were 
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interested in the pupils’ linguistic experiences connected to geometrical concepts and we wanted to 
avoid that the activities were labelled as mathematical activities. 

Results and discussion: “going straight” before and after the experience. 
As anticipated, this paper focuses on Phase 1 of the design experiment. In the analysis we investigate 
the pupils’ representations associated with the expression “going straight” emerging in the two 
discussions before and after the experience of leaving their footprints on paper.  

The discussion preceding the experience is opened by the teacher’s question “If I say ‘going straight’, 
what does it raise in our minds?”. In the discussion the pupils describe going straight mainly as going 
forward without turning, changing direction, making or meeting curves, stopping, “splitting” the 
pathway, or without interruptions and keeping walking ignoring possible obstacles (see Figure 1 for 
some examples and their translation).  

  

Figure 1. Examples of definitions of “going straight”  

The pupil who first enters the discussion is the only one who mentions a starting and arriving point, 
talking about a person going from one point to another. Besides, only one of the pupils, F.,  mentions 
the use of a ruler, by comparing natural entities such as a lake or a river, which “are round or make 
curves”, to lines drawn with a ruler, which “are not curves”: “to me going straight means … for 
instance … let’s look at a lake or a river which are round or make curves … on the contrary when 
you use a ruler you draw a straight line  … it is not a curve”. 

Most of the descriptions, therefore, seem to suggest the children think about going straight focusing 
their attention on the movement in itself and on what they have in front of them when they go straight, 
more than on the (concrete or ideal) line that one draws when he/she goes straight. These kinds of 
description are consistent with our theoretical background:  the conceptualization of going straight is 
not mediated yet by school geometry and it is connected to everyday experiences and to body 
movement. In particular, on one side, it reflects a conceptual representation connected to an embodied 
experience which involves an interaction between us and the world around us, on the other side, from 
a more linguistic point of view, it recalls everyday expressions such as “going straight home”, as a 
synonym of “going directly”, and “going straight to the point”, that is without interruptions or 
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deviations. It is in this sense, in our opinion, that expressions such as “interruption” or “obstacle” 
should be interpreted in the pupils’ definitions. 

It is quite important for the teacher to collect this kind of information, because it provides a starting 
point upon which the following part of the experience should be based and built. Even if here we 
have no space  to go into the details of the footprint activity, aimed at helping the pupils to experience 
their ability to go straight, we would like to mention that the activity starts in fact from the teacher’s 
invitation to see what happens and what one does when he/she tries to go straight, and that during the 
activity the teacher progressively tries to lead the pupils to shift their attention from the movement in 
itself to the traces left with the colored footprints. 

Another aspect that can be mentioned here only briefly is the children’s use of gestures. Even if we 
have noticed that they generally tend not to use gestures, in some few cases they do, and their gestures 
help to understand their conceptions even in the absence of labels and other clear verbal expressions. 
The most interesting example concerns D., who intervenes in the discussion at two different points, 
in both cases helping himself with gestures, once adding also some “sound effects”, probably to 
convey swiftness as well as straightness. So, when D. says that going straight means that you should 
never change direction nor make curves and keep going forward (see D.’s intervention in Figure 1), 
while saying “keep going forward” he moves his right arm forward, upon the school desk, with flat 
hand and lateral palm. Then, quite interestingly, when F., speaking immediately after him, compares 
round and curvy lakes and rivers to straight lines made by a ruler, D. echoes F.’s definition of round 
and curvy by drawing an imaginary circle on the desk with his right forefinger and accompanying 
this movement making a circle also with his shoulders, while he puts both hands in a flat position 
with the palms oriented one towards the other when F. mentions the ruler. Finally, towards the end, 
D. enters the discussion again to give a specification about the meaning of going straight as not 
making curves, putting together the concepts of “curve” and “direction”: “that is  eh, .. you don’t have 
to make round curves, but you can do so [...] doing the tips as well” (D.). The two gestures that he 
produces as if drawing on the desk to illustrate what one cannot do (round curves) and one can do 
(tips) make it clear that he has in mind the distinction between a round line and the representation of 
a polygonal with points, in which the change in direction corresponds to the meaning of angle. Even 
if the teacher has no time to deepen this aspect, she asks the pupil to describe how the tips are and D. 
limits himself to repeat the imaginary drawing, this time in the air and not on the desk, maybe in order 
to be seen better by the teacher, but adding a level of abstraction. 

In the class discussion following the experience, the teacher starts with the same question she had 
asked in the discussion preceding it and tries to induce the pupils to relate their understanding of 
going straight with the activity just carried out.  

After the experience, going straight is defined mainly as “without curves”, with its variants 
“crookedly” and “without zigzagging”, or as “without interruption”.  

In the discussion, the teacher fosters the interpretation of “without interruption” by relating it to the 
two different kinds of footprints left by the pupils, attached one to each other so as to trace a line, or 
far from each other as in a normal walking. This way, the experience helps the teacher to shift the 
attention from the straight movement in itself to the trace of its trajectory and to the footprint line, 
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which one girl then defines as “a line made by our footprints” (è una linea fatta dall’impronta dei 
nostri piedi).  

The change of direction and the representation of a polygonal are, in a certain way, more specified 
than in the discussion before the experience, even if only one pupil explicitly refers to the angle. The 
main element in the pupils’ comments concerns keeping going straight after the turning point and 
being able to “go straight in many different directions” (puoi andare dritto in tante parti diverse). In 
this case, the interruption is interpreted in terms of changing direction.  

Moreover, the work on the meso-space provides also a more tangible representation of going straight 
which can be used to introduce new kinds of reflections. For instance, with reference to the presence 
of an obstacle in the direction of movement, invited by the teacher to recall the “special solution” 
proposed by one girl during the activity in order to go straight on a road presenting an interruption, 
the pupils explicitly speak about “going back” and about “going forward and backward” followed by 
the specification “on the same line”. 

The experience of going straight leaving footprints provides, therefore, a spatial context in which the 
movement can be seen and performed in the same way at different times (during and after the 
experience). This graphical object could have been exploited even more by the teacher, for instance 
to control if the movement was straight or not by checking the alignment of pupils’ footprints. It is a 
task that could be proposed in a next experiment.  

In this discussion, the line comes out also to describe one of the strategies used during the experience 
to go straight. When walking on the paper the kids did not control the trace directly by looking at it, 
but seemed to rely more on their bodies and sense of equilibrium, on the help of other pupils or on 
other. One of the pupils, invited by the teacher to recall what he had said during the experience about 
a line he was following, says that while he was walking he could “see the line in his head” because 
he was “imagining something like a road next to him” and then he was “staring at a fixed element, a 
line, which had the same shape as a road”. 

This idea of imagining a line in your mind may imply a greater engagement of cognitive control, 
which two pupils seem to refer to when they mention the difficulty of the task of going straight and 
the need for concentration when doing it, compared to when making curves. 

Finally, to make at least one reference to gestures, we would like to mention the control of alignment 
by view spontaneously proposed by F., who is the pupil who had already used many gestures in the 
initial discussion. During the experience he had described (and shown) his strategy to verify the 
straightness of the footprint line on paper by aligning in front of one eye his outstretched arm and the 
corresponding shoulder, with the other eye closed. In the discussion after the experience the teacher 
invites him to recall that gesture and the same gesture is then imitated by another kid. 

Concluding remarks. 
The analysis of the two discussions preceding and following the experience of leaving footprints on 
paper in the first phase of the design experiment provides various data on the conceptual 
representation of “going straight” that 8-year-old children might have before starting to study 
geometry and on how these representations, together with an experience which involve their bodies 
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and the meso-space, can provide the basis to reflect on the concept of going straight and begin to 
introduce the concept of line.  
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The aim of the study is to investigate the creativity demonstrated by students in multiple-solution tasks 
(MSTs) in geometry taking into account the role of geometrical figure. To this end, the test that was 
administered among 149 eleventh graders consisted of two types of problems: a. with and b. without 
the relevant figure. Findings revealed that fluency and flexibility were higher when the verbal 
description of the problem was accompanied by the relevant figure. The originality of students' 
solutions, though, did not differ in the two types of problems. The similarity analysis suggested 
distinct student profiles: (a) poor fluency and flexibility, (b) moderate fluency and flexibility and (c) 
high fluency and flexibility. Although the majority of students belong to the first two groups, 
qualitative results provide evidence that students managed to improve and gain high fluency and 
flexibility. Findings also indicated that geometrical figure apprehension is a prerequisite for high 
levels of creativity in geometry. 

Keywords: Creativity, geometry, multiple-solution tasks (MSTs), geometrical figure apprehension. 

Introduction and Theoretical Framework 
Creativity has been proposed as one of the major components to be included in Mathematics 
education, since “the essence of Mathematics is thinking creatively” (Mann, 2006, p. 239). Torrance 
(1994) defines creativity as multidimensional; fluency, flexibility, originality (or novelty) and 
elaboration are aspects of creativity. Fluency is related to the flow of ideas, flexibility has to do with 
the ability to shift between different ideas, novelty is associated with the originality of the individual’s 
ideas or products, and elaboration is associated with the individual’s ability to describe, illuminate, 
and generalize those ideas. A number of researchers (e.g. Silver, 1997; Stupel & Ben-Chaim, 2017) 
suggest that linking mathematical ideas using multiple approaches to solve problems (or prove 
statements) is essential for the development of mathematical reasoning and fosters better 
comprehension and increased creativity in Mathematics. Following Torrance, Silver (1997) claimed 
that in order to develop creativity by means of problem solving it is necessary to advance three 
components of creativity. Fluency is promoted by raising multiple ideas for the solution of one 
problem. Flexibility is raised when after one solution is already in hand, the individual searches for 
more possible solutions. Originality is developed when an individual succeeds in generating a new 
solution, in addition to those known to him/her at the time.  

Geometry provides opportunities for investigation and proving activities that resemble the work of 
mathematicians (Herbst, 2002). The usefulness of geometrical figures in problem solving in geometry 
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is beyond doubt as they provide an intuitive presentation of all constituent relations of a geometrical 
situation (Duval, 1995). Duval (1995) distinguishes four apprehensions for a geometrical figure: 
perceptual, sequential, discursive and operative. To function as a geometrical figure, a drawing must 
evoke perceptual apprehension and at least one of the other three. Each has its specific laws of 
organization and processing of the visual stimulus array. In particular, perceptual apprehension refers 
to the recognition of a shape in a plane or in depth. Perceptual apprehension indicates the ability to 
name figures and the ability to recognize several sub-figures in the perceived figure. Sequential 
apprehension is required whenever one must construct a figure or describe its construction. The 
organization of the elementary figural units does not depend on perceptual laws and cues, but on 
technical constraints and mathematical properties. Discursive apprehension is related to the fact that 
mathematical properties represented in a drawing cannot be determined through perceptual 
apprehension. In any geometrical representation the perceptual recognition of geometrical properties 
must remain under the control of statements (e.g. definitions). However, it is through operative 
apprehension that we can get an insight into a problem solution when looking at a figure. Operative 
apprehension depends on the various ways of modifying a given figure: the mereologic, the optic and 
the place way. The mereologic way refers to the division of the whole figure given into parts of 
various shapes and the combination of them in another figure or sub-figures (reconfiguration), the 
optic way is when the figure is made larger or narrower, or slant, while the place way refers to its 
position or orientation variation. Each of these different modifications can be performed mentally or 
physically through various operations. These operations constitute a specific figural processing which 
provides figures with a heuristic function. One or more of these operations can highlight a figural 
modification that gives an insight into the solution of a problem in geometry. 

MSTs contain an explicit requirement for solving them in multiple ways. A number of studies (e.g. 
Levav-Waynberg & Leikin, 2009) used MSTs as an instructional tool for developing knowledge and 
creativity, as well as a tool for the evaluation of creativity in geometry. Moving a step forward, the 
present study aims to shed new light as far as MSTs are concerned on evaluating and developing 
creativity in geometry taking into account the role of geometrical figure. As there is a need for a 
multidimensional approach as far as teaching and learning in geometry is concerned, we address the 
following research questions (RQ): (a) what is the influence of geometrical figure apprehension on 
the production of multiple solutions in geometry problems? (b) what kind of creativity (fluency, 
flexibility, originality) do students demonstrate when working with MSTs in which the geometrical 
figure is either given or not in the wording of the problem? (c) what are students' profiles, if any, in 
terms of the number of solutions in MSTs in geometry?  

Methodology 
A written test was administered among 149 eleventh graders (77 boys and 72 girls) as follows: 147 
of the students completed the test in usual classroom conditions and 2 students took part in an 
individual interview during the solution process of the test. The test consisted of four geometry 
problems that were content and face validated by two experienced Mathematics school teachers in 
secondary education and two professors of Mathematics Education. The students were asked 
explicitly to solve them in as many ways as possible. In problems 1 and 3 the wording of the problem 
was accompanied by the relevant figure, while in problems 2 and 4 only the wording of the problems 
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was given. The duration of the test was 110 minutes. It is worth mentioning that the problems (without 
the relevant figure) were piloted among a small number of students before the final administration of 
the test. It was confirmed that all the problems (without the relevant figure) had the same level of 
difficulty. 

Problem 1: Prove in as many ways you can that, that the 
median drawn to the hypotenuse of the right triangle 
equals half the hypotenuse. 

 

Problem 3: Let a rectangular triangle ABC (B = 90°), D 
midpoint of segment AB, E the midpoint of segment AC 
and Z the midpoint of segment BC. Prove in as many ways 
you can that DZ = EB. 

 

Problem 2: AB is a diameter on a circle with center O. D 
and E are points on circle O so that DO//EB.C is the 
intersection point of AD and BE. Prove in as many ways 
as you can that CB=AB. 

Problem 4: Find the center of a circle in as many ways as 
you can, if you only know the circumference of the circle. 

Figure 1. The four geometry problems 

The solutions provided by the students were classified in view of the strategy they used. Then, the 
aspects of creativity (fluency - flexibility - originality - total creativity) were calculated based on the 
scoring scheme that Leikin (2009) proposed for the evaluation of performance on MSTs. The 
construct of solution spaces that will be explained in the next section was also used to analyze the 
student problem-solving performance (Leikin, 2007). In order to answer the research questions, 
descriptive statistics and t-test at 95% significance level were used. Furthermore, a similarity 
statistical analysis was conducted using the computer software C.H.I.C. It is a method of analysis that 
determines the similarity connections of the variables (Gras, Suzuki, Guillet, & Spagnolo, 2008). On 
the similarity diagram we symbolize with Pi, i=1, 2, 3, 4 the problem referred to and symbolize with 
Sj, j=0, 1, 2, 3, 4 the number of solutions for each problem. The interviews with the two students and 
one of the authors were transcribed and examined qualitatively. 

Results 
In order to examine the influence of geometrical figure apprehension in the development of 
mathematical creativity, five solutions which were provided by students in problem 2 are presented 
in Figure 1. These solutions are grouped into three solution spaces based on the strategies and 
properties that students used. In the first solution space, the main strategy is that the straight line 
joining the middle of the two sides of a triangle is parallel and equal to half of the opposite side, and 
includes two solutions (1a, 1b).The first solution was found by 8.1% of the students while the second 
solution which requires drawing an auxiliary line was only found by the 2.7% of students; the 
originality of this solution space rated 10 (10.8% <15%). In the second solution space, the main 
strategy is that equal corners were formed, and refers to two solutions (2a, 2b). These solutions were 
provided by the 28.4% of students as it did not require any auxiliary construction. Its originality rated 
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0.1 (56.8%> 40%). The third solution space includes one solution (3) that refers to the construction 
and the use of the rhomb properties. This solution which requires constructing an auxiliary line was 
provided only by 1.4% of the students and the originality rated 10 (1.4% < 15%). As far as the fluency 
for problem 2 is concerned, 41.5% of the students were unable to solve the problem, while a similar 
percentage of students (49%) found only one way of solving it. The percentage of students who were 
able to find 2 or 3 ways was quite low (9.5%). 

1a Solution 8.1% 

DO=1/2AB, as equal radiuses in a circle. ⇒DO is a 
midline in triangle ABC, as parallel to BC and bisecting 
AB.⇒DO=1/2AB=1/2BC⇒ AB=BC. 

 

1b Solution 2.7% 

D is the mean of the AC, since DO joins the medium C 
with D and OD//ΒC. We construct the median DB of the 
triangle. The angle D1 goes to a semicircle so D1 = 90o. 
Thus, DB is both median and altitude of the triangle ABC. 
Therefore, ABC is isosceles and AB = CΒ. 

 

2a Solution 28.4% 

DO=AO, as equal radiuses in a 
circle.⇒∠ADO = ∠A, as base angles 
in an isosceles triangle, ∠ADO = 
∠ACB, as equal corresponding 
angles within parallel lines, ∠ ACB= 
∠A.⇒ AB=BC, a triangle with 2 
equal angles in isosceles. 

 

2b Solution 28.4% 

DO=AO, as equal radiuses in a 
circle.⇒∠AOD=∠ABC, as equal 
corresponding angles within parallel 
lines.⇒∠A = ∠A, as shared 
angle⇒⊿AOD ~ ⊿ABC (2 equal 
angles) ⇒AB=BC (a triangle similar 
to an isosceles triangle is also 
isosceles). 

 

3 Solution 1.4% 

We construct a parallel line from D to 
AB. Taking into account that it passes 
through the median D of the AC, it 
also passes from the median M of BC 
and MD = AB/2. EB // DO ⇒ΜΒ 
//DΟ. Therefore, MB = DO = BC / 2 
and OD = ΟΒ as the radius of the 
circle. Then, DOBM is a rhombus⇒ 
OB = ΜΒ⇒ 1/2AB =     1/2ΒC⇒ AB 
= ΒC. 

 

Figure 2. Collective solution spaces for problem 2 

Students who produced solutions 1a, 2a and 2b possess at least three kinds of geometrical figure 
apprehension. In particular, the students apprehend sequentially the figure as they construct the figure 
from scratch by organizing its elementary units through constructive constraints and mathematical 
properties. Furthermore, the students have a perceptual apprehension, since they recognize the various 
subfigures in the circle and the inscribed triangle. They also have discursive apprehension, since they 
prove the solution of the problem based on theorems. In order to produce solutions 1b and 3, except 
the other three types of geometrical figure apprehension, operative apprehension is required as well, 
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since the students have to construct the auxiliary lines for the construction of the median of the 
triangle and the construction of the rhomb to find the solution of the problem. It is evident that a 
geometrical figure can be constructed in many ways (mereologic modification), each of which can 
lead the student to a different solution of the problem. Nevertheless, from the solutions given by the 
students we observed that some students construct the same auxiliary line but they solve the problem 
differently. In fact, students apprehend operatively the figure in the same way but have different 
discursive figure apprehension as for the same auxiliary structure they use different properties and 
theorems to find the solution. 

On the basis of the results of the t-test, the number of solutions (fluency) that students give to problem 
1 and 3 (M = 2.16, SD = 1.42), in which the problems are accompanied by the relevant figures, are 
statistically bigger (t = 6.02, df = 146, p <0.001) than those that students give to problems 2 and 4 (M 
= 1.44, SD = 1.21) in which the figures are not given. Concerning flexibility of the solutions to the 
problems in which the figure is given (M = 19.88, SD = 12.65), and the problems without the 
corresponding figure (M = 13.93, SD = 11.37), significant differences are indicated with an 
apparently higher score in the problems in which the figure is given (t = 5.57, df = 146, p <0.001). 
Even though according to the findings students’ fluency and flexibility is higher in problems in which 
the figure is given, this is not the case with the originality of the solutions (t = -1.87, df = 146,p> 
0.05) and total creativity (t = -0.71, df = 146, p> 0.05).  

In fact, there are not any significant differences as far as originality and creativity are concerned in 
the two types of problems. 

 
                                           Cluster 1                                                    Cluster 2 

Figure 3. Similarity diagram of students’ number of solutions 

In the similarity diagram, which concerns students' ability to produce various solutions, there are two 
significant clusters. Cluster 1 consists of two sub-clusters. The first sub-cluster includes the variables 
P1s0, P2s0, P3s0, and P4s0. It refers to students who dο not give any solution to any of the problems, 
regardless of the presence of figure or not. The second sub-cluster (P1s1, P2s1, P3s1, P4s1) is related 
to students who solve all problems in one way, regardless of whether the figure is given or not. In the 
second sub-cluster the solutions belong to one solution space. This sub-cluster is associated with the 
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variables P3s2, P3s3 that involve students who have solved the third problem in which the figure is 
given, in two or three ways, providing evidence that the figure affected its level of difficulty. 

Cluster 2 contains the variables P1s2, P1s4, P2s3, and P3s4 that correspond to the students who are 
highly fluent and flexible in their solutions. On the one hand, these students give two, three or four 
solutions which mean they have the fluency to produce multiple solutions. On the other hand they are 
able to move from one solution to another, using different mathematical properties and 
representations as their solutions belong to at least two different solution spaces.  

In fact, the results suggested that the participants of the study form three distinct student profiles: 

· Profile 1: Students with poor fluency and flexibility (0 solutions) 
· Profile 2: Students with moderate fluency (1-3 solutions) and flexibility (1 solution space) 
· Profile 3: Students with high fluency(≥2 solutions)  and flexibility(≥2 solution spaces) 

The majority of the students have poor and moderate fluency and flexibility. In particular, fifty 
students (34%) have poor fluency and flexibility in at least one problem, sixty six students (45%) 
provide only one solution in at least one problem and twenty five students (17%) solve one of the 
problems in two different ways at least. Only six students (4%) have high fluency and flexibility in 
at least one problem. 

The qualitative data provided further insight in to students’ potential performance. During the solution 
process, changes concerning fluency and flexibility of student solutions were observed. Τhe following 
extract from one of the student's interview (Student A) is indicative:: 

10. St: I'm not so good at geometry. 

17. St: Better find another student who knows them better. I do not remember them at all. 

19. St: Okay, I leave the first problem and go to the third problem. 

(Having already found two ways in the first problem after solving the other three problems) 

165. St: Let me think… I have an idea, half a minute to see something in the third problem. 

166. St: Construct a parallel line from C to AB and from B to AC and create a rectangle for A = 
90o (the student is drawing the new figure). From this I will say that the diagonals of the rectangle 
are equal and bisected. Therefore, AD = 1 / 2BC. 

170. St: I thought of something else. 

172. St: Could I construct a circle as we did in the forth problem? Because the right angle  ends 
in a semicircle, let's say that BC will be a diameter and the center will be D. So DC, DB and DA 
will be radiuses, so they will be equal. 

It is evident that, MSTs enhance flexibility in geometric knowledge and student thinking as they 
encourage connections between different ways of solving them. The student, as soon as he had solved 
the problems, moved from zero fluency and flexibility during the solution of the first problem to high 
fluency and flexibility of solutions at the end of the interview. During this process he often made 
references to the previous problem solutions. It is worth mentioning, that the qualitative data 
strengthen quantitative results as the construction of auxiliary lines and reconfigurations that reflect 
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the operative figure apprehension revealed to be the most important aspects for producing new ways 
of solving and achieving high levels of creativity in geometry. 

Discussion 
The present study explored students’ creativity in MSTs using a multidimensional approach as the 
following dimensions are considered: (a) mathematical creativity; (b) geometrical figure 
apprehension; and (c) multiple-solution problem solving in mathematics education. Significant 
differences in the fluency and flexibility of student solutions were observed depending on whether or 
not the figure was given (RQb). In fact, students exhibited greater fluency and flexibility in the 
problems in which the verbal description of the problem was accompanied by the relevant figure. As 
far as the originality and the total creativity of students' solutions are concerned, they did not differ 
significantly in the two types of problems. On the one hand these findings are explained taking into 
account that even though flexibility and fluency are different aspects of creativity, they are strongly 
related to each other (e.g. Leikin, 2009). On the other hand, researchers (e.g. Levav-Waynberg & 
Leikin, 2012, Leikin, 2013) pointed out that originality is a more internal characteristic than fluency 
and flexibility. It is also more related to creativity but less dynamic. 

The similarity analysis of the number of student solutions suggested three distinct profiles of students: 
(a) a poor fluency and flexibility group; (b) a moderate fluency and flexibility group; and (c) a group 
of high fluency and flexibility (RQc). The majority of students belong to the first two groups. 
However, qualitative results provide evidence that students managed to move from poor to high 
fluency and flexibility of solutions through references to previous problems they had solved. This is 
in line with Leikin’s (2013) findings that fluency and flexibility are dynamic, whereas originality is 
a "gift". As our work deals with relative creativity (Leikin, 2009), we support that mathematical 
creativity should be developed in all students (Sheffield, 2009). As a matter of fact, creativity is 
influenced by the teaching, guidance and experiences of the individual (Silver, 1997). Thus, the 
systematic exploitation in the teaching of MSTs in geometry may enhance student fluency and 
flexibility.  

Furthermore, emphasis should be given to activities that help students overcome the perceptual way 
of looking at a geometrical figure and moving to operative figure apprehension. The results suggest 
that the students who apprehend the figure operatively are able to undertake mereologic modifications 
that enable them to provide different proofs in geometrical problems (RQa). An interesting finding 
which highlights heuristic functioning of figures is that some students use the same auxiliary 
construction but their solutions are based on different properties and theorems. In other words, they 
have the same operative apprehension but different discursive apprehension of a figure. Indeed, 
operative apprehension of a figure is a source of creativity in geometry as it gives insight into the 
solution of the problem. Nevertheless, Duval (1995) indicated that the mathematical way of looking 
at figures only results from the coordination of separate processes of apprehension over a long time. 
In line with this assertion, our findings revealed that geometrical figure apprehension is a prerequisite 
for students to provide a variety of solutions to the geometry problems and, thus, have high creativity. 

Certainly, there is still need for further investigation into the teaching implications of the subject. In 
the future, it would be interesting and useful to examine the effects of intervention programs aiming 
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at developing geometrical figure apprehension in view of MSTs. Furthermore, the validation of a 
theoretical model that examines the structure and relation of various components of geometrical 
figure apprehension, mathematical creativity and ability to prove in multiple ways would contribute 
to this domain of research too. 
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The present research examines middle school mathematics teachers’ conceptions of geometric 
definitions, and specifically whether they possess geometric conceptions at the van Hiele fourth level. 
Sixty two teachers participated in the research. We used an open-ended questionnaire for data 
collection. The questionnaire included three questions concerned with the equivalence between 
definitions, sufficient and necessary conditions, and deductive geometric reasoning related to 
definitions. We used deductive and inductive content analysis to analyse the data. We found that 
generally, the participating teachers did not possess the geometric conceptions at the van Hiele fourth 
level and had difficulties in understanding what the imperative and optional features of mathematical 
definitions are.  In addition, the participants’ conceptions of definitions have specific features that 
explain why they have not attained the van Hiele fourth level. 

Keywords: Conceptions, parallelogram, definitions, in-service teachers 

Introduction 
Definitions are used as building blocks for the construction of mathematical theorems (Pimm, 1993), 
which makes them play a central role in building understanding of the meanings of mathematical 
concepts (Wilson, 1990). According to van Hiele and van Hiele’s (1958) theory about geometric 
thinking development, at the informal deduction level, the learner understands the importance of 
precise definitions, how a particular attribute derives from another, and the inclusion relationship 
between groups of shapes; the learner can construct internal connections between the different 
properties of the same shape and connections between the properties of different shapes. At the 
subsequent level; that the formal deduction level, the learner understands the role of definitions and 
recognizes the features of a formal definition, such as necessary and sufficient attributes and 
equivalent definitions. At this more advanced level, the learner understands the functions of 
definitions, axioms and theorems as a deductive chain.  

Zaslavsky and Shir (2005) distinguish between two features of the definition: those which are 
imperative and those which are optional. Some of the imperative features of definitions are their being 
non-contradicting, unambiguous and hierarchical, while some of the optional features of 
mathematical definitions is the requirement about their being minimal; in other words include a 
minimum of sufficient attributes of the concept. In addition to the aspect of imperative and optional 
features of definitions, van Dormolen and Zaslavsky (2003) mention four criteria for logical 
necessities of definitions; one of them is the criterion of equivalence. Other criteria are part of general 
culture but are not necessary from logical perspective, such as the criterion of minimality and the 
criterion of elegance, which we need when we want to choose between two equivalent definitions. 
Using these criteria, we take the 'nicer definition'; the one has less words and lees symbols and uses 
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more general basic concepts. Empirical research shows that many mathematic educators prefer 
mathematical definitions to be minimal and elegant or parsimonious (Vinner, 1991; Van Dormolen 
& Zaslavsky, 2003; Leikin & Winicky-Landman, 2001). On the other hand, there are those who, in 
certain cases, also prefer a non-minimal definition (de Villiers, 1998; Pimm, 1993; van Dormolen & 
Zaslavsky, 2003; Zaslavsky & Shir, 2005). For example, it is possible to define two similar triangles 
as two triangles in which two angles in one triangle have equal angles in the second triangle. From 
the pedagogically perspective, adherence only to the minimal definition, may impair the 
understanding of the concept of similar triangles (Zaslavsky & Shir, 2005). 

One feature of mathematical definitions appreciated by mathematicians and mathematics educators 
is the equivalence of definitions of the same concept (Harel, Selden & Selden, 2006). Leikin & 
Winicky-Landman (2001) studied mathematical definitions in a non-geometric context, and found 
that many high school teachers did not notice that a particular concept could be defined in a number 
of equivalent ways. When the learner attends to the equivalent definition, he/she performs in van 
Hiele informal deduction level. Haj Yahia, Hershkowitz & Dreyfus (2014) found that many senior 
school students rejected correct geometric proofs because they failed to notice that there might be 
more than one definition for a particular concept. When we attend to the equivalent geometrical 
definitions, however, we perform as expected in van Hiele & van Hiele (1958)’s informal level: we 
accept the notion that we can derive one attribute from the other/s. For example, if in a quadrilateral 
every two opposite sides are parallel, then we can deduce that every two opposite sides are equal and 
vice versa – and these two statements are equivalent. 

Another important aspect of definitions is giving a definition that contains non-sufficient attributes 
(de Villiers, 1998). Many studies reported that when the students asked to define some quadrilaterals 
a part of the students gave brief definitions but not complete (de Villiers ,1998; Choi, Oh & Kyoung, 
2008; Markovic & Romano, 2013). de Villiers (1998) reported that when the students asked to define 
the rhombus, a part of the students gave brief definitions but not complete. For example, a rhombus 
is a quadrilateral whose diagonals are perpendicular to each other. Markovic & Romano (2013) 
reported that some students define the square as "a geometric figure all four sides of which are equal". 

Research rational and goals  
Since the progress from one level to another on van Hiele and van Hiele’s (1958) depends more on 
teaching than on age or biological maturity, different types of instruction can have a different effect 
on the progression from level to level. In order to prove and to be able to understand the role of proof, 
he/she must be at the formal deduction level. Moreover, teachers’ conceptions are the basis for their 
mathematics teaching (Johnson, Blume, Shimizu, Graysay, & Konnova, 2014), especially their 
teaching of geometry. Thus investigating the teachers' conception about mathematical definition plays 
central issue in the teaching processes.  The teachers are expected to be at the formal deductive level, 
where they understand the role of definitions and recognize the logical features of a formal definition, 
such as necessary and sufficient attributes and equivalent definitions. In addition, they are expected 
to know the imperative features and the optional features of definitions (Zaslavsky & Shir, 2005).   

The present research intends to examine mathematics teachers’ conceptions of geometric definitions. 
The results of the research would make us more knowledgeable regarding these conceptions, and in 
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particular regarding the features of these definitions. This is especially needed because of the little 
research done on teachers’ conceptions of a basic aspect of their ability to teach geometry; i.e 
geometric definitions. 

Research question 
What are the features of middle school teachers’ conceptions of geometric definitions? 

Methodology 
Sixty-two in-service middle school mathematics teachers who constitute theoretical sample (Glaser 
& Strauss, 1967) participated in this study. These teachers studied for completing their M.Ed. (Master 
of Education) degree in mathematics education in an academic college for teachers. We used an open-
ended questionnaire for data collection. The questionnaire included three questions that are concerned 
with the following topics related to definitions: the equivalence between definitions of the same 
concept, sufficient and necessary conditions of a concept, and finally deductive geometric reasoning 
related to definitions. To provoke teachers’ thinking, we used prompts consisting of fictive or real 
contradicting statements of students that represent common conceptions of definitions of geometrical 
concepts. The participating pre-service teachers were asked to fill the questionnaire, by commenting 
on each statement; whether they agree with it or not, and to explain their answers.     

For analysing the data, we used a qualitative coding method (Salanda, 2015) that is close to grounded 
theory (Glaser & Strauss, 1967). We used deductive codes derived from a theoretical perspective 
(Charmaz et al., 2007) and inductive codes for the themes not present in existing research about 
geometric education. Using the deductive codes, we characterized the answer of each participant 
according to its satisfaction of the aspects of definition: being minimal, being hierarchical, awareness 
of sufficient conditions, awareness of equivalent definitions, etc. Afterwards we looked at shortages 
of the participants’ conceptions, for example being aware of the sufficient conditions but enforcing 
other conditions. Next we looked at the reasoning behind the answer, for example being not aware of 
equivalence definitions as a result of considering the lack of the ‘edges’ term.  

The coding was conducted independently by the three authors. The inter-rater reliability of coding by 
Cohen's Kappa was 0.86, which shows and appropriate value of the interrater reliability. 

Results 
This section is splitting into four parts. We present the results concerning (a) the equivalence between 
definitions, (b) sufficient and necessary conditions, and finally (c) the deductive geometrical 
reasoning. 

The equivalence between definitions of the same concept 

The first item in the questionnaire related to the following question: 
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The mathematics teacher asked his students to define the "parallelogram".  

Sami defined the parallelogram as "Parallelogram is a quadrilateral in which every two opposite 
sides are parallel". Rami defined the parallelogram as "Parallelogram is a quadrilateral in which 
every two opposite angles are equal". Rafi defined the parallelogram as "Parallelogram is a 
quadrilateral in which the diagonals crossing each other" Salim defined the parallelogram as 
"Parallelogram is a quadrilateral in which every two opposite sides are equal". For each of these 
claims you need to determine whether it is a definition and explain your response. 

Answering the first item, 25.5 % (16) of the participants demonstrated knowledge of equivalent 
definitions. 14.5% of the participants, though they demonstrated knowledge of equivalent definitions, 
preferred some of these definitions over others. Specifically, these students preferred the definition 
of the parallelogram that included properties about the sides of the parallelogram, probably because 
the name indicates that the sides are parallel. Three of them preferred the definition that mentions the 
property of “pairs of opposite sides being parallel”. 

27.5% (17) of the participants claimed that the definition should include conditions about sides of a 
parallelogram, but did not demonstrate knowledge of equivalent definitions. These students were not 
satisfied with the definition that includes just the term ‘angles’ or ‘diagonals’, but wanted the 
definition statement to include conditions about the sides. Eight of these students even wanted the 
statement to include conditions related to two components; sides and parallelism. One student wrote, 
“This could not be a definition of the parallelogram, for it just talks about angles”. 

The previous results indicate that the need for a condition about the sides of the quadrilateral or/and 
the opposite sides being parallel was mentioned by the students who demonstrated knowledge of 
equivalent definitions and those who did not demonstrate such knowledge. 

27.5% (17) of the participants differentiated between definitions and properties. Doing so, they did 
not accept the statements that describe the parallelogram in terms of its angles or diagonals as 
definition, saying that it is property and not a definition. Five of these students did not elaborate 
further. For example, one of them wrote, “This is not a definition because it is a property”. The rest 
of these students (twelve students) argued that the definition should talk about sides and not any other 
element of the parallelogram. One of them wrote, “This is a property and not a definition of a 
parallelogram for it includes information about the angles and not the sides”. 

19.5% (12) of the participants did not accept a statement as a definition because of their little 
understanding of the sufficient conditions issue of the definition. These students did not accept the 
property “each pair of opposite sides are parallel” as sufficient for a quadrilateral to be a 
parallelogram.  Instead, they suggested that the correct definition should include also the equality of 
the edges. One of these students wrote, “the definition should be a parallelogram is a quadrilateral 
that each pair of its opposite sides are parallel and equal”. 

For the first item only and because of the various percentages in its results, we will summarize these 
results in Table 1 to make them more accessible.  
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 Table 1: Categories of students' responses on the equivalence item and their percentages  

Sufficient and Necessary conditions of a concept 

The second item in the questionnaire related to the following question: 

The mathematics teacher asked his students to define the "parallelogram".  

Sami defined the parallelogram as "Parallelogram is a quadrilateral in which every two opposite 
sides are parallel". Rami defined the parallelogram as "Parallelogram is a quadrilateral in which 
two opposite sides are parallel". Rafi defined the parallelogram as "Parallelogram is a 
quadrilateral in which every two opposite sides are parallel and equal" For each of these claims 
you have to determine whether it is definition And to explain your response! 

 

Answering the second item, 82% (51) of the participants did not consider correctly that the statement 
“The parallelogram is a quadrilateral in which two opposite sides are parallel” an accurate definition 
of the parallelogram. Twenty-four of them reasoned that the statement should include ‘all opposite 
sides’ and not just two opposite sides. The rest (twenty-seven students), in considering the statement 
not an accurate one, reasoned that the statement describes a trapezium and not a parallelogram. Eleven 
students wrote that the statement is an accurate statement because it talks about the opposite sides 
being parallel. 

87% (54) of the participants considered correctly, “The parallelogram is a quadrilateral in which each 
pair of opposite sides are parallel” an accurate definition of the parallelogram. Eight students 
considered this definition not to include sufficient conditions because it should also include the 
equality between the sides as condition”. 

Almost all the participants considered the statement “The parallelogram is a quadrilateral in which 
each pair of opposite sides are parallel and equal” an accurate definition of the parallelogram. Eleven 
of these students wrote that one of the conditions ‘equal sides’ or ‘parallel sides’ is enough for a 
quadrilateral to be a parallelogram. In spite of this knowledge, not any one of them concluded that 
the definition is not accurate or that it violates the minimalism criterion of definition. 

 

 

Category Percent 

Demonstrating knowledge of equivalent definitions 
- Preferring definitions that included properties about the sides 

25.5% 

Not demonstrating knowledge of equivalent definitions 
- Preferring definitions that included properties about the sides 
- differentiating between definitions and properties 
- little understanding of the sufficient conditions 

 

27.5% 

27.5%  

19.5% 
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Deductive geometric reasoning 

The third item in the questionnaire was related to Deductive geometric reasoning.  

The mathematics teacher defines "The trapezium is a quadrilateral in which two opposite sides are 
parallel" and "The Parallelogram is a quadrilateral in which two pairs of opposite sides are 
parallel". Rami claims that the teacher’s definitions mean that the parallelogram is a trapezium, 
while Sami claims that Rami is wrong. Which of these claims is right? Explain your response! 

Answering the third item, 56.5% (35) of the participants supported the claim of Rami that the 
parallelogram is a trapezium according to the teacher definition, and also supported the opposite claim 
of Sami that parallelogram is not a trapezium according to the right definition of the trapezium.  

19.5% (12) of the participants argue that Rami's claim that parallelogram is trapezium is wrong while 
Sami's claim that the parallelogram is a not trapezium is right. They argued that the teacher defined 
the trapezium as having one pair of parallel opposite sides, but she have to define it as having only 
one pair of parallel opposite sides and the parallelogram have two pairs of parallel opposite sides. 
This argument also led them to consider only the second claim is right. 

24% (15) of the participants wrote that Rami's claim is right while Sami's is wrong. Doing so, they 
argued that the claim “The parallelogram is a trapezium” is right because the teacher defined the 
trapezium as having one pair of opposite angles, while she defined the parallelogram to have two 
pairs of parallel opposite sides. The shape that has two pairs of parallel opposite sides satisfies the 
condition of having a pair of parallel opposite sides. This means that according to the teacher, the 
parallelogram is a trapezium.  

Discussion and conclusions 
The present research intended to investigate the features of middle school teachers’ conceptions of 
geometric definitions. It could be argued according the research results that the participating teachers 
have difficulties regarding the understanding the structure of the geometrical definitions and their 
functions and meaning.  

One feature of the participating teachers’ conceptions of mathematical definitions is its relatedness to 
their understanding the sufficient conditions issue of the definition. Some of them did not accept the 
statement “The parallelogram is a quadrilateral in which each pair of opposite sides are parallel” as 
an accurate definition of the parallelogram, this statement sufficient in order to deduce the rest of 
concept attributes These conceptions of the sufficient conditions also led them to demand non-
minimal definitions to be the accurate definitions. This feature agrees with other reports about 
teachers' conceptions of the definition this result is in agreement with the results from Leikin and 
Winicki-Landman (2000) and from Zazkis and Leikin (2008) where prospective secondary 
mathematics teachers indicated a preference for the barely-not-minimal definition over a minimal 
definition.  

A second feature of the participating teachers’ conceptions of mathematical definitions is that they 
differentiate between a definition and a property. They did not accept the statements that describe the 
parallelogram in terms of its angles or diagonals as definition, saying that it is property and not a 
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definition, although that these statements satisfy all the imperative features of mathematical definition 
(Zaslavsky & Shir, 2005). This misunderstanding of the relationship between a definition and a 
property leads to difficulty in understanding the equivalence between definitions. From these 
participants' perspective of mathematical or geometrical concepts, for every concept there is only one 
definition (Leikin & Winicky-Landman, 2001). The participating teachers were not aware of the 
logical necessities of equivalence (van Dormolen & Zaslavsky, 2003).  

Third feature of the participating students’ conceptions of mathematical definitions is that it takes 
into consideration the name of the geometric concept.  Some of the students only accepted a definition 
of the parallelogram that included the term ‘parallel’ or at least sides, and did not accept a definition 
that is related to relations between its angles or diagonals. Thus, the name affected the participating 
teachers’ acceptance of some statements as definitions and their rejection of other statements as thus. 
This result confirms the finding of Haj-Yahya, Hershkowits & Deryfus (2014) who reported that the 
parallelogram name affects students’ proving processes. It seems that this influence of the name on 
the participating students’ conceptions of definitions hindered these students from considering some 
of the equivalence and alternative definitions of the parallelogram as accurate definitions.  

The fourth feature of the participating students’ conceptions of mathematical definitions is that it 
could include contradictions. More than half of the participating students accepted two statements 
that result in the trapezium being a parallelogram, as well as the opposite, which means that there is 
no difference between the shapes. The results from the third class of questions was about the 
deductive reasoning, the results shows that in many cases the students did not rely their reasoning on 
the concept definition, this confirm previous results of Edward & Ward (2004) about non-geometrical 
context. 

To conclude, the present research examines mathematics teachers’ conceptions of geometric 
definitions. We found that generally, the participating teachers do not possess the geometric 
conceptions at the van Hiele fourth level didn’t understand what are the imperative features of 
mathematical definition (Zaslavsky & Shir, 2005). The research results directs the preparation of 
workshops for teachers, so it would be possible to target in these workshops the features of teachers' 
conceptions of definitions. These workshops would constitute a platform for discussing the impact of 
mathematics teachers' conceptions of definitions on their teaching. This would make these 
conceptions sounder and help these teachers take better decisions regarding how to teach definitions 
in the mathematics classroom. Research is needed here to verify the consequences of educational 
programs on teachers' conceptions of definitions in particular and on their teaching in general.  In 
addition, future research can utilize theoretical frameworks as those suggested Fujita and colleagues 
(see for example Fujita (2008)), which will clarify other aspects of in-service teachers' conceptions 
regarding definitions.  
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Map reading is a cognitively demanding spatio-geometric activity for children that involve 
understanding and updating person-space-map relations during movement in a large environment. 
Drawing from the psychological literature, children’s skills in reasoning about those relations were 
tested in two tasks of a map-based treasure hunt on the campus (self-location and place finding), and 
compared them to their performances in a set of spatial tasks in paper and pencil format. 9- to 12-
year old children (N=240) placed colored stickers and arrows on the map to describe their location 
and orientation at three different places, and laid down three disks to mark locations they identified. 
Hierarchical linear regression analysis revealed that performances in a set of written spatial tasks 
predicted up to one quarter of the variance in performances in both map-reading tasks, while sex and 
strategy choice were not found to be important predictors.   

Keywords: Geometry education, map tasks, spatio-geometric reasoning, spatial skills. 

Introduction 
Geometry education at primary school is often based on Freudenthal’s idea of “grasping space” 
(1973), and thus aims to contribute to children’s thoughtful interaction with the three-dimensional 
space in which they live, play, and move. Ideally, this goal is achieved at school with a range of 
spatio-geometric tasks that allow children to complete realistic geometric activities that are similar to 
their own everyday experience (Lowrie & Logan, 2007). 

Within TWG4 of CERME, spatial reasoning and spatial skills have been identified as latent 
underlying cognitive skills that allow children to develop and apply the four core competencies 
(reasoning, figural, operational and visual) for geometrical thinking (Maschietto et al., 2013). 
Although their importance has been emphasized in a range of studies, their role in realistic spatio-
geometric activities is little understood (Houdement, 2017). A review of the literature revealed that 
all studies on these activities in the working group are typically located in a space that is very close 
to the subject, like for example a sheet of paper, a set of small objects, or a computer screen 
(Houdement, 2017). In contrast, investigating activities that are located in larger, realistic interaction 
spaces such as map reading in real space would be closer to the original demand for realistic geometric 
activities that allow children to “grasp space.”  

Addressing this gap in the literature and extending the literature on spatial-geometric reasoning of 
primary children, this study presents two map-reading activities (self-location and place finding) as 
examples of spatio-geometric tasks that can be completed in larger spaces. By doing so, it seeks to 
empirically investigate the relative importance of spatial skills, sex, and strategy choice in these 
contexts. 
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Map reading, person-space-map relations and spatial skills 
Maps are symbolic representations of the reference environment that allow to mediate between the 
immediate perception of space and the cognized inference about it, for instance during navigation 
with a map (Downs, 1981). Maps have been emphasized to foster spatio-geometric thinking in 
realistic contexts that require the integration of information from the real space that surrounds the 
learner rather than being based on material that can be perceived from one single vantage point (e.g. 
Liben & Downs, 1993). Maps provide therefore an important tool for completing spatio-geometric 
activities in large interaction spaces, which, in turn, requires cognitive processes (Montello, 1993) 
and spatial knowledge (Brousseau, 2000) that are different from processes and knowledge used to 
solve paper- and pencil spatial tasks. 

To read a map, in particular to establish a relationship between the real physical environment and its 
abstract-geometric depiction, is a complex task that requires not only spatio-geometric skills, but also 
requires the understanding of basic mathematical concepts. Following a rather descriptive 
argumentation of Muir and Frazee (1986), eight skills relate to map reading: (1) interpreting symbols, 
(2) understanding scale, (3) calculating distances, (4) understanding perspective, (5) finding 
locations, (6) determining directions, (7) identifying elevation, and  (8) imagining relief.  Among 
those skills, three explicitly relate to spatio-geometrical ones ((4) – (6)). Although map reading can 
be considered being a complex activity that involves all eight skills in an interrelated way, the focus 
of this paper is on the skills of understanding perspective, finding locations and determining directions 
in this study, and approach and conceptualize them further from a psychological perspective. 

Two typical tasks of map use that require all three skills outlined above, are direct navigation towards 
a certain goal (place finding) and understanding where you are on a map (self-location). Self-location 
is a prerequisite of further map use and requires linking their current location in the environment to 
the analogue location on the map. Hereby, locating themselves on a map does not only involve 
identifying their position on the map, but also considering their current orientation. Following Liben 
& Downs (1993), to do so, children must understand three different relations between themselves 
(person), the environment (space) and the representation of the environment (map). These three 
relations are perception and reflecting on the own location in space (person-space relation), 
understanding and establishing links between the space and its representation (space-map relation) 
and understanding their own location on the map (person-map relation). 

Children acquire the knowledge to master the person-space relation relatively early in their 
development due to their sensorimotor exploration of space. That is, children demonstrate relatively 
early that they are for instance intuitively able to identify their home location or the location of other 
landmarks. However, adjusting this intuitive person-space understanding by taking information on 
the environment from a map, thus establishing geometrical correspondences between the environment 
and its depiction in a map, appears to be achieved much later  in the children’s development (see 
Liben & Downs, 1993, for references in the developmental literature).  

In particular, understanding geometric correspondences comes to reason about the space-map relation 
by identifying whether the map aligns correctly with the environment and further involves projective 
reasoning for establishing the person-map relation. Whenever the map is not aligned with the 
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environment, children need to engage some form of cognitive compensation. Understanding the 
person-space-map relation then becomes an intertwined cognitively challenging process of mentally 
rotating the map to align it with the environment (thus establishing the space-map relation) and 
imagining the own locating and heading on a map (thus establishing the person-map relation). 

Spatial cognition psychologists have modeled the skills to establish and maintain the correct person-
space-map relations during navigation by relating them to the concept of spatial skills (e.g. Liben & 
Downs, 1993, Liben et al., 2013). Spatial skills is an umbrella term that refers to a set of cognitive 
skills that allow an individual to encode, maintain, and transform a spatio-visual stimulus to induce a 
certain inference or a spatial behavior. From this perspective, aligning a map with the environment 
has been modeled as mental rotation skill (e.g. Shepard & Hurwitz, 1984) and imagination of the own 
position on a map as perspective taking skill (e.g. Liben & Downs, 1993).  

While the literature on spatial cognition proposed this relation at the level of latent cognitive 
processes, it is not clear whether this relation holds true from the perspective of individual differences. 
The goal of the study was therefore to empirically test whether and to and which extent individual 
differences in tasks requiring spatial skills are important predictors for individual differences in map-
use tasks. It was also tested, whether sex (e.g. Voyer & Voyer, 1995) and spontaneous strategy use 
(e.g. Liben et al., 2013) were also important predictors.  

Methods 
Research design 

This study used a quantitative design that was based on two psychometric tests: First, a paper-and 
pencil test that measured performances in a set of spatial tasks that required the use of spatial skills. 
Second, a map-based orientation test that measured performances in self-location and place finding 
tasks that required the skills to constantly update person-space-map relations. Scores in the tests were 
interpreted as indicators of individual skill and related to each other in multiple regression models. 
Participants 

The sample consisted of 240 primary school children (111 boys, 129 girls) out of a town in Northern 
Germany. The children were aged between 9 and 12 years (mean age 9.17, SD=.50) and formed a 
heterogeneous sample in terms of scholar achievement and social background. The sample was not 
specifically chosen, but consisted of all children in the town that got the permission to participate in 
the study. 

Paper and pencil tasks 

The children completed a set of different paper and pencil tasks in 45 minutes. The test consisted of 
eight different tasks (see Table 1 for examples of tasks), four of them being adoptions of adult tasks 
(e.g., a 2D mental rotation tasks based on Ekstrom’s Card Rotation Test, a 3D mental rotation task 
similar to the Vandenberg’s Mental Rotation Test, a Paper Folding Task analogue to Thurstone’s 
Punched Holes Test, and a perspective taking task analogue to the Guilford-Zimmermann boat test). 
The four other tasks were developed from the scratch and tested within a pilot study with N=222 
children. Those tasks required for example perspective taking processes in labyrinths. 
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 Task Description and Scoring Example item 

Boxes  

Requires sorting the corresponding side views of an 
array of boxes that is presented in plan view. The 

children need to sort all four side views out of five 
possible solutions.  

3 items with polytomous scoring (2-1-0).  
 

MEADOW  

Requires determining directions (forward/backward & 
left/right) of mental movement that explains a shift 

from picture one to picture two.  
6 items with dichotomous scoring.   

LR   
Requires imagining going along a path on a map and to 

decide on each crossing whether to turn left or right.  
4 items with dichotomous scoring.  

PFT  Adoption of the Paper Folding Task.  
6 items with dichotomous scoring.   

Table 1: Four tasks of the paper and pencil test. 

 

Map-based orientation tasks 

The field area was the campus of Leuphana University 
has a mostly symmetrical of buildings that are connected 
via perpendicular roads (see Figure 1). On the campus, 
the experimenter installed a yellow, a blue and a red flag. 
The children were individually given a map of the campus 
as well as a set of six stickers, three of them for indicating 
locations (points of 5mm diameter), and three of them for 
indicating directions (little arrow stickers). They further 
obtained a set of three numbered disks. After some 
preliminary tasks on map understanding, the children 
completed two map- tasks. During the tasks, they were forbidden to turn the map. 

1. Self-location: The children followed the experimenter to each of the flags and were asked to 
place the location and direction sticker. Wrong answers were corrected for maintaining equal 
change for every tasks after putting each sticker.  

2. Place Finding: At the red flag, the children were told to find numbers on the map and place the 
corresponding disks at the right location on the campus. The experimenter recorded the locations 

Figure 1: Flags and discs on the campus 
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where each of the three disks were placed. Whenever a disk was misplaced, the children were 
corrected afterwards, thus maintaining equal chance for the subsequent disk.   

These tasks required the children constantly update the space-map relation since they were not 
allowed to turn the map. Moreover, solving the tasks required to track where they are on the map, 
thus updating the person-map relation while integrating visuospatial information from the 
environment  and update their person-space relation. 

During the tasks, the experimenter recoded visible strategies such as tracing (follow the route with a 
finger on the map), matching (talking aloud about correspondences between map and buildings), 
north-orientation (child orients towards north all the time while walking with the experimenter) and 
other (speaking aloud of left-right changes, gesture, …). 

Data treatment 

The X and Y coordinates of each sticker were encoded. Stickers were scored polytomously with a 
tolerance of 5mm and 7mm radius of the correct position, giving up to 2 points per sicker, and the 
direction stickers dichotomously. The locations of the discs were scored with up to two points per 
disk. In a subsequent step, the data was analyzed using listwise deletion for missing values that 
occurred during data collection in the map-based tasks.  

Results 
Descriptive statistics 

To understand performances of the sample in both tasks, descriptive statistics for the tasks self-
location and place location were computed. A descriptive analysis of the two tasks revealed that 
children performed below the expectation value 
for the self-location tasks (range=[0,8], 
M=3.11, SD=2.25, N=231) and about the 
expectation value in place finding tasks 
(range=[0,5], M=2.87, SD=1.77, N=207) These 
results indicate, that self-location tasks remain 
very difficult to master for children within the 
sample. In particular marking the correct 
positions (range=[0,5], M=1.43, SD=1.55) 
rather than understanding orientation 
(range=[0,3], M=1.67, SD=0.99) was difficult. 

Hierarchical multiple regressions 

Self-location performance in relation to 
individual variables. In a preliminary step, 
multiple regression analysis was used to test 
which of the eight spatial tasks that were solved 
in the test significantly contributed to explain 
variance in self-location performances. The 
results indicated that all eight predictors 

 Step 1 Step 2 Step 3 

𝑅𝑅2(p) .214 (.000) .215 (.000) .233 (.000) 

𝛥𝛥𝑅𝑅2(p) .214 (.000) .001 (.548) .017 (.289) 

Predictor β p β p β p 

LR .21 .002 .21 .002 .22 .001 

PFT .22 .002 .22 .002 .20 .005 

MEADOW .18 .007 .17 .009 .18 .008 

Sex   .04 .548 .01 .832 

Tracing     .03 .648 

Matching     -.07 .260 

North     .11 .065 

Other     -.02 .746 

Table 2: Hierarchical linear regression analysis 
predicting self-location performances (N=230) 
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explained 23.0% of the variance (𝑅𝑅2=.23, F(8,222)=8.38, p<0.001). Three of these tasks, LR (β =.17, 
p=.016), PFT (β =.14, p=.086) and MEADOW (β =.14, p=.048), were found to predict self-location 
performances significantly (p<0.01), and kept for subsequent analysis. In the hierarchical multiple 
regression analysis, the spatial scores of these three tasks were added in Step 1, sex in Step 2 and four 
different strategy scores in Step3 (see Table 2). 

As in the preliminary analysis, the three spatial tasks accounted for significant variance in the self-
location performances first level of the model, F(3,227)=20.61, p<0.001, with PFT emerging as the 
most important predictor (see Table 2 for standardized betas and the corresponding probability levels 
for every step in the model). Prediction was not significantly improved by adding sex in Step 2. The 
addition of strategies in Step 3 led to a marginal increase of .017 in the amount of explained variance, 
and revealed walking with orientation towards the north as an almost significant predictor. However, 
in the overall model comparison, the final model did not differ significantly from the first one which 
explained 21.4% of the variance.  

In summary, the results indicated that individual differences in three spatial tasks only can be seen as 
significant predictors of self-location performance, predicting a fifth of the variance. Sex and strategy 
use did not contribute significantly to explain variance. 

Place finding performance in relation to 
individual variables. Again, in a preliminary 
step, multiple regression analysis was used to test 
which of the eight spatial tasks significantly 
contributed to explain variance in place finding 
performances. The results indicated that all eight 
predictors explained 25.3% of the variance 
(𝑅𝑅2=.25, F(8,198)=8.37, p<0.001). Three of 
these tasks, LR (β =.16, p=.024), PFT (β =.14, 
p=.090) and BOXES (β =.22, p=.009), were found 
to predict place finding performances 
significantly (p<0.10), and kept for the analysis. 

In the hierarchical multiple regression analysis, 
spatial scores of these three tasks were entered in 
Step 1, sex in Step 2 and strategy choice in Step 
3 (see Table 3). As in the preliminary analysis, 
the three spatial tasks accounted for significant 
variance in the first level of the model, 
F(3,203)=21.87, p<0.001, with BOXES emerging 
as the most important predictor (see Table 3 for standardized betas and the corresponding probability 
levels for every step in the model). Again, prediction was not significantly improved by adding Sex 
in Step 2. The addition of strategies in Step 3 led to a significant increase of .032 in the amount of 
explained variance, and revealed that ‘other strategies’ to be a significant inhibitor of place-finding 
performances. The final model was significant, F(8,198) =9.579, p<0.001, with an 𝑹𝑹𝟐𝟐=.28.                

 Step 1 Step 2 Step 3 

𝑅𝑅2(p) .244 (.000) .247 (.000) .279(.000) 

𝛥𝛥𝑅𝑅2(p) .244 (.000) .003 (.372) .032 (.072) 

Predictor β p β p β p 

LR .17 .015 .17 .015 .21 .003 

PFT .18 .017 .17 .022 .18 .017 

BOXES .27 .000 .26 .001 .27 .000 

Sex   .06 .372 .06 .310 

Tracing     -.06 .321 

Matching     -.01 .906 

North     -.01 .822 

Other     -.17 .009 

Table 3: Hierarchical linear regression analysis 
predicting place finding performances (N=205) 
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In summary, the results indicated that individual differences in three spatial tasks emerged as 
significant predictors of place finding performance, predicting a quart of the overall variance. Sex did 
not contribute significantly in the prediction. Strategy use led to an overall predicted variance of 28%, 
but revealed a less well defined strategy group as inhibitor.  

Discussion  
This study aimed at investigating children’s performances in two map-reading tasks in real space and 
investigated their prediction by a set of spatial skills and the two other individual variables sex and 
strategy choice. As anticipated by labelling the proposed activity as a “complex” one, the results 
indicated that both, self-location and place finding remain challenging tasks for children by the end 
of primary school. Moreover, a hierarchical regression analysis showed that individual differences in 
written spatial tasks accounted for up to 25% of the variance in both map-based tasks. I sex nor 
strategy use were found to be significant predictors in both tasks. 

Regression analyses revealed a set of four spatial tasks that predicted the outdoor tasks: LR and PFT 
were found to be predictors in both outdoor tasks, MEADOW and BOXES for self-location and place 
finding, respectively. An analysis of these tasks (see e.g. Linn & Petersen, 1985, for the PFT) reveals 
that they rely on multistep solution processes, in particular require a multistep manipulation of mental 
images that need to be updated correctly. Tasks that require singular 2D and 3D mental rotations were 
not found to be predictors. Similarly, perspective taking tasks that are bound to a very particular 
spatial setting (labyrinth-tasks) were not found to be predictors either. A tentative interpretation of 
this outcome for educational settings might be that spatial tasks that are interesting for application in 
real space should fulfill two criteria: first, they should be sufficiently complex, and second, they 
should not be presented in too particular c ontexts but rather in general-abstract contexts.  

Since we drew on the literature concerning sex-differences in favor of boys in written spatial tasks, 
we expected to find sex an important predictor in the map-reading tasks in real space as well. In 
contrast to the literature (Liben et al., 2013), we did not find a male advantage at all. Although we 
recommend follow-up analyses including interaction terms into the models outlined above, there is 
an interpretative suggestion that activities with maps in the real space are equally cognitively 
accessible for boys and girls. 

Contrary to other empirical findings (Liben et al., 2013), visible solution strategies did not predict 
performances in the map-based tasks. One possible explanation is that experimenters just observed 
the strategies, but the children were not explicitly interviewed. Furthermore, experimenters were not 
sufficiently sensitized to observe strategies.  The documentation of strategies was therefore dependent 
on the different experimenters that might have documented them in a non-coherent manner. Further 
studies that focus on strategy use are important. 

For a better understanding of the role of spatial skills in realistic spatio-geometric activities from a 
conceptual point of view, studies should conceptualize and analyze those skills in latent models, thus 
referring to classes of spatial tasks that share the same cognitive processes and to analyze their relation 
to the map tasks. This would allow researchers to make more generalized conclusions than it is the 
case in an analysis based on single spatial tasks.  
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Conclusion 
By empirically testing psychological assumptions, this paper demonstrates that spatial skills are an 
important underlying cognitive skill in realistic geometric activities that allow children to understand 
the real space they interact with in their everyday life. Investigating spatial skills and their underlying 
cognitive processes, but also spatio-geometric activities in larger interaction spaces remain therefore 
important challenges for conceptual work and discussions in TWG4.  
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The Reframing Mathematical Futures II Project set out to develop an evidence-based learning 
progression for mathematical reasoning in years 7-10 of schooling. This paper reports part of the 
process and findings particularly around student reasoning about shape and angle as part of the 
development of a progression for geometrical reasoning. Concerns are raised about the low level of 
understanding and reasoning in these areas and the need for further research in the study of the 
development of the concept of angle. 

Keywords: Geometry, measurement, learning progression. 

Introduction. 
Geometry and spatial visualization is important for STEM (Wai, Lubinski & Benbow, 2009) and the 
development of number understanding (Verdine, Golinkoff, Hirsh-Pasek, & Newcombe, 2017). Yet 
in some countries the amount of geometry being taught has been reduced over many decades leading 
to a decline in teacher knowledge. The improvement of the teaching and learning of geometry requires 
both attention to the curriculum and enabling teachers to implement the curriculum more effectively. 

The Australian Mathematics and Science Partnership Program (AMSPP) funded by the Australian 
Government Department of Industry, Innovation, Climate Change, Science, Research and Tertiary 
Education, was established essentially to increase the participation and expertise in STEM related 
areas. The Reframing Mathematical Futures Project II (RMFPII), as part of the AMSPP aimed to 
build a sustainable, evidence-based learning and teaching resource to support the development of 
mathematical reasoning in Years 7 to 10.  This paper reports on part of this process with a particular 
focus on students’ reasoning about shape and angle size.    

Learning progressions, while not new, relatively recently have become the focus of systematic 
research efforts (see Siemon et al. 2017). There have been different interpretations of the meaning 
and use of learning progressions (and the closely related learning trajectories - see the special edition 
of Mathematics Teaching and Learning, 6(2), 2004). The learning progression, as we are using the 
term, describes stages in the development of geometric reasoning which are evident sequentially in 
the responses of many students. It assumes that learning takes place over time, and that teaching 
involves recognising where learners are in their learning journey and providing challenging but 
achievable learning experiences that support learners’ progress to the next step in their particular 
journey (see Siemon et al., 2017 for recent research and development on this). The learning 
progression is thus closely linked with teaching and learning. The research presented in this paper is 
in the context of a larger study which is developing a learning progression for geometric reasoning.  

Geometric reasoning is the ability to critically analyse axiomatic properties, formulate logical 
arguments, identify new relationships and prove propositions. It is demonstrated in early stages 
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through attention and explanation with students then moving to describing, analysing, inferring, 
conjecturing and deducing geometric relationships leading to them engaging in formal proof (Brown, 
Jones, Taylor, & Hirst, 2004). Being able to invent and apply formal conceptual systems to investigate 
geometric relationships is part and parcel of reasoning geometrically (Battista, 2007). 

In common with other developed learning progressions and trajectories a synthesis of relevant 
research literature was undertaken to establish a hypothetical learning progression for geometric 
reasoning which included a breadth of geometric concepts from the curriculum since its application 
was to be with classroom teachers. In constructing the progression, we acknowledge that the 
dominance of van Hiele levels on geometric thinking research, and their neglect of visualisation, 
meant that the framework we developed needed to move beyond these factors and recognise that 
students can reason at multiple levels, at different rates for different concepts. Our synthesis of 
available research findings led to the development of an initial hypothetical geometric learning 
progression that included both geometry and measurement concepts and which was based on 
Battista’s (2007) proposed four levels of thinking: visual-holistic reasoning, analytic-componential 
reasoning, relational-inferential property-based reasoning, and formal deductive proof. He expanded 
the development of property-based thinking to progress from visual-informal, to informal 
insufficient-formal reasoning and finally sufficient formal property-based reasoning. The 
hypothetical learning progression we proposed (Seah & Horne, 2019) made a distinction between 
descriptive reasoning - using informal language to explain what one sees and analytic reasoning - 
using formal language to analyze properties of shapes. It also encompassed concepts from a range of 
aspects of geometry including shape, transformation and location, and measurement. This allowed us 
to better investigate the growth in the connectedness between visualization and mathematical 
discourse and contributed to the design of instructions that targeted specific thinking within a 
framework which was connected to, but not defined by curriculum.  

The research question considered in this paper is how do students’ reason about angle, angle measure 
in a two dimensional context of shape. This is set in the overarching project of developing a learning 
progression for geometric reasoning. 

Method 
Based on the hypothetical learning progression we designed a series of pen and paper assessment 
tasks, which were based on practical situations, and would allow students to demonstrate reasoning 
as well as other knowledge and skills. While there have been some studies (for example, Keiser, 2004; 
Mitchelmore & White, 1998), angle and angle measure is an area of geometry that has not received 
a lot of attention yet occupies considerable curriculum space connecting to many aspects of shape 
and measurement leading through to trigonometry. Typical angle questions in text books in years 7-
10 require students to find the magnitude of angles from diagrams. The intention for these 
assessments was to seat the problems in real situations to which students could relate. An example of 
such a task is an angles task shown in figure 1 where students physically construct the angles through 
paperfolding before finding their magnitudes. The intent of this question was to focus on students’ 
ability to use knowledge of properties of shape to make deductions about angle measure hence part 
a) focused on the properties of the 2D shape while part b) sought angle measures and explanation. 
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Figure 1: Shape and angles task 

Each task was designed with a marking rubric to enable teachers to easily score the students’ work.  
The rubric for the angles task is shown in Table 1. The scoring rubric requires clear reasoning to be 
given for the responses to attain the higher scores. GANG1.1 refers to a rubric score of 1 on the 
question GANG1 and is used in later analysis. 

SCORE DESCRIPTION For GANG1 

0 No response or irrelevant response 

1 Disagree it is a rhombus based on appearance rather than properties 

2 Disagree it is a rhombus but claim it is a parallelogram or some other quadrilateral such as kite with 
some properties specified, or Agree it is a rhombus with reason relying on appearance such as “if you 
turn it to rest on its edge it is a rhombus”. 

3 Agree it is rhombus specifying two properties correctly but insufficient / incorrect properties to define it. 

4 Agree it is rhombus. Explanation needs to include necessary and sufficient properties, that is, it has 4 
equal sides, or is a parallelogram with one of the following properties 

· Adjacent sides equal 
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· Diagonals bisect each other at right angles or diagonals bisect the angles 
· Two lines of symmetry 

SCORE DESCRIPTION For GANG2 

0 No response or irrelevant response 

1 Incorrect angles 

2 At least 2 angles correct but no reason given or one angle correct with correct reasoning 

3 Two angles found correctly with sensible reasons or all angles correct with insufficient reasoning 

4 All angles correct with clear reasons given relating to the folding and properties. 
F = 45o; h = 45o; s = 135o (e.g., Folding corner to centre creates half right angle; All angles around 
centre of side equal so any 2 make 45o or Four angles of quadrilateral add to 360o) 

Table 1: Rubrics for shape and angle question 

A number of assessment forms, each with 6-7 questions, were structured covering a range of 
geometric content and trialled with students in years 7-10 in order to collect data on the questions and 
refine them as needed.  On the basis of these trials and the student responses assessment forms were 
finalised and data collected first from a small group of trial schools in three different states and then 
from the larger group of project schools across Australia. This data was analysed at two levels.  The 
first was at the level of individual questions focusing on the reasoning about specific geometric and 
measurement constructs while the second was at a meta-level using item response theory (IRT). For 
a detailed description of this IRT analysis see Siemon and Callingham (2019). The analysis led to the 
identification of eight zones based on the evidence of what these students could do. From this a 
learning progression based on the descriptions of these zones was created. 

Results and Discussion 
The teachers in all the schools had a choice of which assessment forms their students would complete. 
Many chose not to assess geometry. The data presented here is from 279 students in years 7-10. Table 
2 shows the percentage of students attaining each rubric score for the two questions.  

Rubric score Shape (GANG1) Angle (GANG2) 

0 39 50 
1 7 25 
2 4 8 
3 43 9 
4 7 8 

Table 2: Percentage of students in years 7-10 attaining rubric score  

As can be seen many students did not attempt the question or gave irrelevant answers. The following 
section shows the types of responses to the two questions. 
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Reasoning about shape 

A sample of student responses are shown here in table 3. Orientation was an issue for some students 
with confusion about diamond and rhombus for many students, like S2, thinking it was only a 
rhombus when it was positioned with a horizontal edge. 

Score  Reasoning 

1 S1  I don’t agree the shape wasn’t wide enough to become a rhombus. It is a diamond. 

2 S2  Yes because if you turn it on its side it is a rhombus 

2 S3  Yes because its [sic]  just a square pushed over which is a rhombus (picture shown 
of square and 2 pushed over rhombuses) 

2 S4  No it’s a parallelogram. It has two pairs of parrallel [sic] lines and 2 pairs of angles 

2 S5  I agree because to [two]  of the opposite sides were equal 

3 S6  Yes I agree a rhombus 2 horizontal parallel lines 2 diagonal parallel lines 

3 S7  Phoebe is correct when she states that the shape made from the paper is a rhombus 
as the opposite sides are equal to one another, opposite angles are equal to each other 
and the sides are parallel 

3 S8  This shape is a rhombus because properties of a rhombus all sides are equal, 
diagonals bisect each other at right angles, all angles are equal 

4 S9 I agree.  This is because all the sides are the same length.   
There are also two pairs of parallel lines  There are two acute angles and two 
obtuse angles. 

4 S10 Yes all the sides same measurement 

Table 3: Student reasoning about shape 

The explanations given by students such as S1-3 could be classified as “it looks like …” with either 
agreement that it is a rhombus or disagreement because it is a diamond. S3 goes a little further with 
dynamic imagery showing in the response. S4 and S5 began to use properties in their reasoning 
though limited and insufficient. S6 and S7 used properties but defined a parallelogram rather than a 
rhombus with S6 also indicating orientation. While giving a necessary and sufficient property 
initially, S8 went on to give further properties, the last of which was incorrect. For the highest rubric 
score S9 also gave extra properties but these were written as an extra while S10 correctly gave just 
the important property. None of the students specified that the sides had to be straight or that the 
shape was planar and closed but in the context this was not seen as being necessary.  

Reasoning about angle sizes 

Table 4 shows some of the students reasoning about the angle size. 

Score  Angles  Reasoning 
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1 A1 acute acute 
obtuse  

f, h smaller  s bigger 

1 A2 7 7 6   The angles from s are 6 because there are 6 lines finishing at the s 
angle.  All the angles from the h are 7 because they are also reaching 
the end.  All the angles from the f are also touching the end of the page 

1 A3 30 45 20  The way I worked it out was I pictured the pretracter [sic] in my head 
and trying to figure the degrees of it  

2 A4 45 45   -   I estimated the angles by imagining a 90 degree angle on the f, s, h 

2 A5 45 70 160    [a right angle shown divided in two to make 45]  h 180 /2 à 90 / 2 à 
45 because of the 3 angles make 180 so you can divide by 3 

4 A6 45, 45, 135   The half creases indicate two right angles. H and f are halves of the 
right angles so 90/2=45. Quadrilateral has internal sum of 360   h and 
the opposite is 90 total S =(360-90)/2 

4 A7 45 45 135   Angle f is based on a straight line and there are 8 equal angles (180/8 
= 22.5) but f is two of these 22.5 x 2 = 45o  Angle h is the same thing 
just positioned differently  Angle s I found because a triangle equals 
180o  22.5 + 22.5 = 45  180-45 = 135 (with diagram) 

Table 4: Student reasoning about angle size 

A2 demonstrated a lack of comprehension about the concept of angle using the number of lines 
meeting at the point to provide the angle size. Many of the students associated angle size with 
protractors and when asked to find the angles, the only way of which they were sure was to measure 
using a protractor, or for A3 and A4 imagining one, which suggests that they have had little 
experience of reasoning about angle sizes from given information and their knowledge of geometry. 
A5 began with a correct calculation using a diagram to illustrate but then became confused. A6 and 
A7 both calculated correctly giving reasons. The rubrics and students’ responses show increasing 
sophistication in reasoning. However, there was little evidence of students using relational inferential 
property based reasoning. While the theoretical framework with which we began was useful in the 
design of questions and aspects of analysis the final learning progression developed is based on 
descriptions of what the students actually demonstrated in their geometric reasoning. 

Based on responses from many students and the responses to 36 different questions on the assessment 
forms of which this angles question is only one, an item response analysis was done using Rasch 
modelling (See Siemon & Callingham, 2019). Figure 2 show the logit map returned by the analysis, 
based on valid responses from 742 students.  The responses to the GANG questions have been 
highlighted on the map.  The dotted horizontal lines show where some blank rows were removed. 

From the map of the item responses it can be seen that GANG1, the shape question, has responses 
spanning zones 3 to 7 and GANG2, the angles question, spans zones 4-7.  Based on these responses 
the descriptions of what students could generally do at each of the zones provided the evidence based 
learning progression for geometric reasoning. From this question at zone 3 the students were 
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recognizing shape because it looked like it but were not yet correctly finding any angles.  At zone 4 
they were starting to reason about shape using properties and were responding to angle size with 
general information such as acute, obtuse and right angles. In zone 6 they were correctly finding some 
angles and were able to explain their reasoning about some of these. By zone 7 they were able to 
identify shape giving necessary and sufficient properties and were able to reason about the magnitude 
of angles providing sound explanations. 

 

 
Figure 3  Logit map of responses to assessment forms 

According to the curriculum these students are meant to have studied knowledge about angles in 
geometry and the properties and identification of quadrilaterals before year 8 so it is of some concern 
that almost 80% of students were operating below zone 6 with 75% unable to find the magnitude of 
an angle in this situation. Some students showed they were not even clear about the concept of angle.   

Concluding comments 
The students’ reasoning about angle and angle measure was generally at a lower level than indicated 
by the curriculum. Students often did not have the basic knowledge of the properties of quadrilaterals 
sufficiently connected to enable them to use these in reasoning about angle size. The student 
responses indicate many issues in their learning about shape and angle and further investigation is 
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needed, particularly about the understanding of angle and angle measure. The analysis of the student 
answers to the questions combined with the item response analysis allowed a learning progression 
based on students’ actual responses rather than just a validation of a proposed hypothetical 
progression. The full learning progression is based on all the questions used in the analysis and not 
just the one question and while the focus is reasoning, reasoning cannot be separated from the 
understanding of the underlying concepts. Since the final learning progression developed is based on 
what students could actually do it should be of use to teachers enabling them to map students’ progress 
and inform teaching. Further research is needed on the implementation of such a progression. 
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Introduction 
Geometry, being one of the main areas for proof-related activity in school mathematics, is a topic in 
which learners can work with counterexamples. Sinclair et al. (2016) recently highlighted that more 
research is needed on task design with dynamic geometry environments (DGEs). We are addressing 
these issues by elaborating a set of theory-informed task design principles involving DGEs and using 
these to study students working with geometric diagrams (Jones & Komatsu, 2017; Komatsu & 
Jones, 2019). Given the importance of networking theoretical approaches, in this short paper we build 
on our studies by employing a conceptual framework on virtual manipulatives (Osana & Duponsel, 
2016). Our research question is how, in using Osana and Duponsel’s framework, our task design 
helps students to produce and address what they think are counterexamples in geometry. 

Virtual manipulatives 
Following Moyer-Packenham and Bolyard (2016), DGE tasks where on-screen objects are draggable 
can be regarded as virtual manipulatives. Osana and Duponsel (2016), based on a thorough review, 
proposed that task design with virtual manipulatives should take into account: the surface features of 
representations, the pedagogical support, and students’ perceptions and interpretations. 

Method 
We undertook a task-based interview (of 35 minutes) with two prospective teachers from a national 
university in Japan. Each of the participants had experience of using DGEs. They worked on the tasks 
in Figure 1, which were based on our design principles (for details, see Komatsu & Jones, in press). 
For data analysis, we used video records of the task-based interview, transcripts of the 
undergraduates’ talk, their written work, and their DGE file.   

Task 1. In parallelogram ABCD, draw perpendicular lines AE and CF 
to diagonal BD from points A and C, respectively. Prove that 
quadrilateral AECF is a parallelogram. 

 
Task 2. Construct the diagram shown in Task 1 using a DGE. Move the vertices to change the shape 
of parallelogram ABCD, and examine whether quadrilateral AECF is always a parallelogram. 

Figure 1: Tasks used in the interview 

 
Figure 2: Types of diagrams produced by the undergraduates  
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The undergraduates completed Task 1 by producing a valid proof where they showed that AE = CF 
and AE // CF. In our analysis, we focus on how the undergraduates worked on Task 2. 

Analysis 
The undergraduates produced various diagrams with the DGE, as shown in Figure 2. They considered 
that the cases shown in Figures 2b and 2d were counterexamples to the statement (quadrilateral 
AECF is a parallelogram). They successfully addressed the case of Figure 2d by extending the 
original statement (as in Figure 2e) and proving that quadrilateral AECF in this case is a 
parallelogram. Here, we summarise how the set of tasks in Figure 1 embody the three elements of the 
virtual manipulatives framework of Osana and Duponsel (2016):  

· Task 1 contains a given diagram. This diagram includes a specific representational feature; namely 
a ‘hidden’ condition implying that perpendicular lines from points A and C always intersect with 
diagonal BD. By this surface feature, and the pedagogical support in the text in Task 2 explaining 
the DGE use (i.e. use of the DGE to check the truth of the statement), the undergraduates could 
discover what they viewed as ‘counterexamples’ to the statement (as in Figures 2b and 2d).  

· Pedagogical support included in Task 2 was not excessive in the sense that this task gave the 
undergraduates the opportunity to explore the task on their own by not specifying what they were 
expected to do when discovering what they might consider to be ‘counterexamples’.  

· The sequence of Task 1 and Task 2, designed by taking students’ interpretations of 
counterexamples into account (see Komatsu & Jones, 2019), stimulated the undergraduates’ 
subsequent activity where they spontaneously dealt with the case of Figure 2d by extending the 
original statement with proving in Figure 2e. 

Conclusion 
This analysis illustrates how our theory-informed design principles are further supported with the 
conceptual framework on virtual manipulatives of Osana and Duponsel (2016) in terms of the surface 
features of representations, the pedagogical support, and students’ perceptions and interpretations. 
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This paper presents a project in progress that seeks to gain empirical insights into the network of 
mental representations associated to sine of pre-service mathematics teachers as well as their 
thinking and typical errors and misunderstandings. First collection of data show that students’ 
concepts of sine vary significantly and that the students have problems associating meaning to the 
value of sine. It is assumed, that there is a connection between the knowledge of degree and radian 
measure of angles and the understanding of sine and cosine. Further data will be obtained in a second 
phase that will include semi standardized interviews.  These interviews will also contain aspects of 
the derivative of sine. 

Keywords: Trigonometry, sine, angle measure, Radian, Grundvorstellungen. 

 

Introduction 
In the last few years, little attention has been given to the teaching and learning of Trigonometry in 
Germany. Most of the work focuses on subject-matter analysis (Korntreff, 2018; Filler, 2009; Malle, 
2001). Unfortunately, there is not a lot of empirical research on the students learning process and 
furthermore, Trigonometry is slowly disappearing from the Curricula of many federal districts due to 
cutbacks of mathematical contents. This is unfortunate for many students who want to engage in a 
study of Natural Sciences, Engineering or Mathematics, in which the knowledge and the profound 
understanding of trigonometric functions are basic requirements for successful academic studies. 
Therefore, it is important to evaluate the current situation of students who start their careers and to 
draw a picture of their understanding of Trigonometry, including obstacles that they are confronted 
with.  Major issues in the learning process of Trigonometry are the transition from right triangles to 
the coordinate plane, the understanding and use of radian measure and the modelling of periodic 
processes with trigonometric functions.  

Since Trigonometry is an essential component of the high school curriculum throughout the United 
States and other countries, there is some international research on the learning and teaching of 
Trigonometry. There has been some research regarding students learning of Trigonometry with a 
focus “on the move from right triangle Trigonometry to rotations about the origin, then to the unit 
circle, and finally to the sinusoid” (Brown, 2005, p.85). In Brown’s study, preliminary interviews 
suggest the classification of three different ways students think about sine and cosine in the beginning 
of the learning process, that seem to correlate with their general geometric and algebraic abilities. 
Students interpreted values of sine and cosine as 1) ratios in right triangles, 2) distances from the 
axes, and/or 3) coordinates of a point. These different approaches could be traced back to their use of 
words and to what they wrote down in their solutions of given exercises.  

Due to the changes in the school Curriculum and the importance of Trigonometry in many fields of 
study, it is crucial to know what previous knowledge about Trigonometry students bring to their 
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academic carrier at the university. Beyond that it is of great interest to know which mental 
representations were developed by the students and how these Representations interact with each 
other. When talking about mental Representations I’m refering to the concept of Grundvorstellungen1 
which will be explained further in this paper. These GV prepare the ground for reasonable solving of 
problems in Trigonometry. The Theoretical Framework of this paper aims to 

1. give an Overview over the complex different GV of sine,  
2. show the interconnection of different GV of sine, especially the transition from right-angled-

triangles to the Unit Circle.  
3. present some of the previous mathematical content that these GV are built on, in particular 

the measurement of angles, 

The planned research that is presented in this paper intends to verify whether these Interconnections 
and Dependencies between GV really exist in the students minds. In  this case, the GV of sine can be 
a useful tool to diagnose learning problems in the field of Trigonometry. 

Theoretical Framework 
Grundvorstellungen of sine  

Apart from the mathematical content that is analyzed in this study, an important didactical question 
is: What do students (literally) think when dealing with sine and cosine? There are different theories 
that strive to give a good explanation for the construction of mental representations of mathematical 
objects using for example the theory of concept image and concept definition (Tall, D., &Vinner , S. 
1981). In German literature, a related theory uses the Terminology of Grundvorstellungen (vom Hofe 
& Blum, 2016). GV present a didactical concept that classify mental mathematical representations. 

GVs thus describe relationships between mathematical structures, individual psychological 
processes, and subject-related contects, or, in short: the relationships between mathematics, the 
individual, and reality. (vom Hofe & Blum, 2016, p.231) 

The work with GV has a long tradition in the area of didactics of mathematics in Germany and has 
been developed in various branches of mathematics like basic arithmetics, geometry, algebra, 
functions etc. Yet, little work has been dedicated to the concept of GV in the area of Trigonometry. 
A first attempt to categorize these GV of sine on a normative level can be found in the paper of Salle 
and Frohn (2017). They distinguish four GV of sine and cosine: 

1. Proportion – GV  
This GV is based on the idea of the sine as the ratio of two sides in a right angled triangle. 
The value of the sine corresponds to a quotient. 

2. Projection – GV  
The value of 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼) can be interpreted as reduction factor 𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼) ∙ 𝑎𝑎. One can think of a 
shadow that is casted by orthogonal light rays. 

3. Unit-Circle – GV  

                                                 
1  further abbreviated as GV 
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The Unit-Circle – GV is associated with the parametrization of the Unit-circle, specifically 
the circular motion of an object. The value of the sine corresponds to a number which provides 
information about the position of an object. 

4. Oscillation – GV 
The mathematical modelling of periodic processes requires the Oscillation – GV. To give a 
mathematical model of a vibrating string via the sine function, the Oscillation GV is needed. 

Apart from this study, there has not been any empirical research regarding the GV students might 
develop over the course of a learning cycle yet. The first collection of data of the present study 
indicates that the GV of sine of pre-service mathematics teachers vary significantly. When asked what 
sine means to them, they mention sinusoids, right-angled triangles, angles, the theorem of Pythagoras 
and the Unit Circle.  

At this point I want to emphasize two important aspects. First of all the GV of sine are quite complex, 
that is why I will introduce the distinction between primary and secondary GV. Regarding that 
distinction primary GV need to constitute a relation to real world phenomena whereas secondary GV 
relate to “imagined actions dealing with mathematical objects and means of representing these 
objects, such as number lines, terms, and function graphs” (vom Hofe & Blum, 2016, p. 234). 
Secondary GV therefore can depend on the understanding or the mental representation of other 
mathematical objects. To give an example: A sustainable GV of sine can rely on the concept of an 
angle, or on the concept of a function. Secondly it is important to note, that GV form a network. That 
is they are connected and influence each other, “GVs are not regarded as isolated fixed entities, but 
as variable parts of a growing and changing system” (vom Hofe & Blum, 2016, p. 229). This influence 
exists between different mathematical objects aswell as between different GV of on mathematical 
object. 

Interconnection of GV - From right-angled triangles to the unit circle 

The Interconnection between the different GV of one mathematical object can be seen very clearly in 
the case of the Proportion-GV and the Triangle-GV. The learning of Trigonometry usually takes place 
in two learning cycles. In the German curriculum sine and cosine are introduced as the ratios of sides 
in a right-angled triangle in classes 8 or 9. In this part of the learning process sine takes angles of 
triangles as an input that are measured in degrees. The most common exercises consist of finding the 
unknown side of a triangle. At this point sine and cosine can be seen as rather stiff tools that only 
serve a specific purpose. On this topic, Thompson comments as follows,  

In students’ understanding sine, cosine, and tangent do not take angle measures as their arguments. 
Rather they take triangles as their arguments. […] Also, angles do not vary in triangle 
Trigonometry. (Thompson, 2008, p.3)  

In class 10 the sine receives new meaning when it is introduced via the unit circle. In this part of the 
learning process sine takes angles as an input that are measured in radian and is introduced as a 
periodic function. This transition from the rather stiff representation of sine on right angled triangles 
to the dynamic representation on the unit circle presents many obstacles to students of Trigonometry. 
Brown (2005, p.222) found that students have problems understanding the role of the unit in the unit 
circle and finding rotation angles in standard position in the Cartesian plane. Another finding showed 
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that more than a quarter of the 119 participants of Brown’s study were not able to make the move 
from the unit circle to the sinusoid and couldn’t even explain what was represented on the 𝑥𝑥- and 𝑦𝑦-
axis of the sinusoid. 

 
Figure 1. Transition from right-angled triangles to the unit circle 

Students struggle with the dual nature of sine as a ratio or a number (Brown 2005). Depending on 
what resources students have to think about angles, this struggle might be associated with the lack of 
knowledge and understanding of radian measure.  

Building on previous GV - Radian and degree measure 

As mentioned earlier in this paper the GV of sine build on previous known mathematical objects, in 
particular students need to have a concept of angles and angle measure. The understanding of radian 
and degree measure concerns multiple mathematical aspects. One aspect is certainly about the 
measuring process itself, besides the way we measure angles is deeply connected with the way we 
think about angles. What is an angle? What is a measure? How is a unit defined and for what reasons? 
Concerning the question “what is an angle?” According to Jordan (2006) there are at least three 
different aspects of understanding related to angles: the notion of rays, the notion of a field and the 
notion of a rotation. A more thorough investigation of the interpretation of the angle concept can be 
found in the work of Mitchelmore and White (1998). They argue that the learning process of the angle 
concept develops in three stages. First, students have a 
situated angle concept, in the second stage the students 
develop a contextual angle concept and in the third stage 
they are able to build an abstract angle concept. 

When thinking about angles in 360 degrees, one possible 
way to interpret 1 degree is to think of it as a piece of a 
circle, but there are also other ways to think about angles. 
Instead of thinking about a circle that is cut into pieces it 
is also possible to imagine parts of a rotation or the arc 
of a circle. In this sense, a degree is just a tiny part of a movement. For example, the distance a 
gondola of a ferris wheel has moved within a certain time. If we start thinking about angles in this 
way, there are also different plausible ways to define the angle measure. It is possible to define the 
angle measure as the length of an arc of a circular motion. This is when the idea of the radian measure 

Figure 2. the arc of  two circles measured in radian 
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emerges. To keep the measurement independent of the size of the circle the unit is defined by the 
radius of the circle and a given arc is measured in relation to this radius. 

The way angles are measured is one of the most significant differences between right-angled triangle 
Trigonometry and Unit Circle Trigonometry. Accordingly, the question arises: Does the way of 
thinking about angles have an influence on the way of thinking about sine? Because of this important 
link between angle measure and the different ways the sine can be defined one can assume that a 
better understanding of radian measure can help with the understanding of Unit Circle Trigonometry.  

Research design 
The goal of this study in progress is to find out more about the network of GV regarding 
Trigonometry, in particular find answers to the following questions: What GV do students actually 
have about sine? How are the different GV of sine connected to each other? Are there GV of other 
mathematical objects that have an influence in the way students think about sine?  

This study will be conducted with pre-service mathematics teachers at the beginning of their academic 
studies that most likely already had a learning cycle in Trigonometry within their school curriculum. 
The study will be conducted in two phases. The first phase consists of a written test that gives 
information over the general abilities and GV that students have developed, concerning the area of 
Trigonometry. In the second phase the students will be interviewed to get deeper qualitative insight 
in the way students think about sine and angle measure.   

The test is composed of twelve questions that are subdivided into four Categories. Three Categories 
are attributed to different GV namely the Proportion-GV, the Unit-Circle-GV and the Oscillation-
GV. The fourth Category contains three open questions. Every Category has therefore three questions 
on different difficulty-level. With this test-design it is possible to check if certain GV are present in 
the students mind and moreover on what level they can work with this GV. The open questions can 
be solved with reference to various GV and are used to check for dominant GV. The test measures 
the students’ abilities to compute and approximate values of sine, their knowledge about degree and 
radian measure, as well as their ability to solve exercises on triangles, the unit circle and the function 
graph. Depending on the scores in the test and the reported GV of sine a preferably wide range of 
different subjects will be chosen to conduct the interviews.  

The test includes open questions as well as questions that can only be solved if the students have 
access to explicit GV of sine. I want to give a small sample of questions that were used in the test. 
Some of those were taken from the study of Brown (2005) others developed over time in a course of 
didactics of analysis.  One question that seems to be a good indicator for GV that are accessible to 
the students is: “Estimate the value of sin(80°)”. This question can be solved by the students with 
reference to the unit circle, right-angled triangles or the graphical representation of the sine-function. 
Another estimation includes radian measure: “The Radian measure of an angle 𝛼𝛼 is exactly 3. 
Estimate the value of  sin(3). Justify your estimation”. In this case not all GV of sine can be used. 
Moreover, an understanding of the radian measure is needed. 
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The interviews will be semi-standardized 
with questions concerning the GV of the 
students and tasks in which multiple GV 
of sine need to be activated. In particular, 
the derivative of the sine-function will be 
discussed, because it can be approached 
in various ways. It is possible to justify 
the connection between the sine function 
and the cosine function as its derivate 
with the Proportion-GV, the Unit-Circle-
GV and the Osscilation-GV. A very 
fertile visual Justification is delivered 
through the Representation of sine in 
Figure 3. For this argument to be fully 
understood, students need to be able to 
switch between the different GV of sine. Moreover they need a good understanding of the derivative 
as the slope of the tangent and as an instantaneous rate of change. 

First results 
First of all, the answers of the students show that the concept definition of sine contains various ideas 
and GV. When asked what sine means to them, answers often include the mention of Wave-functions 
and the unit circle. Others describe sine as a tool to determine unknown lengths of sides in a right 
angled triangle, or gave formulas including complex numbers. These responses could be linked to the 
four GV of sine mentioned above.  

Although the students had good explanations for what sine meant to them in general, when they were 
asked what precisely 𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋) means to them, most of the answers only included guesses of the values 
of cos (𝜋𝜋). These guesses included -1,0 and 1 but made almost no connection to their GV of sine. A 
similar result was found when the students were asked to estimate the value of 𝑠𝑠𝑠𝑠𝑠𝑠(80°). Out of 30 
students only five could give a correct answer and only two provided an explanation for their correct 
estimate. Some guesses for 𝑠𝑠𝑠𝑠𝑠𝑠(80°) included values higher than 1 and even values given in terms of 
𝜋𝜋. It seems that the students had a vague concept of sine and that it was difficult for them to establish 
a connection between their definition of sine and the calculation of sines for given angles. 

Another difficulty arose when the students were asked what the difference between radian and degree 
is. Some students openly admitted that they had no idea, while others tried to infer meanings from 
the words. Overall the answers represented the confusion of the students concerning the terminology, 
although some could convert radian measure into degree measure. Similar results have been found in 
the study of Fi (2003) and Akkoc (2008). Some students just regarded degree and radian as buttons 
on a calculator that need to be pressed. Another answer confirms findings of Akkoc that say, that 
students only consider numbers in radian measure, when there is 𝜋𝜋 involved. A repeating error of 
students involves the mentioning of 𝜋𝜋 in the output of the sine-function. 

Figure 3. Visual Justification for the derivative of the sine function 
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One question in particular provided indications to the statement of 
Thompson (2018) that for some students the sine function only takes 
triangles and not angles as an argument. When presented an angle of 
53° as shown in Figure 4 with the task to identify cos(𝛼𝛼) and sin(𝛼𝛼) 
graphically, 13 out of 30 students were not able to give a correct answer 
though some of them used the Proportion-GV in other questions. In 
some of the answers students replied, that it is not possible to identify 
the wanted quantities with this figure, because they couldn’t find a 
right-angled triangle. Another common mistake was that students chose 
to connect the ends of the line segments and ended up with an isosceles 
triangle instead of a right-angled triangle. Even though the students had 

access to the correct GV, they couldn’t use it in this context. This shows the need of building up 
flexible and sustainable GV. 

Discussion 
The first collection of data showed that students can operate with various GV on different difficulty 
levels. It will be interesting to know why some students can operate with a certain GV on a basic 
difficulty level, but could not advance to a higher difficulty level. The last example seen in Figure 4 
shows that some GV are linked to special situations and cannot be used when different mathematical 
objects are involved. It remains to be seen if these difficulties are just singular observations or if there 
is a pattern. To confirm that students possess and use the GV on different levels it is necessary to 
conduct further research and to collect data from more students that are willing to participate in 
interviews. In this respect it is more likely to reveal the true thinking process of the students in a 
conversation. A second phase of the investigation, with a revised test and follow up interviews is 
already planned. 

References 
Akkoc, H. (2008). Pre-service mathematics teachers' concept images of radian. International Journal 

of Mathematical Education in Science and Technology, 39:7, 857-878. 
Brown, S. (2005). The Trigonometric Connection: Students' Understanding of Sine and Cosine. Ph.D. 

dissertation,Illinois State University. 
Fi, C. (2003). Preservice school mathematics teachers' knowledge of trigonometry: Subject matter 

content knowledge, pedagogical content knowledge and envisioned pedagogy. Ph.D. 
dissertation, University of Iowa, USA. 

Filler, A.  (2009). Trigonometrie. In: H.-G. Weigand, Ausschreiben (2009): Didaktik  der Geometrie 
für Sekundarstufe I. Heidelberg: Spektrum Akademischer Verlag, S.239-263. 

Gray, E., & Tall, D. (1994). Duality, Ambiguity, and Flexibility: A "Proceptual" View of Simple 
Arithmetic. Journal for Research in Mathematics Education, Vol.25, No. 2, 116-140. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of 
mathematics (pp. 1-27). Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc. 

Jordan, A. (2006). Mathematische Bildung von Schülern am Ende der Sekundarstufe I - Analysen und 
epirische Untersuchungen. Hildesheim: Franzbecker. 

Korntreff, S. (2008). Didaktische Herausforderung der Trigonometrie. Wiesbaden: Springer 
Spektrum. 

Figure 4. an angle of 53° 

Thematic Working Group 04

Proceedings of CERME11 829



 

 
Lowsky M. (2013) Die Ableitung des Sinus ist der Kosinus, oder: Wie autoritär ist die Mathematik?. 

In: Rathgeb M., Helmerich M., Krömer R., Lengnink K., Nickel G. (eds) Mathematik im 
Prozess. Springer Spektrum, Wiesbaden 

Malle, G. (2001). Genetisch in die Trigonometrie. Mathematik Lehren, 109, 40-44. 
Mitchelmore, M. & White, P. (1998): Development of Angle Concepts: A Framework for Research. 

In: Mathematics Education Research Journal, 10(3), S. 4-27. 
Rittle-Johnson, B., & Wagner Alibali, M. (1999). Conceptual and Procedural Knowledge of 

Mathematics: Does One Lead to the Other. Journal of Educational Psychology, 91(1), 175-
189. 

Salle, A., & Frohn, D. (2017). Grundvorstellungen zu Sinus und Kosinus. Mathematik Lehren. 204, 
8-12. 

Star, J. (2005). Reconzeptualizing Procedural Knowledge. Journal for Research in Mathematics 
Education, 36(5), 404-411. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular 
reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169. 

Tall, D. et al. (1999). What is the object of the encapsulation of a process. The Journal of 
Mathematical Behaviour. 18(2), 223-241. 

Thompson, P.W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the 
foundations of mathematics education. In O. Figueras, J.L. Cortina, S.Alatorre, T. Rojano & 
A.Sépulveda (Eds.), Plenary Paper presented at the Annual Meeting of the International 
Group for the Psychology of Mathematics Education (Vol 1, pp. 31-49) 

vom Hofe, R., & Blum, W. (2016). "Grundvorstellungen" as a Category of Subject Matter Didactics. 
Journal für Mathematididaktik. 37(S1), 225-254. 

Weber, K. (2005). Students' Unterstanding of Trigonometric Funcions. Mathematics Education 
Research Journal. 17(3), 91-112 

 

Thematic Working Group 04

Proceedings of CERME11 830



 

 

To figure out more than a solution to a geometric problem: What do 
prospective teachers?  

 
Fátima Mendes1, Ana Maria Boavida2, Joana Brocardo3 and Catarina Delgado4  

1 Escola Superior de Educação do Instituto Politécnico de Setúbal, Portugal; 
fatima.mendes@ese.ips.pt  

2 Escola Superior de Educação do Instituto Politécnico de Setúbal, Portugal; ana.boavida@ese.ips.pt  
3 Escola Superior de Educação do Instituto Politécnico de Setúbal, Portugal; 

joana.brocardo@ese.ips.pt 
4 Escola Superior de Educação do Instituto Politécnico de Setúbal, Portugal; 

catarina.delgado@ese.ips.pt 

 

Keywords: Prospective elementary teachers, geometrical tasks, problem solving. 

This poster focuses on the development of prospective elementary teachers’ problem-solving capacity 
and, particularly, on geometric problem solving. More specifically, we present some preliminary 
results of a research project that is being developed, in a Portuguese School of Education focusing 
prospective elementary teachers’ preparation in geometry and measure, one of the disciplines of their 
bachelor’s degree. 

 

Theoretical framework 
Recent recommendations for mathematics teaching highlight that effective teaching of mathematics 
should involve students in “solving and discussing tasks that promote mathematical reasoning and 
problem solving and that allow multiple entry points and varied solution strategies” (NCTM, 2014, 
p.10). In the context of the development of "mathematical proficiency" (Kilpatrick, Swafford & 
Findell, 2001) of students, it is essential that the teacher develops “the ability to see the mathematics 
possibilities in a task” (idem, p. 370) as well as the capacity to propose tasks that promote reasoning 
and problem solving. The teacher must also be able to interpret what students do and say, to analyze 
their reasoning and to answer to the different approaches they use to solve a mathematical problem 
(Kilpatrick, Swafford & Findell, 2001). However, this is a challenging task, even by experienced 
teachers since often it is very difficult to interpret some students' solutions, either because they are 
not expected or because they do not look at them through the students’ eyes. In this sense, we believe 
that to offer prospective teachers the opportunity to produce more then one solution to the same 
problem, can help them to develop a ‘lens’ to interpret their future students’ problem-solving 
solutions and to use this understanding to help these students to develop their mathematical 
proficiency.  
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Research question and method 
This poster reports part of a research that aims to investigate prospective teachers’ capacity to produce 
and analyse different solutions to solve mathematical problems. This research has an exploratory 
design framed by a qualitative methodology (Patton, 2012). The participants are 39 prospective 
elementary teachers organized within two classes, that were inscribed in a Geometry and 
Measurement course (first semester, second year of the bachelor’s degree).  

The study had three mains phases. At the beginning of the GM course, the prospective teachers were 
asked to solve a diagnosis test, composed by six problems, using, if possible, more than one strategy 
to solve each one. To solve the problems, they had to mobilize only geometrical contents of the 
mathematics curriculum of primary, upper primary and middle school. Throughout the GM course, 
pre-service teachers were challenged to solve problems that could be solved using different strategies 
and the teacher, the first author of this poster, promoted and supported collective discussions of these 
strategies. At the end of semester, the preservice teachers were asked to solve a second test with five 
problems, and, in some of them, to use more than one strategy. 

Data includes pre-service teachers’ solutions of the problems, field notes focused on the development 
of the GM course and transcriptions of excerpts of video recorded collective discussions. In this poster 
we present only the analysis of the data related to the prospective teachers’ solutions of the problems. 

Results 
The results revealed that (i) initially prospective teachers expressed many difficulties in solving 
geometric problems and even more in to use more than one strategy to solve the same problem; (ii) 
there has been some progress, although incipient, concerning the production, by the future teachers, 
of more than one strategy to solve the same problem; (iii) the opportunity to solve problems and to 
analyze different strategies that can be used to solve each problem, helped the participants to improve 
their mathematical proficiency in the domain of Geometry and Measurement. 
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Personal geometrical work of pre-service teachers: a case study based on the 
theory of Mathematical Working Spaces 
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Abstract. In this contribution, we intend to revisit the interplay between geometrical paradigms GI and GII in the 
context of the current French curriculum, which gives an important place to modelling activities in mathematics 
learning. We asked master students to perform a geometric modelling task on the estimation of the area of a field. The 
resolution of the task requires an articulation between GI and GII by considering measurement and approximation. 
From this first study, it results that the vast majority of students have developed a geometric work in the GI paradigm 
by mobilizing a low use of the classical property-based proof discourse. These results question teacher training and, 
more broadly, the today's mathematics teaching in France. 

Keywords: Geometrical paradigms, Teachers training, Mathematical Working Spaces, Geometry teaching and learning 

Presentation and motivations of the study 

In this contribution, we revisit the issue of teaching geometry in teacher education, which was the 
subject of several of our presentations at the CERME conferences in the early 2000s. These 
presentations enabled the development of the theoretical and methodological framework of 
geometrical paradigms and Geometric Working Spaces, which is used to describe the forms and 
conditions of geometric work that is performed by students with the help of their teachers. 

Kuzniak and Rauscher (2011) provide a classification of the solutions given by pre-service teachers 
to a geometry task. The main authors' objective was to raise students' awareness of the interaction 
between geometrical paradigms GI and GII (see next section). However, their study  shows that 
primary school teachers were not very receptive to this interplay because they were confined to the 
first paradigm GI. Only secondary school teachers, more experienced in mathematics, understood 
the relevance of this interaction between paradigms. In the study, it was also questioned the 
difficulties that future primary school teachers had in teaching geometry because of their often 
deficient or old knowledge in the field. The goal was both to consolidate their knowledge and make 
them aware of the existence of several geometric paradigms leading to different forms of validation. 
It seemed interesting to us to review this work in consideration of the evolution of French 
curriculum, which has undergone notable fluctuations in recent years. The part given to geometry in 
education decreases significantly throughout the compulsory curriculum and its teaching is now 
mainly based on calculation and application, most often mechanical, of Pythagoras and Thales 
theorems, which are increasingly used to practice algebraic computation techniques. At the same 
time, more emphasis is put on modelling activities. In addition, from an institutional point of view, 
primary school teachers are now trained at university and must obtain a specific master's degree in 
education whereas previously they followed a two-year non-degree vocational training course after 
passing a competitive examination.  

More specifically, this research has two types of objectives that concern students who want to 
obtain a master's degree in primary education: 
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· identify the geometric work actually produced by these teacher students in order to 
understand it and eventually be able to influence it. 

· make these students aware of the measurement and area issues in relation with the geometric 
paradigms GI and GII with the possible interplay between these two paradigms. 

In this new study, which extends our recent studies on the teaching of geometry (Kuzniak and 
Nechache, 2015), teacher students had to perform a geometric modelling task on the estimation of 
the area of a field. This research is part of a larger project that aims to investigate mathematical 
work in various institutional contexts. The analysis of students’ geometric work is supported on the 
previously used research framework which, and this is also one of the motivations of this new 
study, had largely evolved towards what is now referred to as the theory of Mathematical Working 
Spaces (MWS). 

Theoretical and methodological elements 

As this research is based on the theoretical framework of Mathematical Working Spaces articulated 
with the notion of geometrical paradigms, we will briefly outline the main elements of this theory 
by referring the reader who wishes to know more about it to the literature on the subject, especially 
that of previous CERMEs. 

Geometrical paradigms 

According to Houdement and Kuzniak, (2006), in the context of teaching, it is possible to identify 
three geometrical paradigms named respectively GI, GII and GIII. By taking up the presentation 
made by Kuzniak (2018) we can introduce them in this way: 

“The paradigm called Geometry I is concerned by the world of practice with technology. In this 
geometry, valid assertions are generated using arguments based upon perception, experiment, and 
deduction. There is high resemblance between model and reality and any argument is allowed to 
justify an assertion and to convince the audience. Indeed, mechanical and experimental proofs are 
acceptable in Geometry I.” (Kuzniak 2018, p. 10) 

“The paradigm called Geometry II, whose archetype is classic Euclidean geometry, is built on a 
model that approaches reality without being fused with it. Once the axioms are set up, proofs have 
to be developed within the system of axioms to be valid. The system of axioms may be left 
incomplete as the axiomatic process is dynamic and has modelling at its core.” (Ibidem, p. 10) 

Both geometries, I and II, have close links to the real world, albeit in varying ways. In particular, 
they differ with regard to the type of validation, the nature of figure (unique and specific in 
Geometry I, general and definition-based in Geometry II) and by their work guidelines. To these 
two Geometries, it is necessary to add Geometry III, which is usually not present in compulsory 
schooling, but which is the implicit reference of mathematics teachers who are trained in advanced 
mathematics. In Geometry III, the system of axioms itself is disconnected from reality, but central. 
The system is complete and unconcerned with any possible applications to the real world. (Ibidem, 
p. 11) 

The identification of geometrical paradigms contributes to the understanding of the epistemological 
nature of the work actually produced in a school institution. The study of the circulation of 
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geometric work within the Mathematical Working Space will provide a more fine-grained 
characterization of this work. 

Mathematical Working Spaces 

The theory of Mathematical Working Spaces (Kuzniak, Tanguay and Elia, 2016; Kuzniak and 
Nechache, 2015), known as MWS, aims to analyse the mathematical work produced by students or 
teachers in a specific educational institution. Mathematical Working Spaces are designed and 
thought out in such a way that their users can carry out their work under conditions that promote the 
emergence of a coherent and complete work.  In this theory, mathematical work is structured 
through the interactions of epistemological and cognitive planes: 

· the epistemological plane, composed of three poles: representamen, artifact, theoretical 
reference frame. It is used to structure the mathematical content of tasks. 

· the cognitive level, composed of three cognitive processes: visualization, construction and 
proving. It reflects user's cognitive activity during task resolution. 

The move from one plane to another is ensured by a set of geneses linked to the poles: a semiotic 
genesis based on the registers of semiotic representation that gives the tangible objects of the MWS 
their status of operative mathematical objects; an instrumental genesis, which has for function to 
make the artifacts operative in the constructive process; a discursive genesis of proof, which allows 
to give meaning to the properties to be implemented in the mathematical reasoning. 

These three geneses facilitate the circulation between the two planes by stimulating an articulation 
between the respective components of the two planes. This set of relationships can be visualized by 
means of a diagram in the form of a triangular-based prism. 

The analysis of geometric work can therefore be done through one of the three dimensions 
associated with each of the geneses (semiotic, instrumental and discursive), or through the 
articulation of two of them: semiotic and instrumental ([Sem-Ins]), semiotic and discursive ([Sem-
Dis]), or discursive and instrumental ([Dis-Ins]). These different articulations thus define three 
vertical planes (Figure 1). 

 

Figure 1. The three vertical planes of the MWS (Kuzniak & Nechache 2014) 

The use of these different vertical planes helps to specify the circulation of geometric work in the 
MWS and the manner in which geometric work is carried out. 
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The task “Le terrain d’Alphonse” 

Experimentation  

To carry out the research, the task "Le terrain d'Alphonse" was assigned to two groups of 
undergraduate and master's students (45 students), who intend to teach in elementary school. The 
implementation of this task was performed in three phases. In the first phase, the task statement is 
given to the students in the form of a text to be read. 

Alphonse has just returned from a trip in Périgord where he saw a fieldin the shape of 
aquadrilateral that had interested his family. He would like to estimate its area. To do this, 
during his trip, he successively measured the four sides of the field and found, 
approximately, 300 m, 900 m, 610 m, 440 m. He's had a lot of trouble in finding the area. 
Can you help him by indicating how to do it? 

The purpose of the first phase is to specify that there is a lack of data to establish the exact shape of 
the quadrilateral that Alphonse wants to know the area. In the second phase, the length of a diagonal 
(630 m), without specifying which one, is given to the students to discuss the shape of the 
quadrilateral: convex or non-convex, crossed or not. Finally, once the shape of the quadrilateral has 
been decided, the third phase is devoted to concluding the resolution of the task. In each of the three 
phases, after collecting the students' written productions, we proceeded to a pooling. These 
exchanges allow us to list all the methods used by the students on the blackboard in order to discuss 
them. In particular, the results obtained are compared in relation to the selected shape of the terrain 
and the methods used to calculate the area.  

Several methods can be used to achieve this task and they involve different geometric paradigms 
depending on both curriculum expectations and the students' personal work. The resolution of this 
task requires a modelling approach and involves work on approximation issues related to 
measurement. 

Collection and analysis of data  

To conduct our research we collected the students' written productions (45 productions for each 
phase, for a total of 135 productions). We also recorded and transcribed the exchanges that occurred 
during the pooling.  

The students' written productions were studied by using a grid specifying the type of work done on 
the figure(s) and the types of discourses related to the area and its measurement. The analysis of the 
recordings of the pooling complements the analysis of productions and helps to refine student 
profiles. With the help of a statistical analysis software, we were able to identify five groups of 
students providing different forms of geometric work. Given the size of the present paper, we have 
limited ourselves to presenting briefly only four of these forms of work.  

The expected geometrical work in master  

A teacher trainer was solicited to implement the task in her group. She solved the problem 
informally before giving it to her students and her reasoning is in line with the work expected from 
the students who want to pass the competitive examination which presupposes knowledge of the 
geometry taught at the College (Grade 6 -9). She immediately detects that a data is missing and asks 
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for a diagonal. Using the value of a diagonal (630 m), she starts by constructing the quadrilateral 
with ruler and compass (instrumental dimension) to get an idea of its shape (semiotic dimension). 
She draws the figure using a scale that matches 1 cm on the figure to 1 m on the field. Thus, her 
work begins in the [Sem-Ins] plane with the intention of using a configuration as a support for the 
reasoning. She then deducts two possible forms of the quadrilateral, one convex and the other not 
convex1. Then, she suggests to start by determining the area of the terrain with a convex shape. Her 
choice is motivated by the fact that, in this case, the task is easier for the students. To achieve the 
task, she makes a freehand drawing and decomposes the quadrilateral into two triangles. On the 
drawing, she specifies known and unknown values used to calculate the height of each triangle  
thanks to Pythagoras's theorem (discursive dimension). The work of proof is then based on 
algebraic computation with a strong numerical component. The freehand drawing becomes a 
support for algebraic calculation (semiotic dimension) by avoiding any direct measurement. 

The mathematical work expected from preservice school students at the master's level can be 
summarized as follows: 

1. The work is initiated in the [Sem-Ins] plane in order to distinguish the different cases that may 
exist. Work is guided by elements of the theoretical referent relating to the quadrilateral: various 
forms of the quadrilateral and importance of the diagonal to determine the nature of the 
quadrilateral. 

2. The technique of triangulation is completely integrated in work (still in the [Sem-Ins] plane) but 
it is not explicitly mentioned. Perhaps this is due to the fact that the diagonal line shows the 
triangles directly and to the non-formal nature of the proof given by the teacher’s trainer. 

3. Work then moves to the [Sem-Dis] plane associated with algebraic work supported on the 
freehand figure and on Pythagoras's theorem used as a theoretical tool that switches work to 
algebraic work without any measurement on the drawing. The whole challenge of proof by 
calculation that is then made is to avoid any appeal to measurement. 

This work is in accordance with the paradigm expected at this school level, which is a paradigm 
articulating GI and GII insofar as the reasoning is based on a particular figure without any 
generalization and on approximate values by prohibiting any effective measurement on the drawing. 

Different forms of geometric work identified  
In the following, we only present the results of the first phase which, contrary to our initial 
expectations, followed an unexpected and longer course. Indeed, almost all the students did not 
identify the need for asking additional indications and they engaged in the search for the area by 
adding certain conditions such “The quadrilateral had to be particular” or “All the quadrilaterals 
with the same perimeter have the same area”. These assumptions allow them, therefore, to reason 
on a particular figure. We present below four of the different forms of geometric work that we have 
identified at the end of this phase.   

                                                           
1 We leave aside the case of a diagonal outside the quadrilateral or the crossed quadrilaterals that appear, in this 
modelling exercise, as two triangular fields and not as a quadrilateral. 
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Form 1. An asserted work of measurement: Francis' work 

Francis begins his work with a scale construction with ruler and compass where he gets a trapezoid 
based on visual adjustment, guided by the idea that the figure should be particular (Sem-Ins). 

Francis: I took the large 900 m base then from both ends with the compass, I made 410 on 
one side and 610 on each side and then with the ruler I tried to find the 300 with 
the two arcs of circle. 

He then justifies why, it is indeed a trapezoid by relying on a geometric property of the theoretical 
reference frame, discursive dimension, (Sem-Dis). 

Francis: I have drawn a perpendicular to the large base and this line was also perpendicular 
to the small one and since the two lines are perpendicular to the same line, they 
are parallel to each other so it makes a trapeze. 

Finally, he completes his work in the [Ins-Dis] plane with calculations using formulas and by 
measuring the missing data on the drawing. He explains that he can do this because he has done his 
figure using a scale. His mathematical work is valid in the GI paradigm and moreover, as we will 
see again later on, this work is assumed by the student. 

Form 2. A geometric work structured around the instrumental dimension: Ivana's work 

This work is representative of the work done by students who have used geometric drawing tools by 
attempting not to use measurement too explicitly. The mathematical work produced by Ivana was 
initiated in the [Sem-Ins] plane to construct a quadrilateral (ABCD) by means of geometric drawing 
tools and with the assumption that one of the angles of the quadrilateral was a right angle. This 
inclusion of an additional property is common among students who have chosen to use drawing 
tools. 

Ivana :  In fact I constructed the figure to have a right angle, and so I calculated the area of 
the first triangle by doing (...). 

Then, she decomposes the resulting quadrilateral into two triangles (Sem), one of them ABC is 
general and the second ADC is right-angled in D so that she can apply the triangulation method 
(Dis) to determine the area of the quadrilateral as the sum of the areas of these two triangles. Thus, 
mathematical work is located in the [Sem-Dis] plane. The, she calculates the area of the rectangular 
triangle ADC in D, then she applies the Pythagoras theorem (Dis) in the same triangle to deduce the 
length of its hypotenuse [AC]. Finally, Ivana uses the graduated ruler to measure a length (the 
height of the triangle ABC from B) and she applies the formula of the area of a triangle to 
determine the area of the triangle ABC. The mathematical work thus ends in the [Ins-Dis] plane 
with an unspecified use of measurement. Therefore, we can say that the mathematical work is 
complete and that it is guided by the GI paradigm. 

However, this work does not conform to "mathematical rules" since the student has no control over 
the results obtained. When the professor asked her about the validity of her work, she answered that 
"all the quadrilaterals have the same surface because they have the same perimeter" and that is why 
it is possible to reason on a particular figure. This "theorem in action" leads to the fact that her 
mathematical work is not valid or conform. With this work, we are faced with a fairly common 
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problem of interpretation about the identification of the exact paradigm in which the student works. 
Students, because of the very strong didactical contract at this level, generally avoid measurement 
and thus think they work in the GII paradigm. But, in fact and in part to avoid obstacles linked to 
the difficulty of giving a proof based solely on properties of the frame of reference, they 
surreptitiously move into the GI paradigm either, as Ivana, by using measurements not assumed or 
as we will see below by using data based on perception only. 

Form 3. A work without measurement and without theoretical control: Katia's work 

The following geometric work is one of the most frequent among students who did not want to use 
construction instruments. They forbid themselves measurements on the drawing and wish to work 
in GII but nevertheless they allow themselves a great semiotic freedom to obtain formulas or apply 
known area calculation formulas. 

Let's illustrate this approach with Katia's production. She begins by drawing two freehand figures 
(Sem), suggesting a transformation from the first to the second that leaves the area of the figure, 
more or less, invariant. 

Figure 2: Katia's work 

Katia then explained that one has to take the initial lengths and imagine that the terrain is a 
rectangle. To determine this area, she applies the technique giving this value by multiplying the 
lengths of the two sides (Ins). The lengths of each new sides are obtained as an arithmetic average 
of the opposite sides. Thus, the work is located in the plane [Sem-Ins] because it is oriented towards 
the use of a well-known area calculation formula by transforming the initial geometric figure. This 
work is produced without any control by means of material tools (geometric instruments) and 
theoretical tools (properties). Therefore, if this geometric work may be considered as partially 
valuable in GI it is not valid in any of the paradigms. 

Form 4. A geometric work initiated in GII but unfinished: Severine’s work 

This form of work was rare in both groups and initiated by students with a good level in 
mathematics. In her work, Severine starts by producing a free-hand dissection of the quadrilateral 
into a trapezoid and two rectangle triangles (Sem). She explains her procedure in this way: 

Séverine: I started from a general quadrilateral and then I drew two right-angled triangles 
(inside) in order to complete the quadrilateral. 

Then, she explained that it would be necessary to find the heights of the triangles and also to use 
Pythagoras theorem to do the calculations (Dis). She intended to do this work but she did not 
perform it. However, at this stage, this can be considered normal because a data is missing, but she 
did not asked for it. She was thus blocked in the plane [Sem-Dis] and the teacher intervened by 
trying to motivate the claim of a diagonal.        
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   Teacher: Can you comment on what Séverine suggests, do you have the necessary 
information to do the calculation 

Students then request additional data on measurements but do not ask for the length of the diagonal. 
Francis intervened once again by indicating that it is possible to measure on the drawing because it 
was made with a scale.  Séverine does not agree with him and she refuses to measure on the figure 
(GI paradigm) preferring to remain blocked and not complete the task.   

Conclusion  

In this preliminary study, which is part of a more global research project on teacher training in 
geometry, we were able to identify some different students' forms of geometrical work when they 
have to achieve a geometrical task which relates to the estimation of the area of a field.  The results 
we have obtained show blockages and rebounds among students who are trying to meet institutional 
expectations (a geometric work in GII). The work they produce is profoundly incomplete because it 
is often confined to a single plane or dimension of the MWS. Moreover, and for us, it is the most 
worrying from the  teacher education viewpoint, these teachers students do not seem to have control 
tools on their productions other than perceptual and instrumental. When they have tried to use 
theoretical controls, there were generally based on false "theorems in action" that do not ensure the 
validity of mathematical work from an epistemological perspective. It should be pointed out, 
however, that the situation is destabilizing for the students because it does not follow the usual 
didactic contract, which implies that all the data needed to solve the problem have to be included in 
the task statement. Moreover, almost all the teacher students think that all the geometric shapes they 
are asked to study must have some particular shapes and properties. And, on their own initiative, 
they suppose that the quadrilateral has a specific property (right angle, parallel sides…) which 
allows them not to be blocked in a dimension or plane of the MWS but it results that their work 
cannot be considered to be valid. From this observation, we intend to develop didactical situations  
that ensures a first exploration work on drawing in order to question the construction and validation 
methods within a geometry I that promotes both modelling and controlled approximation work. 
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We study proving situations in geometry where students introduce auxiliary lines. We examine 
students’ reasons for introducing auxiliary lines. The overarching theme of the tasks proposed to the 
students is the comparison of areas of triangles and/or parallelograms. The students gave a wide 
spectrum of reasons when introducing auxiliary lines. Two main groups of reasons have been 
discerned for modifying a given situation by introducing auxiliary lines: recalling a learned 
procedure using some known results or definitions, and anticipating more information from the 
modified situation. We present a case study of a pair of students who combine reasons of recalling 
and anticipating nature when introducing auxiliary lines. 

Keywords: High school geometry, proof, auxiliary lines, reasoning, task-based interviews. 

Introduction 
The objective of this study is to contribute to research on proving in geometry. Specifically, we 
investigate the introduction of auxiliary elements by students while proving and characterize reasons 
students give for their actions. Our interest in this process stems from the following facts: First, 
proving in geometry is difficult for students in general. Second, the introduction of auxiliary lines 
contributes substantially to students’ difficulty with proofs in geometry (e.g. Hsu, & Silver, 2014; 
Senk, 1985). Our focus on students’ reasons for introducing auxiliary elements led us to build on the 
seminal work of Pólya (1957), who highlighted the role of auxiliary lines in problem solving. 

Theoretical background 
It is widely recognized that in secondary school, proof and proving are still mostly taught in the area 
of geometry (Herbst, 2004; Fujita & Jones, 2014). According to Battista (2007) school geometry 
presents students with a complex network of concepts, representations and ways of reasoning “…that 
is used to conceptualize and analyze physical and imagined spatial environments” (p. 843). 
Combining deductive and spatial reasoning is pertinent to proving activities in geometry. Indeed, in 
his study of American geometry classes, Herbst (2004) demonstrated, among others, a generative 
type of students’ interaction with diagrams in proving activities. Such interactions are characterized 
by deductive reasoning interrelated with modification of a given diagram. Such interactions are 
virtually absent from geometry classes, as studies of Japanese secondary schools confirm (Miyazaki, 
Fujita, & Jones, 2015) but are central for proofs that require the introduction of an auxiliary element. 

According to Pólya (1957), “an element that we introduce in the hope that it will further the solution 
is called an auxiliary element” (p. 46). In our study, a slightly expanded version of this definition is 
used. Namely, we consider also the modification of an already existing element as an auxiliary 
element (see Task 1 in the Methodology section). Moreover, an auxiliary element may be only 
imagined rather than physically drawn.  
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According to Senk (1985) the introduction of auxiliary lines is a critical part in the solution of 
geometric proof problems. She concluded that the difficulty with auxiliary lines “exemplifies the need 
to teach students how, why, and when they can transform a diagram in a proof” (p. 455). Ding and 
Jones (2006) also identified the introduction of an auxiliary line as a source of great difficulty. Hsu 
(2007) claims that this difficulty is caused by students’ need to perceive the diagrams dynamically 
and apply transformational observation to visualize a solution achievable with auxiliary lines.  

Students’ difficulty with introducing auxiliary lines when proving can be partially explained by a 
form of instruction, which does not encourage students to add new lines to the given diagram. For 
instance, students in the study of Herbst and Brach (2006) self-reported that they expect to play a 
passive role in interaction with diagrams when proving: They believe that they are usually not 
expected to introduce auxiliary lines, and if so, they expect to receive a hint to do so from the teacher. 
This difficulty may be overcome by the incorporation of various types of exploration in proving which 
makes the introduction of auxiliary lines more transparent (e.g.  Fan, Qi, Liu, Wang and Lin, 2017). 

Considering these studies and Pólya’s fundamental work, it makes sense to consider the introduction 
of auxiliary lines through the prism of reasons that led to their introduction. Pólya (1957) lists three 
main reasons for introducing auxiliary lines (p. 46): 

1) Trying to use known results; 
2) Going back to definitions; 
3) Expecting to make the original problem “fuller, more suggestive, more familiar”. 

Pólya makes a distinction between the first two reasons and the third one. He states that in the third 
case “we scarcely know yet explicitly how we shall be able to use the elements added. We may just 
feel that it is a ‘bright idea’ to conceive the problem that way with such and such elements added” 
(ibid.).  In our study we sought both, to obtain descriptive reports about students introducing auxiliary 
elements in proving situations, and to identify the types of reasons they provide for introducing them. 
We adapt Pólya’s classification to our aims by introducing the terms recalling (Pólya 1, 2) and 
anticipating (Pólya 3) reasons. 

Given this background, our research aims to answer the following questions: 
A. What reasons do the students give when introducing an auxiliary line in a proving situation?  
B. To which type do these reasons belong, recalling or anticipating?  

Methodology 
Students and Tasks 

The participants in our study were high school students studying geometry in Grade 10—the first 
grade of Israeli high school. Eighteen students were nominated by their mathematics teachers; ten of 
them volunteered for the study. The students were grouped into five pairs, following Schoenfeld’s 
(2000) suggestion that students working in pairs will show reliable and natural behavior. 

We sought to create tasks where students would be inclined to draw auxiliary lines in order to make 
progress. We anticipated that tasks with multiple solutions, each based on different auxiliary lines, 
will elicit a variety of reasons for introducing auxiliary lines. The topic of areas was suitable as it was 
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already known to the students, but proofs on areas had not been taught in class at the time of the 
intervention. We used two tasks with different levels of complexity. 

Task 1: Quadrilateral ABCD is a parallelogram. Where on side AB do you have to place point E, so 
that the area of triangle DEC is a half of the area of the given parallelogram ABCD? Explain your 
reasoning. 

There are multiple ways to show that E can be anywhere on side AB. Figure 1 hints at some of them, 
highlighting the role of appropriate auxiliary lines in the proofs. 

    
1a 1b 1c 1d 

Figure 1.  (a-c) Task 1 with auxiliary lines, (d) students’ sketch  

Task 2: Prove that the quadrilateral formed by the midpoints of the sides of a given quadrilateral is a 
parallelogram, and that its area is half of the area of the given quadrilateral (Varignon’s theorem, 
Theorem 3.11 in Coxeter & Greitzer, 1967). Task 2 contains two parts, the second of which relates 
to area. This two-part structure and the large variety of possible auxiliary lines allowing to make use 
of properties of a triangle’s midsegment and of a parallelogram to prove the claim make it especially 
suitable for our study (see students’ sketches in Figure 2 in the Findings section). 

Procedure 

We used two interview techniques to obtain information on the introduction of auxiliary lines: 
stimulated recall (SR) and partial revealing (PR). SR is a reflective method used in qualitative 
research (e.g., Bikner-Ahsbahs, 2004) in which students carry out a task undisturbed and are later 
prompted by the use of some visual or auditory stimulus to recall their thoughts while carrying out 
the task. A crucial advantage of SR is that it does not interfere with carrying out the task. Thus, we 
decided to use SR in the relatively simple first task. Also, the SR sessions which followed the first 
task familiarized students with the researchers’ request to reflect upon their actions. 

In the more complex Task 2, we wanted to make sure that students do not get stuck. For this purpose, 
we developed and used the idea of partial revealing (PR), a variation on task-based interviews 
(Goldin, 2000): We prepared a progressively more revealing sequence of 12 visual or verbal hints. 
The hints were descriptions/ sketches of an auxiliary line or some key idea/ definition, supporting 
different ways to prove Task 2 (cf. hints to the same problem in de Villiers, 2014). The hints helped 
students recalling relevant knowledge or focusing on specific information given in the problem. After 
obtaining a hint, the students were encouraged to reflect upon the new situation created by the hint. 
This approach helps the students (and the researcher) to understand and describe the possible reasons 
for introducing an auxiliary line, whether they tried to use a definition, a previously solved problem 
or just feel that the hint will advance the proof.  
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In a first meeting (about 20 minutes), each pair of students worked on Task 1 (Figure 1) without 
researcher intervention. The solution, explanation, or proof, agreed upon by the two students was 
collected by the researcher without comment. In the second meeting (about 45 min), two days after 
the first one, the student pairs returned to Task 1, using SR. In the third meeting (about 45 min), the 
students worked together on Task 2. The PR method was applied.  

The qualitative analysis of the data was based on the methodology used by Jones (1998) for the 
exploration of students’ solutions of geometric construction problems on the subject of interplay 
between students’ intuitive and deductive reasoning. First, the video-recordings of all interviews and 
the students’ written productions were searched for auxiliary lines drawn by the students. Then, the 
videos were transcribed; we read the transcripts of all the meetings line by line, and marked phrases 
that seemed to relate to reasons for adding auxiliary elements. Next, students' actions and utterances 
while introducing the auxiliary lines were coded according to our adaptation of Pólya’s (1957) list of 
reasons for introducing of auxiliary lines. For instance, the utterance “The subject of the problem is 
an area, we need to draw the height” which accompanied introduction of the line segment EF (Figure 
1c) was coded as “recalling” (going back to definition/ concretizing a formula). The utterance “It just 
seems right to draw this line” about the same auxiliary line was coded as “anticipating” (expecting to 
make the original problem more suggestive). These broad categories of reasons were further divided 
according to the type of auxiliary line and the type of reason.  

When analyzing Task 1, we juxtaposed students’ explanations during the SR sessions with their 
explanations to their partners during the problem-solving meetings and with written productions and 
sketches. We paid special attention to the general context of the proof and in particular to the change 
in students’ actions and utterances after introducing the auxiliary line; in this, we followed Goldin’s 
(2000) way of analyzing interactions between the subjects and mathematical structures of the tasks. 
This procedure helped us to confirm and elaborate our initial coding.  

When analyzing Task 2 we paid special attention to the moments where specific PR hints (definitions, 
formulas or visual images) led to the introduction of an auxiliary line; again we followed Goldin 
(2000), this time with respect to the role of hints in the analysis of students’ problem-solving behavior. 

Findings 
We analyzed five pairs of students. Here1, we present the case of Bob and Boris whose reasons were 
of both types: “recalling” and “anticipating”.  

Task 1 

Boris soon drew the auxiliary line GF (Figure 1d) stating: “I want to calculate the area of CED and 
then the area of the two smaller triangles, to compare.” In the SR session, he described GF as a height 
through the midpoint of AB, and gave the following reasons for the introducing GF: “Because they 
ask for area, and the height is a part of the area formula” (Bob&Boris SR10). When asked about the 
reason for drawing the height exactly at the midpoint of AB, Boris can't give a specific reason: “It 
was the first point to draw the height”; “it was an initial thought” (Bob&Boris SR 28, 36). In the SR 
                                                 
1 Analyses of two more cases are presented elsewhere (Palatnik & Dreyfus, 2018) 
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session Bob recalled that immediately after Boris drew the auxiliary line, he thought that there are 
probably more places where the area is the same. 

The students’ solution of Task 1 culminated in the following exchange: 
Boris: The height will always be the same! 
Bob: Let's assume that I place it, point E, together with point A [Points at the sketch, 

draws imaginary AC]. 
Boris: [loud] Look, it is at every point! 
Bob: [continues with confidence] So, it happens at every point. 
Boris: The base is the same base, and the height is the same height, so at every point it will 

be equal. 
Bob: U-hu, if I place it there, at point A (draws imaginary line AC=EC), it is diagonal, it 

halves the parallelogram. If I place it at the point B, diagonal BD also halves the 
parallelogram.  

Bob: So, it looks to me, that at every point. (Bob&Boris M1 35-41) 

Analysis of Task 1. The auxiliary elements introduced by the students in the course of solving the task 
were: (1) GF—the height through the midpoint of AB; (2) and (3) diagonals AC and BD (imagined). 
As follows from the students’ explanation given above, the reason to use height was that it forms part 
of the formula for the area and thus of recalling nature. A possible explanation for the choosing the 
height through the midpoint of the side is the intuitive rule same A- same B (Stavy, & Tirosh, 2000), 
namely, half of the area (A) - half way on the side (B). As for the diagonals AC and BD, Bob imagined 
them and gestured them in the air. In the SR session, he explained that if E is placed at the vertices A 
and B it’s easy to see that the diagonals AC and BD halve the parallelogram (anticipating). 

Task 2 

The students started by drawing their own sketch (Figure 2a). Boris soon focused on the second part 
of the task: the area of the parallelogram is half that of the quadrilateral. Bob drew EG, a height in 
ABCD, as first auxiliary line, but the students realized that they do not know a formula for the area 
of a general quadrilateral. They received as hints (a) an accurate sketch of the task; (b) a drawing of 
a triangle with a midsegment. The midsegment immediately triggered progress. Boris drew the 
diagonals AC and BD, and Bob formulated a full formal proof to the first part of the task, using the 
property that a midsegment of a triangle is parallel to the third side of the triangle. 

To prove the second part of the task, the students wanted to calculate areas and looked for a place to 
construct a height. A switch from calculating to comparing areas was initiated when they attended to 
pairs of congruent triangles and in particular to the triangles AHN and HDI (Figure 2b, 2c). Bob 
suggested comparing their areas to that of quadrilateral HIMN, and Boris introduced the crucial 
auxiliary line NI (Figure 2c). 

Boris: I have constructed a diagonal [of HIMN]. And [points to the sketch] this angle 
equals this, ‘cause it is parallel. 

Bob: No, you still have to prove this. 
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Boris: Wait a minute [rotates the sheet with the sketch]. We have to prove that these areas 
are equal [points to the triangles AHN, HDI, NMI and IHN]. It will make it a 
midsegment (of triangle AMD) (Bob&Boris M3 134-140). 

Later the students developed this idea into a proof (Figure 2d).  

Analysis of Task 2. The main auxiliary elements introduced by the students in the course of task 
solving were: (1) EG—the segment connecting the midpoints of AB and CD; (2) diagonals AC and 
BD and (3) NI- the midsegment of the triangle AMD (and the three analogous midsegments in the 
other parts of the quadrilateral). 

 

   

2a 2b 2c 2d 

Figure 2. The students’ sketches for Task 2 (2c is our copy of a relevant part of students’ sketch 2b)   

We may assume that the auxiliary line EG, perceived by the students as a height, was introduced as 
a part of a recalled  procedure which connects between height as an auxiliary line and height as a part 
of the area formula as previously mentioned by Boris.  

The diagonals AC and BD were introduced immediately after the visual hint (a drawing of a triangle 
with a midsegment). We assume that the hint led the students to recall the definition and properties 
of a midsegment, which became a reason for introducing AC and BD which in turn helped them 
elaborate the sketch into a formal proof. 

We interpret that the reason for introducing the crucial auxiliary line NI was an anticipating one. 
Despite the fact that Boris was not sure how this auxiliary line will advance his proof, he introduced 
it wishing to show that the areas of quadrilateral HIMN and the combined areas of HDI and AHN are 
equal. It is remarkable that in the collaborative problem-solving efforts of Bob and Boris in Tasks 1 
and 2 the reasons to introduce auxiliary lines were both of recalling and anticipating nature. 

Discussion 
Our aim was to reveal and characterize students’ reasons for introducing auxiliary lines in geometric 
proof situations. The five pairs of students who participated in the study introduced a total of 26 
auxiliary elements of various nature: heights of triangles and parallelograms, diagonals of 
parallelograms, triangle midsegments, and medians. Some of these elements were actually drawn, 
others imagined. As we expected, Task 2 was not easy for students to prove (cf. Ding and Jones, 
2006; Hsu and Silver, 2014 about the complexity of tasks with auxiliary lines).  
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The reasons students gave when introducing auxiliary elements are of two types (1) recalling some 
known formulas, definitions and procedures, and (2) anticipating to receive more information from a 
modified situation. There were 14 auxiliary elements of the first type and 12 of the second. 

In the tasks we used, most of the reasons of a recalling nature were related to the introduction of 
heights. The students drew heights as part of a learned algorithm for finding areas:  height is explicitly 
present in the area formula; hence students recalled the formula, and almost immediately drew heights 
as auxiliary lines; this seems to be a pertinent feature of students’ proving process in the context of 
areas. It was very salient in the interview with Bob and Boris.  

Our data allow us to elaborate on characteristics of Pólya’s third type of reason for introducing 
auxiliary lines: anticipating to make problem fuller, more suggestive, without knowing exactly how 
the auxiliary line will be used. Most of the examples of such reasons we found can be organized into 
two groups. In the first group (4 occurrences), we put reasons related to intuitive rules (Stavy, & 
Tirosh, 2000). Evidence for this is provided by the intuitive "half side-half area" reasoning when 
introducing the auxiliary lines through the midpoint of the side (e.g., Bob and Boris, Task 1, line GF). 
In the second group of anticipating reasons for introducing auxiliary lines (6 occurrences), we put 
reasons related to the students’ feeling that they exhausted the available resources and they needed to 
produce some new source of information (e.g., Bob and Boris, Task 2, NI). 

All students used area formulas when proving Task 1; a majority also introduced heights in Task 2, 
and when this failed, they introduced other auxiliary lines. One possible explanation for this is, that 
when the students felt that they had exhausted the resources suggested by recall, they tried auxiliary 
lines based on some anticipation, while keeping in mind that they have to substantiate it (as happened 
to Bob and Boris when introducing NI in the second part of Task 2). 

Based on these findings, we suggest that the introduction of auxiliary lines in proving situations can 
be expected to provide a rich context for the development of geometrical thinking. Teachers should 
encourage proactive and reflective approaches to the introduction of auxiliary elements. It is 
impossible to develop mastery related to the introduction of auxiliary lines without creating 
experiences of drawing, imagining and dynamically modifying auxiliary lines. This study of students 
introducing auxiliary elements when proving included only a small number of participants, and only 
two tasks from a single geometry topic, and it was conducted with paper and pencil only. Further 
research is required to better understand the complex dynamics of introducing auxiliary lines. 
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This study aims to analyze tasks that involve the construction of triangles and which are 
included in 6th grade national assessment tests in Portugal. More specifically, we analyze the 
mental processes used by the students, the difficulties experienced and the mistakes made in 
solving these tasks. The study follows a methodology of an interpretative nature, with data 
collection from the students’ tests, the productions of the students and of interviews recorded 
in audio. In summary, the results show that, in linear measurement, many students 
demonstrated a quite acceptable level of sophistication. However, in the construction of angle 
the causes of their difficulties seem to be the absence of adequate structural components.  

Keywords: Geometric thinking, construction of triangles, didactic material.

Introduction 
In constructing a school curriculum it is necessary to make choices, and this need to choose is 
precisely what makes it so difficult to decide on a coherent and balanced curriculum throughout 
the period of learning in the school (Mammana & Villani, 1998). In Portugal, these choices are 
also visible in the emphasis given to certain contents in the 6th grade National Assessment Tests 
(NAT). In these tests, from 2010 to 2015, a task that involves the construction of triangles was 
always presented. In the Basic Education Mathematics Program (PMEB) of 2007, in the 
Program and Curricular Goals of Basic Mathematics Education of 2013 - PMCMEB, and in 
NAT, the construction of triangles has an obvious centrality. The characteristics of the tasks 
proposed in the NAT, overestimating certain curricular contents and certain mental processes, 
can induce the teaching methodologies used by the teachers and, consequently, influence the 
students' learning, and therefore, their analysis is of great importance. So, the main objective of 
this study is to analyze the 6th grade NAT tasks that involve the construction of triangles. In 
particular, we consider the following research questions: What mental processes were used by 
students? What difficulties have been experienced and what mistakes have been made in 
solving these tasks? 

Theoretical framework 
A very particular aspect of the study of geometry is the construction of triangles. The triangle 
is the simplest flat figure. It comprises, with only three sides, three angles and three vertices, a 
defined part of the plane. Its simplicity makes it a basic tool for decomposing more complex 
figures and making measurements, and is therefore considered the basic mosaic of geometry 
(León & Timón, 2017). 

In the process of constructing triangles, the abstraction of the concept of angle and of 
measurement are essential, since some of the errors produced by the students in the resolution 
of tasks that involve the construction of triangles are related to the construction of angles given 
a certain amplitude and with the measurement of line segments. 

When constructing triangles with ruler, compass and protractor, various concepts and properties 
should be used. The previously studied concepts and properties must be related and applied at 
the time of construction. In the various stages involved in the construction of the triangle, 
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different difficulties can arise if the properties of the triangles are not taken into account in their 
construction (Zamagni & Crespo, 2016). The students' difficulties in solving tasks involving 
the construction of two-dimensional representations of triangles are sometimes also due to the 
lack of experience and skills in the use of the didactic materials needed for this construction 
(Van de Walle, 2009). These difficulties are also due to the appeal to their properties and the 
fact that visualization plays an important role in the decoding and transformation of 
mathematical information. 

Understand the concept of measurement 

The concept of measurement is built along the construction of the geometric conceptualization, 
reasoning and application (Battista, 2007). Based on other authors, Battista (2007) considers 
that despite the importance of geometric measurement, the performance of some students in 
measurement tasks is low. That is, they do not adequately establish the connection between 
numerical measurements and the iteration process of unitary measures. For example, students 
who incorrectly measure an object's length when one of its edges is not zero-aligned in a ruler 
do not conceptualize clearly how the numerical ruler marks indicate the iteration of the lengths 
of the unit. According to this same author, many traditional curricula prematurely teach 
numerical procedures for geometric measurement, students have little opportunity to think 
about the adequacy of the numerical procedures they apply and do not have sufficient 
opportunities to develop skills with spatially structuring units of measurement.  

Joram, Subrahmanyam, and Gelman (1998) argue that although younger students can learn 
some simple measurement skills, real physical measurement, such as determining lengths, for 
example with physical objects serving as a unit of measure, is a challenge for many, which may 
mean that students' knowledge of linear measures may be more superficial than it seems. 

Battista (2007) integrating investigations that describe levels of sophistication in the 
development of concepts of measurement of length, developed a characterization of the 
construction of meaning of the students. In this characterization, there are two fundamentally 
different types of reasoning about length, reasoning without measurement that does not use 
numbers (involves visual-spatial inferences based on direct or indirect comparisons, imagined 
transformations of geometric properties) and measurement reasoning (involves iteration of 
units of length, that is, the determination of the number of units of fixed length that fit end to 
end along the object, without gaps or overlaps). Measurement reasoning includes not only the 
measurement process, but the reasoning about numerical measures (e.g., adding lengths to find 
the perimeter of a polygon, making inferences about length measurements based on the 
properties of the figures). Although students usually develop strategies without measurement 
before measurement strategies, reasoning without measurement continues to develop in 
sophistication even after the reasoning of the measurement appears. In addition, a more 
sophisticated reasoning about length involves the integration of reasoning without measurement 
and measurement. 

The research of several authors suggests that students construct a meaningful understanding of 
the measure of length as they abstract and reflect on the process of iteration of units of length 
(Battista, 2007). 
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Understanding the concept of angle 

Students have great difficulty in learning the concept of angle (Clements & Battista, 1992). 
Angle is considered to be a multifaceted concept (Douek, 1998), since there is a great variety 
of definitions presented in school textbooks and textbooks for teacher training (Mitchelmore & 
White, 2000). Some authors consider that the angle can be defined based on three different 
aspects: as a quantity of rotation between two lines meet at a point (turn), as a union of two rays 
with a common extreme point (ray) and as the intersection of two half-planes (region) 
(Mitchelmore & White, 2000; Devichi & Munier, 2013). This concept is constructed slowly 
and progressively (Lehrer, Jenkins, & Osana, 1998; Mitchelmore, 1998). White and 
Mitchelmore (2003) consider that it is clear from the research literature that students have great 
difficulty in coordinating the various facets of the angle concept. In addition, several authors 
have observed that students also have different angle conceptions (Mitchelmore & White, 
2000).  

The process of constructing the concept of angle crosses several obstacles (Mitchelmore, 1998), 
and the difficulties that students encounter in learning angles and the mistakes made were 
observed in several experimental studies (Berthelot & Salin, 1996; Mitchelmore, 1998; 
Mitchelmore & White, 2000; Devichi & Munier, 2013). Berthelot & Salin (1996) report, based 
on a Close study (1982), that when students have to compare pairs of angles with the same 
amplitude but with different lengths of sides, many students respond that the larger angle is the 
one that has one or both sides longer, without taking into consideration the space between them. 
These studies reveal other misconceptions of some students because they consider that one side 
of the angle must always be horizontal and the direction of the angular aperture must always be 
counterclockwise, or that the angle is a sector of a circle.  

Students face some difficulties in using a protractor, which have been emphasized in the 
literature. Sometimes students align the base of the protractor's body along one side of the angle, 
rather than the protractor's own reference line; or they do not place the origin of the protractor 
on the vertex of the angle to be measured. They can also read the angle measure clockwise 
when they should read counterclockwise or vice versa (Tanguay, 2012). Michelmore and White 
(2000) have suggested that the difficulty students have in learning to use a protractor may result 
from the fact that in a protractor several lines may be chosen for the initial side of an angle but 
the terminal side must be imagined. On the other hand, the cause of the students' difficulties 
seems to be the absence of structural angular components, which leads to failure to establish 
adequate structural mappings. 

Methodology 
The present study follows a qualitative interpretive methodology (Bogdan & Biklen, 1997), 
since it privileges the interpretation of reality according to the perspective of the actors. In total, 
171 students who completed the 6th grade participated in the study. The selection of these 
students was intentional and took into account their performance levels. The fact that students 
expressed different levels of performance permitted us to access a greater diversity of resolution 
strategies and, consequently, different mental processes and errors. The tasks were solved after 
the final internal assessment and in school context, which greatly reduces the probability of 
interfering factors in the study. 

Thematic Working Group 04

Proceedings of CERME11 851



The data collection was carried out in a school context between 2012 and 2015 and used: (i) the 
collection of documents (tasks of NAT and resolutions of these tasks by the students); and (ii) 
semi-structured interviews to students recorded on video. The interviews were conducted the 
day after the task was resolved. Each of the students interviewed had the sheet with the 
resolution produced by them and, after reading each question, explained how they arrived at 
the answer.  

The selection of the 35 students interviewed was made according to the assumptions of the 
students' selection for the study. 

The analysis of the data for this study initially involved the organization of the information 
obtained by the written productions of the students and the interviews carried out. Secondly, 
content analysis was used with pre-defined categories: the mental processes used by the 
students, the difficulties experienced and the mistakes made. 

Results 
Of the five tasks of the NAT of the 6th grade between 2010 and 2015, which involve the 
construction of triangles, two were chosen (one of the test of 2010 and another of 2012). These 
two tasks have in common the fact that the required final product is the construction of a 
triangle, but the method of construction of the triangles is different.  

Task 20 of the 2010 NAT 

Figure 1. Task 20 

In this task (figure 1), students should know that: in an equilateral triangle the length of the 
three sides is equal; the perimeter must be divided by the number of sides, obtaining the length 
of each side. After this procedure, the student can construct the equilateral triangle, proceeding 
as follows: draw a line segment of 6 cm; draw the circumference arcs at a distance of 6 cm from 
each end of the line segment until they intersect, marking the point of intersection of the two 
arcs; draw the two line segments that join the ends of the line segment and the point obtained 
by intercepting the two lines. The student is not required to mark the vertex designation of the 
triangle. 

Of the 171 students who were asked to solve this task, 106 (62%) correctly constructed the 
triangle. Of these 106 students, 80 (47%) recorded the calculation of the length of the sides of 
the triangle. The others 26 (15%) did not register the calculations made, as it was requested in 
the task. However, some of these students wrote 6 cm on the sides of the triangle. Of the 35 
students interviewed, all of them performed the division and correctly constructed the requested 
triangle. Only the student S1 did not construct the triangle with ruler and compass, instead, he 
used the protractor, as he explains: “First, I divided 18 by 3 and gave me 6. So, since an 
equilateral triangle has all angles equal to 60º, I drew a 6 cm line segment and placed the 
protractor here [the student points to the left end of the line segment he drew] and traced an 
angle of 60°. So I drew a 6 cm line segment. Here [the student points to the other end of the 

The perimeter of an equilateral triangle is 18 cm. 
Construct this triangle in the box below. Shows the calculations you make. Make your 
construction using pencil, ruler and compass. Do not erase the lines that you do with 
the compass. 
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initial line segment] I did the same thing and joined the line segments.” When asked if instead 
of constructing the triangle with ruler and protractor using the amplitude of the inner angles 
could be constructed with ruler and compass, the student replied "Yes." He was also asked why 
he did not and the student answered: “Because I just remembered this method”.  

Of the 65 students who did not answer correctly, 19 (11%) did not register any work. With the 
exception of S21, these students did not belong to the group of students interviewed and, 
therefore, it was not possible to know the reason why they did not solve the task. Student S21 
justified himself saying that he had no ruler or compass. However, after the interviewer asked 
him to reread the question, the student explained step-by-step what he should do to solve the 
task correctly. The interviewer asked why he did not record the calculations to get the length of 
each side of the triangle and the student replied that he thought he should draw only the triangle. 
Although this student knew how to solve the first part of the task, for which the drawing material 
was not necessary, and to be written in the question "Show the calculations you make", did not 
make any record. 

Of the 46 (27%) students who attempted to solve the task, but were unable to construct the 
requested triangle, 7 recorded the calculations required to obtain the length of each side of the 
triangle. It seems that these students understand that in an equilateral triangle the length of its 
three sides is equal and that the perimeter of the triangle is equal to the sum of the length of its 
sides. However, when they went to construct the triangle they used other lengths. For example, 
one student used the lengths 6.5 cm, 5.5 cm and 5.5 cm and records 6 cm on each side of the 
triangle. In this case there seems to have been some problem with measuring the lengths. The 
line segment measured with the ruler is 6.5 cm and the other two, which were obtained with the 
opening of the compass, are 5.5 cm. 10 constructed equilateral triangles whose sum of the 
lengths of the sides is not 18 cm, for example, equilateral triangles with 4.5 cm on each side. 
Finally, 6 constructed non-equilateral triangles with perimeter of 18 cm. Other constructions 
were found in which there is no evidence of the use of the compass. In these constructions, it 
seems to us that students try to construct the triangle with only the ruler. This strategy is used 
when students cannot remember the method of construction with the ruler and compass. 

Task 12 of the NAT 2012 

Figure 2. Task 12 

To solve the task 12 (Figure 2), first, students should draw [AB] and mark points A and B at 
their ends. Then, with the protractor, they should draw at A an angle of 30º and at B an angle 
of 120º. When they extend the sides of the angles they find the point of intersection, that is C. 

This task was solved by 126 students, having correctly constructed the requested triangle only 
40 (32%). Of the other 86 students, 30 (24%) students followed all the steps necessary to 
construct the triangle, but when they tried to draw the angle of 120° they made incorrectly. For 
example, student S3 manifested this difficulty, but was able to recognize his own error: 

Constructs the triangle [ABC] that obeys the following conditions: 

· 𝐴𝐴𝐴𝐴���� = 6 𝑐𝑐𝑐𝑐 
· 𝐴𝐴�̂�𝐴𝐶𝐶 = 30° 
· 𝐶𝐶𝐴𝐴�𝐴𝐴 = 120° 

Use the appropriate drawing material. 
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I: Do you think that the measure of this angle is 120º? [indicating the 60° angle the 
student had drawn] 
S3: No!! 
I.: Why? 
S3: Because it does not reach 90º. [Marking the sides of an angle with 90º at point B] 
Because I measured from here to here. [indicating the counterclockwise] 
I.: But if angle that is requested is 120º, and is it greater than…?  
S3: 90º!  
I.: Did not you see that this [the angle of 60º drawn by the student] was less than 90º? 
So, how did you draw the 120º angle? 
S3: Should start from 0º and count from left to right” [clockwise] 

Other type of difficulty in using the protractor was to place the point of reference of the 
protractor at the point that will be the vertex of the angle and 0º in the extension of the side of 
the angle. The student S35, after having traced [AB] correctly, cannot explain how to proceed.  

I.: The angles of your triangle measure all 45º and the sides measure 6 cm. Here are 
the arcs made by the compass? Didn't you see the two angles of the triangle in the 
data? 
S35: Yes!  
I.: This point marked in the middle of [AB] for what did it serve?  
S35: To place the protractor.  
I.: And how do you measure the angles from that point?  
S35: I didn’t know! 

Of the 86 students who didn’t build the requested triangle, 11 (about 9%) didn’t do any work, 
nor even traced [AB] and 17 (about 13.5%) couldn’t geometrically represent the straight 
segment with the requested measure. 

Discussion  
The difficulty in understanding the construction of triangles (on a sheet of paper) begins first 
by understanding the concept of angle and the concept of measurement, then goes through the 
use of ruler, compass and transferor, and by understanding its properties. With respect to the 
first task, a large proportion of the students successfully constructed the triangle. However, the 
resolution method was not always as expected. A significant number of students find it difficult 
to use the ruler to draw line segment of a given length. As mentioned by Battista (2007), 
students who measure the length of an object incorrectly, when one of their ends is not aligned 
with the zero of the ruler, do not conceptualize clearly how the numerical marks of the ruler 
indicate the iteration of the length of the unit. Others seem to understand what an equilateral 
triangle is, but they have been unable to correctly calculate the length of the three sides. We can 
attribute this difficulty to the fact that some 6th graders students still cannot operate the division 
algorithm or have difficulty calculating mental quotients between integers. Nevertheless, 
regarding measurement reasoning, and in relation to linear measurement, the majority of the 
students demonstrated a level of sophistication quite acceptable. However, in relation to the 
perimeter of a triangle, the level of sophistication of these students is still quite insipient, since 
a large number of students could not obtain the measure on the side of an equilateral triangle 
given its perimeter. This would have been the aspect of the task that requires a higher cognitive 
challenge. 
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Comparing the results obtained in the first task with the second, we verified that the percentage 
of students who correctly solved the second one is close to half of the percentage of students 
who correctly solved the first one. It seems to us that in the case of the second task the 
construction of an obtuse angle constituted a greater cognitive obstacle to the correct resolution 
of the task than others detected in the first task. A considerable number of students were not 
able to draw the angle of 120° correctly. These students have shown difficulties in coordinating 
the various aspects of the angle concept (White & Michelmore, 2003), namely they read the 
angle measurement counterclockwise when it should have been clockwise (Tanguay, 2012). 
The cause of the students' difficulties seems to be the "absence of adequate structural 
components" (Mitchelmore & White, 2000).  

There were students who demonstrated difficulty in the conceptualization of angle and in turn 
in the use of the protractor (Mitchelmore & White, 2000). These difficulties are manifested in 
the second step, which is to place the point of reference of the protractor at the point that will 
be the vertex of the angle and 0º in the extension of the side of the angle. Some students 
demonstrated this difficulty because they did not know how to place the protractor at the apex 
of the angle to be measured (Tanguay, 2012). This task required a high cognitive challenge 
regarding the interpretation of the question, in part because of the symbolic mathematical load 
that is presented to students. 

Conclusions 
The results evidence that, in linear measurement, many students demonstrated a level of 
sophistication quite acceptable. They confirm that young students can determine lengths and 
use correctly material (Joram, Subrahmanyam, & Gelman, 1998), namely developing 
measurement reasoning (Battista, 2007). However, different difficulties may arise in the 
construction of triangles (Zamagni & Crespo, 2016), namely due to the absence of adequate 
structural components. Students’ difficulties in the conceptualization of measurement and angle 
were obstacle to the understanding and resolution of the tasks. Additionally, students have 
difficulty in decoding and transforming mathematical information. The combination and 
coordination of motor and visual skills in the use of didactic materials is very relevant in solving 
tasks of triangles on paper, and for this reason the knowledge of the properties of the triangles 
and the consolidated knowledge of the concept of measurement and of angle are essential.  
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Our paper presents early findings from a study that investigated Australian Grade 3 and 4 students’ 
geometrical conceptual knowledge. This study is part of an international collaboration between 
Australian and German researchers. It draws on earlier research of Year 3 German students’ cube 
constructions, errors and misconceptions and the categorization of these. The student data reported 
in this paper was analyzed using a framework for guiding and describing sources of errors and/or 
misconceptions related to cube constructions. These findings highlight the importance for students 
to construct three-dimensional objects using a variety of materials. 

Keywords: Geometrical concept knowledge, cube constructions, primary students, errors. 

Introduction 
Research relating to children’s geometric reasoning has focused on the classification of geometric 
objects and application of the Van Hiele levels of geometric thinking (Bleeker, Stols & Putten, 
2013). Within the early years of primary school, less has been reported on children’s knowledge 
and visualization of three-dimensional objects, in detail. There is also limited Australian research of 
young children’s knowledge of geometry (MacDonald, Goff, Docket & Perry, 2016). 

Our research is an international collaboration between German and Australian colleagues, and in 
this paper we report Australian data collected from Grades 3 and 4 students. Our objective was to 
investigate whether students’ constructions of three-dimensional objects (e.g. prisms) elicits insights 
into their understanding of the properties of prisms that would not otherwise be revealed. In the 
German iteration students responded to a one-on-one task based interview using Froebel’s Gifts, 
small wooden blocks (cubes and prisms). These blocks are not commonly used in Australian 
schools and we were interested in how Australian students might demonstrate their geometrical 
conceptual knowledge when using Froebel’s Gifts to construct larger prisms. 

Geometrical conceptual knowledge refers to students’ spatial concepts, including visualization, 
verbal, and construction skills, their understanding of the relationships between two-dimensional 
shapes (2-D) and three-dimensional (3-D) objects, and their reasoning processes (e.g., Dindyal, 
2015). In this study, geometrical conceptual knowledge referred to students’ perceptions, 
visualization skills and identification of distinct properties of 3-D objects, in particular prisms, prior 
to and when constructing different sized cubes.  

Prior to this collaboration, the third author used Froebel’s Gifts and construction tasks to investigate 
Grade 3 German students’ knowledge of geometrical solids (Reinhold & Wöller, 2016). Students’ 
construction strategies and products were interpreted according to the Van Hiele framework. The 
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results indicated a wide variety of students’ geometric conceptual knowledge of solids. Further 
studies of Grade 3 and 4 students’ understanding of geometrical objects, including Australian 
students, would provide further insights of students’ conceptual knowledge of 3-D objects, and into 
common errors or (mis)conceptions that might occur. Ulusoy (2015) suggested a model that 
identified a wide variety of selection types and errors relating to the identification of 2-D shapes 
(trapezoids). Our pilot study builds on other studies such as Fujita, Kondo, Kumakura and 
Kumakura (2017) who described older students’ errors in relation to cube representations, and 
Finesilver (2016), who examined the spatial structuring, enumeration and errors of students working 
with 3-D arrays. Informed by these previous studies, these research questions guided our study: 

• What errors are identified when Australian Grade 3/4 students use small cubes and 
rectangular prisms to construct cubes? 

• What codes and categories can be used to classify students’ responses and sources of 
errors and/or misconceptions when constructing cubes? 

Theoretical framework 
The initial framework that guided our analysis was developed in a previous study (Reinhold & 
Wöller, 2016). However, an in-depth analysis of the Australian data necessitated a widening of the 
initial framework. This also included drawing on the works of scholars who investigated children’s 
errors of cube constructions, providing an opportunity to investigate further insights into children’s 
geometrical conceptual knowledge through the lens of the students’ errors. 

Cubes and cube constructions: revisiting the Piagetian framework 

The Swiss psychologist Piaget is well known for his contributions to children’s cognitive 
development, including a framework of their intellectual development. According to Piaget and his 
colleagues, young children begin to understand space by exploring simple relationships such as order 
and enclosure, separation and proximity. This encompasses an understanding of topological 
relationships – which is ensued by the development of understanding projective and Euclidian 
concepts of space (Piaget & Inhelder, 1967). Euclidean concept of space, objects (or parts of them) 
are located not only relative to each other, but also according to co-ordinate axes in 3-D space. These 
three dimensions and relationships determine an understanding of a cube as one of the five Platonic 
solids. A cube is classified as a 3-D object comprising 12 edges of equal length, 6 square faces with 
3 faces meeting at each of the 8 vertices. In terms of class inclusion, the cube is the only regular 
hexahedron, and differs from other rectangular prisms because it can be classified as a regular 
square prism (all rectangular faces are squares). 

Children’s cube constructions, in particular their errors and strategies when copying (cube) 
buildings have been investigated from the 1920s onwards (Reinhold, 2007). For example, Piaget and 
Inhelder (1971) investigated how children copied cube constructions (consisting of seven or more 
single cubes, displayed on a picture or as a solid model) when using wooden cubes. The analysis of 
these studies by Piaget and Inhelder included a classification of children’s errors. For example, 
young children may identify units of a construction, but assemble them incorrectly (wrong 
orientation of segments in the construction). Furthermore, a global similarity of the cube construction 
may stand in contrast to incorrect details (e.g., wrong number of cubes). These observations are in 
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line with Piaget’s overall notion that young children focus on single aspects of a phenomenon and 
prevents them from simultaneously taking various viewpoints into account and relates to their 
struggle when coordination different perspectives of 3-D objects. 

Visualization, coordination and integration of views in cube construction 

Recent studies have also explored the notion of children’s inability to coordinate and integrate their 
ideas simultaneously in visualization tasks. For example, Reinhold (2007) found that children tended 
to focus on isolated features, as they visualize “in bits” rather than sequentially when doing mental 
rotation tasks that included cube constructions. Instead of visualizing the entire structure of a 
construction, students were more likely to take into account only small portions of a 3-D array in an 
additive manner. Gorgorió (1998) found that focusing on single elements of a construction appears 
to happen more frequently when students construct by themselves, in contrast to drawing their 
responses. 

Battista and Clements (1996) reported students’ inability to coordinate two different orthogonal 
views for the construction of a rectangular prism when counting the number of single cubes. They 
found a lack of coordination whenever the students were unable “to recognize how they [the 
orthogonal views of a prism] should be placed in proper position relative to each other” (p. 267). This 
prevented some students from forming “one integrated mental image of the objects” (p. 272). 
Students’ initial conceptions of rectangular prisms were characterized as uncoordinated sets of faces, 
and in transition to a more elaborated understanding, students may then reconstruct in layers, yet 
focus locally, piece by piece. Battista & Clements also argued that in order to enumerate the number 
of cubes students must have a mental model of the prism, and that spatial structuring provides the 
input and organization for enumeration. They defined spatial structuring as: 

 the mental act of structuring an organization or form for an object or set of objects. The process 
… includes establishing units, establishing relationships between units … and recognizing that a 
subset of the objects, if repeated properly, can generate the whole set (the repeating subset 
forming a composite unit) (p. 282). 

Understanding of class inclusion in the Van Hiele framework 

The development of geometrical conceptual knowledge from primary to secondary school has been 
defined as five levels of development (Van Hiele, 1986). According to Van Hiele (1986), younger 
children identify shapes by recognizing resemblances to everyday objects or by identifying 
prototypes in the stage of Visualization. In the ensuing stage of Analysis they are more likely to take 
a shape’s properties into account when they decide upon categorization. Battista (2007) suggested 
renaming the Analysis stage as ‘Analytical/Componential’ which encompass three stages. The first 
is the “visual-informal componential reasoning” stage in which students focus on parts of shapes 
and then on the spatial relationships between the parts using visually based descriptions, that utilize 
informal language. In the next stage, “informal and insufficient-formal componential reasoning” 
their descriptions are a combination of informal and formal language, whereas in the final stage, 
“sufficient formal property-based reasoning” they use formal geometric language when describing 
and conceptualizing shapes. Students who have not reached the stage of Analysis, as defined by the 
Van Hiele, are unable to give a concise definition of a geometrical object whilst taking account of 
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mathematical properties (Reinhold & Wöller, 2016). When students begin debating about the 
impact of various properties of relationships between shapes, they achieve the stage of Abstraction. 

Method 
We report three case studies that were representative of the Australian cohort in relation to the 
errors identified from the analysis that investigated Grade 3 and 4 students’ (N=24) understanding of 
geometric objects whilst constructing a “cube”. Students responded to a one-to-one interview (designed 
by German colleagues) using Froebel’s cubes and cuboids (rectangular prisms) (see Figures 1-3), 
identifying insights into their understanding of the properties of prisms. Each interview was 
conducted by the Australian authors and video-recorded for later analysis. Students were asked to 
construct different cubes using smaller cubes (Froebel’s Gift # 3) and then using rectangular prisms 
(Froebel’s Gift # 4) (Reinhold, Downton & Livy, 2017). Examples of questions asked during 
interview included:  

“Close your eyes and imagine a cube. Describe what you see.” 
“I want you to build a cube using these blocks (2cm cubes). How do you know this is a cube?” 
“Can you build a different cube? How do you know this is a cube?” 
“I want you to build a cube using these blocks (small rectangular prisms) …” 
“Compare this cube (one 2 cm cube) with this rectangular prism (small rectangular prism). 
“How are they the same and different? (blocks shown to student)” 

Following an interpretative paradigm in qualitative data analysis, we used student responses and 
performance data for the analysis, guided by Grounded Theory methods (Corbin & Strauss, 2015). 
The first two authors independently used open coding, while viewing the videos, identifying key 
themes related to their responses and to their construction process. We highlighted evidence of 
students’ difficulties with their visualization skills as well as when students mentally structured 
solids or assembled parts of their constructions. Three case studies are presented to show examples 
of the following coding and categories: 

COORDINATION & INTEGRATION is evident when students notice the properties of the solid 
they are constructing including an ability to coordinate distinct units of (visual or cognitive) 
information, and simultaneously integrate all spatial information (spatial relationships and 
properties). Whenever some of these properties are not yet fully developed, the students focus on 
isolated units of visual or cognitive information. Elements of this category and visualisation 
encompass spatial structuring (Battista, 2007).   

VISUALIZATION includes cognitive processes related to visual perception, mental images and mental 
transformation of the entire cube or of smaller units. This may challenge students’ ability to see and 
imagine spatial relationships and the representations of a cube or parts of the object (e.g., mentally 
rotate or (dis)assemble parts of the cube that is under construction).  

CLASS INCLUSION refers to knowledge of the relationships between two solids (e.g., cube as a 
special rectangular prism) and students’ understanding the structure of the hierarchical classification. 
In single cases, this may include the use of terms indicating class inclusion (e.g., prism, rectangular 
prism, rectangular square prism). Similarly, when describing a cube, the three students related their 
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description to everyday objects, such as, it’s like a box, a yellow block, which is evidence of Level 
1, Visualisation (Van Hiele, 1986). 

FLEXIBILITY consists of students’ ability to visualize and construct more than a single appropriate 
representation of a cube (2x2x2 as most common prototype). This may also address the idea to 
mentally (dis)assemble their own construction in various ways in order to flexibly find more than one 
solution (e.g., to enlarge a cube in length, width and height by adding one block). Whereas STABILITY 
refers to having a strong (mental) image of an object. 

These categories prompted a critical debate allowing us to consider further interpretations for 
classifying and discussing students’ sources of errors.  

Results 
The results focus on selected examples of three students’ errors and (mis)conceptions showing 
screenshots to support our findings. We grouped and categorized their errors and (mis)conceptions, 
providing examples of each category (described above and in Figure 4). 

Edward (pseudonyms used throughout) (aged 10 in Grade 4) 

When asked to describe a cube Edward said, “A cube has 8 corners and 12 edges and is 3-D.” He 
was able to construct a 2x2x2 cube (length x width x height) using eight smaller cubes and said, “It 
is equal on all sides and is 3-D”. For his second cube construction, he built a 3x3x3 cube using 27 
cubes stating, “All faces are equal.” However, when asked to construct a cube using small 
rectangular prisms Edward did not draw on this insight. After an attempt to construct a cube using 
six rectangular prisms (see Figure 1 left), he removed two blocks (top layer) leaving a 2x2x2 
construction (Figure 1 middle). He said, “This is now a cube.” Edward was focusing incorrectly on 
the dimensions of the object (2x2x2) rather than the properties of a cube that all faces are equal. 
Next, he incorrectly constructed another cube (Figure 1 right) he responded that it was a cube 
because, “All the faces were even,” revealing another misconception. Edward’s construction of a 
cube using cubes was the ‘prototypical’ cube and he recognised that all the faces were equal. This 
response also aligns with his initial answer to the first interview question, in which he said, “a cube 
has six faces that are all equal and it looks like a dice”. When challenged to construct different 
cubes using rectangular prisms he struggled. When asked why the third construction was a cube he 
indicated that all faces are even. It is possible that he was attending to the top face (a square) and 
did not notice that the other faces were rectangles. 

  

 

 

Figure 1: Edwards’ response when making cubes with smaller rectangular prisms. 

Emma (aged 8 in Grade 3) 

When asked to describe a cube Emma said, “It is a yellow block and it has 8 points and 6 sides and 
[…] is a 3-D square.” Emma referred to a cube as a 3-D square and attended to a holistic 
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appearance (Van Hiele, 1986). With smaller cubes, she constructed a 2x2x2 cube by using a 
strategy of trial and error. Again, she said, “It is a cube because it is a 3-D square (counting the 
edges twice) with 8 points (counting the faces) and 6 sides.” When using the smaller rectangular 
prisms (Figure 2 left) she struggled and said, “I know it’s not a cube, it’s a rectangle but I don’t 
know how to make it a cube from here.” After several attempts (Figure 2 right) Emma concluded 
that she could not construct a cube. Emma had difficulty visualizing and constructing a cube when 
using rectangular prisms, most likely attributed by her lack of experiences with these blocks. 

 

Figure 2: Emma’s response when making cubes with smaller rectangular prisms. 

Chloe (aged 8 in Grade 3) 

When asked to describe a cube, Chloe said, “A cube is like a box … it has 12 faces … is a square 
shape.” Chloe had difficulty constructing cubes (using cubes) and attempted to build an outline of 
the base of a cube (5+5+5+4) (Figure 3 left). Next, she built “towers” four cubes high on each 
corner (Figure 3 second) and filled in the ‘walls’ (Figure 3 third). Chloe said, “This is not a real cube 
because it needs to be filled up,” nor did she recognize the faces were not equivalent. Her final 
incorrect cube construction (Figure 3 fourth) had an uneven frame (5+5+6+4). After several attempts 
of counting the cubes Chloe still could not identify her error or make each length of the ‘faces’ 
equal. Her error related to spatial structuring when counting single elements (“Four, four, four and 
four.”) in a cube construction (Figure 3 right, the arrow visualizes her starting point for counting).  

Figure 3: Chloe’s single steps when making a cube with smaller cubes and her counting of each cube. 

The results of these case studies highlight the following (mis)conceptions or errors: 

Attention to the dimensions rather than properties of a cube (when using rectangular prisms) 
A focus on the top face being square (rather than all faces being square) 
An inability to visualize and construct a cube (when using cubes and/or rectangular prisms) 

Our results confirm those of Reinhold (2007), that students tend to visualize “in bits” rather than 
visualizing the entire constructions, and their lack of spatial structuring (Battista, 2007), when 
constructing cubes. Many of these misconceptions or limited conceptual knowledge were evidence 
of: co-ordination and integration, visualization, class inclusion and/or flexibility and stability 
(Figure 4). 
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Discussion 
The following discussion includes the results in relation to the four categories shown in Figure 4. 
Doing so highlights the cognitive demands and developmental aspects that we identified as possibly 
influencing the variety of students’ correct solutions (not reported within this paper) and errors. As 
indicated in the literature, these categories were not entirely new to this field of research. Each of the 
four cases revealed difficulties in one or more of these categories. 

 

Figure 4: Sources of errors in Grade 3/4 students’ concepts of cubes. 

COORDINATION & INTEGRATION: Edward focused on the dimensions of the constructions rather 
than the properties of a cube when constructing a cube using rectangular prisms. He was focusing on 
isolated bits of information and units when visualising (Figure 1). VISUALIZATION: Emma and 
Chloe had difficulties with their spatial structuring when visualizing and making a cube using 
smaller rectangular prisms (Figures 2 & 3). They were unable to see and imagine spatial 
relationships and the representations of a cube or parts of the object (e.g., mentally rotate or 
(dis)assemble parts of the cube that is under construction). CLASS INCLUSION: Students such as 
Edward had not yet developed class inclusion as they could not conceptualize that a cube could also 
be classified as a rectangular prism. FLEXIBILITY: Most students in our study require further 
development of their understanding of the properties of cubes and rectangular prisms in order to 
develop flexibility and stability.  

Conclusion and Implications 
A commonality across the results was students’ inability to integrate all spatial information 
simultaneously (e.g., Battista & Clements, 1996; Reinhold, 2007) and their lack of spatial 
structuring. Many students within this study could state properties of a cube correctly (“6 faces, 8 
vertices and 12 edges”) yet further exploration of their ability to construct and classify geometric 
objects revealed lack of spatial structuring. For instance, some students struggled with the idea that 
two adjacent cubes formed a rectangular prism (mental transformation referring to visualization). 
Hence, we argue that a deep understanding of the concept of a “cube” is not entirely developed until 
a student has the capability to coordinate and integrate; consider class inclusion correctly; visualize 
representations of a cube or parts of an object; and to find an appropriate balance of flexibility and 
stability.  

These insights into student errors and/or misconceptions has highlighted the need to provide 
students with many opportunities to construct cubes (and cuboids) beyond the prototypical using a 
range of materials. An implication of our study is to highlight the importance for (Australian) 
teachers to use construction tasks to develop students’ geometric thinking related to three- 
dimensional objects. Ongoing in-depth analysis of individual students’ geometrical concepts of 
rectangular prisms aims to strengthen these findings and provide opportunities for further research. 
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Introduction to the work of TWG5: 
Probability and Statistics Education 

 
 
Leaders:  

– Caterina Primi (Italy) 
– Aisling Leavy (Ireland) 

Co-leaders:  
– Pedro Arteaga (Spain)  
– Daniel Frischemeier (Germany)  
– Orlando Rafael Gonzalez (Thailand) 
– Sibel Kazak (Turkey)  

 
Introduction 
 
The working group gathered 42 participants from 20 countries. 27 papers and 9 posters were 
accepted. In the first session after the organising team presentation we explained the three 
Cs of CERME, introduced the aims of the conference and of our TWG. In order to create a 
collaborative atmosphere, that would support the discussions and feedback over the 
following days, we started with an ice-breaker activity involving all the participants in a 
“Bingo” game”. Through this activity participants got to know their TG5 colleagues in a low 
stakes and collaborative context. Following this, the participants were asked to introduce 
themselves and their expectations for the working group and the conference. Among the 
expectations communicated were: to receive constructive feedback on their work, to gather 
new ideas, to get informed and updated on new trends in statistics and probability education, 
to get better acquainted with emerging research from other countries and develop possible 
collaborations and networking opportunities. 
 
Participants were introduced to the three subthemes identified as emerging across all 
submissions. In particular, submissions focused on “Teacher education”, “Reasoning about 
data” and “Statistical and Probabilistic Thinking and Reasoning”. However, we remarked 
that there was some overlap and similarities across subthemes: submissions on Teacher 
education also focus on subtheme 2 (Reasoning about data) or on subtheme 3 (Statistical 
and Probabilistic Thinking and Reasoning). Additionally subthemes 2 and 3 are not seen in a 
disjoint way – which means, in both subthemes 2 and 3 we can of course also find 
submissions with connections between the “data world” and the “probability world”. 
Following this, participants were split into groups and each group discussed these 
subthemes. As part of these discussions, the co-leaders introduced and discussed several 
questions for the discussion in all subthemes during the sessions across the days to follow: 

● What experiences can we provide to promote and develop learners understanding 
when reasoning about data / Statistical and Probabilistic Thinking and Reasoning?  

● Which (typical) (mis-)conceptions of learners can be identified when reasoning about 
data / Statistical and Probabilistic Thinking and Reasoning?  
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● How should tasks and learning environments be designed to enhance reasoning 
about data / Statistical and Probabilistic Thinking and Reasoning for learners 
(primary students, high school students, teachers, etc.)?  

● Which research methods are used / should be used to find about students´ or 
learners´ reasoning with data / Statistical and Probabilistic Thinking and Reasoning? 

● How and in which way can we build bridges between data analysis, probability, and 
inference? Which role does context play? 

● How and in which ways can the use of digital tools enhance statistical reasoning 
(reasoning about data and statistical and probability reasoning)? 

● What about the handling of Big Data in the upcoming Data Science era? How can we 
(statistics education) profit from the availability of Big and Open Data? Which 
implications does it have for statistics education? 

 
For all the sessions during the week the participants were split in two groups: TWG5a with 
Caterina Primi (Leader) and Sibel Kazak and Orlando Rafael Gonzalez (Coleaders) and 
TWG5b with Aisling Leavy (Leader) and Daniel Frischemeier and Pedro Arteaga (Coleaders). 
For each subtheme we organized two sessions managed and chaired by one of the co-
leaders. We also organized a poster session with all participants (both groups together) 
where each presenter had 5 minutes to present the poster and the rest of the session had 
time allocated for the discussion. 
 
The last day we had a culminating session with all participants with the aim being to engage 
in an in-depth discussion on subthemes and to share the contributions discussed during 
each session. 
 
 
 
Teacher education  
From the discussions of various papers addressing pre- and in-service teacher education in 
our working group, the following ideas and implications emerged, regarding how to prepare 
teachers to address and foster students’ reasoning and thinking about statistics and 
probability: 

· to enhance the pedagogical content knowledge facets of statistical knowledge for 
teaching, and not just focus on the subject matter knowledge facets;  

· to make teachers familiar with performing statistical tasks and investigations from a 
procedural, interpretative and contextual perspective, while making connections 
among fundamental ideas of statistics (e.g., data and randomness), chance, relevant 
and appealing real-life contexts, software and technology;  

· to include childhood statistical ideas (both formal and informal) in early years 
education, and prepare teachers to address and foster them; 

· to create Professional Learning Communities (i.e., communities of practice within 
schools and beyond); 

· to consider the affordances of games, university entrance examination tasks, and 
real-life problem scenarios as triggers for engaging students in high-quality statistical 
investigations, grounded on production tasks (as opposed to judgement tasks); 
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· to develop teachers’ statistical reasoning and thinking by engaging them in the 
interpretation, design, teaching and assessment of stochastical tasks and statistical 
investigations organized around the three stages of teaching (i.e., lesson design, 
classroom implementation and reflection);  

· to develop teachers’ assessment skills regarding the most suitable strategies to 
assess students’ statistical reasoning and thinking, in terms of their effectiveness 
(e.g. peer review among students, projects, written reports); 

· to raise pre- and in-service teachers’ awareness of the importance of providing 
interdisciplinary experiences to learn statistics (e.g., STEAM);  

· to raise pre-and in-service teachers’ awareness of the importance of providing 
students with opportunities to work with big data and personalized data; and 

· to employ qualitative approach (e.g., observations, interviews, analysis of artefacts 
and final reports), action research, statistical argumentation, and analysis of 
statistics within social issues as methods to explore teachers statistical and 
probabilistic knowledge, thinking and reasoning. 

 
Reasoning about data  
 
From the discussions of various papers focusing on the reasoning about data, the following 
ideas and implications emerged in our working group: 
 

· The Data Science era is emerging: Data are everywhere and the exploration and 
analysis of Big data and Open data will be a fundamental aspect in reasoning about 
data. Furthermore, there are other data collection methods which become more 
relevant (e.g., with Sensors, web scraping, etc.) and which provide new types of data. 

· The necessity to cooperate with other disciplines like computer science, social 
science and citizen science is becoming increasingly evident. Especially for Data 
Science, collaboration with computer science is inevitable. 

· The use of digital tools when exploring data is fundamental. We need to both 
consider and make the distinction between educational software tools (like 
TinkerPlots or Fathom) and professional software tools (like R, Python). Also open 
source and online tools like Gapminder and CODAP can help develop reasoning 
about data.  

· Data competence has to be developed continuously from primary school to adult 
education. Especially in primary school, data competence and more specifically 
reasoning about distributions can be enhanced by using pre-formal concepts like 
modal clumps which offer a pre-stage for the concepts center and spread for 
example. 

· The facets data, chance and context are tied strongly together. 
 
 
Statistical and Probabilistic Thinking and Reasoning  
 
From the discussions of various papers focusing on the statistical and probabilistic thinking 
and reasoning, the following ideas and implications emerged in our working group: 

· The use of context, real problems and visualization tools can support statistical and 
probabilistic thinking and reasoning in data and chance explorations. 
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· The focus on interpretation and justification of results is essential to promote 
statistical and probabilistic thinking and reasoning. 

· Studies suggest that building on learners’ intuitions and emerging conceptions, 
rather than focusing on their misconceptions, becomes more useful for supporting 
their thinking and reasoning in data and chance. 

· The use of real or realistic data can motivate learners to use statistical and 
probabilistic ideas in their thinking and reasoning. 

· To move the field forward considering design based research as an additional 
methodology can inform how to build statistics learning environments that support 
learners’ statistical and probabilistic thinking and reasoning. 

 
Conclusion  
 
The field of statistics and probability education is a fast evolving area and to draw on the 
words of H.G Wells (cited in Huff, 1954) ‘Statistical thinking will one day be as necessary for 
efficient citizenship as the ability to read and write’. As such, we identified several critical 
areas of focus for research and practice in statistics and probability education. Firstly, 
gaining access to the ‘big ideas’ in statistics and probability is important for effective 
citizenship. Exposing young children, in the early primary years, to informal ideas of 
statistics and probability is a critical step in order to develop and lay the foundation upon 
which formal understandings will be built upon.  Related to this is the second 
recommendation that we establish a trajectory of learning experiences to support the 
continuous development of statistical and probabilistic reasoning and thinking from early 
years to adulthood. A guiding signpost for both educators and researchers alike, is provided 
in the third suggestion, and that is to maintain the important connection between data, 
chance and context as we move forward in the field. Two emerging areas to keep abreast of 
as we make advancements are the need to be prepared for Data Science (the 
implementation of Big Data) and its’ implications and also to continue to develop and makes 
use of appropriate digital tools ( such as Gapminder, CODAP, TinkerPlots, Fathom etc.). 
Finally, we conclude with a reminder to remain mindful of the need to diversify our research 
design and approaches to inquiry - incorporating attention to fine-grained studies, eye-
tracking research, larger cross-comparative studies, experimental design, to name but a few  
– all in an effort to advance our understandings of the complex and evolving areas of 
statistics and probability education. 
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Formalizing students’ informal statistical reasoning on real data: 
Using Gapminder to follow the cycle of inquiry and visual analyses 
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Graphical representations of Open Data facilitate students’ personal engagement in discovering and 
exploring data and enable students to intuitively access certain statistical concepts. The aim of this 
study is to identify important patterns and fundamental limitations in the learning processes when 
students acquire deeper understanding of “big ideas of statistics” (Garfield & Ben-Zvi, 2008). The 
objective of the study is to nurture students’ intuitive knowledge (Fischbein, 1987) by using the 
software Gapminder for data visualization in classrooms. In this exploratory study 19 students aged 
14-15 were guided through two lessons of 1 hour and 40 minutes, each, using the Gapminder tool 
and materials to explore and visualize sets of Open Data while working on several worksheets and 
test items developed by the research team. Findings of this initial study are being used to further 
conceptualize and design successive investigations.  

Keywords: Statistics education, statistical literacy, visual data analysis, statistical reasoning, 
intuitions. 

Theoretical background 
This study is primarily based upon the cycle of inquiry and visual analysis (Prodromou, 2014), 
complemented by works on students’ statistical literacy (Prodromou & Dunne, 2017), their 
development of the big ideas of statistics (Garfield & Ben-Zvi, 2008) and various research studies on 
the use of technology in the era of Open Data with a special focus on the visualization of context-
based data. Acknowledging that graphical representations play a fundamental role in intuitively 
understanding of abstract mathematical or scientific concepts (Fischbein, 1987), theories on intuition 
(Fischbein, 1987), heuristics and biases (Tversky & Kahnemann, 1974) are considered.  

Tversky and Kahnemann (1974), Fischbein (1987) stress the influence of connate heuristics, biases 
and misconceptions on making decisions or judgements under uncertainty (Tversky & 
Kahnemann, 1974). Studies have examined specific heuristics, biases and misconceptions within the 
learning processes of statistics and probability theory (Garfield & Ben-Zvi, 2008). Thus, it is a central 
challenge in statistics education, to address students’ intuitions in order to identify their biases and 
misconceptions and support students to overcome their misconceptions. In fact, misconceptions are 
strongly bound to context because students think differently about stochastic concepts in various 
contexts.  

Makar et al. (2011), as well as other researchers in Statistics Education, emphasize the importance of 
context and the use of real data in statistical reasoning. Ben-Zvi and Aridor-Berger (2016) 
demonstrate students’ transition between context and data and also report on students’ growing 
understanding of the ways to combine these contexts and data. Although there is little research on the 
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question what makes data “real”, we can presume that students perceive data to be real when they get 
personally affected by the data. Therefore, Open Data on topics of general interest may be considered 
as real data easily accessible for teachers and students.  

Advances of new technology with numerous opportunities for data visualization prompted 
Prodromou and Dunne (2017) to argue for the profound importance of using Open Data in statistics 
education. Analyzing Open Data with the software TinkerPlots in classroom, Watson (2017) 
describes the chances of learning statistics in a transdisciplinary way, integrating statistics education 
in non-mathematical topics, such as to Health and Physical Education, Social Science or History.  

Garfield and Ben-Zvi (2008) outline various research studies on students’ development of different 
big ideas of statistics, which they identified as crucial for statistical reasoning: a) data, including the 
nature of data and the diverse types and sources of data b) statistical models, such as regression and 
the Normal Distribution as statistical models, c) distribution, involving the ideas of shape, centre and 
spread, d) centre, covering the difference between median and mean, e) variability, including the 
measuring of the spread of a distribution, f) comparing groups by centre and spread, g) sampling, 
containing, e.g., the effect of sample size, h) statistical inference as to testing hypotheses or 
confidence intervals, and i) covariation with scatterplots, correlation and linear regression. The 
theory-based recommendations given with the presented activities for the development of the big 
ideas of statistics comprise learning these ideas explicitly, addressed in a constructive way and 
facilitated by examining real data sets. Furthermore, Garfield and Ben-Zvi (2008) also suggest 
learning the big ideas of statistics beginning with students’ intuitions and preconceptions, taking their 
informal notions of the single ideas and turning them into formal notions. Teaching must start with 
introducing students’ intuitions and preconceptions, identifying intuitions and preconceptions and 
rectifying them using different techniques including the use of digital technologies and graphical 
representations of data to display the summaries and visualizations of data.  

Visualizing data is one of the most intuitive ways of understanding underlying concepts from data 
and “graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest 
time with the least ink in the smallest space.” (Tufte, 1983, p. 51). Moreover, presenting information 
with diverse graphical representations is a highly important skill for many scientific disciplines 
aiming to make data meaningful (Tufte, 1983). Therefore, new types and the diversity of data in our 
age also require new ways of structuring, organizing, and visualizing data. Traditional, static 
visualization techniques such as bar charts, boxplots or distributions for single variables often fail to 
meet requirements of current data sources and analyses. Thus, processing and visualizing data with 
new techniques using specific, sophisticated technology plays an important role in students' 
developing understanding of statistics. 

Using TinkerPlots for exploratory data analysis in the classroom, Ben-Zvi and Ben-Arush (2014) 
focus on the instrumentation process of transforming an artifact (i.e., a software with no meaning for 
the students) into an instrument (i.e., a tool, that is meaningful and useful to the learners). Based upon 
their observations, the authors suggest three types of instrumentation processes: a) unsystematic: 
students playing and experimenting with the software in a non-intentional way, b) systematic: 
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students being focussed on the tool rather than on the task, but applying the software purposefully, 
and c) expanding: students using the software fluently and focussing on the task.  

Prodromou (2014) presents a project concluding that the students were able to flexibly use the 
software Gapminder to build visual structures that highlight information relevant to their analysis 
task. In addition, various studies concerned with the implementation of Open Data in school education 
(e.g., in Prodromou, 2017; Engel et al., 2016) and the technologies used for this purpose (e.g., Forbes 
et al., 2014) show promising possibilities to beneficially integrate Open Data in statistic courses by 
operating with visual methods.  

To meet the needs of exploring and analysing data particularly by visual methods, Prodromou (2014) 
presents the cycle of inquiry and visual analysis, especially elaborated for that purpose. The steps of 
this cycle are: a) identifying the task, b) foraging for data, c) searching for visual structure and 
implementing visualizations, d) developing insight through interaction with the resulting data 
visualizations, and e) acting with regards to work further on any step to develop deeper insight or 
ending the cycle. All these stages are connected to each other and the process of visual analysis 
includes continuous interactions between the stages. Furthermore, basic statistical literacy is a prior 
condition for exploring data by visual methods, being deepened with these investigative processes. 
Therefore, Prodromou and Dunne (2017) have introduced a framework for constructing statistical 
literacy in schools, incorporating new possibilities arising in the age of Open Data and strongly bound 
to the diverse graphical representations of data.  

In the teaching of basic statistics courses, students’ intuitions and preconceptions have to be addressed 
and we also need to consider their biases and misconceptions. Working with graphical representations 
assists students to access their intuitive knowledge (Fischbein, 1987). According to researchers (e.g., 
Makar & Ben-Zvi, 2011), it is crucial to work with context-based data that are meaningful and 
important for students. Thus, meaningful data-processing needs visualizing real data, includes entire 
cycles of inquiry, and particularly addresses the big ideas of statistics (Garfield & Ben-Zvi, 2008). 
Furthermore, an updated concept of statistical literacy required for our age of data society (Prodromou 
& Dunne, 2017) should address students’ perceptions and assessment of large sets of data. Finally, 
using technology autonomously and fluently, allowing focus on the task rather than on the software, 
is a fundamental factor of students’ constructing their statistical knowledge and skills (Ben-Zvi & 
Ben-Arush, 2014). Therefore, the aim of this study is to develop new ways of teaching basic statistics, 
integrating students’ intuitions addressed by the visualizations of Open Data with the software 
Gapminder. In our exploratory pilot study, we aimed at identifying important patterns and 
fundamental limitations regarding students’ intuitions on statistical concepts, their statistical literacy, 
and their instrumentation processes to further conceptualize this investigation.  

Methodology and implementation 
The present pilot study is embedded in a larger study investigating students evolve their intuitions 
and preconceptions from informal perceptions of statistical concepts to a higher and more formal 
level by using different visualization tools. The research question concerning the present study is: 
How do activities related to analyzing real data by visual methods contribute to formalize students’ 
statistical reasoning? The entire study follows the methodology of design-based research (Cobb et 
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al., 2003), utilizing an iterative design of the implementation of a learning environment and approach 
based on analysis of variety of data sources at the subsequent stages. We analyze students’ 
conceptualization of the big ideas of statistics inherent in the applied worksheets and tests while 
examining data with the software Gapminder. The worksheets were used to get a broad range of tasks 
and corresponding answers; the test items included both closed and open-ended questions. Results of 
the worksheets and tests were anonymized during transcription and translation by using pseudonyms. 
Transcripts were analyzed qualitatively using MAXQDA qualitative analytics software by 
categorizing the answers in response to various statistical ideas addressed. Although it was planned 
to visit classes and conduct interviews with students, researchers were not allowed to collect any 
additional data from students beyond the worksheets and tests. But, interviews with the teacher before 
and after the lessons offered further information on the circumstances and settings of lessons and 
insights into students’ work.  

In total, 19 students in the 8th grade participated in the study. They had not worked with the software 
Gapminder previously nor had they received any prior instruction on distributions and variability in 
their school. However, their pre-knowledge, which could have an influence on solving tasks, includes 
calculating the mean and graphical representations of functional relationships in non-statistical, linear 
contents. The participating teacher was introduced by the researcher to the software and the 
instructional items of the study. Learning activities took place in a computer lab with a PC for each 
student and had duration of one week with two lessons of 1 hour and 40 minutes. The topic of the 
lessons was to find out more about poverty in the world.  

Using two worksheets, the first lesson aimed at introducing students to the software as well as to ideas 
of investigating and exploring data sets. In the second lesson, using a third worksheet, students were 
asked to explore autonomously visualisations of various datasets. Between the different learning 
sequences, some test items were introduced to find out more about the students’ statistical 
preconceptions and the conceptions they gained. The test questions were partly open-ended and partly 
closed, a structure familiar to the students from Austrian national standardized tests. The content of 
the first worksheet is about eight sets of interactive slides on human development trends, provided by 
the Gapminder foundation as instructional material (https://www.gapminder.org/downloads/human-
development-trends-2005/). These slides show different visualisations (see figure 3) of the variables 

Figure 1: Visualizations of income distributions used in the first test 
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income and child mortality rate (health). Visualisations explained and described the distribution of 
income of all countries in the world and the relationship between income and health over time. This 
worksheet contains questions on statistical ideas that address central value, variety, distribution’s 
shape, and correlation between variables based on the topic. As the tasks were open-ended and 
students did not get any instruction before, they were required to describe their ideas on the tasks 
intuitively. Connected to the first worksheet, the first test items were developed to directly address 
the students’ intuitions of centre, distribution, and variability by giving them two diagrams of 
different income distributions (see figure 1). The students were asked to reason about the shape of 
the second distribution and to compare it to the first distribution regarding the centres of these 
distributions. Additionally, students were asked to explain why the median income in 2015 most 
probably belongs to a person from a middle-income country and to describe the income of Chinese 
people in 1987 (light green top of the left peak). The second worksheet was a step-by-step guideline 
to follow the cycle of visual analysis (Prodromou, 2014) with different variables using the Gapminder 
software. There was no data collected on this second worksheet. The third worksheet contained some 
general instructions and suggestions, which variables the students may use for their autonomous 
investigation of the topic, e.g., income and literacy rate. The students participating were asked to 
document the findings of their investigations.  

A second test, held at the end of the second lesson, included questions on a bubble chart (see figure 2) 
showing the variables income and sanitation. The focus of the test was on the ideas of correlation, 
centre and distribution. Students were asked to describe the bubble chart depending on the income 
levels and got a set of five statements addressing the various statistical concepts (e.g., variety, centre, 
or spread) to choose the right ones. With exception of the investigational learning sequences, the 
students were asked to work independently. The teacher supported the students’ learning process by 
assisting them while working with the software and the topic. When the students solved the tests 
independently, they did not receive any assistance.  

 

Initial results and discussion 
In this section we present and discuss some of the main results of the pilot study to pinpoint directions 
for further investigation. Results presented focus on some of the big ideas of statistics (Garfield & 
Ben-Zvi, 2008) connected to the students’ intuitive approaches and their uses of technology. In the 
study, the main statistical model addressed was the model of regression. In several tasks students 

Figure 2: Bubble chart of the variables income and access to improved sanitation used in the second test 

 

Thematic Working Group 05

Proceedings of CERME11 874



 

 

were asked to intuitively reason about the relationship between different variables (e.g., income and 
health) regarding various countries or a time series of one or more countries. All students recognized 
a correlation between income and health, building a model of regression. For example, one student, 
Richard, stated: “The higher the income in a country is, the better is the health rate of children.” 
(Richard, worksheet 1) Students also interpreted the positive slope of the regression correctly: “That 
means that the countries constantly develop – in other words the GDP per person is growing – and 
the percentage of surviving children is heightening.” (Eva, worksheet 1) Still, students did not 
compare countries’ development by recognizing and building two or more models of regression in 
one graph (see figure 3) with one exception: “That means that poor people in India are less healthy 
than the rich ones whereas in Namibia the poor ones have nearly the same rate of health as the rich 
ones.” (Vincent, worksheet 1). Anyway, most students independently used a model of regression 
during their autonomous investigations: “The poorer the countries are the worse are the numbers [of 
other variables] or the more children they have.” (Paul, Peter and Anna, worksheet 3).  

Besides using regressions, some models of probabilities were detected in the data as well. The 
students were asked to decide whether the person with the median income most probably comes from 
a low, middle or high-income country. For example, Vincent marked the height of the income of 
middle-income countries in the graphic of the distribution and connected the height to its probability. 
But some misconceptions were also observed with students building a model for this probability while 

maybe having a linear (regression) model in mind, as exemplified by these remarks: “Poor income 
country, because 6-7 $ is very little” (Julia, test 1) or “middle income because the number is in the 
middle” (Ruth, test 1).  

These outcomes show that students had an intuitive access to the basic ideas of regression and 
correlation. The attempts to apply the model of regression to the probability theory may be rooted in 
the proximity of tasks. Furthermore, we suggest addressing context, change and causality as a part of 
the new framework for statistical literacy (Prodromou & Dunne, 2017) in that connection, as some 
students intuitively described the relationship between the variables with a focus on causality. 

A second statistical idea to be mentioned here is the idea of distribution. With the learning materials 
on worksheet 1, students were briefly introduced to the idea of statistical distributions. All students 
recognized a change in the parameters of the income distribution over time and interpreted this change 
correctly, e.g., “Heavily concerned [with poverty] were South and East Asia (1970). Since then, 
Africa got poorer” (Anna, worksheet 1). Moreover, some students gave a correct interpretation of the 

Figure 3: Examples of slides from the Gapminder learning materials 
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old-fashioned term “3rd world (in 1987)” regarding the graphic in figure 1. As they did not get any 
instruction on regular or irregular shapes of distributions, students were not wondering about the 
different shape of the income distributions of 1987 and 2015.  

When asked for the central value of the income distributions in 2015 and 1987, all students gave the 
right number for the “regularly shaped” distribution of 2015, but around half of the students wrongly 
identified the higher, more distinctive peak in 1987 (see figure 1) as the centre (in terms of the median) 
of the distribution, although the poverty line above this peak is marked with “47%”. In our data, we 
have detected two answers of students autonomously differing between median and mean, but most 
students did not differentiate between these two. In sum, we can conclude that the ideas of distribution 
and the centre are intuitively accessible, but certainly should be addressed more explicitly to avoid or 
eliminate the misconceptions. Especially a more detailed focus on the idea of distribution regarding 
their shape must be explored.  

The collected data show that all students adequately applied the idea of variability in different 
contexts. They intuitively defined and applied the idea of “variability”, e.g., in terms of “constant 
appearing dispensation, spread of something; […] In Namibia there are some people, who earn very 
little and some who earn very much. Therefore, the spread is as large.” (Anna, worksheet 1), “the 
diverse levels of economy and rate of child mortality in different countries” (Sarah, worksheet 1), or 
“continuously occurring distribution/spread” (Clemens, worksheet 1). Moreover, all students used 
the idea of variability in their autonomous investigation to describe different variables. Therefore, we 
believe that the basic concept of variability is relatively easy to access for students who have adequate 
pre-conceptions of spread or range.  

Relying on the reports of the teacher, the instrumentation processes (Ben-Zvi & Ben-Arush, 2014) of 
students can be described as unsystematic in the beginning and partly systematic while they are 
getting familiar with the tool. This does not seem surprising, especially since the students did not 
spend a long time working with the software. As students were given hints which variables to use in 
their autonomous investigation, the development of the instrumentation processes from unsystematic 
to systematic may have been supported. More detailed observation on students’ use of the Gapminder 
tool will be necessary to identify helpful and hindering conditions for their instrumentation processes.  

Summary 
By addressing students’ pre-conceptions and intuitions on various statistical concepts with visual 
methods, the initial results of the study suggest that some of the basic ideas, such as models of 
regression, centre or variability, tend to be intuitively accessible for students, whereas especially the 
idea of distribution seems to demand a more extensive development. In addition, several opportunities 
to focus on students’ statistical literacy, related to explicating inferences within data or context, 
change and causality (Prodromou & Dunne, 2017), were detected. Offering a selection of adequate 
variables to explore, students’ instrumentation process using the Gapminder software was apparently 
supported. Results of this pilot study will lay the basis to redesign this research project and to 
generalize findings.  
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The goal of this article is to draw attention to the need to think about learning environments and their 
design as a way of considering how sustainable change in the learning and teaching of statistics can 
be supported. The goal is not to advocate one particular approach to the design of learning 
environments, but rather to raise awareness of the need to consider this lens in statistics education. 
We first present the rationale for the importance of a focus on learning environments for statistics 
education. We consider six design considerations for statistics learning environments. Finally, we 
discuss implications and emerging directions and goals for further implementation and research. 

Keywords: Learning environment, learning and teaching of statistics, statistics education. 

Introduction 
Many of the research studies in the learning and teaching of statistics (e.g., Ben-Zvi, Makar, & 
Garfield, 2018) suggest innovative approaches that differ from the traditional classroom practices 
through which most current statistics teachers learned this subject themselves. However, innovation 
which addresses only one aspect of the pedagogical context, for example introducing technological 
tools in teaching when assessment practices remain unchanged, is likely to have only limited impact. 
This article offers starting points of design for deep learning of statistics to develop students’ 
statistical reasoning. To do this, we use a learning environment perspective to provide a dynamic, 
holistic, integrated and multi-dimensional framework for sustainable educational change in statistics. 
The goal of this article is to draw attention to the need to think about learning environments and their 
design as a way of considering how sustainable change in the learning and teaching of statistics can 
be supported. 

A learning environment is a complex and dynamic educational system, composed of multiple factors: 
key statistical ideas and competencies (content), engaging tasks, real or realistic data sets, 
technological tools, classroom culture including modes of discourse and argumentation amongst 
students and between students and teachers, norms and emotional aspects of engagement and 
assessment methods. Integrating all these factors in order to reform the way statistics is learnt and 
taught is a challenging endeavor. The focus in this article is on general characteristics of statistics 
learning environments that need to be examined and integrated in light of the new developments in 
mathematics, statistics and science education, and more generally in the learning sciences. Our 
specific objectives are to first present the rationale for the importance of a focus on learning 
environments for statistics education; we provide a potential framework for considering aspects of 
statistics learning environments. We then develop six design considerations for statistics learning 
                                                 
1 This article is based on a chapter by Ben-Zvi, Gravemeijer and Ainley (2018). 
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environments. Finally we discuss implications and emerging directions and goals for further 
implementation and research. 

Learning environments 
The research literature in statistics education is filled with success stories, which are of importance 
to the advancement of the field, but have not had a major impact on the way statistics is taught in all 
levels of education. We propose that one of the reasons for this is the lack of a systematic, 
comprehensive and integrated approach to design for educational change (e.g., Cuban, 2003). We 
suggest that what is needed is change in a combination of interrelated dimensions (content, pedagogy, 
space, time, tasks, tools, assessment, classroom culture etc.) that can bring about significant and 
sustainable reform in the teaching and learning of statistics by providing a coherent framework in 
which each dimension operates synergistically with others. Moore (1997) similarly urged a reform of 
statistics instruction and curriculum based on strong synergies between content, pedagogy and 
technology. A learning environment perspective can provide such a framework. One of the major 
goals of statistics education is to educate critical, independent and statistically-literate learners who 
are able to study topics of their own interest and become involved in data-based decisions. A learning 
environment perspective can provide fertile affordances to support learners’ growth and development 
in this direction as well as a guiding framework for teachers that can support their professional growth 
in statistics education. 

Design dimensions of statistics learning environments that will be considered and discussed in this 
article are based on a number of principles arising from recent research. In particular we have drawn 
on research concerning the importance of prior knowledge and preference for depth over breadth 
(Bransford et al., 2000), the creation of failure-safe learning communities in which students can learn 
from their successes and mistakes (Kapur & Bielaczyc, 2012), the nurture and articulation of learners’ 
diverse expertise, encouragement of reflection and feedback (Boud, Keogh, & Walker, 1985), 
formative assessment (Kingston & Nash, 2011) and enculturation into the statistics discipline 
(Edelson & Reiser, 2006). 

The use of the metaphor of an environment emphasizes that classrooms are interacting social, cultural, 
physical, psychological and pedagogical systems rather than a collection of resources, tasks and 
activities or a list of separate factors that influence learning. Because of the complex nature of learning 
environments, successful design requires a working model of how components of the design that help 
frame forms of student participation and responsibility, are collectively constituted and orchestrated 
(Lehrer, 2009). To achieve this kind of balance and orchestration we argue that learning environments 
must be designed on the basis of learning theories, which can guide the design, help choose between 
the options and lead to better achievement of the pedagogical goals. In Ben-Zvi, Gravemeijer and 
Ainley (2018), we describe two theoretical frameworks that have been commonly used to guide the 
construction of learning environments: social constructivist theory as a background theory on 
teaching and learning and Realistic Mathematics Education (RME) as domain-specific instruction 
theory that is specific for mathematics education. 
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Design dimensions for statistics learning environment 
In this section, we identify design dimensions that arise from theoretical and empirical sources. These 
dimensions are not meant to serve as a prescription for what teachers and designers should do, but 
rather to provide a wide spectrum of factors or starting points, that need to be considered, aligned and 
balanced in designing statistics learning environments. The goal of designing effective and positive 
statistics learning environments occurs in a wide continuum of settings. On this continuum, this article 
focuses on designed learning environments rather than informal and ambient ways of learning. The 
goal of these learning environments is for students to develop a deep and meaningful understanding 
of statistics and the ability to think and reason statistically. We discuss and expand on six dimensions 
of pedagogical design (Figure 1) proposed by Cobb and McClain (2004), highlighting what we see 
as the important connections between them. 

 
Figure 1: A web of interrelated dimensions of a learning environment 

Focus on Developing Central Statistical Ideas Rather Than on Tools and Procedures 

There are several key statistical ideas that students are expected to understand at a deep conceptual 
level (Garfield & Ben-Zvi, 2008). These ideas serve as overarching goals that direct teaching and 
motivate and guide students’ learning. They include data, distribution, center, variability, comparing 
groups, sampling, modeling, inference and covariation. Garfield and Ben-Zvi (2008), in their 
Statistical Reasoning Learning Environment (SRLE), advocate a focus on key statistical ideas and 
the interrelations among them and suggest ways to present these ideas throughout a course, revisiting 
them in different contexts, illustrating their multiple representations and interrelationships, and 
helping students recognize how they form the supporting structure of statistical knowledge. 

Use Well-Designed Tasks to Support the Development of Statistical Reasoning 

An important part of a statistics learning environment is the use of carefully designed tasks, informed 
by research findings, that promote student learning through collaboration, interaction, discussion and 
addressing interesting problems (Roseth, Garfield, & Ben-Zvi, 2008). It may be argued that such tasks 
should be part of a well-considered instructional sequence, informed by the aim of developing central 
statistical ideas, which is underpinned by a local instruction theory. A local instruction theory 
typically consists of a theory about a potential learning process and theories about the means of 
supporting that learning process (Gravemeijer & Cobb, 2013). The former offers teachers background 
information, on the basis of which they may decide, on a daily basis, what learning goals to aim for. 
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While the latter offer them information on how potential tasks, tools, ways of interacting and the 
classroom culture may support the intended learning process. This information will help teachers in 
choosing tasks and tools, anticipating the mental activities of the students, orchestrating classroom 
interaction and evaluating the implied hypothetical learning trajectories. 

Use Real or Realistic and Motivating Data Sets 

The design of pedagogic tasks in statistics must take account of the data that will be centrally 
involved. Data are at the heart of statistical work and data should be the focus for statistical learning 
as well (Franklin & Garfield, 2006). Throughout their experience of learning statistics, students need 
to consider methods of data collection and production and how these methods affect the quality of 
the data and the types of analyses that are appropriate. One approach can be to look for interesting 
data sets to motivate students to engage in activities, especially ones that ask them to make conjectures 
about a data set before analyzing it (Ben-Zvi & Aridor, 2016). Another approach would be to start 
with a question and then discuss what data would be needed to answer it. However the provision of 
real or ‘realistic’ data is not always sufficient to engage students in tasks that develop statistical 
reasoning unless the task poses meaningful challenges and provides opportunities to use statistical 
ideas in realistic ways. 

Consider two kinds of activities using real data which are relatively familiar within statistics 
education research. The first is exploratory data analysis based on a source of real data. Although data 
about students like themselves may have intrinsic interest, posing meaningful questions about the 
data can be challenging for school students (Burgess, 2007). Open-ended exploration of relationships 
in the data without a clear goal may not lead them to use statistical ideas in realistic ways. The second 
is a sampling task, such as repeatedly drawing small samples to estimate the proportion of sweets of 
a particular color within a bowl. Here the statistical idea of sampling is being used in a realistic way, 
to answer a specific question, but the task itself is not a meaningful challenge (Ainley, Gould, & Pratt, 
2015). If you really wanted to know the numbers of sweets of different colors it would be quicker and 
more reliable to empty the bowl and count them. What these tasks have in common is that, although 
based on real data, they do not emphasize opportunities for students to appreciate the utility of 
statistical ideas. As a result they may appear contrived and fail to engage and motivate students. 

There is a further tension concerning the role and nature of data in statistics tasks. Students, 
particularly younger students, need to experience collecting, recording and cleaning their own data in 
order to develop their understandings of different forms of representation (Neumann, Hood, & 
Neumann, 2013). But data collection is time-consuming, often leaving relatively little time for 
analysis and discussion and the features of the resulting data sets cannot be predicted. Providing real 
world data sets, or devising data sets which are not authentic but embody the features that the teacher 
wants students to experience, will save time but students may find such data sets harder to understand 
and engage with (Arnold, 2004). 

Integrate the Use of Technological Tools That Allow Students to Explore and Analyze Data 

The design of tasks and the ways in which students may access and explore data are significantly 
influenced by the range of technological tools available to support the development of students’ 
understanding and reasoning, such as computers, graphing calculators, statistical software and web 
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applets (Biehler, 2003). Students no longer have to spend time performing tedious calculations, or 
drawing graphs and can focus instead on the more important task of learning how to choose 
appropriate analytic methods and how to interpret results. Technological tools are used not only to 
generate statistics, graph or analyze data, but also to help students visualize concepts and develop an 
understanding of abstract ideas through simulations. For examples of innovative tools and ways to 
use them to help develop students’ reasoning, see Biehler, Ben-Zvi, Bakker and Makar (2013). 

Establish a Classroom Culture that Fosters Statistical Arguments 

The design of tasks, technological and assessment tools has to take into account the expected forms 
of classroom discourse. In statistics learning environments, the use of activities and technology allows 
for a form of classroom discourse in which student learn to question each other and respond to such 
questions, as well as explaining their answers and arguments. Cobb and McClain (2004) describe the 
effective classroom discourse in which statistical arguments explain why the organization of data 
gives rise to insights about the phenomenon under investigation and students engage in sustained 
exchanges that focus on significant statistical ideas. 

It can be challenging to create a statistics learning environment with classroom discourse that enables 
students to engage in discussions in which significant statistical issues emerge and where arguments 
are presented and their meaning is openly negotiated. Creating a classroom climate where students 
feel safe expressing their views, even if they are tentative is another challenging task and is related to 
classroom culture, in which the teacher and students have to develop the corresponding classroom 
social norms and socio-mathematical (or socio-statistical) norms (Yackel & Cobb, 1996). These 
norms encompass the obligation for the students to explain and justify their solutions, to try to 
understand the explanations and reasoning of the other students, to ask for clarification when needed 
and eventually to challenge the ways of thinking with which they do not agree. The teacher is not 
expected to give explanations, but to pose tasks and ask questions that may foster students’ thinking. 
Socio-statistical norms would be tailored to what it means to do statistics, for example what a 
statistical problem is, what a statistical argument is and so forth. 

The shift in the classroom culture is related to a potential shift in the role of the students, from problem 
solvers to statisticians who analyze and represent data to make them easily accessible for decision 
makers. When adopting the role of a data analyst, or data detective (Pfannkuch & Rubick, 2002), 
students can start reflecting on the adequacy and clarity of condensed descriptions and representations 
of data, which may foster the reinvention of more sophisticated representations and concepts. 

Use Assessment to Monitor the Development of Students’ Statistical Learning and to Evaluate 
Instructional Plans 

Assessment should be aligned to well-designed tasks that focus on central statistical ideas in a 
discourse-rich classroom. Much of the value of changes in the other design dimensions will be lost if 
assessment practices are not aligned in this way, since the attention of students and teachers will be 
shaped by the requirements of assessment. In recent years, many alternative forms of assessment have 
been used in statistics classes. In addition to quizzes, homework and exams, many teachers use 
statistical projects as a form of assessment (MacGillivray & Pereira-Mendoza, 2011). Other forms of 
alternative assessment are also used to assess students’ statistical literacy (e.g., critique a graph in a 
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newspaper) and reasoning (e.g., write a meaningful short essay), or to provide feedback to the teacher 
(e.g., minute papers). 

Assessments need to be aligned with learning goals, focusing on understanding key ideas and not just 
on skills, procedures and computed answers. This can be done with formative assessments used 
during a course (e.g., quizzes, small projects, or observing and listening to students in class) as well 
as with summative evaluations (course grades). Useful and timely feedback is essential for 
assessments to lead to learning. Types of assessment may be more or less practical in different types 
of courses. However, it is possible, even in large classes, to implement good assessment practices 
(Garfield & Ben-Zvi, 2008, pp. 65-89). 

Discussion: Contemporary issues and emerging directions 
The goal of this article has been to draw attention to the need to think about learning environments 
and their design in statistics education as a way of considering how sustainable change in the learning 
and teaching of statistics can be supported. We have provided six dimensions of statistics learning 
environments. Designing for educational change to support the development of students’ statistical 
reasoning is a challenging task. Using a lever to make a one-dimensional change (e.g., formulate new 
tasks, use of a new pedagogical strategy) may make a difference that is not necessarily a sustainable 
change in students’ understanding of statistical ideas. This article has argued for a holistic and 
integrated approach that advocates a learning environment where students are engaged in making and 
testing conjectures using data, discussing and explaining statistical reasoning, focusing on the 
important big ideas of statistics, using innovative tools in creative ways to assist their learning and 
being assessed in appropriate ways. 

A key factor in this discussion is that these six dimensions, which are inter-related (see Figure 1), 
must be aligned and balanced. Issues of alignment are important for accelerating statistics learning 
both within and outside of schools. The meaning of these design principles being part of integrative 
whole is that using one of them separately is not enough to make deep and sustainable change in 
students’ learning. The learning environment approach helps to interlink them. For example, the 
design of motivating tasks is linked to real data collection; these data can be used to build students’ 
statistical understanding taking advantages of the innovative affordances of technological tools; 
productive classroom discourse is supported by the design of open-ended tasks that support 
argumentation and by appropriate responses by the teacher; assessment methods need to align with 
the design of tasks; a provision of a new tool must consider the potential interactions with content 
and pedagogy (Moore, 1997). 

Thus we argue that pedagogical and research efforts for change must consider the interactions among 
these dimensions. There are however other important dimensions of learning environments that were 
not included in this article. One example is the emotional aspects of engagement and identity to 
motivate all students to participate and reflect on their experiences (Heyd-Metzuyanim, 2013). In 
addition, the broader community (school level policy makers, local and national authorities, etc.) 
plays a significant role in the constitution of the learning environment. For example, tensions may 
arise between required traditional examinations and alternative assessment methods employed in a 
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learning environment or between national curricula and an emergent and dynamic learning trajectory 
in the learning environment. 

Further research is crucially needed to provide more well-researched holistic examples in different 
contexts and age levels. Systematic studies are also needed about the effectiveness of statistics 
learning environments, learning environment design issues, the role of alignment between the various 
dimensions of statistics learning environments, new possibilities for teaching and learning in 
innovative designs; and opportunities in cutting edge areas, such as, model-based reasoning, visual 
representation to teach complex abstract concepts, learning in virtual worlds, net-based collaborative 
teams and communities and big data. 

The difficulty of demonstrating the effectiveness of learning environments, raises profound 
methodological issues in researching them. The learning environment approach acknowledges a 
complex system or ecology in which a traditional methodology is not sustainable. Instead, a design 
research approach (Cobb et al., 2003) is needed, where iterative design of the learning environment 
sensitizes the research team to the key mechanisms for learning within the design. We recommend 
that more attention be given to methodological aspects of researching the design of learning 
environments. 

First steps in moving towards the learning environment perspective in the statistics education 
community are for researchers to consider the implications of this approach in their studies and for 
professional development to support teachers to consider how current curricula and materials align in 
the context of social, cultural, physical, psychological and pedagogical components of a learning 
environment. Careful and steady change over a period of time, rather than a push for radical change, 
may lead to a successful implementation of a learning environment in the statistics education world, 
both among researchers and teachers. 
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Background 
In the Norwegian Curriculum for the Common Core subject of Mathematics, there are competence 
aims after the second, fourth, seventh and tenth years in primary and lower secondary education. In 
the subject area of Statistics, there seems to be little progression through the various grades, in our 
opinion. The relevant competence aim after Year 4 is “collect, sort, note and illustrate data using 
tally marks, tables and bar graphs, with and without the use of digital tools, and converse about the 
process and what the illustrations tell us about the data” (Utdanningsdirektoratet, n. d.). 

The competence aims after Year 10 read as follows. 

carry out investigations and use databases to search for and analyse statistical data and critically 
assess sources; order and group data, find and discuss and elaborate on the median, mode, 
average and spread, and present data with and without digital tools, and discuss and elaborate on 
different ways of presenting data and what impressions these can give. (Utdanningsdirektoratet, 
n. d.) 

The competence aims in Statistics after Year 10 and are in textbooks often dealt with in grade 8. In 
the textbook Faktor for grade 8 (Hjardar & Pedersen, 2014, p. 110), the following problem is 
marked as difficult. A table that shows the population for each county in Norway is given with the 
task: “Find the top three counties with the highest population”. In terms of difficulty, there is very 
little progress to see from tasks given based on the competence aims after grade 4. Even if the 
competence aims (“analyse statistical data”) and the related document Mathematics: Characteristics 
of goal achievement seem to support a more exploratory approach leading for instance towards 
informal statistical inference, our impression is that the subject area of Statistics is treated 
superficially and poorly in textbooks. 

Theoretical perspectives  
There is already an extensive research literature on teaching experiments introducing statistical 
inference in middle school (see e. g. Watson, 2008). One common approach is to use graphical 
representations of datasets, often with the help of digital tools such as TinkerPlots (Konold & 
Miller, 2005), to make comparisons between samples and informal inferences about differences of 
populations.  We intend to go one step further and introduce to middle school students test 
procedures that have theoretical justification in permutation methods (Ernst, 2004). The focus will 
be on the significance (perhaps without using this technical word) of difference of means, not just 
comparing means. Rossmann (2008, p. 17) suggests that “simulation of randomization tests 
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provides an informal and effective way to introduce students to the logic of statistical inference”. 
Zieffler, Garfield, Delmas & Reading (2008, p. 44) define informal inferential reasoning as “the 
way in which students use their informal statistical knowledge to make arguments to support 
inferences about unknown populations based on observed samples”. 

Developing a teaching plan  
We want to develop a teaching plan aimed at grade 8 or 9 about statistical inference focusing on 
experiments with realistic problems, perhaps using a design-based research methodology. As 
mentioned we want to include permutation tests, but they will be presented to the students in an 
informal way. There should be no instruction about distributions or formal methods, only an appeal 
to the underlying logic that we hope can be intuitively acceptable for students. This last point 
should be one focus point of our research. We have tried out one experiment with teacher students 
about comparing the weight of apples and oranges in samples and then repeatedly and randomly 
reassign which fruits are “apples” and which are “oranges”. How does the real difference in weight 
compare with the randomized differences? If there is no significant difference in weight between 
apples and oranges, then the real difference should not be among the most extreme in the 
simulation. This is an example of the logic behind permutation tests. But is it informal inferential 
reasoning? This is a question we should have in mind when developing the plan.  

The details of the teaching plan are still very much in development. One idea we have is to offer the 
permutation tests to the students late in a sequence of lectures, where earlier in the sequence more 
student-driven activities, perhaps involving digital tools and graphical representation of data sets, 
are planned and where students are encouraged to use their own reasoning. We have done the 
activity with apples and oranges three times with teacher students and gotten valuable feedback. We 
want to develop this into a larger project involving real classroom settings. 
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The scarce research on teachers indicate that they often misinterpret histograms. We conjecture that 
the confusion of histograms with case-value plots is the source of many misinterpretations. Therefore, 
the question for this study is: what are the most common strategies of secondary school teachers 
when interpreting histograms and case-value plots? To answer this question, we use a method that 
allows for a more in-depth analysis of twelve teachers’ interpretations of graphical representations 
than was ever possible before: eye-tracking combined with retrospective verbal reports. Preliminary 
results show that several teachers apply a case-value plot interpretation strategy on a histogram. 
Furthermore, some participants use an area interpretation strategy or histogram interpretation 
strategy applied to a case-value plot. In addition, gaze data suggest that teachers use strategies that 
did not reach awareness and therefore will not be reported during thinking aloud protocols.  

Keywords: Secondary school mathematics, statistics, verbal report, graphical representations, bar 
graphs. 

Background 
Histograms are very difficult to interpret (e.g., delMas & Liu, 2005; Lem, Onghena, Verschaffel, & 
Van Dooren, 2013). Misinterpretations of histograms persist despite many interventions aiming to 
tackle these misinterpretations. For example, Kaplan, Gabrosek, Curtiss and Malone stated in 2014: 
“the fact remains that the data indicate not only that students entering a statistics course have certain 
misconceptions about histograms, but also that these misconceptions persist after instruction” (p. 17). 
In an extensive review of more than 80 publications (Boels, Bakker, Van Dooren & Drijvers, 2019) 
we identified that most misinterpretations regarding histograms relate to the misunderstanding of two 
statistical big ideas: data and distribution. One of the important insights that goes with understanding 
the big idea of data is knowing how many variables are at stake. A misinterpretation existing amongst 
students, teachers and even researchers is that histograms could display two variables instead of what 
is correct: only one statistical variable1 (the one given on the horizontal axis, see Figure 1a; e.g., 
Boels, Bakker, et al., 2018). The big idea of distribution encompasses centre, shape and variability. 
One misinterpretation is that a histogram has more variability when it is “bumpier,” meaning more 
variation in the frequency (the heights of the bars) instead of the variation in the data (e.g., Boels, 
Bakker, et al., 2018; Dabos, 2014; delMas & Liu, 2005; Lem, et al., 2013). 

                                                 
1 In line with other researchers (e.g., Garfield & Ben-Zvi, 2007), we prefer the term variable over attribute because some 
people may use attributes for categorical data only.  
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In line with other researchers (e.g., Cooper & Shore, 2010; Garfield & Ben-Zvi, 2007; Kaplan et al., 
2014) we conjecture that the confusion of histograms with case-value plots is the source of many 
misinterpretations. A histogram and a case-value plot share several salient features (e.g., vertical bars, 
numbers along the vertical axis). The differences between those two graphical representations—
regarding the number of depicted statistical variables as well as the measurement level of the data—
are less apparent for most people.  

As the number of variables differ in a case-value plot compared to a histogram, so does the 
interpretation of measures of centre and variability. In Figure 1 the difference for a measure of 
centre—the mean—is shown for a case-value plot and a histogram. This depicted difference in 
assessing the mean, also influences the assessment of both the variability and the shape of the 
distribution. In a histogram, teachers have to look at the horizontal positions of the bars in 
combination with the bars’ heights to assess centre and variability. In contrast, in a case-value plot, 
teachers have to look at the variation in the heights of the bars only.  

a. Mean in histogram (here: 2.7 kg) b. Mean in case-value plot (here: 2.4 kg) 

  

 

Figure 1: The mean weight (dashed line) is assessed differently in a histogram (left; Item 2) than in a 
case-value plot (right; Item 8) 

The confusion of histograms and case-value plots can explain many of the misinterpretations with 
histograms reported in the literature but does not answer the question what exactly goes wrong when 
people interpret histograms. To tackle the persisting problem of misinterpreting histograms, we need 
to deepen our understanding of the kind of strategies that people use when interpreting histograms. 
In an exploratory case study we found that students are often unaware that histograms and case-value 
plots ask for different interpretation strategies (Boels, Ebbes, Bakker, Van Dooren, & Drijvers, 2018). 
From our personal experience, we conjectured that the same holds true for some of their teachers. 
The aim of our current study is therefore to identify the most common strategies of teachers when 
interpreting histograms and case-value plots. Hence, the question for this research is: what are the 
most common strategies for secondary school STEM teachers when interpreting histograms and case-
value plots?  
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To answer this research question, we used eye-tracking combined with a retrospective interview. The 
eye-tracking makes it possible to literally see teachers’ strategies when solving a task. The advantage 
of eye-tracking over other techniques, is that it makes an in-depth study possible of the strategies with 
more detail than was ever possible before. In our exploratory case study, for example, we found that 
several participants had an initial preferred strategy that they were not aware of and were therefore 
not reporting during the retrospective interview (Boels, Ebbes, et al., 2018). Eye-tracking has several 
advantages over other research techniques. For example, using assessments items only, such as CAOS 
(e.g., delMas, 2005) has already been done extensively and cannot easily answer the question about 
strategies. Using a thinking aloud protocol (TA) to discover strategies works well if people verbalize 
their strategy during TA—although TA might slow down the task solving process. But when people 
need to explain their strategy—why they do what they do, this alters their cognitive processes 
(Ericsson, 2006) and is therefore unsuitable for our goal. The study of Van Gog and Jarodzka (2013) 
showed that a retrospective interview improves when a cue is added: the replay of participants’ eye 
movements during the recall. Considering all these arguments we decided to use eye-tracking 
combined with retrospective reports to unravel teachers’ strategies.  

From a previous exploratory study with six university students (Boels, Ebbes, et al., 2018) we 
obtained the following two interpretation strategies that are relevant for the current study: a histogram 
interpretation strategy and a case-value plot interpretation strategy. A histogram interpretation 
strategy is associated with a vertical looking pattern and reading of the numbers on the horizontal 
axis for locating the mean. Furthermore participants using this strategy may use statements as for 
example “balancing” the graph. A case-value plot interpretation strategy is associated with a 
horizontal looking pattern and reading of the numbers on the vertical axis. On top of that, these 
participants may use words like “redistributing” or “make all bars even” (e.g., same height). The 
exploratory study leads us to the following conjectures for the study reported here: 

1) The most common strategy for interpreting histograms is a case-value plot interpretation 
strategy, followed by the histogram interpretation strategy. 

2) The most common strategy for case-value plots is a case-value plot interpretation strategy. 
Only a few teachers will apply a histogram interpretation strategy onto a case-value plot.  

3) Several teachers will have an initial preferred strategy independent of the type of graph at 
stake. 

Method 
In total twelve items were either constructed (two) or re-used (ten) from the exploratory study (Boels, 
Ebbes, et al., 2018). The teachers were asked to either estimate the arithmetic mean of the data in the 
graph or to compare the arithmetic means of two graphs as estimating the mean can be seen as a 
necessary prerequisite for assessing the variability. A second reason for choosing the mean was that 
the target audience of the larger project are secondary school students who are more familiar with 
measures of centre than measures of variation and the same holds true for their teachers. From the 
exploratory study we learned that the multiple-choice answers might work as an anchor for the 
participants (e.g., Tversky & Kahneman, 1974) in items with only one graph. Hence, for the six items 
with a single graph we used open questions.  
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We constructed (or re-used from the previous study) a case-value plot for every histogram, with the 
same salient features such as number of bars, “shape,” range and variable (weight), resulting in a total 
of twelve questions. Figure 1 gives an example of Item 2 and 8. Items were constructed that differed 
systematically on the relevant features but that were the same for irrelevant though sometimes salient 
features as recommended by Orquin and Holmqvist (2017). These features were carefully chosen so 
that a teacher applying the same interpretation strategy on both the histogram and the case-value plot 
could be expected to answer the question for the case-value plot correctly and for the histogram 
incorrectly, and vice versa. 

Similar to the previous study we arranged the items in such a way that there were never more than 
two of the same graph types (histogram or case-value plot) in succession. As we expect that most 
teachers who confuse case-value plots with histograms will apply a case-value plot strategy onto a 
histogram, we started with two single left-skewed histograms. This was done to avoid priming (e.g., 
Lashley, 1951). The first two single histograms were followed by an item in which participants had 
to compare two case-value plots. Graphs with the same salient features (e.g., Item 2 and Item 8) never 
directly followed one another. The question for the histogram in Figure 1a was: What is 
approximately the average weight of the parcels delivered by Anton? The question for the single case-
value plot in Figure 1b was: What is approximately the average weight that has been collected per 
person? In Figure 2, an example of an item with two histograms is given (Item 5). The multiple choice 
answer options for comparing two histograms were for example: a) Willem delivers on average the 
heaviest parcels, b) Julia delivers on average the heaviest parcels, c) the average weight of the parcels 
is approximately the same for both.  

   
Figure 2: Example of Item 5 in which teachers were asked to compare two histograms and indicate 

whether the mean weight was higher for one of the two postman or roughly the same 

The sample included twelve secondary school teachers of three Dutch secondary schools preparing 
for college or University grade 7 to 12 (ten teachers were from the same school). Participation was 
voluntary and science and mathematics teachers were asked to participate. Consent was signed before 
starting the task. To minimize distractions, the teachers were tested in a one-on-one setting. An 
explanation was given on the aim of the study as well as how to operate the equipment and software. 
After completing the task—that included the twelve items mentioned in this research as well as some 
other items that are not discussed here—participants were asked to report what they thought as well 
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as their strategy during the specific tasks. To improve the quality of these retrospective verbal reports 
we used their own gazes as a cue (Van Gog & Jarodzka, 2013).  

An eye-tracker measures where a person looks on a computer screen and uses infrared light to detect 
the position of the eyes. The Tobii Pro X2-60 eye-tracker was used, mounted on a laptop with a 13-
inch screen by using magnetic mounting brackets. The sampling rate was 60 Hz. The fixations (where 
people look) and saccades (going from one fixation on the screen to another) were recorded real time 
by the software Tobii Pro Studio 3.4.5. The first author qualitative coded the gaze data and verbal 
reports using open, axial and selective coding (Corbin & Strauss, 1990). Furthermore, the coding was 
checked with gaze data. The gaze data were displayed in heat maps that show where participants 
looked. The colouring is from green (few fixations) via yellow to red (many fixations), see Figure 3. 
In Table 1 an example is given of the analysis of gaze and verbal data of one participant. In the next 
part of the study, not reported here, an analytical analysis of the pattern will be done by using so 
called areas of interest (AOIs) such as the graph area, vertical axis, horizontal axis and so on and 
also—if technically possible—by using specialised artificial intelligence software.  

Item 
number 

Gaze data – open codes Verbal data – open codes Selective code 
for strategy 

2  
(single  
histogram) 

Reads question 
Reads title graph 
Looks at top highest bar 
Looks in middle of graph area 
(white space) 
Looks at low bar (7-th) 
Looks in middle of graph area 
(white space) 
Looks at low bar (9-th) 
… 

Look at title 
Looked at highest and/or lowest 
number on y-axis 
Look how often lowest bars occur 
Low bars do not contribute much 
to mean 
Higher bars contribute more to 
mean 
… 

Case-value plot 
interpretation  

Table 1: Example of qualitative analysis (open coding) of gaze and verbal data of a participant as well 
as the selective code of the combined data 

Results 
The most common strategies of these teachers were: a histogram interpretation strategy, a case-value 
plot interpretation strategy and an area interpretation strategy. Several participants seemed to use the 
same interpretation strategy for both the histograms and case-value plots. An example of a case-value 
plot interpretation strategy applied to a histogram is shown in Figure 3a. The heat map shows many 
fixations around frequency 5. The teacher said during the eye-tracking: “Well, uh, about 4 or 5 or 
something like that.” In the retrospective report this teacher said: “I looked at the highest number on 
the y-axis […]. I looked at the lowest frequency. If this occurs less than you have to count that less 
and […] the highest beams you take more of these, so to speak, from their weight. […] and I have 
taken the frequency as kilos.” This teacher realised at the end of the tasks that s/he systematically 
used the frequency axis as the weight axis and refers to that in the explanation. The correct answer 
for this item would be any number between 2 and 3.4 with the actual mean for this specific dataset 
being 2.7.  
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a. What is approximately the average weight 
of the parcels delivered by Anton?  

 

 
 
 
 
 
 
 
 
 
 
 

b. What is approximately the average weight 
that has been collected per person?  

This teacher applied a case-value plot strategy on both the histogram (a, Item 2) as well as the case-value 
plot (b, Item 8). The arrow (a) points at fixations in the histogram at frequency 5 leading to the incorrect 
answer for the histogram: “about 4-5” kg. 

Figure 3: Histogram (a) and case-value plot (b) from Figure 1 with heat map overlay 

An example of an area interpretation strategy is where a teacher looked at a histogram using a vertical 
looking pattern and in the verbal data mentioned that the area of the bars left and right of the mean 
have to be of the same size. An example of a histogram interpretation strategy applied on a case-value 
plot is when a teacher looked at Item 10—the case-value plot variant of Item 5 in Figure 2—and said: 

Teacher: Only the spread with uh that that right one [the case-value plot on the right with two 
bars less but the same number of names] is less than that [pause] left one. 

Researcher: And why is the spread less? 

Teacher: Well, because there are two numbers added thus are, it goes further on. 

Researcher: Yes, so you are pointing now [on the screen]: they are wider. 

Teacher: Yes, he is wider.  

This teacher concluded that the mean was the same and that only the spread differed. In a case-value 
plot, a higher difference in heights of the bars indicates more spread. The case-value plot with the 
two students who collected nothing had the lowest mean and most spread. Another finding is that 
many teachers do not read axis labels and/or graph titles. But even if they do, this does not guarantee 
that they interpret the histogram or case-value plot correctly. The gaze data indicate that the teacher 
mentioned above did read the graph title and the labels on the vertical axis—weight (kg)—but still 
applied the wrong strategy. 

Conclusion and discussion 
The first conclusion is that the most common strategy for interpreting means in histograms is a case-
value plot interpretation strategy. Using a case-value plot interpretation strategy for a histogram 
implies not understanding that a histogram is for one statistical variable only and that histograms 
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therefore differ from a case-value plot with two depicted statistical variables. As stated in the 
background section, understanding the big idea of data implies understanding how many variables 
are depicted in a histogram. This conclusion is therefore in line with the finding in our review study 
on histograms (Boels, Bakker et al., 2019). Furthermore it is in line with misinterpretations found by 
others (e.g., Cooper, 2008; Lem et al. 2013). In addition, we speculate that—although several teachers 
did not read labels on the axes—teaching teachers to read labels will not suffice to eliminate the 
confusion of histograms with case-value plots, as—for example—the teacher mentioned earlier who 
applied a histogram interpretations strategy onto a case-value plot, did read the labels.  

The second conclusion is that teachers sometimes used an area interpretation strategy for finding the 
mean in a histogram. In this interpretation strategy the data in the histogram are correctly interpreted 
(e.g., the statistical variable is on the horizontal axis) but the misinterpretation is related to the big 
idea of centre. Instead of the mean, the median is found with this strategy of equal areas. This finding 
is in line with findings from others (e.g., Cooper, 2008). We speculate that this interpretation strategy 
is due to excessive exposure to symmetric—specifically normal—distributions in histograms in 
schoolbooks and statistics courses where mean and median are indeed the same.  

In addition, the gaze data can be used to identify strategies that participants may not be aware of and 
therefore will not be reported during thinking aloud protocols or retrospective interviews. Eye-
tracking therefore adds a new research tool to researchers’ toolkit, making it possible to analyse 
participants’ strategies in more detail than was ever possible before. Furthermore, researchers and 
teacher educators can use these results to better design curriculum materials. Finally, in line with the 
wish list from CERME10 in 2017 (Bakker, Hahn, Kazak, & Pratt, 2018), this research concentrate 
on teachers as well as contributes to teachers’ Statistical Knowledge for Teaching (Groth, 2007). 

This research is funded with a Doctoral Grant for Teachers from The Netherlands Organisation for 
Scientific Research, number 023.007.023 awarded to Lonneke Boels. 
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The importance of high-level tasks in the access of statistical errors: A 
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Every day we deal with all sort of information presented in different ways. Thus, we need to be able 
to interpret and analyze that information. This research tends to understand the statistical knowledge 
of future teachers of the first years and to enlighten the importance of high-level tasks in the access 
of that knowledge. We assumed an interpretative paradigm and developed an action-research project. 
The participants were students of the 2nd year of Basic Education course (N=95) who were attending 
the curricular unit named Data Analysis and the four teacher/researchers who taught the classes. 
Data was collected through a statistical knowledge assessment instrument (at the beginning of the 
curricular unit), participant observation, and students’ protocols. The results illustrate the 
importance of high-level tasks in the access of statistical errors in order to (re)construct statistical 
knowledge with meaning for the future teachers.  

Keywords: statistical learning, pre-service teacher education, high-level tasks. 

Introduction 
Being a citizen became a complex and multifaceted task. Mathematical literacy, particularly statistical 
literacy, is essential to act as a critical and participative citizen. According to Wallman (1993), 
statistical literacy is “the ability to understand and critically evaluate statistical results that permeate 
our daily lives – coupled with the ability to appreciate the contributions that statistical thinking can 
make in public and private, professional and personal decisions” (p. 1). Thus, this argument highlights 
that statistical literacy deals with data in context, which is also stated by Watson (2006). Therefore, 
it is important that students must have a good preparation in learning of statistics being able to put in 
practice the (statistical) knowledge appropriated (Caseiro, Ponte, & Monteiro, 2015).  

This research arises from the need to identify and to know the statistical knowledge that the students 
that enter the Degree in Basic Education of the Lisbon Higher School of Education reveal. This is of 
particular importance insofar as statistics enable the development of essential abilities and 
competencies in an increasingly technological society and, given the specificity of this higher 
education course, to train future teachers of the first years, which constitutes a unique opportunity for 
change. In this way, the problem that originated this investigation is related to the little statistical 
knowledge that the students of the course of the Degree in Basic Education reveal at the beginning of 
their higher education. The research questions that emerge from this problem and which we addressed 
in this article are: (1) What statistical knowledge do the students of the Basic Education Degree course 
reveal at the beginning in the curricular unit Data Analysis?; and (2) In what way do the mathematical 
tasks proposed, helps us to detect students’ difficulties? 

 

Mathematical tasks 
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According to NCTM (2007), students should be active constructors of mathematical knowledge and 
teachers should be facilitators of students’ learning by providing learning experiences in which 
students can engage in mathematical tasks given meaning to the (mathematical) knowledge and 
developed abilities and competencies (e.g. mathematical reasoning, mathematical communication, 
critical sense, among others). But for that, the nature of mathematical tasks should be different from 
the usual one (exercises), as well as the working instructions and the way these same tasks are 
explored in the class (Stein, Grover & Henningsen, 1996). Boston and Wolf (2006) state that the 
nature of the tasks influence students’ learning and the way they engage with mathematical work 
itself. In other words, “different types of tasks provide different opportunities for students’ learning 
and place different expectations on students’ thinking” (Boston & Wolf, 2006, p. 7).  

Stein and his colleagues (1996) categorised the nature of the tasks according the level of cognitive 
demand: between low and high-level. A task with low-level of cognitive demand is associated with 
the memorization and/or application of procedures without attribution of meaning. Thus, it 
approaches what Skemp (1978) called instrumental knowledge since that the students are only able 
to apply rules, formulas or algorithms and they are not able to mobilize this knowledge when they are 
in other contexts or situations. A task with high-level of cognitive demand is characterised by creating 
opportunities for students to make connections between (mathematical) concepts and its different 
representations, to allow different approaches for the same task according to the previous 
(mathematical) knowledge appropriated by each students, and creating opportunities for 
mathematical communication (Boston & Wolf, 2006; Stein et al., 1996). Thus, according to Skemp 
(1978) it corresponds to the relational knowledge. In this way, it is up to the teacher to select, adapt 
and/or elaborate tasks with different natures regarding students’ characteristics, interests and needs 
(Machado & César, 2013).  

The error and the way in which it is faced by the students and teachers assume an important element 
in the learning process. As stated by Abrantes, Serrazina and Oliveira (1999), when we think in terms 
of learning, making errors or saying things imperfectly or incompletely is not to be avoid, it is 
something inherent in the learning process. Therefore, it is important to provide opportunities in 
which students engage in mathematical tasks that cast doubt on what they took for granted.  

Dimensions of statistical work 

Franklin and her colleagues (2007) stated that a statistical investigation is characterised by four steps: 
(1) poising a question; (2) collecting data; (3) analysing data; and (4) interpreting the results. Kader 
and Perry (1994) suggest an additional step which is related with the dissemination of the results. 

According to Shaugnessy (2007) all the steps of investigative cycle are essential in statistical work 
and recall the four stages of solving mathematical problems presented by Pólya (1945/1973): to 
understand, to plan, to execute and to review. This author also states that teachers give little time to 
the problem and to the plan steps. Most students are only taught “pre-statistical” topics, in which the 
hard decision concerning the problem formulation, conception and production of data are already 
done for them. This situation makes the investigative cycle poorer (Shaugnessy, 2007). 

The knowledge in Statistics of the future teachers 
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Statistical investigations give students the opportunity to reflect on the information that surrounds 
them, to develop statistical literacy and to appropriate of statistical knowledge and the knowledge 
about the stages of the process (Martins & Ponte, 2010). 

Some studies point out the difficulty of future teachers in carrying out statistical investigations. Stohl 
(2005) even mentions that the future teachers of the first years make elementary errors in statistical 
concepts, similar to those of the students themselves at these levels of education. At the level of 
statistical work, Heaton and Mickelson (2002) reveal the difficulty of the future teachers in 
accomplishing the data collection process, not recognizing the need to create a standard unit of 
measure to standardize the data. 

In the representation of data and interpretation of graphs, Espinel, Bruno and Plasencia (2008) 
conclude that the future teachers involved in their study demonstrate difficulties in the interpretation 
of graphs and in the selection of graphs suitable for the representation of the information. At a more 
specific level, they demonstrate difficulty in differentiating quantitative and qualitative variables, 
which translates into the difficulty of distinguishing between a bar chart and a histogram.  

In the dimension of the central tendency measures, Burrill (2008) states that the future teachers 
demonstrate difficulties in adapting the graphical representations to the different existing measures, 
opting for an incorrect representation, almost always through bar graphs. 

Method 

This study is part of the project “Statistical knowledge of students of primary and secondary levels 
of education and of students of the Basic Education course of the Lisbon Higher School of 
Education”, whose main goals are: (1) to access the statistical knowledge of students throughout their 
education and those that integrate, for the first time, the Basic Education graduation; and (2) to analyse 
the path carried out by the future teachers, in terms of the development of statistical knowledge, 
during the accomplishment of the mentioned degree. 

When entering the Basic Education Degree, at the Lisbon Higher School of Education, the Data 
Analysis is the first and only curricular unit that students have in the field of Statistics and it appears 
in the 1st semester of the 2nd year of the cycle of studies. Thus, when students attend this curricular 
unit they reveal difficulties in working with certain statistical knowledge, especially at the beginning 
of the course. In this way, the problem that originated this investigation is related to the little statistical 
knowledge that the students of the course of the Degree in Basic Education reveal in the beginning 
of their higher education. The research questions that emerge from this problem and which we address 
in this paper are: (1) What statistical knowledge do the students of the Basic Education Degree course 
reveal at the beginning in the course unit Data Analysis?; and (2) In what way do the mathematical 
tasks proposed, helps us to detect students’ difficulties? 

We assumed an interpretative approach (Denzin, 2002) and developed an action-research project 
(Mason, 2002). The participants in this study were all students in the 2nd year of the Basic Education 
course (N=95, 2017/2018 academic year), who were attending the curricular unit named Data 
Analysis. The ages range from 18 to 37 years old. We also considered as participants the four 
teacher/researchers who taught the classes. 
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Data was collected through a statistical knowledge assessment instrument (at the beginning of the 
curricular unit), participant observation, and students’ protocols. Such data was then treated and 
analysed through a narrative content analysis (Clandinin & Connelly, 1998), performed in a 
successive and in-depth way. 

Results 
The task 

The task presented to the students (Figure 1) was intended, along with other instruments applied, to 
make a diagnosis of the statistical knowledge with which students of the Basic Education course starts 
their higher education. In order to allow students to reveal the maximum of their knowledge, the 
variables chosen for the proposal were thought of in order to contemplate the different types of 
statistical variables. In this way, this task is considered high-level of cognitive demand (Boston & 
Wolf, 2006; Stein et al., 1996), since the students are required to make connections to underlying 
mathematical ideas, with the possibility of using several strategies and representations. If this task 
was limited to engaging students in using a defined procedure (e.g. a direct question: what is the mean 
of the following data?), the students would not be so confident and could give up on the task. This 
situation would not facilitate the teachers’ access to students’ statistical knowledge. 

1. Collect the following data from five colleagues who have not been in your work group: 

Gender    Age (in years)    Date of Birth Height 

Eye color Shoes number       Hand palm 
(in cm) 

Name of a public figure 
(artist/politician/writer/…)  

Number of glasses of water you 
drink per day  

Birth place  
(village/town and country) 

If you recicle 
(paper/glass/plastic) Means of transport you use to go to school 

Estimate time you spend on 
coming to school 

TV Program/series you usually 
watch 
 

Average daily time spent watching 
TV 

Name of one of your favorite TV news 
presenters 

If you have driver license  Average daily time spent reading 
newspapers / magazines 

Average time to get ready when 
you wake up 

On a scale of 1 to 5 (1 bad environment) give 
your opinion about the environment among 
students 

2. Now that you have your data, arrange and organize it so, in order to convey to the class a close idea of the obtained results. 

Figure 1: Mathematical task statement 

Students’ performances 

Throughout our observation of the work of the groups it was possible to verify the inexistence of any 
kind of planning or organization from them. As soon as they received the task, practically all members 
of the groups got up and started collecting data with their colleagues, showing that they did not bestow 
importance to this phase of statistical research, as pointed out by Shaugnessy (2007). However, this 
situation is usual to happen if the students did not have this experience, during their academic path. 
As might be expected, this aspect was perceived by some students when organizing the data and later 
by others, during their discussion in a large group. An example of the lack of planning of the groups 
concerns how they have collected data on the size of their colleagues’ hand palms. It was apparent 
that different elements of the same group were collecting this data in a different way: while some 
measured the hands of their colleagues when they sit with the hand as stretched as possible, others 
did not take that aspect into consideration and others measured the base of the hand instead of the 
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palm, as requested. Another aspect in which the lack of planning was evident relates to the fact that 
some members of the same group have collected data with the same colleagues. 

On the other hand, the way students decided to represent the data collected also revealed some 
difficulties in the construction of statistical representations, as well as the non-attribution of meaning 
to the value of statistical measures determined by them. 

Regarding continuous quantitative variables, a common error concerns the use of a bar chart to 
represent the data instead of the use of a histogram. As can be seen from the example in Figure 2, 
some students decided to construct a bar chart to represent the heights of the colleagues. In addition 
to this situation, the representation of the intervals in which the students decided to present the data 
demonstrates a difficulty on the part of the students, since, as it is visible in the given example, they 
put the same value of the data in two different intervals, not being able to perceive in which it was 
actually counted. 

 
Figure 2: Performance of a Group A1 

Nevertheless, the opposite also happens, that is, the students construct histograms with data of 
nominal qualitative variables (Figure 3), as that is the case of the place of birth. 

 
Figure 3: Performance of a Group C1 

This error (construction of histograms and bar graphs as if the same representation were and 
independently of the type of variable) was demonstrated by several students, which seems to be 
related to the fact that the students assume that any graphical representation with bars is a bar chart.  

Another detected situation concerns the construction of pictograms with discrete quantitative 
variables data. As can be seen in the example on Figure 4, students showed some difficulty in realizing 
which values should appear on the pictogram axis and which values should be represented with the 
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symbol chosen for the pictogram. Thus, in the example presented, the group decided to put in the axis 
the frequencies with which the data appeared and to represent, with the chosen symbol, the number 
of glasses of water drunk daily, mentioned by the colleagues. In short, students had shown some 
difficulties in the choice of the adequate graph representation, which is in line with Batanero, Godino, 
Vallecillos, Green, and Holmes (1994).  

 
Figure 4: Performance of Group A2 

On the other hand, through the example shown in Figure 5 it is possible to verify the non-attribution 
of meaning to the value of statistical measures by these students. In the presented example, the group 
decided, after constructing a pie chart, to determine the Mode, Mean, and Standard Deviation of the 
Eye Color variable data. As a nominal qualitative variable, it would be expected that students, even 
if they performed the calculations to determine the latter two statistical measures, find that the values 
obtained would not make any sense for the variable under study. In this way, students revealed 
knowledge in calculating the Mean and Standard Deviation of statistical variables, but were not able 
to give meaning to the values obtained, which means that they can only mobilize instrumental and 
non-relational knowledge (Skemp, 1978), as would be desired. 

 
Figure 5: Performance of Group B2 

Final Remarks 
The analysis shows that students who entered in higher education, in this specific case, in a course 
for teachers of the first years, reveal lack of knowledge and difficulties in terms of procedures, 
representations and attribution of meanings to statistical measures. 

Regarding statistical procedures, the students’ lack of knowledge was evidenced when they did not 
give importance of carrying out a work plan before collecting data. This aspect seems to be in 
agreement with what is mentioned by Shaugnessy (2007). On the other hand, the students’ difficulty 
in selecting the most adequate statistical representation to use in relation to a particular type of 
variable may also be associated with this aspect. But, at the same time, most tasks ask students to 
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construct a specific representation, which does not allow them to think about which is the most 
appropriate and advantageous to use in each situation. Also in relation to the difficulties presented in 
the construction of pictograms with data of discrete quantitative variables, it is possible to notice that, 
since most of the tasks students are used to do already show parts of the constructed representations, 
such as the axes in a graph, it limits the experience of the construction of a graph from scratch. Finally, 
the fact that students calculate statistical measures without analyzing their relevance to the type of 
variable under study seems to be associated with a mechanized teaching of formulas, which students 
know without hesitation, but which they can’t attribute any meaning. 

In this way, this work shows the importance of performing high-level tasks not only for the 
development of students’ statistical knowledge but also for the detection of their errors and difficulties 
so that we, as teachers, can adjust our classes and, more specifically, the tasks to be proposed, not to 
what we suppose students need to develop and learn, but to what we concretely know they need. 
This paper is part of the Project O conhecimento estatístico dos/as estudantes do ensino básico, 
secundário e da Licenciatura em Educação Básica da Escola Superior de Educação de Lisboa funded 
by CIED (ESELX/IPL-CIED/2018/A27). 
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This paper presents the following set of eight design principles for informal statistics inference (ISI) 
education for upper primary education in settings where limited time is available for ISI: Create 
awareness of inferential claims before engaging students in ISI via statistical investigations; use a 
context for which the students have no clear expectations of the outcome or which challenges 
current beliefs; use a question that highlights the need for an inferential claim; use a large 
population that makes sampling inevitable; use activities with tangible populations and samples in 
which generating representative samples and recording data is easy and quick; use data that 
require little descriptive analyses; and use the principles of growing samples and repeated 
sampling in order to create sampling variability. Three exemplar ISI activities illustrate how the 
design principles can be used to design new ISI activities and evaluate existing ISI activities. 

Keywords: Primary education, informal inferential reasoning, informal statistical inference, 
statistics education. 

Introduction 
An introduction to informal statistical inference (ISI) in primary education has been advocated by 
various researchers (Makar, 2016; Makar, Bakker, & Ben-Zvi, 2011). The literature provides 
examples of activities that introduce ISI in upper primary education (De Vetten, Schoonenboom, 
Keijzer, & Van Oers, 2018a; Kazak, Pratt, & Gökce, 2018; Leavy, 2009). While design principles 
for statistics education in general are available (Ben-Zvi, Gravemeijer, & Ainley, 2018), the 
literature does not report on a comprehensive list of design principles for ISI education for upper 
primary education. The aim of this paper is to bring together a set of design principles that have 
been reported in the literature alongside design principles that are distilled from recent research with 
primary pre-service teachers (De Vetten et al., 2018a; De Vetten, Schoonenboom, Keijzer, & Van 
Oers, 2019) with a view to generate design principles that apply to upper primary education. The 
design principles presented in this paper can be used for the design of ISI activities that require 
relatively little time (e.g. up to an hour), but still allow for an introduction of all key concepts of ISI. 

Theoretical background 
ISI can be seen as part of the broader field of statistics. For statistics education in general, it is 
suggested to focus on developing central statistical ideas, to use real, or realistic, and motivating 
data, and to integrate the use of technological tools that allow students to explore and analyze data 
(Ben-Zvi et al., 2018). Most of these principles are useful also for ISI education in primary 
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education. The design principles we describe below therefore build on these principles. However, 
for eliciting IIR, these principles are not sufficiently specific.  

A number of design principles have been targeted specifically towards ISI. First, activities where 
students are asked to make predictions about another or a larger sample based on the sample at 
hand, such as the growing samples heuristic (Bakker, 2004), appear to be an effective principle for 
activities that aim to engage students in IIR (Ben-Zvi et al., 2018; Makar, 2016). Some recent 
research involving pre-service teachers (De Vetten et al., 2019) and upper primary school students 
(Kazak et al., 2018) utilizing the growing sample design principle indicates mixed results. The 
participants used the data as evidence in making predictions of the shape of the distributions of 
larger samples and thus looked beyond the data. However, pre-service teachers also tended to 
neglect uncertainty and make deterministic predictions. Moreover, most predictions made of other 
samples mimic the shape of the original sample, thus suggesting that students did not have a picture 
in their mind of a sample distribution being the result of an overarching population distribution. 
Rather, they may have thought that the original sample “produces” the predicted sample. De Vetten 
et al. (2019) suggest that this could be due to the absence of repeated sampling elements in the 
activities used. Including such elements confronts students with different sample results, which may 
make them aware that an inference based on one sample includes some uncertainty.  

A second design principle for ISI activities is to have students compare two sample distributions 
and draw a conclusion about the difference between the means in the population (Zieffler, Garfield, 
delMas, & Reading, 2008). However, research evidence shows mixed results in terms of the success 
of eliciting IIR, due to a number of (contextual) factors. First, without proper teacher intervention, 
such tasks appear not to sufficiently stimulate students to engage in IIR (De Vetten et al., 2019; De 
Vetten, Schoonenboom, Keijzer, & Van Oers, in press; Pfannkuch, 2006), and, in our research, pre-
service teachers tend to restrict their attention to descriptive analyses. Another factor that may 
contribute to the absence of IIR in activities where students compare two distributions (De Vetten et 
al., 2019, in press; Pfannkuch, 2006) was that these activities did not involve repeated sampling, 
thereby missing the opportunity to view sampling variability. Third, while the sample distributions 
are visible, the populations remain abstract. Finally, tasks that compare sample distributions require 
substantial time for the necessary descriptive analyses, which goes at the expense of the available 
time and energy for inferential reasoning (De Vetten et al., 2018a). 

A third design principle is to use a modelling approach in which a population is modelled (often 
using software, such as Tinkerplots). Samples are drawn from this hypothetical population 
distribution in order to develop an appreciation for the likelihood of various sample outcomes and 
an understanding of sampling variability (Manor & Ben-Zvi, in press). This approach requires more 
time and puts demands on the computer skills of the teacher and the student, and may therefore be 
less suitable for general upper primary students in settings with limited time and support. 

In sum, findings from recent studies points towards a number of conclusions regarding effective 
design principles for ISI education and requirements for effective design principles: First, the use of 
growing samples and repeated sampling is recommended in order to create sampling variability and 
to show that usually larger samples reduce sampling variability and thus reduce the uncertainty of 

Thematic Working Group 05

Proceedings of CERME11 905



 

 

the inference. Second, it appears to be important to make students aware of the distinction between 
sample and population and when an activity requires a generalization beyond the data. Third, an 
overemphasis on descriptive analyses, arising from activities involving the comparison of sample 
distributions, may reduce the opportunity to engage in IIR. Fourth, in many primary school settings 
with limited available time and support the extensive use of technological tools may not be feasible. 

Design principles 
Using the above conclusions about (requirements for) effective design principles for statistics 
education in general and ISI education in particular we formulated eight principles for the design of 
ISI activities for primary education. 

In particular, seven of these design principles are specifications of how statistical investigations 
activities should look like when the goal is to introduce students to ISI. The first design principle 
stands apart as it is undertaken prior to students being actively involved in conducting statistical 
investigations. 

1. Create awareness of inferential claims and of the distinction between sample and population, 
before engaging students in ISI via statistical investigations 

De Vetten et al. (2019) and De Vetten et al. (in press) showed that most pre-service teachers appear 
to only describe the data, rather than engage in IIR. In De Vetten et al. (2018a) we first engaged 
pre-service teachers in an activity that was designed to make them aware of the existence and use of 
inferential claims. This activity appeared to promote an awareness of inference. Throughout the 
intervention the participants retained this awareness. 

2. Use a context for which the students have no clear expectations of the outcome, or for which 
the outcome challenges students’ current beliefs. 

When the outcome is unpredictable or challenges students’ current beliefs, students are stimulated 
to engage in inferential investigations and to search for explanations (Makar et al., 2011). When the 
outcome is predictable students may not engage in critical IIR (see for an example De Vetten et al., 
2018a). 

3. Use a question that clearly highlights that an inferential claim is required and use a 
population with a sufficiently large number of elements that surveying the entire population 
is impossible within a limited time frame. 

The question posed should lead the student to conclude that merely analyzing the sample data 
descriptively is insufficient. However, even when considerable care is taken to formulate a good 
inferential question (e.g. using the guidelines from Pfannkuch, Regan, Wild, & Horton, 2010), other 
factors may cause students to restrict their attention to descriptive analyses (De Vetten et al., 2019). 
Therefore, combining a tangible population (see principle 6) with a population that consists of too 
many elements to survey in its entirety makes drawing a sample natural and generalization 
inevitable (De Vetten et al., 2018a). 

4. Use activities that support the generation of a representative sample and that stimulate 
critical reflection on the representativeness of the sample. 
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The effect of this principle is that students may be willing to accept the sample data as reliable 
evidence for making inferential claims. In case an ISI activity does not permit students to draw 
representative samples, but only non-representative ones (such as convenience samples from their 
own class), students may be reluctant to engage in IIR because generalization based on such non-
representative samples is not possible anyway. Ideally, the activity is such that it is possible to draw 
both representative and non-representative samples, with the effect that discussions are elicited 
about ways to draw a representative sample. 

5. Use activities in which generating samples and recording data is easy and quick and in 
which students preferably collect data themselves. 

The effect of this design principle is that an excessive focus on data collection is avoided. At the 
same time, the data generation and recording process should allow students to make sense of the 
data and should facilitate mathematization (Treffers, 1987) and engagement in IIR. Therefore, it is 
preferable that students collect their own data. 

6. Use activities with a tangible population and sample. 

The effect of this design principle is that students remain aware of the distinction between sample 
and population and that they are required to make a claim that pertains to the entire population. 

7. Use data that require little descriptive analyses. 

In the PPDAC-cycle, data analyses comes before interpretation of the results, including making 
inferences (Wild & Pfannkuch, 1999). Spending too much time on descriptive analyses of the 
sample data leaves little time and energy for inferential reasoning (De Vetten et al., 2019; Leavy, 
2009). The effect of this design principle may be that sufficient time, energy and attention is left for 
IIR, while at the same time engagement in descriptive analyses helps students to make sense of the 
results and facilitates further mathematization (De Vetten et al., 2018a). 

8. Use the principles of growing samples and repeated sampling in order to create sampling 
variability. 

The effect of using the principle of repeated sampling is that students will consider the uncertainty 
of their inferences, because sample results will vary (Saldanha & Thompson, 2002). The effect of 
using the principle of growing samples is that students will see that larger samples usually reduce 
sampling variability and thus reduce the uncertainty of the inference (Bakker, 2004). 

Applying the ISI design principles – Three example activities 
This section describes three ISI activities and how the design principles can be used to design new 
ISI activities and evaluate existing ISI activities. The first activity was designed with the design 
principles in mind, while the second and third were not. We evaluate the extent to which they are in 
line with the design principles. 

Activity 1: What is the most frequently used word? 

The first activity (De Vetten et al., 2018a; De Vetten, Schoonenboom, Keijzer, & Van Oers, 2018b) 
was implemented in two settings: in a class of second-year pre-service primary school teachers and 
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in three primary classrooms (grade 3, 5 and 6). The activity centers round a pile of children’s 
novels, that constitutes a population, and the question “Which word is most frequently used in this 
pile of novels?” First, students make a list of the top 5 words they think are most frequently used in 
the pile of books. Next, students discuss how to find out which is the most frequently used word. 
Taking a sample is the expected response. The sampling procedure is discussed. Small groups of 
students draw small samples and then pool their results in multiple large samples. The inferences 
for small and large samples are compared. In this way, it could be shown that the proportion that 
yields the same most frequently used word is greater for large samples than for small samples. If the 
proportion of samples with the same most frequently used word is high, students could be willing to 
accept the possibility of making uncertain inferences based on one sample. 

 
 Figure 1: Pooled sample results in the activity “What is the most frequently used word?” 

This activity was designed with the design principles in mind and it aligns well with all but one of 
the design principles. The activity is clearly inferential and uses a tangible and large population and 
visible sample (design principles [DP] 3 and 6). It requires that students consider how to take a 
representative sample and it allows for generating a representative sample (DP 4). Students take a 
book from the pile and count the occurrence of the top 5 words on a number of lines or a page, 
making sampling, recording and analyzing simple (DP 5 and 7). Without the need to rely on 
technological tools growing samples and repeated sampling can be achieved by having individual 
students draw samples and by combining students’ samples (DP 8). The number of students may, 
however, limit the possibilities for repeated sampling for larger samples. Our research shows that 
pre-service and primary school students were engaged in inferential reasoning (De Vetten et al., 
2018a, 2018b). However, the activity included repeated sampling only for smaller samples. It thus 
missed the opportunity for students to see the sample results converge for larger samples. Repeated 
sampling for various sample sizes appears crucial to teach students to balance between sampling 
representativeness and sampling variability. Finally, the activity might not completely align with 
DP 2, because students may have beliefs about the outcome, based on information they have about 
word frequency in books in general (De Vetten et al., 2018a). 

Activity 2: How many yellow balls are in the Black Box?  

The activity “How many yellow balls are in the Black box?” (Van Dijke, Drijvers, & Bakker, 2018) 
was implemented in a grade 9 pre-university secondary classroom. The activity has students 
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investigate and estimate the number of yellow balls in a black box, filled with a mix of 1,000 yellow 
and orange balls, by looking through a small viewing window. It is expected that students will 
shake the bottle in order to take samples repeatedly and that they will use the average of their 
sample as an estimate. Findings are recorded and discussed by students as part of a whole class 
discussion. Following this, a larger viewing window is opened on the black bottle, the experiment 
repeated, and findings recorded. The contention is that experiences with the physical black box 
experiment support the development of an informal understanding of samples and sampling 
variability and promote investigation of the effect of repeated samples and larger sample size. 

While this activity was not designed based on the list of design principles presented in this paper 
and its effects on students’ reasoning has not yet been reported, it appears to align well with the 
principles. As the number of yellow balls is determined by the educational designer, students cannot 
have any expectations of the outcome (DP2). Generalization is natural, as it is obvious that the 
sample results are only a means to make a claim about the population (DP 3). It has a visible and 
large population and a visible sample (DP 3 and 6). It is easy to obtain a representative sample as 
yellow and orange balls are mixed and shaking the bottle results in a random sample. Since 
obtaining a non-representative sample appears to be hard in this activity, it might not stimulate 
critical reflection on sample representativeness. However, sampling variation may lead to 
discussing representativeness (DP 4). The context, question, sampling, recording and analyzing are 
simple (DP 5 and 7). Repeated sampling is achieved by repeatedly shaking the bottle and counting 
the yellow balls and by combining small group results in a whole class graph, while growing 
samples is possible by enlarging the viewing window from 40 to 80 balls (DP 8).  

 
 Figure 2: Black box, used in the activity “How many yellow balls are in the Black Box?” 

Activity 3: Comparing math attitude of men and women 

This activity is a standard activity in which students are asked to compare two samples and draw a 
conclusion whether in the population the groups differ (see for example De Vetten et al., 2019; De 
Vetten et al., in press). One example of such an activity is shown below, where the activity also 
involves a growing samples activity. It was implemented and evaluated in three groups of first-year 
pre-service primary school teachers (De Vetten et al., 2019). The driving question was whether in 
the population there is a difference in math attitude between men and women. During three rounds 
the students answer this question and make predictions of the shape of the distributions of larger 
samples. 
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This activity was not well-aligned with a number of design principles, in particular with the 
visibility of the population (DP 6), the simplicity of the analyses (DP 7), and the possibilities for 
repeated sampling (DP 8). Indeed, we showed among the pre-service teachers engaged in this 
activity, there was a strong tendency to restrict attention to descriptive analyses, rather than to 
engage in inferential reasoning (De Vetten et al., 2019). The teacher also had strong ideas of the 
difference between the groups in the population and, therefore, some had problems treating the data 
as evidence (DP 2). We also contend that, when the population elements are humans, it may be 
complex to obtain a representative sample, thus leading students to put less trust in the sample and 
reducing their willingness to make generalizations (DP 4 and 5). On the positive side, the 
complexity of the sampling process stimulates critical reflection on sample representativeness (DP 
5) and the immensity of the population encourages students to take a sample (DP 3). Although the 
design principles offer suggestions to improve this activity, in particular using repeated sampling, 
some elements, such as a visible population from which it is easy to generate a representative 
sample, might not easily be rectified. 

 
 Figure 3: Overview of the activity “Comparing math attitude of men and women” 

Conclusion 
Designing ISI activities for primary education that align with all the design principles is not 
straightforward, as it demands very good knowledge of ISI and educational design. We have 
suggested two activities that to a large extent align with the design principles. Teachers can 
effectively use these activities in their classrooms. The design principles can also be used by 
educational designers to align their own activities with the design principles and elicit IIR more 
effectively. For example, the activity in which two samples are compared could incorporate 
repeated sampling, and the averages and measure(s) of dispersion could be provided, so that more 
time can be spent on IIR. Some of the design principles for ISI education presented in this paper are 
well-known and have been reported before, but some are based on recent ISI education research. In 
this way, we aim to provide a comprehensive set of design principles, based on recent evidence, that 
can be useful for educational designers and are ready to be corroborated by future research. 
Moreover, the principles are potentially applicable beyond the primary education (teacher) setting, 
to other settings where the design for activities is necessary when first introducing students to ISI. 
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Introduction and method 
A relevant part of the information we face every day is given in statistical graphs, whose interpretation 
is often needed to make different decisions; therefore there is a need for citizens to achieve enough 
graphical competence. These reasons led countries like Chile to introduce statistical graphs in the 
primary education (MINEDUC, 2012). 

In a previous study (Díaz-Levicoy, Batanero, Arteaga & Gea, 2016) bar graph were the most common 
representations in the Chilean curricular guidelines and textbooks. Consequently in this research we 
intended to assess the students’ difficulties in building these graphs.  

This research was aimed to identify the 6th and 7th grades Chilean school children’s difficulties in 
the construction of bar graphs, which are recommended in the curricular guidelines and is the most 
frequently presented graphic in the Chilean textbooks.  

To achieve this aim we analyzed the responses of 745 students, from 13 different educational centers 
and with an average age of 12.3 years to the task reproduced in Figure 1 in which students should 
form the frequency distribution of data.  

Task. The following data result of a survey where children were asked for the number of brothers 
and sisters: 0, 1, 3, 2, 2, 3, 2, 4, 1, 2, 1, 2, 0, 2, 3, 1, 1, 0, 2, 4, 0, 1, 2, 3, 1, 1, 2, 2, 2 
Buid a bar graph that summarise this information 

 

Figure 1: Task given to the students 

Main results 
We classified the students responses in correct, partly correct or incorrect according to the following 
criteria, following an inductive and cyclical process characteristic of content analysis and considering 
the results of previous studies: 

· Correct responses correspond to bar graph that represent the data and use the criteria for these 
representations. 

· In partly correct graphs there are minor errors, such as forgetting the general title, or using 
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bars with different distance between them. 
· In incorrect graphs the representation of data make no sense. 

Type of graph 6th (n=380) 7th (n=365) 

Correct 4,7 7,9 

Partly correct 40,3 44,1 

Incorrect 31,3 17,8 

Do not complete 23,7 30,1 

Table 1: Percentage of students according their responses 

Results are presented in Table 1, where there are no significant differences between both grades. 
Results are better than those reported by Bivar (2012) and worse than those by Fernandes, Morais & 
Lacaz (2011) and Evangelista, Oliveira & Ribeiro (2014) although in these last studies students did 
not need to form the distribution. The most frequent errors in our research were representing the list 
of data without forming the distribution (15.4% of students), non-proportional scales (13.7%), lack 
of titles or labels (34.6%) and bars with different width or separation (18.1%). Some students 
committed several of these errors. All these results suggest the need of reinforcing the teaching of 
graphs in Chilean basic education. 

Results show the high difficulty, since only 50% of students produce correct or partially correct 
graphs. The differences between the two groups were not statistically significant. More details about 
the errors made by the students can be read in Díaz-Levicoy (2018). 

 

Project EDU2016-74848-P and group FQM126 (Junta de Andalucía). 
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Using Mooney’s (2002) framework describing four levels of middle school students’ 
statistical thinking across four different statistical thinking processes, this study aims to 
investigate the effectiveness of the use of Realistic Mathematics Education (RME) approach 
on 6th grade students’ statistical thinking levels. A quasi-experimental with pretest-posttest 
comparison group research design was used. In the experimental group the unit on ‘data 
handling and analyses’ was taught using RME approach while in the control group it was 
taught traditionally using the textbook. The data analysis showed that although there was no 
statistically significant difference between the two groups with regard to their statistical 
thinking scores, the overall growth at Level 4 across statistical thinking processes was higher 
for the students who were taught using the RME approach than for those taught traditionally.  
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Introduction 
We are surrounded by a huge amount of information in our daily lives and it is becoming 
more important to make sense of the information. To do so, individuals need higher order 
thinking skills such as questioning, making interpretation and estimation, drawing inference, 
critical thinking and reasoning. Curricular reforms emphasize these skills in students’ 
learning. For example, the Turkish National Mathematics Curriculum (MEB, 2018) aims to 
develop students’ understanding of mathematical concepts and their use in the daily life, 
reasoning skills in problems and ability to detect inadequate reasoning, metacognition, 
making mental calculations and estimations. Similarly, earlier in the Netherlands such reform 
aimed to change the education system which was based on memorizing (Van den Heuvel-
Panhuizen, 1996). In 1971, Freudenthal and his colleagues laid the foundations of Realistic 
Mathematics Education (RME) with the aim of teaching the connection between real life and 
mathematics (Van den Heuvel-Panhuizen, 1996).  For Freudenthal (1991), two key points in 
RME are: (1) mathematics should be close to students’ everyday lives and (2) mathematics is 
a human activity. 

In daily life, we encounter with various data on newspaper, television and social media. 
Statistical concepts enable us to make decisions and solve real-world problems using data. 
However, students’ difficulties in learning of statistics and probability can hinder these. Some 
of the sources of these difficulties in Turkish middle school students appear to be the teaching 
of statistical concepts and procedures without connections, memorization rather than 
conceptual understanding, and learning without concrete examples (Çakmak & Durmuş, 
2015). This implies that statistics must be relevant to students’ experiences and real life 
situations. The use of RME approach in teaching can support making the statistical problem 
situation become real for students since the context plays an important role in statistics.  
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While there are studies on the effective use of RME in learning of other mathematical topics, 
such as percentages (Van den Heuvel-Panhuizen, 2003) and integers (Ünal Aydın & İpek, 
2009), there is a scarce of research in teaching statistics using RME. Therefore, this study, 
which is part of the first author’s master’s thesis work, sought to examine the effectiveness of 
RME approach on 6th grade students’ statistical thinking. The research questions addressed in 
this paper are: 1) Is there a significant difference in students’ statistical thinking posttest 
scores using the RME approach compared to traditional method? 2) What are the students’ 
thinking levels with respect to the statistical thinking processes before and after the 
intervention in each group? 

Statistical thinking  
Statistical thinking refers to comprehending the meaning of statistical concepts and 
understanding where, why and how they are used (Garfield & Ben-Zvi, 2008). That is, 
statistical thinking is not just calculating something or defining it. It is also about reasoning, 
making interpretations, predictions and inferences about data. Statistical thinking is important 
in solving a statistical problem about a real-world phenomenon through an inquiry cycle, 
called PPDAC (Problem-Plan-Data-Analysis-Conclusion) (Wild & Pfannkuch, 1999). The 
PPDAC cycle starts with understanding and defining a problem. Then what to measure and 
how to collect data are planned. Data collection phase is followed by analyzing data through 
looking for patterns and constructing tables and graphs. Finally, data are interpreted and 
conclusions are made and communicated.  
To interpret middle school students’ statistical thinking Mooney (2002) considers four 
statistical processes used in Jones et al.’s (2000) framework for elementary students: 
describing data (explicit reading of data presented in visual displays), organizing and reducing 
data (arranging, categorizing, and summarizing data using measures of center and spread), 
representing data (constructing visual display of data) and analyzing and interpreting data 
(identifying patterns in data and making inferences and predictions from the data). According 
to Mooney’s refined framework, students’ progress through four levels of thinking in each of 
these processes: Level 1-idiosyncratic, Level 2-transitional, Level 3-quantitative and Level 4-
analytical. In Level 1, student shows no awareness of the given data; gives answers according 
to his/her own experiences or feelings; cannot use concepts correctly; and cannot read the 
given situations. In Level 2, student shows little awareness of the problem but it is still not 
sufficient; the solutions may contain partially correct answers. In Level 3, student shows full 
awareness of the problem; can correctly use concepts and formulas, and express what they 
mean and why they are used; can correctly see and explain the relationships between 
concepts; however his/her solutions or demonstrations may contain some errors. Besides, s/he 
can use different representations of a given data set and make transitions between them with 
small errors. In Level 4-analytical, students can do all procedures without any error. That is, 
s/he can read the given data fully, make connections, use these relationships and necessary 
computations correctly as well as explain how and why s/he uses them. In addition to these 
abilities, s/he can display the given dataset with various representations and make transitions 
between them without any error.  

Using Mooney’s framework, Koparan and Güven (2013) examined statistical thinking levels 
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of 90 Turkish middle school students. They found that 6th grade students’ statistical thinking 
generally was at Level 1. For example, the proportions of students at Level 1 varied across 
four statistical thinking processes: 49,3% in describing data, 65,3% in organizing and 
reducing data, 74,2% in representing data, and 80,8% in analyzing and interpreting data. 
These results showed that almost half of the students had difficulties in reading of data 
contained in tables and graphs. Moreover, majority of them failed to both construct a 
complete and appropriate display of data and compare datasets and make inferences based on 
data.  

Realistic mathematics education (RME) 
Freudenthal’s (1991) view of mathematics as a human activity indicates that knowledge 
becomes the individual’s own knowledge only if s/he interacts with and discovers it. To do 
this, the individual should actively participate in learning situations and deeply understand the 
meanings of mathematical concepts and their usage. According to Freudenthal, learning 
mathematics takes place via mathematization, which refers to the process of experiencing the 
discovery of the mathematics concept. In RME, mathematization is essential; without it, the 
process of learning mathematics cannot be completed (Freudenthal, 1991). Freudenthal 
(1991) expresses two forms of mathematizing as follows: Horizontal mathematization is 
transition from real world to mathematics and the vertical mathematization is doing 
mathematics in its world. In this study we focus on horizontal mathematization which takes 
place when the student encounters a mathematical problem and s/he starts to solve it. In this 
process, student makes drawings, identifies patterns and so on to transfer the real world 
problem to mathematics. 

According to Freudenthal (1991) to learn mathematics, the student actively participate in the 
process, experience the discovery of mathematical concepts, try to solve the problem, develop 
ways and then the knowledge becomes his/her own. The teacher guides students when they 
need. One of the most important parts of RME is the problem situation, which should be 
concept oriented and make students curious enough to solve the problem.  

Method 
To explore the effectiveness of RME approach on students’ statistical thinking, a quasi-
experimental with pretest-posttest comparison group research design was used since random 
assignment was not possible. The study was conducted in two intact 6th grade classes where 
the first author taught mathematics at a public school in Aydın, Turkey in the spring of 2018. 
In the experimental group (n=25), the unit on ‘Data Handling and Analysis’ was taught using 
RME approach while in the control group (n=24) it was taught traditionally using the 
textbook determined by the Ministry of Education. Both classes were taught over a three-
week period.  

Data Collection and Analysis 

The instrument used in this study was the statistical thinking test with seven open-ended 
questions, some of which were adapted from Koparan and Güven (2013) while others were 
written by the authors. The questions were addressing the four statistical thinking processes: 
describing data (question 5), organizing and reducing data (questions 2 and 3), representing 
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data (questions 1 and 4), and analyzing and interpreting data (question 6 and 7). After experts’ 
evaluation of the test items, it was piloted with 75 sixth graders (in other classrooms in the 
same school and the same school year as the research) to determine its reliability. The 
Cronbach’s alpha coefficient of the test was found 0.76, which is considered acceptable 
(Baykul & Güzeller, 2014). Then, the test was administered in both groups to assess students’ 
statistical thinking levels before and after the intervention.  

Students’ responses on pre- and posttests were coded by both authors and scored using the 
rubric developed based on Mooney’s (2002) framework for statistical thinking levels. There 
was 88% consistency between two coders. Disagreements were discussed and consensus was 
reached. The independent samples t-test showed that there was no difference on statistical 
thinking pretest scores between the groups initially. In the posttest analysis, Mann Whitney U 
test was used to determine the difference between the groups since the control group data 
were not normally distributed. Also, descriptive statistics were used for the seven-item test to 
examine the change in students’ thinking levels before and after the intervention. 

Procedure and Tasks 

In the control group, the ‘Data Handling and Analysis’ unit was taught with a traditional 
approach using the 6th grade mathematics textbook (Güven, 2014). The teacher followed the 
structure and order in the textbook and the problems given in the textbook were solved by the 
students. In the experimental group using the RME approach, both low and high ability 
students worked in small groups since both weaker and stronger students can benefit when 
working in heterogeneous groups (Freudenthal, 1991). Moreover, students first worked in 
groups and then the whole-class discussion of students’ work took place. Ground rules for 
working together in groups were established with the students and implemented throughout 
the lessons. These were the rules to promote effective group work, such as “while someone is 
speaking, others must listen” and “in a group every member must work and help each other”.  

The Frog Olympics task was adapted from Kazak, Pratt and Gökce (2018) and implemented 
using the RME approach in the experimental group over eight class periods (each class 
period=40 minutes). The aim of the task was to create a problem situation that can be viewed 
real by the students as they engage in all four statistical thinking processes. In the activity 
students tried to determine which frog would be the best to go to the Olympics. First, students 
made two different origami frogs that could jump. Each group had one big frog and one small 
frog. The arithmetic means of these frogs’ jumping distances were very close but the range 
values were not. Then the problem situation was introduced and the students were asked to 
determine the best jumping frog for the Olympics jumping race. Each group determined a 
start line and made each frog jumped 13 times on their desk. For each trial they measured the 
distance jumped and recorded the jumping distance in cm by rounding their measurement into 
the nearest integer. Next, groups were asked to make a frequency table and each group 
presented their data to the whole class. Then they were asked to make a graphical 
representation of the data, i.e. bar graph, using their frequency tables. By doing this, they were 
expected to make connections between different representations of a dataset. The following 
teaching episodes focused on analyzing data and making decision. Using their prior 
knowledge from the science classes, they calculated the range and mean of their datasets and 
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discussed together in their groups to decide which frog was better in jumping. Students 
already knew how to compute mean and range, but using them to compare two datasets was a 
new task for them. During the whole-class discussion, some groups thought that the small 
frog was better while some thought the big frog was better, and the teacher let them argue 
about their decisions. While groups were presenting their analysis and decisions, they had to 
explain why it was like that. Therefore, groups began to compare and contrast their ideas and 
a decision was made by a whole-class at the end of the discussion. In the next task, over the 
course of four class periods, the students were asked to collect data about their jump distances 
and record them during their physical education class. In the schoolyard, each group member 
jumped 13 times like frogs and another student measured the distance jumped. Then they 
made frequency tables and bar graphs of their data. As seen in the RME tasks students are 
expected to experience the whole statistical thinking process in PPDAC (Wild & Pfannkuch, 
1999) while the textbook used in the control group puts more emphasis on calculations. 

Findings  
Before the intervention, independent samples t-test results showed no significant difference in 
the statistical thinking test scores for both groups (t (47) = 0.18 and p=0.986). In the posttest 
analysis, Mann Whitney U test indicated that although the mean rank of the experimental 
group (26.44) was higher than that of the control group (23.50), there was no statistically 
significant difference between the groups (p=0.47). Since the experimental group had the 
highest rank, descriptive statistical analysis was used to look closely for the changes in 
students’ thinking levels with respect to the statistical thinking processes for each group. 
Figure 1 shows the distribution of the experimental group students’ statistical thinking levels 
for each question organized by the four statistical thinking processes on the pretest. Each 
column represents the item on the test and the statistical thinking process measured by that 
item. Colored sections of each column show the statistical levels of students and the number 
of students in each level for each question. For example, in Figure 1 the first column at the 
bottom shows the item on describing data (question 5) and there are 18 students at Level 1, 4 
students at Level 2, 1 student at Level 3 and 2 students at Level 4.  

According to Figure 1, before the intervention students in the experimental group mostly 
exhibited Level 1 thinking with regard to describing data (question 5), representing data 
(question 1 only) and analyzing and interpreting data (question 6 and 7). For organizing and 
reducing data (questions 2 and 3), they generally demonstrated Level 3 thinking. Only a few 
students exhibited Level 4 thinking overall. Similar to Koparan and Güven’s (2013) findings, 
students’ levels of thinking initially were generally at Level 1.  
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Figure 1: Experimental group students’ statistical thinking levels with respect to statistical 
thinking processes (by questions) on the pretest 

Figure 2 shows the experimental group students’ statistical thinking levels on the posttest. 
Overall, most development was seen in students’ thinking levels with regard to representing 
data and organizing and reducing data as almost half of them were at Level 4. In addition, 
about half of the students demonstrated Level 3 or Level 4 thinking for analyzing and 
interpreting data. However, slightly more than half of the students still exhibited Level 1 
thinking with regard to describing data.  

 
Figure 2: Experimental group students’ statistical thinking levels with respect to statistical 

thinking processes (by questions) on the posttest 

Figure 3 displays the control group students’ statistical thinking levels for the statistical 
thinking processes on the pretest. While slightly less than half of the students exhibited Level 
1 thinking with regard to describing data, majority of them demonstrated Level 1 thinking for 
representing data and analyzing and interpreting data. There were very few students 
demonstrating Level 4 thinking for each process. 

 
Figure 3: Control group students’ statistical thinking levels with respect to statistical thinking 

processes (by questions) on the pretest 

Figure 4 shows the control group students’ statistical thinking levels for the statistical 
thinking processes on the posttest. Students mostly exhibited Level 1 thinking for describing 
data and Level 3 thinking for organizing and reducing data, and analyzing and interpreting 
data. On the other hand, students’ levels of thinking tended to be at Level 1 and Level 2 with 
regard to representing data. Overall, there was a growth in the development of students’ 
thinking after instruction, but less compared to the experimental group. 
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Figure 4: Control group students’ statistical thinking levels with respect to statistical processes 

(by questions) on the posttest 

Conclusions  
In this study, there was no statistically significant difference in the students’ statistical 
thinking posttest scores between the experimental group and control group. However, our 
descriptive statistical analysis of the change in students’ thinking levels with respect to the 
statistical thinking processes revealed further insights about the development of students’ 
thinking during the RME activity and the traditional instruction. 

After the instruction, the least development in students’ thinking levels was seen for 
describing data process both in the experimental group and the control group. With regard to 
organizing and reducing data process, there was usually development from Level 1 to Level 3 
or Level 4 in the experimental group while many students’ thinking levels shifted from Level 
1 to Level 3 in the control group. The most development was seen in representing data 
process with the positive shifts in almost all students’ thinking in the experimental group and 
with many of these was at Level 4. There were also a few shifts in student’s thinking for 
representing data from Level 2 and Level 3 to Level 4 in the control group. While the control 
group students’ thinking levels were mostly at Level 3 and Level 4 for analyzing and 
interpreting data process after the instruction, the experimental group students’ thinking levels 
tended to shift slightly to Level 3 and Level 4. This could be due to the emphasis given to 
calculating statistical measures in the textbook used in the control group. 

Overall, our findings suggested that the instruction using the RME approach helped students 
to develop their statistical thinking mainly for representing data and organizing and reducing 
data processes. For these two processes there was a noticeable increase in the number of 
students demonstrating Level 4 thinking while there was a corresponding decrease in the 
number of students exhibiting Level 1 thinking after the instruction. For analyzing and 
interpreting data process, the increase in the number of students was mainly at Level 3 
thinking with a corresponding decrease at Level 1 thinking after the instruction. However, the 
findings indicated that students would need more experience in describing data when 
engaging in the RME activity as well as using the textbook. These results are consistent with 
previous research (e.g. Mooney, 2002) showing low student scores in describing data but high 
scores in analyzing and interpreting data, organizing and reducing data or representing data 
processes. 
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The non-significant statistical test results can be due to the sample size, which is comprised of 
about 25 students in each group. A study with larger sample size would give more reliable 
results. The present study is limited to quantitative methodology of data collection. In future a 
qualitative method can be undertaken for a deeper study of the change in students’ statistical 
thinking after an intervention using the RME approach.  

This research was supported by the grant PAUBAP 2018EĞBE008.  
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The goal of this article is to examine how learners’ repurposing of a model they had previously 
constructed, possibly by extending its features, can support young learner’s reasoning with key 
statistical features. This process is facilitated by a learning trajectory integrating multiple real 
world and probabilistic modeling tasks. We introduce our framework describing young learner’s 
reasoning with informal statistical models and modeling (RISM) and focus on a key element in the 
framework: young learners’ expectations regarding the data that can be collected (or generated) 
from a conjectured population. We offer an illustrative case study of two-sixth graders’ reasoning, 
focusing on a specific model they had constructed and repurposed throughout their investigation, 
how its features developed and how it ultimately matured to include an underlying probabilistic 
mechanism. We discuss how this relates to our notion of expected data and close with suggested 
implications. 

Keywords: Statistical model, statistical modeling, integrated modeling approach. 

Introduction 
There has been a growing interest in the statistics education community in statistical modeling as a 
pedagogical paradigm to developing learners’ statistical reasoning. However, a deeper 
understanding of what statistical modeling entails is needed to better exhaust its pedagogical 
potential, especially with regard to young learners. In particular, a better understanding of how 
novices can be encouraged to construct models that are accompanied with uniquely statistical 
features, such as accounting for possible variability – that of the data explored, as well as of the 
sampling procedure that yielded it – is still warranted. The purpose of this article is to explore this, 
based on an illustrative case study of a pair of sixth grade students’ (12 year olds) participation in a 
uniquely designed learning environment. We track a specific model they had constructed, and 
gradually repurposed as they participated in various modeling tasks. The new roles assigned to the 
model were also accompanied by extending and refining some of the models’ features, gradually 
becoming more ‘statistical’ – that is, it eventually featured uniquely statistical features that 
distinguish it from a non-statistical model. 

Background – The RISM framework and the IMA 
A model – a representation serving an explanatory or descriptive purpose (Hesse, 1962) – would 
serve as a statistical model if it was constructed for a statistical purpose, typically meaning: 1) the 
phenomenon it is intended to explain has a variability aspect, and 2) utilizing it includes employing 
probabilistic considerations (Brown & Kass, 2009). The latter is associated with the notion that the 
description a statistical model offers should be non-deterministic in its nature (Budgett & 
Pfannkuch, 2015). However, when young learners are the modelers, an informal alternative is 
necessary, void of the conventional procedures and calculations. Within the context of a statistical 
inference, a statistical model (formal or informal) needs to serve a dual representative purpose: 
simultaneously depicting both a conjecture about the explored phenomenon (Konold & Kazak, 
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2008) and its underlying probabilistic mechanism (Pfannkuch & Ziedins, 2014), as well as the data 
itself. It is this dual representative purpose that has inspired our framework for depicting young 
learners’ reasoning with informal statistical models and modeling (RISM). 

The RISM framework suggests describing the statistical modeling process as a continuous 
development of a set of key elements portrayed in Figure 1. The dual representative purpose of the 
model is translated into two planes: the data and the conjecture plane. In both, the novice modeler 
gradually constructs a simplified version of either the explored phenomenon (the phenomenon 
plane, bottom of Figure 1) or his abstract conjecture (the conjecture plane, top part). The latter may 
be trivial for an experienced statistician, already familiar with a vast variety of readymade statistical 
models and formal fit assessment procedures, but challenging for a novice. Alternatively, co-
constructing two concurrent models – a data model depicting observed patterns in the data, as well 
as a conjecture model depicting the data expected to be collected – and assessing their 
compatibility, can serve as an informal alternative to the practice of model fit evaluation (Dvir & 
Ben-Zvi, 2018). 

 
Figure 1: The RISM framework’s snapshot 

Worth noting is the role the expected data serve in this depiction of the informal statistical modeling 
process: as the expert statistician’s readymade abstract conjecture is a statistical model, it should be 
already accompanied with previously known considerations regarding the data it can generate, and 
how the resulting generated data may vary dependent on the type of the model and sample size. In 
cases where the model is lesser known, the expert would seek to investigate how the data generated 
from it would behave. However, a young modeler would not typically be aware of the formally 
expected behavior of such generated data, nor that this behavior may vary and should be explored. 
Thus by ‘expected data’ the framework merely refers to the learners’ (typically naïve) perception of 
the data one might collect from the investigated population if his conjecture were true. We believe 
this expectation is critical when considering whether the investigated conjecture model can be 
considered a statistical model. For it to be one – the expectation should express some (albeit 
informal) understanding of the probabilistic considerations associated with generating data from a 
model. 

For this reason, integrating an investigation of the conjecture model’s probabilistic mechanism may 
be beneficial in supporting young learners’ reasoning with statistical models and modeling. 
Therefore, the integrated modeling approach (IMA, Manor & Ben-Zvi, 2017) suggests following a 
‘real world’ inquiry with a ‘probability world’ inquiry, in which the probabilistic considerations of 
interest becomes the main subject of investigation. The probabilistic inquiry is typically initiated by 
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students’ creating a dynamic model using the TinkerPlots Sampler1 (Konold & Miller, 2015), based 
on their real world conjecture models. They then draw multiple simulated (same sized) samples 
from it, compare between them and eventually construct a sampling distribution of a chosen 
statistic. The data examined in the probability world is therefore no longer a single sample, rather 
multiple samples, and the conjecture and inferences made describe the samples’ behavior. These 
inferences, although different in their nature, are closely connected to the real world inquiry that 
instigated the probabilistic exploration and therefore can be then related back to inform a 
progression in the real world inquiry. 

The real world conjecture model is therefore utilized in the probability world to serve a different 
purpose (probabilistic rather than real), however what is examined is its underlying probabilistic 
mechanism, mirrored by the sampling variability students observe. This can lead to refinements of 
the Sampler model from which the samples were generated, such as adding new attributes to better 
represent sampling variability (Manor & Ben-Zvi, 2017). Similar extension have also been reported 
in other integrated modeling endeavors (Lehrer, 2017), however how these occur and how can these 
be then utilized to inform student’s real world instigating inquiries has not been thoroughly 
examined. This may be in part due to the different visualization students employ when constructing 
the Sampler model, thus it is unclear how its extensions may manifest in its original real world 
representation. Therefore, we have chosen to focus on a specific representation first utilized in the 
preceding real world investigation but also employed during the subsequent probabilistic inquiry, 
and examine: How can young learners repurpose a real world conjecture model and extend some of 
its features in a follow-up probabilistic inquiry? 

Method 
This study was conducted as part of the Connections project, a longitudinal design and research 
project (began at 2005) aiming at promoting young learners’ statistical reasoning, in a 
technologically-enhanced and inquiry-based learning environment. We focus on the data collected 
in 2016 of a pair of second year participating 12 year-old students from a public school in Israel. 
Their entire sixth grade class participated in a 19 lesson long learning trajectory, which included 
three full (data and probability) investigation cycles. The students used TinkerPlots (Konold & 
Miller, 2015) to both create their data representations, as well as design a generative conjecture 
model and draw multiple samples from it. The findings we present in this article were taken from 
the second investigation cycle in which students were asked to make inferences about 1300 students 
of three schools in the district (including their school) based on a random sample of 60 students. 
Since our purpose was to learn more about the students’ reasoning process employed to elucidate 
the role of a specific phenomenon, we chose to focus on an illustrative case study. We focus on the 
reasoning employed by a pair of academically successful students, Noa and Ido, second year 
participants in Connections. They were selected as they were verbal and communicated their 
reasoning openly and fluently, and exhibited a behavior observed in several other pairs while 
disclosing much about the reasoning that encouraged it: they utilized the same visualization in their 
                                                 
1 The TinkerPlots Sampler allows students to design and run probability simulations, subsequently plotting the results to 
give a visual representation of the outcome over many samples (a sampling distribution). 
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inquiry of the real and probabilistic worlds. This facilitated us to more accurately examine how the 
same model was repurposed and what model features were subsequently extended. 

All the activities and participants’ actions were videotaped by three cameras during class discussion 
and Camtasia software to concurrently document the students’ computer screen and articulations 
during their pair work. After transcribing all the pair’s videos, the resulting data corpus was 
reviewed and analyzed according to the interpretative microgenetic method (Siegler, 2006), 
utilizing the RISM framework to translate the convoluted statistical modeling processes observed to 
discrete sets of well-organized snapshots (Dvir & Ben-Zvi, 2018). Key scenes and their transcripts, 
were discussed and triangulated (Schoenfeld, 2007) amongst the co-authors and a third Connections 
researcher. 

Findings 
This section illustrates the progression of a specific model the pair had constructed during the 
second investigation cycle. Figure 2 illustrates the progression we will describe, from its first 
appearances during the real world investigation, to its development during the following 
probabilistic inquiry. 

 

 

 

Figure 2: Illustration of repurposes and extensions of the medians model 

Initial use of the medians model: repurposing a real world data model to a conjecture model 

The second investigation cycle focused on “sportiveness and gender”. Focusing on students’ 600 m 
running times, Noa formulated their research question: Is the stigma that girls run slower than boys 
true? The pair formulated an initial conjecture: “there is a small difference between boys [and girls, 
in favour of] the boys”, and began to investigate their real data by examining the 600 m results by 
gender (Figure 3). Asked by the researcher what can they see in the data, Noa replied: 

Noa: That we [girls] do not run so well… 2 minutes and 5 seconds [miscalculation of 
the boys’ median – 165 sec] is not so good… [and the girls] run even worse. 2 
minutes and 13 seconds [miscalculation of the girls’ median – 173 sec]. 

 
Figure 3: 600 m running times (seconds) by gender, colored according to grade 
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In response to the researcher’ prompt, Noa described the median of each gender, and compared 
between them stating “[the girls] run even worse.” This utilization of the medians, here representing 
what Noa saw in the data (her data model) is what we refer to as ‘the medians model’, and its 
progression is what we will focus on throughout the Findings Section. The researcher, in 
accordance with the learning trajectory design, encouraged the pair to infer beyond the data, leading 
Noa to revisit her conjecture: 

Noa: I think it [the population of 1300 students] will be less extreme than what I said. 
There would be a lot more boys than girls that will enlarge the median… 

R: And who will be better, boys or girls? 

Noa: Boys… I think that the boys’ median will be a bit bigger and the girls median will 
be a little more bigger [means: smaller] … by 1 [second] 

The underlying behaviour of Noa’s current conjecture (her abstract conjecture) had not strayed 
much from her initial conjecture (“there is a small difference between boys [and girls, in favour of] 
the boys”). The novelty, however, is the model repurposed to describe it, as for the first time the 
medians model is awarded this role. Furthermore, Noa also described here not only which of the 
medians will be “bigger”, but also by how much – a new extension to the medians model. This 
implies that the data Noa expected her conjectured population to generate is rather specific. The 
extended feature of acknowledging the actual size (although not necessarily by number) of the 
difference between the two medians, will gradually take on a bigger role, reflecting a development 
in the pair’s perception of the expected data. 

Repurposing in the probability world 

During the remainder of the lesson, as well as the one that followed, the pair moved on to the next 
task of designing a generative model using the Sampler. Their model was based on both the real 
data sample as well as their perception of the running results of the population of 1300 students, 
thus reflecting their current conjecture: the girls’ and boy results are almost equal, but boys run a 
little bit faster (Figure 4). After constructing the Sampler model, the pair began to generate 
simulated random samples from it. In the first sample drawn, the girls’ median was significantly 
smaller than the boys’ (Figure 5). Noa addressed this in multiple ways, for example, when the 
researcher introduced the boxplot in the following lesson. As the researcher asked the pair how the 
boxplot could be utilized, Noa replied: “We can see where there are more data, and also who is 
better, because if, for example our [the girls’] median is here [relatively small], and their median 
[the boys’] is here [larger] it means that we [the girls] are better here [in this sample]”. Noa’s 
response indicated that although the addition of the boxplot was an extended feature of the 
visualization, the underlying data model she was still utilizing is the medians model. Although now 
analysing a simulated sample, the role this model seemed to serve is similar to that in prior 
utilizations of the medians model: describe the data (a single sample) at hand. After drawing a 
second simulated sample, the researcher asked how the pair would like to compare between the 
samples. 

Noa: Here too [in the second simulated sample as well as the first], we [the girls] are 
better [than the boys] 
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R: Because of what? 

Noa: Because again [in another sample we see that] the [girls’] median is at better 
results and 

Ido: Why? But our [the boys’] median is becoming closer to yours [the girls’ median] 

Noa: It is, but still [the girls’ median is better than the boys’]… 

Ido: It [the difference between the medians] is very similar, all the time… 

 
Figure 4: The Sampler model – the attribute on 
the left is gender and on the right, two “almost 

equal” distributions were designed for the boys’ 
(top) and girls’ (bottom) 600 m running times 

 
Figure 5: Adding a boxplot to investigate the 
first simulated sample of the boys’ (top) and 

girls’ (bottom) running times in which the girls’ 
median is smaller than the boys’ 

Noa began by stating the result of the comparison: “here too”. As the researcher prompted her to 
explain how she had ascertained this result, Noa referred again to the median as an indicator 
regarding who runs better. However, implied in her response is a possible extended feature: while 
comparing the medians (which is smaller – the boys’ or the girls’) served as a model for describing 
what the data in a single sample indicated (regarding who runs better), comparing which of the two 
medians is “better” across the two samples was a method to compare between the new simulated 
sample and the previous one. This repurposing was implied both by her use of “again” as well as 
the researchers’ question that instigated this exchange (how would they like to compare between 
samples). 

Ido’s reaction introduced a new aspect, more explicitly addressing the new type of comparison 
(between samples, rather than between the two distributions within a single sample): comparing 
differences. Not only was he acknowledging the size of the difference between the two medians, as 
opposed to Noa’s acknowledging only which of the two prevailed, he was also explicitly focusing 
on the change that accrued between this current sample and the former: the boys’ median was 
“becoming closer” to the girls’, meaning the difference is now smaller. Despite Noa’s reply 
showing she did not consider the smaller gap between the two medians as a relevant indicator, Ido’s 
final statement takes this new aspect even one step further, as he used a much more general 
formulation: “all the time”. However, as the pair’s inquiry progressed the extended feature Ido had 
introduced was indeed picked up by Noa. An example for this can be seen in a later exchange: 

R: What will happen if we draw another sample? 

Noa: It seems to me it [the new sample] is the same. The boys [their median] are slowly 
slowly getting closer to us [to the girls’ median] 
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This last statement shows that not only was Noa now considering comparing the differences 
between the medians as a means of comparing the new sample with the previous samples, it is now 
even becoming a part of her newly forming conjecture. However, this conjecture does not reflect 
Noa’s view of the real world phenomenon the pair were investigating (who runs better), rather a 
different kind of phenomenon: how much do samples such as those they were investigating vary? 
We therefore consider this to be a repurposing of the original medians model, here also serving as a 
conjecture model for the probabilistic phenomenon the pair were investigating. 

The pair continued to generate more simulated random samples, and for each compared the 
difference between the boys’ and girls’ medians with the differences they saw in other simulated 
samples: “you [the boys’ median] are getting closer to us [the girls’ median] but it is taking you a 
lot of time” (Noa), “now it [the difference between two medians] is almost equal [to the previous 
difference]!” (Ido). The changes they observed varied, to the extent that in one sample, much to 
Noa’s disappointment, the boys’ median even surpassed the girls’. After several samples were 
drawn, the researcher prompted the pair to consider whether a sample size 60 can be trusted: 

Noa: No, because let’s say once they [the boys’ median] can be here [at one point] and 
we [the girls’ median] can be here [another point], and another time they [the 
boys’ median] can be here [different point] and we [the girls’ median] can be here 
[another different point]. It’s confusing. 

Ido: It [the difference between the medians] can always change. 

Noa: Here [in other samples] it is like that they [the boys’ median] slowly slowly closed 
[the gap] to us [the girls’ median], and here [in one sample] they [the boys’ 
median] are before us [is smaller than the girls’ median]. 

Asked to evaluate the trustworthiness of samples size 60, both students responded by referring to 
the changes they had observed across the simulated samples: While Noa initially referred to 
variations in which of two medians prevailed, it seems that Ido was still focused on the difference 
between the two, reflected in his use of the singular form ‘it’ rather than the more appropriate ‘they’ 
had he been referring to the two medians. Nevertheless, Noa’s final statement showed that she too 
was considering changes to the differences (“slowly slowly closed [the gap] to us”). Noa’s 
depiction describes a range of possible differences between the two medians, a long way from her 
original expectation of one specific result (bigger “by 1”). The range of possible results is a key 
extended feature of the medians model, making it now much more statistical than its initial version. 

Discussion 
Focusing on a specific model that emerged during the pairs’ real world inquiry – the medians model 
– we sought to explore how the pair repurposed its goal and extended its features as they progressed 
in their inquiry and transitioned into the probabilistic follow up inquiry (Figure 2). As Noa and Ido 
designed their Sampler generative model to reflect their initial real world abstract conjecture 
(regarding running results), drawing multiple random samples from it allowed them to gradually 
explore its underlying probabilistic mechanism. Because they chose to repurpose the same visual 
representation (the medians model) rather than create a new one, they were both learning how the 
real world expected data would behave (or vary), and how this behavior would be portrayed in their 

Thematic Working Group 05

Proceedings of CERME11 928



 
 
model (what can happen to the two medians). This indeed required extending some features of the 
original medians model, possibly as its original use (check each median and compare between 
them) was too complicated to track over several samples. The end result of this process was a much 
more elaborate and statistical model – one that serves the dual representative purpose in the real 
world investigation (both data and conjecture), and also is accompanied by a non-deterministic 
expectation regarding the data it can generate. Although the pairs’ choice to repurpose a model they 
had used in their real world inquiry might appear coincidental or idiosyncratic, we have observed 
several other pairs chose to do the same. We attribute this to the IMA design: initiating the learning 
trajectory with a real world inquiry, and its close connection to the probabilistic follow up 
investigation. This case study illustrates how integrating a follow-up inquiry regarding probabilistic 
concerns that emerge from a real world investigation within an informal inferential setting can 
promote an important aspect of young learners’ RISM: experiencing the population as a generative 
model, one from which various samples can be generated, and cultivating the learners’ 
understanding that this variability needs to be examined and accounted for. In particular, 
repurposing the same models throughout both types of inquiry, can support reasoning with its 
underlying probabilistic mechanism. 

We thank the Connections team, the University of Haifa, the I-CORE Program of the Planning and 
Budgeting Committee and the Israel Science Foundation Grant 1716/12. 
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Decision-making is argued to be intrinsically embedded in the historical emergence of probability 
and statistics, as well as in the justification for their inclusion as school mathematics subjects. In this 
article I investigate the role of decision in probability and statistics in both the current and upcoming 
Chilean upper secondary school mathematics curricula. Drawing upon Fairclough’s model for 
Critical Discourse Analysis, I analyse selected texts as examples of broader discourse practices, in 
particular, I focus in assumptions, modalities, and intertextualities. They evidence the role of 
decision-making as legitimation of the subject matter and as a mediator of agency by teachers and 
students. I claim there is a shift towards less appeal to authority in legitimising the curriculum, and 
an increasing responsibility of students in the educational process. 

Keywords: Critical discourse analysis, curriculum, decision-making, probability, statistics. 

Introduction 
As a scientific and mathematical field of knowledge, it can be argued that the history of probability 
and statistics is the history of making decisions when uncertain outcomes are to be evaluated. 
According to Hacking’s (1975) historical and philosophical address, the notion of probability comes 
to answer whether a statement is an opinion or demonstrable knowledge during the middle ages. Later 
on the 17th century, probability, induction and statistical inference come to define the fair share when 
a gamble game is interrupted, whether an accused person is to be condemned, to decide the price of 
annuities and policy regarding pensions, and to take a stand about scientific hypotheses to be true or 
not. So risk and decision-making define the “logic” of probability (Borovcnik, 2015). Risk, as vague 
as this concept may be, is the way we evaluate decisions under uncertainty beyond the possible 
impacts of different choices, but also with some weight given to their likelihood. Probability comes 
to be an attempt to quantify these levels of likelihood. 

As for probability and statistics as teaching-learning subjects, Pfannkuch (2018) has identified 
emerging curricular approaches to be addressed in future research. One proposition is to get “more 
insight into fostering statistical argumentation including learning how to make evidence-based 
claims in data-rich environments and critically evaluating data-based arguments in diverse media 
from a statistical literacy perspective” (p. 407, emphasis in original). This trend is grounded in 
research experiences focused in the complexity and scaffolding of decision-making tasks under 
uncertainty. Researching the ‘critical lens’ of decision processes would require different approaches 
such as action research, phenomenography, and critical discourse analysis (Petocz, Reid, & Gal, 2018, 
p. 81). 

In this article I attempt to join both propositions by investigating the role of decision-making in 
current and upcoming probability and statistics official curricula, through a version of Critical 
Discourse Analysis [CDA]. In order to narrow down and have a sense of what is aim for regarding 
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students’ future participation as citizens; I make an exemplary analysis that focuses in the Chilean 
last two grades of secondary mathematics school curriculum. 

The general research questions addressed in this article are: (1) what is the role given to notions of 
decision-making in the Chilean upper secondary school probability and statistics curriculum? And 
(2) what has changed from the up-to-date version of the curriculum and the upcoming curricular 
framework for the same subject and grades? 

Interpreting roles and spotting changes are broad intentions, so in the following section I address the 
conceptual framework and methods concerning a version of CDA, in order to understand these 
questions in a more precise way. 

Methodology 
Inspired by Fairclough (2010), I am describing the methodology as an altogether analytical strategy, 
since “we cannot so sharply separate theory and method” (p. 234) while constructing the object of 
research. Starting with theoretical generalities, then I provide the necessary conceptual definitions 
that methods for selection and analysis require. 

Fairclough (2010) defines a general methodology for critical research in an interdisciplinary way. In 
that line, the present discourse analysis dialogues with statistics education research. Key interrelated 
concepts are social structures, practices and events: “social structures define what is possible, social 
events constitute what is actual, and the relationship between potential and actual is mediated by 
social practices” (Fairclough, 2003, p. 223). In this frame language is a social structure. Among its 
infinite possibilities, choices are made to produce texts as part of social events, mediated by discursive 
practices, where discourse is understood as semiosis, i.e. the process of meaning-making.  

My analytical strategy consists in selecting texts from the upper secondary school Chilean curriculum 
which refer to decision-making in probability and statistics, and then extracting elements of textual 
analysis which illustrate broader discursive practices. Textual analysis describes what is in the texts, 
and the discursive aspect addresses how these elements give meaning. 

Selection of texts 

Chilean secondary education is defined from grades 7 to 12. These are called 7th-basic and 8th-basic, 
and from 1st-middle (9th-grade) to 4th-middle (12th-grade)1. All of these grades have their own study 
programs, but more general curricular frameworks are available for 7th-basic to 2nd-middle and the 
one for 3rd and 4th-middle is under construction. The text selection takes into account 3rd and 4th-
middle curricula, and the aforementioned upcoming curricular framework, summarized in table 1. 

For current versions of the curriculum, I will only take common plan programs, i.e. those directed to 
every student in the scholar system. Excluded programs are those differentiated mathematics studies 

                                                 
1  Not to be confounded with middle school, as in between primary and secondary school. In Chile, enseñanza media 
(middle education) is the bridge between enseñanza básica (basic education) and educación superior (higher education). 
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defined for scientific education. Therefore, the texts are extracted from grades 3rd-middle and 4th-
middle study programs. 

Document Label Year Curriculum Author 

Mathematics Study Programme, Third 
Middle 

3M15 2015 2009 Curriculum and 
Assessment Unit, 
Chilean Ministry 
of Education 
(MINEDUC) 

Mathematics Study Programme, Fourth 
Middle 

4M15 2015 2009 

Curricular proposal for 3rd and 4th-
middle: Public consultation document 

34M17 2017 2018 

Table 1: Sources of selected texts 

Study programs are divided into units (numbers, algebra, geometry, and data and chance). Within the 
units of data and chance, I look for sentences which make references to ‘decision’ (decisión in 
Spanish), including conjugations of the verb ‘to decide.’ These sentences will compose the texts. 

The same selection applies the upcoming curricular proposal for these last two grades, within the 
mathematics subject. It does not still have the form of study programs, but it can be considered to be 
of the same genre, for it means to become the next version of such. It is a general proposal based on 
a process that involved national experts, international experiences and consultation to civil society 
participants. The document is published in MINEDUC’s website. 

Data analysis 

The analysis is performed at two levels: textual and discursive. 

Among the several possibilities for identifying and categorising elements in the texts, I will focus in 
three: modality, collocation, and intertextuality. Modality expresses a commitment the author does 
with truth and necessity, respectively by epistemic and deontic modalities (Fairclough, 2003, p. 165). 
It can be evidenced –nonexclusively– by the use of modal verbs, such as ‘may’ (epistemic) and ‘must’ 
(deontic). Collocation is the repeated co-occurrence of certain concepts, such as ‘hard working’ 
appears as a common binomial in political speeches. Intertextuality is the more or less explicit 
presence of elements of other texts and their authors’ voices. These elements can be dialogued with, 
assumed, rejected, and so on (pp. 41–42). 

Beyond identification of modality, collocation and intertextuality in texts, I will point out the way 
they are chosen to be expressed as indicators of discursive practices. In particular, I focus in 
legitimation strategies. Legitimation is the discursive practice of justifying what is made factual in 
the texts, through reference to authority, value systems or utility, or conveyed through narrative 
(Fairclough, 2003, p. 98). 

Coming back to the research questions, I define the ‘role’ of decision-making as choices for the use 
of legitimation strategies as discursive practices. Additionally, I shall identify changes from current 
to the upcoming version of the curriculum. Characterising this shift is the final stage of the analysis. 
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Selected texts 
As a way of organisation, Chilean study programs are divided into units. Each unit is described having 
purpose, previous knowledges, key concepts, contents, abilities, attitudes, expected learning 
outcomes (and their respective assessment indicators), didactical orientations, and suggested 
activities for each expected learning outcome. The following are the selected texts, and above them 
are the contexts within the study programs where they are found. All translations from Spanish are 
made by me as literal as possible. 

In the 3rd-middle grade current curriculum (3M15), ‘decision’ appears in the form of ‘decision tree 
representations’, as a follow up for the goal of understanding the concept of conditional probability. 
I will not take it as part of the analysis, since it actually refers to ‘probability tree representations.’ 
Then it forms part of the general didactical orientations for the unit: 

3rd-middle. Unit 4: Data and chance. 

Purpose 

1 Experimental problems are worked with decision tree representations, which enable a bigger 
understanding of contents and a tool for probabilistic calculations. (3M15, p. 120, emphasis 
added) 

Didactical orientations 

2 In this line, it is fundamental that the teacher promotes the development of random thinking, 
i.e. that students learn to make decisions with evidence in situations of uncertainty. (3M15, 
p. 123, emphasis added) 

In the last grade current study program (4M15) there are actually two units about data and chance, 
with no mentions of ‘decision’ in ‘data and chance 2,’ which includes graphic notions about binomial 
and normal distributions. In ‘data and chance 1,’ ‘decision’ is part of the didactical orientations as in 
the 3rd-middle grade. Later on, there is a mention to ‘decision’ as a comment for teachers when 
engaging in activities for the learning goal to critically evaluates information: 

4th-middle. Unit 3: Data and chance 1. 

Didactical orientations 

3 In this unit, it is expected that students critically evaluate information published on the media 
and internet, from the analysis, interpretation and synthesis of such information, with which 
they can obtain results about a population considering its size and the variable’s distribution; 
infer conclusions from the mean, variance and standard deviation; and to make decisions 
grounded in statistically significant information. (4M15, p. 86, emphasis added) 

Suggested activities 

4 Furthermore, it is important that the teacher promotes contextualized learning so students 
develop progressively the statistical literacy, which gives them tools for making grounded 
decisions. (4M15, p. 88, emphasis added) 
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As for the public consult document for the upcoming curricular framework (34M17), decision first 
appears as part of the general purposes of the mathematics subject: 

Mathematics: Formative purposes 

5 In order to achieve the latter, students will work collaboratively in mathematical modelling of 
situations, to make grounded decisions in disciplinary problems, as well as in the 
interdisciplinary, social, environmental or economic scope. (34M17, p. 49, emphasis added) 

And then, utterances about decisions are part of mathematics learning goals in both grades: 

Learning goals for 3rd-middle 

6 [It is expected from students to be capable of] 3. Making decisions in situations of uncertainty, 
with information involving dispersion measures, double entrance tables and conditional 
probabilities. (34M17, p. 52, emphasis added) 

Learning goals for 4th-middle 

7 [It is expected from students to be capable of] 3. Solving problems in contexts of uncertainty, 
through the application of the binomial distribution and calculation of probabilities, for 
decision-making and critical analysis of statistical information. (34M17, p. 52, emphasis 
added) 

Both learning goals have a parallel in the previous texts. In the current study programs (3M15 and 
4M15), topics such as dispersion measures, conditional probabilities and the critical analysis of 
statistical information are covered. 

Textual analysis 
I shall first identify and describe elements of textual analysis found in the excerpts as to provide input 
to the following discussion. I focus in modality, collocation and intertextuality. 

Modality 

Modal forms expressed as ‘it is expected from/that students’ (3, 6 and 7) can be identified as epistemic 
modalities, i.e. as expressions of probability and truth, in this case, the expected and not certain to 
happen. It can be argued that, given the official character of curricula, these are actual expressions of 
the necessary, falling into the category of deontic modalities. 

Explicit deontic modalities are evidenced as ‘it is fundamental that’ (2) and ‘it is important that’ (4), 
and they express necessity for particular promotions of the teachers in order to provoke students’ 
skills for making decisions. 

Collocation 

References to decisions do not appear alone. A habitual co-occurrence of the substantive ‘decision(s)’ 
comes with ‘grounded’ as company; both as an adjective as in ‘grounded decision-making’ (4) and 
‘grounded decisions’ (5), and as an adverbial form as in ‘decisions grounded in…’ (3). A similar 
adverbial accompanying form is ‘decisions with evidence’ (2) and ‘decisions with information’ (6). 
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This collocation suggests a reference to a particular type of decisions or decision-making processes, 
based on quantitative arguments, distinguishable from a mere act of making a choice. 

Intertextuality 

Texts 2 and 4 can be read in parallel as having the same structure: 

In this line, 
it is fundamental that the teacher promotes 
 
the development of random thinking, 
i.e. that students learn to make decisions with 
evidence in situations of uncertainty. (2) 

Furthermore, 
it is important that the teacher promotes 
contextualized learning so students develop 
progressively the statistical literacy, 
which gives them tools for making grounded 
decisions. (4) 

These texts make references to two different concepts, namely ‘random thinking’ (2) and ‘statistical 
literacy’ (4) in a similar way: as notions to be promoted by the teacher, implying students to make 
grounded decisions. So intertextuality is found within selected texts. Moreover, these concepts are 
not defined in the documents, but they are traces of another text published by the Chilean Statistics 
Society as experts’ curricular recommendations (Araneda, del Pino, Estrella, Icaza, & San Martín, 
2011). The term ‘random thinking’ is not found in the literature, rather I presume the texts intend to 
refer to ‘statistical’ (Garfield & Ben-Zvi, 2007) or ‘probabilistic thinking’ (Chernoff & Sriraman, 
2014). Both ‘statistical thinking’ and ‘statistical literacy’ are described as core answers to the section 
‘Why teach statistics?’ (pp. 11–17) referencing a paper published in the International Statistical 
Review (Garfield & Ben-Zvi, 2007). Overall, texts 2 and 4 are referring to authority, introducing 
notions without further explanation, which are developed within national and international 
statisticians associations. 

Discussion: Discursive practices 
Within Faircoulgh’s model, texts are part of social events, and they are signs of broader discursive 
practices. In the following I point out legitimation strategies evidenced by preceding elements of the 
textual analysis. 

Legitimation 

Making decisions appears as a way of justifying the teaching and learning of statistics in the curricula. 
The texts fulfil the purpose of not only saying what and how to teach and learn, but also why and for 
what. Fairclough (2003, p. 219) claims that much of the legitimation of a social order –such as the 
inclusion of particular knowledge in the official curriculum– is textual. In particular, the texts show 
three of the legitimation strategies identified by Van Leeuwen (2007), namely through mythopoesis, 
rationalisation, and authorisation. 

Mythopoesis or legitimation conveyed through narrative is evidence by the collocation of ‘decision’ 
with ‘grounded’ (3, 4 and 5), and similar accompanying adverbial forms such as ‘with evidence’ (2) 
and ‘with information’ (6). This strategy is stable through the texts and makes the case for justifying 
probability and statistics, since not just any kind of decision is included, but only those rooted in data 
and mathematical rationality. It allows a steady association between such school subjects, and rational 
choice. 
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Merely associating probability and statistics to rational decisions is not enough, it is still necessary to 
justify the teaching. Aforementioned deontic modalities are evidence of legitimation through 
rationalisation, which refers to utility. Within the current curriculum (3M15, 4M15) teachers’ 
promotions are ‘fundamental’ (2) and ‘important’ (4) for students to make grounded decisions. The 
upcoming proposal (34M17) provides a similar rationalisation in the form of ‘in order to achieve the 
latter’ and ‘to make grounded decisions’(5), but this time it is mediated by the students’ action, 
namely their collaborative work in mathematical modelling situations (5). In a way, this change 
represents another shift in the agency from teachers to students in the teaching-learning process. 

I have already pointed out that traces of an authorisation strategy are found in texts from the current 
curricula (3M15, 4M15), through the inclusion, without further definition, of ‘random thinking’ and 
‘statistical literacy’. What is worth highlighting is the fact that this strategy is not found in the 
upcoming curricular framework (34M17). This shift resonates with the bottom-up nature of the latter 
document, where civil society plays a bigger role in the justification of curriculum. This alteration is 
coherent with another broader mention to ‘decision’ in the diagnosis chapter of the same document, 
where students “demand protagonism in decision making and aspire to contribute to solve problems 
in the world they live in, such as poverty eradication, climate change and sustainable development.” 
(34M17, p. 13) 

Concluding remarks 
Critical discourse analysis allows us to see texts as part of social structures mediated by discursive 
practices. In this article I analyse Chilean upper secondary school written curricula as evidence of 
legitimation strategies, showing that study programs not only describe what is to be taught, but also 
why. Decision-making appears as a key element of such legitimation, by establishing a narrative of 
probability and statistics linked to grounded, evidence-based and rational choice. 

The analysis illustrates signs of change towards a justification which relies less in professional 
statisticians and educational researchers as authorities, and more into students’ own learning activities 
as decision makers. This shift is part of the wish for a bigger role in decision processes which go 
beyond the disciplinary scope.  

This article addresses a justification problem in mathematics education research (Niss, 1996). Future 
works should address whether it is possible connect decision-based motivations and curricular 
contents, and how this can be approached in teaching practice. Both possibility and implementation 
problems are part of the broader PhD project this article is embedded in. 

 

This work was funded by the doctoral scholarship CONICYT BCH/DOCTORADO 72170530. 
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Recent approaches to statistics education situate the teaching and learning of statistics within 
cycles of statistical inquiry. This research focuses on the first step  – the preparation of prospective 
teachers to pose statistical questions. We report on an investigation of prospective elementary 
teachers in Ireland (n=118) and Germany (n=40) as they design statistical questions. Support was 
provided through tutorials, think-pair activities, peer-feedback and expert-feedback. We describe 
the features of statistical questions posed, identify obstacles and difficulties experienced when 
posing questions and evaluate the effectiveness of both peer and expert feedback.   

Keywords: Statistical inquiry, teacher education, primary teaching, posing statistical questions.  

Introduction 
A data analysis cycle such as the PPDAC (Wild & Pfannkuch, 1999) is a structure implemented in 
statistical inquiries across nearly all age levels. It consists of the phases: problem, plan, data, 
analysis and conclusion. The first phase, posing a problem (i.e., statistical question), is a critical 
prerequisite to stimulate a deep and rich analysis of data. It is also critical as the quality of the 
questions posed informs the types of data collected, determines the representations used and 
influences the interpretations that can be made. Arnold (2013, p. 19) makes an important distinction 
between two fundamental types of questions: investigative questions and survey questions. 
Investigative questions are “the questions to be answered using data” (p. 19), for example ‘What 
patterns are evident in social media use by teenagers?’ In contrast, survey questions are “questions 
which are asked to get the data” (p. 19), for example ‘How much time do you spend on social media 
at the weekend?’ One typical misconception is posing survey questions when being asked to pose 
investigative questions. We concentrate primarily on the generation and development of 
investigative questions (which we refer to as statistical questions). Our primary research questions 
are: What is the quality of initial statistical questions posed by prospective teachers and how does 
the quality develop across several phases (first version of the question, question revised after peer 
feedback, question revised after expert feedback)? 

Literature review 
In the literature review we consider different types and categories of statistical questions. Biehler 
(2001) distinguishes between the number of variables included in statistical questions. An example 
of a one-variable question is: “What is the distribution of the variable height?” An example of a 
two-variable question is: “In which way do boys and girls differ in respect to the variable height?” 
For two-variable questions, Konold, Pollatsek, Well, and Gagnon (1997) distinguish between three 
different types. The first type, those investigating the relationship of two categorical variables (Are 
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boys or girls more likely to play handball?), are termed categorical ⨉ categorical. Those 
investigating the relationship of two numerical variables (Is there a relation between hours spent on 
social media and school grades?) are termed numerical ⨉ numerical. Questions in the numerical ⨉ 
categorical category are referred to as group comparison questions - for example: “Do those with a 
curfew tend to study more hours than those without a curfew?” (Konold et al, 1997, p. 7). 

These categories index descriptive features of statistical questions. A more evaluative approach is 
taken by Frischemeier and Biehler (2018) who have distinguished different qualities and developed 
a rating system for statistical questions. In this rating system, questions that take into account two 
variables are rated higher than those that take into account only one variable. In the subset of one-
variable questions they distinguish questions leading to a yes/no answer (“Do 60% of the pupils 
have a mobile phone?”, p. 759), questions asking for a specific value (“How many pupils have a 
personal computer?”, p. 759) and more general questions referring to the entire distribution (“How 
is the variable “mobile phone” distributed?”, p. 759). In the subset of two-variable questions a 
similar categorization is made. Yes/No questions involving two variables are for example “Is there 
a difference between boys and girls in their time spent on computer use?” (p. 759) and questions 
aimed at working out differences in group comparison situations are for example “In which regard 
does computer use differ between boys and girls?” (p. 759). An example of a more sophisticated 
and complex statistical questions (called open and complex questions) involving two variables is 
“which differences exist between boys and girls in regard to their leisure time activities?”  

Makar and Fielding-Wells (2011, pp. 349-350) provide specific characteristics of questions for 
statistical investigations such as “interesting, challenging, and relevant”, “statistical in nature” and 
“ill-structured and ambiguous” and Arnold (2013, p. 110-111) identified six fundamental criteria for 
what makes a good investigative question: (1) the variable(s) of interest is/are clear and available, 
(2) the population of interest is clear, (3) the intent is clear, (4) the question can be answered with 
the data, (5) the question is one that is worth investigating, that is interesting, that has a purpose, 
and (6) the question allows for analysis to be made of the whole group. For Criterion 1 this means 
that the variables are described in a clear way (with regard to the specific situation: summary, 
comparison, relationship) and have been correctly identified from the actual survey question. 
Criterion 2 focuses on the population of interest and whether learners focus on individuals, a sample 
or the population. Another important Criterion 3 is whether the question is clear with regard to 
whether it is a summary, comparison or relationship question (p. 111). Consideration of whether the 
question can be answered with the given data is tackled in Criterion 4. Criterion 5 deals with 
purpose and whether the information arising from answering the question is useful to someone. 
Finally, Criterion 6 investigates whether the question allows an analysis with regard to a local view 
(single points, single aspects) or a global view on distributions (characteristics like center, spread, 
skewness).  

Empirical studies examining learners´ reasoning when generating statistical questions reveals that 
learners across all ages face problems generating adequate statistical questions (Arnold, 2013; 
Frischemeier & Biehler, 2018; Pfannkuch & Horring, 2004). In their work with secondary schools 
students, Pfannkuch and Horring (2004, p. 208) observed that students frequently forgot to look 
back to the original questions and use it to guide their discussion of the data. Switching focus to the 

Thematic Working Group 05

Proceedings of CERME11 939



 

 

teachers, Pfannkuch and Horring (2004) stated that the “teachers tended to pose narrowly framed 
statistical questions according to a template” (p. 208). Frischemeier and Biehler (2018) investigated 
the development of the quality of statistical questions posed by primary preservice teachers while 
engaged in a PPDAC-cycle while enrolled in a course on statistical thinking. One fundamental 
conclusion of Frischemeier and Biehler (2018) was that the quality of a statistical investigation 
depends on the statistical question that was posed and subsequently stimulates the investigation. 
Thus poor statistical questions requiring only a yes/no answer or including only one variable, lead 
to short and non-sophisticated statistical explorations. Interestingly they concluded that despite the 
provision of feedback (peer and expert) during two stages of the study, the quality of statistical 
questions did not improve in a considerable way. Our study reported in this paper investigates how 
to support prospective primary teachers design statistical questions that motivate a cycle of 
statistical inquiry suitable for upper grade elementary children. 

Methodology 
Irish participants (n=118) were 3rd years in a 4-year undergraduate degree. They were enrolled in a 
12-week compulsory module on the teaching of statistics and probability, the first 8 weeks focused 
on statistics. They were taught in groups of 30-40 students, once a week for 60 minutes (in Autumn 
2017). German participants (n=40) were 1st years in a 3.5-year undergraduate degree. They were 
enrolled in a 14-week compulsory course on the teaching of geometry and statistics (in winter term 
2017/2018), the last three weeks focused on statistics. They met twice a week for a 90-minute 
lecture and a 60 minute seminar. Courses in both settings were designed around the cycle of 
statistical investigation which focused attention on the problem, plan, data, analysis and conclusion 
(PPDAC) components (Wild & Pfannkuch, 1999) and its’ implementation in primary classrooms. A 
core assessment task was the design of a statistical question that would stimulate and drive a cycle 
of statistical investigation targeted for use with upper elementary grade children (ages 10-12). The 
content and sequence of the courses was similar across settings and focused broadly on: designing 
statistical investigations (the PPDAC cycle), types of data, samples and populations, representing 
and analysing data distributions using graphical visualisations, calculating and interpreting summary 
statistics (measures of central tendency and variability), and comparing distributions of data.  

Study Design 

This paper reports on the first part of the investigative cycle: the design of statistical questions. 
Following instruction on the cycle, participants were placed in pairs and informed that they would 
be required to design a statistical question, and an ensuing statistical investigation, which they 
would revise and develop over the course of the semester. The three-phase design consisted of:   

Phase 1 (Think): Participants worked in pairs to design a statistical question (SQV1) that promoted 
comparison of two numerical data sets. Course content aligned with this phase, provided examples 
of strong and weak research questions and explored statistical components relating to question 
design. Phase 1 culminated with the design of the first version of the statistical questions (SQV1).  

Phase 2 (Peer-feedback): Phase 2 provided peer feedback on initial questions. It was envisioned 
that providing and receiving feedback would develop skills in identifying desirable features of 
statistical questions. Each pair received the statistical questions (SQV1) of another pair and used a 
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set of criteria (developed by the authors, Table 1) to guide analysis and feedback. Pairs recorded 
feedback in the form of questions or statements which were then returned to the original pairs. 
Phase 2 culminated with participants presenting a revised statistical question (SQV2).   

Phase 3 (Expert-feedback): The goal of phase three was the construction of the final research 
question (SQV3) based on the provision of ‘expert’ feedback to all participants. Expert feedback 
was provided during a plenum discussion and was generic in nature in that it identified the general 
shortcomings, strengths and desirable features that emerged in the revised questions (SQV2). 
Arising from the plenum, participants revised and improve their statistical questions (SQV3).  

 

Look at the question 
 

Is it meaningful?  
Will the question sustain interest and curiosity of primary children? 
Is the intent clear and unambiguous?  

Think about the variables 
of interest 

Is the variable described clearly? 
Is the variable available/possible to measure?  

Look at the relationship 
between the question and 
the data it will generate 
 

Can the question be answered with a simple “yes/no” response 
[avoid these type of questions]? 
Will the question generate quantitative data (i.e., numbers)? 
Will the question motivate a focus on two data sets?  
Does it promote group comparison of data?  

Look at (or imagine) the 
data 
 

Can you answer your question with the given data? 
Is there sufficient data collected to answer the question? 
Is there sufficient variability in data collected (is there the potential 
for a wide range of possible data values)?  

Table 1: Criteria used to provide feedback on statistical questions  

 
Data & Data Analysis 

The statistical questions at the phases SQV1-SQV3 constituted the data. Hence our analysis focused 
on these questions. We identified characteristics of questions posed, rated these characteristics and 
compared their quality across the three phases. A structuring qualitative content analysis method 
(Mayring, 2015) was used for rating statistical questions. We constructed our categories mainly 
using a deductive approach but also took into account inductive elements from our data as a kind of 
a “mixed approach” (as it is explained in Kuckartz, 2012, p.69). Due to the fundamental theoretical 
work (see especially Arnold, 2013) carried out on the generation of statistical questions (categories, 
criteria, etc.) we firstly and mainly used a deductive approach to use and adapt categories and 
constructs established from existing research studies (Arnold, 2013, Biehler, 2001, Frischemeier & 
Biehler, 2018, Konold et al. 1997).  

The quality of statistical questions was determined using the four question components (Table 1) as 
an analytical frame. A structured rubric consisting of coding rules and key examples was developed 
and it carefully guided the assignment of a precise code to each question component. A 
development process was used to arrive at the components and their sub components (see Column 
1, Table 2); however, its description is beyond the scope of this paper. For illustrative purposes, we 
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will focus only on the development process for the first component “Look at the question” since it 
considers general characteristics of statistical questions like Question_meaningful, Question 
_interest, Question_clear, Question_variables and Pop_interest.  

For instance Question_meaningful considers whether the question is meaningful (connected to a 
context, e.g., “Do female students spend more time doing homework than male students?”) and 
Question_interest examines whether the question is interesting for primary school students from an 
affective point of view (e.g., “Do children with pets spend fewer time with their friends than 
children without pets?”). Both categories are based on Arnold’s Criterion 5 (Arnold 2013, p. 111).  

The category Question_clear is based on the third criterion of Arnold (2013, p. 111) that “from the 
question it needs to be clear if it is a summary, comparison or relationship question”. Thus we 
determined whether each statistical question was posed in a clear and unambiguous way. A counter-
example for a non-clear statistical question found in our data is for example “What is the probability 
that a boy in your class has glasses?” This sample question does not refer to a statistical 
investigation and is neither a summary nor a comparison or relationship question.  

The category Question_variables is based on the categorizations and work of Konold et al. (1997) 
and Biehler (2001). This category checks which kind of variables (categorical, numerical) are 
embedded in the statistical question and whether they are implemented in a single form (question 
with regard to a distribution of a single categorical or numerical variable) or as a combination in the 
statistical question (categorical vs. categorical, numerical vs. categorical, numerical vs. numerical).  

The category Pop_interest is based on Arnold´s (2013) second criterion (p. 111). In this category 
we are interested in the language used in the statistical question and whether the focus is on an 
individual case, on a sample or on a population. As also mentioned in Arnold (2013), the use of “a” 
(e.g., a boy) might indicate an individual focus, the use of “the” (e.g., the boys) might refer to cases 
in the sample and more general the use of “boys” might indicate a focus on a population. 

Results 
Looking at the question: In Phase 1, the majority of questions posed were meaningful and of 
interest to children (Rows 2 & 3, Table 2); however, the clarity of these questions posed a greater 
challenge for Irish participants (see Row 4). Improved clarity was evident across subsequent phases 
indicating the benefit of peer and expert feedback. By the end of the study, the majority of Irish and 
Germans (90%, 85%) posed questions involving two variables. A greater number of two-variable 
questions were posed by Germans in Phase 1 (75%) compared to Irish (44%) (see Row 5, Table 2). 
Furthermore, the large number of two-variable questions posed in Phase 1 by the Irish (44%) 
remained stable in Phase 2 (42%) indicating that peer feedback seemed to have little immediate 
effect. Although there was less room for variation in the German cohort, there was also very little 
change across the phases. Similarly (see Row 6, Table 2), while the population of interest was clear 
in 90% of final research questions for both groups, Germans were more successful in identifying the 
population of interest in Phase 1 (75% versus 58%). The lack of clarity in Irish participants’ initial 
questions may have contributed to the lack of clarity in identifying the population of interest.  
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Variables in the question: Initially there was a lack of clarity in describing variables with less than 
50% being successful in Phase 1 (see Rows 8 & 9, Table 2). For example, examination of the 
question (Pair 11, Germans) reveals the lack of clarity in the variable ‘sporting activity’ in terms of 
what will be measured and the units of measurement. The feedback phases were successful for both 
groups in improving the clarity of variables (see Pair 11 below). German participants still struggled 
for clarity in variable description at the end of the study as compared to their Irish counterparts.  

Are there differences in the sporting activity of boys and girls?   [Pair 11, SQV1] 

Are there differences in the weekly sporting activities in hours of boys and girls?  [Pair 11,  
SQV3] 

Relationship between the data and the question: Exploring the relationship between the posed 
question and the data generated provided insights into how the question opened, or closed, 
opportunities for exploration of data. Compared with other categories, this category was quite stable 
over the three phases (see Row 11, Table 2). For both groups, the number of simple survey 
questions showed a small decrease across the phases. Correspondingly the number of more 
sophisticated questions showed small increases across phases indicating improvement in the quality 
of questions posed across the study. Examples of questions categorised as sophisticated in Phase 3 
are below. 

            By how much do the shoes sizes of boys and girls in Class 5 differ? [Pair 3, SQV3, Irish] 

Based on your examine of the sugar content of the fruit juices and minerals provided here, 
explain which drinks are more suitable for consumption. [Pair 1, SQV3, Irish] 

Looking at the data: There was no requirement for German participants to submit data sets, hence 
we report only on Irish data for 3 of the 4 sub-components (see Rows 13-15, Table 2).  In Phase 3, 
95% were able to answer the question with the given data. Similarly, 95% collected sufficient data 
to answer the question. When the data sets were examined, the majority (92%) had sufficient 
structure or variability in the data (that means that a wide range of possible values are given). Both 
groups demonstrated a steady increase in questions that supported a global view across both phases 
indicating the benefit of both peer and expert feedback (see Row 16 in Table 2).  

 

Component: Look at the question Phase
1 (%) 

Phase 
2 (%) 

Phase
3 (%) 

Question_meaningful Ireland 100 100 100 
Germany 100 100 100 

Question_interest Ireland 97 100 100 
Germany 95 95 95 

Question_clear Ireland 59 71 83 
Germany  75 85 90 

Question_variables Ireland: Non statistical  
Ireland: One variable 
Ireland: Two variables 

5 
51 
44 

5 
43 
52 

0 
10 
90 

Germany: Non statistical  
Germany: One variable 

20 
5 

15 
0 

10 
5 
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Germany: Two variables 75 85 85 
Pop_Interest Ireland  58 70 90 

Germany 75 85 90 
Component: Variables in the question 
Variables_Clear Ireland 41 59 97 

Germany 45 55 65 
Variable_measure Ireland 85 85 97 

Germany 90 90 90 
Component: Relationship between data and question 
Question_type Ireland: survey 

Ireland: reasonable 
Ireland: Sophisticated 

14 
72 
14 

7 
78 
15 

3 
64 
33 

Germany: survey 
Germany: reasonable 
Germany: Sophisticated 

20 
60 
20 

15 
50 
35 

10 
55 
35 

Component: Look at the data 
Answer_question_with_given_data Ireland n/a 95 
Sufficient_Data_collected Ireland n/a 95 
Sufficient_Variability_in_data Ireland n/a 92 
Local_vs_global_view Ireland 53 64 86 

Germany 75 85 95 

Table 2: Categorisation of questions across the three phases 

Discussion 
When provided with appropriate structured support, prospective teachers can develop the skills and 
understandings to develop rich statistical questions. However, developing good statistical questions 
is particularly complex and requires considerable support. Multiple considerations are required. 
Question considerations require attention to the meaningfulness, interest, and clarity of questions in 
addition to the variables and populations elicited by questions. Consideration of the variable 
requires attention to the clarity of the variables described and the measurement of those variables. 
Consideration of the relationship between the question and the type of data generated is also 
required in an effort to ensure the data support subsequent analysis. Finally, the data themselves 
require consideration. Attention must be paid to the ability to answer the question from the amount 
and type of data generated, whether there is sufficient variability in the data and that the question 
supports a global view of the data. It is not surprising that some of these categories posed lesser or 
greater difficulty. While participants showed great expertise in addressing the meaningfulness and 
interest of questions and in identifying the variables available to measure, in contrast, all 
participants struggled initially to provide clarity when describing the variables. While the purpose 
of the study was not to compare the Irish and German participants, it is noticeable that German 
participants performed better across many of the categories in Phase 1. It appears that Irish 
participants invested their energies in the broader contextual dimensions of questions and in 
framing questions resulting in the relative neglect of the necessary statistical and content 
dimensions of the questions posed. The benefits of the peer-feedback process (Phase 2) are not clear 
from this study. On the one hand by comparing performance across Phases 1 and 2, peer review 
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brought about improvements in some aspects of question design. It appears to have supported the 
revision and improvement of some question aspects, most notably in clarifying the question and in 
identifying the population of interest. For other components, peer-feedback did not seem to support 
any substantial gains in question quality particularly when selecting and identifying the number of 
variables embedded in the question and in bringing about improvements in the question type. The 
effect of feedback when generating and developing statistical questions needs further research into 
the future. 
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Investigating teachers’ pedagogical content knowledge for statistical 
reasoning via the real life problem scenario 
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The aim of this case study is to identify the levels of pedagogical content knowledge (PCK) of middle 
school mathematics teachers in relation to statistical reasoning through a real life problem scenario. 
In this paper we focus on nine teachers’ PCK about student thinking and misunderstanding in the 
context of Leukemia problem scenario. The data from the interviews were analyzed qualitatively. The 
results indicate some inadequacies in teachers’ knowledge of student thinking and misunderstandings 
with regard to statistical reasoning. 

Keywords: Statistical reasoning, pedagogical content knowledge, knowledge of student thinking, 
knowledge of student misunderstanding, middle school mathematics teachers 

Introduction 
Statistics is a methodological discipline for dealing with data (Moore & Cobb, 1997). Statistics also 
has an important role in critical and creative thinking in solving real life problems using data. 
Individuals who can use statistical knowledge while solving real life problems can be effective 
citizens. Therefore, using real life problems in teaching statistics is important to prepare individuals 
to cope with the challenges of daily life more easily. Because a lot of difficult statistical calculations 
can be made easily by technology, these skills require knowing how statistical information is to be 
used, analyzed and interpreted, and how to make inferences based on data. Hence it is important that 
individuals develop their statistical reasoning skills in order to be able to cope with the statistical 
information surrounding them in daily life. Statistical reasoning is defined as the way in which people 
reach the correct results from the statistical ideas and make sense of the statistical information 
(Garfield, delMas & Chance, 2003). Individuals' statistical reasoning skills can be improved during 
their school education (Garfield & Ben-Zvi, 2007). Teachers play a key role in developing the 
statistical reasoning skills of students and encouraging them to use these skills. So, teachers need to 
be well equipped to help students develop such skills. However, the earlier studies (Burgess, 2007; 
Callingham & Watson, 2011; Madden, 2008; Sorto, 2004; Watson, Callingham & Donne, 2008; 
Watson, Callingham & Nathan, 2009; Watson & Nathan, 2010) suggest that teachers do not have 
adequate knowledge of statistics and teaching statistics. Hence, teachers’ knowledge about statistical 
reasoning and how they focus on students’ statistical reasoning in teaching statistics become a needed 
area of inquiry. The purpose of this research is to examine the levels of pedagogical content 
knowledge (PCK) of nine middle school mathematics teachers with regard to statistical reasoning 
within the context of a real life problem scenario. 

Theoretical Framework 
PCK is one of the seven categories of knowledge that a teacher should have in order to make subject 
matter knowledge accessible to learners (Shulman, 1987). Literature on PCK identifies the knowledge 
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of student understanding specific to subject matter as one of the sub-dimensions (Ball, Thames, & 
Phelps, 2008; Shulman, 1986). Burgess' (2007) study on teacher knowledge in teaching statistics 
showed that teachers were inadequate in using knowledge dimensions that could enrich learning and 
thus potential learning opportunities were missed. These missed opportunities were related to the 
following themes in relation to teacher knowledge about teaching statistics: familiarity with the data, 
interpreting student thinking, student difficulties related to statistical inquiry cycle, understanding of 
variation, and understanding the development of informal inference.  

Callingham and Watson (2011) pointed out the importance of identifying the PCK of teachers in 
advancing students' statistical understanding. In their study they identified the levels of 42 teachers 
according to their PCK performances as follows: Aware Level, Emerging Level, Competent Level 
and Accomplished Level. Teachers at the aware level had less comprehensive statistical 
understanding and could not make appropriate recommendations to guide student understanding. The 
classroom interventions proposed by the teachers at the emerging level were, in particular, largely in 
the form of general strategies. These suggestions were not exactly in the context of statistics, but they 
pointed to a good teaching. Teachers at the competent level proposed statistically appropriate 
interventions only in the context of class activities they were familiar with. Teachers at the 
accomplished level were able to suggest appropriate or inappropriate student responses and student-
centered intervention strategies combined with appropriate statistical content.  

Watson, Callingham, and Nathan (2009) identified four non-hierarchical components of PCK in a 
study examining teachers’ pedagogical content knowledge in statistics at the middle school level. The 
first two components that are "recognizing big ideas" and "anticipating student responses" reflect the 
link between teachers' content knowledge and knowledge of understanding of student thinking. The 
last two components, "employing content-specific strategies" and "constructing shift to general", 
include pedagogical practices used by teachers foreseeing the development of student perspectives.  

Shulman (1986) and Ball, Thames and Phelps (2008) point to the importance of teacher knowledge 
of student. Also Burgess (2007), Watson, et al. (2009) and Callingham and Watson (2011) suggest 
that teacher knowledge needs to be researched more in depth and systematically in statistics education 
literature. On the other hand, the statistics education literature contains little research on teacher 
knowledge particularly with regard to statistical reasoning. Thus, this study focuses on investigating 
the levels of middle school mathematics teachers’ PCK related to statistical reasoning. 

Method 
The case study method was used in the study. The participants of the study consisted of nine middle 
school mathematics teachers (two female and seven male teachers) from two different schools who 
volunteered to participate in the research. The participants’ years of teaching experience varied 
between 2 and 35 years. As the interview is the most common data source in case studies (Yin, 2012), 
data for this study were collected through one-to-one interviews with participants using audio and 
video recordings. The unit of analysis was teachers' expressions used for each PCK dimension. 
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Data collection and task 

A classroom discussion scenario about the leukemia problem was used during the interviews. The 
leukemia problem was inspired by the AIDS problem in the study of McClain, Cobb, and Gravemeijer 
(2000). As shown in Figure 1 the problem requires a comparison of two data groups with different 
sizes to decide whether the new treatment is more effective than the traditional one in decreasing the 
number of white blood cells within the given context related to leukemia.  

 
Graph 1: After the traditional treatment, the number of white blood cells in a drop of blood for 215 leukemia 
patients (The number of cells on the horizontal axis=one thousand). 

 
Graph 2: After the experimental treatment, the number of white blood cells in a drop of blood for 65 leukemia 
patients (The number of cells on the horizontal axis=one thousand). 

Figure 1: Data given in the Leukemia Problem in the interview protocol  

In order to develop the classroom discussion scenario, the leukemia problem was firstly administered 
to the 6-8th grades students to get a wide range of responses. Then the dialogue in Figure 2 was 
developed using these students’ reasoning. In the interview, teachers were asked to identify which 
students used appropriate and inappropriate reasoning and the difficulty that might prevent the student 
from reasoning in an appropriate way.  

1 Teacher: What can you say about whether the experimental treatment used on 65 leukemia patients is more 
successful than the traditional treatment used in 215 leukemia patients or not? 

2 Didem: I am thinking that traditional treatment is more successful. Because the most people do not want to use 
the newly developed treatment method. 

3 Aylin: I agree with you, Didem. Number of white blood cell of 43 of the patients treated with the experimental 
method is between 7000 and 25000. In a drop of blood of 59 of the patients treated with the traditional method 
there is 7000-25000 white blood cell. Traditional methods have improved more patients. I am thinking that 
traditional method is more successful, too.  

4 Teacher: Ok then, Tuğçe? 
5 Tuğçe: I think we must consider the traditional method of its own and experimental method of its own, too. 59 

of the 215 patients in the conventional treatment and 43 of the 65 patients in the experimental treatment 
improved. But I don’t know how to compare these. 

6 Teacher: What do you think, Kağan? 
7 Kağan: I think that the experimental method is slightly more successful. Because in the experimental method 

there is no patient in the most high cell values. However, in the traditional method most of the high values of 
cells are filled. Only in the number of cells 45 thousand, 51 thousand, 52 thousand, 53 thousand and 55 thousand 
there is no patient. 

8 Teacher: Ok then, is there anybody thinking differently? Sinem? 
9 Sinem: Teacher, I think experimental method is more successful. Because 215 is 3 times 65. If we equalize 

them, in the experimental method 43, in the traditional method approximately 19 people’s white blood cell 
values return to normal. 

10 Hale: Teacher, it is clear from the shape of the graph. The experimental method is more successful. 
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11 Teacher: How did you get that from the shape of the graph, Hale? Can you explain it? 
12 Hale: In the traditional treatment most of the patients stacked on the right side of 25 thousand, in the 

experimental method most of the patients stacked to the left of the 25 thousand. In the experimental method the 
number of cells in most patients fell below 25 thousand. 

Figure 2: The dialogue between students and teacher about the leukemia problem 

Data analysis 

In the data analysis, along with the content analysis, the levels of statistical reasoning were defined 
using the framework and PCK levels used in Callingham and Watson (2011). Codes for PCK 
dimensions were defined by adapting Watson and Nathan's (2010) codes for statistical reasoning. 
These codes defined by the levels and PCK dimensions are shown in Table 1. 

 Student Thinking Student Misunderstanding 

 Codes Explanation Codes Explanation 

In
ad

eq
ua

te
 L

ev
el

 

No identifying No explanation Failure to explain 

student 

misunderstanding 

No explanation 

Wrong classification Classifying inappropriate student 

reasoning as appropriate or 

classifying appropriate student 

reasoning as inappropriate  

Wrong answers Identifying misunderstanding  

incorrectly due to the earlier 

misclassification of  student reasoning  

A
w

ar
e 

L
ev

el
 

Irrelevant identifying Expressions different from the 

answer given by the student 

Irrelevant student 

misunderstanding 

Expressions different from the 

possible misunderstanding of the 

student 

Identifying based on 

personal belief 

Expressions based on such reasons 

as carelessness 

Student 

misunderstandings based 

on personal belief 

Expressions based on such reasons as 

carelessness 

Correct classifying 

based on wrong reasons  

Explanations consisting of 

classification for wrong reasons 

Determining student 

misunderstandings based 

on wrong reasons 

Identifying student misunderstandings 

based on wrong reasons 

E
m

er
gi

ng
 L

ev
el

 

Uncertain identification Statements not consisting of clear 

explanations and repeating the 

student's response 

Uncertain answers Statements not containing clear 

descriptions regarding the source of 

the error/misunderstanding and 

repeating the student's response 

Incomplete reasons Insufficient explanations for  the 

reason 

Incomplete answers Insufficient explanations for the source 

of student error 

Reasons not including 

clear specific details in 

relation to the case 

Statements based on general 

statistical interpretations and lack of 

student knowledge  

Responses not including 

clear specific details in 

the relation to the case 

Statements based on general statistical 

interpretations and lack of student 

knowledge 
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pe

te
nt

 L
ev

el
 

Accurate reasons Accurate classification of student 

reasoning based on correct reasons  

Accurate reason for 

student 

misunderstanding 

Explaining the source of student 

misunderstanding leading to 

inappropriate statistical reasoning 

based on correct reason  

Table 1: Codes for each level and two PCK dimensions: student thinking and misunderstanding 

Findings 
Teachers’ PCK levels with regard to student thinking 

Teachers’ success rate for identifying appropriate and inappropriate student reasoning in the given 
dialogue and the PCK levels based on their explanations regarding student thinking are shown in 
Table 2. In the leukemia problem scenario teachers have identified six examples of student reasoning 
as appropriate or inappropriate. The success rate in Table 2 is calculated by the ratio of the number 
of correct identifications to the number of all student reasoning responses. The purpose of calculating 
this ratio is to be able to determine the adequacy of teachers in distinguishing appropriate and 
inappropriate examples of statistical reasoning. Even though several teachers had the same success 
rate of 67%, as seen in Table 2 the quality of their explanations varied according to the PCK levels 
described in Table 1.   

 Success  
Rate  

Inadequate 
Level 

Aware 
 Level 

Emerging  
Level 

Competent 
Level 

Ebru  67% 2 - - 4 

Suat 67% 2 - 1 3 

Ismail 50% 3 2 - 1 

Güven 83% 1 - - 5 

Eren 17% 5 1 - - 

Semih 67% 2 - - 4 

Seda 67% 2 - - 4 

Orhan 67% 2 - - 4 

Okan 67% 2 - 1 3 

Table 2: Teachers' success rates and the number of responses at each PCK level related to student 
thinking 

While the teachers’ success rates of correctly identifying students' reasoning change between 17-
83%, there are only two participants with a success rate of 50% or less and other success rates are 
close to each other except for the lowest and highest success rates. In addition, the teachers' statements 
for the reasons of classifying student reasoning examples are either inadequate level or competent 
level. This can be related with teachers having more knowledge about some reasoning approaches 
than the others.  

One example of inadequate level was the explanation of Ismail teacher, who considered Aylin’s 
reasoning (Figure 2, statement 3) inappropriate and explained her reasoning as “there is no need for 
the new one [treatment], I think she wants to say that it can be carried like that [traditional]”. This 
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response was considered at the inadequate level because it consisted of details that were not relevant 
to Aylin’s reasoning approach. 

Eren teacher classified Aylin's reasoning approach as inappropriate. He explained his reason as “She 
has taken into account the number of healthy people. I mean, she did not take into account the entire 
treatment period.” The teacher's explanation was evaluated as a response based on incorrect reasons 
and considered at the level of aware. 

Suat teacher who stated that Aylin's reasoning approach was not appropriate, explained his reason as 
"She did not consider the patients who were out-of-range." Suat teacher's description did not include 
details on how to handle the number of patients outside the range. For this reason, his answer was 
dealt with at an emerging level because it did not contain specific details.  

The reasoning of Sinem (Figure 2, statement 9) was classified as appropriate. Because Sinem took 
into account the difference in the sample sizes while comparing two distributions and used 
proportional reasoning. Güven teacher stated that Sinem used a suitable approach because she 
equalized the number of data in the groups using proportions. For this reason, the explanation of 
Güven teacher was evaluated as a correct answer and considered at the competent level. 

Teachers’ PCK levels with regard to student misunderstanding 

Teachers’ success rate for identifying the difficulties causing to inappropriate student reasoning in 
the given dialogue and the PCK levels based on their explanations regarding student 
misunderstanding are displayed in Table 3. 

 Success 
Rate  

Inadequate  
Level 

Aware 
Level 

Emerging 
Level 

Competent 
Level 

Ebru  50% 2 1 - 1 

Suat 50% 2 1 - 1 

Ismail 50% 2 2 - - 

Güven 75% 1 - - 3 

Eren 25% 3 1 - - 

Semih 50% 2 - - 2 

Seda 50% 2 - 1 1 

Orhan 50% 2 - 1 1 

Okan 50% 2 - 1 1 

Table 3: Teachers' success rates and the number of responses at each PCK level related to student 
misunderstanding  

As seen in Table 3, the teachers’ success rates of correctly identifying the difficulties causing to 
inappropriate student reasoning change between 25% and 75% and it is mostly at 50%. Moreover, 
the teachers’ explanations about the sources of the errors are generally at the inadequate level and 
some at the competent level. Two of the teachers could not respond at the competent level. These 
findings point out the inadequacy in teacher knowledge about student misunderstanding. 
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Ismail teacher considered Kağan’s inappropriate statistical reasoning (Figure 2, statement 7) as 
appropriate: “Kağan used appropriate reasoning because he took both data groups into account and 
compared the data”. Therefore, the explanation of Ismail teacher was evaluated as a wrong answer 
and considered at the inadequate level. 

Ebru teacher explained Aylin’s misunderstanding as “Rather than evaluating the information at hand, 
she made a decision according to her own ideas or her thoughts based on observations around her.” 
While Ebru teacher considered Aylin's reasoning as her personal opinions, she did not notice that 
Aylin failed to take into account the number of data points in each group and did not mention the lack 
of proportional reasoning. Therefore, the explanation of Ebru teacher was evaluated as an irrelevant 
answer and considered at the aware level. 

Orhan teacher made a statement about the misunderstanding behind Aylin’s inappropriate reasoning: 
“I think the difficulty is that she cannot understand the text and the question exactly.” His explanation 
indicating that “she does not understand the question” was evaluated at the aware level because it 
was mainly an expression that showing an evaluation based on a personal belief.  

Seda teacher explained Aylin’s error as “Inability to fully understand the logic. For example, when 
there are two data [groups] to compare, she cannot specify the method of comparison.” Since her 
explanation did not specify the point about how to determine the method of comparison, her statement 
was evaluated as an uncertain response and considered at the emerging level.  

Güven teacher stated that Tuğçe's reasoning (Figure 2, statement 5) was in an inappropriate form and 
explained her misunderstanding as “she cannot see the ratio between the values and cannot 
calculate”. Güven teacher's explanation was considered at the competent level because he based the 
source of the error on the right reasons. 

Discussion and conclusion 
The results of this research show that participating middle school mathematics teachers tend to have 
difficulties in recognizing the appropriateness of student reasoning. We did not see any pattern in 
teachers’ success rate of identifying which students used appropriate and inappropriate reasoning 
with regard to their years of teaching experience in this study. This could be due to the small number 
of participants volunteered for this study. Moreover, teachers PCK levels with regard to student 
thinking and misunderstanding are either insufficient or competent. These findings suggest that while 
teachers are better in recognizing some students' reasoning approaches, they have no knowledge about 
some others. Therefore, teachers need to develop a spectrum of student thinking knowledge about 
statistical reasoning. Inadequacies in teachers’ knowledge of student are similar to the findings of 
earlier research (Callingham & Watson, 2011; Watson & Nathan, 2010; Watson, et al., 2008). As 
Shulman (1986; 1987) and Ball, Thames, and Phelps (2008) point out, student knowledge is one of 
the important dimensions of the PCK. According to Burgess (2007), such inadequate knowledge can 
lead to the missed opportunities for developing student learning. However, we were not able to 
analyze this since the teachers were not observed in the actual classroom for a long period of time. 
For future research, both interviews with teachers and lengthy classroom observations can be 
conducted to gain deeper understanding of teachers’ PCK in relation to student thinking and 
misunderstanding. 
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It’s a good score! Just looks low: Using data-driven argumentation to 
engage students in reasoning about and modelling variability 
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This paper describes senior high school students’ different ways of reasoning about and modelling 
variability, drawn from the initial phase of an ongoing study. A group of 26 Thai Grade 12 students 
was engaged in a statistical investigation by addressing a socially open-ended problem based on an 
unsorted set of varying test scores. Through engagement with this problem, students were able to 
experience data-driven argumentation and data modelling. From analyzing the answers provided by 
participants, four different categories of reasoning about variability (i.e., value-relation, 
magnitude-comparative, proportional, and distributional reasoning) and 11 ways of modelling 
variability in the context of the given situation were identified. The study also revealed that 
participants are somehow good proportional reasoners in general, but weak distributional ones. 

Keywords: Argumentation, socially open-ended problems, reasoning about variability, variability 
modelling, statistical investigations. 

Introduction 
Good citizenship requires being statistically literate. Statistical literacy includes making sense of 
real-world data, the use of evidence-based arguments and critically evaluating data-based claims 
(Garfield & Ben-Zvi, 2008). Being critical is essential as claims and arguments are usually presenting 
selective information to convince another person to adopt or reject a specific point of view (Gal, 
2004). On this regard, it has been reported in the literature that data-driven argumentation—which 
requires using, revising, manipulating, structuring and representing data to explain or persuade 
others—is very important for data modelling and informal inference (Garfield & Ben-Zvi, 2008; 
Shaughnessy, Ciancetta, & Canada, 2004). 

Such importance has been acknowledged by recent reforms to the mathematics curriculum in many 
countries, Thailand being an example. In fact, according to the current Thai Basic Education Core 
Curriculum (MOE, 2008), Grade 12 graduates must be able, among other things, to analyze data and 
apply the results to express views and persuasive arguments using accurate and appropriate language. 
However, teacher’s guides do not include specific instructional suggestions on this matter. 

Under this scenario, socially open-ended problems (Shimada & Baba, 2015) emerge as an appealing 
and plausible way of providing students with the possibility of using, handling and interpreting data 
to inform argumentation and decision-making. This kind of problem has been reported as an 
instructional way to challenge students to structure variability among repeated observations of the 
same event, to model variability, and to engage in data-driven argumentation (González & Chitmun, 
2017). The purpose of the present paper is to answer the following research question: what are the 
ways, if any, by which Thai senior high school students reason about and model variability, when 
they are asked to provide persuasive explanations and arguments based on data analysis, in the 
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context of a socially open-ended problem? A lesson implementation of a socially open-ended 
problem will be discussed and analyzed, and some conclusions will be given based on its results. 

Practicing data-driven argumentation as advocacy 
Argumentation refers to discourse for persuasion, logical proof, and evidence-based belief, and more 
generally, discussion, in which there is reasoning on data, doubt about a standpoint or a disagreement 
with it, and frequently a question about whether, or at least why, a standpoint is worthy of acceptance 
(Blair, 2003; Garfield & Ben-Zvi, 2008). Argumentation can take two forms: inquiry and advocacy 
(Toulmin, Rieke, & Janik, 1984, as cited in Watson, 2018). The practice of argumentation as inquiry 
presupposes the act or process of deriving conclusions from data, whereas the practice of 
argumentation as advocacy presupposes the questioning of a standpoint, objections to a person’s 
arguments, and arguments against the standpoint a person is supporting (Blair, 2003). Involvement 
with statistics in daily life is often about judging claims and arguments of others who practice 
statistics to some degree or another (Gal, 2004; Watson, 2018). Therefore, arguing against claims 
made by others (e.g., “your mathematics test score was awful!”) is likely to require data-driven 
argumentation associated with advocacy. This involves the ability to advocate against the claim at 
hand with some evidence grounded in data, in order to make an alternate claim (Watson, 2018). 

Statistical investigations and data-driven argumentation 
A statistical investigation is a process comprised of the following five phases: Problem, Plan, Data, 
Analysis, and Conclusion (PPDAC), regarded as one of the four central dimensions of statistical 
thinking used in statistical inquiry of real-life problems (Makar & Fielding-Wells, 2011). By 
engaging in statistical investigations, students are able to fully experience statistical processes such as 
acknowledging, modelling of and reasoning about variability, data representation, data reduction, 
data-driven argumentation, decision-making, and informal inference (Watson, 2018). 

In order to appropriately conduct statistical investigations in the mathematics classroom, teachers and 
students need to use problems worthy of investigation, which involve statistical questions, a real-life 
context, and the following traits: (1) interesting, challenging, and relevant; (2) statistical in nature; 
and (3) ill-structured and ambiguous (Makar & Fielding-Wells, 2011). Addressing questions with 
these characteristics demands critical thinking skills and the practice of argumentation as advocacy, 
because questions developed for statistical investigations usually challenge and question, 
ambiguously or without proper statistical foundation, the standpoint a person is supporting (Blair, 
2003; Gal, 2004; Watson, 2018). Thus, undergoing a statistical investigation requires the ability to 
challenge statements made in the given context and advocate, with evidence, for an alternate claim 
(Watson, 2018); in other words, requires the practice of data-driven argumentation as advocacy. 

Socially open-ended problems as a trigger for data-driven argumentation 
Socially open-ended problems (Shimada & Baba, 2015) are problems embedded in a real-life context, 
familiar to the students and, by extending the traditional open-ended approach (Becker & Shimada, 
1997), have been developed to elicit and address students’ mathematical values (e.g., visual appeal, 
parsimony, abstraction, systematic reasoning), social values (e.g., compliance with the law, fairness, 
compassion, equity), and personal values (e.g., persistence, integrity, friendliness) through modelling 
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and argumentation. So, from the past section, it is possible to identify clear similarities between 
socially open-ended problems and the problems developed for statistical investigations.  

In order to ensure triggering data-driven argumentation through the use of socially open-ended 
problems, the real-life context in which the problem is embedded must be statistical in nature (i.e., 
must enable students to collect, represent, reduce and/or interpret data to address a statistical question 
and reach reasonable conclusions under uncertainty; González & Chitmun, 2017). Thus, arguments 
from addressing the posed problem will have the four building blocks to make a good argument (Blair, 
2003; Garfield & Ben-Zvi, 2008, p. 275): (1) A clear claim (and a counterclaim) we are making 
and/or anticipating; (2) data to support our argument; (3) evidence that the data are accurate and 
reliable, and (4) a good line of reasoning connecting the data to our argument. 

The purpose of this study was not only to engage students in data-driven argumentation, but also to 
challenge them to reason about and model variability. To that end, the problem should provide 
students with opportunities to display, structure and model variability among observations of the 
same event, to make accessible and meaningful to students characteristics of distribution (e.g., center, 
shape and spread; Lehrer & Schauble, 2004; Mulligan & English, 2014; Petrosino et al., 2003).  

Research methodology overview 
Participants 

On August 31, 2018, data were collected from a Grade 12 mathematics class (17- to 18-year-old 
youths) in a large public high school in Bangkok. The second author was the classroom teacher. A 
total of 26 students (boys=3, girls=23) were administered the task shown in Figure 1. 

Protocol and data gathering procedure 

The task chosen for this study was an adaptation of the “Let’s think of an excuse for the test score” 
problem (Tamaoki, 2014, p. 120, see Figure 1). This task, a socially open-ended problem, requires 
from students to put in practice data-driven argumentation as advocacy, because they have to consider 
the variability in the given empirical distribution of scores and then generate additional arguments to 
explain Malee’s mother why her test score is not necessary such a bad result in the given context. 

 
Figure 1: Task used in this study (adapted from Tamaoki, 2014) 

This task was collected from a Japanese junior high school teacher during a previous study conducted 
by the authors (González & Chitmun, 2015). In order that Thai students were able to respond to this 
task without being distracted by names or contexts unusual or non-existent for them, two changes 

LET’S THINK OF AN EXCUSE FOR THE TEST SCORE 
The numbers below are the results achieved by a certain class on a mathematics test (100 points 
maximum), sorted by student number in the class attendance sheet. Malee is the only one who got 
33 points. Only by what this score tells, she will be scolded by her mother. What could Malee 
possibly say to avoid a scolding for her mathematics test score? 

25 28 45 44 41 28 58 88 100 21 28
16 50 50 45 33 21 22 24 25 26 28
30 45 28 23 25 22 77 100 26 58 26
14 12 69 28 18 53 100
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regarding the general cultural context were made when translating it into Thai: a Thai name for the 
student and “her mother” (as opposed to “her family” in the original task) were chosen for this version. 
The adapted task was then printed on single paper sheets and distributed among the students, who 
individually engaged in solving it after being instructed by the teacher. Fifty minutes were given to 
complete the task. Students were not assisted in any way that could influence their responses. 

Analysis of the collected data 

Both authors used open coding and descriptive coding to analyze the information provided by the 
students, and to group similarly-structured answers into categories for analysis. After consensus 
between the authors, this process led to four categories on students’ reasoning about variability in the 
given task. Also, students’ ways of modeling variability were categorized. The authors also agreed on 
the placement of all the 26 responses into the categories previously created. 

Empirical findings and discussion 
Participants’ types of reasoning about variability 

Students’ reasoning about variability fell into four coding categories: value-relation, magnitude- 
comparative, proportional, or distributional reasoning. Table 1 shows the percentages of students 
under each of these categories. Students were allowed to provide more than one argument to present 
Malee’s low test score as not such a bad result, resulting in a total percentage of more than 100%.  

Category of reasoning Description % 
Value-relation Arguments using only comparative or ordinal phrases to indicate 

the difference between Malee’s score and particular data values 
within the data set.  

46.2 

Magnitude-comparative Arguments using both comparative phrases (e.g., “greater than”, 
“less than”, “more”, “less”) and quantified expressions (e.g., “7 
points”) to indicate the difference between Malee’s score and 
particular data values within the data set. 

7.7 

Proportional Arguments using, implicitly or explicitly, the ratio, the actual 
percentage or the proportion of elements having a particular 
characteristic within the distribution of outcomes. 

100 

Distributional Arguments combining two or more key features of the 
distribution of outcomes (e.g., centers, shape, skewness, density, 
outliers, and spread/variability). 

15.4 

Table 1: Percentage of students using each coding category in this study 

Students whose responses included arguments using only comparative (e.g., “greater than”, “less 
than”, “more”, “less”) or ordinal (e.g., “third”, “fourth from”) phrases to indicate the difference or 
position between Malee’s score and either some center (i.e., the mean or mode) or a particular data 
value serving as reference point (e.g., 100 points), fell into the value-relation reasoning category. A 
total of 12 students (46.2%) fell into this category. The next quotes illustrate this category. 

Student 20: The mode was 28 points. Malee’s test score is higher than the mode. 

Student 26: I got 33 points, which is the 6th best score among all the students who failed the test. 
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Students whose responses included arguments using both comparative phrases (e.g., “greater than”, 
“less than”, “more”, “less”) and quantified expressions (e.g., “7 points”) to indicate the difference 
between Malee’s score and either some measure of center (i.e., the mean or mode) or a particular data 
value serving as reference point (e.g., 50 points), fell into the magnitude-comparative reasoning 
category. Only 2 (7.7%) out of 26 students fell into this category. Examples of this category follow: 

Student 14: Malee got 33 points, which is lower than the passing criterion by 17 points. 

Student 15: Tell her mother that Malee’s score is lower than the mean only by 7 points. 

Students whose responses included arguments using, implicitly or explicitly, the ratio, the actual 
percentage or the proportion of elements having a particular characteristic within the distribution of 
outcomes (e.g., the percentage of students who passed and/or failed the test), fell into the 
proportional reasoning category. All 26 students (100%) gave answers falling into this category. The 
following two sub-categories were identified under this category: implicit proportional reasoning 
(i.e., responses including arguments suggesting an implicit consideration of sample proportions, 
population proportions, or percentages); and explicit proportional reasoning (i.e., responses 
including arguments explicitly mentioning the ratio, the actual percentage or the proportion of 
elements having a particular characteristic within the distribution of outcomes).  

In this study, a total of 11 students (42.3%) were categorized as implicit proportional reasoners. The 
next quote illustrates the category “Implicit proportional reasoning.” 

Student 1: Tell mom that Malee’s score is more than the median, and there were only 16 
students who got more than 33 points and 23 students who got less than 33 points. 
Therefore, her score is somehow satisfying under these criteria. 

In this study, a total of 15 students (57.7%) were categorized as explicit proportional reasoners. The 
next quote illustrates the category “Explicit proportional reasoning.” 

Student 3: From the box-plot diagram, it was found that Malee’s score (33 points) is higher 
than … the scores of 50% of the total students but not reach the score of the 75%. 

Students’ responses coded as distributional reasoning included arguments integrating two or more 
key features of the distribution of scores, such as centers (e.g., mean, modes, proportions), shape (e.g., 
skewness), spread (e.g., range, standard deviation) and outliers. A total of 4 students (15.4%) fell into 
this category. The next quotes illustrate the category “Distributional reasoning.” 

Student 6: From interpreting the standard deviation, Malee’s score lies to the left of the mean, 
where most of students’ scores are. However, Malee’s score is in the range between 
Q2 and Q3, which is higher than 50% of students who got similar scores. 

Student 12: Most of the students’ scores skew to the left of the median. 

Participants’ ways of modelling variability 

Eleven ways of modelling variability by the students were identified (see Table 2). Students were 
allowed to represent the data in more than one way, resulting in a total percentage of more than 100%. 
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Model code Type of model Model description Frequency (%) 
M1 Visual Sorted data array 13 (50) 
M2 Visual Stem-and-leaf plot 7 (26.9) 
M3 Visual Boxplot* 7 (26.9) 
M4 Visual Pie chart 1 (3.8) 
M5 Visual Bar graph 1 (3.8) 
M6 Visual Visually estimated skewness 2 (7.7) 
M7 Mathematical Mean 4 (15.4) 
M8 Mathematical Median 8 (30.8) 
M9 Mathematical Mode 8 (30.8) 
M10 Mathematical Standard deviation  2 (7.7) 
M11 Mathematical Frequency distribution  13 (50) 

Note. * Students who drew boxplots calculated the three quartiles of the distribution of scores. 
Quartiles are also mathematical models. 

Table 2: Summary of the different types of models developed by the participants in this study 

 
Figure 2: Examples of different types of models developed by the participants in this study 
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On average, two to three models were provided per student, being the mode 2 models (9 students, 
34.6%), and the number of models developed by participants ranged from 1 to 5. As can be seen in 
Table 2, sorted data arrays (13 students, 50%) and frequency distributions (13 students, 50%) were 
the models most used by students when answering the given task. In relation to students’ reasoning 
about variability in this task, it is worth noting that only 1 student out of the 14 who provided 
evidence of either value-relation reasoning or magnitude-comparative reasoning drew and used a 
boxplot to support her argument. This comes as no surprise, given that value-relation reasoning and 
magnitude-comparative reasoning focus on attending to individual or groups of cases, rather than 
aggregate features of data sets as a whole (Watson, 2018). On the contrary, 6 out of 7 of the students 
who drew a boxplot in this task gave reasons explicitly using proportions (i.e., explicit proportional or 
distributional reasons). Moreover, all the participants engaged in some total ordering of all sample 
elements, either via a sorted data array, a frequency distribution, or a stem-and-leaf plot. 

Some of the models developed by participants in this study are shown in Figure 2. Some 
misunderstandings in the construction and use of certain models were identified during the data 
analysis (e.g., the bar graph in Figure 2). This issue will be addressed in a future publication. 

Conclusions 
It can be concluded that participants relied more on value-relation or magnitude-comparative reasons 
in their arguments, in comparison to distributional ones. However, all participants used, implicitly or 
explicitly, proportional reasoning, which was evident from the use of proportions or relative 
frequencies in all their responses. This fact suggests that participants are somehow good proportional 
reasoners in general, but still weak distributional ones. The source of this difficulty could be rooted on 
the fact that, in Thailand, students learn about stem-and-leaf plots, boxplots and quartiles in Grade 12 
(participants’ current grade), and they may need more time and/or experience to master those ideas.  

It can be also concluded that asking students to provide persuasive arguments based on data, in the 
context of a socially open-ended problem, will give them opportunities to, among other things, (1) 
make meaningful use of distribution features such as center, proportions and spread; (2) structure 
variation and coordinate variability and chance by engaging actively in modeling challenges; (3) 
develop an aggregate view of data; (4) engage in data-driven argumentation by enacting the practice 
of argumentation as advocacy; (5) actively engage in the decision-making process, in order to choose 
and generate models able to concisely describe a body of data and capture the essential characteristics 
of a real-life phenomenon; and (6) develop students’ awareness of variability.  

Finally, we can conclude that socially open-ended problems with the characteristics described here 
seem to be a way to help teachers achieve the aims of the mathematics curriculum about statistics 
education. Moreover, the results reported here provide teachers and researchers with insight into 
students’ ways of reasoning about and modeling variability, which can be used to improve teaching 
practice, design better curriculum materials, and uncover misconceptions about statistical ideas. 
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The development of students’ ability to reason about data and to use data effective and critically for 
prediction and decision-making is a priority in statistics education (Franklin et al., 2007), allowing 
to prepare 21st century students to succeed in today’s society (Watson & Fitzallen, 2010). Statistical 
reasoning has a clear dependence on adequate data representation to support decision-making and 
argumentation, a process that has proved to be problematic for the students (Chick, 2004). A 
successful data analysis depends on students’ knowledge on what types of representation are useful 
and on a set of transnumeration actions that facilitate to transform data in ways that lead to such 
representations or to alter them, making the representations convincing in terms of the evidence 
they provide from data claims (Chick, 2004; Wild & Pfannkuch, 1999). Such actions, as proposed 
by Chick (2004), are: Sorting; Grouping; Calculation of frequency, proportion or statistical 
measures; and Graphing. A pedagogical possibility to foster students’ ability to use the 
representations fluently and effectively is the use of learning scenarios (Clark, 2009) that promote 
the integration of science and mathematics with technology. STEM (Science, Technology, 
Engineering and Mathematics) integration is widely recognized as an important foundation for 
statistical reasoning, given its potential to deepen students’ understanding of the purpose and utility 
of data in making meaning of the real-world, an aspect suggested in curriculum documents but that 
has been neglected in statistics education (Fitzallen et al., 2018). Therefore, it is essential to engage 
prospective teachers (PTs) in activities that provide opportunities to improve their confidence and 
effectiveness on developing STEM integration activities, in school (Ní Ríordáin, Johnston, & 
Walshe, 2016). However, research is still needed to document in detail how PTs plan and 
implement learning scenarios in context of STEM to teach statistics topics and how students benefit 
from this experience (Huey et al., 2018).  

This study is based on a teacher education experience involving 10 PTs of Physics and Chemistry 
and of Mathematics. The PTs, organized in mixed small groups and in collaboration with the 
teacher educators (the authors), developed an interdisciplinary learning scenario that includes a 
sequence of three lessons for the 8th grade, around an inquiry task that integrates Statistics and 
Physics and requires decision making and argumentation based on data. In this poster, we focus on 
students’ activity regarding Statistics, in this context, aiming to analyse their transnumeration 
actions when using the software TinkerPlotsTM (Konold & Miller, 2005), for data handling, in the 
exploration of the inquiry task. 

The study follows a qualitative and interpretative methodology. Data collection methods include the 
students’ written work on the inquiry task, the records of their work in TinkerPlots and the video 
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records of the learning scenario lessons. The results show that students made appropriate choices of 
graphical representations and intentionally used transnumeration actions, taking advantage of the 
potential of the TinkerPlots to support the interpretation of data and to obtain evidence for their 
statements. The work carried out around the representations allowed to guide the students to 
understand how to organize the data and analyze them in order to answer the questions or draw 
conclusions. These results evidence the benefits of the learning scenario to foster students’ ability to 
reason about data. Nevertheless, it seems that students still need more opportunities to learn how to 
articulate different representations, either static or dynamically, an issue that demands greater 
attention from the PTs in the planning and enactment of the learning scenario. 

Study supported by national funds through FCT, Project “Technology Enhanced Learning at Future 
Teacher Education Lab” (PTDC/MHC-CED/0588/2014). 
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The importance of probability increased in German teacher education in the last decades. However, 
research about the professional knowledge of (prospective) teachers focused on other content such 
as number theory and functions rather than probability. The project “The development of 
professional knowledge of prospective teachers in probability” aims at developing a test in order to 
measure teacher knowledge in probability. In order to measure content knowledge and pedagogical 
knowledge in this domain, one has to identify categories, concepts and ideas and connections 
between. This paper shows the development of a domain map, which indicates categories, concepts 
and ideas. The theoretical framework, the procedure of developing and an outlook is given. 

Keywords: Mathematics education, mathematics teachers, teacher competencies, teacher 
competency test, probability.  

Introduction 
In the state North Rhine-Westphalia in Germany, stochastics was not obligatory for the general 
qualification for university entrance until recently. Teachers could decide to exclude topics for the 
finals. Now stochastics is mandatory. The focus of studies about professional teacher knowledge was 
not on probability, which is part of stochastics. The main aim of this project is to develop a test to 
measure the development of content knowledge and pedagogical content knowledge of prospective 
teachers in probability. While developing items, one has to identify necessary categories in 
probability to develop items to measure content knowledge in that area. This paper identifies 
structures and categories by developing a domain map, which shows the content of probability. Those 
maps, which Hill and Bell developed for their study as well (2007), help distinguish categories in 
probability and draw important connections between categories in order to develop items. In order to 
develop this domain map, educational standards and curriculums were analyzed and an expert study 
was conducted. 

The paper is organized as follows. In the first chapter, the theoretical frame will be presented. 
Afterwards, the two steps of the domain map development will be demonstrated. In the outlook, the 
domain map is integrated into the test design and the timetable of the test is presented. 

Theoretical Framework 
Models of Teacher Knowledge and Competencies 

In this chapter, models of teacher knowledge and teacher competency tests are introduced. Shulman’s 
categories of teacher knowledge, the studies COACTIV and TEDS-M are presented to determine the 
theoretical framework of this paper.  

Initially, Lee S. Shulman (1986a, 1986b; 1987) developed categories of teacher knowledge: content 
knowledge, general pedagogical knowledge, curriculum knowledge, pedagogical content knowledge, 
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knowledge of learners and their characteristics, knowledge of educational context and knowledge of 
educational ends. Several other researchers adopted Shulman’s model and adapted it (e.g. Bromme, 
1992, Hill et al., 2008 and Schumacher, 2017). 

In the study COACTIV, conducted in 2003/2004 by Stefan Krauss et al. (2008), which is about 
professional competence of teachers, cognitively activating instruction and development of students’ 
mathematical literacy, Shulman’s category “content knowledge” was specified. Krauss et al. (2008, 
p. 876) declared content knowledge as “a teacher’s understanding of structure” and pointed out 
possible notions of “content knowledge”, while using (3): 

1. The everyday mathematical knowledge that all adults should have. 
2. The school-level mathematical knowledge that good students have. 
3. Mathematical knowledge as a deep understanding of the contents of secondary school 

mathematics curriculum. 
4. The university-level mathematical knowledge that does not overlap with the content of the 

school curriculum (e.g., Galois theory or functional analysis). 

Another study is the first cross-national large-scale study, conducted by Sigrid Blömeke, Gabriele 
Kaise and Ralf Lehmann. The Teacher Education and Development Study in Mathematics (TEDS-
M) had the main aim “to understand how national policies and institutional practices influence the 
outcomes of mathematics teacher education” (Döhrmann, Kaiser, & Blömeke, 2012, p. 325). The 
definition of teacher knowledge was also based on Shuman’s definition. Pedagogical content 
knowledge was differentiated into (1) curricular knowledge and knowledge of planning for 
mathematics teaching and learning and (2) knowledge about enacting mathematics for teaching and 
learning. Content knowledge was differentiated into three cognitive elements, namely, knowing, 
applying and reasoning and was tested in four content domains, which were number theory, geometry, 
algebra and data (Döhrmann, Kaiser, & Blömeke, 2010).  

Probability as a content domain was underrepresented in both COACTIV and TEDS-M, but the 
distinction of content knowledge of COACTIV and the definition of pedagogical content knowledge 
of TEDS-M is based on this project’s definitions. However the definitions of content knowledge of 
COACTIV and pedagogical content knowledge of TEDS-M will be used as a working definition. 

Domain map in probability for teacher education  
While content domains like “number “was differentiated in eight categories at TEDS-M, data had 
only three categories, which included data organization and representation, data reading and 
interpretation and chance (Döhrmann et al., 2010). Only chance can be allocated to probability. In 
order to grasp possible developments in professional knowledge in this mathematical field, one has 
to distinguish it into more categories. 

Methodology 

The research question is which categories of (future) teacher knowledge the research area of 
probability can be distinguished. In order to answer this question a domain map was developed. 
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This distinction can be divided in two steps. First, one can raise the question what students in 
secondary level should learn, therefore what teachers also have to know. This can be assigned to the 
second notion of specification of content knowledge, which is the school-level mathematical 
knowledge that good students have. For carving out details, what students should learn, one will 
analyze educational standards and curriculums. For this paper, the German educational standards and 
the curriculum of the state NRW were being taken in to consideration. The statements being made to 
probability was first collected, analyzed and linked, so a first draft of a domain map can be presented. 

The second step is to determine content knowledge in probability on the third notion, which is 
mathematical knowledge as a deep understanding of the contents of secondary school mathematics 
curriculum. On this notion, student knowledge is not adequate. In this step, content requirements for 
teacher education get augmented in the same way as in step 1. 

After that, an expert study in a small frame was conducted. Mathematicians and Mathematics 
educators were being questioned about possible missing or redundant categories. In this study were 
three Mathematicians and ten Mathematics educators. 

Step 1: Analysis of the German educational standards and curriculum of the state NRW in 
probability  

The German educational standard in probability for students in secondary level was resolved by the 
Permanent Conference of the Ministers of Education and Cultural Affairs of the States in the Federal 
Republic of Germany. The key content “data and chance” states the following about probability 
(KMK, 2003, p. 12): 

Students 

· reflect and evaluate arguments, which are based on a data analysis 

· describe appearance of randomness in everyday situations 

· calculate probability at random experiments 

While the first indent is still clearly located in statistics, it does have some relevance to probability. 
The second indent establishes the concept of randomness […] teachers should know about. In the 
third one, random experiments and probability are not further specified. 

In the following, one curriculum, namely the one from North Rhine-Westphalia, will be analyzed to 
find out about notion 2 of probability. This analysis is one example for analyzing other curriculums 
to get a good idea of requirements for teachers in probability. 

In the curriculum of the state NRW, the Ministry of Education and Training (2014, p. 16) stated more 
specified information about what students should know at the end of the secondary level:  

· They [the students] calculate relative frequencies, mean values (arithmetic mean, median) and 
measures of variation (range, quartile) and interpret those. 

· They [the students] calculate probabilities by using the Laplacian rules, tree diagrams and their 
rules, use frequencies to estimate probabilities and probabilities to predict frequencies. 
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Those two indents give a first idea of structuring the domain “probability” by differentiating it into 
the categories frequencies (relative and absolute), (Laplace) probabilities, graphic representation (tree 
diagram), as to be seen in Figure 1.  

 
Figure 1: Domain map after step 1 

Stochastics can be distinguished in to Statistics and Probability. Probability has the category 
“Frequencies”, which contains relative frequency and absolute frequency, the category 
“Probabilities”, which contains Laplace experiment and Laplacian probability and the category 
“Graphic Representations”, which includes tree diagrams. 

After completing step 1, one can use Figure 1 and differentiate the categories further and adapt it to 
achieve a domain map for notion (3). 
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Figure 2: Domain map after step 2 
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Step 2: Obtaining a domain map for teacher knowledge as the deep understanding of the 
contents in probability 

In order to obtain a domain map for a teacher knowledge as deep understanding of the contents in 
probability, one augments Figure 1 by analyzing the content requirements for teacher education 
(KMK, 2008). After that, Mathematicians and Mathematics Educators from the Mathematics 
department at Bielefeld University were invited to critically analyze the categories. Finally, literature 
such as Arbeitskreis Stochastik in der Gesellschaft für Didaktik der Mathematik e.V. (2018), Harten 
and Steinbring (1984), Krüger, Sill, and Sikora (2015), Kütting and Sauer (2011), Tietze, Klika, and 
Wolpers (2002) and Wolpers and Götz (2002) was taken into account. The results were the following 
(see Figure 2). 

The category “Frequencies” was extended to the concept of frequentist probability and, as an 
example, a pronged coin, while “Probabilities” has the extension of the concept of Laplacian 
probability and uniform distribution. Both concepts are based on the law of large numbers, which is 
indicated by the dotted arrows. In order to obtain a deep understanding of both categories, one needs 
a profound concept of (random) experiments, randomness and uncertainty. Therefore, those are 
important connections between frequencies and probabilities. 

The law of large number is linked to statistics through the concept of random variables, mathematical 
expectation and variance, because many concepts of statistics are modeled via random variables. This 
is indicated by a solid line in Figure 2. 

The category “Graphic Representations” was extended by pictures of urn problems, fourfold table 
and unit squares to cover the main graphic representations used in probability. To achieve a deep 
understanding of tree diagrams, one should know about “conditional probabilities”, because tree 
diagrams are based on the law of total probability and Bayes’ theorem. The category “Graphic 
Representations” stands on its own, because as representations it isn’t any traditional content of 
probability. However, graphic representations can help understand concepts of probability. 

The category “Combinatorics”, which is typically categorized as algebra, was added, because of the 
importance for random experiments. Teachers should know about permutations, combinations and 
variations. 

The category “Set Theory” was added, because one needs naïve set theory to grasp the idea of 
probability and complementary probability. Set theory on an elementary level is in use for 
combinatorics. Advanced set theory is mandatory for conditional probabilities. 

This domain map makes no claim to be complete. However, it is the foundation to work on developing 
items to test content knowledge regarding these topics. 

Outlook 
The study “The development of professional knowledge of prospective teachers in probability” is 
focusing on content knowledge and pedagogical content knowledge of prospective teachers. 
Prospective teachers for secondary school usually take their probability courses in one semester. They 
will participate in a pre- and post-test, so the development of knowledge in probability is visible. 
After a certain time, they will also participate at a follow-up-test to measure effectiveness of their 
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probability education. They will also answer questions about emotions toward probability, 
demographics and self-efficacy. 

The research questions of the study are the following: 

· How is the development of professional knowledge of prospective teachers in probability? 
· How do emotions influence the development? 
· How is the self-efficacy changing during those classes? 
· How effective is the university education in probability? 

One important preparation for the pre- and post-test was the development of this domain map. 
Educational standards, curriculums and requirements for teacher education were analyzed and 
Mathematicians as well as Mathematics educators were being questioned in an expert study. One now 
has an overview of current research on probability knowledge of (prospective) teachers and is being 
able to develop items for the study mentioned above. One limitation is that the domain map was only 
analyzed by German standards. The expansion to an international level is planned. Another limitation 
is the aspect of the educational standards and teacher requirements. They already are developed and 
assessed by Mathematics Educators on basis of empirical results, but they are not empirical results 
themselves. However it is a good estimation for what prospective teachers should learn in probability. 
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Testing the negative recency effect among teacher students trying to 
generate random sequences  

Olav Gravir Imenes 

Oslo Metropolitan University, Norway; ogim@oslomet.no 

Students of a teacher training program (N=124) were asked to generate, unaided, a binary 
sequence of 40 symbols appearing to be as random as possible. It was found that the average 
probability of alternation, P(A), was 0.61, which agrees with previous experiments described in the 
literature, and that the students tend to underestimate the occurrence of runs with four or more 
equal symbols. When comparing to random sequences I argue that only asking for sequences of 
length 40 will overestimate P(A). 

Keywords: Negative recency effect, randomness, probabilistic reasoning. 

Introduction 
One of the goals of education in the subject of probability is to give students a better understanding 
of what constitutes random events and how to recognise random events. A democracy needs 
citizens that can understand and evaluate quantitative information and statistical analyses 
(Utdannings-direktoratet, 2012). Media sometimes reports clusters, for example the occurrence of 
many cancer cases in small communities, without acknowledging that such clusters may arise as a 
result of randomness. Knowledge of what to expect of random events is necessary in order to know 
how to process such information. However, it is difficult to get a good grasp of probability, and 
especially the occurrence of clusters. One type of cluster occurs in binary sequences. A binary 
sequence is a sequence that consists of two symbols, for example the sequence generated by tossing 
a coin multiple times and noting whether the outcome was head or tail, or throwing a die and noting 
whether it displays an even or odd number. The former could look like THHHHTTHTT, while the 
latter could look like 0111100100. A cluster in a binary sequence is a long run of the same symbol, 
for example four heads or four odd numbers in a row. Research (Bryant & Nunes, 2012; Chiesi & 
Primi, 2009; Falk & Konold, 1997; Williams & Griffiths, 2013) shows that people overestimate the 
number of changes in order for a binary sequence to be random and underestimate the average 
length of runs, i.e., the number of times a symbol is repeated consecutively.  

In Norwegian schools in the last 20 years there has been a stronger emphasis on probability than 
previously, especially with the introduction of curriculum reform in 1994 for high school, R94 
(Kirke, utdannings- og forskningsdepartementet, 1999), and in the curriculum reform in 2006 for 
both primary and secondary school, LK06 (Kunnskapsdepartementet, 2013). For example, the 
curriculum for the first year of high school demands that the student should be able to produce 
examples and simulations of random experiments (Kunnskapsdepartementet, 2013, p. 11). 

One might ask what the stronger emphasis on probability means to students’ understanding of 
clusters. If, successively, an even number has been thrown four times with a fair die, and students 
are asked if there is still a 50% chance to throw an even number in the next throw, most will 
immediately answer yes. However, when asked to construct sequences, they may tend to 
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underestimate such probabilities, i.e., seemingly assigning a less than 50% chance of getting the 
same result as in the previous throw. This paper will focus on Norwegian teacher students’ 
understanding of what constitutes a random binary sequence. In order to measure the randomness of 
binary sequences, Falk and Konold (1997) presents a framework for analysing binary sequences 
mathematically, using among other indicators a probability of alternation, P(A). I will be using 
parts of this framework. 

This paper sets out to explore the following question: To what extent are Norwegian teacher 
students able to understand the probability of forming of clusters in a binary sequence? The guesses 
will be measured by the calculated P(A), and by testing whether or not the students’ guesses for the 
number of runs of given lengths differ significantly from that of a fair die thrown. 

Review of the literature 
Children’s and adults’ understanding of what constitutes a random sequence tends to show some 
common misconceptions. One such misconception is the negative recency bias (Bryant & Nunes, 
2012, p. 10). This is the assumption that after a long sequence of the same result, e.g., six heads in 
row when tossing a coin, a tail is more likely in the next toss. The counterpart of this misconception 
is the positive recency bias (Bryant & Nunes, 2012, p. 10), in which people estimate that a certain 
result is more likely to be the next outcome because it has occurred frequently in the past. Positive 
recency bias occurs in for example estimating scoring in baseball (Gilovich, Vallone, & Tversky, 
1985). Many studies have been carried out investigating the negative recency effect. For surveys of 
such investigations, see for example Batanero and Sanchez (2005), Bryant and Nunes (2012), 
Chiesi and Primi (2009) and Falk and Konold (1997). 

Some of the studies carried out ask the participant to tell which of two or more sequences or 
patterns are random and which are not (Batanero & Serrano, 1999; Falk & Konold, 1997; 
Kahneman & Tversky, 1972) or which result is more likely to come next (Chiesi & Primi, 2009; 
Fischbein & Schnarch, 1997), and such studies are examples of judgement tasks. Others ask the 
participants to generate random sequences (Bakan, 1960; Towse & Mclachlan, 1999), and are 
production tasks. A variation is studied by Rapoport and Budescu (1992), where the participants 
generated random numbers as part of a game. Bar-Hillel and Wagenaar (1991) argue that judgement 
tasks are a purer way of studying the perception of randomness. However, the basic biases were 
discovered by production tasks, since these tasks were the ones in the early research. Another 
problem with judgement tasks is that when a researcher asks whether or not a given sequence is 
random, he may not himself know the answer. For example, Green (1982, p. 157) provides an 
example of two binary sequences of length 150 and 153 respectively and asks the subject to 
determine which sequence is made up. The one he would classify as not made up has a P(A) as low 
as 0.44 in addition to having one run of length 9, which is not expected for such a short sequence. 
At least when assigning production tasks, the researcher does not need to say anything wrong. In 
addition, when assigned production tasks, the students cannot guess among the alternatives, thus 
taking a more active role.  

Falk and Konold (1997) present a framework for analysing binary sequences with respect to 
randomness. For every binary sequence a number called probability of alternation, P(A), may be 
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calculated. It is given by 𝑃𝑃(𝐴𝐴) = 𝑟𝑟−1
𝑛𝑛−1

, where r is the number of runs, and n is the length of the 
sequence (Falk & Konold, 1997). In an infinitely long, truly random binary sequence, the expected 
P(A) is 0.5. The P(A) measure first order dependencies. Another measure is the second-order 
entropy (EN). This is based on the relative frequency of all ordered pairs, and is a measure of the 
amount of new information provided by the second symbol of the pair (Falk & Konold, 1997). The 
second order entropy is maximal (EN = 1) when all the four pairs, 00, 01, 10, 11, are equally 
probable. It is minimal (EN = 0) when P(A) = 1. Yet another measure is the complexity of the 
sequence, and can be defined as the “bit length of the shortest computer program that can reproduce 
the sequence” (Falk & Konold, 1997, p. 306). Another method Falk and Konold describes, due to 
Garner (1970), is to sort all sequences of a given length n into different disjoint sets based on their 
P(A). The most random sequences are the ones contained in the set which consist of the maximal 
number of sequences. In this paper we will focus on the P(A), and also of the number of subsets of 
length m with P(A) = 0, that is, the number of runs with a given length. 

The typical value of P(A) for a binary sequence constructed by a person seems to be around 0.6. 
The nine studies referenced by Falk and Konold (1997) have P(A) ranging from 0.56 to 0.63. For 
nine experiments, referenced in the same paper, where participants are judging whether or not a 
certain sequence is random the P(A) range from 0.57 to 0.65 in eight of the experiments while one 
has a P(A) of between 0.7 and 0.8 (Gilovich et al., 1985). Thus, the literature seems fairly 
consistent regarding the extent to which people overestimate the number of runs. However, there 
seems to be a lack in reporting standard deviation. It is also interesting to examine to what extent 
people tend to underestimate the possibility of long runs, which we may call clusters. The most 
consistent result on binary sequences is that both in generating and perception people tend to 
underestimate the number of long runs, i.e., consecutively equal results (Falk & Konold, 1997, p. 
302). 

Method 
I had 127 students enrolled in the first-year teacher education study program providing me with 
data. For entry into the program the students need more than a passing grade in mathematics from 
high school. In Norway, the lowest grade in high school is a zero, while 6 is the best obtainable 
grade. The requirement for entry to the teacher education program is a 4, while 2 is the lowest 
passing grade. Thus, the enrolled students had a somewhat better understanding of mathematics 
than that required for other study programs. As they were about to start learning about probability 
and combinatorics, the students were asked to imagine the following task: Throw a die 40 times and 
mark for each throw whether you get an even or an odd number. Mark an even number with 0 and 
an odd with 1. The students were asked to write down as realistic a sequence as possible. 
Afterwards they were asked to actually throw a die 40 times, and compare the results. Thus, I had 
about 5000 actual die throws to compare. The students were informed that the data they provided 
could be used for research. All data were collected anonymously. Among the participants three 
students did not produce a binary sequence of at least 40 symbols, and thus they were discarded. 
Therefore 124 student generated guessed sequences were analysed. 
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In order to determine if the student made a good guess or not, the P(A) was the first indicator, and 
was compared with the theoretical P(A) of 0.5 and the P(A) of the actual die throws. In the latter 
comparison, a t-test was used since it was possible to calculate standard deviations. The second 
criterion was that the number of runs of each length in a guessed sequence should be approximately 
equal to the number of runs of that length in the thrown results. A list of the number of runs each 
student guessed for any given length from one to seven was made, and for each run length a t-test 
was carried out to compare to the corresponding list for the sequences obtained from the actual die 
thrown. The data was tested for normality using the Shapiro-Wilk test. A t-test ordinarily requires a 
normal distribution. However, the central limit theorem ensures that when the number of 
participants is large, it can be used even though the data does not have a normal distribution. 
Typically, this occurs when the number of participants is more than 30. 

The tests described above were carried out using R: A language and environment for statistical 
computing (R Core Team, 2016). 

Results 
Each student produced one sequence of 40 binary digits, representing even and odd numbers. The 
sequence guessed by participant number 85 is provided in Figure 1. An even number is represented 
by 0 while an odd number is represented by 1. Another example is given in Figure 2, the sequence 
of participant number 93. 

Figure 1: The guessed sequence of participant number 85 

 

Figure 2: The guessed sequence of participant number 93 

In addition to guessing how such a sequence would look like, the students each threw a die 40 
times, and recorded the outcome. An example of such a sequence, form participant number 88, is 
given in Figure 3 
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Figure 3: The actually thrown sequence of participant number 88 

The probability of alternation was calculated for each participant. The mean P(A) among the 
participants was 0.61 (SD = 0.12). For the random numbers the students threw, the mean P(A) were 
0.51 (SD = 0.08), quite near the theoretical value of 0.5 for infinitely long sequences. Ten students 
made guesses with P(A) < 0.51. The P(A) for the estimated results were not normally distributed, 
the Shapiro-Wilk normality test giving p < .001, where for the random generated sequences, that is 
when the die was actually thrown, the P(A) was normally distributed, with the Shapiro-Wilk 
normality test giving p = .08. There was a significant difference between the made-up sequences 
compared to the actual throws (𝑡𝑡(213.72) = −8.23, 𝑝𝑝 <  .001). 

The number of runs of a given length in the estimated sequences varied. In Figure 4 the median and 
the quartiles of the number of runs of a given length for each student’s guesses are shown in a 
boxplot. For each run of a given length, the corresponding result for the actual throws is shown to 
the right for comparison. The box labeled RLG1 shows the first and third quartile of the number of 
runs of length one in the guessed data as the lower and upper sides of the box. The solid line in the 
middle of the box is the median, and the mean is given by an asterisk. Similarly, RLG2 shows the 
number of runs of length two. RLT1 shows the number of runs of length one for actually thrown 
dice, and so on. 

Figure 4: A boxplot of the number of runs of a given length  

We note that the students tend to underestimate the number of runs of length four and five, and 
overestimate the number of runs of length one and two. For each run length, a t-test were carried 
out, and in particular it showed that for every run length except three, there was a significant 
difference (p < .002) between the guessed results and the actual throws. For runs of length three, the 
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difference was not significant (t(243.31) = 1.00, p = .32). With the sequence length being only 40, 
we cannot from this data conclude that students underestimate the numbers of run of length six or 
more. The reason is that with 20 expected runs, and only a 1

2(6−1) = 1
32

 chance of getting a run of 
length six for every run started, a student trying for the most random sequence should not include 
runs of length six or more. Also, in Figure 4, especially note that the median of the number of runs 
of length five for the actual thrown dice is zero, even though the average is 0.58. However, 
remember that the probability to get a run of length five or more is double that of obtaining a run of 
exactly length five. Therefore, we should expect student guesses to include one run of length five or 
more, but not be surprised if none were included. We have not included runs of length longer than 
seven in the boxplot as no students included runs of that length in their guesses.  

Among the students there are some that made better guesses than others. Among the 124 students 
which completed the task, 49 included at least one run of length four or more in their guessing. Of 
these, 14 students included a run of length five or more. 

Discussion 
The average results for the probability of alternation, P(A), when the students are guessing, is in 
line with the literature, being 0.61. This is significantly different from a random binary sequence. I 
have not found the standard deviations from the previous experiments, so no hypothesis test could 
be done comparing this P(A) to the P(A)’s listed by Falk and Konold (1997). However, I conclude 
that this number seems fairly constant across countries and time. The list compiled by Falk and 
Konold (1997) seems to indicate that the P(A) becomes smaller as the length of the guessed 
sequence increase. The result from the current experiment seems to agree with experiment where 
sequences of comparable length has been used. One reason for a lower P(A) when longer sequences 
are used may be that participants then will expect some very long runs. For sequences as short as 
40, a student who knew about the correct distribution could argue, that since the median of runs of 
length five or higher is zero, such sequences should not be included in the guess, even though the 
mean is closer to one than zero, and that the expectation value for the number of runs of five or 
more in length is more than one. Excluding runs of length five or higher should lead to a somewhat 
higher P(A) than 0.5. Thus, it is not surprising that students overestimate the P(A). However, the 
observed average P(A) of 0.61 is higher than should be expected even when excluding runs of 
length five or more. 

From the results (Figure 4) we observe that the students’ guesses are relatively accurate concerning 
runs of length five, and this is confirmed by the t-test. The problems with underestimating the 
number of long runs begin with runs of length four or more. Each student should have expected at 
least one run of length five or more, as this will happen in one of 16 cases when starting on a run, 
and each student would be expected to start 20 runs. The approximate number of runs is P(A) 
multiplied by the sequence length, in this case 0.5·40. Out of 124 students, 49 included at least one 
run of length four or more in their guessing. Of these, 14 students included a run of length five or 
more. Thus, few students think that clusters are as common as they actually are. 

The probability of clusters arising in a binary sequence is comparatively easy to understand 
compared to the probability of clusters of for example diseases arising in a general population. 
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Therefore it may be a start to educate students of clusters in such a setting, when known biases can 
be used to give the students a better understanding of how they tend to underestimate the occurrence 
of clusters. It is also easier to show them their own bias when using production tasks.  

Conclusion 
Teacher students do significantly underestimate the number of long runs, i.e., runs of four or more 
equal symbols when trying to construct binary sequences that shall appear random. They also 
overestimate the number of runs of length one and two significantly. They do not seem to 
underestimate the number of runs of length three significantly; the median guess is actually the 
same as for a random sequence. Also, a t-test could not determine a significant difference when it 
comes to sequences of length 3. 

For further research it would be interesting to ask participants to generate longer sequences, for 
example of length 150, where 75 runs would be expected, thus at least one run of at least seven, 
since the probability of getting a run of seven is 1

2(7−1) = 1
64

. The current results suggest that students 
would grossly underestimate the occurrence of the really long runs, but a sequence length of 40 
does not allow us to conclude in this case. Another interesting experiment would be to tell some of 
the students about what constitutes a random binary sequence and tell some of them beforehand that 
you are to test their sequences on the P(A) and the number of runs of each given length. Then the 
results of this group of students could be compared to the students not having been given such 
instructions. Thus one could observe what effects such instructions would have.  

It would also be very interesting to ask the students to explain their thinking during the production 
of these sequences. This would add a qualitative dimension to the results and be useful for 
improving the education in order to help students understand clusters better. 

The author wishes to thank Trude Sundtjønn, Siri Krogh Nordby and Grethe Kjensli for help with 
data collection and George Hitching for comments. 
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The aim of this research was analyzing the way in which statistical graphs which are introduced in 
the new curricular guidelines for Costa Rica primary education are introduced in the textbooks, 
and compare the results with previous research in other countries. We analyze the distribution of 
the graph complexity, purpose and context in 167 activities related to statistical graphs selected 
from the two most widely used textbooks series. Results suggest a non-uniform distribution in both 
series and suggest ways to enhance the activities proposed in the textbooks. 

Keywords: Statistical graphs, reading level, semiotic complexity, textbooks, primary education. 

Introduction 
Statistical graphs are a main tool to represent information in the media and professional life and 
acquiring graphical competence is needed for citizens to manage in the information society. This 
need led Costa Rica to increase the relevance of statistical graphs in the primary education (M.E.P, 
2012), following suggestions such as those of the GAISE project (Franklin, Kader, Mewborn, 
Moreno, Peck, Perry, & Scheaffer, 2007). More specifically, statistical graphs are included in the 
Costa Rica curriculum in Primary Education as follows: 

• In second grade, bar graphs are introduced, with the main objective that the student makes a 
simple reading of the information and in third grade, the students are expected to construct 
such graphs and interpret them, using the mode, maximum and minimum. 

• In the fourth grade, the student must interpret information in dot plots and it is proposed to 
incorporate the spreadsheet as a support tool in graphic representations. 

• In the fifth grade, pie charts are included and in the sixth, the line graphs to visualize trends 
in data series. The graphic comparison of two or more data groups is also suggested. 

These goals can only be achieved with a correct teaching of the topic and the use of adequate 
textbooks. There are however no available empirical studies providing evidence that Costa Rica 
textbooks follow these guidelines. The aim of this paper is to analyze the graphs included in Costa 
Rica textbooks and use this information to help teachers to organize the teaching of the topic.  

Background 
Theoretical framework 

Statistical graphs are complex semiotic objects, as suggested by Bertin (1967), who remarked that 
interpreting a graph requires  first the isolated interpretation of each element, such as the title or 
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scales and finally as a global interpretation of the whole graph. Moreover, Arteaga and Batanero 
(2011) analyzed the semiotic activity involved in the construction of graphs by prospective teachers, 
and suggested that different graphs may vary in semiotic complexity, according to the mathematical 
objects needed in this process. Specifically, the authors described four semiotic levels in statistical 
graphs that will be used in our analysis: 

S1. Representing isolated data. Graphs classified in this level only represent some isolated data 
without considering the whole set from which the data were extracted.  

S2. Representing a list of data one by one without any attempt to building a distribution. The list 
of data or a data set is represented in the same order in which the data are located in the list 
with no use of the numerical order. There is no grouping of similar values of the variable or 
computation of frequencies. Consequently, although in this graph the idea of variable is 
used, the distribution is absent. In Figure 1 we present an example. 

 
Figure 1: Example of graph of semiotic complexity S2 (Source: S4, p. 278) 

S3. Representing a data distribution. These graphs include the representation of a distribution, 
with values and frequencies for each value; For quantitative variables, the order of the 
variable values in the graph axes (if used) is the ordinary numerical order (see figure 2) 

 
Figure 2: Example of graph of semiotic complexity S3 (Source: A5, p. 146) 

S4. Representing several distributions on the same graph. At the highest level more than one 
distribution is represented on the same graph. (an example is given in  Figure 3) 
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Figure3: Example of graph of semiotic complexity S4 (Source: S6, p. 263) 

Following ideas by Kosslyn (1985), we also considered statistical graphs as a resource that can be 
used with different purposes: 

· Analysis; when the main goal is using the graph to identify or discover many features that 
are hidden in the unorganized data set; for example discovering the mode or the asymmetry 
of the distribution. 

· Communication; when the graph is used to transmit to another information about the data 
and its relationships in an efficient way.  

· Construction; in traditional teaching, an additional purpose is providing procedures to help 
students learn how to build a correct graph.  

Another aspect analyzed is the context of the graph, using the classification established in the PISA 
studies, which is described in OECD (2016), where it is suggested that the mathematical 
performance of an individual can be influenced by the context in which he develops his problem 
situation. In this sense, the context in which the collection, organization and representation of the 
data are circumscribed may affect the understanding of the graph. This classification contemplates 
the following contexts: 

· Personal context: corresponds to situations in the scope of personal activities of the child, 
his family or peer group. An example of this context is presented in Figure 3, where the 
graph shows the activities preferred by a group of boys and girls. 

· Social context: these contexts correspond to the problems where aspects of the social sphere 
are addressed, beyond the personal life of the child; for example, the neighborhood, or city. 
They can correspond to voting systems, public transport, government, public policies, 
demography, publicity, national statistics or economy. Gambling is also included in this 
context because it is widely used in society.  

· Labor or school context: consist of those situations where the problem addresses aspects of 
the world of work: school, work, employment, production, sale, etc.  

· Scientific context: this context is related to problems in the field of science and technology, 
and includes aspects such as: climate, ecology, medicine, space science, genetics, etc.  

Previous research 

Research analyzing different content in textbooks is increasing today, since these books are a main 
didactical tool for teachers and students, and constitute an intermediate stage between the official 
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curricular guidelines and the teaching implemented in the classroom (Herbel, 2007). The textbook 
selected usually provides the main basis why the topic is taught (Shield & Dole, 2013).  

Our research is based in other studies that analyzed statistical graphs in the textbooks in other 
countries, in particular, Díaz-Levicoy, Batanero, Arteaga and Gea (2016), who analyzed the 
statistical graphs included in three series of Spanish textbooks and three other Chilean series of 
Primary Education, and compared their results with the curricular orientations. The authors studied 
the type of graph, level of semiotic complexity, and reading levels implicit in the activity. They 
conclude the greater presence of the bar chart with little weight of other graphs included in these 
curricula. Regarding the level of reading, the most frequent were the intermediate ones. 

Method 
For this study, the curricular orientations referring to the education of statistical graphs in Costa 
Rica have been analyzed, as well as the two most frequently used series of books in Costa Rica;  
Asociación Libros para Todos (AL) and Editorial Santillana (S), using content analysis. The sample 
of publishers was directed or not probabilistic, because we selected the textbooks most spread in the 
schools of the country (see Appendix). A total of 167 different graphs were analyzed and classified 
according to the following variables: 

· Semiotic complexity level: Arteaga and Batanero (2011) observed in their study as a higher 
semiotic level in the graphs constructed by a sample of prospective teachers implied a higher 
level of reading of them by the prospective teachers. Therefore, semiotic levels are related to 
the reading levels of a graph, that is an important ability related to good levels of graphical 
competence (Wu, 2004). 

· Purpose of the graph: Cazorla (2002) shows that statistical graphs are an instrument of both 
data analysis and information transmission, for all this, considering Kosslyn’s ideas we 
classify the graphs according to their purpose. 

· Context of the graph: Monteiro and Ainley (2007) observed how the interpretation of the 
graphs mobilizes knowledge and feelings that affect their understanding and how the context 
of the graph influences the interpretation of it, showing the importance of considering the 
context of the graphs when interpreting them. 

Each graph was analyzed according to these three variables, Maynor, one of the authors of this 
paper, classified the different graphs as part of his PhD studies, and this process was supervised by 
the other two authors. The variables analyzed on this paper were previously used in different studies 
carried out by Díaz-Levicoy and published in relevant national and international journals   (Díaz-
Levicoy et. al, 2016, Díaz-Levicoy, Giacomone and Arteaga, 2017). 

Results 
Graph semiotic complexity 

Overall the most frequent semiotic complexity level was level 3 (see Table 1) since, 67.7% of the 
graphs represented a distribution; 24.0% of graphs represented a data list (level 2) and only 8.4% 
corresponded to the highest level of semiotic complexity, representing two or more distributions in 
the same graph. In the AL editorial, the percentage of activities at level 2 and level 4 was 10.7%, in 
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contrast to 78.6% of activities classified at level 3. Similarly, at the S editorial, 62.2% of the 
activities were classified as level 3 and 30.6% and 7.2% as level 2 and 4, respectively. 

This general data coincide with the results obtained from the semiotic analysis of the graphs in 
Díaz-Levicoy et al. (2016), where 58.6% of graphs analyzed corresponded to level 3. However, the 
second most frequent semiotic level proposed in the Spanish study was level 4 with 22.3%, while in 
Costa Rican textbooks it is level 2 with 24.0%. Contrary to the Spanish study’s results, in the Costa 
Rica textbooks since the highest level of semiotic complexity (S4) represents only 8.4% of graphs. 

Semiotic Complexity AL (n=56) S (n=111) 

S2 10,7 30,6 

S3 78,6 62,2 

S4 10,7 7,2 

Table 1: Frequency and percentage of graphs according semiotic complexity and editorial 

Regarding the distribution of semiotic complexity by school year, in Table 2 we show the increment 
of semiotic complexity with school grade. In the  first grade only level 2 activities were found, 
while in the sixth grade graphs in all the semiotic complexity levels are proposed. Moreover, in 
grades 2 to 5, complexity level 3 is dominant and only in the 6th grade the most common graphs are 
those of level 4. In Díaz-Levicoy et al. (2016) research, semiotic complexity level 4 graphs are 
included from grade 2, and are the most common semiotic level at fifth and sixth grades. This 
includes a clear difference in the way in which activities are addressed in Spanish and Costa Rican 
textbooks, where representations of several distributions on the same graph are scarce in Costa 
Rica. 

 School grade 

Semiotic Complexity 1 (n=8) 2 (n=44) 3 (n=26) 4 (n=33) 5 (n=28) 6(n=28) 

S2 100 29,9  15 13,6 27 

S3  70,1 100 76,2 86,4 29,7 

S4    8,8  43,2 

Table 2: Percentage of graphs by semiotic complexity and school grade 

Purpose of the graph 

The graph is considered according to Kosslyn (1985), as a resource that is used for analysis, 
communication and in traditional teaching, for purely constructive purposes. This variable has not 
been taken into account in previous research, so our results represent an original contribution. The 
activities analyzed in the textbooks tend to use the graphs for analysis purpose with 60.7% of the 
total graphs used for this purpose, while only 24.4% are used for communication purposes, as 
shown in Table 3. The constructive purpose does not seem to be so relevant to both publishers and 
only represents 15% of the total of activities analyzed. 
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When analyzing the results by grade (Table 4), we observe that that the most common purpose in 
the first grade is communicating information and little analysis and graph construction are 
encouraged. In the remaining grades, the purpose of analysis predominates, although there is always 
an interest in graphic construction, in particular until grade 3. This variable has not been taken into 
account in previous investigations. 

Purpose AL (n=56) S (n=111) 

Analysis 58,7 61,8 

Communication 21,7 25,9 

Construction 19,6 12,4 

Table 3. Frequency and percentage of graphs according purpose and editorial 

 

 School grade 

Purpose 1 (n=8) 2 (n=44) 3 (n=26) 4 (n=33) 5 (n=28) 6(n=28) 

Analysis 18,8 42 63,6 69,1 69,1 77 

Communication 62,5 39,8 12,7 19,8 14,7 17,5 

Construction 18,8 18,2 23,6 11,1 16,2 5,4 

Table 4. Percentage of graphs by purpose and school grade 

4.3 Contexts 

The contexts of graphs are summarized in Table 5, where the most common context used in AL is 
primarily the school /workplace while in S both this context and personal contexts involve 33, 3%, 
of the activities each. Both publishers point strongly to the school / work context and to a lesser 
extent to scientific situations. 

Context AL (n=56) S (n=111) 

Personal 3,6 33,3 

Social 28,6 18,9 

School /work place 48,2 33,3 

Scientific 19,6 14,4 

Table 5. Frequency and percentage of graphs according context and editorial 

The relationship of the context with school grade is shown in Table 6, where the School/work place 
context dominates along second to the fifth  grades, mainly due to situations related to school. In the  
first year, personal and social contexts are more frequent, in coincidence with Mingorance’s 
research (2014) while social and scientific contexts are more frequent in the sixth grade. Scientific 
context is scarce in the first school years, but increases after the fourth grade. 
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 School grade 

Context 1 (n=8) 2 (n=44) 3 (n=26) 4 (n=33) 5 (n=28) 6(n=28) 

Personal 37,8 31,8 26,9 21,2 7,1 21,4 

Social 37,5 18,2 34,6 21,2 7,1 28,6 

School /work place 25,0 38,6 34,6 36,4 64,3 21,4 

Scientific  11,4 3,8 21,2 21,4 28,6 

Table 6. Percentage of graphs by context and school grade 

Conclusions 
The two series of books analyzed, concentrate their activities at the semiotic complexity level 3 that 
is in the representation of a data distribution in coincidence with Díaz-Levicoy et al. (2016) results.  

The results of the analysis showed that the main goal of graphs in the textbooks is analysis, 
followed by communication with only 18% graphs oriented only to learn how to build the graph. In 
our opinion more activities oriented to build a graph should be included because previous literature 
show the importance of graph construction as part of a good graphical competence (Wu, 2004) and 
because this ability is recommended in Costa Rica’s curricular guidelines (M.E.P., 2012). There 
were also variation between the different grades with personal contexts more frequent in first grade 
and educational context more frequent in grades 2 to 5. In grades 1 to 3 scientific contexts hardly 
appear, while starting from grade 4 they constitute about a quart of all the graphs.  

These results are useful for teachers who should take into account the relevance of variables as 
semiotic complexity, purpose and context in statistics education and select adequate activities when 
introducing their students to statistical graphs, because previous research show the importance of 
taking into account these variables in the teaching of statistical graphs (Arteaga and Batanero, 2011, 
Cazorla, 2002, Monteiro and Ainley, 2007, Díaz-Levicoy et al., 2016)  

Textbooks are a teaching and learning resource with an important tradition within the classroom, 
because they provide support to teachers and students throughout the instructional process. It is 
therefore necessary to study how the textbooks present statistical topics as a first step to suggest 
possible improvement in their content and to check that they follow the curricular guidelines. 

Project EDU2016-74848-P and group FQM126 (Junta de Andalucía). 
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Theoretical background  

In today’s age of information, data is very powerful in making informed decisions. Data analytics, 
which is a relatively new field, refers to processes used in identifying or discovering the trends and 
patterns inherent in the data to get useful insights for making data driven decisions (Piccano, 2012). 
The Strategic Partnership for the Innovative Application of Data Analytics in Schools (SPIDAS) 
project (funded by Erasmus+ Programme) aims at developing students’ data analytics skills at various 
school levels (from primary to secondary) using innovative and student-centered approach.  

In the context of SPIDAS project, we define DA as a process of 'engaging creatively in exploring 
data, including big data, to understand our world better, to draw conclusions, to make decisions and 
predictions, and to critically evaluate present/future courses of actions'. Our conceptual framework 
for the teaching and learning of data analytics in schools consists of two components: data analytics 
cycle and competence areas. Data analytics cycle is drawn on PPDAC (Problem, Plan, Data, Analysis, 
Conclusion) statistical inquiry cycle (Wild & Pfannkuch, 1999), statistical thinking process (Wild, 
Utts & Horton, 2011) and informal statistical inference (Makar & Rubin, 2009, 2018). This cycle 
involves the following steps in solving real world problems that require data: 1) defining the problem 
2) considering data 3) exploring data 4) drawing conclusions 5) making decisions and 6) evaluating 
courses of actions. Additionally, the data analytics cycle is complemented with various competence 
areas that are in line with "Framework for 21st Century Learning" (http://www.p21.org/about-us/p21-
framework) and the Royal Society’s (2016) report on the need for data analytics skills. These are 
statistical literacy, ICT literacy, critical thinking, creativity, communication and collaboration, ethics 
and social impact. 

The study  
This study aims to innovate and extend best practice in the teaching of data analytics through student-
centered, project-based learning, focusing on the impacts of weather. The project end-product will be 
the Data Analytics Toolkit, an on-line resource supporting schools across the EU to develop their data 
analytics projects building on our examination of the state-of the-art and findings emerging from the 
pilot projects conducted in partnering schools in the UK, Spain and Turkey 
(http://blogs.exeter.ac.uk/spidasatexeter). To this end, a design study method (Cobb et al., 2003) is 
used for developing, testing and revising conjectures about how students develop skills and 
competencies related to data analytics and instructional materials to support it with the use of 
technology tools. The design of the pilot projects are guided by our data analytics framework. They 
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are implemented in nine partnering schools with 9–17 year-old students across three countries over 
two iterations (fall 2018 and spring 2019). One of the project themes to engage 9–12 year-old students 
in data analytics for solving real world problems is “How does weather affect our health and 
emotions?” through which we expect them to correlate weather data with other datasets, such as 
students’ feelings. In the first pilot study, students generated statistical questions and collected their 
own data from other students as well as obtained them from other sources, such as the meteorology 
office. Technology tools, e.g. Excel and CODAP (https://codap.concord.org/), were used to record, 
visualize and analyze their data to make decisions. Students’ work on computer and worksheets and 
classroom observations are analyzed to elaborate on how students interact with ill-structured real 
world problems to apply data analytics techniques and skills. 

Poster presentation 
The poster presents an overview of the conceptual framework for the teaching and learning of data 
analytics in schools, objectives and context of the study, task design and preliminary findings 
regarding how students deal with multivariate datasets to investigate different possible relationships 
in solving real world problems using data analytics techniques and skills. 

The Strategic Partnership for the Innovative Application of Data Analytics in Schools (SPIDAS) 
project is funded with support from the European Union’s Erasmus+ Programme. All views expressed 
are those of the authors and not of the European Commission. 
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Short description of the research topic 
The aim of the presentation is to show how it was possible in a pilot project to interweave probability 
and other mathematical areas in the spirit of Tamás Varga’s complex mathematics education model 
in Hungary.  

The project was launched under the Recent Complex Mathematics Education Project1, the aim of 
which is to examine how Tamás Varga’s relatively old, but no way outdated ideas can be implemented 
to match present-day challenges effectively. In this sense it is also an interesting question, I intend to 
address in my later research, at what point digital devices should be introduced to help discovery. As 
Tamás Varga proposed to use manipulatives for the earliest stages of discovery, in this presentation 
two games accompanied by using manipulatives are presented. 

“Complex” in this sense stands for teaching different areas of mathematics at the same time, often as 
problems of mathematical nature arise in the real world, and thus giving students a more complex and 
realistic image of what mathematics and mathematical thinking is. 

Theoretical framework 
Even though Tamás Varga introduced probability from early primary school (Varga, 1972) in his 
curriculum as early as in the 1960s (Varga, 1969), in Hungary, similarly to many other countries 
(Serradó, Azcárate, & Cardenoso, 2006) the majority of teachers tried to avoid or minimize teaching 
probability in their teaching practice (Pálfalvi, 2000). In today’s curricula there are three lessons 
appointed in fifth grade for dealing with “possible, impossible and sure” situations. In sixth grade, no 
probability is included, but a chapter for statistics at the very end of the schoolyear, where in practice 
it is often omitted. 

“Guided experience with randomness in earlier years is an important prerequisite to successful 
teaching of formal probability” (Steen, 1990, p. 120.). In this study guided experience was embedded 
into the lessons appointed for teaching fractions and arithmetic. This way, instead of linear 
mathematics teaching, the teacher engaged in complex mathematics teaching where consolidating 
other mathematical areas and guided experience with randomness became possible at the same time. 
This way probabilistic concepts could be introduced without need for more lessons. 

 
1  This paper was supported by the Hungarian Academy of Sciences under the Recent Complex Mathematics Education 
Project 
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This research would be worth to be continued to enable teachers to teach more mathematical areas 
simultaneously. 

The method 
In the project, probability games were selected to be taught in a complex way in four consecutive 
schoolyears for fifth and sixth graders, two of which are shown in the poster. One, a modified version 
of the game called “pig”, where 5 and 6 are out ruled (Tsao, 2016) connects probability and fractions 
(Sinicrope & Mick, 1992), the other, played with two tetrahedron dice (Nilsson, 2007) connects 
probability and arithmetic. Student-teacher dialogues were transcribed to be analyzed in a later article 
to further investigate students’ knowledge construction processes (Ron, Dreyfus, & Herschkowitz, 
2010). 

Research results 
The aim of the pilot project was to introduce probabilistic thinking into lessons where other 
mathematical areas were in the focus through complex teaching. We have found that through careful 
planning and selection of games, it was possible to teach more in fewer lessons, and thus “engage 
children in considerations of chance more often and more systematically” (Lehrer, & English, 2018, 
p. 248). 
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Pitfalls and surprises in probability:  
The battle against counterintuition 
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The teaching of probability is a great challenge, not least in the training of maths teachers. This study 
is built around working with teachers, concentrating on one special problem: “What is the probability 
of picking one red and one yellow candy from a sack containing two red and two yellow pieces of 
candy?” From this simple example, we explore three different ways of thinking about the teaching of 
probability. 1) Experimentally, 2) Combinatorically, 3) Probabilistic. Throughout, we will discuss 
the question: “What does a student/teacher need to do in order to involve all three approaches in her 
teaching?” 

Keywords: Probability, combinatorics, exploration, representations, working with teachers   

Introduction 
In general, a teacher does not only need to know that there are several ways to approach a problem in 
probability, but also that there are more than one method to solve a probabilistic problem. A good 
teacher also needs to be open to the possibility that some students may think quite differently than 
the teacher thinks herself. This implies that the teacher must be able to communicate well with the 
students, listen to their arguments and try to understand their reasoning when they work on 
mathematical problems. Obviously, this requires that the teacher possesses a solid understanding of 
the subject she is teaching.  

The counterintuitive nature of some probability results makes probability very challenging and 
difficult to teach and to learn (Koeller, Pittman & Brendefur, 2015; Knudtzon 2010). Many 
researchers (Afeltra, Mellone, Romano, & Tortora, 2017; Batanero, Godino & Roa, 2004; Chernoff 
& Zazkis 2011; Falk, Yudilevich-Assouline, & Elstein, 2012; Lecoutre, 1992) have discussed 
difficulties in teaching probability. Recognising the challenges associated with teaching and learning 
of probability, the purpose of this article is to explore the question: How can we as teacher educators 
help teachers to understand not only probability, but also give them confidence in teaching 
probability to students? 

Background 
Bryant and Nunes (2012) provide four “cognitive demands” for understanding probability. They are:  

Understanding randomness; Working out the sample space; Comparing and quantifying 
probabilities; Understanding correlation (or relationships between events) (Bryant & Nunes, 2012, 
p.12)  

In this study, we discuss two of these points: “Working out the sample space”, Comparing, and 
quantifying probabilities. One of the problems with “Working out the sample space” is that the 
student gives all possibilities the same probability. For instance if you flip/toss two coins, there will 
be three possibilities: HH, HT and TT, and they will all have equal probability. Chernoff and Zazkis 

Thematic Working Group 05

Proceedings of CERME11 992



 

 

(2011, p.18) call the set HHH, HHT, HTT and TTT a “Sample Set” and see it as a point of departure 
to develop the complete sample space: HHH, HHT, HTH, THH, HTT, THT, TTH and TTT.   

Lecoutre (1992) also describes difficulties in calculating probabilities: 

 … the most frequent model used is based on the following incorrect argument: the results to 
compare are equiprobable because it’s a matter of chance; thus random events are thought to be 
equiprobable “by nature”. (Lecoutre, 1992, p.557) 

With respect to “Comparing and quantifying probabilities”, one may calculate theoretically or one 
may do an investigation to study the relative frequencies of the different outcomes. This is a central 
element in the Norwegian Curriculum:  

The aims of the studies are to enable pupils to: - find and discuss probability by experimenting, 
simulating and calculating in day-to-day contexts and games. (Norwegian Curriculum for the 
common core subject of mathematics, 2006, p.9) 

When teaching probability, teachers must know that obstacles often will occur. “Expect the 
Unexpected When Teaching Probability” (Koeller et al., 2015). 

The Study 
The data in this study mainly come from “Probability workshops” with teachers in 2010 and 2016. 
Both primary teachers (age 6 – 12 years) and secondary teachers (age 13 – 15) attended the 
workshops. The teachers who joined the workshop in 2010 were part of a four-day summer 
conference for teachers. The teachers in 2016 joined a one-day mathematics workshop. The sizes of 
the classes were 22 and 33.  

First, teachers were given a task where they were asked to write down their first guess on a piece of 
paper and then show how they thought about the task individually. These papers were collected 
afterwards. Thereafter they were asked to work in pairs and “try it out”, by picking pieces of candy 
twenty times and write down the results.  After a discussion in pairs and in small groups, we had a 
whole class discussion. Different ways of collecting and presenting the data were discussed as well 
as different ways of finding the probability of getting one piece of candy of each colour. The data 
collected consist of the teachers’ written responses and my field notes. Field notes from the 
smartboard gave the numbers in Table 2. 

The Candy Problem 
The problem, as presented here, is from a textbook for 7th grade in elementary school. (Figure 1.) 

“Hege has two red and two yellow pieces of candy in a small bag. Mia picks two pieces of candy 
(without looking). 

What is the probability that Mia gets one red and one yellow piece of candy?” 

 
Figure 1: Two red and two yellow pieces of candy 
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In the workshops for the teachers, we asked them to answer this question:  “What is the probability 
that Mia gets one red and one yellow piece of candy when she picks two pieces from a bag with two 
red and two yellow pieces of candy”  Guess, write down and try to explain your thoughts.  

Results  
Guessing 

The first group of answers is from a workshop in 2010 and is discussed in Knudtzon (2010). Here are 
some of the written answers: 

1) RR, YY, RY     give    
3
1 probability 

2) The probability to pick a red piece first is 0.5, but then you have only three pieces left … 
 

3) red–red,  red – yellow,                     2 of 4           
2
1

4
2

=  

yellow – yellow,  yellow – red  

4) the probability to first pick a yellow and then a red one is   
3
1

6
2

3
2

2
1

==×  

same with red – yellow 
 

5) %50
2
1

4
2

4
1

4
1

===+  

 
6) y1y2        y1r1     y1r2 

y2y1 y2r1 y2r2 
3
2

12
8

=  

r1y1 r1y2 r1r2 
r2y1 r2y2 r2r1 
  

7) Table 
 
 
 
 
 
 
 

8) Experiment with counting:  
16 of 25 was one yellow and one red  
 
 

9) (a drawing of the four pieces of candy and) 
YY, YR, RR? 

 

The participants at the workshop in 2016 were given small pieces of paper (yellow post-it-stickers), 
and were asked to write down their guesses and possible explanation individually. The answers and 
some of the explanations are given in Table 1. (Including the frequency of each answer) 

 Y1 Y2 R1 R2 

Y YY YY RY RY 

Y YY YY RY RY 

R YR YR RR RR 

R YR YR RR RR 

2y IIIII 

2r IIII 

yr IIIII IIIII IIIII I 
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Table 1: Quick notes on “post it” notes from the workshop in 2016 

Experimentation 

After guessing and writing down their first thoughts, the teachers were asked to try out the experiment. 
They were asked to work in pairs and to write down their results. The participants had received the 
problem on a paper.  We used different bricks, lego or centicubes as candy and different boxes or 
black socks as bags. This question, which will be discussed later, arose: “Shall we pick one at a time 
or both at once?”   

There were different ways of collecting the data. Some teachers had three choices: RR, RY, YY and 
some had two: Two of same colour or two with different colours. They made lists: some in a line: 
RR,RG,RG,RG,RR,GG,RG…, but many in columns. Some kept track of how many times they had 
tried and some counted after a while to see if they had obtained twenty pieces altogether. Some made 
tables and used tally marks and fences (grouping in fives). 

Some used computers or IPADs. One way of writing on a PC was:         
1) yellow and red         2) red and red  3) yellow and yellow                                               
At the whiteboard we collected some of the results (see Table 2.): 

Table 2: Results from eight groups 

answer frequency explanation 

1/12 1 ¼ * 1/3 = 1/12  

1/6 

 

4 2/4*1/3=1/6 

1 of 6 

¼ 

 

5 ½ * ½ = ¼  

one of four 

1/3 

 

6 2/4*2/3=4/12=1/3 

YY, YR, RR  one of tree 

½ 13 RR, RY, YR, YY   2/4 

2/3 2 2/3 
RY 2/4*2/3=4/12 
YR 4/12 
4/12+4/12=8/12=2/3 

Other 2  

SUM 33  

YY 4 1 2 4 4 4 4 4 Sum   27 

YR 12 16 15 8 11 14 12 14 Sum 102 

RR 4 3 3 8 5 2 4 2 Sum   31 
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One participant said after a while, “I don’t like that we get so many with one of each.” One teacher 
said, “It look like there are twice as many with one of each than the other two together”.  

The question “Two at a time or one after another?” 

In problems mentioned here the question always arises if it matters whether we take two (pieces of 
candy) at the same time, or take one after another. Many students, teacher students and teachers as 
well will argue that there is a difference. (One method is to try, to experiment, to use one method 
twenty times (or more) and the other twenty times and see if there is a difference.) 

Sometimes I try the following: 
1) Put your hand in the bag and grab two candies without looking. Extract your hand and open 

your fist. Then you have either two red, two yellow or one piece of candy of each colour in 
your hand. 

2) Put both your hands in the bag at the same time and take one piece of candy in each hand. 
Take your hands out and open them simultaneously. Will this be the same as in the first 
case? Yes, again you will have either two red, two yellow or one of each colour. However, 
you may also note that you may have one of each colour in two different ways, you may 
have the red piece of candy in your left hand, or you may have it in your right hand. 

3) Put both hands in the bag at the same time and take one piece of candy in each hand. Then 
open one hand first, for instance your left, then open the other hand. You end up with two 
red, two yellow or one red piece in your left hand and one yellow in your right hand or 
conversely. 

A moment’s contemplation will convince most students (if not all teachers) that the probability of 
each outcome is not affected by which of these three procedures you use. It does not matter if you 
use one or two hands (or any other instrument) to pick out two pieces of candy, and it does not matter 
if you open one hand after another, the piece of candy is in the hand regardless and it does not change 
colour by waiting to be looked at.  

Analysis 
Investigation, experimentation 

As seen in Table 2, different groups got different answers and the fourth group picked two candies 
with one colour more often than two of different colours did. Results from a small investigation will 
always be uncertain. However, in a class with a larger number of trials the results are more reliable.  

To do experimentations is a nice variation in the ordinary mathematics classroom. It is an activity 
that most students can join and participate in on an equal basis. However, it is not clear that they 
collect and take care of their data in a way that is easy to use in further work. In addition, there is 
need for experience for both teachers and students.  

Combinatorics 

Asking the question: In how many ways may we combine the four pieces of candy? Figure 2 shows 
that we will find two ways of making groups with one colour and four different ways of making two 
colour groups, if we draw the pieces of candy” and the lines connecting two and two of them.  
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Figure 2: Combinatorics: Finding the sample space. Take two of four 

The sample space of taking two from four has six outcomes. Four of these are one red and one yellow. 
The probability of picking one red and one yellow is 4/6 = 2/3. The representation given by drawing 
the four pieces of candy in this way (two by two, not on a line) was new for many of the participants. 
They enjoyed it and it is possible to extend this with more pieces of candy. 

Probabilistic thinking 

I will here use the term “probabilistic thinking” in a more narrow sense that we usually do. We do not 
count whole numbers; we work with numbers less than one, fractions, each of them the probability of 
something. It can be represented in a tree diagram, see Figure 3. 

 
Figure 3: Probabilistic thinking. Tree diagram  

You can get one red and one yellow piece in two ways, by getting the red piece of candy first or the 
yellow piece of candy first. We get a probability of 2/3 of picking two different colours. 

In this case we can “think in probability” in a quick way, because there is an equal amount of each 
colour. This is represented in Figure 4. If you take one of the four pieces of candy, there will always 
be two of the other colour and one of the same colour left. This gives a probability of 2/3 of getting 
two different colours.  

 
Figure 4: Probability, quick way  

Three approaches 

We have worked with this problem in many different ways: guessing, thinking, discussing, trying it 
out (investigating/experimenting), using combinatorics by finding the sample space and finding a 
fraction of the proportion of the outcomes. We have calculated the probability, for instance by using 
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a tree diagram, or by using a formula. What are the advantages or disadvantages of the various 
approaches? Table 3 summarizes some of my experiences.  

Experimental Combinatorial Probabilistic 

Practical Requires correct counting Quickest way  

Everybody can take part  

Difficult to use in situations involving 
conditional probability 

A safe method General, handles complex 
situations 

Works also in situations where there is 
no mathematical probability  

 Enhances thinking and 
understanding 

Inaccurate for small numbers, makes it 
difficult to separate small differences 

May get confused, problems 
with finding all possibilities 

May be difficult 

Takes much time Can take much time  

Table 3: Advantages and disadvantages of the three approaches 

I want to emphasize the usefulness of investigation and experimentation, especially in the beginning. 
Everybody may join in, but it is important to write down the results in an orderly manner. Different 
groups may get different results, which gives good opportunities for discussions. However, the 
teacher needs to know all three approaches, and how it is possible to make them interact in her 
teaching.   

What may the different answers involve? 

If we look at Table 1, we will see that ¼, 1/3 and ½ are quite popular answers. How did they emerge? 
The fraction 1/4 may arise from working with a sample space of four: RR, RY, YY and YR thinking 
that RY is one of four. It can also be a result of thinking in probability: ½ * ½ = ¼. Here, one takes 
first one red piece and then one yellow (without taking into account that there are only three pieces 
of candy left). 

The fraction 1/3 may result from thinking in sample space; and there are three different outcomes: 
RR, RY and YY. RY is one of them and then we get 1/3. Another way is thinking in probability: 2/4 
* 2/3 = 4/12 = 1/3. This is the right thinking if the question was getting the first piece of candy red 
and the second piece yellow.  

The answer ½ may also be the result of different ways of thinking. A sample space of four, RR, RY, 
YR and YY, gives 2/4 = ½.  Probabilistic thinking may be ½ * ½ = ¼ for getting RY and ½ * ½ = ¼ 
for getting YR and together this makes ¼ + ¼ = ½. Some people will say ½ because there are equal 
amounts of red and yellow pieces of candy. Others will say that the pieces of candy are either the 
same colour or two different colours and some will just say ½ and will give no reason. It is interesting 
to discuss these different ways of thinking and how to move further on from each of them. 
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Conclusion 
Working with teachers, it is my experience that learning probability and discussing ways of teaching 
probability at the same time is a good way. We have to create situations where it is possible to come 
up with “wrong answers”. If we do not give room for this, the students may close up and not want to 
join in. To use wrong answers as a resource, is also recommended by Afeltra et al., (2017). When we 
study how to collect the data and how to explain them in different ways, most teachers are interested 
and fascinated. From being afraid of teaching probability, they get curious and excited. By obtaining 
more experience with different probability situations my hope is that the topic will be less 
counterintuitive than it was at the outset. When the learners know what to look for and how to handle 
the most common probability problems, their intuitions will be strengthened. 

It is important to make a safe environment, and to look at “wrong answers” as not fully developed 
answers and as starting points for further work. We can also turn it upside down and ask, “What 
question may be asked to get this answer?” 
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Introduction 
Inference in statistics is one of the crucial issues to be explained as it refers to the process of making 
probabilistic statements about the entire population under scrutiny by only looking at a small part of 
it.  Inference has been studied among researchers and the students’ difficulties in understanding the 
procedures of inference and reasoning the inferential ideas is widely documented (e.g. Falk and 
Greenbaum, 1995). The abstract nature of inference with also the underlying complex and abstract 
concepts such as sample, population, and sampling distribution are documented to result in student 
difficulties (Bakker and Gravemeijer, 2004; Garfield and Ben-Zvi, 2008). These stubborn difficulties 
are persistent and also similar among students and adults. In the current study we use the proposed 
model for the logic of construction for representing the whole idea of statistical inference in the 
introductory statistics course. This model not only follows the steps in line with the suggestions of 
the literature (e.g., Bakker and Hoffmann, 2005) but also transcends the suggestions and carries the 
teaching and learning of inference further.  

Methodology 
In this study, we analyzed the way in which the logic of construction is explained in one prominent 
textbook of statistics for the undergraduate level. The book analyzed is the tenth edition of 
Introduction to the practice of statistics (Moore, D. S., McCabe, G. P., & Craig, B. A. (2016), Ninth 
Edition, Publisher: W. H. Freeman), hence assumed to be used one of the major books of introductory 
statistics. The textbook covers the inference mainly in one chapter (Chapter 6) which was taken as 
the content to be analyzed in this study. The steps of construction direction of inference are taken as 
default and the textbook is analyzed according to these subtended steps with the aim of understanding 
how the inference framework is being taught in this widely used textbook. The analysis of the content, 
namely the related chapter, results in a sequence of numbers in the order of appearance.  

Results 
The results of the content analysis can be seen in Figure 1. The axes of the plot seen in Figure 1 
represent the order of the steps of inference as appeared in the logic of construction (See Table 1). 
Hence if the book covers the steps in the very same way of the construction logic as presented in 
Table 1, this would yield 13 points on x and y-axes which are exactly on the line: y=x. Any deviation 
from this line is interesting to see how inference is taught in the book different than the proposed 
steps in the model. The numbers on the scatterplot denote the order of the corresponding step. For 
instance, the reader first is introduced with step 2a, then step 4a, and 5a, etc. (as expressed by the 
steps of the logic of construction). 
It can be seen in Figure 1 that the book covers the inference in a totally different direction, the order 
as stated by the steps of the model is: 2a, 4a, 5a, 1, 2b, 8, 4c, 7, 4b, 3a, and 5b. As it can also be 
observed from the Figure 1 the steps 3b and 6 are not covered at all. So the learner respectively reads 
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the following concepts or ideas through the chapter: random sampling, sampling distribution, 
estimating sample statistic, the meaning of population in context, random sampling and sample size, 
the meaning of amassed probability, normality  and characteristics of sampling distribution, the area 
under the distribution curve, sampling distribution to be a normal distribution emerged as the values 
estimated accumulate, each sample constituting the sampling distribution to contain the same number 
of observations, and the estimated sample statistic lands on the real line on which the probabilities 
are massed by the sampling distribution. 

 
Figure 1:  The order of steps of inference followed by the book 

Conclusion and Discussion. 
It can be seen in the result section that the crucial steps are not presented in the way the model 
suggests. The model suggests these steps for a better understanding of the statistical inference, which 
is in fact a difficult topic to understand. The reader of the book, who is also the learner, is being 
directed to the understanding of inference with some confusions. We believe starting from the random 
sampling idea, then sampling distributions, focusing on one sample and talking about the population 
is not the most efficient way of learning or teaching inference. Moreover, some steps (3b and 6 of the 
model) are missed totally. It is of great importance for students to comprehend the fact that same 
sized samples all would distribute different than the population, not only to understand the idea of 
sampling distribution but also that of inference. This step (step 3b of the model) could not be seen to 
be taught in the book. Besides, the step (step 6 of the model) of grasping that the estimate of the 
sample at hand would be separated from the center of the sampling distribution by a certain distance 
“d” was also not covered in the book. The difference between how the order of steps in the model 
and in the book are covered is worth consideration.. However, the book has a totally different order 
of teaching this topic. This different approach of the book is important to consider. However, a 
limitation of the current study is the analysis of only one chapter. We suggest the further research be 
conducted not only inclusion of all the related chapters but also for the other widely used statistics 
books. 
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This study explores the informal statistical inference (ISI) experiences through the graph 
construction of young children regarding the pictograph as one of the conventional data displays. 
Within a case study approach, interviews with 7 years-old children were conducted through a 
module including a task. The task designed here presents a statistical context structure which 
focuses on the eye colors observed in a class. Through forming a pictograph, children responded 
the questions in order to investigate their informal inferential reasoning ability. Findings revealed 
that young children’s graph construction experiences could be expressed as a construct of ISI. 
Besides, it was concluded that the integration of context with data helped their graph construction 
since they analyzed data within the context. 

Keywords: Statistics education, early childhood, informal inferential reasoning, pictograph 

Introduction 
There is a common understanding that statistical concepts can be developed from the beginning of 
early childhood education. As well as statistics education is a relatively newer issue for most of the 
school mathematics program worldwide (introduced during the 1990s in the US) (Friel, Curcio and 
Bright, 2001), it is even more newer for early mathematics classes. However, accepting the primary 
and middle school level students’ difficulties which they experienced with statistical concepts, 
statistics education is widely considered important. Suggested practice of statistics from the 
kindergarten to fourth grade level includes both descriptive and inferential statistics such as data 
collection, data organization, description of data, reading the data, interpretations of data displays 
(bar graph, pie charts, pictographs, line graphs, etc.) (Watson, 2018). Pictographs are one of data 
displays which young children are engaged in order to informally investigate data. However, 
inferential reasoning level is left mostly on the higher levels of education, and that makes the 
statistics education in lower grades as composed of only computations on some basic graphical 
representations (Makar & Rubin, 2009). However, according to Makar and Rubin (2009), there are 
lots of ways to introduce ISI and to develop the ISI abilities to young children as well, such as 
making predictions, or generalizations or providing a situation where young children can use 
probabilistic language.  

Informal statistical inference (ISI), or informal inferential reasoning (IIR) is a relatively newer 
concept, that is defined as “the way in which students use their informal statistical knowledge to 
make arguments to support inferences about unknown populations based on observed samples” 
(Zieffler, Garfield, Delmas & Reading, 2008, p. 44). They outlined the IIR framework as containing 
the following three main components: IIR includes (1) making inferences but not using formal 
statistical procedures, (2) using prior knowledge (formal knowledge of descriptive statistics, but 
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informal knowledge making inferences about different samples, use of statistical language) and, (3) 
using arguments, and making claims about populations while using the evidences gathered from 
samples belonging to those populations (Zieffler et al., 2008, p. 45). In fact, it could be claimed that 
inferential reasoning embraces an understanding of graph construction. This claim was reflected in 
the task design suggestions for researchers in order to study informal inferential reasoning as well 
(Zieffler et al., 2008).  

Based on the framework characterized by Zieffler et al. (2008), Makar and Rubin (2009) tried to 
“broaden accessibility to inferential reasoning with data” and they highlighted three key principles: 
(1) generalization beyond the data through making predictions, estimations, etc., (2) data usage as 
evidence in order to make generalizations; and (3) use of probabilistic language in order to explain 
the generalization drawn while being aware of the level of certainty (p. 85). Authors saw these three 
elements as observable abilities which comprises the informal inferential reasoning of young 
children.  

Makar and Rubin (2009) points to the findings regarding students’ incapability of making statistical 
inferences while constructing graphs. The graph construction concept as a construct was addressed 
as a part of graph comprehension and it was stated that graph construction was less-explained issue 
as compared to other constructs of graph comprehension (Friel et al., 2001). The graph 
comprehension highlighted by Friel et al. (2001) treats the data displays as “discovery tools” rather 
than focusing on the calculations of the data represented in the data display (p. 132). Therefore, the 
current situation of statistics education cannot be claimed to do so because of it is full of simple 
arithmetic calculations based on descriptive statistics such as mean, median, etc. This is also valid 
for early childhood level of education, since most of the activities regarding statistics asks questions 
like: “what is the most/least ….  observed?”, “what is the difference between the most and the least 
… observed?”, etc. Hence, such questions degraded statistics education to basic arithmetic and 
trivializes the significance of context in which answers to such questions could be meaningful only. 
Focusing on the context maybe the most distinguished property of statistical reasoning rather than 
mathematical reasoning. Therefore, serving statistical context-structures to young children is 
important so as to provide them with meaningful statistical inferences while staying in the context.  

There are some studies which focuses on the issue from other perspectives. For example, McPhee 
and Makar (2018) studied with young children in their studies in order to investigate statistical 
inscriptions they formed. Their approach can be evaluated as a problem solving since it begins with 
a problem and children were expected to make a data analysis based on inscriptions they formed at 
the end. They concluded that such kind of teaching approaches can be helpful for children in order 
to develop desired attitudes towards statistical thinking. Another study had a focus on data 
representations of primary level students (grade level 4) freely while using a catapult (Fitzallen, 
Watson, Wright & Duncan, 2018). The researchers present their study in a STEM context and hence 
they also offer an effective STEM activity which can be used in statistics education. Since the data 
representations observed during their study were diverse and mostly case-value plots, authors 
concluded that they couldn’t analyze the data. However, students who selected the frequency bar 
charts had the opportunity to see the data in an expected manner. This result strengthens the over-
emphasis on bar graphs (only in categorical variable) with a focus on calculations.  
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Here in this study, towards the graph construction, young children were aimed to experience with 
ISI while focusing on what data tells about beyond the basic calculations. My aim is to present also 
the ISI abilities of young children so as to claim that statistics education should not be based on the 
calculations from the very beginning. Since much exposure of basic descriptive statistics 
calculations in lower grades makes statistics education to be treated in a narrowed and limited 
understanding, it is currently suggested that foundations of statistical reasoning and ISI can be 
introduced to the young learners as well (Paparistodemou & Meletiou-Mavrotheris, 2008). 
Therefore, this study is significant that its findings would reveal the exploration of young children’s 
ISI experiences while constructing a pictograph and what we can learn from their experiences as 
researchers in order to better introduce them to ISI experiences. 

An important issue which was highlighted by Makar (2018) is the statistical context-structures. 
They are addressed as one of the core notions which young children need to experience in their 
kindergarten classes. She concluded that statistical context-structures are valuable for teachers while 
making them precautious about directing questions and emphasizing the informal statistical 
reasoning while leaving the formal statistical reasoning for the higher-grade levels for students. This 
suggestion from Makar (2018) in order to develop statistical reasoning abilities of young children is 
to present statistical context-structures instead of technological tools regarding their capabilities of 
using a dynamic software such as TinkerPlots. Hence, they can provide a learning environment 
which Konold and Pollatsek (2002) addressed as a new period of learning while offering an extra-
ordinary data analysis experience for students. As Makar and Rubin (2009) pointed out that such 
efforts are for understanding the beyond the data, which is aimed in fact for all levels of statistics 
education, not only beneath the data as it is done in early and primary mathematics classes, 
nowadays.   

With an emphasis on ISI of young children here, conventional graphs (pictographs) were selected in 
a pre-designed statistical context-structure. On the contrary to what is done regarding statistics 
education as currently, informal statistical reasoning should be addressed without moving away 
from the context and without making differentiations based on the grade level. Therefore, the main 
aim of this study is to explore these experiences of young children with ISI through graph 
construction in statistical context-structures.     

Methodology 
This study uses qualitative efforts to respond its research question and analyze the data. The design 
and the data collection period are based on the case study approach (Yin, 2017). The unit of 
analysis is each participant and then this study can be named as multiple-case study design. 
Through the convenient sampling, there were 7 children (3 girls and 4 boys) as participants who are 
7 years old in a private school. They were from two first grade classes and were chosen by their 
teachers, by paying attention to their talkativeness and sociability with a stranger.   

Main data collection tool is the interview. Each participant was interviewed nearly 15-20 minutes. 
Interview was voice-recorded and transcribed verbatim. During interview, a module designed by the 
researcher used in order to direct questions to the participants. These are the questions presenting a 
statistical context-structure which will help to explore the experiences of young children’s ISI 
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through graph construction. Through the module each participant was also expected to form a 
pictograph. During their graph construction, researcher read the questions in the module. At some 
moments of the interview, researcher took photographs which shows the graph representations of 
the participants during that moment. 

The module specifically presents a context of a class of a child named Ali. There are small colored 
movable pieces showing the eye color of each child in the class. Participant was expected to 
organize these onto the paper. In addition to the questions included in this module, which is shown 
below in Figure 1, researcher asked some further questions for example, “why did you organize in 
this way?”, “Is there any better way to organize them?”, etc. including the questions regarding 
descriptive statistics as well. The questions were generated according to the three principles which 
Makar and Rubin (2009) introduced and they were directed to the children without moving away 
from the context, which are eye colors observed in Ali’s class.  

 
Figure 1: The module used through interview  

Findings 
The aim of this study is to explore young children’s ISI during graph construction. All of the 
participants completed the module while keeping the context in mind. As a prior finding, it was 
observed that use of statistical context-structures in early childhood level of education helps 
children to think between the lines of context. Then, researcher observed the principles of ISI 
framed by Makar and Rubin (2009) from children’s module experiences.  

All of the seven children correctly gave responses regarding descriptive statistics namely the 
frequency or the sample size, through the questions related with the most or least seen eye color in 
Ali’s class, and the number of people in the class. This also strengthens the fact that their familiarity 
with such kind of frequency-based activities.    
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Regarding context, there were lots of talk about it. At the beginning of graph construction, 
participants asked to me how many eyes s/he should use for one person in Ali’s class. I directed the 
question “does a person have different eye colors or not?” and they decided to use one piece of eye 
label for each person. Real eye colors were also discussed. For example, 2 girls asked to me why I 
didn’t prepare hazel or honey-colored eye labels. They expected to see different blue eye labels. But 
they were the same since I prepared blue colored eye label in order to represent all real blue eye 
colors. This means that they were aware that blue eye color can be different from one person to 
another, in terms of color tone. This shows that they are in context and they could discuss the reality 
of phenomenon as well.   

Through the graph construction, I asked them to organize the eye colors seen in Ali’s class in order 
to easily realize the most and least one without counting them, for example. Their initial 
organizations were in Table 1 below. Four children properly formed the pictograph and they 
explained that they are grouping the eyes according to the colors in order to understand easily. 
Some of their explanations are as follows:  

Hira:  “We can make groups [according to color].” 

Derin:  “You can see which one is most and which is least in this way.” 

Although 3 of them (Kerem, Toprak and Emin) were not observed to form a proper pictograph 
initially, they used different groups of eye colors, they were mostly trying to put them in a pattern. 
Toprak’s representation, for example, shows a nice pattern which can be seen from Table 1.   

Table 1: Initial graph constructions of participants 

 

Then, I asked them secondarily to organize the eyes in a different way or in order to realize the least 
and most one easily. Their explanations are varying differently as in the following:  

Hira: “We can make a different organization, for example [she changed the direction of 
the cards.” (she rotated the labels 90 degrees.)  

Toprak 

Ada 

Derin 

 

 Kerem 
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Emin: “We can do a different graph. For example, we can put the numbers on the bars.” 

Poyraz:  “We can make a different graph, we can change the places of the bars, in 
descending order, for example.”  

Kerem and Emin grouped the eyes according to the colors and constructed a proper pictograph in 
their second trials, as can be seen from the following Table 2. When I asked whether we can do a 
different organization, they both realized making groups of same colors. Although, Toprak also 
grouped the eyes according to colors, he couldn’t represent them in an expected way. He used the 
bars in the same height and largened the width of the bars instead of extending the bars. Toprak, 
could not see different eye colors as to be comparable with each other. That is, he did not realize 
what a representation means or for what purpose it can be used. It can be said that he didn’t 
understand the idea of constructing a graph and its necessity.  

Table 2: Secondary graph constructions of Kerem, Emin and Toprak 

 

Regarding the first question in the module, participants tended to think about the eyes in the module 
in comparison to their real classes. At first, 2 of them thought that Ali, mentioned in the module, 
was real since they have a same-name classmate as well in their classes (Ali is a common name for 
boys). Some of them were trying to match the eyes with their friends. For example, Hira said that 
her class contains only one person whose eye color is blue. This can be explained that they tried to 
understand Ali’s situation while putting themselves in Ali’s place. At the end, participants were 
observed that they understood the context as ‘Ali’s class’ which is an imaginary one. That is, they 
could imagine Ali’s class as it should be. 

It could also be said that participants could grasp what these data tell them or not. All children could 
talk about Ali’s friends, such as ‘Ali has 5 friends who have green eyes.’ Before asking the third 
question in the module, they could talk about these descriptive properties of Ali’s class as a context.  

The task designed and used in this study could be said a nice example of a suitable one which can 
be presented to first graders. The context was attractive for them and they were observed as they 
were enjoying.   

Discussion 
This study showed that there is a necessity of being exposed to different statistical contexts through 
class activities. Based on the findings regarding the first question of the module, children were 
observed to making comparisons with their real-life situations in order to understand the context 

Kerem 

Emin 
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presented for them. This shows that they were not accustomed to such questions in which 
contextual thinking brought to be forefront. As Ben-Zvi and Aridor-Berger (2016) concluded in 
their study that children need different types of contexts through different class activities. They 
need to imagine about the context which they were presented.  

Regarding Makar and Rubin (2009)’s framework, it could be concluded that children could make 
sense of use of data as evidence and tried to make generalizations. The comparisons they made with 
their real classes strengthen this conclusion. For example, comparing the number of blue-eyed 
students in their class with Ali’s class, some of them said that Ali’s class has more than usual. They 
tried to think of the classes they have seen so far. In their school, there are two first grade classes 
and both class members are familiar with each other. It can also be said that the participants could 
analyze the data in the context (Ben-Zvi & Aridor-Berger, 2016). Therefore, the task used in this 
study shows a nice example of providing children to integrate data and context with each other.    

The role of graph construction as another construct of informal inferential reasoning can be seen 
very well here in this study. Almost of the participants could realize the need to see the categories 
(eye colors) in the given context comparatively. Therefore, they put the first eye labels of each color 
in a line (horizontally or vertically) as a reference line. They were aware that their representation 
showed only the comparisons of categories. Suggesting some ideas like putting numbers on each 
bar, or reversing the graph as upside down or from right to left showed that their understandings are 
clear for the meaning of representation. That is, they were focused only on what conclusions could 
be drawn from a data representation, the pictograph in this case. Only one child focused on the 
pattern which he saw and he couldn’t show the comparisons of categories although he responded 
correctly to the questions related descriptive statistics in the module. It might be because of his 
interest to the patterns with some objects.  

This study overall could be concluded as a contribution to the existing framework for ISI of young 
children through graph construction. It is explaining the graph construction as a construct with an 
informal inferential reasoning perspective. The findings outlined here could be concluded as a 
contribution to the existing suggestions of integrating the statistical context structures into early 
childhood mathematics education with the use of data. Lastly, the findings of this study give an 
opportunity to the researchers in order to criticize the current situation of statistics education which 
was outlined above in the first part of the paper. The overall conclusions might offer a chance to 
deal with the ISI in the very beginning of school period of students, as well. 
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This study investigated what is taught and learnt with regard to relations of confidence interval and 
sample size when students were facilitated to reason about the graph of sampling distribution of 
sample means. For this aim, a teaching experiment was designed and implemented by researchers 
and teachers in the model of co-learning inquiry. Based on anthropological theory of the didactic, the 
praxeological analysis was conducted. Observed similarities and differences between the taught and 
learnt praxeology were discussed. 

Keywords: Anthropological theory of the didactic, didactic transposition, confidence interval, 
sample size 

Introduction 
The concept of confidence interval is essential in inferential statistics. However, many students are in 
difficulty with understanding confidence interval (Hagtvedt et al., 2008). In particular, some research 
reported students’ confusing on the relationship between confidence interval and other related 
concepts such as sample size. For example, Fidler and Cumming (2005) disclosed students’ 
misconceptions that the width of confidence interval increases as sample size increases or is not 
affected by sample size. However, little research was carried on the teaching and learning of 
confidence interval (Pfannkuch et al., 2012). 

To understand confidence interval, sample size, and their relationships, opportunities should be given 
for students to engage in mathematical and statistical reasoning (delMas, 2004). This study 
investigated what is taught and learnt regarding relations between confidence interval and sample size 
when students were facilitated to reason about the sampling distribution of sample means (Chance et 
al., 2004). For this aim, a teaching experiment was conducted in an upper secondary classroom. The 
framework of the Anthropological Theory of the Didactic (ATD) was used in the analysis (Bosch & 
Gascón, 2014). This paper reports on some preliminary results of the analysis. 

Theoretical Background 
Anthropological Theory of the Didactic 

ATD is a theoretical approach characterized by its institutional perspective on mathematical 
knowledge. This view builds on the notion of didactic transposition (Chevallard & Bosch, 2014), 
which assumes that knowledge in classroom setting originates in the scholarly institution and is 
transformed as it adapts to different institutions. Bosch and Gascón (2014, p. 70) proposed four main 
institutions related to school didactic system (Figure 1). Our study focuses on the transposition 
between taught knowledge of teachers to learnt knowledge of students. 
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Figure 1: The didactic transposition process (Bosch & Gascón, 2014, p. 70) 

In ATD, mathematical activities within each institution are modeled by the notion of praxeology. A 
praxeology consists of four intertwined elements, type of tasks (𝑇𝑇), technique (𝜏𝜏), technology (𝜃𝜃), 
and theory (Θ). Type of tasks denotes similar problems which are solved with certain technique. The 
technique is produced, justified, explained, or reasoned by the discourse named technology, and the 
technology, in turn, is justified by theory. 

According to Bosch and Gascón (2014), researchers should take their own epistemological stance on 
the knowledge they address to avoid bias in the analysis. The stance is formulated as a Reference 
Epistemological Model (REM) and is expressed by a praxeology. We briefly introduce our REM on 
the concept of confidence interval below. 

REM on confidence interval 

The idea of confidence interval is founded on Frequentism, as opposed to Bayesianism (VanderPlas, 
2014). To the frequentist, a probability is defined as the relative frequency of occurrence of a 
repeatable event in the long run. In this sense, confidence intervals with 𝐶𝐶% confidence level mean 
that we would expect 𝐶𝐶 % of the confidence intervals under repeated sampling to contain the fixed 
value of the parameter. 

To illustrate the relationship between confidence interval and sample size, we further need another 
probability theory in our REM. The central limit theorem (Dekking et al., 2005, p. 197) implies that 
𝑋𝑋� ∽ 𝑁𝑁(μ, 𝛿𝛿

2

𝑛𝑛
) holds for the sample mean 𝑋𝑋�, the population mean μ, the (known) standard deviation of 

population 𝛿𝛿 , and sufficiently large sample size 𝑛𝑛 . From this property, we obtain a formula, 
𝑃𝑃 �−𝑧𝑧𝛼𝛼

2�
≤ 𝑋𝑋�−μ

𝛿𝛿/√𝑛𝑛
≤ 𝑧𝑧𝛼𝛼

2�
� =  1 − 𝛼𝛼,  where 𝑧𝑧𝛼𝛼

2�
is the (1 − 𝛼𝛼

2� )  quantile of the standard normal 

distribution. Behar and Yáñez (2009) introduced two logically equivalent versions of this formula: 

𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =  1 − 𝛼𝛼 ⋯ (1)     𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + 𝑑𝑑) =  1 − 𝛼𝛼 ⋯ (2) 

where 𝑑𝑑 = 𝑧𝑧𝛼𝛼
2�
𝛿𝛿
√𝑛𝑛

 refers to the margin of error. Formula (1) can be interpreted as the probability of 

the parameter μ being in the interval [𝑋𝑋� − 𝑑𝑑,𝑋𝑋� + d], called confidence interval, equals to 1 − 𝛼𝛼. 
Contrasting to formula (1), formula (2) represents that the probability of the sample mean 𝑋𝑋� being in 
the interval [μ − 𝑑𝑑, μ + d] equals to 1 − 𝛼𝛼. The probability theory shows that the probability of 𝑋𝑋� 
lying in the interval [μ − 𝑑𝑑, μ + d] is equal to the integral of probability density function of 𝑋𝑋� over 
the interval [μ − 𝑑𝑑, μ + d]  (Dekking et al., 2005, pp. 57-58). The aforementioned meanings of 
confidence interval, confidence level, and probability equations (1), (2) constitute the theory Θ in our 
REM. 

Building on the theory Θ, we can consider two techniques and their technology about the type of tasks 
of finding the relationship between the width of confidence interval and sample size. Based on the 
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formula (1), the first technique 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  refers to applying the equation 𝑙𝑙 = (𝑋𝑋� + 𝑑𝑑) − (𝑋𝑋� −
𝑑𝑑) = 2𝑧𝑧𝛼𝛼

2�
𝛿𝛿
√𝑛𝑛

, which is often found in curriculum materials (e.g. Lee et al., 2011, p. 181). By 

proportional reasoning (Post et al., 1988), which includes interpreting of the algebraic representation 
of proportionality (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), it is explained that the increasing sample size 𝑛𝑛 decreases width of 
confidence interval. Another technique 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ  can be found on the formula (2). 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ  refers to 
comparing the area under graphs of sampling distribution within [μ − 𝑑𝑑, μ + d] for different sample 
sizes. This technique requires justification by reasoning about statistical or probabilistic idea 
including “describing what a sampling distribution would look like for different sample sizes based 
on shape” (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1) and “interpreting areas under the sampling distribution curve as probability 
statements about sample means”. (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2) (Chance et al., 2004, p. 301). Also, the explanation about 
relations between [μ − 𝑑𝑑, μ + d] and confidence interval is included in the technology (Behar & 
Yáñez, 2009) (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3). These kinds of technology should be integrated to justify 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ as follows. 
Since the spread of sampling distribution decreases as sample size increases, the margin of error 𝑑𝑑 
satisfying the area under the sampling distribution over [μ − 𝑑𝑑, μ + 𝑑𝑑]  equals to 1 − 𝛼𝛼  become 
smaller as sample size increases and, accordingly, confidence interval [𝑋𝑋� − 𝑑𝑑,𝑋𝑋� + d]  become 
narrower as sample size increases. 

Method 

This study is qualitative research performed through a case study of a designed teaching experiment 
(Yin, 2014). We choose our design-based research methodology based on the model of co-learning 
inquiry (Jaworski, 2004). In this model, teachers are treated as partners of researchers rather than 
passive participants of research, and teachers and researchers collaboratively design, implement, and 
evaluate lessons in the iterative process. The main power of co-learning inquiry model is that the 
result of the research can contribute to “sustainable new practices” of teachers, since “teachers engage 
in their own purposeful activity” in this model (ibid., p. 19).  

Participants in this study were a high school teacher from a public upper secondary school in Korea 
and his 35 students. Around the topic of statistical inference, five lessons were designed and 
implemented. Audio and video recordings of the lessons and students’ worksheets were collected. 

In this study, we analyzed the last lesson of which learning objective was to understand the relations 
among confidence interval, confidence level, and sample size. We emphasize that students were 
encouraged to use graphs of sampling distribution to explain these relations. The collected data were 
analyzed by praxeological analysis (Bosch & Gascón, 2014). The focus of the analysis was on the 
didactic transposition between taught knowledge to learnt knowledge about relations between 
confidence interval and sample size. Based on our elaborated REM on confidence interval (Table 1), 
we analyzed the four elements of the taught and learnt praxeology and revealed their similarities and 
differences. The designed activities were interpreted as type of tasks in ATD sense. The teacher’s 
utterance and the teaching materials were mainly analyzed to figure out the other components of the 
taught praxeology. On the other hand, worksheets of students and their audio recordings were 
analyzed to find out the learnt praxeology. In particular, students’ answers on the following task were 
analyzed to describe technique, technology, and theory parts of the learnt praxeology: Consider three 
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confidence intervals with 90% of confidence level. Size of each sample is 4, 25, and 100. Array these 
intervals according to their width. Explain your answer using sampling distributions.  

Type of tasks 𝑇𝑇 : To find the relations between the width of confidence interval and sample size 

Technique 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎: To apply 𝑙𝑙= 2𝑧𝑧𝛼𝛼
2�
𝛿𝛿
√𝑛𝑛

  (Lee et al., 2011, p. 181) 

𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ: To compare the area under graphs of sampling distribution function within 
[μ − 𝑑𝑑, μ + d] for different sample sizes 

Technology 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (for 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎): Proportional reasoning (Post et al., 1988) 

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1 (for 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ): Reasoning about the impact of sample size on graphs of 
sampling distribution (Chance et al., 2004) 

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2  (for 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ ): Graphical interpretation of probability statements about 
sample means (Chance et al., 2004) 

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3  (for 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ ): Explanation about relations between [μ − 𝑑𝑑, μ + 𝑑𝑑]  and 
confidence interval (Behar & Yáñez, 2009) 

Theory Θ: The meaning of confidence interval and confidence level (VanderPlas, 2014); 
the meaning of 𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =  1 − 𝛼𝛼  and 𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + 𝑑𝑑) =
 1 − 𝛼𝛼 (Behar & Yáñez, 2009) 

Table 1: REM on confidence interval 

Result 
What is taught? 

Two taught praxeology ℘1, ℘2 were revealed in the lesson. The components of ℘1 are summarized 
in Table 2. 

Type of tasks Empty 

Technique Empty 

Technology Graphical interpretation of probability statements about sample means (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2) 

Explanation about relations between [μ − 𝑑𝑑, μ + 𝑑𝑑]  and confidence interval 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3) 

Theory The meaning of confidence interval with confidence level; The meaning of 
𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =  1 − 𝛼𝛼 and 𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + 𝑑𝑑) =  1 − 𝛼𝛼 (Θ) 

Table 2: Components of the taught praxeology ℘𝟏𝟏 

℘1 was a local know-how which consisted of only technology and theory parts. The theory part of ℘1 
included the meaning of probability statements of sample means, 𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) = 0.95 
and 𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + d) = 0.95.  The meaning of each statement together with confidence 
interval and confidence level was explained by the teacher in the sense of Frequentism. 
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Teacher:  As you can see, among 100 confidence intervals, only 5 do not contain and the other 
95 contain (the population mean). … It means that the level of confidence is 95%. 

Grounded on the meaning of probability, the relations between [μ − 𝑑𝑑, μ + 𝑑𝑑]  and confidence 
interval [𝑋𝑋� − 𝑑𝑑,𝑋𝑋� + d]  were explained. Graphic representation of the probability statements 
𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =  0.95 and 𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + d) =  0.95 was used with the explanation.  

Teacher:  Here’s the summary. The probability of 𝑋𝑋� being contained between μ − 𝑑𝑑 and μ +
d is equivalent to the probability of population mean contained in this one ([𝑋𝑋� −
𝑑𝑑,𝑋𝑋� + d]). [PowerPoint slides that teacher used with this explanation. Numbers in 
slides were chosen from an exercise without contextual meanings.] 

 
Although the technology and theory part of ℘1 ground the robust foundation for its potential practice, 
this praxeology was ‘in a vacuum’ in that “what kind of problems it can help to solve” is not known 
(Barbé et al., 2005, p. 237). 

Table 3 describes components of another taught praxeology ℘𝟐𝟐. 

Type of tasks To compare the probability of sample mean being in a given range when graphs of 
sampling distribution with different (hidden) sample sizes are given 

Technique To compare the shape of graphs and area under graphs of sampling distribution 
within a given range (𝜏𝜏′𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ) 

Technology Reasoning about the impact of sample size on graphs of sampling distribution 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1) 

Graphical interpretation of probability statements about sample means (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2 ) 

Theory Empty 

Table 3: Components of the taught praxeology ℘𝟐𝟐 

℘2 was organized around a type of tasks, to compare the probability of sample mean being in a given 
range when graphs of sampling distribution with hidden sample size (4, 25, 100) are given. The 
technique 𝜏𝜏′𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ of ℘2 consisted of two subsequent sub-techniques. The first sub-technique was to 
compare the shape of sampling distribution function to figure out hidden sample sizes. This 
sub-technique was justified by the technology 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1, which was the discourse about the impact of 
sample size on graphs of sampling distribution. The following sub-technique was to compare the area 
under the graphs of sampling distribution. This sub-technique required interpreting areas under the 
sampling distribution curve as probability statements about sample means (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2). 
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One may note that the technique 𝜏𝜏′𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ  is slightly different from 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ  in that 𝜏𝜏′𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ  did not 
require the explanation about confidence interval. Hence, the technology and theory related to the 
concept of confidence interval were missing in ℘2. The theory about probability sentences was also 
void in ℘2, which made the theory part of ℘2 empty. 

What is learnt? 

The praxeology of the taught and learnt praxeology are summarized in Table 4.  

 Taught praxeology (℘1, ℘2) Learnt praxeology 

Type of 
tasks 

- To compare the probability of sample 
mean being in a given range (℘2) 

- To find the relations between the width 
of confidence interval and sample size  

Technique  - To apply 𝑙𝑙= 2𝑧𝑧𝛼𝛼
2�
𝛿𝛿
√𝑛𝑛

  (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 8%) 

- To compare the shape of graphs and 
area under graphs of sampling 
distribution within a given range 
(𝜏𝜏′𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,℘2) 

- To compare the area under graphs of 
sampling distribution within [μ − 𝑑𝑑, μ +
d]  for different sample sizes  (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ , 
85%) 

Technology  - Proportional Reasoning (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 8%) 

- Reasoning about the impact of sample 
size on graphs of sampling distribution 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1,℘2) 

- Reasoning about the impact of sample 
size on graphs of sampling distribution 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1, 85%) 

- Graphical interpretation of 
probability statements about sample 
means (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2, ℘1, ℘2) 

- Graphical interpretation of probability 
statements about sample means 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2, 48%) 

- Explanation about relations between 
[μ − 𝑑𝑑, μ + 𝑑𝑑] and confidence interval 
(𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3,℘1) 

 

Theory - The meaning of confidence interval 
with confidence level; The meaning of 
𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =  1 − 𝛼𝛼  and 
𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + 𝑑𝑑) =  1 − 𝛼𝛼  
(Θ,℘1) 

Empty 

Table 4: Components of the taught and learnt praxeology 

Although the taught praxeology ℘1 and ℘2 did not contain 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as a technique, some students 
(8%) used 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to explain the relationship between the width of confidence interval and sample 
size. For example, a student explained that his technique 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was justified “since the width of 
confidence interval equals to 2 × 𝑎𝑎 × 𝛿𝛿

√𝑛𝑛
, the width becomes smaller as 𝑛𝑛 increases”. This kind of 

justification corresponds to proportional reasoning 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 
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Excluding non-replied answers, remaining 30 students (85%) applied 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ. However, their 
technology differed in degree (Figure 2). 13 students (37%) only relied on the reasoning about the 
impact of sample size on the shape of sampling distribution (𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1). The other 17 students (48%) 
could integrate 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1 with 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2 when they justified their technique. These two technological 
elements were also found in the taught praxeology ℘2 . However, 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3 , which was another 
technological element of the taught praxeology ℘1, was missing in the learnt praxeology even though 
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3 was essential to fully justify technique 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ of the learnt praxeology. 

 

[Sampling distribution of the sample means is more spread out with the smaller sample size (left)] 

Figure 2: Examples of 𝝉𝝉𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 with 𝜽𝜽𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,𝟏𝟏(left) and 𝝉𝝉𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 with 𝜽𝜽𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,𝟏𝟏 and 𝜽𝜽𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈,𝟐𝟐 (right) 

The meaning of confidence interval and confidence level (in the sense of Frequentism) was implicit 
in students’ worksheets or in their dialogues. Moreover, the expression 𝑃𝑃(𝑋𝑋� − 𝑑𝑑 ≤ μ ≤ 𝑋𝑋� + d) =
 1 − 𝛼𝛼 or 𝑃𝑃(μ − 𝑑𝑑 ≤ 𝑋𝑋� ≤ μ + 𝑑𝑑) =  1 − 𝛼𝛼 was hardly dealt with in students works, which leads to 
the theory part of learnt praxeology lacking the meaning of those expressions. 

Discussion 
In this study, we analyzed what is taught and learnt in a didactic setting which encouraged reasoning 
about sampling distribution. Some notable similarities and differences between them were observed.  

Firstly, technology 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1  and 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2  were both taught and learnt in the classroom setting. 
Agreeing with Chance et al. (2004, p. 300) that 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,1 and 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,2 are kinds of reasoning “students 
should be able to do with their knowledge of sampling distributions”, we argue that essential 
reasoning about sampling distribution could be integrated in the teaching of relationships between 
confidence interval and sample size. Furthermore, this kind of reasoning would contribute to the 
understanding of the relationship between confidence interval and sample size since the notion of 
sampling distribution and its representation are closely related with each of those concepts. 

Secondly, 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3 as well as theory underneath it were found in the taught praxeology but were 
entirely implicit in the learnt praxeology. These technology and theory were only contained in the 
local know-how ℘1. Similar phenomenon was also appeared at Barbé et al. (2005) in the case of 
teaching of limits of functions. We infer that the reason of the incongruity between the taught and 
learnt praxeology was partly because the related practice of the taught praxeology ℘1 was unknown. 
Hence, we expect that another taught praxeology with a concrete task whose technique is justified by  
𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ,3 and its theory would derive more strict discourse in learnt praxeology. 

Finally, 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 with 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was not taught but learnt in this lesson. This result shows the potential 
that diverse techniques, including 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ, could be employed in the activity of searching 
relations between confidence interval and sample size. Discussing different techniques and their 
technology, different local praxeology of students could be connected and integrated into regional 
praxeology (Bosch & Gascón, 2014). 
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Prospective high school teachers’ interpretation of hypothesis tests and 
confidence intervals 
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This research aims to assess the interpretation of results by prospective high-school teachers when 
performing hypothesis tests and confidence intervals. The responses given by 73 prospective 
Spanish teachers to an open problem from the university entrance tests were analyzed. Although the 
majority of participants correctly performed many of the steps in both procedures, only a 
proportion of them were able to interpret and contextualize the results. The obtained results show 
that prospective teachers need to be prepared for this topic in order to develop inferential 
reasoning in their students. 

 Keywords: Hypothesis tests, confidence intervals, content knowledge, prospective teachers. 

Introduction 
Statistical inference plays a prominent role in human science research and it is a subject covered in 
the Spanish high-school curriculum (MECD, 2015) as well as in university entrance exams, which 
have included an inference problem for each of the last 15 years (López-Martín, Batanero, Díaz-
Batanero, & Gea, 2016). This topic is not easy, as shown by research describing the errors that 
students make (Castro Sotos, Vanhoof, den Nororgate, & Onghena, 2007; Makar & Rubin, 2018). 
Improving understanding and application of the topic involves adequate preparation for the teachers 
who are responsible for teaching it; this point has barely been considered in previous research 
(Harradine, Batanero, & Rossman, 2011, Makar & Rubin, 2018). The aim of this study is to 
complement previous research by analysing the results interpretation of simple statistical tests and 
confidence intervals carried out by prospective teachers. The interpretation of statistical data and 
results is suggested in the high school Spanish curriculum (MECD, 2015). 

Previous research 
Previous statistical test research has reported on interpreting errors regarding the α significance 
level and the p-value, where students change the two conditional probability terms in their 
definition (Falk & Greenbaum, 1985), or interpret these concept levels as the probability of being 
wrong when rejecting the null hypothesis (Vallecillos, 1999). Other conspicuous errors include: the 
role played by the null and alternative hypotheses (Batanero, 2000), confusion between unilateral 
and bilateral tests, defining hypotheses that do not cover the parametric space, and using the sample 
statistic instead of the population parameter to define the hypotheses (Vallecillos, 1999; Vera, Díaz, 
& Batanero, 2011). In regards to confidence intervals, students ignore their inferential character 
(Behar, 2001; Olivo, 2008) or misinterpret the relationship between the different factors influencing 
the width of the confidence interval (Cumming & Fidler, 2005).  

Some research work focusing on teachers’ understanding of inference suggests that certain teachers 
share the same misconceptions as the students. Haller and Krauss (2002) describe errors in 
understanding the significance level and p-values, as was the case with some prospective teachers 
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taking part in the Vallecillos research. After interviewing 8 high-school statistics teachers, Liu and 
Thompson (2009) suggested that they seemed not to understand the purpose of statistical tests as 
mechanisms for carrying out statistical inference. They also found that the teachers’ conception of 
probability was not grounded in the concept of sampling distribution being the fraction of time that 
a statistic’s value is within a particular range. While recent research studies have attempted to 
organise teachers’ education in terms of informal inferential reasoning, some of them (e.g. Dolor & 
Kirin, 2018) suggest that prospective teachers use incorrect strategies to compute p-values in re-
sampling and simulation approaches; although they also suggest that adequate training may improve 
these strategies. 

Nowadays, statistical interpretation is considered a complex process involving cognitive, affective 
and technical aspects (Queiroz, Monteiro, Carvalho, & François, 2017). Wild and Pfannkuch (1999) 
included the integration of statistics and contexts (that is to say, results interpretation) as part of 
their statistical thinking model. Monteiro (2005) developed the idea of critical sense during the 
interpretation of statistical graphs, which includes mathematical knowledge, contextual references, 
affect and personal experiences related to the data. In this work, we analyse prospective teachers’ 
interpretations of the hypothesis test and confidence interval.  

Method 
The sample group was made up of 73 students on a Master's Degree course that is compulsory for 
those who intend to become high-school mathematics teachers in Spain. Of these, 56% were 
graduates in Mathematics or Statistics while the remainder had completed undergraduate studies in 
Engineering, Architecture or Science. All of them had taken some statistics courses during their 
undergraduate studies and 57% had some teaching experience. Most of participants recognized that 
the methodology used focused on teaching procedures rather than the use of technology. The 
assessment was part of an activity aimed at developing the participants’ content knowledge of 
inference. The participants worked on authentic data obtained from the United Nations. In this 
paper, we analysed the participants’ solutions to the following problem. 

Problem: The average life expectancy in a study developed by the United Nations is 69.2 years 
with a standard deviation 10. In a random sample of 16 European countries, the average life 
expectancy was 78 years. Assuming that the life expectancy follows the normal distribution: 
 a) Propose and interpret a hypothesis test, with a level of significance of 5%, to analyse if the 
average life expectancy in Europe is higher than that obtained in the whole set of countries; 
 b) Determine and interpret a 95% confidence interval for average life expectancy in European 
countries.  

We performed a qualitative analysis on the written solutions to the problem in order to classify the 
responses into different categories, starting with previous research and refining the categories 
through a cyclic and inductive process; this is typical of qualitative research. Below, we first 
summarise the general performance in each part of the problem using a numerical score, and then 
we analyse the participants’ interpretation of the research for each procedure in detail. 

Results 
General performance in solving the problems 
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The solution to part a) involved a unilateral hypothesis test on the average of a normal population 
with a known variance; this is an element included in the compulsory examination to become a 
high-school mathematics teachers as well as in the curricular guidelines for high-school and 
university entrance examinations in Spain. By analysing the participants’ answers, we examined the 
prospective teachers’ knowledge of the following points: a) the way they established the test 
hypotheses; b) whether the problem-solving procedure employed was consistent with the 
hypotheses proposed; c) the computation of the p-value; d) other possible errors in the procedure 
not listed yet; and e) the interpretation of the results. In order to graduate the prospective teacher’s 
knowledge about the hypothesis contrast, we have marked each participants with a score according 
to the number of correct answers. This score would be from 0 to 5 points, one point for each correct 
answer (Figure 1). 

Most prospective teachers were able to correctly develop three or more steps, although 6 
participants incorrectly developed all the stages in part a) of the problem. Although 67% of the 
students set correct hypotheses, only 4% selected a test that was consistent with the hypotheses. We 
would like to point out that only 51 participants computed the p-value, and some of them made 
errors in either the computation or in other parts of the procedure. Only 38.4% of participants 
correctly interpreted and contextualised the results. 

  
Figure 1. Percentage and cumulative percentage of participants according to the number of correct 

steps in performing a hypothesis test 

The solution to part b) involved a confidence interval for the average of a normal population with a 
known variance. By analyzing the participants’ answers, we examined the prospective teachers’ 
knowledge of the following points: a) the way they established the interval; b) whether the problem-
solving procedure they followed was correct and c) the interpretation of the results. By awarding a 
point to each of these parts of the hypothesis test solution, participants could score from 0 to 3 
points (Figure 2). We observed that 46.6% of them correctly solved two of the stages (85% 
developed points a) and b) whilst the rest developed points a) and c)) and 16 prospective teachers 
gave correct answers for all the parts.  

In summary, these results suggest a moderate knowledge of statistical tests and confidence intervals 
on the part of teachers in our sample, which is a matter of concern, given that these teachers have to 
prepare their students in this topic to face the entrance to university tests where an inference 
problem is included every year. 
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Below we analyse in depth the final interpretation that prospective teachers perform in each part of 
the problem, that is, the way they interpret the results of the test and that of confidence interval. 

  

Figure 2. Percentage and cumulative percentage of participants according to the number of correct 
steps in computing a confidence interval  

Interpreting statistical tests 

Once the calculations were completed, we expected participants to conclude that the result in part a) 
was statistically significant and that the null hypothesis should be rejected. When contextualizing 
this result, the conclusion was that we should reject the hypothesis that the average life expectancy 
in Europe is the same (or smaller) than that in the group of countries. By taking into account the 
correctness of the decision and the contextualization made, we defined the following categories: 

C1. Correct decision and contextualization. Prospective teachers made an appropriate decision and 
related the result to the problem’s context, as in the following example:  

GPF:  When comparing the small p-value with the significance level of α=0.05, it is 
reasonable to reject the null hypothesis and conclude that life expectancy in 
Europe is higher than in the set of countries. 

C2. Correct decision and contextualization but the p-value is interpreted as the probability of the 
hypothesis. Although the decision and contextualization were correct, there was an incorrect 
interpretation of the p-value, which concluded that the null hypothesis was probably correct, such as 
in BCM’s answer.  

BCM:  In summary, the average life expectancy in Europe is higher than the average life 
expectancy in the set of countries, with a probability equal to 0.9998. 

C3. Correct decision and contextualization, assuming that the null hypothesis is false. Although the 
decision and contextualization were correct, there was a deterministic conception of the result that 
assumed the null hypothesis to be false; an error described by Inzunsa and Jiménez (2013) and 
Vallecillos (1994): 

ALP:  […] we conclude that the null hypothesis is false, so we accept that the average 
life expectancy in Europe is higher than the average life expectancy in the set of 
countries with a probability significance level of 0.05. 

C4. Correct decision with inconsistent contextualization (see the response by ILG): 
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ILG:  We reject the null hypothesis so the average in Europe cannot be higher than that 
in the set of countries. 

In the following categories, the students made a correct decision with no contextualization (C5; see 
the response by AGS), explaining how to make the decision (but with no decision being made) and 
either by contextualising (C6) or not contextualising (C7), made an incorrect decision (C8; see the 
response by JGM) or did not make a decision (C9): 

AGS: […] for Z=3.52, we get 0.99998; by subtracting this from 1, we obtain a 
probability of 0.0002 and, therefore, reject the hypothesis. 

JGM:  H0= the average life expectancy in Europe is greater than the average life 
expectancy in the rest of the countries. [76.78; 79.23]. H0 →Not rejected, since 
the average value for the set of countries is below the values of the confidence 
interval for a confidence level of 95% for the sample of European countries. 

In Table 1, we present the participants’ interpretation of the statistical tests, where less than 40% 
made the right decision and contextualized the problem; nonetheless, 86.2% made the right 
decision. The remaining participants either did not make a conclusion or decided incorrectly. Some 
showed that they misunderstood the hypothesis tests; for example, assuming that the p-value 
indicated that the null hypothesis was probably true or holding a deterministic view of the results. 

Code Interpreting the results Frequency Percentage 

C1 Correct decision and contextualization 28 38.3 

C2 Correct, interpret p-value as the probability of the hypothesis 3 4.1 

C3 Correct, assuming that the null hypothesis is false 2 2.7 

C4 Correct, no appropriate contextualization 6 8.2 

C5 Correct, does not contextualise 24 32.9 

C6 Describing how to make the decision and contextualising 1 1.4 

C7 Describing how to make the decision and not contextualising 7 9.6 

C8 Incorrect decision 1 1.4 

C9 Making no decision 1 1.4 

Table 1: Frequency and percentage of participants according interpretation of statistical tests 

Interpreting the confidence interval. 

Once the confidence interval extremes were computed, we expected the prospective teachers to 
provide an interpretation such as follows: For a 95% confidence interval computed from 16 sample 
elements, in about 95 of them, the average life expectancy in European countries would be 
included; that is to say, they should have interpreted the interval extremes as being random 
variables (Behar, 2001; Olivo, 2008). We found the following response categories: 
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C1. Correct interpretation. Here, we classified the correct responses given above, and variations of 
the same, along with those that indicated the percentage of intervals computed from different 
samples that included the parameter (Behar, 2001); see CBF’s answer: 

CBF: […] this is the probability that a number of intervals cover the parameter, not that 
the parameter is included in the actual interval.  

C2. Determinist interpretation. When the participant interprets the interval in a deterministic way, 
they do not appreciate the randomness of the extremes (Olivo, 2008):  

DAM: This means that the average life expectancy in European countries is between 73 
and 83. 

C3. Interpreting the confidence level as the probability that the parameter is included in the 
interval. The confidence level is interpreted as the probability that the population parameter is 
within the range obtained. Authors like Behar (2001) and Olivo (2008) have analysed this 
misunderstanding: 

LUG: You can conclude that the probability that the population average is included in 
the interval is 95%. 

C4. Assuming that the sample average is included in the interval. Another mistake is interpreting 
that the confidence interval includes the sample average instead of the population average, which 
also signifies confusion between the statistics and the parameter: 

JGM: 95% of intervals computed from samples of European countries will include the 
sample mean. 

The results are presented in Table 2, where the participants’ difficulty in interpreting the confidence 
interval information is evident. Only around 30% gave a correct interpretation whilst the majority 
were unable to provide an interpretation, and the remaining participants either interpreted the 
confidence intervals in a deterministic way or reproduced one of the errors described in previous 
research. 

Code Interpreting the results Frequency Percentage 
C1 Correct interpretation 21 28,8 
C2 Deterministic interpretation 8 11,0 
C3 Interpreting  1 − 𝛼𝛼 as the probability that the parameter is 

included in the interval 
13 17,8 

C4 Assuming that the sample average is included in the interval 1 1,4 
C5 Do not interpret 30 41,1 

Table 2. Frequency and percentage of participants according interpretation of confidence intervals 

Implications for teaching and research 
Our results suggest a need to improve the education of prospective Spanish high-school teachers in 
terms of teaching statistical inference. On the one hand, few in the sample group correctly 
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performed all the steps for solving the statistical tests or the confidence interval, even when the 
problem posed was similar to those included in the Spanish university entrance tests. 

Similar to previous research, many were unable to properly interpret the results of the procedure, 
made incorrect decisions in the statistical tests or gave responses that reproduced different errors, h. 
Although many made correct decisions in the statistical test, few interpreted the result in the context 
of the problem - this is worrisome because teachers are expected to develop their students’ ability to 
interpret statistical studies; for example, one learning goal in the curriculum (MECD, 2015, pp. 398 
and 407) is: “To interpret a statistical study based on situations close to the student.”  

Therefore, in addition to improving prospective teachers’ mathematical knowledge of inference, it 
is necessary to prepare them to be able to contextualize the information resulting from statistical 
tests and confidence intervals so that they can help their future students acquire this interpretative 
capacity. Of course, mathematical knowledge alone is not enough for teaching success. It is 
necessary to continue this analytical research into pedagogical knowledge regarding statistical 
inference. In this regard, several studies have shown that an informal approach to statistical 
inference could help in understanding the logic involved and improve the teaching process. We 
hope these questions will interest teacher trainers and other researchers in statistical education, and 
that we can ensure the good mathematical and didactic training of high-school teachers so that they 
can successfully teach statistical inference to their future students. 

Project EDU2016-74848-P (AEI, FEDER) and group FQM126 (Junta de Andalucía). 
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We report some evidences of an ongoing research on covariational reasoning with high school 
students concerned with the design and application of a Hypothetical Learning Trajectory (HLT) on 
problems of correlation and linear regression, as well as the role played by technology (Fathom) 
employed in the learning process. We observed student’s performance was slightly better when 
using the software in the instructional sequence, such as identifying and using the correlation 
strength and elaborating more refined arguments when comparing their own estimated model 
against the least squares line. 

Keywords: Covariational reasoning, linear regression and correlation, high school, Fathom 

Context and research question 
Research by psychologists and statistical educators have produced extensive and robust knowledge 
about students’ covariational reasoning; for example, Zieffler and Garfield (2009, p. 11) 
summarized the general research findings in six statements: students are often, 1) significantly 
influenced by their personal beliefs with respect to their covariational judgments; 2) prone to 
believe that correlation exists where there’s actually none; 3) only considering data that support the 
joint presence of variables but ignore those referring to joint absence of variables; 4) greatly 
challenged to grasp negative correlation than dealing with a positive one; 5) disposed to make 
estimates below the actual correlation’s strength; and 6), susceptible to imply causal relationships 
when dealing with covariation tasks. In contrast, it’s more difficult to find research reports on how 
to produce progressive changes in students’ covariational reasoning as a result of teaching 
interventions in classroom, including why such changes would occur. In a recent literature review 
performed by the authors during the past 10 years, only five reports were found that include 
teaching interventions, two of which were carried out with tertiary level students (Inzunza, 2016, 
McLaren, 2012), two at high school level (Gil & Gibbs, 2017; Dierdorp, Bakker, Eijkelhof & van 
Maanen, 2011) and one at elementary level (Fitzallen, 2012). Such amount of investigations that 
report on the effects of instruction in students' covariational reasoning reflect Shaughnessy and 
others’ recommendations for future statistical educational research, who highlighted the need to 
carry out teaching experiments and document the effects of instruction. On the other hand, 
regarding research on the development of scientific thinking, students’ covariational reasoning has 
been widely investigated at the elementary and middle school levels (Zimmerman, 2007) but rarely 
at the high school level (even considering replica with adult subjects); in addition, the attended 
statistical content in most of these studies is mainly restricted to the association between qualitative 
variables. Thus, the results of our research aim to strengthen the body of knowledge on 
covariational reasoning within this particular trend. 
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In Mexico, the topic of numerical bivariate data, correlation and line of better fit is prescribed for 
most high school curricula, in which is common to find the use of dynamic statistical technology 
tools (e.g., Excel or Fathom) as a resource that could play a fundamental role in producing 
progressive changes in students' reasoning; in particular, technology can help promote covariational 
reasoning because it allows students to optimize the time it takes to make a graph and relieves the 
burden of making complex calculations. Given this context, the purpose of this study is to identify 
patterns in students’ reasoning emerged from the implementation of a developing hypothetical 
learning trajectory about linear regression and correlation; we propose a research question 
consistent with the following analysis strategy: to determine and compare reasoning patterns with 
some previously detected in an exploratory-diagnostic study where no teaching intervention was 
performed. Therefore, the new progressive patterns provide cues to the achievements gained during 
the new teaching strategy, so that our research question becomes: What reasoning patterns emerge 
in students’ solutions to problems of correlation and line of best fit during and as a result of student 
participation in a learning trajectory that includes extensive use of Fathom? 

Conceptual framework 
We rely on three fundamental ideas: (1) covariational reasoning, (2) the notion of aggregate, and 
(3) the mechanism of a hypothetical learning trajectory. Covariational reasoning is characterized as 
thinking process carried out by the subjects related to judgments and interpretations about the 
relationship that exists between two variables. Carlson, Jacobs, Coe, Larsen & Hsu (2002) indicate 
that covariational reasoning is defined as the cognitive activities included in the coordination of two 
quantitative variables while attending to the ways in which they change one with respect to the 
other; this type of reasoning also entails understanding many features of variation in which variation 
with respect to the linear fit model is highlighted. Some studies discuss the modeling of variation 
and the importance of considering both explained and unexplained variation when data is explored; 
these two characteristics of variation are of particular interest in the study of the linear regression 
between two quantitative variables because the isolation and modeling of aspects of variation 
allows to carry out predictions, explanations and control, as well as to question why variation 
occurs resulting in the search for its causes. 

In a linear regression and correlation context, the notion of aggregate is related to the form in which 
learners perceive a bi-variate data set through its representation in a scatterplot, and it’s also related 
with the objectives of interpreting the possible relation that exists between the variables that 
generate the data, propose a linear model that best fits the data and estimate new values for the 
response variable within the available data set. Bakker (2004) and Dierdrop et al. (2011) highlighted 
the importance of such notion in students’ learning process since it allows for drawing conclusions 
about regression and correlation given that it is through this reasoning that one can identify trends 
that extend beyond the correlated data; that is, to assume the notion of aggregate as to set a structure 
opposed to the attributes that could be addressed to aisled data points. 

Finally, the notion of an HLT was introduced by Simon (1995) as an essential component of a 
constructivist teaching and learning posture. The mechanism involves the selection and dynamic 
interaction between three main components: learning objectives, a set of mathematical tasks, and 
the associated learning hypotheses as a prediction of students’ actions and reasoning in response to 
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the activities. We intend to employ such mechanism in our research both as a device for planning 
didactic interventions as well as a research vehicle, which requires a cycling revisiting of the three 
mentioned elements grounded in students’ practices and reasoning patterns. 

Method 
The previous study, constructing the HLT. Learning activities of the HLT are based on a 
questionnaire applied in 2016 to two groups of high school students enrolled in their senior year 
(17-18 years) in a public school; a total of 96 students participated in the study (Medina, Olay & 
Sánchez, 2016). From the analysis carried out in this exploratory test, students’ responses to the 
problems (described up next) exhibited the following main learning obstacles: 

· Students do not assume the data set as a whole, as an aggregate with its own properties, but 
as isolated cases with independent ones; to draw a line of best fit, they do not consider the 
variation that exists between the data and the position the model should have, and tend to 
only consider some points of the data available (such as the first and last ones, or the highest 
and lowest values of the set). 

· The idea of creating a diagram to represent the bivariate data does not arise intuitively; 
students don’t clearly identify properties such as the intensity of the relationship between the 
variables nor the meaning of the data pairs; and when facing prediction problems, do not use 
statistical concepts but rely heavily on arithmetic procedures. 

Based on the difficulties encountered in this study, learning hypothesis for the design of the HLT 
were developed: students should be able to convert data collected in tables to a graphic 
representation (scatter plot diagram); reflect on how to use all data when proposing their line of best 
fit; understand and discuss the meaning of the line of best fit as the line that minimizes the 
estimation error; consider the development of a scatterplot as a necessary tool for the analysis of the 
relationship between two variables; make hypotheses about the relationship between two variables 
(graduated: none, little, lots of’) based on the analysis of a scatter plot diagram; and obtain the least 
squares linear model to determine the value of the requested response variable. These hypotheses 
were condensed in two main learning objectives, (1) the learning about distributions of bivariate 
data: which intends for students to identify what elements, like the form and the tendency of a cloud 
of data points, are determining to establish the type of relation that exists between two quantitative 
variables, and (2), the learning about the variation of the data with respect to the linear adjustment 
model: which intends for students to identify that the linear adjustment model has an intrinsic 
random character rooted in the data itself. 

Participants, instruments and execution. The current version of the HLT was applied to a group of 
40 students (15 males, 25 females; 17-18 years old), arranged in 20 pairs, also enrolled in their 
senior year on a public high school in Mexico City; they previously received instruction on some 
essential descriptive statistics topics (statistical graphs, tendency and variability measures) and a 
mild technical-procedural introduction to linear regression and correlation. The application of the 
experiment consisted of 4 sessions of approximately 2 hours each: students familiarized with 
Fathom’s basic commands with an instruction activity during the first session; in session 2, students 
faced the gas consumption problem [adapted from Moore, 1998; item (i), figure 1] in which they 
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proposed their line of best fit using the software, as well as analysis of some characteristics of the 
possible correlation between the variables (intensity and direction); such evidence which allowed 
the researchers to produce detailed descriptions of the visual analysis performed by the students and 
their justifications. 
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Figure1: Data used in the gas consumption problem [(i), left], and in the arm and height measures 

problem [(ii), right] 

This is, students were asked about the form of the distribution of the data in the scatter plot, with 
which they could propose their own linear model that best fit the data (all of the instruction required 
the use of Fathom). In session 3, a further investigation of this problem was performed by adding a 
prediction item and a comparative analysis of the least squares line provided by the software against 
the students’ own model. Finally, in session 4, students faced the height and arm measures problem 
[item (ii), Figure 1], in which data was produced and taken by and from a sample of the 
participants. Once again, besides comparing students’ own model against the least squares line, the 
value corresponding to the sum of squares (errors) was provided through the software as a 
variability measure between the data and the linear models. 

Data and analysis tools. Our primary source of data are students’ written responses to the activities, 
fieldnotes and video recordings. We rely on principles and basic coding techniques provided by the 
Grounded Theory, which emphasizes the creation of categories and emergent theory based on the 
data that is systematically and exhaustively collected during the investigation. Analysis of students’ 
responses consisted of identifying patterns exhibited in at least two pairs of students (open and axial 
coding); each one was given a code defined below, leading to ten emergent codes assigned into one 
of three groups: inconsistent, favorable or neutral; these adjectives refer to their relationship with 
normative covariational reasoning. Inconsistent codes correspond to reasoning features that we 
consider difficult the understanding of normative ideas embedded in covariational reasoning, while 
favorable codes prefigure or constitute partially aligned basis for normative reasoning considering 
that additional teaching support can help to overcome; neutral codes refer to those which we didn’t 
find reasons to be classified as neither of the former. 

Results 
Inconsistent codes are labelled A1-A5, favorable are labelled B1-B4, and the only neutral 
corresponds to C1; we now briefly describe and exemplify these codes using the notation “PX” to 
denote a specific pair of students’ response. 

Thematic Working Group 05

Proceedings of CERME11 1029



 

 

A1. Illusion of linearity (or proportionality). When confronted with a prediction problem, it consists 
of proposing a plausible value of Y given a value x0, a specific point of the data set is chosen to 
formulate and apply a rule of three. An example of this reasoning comes with P8’s response (gas 
consumption problem): “We applied a rule of three with the average temperature of 10.7 cause is 

the closest to 8, 3
3

8)8(
7.10

7.10 mm
=°

°
 of gas”. 

A2. Incidence in the maximum amount of points. To determine the line of best fit, a line that goes 
through the maximum number of points is proposed, and the criterion is also used to judge the 
appropriateness of the model. This reasoning, exhibited in the gas consumption and temperature 
problem, is directly exemplified by P7: “…we positioned the line so it touched the maximum 
amount of points”. 

A3. Attention to irregularity. To describe a tendency or when judging the intensity of the 
correlation, points that deviate from a possible regularity or that are misaligned are noted and used 
as an argument. For example, when describing the tendency in the data presented in the scatterplot 
(height and arm measures problem), P4 responded “No [tendency is noted or present], there are 
only 4 points aligned”. 

A4. Software references. When describing a tendency in the data or justifying a proposal for the line 
of best fit, actions with the software are mentioned but no response to the actual question is given; 
as an example of such reasoning, P1 responded (gas consumption and temperature problem) “…we 
draw the line with the pointer until adjusting it”. 

A5. Idiosyncratic. Answers are given using terms that do not correspond to the common (statistical) 
usage; most likely, students assign a personal meaning that is not possible to deduce from their 
written statements. P18 exemplifies this rationale when describe their expectation about how gas 
consumption varies with the temperature by saying “it all should depend of the weather”. 

B1. Describe the tendency. Students formulate expressions that indicate if the tendency is either 
positive or negative. Such expressions can be widely general like “goes down/goes up”, or much 
more specific “as long as X increments, Y diminishes”. For example, when describing the type of 
tendency in both problems, P3 and P16 mentioned, respectively, “yes, the points are rising and 
forming a straight line”, and “at a higher temperature the less [gas] consumption, and the lower the 
temperature the higher [gas] consumption”. 

B2. Exclusive reference to the line. The criterion consists of identifying the staggering of the points 
around a straight line but without describing its’ direction; e.g., when describing the tendency in the 
data in the gas consumption problem, students like P20 provide answers like “yes, [the points group 
into] in a straight line”. 

B3. Through the middle of the points. This method consists of proposing a line that goes through the 
middle of the data set in the scatterplot; in some cases, it refers to getting an equal number of points 
on each side of the line (one half above and the other one under). As an example of such strategy, 
P5 justified their proposal of the best fit line in the height and arm measures problem by saying “we 
placed it in the middle of the points to adjust it the most”. 
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B4. Closeness. The best fit line is the one considered as the closest to all points, in which 
“closeness” implies minimizing the sum of the residuals. This type of responses arises when 
students observe how the least square method is about using the software. An example of such 
thinking is provided by P1 in the height and arm measure problem: “…[we placed the line]so that 
all the points are the closest to it”, or by P9 when comparing and analyzing their own proposal of 
the best fit line: “…[in our case] the points are farer to the line, so the squares get bigger”. 

C1. Software use. These responses only provide results or values taken from the software without 
adding comments or interpretations about them; for example, when P3 is trying to describe the 
intensity of the correlation in the height and arm measures problem, they just provide the value for 
r: “0.883844”. 

Conclusions and discussion 
We consider codes A1 and A2 as central when designing a teaching strategy. The term “illusion of 
linearity” has been adopted from van Doreen, de Book, Depaepe, Janssens & Verschaffel (2003) 
who rely on Freudenthal and define it as “the seduction to deal with each numerical relation as 
though it were linear”; the authors mention that such reasoning has been found in probability tasks 
as well as in arithmetic and algebraic domains. Casey (2014) pointed out that “many students 
required that their line [of best fit] go through the origin […], they had a preconceived notion that 
all lines start there”, a similar reasoning we understand as a geometric form of the linearity illusion; 
however, it should be noted that both reasonings are not fully equivalent but mathematically related 
to each other. In our previous study (Medina et al., 2016), about 80% of the responses were coded 
as A1 while in the current one this percentage diminished to 40% (Table 1). We interpret that the 
often-inadequate exploitation of such resource goes beyond the overvaluation it receives in most 
elementary educational curricula (e.g., consider Darwin’s famous statement: “I have no faith in 
anything short of actual measurement and the rule of three”; such reasoning was quite common 
before Galton and others’ statistical contributions). 

Code A1 B1 Others 

Gas consumption problem 8 3 9 

Table 1: Incidence of codes in pairs of students given to the prediction item 

The rationale behind code A2 (incidence in the maximum amount of points) was also found in 
Casey’s 2014 revision, in which she explains its presence as a consequence of previous learning 
gained in other mathematical domains such as analytic geometry. Besides addressing its possible 
causes, it is also convenient to discuss its possible implications. Students’ reasoning seems to 
partition the data into two parts, cases that rely directly into the linear model (explicit or imaginary) 
and those that doesn’t; that is, cases that belong or fulfill the model conditions and the ones that 
don’t. This lends support to the conjecture that at this point, students are still struggling to assume 
the data as an aggregate but at the most, as an aggregate partitioned in two. 

The logic behind code A3 (attention to irregularity) could be expressed as a particular case of the 
former but focused exclusively on the points “outside” of the model. In doing so, the points that 
“deviate” from the model are considered as a different class with respect to the others, which may 
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be interpreted as a form to deal (or exclude) the notion of error involved in the use of statistical-
inferential models, or even as expressions of overprivileged technical-deterministic reasoning 
(which could be addressed by promoting more reflection into the context of the data; e.g., by 
elucidating possible causes for the “lack of adjustment” of all the points). 

As showed in Table 2, codes B1 (describe the tendency) and B2 (exclusive reference to the line) 
had an increased frequency when dealing with the second problem (final stage of the HLT), and a 
significant increase was also evident for code A3. The bigger frequency for code B1 might be 
attributed to students gained experience in this point of the trajectory despite the fact of dealing with 
a negative correlation; however, this feature might also have provoked that A3 appeared more often 
because of attending a more disperse data set. 

Codes B1 B2 A3 Others 

Gas consumption problem 2 4 1 13 

Height and arm problem 5 5 5 5 

Table 2: Incidence of codes in pairs of students when describing the tendency in the data 

As previously mentioned, codes B3 and B4 appeared as criteria of students when attempting to 
elaborate a linear model of their own (Table 3). Such codes were absent in our 2016 study, which 
led us to believe that their emergence might be motivated by the incorporation of the software to the 
instruction sequence. Specifically, adding a movable line and then comparing it against the least 
squares line seemed to have enable students identify how the former “goes through all of the 
points”; also, displaying and interpreting the sum of the squares through the software helped to 
capitalize the idea of the line of the best fit as the one that best approximates all points in the data 
set. 

Codes B3 B4 Others 

Gas consumption problem 2 0 18 

Height and arm problem 2 6 8 

Table 3: Incidence of codes in pairs of students when elaborating a line of best fit on their own 

To summarize and conclude this report, codes A1 and A2 are considered patterns that evidence 
students’ struggle when considering a data set as an aggregate in the context of linear regression and 
correlation problems. Codes B1 and B2 indicate a progress in students’ conceptions regarding their 
ability to conceive and identify a general structure subjacent to the data, although with great 
challenge when it comes to interpret and reconciliate the random inferential nature of the model. 
The emergence of codes B3 and B4 suggest that the use of Fathom might have contributed to 
improve students’ understanding by helping them to associate the line of best fit to the one that 
minimizes the sum of errors or deviations between the points and the model. Finally, a major 
limitation of the HLT is the lack of incidence in promoting reflection upon the reasons of why such 
correlations might exist (or not); a new version of the HLT and future researches could target such 
deficiency by addressing students’ reasoning in aspects related to causality and variability. 
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The research comes from a multifaceted program designed to provide in-service lower primary 
school teachers (Grades 1-3; ages 6-9) with the knowledge, skills, confidence, and practical 
experience required to effectively integrate digital games within the early mathematics curriculum. 
The article focuses on one of the teachers, employing a single case study approach to document the 
level of transfer and adoption of the acquired knowledge and skills into actual teaching practice. 
Findings provide some useful insights into the ways in which the program experiences influenced 
the teacher’s competence in selecting, evaluating, and productively utilizing digital games to 
enhance learning of key statistical concepts included in the mathematics curriculum. 

Keywords: Educational games, professional development, TPACK, early statistics education 

Introduction 
The expanding use of data for prediction and decision-making in almost all domains of life makes it 
a priority for mathematics instruction to help students of all ages develop their statistical reasoning. 
It is now widely recognized that the foundations for statistical reasoning should be laid in the 
earliest years of schooling rather than being reserved for secondary school or university studies. 
Consequently, the development of students’ statistical literacy has become an important goal of 
mathematics education at the early school level internationally. This broadening of the mathematics 
curriculum to encompass statistical literacy, reasoning, and thinking has put considerable demands 
on teachers (Hannigan, Gill, & Leavy, 2013). In particular, it has been challenging for teachers to 
design lessons with engaging contexts and a focus on conceptual aspects of statistics, and to pose 
critical questions. As the research literature indicates, many teachers tend focus instruction on the 
procedural aspects of statistics rather than on conceptual understanding (Watson, 2001).  

Recognizing the need for fundamental changes to the instructional practices employed in the 
mathematics classroom to teach statistical concepts, researchers have in recent years been 
experimenting with new models of teaching that are focused on inquiry-based, technology-
enhanced instruction and on statistical problem-solving (e.g., Meletiou-Mavrotheris, & 
Paparistodemou, 2015). One promising approach lately explored is the potential for digital games to 
transform statistics instruction. Unlike the numerous studies investigating the instructional use of 
computer simulations, animations, and dynamic software, there only few published studies on the 
use of games for teaching statistics, the general thrust of the evidence in the existing literature is 
positive (Boyle, MacArthur, Connolly, Hainey, Manea, Kärki, & van Rosmalen, 2014). Findings 
concur with the general educational literature on game-enhanced learning which suggests that when 
suitably designed, digital educational games have many potential benefits for teaching and learning 
at all levels, including pre-school and early school years (Manessis, 2014). Most of the conducted 
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studies report that employing games has a positive effect on students' motivation and learning of 
statistical concepts (e.g. Gresalfi and Barab, 2011; Boyle et al., 2014). Digital games’ greatest 
strength as a medium, involve their affordances for supporting higher order cognitive, intrapersonal, 
and interpersonal learning objectives (Clark, Tanner-Smith & Killingsworth 2014). Using games, 
children can individually or collaboratively engage in exploration of virtual worlds, and in authentic 
problem solving activities. This supports the development of important competencies essential in 
modern society such as logical and strategic thinking, planning, multi-tasking, self-monitoring, 
communication, negotiation, group decision-making, pattern recognition, accuracy, speed of 
calculation, and data-handling. At the same time, games can promote differentiation of instruction 
by matching challenges to children’s skill level, and by providing immediate feedback to students 
about the correctness of their strategies and thought processes. 

While digital educational games provide a range of potential benefits for mathematics and statistics 
teaching and learning, not all the games are designed to promote optimal development among 
children. Most of the available educational games tend to be a drill-and practice and to support 
mainly procedural fluency rather than high-level thinking. Some exceptional exemplars do exist that 
can help create constructive, and meaningful learning experiences, but their successful deployment 
in the early statistic classroom is highly dependent upon the knowledge, attitudes, and experiences 
of teachers. Implementing game-based instruction can be a challenge for teachers, requiring skills 
not necessarily addressed in current teacher training practices. Teachers need to be proactive, 
choosing high quality educational games, supporting and scaffolding pupils, and providing 
appropriate feedback 

Acknowledging the educational potential of games for transforming statistics instruction in the early 
years, but also the crucial role of teachers in any effort to bring about change and innovation, the 
current study focused on providing in-service teacher education on the effective utilization of digital 
games in the lower primary classroom (ages 6-9).  An exploratory case study took place within a 
Cypriot teacher professional development program on the integration of games within the early 
mathematics curriculum developed based on the notion of Technological Pedagogical Content 
Knowledge (TPACK) as a conceptual framework (Mishra and Koehler, 2006). It focused on one of 
the program participants and investigated the development of his TPACK of game-enhanced 
teaching and learning of statistical concepts included in the early primary mathematics curriculum 

Methodology 
Program Structure, Context and Participants 

The professional development program was attended by six lower primary school level educators 
(Grades 1-3; ages 6-9), and it was designed to provide them with the knowledge, skills, confidence, 
and practical experience required to effectively exploit digital games as a tool for fostering young 
children’s motivation and learning of mathematics. Following the TPACK model and action 
research procedures, the program was designed and carried out in three phases:  

· Phase I – Familiarization with Game-Based Learning:  In Phase I (6 hours duration), teachers 
were offered a critical introduction into the potential and challenges of using serious games in 
early mathematics and statistics instruction. They experienced some of the ways in which 
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purposefully selected games, blended with carefully constructed learning experiences, could 
help improve children’s attitudes towards the subjects, while at the same time advancing their 
mathematical and statistical thinking and problem solving skills. The unit also familiarized 
participants with the design principles for constructivist gaming environments (Munoz-
Rosario & Widmeyer, 2009), and promoted the development of their skills in properly 
evaluating and selecting games with pedagogically sound design features. 

· Phase II – Lesson Planning: In Phase II, teachers’ TPACK was enhanced through their 
engagement in lesson planning. They selected a topic from the national mathematics 
curriculum for Grades 1-3, and developed a lesson plan and accompanying teaching material 
aligned with the learning objectives specified in the curriculum, which incorporated the use of 
digital games. They were instructed to integrate into their lessons educational games that 
adhered to important principles associated well-designed educational games (Gee, 2007) such 
as facilitation of an authentic learning experience, active participation, collaboration, and 
promotion of higher order thinking skills. The lesson plans were shared with the researchers 
for comments and suggestions, and were revised based upon received feedback.  

· Phase III – Lesson Implementation and Reflection: Next, the participants implemented the 
lesson plans in their classroom, with the support of the research team. Once the classroom 
research was completed, teachers prepared and submitted a reflection paper, where they 
shared their observations on students’ reactions during the lesson, noting what went well and 
what difficulties they faced and making suggestions for improvement. 

Detailed information regarding the implementation of the different Phases of the program and their 
impact on the whole group of participating teachers can be found in Meletiou-Mavrotheris, 
Paparistodemou, & Tsouccas (2018). In this article, we focus on Phase III of the program. We draw 
upon the data collected from the case study teacher and his students to investigate the level of 
transfer and adoption of TPACK competencies acquired through the training to actual teaching 
practice. This teacher, who was an expert educator (9 years of teaching experience), was the sole 
program participant whose teaching intervention focused on concepts related to statistical data 
analysis. The rest prepared and implemented lesson plans focusing on other areas of the 
mathematics curriculum.  

Research Design: Scope and Context of Study 

The teaching intervention took place in a Grade 2 classroom with 18 students, and lasted for 80 
minutes (two teaching periods). The class teacher selected a topic from the national mathematics 
curriculum for Grades 1-3, and developed a lesson plan and accompanying teaching material 
aligned with the learning objectives specified in the curriculum, which incorporated the use of 
mobile game apps. The lesson plan targeted the following indicators of achievement included in the 
curriculum for Grade 2: (i) Collect information and data in the environment and present them in an 
organized way; (ii) Record, organize and present data in tables and graphical representations 
(pictogram, bar graph, pie chart); (iii) Represent the same data in multiple ways. 

The lesson plan was shared with the researchers for comments and suggestions, and was revised 
based upon received feedback. Next, the teacher implemented the lesson plan in his classroom, with 
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the support of the research team, and afterwards prepared a reflection paper where he shared his 
observations on students’ reactions during the teaching intervention, noting what went well and 
what difficulties he faced and making suggestions for improvement.  

Central to the teaching intervention was the game app The Electric Company Prankster Planet, 
available on Android and iOS platforms as well as online. Prankster Planet is based on the Emmy 
Award-winning PBS KIDS TV series The Electric Company, and it targets children aged 6-10. It 
features eight unique quests with math curriculum woven throughout that children have to complete 
to save Earth from the Reverse-a-ball machines of Prankster character Francine, that are scrambling 
up all the words on Earth and are causing a lot of confusion. Children complete a series of data 
collection, representation and analysis challenges in order to shut down all eight machines hidden in 
the jungles, cities, junkyards, and underground world of Prankster Planet. The app features side-
scrolling play and exploration in a 2D platformer world, an avatar creator with many customization 
options, a rewards system to encourage repeat play, and the option of collaborative play through 
group activities. The online gaming platform Kahoot! was also used during the lesson. 

Data collection and analysis procedures 

Although multiple forms of data were collected to document changes in teachers’ perceptions and 
attitudes, and in their TPACK of game-enhanced learning as a result of participating in the teacher 
professional program, only data collected during Phase III in the case study teacher’s class was 
utilized in this study. Researchers were present in the class, observing closely and videotaping the 
lesson, keeping field notes, and collecting student work samples. Qualitative data were also 
obtained from the reflection papers written by the teacher at the end of the lesson. 

For the purpose of analysis, we did not use an analytical framework with predetermined categories 
to assess how the teacher’s acquired TPACK impacted his teaching practice, due to the lack of well-
established frameworks and methodological insights for studying game-enhanced statistics 
education in the context of in-service teacher training. What we did instead was to identify, through 
careful reviewing of the transcripts, reflection paper, and other data collected during the study, 
recurring themes or patterns in the data. To increase the reliability of the findings, the activities 
were analyzed and categorized by all three researchers. Inter-rater discrepancies were resolved 
through discussion. 

Results 
Teaching intervention overview 

The lesson started with the teacher informing the class that the headmistress needed information 
about students’ preferences on afternoon activities, to plan for the next school year. Therefore, she 
would like each class to collect data on their preferences, organize them, and present them in way 
that would help her come up with a schedule of activities that would satisfy as many children as 
possible. 

To tackle the task, the class first decided to do a census where each student selected their favorite 
afternoon activity among five options. Then, they recorded their preferences on a tally table, and 
counted the total number of students selecting each activity. This was followed by class discussion 
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on how to best present the survey results to the headmistress. During this discussion, children were 
introduced to bar graphs, the process of their construction, and the ways in which this graphical 
repre-sentation can help to present and interpret the results of a survey, and make decisions.  

Next, children played in pairs the digital game Prankster Planet on their iPads. They were asked to 
go through all eight increasingly difficult missions of the game. Within each mission, they 
responded to various questions where they had to interpret a bar chart or a pie-chart, or to construct 
such graphs, in order to collect as many points as possible (see Figure 1). Throughout the activity, 
the teacher went around the class and offered personalized assistance to each pair of students. 
Although children were fully engaged with the game and quickly learned its mechanics (possibly 
due to their high degree of familiarity with digital games as the vast majority owned a tablet at 
home), they needed some help from their teacher in understanding the posed questions, which were 
in English.  

 

Figure 1: A pair of students interpreting a bar graph in Prankster Planet 

Finally, children completed an exercise adopted from their mathematics textbook. They were 
presented with a table showing the number of hours of sleep per day of 12 different mammals.  
First, they worked in pairs to complete a task in Kahoot! where they responded to various questions 
related to the information included in the table. The task was set up as a contest, where each correct 
answer gave different points to the pair, depending on their response time. For each question, the 
right answer appeared on the whiteboard, as well as a bar chart showing the children that answered 
it correctly, and the score of each pair. After completing the task, the children worked individually 
to construct a “bar graph” of the data in their notebook (a simple histogram in reality), with each bar 
corresponding to an interval of hours of sleep (i.e. animals sleeping between 0-5 hours, between 6-
10 hours, etc.). Finally, through a second contest, they were again given the opportunity to collect 
points and to win by interpreting the graph they had just built, and answering various questions (e.g. 
How many animals sleep more than 5 hours and less than 16 hours per day?).  

At the end of the lesson, a discussion took place, where the teacher highlighted the main statistical 
concepts introduced during the lesson. Children were encouraged to express their opinion about the 
format of the lesson and whether they would like to again use similar digital games in class. 
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Reflection on the teaching intervention  

The case study teacher’s past exposure to mathematics education games was limited to drill-and-
practice, which he tended to use in class for motivational purposes, and/or for students to practice 
already acquired skills. However, his participation in the program helped him realize digital games’ 
true potential for supporting learning in educationally powerful ways. Through familiarization with 
the design principles for constructivist gaming environments and experimentation with a range of 
game apps, he gained better understanding of how to implement game-based mathematics and 
statistics instruction in the early years. He also improved his ability to assess the educative power of 
different games, to properly identify their advantages and disadvantages.  

Observation of the teaching intervention, and the quality of the lesson plan and tasks prepared by 
the teacher, indicated that the specific educator acquired the necessary skills and competencies for 
teaching this topic and similar statistical topics using tablets and game apps like Prankster Planet 
and Kahoot! He selected appropriate game apps and then exploited them to organize teaching in a 
constructive, learner-centered way, so that his young students would have the opportunity to work 
together in constructing statistical concepts and processes. Specifically, in several activities, 
children collaborated to build joint understanding of the new concepts they had just encountered. 
For example, to respond to some of the Prankster Planet questions, students worked together to 
understand and interpret pie-charts, which had never been mentioned in class before.  

As expected, the game-based nature of the lesson was well received by students and increased their 
morale and motivation. In the end of intervention discussion, children expressed their enthusiasm 
about the games they engaged with during the lesson, “because they gave [them] the chance to play 
and learn at the same time”. Although expressing a preference for “the game where [they] had to 
prevent the Lady from changing the letters " (i.e. Prankster Planet) which they found to be “more 
adventurous”, they also liked the game on Kahoot! because it was set up as a contest. The children 
stressed that they would love all their lessons to have a similar format since games enable them “to 
learn more things about mathematics and to have a joyful time in class”. 

In the reflection paper he wrote after the teaching intervention’s completion, the teacher also noted 
that he was very impressed by the fact that the lesson ended up being so successful: 

Teacher: The children got excited with the games, were constantly active, there was rivalry 
between the teams, but also collaboration within each team, and this had a 
positive impact on children's motivation, but also on the attainment of the 
instructional objectives. Even the supposedly “weakest” students had strong 
interest and active participation during the lesson and gave several thoughtful 
answers, with no trace of fear of making a mistake. These are qualities I do not 
usually experience in lessons where I do not use digital games. 

According to the teacher, the use of the games led to an effortless involvement of all children, and 
contributed substantially to the achievement of the learning objectives, but also to ensuring fruitful 
cooperation among learners and collaborative construction of knowledge in a creative and enjoyable 
way. Lastly, use of technology worked exactly as he had anticipated, providing the opportunity to 
introduce in the classroom activities with added value, that could not otherwise be implemented.  
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While the classroom experimentation further strengthened the teacher’s belief that appropriate use 
of game apps can help create motivational and more conducive to learning environments, it also 
helped him to build more realistic expectations about what games’ instructional integration might 
entail in practice. He recognized that games are not a panacea, and that their incorporation into the 
curriculum does not guarantee improved learning. He mentioned various challenges and drawbacks 
to digital games’ incorporation in the mathematics classroom, including time constraints, 
difficulties in locating high-level games, the risk of the learning objectives being neglected for the 
sake of playfulness, and language issues for non-native English speakers: 

Teacher: The fact that Prankster Planet is in English, prohibited its optimal use. While 
students played, I had to constantly move around to translate things to them.   

The teacher stressed the key role of educators not only in choosing appropriate digital games with 
the goals of gameplay being closely aligned with instructional objectives, but also in “coordinating 
classroom activities appropriately so as to keep children focused on the achievement of the learning 
objectives”, and in facilitating learning by providing continued support and scaffolding. He pointed 
out that games should not dominate class time, but should be used as part of carefully planned 
learning experiences, and explained how, in his teaching experimentation, the use of alternative pre-
game and post-game instructional activities led to a fuller learning experience. His comments 
concur with the literature, which indicates that digital games are more effective when acting as 
adjuncts to more traditional teaching methods rather than as stand-alone applications (Gee, 2007).  

Discussion 
This case study has several limitations, emerging primarily from its exploratory nature, which 
constrain the interpretation of the research results. A serious drawback is the limited generalizability 
of the research findings. The qualitative methodology used to research the case, the small scale of 
the study, and its limited geographical nature, means that generalizations to cases that are not very 
similar should be done cautiously as the specific classroom investigated might not be representative 
of all pre-service teacher classrooms. Despite, however, the tentative and non-generalizable nature 
of its findings, the conducted research contributes some useful insights into the accumulating body 
of literature on game-enhanced statistics teaching and learning. 

In accord with the research literature (e.g. Niess et al., 2009), our research has illustrated the 
usefulness of the TPACK framework as a means of both studying and facilitating teachers’ 
professional growth. Although there was no pre-post test assessment to formally track changes 
teachers’ TPACK, there are strong indications in the collected data that the training was quite 
successful in helping the case study teacher (as well as the other program participants) move 
beyond his restricted views of digital games as educational tools (for more details see Meletiou-
Mavrotheris et al., 2018). Secondly, that it helped to convey to him technological and pedagogical 
knowledge regarding the teaching of specific mathematical and statistical concepts with games. 
Thirdly, that it improved the teacher’s confidence and ability to transfer and adopt the TPACK 
competencies acquired through their training to actual teaching practice.  

There are important implications for the design or revamping of pre-service or in-service teacher 
training curricula and programs on digital game integration. Insights from the study suggest that 
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utilizing a conceptually based theoretical framework about the relationship between technology and 
teaching like TPACK, can enrich teachers’ professional development. Findings also indicate that 
the development of teachers’ TPACK necessitates the provision of opportunities for both theoretical 
and experiential learning of technology-based pedagogical approaches to mathematics education. 
Concurring with prior research (e.g. Serradó, Meletiou-Mavrotheris, & Paparistodemou, 2014), this 
study provides evidence that teachers’ involvement in professional development activities such as 
lesson design and classroom experimentation, can support them in developing their teaching 
competencies with ICT and understanding of TPACK in ways transferable into their own practice. 
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This study investigates the influence of the context of conditional probability problems on 
probabilistic thinking processes of mathematics teacher candidates. Data were collected from four 
mathematics teacher candidates through semi-structured clinical interviews. Teacher candidates 
were expected to solve and explain three conditional probability problems, which were selected based 
on specific contexts. The findings revealed that, when the context is related to a social issue such as 
health or justice, that can be a hindrance to probabilistic thinking. In addition, while solving 
questions, teacher candidates focused on their beliefs regarding the social issue rather than using 
logical and numerical reasoning given in the questions. On the other hand, the findings highlighted 
the importance of the instruction on conditional probability, as the candidates represented a high-
level of probabilistic thinking in the case of consecutive events that were frequently used in curricula. 

Keywords: Probabilistic thinking, the context of a conditional probability problem, mathematics 
teacher candidates 

Introduction 
As probabilistic thinking involves quantifying uncertainty to arrive at a decision, it has an important 
role in interpreting uncertain situations in daily life (Amir & Williams, 1999). It helps us better 
understand whether or not the information gained through our everyday experiences is correct (Metz, 
1998). Therefore, probability is recognized as an essential aspect of school mathematics curricula 
from elementary to undergraduate education (Amir & Williams, 1999). Developing students’ skills 
of probabilistic thinking is one of the main aims of the mathematics curricula in Turkey (MEB, 2018). 
The development of probabilistic thinking depends on the interactions between “intuition, logical 
development, and the effects of formal instructions” (Greer, 2001, p. 25). From the educational 
perspective, the aim is to enhance students’ probabilistic thinking from intuitive to more advanced 
logical and numerical reasoning. However, the instruction of probability concepts in schools may 
cause discomfort in students’ proportional reasoning because probabilistic thinking has a fragile 
aspect when it intuition is concerned (Fischbein, Nello, & Marino, 1991). This weak aspect may cause 
students engage in subjective reasoning and to act accordingly or to have some misconceptions. 
Therefore, while planning their instruction, educators need to consider generating an environment 
that helps students enhance their conceptual understanding, as well as formalizing their initial 
intuitive concepts (Greer, 2001). 

There are four key constructs regarding probabilistic thinking: sample space, probability of an event, 
probability comparisons, and conditional probability (Jones, Langrall, Thornton, & Mogill, 1997). 
Conditional probability is one of the fundamental stochastic ideas that enhance probabilistic thinking 
throughout the history in Heitele’s list (Diaz & Batanero, 2009). It allows individuals to make 
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appropriate changes in their beliefs concerning random events when new information emerges (Diaz 
& Batanero, 2009). It also helps individuals understand possible risks and make proper decisions in 
daily life (Watson, 1995). However, compared to the other three key constructs, it requires more 
careful thinking (Tarr & Lannin, 2005) because of its interest in the outcomes that are elements of a 
subset of the sample space (Hogg & Tanis, 1993). Therefore, understanding the conditional 
probability involves the adjustment of the probability of an event when there is a condition regarding 
the occurrence of another event (Tarr & Lannin, 2005).  

Studies showed that students have various misconceptions regarding conditional probability, such as 
the transposed conditional fallacy, the fallacy of time axis, and the base rate fallacy (e.g., Diaz & 
Batanero, 2008; Koehler, 1996). The analysis of these misconceptions reveals the influence of the 
context of probability problems on students’ reasoning. In other words, people can approach the 
problems of conditional probability in various ways when they fail to use appropriate theories 
(Tversky & Kahneman, 1982). For example, a Bayesian problem that involves two types of 
information regarding an event – statistics for a population and its specific part of it – can cause a 
hindrance to student thinking, which leads to the base rate fallacy (Diaz & Batanero, 2009). Moreover, 
the probability problems that involve medical issues, such as having cancer and taking a related test 
can be confusing for students as these problems involve the daily experiences of individuals. 
Students’ ways of thinking can be causal based on the scenario or their motive (Tversky & Kahneman, 
1982). On the other hand, in some cases where students are accustomed to school experiences, such 
as consecutive experiments, they can show high-level probabilistic thinking skills (Jones et al., 1997). 
For instance, the use of representations, such as 2-way tables in the text of a probability problem, 
could enhance thinking processes of students as well as their achievement (Olgun & Işıksal, 2018).  

In this research study, as a continuation of the research study that investigated the role of 
representations on prospective teachers’ thinking processes in conditional probability (Olgun & 
Işıksal, 2018), the relationship between the context of the probability problems and probabilistic 
thinking processes is examined. The initial analysis of the previous study pointed out a probable 
relationship between the context of probability problems and probabilistic thinking processes.  Thus, 
the research question of the present study was as follows:  How does the context of probability 
problems influences prospective mathematics teachers’ probabilistic thinking processes in 
conditional probability based on the framework developed by Tarr and Jones (1997)? 

Theoretical Background 
Students’ understanding of probability, their misconceptions, and their development of probabilistic 
thinking were the areas of focus in the research literature. To improve the instruction of probability, 
a coherent frame that reveals students' ways of thinking about probabilistic phenomena is needed 
(Jones et al., 1997). Therefore, Jones and his colleagues (1997) developed the “Framework for 
Probabilistic Thinking” to meet this need. The framework consists of four key constructs of 
probability; sample space, probability of an event, probability comparisons, and conditional 
probability. Tarr and Jones (1997) enhanced this framework for conditional probability. The new 
framework, which is called the Framework for Assessing Students' Thinking in Conditional 
Probability (FASTCP), includes independence as a new construct. Four levels, namely subjective, 
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transitional, informal quantitative, and numerical are described for each construct of the framework. 
The following example represents the thinking levels for conditional probability. 

There is a cup that contains two red and two blue marbles. Two marbles, one after another, are picked 
up randomly, without replacement. When students were asked what color marble would be picked 
given that the first marble is red, based on the FASTCP, the response of “red because it is my favorite 
color” (Tarr & Jones, 1997, p. 51) would belong to a student in level 1 (subjective). To state it 
differently, level 1 involves the use of subjective reasoning based on personal traits without 
considering numerical information. At level 2 (transitional), students begin to use quantitative 
information, but still, their conditional reasoning is not complete, so students can respond by making 
such utterances as follows “the probability that blue will be drawn is still the same” (Tarr & Jones, 
1997, p. 52). In other words, students misuse numerical information and act with representative 
heuristics at the transitional level of probabilistic thinking. Moreover, they may still revert to 
subjective judgments. At level 3 (informal quantitative), students recognize the role of quantitative 
information for conditional probability as well as monitor the composition of the sample space. Level 
3 students can respond by stating that there is one red marble instead of four but still they may also 
show representative acts or assign incorrect numerical probabilities (Tarr & Jones, 1997). At level 4, 
as students assign numerical probabilities spontaneously and explain the conditions when the events 
are related, the response could be that the chance of red is one out of three and the chance of blue is 
two out of three (Tarr & Jones, 1997). In other words, the numerical level involves the awareness of 
the composition of the sample space and its essential role in determining conditional probability. 

Some studies (e.g., Diaz & Batanero, 2008) showed that students whose probabilistic thinking are at 
the numerical level might revert subjective reasoning and show biases while performing on 
probability problems. The importance of the role of intuition in probabilistic thinking and the fragility 
of probabilistic reasoning in some situations make us inquire what factors influence students’ 
probabilistic thinking. The investigation of students’ biases represents the influence of the context of 
the problems in conditional probability on student thinking. Some studies claim that conditional 
probability problems, which involve cause and effect relations, confuse students' judgments about the 
probabilistic phenomena (Biaz & Batanero, 2009). Students rely on causal data that include their 
perceptions formed via daily life experiences rather than diagnostic data (Diaz & Batanero, 2009). In 
the case of the Bayesian problems, which involve the issue of base rates, students may ignore the 
information related to the base rate and tend to rely on the specific information given in the problems 
(Koehler, 1996). When the context of conditional probability problems involves social contexts, such 
as justice or health issues, students’ beliefs based on personal experiences may get ahead of their 
logical reasoning. Some studies (e.g., Corter & Zahner, 2007; Watson, 1995) suggest that the use of 
representations can facilitate students’ problem-solving processes and lead them to use logical-
numerical reasoning. However, students may still resort to erroneous judgments for problems based 
on certain contexts rather than using representations as a model (Olgun & Işıksal, 2018). Based on 
the literature it could be deduced that there are limited studies that have focused on the context of 
probability problems in the case of conditional probability while modelling and representations have 
been investigated by many researchers (Chaput, Girard & Henry, 2011). These issues necessitate a 
study investigating how different contexts of probability problems influence probabilistic thinking 
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processes. Such a study can reveal some information about the instruction of conditional probability 
as well as students’ thinking processes. Therefore, the current study will investigate the influence of 
different contexts in conditional probability problems on probabilistic thinking processes of teacher 
candidates based on the FASTCP. 

Methodology 
Gaining a deep understanding of participants’ thinking processes was the main objective of the 
present study, in which semi-structured clinical interviews were held with the participants, who were 
selected by means of the convenient sampling method. The participants were students, who were in 
their 4th semester of teacher education program and who had taken “MATH 112 Discrete 
Mathematics” and “STAT 201-202 Introduction to Probability and Statistics I-II” courses. These 
students were informed about the research study. The interviews were conducted with the volunteer 
students. Four (two male and two female second-year students between the age of 20-22 years) 
students enrolled in the mathematics teacher education program of one of the largest public 
universities in Turkey constituted the participants of the study.  

In the interviews, the participants were asked to perform on three specific conditional probability 
problems (see Figure 1), which were selected from the Conditional Probability Reasoning Test (CPR) 
developed by Diaz and Batanero (2009). Each problem was determined according to its specific 
context. Problem 1 was related to a consecutive experiment involving computing conditional 
probability and dependence of the events. Problems 2 and 3 included the social context of justice and 
health issues, respectively. In problem 2, which is a Bayesian problem, two types of information were 
given: the frequency of the base rate and specific information about the case. Problem 3 was related 
to a causal issue including the application of a medical test and whether or not there was an illness.  

 
Figure 1: The problems, adapted from “University Students’ Knowledge and Biases in Conditional 

Probability Reasoning”, by Diaz and Batanero (2009, pp. 157–158) 

The participants were asked to submit their solutions both in written form and verbally, and the first 
author asked related questions to understand their in-depth thinking processes. Each interview lasted 
90 to 120 minutes and was videotaped and transcribed. The demographic information and the consent 
of the participants were obtained in advance. In the data analysis process, students' probabilistic 
thinking processes were explored based on the FASTCP for each problem. Two researchers 
performed open coding. After the codes were determined individually, the inter-rater agreement was 
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calculated to be 90%. Different ideas were discussed until a consensus was reached. General codes 
were identified based on their match with the respective thinking levels from the FASTCP. For 
instance, the general codes of "assigning numerical probabilities spontaneously and accurately" and 
"using and explaining logical-numerical reasoning" were matched with level 4; the general code of 
"reverting to subjective reasoning even though recognizing numerical information" was matched with 
level 2. Expert opinion was also obtained on the appropriateness of matching the general codes with 
the thinking levels. 

Findings 
The analysis of the data showed that the context of the problem had an apparent influence on 
probability thinking processes of the mathematics teacher candidates. It was observed that when the 
conditional problem includes a social context, which was, in this case, a health issue or justice for a 
crime, the participants focused on their beliefs based on their daily life experiences and answered the 
question accordingly. In other words, most of the time, they resorted to subjective reasoning rather 
than to logical and numerical reasoning. On the other hand, they presented high-level probabilistic 
thinking in consecutive experiments.  

In problem 1, all participants represented the skills of the numerical level of probabilistic thinking. 
All participants easily recognized the condition for the consecutive experiment. They were aware of 
the composition of the sample space, which plays an essential part in determining the conditional 
probability, and applied numerical probabilities with relative ease when the other situations are 
considered. They could state the necessary conditions whether or not two events were related. They 
used numerical reasoning while comparing the probabilities of the events for each trail in non-
replacement situations. In the following example, it can be seen that the participant executed the 
required conditions for conditional probability and assigned precise values for the desired events. 

Student C:  The probability that the first marble is white if the second marble is white... First I 
will find the probability that the second marble is white. These are WW (white and 
white) or BW (black and white). For the situation of WW, the probability is 1

2
× 1

3
=

1
6
. For the case of BW, the probability is 1

2
× 2

3
= 1

3
. Then 1

6
+ 1

3
= 1

2
 is the probability 

that the second marble is white. Here, the probability that the first marble is also 
white is 1

6
. Then, as like before I will calculate the proportion of 1

6
1
2
� . It is  1

3
. 

In problem 2, only one participant displayed the skills of numerical level thinking. The other 
participants displayed the transitional level of thinking. They presented acts of representativeness as 
a confounding effect when they made decisions and ignored Bayesian reasoning in their solutions. 
They confused the situation of “the probability of the involvement of a blue taxi in the crime" with 
"the chance of finding the taxi that was involved in the crime if it is blue”. Therefore, they were 
confused because the possibility of the taxi involved in the crime being blue should be higher as there 
was a witness when their numerical calculations said the opposite. Another participant also had the 
misconception of the base rate fallacy. He ignored the specific information regarding the witness and 
only focused on the frequency of blue taxis as can be seen in the following example. 
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Student A:  Is it not an easier thing for us to have 15% blue? Obviously, the thing that blue taxis 
are 15% of the taxis in the city increase the possibility to find the taxi that was 
involved in the crime because the less the rate, the more likely it is to find. ... The 
possibility of telling the truth is 80%. Then the possibility of being blue is 15% but 
as I said it is a 15% chance of blue from all taxis. For example, here it multiplies 
80/100 with 15/100 but because I know that 15% of the taxis are blue if I search 
within this 15%, the possibility of finding will be high. ... I will say that the 
possibility of finding the taxi that was involved in the crime is one in fifteen... 

In problem 3, all participants acted in the transitional level of thinking. They misused numbers in 
determining probabilities. For example, when the sample space contained two outcomes as positive 
and negative results, they assumed that these outcomes are equally likely. Students did not use any 
representation for the information in the problem to facilitate their solutions. Their judgment about 
the conditional probability reverted to subjective reasoning as can be seen in the following episode: 

Student A:  In the case of a positive result when the person has cancer, in the case of having 
cancer when the result of the test was positive… I'm not a person who trusts in tests 
that related to health, so I think that the probability of having a positive result in the 
state of being ill will be lower.  

Interviewer: It was a subjective judgment; do not you think? 

Student A: Yes, but the question is also very subjective 

Interviewer:  Can we make a numerical comparison? 

Student A:  If I have this disease, the possibility of my being patient according to the test result 
%50 likely. I assume I have cancer then there are two possibilities that this device 
will show me as plus or negative. If not, it is the same for the other also… So, as I 
said, I still think that the possibility of having a positive test result supposed that 
the person has cancer will be higher than the probability of the person has in fact 
cancer supposed that the person has cancer.  

Discussion 
The findings of the present study revealed the fragile aspect of probabilistic thinking. Teacher 
candidates' actions varied depending on the context of conditional probability problems. Their 
intuition, which is one of the main components of probabilistic thinking (Greer, 2001), came into 
prominence when the context was related to a social issue. On the other hand, they showed high-level 
probabilistic thinking in consecutive experiments. While they represented all the outcomes via listing 
or creating a tree diagram for consecutive experiments, they did not use any representation for the 
other two problems. Therefore, they could not explain their reasoning within logical boundaries based 
on data representation for the problems associated with social issues. For instance, they could not 
express the need for the accuracy of the cancer test to solve problem 3. The main reason for this 
difference might be the standing of the problems related to consecutive experiments in school 
curricula and the instruction of probability. Consecutive experiments have been frequently used in 
textbooks as well as in regular instructions. Therefore, teacher candidates may have the appropriate 
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approach in such scopes. Thus, they may directly focus on logical reasoning and numerical 
probabilities without resorting to their intuition. On the other hand, in a social context, they resort to 
subjective reasoning or ignore the importance of the condition. 

The frequentist approach that recommends a sequence, which starting with the introduction of data 
followed by probability through datasets (Chaput et al., 2011), has been implemented in the Turkish 
school curricula since 2009. Therefore, our participants’ initial acquaintance with probability was by 
means of the old approach, which starts with probability and introduces data environment through 
chance situations. Thus, the introduction of the conditional probability might have been difficult in 
adopting probability teaching based on data in high school years. Advanced mathematics courses in 
undergraduate studies have also been criticized for their instructional methods and the degree to 
which the required conceptual change regarding the related content is created (CBMS, 2011). These 
issues highlight the essential role of the instruction of probability. Teachers should enhance students' 
probabilistic thinking regardless of the context. Therefore, teachers should include both consecutive 
experiments and probability problems with different contexts in their instruction of conditional 
probability, rather than continue using similar contexts. Students should adopt logical and numerical 
reasoning in different contexts, which are used for consecutive events.  They should focus on the 
constructs of probability problems, which help to form conditional probabilistic reasoning, rather than 
on contextual issues. These suggestions point out adopting a frequentist and problem-solving 
approach in the context of real data for the instruction of probability (Shaughnessy, 2003).  

The current study is limited to the contexts of consecutive experiments and social issues of justice 
and health. Further studies should be conducted for the comparison of different contexts of probability 
problems to gain an in-depth understanding of the influence of the context on probabilistic thinking. 
Moreover, the investigation of how experts use logical and numerical reasoning in different contexts 
might provide significant insight into the instruction of conditional probability. 
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The development of students’ stochastical literacy has become an overarching goal of statistics 
education internationally. In particular, teachers design lessons with engaging contexts, focus on 
conceptual understanding (Watson, 2001) and pose critical questions. The present research focuses 
on the development of early childhood teachers’ thinking on designing and teaching probability tasks. 
Five early childhood in-service teachers participated in this research, which was organized around 
three stages of teaching: lesson design, classroom implementation and reflection. The study provides 
some useful insights into the varying levels of attention that teachers paid during their teaching and 
into the different types of instructional material they used. 

Keywords: Statistics education, teacher education, early childhood, tasks, randomness. 

Background of the study 
Statistics education research suggests that enhancing teachers’ subject matter knowledge about 
uncertainty and statistical inference must be given high priority. Building teachers’ knowledge of 
pedagogical structures and tools by itself is not sufficient. Deep understanding of probability is also 
needed for identifying student errors and implementing effective teaching practices (e.g., 
Paparistodemou, Potari, & Pitta, 2006).  

Consequently, statistics education researchers have, in recent years, engaged in professional 
development efforts aimed at facilitating the development of both subject matter knowledge and 
pedagogical content knowledge of teachers (e.g., Groth, Kent, & Hitch, 2015; Leavy, 2010; Serradó, 
Meletiou-Mavrotheris, & Paparistodemou, 2014). The importance of introducing probability tasks in 
the early mathematics classroom is related to the idea of constructing stochastical knowledge based 
on children’s intuitions. Currently, probability and statistics have an important role to play in 
everyone’s daily life, and particularly in children’s lives where most of the games they engage with 
include the idea of chance. Research on learning stochastics (Paparistodemou & Noss, 2004) has 
shown that young children use spatial representations for expressing stochastic ideas. Research 
(Paparistodemou & Noss, 2004; Pratt, 2000) also shows that the design of activities targeting children 
aged 4-8, is critical for them to be able to express their probabilistic ideas. For analysing the 
complexity of teaching mathematics, Potari and Jaworski (2002) used the teaching triad (management 
of learning, mathematical challenge and sensitivity to students) as an analytical device and as a 
reflective agent for teaching development by teachers. Management of learning describes the 
teacher’s role in the constitution of the classroom-learning environment by the teachers and students, 
for example planning of tasks and activity. Mathematical challenge describes the challenges offered 
to students to engender mathematical thinking and activity and sensitivity to students describes the 
teacher’s knowledge of students and attention to their needs. The present research focuses on 
teachers’ planning, teaching and reflection on young children’s (4 to 6 years-old) stochastic activities. 
The work is part of a previous work (Paparistodemou & Meletiou, 2018) and it concentrates on 
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teachers’ attention on the activity in terms of the mathematical challenge it offers and the development 
of children’s stochastic ideas.  

Methodology 
Participants and context 

Five early childhood teachers (all females) participated in this research, which was organized in three 
stages: Stage 1 – Lesson Planning, Stage 2 – Lesson Implementation, and Stage 3 – Reflection. In 
Stage 1, the teachers were engaged in lesson planning. They selected a topic from the national 
mathematics curriculum on probability and statistics and developed a lesson plan and accompanying 
teaching material aligned with the learning objectives specified in the curriculum. The lesson plans 
were shared with the researchers for comments and suggestions, and were revised based upon 
received feedback. In Stage 2, the teachers implemented the lesson plans in their classroom, with the 
support of the researchers. Once the classroom implementation was completed, in Stage 3, teachers 
were interviewed and prepared and submitted a reflection paper, in which they shared their 
observations on students’ reactions during the lesson, noting what went well and what difficulties 
they faced and making suggestions for improvement. 

Data collection 

Multiple forms of data were collected: (1) Observations and artifacts collected during Stage 1: Early 
childhood teachers’ submitted work (students’ entry slips-student’s responses on pre-knowledge 
tasks, lesson plans, etc.), researchers’ observations and field notes; (2) Observations and artifacts 
collected during Stage 2: Each early childhood teacher intervention that took place lasted for 80 
minutes (two teaching periods). Researchers were present, observing closely and videotaping the 
lesson, keeping field notes, and collecting samples of student work; (3) Individual interviews and 
reflection reports during Stage 3: Upon completion of Stage 2, the researchers conducted semi-
structured interviews with each of the teachers. Qualitative data were also obtained from the reflection 
papers prepared by the teachers. 

For the purpose of analysis, we did not use an analytical framework with predetermined categories to 
assess how teachers’ perceptions evolved. Our coding was open and we tried to recognize 
mathematical challenges (Potari & Jaworsky, 2002). We identified, through careful reviewing of the 
transcripts, reports, and other data collected during the study, recurring themes or patterns in the data. 
To increase the reliability of the findings, the activities were analyzed and categorized by the 
researchers. Inter-rater discrepancies were resolved through discussion.  

Designing, teaching and reflecting on probability tasks 
Findings, concerning the study research question on what early childhood teachers attend to when 
designing, implementing and reflecting on probability tasks, will be discussed with regards to one of 
the three elements of the teaching triad (Potari & Jaworski, 2002): mathematical challenge, which we 
call here “stochastical challenge”. The learning objectives included in all lesson plans refer to 
stochastical challenges like the probabilistic concepts of certain, impossible and probable events. 
Moreover, the lesson plans included activities that involved children in authentic statistical inquiry. 
The activities included in their lesson plans indicated that they tended not to recognize the concept of 
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randomness, as it appeared difficult for them to see the stochastical idea underlying tasks (the 
context). In presenting the main insights from our study, we focus to the existence of randomness.  

The stochastical challenge of making predictions 

In Alice’s case, the aim of the lesson plan she designed was for “children to make predictions based 
on impossible, possible and certain events”. She decided to use the context of children making hats 
for a party: 

Alice: You know, children need an everyday scenario… I decided to ask them to make 
hats with dots. The dots will be blue and/or red… they [the children] will select a 
spinner, make a prediction as to whether it would be possible for the hat to have 
blue dots or not, mark it on their board and then make their hat… 

Researcher: So, will they use their spinners? 

Alice: If they like to…yes. I know that some students will know beforehand… 

The other activities included in Alice’s lesson plan also indicated lack of attention to the concept of 
randomness. Alice was focusing only on children making decisions on what might have happened 
and what not. We had a discussion with Alice to find out why she did not ‘allow’ children to spin the 
spinners. She referred to management issues, but after we pointed out the importance of children 
experiencing randomness, decided for children to spin their spinners. Figure 1 shows how Alice 
organized her classroom based on the above task. 

 
Figure 1: Material used in Alice’s task 

The stochastical challenge of controlling the uncontrolled 

In Sally’s case we recognized an awareness of the concept of randomness. Sally was very specific in 
her two aims for the lesson, which were the following: “Children should be in a position to select the 
appropriate sample spaces for certain, impossible and fair events”, and “Children should experience 
the concept of randomness”. At the beginning of Sally’s lesson, children selected their favorite flavor 
of ice cream. They had this selection stacked on their chair and were given a “fair” spinner with three 
flavors. They worked in pairs, with one child spinning the spinner and the other one comparing the 
flavor that had come up in the spinner with his/her favorite flavor (see Figure 2). 
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Figure 2: Children playing with spinner in Sally’s task 

It was good to see Sally letting the children experience randomness. Another activity she planned and 
implemented was to show children different spinners, which had different sample spaces (for 
example, whole brown (as a chocolate flavor), whole red (as a strawberry flavor), whole white (vanilla 
flavor), ¼ brown-3/8 red-3/8 white etc.). Children were asked questions such as: “Which spinner 
should you use in order to get your favorite flavor? Why? If I spin this spinner will I get strawberry? 
Why or why not?”. 

Sally’s case is interesting from the point of view that although we recognised from her lesson plan a 
stochastical challenge awareness, we can see from her teaching that she put a lot of effort in 
understanding the probability concept and the presence of randomness in her activities. On this point, 
in her interview she stated: 

Researcher: What did you want children to learn? 

Sally: Certain, Possible, Different sample spaces…Well, the activity went well. It was not 
difficult for them… and I think children built a good understanding of the idea of 
randomness […] you know, I spent a lot of time to design the lesson…finding the 
scenario, making the materials…but the “key” was for me to understand…you 
know…to feel confident that I know…this subject [probability] seems easy but it is 
not so easy to teach… you need to know. 

Researcher: What was it that you needed to know? 

Sally: There were many times that in order to continue teaching I had to grasp from their 
predictions, continue with having the experience and then find a way lets 
say…giving them [to the children] a chance to “control” this “uncontrolled idea” 
[randomness]… For example, Dani was sure that he would get brown in a fair 
spinner…that was not the case…At that point I had to be able to give him an 
experience of randomness and also help him build his new prediction…  

Sally seemed able to recognize some critical incidents in her lessons and to reflect on them. She paid 
particular attention to the provision of opportunities for children to experience randomness, 
something that was critical in building on children’s intuitions.  

Similarly, Alice reflected on her lesson: “I spent hours trying to find the scenario, making the 
materials and I felt that everything was ready…In this lesson that was not the case… I had also to be 
able during my teaching to find ways to help children adjust their predictions, making questions and 
giving the right spinner…”. 
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In the above paragraphs we present two cases of the five we observed, as these can be also an example 
of the other two that are missing. Among the five cases of teachers in our study, there was one teacher 
who did not recognize at all the importance of randomness in her probabilistic activities. Katie 
expressed her thoughts as follows: “You know, I feel that the lesson did not go so well mainly because 
I posed too many closed questions and I didn’t feel confident when I got the ‘wrong’ answer… I 
didn’t realize the need for children to experience randomness until we talked…”. Katie was aware 
that a deeper understanding of this important probability concept would have helped her to improve 
her lesson planning and implementation. Besides that, she also reflected on how she should have 
given the opportunity for children to experience randomness. 

Discussion and conclusions 
Teachers in our study recognized that they needed to know not only what randomness is and how to 
deal with this concept, but also how to make it visible in their lesson. They pointed out that successful 
introduction of the idea of randomness in the early mathematics classroom requires knowledge of 
how to build upon children’s prior intuitions regarding random phenomena, as well as how to react 
during the lesson to students’ predictions regarding stochastic events and to the actual outcomes of 
such events. Teachers discussed on critical incidents they observed (Goodwell, 2006; Hanuscin, 
2013). Critical incidents were crucial for jointing reflection between teachers and researchers on 
concrete classroom situations (Scherer & Steinbring, 2006). 

Most of the teachers’ attention during the planning stages was focused on including knowledge of 
educational goals, where specific concepts appear. This is what Ball and Bass (2000) spoke about 
what curriculum knowledge is. This type of knowledge may help teachers appropriately sequence the 
introduction of statistical ideas in a curriculum (Godino, Ortiz, Roa, & Wilhelmi, 2011). The findings 
show that it was through actually teaching the lesson and after reflection that the knowledge 
components/challenges became more evident for these early stage teachers. Similar findings were 
obtained in a previous study conducted by Paparistodemou et al. (2006), which had investigated 
prospective teachers’ awareness of young children’s stochastic activities. The fact that similar 
tendencies were observed in both pre-service and in-service teachers might lead us to conclude that 
awareness is not only a matter of teaching experience, but also of the extent to which teachers engage 
with the process of noticing and understanding their teaching. In the case of Sally and Alice, we saw 
some degree of awareness of important concepts like randomness. At some instances, these two 
teachers indicated some understanding of randomness and of how it relates to other probabilistic 
concepts, but this was not always the case. We could say that their awareness remains at the level of 
action (mathematical) and it does not indicate a greater degree of awareness that of the awareness in 
discipline (Mason, 1998).  

Summing up, this study adds the term of “stochastical challenge” in Potari’s and Jaworski’s (2002) 
teaching triad and in addition to previous work of Paparistodemou and Meletiou (2018). Futhermore, 
it shows the kind of experiences that a small group of early childhood teachers’ incorporated into the 
design, implementation and evaluation of teaching related to stochastics (for more details see also 
Paparistodemou & Meletiou, 2018). It can be argued that these teachers did build some relations 
between theory and teaching practice, but that their transition and reflection to more specific 
stochastical and pedagogical issues appeared to be a difficult endeavor. This calls upon special 
attention and reflection on behalf of mathematics teacher educators to tackle this problem. 
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Connecting context, statistics and software for understanding a ran-
domization test: a case study 

Susanne Podworny 
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Drawing statistical inference with the help of simulations has gained prominence in statistics educa-
tion as well as introducing statistical inference with randomization tests. This paper describes some 
selected results of a case study of preservice primary teachers who attended a short learning trajec-
tory on statistical inference with randomization tests. It will be shown how the participants address 
the context, statistics and software level when conducting a randomization test with software and how 
the conscious linking of the three levels can support the learning process and help to understand 
certain elements of a randomization test. 

Keywords: Statistical inference, randomization test, simulation. 

Introduction 
Statistical reasoning is a cornerstone on which statistical practice is based. In almost all areas of daily 
life, data and thus also conclusions drawn from data play an important role. It is impossible to imagine 
statistical practice without computer-supported evaluations and methods. In many fields, like in in-
dustry, medicine, or politics, decisions are increasingly being made on the basis of data. When look-
ing at a newspaper, a television report or an entry on the World Wide Web, interested citizens in-
creasingly come across the keywords “A study has shown ...” or “The effect of X is Y”. However, it 
is often suggested that the results and interpretations delivered in this way are by no means certain, 
as is often suggested in the media.  

There are two big areas in inferential statistics: parameter estimation and hypothesis testing and there 
are two kinds of inferences that may be drawn: generalizations beyond a given sample and causation 
for a given treatment for a given sample. The latter should be an integral part of stochastic education, 
as called for in the basic article by Wild and Pfannkuch (1999). 

Statistics education should really be telling students something every scientist knows, ‘The quest 
for causes is the most important game in town.’ It should be saying: ‘Here is how statistics helps 
you in that quest’. (Wild & Pfannkuch, 1999, p. 238) 

One statistical method for drawing causal inferences is the randomization method. About ten years 
ago, Cobb (2007) strongly advocated introducing the logic of inference via randomization tests. A 
randomization test is a non-parametric method that allows easy access to inferential reasoning via 
computer-based simulations. Through simulations, nearly no formulas or calculations are needed, and 
this is one of the main reasons for the easiness of this method. The “core logic of inference” (Cobb, 
2007) can be in the center and conclusions are possible even for data from small or non-random 
samples. 

From this perspective, a learning trajectory on inferential reasoning with randomization tests was 
developed by the author to be implemented in an existing course on statistics and probability for 
preservice primary school teachers to complete the general statistics education of these preservice 
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teachers. Eight weeks after the learning trajectory a case study was conducted with participants who 
conducted a randomization test for a given problem with computer-based simulations. The objective 
of this paper is to better understand the reasoning process of these learners. Selected findings of this 
study will be presented in this paper.  

Literature review 
Cobb (2007) gave an impetus to rethink the introduction to inference statistics, especially at college 
level, and to get a new introduction with randomization tests. Some curricula for introductory statis-
tics courses emerged since then (e.g. Rossman, Chance, Cobb, & Holcomb, 2008; Tintle, 
VanderStoep, & Swanson, 2009; Zieffler & Catalysts for Change, 2013) and some shorter learning 
trajectories for introducing inferential reasoning were created (e.g. (Budgett, Pfannkuch, Regan, & 
Wild, 2012; Frischemeier & Biehler, 2014). All these teaching proposals are based on the use of 
computer-based simulations and focus on the logic of inferential reasoning rather than on calcula-
tions. In addition, there are some few empirical studies focusing on special aspects of the process 
when learners conduct a randomization test.  

A common factor of all these learning units is that they use a plan or a scheme to structure the rea-
soning process. A compilation of elements of these schemes by the author has resulted in nine ele-
ments that can be considered central when conducting a randomization test. The first element is the 
random allocation of experimental units to groups. Explaining this is a core component in understand-
ing the underlying design (Pfannkuch, Budgett, & Arnold, 2015). To find possible explanations for 
observed differences between two groups of an experiment (Pfannkuch et al., 2015) is the second 
element. One explanation can be that the treatment is effective, another explanation can be that the 
observed differences are due to the random allocation of units to the groups. The third element is to 
pose or reconstruct the research question for the experiment (Wild & Pfannkuch, 1999). Analyzing 
the observed data and identifying a difference between the two groups is the fourth element (Biehler, 
Frischemeier, & Podworny, 2015; Rossman et al., 2008). The fifth element is setting up the null 
model with the null and alternative hypotheses (Biehler et al., 2015). Transferring the null model to 
a simulation model is the sixth element (Biehler et al., 2015; Lee, Tran, Nickell, & Doerr, 2015). The 
seventh element is the production of test statistics and the sampling distribution (Lee et al., 2015). 
The eighth element is to identify the p-value (Biehler et al., 2015; Rossman et al., 2008). And the last 
element is drawing possible conclusions (Cobb, 2007). Each of these elements has its own difficulties, 
but one difficulty across all elements is to combine the levels of context, statistics and software.  

In our own research (Biehler et al., 2015), we identified three levels when working on a randomization 
test: the context level, the statistics level, and the software level. Following up on this, Noll and Kirin 
(2017) conducted a case study with eight learners who created different models in TinkerPlots for the 
“dolphin therapy problem” (Noll & Kirin, 2017, p. 219) and analyzed what influenced the learners’ 
reasoning about models. One of their results was, that “Students did not spend much time discussing 
attribute labels or what type of devices they wanted to use” (Noll & Kirin, 2017, p. 232). This may 
be an explanation for the reported result that “the concept of no difference between two groups is 
difficult to operationalize into a TinkerPlots model” (Noll & Kirin, 2017, p. 235). Naming the (sim-
ulated) attributes was identified by Noll and Kirin as an important aspect of the modeling process, 
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because it can act as a bridge between the context and the tool (Noll & Kirin, 2017, p. 236). But they 
also state, that they “see this work as in its infancy in that we need more research focused on why 
students create the models” (Noll & Kirin, 2017, p. 240). They also noted that it is not reasonable to 
separate the three worlds like they interpreted the work of (Biehler et al., 2015). At this connection 
between context, statistics and software this paper ties in.  

The learning trajectory “Inferential reasoning with randomization tests” 
A learning trajectory “Inferential reasoning with randomization tests” for preservice primary school 
teachers was created in the sense of the design based research paradigm (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003). The aim of the trajectory was to introduce preservice teachers at univer-
sity to the logic of inference like in the sense of Cobb (2007) in a short period of time. Some design 
ideas were adapted from Pfannkuch et al. (2015), who successfully introduced inferential reasoning 
in a short learning sequence to a similar target group. The learning trajectory was designed for the 
end of an existing course on elementary statistics at Paderborn University. The existing course con-
sisted of three modules data analysis, combinatorics, and probability and used the software Tink-
erPlots from the beginning. The new learning trajectory was designed for three 90 minutes sessions.  

In the first session the students should get in touch with a first example of a randomization test with 
a significant p-value (Rossman et al., 2008) and with the logic of inferential reasoning as a continua-
tion of group comparisons (Makar & Confrey, 2002), which were already discussed in the data anal-
ysis module. The second session focused on the performance of a randomization test by the students. 
First, a hands on simulation with pen and paper was to be carried out and then transferred to a com-
puter-based simulation, like proposed for example by Gould, Davis, Patel, and Esfandiari (2010). In 
the third session, the nine elements (see literature review) were to be discussed in detail and possible 
difficulties addressed. 

To get insights into the cognitive processes of students conducting a randomization test with Tink-
erPlots, an interview study was designed as part of the Ph.D. study of the author.  

Methodology 
The research question for the case study – that is focused on in this paper – is How do the participants 
relate the three levels context, statistics and software to each other?  

The problem given to students was an adaption of the “Fish oil and blood pressure task” of Pfannkuch 
et al. (2015). This task contains real data from a medical experiment with 14 volunteers on the ques-
tion of whether fish oil supplements have a blood pressure-lowering effect compared to normal oil 
supplements. The blood pressure of the participants was measured at the beginning and after four 
weeks and the blood pressure reductions for the two groups were recorded like in Table 1. 

Fish oil group 8 12 10 14 2 0 0 
“normal oil” group -6 0 1 2 -3 -4 2 

Table 1: Data on blood pressure reduction after four weeks 

The observed data was visualized on the worksheet for the students like in Figure 1 and accompanied 
by the statement and the question “The observed data are shown in Figure 1 and show that the blood 
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pressure reduction in the fish oil group tends to be greater than those in the ‘normal oil’ group”. What 
can be concluded here?” 

 
Figure 1: Visualized data on the participants’ worksheet 

The interview study took place as a semi structured interview (Mayring, 2016) with a large part of 
the participants working independently on the task. Questions of the participants were allowed in this 
phase, and some help could be given by the interviewer. This part was followed by interview ques-
tions relating to the individual steps and arguments of the working phase.  

A total of six participants working in three pairs took part in the interview study. All of them attended 
the whole course and the learning trajectory, so this was their educational background. Participation 
in the study was voluntary, so participants cannot be considered representative of the 236 participants 
in the whole course. The participants’ age ranged between 21 and 25 years, being in the third/fourth 
semester of University. The interviews took place eight weeks after the course and none of the par-
ticipants used TinkerPlots in between. The conversations were recorded together with the screen ac-
tivities and then transferred into a transcript. This transcript included the conversations as well as the 
other activities, with and without software.  

The analysis of the transcripts was carried out by means of interaction analysis (Krummheuer & 
Naujok, 1999). First, the transcripts were divided into 15 interaction units using methods of linguistic 
conversation analysis (Egbert & Deppermann, 2012). The next step was to reconstruct the solution 
process interpretatively with interaction analysis. A detailed turn-by-turn analysis took place here and 
was discussed with other interpreters. For each of the nine elements (see literature review), the level 
(context, statistics, software) at which the participants communicated was examined. As a third step, 
the use of the software in the solution process was examined in detail. Summary and comparative 
analyses between the pairs formed the fourth step.  

Results 
The levels at which the participants communicate regarding the nine elements are described below. 
Table 2 shows which level the participants address linguistically when they talk about and work on 
the various elements. 

Element Context Statistics Software 
Random alloca-
tion 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

- 
- 
- 

Possible explana-
tion 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

- 
- 
- 

Research question Rebecca & Selina - - 
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Fabia & Laura 
Mandy & Alisa 

- 
- 

- 
- 

Observed data Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

- 
- 
- 

Null model Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

- 
- 
- 

Simulation model Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Test statistics and 
sampling distri-
bution 

- 
- 
- 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

P-value - 
- 
- 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

Conclusions - 
- 
Mandy & Alisa 

Rebecca & Selina 
Fabia & Laura 
Mandy & Alisa 

- 
- 
- 

Table 2: Overview of the levels at which the pairs communicate during the randomization test process 

Table 2 shows a clear pattern. The first two elements are addressed by all three pairs both at the 
context level and at the statistics level. These are related to the observed data and no reference to the 
software is necessary. The research question is formulated by the participants at the contextual level. 
The corresponding interaction units are very short, because this element is obviously clear for all 
participants. Like the first two elements, the observed data are discussed at the contextual and at the 
statistical level. As the data had already been evaluated on the worksheet, there was no need to work 
with the software and therefore no need to talk about it. 

The null model element includes the formulation of the null hypothesis and the alternative hypothesis. 
Communication takes place both at the context level and at the statistics level. However, the null 
hypothesis formulated by Rebecca and Selina reveals only a small contextual reference. These two 
formulate “Random group allocation is the cause of observed differences”. Such a formulation is 
almost arbitrarily applicable to different situations, since a reference to the direct context is not rec-
ognizable. The formulation of the other pairs for the null hypothesis are “There is no difference in 
blood pressure reduction in the effect between both supplements” (Fabia and Laura) and “It does not 
matter which oil is taken to lower the blood pressure but the results are due to the random allocation” 
(Mandy and Alisa). Both show a clear connection to the context. Perhaps this explains why Rebecca 
and Selina do not end up drawing conclusions in context. However, Fabia and Laura do not draw 
these either, although their null hypothesis is clearly related to the context.  

The only element that is addressed by all three pairs on all three levels is the development of the 
simulation model in TinkerPlots. For this element, all three pairs needed additional help from the 
interviewer on a technical level, for example how to copy all the observed values into a box of the 
sampler. The same need of help could be observed for the next two elements for which TinkerPlots 
had to be used. But, unlike in our earlier research (Biehler et al., 2015), renaming the attributes of the 
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sampler and of the new groups for the new allocation was a topic for all three pairs. An interesting 
dialogue for this came about between Rebecca and Selina. This shows that the concept of random 
allocation developed linguistically by linking the three levels (that was identified as a difficulty by 
Noll & Kirin (2017)). The sampler built by Rebecca (R) and Selina (S) so far is shown in Figure 2. 
This sampler is built correctly with all observed blood pressure values in the first box and inde-
pendently these will be drawn in one of two new groups. TinkerPlots labelled the two stacks in the 
second device in “a” and “b” automatically. 

 
Figure 2: Sampler created by Rebecca and Selina 

Selina first renames the first stack in “fish” like in Figure 2, but then retains the letters a and b and 
the following dialogue arises. 

R: Do we have to call them that, because we actually divide them up in such a way 
that we can do it later, for example/. So I'm not quite sure, but it could be that we/.  

S: /That's right, we don't really need it.  
R:  /put a fish oil person with a normal oil person/.  
S:  /You're right/.  
R: /Together. I think a and b is actually quite neutral.  
S: You can actually take a and b, because then that's more. We want to prove now that 

it has nothing to do with the oil anymore.  
R:  Yes, exactly we will say it/.  
S:  /So you have to/  
R:  We are representatives of the null hypothesis.  
S:  Exactly, because then in the one group possibly always both come, a person with 

fish oil and one with normal oil. It is now only about lowering blood pressure.  
R:  Yes, that's exactly what it can be/.  
S:  /Yes.  
R:  That you have maybe five of them (points to the fish oil group in the plot in Tink-

erPlots) and then (.) the rest of them (points to the “normal oil” group in the plot). 
Well, it can be that way/.  

S:  /You're right. (laughs) Well, I would spontaneously agree with you. (laughs)  
In the end, Rebecca and Selina decide not to rename the new groups.  

For the next two elements, sampling distribution and p-value, none of the three pairs have a conver-
sation at context level. They operate only on the software level and on the statistics level.  

Conclusions are correctly formulated at the statistical level by all three pairs, which is a good result 
for the whole process. The written formulations are as follows: 

Rebecca & Selina:  Research hypothesis can be accepted and null hypothesis can be rejected, but 
with slight uncertainty 

Thematic Working Group 05

Proceedings of CERME11 1062



 

 

Fabia & Laura:  We reject the null hypothesis and accept the research hypothesis at a P-value 
of 1%. 

Mandy & Alisa:  The null hypothesis can be rejected. Blood pressure reduction depends on the 
type of oil. 

However, only Mandy and Alisa apply their conclusion to the treatment carried out. A deeper look at 
the transcripts shows that the greatest difficulties are with the last element formulating contextual 
conclusions, and that a statistical formulation seems to be the easiest for the participants. 

Discussion 
Like Noll and Kirin (2017), who did not find a separation of the three levels context, statistics, and 
software to be beneficial, connecting the three levels seems to be extremely useful in the present 
work. Only when the levels are differentiated a conscious connection between them can take place 
and thus promote the learning process. An example for a helpful connection can be seen in the se-
lected dialogue between Rebecca and Selina, in which they clarify the meaning of random assignment 
and its implementation in the software.  

For the process of understanding it can be concluded that the dialogue between Rebecca and Selina 
is one of the most important parts of the conversation, because here the two make it clear that during 
the simulation (level of software) a random reallocation (level of statistics) of the persons with the 
blood pressure values (level of context) happens independently (level of statistics) of the oil con-
sumed (level of context). Such discussion would have been desirable for further settings at the soft-
ware level, as it would enhance understanding by linking the three levels. Unfortunately, very few 
such dialogues have taken place throughout the case studies. Even though the data are taken from a 
real scientific experiment, the participants seem to have been given too little opportunity to deal with 
the context in detail. This would be a better prerequisite for a deeper interpretation of the context.  

However, the context caused a confrontation with the data, as reported by Gonzáles (2015), in order 
to promote understanding of the need of decision-making in situations with uncertainty. The demands 
of Cobb (2007) were implemented here in a learning trajectory and the learners were successfully 
introduced to statistical inference. 
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The assessment of probabilistic reasoning skills is important in various context. The aim of this study 
was to develop an abbreviated, open-ended version of the Probabilistic Reasoning Scale (PRS-B), 
applying Item Response Theory (IRT). The analyses based on the open-ended version of the 16-item 
scale suggested the exclusion of seven items that did not perform well in measuring the latent trait. 
The resulting 9-item scale (PRS-B), which included highly discriminative items, covered a wider 
range of the measured trait than the original scale and it showed high measurement precision. 
Concerning validity, the results showed the expected correlations with numerical skills, math anxiety, 
and statistics achievement. In conclusion, the PRS-B can be is a shorter, open-ended version of the 
PRS that maintains excellent reliability and validity. 

Keywords: Assessment, item response theory, short form, probabilistic reasoning, validity. 

Introduction  
The ability to think about uncertain outcomes and to make decisions on the basis of probabilistic 
information is relevant in many fields (e.g., business, medicine, politics, law, and psychology). 
However, people often struggle with interpreting probability information (see Chernoff & Sriraman, 
2014). In particular, when they solve probability problems, people tend to make some typical mistakes 
instead of applying formal analytic procedures (see e.g., Gilovich, Griffin, & Kahneman, 2002). 
These mistakes, including heuristics, biases and misconceptions, make it difficult for people to 
interpret and critically evaluate probabilistic information, understand data-related arguments, and 
make reasoned judgments and decisions (e.g. Garfield & del Mas, 2010, Morsanyi et al., 2009; Pratt 
& Kazak, 2017).   

Regarding education in probabilistic reasoning, previous studies demonstrated the difficulty of 
improving probabilistic reasoning ability or, rather, a resistance to eliminate probabilistic reasoning 
biases once these had consolidated (for a summary of the literature, see e.g., Gilovich et al., 2002; for 
adolescents, see Klaczynski, 2004). Nevertheless, training activities that target specific difficulties 
can reduce some misconceptions (e.g. Fong & Nisbett, 1991). Additionally, in statistic courses, which 
have been incorporated into a wide range of school and university programs in many countries, 
students often encounter difficulties and, eventually, many of them fail to pass the exams. Some 
authors (Konold & Kazak, 2008) pointed out that one of the reasons students have difficulties in 
learning basic data analysis stem from a lack of basic understanding of probability and in grasping 
the fundamental ideas of probability. 

Given the important role of probabilistic reasoning skills in various contexts, it is important to 
accurately measure probabilistic reasoning skills, in order to improve these skills. This, in turn, can 
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lead to other beneficial outcomes, such as better academic achievement. For this reason, recently we 
developed a new scale, the Probabilistic Reasoning Scale – PRS (Primi, Morsanyi, Donati, Galli, & 
Chiesi, 2017) to measure probabilistic reasoning ability, which can be used to identify people with 
difficulties in this domain. The PRS was developed with a focus on some typical biases and fallacies 
that are known to lead to incorrect responses. Indeed, the PRS is a useful tool in educational contexts 
to identify individuals who could be targeted by specific interventions.   

However, the scale has the limitation that the items measure probabilistic reasoning skills most 
precisely in the lower ability ranges and it is not ideal for the measurement of ability levels around 
the mean. Additionally, the scale is composed of 16 items and it does not seem appropriate for large, 
multivariate studies in which many tests and scales need to be administered at the same time. Indeed, 
with research questions becoming increasingly complex, and involving a growing number of 
constructs, such as when investigating the role of probabilistic reasoning in decision making (e.g., 
Schiebener & Brand, 2015) or in risk taking (Donati, Primi, & Chiesi, 2014), shorter scales potentially 
offer added value.  

In sum, the aim of this study was to develop an abbreviated, open-ended version of the PRS. To 
achieve this goal, we used Item Response Theory (IRT) analyses, which make it possible to select 
items that offer the most information in measuring the targeted underlying trait, that is, probabilistic 
reasoning. Specifically, IRT has potential benefits in shortening a scale because it makes it possible 
to evaluate the amount of information provided by each item of the scale for each trait level on the 
trait dimension through the Item Information Function (IIF). In other words, if the amount of 
information is large, the trait level can be estimated with high precision, if the amount of information 
is small, the trait cannot be accurately estimated. Thus, on the basis of item information, it is possible 
to select items that convey the higher amount of information along the entire range of the measured 
trait. Through the selection of items that perform better and assure adequate information along the 
different levels of the trait, a well-performing shortened scale can be obtained.  

Additionally, IRT provides the Test Information Function (TIF), which evaluates the precision of the 
test at different levels of the measured construct instead of providing a single value (e.g., Cronbach's 
α) for reliability (Embretson & Reise, 2000). More precisely, the TIF provides information on how 
accurate the test is at estimating a trait along the whole range of trait scores. The more information 
the test provides at a particular trait level, the smaller the error associated with ability estimation, and 
the higher the local reliability. Since the TIF is generated by aggregating the IIFs, in general, longer 
tests will measure an examinee’s attribute with greater precision than shorter tests. Nonetheless, in 
the IRT framework, item selection can be done ensuring that the TIF of the shortened scale maintains 
an adequate amount of information along the trait continuum, which is similar to the original scale.  

Finally, given that a short form of a test should meet the same standards of validity as the full form 
(Smith, McCarthy, & Anderson, 2000), validity measures were administered to provide evidence that 
the abbreviated scale still measures probabilistic reasoning adequately. Thus, we expected to replicate 
the pattern of relationships established for the construct as measured by the long form of the test. In 
particular, we investigated the relationship between the PRS-B, numerical skills, anxiety and self-
confidence related to numbers, and statistics achievement.  
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Methods  
Participants  

The participants in this study were 316 psychology students (mean age = 20.53; SD = 2.9; 76% 
female) enrolled in an undergraduate introductory statistics course at the University of Florence in 
Italy. All students participated on a voluntary basis.  

Materials  

The original Probabilistic Reasoning Scale (PRS, Primi et al., 2017) consists of 16 multiple-choice 
questions. In this study, the scale was administered in an open-ended format, which required some 
minor changes in the wording of the items. The items include questions about simple, conditional and 
conjunct probabilities, and the numerical data are presented in frequencies or percentages (e.g., “A 
ball was drawn from a bag containing 10 red, 30 white, 20 blue, and 15 yellow balls. What is the 
probability that it is neither red nor blue?”). 

The Mathematics Prerequisites for Psychometrics (MPP; Galli, Chiesi, & Primi, 2011) was 
developed with the aim of measuring the mathematics skills needed by students enrolling in 
introductory statistics courses. The test consists of 30 problems, and it has a multiple choice format 
(one correct out of four alternatives). A single composite score, based on the sum of correct responses, 
was calculated. In the present sample, Cronbach’s α was .74. We used this measure as an estimate of 
students’ math knowledge.  

The Abbreviated Math Anxiety Scale (AMAS; Hopko, Mahadevan, Bare, & Hunt, 2003; Italian 
version: Primi, Busdraghi, Tomasetto, Morsanyi, & Chiesi, 2014) measures math anxiety experienced 
by students in learning and test situations. Participants have to respond on the basis of how anxious 
they would feel during the events specified (for example, “Listening to another student explain a math 
formula”). High scores on the scale indicate high math anxiety. A single composite score was 
obtained, based on participants’ ratings of each statement. In the present sample, Cronbach’s α was 
.84.  

The Subjective Numeracy Scale (Fagerlin et al., 2007) is a subjective measure (i.e., self-assessment) 
of quantitative ability. An example item is “How good are you at working with fractions?” The items 
have to be rated on a 6-point Likert scale. A single composite score was computed based on 
participants’ ratings of each item. Coefficient α in the current sample was .78.  

Measure of statistics achievement. As a measure of achievement, we used the final examination grade. 
The exam consisted of a written task that included three problems to be solved by a paper-and-pencil 
procedure without the support of a statistics computer package, 5 multiple-choice and 2 open-ended 
questions (e.g., describe the properties of a normal distribution) and 1 output of data analyses 
conducted with R-Commander to interpret. For the problems, students were given a data matrix (3-4 
variables, 10-12 cases) and they had to compute descriptive indices, draw graphs, and choose and 
apply appropriate statistical tests (identifying the null and the alternative hypotheses, finding the 
critical value, calculating the value of the test, and making a decision regarding statistical 
significance). Grades range from 0-30. From 0 to 17 the grade is considered insufficient based on the 
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Italian University Grading System. Thus, only students who obtain 18 or higher grades pass the 
examination.  

Procedure  

Participants completed the measures individually in a self-administered format in the classroom. Each 
task was briefly introduced, and instructions for completion were given. The answers were collected 
in a paper-and-pencil format. All participants completed the scale during the first week of an 
introductory statistics course. Achievement in statistics was measured at the end of the course during 
the exam session. 

Data Analysis   

Preliminarily, we tested the unidimensionality of the PRS evaluating local dependence (LD). LD is 
an excess of covariation among item responses that is not accounted for by a unidimensional IRT 
model and it was assessed using the χ2 LD statistic (Chen & Tiessen, 1997), computed by comparing 
the observed and the expected frequencies in each of the two-way cross tabulations between responses 
to each pair of items. This diagnostic statistic is approximately distributed as standardized χ2. Given 
this approximation, as a rule of thumb, values of 10 or greater indicate the presence of LD.  

After having verified this assumption, unidimensional IRT analyses were performed. IRT models use 
the original response data for estimating probabilities of responses as a function of the latent trait θ 
(i.e., in the current study, probabilistic reasoning), which is defined as a continuous variable that 
conventionally has a mean of zero and SD of 1.0. This function describes the relation between the 
probability of endorsing a response given not only the respondent’s level of θ but also the item’s 
characteristics. A model with two parameters (2PL) was tested in order to estimate the item difficulty 
and discrimination parameters. The parameters were estimated by employing the marginal maximum 
likelihood estimation method with the Expectation-Maximization (EM) algorithm implemented in 
the IRTPRO software (Cai, Thissen, & du Toit, 2011). In the 2PL model, the two item parameters are 
item difficulty and item discrimination. The item difficulty parameter (β) or “location” represents the 
latent trait level corresponding to a .50 probability of correctly endorsing the item. The item 
discrimination parameter (a) or “slope” represents the item’s ability to differentiate between people 
at contiguous levels of the latent trait. This parameter describes how rapidly the probabilities change 
with trait levels. In order to test the adequacy of the model, the fit of each item under the 2PL model 
was tested computing the S χ2 statistics. Additionally, for each item was calculated the IIF, graphically 
represented by the Item Information Curve (IIC), that describes the amount of information that a 
particular item provides across the entire continuum of the latent construct, and it depends on both 
the discrimination and location parameters. Thus, we used IIFs to select the items that conveyed the 
higher amount of information along the range of the trait measured by the PRS, looking at the area 
above the IICs, which equals both the size of the a parameters and the spread of the b parameters. 
Once the shortened scale was defined, all the above described analyses were repeated for the brief 
scale in order to confirm the item and test psychometric properties. In particular, we investigated the 
reliability of the shortened scale. IRT makes it possible to assess the measurement precision of the 
test through the TIF.TIF is generated by aggregating the IIFs of items in a single measure and it allows 
to compute the information (I), that is, the expected value of the inverse of the standard error (SE), 
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provided by the test at each level of the trait. Thus, the more information the test provides at a 
particular trait level, the smaller the error associated with trait estimation and the higher the test’s 
reliability. Graphically, the TIF shows how well the construct is measured at different levels of the 
underlying construct continuum, and the peak of the TIF is where measurement precision is greatest. 
Regarding validity, Pearson product-moment correlations were computed.  

Results 

Preliminarily, we tested the unidimensionality of the probabilistic reasoning construct, a fundamental 
criterion underlying IRT models, evaluating the presence of LD. The results confirmed that a single 
factor model adequately represented the structure of the scale, as none of the LD statistics were greater 
than 10. Additionally, the factor loadings ranged from .54 to .80. Each item had a non-significant S-
χ2 value, indicating that all items fit under the 2PL model. Concerning the difficulty parameters (b), 
the results showed that the parameters ranged across the continuum of the latent trait from -2.68±.53 
to .49±.12 logits (i.e., the logarithm of the odd, that is, the ratio of the probability of producing a 
correct response and the probability of responding incorrectly). Compared to the difficulty of the 
original scale (-2.97±.5 to -.07±.08 logits), results showed that the parameters spanned a wider range 
of the latent trait. With regard to the discrimination parameters (a), following Baker’s (2001) criteria, 
all items showed adequate discrimination levels (a values over .60). Having verified the preliminary 
assumptions for IRT modelling, we looked at the IICs to select the items that conveyed the higher 
amount of information along the range of the trait measured by the open-ended PRS (see Figure 1). 
The figure clearly shows that items 1, 2, 3, 5, 13,15 and 16 provide lower amount of information.  

Consequently, we retained nine items and we repeated the analyses for this shortened version of the 
PRS scale with an open-ended format. None of the LD statistics were greater than 10, indicating the 
absence of LD. All factor loadings were significant, ranging from .49 to .83. Each item had a non-
significant S-χ2 value, indicating that all items fit under the 2PL model. Concerning the difficulty 
parameters (b), the results showed that the parameters ranged from -1.57 (±.29) to .46 (±.11) logits 
across the continuum of the latent trait. With regard to the discrimination parameters (a), all items 
were above .60, indicating adequate discriminative power. Thus, still concerning item difficulty, the 
shortened version showed that the items had a low-medium level of difficulty. Nonetheless, the 
discriminative measures showed that the items could discriminate individuals with different trait 
levels.  
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Figure 1: Item information curve (IIC) of the original 16-item PRS open format. Latent trait (theta) is 
shown on the horizontal axis and the amount of information and the SE yielded by the test at each 

trait level is shown on the vertical axis 

Next, we investigated the TIF that provides test reliability estimations indicating the precision of the 
whole test for each level of the latent trait. As shown in Figure 2, from 2 standard deviations below 
the mean to 0.5 above the mean (fixed at 0), the amount of test information was equal to or greater 
than 4 indicating that the instrument was sufficiently informative for this range of the trait. Thus, 
compared to the original scale that adequately measured low levels of probabilistic reasoning ability, 
the PRS-B accurately measures a wider range of the underlying trait. 

 
Figure 2: Test information function of the Probabilistic Reasoning Scale-Brief 

Finally, we looked at the validity of the scale. Table 1 presents descriptive statistics for all measures 
in the study, and the relations between the PRS-B, and all other variables. As expected, in line with 
the original scale, the PRS-B was significantly and positively correlated with mathematics skills and 
subjective numeracy, and negatively with mathematics anxiety. Concerning the relationship between 
PRS-B and statistics achievement, we found a significant positive correlation. 
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 1 2          3 4 5 

1. PRS-B --     

2. PMP      .53*** --    

3. AMAS  -.19* -.37***  --   

4. SN      .45***      .56*** .-.42*** --  

5. STATISTICS ACHIEVEMENT   .28**     .18* -.15* .09 -- 

M (SD) 5.99 (2.25) 22.38 (3.69) 23.39 (5.76) 32.14(6.70) 22.63 (3.49) 

* p<.05; **p<.01;*** p<.001 

Table 1: Descriptive statistics for the measures, and correlations between the PRQ-B and MPP, 
AMAS, SN, and statistics achievement 

To ascertain the predictive value of probabilistic reasoning as measured by the PRS-B, we tested a 
regression model in which the PRS-B was entered as a predictor of statistics achievement along with 
math competence (MPP), math anxiety (AMAS), and subjective numeracy (SN). The results showed 
that when all predictors were entered in the regression analysis together (F(4,133)=3.29, p=.013; 
R=.30; R2=.09), the PRS-B was a significant predictor of statistics exam performance (β =.26; 
p=.009), whereas the MPP, SN, and AMAS did not significantly predict statistics achievement. 

Conclusion  
In this study, we presented the PRS-B scale to assess probabilistic reasoning skills. Applying IRT, 
we obtained a shorter version of the original PRS, where all remaining items had good discriminative 
power and they measured a large spectrum of the trait which covered a wider range than the original 
scale. Additionally, the PRS-B accurately measures average levels of probabilistic reasoning ability, 
and it is helpful in identifying individuals who have difficulties in this domain. Finally, the validity 
results confirm that the shortened form replicates the pattern of relationships established for the 
construct as measured by the long form, with positive relations with mathematics and statistics skills 
and subjective confidence, and a negative relationship with mathematics anxiety. In conclusion, the 
PRS-B could be a useful tool in educational contexts, as well as in research.  
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Introduction 
Confidence intervals are a main inferential procedure with many applications to real life, such as 
studying the percentage of voters will finally vote for a particular political party or the proportion of 
the population that suffers from asthma. This topic is taught in Spain to high school students in the 
Social Sciences specialty and in most of university grades. Since the available time for teaching is 
scarce, students are mainly taught the computing procedure, with no much attention to interpretation 
of results. Olivo, Batanero and Díaz (2008), and references therein, described some difficulties 
appearing in students’ interpretation of confidence intervals for proportion. 

The aim of this paper is to present an alternative methodology to compute confidence intervals for 
proportion by using the approach due to Wilson (1927). It would be of interest for students to discover 
that there is not a unique way to compute such interval. With the help of computers, by comparing 
Wilson’s procedure to classical one, students would be able to improve their interpretation of the 
confidence interval for proportion and its confidence level. 

Usual methodology to determine confidence intervals for proportions 
Below, we summarize the usual procedure for computing the confidence interval. Suppose we are 
interested in estimating the proportion 𝑝𝑝 of individuals in a population that satisfy certain condition. 
We take a random sample of the population, and observe the number 𝑋𝑋 of individuals in the sample 
that verifies that property, which follows a Binomial distribution of parameters 𝑛𝑛 and 𝑝𝑝. When n is 
large enough, we approximate this distribution by the normal distribution 𝑋𝑋 ≈ 𝑋𝑋� ↦ 𝑁𝑁(𝑛𝑛𝑝𝑝,𝑛𝑛𝑝𝑝𝑛𝑛), 
where 𝑛𝑛 = 1 − 𝑝𝑝, and it can be typified as (�̂�𝑝 − 𝑝𝑝)/� 𝑝𝑝𝑛𝑛 𝑛𝑛⁄  ↦ 𝑁𝑁(0,1) where �̂�𝑝 is the sample 
proportion defined as the number of the successes divided by total number of observations in the 
sample. Let denote by 1 − 𝛼𝛼 the confidence level (usually 1 − 𝛼𝛼 ∈ {0.9, 0.95, 0.99}) and let 𝑧𝑧1−𝛼𝛼/2 >
0 be the unique positive real number such that 𝑃𝑃(−𝑧𝑧1−𝛼𝛼/2 < 𝑍𝑍 < 𝑧𝑧1−𝛼𝛼/2) = 1 − 𝛼𝛼, where 𝑍𝑍 is any 
random variable following the standard normal distribution 𝑁𝑁(0,1). Then the following 
approximation can be considered: 

𝑃𝑃 �−𝑧𝑧1−𝛼𝛼/2 <
�̂�𝑝 − 𝑝𝑝

 � 𝑝𝑝(1 − 𝑝𝑝)/𝑛𝑛  
< 𝑧𝑧1−𝛼𝛼/2� = 1 − 𝛼𝛼. (1) 

Since 𝑝𝑝 is unknown, we replace it by its maximum likelihood estimator, �̂�𝑝, from which it is easy to 
deduce that the confidence interval for 𝑝𝑝, at the confidence level 1 − 𝛼𝛼, is 

𝐼𝐼𝐼𝐼(𝑝𝑝) = �  �̂�𝑝 ± 𝑧𝑧1−𝛼𝛼/2��̂�𝑝 (1 − �̂�𝑝)/𝑛𝑛   � .  (2) 

The advantage of this expression is that it is very simple to use in practice and it produces good 
results. Its main weakness is that it has been obtained through a process in which, without apparent 
justification, the true value of 𝑝𝑝 has been replaced by its estimator  �̂�𝑝. This replacement transforms a 
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non-linear problem into a linear problem. One of the most important drawbacks of expression (2) is 
that this formula does not reach the confidence level. 

Wilson’s methodology to determine the confidence interval for proportion 
This method proposes to solve the equation (of second degree after squaring): 

�̂�𝑝 − 𝑝𝑝
 � 𝑝𝑝(1 − 𝑝𝑝)/𝑛𝑛  

= 𝑧𝑧1−𝛼𝛼/2 

before replacing 𝑝𝑝 by �̂�𝑝 in the denominator. Its two solutions determine the extremes of the confidence 
interval for proportion, which are: 

𝐼𝐼𝐼𝐼𝑊𝑊(𝑝𝑝) =

⎣
⎢
⎢
⎡
 
 2𝑛𝑛�̂�𝑝 + 𝑧𝑧1−𝛼𝛼/2

2 ± 𝑧𝑧1−𝛼𝛼/2� 𝑧𝑧1−𝛼𝛼/2
2 + 4𝑛𝑛�̂�𝑝(1 − �̂�𝑝)  

2(𝑛𝑛 + 𝑧𝑧1−𝛼𝛼/2
2 )

 

⎦
⎥
⎥
⎤
 . (3) 

Since this formulae is more complex than (2), we propose to use a spreadsheet to generate a lot of 
random samples of distribution 𝐵𝐵(𝑛𝑛,𝑝𝑝) (for instance, 1000 or more), when 𝑛𝑛 and 𝑝𝑝 are previously set 
by students. By using that random samples, we can compute both (2) and (3) intervals, and to 
determine how many of them indeed contain the true value of 𝑝𝑝. This comparison will help students 
to understand that the correct interpretation of confidence interval relies on the methodology, but not 
on the interval: when lots of intervals are randomly generated, we trust that 100(1 − 𝛼𝛼)% will contain 
the (unknown) true value of the proportion 𝑝𝑝. Furthermore, we are interested on overcoming the 
wrong student’s usual affirmation that establishes that, after computing the confidence interval, the 
probability that 𝑝𝑝 belongs to such interval is the confidence level. This novel view-point could be of 
interest for both undergraduate and graduate students. 

To compare both methods, we present the results of 10000 and 1000000 simulation with 𝑛𝑛 = 30 (see 
Table 1). We highlight that only around the 88% of the intervals constructed using (2) contains the 
real value of 𝑝𝑝 and the greater confidence of Wilson’s method. 

Usual method Wilson’s method 

𝑁𝑁 = 10000 𝑁𝑁 = 1000000 𝑁𝑁 = 10000 𝑁𝑁 = 1000000 

87.19% 87.54% 94.88 % 95.23 % 

Table 1: Proportion of confidence intervals in simulation containing the true value of  𝒑𝒑 
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Statistical reasoning can be enhanced at an early stage by facilitating informal statistical reasoning and 
developing conventional measures based on individual conceptions. This paper aims at identifying young 
students´ conceptions of the median and their relations to its definition. For this, we present a design 
research study with grade 3 students (age 9) focusing on the comparison of two groups. The qualitative 
analysis of complementary interviews shows that young students already develop an initial understanding of 
the median but struggle to find the conventional reference for the middle. Consequences will be drawn for 
further design cycles.   

Keywords: statistics education, early statistics, primary school, comparing groups, median 

Introduction: Early statistics in German curriculum 
Statistical literacy is a fundamental component for active citizenship (Engel, 2017). Some facets of 
statistical literacy can be approached as early as primary school – an overview is presented in 
Leavy, Meletiou-Mavrotheris, and Paparistodemou (2018).  In Germany, nation-wide standards for 
primary education in mathematics require students to gain competences in dealing with “data, 
frequency, and chance” (Hasemann & Mirwald, 2012). The core idea is to develop conceptual 
fundaments, e.g. by posing statistical questions, collecting data, and creating and interpreting 
representations of data (Hasemann & Mirwald, 2012). German textbooks and teaching materials for 
primary school, however, often emphasize singular aspects such as reading a diagram rather than 
introducing context-rich and complex data analysis projects as sustainable teaching-learning 
arrangement (Bakker, 2004). Such an arrangement aims at developing students’ competences in 
drawing and dealing with informal statistical inferences (Makar, Bakker, & Ben-Zvi, 2011) and 
building on existing informal conceptions in order to develop conventional ideas (Bakker, 2004). 
Hence, researching initiated learning processes is an important task (Makar, 2014). This paper 
presents a design-based research project (Prediger et al., 2012) which was conducted over four 
cycles so far in order to develop a statistics teaching-learning arrangement for classrooms in 
German primary schools. After summarizing theoretical considerations, the main design principles 
and framework of the teaching-learning setting are discussed. Lastly, we will present empirical 
insights of students’ statistical reasoning about and with the median from interviews with students 
grade 3 (age 9) conducted after the whole-classroom activities.  

Statistical projects in primary school  
Going beyond calculation and algorithms in statistics education means enabling students to deal 
with statistical inquiries and applying the phases problem, plan, data, analysis and conclusions of 
the PPDAC-cycle (Wild & Pfannkuch, 1999). Especially at the starting point of a statistical inquiry 
– e.g., when posing statistical questions – the desire arises to not only consider the distribution of 
one variable, but to look for a relationship between two or more variables. So, for example, the 
question whether third graders tend to have more games on their smartphones than fourth graders 
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leads to the comparison of two groups. While easily motivated, group comparisons are also 
sophisticated statistical activities taking into account many of the fundamental statistical ideas like 
data, variation, representation, etc. (Burrill & Biehler, 2011). Frischemeier (2017) identified several 
important and sustainable group comparison elements like center, spread, skewness, shift, p-based 
and q-based comparisons. While these concepts can be quite complex, the fundamental ideas behind 
them can be addressed already in primary school. Informal comparisons are a fruitful task to 
provide in-depth insights into students’ conceptual development and informal statistical reasoning 
(e.g. Schnell & Büscher, 2015, Makar, 2014). In this paper, we focus on using (informal) 
conceptions of the median as well as visual features of distributions for comparing groups in early 
statistics.  

To describe the center of a distribution is a key idea of statistics (e.g. Bakker, 2004; Makar, 2014). 
The concept of the median can be introduced on an enactive level via “animated statistics” in the 
sense of embodied cognition by Lakoff & Núnez (2000). In this case the students are statistical 
units themselves, line up in an ascending order in regard to a certain attribute (e. g. their height) and 
identify the middle. Even the more formal procedure of determining the median (sorting values and 
finding the middle value) is easily and non-formally presentable, but the interpretation and a deeper 
conceptual understanding can be challenging (Mokros & Russel, 1995) as it is interwoven with 
ideas like representativeness and typicality. However, these ideas can be pre-formally existent from 
even young students’ everyday experiences (Mokros & Russel, 1995). Mokros and Russel (1995) 
identified approaches to the average, which include among others the average as an algorithm 
without predominant focus on contextual interpretation or the average as midpoint which is chosen 
as representative of the data and draws on the ‘middle’ which alternately is the median, the middle 
of the X-axis or the middle of the range. To be able to interpret the median correctly and in a 
meaningful way, it has to be understood as a value in reference to the rest of the distribution (e.g. 
cutting the data set in two halves). Overall, even students who are familiar with formal ways to 
determine the median sometimes do not apply it when comparing distributions (e.g. Watson & 
Moritz, 1999; Konold et al., 1997). This might be due to a lack of understanding that measures such 
as the median are representative of a distribution (Konold et al., 1997). However, Makar (2014) 
shows how even young students of age 8 can be supported in developing a fundamental 
understanding of the median and using it for informal inferential reasoning when presented with an 
adequate teaching-learning arrangement. The key is to give students room to develop informal ideas 
which serve as important base for building foundational knowledge of statistical concepts (Makar, 
2014; Bakker, 2004; Smith, diSessa, & Rochelle, 1993).  

Especially in terms of visual aspects, young students draw on a variety of different strategies to 
describe and compare distributions (e. g. Watson and Moritz, 1999). For instance, they focus on 
‘hills’ to describe the shape of the data (Bakker, 2004). To facilitate a proto-concept of center, 
Konold et al. (2002) introduced so-called modal clumps as “a range of data in the heart of a 
distribution of values” (p. 1) in order to find ways to identify the center in stacked dot plots and 
“allow students to express simultaneously what is average and how variable the data are” (p.1). 
Bakker and Gravemeijer (2004) build on these concepts to lead students from a local perspective 
(focusing on singular dates such as the minimum) to a global perspective on distributions (with a 

Thematic Working Group 05

Proceedings of CERME11 1076



 

 

certain shape, spread etc.) and see modal clumps as proto-concepts not only for center but also for 
spread and therefore provide students with the opportunity to compare two distributions.  

Overall, our aim is to design and realize a teaching-learning arrangement to enhance the statistical 
reasoning of primary school students and to enable them to compare groups with proto-concepts 
like modal clumps and concepts like medians when working on statistical projects. This paper 
focusses on exploring which concepts of the median were developed by the children during the 
teaching-learning unit and applied in the interview. Therefore, the research question is: Which 
conceptions of the median do students verbalize in the interviews and what is their (visual) point of 
reference for the median? 

Research Design 
Methodological framework: Design Research  

This study is situated in the methodological framework of topic-specific didactical design research 
(Prediger et al., 2012). Thus, it aims at designing a specific teaching-learning arrangement for data 
competence in primary school on the one hand, and the development of local theories of teaching 
and learning conceptual basics at an early age on the other hand. These intentions are addressed in 
iterative research cycles of (re-)designing, implementing, and analyzing the materials (Prediger et 
al., 2012). So far, four cycles were conducted, exploring different settings with whole classes and 
special interest groups in grade 3 and 4. After the classroom-activities, additional interviews for in-
depth analysis of students’ reasoning were conducted. 

Design principles and teaching-learning arrangement 

For the design of the teaching-learning unit we implemented several recommendations for the 
design of Statistical Reasoning Learning Environments (Garfield & Ben-Zvi, 2008) such as using 
real data sets and using digital tools like TinkerPlots (Konold & Miller, 2011), which can help 
young students to manipulate and modify the data in regard to a specific question. Furthermore, we 
facilitated collaborative work on statistical projects (first with small datasets, later with larger 
datasets), introduced the students to data analysis concepts on different representation levels 
(enactive, iconic, symbolic) and promoted the use of informal concepts such as modal clumps 
(Konold et al., 2002).  

In the following we refer mainly to the version of the teaching-learning arrangement by Breker 
(2018) from the last design research cycle in which 22 third grade students participated. All of the 
students have no specific statistical pre-knowledge – they have only been introduced to the reading 
and interpreting of pie graphs and tallies. The teaching-learning arrangement consisted of seven 
modules spread over 13 lessons (45 minute each): 

Module Content 

0 Getting to know each other 
1 First basics in data analysis and getting to know the questionnaire  
2 Statistical representations on different representational levels (enactive, iconic, symbolic)  
3 Introduction to data analysis with TinkerPlots and creating stacked dot plots in TinkerPlots 
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4 Getting to know modal clumps, medians and hatplots to compare groups 
5 Group comparison projects: Preparing the posters 
6 Presentation of the group comparison posters 
7 Conclusion of the project  

The median was introduced in module 4. As mentioned above, one fundamental idea was to present 
data analysis concepts on different representation levels. Hence the median was introduced on an 
enactive level with animated statistics: The students were asked to line up in a row ascending by 
their height and determined the child in the middle. After completing a fill-in-the-blank text with 
the characteristics of the median, the teacher demonstrated how to use TinkerPlots to identify the 
median in a distribution. The median was then used by the students to compare different 
distributions. 

Our aim was to investigate the ways in which the students use statistical concepts such as the 
median to compare groups in data sets in TinkerPlots after completing the teaching-learning 
arrangement in class. Hence we conducted subsequent interviews with a convenience sample of 
participants. Here, we provided them with a real data set including variables about leisure time 
activities and media use of about 680 primary school students (grade 3 and 4). The participants’ 
task was to investigate whether the third or the fourth graders have more games on their 
smartphones. The interview consisted of two main activities with regard to the task: First the 
students were asked to conjecture two dot plots (grade 3 vs. grade 4) based on their expectation. 
Second the students were asked to use TinkerPlots to compare the groups of third and fourth graders 
in the real data set. 

Data collection and analysis 

Ten students participated in the interview study of cycle 4 after they completed the teaching-
learning arrangement with their class. In the interviews, the students worked in pairs of two. All 
interviews, including the activities in TinkerPlots, were recorded and fully transcribed. The analysis 
was conducted under the interpretative paradigm, scrutinizing the transcripts for sequences in which 
the students use the median and then reconstructing their cognitive activities and conceptions. 

Findings 
The middle of what? – The case of Paula and Linda 

Paula’s and Linda’s initial hypothesis is that fourth graders have more games on their smartphone. 
After creating two conjectured dot plots, the researcher asks the students to explain the meaning of 
the median.  

80 R: Could you maybe explain it again: what is the median, Paula? 
81 Paula: The center point of the/ well it’s the center of the dot plot. 

Paula calls it the ‘center point’ and seems to be aware that she has to specify the point of reference 
of the center. Her offered reference ‘the center of the dot plot’ (line 81) is ambiguous as it could 
refer to the X-axis, the range of data dots or the distribution of data dots (similar to average as 
midpoint, Mokros & Russel, 1995). For determining the median, she counts only the columns of 
dots (with the same value) rather than every single dot, which equals determining the center of the 
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range. Both girls interpret this median correctly in terms of the higher median indicating more 
games for fourth graders.  

When introduced to the real data set, the girls first determine and interpret the hills. Asked to 
summarize the findings in regard to the overall question (line 218), Paula argues with the median 
which they have not determined for this distribution, yet.  

 

Figure 1: Paula and Linda’s TinkerPlots screen with drawn-in hills and later added medians  
(median of 3rd graders: 8, median of 4th graders: 4) 

218 R: Okay. Good. Now, what did you find out for your question, when you look 
at the hills? 3rd or 4th graders – who has more games on the smartphone? 
(…) 

223 Paula: 4th graders. (…) Because 4th graders moved farther to the right with their 
dots and if you take the exact center, now, only of the dots, not of the stripes 
[i. e. X-axes]. Because otherwise the median would be the same. Just from 
the dots, the median of the 4th graders is farther in the middle than of the 3rd 
graders. 

224 Linda: Yes, definitely. But really, if you just take half somehow, then it really looks 
like the 3rd graders were furth/ had more (incomprehensible) 

Describing how the distribution of fourth graders “moved” more to the right in comparison to the 
third graders, Paula describes the center as a point of reference (line 223). It is likely that Paula is 
not thinking of the correctly determined median (which - in contrast to her expectation - is smaller 
for the fourth graders than for the third graders), but rather her individually determined center of the 
range. However, her remark about the X-axis shows again awareness of the reference for this value. 
While both children are at first confident in their answer of the 4th graders having more games, 
Linda mentions doubts in line 224. By “taking half”, she could either refer to the left half of dots 
(e.g. the data between 0 and 16 games) or possibly to the lower “half” (e.g. the range of 0 to 36 
games but cutting of each column above a certain frequency). This idea is not followed up upon, 
though.  

When the girls determine the median in TinkerPlots, it seems to differ from their expectation:  

238 Paula: They just took it of the hills. And in the hills, 3rd graders have more. 
239 Linda: Right.  

Gr
ad

e 
3 
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e 
4 

Number of games on smartphone 
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240 R:  In the hills? I didn’t get that.  
241 Paula:  So the median of the hills.  
242 R:  The median of the hills? What is that/ 
243 Linda They didn’t use all of them. They just drew it within the hills. (…)  
247 Paula Yes, but otherwise the [median] of the 4th graders would be much further in 

the middle and the one of 3rd graders, too.  (…) 
250 Linda If you cut off the hill completely, then it should be sitting somewhere here, 

and of this one here at 14, 12, 16. Somewhere there.  (…)   
271 R: So, if you only look at the medians, who has more games on the 

smartphone? 
272 Paula: Yes, in this case, where they used only the hills, it’s the 3rd graders. But if 

you had done it without the hills, it would be the 4th graders.  
Paula explains the unexpected median by the way she thinks it was determined in the program, i.e. 
by determining the center of the hill’s width (cf. figure 1). Thus, she still interprets the TinkerPlots 
median as referential but differing from the learned definition. In line 247, Paula suspects the true 
median of the 4th graders to be farther in the middle (i.e. right). This indicates that she stays with her 
initial interpretation of the median as center of the range. In line 250, Linda suggests a manipulation 
of the data by “cutting of the hill”. As she says the median would then be between 12 and 16, she 
might refer to cutting of the dot plot horizontally, thus evening out the number of dots per number 
of games and making Paula’s procedure of determining the median correct. Thus, Linda twice 
offers ways to manipulate the data set and thinks about the effects on the median. Overall, the girls 
use the idea of two different medians in order to support her initial expectation that fourth graders 
have more games on the phone (line 272).  

In regard to the research question, the girls developed conceptions of the median as the middle of 
the range and median as the middle of the modal hill. They are very consistent with their way of 
determining it, which might have its roots in the animated statistics activity. It is remarkable that 
they consider different options of manipulating the data set and their effects on the median, which 
hints that they perceive it as a value that is closely connected to the distribution and that has 
representative value. By assuming that TinkerPlots uses the hills’ boundaries rather than the whole 
distribution for determining the median, the girls establish a pre-formal connection between the 
visual approach and the calculated measure.  

Additional interpretations of the median 

The students in the interview study showed a variety of different conceptions of the median:  

· Layla and Sandra as well as Burak and Tarik call the median “the middle (of the dots)” 
(LS_line 483, BT_line 103) but do not specify it further other than using the learned 
procedure to determine it à median as unspecified middle 

· Johannes and Nils interpret it as the center with “roughly the same amount [of dots]” in each 
half (JN_line 53) à median as the middle of two halves 
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· Lara and Lia seem to make a connection between the modal value and median “A median is 
the middle of the biggest. Of the biggest amount.” (LL_line 171) à median as the middle of 
modal clump  

Conclusion 
This paper aimed at identifying young students´ conceptions of the median and their relations to the 
conventional measure (Bakker, 2004). The analysis shows how the students are integrating visual 
and calculated aspects of the distribution in order to compare groups. Building on Mokros and 
Russell (1995), we could identify several conceptions of the median which draw on different 
references in the data set: median as middle of the range, median as middle of the modal hill, 
median as the middle of two halves, median as the middle of modal clump or column and median as 
unspecified middle. While all pairs were able to interpret the shift of the medians correctly, the in-
depth analysis shows their struggle with the referential concept. Even though these conceptions 
were not yet in-line with the conventional conception of the median, they serve as important starting 
points for the development of more formal conceptions (Smith, diSessa, & Rochelle, 1991). 
Overall, the teaching-learning arrangement clearly supports young students in informal reasoning 
about statistical concepts while comparing groups. For instance, Linda’s considerations of 
manipulating the data set in order to change the median are promising starting points for further 
design cycles.  

Another implication from the analysis is to be careful when introducing the median via animated 
statistics. When choosing this way, a scale should be prepared so that the distances between the 
children (i.e. data dots) become apparent and stacked distributions should be discussed. For a 
hypothetical learning pathway, we suggest to introduce first the modal clump as main area in the 
heart of the data distribution and then the median as a special value in relation to the modal clump, 
indicating the center of the distribution. Next discuss different distributions in which the position of 
the clump and the median differ. These ideas will be realized in the next design cycle of the 
teaching-learning arrangement.  
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Introduction 
There is a need to discuss on teaching and learning situations which include graph comprehension 
and construction to promote students’ conceptual understanding of graphs, however, little attention 
was given to this until the present day (Friel, Curcio, & Bright, 2001). Since several research have 
indicated that creative tasks and teaching strategies effectively enhance students’ conceptual 
understanding and mathematical thinking (Luria, Sriraman, & Kaufman, 2017), in this study, we 
investigate how creative tasks and instructional strategies for lessons on percentage bars and pie 
charts are used to elicit students' growth in conceptual understanding and statistical thinking. 

Theoretical framework 
Percentage bars, Pie charts and Statistical thinking 

Percentage bars and pie charts show how sectors constitute a whole (Reys et al., 2012). Learning 
these graphs relates to percentage, proportional relationship between the area of each sectors and their 
percentages, and interpreting graphs connecting data and the context (Reys et al., 2012; Curcio, 1987). 
In terms of statistical thinking, it is necessary to guide students to develop global view from local 
view as we can discern the general feature of the data set with global view (Ben-Zvi & Arcavi, 2001). 

Mathematical creativity 

Four main components of mathematical creativity are fluency, flexibility, originality and elaboration 
(Luria et al., 2017). Here we define creative task as open-ended and multiple solution task which can 
be performed in various ways, inclusive of informal method and representations, especially, applying 
one’s experience and prior knowledge using fluency, flexibility, originality and elaboration. 

Methodology 
In this study, case study methodology was used and a class of 28 sixth-grade students participated. 
These pupils had not learnt about percentage bars and pie charts before. The first task asked students 
to discuss the claim which includes certain percentage value and to visualize given percentage value. 
The second was about construction of percentage model from given data table. In the last task, each 
group of students was given a percentage bar or a pie chart without label. They were asked to infer 
the percentage and the item of each sector and then interpret the given graph. Discussions among 
students were conducted for social interaction. All teaching-experiment sessions were videotaped and 
recorded. These data were transcribed later for analysis. The students’ individual worksheets were 
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collected. Researchers attended all lessons and recorded field notes. We established four phases of 
learning percentage bars and pie charts based on Curcio(1987)’s three levels of graph comprehension 
and Ben-Zvi and Arcavi(2001)’s research about the process of the construction of global view from 
local view. Students’ responses and models were classified according to these four phases in order to 
verify if students’ conceptual understanding and statistical thinking were improved. 

Phase Construction Interpretation 
Data Context 

0 Focused on context Considering personal experience 
1 Focused on pointwise information Considering appropriate context situation 
2 Focused on the difference between individual data Comparison of the meaning of each part 

3 Focused on the proportional relationship among 
data 

Suggestion of alternative, prediction, 
implication 

Table 1: Phases of learning percentage bars and pie charts 

Findings and Conclusion 
The students constructed and developed percentage models, and interpreted percentage bars and pie 
charts using their fluency, flexibility, originality and elaboration in this study. Meanwhile, they 
showed increases in the phases of learning percentage bars and pie charts. If the tasks did not allow 
diverse approaches and representations using students’ own method to perform the tasks, we believe 
that it would be hard to expect these increases. The findings showed that creative tasks with proper 
instructional strategies promote conceptual understanding and statistical thinking by stimulating 
students’ creativity. Furthermore, the analysis indicated that the creative tasks provide various 
learning opportunities for students who differ in their levels. This study provides empirical evidence 
to support previous claims that the use of creative tasks and instructional strategies in the mathematics 
classroom enhance students’ conceptual understanding and mathematical thinking (Luria et al., 2017). 

This study is part of “Siheung City - Seoul National University Partnership for Primary/Secondary 
School Education Program” funded by Siheung City, Gyeonggi-do, Republic of Korea. 
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This article deals with the contribution of algorithmic to introduce the frequentist approach to probability. 
Our attention is focused on teachers in training who have to perform a sampling simulation program in order 
to solve a probabilistic task. The mathematical work corresponding to this discovery process of the prediction 
interval is analysed in its semiotic, discursive, and instrumental dimensions, within each of involved fields 
(probabilities, descriptive statistics and algorithmic). Synergies and interactions between these various fields 
are taken into account. Methodological tools MWS (Kuzniak, 2011) and AWS (Laval, 2018) are used to lead 
this study.  
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Introduction 

In France, teaching of probability in upper school commences with a double approach: 
“combinatorial” and “frequentist”. This makes it possible to connect the abstract notion of probability 
to “real” world, as it is perceived through our senses. The approach of frequency derives from 
binomial distribution with a deductive reasoning based upon random variables. The approach of 
probability is based on sampling fluctuation with empirical observations of frequencies. We choose 
to analyse the introduction to sampling fluctuation that empirically establishes the prediction interval 
principle, which is the only formalized rule taught at 10th grade level. We make the choice to observe 
the work of teachers during a training course, by taking in account instrumental, semiotic and 
discursive dimensions. More particularly, this paper deals with existing interactions between fields 
such as probability and descriptive statistics, but also algorithmics during teacher’s work. 

Frequentist approach to sampling fluctuation 
The 10th grade program in French school system leads to the discovery of sampling fluctuation with 
the following property: Let p be the probability of success, and let n be the number of repeated 
random experiments. Any frequency 𝑓𝑓 of success verifies  𝑓𝑓 ∈ �𝑝𝑝 − 1

√𝑛𝑛
;𝑝𝑝 + 1

√𝑛𝑛
� with at least a 95% 

level of confidence. Nechache (2016) notices the absence in 10th grade of a probabilistic theoretical 
reference that would make it possible to approach this interval of fluctuation by deductive reasoning. 
The discovery process of this interval remains indeed at this stage, experimental and based on 
observation of samples which have the same size. Each frequency value corresponds to a sample 
obtained itself by repeating the considered random experiment. This is an empirical approach based 
on inductive reasoning. In addition, the “time cost” corresponding to the need of repeating the same 
experiment a large number of times entails a need for automation. And this idea is “facilitated” by 
using of computing which is based on a pseudo-random generator operation. Thus the “frequentist” 
approach requires consideration of three fields: probabilities, descriptive statistics and algorithmics.   

A digital environment (“spreadsheet” or “programming software”) makes possible to reduce the time 
spent on repeating the random experiment. Specific skills are needed to digital field (algorithmic, 
syntax of machine language, user interface…), and the lack of computing expertise could cause 
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additional difficulties for students. It could also cause a meta-cognitive (or even cognitive) concern 
to teachers. Using digital field makes possible to automate an experimental protocol that requires the 
use of gestures, syntax, and specific modes of thinking. However, we can also question the specific 
contribution resulting from the use of a machine-implementable method, for a better comprehension 
of the frequentist approach (from a mathematical point of view). This question seems being even 
more important for teachers. Indeed, they are supposed to look closely at their practices. We can thus 
consider three main ways of exploiting a digital field to modelize the random experiment: - a 
spreadsheet; - the construction of “paper-and-pencil” algorithms and the actual implementation on 
the computer in order to test them; - the use of simulation algorithms or spreadsheet provided and 
already built. Each of these forms of use can be assimilated to an instrumentalization of computing 
or algorithmics artifacts to construct a “frequentist” approach in probabilistic or statistical fields. 

We choose not to approach the spreadsheet case and to restrict the scope to algorithms. We believe 
that focusing on algorithms enables us to study the instrumental, semiotic and discursive dimensions 
which will be involved during mathematical and algorithmic work on sampling fluctuations. We thus 
seek to study the contribution of an algorithmic thought (Laval, 2018; Modeste, 2012) in the context 
of a mathematical work on probabilities and statistics. In particular, we think that writing the 
simulation algorithm corresponds to a higher stage of formalization for different involved statistical 
protocols, and that the role of “language” will take on particular importance in this sense.   

Observations carried out in teacher training 
Training on the simulation of sampling fluctuation at 10th grade level is conducted during an 
internship at the French High School in Algiers on May 2018. Five groups of three teachers (A, B, C, 
D, and E) have to solve the following problem: “What is the probability that the distance between 
two points randomly chosen along a line segment S, is more than half the length of the segment S?”.  

We build on existing work previously undertaken by Nechache (2016) and Trunkenwald (2018), to 
consider this task as being representative of institutional expectations for the “frequentist” approach. 
It is possible to explore sampling fluctuation with a real repetition of the random experiment (case of 
strings of twines cut with scissors), but considering this long process with randomization by a human 
being choice, our hypothesis is that teachers will use a numerical simulation operating with a pseudo-
random generator (Alea()), which returns a random number between 0 and 1 simulating the position 
of a randomly selected point on the S-segment. The modelling work highlighting sampling fluctuation 
can find its formalized expression through a simulation algorithm. Indeed, the random experiment 
providing distance between two selected points can be simulated with |(Alea()-Alea())| as computing 
instruction which can be considered as a level 0 algorithm used for each simulation of the random 
experiment. Another level 1 algorithm can be constructed from the level 0 algorithm, by repeating 
the random experiment to obtain directly a simulated frequency of success (Figure 1).  

 
Figure 1: Level 1 and level 2 algorithms written in pseudo-code. 
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Running several times level 1 algorithm generates a list of frequencies, which can be represented as 
a cloud diagram (scatter plot). For this purpose, a third step can be envisaged in digital field: the level 
2 algorithm (Figure 1) automating the layout of the cloud. Then level 2 algorithm is constructed from 
level 0 algorithm, by repeating the simulated frequency of success to draw directly the cloud.    

The working groups do not have access to any pre-existing files to accomplish their task. But the 
algorithms they will design can be adapted for a later activity based on a roll of three dice. The groups 
manage more or less easily, with the help of the trainer when it is necessary, realizing a numerical 
model for the simulation of a frequency calculation. Only one group (the E) uses the spreadsheet, and 
only one group (the C) manages to finalize level 2 algorithm. Indeed, the transition from level 1 to 
level 2 corresponds to a tricky stage, especially the algorithmic writing of a statistical protocol that 
would consist in exploiting (on “paper”) the results provided by level 1 algorithm. Our hypothesis is 
that it is an epistemological obstacle linked to the encapsulation of an algorithm in another (principle 
of a procedural subroutine), in order to automate the execution of the first one. Other difficulties at 
the interaction of statistical and algorithmic domains are identified during the training session. We 
present (Figure 2) an excerpt from the transcription of exchanges between the trainer and the group 
B, concerning the implementation in level 1 algorithm of a counter. 

 
Figure 2: Excerpt of a 8’14’’record with group B 

In this excerpt the counter with its initialization, conditioned incrementation, and final exploitation 
appears as a complex construction. Its drafting is integrated into three levels of the algorithm script, 
with consideration of other instructions. Trainees try to locate a specific position which does not 
really exist for the counter... We observe a confusion between “success counter” and “simulation step 
counter”. Step counter is a “natural” process in statistics that becomes a difficulty in algorithmics. 
Finally, a similar difficulty appears in a confusion between the instructions “result value” provided 
by the counter, and “incrementation” of intermediate values used for its calculation. We can also 

Thematic Working Group 05

Proceedings of CERME11 1087



 
 

observe a difficulty between probability and statistics fields: S2 speaks of “favorable case” instead of 
“success achieved”.  

In addition, transcripts of the session show difficulties related to the numerical modelling of the 
random experiment. Some difficulties appear in other groups, such as reluctance to use a pseudo-
random generator, reference to the geometry field with consideration of lengths ratio |𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵|/𝐿𝐿   as 
a probability, and lack of definition for abscissa. All these observations show us the importance of 
interactions between various fields, as probability and statistics, but also with algorithmics, when 
introducing the frequentist approach of the prediction interval. We believe that an analysis of the 
mathematical and algorithmic work in these various fields with their interactions, can help us to refine 
our understanding of some difficulties encountered by trainees. 

The choice of theoretical framework and research question 
Nilsson, Schindler, and Bakker (2017) presented a literature review of theoretical work apparent in 
Statistics Education Research (SER) over the past 11 years, encouraging educators and researchers 
to be explicit about their background theories and orienting: “in the reviewed articles there was no 
deeper theorization of computer assisted instruction in statistics. (…) In the 35 articles we found no 
theoretical attempts on a more specific level (…) such as guiding principles for designing tasks and 
sequencing tasks in a digital learning environment or frameworks for explaining and understanding 
the relationship between digital and analogue learning environments.” 

Activities that involve a mathematical task associated with multiple domains can be analysed by 
considering that entities involved in the task appear under different semiotic, instrumental, and 
discursive representations. Some researchers have developed frameworks to conduct studies of these 
activities according to the type of studied representations. Duval (1993) named “registers” the 
representations organized in semiotic systems. Processes of handling and conversions are located 
inside and between these registers, and this description is also supplemented by the idea of 
“instruments” in the mathematical activity of students. Rabardel theorical framework (1995) focused 
on this “instrumental approach”, and described the use of digital technologies to teach and learn 
mathematics in different contexts. Such a framework consisting of “objects” from mathematical fields 
with relationships between them, and different expressions or associated mental images, had already 
been addressed earlier by Douady (1986). However, some researchers have emphasized the 
inseparable development of instrument-related knowledge and mathematical knowledge, all in an 
instrumental genesis. An implementation of these issues for analysing articulation between the 
algorithmic and mathematical fields is presented in a didactic engineering of Laval (2018) based on 
the Work Spaces framework. And we wish to see taken into account the induced relations by 
instrumental and mathematical signs. Then we hypothesise that coordinating the activity in several 
fields could provide answers in this sense.   

Indeed, in algorithmics the activity is located into an instrument for solving the mathematical task, 
with a specific system of signs for computer science. On the other hand, in mathematics the activity 
consists on solving the task from a mathematical point of view and using signs making it possible to 
understand and justify. Next, we have to choose an appropriate theorical framework that can give 
meaning to the learner’s work during an activity involving several fields with their interactions, 
considering the semiotic, instrumental, and discursive dimensions specific to each field. We assume 
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that articulations between Spaces of Specific Mathematical Work (MWSs) (Kuzniak & Richard, 2014) 
and Spaces of Algorithmic Work (AWS) (Laval, 2018), will allow to study the different geneses of 
the representamen and processes, from the point of view of the learners’ MWSs and AWS, but also 
to approach the interactions between the probability/statistics and algorithmics. We briefly present 
this theoretical framework in the following section. Then the research question of this article is how 
this framework can analyse a learner’s work involving computer programming in a frequentist 
approach to the prediction interval. French programs also emphasize a potential contribution of 
algorithmic work to the understanding of mathematical concepts, which raises the question of 
interactions between domains in learners’ activity (Lagrange & Laval, 2019; Laval, 2018). 

The working spaces MWSs AWS – First analyses 
The methodological tools MWSs (Kuzniak, Tanguay, & Elia, 2016) and AWSs (Laval, 2018) help us 
to decompose intellectual perceptions at stake, during activity in mathematics and algorithmics fields. 
Three instrumental, semiotic, and discursive dimensions are considered, each generating a dynamic 
relationship between an epistemological plane and a cognitive plane (Figure 3). 

 
Figure 3: Case of Algorithmic Space Work (Laval, 2018) 

Technological (artifact), semiotic (representamen), and theoretical (referential) tools of  
epistemological plane can then be exploited using appropriate schemes. In this case, we respectively 
refer to instrumental, semiotic, and discursive genesis, which respectively produce constructs, 
visualizations, and proofs in the cognitive plane. The activation of two geneses can lead to a 
circulation between dimensions that carry them, which could sometimes be assimilated to the idea of 
modelling (Laval, 2018). We call “projection” of MWSs (or AWS) the restriction to a specific field 
of what we analyse in the Workspace. We write projections of the MWS on probability and statistic 
fields, as respectively MWSProb and MWSStat. In order to avoid visual overload, we present diagrams 
of these projections with a view from above. Points and bolded lines represent the different discursive 
(D), instrumental (I), and semiotic (S) geneses, as well as circulations in planes located between these 
geneses’ axes. 

The main interaction between MWS and AWS is related to the use of a pseudo-random generator. 
This artifact is first instrumentalized within AWS to build a simulation of the random experiment. 
The link between this construction and the associated formulation causes an I-D circulation and leads 
to a discursive genesis enriching the AWS referential. With reference to Laval (2015), algorithmic 
design work presents a triple instrumental, semiotic, and discursive dimension within AWS. We link 
this discursive dimension with the idea of  “language”. Indeed, level 0, 1, and 2 algorithms are 
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formalized writes of experimental protocols. Algorithmic expressions in “natural” language, with 
their three encapsulated structures, then constitute an explicit formulation of the procedure to be 
followed in the statistical field to carry out a “frequentist approach” to the prediction interval. This 
explanation may be associated with the idea of proof. This consideration brings us back to discursive 
genesis which, according to Laval (2015), is confirmed when the program is able to run (at the first 
level of paradigm corresponding to an intuitive view of the algorithm).  

It should be noted that this AWS discursive dimension tends to fade from “semiotico-instrumental” 
plan, when working with a spreadsheet tool, whose syntactic aspects are more related to nature of 
artifacts (even if discursive dimension is still activated from cognitive plane to mobilize tools of AWS 
referential). A complex construction with a spreadsheet can also reduce “intellectual visualization” 
of a phenomenon and thus semiotic dimension, to be limited to instrumental dimension. Finally, AWS 
loses all activity when the algorithm implemented in a digital environment is provided to learners to 
be executed and used without any modification work expected in its own structure. The algorithm is 
then reduced to an artifact ready to be instrumentalised in MWS projection on another field.  

Simulation programs and dynamic tables are very active in the instrumental dimension of MWSs 
outside AWS. The “simulation programs” are instrumentalized as tools to build a statistical 
observation, within MWSstat (and within MWSprob if this construction shows properties resulting 
from chance). 

Case of algorithms written in “pseudo-code” of levels 0, 1, and 2 
The level 2 algorithm aims to resume the experimental protocol of drawing a cloud diagram. We 
expect that trainees automate the cloud diagram of frequencies by improving level 1 algorithm which 
gives the simulation of a frequency. Then implementation of level 2 algorithm makes it possible to 
observe different clouds, and to conjecture the property of prediction interval. Figures 4, 5 and 6 
present the exploded diagram (top view of MWSs and AWS) corresponding to designs and executions 
of each algorithm level. More specifically as regards interactions between probability and statistics, 
a more detailed description is presented in Trunkenwald (2018) for the chosen task. 

 
Figure 4: AWS, MWSProb, and MWSStat for level 0 algorithm (conception and exploitation). 

At level 0, the algorithm is designed in an instrumental genesis of the random generator artefact in 
AWS, simulating a distance between two randomly selected points along the segment. This numerical 
modelization generates a discursive validation of the random experiment simulation, through a 
discursive genesis in AWS. This level 0 algorithm is then used as a technological tool in MWSStat 
through an instrumental genesis in MWSStat (activating the discursive dimension by mobilizing 
frequency, and the semiotic dimension by mobilizing a type of data management).  An experimental 
protocol for calculating a frequency is then constructed by running the level 0 algorithm many times 
(Figure 4).  
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Figure 5: AWS, MWSProb, and MWSStat for level 1 algorithm (conception and exploitation). 

At level 1 (Figure 5), the frequency simulation protocol is totally automated. This algorithmic work 
generates a complete circulation in AWS. And the level 1 algorithm (new frequency simulation 
algorithm) is then used as a technological tool in MWSstat through an instrumental genesis (activating 
the discursive dimension by mobilizing cartesian coordinate system). This protocol builds a frequency 
cloud diagram protocol by running the level 1 algorithm many times. This work generates a semiotic 
genesis in MWSStat by visualizing the sample fluctuations. Supported by this new semiotic link 
between frequency and probability, this semiotic genesis in MWSStat leads to a semiotic genesis in 
MWSprob (“intellectual visualization” of fluctuations of chance).  

 
Figure 6: AWS, MWSProb, and MWSStat for level 2 algorithm (conception and exploitation) 

At level 2 (Figures 6 and 7), the cloud drawing protocol is totally automated. This algorithmic work 
generates again a complete circulation in AWS. And this level 2 algorithm (new cloud drawing 
algorithm) is then used as a technological tool in MWSstat through an instrumental genesis. This 
construction of a new protocol leads a complete circulation in MWSStat to build a conjecture of the 
prediction interval formula by inductive reasoning. This work generates a discursive genesis in 
MWSStat with this new understanding of the interval meaning, in light of sample fluctuations. 
Supported by this new discursive link between frequency and probability, discursive genesis in 
MWSStat leads to a discursive genesis in MWSprob (understanding of the prediction interval formula 
meaning, in light of the frequentist approach of probability).  

 
Figure 7: Level 2 algorithm implemented on Algobox  

Conclusion 
The three described phases allow us a construction by successive encapsulations of the simulation 
algorithm. These algorithmic steps also resonate with the experimental statistical protocol phases. 
And this semantic congruence finds its expression in a certain aspect of algorithmic work: the 
organization of in-blocks “subroutines” procedures. 
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The MWSS tool highlights interactions between the three considered domains: the level 0 algorithm 
designed in an interaction between the instrumental dimension of MWS and AWS. Then level 0 
algorithm is executed in order to construct a new experimental protocol. The level 0 algorithm is then 
considered as a technological tool through an instrumental genesis in MWSStat. Then level 0 
algorithm, taken as theoretical tool in a discursive genesis of AWS, finalizes a new algorithmic object 
aiming to automate this new experimental protocol: the level 1 algorithm. Two new identical cycles 
of interactions between MWSStat and AWS can successively generate the level 2 algorithm, which 
could establish a conjecture to frame the fluctuations. Then, this conjecture makes it possible to 
visualize in a semiotic genesis of MWSProb the prediction interval, in order to activate the discursive 
dimension of MWSProb to enrich the repository of the prediction interval property. 

In addition, to highlight this dialectic of evolving interaction cycles between the three involved 
domains, our analysis can be used to design a prototype for teacher training session, or an activity for 
students, that avoid confronting learners with the simultaneous difficulties of different domains. Such 
a prototype can also be used as a remediation tool.  
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With the aim of contributing to the study of the statistical knowledge of pre-service primary school 
teachers, here we present the creation of a system of categories of analysis to characterize the written 
reports of a group of students who carried out a task that reflected the five stages of the statistical 
investigative cycle. The analysis answers to a deductive/inductive process, since we look at the theory 
to understand our data and, at the same time, themes emerge that had not yet been described in the 
literature. Our contribution is a system of categories for the characterization of the statistical 
investigative cycle, which consolidates, refines and extends what has been published so far. The 
proposal presented here may be useful not only for researchers and teacher educators, but also for 
pre-service teachers themselves to understand the investigative cycle. 

Keywords: Pre-service primary school teachers, statistics education, statistical thinking, 
investigative cycle. 

Introduction and theoretical framework 
In recent years the Spanish national curriculum has included statistics from the first year of primary 
school. At the end of compulsory education, students are expected to be able to formulate questions, 
select and use statistical methods, and draw conclusions based on data. It makes sense to assume that 
if this is what students are expected to achieve, teacher educators should train future teachers to be 
able to create educational instances focused on the development of such competences. 

Batanero, Díaz, Contreras and Roa (2013) define statistical sense as the whole of statistical culture 
and statistical reasoning. This definition is based on the constructs of statistical literacy (Gal, 2002) 
and statistical thinking (Wild & Pfannkuch, 1999), including the idea of statistical reasoning as well 
as the fundamental ideas to be developed in statistical education. Wild and Pfannkuch (1999) propose 
four dimensions to characterize statistical thinking: the investigative cycle, types of thinking, the 
interrogative cycle, and dispositions.  

Dimension 1, the investigative cycle represented in Figure 1, involves five stages consisting of 
problem, plan, data, analysis and conclusions. Dimension 2 includes types of thinking, and here Wild 
and Pfannkuch (1999) establish a general type and types fundamental to statistical thinking. In the 
latter, we find: a) recognition of the need for data to solve a problem that involves statistics; b) 
transnumeration corresponding to the idea of changing the format of the data in order to obtain new 
information; c) variation, which consists of noticing that variation is present in all the aspects of a 
problem involving statistics; d) a distinctive set of models; e) integration of context, statistical 
knowledge, and information on the data. Dimension 3 corresponds to the interrogative cycle, which 
involves five phases: imagining possible plans of attack or generating explanations, searching for 
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information and ideas, interpreting, checking against reference points (criticizing), and deciding what 
to believe or discard (judging). Finally, dimension 4 involves dispositions, which include skepticism, 
imagination, curiosity and awareness. 

 

Figure 1: The investigative cycle (Wild & Pfannkuch, 1999, p. 226) 

With the long-term aim of contributing to the understanding of the statistical knowledge of students 
starting on a primary school teacher education program, here we present the development of the 
system of categories used to characterize how a group of pre-service teachers approached the stages 
of a statistical investigative cycle (hereafter referred to as IC). Our contribution is a system of 
categories that consolidates, refines and extends the existing theoretical ideas.   

Instrument and data collection 
According to Wild and Pfannkuch (1999), the IC is a coherent structure that links the different 
dimensions of statistical thinking. Since the aim of the present study was to create a tool to 
characterize the way pre-service primary teachers developed an IC, we set an activity that guided 
them explicitly through an investigative process. The activity consisted of six steps. The first five 
steps were related to the proposal of Wild and Pfannkuch (1999), and in the sixth step we asked the 
students to reflect upon the activity, identifying strengths and weaknesses of the investigative process 
they had carried out. The activity proceeded as follows:  

1. Define a topic of interest and a research question. 
2. Justify the relevance of the research topic and of the research question. 
3. Develop a data collection tool, justifying its construction and the questions that comprise it. 
4. Analyze the data and present results. 
5. Give a possible answer to the research question and establish conclusions. 
6. Evaluate and reflect upon the whole process, identifying strengths and weaknesses. 

In February 2017, 134 students who had just started their four-year program in primary teaching at 
the Autonomous University of Barcelona were organized into 34 working teams of three or four 
members and developed the proposed activity in six 90-minute sessions. Our data consists of each 
team’s written output, complemented by the classroom observations collected by the first author. This 
output is associated with a number: for example, G3 corresponds to Group 3.  

Analysis 
The analysis took a deductive/inductive approach. First, in line with Wild and Pfannkuch (1999), we 
grouped data according to the different stages of the IC and the components of each stage (already 

Thematic Working Group 05

Proceedings of CERME11 1094



 

 

shown in Figure 1). The process was deductive in that, for each component, we looked for theoretical 
references to explain our data and from there we tried to organize it according to the theoretical 
specification of the component. While coding and grouping units of meaning according to their 
similarities and differences, themes emerged that had not yet been described in the literature. In this 
sense, the analysis process was also inductive. 

Next, we present the analysis for each stage, and for each component – written in italics in the text – 
we introduce the categories used or created for our analysis. When the category is related to existing 
theory, we quote the reference. The references are introduced here rather than in the theoretical 
framework because we understand that they are part of our analytical framework. When the 
categories arose from the data, they appear underlined in the text, and together with the name given to 
the category we present a definition and examples where necessary.   

IC analysis: PROBLEM  

The initial stage of the IC involves two components, with the first one capturing the dynamics of the 
context. Before defining the research problem, the teams justified their choice of research topic. Thus, 
an initial category arose – research rationale – with different subcategories:   

· Relevance: their selection of the topic was justified by its relevance in the context. “We believe 
that reading is an essential source of knowledge. As future teachers, it would be important for us 
to spread the enjoyment of reading to the students. Therefore, we would like to know the literary 
preferences of our classmates.” (G1) 

· Curiosity: their selection responded to their own curiosity about some aspect of their context, with 
no justification of its relevance. “By quickly observing our classmates, we detected that there are 
people wearing make-up and people that aren’t. We would like to dig deeper into the main 
reasons that have led them to wear make-up and find out at what ages they started to do so.” (G8) 

· Unspecified interest: they stated that they were interested in the topic, without specifying why. 
“We have chosen this topic because it interested and motivated all the team members.” (G30)  

When analyzing the component problem definition, we organized the written reports according to the 
preciseness of their problem formulation, creating three categories: 

· Focus: the formulation established the topic they prioritized in their research. 
· Purpose: the formulation established what they wanted to know about their topic of interest; 

however, they did not necessarily formulate a research question as such. 
· Research question: they explicitly stated the research question that guided their investigation. 

The definition of the problem could include some or all of these elements, as can be seen in the 
sentence we use to exemplify the different degrees of preciseness: “The topic we covered was books. 
More specifically, the interest in reading [focus]. The relevance of the chosen topic lies in the fact that 
for us, as future teachers, it would be interesting to find out how keen our classmates are on reading 
[purpose] so that we can influence future generations. Once we have chosen the topic, we will focus 
on the research question: Are we interested in reading? [research question]” (G10). 

On looking at the nature of both the purpose and the research question and taking into account Makar 
and Fielding-Wells (2011), we distinguished two subcategories that respectively included questions 
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that either were or were not statistical in nature, depending on whether or not statistical work was 
involved. Regarding the type of research questions, we organized our data according to the three 
types put forward by Pfannkuch and Horring (2005). Each type generated its corresponding category. 
Thus, both the research questions and purposes collected were organized into three categories: 
summary, comparison and relationship. Furthermore, as proposed by Arnold (2013), the first two, 
summary and comparison, could have been further subdivided according to Arnold (2013) proposal.  

IC analysis: PLAN  

In this stage, our data did not allow categories to be established within the hypothesis formulation 
component. Regarding the data collection instrument, we observed that all groups used 
questionnaires with questions that were either open-ended or closed-ended. Thus, we created a first 
category, format of questionnaire, which is subdivided into three, closed-ended, open-ended or 
mixed, depending on whether all the questions in the questionnaire were of the first or second type, or 
a combination of the two. We created a second category, type of questions, which generated two 
subcategories, sample and aim. In turn, these were further subdivided. 

· Sample: included the questions that referred to the population under study:  
× Characterization: those questions whose purpose was to collect information on the variables 

that characterized the population under study, such as age or gender.  
× Selection: questions intended to distinguish between those participants who could provide 

information to adequately answer the research question and those who could not. “¿Are you 
currently reading by choice?” (G1) [It did not make sense to ask those who did not currently 
read willingly to continue answering the questionnaire]. 

· Aim: included the questions intended to obtain information related to the research topic: 
× Target: included those aimed at gathering information to answer the research question.  
× Satellite: included those questions that did not ask for information crucial to the investigation, 

but which might complement it: “At school, did they motivate your interest in reading? (G10) 
× Redundant: included those questions that did not contribute anything to the research topic. 

IC analysis: DATA 

In this stage of the cycle, we identified two techniques that generated two categories with regard to 
the data collection component: ticking options in a table that anticipated possible answers, and listing 
answers, copying them as provided by informants. Regarding the component data cleaning, we 
observed that some groups identified and separated the data provided by informants who did not 
belong to the sample, either visually or non-visually. For instance, in Figure 1, we see how the 
students separated the answers given by the teacher and the observer by placing them outside the 
table, since they were not part of the target population.  

 
Figure 1: Visual recording of data provided by informants who did not belong to the sample 
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IC analysis: ANALYSIS  

At the outset, we saw that in this stage we had to consider a component previously unspecified in the 
literature, namely initial data processing. Within this component, we observed that the teams either 
recorded frequencies (absolute and/or relative) of answers to closed-ended questions or constructed 
categories from the answers to open-ended questions. When the transnumeration component (Wild & 
Pfannkuch, 1999) appeared in the reports, we observed two types of format change which gave rise to 
the following categories: numerical representations (percentage, centralization measures) and 
graphical representations (bar graphs, histograms and pie charts). 

IC analysis: CONCLUSIONS  

In this stage of the cycle, we constructed two categories related to the interpretation of results 
component: graphical representations and numerical representations, strictly linked to the type of 
format change of their analysis. To organize our data within the first category, we followed Gea, 
Arteaga and Cañadas (2017). Thus, we established four subcategories, namely reading the data, 
reading between data, reading beyond data and reading behind data.  

To describe how the written reports that fall into the category of numerical representations reached 
their conclusions, we looked at two aspects that generated a new category each. The first category, 
approach, was further subdivided in two, partial and relational, depending on whether the conclusions 
referred to the numerical results considered one by one, or whether they related the different results 
obtained, giving more complex answers to the research question.  

The second category was related to meaning conveyance and concerned the character of each team’s 
conclusions. It was split into two further categories: 

· Descriptive: their conclusions only consisted of showing percentages, absolute frequencies or 
measures of centralization, without any further interpretation: “Question 3: of the 69 persons 
surveyed, 73.9% prefer to study on their own, 18.8% choose to study with another person.” 
(G34).  

· Interpretative: their conclusions were interpreted in relationship with different elements:  
× Context: they interpreted their results by integrating information about the context. “We think 

that this low percentage could be caused by the rise of new technologies, compulsory reads in 
primary and secondary school, and the little free time available.” (G1)  

× New information: when interpreting their results, they incorporated new information 
encountered during data collection “We have observed that younger people start drinking 
alcohol at a younger age, while older people took longer to try it.” (G18)  

× Beliefs: they interpreted their results on the basis of their own beliefs. “We believe this may 
be due to a change in mentality. A pet is no longer seen as a toy but as a responsibility.” (G3) 
Since the team’s results showed that 85% of the surveyed people had had a pet at some point, 
and 50% of the surveyed population currently owned a pet, this unit of meaning would also be 
an example of the relational category. 

Finally, for what refers to the relationship between conclusions and the research question 
component, several categories arose depending on whether the conclusions answered, partially 
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answered or did not answer the initial research question or purpose, thus allowing the teams to 
complete or not the IC. Regarding the critical reflection of their process, we observed that they 
identified strengths and weaknesses, focusing their criticism essentially on the data collection tool 
they had constructed. Some teams also made suggestions for improvements to their own IC.  

Results 
For the purposes of this paper, we are neither interested here in determining how many groups there 
were in each category, nor in characterizing the work of the different groups, but rather in 
highlighting the categories as a set. Thus, our main result is a category system that refines, 
consolidates and broadens the characteristics appearing in the literature. We note the inclusion of two 
new components: in Stage 4, initial processing of data, and in Stage 5, criticism of their own work 
process. Table 1 shows the new study categories on a grey background. 

Components Categories 

Stage 1: PROBLEM 

Capture the dynamics 
of the context 

Rationale  
Relevance 
Curiosity 
Unspecified interest 

Problem definition  

 

Focus  

Purpose 

 

Nature 
Statistical 
Non-statistical 

Research 
question 

Type 
Summary  
Comparison 
Relationship 

Stage 2: PLAN 
Hypothesis formulation  

Data collection 
instrument 

Format 
Closed-ended  
Open-ended  
Mixed  

Type of 
question 

Sample 
Characterization  
Selection  

Aim 
Target  
Satellite 
Redundant 

Stage 3: DATA 

Data collection Techniques 
Ticking options 
Copying answers 

Data cleaning 
Visual  
Non-visual 
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Stage 4: ANALYSIS 
Initial processing of 
data 

Frequency records 
Category construction 

Transnumeration 
Numerical representation 
Graphical representation 

Stage 5: CONCLUSIONS 

Interpretation of results  

Graphical 
representation 

Reading data 
Reading between the data 
Reading beyond data  
Reading behind data 

Numerical 
representation  

Approach 
Partial 
Relational 

Meaning 
conveyance 

Descriptive 

Interpretative 
Context 
New information 
Beliefs 

Conclusions and RQ  
Answer  
Partially  
Did not answer  

Criticism of their own 
work process 

Strengths 
Weaknesses 
Suggestions for improvement 

 Table 1: Categories system  

Conclusions  
An IC requires having and applying statistical knowledge, completing its stages and thinking 
statistically. It is a complete structure and we found it useful for the description of the statistical 
knowledge activated by future teachers when they face a task that reflects an IC. In this paper, we 
present the creation of a system of categories of analysis based on existing theory and the data we 
collected, consisting of the written reports of a group of pre-service teachers.  

In the process of generating categories we observed the same phenomenon as Wild and Pfannkuch 
(1999) in the sense that “The thinker operates in all four dimensions at once” (Wild & Pfannkuch, 
1999, p. 225). Our proposed analysis revolves around the first dimension, but to interpret our data we 
need the support of the other three. Thus, the idea of transnumeration included in the second 
dimension is key to our interpretation of the analysis stage. Likewise, the idea of integration of 
context, statistical knowledge, and information on the data, is essential if we are to interpret the 
conclusion stage. Similarly, the stage of searching for information and ideas and the stage of 
criticizing and judging, both part of the third dimension, are linked to the generation of categories, 
within data collection and interpretation of results respectively. Likewise, the fourth dimension, 
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which involves dispositions, is key to the criticism of the teams’ own work processes, a new 
component that emerged from our analysis. 

As far as our new system of categories is concerned, we would like to point out that it is not a closed 
object, since it can be modified or expanded to analyze data obtained from other groups of students (at 
this and other educational levels) when constructing their own investigative cycles. Furthermore, the 
subcategories should include the knowledge and processes that we would like our students to have at 
their disposal as teachers. Meanwhile, the categories may already be useful to researchers when 
approaching the characterization of statistical knowledge and to teacher educators when identifying 
their student-teachers’ starting point and interpreting their responses.  
 
This research was carried out with the support of research grants EDU2013-4683-R and 
EDU2017-84427-R –Spanish Ministry of Science, Innovation and Universities. 
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Introduction, theoretical background 
Inferential statistics in not part of the secondary school curriculum in Hungary. The current plans to 
reform the national curriculum include the introduction of basic inferential statistics. A working 
group of the Hungarian Academy of Sciences, of which these authors are members, is exploring 
possibilities and designing tasks and feasible learning paths. Descriptive statistics – though mainly 
from a didactical rather than a mathematical point of view – is taught in teachers’ education since 
the early 2000s, while teachers learn basic probability at the university since 1959. Because of this 
lack in teachers’ background, the aim of the project is to design an acceptable way of introducing 
inferential statistics in high-school curricula both for students and their teachers. 

This paper is linked to the project „Complex Mathematics Education”. Our work is based on the 
ideas about teaching probability and statistics of T. Varga and T. Nemetz. We have designed several 
experiments and tested them by one of the authors (Jánvári) in Szerb Antal Secondary School 
(grade 11, 17 year-old students). The experiments are determined by their fit into our theoretical 
views on modelling probability and to the approach of teaching classical and Bayesian statistics 
together developing the concepts in parallel (Vancsó, 2009; 2018). In these studies, teacher’s and 
students’ beliefs and skills were developed by a “parallel course”, which helped to understand 
classical and Bayesian ideas. While the informal approaches to teaching inference in Garfield and 
Ben-Zvi (2008) focus on simplifying statistical inference by re-randomisation and Bootstrap, we try 
to make inference more understandable by integrating the Bayesian view. This is in line with 
Borovcnik (2017), who describes shortcomings of informal inference. It also fits to an analysis of 
statistical inference from the statistician’s perspective by Vic Barnett, which is summarised in a 
comparative educational study of statistical inference by Borovcnik (2013). 

Conclusion and results 
Our first experiment is rolling dice judging whether the die used is well-balanced or loaded by a 
probability statement. Though this method was introduced in earlier papers (e.g., Lawton, 2009; 
Dambolena, Eriksen, & Kopcso, 2009), our approach places greater emphasis on the hands-on in-
class experiment. It is used to introduce hypothesis testing. In this case, the Bayesian way is 
technically too complicated but becomes manageable through the use of software. The second 
example is a reaction test using a stopwatch. This interactive game among students unfolds 
connections between different school subjects such as physics, biology, and mathematics. 
Furthermore, it is also suitable to discuss about discrete and continuous quantities. It is our goal to 
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use more games in teaching, which is motivating for students and provides an excellent opportunity 
to discuss basic notions and misconceptions in probability and statistics. Also, application of 
modern ICT tools in itself can be interesting and challenging for secondary-school students. 
Moreover, the gamification element (see Papp, 2017) can increase their involvement and 
consequently their motivation and understanding of the scientific material. 

This paper was supported by the Hungarian Academy of Sciences’ “The Complex Mathematics 
Education Project”. 
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Introduction 
The thematic working group 6 (TWG6) in CERME focuses on the research field of teaching and 
learning mathematical modelling and applications at various educational levels ranging from 
primary to tertiary education, including vocational courses. The working group also addresses initial 
and continuing teacher education, where an increasing number of contributions have been offered. 
TWG6 started at the fourth ERME Congress (CERME 4) in 2005 and it has, since then, continued 
to be an active thematic working group in the eight meetings through to CERME 11. In total the 
working group has produced and presented 161 papers and posters. 

In its discussions at CERME 11, the thematic working group TWG6 on applications and modelling 
aimed to seek answers to some open questions in the research field (Schukajlow, Kaiser, & 
Stillman, 2018), and continue to advance the work from previous ERME conferences. The 
contributions discussed at the congress are characterized by a strong and fruitful diversity in the 
research questions considered, the school levels addressed and the theoretical approaches taken. On 
the whole, TWG6 received 41 papers and posters from 17 countries–most of them from Europe, but 
also from South and Central America, Iran, South Africa, South Korea and Japan. Finally, a total of 
21 papers and 7 posters were presented in the conference, with a total of 40 participants from 14 
countries. The next table summarizes the evolution of papers and poster presented in TWG6 in the 
different CERMEs. 
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Table 1: Evolution of the papers and posters presented in TWG6 

In the seven TWG sessions the different papers were discussed organized around five leading 
themes, which were established after reading and revision of the submitted proposals. Although 
some of the papers cover more than one of the identified leading themes, the proximity to other 
research papers facilitated their distribution among the various themes (Table 1).  

Leading themes Papers 

T1. Analysis of modelling processes when solving modelling problems  3 

T2. Mathematical modelling and simulations in connection to other disciplines  3 

T3. Strategies to support design and implementation of modelling 4 

T4. Use of resources to support teaching and learning of modelling  2 

T5. Teacher education for modelling and its application  9 

Table 2: Leading themes defined and papers assigned in each 

As a first important leading theme papers focusing on creating and testing tools for the analysis of 
the modelling processes that are carried out when students solve modelling problems were 
identified. These research papers aimed to elaborate specific tools and methodologies for analysing 
and evaluating modelling practices. The second theme focused on the interplay and connections 
between mathematical modelling and other subjects, especially in engineering teaching. The third 
theme addressed different strategies to support the teaching and learning of mathematical 
modelling; this includes strategies to foster students work on modelling problems, ways in which 
teachers can guide their implementation and evaluation as well as ideas regarding the design of 
modelling activities by researchers (and/or teachers). The fourth theme focused on the use of 
experimental materials and technology in modelling, and covered two topics: the first primarily 
focused on the role of the auxiliary material and its impact on the modelling activity and a second 
concerned with how to combine different resources with technology in concept development by 
means of real word contexts. Finally, the fifth theme covered teacher education for modelling and 
its applications. As this theme had a lot of contributions, we organized the contributions into two 
sub-topics. The first topic was about assessing and measuring teaching competencies for 
mathematical modelling. The second focused on several instructional proposals for prospective and 
in-service teacher education for modelling and applications.  
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Leading themes and overarching questions  
Analysis of modelling processes when solving modelling problems  

This first theme focused on proposing tools and methodologies to analyse the modelling processes 
individuals or groups of individuals engage in when solving modelling problems. Firstly, Ärlebäck 
and Albarracín investigated the potential of extended Model Activity Diagrams as an analytical tool 
for analysing students’ modelling processes by including a sub-division of the modelling tasks at 
hand in terms of the sub-problems that students work on. Secondly, the paper of Montejo and 
Fernandez considered the conceptualisation of the notion of model/s. Based on their analysis of a 
diversity of definitions about what a model is, according to the educational research literature, the 
authors introduce a conceptualisation of the notion of model/s as a triplet system-mathematization-
representation, and propose for this to be used in future research. Lastly, Moutet uses the theoretical 
framework of the Mathematical Working Space (MWS) to extend the notion of the modelling cycle 
and to analyse the tasks associated with certain stages of a modelling task in physics, in particular 
concerning special relativity. This research intends to show how the extended MWS offers a tool for 
the analysis of the mobilization of the epistemological planes of physics and mathematics and how 
it relates to the cognitive plane. Although the discussions of the three papers partly focused on 
different aspects, the following common and overarching questions surfaced in the discussion of the 
contributions in this first theme: 

§ What do these new frameworks (or development of existing ones) add to our understanding 
of, and our research practices in, the field of teaching and learning of modelling?  

§ What are the implications of these frameworks when considering supporting different 
communities with modelling: students, teachers or modelling task designers, etc.? 

§ In what ways can we broaden ‘our’ perception of what modelling is by comparing different 
approaches and their interpretation of what modelling is? 

Mathematical modelling and simulations in connection to other disciplines  

This theme focuses on the role of modelling and simulations when mathematics is integrated with 
other disciplines. Some of the papers in this theme touch upon parts of the topic of TWG26 - 
Mathematics in the Context of STEM Education. However, the aim of the papers in this leading 
theme is to study the role of mathematical modelling in the context of mathematics education rather 
than the notion of STEM more generally. Within this thematic strand, we find a diversity of studies, 
proposals and results that easily connect with other leading themes. The paper by Poudel, Vos and 
Shults describes an empirical study with students of Development Studies, which aims at 
introducing examples of real research and methods in social sciences to the students. The authors 
describe their experience from a university seminar on introducing a research approach to the social 
sciences with the aim of investigating how students use and gain knowledge about modelling and 
simulations. Lantau and Bracke present a study about the use of a STEM-modelling project 
involving the functional principles of a Segway, within a teacher development programme which 
later guided their implementation of the STEM-project in secondary school settings (grades 10 to 
12). Their aims are to analyse the effective factors and obstacles that teachers manifest concerning 
the implementation of these modelling activities. In the context of STEM-projects, Ruzika and 
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Schneider advocate a multicriteria perspective in relation to mathematical modelling, optimization 
and decision-making. Their paper presents several examples from real-world problems (including 
some STEM projects) illustrating the need of multicriteria decision-making and gives some first 
hints toward incorporating this multicriteria perspective in the teaching paradigm of mathematical 
modelling. In the general discussion about this theme, we addressed questions such as: 

§ How can we facilitate and progress the implementing of interdisciplinary modelling projects 
given regular school conditions (and not only in the modelling-projects weeks, days, etc.)?  

§ What limitations emerge when adapting modelling projects to school and university 
conditions? What can be done to favour interdisciplinarity modelling projects in schools? 

§ What role could or should the other disciplines (natural sciences, social sciences, 
engineering, etc.) play in mathematical modelling and in mathematical modelling lessons?  

§ What new disciplinary and interdisciplinary knowledge needs to be introduced and how do 
we do this in secondary schools and universities?  

§ Can mathematical modelling be considered as a support for the construction and 
development of inter-disciplinary knowledge? Which constraints do we have to overcome? 

Strategies to support students and teachers in the design and implementation of modelling  

The papers related to this topic refer to different strategies to support students when solving 
modelling problems, teachers when guiding their implementation and evaluation as well as 
researchers (and/or teachers) with the design of modelling activities. The pursued aims are varied, 
but when organising their complementarities we found some common questions these papers deal 
with: 

§ What strategies do we have (for example: reading strategies and text representations, 
students’ evaluation of given modelling solutions) to help students in modelling? What 
complementary information can several approaches give us? 

§ How can the configuration of modelling activities, or their reconfiguration into different 
modelling problems, serve different teaching and learning objectives? Which principles for 
the design of modelling tasks may be established?  

Related to the first questions, Dröse presents research about the impact of fostering reading and 
comprehension strategies to support students in successfully solving modelling problems. Through 
the analysis of some particular case studies with students solving modelling tasks, this research 
focuses on analysing how certain reading strategies can contribute to different steps in constructing 
mental text representations, which is an important step in modelling. In their work, Kuntze and 
Eppler propose that an effective strategy to support students’ modelling practices is to ask students 
to evaluate some particular given solutions of modelling tasks. In particular, this paper presents 
some empirical findings relating to secondary students when they review and refine modelling 
solutions cooperatively in the classroom; the students have to face specific requirements, such as 
reconstructing modelling thoughts, examining alternative modelling steps and comparing the 
quality of different modelling solutions.  

Concerning the second questions, we discussed two papers dealing with task design issues. Almeida 
and Carreira present a theory-based discussion on the configuration of modelling activities to show 
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how the design of modelling tasks is strongly dependent on the perspective adopted for its 
implementation. Based on some particular examples, an analysis of the task configuration is carried 
out in light of the more implicit or explicit aims of mathematical modelling in teaching and their 
connection with various modelling perspectives. From the examples, it is possible to argue that the 
configuration of modelling tasks is adaptable, which entails flexibility and reinforces the relevance 
of an educational standpoint in designing modelling problems. Last but not least, Pla-Castells and 
Ferrando describe an empirical study with the objective of designing a sequence of modelling tasks 
focusing on solving a big number estimation problem. They use the so-called downscaling - 
upscaling techniques for the design of this particular Fermi problem, which is later used to analyse 
the implementation with primary school students of second grade (7-8 years old).  

Use of resources to support teaching and learning of modelling 

This theme focused on the use of different kinds of resources: digital technology, physical 
resources, etc., at the different stages of the modelling process. In particular, some papers aim to 
discuss the role of the physical or digital prototypes and of simulations at the different stages of the 
modelling process. In Baioa and Carreira, the authors explore and discuss the use of simulations 
with physical models and prototype constructions in the process of modelling. They choose some 
examples in the inter-disciplinary context of STEM to analyse the use of prototypes and simulations 
in students’ activity going through the entire mathematical modelling cycle. The paper links to 
Lantau and Bracke’s research in their detailed analysis of the potential of combining STEM and 
mathematical modelling. Lieban and Lavicza discuss the affordances of using and combining 
physical and digital resources for exploring geometrical modelling. Within the context of pre-
service teacher education, the authors explore the use of physical simulation and digital resources, 
in particular using Geogebra, to support modelling in the transition between 2D and 3D models 
construction. These papers also establish connections with the aforementioned paper by Moutet on 
the use of digital technologies to simulate physical phenomena involving special relativity. Some of 
the matters largely discussed were: 

§ How can we conceptualise simulations within mathematical modelling processes? What do 
simulations change for model building in the different steps of the modelling cycle? 

§ How can digital and physical tools change ways of approaching modelling problems? How 
do they change the meaning of “working mathematically” today? 

§ Do we need to rethink the definition and conceptualizations of the steps of the modelling 
processes when using technology and simulations? 

Teacher education for modelling and its application  

This last theme is the one that attracted most papers. The topic of teacher education is a valued one 
within the group, based on the acknowledged need of preparing pre-service and in-service teachers 
for the teaching of applications and modelling. Papers in this leading theme were organised in two 
sub-topics to facilitate their discussion. The first topic focussed on assessing and measuring 
teaching competencies for mathematical modelling. The second topic covered works on the 
proposal of different teacher education courses for pre-service and in-service teachers of primary 
and secondary school education.  
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Concerning the first topic, Borromeo-Ferri focuses on the question about how mathematical 
modelling competencies can be assessed and, more concretely, how to see an increase of teaching 
competencies after a course on ‘learning and teaching of mathematical modelling’. A test 
instrument was presented and used to assess modelling competencies for students and teachers 
participating in several empirical studies at secondary level. In their paper, Klock and Siller 
emphasize the importance of providing teachers appropriate ways of supporting students working 
on modelling processes, in particular, through a precise diagnosis in the intervention process. Based 
on a process model, another instrument for measuring teaching competencies was presented. Thus, 
based on the data measured by this instrument, the cause-and-effect relationship between a correct 
diagnosis and the selection of an adaptive intervention can be analysed. Some of the questions that 
emerged from the group discussion were: 

§ How to ensure that the test instruments for assessing modelling competencies are significant 
enough, in the sense of sufficiently independent, from the modelling perspective adopted?  

§ How can these instruments (assessment, diagnosis, intervention) be useful for teachers’ 
practice when implementing modelling activities with students?  

Closely related to the previous papers, using the conceptualization of the modelling cycle and 
competencies, and presenting particular instructional proposals we considered several papers. Wess 
and Greefrath focus on the modelling-specific task competency of prospective teachers in the 
teaching laboratory MiℝA+. In this laboratory, teachers are encouraged to design their modelling 
tasks and apply them in practice with emphasis on the acquisition of competency by their students. 
Guerrero-Ortiz present the results developed with prospective mathematics teachers who took part 
in a seminar with the aim of developing their mathematical and pedagogical content knowledge in 
the process of designing modelling tasks and discussing about these teaching proposals. 
Furthermore, Alwast and Vorhölter discuss the important gap between the theory conveyed at 
university and the teachers’ practical work at school and how to help future teachers make their 
knowledge applicable to practice. They use staged video vignettes to simulate real classroom 
situations and support future teachers episodical memory through repeated practice with these 
videos. 

In their paper, Yvain-Prébiski and Chesnais identify horizontal mathematization as a crucial 
component of mathematical modelling. Based on this conceptualization of horizontal modelling, the 
authors analyse the implementation of a modelling task about the growth of an exotic tree with a 
large group of secondary school classrooms to analyse how teachers spontaneously manage these 
initial steps for modelling, especially analysing their difficulties on implementing horizontal 
mathematization. Kaneko, Saeki and Kawakami aims at creating contact points between empirical 
modelling and theoretical modelling in teacher education. The authors explore the case of a 
pendulum modelling problem and the analysis of modelling lessons related to this problem to make 
teachers reflect on the significance and complementarities between theoretical and empirical 
modelling. 

In her paper, Jessen presents a model for upper secondary in-service teacher courses based on the 
anthropological theory of the didactics and explores how to train teachers to design and implement 
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mathematical modelling in their classrooms. The course evolves around the proposal of study and 
research path based teaching and strives to create paradidactic infrastructures as a framework for 
collaborative development of teachers’ teaching practice. Under the same theoretical approach, 
Barquero, Bosch and Wozniak address the problem of the teachers’ lack of discursive tools to teach 
modelling processes and how it can be addressed through teacher education. This paper describes a 
teacher education course with pre-service primary school teachers where the terminology of 
modelling and the questions-answers maps are proposed to provide future teachers with a 
discourse—a logos— to explain and analyse the modelling praxis. 

Due to the diversity of research questions and of proposals about teacher education, the discussion 
was particularly rich. Some of the overarching questions addressed when discussing the papers, 
were the following: 

§ How does the process of designing modelling tasks contribute to improved knowledge about 
modelling and modelling processes for teachers?  

§ How do the course ‘elements’ impact on the practice of the teachers? What tools are better 
transferred and adopted by teachers? 

§ How can we get information (and/or measurements) about the success of teacher 
appropriation or adoption of the tools introduced in the instruction?   

§ What different formats, of training teachers for modelling, may lead to a stronger integration 
of modelling in school contexts? 

§ Why are we not achieving autonomy amongst in-service teachers with respect to 
implementing mathematical modelling activities in their classrooms? 

§ How can we ensure a long-term collaboration between teacher and researchers in the 
implementation and analysis of modelling activities in regular school conditions? 

 
Concluding remarks and perspectives 
The leading themes addressed by the TWG6 show the variety of research approaches and questions 
the papers dealt with (Kaiser & Sriraman, 2006). Furthermore, the educational levels spanned from 
primary to tertiary education, also covering teacher education and in-service courses. Comparing 
the papers and approaches considered to the different perspectives described in Carreira, Barquero, 
Kaiser and Cooper (2019), that summarises the evolution of the group we can conclude that in 
CERME 11 the research presented covered most of these perspectives.  

In the first theme we discussed the use and applicability of specific tools and methodologies for the 
analysis of students’ modelling processes and its evaluation. The modelling cycle (and its 
variations) has been prominent in the group. But other approaches to modelling were also discussed, 
such as Model Activity Diagrams, Mathematical Working Space or the one proposed by the 
anthropological theory of the didactics. The discussions broadened our focus and opened new 
questions about possible complementarities between different approaches. Furthermore, a question 
for future research was about how to transform all the analytic tools for analysing students’ 
cognitive processes into tools facilitating the teacher’s task of analysing students’ modelling 
processes. 
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The second theme focused on the role of modelling in connection to other disciplines. More 
concretely, on the interdisciplinary approach to the teaching of mathematical modelling, in 
particular in the context of engineering and STEM education. There is a long tradition in TGW6 of 
discussing examples under this theme, and we hope to continue to attract work that involves 
consideration of modelling in different interdisciplinary contexts and practitioners enlightening 
mathematical modelling from perspectives of other disciplines or contexts. 

The third theme, more associated with the instructional perspective, argued for different strategies 
to support the teaching and learning of modelling, in particular, different approaches to support 
students in solving modelling problems, and teachers in guiding their implementation and in 
evaluating modelling activities. Related to this, the fourth theme we addressed focused on the use of 
technology and physical or digital resources in the teaching and learning of modelling. Questions 
about “how to conceptualise simulations within the modelling process” or “what do we mean by 
‘working mathematically’ when using technology and simulation” have been largely discussed. 
Moreover, open issues for future research arose from the discussion in TWG6 as, for instance, the 
need for extending research on teacher education for the use of simulations and modelling. 

At CERME 11, teachers and their role in teaching modelling as well as teacher education played a 
prominent role, as more than half of the papers were dealing with prospective and/or in-service 
teachers. This shift shows a clear further development of the discussions and the work of TWG6, 
which needs to be fostered and broadened. Teachers and their professional development are crucial 
for the integration of mathematical modelling into mathematics education at various levels. Some 
questions remain open for future research about how to evaluate the impact of teacher training on 
the use of modelling in the classrooms as well as the teachers’ autonomy in doing so.  
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The article proposes a theory-based discussion on the configuration of modelling activities in the 
teaching and learning of mathematics. The design of modelling tasks is strongly dependent on the 
perspective adopted for its implementation. Based on two examples, an analysis of the task 
configuration is carried out in light of the more implicit or explicit aims of mathematical modelling 
in teaching and their connection with various modelling perspectives. From those examples, it is 
possible to argue that the configuration of modelling tasks is adaptable, which entails flexibility and 
reinforces the relevance of an educational standpoint in designing modelling problems. 

Keywords: Task design, configuration, educational aims, modelling perspectives.  

Introduction 
Recently, in an article offering a synthesis of the relevant knowledge on the teaching of mathematical 
modelling, Blum (2015) revisits the main arguments – long-established since the influential ideas of 
Blum (1991) and of Blum and Niss (1991) – that justify the implementation of mathematical 
modelling activities in school mathematics. The four main arguments, which can also be seen as aims 
for the integration of mathematical modelling in mathematics education, are: i) the pragmatic 
argument; ii) the formative argument; iii) the cultural argument; and iv) the psychological argument. 
The first tells us that we need to use mathematics to understand the real world, so we must learn to 
model the world mathematically; the second affirms that in solving real problems through modelling 
we develop fundamental competences; the third argues that without applying mathematics and 
constructing models we cannot truly get a comprehensive view of mathematics; the fourth claims that 
mathematical modelling contributes to a better understanding and structuring of mathematical content 
in mathematics learning. In retrieving those reasonably established arguments, Blum (2015) adds an 
important note: there is a certain duality embedded in the four arguments; shortly put, one of them 
points to the value of knowing mathematics for solving real problems; the others consider the value 
of solving real problems for the learning of mathematics. He also states that examples are needed to 
advance those different aims in mathematics education and offers several specific contexts and 
situations that may suit each of them. The examples are in fact essential for several reasons. One is 
that different examples may fit better with some aims than others; the other reason is that a modelling 
activity is always based on a task, whether it is a real open problem, a research project, or a more 
direct question focusing on studying a particular model. In principle, there is no reason why a single 
basic problem or situation cannot be configured in different alternatives and that it can thus 
contemplate several aims of mathematical modelling. A mathematical modelling situation has the 
possibility of being extended, enlarged, or deepened and explored, in many and various ways. This 
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may be seen in the later work proposed within the models and modelling perspective, in terms of the 
design of model development sequences (e.g., Ärlebäck, Doerr, & O’Neil, 2013). 

A first highlight is that there is a well-recognized plurality of perspectives concerning the educational 
aims for modelling in mathematics education. In their synthesis of the work developed within the 
TWG6, at CERME 9, Carreira, Barquero, Kaiser, Lingefjard, and Wake (2015) found clear evidence 
of a “plurality in the visions and arguments of researchers from different countries about the purposes 
of including modelling in the mathematics curriculum and in regular classroom activities” (p. 792). 
A second idea to be underlined is that creating mathematical modelling tasks is about formulating 
problems, asking questions, generating outbreaks of inquiry and investigation. Moreover, we cannot 
forget that the formulation of problems based on real or realistic situations is something that can be 
done by both teachers and students, autonomously or collectively. 

Keeping in mind these general ideas, our purpose is to capture how the configuration of modelling 
activities or their reconfiguration into different modelling problems may serve different teaching and 
learning aims. This motivates our reflection on the adaptable configuration of tasks from the point of 
view of the perspective of modelling that drives the teaching and learning practices. 

Principles in the design of modelling tasks and their relation to educational aims 
Some important progress has been made on developing criteria to guide the design of mathematical 
modelling tasks for educational contexts. Such work may be found, among others, in the contributions 
of Bock, Bracke and Kreckler (2015); Borromeo Ferri (2018); Leiss, Schukajlow, Blum, Messner and 
Pekrun (2010); or Maaß (2010). 

Maaß (2010) developed a taxonomic model for modelling tasks. According to her proposal, the aims 
for the integration of modelling into mathematics classes are numerous and diverse and can be linked 
to different educational perspectives. In her words, “the objectives are not to be viewed as 
characteristics of modelling tasks but as criteria for their selection” (p. 289). 

The work of Czocher (2017) relates the task design to specific features that incite going through the 
steps and processes established by the generally accepted modelling cycle. The idea that the choice 
and design of tasks involve decisions that are not made in a vacuum is here reinforced: “How the 
tasks are intended to be used should be a determining factor in their design” (p. 138). 

In an action-research project involving curricular integration and classroom practice of modelling in 
pre-calculus classes, Buhrman (2017) formulates a broad research question: “How does a teacher 
design and enact authentic modeling tasks in a diverse secondary mathematics classroom?” (p. 45). 
Buhrman presents a rich and systematic account of the many decisions and educational aims that she 
dealt with in designing and refining the tasks proposed to the students. 

Geiger (2017) explores guidelines for modelling tasks that reflect the availability of digital 
technologies and its integration in the process of mathematical modelling. Within a teachers-
researchers collaborative project, the author shows the result of putting the role of digital tools to the 
fore in the design of modelling tasks. The fundamental role of educational aims in the design of tasks 
is also acknowledged: “task selection, adaptation, and creation are intertwined with choices of 
pedagogies for realising opportunities that lie within specific tasks” (p. 289). 
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The enlightening work of Borromeo Ferri (2018) also speaks about the fact that it is not trivial to 
design a good modelling problem and suggests that good tasks are generally linked to instructional 
quality: “task competency is necessary for teaching modeling in all grades. Furthermore task 
competency leads you to instructional flexibility” (p. 42). 

Perspectives on the integration of modelling and applications 
A well-known differentiation of modelling perspectives, according to their central aims in connection 
with modelling, was proposed by Kaiser and Sriraman (2006). Blum (2015) suggests a slightly 
different classification, although essentially both can be seen in a similar way, as we suggest in Table 
1. Blum’s proposal, however, emphasizes some interesting aspects related to the kind of tasks that 
tend to be dominant or privileged by each perspective. In his view, a modelling perspective could be 
formally characterised by the pair: aim – suitable examples. His idea of the aim-task association 
provides a simple way to imprint the core of 
each perspective as a form of its identification. 
Having in mind that both classifications seek 
to bring out the most distinctive aspects of each 
perspective, it will be likely that many different 
aims can fit into more than one perspective. 
Activities and their different configurations are 
not good or bad per se; it depends on their 
purpose (Blum, 2015). This suggests that 
flexibility and craftwork are crucial in the 
configuration of modelling activities in the 
educational context (Borromeo Ferri, 2018; 
Buhrman, 2017). 

Multiple configurations of modelling activities 
We then present two examples of modelling tasks or problems that allow us to realise the adaptable 
configurations of modelling tasks for teaching. In the first, we chose a particular starting situation 
regarding the world economic inequality and elaborate on that, in view of different modelling 
perspectives. In the second, we show how students independently formulate problems, inquire and 
develop mathematical modelling guided by purposes that are connected to the pragmatic solution of 
a real problem that is relevant to them. 

Diverse configurations aligned with modelling perspectives 

The first activity – world wealth distribution – was developed in a class of 20 students, divided into 
4 groups, in a course of Mathematical Modelling for pre-service mathematics teachers, in a Brazilian 
university. In this activity the image shown in Figure 1, along with a report on the explosion of 
inequality in the world, published by the Brazilian magazine Exame, on January 19, 2015, was 
delivered to the students1. The report draws attention to the fact that inequality has increased in the 

                                                 
1 Available at https://exame.abril.com.br/economia/4-graficos-que-mostram-a-explosao-da-desigualdade-no-mundo/ 

Perspectives 
(Kaiser & 
Sriraman, 2006) 

Perspectives  
(Blum, 2015) 

Aim | Task  

Realistic Applied pragmatic | authentic  
Didactical Educational formative | cognitively rich 
Socio-critical Socio-critical cultural and emancipatory | 

authentic 
Epistemological Epistemological cultural concerning 

mathematics | 
epistemologically rich 

Contextual Pedagogical Psychological, marketing 
intention | motivating 

Conceptual Conceptual psychological | 
mathematically rich 

 

Table 1: Brief outline of modelling perspectives 
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period from 2000 to 2014. According to the report, the 
distribution of global wealth is striking when one 
compares the wealth share of the world’s 1% richest 
people to the wealth share of the other 99% of the 
population. The aims underlying the configuration of 
the activity concerned the development of students’ 
ability to mathematize a situation (the distribution of 
wealth) and to obtain answers to a question arising 
from it. Thus, the students would have to define 
strategies to answer the question and, in this case, those strategies should prioritize mainly the ‘how 
to’ use mathematics to achieve a prediction. 

Configuration A (Didactical modelling) 

Based on the impression that the two curves will intercept in some year after 2014, assuming “business as usual”, 
can we say in which year the wealth of the richest 1% equals the wealth of the other 99% of the population?  

With this configuration, the activity seems to be in line with what Kaiser and Sriraman (2006) 
characterize as the “didactical perspective” of modelling. In this case, the focus was the process of 
solving the problem rather than the mathematics content itself. The purpose of the mathematization 
was to predict a future event.  

We refer here to the work of two groups of students (G1 and G2) who decided to tackle the problem 
situation by means of using the software GeoGebra, which was already familiar to them. The students 
from both groups started their work by inserting the image in the GeoGebra graphics view and created 
points on the curves for successive years (Figure 2). 

    
Figure 2: (Left) Linear model from group G1 and (Right) exponential model from group G2 

Considering that their goal was to use the data from the picture to make predictions after the year 
2014, the students considered the points relative to the years 2009-2014. Using the spreadsheet view 
and the bivariate regression analysis tool in GeoGebra, students in G1 selected a linear regression 
model to determine the predicted growth of the richest as well as the poorest shares (Figure 2, left). 
On the other hand, students in G2 opted by exponential regression models (Figure 2, right). Although 

Figure 1: Curves of economic inequality 
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the two groups have adjusted different models, both concluded that after the year 2016 the wealth of 
the richest 1% already surpasses that of the other 99% of the world population. 

Starting from the given situation, other configurations, involving the design of other modelling 
problems, may be produced, in line with other educational aims and modelling perspectives. Next, 
we refer to two of such variations. In the second configuration, which is in line with “conceptual 
modelling”, one aim is the eliciting of models leading to concepts such as Riemann sums and the 
average value of a function over an interval. The affordances of GeoGebra would also be relevant, 
namely by interconnecting the graphic window and the spreadsheet window. Many explorations 
would be feasible in that approach; in fact, another aim could be the integration of technology in the 
modelling process. 

Configuration B (Conceptual modelling) 

Based on the data from the graph what could you say about the average gap between the shares captured by the 
top 1% and the bottom 99%, between 2000 and 2014? According to your approximate model reflecting the trend, 
how will this gap change over the following 14 years? 

In the third configuration, the emphasis is on critically reflect on the world inequality portrayed by 
the 2016 situation, where the top 1% of the population captures half of the world wealth. Here, in line 
with a “socio-cultural perspective” the objective concerns the use of mathematics to unveil social and 
political phenomena and promote informed critical positioning. The need to produce a good 
representation of a clearly asymmetric distribution will require creative thinking. Either the students 
look for information about the values of the percentiles for 2016 or they may run a simulation that 
generates 100 numbers (where one number is 50 and the sum of the all the others is also 50). The 
usefulness of mathematical representations is intended to be a topic of deliberation. But mostly, 
reflective and critical examination of the real world by means of mathematics is a fundamental 
implicit aim in this task configuration. 

Configuration C (Socio-critical modelling) 

A student responsible for the newsletter of his school/faculty wonders about how to depict the current distribution 
of wealth among the world population, in an article about economic inequality. What would be a good 
mathematical representation of the distribution that people would easily understand?  

Write a boxout text (half page) to accompany the student’s article where you show your representation of the 
wealth distribution, indicating the source of your data and explaining the fundamental ideas that may be drawn 
from it. Remember that boxouts are intended to be visually interesting and have condensed information. They 
should incite the reader to think and to know more on the subject. 

A task configuration serving different perspectives 

In the following example, unlike the previous one, the teacher did not present a modelling problem 
to the class of pre-service student-teachers. Instead, each group of students was asked to choose a real 
situation to investigate and create a modelling problem that should be solved. One group of students 
used to fish in a Fish & Pay Lake and became interested in studying the potential profit that the use 
of tilapia leather could provide to the owner of the pond. 
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First, the students thought about how to measure the amount of 
leather obtained from each fish. For that end, they caught fishes with 
weights varying between 280g and 720g. To determine the surface of 
the leather of each fish they used an approximation by means of 
triangles (Figure 3). They recorded the measures of the sides as well 
as the area of each triangle, by applying Heron’s formula and using 
the Excel software. From there, they sought to relate the weight and 
surface of the fish. They defined the variables: x(t) as the weight (in 
grams) of a tilapia aged t weeks and y(t) as the tilapia leather useful 
area (in cm2) after t weeks. The growth rates of these two properties of the fish in relation to time are, 

respectively,  and . To relate the surface to the weight, the students used the Allometry 

Principle, according to which one has , where k is a constant. By solving the differential 

equation, they arrived at the solution: . Finally, the students resorted to their spreadsheet table 
and used Excel for getting the best fitting curve: . 

To consider the issue of the revenue from the sale of the tilapia leather, the students talked to the staff 
in charge of the fisheries and learnt that the average weight of the caught fish is 500 grams. So they 
applied their model: . Taking into account that 2.5 tons of fish are sold 
per month, that the average weight of each fish is 500 grams, that the price of a square meter of leather 
is R$ 6.00, and that each fish provides approximately 0.023m2 of leather, the students concluded that 
the owner could earn R$ 8,280 per year from the tilapia leather. 

The configuration of this activity indicates that the aims of the teacher and those of the students can 
be different and complementary when modelling activities are carried out. 

Configuration D (Applied modelling and Contextual modelling) 

Teacher’s configuration: Formulate a real problem of your choice, connected to the real world and life, and use 
mathematical modelling to solve it. 

Students’ configuration: What is the potential profit that the use of tilapia leather could provide to the owner of 
the pond where I often go fishing? 

The teacher is interested in giving students the opportunity to engage in an investigative activity and 
encourages their autonomy in finding authentic situations where mathematics could be useful and 
valuable. As such, the students formulated a problem stemming from their interest and curiosity, 
looked for the available mathematics to model the situation, and found a solution, which is in line 
with the “applied/realistic perspective”. One important aim for the teacher is the students’ learning 
and experience of the mathematical modelling process; for the students, the aim is formulating a real 
world problem, which they can solve through mathematical modelling. In fact, part of the students’ 
modelling process involved applying relevant models they had available, such as the Heron formula 
and the Allometric model. In this sense, the task also led students to activate and apply their 

dx
dt

dy
dt

1 1dy dxk
y dt x dt

=
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Figure 3: Approximation 
by triangles 
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mathematical and extra-mathematical knowledge to a real situation, and therefore it may be 
considered to be aligned with the “contextual perspective”. 

Concluding remarks 
The discussion on the nature and design of mathematical modelling tasks for diverse educational and 
curriculum contexts is worth continuing. Not because the tasks decide in any absolute way the results 
that will be achieved with the students, but because they constitute a recognized central element of 
the pedagogical practices (Borromeo Ferri, 2018). In particular, the tasks reflect, to a large extent, the 
centrality of the teaching and learning aims. In embracing this idea, we have looked at two very 
distinct types of modelling tasks proposed by the teacher to undergraduate students in a university 
course in mathematical modelling for teaching. In one of them, we explored variations in the outline 
and the target of the task, keeping in the background the same real situation concerning the evolution 
over the years of economic inequality in the world today. We have suggested possibilities to make 
the task coupled with different aims of teaching and learning, which implied, in particular, to 
formulate relevant questions that direct the activity to different targets:  didactic aspects regarding the 
search for suitable models to predict results (e.g., the use of graphic tools and curve fitting to develop 
models); conceptual development (e.g. introducing or developing mathematical concepts); or 
reflexive and critical understanding (e.g., using mathematics to unveil and raise awareness of social 
phenomena). We have also made its connection with different perspectives of modelling, echoing, in 
some way, an idea previously proposed by Kaiser, Sriraman, Blomhøj, and Garcia (2007), about a 
situation concerning the structure of the price of a taxi. This allowed elucidating the degree of 
adaptability of good modelling tasks to various configurations and that means that the configuration 
of modelling activities is part of the teacher’s role that implies her/his positioning in some perspective, 
more or less explicitly. Afterwards, we looked at another modelling task configuration in which the 
teacher proposes the search for a real situation that may be interesting to study from a mathematical 
point of view; thus, the teacher invites the student to investigate the world around and to identify a 
problem that is both relevant and possible to analyse through mathematics; the teacher expects the 
students to formulate problems and to go through the modelling cycle in their modelling process. 
Drawing on the case of a group of students we have shown how the students’ inquiring attitude entails 
other aims that are equally relevant and aligned with a realistic perspective, since the students adopt 
a position similar to the applied mathematician. The diverse aims involved are complementary and 
reveal that some configurations can actually serve different modelling perspectives. 

The examples reveal that the design and choice of tasks are intertwined with different aims and 
perspectives of mathematical modelling for mathematics education. Our reflection reinforces the idea 
of flexibility, emphasized by Borromeo Ferri (2018), but it also highlights the relevance of taking an 
educational standpoint in designing modelling problems. 
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Although discussed frequently, there is still a gap between theory conveyed at university and the 
teachers’ practical work at school after finishing their degree, which can lead to the problem that 
new teachers do not act based on theoretical constructs although they know about them. The paper 
describes an innovative project, which aims at tackling this problem and fostering teachers’ situation-
specific competencies by helping future teachers making their knowledge applicable. Therefore, 
staged video vignettes are created to support future teachers episodical memory through repeated 
practice with videos, which simulate real classroom situations. This theoretically informed paper 
focuses on identifying criteria for staged video vignettes based on the concept of teacher’s expertise 
in mathematical modelling, using those when creating video vignettes and implementing them in an 
innovative learning environment. 

Keywords: Mathematical modelling, teachers’ situation-specific competencies, teachers’ expertise, 
video vignettes, staged videos. 

Introduction 
In the last decade a great number of small-scale as well as a few large-scale studies in the field of 
mathematics education have focused on teachers’ expertise (e.g., large-scale studies: TEDS-M, see 
Blömeke, Kaiser, & Lehmann, 2010; COACTIV, see Kunter, Baumert, & Blum, 2011). These studies 
focus on conceptualizing the teacher’s knowledge and observe their performance in comparison. 
However, there exists a gap between knowledge and performance, which is addressed by Blömeke, 
Gustafsson, and Shavelson (2015) in their PID-model. Their conception of competence as a 
continuum consisting of dispositions (knowledge and an affective-motivational component), 
situation-specific competencies and performance suggest a greater relevance of situation-specific 
skills for the teaching profession. In an innovative project at the University of Hamburg these 
situation-specific skills are enhanced by the intensive use of videos during a master seminar for future 
teachers, which deals with the content of mathematical modelling. This paper will describe the 
development of criteria for staged video vignettes in a theoretically informed approach and the usage 
of the thereby developed video vignettes during a modelling seminar. 

Teachers’ professional competencies 
As mentioned above this project especially pays attention to the situation-specific competencies as a 
mean to bridge the gap between theory and practice. A close connection of theory and practice 
according to the concept of practice transfer is aimed at through the analysis of video vignettes. 
Prenzel (2010) defines transfer (based on studies by Messner, 1978 & Renkl, 1996) as the 
implementation of a solution developed or knowledge acquired in situation A to another situation B. 
Effectively solving the problem in situation B means the transfer was successful. Nölle (2002) 
suggests that professional competence can only be improved through broad knowledge as a basis but 
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also through episodic experiences. Apparently, a categorical system of knowledge combined with 
episodical elements is required for the useful application of knowledge and favours a differentiated 
perception of teaching (Nölle, 2002). 

A model, which covers all aspects of teachers’ expertise, namely knowledge as well as the skills 
needed to transfer knowledge into action (called situation-specific skills 1 ) and the observable 
behaviour, was developed by Blömeke et al. (2015). The so-called PID-model (see Figure 1) 
combines the analytic view on teachers’ competencies, which analyses teachers’ dispositions in all 
its aspects (knowledge and affective-motivational components), with the holistic view, which focuses 
on the teacher’s performance. The situation-specific skills serve as a link between dispositions and 
performance and can be distinguished in the professional perception of a teaching situation, the 
interpretation of the perceived situation and the decisions made, which are based on the interpretation. 
For this project, the PID-model is used as a theoretical basis. 

 

Figure 1: Competence as a continuum (Blömeke, Gustafsson, Shavelson, 2015, p. 7) 

The PID-model describes general teaching competencies but can be applied to specific domains as 
well. However, in every domain certain knowledge and concepts are required. For teaching 
mathematical modelling specifically, there exists little research on what exactly is needed to foster 
students’ modelling competencies.  Mathematical modelling is a complex task for students, because 
it demands a lot of cognitive work. Thus, supporting students during their modelling process is also 
a major challenge (Blum, 2011). 

Borromeo Ferri and Blum (2010) developed a model, in which they divided teacher’s pedagogical 
content knowledge (PCK) regarding modelling in four dimensions: 

(1) a theoretical dimension (incl. modelling cycles or aims and perspectives of modelling as 
background knowledge), (2) a task dimension (incl. multiple solutions or cognitive analyses of 
modelling tasks), (3) an instructional dimension (incl. interventions, support and feedback), and 
(4) a diagnostic dimension (incl. recognising students’ difficulties and mistakes). (Blum, 2015, 
p. 89) 

                                                           
1 The ability to notice and interpret remarkable situations in the classroom is also known as professional vision (cf. among 
others Goodwin (1994) or Seidel and Stürmer (2014)) or as noticing (cf. Van Es & Sherin (2002)). 
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Blum (2015) also highlights that a transfer from knowledge into actions cannot be expected 
automatically. Supporting teachers in applying their knowledge, which is based on Borromeo Ferri 
and Blum’s four dimensions, is therefore an important aim of this project. 

Furthermore, Blum (2015) summarizes ten important characteristics for adequately teaching 
mathematical modelling based on the concepts of quality mathematics teaching. Besides the 
principles named above, he mentions an “effective and learner-oriented classroom management”, 
providing a variety of examples and exercises for different real-world and mathematical contexts, 
encouraging multiple solutions, supporting students’ positive beliefs and attitudes towards modelling 
and using digital tools as an aid. 

Moreover, in a study evaluating the modelling seminar university students mention the importance 
of interventions and the wish to deepen their knowledge and practical skills in this area (Vorhölter, 
2018b). As shown in various studies, a crucial tool in supporting students are strategic interventions, 
which are already mentioned in Borromeo Ferri and Blum’s third dimension as PCK. In his study 
with a focus on the procedural aspect Leiß (2007) points out the importance of strategic interventions 
to support students’ independent modelling process. Stender and Kaiser (2015) discover similar 
findings adding that strategic interventions can only take place if the teacher is trained in this special 
field. This is based on the Zech (2002) taxonomy of assistance, which categorizes interventions from 
minimal help such as motivational interventions to content-related interventions. 

Besides, enhancing students’ metacognitive-strategies is essential as shown by various studies (for an 
overview see Stillman, 2011). Metacognitive strategies are needed to independently overcome 
problems during the modelling process and a lack of these will most probably lead to considerable 
problems (Vorhölter & Kaiser, 2016). Therefore, teachers need to promote cognitive but also 
metacognitive strategies. 

For overcoming the gap between theory and practice, staged videos can be used during teacher 
education. According to Oser, Heinzer and Salzmann (2010) videos are situation-specific, authentic, 
complex and context-bound, which makes them the closest tool to imitate real classroom situations. 
Thus, the substantive aspect of construct validity (Messick, 1995), which is defined as measuring the 
cognitive processes of competence as close as possible to the theoretical construct, is met. In a meta-
analysis of studies regarding the use of videos in teacher education Coles (2014) summarizes that 
positive effects can be found when “engaging in a process that makes evaluative discourse unlikely” 
(Coles, 2014, p. 271). Therefore, it is important to explicitly focus on details and their interpretation 
when watching video clips in contrast to judging the behaviour of students and teachers in the video.  

Concept of the modelling seminar 
The University of Hamburg offers a modelling seminar during the master's program - usually attended 
in the first semester-, which every future mathematics teacher gets the chance to attend. The seminar 
is open for future teachers of primary and secondary school as well as special-needs school and about 
30 students attend it every year. Supervising year 9 students during a two-day modelling project is 
part of the seminar, which aims at enabling future teachers to independently and adequately teach 
modelling at school in their future job.  

The content of the seminar follows the model by Borromeo Ferri and Blum (2010) and can therefore 
be divided into four aspects: 
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1. The theoretic dimension is implemented by reflecting and discussing articles regarding the 
following topics: modelling cycles, goals and perspectives of modelling, students’ modelling 
competencies, beliefs and both heuristic and metacognitive strategies. With different methods 
knowledge about these topics is gained and practiced using worked examples by school students. 

2. To acquire knowledge in the task dimension the university students have to solve complex 
modelling tasks themselves and discuss the appropriateness of different solutions including the 
three tasks they have to supervise during the modelling days. Furthermore, modelling tasks are 
analysed concerning their demands and difficulties. 

3. The instructional dimension is discussed by planning the modelling days, e.g. preparing and 
reflecting the structure, the introductory phase and especially appropriate interventions, which 
support independent student work. 

4. To address the diagnostic dimension, the university students analyse past students’ posters 
presenting their work and identify difficulties and obstacles. 

The seminar concludes with the modelling days at school, where the gained knowledge can be 
implemented and reflected on. Usually the future teachers work in a tandem to discuss each other's 
performance and reflect on the success of their interventions (for a detailed description of the 
modelling days and the role of the university students’ see Stender and Kaiser (2015)). 

Besides providing declarative knowledge, not only relevant for teaching mathematical modelling but 
also for other domains in mathematics education, a major focus is the transfer from theory to practice. 
Due to the university’s structure, the future teachers usually do not have hands-on experience with 
teaching when joining the seminar. Therefore, to support the application of knowledge, videos are 
used as an import tool to simulate real classroom situations, which will be further discussed in the 
next section. For a more detailed description of the modelling seminar, see Vorhölter (2018b). The 
transition between theory and praxis is an ongoing process including knowing theoretical constructs, 
implementing them and reflecting on experience to deepen those theoretical constructs. Group 
discussions during the seminar regarding university students’ video analyses as well as self-
reflections on the modelling days in the context of a final assessment also allow them to refer 
empirical knowledge back to theoretical constructs. 

Developing criteria for staged videos 
A previous evaluation of the modelling seminar shows that the theoretical knowledge was not 
perceived as relevant for the university students when teaching at school and could not be translated 
into practical and usable knowledge in a satisfactory manner (Vorhölter, 2018b). To help them make 
their knowledge applicable videos will be used as stimulation of the reality. As video recordings 
usually contain distracting background noises, show long stretches of irrelevant behaviour and 
sometimes do not catch the students’ material or facial expressions, we aim at creating staged videos 
based on authentic situations found in the original recordings. 

To create videos, which show typical situations during a modelling process relevant for future 
teachers on the one hand, but also limit the amount of irrelevant and time-consuming information on 
the other hand, a cyclic process characterized by various revisions took place. First, recorded lessons 
were used to identify relevant situations. These were developed during the project MEMO (Vorhölter, 
2018a), which includes 2 fully recorded lessons of over 50 small groups of students each time, in 
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which mathematical modelling takes place. Only a few of the original recordings could be used due 
to their length and the great number of distractors.  

Therefore, a script was written based on teachers’ required modelling competencies and students’ 
typical mistakes regarding modelling. These aspects were identified based on the theoretical construct 
of teacher expertise in modelling. The script empathizes relevant aspects in order to make them 
noticeable without being in the context of the lesson in real-time. Important aspects were: 

1. Each video shows a different phase of the modelling cycle, which can be expected to be 
recognized. Different phases generate different problems and are therefore crucial for a diagnosis. 

2. Because modelling is a cognitive demanding task, it can lead to various difficulties and obstacles, 
which can be mathematical, group work related, concerning the modelling process in general and 
so forth. The video vignettes try to address a wide range of these problems. 

3. To tackle these problems, sometimes the teacher has to intervene. Interventions are part of the 
video vignettes as well as the request for the viewer to describe his or her own intervention as if 
he or she were there to support the students during a difficult situation at the end of the video. 

4. To overcome problems during the modelling process students not only use heuristic but also 
metacognitive strategies, which can especially be helpful. Different metacognitive strategies such 
as planning and regulation can be found in the videos. 

5. Modelling problems are usually solved in a group. Therefore, heuristic and metacognitive 
strategies influence the group work process and each member of the group plays a different role 
during the process. 

The script created, which considers these aspects, was revised by an expert group, which has already 
worked with staged videos. Another group of experts in mathematics education afterwards played the 
role of the students following the script, which was videotaped, and improvised in a second take to 
adapt the situation to a more reality-based setting. Changes in language as well as in behaviour 
instructions were made and added to the script. Furthermore, a second revision took place based on 
expert ratings, where the experts were either specialized in the field of mathematical modelling or in 
the creation and use of staged video vignettes. Finally, three short videos were made by filming year 
9 students, who acted according to the script. 

Implementing the developed videos 
As described above the university students lacked the ability to implement their theoretical knowledge 
sufficiently during the modelling days. The project aims at providing an innovative learning 
environment, which offers the opportunity to practice the implementation of knowledge by using 
staged videos as well as five extracts of recorded lessons. 

Important theoretical constructs are conveyed as described above but also exemplified through the 
staged video vignettes: The videos are used to practice noticing relevant aspects based on theoretical 
constructs discussed before in a short time. Furthermore, the following discussion and reflection in 
plenum can lead to a better understanding of the lesson shown and improve the perception and 
interpretation of the next video. Moreover, decision-making is required when evaluating the possible 
interventions at the end of the video. The repeated use of these videos with different content and 
various modelling-specific problems is sought to lead to a better application of knowledge. This will 
become clear during the last part of the course, where the future teachers supervise students at school 
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during a two-day modelling project and can implement their knowledge and skills in their 
performance. 

Looking ahead 
Making knowledge applicable is an important aspect in teacher education. This innovative project, 
which uses videos during the described modelling seminar to foster future teachers’ perception, 
interpretation and decision-making, is embedded in a study evaluating the development of teachers’ 
situation-specific competencies and its underlying dispositions as well as the consequences with a 
mixed methods study design. 

Hence, video vignettes serve a dual purpose: Staged videos as well as recorded video clips are used 
during the modelling seminar to enhance situation-specific competencies. Furthermore, staged videos 
are used in a pre-post-test design to analyse the development of situated competencies. The Pre- and 
Post-test also includes a questionnaire, which assesses through closed and open questions knowledge 
facets based on the model by Borromeo Ferri and Blum (2010). Therefore, the effect of knowledge 
on the situated competencies and the development of both aspects can be examined. During the 
modelling days a few selected university students are filmed while supervising the students. Thus, 
their performance can be observed and all aspects of the PID-model can be analysed and possible 
connections identified. 

In the long term, all three staged videos can sustainably be used in the modelling seminar without 
further effort or may serve as a means for assessment of the university students’ development and 
performance. 
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In this paper we investigate the potential in extending Model Activity Diagrams (MADs) as an 
analytical tool for studying the activities students engage in when working on modelling problems. 
By including a sub-division of the task students work on in the MAD framework, we are able to make 
a more nuanced analysis that in a more explicit way reveals the structure of the students’ modelling 
process. The framework is applied to groups of students engaged in solving a Fermi problem using a 
two-level analysis, and the result is contrasted and discussed by comparing the outcome of the 
analysis with the corresponding analysis made using the modelling cycle. In addition, possible 
applications of the extended MAD framework in research and the training of teachers are discussed. 

Keywords: Mathematical modelling, Fermi problems, modelling activities diagrams.  

Introduction 
In this paper we present a qualitative study focusing on developing a tool to aid researchers in the 
analysis of mathematical modelling processes students engage in. Existing literature features several 
theoretical developments that attempt to describe students’ modelling processes. Most of these 
theoretical perspectives are based on the division of the students’ work into two domains by 
separating the real world from the mathematical realm. It is mostly accepted that students go through 
different stages in a cyclical manner when engaged in modelling as exemplified for example by the 
so-called modelling cycle of Blum and Leiss (2007). Although this cyclic representation of modelling 
provides a useful tool and heuristics for teaching and thinking about modelling, there are some 
concerns and limitations when it comes to its applicability as a research tool. 

Firstly, the modelling routes that students are seen to follow when engaged in modelling are complex 
and typically deviate from the depicted idealized view of the modelling cycle (Borromeo Ferri, 2007). 
Secondly, some studies (e.g., Ärlebäck, 2009; Czocher, 2016; Aymerich & Albarracín, 2016) 
highlight the difficulties in identifying the different stages of the modelling process of students’ work 
in a reliable way. In an attempt to provide a complementary perspective on these issues and to partly 
overcome these difficulties, we propose a construct that extends Modelling Activity Diagrams 
(MADs) to characterize the activities of students engaged in a mathematical modelling process as an 
alternative analytical tool to the modelling cycle. To do this, we sought to extend the information 
provided by the original MAD framework by including a representation of the internal structure of 
the sub-problems the students engaged in when solving a problem and applied this extended MAD 
framework on video-data of students aged 15 to 16 solving a Fermi problem (see Ärlebäck, 2009). 
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Thus, the aim of this paper is to explore the possibilities of Modelling Activity Diagrams, extended 
to also explicitly include and represent the structure of the modelling problem in question as well as 
the complexity of modelling processes. The goal of this paper is to determine whether this extended 
tool actually provides additional information on the structures underlying the activities the students 
engage in compared to analyses based on the modelling cycle or the original MADs. 

Representations of mathematical modelling: The Modelling Cycle and Modelling 
Activity Diagrams 
In the general discussion, mathematical modelling is often considered to be cyclical in nature, 
involving going back and forth between the real world and the world of mathematics. Even though 
there are several ways of conceiving and viewing the structure of a modelling process, it is generally 
understood that it can be divided into different stages and that the students go through these 
sequentially, moving from one stage to the next once they consider the work in the current stage has 
been concluded satisfactorily (Perrenet & Zwaneveld, 2012). The conceptualization of Blum and 
Leiss (2007) has been widely used to describe the modelling process but has shown to be difficult to 
use as a tool for analysis when it comes to describe and explain the students’ work (Borromeo Ferri, 
2007; Ärlebäck, 2009; Czocher, 2016; Aymerich & Albarracín, 2016).  

When faced with the need to describe the modelling processes implemented by students, Borromeo 
Ferri (2007) proposed so-called individual modelling routes with the aim of broadening the modelling 
cycle’s analytical reach. These routes consist of arrow diagrams that show students’ work within the 
theoretical diagram of the modelling cycle, illustrating the non-conformity of students’ work relative 
to the modelling cycle as well as students’ seemingly stochastic modelling behaviour. Acknowledging 
the work by Borromeo Ferri, Ärlebäck (2009) introduced Modelling Activity Diagrams (MADs) as a 
bi-dimensional graph that depicts the types of modelling activities the students engage in when 
solving novel modelling problems. The activities proposed by Ärlebäck (2009) and used to 
characterize the modelling processes in terms of MADs can be found in Table 1. 

R: Reading Reading the statement of the task and understanding it 

M: Modelling  Simplifying and structuring the task mathematically 

E: Estimating  Making quantitative estimates 

C: Calculating Performing mathematical calculations, such as arithmetic calculations, 
working with equations, drawing sketches or diagrams 

V: Validating Interpreting, verifying and validating the results, calculations and the 
model itself related to the real-life context of the problem 

W: Writing Summarizing the findings and results in a report, drafting the solving 
process as well as the solution 

Table 1: Activities that make up MADs 
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Mathematical modelling and Fermi problems 
The use of so-called Fermi problems in our work allows us to propose simple situations that require 
students to engage in mathematical analysis that promotes the construction of models. Following 
Ärlebäck (2009), we consider Fermi problems to be open, non-standard problems that require students 
to make assumptions about the problem situation and estimates of certain quantities before they 
engage in, often, a series of simple calculations. Efthimiou and Llewellyn (2007) characterised Fermi 
problems based on their formulation since these always appear to be open questions offering little or 
no specific information to the solver directing them in the solving process. The key aspect to Fermi 
problems from the perspective of mathematical modelling is the need to conduct a detailed analysis 
of the situation presented in the statement of the problem with the objective of decomposing the 
original problem into simpler and connected problems – addressed as sub-problems in the present 
work – to reach a solution to the original problem by means of reasonable estimates and reasoning.  

Some research studies conducted to date on the use of Fermi problems in the teaching and learning 
of mathematics have been shown to facilitate the introduction of mathematical modelling in primary 
and secondary school classrooms as well as at college level. While engaging in solving Fermi 
problems primary students develop new mathematical knowledge in arriving at their solutions (Peter-
Koop, 2009). Social relations and extra-mathematical knowledge in the problem-solving situation are 
also relevant to the problem-solving process (Ärlebäck, 2009). Czocher (2016), who used Fermi 
problems to analyse university engineering students’ performance in terms of MADs, confirms that 
the MADs reveal the students’ mathematical thinking about variables and constraints related to the 
problem contexts. Czocher adds an interesting dimension to the interpretation of the MAD when she 
writes that when a task has become routine for an individual, the modelling route displayed by that 
individual for solving that particular task resembles the idealized working process of the modelling 
cycle (e.g., Blum & Leiss, 2007). 

Methodology 
The aim of our research presented in this paper is to develop an extension of Modelling Activity 
Diagrams and to investigate the potential and possibilities of this extended framework. For this 
purpose, we explicitly included a representation of the sub-problems elaborated by the students to 
achieve their objective within the activity (e.g., solving a Fermi problem). The data analysed in the 
paper was collected in a secondary school located in the metropolitan area of Barcelona and consists 
of video-recordings of the problem-solving processes of groups consisting of three regular Grade 4 
secondary school students (ages 15 to 16) engaged in solving a Fermi problem. The groups were 
constructed by choosing students that suggested well elaborated and different solution strategies to 
previous Fermi problem. The problem the students worked on deals with the estimation of the number 
of objects needed to fill a large volume presented in a specific context. The problem statement 
provided to the students was the following: 

Water is a scarce resource and it is necessary to be aware of the use we make of it. We have 
organised a debate to address the amount of water used for different purposes, and, in order to 
provide concrete data, we need to answer the following question: How many bathtubs can we fill 
with the water of a public swimming pool? 
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The video-recordings were transcribed in terms of the utterances the students made, with each 
students’ single uninterrupted verbal contribution considered as one utterance. We analysed the data 
in two levels: first both in terms of the modelling cycle and the MAD framework respectively. In the 
second level of analysis we re-analysed the data and additionally identified the sub-problems the 
students engaged in to solve the main problem and incorporated this information graphically in the 
MAD. Notably, the generally most common model used for this type of problem and this particular 
age-group of students is the iteration of a unit (Albarracín & Gorgorió, 2014), in which the students 
determine the volume of a (larger) object and compare it to that of its containing (smaller) base units, 
decomposing the problem into three sub-problems – the calculation of each volume and a final 
comparison – as illustrated in the diagram shown in Figure 1. 

 

 

 

 

 

 

Figure 1: Structure of the Fermi problem used in this study  

With this second level of analysis based on identifying the modelling activities manifested through 
each sub-problem, we intend to describe and investigate the relationship between the MAD and the 
underlying structure of the modelling processes induced by the sub-problems. 

Results 
The students in group A worked on the assumption of a swimming pool being 25 metres in length, 
arriving at an estimated result that 480 bathtubs would fit inside the swimming pool. The participation 
in the discussion was unevenly distributed, and the problem was mainly modelled and discussed by 
Ada and Arnau, while Aina drafted the report and participated in the validation process. The total 
number of utterances for the members of the team were: Ada, 33; Aina, 26; and Arnau, 37. The result 
of the analysis of group A’s performance using the modelling cycle of Blum and Leiss (2007), as was 
also done in Aymerich and Albarracín (2016) and by focusing on identifying the different stages in 
the modelling process the students engaged in, can be seen in Figure 2a. This figure shows a complex 
problem-solving process involving many of the stages in the modelling cycle. One can note however, 
that none of the students’ iterations in terms of modelling routes are closed in the sense of completing 
(the) stages in the modelling cycle in a clockwise manner, and that the students seem to be struggling 
in the initial phase of solving the problem. Using the MAD framework Figure 2b illustrates the 
switching between the different activities the students engaged in, the complexity of how the groups’ 
modelling process unfolded, and hence conveys, analogous to the representation in Figure 2a, a 
picture of a somewhat disorganised process. 

                              
÷ Volume of 

the pool 
Volume of 

bathtub  

Number of bathtubs in the pool 
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Figure 2: a. Analysis of group A’s modelling route in terms of the modelling cycle (left); b. Analysis of 

group A’s modelling route in terms of the MAD framework (right) 

If we turn to the analysis including the division into the sub-problems that the students engaged in 
and how the coded activities are distributed in relation to these, a more nuanced and clear structure is 
revealed. The MADs show the activities the students engaged in along a timeline, and departing from 
this, the extension of the MAD is generated by introducing a graduation of intensity of colour to 
differentiate each of the sub-problems in which the students work. In the lower part of the graph, the 
specific sub-problems are labelled. In this way, the extended MAD provides a representation merging 
both the identified modelling activities and the sub-problems the students addressed. 

 
Figure 3: A MAD with the sub-problems group A engaged in during their problem-solving process 

Figure 3 shows the activities the students engaged in to solve each of the sub-problem they tackled. 
The students started working on deciding the size of their swimming pool of choice and estimating 
its volume (sub-problem one), and then worked on estimating the volume of a bathtub (sub-problem 
two). The third sub-problem consisted of calculating the number of bathtubs that would fit in the 
swimming pool, before finally re-organising the information obtained in order to present a solution 
and write the report. 
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Coming back to the point made by Czocher (2016), that students’ modelling processes of routine 
problems tend to better line up with the stages in the modelling cycle, we conclude that this is by no 
means obvious in terms of students’ modelling routes as depictured in Figure 2.a or the activities in 
the MAD in Figure 2.b. Rather, the impression conveyed by these representations is that the problem 
solving process the students engaged in is ill-structured and complex. However, the resulting diagram 
from the extended MAD analysis (Figure 3) provides a more accurate and nuanced representation of 
the students’ engagement within the problem. The MAD in Figure 3 clearly reveals the structure of 
the activities the student engaged in when solving the problem and shows that the model needed to 
solve the problem was accessible to them and that they controlled all the details needed to reach a 
solution. To contrast this straight forward problem-solving process, we illustrate the activities 
engaged in by a different group of students in solving the same problem. Figure 4 shows that the 
extended MAD for a second group B and reveals some difficulties in their solution process. These 
students also calculated the volume of a bathtub and a pool, but they initially used different units in 
the respective calculations. Hence, which can be seen between 5:39 and 7:41 in Figure 4, they had to 
decide how to go about to combine their calculated values in order to obtain a result. 

 
Figure 4: MAD with separation into sub-problems for group B’s modelling process 

The comparison between the different approaches to analyse the data leads us to conclude that the 
extended MAD do facilitate an analytical narrative that is closer to the actual activities the students 
engage in. It does this in the sense that the extended MAD provides more localised information that 
allows for a clearer and more detailed interpretation of the students’ actions and decisions. 

Discussion and conclusions 
From a methodological point of view, we reaffirm the idea that characterizing the different activities 
students engage in when solving a modelling problem is straighter forward and clearer in terms of 
MAD activities compared to that in terms of stages of the modelling cycle.  However, we must 
emphasize that analysing the tasks carried out by a group is a complex task since we can only rely on 
the observable elements the collected data provide. Sometimes the students in a group split their 
focuses and interests when working towards the solution, resulting in the students not working 
together. Due to their inherent structure, the MAD diagrams make it possible to show this fact 
explicitly by mapping out different bars for the different activities for the time period in question. In 
this way, we consider MAD diagrams to be both a richer and more robust tool from a methodological 
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point of view when it comes to make and visualize the connection between the activities the students 
actually engage in during the problem-solving process and the codes aiming to capture these activities 
explicitly. From the point of view of the development of an analysis tools, Fermi problems appear 
suitable as a type of modelling activity for validating the utility of extended MAD. To investigate 
limitations, the framework needs to be applied to more complex situations where students are engaged 
in other types of activities (statistical data collection, measurement, prototyping, ...) as well as to the 
different parts of larger and more complex modelling problems and projects. 

Another aspect to note is that the results show that even in the case of students engaged in solving a 
Fermi problem that is accessible to them, the modelling process involved in arriving to a solution is 
complex. This complexity is manifested in the large number of the instances that students engage in 
different activities needed to characterize the problem-solving process, but also in the significant 
differences between the problem-solving processes of the different groups. This study allows us to 
affirm that although this complexity exists, the extended MAD framework facilitate us to reveal the 
internal structure of the proposed Fermi problem, and thus more clearly showing the work pattern of 
the students. Group A’s initial MAD (Figure 2.a) shows a complex problem-solving process that is, 
however, clearly possible to divide into the solving of several sub-problems as displayed using the 
extended MAD (Figure 3). For this group the problem given did not pose any great difficulties, neither 
from a decision-making point of view regarding the modelling process, nor in the workings of the 
mathematical tools used. This results in an extended MAD of the students’ problem-solving process 
that in a trustworthy way reflects the activities the students engaged in. In part, the modelling 
behaviour displayed by the students in this group is concurrent with the findings of Czocher (2016), 
that when students experience the modelling problem at hand as routine, the problem-solving process 
is more or less straightforward. 

This latter fact suggests the possibility of using the extended MAD as a way of representing the 
activities students engage in during modelling in teacher training programmes. In this context, the 
extended MAD can be used as the point of departure for discussions on students’ performance in 
different stages of the modelling process and to differentiate between those instances where students 
have difficulties compared to those in which students make progress and are constructing (sub-) 
solutions easily. In this sense, and in line with the benefits reported from the use of modelling cycles 
in teacher preparation courses (Sevinc & Lesh, 2018), we understand that extended MADs can act as 
an access point or as an element to foster other types of discussions, allowing students’ procedures to 
be connected to the content used. An example of this extra explanatory information the extended 
MAD makes it easier to identify, is the activities the students in the second group engage in when 
they detected the inconsistencies in their calculated values due to the units chosen when considering 
the volumes of the pool and bathtub respectively. The lack of specificity in the formulation of the 
given problem is part of the nature of Fermi problems and promotes discussion between students, as 
well as connecting mathematical and extra-mathematical knowledge. The analytical approach 
developed in this study shows that extended MAD diagrams can be a helpful tool to visualize some 
of these hidden elements, and that previously seemingly messy and haphazard problem-solving 
processes can be understood as highly structured. In fact, we are hopeful that extended MAD 
diagrams can be further developed and readily applied to study also mathematical modelling 
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processes beyond mere Fermi problems. Given that the MADs were designed to specifically study 
these types of problems, one of the activities included in the original analysis is estimation, but we 
suggest that this activity is broadened, or complemented with other types of activities, so that 
activities such as making measurement, statistical data collection, experimentation or simulation are 
included in the next version of the extended MAD framework. 
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This paper aims to explore and discuss the use of simulations with physical models and prototype 
construction in a mathematical modelling activity in a context of science, technology, engineering 
and mathematics (STEM). This study aims to understand the role of simulations and prototypes in 
student activity and how the use of prototypes and simulations modifies the mathematical modelling 
cycle. The study is based on a teaching experience in two 9th grade classes. From the analysis we 
can say that the integration of simulations and prototype construction in an educational STEM 
context is an important factor for students in assigning meaning to the various phases of the 
mathematical modelling cycle and in working effectively through those phases. 

Keywords: Mathematical modelling cycle, prototype, simulation, STEM. 

Introduction 
In the last decade, both in conference papers and in articles published in various journals on science 
and mathematics teaching, the emphasis has increased regarding the educational plea for the 
integration and connection between knowledge, methods and concepts of different disciplines in 
school. This movement, in particular, embraces the perspective of an interdisciplinary teaching of 
Science, Technology, Engineering, and Mathematics, known today as STEM Education (acronym 
for Science, Technology, Engineering, and Mathematics). 

The drive towards interdisciplinary teaching has been a constant trend both in reports from the 
PISA studies (OECD, 2016) and in official curricular guidelines from different countries, endorsing 
more relevant, less fragmented, and more stimulating learning opportunities for students (Furner & 
Kumar, 2007). STEM education represents an effort to combine science, technology, engineering 
and mathematics in a single classroom or lab or in more open and interconnected multipurpose 
school facilities, based on the relationships that can be generated between contents and real-life 
problems, in which the four areas of knowledge may be relevant, although they do not have to be 
present at the same time (Moore, 2008; Zawojewski, 2010; Michelsen, 2006). 

Many examples of studies within a STEM perspective involve experimental work using simulations 
and physical materials where the engineering design process is put into practice in the learning 
activities and projects (Stohlmann, Moore, & Roehring, 2012). In some cases, the activities 
combine engineering and mathematics and the mathematical modelling cycle is used as a reference 
for the organization and orientation of the work to be developed with the students (Mousoulides & 
English, 2011; Gallegos, 2018). The aims may include learning and exploring new aspects involved 
in a real system, or designing new products and processes. 

In this article, we consider the combination of engineering, biology, and mathematics, in a 
modelling task where the simulation of the situation and the mathematical modelling of real-world 
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systems are involved. The three research questions underpinning a larger research study, which is 
the basis of this partial report, are the following:  

(1) What is the role of simulation in the students’ mathematical modelling activity when solving
problems taken from a STEM context?

(2) What is the role of a prototype in a mathematical modelling activity within a STEM context?

(3) How does the use of prototypes and simulations impact the mathematical modelling cycle
phases?

Theoretical Framework 
The theoretical underpinnings of the study are here generically presented, under the intention of 
making salient a pedagogical perspective on the use of simulations with physical models, aligned 
with an engineering and mathematical modelling approach for teaching and learning mathematical 
concepts and ideas that are interconnected with other areas of knowledge, like hand biometry, for 
example. 

Engineering Modelling Eliciting Activities (EngMEAs) 

An engineering model eliciting activity (EngMEA) is formulated from a real-world problem, which 
is usually framed as a response to a customer’s request. Its design and implementation is supported 
by the broader framework of the Models and Modelling perspective (M&M) (Lesh & Doerr, 2003; 
Diefes-Dux & Imbrie, 2008). The accomplishment of the task usually requires one or more 
mathematical concepts as well as engineering models and processes, which are not openly specified 
in the problem (Mousoulides & English, 2011). The fact that there is a client to whom a response or 
result should be provided seems to be a relevant element in this type of task, since it contributes to 
make the context of the problem more credible for the student, and the solution to be found is not 
abstractly required, but rather has a presumed recipient (Carreira & Baioa, 2017). 

In this perspective, when solving the task, students should bring about their knowledge to formulate 
a mathematical model that can be used or applied by the client for the solution of a given problem 
or other similar problems (Diefe-Dux & Imbrie, 2008). An EngMEA type of task may, under 
adequate settings, promote the ability to develop conceptual tools and to construct, describe and 
explain complex systems; it also brings forth communication and collaborative work. An EngMEA 
should be elaborated according to the six principles stated below (Table 1). 

Principle Description 

Construction of the 
model  

Requires the construction of an explanation, description or procedure leading 
to a meaningful mathematical model development according the user’s needs. 

Generalization The model must be useful to the user, sharable, re-usable and modifiable. 

Documentation of the 
model  

Students should document their activity and their thinking explicitly in the 
form of a report in some communicational setup. 

Reality The context and form of the task must be credible in order to promote a 
meaningful interpretation by the students, according to their levels of 
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Table 1: Principles for the development of an engineering model-eliciting activity (adapted from 
Diefes-Dux & Imbrie, 2008) 

In the present study, a simulation of the situation, by means of physicals models, is expected to be 
carried out as a support for the production of the effective prototype. 

Relation between simulation and prototype 

Pollak (2003) argues that a major obstacle related to the integration of mathematical modelling in 
the classroom is the need for students to understand how to connect mathematics with the rest of the 
world. One difficulty has to do with the lack of a clear formulation of a conceptual model (which 
implies an understanding of the problem, of the relevant conditions, and forms of mathematization). 
A way to overcome this obstacle is giving students the opportunity to engage in performing real 
simulations, since a simulation is an imitation of the real situation, is closely linked to 
experimenting, predicting, testing, solving problems, imagining alternative solutions, making the 
situation real, visible and tangible through representations conveyed by physical models. 

In production processes, the simulation with physical models allows observing the system, 
predicting, supporting decisions, modelling, verifying product quality and performance prior to 
marketing, and refining production processes (Landriscina, 2013); such physical models offer 
means that produce behaviours, reproduce some aspects of a system, create a variety of reactions 
that depend on actions and assist on testing hypotheses in a research problem. 

One of the fundamental aspects of a simulation lies on its close relationship with a model, in the 
sense that it establishes a representation of the real world, whether the model is an image or scheme, 
an object built to scale, a formula that can be used during a simulation, or even the product of the 
simulation (Gilbert & Boulter, 2000). The use of a physical model supports the exploration and 
manipulation of the situation until the creation of a final model (physical or conceptual) that can be 
called a prototype. The concept of prototype is the basis of the engineering design process where 
simulations and mathematical modelling are abundantly present, being the prototype a solution to 
the original problem. 

Mathematical modelling and engineering design process 

According to Birta and Arbez (2007), the modelling and simulation process in an engineering 
context, where the objective is the creation of a prototype, consists of six essential steps: (1) The 
description of problem/project; (2) The construction of a conceptual model of the system; (3) The 
simulation with physical models; (4) The creation of a prototype and associated mathematical 
model; (5) The prototype validation in terms of credibility and stability; and (6) Obtaining an end 
product. These steps are repeated until a satisfactory result is obtained. 

mathematical knowledge and general knowledge. 

Self-assessment The task should contain criteria that students can consider for testing and 
reviewing the model found. 

Effective Prototype In addition to the mathematical model, a physical/metaphorical prototype may 
be produced as a real outcome and as a response to a costumer. 
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Something very similar is typically found in the description of the mathematical modelling cycle 
(Blum & Leiß, 2007), where the main steps are described as: (1) Understanding the problem; (2) 
Simplification of the original situation; (3) Mathematizing; (4) Working in the mathematical 
domain; (5) Interpretation of the result obtained; (6) Validation; and (7) Presentation of results. 

The common points between these two forms of conceptualizing the processes that involve reality 
and the search for a solution to a given problem are evident. Thus, it seems reasonable to admit that 
both descriptions can be conformed to the other as suggested in the following sequence (Figure 1): 
(a) Understanding the problem; (b) Identification of the relevant variables in the situation to be
modelled; (c) Development of a conceptual model; (d) Data collection through simulation and
forms of mathematization; (e) Production of a prototype and associated mathematical model; (f)
Validation of model and prototype through stability and credibility; and (g) Presentation of final
product and final mathematical model. This is a cyclical process that can be fully or partially
repeated, depending on the validation of the prototype or the mathematical model.

Figure 1: The mathematical modelling cycle coupled with prototype development 

Methodological approach 
In our study we used physical models in tasks that involved problems driven by the scenario of a 
request from a client. All the tasks involved simulation and practical work. According to studies 
that share similar elements, design-based research has been adopted (Cobb, 2000; Kelly et al., 
2008). Two classes (46 students aged between 13 and 15) participated in this study. Students were 
organized in the class into 4 or 5 groups and received identical sets of physical materials and 
instruments for the development of simulations. The empirical data here addressed were collected 
from the third out of totally five modelling tasks implemented during the school year, through video 
and audio recording of group work, as well as detail photographs. 

Each modelling task was designed according to a structure that involves four parts: 
(1) Introduction of the task (when the situation and the various elements are presented and
clarified); (2) Practical work with physical models, involving data collection; (3) Representation,
analysis of collected data and construction of a prototype; and (4) Preparation of a written report
and sharing and discussion of the products obtained.

The task refers to the creation of a biometric database and to the development of a recognition 
system through biometry/hand geometry. The students had at their disposal a set of paper images of 
their own hands (obtained through photocopies) and the purpose was to create a recognition system 

(a) Understanding the problem

(b) Identification of relevant variables

(c) Constructing a conceptual model

(d) Collecting data and mathematising

(e) Production of prototype and mathematical model

(f) Validating

(g) Presenting 

(a) (b)

(c) 
(d) 

(f) 

(f) 
(g) 

(e)
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that validated the biometric data of the elements of each group and rejected those of a person who 
did not belong. After a prototype of such a recognition system was created by each of the groups, a 
new image of an unidentified hand was given for testing and validation of the respective prototype. 

The categories created for the analysis of the data from the implementation of the biometric 
recognition task refer to the general purpose of perceiving how the simulation and the construction 
of a prototype play a role in the mathematical modelling activity of the students and, in particular, 
how they integrate it in the mathematical modelling cycle. Thus, the categories are defined in terms 
of the phases of this cycle, as described theoretically (Table 2). 

Categories Prototype development Modelling cycle phases 

understanding 

Simulation 
Prototype 
construction 
Prototype testing 

® (a) Understanding the problem and the goal to be achieved

exploration ® (b) Identification of the relevant variables in the situation

representation ® (c) Development of a conceptual model

experimentation ® (d) Collection of data and mathematization of the situation

construction ® (e) Development of a prototype and associated
mathematical model

validation ® (f) Model and prototype validation

communication ® (g) End product and mathematical model

Table 2: Categories of data analysis 

Summary of the results 
The selected data were organized to represent the path of the students’ work during the task and 
according to the categories above (Table 2). This path depicts the main features of the students’ 
ways of thinking throughout the task (Table 3). 

Understanding · Watching a video about security systems that use biometric data to recognize
individuals.

· Reading of the task and clarifying questions.
· Understanding the problem and the goal.

Exploration · Naming the biometric database of the group and
defining a code for each group element.

· Deciding the measures to collect. (Lengths of the
fingers, widths of the phalanges; palm area were
different choices suggested).

Representation 
and 
experimentation 

· Collecting information and data from the image of each hand.
· Establishing the main variables to use in the mathematical model.
· Recording the numerical data in tables.

Construction · Defining a rule for the process of comparing and checking a given hand with the
database elements (conceptual prototype). An example:
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Finger 1 
(Little finger) 

Finger 2 
(Ring finger) 

Finger 3 
(Middle finger) 

Finger 4 
(Index finger) 

Finger 5 
(Thumb) 

width length width length width length width length width length 

𝐶𝐶1𝐷𝐷1������ 𝐴𝐴1𝐵𝐵1������� 𝐶𝐶2𝐷𝐷2������� 𝐴𝐴2𝐵𝐵2������� 𝐶𝐶3𝐷𝐷3������� 𝐴𝐴3𝐵𝐵3������� 𝐶𝐶4𝐷𝐷4������� 𝐴𝐴4𝐵𝐵4������� 𝐶𝐶5𝐷𝐷5������� 𝐴𝐴5𝐵𝐵5������� 

· Assuming an approximate match.
· Establishing an acceptable “margin of error” of 0,2

cm to be taken in the comparison between some
given data and the stored data.

Validation · Delivering one unidentified hand image for each group.
· Obtaining the necessary data from the unidentified hand according to the

biometric variables of the identification model.
· Checking whether the “scanned” or “standardized” hand belonged to the group

or not, according to the recognition model.
· Validating the model and the biometric recognition system developed.

Communication · Preparing and delivering a report describing the steps taken and presenting the
data collected, the mathematical model considered for the recognition, and its
validation.

Table 3: A synthesis of the students’ main processes and actions on the task 

Discussion and conclusions 
Much of the students’ thinking and struggling was around the idea of reliability of the process for 
comparing experimental data with unknown data (of an unidentified hand). The fact that students 
were simulating a process of capturing biometric data, using full size photos of hands, and realizing 
the many details and variations of that part of the human body, led them to reflect at length on how 
to integrate this knowledge in a recognition system performed by a machine, which aims to accept 
or reject biometric data. Many of the students were quite cautious about creating a model that did 
not generate false positives, revealing the understanding that the control to be performed by the 
model would have to be “strict enough” not to allow “a false hand to be accepted”. This resembles 
what in reality the biometric security systems are concerned with. In fact, a general result from the 
activity of the students in creating a biometric recognition conceptual prototype was the strong 
interconnection between ideas and concepts from mathematics, human body biology, and 
engineering. The idea of creating a prototype engages students on a real attempt to find the most 
credible model for a real problem in STEM context. The students’ mathematical model for the 
biometric recognition system was based on the idea of tolerable margin of error. For example, one 
of the groups assumed that acceptance of an individual would be confirmed in the case where the 
deviation found for every variable was less than 0.2 cm. Otherwise the system would reject the 
individual as unrecognized. They therefore based their model on a logical rule of the type if-then-
else. The value of 0.2 cm was chosen through the scaling of the hand. The students decided to 
spread their hands against the table to get an indication of a tolerable dilation of the hand. 
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The work with physical models in a simulation, such as the use of the actual images of the palms of 
the students, was a facilitating element for the need to collect real data and for the development of a 
conceptual model of the situation. The identification of a set of variables to be used was, from the 
beginning of the activity, an important source of exploration of the situation in the various groups. 
Different groups considered different ways of defining the measures they assumed as hand 
identifiers. Thus, the simulation based on physical models has one clear effect over the emergence 
of different conceptualizations and ways of approaching the real problem; the task allowed students 
to create different identification criteria for the biometric database. 

The ideas of variability, and error or deviation were the focal points of the mathematical approach 
to the construction of a recognition prototype. This prototype, in turn, elicited a recognition model, 
which was founded on mathematical ideas and concepts. 

Being in the position of obtaining a prototype, that is, of imagining a data capture system and a 
model aimed to accept or reject new data by comparison, helped students to understand that their 
model would have to be reliable, that is, it would have to be tested with a new simulation. This gave 
added meaning to the process of acquiring new data from an unidentified hand, consistent with the 
system of variables previously defined for data capture. 

The mathematical modelling cycle phases are not modified by using simulation and prototype. The 
students go through all the phases realizing micro modelling cycles. 

In general, we conclude that the use of physical models and simulations in experimental tasks, 
involving the construction of a prototype, promotes the activity of mathematical modelling under 
conditions that reveal an evident parallelism with real settings where solutions for real problems are 
searched. Students are faced with genuine obstacles that do not always arise in other types of 
problems and use their own everyday knowledge and concepts to find ways of establishing the 
relationship between mathematics and reality. Thus, the integration of simulations and prototype 
construction, in a STEM educational context, is an important factor to make sense of and also to 
perform the various steps of the mathematical modelling cycle, so that they become part of a 
coherent entire process and not just conventional steps to accomplish. 
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This article presents a teacher education activity with pre-service Primary school teachers who are 
asked to address modelling problems before describing their activity using new discursive and 
conceptual tools. The terminology of modelling and the questions-answers maps are proposed to 
enrich the logos of teachers’ modelling praxeologies, that is, to provide future teachers with a 
discourse—a logos—to explain and analyse the modelling praxis. 

Keywords: Modelling, teacher education, mathematical discourse, anthropological theory of the 
didactic, praxeologies. 

Introduction: Teacher difficulties with the modelling discourse 
When teaching mathematics is considered as the teaching of already-produced knowledge (concepts, 
procedures, properties, etc.), teachers dispose of discursive resources to talk about the content at 
stake: “Here we can use proportionality”, “Be careful with the distributive law”, “The problem leads 
to a quadratic equation”, etc. All these resources have been elaborated during long processes of 
didactic transposition (Chevallard, 1985) and can be found in textbooks, syllabi, curriculum 
guidelines, etc. They belong to what is called the knowledge to be taught and appear as crucial tools 
for teachers and students to manage learning processes, to talk about what is already done, what is 
still to be done, what mathematical tools can be used, what difficulties might appear, what mistakes 
have been identified, and so on. 

In contrast, in the case of teaching modelling, the content at stake is not only a set of mathematical 
contents that are to be known and used to solve problems. Modelling is also taught as a process to 
follow, where all the steps—and not only the final result—are equally important. In this case, teachers 
and students are not always provided with the appropriate words or discursive elements needed to 
describe the different steps of the process. 

The importance of language in teaching and learning modelling has been pointed out by many 
researchers (Barbosa, 2006; Borromeo Ferri & Blum, 2010; De Oliveira & Barbosa, 2013; Doerr, 
2007). For instance, focusing on the students’ performances, Redmond, Brown and Sheehy (2013) 
propose to use “the principles of collective argumentation to enable students to analyse mathematical 
contexts, to synthesise strategies to mathematize these tasks, and to communicate solutions and 
conclusions to others.” (p. 13). This paper addresses the problem of the teachers’ lack of discursive 
tools to teach modelling processes and how it can be addressed through teacher education processes. 

Research problem: mute modelling praxeologies 
In this section, we analyse the lack of words in teaching modelling using the anthropological theory 
of the didactic (ATD). In spite of a diversity of representations (Perrenet & Zwaneveld, 2012), there 
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is a widespread consensus about the modelling process, and its decomposition in different steps 
synthesised in the diverse versions of modelling cycles, where models are built and used to produce 
knowledge about a given piece of reality considered as a system. As Serrano, Bosch, and Gascón 
(2010, p. 2193) explain: “the productivity of the model, that is, the fact that it produces new 
knowledge about the system, requires a certain ‘fit’ or ‘adaptation’ to the system. This process is 
rarely done once and for all. It requires a forth and back movement between the model and the system, 
in a sort of questions-answers or trial-error dynamics.” 

In the ATD, mathematical activities are described in terms of praxeologies. A praxeology is the 
connection between know-how (praxis), made of types of problems and techniques to solve them, 
and a discourse about the praxis (logos), composed of descriptions, justifications and theoretical 
organisations of the problems and techniques. Any human activity (solving an equation, driving a car, 
combing one’s hair, etc.) can be assigned to a praxeology or a set of praxeologies, with a more or less 
developed praxis and logos. We use praxeologies to describe both the activity of modelling and the 
teaching of modelling. In a teaching situation, the mathematical knowledge at stake is commonly 
revealed through the teacher’s discourse, which updates, describes, explains, justifies, questions and 
validates the knowledge aimed for. Wozniak (2012b, pp. 65–66) considers three kinds of 
mathematical praxeologies in teaching situations: “mute”, “weak” and “strong” praxeologies. A 
“mute” praxeology is one with its praxis component visible only, that is, the types of tasks and 
techniques used to carry them out without any explicit discourse to describe them. In a “weak” 
praxeology, the logos component is visible through the parts of the technique used, but the discourse 
is limited to the description of the technique through an incomplete formulation. Finally, a “strong” 
praxeology links its two components, the praxis and the logos, dialectically. 

In the case of modelling praxeologies, Wozniak (2012a, 2012b) speaks of mute praxeologies when 
the hypotheses about the initial system are not explicitly stated (delimitation of the system), the model 
used is prebuilt and the work within the model gives results that are not validated against the system. 
Weak modelling praxeologies appear when the hypotheses are formulated but their validity domain 
is not clearly discussed. In this case, the model is not necessarily prebuilt but will not be validated. 
To develop them into strong praxeologies, all steps of the modelling process should be 
present throughout a discourse that explains their roles and validates the whole process. Wozniak 
(2012a) uses the three kinds of praxeologies to analyse five primary school teachers working with a 
modelling problem. Students are presented the photograph of the boot of a giant’s sculpture with 
some people around (Figure 1) and are asked to find the approximate giant’s height. The main 
phenomena observed—and which can be found in other investigations about teaching modelling 
activities—can be summarised as follows: 

- The modelling activity is not identified as knowledge at stake and the modelling process is
never questioned or taken as an object of study.

- The delimitation of the system remains implicit and is not discussed; the hypotheses are not
explicitly formulated and only the missing data are identified.

- The discussion focuses on the choice of the values of the system variables to apply a pre-
established model (proportionality).
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- All 5 teachers lead the study towards their own solution, and then reduce the study to the same 
kind of techniques.  

- In all but one case, a single model is used without discussing its legitimacy and validity. 
Teachers do not use the properties of the system (realism) to evaluate the answers obtained 
and even directly propose the model to be used. 

- The fifth teacher includes discussions about the legitimacy of the measures estimated but does 
not talk about the domain of validity of the model used. 

 
Figure 1: Picture of the Giant activity 

Wozniak (2012a) concludes that the modelling praxeologies used in all these classrooms correspond 
to mute or weak praxeologies, which emphasizes the teachers’ need of new knowledge and tools to 
deal with this kind of activities. In the following section, we propose an example of teacher education 
activity that aimed at transforming the mute praxeologies into voiced ones, that is, modelling 
praxeologies with a logos that give them voice to “talk about” the modelling praxis. 

How to turn mute praxeologies into voiced ones: the cake box 
The teacher education activity was designed and implemented by this paper’s first author. It took 
place during eight 2-hour sessions with a group of 40 pre-service teachers in their 3rd year of a double 
university degree in preschool and primary school education. Although this activity has been tested 
since the academic year 2012-2013, we here focus on its last implementation in 2017-2018. Its design 
follows the first three modules of the proposal of study and research paths for teacher education 
(SRP-TE) (Barquero, Bosch, & Romo, 2018, pp. 3–4).  

In the first module, pre-service teachers were proposed a general teaching question: “How can 
modelling be introduced in Primary school education? Through what kind of modelling activities? 
With what kind of shared discourse about modelling?” In this particular implementation, we used the 
giant height activity as an introduction, to make the students familiar with a modelling activity. The 
activity was also used to establish some common terms to refer to modelling: system, model, 
hypotheses, variables of the system, mathematical results, interpretation, model validation, etc. Some 
of the main results described in Wozniak (2012a) were also explained to the students. Then, in the 
second module, we started with the implementation of another modelling activity: the cake box (an 
adaptation of the activity described in Chappaz and Michon (2003)). The following three sessions 
were devoted to implement the cake box activity with the pre-service teachers assuming the role of 
students. The main goal was to make teachers carry out an unfamiliar mathematical activity that 
could, to a certain extent, exist in an ordinary classroom. The third module covered three sessions, in 
which students were asked to analyse the modelling process as it was experienced. 
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The cake box and the different modelling phases 

The modelling activity starts by presenting the case of a baker who needs help for packing her cakes 
in boxes. She wants to use the same type of boxes she has been using (Figure 2). The following 
question opens the activity: “How can we build boxes to help the baker packing the variety of cakes 
she offers? Which relation does exist between the sizes of the initial material (paper or cardboard) 
and the dimensions of the resulting box?” From this initial question, the activity is structured in three 
phases depending on what is given as known (the sizes of the paper, box or cake) and what remains 
unknown. 

Figure 2: Instructions to build the box and examples of the resulting boxes 

First phase: We considered that the paper sizes (width and length) are given and focused on question 
Q1: Which are the dimensions of a box resulting from a paper whose sizes are fixed? Students started 
by considering some particular cases, such as: 

Q1.1: What dimensions of the box resulting from an A4 paper? Is there only one possible result? 
Q1.2: If we take an A5 (half A4), do we obtain a box measuring half of the previous one? 
Q1.3: Which box sizes do we get from a squared sheet? Do we get a squared-based box? 

At this phase, all the students worked using manipulative and measuring techniques, by concretely 
building the box and measuring the sizes of the box using different instruments (paper grid, ruler, 
etc.). This experimental work facilitates to delimitate a rich system, which had many possibilities to 
be extended by considering other paper dimensions and raising new questions about the sizes of the 
resulting boxes. Students also agreed on which variables had to be considered, for the paper (width 
and length) and for the box (width, length and height), and how to agree on a common notation. Some 
of the more advanced questions came from the arithmetical comparison of the papers and resulting 
boxes’ sizes: students started formulating the first hypotheses about the likely relationships between 
the different variables. Most of them referred to relationships of proportionality between the sizes of 
the paper and the box. Although, in most of the occasions, none of the groups working with these 
initial arithmetic-geometric models could validate their first hypotheses, the possibility to 
experimentally build new boxes helped them to refuse or refine the hypotheses, but not to validate 
them. 

At the end of this first phase, some of the questions students raised were about a possible relationship 
of proportionality between the paper and the box sizes, and about how to get a particular sized box. 
When these types of questions appeared, the modelling activity moved to a second phase. 

Second phase: It was assumed the baker gave the box sizes she needed and the question Q2 was 
stated: Which are the initial paper sizes needed to build a box with some specific dimensions? 
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Students propose to consider new auxiliary questions with particular sizes of boxes, special forms 
(squared-based boxes) and possible changes in specific dimensions of the box: 

Q2.1: What initial paper sizes do we need to get a box with base of 6cm x 13cm? 
Q2.2: How to get a box with a base of 8cm x 10cm and 3cm high?  
Q2.3: How to get boxes with a square base (such as: 5cm x 5cm, 8cm x 8cm, etc.)? 
Q2.4:  How to modify the sheet of paper to get a box with the same base and different height?  

Students started trying to use the same manipulative-measuring techniques developed in the first 
phase, by selecting box sizes close to the ones they looked for. Most of them proposed to apply models 
of proportionality to deduce the sizes of the paper, in many occasions expressed by a rule of three 
(Figure 3, left-hand side). When they estimated the sizes of the paper, they built the box to check if 
their deductions were true. When students checked that the “rule of three” did not work (as not all 
variables have relationships of proportionality), they looked for new models. The most common 
models that appeared were pre-algebraic ones obtained by opening the box, analysing the 2-
dimensional geometrical pattern and describing the relationships (Figure 3, right-hand side). Some 
other groups proposed algebraic models, by assigning algebraic values to the different dimensions of 
the paper-box and looking for the algebraic equations synthesizing these relationships. 

 

 

 

 

 

Figure 3: Models of proportionality (left-hand), pre-algebraic-geometric models (right-hand) 

Concerning the modelling process, two traits may be stressed. First, the modelling work developed 
in Phase 1 constitutes a productive system from which Phase 2 starts. That is, thanks to the 
experimental work developed, students have many paper-box sizes collected, which constitutes a rich 
experimental milieu from where some first hypotheses about the relationships were explicitly 
formulated and against which students could evaluate their answers. Second, in this phase, more 
advanced models were built by students given the failure of the proportionality model. Several 
questions about how to reformulate the hypotheses (Do any of the box or paper variables maintain a 
relationship of proportionality?), about the comparison of models (Are the pre-algebraic and 
algebraic models expressing the same?) and about the scope and limitations of the models (Can we 
follow working with the pre-algebraic models for all the box cases?) could be explicitly stated. 

This second phase finished when students were able to predict the sizes of the paper/box, without 
manipulating the paper/box. The following questions were posed by the teacher: 

Qfinal.1: How can we predict the size(s) of the box (without building it) from the dimensions of the 
initial paper? Qfinal.2: How to predict the size of an initial paper sheet given the dimensions of the 
box (without building it)? 
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Third phase: The aim of this phase was to prepare a letter-report as an answer to the baker’s demand. 
A list of the cakes the baker wanted to pack, and their sizes, was provided. Students were asked to 
prepare the final report for the baker by letting her know about the paper sizes she had to order to 
pack all her cakes. Moreover, students were asked to add a tray for each box, following the same 
pattern of construction. At this stage, students had no necessity to build new models, but the main 
issue was to agree about the way to build the tray (How many cm do we have to leave between the 
box and the tray (margins)? Where to add these differences?). At this stage, they could better 
formulate the paper-box relationships, and took advantage of using the model (see Figure 4). 
Furthermore, some time could be devoted to work on how to report the results, given the extent of 
numerical work and results, with many variables, they had to communicate and organize. 

Figure 4: Pre-algebraic-geometric models for the box and the tray 

A progressive construction of the modelling discourse  

When experiencing the cake box activity, participants managed to assume the role of students and 
carried out the proposed modelling activity although, as they stated, they were not used to this kind 
of long and open activities. After each session, the working teams (3-4 persons) had to deliver a 
written report about the modelling activity developed. Participating in the classroom debate and 
writing the reports was not an easy task for them, as they were conscious they needed new terms to 
describe the process. At this stage, the previous work with the giant activity was very helpful, since 
modelling terminology was then introduced. Still, students had many difficulties with, for instance, 
formulating questions, describing and categorising the kind of models they were suggesting, 
accepting different possibilities of models and answers, reformulating hypotheses and models, etc. 

The instructor decided to follow three main strategies during Module 2. First, she fixed the structure 
of the reports in terms of: questions studied, data and variables selected, mathematical models 
considered, answers obtained, new questions opened. This helped participants explicitly describe all 
these elements. Second, during the debates, she asked participants to explain their proposals and to 
create names to designate the models they were using (arithmetic, geometric, pre-algebraic, algebraic, 
etc.). This illustrated that there was not only one-way to work on this activity and that several valid 
models could cohabit. Third, in the debates and reports, the instructor payed special attention to the 
questions the working teams were posing to help them in their formulations and in relating them to 
each other. 

Translation of the students’ proposal: 

BOX 2:  
Base of the box: 17 cm x 17 cm 
Size of the paper: 51 cm x 34 cm 

TRAY: 
§ To build the tray, we add 0.5cm to

each side of the box base to guarantee
that it fits correctly.
§ The tray base will be 17,5 cm x 17,5

cm
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In Module 3, students were asked to provide an analysis of the modelling work previously carried 
out, using the session reports and class debates. The instructor proposed to do this work using 
questions-answers maps (Barquero et al., 2018). She proposed an initial map with the first questions 
and answers (Q-A) that appeared in the classroom and asked the students to complete it with the 
description of their own work. This way of describing the modelling process not only provided 
students with new terminology. It also appeared as an alternative way to talk about doing 
mathematics, breaking with the usual and “static” way of describing school activities, more focused 
on concepts, notions and techniques to the detriment of questions, models and provisional answers. 
Students could also use the Q-A maps to distinguish between their own modelling trajectories—the 
path followed—and the more complete one they could describe after the work done in class (see 
Figure 5), thus evidencing the possibility of finding several possible solutions to the same problem. 

 
Figure 5: Example of questions-answer map used to analyse a modelling trajectory of a group 

Conclusion 
We have seen how Wozniak (2012b) describes the problem of the teachers’ lack of discursive tools 
to talk about modelling processes in terms of mute praxeologies, that is, praxeologies where the logos 
component remains implicit. This logos is part of the mathematical praxeologies to be taught related 
to modelling activities. However, it also seems to be a crucial didactic tool to teach modelling—
therefore, part of the teacher’s didactic praxeology. It is difficult for teachers to highlight some 
important modelling procedures when they are not familiar with any specific mathematical 
terminology to talk about models, systems to be modelled, possible fits (and misfits) between models 
and systems, etc. To start addressing this problem, we propose to use study and research paths for 
teacher education to elaborate new epistemological tools, such as the questions-answers maps, with 
the teachers as part of the modelling praxeologies to later on develop them as didactic tools to better 
describe and analyse the modelling activities carried out in classrooms. This strategy needs to be 
developed, but at the present, it seems helpful to fill in the gap between the traditional way of 
describing—and conceiving—school mathematics and the new epistemological and didactic 
necessities raised by the teaching of modelling processes. 
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Introduction 
Even if the focus on mathematical modelling in education has increased the last decades, the presence 
of modelling activities in day-to-day teaching is still limited (Frejd, 2012). This study concern 
classroom practices comprising mathematical modelling. It is a part of a project, which involves more 
studies of classroom modelling activities. In this study, we analyze modelling tasks in Norwegian 
mathematics textbooks evaluating their potential to develop students modelling competency. The 
tasks are analyzed using the modelling cycle from Blum and Leiβ (2007). 

Theory 
Modelling competency is defined as “being able to autonomously and insightfully carry through all 
aspects of a mathematical modelling process” (Blomhøj & Højgaard Jensen, 2003, p. 126). In line 
with other definitions of modelling competency, the process is essential. The modelling process is 
often visualized by a cycle. The cycle by Blum and Leiβ (2007) sees modelling from a cognitive 
perspective. This is relevant for this study, which focuses on students’ possibility to evolve modelling 
competency by solving textbook tasks. The seven steps in the modelling process described in this 
modelling cycle is 1) Construct, 2) Simplify, 3) Mathematise, 4) Working mathematically, 5) 
Interpret, 6) Validate and 7) Expose. The steps are operationalized as shown in Figure 1. The study 
is guided by the research question: Which steps of the modeling cycle are requested for solving 
textbook modelling tasks? 

Method 
Because of the link between the modelling competency and the modelling cycle, it is relevant to make 
each of the steps a category for the analysis. To identify the categories, identifying questions were 
made to each modelling step. An example is given, and the identifying questions are presented in 
Figure 1. The questions are answered in the analysis of the task in Figure 1. This shows that this task 
only requires step 4, 5 and 6 to be solved. 

 
Figure 1: A typical textbook modelling task, and questions to identify the seven steps 
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Most of the textbook tasks have several sub-questions, as the task in Figure 1. For more open tasks 
‘validate’ was operationalized by the identifying question “Does the task have a given correct 
answer?” If a correct answer is given, there is no need for validation. The textbooks are from the 
subject Mathematics 2P (practical mathematics) in second year of upper secondary school (age 17-
18). The curriculum recognizes modelling providing an overarching perspective to mathematics, and 
modelling is one of four main subject areas. The analyzed sample consists of all tasks in the modelling 
chapters, a total of 514 tasks from the three most used textbooks in this subject. 

Results 

Table 1: Results 

The result shows that step 1, 2 and 3 are only requested in 3 of the 514 tasks. If the textbook authors 
have already constructed and simplified the problem, there are no need for the student to expose the 
answer by explaining which simplifications are done. The first two and the last step are connected. 

Discussion and concluding remarks 
The results show that the understanding of mathematical modelling within the textbook tasks are 
different from the theory used in this analysis. The tasks are from the chapters of the books named 
modelling. Even if the curriculum states that the starting point in a modelling process is something 
that actually exists, only 17 of the 514 tasks request mathematizing. Even if 292 of the tasks are 
formulated in a context, most of them are already mathematized. The tasks are formulated using 
mathematical language, and numbers are given, as in the task in Figure 1. More studies are needed to 
say if this understanding of mathematical modelling also is current in the classrooms. 

Even if mathematical modelling is one of the four main subject areas in the subject Mathematics 2P, 
this study shows that working with the textbook tasks of the subject do not provide modelling 
competency. The starting point for the tasks is often step 4) working mathematically, and not 1) 
construct the problem from “something that actually exists”, as formulated in the curriculum. 
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The question of how mathematical modelling competencies can be assessed has been well 
investigated and discussed in the last decades within the modelling research field. The test 
instrument, originally from Haines and Crouch, was adapted for learners in secondary and high-
school and as well for teachers in many empirical studies. The results of these investigations also 
helped to conceptualize the term of modelling competencies. Far more at the beginning of research 
efforts is the question of how teaching competencies for mathematical modelling, based on the 
model of Borromeo Ferri, can be assessed. The complexity of the four dimensions is challenging in 
order to develop a test instrument with the goal to see an increase of teaching competencies after a 
course on ‘learning and teaching of mathematical modelling’. The paper describes recently 
developed test items used in an intervention study with prospective teachers, and presents first 
results of this pilot study. 

Keywords: Mathematical modelling, teaching competencies, assessment. 

Teaching competencies for mathematical modelling 
Since the beginning of research in the field of mathematical modelling education it is of great 
interest to get insight into how teachers in school, but also lecturers at university, should teach 
mathematical modelling to their learners in the best way. Many best-practice university courses or 
seminars can be found in the literature concerning this aspect (e.g., Lesh & Doerr, 2003; Schwarz & 
Kaiser, 2004; Borromeo Ferri & Blum, 2010; Maaß & Gurlitt, 2011; Burkhardt, 2018; Vorhölter, 
2018). The cited authors describe in their courses or training workshops for mathematical modelling 
in teacher education several activities and thus competencies, which teachers should learn for 
teaching modelling successfully. The variety of didactical approaches, contents and aims in these 
course descriptions are very broad. Thus the conceptualization and operationalization of teaching 
competencies in mathematical modelling was necessary from the author’s perspective in order to 
get also a theoretical framework. 

Based on a Designed-Based Research (DBL) approach, Borromeo Ferri (2018b) developed, within 
the last 10 years, a module for a modelling course for university and also for teacher training, which 
led to a model for competencies needed in teaching mathematical modelling (Borromeo Ferri 2014, 
2018, Borromeo Ferri & Blum 2010). The goal is that the lecturer of a university seminar for 
prospective math teachers or a teacher trainer covers all competencies of the model in a balanced 
way and sometimes with different emphasis due to the timeline of the course or the workshop. This 
works very well, because I practiced and investigated these courses since a long time. Figure 1 
shows the model with its 4 dimensions and sub-competencies: 
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Figure 1: Model for competencies needed in teaching mathematical modelling (Borromeo Ferri, 2018) 

The structure of my modelling courses is based on this model, which means going through each 
dimension starting with the theory and ending with discussing about assessment in modelling. Step 
after step the participants gain more competencies and understand how everything is linked 
together. Due to the aspect that participants should develop a modelling problem, teach it at school 
and finally reflect on it, a Theory-Practice Balance is given. This greatly helps to understand what 
modelling means in the school context and in particular that teaching modelling is possible. For 
more details concerning the full module, the used of modelling problems, materials or teaching 
methods, see Borromeo Ferri (2018a). The continuous modification of the modelling course is one 
aspect, a further aspect is of course to measure systematically how teaching competencies of the 
participants increase during and after the modelling course, which means at the end of a semester or 
after a teacher training of two full days. Based on the observations and evaluation sheets of the 
university students and teachers, I can definitely argue that an increase of teaching competencies 
takes place after these courses, but the goal is to assess this from a scientific and empiric point of 
view. This is a challenge when recognizing the complexity of the model. Klock et al. (in press) and 
Klock et al. (2018) also developed a test instrument for facets of a modified version of the model of 
Borromeo Ferri. This test instrument is piloted and used already in intervention studies. 

However, I developed items for the four dimensions of mathematical modelling teaching 
competencies based on my model in order to get a test instrument. These items were recently 
applied and piloted with a pre- and post-test design for a university modelling course for 
prospective secondary teachers, in order to get knowledge on how their teaching competencies 
increase. In the following, the item development is briefly described, which shall show the 
difficulties of building scales, but also some examples of final items are presented. Furthermore first 
results of the pilot study are shown and discussed. 
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Development of test items for the teaching competencies 

When looking at the model for teaching competencies it becomes clear that items are needed, which 
should test both declarative and conceptual knowledge. The four dimensions build on each other 
and are connected. The diagnosis of mistakes in students’ modelling process for example is much 
easier, if the teachers have knowledge about the modelling phases and about modelling tasks. 
Learning to diagnose does not only mean to give a definition of several types of diagnosis (product 
oriented/process oriented), but also to practice it with school students and also with concrete 
examples presented in video clips. The same applies for the topic teacher interventions while 
modelling. Although this is a strong part within the modelling course, it is not easy to test these 
competencies. 

Within the first approach of test development and evaluation, most of the items were open. This test 
version was used for 24 prospective secondary and high-school teachers in their fourth semester at 
university. A prominent open question for the theoretical dimension is: “What is mathematical 
modelling?”, because on the one hand one would expect some kind of definition and on the other 
hand it is interesting to see what prospective teachers really have understood, when they describe it 
before and at the end of the course. According to this, very broad answers were given at the end of 
the course. Often, modelling was described as a process referring to the modelling cycle, for 
example: “Mathematical modelling means to follow the steps of a modelling cycle.” This is not 
wrong, but also not completely right, because the nature of mathematical modelling is not 
emphasized. In a further open item the students should draw a modelling cycle, write down and 
describe the several steps. This is a nice activity, but difficult for coding the results at the end. How 
to code only partly answers or not precise descriptions? In sum, this kind of test items by using 
open questions for the teaching dimensions offered a lot of insight of university students’ increase 
of their teacher competencies only on the basis of their elaborate answers and statements from the 
pre-test to the post-test, but not in the sense of a classical test. Furthermore, the test time was about 
45 to 60 minutes, because answers needed intensive writing and the test construction with its 
complex items does not allow to cover all sub-competencies within the dimensions. Thus the 
decision for a multiple choice format with closed items was made for assessing declarative and 
conceptual knowledge in a balanced and economic way for all teaching dimensions. 

Like for the previous version, the construction of new test items was based on the content of the 
modelling course. All items of the new test instrument were developed in such a way that one has to 
choose a correct answer according to a statement or after the analysis of a written dialogue from 
learners while modelling. Options between two or five possibilities, depending on the item, are 
given to pick out the right answer or one has to write down the correct term for which is asked. 
Thus, this answering format offers the possibility for dichotomous coding. The table gives an 
overview about the number of items per scale (teaching dimension): 

 Theoretical D. Task D. Instruction D.  Diagnostic D. 

Number of items 26 11 14 14 

Table 1: Number of items per scales (4 teaching dimensions) 
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Within the theoretical dimensions the testing of declarative knowledge with 26 items was in the 
foreground. In the following three examples items are shown. 

   Here, your theoretical knowledge is asked. Choose, if the statement is right (yes) or wrong (no): 

yes no 

The basis of mathematical modelling are problems from real life 

The “Complexity” describes one criterion of a modelling problem 

Figure 2: Example items of the scale “Theoretical dimension” 

For the scale “Task dimension” 11 items were developed, which tested declarative and conceptual 
knowledge. In order to assess the conceptual knowledge, a modelling problem was given with 
corresponding solutions of learners. It was asked to choose the right phase of the modelling process, 
where the solution belongs to. Because of the fact that only one answer from five options is right, 
one has to analyze the solution more in detail. Not only the knowledge about the terms and the 
phases is of importance, but to apply it based on own experiences during the course while solving 
and reflecting modelling problems. The “Instruction dimension” is, compared to the other 
dimensions, quite hard to assess. First of all it is not possible to test if an individual is really able to 
teach modelling in the class, nor if the lesson is good or bad. However items were developed, which 
asked for basics of quality teaching concerning modelling and furthermore about the aspects of 
teacher interventions as well. Hence 14 items are in the scale “Instruction dimension”, which cover 
declarative and conceptual knowledge. Two items of this scale are shown in Figure 3. 
Here, your knowledge about teaching modelling is asked. Choose, if the statement is right (yes) or wrong (no): 

yes  no 

The introduction of modelling activities works with over-determined problems 

Responsive interventions lead back to the teacher 

Figure 3: Example items of the scale “Instruction dimension” 

In particular the teacher interventions were tested along different short written conversations of 
learners while working on a modelling problem in the classroom. The levels or activators of the 
interventions, for example, had to be determined correctly. 

The last dimension and scale is the “Diagnostic dimension” with 14 developed items. Like in the 
task and instruction dimension, both declarative and conceptual knowledge was tested with several 
items. To diagnose in which modelling phase learners worked and also problems, mistakes and 
misconceptions were in the focus for the item development. Again, items were used, which showed 
a conversation of learners working on a modelling problem. Then one right answer has to be 
chosen. 
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Diagnose the modelling phase, in which the learners work primarily. Choose one option! 

understanding the problem  

simplifying/using extra-mathematical knowledge  

mathematizing  

working mathematically  

interpreting  

validating  

Figure 4: Example item of the scale “Diagnose dimension” 

A crucial part of the modelling course is the development of students’ own modelling problems, 
which are finally taught in school. This includes besides planning, executing and reflecting on the 
lesson also to diagnose learners while they work on the problem. This kind of real life observation 
is connected with the usage of video-clips of learners while modelling within the course. Thus the 
diagnostic dimension is stressed as very important in the course, because it gives a résumé and the 
possibility to apply all the competencies learned within the previous dimensions. 

What you test is what you get! – First Results of the Pilot Study 
The test instrument was piloted in September 2018 in a modelling seminar with 17 prospecting 
secondary teachers at university in their third semester. This course was a blocked seminar with 
four sessions each three hours. Between the third and fourth session, the students taught their 
developed modelling lesson in school and observed learners during modelling activities. The pre-
test was done at the beginning of the first session and the post-test at the end of the fourth and last 
day of the course. In contrary to the first test version with open items, the new test time was now 25 
minutes. All participants already had basic knowledge about mathematical modelling from one 
lecture in the first semester within the lecture-series with the topic “Introduction in Mathematics 
Education”. In this lecture the university students learn about the modelling cycle and they also 
solve a modelling problem. However, only basics about modelling are stressed in this lecture and of 
course one goal of introducing modelling in this lecture-series is that the prospective teachers are 
interested to choose a modelling course in the upcoming semesters. 

Due to the fact that n=17 is a very small sample in the current pilot study, however, the very first 
results are promising concerning the quality of the items and α-values. Thus for the upcoming 
testing in the winter term with a larger population, the test instrument will be checked and if 
needed, modified again. In the following descriptive analysis the results of the pre- and post-tests 
are presented. The results are based on a dichotomy coding procedure, showing the means of the 
dimensions before and after the treatment. Because of the fact that n is smaller than 21, a test of 
Gaussian distribution was necessary. Not all scales had Gaussian distribution and in order to test the 
level of significance, the Wilcoxon-Rank test (Bortz et al., 2010) was necessary. In Figure 5 the 
significance values become evident: 
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Figure 5: Results of pre- and post-test 

The results show statistical significant differences after the treatment for three of the dimensions. 
Although no significance value could be stated for the instruction dimension, an increase of 
teaching competencies becomes evident like for the rest of the dimensions as well. The modelling 
course as the dependent variable can be seen as an effective predictor, so that teaching 
competencies for mathematical modelling increase. The mean of several items also makes clear that 
the treatment and thus the structure and content of the modelling course focuses on the central 
aspects of teaching and learning mathematical modelling. The last item within the Theoretical 
Dimension for example shows two tasks and one has to decide, which of them is a modelling 
problem. This item could also be put in the Task Dimension, but in this case, this item focuses more 
on the question of what mathematical modelling means and what characterizes it. In the pre-test the 
mean was 0.65 and in the post-test 1.00. Although students had basic pre-knowledge about 
modelling, it was not a trivial question at the beginning. During the modelling course, the university 
students again recognized several criteria of (good) modelling problems and that a real context leads 
not automatically to the conclusion that one can speak of a modelling task. 

The Diagnostic Dimension contains many items for testing the declarative knowledge. As described 
in the previous section, items were developed, which show a short conversation of learners working 
on a modelling problem. One right answer had to be chosen according to the modelling phase the 
learners in the presented scene worked primarily. An increase of the means becomes visible from 
pre to the post-test from 0.65 to 0.88 for such a diagnostic item or from 0.41 to 0.71 for a similar 
item. Beneath this testing, the university students also evaluated the course separately, which is a 
normal procedure in my seminars. The aspect of the Theory-Practice-Balance is always strongly 
emphasized from the prospective teachers (see Borromeo Ferri, 2018). In particular the 
development of an own modelling problem and teaching this at school is for most of the students 
crucial for understanding the nature of mathematical modelling. 
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Summary, Discussion and Outlook 

The model of teaching competencies for mathematical modelling is based on a long-termed Design-
based research approach. Until now a test instrument for the four teaching dimensions did not exist 
in order to assess the increase of these competencies in a modelling course by using a pre- and post-
test design. In fact it became evident that a test instrument with open items offered a great insight 
into prospective math teachers thinking concerning their knowledge about mathematical modelling, 
but it was difficult to evaluate and the test time was too long. The goal was to develop items and 
scales in order to grasp each of the teaching dimension by reducing the test time.  

The presented results are only based on a pilot-study with a small population of students and thus 
no generalization is possible at this time. However the results allowed an insight into the quality of 
the items on the one hand and on the other hand statistically significant differences can be stated for 
three of the four dimension concerning an increase of the teaching competencies on a descriptive 
level. The pilot study focuses on the test instrument and also on the course as a dependent variable 
with the hypothesis that prospective teachers, who participate in this seminar, get an increase of 
their teaching competencies. Hence, a control group is needed. These university students could 
attend for example a seminar on mathematical problem solving. Then both groups can be compared 
and a further hypothesis is that mathematical modelling needs more specific teaching competencies 
than mathematical problem solving, although both topics are very close. Definitely it is clear that 
the sample size must be enlarged anyway, in order to guarantee the reliability of the test instrument. 

Normally the goal of a developed test instrument is that it is universally applicable. The test of 
modelling competency from Haines and Crouch is such an example. The idea of developing tasks 
for the sub-competencies of the modelling cycle was great and in the last decades, several 
researchers adapted these tasks for learners in secondary or high-school. That requires that learners 
at school or university students were taught in modelling in order to assess them. The same idea is 
behind the test instrument for the four dimensions of teaching competencies. You can only get what 
you test, when the contents of the modelling course are in line with the test items, if you want to 
measure for example an increase of these competencies. This means that the test instrument can, in 
principle, be used worldwide, but it will certainly work best if the contents of the modelling courses 
are very close to the one presented here. This is also a big limitation for this test instrument at this 
stage, but the goal is to use this test instrument together with colleagues from Germany and further 
countries in order to see if a transfer is possible. 
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Motivation 
The term mathematical modeling as we have observed in 25 years of modeling projects (Bock & 
Bracke, 2015), bears for many students and teachers the notion of something visible and touchable. 
In our opinion mathematical modeling can and has to be considered in a broader fashion, also 
allowing what Blum and Leiss (2007) call a mathematical model, namely the mathematical 
description of a real process. Experts in applied mathematics, i.e. scientists working with 
mathematical modeling, however describe the necessity of an end product to be presented as 
solving a client’s problem in a suitable way  (see Neunzert & Prätzel-Wolters, 2015), like a real 
prototype made from metal or plastic or developing a software or a process simulation, all based on 
the mathematical model. In the last CERME, Bock, Bracke, and Capraro (2017) defined the term 
product, closely related to the notion given in economics or marketing: 

Definition 
In a mathematical modeling situation (with an authentic and real-world problem) a product is a 
deliverable in the language of the client which satisfies the needs incorporated in the task given by 
the client to the provider in such a way that the client can use it directly for his purposes. 

Based on former modeling week reports since 1993, Bock, Bracke, and Capraro (2017) proposed a 
second cycle within the modeling cycle based on client interaction. This poster is an outline for our 
future research, i.e. the analysis of the positive influence of product-orientation in mathematical 
modeling processes. 

Best-practice examples for product-orientation in modeling 
During different modeling activities (Bock & Bracke, 2015) a positive influence of product-
orientation for the motivation and the quality of the mathematical modeling process was observed in 
contrast to projects without product orientation. Recently several product-oriented modeling 
activities have been carried out (Lantau & Bracke, 2019; Lantau, Bracke, Bock, & Capraro, 2017). 
During a modeling week (3.5 full days + 1 day for presentations), 5 students of Grades 11 and 12 
were asked to build a 3d scanner. They were provided with electronical devices and components, 
such as Raspberry Pis, microcontrollers, sensors, etc.  The students handled electric circuits and 
learned to control the stepper motor, the sensors and data processing. As the construction is mainly 
a problem of electrical engineering and programming, the data processing contains many 
mathematical questions. In fact it is impossible to build a working device without having a good 
mathematical model and awareness of the mathematical toolbox! Due to the project-orientation 
however, mathematical difficulties had no need to be pointed out explicitly, since the product itself 
is going to raise the right questions. 
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Research questions 
A positive influence of product-orientation in mathematical modeling has been observed. The next 
step is to analyze this fact both in an empirical as well as in a theoretical way. The aims are: 1. To 
model and understand the underlying processes; 2. To analyze the influence of product-orientation 
on students’ learning processes; 3. To analyze the influence of product-orientation on the quality of 
results; 4. To develop new methods for interventions and guidance in mathematical modeling. For 
this we plan to analyze several product-oriented, long-term modeling projects. We are going to use 
videotaping, questionnaires, interviews. Moreover we plan to analyze of the modeling processes 
using a new model of dynamical network graphs. Finally, it will be important to create and study 
adequate forms of teacher training suitable to train teachers in creating and supervising product-
oriented modeling projects. First steps have already been undertaken (cf. Lantau & Bracke, 2019; 
Bock, Bracke, & Capraro, 2019; Lantau, Bracke, Bock, & Capraro, 2017). 

Acknowledgement 
This work is partially supported by the European Social Fund (ESF) project SchuMaMoMINT. 

References 
Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling 

problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: 
Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood Publishing. 

Bock, W., & Bracke, M. (2015). Applied school mathematics – Made in Kaiserslautern. In H. 
Neunzert, & D. Prätzel-Wolters (Eds.), Currents in industrial mathematics: From concepts to 
research to education (pp. 403–437). Heidelberg, Germany: Springer. 

Bock, W., Bracke, M., & Capraro, P. (2017). Product orientation in modelling tasks. In T. Dooley, 
& G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research 
in Mathematics Education (CERME 10) (pp. 1028–1030). Dublin, Ireland: DCU Institute of 
Education and ERME. 

Bock, W., Bracke, M., & Capraro, P. (2019). Mathematical modeling of musical fountains and light 
organs – where is the M in interdisciplinary STEM projects? Paper presented at the Eleventh 
Congress of the European Society for Research in Mathematics Education (CERME11, 
TWG26). Utrecht, the Netherlands. In press. 

Lantau, J.-M., & Bracke, M. (2019). Effective factors of a teacher training concerning the 
implementation of interdisciplinary STEM-modelling projects. Paper presented at the Eleventh 
Congress of the European Society for Research in Mathematics Education (CERME11, TWG6). 
Utrecht, the Netherlands. In press. 

Lantau, J.-M., Bracke, M., Bock, W., & Capraro, P. (2017). The design of a successful teacher 
training to promote interdisciplinary STEM modeling projects. Paper presented at ICTMA18, 
Cape Town, South Africa. In press. 

Neunzert, H., & Prätzel-Wolters, D. (Eds.) (2015). Currents in industrial mathematics: From 
concepts to research to education. Heidelberg, Germany: Springer. 

Thematic Working Group 06

Proceedings of CERME11 1163
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The comprehension of mathematical problem texts has been identified as one of the essential steps 
towards solving modelling problems successfully. Understanding in this context means constructing 
an adequate situation model by using reading and understanding strategies. A separate strategy 
training might foster those strategies as studies indicate. Therefore, the presented study reports on a 
design research project with the aim of fostering subject-specific reading and comprehension 
strategies. Presented are further specifications of the processes of constructing mental text 
representations as well as insights into the use of strategies. The case study indicates that the fostered 
strategies contribute to different steps in the process of constructing mental text representations. 
Those strategies seem to be constantly used by the students to deal with word problems within the 
teaching-learning arrangement and might therefore be relevant for modelling processes in general. 

Keywords: Situation model, mental text representations, subject-specific reading strategies, strategy 
training, comprehending mathematical problem texts. 

Introduction 
“Understanding the content of a task is fundamental for solving it (…)” (Leiß, Schukajlow, Blum, 
Messner, & Pekrun, 2010, p. 123). There is a wide range of mathematical tasks used to link or apply 
mathematical models, concepts and procedures to reality, ranging from simple word problems to 
complex modelling problems. Greefrath and Vorhölter (2016) categorize different accesses to 
mathematical modelling referring to Griesel (2005) when describing the term modelling in general as 
“the process of developing a model based on an application problem and using it to solve the problem” 
(Greefrath & Vorhölter, 2016, p. 8). Many kinds of those application problems are presented to the 
students in text format. This requires reading and understanding the problem text as the basic step in 
the modelling and solution process (Plath & Leiß, 2018). Understanding a text in general and a 
(modelling or word) problem text specifically goes along with understanding the described situation, 
i.e. constructing an adequate situation model (Leiß et al., 2010; Tapiero 2007; Weimer, Reusser, 
Cummins, & Kintsch, 1988). As Leiß et al., (2010) point out precisely the step of constructing a 
situation model is one of the most challenging ones in mathematical modelling. Reasons for 
difficulties in modelling and word problem solution processes have been hypothesized to lie in “a 
lack of strategic understanding both of the language involved and of the situation denoted by its verbal 
description” (Reusser, 1987, p. 474). Furthermore, Leiß et al. (2010, p. 119) point out: “strategies for 
constructing an adequate situation model have a significant influence on the modelling competence.” 
Meanwhile, there are indications that the use of these strategies can be trained separately (Leiß et al., 
2010). Therefore, specific teaching-learning arrangements for fostering students’ reading strategies 
are required as a first step towards fostering modelling competencies in general. The presented study 
reports on a design research project in which a teaching-learning arrangement was iteratively 
developed and investigated, that aims at fostering subject-specific reading strategies for fifth graders 
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by using strategic scaffolding (Prediger & Krägeloh, 2015). So, following the distinction of Blomhøj 
and Bergman Ärlebäck (2018) on research in the field of modelling and application, this project can 
be located within the development, implementation and evaluation of a specific aspect of modelling 
activities (namely fostering understanding strategies for constructing a situation model). 

After further specifying the theoretical background of generating a situation model in the following 
section, the methodological framework and empirical insights are presented. 

Theoretical Background 
Mental text representations as units of understanding 

There exists a wide consensus within reading theories that during reading processes (of mathematical 
problems) four text representations are to be mentally constructed (Tapiero, 2007, Kintsch, & Greeno, 
1985; Reusser 1987): the representation of (1) the text-surface, (2) the propositional structure, (3) the 
situation described in the text and (4) the problem. The term mental text representations resumes 
those four kinds of representations. Steps towards constructing those representations have also been 
included in different conceptualizations and models describing modelling processes (cf. modelling 
cycle by Blum and Leiß, further illustrated in Leiß et al., 2010) or solution processes of mathematical 
word problems (see Reusser, 1987). As different terms have been allocated to those four 
representations, their characteristics are briefly outlined with reference to Reusser’s model for treating 
word problems (1987), which is chosen due to its focus on reading and comprehension processes. 

(1) The representation of the text-surface (not directly displayed in the model) is mainly the
representation of the surface structure, text order, syntax and wording of the text (Tapiero, 2007).
Only directly expressed propositions are represented here (Kintsch & van Dijk, 1978).

(2) The representation of the propositional structure (named text base in Reusser’s model) is a
coherent text representation constructed by forming and organizing propositional units into a
global structure (Kintsch & Greeno, 1985).

(3) In the representation of the situation (named situation model), the information given by the text
are integrated with the readers’ prior knowledge or goals (Kintsch & Greeno, 1985) to make
inferences of different kinds (drawn from text or prior knowledge) (Weimer et al., 1988). Reusser
(1989) therefore defines the situation model as “the personal cognitive structure to which the
process of understanding is directed. The situation model is the cognitive correlate to the situation
structure either supposed from the author’s point of view or understood from the reader’s point
of view” (Reusser 1989, p. 136ff., translated by Plath & Leiß, 2018, p. 161).

(4) The representation of the problem (named problem model in Reusser’s model) is an extension of
the situation model focussing especially on the aspect of the goal (generated or given problem
question) guiding the construction process (Kintsch & Greeno, 1985; Reusser, 1987).

As stated above, for mathematical modelling tasks, the process of constructing a situation model is 
the most challenging one (Leiß et al., 2010). Meanwhile, most of the mathematical problem texts 
examined by researchers are restricted to one mathematical relation mathematized in one step (c.f. 
Reusser, 1987). Therefore, they do not further specify the process of building situational or problem 
representations (Kintsch & van Dijk, 1978). As many applied mathematical problem texts display 
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more than one relation and multiple steps, the model needs to be differentiated to take the processes 
of constructing mental text representations into consideration (Prediger & Krägeloh, 2015). 

Processes of constructing mental text representations 

Considering the situational or problem representation of multi-step problems, different mental 
elements must be related to each other. In line with Schnotz (1994), these mental elements form the 
basic units of the writer’s and the reader’s communication process: (A) the writer identifies the 
relevant units of the mental representation, constructs an adequate language representation for each 
of them and integrates them into a text, (B) after that, the reader needs to identify the relevant textual 
or language units, interpret their meaning and integrate them into a mental representation (Schnotz, 
1994). In order to include these considerations into Reusser’s model, the model is extended as shown 
in Figure 1 in order to capture the reader’s processes of 
achieving local or global coherence. The detailed 
specification of the reader’s activities and processes are 
integrated. Following from the investigation of Weimer et 
al. (1988): (1) relevant elements have to be identified, (2) 
elements have to be structured and related and (3) 
elements have to be interpreted and new elements have to 
be inferred (see Figure 1). Apart from these processes, the 
kinds of mental elements are further specified. Those 
relevant mental elements can be of (a) textual, (b) 
propositional or (c) situational type. At first, the (a) text 
elements and (b) propositional elements have to be (1) 
identified from the problem text or the text base, according 
to the problem question. Afterwards, (a) text and (b) 
propositional elements can be (2) related to (3) interpret 
or (3) infer new (c) situational elements that have not been 
identified before. Then those (c) situational elements can 
be (3) related and (3) integrated to form the problem 
model (see Figure 1).  

These kinds of processes of text comprehension are 
initiated and monitored by reading strategies (Tapiero, 2007; Leiß et al., 2010). Whereas the steps in 
the model themselves cannot be taught directly, reading strategies can be fostered in separate strategy 
trainings (Leiß et al., 2010). Most relevant for the texts in view are the comprehension strategies 
identified by Prediger and Krägeloh (2015, p. 951): 

(S1) Focus on the question to find relevant information  

(S2) Focus on the information together with their meaning  

(S3) Focus on relations connecting the information  

Reusser (1987) indicates that strategies might support special processes in his model. One might 
consider that the named strategies can be linked to the processes as follows: S1 to the process of 

Figure 1: Extended model for treating 
word problems (adapted from Reusser, 

1997; Prediger & Krägeloh, 2015) 
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question generation and (1) identifying elements, S2 to the process of (1) identifying elements and S3 
to the process of (2) relating elements (see Figure 1). However, further investigations are required on 
how these strategies can support the displayed processes to construct a situation or problem model 
and how the use of strategies might differ when dealing with different problem texts. For considering 
those research aspects and getting first insights, the focus is laid on word problems where the 
construction of the mental text representations is the main aim rather than on rich modelling tasks, 
which require additional processes after understanding the problem text. 

Research demands and questions 

The considerations described above called for designing a teaching-learning arrangement to foster 
students’ comprehension strategies. The corresponding qualitative analysis of the initiated 
comprehension processes pursued two research questions: 

(RQ1) How can the three comprehension Strategies S1, S2, S3 contribute to students’ mental 
construction processes described in the extended model for treating word problems? 

(RQ2) How do students’ use of strategies differ for different word problems? 

Methodology of the design research study 
Design research as methodological framework. Due to the dual aims of designing a teaching-learning 
arrangement to foster students’ use of subject-specific reading strategies as well as describing and 
analyzing the use of comprehension strategies, which is in line with the considerations by Blomhøj 
and Bergman Ärlebäck (2018) concerning theory-practice relations, the framework of topic specific 
design research has been chosen. It iteratively connects (1) the specification and structuring of the 
learning content, (2) the creation of the teaching-learning arrangement, (3) the use of the teaching-
learning arrangement in design experiments, which are afterwards analyzed to (4) generate 
contributions to local theories on the learning content and learning processes (Prediger & Zwetschler, 
2013). 

Design experiments as a method for data collection. In the presented study, six design research cycles 
have been conducted, five in laboratory setting with 2-3 students each and the last one in a classroom 
setting. Each cycle consisted of approx. 4-7 sessions of 90 minutes each. This paper focuses on Cycle 
5 in which six pairs of students have worked on the teaching-learning arrangement (in total 4320 
minutes of video data). 

Methods of qualitative data analysis. For the qualitative data analysis, a category-led deductive 
procedure has been chosen. The use of strategies has been coded (according to a categorical scheme 
presented in Dröse and Prediger (in press)). Afterwards, the moments in which the use of strategy 
was identified, have been categorized with respect to the processes of identifying text, situation or 
propositional elements; inferring situational elements or relating mental elements (see Figure 1). 
Here, the case study of Metin and Yaren (both boys are 11 years old and attend a secondary school 
in a German urban area) is presented, based on 120 minutes of video data (partly transcribed). 
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Empirical insights: Yaren’s and Metin’s construction of mental representations 
The case of Yaren and Metin provides an insight into their process of constructing mental text 
representations and their use of Strategies S1–S3 concerning RQ1. The two boys work on Task 3 
“Bear child” (Fig. 2) in Sequence 1 and on Task 5 “Parrot feeding” (Fig. 3) in Sequence 2.   

Bear child 
The brown bear child in the zoo weighted 700g at his 
birth. After his birth it lost 200g because it was ill. Over 
the last weeks, his weight has increased by 4000g and it is 
healthy again. 
 

How much does the brown bear child weight now? 

 Parrot Feeding 
In the zoo, the children are feeding the parrots. Felix 
fills parrot Tobi’s bowl with 10g sunflower kernels 
and 15g berries. In the bowl, there have already been 
3g feed before the feeding. Parrot Piet eats 5g of parrot 
Tobi’s feed. 

How much feed does parrot Tobi have in the end? 
Figure 2: Task 3  Figure 3: Task 5 

Sequence 1: Inferring implicit situational elements in Task 3 

At the beginning of Sequence 1, Metin and Yaren have already identified the relevant text elements 
and have written them down on three cards. Metin now tries to express the relations between those 
elements to infer the needed situational elements as well as the problem model. 

1 Metin:  Yaren look, at first he has weighted 700g [puts down the card on which he had 
written the text element weighted 700 g], then he got down to 200g [points at the 
corresponding second card], later to 4000g [points at the third card]. 

Metin’s explanation reveals an inappropriate problem model. This could be either (1) due to a lack of 
understanding of the propositional structure of the individual text elements or (2) due to the fact that 
he relates the elements to each other by interpreting them as fixed states rather than considering other 
relationships. Afterwards, Metin tries to organize the information in a concept map.  

101 Teacher:  If I understood correctly, you wanted to start with 
700. What happens then? (…) 

102 Metin: Yes, 200g, because he loses 200g.  And then later 
rises to 4000g. [connects the two element cards with 
an arrow, see Figure 4] 

104 Teacher:  So, he weighted 700g at his birth, then he loses 200g, 
then this was 4000g altogether. Does that fit? 

105 Metin:  Yes, that fits (…) 
107 Metin: or if, wait look, if he loses 200g of 700g, then that 

would be 500g, so then this have to be 4500g? 
When the teacher verbalizes the relation that Metin has visualized (l. 104), Metin implicitly infers the 
two situational elements, “state after the bear was ill” and “state now that the bear is healthy again” 
(l. 107) that are not explicitly mentioned in the problem text. After finishing his visualization with 
cards and arrows, Yaren explicitly describes the relation between the two states implicitly mentioned 
above (l. 206). 

206 Yaren:  (…) It has weighted 500g and then it got healthy and got 4000g, because it was 
healthy afterwards (…). 

Figure 4: Metin’s concept 
map of the situation 
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Regarding RQ1 the sequence gives an example for a pattern we have often found in the data: When 
students activate the Strategies S2 (focus on meaning of information) and S3 (focus on relation of 
information) as triggered here by the cards and arrows, they can identify not only text elements, but 
infer also further situational elements and create an appropriate situation and problem representation. 

Sequence 2: Expressing relationships between identified and inferred elements in Task 5 

After solving Task 3 and 4, Metin and Yaren work on Task 5 “Parrot feeding” (Figure 3). At first, 
they write down the relevant text elements, and then the teacher asks them to express the given 
relations. 

1 Teacher:  Tell me, what happens to the 10g and the 15g in the task? What about them? (…) 
3 Metin: So at first, there were 10g sunflower kernels, then 15g berries and then he has 

eaten 5g of Parrot Piet’s feed. 
4 Yaren: (…) Ah yes, then there were 20g left. 
5 Metin: (…) Ah so (…) now I understand (…) I found the result. He had 25g in total 

[points at the cards and arrows] and then (…) 
When being asked to articulate the actions taking place in the task, Metin uses the Strategies S2 (focus 
on meaning) and S3 (focus on relations). He puts the given information into the described order to 
symbolize the relation between the text elements (l. 3) and the inferred situational elements (l. 5). 
Yaren explains that there are only 20g left (l. 4). The teacher points to one information that has already 
been written down but not used, so far: 

101 Teacher:  Okay and now, you have one card left written 3g on it. Do you need this? 
102 Metin: No, not really… but [is reading the text]. Yes, we can use it, because (…) 
108 Metin: Ah, Felix has given him something and he has had 3g before. 

Metin’s explanation reveals that he has focused on the meaning of the 3g first (S2) and then tries to 
relate the text element to the information already given (S3). In this sequence, the teacher is not 
expressing the relation among elements herself as she has done in Task 3; instead, first she prompts 
the students to do so (l. 1). Later on, she prompts the students to take the meaning of the text element 
into consideration (l. 101). Being familiar with the scaffold, the boys use Strategies S2 and S3 to 
relate mental elements and the teacher’s prompt for activating S2 suffices to activate S3 as well (l. 
108). Concerning RQ1, this shows how both strategies are intertwined in the process of relating 
elements. This observation reoccurred in further data. 

Overview of used strategies to construct and process mental elements 

Concerning RQ2, Table 1 gives a short overview on the strategies, which Metin and Yaren used to 
construct mental elements. For each task, the relevant text and situational elements as well as the 
relations between them have been specified. For the Tasks 3 – 5 those text elements can be either the 
starting point or a change of the situation (Change 1, Change 2), as described in the problem text. The 
situational elements, that have to be inferred, can be the state of the situation either after the first or 
after the second described change (State 2, State 3). After specifying the relevant mental elements, 
the coded strategies (S1 – S3) were assigned to the prevailing mental elements, when the strategies 
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are used before a successful identification, inference or relation of this mental element. The use of 
those strategies is displayed in Table 1 without focusing on its frequency or its order. 

 Task 3  
(solved together) 

Task 4 
(solved separately) 

Task 5 
(solved together) 

Identified/ Inferred/ Combined Elements: Metin Yaren Metin Yaren Metin Yaren 
Identify problem question S1, S2  S1  S1  S1  
Identify Text element 1: Starting point S2 S1, S2, S3 S2  S2  S2, S3 S2 
Identify Text element 2: Change 1 S2 S3 S2  S2  S2 S1, S2 
Identify Text element 3: Change 2 S2 S2 S2 S1, S2 S2 S2 
Construct Situation element 1: State 2 S1, S2, S3, 

S1, S2, S3 
S2, S3 S3 S2, S3 S2, S3  

Construct Situation element 2: State 3    S2  S2, S3  
Relate Element 1, 2 and State 2 S1, S2, S3 S1, S2, S3 S2, S3, 

S3 
S2  S2 , 
S3, S3  

S2, S3, 
S2, S3 

 

Relate Element 2, 3 and State 3 S1, S2, 
S2, S3 

S3, S2, S3, 
S3 

S2, S2, 
S3, S3 

S2 , S3, 
S3 

S2, S3 S2 

Table 1: Strategies used to assimilate elements of different kinds (S3 represents unsuccessful strategy use)  

For answering RQ2 the following differences and similarities in the use of strategies can be observed: 
The analysis of Table 1 reveals that both boys use Strategy S2 to identify relevant text elements, 
having also focused on the question (S1). Furthermore, in Task 3 all strategies are used to infer and 
relate mental elements, while in Task 4 or Task 5 mainly Strategies S2 and S3 are used. This 
underlines the close entanglement of those strategies. With regard to RQ2 the boys’ use of the 
identified strategies seems to become more stable with frequent use of the scaffold.  

Discussion and outlook 
The case study of Metin and Yaren provides first insights into the use of the fostered strategies to 
identify, infer and relate mental elements. The analysis reveals the contribution of the identified 
strategies to the inference of implicit situational elements (Sequence 1) and the processing of relations 
between these elements (Sequence 2). Furthermore, the importance of the interplay between 
Strategies S2 (focus on meaning) and S3 (focus on relations) can be lined out (RQ1). The use of 
strategies to identify, infer or relate the prevailing mental elements seems to become more stable 
during the process of task comprehension (RQ2).  

These results are of particular interest for research on modelling against the backdrop of difficulties 
in constructing a situation model (Leiß et al., 2010). Therefore, two indications might follow from 
the empirical insights: (1) as the strategies named above might contribute to generating a situation 
model it is possible that those strategies belong to the strategies having an impact on modeling 
competencies (see Leiß et al., 2010), (2) the use of those strategies might be fostered by strategic 
scaffolding and their use seems to become more stable independent of the tasks’ characteristics. So, 
the use of those strategies might be extended to rich modelling tasks – presented in written format 
and with more than one relation described – to facilitate the understanding of the situation. 

The presented study is limited at first because of the small number of students that have been analyzed 
as well as the laboratory setting in which the research was conducted. Further research needs to extend 
the investigation of the use of strategy to more students and different problem texts. It should 
especially take the interplay between the named strategies as well as between the teacher and students 
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into consideration. At least the investigation of reading strategies might be extended from fostering 
reading strategies for word problems to reading strategies for modelling problems. 
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Theory 
Modeling is defined as "a practical and creative process in which realistic problems are translated 
into mathematical form" (cTWO, 2007, p. 25). Usually, modeling problems in context-rich 
assignments are offered to learners through texts. One of the first obstacles students encounter is 
reading and interpreting text. In secondary school, being able to read a problem is a decisive factor in 
solving a problem (Korhonen, Linnanmäki, & Aunio, 2012). The language used at school often forms 
an obstacle to learning mathematics (Van Eerde & Hajer, 2009). It is thus to be expected that language 
is an important factor at the various phases of the modeling process, although the role of language 
proficiency may be different. To analyse the different difficulties concerning language, we have to 
split up the modeling process in different phases. According to Spandaw and Zwaneveld (2012), 
modeling encompasses various activities that are carried out consecutively, as shown in Figure 1. 

 
Figure 1: The modeling cycle (Spandaw & Zwaneveld, 2012, p. 240) 

Language proficiency may play a different role in every phase of the modeling cycle. The phases are 
indicated by: 

The phase of conceptualizing: the student is able to understand the text in which the problem 
is posed in order to make the translation into a conceptual model. 

The phases of mathematization and solving: the student goes from the conceptual model to 
the mathematical model. Then the student will try to solve the problem. Mathematical 
reasoning occurs in both of these phases. 

The phase of interpretation: translating the mathematical model into reality appeals to 
language skills. This skill is similar, but inverse to the language proficiency in the 
conceptualization phase. 

Mathematical modeling is absent in the greater part of lower secondary education in the Netherlands. 
For that reason, this study will emphasize modeling in lower secondary education. This study will 
answer the following research question: Which language problems occur in the three phases of 
mathematical modeling in context-rich assignments? 
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Method 
Participants of the study are students from grade six, eight and ten. These students are 11 up to 15 
years and participated from four primary schools and four secondary schools located in an urban 
environment. 260 students performed two mathematical modeling tasks. The first modeling task is 
directed towards algebra and the other towards geometry. Each individual task consists of two parts. 
The first part is a modeling assignment in a rich context and the second assignment is a mathematical 
core assignment, focusing on the mathematical content without context. In consultation with the 
teacher of each participating class we selected two students (n=26), one with strong language 
proficiency and the other with weak language proficiency, with whom we performed a task based 
interview. Six teachers were interviewed about the levels of the designed modeling tasks. 12 students 
(two from each class, from 11 up to 15 years) were asked to do the assignment while thinking aloud. 

Results 
The analyses of students’ answers, the task based interviews and the think-aloud protocols showed 
that language is an important obstacle, especially in the conceptualization phase. In all grades most 
of the students repeatedly reread the text of the modeling task. In many cases learners fail to construct 
a meaningful representation of the described situation. The transition from reality presented by the 
text towards a conceptual model often halts halfway. The outcome of the students’ answers for the 
geometry modeling task did not show big differences between the rich context part and the 
mathematical core part, for all three grades. From the outcome of the task-based interviews with the 
learners, feasible components and levels for the different modeling phases are formulated. The think-
aloud sessions gave more insight in the language problems students encounter while solving the 
modeling task and showed the strategy that students use.  
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The results of analysing the projects for the teaching of mathematics and modelling developed by 
future mathematics teachers are discussed in this paper. The participants were part of a seminar in 
which the objective was to develop their mathematical and pedagogical content knowledge related 
to the teaching of mathematics through the design of modelling tasks. With a qualitative 
methodology the written reports of and interviews with the pre-service teachers were analysed. The 
results bring to light some elements associated with their knowledge and how this knowledge is 
constructed in their experience with modelling activities and then reflected in the creation of 
teaching tasks. 

Keywords: Modelling task, future teachers, teacher training. 

Introduction 
The design of novel tasks and teaching activities represents a challenge for teachers and future 
teachers. They must be able to involve students in meaningful activities and create environments in 
which students construct and reflect on their own learning. In designing modelling tasks, the future 
teachers’ knowledge about the context and the mathematics related to it, joined with the knowledge 
about the teaching and learning of the students becomes structured and shapes the tasks. The design 
and implementation of modelling tasks has been subject of innumerable studies with attention to the 
characteristics of the final product; but few investigations consider the processes that are favoured 
in this activity (Czocher, 2017), for example the construction of the teacher's pedagogical content 
knowledge.  

When modelling activities are introduced to the classroom, teachers must adopt an adaptive view of 
new teaching methods. This involves a challenge that requires the mastery of mathematical 
knowledge associated with the context of the task and adapting that knowledge to the environment 
in which students will work with the task according to the learning objectives (Doerr & English, 
2006). In the setting of a teachers’ training seminar, we analyse: 1) how future teachers, when 
designing teaching tasks, construct and transform their mathematical knowledge associated with the 
modelling of population growth and 2) how this knowledge is adapted for teaching in a middle 
school mathematics course. The research question is: What elements associated with pedagogical 
content knowledge emerge in the design of modelling tasks for teaching mathematics? An important 
aspect in this study is the design process where participants learn to model to teach modelling. This 
fact is evidenced in the exploration of several situations and in how future teachers simplify and 
idealise the initial situations to adapt the task to the knowledge of the students.  

Conceptual framework  
When studying task design in mathematics education two perspectives can be identified: the design 
as implementation or the design as intention. The task design analysed here is characterized as 
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design as intention since it addresses the initial formulation of the design (Czocher, 2017) and the 
analysis is supported by constructs for studying teacher’s pedagogical content knowledge (Ball, 
Thames, & Phelps, 2008; Doerr & English, 2006; Carrillo-Yañez et al., 2018). By teaching 
modelling it is intended that teachers become competent at modelling activities, they also should be 
able to link knowledge about modelling cycles, about goals and about types of tasks. Solving, 
analysing and creating tasks as well as planning and performing modelling lessons are important 
aspects here (Borromeo Ferri & Blum, 2010; Huincahue-Arcos, Borromeo Ferri, & Mena-Lorca, 
2018). Designing and modifying tasks to be easier or harder for presenting mathematical ideas 
constitutes a part of the teacher’s knowledge (Ball, Thames, & Phelps, 2008). When designing tasks 
for learning mathematics and modelling, the teacher’s pedagogical content knowledge comes into 
play in teaching organization, in the understanding of how to present the concepts to favour learning 
and when understanding the mistakes associated with the domain (Doerr & English, 2006). In 
addition, the teacher must know the specifications of the curriculum and maintain a critical position 
to organize the learning and management the class (Carrillo-Yañez et al., 2018). The practice of 
modelling leads to the development of modelling skills (Blomhøj & Kjeldsen, 2006), so that when 
the teachers design a task, they structure their specialized content knowledge related to models with 
the intended knowledge for the students. On the other hand, when modelling students build 
knowledge depending on the characteristics and cognitive demands of the tasks (Henningsen & 
Stein, 1997). Therefore, it is expected that the tasks created by future teachers support progress in 
the modelling abilities of the students. According to the model of three dimensions (Blomhøj & 
Kjeldsen, 2006), the modelling competences can be distinguished as: (1) Technical level, related to 
the kind of mathematics the students use and to how flexible they are in their use of mathematics. 
(2) Radius of action, related to the domain of situations in which students can perform modelling
activities and (3) Degree of coverage, according to the phase of the modelling process the students
are working in, and the level of their reflections.

Context and method 
In most Chilean teacher training programs, modelling has not been explicitly part of the education 
for future teachers. The future teachers take part in several courses of mathematics, didactics and 
pedagogy. They learn mathematical concepts and theories of education, but they have few 
experiences with modelling situations; as Blomhøj and Kjeldsen (2006) pointed out modelling is 
different than the nature of mathematics. In this context, it is described and analysed the process 
developed by a group of pedagogy in mathematics students, when they designed an activity for 
teaching. The experimentation was carried out with a group of six students, who participated in a 
research seminar for future teachers. Here, the case of a group with two participants is presented. 
They were selected because of their willingness to participate in the research. In the seminar some 
topics of differential (and integral) calculus and differential equations were discussed and among 
these functions, derivatives, logistic equations and systems of differential equations. Some 
perspectives of modelling (Blomhøj & Kjeldsen, 2006; Borromeo Ferri, 2006) were also reviewed. 
During the seminar several discussions about the use of technology and the content knowledge for 
teaching (Ball, Thames, & Phelps, 2008) were carried out. The students explored modelling 
different phenomena and proposed a teaching activity for middle school level (15 years old). The 
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process of designing a task (for approximately three months) was documented, where participants 
studied how some growth situations are described in reality. Then, after simplifications and 
idealizations their initial study took shape of a teaching activity. The design phase considered 
aspects such as, idealization and exploration of the initial conditions, parameter values and the 
domain of the solutions. Meetings with students once a week during one semester were developed 
in where the design process was followed. At the end of the course, they presented the teaching task 
and a description of the process of designing it in a written report.  

Data analysis was carried out following a qualitative perspective (Cohen & Manion, 1989). First the 
episodes related to the modelling phases along the process of designing the task were identified. 
Then, units of meaning associated with mathematics, modelling and pedagogical content knowledge 
were identified. At the end of the seminar participants were interviewed by two researchers to verify 
the first interpretations of the author. Finally, the units of analysis identified in the written report 
and those from the interview were contrasted and discussed in the modelling seminar, where the 
author took part. Thereby, the validity of the results was verified. 

Discussion and analysis of results 
In this section, the study carried out by the participants related to the phenomenon in question is 
initially presented. It is not the intention in this paper to inform about a common process of 
population growth modelling, however, in order to analyse the knowledge that emerges when future 
teachers design a modelling task, we present a summary of the facts that they recognise as relevant. 
It should be noted that most researches on teacher’s knowledge do not explicitly address the role of 
modelling (Ball, Thames, & Phelps, 2008; Carrillo-Yañez et al., 2018) but consider it as an element 
of mathematical practice. Here modelling is posed as a precursor element of the development of 
future teachers’ knowledge. Furthermore, the experiences with modelling activities can be related to 
the improvement of the mathematical knowledge of the future teachers. Subsequently the teaching 
task proposed by the participants was analysed where some elements from the pre-service 
mathematics teachers’ pedagogical content knowledge were identified. Three episodes were 
recognized: first when participants explored the growth of penguin populations reported by the 
research literature, where the case was analysed by statistical methods. Second, when the relevant 
information was identified and linked with an idealised mathematical model. Third, when 
information gathered in the first and second episodes was adapted to create a task for teaching. 

Study of real situation 

After consulting literature related to different growth phenomena, a growth situation of Magellanic 
penguins was selected (Pozzi et al., 2015; Valdebenito, 2013). The habitat places of this type of 
penguin were located on a map. In addition, the total population of penguins in the world was 
identified (1.5 million pairs of reproductive age). This led the future teachers to focus their attention 
on the population of penguins in Chile (700 pairs), particularly a population that is located on an 
ecological reserve that hosts around 400 specimens. Here participants observed the existence of 
infrastructure designed to allow tourism without affecting the reproduction of the penguins. This 
fact allowed them to transit from the study of a more general situation to the case of a growing 
population limited by a border. When doing the first exploration participants observed that studying 
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a population in freedom, implies considering predators and death of penguins due to the fishing 
process. By exploring the reproduction of the population, they identified the nesting seasons, the 
number of eggs per pair (2) and the places where the nests were located. They also noticed the 
existence of other predators like seagulls that attack eggs. Considering this information, participants 
associated the successful breeding with the number of chicks that survive per nest on each breeding 
season. These considerations were initially associated with logistic equations and systems of 
ordinary differential equations (predator-prey model). 

Then, an idealisation of the situation was made, when participants saw the case as population 
growth in a limited place where the necessities of feeding (anchovies, sardines and some 
crustaceans) also influence the size of the population. Thereby, pre-service teachers made 
relationships between the competition for limited resources in the environment and the population 
size; this led them to model the situation using the logistic equation of population growth. The 
elements used to determine the parameter values in the equations were: the reproduction age (the 
females reproduce between 4 to 5 years old, while the males reproduce when they are 6-7 years 
old), and the penguins are monogamous. The average life expectancy is about 20 years. With this 
information students calculated an approximation of the growth rate.  

This phase was a support for pre-service teachers to: a) recognise the reasons why some 
simplifications are necessary, b) recognise and explain the frequent difficulties students find in 
mathematizing a situation and c) identify and explain the behaviour of some situations. In addition 
to the ideas of Ball, Thames, and Phelps (2008) it is assumed that those elements must be part of the 
teacher's mathematical knowledge for teaching modelling. 

Simplification of the real situation and modelling 

When simplifying the real situation, the participants made decisions that were reflected in the 
design of the task as will be discussed below. In summary, the literature gives information about the 
penguins’ birth and mortality rates per year. Then by calculating an average students approximated 
this values by a constant (intrinsic rate of increase) to be used in the expressions to describe the 
population growth. From here, by comparing continuous and discrete exponential growth future 
teachers were aware of the complexity of modelling realistic situations. They also realised the 
limitations of modelling population growth with simple models. Hence, when pre-service teachers 
explored open modelling situations, they built their mathematical knowledge associated with the 
situation (Carrillo-Yañez et al., 2018), and when they used that knowledge to design the task, they 
strengthened their pedagogical content knowledge related to modelling practices (Doerr & English, 
2006). Thus, the experience they got by exploring the characteristics of the phenomena served as 
the basis for the design of the teaching situation. 

Below some of the arguments from the participants regarding to the relevant information and the 
simplification they made are shown: 

Initial population – the literature mentions that in 1993 a population of 400 penguins was 
estimated in the reserve. 
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Birth- [...] paired penguins lay 1 to 2 eggs, but not all penguins are in pairs and not all couples 
get two eggs, for this reason the birth rate can be considered to be 50%. However not all chicks 
are born, which leads us to consider a birth rate of 40% of the total population. This rate is 
consistent with the data in the literature […]. 

Mortality- [...] the longevity due to natural death of penguins is almost 20 years, in addition there 
are other factors that cause the death of this species [...], the spilled oil and the fishing nets, that 
add up to 16% mortality [literature information]. If [mortality] is adapted only to natural causes 
of death (Diseases, poisonings, etc.) an estimate of 14% can be made since the reserve has the 
necessary care to maintain the health of the penguins. 

Predators- The presence of predators was not taken into account for the design of this task, since 
the penguins are in a reserve and are protected from these threats. 

With this information the participants analysed two cases described by the equations  y 

, getting the solutions 𝑁𝑁(𝑡𝑡) = 400𝑒𝑒𝑘𝑘𝑘𝑘 y . When studying the graphs of 

these expressions they identified the behaviour of a population modelled by the logistic equation 
and described it as below:  

[...] if the population is less than the carrying capacity, the graph behaves increasingly, but when 
it approaches (K) the graph begins to stabilise, instead if the population was greater than the 
capacity of load the graph behaves decreasingly and begins to stabilise when it is closer to K. 

In this episode, stand out identification and simplification processes of relevant information and the 
participants’ mathematical work using analytical and graphical representations. The experience 
gained studying the real situation helped future teachers to identify and anticipate appropriate 
mathematical representations to be used in the teaching activity. Those elements are related with the 
Specialized Content Knowledge (Ball, Thames, & Phelps, 2008). 

The teaching task 

In this section the task designed by two participants is analysed. The learning objectives were 
defined as: Analysing the behaviour of a population based on birth and mortality rates in relation to 
the time. The task is the following: 

In 1991 a massive death of penguins of the Magellanic species was evidenced. To revert the 
situation a group of people in 1993 decided to create a Natural Reserve of Magellanic Penguins 
called "Seno Otway". The reserve has capacity for hosting 6500 penguins. At the beginning the 
reserve started with an initial population of 300 Magellanic penguins. From a census they calculated 
a mortality rate of 70 per 500 penguins and a birth rate as 200 per 500 penguins. 

Some of the questions that the future teachers posed are:  

1) What do you think would happen if the population exceeds the capacity of the reserve? 

2) Use the data for graphing the situation. 
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3) Analyse what should happen when reaching the load limit.

Those questions show that teachers focused on the carrying capacity as the relevant aspect that 
affects the growth of the population. The first question demands an intuitive answer from the 
students, with the third question they are challenged to prove or reject their initial conjecture by 
studying the data. To answer the second question, students were encouraged to organizing the data 
about the time and the population in a table, using this information they could build a graphical 
representation. Here, the future teachers’ knowledge related to the different registers in which a 
mathematical content can be represented (Carrillo-Yañez et al., 2018) and their strength to interpret 
situations becomes evident. This is also related to the knowledge of some theories of learning as it 
is shown in the next fragment related to the characteristics of the task: 

The activity is designed for the students to articulate the same information in different semiotic 
representations, and to look for a generality that represents the behaviour of the population [...] 

The teachers’ knowledge associated with the characteristics of modelling was also evident when 
they described the processes through which the student should transit when answering the 
questions. They anticipated that students would go through a spiral-shaped cycle increasing as they 
require more knowledge to answer the questions. This is shown in an extract of the written inform: 

In order to solve successfully the task, it is necessary to carry out several modelling processes 
that respond to different situations, we could group the questions into three categories, easy (1, 
2), medium (3, 4) and hard (5, 6); each of them corresponds to a separate modelling cycle that 
adds more difficulty as the students respond. 

In the previous transcript the knowledge of pedagogical content was evidenced in the design of the 
task when teachers anticipated the students’ reaction in relation to the difficulty in answering the 
items (Ball, Thames, & Phelps, 2008).  

While designing the task, future teachers recognised the importance of students being aware of the 
idealization processes involved in the analysis of a phenomenon. In the following fragment, when 
justifying the pertinence of the question number three, they referred to the idealization that implies 
modelling the situation through the differential equation  and compared it with the case 

modelled by the equation : 

[...] the students should reflect on the exponential growth of the population, because so far we 
have only analysed an ideal case, where no carrying capacity or predators in the area have been 
taken into account. 

In relation to the graphical representation of the behaviour of the population, future teachers pointed 
out that working with graphics could generate some errors of interpretation when students 
superficially see the generated curves; this is associated with the knowledge of the structure of 
mathematics (Carrillo-Yañez et al., 2018). They point it out as follows: 

They [students] may build a more flattened exponential, arguing then that the growth population 
should be slower. 
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In the previous analysis a strong relationship between the (mathematical and extra-mathematical) 
knowledge constructed by future teachers when experiencing modelling to design a teaching task 
was observed. And the pedagogical content knowledge was evidenced when they were able to 
anticipate the students’ actions with the modelling task. The task was designed to cross through the 
modelling cycle in different ways. However, the activity was subordinated to only working with the 
data in the tasks (Blomhøj & Kjeldsen, 2006). 

Comments and conclusions 
It was evidenced that in the challenge of designing teaching tasks the future teachers experiment 
with mathematical and extra-mathematical knowledge and bring to light what they learn for 
planning the teaching. The future teachers' learning endured a transformation from studying pure 
mathematics to study the mathematical and extra-mathematical content associated with several 
phenomena. When exploring the situation, the participants’ work highlighted activities as 
identifying relevant information, simplifying the situation, formulating a task, systematising, 
mathematising and analysing mathematically. Those activities reinforce their knowledge about the 
mathematical characteristics of the models. They also had the opportunity to link concepts, 
understand procedures, rules and meanings. The knowledge constructed in this way was a support 
for designing the task, so that it strengthens their pedagogical content knowledge. In relation to the 
progress of mathematical competence (Blomhøj & Kjeldsen, 2006), it was observed that the future 
teachers’ performance with the modelling activity and the task designed by them are situated in the 
technical level, related to the use of mathematics and its representations. However, it is desirable 
that future teachers widen their radius of action.   

The experience in this research showed that – in addition to the knowledge pointed out by Ball, 
Thames, and Phelps (2008) – for implementing modelling as a vehicle for teaching mathematics, 
the teacher should be able to: recognize the reasons why some simplifications are necessary, 
recognize and explain the frequent difficulties students find in mathematizing a situation, identify 
and explain the reasons for the behaviour of some situations, identify and anticipate appropriate 
mathematical representations, identify and enhance the transit through the different phases of a 
modelling process. On the other hand, some tension between developing modelling competences 
and teaching the content was identified. That is, although the task could be more open allowing 
students to build their own strategies, the final characteristics of the task limit the actions of the 
students to whom it will be directed. This situation has a strong relationship with the educational 
system because most institutions expect that teachers taught the content as it is described by the 
curriculum where modelling is considered closer to word problems. In the same way, Chilean 
teachers training programs are more directed toward the teaching of content rather than developing 
skills. Therefore, our challenge is to encourage pre-service teachers to explore innovative ways for 
teaching mathematics. 

Finally, the construction of pedagogical and mathematical knowledge was analysed when pre-
service teachers design a task; this fact does not allow us to know how future teachers put into play 
their pedagogical content knowledge in the practice. This aspect is been explored in parallel studies. 
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Teachers learning to design and implement mathematical modelling 
activities through collaboration 

Britta Eyrich Jessen 

University of Copenhagen, Department of Science Education, Denmark; britta.jessen@ind.ku.dk  

In this paper, we present a model for upper secondary in-service teacher courses based on the 
Anthropological Theory of the Didactics and explore how we can teach teachers to design and 
implement mathematical modelling in their classrooms. The course evolves around Study and 
Research Path based teaching and strives to create para-didactic infrastructures as a framework for 
teachers’ development of teaching practice. The novelty in this study is the sequence of shared 
preparation, observation and evaluation of teaching in the course. We describe the structures and 
their functioning through an example of a group of teachers’ work. Based on the activity we discuss 
the potentials of creating such structures and the needs for further research in this field. 

Keywords: Study and research paths, modelling activities, professional development, para-didactic 
infrastructures, upper secondary education. 

Introduction 
Throughout the years, several examples of in-service teacher courses on modelling have been 
presented with the purpose of supporting teachers to design modelling activities, promoting different 
theoretical approaches to mathematical modelling (Kjeldsen & Blomhøj, 2006; Doerr 2007; Blum & 
Borromeo Ferri, 2009; Barquero, Bosch, & Romo, 2018). These approaches have ways to engage 
students in modelling activities, where students sometimes choose strategies different from those 
foreseen by researchers or teachers. This is challenging for teachers, and might cause them not to 
implement new knowledge gained from in-service courses, professional development (PD) activities, 
in their teaching practices. García argues that PD initiatives require existence of structures supporting 
teachers while implementing more inquiry based teaching methods and he suggests lesson study or 
other versions of action research (García, 2013). According to Artigue and Blomhøj (2013), 
mathematical modelling can be regarded as one approach to inquiry-based teaching, which is why 
those supporting structures, mentioned by García (2013) should be implemented in PDs on 
mathematical modelling.  

In this paper, we present the result of a pilot study, where upper secondary in-service teachers were 
taught to design mathematical modelling activities based on Study and Research Paths (SRP) from 
the Anthropological Theory of the Didactic (ATD) including elements of lesson study. García, 
Higueras, and Bosch (2006), Barquero (2009) and Jessen (2014) have shown how SRP can be used 
for the design of modelling activities for students at all levels of the educational system. In those 
studies, modelling functions as a vehicle for learning mathematical content knowledge (see further in 
Julie & Mudaly, 2007, p. 504). This was also the purpose of the SRPs, developed by the participants 
of our PD. However, it has been reported that Study and Research Paths for Teacher Education, SRP-
TE (Barquero et al., 2018) proved to be difficult for teachers to implement and they turned to 
transmission of knowledge when back in their own classrooms with designs developed in a PD. In 
our study, we draw on the suggestion of creating supporting structures for in-service teachers as part 
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of courses on SRP (Muñoz, García, & Fernández, 2018). We adopt the model suggested by Miyakawa 
and Winsløw (2013), called para-didactic infrastructures, to describe the use of elements of lesson 
study structures in our PD. These structures cover shared preparation, observation and reflection upon 
some teaching. Miyakawa and Winsløw (2013) use the model to describe an open lesson observed 
during a lesson study festival in Japan and to point out why open lesson represents an attractive 
element of PD for Japanese teachers. We find it interesting to study, how elements of this PD practice 
can be explored in other contexts. This is the objective of this paper, which address the research 
question: How can we employ para-didactic infrastructures in PD for upper secondary teachers in 
order to support teachers’ implementation of SRP based teaching in their own classrooms? To answer 
this, we provide a short introduction to basic notions of ATD, a description of the course and an 
implemented SRP. 

The theoretical framework of ATD – and its use in the course 
Praxeology is a core notion in ATD, where we consider it possible to describe all human activities in 
terms of praxeologies. A praxeology consists of two elements: praxis and logos. If we consider 
mathematical praxeologies, praxis consist of a type of task and the technique(s) to solve it. An 
example could be how to find the surface area of an open cylinder with radius r and length l. The 
technique to solve it, is the formula  𝐴𝐴 = 2 ∙ 𝜋𝜋 ∙ 𝑟𝑟 ∙ 𝑙𝑙. Logos is the justification of praxis and consists 
of technology and theory. In the case of the cylinder, the technology is the articulation of how we can 
cut the cylinder open and unfold it as a rectangle. The length is then the one of the cylinder, l, and the 
width is the circumference of a circle with radius r. The theory is a higher level of justification, which 
in this case will be geometric shapes, their measures and properties. Praxeologies are connected 
through shared techniques, technology or theory, which form mathematical organisations (MO) from 
local ones sharing techniques to global ones, describing a whole domain, e.g. vector algebra (Barbé, 
Bosch, Espinoza, & Gascón, 2005). We can consider teachers’ actions in the classroom, as the 
realisation of didactical praxeologies. What is observable in teaching situations, is often the 
techniques: the way to introduce new content knowledge, the way to pose questions, the way to 
organise students’ work in groups etc. The didactical tasks, which the techniques answer, are 
addressed by the teacher when preparing the lesson. The logos of the didactical praxeologies are 
rarely evident, but might be based on teachers’ initial education and courses on learning theory, 
didactics of mathematics or their teaching experiences. The latter might not count as real theory, but 
is still a level of justification from the perspective of the teachers. Teaching can then, be considered 
a set of mathematical and didactical organisations (DO) intertwined and to be realised in the 
classroom. Miyakawa and Winsløw presents “a theoretical approach to study mathematics teacher 
knowledge and the conditions for developing it in direct relation to teaching practice” based on ATD 
(Miyaka & Winsløw, 2013, p. 186), which is depicted in Figure 1. The model illustrates how teacher 
knowledge can be developed and described in terms of mathematical and didactical praxeologies, 
relevant for teaching a certain piece of knowledge. The didactic infrastructures refer to the interaction 
between the MO and DO employed. The PO’s represent the paradidactic organisations. The PO1 is 
the pre-didactic organisation, including knowledge and practices involved in teachers joined 
exploration and formulation of the MO to be taught and the DO required to do so. PO2 is the post-
didactical organisation involved in the evaluation of the realised MO and DO. In our PD, we strived 

Thematic Working Group 06

Proceedings of CERME11 1183



 

 

to provide teachers with situations in terms 
of PO1 and PO2 and to exploit those, 
reconsidering the knowledge to be taught, 
why to teach it and how to teach it – to free 
the teachers from habits and to construct new 
knowledge about teaching practices based on 
SRP. 

SRP is a design tool suggested to design 
modelling activities and inquiry based 
teaching (García et al., 2006). The design of 
an SRP starts by formulating a generating 
question, Q0. Students should be able to understand, but not able to answer Q0 unless they engage in 
study and research processes. The study process is when students study different media: textbooks, 
online webpages, video materials, data from an experiment etc. to gain knowledge on a subdomain, 
method, formula and more. This process is considered to be the deconstruction of knowledge. In the 
research process, students combine knowledge acquired in the study process with their existing 
knowledge forming answers to derived questions (which in the end lead to a coherent answer to Q0). 
This reconstruction of knowledge is considered the result of students’ interactions with the milieu 
(Jessen, 2017, p. 224). The dialectic between study and research is assumed to give rise to derived 
questions. As for the SRP described below, a derived question could be: “in order to answer how long 
the route is, I need to know how to find the length of a vector?”. This question addresses the content, 
but derived questions can also be technical in their nature, such as how to define a vector in Geogebra? 
In ATD we consider those questions and their answers as mathematical and instrumented 
praxeologies. In the planning of a SRP, it might also be relevant to consider meta-cognitive teacher 
questions such as “what have you done so far in order to answer Q0”. This would be considered part 
of the didactical praxeologies employed by the teachers. Providing teachers with paradidactic 
infrastructures, meta-cognitive questions would be addressed in the PO1, when preparing the lesson 
discussing whether to pose such a question and how it would affect the students learning outcomes. 
This shared preparation is supposed to develop their didactical praxeologies. During the PO2, the 
teachers’ didactical equipment will be further developed, when discussing the learning outcomes of 
the students in relation to the group of teachers’ choices regarding didactical techniques.  

A way to share the learning potentials of an SRP, is to map the derived questions and how they are 
related, which form a mind map like tree-diagram. In ATD these diagrams are created by researchers 
based on the epistemological analysis of the domain being taught (e.g. see Jessen, 2014). In our PD, 
the participants were encouraged to develop these maps based on their knowledge on the students’ 
prerequisites, knowledge to be taught, preferred textbooks, possible google hits etc. This is one way 
to engage the teachers in studying the MO of their teaching, which is the first challenge for teachers 
engaging with SRP in PD (Barquero et al., 2018). In our PD, the participants were suggested to use 
the tree-diagrams, named ‘knowledge-maps’, as navigation tools when teaching (see Jessen & 
Rasmussen, 2018).  When evaluating the teaching design in PO2, we wanted the teachers to discuss 
what questions and answers were raised by the students during the teaching, and based on this, discuss 

Figure 1: The sketch show the didactic and 
paradidactic infrastructures surrounding teaching 

(Miyakawa & Winsløw, 2013, p. 189) 
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the learning outcomes. In ATD research, we use discourse analyses to identify what answers or part 
of answers students developed and, through those discuss, what questions they might answer. 
Students raise those implicitly or explicitly. This methodology is fully described in Jessen (2014, 
2017). In the PD, the participants did not complete such an a posteriori analysis, but we discussed 
questions and answers raised by students, as result of the realised MO and DO, which led to 
suggestions for improving the SRP designs and a revision of the lesson plans. As inspiration for the 
DOs required to realise an SRP, the participants in our PD were presented with the DOs employed in 
Jessen (2014, 2017) (group work, sharing sessions, strict time schedules etc.). They were articulated 
as methods to realise SRPs. The participants were encouraged to develop their own methods, drawing 
on their teaching experiences. For each group of teachers, the planned teaching was materialised in a 
lesson plan similar to those developed for the MERIA project (Jessen & Winsløw, 2018, p. 3) with 
formulations of concrete learning goals, broader goals, age of students, time of school year, type of 
institution, teaching materials including Q0, media suggested to the students and the knowledge-map 
showing the teachers a priori analysis. In the end, we had four columns indicating: timeline, teachers’ 
actions, students’ actions and observation notes. During the realisations, the observing group 
members took field notes on how the lesson differed from the plan and what questions and answers 
were provided by the students. Depending on, what was possible, the participants in the PD collected 
testimonial from the lessons in terms of: video recording of students presenting their work, pictures 
of students’ presentations, handed in assignments etc. Inspired by Barquero et al. (2018), we describe 
the realisation of the PD through one group of teachers’ work with a SRP on vector algebra, after 
providing the context of the PD. 

The context of the PD and course design 
In 2017 upper secondary education was reformed in Denmark, where mathematics was altered with 
respect to suggested teaching methods and elements of content knowledge (re)introduced, where 
others were skipped. This created a need for a PD on didactics related to the specific changes of the 
content (see elaboration in Jessen & Rasmussen, 2018, p. 346). The course was designed as 7 teaching 
session lasting 4 hours each. The course covers: the why’s and how’s of inquiry based teaching and 
modelling based on SRP as a design tool, piecewise linear functions, vector algebra, discrete 
mathematics and probability theory. Participants were encouraged to join with a colleague so the 
teachers could collaborate between sessions, and potentially build para-didactic structures as 
described in Figure 1. A total of 47 teachers participated (with 1-30 years of teaching experience) 
from all over Denmark and formed groups of approximately 4 teachers, which they kept working 
with throughout the course. Every teaching session, except the first one, had an element of sharing 
and peer-feedback on SRP designs (Q0, knowledge maps, media, etc.) and on the realised SRPs of 
each group, based on testimonial from the classroom shared with the rest of the participants. Before 
ending each session, all groups presented their ideas for the next SRP and got feedback on 
formulation, feasibility of the lesson plan and further media. The groups then improved their SRPs 
and lesson plans before realising them in their classrooms. Not all teachers were able to complete or 
test their SRPs due to extraordinary workloads implementing the reform. But most participants were 
eager to share and get feedback on their ideas and experiences. The knowledge collected on the PD 
(from the PO1 and PO2) is the teacher’s notes (which is also the author of the paper), the finalised 
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lesson plans and the documentation collected and shared by the participants from their 
implementation of SRPs. Hence, the course does not as such create para-didactic infrastructures 
around the teachers’ practice, but rather it offers the teachers para-didactic situations to initiate 
reflections and professional development. 

An example of para-didactic infrastructures from the course  
In this section, we will describe an example of how the para-didactic situations were implemented in 
the PD. A group of teachers worked with the problem of introducing vector algebra in grade 10, which 
earlier was taught at grade 12. During the third session of the PD, the participants shared teaching 
materials on vectors. Participants compared materials with the new curriculum and discussed what 
elements could be captured in a generating question, Q0. They agreed, that a problem concerning 
routes and navigation, could create a need for the geometric definition of a vector, which they found 
interesting. The Q0 should not require any knowledge from physics, since a great number of the 
mathematics students do not take physics. This is considered the initiation of the PO1. 

During the fourth session of the PD, the groups shared initial formulations of their Q0’s, they orally 
explained possible paths or strategies for the students to take, when trying to solve the problem. Our 
group presented the idea of letting students imagine they were a captain in the Caribbean Sea, who 
needed to guide his crew from one city to another. The group had found a map and a compass rose 
and wanted to include Geogebra, but hesitated on how to do this: should they provide students with 
coordinates or let them draw gridlines on the paper version of the map in order to transfer the route 
to Geogebra? The choice of media depended on this decision. It was discussed in general at the PD, 
if students would need vectors or simply use geometry – would suggested media inspire the students 
to use the notion of vector? It was discussed if the word vector should be mentioned in the Q0 and 
how that would affect the students’ learning. These questions are considered tasks, which might 
develop teachers’ didactical praxeologies and a further enrich the PO1. The group of teachers 
completed their SRP design and lesson plan after this session. The learning goals, stated in the lesson 
plan, for the 120 minutes teaching were: “to know the geometric definition of vectors including 
position vector, be able to construct a sailing route according to the problem in terms of vectors or 
linear combination of vectors (incl. being able to add vectors based on their coordinates, be able to 
scale up vectors), determine the length of a vector and be able to do this in Geogebra”. The broader 
goals of the lesson were: “to gain intuition of vector addition being commutative and associative as 
well as gain knowledge on unit vectors, see the need for them and deduce one from any given vector”. 
Further the group expected the students to develop problem solving competency and aid and tool 
competency, while working with the problem. The generating question the group formulated was as 
follows: 

“Q0: You are a captain in the Golden Days of piracy in the Caribbean and you are to guide your 
ship from Havana to Santo Domingo (see the attached map). Your crew covers ‘landlubbers’, 
‘treasure hunters’ and sailors. They only answer to directions formulated as: “go 20 miles south 
(S), then 30 miles south east (SE) and then 100 miles North West (NW)”. A while ago you made 
the distance from Aruba to Montserrat in 3 days and you expect to travel by the same average 
speed. What orders would you give your crew and when do you expect to arrive?”   
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Figure 2: A screen dump showing the Geogebra file and the compass rose handed out 

The students were provided with a Geogebra file where the window looks like the picture on the left 
side of Figure 2, where unit vectors indicating the directions of N, S, E and W were defined together 
with points indicating the mentioned cities. Furthermore, students were provided with a compass rose 
on a piece of paper as the one shown in the right side of figure 2. Media suggested to the students, 
but not required to use, was: 10 pages in a textbook and a short manual introducing vectors in 
Geogebra created by the teachers. The group expected students to find media online e.g. Wikipedia 
and Webmatematik, both in Danish. The lesson was planned to start by showing the students Q0 and 
the suggested media. Furthermore, the teacher had added a function to the Geogebra file called 
“vector from starting point”, forcing Geogebra not to draw all vectors from origin. From the 
perspective of ATD, we consider the Geogebra file the milieu of the SRP. Students were expected to 
explore how they can construct a route based on points, lines and vectors depending on how they 
adapt to the milieu, study the notion of vector and develop an answer in the Geogebra file. In this 
respect, students are learning from the dialectic between media and milieu, between research and 
study processes. 

The introduction of the problem, media, the Geogebra file, the connection of computers, and dividing 
the class into groups of three is estimated to take 20 minutes. The students are planned to work on the 
problem for 20 minutes, where the teachers observe the students and assist them with technical 
problems in Geogebra. The students present their work during the last 20 minutes. After the lunch 
break the teacher spends 5 minutes reminding the class of strategies presented earlier and introduce 
the Geogebra function “vector from starting point”. Then the groups had another 20 minutes preparing 
before using 20 minutes on students’ second presentations. During the last 15 minutes the students 
are asked to write down their solutions and strategies with arguments, why they chose the described 
strategies. After the lesson the students hand in the description together with their Geogebra file. 
During the following lesson, vector exercises similar to those of the written examinations were 
worked on by the class. The lesson plan represents the group of teachers’ outcome of the PO1. 

The teachers summarised their experiences and observations and wrote it down straight after the class. 
Together with the observation notes taken during the lesson, they completed the lesson plan, and from 
this we get a picture of the initiation of the PO2. Furthermore, the teachers video recorded the two 
sharing sessions, where the students connected their computers with the projector and shared their 
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work. During the fifth session of the PD, the teachers presented their experiences with their SRP by 
sharing the lesson plan, and video recordings. Based on this it was discussed, if the learning goals 
were achieved and how they were achieved. The videos showed that many students started working 
with line segments creating a need for directions corresponding to NW, SE etc. This led the students 
to experiment with the notion of vector and Geogebra syntax. Some students created a compass rose, 
defining the vector NE as starting from (0,0) and ending in (1,1) and NNE as the vector with end 
point (12, 1). But the groups found it unpractical with “unit” vectors of different lengths, when 
calculating the length of the route. Hence, the students needed real unit vectors, which were discussed 
in relation to the unit circle. In the PD, participants agreed that most students had achieved the 
intended learning during the two hours. However, it was questioned, if all students were able to solve 
the tasks of the following lesson, if not being allowed to use Geogebra. What was questioned was the 
strength of the logos of the developed praxeologies and if those could be used in other contexts e.g. 
pen and paper mathematics. The peer-feedback and discussion of the realised SRP led to suggestions 
for improvement of the design and the lesson plan, which concluded the PO2. 

Concluding remarks 
From an electronic survey evaluating the PD, we know that the participants felt obliged to prepare, 
to implement and share experiences because of the structure of the PD. Participants noted that it was 
the first time they were allowed and encouraged to dwell on and discuss students learning in this 
detail – and similar for the planning of teaching. This seemed to be sufficient support, making 
participants comfortable enough to implement their SRP designs in their classrooms. The sharing 
further encouraged them to realise their SRPs, because of the contagious enthusiasm from those who 
already tried it. The numbers of realised SRPs indicates, that creating para-didactic situations might 
further teachers’ outcomes of PDs in terms of implementing SRP based modelling in their practice. 
Still, more research is needed in this area. What is the role of the researcher, teaching the PD? How 
does the PD affect teaching practices in the long run? Are the collaborations between participants 
sustainable and under what conditions? And what research methodologies can capture the MO and 
DOs developed by students and participating teachers respectively in large-scale studies? 
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Introduction 
In many previous studies, mathematical modeling is considered an instrument to develop 
mathematical creativity, in rather individual contexts (e.g., Palsdottir & Sriraman, 2017, p. 49). 
However, there is a growing consensus that group creativity is important for the 21st century 
(Woodman, Sawyer, & Griffin, 1993). This study aims to explore interaction supporting the 
development of group creativity during mathematical modeling activities and the impact of group 
creativity on the mathematical modeling process. 

Theoretical Background and Methods 
Mathematical modeling is a cyclic and recursive process that requires understanding a real situation 
and creating a model (Jung et al., 2018, p. 155). Figure 1 illustrates key stages in this iterative 
modeling process. Vorhölter (2017, p. 345) discuss a perspective of group based modeling activities 
that potentially can support the development of group creativity. Group creativity has been considered 
a function of individual behavior, the interaction of the individuals involved, and the creative synergy 
of the interaction within the group (Woodman et al., 1993, pp. 302-304). Jung and Lee (2018, p. 373) 
made a distinction between three types of interaction when investigating group creativity, namely: 
mutually complementary-, conflict based-, and metacognitive-interaction. This study aims to 
investigate the following two questions: (1) What types of interaction can be observed during 
modelling activities that support the development of group creativity? (2) What impact on the 
modelling process can be observed in the interactions? 

 
Figure 1: Mathematical modeling process chart (Jung et al., 2018, p. 155) 

Six 11th grade students and a teacher participated in this research. Based on our previous study 
suggesting that 3 to 4 members were appropriate, the students were divided into two groups. The 
researchers and the teacher worked together to design the task, and how to implement based on the 
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question: “What are your own strategies to prevent or cope with blackouts?”. All the lessons were 
videotaped, audio-recorded and transcribed. Field-notes were made during the lesson observations. 
Students’ worksheets were collected. The unit of analysis was the observed types of interaction at 
each stages of the mathematical modeling process. 

Result and Discussion 
The three types of interaction supporting the development of group creativity and its creative synergy 
were observed in the activity and found to impact the development of their group creativity. Both 
mutually complementary- and conflict based-interaction were observed in both groups, but 
metacognitive-interaction was observed only in Group A. First, mutually complementary interaction 
was observed at the real world inquiry and the factor finding stages. Although each group member 
shared their various thoughts, meaningful information for deriving mathematical model was made by 
the accumulation of all those thoughts through mutual complementary interaction. The creative 
synergy and effect of the interaction was the expansion of factors that could affect real world 
phenomena related to blackouts. Second, conflict based interaction was observed at the simplification 
stage. Because of the diversity of thoughts and their inconsistency, conflicts had occurred among 
group members. This interaction resulted in rich evidence, as the creative synergy, for key factors to 
consider and clarification and validation of the criteria to evaluate the selected key factors. Third, 
metacognitive interaction was observed at the mathematical model derivation stage. Each group 
reflected on the modeling process and their initial mathematical model. As a result, the students could 
have an elaborated mathematical model with reasonable justification. In this study we extended the 
scope of the effectiveness of mathematical modeling to develop creativity education from the 
individual context to the group context. Previous studies stressed the necessity of practical studies on 
interaction as a process of supporting the development of group creativity (Sawyer, 2012, pp. 243–
244). This study provides the first steps in this direction. 
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Both empirical modelling (EM) and theoretical modelling (TM) are essential in mathematical 
modelling. This study explored how graduate students promoted teaching competencies for 
mathematical modelling by conducting EM and TM with the pendulum task. Through the analysis of 
modelling lessons, we found that the experiences of both EM and TM with the same material were 
important for the students to understand a modelling cycle and the aims and perspectives of 
modelling.  

Keywords: Mathematical modelling, teacher education, empirical modelling, theoretical modelling. 

Introduction 
Educating teachers about teaching mathematical modelling is crucial, because the instruction is 
demanding for teachers (Blum, 2015). Several courses, programmes and materials for supporting 
pre-service and in-service teachers in teaching modelling have begun to be developed around the 
world including CERME community (e.g., Cai et al., 2014; Barquero, Carreira, & Kaiser, 2017). 
Various competencies are required for teaching modelling. Borromeo Ferri (2018) elaborates four 
competencies for teaching modelling: Theoretical competency (incl. modelling cycles or aims and 
perspectives of modelling as background knowledge), Task competency (incl. multiple solutions or 
cognitive analyses of modelling tasks), Instruction competency (incl. interventions, support and 
feedback), and Diagnostic competency (incl. recognising students’ difficulties and mistakes). She 
mentions that these four competencies are the basis for the structure of teacher education on teaching 
modelling. Although these four competencies are related each other strongly, theoretical competency 
is necessary and important background for teachers’ practice on teaching modelling (Borromeo Ferri, 
2018). 

Some of the common modelling approaches include empirical modelling, theoretical modelling and 
so on (Ang, 2018). Berry and Houston (1995) mention that both empirical modelling and theoretical 
modelling are essential in mathematical modelling. Similarly, it might be valuable for teachers to 
experience both modelling and understand their features in order to foster Borromeo Ferri’s (2018) 
teaching competencies for modelling (e.g., theoretical competency). Limited research exists, 
however, on teacher education involving both empirical modelling and theoretical modelling. In this 
study, we explore how teachers promote Borromeo Ferri’s (2018) teaching competencies for 
modelling through teacher education addressing both empirical and theoretical modelling. 
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Study Background 
Empirical modelling (EM) and theoretical modelling (TM) 

Berry and Houston (1995) define data-driven modelling cycle as empirical modelling (EM). EM 
cycle includes collecting data through experimentation and measurement, making sense of data, and 
making graphs and regression equations that fit to the data. Berry and Houston (1995) mention that 
“[e]mpirical models are fairly easy to find providing that we are given or can collect the data from 
appropriate experiment.” (p. 10), and that “[empirical modelling] has severe limitations in the validity 
of our interpretations from the graph.” (p. 10), and that “[t]he mathematical answer might be perfectly 
correct but the interpretation in the context of the real world is meaningless.” (p. 12). On the other 
hand, Berry and his colleague call theory-driven modelling process a theoretical modelling (TM). 
They recognize TM process as a different one from EM process. They conceive TM process as 
mathematical modelling including understanding the problem, identifying the important features, 
making assumptions and simplifications, interpreting and validating the model, and improving the 
model and explaining the outcome. Both EM and TM are required to understand and describe the real 
world, and predict results (Berry & Houston, 1995, p. 23). This paper focuses on both EM and TM as 
components of mathematical modelling.  

Teacher education on empirical modelling and theoretical modelling 

We reviewed how EM and TM were addressed in pre-service teacher education on modelling from 
the International Community of Teachers of Mathematical Modelling and Applications (ICTMA) 
(see table 1). We focused on six chapters mentioning the concrete teaching tasks and materials. One 
chapter addressed only EM task; four chapters addressed only TM tasks; one chapter addressed both 
EM tasks and TM tasks. None of chapters used same material throughout EM and TM. If pre-service 
teachers tackle both EM task and TM task, they can understand modelling in a multifaceted manner. 
Furthermore, they can grasp the connection between EM and TM by experiencing EM and TM using 
the same material. 
Authors EM Task TM Task 
Tan & Ang (2013) Car stopping distance task Fuel tank calibration task  
Winter & Venkat (2013) Contextual word problems 
Widjaja (2013) Parking space task 
Hagena (2015) Modelling task “Brickhouse” 
Villarreal, Esteley, & Smith (2015) Trash and recyclable collection 
Villa-Ochoa & Berrio (2015) Planting trees problem 

Table 1:  EM and TM tasks in pre-service teacher education from ICTMA-book chapters 

This study addressed the research question: How did graduate students promote teaching 
competencies for modelling (e.g. understanding of modelling cycle and significance of mathematical 
modelling) by experiencing both EM and TM with the same material?  
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Design and Methodology 
A pilot study of mathematical modelling lessons for teacher education which comprised four lessons 
(90 mins each) was designed and implemented for two Japanese in-service teachers and two 
pre-service teachers. Student A had 16-years teaching experience in lower-secondary schools, 
whereas student B had 20-years in upper-secondary schools. Student C and B were pre-service 
teachers and graduate students in mathematics education at the first level. The instructors were the 
first and second authors. The participants had little knowledge about modelling. 

Berry and Houston (1995) illustrate two examples of EM and TM (i.e., audio cassette recorder and 
pendulum). We consider the pendulum example a better case for novice teachers of modelling and 
chose that. From the viewpoint of EM, the pendulum example is easy to image its movement, to 
realize important variables, and to collect data. From the viewpoint of TM, the needed knowledge of 
mathematics and physics for the pendulum is less than the recorder example. Hence, in the pendulum 
phenomenon is easy to connect EM with TM. The pendulum phenomenon sometimes induces 
students’ misconceptions and their own ideas about matter (Osborne & Freyberg, 1985) through EM, 
and students’ cognitive conflicts result from the misconceptions (Saeki, Ujiie, & Tsukihashi, 2001). 
TM, explaining the mechanism of the phenomenon, becomes inevitable activities to resolve the 
cognitive conflicts. The main theme of the lessons and main pendulum EM tasks and TM tasks are 
shown in Figure 1. 

Main Theme of the Lessons 
To consider and clarify the key points for the development of teaching materials and problems that are 
related to the daily situation like the pendulum. 

Main Pendulum EM Tasks 
Let’s find the relationship between the pendulum length and period empirically.  

・There is the scene of a girl rowing a huge swing in the introduction of the Japanese famous animation 
video. How long is the huge swing length when the swing period is twelve seconds? 

・Let’s confirm your conjectures of the huge swing length based on the result of the pendulum empirical 
experiment.  

Main Pendulum TM Tasks 
Is the empirical result of the huge swing length true? Let’s verify it theoretically. 

・Let's find theoretical formula with the knowledge of mathematics and physics. 
・Compare the regression equation elicited from EM with the formula elicited from TM. 

Figure 1: Main theme of the lessons and main pendulum EM and TM tasks 

The activities of modelling lessons for teacher education are shown in Table 2. In the first lesson, the 
students elicited and choose variables concerning the pendulum empirically through graphing 
calculators and sensor kits. In the second lesson, they drew graph using data from experiments and 
performed regression. In the third lesson, they conjectured and verified graphs of Displacement-Time, 
Velocity-Time, and Acceleration-Time about pendulum based on the physical knowledge. In addition, 
they elicited the formula about the proportional relationship between displacement and acceleration. 
In the fourth lesson, they elicited the formula T=2π  and confirmed the consistency between the 
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theoretical model and empirical model in the first lesson. At last, they looked back on the learning 
processes in the lessons from the viewpoint of modelling cycle. 
Sequence 
of Lessons Activities in Lessons EM TM 

1st lesson ● Eliciting variables concerning the pendulum (e.g. mass of bob,
amplitude, and pendulum length)

● Finding that the pendulum period depends on the pendulum length
through teacher’s demonstration

● Collecting data about the pendulum length (l) and pendulum period (T)
through graphing calculators and sensor kits

●

2nd lesson ● Plotting data and draw the graph from the data
● Eliciting the regression equation T 2
● Checking the equation using data from experiment
○ Drawing hypothesis graphs of Displacement-Time, Velocity-Time, and

Acceleration-Time about pendulum

● ○

3rd lesson ○ Verifying students’ graphs of Displacement-Time, Velocity-Time, and
Acceleration-Time about pendulum based on the physical knowledge

○ Drawing hypothesis graphs of Displacement-Restoring force, and
Displacement-Acceleration

○ Verifying students’ graphs of Displacement-Restoring force, and
Displacement-Acceleration based on the physical knowledge

○  Eliciting the formula  about the proportional relationship 
between restoring force and displacement based on the graphs 

○ Eliciting the formula  about the proportional relationship 
between restoring force and acceleration based on the graphs 

○ Eliciting the formula  about the proportional relationship 
between displacement and acceleration 

○

4th lesson ○ Eliciting the formula  between pendulum period and angler 
velocity based on the definition of angler velocity 

○ Reformulating the relationship between restoring force 
and displacement by using angler velocity and the mass of the bob 

○ Reformulating the relationship  between pendulum 
period and the mass of the bob by using  and 

○ Eliciting the formula  about the relationships between 
restoring force and pendulum length by using the mass of bob, gravity 
and displacement 

○ Eliciting the formula T=2π  by using ,  
 and 

●○ Confirming the consistency between the theoretical model and
empirical model, the regression equation, in the first lesson

○

●○ Looking back on the learning processes in the lessons from the
viewpoint of modelling cycle ● ○

Note: ●=EM activity; ○= TM activity 

Table 2: Outline of modelling lessons 

Our data collection comprised students’ descriptions in the post-lesson questionnaires about material 
development, teaching design, and teaching implementation with real-world context. Their 
descriptions were coded and categorised according to Borromeo Ferri’s (2018) teaching 
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competencies for mathematical modelling. In this study, three of the four abilities were confirmed as 
shown in Table 3. 

Competencies and focused contents  Examples of students’ descriptions 
Theoretical competency 

(A) Knowledge about modelling cycles 
(B) Knowledge about goals/perspectives for 

modelling and modelling tasks 

(A) Descriptions about process and phases related to the 
transitions between real world and mathematical world  

(B) Descriptions about the significance of modelling and 
modelling tasks  

Instruction competency (Knowledge about 
interventions, support and feedback) 

Descriptions about the necessity of the interventions for 
connecting between the real world and the mathematical 
world  

Diagnostic competency (Knowledge about 
students’ difficulties and mistakes) 

Descriptions about designing teaching modelling according to 
students’ abilities  

Table 3: Students’ descriptions according to Borromeo Ferri’s (2018) teaching competencies for 
modelling 

Results 
This section illustrates the findings about students’ understanding of modelling cycle, aims and 
perspectives of modelling, and beginning of understanding related to teaching modelling.  

Students’ understanding of modelling cycle including EM and TM 

Student B summarized the modelling cycle including EM and TM (Figure 2).  

Figure 2: Student B’s description to post-lesson questionnaires 

Student B clarified the modelling cycle through the modelling lessons. Description related to the 
modelling cycle was only one; however, whole students discussed about the modelling cycle in the 
reflection of the lessons. They all might understand the modelling cycle including EM and TM. 

Students’ understanding of aims and perspectives of modelling and modelling tasks 

Three students described aims and perspectives of modelling and modelling tasks. Student C 
understood the difference between EM and TM as perspectives of modelling: “Modelling with 
experiments was concrete for me and was pleasant to imagine the result of pendulum. But, I 
wondered if the result is right or not”, “Modelling without experiment was difficult for me, but the 
process and the result of formula was right”, and “The modelling with the experiment of pendulum 
was very interesting. The pendulum experiment deepened the understanding of the period of 

1. The contents of the task are interesting for students. 

2. Students can experiment and analyse phenomenon in real society. 

3. Students can elicit mathematical expressions like equations from the experimental results. 

4. Phenomenon in real society can be translated into mathematical contents.  

5. The mathematical contents can be solved with students’ mathematical knowledge. 

6. The mathematical results can be validated and be applied to the phenomenon in real society. 

7. Students can realize the usefulness of mathematics. 
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pendulum”. Student A and Student B identified the usefulness of mathematics as an aim of modelling. 
Student A described that the lessons of modelling could convey the usefulness of mathematics to 
school students: “Through the lessons that connected between mathematics and the real world, 
students would be surprised that mathematics is hidden in real-world situations and they might be 
able to notice the usefulness of mathematics”. Student B described the role of mathematics in real 
world and society: “Mathematics is used at various places in the real world. For example, the cord, 
GPS, and statistics. I would like to develop the lessons emphasizing to realize that mathematics might 
be powerful and useful for students to solve real world problems”. 

Beginning of understanding related to teaching modelling  

In the fourth lessons, four students reflected the learning processes from the viewpoint of modelling 
cycle. From these experiences, they found the importance of observing students’ situation and of 
preparing teaching materials for EM and TM. Students A, C, D realized the necessity of the 
interventions in EM and TM. Student A emphasized that teachers should grasp students’ 
mathematical knowledge before modelling lessons, especially TM activities: “I would like to design 
my lessons that the students are able to consider real world problems and to grow their viewpoint for 
consideration using previous mathematical knowledge. Student D described similarity as follows: “I 
experienced EM and TM. Through my experience, I thought that TM was difficult for students who 
did not get some knowledge of mathematics and physics. I think it is important to consider students’ 
situation and to prepare for teaching materials to diverse students”. Student C described the 
importance of teachers’ pre-experiment in EM: “For modelling with experiment, I must make plan to 
have included time for carrying preparations of experiments and means thoroughly”. Student A 
understood the necessity of the intervention for connecting between the real world and the 
mathematical world. He described as follows: “The facilitation of connecting the mathematical world 
and the real world is necessary”. He realized the needs of preparation for mathematical modelling. 
Student B found the importance of modelling lessons according to students’ abilities: “Through the 
lessons for modelling, I should plan the lessons flexibly and diagnose students' situation and 
understanding in case of the difficult modelling with mathematics for students”. 

Discussion and Conclusion 
This paper has addressed some aspects of students’ understanding about modelling cycle and 
significance of modelling through the experiences of both EM and TM with the pendulum task. From 
the results of the transcripts and the descriptions in the post-lesson questionnaires, three results 
became clear. First is students’ understanding of modelling cycle including EM and TM. Second is 
students’ understanding of aims and perspectives of modelling and modelling tasks. Third is 
beginning of understanding related to teaching modelling that included the necessity of the 
interventions for connecting between the real world and the mathematical world, the necessity of the 
facilitation in EM and TM, and designing teaching modelling according to students’ abilities. 

These results demonstrated the development of Borromeo Ferri’s (2018) theoretical competency, 
instruction competency and diagnostic competency. For example, the first and the second results 
correspond to the theoretical competency. Student A’s description on the necessity of the intervention 
for connecting between the real world and the mathematical world and students A, D, C’s 
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descriptions on the necessity of the facilitation in EM and TM correspond to the instruction 
competency. Student B’s description on designing teaching modelling according to students’ abilities 
corresponds to the diagnostic competency. However, Niss and Højgaard (2011) point out that 
competences are difficult to measure and should be done in a 3D model with technical level, degree of 
coverage, and radius of action. This study focused on the technical level and degree coverage; hence, 
the in-depth assessment of competency is our future work. We believe that experiencing EM and TM 
with the same material (Berry & Houston, 1995) worked for the above results. The students confused 
the difference between the misconception (Osborne & Freyberg, 1985) and the result of experiment in 
EM. In fact, Student D answered this situation: “Findings from my experience of pendulum were 
uneasiness”. This uneasiness born in EM became the driving force for TM elucidating mechanism 
inherent in pendulum phenomenon mathematically and physically. Through the experiences of both 
EM and TM using the same material, the students were able to consider real-world problems deeply 
connecting between inductive and deductive viewpoints. They were able to recognize that EM and 
TM were like opposite sides to the same coin and essential components of modelling cycle through 
the reflection of learning processes via a diagram of modelling cycle (Kawakami, Saeki, & Kaneko, 
2018). In this study, EM produced intellectual curiosity and uneasiness and elicited inevitability of 
the TM. However, the previous study on teacher education on modelling did not focus on the 
relationships between EM and TM. We need rethink the role of experiencing both EM and TM with 
same material in developing teachers’ teaching competencies for modelling in other cases. 
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To provide appropriate support during modelling processes is challenging for teachers. Especially 
modelling tasks based on a holistic approach offer a multitude of solutions that the teacher has to 
deal with. Several authors therefore emphasize the importance of a precise diagnosis in the 
intervention process. Adaptive interventions are a suitable support for students whereas a previous 
diagnosis should be the basis. A process model is presented that describes an idealized intervention 
adapted to students’ modelling processes. In this model, a diagnostic and an intervention-related part 
can be distinguished. We investigate the question whether adaptive intervention competence can be 
described through a one- or two-dimensional model and whether a cause and effect relationship 
between a correct diagnosis and the selection of an adaptive intervention can be determined. The 
results indicate that the meaning of a previous diagnosis can be confirmed empirically in this sample. 

Keywords: Diagnosis, intervention, adaptive behaviour, linear regression. 

Introduction 
When using modelling tasks according to a holistic approach, group work is an effective instructional 
strategy (Clohessy & Johnson, 2017). In less structured and independently carried out working 
processes, adaptive teacher interventions provide appropriate help for students. When difficulties 
arise in group work, teacher interventions should ensure progress without giving too many content-
related hints on the solution. Frequently, a spontaneous reaction is necessary and there is little time 
available. Adaptive interventions should create a balance between direct instruction and students’ 
independent work (Leiss, 2010).  However, intervening adaptively is therefore a challenging activity 
for teachers (Blum & Borromeo Ferri, 2009). 

For this reason, a modelling seminar was developed and integrated into university teacher training. 
The overall intention is to facilitate pre-service teachers’ adaptive intervention competence and 
evaluate their development through the seminar. By a teacher intervention, we generally mean a 
verbal intrusion into the students' solution process (cf. Leiss, 2007). We present the construct of 
adaptive intervention competence which is measured using a quantitative test instrument. In this 
article, the data of the seminar are used to examine the dimensionality of the construct and to 
investigate the cause and effect relationship between diagnostic and intervention-related aspects. 

Adaptive interventions 
Leiss (2007) has developed a general model for teacher interventions (see Figure 1) in which he 
differentiates between three aspects: the basic knowledge, the area and the characteristics of an 
intervention (Tropper, Leiss, & Hänze, 2015). A diagnosis of the situation (trigger of the intervention, 
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previous interventions, knowledge required to solve the task, students’ competence level, time 
available) and a diagnosis of difficulties (type of difficulty, area and cause of the difficulty, 
assignment in a theoretical model – here: the modelling cycle) is necessary to create a basic 
knowledge which is crucial for the selection of an adequate intervention. 

Figure 1: Process model for general teacher interventions (Leiss, 2007; translation by authors) 

The area of intervention describes to which aspect the intervention refers to. Organizational 
interventions concern the design of the learning environment (“Watch the time!”). Affective 
interventions influence students’ emotional aspects extrinsically (“You can do this!”). Strategic 
interventions are help on a meta-level (“What is still missing?” (Blum & Borromeo Ferri, 2009, 
p. 52)). Content-related interventions are related to concrete contents of the task (“A car consumes 7
litres per kilometre.”). The area is the central feature of an intervention (Leiss, 2007). In particular,
strategic interventions are considered to have high potential to support students to overcome
difficulties in the modelling process (Link, 2011; Stender & Kaiser, 2017).

Interventions can be classified by different characteristics like the intention of the intervention 
(statement, question, request), its duration and the addressee (single student, group, whole class) 
(Leiss, 2007). The aspects basic knowledge, area and characteristics of an intervention describe a 
general and idealized intervention. Based on that, Tropper et al. (2015) defined the notion of adaptive 
teacher interventions which 

are based on a diagnosis of the situation and can be described as an independence-preserving form 
of support, adapted in form and content to students’ learning process, in order to enable them to 
overcome a (potential) barrier in the process and to continue the process as independently as 
possible. (2015, p. 1226) 

Four essential characteristics of adaptive interventions can be identified from this and further 
definitions (see Leiss, 2007; Stender & Kaiser, 2017). In our work adaptive interventions: 

· are based on a diagnosis.
· are adapted in form and content to students’ learning process.
· provide minimal help.
· preserve independence.

These four aspects are crucial for supporting students in mathematical modelling processes. They are 
the basis for assessing interventions in terms of adaptivity. 
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Adaptive intervention competence in mathematical modelling processes 
Due to the high demands on adaptive interventions in mathematical modelling processes, a process 
model was developed using the work of Leiss (2007). The model describes an idealized intervention 
supporting groups of students in mathematical modelling processes (see Figure 2).  

Figure 2: Process model for adaptive interventions in mathematical modelling processes 

The Steps 1 and 2 form the diagnostic part of the model and thus the diagnostic competence. An 
accurate diagnosis is essential for the selection of an adaptive intervention (Blum & Borromeo Ferri, 
2009; Leiss, 2007). If difficulties arise in the solution process, they have to be diagnosed. It is useful 
to identify the modelling phase first (Step 1 in Figure 2) in which the students are currently working 
(Borromeo Ferri & Blum, 2010). Based on knowledge about typical difficulties in the individual 
modelling phases, initial indications for the cause of the difficulty can be obtained. Several studies 
indicate potential difficulties in single modelling phases (e.g., Galbraith & Stillman, 2006). With the 
help of this knowledge a focused diagnosis is possible (Step 2 in Figure 2). Step 3 describes the choice 
and realization of the intervention. Few studies examined the effectiveness of various interventions. 
Studies by Link (2011), Stender (2016) and Vorhölter, Grünewald, Krosanke, Beutel and Meyer 
(2013) indicate that strategic interventions are particularly suitable. Interventions that follow rules of 
good communication consist of several interventions at different strategic levels (Link, 2011). 
However, depending on the situation and its framework conditions, organisational, affective or 
content-related interventions may be suitable. In Steps 1 to 3 – but especially in Step 3 – the 
knowledge about the situation (see Figure 2; Leiss, 2007) influences decision making. This 
knowledge is ideally acquired before the intervention process due to its crucial meaning for the 
selection of an adaptive intervention. At this point, it may be suitable not to intervene prematurely. 
This provides students with the opportunity to overcome the difficulty by themselves (Leiss, 2007). 
The adaptivity is appraised before implementation – a priori – on the basis of the four characteristic 
aspects mentioned above. Finally, an evaluation must be carried out after implementation – a 
posteriori. It has to be determined whether the intended behaviour has occurred, whether the difficulty 
has been overcome and whether students are working independently. The adaptivity of an 
intervention can finally be determined afterwards. Even if it matches all aspects of an adaptive 
intervention, a priori, it needs not be successful (Stender, 2016; Vorhölter et al., 2013), a posteriori. 
The intervention is assessed by the teacher before and after implementation. Therefore, we distinguish 
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between a priori and a posteriori intervention competence. If necessary, the teacher has to go through 
the intervention process again. 

The process model describes cognitive and action-related aspects of an intervention. The ability to 
perform this process appropriately is what we call adaptive intervention competence in mathematical 
modelling processes. 

Hypotheses 
In this article, we investigate the dimensionality of the measured construct and whether the diagnostic 
competence (Steps 1 and 2) and the a priori intervention competence (Step 3) show an empirical 
interrelation. Since various authors emphasize the importance of an accurate diagnosis for the 
adaptivity of an intervention (Blum & Borromeo Ferri, 2009; Leiss, 2007), our hypotheses are: 

(H1)  The cognitive part of adaptive intervention competence can be described by a two-
dimensional model (diagnostic and a priori intervention competence). 

(H2) There is a cause and effect relationship between diagnostic and a priori intervention 
competence (Klock & Siller, 2019). 

Method 
Pre-service teachers were surveyed with the help of a quantitative test instrument in a pre-post-design 
before and after attending a teacher training seminar on mathematical modelling. We use this data to 
answer the mentioned research questions. Since the evaluation of the seminar is not part of this article, 
we refer to another publication for a description of its contents (Klock & Siller, 2019). 

Sample 

The data were collected in the winter term 2017/2018 and in the summer term 2018. The pre-service 
teachers are all trained for teaching professions at secondary schools. The sample description is given 
in Table 1. The genders are distributed almost evenly, the students are on average 23 years old and 
are in their sixth to seventh term of study. 

n Gender Age Term 
 male/female M SD M SD 

78 35/43 23.06 2.69 6.71 2.89 

Table 1: Sample description 

In order to generate a sufficient sample size for the analysis of dimensionality, the method of virtual 
persons according to Hartig and Kühnbach (2006) was applied. In this approach pre- and post-test 
data of the same persons (n=156) are used in a simple logistic Rasch model. The advantage of this 
approach is that items’ difficulty parameters are estimated using the same model in pre- and post-test. 
However, potential dependencies between the measured values of the same person are not considered. 

Instrument 

Piloting the test in another sample (n=66), four of ten task vignettes were eliminated based on 
statistical quality criteria. The test instrument (Klock & Wess, 2018; Klock, Wess, Greefrath, & Siller, 
2019) consists finally of six text vignettes, each showing a modelling task and a typical students’ 
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conversation while solving the task. The scale “diagnosis” consists of three multiple-choice items per 
text vignette (18 items) with four possible answers each. The scale “intervention” consists of complex 
multiple-choice items with four items per text vignette (24 items; see Table 2). 

Scale Number 
of items Item examples 

Diagnosis 

6 

To which phase of the solution process can the group of students mainly be assigned to?  
A. construct/understand ¨ 
B. simplify/structure ¨ 
C. mathematise ¨ 
D. interpret ¨ 

6 

Diagnose students’ difficulty working on the task in this situation. The students … 
A. … have difficulties in making assumptions.  ¨ 
B. … draw the wrong conclusion from their mathematical result.  ¨ 
C. … have difficulties in understanding the context.  ¨ 
D. … use an unsuitable mathematical model.  ¨ 

6 

Please indicate which support goal you would formulate for the group following this 
situation.  
A. Independent acquisition and evaluation of information. ¨ 
B. Critical questioning of results in the modelling process.  ¨ 
C. Independent construction of mental models for given problem situations.  ¨ 
D. Reliable translation of simplified real situations into mathematical models.  ¨ 

Intervention 24 

Please indicate which of the following interventions are suitable for an independence 
preserving support of modelling skills in this situation. 
  suitable unsuitable 
A. “First of all, estimates how long a car is.“  ¨ ¨ 
B. “First, consider only part of the problem, e.g. how many cars are ¨ ¨ 
 in traffic jams at all.“ 
C. “Exactly, calculate this value.“  ¨ ¨ 
D. “Think about how you could get the missing data.“  ¨ ¨ 

Table 2: Item examples for the two scales “diagnosis” and “intervention” (Klock & Wess, 2018) 

The test construction is based on the presented process model (see Figure 2). The diagnostic part is 
operationalized by the scale “diagnosis”. The scale measures the ability to identify the modelling 
phase, the difficulty in the modelling process and to select a support goal. A priori intervention 
competence is operationalized by the scale “intervention”. The statements have to be assessed with 
regard to the last three of the four aspects of adaptivity mentioned above and aspects of the situation 
shown by the text vignette. The items were evaluated based on expert ratings assigning scores 
dichotomously (0 and 1 raw points).  

Results 
To evaluate the dimensionality of the construct, the simple logistic Rasch model (Rost, 1996, p. 115) 
was applied to compare two models (H1). The two models and the results of Rasch analysis are shown 
in Figure 3. The two models are compared with the help of the residual estimates (final deviance, 
AIC). The residuals are significantly smaller in the 2-dim. Model which indicates a better description 
of the data. In both models, all item-fit values are within the recommended interval (standardized 
weighted mean squares > 0.8 and < 1.2) by Bond and Fox (2013, p. 279), which points to a general 
fit of the Rasch model. The reliabilities are acceptable with regard to the EAP-reliability. All 
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indications point to a better fit of the two-dimensional model. We choose the 2-dim. model since it 
describes the data better and the reliabilities are acceptable. 

The scales in the 2-dim. model correlate with high significance (r = .70). The diagnostic and 
intervention-related part can thus be empirically separated but also form the construct of adaptive 
intervention competence in mathematical modelling processes since they are highly correlated. (H1) 
can be confirmed in this sample. 

Model Scale Final 
deviance AIC Standardized  

weighted mean square 
EAP/WLE-
reliability 

1-dim. General factor 6602 6688 .90–1.10 .80/.84 

2-dim. Diagnose 6572 6662 .89–1.14 .75/.70 
Intervention .74/.63 

Figure 3: One- (left) and two-dimensional (right) model and results of Rasch analysis 

(H2) examines the relationship between these two dimensions. For this reason, a linear regression 
was performed using the post-test-scores (n=78). The weighted likelihood estimates of the Rasch 
model (WLE-scores) are used to calculate a linear regression between the scales “diagnosis” 
(independent variable) and “intervention” (dependent variable). Table 3 shows the results. The two 
scales “diagnosis” and “intervention” show a medium correlation (R = .45). There is a medium 
goodness-of-fit for the data (R2 = .20) and a high test power (1–berror = .99). The variable “diagnosis” 
predicts statistically significant the variable “intervention” (F(1, 73) = 18,701, p <.001). If the score 
of the scale “diagnosis” increases by one standard deviation, the score of the scale “intervention” 
increases on average by b = .45 standard deviations. According to that (H2) can also be confirmed in 
this sample. 

R R2 Regression
coefficient B 

Standard 
error of B 

95% - 
confidence 

interval of B 

Standardized 
correlation 
coefficient b 

Significance 

.45 .20 .26 .06 [.14 ; .39] .45 <.001 

Table 3: Results of linear regression 

Discussion and conclusion 
Within the scope of our survey, cognitive performance dispositions of adaptive intervention 
competence were measured. With the help of text vignettes in some extent situational abilities are 
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measured via the selection of a suitable but predetermined answer alternatives. The test does not 
operationalise the construct of adaptive intervention competence completely. Only the diagnostic and 
a priori intervention competence is measured. Action-related aspects are not considered in the test 
instrument. They can be evaluated by means of videos recorded during the seminar. The videos show 
pre-service teachers supporting groups of students working on a modelling task. However, it can be 
assumed that the cognitive skills measured are a prerequisite for an adequate diagnosis and 
intervention. 

It was found that a cognitive aspect of adaptive intervention competence can be described by a two-
dimensional model consisting of diagnostic and intervention-related parts. There is a cause and effect 
relationship between these dimensions. The scale “diagnosis” predicts skills measured by the scale 
“intervention” significantly. This can be confirmed by similar results when pre-test scores are 
analysed. In these data, the effect of the scale “diagnosis” is smaller than in the post-test data. Since 
diagnostic and intervention competences are acquired in the seminar, the significance of diagnostic 
skills seems to increase at higher skill levels (Klock & Siller, 2019). The diagnosis plays an important 
role in the intervention process. However, these preliminary results have to be confirmed by further 
data. 
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Modelling occurs not only when students solve tasks which require modelling activities – also when 
students evaluate given solutions of such tasks, activities which can be described by elements of the 
modelling cycle may be elicited. In particular, when reviewing and refining modelling solutions 
cooperatively in the classroom, students have to face specific requirements, such as reconstructing 
modelling thoughts, examining alternative modelling steps and comparing the quality of different 
modelling solutions. However, there is still relatively little empirical evidence related to how students 
deal with these specific requirements. This paper therefore focuses on empirical findings from two 
studies on this topic. The evidence suggests that the participating secondary students identified 
relevant possibilities of improving the modelling solutions, even if it was difficult for some of them to 
implement all suggestions in their own improved modelling solutions. 

Keywords: Modelling, given modelling solutions, empirical study, students’ suggestions for improved 
modelling. 

Introduction 
When implementing modelling activities in the mathematics classroom, one of the difficulties 
concerns the phase after the students’ individual or group modelling work: In this phase, a dialogue 
about the potentially very different modelling solutions which have been produced can offer valuable 
learning opportunities related to broadening the students’ repertoire of modelling strategies, and also 
related to identifying and improving non-optimal aspects of the modelling solutions. However not 
only for the teacher, but also for the students, this phase can be expected to be very challenging, as 
they have to evaluate others’ solutions and to think of or even implement suggestions for improved 
modelling related to these solutions. Despite the importance of this phase for the mathematics 
classroom, empirical research on how the students deal with such challenges is still needed. The two 
studies reported here consequently focus on this research aim. In a corresponding instrument, 
secondary students were asked to comment on given modelling solutions and to give suggestions for 
improving the modelling thoughts shown in the given solutions. The given solutions were pre-
designed in a way that offered several aspects in which the modelling could be improved. On the base 
of their answers, the students were further asked to actually implement the suggestions in an improved 
modelling attempt. The results show that a majority of the students was able to suggest appropriate 
improvements, but also that it was not easy for them to combine all suggestions for improvement, 
especially when implementing the suggestions in the solution. We conclude from the findings that 
specific learning material focused on given modelling solutions could be a help for the learners. We 
will in the following first give an outline of the theoretical background of our approach, which will 
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lead to the research aim of the two studies. After describing the design and methods of the two studies, 
we will present results, which will be discussed in a concluding section. 

Theoretical background 
A key characteristic of tasks with substantial modelling requirements is their open-endedness, in the 
sense that the modelling cycle (Blomhøj & Jensen, 2003; Blum & Leiß, 2005) can be completed 
several times, in order to revise and improve the modelling, corresponding assumptions, and the 
modelling results again and again. This task characteristic can be seen at the very heart of 
mathematical modelling, as mathematical models very often only afford approximating exact 
descriptions or predictions for situations in the “rest of the world” (Blum & Leiß, 2005). As models 
can mostly be improved, refined in their complexity, or adjusted as far as modelling assumptions are 
concerned, such activities can be seen as typical for modelling. This underlines the importance of 
corresponding activities also for the mathematics classroom (Lesh, 2003): requirements students have 
to deal with when evaluating given modelling solutions or striving to improve them hence correspond 
to substantial learning goals when building up modelling competencies (Maaß, 2006; Blum et al., 
2007; Kuntze, 2010; Brand, 2014). Evaluating given modelling solutions is hence important to study 
– for deepening these thoughts further, we will first introduce our understanding of tasks with
substantial modelling requirements. On this base, we will then turn to key aspects of activities of
evaluating given modelling solutions and identifying suggestions for improved modelling.

Tasks with substantial modelling requirements 

Tasks are central for the over-all instructional quality in mathematics classrooms (e.g. Jordan et al., 
2006); their characteristics are key for creating cognitively activating learning opportunities. In 
particular, for building up modelling competencies of the students (e.g., Kuntze, 2010; see Borromeo 
Ferri, Greefrath, & Kaiser, 2013; Maaß, 2006) characteristics of tasks play a key role. In tasks for 
instance, in which the mathematical model is already given or pre-determined (e.g., Lenné, 1975), 
specific learning opportunities which correspond to key stages of the modelling cycle (e.g. Blomhøj 
& Jensen, 2003; Blum & Leiß, 2005) remain systematically unconsidered. In contrast, tasks with 
substantial modelling requirements emphasise activities of translating between mathematics and the 
“rest of the world” (see Blum, 2007; Galbraith 1995). As for such tasks there is not only one single 
thinkable solution, the students are offered the possibility of own decision-making, students often 
need to make their own modelling assumptions and to select and use mathematical knowledge which 
may be helpful for their modelling. (see, e.g., Maaß, 2006; Blum et al., 2007; Kuntze, 2010). The 
importance of task characteristics thus results from the possibilities the tasks offer to the learners with 
respect of modelling activities. This implies also that task characteristics can make a significant 
difference for the process of working on the task in the classroom. If tasks require, for instance, that 
explicit modelling assumptions need to be made, and if different solution approaches and results are 
possible, this creates the opportunity of discussing different modelling approaches with the students, 
of comparing these approaches, of reflecting on the assumptions and on their role for the modelling 
results, as well as the opportunity of reasoning about students’ evaluations of the different modelling 
solutions. In these activities, it makes sense to consider less the “better” or “worse” modelling results, 
but to focus more on reconstructing, describing, and reflecting the different modelling approaches: 
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such a focus promises deeper and richer learning opportunities as far as knowledge about models and 
modelling strategies is concerned (e.g. Lesh, 2003). The learning opportunities contained in tasks 
may hence have an impact on the modelling-related classroom culture (e.g., Borromeo Ferri, 
Greefrath, & Kaiser, 2013; Blum et al., 2007; Galbraith 1995, Lesh et al., 2010). 

As space limits of this paper restrict us in discussing all relevant aspects of tasks in detail (for more 
detail on this topic see, e.g., Kuntze & Zöttl, 2008), we would like to shortly introduce tasks with 
substantial modelling requirements as tasks which are open as far as given mathematical information 
is concerned, which offer multiple individual solution possibilities, which relate to life contexts and 
corresponding material (e.g., Galbraith, 1995), which require translation processes between 
mathematics and the rest of the world (see Blum, 2007), which require multi-step solution processes 
(see results related to modelling processes in Borromeo Ferri, 2006), which encourage and enable 
learners to connect situation contexts with available mathematical models and to use meta-knowledge 
about modelling and about elements of the modelling process (see Blum & Leiß, 2005; Blomhøj & 
Jensen, 2003). 

Evaluating given modelling solutions and identifying suggestions for improved modelling  

It follows from the considerations above that tasks with substantial modelling requirements will 
mostly lead to a variety of different solutions in the classroom, e.g. if students work in small groups 
on these tasks. Reviewing and reflecting on these different solutions constitutes a rich learning 
opportunity, as students may learn to evaluate solutions in a criteria-based way and enlarge their 
reservoir of modelling strategies (e.g., Lesh, 2003). When reviewing given modelling solutions that 
have been produced by other students, full modelling cycles can be carried out, even if the emphasis 
is less on producing a modelling solution and more on understanding the mathematical model and the 
underlying assumptions, as well as evaluating the relevance of the modelling results for the situation 
in the rest of the world. It is almost evident that the focus of these activities differs from a task in 
which a modelling solution has to be produced – but still, reviewing, reflecting on and improving 
given modelling solutions is highly relevant for modelling competencies. 

As evaluating given modelling solutions requires multi-step thinking, such tasks can be expected to 
be complex for students. This highlights the importance of empirical research which focuses on 
students’ difficulties and competencies in evaluating and improving given modelling solutions, in 
particular non-optimal modelling solutions. Related questions for research are the following, for 
instance: Are students able to make sense of given modelling solutions? What may make it more 
difficult or what may facilitate students’ understanding of such modelling solutions? Are students 
able to identify non-optimal assumptions or aspects of the model? What suggestions for improved 
modelling can be expected from secondary students? Are the students able to really implement their 
suggestions in an improved modelling solution? What role can learning environments play in which 
the comparison between different modelling solutions is explicitly encouraged? 

In this research area, the two exploratory studies presented here aim to provide insight. In the 
following section, we introduce our specific research aim. 
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Research aim 
In line with the research need outlined above, the two studies presented here aim to cast light on the 
question “Can students develop suggestions for improving given examples of modelling solutions and 
to what extent are they able to implement these suggestions for improvement in revised modelling 
attempts?” For finding out about this mainly exploratory question, an instrument was designed in 
which students were asked to evaluate non-optimal modelling solutions by fictitious students for three 
tasks with substantial modelling requirements. In Study A, one given modelling solution was given 
for each task. In Study B, two different solutions for each task were presented to the students. An 
additional exploratory research aim combining the two studies was consequently: May a specific 
stimulus to the students to consider different modelling solutions encourage them in developing 
suggestions for improvement of the modelling solutions? 

Design and methods 
The instruments used in Studies A and B consisted of tasks, given modelling solutions and questions 
the students had to answer. Figure 1 shows a part of the instrument of Study B with the so-called car 
park task, with two given modelling solutions and with questions to the students. Study A used the 
car park task as well, but with only one given modelling solution, which was relatively similar to the 
first solution in Figure 1 (“Nicole”). From Study A to Study B, the instrument was varied 
systematically in the sense that study A presented only one given modelling solution per task, whereas 
the possibility of comparing two given modelling solutions per task in Study B might encourage the 
participants to reflect on different modelling approaches and corresponding modelling assumptions. 
The answers to the open format questions (cf. Figure 1) from the students were coded according to a 
top-down coding scheme, with acceptable inter-rater reliability (Cohen’s kappa amounted to 0.87 in 
Study B). It was coded which expected suggestions for improvement were given by the students, and 
whether and how the students implemented these suggestions in their own improved modelling 
solutions. As examples, the codes “doors” and “access pathway” will be shortly explained below at 
the beginning of the results section.  

Both in Study A and B, the instrument was divided in three sections of 45 minutes, so that the students 
could work on the questions in three separate lessons. For example, the students worked on the 
instrument section represented in Figure 1 for 45 minutes during the first lesson. The second author 
and the usual teacher were present, but their role was rather passive, and clarification questions from 
the students were rare. 

The sample of Study A consisted of 21 year 6 students (12 girls, 9 boys, aged 12 or 13 years) at a 
South German technical track secondary school, who worked on all three sections of the instrument. 
19 of these students worked on the instrument section shown in Figure 1, as two students were absent 
on this school day. The participants of Study B were 17 year 7 students (7 girls, 10 boys, aged 12 or 
13 years) at another technical track secondary school, all 17 worked on the instrument section shown 
in Figure 1. Due to space limitations, we will in the following concentrate on the students’ answers 
to the instrument section associated with the car park task (see Figure 1).  
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Figure 1: Example of task, given modelling solutions (translated), and questions to students 

Results 
In Study A, 19 students worked on the instrument section around the car park task. In their answers, 
we identified 24 suggestions for improvement, all students taken together. There were two categories 
for suggestions of improvement of the modelling solutions, namely the category “area per 

In class 7a, the students had to work on the following task: 
 
 
 
 
 
 
 
Solution by Nicole: 

 

 

 

 

 

 
Explain in your own words how Nicole has thought and what she has calculated. 
    [Space for answer] 
What else should Nicole take into account? What could she improve in her solution? 
    [Space for answer]  
 
Solution by Sally: 

 

 

 

 

 

 
Explain in your own words how Sally has thought and what she has calculated. 
    [Space for answer]  
What else should Sally take into account? What could she improve in her solution? 
    [Space for answer] 
What do YOU think how many cars can be parked on the car park? Write down your thoughts 
and a calculation. 
    [Space for answer] 

 

 

Task: Car park 
A new car park will be built on the 
grassland shown here. 
 
How can you find out how many cars 
can be parked on this car park? 

 

    car 
 Sketch:  tree 
 
 
The car is 4 m long, so the grassland is 12 m wide 
and 20 m long. 
Area of the grassland: 12m x 20m = 240 m2 
Area car: 2 m x 4 m = 8 m2 
Number cars: 240 m2 / 8 m2 = 30 
30 cars fit on the new car park. 
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car”/“doors” (i.e. there needs to be space for opening the cars’ doors, so the assumed area per car is 
too low) and the category “access pathway” (i.e. the cars need an access pathway to reach the parking 
positions). We observed that all suggestions by the students were expressed using terms of the context 
(e.g. “there needs to be space between the cars”), four answers additionally used expressions related 
to the mathematical model (e.g. “You have to do 50:2, because between the cars there needs to be 
space in order to open the car doors”). Among the 19 students, 10 students mentioned one suggestion, 
7 students mentioned two suggestions, and 2 students did not mention any suggestion for improving 
the given modelling solution. 

Figure 2 shows results related to the implementation of the suggestions for improvement in the 
students’ own modelling solutions. The data shows that out of the 10 students who made one 
suggestion for improvement, 7 successfully implemented this suggestion in their own improved 
modelling, with 1 of these students lacking of an adequate interpretation of the improved 
mathematical solution. 

Figure 2: Code frequencies related to the implementation of suggestions for improved modelling 

In Study B, there were two given modelling solutions, which meant that there were more possibilities 
for making suggestions for improvement. Figure 3 presents the numbers of students with certain 
numbers of suggestions. The data shows a range from (two) students who could not make any 
suggestion for improvement at all to a student who made four suggestions related to Nicole’s solution 
and four suggestions related to Sally’s solution (in this case corresponding to the same four codes). 
The codes for the suggestions relate to the area per car, the space needed for the tree, the measures 
assumed for the car, the inclusion of the access pathway in the model, possibilities of improving the 
sketch, the estimation of the size of the car park, and further suggestions. 

Figure 4 displays the results related to the implementation of the suggestions in improved modelling 
attempts. The Figure shows clusters of cases of students: There are two students who have not 
improved the modelling and not made any suggestions, there are eight students who have not been 
successful in implementing all of their suggestions, there is a further cluster with students who 
succeeded in implementing all of their suggestions and two students who have implemented even 
more improvements than they had initially suggested. As the data of Study B was more complex than 
the data of Study A with only one given modelling solution, Figure 4 summarizes the elements of the 
modelling cycle which have been displayed individually in Figure 2 in such a way that the answers 
had to show that the suggestion for improvement were implemented in a complete modelling cycle. 

Study A: Implementation of the suggestions 
for improvement 

Making 
modelling 
assumptions 

Generating 
improved 
mathematical 
model 

Finding improved 
solution 
according to 
model 

Interpreting 
solution 
adequately 

One suggestion for improvement (N1=10) 
     “doors” (N1a=4) 3 3 3 3 
     “access pathway” (N1b=6) 4 4 4 3 
Two suggestions for improvement (N2=7) 
(“doors” and “access pathway”) 

6 4 4 4 
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Figure 3: Frequencies of suggestions to Nicole’s and Sally’s solutions (Study B) 

 

 

 

 

 

 

 

 

Figure 4: Suggestions and actually implemented suggestions in improved modelling (Study B) 

Discussion and conclusions 
The key aim of the study was to explore to what extent students can develop suggestions for 
improving given examples of modelling solutions and to what extent are they able to implement these 
suggestions for improvement. The findings of both studies suggest that a majority of the students was 
able to identify suggestions for improving the given modelling solutions. Moreover, many of the 
suggestions could be implemented by the students in their improved modelling solutions. However, 
there are also students who fail in developing suggestions for improvement. These students might 
either have had difficulties in understanding the given modelling solutions and/or it might have been 
difficult for them to consider possible alternatives to the given modelling solution. For follow-up 
research, it would not only be interesting to enlarge the data base and to further explore these students’ 
difficulties, but also to compare all students’ proficiency related to developing own modelling 
solutions with their proficiency in evaluating and improving given modelling solutions. 

A further focus concerns the support of students’ implementation of their suggestions for improved 
modelling. In the mathematics classroom, specific learning environments and learning material 
should concentrate on supporting corresponding modelling competencies of the students. 
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Considering study A and B together, the question whether only one or multiple modelling solutions 
should be offered to students in order to encourage their evaluation and the development of 
suggestions for improved modelling, the results rather do not provide a simple picture: For deciding 
on how many given modelling solutions should be provided in the everyday classroom, also the 
learners’ individual competencies may be an important factor and should be taken into account.  
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 Effective factors of a teacher training concerning the implementation 
of interdisciplinary STEM-modelling projects  
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The modelling of the functional principle of a Segway requires an understanding of physical, 
technical and mathematical concepts, which are usually taught at university level. Nevertheless, the 
focus of two two-day-teacher trainings lied in the preparation of 11 teachers and 3 teacher 
students, such that they can implement interdisciplinary STEM-modelling projects with their 
students of Grade 10 to 12. Since 5 school projects were implemented by 7 teachers and 3 teacher 
students during summer 2018 we focus on the detection of effective factors and obstacles of the 
teacher training, concerning the implementation of the modelling projects. This paper describes the 
design of a one-year-study, especially the concept of the two-day teacher training and the resulting 
school projects.  We also present first results of a qualitative study focusing on the effective factors 
of the teacher training based on guided interviews, which were conducted with all participants. 

Keywords: Teacher training, STEM-modelling projects, interview study. 

Introduction 
The question of a pilot school project (Lantau, 2016) with 12 students of Grade 12 was if a STEM-
modelling project concerning the functional principle of a Segway can be implemented at school. 
The comprehension of the functional principle of a Segway requires knowledge about modelling a 
Segway as an inverted pendulum to detect physical forces and energies leading to a mathematical 
model of a linear state space system. This system is controllable and therefore stabilizable by 
feedback- or PID-control which can be implemented practically to control a Lego MindstormsÒ 
Segway (Lantau, 2017). The students in the pilot project learned many mathematical and physical 
concepts, mostly at university level, which are used in practice to control a Segway. Furthermore, 
we received the feedback of the supervising teachers that this kind of STEM-modelling-project 
shows their students the important role of mathematics in real-life-problems, but that they are not 
able to supervise such a STEM-modelling project on their own. This observation lead to the 
research question of a PhD-project, of how teachers have to be trained such that they are able to 
supervise this kind of STEM-modelling project on their own or in a teacher team. By this mean, in 
2017 two two-day teacher trainings were offered for 9 teachers. The teacher trainings content was 
designed to follow the modelling cycle of Blum and Leiss (2007) and will be described in the 
section teacher training. Based on the teacher training, four school projects were implemented with 
students of Grade 12 (Lantau, 2017). Three of four school projects concentrated on the 
comprehension of the functional principle of a Segway, so the students learned how to use the PD-
control theoretically and practically to counteract tangential forces to stabilize a Segway. The 
essence of the first year’s PhD-project was that the design of the teacher training was successful in a 
way that teachers are able to supervise STEM-modelling projects with their students. Therefore, we 
focus on the analysis of effective factors and obstacles of the teacher training concerning the 
implementation of STEM-modelling projects at school with students of Grade 10 to 12 by teachers 
and teacher students. 
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Research focus 
In recent years some projects and research studies concentrated on the professional development of 
teachers concerning the teaching of mathematical modelling in regular lessons. In their work, Blum 
and Borromeo-Ferri (2011) stresses that teachers need to be aware of an optimal balance between 
the maximal independence of the students and the minimal help of teachers. In addition, the results 
of the LEMA project show that a professional development course has a positive effect on self-
efficacy and on pedagogical content knowledge of teachers (Maaß & Gurlitt, 2011). Gastón and 
Lawrence (2015, p. 9) investigated in their work that “the research does not reveal one perfect 
method or set of techniques that can prepare each individual teacher to effectively teach 
mathematical modelling as a transferable process”. Nevertheless, most of the professional 
development courses for mathematical modelling concentrate on teaching teachers to use 
mathematical modelling processes in regular lessons or small tasks. For despite, the long tradition 
of mathematical modelling in Kaiserslautern focuses on interdisciplinary and real-life STEM-
problems which students usually investigate in project-based learning environments such as 
modelling days and weeks (Bock & Bracke, 2015) it was not clear how a teacher training has to be 
designed such that teachers are able to supervise interdisciplinary STEM-modelling projects. Since 
one first approach of a teacher training concerning the mathematical modelling of a Segway seemed 
to be successful (Lantau, 2017), the research focus was set on the detection of effective factors and 
obstacles of the teacher training. In our work we refer to the model of Lipowsky, in which he 
describes factors and constraints to explain the effectiveness of teacher training courses (Lipowsky, 
2010).  Quite similar to Lipowsky’s model, Wilson (2013) and Desimone et al. (2002) investigated 
5 core features for professional developments, namely the content focus, an active learning process, 
a collective participation, coherence and a significant duration of the teacher training. 

Nevertheless, since it exists only few research results concerning teacher trainings for 
interdisciplinary STEM-modelling projects our research question is to explore the effective factors 
of the teacher training such that interdisciplinary STEM-modelling projects can be implemented at 
school. We want to answer our question by the help of a qualitative study in which we used guided 
interviews based on Lipowsky’s model. At first, the participants were asked to reflect their meaning 
and experiences towards STEM- modelling projects and later the interview focuses on effective 
factors of the teacher training which encourages teachers to implement this STEM-modelling-
project. Furthermore, teachers were asked to describe obstacles during the teacher training. The 
participants (11 teachers and 3 teacher students) of the teacher training were interviewed after the 
training and those who implemented their modelling project as a result of the teacher training in 
summer 2018 (7 teachers and 3 teacher students) were interviewed again after their projects to 
detect successful factors after the transfer process of the teacher training. The interviews will be 
analyzed by the method of content-structured analysis (Kuckartz, 2018). Figure 1 shows the design 
of the one-year-project. 

Figure 1: The study design 

Teacher trainings Interviews after the 
teacher trainings

Implementation of the 
school projects

Interviews after 
implementing the 

school projects
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Teacher training 
The teacher training followed the intention that teachers learn the modelling process concerning the 
understanding of the functional principle of a Segway actively. Therefore, the training started by an 
experimental phase in which the teachers got the opportunity to drive with a Ninebot Mini Street to 
get aware of a Segway´s functional principle. After the teachers made their driving experiences, the 
control process of a Ninebot Mini Street and a Lego MindstormsÒ Segway were compared. Based 
on their own experiences and observations of the control process, the teachers set up a model for the 
functional principle of the Segway. During this phase, the teacher recognized that they are in their 
students’ role while modelling a Segway, so they reflected what kind of modelling approaches can 
students have when they model the functional principle of a Segway. In a following phase the 
teachers considered possible questions which they can implement with their students concerning the 
context Segway. For example, such a question could be the exploration of a shortest and fastest 
driving of a Segway in a given course. Further contexts are to investigate the effect of the center of 
mass’ location for the control process or to calculate an optimal route for a Segway tourist tour. The 
collection of possible project ideas gave the teachers the opportunity to think about possible 
interdisciplinary modelling projects for their students. After further project ideas were collected, the 
focus of the teacher training was set on the control principle of a Segway, which is described in 
Figure 2. 

 
Figure 2: The design of the teacher training 

Figure 2 shows that the design of the teacher training followed the modelling cycle of Blum and 
Leiss (2007), in which each step is connected to a module, which has either a physical, technical, or 
mathematical focus. By this design, a bilateral learning approach was offered: First, teachers 
experienced an interdisciplinary STEM-modelling process on their own (active learning) and 
secondly, they reflected on each module, whether it can be transferred into their school projects, 
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based on the knowledge of their students (coherence). The different modules are described in the 
following. 

Physics module: Situation and real model 

A first model for the control process of a Segway is set up by an inverted pendulum, which contains 
two mass-centers, one for the wheel axis M and one for the center of mass of the Segway m. The 
mass centers are connected with a massless pole of length l. The aim of the control principle is to 
counteract acting tangential forces by a motor force u of the Segway. One can describe the inverted 
pendulum by two approaches. Once, by analysing acting tangential forces, leading to a nonlinear, 
inhomogeneous ordinary differential equation of second order: 

The second approach is done by describing the movement of the inverted pendulum by the Euler-
Lagrange-formalism (Goldstein, 1980) in which the Lagrange function (difference of kinetic and 
potential energy) for the generalized coordinates position x and angle j is set up: 

In a second step the Euler-Lagrange equation is calculated for both generalized coordinates: 

This process leads to two equations, one describing horizontal forces and the other describing 
tangential forces of an inverted pendulum: 

Mathematics module: Mathematical model and results 

A mathematical model for the inverted pendulum is generated of the physical model by applying 

Taylor-series-approximations of first order around    

which leads to the linear state space system  

In order to stabilize the linear state space system a first control technique, the PID-control (Sontag, 
1998) can be applied, in which the motor force u is chosen as a weighted sum of the generalized 
coordinates (proportional control), its time-integral (integral control) and its time-derivative 
(derivative control). The parameters for the P-, I-, D-control part are usually determined 
experimentally regarding some conditions that have to be fulfilled to generate asymptotic stable 
solutions for the linearized system. Based on the PD-control approach, one can analytically solve a 
linear differential equation of second order to elaborate constraints for the control parameters kP and 
kD in order to stabilize the Segway. Furthermore, an explicit Euler-method visualizes the control 
process of a Segway, which was implemented in GeoGebra. 

Technics module: Real results and situation model 
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Even though the implementation of a simulation in GeoGebra is some kind of a technical product, a 
more ambitious technical approach is to combine the theoretical results with a practical control of a 
Lego MindstormsÒ Segway. This can either be done by using preconceived Lego MindstormsÒ 
robots and balancing programs (Valk, 2014), or by developing a practical control in Lego 
MindstormsÒ  

School projects 
As a result of the two-day teacher training 5 school projects took place in summer 2018. The 
structure and content focus of each project was different based on the learning group, the 
supervision and the time framework of the project days. The following table summarizes the school 
projects briefly: 

School and time 
framework 

Participating 
students 

Supervisors Content focus 

2 days at a 
grammar school 
in Bolanden 

24 students (4 female, 
20 male) of Grade 10 
and 11 

1 teacher and 1 teacher 
student, as well as the 
teacher trainer 

a) PD-control 
b) Functional principle of a 

gyroscope 
c) Video analysis of Segway 

movements 

2 days at a 
vocational 
school in Wissen 

16 students (7 female 
and 9 male) of Grade 
12  

2 teachers and the 
teacher trainer 

Video analysis of a fastest Segway 
tour through a given course 

3 days in a 
grammar school 
in Mainz 

17 female students of 
Grade 12 

1 teacher, 1 colleague 
and the teacher trainer 

a) PD-control 
b) Taylor-approximations 
c) “Modern curve sketching” 

by using video analysis of 
Segway movements 

d) Shortest paths for Segway 
tourist tours in Mainz 

3 days in a 
vocational 
school in Kusel 

18 students (2 female 
and 16 male) of 
Grade 12 and 13 

1 teacher, 1 colleague 
and the teacher trainer 

a) PD-control 
b) Explicit-Euler-method in 

GeoGebra 
c) Control of a Lego 

Mindstorms-Segway 

3 days in a 
grammar school 
in Daun 

13 students (5 female 
and 8 male) of Grade 
12 

2 teachers, 2 teacher 
students, 1 colleague and 
the teacher trainer 

a) PD-control 
b) Explicit-Euler-method in 

GeoGebra 
c) Euler-Lagrange-formalism 

Table 1: The resulting 5 school projects 

Thematic Working Group 06

Proceedings of CERME11 1220



 

 

Preliminary results 
In our point of view, considering the brief exposition of the resulting school projects, one can assess 
the design of the teacher training successful concerning the implementation of different 
interdisciplinary STEM-modelling projects by teachers and teacher students. The focus of research 
is set on the investigation of effective factors and obstacles of the teacher training (i), as well as of 
the school projects (ii), such that this quite ambitious modelling project can be implemented at 
school. Therefore, the participants were interviewed individually after the teacher training and after 
their school projects. The process of content-structuring qualitative content analysis has started by 
analyzing all interviews along the main categories of effective factors, obstacles and assessment of 
the teacher training and school projects, as well as along school dependent factors, or the meaning 
and experience towards modelling projects by teachers in their daily life work. In this section we 
will give an insight into preliminary results, mainly considering effective factors and obstacles. 

Effective factors 

The analysis of effective factors was done by analyzing once theoretical core features of 
professional development like the content focus of the training, the active learning during the 
teacher training, the coherence, and the collective participation (Desimone et al., 2002; Lipowsky, 
2010; Wilson, 2013) and secondly indicate effective factors inductively by elaborating sub 
categories during the analysis of the interviews. The first results hint that most of the teachers who 
wanted to implement a STEM-modelling project with their students reported that it is very helpful 
for them that they know that the teacher trainer will support them during the project days. By this 
fact they know that they can ask the teacher trainer for support if they feel unsure in supervising the 
project. Furthermore, the teachers indicated that the mathematical and physical background of the 
STEM-modelling project is very profound, so that their students get an insight where mathematical 
concepts are used in real-life situations (content focus). On the other hand, based on the teacher 
training, they feel sure when elaborating the physical and mathematical concepts with their students 
(active learning). Some of the teachers reported that they had a lot of fun during the teacher training 
to learn mathematical and physical concepts of university level (content focus). Beside the 
theoretical background of the functional principle of a Segway, many teachers reported that the 
simulation of the functional principle in GeoGebra is very useful for their students, so that they get 
a better understanding of the mathematical background, when they can compare their theoretical 
results with a simulation (coherence). The most important factor concerning the implementation of 
a STEM-modelling project however is, that teachers have seen a concrete project concept for an 
authentic real-life context, which can be described by mathematical concepts, which their students 
are able to learn with their knowledge (content focus). Finally, teachers indicate that it was very 
helpful for them to explore a specific modelling project, which can be implemented at school 
(content focus). 

Obstacles 

Since the implementation of this STEM-modelling projects requires a profound mathematical, 
physical and technical knowledge, most of the teacher reported that this project is very ambitious 
and complex to implement with students of Grade 10 to 12. As the description of the physical and 
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mathematical modules show, it does not surprise that teachers indicate that the advanced level of the 
project is an obstacle for them and their students. Furthermore, some teachers indicated that they 
don’t have any experience concerning the work with Lego MindstormsÒ. Since the teacher training 
was designed with phases in which the teacher could work on their own ideas, they got an insight in 
technical and theoretical obstacles during the working phase. In addition to that fact, almost every 
teacher reflected that it is quite hard to prepare the modelling project, since the possible questions, 
that students might ask themselves in the project can’t be foreseen. 

Discussion and Outlook 
The short description of the school projects and the section of the preliminary results point out that 
interdisciplinary STEM-modelling-projects can be implemented by teachers after a respective 
training. Although the analysis process of the interviews by the method of qualitative content 
analysis has not been finished yet, there are some hints that some of the theoretical effective factors 
for professional development, namely content focus, active learning, collective participation and 
coherence (Desimone et al., 2002; Lipowsky, 2010; Wilson, 2013), were also effective factors for 
the implementation of interdisciplinary STEM-modelling-projects. The first results of the analysis 
show that main effective factors for the implementation of interdisciplinary STEM-modelling-
projects are the collective participation at the teacher training and the following collaborative 
supervision (i), the possibility of implementing different projects based on the context Segway (ii), 
the exposition of a concrete modelling-project (iii), the motivating product of a Segway (iv) and the 
support of the teacher trainer during the school projects (v). Furthermore, the teachers indicated that 
the teacher training was a necessary condition for the implementation of their school projects. The 
participants of the teacher training reported the deep mathematical and physical knowledge, which 
is necessary to supervise the project (i) as the main obstacle. The main obstacles during their 
implementations were the supervision of open-structured project lessons (ii) and a non-fitting 
learning group for the interdisciplinary school project (iii). Besides the first analysis of effective 
factors and obstacles of the teacher training, one main open question still is how to support teachers 
such that they are confident enough to implement STEM-modelling projects on their own. In order 
to answer this question, we asked teachers during the interviews to report us necessary conditions to 
implement further STEM-modelling projects in future. Fortunately, almost every teacher who 
successfully implemented their project reported that he or she has the principle intention to 
implement further STEM-modelling projects in future. First hints for necessary conditions for the 
implementation of further STEM-modelling projects are the collective support of colleagues during 
the project days and the external support, for example by offering specific teacher trainings, or the 
external support during the project days. Finally, it has to be stressed that the focus of this work is 
not on the implementation of modelling activities in regular lessons, since from our experience this 
complex and interdisciplinary STEM-modelling project is recommended to be implemented in 
project days. 
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This study aims to offer frameworks for exploring geometric modeling while combining physical 
and digital resources in teaching and learning of mathematics. Originally designed as a task to 
tackle pre-service teachers’ learning transition from 2D to 3D under the lens of instrumental 
genesis approach, our study revealed how heuristic strategies from Polya spontaneously emerged 
through the process of digital representations. The use of physical simulation was helpful in 
supporting participants to better comprehend and describe action of joints and to (re)interpret their 
mathematical behaviour, which was not possible when they were working only in the digital 
environment.  The combined use of both physical and digital resources appears to bring a relevant 
contribution for refining students’ thinking and enhance their mental schemes or strategies through 
of the modeling processes. 

Keywords: Geometric modeling, teacher training, GeoGebra. 

Introduction 
In this work, pre-service teachers, students in a teacher training program, were assigned to represent 
the kinetic simulations based on real objects’ movements through physical and digital resources. 
Geometric modeling of seesaws using GeoGebra was analysed with a special focus on the use of 
perpendicular lines, symmetry features and circular movements. This was mainly related to 
handling geometric concepts while transitioning between both 2D and 3D representations. The aim 
of observing the process, including integrated and multiple representations, was to identify the 
benefits coming from either physical and digital prototypes and how they can support one another. 
Such experience fed us with some elements to our posed research question:  

In a geometric modeling approach, how can the combined use of physical and digital resources 
to represent joints and their movements support the 3D geometric knowledge of prospective 
teachers? 

Following our research approach, we observed that on the one hand, the modeling task as such 
played a crucial role together with the software and enhanced participants’ geometric 
understanding; prospective teachers’ behaviour could be examined and understood through the 
Instrumental Genesis theory (Bussi & Mariotti, 2008). On the other hand, procedures adopted by 
participants were aligned with Heuristic Strategies proposed by Polya for problem solving. Hence, 
we decided to share excerpts where these evidences were more apparent, above all the strategies 
related to backward thinking, generalization, specialization and decomposing (Polya, 1973). 
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While working with geometric modeling in technology-enhanced environments, students are faced 
with different construction procedures, compared to their physical modeling experiences, which are 
mainly caused by the features and constraints of the software. The different approaches to physical 
and digital modeling could offer opportunities for teachers and students to further their learning. In 
addition, modeling real world problems could enable connections and new perspectives between 
science and mathematics. Before discussing the analysis of these examples1 we will outline the 
theoretical frameworks used for this work. 

Theoretical framework 
The idea for this study was originally to develop geometric modeling from real and physical daily 
objects to investigate the ways they could foster mathematical exploration. As claimed by Carreira 
and Baioa (2015), students’ behaviours in class usually do not reflect experimental sciences since 
they are not in the position to examine and interpret their surroundings mathematically. 

Through this geometric modeling approach, we intended to enhance students’ modeling 
competencies and mathematical thinking: 

[…] to interpret a situation mathematically from iterative cycles of describing, testing, and revising 
mathematical interpretations as well as identifying, integrating, modifying, or refining sets of 
mathematical concepts drawn from various sources. (English, Lesh, & Fennewald, 2008, p. 8) 

Considering the recent significant changes in mathematical thinking led by new technologies as 
well as social aspects such as communication and collaboration led by new technologies (English, 
Lesh, & Fennewald, 2008), we started this investigation under the lens of the instrumental genesis 
approach. We examined the transition of GeoGebra from an artifact to an instrument and later we 
witnessed practices emerged that could be explained by Polya’s strategies of problem-solving, then 
how these strategies further assisted students in their instrumental genesis. 

Instrumental Genesis 

According to Bussi and Mariotti (2008), Rabardel’s instrumental genesis framework is based on the 
distinction between artifact and instrument. While the artifact can exist by itself, the instrument is a 
mixed entity with two components: the artifact produced for the subject, and the associated schemes 
of use. They are the results of a construction of the subject itself or of an appropriation of already 
existing schemes of use. The instrument describes an artifact and it is constituted in the use(s) that 
the subject develops. In this way, the uses of the artifact also depend on the needs and objectives of 
the user. According to Stormowski (2015) the importance of transforming a software, in our case 
GeoGebra, into an instrument is an evolution of the reorganization and modification of users’ 
schemes, structuring of teachers’ actions, and relations to mathematical concepts. In our particular 
case, participants had their strategies influenced by software outcomes even when such results were 
not exactly as they expected. As pointed out by Sinclair and Robutti (2012), if participants 
'internalize' the use of a Dynamic Geometry Software (DGS) the artifact becomes a mean that offers 
                                                 
1 The mentioned students’ constructions are available online and can be utilized for other researches and teaching 
activities: https://www.geogebra.org/m/Tng4JXDk. 
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opportunities to solve problems. We observed that GeoGebra contributed to participants’ reflections 
on simulation tasks and reorganization of their thinking schemes, as well as forming mathematical 
concepts. Nevertheless, these transformations were occasionally need to be assisted by teachers’ 
external minimal guidance and supported by physical models. 

Heuristic Strategies 

Polya’s (1973) work on problem-solving listed a range of heuristic strategies that can be used to 
tackle a diversity of problems, not only restricted to mathematics. In our research, we consider “the 
problem to be solved” as the challenge to develop physical and digital representations as equivalent 
as possible. In this case, the seesaws’ digital simulation was in the main focus of our investigation 
as we were already considering students’ instrumental genesis with GeoGebra. For this purpose we 
have identified different strategies that were strongly connected to the geometric modeling 
approach: guess and check, use of symmetry, draw a picture and be creative to mention some of 
them. In the results section, we aim to outline more explicitly how some of these strategies 
connected the instrumental genesis with Polya’s problem-solving. Stender and Kaiser (2017) state 
that there is little empirical research exploring how these heuristic strategies can be implemented in 
classroom teaching. They suggest that heuristic strategies can be transferred into strategic 
interventions by tutors. Through our current research and further results we intend to share 
geometric modeling tasks designs beyond teacher training programs. Once prospective teachers 
have the opportunity to experiment with different strategies with DGS they can feel more confident 
to reapply them in their teaching and encourage their students to carry out similar tasks.  

Methodology and Methods 
The explorative nature of the study demanded an interpretative approach comprising qualitative 
methods as observation, data collection, and analysis (Cohen, Manion, & Morrison, 2011). Our 
experiments were carried out with 19 volunteer prospective mathematics teachers in Brazil and 
lasted a period of four months with meetings in every second week on average, to follow the 
evolution of the modeling process. All participants had already been introduced to GeoGebra during 
an introductory ICT course, where they explored the main software functions and features. For this 
experiment, students worked mostly in pairs and were assigned the task to build a seesaw using 
materials (e.g. wood, plastic, metal, etc.) of their choice. Then, they were asked to digitally model 
the same seesaw using a Dynamical Geometry Software.  

The data collected in the initial part of the research came from three different sources: i) the digital 
modeling process of individual students or pairs was video-recorded; ii) the GeoGebra files were 
shared by students with the research team; and iii) an explanatory section, where participants 
presented their solutions based on their previous constructions was also video-recorded. In addition, 
all participants attended other four meetings with the whole group in order to expose their progress, 
exchange their ideas and discuss exercises with geometric modeling and joints.  

Data Analysis and Results 
For the purposes of this paper, we will outline steps of constructing digital examples that we 
consider valuable to be supported by physical prototyping for learning. Through the connections of 
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both modeling approaches, participants first worked backwards to define the order of dependencies 
and the sequence of elements that they had to create. After students’ trials they had to occasionally 
redefine the sequence of their constructions in order to obtain better results. This indicated that 
participants were constrained by the development processes and by their interactions with the 
software to rethink their strategies or “schemes of thinking”. Both unexpected outcomes and 
inactivity from the software, due to for example inconsistent inputs, led students to rearrange their 
strategies of constructions. Valuable discussions arose from these experiments and often students 
had to re-evaluate their ideas and return back to basic mathematical definitions. Problem-solving 
strategies such as generalization and specialization were also recurrent in students’ practices while 
sharpening their solutions2. The following examples aim to highlight the nature of the heuristic 
strategies utilized by students. They also offer some insights into how the use of these strategies 
makes physical and digital artifacts become instruments. In our first example, we examine the 
importance of using physical prototyping to trigger conceptual discussions about circles and 
tangents while students are digitally modeling the joints’ movements. Such approach in this 
experiment encouraged students to make connections between the physical and digital models, 
using one of them to better understand the other. Figure 1 illustrates parts of this process. 

    (a)                                     (b)                          (c)                               (d) 

Figure 1: Physical and digital resources supporting participants’ rethinking of their solution strategies 

After the first digital prototype of the seesaw was modelled, students were asked about the accuracy 
of their constructions. They were asked to identify and explain in which aspects their two models 
were, or were not, representatives of each other. Students identified that the ratio of the elements in 
the physical prototype was preserved in the digital model (Figure 1a). They also reported that the 
movements of the main seesaw board and the cylinder, on which the board should rotate, did not 
represent exactly the wanted physical movements. In their digital model, the board was intersecting 
the cylinder or (depending on how it was moving) the board and the cylinder did not even touch 
each other (Figure 1b)! While reviewing their digital model students felt the necessity to explore 
their physical model again (Figure 1c) to more concretely visualize movements and connections of 
the elements. In their words, they explained that: “ideally the main board is supposed to be 
connected to the cylinder, which should rotate around its axis of revolution.” In continuity they 
should move from this “optical trick solution” to a most realistic representation. After few days they 
presented a new version (Figure 1d), in which they fixed the problem described above. They used 

2generalization: circles and lines before arcs and segments; 

 specialization: board in a parallel position to the basis plane to rotate afterwards; 
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tangent lines to particular circles, which were obtained as a section of the cylinder and rotating the 
cylinder as the last step of the process. Therefore, the main board would stay connected. 

The second excerpt brings another example of how the combination of digital and physical 
resources contributed to rethink geometric definitions in 3D space. 

      
                                               (a)                                                                (b)    

Figure 2: Physical and digital resources enhancing proper meaning in 3D 

In a particular step of the construction3 (Figure 2a), students needed to trace a perpendicular line 
passing through a point in 3D space and belonging to a given line (r). However, while doing this, 
students were puzzled why GeoGebra did not trace such perpendicular line. When asked to explain 
why the software was inactive, they assumed that it was an operational problem. They repeated the 
same procedure twice without any result. Finally, students solved their practical problem using 
another line (s). However, this was not enough for them to realize that they were skipping a 
“conceptual action mistake”. In order to give students some insights, the researcher suggested the 
use of concrete objects (Figure 2b). Part of this approach is registered in the following conversation: 

Student: What I can do is a perpendicular line to this one that passes here (the point Q1 that 
belongs to r). [There is no effect in GeoGebra.] 

Researcher: Why do you think nothing happened? 

Student: I guess is because I’ve clicked on the wrong spot. [He repeats exactly the same 
procedure and again achieved no usable results.] 

As a third attempt, they considered a different line (s) that was convenient for his purpose and 
finally the perpendicular line emerged. Then the student continued: 

Student: Actually I was taking the wrong line, I guess.  

Researcher: What did you intend to do in the beginning? 

Student: Exactly like that, a perpendicular line passing through Q1.  

Researcher:  Ok, that is what you wanted as a final goal and you finally got it, but why it didn’t 
work on your first attempt? 

After some new trials similar to the preceding ones and some vague conjectures, he finally said: 

                                                 
3 Note that this screenshot is from a 3D representation, that means the lines r and s are not in the same planes. In this   
construction, Q1 belongs to r but not to s. 
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Student: I really don’t know.  

Researcher: Ok, go ahead. Let’s discuss it later […]  

Student:   The issue is that GeoGebra is quite intuitive, so you can get results through trial 
and error. Sometimes there is a hidden fundamental math principle, but you have 
been making so many constructions that you might eventually miss some math 
behind these constructions. 

Interesting to note that even though the student was not able to identify the real reasons why he was 
stuck at this time, he recognized a consistent performance of GeoGebra and as a benefit for his 
learning due to GeoGebra’s intuitive interface. At that moment the researcher felt the necessity to 
intervene with some pens to simulate, using physical objects, how the software was “thinking”.  

Researcher: Do you want to see something? [The researcher hands him the pens and asks to 
represent a perpendicular line passing through a point belonging to another line] 

The student then immediately presented a possible solution. 

Researcher: Is this one? [Referring to the solution presented by him] 

Student: In order to obtain a perpendicular line it might need to pass through this point and 
make a right angle with the first one… [He slightly rotates the second pen keeping 
the right angle]  

Student: [...]or like that maybe. [He presents another solution] 

Researcher: But is there only one solution? 

Student: Actually, not. I have thought about that. Somehow that is the reason it worked 
with the second line (the line that the point did not belong to), but not with the 
first one (the line that the point belonged to). If I had done it in 2D the software 
would understand that there is only one option (whether the point belongs or not 
to the first line). 

The student’s observation of linking 2D and 3D representations confirms that he realized that there 
was a significant difference between both 2D and 3D spaces. This is because the conditions to 
define a perpendicular line through a given line with a point lying on it were not properly the same. 
The transition from plane to space was quite recurrent among all participants and it happened as a 
natural step in the geometric modeling process. In particular cases, it was a bit conflicting when 
students kept the 2D concept, but ignored the new dimension in 3D. If something worked in 2D it 
did not necessarily work in 3D as well. In the previous example, the student realized the subtle 
difference caused by the new dimension in his solution after such interventions. Similarly as in the 
previous example, another challenging situation happened while the student was working with 
symmetry in 3D space. For example, students tended to use lines instead planes to reflect solids, 
which was misleading. This example was presented with further details in a previous paper (Lieban 
& Lavicza, 2017). The use of 2D geometry was useful in general as an auxiliary intermediate step 
in the construction of the seesaws. This process is what Polya labelled as decomposing, or splitting 
the problem into simpler steps. For instance, when students were struggling with reflecting solids, 
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they “reduced” the problem to a planar case and then continued with the extrusion afterwards. This 
change in strategy exemplifies the connection between the two theoretical frameworks. First 
students utilize the tool, which respond with an unexpected result by them, but through this process 
students operationalize the tool and it became an instrument.  However, to be able to solve the 
problem they need to change their solution strategies. This is when heuristic strategies emerge, 
students start to decompose the problem and develop new solutions by using their instruments, but 
with subsequent steps from their decompositions. Another situation to exemplify the connection 
between theories happened when in the digital environment students had to define two points of a 
line as the ends of a segment in 3D space. They could do this construction directly with 3D features 
of the software, for example, spheres or circles with the normal (perpendicular to a plane) 
directions. While encountering such difficulties, they chose to use an auxiliary plane to continue the 
construction from this planar view as an alternative strategy. We present these steps in Figure 3, in 
which an auxiliary plane was used to construct a circle on it. 

 

Figure 3: Circles into 3D space as a tool to define distances 

Based on these examples, it can be assumed that the instrumental genesis and heuristic strategies 
can be combined to better understand student thinking. We observe that participants’ progress in 
their solution strategies and their schemes of using the software were triggered by the challenge to 
represent objects in 3D space and fixing this process through Polya’s decomposing strategy. The 
problem-solving approach by Polya seems to assist in the transition of GeoGebra from a tool to an 
instrument. 

Conclusions 
Geometric modeling was applied in this research to investigate perspectives in teaching and 
learning of mathematics from real-life objects combining physical and digital resources. Several of 
Polya’s strategies are intuitively used when solving mathematics problems with DGS. To take 
further advantage of using the software it is important not only apply these strategies, but also 
identify, practice, and organize them. Nevertheless, it is important to emphasize that using the 
digital tools without constant reflections on various responses of the software can be difficult to 
achieve valuable learning outcomes. Thus, the assistance and supervision of teachers in such 
activities is crucial. In this study we observed the value of the use of physical simulation in 
supporting students to better comprehend and describe the action of joints as well to (re)interpret 
some mathematical behaviours often hidden while interacting with a software tool.  The combined 
use of both physical and digital resources seem to bring a relevant contribution for refining 
students’ thinking and enhance their mental schemes or strategies during their geometrical 
modeling. With this approach, while hands-on prototypes were bound to physical barriers, digital 
representation helped to reinforce either geometric relationships or algebraic descriptions. The 
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outlined examples are only parts of a wider set of exercises and activities developed in our study. In 
future papers, we will report additional insights into connecting physical and digital modeling 
approaches. 
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This paper introduces a definition of mathematical model which is intended to be applied in 
educational research. A synthesis of the background literature leads us to a notion of mathematical 
modelling that summarises contributions from a wide range of authors. This notion can be made 
operational in research by using the concept of mathematical model introduced in this study. This 
resulting proposal for defining model allows the establishing of suitable dimensions of analysis for 
research. The main features of this new conceptualization and its application to investigate 
mathematical models are also discussed. 
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Introduction 
In recent years, the discussion about which capabilities are linked to the mathematical competence 
points towards modelling skills. These capabilities include not only knowledge related to 
mathematical contents, but also transversal competences such as problem solving, representation and 
connections (Montoya Delgadillo, Viola, & Vivier, 2017; Niss & Højgaard, 2011). Therefore, 
modelling is a focus of interest for researchers in mathematics education (Carreira & Baioa, 2017). A 
great number of authors have addressed this issue from a wide range of perspectives. 

Our synthesis of the different approaches reveals five features that describe how educational 
researchers understand mathematical modelling: (i) Modelling is a student's activity. Indeed, 
Chevallard, Bosch, and Gascón (1997) stated that mathematical knowledge is a human activity and, 
as a part of Mathematics, so is modelling. What is more, they emphasised that a great part of all 
mathematical activities can be understood as modelling activities; (ii) Modelling is connected to a 
problem originated from a certain system. In this regard, Castro and Castro (1997) identified 
“modelling” and “problem solving”, whereas other researchers claimed that the purpose of modelling 
is to produce knowledge about the studied system (Chevallard, 1989). A third group distinguished 
between modelling “for”, if the purpose is to solve a problem, and modelling “of”, if the purpose is 
to generalise to produce knowledge (Streefland, 1985); (iii) Modelling entails a process, i.e., 
modelling follows a sequence of steps that individuals carry out when tackling a problem. These steps 
can make up an ideal cycle (Blum & Leiß, 2007; Borromeo Ferri, 2006) or just a set of activities 
(Ärlebäck, 2009); (iv) Modelling drives students to acquire mathematical skills. On this point, Niss 
and Højgaard (2011) understand modelling as a competence to be developed in school. Likewise, 
Blomhøj (2004) interprets it as a teaching practice that links real world and mathematics. Further, 
García, Gascón, Higueras, and Bosch (2006) pointed to a double didactic power of mathematical 
modelling, namely that it can be used to teach mathematical contents, or it can constitute the objective 
of learning; (v) Modelling leads to the construction of a model, which is the product of modelling 

Thematic Working Group 06

Proceedings of CERME11 1232



(Sriraman, 2006). In this sense, modelling means a translation between real world and mathematics 
(Blum & Borromeo Ferri, 2009) or between different mathematical domains (García et al., 2006). 
The discussed five features above allow us to understand modelling in mathematics education as the 
activity that entails the development of some mathematical skills, originating from a question within 
a system and is carried out during the process of design, application and evaluation of models. These 
models allow the use of mathematics to produce knowledge about the system. 

Importance of the concept of model and research question 

The synthesised notion of modelling given above relies on several ideas that researchers must specify 
depending on their goals: What kind of skills are entailed by modelling? Which activities are related 
to the process of design, application and evaluation? What is a model? As commented on above, there 
is an extensive literature addressing the process and competencies associated with modelling (see 
Kaiser, 2014 for a review). Nevertheless, there is a lower number of papers addressing the analysis 
from the notion of model. The importance of having an operational definition of model is crucial for 
research purposes. Firstly, it allows focusing the research on the actual model whenever the whole 
modelling process is inaccessible or too complex to analyse. Secondly, it also provides what elements 
to focus on when analysing a mathematical model, and which in addition is also useful when 
discussing other dimensions of modelling. 

In this context, the research questions addressed in this paper are: Which elements comprise a 
mathematical model in the framework of modelling outlined above? Can these elements make up a 
functional definition of mathematical model? With the aim of answering these questions, we now turn 
to discuss and elaborate on the main features of the preceding discussion. 

Definition of mathematical model for research 

Background and relevant items 
The importance of lending meaning to the term “mathematical model” has been discussed in the past 
years. Even though almost all the authors share the intuition of a model as a mapping between a 
system and a mathematical structure enabling to answer questions or get information about the 
system, there is no agreement on the nature of mathematical models or what their key components 
are. An early explicit definition of mathematical model was proposed in the context of engineering 
(Minsky, 1965). Under this approach, a model is a supporting decision-making tool. This pioneer idea 
focuses on the usefulness for the system but is far away from being functional for research. However, 
it contains the first relevant item to define a model up: the analysis of a problem within a system. 
Connecting back to mathematics education, Lesh and Harel (2003) proposed a notion of model which 
was based on two components: a mathematical conceptual system together with its accompanying 
procedures. Both components are expressed through different representations in order to solve a 
problem. Lesh and Harel complementary perspective is more aligned with the purposes of our paper, 
which from our point of view stresses two elements that must be considered in educational research: 
a mathematical description of a problem and the representations that allow working with that 
description to solve the problem. Niss (2012) defined the term mathematical model without 
associating it with a problem through the triplet (D, f, M) that connects an extramathematical domain 
(D) with a mathematical realm (M) via the “mathematisation” mapping (f). Niss’ definition included
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the domain as a part of the model and also objectified the intuition of the mapping that links the 
system with mathematics. However, f is not always easy to use in analysis. Sometimes it is quite 
difficult to find the D-M-correspondences because the objects/variables of interest might be implicit 
(e.g. the best value for money in the second example below). In other cases, the key point of the 
model does not rely on the connection but in the use of mathematical properties (the extensive nature 
of area in the first example). Velten (2009) avoided the mathematisation mapping by defining a 
mathematical model using another triplet, (S, Q, M), but with a different interpretation: S is a system, 
Q is a question related to S and M is a set of mathematical statements that can be used to answer Q. 
As with Niss’ definition, Velten’s approach provides suitable categories of analysis, but it focuses on 
a problem and does not (explicitly) take representations into account. 

The synthesis of the ideas explained above stress the following key features of a mathematical model: 
(i) that a model is determined by a set of specific components, that lead to define suitable categories 
of analysis; (ii) that a models is associated with a system (instead of a problem); (iii) that a model 
includes a mathematical structure that allow working with the model; and (iv) that a model includes 
representations. Our integration of these features gives rise to the new definition of model we propose 
below and which we suggest being used for research in mathematics education. 

Definition of model 

A mathematical model is a triplet (S, M, R), where 

· S is the system the model is concerned with. It consists of a set of objects, their properties, and 
the relationships between objects and properties. 

· M is the (conceptual) mathematization of the system, i.e., the set of mathematical concepts 
and properties that abstract the relevant information from S, along with the set of relationships 
applied to produce mathematical knowledge from the system. 

· R is the set of mathematical representations of the system. It contains the explicit 
representations that enable to work mathematically with the elements of M and, thus, produce 
knowledge about the system. 

This definition is constructed from three inseparable components that show different levels of 
abstraction S is real (as well as the context in which the system is framed), but M is purely conceptual, 
so it is inaccessible and usually not evident. It is necessary, therefore, to use R (observable) to describe 
and work with the model. Figure 1 represents these levels and two types of connections between the 
components of a mathematical model, which are discussed below. 

Categories of analysis 

The main characteristic of this definition is its functionality, since it allows establishing categories 
for the analysis of mathematical models produced in educational contexts. In order to provide a 
complete view of what a model creator (the research participant) contributes, the analysis based on 
the triplet (S, M, R) may be decomposed into two parts. The first part is composed of the elements 
received by the model creator, that is, the explicit information he/she receives (the enunciation of a 
task, for example). The second part is constituted by the elements contributed by the creator, which 
may include identified objects in, or hypothesis about, S, latent concepts or relationships of M, or 
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new representations incorporated in R in order to generate knowledge by working mathematically. It 
is of interest to specify two subcategories of contributed elements within the mathematization (M) 
component: (i) premises, which are mathematical statements used without justification (they might 
be explicit or latent and made visible through R); and (ii) deductions, which are those statements 
justified by an explicit rationale. These categories are not exhaustive, since one can find contributed 
elements of mathematization that are neither premises nor deductions (see the examples below). 

The argument above give rise to six categories of analysis: system received (Sr), mathematization 
received (Mr), representation received (Rr), system contributed (Sc), mathematization contributed 
(with premises Mp

c and deductions Md
c) and representation contributed (Rc). These are the elements 

of the mathematical model to be studied. The categories induce a first stage of analysis (the 
description of what model creator has received) and a second stage of analysis of what he/she has 
contributed. In addition, within the analysis of a model, an S-R-M natural strategy emerges, so that 
the researcher can obtain complete information about the model by (i) paying attention to the involved 
elements of the system S, then (ii) focusing on the representations R and finally (iii) analyzing the 
conceptual mathematization of the system M. This analysis sequence deviates from the order of the 
components (S, M, R) in our definition. The sequence S-M-R was chosen for the definition since it 
evokes the ideal mental process of building a model. Components of the model may be described 
following this procedure (Figure 1).  

 
Figure 1: Scheme of the proposed model concept. Note that the analysis strategy (continuous line) and 

the mental process that generates the model (dashed line) follow different trajectories 

Application of the proposed definition: The analysis of school models 

Two practical examples 
The examples below show the models that two different pre-service teachers at the University of 
Cordoba (Spain) proposed for solving two released items from the PISA 2003 framework (OECD, 
2006). The analyses were carried out following the S-R-M strategy explained above, by first focusing 
on the elements received by the pre-service teachers and secondly on what the pre-service teachers 
contributed, with special attention paid to the premises and deductions in the analysis of the used 
mathematization (M). The results of the analyses are summarized in Figures 2 and 3. 

Example 1: Antarctica (Figure 2). The student does not contribute any elements to the system (S). 
She mostly bases her answer on the picture and provides some verbal reasoning. There are no explicit 
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mathematical concepts, although she implicitly uses the extensive nature of the area. She estimates 
the area of Antarctica as a portion of an imaginary squared surrounding the island. This approximation 
is a premise, which shows no clue about how she would proceed for an island with different shape. 

Figure 2: Proposed analysis for a given answer to the task “Antarctica” 

Example 2: Pizzas (Figure 3). The student does not contribute any explicit element to the system. 
However, he tacitly introduces the value for money notion when he states “with one zed, I am buying 
a portion of 31,416 cm2”. He mostly uses symbolic representation. The premises are relevant because 
he (i) identifies that the relation diameter-area is not linear and (ii) recognizes the area as the correct 
variable for estimating the best value for money. This is evidence of a possible general procedure to 
apply for other kind of sizes of pizzas. 

Figure 3: Proposed analysis for a given answer to the task “Pizzas” 

Discussion 
We now turn to discuss some of the aspects and features of the provided definition of the notion of 
mathematical model in this paper. Firstly, readers should note that the components of a model are not 
specified univocally in the formal nature of the definition (Velten, 2009). This is intentionally done 
in order to let each researcher specify the meanings of each component according to his/her various 
needs. 

Secondly, when dealing with the components S, M, and R of the definition, these should be 
understood as inseparable elements. In this way, the definition is applicable from different 
perspectives and at different levels of abstraction. In Mathematics Education, S very often depends 
on the task context (which may be mathematical or extra-mathematical). Therefore, S is susceptible 
to empirical or conceptual experimentation. In turn, R contains the evidences of the application of the 
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model in specific cases. Particularly, R captures the representations of the knowledge of the system 
obtained by the model creator and represents the source of information for the analysis of the models 
linked to tasks. This is the reason why R should be of special interest for research in mathematics 
education. Finally, M contains information about the level of abstraction of the model. M is not 
limited to a conceptual structure or a set of affirmations. As Niss (2012) pointed out, M contains a 
large number of objects, relationships, properties, results, hypotheses and ways of reasoning that 
enable understanding of the evidence collected in R. Subcategories within M (premises and 
deductions) are specified to provide a better understanding of the model. Premises offer information 
about how the modeller conceives the system and what mathematics can be applied to get knowledge 
of relevance to S. On the other hand, deductions show the way of reasoning and the conclusions 
obtained. By combining the analysis of both elements, the researcher is able to identify whether there 
is an underlying general model. It should be pointed out that premises are sometimes not evident to 
identify and that they have to be conjectured based on the collected information. For instance, in the 
example of Antarctica, it is difficult to identify the premises used by the student to create her model. 
Nevertheless, the student in example 2 provides evidence that he would be able to tackle the task 
given pizzas of different prices, shapes and sizes. 

Thirdly, we provide a comment on the role played by the question or problem posed. Velten (2009), 
in engineering, emphasized the importance of including the problem to be solved (Q) within the 
model. From Velten’s perspective, without including a question about the system, the model would 
not emerge. However, we decided not to include this element (the question) in our model definition 
for simplicity reasons and also because we consider a model as an instrument used to generate 
knowledge, and hence to go beyond specific problems (Chevallard, 1989). Furthermore, the same 
model is able to answer different questions in a system (for instance, Cuisenaire’s strips are useful to 
answer different arithmetic questions). On the other hand, the knowledge generated (K), which 
includes possible answers to Q, can be seen as belonging to the model, namely as part of S since K 
establishes relationships within the system which were previously unknown (see Figure 1 for different 
relationships between Q, K, S, M and R within the framework of the proposed definition). 

Fourthly, the potential of the proposed definition to be a flexible analysis tool should also be 
highlighted. As indicated above, the system S and its conceptual mathematization M may contain 
very diverse elements and relationships. Hence, it is natural to establish subcategories for the 
exploration of the elements of S, R and M in order to obtain a greater depth in the analysis. However, 
the generality of the definition prevents establishing univocal criteria a priori to discriminate between 
different types of entities in the analysis. These reasons led to the establishment of broad categories. 
However, as discussed above, subcategories were only included in the study of M, but in any case, 
when required, the scheme (S, M, R) does admit that particular subcategories are developed to specify 
a finer categorization or a hierarchy of properties associated with the system under study. 

Finally, it is important to draw attention to the specific character of the proposed definition for 
research in mathematical education. Especially two properties may be highlighted: (1) The inclusion 
of R as a component of the mathematical model (Lesh & Harel, 2003). This element, not considered 
in other areas, is essential in education, since most of modelling performed in school mathematics 
consists of choosing a suitable representation (a manipulative material, the number line, a tree 
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diagram in probability); (2) The application of the model with the focus on the student’s activity. 
When considering the part received and the part contributed by the student, the definition seeks to 
make the contribution explicit, differentiating the information of S and representations provided (the 
statement of a task, for example). This distinction also has didactic applications enabling to control 
the task variables and generate situations of different difficulty within the same system. 

Conclusions 
This paper provides a definition that includes all the elements a mathematical model should possess 
according to our literature review. The novelties of this approach are the focus on the model, instead 
of on the process or the competencies (like in most of the background literature) and the functional 
nature of the definition provided, which has been exemplified and discussed throughout the paper. 

Regarding the elements that comprise a mathematical model and how they can make up a functional 
definition, this proposal combines three inseparable elements which, as a whole, account for a 
mathematical model from different levels of abstraction. A system, S, that includes elements of the 
context; its mathematical conceptualization, M; and the set of representations, R, that a student uses 
to describe S, M and to work mathematically. Each of these components provides flexible focus of 
attention for research and an internal logic that offers an analytical strategy suitable for the analysis 
of modelling in schools. The main advantage of this definition lies in its applicability for the analysis 
of scholar models. Its disadvantages are also related to its operational nature: on one hand, at least 6 
categories must be distinguished to define a model; on the other hand, the desirable idea of a model 
as a mapping between reality and mathematics (Niss, 2012) then becomes diluted. 

We expect that our proposed definition not only is functional, but also general (applicable to a wide 
range of modelling scenarios). Future research will need to focus on this and of analyzing the 
effectiveness and usefulness of the given proposal, as well as its applicability to different contents 
and educational levels. In addition, also the potential didactic applications need to be explored in 
future work.  
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The extended theoretical framework of Mathematical Working Space 
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The aim is to show how the extended Mathematical Working Space (extended MWS) theoretical 
framework makes it possible to analyse the tasks implemented during a few stages of a modelling 
cycle in physics. The study begins with a special relativity teaching sequence using a diagrammatic 
approach in “Terminale S” in France (Grade 12). The analysis using the extended MWS 
theoretical framework allows to highlight the learning advantages of this diagrammatic approach 
during a complete didactic engineering. This work is proposed for TWG6 to CERME11. 

Keywords: Mathematics, physics, extended MWS, modelling. 

Presentation of the extended MWS theoretical framework 
The Mathematical Working space (MWS) was developed to better understand the didactic issues 
around mathematical work in a school environment by Kuzniak, Tanguay, and Elia (2016). The 
MWS has two levels: one of a cognitive nature in relation to the student and another of an 
epistemological nature in relation to the mathematical content studied. The epistemological plane 
contains a set of representations (signs used), a set of artefacts (drawing instruments or software) 
and a theoretical reference set (definitions and properties). The cognitive plane contains a 
visualization process (representation of space in the case of geometry), a construction process 
(function of the tools used) and a discursive process (arguments and evidence). Mathematical work 
results from an articulation between the cognitive and epistemological planes through instrumental 
genesis (operationalization of artefacts), semiotic genesis (based on the register of semiotic 
representations) and discursive genesis (presentation of mathematical reasoning). The different 
phases of mathematical work associated with a task can be highlighted by representing three 
vertical planes on the ETM diagram. Semiotic-instrumental interactions lead to a process of 
discovery and exploration of a given academic problem. Those of an instrumental-discursive type 
favour mathematical reasoning in relation to experimental evidence. Finally, those of the semiotic-
discursive type are characteristic of the communication of mathematical results as well as of more 
elaborate reasoning. The MWS diagram was transformed by Moutet (2018) by adding an 
epistemological plane corresponding to the rationality framework of physics (Figure 1). It was 
chosen to keep only one cognitive plane. We hypothesized that students’ conceptions in 
mathematics and physics can be highlighted using a students’ personal extended MWS. The 
functioning of the schemes (Vergnaud, 2013) specific to these conceptions could appear during the 
activation of the various geneses. The Concepts in mathematics would be highlighted by the 
activation of geneses, between the cognitive plane and the epistemological plane of mathematics, 
those in physics would be highlighted by the activation of geneses, between the same cognitive 
plane and the epistemological plane of physics. A single cognitive plane would therefore be 
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sufficient to describe conceptions in mathematics, physics and to analyse student tasks from both a 
mathematics and a physics perspective. The term “proving” is retained, but in the case of the 
extended MWS, it will take a narrower meaning of justification or reasoning. The extended MWS 
framework makes it possible to analyse in detail the interactions between the various rationality 
frameworks, and the student’s cognitive plane and then to qualify the nature of the work 
accomplished by the student. 

The epistemological plane of mathematics studied here concerns Euclidean geometry. The tasks to 
be carried out are associated with the construction of lines, segments, symmetries parallel to a line, 
projections passing through a point and parallel to an axis. The epistemological plane of physics is 
associated with the reference frame of special relativity studied in class. These are the notion of the 
Galilean reference frame (two reference frames moving in a straight line and at a constant speed 
with respect to each other), of an event (a point located on a space-time diagram and associated with 
a position x and a time t), of Einstein’s two postulates, of the notion of proper duration and 
improper duration as well as the relationship of dilation of durations. Lorentz transformations are 
not studied in Grade 12. 

 
Figure 1: Extended MWS Model 
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From the “model situation” to the “real results” during a special relativity 
modelling 
A teaching sequence developed by Moutet (2018) is destined for students in “Terminale S” 
(Grade 12) on the topic of special relativity following the work of de Hosson, Kermen, and Parizot 
(2010). It follows the learning of the course, and the correction of exercises in the manual, and 
participates in the conceptualisation of notions of special relativity, by allowing them to be 
reinvested in a different and unknown context (Vergnaud, 1990).  

Two research questions guided this work: 1) How does the extended MWS framework allow the 
analysis of the sets of rationality frameworks between mathematics and physics during a sequence 
dealing with special relativity with “Terminale S” students via a geometric approach? 2) To what 
extent does the analysis of the use of dynamic geometry software by the extended MWS framework 
show that it promotes conceptualisation in students? 

The teaching sequence can be described in the following context: Armineh drives a car moving at a 
speed v near the speed of light relative to Daniel. The latter is on the roadside next to three flash 
lights S1, S2 and S3 associated with three events E1, E2, E3 and initially known in Daniel's reference 
frame (Figure 2). An event Ei corresponds to a coordinate point (xi, c.ti) in the Minkowski space-
time diagram. S1 and S2 have the same position in Daniel's reference frame.  

 
Figure 2: The “real model” of the situation 

We can use the modelling cycle proposed by Blum and Leiss (2005) to position the teaching 
sequence on the chronological order of events as a function of the reference frame in the context of 
special relativity. We carried out a preliminary study of a sequence by studying the passage real 
model → real results with the objective of developing a longer-term sequence covering a complete 
modelling cycle real situation → real results. In this case, it will not be appropriate to use a “2CV” 
as a vehicle to favour the passages real situation → situation model and situation model → 
mathematical results. 
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We can also take the point of view of Vince and Tiberghien (2000) who studied the articulation 
between the world of objects and events and that of theories and models in the physical sciences. 
The objects resulting from the simulation are observable and can be manipulated. They are not real 
objects or elements of the world of theories and models. They act as intermediaries, facilitating the 
transition, through the problem-solving activity, between the world of objects/events and the world 
of models. 

The Minkowski diagram is a space-time diagram allowing to know the space-time coordinates of an 
event in a reference frame of Armineh or Daniel. In the Minkowski diagram, the line x = 0 is 
described by the axis (Oc.t) in the Daniel reference frame. Similarly, the line x' = 0 is described by 
the axis (Oc.t’) in the Armineh reference frame. c is the speed of light in vacuum or air. Projections 
on this type of diagram are made parallel to the axes. The axis (Ox') is the symmetric of the axis 
(Oc.t') with respect to the line x = c.t. It is the same for the axes (Ox) and (Oc.t). 

The dynamic geometry software GeoGebra and the Minkowski space-time diagram were used by 
the students. It represents the reference frame (xOc.t) relative to Daniel's reference frame and the 
reference frame (x’Oc.t') relative to Armineh's reference frame. The latter moves at the speed v of 
0.6 times the speed of light in vacuum with respect to Daniel along an axis (Ox). The straight lines 
(Ox) or (Ox') correspond to the route in Daniel’s or Armineh’s reference frames (Figure 3). 

With respect to Daniel, the chronological order of production of the three events is E1, E2 and E3 
while with respect to Armineh the order is E1, E3 and E2. The GeoGebra cursor allows to modify the 
experimental conditions by changing the speed v and thus observe a change of chronological order 
of events production in the Armineh frame of reference. The corrected activity file with the 
Minkowski diagram is available by clicking on the following hyperlink: 
https://drive.google.com/open?id=0B_f8SgBLz2P0N0xfazFCSmU3MHM 

The epistemological plane of mathematics and the cognitive plane are mobilised during the 
construction of the cursor because it is necessary to know how the Ox' and Oc.t' axes are modified 
according to the speed v. The two axes are symmetric with respect to the line x' = c.t' which is also 
confounded with the line x = c.t. The epistemological plane of physics is also mobilised when the 
students conclude on the chronological order of events according to the two reference frames 
(Figure 4). 

A class of 34 students from a secondary school in Picardy participated in the experiment. A first 
paper-pencil session was performed to construct and use the Minkowski diagram with strong 
teacher guidance. The work focused on the phenomena of time dilation for a given speed from one 
reference frame to another. The activity, corresponding to the second session, was then given to 
groups as a homework. The speed conditions were different from one group to another. The 
students had to model in autonomy the situation where the speed of one reference frame compared 
to another is modified and close to the speed of light. It was therefore necessary to use dynamic 
geometry software in autonomy, build the dynamic Minkowski diagram and deduce results on the 
chronological order of events according to the reference frames. Most students had not used 
GeoGebra software in high school. The students completed a first version of their homework 
assignments, and then worked for two hours in half class in the computer room to finalise their 
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GeoGebra file. Each student also made an MP3 recording to summarize the entire sequence, which 
totalled five hours. The work of four students was analysed, and they were selected based on their 
academic performance (success and difficult students). 

 
Figure 3: The mathematical model of the situation 

With the MWS extended model we can perform a priori analysis of each of the tasks to be executed 
by the students. The level of difficulty of each task, can be appreciated by looking at the portion of 
the genesis instrumental-discursive or semiotic-discursive, more difficult, compared to the genesis 
semiotic-instrumental. A posteriori analyses allow us to study the tasks assigned to the students, and 
those carried out by them, considering the rationality frameworks of mathematics and physics. This 
study focused on the links between epistemological and cognitive planes. It led to the identification 
of the sets of rationality frameworks when solving this problem of special relativity treated by a 
diagrammatic approach. The dynamic geometry software GeoGebra allows to perform an additional 
semiotic genesis with its dynamic aspect. The cursor allows the speed conditions to change from 
one reference frame to another and the student can see the results directly on the screen. An 
instrumental genesis different from the paper-pencil activity, is also used during the construction of 
the Minkowski diagram. Finally, we hypothesise that GeoGebra, by making it easier to make 
conclusions about the relative chronological order of events, leads to the activation of an original 
discursive genesis. The audio recording, which the students made to summarise all the tasks 
performed during this sequence, allows them to communicate on the Minkowski diagram without 
directly implementing it. It is the sign of semiotic and discursive interactions favouring a 
conceptualisation of notions of special relativity. 
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Figure 4: A priori analysis of cursor usage with GeoGebra 

Student B’s work is presented here. The Minkowski diagram includes the three events, the Ox, Oc.t, 
Oc.t' axes, the x = c.t line, and projections parallel to the Oc.t’ axis cutting an Ox' axis that is not 
correctly positioned. Also, the cursor does not appear. The notion of event seems to be mobilised as 
well as that of reference frame since the two reference points appear explicitly even if it remains 
imperfect. The notion of relative chronological order does not seem to be a well-known one 
(Figure 5). 

The second version which has been reworked in class (personalised help from the teacher to give 
technical information on the cursor and on the meanings of the lines x = c.t. or x' = c.t') includes the 
different elements which were missing in the first version. The Ox' axis is well positioned, the 
cursor for changing the v/c value appears and the c.t coordinates of the different events also. 
Parallels to the Oc.t' axis or to the Ox' axis passing through the different events are also represented. 

This work highlights tasks described by semiotic-instrumental interactions, properly performed by 
Student B and more marginally tasks described by instrumental-discursive interactions. Important 
confusions are shown in the audio recording, on the construction of the line O.ct' with an incorrect 
coefficient director (coefficient director of 0.6 instead of 1/0.6 when v = 0.6.c). This recording also 
shows that Student B is saying results without using the Minkowski diagram or in a basic way. 
There is confusion about the goal of the activity (comparing speeds from Student B), or about the 
notion of the speed of a system in a given reference frame (Student B speaks rather of the speed of a 
reference frame). The explanations of the plot of the line x = c.t. are ambiguous as the positions of 
the c.t' coordinates of the various events (Figure 6). 
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Figure 5: Screenshot of the first GeoGebra version of Student B 

Figure 6: A posteriori analysis of the tasks performed by Student B 

The black arrows describe a genesis on the extended MWS corresponding to a correctly performed 
task, the black arrows crossed out an incorrectly performed task and the dotted arrows, a partially 
successful task. 

Conclusion 
The extended MWS framework, allowed us to analyse the tasks associated with certain stages of the 
modelling cycle in a problem involving special relativity. It considers the mobilisation of the 
epistemological planes of mathematics, and/or physics for each of the tasks requested. The extended 
MWS framework also led us to show that the GeoGebra software develops specific geneses in 
relation to a paper-pencil activity. A new semiotic genesis leads to a visualisation of the change in 
the time coordinates of events as a function of Armineh’s speed v with respect to Daniel. A new 
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instrumental genesis corresponds to the manipulation of the dynamic geometry software, with the 
cursor functionality allowing to simply change the experimental conditions. Finally, a new 
discursive genesis makes it possible to conclude on the chronological order of events, according to 
the reference frame of study and the speed v. The extended MWS model leads to an a priori 
analysis of each of the tasks to be performed by the students and to a successful a posteriori 
analysis of the work performed by them. We then plan to analyse, using the extended MWS model 
or one of its evolutions, the tasks implemented at each stage of the global modelling cycle during 
other sequences using special relativity. Preliminary results tend to show that the genesis as well as 
the epistemological plans of mathematics and physics are not mobilised in the same way according 
to the stage of the modelling cycle, and that the teacher often, assumes implicitly an important part 
of the stages of the modelling cycle (we suppose an important assumption of responsibility for the 
stages going from the real situation to the real model), which does not help “in our opinion” the 
students to understand the problems which are given to them. Problem-solving exercises allow this 
understanding, but it takes time to complete. We plan to carry out the same study from the point of 
view of the theory of both worlds, that of objects/events and theories/models. It would thus be 
possible to finely analyse the passage between the two worlds via the simulated world using the 
extended MWS model. 
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The introduction of modeling tasks in the first grades of primary school requires a deep reflection 
from the point of view of both the design and the implementation. In this paper we describe an 
empirical exploratory study developed with the objective of designing a sequence of modeling tasks 
focused on solving a big numbers estimation problem that, in origin, is inaccessible for students. The 
key to the design of our sequence is to use a technique that we have called downscaling - upscaling, 
inspired by heuristic strategies. So, by resizing the initial problem, 2nd grade students are able to 
tackle a problem that seemed very big using complex mathematical procedures. 

Keywords: Problem solving, measurement techniques, early childhood education, real context 
problems, heuristic strategies. 

Introduction  
In the last years, tasks based on real contexts are becoming increasingly important in primary and 
secondary school curricula. Even so, due to the complexity of carrying out this type of tasks in a 
classroom, both by teachers and students (Cabassut & Ferrando, 2017), there are few studies that 
analyze the implementation of this kind of task in the first years of primary school. All this makes of 
special interest the study of the concepts related to the measurement of magnitudes and the estimation 
of large quantities in a real context, using the so-called Fermi Problems. 

Theoretical framework 
Fermi problems 

Jonas Ärlebäck (2009) defines Fermi problems as “open, non-standard problems requiring the 
students to make assumptions about the problem situation and estimate relevant quantities before 
engaging in, often, simple calculations”. According to the research presented by Ärlebäck and 
Albarracín in the previous edition of CERME, this definition is the most used in mathematics 
education research literature. Here we will focus on a particular kind of such problems: Big numbers 
estimation problems (Albarracín & Gorgorió, 2013). 

Twenty years ago, Clements (1999) already claimed that children, in their first experiences with 
length measurement, should be given a variety of experiences in order to develop measurement 
strategies. According to Hogan and Brezinski (2003), an important part of teaching measurement 
concerns the development of estimation. Nevertheless, there are still few studies that refer to the way 
estimation is worked in primary school classroom (Pizarro et al., 2015). 

In previous works, other authors have made experiences based on the use of Fermi problems with 
students of the higher levels of primary education (Peter-Koop, 2009) and very recently with students 
of the first cycle of primary education (Gómez & Albarracín, 2017). In the present work we have 
tried to take advantage of environments close to the students to introduce some elementary concepts 
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related to the calculation of a magnitude that is often complicated and leads to confusion: the 
perimeter of a polygon (Mason, Stephen, & Watson, 2009). 

Modelling sequences 

Ärlebäck, Doerr and O’Neil (2013, p. 316) gave importance to the development of sequences of 
modeling tasks so that through these sequences students “engage in multiple cycles of descriptions, 
interpretations, conjectures, and explanations that are iteratively refined while interacting with other 
students”. In this way, by constructing a sequence of modeling tasks, we can deepen the study of 
complex concepts in the first years of primary school. Based on the previous works of Pólya (1973) 
and Stender and Kaiser (2017) we have also focused on the use of heuristic strategies directed by 
teachers when solving complex modeling tasks. We propose a design of a sequence of tasks based on 
the heuristics recommendations provided by Pólya (1973, p. xvi): “If there is a problem you can’t 
solve, then there is an easier problem you can solve: find it.” Stender and Kaiser (2017) affirm that, 
ideally, students should use heuristic strategies during the modeling process that teachers should 
convert into strategic interventions. Since our experience is addressed to very young students, our 
aim is to allow them to approach a complex problem using techniques based on downscaling and up-
scaling the original problem as a heuristic strategy. 

Research objectives 

Our work is in an initial phase. We will give some details about the first phase of an empirical 
exploratory study where we intend to describe a technique, called downscaling-upscaling, to design 
sequences of Fermi problems in the first years of primary school. Since this is an early-stage 
investigation, our objective is limited to: (1) Describe in detail the aspects considered in the design 
of the sequence of tasks; (2) Describe a qualitative exploratory analysis of the results of 
implementation with a natural group of second grade students. 

Methodology. Design of the empirical study 
Sample 

Our study focuses on a natural group of 21 second grade students of primary education who have not 
yet worked on the concepts of area and perimeter nor have ever faced a modeling task. They have 
already worked on arithmetic concepts like addition and subtraction but they have very little notions 
about multiplication. The activity was implemented in May 2017. 

Treatment: downscaling – upscaling design of tasks sequence 

The starting point of the activity is a very general question that, a priori, the students are not able to 
answer. The objective of establishing an initial problem is to observe that a complex problem that 
seems difficult to tackle – estimate the number of people necessary to surround the town – can be 
simplified if we try to solve similar smaller problems where the resolution strategies are equivalent. 
Following Pólya’s heuristics, we propose them to “solve a simpler problem”. In this case, what we 
try is to reduce (downscale) the scope of the initial question, first to the schoolyard and secondly to 
their classroom, giving them the opportunity to make measures in a very close context. Once they 
have attempted a solution of the simpler problem, we foster the generalization of the procedures 
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developed in the first part of the sequence (there the upscaling process starts). In the following, we 
give the details of the activities developed during each session of the experience. 

1st session: A “Big Problem”. The introductory session aimed exclusively to present to the students 
the problem to be solved. Thus, this first activity started with an open question that students did not 
know how to answer: “If we asked all the inhabitants of Sueca1 to surround the town by standing next 
to each other, could they do it or would they have to ask for reinforcements from the people of the 
next town?” At this point we just wanted to catch the attention of the students and identify some ideas 
about perimeter and big numbers conceptions. 

2nd session: Progressively reducing the “Big Problem”. The first step was to propose to the students 
to make a smaller human chain. In this case, they were asked to think about how to estimate the 
number of students needed to surround the schoolyard. At this point, we just ask them to think about 
possible strategies to obtain, graphically, a procedure to get an estimation, not to measure or even 
compute. The second step was to answer to the smallest question: “How many small wooden cubes 
do we need to surround a large wooden board?” Here, we try to show them that the previous problems 
were the same as this one. In this case, we provide them with manipulative materials in order to foster 
measeure strategies based on the iteration of the unit as explained in Barrett et al. (2011). 

3rd and 4th session: We solve the problem of the schoolyard. During the third and fourth sessions, 
the students worked on the rectangular schoolyard. So, based on the strategies worked on in the 
previous session, the students would try to solve a bigger problem. They had to estimate the number 
of students needed to surround the perimeter of the yard. In these sessions, we provide students with 
one-meter-long ropes. 

5th session: We work on scaled ground plans. In order to answer the “Big problem”, it is necessary 
to introduce the perimeter measurement on scaled plans. Therefore, the fifth session was devoted to 
work on a scale plan of a relatively small space close to students; a garden close to the school. We 
asked them to use the ruler and, using the scale and the estimations made in the schoolyard in the 
previous session, to estimate the number of people needed to surround the yard. 

6th session: Solving the big problem. During this session each group of students was given a map in 
A3 format of the town of Sueca in a grid in order to finally give an answer to the “Big problem”. 

Data collection and data evaluation 

The experience was organized sequentially through five activities that were carried out over six 
sessions of 50 minutes. Students worked sometimes individually and sometimes in 4 groups of 4 
children and one group of 5 (we will specify this in the following section). The teacher who conducted 
the sequence had previous experience in modelling activities and was working under the supervision 
of two researchers. During the group work sessions, we video-taped two groups, and we audio-taped 
the other groups. In Session 1 and at the end of the Session 6 there were whole group discussions that 

                                                 
1 A Spanish town with around 28000 inhabitants. 
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were also video-recorded. In our analysis we have also considered the written productions (individual 
and grouped ones). 

Since this is an exploratory study, we are limited to analyze the actions of students’ groups to each of 
the tasks. In fact, the sample is not big enough to establish a grounded analysis. That is why we will 
not include any quantitative analysis; we’ll just describe some aspects that we have considered 
important for further research. Our objective, at this point, is to identify whether the design of the 
sequence allows students to face, without blockages, the resolution of each task. We want also to 
identify, if possible, different strategies for solving equivalent problems and their evolution 
throughout the sequence. In the following section we summarize the description of the results for 
each session. 

Description of the results 
First session. The objective of this session was to collect general impressions of the students about a 
problem of estimating a big number. It is not expected that they will base their answers in 
mathematical arguments. Here are some of the answers collected: “In the village there are too many 
people (S1)”, “There won’t be enough people (S2)”, “There are many people who work (S3)”, “The 
planet is very large and we would not be enough (S4)” and “If we put one next to the other and put 
also the dogs and cars, yes we will be enough (S5)”. 

Since students were not asked for more than an unjustified spontaneous response, none of the 
reflections contain references to neither calculations nor mathematical concepts. This first activity 
allows us to detect difficulties linked to the understanding of the question (it is not clear in the case 
of the student S5), problems associated with the concept of perimeter (this we observe, for example, 
in the answer of the student S4) and the process of obtaining an estimation (response of student S3). 

Second session. 1st part: Let’s reduce the problem: the schoolyard: “To surround the yard, are there 
enough children in this class? Or would we need to ask for help from children in the other classes?” 
The students, working individually in the classroom, represented graphically how they would make 
the estimation. In the productions shown in Figure 1, different schemes are observed. In the third one 
there is some confusion between the perimeter and the area since the student tries to cover all the 
space of the schoolyard with children and not just surround its perimeter. 

   

Figure 1: Some of the schemes made by students in the first part of Session 2 

Another element detected in this part of the experience is the difficulty of the students to 
simultaneously handle elements of very different dimensions (the sides of the yard and the linear 
space occupied by a person). Indeed, when we asked the children to explain their answer from their 
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drawings, the unanimous answer was that they had to count the drawn “dolls”. Anyway, this part of 
the experience was rich to detect difficulties (linked to the difference between perimeter and area) 
and different levels in the resolutions. 

As we have already noticed, the problem was still big for the students. Once all the students had 
graphically described their strategy to estimate the result of the problem of the schoolyard, workgroup 
began. At each group, students shared their ideas they previously represented. In order to help them 
better understand what they had done, they were encouraged to estimate the number of students 
needed to surround their tables. Here we observed that some students infer the most effective way to 
find the perimeter of a rectangular surface from the measurement of two unequal sides: add them and 
then make double. Once the notion of perimeter has been introduced intuitively, the second part of 
the session aimed to further reduce the initial problem. 

2nd part: Deduction from manipulation. To answer the question “How many small wooden cubes do 
we need to surround a large wooden board?” only 5 small cubes were provided to the children. The 
boards provided to each group differed in their dimensions. In some of them the solutions were whole 
values, while in others there was too much or too little space, in order to observe how the students 
faced the problem.  

Some groups proposed strategies based on the cyclic movements of the group of 5 cubes in order to 
count the number of cubes needed to cover one side. This strategy is interesting because the idea of 
an effective five-in-five counting is introduced and this improves the strategy of exhaustive counting. 
The concept of the measurement and estimation of the perimeter of a polygon was now formally 
introduced to the students. 

3rd and 4th session: Each group was provided with a pair or ropes of the same length (one meter) in 
order to solve the problem of the number of children needed to surround the schoolyard. To clearly 
describe the two strategies observed, we will focus on the description of the groups that we will call 
Group A and Group B. One of the groups was totally lost and was not able to finish this activity. 

The students of Group A counted effectively (making repeated sums of four-by-four) the number of 
children needed to cover the four sides of the rectangle that makes up the schoolyard using their 
bodies as a unit. They measured two unequal sides of the yard (in which they fit 29 and 38 children), 
then they doubled the values and then added both values. This group of students obtained as a result 
that 134 children were needed to surround the schoolyard. 

Group B, although they obtained the measure in “children” of one of the sides of the yard, chose to 
measure the uneven side using the ropes. The students measured first with the ropes, and then they 
were urged to find out, from that measurement, the measure in “children”. Thus, during the 
development of the activity, Group B students obtained a measure of “9 ropes and 3 children” for the 
minor side of the schoolyard. In this way, from their first measurements, the teacher asked the students 
to try to find out how many children fit in each string. This part is particularly interesting because 
two complex aspects are worked on in a simple manipulative way: the notion of linear density (how 
many children complete a rope?) and the change of units (how to transform a measure given in big 
unit –rope– in a smaller one –child–?). The students estimated that they could cover each rope with 
7 children. Thus, they faced the question: “If we know that 7 children fit in each string, how many 
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children do we have in 9 strings + 3 children?” After discussing this problem, the students came to 
the conclusion that the operation to be performed was to multiply 9 × 7 and then add 3. In this way, 
measuring the two unequal sides of the schoolyard, they infer the total of children that they needed 
to surround it: they estimate 292. 

5th session: Work on scaled ground plans. During this session the students worked individually, each 
of them was given a scaled ground plan, a 15 cm graduated ruler and a calculator. Since they had 
already worked with the concept of perimeter, the first part consisted in answering the question: “How 
many centimeters does the perimeter of the garden measure in the ground plan?” 

We did not identify any problem in the use of the graduated ruler (each side had a whole number 
measure), but we observed different strategies to obtain the total perimeter in centimeters. Some 
students followed the strategy of measuring each of the sides and adding the successive measurements 
of the sides as they got them (using the calculator). Others preferred to take note of the partial 
measures and, finally, add them. Once they had obtained the perimeter of the garden on the ground 
plan, they had to infer the real perimeter from the use of the scale (each centimeter of the plane 
represents 5 meters of reality). With the help of the calculator and after a whole group discussion, the 
students deduced that they should multiply the measurement found in the plan by 5. Next, they were 
asked to estimate, based on the measure of the perimeter in meters (approximately 360 meters), the 
number of children needed to surround the garden. Since in the previous session they had found, 
experimentally, that in each one-meter string 7 children can fit in, they simply had to 360 by 7. The 
children were very surprised by the result: they could not imagine that 2520 children were needed to 
surround the entire perimeter of the garden! 

6th session: Solving the big problem. Before starting to do the calculations, 
the difference between a map and reality was explained again. Some students 
had difficulties with this concept, but we observed that those that had 
understood this idea were able to explain it to their classmates. Anyway, the 
intention of using a grid was to facilitate the use of scales, so the students were 
told that each side of each square of the grid corresponded to 250 people in 
line. Figure 2 shows a picture of the students working on the map. First, the 
students obtained an approximation to the perimeter of the town using the side 
of the square as unit. Since we told them that around 250 people fit in one square side of the grid, 
they just had to make one operation: multiply (using calculator) their previous result by 250. The 
obtained results varied between 51500 and 64500 people. 

At the end of the activity, it was important that the students could validate their solution. For this aim, 
we used the Google Maps tool that allows to measure distances on a plan. The perimeter of the town 
of Sueca measures approximately 10.5km, that is, 10500 meters. Since the students knew –from the 
resolution of the previous task – that 7 children fit in each meter, it was enough to multiply by 7, 
being the final result 73500 children. Since the number of adults that fit online in a meter is surely 
lower than the number of children, the result obtained by the students working on the grid was quite 
approximate. Therefore, the inhabitants of Sueca (around 28000 inhabitants) would not be enough to 
surround the perimeter of the town. 

Figure 2: Working
on the gridded map
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Conclusions 
The procedures associated with the measurement of magnitudes, particularly the measurement of 
lengths, are strongly linked to estimation processes. The choice of the appropriate unit, the use of a 
specific unit, the strategy of iterating a unit, more than one unit, changes of scale (moving from one 
unit to another), etc., are, among others, procedures associated with the act of measuring. But in 
addition, in real life problems, these procedures also appear when making estimations. That is why, 
in our current research -which begins with this work- we intend to design a sequence of tasks whose 
starting point is a problem of estimating large quantities that allows us to introduce, at an early age, 
procedures linked to the length measurement. 

We have presented here the design of a sequence of tasks that starts from a Fermi problem that is 
unapproachable for students. Thus, from two elementary heuristics of Pólya's work, a sequence of 
tasks is constructed. The sequence begins with the simplification (named downscaling in our context) 
of a large problem. In this way, when students are able to develop a procedure in a reduced context, 
we encourage them to generalize (upscaling process, in our context) that procedure to apply it in a 
larger context. We have implemented the sequence with a natural group of 21 second grade students. 
A first qualitative analysis of this intervention allows us to identify some aspects of interest to work 
on in the future. The following are the most interesting ones. At the start of the sequence, in the 
second session, we have detected that the children have difficulties in differentiating the reality from 
the representations of the real world. Thus, they try to find out the number of children that fit on the 
perimeter of the track by simply counting the children (or their abstract representations) in their own 
drawings. This reminds us of the importance of introducing, even in a very simplified way, the idea 
of scale. We have also observed some difficulties in the process of using physical elements as units 
of measure. This is why we think that our proposal, and the future versions we’ll make of it, has to 
foster students to make use of different units (cubes, children, ropes and, finally, graduated rules).  In 
this sense, we have observed that, in the third and fourth session, a group of students was totally lost. 
The problem was not, apparently, the mathematical activity itself, but the fact that they were not used 
to work outside the classroom. This is an aspect that should be considered in our future work. 

The proposed sequence has also allowed us to observe the evolution of the students. Given that this 
is not an isolated activity but a sequence, some of the students had the opportunity, in the next activity, 
to assimilate or discover the procedures they were working on. In addition, they were able to put them 
into practice in another context. This seems to us a strong point of our sequence, but we will have to 
test its efficiency by working with more students.  

Furthermore, the sequence design aims to support the teacher's task that, in many cases, feels 
overwhelmed to bring this type of activity to the classroom. In this way, its own design serves the 
teacher as a guide to be able to offer what Stender and Kaiser (2017) call strategic interventions. 
Finally, we want to highlight that the designed activity allows working the validation phase that, from 
our perspective, is fundamental when solving any problem of real context. 
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simulations as a research approach in their discipline 
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Researchers in the social sciences are increasingly using modelling and simulation (M&S) as a 
research approach. They create virtual worlds to discover relations across variables, and to test 
theories and potential policies. We introduced this research approach to students in the department 
of Development Studies at our university. The goal was to investigate the way in which such 
students can gain meta-knowledge about M&S-based research, that is, general knowledge about its 
nature and rationale. We organized a seminar to introduce the research approach and illustrated it 
with a simulation of the behaviour of agents with varying levels of tolerance towards their out-
group neighbours (based on Schelling’s segregation model). We analysed students’ interactions 
through a socio-cultural lens. Students were able to gain meta-knowledge about M&S-based 
research, which they judged as useful for their future as professionals when working on 
development projects. 

Keywords: Development studies, mathematical modelling, meta-knowledge, Schelling’s segregation 
model, simulation-based research. 

Introduction 
A growing number of universities are running programs in Development Studies, a relatively new, 
interdisciplinary field building on economic and social sciences. This discipline focuses on issues 
regarding regional, national, and global development, such as food security, health, energy, and 
migration. Graduates from Development Studies departments often find placement in organizations 
whose agendas relate to social responsibility, sustainability and economic development (e.g., 
UNESCO, FAO). Research published in the Journal of Development Studies utilizes both 
quantitative and qualitative methods to shed light on both macro and micro variables that impact 
economic and social development, typically focusing on less affluent regions. Increasingly, 
researchers in Development Studies use mathematical models to simulate complex social and 
economic systems. For example, Kumar and Venkatachalam (2018) used survey data from bank 
loan applicants of various castes in rural India to create a model that enabled them to run 
simulations of different hypothetical scenarios; they found that lower loans were given to farmers 
from lower castes but, surprisingly, this discrimination did not affect owners of small farms. This 
research approach, in which modelling and simulation (M&S) is utilized, typically involves the 
following steps. Researchers begin with a real-world problem revealed by statistical, ethnographic 
or other analysis. Often, these problems are of particular interest to politicians and others attempting 
to improve the conditions for those in less affluent contexts. Researchers then identify relevant 
variables and construct a causal architecture that reflects both insights from theoretical literature 
and findings from empirical data. This work results in a mathematical or computational model. 
Using software such as NetLogo, they then simulate in the virtual world the phenomena observed in 
the real world. In this way, the real world data help to validate the model. However, the main goal 
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of M&S-based research approaches is not to create models, but to answer ‘what if?’ questions by 
varying parameters in the model. Researchers can create a variety of scenarios and run a large 
number of simulations, often visualized in graphs, in order to discover complex interactions in the 
relevant socio-economic systems and, in some cases, to ‘predict’ the future behavior of those 
systems under certain conditions.  

The steps in a M&S-based research approach can be illustrated by the modelling cycle in Figure 1, 
which is an adaptation from Greefrath, Hertleif, and Siller (2018), and based on earlier work by 
Blum (2015) and Kaiser (2014). Researchers start by investigating real world data and potential 
causalities to build a mathematical model, after which they run simulations to control whether the 
model aligns with the real data. They will iteratively improve the computational model until it fits 
the data, thereby repeatedly ‘going through’ the modelling cycle. In a subsequent phase, they ask 
‘what-if’ questions and experiment, based on givens in the real-world (e.g., possible policy 
measures). By varying parameters in the model, and running new simulations, they obtain 
mathematical results that they translate into real results. After publishing, their results may be 
implemented and, possibly, solve real world development issues. 

 
Figure 1: The modelling cycle, with visualizing and simulating digitally 

Curricula of Development Studies differ across universities. According to Djohari (2011) and Engel 
and Simpson Reeves (2018), curricula emphasize the teaching of academic theories (e.g. social 
justice theories), critical and anti-colonial thinking, or skills useful for future development workers 
(e.g. project management). Most universities offering Development Studies include a course on 
research methods, typically focusing on qualitative methods. Only a few require statistics, since 
quantitative methods are known to be a hurdle for many social sciences students (Onwuegbuzie, 
2004; Zeidner, 1991). At this point, curricula in Development Studies rarely incorporate the newer 
M&S-based research approaches, although these are increasingly used in this discipline. This lacuna 
in the curricula challenged us. We hypothesized that any Bachelor or Master’s student could 
understand generally how social simulations can assist academic researchers in their research. In 
other words, they can gain a meta-knowledge of M&S-based research, that is, general knowledge 
about the nature of such research, its rationale, the way it is conducted, and the extent to which it 
can provide policy-relevant information. For our definition of meta-knowledge, we borrow from 
Brown and Stillman (2017), who also used the term meta-knowledge in relation to modelling. To 
explore our hypothesis, we organized a voluntary seminar aimed at giving students a ‘feel’ for the 

Thematic Working Group 06

Proceedings of CERME11 1257



 

 

explanatory power of simulations, so they could gain meta-knowledge about the research approach 
without a technical introduction to the simulation software, the computer codes, etc. 

Theoretical frame 
We based our analysis of students’ interactions in the seminar on Cultural-Historical Activity 
Theory (CHAT) (Engeström, 1987). This theory focuses on the way in which, for example, the 
learning environment and students’ social backgrounds interact with what students think and how 
they communicate. Within mathematics education, CHAT has proved useful in various studies; e.g., 
in research on how college students negotiate a workplace’s and school mathematics’ worlds 
(Wake, 2014). Following CHAT, the students in our seminar are understood as actors participating 
in different worlds. In the first place, they are participants in a learning context (in a Development 
Studies program, attending lectures, pursuing a degree). Second, they are oriented toward becoming 
professionals within a development organization (e.g. an urban planner in a less affluent country). 
Third, they might have the ambition to become member of a research community (within a 
university, publishing academic articles). Fourth, they are citizens in the real world (as consumers, 
migrants, etc.). Each of these worlds has its own conventions, norms, jargon, tools, etc.  

When connecting the above CHAT-based worlds to insights from research on mathematical 
modelling education, we observe that in the modelling cycles of Blum (2015) and Greefrath et al. 
(2018), there are two worlds: the real world and the mathematical world. These are two worlds that 
both an M&S-researcher and a student in a mathematical modelling classroom negotiate. As Doerr 
et al. (2017) pointed out, describing modelling activities in terms of real and mathematical world is 
challenging. For example, the real world is far larger than the context of a modelling problem. 
Students and researchers participate in this larger world, and they may or may not have experiences 
with the problems addressed in M&S-research or in the classroom. Employees within development 
organizations also participate within this larger real world, but professionally they focus on a 
narrower world of specific problems in less affluent contexts. Researchers using M&S-based 
approaches operate primarily within the mathematical world of Figure 1; their work consists of 
identifying variables, creating relations between these, creating computer codes, running thousands 
of simulations, creating numerous graphs, and writing technical academic articles. So, although they 
work typically for the sake of the real world (global, national and regional development issues), the 
world of M&S-based research is mainly a mathematical world. The distinction between real world 
and mathematical world as depicted in Figure 1 has emerged from research into mathematical 
modelling in classroom contexts. However, this differs in several ways from the modelling 
activities of professional researchers. Students in classrooms often only ‘go through’ the modelling 
cycle once rather than several times, they use existing models rather than create new ones, they 
work with descriptive models rather than explanatory ones, they use educational digital tools if any 
(e.g., Geogebra) rather than professional computational programs, and their errors are less likely to 
have social and political implications (Doerr et al., 2017; Vos, 2018). In our study, we didn’t ask 
students to engage in modelling activities, but rather to learn about the work of researchers utilizing 
M&S-based approaches. Therefore, we were not expecting to observe them operating in a 
mathematical world.  
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Our overarching research question was: to what extent can students in a Development Studies 
program gain meta-knowledge about the relevance of M&S for their discipline during a short 
intervention seminar? We had several sub-questions: to what extent can this interactive process 
enable these students 1) to understand the way in which these research approaches describe and 
explain social dynamics, 2) to grasp the basic benefits and limitations of M&S-based research, 3) to 
gain a sense of how researchers in Development Studies use such research approaches, and 4) to 
imagine themselves as future researchers using M&S-based approaches? 

Methods 
We used a design-based research approach for this project. This involved designing a seminar, 
implementing it, evaluating it, and then planning to repeat iteratively the intervention. Design-based 
research aims to improve educational practice in cases where new content is taught (Plomp & 
Nieveen, 2013). The study reported here was the first of its kind; in forthcoming iterations, we 
intend to have improved seminars on the same topic with another group of students. In this study, 
the participants were three Nepali students from a master’s program in Development Studies: we 
refer to them as Student B (female), Student K (female), and Student S (male). The first author of 
this paper was the leader of the seminar, which was conducted in Nepalese. The seminar was 
designed to last 3 hours and consisted of three sections. The first section introduced some relevant 
social problems (e.g., the 2015 earthquake and its social consequences, segregation and violence) 
and the impossibility of using experiments to study this sort of phenomena (i.e., exposing 
participants to exclusion or violence is unethical), and a first introduction to M&S-based research 
approaches. The second section involved a semi-guided activity, described in more detail below. 
The third section consisted of a discussion triggered by probing questions by the seminar leader. To 
illustrate the research approach, we included a hands-on simulation experience regarding an issue 
relevant for Development Studies: the migration and segregation of a city’s inhabitants. In this part 
of the seminar we used an educational applet, which offers a simulation of the well-known 
Schelling Segregation model from Nobel Prize laureate Th. Schelling (Schelling, 1971). This 
applet, available from http://nifty.stanford.edu/2014/mccown-schelling-model-segregation, see 
Figure 2, begins with a random distribution of a population with two groups of agents (indicated by 
red and blue blocks). Depending on an agent’s wish to live with same-colour neighbours (in other 
words: its tolerance for living with neighbours from the out-group), it will move to a new location. 
In Figure 2 the slider for similarity tolerance is set to 54%, which means that an agent is ‘satisfied’ 
when at least 54% of its neighbours share its colour. If the number of same-coloured neighbours 
falls below this threshold, an agent moves to an empty spot (a white block). The simulation 
famously shows that even with a relatively high level of tolerance at agent-level, clustering quickly 
begins and segregation takes over in the city.  

Students’ interactions were video recorded and transcribed. We analysed these in light of the 
theoretical frame by going through the transcripts and identifying utterances, in which the students 
positioned themselves in a world (for example, by their use of the term ‘we’ or by their description 
of experiences). We coded when the students engaged (1) as participants in a learning environment, 
(2) as future development professionals, (3) as potential M&S-researchers in Development Studies,
or (4) as citizens in a dynamic society. The analysis resulted in clear, and sometimes multiple codes.
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Figure 2: The Schelling Applet, at the start (left), and after 26 simulation rounds (right) 

Results 
The first part of the seminar was basically a lecture, which we didn’t code due to the absence of 
students’ utterances. The second part was a semi-guided activity with the Schelling Applet. The 
students sat together at one laptop, and interactively ran simulations to see the effects of varying the 
tolerance parameter. They tried many scenarios, and consistently found that raising agents’ bias 
leads quickly leads to segregation, and that even relatively low levels achieved the same result, 
albeit more slowly. They also tried removing the empty spaces and discovered that no segregation 
could occur since “no options are available anymore” (Student S). They had experienced that in 
times of crises, people need to be tolerant: in the case of the Nepalese earthquake, people moved in 
with each other or lived peacefully in overcrowded tents. Student S was critical of the applet, 
commenting that in real life the space of a city is not restricted, and people would move beyond the 
city borders to build bigger houses. Student B mentioned that she knew of an influential person who 
moved to another place after the earthquake, after which his whole clan soon followed; in this case, 
the clustering tendency was already present before the segregation. In terms of the CHAT 
framework, the students were primarily participants in a learning environment (discovering the 
effects of changing sliders in the applet), but also expressed their real-world experiences as citizens. 
During this second part of the seminar, we observed the students speak neither as future 
professionals nor as researchers. The third part of the seminar was a discussion guided by probing 
questions, the first of which was: “what questions from Development Studies could be answered by 
studying virtual worlds?” Student S suggested that the different clusters of people could be studied 
with respect to their socio-economic status. The seminar leader realized that such a study would 
likely require a survey, rather than a simulation, but did not comment so the others could respond. 
Student B then said that simulations provide a dynamic visualization of phenomena and enable 
researchers to observe long-term changes visually. She suggested that simulations could be a 
medium for communication “for those who hate large data sets” and do not have a strong 
background in mathematics. At this stage, the students were participating as potential future 
Development Studies researchers, in a world in which they anticipated executing and publishing 
quantitative research. 
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To focus on their future professions, the seminar leader asked the students to think as urban 
planners; how might the latter make use of simulations? This triggered a lively discussion on how 
urban planners could promote a tolerant community. The students agreed that the Schelling Applet 
represented a certain underlying structure in society, although agents’ movement in the real world is 
related not only to the colour of their neighbours but also to other factors, such as economic 
concerns, or a desire to live close to relatives. They then discussed ways in which a simulation of 
road networks could show how certain groups have better facilities (e.g., close to hospitals, 
accessible to firefighters), and how M&S-research could contribute to improve urban lives: 

Student B: We can find out the road conditions, specifically in Kathmandu. Because they are 
constructing roads in different places. I want to know whether it [the road 
network] is effective or not, basically, already at the planning stage. 

Leader: How effective is that planning? Any examples? 

Student B: For example, roads in Kristiansand [Norway] are well planned. If you walk in this 
city, nobody gets lost. But in Kathmandu, we always get lost or run into a wall 
[dead-end]. With these [simulations], we can study the trend of urbanizations. We 
can compare the situations. Find out the areas where more housing is needed. 

Student B was imagining ways in which a simulation could help her understand and predict 
dynamics of urban life. This triggered the other students to identify additional scenarios, in which 
simulations could be used. Here, the students were thinking of themselves as potential researchers 
who might use M&S methods for urban planning. In addition to seeing themselves as citizens 
(travellers, migrants, etc.), they also perceived themselves as future professionals contributing to 
developing their communities through simulations to analyse and predict social dynamics. 

Student B: Here is a different thought… If I have a virtual Nepal, I think we can find 
vulnerable places for a natural disaster. We can find out how likely it is. 

Student K: If we talk about health facilities, there is one health post in a VDC [Village 
Development Committee; Nepalese term for a rural organization unit]. Isn’t that 
right? Any VDC has 9 wards and the health post will be in one ward. For [people 
in] other wards, it is far. So, if we can see distance virtually, then it will help us to 
decide whether there is a need for an additional health post. 

Student B: For example, in the Artificial Intelligence Systems course, we studied the PredPol 
model [an Artificial Intelligence system used by the police in Los Angeles]. If we 
borrowed the PredPol model, which will be helpful to identify key places where 
crime is increasing. It will be helpful to estimate sufficient armed forces for those 
identified places. Find out the crime spots observing past situations. This PredPol 
model is helpful to predict future crime using previous data. 

Student K: A predictive tool 

Leader: (…) Is that model a simulation? 

Student B: I think it is a simulation model, because it helps us to predict. 
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We see here that the students used “we,” speaking as future policy makers who assist their societies 
prepare for natural disasters, set up health posts, or fight criminality. At the same time, they speak 
as researchers, using verbs such as “find.” When asked to identify the limitations of M&S-based 
research, Student S pointed out that simulations do not produce realistic pictures, Student B 
wondered whether M&S methods were sufficiently scientific, and Student K asked about the 
expense and training required for creating models. However, Student B noted that a simulation’s 
visualizations could be helpful for communicating with less-educated people. All three agreed that 
simulations can serve as a tool for prediction in guiding critical decisions, as well as facilitating 
understanding of the social dynamics of urban life, enabling governments to develop better policies. 
The students grasped that development professionals might implement the recommendations of 
M&S-based researchers even if they did not use the tools themselves. Finally, when asked if they 
could imagine themselves doing M&S-based research, Students K and S were silent, but Student B 
said “your presentation made clearer what a model is. Before coming here, I didn’t know what a 
model is. I am interested.” 

Conclusion, discussion and recommendations 
We observed that the students were largely able to understand the opportunities and challenges of 
studying social dynamics through M&S-based approaches, connecting it to prior knowledge of 
artificial intelligence systems that simulate future scenarios. They described possibilities for using 
simulations for planning roads or identifying places vulnerable to natural disaster or crime spots. 
Mostly, they expressed themselves as future professionals in development projects who would use 
results from M&S-based research. In the process, they shifted roles from learners, to citizens, and 
future development professionals, but not to researchers at a university using M&S-based 
approaches. Thus, the seminar assisted them in gaining meta-knowledge about the relevance of 
M&S for development professionals, but to a lesser extent for researchers in their discipline. The 
students understood that the Schelling Applet was an example of a simulation, which simplified real 
life processes, but that despite its limitations the simulation had explanatory power for certain social 
dynamics. Thus, the applet served as an educational tool helping students to transcend the learning 
environment into other worlds and to imagine what other simulations could look like when used by 
development professionals. However, students’ erratic interchanging of terms like ‘model’ and 
‘simulation’ showed that they had only a cursory sense of M&S-based approaches. Their capacity 
to gain meta-knowledge was restricted by their lack of experience in creating models and running 
simulations. Since we didn’t ask students to engage in modelling activities, we kept them away 
from the mathematical world. So, they learned about M&S, but not the advanced aspects of the real 
work done by M&S-based researchers (identifying variables, creating relations, coding, etc.). How 
best to introduce novices to creating simulations remains an open question.  

In a future iteration of the seminar we could put more emphasis on how and why researchers in 
Development Studies increasingly embrace M&S. Inspired by a comment from one student, we 
might also show how M&S provide a powerful tool for communication. Further, we could stress the 
way in which M&S-based approaches can capture link the micro- and macro-level (e.g., tolerance 
between individuals and the segregation of a city), as well as their relevance for their future as 
professionals studying issues such as urban planning, disaster preparation, or crime prediction. 
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CHAT provided a productive framework for understanding the way in which students engaged in 
the seminar as participants in different worlds. This study revealed that a seminar was sufficient for 
promoting meta-knowledge about the nature and relevance of M&S in Development Studies but 
highlighted the additional competencies that will be required if they pursue these approaches as 
professionals. These findings will help us improve future seminar iterations with other students. 

References 
Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? 

In S. J. Cho (Ed.), The proceedings of the 12th International Congress on Mathematical 
Education (pp. 73–96). Cham, Switzerland: Springer. 

Brown, J. P., & Stillman, G. A. (2017). Developing the roots of modelling conceptions. Inter-
national Journal of Mathematical Education in Science and Technology, 48(3), 353–373. 

Djohari, N. (2011). 'Breaking other people's toys': Reflections on teaching critical anthropology in 
development studies. Teaching Anthropology, 1(1), 21–29. 

Doerr, H. M., Ärlebäck, J. B., & Misfeldt, M. (2017). Representations of modelling in mathematics 
education. In G. Stillman, et al. (Eds.), Mathematical Modelling and Applications: Crossing and 
Researching Boundaries in Mathematics Education (pp. 71–81). Cham, Switzerland: Springer. 

Engel, S., & Simpson Reeves, L. (2018). What do they need to know? Core skills for postgraduate 
development studies students. Asia Pacific Viewpoint, 59(2), 212–225. 

Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental 
research. New York: Cambridge University Press. 

Greefrath, G., Hertleif, C., & Siller, H.-S. (2018). Mathematical modelling with digital tools: A 
study on mathematising with DGS. ZDM Mathematics Education, 50(1–2), 233–244. 

Kumar, S. M., & Venkatachalam, R. (2018). Caste and credit: A woeful tale? The Journal of 
Development Studies, 1–18. 

Onwuegbuzie, A. J. (2004). Academic procrastination and statistics anxiety. Assessment & 
Evaluation in Higher Education, 29(1), 3–19. 

Plomp, T., & Nieveen, N. (2013). Educational design research. Enschede, The Netherlands: SLO. 

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 
143-186.

Vos, P. (2018). “How real people really need mathematics in the real world”—Authenticity in 
mathematics education. Education Sciences, 8(4). 

Wake, G. (2014). Making sense of and with mathematics; the interface between academic mathe-
matics and mathematics in practice. Educational Studies in Mathematics, 86(2), 271–290. 

Zeidner, M. (1991). Statistics and mathematics anxiety in social science students: Some interesting 
parallels. British Journal of Educational Psychology, 61(3), 319–328. 

Thematic Working Group 06

Proceedings of CERME11 1263



 

 

On the role of multicriteria decision support in mathematical 
modelling 

Stefan Ruzika1 and Lisa Schneider2 

1,2 University of Kaiserslautern, Department of Mathematics, Germany 

ruzika@mathematik.uni-kl.de; lisa.schneider@mathematik.uni-kl.de 

Modelling is one of the key skills in applied mathematics. This is reflected by the Standing Conference 
of the Ministers of Education in Germany, and, consequently, mathematical modelling is one of six 
competences mentioned in the Educational Standards. There is a vast amount of literature 
representing, discussing, and teaching modelling. In practice, a mathematical model serves the 
purpose of making fast, cheap and – probably most importantly – reliable decisions. Having this in 
mind, one should reconsider the way mathematical models are treated in activities with students. In 
this paper, we advocate a ‘multicriteria’ perspective on mathematical modelling, optimization and 
decision making. We present several examples from real-world problems illustrating the need of 
multicriteria decision making and give some first hints toward incorporating this multicriteria 
perspective in the well-known mathematical modelling paradigms. 

Keywords: Mathematical models, decision making, multicriteria optimization, STEM education.  

Introduction 
Mathematical modelling is considered to be an important topic in our daily life. The usage of 
mathematical models is often not apparent, but they are omnipresent. Moreover, modelling and 
applications have been an important topic in mathematics education with growing importance since 
the late 1990s (Blum, 1993; Blum & Borromeo Ferri, 2009). Showing the applicability of 
mathematical ideas to real-world problems increases the motivation of students to study mathematics 
as well as their knowledge of several mathematical concepts (Borromeo Ferri, 2009). Furthermore, 
modelling provides opportunities to integrate mathematics in the curriculum that allow 
multidisciplinary teaching. Therefore, the need and the benefits of teaching mathematical modelling 
competences at school have already been recognized several years ago (Blum, 1993; Blum & 
Borromeo Ferri, 2009). Students should be able to set-up, simplify, analyse and compare 
mathematical models (KMK, 2012). The mathematical modelling competences of students should be 
stimulated with regard to other mathematical and general competences: the ability of communicating 
and discussing mathematical problems as well as designing and applying problem solving strategies. 
Moreover, the methodological, social and personal competences are increased (KMK, 2012). 
Obviously, mathematical modelling becomes a more and more important skill for students. 

A general view of mathematical modelling 
Mathematical models and modelling 

Having stressed the necessity of mathematical models and modelling, we now review these concepts 
briefly. Though the notions of ‘modelling’ and ‘mathematical model’ show overlaps, differences are 
observable: Modelling means to construct a mathematical model, so we first discuss the mathematical 
modelling process before we consider modelling cycles. There is a broad consensus in the 
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international discussion, that mathematical modelling is a process which translates between reality 
and mathematics in both directions (Blum & Niss, 1991). Pollak (1979, p. 233) defines mathematical 
modelling as a special aspect of applied mathematics. He distinguishes between several definitions: 
The “classical applied mathematics” and the applied mathematics with focus on a “significant 
practical application” are part of the mathematics as a whole. Furthermore, applied mathematics 
implies going around the cycle once: “Beginning with a situation [...] in real life, making a 
mathematical [...] model, doing mathematical work within that model, and applying the results to the 
origin situation”. Another definition of applied mathematics refers to the preceding definition, but 
means going around the cycle more than once. The last two definitions are process-oriented and focus 
on the real world. This implies that modelling is a process for solving real-life problems. Borromeo 
Ferri and Blum (2009, p. 45) define a mathematical model as “the process of translating between the 
real world and mathematics in both directions”. Reit (2016) states, in the tradition of Pollak (1979), 
that mathematical modelling is not a process in both directions: The translation from reality to 
mathematics is a mathematical model, the reversal, the process from mathematics to reality, is an 
application. Thus, modelling emphasizes the process – the implementation of real problems in 
mathematics – while applications focus on the mathematics. The aim of a mathematical model is, as 
already stated by Blum (1993), the comprehensible simplification of the real problem for enabling 
the application of mathematical methods. Just a few details from reality are considered. The 
fundamental properties will be extracted and translated into mathematics; the simplification of the 
problem usually results in a solution. These models are not unique and non-linear processes; there 
often exist several mathematical models for a real-life situation (Greefrath et al., 2013). For Blum 
(1993, p. 4), the mathematical modelling begins with a situation in the real world. The problem has 
to be structured and simplified, so the solver gets “a real model of the situation”. Then, the real model 
will be translated into mathematics. The result is a mathematical model. In the next step, the model 
is solved and translated back into the real model. Often, the first model-based attempt to solving a 
problem is not satisfying. Thus, more attempts might be necessary which is why mathematical 
modelling should be regarded as a cyclic task. 

The concept of modelling cycles 

As Blum (1993) illustrated, the process of mathematical modelling is often depicted in terms of 
modelling cycles – a representation which is widely accepted. Modelling cycles are useful to describe 
a mathematical process. A huge number of such cyclic representations are discussed in the literature: 
They mainly differ in the concept of the sub-steps, the number of sub-steps or the chronological order 
of the sub-steps. We are geared to the categorization due to Borromeo Ferri and Kaiser (2008), which 
characterizes the modelling cycles by their phases: The easiest example of a cycle has a real-life 
problem at the beginning. This problem leads to a real model, which has to be translated into a 
mathematical model. This model is treated mathematically, and the result is transferred to the real-
life problem. Greefrath et al. (2013) define three categories of modelling cycles with the focus on 
mathematisation: the direct, the two-step and the three-step mathematisation. For the directed 
mathematisation, it is typical that there exists only one step from the real-life problem to the 
mathematical model. The direct transition between real-life problem and mathematical model refers 
to the definition of applied mathematics. In contrast to the directed modelling, the modelling cycles 
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in the two-step mathematisation include an additional step between the real-life situation and the 
mathematical model. The most famous modelling cycle of this category is from Blum (1985). The 
simplification of reality is called the real model and is a phase of its own. This kind of modelling 
cycle is typically used for modelling in school. The three-step mathematisation is characterized by 
the cognitive process. In modelling cycles, this cognitive process is described by an own phase: the 
situation model, i.e. the mental representation of the situation (Borromeo Ferri, 2006). For Blum and 
Leiss (2007) the phase of the situation model is the most important one during the modelling process. 
This phase characterizes the translation between the real situation and the situation model, so it can 
be seen “as a phase of understanding the task” (Borromeo Ferri, 2006, p. 87). 

Research question 

Literature on mathematical modelling, especially on modelling cycles, has not focused much on 
aspects of discussing of a solution provided by using a mathematical model. Multicriteria decision 
making as an element of mathematical modelling has not been addressed at all to the best of our 
knowledge. Our proposal is to take multiple criteria and perspectives into account and to research 
how the multicriteria perspective can be incorporated in mathematical modelling. In this paper we 
examine how decision making affects mathematical modelling in schools and extracurricular 
activities with students by elaborate and discuss two example cases (see below). 

Multicriteria decision making (MCDM) 
Decisions are an important part of our life, they consider multiple, often contradicting criteria. Thus, 
solving decision problems is difficult: The simultaneous consideration of different alternatives and 
their consequences often prevents us from making a good decision. We all strive for a “good” decision 
and frequently “solve” MCDM problems. From a mathematical point of view, trading-off between 
contradicting criteria needs the integration of multicriteria optimization and decision-making methods 
into modelling cycle. 

Mathematical background 

One of the main characteristics of multicriteria decision making is the presence of several, non-
commensurable objectives to be pursued by an entity (e.g. a person, a group or a company) called 
Decision Maker (DM). It is generally assumed that a DM tries to maximize his/her utility while 
choosing one out of a set of alternatives. Utility is a theoretical concept which describes the value of 
some alternative for the DM; however, it is assumed that the DM is not able to describe ‘utility’ in a 
closed-form function. Instead, a DM may only be able to provide partial information about specific 
preferences or tendencies. Depending on how much information is provided by a DM before or during 
the establishment of a mathematical model, one can distinguish three basic approaches in multicriteria 
decision making: ‘a priori’, ‘interactive’ and ‘a posteriori’ approaches (T’Kindt & Billaut, 2002). 

In ‘a priori’ approaches, the DM is able to express preferences before a model is built. These 
preferences are taken into account during a process e.g. as parameters, as weights or as ordering 
relations. The result is a model which reflects the DM’s utility as well as possible, and the set of 
‘reasonable’ alternatives delivered by the model or the decision support is consistent with the DM’s 
preference information. 
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In ‘interactive’ methods, the DM takes part in the modelling process by providing some initial, yet 
vague information about preferences. A first rough model is built and treated mathematically, thus 
showing consequences and possibilities of different alternatives to the DM. Based on this information, 
the DM is able to specify preferences more precisely, since he/she is now more educated. The model 
is refined, the consequences are shown to the DM who then refines the information provided and so 
on. This process is iteratively repeated until a satisfactory model is set up. It is then treated in detail 
and, as a result, a set of reasonable alternatives is presented to the DM, among which a final preference 
has to be chosen when making a decision. 

In ‘a posteriori’ approaches, it is assumed that the DM is not able to specify any kind of preference 
information beforehand. This may be due to the complexity of the real-world problem and the fact 
that certain meta-information or expert knowledge which may be important in decision making can 
often not be captured by a mathematical model. Moreover, a DM often makes decisions based on 
‘experience’ or ‘depending on the specific case’ and, again, these issues are hard or even impossible 
to model. Under such circumstances, a mathematical model and the mathematical methods for dealing 
with such model (i.e., simulating, optimizing, etc.) often rely on the concept of Pareto dominance: an 
alternative is preferred to another, if it is at least as good in any of the objectives. 

Multicriteria decision making and mathematical modelling 

Methods for solving decision problems are helpful to support students within the modelling process, 
especially they motivate to remodel the mathematical model. In this section, we point out the relation 
of the three basic approaches in multicriteria decision making to perspectives on mathematical 
modelling. In the ‘a priori’ approach, the simplifications are done in the real model from the DM, 
before a mathematical model is developed. The preferences made by the DM are implemented in the 
mathematical model in terms of parameters, weights, etc. The set of alternatives which are found in 
the mathematical model, correspond to the DM’s preference information. No further loop in the 
modelling cycle is needed. In the ‘interactive’ approach, the real model has to be formulated and then 
translated into the mathematical model. The DM can specify preferences based on the results of the 
mathematical model, since he/she has more information. The real model will be adapted and a suitable 
mathematical model is (iteratively) solved. More attempts might be necessary to find a final 
preference for making a decision. In the ‘a posteriori’ approach the DM does not specify any 
preference before the modelling process. Therefore, the real model is set up and then translated into 
a mathematical model. After solving the mathematical model, a set of alternatives can be presented 
after the modelling process. The DM can choose the alternative which fits best to his/her most 
important criteria. Because of the complexity of the problem and the huge set of alternatives, the DM 
might need additional support in choosing the finally preferred solution. 

Cases and experiences 
In the following subchapters, we report about several cases in which we extended mathematical 
modelling perspectives by aspects of multicriteria decision making. 
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Case 1: Stiftung Warentest – Analysis of product tests 

Stiftung Warentest investigates and compares objects with multiple, often contradicting criteria such 
as functionality, price or usefulness. It supports consumers in making their decision between 
alternative products. Ratings are issued and supplemented by rankings. Thus, these rankings are used 
for a first orientation and support the decision-making. Products are usually tested in a certain way: 
There are multiple categories, i.e. criteria, which are important for the rating of the product. In a 
further step, several methods for the product rating will be developed. Next, the products will be 
tested, and the results will be evaluated. The method for establishing a ranking can be implemented 
in school, since it uses various techniques dealing with topics in the range of analytic geometry and 
linear algebra (points, planes, distances) and stochastic (mean, variances). The central content of the 
teaching unit is to develop a method for ranking objects with the means of the multicriteria 
optimization (Ruzika, Klöckner, & Gecks, 2018). This teaching unit was situated within a classroom 
context in three units of 90 minutes. The execution of the teaching unit was conducted in a 12th grade 
class with 17 students at a Gymnasium. The teaching unit is opened by demonstrating examples of 
rankings from several areas, e.g. electronics or restaurants. The students are motivated to discuss 
about attributes of rankings and point out the difficulties of such rankings. It is obvious that the 
multiple criteria which influence the rating are contradicting, for instance price versus quality. Then, 
the students investigate how the multiple, contradicting criteria are treated by a weighted sum 
aggregation and how this method of establishing a ranking of products can be analysed geometrically. 
Students work out how the rating is compounded and how the best product can be determined. To 
simplify the problem, the number of categories of the ranking will be reduced, so that the students 
can develop how the test of a product can be implemented in mathematics. Using the weighted 
average of the rating in each objective, the ranking can be established and analysed with the help of 
a coordinate system. This leads to the observation that several products can make the top of the list 
depending on the chosen weights. More surprisingly, it can be observed that under some 
circumstances, ‘reasonable’ products which a customer would intuitively prefer, are not rated best in 
any scenario. But what if the test includes more than two categories? In a next step, the students have 
to revise and extend their mathematical model, which considers now more categories. With the help 
of a spreadsheet, they simulate the influence on the ranking, while different weights for each of the 
categories are chosen. Just as in the mathematical model with two categories, the application of 
different weights causes different rankings. After this teaching unit, it can be investigated how a 
ranking can be done in a fair and consumer-friendly way. The goal will be to find a product which is 
robust in a certain sense. 

Case 2: Navigation for electrical vehicles 

Decision making in the context of finding routes for electrical vehicles requires the consideration of 
multiple, often conflicting criteria. Thus, the selection of a route involves the consideration of several 
aspects: The battery consumption should be as small as possible while simultaneously the travel time 
should be as short as possible. The determination of efficient and optimal routes can be based on 
analytic geometry. In an extracurricular activity, we have worked on this problem for three days with 
a group of girls aged 16 to 18. The course was opened to introduce the students into the basic problem: 
Finding optimal routes for electrical vehicles. In a first step, the students simplified the problem and 
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focused for the beginning on one criterion only – the shortest path for a route. For solving such a 
problem, they obtained a theoretical input in form of a short teaching unit about network optimization 
containing the basics about (directed) graphs and Dijkstra’s algorithm. In order to achieve a 
motivating connection to the real world, students applied their knowledge about finding a shortest 
route on a selected example themselves. The goal was to find optimal routes for electrical vehicles, 
so students were motivated to discuss about several criteria which should be considered: price, energy 
consumption, speed, location of charge stations and travel time. After observing that, for an electric 
vehicle, energy consumption is increased by driving with higher speed and, that energy consumption 
is directly connected to the cruising range, the students realized that one important problem is the 
selection of a route that satisfies both criteria – consumption and distance. But how to compare routes 
with two objective functions? Next, students received a little more input – this time in multicriteria 
optimization. They learned about methods for the computation of efficient routes. With the 
knowledge of these methods, they extended their mathematical model from the beginning. The 
students chose two solving strategies: One group focused on the implementation, e.g. with GeoGebra. 
They plot the objective values for the different routes for the criteria travel time and energy 
consumption. The students recognized that efficient routes can be determined by considering the 
dominance cones of each route and that an efficient route is never contained in the dominance cone 
of another route. The second group implemented a multicriteria Dijkstra variant, e.g. using Python, 
in order to find an efficient route. In conclusion, the students compared their methods: The 
implementation in GeoGebra is descriptive but has the disadvantage that this method can only be 
used for given routes. This is the advantage of the implementation in Python: This method can be 
used for arbitrary areas and routes; the graph of the road network can be imported. 

Conclusion 
The cases Stiftung Warentest and Navigation for Electrical Vehicles follow the ‘a posteriori’ 
approach. In the teaching unit Stiftung Warentest, students discuss attributes of a ranking. They point 
out that it is very difficult to express preferences about the most important criteria. Thus, in a first 
step, they simplify the problem because of its complexity. After solving the mathematical model, 
which is based on the weighted-sum method, they observe that one alternative is preferred to another. 
In a further step, they extend the mathematical model and include more than two criteria. Based on a 
method from multicriteria optimization, they reach a solution which is at least good for one of the 
criteria. It is obvious that the students remark any preference for the criteria before they build the 
mathematical model. In the extracurricular activity Navigation for Electrical Vehicles, the students 
are not able to make a ‘good’ decision for finding an optimal route, since several aims are 
contradicted. Because of the complexity of the problem, they cannot weigh a criterium more than 
another. Thus, they simplify the problem in a first step and solve it for one criterium. It is very hard 
to establish a mathematical model based on their experiences and their meta-information. Thus, they 
apply methods from the multicriteria optimization to solve the mathematical problem, e.g. solving 
the real-life problem. Students are not able to express preferences before they establish the model. 
Hence, the usage of the Pareto concept of dominance helps modelling and solving the problem. 

The input about multicriteria optimization, especially about methods for solving decision problems, 
support the students in their modelling process. The usage of multicriteria optimization methods 
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supports the establishment of the mathematical model and the extended remodelling of the real model. 
Furthermore, they obtain an overview on how the process of multicriteria decision making is staged. 
They learn how to handle multiple, contradicting criteria and find a trade-off between them. We 
support their modelling process with input for several reasons: Using the ‘a priori’ approach, 
preferences are taken into the model, e.g. criteria are weighted. The result is a model which reflects 
the student’s, i.e., DM’s utility. In contrast, in the ‘a posteriori’ approach, no criteria are weighted 
before the modelling, and several alternatives can be presented after the modelling process. Thus, the 
DM can choose the alternative which mostly reflects their most important criteria. With regard to the 
competences, it is apparent that, apart from the modelling competence, other competences are 
promoted and extended as well: They use mathematical tools, such as GeoGebra and Python, to solve 
problems, they communicate mathematically using terms like ‘efficient’ or ‘dominating’, and they 
apply solving problem strategies. 

We have seen that methods of the multicriteria optimization can be didactically reduced for students. 
The focus on the most important aspects and their proper visualisation lead to an adequate 
implementation in a school context. Both examples show a contribution to authenticity – real world 
problems reinforce the students’ motivation obviously. Students get to engage in critical thinking: 
They can ask provocative questions and concentrate on finding their answers. Based on the answers 
well-founded decisions are made. By giving them additional input, we enable the students to work 
with these methods on their mathematical model. We call this process modelling: We influence the 
modelling process in a way, but – what is more important in this case – we support the establishing 
of a mathematical model, so that students are supported to make decisions and solve problems with 
multiple, contradicting aims. The students go through the modelling cycle more than once: They 
simplify the real-life situation to a real model, establish a mathematical model, improve the real 
model, extend the mathematical model and solve this with the help of given methods. These results 
are applied to the origin problem. The emphasis lies on the “last node” of the modelling cycle: the 
application of the mathematical results to the real world problem. After the modelling process the 
used mathematics are discussed, reflected and justified. In conclusion, these two cases show how the 
multiple perspective can be incorporated in mathematical modelling. We have shown that decision 
making affects the mathematical modelling in a school context and also an extracurricular activity. 
Our aim is to evaluate the benefits and the drawbacks of this approach rigorously in future research. 

Acknowledgment 

This work was supported by the European Social Fund (ESF) project SchuMaMoMint. 

References 
Blum, W. (1985). Anwendungsorientierter Mathematikunterricht in der didaktischen Diskussion. 

Mathematische Semesterberichte, 32, 195–232. 
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and 

links to other subjects – state, trends and issues in mathematics instruction. Educational Studies in 
Mathematics, 22(1), 37–68. 

Thematic Working Group 06

Proceedings of CERME11 1270



 

 
Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig, 

I. Huntley, & G. Kaiser (Eds.), Teaching and learning mathematics in context (pp. 3–14). 
Chichester, UK: Ellis Horwood. 

Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling 
problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: 
Education, engineering and economics (pp. 22–231). Chichester, UK: Horwood publishing. 

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling. Can it be taught and learnt? 
Journal of Mathematical Modelling and Application, 1(1), 45–58. 

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling 
process. ZDM Mathematics Education, 38(2), 86–95. 

Borromeo Ferri, R., & Kaiser, G. (2008). Aktuelle Ansätze und Perspektiven zum Modellieren in der 
nationalen und internationalen Diskussion. In A. Eichler & J. Maaß (Eds.), Materialien für einen 
realitätsbezogenen Mathematikunterricht, 12 (pp. 1–10). Hildesheim, Germany: Franzbecker. 

Ehrgott, M. (2005). Multicriteria optimization. Berlin/Heidelberg, Germany: Springer. 
Greefrath, G., Kaiser, G., Blum, W., & Borromeo Ferri, R. (2013). Mathematisches Modellieren – 

Eine Einführung in theoretische und didaktische Hintergründe. In R. Borromeo Ferri et al. (Eds.), 
Mathematisches Modellieren für Schule und Hochschule. Realitätsbezüge für den 
Mathematikunterricht (pp. 11–37). Wiesbaden, Germany: Springer. 

Kaiser, G., Blomhøj, M., & Sriraman, B. (Eds.) (2006). Mathematical modelling and applications: 
Empirical and theoretical perspectives. Zentralblatt für Didaktik, 38(2), 82–85. 

KMK (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife 
(Beschluss der Kultusministerkonferenz vom 18.10.2012). Köln, Germany: Wolters Kluwer. 

Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO 
(Ed.), New Trends in Mathematics Teaching (pp. 232–248). Paris, France: UNESCO. 

Reit, X. -R. (2016). Denkstrukturen in Lösungsansätzen von Modellierungsaufgaben. Eine 
kognitionspsychologische Analyse schwierigkeitsgenerierender Ansätze. Wiesbaden, Germany: 
Springer. 

Ruzika, S., Klöckner, V., & Gecks, S. (2018). Wie man einen Testsieger kürt. Multikriterielle 
Entscheidungsfindung in der Schule. Realitätsbezüge im Mathematikunterricht. Themenband 
Modellieren und Simulieren. Wiesbaden, Germany: Springer. 

T’Kindt, V., & Billaut, J-C. (2002). Multicriteria scheduling problems. In X. Gandibleux (Ed.), 
Multiple criteria optimization. State of the art annotated bibliographic surveys (pp. 445-491). New 
York, NY: Springer. 

Thematic Working Group 06

Proceedings of CERME11 1271



 

 

Exploring pre-service teachers’ flexibility in solving Fermi problems 
Carlos Segura1 and Irene Ferrando2 

1,2 Universitat de València, Spain; carlos.segura@uv.es; irene.ferrando@uv.es 

Keywords: Flexibility, estimation, modelling, problem solving, pre-service teacher training. 

Theoretical framework and purposes 
Realistic Fermi problems are open problems, connected to the real world, which require students to 
make assumptions about the situation of the problem and estimates about the relevant quantities, 
and whose solution is accessible to all students, admitting different levels of complexity (Ärlebäck, 
2009). Students do not immediately have known procedures to solve this type of problems, so their 
solutions include a variety of strategies (Albarracín & Gorgorió, 2014). This exploratory work is a 
part of a research started two years ago focused on studying problem-solving process of Fermi 
problems based on obtaining an approximation to the number of elements in a bounded enclosure. 
In Ferrando et al. (2017) the solution processes of this class of problems have been analyzed 
(following Lesh & Harel, 2003) using a mathematical model characterization that includes a 
conceptual system for describing the relevant mathematical objects and their relations, and 
accompanying procedures for generating useful constructions, manipulations or predictions. This 
work has allowed us to identify three types of solution strategies for this class of Fermi problems: 
(i) based on the notion of population density; (ii) based on the use of a base unit; (iii) based on the 
use of a geometrical pattern (Ferrando et al., 2017, p. 229). 

Star and Rittle-Johnson (2008) define flexibility in problem solving as knowledge of (a) multiple 
strategies and (b) the relative efficiency of these strategies. According to CCSSI (2010) flexibility 
in problem solving is related with mathematical competence. Nevertheless, teachers have still some 
difficulties to develop flexible reasoning when solving mathematical tasks. This leads us to consider 
whether pre-service primary school teachers know and use different strategies to solve Fermi 
problems. In particular, this study will address the following research questions: 

Q1) According to the different strategies identified in a previous study (Ferrando et al., 2017), 
which characteristics of the context of the problem prompt particular solution strategies? 

Q2) Does the variation of these characteristics effect students to choose between several solution 
strategies, or do they always use the same one? 

Q3) In what way, when students confront their individual solutions in group and in the physical 
space posed by a problem, do they arrive at a consensual strategy? 

Methodology 
This study, which contained two phases, was carried out during the academic year 2017-2018 with 
n=112 students from the last course of primary education degree at the University of Valencia. In 
both phases they have been given the same sequence of problems. 

Phase 1: Individual and purely estimative solution 

In this phase of the study, students had to solve the sequence of problems individually. The physical 
spaces involved in the problems belong to the environment of the Education Faculty and are 
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familiar to the students, but they do not have any data and they should only explain the procedures 
about how to get an estimation of the solution. The design of the sequence of problems has been 
carried out in collaboration with other researchers in the working group and has been based on the 
results obtained in Ferrando et al. (2017). The analysis of the individual solutions in this phase 
allowed us to answer the Q1 and Q2. 

Phase 2: Empirical solution by groups 

In this phase, heterogeneous groups (depending on the solutions obtained in Phase 1) of 3 to 5 
students are configured. They had to solve the same sequence of problems as in phase 1 in situ, but 
this time they must agree on a joint strategy. The analysis of their solutions allowed us to answer 
Q3 and also complete the answer to Q1. Indeed, we have identified what we call problem variables. 
These variables are related to the size and shape of the elements, the ratio of sizes between element 
and surface, the shape of the surface and the distribution of the elements on the surface. 

Implications 
This exploratory study is the starting point of a PhD thesis in which it is intended to analyse the 
knowledge, use and promotion of flexibility in solving realistic Fermi problem among future 
teachers. The results of this study can help to led up to formulate a specific definition of flexibility 
for the domain of the Realistic Fermi problems and to raise new questions such as: What type of 
instruction is most effective in promoting flexibility in this class of problems? What is the 
relationship between the validation of the solution and the choice of the most efficient strategy? 
When the future teachers solve this type of sequence, does it influence their conception of 
flexibility? 
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Mathematical thinking styles denote how individuals prefer to present mathematical tasks, and to 
understand and process mathematical facts (Borromeo Ferri, 2010). Thus, teachers’ awareness of 
different mathematical thinking styles is particularly important when students are exposed to 
mathematical modelling activities that offer them the opportunity to meet everyday challenges and 
demands, and that provide them with the capabilities to deal with real-word situations. Mathematical 
modelling is the process of translating between the real world and mathematics (Blum & Borromeo 
Ferri, 2009). Knowledge about students’ modelling processes can ameliorate their teachers’ 
interventions (Blum & Leiß, 2005). Though modelling processes have been studied widely almost no 
studies have focused on modelling processes with respect to thinking styles characterizing groups, in 
which all modelers have the same mathematical thinking style. This study aims to shed light on the 
influence of group mathematical thinking style on members’ modelling processes while engaged in 
modelling activities. This leads to the research questions: Do groups of students with different 
mathematical thinking styles (visual or analytic) differ in their modelling processes while working on 
a sequence of modelling activities, and if so, how? 

Method 
For the first stage of the study, a questionnaire comprised of eight tasks for identifying participants’ 
thinking style was administered to 35 students in an eighth-grade class. We adopted the categories 
(visual thinking style, analytic thinking style and integrated thinking style) described by Borromeo 
Ferri and Kaiser (2003) for analyzing students’ problem-solving processes. In these tasks, the visual 
thinking style was characterized by sketches and drawings, while the analytical thinking style was 
expressed in a formula-oriented task. Based on the thinking styles reflected in solving the tasks in the 
questionnaire, students were classified as: analytic (14 students), visual (11 students), and integrated 
analytic and visual (10 students) thinking styles. In the second stage, we selected five students in the 
analytic group and in the visual group respectively. We made the selection with the assistance of their 
mathematics teacher, in order to maximize the similarity between the groups. Each group worked on 
three modelling activities adapted from the literature (e.g., Blum & Borromeo Ferri, 2009). Their 
work was documented by video recordings and transcribed. We used the constant comparative 
method to analyze the students’ modelling processes, taking into account the cognitive aspect of 
modelling cycles (Blum & Leiß, 2005). 

Findings 
The findings indicate that the analytic and visual groups demonstrated similar features in working on 
the three modelling activities, but differed in their modelling processes. The analysis of the modelling 
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processes of the two groups when doing the three activities revealed that the major differences 
between them were in their real model and their ways of simplifying, mathematizing, and creating a 
mathematical model. The students in the analytic group tried to simplify the three activities by 
mathematizing them. In contrast, the visual group tried to simplify the activities by drawing and 
illustrating. In addition, the findings revealed differences in the illustration of the mathematical 
model. The findings also indicate that the analytic group went through more modelling cycles than 
did the visual group to obtain the final model in each activity. In addition, the analysis indicates that 
the analytic group skipped more of the modelling phases than did the visual group. The modelling 
cycles of the analytic and visual groups for the same activity are presented in Figure 1 and 2 
respectively. 

  
Figure 1: Modelling cycle of analytic group Figure 2: Modelling cycle of visual group 

Summary 
The findings revealed differences in the two groups’ modelling processes and in features of modelling 
cycles. The major difference between the groups was in their ways of simplifying, mathematizing, 
and creating a mathematical model of the real-world situation. In the light of these findings, it is 
important to improve teachers’ awareness of students’ mathematical thinking styles, because this 
awareness can play a vital role in designing effective interventions for their students who are engaged 
in modelling activities. 
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teachers in the teaching laboratory 
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Mathematical modelling has been a mandatory component of the German educational standards in 
mathematics for the last 15 years. Teachers need a range of cognitive abilities and skills to 
adequately teach modelling to their students. Within the MiRA+ teaching laboratory, we focused on 
supporting the development of the professional competencies associated with mathematical 
modelling in prospective teachers. Encouraging teachers to design own modelling tasks and apply 
them in practice successfully aided the development of modelling-specific task competencies with a 
crucial role in the acquisition of competency by their students. This article presents a promising 
array of initial results on the development of task competency in teacher education. 

Keywords: Mathematical modelling, modelling task, task competency, teacher education. 

Introduction 
As part of the teacher training project “Qualitätsoffensive Lehrerbildung”, the University of 
Muenster has created learning opportunities in the form of practical sessions with structured 
reflection to equip prospective teachers with productive ways of managing heterogeneous learning 
groups. Teaching-learning laboratories provide invaluable opportunities to incorporate practical 
elements that specifically facilitate the professionalisation of prospective teachers at an early stage 
of their studies by hosting interactive reflection on teaching-learning processes. In the spirit of a 
potential-driven approach to managing heterogeneity in the classroom, this allows teachers to gain 
experience working with groups of students who display different levels of individual performance, 
e.g. by testing and discussing differentiated learning materials and varying the instructions given to 
specific students. 

From the perspective of mathematics education, mathematical modelling processes are inherently 
good at organically differentiating between students. Open modelling tasks represent a constructive 
heterogeneity management strategy that allows students to work individually and in a differentiated 
manner according to their own prior knowledge, interests, and performance levels. However, 
despite its extensive potential, mathematical modelling is found to be challenging by both the 
students themselves and their (prospective) teachers (Blum, 2015). As a result, a detailed study of 
the teaching competencies needed to support mathematical modelling is urgently needed by the 
current quality development initiatives in teacher education. 

This paper studies the development of modelling-specific task competency, which is viewed as one 
of the aspects of professional competency for teaching mathematical modelling, in the teaching 
laboratory MiRA+ (mathematics in real applications) attended by university candidates during the 
first phase of teacher education. 
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Mathematical modelling 
Mathematical modelling is the basis of the teaching-learning processes facilitated by the MiRA+ 
teaching laboratory. Realistic settings provide an abundant source of authentic problems that can be 
solved mathematically and then reapplied to the original context. Modelling is defined as “the 
process leading from a[n] [authentic] problem situation to a mathematical model” (Blum, 2002, p. 
153). The following section presents some of the theoretical and pedagogical background of 
modelling, introducing a few ideas that will be essential for the subsequent discussion. 

Modelling as a competency 

Mathematical modelling is one of the six general-purpose mathematical competencies encountered 
at every level of the German educational standards. Students are expected to be capable of 
translating problems from reality to mathematics and vice versa, as well as being able to work 
mathematically within the model itself. Blum (2015) defines modelling competency as the ability to 
construct, exploit, or adapt mathematical models by executing each step of the modelling process 
adequately and appropriately for the given problem, together with the ability to analyse and 
critically compare specific models. The student’s ability to carry out specific subprocesses can be 
viewed as the subcompetencies of mathematical modelling (Niss, 2003). Table 1 characterises 
selected subcompetencies in accordance with the modelling cycle by Blum and Leiss (2007). 

Subcompetency Indicator 

Constructing 
Students construct their own mental model from a given problem and thus 
formulate an understanding of their problem 

Simplifying Students identify relevant and irrelevant information from a real problem 

Mathematising 
Students translate specific, simplified real situations into mathematical models (e.g., 
terms, equations, figures, diagrams, and functions) 

Interpreting 
Students relate results obtained from manipulation within the model to the real 
situation and thus obtain real results 

Validating Students judge the real results obtained in terms of plausibility 

Table 1: Selected subcompetencies of modelling (Greefrath & Vorhölter, 2016, p. 19) 

Working mathematically itself is not explicitly listed as a modelling subcompetency, since it is not 
specific to modelling processes and is therefore not specifically emphasised when teaching 
mathematical modelling. 

Modelling tasks 

Tasks represent a strongly dominant component of mathematical teaching. The communication of 
mathematics to students during the teaching-learning process has always heavily relied on setting 
and solving tasks (Neubrand et al., 2011). More concretely, modelling processes can be stimulated 
in the classroom by setting suitable tasks. Various categories of tasks can be defined to analyse and 
classify modelling tasks. For example, Maaß (2010) proposes a comprehensive classification of 
modelling tasks that considers the nature of their reference to reality, their openness, and their focus 
on modelling activities, among other criteria. Greefrath, Siller, and Ludwig (2017) refine the 
criterion of “reference to reality” by considering the authenticity and the contextual relevance of 
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each task in further detail. For the criterion of “focus on modelling activities”, they adopt the 
modelling subcompetencies listed above. Building upon this theoretical background, we compiled 
the list of criteria (see Table 2) reproduced for the development and evaluation of modelling tasks. 

Criteria Concretisation 
Reference to reality Does the problem refer to an extra-mathematical factual context? 

Relevance Is the factual context relevant to the students (factual problem)? 

Authenticity Is the factual context authentically related to the actual situation? 
Does the factual context apply mathematics in an authentic manner? 

Openness Is there more than one possible way to solve the problem (solution variety)? 
Are there different levels of solutions? 

Modelling 
subcompetencies 

Which modelling subcompetencies are required to work on the problem? 

Table 2: Criteria for the creation and evaluation of modelling tasks 

Professional competency for teaching mathematical modelling 
To achieve quality development during the first phase of teacher education, a detailed analysis of 
the professional competencies associated with teaching mathematical modelling needs to be 
performed. Models that accurately characterize the requirements placed upon teachers must also be 
formulated to measure these competencies. Research on mathematical teaching is not only 
concerned with competence models that characterize the general areas of responsibility of 
educators, for example by establishing a global description of teaching knowledge, but also with 
professional competence models that focus on specific parts of the educational standards. A 
collaborative project by the Universities of Koblenz-Landau and Muenster sought to provide some 
initial structural answers for mathematical modelling by developing an instrument that measures 
certain key aspects of the professional competency for teaching mathematical modelling (Klock, 
Wess, Greefrath, & Siller, 2019). 

Task-related 
dimension 

a) Ability and knowledge to solve a modelling task in multiple ways 
b) Ability and knowledge to analyse modelling tasks 
c) Ability and knowledge to develop modelling tasks 

Table 3: Task-related dimension for teaching modelling competency (Borromeo Ferri & Blum, 2010) 

This conceptualisation is primarily oriented towards the COACTIV model, which gives a 
description of the professional competency of teachers (Baumert et al., 2010). Formulating 
modelling-specific interpretations of the competency facets of teaching knowledge identified by this 
model along the competency dimensions proposed by Borromeo Ferri and Blum (2010) gives facets 
of modelling-specific teaching knowledge that serve as the basis for the proposed conceptualisation 
of professional competency for teaching mathematical modelling (Klock et al., 2019). 

Modelling-specific task competency 

At a theoretical level, the modelling-specific task competency is directly derived from the task-
related dimension in Table 3 and represented in terms of the knowledge facets of modelling tasks 
specified by the professional competence model for teaching mathematical modelling. The task 
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competency characterising mathematical lesson planning (Neubrand et al., 2011; Borromeo Ferri, 
2018) was found to be significant, not just in relation to the model cited above, but also for the 
professional competency review of prospective teachers performed as part of the quality 
development initiative. Thus it became clear that a positive development of this aspect of 
professional competency in particular helps to overcome obstacles to the use of modelling tasks in 
the classroom and to exploit their organically differentiating potential in the sense of a constructive 
heterogeneity management strategy. The general task competency of a (prospective) teacher may be 
defined as:  

“the ability to design and use tasks to cognitively stimulate students and evaluate their learning 
performance, as well as the ability to analyse the work performed by students on these tasks” 
(Sjuts, 2010, p. 807). 

These abilities, together with an understanding of the diverse pedagogical potential of tasks, 
represent a key dimension of teaching knowledge. The task competency aspects of teaching 
mathematical modelling are just as crucial. Properly understanding the multiplicity of possible 
solutions, cognitive analysis, and the process of developing modelling tasks results in high lesson 
flexibility and serves as a modelling-specific interpretation of the task competency (Borromeo Ferri, 
2018). 

Research question 
In light of the theoretical discussion given above, the global research objective is to determine the 
extent to which the professional competencies of prospective teachers in mathematical modelling 
can be supported by a teaching laboratory. In particular, we are interested in studying any task-
related abilities of (prospective) teachers that are relevant to the acquisition of competency by 
students. The research objective can therefore be formulated more concretely as follows: To what 
extent do self-prepared modelling tasks in a mathematical teaching laboratory environment 
improve aspects of the modelling-specific task competency of prospective teachers relative to well-
established modelling tasks? 

Methodological approach 
Sample and design 

To answer this research question, a paper-and-pencil questionnaire with a pre-post comparison 
group design was used to collect data from 107 candidates at the Universities of Koblenz-Landau 
and Muenster who were studying for a teaching position at secondary schools. In addition to the 
treatment group (TG) in Muenster (N=35) and the comparison group (CG) in Koblenz (N=43), data 
were collected from a baseline group in Muenster (N=29) to control for any test repetition effects.  

Teaching laboratory concept 

For this study, based on the concept of a teaching-learning laboratory (Lengnink & Roth, 2016), a 
series of teaching seminars on mathematical modelling featuring practical components were 
developed at the two participating institutions. The contents of the seminars were coordinated but 
emphasised different facets of modelling-specific competency. The seminars in Muenster focused 
on developing the task-related skills of prospective teachers by asking them to develop and apply 
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their own modelling tasks. By contrast, the seminars in Koblenz focused on developing modelling-
specific intervention competency by applying well-established modelling tasks without analyzing 
and adapting them. The teaching laboratory MiRA+ discussed in this paper consists of a theory-
based preparation phase, a practical phase, and a reflection phase (see Figure 1). 

 
Figure 1: Concept of the MiRA+ teaching laboratory 

Modelling processes represent the core content of every phase, together with sensitisation to 
potential-driven methods of managing heterogeneity in the classroom. The term “teaching 
laboratory” reflects the emphasis on teacher education. However, the teaching-learning processes of 
the university candidates naturally unfold in parallel to the learning processes of the high school 
students. The theory phase of the seminar serves to impart the theoretical foundations of 
mathematical modelling and pedagogical diagnostics. The dimensions of heterogeneity are 
discussed as well as the basics of individual promotion. Finally, modelling tasks for use in the 
practical phase are developed on the basis of the criteria mentioned (see Table 2). During the 
practice phase, a small team of prospective teachers look after a small group of high school students 
to work on the designed modelling tasks. Each team focuses its observations of the teaching-
learning processes on subcompetencies of mathematical modelling (see Table 1). After the sessions, 
implications will be drawn from the insights for the upcoming teaching laboratory appointments, for 
example addressing a variation of the instructions. The reflection phase serves to reflect practical 
experiences from the observed teaching-learning processes. The focus is on the managing of 
heterogeneity in the classroom, the insights gained from it for the professionalisation of the 
prospective teachers own teaching activity as well as the consequences for the conception and the 
execution of the own modelling tasks. The aforementioned conception of a teaching laboratory as a 
seminar with practice integration should especially promote the acquisition of professional 
knowledge and competency. In addition, the testing of theory-based practical didactic action with 
regard to the participating prospective teachers is a central element of teaching laboratories. Thus, 
the acquired didactic and professional knowledge in the development of tasks as well as in the 
supervision of the students is interlinked and implemented. 

Test for measuring aspects of professional competency 

An instrument was developed and piloted in the summer semester of 2017 to measure specific 
aspects of the professional competency for teaching mathematical modelling (Klock & Wess, 
2018). The modelling-specific task competency was measured using dichotomous combined-single-
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choice items targeting cognitive analysis, solution multiplicity, and the development of modelling 
tasks. The scale values are based on the standardised sum scores of the dichotomous coding and are 
examined in a group comparison using a repeated measures analysis of variance for developmental 
differences. An example of a test item is given in Table 4. 
Scale Number 

of items 
Item example 

Task-related 
competency 12 

A. Modelling tasks can be underdetermined.
B. Modelling tasks can be overdetermined.
C. Modelling tasks should be as closed as possible.

¨right    ¨wrong
¨right    ¨wrong
¨right    ¨wrong

Table 4: Example test item measuring the modelling-specific task competency (Klock & Wess, 2018) 

Results 
This section presents the progression of the competency aspects cited above observed in the study 
participants. There were no significant differences between groups in the facets of modelling-
specific task competency at the time of first measurement. 

Figure 2: Analyse modelling tasks Figure 3: Solve modelling tasks  Figure 4: Create modelling tasks 

Repeated measures analysis of variance reveals that the cognitive analysis aspect of modelling tasks 
(F(1,76) = 12.109, p = .001, η2 = .185; Figure 2) in the treatment group (TG) at Muenster 
progressed significantly more favourably with a greater effect size than the comparison group (CG) 
at Koblenz. For the solution multiplicity aspect of modelling tasks, a significantly higher increase 
with a larger effect size (F(1,76) = 24.322, p = .00, η2 = .242; Figure 3) was observed in the TG 
relative to the CG. Similarly, for the development aspect of modelling tasks, the TG displayed a 
significantly stronger progression with a larger effect size (F(1,76) = 12.558, p = .001, η2 = .182; 
Figure 4) when measured against the progression of the CG. 

No significant changes in the aspects of modelling-specific task competencies considered by this 
study were observed in the baseline group (Analyse: t(28) = 1.154, p = .258; Solve: t(28) = 1.410, 
p = .169; Create: t(28) = 1.797, p = .093; see Figure 4). Consequently, there were no test repetition 
effects. 

Summary and discussion 
On the basis of a widely accepted competency concept and a well-established structural model of 
professional competency, we were able to constructively apply a survey instrument measuring the 
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teaching of mathematical modelling to prospective teachers in a teaching laboratory. Our study of 
the modelling-specific task competency, which has a strong effect on the acquisition of 
mathematical modelling competency by students, found clear signs that the professional 
competency for teaching mathematical modelling can be successfully enhanced within the teaching 
laboratory MiRA+ by encouraging teachers to apply criteria-led self-prepared modelling tasks. 
Significant contrasts with large effect sizes were observed relative to the progression of the 
comparison group, which used well-established modelling tasks. These contrasts were concretely 
measured by the aspects of development, cognitive analysis, and multiplicity of solutions. 

Limitations and outlook of the study 

Despite the large effect sizes and the significant differences, the number of participants in the 
experimental group (N = 35) does not provide a sufficiently robust basis for any definitive 
statements regarding the professional competency for teaching mathematical modelling. The 
conclusiveness of these findings can be increased in future by cumulating over multiple seminar 
cycles – provided of course that the treatment is controlled appropriately. 
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Research shows the importance of the development of the learning and teaching of mathematical 
modelling in secondary school but also highlights some barriers, especially concerning the 
difficulties of teachers to implement modelling activities. An epistemological study of mathematical 
modelling and a contemporary epistemological study of modelling experts’ practices led us to identify 
horizontal mathematization as a crucial component of mathematical modelling. Based on this 
conceptualization, we then came up with a task for teachers to implement in their classrooms, within 
a professional development program, which provides us some data to study the constraints and 
conditions of teaching practices concerning modelling. Our results suggest that a teaching strategy 
stressing horizontal mathematization is likely to foster a consistent modelling activity of students and 
that teachers don’t identify horizontal mathematization as a learning issue. 

Keywords: Horizontal mathematization, teaching practices, modelling. 

Introduction 
Research in mathematics education shows how developing the learning and teaching of mathematical 
modelling in secondary school is important, but also points out some hindrances, especially 
concerning the difficulties for teachers to implement modelling activities in their classrooms. 
Numerous studies point out some obstacles concerning teaching practices (Schmidt, 2011; Blum & 
Leiss, 2007; Kaiser et al., 2011; Maaß & Gurlitt, 2011; Ramirez, 2017; Barquero et al., 2018). For 
instance, mathematics teachers don’t consider modelling as an essential component of mathematics 
learning; they doubt of their own competencies about mathematical modelling; they find it difficult 
to implement modelling tasks in class in particular because students might come up with a lot of 
different solutions and identifying what is at stake in such tasks is not easy; choosing an appropriate 
task is difficult for them. They also find it hard to identify students’ difficulties and to evaluate 
modelling competencies; finally, they say they are lacking time to organize their teaching of 
modelling. Research on French teachers (Cabassut & Ferrando, 2017; Yvain-Prébiski, 2018) confirms 
that these international findings also apply to French teachers. 

These hindrances mainly concern the conception and implementation of modelling activities in 
classrooms, which relate to elements formalised as institutional, cognitive, mediatory and personal 
constraints of teaching practices in the theoretical framework of the double approach of teaching 
practices of mathematics teachers (Robert & Rogalski, 2005; Vandebrouck, 2013). It leads us to 
hypothesize that overcoming some obstacles to the effective teaching of mathematical modelling in 
classrooms implies a more effective conceptualization of the modelling process. A literature review 
and a contemporary epistemological study of experts’ practices in research about modelling in life 
sciences lead us to identify the crucial role of horizontal mathematization in this process and to 
characterize some forms of it that could enrich the conceptualization of mathematical modelling in 
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classrooms. The hypotheses we want to test in our research are: first, a teaching strategy emphasizing 
horizontal mathematization is likely to foster a consistent modelling activity of students in 
classrooms; then, despite its identification by teachers as an important component of mathematical 
modelling, they don’t seem to consider horizontal mathematization as a learning issue. In the next 
section, firstly we present our conceptualization of mathematical modelling, stressing horizontal 
mathematization as a crucial component of the process. In the second part, we are exposing the 
theoretical framework we used to study teaching practices and our experimental design. In a third 
part, we will expose our findings. Conclusion will allow us to design some perspectives about teacher 
training.  

Horizontal mathematization: a fundamental component of mathematical 
modelling  
Mathematics education researchers working on mathematical modelling in an educational 
perspective, especially in the RME framework (for example, Rasmussen et al. 2005; Barnes, 2005) 
consider the distinction introduced by Treffers (1978) and Freudenthal (1991), between horizontal 
mathematization which “leads from the world of life to the world of symbols” and vertical 
mathematization, as work within the mathematical system itself. In our research, we focused on the 
teaching and learning of mathematical modelling based on extra-mathematical situations. We then 
followed the idea of Israel (1996), who defines a mathematical model as “a piece of mathematics 
applied to a piece of reality” and defined different forms of horizontal mathematization that seem 
relevant to explore educational issues: choosing a piece of reality to question in order to answer the 
problem; identify and choose the relevant aspects of the piece of reality (context elements, attributes); 
relating the chosen aspects together in order to construct a mathematical model; and last, 
quantification (Chabot & Roux, 2011), which refers to the association of some aspects of reality to 
quantities (which essentially consists in measuring). 

To deepen our epistemological study of modelling, we analysed the practices of experts (researchers) 
on mathematical modelling in life sciences, through interviews (Yvain, 2017). The main findings 
consist in the identification of three invariant features in the practices of researchers that contribute 
to the transformation of reality to mathematical solvable problems. The first invariant, which we 
labelled Pi1, consists in simplifying the problem and selecting a piece of reality. It supposes to identify 
relevant variables and choose relevant relations between the selected variables. The second invariant 
Pi2 consists in choosing a model among those known by the researcher in order to initiate vertical 
mathematization, at the risk of further having to refine or reject the initial model. The third invariant 
consists in quantifying in order to compare the “real data” with the results obtained within the model. 
We assume that taking into account horizontal mathematization in the teaching and learning of 
modelling is likely to foster students’ competencies. 

Theoretical framework for the study of the teaching and learning process 
Our conception of learning relies on the idea that students’ learning depends on their activity which 
results from the tasks they have to solve in class. However, we assume that solving a task is not 
enough to guarantee conceptualising. Indeed, the role of the teacher is also to allow students to 
identify mathematical knowledge in their activity to ensure the “transformation of activity into 
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learning”. We will then consider that actively practicing horizontal mathematization when solving 
the task would constitute a first step on the way to the appropriation by students of horizontal 
mathematization within the process of modelling: it corresponds to a “local devolution” (Perrin-
Glorian, 1997) of this learning issue. Considering that the devolution of it is complete (and hence that 
substantial opportunity for conceptualising is offered) supposes that the knowledge at stake is 
explicitly identified – by the teacher – as something to be learned (i.e. remembered in order to use it 
again later). 

Our theoretical framework to study teaching practices is the double approach of mathematics 
teachers’ practices, developed by Robert and Rogalski and their followers (Robert & Rogalski, 2005; 
Vandebrouck, 2013). Teaching practices are considered as complex, embedding five components. 
The first two of these are the cognitive and mediatory ones, which are directly observable in 
classrooms. The cognitive one corresponds to the teacher’s choices regarding content and tasks, 
including their organization. Choices corresponding to class events and to the effective 
implementation in classrooms of the tasks make up the mediatory component. The three other ones 
are the social, institutional and personal components, which allow taking into account elements that 
crucially impact some choices made by teachers. This framework leads us to investigate constraints 
that are more likely to impact teachers’ choices, would it be related to personal, social or institutional 
constraints. First, institutional constraints are essentially related to official instructions. Then, we have 
conducted analyses of classroom sessions, considering both the cognitive and the mediatory 
components of practices, and analyses of questionnaires filled by teachers during the development 
program, which allowed us to make some hypotheses on personal and social constraints. 

Experimental design 
Relying on our epistemological study, we tried to characterize tasks likely to support the learning of 
horizontal mathematization and hence students’ activities inspired by Pi1-Pi2 and Pi3 practices. Such 
tasks should then be “realistic fictions” conceived as adaptations of a professional modelling problem. 
Here is an example of such a task that we designed for our experiments: 

 
Figure 1: Text of the task “The tree” 

In order to have teachers implementing this task in their classrooms, we worked with a group of 
teachers in the context of a professional development program about mathematical modelling1. Not 

                                                 
1 This program has been existing for ten years and was designed by a group where researchers and some teachers work 
collaboratively (one of the two authors of this paper is part of the group). Every schoolyear, this program offers a 
collaborative project to volunteering teachers with their classes from 6th grade till the end of secondary school. 
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only shall the program include the fact of asking teachers to implement the task in their classroom, 
but it will also do it with a specific scenario. The scenario included five sessions. Groups of three 
classes were conformed and all the classes interacted using a platform regulated by the designers of 
the program. We will not give more details about the professional development program (see Yvain 
& Modeste, 2018, for more details) except for one point which we will linger on in this paper: the 
original first phase of “questions-and-answers”. The first step of the scenario requires teachers to 
devote the first session to students asking questions about the problem, to send them to two other 
classes and then to devote the second session to trying to answer those questions. 

Collected data and methodology 

In order to identify constraints related to the institutional component of teaching practices, a 
preliminary study of French official instructions for secondary school allowed us to identify the 
importance of mathematical modelling as a learning issue, but it remains a lot of implicitness about 
the role of horizontal mathematization in this process (Yvain, 2018). To explore the cognitive and 
mediatory components of teaching practices, we collected videos of the sessions in the classrooms of 
three teachers who took part to the program. We postulate that if teachers identify the learning issue 
related to horizontal mathematization, we would find traces of it in the cognitive and mediatory 
components of their practices, in the way they introduce the questions-and-answers phase to students 
and in the content they summarize at the end as what should students remember. We then designed 
four levels that indicate how much this learning issue is identified by teachers, according to what they 
had said during the introduction phase and the closing phase. These indicators are based on the forms 
of horizontal mathematization described above. 

Identification of 
horizontal 
mathematization as 
a learning issue 

In the introduction phase In the closing phase 

Level 1: no 
identification  

No element indicating the 
function of the questions-and-
answers phase in the solving of 
the problem 

The teacher doesn’t make a summary of 
what should be remembered or the 
summary doesn’t mention anything 
related to horizontal mathematization. 

Level 2: vague 
identification 

Some elements indicating the 
function of the questions-and-
answers phase in the solving of 
the problem 

The summary includes the idea that some 
information was missing in the initial 
problem to be able to solve it.  

Level 3: partial 
identification 

Elements inducing the idea of 
the necessity of making choices 

The summary mentions the necessity of 
making choices in order to be able to 
solve the problem. 
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Level 4: complete 
identification 

Elements inducing the idea of 
the necessity of making choices 
on context features and about 
relevant attributes to model the 
problem. Idea that modelling the 
problem will depend on the 
choices made.  

The summary mentions the necessity of 
making choices in order to be able to 
solve the problem and explains that 
different models could be used to solve 
the problem. The summary mentions the 
importance of choosing relevant 
attributes, depending on the problem to be 
solved, in order to choose a model. 

Table 1: Indicators of the identification by teachers of horizontal mathematization as a learning issue 

Findings: A task and a strategy effectively supporting students’ activity of 
horizontal mathematization 
Findings concerning students’ activity during the phase of questions-and-answers 

The analysis of questions and answers produced by students shows that they made simplifying 
hypotheses to handle the problem by selecting one or some pieces of reality: they focused on 
branches, the greenhouse, the leaves etc. They identified relevant variables that impact the real 
situation (for example, the number of branches) and non-relevant variables or elements of context 
(possibility to use organic fertilizer, or leaves); they chose relevant relations between the selected 
variables and used several mathematical tools (functions, proportionality, and geometry). These 
activities attest that students implemented Pi1–like activities. 

Students also identified the necessity of modelling the situation to be able to predict the tree’s growth. 
Students authentically questioned the variables to choose in order to solve the problem 
mathematically. The realistic aspect of the situation lead them to reflect on the important elements of 
context to be taken into account. This also helped them understand that not all information on the real 
context was useful to solve the problem or that it was suitable to ignore them in order not to come up 
with a too complex model. Our analysis showed that students mainly tried to use models that they 
knew (particularly, those using proportionality) and that they sometimes rejected it when they 
confronted the results they obtained to contingency, which attests their ability to implement Pi2-like 
activities. 

Finally, the mention of the scale in the text of the task allowed students to use instruments to make 
measures, which lead them to quantify some attributes and confront measures with real data, which 
attests of Pi3-like activities. The analysis of traces of students’ activities allows us to conclude that 
the characteristics of the task and the questions-and-answers phase fostered activities of students that 
resemble experts’ practices and correspond to horizontal mathematization. This attests that the first 
level of devolution of horizontal mathematization was reached. However, what it still remains open 
for future research is how students responsibility was really involved in these activities and to what 
extent this issue was identified by teachers in a way that allows a full devolution of the learning issue. 
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Analyses of teachers’ practices 

The analyses of the classroom sessions we observed, with the study of answers teachers provided to 
a questionnaire during the development program, show that the impact on the motivation of students. 
The main advantages that teachers identify are the collaborative aspect of the questions-and-answers 
phase and the fact that this phase develops a better appropriation of the problem by students. About 
the mediatory component of teaching practices, the analysis of the different implementations show 
that teachers encourage students to produce questions and then answers in order to solve the problem. 
This is what guarantees the local “devolution” of horizontal mathematization to students, during the 
questions-and-answers phase. However, when considering teachers discourse during the introductory 
phase, it appears that the purpose of the questions-and-answers phase is not completely explicit. Two 
out of the three teachers discourses correspond to level 2 (see the first excerpt below) and one to level 
3 (see the second excerpt below). Note that none of the teachers we observed attained level 4, neither 
for the introductory phase nor the conclusion phase. 

Teacher 1 Your job is to come up with questions, things that you didn’t understand, things that 
are missing, ok, here we miss some information, we need to know this or that to try 
to answer, or to clarify some things, you decide. 

Teacher 2 The challenge of the session is to try to provide some elements of answer. Do you 
have an opinion, an answer to propose? What is your point of view? Ok and if you 
had to make choices, which choices would you make? Because in my opinion, some 
choices are necessary or they will never be able to do anything. 

During the concluding phase, two teachers discourses correspond to level 2 (“the aim was to focus 
all the classes on the same problem in order to have everybody researching the same thing and to give 
you more information to proceed.”); one teacher’s discourse corresponds to level 3: “modelling is 
what we have been doing all along: making choices, ok? ” All in all, even if some teachers mention 
the necessity of making choices to solve the problem, they don’t seem to identify this necessity as a 
learning issue. In particular, they never offer students any formalization of the knowledge at stake 
about horizontal mathematization. Based on our theoretical framework, this makes us conclude that 
the devolution of the learning issue constituted by horizontal mathematization is not complete. 

Discussion and conclusion 
Our research shows that a conceptualization of mathematical modelling stressing the process of 
horizontal mathematization allows us to deepen our understanding of the learning and teaching issues 
related to mathematical modelling. Such conceptualization provides tools to support building efficient 
teaching strategies in order to guarantee consistent students’ activities of horizontal mathematization. 
These strategies include, in particular, a questions-and-answers phase that seems to play a 
fundamental role. Let us note that these conclusions meet the preoccupations of other researchers 
working on the same subject. For example, the MERIA project also stresses the opportunities offered 
by a questioning phase in order to develop some skills about modelling. 

However, our study also suggests that teachers, even if they identify the necessity of making choices 
in mathematical modelling, don’t completely understand it as a learning issue. Yet, this appears as a 
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condition for the complete devolution of the issue, in order to have students practice horizontal 
mathematization in ordinary classes, i.e. when teachers are not engaged in specific programs, 
imposing them teaching strategies. It leads us to postulate that a conceptualization of mathematical 
modelling in a way that includes horizontal mathematization, as a crucial and explicit component, 
would also constitute a good tool for teachers in order to overstep some of their difficulties and to 
improve their teaching skills about mathematical modelling – and hence, to improve learning. Our 
perspective is then to enrich our professional development program with an explicit work on 
horizontal mathematization with teachers and to make them able to identify it as a learning issue and 
as a tool to support the full devolution of it to students. For example, we suppose it would be fruitful 
to work with teachers on building summaries of such classroom sessions, suggesting them that 
elements about the necessity of making choices on relevant attributes and context elements in order 
to be able to model a situation and solve a problem would be valuable to explicit with students. Our 
research constitutes only a first step but points out a potential fruitful approach of teacher training 
about mathematical modelling, provided that teaching practices are considered in their complexity. 
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This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics 
Education (AME). The theme AME made its first appearance on CERME11 and in this paper we 
provide an overview of the growing and blossoming field of AME and the results of the working 
group. The main themes associated with AME are: the definition, scope, and assessment of 
numeracy, the role of language and dialogue, the role of affect, including motivation, and the role 
of societal power structures, including subthemes like equity, inclusion, vulnerable learners, agency 
and self-efficacy. We conclude with the opportunities and challenges for this theme from both 
scientific and societal perspective.  

Keywords: Adult Mathematics Education, Numeracy, PIAAC, Language, Agency. 

Introduction 
Adult mathematics education is a fast growing tree in the mathematics education forest. Many 
countries have in recent decades adopted policies on lifelong learning and, in most cases, 
mathematics and numeracy are included in these policies (see for instance the Lifelong Learning 
Platform, lllplatform.eu). This is a consequence of the rising awareness that the current society is 
rapidly changing due to technological, digital and environmental developments, and that citizens 
need a broad repertoire of mathematical knowledge, skills, and confidence to deal with those 
changes, both in work situations as in daily life.  

This idea is not completely new. An increasing interest in the relevance of mathematics needed for 
a well-functioning citizen started in the late 1950s in the UK with the Crowther report (DES 
Department of Education, and Science, 1959) but really blossomed two decades later with the 
Cockcroft report (DES Department of Education and Science, 1982), the foundation of Adults 
Learning Mathematics – an international research forum (ALM) established in 1993 with a strong 
European input (see e.g., Safford-Ramus, Keogh, O’Donoghue & Maguire, 2018), and the start of 
the Adults Numeracy Network (ANN) established in 1994 with a main focus on the USA. 
Numeracy was at that time defined in the Crowther report (1959) as scientific understanding and 
thinking quantitatively and in the Cockroft report (1982) as the capacity to understand and use basic 
principles of mathematics and science presented in mathematical terms.  

With the rapid growth of adult education in the 1970s (Milana & Nesbit, 2015) we witnessed a rise 
in formal mathematics education for adults, as a result of growing opportunities for adults to take 
another chance in getting mathematics certificates for further study or new careers. During this 
time, a large part of adult numeracy and mathematics education took place in informal and non-
formal education environments, for instance in community centres or in the workplace, or was 
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hidden in vocational or literacy courses for adults, which made it hard to get a complete overview of 
the field. Therefore, the mathematics referred to in AME has many appearances. It ranges from 
formal mathematics for advanced technological careers, to typical school mathematics content 
supporting the attainment of formal certificates and diplomas, and to the multifaceted concepts of 
mathematical literacy and numeracy, which deal with the use of numbers, patterns and structures in 
daily activities. This last appearance can also be described as Numeracy as a social practice  
(Yasukawa, Rogers, Jackson, & Street, 2018). This makes the concept of numeracy relevant to large 
segments of the populations in many countries; Indeed, the results of the Programme for the 
International Assessment of Adult Competencies (PIAAC), discussed in the next section, found that 
many adults have their optimal functioning in daily life hampered by numeracy problems. 

In this paper we show the subthemes raised by the participants in the TWG on AME. We consider 
this TWG as new platform for scientific discussion to push AME towards a more recognized 
position within the scientific international community. We present a brief summary of each of the 
contributions presented in the TWG during the conference. Finally, we conclude with some remarks 
on new avenues and challenges for the research in AME in the forthcoming years. 

Emerging themes in Adult Mathematics Education  
In TWG07 on AME the breadth and depth of the emerging field of AME is mirrored. Contributions 
come from various backgrounds, cultures, and experiences. In the first working group discussion 
the various themes of the contributions were made explicit and put into categories.  

These are the categories covered by the contributions of the participants in this TWG: 

· The definition, scope, and assessment of numeracy; 
· The role of language and dialogue; 
· Affect, including motivation; 
· Special groups and vulnerable learners; 
· Teaching and learning activities, including vocational education; 
· The role of power structures, inclusion, agency and self-efficacy. 

These themes more than anything else make clear that AME is a multi-layered phenomenon and 
much more than just mathematics education for a special target group. Mathematics education for 
adults intertwines the learning of mathematics with language and dialogue, affect, and dealing with 
learners’ reality, but also with societal power structures and sociological concepts like equity, 
inclusion, and agency.  

Regarding the definition, scope and assessment of numeracy  

“Adults’ numeracy and literacy practices matter” (p. 75) is the opening line of the chapter by Coben 
and Alkema (2018) in the ICME13-monograph series title Contemporary Research in Adult and 
Lifelong Learning of Mathematics – International perspectives (Safford-Ramus, Maaß, & Süss-
Stepancik, 2018). This brief sentence summarizes in the shortest possible way the importance of the 
theme numeracy in the field of AME. 

The results of the last PIAAC survey show that in all but one participating country, at least 10% of 
the adults are proficient below level 1 of the 6-point scale in literacy or numeracy (OECD, 2013; 
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PIAAC Numeracy Expert Group, 2009). In other words, significant numbers of adults do not 
possess the knowledge, skills and confidence to succeed in today’s society regarding quantitative 
matters. These results on numeracy give rise to serious concern for the economic development of 
Europe. This is an even more pressing issue since the amount of numerical data that needs to be 
interpreted and used is rapidly rising and all pervasive due to technological developments and the 
prevalence of (big) data. To gain a better insight in these trends a second cycle of PIAAC will be 
starting in 2021, which is now in preparation (Tout et al., 2017). 

David Kaye, chair of ALM, made a contribution to the discussion in the group on the development 
of the definition and historical development of the concept of numeracy, based on his earlier 
publications in an ICME13 monograph (Kaye, 2018). In the Crowther report (1959), numeracy was 
closely related to understanding science and developing technologies in society. In the next twenty 
years, the meaning changed to basic operations, whereby the association with science was no longer 
present and the level of mathematical understanding to which numeracy refers became much lower 
and not much more than “able to perform basic arithmetic operations”. The persistence of the latter 
definition makes it hard to develop, disseminate, and implement a concept of numeracy which 
better equates to an ability to cope confidently with the mathematical demands of adult life. For that 
purpose this latter definition is much too restricted because it refers only to more mechanical and 
lower-order skills like performing arithmetic operations and not ‘mathematizing’, which is the skill 
of translating an encountered problem into an adequate operation so that the mathematics can be 
used with confidence to cope with practical everyday situations. What is so significant about these 
shifting definitions is that the debate about what numeracy might include was already twenty years 
old in 1982, and that the tension between numeracy being little more than arithmetic versus being a 
significant part of everyone’s social practice is still being repeated in debates on numeracy policy 
development. The continuing tension can most likely be explained by the fact that it is not just an 
academic and educational debate, but rather a political one. In many countries we see a reoccurring 
‘back-to-the-basics’-movement as a simple answer to the complex issue of how to prepare children 
and adults to deal with situations in everyday life which involve numbers, patterns, and structures.  

Two contributions especially address this issue too. Diez-Palomar, Hoogland, and Geiger are 
members of the PIAAC Numeracy Expert Group, which is responsible for the development of an 
assessment framework and the items in the next PIAAC international comparative assessment, 
which is happening from 2021 onwards. They performed a limited literature review to explore 
which concepts from mathematics education theories could enrich the numeracy framework to 
make it more appropriate to adults functioning adequately in our number-drenched society (Tout et 
al., 2017). The most relevant concepts taken into account are number sense, big ideas in 
mathematics, and embeddedness and authenticity. Common in these concepts is that they all 
acknowledge the richness and multifaceted aspects of adults’ cognitive processes in dealing with 
numeracy situations. 

Furthermore, Hoogland, Auer, O’Meara, Diez-Palomar and Van Groenestijn report in their 
contribution on the first steps towards creating a Common European Numeracy Framework (CENF) 
for adults. These steps are made in an Erasmus+ project with the same name, which started in 2018, 
and is aims to broaden the perspective on numeracy, foremost by considering numeracy as a social 
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practice, focusing on numerate behaviour and numeracy practices. For a much more sophisticated 
discussion on seeing numeracy as a social practice, we further refer to the work of Coben and 
Alkema (2018) and Yasukawa (2018). 

Regarding the role of language and dialogue. 

The importance of the role of language and dialogue in AME was emphasised by no less than three 
contributions by Griffiths, Wessel, and Diez-Palomar & Anagnostopoulou respectively. 

Griffiths report on his investigations into discussions that took place during and following a 
particular small group activity in which a scene is read aloud and a mathematical task is undertaken. 
In his research, the concept of ‘thinking as communication’ is utilised and employs an overarching 
framework for analysis. To understand what happens when the ‘reading aloud’ activity is 
undertaken, it is important to investigate what happens when learners undertake related activities. 
Griffiths describes the key elements to the research with some initial analysis drawing on data from 
an exploratory phase along with observations from the main study.  

Wessel gives an overview of an Erasmus+ project that aims to empirically identify the potentials 
and challenges of language-responsive teaching designs for low-achieving students in vocational 
contexts. Using topic-specific designs the research delivers first insights into developing and 
experimenting with two teaching units (percentages and proportional reasoning) and summarizes 
the questions that come up when adapting design principles for language-responsive mathematics to 
the teaching and learning in vocational education. The empirical investigations are carried out with 
young adult pre-apprentices in lower level vocational education in Germany in the technical sector. 
These young adults often struggle with mathematics and have only limited proficiency in the 
language of instruction. 

Diez-Palomar and Anagnostopoulou discuss the effectiveness of dialogic learning as an adults’ 
learning theory. Their paper specifically focuses on how so-called Mathematics and Physics 
Dialogic Gatherings can enhance the critical thinking of adult learners and hence develop their 
learning in both topics. Two studies were considered where the participants engaged in dialogic 
reading activity reading classics in mathematics or physics. The former study took place in 
Barcelona, Spain and involved adult women of above 40-years-old with low literacy skills engaging 
in mathematics. The latter took place in Kendal, UK and involved two groups of adults. Although 
the samples were extremely diverse, the results indicate that using classical readings can 
significantly improve critical thinking and dialogic talk in all groups and provide the potential to 
create further learning opportunities. 

Regarding affect, including motivation  

In various contributions, attention is given to the role of affect as an important factor influencing the 
outcomes of AME in the classroom. It acknowledges that learning mathematics involves not only 
cognitive processes, but also, to a substantial level, an array of psychological and affective factors. 

Kelly undertook extensive doctoral research on the role of motivation in AME. Her research is 
based on interviews with adults about their motivation to study mathematics in the workplace, 
through classes organised and funded by trade unions in the UK. The findings point to motivation 
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as a function of individual’s emotions and cognition that are influenced by social experiences. The 
research identifies a difference between the initial motivation to re-engage with learning and that 
required to continue, or persist. Continuing learning relies on a socially and emotionally supportive 
learning environment which adults identify as ‘different’ from previous learning experiences. The 
term ‘Affective Mathematical Journey’ is developed to describe the positive emotional changes 
experienced by adults, which helps them overcome negative memories. The adults’ resultant 
increase in confidence and motivation encourages them to successfully develop and use their 
mathematical skills both inside and outside the classroom.  

Regarding special groups and vulnerable learners 

Engaging in mathematics education as well as trying to improve the management of various 
numeracy situations, such as finances, is a big step for many adults, especially when their past 
experiences with education are negative.  

Redmer used PIAAC data to get a better insight into the numerate behaviour of older people. 
Demographic changes render basic numeracy skills increasingly important in older age. Among 
them, skills in financial matters are increasingly relevant. The skills measured in PIAAC and 
Competencies in Later Life (CiLL) represent comprehensive cognitive abilities that can be seen as 
the basis for successful participation in social and economic life. In a secondary analysis, Redmer 
shows that financial practices continue to be important for older people, although their numeracy 
skills proficiency may be lower than those of younger people. The analysis clearly indicated a 
gender difference in dealing with financial matters: men handle bills and bank statements, whereas 
women manage the household, although there was some discussion about whether this distinction 
would continue in following generations. 

Byrne did research on a very special group. Her exploratory study is part of a larger study on 
assessment and teaching in mathematics classrooms in Irish prison education centres. Her purpose 
is to enhance knowledge in this field, to enhance practice and to enable better learning and teaching 
through research. A so-called Mathematics Teaching Triad is used as a theoretical construct for the 
study. This triad looks at management of learning, sensitivity to students, and mathematical 
challenges. When finished, the research project will present data derived from a wider investigation, 
including data from teachers in the secure sector across Ireland and data from prisoners attending 
mathematics classes. In this paper Byrne analyses the data gathered from a survey on small sample 
of teachers, covering the time available for mathematics classes, class composition, teacher 
satisfaction and teacher’s identities through metaphor. 

Regarding teaching and learning activities 

Keogh reports on developing and validating an instrument to let people recognise their own 
numerate behaviour. His reasoning is that adults know more about mathematics than they think and 
use it more often than they realise. Despite their apparent self-perception of being a ‘non-maths’ 
person, they behave in mathematics-informed ways, which are dismissed, routinely, as common 
sense or something other than mathematics. The doctoral research found that given the opportunity 
to reflect on their own behaviour at work, through a mathematics-sensitive lens, people readily 
recognise their numerate behaviour even if they talk about it in different ways. This work introduces 
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a set of tools and a methodology to harvest real tangible benefits for the learner. The tools explore 
the locus of a person’s expertise in increasing granularity, building a platform from on which to 
capture a learner’s mathematics knowledge, skills and competence, to help revise possible mistaken 
self-perceptions and to inculcate confidence in his/her learning of mathematics.  

Hoogland, Heinsman and Drijvers report on conducting a literature review on how numeracy is 
used in vocational education and whether there are effective practices identified in peer-reviewed 
literature of the last five years. The rationale for this study is that numeracy and mathematics 
education in vocational education is under pressure to keep up with the rapid changes in the 
workplace due to developments in workplace mathematics and the ubiquitous availability of 
technological tools. Vocational education is a large component of education for 12- to 20-years-olds 
in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. 
Preliminary results show that in most of the articles the concept of numeracy was not clearly 
explained, however when specified the PIAAC definition is used. In the search for articles on 
numeracy education practices which also reported on effects of those practices, only four such 
articles could be found out of more than 600 publications on numeracy and vocational education. 
Discussion in the group suggests a wider search of publications which includes practices involving 
problem solving, motivation, and math-anxiety.  

Regarding the role of power structures, inclusion, agency and self-efficacy 

Last but certainly not least is the notion of the use of numeracy in society, including the importance 
of being numerate, equity in access to relevant numeracy education and the perception of gender 
issues around mathematics and numeracy, all of which are never value-free. In her research 
Heilmann uses adults’ numeracy skills in the PIAAC data to analyse the issue of power. She states 
that theoretical discussions increasingly view numeracy as embedded in power relations, and if this 
is the case, these power relations should be visible in the results. She gives an overview of the 
underlying theories, focusing on three elements of numeracy skill proficiency: the distribution of 
skills in society, the process of defining a hegemonic view of numeracy skills and finally, the value 
of numeracy skills in the context of power relations. The value of numeracy skills is analysed using 
the example of gender relations in the labour market. The analyses explores how gendered 
hegemony might influence the way numeracy skills matter in terms of monthly wages and the 
probability of getting into leadership positions.  

Forwarding the field 
Although there is a broad acknowledgment that an array of psychological and sociological factors 
are important in (the results of) adult education, there is not yet a well-researched set of examples 
how in practice this can be taken into account in a more systematic and effective way. The practice 
of adult numeracy education is still a plethora of different content descriptions and goals that vary 
from very back-to-the-basics to very sophisticated higher-order skills. Reported teaching practices 
and lesson materials for adults are quite often not very different from those used in primary schools. 
Research-validated practices explicitly addressing the psychological and sociological issues are still 
very rare. The twin goals of trying to establish a firm definition of numeracy which acknowledges 
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the multifaceted nature of adult’s mathematical practices while identifying consistent teaching 
approaches should be of concern to the global AME community. 

Currently in  Europe there are some developments which are promising to come to a more common 
definition of numeracy and identify effective teaching approaches. The ALM organisation is 
strongly anchored in Europe and functions through its yearly conference in July as a community of 
practice for researchers in the field of AME in Europe and beyond. The European Basic Skills 
Network (EBSN) in combination with the EPALE-website of the European Union provides a 
platform where practitioners, policy makers and researchers can share their ideas, thoughts and 
results. Furthermore, in 2018 an Erasmus+ project started, which originated in The Netherlands, 
Austria, Ireland, and Spain, and is aiming to involve all European countries in an attempt learn from 
each other experiences to find some common ground for terminology, perspectives, development 
and practice, and policy making . 

In the future, it could be helpful if national and regional level policy documents explicitly define 
and openly discuss the chosen definitions of numeracy in relation to the European or world-wide 
used definitions, like the one by OECD in the PIAAC programme. Especially when societies  
become globalised, as Safford-Ramus, Misra and Maguire (2016) advocate, numeracy must remain 
a dynamic concept that recognises and responds to changes in society.  

Conclusion 
AME plays a vital role in empowering individuals to fulfil their full potential, enrichening their 
repertoire to cope with situations and problems in daily life and the demands made by a globalised 
world, increasing reliant on technology. In the second cycle of PIAAC, which will be conducted 
from 2021 onwards, a large body of data will become available, which will for the first time provide 
a longitudinal comparison with the results of the first cycle of PIAAC. To some extent, this will 
also point to trends in the development of give aspects of the field of AME  

Despite the relevance of numeracy in our society, the role that AME plays in the field of research 
into mathematics education is still rather small. There are international research associations in 
AME, but the main educational mathematics conferences that are referents in the field do not 
usually include AME as working group. We have over seventy years of “numeracy” as research 
topic devoted in national and international reports and studies. In the last decade, results of 
important large-scale surveys such as PIAAC have becoming available. However, there are still 
numerous gaps in terms of research understanding how adults learn and use mathematics, develop 
their quantitative understanding of everyday facts or situations, understand particular mathematical 
objects (proportions, functions, big numbers, shapes, etc.), and their properties, relationships and 
representations. The themes identified in this CERME working group layout a possible research 
agenda. The discussion will continue on the scope and definition of numeracy. Furthermore, 
sociological aspects will remain in the foreground of discussions on AME, such as its relationship 
with societal power structures and promoting individual inclusion, agency and self-efficacy for 
special groups and vulnerable learners. Another important aspect in AME is that adults bring their 
own life experiences to the learning environment, which implies that teaching and learning is 
influenced by a broad range of factors including the recognition that motivation to learn is 
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developed through social and emotional experiences, while teaching activities need to be sensitive 
to the role of language and dialogue as well as relevant to the context of learners’ lives.  
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This exploratory study is part of a larger study on assessment and teaching in mathematics 
classrooms in Irish prison education centers. Our purpose is to enhance knowledge in this field, to 
enhance practice and to enable better learning and teaching through research. We are using the 
Mathematics Teaching Triad (TT) theoretical construct for the study. This triad looks at 
Management of Learning (ML), Sensitivity to Students (SS) and Mathematical Challenges (MC). 
When finished, this research project will present data derived from a wider investigation, including 
data from teachers nationwide and data from prisoners attending mathematics classes. This paper 
analyses the data gathered from a survey on small sample of teachers, covering the time available 
for mathematics classes, class composition, teacher satisfaction and teacher’s identities through 
metaphor. 

Keywords: Assessment, mathematics, prison time, metaphor.  

Introduction and context 
Irish Prison Education 

The Council of Europe document Education in Prison (1990) states that education of prisoners 
must “be brought as close as possible to the best Adult Education in society outside” in philosophy 
and content and that it must “link prisoners to the outside community” (p.14).  

Prison education in Ireland is a partnership between the Irish Prison Service and the Education 
Training Boards (Irish Prison Service 2016). The Joint Strategy Statement states that its aims are to  

assist persons in custody to cope with their sentences, to prepare for life after release, to develop 
an appetite and capacity for lifelong learning and to achieve their full potential as learners. It also 
aims to promote the importance of prison education. (IPS, 2016, p.6) 

So prisoner learners can access similar education and accreditation to learners in adult education 
elsewhere, through accredited (leading to state certification) and non-accredited courses (not 
leading to state certification). An adult education approach is followed in prison education which 
looks at the whole person rather than deficit models, which see the student’s weaknesses or mainly 
as an offender (Warner, 2007). 

Teaching in Prisons  

Students entering prison education may have low levels of education (O’Mahoney, 1977; Kett & 
Morgan, 2003) and a history of negative or disrupted educational experiences (Muth, 2008).  
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People are motivated to start education in prison for many reasons, including personal development, 
family and work preparation (Costelloe, 2003). School in prison represents freedom, an escape, a 
distraction and stops them from sinking (Behan, 2014). They come to have a laugh, make the most 
of their time, and to learn how to learn (Carrigan & Maunsell, 2014). In prison education they feel 
trusted (Behan 2014), feel normal and their true selves (Carrigan et al., 2014). The positive feelings 
of the students seem to have an impact on the teachers. Prison teachers interviewed by Michals 
(2015) were positive about their work, felt satisfaction and felt that they had learnt from their 
students. Muth (2008) and Byrne & Carr (2015) state that teachers in prison have noted the 
transformative nature of prison education, and the growth of their students. This may lead to 
teachers feeling empowered in the classroom, as Messemer (2013) states that teachers interviewed 
in US correctional education centers felt they had a strong level of influence to make the necessary 
instructional decisions in their classrooms. We decided to investigate if there were other reasons for 
mathematics teacher feeling satisfied in their work. As classes in prison are generally longer than in 
schools outside, we adapted a study on this topic with mathematics teachers in secondary schools. 
This found that longer more frequent classes increased teacher satisfaction, which led to increased 
innovation in methodology and more teaching for understanding (O’Meara & Prendergast, 2018). 

Why I am doing research? 

Our study is based on the Jaworski Teaching Triad (Jaworski, 1992) which has three components, 
the Management of Learning (ML), Sensitivity to Students (SS) and Mathematical Challenges 
(MC). We chose this because it offers a framework for all the proposed data from this study, both 
qualitative and quantitative. ML refers to the role of the teacher in the classroom learning 
environment. In this context this refers to groupings, timetable, resources, interactions. Sensitivity 
to Students (SS) describes the teacher’s knowledge of the learners, attention to their needs, 
affective, cognitive and social. In this context it describes the engagement with students, from the 
point of entry. Mathematical Challenges (MC) describe the challenges offered to the learners to 
help them develop mathematical thinking through tasks, questions and reflections, in accredited and 
non-accredited tasks.  

The domains are interlinked and interdependent. A balance between SS and MC is needed to enable 
teaching to take place. In prison education there could be a risk of too much SS, due to vulnerability 
of learners, and too little MC which could mean strong relationships in class but little mathematical 
progression. Too much MC and too little SS could cause stress to an already traumatized and 
stressed group. Harmony leads to achievement when there is a balance between challenge, support 
and stimulation. The results from the teachers (see below) show their SS, ML MC.  
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Figure 1: Teaching Triad, Jaworski, B. (1992) 

The prison education center is where is two cultures collide, the culture of the classroom and the 
prison (Wright, 2005). There has been very little research on the everyday experience of prison 
education internationally, so we decided to gather data on the practices and rationale. We built this 
study on previous studies of mathematics teachers, in Ireland, Finland and Switzerland. O’Meara & 
Prendergast (2018) investigated the length of mathematics classes and the impact on teacher 
satisfaction. Oksanen & Hannula (2013) used metaphor to explore mathematics teachers’ beliefs 
about their profession and Beeli-Zimmermann (2014) explored adult numeracy teachers’ beliefs.  

We distributed the survey by email after a discussion with each teacher. During the call, the 
rationale for the study was given and the invitation was issued to take part. All who were contacted 
responded. We will extend the study nationwide in future. 

The questions are divided into two types; quantitative information on the class structure and 
allocation and qualitative questions on the teachers’ identity using metaphor (Table 1). 

1 How long are mathematics classes in your center? 

2  How often can people attend mathematics? 

3 How satisfied are you with this? 

4 How many students are in your mathematics classes 

5 Are students of similar or mixed ability? 

6 Do you like teaching mathematics? 

7 What metaphor describes you as a mathematics teacher? 

8 Please explain 

Table 1: The survey for prison mathematics teachers 

Thematic Working Group 07

Proceedings of CERME11 1303



 
 

 

 

The O’Meara & Prendergast (2018) study is interesting because it showed that mathematics 
teachers in secondary schools were more satisfied with longer and more frequent mathematics 
classes. Classes in prison are longer so we wanted to investigate the impact of the longer class time 
on the satisfaction of prison mathematics teachers. Teachers’ beliefs can shape their actions, and 
this could have an effect in prison education, where teachers’ values may differ from the prison 
culture (Wright, 2005). So, we decided to evaluate how mathematics teachers in prison felt about 
their work as this can impact on their teaching Beswick (2011). We are interested in doing this 
research because there is a lack of research in the field of prison mathematics education. After 
teaching for many years in this sector, I felt it was timely to investigate it. 

What am I doing? 

So, we developed a survey for teachers of mathematics in prison center, based on other studies and 
issued it to a pilot group of mathematics in prison. We intend to involve a wider group in future. 
The survey has quantitative and qualitative parts: the quantitative part investigates the timetabling, 
the composition and the access to mathematics classes. The qualitative part used metaphor to assess 
teachers’ identity and feelings about their work through metaphor. We will analyze this data using a 
framework such as Linguistic Metaphor Identification (Steen 2010). This was originally planned as 
an online survey, but these can be problematic in the prison context, so we simplified it and used 
email. Five emails were sent and five responded. 

There is a small number of responses for several reasons. There is a small number of mathematics 
teachers in the Irish prison education system. There are 13 centers in total and all have at least one 
teacher, either part time or full time. This data will be part of the next stage in this study. It is a 
subject with relatively low participation rates, which will be investigated in the next stage of the 
research. This is the first stage of the research and in the next stage, further data will be gathered 
from the remaining mathematics teachers in Irish prisons. The final stage of the project will consist 
of surveying the students attending mathematics classes in prison.  

There is often conflict over mathematics, mathematics or numeracy (Kaye, 2015) and the discussion 
is beyond the scope of this paper. This paper uses the term mathematics, as that is the term used 
widely in prison education by teachers and students. 

The research questions in this study are: 

(1) Are long mathematics classes common practice in Irish prison education centers and how 
often can students attend? 

(2)  Is there a link between teachers’ level of satisfaction to the availability of mathematics 
classes? 

(3) How do Irish mathematics teachers in prison see their identity? 
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Results  

The quantitative data was analyzed using Excel. Teachers surveyed stated that their mathematics 
classes varied between 1.5 and 2 hours long (Figure 2). They also stated that students could enrol in 
as many classes as they wished each week. All teachers stated that they were satisfied with this.  

 

 
 

Figure 2: Hours available for Mathematics classes in prison education centers daily 

 
We found that mathematics classes in prison were longer, at least one hour (Figure 2). Students 
could come more often if they wished; all levels and abilities attend at the same time, so students 
could join classes with people they choose to learn with.  
 

 
 

Figure 3: Maximum numbers attending mathematics classes in prisons surveyed 
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In Figure 3, the numbers attending range from 1 to 10 and one respondent was unhappy with the 
low numbers. 10 is the maximum number in any class according to the respondents.  

Students worked individually within the group as all were at different levels and the teachers 
respected and protected their privacy. This mixture in the class was a challenge at times and took a 
toll on teachers, in terms of emotional and physical energy, according to some respondents.  

A challenge that teachers felt in this context was getting more students to class, as they knew there 
were many who were not coming to school or who were in other classes but had not enrolled in 
mathematics yet. They also felt that the students were anxious at the beginning so had to work 
individually rather than in groups as at the start, they were afraid to let others see where they were 
at. Some teachers were the only mathematics teacher in their center, some were part of a team in 
their center.  

In response to the question “Are students of mixed ability?” all teachers stated that all students are 
mixed level. Teachers were asked: “Do you like teaching mathematics in prison?”  
Those surveyed all said they enjoyed teaching mathematics in prison and seeing their students grow 
in confidence and in skills. Teachers stated:  

“I enjoy it” 

“I love it” 

“I like it” 

“Yes, I love teaching mathematics …to see a student’s absolute pleasure at reaching their 
target.”  

Responses to the question “What metaphor describes you as a mathematics teacher?” ranged from 
“bit of everything” (2 responses) to “facilitator”, “member of a band” and “jazz musician” and 
“juggler” and “bridge builder” and “breaking down barriers”. Teachers stated that they wanted to 
ensure students had a positive experience and would return to mathematics class the next day, so 
adapted their behavior according to the needs of the students during each class. These teachers see 
themselves in different ways, as facilitators of the group, as led by the group and as a mixture of 
both. Oksanen & Hannula (2013) stated that in their findings teachers saw themselves in five 
categories: subject specialist, pedagogue, didactics expert, self-referential and contextual 
metaphors. We will develop our coding into categories in the future wider study.  

As part of my own reflective practice, I picked a metaphor which I felt represented my work as a 
teacher of mathematics in prison. I feel that I am a tightrope walker, balancing on a fine line in class 
between challenging my students with mathematics, being sensitive to them and managing the 
learning while keeping an eye out for risks. 

Discussion 
There were many findings from this initial stage of gathering the research. Looking at the data from 
teachers, they had long mathematics classes of and mixed levels and were generally satisfied with 
the amount of time students could access classes. They were concerned that so few came to 
mathematics class. Teachers showed flexibility of approach in their use of words related to their 
management of learning, such as juggle, rotate, flexibility. Their actions showed a tolerance and 
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acceptance of where the students were at. The irregular attendance, mixed ability groups, different 
groups, different class lengths, and frequent breaks during class allowed the students to feel 
comfortable and enjoy being mathematics class. These factors presented a challenge to teachers at 
times. Teachers showed an awareness of the role of emotions in mathematics class and noted that 
they allowed respect and privacy to students, offered individualized teaching within the group. They 
saw their role as breaking down barriers around learning mathematics and acknowledged that 
learning is challenging. Teachers expressed their pleasure at seeing student reach their target and 
acknowledged the difficulties they had in their mathematics learning histories.  
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This work draws on the Programme for the International Assessment of Adult Competencies (PIAAC) 
survey. Last year a first review was conducted on the PIAAC Numeracy Framework (Tout. et al., 
2017). In 2018 and 2019 the framework for the second cycle of PIAAC will be developed. This second 
cycle of the PIAAC survey aims to update the data about the numeracy skills of adults in different 
countries around the World (Hoogland, Díez-Palomar, Maguire, 2019). The objective of this paper is 
to highlight some relevant findings from literature on the concept numeracy in order to discuss a 
potential enrichment of the PIAAC Numeracy Assessment Framework (NAF). 

Keywords: Numeracy, assessment, adult learning. 

Introduction 

We are now well into the 21st century, and lifelong learning is becoming a crucial feature in adults’ 
lives, especially in terms of numeracy, because of the need to live in an increasingly globalized 
world characterized by rapid technological and economic change. There are major societal and 
policy pressures on education to prepare citizens for a complex and technologized society 
(Hoogland, Díez-Palomar, & Vliegenthart, 2018; Voogt & Roblin, 2012). What is expected from 
numeracy education in the current situation? New means of communication and types of services 
have changed the way individuals interact with governments, institutions, services and each other, 
and social and economic transformations have, in turn, changed the nature of the demand for skills 
as well. Globally, too many adults and young people lack the necessary numeracy competencies to 
participate autonomously and effectively in our technologized and number-drenched society. As a 
consequence, many people are disadvantaged in terms of employment and face preventable 
challenges in relation to social well-being and financial security. The results of the last PIAAC survey 
(OECD, 2016) show that a quarter of the participating countries in PIAAC have numeracy outcomes 
below level 2 of the 6-point scale. These outcomes give rise to serious cause for concern for the 
future economic development for many nations. This is an even more pressing issue since the 
amount of mathematical data that needs to be interpreted and used is increasing rapidly due to 
technological developments and the emergence of (big) data. However, numeracy is a complex 
notion that entails different components (Geiger, Goos & Forgasz, 2015). More than a decade ago 
(in 2003), several scholars meeting in Strobl discussed, during an ALM (Adults Learning 
Mathematics) conference, the meaning of numeracy versus mathematical literacy (Maasz & 
Schloeglmann, 2003). It was not clear whether numeracy was just referring to the ability to use 
mathematics in different situations, or something wider that we can call “mathematics literacy.” In 
this paper we adopt the definition of numeracy developed for the first cycle of the PIAAC survey as 
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starting point, to discuss the concept of “numeracy” seeking to identify what numeracy concepts 
are, so a meaningful assessment framework can be developed to recognize these concepts. We will 
discuss the notion numeracy in order to enrich the basis to develop the NAF that will be used in the 
second cycle of the PIAAC survey. We draw in a literature review exploring different concepts of 
numeracy, putting the emphasis on its components. In the next section we present the 
methodology used to conduct the review discussed in this paper. Then, we introduce the main 
findings.  

Methodology 

In order to answer the research question mentioned above, we conducted a literature review on 
the concept numeracy. Typically, a literature review is used to frame the problem presented in the 
introduction of the study (Creswell, 2003). In our case, we are using the literature review as a 
research instrument to identify relevant literature in order to discuss the different definitions about 
numeracy. According to Creswell (2003), the first step of doing a literature review is identifying “key 
works useful in locating materials” (p. 34) that may be relevant for the purposes of the study. In our 
review we elaborated on past finding by cross-referencing the concept numeracy with a number of 
reoccurring concepts in the discussions on numeracy. These concepts are: big mathematics ideas, 
number sense, embeddedness, and authenticity. We decided using those categories since they 
emerge from the first cycle of PIAAC. We have carried out a documental analysis of articles 
published in scientific journals included in the main databases and repositories, including the Web 
of Science, Scopus, for relevant journal articles, and ERIC Database for scholar documents and 
reports. Additionally, Google Scholar was used to identify potentially relevant literature, that we 
have subsequently contrasted with the Web of Science and, especially, with the Journal Citations 
Report database. We used the mentioned categories above as keywords to conduct the searches.  

Results 

Following Creswell (2003) recommendation, we present the global results of the review for each of 
the selected concepts. We also use what Creswell calls a literature map to illustrate the different 
components regarding to numeracy found in the literature review. Drawing mainly on the 
documents produced by the OECD (PIAAC, etc.), we created a first approach to the concept of 
numeracy, using a web-based software to count the number to times (frequency) that each word is 
used. This provided a first view of the concept of numeracy and how is it being used (Figure 1).  
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Figure 1: Word cloud of terms related to numeracy (based on OECD documents) 
 
We can see that the word “numeracy” is usually connected to concepts such as mathematics, skills, 
literacy, education, teaching, workplace, use, work, and data (see Figure 1). However, this first 
approach is based in a limited exploration. For this reason, we conducted a more fine-grained 
analysis, using a purposeful procedure (Creswell, 2003) using the three key words, as cited above, in 
the methodological section. As we can see in Figure 2, those three keywords provided a conceptual 
network in which aspects such as competence, access, use and interpret mathematics, 
embeddedness and social practice, invisibility, authenticity, workplace, powerful mathematical 
ideas, appears interconnected.  

 

Figure 2:  Literature map about the notion of numeracy 

 

Numeracy and big ideas in mathematics 

An entry point to identify relevant schemes, models or instruments to establish the basis of the new 
numeracy components is the so-called “big ideas in mathematics.” This is a well-known research 
domain in mathematics education (Jones et al. 2002). There is a general agreement that 
mathematics proficiency means noticing connections among different mathematics’ concepts and 
competence in using them. After many decades of mathematics education as a sort of utilitarian 
discipline looking for ways and strategies for children to perform calculations and solve problems, 
the vast majority of the mathematics education researchers defend a more relational focused 
approach to teach and learn mathematics. Jones and his colleagues (2002) provide a great 
summary of the main contributions of the research to what they call “powerful mathematical 
ideas”, including the following domains: whole number and operations, rational numbers, 
geometry, probability, data exploration and algebraic thinking and other underrepresented 
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domains. It could be argued that being numerated means using the contents of all these domains 
not just as procedures (instrumental understanding in Skemp’s terms) but in a critical / meaningful 
manner.  

In a more recent article, Hurst and Hurrell (2014), quoting Charles and Carmel (2005), state that 
“big ideas” allow us to see mathematics as a coherent set of ideas, encouraging a deep 
understanding of mathematics. It could be suggested that being numerate as defined within the 
PIAAC NAF may link to the idea of being able to access, use, interpret and communicate 
mathematical information around what the international scientific community calls “big ideas in 
mathematics.” Although it seems that everyone might understand what “big ideas in mathematics” 
encompasses, the reality is that the construct remains contentious. Kuntze and his colleagues 
(2011) mention a plethora of different terms referring to the area of big ideas, e.g. fundamental 
ideas (Schweiger, 2006), central ideas or universal ideas (Schreiber, 1983), core ideas (Gallin & Ruf, 
1993), leading ideas (Vollrath, 1978), basic ideas and basic conceptions (Hofe, 1995).  

Charles and Carmel (2005) define “big idea” as “a statement of an idea that is central to the 
learning of mathematics, one that links numerous mathematical understandings into a coherent 
whole.” This definition is also shared by other authors such as Hurst and Hurrell (2014). In their 
article, they track the notion of “big idea” back to the work of Bruner (1960), who inspired Clark’s 
(2011) definition of big idea as a “cognitive file folder” that we can file with “an almost limitless 
amount of information.” (Clark, 2011, p. 32). Big ideas became conceptual structures (schema in 
Skemp’s terms) that we can use to provide a NAF where content might be characterized by multiple 
connections. As Bruner (1960), Hurst and Hurrell (2014), Clark (2011) and other authors claim, big 
ideas may become bridges for the transfer of learning. Drawing on their thoughts, we suggest here 
using big ideas in mathematics as a skeleton for developing PIAAC NAF.  

Numeracy and number sense 

Number sense appears to be one of the main components of “numeracy.” Being numerate means 
having a certain sense of numbers and how we use them to represent, inform, predict, estimate the 
reality.  

McIntosh, Reys and Reys (1992) develop a framework for number sense including three 
components: numbers, operations and computational settings, which are interconnected. 
According to them, number sense involves being able to use numbers, operations and their 
applications in different computational settings. They talk about the meaningful understanding the 
Hindu-Arabic number system, the development of a sense of orderliness of the number, the 
multiple representations for numbers (including the idea of composition / decomposition), the 
understanding of mathematical properties, and the relationship between operations. For them, 
having “number sense” means being able to solve problems in the real world, providing suitable 
answers, using (or creating) effective strategies to compute, count, etc. It is not just reproducing 
instrumentally a certain algorithm but being able to use the mathematical knowledge and 
components in a flexible manner. 

Yang, Reys and Reys (2009) define number sense as “a person’s general understanding of numbers 
and operations and the ability to handle daily life situations that include numbers. This ability is 
used to develop flexible and efficient strategies (including mental computation and estimation) to 
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handle numerical problems.” (Yang, Reys & Reys, 2009, p. 384). Regarding the components of 
number sense, these authors argue “Number sense is a complex process involving many different 
components of numbers, operations, and their relationships.” (Yang, Reys & Reys, 2009, p. 384). 
Among these processes, they highlight two aspects, (1) the use of benchmarks in recognizing the 
magnitude of numbers, and (2) the knowledge on the relative effects of an operation on various 
numbers. 

Faulkner and Cain (2009) claim that “the characteristics of good number sense include: (a) fluency 
in estimating and judging magnitude, (b) ability to recognize unreasonable results, (c) flexibility 
when mentally computing, (d) ability to move among different representations and to use the most 
appropriate representations” (p. 25). The main components of their approach to number sense are:  
quantity and magnitude, numeration, equality, base ten, form of a number, proportional reasoning, 
algebraic and geometric thinking. 

Numeracy, embeddedness and authenticity 

The concept of embedded mathematics emerges primarily from studies related to mathematics in 
the workplace but also has significance in the broader notion of numeracy. The embeddedness of 
mathematics refers to a deep connection to the context in which it is utilized. This can mean that 
the way mathematics is used to operate on a task is fundamentally shaped by the context in which 
it is employed. This includes socio-cultural influences that afford or constrain action in school, civic, 
personal or workplace environments. In this view there is a clear separation between school 
mathematical knowledge, how it is taught, learnt and practiced, and the use of this knowledge 
outside of schooling. As Harris (1991) notes: 

In work [. . .] mathematical activity arises from within practical tasks, often from the spoken 
instruction of a supervisor and always for an obvious purpose which has nothing to do with the 
numbers working out well. Thus, students taught to react to isolated, abstract and written 
commands in the specialist language and carefully controlled figures of a school mathematics 
class, find themselves confronted with the urgent spoken, if not shouted, instructions in a 
completely different context and code (p. 138). 

Yasukawa, Brown and Black (2013) make a clear connection between embeddedness and social 
practice arguing that numeracy practices cannot be understood independently of the social, 
cultural, historical and political contexts. They illustrate this point, they compare students 
completing calculations individually, using paper and pen and perhaps a calculator against the use 
of mathematics in the supermarket, in which the same calculations completed at a checkout 
counter by the shop assistant using a cash register. In this situation the shopper might perform an 
estimation to avoid being overcharged. However, the shop assistant is equally concerned with 
charging the customer the correct price and recording accurate record of the items sold via the 
cash register. The calculations are the same but the purpose – which is related to context - is 
different.  

Embeddedness has led some researchers to talk about the invisibility of mathematics within work 
or social contexts. This means that mathematics can be fundamental to activities that are not 
obviously mathematical (FitzSimons & Coben, 2009).  This is most clearly apparent in the use of 
technology in the workplace where digital tools used to complete tasks often obscure underpinning 
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mathematical activity. As Kent, Noss, Guile, Hoyles and Bakker (2007) argue, within techno-
mathematical situations in workplaces there is a shift from ‘fluency in doing explicit pen and paper 
mathematical procedures to a fluency with using and interpreting output from IT systems and 
software, and the mathematical models deployed within them’ (p. 2-3).   

Building on this point, Wedege (2010) defines two forms of invisible mathematics as (a) subjectively 
invisible mathematics where people do not recognize the mathematics that they do as mathematics 
and (b) objectively invisible mathematics in which mathematics is hidden in technology. 

Discussion 

Drawing on the contributions coming from the literature review, some considerations emerge. 

First, big ideas in mathematics, number sense, embeddedness, and authenticity are important 
concepts in trying to define the notion of numeracy in the context of the 21st century. The 
Numeracy Expert Group working at the PIAAC survey defined numeracy as “ability to access, use, 
interpret and communicate mathematical information and ideas” (PIAAC Numeracy Expert Group, 
2009, p. 21). However, this definition does not provide clues about what “mathematical 
information and ideas” means. This is a relevant topic, since in the 21st century the “mathematics” 
that may be relevant for adults probably include some of the components highlighted by the 
scholars working around the notion of big ideas of mathematics. This is also interlinked to the 
notion of authenticity, since relevant mathematics, perhaps, must to be also authentic (or they are 
relevant because they are also authentic). If we want to create a new framework for numeracy 
assessment, then probably we need to look for the mathematics embedded in real situations and 
draw on them in order to be able to measure adults’ numeracy.  

Second, more research is required to identify other important elements of numeracy, especially in 
the current context of the 21st century and the “new” skills that adults must to develop. In fact, 
numeracy capability is increasingly vital in a world characterized by rapid technological and 
economic change. 

Third, numeracy is vital for social well-being, financial security and informed citizenship. Hence, a 
framework to assess numeracy must explore how this notion is embedded in authentic practices 
related with those societal dimensions mentioned above.  

Fourth, the critical aspect of numeracy, (not discussed here) related to making evidenced based 
judgements and decisions, is an aspect of numeracy that has often been underplayed for adults but 
is an essential element for informed participation in personal, civic and work life. More work is 
needed in identifying how to promote this critical capability. 

Fifth, evidence suggest that adult numeracy has been limited to studies in context (workplace, 
personal settings or activities, such as shopping, etc.). However, there is a lack of research in terms 
of cognitive, epistemological considerations of how adults learn/ use mathematics (numeracy skills), 
which means that additional research is needed to cover those aspects.  
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This paper discusses the effectiveness of dialogic learning as an adults’ learning theory. It 
specifically focuses on how Mathematics and Physics Dialogic Gatherings (M&PDG) can enhance 
the critical thinking of adult learners and hence develop their learning in both topics. Two studies 
were set where the participants engaged in dialogic reading activity reading classics in 
mathematics or physics. The former study took place in Barcelona, Spain and involved adult women 
of above 40-years-old with low literacy skills engaging in mathematics. The latter took place in 
Kendal, UK and involved two groups of adult A Level students, one studying Psychology and the 
other Physics. Although the samples were extremely diverse, the results demonstrated that classical 
readings can significantly improve critical thinking and dialogic talk in all groups and provide the 
potential to create further learning opportunities. 

Keywords: Dialogic learning, adult scientific literacy, gatherings. 

Introduction 
Dialogic learning has been one of the main approaches to adults’ learning theories in the last 
decades (Flecha, 2000). This approach suggests that adults are self-responsible of their own 
learning. They become active agents, creating social spaces for learning, drawing on solidarity and 
social interactions. In order for adults to be active in their learning and express themselves, they 
must use processes that promote their way of thinking, understanding and their ability to reason; in 
other words, they must develop their critical thinking (as defined by the Foundation for Critical 
Thinking, 2017). The aim of this paper is to discuss Mathematics and Physics Dialogic Gatherings 
(M&PDG) as learning spaces for adults to develop their learning in both topics. Dialogic gatherings 
were originally implemented by Flecha in La Verneda Adult School, in Barcelona, in the late 1970s.  
In 1978, a group of people asked for popular education for adults and occupied a public building to 
offer literacy courses for adults who never had the opportunity to attend school. Drawing on 
Freire’s work (who also visited the school several times), the adults participating in La Verneda 
Adult School created a democratic popular movement of education based on the principles of 
dialogic learning (Flecha, 2000). M&PDG are part of this initiative (Díez-Palomar & Cabré 2015, 
Díez-Palomar, 2017). In the following sections, we will introduce the theoretical framework, the 
methods used in the research reported here, and the main findings, for further discussion. 

Theoretical framework 
According to Flecha (2000), learning is framed by seven principles: egalitarian dialogue, cultural 
intelligence, solidarity, transformation, the creation of meaning, instrumental dimension of learning, 
and equality of the differences. Dialogic gatherings are spaces where all these seven principles are 
evident. Flecha coined the term "dialogic literary gatherings" (DLG) in the late 1970s. He created 
the first DLG in Barcelona, with a group of non-academic women, most of them barely literate, 
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drawing on debates between some of the most outstanding scholars in adult education and social 
sciences at that moment, such as Freire or Habermas. Freire (1970) believed that learning matters 
because individuals discover that through learning they can make and remake themselves because 
they realize that they are beings capable of knowing. Learning for individuals is a practice of 
freedom. We can resist oppression and transform situations of domination, such as the lack of 
schooling, for example. Habermas (2001) also assumed understanding as a universal ability of 
human beings. In his Pragmatics of Social Interaction, he claims that meaning and understanding 
are two categories eminently human. Individuals develop their understanding through social 
interaction, sharing repertoires of meaning embedded in particular actions denoted by linguistic or 
semiotic signs (Habermas, 2001). Drawing on this idea, Flecha (2000) states that all individuals 
may be able to develop understanding (learn) using social interaction as a form of scaffolding. The 
DLG is defined as learning spaces where a) adult learners with low literacy skills participate, b) the 
readings are universal literature classics, and c) the process is based on dialogic learning (Puigvert, 
Sordé, & Soler, 2000). The DLG become spaces where individuals participate, interact, and share 
meanings around particular readings / words/concepts. The DLG became one of the successful 
educational actions validated in the research project INCLUD-ED. Strategies for inclusion and 
social cohesion from education in Europe (2006-2011).  

Drawing on this background, La Verneda Adult School developed the Mathematics Dialogic 
Gatherings (MDG) using classic readings in mathematics to conduct the gatherings (Díez-Palomar, 
2017). The research discussed in this paper starts with this experience and extends the MDG to 
science (Physics). The second author of this paper used this approach to create PDG in the UK, 
drawing on the principles of DLG (Soler, 2004, 2016).  

Methodology 
The research question 

In this paper, we discuss some of the main findings from two independent studies focused in the 
same research question: “Can mathematics and physics classical readings promote the development 
of critical thinking of adult learners?”.  

The setting and participants 

The first study reported in this paper was held in Barcelona (Spain). The setting for the study was 
an adult school placed in a working-class neighbourhood in Barcelona, Spain. Data was collected 
from May to June 2016 (seven sessions). Participants included six women between 40-years-old 
and over seventy-years-old, with low literacy skills. The second study discussed in this paper was 
conducted in Kendal College, Cumbria, in the United Kingdom. Data was collected during the last 
semester of the academic year 2016-2017. It involved two groups of A Level students, male and 
female: group PSY, who studied psychology and group PHY, who studied physics. 

Research design  

In both studies, we created Dialogic Gatherings. These gatherings are spaces in which participants 
engage in dialogic reading activity involving classic texts in mathematics or science. Participants 
are the ones choosing the readings. The book selected for the first study was Historia de las 
matemáticas, the Spanish translation Jean-Paul Collette (1979) book Histoire des Mathématiques. 
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For the second study, the reading selected was Dialogue Concerning the Two Chief World Systems, 
by Galileo Galilei (1632). In both cases, we used the methodology of the DLG created by Flecha 
(see Figure 1). 

 
Figure 1. Scheme of how a M&PDG works (Díez-Palomar, 2017) 

Results  
The participants in the Mathematics Dialogic Gatherings (MDG) engaged from the very beginning 
in mathematical discussions around the history of mathematics. The six women seemed comfortable 
talking about the first traces of mathematics in the Palaeolithic Era, the mathematics used by the 
Babylonians, the contributions made by the people living in ancient Egypt, the mathematics 
formalized by the Greeks, etc. Drawing on the description of how humankind developed counting, 
grouping and the idea of number as the strategy to keep track of cattle, crop, the six women 
discussed such notions as number system, algorithm, unit of measure, value, equivalence, and so 
forth. They related some of these concepts with their everyday life. For instance, when discussing 
the concept of the base of a number system, they rooted their arguments in their previous 
knowledge about using different coins whose value is defined by groupings in base 1, 5 or 10. Their 
knowledge about duros (a coin equivalent to 5 pesetas in the old Spanish currency) facilitated their 
understanding about ancient number systems which a base different from the Hindu Arabic 
numbers that we use nowadays. Jean-Paul Collette mentions in the first chapter of his book that a 
bone was found in the Czech Republic with some tally marks carved in groups of approximately 30. 
According to the experts, it could be a moon calendar. Interestingly, one of the women in the group 
highlighted this excerpt of the book because she stated: "I remember that I read somewhere that 
some people think that those marks correspond to the menstruation cycle." Then, a further 
discussion about mathematics and human biology started, connecting mathematics to gender issues. 
During the sessions, many other issues arose: Why the Romans didn't have the zero in their number 
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system?, How to translate quantity from one unit of measure to another?, and What strategies are 
best in problem solving?  

For every topic, the participants in the MDG used their own personal background to, in Flecha’s 
(2000) terms, “create meaning with the mathematical content. The book presented many symbols 
and codes (numerals, formulas, graphical and visual representations), that usually are abstract 
representations of real phenomena. Data suggest that women were able to create a zone of proximal 
development where everyone was free to contribute with their piece of knowledge drawing on their 
own experiences. According to Hutchins (2000) this can be defined as episodes of distributed 
cognition. That was the case when developing an understanding an ancient algorithm for 
multiplication presented by Jean-Paul Collette (1985) in his book.  

In the same vein, the Physics Dialogic Gatherings project further examined participants’ progress 
with respect to their background knowledge, in a different setting. 

During the first sessions, the psychology group got involved in discussions in a descriptive and 
philosophical manner. They felt more confident to discuss philosophical ideas, such as the 
definition of perfection in the text, and they tend to avoid or ignore any scientific or mathematical 
part of the book. An example from a participant:  

“If I were in this conversation I would question the definition of perfect and what is exactly they 
are trying to achieve by defining these principles? What are they going to achieve if they finally 
define  that the Earth is perfect? What does perfect mean?” 

They often exchanged information directly quoting from the text without showing any 
understanding of the ideas transmitted. For example:  

“Pythagoras says it’s defined by beginning, middle and end, but others are saying perfect is how 
you form the body; the length, and thickness.” 

They did not challenge the obvious. They preferred to agree with that. Direct quotation from the 
text: 

“They say about the lines that the straight line is the shorter one and obviously you can have 
many other lines. I agree with that.”  

During the later sessions, they felt confident to discuss science too, starting with simple arguments 
and poor terminology. Their dialogic skills evolved with time when they felt the need to use 
definitions and self-created terminology. They created their own terms when the lack of scientific 
knowledge did not help.  

“I think it depends what fast is. In our situation our fast is like steady and we have air-resistance 
and when it reaches terminal velocity, it will be like balanced. Whereas if you are in a car and it 
speeds up and in fact you are in control of the fastness, you will just accelerate until you reach 
where you want to go and then you will put another force acting into it because you want to slow 
it down. So it depends on which fast it is acting on.” 

They could formulate arguments where critical thinking was evident. As they were feeling more 
comfortable, they progressed to using scientific terminology, which emerged either from the text or 
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from prior knowledge that they had not used for a long time, but they recovered it for the sake of 
their argument.  

“So, say you have a forward motion, velocity and then you have the air resistance and gravity. 
They would balance out in a way that the one motion is still more than the others because it still 
moving forward, because if the others weren’t there it wouldn’t have to speed up.” 

Their critical thinking was developing, and they were more involved in discussing their ideas in a 
dialogic manner, even if these ideas could be wrong.  

“If the plane is tilted, the ball starts moving and speeds up until it reaches towards the end. And 
then reaches a flat surface again. So yes, I agree with that. There has to be some kind of limit, 
because… I don’t know… It can’t just speed up, speed up, speed up. It has to be some kind of 
limit.” 

Towards the final sessions, they were able to combine physics and philosophy into their arguments, 
which triggered further discussions and carried forward their learning skills. 

“It’s got to have some purpose to move. A body which is not moving, will move if it has a 
purpose.” 

The physics group seemed more open to disputes and reasoning than the psychology group, 
possibly because they considered the text to be more on their area of expertise. They approached the 
ideas presented with scepticism and doubt, rather than with unquestioning acceptance, which 
already indicates a level of critical thinking (Scriven, 1987). In the early sessions, the group was 
dealing with the texts purely scientifically, ignoring any philosophical quotations in contrast to the 
psychology group. The physics group was seeking for proofs and they even performed their own in-
class short experiments to prove a point.  

“Salviati is saying that he doesn’t believe that 3 is necessarily more perfect than 4 or 2, and gives 
the example of legs on a chair or table. And I was wondering if it is harder to knock over a table 
with 3 legs or 4 legs, because with 2 legs obviously it is not stable.” 

They employed their scientific background knowledge to explain the ideas presented in the reading.  

“Triangle is the strongest shape in nature so I guess it may be stronger.” 

“…because there are more ways where you can pass the center of gravity.” 

At later sessions, the group was involved in philosophical critical thinking too. The engagement 
with the philosophical terms expanded their discussion away from the actual text and they were able 
to connect science with philosophy. Their critical thinking and dialogic talk development evolved to 
a point where they were disputing scientific methods that they had never disputed before. They 
questioned science and mathematics and they concluded that they had more trust in their senses 
than some scientific proofs. 

“Does mathematics support or help science, do you believe things because you see them to be 
mathematically true or do you believe things because you see them to be physically true? What 
creates new knowledge?” 
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Discussion  
In 1976 Wood and his colleagues coined the term “scaffolding” as a metaphor to analyse how adults 
assist children when solving problems. They defined it as an action that “enables a child or novice 
to solve a problem, carry out a task or achieve a goal which would be beyond his unassisted efforts” 
(Wood et al, 1976, p. 90). This concept moved forward the old Vygotskian notion of ZPD (Bruner, 
1986). Cazden (1979) extended the concept from its original use in the context of dyadic adult-child 
interactions, to a study of teacher-student interactions in classroom settings. More recently, a special 
issue published in 2015 in the journal ZDM Mathematics Education (47,7) explored the interlink 
between this metaphor and the idea of dialogic teaching. Evidence suggest that dialogic teaching 
pushes forward to notion of scaffolding, since dialogue creates opportunities for participants to 
exchange and share knowledge from which create their own understandings. In this paper, we found 
evidence suggesting that this approach can also be used in the context of adults learning in both 
mathematics and physics. 

Overall, the Mathematics and Physics Dialogic Gatherings project proved to be an enjoyable 
method for the teaching and learning of physics and mathematics. Data collected suggest that 
egalitarian dialogue can create opportunities for learning. The participants, drawing on their 
dialogic talk, created Vygotsky’s (1978) zones of proximal development where all participants 
contribute with their cognitive potential. Our results also confirm Hutchins’ (2000) notion of 
distributed cognition, since many times the different participants ended with a complete explanation 
of a particular notion, such as the uses of the zero in a number system, after sharing different pieces 
among them. The egalitarian dialogue, as defined by Flecha (2000), means that everyone has the 
same opportunity to share his/her previous knowledge throughout a dialogic process in which every 
participant shares arguments based on valid claims. The participants of the psychology and the 
physics groups as well as the mathematics group were able to make valid claims on the 
understanding of mathematical, scientific and philosophical concepts. This suggests that the critical 
thinking of both groups was significantly improved.  

In addition, the results also reveal that using an egalitarian dialogue based on personal previous 
knowledge, adults were, in Freire’s terms, able to read (and re-read) critically the world. The 
different notions discussed during the sessions in both settings gained from this personal way to 
present them to the audience in the M&PDG. Linking them to personal situations in the everyday 
life appears to be a successful strategy to create meaning around the concepts discussed in the 
group. As Flecha (2000) states: “the creation of meaning is one of the more seminal principles of 
the Dialogic Learning theory since learning is strongly connected to motivation, as previous studies 
have largely demonstrated (Mehler & Bever, 1967)”. Freire narrates the case of a woman who 
learned to read and write by sending love letters to her husband. For this woman, the words 
acquired full meaning because they transmitted her feelings to her husband, who was far away. In a 
similar vein, for the women participating in the MDG recalling their memories about duros and 
pesetas was a way to make meaning to the idea of base in a number system. In this situation, 
grouping, which is an important component of numbers in number systems (as well as in the 
development of number sense), was fully understood by the six women participating in the MDG. 
They not only used the notion of grouping (base); they were also able to explain different 
algorithms to do mental calculation drawing on the use of grouping as a cognitive strategy to solve 
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particular cases of calculations (mainly addition and subtraction, and sometimes multiplication as 
well). 

The research demonstrated that background knowledge is important to establish an egalitarian 
dialogue, in the sense that everyone uses their own repertoire of knowledge to participate in the 
dialogue. Although the two groups were very diverse in terms of background knowledge, they 
ended up in parallel ideas when combining mathematics, philosophy, and science. They approached 
the notions from a different perspective but somehow, they concluded in similar ways. Combining 
mathematics, science and philosophy opened new perspectives into their learning of physics and 
mathematics. In fact, results suggest that “heterogeneity” may be a successful component of 
M&PDGs. Without that heterogeneity, participants in the gatherings would not be able to introduce 
different examples to illustrate particular scientific or mathematical notions, making learning more 
depth and meaningful for everyone in the group. The Dialogic Gatherings method can, therefore, 
benefit heterogeneous groups, where people can learn from each other, taking advantage of the 
knowledge that everyone shares within the discussion. This is consistent with previous research in 
the educational arena (Flecha, 2000; Vygotsky, 1978; Wertsch, 1990).  

Summarising, evidence suggests that classical readings and egalitarian dialogue could be an 
excellent method to improve critical thinking in mathematics and physics and have the potential to 
create further learning opportunities in classrooms. 

Conclusions and further research 
In this paper, we have discussed how adults in two different settings (Barcelona and Cumbria) draw 
on their participation in the M&PDGs to develop their critical thinking around mathematics, 
science, and philosophy. Results suggest that adults use their own personal background to make 
meaning to the academic concepts in the books selected. Egalitarian dialogue mediates learning 
through a participatory process in which adults share their personal understanding of the topics 
discussed in the gathering. They use practical examples, drawing on their memories and looking for 
plausible explanations. In doing so, they acquire proficiency in using expert scientific and 
mathematical jargon. However, evidence reported here are limited since they belong to two single 
case studies. The sample is neither representative nor random. The examples introduced in this 
paper illustrate some intuitions about how adults, using classic readings in mathematics and science, 
can further learn and create a critical thinking aligned to what some authorities claim as being 
critical citizens in the rise of the 21st century. However, due to the limitation of the research design, 
more research is needed in order to generalize the benefits of the MP&DGs in supporting adult 
learners’ critical thinking, in other settings.  
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Using dialogue scenes with adult mathematics learners: Research 
questions and methods 

Graham Griffiths 
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This paper is an outline of the research questions and methods, informed by an exploratory phase 
of data collection and some initial observations from the main phase, selected as part of my 
doctoral studies into adults learning mathematics. The work is an investigation into the discussions 
which take part during and following a particular small group activity type in which a scene is read 
aloud and a mathematical task is undertaken. This paper outlines research utilising ‘thinking as 
communication’ as proposed by Sfard (2008) and employs an overarching framework for analysis 
developed by Morgan and Sfard (2016). To understand what happens when the ‘reading aloud’ 
activity is undertaken, it is important to investigate what happens when learners undertake related 
activities.  

Keywords: Collaborative discussion, discourse analysis, dialogue, adult education, mathematics. 

Introduction 
This work started with an interest in teaching practices and a wish to investigate, in some detail, the 
collaborative discussions that occur between learners when undertaking a particular type of activity 
(Griffiths 2014). From this starting point, my work has become more focused on generating data to 
inform a theoretical perspective on learner-learner discussions. I am interested in the interactions 
that occur between learners during the implementation of a form of classroom activity, namely the 
reading aloud of a scene of dialogue concerning mathematics and a linked, collaborative 
mathematical task.  

Theoretical perspectives on learning  
Dialogue (and conversation) has been seen as a useful focus of attention in the educational world 
and utilised in a variety of ways. For example, classroom dialogue has been investigated within the 
framework of dialogic teaching by Alexander (2017) and has resulted in a special edition of ZDM 
(see Bakker, Smit, & Wegerif (2015)). Much of this work has been interested in the dialogue that 
occurs between teacher and learner whereas I am interested in learner-learner interactions with 
minimal input from teachers when undertaking the specified task. Having said this, there are 
important ideas that are in common to such work and my research. For example, notions such as the 
importance of sense making and socio-cultural influences on learning involved in such discussions 
are also important in my work. Such sense making and socio-cultural perspectives draw upon 
literature that stretches back to writers such as Bakhtin (published in English in Bakhtin 1986), and 
Vygotsky (published in English in Vygotsky et al. 1978). These writers have also influenced more 
recent work that I am utilising (in particular Sfard 2008).  

Central to my work is the question of whether reading aloud has an effect on the resulting 
collaborative discussions compared to reading silently. This was initially motivated by my own 
experience of observing such activity. Nonetheless, there is a question as to what the literature says 
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about the effects of reading aloud and silently. Much work has already been undertaken into 
studying the effects of reading aloud compared to reading silently when related to language and the 
effect on subsequent educational performance. For example, García-Rodicio, Melero & Izquierdo 
(2018) provide evidence that suggests there is no significant difference in performance between 
reading aloud and reading silently when dealing with comprehension exercises (in fact, they note 
that individuals following others reading aloud can result in significantly worse performance on 
tests). It is worth noting that this type of study takes an acquisitional perspective (in the sense of 
Sfard 1998) and is concerned with performance on some standardised test. My study has an interest 
in participation in a given activity type and the evidence in the transcriptions of discussion related to 
that rather than the effect on some standardised test. As such the perspective taken by Garcia-
Rodicio, Melero & Izquierdo (2018) and similar work is not of interest to me. Other work, for 
example Duncan (2015), has a focus on the perceptions of individuals and their practices related to 
reading aloud. This work does suggest positive aspects to the practice of reading aloud. Although 
Duncan’s work is not interested in mathematical development, I am more interested in the practice 
focused work of this type of work.  

The theoretical perspective that I intend to use, that of thinking as communication, has been 
developed in recent years and been given a detailed rationale by Sfard (2008). My research takes 
the participatory approach of seeing thinking as communication that Sfard argues for. Within this 
perspective, learning is not seen as concerned with changes to some internal schema, that is 
responding to experiences, but rather the communication itself is viewed as thinking and learning. 
Sfard argues that the job of the researcher is to investigate communication. The discussions that 
happen during and following an activity would provide an example of communication which could 
be investigated and Sfard (2001) proposes a form of discourse analysis and suggest some aspects to 
look for in such work. In particular, she identifies for analysis the mediating tools involved in 
discourse and a set of meta-rules that govern discourse.   

For example, the text in the scenes provides an example of a mediating tool. When discussing the 
scenes and engaging in classroom discourse related to mathematics, it is not surprising to hear direct 
extracts from a text being used by participants along some paraphrasing of sections. In addition, the 
mathematical examples used within the text are mirrored back in many cases. Indeed, one of the 
reasons that Swan (2006) has constructed the scenes (DfES 2005) that initiated my work is for 
discussion to focus attention on key elements of mathematics. It seemed a reasonable working 
assumption that by asking learners to read text aloud, it is likely that, at least for some groups and 
individuals, focus will be put on those words and phrases. Part of my research is investigating this 
aspect, to see the ways in which specific parts of the text are employed in discussion of the scenes.  

The term ‘meta-rules’ might suggest a strict set of guiding principles while, in reality, this might be 
less rigid. Indeed, Sfard suggests that there could be a wide range of possibilities for a hypothesis to 
govern a discussion and such a meta-rule will need to be interpreted from the discourse. As an 
example, in a discussion of mathematics between two boys, she proposes that one of the 
contributors is focused on mathematical meaning while the other appears to avoid discussing 
mathematical ideas while employing, for example, face saving devices (such as humour) which 
suggest a concern for social position. This can be seen as another, different form of, socio-cultural 
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issue raised by Lerman (2001) who argued that the role that individuals play and aspect of power 
and position in society will have an impact on discourse and need to be considered. 

Within the discussions that I am concerned with, such meta-rules may be related to resources that 
the participants utilise other than those in the text (identified as mediating tools).  Such additional 
resources include the use of mathematical discourse that draws upon prior experiences (either 
within their present educational setting or from an earlier situation) as well as non-mathematical 
discourse. In the case of our task, which involves a discussion around the price of rail tickets, it is 
not a surprise to note that participants have contributed with discourse concerning their own use of 
the rail system (thus introducing an element of socio-cultural influence). 

In my research, I use an overarching framework developed by Sfard, Morgan and others (in 
particular Morgan & Sfard 2016). The framework structures the characteristics of discussions into 
two main categories for analysis: (a) the mathematising aspects of discourse and (b) the 
subjectifying aspects of discourse. Further elaboration on this, with examples, is provided below. 
The reason for selecting this form of analysis is that it is designed to be of interest to mathematics 
education rather than utilising more general categories that occur with other forms of discourse 
analysis. The analysis of the collaborative discussions consists of investigating a range of factors 
and I have been interested in the following sub questions under the two identified categories.  

(a) The mathematising aspects of discourse: 

(i) What resources do the individual participants use in the discussions (please note that 
resources here might mean physical resources such as a calculator but also the examples that 
are chosen by the participants and the proposed calculations that are employed)?  

(ii) To what extent do these resources relate to the text in the activity (a mediating tool) 
or draw upon other experiences (and therefore suggest meta-rules are being employed)?  

(b) The subjectifying aspects of discourse: 

(i)  How do the individual participants contribute to decision making within the group?  

(ii)  How is the discussion regulated by the individual participants involved?  

(iii)  How do the participants see themselves in relation to mathematics (in general and 
specific to the activity)? 

The specific activity that my work is concerned with consists of a mathematical task along with a 
scene in which four characters discuss the task (see Figure 1 and Figure 2 for details of the task and 
activity). The task asks participants to agree or disagree with a given statement related to a 
percentage problem. The activity of interest involves the learners taking and reading aloud the parts 
of four characters who argue different positions related to the task. This is then followed by a 
discussion in which the participants are intended to come to their own conclusion concerning the 
task.  
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Task 
Rail Prices 

 

 
In January, fares went up by 
20%.  

In August, they went down by 
20%.  

Sue claims that:  

“The fares are now back to what 
they were before the January 
increase” 

Do you agree? 

If not, what has she done wrong? 

 

 

Scene 1 (as in DfES 2005) 
Harriet: That’s wrong, because … 
they went up by 20%, say you 
had £100 that’s 5, no 10. 

Andy: Yes, £10 so its 90 quid, no 
20% so that’s £80. 20% of 100 is 
80, … no, 20. 

Harriet: Five twenties are in a 
hundred. 

Dan: Say the fare was 100 and 
it went up by 20%, that’s 120. 

Sara:  Then it went back down, 
so that’s the same. 

Harriet: No, because 20% of 
£120 is more than 20% of £100. 
It will go down by more so it will 
be less. Are you with me?  

Andy:  Would it go down by 
more? 

Harriet: Yes because 20% of 120 
is more than 20% of 100. 

Andy:  What is 20% of 120? 

Dan:  96… 

Harriet: It will go down more so 
it will be less than 100. 

Dan: It will go down to 96. 

Scene 2 (amended features) 
Harriet: That’s wrong, because 
… they went up by 20%, say you 
had £100 that’s 5, no 10. 

Andy:  Yes, £10 so its 90 quid, 
no 20% so that’s £80. 20% of 
100 is 80, … no, 20. 

Harriet: Five twenties are in a 
hundred. 

Dan:  Say the fare was 100 and 
it went up by 20%, that’s 120. 

Harriet: And, because 20% of 
£120 is more than 20% of £100. 
It will go down by more so it will 
be less. 

Andy:  What is 20% of 120? 

Dan:  96… 

Harriet: It will go down more so 
it will be less than 100. 

Dan:  It will go down to 96.  

Sara: No, it has gone up £20 to 
£120 and then it went back down 
the same, so that’s £100. 

Figure 1: The task and scenes 1 and 2. 

Activity RAS1&2 
In groups of 4:  

Choose to read out the parts of: 

Harriet, Andy, Dan & Sara 

Then read out the scene and 
discuss what you think about 
Sue’s claim that “the fares are 
now back to what they were”.  

Activity RSS1&2 
Read the scene below 

In groups of 4:  

Discuss what you think about 
Sue’s claim that “the fares are 
now back to what they were”. 

 

Activity NS 
In groups of 4:  

Read the statement from Sue 
below.  

Discuss what you think about 
Sue’s claim that “the fares are 
now back to what they were”.  

 

Activity RAS1 is then followed by the Task and Scene 1 from Figure 2 (and similarly for RAS2), Activity 
RSS1 is then followed by the Task and Scene 1 from Figure 2 (and similarly for RSS2) and Activity NS is 
followed by the Task only from Figure 2. 

Figure 2: The three activity types 

Thematic Working Group 07

Proceedings of CERME11 1328



 

 

During an exploratory phase, examples of the activities described in Figure 1 and Figure 2 were 
undertaken and reported on in Griffiths (2014). Examples of discussions were included which 
showed some different responses to the different activity types. Data taken from this exploratory 
phase along with early observations from the main phase will be used to illustrate issues in this text.  

Methodology 
My study takes a qualitative, inductive approach, using a series of case studies and utilising the 
theoretical frameworks noted earlier for analysis. The work explores the data that is gathered to see 
how it fits the proposed framework with an aim of suggesting variables for further study.  

The data collected consists of audio recordings and observational notes of learners undertaking the 
activities along with audio recordings of short focus group discussions (one per cohort) about the 
process immediately following the activity. 

The research design of the main phase 
To identify some characteristics in the response of learners to the activity involving reading aloud, it 
is helpful to identify what happens when the activity involves reading silently. In addition, the use 
of the mathematical task without a dialogue scene is used as a way of identifying the extent to 
which elements of analysis relate to the use of mathematical scenes whether read silently or aloud. 
A final issue concerns the nature of the scene itself. It is possible that responses may be produced as 
a result of the particular elements of the text. For example, characters within a text may have more 
dialogue and thus be given priority, or the first and last statements might have more dominance. In 
order to take this set of issues into account, alternative versions of the text have been developed and 
used.  

The research design chosen considers 5 activities (see Figure 2) which are used as interventions 
with additional (to the exploratory phase learners) groups of (four) learners across 4 institutions 
(giving a total of 20 groups and 80 learners): 

RAS1 – activity which involves reading aloud the scene as described by Swan (in DfES 2005) 

RAS2 – activity which involves reading aloud an alternative version of the scene 

RSS1 – activity which involves reading silently the scene as described by Swan (in DfES 2005) 

RSS2 – activity which involves reading silently an alternative version of the scene 

NS – activity which involves the task without the scene 

To distinguish which characteristics are related to reading aloud, the overarching research question 
is then refined to become the following question: 

What are the similarities and differences in the characteristics of learner discussions during and 
following the identified activities? 

The analysis is considered in relation to contextual information, such as participant backgrounds 
and experiences, that becomes known as the research progresses including information noted when 
agreeing the groups to be studied with centres, the recording of the discussions that occur while 
undertaking the full activity and focus group discussions following the activity.  
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Observation and discussion 
The following text describes some initial thoughts utilising data collected from the exploratory 
phase along with initial observations from the main data collection without detailed analysis. The 
first category concerns the nature of the mathematical tasks involved in the research, thereby 
addressing the mathematising aspects of the activities (and resulting discourse). The second two 
categories are concerned with the responses of participants to the activities, and with others in a 
group, thereby addressing issues related to subjectifying aspects of the activities (and discourse).   

The relationship between mathematics, the context of the activities and the activity types 

The three activity types (RAS, RSS, NS) have one thing in common in that the notion of 
percentages is linked to rail prices and as such is making links to the ‘everyday’. The task, deciding 
whether an individual is correct or not, is not necessarily what might be understood as a traditional 
task, that is, one in which a calculation is undertaken and presented with an answer. In addition, the 
task, while relating to aspects of real world activity - the buying of tickets, the notion of sales and 
discount – involves the combination of information that can be seen as somewhat artificial (and 
perhaps encourage responses involving humour for example in the exploratory phase a contributor 
suggested that a passenger will be “ripped off”).  

In the main phase of data collection, while participants most often use the example of the price 
given within the scene (that of £100), other examples of mathematising are clear such as the 
strategies used to calculate 20% which were not evident in the text. From early observations of the 
main data collection phase, it is not yet clear whether reading aloud or not is significant in relation 
to this.  

The relationship between participants and the activity types 

A key aspect to consider is how participants in the activities relate to the information and roles 
presented in the scene. One example is the scene use of the proposed £100 ticket price. This would 
suggest the use of rail travel between towns and cities rather than more local commuting. Another 
example concerns the (assumed) genders of the participants in the scene and the selection of roles 
for reading aloud. I have seen the choice of character being led by gender on a number of occasions 
(and discussed in the focus groups).  

In the exploratory phase, one contributor talks about ‘they’ (“what they’re saying…”) and another 
specifically mentions the character Harriet by name. In the main phase, some individuals 
undertaking RSS noted that they only read the first few lines of the scene. One of the groups 
selected to read aloud had identified, and agreed, mathematical statements which would lead to 
them saying Sue was wrong but did not want to commit to this judgement. In another discussion 
following the non-scene task, participants suggested £5 as a rail ticket. These are examples of 
subjectifying aspects of the discussion while on some occasions being linked to mathematising 
aspects such as related calculations.  

The regulation of discussion 

The utterances that are involved in a discussion will follow some, usually unspoken, set of rules 
(meta-rules in Sfard’s terms). I have already noted that Sfard (2001) argues that some participants 
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will have a focus on mathematical meaning while others may focus on alternative, and potentially 
face saving, aspects of discussion. I draw upon two aspects of discussion that have been written 
about which can be interpreted as involving subjectifying aspects of discourse, one concerning 
school discussion, uncertainty and hedging, and another that has been noted in relation to adults and 
the use of humour.  

The significance of uncertainty and signs of hedging in discussions has been noted (in particular 
Lakoff (1973)). In my exploratory investigation, one participant starts by suggesting that she does 
not understand what is happening and yet then follows with the mathematically expected responses.  

Oughton (2010) has noted the importance of humour in the interactions between learners. She 
suggests that adults use positive, affiliative humour in group working in order to deal with anxieties 
that they feel undertaking mathematics. Interestingly, within the exploratory data we see the use of 
humour to end discussion (“So... you still get ripped off whichever way”). The comment seems to 
be a mechanism to end the discussion and may be an attempt to disguise uncertainty about meaning.  

Conclusion 
Having noted that the study is anchored in practice, the study itself is likely to be of interest to 
researchers interested in forms of discourse analysis within mathematics education. The study has 
generated data that is intended to inform a theoretical understanding of the effect of reading aloud 
on classroom discussion with such mathematical scenes. This detailed analysis is still to be 
undertaken although observations so far suggest some interesting indicators of what to focus on.  

While of primary interest in the research field, it is expected that the study will help to inform 
classroom teachers of (adult) mathematics classrooms. It is not intended to identify a toolkit that 
enables teachers to produce their own scenes but rather to identify a potential use of the existing 
scenes in two main ways: 

a) To propose and describe (including key features) the classroom activity of reading aloud 
dialogue scenes involving mathematics (not an expectation of the original Swan scene) 

b) To outline what might be expected to happen in the discussions between learners when 
undertaking the activity  

This will then allow teachers to make their own decisions about whether to employ these activities 
(or perhaps similar ones) with their own learners. 
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This paper is concerned with adult numeracy skills as these are presented within the Programme 
for the International Assessment of Adult Competencies (PIAAC). It will focus on what we can learn 
from PIAAC results about adult skills, about the assessment and about societal structures. 
Theoretical discussions increasingly view numeracy as embedded in power relations. If so, these 
power relations should be visible in the results. This paper will provide a brief overview of 
underlying theory in the field, focusing on three elements of numeracy skill proficiency: the 
distribution of skills in society, the process of defining a hegemonic view of numeracy skills and 
finally, the value of numeracy skills in the context of power relations. This value of numeracy skills 
can be analysed by the example of gender relations in the labour market. The analyses will use 
PIAAC-data to indicate how gendered hegemony might influence the way numeracy skills matter in 
terms of monthly wages and the probability of getting into leadership positions.  

Keywords: Basic skills, gender bias, labour market, adult education, PIAAC. 

Introduction 
Educational research often looks at skills as something to acquire. Once acquired, it is anticipated 
that skills bring benefit to their possessor by transforming skills into success. Following that line of 
argument, a common aim is to make education available and suitable for more people; assuming, 
that if education would only find a way to convey knowledge more efficiently, this would bring 
direct benefit to people in terms of happiness, health, or success in the labour market (Grotlüschen, 
Mallows, Reder, & Sabatini, 2016; Kittel, 2016; OECD, 2016a). Craig (2018) argued – in a paper 
called ‘the promises of numeracy’ - that numeracy education is largely associated with 
empowerment and seen as relevant for social participation, while innumeracy is connected to 
“personal, social, and cultural costs” (Craig, 2018, p. 64). This paper is a reflection on PIAAC 
results with this perspective in mind. The OECD assessed via PIAAC the literacy and numeracy 
skills of 16-65 year-olds. In 2011/12, 24 countries participated in the first round of assessment. 
Nine other countries followed in a second round in 2014/15 (OECD, 2016a). 

There is a variety of definitions and concepts around numeracy, mathematics, quantitative literacy 
used in international contexts. (e.g. Karaali, Villafane-Hernandez, & Taylor, 2016; Vacher, 2014). 
For this paper, the terms numeracy and numeracy skills refer to PIAAC’s definition:  

PIAAC defines numeracy as the ability to access, use, interpret and communicate 
mathematical information and ideas, in order to engage in and manage the 
mathematical demands of a range of situations in adult life. (OECD, 2012, p. 34) 

An alternative view on skills focusses more on their embeddedness in society and in power 
relations. Being embedded in social constructs means being greatly influenced by power structures. 
Thus, it is worth asking, whether Craig’s ‘promises’ are equally true for those who acquire them.  
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Using the example of gender to look at a concrete representation of societal power relations, PIAAC 
results offer the potential to analyse the intersection of gender and numeracy empirically and with 
quantitative methods. In this paper, I choose a regression analysis to test the value of numeracy 
skills in terms of income and the chance of getting into a leadership position. The scope of 
difference between these values for men and women will also be explored. 

Numeracy in relations of power 
Distributing numeracy 

How do people acquire numeracy skills and why do some attain higher skill proficiencies than 
others? Focusing on gender differences, the achievement of young boys and girls has received much 
attention for the past decades and continues to be of high importance (OECD, 2016b). Surveys such 
as PISA1 and TIMMS2 test students at the ages of 10 (TIMSS) and 14/15 (TIMSS, PISA). These 
assessments show that boys tend to perform higher on numerical and science-related tests. The 
difference is small, but nevertheless significant (Mullis, Martin, Foy, & Hooper, 2016; OECD, 
2016b). A comparison between these and further assessments of numeracy and mathematical 
competencies from the years 1994 to 2007 show that gender differences increase with age and 
grade. The performance of boy’s on numeracy and mathematical proficiency increases from the 
seventh grade on. The difference between boy’s and girl’s performance on such assessments can be 
related to stereotypes and expectancies. Not only do teacher seem to expect and (unconsciously) 
support different skills and interests of boys and girls, but also, students expectations of themselves 
have been shown to align with their interests and their self-concept to what they think is expected 
from them (Budde, 2009).  

Regarding the adult population, results from PIAAC show men scoring higher on the numeracy 
scale than women with the gender gap greater in older age cohorts (OECD, 2016a). The presented 
findings on young students and adults show differences in how numeracy skills are distributed 
among genders.  

Determining numeracy 

In a comprehensive look at the social aspects of numeracy, Street, Baker and Tomlin (2008) 
transferred insights from the New Literacy Studies to the field of numeracy and argued that 
numeracy is a social practice. This idea of a multiple of skill interpretations originates in the New 
Literacy Studies (Street, 1993). Contemplating the great variety of numerate practices – numeracy 
itself has to be seen as multiple numeracies. The relativity of numeracy is not only evident in the 
social distribution of skills but also in determining what constitutes as mathematics or as numeracy. 
As such, all numeracies are embedded in power relations and subject to the societal hegemony. A 
variety of studies have demonstrated how numeracy skills and practices are embedded in economic 
outcomes (Grotlüschen et al., 2016) or how values, beliefs and power relations determine the idea 
and the relevance of numeracy and mathematical education (c.f. Ares & Evans, 2014). The 

                                                 
1 Programme for International Student Assessment (by OECD) 
2 Trends in International Mathematics and Science Study (by IEA, International Association for the Evaluation of 
Educational Achievement) 
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relativity of numeracy is not only evident in the social distribution of skills but also in determining 
what constitutes as mathematics and as numeracy. Different studies showed how skills and practices 
are embedded in economic outcomes (Grotlüschen et al., 2016) or how values, beliefs and power 
relations determine the construct of numeracy and mathematical education (Ares & Evans, 2014). 
Following postmodern theories, some researchers view mathematics and numeracy to as 
constructed in discourse in every aspect (Ernest, 2004). Velero (2004) suggests this perspective 
allows us “to perform a very fine grained analysis of how mathematics and mathematics education 
are used by people in particular discourses and of the effects of those discourses on social practices 
and, consequently, on people's lives” (p. 11).  

Rewarding numeracy 
Continuing from the perspective of that power relations shape numeracy conceptualizations and 
acquisition, the following analyses will show empirically that gender relations affect the value of 
numeracy skills on the example of labour market outcomes. Regression analyses of PIAAC data 
will be used to show how numeracy proficiency does not have the same value for everybody. 
Looking at two labour market outcomes (wages and leading positions), the analyses that follow will 
reveal how the effect of numeracy skills changes with gender.  

Method: Data and sample 

The presented research was carried out with PIAAC datasets for 13 European countries. The 
analysis disregarded those European countries whose PIAAC data did not disclose all variables 
employed. It therefore includes the following thirteen European countries: Belgium, Czech 
Republic, Denmark, Spain, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway 
and Poland. 

PIAAC scales its numeracy test items based on item response theory (IRT) to account for 
differences in item difficulties. Based on the IRT scaling of the items and a population model, 
plausible values are drawn. This approach increased the measurement accuracy (Yamamoto, 
Khorramdel, & Davier, 2013). PIAAC views numeracy skills on a scale from 0 to 500, which it 
sections into five levels3 (OECD, 2013). 

To exclude a possible bias arising from any gendered occupational segregation, different areas of 
work were included as control variables in the regression analyses. To exclude any effects of 
women working part-time, those participants who are unemployed, out of the workforce or work 
part-time4 were not incorporated in the analysed data.  

Method: Variables and analyses  

Variables on monthly income and leadership positions5 serve as indicators of labour market 
outcomes. The income variable indicates the monthly income exchanged into US-Dollars and 
                                                 
3 The score boundaries for numeracy in PIAAC are: 0-175 points (below level 1); 176-225 points (level 1); 226-275 
points (level 2); 276-325 points (level 3); 326-375 points (level 4); 376-500 points (level 5).  
4 Excluding all participants who work less than 31 hours in an average week (D_Q10).  
5 Variables names are EARNMTHALLPPP for monthly wages and J_Q07a and J_Q08a for leading positions. 
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transformed as purchase power parity (PPP). This way, all outcomes are given on the same scale.  
Both income and leadership variables include employees as well as self-employed workers.  

The effect on monthly income was regressed with a multinomial linear model. Logistic regressions 
were used for the leadership positioning. On both occasions, three models were employed: Model 1 
regressed against male gender and numeracy; model 2 added background variables (b.v.)6 and 
model 3 regressed against the interaction term between numeracy and male gender. For the analysis 
on monthly income, the average work hours per week (h/w) were also controlled for in the first 
model.   

Result: Same numeracy, different wages  

Table 1 shows the result of the first two models on the monthly wages; showing significant results7. 

 

Table 1: Difference of monthly income of men and women with the same numeracy 
proficiency 

The results indicate how much higher men’s monthly wages are when having the same average 
numeracy proficiency as women. A comparison of the two models suggests that structural 
differences cannot explain men’s higher wages, as in most countries the differences in income rise 
in the further adjusted model. In Norway, for example, women on average earn almost 1.000 USD 
(PPP) less than men despite having the same level of skill proficiency. 

                                                 
6 Background variables include: Age (AGE_C), educational qualifications (EDLEVEL3), the parent’s educational 
background (PARED), native language (NATIVELANG), different fields of work (ISCO1C) and the average hours of 
work per week (D_Q10) 
7 Significant results are marked as follows: *** (p < 0.001); ** (p < 0.01); * (p < 0.05). n.s. (not significant).  

Country adjusted for h/w adjusted for b.v. Average equivalent of income 
differences in numeracy points 

Belgium 718 *** 977 *** 61 

Czech Republic 719 * 756 ** n.s. 

Finland 493 *** 664 *** 58 

France 304 *** 385 *** 44 

Germany 516 *** 686 *** 30 

Greece 330 *** 395 *** 60 

Ireland 565 * 905 *** 32 

Italy 614 *** 703 *** 88 

Norway 748 *** 994 *** 59 
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The last column in Table 1 shows how many points on the numeracy scale are the equivalent of the 
gender difference in income. Men in these European countries seem to score from 30 (Germany, 
Ireland) to 60 (Finland, Norway, Greece, Belgium) to 88 (Italy) points lower on the 500 scale when 
earning a similar income to women. There are no significant differences in Denmark, Spain, 
Netherlands, and Poland. 

Result: Exchanging numeracy into wages at different rates 

Table 2 presents the third model of regression on the monthly income. The analysis tested for the 
increase of income against numeracy proficiency – again, not for individuals but structurally. The 
table indicates how much additional skill points relate to higher income for men in comparison to 
women. For all genders, higher numeracy scores relate to higher income. However, for men higher 
numeracy points relate to a higher increase in income. The difference is smallest in Ireland (with 
Germany as a close second). Here, a man’s increase equals 117 percent (118 percent) of women’s. 
In Italy, men’s income increase equals more than 140 percent of the average woman’s increase in 
income. 

 Country Men’s increase in income compared to 
women’s increase 

Belgium 138 % 

Finland 130 % 

France 122 % 

Germany 118 % 

Greece 122 % 

Ireland 117 % 

Italy 141 % 

Norway 129 % 

Table 2: Average value of men’s numeracy in relation to women’s 

There are no significant differences in Denmark, Spain, Netherlands, Poland and the Czech 
Republic. For all thirteen European countries, higher numeracy scores relate to an increase of 
income by 123 percent of women with equivalent scores.  

Result: The probability of leadership 

Regarding the probability of men and women of getting into a leading position, we found similar 
results, which are shown in Table 3. These results show the effect coefficient of the binomial 
logistic regression analyses. The effect coefficient is the exponent of the regression results. In both 
models, men show a higher probability of being in a leadership position. In the unadjusted model, 
men in Italy and Germany are between 14 and 20 percent more likely to be in a leadership position 
when having equal numeracy skills as women. In Finland and Belgium, men are 81 and 89 percent 
more likely to be in a leadership position. 
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In the adjusted model, men in Spain and Finland are almost twice as likely to be in a leadership 
position as women with similar numeracy proficiency, educational background, in the same field of 
work, and with further background variables controlled. In the Czech Republic they show a more 
than two and a half times higher probability. 

Women in Finland or Spain are almost half as likely to get into a leading position with the same 
numeracy proficiency, education and further background variables. There are no significant results 
in Ireland.  

Averaged for all analysed European countries, men’s probability to be in a leadership position is 
148 percent of that of a woman with equivalent numeracy skills. When controlled for background 
variables, the overall average for men is 59 percent higher in relation to women.  

 

Country not adjusted Adjusted for b.v. 

Belgium 1.89 *** 1.62 *** 

Czech Republic 1.75 *** 2.60 *** 

Denmark 1.77 *** 1.52 *** 

Spain 1.75 *** 1.93 *** 

Finland 1.81 *** 1.95 *** 

France 1.68 *** 1.65 *** 

Germany 1.21 * n.s. 

Greece 1.52 ** n.s. 

Italy 1.14 *** 1.61 *** 

Netherlands 1.57 *** 1.37 ** 

Norway 1.55 *** 1.26 * 

Poland 1.40 ** 1.72 *** 

Table 3: Odds ratios of logistic regression results: average probability of men getting into a 
leading position compared to women with equal numeracy skills  

 

Discussion 
As a consequence of the use of IRT, plausible values and the nature of our calculations, these 
results cannot be interpreted at the level individual case. In addition, countries’ results can’t be 
compared because of the different economic positions and related purchasing power within 
countries. However, the strong and significant correlation in at least nine of the 13 analysed 
countries indicate strong gender differences in the way (numeracy) skills can be transformed into 
labour market outcomes.  
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Furthermore, it seems numeracy does not correlate (strongly) with all job-specific skills. In contrast, 
there is no reason to assume that the gender difference in numeracy is bigger than in other job-
specific skills.  

In this paper I have argued that numeracy is embedded in hegemonic structures of society in (at 
least) three specific ways: (1) influencing what is recognised in definitions of numeracy, (2) 
selecting who acquires numeracy, and (3) determining the societal value of numeracy skills. The 
analyses of PIAAC data could show women’s numeracy skills relate to a lower income and to lower 
probabilities of being in a leadership position. On a scale of 500, men score between 32 and 88 
point lower than women while having a similar income. With the same numeracy proficiency, men 
on average earn between 300 and 750 USD more than women. Similarly, men’s probability of 
getting into a leadership position is around one and a half times that of women with the same 
numeracy proficiency.  

In some cases, the adjustment of the model for various background variables increased the 
respective coefficients. This might indicate, that part of the gender differences in the labour market 
are intensified by (some of) those background variables, like different fields of work or educational 
attainments. This result, however, cannot be explained by the first model.  

In conclusion, this study provides evidence that numeracy skills are entwined in power relations. A 
multitude of factors, which - in some way or another – appear to be influencing women’s 
opportunities along gender lines, accumulate to different outcomes in the labour market. My 
analysis indicates that higher levels of numeracy skills relate to an increase in labour market 
outcomes – but it is not an equal increase for everybody. This might suggest a deeper reflection on 
our concepts of numeracy and skills and our willingness to use real-life outcomes as promises for 
numeracy education.  
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Numeracy and mathematics education in vocational education is under pressure to keep up with the 
rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous 
availability of technological tools. Vocational education is a large stream in education for 12- to 
20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a 
reform. To assess what is known from research on numeracy in vocational education, we are in the 
process of conducting a systematic review of the international scientific literature of the past five 
years to get an overview of the recent developments and to answer research questions on the 
developments in vocational educational practices. The work is still in progress. We will present 
preliminary and global results. We see vocational education from the perspective of (young) adults 
learning mathematics. 

Keywords: Numeracy, mathematics, vocational education, VET . 

Introduction 
Practical background / Our aim 

Vocational education in the main stream of the educational system in the Netherlands (preparatory 
vocational for 12- to 16-year-olds and specific vocational for 17- to 21-year-olds) is on the brink of 
bringing the curriculum up-to-date to the needs of the current society and the contemporary 
workplace. In the 1990s the curriculum was built around four domains: numeracy, algebra, 
geometry & measurement, and information processing & statistics. In that timeframe the curriculum 
was considered quite modern and ahead of developments in other countries, mostly caused by the 
Realistic Mathematics Education movement which was inspired by the “mathematics is a human 
activity” -approach by Hans Freudenthal (Gravemeijer, 1994). 

In the 2010s, however, from an alleged low level of arithmetic skills of the students, a strong top-
down ministerial policy was introduced by adding to the existing mathematics curriculum a separate 
numeracy/arithmetic programme with a digital nation-wide summative examination. After 10 years 
of piloting and political quarrels, this path was abandoned again. 

Now new paths are explored to see whether the vast body of knowledge on mathematics for the 
workplace and mathematics for the future citizens can provide valuable clues for a modern, relevant 
and effective numeracy or mathematics curriculum for students who will work with mathematics in 
very practical situations and who will have to deal with the quantitative world around them. From 
this perspective the students in vocational education are seen as young adults who can benefit from 
the body of knowledge collected around adult mathematics education. 
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From this perspective we started a review of the most recent literature on numeracy in vocational 
education. 

Theoretical background 

For a theoretical background, we address the following issues: 

· Societal changes 
· Shifts in mathematics education 
· Previous reviews  

To start with, there are major societal and policy pressures on (mathematics) education to prepare 
young learners and school leavers for a complex and technologised society. In literature, these new 
educational goals are referred to as 21st century skills or 21st century competences (Voogt & Pareja 
Roblin, 2012), global competences (OECD, 2016) or the 4th industrial revolution (Schwab, 2016). 
Common among the concepts mentioned above is the acknowledgement that across education, 
government, and business, the skills and knowledge needed to succeed in work, life and citizenship 
have significantly changed in the 21st century. As workplaces are being transformed, the skills and 
knowledge workers now need are intertwined with technology. New means of communication and 
types of services have changed the way individuals interact with governments, institutions, services 
and each other, and social and economic transformations have, in turn, changed the demand for 
skills as well.  

These major societal and policy pressures translate also into pressures on mathematics education to 
prepare young learners and school leavers for a complex and technologised society. For instance, 
PriceWaterhouseCoopers (2015) reported recently that businesses “competing in a global economy 
driven by data, digital technologies and innovation will need more employees trained in science, 
technology, engineering and mathematics (STEM). Research indicates that 75 per cent of the fastest 
growing occupations now require these skills” (PWC, 2015, p. 4). Similarly, in their recent 2017 
review, the National Council of Teachers of Mathematics (NCTM) (2017), stated that “Today 
mathematics is at the heart of most innovations in the information economy. Mathematics serves as 
the foundation for STEM careers and, increasingly, careers outside STEM, and mathematical and 
statistical literacy are needed more than ever to filter, understand and act on the enormous amount 
of data and information that we encounter every day” (p. 6). Many of the mentioned changes are 
related to technological developments, particularly information and communications technologies 
(ICT), and have profoundly altered what are considered to be the key knowledge and skills that 
individuals need as economies and society continue to evolve.  

There is a growing body of knowledge on the desired numeracy and mathematics competences in 
workplaces (D. Coben et al., 2010; Geiger, Goos, & Forgasz, 2015; Hoyles, Wolf, Molyneux-
Hodgson, & Kent, 2002; Hoyles, Noss, Kent, & Bakker, 2010; Straesser, 2015; Wake, 2015). 
Consistent in the reported results are conclusions which boil down to the observation that the 
mathematics tasks which people undertake at work in the 21st century involve more than plain 
calculation skills or straightforward procedural proficiency. Nowadays, workplace practices involve 
sophisticated mathematical problem-solving skills and the ability to recognise and engage with the 
mathematics embedded within multifaceted, real-life workplace settings. Many 21st century 
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workplace mathematics requirements and practices are integrated with technology. Hoyles et al. 
(2010) argue that this requirement for mathematical capabilities is driven by the need to improve 
production processes and productivity, and that there will be greater demand for what they call 
‘techno-mathematical literacies’. This involves “a language that is not mathematical but ‘techno-
mathematical’, where the mathematics is expressed through technological artefacts” (Hoyles et al., 
2010, p. 14). Furthermore, the pressures for moving toward the teaching and learning (and 
assessment) of 21st century skills include a consistent demand for students to be digitally and 
technologically competent, to be able to engage with technology in all its guises, and to be highly 
ICT literate (Voogt & Pareja Roblin, 2012).  

There have been a few recent reviews on related topics. At the start of this century Coben (2003) 
did a comprehensive review on adult numeracy focusing on research and related literature. The 
results of this review are relevant to our research questions as far as vocational education can be 
considered as (young) adults who are learning mathematics. This is indeed the perspective we 
chose. 

The main conclusions from Coben’s review were:  

· Numerate practices are diverse and deeply embedded in the contexts in which they occur. 
· The transfer of learning between contexts is problematic.  
· The impact of adult numeracy tuition is under-researched and more detailed studies are 

required.  
· Adult numeracy teacher education needs continuing professional development.  

At the same time, Falk and Millar (2001) conducted a review of research on literacy and numeracy 
in vocational education and teaching from an Australian perspective. Their main conclusions were: 

Significant and multiple implications for literacy practice have emerged from forces for change 
such as globalisation and technological advancement. (…) Adult and Community Education 
(ACE) and VET sectors have been merged to a large extent. These changes have had important 
consequences for the way practitioners carry out their work. (Falk & Millar, 2001, p.3) 

The overall picture of adult education and vocational education and training (VET) is that it is a 
rapidly developing field with a strong focus on connecting mathematics education to the world 
around us. Effective practices to incorporate these ideas in courses and educational programmes are 
still under-researched.  

Research questions 

In the Netherlands a broad curriculum reform has started which includes redefining the mathematics 
curriculum in vocational education. This review is also intended to collect scientific results of 
research on vocational policies and practices to support this process and make it more evidence-
informed. 

To get a better grip on how the concepts of numeracy and mathematics are used in the international 
scientific community our first research question is: 

1. Which concepts of numeracy (or mathematics) are used in research in a vocational context? 
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Furthermore, we are interested in well-researched practices in mathematics or numeracy education 
in vocational tracks or streams. Hence our second and third research questions:  

2. Which numeracy teaching practices are described in research in a vocational context? 

3. Which effects of numeracy teacher practices are reported in research in a vocational context? 

The review of literature is still ongoing. The results we report in the results section are preliminary 
and still quite general. 

Method 
Search terms 

We conducted a systematic review (Gough, Oliver, & Thomas, 2017; Petticrew & Roberts, 2016) of 
the research literature through the definition of search terms derived from the research questions.  

In various countries the concept numeracy is used when referring to the mathematical activities in 
the vocational classroom, for instance in Australia. In The Netherlands two words are used to 
distinguish the more basic numeracy as is taught in primary education (Dutch: rekenen) and the 
more advanced use of mathematics as is taught in secondary education (Dutch: wiskunde). In most 
countries, however, mathematics is used to refer to all the kinds of activities which deal with the 
numbers, patterns and structures in the vocational education or in the workplace.  

Regarding the specific part of the educational infrastructure we are focusing on, two labels are used 
most common to refer to this specific kind of education which prepares students for the workplace. 
These labels are “vocational education” and VET, which is short for vocational education and 
training. So our main logical string of search terms is:  

Search string = (Numeracy OR mathematics) AND (“vocational education” OR VET). 

Search engines and databases 

We used our search string in a variety of educational databases which together assemble most 
international educational research: WorldCat, ERIC, PsycInfo, Web of Science, Scopus, and 
Education Research Complete. 

Scope 

We narrowed down our search using the following limitations: 
· Scientific literature 
· Published in peer-reviewed journals 
· English language 
· Recent, last five years, date of publishing: 2014-2018 or 2014+. 
· Search terms present in title, abstract, or keywords. 

 

Further narrowing down 

The search-string led to 611 hits in the selected databases. There were several ways in which we 
narrowed down the amount of initial hits (see Figure 1).  
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First, the articles in this ‘technological catch’ were brought together, deduplicated and checked for 
obvious mishits, such as articles on veterans or veterinarian issues. This resulted in a set of 477 
articles to be considered by experts. 

 
Figure 1: Search strategy and remaining articles after each step 

Second, the first expert screening followed, based on the titles of the articles. Three experts scored 
independently whether the article was supposed to be relevant for the three respective research 
questions. For each a score 1 (relevant), 2 (possibly relevant), 3 (maybe relevant) or 9 (not relevant) 
was given. After this, articles with three 9-scores by each experts (i.e., not relevant for any of the 
research questions) were discarded from the selection. This reduced the set to 93 articles remaining. 
Third, the abstracts of the remaining articles were scored by three experts, again independently. The 
experts decided from the content of the abstract whether they supposed the article to be relevant for 
either of the three research questions. After this, again articles with three 9-scores by each expert 
(i.e., not relevant for any of the research questions) were discarded from the selection. This reduced 
the set to 78 articles remaining.  

Fourth, the 78 articles were linked to the respective research questions to be examined further: 65 
articles were judged to be relevant for research question 1 about the definition of numeracy, 12 
articles seemed relevant to answer research question 2 about teaching practices and 4 articles were 
scored as relevant for research question 3 on the effects of teaching practices. 

Fifth, the full text of the remaining articles are being analysed for relevant sections which can be 
used to answer the actual research questions. This analysis is ongoing. 

Cross-referencing and snowballing 

In the next phase of our research, we will cross-reference our set of relevant sources with Google 
Scholar, which is nowadays considered to be the search engine which uses the most comprehensive 
database of products from the scientific community. However, the ways to refine searches in 
Google Scholar are still rather limited. 
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In a preliminary analysis of the remaining articles we found multiple references to specific books 
and  journal specials (for instance, ZDM  2015, 47-4, and Educational Studies in Mathematics 2014, 
86-2) of particular interest for our research questions. In a later stage of our research we will add 
some of these sources to the set of sources we use as corpus to answer the research questions. 

Results  
The review is ongoing. The results and conclusions in this paper must be read as preliminary 
findings. 

Regarding research question 1 - on the used definition of numeracy - we found that a large part of 
the articles address policy matters, like comparative studies (for instance PIAAC), country policies, 
regional and school policies, most of the cases assuming the definition of numeracy from the 
PIAAC framework as the working definition. In articles, which were not on policy matters, in 
roughly half the cases the definition of numeracy is not explicitly defined, making it difficult to 
value the inferences made from the gathered data. This problem will be elaborated in a later article. 

Regarding research questions 2 and 3 – on actual practises - , the major conclusion is that from the 
found hits and relevant articles only a very few are addressing actual educational practices on 
numeracy in vocational education (12 of 477) and even fewer (4 of 477) report on effects of 
educational practices or interventions. Most of the 12 articles addressing educational practices 
describe observations in classrooms, providing conclusions and implications for education based on 
these observations. These articles tend not to be on describing current teaching practice and their 
effects, but in most cases report on how the authors would like to see the teaching practice change. 
The importance of real context in education for transfer of the numeracy-skills and motivation of 
the students is emphasized. 

Some themes are reoccurring in the selected articles. First, all articles describe the importance of 
connecting numeracy to work-related situations. This transfer or boundary crossing is important 
since students can solve mathematical problems in class, but often do not recognize these problems 
in work-related knowledge; the integration of mathematics and statistics learnt in school with work 
related knowledge is a problem (Bakker & Akkerman, 2014). Wake (2014) speaks about ‘hidden 
mathematics’; workers (and students) do not recognize mathematical situations as such and 
therefore do not use school knowledge in work-situations. Dalby and Noyes (2015) as well as 
Coben and Weeks (2014) stress the use of ‘real work’ problems in which students can use 
mathematics as a tool, instead of the mathematics they know as a school subject. Contextual math 
provides motivation since students experience the need of it for their own work. According to 
Bakker and Akkerman (2014) students themselves report to appreciate a work-related approach and 
claim they learned a lot in only five one-hour meetings. Second, a reoccurring theme is problematic 
transfer from numeracy interventions to practice. Ter Vrugte et al. (2015) show in their research 
how in a math computer game proportional reasoning increases, but analyses of transfer problems 
showed that there was no measurable transfer. They conclude students in vocational education have 
trouble applying school knowledge in another context. Van Schaik, Terwel and Van Oers (2014) 
describe a science workplace in which students have to build a trike. This article shows how 
numeracy is predominantly hidden in other subjects, like science. And also in science transfer is 
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difficult for teachers to achieve. When given a practical assignment, students seem to forget the 
need to apply the knowledge they learned before, but also teachers do not always teach their 
students the missing school-math when they need it and connect the classroom knowledge with the 
practical assignment.  

Only four articles provide experimental research in which a specific teaching practice, differing 
from the regular approach is being implemented. These articles are too small in number and too 
divers to find trend-setting answers to our third research question.  

Conclusion and Discussion 
When we used the search string (Numeracy OR mathematics) AND (“vocational education” OR 
VET) is used in Google Scholar for products since 2014, we found 16,500 hits. There is no lack of 
output around these themes. Refining the sources to a corpus of relevant literature from which some 
conclusions could be drawn or trends could be discerned is not a straightforward task. The sources 
are multifaceted and of very different quality, scope and choice of themes. 

The articles are from dozens different journals, which reflect the multifaceted character of both the 
concepts numeracy and vocational education. It also reflects that the research area is young, not 
well- established and literally ‘all over the place’. 

The definition of numeracy used in the articles is influenced heavily by the work around the PIAAC 
Numeracy Framework. In that sense the PIAAC programme has a formatting power on the  
development of the concept of numeracy. 
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This paper is a discussion paper to support an Erasmus+ project with the name Common European 
Numeracy Framework (CENF) (for adults) which will start at the end of the year 2018. In the first 
months of 2019 the team with participants from The Netherlands, Austria, Spain and Ireland will be 
in the process of collecting European examples of numeracy practices and current numeracy 
frameworks. At the conference we will show the results of this collection to date and the initial 
outline of a tentative CENF. We intend to spark comments, suggestions and insights from the 
participants of TWG07 - Adults Mathematics Education - to enrich the collection and as feedback 
on the initial outline of the CENF. Another aim is to create a network of national or regional 
stakeholders which will support the development of a shared framework for numeracy goals and 
numeracy education for adults in the 21st century. 

Keywords: Numeracy framework, professional development, pilot courses, Erasmus+. 

Introduction  
In 2017 four educational institutes from The Netherlands, Austria, Spain, and Ireland respectively, 
took the initiative to develop a numeracy framework for adults. A grant was awarded by the 
European Union in an Erasmus+ project to work towards such a framework in the years 2019-2021.  

As result of this project a tentative Common European Numeracy Framework (CENF) will be 
established and based on this framework a set of professional development modules (PDM) for 
adult numeracy educators will be developed. The CENF will incorporate the latest insights into 
numeracy skills and competencies which are relevant for our technologised and numbers-drenched 
society.  

The suite of professional development modules developed for teachers and volunteers who teach on 
numeracy courses will be based on the CENF. The PDMsvwill foster the capability of teachers and 
volunteers to effectively develop basic skills and competences among adult learners in order to 
strengthen their employment prospects, develop their socio-educational and personal skills, and 
counteract social exclusion. It will also equip adult learners with the skills highly needed to 
participate in civic and social life.  

In short, the objective of this project is to first develop a Common European Numeracy Framework 
and secondly to expand and to improve the number and the quality of numeracy courses (or other 
relevant educational activities) offered to adults to improve their life chances of prospering in 
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society. To reach this objective, we will use on a multi-level approach for addressing teachers and 
volunteers that are involved in the delivery of numeracy courses, the teacher educators who deliver 
courses to those teachers and volunteers, and policy makers and other stakeholders who are 
responsible for creating opportunities for such courses. This multi-level approach already has 
started by connecting the associated partners to our goals in this application. 

The CENF will comprise of information on the effective teaching and learning of numeracy, 
especially in relation to adults who have left school early and those from disadvantaged 
backgrounds. Such a framework can also be used as a mechanism for systemically tracking and 
monitoring the progress of adult learners in the field of numeracy. The professional development 
modules will be made available on-line in an attempt to actively contribute to extending and 
developing educators' competences and maximize the chance of European wide use of the project 
outputs. 

Background 
Too many European citizens lack the necessary numeracy competencies to participate 
autonomously and effectively in our technologized and number-drenched society. Consequently 
many citizens are overlooked for certain jobs and have problems in their daily life, dealing with the 
abundance of number-related issues. In literature, these competencies are referred to as 21st century 
skills’ or ‘21st century competences (Voogt & Pareja Roblin, 2012), global competences (OECD, 
2016a) or skills for “the 4th industrial revolution” (Schwab, 2016). 

The results of the last PIAAC survey (OECD, 2013, 2016b; PIAAC Numeracy Expert Group, 2009) 
show that a quarter of the participating countries in PIAAC have results below level 2 of the 6-point 
scale. Scores below level 2 are associated with having problems in daily activities due to low 
numeracy skills. These results on numeracy give rise to serious cause for concern for the future 
economic development of Europe. This is an even more pressing issue since the amount of 
numerical data that needs to be interpreted and used is rapidly rising due to technological 
developments and the prevalence of (big) data. To gain a better insight in these trends a second 
cycle of PIAAC will be starting in 2020 (Hoogland, Diez-Palomar, & Maguire, 2019; Kirsch & 
Lennon, 2017; Tout et al., 2017). 

On average, school leavers between the age of 16 and 24, perform at a lower level than people 
between the ages of 25 and 44 (OECD, 2016b). The lack of numeracy skills among these people 
increases the risk of unemployment and may influence family life and social inclusion. In particular, 
low-skilled workers are at risk in the labour market, particularly when faced with adaptations in the 
labour market. The Council of the European Union emphasizes that adult learning is a means for 
upskilling or reskilling those affected by unemployment, restructuring and career transition, while 
simultaneously it makes an important contribution towards social inclusion, active citizenship and 
personal development. The European Council recommends the enhancement of basic skills 
including literacy, numeracy, problem solving and digital skills as part of the Europe 2020 Strategy 
(European Commission, 2017).  

In the frame of lifelong learning, therefore, adult numeracy education has an important role in the 
development of good programs for basic skills for the future.  
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Evidence-informed adult numeracy education may be the key for attaining the goals set out in the 
Europe 2020 strategy. In most European countries, adult numeracy education is a locally based 
endeavour with a plethora of practices, some efficient, some less so. Furthermore, there is a variety 
of underlying assumptions on what constitutes good adult numeracy education. The availability of a 
good collection of (piloted) professional development modules, based on the CENF (which contains 
relevant content and insights for adults learning numeracy and mathematics), will generate a quality 
adult numeracy education across Europe, and thereby contribute to policies and activities which 
address the low-numeracy levels in many European countries. Effective numeracy education in 
European countries, based on a common framework, may lead to a higher level of societal 
participation and inclusion of adults, and thereby to the improvement of the European economy. 

Project methodology as starting point for workgroup discussion 
In this section we present the methodology which will be used in the Erasmus+ project (Hoogland, 
Diez-Palomar, & Vliegenthart, 2019). In the working group of CERME11 we will use these 
headings as a guide for the discussion. The aim of this discussion paper is to inform the participants 
of TWG07 and to tap into their knowledge, experiences, and networks to strengthen the impact of 
the project. 

The project methodology can be laid out as follows. 

The context 

The number of European citizens lacking the necessary numeracy competences to participate 
autonomously and effectively in our technologised and number-drenched society is a serious 
concern for the economic development of Europe. (OECD, 2012, 2013, 2016b; PIAAC Numeracy 
Expert Group, 2009). The European Council recommends enhancement of the basic skills - literacy, 
numeracy, problem solving and digital skills - as part of the Europe 2020 Strategy (European 
Commission, 2017).  

Evidence informed adult numeracy education is the key for reaching the goals as mentioned in the 
Europe 2020 strategy. In most European countries adult numeracy education is a locally based 
endeavour with a plethora of practices, some efficient, some less so and with a great variety of 
underlying assumptions on what constitutes good adult numeracy education. A good set of (tried-
out) professional development modules based on a common European numeracy framework (which 
contains relevant content ánd insights in adults learning numeracy and mathematics) will generate a 
qualitative and quantitative impulse in adult numeracy education across Europe, and thereby 
contribute to policies and activities which address the low-numeracy levels in many European 
countries. 

The objectives 

The ultimate objective of the project is to enlarge the number and to improve the quality of 
numeracy courses (or other relevant educational settings) offered to adults to improve their chances 
in society. To reach this objective we develop a Common European Numeracy Framework (CENF) 
and set of professional development modules (PDMs)  
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The target group and the participants in the project. 

The ultimate target group of the project are the participants in adult numeracy courses. The aim is to 
provide them with numeracy competences which will benefit them in participating adequately in 
daily life and work-related situations in our number-drenched society. Numeracy to this regard is 
considered to be a social practice (Yasukawa, Rogers, Jackson, & Street, 2018). However, the 
availability and quality of adult numeracy courses around Europe are dependent on many factors, of 
which many are outside the scope and influence of this project. Therefore, we choose a multi-level 
approach of addressing teachers and volunteers who are actually involved in the numeracy courses, 
the teacher educators who provide courses to those teachers and volunteers, and policy makers and 
other stakeholders who are responsible to create opportunities for such courses (both by teachers 
and by teacher educators). In doing so, the project will involve the local, regional, national and 
international communities of practitioners, researchers, and policy makers around adult numeracy 
education by information, surveys, presentations, and presenting a CENF.  

The activities 

On the basis of literature studies and broad European surveys on used frameworks, good practices, 
and theoretical insights we will develop a draft framework and draft modules. This will be followed 
by try-outs in the partner countries to test the drafts empirically and tp collect feedback from 
various stakeholders from the adult numeracy community. The framework and modules will be 
revised with the gathered experiences, evaluations and comments. The end result will be made 
available as a blended on-line course, while the availability as cMooc will be investigated. 

The methodology 

The ways of gathering the information are literature reviews, surveys and peer reviewed 
development of products, according to academic standards for research methodology.  

The methodology for dissemination, implementation and sustainability is based on the multilevel 
approach of educational changes as for instance propagated by Hargreaves, Lieberman, Fullan, and 
Hopkins (2010) and Fullan (2008); Fullan, Hill, and Crévola (2006). 

The result 

The result will be an increase in the quality and quantity of numeracy courses and professional 
development courses on adult numeracy education. The concrete results of the project are a CENF 
and a set of PDMs for teachers and volunteers who work in adult numeracy education. Both output 
we consider as essential in reaching the ultimate objective. 

The impact 

The existing European networks on adult numeracy education support the project as associate 
partners and express their willingness to advocate the results through their network communications 
and in their network meetings. The CENF will have an impact across Europe.  
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Long term benefits 

A common approach and a reinforcement to create high quality national professional development 
courses based on a common framework can have a long-lasting effect on the development of high 
quality adult numeracy education around Europe. 

Discussion  
The discussion points on the starting project followed the project methodology. Below, to each 
discussion point a short outcome of the discussion in the Thematic Working Group is mentioned 

The context and the objectives 

Q: What should be added to the context to make the picture more complete or richer in examples? 

A: Special attention is needed for participants who are vulnerable learners, often with negative 
educational experiences. 

Q: Can a Common European Numeracy Framework be helpful in the further development of adult 
numeracy education?  

A; Yes, as long as it is developed bottom-up and connects to existing practices and frameworks. 

The target group and the participants in the project. 

Q: Should the framework aim at participants in adult numeracy courses, at practitioners in adult 
numeracy education in the European countries, at adult numeracy course designers, or at policy 
makers? 

A: Both practitioners and policy makers must be able to read and understand the framework. For 
participants materials can be designed which are closely relate to the framework, for instance 
rubrics or descriptions of typical behaviour. 

The activities, the methodology, the results of the project 

Q: Which other activities are paramount to reach the envisioned goals? 

A: The project would strengthen as the participants’ voices were heard in the developmental stages 
of the framework. The participants are adults who have an opinion on how learning goals could and 
would look like. 

Q: Which activities should be added to make the results stronger and more widely-spread? 

A: The design and the implementation of the framework would benefit by international parallel 
research and validation of parts of the framework 

The impact and the long term benefits 

Q: Which actions might increase the chance to reach a really common European Numeracy 
Framework on adult numeracy education? Who are the most important stakeholders?  

A: Both policy makers and networks of practitioners and researchers are important. Translating the 
framework in as many European languages as possible can help the acceptance and use. 
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The results of this discussion will be input for the further development of the Common European 
Numeracy Framework.. 
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What motivates adults to learn mathematics through trade unions in 
the workplace: social factors and personal feelings 

Beth Kelly 

University College London/ Institute of Education, United Kingdom; beth.kelly@ucl.ac.uk 

This research is based on interviews with adults about their motivation to study mathematics in the 
workplace, through classes organised and funded by trade unions in the UK. The findings point to 
motivation as a function of individual’s emotions and cognition that are influenced by social 
experiences. The research identifies a difference between the initial motivation to re-engage with 
learning and that required to continue, or persist. Continuing learning relies on a socially and 
emotionally supportive learning environment which adults identify as ‘different’ from previous 
experiences. The term an ‘Affective Mathematical Journey’ is developed to describe the positive 
emotional changes experienced by adults, which helps them overcome negative memories. The 
adults’ resultant increase in confidence and motivation encourages them to successfully develop 
and use their mathematical skills both inside and outside the classroom.  

Keywords: Mathematics, motivation, teaching methods, affect, emotions. 

Introduction 
There is much research into learning mathematics that seeks to explain why children and adults 
have problems with the subject and subsequently struggle to learn mathematics (Boaler, 2000; 
Coben et al, 2007). Those interviewed for this research reported obstacles to their learning such as; 
previous unsuccessful learning experiences, demands of shift work and family responsibilities. Yet 
they had chosen to re-engage with learning mathematics at or below GCSE level in the workplace 
through opportunities negotiated by trade unions with employers. It was not a requirement of their 
current job, so this group of adults must have been highly motivated to return to learning 
mathematics and were chosen to develop a better conceptual understanding of motivation. 

The adults in my research have taken up a learning opportunity at work enabled by national trade 
unions allocating resources to this purpose. Trade Union officers, usually ULRs, are activists whose 
job it is to encourage workers to develop their skills, give advice and guidance, identify workers 
needs, and negotiate on–site learning opportunities with employers). Trade unions fund the teachers 
and equipment needed to support that learning, while employers provide the physical space and 
sometimes time off work to learn. In 2016, nearly 10,000 ULRs across the UK were involved in 
training through TUC Education and over 27,000 individuals took up an opportunity to improve 
their English and maths skills through their union (Unionlearn, 2017, p. 4). 

This research identifies the importance of how people feel about the learning in relation to their 
motivation. Adults need to trust people who are encouraging them to join the classes and feel safe 
in the learning environment in order for them to develop confidence with mathematics. Union 
Learning Representatives (ULRs), are trusted colleagues that play a key role in encouraging and 
supporting adults to join classes in the workplace.  Trade unions also promote a ‘different’ learning 
approach in their courses, influenced by the ‘collective ethos’ of trade union culture. The learners 
identify this different pedagogic approach as key to them persisting learning (Kelly, 2018).  
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Research into learning in the workplace has usually focused on mathematical concepts used for 
work or the more contentious notion of the ‘transferability’ of mathematical concepts between 
school and the workplace (Lave & Wenger, 1991; FitzSimons & Godden, 2000). In an endeavour to 
understand differences in learning approaches research has also usefully included descriptions of 
pedagogical characteristics (Evans, Wedege, & Yasukawa, 2013) in terms of formality: this 
research concentrates on adults’ motivations to learn mathematics in the workplace, to gain a formal 
qualification in a less-formal learning setting. 

Research into affective issues in mathematics education have been explored by McLeod (1994), 
who conceptualised emotions, attitudes and beliefs in relation to motivation in terms of stability and 
intensity. Eynde, De Corte and Vershaffel (2006), posited motivational concepts act in different 
levels of social contexts. Hannula (2012) further theorised affect in mathematics education 
suggesting it could be explored in three dimensions, as concepts: cognitive, affective or 
motivational; as varying in relation to time and in relation to ontological traditions of research. This 
moves us on from simply identifying ‘maths anxiety’ (Buxton, 1981) as an emotional barrier to 
learning, to exploring the wider, more complex domain of affect in relation to motivation to learn.  

During this research, the concept of an Affective Mathematical Journey (AMJ) was developed to 
describe changes in learners’ feelings in relation to mathematics. An AMJ occurs when positive (or 
negative) learning experiences inspire adults to modify their feelings towards mathematics. In this 
research, the change in affect becomes more positive and this change not only contributes to adults’ 
increased confidence and motivation to learn the subject but also influences their potential to use 
their new skills beyond the classroom. Elliot, Dweck and Yeager’s (2017) research supports these 
findings recognising the possibility of ‘socialisation practices’ to foster different mind-sets in 
learners which have a ‘cascade of effects, altering their meaning systems and their academic 
outcomes’ (p. 135).  

Research by Hannula, Pantziara, and Martino (2018) highlighted the tradition of research into affect 
and mathematics education in CERME conferences, but the focus is still on school education. 
Boaler’s (2000) research into motivation and mind-sets has also focused on children. This research 
points to the contribution that adults who experience a ‘stalled education’ can add to research into 
affect and mathematics education.  

Methodology and methods 
The analysis is based on twenty in-depth semi-structured interviews with members of trade unions, 
aged between 25 and 65, twelve males and eight females. They come from a range of trade unions, 
employed in a variety of contexts, in small and large organisations, publicly and privately owned. 
They studied in a variety of environments; individually following on- line courses with tutor 
support or in teacher-led groups. However, this is small sample with no claim to be representative 
of the characteristics of the broader union learning population, especially since learners who were 
studying basic mathematics up to level 2, the equivalent to a GCSE. 

The identification and recruitment process of interviewees relied upon the agreement and support of 
trade union officers and ULRs. Hence the method of sampling was a combination of purposeful, 
‘criterion sampling’ (Bryman, 2012, p. 419), as I was seeking adults that fulfilled a particular set of 
criteria and snowball sampling (Atkinson & Flint, p. 275) in that I needed key gatekeepers (ULRs) 
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to agree to help me access potential participants.  The research centres on individuals and their 
‘interpretations’ of situations, so naturally relies on qualitative data, which was tested for the 
trustworthiness and authenticity of the findings (Bryman, 2012, p. 390). The whole interview and 
storage process followed BERA (2011) guidelines, ensuring interviewees anonymity especially 
when their words would be used in the research. Nvivo ™ was utilised to help track and analyse the 
learner’s words. Enabling me to interrogate the data and build and group ideas in different ways; as 
well as identifying commonly used words such as ‘confidence’. 

The analysis takes a critical approach because the researcher is a teacher trainer who explores how 
research into adults learning in the workplace might usefully influence mainstream mathematics 
education practice. The research is also built on the feminist research tradition of exploring personal 
viewpoints, as Reinhartz and Davidson (1992) suggests when citing Datan (1989, p. 175) ‘it is an 
axiom of feminism that the personal is political’ (p. 234). Therefore, when analysing the adults’ 
words there is a subjective encounter with the individual that seeks to understand different 
perspectives, relating this motivation at the individual level to emotions and cognition, within 
particular social contexts. 

Hence in this research, motivational factors are considered at three levels: the individual, the social 
and the societal, which all influence each other. At the individual or personal level McLeod (1994) 
focuses on needs and goals. Evans, Wedege and Yasukawa, (2013) broaden the notion of personal 
motivational factors to include ‘the cognitive and affective as part of the whole person’ (p.222). In 
this research individual learners feelings are key to their descriptions of their motivations to learn 
mathematics, reflecting Hannula’s (2012) dimension of the ‘domain of affect’ linking cognitive, 
motivational and emotional factors.  

At the social level, local face-to-face groups include people who adults trust and influence their 
motivation (Barbalet, 1996), such as; fellow learners, families, union members and Union Learning 
Representatives. Families play an important support role but ULRs and fellow learners also play a 
key role in motivating trade union members to engage with learning and persist in classes.  

The wider socio-economic environment, is a context where individual members are given a ‘second 
chance’ to learn mathematics through trade unions who have negotiated resources with both central 
government and employers to enable this to happen. Therefore, the social context of learning is 
influenced by the values, history and culture of both the trade union movement and the workplace, 
acting in wider United Kingdom society.  

Findings 
Motivation to learn mathematics: initial and continuing 

Adults in the sample indicated their initial motivation differed from that required to continue or 
persist in learning. Their initial motivation to re-engage with learning was related to their individual 
needs and goals, such as: improving job security, filling a perceived personal knowledge or skills 
gap, gaining public recognition of their knowledge or skills through certification and helping their 
children. However, their motivation to re-engage with learning was also supported and encouraged 
by significant social local face-to-face groups such as work colleagues, ULRs, fellow trade union 
colleagues, other learners and family members. At the wider societal level, the opportunity for 
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learning is reliant upon trade unions negotiating funding with central government and workplace 
agreements with employers, as stated above. 

Motivation to continue, or persist, with learning relied more on the action of the social face-to face 
groups, both teachers and fellow learners providing what the interviewees called a ‘different’ 
learning experience to that previously encountered. The adult’s described the characteristics of the 
learning as: more collaborative than previously experienced, taking place in smaller classes, in a 
relaxed atmosphere where they felt they could talk openly about mathematics and their problems. 
They also spoke about the mathematical topics being relevant to their life experience, in the sense 
that the concepts, where possible, were related to practical applications (such as building a shed) or 
finances (interest rates) or trade union issues (regarding health and safety).   

Emotions and motivation 

During the analysis it became clear that emotions played a key role in the adults descriptions of 
their learning experiences. Eight people, out of twenty interviewed, used such words as hate, 
phobia, fear and horrendous to describe their previous experiences with mathematics. When talking 
about the learning organised through the trade unions seven interviewees spoke about feeling more 
“relaxed”, four described the learning experience as “fun” and five as “brilliant”. When discussing 
their motivations to learn and use mathematics eleven interviewees used the word ‘confidence’ to 
describe the changes in their feelings and beliefs about their abilities and motivation. 

The notion of developing confidence through the achievement of mathematics contributed to the 
interviewees being more motivated to learn in the classroom but also to act differently when 
outside.  For example, when they were negotiating on behalf of fellow trade union members, 
dealing with home finances, training to become trade union mathematics teachers or supporting 
children to learn mathematics at home. Combining personal feelings (of confidence) developed 
through social experiences (learning mathematics) creating those intentions to act differently, I 
describe this as adults experiencing a positive Affective Mathematical Journey, relating motivation 
to emotions, and cognition.  

Relevance of the Findings to the Research Field 
When considering the notion of increased confidence adults’ motivation to learn mathematics 
relates to affective domains, reflecting Hannula’s (2012) two dimensions of motivation acting at an 
individual emotional and cognitive level but something that can change over time. However in this 
research the support of various members of local social groups was also key to learning, reflecting 
Eynde et al’s (2006) focus on the dynamic interaction between the individual and the social group.  

Developing individual’s Confidence: an Affective Mathematical Journey 

Interviewees often used emotional words when discussing their motivation to learn mathematics, 
indicating that successful learning experiences, especially after previous ‘failures’, lead to changes 
in how they saw themselves and how they act in social situations. Psychological research into 
motivation reinforces the idea of a positive correlation between self-confidence and achievement in 
mathematics (McLeod, 1994; Zan et al. 2006). This research suggests that achievement increases 
self-confidence while Hannula (2012) argues self-belief and achievement are reciprocal influences.  
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Although theoretically confidence can be a problematic concept when used to judge others, the way 
the interviewees use the term to describe their own beliefs and feelings about themselves and their 
willingness to act in different social situations, suggests it as an ‘emotion of self-projection’ as 
described by Barbalet (1996, p. 77).  McLeod (1994) argues confidence is mainly cognitive but the 
emotional words used in this research reinforce Barbalet’s (1996) argument. Mahn and John-Steiner 
(2002) further maintain developing confidence has a strong social dimension developed through 
group activities, which strengthens the findings of this research suggesting the use of the word 
confidence links the adult’s motivation to emotions and social experiences.  

When adults report feeling more confident about themselves and more positive about learning 
mathematics it suggests a change in their identity development at a ‘profound’ level after a 
‘transformative’ learning experience (Illeris, 2014). The conjecture is that feelings towards 
mathematics can change and effect an individual’s motivation and this concept contributes to the 
theoretical construct an Affective Mathematical Journey (AMJ), where adults’ beliefs, motivation 
and feelings about mathematics change. DeBellis & Goldin (2006) argue a range of emotions are 
experienced during problem solving in the mathematics classrooms, describing them as ‘pathways’, 
this research builds on that idea but points to changes in adult’s emotions happening over a longer 
period of time, in some cases years, thus it is more of a journey.  

Further research could be undertaken, exploring ways that enable adults to experience Affective 
Mathematical Journey in relation to ‘different’ learning experiences described earlier. Particularly 
so for teachers in Further Education in the UK who have to teach 16-19 year olds, who have already 
experienced failure to achieve GCSE mathematics, at least once. 

The role of different social face-to-face groups in motivation 

Bandura (2004) identifies social persuasion as key to motivation, this goes beyond verbal 
persuasion alone, because getting someone to attend a mathematics class would not be enough to 
develop their self-efficacy. Adults also need to feel supported in order to achieve and to develop 
their own self-belief. In this research trusted ULRs take on this role persuading members to join 
mathematics classes; ensuring the classes are accessible and providing a supportive and  
‘emotionally safe’ environment (discussed below), leading to positive learning experiences.  

Helping children with their skills development is also an important motivator for adults, particularly 
for females, findings supported by research by Swain, Baker, Holder, Newmarch, & Coben  (2005) 
and Coben et al., (2007). This research accentuates the importance of supporting children as both an 
initial motivational force to re-engage with learning as well as a reason to persevere. For those 
adults who are newly arrived in the UK, with English as their second language, supporting children 
to learn can also help them to understand and integrate into the wider ‘home’ society. Hence, 
learning mathematics can be a positive contributor to a better functioning family in both economic 
and social terms.  

Motivation related to pedagogical approaches used in the learning group 

The adults spoke regularly of the importance of having a ‘different’ learning experience, when re-
engaging with mathematics. The pedagogical approach promoted by trade unions (Rees, 2007) and 
described by adults was ‘more relaxed’, ‘more social’ and ‘supportive’; closer to notions of 
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informal or non-formal (Coben et al., 2007; Evans et al., 2013) ways of learning. The learning 
experiences were described by some as being ‘easier’ than previous ones linking cognitive to 
emotional factors in motivation.  

Bibby (2002) suggests there is a connection between traditional mathematics class and shame, 
where mathematical tasks are often seen as right or wrong and in the classroom are open to public 
scrutiny, judgement and, if not ‘correct’, humiliation and shame. Wojecki calls these remembered 
encounters as ‘wounding learning experiences’ (2007, p. 170) although he posits that adults can and 
do get over them, something this research supports. Schorr and Goldin (2008) argue it is possible to 
facilitate changes in emotions given the right circumstances, which they describe as ‘emotionally 
safe environments’ (p. 131). This is a place where it is safe to expose misconceptions and where 
learners’ will not suffer public humiliation for getting a calculation wrong.  

The interviewees also spoke about the importance of relating the mathematical practice to previous 
and current experiences in life and work, an approach trade unions promote (Rees, 2007). Linking 
mathematics to life or work links to the idea of social belonging and relatedness, (Ryan & Deci, 
2017) where motivation is something that is culturally relevant, such as trade union activities, or 
meaningful to the individual, for example calculating interest rates on loans.  

Conclusion 
The findings indicate that adults’ initial motivation to re-engage with learning mathematics can be 
understood differently from their motivation to continue learning, but that both rely on the dynamic 
interaction between the individual and social groups. Motivation can be seen as a change in 
behaviour, which is a function of an individual’s motivation, emotions and cognition; developing 
within social face-to-face groups, all acting within a wider enabling social context.  

The research has focused on a special group of learners, that have not succeeded in mainstream 
education but have achieved in an alternative learning environment that gives us a real insight into 
ways that adults’ motivation and confidence to learn mathematics can be developed. It foregrounds 
the important role that social face-to-face groups such as trade unions play in developing ‘different’ 
learning experiences using less traditional or formal methods but that can be successful in 
developing adults’ mathematical skills and confidence. It also highlights the important role personal 
emotions play in a motivation, and how trust in others plays a key role in re-engagement with 
learning, overcoming long held negative views on mathematics and developing confidence with 
mathematics. This change in feelings in relation to mathematics can be described as them 
experiencing a positive Affective Mathematical Journey (AMJ), where they feel more confident and 
motivated to both learn and use the subject.  
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Adults know more about mathematics than they think and use it more often than they realise. 
Despite their apparent self-perception of being a ‘non-maths’ person, they behave in mathematics-
informed ways, which are dismissed, routinely, as common sense or anything but mathematics. The 
doctoral research underpinning this paper reports that given the opportunity to view their 
behaviour, especially in work, through a mathematics-sensitive lens, people readily recognise their 
numerate behaviour even if they talk about it in different ways. This work introduces a set of tools 
and a methodology to harvest real tangible benefits for the learner. The tools explore the locus of a 
person’s expertise in increasing granularity, to build a platform from which to capture a learner’s 
mathematics knowledge, skills and competence (MKSC), to revise the mistaken self-perception and 
to inculcate confidence in his/her learning of mathematics.  

Keywords: Numerate behaviour, invisible mathematics, workplace, non-maths-person. 

Introduction 
The phenomenon of ‘invisible maths’ has been explored and explained across a spectrum of 
political, educational, industrial, technological, economic, psychological, personal, and 
anthropological and social themes (Benedicty & Donahoe, 1997; Coben, 2008; Hoyles, 2008; 
Hoyles, Noss, Kent, & Bakker, 2007; Maaβ, 2005; Strasser, 2003; Wake & Williams, 2007; 
Wedege, 2010). It encapsulates the paradox that people deny their use of mathematics or dismiss it 
as common sense or anything but mathematics (Coben, 2000). It is common for people to declare 
themselves as ‘not a maths person’ while behaving in numerate ways. This doctoral research offers 
a key to resolving the use/denial paradox, not only as an end in itself, but to help people to 
recognise their mathematics knowledge, to embrace it, and to be able to repurpose it to different 
contexts and for different outcomes. This paper takes a broad view of people as workers and people 
as learners or prospective learners. The term ‘practitioner’ denotes a person trained in the support of 
learners. 

In companion documents, the authors provide a comprehensive explanation of invisible 
mathematics and how it arises. (Keogh, Maguire, & O'Donoghue, 2016; Keogh, Maguire, & 
O'Donoghue 2018). The purpose of this paper is to draw attention to how practical benefits can be 
harvested for the learner or worker as learner, given all that is known about ‘invisible maths’, and 
its consequences for individuals, their families, their communities and society as a whole. That 
formal learning of mathematics takes place in the classroom is self-evident. The expectation of such 
learning being somehow transferred to another context is rendered problematic (Evans, 1999) for 
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want of a channel through which the transfer to a contrasting context may be facilitated. This 
compounds the challenge to recognise mathematics outside of the classroom, partly because it is not 
conveniently packaged and labelled as discrete pods of MKSC that reflect a syllabus. For the 
purposes of this work, MKSC is determined by the context in which it is realised and refers to 
instances of behaviour that are underpinned by the ‘big ideas’ of mathematics, vis, Quantity & 
Number, Space & Shape, Pattern & Relationship, and Data handling & Chance. The focus in work 
shifts away from mathematics, to the achievement of aims and objectives, guided by processes and 
procedures, which, nevertheless, are shaped by mathematics concepts and thinking. In this way, we 
suggest, people develop high levels of expertise in the performance of the activities without 
appreciating the extent of their ‘knowing’ which underpins their ‘doing’. Adults are smart in a 
variety of ways that reflect their lived experience both inside and outside the classroom. The self-
perception of not being ‘a maths person’ seems to prevent the recognition of mathematics activity, 
while assimilating it as common sense or ‘just part of the job’. To this end, the authors have 
developed a process and a suite of supporting tools. 

The overall purpose of this process is to make explicit a person’s capacity for, and use of, 
mathematics that might otherwise remain hidden from view and unavailable for development. This 
is important in a dynamic landscape where employability and re-employability of workers, the 
recognition of their prior learning (RPL), and their continuous development is of paramount 
concern for themselves, their employers and society in general.    

How the tool and the approach works 
Process Stage 1: Use of Mathematics Survey (Tool 1) 

The Use of Mathematics Survey consists of a set of 37 statements, 8 of which are included as 
exemplars due to space restrictions in Table 1. The full survey is amenable to translation into other 
languages and is available in a book entitled Adults Mathematics and Work: from Research into 
Practice (Keogh et al., 2018). For each statement those being surveyed are asked to rate how often 
they do the things suggested in the statements with the stated caveat that there are no wrong 
answers because what is of interest is their opinion about their job. For each statement participants 
select the option which most closely matches their opinion from this list: Never or Hardly ever; 
About once a year; About once a month; About once a week; About every day; Don’t understand 
the question. 

The workplace survey instrument may be self-administered or completed with the support of a 
practitioner, depending on the learner’s needs and starting point. It is designed to prompt self-
reflection on the learner’s activity, whether social or professional, by locating him/her in the midst 
of his/her own expertise. In this way, the learner begins to appreciate the mathematics underpinning 
the work and/or play and to realise that the impact of mathematics ranges across space and shape, 
pattern and relationship, data and chance, as well as quantity and numbers. It presents a 
mathematics-nuanced perception of what may be seen otherwise as common sense or anything but 
mathematics. 
I interpret information from a variety of sources to form an opinion about a work/hobby situation. 
I use measurements to describe the solution to a work/hobby problem. 
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I apply ready-made solutions to familiar problems that arise in work/hobby. 
I notice a problem in work/hobby when the measurements and dimensions seem to be out of line with the 
usual. 
From among possible solutions, I select the one most likely to solve the immediate problem. 
When trying to solve a work/hobby problem, I take into account that a change in one part of the problem 
could have an affect on another part. 
I use my knowledge of the system to trace fault back to the cause. 
I think about the shapes involved in a problem to find the solution. 

Table 1: Use of Mathematics Survey (extract) 

While the frequency of use of MKSC is not important at this stage, it invites the learner to reflect on 
a behaviour that may have become embedded in a habit-forming routine through repetition. More 
importantly the learner becomes more tuned to the mathematics-informed activities comprising the 
job that may have become invisible. This outcome may be sufficient in itself by succeeding in 
shifting the learner’s dismissal of MKSC to one of accepting the prominent presence of 
mathematics in their activities, however it may be talked about. That realisation sets the learner up 
for a deeper exploration of his/her mathematics-disposition and is a prelude to a discussion 
regarding the context in which his/her work occurs. 

Process Stage 2: Task Context Tool (Tool 2)  

The Task Context Tool (TCT) is designed to be used by a trained practitioner. It comprises a series 
of questions in the Socratic style (see Table 2).  
Question Purpose 
Tell me about your work, hobby, 
past time. 

Locates the learner in their comfort zone, where they are expert. 

What happens there? Invites the learner to explain; helps the practitioner to ask relevant 
questions and to understand the answers, in addition to 
recognizing gaps in the explanation. 

Why? Open questions such as why, when, who, and how helps to 
describe the context in which the work takes place and may reveal 
issues that would be assumed. 

How do you know what to do? Helps to locate the learner in work among the surrounding streams 
of work. 

What happens next? Reveals that which might remain concealed. 
How does that happen? Elicits detail that might be assumed to be common knowledge or 

self-evident. 
Have I got this right so far? Check for accuracy bearing in mind that the learner may not have 

discussed work in such detail before. 
What have I left out? Check for completeness. 

Table 2: Task Context Tool: suggested questions and their purpose 

The TCT is not intended to be a prescribed script, but rather an illustration of the type of questions 
that help the learner to begin to unpeel the layers of familiarity, habit and routine that hide the detail 
of the work environment. With a little training, a practitioner can produce a model of the broader 
context in which the ‘job’ takes place in a way that makes sense of the workflow to the outsider. It 
is crucial that, no matter what familiarity practitioners think they have with the job being described 
or their prior knowledge derived in other circumstances, they must put that and its inherent 
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assumptions to one side and listen carefully to the learner. The TCT is not usefully self-
administered as it would allow the assumptions to remain embedded and concealed. The expected 
outcome is a ‘work-flow diagram’ that depicts the flow of actions and information that underpin the 
aims and objectives of the work activity, including the attendant motivations, constraints, conditions 
and problems. The suggested questions neither challenge nor judge, but intend to place the 
practitioner in the learner’s shoes, Table 2. The conversation between the practitioner and the 
learner is an iterative process as the learner recalls more relevant information. 

The work-flow diagram of the context serves to acquaint the practitioner with the locus of the 
learner’s area of expertise, rapidly, to ask intelligent questions and to understand the answers, to 
enable a closer understanding of what the job/leisure pursuit entails in terms of the tasks that are 
‘done’, in order to access the extent and kind of the underpinning ‘knowing’. Having established the 
surrounding circumstances, and having taken account of the relevant discourse, the essence of the 
job can be explored in more granular detail. 

Process Stage 3: Task Exploration Tool (Tool 3) 
The next stage of the process sees the practitioner use the Task Exploration Tool (TET) to drill 
more deeply into what the learner actually does in order to uncover the numerate behavior that s/he 
exhibits. This is a more detailed enquiry of the processes and procedures that guide the work 
activity rather than a list of duties and is informed by the outcome of the context tool (see Table 3). 

Question Purpose 
What is the first thing you do 
on arrival in work? 

This question places the learner at the beginning of his/her day and is 
an aide memoir.  

Why? This is intended to expose the rationale of the learner’s approach to 
his/her work or hobby. 

What happens next? 
 

This enables conditions and constraints that influence following 
activities to be articulated and to explain how they are evaluated, 
talked about and reconciled. 

How do you know what 
information/resources you 
need? 

Allows the different kinds of input for the job and hints at 
identifying, evaluating, talking about and acting upon mathematical 
information in a variety of forms. 

What can go wrong? Invites a discussion about systems, patterns, relationships and chance, 
as well as shape, space and quantity. 

What solutions have you for 
when things go wrong? 

Introduces a range of topics that arise in the case of a breakdown in 
the ‘system’ for whatever reason, whether equipment, non-
conforming product, incomplete documents or instructions. 

How can you avoid things 
going wrong? 

This is likely to introduce patterns and relationships, data handling 
and chance. 

What makes things awkward? This is an exploration of non-routine activities. 
How would you change your 
work? 

The learner’s insights offers the possibility of uncovering a deeper 
understanding of the MKSC that underpins the work. 

What causes you trouble? This shines a light on non-routine activities. 
How do you deal with it? Offers insights into the learner’s thinking style. 
What is not covered by the 
SOPs (Standard Operating 
Procedures)? 

Explores how the learner manages to anticipate problems that may be 
overcome by his/her ingenuity. 

How do you work around 
problems? 

This is another opportunity for the learner to articulate how smart 
s/he is. 
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What makes one day different 
from the next? 

This is another opportunity to capture the complexity of the job as 
distinct from an account of the routine. 

What’s the last thing you do? The answer to this question may be revealing regarding anticipation, 
chance and planning. 

Table 3: Task Exploration Tool: Suggested questions and their purpose 

Particular attention should be paid to codified references and acronyms that tend to conceal rather 
than explain. While many of the task components may be superficially repetitive, they can be 
constrained by sets of conditions that temper the worker’s responses.. This is not an exhaustive list 
of questions, nor should it be considered a prescribed script, but a methodology for stripping back 
the occluding layers to access detailed numerate behavior. The information provided should be 
sufficient to enable the development of a diagram of the relevant actions and their conditions 
described in as much detail as possible, such that they may be numbered for inclusion in the 
Linking Tool (Tool 4). The role and aims of the practitioner are key in determining the appropriate 
level of detail. The combination of the Survey, TCT and TET will reveal range of instances of 
numerate behaviour to the learner and help them to overcome their ‘non maths-person’ bias. 
However, the practitioner may wish to map the numerate behaviour on to the local framework of 
mathematics described in terms of the ‘big ideas’ of mathematics viz, Space & Shape, Pattern & 
Relationship, Quantity & Number, and Data-handling & Chance, and to calibrate the evidence-
based starting point level at which the learner’s development can continue. This step is supported by 
the Linking Tool. 

Process Stage 4: Linking Tool (Tool 4) 

The Linking Tool (LT) is a template to help the practitioner to organize the information elicited by 
the other stages and mapping them to the underpinning mathematics concepts, for a particular job 
e.g. warehouse picker in this case (see Figure 1). 

In the course of the application of these tools, the practitioner is tuned to hear clues as to the 
numerate behavior embedded in the activities the learner describes. This enables the practitioner to 
establish the link to the Irish National Framework (QQI, 2012) and to demonstrate the learner’s 
familiarity with the underlying mathematics concepts with which they have demonstrated their 
familiarity, albeit expressed in non-mathematics terms.  

It must be borne in mind by the practitioner that work is designed to achieve an outcome for the 
benefit of the employer without regard to the curriculum, topic disciplines or levels of 
complicatedness. It is unlikely that all of the requirements of a credit-bearing course of study would 
be contained in a particular job.  

Why does it matter? 
The denial/use of mathematics paradox is well established. So too is the self-declared perception of 
not being a maths-person as though it was a binary condition. The negative effects of insufficient 
MKSC is well documented regarding limiting life-choices. That a person may constrain their 
development due to a mistaken perception of their capacity for mathematics is unjust and 
unjustifiable, not only for themselves but for those over whom they exert influence, i.e. their 
children. The survey of people in work corroborated by several case studies conducted in the 
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doctoral research stated very clearly that people were very aware of their MKSC even though they 
did not describe it as such. There can be little doubt that a learner’s first requirement is the 
confidence in being able to know, without which, very little learning may be achieved. This is not 
about whether mathematics is more important than any other topic. Rather it offers a research-
informed intervention that enables a limiting and mistaken self-perception to be exposed and 
dismissed. 

There are several converging strands that compete to attest to the achievement of what are thought 
to be complementary outcomes. Learners have needs that are influenced by their interests, cultural 
background, career objectives and what they perceive to be their innate talent. Policy makers 
encourage and support the development of knowledge skills and competence for the benefit of 
society in the broader sense, while at the same time catering for the needs of industry by prescribing 
standards of quality and consistency. Practitioners and trainers devise curricula that comply with the 
terms of the national standards while at the same time appealing to and meeting the ambitions of the 
learners, insofar as they can be known in advance, and measured with reference to learning 
outcomes. 

Employers operate in a more dynamic and fluid context that prioritises marketability, cost 
efficiency, competitiveness and profitability, but not fully conversant with the implications of the 
QQI-NFQ levels. The factors that drive these things are made volatile by the necessity to react to 
change in demand, technology, innovation and expectation. It is impossible, despite Government 
funded initiatives, to anticipate fully the sets of knowledge skills and competence that may become 
scarce within a few years and therein lies the kernel of the problem. Educators must equip learners 
with the resources to perform in an environment that is undergoing constant change. This must be 
done in compliance with a programme that has been in gestation for two years prior to being 
implemented in a four year degree programme. A person in employment for that same six years will 
have acquired a profound understanding of the workplace and its requirements, albeit specific to 
and probably contained by that workplace. 

The process outlined in this paper and the accompanying tools enable individuals to highlight what 
they ‘know’ as distinct from what they ‘do’ to establish the confidence in learners that they are 
capable of ‘knowing’ whatever they choose, especially mathematics. It provides a platform from 
which people can embrace their knowing for the benefit of their employability and re-employability 
to meet the challenges of the emerging and exhilarating new World of the 21st Century. The 
interventions described herein have emerged from the finding of, and reflection on, the preceding 
research work. They have been introduced in real, adult learner situations with very promising 
results.  

The authors would like to acknowledge the contribution of Ciarán O’Sullivan, Applied 
Mathematician, TU Dublin, for his invaluable insights into how best to present the process and 
associated tools in a way that would be more easily accessible to practitioners. 
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Insert Job Description here

Task no.

1.1.010 Download Work Orders to Scanner in  aphlabetical sequence of the location code

ICT

1.1.011 Access Scanner Centre Ops software √
ICT

1.1.012 Select Download option √
ICT

1.1.013 Enter User Id √ ICT

1.1.014 Place in download Cradle (or use wireless if available), ensuring that contact points meet to complete 
circuit

√ ICT

1.1.015 Complete operation and remove from cradle √ √
ICT

                
 

              

                     
                

     

 Boxes may also bear an owner provided identification number / barcode or text.  Location codes are hierarchical by Building, Floor, Row, Bay and shelf. 
There are 3 buildings each with 3 or more floors, each floor has an access stairwell and is served by a centrally located goods lift. Each floor has up to 52 
rows, each with 26 bays, each bay has a series of numbered  columns of shelves on 3 levels, A,B and C at the top. Example LEV118J10C means that the 
building is LEV, on floor 1, row 18, bay J, column 10, top shelf. There are also Vaults and Data storage locations on some floors.  Work orders are customer 
specific. There may be more than 1 work order for a customer. Customers are assigned to delivery routes. The scanner is a representation of the work 
orders that have been assigned to the picker. The information on the scanner is presented in the order of the location code. However, this does not inform 
the picker as to the most efficient way or picking, because it does not take into account the load at each location, its proximity to access and egress, the lift, 
openings in the rows (one in the middle and (sometimes) one at each end, nor does it take account of whwther it is more efficient to  complete all rows on 
one side before crossing to the other.  When a file is not found, the picker will look for it as thoroughly as the time allows, giving rise to the NF category of 
CBA (couldn't be ar***d).

Linking Tool Summary
Mathematics Domain

No
n-M

ath
em

ati
csSite Code:   A Job:  1.1Warehouse Picker

Pa
tte

rn 
& 

Re
lat
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sh

ip

Qu
an

tity
 &

 
Nu

mb
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Sp
ac

e &
 Sh

ap
e

Da
ta 
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Ch

an
ceinstructed by work orders and guided by handheld scanner, retrieve files and documents that have been 

stored amontst 3 million other documents. Locations are identified by an 8 digit barcode, files by a further 
8 dights.

 
Figure 1:  Example of the output from using the linking tool 
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Numeracy practices in older age 
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Demographic changes render basic skills important at an increasingly older age. Among them, 
skills in financial matters are becoming increasingly relevant. The skills measured in PIAAC and 
CiLL represent comprehensive cognitive abilities that can be seen as the basis for successful 
participation in social and economic life. In a secondary analysis, this paper shows that financial 
practices remain important for older people, although their numeracy skills proficiency appears to 
be lower than those of younger people. The analysis also indicates a gender difference in dealing 
with financial matters: men handle bills and bank statements, women manage the household. 

Keywords: Numeracy, practices, older adults, PIAAC, large-scale assessment. 

Introduction 
As a result of demographic changes, it is becoming increasingly important to actively shape one’s 
life in a longer post-employment period (Kruse 2008). Financial security and the ability to act have 
an ever-increasing importance in times of possible restrictions in income among the elderly. People 
who are low-skilled or whose employment biographies show gaps are more likely to be 
disadvantaged in this process (Wienberg & Czepek, 2011).  

The question is whether the increased requirements become problematic due to higher financial 
burdens in older age, if they are accompanied by lower numeracy skills, or whether existing 
numeracy skills will prove to be sufficient. Instead of merely declaring a decrease of skills in 
relation to older age, the actual numeracy practices of people of higher age need to be more closely 
considered.  

This article is dedicated to examine the numeracy skills of people of older age (66-80 years at the 
time of assessment) and their everyday numeracy practices. According to anthropologist Jean Lave 
(1988), mathematics is used in various situations in everyday life. This includes the comparison of 
prices, but also the calculation of costs and the household budget. PIAAC (Programme for the 
International Assessment of Adult Competencies) and CiLL (Competencies in Later Life) define 
numeracy as the ability to apply and interpret mathematical information and ideas to deal with 
different everyday situations (Zabal et al., 2013). 

In this paper, data from the CiLL survey (Friebe, Schmidt-Hertha, & Tippelt, 2014) is used to 
compare numeracy practices of individuals aged 66 to 80 years with the practices of individuals 
aged 16 to 65 years as surveyed by PIAAC. The focus of the following secondary analysis is on 
practices (also referred to as skills-use variables) that provide information on how often numeracy 
skills are applied in the lives of older people. 
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Relevance of numeracy and financial skills in older age 
Images of older age have changed in Germany in recent years (Vogel & Motel-Klingebiel, 2013). 
The boundaries indicating who belongs to the older adults may not simply be determined on the 
basis of the calendar age. However, since PIAAC looked at people up until the age of 65 and CiLL 
assessed participants in the ages of 66 to 80, the integral boundary between these two surveys is 
used as a proxy to distinguish adults and older adults. Older people are thus in this paper the over 
65-year-olds.  

Medical and technical developments make an ever-increasing lifespan possible, thus creating a 
longer post-employment phase of life (Mahne, Wolff, Simonson, & Tesch-Römer, 2017). The 
aspect of financial security plays an important role for a good way of living in this post-employment 
period. In Germany, income in retirement is mainly determined by the statutory pension as well as 
by assets and inheritances. Therefore, people whose employment biographies show gaps or who had 
had low incomes are disadvantaged and in danger of poverty in older age. In addition, this group of 
people often inherited less frequently and accumulated less assets during their employment period 
(Mahne, Wolff, Simonson, & Tesch-Römer, 2017). In this respect, the proportion of people who 
have to work after retirement has increased (Franke & Wetzel, 2017). This raises the questions 
about how older people can get along with limited financial resources. Increasing financial skills in 
older age will not entail an increase of funds or pensions, but can help to manage low income 
successfully.  

Referring to older people, Kruse describes competence as skills and abilities of the human being 
(Kruse, 2018, p. 1193) that contribute to the preservation as well as to the possible restoration of an 
independent, self-responsible and meaningful life. For older people there maybe a reduced ability 
with regard to orientation in new problem situations and new learning, but there is the necessary 
skill to solve familiar problems and to expand existing knowledge systems into old age (Kruse, 
2008). As a result, it can be assumed that basic mathematical skills also contribute to solving 
financial tasks in everyday life.  

According to Geiger, Forgasz, & Goos (2015) the financial competence can be seen as an extension 
of numeracy that is expressed in numeracy practices. From this perspective, a financially literate 
person must have both the necessary knowledge to carry out financial transactions and plans and the 
ability and confidence to make financial decisions (Geiger, Goos, & Forgasz, 2015).  

The results of the CiLL study show that the average everyday mathematical competence of the 
population between 66 and 80 years of age is 240 points (Knauber & Weiß, 2014). This corresponds 
to the lower third of competence level 2 and indicates that on average older people are capable of 
dealing with mathematical information embedded in everyday contexts, solving everyday 
mathematical tasks with little competing information and processing steps (Knauber & Weiß, 
2014). 

Nevertheless, in adult education research in Germany, financial literacy is discussed more 
frequently than numeracy. Mania and Tröster (2014) describe financial literacy as a sub-area that 
concerns the existentially basal and practical demands of everyday life and lifestyle in monetary 
matters (Mania & Tröster, 2014).They developed a competence model describing the requirements 
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for dealing with money at the level of basic education. The model covers six domains of basic 
financial education (income, money and payments, spending and buying, households, lending and 
borrowing, pensions and insurance). Thus they can make an important qualitative contribution to 
the discourse. Representative results in the field of financial literacy are still lacking. Our study 
refers to the numeracy aspect of financial literacy in order to explain the financial capacity of older 
people to act.  

Research questions  
Starting from a position that skills are complemented by practices, the focus of this contribution is 
on numeracy practices of older adults (66-80 years). Accordingly, the overarching question is how 
numeracy practices are used in older age and whether they help people to be financially capable.  

In particular, the following questions are addressed: 

a) How do numeracy skills work with increasing age? 

b) How do numeracy practices work with increasing age? 

c) How do numeracy practices change according to gender at the ages of 66 to 80? 

Methods 
The data from the PIAAC survey and the supplementary survey CiLL can provide a differentiated 
picture of numeracy skills and practices for the German population. The representative survey 
PIAAC was initiated by the OECD, and it was conducted for the first time in 2011/2012 and 
reached a sample of 5,465 persons aged between 16 and 65 years in Germany. In addition to the 
survey of the domains literacy, numeracy and problem solving in technology-rich environments, 
questions on the use of skills were asked in an extensive questionnaire. The subsequent 
supplementary survey CiLL used the same background questionnaire and the skills were measured 
in the same way as in PIAAC. This enables a comparison of these two surveys (e.g. Schmidt-Hertha 
2018). The representative sample of 1,339 persons aged between 66 and 80 years was conducted in 
Germany in 2012 (Friebe et al., 2014). In both surveys, twelve questions on work- and non-work-
related practices were asked. We are looking at post-employment phases, only the questions that are 
not work-related are relevant for this research.   

Numeracy skills for different birth cohorts 

First, the numeracy skills for persons between 16 and 65 years and between 66 and 80 years were 
evaluated. It should be noted, that ages in PIAAC and CiLL are derived from the indicated birth 
year. Comparisons between age groups are therefore not statements on an individual decline in 
competence over the lifespan but statements on differences between groups in the birth cohorts.  
The mean skill values for numeracy indicate a decrease for both men and women for the older birth 
cohorts.  

When comparing the data of the two birth cohorts 16 to 65 and 66 to 80 year olds, men in the older 
groups score almost 50 skill points lower and women almost 60. For both groups these are 
differences equivalent to one whole skill level (men level 3 to level 2; women level 2 to level 1) and 
indicate that women on average tend to do the simplest calculations. The differences may point to 
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an historical effect, especially for the oldest cohort. Those who are born between 1931 and 1936 
often have had interrupted educational careers and different social and cultural expectations to those 
of the younger cohort. 

The average skill value of the entire CiLL cohort (66-80 years) is 240 points, which is below the 
average skill value of the entire PIAAC cohort (16-65 years) of 272 points. 

 

Figure 1: Numeracy skills average for the PIAAC Germany (N=5,379) and CiLL (N=1,338) samples 
compared 

 
Figure 2: Average of skills-use variables for the German PIAAC (N >5,000) and CiLL (N >1,200) 

sample comparison 

The next step is to check how the skills-use variables (indices) of the two samples differ. In order to 
assess how the practices are used in general, the analysis took into account the skills-use variables 
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of literacy skills (frequency of reading and writing in everyday life). For all everyday practices, a 
decreasing frequency of use across age groups can be observed (see Figure 2). However, this 
development is not comparable to the skills variable described above. For numeracy, there is a 
small increase in the average frequency of use from the 55-65 age group to the 66-70 age group.  

Numeracy practices in older age 

Based on practices to be considered in the context of the social and economic system, the variable 
H_Q03b (Calculation of prices, costs and budgets)1 is divided by gender. There is a highly 
significant difference between men and women in the application of simple numeracy skills: 42.3% 
of men said they used calculation of prices, costs and budgets at least once a week or daily, while 
58.8% of women gave the same answer (see Figure 3). 20.3% of men said they "never" used the 
practices. Among women, 16% said they "never" calculate prices, costs and budgets. 

It shows overall both groups frequently used the practices, but women use them significantly (level 
of significance below 0.01) more than men do. 

 

Figure 3: Frequency of calculating prices, costs and budgets by gender in the CiLL sample (N=1,338) 

The variable that asks for the reading frequency of bills or bank statements (H_Q01g, see Figure 4)2 
reveals that men say they use this practice more frequently. 51.2% said they read bills or bank 
statements at least once a week, while 42.9% of women gave the same answer. 

                                                 
1 Background questionnaire H_Q01b: “In your everyday life, how often do you normally calculate prices, costs or 
budgets?” 
2 Background questionnaire H_Q01g: “In your everyday life, how often do you usually read bills, bank statements or 
the similar?” 
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Figure 4: Frequency of reading bills and bank statements by gender in the CiLL sample (N=1,338) 

Discussion 
We see that the variables on the use of skills recorded in PIAAC and CiLL can provide some 
information on the frequency in which the skills required for financial decisions are applied. 

a) How do numeracy skills work with increasing age? 

Despite a lower average skill proficiency in older age groups, numeracy practices are still regularly 
used. This should enable them to act financially for themselves. After a peak in the age cohorts of 
25 to 34 year-old women and 35 to 44 year-old men, the mean skill values are steadily declining. 
This finding reinforces the results on the course of numeracy skills in PIAAC (Maehler et al., 2013) 
and in CiLL (Knauber and Weiß 2014; Gebrande & Setzer, 2014), which have only been reported 
separately so far.  

b) How do numeracy practices work with increasing age? 

The comparison shows that the mean values of the skill-use indices for numeracy between the age 
groups 55 to 65 and 66 to 70 increase slightly. This could also indicate that the transition to the 
post-employment phase is accompanied by an increase in the use of numeracy practices. Such as 
dealing with pensions, paying of mortgages or applying for new state benefits. 

Similar to reading and writing practices, a decrease in numeracy practices can be observed with 
increasing age, with reading overall remaining at a higher level. However, changes in skill-use 
remain marginal compared to the differences of skills.  

c) How do numeracy practices behave according to gender between the ages of 66 and 80? 

The index of numeracy practices, consisting of six questions, was further analysed, these included 
the handling of budgets and prices as well as the handling of decimal and percentage values, which 
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increased. Another variable is used from the index of reading practices, which concerns the reading 
of bills and bank statements. The results show that 58.8% of women perform simple calculations 
weekly to daily. Only 42.3% of men do this weekly or daily.  

It can be assumed that women manage household budgets weekly and are apparently more often 
confronted with numeracy practices than men are. The handling of bank statements and bills per 
week less frequent for men in the 65 to 80 age group. It remains to be examined whether this 
distribution will change for in the now younger cohorts or whether it is essentially due to a still 
classical distribution of household chores (c.f. Hobler, Klenner, Pfahl, Sopp, & Wagner, 2017). 

Overall, it can be seen that numeracy practices in the area of "calculating prices, costs and budgets" 
are still used at least once a week by about 42% of men and more than half of women (59%) despite 
their older age. Having lower skills could make these activities more difficult, but at the same time 
qualitative studies that this older age group also show a considerable range of numeracy practices 
(card games, mental arithmetic, payroll tax, photography/development, club treasury, cf. Knauber & 
Weiß, 2014).  

Numeracy practices could guarantee self-confidence in everyday life and in socio-political 
judgements to a certain extent, because  "being numerate is being critical" (Tout, 1997). 
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This paper gives an overview of an Erasmus+ project that aims at empirically identifying the 
potentials and challenges of language-responsive teaching designs for low-achieving students in 
vocational contexts by means of topic-specific design research. It delivers first insights into 
developing and experimenting with two teaching units (percentages and proportional reasoning) 
and summarizes the questions that come up when adapting design principles for language-
responsive mathematics teaching for the teaching and learning of young adults in vocational 
education. The empirical investigations are carried out with young adult pre-apprentices in lower 
vocational education in Germany in the technical sector. These young adults are often low 
achievers in mathematics and often have only limited language proficiency in the language of 
instruction. 

Keywords: Vocational education, language, percentages, scaffolding, design research.  

Theoretical background for designing teaching-learning arrangements in 
vocational settings 
Legitimization and justification for further developing mathematical literacy in vocational education 
to a certain degree, amongst others, lies in the utility of mathematics in the workplace. However, we 
can draw on empirical research gained in different vocational sectors showing that the workplace 
mathematical practices often differ from school mathematical practices (Noss, Hoyles, & Pozzi, 
2000). With reference to Noss et al. (2000), LaCroix (2014) summarizes that 

it is recognized that mathematics practices in the workplace are shaped by the immediate and 
practical requirements of workplace production; that is, getting particular tasks accomplished 
with ease and efficiency using resources at hand rather than the goals and norms of generality, 
formality, and internal consistency commonly associated with school mathematics. (LaCroix, 
2014, p. 159) 

These differences can serve as an important starting point for joint reflection in vocational 
mathematics classrooms so that the mathematics teaching and learning is meaningful for the 
students. When it comes to designing teaching and learning arrangements for mathematics in 
vocational education, a further important aspect, which can be perceived as a challenge as well as a 
resource, is the huge variety of vocational sectors in which students are accomplishing their 
vocational education and which lead to many differences in the way that students meet the 
mathematical demands, since the mathematical demands on the job are not only topic specific, but 
especially also vocation specific (for an overview of vocation-specific research see LaCroix, 2014, 
p. 159). 

Many students are mathematically unprepared to face the demands of vocational education or 
vocational training (Hoyles, Noss, Kent, & Bakker, 2010). While mathematical literacy is important 
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for meeting these demands, PISA results for Germany show that 17.2 % of the middle school 
students cannot rely on sufficient mathematical competencies to continue education in an 
apprenticeship training position. As a consequence, many German students (mostly aged 16-22) 
continue schooling at vocational schools as pre-apprentices and enroll in classes to obtain a middle 
school degree.  

Besides experiencing difficulties in test situations, students with low language proficiency 
experience difficulties in the learning situations themselves. This relates to the role of language as a 
learning medium in classrooms: Language in mathematics classrooms is at the same time a medium 
of knowledge transfer and discussion and a tool for thinking (communicative role of language vs. 
epistemic role of language, Pimm, 1987). Taking both roles of language into account, research in 
mathematics education repeatedly emphasizes the intertwinement of language and mathematical 
thinking for all students, but especially for students still acquiring the language of instruction (e.g., 
Moschkovich, 2015). As a consequence, current design research studies in primary and secondary 
mathematics education focus on developing and investigating content and language integrated 
instructional approaches for fostering students with low language proficiency (e.g. Prediger & 
Wessel, 2013). Theoretical and empirical approaches are pursued to postulate design principles for 
intertwining conceptual and language learning trajectories, while language unfolds into the different 
levels e.g. the lexical and discursive level of language (Pöhler & Prediger, 2015; Wessel & Erath, 
2018). 

With respect to vocational education, the importance of language proficiency for successfully 
meeting the demands of the workplace is also well recognized, especially from the perspective of 
general didactics and more general vocational pedagogy (compared to vocational mathematics 
education research) (Ziegler, 2016). Specific vocational language demands - such as the discursive 
demand of counseling situations in communication with customers - are identified. On the lexical 
level, challenges are often traced back to the specific vocabulary relevant and needed in a specific 
profession or vocational sector.  

However, an analysis of language demands only ‘on the job’ is too restrictive and shortsighted, 
because students are already confronted with vocation-specific language demands in workplace-
related mathematics teaching and learning situations. In mathematical learning processes, language 
plays an important role in an epistemic role for developing students’ understanding of mathematical 
concepts. Thus, in intended learning trajectories in which linguistic and mathematical learning 
trajectories are intertwined also the vocation-specific language demands have to be taken into 
account. 

When aiming at unfolding the relation of language, especially vocation-specific language and 
corresponding language demands, and mathematics embedded in workplace settings, one 
recognizes and has to admit an enormous complexity along with a lack of theoretical approaches to 
acknowledge this complexity. Thus, this research wants to contribute to theorizing the complex 
relation with respect to topic-specific vocabulary and discourse practices as learning opportunities 
for deeper mathematics learning. 
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Research and task design gap 

Empirical research on language-responsive teaching and learning of mathematics for the primary 
and secondary school levels is still relatively young; however, important theoretical considerations 
by now are more than 30 years old (Pimm, 1987) and there is a constantly growing and 
consolidating theoretical foundation from mathematics education and linguistic theory to be drawn 
on in design research projects. At the same time, the practical realization of well-defined design 
principles in content and language integrated approaches is topic-specific (e.g. language for 
understanding percentages differs to a certain extent from language for understanding functions) 
and there is still a huge lack of research which aims at systematically specifying the topic-specific 
language demands for the different mathematical topics.  

When it comes to vocational teaching and learning of mathematics, the aspect of language in 
vocational mathematics learning processes is at the moment not that much in focus as it is in 
primary and secondary mathematics education; however, aspects of language are implicitly touched 
due to the deep connection of language and the theoretical approaches (like webbing and boundary 
crossing) being pursued. Still, like language-responsive teaching designs are always topic-specific, 
recent insights into content and language integrated teaching can neither simply, nor entirely be 
transferred to vocational settings (just to mention age, previous experiences with mathematics in 
middle school, the often described very huge heterogeneity, the case of remedial learning, 
(mathematical) practices of and at the workplace, the many different vocational sectors etc. as a 
small selection of the changing surroundings that must be taken into account).  

That is why there is an urgent need for empirical qualitative and quantitative research that carefully 
investigates the situative effects and potentials of language-responsive vocational mathematics 
teaching and learning. We hereby rely on the notion of language-responsiveness as mathematics 
teaching that accounts for and is sensitive to multiple languages (which, amongst others, can be 
conceptualized as different national languages, different language registers, or non-verbal semiotic 
means) in order to enhance deeper understanding of mathematics (sometimes different terms like 
“language-sensitive mathematics” or “content- and language integrated teaching” are used, see 
Wessel & Prediger, 2013 for further elaboration).  

Research questions  

For minimizing the above described design and research gap, in this paper vocational-specific 
resources and differences when extending the approach of language-responsive mathematics to 
vocational mathematics education are pursued. Thus, the paper aims at answering the following 
research question: Which differences can be identified when consolidated design principles for 
language-responsive mathematics teaching for middle school teaching are adapted to lower strands 
of vocational education? 

Research context and methodological framework 
The project “Language for Mathematics in Vocational contexts” is an Erasmus+ funded research 
project in which mathematics education researchers collaborate with teachers from vocational 
schools from Germany, the Netherlands, and Sweden. The team develops empirically consolidated 
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language-responsive mathematics teaching units for the mathematical fields ‘understanding 
percentages’, ‘proportional reasoning’, and ‘understanding diagrams and graphs’ for vocational 
education of pre-apprentices as well as professional development modules for mathematics teachers 
at vocational schools. For this paper, the focus will be on the classroom level. The developmental 
work on the classroom level concentrates on those strands of vocational education for young adults 
who are not yet in an apprenticeship training position, but aim at completion of a middle school 
degree. The mathematical foci were chosen because of their importance for the target group, and 
because the researchers already gained experiences with developing language-responsive teaching 
material for these topics in secondary school classrooms.  

The young adults (16-22y) in the German part of the project often did not yet successfully develop 
the main mathematical concepts and are often not yet fully fluent in applying the main procedures 
which are in the fore of the middle school mathematics curriculum. Consequently, the teaching 
units take into account design principles for remedial learning. In addition to that, the young adults 
enrolled in these strands of vocational education also belong to the group of vulnerable students 
with respect to language proficiency. 
The research is conducted in the methodological framework of topic-specific didactical design 
research (Prediger & Zwetzschler, 2013) in which the analysis of teaching-learning processes takes 
place in carefully designed teaching experiments. Design experiments are considered the 
methodological core of design research studies as they allow in-depth investigations of learning 
processes rather than only learning outcomes (Gravemeijer & Cobb 2006). They serve as means of 
data gathering for qualitative in-depth analyses of the young adults’ learning processes.  

The design experiments are video-taped and conducted in small-group or partner design 
experiments as well as whole-class teaching experiments. The video data is analyzed qualitatively 
with well-proven language activation categories of our previous research which is combined with 
inductive development of categories. All whole-class teaching experiments are carefully planned in 
each national team of researchers and teachers, e.g. in the here reported German team of two 
mathematics education researchers and seven teachers from three partner vocational schools. 
Furthermore, the researchers draw on classroom observations and field notes from all whole-class 
teaching experiments and subsequent discussions on what works well and does not work well. 

Throughout the project and for the different mathematical topics being investigated, specifying and 
structuring the learning trajectories differs due to the different disposability of previous research. In 
the first year (Sept. 2017 - Sept. 2018) and for the teaching unit ‘percentages’, the developmental 
work relies on a consolidated intertwinement of conceptual and lexical-discursive learning 
opportunities (Pöhler & Prediger, 2015; Pöhler, 2018) for middle school teaching that is being 
adapted. The following results and conclusions for the raised research questions rely on the 
adaptation process of the teaching unit ‘percentages’ and draw on teachers’ and researchers’ 
observations and field notes from six vocational classes in which the adaptations of the teaching 
unit have been used in the academic school year 2017/18. The teaching unit was taught over 4-5 
lessons of 90 min. each in each of the classes and video-data for at least one lesson per class was 
gathered. 

Thematic Working Group 07

Proceedings of CERME11 1383



 

 

First conclusions from adapting a language-responsive teaching unit 
In order to understand the changes that have been identified as important when adapting a language-
responsive teaching unit for vocational classes of a lower strand of vocational education, the next 
paragraph gives an overview of important design principles for language-responsive mathematics 
teaching and which have been realized in the teaching unit designed and empirically investigated by 
Pöhler (2018).  

Design principles for language-responsive mathematics teaching and learning 

Design principle “Macro-scaffolding by intertwining language and conceptual learning 
trajectories”. The general structure of intended language learning trajectories is well described in 
the principles of macro-scaffolding, namely from students’ everyday resources to academic and 
formal technical registers (Gibbons, 2002). For their developmental work, Pöhler and Prediger 
(2015) connect the level principle from Realistic Mathematics Education for conceptual learning 
trajectories with macro-scaffolding of language. According to the level principle, a hypothetical 
learning trajectory is to be sequenced over four levels of increasing deepness of understanding 
(from the situational level to the referential level, to the general level, to the formal level) 
(Gravemeijer, 1998).  

 
Figure 1: Combining conceptual and lexical learning trajectories – macro-scaffolding example for 

percentages (Pöhler & Prediger, 2015) 

By intertwining the two dimensions of sequencing (conceptual dimension and lexical dimension), 
Pöhler and Prediger (2015) develop the dual learning trajectory towards understanding percentages 
depicted in Figure 1: The conceptual learning trajectory is sequenced in six steps starting from 
students’ resources in informal thinking to informal strategies, formal procedures and their flexible 
use. Each step requires other discourse practices and different vocabularies which are sequenced in 
the lexical learning trajectory (Fig. 1 on the right).  

On the lexical learning trajectory, the teaching unit starts from the students’ individual language 
resources (level 1) and the basic meaning-related vocabulary. These lexical means from our 
vocabulary are especially important for explaining the meaning of concepts: meaning-related 
vocabulary grasps mathematical relations and meanings (e.g., take away for the meaning of 
subtraction). It usually belongs to the academic school register and should be introduced before 
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formal vocabulary (Wessel, 2015) (see level 3 where introduction of formal vocabulary begins). 
Empirical evidence has been given that this intertwinement can be effective for mathematics 
learning (Pöhler & Prediger, 2015).  

For pursuing the research question “Which differences can be identified when consolidated design 
principles for language-responsive teaching for middle school teaching are adapted to lower strands 
of vocational education?”, the focus is put on the design principle Macro-scaffolding by 
intertwining lexical and conceptual learning trajectories. Figure 2 depicts the adapted combined 
learning trajectory for the teaching unit percentages for vocational education. Reasons for how the 
adaptations have been made are (amongst others) explained in the following. 

.  

Figure 2: Adapted combined conceptual and lexical learning trajectory for workplace-related teaching 
and learning of percentages 

In the case of lower vocational strands in which the research is conducted, teachers only have little 
teaching time for remedial learning of percentages and the young adults have prior knowledge from 
their middle school teaching. That is why the learning trajectory has been condensed to two levels 
in each dimension. The transition to workplace-related, vocational contexts is implemented in level 
2, which means that on purpose the re-activation of understanding percentages happens in familiar, 
everyday contexts (shopping, downloads). Consistently, the vocation-specific language is accounted 
for on level 2 in the language learning trajectory. 

Insights from teaching experiments with the adapted teaching unit and conclusions  

When conducting and reflecting on the teaching experiments with the adapted percentages tasks, 
two main insights have been gained with respect to the design principle under investigation and task 
design. 

Firstly, the young adults already know percentages, to some extent some calculation procedures, 
and percent-specific language like the formal (more technical) vocabulary, so that they can recall on 
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this knowledge. However, we experience many instances in which procedures are carried out 
without understanding, as well as instances in which the formal vocabulary is not filled with 
adequate meaning. As a consequence, the formal vocabulary can be used as starting point for 
raising students’ awareness for the need to developing deeper conceptual understanding. Working 
on conceptual understanding of percentages builds on meaning-related vocabulary and reflecting on 
the different registers in carefully designed teaching activities. In a concrete task design, the 
vocational discursive demand of counseling was thus taken as a resource to initiate meta-reflections 
on language: In a language-responsive activity students are asked to translate a dialogue with 
customers given in very technical language into a more natural meaning-related form. We thus 
conclude that a further analysis of the authentic, vocation-specific discursive demands is promising, 
because they serve as meaningful situations to be drawn on in language-responsive teaching of 
workplace-related mathematics. 

Secondly, it turned out that the levels 1a to 1c of the adapted learning trajectory in practical 
teaching are not realized as levels but resulted rather in a back- and forth between the three levels, 
both in the conceptual and in the language dimension. We hypothesize that this is also due to prior 
knowledge of percentages that the young adults have already acquired in their middle school 
mathematics. As a consequence, the question must be raised to which extent the design principle of 
sequenced learning trajectories is fruitful in those strands of vocational remedial education. 

Outlook  
The above empirical insights led to the question which further design principles are relevant to 
make language-responsive teaching work fruitfully at vocational level. At the moment, the project 
team is working on this question and implements for example the principle “Accounting for high 
heterogeneity without neglecting rich communication”. Thus, we account for the so far often 
referred to different conditions of lower vocational education compared to general middle 
schooling. In a next step, further research is conducted to analyze the hypotheses and raised 
questions concerning the implemented design principles as well as to identify the potentials and 
effects of language-responsive teaching in vocational contexts.  
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Introduction 
In this chapter, we would like to introduce discussions about the affective constructs and their relation 
to teaching and learning of mathematics. Before the conference, we agreed to change the title of TWG 
from “Affect and mathematical thinking” to “Affect and teaching and learning of mathematics”. The 
new title of the group better reflects the broad scope of research that we welcome in our group. All 
types of affective constructs that emerges in relation to both learning and teaching of mathematics 
could be represented and discussed in the working group during the conference. 

The number of submissions and participants confirmed the interest of mathematics education 
researchers in affect. In total 26 papers and 3 posters were submitted to our group, with 24 papers and 
2 posters were accepted for presentation, and 23 papers and 2 posters accepted for publication in these 
conference proceedings. Our group included presentations from Canada, Israel and different 
European countries. Participation of researchers from 15 countries (including 13 newcomers) 
reflected the spirit of inclusion that is traditional for this group that has been discussing affect in 
mathematics education in recent years.  

We started our work with an introductory, ice-breaking activity and a reflection of the work done in 
previous conferences. This year we decided to considerably increase the time for discussions of each 
paper and structured the paper and poster presentations and discussions in a new way. After a short 
presentation (7 min) and clarifying questions (3 min) of papers that we scheduled within each session, 
authors of presentations discussed their research (30 – 40 min) with other group members in small 
groups. Participants could decide which paper or poster they would like to join for discussion. We 
assigned contributions to the sessions in groupings related to: affect; emotions; identity; beliefs; and 
motivation or attitudes/engagement. At the end of each session, we shared our thoughts about these 
topics with the whole group. In the final session, we discussed new perspectives on affect and related 
constructs that emerged during our work.  

Reflection on prior research in affect 
Peter Liljedahl presented a comprehensive overview of the work that has been done during the past 
CERME conferences. Çiğdem Haser and Stanislaw Schukajlow picked up and elaborated on this 
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overview during the presentation of the report about the work of the TWG8. The starting point for 
systematic research on affect in mathematics education is usually a review paper by McLeod (1992). 
In his seminal work, the author introduced an influential taxonomy of affect. According to this 
taxonomy, affective constructs can be assigned to different points on the line that ranges between 
beliefs through attitudes to emotions. Beliefs were proposed to be most stable, less affective and most 
cognitive, whereas emotions were noted as less stable, most affective and less cognitive.  

In the last decades, researchers underlined repeatedly that the complexity of affect requires 
elaborating the taxonomy proposed by McLeod. For example, Hannula (2012) analyzed research in 
mathematics education and suggested a need to distinguish between three dimensions as common 
foundations for a theoretical framework. These included: cognitive, motivational and affective 
dimensions; unstable states and stable traits; and social, psychological or physiological nature of 
affect.  

Recently, object of the affect (affect about life, learning, problem solving or strategy use), subject 
(teacher or students) or valence (positive or negative) were suggested to be important for research on 
affect (Schukajlow, Rakoczy, & Pekrun, 2017). Further, the theoretical approach (acquisitionist or 
participationist) play an important role.  Affective constructs that were explicitly anchored in the 
taxonomy by McLeod were investigated and new dimensions were proposed. For example, teacher 
beliefs about the nature of mathematics and their relation to learning can be assigned to beliefs about 
nature of mathematics, beliefs about mathematics teaching and beliefs about mathematics learning 
(Beswick, 2012). Teacher beliefs build a so-called belief system that start its development in the 
school years, changes in university years and is shaped based on the practical experience encountered 
by in-service teachers. 

An important point raised in prior discussions related to the definitions used for characterization of 
affective constructs. As affective constructs are seen as complex phenomena the definitions of 
particular constructs often overlap with other affective constructs and are criticized as being circular. 
For example, emotions are defined as phenomena that included cognitive, affective, motivational, 
physiological and expressive parts. Affect and motivation are used in this definition thus for 
characterization and grounding of emotions. 

Finally, reciprocal relationships between affective constructs and students’ achievement is 
acknowledged and are crucial for understanding the role of the affect in teaching and learning. Most 
of the studies in the TWG8 targeted affect and implied problems with affective constructs as a reason 
for difficulties in teaching and learning. However, another perspective is also valuable, whereby 
students’ or teachers’ affective problems while learning or teaching might result from problematic 
achievements in the past. 

Contributions in the TWG8 
In this section, we would like to present the papers that we included in these proceeding. Gómez-
Chacón and Barbero investigated students’ perception of backwards strategy in problem solving. 
Forbes et al. analyzed students’ mindsets and its relation to self-confidence in programming. A low 
achiever’s mathematical thinking was analyzed by Viitala in a case study.  
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Alcantara et al. explored students’ failure experience and identified emotions hopeless, shame, 
frustration and fear. Relation between anxiety about generating drawings and students’ gender, 
strategical and cognitive factors was analyzed by Schukajlow et al. Lake reported on the study that 
investigated how data about emotional state can be used during reflection on teachers practice. 

An instrument for measurement of students’ identity was developed and applied by OReilly at al. 
Narratives on student identity within a social-cultural environment were explored by Ben-Dor and 
Heyd-Metzuyanim. Howard et al. applied thematic topic analysis for research on students’ identity 
and its relation to mathematics in higher education. 

Figueiredo and Guimarães carried out a study on learning styles and their relation to performance. 
Van Hoeve et al. investigated students’ mindset. An analysis of questionnaires for students’ self-
concept of mathematics in school and university was presented in the contribution by Rach et al. 
Westerhout et al. analyzed the effect of the project about game programming. The development and 
evaluation of the general and domain-specific scales for self-concept and interest were analyzed by 
Sproesser et al. 

First-person vicarious experiences was found to be crucial for the change of beliefs by Rouleau et al. 
Pantziara et al. presented a study on validity of the scale about teachers’ epistemic beliefs. Wiik and 
Vos reported on the study about reasons of choosing advanced mathematics courses in secondary 
school. Using metaphors for exploring pre-service teachers’ beliefs was analyzed by Haser. Liljedahl 
presented an analysis of master and doctoral students' beliefs about research (Liljedahl, 2018). 

Engagement in students’ interactive storytelling and its impact on attitudes were explored in the 
contribution by Pierry et al. Novotna analyzed private supplementary tutoring and its relation to 
students’ attitudes. Different levels of engagement (high and low) were distinguished in students with 
the same achievement level in the study by Skilling. Haataja et al. demonstrated that gazes at teachers’ 
and at students’ faces differed in small- and whole-group instructions. Kourty analyzed cognitive, 
behavioral and affective aspects of engagement in inquiry-based learning.  

In posters, Hansen discussed collaborative processes while solving problems and Barton introduced 
a study on self-made tutorials. 

Evolution of the TWG 
The overall quality of the submitted contributions increased and this resulted in acceptance of nearly 
all papers and posters for presentation at the conference. Contributions investigated affective 
measures of different subjects: primary and secondary school students, pre- and in-service teachers 
and doctoral students. Most of the researchers applied qualitative analysis and performed case studies, 
in order to answer their research questions. Thus, the distribution of submissions followed the general 
trend toward the dominating role of qualitative studies in research on affect (Schukajlow et al., 2017). 
One reason for this trend might be the efforts of researchers to capture the whole complexity of the 
affective phenomena and analyze it in relation to cognitive and strategical behavior. In our discussions 
about methodological issues, we pointed out that even researchers who applied qualitative methods 
should be aware that they can get only one “slice” of phenomena, even though it is usually more rich 
than in quantitative studies. On the other hand, researchers who applied quantitative analysis often 
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pretend to produce objective and valid results. In this type of analysis, limitations concerning 
operationalization and generalizing should be carefully addressed. The choice of research method 
should be derived not by general preferences of what is the “right” or “wrong” type of analysis, but 
by research questions that the researcher is interested in.  

A new trend in the group was the appearance of several papers on identity. In their studies, researchers 
reported on how they assess identity and tried to understand this complex phenomenon. Assessment 
and theoretical background seem to be closely related to each other in research on identity. New 
theoretical approaches, such as theory of mindsets and theory of identity appeared in the papers this 
year. Further, we had again contributions that referred to psychological theories such as control-value 
theory of achievements emotions, theory of self-concept and other theories. Most of the studies 
investigated students affective state reflecting researchers’ interest in what is going on during 
learning. The new object of affective construct, emotions and perceptions regarding strategies used 
during problem solving, appeared for the first time in our group. Another trend is an investigation of 
the affect in learning environments that included programming as part of the treatment. 

During our general discussion, Liljedahl summarized by using the scheme for assessment categories 
in research on affect (Table 1). Studies can address individuals or social variables (subject) within 
social or individual context. For example, if researchers investigated beliefs of individuals during 
group work, the subject is the individual and context is social. 

 Subject 

social individual 

Context social   

individual   

Table 1: Assessment categories in research on affect  
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The article draws on preliminary results from a qualitative exploratory study on the emotions 
reported by students in relation to their experiences of school failure, particularly in mathematics. 
The research involves students at risk of failure in mathematics attending vocational secondary 
education in Brazil. As a theoretical approach, the attribution theory is interrelated with theory 
development in the study of emotions in mathematics education. When considering the hypothesis of 
distinguishing factors of failure between facilitators and inhibitors, we have identified in the students’ 
verbal expressions several negative emotions that are tied to objects, agents and events of: the 
mathematics class, the mathematics as a discipline, and the mathematics assessment. 

Keywords: Students’ emotions, attributions, school failure, vocational education 

Introduction  
In Brazil, the Federal Institutes (FIs) offer young people a three-year training course that has the dual 
function of obtaining a professional qualification and simultaneously completing secondary 
education. The annual curriculum of vocational courses consists on average of seventeen subjects, 
twelve of them being part of the common national basis and five of a technical nature, totalling, on 
average, 36 classes per week. From the first year on, mathematics plays a central role, both because 
it is a subject of the secondary education common core and because it is strongly applied in the various 
technical disciplines. Although the FIs are generally viewed as schools that offer a quality education 
and contribute to better opportunities of access to an undergraduate course, the high failure rate in 
this subject results in a high dropout rate in this particular schooling system.  

As part of a strategy for increasing the indices of permanence and success of the students in the IFs, 
the identification of students at risk became a priority. This entails knowing more about them, not 
only at the cognitive level, but also at the affective one, particularly with respect to mathematics.  

Many studies have shown that school failure is not only due to cognitive aspects; the affective ones 
also play a very important role in the students’ learning (Evans, Morgan, & Tsatsaroni, 2006). With 
this study we aim to understand how vocational secondary students experience situations of failure 
and poor achievement in mathematics that put them at risk of retention and/or evasion. Thus, the 
research has a focus on the student individual history with the discipline through capturing 
experiences failure in mathematics from an emotional point of view. 
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Theoretical background 
Research on the causes of school failure has a long history and has evolved through the contributions 
of various areas of knowledge given its complexity and multidimensionality. Broadly put, one may 
say that at least the cognitive (e.g. Rösken, Hannula, Pehkonen, Kaasila & Laine, 2007), the affective 
(e.g. Gomez-Chacón, 2003; Di Martino & Zan, 2013), and the socio-cultural perspectives (e.g. 
Lerman & Tsatsaroni, 1998; Heyd-Metzuyanim, 2013) have been called for the understanding of 
school failure. 

There are two major ways of conceptualizing school failure, which imply different approaches to its 
study. Seen as a product, failure is the result of a judgment made by the agents of the educational 
system on the distance of the students in relation to the prevailing norms of school excellence. Those 
who meet the standards and advance in grades-based and retention-based courses will be successful. 
Failure, in turn, is determined by the poor academic performance of the students, who for various 
reasons are not been able to reach the competencies expected in a given period of time. Seen as a 
process, critical moments of developing failure involve low achievement, retention, school avoidance 
and dropout, and non-adaptation to the workplace (Dupéré et al. 2015).  

School failure can be analyzed through deterministic variables and, in that case, it is described by 
disapproval, retention, and dropout in quantitative terms; it can also be approached through individual 
and social events that are more difficult to capture and in, that case, it is expressed in qualitative 
terms, such as individual frustrations, inadequate preparation, and alienation from democratic 
participation. Many symptoms of failure, which are usually veiled and not quantified, but constitutive 
of school failure (Nardi & Steward, 2003) are revealed in particular ways, such as: the student does 
not feel she/he belongs in school and does not like the school, refuses the pedagogical relationship, 
is aggressive and disengaged, and alienates from the school environment. 

Attributional dimensions in students’ failure 

Attribution theory is one of the well-known approaches to the study of the causes of school failure. It 
is based on getting individuals’ perceptions about the factors that best explain the situations they live 
in and the states they go through. Studies aimed at determining the causal attributions of academic 
failure are abundant, both in the field of cognitive psychology and in the various domains of education 
(Almeida, Miranda, & Guisande, 2008). 

Most of the studies carried out under this perspective assume that students are able to produce a 
conceptual framework that explains the causes of their results and, in particular, their failures in 
school. Moreover, this implicit theory can be seen as composed of unitary causes that are organized 
according to dimensions, which can be seen as the critical causes of academic performance. 

Drawing on the work of Weiner (1985), causal attributions can fit into three commonly accepted 
global categories: internal and external causes (i.e. inside and outside the person); stable and unstable 
causes (i.e. remaining relatively constant or changing over time); and, finally, controllable and 
uncontrollable causes (i.e. under control or out of control of the will of the subject). More recently, 
Forsyth, Story, Kelley & McMillan (2009) have reexamined and reframed some of the findings of 
previous research studies by using a phenomenological approach. They asked college students right 
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after receiving their grades in a course exam about the factors that led them to get the grade they did. 
The researchers hypothesized that the causes would be structured in a hierarchical fashion but 
admitted that, as other studies have shown, some might not be mutually exclusive. The results show 
that the causes of failure emerged from a practical thinking that renders two broad categories: 
facilitators and inhibitors of success. This suggested placing the causes of failure in predominantly 
one-dimensional terms, where the bad-good, or high-low polarity seems to fit within the range 
between facilitating factors and inhibiting factors. The following diagram (Figure 1) illustrates the 
condensed causal attributions, which may not be exclusively in one side of the scale. 

 

 

 

 

 

 

Figure 1: Model of attributions (adapted from Forsyth, Story, Kelley & McMillan, 2009) 

According to the authors, several specific factors can be assigned to explaining failure; all those 
unitary causes are linked by a common attributional dimension: inhibitory factors. 

Attributional thought can thus be considered to be a special case of a hierarchically organized 
schema, with a small number of global factors or dimensions subsuming a relatively greater 
number of more specific causal factors (Forsyth, Story, Kelley & McMillan (2009, p. 171).  

Our research brings this theoretical view as a background and seeks to complement it with a 
theoretical view of emotion, according to which emotions or emotional states are expressible by 
individuals as ways of proposing their understanding of failure situations to others.  

Emotions in students’ interpretation of failure 

Several researchers have already embraced the construct of emotion as a dynamic system, where 
emotion cannot be seen as either the origin or the end point of a causal relationship between affect 
and performance. In her work, Gomez-Chacón (2003) has discussed the interplay between affect and 
learning as a cyclical process. One the one hand, the experience of learning mathematics provokes 
different reactions in the student and acts on his/her beliefs; on the other hand, sustained beliefs have 
a direct consequence on the student’s behavior in learning situations and ability to learn. Similarly, 
in his review of the research literature linking emotions and mathematics, Xolocotzin (2017) has 
found some investment on the study of emotions as predictors and outcomes.  

Di Martino and Zan (2011) have suggested a way of distinguishing emotions in terms of reactions to: 
i) Objects: a class of emotions that are linked to objects (attraction emotions) and refer to all variations 
of the affective reactions of liking and disliking (like love and hate); ii) Events: a class of affective 
reactions that relate to being pleased and displeased, consistent with the perceived consequences of 
an event as being desirable or undesirable (like joy, hope, fear) and, iii) Agents: a class of affective 
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reactions of approving and disapproving (like shame, admiration, reproach). These three kinds of 
emotions also differ with respect to the factors that influence them: attraction emotions are influenced 
by the subject’s tastes; affective reactions of being pleased and displeased are influenced by the 
subject’s goals; and affective reactions of approving and disapproving are influenced by the subject’s 
beliefs and values. 

Based on these theoretical assumptions, our research aim is to understand the emotions revealed by 
students in a situation of failure and how these emotions connect with the causes that they attribute 
to their failure. 

Methodological considerations  
Given the subjectivity of emotions, in this preliminary study, we chose to give the students the 
opportunity to speak about what they consider decisive in their own experience of failure and poor 
achievement in mathematics, through a focus group interview. The qualitative study of emotions 
requires instruments consistent with an interpretative approach, capable of capturing students’ 
emotions (Di Martino & Zan, 2013). Although revealing emotions when in a situation of failure may 
be difficult to individuals, we believe that a conversation among several students having failure in 
common may be a facilitator element, as also suggested by Martínez-Sierra (2015). 

The conversation sought, in a first phase, to know the reasons that led the students to choose the 
courses they attended and their perspectives for the future. Next, we sought to hear the students about 
their relationship with mathematics throughout their schooling and, in particular, on their first year at 
the IFMT. Another leading question was: What emotions do you experience about mathematics and 
how are they affecting your relationship with other disciplines? This issue led students to talk about 
their emotions they experienced, namely during classes and assessment situations. Finally, the 
students were invited to comment on the remedial opportunities at the IFMT.  

The group included 13 students (7 females and 6 males) who attended the first year of a vocational 
course at the Instituto Federal do Mato Grosso (IFMT) and are at risk of retention and/or evasion. 
The students accepted to participate in the focus group that took place after the academic activities 
and lasted approximately 1 hour. Their parents were previously informed of this interview, as part of 
the ongoing research, and consent forms were obtained, by guaranteeing anonymity and 
confidentiality of the data. The interview was conducted by the first author and audio-recorded.  

Due to space limitations, we selected the voices of four students whose reports allow a sufficient 
reduction of the data in order to illustrate the emotions shared by the group during the initial 
conversation. From the data, we extracted some key elements that allow a brief presentation and 
characterization of those four subjects, as follows. 

Ana is 15 years old; she is very talkative and effusive. She looks for all the help that is offered by the 
IFMT. Ana intends to take a higher degree. Carlos is 17 years old, is very shy and rarely interacts 
with the other classmates. He is repeating the 1st year and is still failing in most subjects. Amanda is 
15 years old and reserved. She reveals some difficulties but not always attends the remedial classes. 
Bruna is 15, a very shy student but always with a smile. Her father supports her choice of electro-
mechanics. She believes that her future will improve from studying at the IFMT. 

Thematic Working Group 08

Proceedings of CERME11 1396



 

 

The data analysis followed an interpretative process of content analysis based on two combined 
targets: i) Students’ verbalised emotions in referring to failure; and ii) Verbalised indicators of causal 
attributions, linked to such emotions. Such indicators were later condensed and labelled as instances 
of inhibiting factors (emphasized in italics below).    

Results 
Emotions related to the mathematics class 

The mathematics class was shown to be a source of events generating various emotions. For these 
students mathematics classes are monotonous and boring. The classroom environment is described 
as uninspiring and conducive to deprived concentration, inattention, and disinterest for the learning 
of mathematics. Boredom is one of the emotions portrayed in students’ words. It is related to poor 
teaching, bad atmosphere, and high confusion. Boredom is linked to failing in following the class 
and in understanding the lesson and to feeling lost. As such, hopelessness is also an emotion that 
arises from their words.    

Ana:  Boring! Always! Somehow monotonous, it’s always: going to school, sitting down, 
listening to the teacher talking, working out some activities. 

Carlos:  Everything distracts me. The mess in the classroom... Last year, for example… I 
did not understand anything. 

Carlos:  When the teacher is explaining, my head is flying ... We feel that a lesson is boring 
when we cannot reason correctly.  

Ana:  Then, you go to class... Like what he said, you can understand but at the same time, 
you cannot. It’s like when you’re reading a book, and your head for a millisecond 
flies... and then, you look at the book and think: What’s this? Where did I stop? 
What was I reading?  

Classes are also generating emotions related to agents. Schoolmates correspond to sources of shame 
and frustration for some students, who are in failure. Bruna reports that the classes generate 
displeasure, a fear of being censured, and shame for feeling inferior. The stare of her classmates is 
seen as reproachful by the student, who seems to value negatively her inability to understand what 
others apparently find easy. The student does not ask questions and gives up seeking support. Thus, 
she holds herself in silence and turns to the remedial classes for greater safety so as to be able to 
expose her difficulties, which she sees as a weakness of her. So, shame, frustration and fear are tied 
to high censure from classmates and to low safety.  

Bruna:            I’m ashamed to ask. If I don’t understand, I don’t ask. Because at my side there are 
people who know, and if I say: ‘Ah, Teacher, I didn’t understand’, they stare at me. 
So, I won’t ask. The teacher is explaining and sometimes the teacher asks: ‘Do you 
understand?’ In my head, I think: ‘No, I don’t understand’. But, I say: ‘Yes, I 
understood, Teacher’. 

Bruna:  In the tutorial classes, I feel more at ease to ask the teacher what I can’t understand.   
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Ana: Then you see your classmates talking, laughing... those little jokes: ah, you’re 
smart, ah you’re dumb… but you just couldn’t understand... The teacher has 
explained a few times but people wouldn’t be quiet! So, you couldn’t pay attention. 

Amanda: In my opinion, this is what happens: you have that hope, I mean, the teacher is 
explaining the content and then you think you’ll understand it. Then he gives a task, 
he will present the resolution and… mine wasn’t right. You get... like... 
discouraged.  

The comments of schoolmates provoke reactions of shame and also of hurt because these students 
apparently feel that their schoolmates do not understand their difficulties. The comments made 
provoke humiliation that leads to a need of quieting them. Discouragement is another emotional 
reaction in these young people. After the hope of understanding a new content comes the 
disappointment for not being able to properly solve the task proposed. In brief, shame, frustration, 
fear and discouragement go hand in hand with low sympathy but also with poor ability in new tasks.  

Emotions associated with mathematics 

Regarding mathematics, the reactions of these students are ruled by dislike. They react to that as a 
more difficult discipline than the others and recognize the weight it has in the other areas of the 
technical component of their courses. Thus, another associated reaction that can be identified in 
relation to mathematics is stress and irritation. 

Amanda: I don’t like mathematics, but I try to do it.  

Carlos: My experience with maths is a negative one. I got here but I don’t know anything... 
I only failed in the fifth year and then here, in the first... I got here but knowing 
nothing. That’s why it’s hard! I’m trying hard! 

The dislike of mathematics is linked to a perception of its difficulty. This seems to be revealed in the 
student’s sense of a poor ability to learn it. They keep trying to overcome this obstacle but end up 
giving in to the conviction that they do not know and they must continue to strive. There is also a 
maladaptive feeling that transpires from the words of the students, who blame their lack of preparation 
before secondary school for the difficulties they face. Therefore, dislike, stress, and irritation are 
emotions related to bad preparation, low ability, and a hard subject. 

Emotions associated with mathematics assessment   

Finally, the evaluation tests in mathematics emerged as the triggers of various emotional reactions, 
notably nervousness in performing the tests and despair for not being able to think and recall. 

Amanda: Every time I’m going to take any test, I get very nervous and I end up shuffling 
everything (...) it’s very bad because it stops us to recall what we studied; we may 
have even learnt but at the time of the test it seems that there is a mind blank, so... 
And this year it seems to be getting worse because I get very nervous, it’s because 
of the pressure of thinking that if you cannot recover you’ll ‘perish’... 

Ana: And the day before a recovery test, I went to the teacher’s tutoring and the teacher 
helped me and saw that I had learned the content. She said: ‘your problem is that 
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you get nervous when you take the test’. When I take it, I forget all those easier 
things like plus and minus. In the test I’m really a child.  

Bruna: I had always been a good student, but as soon as I entered the IFMT, I went down 
like a balloon. (…) now, here, if I take a test, I’m too nervous, I forget everything, 
even my name… 

The tests seem to have to do with objects, with agents, and with events that arouse various emotions 
in these students. There are events that seem to reinforce the emotion of anxiety and nervousness, as 
the case of the teacher who confirms this same idea with Ana, the day before a test. On the other 
hand, the test itself is a disruptive factor because it is seen as a time when learning is compromised 
and becomes ineffective. The students describe themselves as apparently powerless and bewildered, 
and about to lose their identity and rationality. Moreover, the students refer to a particular object, the 
recovery test, as a threat because it means an ultimate opportunity that they feel they must not fail. 
So the fear of failing gets into action once again. To conclude, the fear, the nervousness and the 
hopelessness are involved in experiences of personal disability, high pressure, and high threat.  

Final remarks 
The study of failure often falls on cognitive aspects, with relatively little attention paid to the affective 
and socio-cultural aspects. As reported in the literature, affective aspects are usually veiled and not 
quantifiable, which makes it difficult to study. According to the theoretical assumptions adopted in 
this study, emotions are seen as reactions to different situations that students experience in their 
school journey. As factors inhibiting the success of these students, we can point out: i) mathematics 
classroom (poor teaching, bad environment, high censure, low safety, and high confusion); ii) 
relationship with mathematics (bad preparation, low ability, and a hard subject), and iv) mathematics 
assessment (personal disability, high pressure, and high threat) and those are linked to  a set of 
negative emotions, namely: boredom, hopelessness, shame, frustration, fear, dislike, stress, irritation, 
nervousness. Some of those causes are stable and others unstable, and some are controllable and 
others are uncontrollable. Like previous studies, we acknowledge the interplay between affect and 
learning as a cyclical process. Moreover, our preliminary results indicate that emotions and failure 
are mutually reinforcing. In this sense, changes in various aspects of the classroom practices and 
socio-cultural norms may represent facilitating factors of success and generate more positive 
emotions; it is also likely that more positive emotions about mathematics itself and assessment 
practices can arise from breaking the logic of test-based retention. The next steps of our research will 
examine the link between emotions and critical events of failure and also of accomplishment, 
throughout a school year, by means of emotionally triggered narratives.  
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Emotions, motivation and achievement in learning environments 
Learning is a complex process, which is influenced by many parameters. “Emotions and motivation 
are important prerequisites, mediators, and outcomes of learning and achievement” (Schukajlow, 
Rakoczy & Pekrun, 2017, p. 307). Emotions, which are related to achievement activities and to 
success and failure outcomes, are achievement emotions (Pekrun, 2006). Accordingly emotions in 
school are achievement emotions, which effect students’ interest in contents or subjects and 
motivation to learn (Pekrun, 2006). Interest in mathematics, motivation and as a sequel of these 
factors a positive effect on grades and test scores can be emerged by positive activating emotions, 
such as enjoyment, during mathematic lessons (Murayama, Pekrun, Lichtenfeld, vom Hofe, 2013; 
Schukajlow & Rakoczy, 2016). It is assumed that achievement emotions are influenced by certain 
appraisals. In the control-value theory of achievement emotions, perceived control over and perceived 
value of achievement activities and outcomes are in particular relevant for the evocation of 
achievement emotions (Pekrun, 2006). “From an educational perspective, appraisals are important as 
well, since they can be assumed to mediate the impact of situational factors, and can be targeted by 
educational interventions intended to foster positive emotional development” (Pekrun, 2006, p. 317). 
To influence control, values and emotions positively Pekrun (2006) mentions important factors, like 
creating learning environments, which support autonomy and cooperation, giving cognitive quality 
instructions and inducting values, finding a performance-enhancing choice of tasks and fostering 
students’ self-regulation of emotions. The project, which is presented subsequent, is gearded to these 
factors. It is assumed, that this modelling-related and applied learningconcept is based in a social and 
learning eviroment, which fosters students‘ emotions, increases interest in mathematic and generates 
a learning effect on geometric basic competences. 

The project  
In the project students of a ninth grade (N=68) of a German high school produce in groups 
mathematical tutorials in the field of space geometry. After an introduction of the tasks and technical 
equipment, each group works self-contained. The project is conducted after the students already 
studied the topic of space geometry, so the students have experiences in this mathematical content. 
In the project it is being investigated whether and to which extent a learning effect and a positive 
impact on emotions and motivation can be achieved by the participation. First, the students analyze 
a geometric body. They describe the shape, name and explain the formulas of the surface and volume 
and put it into an example in the real world. The focus of this working phase is on the process-related 
competences of mathematical arguing, modeling, using mathematical representation and elements 
and the mathematical communication. Furthermore the groups develop a concept for the medial 
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implementation of the compiled mathematical content. Afterwards the groups present their findings 
and concepts. Thereafter each group starts filming and implementing their mathematical results into 
a medial setting. Finally the groups present their self-made tutorial. It is assumed that a high degree 
of individual value inheres in the project. The autonomous and cooperative working, like developing 
a creative concept, incorporating the mathematical content into this concept and presenting their 
tutorials and the integration of media reinforce this assumption (Ludwig, 2008). The project-setting 
constitutes a learning environment like Pekrun (2006) demands. 

Research design  
To determine the projects influence on stable emotions, motivation and interest in mathematics, a 
survey of the Project for the Analysis of Learning and Mathematics longitudinal study (Pekrun, 
Goetz, Jullien, Zirnbibl, vom Hofe & Blum, 2002) is used in a pre-, post- and follow-up scheme. The 
intrinsic motivation inventory (Deci & Ryan, 2000) is used for researching on unstable situational 
emotions while the project is processing. For investigating a learning effect of the project a self-
developed pre-, post and follow-up test is used. The test is applied to the competence-oriented course 
of instruction of Nordrhein-Westfalen and comprises tasks on geometrics bodies like describing, 
reproducing, explaining, representation of mathematical content and appliance, working and solving 
complex mathematical issues. The evaluation of the findings is in progress. 
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Sociocultural accounts of students' identity emphasize the endorsement of narratives about learning 
from "significant narrators". In contrast, psychological accounts highlight adolescences as a time 
of separation from parents and other authority figures. In this study, we attempt to reconcile these 
two views based on the Bakhtinian concepts of Authoritarian discourse and Internally Persuasive 
discourse. The study examined the mathematical identity narratives of five adolescents, 2nd 
generation to former Soviet Union immigrants in Israel, participating in a STEM afterschool 
activity. The findings focus on three students' endorsement of one narrative, "math is important", in 
both individual interviews and a focus group. The analysis showed that all participants endorsed 
the narrative and related it to their designated identities. However, participants differed in the level 
of endorsement of this narrative, ranging from 'full' endorsement to 'oppositional' endorsement. 

Keywords: Sociocultural narratives, mathematics identity, adolescents, immigrants. 

Rationale and Goal 
In recent years, students' mathematical identities have attracted increasing attention (Darragh, 2016; 
Radovic, Black, Williams, & Salas, 2018). Many of these studies focus on adolescence as a critical 
time for the development of such mathematical identities (Black et al, 2010; Heyd-Metzuyanim, 
2015). Yet historically, adolescence has been treated very differently by psychological and 
sociocultural (or sociological) accounts of human development. Sociocultural accounts, especially 
those leaning on structural sociological theories which theorize individuals as products of social 
structure, assume that the construction of identity narratives draws on narratives authored by 
"significant others" (e.g. Sfard & Prusak, 2005). In contrast, psychological theories highlight 
adolescence as a time where individuals construct their unique identity in separation from the adults 
around them (e.g. Blos, 1967). This disparity, between studies that point to adolescence as a time of 
separation vs. studies assuming the adoption of socioculturally based narratives into one's identity, 
invites a closer examination of the endorsement and separation processes of students' mathematical 
identity. Hence, this report aims to investigate this duality of endorsement and separation in the case 
of three adolescents who belong to a minority community of former Soviet Union immigrants in 
Israel.  

Theoretical framework 
The concept of identity has been notoriously ambiguous and difficult to define (Radovic et al., 
2018; Sfard & Prusak, 2005). To answer this ambiguity, Sfard and Prusak (2005) suggested an 
operational definition of identity as "narratives about individuals that are reifying, endorsable and 
significant" (p. 16). They differentiated between actual (or current) identities, namely stories about 
the current state of affairs, and designated identities – stories of what is expected to be the case in 
the future, stating that learning resides in the gap between current and designated identities. Black 
and colleagues (2010) pointed to the importance of vocational aspirations and their connection to 
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mathematics in relation to adolescents' designated identities. Sfard and Prusak also distinguished 
between 1st person (1st P) identity stories (narrative told by the author about him/herself), 2nd P and 
3rd P stories (narratives told by others about the protagonist, to him/her or to others respectively). 
They, as well as Heyd-Metzuyanim (2015), showed how 3rd P identity stories of significant 
narrators turn over time into 1st P identity stories.  

Despite the operational clarity of Sfard and Prusak's (2005) definition, this definition is unclear 
regarding the status of narratives about mathematics and learning mathematics, such as "math is 
hard", "math is about calculations" or "math is important". Such narratives, often related to in the 
literature as "beliefs about mathematics", play a crucial role in shaping students' relationship with 
mathematics (Törner, 2014). For this matter, we incorporate into our conceptual framework Holland 
and her colleagues' (1998) concept of the space of authorship. Bakhtin (1981) suggested that a 
human being is always in a state of addressing different sociocultural voices and authoring herself 
and others. Holland and colleagues (1998) define this space of authorship as a "broad venue, where 
social languages meet, generically and accentually, semantically and indexically, freighted with the 
valences of power, position, and privilege" (p. 191). Drawing on these ideas, we conceptualize the 
space of authoring mathematics identity as a dynamic arena containing narratives relating to 
mathematics, learning mathematics and the person as a mathematics learner.  

In order to reconcile the "endorsement vs. separation" conflict between psychological and 
sociological views of adolescence as a time of identity development, we draw on another 
Bakhtinian concept: the process of ideological becoming. Bakhtin (1981) conceptualized, from a 
discursive point of view, the process whereby individuals selectively assimilate others' words. This 
process begins, according to Bakhtin, with a separation between authoritarian discourse and 
internally persuasive discourse. Authoritarian discourse mostly belongs to parents, teachers, adults 
and other authoritative social figures. Bakhtin described this discourse as demanding unconditional 
allegiance and permitting no play with its borders, no arguing or dialogue. However, the words of 
others, according to Bakhtin, do not have to remain isolated and static; they can be internally 
persuasive and become "half-ours and half-someone else's" (p. 345). In this process the other's 
narratives are questioned and challenged. Morson (2004) defined these dialogically tested narratives 
as internally persuasive. Our research question in this study was thus: to what extent are adolescent 
students' narratives in the Space of Authoring their Mathematical Identity, internally persuasive? 

Methodology 
The study included five 8th grade students (13-14 years old) that participated in a weekly STEM-
oriented afterschool activity at the Technion (hereafter "the Activity"). They all studied in the same 
school. The study was a pilot study aiming to build conceptual and methodological tools for a future 
larger study on students' identity in relation to dialogic instruction in mathematics. Hence, we chose 
this specific population because the students were participating in a STEM activity held in our 
university and could be easily accessed. The students' age corresponded with the age of our future 
study's population. Participation in the study was voluntary, and anonymity and confidentiality were 
guaranteed through an informed consent letter signed by the participants and their parents. Only 
four cases were analyzed. The four participants were born in Israel, 2nd generation of former Soviet 
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Union (hereafter: 'Russian') immigrants; the fifth participant was a recent immigrant from Russia. 
This difference between her and the other participants became known during the data collection 
stage. Due to her limited ability to communicate in Hebrew, as well as our wish to maintain a 
cohesive framework of participants who are 2nd generation to Russian immigrants, her data was not 
analyzed in the study.  

The study included semi-structured individual interviews with four participants that preceded one 
focus group interview with all five participants, all recorded and transcribed. The interviews were 
conducted by the first author in a separate room. Each individual interview took approximately 45 
minutes and included questions intended to elicit current 1st and 3rd current identity and designated 
identity narratives such as "what subjects are important for you?", "what kind of student are you?", 
"how would your parents answer that same question?", and "what would you like to be when you 
grow up?". Since our focus was the dialogic aspect of the endorsement of narratives, the interviewer 
questioned the participants on the sources of their narratives (e.g. "who says that math is 
important?") and asked for justifications (e.g. "why is it important?"). The focus group lasted 90 
minutes. It began with a discussion of important subjects in school and ended with discussion of 
participants' wishes for the future. The rationale for holding a focus group in addition to interviews 
was double. First, there were participants who did not want to participate in the interview but agreed 
to participate in the focus group. Second, we wanted to observe processes of identity construction 
and endorsement of narratives from students' space of authorship in a more natural, 
"conversational" situation, where the voices of different students could meet and be negotiated.   

Data analysis consisted of a two-stage analysis. The first stage included searching the whole 
interview dataset for common endorsed narratives belonging to the participants' Space of Authoring 
Mathematics Identity as well as current and designated identity narratives and their related 
narratives. Here, we encountered a difficulty with relation to narratives indicating "separations", 
since often, narratives authored as "truths" about the world have lost their sociocultural origin. For 
example, "I am a student" is a narrative that rarely contains evidence of its sociocultural source, 
although at a certain point in time, the author must have learned from others that this narrative 
identifies him. For this methodological reason, we chose in our analysis to focus only on those 
narratives that included indications of sociocultural sources. For example, "when I was young, my 
father told me that art is just a hobby" is a narrative ("art is a hobby") where the identified 
sociocultural source is the "father". A narrative was categorized as endorsed if the participant 
voiced the narrative, at least in part, in her own voiced or agreed with the narrative voiced by others 
(interviewer or peers).  

The second stage analysis included a close-up examination of the dialogical aspect of the narrative's 
endorsement. Narratives which were voiced as solely coming from an authoritative voice (for 
example "my parents say that…") were categorized as Authoritative. Signs of separation of the 
participant's voice from the voice of the source were derived from positioning statements that 
included the opinion or thoughts of the "I" in relation to the narrative. For example, "my mother 
thinks art is a hobby, but I would like to pursue it". If signs of separation were identified, we 
further searched for signs of internally persuasive endorsement. These can appear in the form of 
providing justifications for the narrative, such as "art is a hobby because you cannot earn money 
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with it". We further examined those justifications as "sub-narratives" along the same line to 
determine if those sub-narratives were themselves internally persuasive. Endorsed narratives, along 
with their justifications and sub-narratives were compared and related to students' designated 
identities. For reliability, we employed a consensual coding process based on both authors' mutual 
agreement. 

Results  
For the purpose of this report, out of the four cases, we chose the three cases of Benny, Sonia and 
Denis, which could best exemplify the different levels of endorsement in relation to the same 
narrative, "math is important". The forth participant showed a level of endorsement similar to 
Benny. The overall results included the examination of other endorsed narratives related to the 
participants' designated identities such as "art is just a hobby" and "I need these studies". The 
narrative, "math is important" was stated by all students during the interviews as a response to the 
interviewer question "which (school) subjects are important?"  

Benny's case – full endorsement 

Benny participated only in the focus group, since at the time of individual interviews, he did not yet 
volunteer to participate in the study. In the focus group, after several students talked about the 
importance of different subjects, the interviewer (1st author) turned to Benny and asked: "Benny, 
what do you think, because I think you also said math (is important)". To this, Benny answered: 

It's very important, like if you want to get accepted for the good jobs that you have regular 
hours and all that ... you must understand mathematics well, otherwise you get stuck in hard 
jobs where you break your back to get a few shekels. 

Notably, these claims were authored in his own voice, as facts about the world, even though some 
of them (such as those relating to jobs with "good hours" in contrast to jobs "where you break your 
back") most probably were authored by adults around him. We base this interpretation on our 
acquaintance with students of Benny's age and social position who rarely have direct access to 
different jobs' "hours", their "regularity" and the exact physical activities that are entailed by them. 
Although we interpret these narratives as sourcing from the sociocultural world, the way they are 
authored by Benny completely hides their sociocultural origin. By that, Benny shows full separation 
from the sociocultural origins of this narrative; it is not related by him in any way to what his 
parents or other authority figures say.  

In relation to his designated identity, Benny talked about his wish to become a surgeon and said he 
would have liked to study the subject of surgery in school and in the Activity. When asked what in 
the Activity was relevant to his wish to become a surgeon, he asserted: "math is always relevant" 
and elaborated this claim with the following justifications: 

In many ways (math is important) ... measurements... say you are doing a cardiac surgery, then 
it is important, say, how long you have between transferring the heart, between the body from 
which you are taking out the heart until he gets another heart and how long it... a lot to 
calculate... 
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We see here that Benny links his designated identity as a surgeon to the narrative "math is 
important" and describes specific future situations as a surgeon in which he could find himself using 
math. Although some of the relations Benny made between the job of a surgeon and mathematics 
do not actually fit the place of mathematics in the surgery world, it is clear that Benny uses his 
conceptions of mathematics (as mostly calculations) to link to what he imagines the world of 
surgery to be. Since there is no mention of anyone who told Benny about this relation of surgery 
and mathematics, and since the connections themselves are a bit constrained and indicative of 
Benny's own yet limited grasp of what mathematics (and surgery) is all about, we categorize the 
endorsement of this narrative as internally persuasive. In no place does Benny offer conflicting 
narratives to the narrative "math is important" (neither in his own voice nor in revoicing someone 
else's voice), thus strengthening our identification of his discourse about the importance of 
mathematics as full endorsement.  

Sonia's case – conflictual endorsement 

In her interview, Sonia reported liking best the subject of art and sports. Despite that, and similarly 
to the other participants, she claimed both in her individual interview and in the focus group, that 
math and English are the most important subjects studied at school, thus providing evidence of 
endorsement of the narrative. 

When the interviewer asked her why it is so, Sonia replied:  

First, (they1) say it is most important, and also, like, it's needed…it's also a very very important 
part of the matriculation exams…(they) always say that most important are math and English... I 
also think English is important.  

The interviewer then asked again why math is important, and the following exchange took place:  

(implied words), [overlapping speech] 

45 Sonia: (They) say, I still don't understand why… But (they) say math is important... 
okay... [fine…] 

46 Interviewer: [Who says? Who says?] 

47 Sonia: The parents say. Like, for my mother all subjects matter, no matter which 
one, but like almost all people say that... English and math, I still don't 
understand why math. I want someone to explain it to me, why?  

48 Interviewer Because what? Because you don't find in it anything to do with...?  

49 Sonia Like, it's important in engineering and all that... I don't know... maybe 
because I don't really like the subject 

Excerpt 1 

                                                 
1 In literal translation the word "they" would be omitted. The omitting of "they" is often used to avoid the passive voice 
in Hebrew.  
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In line 47, Sonia specifies the identity of the source to be her parents and "almost all people". There 
are clear signs of separation between her own voice ("I still don't understand why math" [47]) and 
her parents' voice ("The parents say" [47]). We thus see Sonia's endorsement of the narrative "math 
is important" as conflictual. Although she claimed not to have internally persuasive reasons for the 
narrative and even challenged the interviewer to provide her with justifications, Sonia did initially 
author the narrative as her own (in answering the interviewer's question which subject was most 
important at school), as well as provided a reason: engineering (49). The mentioning of engineering 
as a reason for the importance of mathematics was related to Sonia's designated identity. She said: 
"I already have one idea for what I want to go study… software engineer". When asked why she 
wants to study software engineering, she said: 

…I really like computer games and I want to do software for computer games, and also actually 
in my opinion I think that the fact that I like drawing and with all the thoughts and fantasy, it will 
help me in computer games to invent something interesting. 

Although in her interview Sonia mentioned the plan to be a software engineer as her own idea, two 
weeks later, in the focus group interview, she said, "My mother wanted me to be a software 
engineer. For that I need five math units2…" Despite the identification of her mother as the source 
of her future plans, Sonia displayed in her justifications an internally persuasive endorsement of her 
reason for studying mathematics (studying engineering). Thus, like Benny, Sonia links her 
designated identity (as a software engineer) to the endorsement of the narrative. However, she also 
poses conflicting narratives doubting this narrative and confirming its authoritative nature. To 
summarize, Sonia's endorsement of the narrative "math is important" is double-voiced and 
conflictual, showing signs of internally persuasive discourse together with authoritarian discourse. 

Denis's case –oppositional endorsement 

In his individual interview Denis reported he liked computer games and sports, and that he wants to 
have "two degrees" and study in the "biggest university". Both in the individual interview and in the 
focus group interview Denis listed exact sciences (including math) as most important. When the 
interviewer asked why, Denis cited his mother "because she always has this thing with numbers", 
thus identifying his mother as the source for the narrative. In the focus group, when the subject of 
why math is important was raised, Denis said: 

a. Because the parents force you; b. Because they came from the Soviet Union and for them math 
is in the blood; c. Because we are in Israel and (you) don't earn much in Israel 

This claim was consistent with Denis's claim in his individual interview that 'Russian' parents try 
harder to teach their children math at home: 

because they want the children to come out smart in the country... and Israel for them is not an 
easy country, not a lot of money, problems, they want their children to come out lawyers and 
doctors… geniuses... 

                                                 
2 The matriculation exams in Israel have different level of "units". The most advanced level is "5 units". 
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He then added that, as their (the 'Russians') child, you need to "make as much effort as possible to 
impress the parents at the end of the year to show them the report card". Examining the 
endorsement of the narrative "math is important", it is clear that Denis separates his own voice from 
the identified source by positioning himself as being coerced to study hard and earn high grades 
because of his immigrant community. Thus, implicit in Denis words, is a narrative that in fact 
opposes the narrative "math is important", a narrative that could be explicated as there are no 
relevant reasons for me to study mathematics aside from pleasing my parents. The justifications to 
the narrative provided by Denis are all related to the source (his mother and other 'Russians') and 
thus cannot be categorized as internally persuasive. The links Denis makes between designated 
identities and the endorsement of the narrative are all related to 3rd P designated identities, that is, 
what others expect him to become. We thus label Denis's endorsement as oppositional.  

Discussion  
This study sheds light on the process by which narratives in the Space of Authoring Mathematics 
Identities, originating in sociocultural voices, are endorsed and incorporated into adolescent 
students' 1st P identities. In addition, it highlights the connection of narratives such as "math is 
important" to students' designated identities. We see this in the fact that Denis, whose endorsement 
of the narrative was oppositional, connected the "math is important" narrative to his future ability to 
earn money without specifying how this narrative would be relevant to his designated identity. In 
contrast, Sonia and Benny (whose wishes were to become a surgeon and a software engineer) 
related the importance of mathematics specifically to their future desired careers. This link between 
narratives in the Space of Authoring Mathematics Identity and designated identities reinforces 
Black and colleagues' (2010) suggestion that motives, derived from students' aspiration, may play a 
crucial role in shaping their relationship with mathematics. In other words, although narratives 
about the importance of mathematics circulate around students, the answer to whether these 
narratives would turn from authoritative discourse to internally persuasive discourse may lie in the 
connection of these narratives to students' plans and aspirations for the future.  

Rather than assuming a relatively straightforward adoption of narratives authored in the 
sociocultural sphere as some structural sociological accounts do, the present study examined the 
dialogic process of endorsement, based on the Bakhtinian concepts of authoritative discourse and 
internally persuasive discourse. Although in all three cases reported herein there were indications of 
sociocultural sources to the narrative "math is important", these cases showed different degrees of 
separation of the adolescents' voice from the voices of significant narrators around them. This 
exemplifies the process by which narratives authored by significant others are not simply 
"facsimiled", in the words of Holland et al. (1998) onto their children's identity. Moreover, the 
endorsement of the narrative by the three adolescents was different in subtle yet noticeable ways. 
The analysis revealed three levels of endorsement of the narrative: full endorsement, conflictual 
endorsement, and oppositional endorsement. Full endorsement was established by signs of an 
internally persuasive discourse regarding the narrative; conflictual endorsement was established by 
evidence of both authoritative discourse as well as internally persuasive discourse; and oppositional 
endorsement was established by signs of an authoritative discourse. These findings suggest that 
students' endorsement of narratives in the space of authorship is a complex process. The fact that a 
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student states for example that "math is important", and even cites his parents or author authority 
figures as the source of this narrative, does not provide the whole picture regarding the endorsement 
of the narrative and the separation of the adolescent from the authoritative discourse.  

Although we present a small-scale study and our report focuses on one narrative only, our findings 
foreground the need to use dialogical concepts and tools when examining students' mathematical 
identities. Furthermore, the theoretical approach we adopted in this study goes some way in 
mediating between psychological approaches emphasizing adolescence as a critical time of 
separation from authoritative figures, and sociocultural approaches signifying the importance of 
narratives surrounding the students. By this, the study contributes to bridging the gap between 
studies taking a psychological approach to identity and studies taking a sociological, discursive take 
on this concept. 
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This paper reports on a research project aimed at describing the learning styles in mathematics of 
the Portuguese students at the 10th grade and at relating them to the students’ performance. For this 
quantitative, descriptive and correlational research, we used an adaptation of the ILS (Inventory of 
Learning Styles) of Vermunt (1994) that was answered by a sample of 579 students. An important 
result was the detection of a learning style that is strongly correlated to the motivational learning 
orientations, being however still undefined it what concerns the cognitive processing strategies. This 
style, if hold in a favorable context, may turn into a “meaning oriented” learning style. We also 
detected the four styles usually reported at Vermunt’s ILS’ applications: “meaning oriented”, 
“reproduction oriented”, “application oriented” and “not oriented”, as well as the positive 
contribution of a “meaning oriented” style to the scholar performance in mathematics, opposite to 
the effect of the “reproduction oriented” one. 

Keywords: Learning style, secondary school mathematics, motivation. 

 
Introduction 
The aim of our research was to characterize the learning styles and each of its components in relation 
to the learning of mathematics by 10th grade Portuguese students and to find out whether either the 
learning styles or any of their components show any correlation to the learning results. Such 
components are those considered in the Vermunt’s model of the regulation of the learning processes 
(Vermunt & Van Rijswijk, 1988; Vermunt, 1998, 2005): cognitive processing strategies, regulation 
strategies, conceptions of learning and learning orientations. We opted for this model, because it 
follows a socio-constructivist insight of learning (Goldin, 1989) that has got in account both personal 
and contextual factors that influence the evolution of the individual learning styles. The reason for 
choosing mathematics as the discipline-object of this research lies on the personal interest of the 
researchers in the field of the Didactics of Mathematics, having in mind that several empirical studies 
reveal that the students don’t use the same learning style in all the disciplines. For example, Severiens 
& Dam (1997) report different patterns of learning styles in four disciplines using the same sample 
of six secondary schools in Holland. 

Following the above mentioned aim of the research, we present the questions of the study that are 
relevant to this paper, concerning the Portuguese 10th grade students: 

- Which learning styles are more present at mathematics learning? 

Which correlations can be found between the performance in mathematics and the learning styles? 
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Theoretical Framework 
One of the most used definitions of “learning style” was written by a task-force of NASSP (National 
Association of Secondary School Principals), created in 1979 to set the diagnostics of the learning 
styles of secondary school students in USA:  

The learning style is the composite of characteristic cognitive, affective, and physiological factors 
that serve as relatively stable indicators of how a learner perceives, interacts with, and responds to 
the learning environment. (Keefe, 2001, p. 140) 

Though this study is not a longitudinal one, therefore limited by a synchronic data collecting, we 
conceived a conceptual framework (Figure 1) that has included some variables that, regardless the 
fact that they are not targeted to be measured in this research, we assume as being closely related to 
the four components of Vermunt’s model of the regulation of the learning processes. Therefore, the 
conceptual framework includes this model as a subset that interacts with other variables. For instance, 
the performance, as perceived by the student, feedbacks the components of the regulation model 
(Cassidy, 2011) and generates emotions that influence the affect for mathematics (McLeod, 1992). 
As a result, some changes in the motivation to learn may happen (Hannula, 2004). Besides that, the 
effect of the perceived performance on the self-confidence of the student may change the degree of 
the self-regulated learning (Malmivuori, 2006). The learning contexts, such as the school culture and 
the classroom dynamics, or even the social and familiar environments, are also considered at the 
framework. The goals of the student and the available resources also have an impact on the learning 
orientations (Hannula, 2006). The different mixes of attitudes and behaviors of a student within each 
of the learning styles components, shown in Figure 1, define the learning styles proposed by the 
model: reproduction oriented, meaning oriented, application oriented and not-oriented. 

 
Figure 1: Research conceptual framework (the measured variables are those of the grey area) 
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Secondary sampling unit: 

School 

Research Method 
For this study, we targeted the 10th grade students that were learning the discipline “Mathematics A”. 
The advantage of choosing the 10th grade classes was the opportunity to observe students that have 
just done the qualitative step of the transition from basic to secondary school and that are supposed 
to be able to interpret the questions written on the inventory. This quantitative, descriptive and 
correlational research was implemented in two steps: there was a small-scale study (n=108) that 
allowed us to tune up the survey tools, followed by the large-scale study (n=579). At both studies, we 
used a multi-stage sampling process, as shown in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2: Research multi-stage sampling process scheme 

The tool that we used for the primary data collection was an adaptation of Vermunt’s ILS – Inventory 
of Learning Styles (Vermunt, 1994). We adapted this questionnaire to a secondary school context and 
to the focus on the learning of mathematics. In this adaptation, we kept the structure of the Likert 

Primary sampling unit: 

Scholar Administrative Region 

Tertiary sampling unit: 

Class 

 

 

 

Random selection of schools per region. The selected 
number of schools is proportional to the 10th grade 
students’ share of each region, by using the Hondt method 
(D’Hondt, 1882) of proportional representation. 

Selection of a class, convenient to both researcher and 
school. 

     Sample 

Population of the 
study This population was segmented in strata, being each 

stratus a Scholar Administrative Region. 

All the students present in the classroom at the 
scheduled time belong to the sample. 
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scales used at the original inventory for measuring the attitudes and behaviours related to the four 
components of Vermunt’s model (Table 1). 

Processing 
Strategies 

Regulations 
Strategies 

Learning 
Orientations 

Beliefs about Learning 

Scales: 
Deep processing 
Stepwise processing 
Concrete processing 

Scales: 
Internal regulation 
External regulation 
Lack of regulation 

Scales: 
Personal Interest 
Certificate  
Self-Test 
Vocational 
Ambivalent 

Scales: 
Intake of Knowledge 
Construction of Knowledge 
Use of Knowledge 
Stimulated Education 
Cooperation 

Table 1: Scales of the Inventory of Learning Styles 

The questionnaire also included three questions related to the results in Mathematics (self-assessment 
and school assessments in the former year and in the current year) and two questions about the 
demographic variables of gender and age. For the two first components, that concern the processing 
and the regulation strategies, the scales are behavioural. For example: 

When a mathematical problem is presented at the classroom, I prefer to wait for an explanation about 
how to solve it, either from the teacher or from my colleagues. 

Never   Sometimes   Often   Always   

For the other two components, concerning the learning orientations and the beliefs about learning, 
the scales are attitudinal. For example: 

I like to learn Mathematics. 

I totally disagree  I tend to disagree  I tend to agree      I totally agree 

The data used at the large-scale study were collected in 2016, from 15th January to 15th March, at 28 
schools along the continental territory of Portugal. A researcher was always present at the classroom 
during the fulfilling of the questionnaire by the students, in order to assure the homogeneity of the 
procedures and to guarantee the anonymity of the students answers. 

Results 
The results here reported are those of the large-scale study. However, it is remarkable that the findings 
were very similar to those of the pilot-study. This feature can be seen as a confirmation of the 
robustness of the adapted ILS used for the data collection. Concerning the internal validity of the 
scales, almost all the results of the calculations of Cronbach’s alpha ranged from 0.6 to 0.9, showing 
an acceptable or even good internal validity. The single component with some scales with Cronbach’s 
alpha lower than 0.6, but higher than 0.5, was the one concerning the beliefs about learning. This 
may have happened due to the fact that the concepts involved in the questions about those beliefs are 
probably not yet clear at the students mind. 

The sample was quite balanced in what concerns the gender of the students: 52% female and 48% 
male. Most of them (78%) were 15 years old and there was a significant group (18%) aged 16 years. 
The minimum age was 14 and the maximum age was 18. Concerning their performances in 
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Mathematics, only 16% of the surveyed students assess their own performance as non-satisfactory.  
However, both school assessments of the 9th year and of the first trimester of the 10th year point out 
to 22% non-satisfactory performances. 

Using factorial analysis, an adequate tool to reduce the amount of behavioural and attitudinal 
variables to identifiable learning styles, some common trends of attitudes and behaviours at 
mathematics learning could be found out. As expected, the Kaiser-Meyer-Olkin test value reached 
nearly 0.9 and the significance level obtained at the Bartlett test was less than 0.01, so both tests 
revealed that the sample was very good for this purpose. Proceeding to the factorial analysis and 
selecting the principal components with eigenvalues higher than 1, we could obtain five components 
that explain 70% of the variance within the sample. The factorial structure of these components in 
terms of the ILS’ scales is shown by the matrix of Table 2, where we can find out the correlational 
saturations after the use of Varimax rotation at the analysis. 

Scale 
Component 

1 2 3 4 5 
Deep processing   .828   
Stepwise processing  .856    
Concrete processing    .637  
Internal regulation .408  .775   
External regulation  .604 -.426   
Lack of regulation -.396 .445 -.429 .355  
Personally interested .870     
Certification oriented -.544 .361    
Self-test oriented .730     
Vocation oriented .838     
Ambivalent -.725  -.364   
Learning as intake of knowledge  .838    
Learning as construction of knowledge   .338 .625  
Learning as use of knowledge .564   .440  
Learning as stimulated education    .738  
Learning through cooperation     .971 

Table 2: Factorial structure with 5 components 

The first component is strongly associated to the three learning orientations that result from the 
motivation to learn mathematics: personal interest, self-test and vocational orientations. So, it can 
represent a learning style that has got features that belong to the “meaning oriented” style, but it 
neither correlates to the deep processing strategies, nor to the belief that learning is knowledge 
construction. We named this style “personal fulfilment oriented” and we propose the conjecture that 
this style may evolve to the “meaning oriented” one, if the context of learning is favourable to this 
evolution. This conjecture must be submitted to longitudinal research. The second component shows 
features that correspond to the “reproduction oriented” style of Vermunt’s model, namely the 
stepwise processing, the external regulation, the certification orientated learning and the belief that 
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learning is an intake of knowledge. The third component sticks totally to the attitudes and behaviours 
associated to the “meaning oriented” learning style, such as the deep processing, the internal 
regulation and the belief of learning as a construction of knowledge. What is noticeable is that the 
motivational aspects are very strong at the “personal fulfilment oriented” style, but almost absent in 
the “meaning oriented” one. Our interpretation of this fact is that the first one, observable at the 
beginning of secondary school is more determined by the discipline-object than the latest, which is 
not so dependent on motivation, thus more stable. The fourth component that was extracted at the 
factorial analysis reveals a style similar to the “application oriented” one of Vermunt’s model, though 
not so clearly defined as the other styles. The main features of this style are the relevance of the 
concrete processing and the belief that learning is a result of educational stimulation.  The fifth 
component is absolutely undefined in what concerns the processing and regulation strategies as well 
as the learning orientations, so it may be seen as a “not oriented” style. However, in this study, this 
style appears strongly and exclusively related to the belief in learning through cooperation. Having 
in mind that, as mentioned above, the correlation of this belief with the performance in mathematics 
tends to be negative, it is possible that the individual lack of learning strategies at this school level 
leads some students to look for support at group work. Observing the results that concern the linear 
correlation between the learning styles and the performance in mathematics assessed through three 
different ways (Table 3), we find that all but one are significant for p<0.05, but not strong. 

Learning Style Self-
assessment 

School 
assessment 
(9th grade) 

 

School 
assessment 
(10th grade, 
1st trimester) 

Personal fulfilment 
oriented 

Pearson’s r  
Sig. (bilateral) 

.453 

.000 
.284 
.000 

.328 

.000 
Reproduction oriented Pearson’s r -.233 -.256 -.346 
 Sig. (bilateral) .000 .000 .000 
Meaning oriented Pearson’s r .281 .181 .248 
 Sig. (bilateral) .000 .000 .000 
Application oriented Pearson’s r -.091 -.027 -.115 
 Sig. (bilateral) .029 .517 .006 
Not oriented Pearson’s r -.152 -.144 -.148 
 Sig. (bilateral) .000 .000 .000 

Table 3: Correlation between the learning styles scores and the assessments 

It is however important to notice that the polarity of the correlations is coherent along the three 
different assessments. The correlations with the assessments are positive for the “personal fulfilment 
oriented style” and for the “meaning oriented style” and negative for all others. So, we conclude that 
there is a slight but observable trend of these two learning styles to generate a better performance in 
mathematics, whereas the other styles conduct to worse results. It’s also noticeable that the positive 
correlations of the styles with the assessments are more positive with the self-assessment than with 
the other assessments and the negative correlations are more negative with the school assessments 
than with the self-assessment. Our interpretation is that those students whose learning styles are 
predominantly “personal fulfilment oriented” or “meaning oriented” are more aware of the results of 
their learning processes. 
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Conclusions 
Starting to discuss the results by the constitutive components of the learning styles,  we conclude that, 
in what concerns the beliefs about mathematics learning, the students at the 10th grade still didn’t 
develop clear concepts and that the motivational dimensions are those that play the strongest 
differentiating role between their learning styles in mathematics. We believe that it is very important 
that all the contextual factors, such as the teaching methods and styles, keep this motivational 
predisposition in a high level, in order to give way to the evolution towards a meaning oriented style. 
For example, if too much stress is put on the assessment of mathematics performance, particularly 
when such assessment is required for any kind of certification, it may cause a drift to certification 
oriented learning and therefore to a learning style of a more reproductive kind, which tends to lower 
the performance of the student in mathematics. The four learning styles found out in many researches 
that used Vermunt’s ILS at university or high-school students were also found in this investigation. 
However, another learning style, that we named “personal fulfilment oriented”, is preponderant and 
contains features that may lead to a “meaning-oriented style”, if the contextual variables help to 
induce the concept of constructive learning as long as the student will develop clearer concepts. These 
two styles of learning tend to be more suitable for better performances in Mathematics at the 
secondary school. 

Having exposed the conclusions of our research, we must express some limitations that are inherent 
of our methodology. First of all, one may ask whether these results can be generalized to the 
population of the study. There are some factors in the sampling process that could cause interference 
in the randomness of the sample, namely: the convenience of the selection process of the classes, the 
risk of having selected classes instead of individual students, considering that some of these might be 
absent at the moment of the data collection, and the stratification of the population by regions in order 
to obtain a representative territorial distribution of the sample. If we define a random process in terms 
of the equiprobability of selection for each sampling unit, the assumed no correlation between the 
conveniences of the researcher and the schools makes this part of the sampling equivalent to a random 
process. Concerning the absent students, generally there were no more than one or two missing the 
class. Therefore, we consider that there is a high degree of generalization of the research results and 
that another sampling process would hardly obtain a so close approach to a random process. There 
are also limitations that result from the data collection process. The answers given by the students 
can be influenced by subjective norms, in the sense that they may consider answers in terms of the 
opinion of contextual agents and not of their own. Besides that, some answers may require cognitive 
constructs that need the use of the memory of the thoughts and emotions that have occurred at 
mathematics learning. The possible misinterpretation of some questions and terms might have been 
a limitation too. However, we believe that these limitations had little impact at the research, since the 
results of the pilot study and of the large scale study were very similar.  

Some follow up of this research would contribute to further knowledge about the learning styles in 
mathematics of the secondary school students. Longitudinal studies along the secondary school cycle 
would help to describe the evolution of the learning styles and to test our conjecture that there is a 
learning-style that can turn into a meaning oriented style, if some contextual conditions are favourable 
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to this development. Those studies could also check to which extent the assessment methods at the 
end of the secondary school are influencing the learning styles adopted by the students. 
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This paper focuses on how undergraduate students’ mindsets are enacted and constructed in a 
programming and mathematics learning environment. This research draws from year one of a five-
year study entitled “Educating for the 21st Century: Post-graduate Students Learning Progmatics 
(Computer Programming for Mathematical Investigation, Simulation, and Real-world Modeling), 
which addresses the need to empower students within the STEM field. A narrative approach is 
employed to present findings from two students, Sydney and Jim (pseudonyms), followed by a 
discussion on their enacted mindsets during a first-year ‘progmatics’ course.  

Keywords: Mindset. University mathematics education. Programming. Identity.  

Introduction 
Jobs in the STEM field are on the increase. A major percentage of those jobs require computer 
science-related knowledge (CBC News, 2015). However, students in undergraduate computer science 
programs often feel defeated, having little confidence in their ability because of obstacles they 
encounter that are inherent to programming (Cutts, Draper, O'Donnell & Saffrey, 2010; Murphy & 
Thomas; 2008). Moreover, many mathematics students avoid engaging in mathematical tasks that 
require reasoning, exhibiting phobias and anxiety in extreme cases, because they perceive these tasks 
as difficult (Boaler, 2016). The pressing need to educate students in STEM, combined with students’ 
often negative responses to learning programing and mathematics, necessitate inquiry of how students 
perceive their intelligence and abilities as they learn these disciplines.  

This paper draws from year one of a five-year study funded by the Canadian Social Sciences and 
Humanities Research Council (SSHRC) entitled “Educating for the 21st Century: Post-graduate 
Students Learning Progmatics (Computer Programming for Mathematical Investigation, Simulation, 
and Real-world Modeling). This study addresses the need to empower students within the STEM field 
and to better understand the complexities involved when students learn to appropriate tools such as 
‘progmatics’. The study focuses on the question of how mathematics students come to appropriate 
programming as a computational thinking instrument in the context of three ‘progmatics’-focused 
undergraduate mathematics courses, called Mathematics Integrated with Computers and Applications 
(MICA). This course sequence teaches students the fundamentals of programming for conducting 
mathematical explorations and applications. Analysis of data gathered within this study provides a 
suitable opportunity to investigate students’ mindsets as they grapple with the complexities of a 
‘progmatics’ learning environment. Specifically, this paper will focus on how students’ mindsets are 
enacted and constructed while learning ‘progmatics’ during the first MICA course. To achieve this 
aim, the narratives of two students, Sydney and Jim (pseudonyms), will be explored.  

Mindset refers to the brain’s potential to formulate perceptions, affecting attitude and achievement. 
Mindset was first introduced in educational research in the 1920s but in recent years, Carol Dweck’s 
work on oppositional theories of growth and fixed mindsets has popularized mindset (Popan, 2016). 
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Dweck’s notion of growth mindset has been applied in various contexts. Cutts et al. (2010) assert that 
the barrage of obstacles faced by students during their undergraduate programs promote fixed mindset 
beliefs. Furthermore, Murphy and Thomas (2008) contend that while self-theories are applicable in 
all disciplines, the way students perceive their abilities may be more significant in computer science 
education, particularly in computer programming, due to inherent challenges such as contending with 
elusive and puzzling syntax and runtime errors. Based on these arguments regarding the significance 
of self-theories to mathematics and programming, a growth mindset may be even more important for 
learning mathematics within a programming environment, given the added difficulties stemming 
from both disciplines. Our study adds to other mindset research focusing on mathematics or 
programming as it involves not only one aspect (programming or mathematics), but the combination 
of both disciplines.  

Conceptual Framework  
Our view of learning relies on Lave and Wenger’s (1991) work on communities of practice. Lave and 
Wenger (1991) contend that learning takes place relative to the context in which it is learned through 
legitimate peripheral participation, whereby newcomers become oldtimers by authentically taking 
part in a seamless process of gradually increasing responsibilities. The newcomer, starting at the 
periphery, may initially observe, but contributes within a community of practice almost immediately 
by doing small tasks which are progressively increased until he/she becomes an oldtimer. For Lave 
and Wenger (1991), the process of becoming a legitimate member of a community involves not just 
change in knowledgeable skill, but also a change in identity. Wenger (1998) defines this identity as 
“a layering of events of participation and reification by which our experience and its social 
interpretation inform each other” (p. 151). This definition implies that a change in mindset results 
from a change in identity because individuals’ perceptions of their own abilities is shaped as they 
experience their sociocultural environment. In this sense, individual stories and narrative approach 
are relevant in inquiry on one’s experienced mindsets.  Storying or constructing narratives are 
common means utilized by humans to make sense of the myriad of complex experiences they 
encounter; contributing to the formation of their identity (McAdams, 2008), and by extension, their 
mindset. A narrative approach is a growing trend in research relating to identity and, in general, 
educational research (McAdams, 2008).  

Dweck (2010) describes two mindsets, fixed or growth, that influence student performance in two 
distinct ways. Students with a fixed mindset perceive their abilities as stable traits, believing that they 
have a set capacity to be successful that cannot be changed. Students with a growth mindset, however, 
understand that with effort and perseverance, their abilities can be improved. Solomon (2007) asserts 
that a students’ mathematical mindset plays a key role in developing their identity. Mindset is also a 
critical factor in determining a student’s attitude towards learning and their level of achievement 
(Boaler, 2016; Dweck, 2015; Murphy & Thomas, 2008). Dweck (2010) claims that in general, 
individuals with a fixed mindset avoid challenges, give up easily, do not value effort, dismiss positive 
feedback, and are threatened by others’ success. In contrast, individuals with growth mindset flourish 
on challenges, remain persistent despite setbacks, value effort as a path to mastery, use criticisms to 
improve learning, and use others’ success as motivation and a source of valuable lessons. 
Furthermore, Murphy & Thomas (2008) note that as it relates to challenges, students with fixed 
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mindsets focus on performance goals by opting for easier tasks as their ultimate objective is to display 
their ability. In contrast, students with growth mindsets focused on learning goals and are not deterred 
by difficult tasks or by making mistakes, in fact, they will seek out opportunities for challenge 
(Dweck, 2010). Importantly, a growth mindset goes beyond effort, referring to the extent to which 
students use innovative strategies and seek help when they are stuck (Dweck, 2015).  

Methodology  
Throughout the duration of the larger five-year study, a mixed-methodology approach will be utilized. 
An iterative design approach (Plomp & Nieveen, 2013) will be employed to refine and develop the 
research tools for yearly data collection and analysis. The study employs a naturalistic case study 
approach to examine how students’ instrumental genesis of programming for mathematics develops 
in the MICA course sequence. This research takes places in the mathematics department of a 
university in Ontario, Canada. The present paper draws from data gathered in year one of the larger 
study, where six participants in the MICA I course were recruited voluntarily. Data gathered included 
each participant’s four ‘progmatics’ projects, including both their program (called exploratory objects 
(EOs)) and assignment report, and semi-structured individual interviews that were conducted as a 
follow up to each assignment. Interview prompts were informed by a model of a student’s 
developmental process in designing, programming and using a mathematics EO (Buteau & Muller, 
2010). Data also included online post-laboratory session reflections, where after each of the ten 
weekly two-hour MICA lab sessions, participants recorded reflections on their learning during the 
lab as prompted by guiding questions. Finally, all participants completed an online questionnaire 
before beginning the MICA I course, followed by individual interviews where participants were asked 
to elaborate on their questionnaire responses. The purpose of the questionnaire and follow-up 
interview was to uncover baseline information about participants’ background experiences in learning 
mathematics with technology, as well as their early sentiments towards the MICA I course. 

Analysis of the study’s qualitative data followed Creswell’s (2008) general principles of qualitative 
data analysis: preparing and organizing data, exploring data, and describing and developing themes 
from the data. To begin the analysis, codes were developed according to categories informed by the 
theoretical framework (Buteau, Muller, Mgombelo & Sacristán, 2018) and related literature, with 
additional codes emerging during the analysis process. Each participant’s qualitative data was coded 
individually by two researchers, who then jointly completed a thematic analysis of the data. Themes 
were consolidated among the six participants’ analyses, leading to the development of sixteen overall 
themes. These themes were further regrouped into five meta-themes. In this paper, we focus on the 
meta-theme of identity and its subthemes of affect and students’ perceptions of learning mathematics.  

Findings and Discussion 
In this section, we present and discuss findings from two participants, Jim and Sydney (pseudonyms).. 
We present two narratives of the participants’ individual enactment of mindsets upon entering and 
during the MICA I course, followed by a comparative discussion. 
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Sydney’s Story  

With no prior programming experience, Sydney approached the MICA I course with feelings of 
nervousness and apprehension. In the first MICA I labs, her anxious sentiments were somewhat 
alleviated through interactions with her instructor, helping her to grasp basic programming concepts. 
She faced some challenges in the first assignment (EO1), where students were tasked with creating a 
program to explore a mathematical conjecture of their choosing. Sydney posed a conjecture that was 
a minor modification of one previously covered in the MICA I labs. She kept her program relatively 
simple, ensuring that she did not go “beyond [her] limits” during the coding process. The greatest 
obstacle she faced in completing this task was debugging her code, but with the help of a more 
experienced peer she created a functioning program. Sydney felt relieved that she was able to 
successfully complete the assignment, but was still hesitant about her programming ability and hoped 
that the next assignment would be easier. 

Sydney experienced varying levels of success and confidence throughout the remainder of the MICA 
I course. The second assignment, involving the design of a program about RSA encryption, presented 
many challenges for Sydney. She was frustrated that she was unable to create a functioning program, 
compounded by the fact that she did not have enough time to seek help from a peer or an instructor 
before the submission deadline. Sydney felt discouraged by this assignment, claiming that she was 
unsure she could achieve success in the MICA program. By consulting her notes from lab and 
collaborating with a peer, she was able to complete the final assignments successfully and gained 
some confidence in her programming ability. However, Sydney ended the course hesitant about 
MICA II, feeling significant doubts toward her ability to learn the new programming material. 

Jim’s Story  

Jim began the MICA I course with a general disposition of curiosity and excitement. Though Jim had 
limited formal experience in programming, he had been raised by a mother employed in the computer 
science field and was often given the opportunity to experiment with technologies throughout his 
childhood. This informal understanding of programming helped Jim to feel excited at the opportunity 
to formally learn to code. Jim’s openness towards learning programming was also reflected in his 
greater attitude towards learning mathematics. He believes that individuals must keep an open mind 
towards their mathematical abilities to avoid feeling prematurely defeated and be able to persevere 
through challenges.  

For EO1, Jim first developed a conjecture by creatively representing prime numbers and exploring 
patterns amongst them. Unfortunately, Jim was unable to pursue this ambitious idea within the scope 
of the course and his basic programming knowledge, eventually settling for a doable yet challenging 
alternative conjecture, that of Pólya conjecture suggested by the course instructor. However, he 
expressed the desire to follow up on his conjecture, feeling confident that he could develop a program 
to explore it when he has greater knowledge of programming. Once his program was complete, he 
was pleased to see it running, but stated that he always had faith it would work. Jim encountered 
challenges while completing the remaining assignments and coursework but did not seem bothered 
by these setbacks. When Jim was limited by his beginner level knowledge of programming, he would 
conduct research or try to find an alternative method of solving his problems. He ended the course 
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understanding the advantages of working within a ‘progmatics’ learning environment, only feeling 
disappointed that he was not able to do more. 

Comparison between two enactments of mindsets 

Dweck (2015) notes that mindset is a critical factor in determining students’ attitudes towards 
learning and their level of achievement. Analysis of both Sydney’s and Jim’s accounts of their 
experiences provide evidence of their mindset upon entering and throughout the course. The 
following quotes, taken from Sydney’s and Jim’s baseline questionnaires, provide insight into their 
initial sentiments and mindsets towards learning at the beginning of MICA I: 

Question: This MATH 1P40 [MICA I] course has a significant component of (computer) 
programming. This makes me feel… 

Sydney:  Nervous 

Jim:  Very confident  

Question: Because: 

Sydney:  I barely have any knowledge in programming  

Jim:  If I'm finally going to get a chance to learn this stuff, I'm all for it. I've never had 
problems in the past, and if anything, I was annoyed that I wasn't being taught enough. 

Here, Jim describes his confidence and excitement about entering the course, explaining how he 
looked forward to learning the programming content. In contrast, however, Sydney highlights her 
nervousness resulting from her lack of programming knowledge, suggesting her initial confidence 
level in the MICA program was low. Notably, although Jim also had limited programming 
knowledge, it did not cause him to feel this same apprehension. This could indicate that he was open 
to challenges, possessing characteristics of a growth mindset as Dweck (2010) asserts.  

There are several notable elements regarding both students’ enacted mindsets as they experienced 
“progmatics” over the semester, first in terms of how they approached challenges. Throughout the 
course, Sydney demonstrates a desire to avoid tasks that present significant challenge. For EO1, 
Sydney chose a conjecture that was quite similar to a conjecture covered in one of the lab sessions 
(see Sydney’s Story). In her EO1 follow-up interview, she explains that she did not investigate a more 
creative conjecture in order to avoid going “beyond [her] limits” with the coding. She also expressed 
that she was looking forward to EO2 due to its more specific nature, stating, “I hope it’s going to be 
easy”. Later in the course, Sydney noted that she enjoyed the graphing component of her EO3 because 
“it wasn’t that tough”.  

Unlike Sydney, Jim was not afraid of taking on challenges during his time in MICA I. When asked 
how he selected his conjecture for his EO1, Jim explained how he tried to develop a complex 
conjecture by himself through creatively exploring a variety of mathematical concepts. Though his 
mathematical ideas could not be explored with his startup programing knowledge, and he ultimately 
explored a more feasible (yet challenging) conjecture as advised by his professor, he expressed 
interest in pursuing his ideas in the future. In his EO1 follow-up interview, Jim reflected on his initial 
idea, stating, “I don’t think it is as hard as everyone makes it out to be, it just requires a bit of a 
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different way of thinking”. Similarly, in Jim’s final assignment, he again expressed the desire to go 
beyond his level when developing his question and was disappointed that he did not yet have the 
required knowledge of programming to do more with his project.  

Students’ approaches to challenges provide a strong indication of their mindset towards both learning 
and intelligence. The fixed mindset approach was consistently evident in Sydney’s data, as her actions 
and perspective routinely demonstrate how she chose to explore simpler problems and favoured 
assignments that were seemingly easier. In contrast, Jim routinely attempted to challenge himself 
when developing conjectures and mathematical questions, demonstrating a growth mindset approach. 

A second notable point about Sydney’s and Jim’s enacted mindsets is how they overcame the 
challenges they encountered and the effects of these challenges on their attitudes towards their 
abilities. While Sydney was able to overcome difficulties in her first assignment with the help of a 
peer, her EO2 presented much more significant issues. Because of external time constraints, Sydney 
was unable to seek help from a peer or the course instructor, and was frustrated when trying to get 
her program to work. Due to her inability to create a functioning program, Sydney doubts her ability 
to continue in the MICA program, stating, “if [my EO2 program] goes poorly I don’t think I want to 
continue”. This doubt persisted until the end of the semester, despite greater success in her EO3 and 
EO4 tasks. When asked how she felt about taking the MICA II course next year, she responds, “I’m 
still hesitant… about the new things we will learn and if I can manage to understand them”.  

Jim’s approach to setbacks was markedly different from Sydney’s. Throughout the course, it seemed 
that he used challenges to improve his strategies for future assignments instead of allowing them to 
diminish his confidence. Though he experienced setbacks in his EO2, Jim reflected on this process 
and how those challenges helped him improve. When he was asked in his EO3 follow-up interview 
if he would do anything differently, he expressed the following:  

Jim: I feel like in assignment two… halfway through I had stopped planning and kind of 
regretted that afterwards, as you kind of get lost in the code but… for this [EO3] 
project I planned fairly well, I didn’t get lost… I’m pretty happy with the way I did it.  

In EO3, Jim had to do a fair amount of debugging to get his program to work, but he did not seem 
frustrated and used clear strategies to get his program to work. When asked about the obstacles he 
faced in EO3, Jim stated, “with computer programming, you accept that you are going to run into 
some bugs, which is why you test it at different stages”. Jim maintained this attitude when completing 
his final assignment. When asked about debugging his program in the EO4 follow-up interview, he 
responded, “It didn’t work for a bit. I went back and looked at it and realized that I had forgotten 
something, but nothing really significant”. At the end of the course, Jim did not face the same doubts 
as Sydney towards his ability to be successful in MICA II. When asked about moving forward, he 
claimed, “I think it would be a reasonable course to take next year”.  

This approach to assignments and challenges is linked to two broader themes of mindset noted by 
research in a variety of contexts (Boaler, 2016; Murphy & Thomas, 2008; Cutts et al., 2010), 
underscoring much of Dweck’s work. These contrasting mindset themes are labelled as the helpless 
pattern and the mastery-oriented pattern. Students that view intelligence as fixed are more likely to 
demonstrate a helpless response to significant challenges; whereas students with a growth mindset 
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display a mastery-oriented response to setbacks. Students who exhibit the helpless pattern are easily 
defeated when faced with challenges, measuring their capability against the obstacles and 
significantly doubting their ability to succeed when faced with a difficult task. Conversely, students 
who display mastery-oriented responses remain motivated through setbacks, persevering through the 
problem and overcoming it by applying innovative strategies (Diener & Dweck, 1978). Sydney’s and 
Jim’s responses to the challenges they face could give further insight into how these patterns are 
enacted within a ‘progmatics’ learning environment. Sydney’s response to challenges shows aspects 
of the helpless orientation stemming from her fixed mindset, as she is quickly overcome with doubt 
and discouraged by setbacks. In contrast, Jim was not deterred by mistakes and setbacks, which he 
perceived as a natural part of programming. Jim’s ability to persevere and flourish when faced with 
obstacles illustrates a mastery-oriented response in accordance with his growth mindset. 

Conclusion 

This paper highlighted the enactment of two students’ mindsets in the context of an introductory 
‘progmatics’-focused undergraduate course. Because of the inherent challenges in learning 
programming and necessity of resilience in the field of mathematics, having a growth mindset holds 
particular importance in a computer programming mathematical learning environment such as MICA 
I. The assignments and reflections of two MICA I students, Sydney and Jim, were compared to 
illustrate their differing mindsets towards their intelligence as they engage with ‘progmatics’ through 
legitimate peripheral participation (Lave & Wenger, 1991). As a result of their differing mindsets, 
Sydney finished the course feeling doubtful towards her ability to be successful in MICA II, while 
Jim maintained his confidence and expressed the desire to further develop his programs. Considering 
the important role played by programming and mathematics in STEM jobs, it is critical that students 
are encouraged to pursue and achieve success in these fields. Our work provides a beginning of how 
we can explore students’ mindsets as they learn using programming for mathematics investigations 
and applications. 
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This study focuses on the perceptions of mathematical students on the use of backward reasoning. 
Since an integrative model of interactions between emotions and thinking is showed new 
understanding of cognitive phenomena of backward reasoning. Based on a questionnaire to assess 
the mathematical cognitive processes, difficulties of backward reasoning and emotions among 
mathematical undergraduate students, the rule structure obtained from the use of the CRT 
(Classification and Regression Tree) methodology analysis is reported.  
Keywords: Backward reasoning, Heuristics, Cognition and affect, Mathematics, Perception, 
Regression trees  

Introduction 
The purpose of this study was to determine the perceptions of mathematical students on the use of 
backward reasoning and how this perception may mediate between the disposition and performance 
of mathematical and cognitive processes involved in this type of reasoning. Backward reasoning has 
great potential in the study of mathematics - it can be used to improve student achievement and to 
help develop mathematical argumentation and proof processes. Among the challenges in university 
teaching we focus on mathematical thinking, where learning the method of analysis is a critical 
issue (Antonini, 2011, Peckhaus, 2002, Wickelgren, 1974, Xu, Xing &Van Der Schaar, 2016). 
Wickelgren (1974) analyses and systematizes the methods of problem solving, introducing 
contradiction and working backwards as two strategies that require operations to be performed on 
the expected result, as well as on the information given. Addressing mathematics and engineering 
students, he examines how the explicit teaching of theoretical and practical analyses of problems 
can overcome the difficulties experienced by the students. This author indicates it is more difficult 
to work backwards than to work forwards, so it is necessary to offer students a large class of 
problems to which the method of working backwards is appropriate, such as games of the Nim 
family of games presented here. In our previous research papers at university level (Gómez-Chacón, 
2017; Barbero & Gómez-Chacón, 2018), it was identified that explicit teaching of theoretical 
aspects is not enough, that there might be factors in the cognitive and affect interplay, which would 
inevitably cause difficulties for students to construct and work backwards. These studies showed 
emotions continually exert numerous so-called operator effects, both linear and nonlinear, on 
attentional activity and on the ability to perceive relative to goal-path obstacles and overcoming 
them. Understanding is linked with the appraisal of their ability to influence (control dimension), 
with their ability to predict, and with mental flexibility.  
Hence, a conscious integration of backward reasoning when learning mathematics at university, 
raises the need for an articulation between dispositional and cognitive aspects. In this study we try 
to contribute to a more comprehensive understanding of the origins of the difficulties and identify 
conceptual and methodological challenges involved in assessing competencies about backward 
reasoning in higher education, using strategy games as specific tasks.  
When integrating a cognitive and a situated perspective, Blömeke et al. (2015) suggested 
considering competence as a continuum (cf. Fig. 1), they stated that “processes such as the 
perception and interpretation of a specific situation, together with decision-making may mediate 
between disposition and performance” (p. 7). This framework considers competence as a 
multidimensional construct, and resolves the dichotomy of “disposition versus performance” as 
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follows: “[…] our notion of competence includes ‘criterion behaviour’ as well as the knowledge, 
cognitive skills and affective-motivational dispositions that underlie that behaviour” (Blömeke et al. 
2015, p. 3). Following this understanding, a key role is assigned to situation-specific skills, as in-
between processes that explain how dispositions are translated into classroom performance. The 
aim of this article is to focus on perception, as the way in which something is regarded, understood, 
or interpreted, as a situacion-specific skill that is linked to students knowledge about backward 
reasoning and its practice. A set of variables measuring difficulties and appraisal cognition helps us 
to identify these relationships. 

 
Fig. 1 Competence modelled as a continuum (Blömeke et al. 2015a, p. 5) 

A specific methodological challenge in the context of the affect-cognition interplay is to explain the 
gradualness of the processing of affective mechanisms. This paper explores the use of decision trees 
to analyse data from questionnaires, which focus on the use of backward reasoning. Thus, here we 
will report our results in the form of a tree structure, providing rules to assess the state on the use of 
backward reasoning (perception, difficulties and mathematical and cognitive processes) in 
mathematical undergraduate students. 

Characteristics of backward reasoning  
The typical mathematical thinking process that is used in the discovery phases, is the backward 
reasoning. Pappus was the mathematician who has contributed substantially to the clarification and 
exemplification of the method. In the seventh book of his Collectio (~340 AD) he deals with the 
topic of Heuristics (methods to solve the problems). He exemplifies the method of analysis and the 
method of synthesis, therefore making the development of this reasoning clearer. Pappus defines the 
method of analysis as follows: “In analysis, we start from what is required, we take it for granted; 
and we draw correspondences (ακολουθον) from it, and correspondences from the correspondences, 
until we reach a point that we can use as a starting point in synthesis. That is to say, in analysis we 
assume what is sought as already found (what we have to prove as true).” (elaboration by Polya, 
1965 by Hintikka and Remes, 1974). 
The concept of Backward Reasoning involves some characteristics that allow us to identify its 
development throughout the resolution of a task. Different philosophers and mathematicians from 
the ancient Greeks, through the authors of the 17th and 18th centuries to the year 2000 have studied 
its characteristics. The main features are the following:  
- Direction vs cause-effect. In Pappus’ definition, the backward direction of reasoning is 
highlighted. This entails going from the end of the problem to its beginning. By applying the 
method, the premises of a certain idea are sought. In the 17th and 18th centuries, authors such as 
Arnauld and Nicole interpreted the method as a search for cause-effect relationships between ideas. 
By these, the connection between the notions in background and the problem are identified. The 
knowledge of the development of the resolution of the task and the effects and causes of each 
notion involved in the process arise (Beaney, 2018; Peckhaus, 2002).  
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- Decomposition. According to Plato and Pappus, this kind of reasoning allows for the reduction of 
the problem to its simplest components. The properties that define the relationships between the 
most complex and the simplest objects involved in it are identified by extracting and investigating 
the principles that are at the base of the task. Aristotles, for example, underlines the fact that 
"sometimes, to solve a geometrical problem, you can only analyse a figure", breaking it down into 
its basic components and understanding the different parts of it (Beaney, 2018).  
- Auxiliary elements. Kant, Polya and Hintikka, focus their attention on a fundamental part of the 
process: the introduction of new elements. In the progressive and deductive processes all the bases 
are given and from these, consequences are elaborated. Unlike the backward reasoning, new notions 
appear and develop throughout the resolution at specific moments, according to the needs of the 
solver (Beaney, 2018; Hintikka & Remes, 1974). 
- Strategies. Backward reasoning involves different problem-solving techniques: backtracking 
heuristic, method of Diaeresis, Reduction ad Absurdum (Beaney, 2018). 
We will focus on the backtracking heuristic. This is the strategy of working backwards, it consists 
rather of doing some steps backwards in the process. These steps can be done starting from, the end 
of the problem, or during the process of resolution in combination with progressive steps.  

Research questions and methodology  
Research Questions 
We particularly pursued the following research questions: RQ 1: What are students’ perception of 
the use of the backtracking heuristic? RQ 2: What difficulties are more prevalent in the 
development of the backtracking heuristic? RQ 3: What are the affective, mathematical and 
cognitive processes that have impact on the development of the backtracking heuristic? 
Participants and instrument 
Data was collected from 32 (19 women and 13 men, aged between 21 and 23) Caucasian 
undergraduates working toward a BSc. in mathematics. All of the participants were in their last year 
of academic study. They were following advanced courses in several areas of geometry, algebra, 
probability and analysis. With regard to solving problems, the students had been introduced to the 
problem solving heuristics and they received training as students in one subject related to advanced 
professional knowledge, practice and relationship skills relevant to teaching. They had not received 
any special training about backtracking heuristics. 
The work dynamic started with individuals being given paper and pencil, with which they needed to 
resolve two games, each lasting one and a half hours. Fig. 2 shows the problem which we will 
analyse in the results section. Strategy games allow for the natural development of regressive 
reasoning. These games are disconnected from the mathematical content which forces the student to 
use their mathematical knowledge acquired in their university degree. 
The Triangular Solitaire is a game for a single person that requires a board with 15 boxes, as the 
figure 2 shows. 

Thematic Working Group 08

Proceedings of CERME11 1429



 
 

 

These are the rules: 
1. Place the pawns in all boxes, except in the one marked in black. 
2. The player can move as many pawns as are the chances of jumping a 
pawn, adjacent to an empty box (along the line); at the same time, he 
"eats" and retreats from the table the pawn that was jumped. All pawns 
will move in this way. Pawns can move around the table. 
Target: The player wins when there is only one pawn on the table. 

Fig. 2. The Triangular Solitaire 
Students were given the game and asked to describe their approaches to solving the problem on 
protocols including: thought processes in the resolution, explanations of the difficulties they might 
face, and strategies they would use in order to solve with paper and pencil. Afterwards, each game 
was followed by a questionnaire focused on heuristics related to backward thinking and the 
difficulties that are generated during the process of solving problems, emotions and cognitive 
processes (Gómez-Chacón, 2017). The cognitive dimension refers to the characterization of the 
personal meanings of the subjects on the cognitive dimension of backtracking heuristic, or 
backward reasoning, and the cognitive appraisal processes of the interaction feeling puzzled.  

1. Indicates how often you use the working backwards strategy when you are solving the problem 

 
Now focus on the solving process of Triangular Solitaire 
2- Have you used backward reasoning or backward strategy to solve the problem? Yes/No. Why?  
3- If you did not use the strategy, what type of processes did you consider to have failed to take 
account of in the backtracking heuristic in your solutions. You have to choose between the 
following items (You can justify your statements with "extracts of the problem".): 

1. Actions involved basically in the determining of the mathematical model  
2. Attainment of sufficient conditions 
3. Actions of discovery 
4. Recognition and explanation of the meaning of representational equivalence 
5. Creation of the object solution  
6. Formulation of axioms 
7. Characterisation and establishment of relations 
8. Attainment of justifications of adequate conditions in propositional equivalences. 

7. When you tried backward strategy, how well could you predict 
what was going to happen in this situation? (Ability to predict).  

8. When you wanted to use backward strategy, how much did you 
feel there were problems that had to be solved before you could get 
what you wanted? (Goal-path obstacle). 

 

9. When you were feeling puzzled, how much of an ability did you 
feel you had to switch between modes of thought and to 
simultaneously think about multiple concepts? (Mental flexibility). 

 

10. Indicate the degree to which the following emotions were felt 
whilst solving the problem: confidence, pleasure, confusion, 
surprise. 

 

Fig. 3 Examples of some items from the questionnaire 
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In Fig. 3 shows examples of some items from the questionnaire. Items 1, 2, 3 are focused on the 
perception of difficulties, (the difficulty in the creation of the solution, the actions of discovery, the 
characterisation and establishing of relationships, and the basic actions involved in determining the 
mathematical model can generate) while items 7, 8, 9 are referred to the processes of evaluation 
(cognitive appraisal) and item 10 about emotions. The cognitive dimensions of assessment were as 
follows: pleasantness, attention activity, control, certainty, goal-path obstacle, anticipated effort, 
and mental flexibility. Furthermore, emotions such as confidence, pleasure, confusion, surprise 
were assessed (Gómez-Chacón, 2017).  
Data analysis 
Both qualitative and quantitative methods were used to address the subject of this study. This paper 
presents the quantitative analysis performed on the undergraduate students’ written responses to the 
questionnaire. The CRT (Classification and Regression Tree) methodology is a data mining 
approach widely employed to develop ‘IF-THEN’ rule models in order to explain the behaviour of a 
variable of interest (the dependent variable) in terms of logical conditions over a set of explanatory 
or independent variables (see Breiman et al., 1984). Particularly, the CRT methodology allows for 
the determination of a subset of the available independent variables as well as a set of conditions 
over these variable’s values that separate the data into groups as homogeneous as possible in terms 
of the values of the response or dependent variable. Regarding this aim, the CRT method performs 
successive dichotomous splits of the data by identifying both the independent variable and its cut-
point that provide the greatest variability (i.e. variance) reduction at the split data groups verifying 
either condition (i.e. being greater or lower than such cut-point).  
In this work we apply this regression tree methodology to develop a rule model capturing the 
relationships between a numerical dependent variable, measuring either the intensity of perception 
of using backward reasoning experienced by students while solving a mathematical problem, or a 
set of independent variables measuring the difficulties and mathematical and appraisal cognition. 
Different regression trees analysis were performed with SPSS to uncover the prescriptive nature of 
the variables. Two regression trees, together with their associated rule models, are reported next. 

Results  
Students’ perception of the use of backtracking heuristics  
In the comparison between the analysis of the protocols and the questionnaires, a discrepancy 
emerged between the real use of the backward strategy and the perception of its use by the students. 
14 students (43.75%) were aware of using the strategy, 9 students (28.13%) were aware of not using 
the strategy, 4 students (12.5%) planned to use it, but it does not appear in the protocols and 5 
students (15.63%) were not aware of having used it. This led us to track the students' perceptions in 
depth. 
Difficulties of mathematical cognition in backtracking heuristics 
Table 1 shows the percentages of students (in the questionnaire) who, according to the cognitive 
aspects of reasoning have failed to consider the backtracking heuristic use in their solutions.  
To analyse the relationships between the difficulties expressed by the students and their perception 
of the use of backtracking heuristics (BH), we will use the classification tree of Figure 4 
(Classification and Regression Tree (CRT) analysis). For the interpretation of the classification tree, 
we should go looking at the nodes and branching them until the final leaves. First, we look at the 
root node 0 that describes the dependent variable: Perception of the use BH to solve the problem 
(Q1). It indicates that 56, 2% has this perception. Then, note that the data is split into nodes 1 and 2 
depending on the variable “I consider that my process lacked the characterisation and 
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establishment of relations” (Q3_7), indicating that this is the main predictor variable. The node 1 
indicates that 75% of the students do not consider that the process lacked the characterisation and 
establishment of relations”. The 70,8% of these students have perception of the use of backtracking 
heuristics (BH)  

Actions involved basically in the determining of the mathematical model  31% 

Formulation of axioms  25% 

Actions of discovery  22% 

Characterisation and establishment of relations  22% 

Attainment of sufficient conditions  19% 

Creation of the object solution  16% 

Attainment of justifications of adequate conditions in propositional equivalences. 16% 

Recognition and explanation of the meaning of representational  13% 
Table 1. Mathematical cognition processes in backtracking heuristics 

This node 1 is again split up into nodes 3 and 4 depending on variable Q3_3 (I consider that in my 
process there lacked the actions of discovery”). We note in node 4 formed by the students that have 
difficulties in the actions of discovery (15,6% of the group) only have the perception of the use BH 
to solve the problem the 20%, , while students at node 3 that do not have this difficulty (59,4% of 
the group) have the perception of the use BH to solve the problem a 84,2%. These two nodes 3 and 
4 are leaves that allow us to infer rules 2 and 3 below. Particularly, each path from the root of a 
decision tree to one of its leaves can be transformed into a rule simply by conjoining the conditions 
along the path to form the antecedent part, and taking the leaf’s mean as the rule prediction or 
consequent. Similarly, in order to define the rest of the rules, node 2 and the following ones are 
studied. The inferred rules are the following:  
Rule 1 (node 2): IF there are difficulties in the characterisation and establishment of relations 
(Q3_7) THEN the prediction of the use of BH is supported by 12,5% of students. 
Rule 2 (node 3): IF there are not difficulties in the characterisation and establishment of relations 
(Q3_7) AND there are not difficulties in the actions of discovery (Q3_3) THEN the prediction of 
the use of BH is the 84,2% of students. 
Rule 3 (node 4): IF there are not difficulties in the characterisation and establishment of relations 
(Q3_7) AND there are difficulties in the actions of discovery (Q3_3) THEN the prediction of the 
use of BH is the 20% of students. 
As we described in section 2, characterizations of backward reasoning, there are some fundamental 
elements that characterise the development of this type of reasoning on which relationships are 
identified with the affective and cognitive aspects. These processes necessarily involve different 
cognitive processes and specific skills in the subject such as, mental flexibility, control or ability to 
identify the problems that need to be solved beforehand as well as feelings of confidence and 
pleasure.  
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Fig. 4: Difficulties on mathematical cognition in 
backtracking heuristics according to the 
student’s perception  

 
Fig. 5: Cognitive appraisal dimensions affecting 
the real use of backtracking heuristics 

 
Affective and cognitive appraisal dimensions influencing the real use of backtracking 
heuristics 
In the process of solving the problem, results indicate that only a 47 % of students show confidence 
working backtracking heuristics, and a degree of pleasure of mean: 36.86, indicating that actions 
involved basically in the determining of the mathematical model is the main predictor variable. The 
pleasure is greater (mean: 47.81) for those who use models. 
From the classification tree ((CRT) analysis), the exploration of the real use of backtracking heuristics 
and some of the cognitive appraisal dimensions (Fig.5), we can infer the following rules: 
Rule 1 (node 2): IF (Mental flexibility (E25)( >52.50) the prediction of the use of BH is the 83,3%. 
Rule 2 (node 3): IF ((Mental flexibility (E25)<= 52.50)) AND (“There are not difficulties in the 
actions involved basically in the determining of the mathematical model” (Q3_1)) THEN the 
prediction of the use of BH is the 61.5% of students. 
Rule 2 (node 4): IF ((Mental flexibility (E25)<= 52.50)) AND (“There are difficulties in the actions 
involved basically in the determining of the mathematical model” (Q3_1)) THEN the prediction of 
the use of BH is the 14,3% of students. 

Conclusions and discussion  
The data shows that knowledge and use of backward reasoning are linked to situation-specific 
skills, namely, perception and planning of action through cognitive process. From the regression 
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trees analysis of the data, the following hierarchy of themes emerged as components of students' 
perceptions of the use of BH: associations between difficulties in the characterisation and 
establishment of mathematical relations and difficulties in the actions of discovery; and in the real 
use of BH: the person’s ability of mental flexibility and the actions involved basically in the 
determining of the mathematical model. The perception of the use of BH is related to the difficulties 
while the real use of it is related to personal cognitive skills and specific concrete actions that entail 
the BH. The emotions, such as confidence and pleasure, arose out of information-oriented 
appraisals and the use of models or actions involved basically in the determining of the 
mathematical model. 
These variables can significantly predict students’ performance in backward reasoning in terms of: 
(a) identifying that backtracking heuristics are important in a problem solving situation; (b) using 
some characteristics of backward reasoning (mathematical processes, skills and the person’s 
ability); and (c) making connections between broader features of backward reasoning to overcome 
specific difficulties. 
Acknowledgments: The paper’ elaboration has been supported by Dynamisation Networks 
Excellence Actions (EDU2016-81994-REDT) grant from the Government of Spain, and European 
Erasmus+ Programme Partnership for Learning and Teaching in University Mathematics 
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Recent gaze tracking research have illustrated patterns of teachers’ visual attention in the classroom. 
However, the reciprocity of teacher-student interaction needs to be explored using multiple mobile 
gaze tracking. This descriptive case study is our first step to chart the role of dyadic eye contacts in 
the teacher-student interaction during collaborative mathematical problem solving. Our results 
indicate that, during mathematical problem solving, teacher gaze at student faces and student gaze 
at teacher face vary between whole-class instruction and small-group scaffolding moments. As a 
conclusion, we suggest that forming dyadic eye contact requires optimal interactional, personal, and 
environmental states, and this method can offer us fruitful information on the micro-level processes 
of teacher-student interaction. 

Keywords: classroom orchestration, multiple gaze tracking, mathematical problem solving, teacher-
student interaction 

Introduction 
The teachers’ complex task of orchestrating the classes and lessons consists of interaction on various 
social levels (Prieto, Sharma, Kidzinski, & Dillenbourg, 2017). In the classroom, a great deal of 
teacher’s visual attention focuses on her students (McIntyre, Mainhard, & Klassen, 2017). The 
teacher’s visual attention is affected by the social interaction in the classroom (Prieto, Sharma, 
Kidzinski & Dillenbourg, 2017). 

Recent research have illustrated the patterns and characteristics of teachers’ visual attention during 
instructing the students (cf. Haataja et al., 2018a; McIntyre, Jarodzka, & Klasse, 2017; Prieto et al., 
2017). This study brings new dimensions to this discussion by using multiple gaze tracking between 
the teacher and the students in the context of collaborative problem solving. We claim that connecting 
teacher’s gaze at student face and student’s gaze at teacher face in authentic classroom contexts 
reveals us unexplored micro-level information on teacher-student interaction. 

Classroom interaction as whole-class instruction and small-group scaffolding 

Teacher actions of classroom orchestration vary from whole-class instructing to guiding an individual 
student (Prieto et al., 2017). In whole-class interaction, the teacher’s visual attention distributes 
unevenly between the students (Dessus, Cosnefroy & Luengo, 2016). Gaze tracking research has 
shown that instructing the class as a whole and paying attention at students’ faces increase the 
cognitive load of a teacher. Cognitive load decreases when the teacher focuses on single student’s 
solutions or his own notes (Prieto et al., 2017). Cognitive load increases person’s perseverance and 
experiences of positive emotions during the task (Maranges, Schmeichel, & Baumeister, 2017). 
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In this study, we investigate two forms of teacher-student interaction during collaborative problem 
solving: whole-class instructing and small-group scaffolding. Scaffolding refers to the teacher’s 
actions in a student group during a problem-solving learning process (Wood, Bruner, & Gail, 1976). 
The content and the direction of scaffolding influence the learning and the social interaction of the 
group. The teachers offer scaffolding on both mathematical contents and procedures and on peer 
interaction (Akkus & Hand, 2011; Ding, Li, Piccolo & Kulm, 2007). Our previous analysis on the 
data of this study showed that the teacher’s intention in scaffolding interaction directs her visual 
attention mostly between mathematical solutions, student faces and hands (Haataja et al., 2018a; 
Haataja, Garcia Moreno-Esteva, Toivanen, & Hannula, 2018b). The teacher’s role in supporting 
beneficial collaboration and successful discourse within the class is crucial (Cross, 2009). 

Eye contact in teacher-student interaction 

In social interaction, eye contact conveys warmth and communion on one hand, and agency and status 
on the other (Mehrabian, 1972). The occurrence of eye contact is found to be dependent of various 
variables. Other person’s friendly response to eye contact initiative increases the experienced liking 
of her (Frischen et al., 2007). Teacher’s eye contact, together with her open body position, use of 
personal examples, and humor form warmth that encourages students into participation and 
interaction (Roberts & Friedman, 2013). Teacher’s gaze towards students, while asking questions and 
listening to them, increases their experience of close interpersonal relationship with the teacher 
(McIntyre et al., 2017). 

The teacher can also address her authority in the classroom with direct gaze at student face 
(Mehrabian, 1972). With eye contact, the teacher can communicate that the students are in the locus 
of her attention and instructions (Adams, Nelson, & Purring, 2013; McIntyre et al., 2017). 
Additionally, an eye contact can convey the teacher’s emotional state to students (Zeki, 2009). 

The shorter the distance between the teacher and student is, the higher is the quality and amount of 
visual interaction between them. Beyond five metres, the visual interaction decreases significantly, 
as the distance to the source of information distracts the attention (Cardellino, Araneda & García 
Alvarado, 2017). 

Research questions 

The aim of this case study was to explore the general tendencies of teacher-student eye contacts during 
mathematical problem solving. Thus, our research question were: 

1. How do one-way face-targeted gazes and dyadic eye contacts between teachers and students
distribute during collaborative problem-solving phase of a mathematics lesson?

2. Does this distribution differ between whole-class instruction and scaffolding interactions?

Methods 
The participants of this study were two Finnish mathematics teachers and their 9th grade classes. Both 
classes included 19 students. The first teacher, called by pseudonym Joanne, was 39 years old and 
had 14 years of teaching experience at the time of the data collection. In Joanne’s class, the target 
group students were four girls. The second teacher, Fred, was 30 years old with three years of teaching 
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experience. In his class, the target group consisted of four boys. Both teachers and their students had 
volunteered for participating in this research. Written consent for data collection was inquired from 
the school principals, all the students in the classes, and the teachers. 

We collected the data in both schools in May 2017. To record the interaction in the classrooms, we 
used three video cameras and several microphones. The teachers’ and target students’ visual attention 
was recorded using self-made mobile gaze tracking devices consisting of eye cameras, a scene camera 
and goggles (for further information, see Toivanen, Lukander, & Puolamäki, 2017). The laptops, that 
recorded the gaze-tracking data, were located in backpacks to enable moving around the classroom 
for the participants. After the lessons, we conducted stimulated recall interviews with the teachers 
and target students. Unfortunately, one student gaze data and Joanne’s interview were missing due to 
technical problems. 

During the data collection lessons, the students worked on a geometrical problem task. The goal of 
the problem solving process was to find the shortest way to connect vertices of a square. For this 
report, we have analyzed the collaborative phases of the lessons. During these phases (16 minutes in 
Joanne’s and 18 minutes in Fred’s class), the students worked on the problem task collaboratively. 
They were encouraged to discuss their ideas and solutions in small groups. In both classes, the four 
target students worked together as a collaboration group. Both teachers walked around the classrooms 
scaffolding student groups one-by-one. Additionally, they gave whole class instructions to orchestrate 
the course of the lesson. 

To analyze the gaze data, we used ELAN software. Using gaze targets and dwell times as coding 
units, we annotated the gaze data during the collaborative phases of lessons. Dwell time means the 
duration of one gaze at a certain target, (Holmqvist et al., 2011) such as a student face, and offers us 
information on the distribution of a person’s visual attention. Further analysis was conducted on IBM 
SPSS and Microsoft Excel. The face-targeted gazes from the same lessons were synchronized and 
categorized into four categories. The categories were 1) Teacher gaze at student face, 2) Teacher-
started dyadic eye contact, 3) Student-started dyadic eye contact, and 4) Student gaze at teacher face. 
We chose this analysis to explore the amount of reciprocal nonverbal interaction between teachers 
and students and these categories to chart the initiative roles of this interaction. We also compared 
the gaze data with the transcribed stationary video data from the lessons to form qualitative and 
quantitative descriptions. From the classroom videos, we separated the moments of teacher 
instructions to the whole class from moments of scaffolding with collaboration groups of two to four 
students. In this report, we analyze these variables of face-targeted gazes and teacher interaction 
descriptively. 

Results 
The teacher-student interaction differed between Joanne’s and Fred’s lessons despite the similar 
problem task and lesson structure. Joanne’s students seemed more motivated and the atmosphere in 
class was warm and supportive throughout the lesson. Fred’s students expressed more negative 
emotions, but also enthusiasm and joy of learning. The Figure 1 shows all the indiviual face-targeted 
gazes across the collaborative phase in Joanne and Fred’s lessons. 
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 Figure 1 Face-targeted gazes during the collaborative problem solving sessions. The moments of 
whole-class instructions marked with blue squares and the phases of small-group scaffolding with 

green circles. The horizontal axis shows the beginning time of the gazes (seconds from the beginning of 
the lesson) with the frequency of 0.5 seconds and the vertical axis (1-4) the division into four 

categories: 1) teacher gaze at student face, 2) teacher-started dyadic eye contact, 3) student-started 
dyadic eye contact, and 4) student gaze at teacher face. 

During collaborative problem solving phase, Joanne instructed the whole class more than Fred. In 
these moments, Joanne gave the students information and instructions on the progress of the lesson. 
During Joanne’s problem solving phase, 63% (n = 149) of gazes occurred during whole-class 
instructions, while in Fred’s class the proportion was only 4% (n = 13). While instructing, Joanne 
looked at her student’s faces 88 times, even though the instruction moments covered only four 
minutes of the 16-minute-long collaboration phase. 

During whole-class instructions, the target students looked at Joanne’s face 20 times, and dyadic eye 
contacts between students and Joanne occurred 41 times, thrice with the target group. Fred gazed at 
his students’ faces only five times and they looked at him twice without eye contact. Dyadic eye 
contacts occurred six times between a student and Fred during whole-class instructions but none of 
these was with a target student. 

In Fred’s class, the proportion of dyadic eye contacts was higher during the short moments if whole 
class instructions (46%, n = 6) than in Joanne’s class (27%, n = 41). When giving whole-class 
instructions, Joanne spoke with loud voice and stood in front of the class. In these moments, the 
students’ tendency to create or respond to dyadic eye contacts with the teacher decreased. In Fred’s 
class, the interaction during collaborative problem solving phase happened almost completely in 
scaffolding interaction with student groups and he did not seek for capturing the attention of the whole 
class while the students were working on the task. 
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Figure 2 presents the distribution of four types of face-targeted gazes between the teacher and target 
students. Again, the gazes are categorized according to the direction between the teachers and 
students, and compared between interactional categories of whole-class instructions and scaffolding. 

Figure 2 The distribution of teacher and student face-targeted gazes during two collaborative problem 
solving session with teachers called Joanne and Fred. 

During scaffolding the target group, the eye contacts distributed similarly with both teachers. The 
observed four girls in Joanne’s class and three boys in Fred’s class gazed at their teachers more than 
other way around. While the teachers focused on one student’s solutions or face at the time, the other 
three or two students often gazed at the teacher. Student gazes at teacher faces covered 44% (n = 22) 
of face-targeted gazes during scaffolding interaction in Joanne’s class and 48% (n = 60) in Fred’s 
class. The teachers seemed to have different intentions for the scaffolding interaction than the 
students. While the teachers’ intention in the group varied between the problem-solving process and 
the motivational and emotional states of the students, students were willing to focus on the teachers 
as they arrived to the groups. The teachers’ arriving to the group seemed to capture students’ attention 
and pause their problem solving process. During verbal communication, the students often looked the 
teacher in the face even if the teacher was looking at and talking about the solutions.  

While scaffolding other small-groups than the target group, Fred (74%, n = 131) scanned the students 
with one-way teacher gaze more often than Joanne (41%, n = 15) and Joanne had more dyadic eye 
contacts with students in other groups (54%, n = 20) than Fred did (23%, n = 41). In general, Joanne’s 
students were more motivated and less frustrated that Fred’s students and he had to be more critical 
in the interaction with them. In Joanne’s classroom, the interaction throughout the problem solving 
process was warm and immediate, while Fred’s lesson included also negatively loaded 
communication. However, Fred’s class also included students who were concentrated in solving the 
challenging task, and hence not in need of the teacher’s scaffolding. 

In Fred’s class, also the teacher’s emotional state seemed to affect his gaze behavior. In the beginning 
of the collaborative phase, the target students joked at Fred, and they were not enthusiastic to solve 
the problem throughout the lesson. The uncertainty and pauses in Fred’s speech in this moment 
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indicated that this event annoyed or embarrassed him and he avoided eye contacts with these students. 
After the confusion, Fred told the students to concentrate and continued scaffolding successfully. 
During scaffolding, three moments occurred, during which the target students tried to create an eye 
contact with Fred unsuccessfully. They directed several gazes (n = 14, 8, and 8) at Fred’s face without 
receiving any response. During these moments, Fred guided them with verbal interaction but directed 
his gaze at student papers. Interview with him indicates that this aversion was more of pedagogical 
than purely emotional origin, as Fred wanted to calm the students and behave as an authority. 

Discussion 
Orchestrating collaborative instruction and classroom interaction is a complex and challenging task 
that is affected by various different factors (Prieto et al., 2017). The educational research field has 
rapidly adopted mobile gaze tracking as a method of data collection in real learning contexts. The use 
of multiple gaze tracking opens unexplored aspects of micro-level teacher-student interaction. In this 
paper, we have moved towards capturing the social nature of teaching and learning by using multiple 
gaze trackers simultaneously. 

To summarize the results, the teachers’ gaze behavior seemed to vary more depending the 
interactional state than the students’ did. The students looked their teacher in the face both during 
whole-class instruction, and when the teachers were scaffolding the small-groups. This seems to be a 
result of teachers’ social status and high agency in the classroom (Mehrabian, 1972). Even though 
collaborative problem solving is a student-centered learning method, the teacher’s contribution in 
orchestrating the learning process is essential (Cross, 2009). The students need teacher’s guidance, 
advice, and confirmation, which she can offer through eye contact and verbal instruction. 

However, the teachers, especially Joanne, focused on her students’ faces during whole-class 
instruction moments. In these moments, she looked at her students with numeral, short gazes. This 
finding is in line with the literature on teacher orchestration load (Prieto et al., 2017) and expertise 
(McIntyre et al., 2018). When speaking in front of the class, regardless of the content of the 
instructions, Joanne concentrated in addressing her message through direct gazes at student faces. 

In Joanne’s class, the target group was located closer to the front of the classroom, while in Fred’s 
class the target students were seated in the back. As Cardellino et al. (2017) suggest, this may affect 
to the count of eye contacts between the students and the teachers. In Fred’s class, no dyadic eye 
contacts were formed between him and the target students when Fred was standing in the front. 
Additionally, Fred’s target students were not as motivated in solving the task as Joanne’s were, and 
he may have unconsciously directed his instructions to those students he knew were waiting for them. 

When changing the interactional state from whole class to a collaboration group, we found general 
characteristics in the gaze behaviors of teachers and students. The teachers were in the locus of 
students’ attention in all interactional moments. While in whole class interaction the teacher’s 
attention distributes unevenly (Dessus et al., 2016), we interpret that in small-group scaffolding 
moments all kinds of students had an opportunity to be seen and heard. Despite their misbehavior, 
the target students in Fred’s class pursued his attention. Fred seemed to avoid dyadic eye contact with 
them after the confusions to act as an authority and direct their attention to the learning task. 
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Naturally, this exploratory study has certain limitations. First, the missing data (one student gaze 
recording and one teacher interview) and the differences in the counts of gazes between the lessons 
hinder the comparative interpretations. However, this is a case study, and all the comparisons are 
qualitative by nature. Their purpose is to chart the phenomena for more statistical analysis in the 
future. For instance, in this report the student groups happened to be of same gender as their teachers. 
In this analysis, the attentional patterns were quite similar between the two lessons. In future, the 
effect of altering the gender structure of the participants might be relevant to investigate. The quality 
of the gaze and video data was very high, which helped us in making analysis and interpretations. 
Each recording was annotated by only one researcher. Nevertheless, the research group negotiated on 
controversial issues during the annotation and interpreted the data collaboratively. 

This study shows that adding student gaze data to teacher gaze data reveals aspects that would not be 
possible to be explored with only one gaze tracker. For instance, students’ unsuccessful attempts to 
create eye contacts with the teacher and vice versa are indicators of the complexity of teacher-student 
verbal and nonverbal interaction. In future, we wish to examine more how teacher-student eye 
contacts are affected by aspects emerging in this analysis: the teacher and student personalities, 
methods of teacher-student interaction, and the physical learning environment.  
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As observed for the last 50 years, students in upper secondary school struggle with the function 
concept (Dubinsky & Wilson, 2013). The function concept can be represented in different ways, for 
example as a graph, a table, or an algebraic expression. Translating from one representation to 
another, transforming a situation into a function, and discovering the function notation are important 
for students’ ability to “describe relationships of change between variables, explain parameter 
changes, and interpret and analyze graphs” (Clement, 2001, p. 745). Students’ exploration and 
engagement in making connections, for instance among different function representations, is 
important for understanding mathematical concepts and for learning to apply it as a tool in problem 
solving (Francisco & Maher, 2005; NCTM, 2014).  In a student-centered environment with focus on 
collaboration, students have the opportunity to investigate, share and evaluate each other ideas. 
Research on mathematical communication, supporting students’ collaborative activity and reasoning, 
is crucial for students’ mathematical understanding (Maher, Sigley, Sullivan, & Wilkinson, 2018; 
Mueller, Yankelewitz, & Maher, 2012).  

Lithner (2017) defines reasoning as “the line of thought adopted to produce assertions and reach 
conclusion in task solving” (p. 3), and proposes two main types of reasoning while solving a 
mathematical problem: imitative and creative. Students’ reasoning do not have to be formal, a 
mathematical proof or a high-quality argument, it simply has to make sense to the student himself 
(Lithner, 2015). Creative mathematical reasoning (CMR) sequences are created (or re-created) by the 
student, plausible to him, and anchored in intrinsic mathematical properties (Lithner, 2015). Imitative 
reasoning, on the other hand, refers to imitating a solution procedure or memorizing facts (Lithner, 
2015). Imitative reasoning is closely linked to rote learning, whereas creative reasoning to a larger 
extent will promote conceptual understanding (Lithner, 2017). Roschelle and Teasley (1994) define 
collaboration as a “coordinated, synchronous activity that is the result of a continued attempt to 
construct and maintain a shared conception of a problem” (p. 70). If mutually engaging in problem 
solving “students share ideas and ways of solving problems; thus individual understanding becomes 
shared” (Mueller et al., 2012, p. 372). Creating a shared understanding between collaborating 
students, is what Roschelle and Teasley (1994) call a Joint Problem Space (JPS). Constructing JPS is 
processes of building (suggesting and agreeing upon ideas), monitoring (questioning and explaining 
ideas) and repairing (negotiations and corrections of conflicting ideas), through the use of language 
and the situation (Roschelle & Teasley, 1994).  

There are many theoretical frameworks for analyzing students’ difficulties with the function concept, 
but not corresponding literature providing pedagogical strategies helping students overcome these 
difficulties (Dubinsky & Wilson, 2013). The current ongoing research project focuses on both 
student-student interaction, as well as the interaction between the student and the teacher. In line with 
Design-Based Research (DBR) methodology, three teachers and their mathematics students (age 16) 
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from a Norwegian upper secondary school participated in an iterative cycle for testing and developing 
an intervening design (Juuti & Lavonen, 2006). In the student-student interaction, the aim is to 
provide insight in the collaborative processes when reasoning about a function problem. Combining 
such insight with perspective on teacher-student(s) interaction, could give further insight to 
pedagogical strategies for promoting students’ reasoning in collaboration, for deeper understanding 
of mathematical concepts.  

This paper poster will illustrate a student-student interaction in a pair creating their JPS through 
processes of building, monitoring and repairing, when engaging in creative mathematical reasoning. 
Particularly, different aspects in their argumentation connected to the process of repairing their shared 
understanding. Some periods in their conversation were identified as CMR-sequences, characterized 
by turn-taking and creative mathematical reasoning solving a part of the function problem. However, 
not every uttering in the turn-taking was identified as creative. In situations where students had 
conflicting ideas, they often argued for their thoughts. Students used superficial arguments to support 
ideas, as well as arguments built on mathematical properties. If a counter-suggestion was made, 
without any support, and conflicting the other students’ idea, the following process was significant. 
If only accepting the counter-suggestion, they were not likely to explore different representations and 
deeper meaning of the function concept together. Thus, experiencing ownership in the problem 
solving process, or over the mathematical content, was not likely to happen. If not agreeing on the 
counter-suggestion, the peer could ask questions about the idea, or make a counter-suggestion. 
Anchoring the counter-suggestion, question or suggestion in properties regarding the function 
concept, were important for the process of creating the JPS. Hence, repairing of the shared conception 
of the problem, or sub-problem, indicated to a greater extent mutual ownership. 
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The purpose of this study was to investigate preservice middle school mathematics teachers’ (PMT) 
beliefs about the nature of mathematics in metaphor tasks when they are designed and analyzed in 
different ways and their beliefs about mathematics teacher. Nine PMTs attending the practice 
teaching course completed four metaphor tasks (two open-ended, two structured) about mathematics, 
mathematics teacher, mathematics teaching and learning through the semester. The metaphors they 
produced were analyzed both by the revised version (Löfström et al., 2010) of the identity framework 
by Beijard et al. (2000) and with an inductive analysis. Findings suggested that employing open-
ended task structure and inductive analysis might provide more information about PMTs’ beliefs 
about the nature of mathematics even in metaphors that are not constructed for mathematics.  

Keywords: Metaphors, beliefs about mathematics, preservice middle school mathematics teachers. 

Metaphors and beliefs 
Metaphors are the constructs that are used to explore one concept/happening/issue by the help of 
another (Lakoff & Johnson, 1980) and are used to interpret the complexity of teaching and learning 
interaction components (Saban, 2006). Metaphors are among the tools that enable teacher educators 
have access to and explore the preservice teachers’ beliefs (Reeder, Utley & Cassel, 2009). Resarchers 
have often asked preservice teachers about their metaphors especially about teaching and learning to 
make sense of their beliefs and their implicit theories about education (Leavy, McSorley, & Bote, 
2007). Metaphors are also used in teacher education programs to make preservice teachers reflect on 
their beliefs (Noyes, 2006) and to increase their awareness of their beliefs and teacher selves, to build 
connections between these selves and teaching, and further to change their beliefs (Saban, 2006). 

Several studies have explored preservice (Haser, Arslan, & Çelikdemir, 2015) and inservice (Oksanen 
& Hannula, 2013; Pantziara, Karamanou, & Petridou, 2017) mathematics teachers’ beliefs about 
mathematics teacher through metaphors by using the framework developed by Löfström et al. (2010) 
based on the identity framework of Beijard, Verloop and Vermunt. (2000). Beijard et al. (2000) 
suggested three teacher identity categories as subject matter expert, pedagogical expert and didactical 
expert. They explained that teacher as a subject matter expert knows mathematics well and transmits 
this knowledge to the students. Teacher with a pedagogical expertise cares about students’ well-being 
and their growth as a person. When teachers are didactical experts, they organize teaching and 
learning environments to guide students in their learning efforts. Löfström et al. (2010) further 
suggested that teachers have characteristics that do not fit the three identity categories defined earlier 
as in self-referential metaphors, and the contextual references to the teacher identity could also be 
seen in metaphors. The mentioned studies showed that the identity framework could be used to 
explore preservice and inservice teachers’ beliefs about mathematics teacher and what they prioritize 
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for the work mathematics teachers do. These studies have found that Cypriot teachers of grades 10-
12 (Pantziara et al., 2017) and Finnish teachers of grades 7-9 (Oksanen & Hannula, 2013) prioritized 
didactical expertise for mathematics teachers. Mathematics teachers in these studies addressed self-
referential metaphors after didactical expert metaphors. Although these metaphors are likely to 
address teachers’ other mathematics-related beliefs (Haser et al., 2015), such an analysis has not been 
reported in these studies.  

Similarly, when we asked Turkish preservice middle school mathematics teachers (PMTs) to write a 
metaphor for the mathematics teacher and explain it, they prioritized didactical expertise (Haser et 
al., 2015). In our unpublished analysis, we found that PMTs referred to the nature of mathematical 
knowledge, how it is related to other fields of science and that mathematics teachers needed to know 
about these characteristics of mathematical knowledge, while explaining their metaphors for 
mathematics teacher. Such reference to the nature of mathematics suggested adopting an inductive 
approach to the analysis of metaphors’ explanations in order to trace PMTs’ beliefs about the nature 
of mathematics, even when these metaphors were not constructed for mathematics.   

Considering the findings of previous studies, which explored preservice and inservice teachers’ 
mathematics related beliefs through metaphors, the purpose of this study was to investigate what 
metaphors can offer for understanding PMTs’ mathematics related beliefs, and specifically beliefs 
about the nature of mathematics, even when they were not constructed for mathematics. The study 
also explored the change in PMT’s beliefs about mathematics teacher. PMTs’ explanations for 
metaphors, which were used in a practice teaching course as a reflection tool, were analyzed by the 
above-mentioned revised identity framework and by inductive analysis to explore PMTs’ beliefs.  

Method 
The study was conducted in a middle grades (5 to 8) mathematics teacher education program in 
Turkey. All nine (female) PMTs attending the practice teaching course section that I taught were the 
participants of the study. PMTs have completed mathematics teaching methods courses and school 
experience course, and they were in the last semester of the program except for one student who had 
two more courses to take. They attended the same practice school for six hours each week, observed 
several mathematics teachers during the semester, completed emerging tasks in the school, and taught 
mathematics for at least one class hour. They also attended two hours of University course that I 
taught every week and discussed the emerging themes and issues of the week from the mathematics 
lessons they observed, and completed in-class tasks such as constructing metaphors and their 
explanations for mathematics related themes. The data of the study were PMTs’ responses to the four 
metaphor tasks they completed during the class hours (50+50 minutes) and the detailed course notes 
that I kept during the course. Table 1 presents the content of the metaphor tasks used in the study 
through the semester (15 weeks).  

Task 1 and Task 2 were considered as open-ended tasks because PMTs were only asked to construct 
a metaphor and explain it, and they were not asked to consider this in a certain way. Task 3 and Task 
4, however, were considered as structured tasks because PMTs were asked to select one theme, 
construct a metaphor for it, then think about relationships of this theme to the others, and construct 
metaphors for these themes.  
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Tasks and weeks Content of the metaphor tasks 

Task 1 (1st week) Math teacher is like …… Because…………. 

Math teaching is like …....Because ………….. 

Task 2 (2nd week) Math is like ……… Because ……….. 

Task 3 and Task 4 
(3rd week and 15th 
week)  

Choose a starting theme (math, math teacher/teaching/learning) and 
construct a metaphor for this theme. Then, connect it to the remaining themes 
by constructing related metaphors for them. Please explain the relationships. 

Table 1: Metaphor tasks 

Initial data analysis focused on the explanations for mathematics teacher metaphors to reveal PMTs’ 
beliefs about mathematics teaching by employing the revised framework. Then, I conducted an 
inductive analysis (Miles, Huberman, & Saldana, 2014) for all metaphor explanations in order to 
explore PMTs’ beliefs about mathematics. First, I read all the explanations for metaphors in detail 
and took notes on possible codes such as, mathematics in daily life and connectedness of 
mathematical knowledge. Next, I went through data once more and coded the data with the code list 
I developed with room for possible new codes such as, mathematics-related skills. The analysis was 
completed after no new codes were generated and all data were analyzed with all the codes. The 
metaphors themselves were not the focus of the analysis because there were several cases that PMTs 
explained the same metaphor in different ways throughout the tasks. Or, they used different 
metaphors in each of the tasks for mathematics teacher and still referred to the same teacher expertise 
in their explanations for these metaphors. Therefore, the focus of the analysis was on PMTs’ 
explanations for their metaphors.  

Findings 
First, findings related to the mathematics teacher expertise that PMTs prioritized are presented. Then, 
findings about beliefs about the nature of mathematics extracted from PMTs’ explanations for all the 
metaphors were presented for each metaphor task. Metaphors PMTs used are reported briefly. 

Beliefs about mathematics teacher through the semester 

PMTs wrote a metaphor for mathematics teacher and the explanations for their metaphors in Task 1, 
Task 3 and Task 4. The analysis of the explanations for their mathematics teacher metaphors through 
the revised framework is given in Table 2. The types of expertise identified in the metaphor 
explanations are indicated by “D” for didactical expert, “SM” for subject matter expert, “P” for 
pedagogical expert, and “SR” for self-referential as indicated in the revised framework. 

PMTs prioritized didactical expertise (cook, driver, pine tree) for mathematics teachers. Almost all 
participants in all tasks explained how a mathematics teacher is a didactical expert. PMT6 and PMT9 
addressed only didactical expert in their explanations in all three tasks and PMT1, PMT5 and PMT8 
prioritized other expertise (mostly subject matter) in their explanations in addition to the didactical 
expertise. PMT2, PMT3 and PMT4 addressed didactical expertise in two of the three tasks and PMT1, 
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PMT5 and PMT7 addressed subject matter expertise (calculator manual, tour guide) in their 
explanations for two of the three tasks.  

Participants Task 1 Task 3 Task 4 

PMT1 D, SM  D  D, SM  

PMT2 D, P D  SR  

PMT3 D, SR SR D  

PMT4 P  D, SM  D  

PMT5 D, SM  D, P  D, SM  

PMT6 D  D  D  

PMT7 SM, SR  SR D, SM  

PMT8 D, SM D  D  

PMT9 D  D  D  

Table 2: Participants’ identities as determined in the metaphors about mathematics teacher 

These findings showed that in the beginning of the semester PMTs tended to believe that mathematics 
teachers were mostly didactical experts. This focus on teachers’ didactical expertise increased as the 
semester progressed. They also addressed subject matter expert, self-referential and pedagogical 
expert identities. Hybrid metaphors mostly included didactical and subject matter expertise, and did 
not include more than two expertise. Context did not appear in PMTs’ metaphors. 

Mathematics in mathematics teacher and mathematics teaching metaphors (Task 1) 

Five PMTs mentioned about the nature of mathematics in their explanations of the mathematics 
teacher metaphor. Mathematics is discovered by the help of the teacher (PMT1, PMT6) who also 
guides for other skills such as “problem solving, critical thinking” (PMT9) and building connections 
between mathematics, daily life and other sciences (PMT5). 

Seven PMTs mentioned about the nature of mathematics while explaining the mathematics teaching 
metaphor (using magnifying glasses, making the light available for everyone). There were references 
to mathematics in real life (PMT3, PMT5, PMT6) and mathematics related skills such as “interpreting 
the world differently” (PMT3). Teaching mathematics was also framed in terms of characteristics 
PMTs associated with the nature of mathematics such that it can be discovered (PMT1, PMT3), it 
includes connections (PMT8), and it is expanding (PMT3, PMT9).  

Most of these PMTs stated in their explanations that since mathematics has certain characteristics, 
mathematics teacher or mathematics teaching must be in a certain way. Some even constructed a 
metaphor for mathematics for the explanation first, and then framed mathematics teacher or teaching 
based on this metaphor. Even tough mathematics was a beginning point for most PMTs, the teacher 
and teaching metaphors they constructed seemed disconnected in Task 1, such as P9’s metaphor for 
mathematics teacher (bitter syrup for students) and teaching (filming an advertisement).  
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Mathematics in mathematics metaphors (Task 2) 

PMTs’ explanations for their metaphors about mathematics (the code for existence, atmosphere, 
infinite chain of paper-clips) emphasized the necessity of mathematics in daily life (PMT6, PMT7, 
PMT9). Besides, mathematics is fundamental to understanding the life, the nature, and the other 
sciences (PMT2, PMT3, PMT6). Therefore, mathematics is important and needed (PMT2, PMT6, 
PMT9). PMT5 mentioned about the infinite nature of the mathematical knowledge. Only PMT9 
emphasized that we use skills such as “understanding situations, problem solving, foreseeing causes 
[and related] consequences, or evaluating” while doing mathematics. PMT8 used “being an 
explorer” as a metaphor for mathematics and emphasized that mathematical knowledge is discovered 
or newer ways of reaching mathematical knowledge are discovered.  

Mathematics in mathematics related metaphors – 1 (Task 3) 

Task 3 and Task 4 asked PMTs to select one theme, construct a metaphor for that theme, and then 
continue to construct metaphors for the other themes. Eight of the PMTs started with a metaphor for 
mathematics in Task 3. Then, seven of them continued with either mathematics teacher or 
mathematics teaching themes. PMT4 started with mathematics teacher, continued with mathematics 
and then, with mathematics teaching. 

The explanations for mathematics metaphors (flower, second mother tongue, fruit tree) emphasized 
that mathematics is fundamental to life and other sciences and humanity needs mathematics (PMT6, 
PMT9). Mathematics concepts are related to each other:  

Mathematics is like chess. Because mathematics has rules, theorems and formulas […] related to 
each other and all of those compose mathematics. Chess also has certain rules, strategies; and since 
there are relationships between strategies and more explicitly, since [strategies] change based on 
each move, mathematics is like chess. (PMT1)  

There is always something to discover in mathematics (PMT9), it promotes analytical thinking 
(PMT2), and we always come across mathematics in our daily lives (PMT2, PMT6, PMT7, PMT9).  

Metaphors about mathematics teaching and mathematics teacher did not reveal beliefs about 
mathematics in Task 3. Only PMT1 referred to the new ways to reach mathematical knowledge in 
her metaphor for mathematics teacher and PMT8 emphasized that mathematics helps us develop real 
life relationships in her explanation for her metaphor for mathematics teaching.  

Mathematics in mathematics related metaphors – 2 (Task 4) 

Similar to Task 3, all participants except PMT4 started Task 4 by constructing a metaphor for 
mathematics, and they continued with a metaphor for the mathematics teacher or mathematics 
teaching. This time, PMT4 started with a metaphor for the mathematics teaching, and then continued 
with mathematics and mathematics teacher. 

Metaphors for mathematics (second mother tongue, water, endless travel) addressed that mathematics 
is an expanding field and it is infinite (PMT2, PMT3, PMT7). It is fundamental to life like “the 
atmosphere. Atmosphere covers the earth and it is important for life” (PMT6) and human beings need 
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it. Similarly, they need mathematics. It improves and changes our ways of thinking (PMT9) and it is 
in our everyday life (PMT5, PMT6, PMT9).  

Only PMT9 wrote about discovering mathematical concepts in her metaphor for mathematics teacher 
and PMT5 stated that mathematics is in our daily life. PMT9, in her metaphor for mathematics 
teaching, referred to the skills that (knowing) mathematics provides, the coherence among the 
mathematical concepts and that human beings need mathematics.  

PMTs realized that they could not connect their metaphors about mathematics, mathematics teacher 
and mathematics teaching all the time and claimed that this was challenging in both Task 3 and Task 
4. They did not prefer to state metaphors for mathematics learning in Task 3 and Task 4. The metaphor 
explanations did not refer to students most of the time.  

Conclusions and discussion 
The analysis of explanations for the mathematics teacher metaphors showed that most of the PMTs 
seemed to prioritize teachers’ didactical expertise, most probably due to spending considerable time 
in the practice school and program’s emphasis on improving didactical skills (Haser et al., 2017) 
especially in the last semester. This didactical expertise emphasis and explanations for mathematics 
teaching metaphors included several references to the nature of mathematical knowledge.  

PMTs expressed very similar beliefs about mathematics across the tasks and these beliefs did not 
change much as the semester progressed. Mathematics was at the center of real life and other sciences. 
Therefore, humanity needed mathematics. Knowing or being able to do mathematics provided several 
skills such as problem solving and analyzing complex situations better. Mathematical knowledge was 
expanding and it could be discovered. These beliefs were not only in their metaphors for mathematics, 
but also in their metaphors for mathematics teacher and teaching in Task 1, and they did not change 
from the beginning to the end of the semester, suggesting that these beliefs might be held by the PMTs 
more strongly.  

Inductive analysis of open-ended metaphor tasks about mathematics teachers and teaching provided 
more clues about PMTs’ beliefs about the nature of mathematical knowledge when the metaphors 
were not constructed for mathematics in Task 1. However, the metaphors for mathematics teacher 
and teaching in Task 1 were very disconnected even though these metaphors were asked in the same 
task. This disconnectedness might have led them towards describing the nature of mathematical 
knowledge in all the metaphor explanations to provide a base for framing their metaphors for teachers 
and teaching. This, in turn, provided more clues about PMTs’ beliefs about the nature of mathematics 
and suggested that these beliefs could be the base for their beliefs about mathematics teaching and 
teacher. It might also be the case that PMTs’ beliefs about the nature of mathematics are persistent 
but their beliefs about mathematics teachers, teaching and learning are still under construction. 
Therefore, they might prefer to build their metaphors for teacher and teaching around mathematics 
metaphors and explanations.  

PMTs preferred to start the structured tasks in Task 3 and Task 4 by first constructing a metaphor for 
mathematics, and then the others. These findings might address that even when PMTs prioritize 
didactical expertise for mathematics teachers, their beliefs about the nature of mathematics might be 

Thematic Working Group 08

Proceedings of CERME11 1450



 

 

at the center of their beliefs about a mathematics teacher and teaching. They might be building an 
understanding of the work of mathematics teacher and the duties of mathematics teaching around 
how they believed about the nature of mathematical knowledge.  

PMTs’ explanations for mathematics teacher and mathematics teaching metaphors in structured tasks 
in Task 3 and Task 4, on the other hand, rarely referred to the nature of mathematical knowledge. 
Starting the structured tasks by first constructing a metaphor for mathematics, and then connecting 
this metaphor with the metaphors for other themes without referring to the nature of mathematics 
might indicate that they already have constructed the metaphor for mathematics and this provided 
them with the necessary base for their metaphors for mathematics teacher and teaching.    

There were very few mathematics learning metaphors even though PMTs were encouraged to 
construct in Task 3 and Task 4. The explanations for other metaphors rarely referred to the students, 
most probably due to focusing more on the teachers in the practice school.  

In both types of metaphor tasks, the theme-metaphor-explanation flow did not seem coherent in many 
cases. Mathematics, for example, was addressed with verb metaphors, such as “playing chess”, and 
mathematics teaching was addressed by noun metaphors, such as “gossip.” PMTs seemed to describe 
one theme while actually explaining another. Such incoherence might show that PMTs were confused 
about the properties of the metaphors while they were trying to construct them. Indeed, field notes 
indicated that PMTs struggled and spent considerable effort and time to construct metaphors and 
explanations, although all tasks included information about metaphors and their functions. We 
discussed through the semester about how metaphors would help them to think deeply and increase 
their awareness about the issues of teaching mathematics. Yet, they had difficulties in finding 
metaphors in at least one task. They wrote detailed explanations that did not always fit the metaphor.  

Why not asking directly about PMTs’ beliefs but asking metaphors instead? Constructing a metaphor 
for a concept requires thinking about the characteristics of the concept in order to find a metaphor 
object, which shares similar characteristics with the construct (Saban, 2006). This process might 
direct PMTs to think about details, connections, and relationships more deeply than responding to a 
direct question. In this study, the inconsistencies between metaphors and explanations might indicate 
that PMTs are still struggling with building these concepts or have realized the complexity of these 
concepts and have difficulties in finding a metaphor for such complexity. Therefore, metaphors might 
be a powerful tool to reveal PMTs’ such incomplete processes for teacher educators and to increase 
PMTs’ awareness of their thinking process.  

Although the actual metaphors were not the major focus of the present report, it appeared that PMTs’ 
metaphors resembled similarities to the ones reported in the literature such as mathematics as a 
language, journey, structure and toolkit (Noyes, 2006) and mathematics teaching as a journey and 
growth (Reeder et al., 2009). A further analysis is needed to explore these metaphors. 

Findings of the study showed that different uses and analyses of metaphor tasks might provide 
different ways of exploring PMTs’ mathematics related beliefs. However, the findings are limited to 
the nine PMTs who participated in this study, the metaphors and explanations they constructed, the 
ways metaphors were asked and written data. They expressed difficulty in constructing a metaphor 
and the need to know the properties of the metaphor object to construct it better. Therefore, the key 
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issues in employing metaphors as tools of reflection in teacher education might be helping PMTs 
focus on connectedness and coherences of their ideas, reflect more on their beliefs, and their 
willingness to adopt and use metaphors in this process. 
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This paper presents a thematic analysis methodology which uses a hybrid coding process to 
understand how science and engineering students in higher level education relate to mathematics. 
This process utilises and builds on previous research on mathematical identity amongst student 
teachers by using deductive coding while continuing to be grounded in the new data through inductive 
coding. Many authors have written on both or either of these methods. Most treat it was a simple 
choice between one or the other. Few have addressed best practice in integrating these approaches. 

Keywords: Mathematical identity, transition, higher level education, thematic analysis. 

Introduction 
To create an effective learning environment for science and engineering undergraduates, an 
awareness of how they relate to mathematics is vital. Investigating mathematical identity can help 
educators better understand this relationship and help determine potential issues with pedagogy and 
the learning experience of students. Such issues may contribute to marginalisation and thus impact 
students’ relationship with mathematics and their decision to continue, or not, their mathematical 
studies (Grootenboer & Zevenbergen, 2008; Solomon, 2007). Reflecting on their mathematical 
identity can help students engage more effectively as mathematics learners while they transition to 
higher level education (Kaasila, 2007). In the same vein, Sfard and Prusak (2005, p. 16) suggest that 
“identity talk makes us able to cope with new situations in terms of our past experience and gives us 
tools to plan for the future.” 

Mathematical identity has been investigated in the context of Initial Teacher Education in Ireland 
since 2008. A series of previous studies developed an instrument for exploring mathematical identity 
of pre-service teachers which has been adapted for this new context. The ‘Mathematical Identity of 
Student Teachers’ (MIST) study used grounded theory among 9 students to develop two open-ended 
questions: a broad opening question to allow participants make responses that are “indicative of their 
personal mathematical identity” and a follow-up question which included some prompts “to balance 
the need for some direction” (Eaton & OReilly, 2009, p. 2). ‘Mathematical Identity using Narrative 
as a Tool’ (MINT) involved 99 students and not only converted the questionnaire to an online tool 
but also added a third question about self-reflection which had become evident as a key element of 
mathematical identity in MIST (Eaton, Horn, Liston, Oldham, & OReilly, 2013). 

Although mathematical identity has enjoyed increased attention in recent years within education 
(Darragh, 2016), a lack of cohesion and agreement on ontological, epistemological, and 
methodological issues has produced a fractured body of research (Kaspersen, Pepin, & Sikko, 2017b). 
Despite this new attention, Hannula and Garcia Moreno-Esteva (2017) found that identity had 
featured in just four of 100 papers in this working group (TWG8) between CERME4 and CERME9. 
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At CERME10 Kaspersen, Pepin, and Sikko (2017a) in TWG20 focused on the link between 
mathematical identity and grades much like Cobb, Gresalfi, and Hodge (2009) did. A study by Craig 
(2013) took a narrower view of identity, thinking only of procedural versus conceptual learning, 
ignoring the many other facets of identity that interact with this specific strand. In Ireland, 
MIST/MINT (Eaton & OReilly, 2009; Eaton et al., 2013) focused on developing an instrument to 
collect narrative data, but the process of analysing this data requires some clarification in order to be 
reliably used in other contexts or amongst larger groups of students. Although some studies have 
investigated engineering identity, and incidentally addressed mathematics, studies dealing with the 
mathematical identity of engineering students are rare. 

This paper will outline how we adapted and integrated inductive and deductive techniques to facilitate 
a thematic analysis. This addresses the need to incorporate the knowledge gained from previous work 
on mathematical identity in Ireland while also continuing to be grounded in the new data. We refined 
the MIST/MINT coding process by deconstructing the themes they developed amongst student 
teachers (which may not accurately represent the mathematical identity of this new cohort) into codes 
and constructed new themes based on the current data. We will demonstrate how the coding process 
aided the thematic analysis, already established in MIST/MINT, for cohorts of students not previously 
considered there. We expect this to advance the drive toward an effective process for accessing 
students’ mathematical identities. 

Background and Theoretical perspective  
Sfard and Prusak (2005) and Kaspersen et al. (2017a) both noted that researchers in mathematics 
education had yet to agree upon a working definition of identity while Cobb et al. (2009, p. 41) 
conceded that it is “vague and ill-defined.” Authors often operate from different viewpoints: the 
sociological viewpoint where identity is an action, constructed and reconstructed over time, which 
has long characterised identity at CERME (Hannula & Garcia Moreno-Esteva, 2017), and the 
psychological viewpoint where identity is a core stable phenomenon (Cobb et al., 2009). Sfard and 
Prusak (2005) detailed the similarities between identity and other concepts such as attitudes, 
conceptions and beliefs but pinpointed the constantly changing and evolving nature of identity as the 
key power behind the concept. The sociological viewpoint of identity acknowledges that it is ever-
changing and communicated best through narratives authored by the participants. They can 
communicate mathematical experiences they consider to be influential and reflect on them as they 
write often leading to realisations or re-interpretations of the experiences. 

This study is conducted under a social constructivist paradigm and mathematical identity is defined 
as the “multi-faceted relationship that an individual has with mathematics, including knowledge, 
experiences and perceptions of oneself and others.” (Eaton & OReilly, 2009, p. 228; See also 
Grootenboer & Zevenbergen, 2008) We propose that empirical information about experiences is not 
enough to reveal mathematical identity and we aim to establish the meaning of these experiences 
from the views of participants (Creswell, 2009, p. 16). We follow the narrative approach detailed by 
Creswell (2009, p. 13) whereby the narrative produced by the research represents a repackaging of 
the experiences and stories communicated by the participants. The resulting narrative represents a 
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combination of these experiences with those of the researcher, positioning the participants as co-
researchers who shape the research process (Cohen, Manion, & Morrison, 2007, p. 37). 

Methodology 
We identified 16 cohorts of science and engineering students in DCU who study mathematics in their 
first year. They represent a significant portion of the undergraduate population and of students taking 
mathematics modules, but they have not previously been included in research on mathematical 
identity. Participants were recruited in lectures where the lead author explained the study, distributed 
plain language statements and returned one week later to voluntarily sign up students who were 
interested in taking part. An online questionnaire (adapted from MIST/MINT) consisting of three 
open-ended questions was employed with each question appearing on a separate page. A pilot study 
conducted in Winter 2017 involved 18 respondents (10 science and 8 engineering students). There 
were 32 respondents to the main study (22 science and 10 engineering students), contributing a total 
of 8000 words. The first two questions are the focus of this paper and are presented in Figure 1. Note 
that third level is an Irish term for higher level education. 

Q1. Think about your total experience of mathematics. Tell me about the dominant features that 
come to mind. 

Q2. Now think carefully about all stages of your mathematical journey from primary school to 
university mathematics. Consider: 

· Your feelings or attitudes to mathematics 

· Influential people 

· Critical incidents or events 

· Specific mathematical content or topics 

· How mathematics compares to other subjects 

· Why you chose to study a course which includes mathematics at third level 

With these and other thoughts in mind, describe some further features of your relationship 
with mathematics over time. 

Figure 1: First two questions of the online questionnaire which were presented on separate pages  

To analyse the open-ended responses to the online questionnaire we used a hybrid process of 
inductive (data-driven) and deductive (theoretical) coding adapted predominantly from Fereday and 
Muir-Cochrane (2006) with influence from Braun and Clarke (2006), Boyatzis (1998) and Crabtree 
and Miller (1999). The latter authors noted that codes “can be constructed a priori, based on prior 
research or theoretical perspectives or created on preliminary scanning of the text” and that “...some 
initial codes are refined and modified during the analysis process.” (p. 167) Their claim that 
constructivists tend to lean towards co-created codes fits well with Braun and Clarke's categorisation 
of thematic analysis as “grounded theory ‘lite’” (Braun & Clarke, 2006, p. 81) since this research 
builds on the grounded theory research of MIST/MINT.  
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Our approach consisted of seven stages (of which, the first four will be described further on): 

Stage 1 Development of codebook from literature review of MIST/MINT and pilot study. 

Stage 2 Code stratified sample of main data. 

Stage 3 Broad reading and summarising of entire data set. 

Stage 4 Code data using inductive and deductive codes. Elaborated in detail below. 

Stage 5 Group codes to develop thematic map. 

Stage 6 Review themes and use the data to check for internal and external homogeneity. 

Stage 7 Define and name themes. 

Stages 3-7 broadly align with the five steps suggested by Braun and Clarke (2006) who treated 
inductive and deductive coding as separate techniques. Stages 1-5 correspond to steps from Fereday 
and Muir-Cochrane (2006) but with a significantly expanded fourth stage as well as stronger interplay 
between the data analysis stages. Crabtree and Miller (1999) have a simple four step model (with 
stages 2-4 combined) which omits the testing stage although they do go on to discuss such a step (p. 
168). All authors participated in stage 2 coding but stage 3 and 4 were conducted by the lead author. 

Although most authors recommend an iterative line-by-line coding process where codes are 
developed, applied and immediately examined for groupings without reference to the data (Braun & 
Clarke, 2006), we realised that the density of these responses (on average every 9 words resulted in 
a code) meant that it was considerably more difficult to extract meaningful codes from the data in a 
single round of coding without including multiple perspectives (Strauss & Corbin, 1998). We thus 
developed stage 4 significantly beyond what is described by other authors. The remainder of this 
section will describe stages 1-4, which have been completed, with particular emphasis on stage 4. It 
is intended that Stages 5-7 will follow the recommendations given by Braun and Clarke (2006). 

Stage 1 

MINT/MIST participants’ responses were used to develop seven main categories: self-reflection, 
influential people, ways of working in mathematics, comparing other subjects, nature of mathematics, 
right and wrong and mathematics as a rewarding subject (Eaton, Oldham, & OReilly, 2011, p. 32). 
These categories were expanded into codes using the examples and discussion from five MINT 
papers, three MIST papers (one unpublished) and two papers from an interim ‘bridging’ study. Codes 
that did not clearly fit in any of these categories were simply left uncategorised. 

The pilot study helped to further demarcate the codes under each category. We followed Fereday and 
Muir-Cochrane (2006, p. 85) and Boyatzis (1998) by naming the codes, providing a description, some 
keywords (if possible) and giving at least one example from the pilot study of an instance of the code. 
From the start we adopted the use of an extra miscellaneous code for items which do not fit any 
existing category. This step is used to check the comprehensiveness of the codebook and to ensure 
nothing relevant is overlooked the coding process because it is difficult to categorise. For example: 
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ID86 I think its good that I'll be practicing something I'm bad at.It means I'll be eventually 
not so bad at it. 

Stage 2 

A codebook consisting of 37 codes was applied to a stratified sample of 8 from the 32 respondents, 
based on grouping, cohort, gender, word count and age. All three authors coded this data separately. 
We discussed the results with reference to the codebook and adapted the codebook by splitting, 
combining or creating codes as appropriate changing the number of codes to 47. The definitions were 
also updated, keywords added and examples from the sample included in line with the relevant codes. 
Our initial main coding principles were derived from the sample coding at this stage. They are given 
here with examples to show their effectiveness: 

1. Code in-line by including a number at or near each instance. Codes can run across sentences,
overlap and a single statement may require multiple codes.

Pay attention to context between sentences or along entire paragraphs. 

ID 118 Physics is about explaining everything essentially, and making sense of everything. 
That's why maths is interesting to me... 

This student talks about making sense of everything but the second sentence makes clear that 
mathematics also plays a role either intrinsically or in tandem with physics. 

2. Codes should be broad enough to allow a range of responses to be grouped. Especially where a
continuum exists, e.g., mathematics is exciting/boring or hard/easy.

3. Often participants will express a combination of both positive and negative, e.g., elements they like
and elements they don’t like or parts they find hard or easy:

ID124 I enjoy certain parts of it. 

ID78 Certain aspects came easier to me than others... 

ID98 Leaving a hard topic and starting to learn a harder one makes the first hard topic 
seem very easy. 

They may give a ‘middle-ground’ response: 

ID96 Generally ok experience... 

ID120  I found mathematics okay. 

Students sometimes mitigate their opinions: 

ID40 I don't like Maths as a subject but I like doing it. 

Stage 3 

The entire dataset was read through for “close contact and familiarity” (Boyatzis, 1998, p. 45) and to 
make the important first step towards understanding the narratives therein. To accomplish this the 
data was read through repeatedly, “taking notes or marking ideas for coding” (Braun & Clarke, 2006, 
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p. 87) as well as noting the key points made by participants (Fereday & Muir-Cochrane, 2006, p. 86). 
These notes were used later for comparison with coding. 

Stage 4 

To enact the principles stated at the beginning of this section, the coding process consisted of several 
steps (ways of looking at the data): 

(a) Apply codes using a fine-grained, line-by-line approach. 

(b) Write a summary of each participant’s response and compare with the codes allocated. 

(c) Compare with original notes from broad reading of the data. 

(d) Code each ‘piece of interest’ by removing chunks of text and re-reading them in isolation. 

(e) In tandem: 

i. Pick each code and read through data for possible extra occurrences of the code. 

ii. Use keywords to identify possible extra occurrences of each code. 

(f) Interrogate data coded as miscellaneous to determine if re-categorisation is possible. 

This resulted in the creation of 20 inductive codes to be reviewed at the next stage. Each step shown 
above added to the exhaustiveness of the coding by illuminating more opportunities for codes to be 
applied but was also useful for adding new ideas as notes under each participants’ response. Step (a) 
arose because we found that students’ responses contain a lot of information even in short pieces of 
text: 

ID 55  I generally did well in maths exams [good at maths] compared with other subjects 
[comparing subjects], which made me enjoy the subject more [I enjoy maths], and 
gave me confidence and a belief that I could do well [origin of interest in maths] in 
the field [confidence in maths]. 

In step (c) almost every initial note had been encapsulated in the coding. Of the remainder, most notes 
were now either obviously unfounded or involved too high a level of interpretation to be included: 

ID 118 ...explaining the reasoning behind what we were learning. We just learned for the 
sake of learning... 

This was initially considered as “I like to understand the content rather than learn it off” which 
requires a leap of interpretation. It fit much better in the inductive code “Learning/doing maths 
without knowing why.” 

In step (e) we discovered that searching for keywords often resulted in hits from the summaries in 
part (b). This was useful for identifying via a paraphrasing whether the correct codes had been applied. 
Searching for ‘pace’ brings up my comment “Pace. Quicker (because I was good?)” Original 
statement was “I would be finished far ahead of everyone in my class” (ID69). 

In (f) the miscellaneous code proved useful for collecting statements that were hard to categorise or 
would require a new code to be classified. Of the 36 statements coded, 28 were reclassified leaving 
only 8 statements remaining as miscellaneous. 
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Discussion 
This paper outlined a hybrid inductive and deductive methodology to facilitate a thematic analysis 
which incorporated the knowledge gained from previous work on mathematical identity in Ireland 
while also continuing to be grounded in the new data from this study. We built on the previous 
grounded theory research by MIST/MINT while acknowledging that we do not yet have a fully 
validated and reliable process for accessing mathematical identity. The categories developed by 
MIST/MINT were particularly helpful to determine whether a code might be present in a statement. 
Adopting a finer, detailed coding approach at stage 4 with many steps acknowledges that students’ 
narratives are a link or window to their identities rather than being their putative ‘actual’ identities. 
The ever-changing nature of identity necessitated a semantic approach where one does not look 
“beyond what a participant has written” when coding. The interpretative stages happen during 
analysis after coding has taken place. This is in line with the advice of Braun and Clarke (2006, p. 
98) but contrary to that of Boyatzis (1998). All steps of coding proved useful for combating 
discounting of evidence in uncoded text (Crabtree & Miller, 1999, p. 171) particularly coding ‘pieces 
of interest’ and using keywords. Using a miscellaneous code represented 53 of the 116 (or 46% of) 
code changes made and thus was the most effective way to ensure that meaningful responses did not 
go undetected. The small sample size of 32 facilitated this multi-step coding.  

We expect this methodology to advance the drive toward an effective process for accessing students’ 
mathematical identities. We see this approach as providing insights for students to improve their 
learning experiences and for educators to ease the transition to higher education for such students. 
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The present study focuses on the constructs of students’ engagement in Inquiry-based learning (IBL). 
We analyzed two mathematics classrooms, using videos and interviews with the two teachers. After 
recognizing the IBL phases, a synthesis of Kong, Wong and Lam (2003) and Liem and Martin (2012) 
models was made in order to determine each student’s engagement, in the framework of the IBL. 
Then the constructs of three students’ engagement were also studied in relation to the phases of IBL, 
trying to identify the type of engagement that prevails at each phase of IBL. According to the results 
35 out of 47 students studied were highly engaged. All high achieving students were highly engaged, 
having all three constructs of engagement increased. Low achieving students with high engagement 
presented intense behavioral and affective engagement. There were also low achieving students that 
presented low engagement during IBL. 

Keywords: Inquiry-based learning, engagement, affect, workplace. 

Introduction 
Over the last few decades, serious concerns have been expressed about the quality of teaching and 
learning in mathematics and science and the need for improvements in order to meet the increasing 
needs of society (Artigue & Blomhøj, 2013). Inquiry based learning (IBL) approaches are promoted 
in research and developmental programs in mathematics and science (Pedaste et al., 2015). Several 
research projects, such as, the European, Mascil project (https://mascil-project.ph-freiburg.de/), seek 
to diffuse IBL in science and mathematics teaching in primary and secondary education. Much of 
current IBL’s research focuses on cognitive issues, communication, mathematical competence, tools 
and resources for planning or implementing inquiry, professional development and collaboration-
based learning (Dreyøe, Larsen, Hjelmborg, Michelsen, & Misfeldt, 2018), and less on affect during 
IBL. 

In the educational context, students’ motivation and engagement play an important role in their 
achievement and their interest in school (Liem & Martin, 2012). Students’ disengagement is a 
contemporary issue of mathematics education, as it may affect long-term development of our 
communities (Attard, 2012). Although many IBL projects showed some positive benefits for 
students’ learning, engagement’s complex and multifaceted construct may be the reason why little 
research has been done to study engagement in IBL context.  

Therefore, we consider it necessary to study IBL in relation to students’ cognition and affect, arguing 
that the use of IBL approaches can contribute to the increase of their engagement. This study focuses 
on the constructs of students’ engagement while IBL approaches are adopted in mathematics 
teaching. The research questions are: Can the implementation of IBL affect students’ engagement? 
Which constructs of students’ engagement (cognitive, behavioral, and affective) appear and intensify 
in the IBL phases? 
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Theoretical Framework 
Inquiry-based learning, according Pedaste et al.’s (2013), is a process in which learners construct 
knowledge by discovering new casual relations, formulating hypotheses and testing them through 
experiments, and making observations. An important characterization of IBL is the development of 
an inquiry cycle (the phases of IBL with their sub-phases, and their interactions), a concept that has 
various definitions in the research literature. Pedaste et al.’s (2013), bibliographic review and 
synthesis of 60 articles identified the exploratory cycle that includes the phases of orientation, 
conceptualization (questioning and hypothesis generation sub-phases), investigation (exploration, 
experimentation and data interpretation sub-phases), conclusion and discussion (communication and 
reflection sub-phases), while almost all phases are related to each other.  

Motivation is a central concept of affect research, and it can manifest itself in knowledge, emotion 
and/or behavior (Hannula, Evans, Philippou & Zan, 2004). The structures of engagement and 
motivation are often used together and are very closely linked. Motivation is defined as people’s 
energy and boost for learning, effective work and achievement of their full potential, while 
engagement is defined as behaviors that align with this energy and lead (Liem & Martin, 2012), but 
engagement is more complex than observed behaviors. Kong, Wong and Lam (2003) developed an 
instrument for detecting students’ engagement in the mathematics classroom, which operates in three 
levels: cognitive, behavioral and affective engagement. Cognitive engagement involves the idea of 
recognition of the value of learning and the willingness to go beyond the minimum requirements, 
while behavioral engagement encompasses the idea of active participation and involvement in 
academic and social activities (Attard, 2012). Affective engagement implies a sense of belonging and 
acceptance of the goals of schooling, and is related to the notions of self-efficacy, expectation, 
interest, perceived control, and autonomy (Kong et al., 2003). Several studies have found that the 
three constructs of students’ engagement do not work individually but support and complement each 
other in a cooperative way. Also, Liem and Martin (2012) developed the Motivation and Engagement 
Wheel, which is a multidimensional framework representing salient cognition and behavior pertinent 
to motivation and engagement, and offers a discrimination tool for cognitive and behavioral elements 
of engagement (see Liem & Martin, 2012, pp. 4-7). 

Methodology 
The context of the study and the process of data collection 

The present study is a case study of two mathematics classrooms, conducted in Athens, Greece. The 
data used were videotaped lessons and semi-structured interviews with both teachers. The lessons 
were designed within the context of a European research project, Mascil (www.mascil-project.eu), 
that aims to support teachers in using IBL approaches into their teachings, and making connections 
to workplace (activities that involve authentic problems, and can be more or less similar to activities 
actually carried out by workers in the workplace with more or less use of authentic tools/artefacts).  

A grade 10 class, (27 students, boys and girls, mixed cognitive dynamics, 15-16 years old), and a 
grade 11 class (21 students, boys and girls of mixed cognitive dynamics, 16-17 years old) were 
studied. Two videotaped lessons were analyzed in which the teachers used the “Drug concertation” 
task, from Mascil’s platform, where students partly adopt the role of pharmacologist in finding out 
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how drugs work in the body, using mathematical models instead of experimenting in a laboratory 
(http://www.fisme.science.uu.nl/toepassingen/22038/). The grade 10 classroom was divided into 
seven groups of students, while the grade 11 classroom into five groups. Each group’s students were 
chosen by the teachers, so that groups of mixed dynamics were created.  

Both interviews with the teachers lasted about one hour. Teachers responded to questions about each 
student's performance and participation before and during IBL. Episodes related to students’ 
engagement from the videotaped lessons were selected by the researcher and discussed with the 
teachers, and questions related to the IBL process were asked in relation to the selected episodes.  

Data analysis  

The groups formed in the classroom were the groups of our analysis. In order to facilitate this process, 
based on individualized students' data drawn from the interviews with the teachers, students were 
grouped into two groups. The group of high achievers includes students with a great interest in 
mathematics, a high cognitive mathematical level, active participation in the mathematics discourse 
in the classroom. The group of low achievers includes students with moderate, low or no interest in 
mathematics, medium or low cognitive level, low or no participation in the mathematics discourse in 
the classroom. One student out of 48 couldn’t be studied because of inadequate data. 

In order to distinguish IBL phases in each lesson, each teaching was studied at classroom level, using 
the videos and teachers’ interviews, trying to identify the points of change of the phases, and their 
localization, based mainly on the cognitive processes of the students. Then, after determining the 
relationships between the phases and the sub-phases of IBL, the IBL framework for each of the 
teachings was formed, according to the pedagogical learning framework of Pedaste, et al. (2015).  

A synthesis of Kong et al.’s (2003) and Liem and Martin’s (2012) models was made, in order to 
determine students' engagement, in IBL’s framework. Kong et al.’s (2003) model was used for the 
engagement constructs (cognitive, behavioral, and affective) enriching it with the sub-constructs of 
the Liem and Martin’s (2012) model. The videos were observed and transcribed. Based on this 
scheme, the data of each classroom’s video was coded student by student. Through this process, the 
coding scheme used for the analysis of each student’s engagement is presented below in Table 1.  

 Engagement Indicators 

C
og

ni
tiv

e 

Connecting with previous knowledge, 
Dependence on the teacher, Trying Examples, 
Comprehend question, Justification of 
arguments, Explanation to the other members of 
the group, Independent work , Dependent work, 
Memorization, Abstraction (limit notion 
intuitively), Superficial strategies, Passive 

Questions, Completing peers’ phrases, 
Exchange of ideas, Give directions 
explanations and information, 
Justification of an argument, Answer 
teacher’s questions, Give information, 
Explain processes and justify, 
Question the teacher, Gestures 

B
eh

av
io

ra
l Attention, Persistence, Thoroughness, 

Participation, All over the task, Partial 
Participation, Surface participation 

Body movements, Face expressions, 
Verbal expressions, Interaction with 
peers (verbal, body), Gestures 
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A

ffe
ct

iv
e Anxiety, Uncertainty, Interest, Enthusiasm, Joy, 

Disruption, Boredom, Curiosity, Uncertain 
control, Failure avoidance, Anger, Goal 
achievement 

Face expressions, Verbal expressions, 
Body Stance, Gestures 

Table 1: The constructs of student engagement and their indicators 

Recognizing the constructs of students’ engagement was a complex methodological process, as the 
engagement is a multidimensional concept also related to the internal affective structures of each 
individual. An example of our analysis is illustrated below, concerning the engagement of a high 
achiever, in mathematics, student: 

Listening to the explanations of the other members of the group (behavioral- attention), he is 
crouched over his notebook (behavioral- all over the task), hitting his pencil on the desk and 
overcrowding his eyebrows (affective- anxiety and uncertainty). Using footnotes in a tooltip 
over the paper to help organize the presentation of the solution (behavioral- thoroughness). 
At the same time he says: "no, we do not have to do that because our teacher will not like it 
... though it seems to me right (cognitive- dependence on the teacher and dependent work) ... 
I do not know what to do [puff and blow] (affective-uncertain control and anxiety) ... let's ask 
him to be sure he (referring to the teacher) knows better (cognitive- dependence on teacher, 
affective- failure avoidance)". 

Then each student's engagement was evaluated as high or low based on the three constructs of 
engagement he had presented. Each of the three constructs was equally accounted for, for the above 
evaluation. High is recognized as the engagement of a student who has an intensified engagement in 
at least two of its constructs (cognitive, behavioral and affective engagement). 

The constructs of student engagement were also studied in relation to the IBL phases, in three cases 
of students, trying to identify the type of engagement that prevails at each IBL phase. The first student 
(boy, grade 11) was a high achiever and presented high engagement, the second student (girl, grade 
10) was a low achiever and presented high engagement while the third (girl, grade 10) was also a low 
achiever but presented low engagement. The students 1, 2 and 3 were typical representatives of their 
achievement groups and an overall picture of students’ engagement in the IBL phases could be 
formed. 

Results 
The results of this research showed that both classrooms during IBL presented all IBL phases and 
sub-phases, except experimentation (investigation phase- no experiment was required to test the 
hypotheses), as well as reflection (discussion phase- limited time spent on this phase).  

In grade 10, one of the twenty-seven students could not be analyzed because of inadequate data. 
Seven of twenty-six students presented low engagement, while the remaining nineteen presented high 
engagement. Seven of the highly engaged students were low achievers, while the other twelve were 
high achievers. Regarding the highly engaged, low achievers group, all of them had intense affective 
and behavioral engagement, but six of them had low cognitive engagement, as they were only using 

Thematic Working Group 08

Proceedings of CERME11 1464



 

 

superficial strategies. For the twelve highly engaged, high achievers, all three constructs, particularly 
cognitive, were intensified.  

 Total Highly 
Engaged 

Cognitive 
engagement 

Behavioral 
engagement 

Affective 
engagement 

Low Achievers 24 12 Limited Intensified Intensified 

High Achievers  23 23 Highly Intensified Intensified Intensified 

Table 2: Overall results of students’ engagement 

In grade 11, fifteen out of the twenty-one students presented high engagement while the remaining 
six students presented low engagement. Five of the highly engaged students were low achievers, 
while the other ten were high achievers. The highly engaged, low achievers had intensified affective 
and behavioral engagement while the cognitive engagement of three of them was low, since they 
were only using superficial strategies. All high achievers were highly engaged, having all three 
engagement constructs intensified, especially their cognitive one. Table 2 presents aggregated results 
of students’ engagement. 

The constructs of engagement in the phases of IBL: Three cases of students 

Then, an attempt was made to identify the intensified constructs of students’ engagement in each IBL 
phase, of three representative cases of students. The findings are summarized in Table 3 (where CE, 
BE and AE are cognitive, behavioral and affective engagement respectively, and with bold are the 
intensified engagement constructs of each phase).  

Student 1 was a highly engaged, high achiever. He was highly affective engaged in orientation phase, 
demonstrating interest and enthusiasm for the activity. In conceptualization phase, his behavioral 
engagement was intense, as he was constantly all over the activity, paying attention and showing 
persistence. Affectively, in the same phase, he was very enthusiastic about both the context and the 
solution process of the task. In investigation phase, all three constructs of his engagement were 
intensified. Of particular interest was the development of his cognitive engagement as he addressed 
questions of understanding both to the teacher and to the other members of his group, he used trying 
examples, connected the old knowledge with the new one, and almost at the beginning of the 
investigation phase he realized, through the diagram, that the function tended to be limited in a 
number, and later he explained his thought to both the professor and the rest of the group, being very 
joyful about it. In conclusion phase, his cognitive engagement was intense as he tried to explain his 
thoughts to the rest of the group using arguments. Finally, in discussion phase, all constructs of his 
engagement were intensified, as he revived the entire previous inquiry process. While he was 
communicating his group’s results to the rest of the class, he was very enthusiastic about their 
solution. 

Student 2 was a highly engaged, low achiever. She, in the orientation phase, did not seem to have any 
interest in the activity, and she also presented signs of boredom. In conceptualization phase, her 
curiosity was triggered, so she began to ask questions of understanding the activity, while at the same 
time she was paying attention. In investigation phase and in conclusion phase, all three constructs of 
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her engagement were much intensified, and were kept unabated throughout these phases. Affectively, 
she was very interested and curious in getting involved with the task. Feeling uncertain control, she 
tried to explain to the other members of her group her understanding of the solution given. Finally, 
in the discussion phase, during which the group presented its results to the rest of the class, the 
student's 2 engagement was limited, while only her behavioral engagement was intensified, leaving 
some other members of her group to present the cognitive part. 

 Student 1  

High Engagement                              

Student 2 

High Engagement 

Student 3 

Low Engagement 

O
ri

en
ta

tio
n CE: Comprehend questions 

BE: All over the task 

AE: Enthusiasm, Interest 

CE: None 

BE: Attention 

AE: Boredom 

CE: None 

BE: Partial Participation 

AE: Boredom 

C
on

ce
pt

ua
liz

at
io

n CE: Comprehend questions, 
Trying examples 

BE: All over the task, attention, 
Persistence 

AE: enthusiasm, interest 

CE: Comprehend questions 

BE: Attention 

AE: Curiosity, Interest 

CE: Passive 

BE: Partial participation, 
Attention 

AE: Curiosity 

In
ve

st
ig

at
io

n 

CE: Connecting with previous 
knowledge, Trying Examples, 
Comprehend question, 
Justification of arguments, 
Explanation to the other members 
of the group, Abstraction (limit 
notion intuitively) 

BE: All over the task, attention, 
Persistence, Participation 

AE: Interest, joy, uncertain 
control 

CE: Comprehend questions, 
Trying examples, 
Connecting with previous 
knowledge 

BE: Attention, 
Thoroughness, Participation 

AE: interest, curiosity, 
uncertain control 

CE: Passive 

BE: Partial participation, 
Attention 

AE: Curiosity 

C
on

cl
us

io
n CE: Connecting with previous 

knowledge, Explanation to the 
other members of the group, 
Abstraction 

BE: Attention, Participation 

AE: Interest, joy  

CE: Trying Examples, 
Explanation to the other 
members of the group 

BE: Attention, Participation, 
Thoroughness 

AE: Interest, Curiosity 

CE: Passive 

BE: Partial participation 

AE: Interest, Boredom 
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D
is

cu
ss

io
n 

CE: Connecting with previous 
knowledge, Explanation to the 
classroom, Abstraction 

BE: Attention, Persistence, 
Participation 

AE: Interest, enthusiasm, joy 

CE: Connecting with 
previous knowledge 

BE: Attention, 
Thoroughness 

AE: Interest 

CE: Passive 

BE: Attention 

AE: Disruption, 
Boredom 

Table 3: The constructs of student engagement in the stages of IBL 

Student 3 was a low achiever who presented overall low engagement, especially in the phases of 
orientation, conclusion and discussion. In conceptualization phase she showed interest and thus her 
affective engagement was intensified, while in investigation phase her behavioral engagement was 
intensified as she showed some attention and partial participation. In all phases she was cognitively 
passive, like the other students of this case. Affectively, the students of this case seemed to be bored 
during the whole activity, except from conceptualization phase, during which some of them showed 
a bit of interest, or curiosity, mainly for the context of the activity. 

Discussion 
According to the results 35 out of 47 students were highly engaged. This may be due to the 
possibilities offered by Inquiry-based learning and teaching, as according to Artigue and Blomhøj 
(2013), it becomes a potent tool in personal and collective response efforts of an important question, 
making these experiences not only unpublished but inspired and structural for the whole educational 
project.  

The students of case 1 were cognitively highly engaged in the investigation, conclusion and 
discussion phases. This is probably due to the fact that IBL, on average, increases conceptual 
understanding in science, mathematics, engineering and technology courses (Freeman et al., 2014, as 
cited in Capaldi, 2015), while traditional teaching can lead to low levels of conceptual comprehension 
(Epstein, 2013, as cited in Capaldi, 2015). The students of case 2 were all highly engaged, especially 
in the investigation and the discussion phase. This may be due to the fact that these two IBL phases 
are relying on group-work and collaboration provides support for tackling difficult problems or 
concepts (Capaldi, 2015), which encourages students to be active participants in the construction of 
their knowledge. Yet several students in this group showed low cognitive engagement in the entire 
IBL process. This might be due their previous cognitive deficiencies, or to their dependence on their 
group’s highly achieving students, in a cognitive and affective way. 

Highly engaged students, of both cases 1 and 2, showed intense behavioral engagement and positive 
affective engagement. This may be due to the authenticity of the workplace activity, allowing them 
to realize the usefulness of their school mathematics education and redefining their motives. Students’ 
positive affective engagement may be due to the dissociation of the IBL activity from their grade 
retention. Grade retention often leads to maladaptive behavior, impeding cognition (Liem & Martin, 
2012), causing negative emotions (for example anxiety) about mathematics education. All three 
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constructs of engagement are interrelated (Kong et al., 2003), thus negative affective engagement 
relates to negative behavioral and cognitive outcomes, and vice versa.  

But the results from students of case 3 showed that despite the opportunities offered by IBL to 
increase students’ engagement, there are students who are not motivated by them, without this, 
however, rendering them ineffective, since the number of these students is small compared to our rest 
sample. These students, according to their teachers, have no interest for the lesson, do not participate 
and most of them are mathematically weak. Τhis is probably due to affective  variables, which can be 
seen as indicative of learning outcomes or as predictive of future success (Hannula et al., 2004) or 
failure. At this point, further research into the subject's discipline is necessary. 

One of the limitations of this study is that its inferences were mostly drawn from (replicated) 
observations, and in a subsequent phase, it would be good to combine with personalized interviews 
with the students to deepen more the analysis. Finally, some critical questions for future research 
arise: Can the more frequent use of IBL approaches alter the engagement of weak learners? If so, 
which constructs of engagement could be affected and in what way the IBL cycle may change?  
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Investigating emotional intensity in mathematics classrooms: an 
enhanced methodology or affective gimmickry? 

Elizabeth Lake 
UCL Institute of Education, UK; elizabeth.lake@ucl.ac.uk 

One known issue when working with emotions in context is the challenge of observing what are often 
transitory, fluid, and unconscious emotions, that vary in intensity and valency, and can change 
depending on when or who is asking. This paper reports on how one physiological measure, a simple 
galvanic skin response (GSR) sensor, which has become possible to use in class due to technological 
advances, can be used in conjunction with other methods such as observation and stimulated recall 
interview and can give insight into variations of a mathematics teacher’s emotional intensity as they 
interact with students. The addition of physiological data to a common form of methodology provided 
useful prompts for teacher reflection and hence has potential for supporting development and is 
potentially a powerful addition to more common methodologies. 
Keywords: Emotions, Intensity, Teachers, Physiological data, Mathematics. 

Introduction 
This paper discusses a method for examining emotional intensity in mathematics lessons, addressing 
this challenge through the incorporation of physiological data in addition to more common methods. 
Pekrun (2018) lists five ways to assess emotions; self-report, implicit assessment, neuro-imaging, 
behavioural observation (e.g. facial or postural expression) of emotionality (De Simone, 2015), and 
peripheral physiological analysis. In this paper, the focus is on incorporating the use of Galvanic Skin 
Response (GSR) to the study, a physiological measure applicable to studying intensity of emotions. 
There are studies of undertaking Mathematical tasks whilst being measured for heart rate and 
temperature, however measuring GSR is less intrusive than, for example, heart rate.  

The wider study originated from a desire to explore how experienced teachers (past the emotional 
transition of training) use emotions, particularly positive emotions, within the social interactive 
context of teaching. There is evidence that exposure to positive emotions supports recall (Titsworth, 
McKenna, Mazer & Quinlan, 2013). Whilst, from a student perspective, Mottet & Beebe (2000) 
suggest that affect directly determines time spent on a task. Additionally, experiencing a social 
environment that includes emotions such as enthusiasm (Kunter et al., 2008), is likely to encourage 
perseverance and engagement.  Early in the investigation of affective practices, I realised that little is 
known about the use, or the degree of intensity of emotional expression, but that emotional intensity 
and engagement are closely associated.  

The data comes from experienced secondary mathematics classroom teachers in the UK. The method 
is illustrated by two teachers from the same school, Carol and Debbie, both deemed ‘good’ teachers 
by the school, in that they both have a strong rapport with students. The full research design 
incorporated that emotions are transitory, that they depend on context and evocation, and explored 
what teachers bring to the classroom (through pre-observation interviews), interaction (through 
videoed and audio-recorded lessons), and how teachers perceived the interaction (through stimulated 
recall interviews). The method was designed to explore the use of positive emotions when teaching 

Thematic Working Group 08

Proceedings of CERME11 1469



 

 

mathematics and to examine whether teacher affective interpretations match the observer perceptions. 
Embedding the element of GSR measurement offers an additional means of gauging intensity of 
emotions. This paper aims to show how a measurement of intensity can be incorporated into 
contextual emotion research, and to identify advantages of such incorporation.  

Definitions and the wider context 

Emotion can be conceptualised as energy that boosts cognitive functioning; energy that moves back 
and forth between individuals and the social. Emphasising the intensity of emotions, Lakoff and 
Johnson (1999) consider emotion is “…better understood as the tension of excitement level produced 
by the interaction of brain processes of perception, expectation, memory and so forth” (p. 176). The 
physical temporality emphasised by this definition is appealing as incorporative of the complexity of 
emotions. I retain the term emotion for use ‘in-the-moment’, as identifying the fluid and transitory 
nature of emotions. The energy definition seems applicable to the study of intensity within the 
dynamic and complex context of classroom teaching. Especially, as Graham and Taylor (2014) note, 
“[e]motions, then, can be a filter through which the perceiver may make rapid judgements in 
situations where there is much ambiguity” (p. 115). It seems reasonable that emotions as a filter would 
elicit internal intensity and the study was designed to capture such intensity. An experienced teacher 
often intervenes by instinct, as part of apparently effortless ‘expert’ teaching, and that the intensity of 
such an instinctive reaction may be internalised. Yet Kahneman (2011) suggests that changing a task, 
especially rapidly, is effortful. At such points, a teacher might increase their internal engagement, and 
hence an internal indicator such as skin conductance would show change, as emotional intensity 
increases. Barsade (2002) confirms that stronger emotions are more effective in communicating 
emotion, perhaps even with negative valence, as higher energy draws more attention. 
The surge of physiological data in social sciences and education 

Technologies that support the use of physiological data are becoming more accessible and portable, 
yet the use of GSR in active contexts remains sparse, usually taking place as study of individuals 
under static laboratory conditions. For example, within biological psychology, the use of skin 
conductance is common, with studies ranging from ADHD in boys to antisocial and violent 
behaviour, whilst many studies involve children where self-reporting is potentially less reliable. 
However, the application is now wider than sciences. For example, Oxley et al. (2008) suggest that 
political views have a biological basis. The physiological measures used include measuring change 
in skin conductance whilst participants were exposed to threatening or non-threatening images. 
Intriguingly, they found that, for participants with strong political views, lower physical sensitivities 
correlated with being more likely to support foreign aid, liberal immigration policies, pacifism, and 
gun control. Skin conductance is also used within risk analysis research. For example, when given a 
gambling card game task, it appears that, for successful performers, skin conductance levels (SCL) 
increase before selection of bad decks i.e. a risky choice (Crone, Somsen, Van Beek & Van Der 
Molen, 2004) which may suggest an internality associated with expertise. Such internality may also 
apply to experienced teachers who are likely to be skilled at concealing their emotions in class. 

Outside the laboratory, Doberenz, Roth, Wollburg, Maslowski & Kim (2011) recorded the GSR of 
people over a 24-hour period and suggest the technology has become feasible for use outside the lab 

Thematic Working Group 08

Proceedings of CERME11 1470



 

 

with some concerns, such as time delay and interpreting rapid response changes. The context of a 
mathematics classroom bears little similarity to experiments conducted in a lab, a point that has led 
to studies on the real-world applications of physiological data, including in education. For example, 
Koren (2016) developed a device to use with young children in school “to take measurements in 
children's most natural environment and where authentic behaviors are exhibited” (p. 14). Teachers 
are significant in forming emotional climates and deciding pedagogical approaches. In a university 
study about learning geography, student engagement during various pedagogical approaches, was 
measured using skin sensors on a subset of student participants (McNeal, Spry, Ritayan & Tipton, 
2014). Unsurprisingly, they found movies and class dialogues to be more engaging than lectures.  
The GSR version used  

GSR measures small changes in skin humidity as one indicator of either stress or excitement in the 
body; an approximation to emotional intensity. The eSense ESensor® (Mindfield Biosystems Ltd, 
2013), a simple affordable portable device which attaches to a mobile phone and according to the 
website, has been previously been used in studies on excitement, anxiety & stress. The sensor records 
bodily response, either positive or negative, and quickly produces data which is easily converted into 
an intensity graph. For practical purposes, despite differences in skin response activity being greatest 
on the palms or soles of the feet, and fingertip measurement (distal phalanges) not possible (a teacher 
needs to use their hands to write or gesture), researchers recommended using the intermediate 
phalanges on the first and second fingers of the non-dominant (usually left) hand (e.g. Crone et al., 
2004), so the recording is less prone to interruption by loosening of the sensor fastenings or similar.  

Whilst observing, I noted intensity points from the teacher, thus using the device to corroborate what 
I, as observer, experienced and felt. Researchers suggest there is delay between experiencing intensity 
and recording by the sensor of up to 10 seconds (Oxley et al., 2008) although other researchers suggest 
a shorter time. Using video recordings surrounding an episode of interest (the 2/3 minutes around the 
peak value) is crucial to provide corroborative data and raises the importance of subsequent teacher 
interpretation of the data, as only the teacher can suggest why or what stimulated any GSR change. I 
incorporated stimulated recall into my method as the final dimension of a holistic and temporal 
(before, during and after) design; forming a methodology based around case studies using interviews, 
observation and stimulated recall discussion. The post-observation discussions were designed to 
enable each teacher to talk about their thoughts and emotions during the videoed lesson, using the 
clips of their teaching as a prompt with discussion centred on an extract(s) of video. Only at the end 
of the interview sharing the resulting GSR graph and discussing interpretation of the graphical results.  

The study’s use of GSR sensor data: Carol and Debbie 
By the time I was observing classes in school, much of the crucial (and intense) norm setting that 
takes place at the start of a new academic year was in place, so I observed normal daily practice rather 
than norm establishment. Participants were all teachers qualified (QTS) to teach mathematics at 
secondary school level with a least 3 years’ experience, thus limiting the influence of extremes of 
emotions associated with novice change processes.  

The teachers wore the device in earlier sessions, without recording, until they felt comfortable, as 
wearing an ESensor device whilst teaching may unintentionally affect classroom interaction. I 
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informally practiced with the device with lecturers in university seminars, and within a few minutes, 
wearers behave as normal and all the participants reported forgetting about the recording and, 
although aware of the device, there is no apparent change in their observable behaviour. Software for 
video editing (Microsoft moviemaker) was used to extract clips to share with teachers. The two 
episodes presented here were based on highest intensity readings. Observation notes enabled me to 
use the device to corroborate what I, as an observer, experienced. Occasionally, the ESensor device 
failed to work. Although I provided a belt pouch for phone and voice recorder, there were still trailing 
wires, which were occasionally pulled out. In order to conduct the post-observation discussions as 
soon after lessons as possible, preparing for discussion required rapid examination of the video, and 
the ESensor graphs proved particularly useful in the process of episode selection. The excitement and 
interest engendered by the use of the device was notable in all cases; it has novelty, even if it is 
occasionally unreliable. Participants were aware of, and were happy with, the risk that GSR 
measuring may reveal more than a teacher wishes to share, as what triggers emotional reactions can 
be deeply personal and is often hidden, even from self. Combined, the data of interview, video and 
ESensor recordings and post observation discussion tell one possible story of each teacher and their 
affective professional life. The physiological measure, through the use of the ESensor, results in 
numerical data, that, when graphed, provides a visual insight into a lesson to share with each teacher. 
I next present illustrations of the use of the ESensor with two participants, Carol and Debbie, showing 
one of the videoed lessons in each case. 

CAROL 

    
Figure 1: Graph of lesson (Carol)                             Figure 2: Teacher C (Carol) ESensor distribution 

In the episode selected by the maximum reading in microSiemens (μS) over time (indicated by the 
box in Figure 1), Carol exhibits characteristics of mild frustration or puzzlement in a predominantly 
calm yet positive lesson. I do not think I would have noted this episode based on observation alone. 
In the episode Carol is modelling a careful assessment of the situation before acting, as well as 
patience and thoughtfulness when doing mathematics. She encouraged explanation from students 
with her head on one side, with expectant body posture and interested face (Figure 3). Finally, we 
have emotional uncertainty or doubt. This is visually expressed as biting her lip and putting her head 
on one side and then the other, and articulated later as apprehension, “... because I knew they should 
be able to do it [Draw the graph], but they weren’t giving me anything back”. In post observation 
discussion, she assigns this doubt to either lack of understanding or to the group dynamic. Her 
behavioural response, both observed and subsequently explained, is to shift from instructional mode 
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to conversational level. Accordingly, she sits down with the group. She explains this action as, 
“…trying to get down on their level and having more of a conversation”. 

   Figure 3: Episode images (Carol) 

One student in the group (shown to her left) is unknown to her, and she later expresses concern that 
she does not have a strong relationship with him. She thought that this unknown factor could 
potentially shift her out of her comfort zone and may account for the higher ESensor measurement. 
There were multiple possible reasons discussed in post-observation interview. 
DEBBIE 

The box in Figure 4 indicates the video clip used with Debbie. The higher values at the end occurred 
after the end of the lesson. Given the active nature of Debbie whilst teaching, with rapid movements 
and many emotional expressions, I would have predicted more variation in the graph (e.g. Figure 4), 
which are relatively consistent, although with a higher median value than for Carol (Figure 2, Figure 
5) The base values for each teacher differ. This perhaps draws attention to the internal and external
nature of emotions. For example, a teacher who is overtly emotional whilst teaching may have
reduced internal affect or vice versa. Without the use of a physiological measure this potentially
important difference is invisible.

Figure 4:  Graph of lesson (Debbie)          Figure 5: Teacher D (Debbie) ESensor distribution 

In the selected episode, identified by uniting observation and ESensor, we see Debbie multitasking, 
moving rapidly from one group of students to another, answering and asking questions, a repeated 
pattern within the observed lessons. Even her discourse changes attention rapidly. 

Student: Miss, we’ve done it! 

Debbie: Wooo! [Excited voice] Can you please put it in your um...Right, you are going to 
take that and you’re going to do that now...Put it in your paperclip and come and 
see me... so that’s Kim and Lee, ok Lee. Right, take one of those, you are going to 
work on that between you...and stick it in... [To another student] Ooh...swearing? 
[Louder] No! 

My impression from this is that modelling enjoying doing mathematics is important to her. For 
example, in the selected episode she uses playful language and body movements. She waves her arms 
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to show an aeroplane flight path to two students who were engaged in an extension task on angles of 
elevation and depression. One of the considerations for ESensor use was movement, but comparing 
readings across the lesson, similar value appears without being associated with movement, a point 
verified by other studies (e.g. Koren, 2016). 

Both teachers commented on their graphs in general at the end of the stimulated recall interview. 
Carol, whose graph is more variable, yet presents as mainly unemotional in the observed lessons, says 
of the video before seeing her graph, “I was shocked how calm I looked, I don’t feel like I’m that 
calm… perhaps I am not conveying it [excitement], because a lot of it is the day to day of it, I’ve 
done it 20 times, 50 times, 100 times…” whereas Debbie, who is constantly active in her teaching, 
comments afterwards, “that’s intriguing, maybe I look like I’m a bit mental but I’m actually pretty 
calm.” 

Discussion 
The teachers were intrigued by emotional intensity research and I suggest the resulting discussions 
were focused and relevant. The exemplar teachers, despite no intention to compare, offer contrast in 
terms of visible emotions in the classroom. Debbie is overtly emotional as she teaches and Carol the 
opposite, yet their ESensor graphs appear to indicate otherwise, suggesting there is more to be learnt 
from the use of this tool. The use with Carol and Debbie, has challenged a common view that, in 
order to engage students in learning, there must be some notable teacher expression of positive 
emotions; that they have to be overtly expressed to be useful. However, this somewhat validates the 
use of the ESensor, as Carol is still experiencing emotions, albeit hidden, and her comments in 
interview confirm this. Both Carol and Debbie take pleasure in their classroom teaching, in having 
strong relationships and effectively communicating the mathematics that students need, as well as 
care for the student emotional needs (Lake, 2015). In this endeavour, emotions play a subtle, yet 
central, part within their different classroom practices. I would suggest that the use of the ESensor to 
hone in on their emotions in-the-moment, has strengthened attending to this aspect of the study.   

A valuable contribution of the ESensor use is as director for the selection of episodes. The tool 
enabled a quick turnaround with creating a video extract to share with teachers (in all cases the next 
working day). Usually selection of stimulated video recall relies on repeated watching of lengthy 
video to select a suitable episode, and when selected inherently has bias through observer selection 
and interpretation. Some (although not all) bias is reduced by using the ESensor graph to select 
episodes. There are limitations to acknowledge; GSR offers a rough approximation of intensity, whilst 
the rapidity of change in emotions means interpreting the graphs can be challenging. This is one 
reason for attending to the teacher interpretation, but even then, there are many reasons for intensity 
at any point, some of which may not be shared with an interviewer. The most significant limitation is 
the multiple possible interpretations and hence the unreliability, unless intense emotions are involved. 
However, overall, a strength is in facilitating a more focussed discussion in many cases, so more 
perhaps than affective gimmickry. A further limitation to acknowledge is that some lessons do not 
have notable indications of intense emotions. In these cases, the choice made was to use the maximum 
value, and to share the episode around this value with teachers. In some cases, the choice was little 
above the median for the lesson. 
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Three main implications arise from the use of the ESensor. Firstly, that awareness of use of emotions 
as a precursor to self-development has potential for developing self-regulation. Secondly, the data 
produced some potentially intriguing patterns for further investigation, albeit based on a small sample. 
Thirdly, as in both examples used here, the peaks frequently occurred in conjunction with supporting 
students to understand a specific point. This has implications for where a teacher should use intensity, 
something the experienced teachers may do instinctively and merits further investigation. 

Consciousness of emotions, or even awareness of the activity of teaching is an issue especially 
pertinent to studying experienced teachers. New teachers are cognitively conscious, although not so 
effective at noticing wider than singular activity, such as when working one-to-one (Mason, 2002). 
Whilst experienced teachers often find it hard to articulate what happens when teaching, as only 
discrepancies are memorable. The use of the ESensor may support examination of engagement in 
contexts such as training. The second implication is that early indications imply that teachers who 
might be identified (by their students) as more engaging teachers are repositioning more frequently, 
which is associated with being responsive to students, but which is potentially more effortful. The 
ESensor may have a future role in identifying such patterns. One might speculate that it is this 
characteristic of engagement that the ESensor is helpful in identifying for early career teachers.  

In the two examples, peaks occurred in conjunction with supporting students to understand a specific 
point. In Carol’s case, how to create an appropriate graph, and for Debbie, what it means to visualise 
an elevation whilst managing other tasks simultaneously. One might suppose that both episodes 
require intensity to communicate the ideas, and as such is effortful, as highlighted by the ESensor. 
Teachers direct their communicative effort and intensity towards points of most impact on learning, 
meaning to change pace, to interrupt as in performance, or to restore emotional balance. Yet teachers 
cannot continually sustain high intensity, so there is much to be learnt about deliberate and instinctive 
placing of intensity. The idea of managing emotions of others through meta-awareness of intensity is 
not new. Mason (1989) talks of meta-awareness in terms of ‘Knowing-to’, which is, “…the kind of 
knowledge which enables people to act freshly and creatively” (p245). Amongst the participants, I 
observed apparently unconscious and almost instinctively managed tailoring of intensity. The use of 
the ESensor was aimed at partially addressing this methodological challenge, as assessing the degree 
of emotional regulation is important to interpreting emotions of classroom teachers. 

To conclude, there are indications that the incorporation of physiological data is a powerful addition 
to common methodology for examining emotions in-the-moment. The use and sharing of each 
resultant graph, by acting as a focus for discussion, has facilitated discussion between myself and the 
participant teacher, and enabled each teacher to explore their emotions during the selected episode, 
and to articulate these through the medium of the ESensor. The use of the ESensor seems to have 
focused attention on what may be critical moments in a lesson. The potential is rich, the study is 
encouraging of the potential for GSR use in future research, both to validate the use of a sensor as 
having value within affect research and as a means to address the concern of affect researchers around 
the unavailability of emotions and hence one known limitation in any study of emotions. The ESensor 
usefully guided the selection of extracts from a lesson, focussing attention on indications of intensity, 
in addition to observation notes and my own response to the teacher.  
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Pupils' perception of their understanding in mathematics  
and its connection to private supplementary tutoring 
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Very little research has been done in the area of pupils’ perception of their understanding and in 
tutoring in the Czech Republic, so this paper describes one of prime attempts to find any connections 
between them. In a sample of 142 lower secondary pupils, distinctive attitudes were sought towards 
their desired understanding in mathematics and towards their attendance on tutoring lessons in 
mathematics. The results show there might not be much connection between these two areas, 
therefore, reasons are discussed and questions for further research are stated. 

Keywords: Mathematics, understanding, knowledge, private supplementary tutoring. 

 
Introduction 
It may seem self-evident that pupils would like to understand mathematics. This claim is supported 
by various research (e.g. Ali, Reid, 2012), nevertheless, researchers agree on the fact that when 
understanding is too difficult, pupils tend to memorize concepts by rote (Ali, Reid, 2012; Skemp, 
1978). 

The quality of pupils' understanding is often investigated, however, not much attention is paid to 
pupils’ notion of their own understanding and its quality. Attitudes towards one’s own understanding 
could also influence whether someone attends private supplementary tutoring (PST) lessons, 
therefore, a connection between pupil's attitudes towards their understanding and towards tutoring is 
analyzed in this paper. 

The incentive for writing this article was a small-scale study conducted by the author, where 19 pupils 
of private supplementary tutoring were given a short questionnaire concentrating on their attitudes 
towards their own understanding and quality of their knowledge in mathematics (Novotná, 2018a). 
The study showed that pupils have differing comprehensions of what it means to “understand 
mathematics”. Thus, a follow-up study was realized where a similar selection of pupils was asked 
a question: “Try to put into words what it means for you that you understand something in 
mathematics” (Novotná, 2018b). Analogously, two kinds of understanding were exposed, the deep 
and the surface one (see section Theoretical background). 

As a consequence, a larger and more detailed study has been done, which is presented in this paper. 
Do pupils mind when they do not understand something in mathematics properly? Do they seek 
tutoring lessons to help their understanding? Or is there any connection between understanding in 
mathematics and attending private supplementary tutoring lessons? 
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Theoretical background 
Understanding in mathematics 

Understanding is based on images or imagined feelings, situations, etc., or conceptual representations 
(Sierpinska, 1994). The level of understanding also influences the way we perceive and process new 
information. 

Skemp distinguishes two kinds of understanding. Relational understanding is seen as “knowing both 
what to do and why”, while the instrumental understanding is characterised as “rules without reason”, 
because a pupil is able to formulate a rule, uses it in a standard situation, but does not understand why 
it works (Skemp, 1978, p. 9). None of the types of understanding should be refused, according to the 
author, nevertheless the relational understanding seems to be more suitable for mathematics due to 
its complexity, because it tends to be easier to remember, more permanent, adapts easily to new tasks, 
etc. (Skemp, 1978). 

Types of understanding are also captured by Hiebert and Lefevre’s notions of procedural and 
conceptual knowledge. Conceptual knowledge is defined as “knowledge that is rich in relationships” 
and can be imagined as a web of knowledge where “the linking relationships are as prominent as the 
discrete pieces of information” (Hiebert & Lefevre, 2009, p. 3–6). Procedural knowledge consists of 
two distinct parts – a formal language or a symbolic representation system, and algorithms and rules 
for completing a mathematical task. Star supplements the theory saying that both types of knowledge 
can be unequally deep, complex, or shallow or restricted, so we should distinguish different levels of 
procedural and conceptual knowledge, too (Star, 2005). For purposes of this paper, 1 the types of 
understanding like relational and conceptual are referred to as a deep understanding, types of 
understanding as instrumental and procedural are labelled as a surface understanding2. 

Private supplementary tutoring 

PST is defined in this paper as tutoring in a school subject (e.g. Mathematics, or English), which is 
taught in addition to mainstream schooling. This definition of private tutoring includes private 
tutoring lessons and preparatory courses (e.g. for entrance exams). The definition is inspired by Bray 
and Silova (2006, p. 29). However, they take into account only tutoring for a financial gain. Very 
little research on PST has been conducted in the Czech Republic. The only quantitative study was 
done by Šťastný (2016) who, within his doctoral thesis, compared his data with international surveys 
and analyzed the reasons of similarities and differences. The author collected questionnaire data from 
1 265 students in the last year of higher secondary education in two regions of the Czech Republic, 
interviewed 22 tutors and analyzed tutoring offers on a specific tutoring website. He found out that, 
after foreign languages, Mathematics is the second most common subject for tutoring (Šťastný, 2016). 

                                                 
1 There are other attempts to capture types of understanding, for example, in the Czech context, Hejný's distinction 
between mechanical and non-mechanical knowledge is elaborated. 

2 Among the authors, there, of course, are minor differences in their conception of deep and surface understanding. 
However, for the purpose of this paper, these are not of a high importance. 
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The most common reasons for attending tutoring lessons were labeled “bad marks” and “preparation 
for a school-leaving exam”.3 

Authors often point out that in mathematics tutoring it is often procedures and methods which are 
emphasized (e.g. Bray, 2010; Hohoff, 2002). Pupils are taught to solve tasks only mechanically, 
without deep understanding, which usually means that it is impossible to further develop their 
knowledge. The procedures and methods are often soon forgotten. 

Perception of one's understanding and its implications 

Mathematics is often labelled as one of the least popular and most difficult school subjects (e.g. 
Hrabal & Pavelková, 2010; Chvál, 2013). According to Chvál (2013), it is very difficult to measure 
all three components of an attitude (cognitive, affective, and behavioural) quantitatively. 
Qualitatively, we can pose extensive questions to a respondent or observe their reactions when solving 
mathematics problems; but mostly, only the cognitive and affective components are measured. 

Some research on attitudes towards mathematics has been done: there is a reciprocal relationship 
between attitudes towards mathematics and achievement in it (Ma, 2012), learners’ attitudes are also 
greatly influenced by school teachers (Ponte et al., 1991), and the social context is an influential 
factor, too (Hannula et al., 2018). However, as far as we know, the notion of one's understanding or 
knowledge has not been paid attention to. Some links can be found to self-efficacy, since positive 
beliefs and higher self-efficacy tend to be correlated with high performance in maths (Hannula et al., 
2018). 

Study 
Research questions 

RQ1 –Is there any specific kind of understanding that pupils of selected lower secondary schools seek 
in mathematics? 

RQ2 – Is there any connection between a desired kind of understanding and attendance on PST? 

RQ3 – Does the attendance on PST change the notion of one's understanding in any way? 

The study was realized in two lower secondary schools in Prague, Czech Republic during the first 
week of the school year. 149 pupils were given a questionnaire, seven of them were later excluded 
from further analysis, due to their incomplete and/or contradictory answers and/or their different 
mother tongue, making 142 respondents in total (see Table 1). The questionnaire was given to the 
whole class, no selection of pupils was made, all the grades were given the same questionnaire. 

3 The reasons for seeking tutoring differ between the majority of European and Asian countries. In Europe, such as in the 
Czech Republic, pupil's bad marks are the common motivation, whereas in many Asian countries, tutoring lessons are 
attended by successful pupils, since they want to further broaden their knowledge (Lee, 2013). 
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 girls boys total 
6th grade 15 23 38 
7th grade 24 23 47 
8th grade 14 18 32 
9th grade 16 9 25 
total 69 73 142 

Table 1: Respondents of the study  

 
Table 2: Items in the questionnaire

The questionnaire consists of the following parts (see Table 2): PST in general, PST of mathematics, 
attitudes towards PST of mathematics, attitudes towards Mathematics at school, attitudes towards 
mathematics in general, and attitudes towards one’s own understanding in mathematics. The 
questionnaire was constructed on the basis of available literary sources, mostly the following: Silova, 
Būdienė and Bray (2006) and Šťastný (2016) – PST in general, PST of mathematics; PISA 
questionnaire (OECD, 2013) –attitudes towards PST of mathematics, attitudes towards Mathematics 
at school; Hrabal and Pavelková (2010) – attitudes towards mathematics in general; Code et al. (2016) 
– attitudes towards own understanding in mathematics; and it was further developed and modified by 
the author. 

Four sets of items are mainly important for this paper4: A, B, C & D. The following set of items (set 
A) explores the type of desired understanding in mathematics. Pupils were asked to label their level 
of agreement on a 5-point Likert scale to each of the 12 statements (only 10 of them were relevant to 
the research question and thus are presented here). Agreement to the statements marked as + supports 
deep understanding, whereas agreement to the statements labelled as –supports surface 
understanding. 
a) – I am satisfied when I manage to solve a task, even if I don't understand the solution. 
b) – Formulas are only for counting, they don't help to understand mathematical concepts. 
c) + It is important for me to understand how formulas and procedures work. 
d) – It's a waste of time trying to understand how formulas were created. 
e) – When solving a task, I only need to know the formula, not why it works. 
f) – Understanding mathematics means that I remember something well. 
g) – When I forget a formula during a test, there is nothing I can do to come up with it. 
h) – The best way to learn mathematics is to learn sample tasks by heart. 
i) + When I learn something new in mathematics, I always look for connections to something I 

already know. 
j) – All I need to solve a task is to know the necessary formulas. 

There are two similar sets of items (sets B and C), measuring how often concrete situations appear. 
Set Bis aimed at the actual teaching of mathematics, asking: “How often do these situations happen 

                                                 
 4 The questionnaire was given to the pupils in Czech language and was pilot tested. Only some of the results are discussed 
in this paper. 

topic set items 
PST in general  1, 2 
PST of M (Mathematics)  3–10 
attitudes towards PST of M C, D 11–13 
attitudes towards M at school B 14 
attitudes towards M in general  15 
attitudes towards own understanding in M A 16 
about the respondent  17–19 
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in your Mathematics lessons at school?”; whereas set C concentrates on ideal tutoring lessons, hence 
asking: “How often would you like these situations to happen during a perfect mathematics tutoring”. 
The situations5 in set B are taken directly from a PISA questionnaire (OECD, 2013), for tutoring the 
same situations are used, only “a teacher” is exchanged for “a tutor”, singular is used instead of plural 
(pupils), etc. Deep understanding is supported by an agreement to these situations. Four-point scale 
is used, going from “every lesson” to “never or almost never”. 

In the set D, the respondents were given four reasons why they either attend, attended or would choose 
to attend tutoring lessons in mathematics. They were asked to label their level of agreement to each 
of them on a 5-point Likert scale, and subsequently choose the most and least important reason. 

The data from the questionnaires were transcribed and analyzed, using different types of t-tests (see 
the section Results) and methods of a descriptive statistics (arithmetic mean [AM], standard deviation 
[SD], etc.) in Excel. It was observed, whether there are differences in the evaluations of girls and 
boys, between respondents with PST experience and without it, and within individual school grades. 

Results 
Almost 46% respondents acknowledged 
participation in private tutoring lessons in 
Mathematics (see Table 3), with no bigger 
difference between girls and boys. 

Table 3: Pupils attending/attended PST lessons in mathematics 

As the most important reason for PST attendance was usually chosen “I want to understand the subject 
matter in depth” (AM=1.98, SD=1.17, chosen in 38%), whereas as the least important reason it was 
“I want to do homework” (AM=3.15; SD=1.44, chosen in 71%). However, the reason which was 
most agreed to was “I want to practice the subject matter from school” (AM=1.07, SD=1.07). No 
significant difference was found between pupils with and without PST experience (p>0.1). 

When we compare the evaluation of items in the sets B (Mathematics at school) and C (ideal tutoring) 
using a paired sample t-test (i.e. evaluation of sets B and C by the same respondent), two items appear 
statistically significant: “The teacher (tutor) helps us (me) to learn from mistakes we (I) have made”, 
p<0.0006; and “The teacher (tutor) presents problems for which there is no immediately obvious 
method of solution”, p<0.05. These two items should therefore create the biggest difference between 
the Mathematics at school and mathematics tutoring. 

However, there are almost no significant differences in the evaluation of the set B and C apart, using 
an independent sample t-test. Among pupils who acknowledge participation in PST lessons, in the 
set B there is only one significant item, “The teacher presents problems that require students to apply 
what they have learned to new contexts”, p<0.05, which was agreed to more by pupils without PST 

                                                 
5 An example of such a situation is: “The teacher asks questions that make us reflect on the problem”, or “The teacher 
asks us to explain how we have solved the problem”. 
6 This item was statistically significant (p<0.01) even in smaller samples – girls vs. boys, with vs. without tutoring, 
school 1 vs. school 2, and in individual grades (with exception of grade 6). 

  with PST in M with PST in M (%) total 
6th grade 13 34.2% 38 
7th grade 25 53.2% 47 
8th grade 9 28.1% 32 
9th grade 18 72.0% 25 
total 65 45.8% 142 
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experience. There was no significant difference found, neither between the pupils who acknowledged 
participation in private tutoring lessons and who did not; nor between boys and girls. 

Those pupils who took part in mathematics tutoring were asked (measuring their level of agreement 
on a 5-point Likert scale) how their understanding changed. Deterioration of understanding is strongly 
disagreed by most of the pupils (AM=4.51, SD=1.01), while improved understanding is agreed by 
the majority (AM=2.07, SD=1.25). The majority of respondents also strongly disagree that it is shame 
attending tutoring in mathematics (AM=4.52), SD=0.99). 

The data from items c and i in the set A were inverted, so that they support surface understanding as 
the rest of the items in the set (see Table 4). The item a7 supports the surface understanding the most 
(highlighted in the table), on the other hand, items d8 and e9 support it the least, therefore, endorse the 
deep understanding (highlighted in the table). All the other items are placed around the mean (3.0), 
which means that there is no outstanding trend in them. 

  a f j i g c b h d e total 
AM 2.25 2.63 2.69 2.78 3.05 3.18 3.21 3.48 3.56 3.70 3.05 
SD 1.20 1.19 1.12 3.99 1.03 4.14 0.98 1.25 1.14 1.11  

Table 4: Items from the set A with their AM and SD 

There was no significant difference between the evaluation by pupils with PST experience and 
without it. The biggest difference was in the item a, which was evaluated slightly better by pupils 
with acknowledged PST experience (AMwith PST=2.09, AMwithout PST=2.39, p=0.14). 

Discussion and conclusions 
The attendance on PST lessons in Mathematics was acknowledged by almost 46% respondents, which 
is a bit more than other research shows – Šťastný (2016) claims 36.8% of the respondents took part 
on PST (and only 53% of these in mathematics), Behr (1990) only 31% of the respondents in 
Germany. The difference is probably caused by our definition of tutoring, since also tutoring without 
any financial gain was taken into account in this study. Another reason could be the choice of 
a sample, since the study was conducted in the capital city. In peripheral areas it may not be so 
common to attend a tutoring. On the other hand, the study was conducted in the first week of a school 
year, so it may be expected that more students are about to join tutoring lessons later in the year. 

RQ1 – Is there any specific kind of understanding that pupils of selected lower secondary 
schools seek in mathematics? 

According to the data, there is no prevailing tendency towards one type of understanding by the 
majority of the respondents (AM=3.0510). This finding is supported by Skemp (1978), who claims 
that both types of understanding are useful, and one pupil can actively use both. However, there is a 
slight tendency that the respondents with PST experience incline a bit more towards a surface 
understanding (in 7 out of 10 items). The reason why would need some further research, we may only 
                                                 
7 I am satisfied when I manage to solve a task, even if I don't understand the solution. 
8 It's a waste of time trying to understand how formulas were created. 
9 When solving a task, I only need to know the formula, not why it works. 
10 1 – preference of a surface understanding, 5 – preference of a deep understanding 
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assume that one of the reasons can be pupils’ attendance on preparatory courses, in which there is 
often (such as at school) no time for going under the surface of algorithms and procedures (Brousseau, 
2002). Another explanation may be that pupils do not even know they do not understand something 
properly (deeply). 

RQ2 – Is there any connection between a desired kind of understanding and attendance on 
PST?  

Taking PST lessons may not be bound to one’s desired type of understanding, no connection was 
found statistically significant. This may be caused by the great range of types of PST which a small 
number of respondents evaluated. To find any connections among various specific types of tutoring 
(individual, in a group, at school by their teacher, preparatory courses, etc.) and pupils’ notion of 
understanding, a greater sample of respondents would be needed. 

RQ3 –Does the attendance on PST change the notion of one's understanding in any way? 

Respondents mostly agree their understanding in mathematics was improved with the help of PST. 
Nevertheless, by this they can mean both, deep and surface understanding. Further and longitudinal 
research would be needed to show, if individual preferences in the type of understanding can be 
changed with the help of PST. 

This study has its limitations and it probably poses an equal number of questions as it answers. Due 
to the lack of research on how one sees the quality of his/her understanding, this study is seen as an 
exploratory one. Further studies are needed.  
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Mathematical identity is understood in this paper as the multi-faceted relationship that an 
individual has with mathematics, including knowledge, experiences and perceptions of oneself and 
others. The researchers developed a protocol for accessing mathematical identity, initially designed 
for use with initial teacher education (ITE) students. The protocol has been refined and its use 
extended to students of mathematics in other contexts in Ireland. This paper reviews the iterations 
of the protocol, its development into an instrument, and the context and use of such an instrument. 
It addresses the issue of robustness of the instrument when applying it to contexts within and 
outside ITE. 

Keywords: Mathematical identity, personal narratives, online survey.  

Introduction 
Mathematical identity has been a topic of interest especially over the last twenty years, and many 
studies have addressed the mathematical identity of teachers or students in initial teacher education 
(ITE) programmes. The work described in this paper is intended to contribute further to exploring 
students’ mathematical identity. Originally focused on ITE students, it now includes other cohorts.  

In 2009, as part of the project MIST (The Mathematical Identity of Student Teachers), a protocol 
was developed that scaffolded students in writing about their encounters with mathematics. It was 
used with two groups of ITE students in the island of Ireland (Eaton & OReilly, 2009). The aim was 
to encourage them to reflect on their mathematical identity with a view to facilitating discussions 
around how that identity may impact on their own classroom practice. The students’ narrative 
responses allowed certain themes to be identified that spanned the responses of both cohorts. These 
themes also sufficed to describe the results of using a very similar protocol with undergraduate 
mathematicians taking modules on mathematics education (Eaton, Oldham, & OReilly, 2011). For 
the next iteration, in the study Mathematical Identity using Narrative as a Tool (MINT), the 
protocol was developed into an instrument that could be administered online, with the aim of 
accessing further cohorts with greater ease and efficiency. It was used with six cohorts of students 
in both jurisdictions in Ireland, within and outside ITE (Eaton, Horn, Liston, Oldham, & OReilly, 
2014, 2015). Details of these cohorts, and of the development of the instrument, are given below. 

The main aim of this paper is to address the usefulness of the instrument in a variety of settings. The 
paper first situates the work of the projects MIST and MINT within traditions of research on 
identity as distinguished in recent reviews of that research, and then traces the evolution of the 
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original protocol into the instrument used in MINT. In particular, the authors focus on how the 
themes identified initially in MIST apply to other cohorts (even outside ITE), and reflect on how 
robust the outcome themes appear to be, regardless of the cohort of students addressed. 

Literature review and outline of a theoretical framework 
Research in mathematical identity has attracted, and received, overviews and critical analyses for at 
least two decades. Earlier syntheses are discussed and expanded in some more recent surveys 
(Darragh, 2016; Goldin et al., 2016; Hannula, Pantziara, & Di Martino, 2018; Lutovac & Kaasila, 
2018). From these overviews, several aspects of relevance to this paper can be distinguished; they 
provide a framework within which the studies of mathematical identity can be addressed. 

A notable aspect is that there is still no agreement on the definition of mathematical identity. 
Darragh (2016) highlights and critiques the differing and indeed conflicting versions, or, in some 
papers, the absence of any clear definition. In Lutovac and Kaasila’s (2018) overview, the 
uncertainty created by multiple definitions is regarded as a given; however, following Sfard and 
Prusak (2005), they demand that studies should provide at least a working definition. 

Approaches can also be categorized as broadly social or broadly psychological. Many of the studies 
on mathematical identity draw on Wenger’s (1998) work on communities of practice. In this 
respect, they tend to follow what Lerman (2000) calls the social turn in mathematics education 
research that has been a prominent feature especially from the mid-1980s (Goldin et al., 2016). 
However, Lutovac and Kaasila (2018) argue that “neglecting the individual, i.e. how one thinks and 
feels and who one is, is at odds with the core concept of identity itself” (p. 767); they advocate for a 
more balanced psychosocial approach that allows for a focus on individuals’ thinking and feeling.  

Methodology constitutes another aspect. Qualitative approaches have dominated, with sample sizes 
typically being small, and just a few studies using coding and counting techniques (Darragh, 2016; 
Goldin et al., 2016; Hannula et al., 2018). The use of narrative has been particularly important; in a 
seminal paper, Sfard and Prusak (2005) actually take the narratives as constituting identities, hence 
opening the way to approaches requiring “close attention to the words used” (Darragh, 2016, p. 25).  

The mathematical identity of ITE students has been a topic attracting considerable focus. The value 
of research in the area is highlighted, for example by adverting to “some evidence that encouraging 
pre-service teachers to narrate their own or listen to their peers’ personal experiences with the 
subject makes them cope better, which may lead to the development of a more suitable identity for 
mathematics teaching” (Goldin et al., 2016, p. 17). Lutovac and Kaasila (2018) also note the 
process of change in ITE students’ mathematical identity, for example by emphasizing affective 
facets. 

Methodology and evolution from MIST to MINT 
The definition of mathematical identity formulated for the studies considered here is the following: 

Mathematical identity is considered as the multi-faceted relationship that an individual has with 
mathematics, including knowledge, experiences and perceptions of oneself and others.  
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(See Eaton et al., 2014, for references.) This situated the work primarily in the broadly social 
tradition, with some psychological aspects.  The methodology has chiefly involved students writing 
narrative accounts; analysis of the resulting qualitative data has been done by coding and counting 
as described below. Most work has involved ITE students; extension to other cohorts is a focus of 
this paper. 

The protocols and instrument, student cohorts, and establishment of themes 

The first study (of three), MIST, considered the identity of ITE students (pre-service primary 
teachers) who were at one of two institutions – one in Northern Ireland and one in the Republic of 
Ireland – and were specialising in mathematics (see, for example, Eaton and OReilly, 2009). 
Introductory demographic questions and Likert items were used along with a two-part protocol: 

P1. Students were asked to respond in writing to the prompt: “Think about your total experience 
of mathematics. Tell us about the dominant features that come to mind.”  

P2. They were then offered a more structured prompt: “Now think carefully about all stages of 
your mathematical journey from primary school (or earlier) to university mathematics. 
Consider: 
· Why you chose to study mathematics at third level 
· Influential people  
· Critical incidents or events  
· Your feelings or attitudes to mathematics 
· How mathematics compares to other subjects  
· Mathematical content/topics 

With these and other thoughts in mind, describe some further features of your relationship with 
mathematics over time.” 

The narrative responses were used to provide guidelines for focus group discussions, one in each 
institution. Discussion transcripts, together with the original narratives, were analysed to identify 
common threads and themes (Clandinin & Connelly, 2000). Using an approach informed by 
grounded theory, seven themes were identified; their main features can be summarized as follows: 

T1. Students’ self-reflection on learning and teaching relates to how students’ exploration of 
their mathematical identity leads them to deepen their insight into learning and teaching 
mathematics. 

T2. The role played by key figures in the formation of mathematical identity focuses not 
only on teachers and family members, but also on peers and society at large. 

T3. Ways of working in mathematics explores what students find effective in learning 
mathematics and why, either through individual endeavour or through collaboration.  

T4. How learning mathematics compares with learning in other subjects considers the 
particular characteristics of learning mathematics, usually at school, that distinguish the 
process from learning in other subject areas. 

T5. The nature of mathematics draws from a broad range of students’ perceptions touching on 
the philosophy of mathematics and on what doing mathematics is about.  
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T6. “Right” and “wrong” in mathematics concerns students’ perception that what is important 
in mathematics is to find the correct answer, and also a more general notion around the 
unambiguous nature of mathematical truth. 

T7. Mathematics as a rewarding subject examines the extent to which students enjoy the 
subject, often relating to how they persist with it or to significant moments of insight. (Eaton 
et al., 2011, pp. 156–157) 

These reflect both social and psychological aspects. For instance, T4 involves both aspects, and T7 
in particular includes affective issues, as highlighted by Lutovac and Kaasila (2018). 

In the second study, the students were undergraduate mathematicians at another institution, had 
elected to take modules in mathematics education, and thus were considered as “prospective” 
teachers despite not being in an ITE programme. Students wrote responses to P1 and P2 in their 
own time as part of the module assessment. Analysis was based on the MIST themes, which were 
found to be adequate for describing these narratives (Eaton et al., 2011; Eaton et al., 2015). 

In its third iteration, MINT, the research team of three people – the two from MIST, one from the 
second study – was augmented to five, with new members coming from two institutions in the 
Republic of Ireland. The protocol was extended (Eaton et al., 2015) to include a third part:  

P3. What insight, if any, have you gained about your own attitude to mathematics and studying 
the subject as a result of completing the questionnaire? 

The items, including introductory demographic questions and Likert items as used for MIST, were 
gathered into one instrument and made available online to six cohorts of students using 
SurveyMonkey, allowing students to respond at their chosen time and location. The students in four 
of the cohorts were in Initial Teacher Education (ITE) programmes. The other two cohorts were not; 
one comprised first year students of entrepreneurship (involving a one-year business mathematics 
module), while the other consisted of fourth year students of applied psychology (taking research 
methods and statistics-related modules in all of their four years of study). For the purposes of this 
paper, these two cohorts were denoted as Non Teacher Education (NTE).  

Coding the MINT data 

Of the 99 respondents in the MINT study, 86 provided data (narrative responses) for at least one of 
the three open questions, P1, P2 and P3; detail relevant to this discussion is provided in Table 1 
below. The five members of the research team were assigned respondents, ensuring that the data 
from each respondent was studied by three people; each person coded the data using the MIST 
themes and also sought to identify any other themes. No other themes were found. Several meetings 
were held to compare the coding and reconcile differences; this entailed clarifying the scope of 
some of the themes to obviate confusion and/or overlap, as elaborated below. Consensus was 
reached, so the question of inter-coder reliability did not arise. Overall, the seven themes provided 
adequate descriptions and coverage of the data, though themes T4 and T6 were less prominent than 
the others. Once the coding was complete for each element (respondent and question, P1-P3) of 
data, the instances of each theme (T1-T7) were counted. Analysis of data coded T1 (students’ self-
reflection on learning and teaching) from the 56 ITE students is reported by Eaton et al. (2015).   
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As regards clarification, when the MINT research team discussed the responses that were 
potentially to be coded T1, for example, the theme was refined as follows: T1 (i) applied when 
students explicitly reflected on their mathematical journey with reference to “then” and “now”; (ii) 
was extended to include reference to how students see themselves teaching and learning into the 
future; (iii) did not apply to data that comprised lists without context. There was also some 
development concerning potential overlap of themes, particularly T3 (ways of working in 
mathematics) and T5 (the nature of mathematics). The research team agreed that T3 applied to 
(i) what students did as they learned mathematics, inside or outside “the classroom”, and (ii) what
students find effective in learning mathematics and why, either through individual endeavour or
through collaboration. Moreover, it was agreed that T3 would include “rote learning” and “learning
for understanding” where the learner is the agent (rather than experiencing teaching for rote
learning or understanding, for example). In the summary description of T3, it was agreed that
“effective” would be interpreted as anything on the spectrum of effectiveness (including
ineffective); T5 would include (i) the “relevance versus abstraction” dimension and (ii) applications
in the real world. After clarifying such matters in relation to coding, it was judged that the MINT
instrument was appropriate for exploring characteristics of mathematical identity among different
cohorts of students or in different settings.

Extending the instrument to NTE students 
The application of the instrument to NTE students in MINT is considered in this section, and a 
comparison is made between the data from this cohort and the ITE data. It was found that the same 
themes could be applied satisfactorily across the entire MINT study; however, more detailed 
analysis is of interest.  

Cohort (ITE or NTE);  
questions from protocol (P) 

Number of 
respondents 

Percentage of students in each 
cohort coded in each theme 

T1 T2 T3 T4 T5 T6 T7 

ITE; P1 52 29 44 58 4 17 6 83 

ITE; P1, P2 & P3 combined 56 48 84 63 36 38 23 98 

NTE; P1 27 22 19 30 4 52 4 89 

NTE; P1, P2 & P3 combined 30 63 70 47 33 67 10 97 

Table 1: Coding of themes in response to open questions 

A feature of the protocol (for both MIST and MINT) is that respondents did not see P2 until after 
they had responded to P1. The importance of this open-ended and non-directive initial question is 
discussed in Eaton and OReilly (2009). Of the 56 ITE students who answered at least one of the 
three open questions, 52 responded to P1. Likewise, 27 out of 30 NTE students answered P1. On 
examination of the responses from all six cohorts (four ITE and two NTE), Table 1 summarizes the 
coding for the themes (T1-T7) for ITE and NTE students, drawing attention to the frequencies of 
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the codes in responses to P1 and to all three parts (P1-P3) of the protocol combined, as percentages 
of the number of respondents. 

The table reveals that themes T6 and T4 are weakest for each cohort; their frequency is especially 
low in response to P1. The theme most related to affect, T7, is by far the strongest for each cohort. 
With the prompts offered by P2 and P3, the codes for each theme are more frequent, as might be 
expected. However the profile of the two cohorts differs between themes and according to the 
prompts given. From a qualitative perspective, we should expect that the narrative around 
mathematical identity would depend on the cohort to which students belong, reflecting factors such 
as programme focus, teaching culture or maturity of students. To test if there are any significant 
differences between the ITE and NTE cohorts, a Fisher’s exact test was conducted for each of the 
themes. When all three questions in the protocol were considered together, the only statistically 
significant difference was for theme T5. NTE students were found to capture this theme 
significantly more frequently than did ITE students (with p = .013 in the Fisher test). For all other 
themes there was no statistically significant difference (p > .15 in all cases). However, when the 
responses to P1 alone are considered, the contrast between the two cohorts in relation to T5 is more 
stark (p = .003), while significant differences between the cohorts in relation to T2 and T3 are 
apparent (with p = .027 and p = .032, respectively). This indicates that prospective teachers are 
more likely to draw attention to the influence of others (such as their own teachers) and to the 
importance of ways of working with mathematics than are NTE students.  

Focusing on T1, it was noted that ITE students’ narrative relevant to this theme emphasized how the 
evolution of mathematical identity from second to third level education was intertwined with their 
commitment to teaching mathematics (Eaton et al., 2015). Naturally, such a perspective was found 
to be absent from the NTE cohort. However, significant evolution across the same educational 
transition was intertwined with the new focus that students appreciated regarding the applicability 
of the subject to the “real world”.  It is exemplified in the following quotation from one respondent: 

Whereas in Maths in secondary once the problem was solved that was the end of the matter, in 
college we use the solution after its completion … and apply them to everyday/business/social 
scenarios … My experience of maths in 3rd level has given me a new opinion on the subject, I 
can clearly see its uses, and an understanding of where to apply them. (P1, NTE) 

As far as T5 (the nature of mathematics) is concerned, the importance of application of mathematics 
to real-world problems comes out strongly for 17 of the 20 NTE students whose responses were 
coded for this theme. Here is an example of what one student wrote: 

Mathematics, in particular statistics is vital within the area of Psychology. I really enjoyed it 
during third level because I could see what the analyses were being used for. … Also, while I 
really enjoy maths now, I feel that the style of teaching through primary and secondary school 
had given me a complete misconception into what maths really is. (P2, NTE) 

In summary, the data show that the NTE students in MINT emphasise the practical nature and 
importance of mathematics and its relevance to business or psychology. It is reasonable to argue 
that precisely this aspect gives rise to the much higher instance of T5 among the NTE students than 
among ITE students. 
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Robustness of the instrument 
Two aspects of robustness are considered here. They are robustness of the themes (their adequacy in 
describing data for different cohorts), and inter-coder reliability in using the instrument. 

The seven themes identified in MIST, using a grounded approach following the steps of thematic 
analysis, were re-evaluated and basically endorsed in MINT by the members of the larger research 
team. The argument so far has shown that these themes appear to be robust in facilitating access to 
the mathematical identities of differing cohort of students: ITE students in different types of ITE 
programme, and in two different (yet neighbouring) countries; and also NTE students who had 
some element of mathematical work in their courses. No new themes have emerged. While 
variations are evident in the frequency with which the themes figured for the two cohorts, these 
could be related to the backgrounds and interests of the cohorts and are of intrinsic interest. It can 
be noted that placing the instrument online for MINT, using SurveyMonkey, reduced the influence 
of the researcher and strengthened anonymity for the respondents (as well as allowing them to 
respond where and when suited them); it also facilitated data collection for the research team. 

With regard to ensuring inter-coder reliability, considerable work was needed. Some of this 
involved clarification of the borderlines between themes, as described above.  Future coders might 
need training, as well as time to grasp the definition or description of each theme.  However, while 
the “coding and counting” approach was important for research, the narrative data elicited can, in 
any case, be of value for lecturers in appreciating their students’ preoccupations. As judged by 
answers to P3, it is also of value to at least some of the respondents themselves, in line with the 
original aims for the studies (and perhaps aligning with the work of Goldin et al. (2016), cited 
above). In fact (though details are outside the scope of this paper), two of the authors have used the 
instrument with several cohorts of students, and have found that their own teaching was enriched by 
what students wrote and that many of them reported finding the exercise helpful. 

Conclusion 
The importance of mathematical identity is well established, particularly in teacher education, 
notwithstanding the challenges in establishing clear definitions and a shared understanding in the 
academic community. This paper has drawn attention to the development of one protocol and 
instrument that have proved stable when working with a range of students both within and outside 
teacher education and in different countries.  The online instrument used has elicited both social and 
psychological aspects of identity.  It can be easily administered to students, and allows teachers and 
even students themselves to gain insight into mathematical identity, which can be beneficial for 
learning and teaching mathematics. The value of the data collected, for research and also for 
teaching and learning, promises well for further use in both similar and different contexts. 
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This study aimed to explore the structure and level of Grade 10-12 mathematics teachers’ 
epistemological beliefs regarding the nature of mathematics. Data was drawn from the international 
comparative study New Open Research: Beliefs about Teaching Mathematics (NorBa) investigating 
mathematics teachers’ beliefs in more than 15 countries. A total of 147 mathematics teachers 
completed the NorBa’s questionnaire in Cyprus. Exploratory factor analysis was employed to explore 
the underlying structure of mathematics teachers’ epistemological beliefs and MANOVA was 
employed to examine for differences in epistemological beliefs in relation to background 
characteristics. The results are discussed and compared with those of other countries in an attempt 
to explore for cultural differences. 

Keywords: mathematics, teachers, epistemological, beliefs 

Introduction 
It is generally acknowledged that beliefs are part of teachers’ professional competence. In line with 
this view, almost all theoretical classifications of teachers’ professional competence (e.g. Ernest 1989; 
Thompson 1992) include, apart from knowledge, teachers’ beliefs and attitudes. Beliefs are thought 
to be crucial to the perception of situations since they influence teachers’ choices of actions (Felbrich, 
Müller & Blömeke, 2008; Felbrich, Kaiser & Schmotz, 2012). Hence, teachers’ beliefs play an 
important role in teaching as they serve as a bridge between teachers’ knowledge and their actual 
teaching (Wilkins, 2008; Felbrich et al., 2012).  

Teachers’ epistemological beliefs about the nature of mathematics present an issue that has been 
prominent in empirical research (Felbrich et al., 2008; Felbrich, et al., 2012; Törner & Pehkonen, 
1996). In their recent overview of the research literature concerning mathematical epistemological 
beliefs, Depaepe, De Corte and Verchaffel (2016) state the importance of teachers’ epistemological 
beliefs since these beliefs affect teachers’ selection of learning tasks and classroom activities and also 
influence students’ epistemological beliefs. Different categorization schemes for teachers’ 
epistemological beliefs concerning the nature of mathematics have been developed (Ernest, 1989; 
Blömeke, Felbrich, Müller, Kaiser, & Lehmann, 2008; Felbrich et al., 2012) indicating that teachers 
differ regarding their epistemological beliefs. It is stated that beliefs have an experiential and context-
bound nature and can be understood as socially and culturally shaped mental constructs (Felbrich et 
al., 2012; Schoenfeld, 1998).  Thus, teachers’ epistemological beliefs may differ according to 
background variables or across different countries.  

This study focuses on mathematics teachers’ epistemological beliefs about the nature of mathematics. 
Specifically, we investigated the structure and level of 10-12th grade mathematics teachers’ 
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epistemological beliefs. Furthermore, we investigated for differences in these teachers’ 
epistemological beliefs in relation to their background characteristics.  

Theoretical framework 
Teachers’ epistemological beliefs about mathematics 

Beliefs in a more broad meaning could be described as “psychologically held understanding, 
premises, or propositions about the word felt to be true” (Richardson 1996, p.103). In the domain of 
mathematics, teachers’ epistemological beliefs refer to beliefs concerning the nature of mathematics 
or beliefs concerning the acquisition of mathematical knowledge (Depaepe, et al., 2016; Felbrich, et 
al., 2012). 

Different categorizations for teachers’ epistemological beliefs concerning the nature of mathematics 
have been developed in the respective literature. Ernest (1989) distinguishes between three views on 
the nature of mathematics: an instrumentalist, a Platonist and a problem-solving view. Another 
classification is that of Grigutsch, Raatz and Törner (1998) who developed four distinct views on the 
nature of mathematics: (a) the formalism-related view where mathematics is conceived as an 
axiomatic system, developed by deduction, (b) the scheme-related view, where mathematics is 
regarded as a collection of terms, rules and formulae, (c) the process-related view, where mathematics 
can be understood as a science which mainly consists of problem solving processes and (d) the 
application-related view, where mathematics can be understood as a science which is relevant for 
society and everyday life. The formalism-related view corresponds to Ernest’s Platonist view, the 
scheme-related view parallels Ernest’s instrumentalist perspective while the process view resembles 
Ernest’s problem solving view (Ernest 1989; Felbrich et al., 2012). Grigutsch et al. (1998) suggested, 
based on empirical work, that these four views could be subsumed under two perspectives of 
mathematics: the formalism together with the scheme-related view, describing mathematics as a static 
science and the process together with the application- related view, characterizing mathematics as a 
dynamic process. In their study they found that application and process views positively correlated 
with each other and the same happened with formalism and scheme views. Moreover, they found that 
the process view correlated negatively with the formalism and scheme orientations whereas there 
could be no systematic correlation traced between the application view and any other view except for 
the process view. 

Some empirical studies on teachers’ epistemological beliefs regarding the nature of mathematics 
involed teachers at different levels of mathematics education. The study by Felbrich et  al. (2008) 
investigated the structure and level of beliefs concerning the nature of mathematics of future 
mathematics teachers in Germany at the beginning and at the end of their education and also the 
epistemological beliefs of their educators in three academic disciplines (mathematics, mathematics 
pedagogy and general pedagogy). Using an adaptive version of the questionnaire developed by 
Grigutsch et al. (1998), they confirmed a solution of four factors corresponding to the four categories 
of teachers’ epistemological beliefs. With respect to the overall level of beliefs, both groups of future 
teachers’ highly agreed with process-related statements while they agreed less with scheme-related 
statements.  Another interesting result was that future teachers’ views seemed to be dominated by the 
dynamic aspect of mathematics (process and application) while the static aspect (formalism and 
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scheme) received less agreement; this pattern was more pronounced at the end of their education. In 
addition strong positive relations between formalism and scheme as well as between process and 
application views have been found for future teachers. The belief structure of these future teachers 
could not be characterized by the two poles as antagonistic (static and dynamic). Mathematics 
educators agreed with process, application and formalism related aspects and showed a less positive 
attitude toward scheme-related aspects while educators of mathematics pedagogy hold a more 
antagonistic view of mathematics as indicated by their preference towards dynamic aspects and 
relatively lower preference towards the static aspect. 

As Depaepe et al. (2016) concluded, research has revealed that it is not easy to describe one’s 
epistemological beliefs as either static or dynamic. Investigating the structure of epistemological 
beliefs with respect to a different population, this of mathematics instructors at university, Grigutch 
& Törner (1998) found that the antagonistic structure of beliefs regarding the nature of mathematics 
could not be found. The epistemological beliefs of these mathematicians could be described by both 
the dynamic and the static aspect co-occurring at the same time, revealing a complex understanding 
of mathematics. In the same vein, Roesken and Törner (2010) found that university mathematics 
teachers can hold simultaneously static and dynamic epistemological beliefs.  

Regarding cultural differences, Felbrich et al. (2012) analyzed pre-service primary teachers’ 
epistemological beliefs in mathematics in 15 different countries and investigated whether differences 
in these beliefs could be explained in terms of cultural differences between countries, using 
Hofstede’s terminology, individualistic versus collectivistic orientation. For this purpose, they used 
instead of the four views of mathematics the two perspectives, mathematics as a static science and 
mathematics as a dynamic process, stating that this was more useful in quantitative large-scale 
research. In individualistic countries (e.g. Germany, Switzerland, Norway), learners are perceived as 
autonomous subjects acquiring knowledge mainly independently on their own. In collectivistic 
countries (e.g. Philippines, Thailand, Malaysia) the role of social relationships on the acquisition of 
knowledge is more prominent. Learners participate in learning due to an obligation towards their 
teachers, their families and society. The results of the study showed that the epistemological beliefs 
of these future teachers varied strongly within but also between countries. Future primary teachers 
from highly collectivistic oriented societies agreed more strongly with the static aspects of 
mathematics while in highly individualistic oriented societies, the future teachers more strongly 
stressed the dynamic nature of mathematics. Additionally, in countries that could not clearly be 
characterized as individualistic or collectivistic, future teachers emphasized both aspects of 
mathematics to the same extent. The data also showed that future primary teachers with high 
mathematical content knowledge conceived mathematics as more dynamic in nature compared to the 
future primary teachers with lower mathematical content knowledge. 

Depaepe et al. (2016) stated that there is a strong need for a clear conceptualization of mathematics 
epistemological beliefs. In addition, the studies concerning mathematicians’ epistemological beliefs 
are rare. Hence, the purpose of this study was to investigate (a) the structure and patterns of the 
epistemological beliefs for a different population, i.e. 10-12th Grade mathematics teachers in the 
Cyprus context and (b) the differences in these teachers’ epistemological beliefs in relation to their 
background information. 
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Methodology 
Data collection, instruments and participants 

According to the Annual Report of the Cyprus Ministry of Education and Culture (2014), the Public 
Secondary General Education in Cyprus is offered to pupils between the ages of 12 - 17, through two 
three-year levels: the Gymnasium (Grades 7-9, ages 12-14) and the Lyceum (Grades 10-12, ages 15-
17). Currently, there are 38 Lycea and 7 joined Gymnasia and Lycea in Cyprus, where approximately 
280 mathematics teachers are employed. In Cyprus, there are minimum requirements to work as a 
mathematics teacher for grades 7-12 which refer to a bachelor’s degree in mathematics and also to 
the attendance to a one year course in pedagogy offered by the Ministry of Education and Culture.  

Data for this study was gathered from mathematics teachers working in Lyceum during the 2015-
2016 academic year. The study was conducted in the context of the international comparative study 
New Open Research: Beliefs about Teaching Mathematics (NorBa) investigating mathematics 
teachers’ beliefs in more than 15 countries. In the context of the NorBa project, a questionnaire was 
developed and culturally adapted in all participating countries. The questionnaire comprised of seven 
parts: one of them qualitative and six quantitative (86 items). The current study used data only from 
two parts (Part A and Part F) of the afore-mentioned questionnaire. Part A collected data on teachers’ 
background variables (gender, age, their teaching experience and highest level of formal education) 
while Part F explored mathematics teachers’ epistemological views on mathematics. 

Part F included the shortened version (20 items) of an instrument developed by Grigutsch et al. (1998) 
also used in Mathematics Teaching in the 21st century (MT21) study by Schmidt, Blömeke and Tatto 
(2011). The formalism-related and scheme-related scales consisted of 5 items each whereas the 
process-related and the application-related scales were approached using 6 and 4 items respectively. 
Example items for all subscales are presented below: for the formalism scale, “Mathematical thought 
is characterized by abstraction and logic’, for the scheme scale, “Mathematics is a collection of rules 
and procedures that prescribe how to solve a problem”, for the process scale, “Mathematical problems 
can be solved correctly in many ways” and for the application scale, “Mathematics entails a 
fundamental benefit for society”. Respondents were asked to show their agreement or disagreement 
to each item on a five-point Likert scale ranging from strongly disagree to strongly agree. 

Informative letters along with the questionnaire and prepaid envelopes were sent to mathematics 
teachers in all Lyceums inviting them to participate in the study on a volunteer basis. A total of 147 
mathematics teachers (44,8 % men and 55,2% women) completed and returned the questionnaire. 
The response rate was 52,5%. 

Various statistical techniques were employed to analyze the data of the current study. Confirmatory 
factor analysis (CFA) and Exploratory factor analysis (EFA) were employed in order to investigate 
the possible underlying structure of mathematics teachers’ epistemological beliefs, correlation 
analysis aimed to explore the relationship between the resulting factors and finally MANOVA was 
employed to investigate for differences in epistemological beliefs in terms of background variables. 
Data was analyzed using the statistical packages AMOS and SPSS.  
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Results 
Regarding the first research question of this study, a CFA using AMOS was carried out in order to 
validate the suggested structure for the 20 items. By employing a maximum likelihood estimation 
method, three types of fit indices were used to assess the overall fit of the model: the chi-square index, 
the comparative fit index (CFI), and the root mean square error of approximation (RMSEA). Hu and 
Bentler (1999) suggest using a combination of cutoff values for the aforementioned fit indices (CFI 
≥ 0.95 and RMSEA ≤ 0.06). The model fits the data sufficiently when the ratio of chi-square statistic 
over degrees of freedom does not exceed 3. A solution with four factors as suggested by the respective 
literature did not achieve satisfactory fit indices (x2 = 272.334, df=164, p<0.001, CFI=0.847, 
RMSEA=0.068). Therefore, we proceeded with exploratory factor analysis in order to explore a new 
country-specific structure for the 20 items. EFA was employed on the 20 items of the epistemological 
beliefs using maximum likelihood with orthogonal rotation (varimax). The Kaiser-Meyer-Olkin 
statistic (0.77) and Bartlett’s Test of Sphericity (χ2 (120) =694.872, p<.001), indicated that data was 
suitable for factor analysis. To determine the number of factors to be retained two criteria were used: 
a) Kaiser’s criterion for eigenvalues greater than one and b) the scree plot (Kaiser 1974).  

 1 2 3 4 
Factor 1: Formalism     
Essential for mathematics is definitional rigor, i.e. an exact and precise 
mathematical language.    

.784    

Fundamental to mathematics is its logical rigor and preciseness.  .744    
Mathematics is characterized by rigor, namely rigor of definition and rigor 
of formal mathematical argumentation.   

.673    

Mathematical thought is characterized by abstraction and logic.  .462    
Hallmarks of mathematics are clarity, precision and unambiguousness. .410    
Factor 2: Application     
Mathematics helps solve everyday problems and tasks.  .776   
Mathematics entails a fundamental benefit for society.  .755   
Many aspects of mathematics have practical relevance.   .540   
Mathematics is useful for every profession.   .484   
Factor 3: Scheme     
To do mathematics requires much practice, correct application of routines, 
and problem solving strategies. 

  .877  

When solving mathematical tasks one has to know the correct procedure 
else one is lost. 

  .570  

Mathematics means learning, remembering and applying.      .565  
Mathematics is a collection of rules and procedures that prescribe how to 
solve a problem. 

  .517  

Factor 4: Process     
Mathematical problems can be solved correctly in many ways.      .762 
In mathematics many things can be discovered and tried out by oneself.    .601 
Usually there is more than one way to solve mathematical tasks and 
problems. 

   .567 

Table 1: Factor analysis of the epistemological beliefs about mathematics 
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In line with respective literature, only items with component loadings larger than 0.30 were retained 
(16 items). Both criteria supported a four-factor solution explaining 48.08% of the total variance. 
Factors were named according to the items included in each group. Items that loaded on Factor 1 
represent the formalism-related view, items that loaded on Factor 2 represent the application-related 
view, Factor 3 items represented the scheme-related view and Factor 4 items represented the process-
related view. All factors had sufficient internal consistency values (Formalism-α=0.78, Application-
α=0.76, Scheme-α=0.72 and Process-α=0.70).  

Table 2 presents the mean scores of mathematics teachers’ epistemological beliefs for each 
dimension. Mathematics teachers’ epistemological beliefs are characterized by a high level of 
agreement to statements representing the application and process view. Additionally, they display a 
strong agreement with statements representing a formalism view whereas they stand somewhere in 
the middle towards the schematic view. 

Scale Mean SD 
Formalism 4.08 .57 
Application 4.46 .46 
Scheme 3.47 .70 
Process 4.30 .48 

Table 2: Mean estimates for mathematics teachers’ epistemological beliefs 

Table 3 presents the correlations between the different dimensions of epistemological beliefs. 
According to Table 3, correlations were very low and statistically insignificant for the four 
dimensions concerning the nature of mathematics.  

 Scheme Application Process 

Formalism .060 .051 .021 

Process -.026 .105  

Application .040   

Table 3: Bivariate correlations between the four beliefs concerning the nature of mathematics 

Finally, in order to explore for differences regarding mathematics teachers’ epistemological beliefs 
in relation to various background variables (gender, age, their teaching experience and highest level 
of formal education), we employed a multivariate analysis of variance (MANOVA). However, we 
found no statistically significant differences between teachers’ epistemological beliefs in terms of 
these background variables. 

Discussion 
In this paper, we investigated the beliefs concerning the nature of mathematics of upper secondary 
Cypriot Mathematics teachers. Regarding the first aim of the study, the results confirmed a solution 
of four factors corresponding to the four categories of teachers’ epistemological beliefs, suggested by 
relative literature. These teachers highly agreed with application- and process-related statements, 
whereas schematics statements were less agreed with. Compared to the results of Felbrich et al. 
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(2008), the ranking of the four views was slightly different. While in Felbrich et al. (2008) study, the 
process view received the highest agreement level, in this study the highest agreement level was 
received by the application view. Cypriot mathematics teachers strongly agreed with both application 
and process-related statements, perhaps due to the new curriculum which has been implemented since 
2011and follows current trends in education, approaching mathematics as a dynamic tool for thought 
(Cyprus Ministry of Education and Culture, 2014). More specifically, the new mathematics 
curriculum has been designed according to principles, such as that students should be involved in 
mathematical investigations, based on real life situations and that interdisciplinary questions and 
emphasis should be placed on problem-solving (Cyprus Ministry of Education and Culture, 2014). 

The results of the current study showed no statistically significant correlation between the four factors 
contrary to the results of other studies (Felbrich et  al., 2008;  Grigutsch et al., 1998). No correlation 
between the dynamic aspects of epistemological beliefs was also reported in the study by 
Liebendörfer & Schukajlow (2017). Moreover, the two fundamental dimensions of mathematics, 
namely the dynamic and the static dimension could not apply to this sample of mathematics teachers, 
supporting Depaepe’s et al. (2016) conclusion that it is not easy to describe one’s epistemological 
beliefs as either static or dynamic. Furthermore, the results of this study supported the results of other 
studies (Felbrich et al., 2008; Grigutch & Törner, 1998; Roesken & Törner, 2010) which suggest that 
mathematics teachers can hold simultaneously static and dynamic epistemological beliefs. 

These mathematics teachers agreed with both the dynamic and static epistemological beliefs’ 
dimensions, exhibiting, using Hofstede’s terminology, characteristics of both collectivism and 
individualism aspects. Countries in which teachers adopted both dimensions were also mentioned in 
Felbrich et al. (2012), with a different population (i.e. future primary school teachers). However, 
further study is needed using related scales (e.g. Individualism scale of Hofstede) in order to 
substantiate this argument. 

Finally, an interesting result worth mentioning is that no statistically significant differences were 
found regarding these teachers’ epistemological beliefs in terms of background variables (gender, 
age, their teaching experience and highest level of formal education). These results do not agree with 
the results reported by Felbrich et al. (2012) in which future teachers with high mathematical content 
knowledge endorsed dynamic beliefs more strongly than static beliefs. We presume that background 
variables are shadowed both by the centralized nature of the educational system in Cyprus and the 
centralized in-service training these teachers’ received regarding the new mathematics curriculum. 

In conclusion, there is more to be done in this field concerning mathematics epistemological beliefs 
held by mathematics teachers in various grade levels. More research is also needed regarding the 
relationship between epistemological beliefs and other beliefs such as teacher authority and self-
efficacy beliefs. Moreover, mathematics teachers’ epistemological beliefs and their instructional 
approaches worth more attention since empirical evidence in this direction remains scarce (Depaepe 
et al., 2016). 
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This paper presents the preliminary results of an experimental work conducted on the digital 
storytelling in Mathematics, as part of the project Prin 2015 “Digital Interactive Storytelling in 
Mathematics: a competence-based social approach”. In particular, it examines how the immersive 
aspect of a storytelling can influence students’ engagement and attitude to learning Mathematics by 
comparing their usual attitude in the classroom. Early findings show that the immersive aspect of the 
storytelling, together with collaborative work and online interaction, may lead to a change in 
students' attitudes towards mathematics. 

Keywords: Attitude change, storytelling, role taking 

Introduction 
This paper presents the preliminary results of an experimental work conducted on the digital 
storytelling – as part of the project Prin 2015 “Digital Interactive Storytelling in Mathematics: a 
competence-based social approach ”1. The key elements of the project are in a way expressed in its 
title’ single terms, which are briefly described below: 

· Mathematics: object of learning. The focus is on the development of competencies in 
mathematics (Niss, 2003), starting from a specific mathematical content. 

· Storytelling: the methodological context in which the teaching/learning process develops. The 
storytelling has been used since the beginning as a fundamental method enabling knowledge 
transfer. Its captivating power attracts the students at non-cognitive level of emotions and 
creativity. In addition, as they enter the story by playing one of the characters, the approach 
to storytelling is immersive, (Robin, 2008). 

· Interactive:  mode of learner’s participation. In the project, the student interacts with the story, 
he/she is not simply a listener. Actually, all his/her interaction influences the development of 
the story. 

· Digital:  the instrumental context in which the teaching/learning takes place. Everything 
happens in an online digital environment, including storytelling and interaction. 

More specifically, the paper takes into consideration the immersive approach of the storytelling, and 
analyzes the way such an aspect can modify the type of students’ participation compared to how they 
usually behave in their traditional classroom. For the purpose of our analysis, we have focused on the 
following research questions: RQ1: How does the immersive approach of the storytelling influence 

                                                 
1 This work is part of the project PRIN 2015 “Digital Interactive Storytelling in Mathematics: A 
Competence-based Social Approach”, funded by MIUR, effective from 5 February 2017. 
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learner’s engagement in mathematical activities? RQ2: Can the immersive approach of the 
storytelling change the students’ attitude towards Mathematics?  

Intending to better explain our research theme, we have referred to a definition of “attitude” towards 
Mathematics, given by Di Martino & Zan (2007). This definition is based on the following three 
correlated concepts: learner’s emotional disposal, revealed by the expressions “I like/I don’t like”; 
learner’s view of Mathematics, reflected by his/her beliefs “Mathematics is...”; learner’s view of 
themselves as learners of mathematics (sense of self-efficacy), revealed by the expressions, “I’m 
successful/I’m not successful”. 

Theoretical background 
This work integrates findings from different fields of research and, therefore, cannot be referred to a 
single theory. Below, we recall the theoretical aspects that are referred to. 

Our activity design has mainly regarded collaborative learning, in particular the computer-based 
collaborative learning (Weinberger et al., 2009), where the need for pre-structuring and regulating 
social and cognitive processes is even more evident. To this aim, researchers in education have based 
their study on the concept of script, which refers to a sequence of actions directed to define a well-
known situation (Schank & Abeson, 1977). Here, each actor has a specific role and specific actions 
to take part in, and the script is activated whenever one is in a similar situation. In didactics, scripts 
are imposed externally and support students in a collaborative/cooperative learning context through 
roles and actions they are required to play and carry out in order to succeed in learning (King, 2006). 

The collaborative groups envisages a number of predetermined roles, each of them devoted to a given 
disciplinary function (Pesci, 2004) such as: task-oriented, responsible for all actions oriented to 
achieve the best result, group-oriented, responsible for the communication mood within the group, 
speaker, spokesperson, to speak on behalf of the group about all proposals, memory, responsible for 
saving a written recording of the achieved results, observer, responsible for observing all group 
interactions. Subsequently, a new role, born in the context of an inquiry approach (Arzarello & 
Soldano, 2016) has been added to the initial set, listed above, which we called devil's lawyer, i.e. a 
person who questions about what his/her classmates propose or say, and insinuates doubts.  

Concerning mathematics instead, we have referred to the theoretical framework of story-problems 
(Zan, 2012) placing the mathematical structure in a situation with which the student is familiar and 
taking the form of a narration. In order to modulate the two dimensions in the text of the problem, 
Zan suggests the adoption of the C&Q model (Context and Question), as characterized by the 
following points: There is a story: temporal evolution of a situation, at least one animated character; 
There is a natural connection between history and question: a character with a purpose and context 
from which the mathematical problem arises in a natural way; The story is well structured: the parts 
of a text are linked together; the information has a "narrative" meaning. 

A case study 
The mathematical problem 

In order to introduce the students to algebraic modelling, by reasoning and proving, we proposed the 
following mathematical problem (Iannece & Romano, 2008; Mellone & Tortora, 2015): “Take four 
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consecutive numbers, multiply the second and the third numbers together and then the first and the 
fourth ones. Calculate the difference between the two products obtained. Repeat the exercise with 
four more numbers. Can you observe any regularity?”. 

The students are expected to conjecture that the result is always 2 and to prove such a result through 
the algebraic representation of the generic four numbers as in the sequence n n+1 n+2 n+3, then the 
conversion of the given instructions as in (n+1) (n+2) -n(n+3) and finally the treatment of the found 
expression, which determines the constant 2. The problem opens up questions of algebraic 
calculation, as well as linguistic and logical questions associated with terms such as “all” and 
“always”. It can also be used to stimulate students’ thinking on key mathematical concepts such as 
the meaning of “consecutive” numbers or the density of rational numbers in R. 

The story and its characters 

The pedagogical model taken into account for creating the story is the C&Q Model of Zan (2012), as 
already illustrated in the theoretical background. The entire educational path and specifically the 
students are immersed in a story. The story, precisely, is set in a Science fiction situation, which sees 
a group of four friends engaged in the fairy unusual attempt to communicate with aliens from whom 
they had received mysterious messages made up of numbers and operations (Figure 1). 

Figure 1: The problem 

All roles used in the task, refer to those mentioned in the previous paragraph. It is important to note 
that the roles of memory and observer, involved in the activities conducted on digital platforms, are 
carried out by the platform itself that, at the same time, keeps track of everything happening in the 
group during the activity. Moreover, since the story makes use of technological tools, basing on 
previous experiences (Albano, Dello Iacono, & Mariotti, 2016; Albano & Dello Iacono, 2018), we 
have envisaged a new role, i.e. technology-oriented, able to support the teammates and to help them 
overcome possible problems arising from the use of technological tools. Our four friends correspond 
to the four roles provided: group-oriented, speaker, devil’s lawyer and technology-oriented, which all 
have been appropriately contextualised within the story as characters’ profile: 

· Marco, called ‘the BOSS’ (i.e. the group-oriented), is the leader within the group of friends,
and has won the trust of his teammates for his leadership behaviours;

· Sofia is passionate about reading and writing, she hopes to become a journalist and has got a
craze for blogging. In fact, she is called ‘the BLOGGER (i.e. the group-oriented);
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· Clara is a wary girl and constantly pesters her classmates with doubts and question; she is ‘the 
PEST’ (i.e. the devil’s lawyer); 

· Federico is a computer enthusiast, convinced of the existence of extraterrestrial lives, he is 
always fiddling with electronic devices in search of alien signals. That is why he is called ‘the 
COMPUTER GEEK’, (i.e. the technology-oriented). 

The four students of the group, within their Chat discussions, had to agree and chose an avatar that 
best represented themselves during the progression of the story, depending on the profile they saw as 
the most matching to their own features. Alongside the four friends, there is an adult, Gianmaria, 
Federico’s uncle, who is also an expert in computer devices and who loves mathematics. Gianmaria 
is a teacher/tutor’s avatar and acts as an expert in the learning process. 

The story-problem starts with Federico who, fascinated by any possible life beyond the planet Earth, 
has developed an electronic device in the hope of capturing some signal from the distant sky. Finally, 
one day, a sequence of characters appears on the screen. (Figure 1). Unfortunately, during data 
reception the device breaks down and the message remains incomplete. Federico is so much curious 
as to involve his friends in this adventure, scanning and searching for a meaning to give to those signs 
and a way to communicate with strangers/aliens. In turn, to get help for the task, the four friends 
decide to involve their uncle Gianmaria, who accepts and offers them his support in solving the 
mystery. All interactions among the students and with Gianmaria guide the story flow (and the 
learning path), and lead them to hold communication with the aliens, after Federico has adjusted the 
reception device and connected it to their single smartphones. This new feature allows the aliens to 
send each of them a specific message, such that, in a second phase, they find themselves thinking 
about different sequences and discovering what they have in common (case of consecutive odd and 
even numbers, which lead to the number 8). 

Methodology 

The general aim of our work is to understand how the role playing and the actions carried out by the 
students in the Digital Interactive Storytelling environment impacts on their learning. In this paper 
we focus on the affective aspects of the students’ learning, that is on whether and how these elements 
can generate changes in their attitude towards mathematics. 

The experimentation involved a 9th grade school class from a Foreign Language High School, 
consisting of 30 students, in the period April-June 2018. With the intention of investigating around 
our aim, the students were split into groups, each of them corresponding to the original group of the 
friends (characters) in the story. Each student in a subgroup took on one of the possible roles.  

All students participated in the activity, interacting online, at distance, during extracurricular time. 
The meeting aroused engagement and shared intentionality by the classmates, and stimulated the 
participants’ interest in investigating the proposal presented by the researchers. In fact, after the 
meeting, the students could write an article in the school newspaper, in which they state among other 
things: “We think this method is important, not only from a didactic point of view but also to keep us 
together and to engage those who usually do not take an active role during the classroom activities. 
The questions, asked in the form of comics, intrigued them very much, and that first meeting made 
them impressed” (Figure 2). 
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Figure 2: Students’ interaction with the problem story 

Preliminary findings and discussion 
This section focuses on the chat interactions of one of the groups of students who participated in the 
story.  The initial step consists in an interview made to the teacher for the purpose of exploring her 
students’ engagement and attitude interacting with the problem story, and also receiving her 
perceptions of the changes possibly intervened in the students’ behaviours.  

Let us read an excerpt of a Chat discussion. The role played by each student is reported in brackets: 

1 Dario (Boss):   What do you do? 
2 Ivana (Blogger):  I’ m a blogger.  
3 [..] 
4 Dario (Boss):   A Blogger cannot go any further than the Introduction 
5 Ivana (Blogger):  How do I select characters? 
6 Alessio (Computer geek): Scroll down page then click on a blue dot and select 

In the excerpts 4-6, we can observe that Ivana faced with some technical issues, while Dario and 
Alessio intervened to: first, draw attention; second, help her, according to their own roles. Indeed, 
Dario takes care of engaging Ivana trying to explain how to solve her technical problems; to this aim 
he calls upon Alessio. Then, Alessio, playing his role of Computer geek, gives instructions on how 
to fix the problem. 

Despite those initial difficulties, both technical and general, Ivana keeps acting her role: after Dario’s 
affirmation (rows 7-9 below), she synthesizes/reformulates what they expressed in the discussion; in 
the reformulation she moves from numerical to verbal examples allowing to describe all four cases. 

7 Dario (Boss):  2 is the result of the first operation, i.e. 3*4-5*2 
8   and the results is12-10 =2 
9  all the operations are on the right, by doing them all we   obtain 2 as a 

result.   
11   Thus one of the numbers is certainly 2 
12 Ivana (Blogger): Yes, he has multiplied the product of the means minus the  
13   product of the extremes. 

A change in Ivana’s attitude is also confirmed by the teacher’s interview.  

At the beginning, she did not expect Ivana to choose that role (row 12). 
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14  Researcher:  Do the roles that the students chose reflect what you 
15  would expect them to choose? Did their choices surprise you          

considering the roles they normally have in the classroom? 
17 Teacher:  Ivana’s role was a bit of a surprise since she has always   
18   been an introverted girl. 

Moreover, her changed engagement also impacted on her relationship with the teacher (rows 26-28) 
and with mathematics: 

19 Researcher:  Did you find the students involved in the digital activities were more 
engaged than they generally are in other classroom activities? 

20 Teacher:  After the experience with the digital interactive storytelling, I noticed 
21   a change in the way some students relate to me.  
22  In particular, there were excellent results from a motivational and 
23  emotional point of view: see for example Maria, Ivana, Rosaria whose  
24  interaction and engagement in the platform had positive effects not  
25  only on their advancement but also on the way they relate to 

mathematics.   
26  In a case, for instance, at first Ivana (Blogger) had refused to interact 

with me, after I had asked her to solve an exercise on the blackboard. 
At the end of this experience, she offered spontaneously to do it, 
showing she was no longer afraid of mathematics…. 

29  Also Maria, witnessed her engagement by saying: “Teacher, I have 
surprisingly discovered another mathematics”. 

Ivana’ case was not isolated (rows 20-25). Other students changed their view about mathematics – 
see for instance what Maria said (row 29) – and also their attitude towards their teacher – see what 
the teacher perceived of the students’ mood through Maria’s words. 
Furthermore, we investigated whether the students’ engagement had somehow been linked to the 
assessment, asking the teacher if she had used such an element. 

30 Researcher: Did you think to include an assessment session to engage students in 
online activities? 

31 Teacher: I have always told the students that the online activity is important but  
32  I would never use it as an evaluation activity. I would instead assess 

each student on the ground of many elements, not only individual 
tasks or questions, but the way they participate in the activities (in 
class or at home),  

35    their attendance and attention. 

The above teacher’s words suggest that the online activity has been considered as part of a more 
global evaluation, which takes into account a general active participation in the whole path of 
didactics of mathematics during the school year. The conclusion that the evaluation had a very low 
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impact is also justified by the fact that the students continued to participate in the activity even after 
the end of the school year (rows 44-47). 

36   Researcher: Did you happen to intervene to prompt student’s attention and/or 
37  participation during the story evolution?? 
38  Teacher: Some groups did it spontaneously, others instead, needed to be  
39 prompted– we can say that 3 out of 5 groups, moved  
40 independently and 2 had some technical problems that required 
41 my intervention and made them unable to hold their rhythm.  
42  The highest number of notifications occurred after the end of the school 

year, perhaps because the students had thought that the activity was 
over  

44 However, let me underline that the students, even though  
45 no longer subjected to evaluation, have nevertheless continued to 
46 interact within the platform being curious about the evolution 
47 of the story. 

Most of the groups involved in the activity proceeded autonomously during the activity flow, without 
being pressed by the teacher (row 38-39), and slow-downs were only due to technical problems. 

Conclusion 
In this work, we have meant to show significant aspects of a preliminary experimentation conducted 
on a designed digital storytelling in mathematics. The results show that the immersive aspect of 
storytelling, together with collaborative work and online interaction, typical of platform activities, 
may lead to a change in students’ attitude towards mathematics (RQ2) and in their relationship with 
the teacher. Today, chat interactions are a familiar context for the students, and even those who get 
shy in face-to-face situations, may be active participants when interacting online (RQ1). Given the 
number of students involved in our case study, the results are clearly not generalizable. However, 
they allow us to identify both the potential of this type of interaction and scenario variables connected 
with the digital storytelling in mathematics. The interview made by the teacher confirms to be an 
interesting research methodology that allows us to reflect on other important variables, like the 
relationship between teacher and students. The preliminary findings will be considered in an 
experimentation project foreseen for the next phase (March 2019) of the PRIN Project that will 
involve many schools from different Italian regions. The preliminary results will be also used for 
defining an adequate experimentation protocol that may enable us to validate our approach on a large 
scale.  
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Many researchers agree that mathematical self-concept is an important factor in (university) learning 
processes. Mathematics learning at university differs substantially from learning mathematics at 
school. Especially the character of the learning domain mathematics changes at the transition to 
university. In this contribution, we present newly developed instruments for self-concept that take the 
specific character of mathematics at university into account. We applied the instruments in a first-
semester course with 344 students. The results of exploratory factor and correlation analyses 
indicates that it is possible to differentiate facets of self-concept according to different characters of 
the learning domain mathematics. Finally, we discuss how precise information concerning learners’ 
self-concept can promote to support students at this challenging transition to university.  

Keywords: Mathematical self-concept, Transition school-university, Mathematical practices, 
Learning prerequisite. 

Introduction 
There is no doubt that affective variables are important factors in successful, mathematical learning 
processes (Hannula, 2011). In this contribution, we concentrate on self-concept concerning 
mathematics. In a recent study, self-concept was identified as an essential learning prerequisite to 
predict achievement in school mathematics (Feng, Wang, & Rost, 2018). Moreover, self-concept 
substantially mediates the relation between achievement and emotions (Van der Breek, Van der Ven, 
Kroesbergen, & Leseman, 2017). Many existing studies deal with the role of self-concept in 
mathematical teaching and learning processes at school. In contrast, only few studies analyze its role 
in learning processes at university. As learning processes in these two institutions differ significantly 
from each other, we claim the need for specific research on the role of self-concept in mathematics 
courses at university and in particular during the transition to university mathematics. 

Questionnaires are the most common instruments to survey mathematical self-concept. The learning 
domain, for which self-concept should be reported, is mostly broadly described using the word 
“mathematics”. At the transition from school to university, however, it is not clear if students refer to 
school or to university mathematics when reporting their self-concept. To obtain a more differentiated 
insight into students’ self-concept, we developed questionnaires for mathematical self-concept that 
take the specific learning domain at university into account. In this contribution, we present the 
conceptualization of these instruments in detail. In a study with 344 first-semester students, we 
studied if the assumed facets of self-concept can be measured and differentiated empirically. 

The role of self-concept in mathematical learning processes 

Self-concept, self-efficacy, and self-esteem are important constructs which describe students’ views 
about themselves. The source of students’ views about themselves are often experiences of past 
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success or failure. As self-esteem has a focus on emotions and is not as prominent as the other two 
constructs in analyzing subject-specific learning processes, we concentrate on the constructs self-
concept and self-efficacy. Self-concept has its focus on the persons’ skills and abilities, whereas self-
efficacy refers to one’s beliefs to successfully perform a certain action in the future (Marsh et al., 
2019). Researchers use both concepts to explain and predict learners’ action and success (Bong & 
Skaalvik, 2003). As we are interested in students’ views of themselves as learners in mathematics at 
the period of transition, we also want to analyze the sources of students’ beliefs about their own 
mathematical knowledge and skills. That is why we use the construct self-concept. We refer to 
“mathematical self-concept (of ability)” as students’ beliefs about their own mathematical knowledge 
and skills. Theoretically, self-concept is often placed between motivational and cognitive variables, 
since it is built on views (affect side) which refer to knowledge and skills (cognition side).  

One mechanism leading to the relationship between self-concept and achievement might be that 
learners with a strong self-concept choose to engage in more demanding tasks, which results in better 
learning and higher achievement. Moreover, there is much evidence that underpins the relation 
between self-concept and other motivational variables, like interest (Cai, Viljaranta & Georgiou, 
2018; Rach & Heinze, 2017). It is assumed that self-concept mediates the relation between 
achievement and emotions (van der Breek et al., 2017). In university contexts, explorative studies 
claim that a low self-concept and the decrease of self-concept in the first study year even of students 
with excellent learning prerequisites probably lead to dropout (Bampili, Zachariades, & Sakonidis, 
2017; di Martino & Gregorio, 2018).  

However, the studies mentioned above mainly relate to the school context (e.g. Cai et al., 2018). 
Analyses of learning processes at university often show only weak or non-significant relations 
between self-efficacy respectively self-concept and study success (Bengmark, Thunberg, & Winberg, 
2017; Rach & Heinze, 2017). One reason for this unexpected result might lie in the differences of the 
learning domain between school and university. When students rate their mathematical self-concept 
in the first semester at university, they might refer to their beliefs about their knowledge and skills 
according to mathematics as a school subject, which could be less relevant for learning in this context 
than self-concept regarding university mathematics. 

Teaching and learning mathematics at university 

In Germany, as in many other countries all over the world (e.g. South Africa: Engelbrecht, 2010; 
France: Gueudet, 2008), there seems to be a substantial gap between school and university concerning 
teaching and learning of mathematics. Not only the social contexts (e.g. the peer group) and the 
learning opportunities and their use (e.g. from a more guided form in school to a more self-regulated 
form at university) change at this institutional transition, but also the learning domain itself. At school, 
one important goal of teaching and learning mathematics is to apply mathematics for solving real-
world problems. Thus, classrooms instruction focuses on describing situations mathematically and 
performing calculations. We call this special character of mathematics “school mathematics”. In 
contrast to that, “university mathematics” denotes the character of mathematics presented in 
mathematics university courses, which refer to mathematics as a scientific discipline that is built on 
formal definitions of concepts and deductive proofs (Engelbrecht, 2010). Central practices in the first 
year of studying mathematics at university include dealing with formal presentations of concepts and 
proving statements. As demands of proving tasks are mainly high and unfamiliar to freshmen at 
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university, students often struggle in their first year of university and a substantial share of them drop 
out from their study program (Heublein, Richter, Schmelzer, & Sommer, 2014). 

Summarizing, the learning subject changes at the transition from school to university from a school 
subject focusing on applications to a scientific discipline focusing on the structure of a mathematical 
theory. That is why instruments which measure mathematical self-concept in a generic way and 
results concerning the role of mathematical self-concept in learning processes at school might not be 
transferable to processes at university.  

The current study 

As part of the project SISMa (“Self-concept and Interest when Studying Mathematics”), it is the goal 
of this study to differentiate self-concept concerning different characters of the learning domain 
mathematics. The aim of the project is to clarify the role of affect in mathematical learning processes 
during the transition to university mathematics (see Ufer, Rach, & Kosiol, 2017). In this contribution, 
we focus on mathematical self-concept and present instruments that measure different facets of self-
concept according to different characters of mathematics (Table 1, see also Schukajlow, Leiss, 
Pekrun, Blum, Müller, & Messner, 2012 for a similar approach concerning self-efficacy; see also 
Ufer et al., 2017 for the construct interest). To measure the different facets of self-concept we 
constructed two types of scales: The first type of self-concept scales surveys beliefs about knowledge 
and skills regarding mathematics as it has been experienced respectively anticipated in a specific 
context. These statements directly address one of the two institutions, in which mathematics is taught 
and learnt: school versus university. The second type of scales addresses self-concept regarding 
mathematical practices, which are characteristic for school mathematics (applying mathematics), for 
university mathematics (proving and dealing with formal representations), or for both contexts (using 
mathematical calculation techniques). These five scales were developed based on prominent models 
of self-concept taking into account different frames of reference (Bong & Skaalvik, 2003). In contrast 
to other scales, e.g. Kauper, Retelsdorf, Bauer, Rösler, Möller, and Prenzel (2012), different aspects 
of mathematics as points of reference for individual beliefs are specified. 

To study whether these facets of self-concept can be differentiated empirically, we conduct a study 
with first-year mathematics students. The following questions deal with the structure of the 
questionnaires and the relation of the self-concept measures to other learning prerequisites: 

1) Is the theoretical structure of the subscales reflected in the factorial structure of the newly
developed instruments?
We expected that factor analyses would underpin the theoretical conceptualization of the
subscales. Moreover, we expected self-concept in applying mathematics to be primarily
correlated to self-concept concerning school mathematics and self-concept concerning
proving and dealing with formal representations to be primarily related to self-concept
concerning university mathematics.

2) Are the different facets of self-concept related to other learning prerequisites?
We expected that self-concept concerning school mathematics relate to interest concerning
school mathematics, the same pattern with university mathematics. In line with previous
research (e.g., Cai et al., 2018), we expected a relationship between self-concept measures
and mathematical knowledge respectively the school qualification grade.
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3) Is there a relation between facets of self-concept and study choice? 
As a mathematics teacher education program is not as much focused on mathematics as a 
mathematics bachelor program, we expected that, on average, students with lower 
mathematical self-concept concerning university mathematics respectively self-concept 
concerning proving and dealing with formal representations would be more likely to choose 
a teacher education program. This should result in lower average self-concept concerning 
university mathematics respectively proving and dealing with formal representations of the 
teacher education students than of mathematics bachelor students. We had no specific 
hypotheses regarding self-concept concerning school mathematics respectively concerning 
applying mathematics and using calculation techniques.  

Method 
The sample of this study comprised 344 first-semester-students of the mathematics courses 
“Analysis I” from one university in the southern part of Germany. In this course, mathematics is 
presented as a scientific discipline with a focus on formal concept definitions and deductive proofs. 
We use a complete survey of all students who start their study in a teacher education program or in a 
mathematics respectively business mathematics bachelor program. As the study took place in the first 
lecture of the first-semester mathematics courses “Analysis I” and students participated in the survey 
voluntarily, we can’t say anything about students who did not participate in the study. Most of the 
participating students were in a teacher education program for two secondary school tracks 
(Realschule, Gymnasium) in Germany, N = 130, and in a mathematics respectively business 
mathematics bachelor program, N = 184.  

Self-concept scale Sample item M (SD) 
Cron-

bach´s α 

General I am very good in mathematics. (4 items) 
2.07 
(.50) .76 

In
st

itu
tio

n School 
mathematics 

The mathematics that I know from school is 
easy for me. (3 items) 

2.35 
(.57) .73 

University 
mathematics 

The mathematics that is done at university is 
easy for me. (3 items) 

1.51 
(.65) 

.84 

Pr
ac

tic
e 

Applying 
mathematics 

Applying mathematics to real-world problems 
is not so easy for me. (reversed item) (5 items) 

2.00 
(.51) 

.80 

Proof and formal 
mathematics 

Understanding mathematical proofs is easy for 
me. (8 items) 

1.73 
(.48) 

.82 

Using calculation 
techniques 

I am very good in transforming complex terms. 
(5 items) 

1.91 
(.47) 

.71 

Table 1: Measurement instruments for self-concept with means, standard deviations, and reliability 
coefficients, N = 252-333. Statements rated on a four-point Likert scale from 0 (disagree) to 3 (agree) 

We used a general scale for mathematical self-concept (Kauper et al., 2012, for sample items see 
Table 1) to compare our newly developed instruments with an approved scale. Moreover, we applied 
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the new self-concept scales as differentiated measures of self-concept (see Table 1). The participants 
were asked to assess all mixed statements on a four-point Likert scale from 0 (disagree) to 3 (agree). 
The individual mean value of a single student on a scale was computed if this student had answered 
at least half of the items of the scale. We assessed additional affective and cognitive variables in the 
first lecture: the school qualification grade (grades were recoded so that 4.0 is the best and 1.0 is the 
worst value), prior knowledge for advanced mathematics, and interest in school mathematics 
respectively university mathematics (see Ufer et al., 2017). 

Results 
Differentiated measures of self-concept 

Table 1 shows the mean values, standard deviations, and reliability coefficients of the self-concept 
scales. There are no floor or ceiling effects.  

Two explanatory factor analyses (Principal Component Analysis with Varimax rotation) – one for 
the three self-concept scales concerning practices and one for the two self-concept scales concerning 
the institutions – showed three respectively two factors, that were in line with the theoretical structure 
of the instruments. Reliability analyses underpin the internal consistency of the general self-concept 
scale and the five newly developed scales, as all scales show a moderate to good consistency. 
Correlation analyses also partly promote the expected structure: For example, self-concept 
concerning proving and dealing with formal representations correlates with self-concept concerning 
university mathematics strongly, r = .65 (Table 2). The lower correlation, r = .26 between self-
concept concerning applying mathematics and self-concept concerning school mathematics was 
unexpected, because applying mathematics to real-world problems should be a prominent activity in 
mathematics classrooms. All specific facets of self-concept are correlated significantly and positively 
with the general measure. In sum, the different facets of self-concept can be separated empirically, 
and their correlational pattern reflects the assumed specific nature of university mathematics. 

 General 
(SCG) 

Application 
(SCA) 

Calculation 
(SCC) 

Proof and 
Formal (SCP) 

School 
(SCS) 

University 
(SCU) 

SCG  .35** .51** .49** .61** .51** 

SCA   .31** .35** .26** .27** 

SCC    .38** .48** .34** 

SCP     .29** .65** 

SCS      .25** 

Table 2: Correlations for the self-concept scales, ** p < .01 

Connection to other learning prerequisites 

As expected, correlations of variables focusing the same character of mathematics, school 
respectively university mathematics, are stronger than correlations concerning variables on different 
characters of mathematics (Table 3). Only self-concept concerning school mathematics correlates 
with the school qualification grade significantly. Both self-concept scales weakly relate to 
mathematical knowledge. 
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 Interest school Interest 
university 

Mathematical 
knowledge 

School 
qualification grade 

Self-concept 
school 

.34** .18** .13* .20** 

Self-concept 
university 

-.01 .50** .21** .05 

Table 3: Correlations of the self-concept scales with other learning prerequisites, ** p < .01, * p < .05 

Differences between study programs and study choice 

Table 4 shows mean values (and standard deviations) for students from the two programs on all facets 
of self-concepts. Group differences were tested for significance and we calculated effect sizes. 

 
General Application Calculation 

Proof and 
formal School University 

Mathematics 
bachelor 
program 

2.13 
(0.55) 

2.00 
(0.53) 

1.88 
(0.48) 

1.80 
(0.48) 

2.36 
(0.58) 

1.61 
(0.65) 

Teacher 
education 
program 

2.07 
(0.39) 

2.03 
(0.50) 

1.99 
(0.46) 

1.71 
(0.45) 

2.40 
(0.54) 

1.42 
(0.62) 

d 0.10 -0.05 - 0.23t 0.19 -0.06 0.29* 

Table 4: Mean values (standard deviation) and results of tests of group differences between study 
programs, * p < .05, t p < .10 

As expected, students in the bachelor program show a moderately, but significantly higher self-
concept than teacher education students concerning university mathematics, and, though not 
significantly, also concerning proof and formal representations. 

Discussion 
While the prominent role of self-concept for successful learning processes at school is well 
established (Cai et al., 2018), its role in the university context is yet worthy of discussion. With this 
project, we shed light on the role of self-concept in the transition to university mathematics using 
differentiated measures of self-concept. Applying newly developed instruments, we distinguish 
different facets of self-concept of first-semester students and relate these facets to other learning 
prerequisites respectively the choice of the study program. The results on correlations and group 
differences provide first evidence that the scales do differentiate between the theoretically 
conceptualized facets of mathematical self-concept. However, qualifications are warranted for a 
broad application of the scale. For example, the results indicate that students seem to judge their 
knowledge and skills to apply mathematics to real-world problems not primarily based on their beliefs 
about their knowledge and skills regarding school or university mathematics. This might reflect that 
authentic applications are not considered specific to university mathematics, but also rare in German 
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school classrooms (Jordan et al., 2008). The small differences in self-concept between the two 
programs indicate that primarily self-concept regarding university mathematics is related to study 
choice. This facet of self-concept turned out to be related to prior mathematical knowledge, but not 
to the school qualification grade. It remains an open question, if the school qualification grade, which 
predicts success in the first semester above and beyond prior mathematical knowledge (Rach & 
Heinze, 2017), has an influence on study choice that is not mediated by self-concept. Of course, the 
results of our study are based on students’ self-reports about their self-concept. To get a clearer picture 
of the impact of self-concept in concrete learning processes, it seems worthwhile to combine our 
approach with analyzing students’ reported experiences and their concrete learning behavior in the 
first year of study (e.g. di Martino & Gregorio, 2018).  

In sum, we presented the conceptualization of instruments to measure different facets of self-concept 
concerning school respectively university mathematics and corresponding mathematical practices. 
Using these measures, it is possible in the future (1) to investigate the development of these variables 
during students’ learning processes and their effect on students’ learning activities in undergraduate 
mathematics programs, and most importantly their tendency to drop out of a study program. (2) The 
differentiated measures may allow more differentiated insights into students’ affect. This, in turn, 
may allow (3) to develop adequate approaches to support students during the challenging transition 
to a university mathematics program. One idea to support students is to adaptively select 
mathematical tasks in the courses that fit individual students’ prior knowledge so that they can 
approach these tasks in a meaningful way. If students perceive competence (Deci & Ryan, 2002) 
when working on these tasks, this should probably lead to the development of self-concept concerning 
university mathematics, for example mediated by intrinsic motivation (see Krapp, 2005). A higher 
self-concept, in turn, might lead to a better learning behavior, specifically to students choosing more 
demanding tasks and showing more perseverance when dealing with these tasks. All in all, such 
interventions aiming at a higher, yet realistic self-concept, are a promising approach to decrease the 
rate of students dropping out of mathematics study programs. 
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Changes of beliefs do not happen arbitrarily; there are underlying mechanisms that enable the shift. 
This study outlines a problem-solving implementation in which two teachers experienced changes in 
their beliefs. We describe these belief changes and propose a new mechanism for the shift: first-
person vicarious experiences. Our results suggest that, despite their initial uncertainties, teachers 
who agreed to make a change in their practice underwent a change in belief regarding the efficacy 
of the practice through first-hand experience of its implementation. 

Key words: Beliefs, teacher belief change, first-person vicarious experiences, problem solving. 

Introduction 
Underlying the heart of this study is the belief in the importance of problem solving in mathematics 
classrooms. Widely recognized as leading to a deeper understanding of key mathematical principles 
and content (Pehkonen, Näveri, & Laine, 2013), problem solving has become an integral aspect of 
curricular reform (Törner, Schoenfeld, & Reiss, 2007). This has led to an emphasis not only on the 
teaching of problem solving but on the teaching of mathematics through problem solving (Liljedahl, 
Santos-Trigo, Malaspina, & Bruder, 2016). Yet ours is not a study of problem solving in mathematics. 
Rather, it is a study of belief changes that occurred because of the implementation of problem solving.  

When the Chilean government, in response to deepening concerns over the low results of their 
students in international standardized mathematics assessments, decided to reform the country’s 
mathematics curriculum, it was the belief in the importance of problem solving that provided 
direction. Problem solving was seen as integral and with that came the mandate that it be implemented 
in Chilean primary and secondary classrooms where, prior to this, it had been practically non-existent. 
(Felmer & Perdomo-Diaz, 2017). It was into this context that ARPA (Activando la Resolución de 
Problemas en las Aulas/Activating Problem Solving in Classrooms ) was born. Developed in response 
to the mathematics curriculum reform, ARPA is a research and development initiative that seeks to 
implement teacher professional development (PD) strategies that promote problem solving in an 
integrated classroom setting (Felmer & Perdomo-Diaz, 2017). Organized as a series of workshops 
held over the course of 10 months and led by trained monitors, ARPA is based on principles of 
teachers doing and reflecting. As such, its initial focus is the development of the teachers’ own 
mathematical skills through collaborative problem-solving experiences that incorporate non-routine 
problems and randomized groupings (see Liljedahl, 2016). This leads to opportunities for the teachers 
to reflect on their own abilities, their mathematical knowledge, the strategies they used, and the 
emotions they experienced. This gradually moves to the teachers preparing and implementing 
analogous collaborative problem-solving activities in their classrooms for all their students. In our 
study we outline how this reform, predicated on the belief of the importance problem solving in 
mathematics, resulted in a cascading effect that was felt at the micro level of the classroom. In 
particular, we focus on the phenomena of belief changes experienced by two teachers as a result of 
the imposed implementation. 
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Framing Beliefs 
Writing on beliefs requires treading on shifting sands. One of its challenges is the lack of consensus 
regarding an accepted definition (Skott, Mosvold & Sakonidis, 2018). Noting the difficulty in 
reaching a definition that is acceptable across all types of studies and disciplines, McLeod and 
McLeod (2002) suggest, “There is no single definition of the term “belief” that is correct and true, 
but several types of definitions that are illuminative in different situations” (p. 118). From Leatham 
(2006) comes a view of beliefs as anything an individual regards to be true. His sensible system 
framework for understanding beliefs assumes “that what one believes influences what one does” (p. 
92). With this framing of beliefs comes the understanding that beliefs cannot be directly observed but 
must be inferred. Following Leatham (2006), for the purposes of this study, we call beliefs those 
things we just hold to be true and must be inferred from what we say and do. 

The second area where writing on beliefs requires careful attention is the realm of stability of beliefs. 
As Liljedahl, Oesterle, and Bernèche (2012) argue, “The field of mathematics education has assumed 
for too long that stability is an inherent and definable characteristic of beliefs” (p. 101). Their meta-
study of beliefs in mathematics education found that stability has many meanings, “from difficult to 
change, to slow to change, to resistant to change” (p. 112). Further impacting our understanding of 
the stability of beliefs is Green’s (1971) stress on distinguishing what we believe and how we believe 
it. He suggests that beliefs that are held evidentially are less resistant to change than are beliefs held 
nonevidentially. By this he is referring to the basis on which the belief is held—with or without 
regards to evidence. For Green (1971), beliefs held on the basis of evidence or reason “can be 
rationally criticized and therefore can be modified in the light of further evidence or better reasons” 
(p. 48). For example, a teacher may hold an evidentiary belief that group work is untenable because 
she tried it unsuccessfully once. There is potential to change her belief by providing her with a positive 
experience with group work. Following Liljedahl et al. (2012) and Green (1971), we propose a further 
understanding of beliefs as changeable truths that must be inferred from what one both says and does. 

Models of Change in Belief and Change in Practice 

Early models proposed that changes in beliefs would lead to change in practice (see Figure 1). 
Accordingly, teacher PD models focused on occasioning belief changes as a change in belief was 
seen as a necessary precursor to change in practice (see Philipou & Christou, 2002). However, this 
does not capture what happened in our phenomenon. As we shall detail later, what we suggest 
happened for our participants is that changes in practice led to changes in beliefs (see Figure 2). 

 

      Figure 1                                                                                             Figure 2 

To better understand this phenomenon, we turn to Guskey (1986) who, noting the abysmal success 
of PD programs, proposed an alternative model. Arguing that the previous models failed to take into 
account the process by which change in teachers typically occurs, he proposed a model in which the 
elements were reordered around student outcomes (see Figure 3).  

 
 
 

Figure 3 
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His model suggests that significant change in teachers’ beliefs occurs primarily after they gain 
evidence of improvement in student learning, which for Guskey can include not only cognitive 
achievement but also elements such as behaviour or attendance. These improvements typically result 
from changes teachers have made in their classroom practices—a new instructional approach, the use 
of new resources, or simply a modification in teaching procedures. It is important to note that, for 
Guskey, it is not the PD per se, but the experience of successful implementation that changes teachers’ 
beliefs. They believe it works because they have seen it work in their students, and that experience 
shapes their beliefs. Equally important is Guskey’s view of change as gradual and difficult—new 
practices require incremental implementation. 

Liljedahl (2016) also talks about this phenomenon of a change of practice leading to change of belief. 
He differs from Guskey (1986) in that the participants are asked to implement a practice for which 
they have no personal certainty will work. In doing so, this method bypasses the classroom norms 
that frequently act as an impediment to change in practice (Liljedahl, 2016). Liljedahl came to call 
this a first-person vicarious experience: 

They are first person because they are living the lesson and observing the results created by their 
own hands. But the methods are not their own. There has been no time to assimilate them into their 
own repertoire of practice or into the schema of how they construct meaningful practice. They 
simply experienced the methods as learners and then were asked to immediately implement them 
as teachers. As such, they experienced a different way in which their classroom could look and 
how their students could behave. (p. 384) 

For example, in order to promote the practice of student collaboration, Liljedahl had to first bypass 
the classroom norm that the doing of mathematics was an individual pursuit. To that end, he had 
teachers work on problem-solving tasks in visibly random groups during a 90-minute PD session. At 
its conclusion, the participants were required to introduce visibly random grouping in their 
classrooms. The result was a significant uptake in the practice that Liljedahl attributes to two factors: 
(1) the ease of modelling it in a PD setting and (2) the teachers having personally experienced the
impact on their own learning when visibly randomly grouped.

Similarly to Liljedahl (2016), the ARPA problem-solving initiative also incorporates Guskey’s (1986) 
notion of changing practice to change beliefs—the teachers in our study were required to implement 
changes in practice which resulted in changes of beliefs. We were curious about the mechanism 
behind that change and this curiosity led to our research question: Can we understand their belief 
changes through the lenses of Guskey (1986) and Liljedahl (2016)? 

Methodological Considerations 
While the difficulty in ascertaining beliefs is generally acknowledged (Skott, Mosvold, & Sakonidis, 
2018), it is argued that qualitative studies have much to offer in the study of beliefs in that they offer 
a deep understanding of the ways in which people develop and change their beliefs (Olafson, Grandy, 
& Owens, 2015). For the purposes of our study, talking with the participants and allowing them to 
tell their stories provided a rich description of the phenomenon and allowed us to respond to our 
research question regarding the nature of their changes. Note, ours is a small-scale study meant to 
document the occurrence of a phenomenon rather than its prevalence. 
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The source of our data was interviews with two participants: Luisa, a primary education teacher who 
was teaching in a Chilean public school at the time of the study and Josefa, a special education teacher 
who was assigned to a student in Luisa’s fifth-grade classroom. These interviews were originally 
conducted as part of a larger project that studied the problem-solving experiences of a child with 
special needs. During their separate interviews, her teachers were also asked a series of questions 
intended to elicit their perceptions of changes experienced as a result of the problem-solving 
implementation. Ranging from 40 to 60 minutes in length, the interviews were audio recorded and 
transcribed in their entirety in Spanish. As this study is an international collaboration conducted by 
researchers from Canada and Chile, the transcripts were subsequently translated from Spanish to 
English by a researcher at the University of Chile and later reviewed by another researcher at the 
University. When first analyzing the interviews, we realized that not only was there a change in the 
student, but also in her teachers. So, guided by Guskey (1986) and Liljedahl (2016), we reanalyzed 
the transcripts for evidence of changes in practice. For example, one teacher detailed the change in 
how she offered a student support in terms of ‘before and after’. In keeping with our understanding 
of beliefs as inferable truths, we attended to those before and after descriptions to establish the 
teachers’ beliefs prior to the change in practice and the resultant new belief.  

Findings 
In the following we present two situations, which best exemplify instances in which we noted that an 
imposed change in practice led to change in beliefs. Each analysis begins with a summation of the 
original belief and the circumstances surrounding its change. 

Change in teachers’ beliefs regarding integration in mathematics classrooms 

Prior to participating in ARPA, Luisa and Josefa’s students with special education needs were usually 
taught mathematics using individual materials prepared by Josefa, the special education teacher, in a 
resource room isolated from the classroom. While both supported integration in theory, they were 
uncertain whether it could be successful in their classroom. This is common among mathematics 
teachers with 80% (n = 228) holding positive beliefs regarding integration yet less than one-third 
believing they possessed useful philosophies or strategies to implement its practice (DeSimone & 
Parmer, 2006). For Josefa and Luisa, this changed when, as part of their commitment to the ARPA 
program, they prepared and delivered a multi-level problem-solving lesson. Their success at meeting 
the needs of students with varying levels of ability in this lesson changed their beliefs regarding their 
own ability to successfully integrate their students. Their theoretical belief in the importance of 
integration was now reflected in their practice where they moved to a full inclusion model. 

One of the expectations of teachers participating in ARPA is preparing lessons incorporating the 
strategies they have been introduced to in ARPA. At the urging of their ARPA monitor, Luisa and 
Josefa decided to prepare a public problem-solving lesson. Unique to this lesson was that it was 
designed to be multi-grade and open to observation by the community. Teachers are sometimes 
hesitant to prepare materials for multi-level students as they believe the wide range of needs and 
abilities may be an obstacle to success (Kiely, Brownell, Lauterbach, & Benedict, 2015). Luisa and 
Josefa were no exception to this belief as we see in this excerpt from Josefa: “We were worried about 
the reactions of the girls to working with younger girls”. Luisa was worried in particular about the 
students with special education needs and felt unsure whether they would be able to contribute 
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effectively in this type of group dynamic. She was especially concerned for one girl saying, “Maybe 
she won’t to be able to talk, because all the other girls do not know her, because they are from second 
and eighth grade”. It was concerns such as these that had prevented both teachers from implementing 
the integration practices that they valued. It is not that the teachers opposed integration, rather they 
struggled to believe it could be effectively implemented, as Josefa states,  

There is this integration and diversity discourse, theoretical stuff, but how do we face it? There is 
a lot of talk about how everybody is different, that we must work with our diversity, but what I 
used to do was to bring the girls [with special education needs] to the resources classroom. I’d take 
them out of the classroom and give them their individual material, that I created and used.  

However, despite their uncertainty, they prepared a task in which students from grades 2, 5, and 8 all 
worked in visibly random groups within their grade levels on the same problem. Both teachers 
expressed satisfaction with the outcome of the public lesson with Josefa noting, “And, you know 
what? Surprisingly, it turned out very well”. They had observed the students successfully working 
and learning together regardless of age or ability. Their general fears for the success of the students 
were eased by observing the students respond to each other as Josefa explains, “For example, when 
the fifth-grade girls were in front of the class explaining their solutions, the eighth-grade girls would 
listen and say: “Hey, I didn’t think about that””. Their particular fears for their special education 
students were negated as they watched them be included in the groups and share their contributions. 
Although initially reluctant to implement this public lesson, its success impacted their beliefs about 
their own classroom practice with Josefa remarking, “If we can prepare a lesson for three different 
[grade] levels, shouldn’t we be able to do that inside the classroom? I mean, it was empirically 
demonstrated that we can—when you talk about diversity in the classroom—it is obvious that we can 
do it”. 

Concerning the initial inconsistency between the professed beliefs of the teachers in our study and 
their actual practice, Leatham (2006) notes that we must look deeper, “for we must have either 
misunderstood the implications of that belief, or some other belief took precedence in that particular 
situation” (p. 95). In our study, we found the latter—while both teachers believed that integration of 
students with special education needs was important, they also held a stronger belief that it only works 
in theory, which possibly prevented them from enacting their belief in practice. Their involvement 
with ARPA and its expectation that they integrate all students in lessons offered a first-person 
vicarious experience that changed their belief regarding the difficulties of integration. This allowed 
for a match between their professed belief and their actual classroom practice. 

Change in teachers’ beliefs about low-performing mathematics students 

We view the teachers’ beliefs regarding integration as being contained within a cluster of beliefs that 
also comprised beliefs regarding low-performing students’ ability to work successfully in 
collaboration on non-routine problems. Most simply put, they did not believe it was possible. They 
believed that low-performing and/or students with special needs would be unable to cope with the 
vagaries of group dynamics and have little to offer in the way of solutions for non-routine problems. 
Despite these beliefs, and with the encouragement of their ARPA monitor, they changed their 
mathematics practice to include all students in visibly random groupings that worked collaboratively 
on non-routine problems. The results surprised them. The students were not only accepted within 
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their groups, they were viewed as contributing members. Observing the success of their students led 
both Josefa and Luisa to change their beliefs regarding their students’ capabilities.  

Luisa recalls that when the ARPA monitor suggested, “Those children who have more difficulties are 
the first to solve the problems”, both her and Josefa’s initial response was a disbelieving, “Yeah, 
hopefully”. Similarly, they held low expectations for successful collaboration, particularly for 
Cristina, a student with special education needs. As Luisa explains, “Well, I thought her [Cristina’s] 
participation and the acceptance of her classmates would be minimal”. However, with little 
expectation of success, they implemented the non-routine problems and visibly random grouping 
recommended by their ARPA monitor. The teachers were pleased with the results. In particular, 
Josefa shares that Cristina, the student with special needs, “has improved a lot. She can solve a 
problematic situation and face it, read it and look for solutions. She doesn’t sit still, she tries to solve 
it”. Additionally, Cristina’s peers valued her contributions and were willing to work with her in 
groups too. As Josefa notes, “Working in groups is like a second-nature to her and she can work in 
any group”. Likewise, Luisa recalls the other students saying “‘Look, she [Cristina] did it’”. She 
goes on to add that “although Cristina wouldn’t say “Girls, let’s do it this way”, she was making 
small contributions that were useful for what they were doing as a group”. Similarly, the teachers 
observed the success of other low-performing students, like Daniela, who solved a difficult problem. 
As Josefa explains,  

She [Daniela] was present the class when we were teaching the problem of Theresa’s floor tiles. 
Nobody in the class could find the solution. And it is a class where all the girls think they are very 
good at math. They are very competitive and this girl, Daniela, raises her hand and answers the 
problem. Luisa and I look at each other surprised. 

The teachers came to realize that low-performing students did not need simpler problems, nor special 
resources, but that they could solve challenging problems. As Josefa notes,  

And many times, we had simplifications, we’d plan a simple problem, or with more concrete 
support, or we’d plan problems with smaller numbers. And we realized it wasn’t necessary. Do 
you get it? That helped us to realize that the students were more capable than we thought. So, you 
have a different disposition. And according to that, you start giving different support too, things 
that maybe you didn’t even plan, but you go with the flow and you realize that they can do it. 

We suggest that it was the change in the teachers’ beliefs regarding their students’ ability to work on 
non-routine problems in visibly random groupings that allowed the change in the belief regarding 
integration to occur. The teachers believed in integration, but until now did not believe they could 
successfully implement it. To enact their beliefs, the teachers needed the necessary pedagogical 
knowledge of how to implement practices that support integration (Buehl & Beck, 2015). In speaking 
of the difference that visibly random grouping and non-routine problems made in the classroom, 
Josefa explains that “Those things [visibly random groups and non-routine problems] make the things 
you want to happen, happen”. We can infer from this that, within their belief cluster, the successful 
implementation of integration practices is positioned as an overarching belief—it is the ‘thing’ they 
want to make happen. And it happened because ARPA’s requirement that the teachers implement 
specific practices allowed them to observe positive results in their students. This changed their beliefs 
regarding students’ abilities, which in turn allowed them to change their belief of their own ability to 
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integrate. And as Josefa explains, “That was a process we had to go through. But it was very good 
for us”. 

Discussion and Conclusion 
Although not all imposed changes in practice result in changes in beliefs, our participants 
implemented imposed practices that did change their beliefs. As our data was collected post-hoc, we 
did not directly observe the changes nor were we able to conduct pre-interviews. However, we were 
able to infer that, after being asked to prepare and teach a public problem-solving lesson, the teachers 
changed their beliefs regarding their ability to effectively integrate children with special education 
needs and their belief regarding the ability of low-performing students. Fitting with Guskey (1986), 
a partial answer to our research question then, is that their beliefs changed after noting evidence of 
improvement in student learning. They believed it works because they saw it work and that experience 
shaped their beliefs. Not fitting with Guskey (1986), however is how the belief change occurred. 
Guskey (1986) views change as gradual and difficult with new practices requiring slow 
implementation. Our participants experienced something quite different. There was no gradual 
assimilation—they were required to change their practice even if they were uncertain about its 
effectiveness. They were given personal assurances that it would work from their ARPA monitors, 
but they were not given time to assimilate the methods into their own schemas. They had simply 
experienced the changes themselves as learners in the ARPA sessions where they were exposed to 
collaborative problem-solving and then been required to implement the new practice. They had 
undergone a first-person vicarious experience (Liljedahl, 2016). 

Leatham (2006) reminds us that “The challenge for teacher education is not merely to influence what 
teachers believe—it is to influence how they believe it” (p. 100). To further answer our research 
question, the findings suggest that first-person vicarious experiences influence the how—the teachers 
now believe it experientially, which we argue, motivated the belief change. Additionally, the PD 
aspect is vital as our participants needed to feel or see the changes themselves before their beliefs 
changed. They still had no certainty it would work in a different context, but they had experienced 
first-hand that it could. Our findings also suggest that first-person vicarious experiences are effective 
at altering evidential beliefs—those beliefs that are based on evidence or reason (Green, 1971). For 
example, the teachers believed that integration only worked in theory because of their previous 
unsuccessful attempts, which only served to reinforce the belief. Buehl and Beck (2015) would point 
out quite rightly that the teachers were lacking the pedagogical tools to enact their belief in 
integration. However, if this was all that was missing, teacher practice would be easy to change. We 
suggest that they were also lacking a first-person vicarious experience that provided the necessary 
evidence to change the belief. For our teachers, the success of their public lesson gave them new 
evidence that they could effectively integrate students and resulted in a change of beliefs. 
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I am scared to make a drawing. Students’ anxiety and its relation 
to the use of drawings, modelling, and gender 
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Emotions are important for students’ learning and achievement. In the present paper, we report 
on a study of ninth- and tenth-graders (N=194) in which we investigated the relations between 
anxiety about strategy use, learning outcomes, and gender. We found that anxiety about making 
a drawing to solve a modelling problem was higher in female than in male students. Further, 
anxiety about strategy use was negatively related to different indicators of learning outcomes: 
strategic knowledge about drawing, number of drawings generated spontaneously while 
solving modelling problems, and modelling performance. Moreover, after we controlled for 
intra-mathematical performance, strategic knowledge about drawing, and gender, anxiety 
about self-generated drawing was negatively related to the use of drawings and modelling 
performance. This finding indicates the importance of anxiety about strategy use for learning 
and performance. 

Keywords: Anxiety, Emotions, Strategy, Drawing, Modelling problems  

Introduction 
Emotions are important for the learning of mathematics, mathematical achievement, a person’s 
future career, and human well-being (Schukajlow, Rakoczy, & Pekrun, 2017). One of the best-
researched emotions is students’ anxiety about mathematics. Students have been found to 
experience test anxiety often, and it can negatively influence students’ test performance. 
However, much less is known about the impact of anxiety on students’ strategies. In the present 
paper, we present a study carried out in the framework of the research project “Visualization 
while solving modelling problems” (ViMo). The main aim of the ViMo project is to investigate 
the strategy of learner-generated drawing and its relation to affective and cognitive learning 
factors. In the present study, we explored anxiety about making a drawing (anxiety about self-
generated drawing) and its importance for students’ learning outcomes. Our results contribute 
to clarifying the role of anxiety in strategy use, which was recently identified as an important 
research gap (Ramirez, Shaw, & Maloney, 2018). 

Anxiety, drawing strategy, modelling, and gender 
Anxiety as an achievement emotion 

Definitions of emotions have emerged from different paradigms, such as the Darwinian, 
Freudian, or cognitive-psychological traditions (Hannula, 2015). Emotions are typically 
defined as phenomena that include affective, cognitive, physiological, motivational, and 
expressive components. The components of anxiety are uneasiness and nervous feelings 
(affective component), worry (cognitive), avoidance motivation (motivational), anxious facial 
expressions (expressive), and peripheral physiological activation (physiological) (Pekrun, 
2006). In the control-value theory of achievement emotions, anxiety is considered to be a 
prospective emotion that is related to learning outcomes such as mathematical performance 
(Pekrun, 2006). Control and value appraisals are assumed to be important for the emerging of 
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emotions. Students feel test anxiety if they ascribe a high value to an exam and perceive 
themselves as not able to avoid failure on the exam. Similar to other affective constructs, 
anxiety has state and trait components that refer to the temporal stability of this emotion 
(Schukajlow et al., 2017): If students are anxious while solving a specific problem, this is an 
emotional state; if they are disposed to often being anxious while solving a problem, this is an 
emotional trait. Another important characteristic of emotions is their object, which varies from 
more general objects (e.g. the learning of mathematics) to specific objects (e.g. a mathematical 
problem) (Schukajlow et al., 2017). Mathematical activities (e.g. strategy use) can also serve as 
objects for emotions. 

Self-generated drawing and modelling 

Self-generated drawing describes the process and the product of generating an illustration that 
corresponds to the objects and relations described in a problem (Rellensmann, Schukajlow, & 
Leopold, 2017), and it has been identified as an important strategy for problem solving 
(Hembree, 1992). Strategic knowledge makes part of the static knowledge component of 
metacognition as opposed to the dynamic process component of metacognition, which includes 
the application of strategies (strategy use). In a prior study, we investigated the importance of 
strategic knowledge about drawing for solving modelling problems. Modelling problems are 
problems with a connection to reality, whose solutions require demanding transfer processes 
between reality and mathematics (Niss, Blum, & Galbraith, 2007). Modelling performance can 
be clearly distinguished from students’ ability to solve problems without a connection to reality, 
called intra-mathematical performance. Students’ strategic knowledge about drawing 
comprises students’ views on the characteristics of a drawing that fits a given problem. This 
knowledge is positively related to students’ performance in modelling problems that can be 
solved by using the Pythagorean theorem (Rellensmann et al., 2017). Another important 
predictor of student performance is their strategy use. Students who spontaneously apply a 
drawing strategy were found to demonstrate higher performance in mathematics than students 
who did not apply the strategy (Hembree, 1992). However, this finding was not always 
confirmed when students were asked to construct a drawing. One reason why students do not 
always spontaneously generate drawings might be their affective perceptions of this strategy 
such as anxiety about making a drawing to solve a problem. 

Anxiety, gender, and performance-related outcomes 

Anxiety accompanies solitary problem solving processes (DeBellis & Goldin, 2006), and 
because working individually is important for gaining new knowledge, different contextual 
factors have been accessed to explore anxiety in mathematics. One such factor is students’ 
gender. Most studies on anxiety have revealed that female students report a higher level of 
anxiety in mathematics than male students do (for an overview, see Ramirez et al., 2018). To 
account for this finding, researchers have primarily discussed two reasons that are both related 
to stereotypes about gender and mathematics. One explanation refers to the hypothesis that 
female students report their true level of mathematical anxiety because they do not feel bad 
about having negative feelings toward mathematics, whereas male students try to repress their 
anxiety because of the stereotype that males have to be good at mathematics. Another 
explanation of the higher level of anxiety in women refers to the stereotype that women are 

Thematic Working Group 08

Proceedings of CERME11 1526



worse at math than men. The crucial role of stereotypes for gender differences in anxiety is 
supported by the findings that gender differences disappear when students report their real-time 
(state) anxiety before, during, and after an exam, and they do not have time to reflect on their 
anxiety (Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013). Although these findings refer to anxiety 
about mathematics in general and not anxiety about the use of strategies for solving 
mathematical problems, we expect similar gender differences for anxiety about self-generated 
drawing while solving modelling problems.  

Anxiety about the use of a specific strategy might be one factor that prevents students from 
applying this strategy while solving a problem. If a student fears failure when it comes to 
drawing, he or she might not try to generate a drawing, might solve the problem by using 
another less effective strategy, or might even give up at the very beginning. The relation 
between anxiety and students’ strategies has rarely been investigated yet. We know that 
students’ negative emotions (including anxiety) seem to impede their use of creative strategies 
(Pekrun, 2006) such as self-generated drawing. The use of inappropriate strategies is considered 
to be one factor that can explain why students with high levels of anxiety show poor 
mathematical performance in primary school (Ramirez, Chang, Maloney, Levine, & Beilock, 
2016). However, the negative relation between anxiety and performance depends on students’ 
cognitive abilities and is stronger for students with high working memory capacity. This finding 
indicates that anxiety about self-generated drawing might be negatively related to students’ use 
of this strategy while solving modelling problems. A similar relation can be expected for 
strategic knowledge about drawing because students with high levels of anxiety about drawing 
tend to practice this strategy only rarely and do not have the opportunity to acquire advanced 
knowledge about this strategy. The relation between anxiety and modelling performance might 
be negative because anxious students do not make drawings to solve modelling problems. 
Further, students with high levels of anxiety might perform worse in modelling because their 
working memory might be overloaded with negative feelings, and they cannot focus on problem 
solving to the same degree as students who do not feel anxious.   

Research questions 
On the basis of prior research, we investigated the following research questions: 

1. Does anxiety about self-generated drawing differ for female and male students? We
hypothesized higher anxiety for female students.

2. Is anxiety about self-generated drawing related to strategic knowledge about drawing,
use of drawings, and modelling performance? We expected a negative correlation
between anxiety and these learning outcomes.

3. Is anxiety about self-generated drawing related to the use of drawings and modelling
performance after strategic knowledge about drawing, intra-mathematical performance,
and gender are controlled for? We expected that the relation would remain negative
even after the strategic factor, the achievement factor, and gender were controlled for.
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Method 
Sample and procedure 

Two hundred twenty German ninth- and tenth-graders from ten classes in middle- and high-
track schools participated in the presents study (mean age 14.9 (SD = 0.64), 109 female 
students). On the first day of the study, among other questionnaires, students filled out a 
questionnaire on mathematical anxiety, age, and gender and took a test on strategic knowledge 
about drawing. On the second day, they worked on a modelling test and an intra-mathematical 
test. Students were not instructed to make a drawing. Their spontaneous use of drawings was 
coded by analyzing students’ solutions. 

Measures 

Anxiety about self-generated drawing was assessed with a new Likert scale that we adapted 
from the anxiety scale from the Achievement Emotions Questionnaire (Pekrun, Goetz, Frenzel, 
Barchfeld, & Perry, 2011) by focusing on the items from the drawing strategy. It consisted of 
five items that ranged from 1 (not at all true) to 5 (completely true) and addressed emotional 
trait. Example: “When I make a drawing for a difficult word problem, I am very nervous.” The 
reliability (Cronbach’s 𝛼𝛼) was .860. 

The strategic knowledge about drawing scale was developed and validated in a prior study 
(Rellensmann, Schukajlow, & Leopold, under review). It comprised eight real-world problems, 
each of which was followed by an item concerning situational drawings and an item concerning 
mathematical drawings (see Figure 1). On the 16-item test, students were asked to evaluate the 
utility of the drawings provided for each problem by comparing the drawings with regard to 
their helpfulness in solving the problem. Each item consisted of three drawings (a correct and 
complete drawing, a correct but incomplete drawing, and an incorrect drawing) that students 
rated on the scale from 1 (not helpful at all) to 5 (very helpful). The scores for each item ranged 
from 0 to 3, as each item offer 3 comparisons. The number of points depended on the sequence 
of drawings concerning their usefulness for solving the task. For example, if students identified 
that the correct and complete drawing was more helpful than the correct but incomplete drawing 
and that the correct and incomplete drawing was more helpful than the incorrect drawing, they 
were given 3 points (Cronbach’s 𝛼𝛼 .762).  

The modelling performance test comprised eight problems that could be solved by applying the 
Pythagorean theorem (for an example, see Schukajlow, Krug, & Rakoczy, 2015). Students’ 
solutions were scored by two raters on a scale ranging from 2 (correct problem solution) to 0 
(incorrect solution resulting from an incorrect mathematical model or a missing solution). The 
inter-rater reliability (Cohen’s κ) was >.81 for all modelling problems. Cronbach’s 𝛼𝛼 reliability 
was .772.  

Students’ use of the drawing strategy was assessed via the number of drawings they constructed 
while solving the eight problems on the modelling test. If students made a drawing for a 
problem, they received a score of 1; if they did not make a drawing, they received a score of 0. 

The intra-mathematical test comprised ten items on applying the Pythagorean theorem or 
solving quadratic equations (e.g., x2 = 3.82 – 2.52). They received 1 point for the correct solution 
and 0 points for an incorrect or missing solution. Cronbach’s 𝛼𝛼 Reliability was .760.  
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Statistical analysis 

To analyze the relations between the constructs, we used Pearson product moment correlations 
and partial correlations. Because students worked on the tests on two different days, some data 
were missing (3% and 8%). Thus, we applied listwise deletion for our analysis. This means that 
we excluded students from the analysis if they missed the first or second test session, and we 
performed the analysis on 194 students. 

 
Figure 1: An item from the knowledge about drawing scale (Rellensmann et al., under review) 

Results 
First, we analyzed the differences in anxiety for female and male students. As expected on the 
basis of prior research, students’ level of anxiety about self-generated drawing was significantly 
higher for female students (M = 2.12, SD = 0.96) than for male students (M = 1.67, SD = 0.63). 
About 11% of the female students and 18% of the male students denied feeling anxiety about 
drawing for all 5 statements. The medium effect size (Cohen’s d = .56) indicates that women 
feel anxiety more often than men if they make a drawing while solving a demanding modelling 
problem. 
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The second research question was about the relation between anxiety about making a drawing 
and learning outcomes. The analysis of Pearson correlations revealed that students’ anxiety 
about making a drawing was negatively related to all constructs measured in the present study 
(see Table 1). The effect size for the relation between anxiety about making a drawing and 
modelling was medium in size, and the effect sizes for the correlations between anxiety, use of 
drawings, and intra-mathematical performance were weak. 

  SKD UD IM MOD 

Anxiety r -.118 -.154 -.140 -.327 

pa .041 .016 .026 <.001 

Note. a p: one-tailed. SKD: strategic knowledge about drawing, UD: Use of drawings, IM: intra-
mathematical performance, MOD: Modelling performance. 

Table 1: Correlations between anxiety and the learning- and achievement-related measures 

Students who felt anxious about making a drawing had lower levels of strategic knowledge 
about drawing, applied this strategy less often while solving modelling problems, and 
demonstrated poorer modelling performance.   

The third research question focused on the analysis of the relation between anxiety about 
drawing, strategy use, and modelling performance after strategic knowledge about drawing, use 
of drawings, intra-mathematical performance, and gender were controlled for. The partial 
correlations confirmed a significant relation between anxiety and the use of drawings (r = -.161, 
p = -.026) and between anxiety and modelling performance (r = -.236, p < .001). The relations 
between anxiety about drawing and the use of drawings and modelling performance go beyond 
the contribution of the strategic factor (SKD), the cognitive factor (IM), and gender.  

Discussion 
In the present study, we explored the role of students’ anxiety about self-generated drawing. 
Our analyses confirmed the gender differences for anxiety about self-generated drawings that 
were found for mathematical anxiety in prior studies. Although mean values for anxiety about 
self-generated drawing were low, our results indicate that more than nine tenths of female 
students and more than one sixth of male students might be worried, feel uneasiness, or feel 
nervous while making a drawing for a difficult modelling problem. Giving prior findings about 
the importance of spontaneous drawings for problem solving (Hembree, 1992) and the 
importance of drawings for solving modelling problems that can be solved by applying the 
Pythagorean theorem (Rellensmann et al., 2017), anxiety about using drawings seems to be an 
important construct that should be investigated in future studies. Moreover, female students 
might be disadvantaged while solving modelling problems because of their anxiety about using 
advanced strategies such as self-generated drawing. The main reason for gender differences in 
anxiety is considered to be social stereotypes that occur in the trait measures of anxiety. In 
future studies, it will be interesting to assess anxiety about self-generated drawing as a state, 
directly before or during problem solving, in order to clarify the stability of gender differences.   
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The analysis of the relations between anxiety about self-generated drawing and learning 
outcomes was the second main point of the present study. We hypothesized two ways in which 
anxiety about self-generated drawing can affect learning outcomes. First, students with high 
anxiety about making self-generated drawings might avoid using this strategy during problem 
solving because of their fear of failure, and they might look for other ways to solve the problem. 
The results of our analysis confirmed this hypothesis because we found a negative relation 
between anxiety and the number of drawings used while solving modelling problems. 
Moreover, a negative relation between anxiety and strategic knowledge about drawing indicates 
that students with high anxiety did not know the important characteristic features of good 
drawings. One reason for this negative relation might be that anxious students make drawings 
less frequently, and thus, they do not have many opportunities for improving this strategy. The 
relation between anxiety and the use of drawings while solving modelling problems remained 
negative after strategic knowledge about drawing, intra-mathematical performance, and gender 
were controlled for, indicating that affective constructs such as anxiety might influence the use 
of the strategies beyond strategic knowledge, general mathematical abilities, or gender. Second, 
anxiety is considered to have a negative influence on performance because it diminishes 
cognitive resources (e.g. working memory) while problem solving. If students are anxious 
during problem solving, they cannot focus on the entire problem and perform worse than 
students who do not feel this emotion. We found a negative correlation between anxiety about 
drawing and modelling performance that remained significant after strategic knowledge about 
drawing and intra-mathematical performance were controlled for. This finding might indicate 
the specific relevance of anxiety about self-generated drawing for students’ modelling 
performance.  

In sum, our findings revealed the importance of overcoming anxiety about the use of strategies. 
In the case of drawing, we suggest that students should learn how to apply this strategy in the 
classroom and to reflect on differences between more and less helpful drawings. Engagement 
with drawings should begin in primary school because anxiety about mathematics emerges in 
the early school years, and decreases performance in secondary school (Ramirez et al., 2018).  

Finally, we would like to point out one limitation of the present study. Although anxiety, 
students’ drawings, and modelling performance were ordered along the timeline, we cannot 
draw conclusions about causal effects of anxiety on the use of drawings or on modelling 
performance. Prior research has revealed some evidence of reciprocal causation between 
emotions and achievement (Putwain, Becker, Symes, & Pekrun, 2018). In mathematics, 
however, the relation between emotions and performance has yet to be clarified. For example, 
students’ prior performance in modelling did not influence enjoyment during lessons, whereas 
enjoyment during lessons affected modelling performance after mathematics lessons 
(Schukajlow & Rakoczy, 2016). We interpret this result as evidence of possible effects of 
anxiety about drawing on performance in modelling. In future studies, we suggest to pay more 
attention to the interaction of affective, strategical and cognitive factors while solving 
mathematical problems. 
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influential factors for engaged and disengaged low achieving 

mathematics students 
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The engagement construct, comprised of three interrelated components including behaviour, 
emotions and cognition, is crucial when considering students approach to learning mathematics and 
by implication, for teaching. In this study, 37 Year 7 students (11-12 years) self-reported measures 
of engagement and motivation which established unique engagement/achievement groupings. In-
depth interviews then investigated factors influencing student engagement distinct from levels of 
achievement. This paper reports findings from the two low achieving groups differentiated by 
engagement. The low achieving engaged students reported upwards shifts in adaptive factors: self-
efficacy, valuing, task management, persistence and enjoyment, coupled with downwards shifts in 
anxiety, avoidance, and uncertainty. The low achieving disengaged students reported declines in self-
efficacy, valuing, planning and enjoyment with rises in anxiety, uncertainty and self-handicapping. 

Keywords: Student engagement, mathematics achievement, motivation. 

Introduction 
The importance of promoting student engagement, participation and interest in learning mathematics 
continues to concern mathematics teachers and educators with still too few students continuing to 
study mathematics beyond post compulsory requirements (Barrington, 2011) and pursuing 
mathematics related courses and pathways. Increasing student participation in and enjoyment for 
learning mathematics, addressing declines in student engagement and understanding influencing 
factors is of central concern, particularly for the transition from primary to secondary school (Martin, 
Way, Bobis & Anderson, 2015). 

Framing student engagement beyond narrow and observable behaviors to include emotional and 
motivational factors affecting individuals is recognized as fundamental to engagement research. 
Stipek et al., (1998) identified the ‘convergence’ and relevance of academic motivation research to 
reform-orientated mathematics education approaches. In particular, teaching practices emphasising 
the importance of goal orientations, mastering understanding, risk taking, positive emotions, 
enjoyment and perceptions of academic competency were seen as beneficial for student outcomes. 
Subsequent research identifies a lack of relevance, value of mathematics and disaffection with 
mathematics with students who described mathematics as tedious, isolating, elitist, and 
depersonalized (Nardi & Steward, 2003). When investigating student emotions, Pekrun & 
Linnenbrink-Garcia, (2012) revealed a nuanced range of emotions that influence the extent to which 
individual students participate and engage in mathematics learning. In combination, motivational and 
emotional factors along with cognitive strategies and approaches of individual students act to shape 
students dis/engagement profiles. Recent research found that students were more alike in terms of 
their dis/engagement than their level of achievement (Skilling, Bobis, & Martin, 2015). This 
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highlights the importance of looking beyond achievement as an indicator of engagement and 
identifies the significance of investigating engagement levels separate to achievement. This paper 
incorporates quantitative survey with qualitative interview data of two low achieving students 
differentiated by their level of engagement. Specific factors underpinning student dis/engagement 
and how these vary for individual students are revealed. This information is valuable for interventions 
whereby teachers can purposefully meet students’ engagement and achievement needs and is 
particularly relevant for supporting low achieving students with different dis/engagement profiles. 

The engagement construct 

Together, aspects of doing, feeling and thinking, comprise the engagement construct, and are referred 
to respectively as behavioural, emotional and cognitive engagement (Fredricks, Blumenfeld, & Paris, 
2004). This multidimensional framework is widely accepted, albeit with variations in terminology 
and definitions for different types of engagement (e.g. academic engagement is sometimes used). 
However, clarifying conceptions of engagement, and theorizing about modes of operation and 
understanding the relationship between engagement and motivation is needed. 

For this study, definitions from Fredricks et al.(2004) are adhered to. Behavioural engagement refers 
to participation and involvement in academic and social activities and include, “effort, persistence, 
concentration, attention, asking questions and contributing to class discussion” (Fredricks et al. 2004; 
p, 62). Emotional engagement is concerned with students’ positive and negative reactions to teachers, 
schoolwork, peers and school and includes non-cognitive aspects such as interest, values and 
attitudes. Cognitive engagement is more strongly linked to improving student learning and draws 
from two perspectives: the psychological investment in learning that emphasises the efforts students 
make (Fredricks et al., 2004), and the other focuses on practices used to enhance learning and 
instruction such as self-regulation strategies and metacognitive processes.  

Conceptually engagement is seen to operate in an interrelated way, and is dynamic and likely to 
fluctuate due to individual factors and varying contexts (school and home). It is also expected that 
intensities of engagement vary for individual students depending on the types of activities and 
cognitive demands of tasks. Therefore, the engagement of individual students is expected to fluctuate 
over time and at different levels of intensity depending on activities, the learning context and 
motivational factors (Fredrick et al., 2004). 

Motivation and engagement 

Although the terms motivation and engagement are frequently used interchangeably, they are distinct. 
Motivation is concerned with the psychological processes of an individual that are the sources for 
taking actions and displayed as visible engagement characteristics (Skinner & Pitzer, 2012). 
Therefore, motivations explains why individuals behave in particular ways and are seen as 
encompassing the internal, private and unobservable factors of the outer, public and observable 
engagement (Skilling, 2014). Goldin, Epstein, Schorr, and Warner, (2011) also note the importance 
of considering student engagement in the context of social practices within classrooms and suggest 
combining motivational and affective structures for creating nine structures of engagement. Each 
structure identifies particular characteristics that occur ‘in the moment’ for example ‘Get the job 
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done’; ‘Look how smart I am’; ‘I’m really into this’ (pp. 549-554) with each emphasising different 
motivations, features of social situations and subsequent behaviour and emotions. 

The direction of underlying motivations leading to to engagement (behaviors and emotions) depicted 
by Goldin et al. (2011) is also discussed by Martin (2007; 2017). Broadly, the motivation and 
engagement relationship is seen as cyclical, with motivation occurring before and during activities 
leading to engagement as well as prior engagement explaining “significant variance in subsequent 
motivation” (Martin, Ginns, & Papworth 2017, p.157). To provide a more integrative approach to 
motivation and engagement research, Martin (2007) combines multiple motivational and engagement 
constructs on a single framework, known as the ‘Motivation and Engagement Wheel’ (MEW). The 
MEW reflects several important motivation theories that capture both adaptive and maladaptive 
factors. This framework is also used in the Interview Study as it complements Fredricks et al. (2004) 
engagement framework and because it includes adaptive and maladaptive factors and therefore 
addresses both engagement and disengagement constructs. 

The aims of the Interview Study were to understand individual, classroom, and school level factors 
that influence engagement and achievement. The research questions included: 

What beliefs do engaging and disengaging students hold about their achievements in mathematics?   

What individual characteristics, classroom and home factors differentiate high and low engaging 
students?  

Methodology  
The Interview Study reported here used data collected from a related larger project to obtain measures 
of engagement and achievement of students in Grade 6 (primary school in Time 1) and then Grade 7 
(secondary school in Time 2) (11-12 years of age). Following the Time 2 quantitative data collection, 
in-depth interviews with specific students took place.  

Identifying specific students participants 

In keeping with the aims of the study it was important to consider engagement and achievement 
separate from each other. The Interview Study aimed to understand individual students beliefs and 
characteristics underlying shifts in engagement in the first year of secondary school therefore 
quantitative data from the Year 7 student group in Time 1 and 2 was drawn upon from the larger 
project to determine potential participants for interview. Parameters for dis/engagement and 
achievement were applied to establish students evincing the greatest upwards and downwards shift in 
dis/engagement and those with the highest/lowest achievement. A further refinement took into 
account each students mathematical achievement score (out of 30) at Time 2. A tripartite split was 
set: scores of 18 and over determined high achievers; scores of 13 and below determined low 
achievers. Using the students engagement/disengagement and high/low achievement characteristics, 
students were placed into one of the following four categories: high achieving + engaging (‘HAE’); 
low achieving + engaging (‘LAE’); high achieving + disengaging (‘HAD’); and low achieving + 
disengaging (‘LAD’). In total 37 students from the four categories were interviewed and this is 
represented in Table 1. 
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Engaging Students Disengaging Students 

High Achieving (HAE) n=9 High Achieving (HAD) 

 

n=8 

Low Achieving (LAE) n=10 Low Achieving (LAD) 

 

n=10 

Table 1: Engaging and disengaging student groupings 

 

Data instruments, collection and analysis 

The quantitative component of the larger project used a purposively designed survey, called the 
Motivation and Engagement, Survey (Martin, 2007) known as the MES, and a mathematics 
achievement assessment instrument to establish shifts in students’ engagement, motivation and 
achievement levels over time and academic year. The MES included 44 items representing 11 first-
order factors each representing various constructs of motivation and engagement adapted to a 
mathematics context (Martin, 2007), against which the students rated themselves from a scale of 1 
(strongly agree) to 7 (strongly disagree). The 11 factors are made up of six adaptive factors (self-
efficacy, mastery orientation, valuing, persistence, planning and task management) and five 
maladaptive dimensions (anxiety, failure avoidance, uncertain control, self-handicapping and 
disengagement) and an additional measure of enjoyment of mathematics was included. The 
mathematics assessment instrument adapted from the Wide Range Achievement Test 3 (WRAT) 
(Wilkinson, 1983) was used to measure student achievement. 

Qualitative data was obtained through in-depth, semi-structured interviews. The interviews involved 
eliciting student beliefs about their mathematical capabilities, reports on their behaviour in 
mathematics classrooms and their feelings towards mathematics—and how this affected their 
engagement and achievement in mathematics. The interviews took place in the final year of term, 
were recorded on an audio device and later transcribed and supplemented by field notes that recorded 
information about the students’ favourite subject at school, homework habits, and intended career 
choices. The approach to analysing the interview data was inductive and guided by the interview 
questions. Comments were coded as being descriptive of an aspect about mathematics learning, such 
as: liking mathematics; views about mathematics ability; and use of strategies for learning 
mathematics forming the main themes reported in the findings. Inter-rater reliability was established 
by following one of the recommendations by Krippendorf (2004) by using an additional coder who 
independently coded a 13.5% sample of the student interviews and coding reliability an average 
accuracy of 95.8%, satisfying suggested recommendations. 

Findings and Discussion  
This paper draws on the combined quantitative and qualitative results of two low achieving students 
representative of the LAE and LAD groups. This is a unique approach for investigating the nuance 
of specific beliefs and characteristics of students with contrasting engagement profiles: student LAE8 
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is a low achieving engaged student and LAD2 is a low achieving disengaged student. The measures 
of engagement and disengagement are presented graphically using spider graphs to illustrate shifts in 
individual student engagement and disengagement between Time 1 and 2. The spider graphs show 
adaptive factors (self-efficacy, mastery orientation, valuing, enjoyment, persistence, planning and 
task management) on the upper semicircle and maladaptive factors (anxiety, failure avoidance, 
uncertain control, self-handicapping and disengagement) on the lower semicircle. Figures 1 and 2 
respectively display the results of student LAE8 and LAD2: the darker line shows Time 1 results: the 
lighter line shows Time 2. The quantitative data is supplemented by the interview data.  

Low achieving engaged 

Student LAE8 attended an all male school and was in a mixed ability mathematics class. When asked 
about favourite subjects, LAE8 reported that mathematics was probably one of his favourite subjects 
in secondary school because he was “learning a lot of new things” and he “likes to listen and enjoys 
maths”. LAE8 stated that he would like to do well in mathematics, as “it is good for actual life” and 
aspired to be an architect. When asked his beliefs about his maths achievement, LAE8 responded, “I 
go pretty good” and he judged this by reporting that he “usually gets most right” when marking his 
work in class. When asked if the marks matter, LAE8 replied, “If it’s just normal work and I get 50% 
I learn to do it again. If it is a test then I know I have [mucked] up” although later in the interview he 
reports that “Sometimes I make silly mistakes, sometimes I still can’t get it”. These responses 
indicated that despite not achieving highly in mathematics LAE8 was emotionally engaged in 
mathematics demonstrating a strong belief in his mathematics ability, he liked learning mathematics 
and valued its use for the future. These reports are supported by the upward shifts showing high 
adaptive scores for self-efficacy, valuing and enjoyment in Figure 1. 

LAE8 reported proactive behaviors, describing strategies for seeking help at school and home. In 
class, this included asking the teacher for further explanations because “sometimes she explains it in 
a way I can understand”. Other strategies included: going through his notes: spending “some more 
time on it” to see if he could “get it”; or going around the class to see “if other people might know”. 
LAE8 reported that if he needed help at home with maths he could ask both his mum and dad stating, 
“my parents help me a lot”. 

Although LAE8 believed that “we [the class] get a lot of homework” he reported planning time after 
school to attend to this. He reported using the textbook for support by referring to examples asking 
the teacher in the next mathematics lesson. The actions taken by LAE8 indicated active behavioral 
and cognitive engagement by planning to do maths work in class and at home, persistence with trying 
to complete work rather than avoid it. These behaviors are reflected in Figure 1, where shifts in higher 
measures for planning, task management and persistence and downward shifts in measures for 
avoidance and self-handicapping are evident. Further, LAE8 did not report feeling anxious but 
portrayed a positive attitude towards mathematics learning. LAE8 was also able to describe students 
he believed were not engaged or motivated in class reporting, “sometimes they just don’t want to 
listen. They usually muck around when the teacher is explaining on the board”. This description 
contrasts with how LAE8 describes himself indicating high levels of behavioral, emotional and 
cognitive engagement. 
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Figure 1: Low achieving engaged (LAE8)  Figure 2: Low achieving disengaged (LAD2) 

 

Low achieving disengaged  

LAD2 attended an all female school and was also in a mixed ability class reports a contrasting report 
from that of student LAE8. Despite scoring several marks higher than LAE8 in the Time 2 maths 
quiz, when asked how she felt about mathematics LAD2 reported “I don’t really like it” explaining 
“I think it’s boring and I don’t really get it”. She was aware of her lack of understanding, stating that 
when the teacher “tries to explain something I don’t understand it and some of the bookwork I don’t 
understand”. LAD2 reported that she rarely asked the teacher for help, preferring to ask her friend 
“because she gets good grades” or looks at examples in the textbook. When asked to describe her 
achievement in mathematics LAD2 responded, “I don’t really think I do good. Like I get bad marks 
in it. I get 10 out of 30 for a quiz or something” and placed herself as “sort of near the bottom” of the 
class. Although LAD2 reported that she continued to try she also said that she is not engaged or 
motivated by mathematics. When asked about her future intentions for studying mathematics she 
reported, “I don’t want to…because I don’t find it very interesting”. LAD2 also commented that she 
finds mathematics “confusing” and this make her “feel annoyed and angry” explaining “I’m angry at 
it because I want to get it”. These descriptions by LAD2 of her mathematics experiences in Year 7 
relate negative emotions and are reflected by reduced measures in several adaptive factors in Figure 
2, particularly in self-efficacy, valuing and enjoyment. Significantly, there are also large increases in 
maladaptive measures such as anxiety, uncertain control, self-handicapping and overall shifts towards 
disengagement. 

In class, LAD2 finds that when the teacher starts a new topic although she doesn’t really “get it” she 
tries to ask the teacher questions but reports: “You will have your hand up for 15 minutes and he 
won’t pick you. So, I put it down and ask someone else”. LAD2 said that she did homework “most 
of the time but sometimes” she just does not “get it” and then tends to “give up”. At home, LAD2 
reported that she can talk to her dad about mathematics but does not do this “very often” and although 
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the school offers students an online mathematics programme for use at home she does not use it. 
Regarding homework, LAD2 says that when given work from the textbook she rarely completes this 
or follows up for explanations. She also finds that the textbook “doesn’t really explain it properly” 
resulting in not understanding the topic and “the whole chapter”. LAD2 believed that her achievement 
was lower than in primary school reporting, “last year I did average…but this year I have gone down”. 
This shift has led to her feeling that mathematics is now a “bit harder”, and that she “understood it 
more” in primary school where the teachers explained mathematics better as they “drew it on the 
board and explained it again”. LAD2 summarized her thoughts as: “last year I felt oh yeah, I am doing 
alright but this year, oh my god I am doing badly”.  

In summary, by investigating the reports of these two students with similar achievement but differing 
engagement levels, insights for understanding influential motivational, class and home factors are 
revealed. For example, student LAE8 showed higher measures across most adaptive factors and 
declines in maladaptive factors between Time 1 and 2. He also portrayed a positive approach and 
enjoyed mathematics while demonstrating proactive behaviors and using cognitive strategies for 
monitoring and regulating his learning. In contrast, the disengaged student, LAD2 evinced large shifts 
in maladaptive measures particularly anxiety, control and self-handicapping. Unfortunately, this 
student also reports strong negative emotions such as dislike, confusion, and frustration that seem to 
stem from her lack of understanding and strategies for addressing the mathematics being taught. 

Conclusion 
In combination, the quantitative survey data effectively measured shifts of adaptive and maladaptive 
factors for individual students. Analysis of these measures assisted in identifying students with 
pronounced positive and negative shifts in engagement in mathematics over one year. This provided 
for a unique and purposeful qualitative investigation of two low achieving students with different 
engagement characteristics. These characteristics were explored using in depth interviews to better 
understand their beliefs about mathematics competency, feelings towards mathematics and strategies 
for approaching mathematics learning (Goldin et al, 2011; Nardi & Steward, 2003; Martin et al, 
2015). The findings revealed that although both students were low achieving, the engaged student 
reported a stronger sense of self-efficacy, valuing, persistence, enjoyment and task management. The 
low achieving disengaged student however, reported declines in self-efficacy, valuing, enjoyment 
and planning and increases in anxiety, uncertainty and self-handicapping. This information highlights 
the individual variation in student engagement characteristics despite displaying similar levels of 
achievement and reveals vital information for teachers when planning instruction with a view to 
improving individual student learning outcomes (Stipek et al, 1998) and for maintaining student 
interest and participation in mathematics (Barrington, 2011). 
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Motivational variables such as self-concept and interest accompany learning processes and hence 
are considered as relevant target variables of schooling. In order to evaluate effects of a teacher 
training on their students’ domain-specific self-concept and interest, established mathematics-related 
scales for these variables were adapted to the domain of functions and administered in a pre-, post-, 
follow-up-design to a sample of 1177 secondary school students. Results of confirmative factor 
analyses in Mplus indicate that the scales mathematics- and functions-related self-concept and 
interest are empirically separable despite relatively large latent correlations for the functions-related 
scales in the pre-test. Together with satisfying values of Cronbach’s alpha, this finding implies that 
the instrument can be used to reliably assess students’ functions-related self-concept and interest and 
hence fulfills the requirements for further analysis steps. 

Keywords: Confirmative factor analysis, self-concept, interest, mathematics, functions. 

Introduction 
The project ProfiL9 of Heidelberg University of Education evaluates the effects of a teacher training 
about learning difficulties related to elementary functions (e.g., Sproesser, Vogel, Doerfler, & Eichler, 
2017). The field of functions was chosen because of its relevance within mathematics (education) and 
its difficulty for many students (e. g. Selden & Selden, 1992). Effects of this teacher training are to 
be evaluated both at the teacher and the student level. Beyond investigating students’ competency 
development related to elementary functions in the course of the corresponding teaching unit, this 
study focuses on changes in students’ self-concept and interest. In the context of assessing effects of 
teacher trainings at the student level, Yoon and colleagues (2007) state that the corresponding 
instruments have to meet high scientific standards. Hence, a reliable and valid instrument is 
mandatory. In order to get insight in particular cause-effect-relations, such a test instrument should 
target variables directly related to the subject of the teacher training, in the present case related to the 
mathematical subdomain of functions. This paper presents results of a confirmatory factor analysis 
showing that self-concept and interest for mathematics in general and functions in particular are 
empirically separable within our sample. Therefore, in the next section, we will introduce the 
theoretical background related to self-concept and interest. Afterwards, we will outline the methods 
of this study and finally present and discuss our findings. 

Theoretical Background 
Motivational dispositions such as self-concept and interest nowadays are considered to be relevant 
for learning (e.g., Schiefele, 1991; Valentine, duBois, & Cooper, 2004) as they accompany learning 
processes and affect (the development of) students’ achievement in and beyond school (e.g., Jacobs, 
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Lanza, Osgood, Eccles, & Wigfield, 2002). Therefore, they represent important target variables also 
of mathematics schooling (e.g., Pekrun & Zirngibl, 2004). In the following, the motivational variables 
self-concept and interest will be described in more detail. 

An individual’s beliefs about the own abilities in a particular academic or non-academic domain are 
subsumed as self-concept (e.g., Bong & Skaalvik, 2003). Among other self-belief constructs domain-
specific self-concept can be considered as ranging between the more general self-esteem, i.e., an 
“emotional attitude towards the self” (ibid., p. 11) and the more particular self-efficacy expressing a 
conviction of how to perform in a concrete task. Self-concept is considered to be relatively stable and 
based on prior (achievement) experience in the corresponding domain (ibid.) on the one hand. On the 
other hand, there is a reciprocal relationship between self-concept and achievement: achievement in 
a certain domain is clearly influenced by prior self-concept levels (e.g., Calsyn & Kenny, 1977). An 
example for domain-specific (academic) self-concept is mathematics-related self-concept, i.e., a 
person’s confidence in his or her abilities in mathematics. Such domain-specific self-concept was 
found to be positively correlated to achievement in the corresponding domain (e.g., Baumert & 
Köller, 2000), because – for instance – a positive self-concept can support success-oriented behaviors 
like practicing (Valentine et al., 2004). Because of the domain-specificity of self-concept, e.g. Marsh 
and Craven (1997) recommend that researchers should measure this variable as closely connected as 
possible to the domain focused in the corresponding research. 

According to Schiefele (1991, p. 302) individual interest is a “relatively enduring preference for 
certain topics, subject areas, or activities”. Hence – similarly to self-concept – individual interest is 
domain-specific and it makes sense to assess it closely related to the corresponding domain. 
Moreover, Schiefele (ibid.) states that an interested person attributes a personal relevance to his or 
her target of interest (i.e., value-related valences) and that interest usually is accompanied by positive 
feelings such as involvement and enjoyment (i.e., feeling-related valences). Therefore, an interested 
person engages in an activity or subject for its own sake and makes efforts in order to learn about it. 
Various studies show that interest and achievement are correlated (e.g., Baumert & Köller, 2000; 
Helmke & Weinert, 1997). Schiefele (ibid.) gives several reasons for this relationship: For instance, 
interested students are more likely to employ meaning-oriented learning activities and they use more 
elaborated learning strategies. In the present study, we focus on the relatively stable (individual) 
interest for the domain of mathematics and functions as opposed to the more fluctuating situational 
interest (e.g., Hidi & Renninger, 2006) that won’t be considered here. 

In order to investigate certain cause-effect-relations, it makes sense to measure self-concept and 
interest particularly related to the focused domain (cf. Bong & Skaalvik, 2003; Marsh & Craven, 
1997; Schiefele, 1991). This consideration does also reflect the finding that empirical correlations, 
e.g., between self-concept and achievement are found to be larger when these variables are measured 
as domain-specific as possible (Hansford & Hattie, 1982). As stated above, self-concept and interest 
differ between certain school subjects such as Mathematics and English. In this sense, it can be 
assumed that students can also hold different perceptions of, e.g., particular mathematical subdomains 
such as functions with regard to these motivational variables. However, this assumption still has to 
be verified empirically. Considering all combinatorial possibilities, the following alternatives appear 
to be particularly plausible: As mathematics and its subdomain of functions as well as self-concept 

Thematic Working Group 08

Proceedings of CERME11 1542



and interest are closely connected, it is possible that students do not differentiate between these 
variables at all. A second possibility is that they discriminate between self-concept and interest but 
do not perceive mathematics distinct from functions as the latter represents a subdomain of 
mathematics. A third possibility is that students perceive mathematics distinct from functions but do 
not discriminate between self-concept and interest within each domain. A fourth possibility is that 
students discriminate between self-concept and interest within mathematics because they have long-
time experiences with this subject. However, and due to less experience with the domain of functions, 
self-concept and interest related to this domain could be not distinguishable for them. The latter 
possibility of students being not able to distinguish between self-concept and interest related to 
functions particularly applies for the data collection before the teaching unit of functions when 
students were not familiar with this domain. 

Research questions 

Concerning the domain of mathematics, motivational variables have been examined by various 
studies including PISA and TIMSS; they document for instance considerable correlations between 
self-concept, interest and achievement (e.g., Baumert & Köller, 2000; Pekrun & Zirngibl, 2004). 
However, to our best knowledge these variables have not been investigated specifically related to the 
mathematical subdomain of (elementary) functions and hence there are no approved instruments to 
reliably measure them. Taking into account that self-concept and interest are both domain-specific, it 
is reasonable to assess these variables related to the particular domain of functions (cf. Marsh & 
Craven, 1997) for investigating the above assumption that students can hold different perceptions of 
mathematics and functions with regard to their self-concept and interest. In this study, we investigate 
the following research questions: 

· Are mathematics- and functions-related self-concept and interest empirically separable?

· How reliable do the scales measure these variables?

Methods 
Sample and context of the study 

In this study, data from 1177 German students (45.6 % female) from 53 classes in 32 German 
secondary schools was analyzed. Due to missing values the concrete number of subjects varies for 
the different analyses and hence is indicated in the corresponding part of the Results Section. The 
classes were recruited among teachers that participated in the teacher training mentioned above as 
well as from schools that were in contact with the project contributors. In both cases, the participation 
of the classes and the individuals were voluntary. The students were aged between 11 and 17 years 
(M = 13.20, SD = 0.94). The large range of age is due to the fact that in Germany the teaching unit 
of linear functions is taught in different grades (mainly in grade 7 and 8) depending on the level of 
academic performance of the corresponding class or school, respectively. In all the participating 
classes, the assessment was done before (pre-test) and after (post- and follow-up-test) the teaching 
unit of linear functions as it focuses on the development of functions-related competence and 
motivational variables in the course of this teaching unit. As many students were not familiar with 
functions at the pre-test, they were told that the tasks focusing on interpreting graphs in the preceding 
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competency test were examples for functions tasks. Moreover, they were given the option not to 
answer the functions-related items if they did not feel comfortable responding to them. In each class 
a regular teacher of the corresponding school as well as a researcher (the first author or a specifically 
trained assistant) were present during the testing.  

Measures 

Motivational variables referring to mathematics and functions were assessed using 5-point Likert 
scales. Mathematics-related self-concept (6 items) and interest (3 items) were measured through 
scales established by Pekrun and colleagues (e.g., 2007). In order to tap students’ self-concept 
(6 items) and interest (3 items) related to functions, the mathematics-related items were adapted to 
the mathematical subdomain of functions. More information about the scales, e.g., sample items are 
displayed in Table 2 in the Results Section.  

Analyses 

The confirmatory factor analysis (research question 1) was conducted with the software Mplus 7.3 
with type = complex which accounts for nested data in school classes. The implemented Full 
Information Maximum Likelihood (FIML) procedure estimates missing values except for cases with 
missing on all variables. The robust maximum likelihood (MLR) estimator was used which corrects 
for non-normality in the measures. For each factor, the regression weight of one item was fixed to 1.0 
by default. In order to assess global model fit, we refer to the comparative fit index (CFI), the root 
mean squared error of approximation (RMSEA) and the standardized root mean squared residual 
(SRMR). Hu and Bentler (1999) suggest using a combination of cutoff values such as CFI ≥ 0.95, 
RMSEA ≤ 0.06 and SRMR ≤ 0.08 for a good model fit. As the χ² statistic is sample-size dependent 
the χ²/df ratio was additionally determined. According to Bollen and Long (1993) the model fits the 
data sufficiently when this ratio does not exceed 5. The different (nested) models are furthermore 
compared by the sample-size adjusted Bayesian Information Criteria (adj. BIC). Values for 
Cronbach’s alpha (research question 2) were determined with SPSS 25. 

Results 
Research question 1 investigates whether the mathematics- and functions-related scales were 
empirically separable within our sample. For this purpose, we specified several models with the items 
for mathematics- and functions-related self-concept and interest as stated above: Model A integrates 
all 18 items to a single factor. Model B assigns the items to the two factors self-concept (for 
mathematics and functions) versus interest (for mathematics and functions). Model C differentiates 
between mathematics (self-concept and interest) and functions (self-concept and interest). Model D 
contains three factors, namely self-concept for mathematics, interest for mathematics and a 
combining factor for functions (self-concept and interest). The full Model E incorporates the four 
factors mathematics-related self-concept, mathematics-related interest, functions-related self-concept 
and functions-related interest. Details about the fit of these models are displayed in Table 1 for the 
pre-, post- and follow-up-test. Concerning all times of testing, global fit indices (χ²/df, CFI, SRMR, 
RMSEA) indicate except for slight deviations that the full Model E fits the data reasonably whereas 
the other models do not meet most of the recommended thresholds (see Analysis Section). Similarly, 
model comparisons based on the adjusted BIC are in favor of Model E. 
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Model Pre-test (N = 895) Post-test (N = 915) Follow-up-test (N = 708) 
Model A (1 factor): 
Self-concept and interest for 
mathematics and functions 

χ²/df = 23.2 
CFI = .658  
RMSEA = .157 
SRMR = .128 
Adj. BIC = 37901.3 

χ²/df = 22.2 
CFI = .728 
RMSEA = .152 
SRMR = .102 
Adj. BIC = 40697.5 

χ²/df = 18.9 
CFI = .707 
RMSEA = .159 
SRMR = .101 
Adj. BIC = 31181.1 

Model B (2 factors):  
self-concept for mathematics 
and functions  
vs. interest for mathematics and 
functions 

χ²/df = 22.5 
CFI = .671 
RMSEA = .155 
SRMR = .124 
Adj. BIC = 37676.6 

χ²/df = 18.0  
CFI = .783 
RMSEA = .136 
SRMR = .093 
Adj. BIC = 39950.0 

χ²/df = 15.6 
CFI = .763 
RMSEA = .144 
SRMR = .090 
Adj. BIC = 30536.4 

Model C (2 factors):  
self-concept and interest for 
mathematics  
vs. self-concept and interest for 
functions 

χ²/df = 7.0 
CFI = .908 
RMSEA = .082 
SRMR = .053 
Adj. BIC = 35182.2 

χ²/df = 12.7 
CFI = .851 
RMSEA = .113 
SRMR = .069 
Adj. BIC = 38946.2 

χ²/df = 10.7 
CFI = .843 
RMSEA = .117 
SRMR = .068 
Adj. BIC = 29724.9 

Model D (3 factors):  
self-concept for mathematics 
vs. interest for mathematics  
vs. self-concept and interest for 
functions  

χ²/df = 4.7 
CFI = .944 
RMSEA = .064 
SRMR = .042 
Adj. BIC = 34779.3 

χ²/df = 10.0 
CFI = .887 
RMSEA = .099 
SRMR = .059 
Adj. BIC = 38464.1 

χ²/df = 8.3 
CFI = .884 
RMSEA = .101 
SRMR = .059 
Adj. BIC = 29322.7 

Model E (4 factors):  
self-concept for mathematics  
vs. interest for mathematics 
vs. self-concept for functions 
vs. interest for functions 

 χ²/df = 3.3 
CFI = .967 
RMSEA = .050 
SRMR = .033 
Adj. BIC = 34536.7 

χ²/df = 5.3 
CFI = .948 
RMSEA = .068 
SRMR = .038 
Adj. BIC = 37661.5 

χ²/df = 3.8 
CFI = .957 
RMSEA = .062 
SRMR = .033 
Adj. BIC= 28588.6 

Table 1: Global fit indices for the tested models (pre-, post- and follow-up-test) 

 

 
Figure 1: Factorial structure and parameters of Model E (pre-test) 
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The structure, factor loadings and correlations of the full Model E are displayed in Figure 1 for the 
pre-test. Similar results were found for the post- and follow-up-test. The rather low factor loading of 
Item 2 referring to mathematics-related interest is comparable, respectively slightly higher for the 
post- (.59) and follow-up-test (.63). Analyzing Model E without this item did not lead to better fit 
indices. Although the four scales mathematics- and functions-related self-concept and interest turned 
out to be separable, they expose latent correlations of .44 to .88. The correlation between functions-
related self-concept and interest is lower for the post- and follow-up-test (both .80).  

Table 2 shows Cronbach’s alpha in pre-, post- and follow-up-test (fut) for mathematics- and 
functions-related self-concept and interest ranging from .81 to .94. All in all, the values for the 
functions-related scales are comparable to the corresponding mathematics-related counterparts. 

Table 2: Reliabilities and sample-items of mathematics- and functions-related self-concept and interest 

Discussion  
The purpose of this study is to investigate whether student’s self-concept and interest related to 
mathematics and functions are empirically separable. If students actually perceive mathematics and 
functions differently with regard to their self-concept and interest, it appears to be reasonable to assess 
these motivational variables as domain-specific as possible. Doing so is not only recommended by 
Marsh and Craven (1997) but also enables investigating particular cause-effect-relations of the 
teacher training under evaluation in the project ProfiL9. 

Although single global fit indices show slight deviations from the recommended cutoff values, they 
all favor the full Model E that differentiates between the four scales mathematics- and functions-
related self-concept and interest. This finding is also supported for pre-, post- and follow-up-test by 
model comparisons based on the adjusted BIC. Moreover, the magnitude of the (significant) factor 
loadings as well as good values of Cronbach’ alpha suggest that the latent variables are reliably 
measured by the corresponding items. In particular Cronbach’s alpha is comparable or even better for 
the adapted scales than for the established ones. This means that the students of our sample perceive 
mathematics and functions differently from a motivational point of view and hence that it is 
reasonable to evaluate self-concept and interest with the adapted functions-related scales. In this 
sense, we will use these function-related scales in order to investigate particular cause-effect-relations 
in further analysis steps of our project. Developing and using domain-specific instruments appears to 

Construct  Number
of items 

Sample item Cronbach’s 
Alpha pre  

Cronbach’s 
Alpha post  

Cronbach’s 
Alpha fut 

Self-concept 
(mathematics) 

6 Understanding mathematics is 
easy for me. 

.92           (N 
= 811) 

.92           (N 
= 878) 

.93           (N 
= 674) 

Interest 
(mathematics) 

3 Doing mathematics is one of my 
favorite activities. 

.82            (N 
= 831) 

.81               
(N = 892) 

.83                      
(N = 683) 

Self-concept 
(functions) 

6 The domain of functions is easy 
for me to understand. 

.94                  
(N = 675) 

.94            (N 
= 863) 

.94                
(N = 677) 

Interest 
(functions) 

3 I like best working on functions.   .83               
(N = 745) 

.88            (N 
= 895) 

.89             (N 
= 701) 

Thematic Working Group 08

Proceedings of CERME11 1546



be applicable also for other studies investigating the effects of domain-specific interventions on 
motivational variables such as self-concept and interest. 

At the pre-test, students were not familiar with functions. Therefore, it could have been assumed that 
the distinction between mathematics and functions and in particular between functions-related self-
concept and interest would not have been perceptible for them (see Model D). However, the factor 
analysis favors the four-factor Model E already for the pre-test. Hence, students appear to differentiate 
between these variables even before they participated in the teaching unit of functions.  

In any case, latent correlations of about .6 emphasize the relatedness between mathematics and 
functions. The magnitude of the correlations between self-concept and interest within each domain 
are in line with the literature and underline the proximity of these variables. The particularly high 
correlation between functions-related self-concept and interest found in the pre-test decreases in post- 
and follow-up-test to a level comparable to the mathematics-related counterparts. This is in line with 
our expectation that at the beginning of the teaching unit of functions students do not differentiate 
between these variables to the same extent as they do afterwards.  

Although the presented results justify the use of the adapted instrument for further analyses such as 
investigating the development of student’s functions-related self-concept and interest, the following 
limitations should not be disregarded. Some of the global fit indices still show potential for 
improvement and single factor loadings were lower than they should be. As the scale of mathematics-
related interest only contains 3 items and as it proved in other research, we favor to maintain Item 2. 
However, we will further analyze if a model can be found that provides better fit indices. Concerning 
future analyses, the instrument will be used to examine how functions-related self-concept and 
interest develop for students with / without teacher participation in the teacher training mentioned 
above. In these analyses, covariates such as age or gender will also be introduced in order to monitor 
the effectiveness of the teacher training in more detail. 
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Interventions aimed at fostering students’ growth mindsets have been carried out in 21 classrooms 
(with a focus on Grade 7 and Grade 10) in the Netherlands. The intervention consisted of three main 
elements: introduction to neuroplasticity, the importance of learning from errors in learning 
processes, and growth-mindset feedback. Before and after the intervention, the students finished a 
questionnaire, and during the intervention, students and their teachers were interviewed. Results 
indicate that the students’ mindsets tended to be more towards a growth mindset after the 
intervention, in particular for the Grade 10 students. Students were very positive about the 
intervention, especially the neuroplasticity and the attention for and learning from errors. Teachers 
and students valued the changes in attitudes and interactions with a new language for teaching and 
learning mathematics.  

Keywords: Learning motivation, teacher influence, psychology.  

Introduction 
“I don't understand anything” or “What a stupid mistake” are phrases students often say out loud.  
For teachers, when they pay attention, these words can be an important signal to indicate that 
students are working with a fixed mindset. Recognition of the mindset by the teacher and explanation 
of the theory of mindset can help students change their mindset, and by that change their beliefs and 
attitudes towards mathematics. To influence students’ mindset the role of the teacher is 
indispensable. 

Theory of the mindset 
The concepts of fixed and growth mindset were introduced by Carol Dweck (Dweck, 2006; Dweck, 
Chiu, & Hong, 1995). She distinguished, based on 20 years of research, two types of mindset: 

• FIXED: you have certain talents, and they remain the same throughout your life.  

• GROWTH: what you can do or learn now forms the starting point from which you can 
develop. 

Their studies show that the effects of these different mindsets on how students learn are significant, 
especially in how they deal with challenges and obstacles. When students have a fixed mindset they 
prefer not to get any challenges. One might think: “Suppose I fail, then people will think I am not 
very clever, and as this cannot change, I will stay dumb for the rest of my life.” If something goes 
wrong, and the students have a fixed mindset, then they will feel stuck in a situation to which they 
cannot change anything. On the other hand, when students are working with a growth mindset then 
they want challenges. The outcome does not really matter to them; they know and feel that it is 

Thematic Working Group 08

Proceedings of CERME11 1549



 

 

important just to try, that they can learn from their mistakes, that their brains are at work, and that 
they can change (Boaler, 2016; Dweck, 2006). 

The mindset students have is influenced by their upbringing. For example, parents who say “I was 
never able to do mathematics when I was young” unintentionally influence their children into a fixed 
mindset. The emphasis on performance in our school systems also plays an important role. High 
grades and quick results are seen as positive, while they can make students insecure and tend to 
create a fixed mindset (Dweck, 1995; Dweck, 2006; Mueller & Dweck, 1998). A recent large scale 
study among undergraduate students showed that their teachers’ mindset beliefs influenced classroom 
experiences and had a substantial effect on their achievements in STEM fields (Canning, Muenks, 
Green & Murphy, 2019).   

‘Mindset’ is not a trait and it cannot be measured exactly. A mindset may vary with context and over 
time (Dweck, 2006). However, one’s mindset has an impact on how one approaches and becomes 
involved in an activity. When students behave according to a fixed mindset while encountering a 
problem, they are likely to give up quickly and tell themselves: “I will never learn this.” In contrast, 
when students are working with a growth mindset, they ask themselves “what can I learn from this”, 
and “how can I try not to make the same mistake too many times.” (Dweck, 2006). For teachers, 
when they pay attention to the words of their students, these words can be an important signal to 
indicate that students are working with a fixed or growth mindset. Recognition of the mindset by the 
teacher and explanation of the theory of mindset can help students change their mindset, and by that 
change their beliefs and attitudes towards mathematics (Boaler, 2016).  

Interventions that encourage a growth mindset 
For everybody, students and teachers, it is important to become aware of the impact of their mindset 
and of its possibilities and challenges (Dweck, 2006). With this awareness, in combination with 
relatively small social psychological interventions, it has been found that teachers can encourage 
students to adopt a growth mindset (Yeager & Walton, 2011). 

If students believe that they can be smarter and that hard work can help them with this, then they are 
more willing to exercise (Blackwell, Trzesnieuwski, & Dweck, 2007). This process has a lot in 
common with ‘self-efficacy’ that Hattie (2018) is using in his work. Hattie emphasizes the strong 
correlation between self-efficacy (the confidence that students have in themselves and that can make 
their learning happen) and student achievement.    

Mathematics is eminently a subject where mindset plays an important role. On the one hand, the 
discipline is highly regarded in our society and it is often associated with something you are good at 
or not. Good grades for mathematics are seen as a clear proof for being intelligent. And parents 
compare the results of their children quickly with their own school experience and, unconsciously, 
emphasize the perspective of being either good or bad in it. Unluckily all these aspects foster a fixed 
mindset. On the other hand, doing mathematics can give students frustration when they do not see the 
solution right away. Consequently, working with a growth mindset will help them a lot.  

Many ideas for mathematical activities that invite students to develop a growth mindset are provided 
by Boaler (Boaler, 2016). Some of these interventions, especially the ones that are also described in 
the studies of Yeager & Welton (2011), Blackwell (2007), and Hattie (2008), have been tested in the 
school year 2016-2017 at the Goois Lyceum, a secondary school in a small town in the Netherlands. 
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The evaluation of these tests showed that three main elements of the intervention were easy to 
implement and were experienced as very valuable: (1) an introduction to the theory of mindset and 
the importance of neuroplasticity, (2) attention for the importance of learning from errors in the 
teaching process, and (3) classroom as well as individual growth mindset feedback. 

In this study, we investigated to what extent this growth mindset-oriented intervention can improve 
students’ attitude towards mathematics. 

Method 
During the school year 2017-2018 the intervention was further developed and implemented in the 
first grade of secondary school (grade 7) and in upper secondary school mathematics A classes 
(mainly grade 10). Grade 7 was chosen because these students recently switched to a new school. In 
upper secondary education, classes with mathematics A were chosen because mathematics A 
(preparing for humanities) is seen as ‘easier’ than mathematics B (preparing for natural sciences). 
These students often feel that they have chosen a 'lower' form of mathematics and that they cannot 
perform well in this subject. This lower self-efficacy might indicate a fixed mindset, and it is 
interesting to see whether this can be changed by the interventions. We advertised the possibility to 
join the project in a newsletter reaching mathematics teachers all over the Netherlands. In total 512 
students in 21 classrooms, from nine schools, joined the experiment, of which 383 filled in both the 
questionnaires.  

Preparation of the teachers 
The teachers that were involved in the intervention were given a training of 5 hours at Utrecht 
University in which the theory of mindset was explained. During the training, teachers got the 
opportunity to work on some sample activities (low-floor-high-ceiling tasks, Boaler, 2016, or ‘My 
favorite no’, Alcala, 2011) followed by an extensive instruction of the different elements of the 
intervention. The presentations of the training, the presentations and tasks for the students, and 
suggestions for further reading were shared online. During the intervention there was a regular 
exchange of experiences, questions and information through email with the teachers. The 
intervention contained the following three main elements: 

1) Explanation about mindset and the functioning of the brain (neuroplasticity). Although the theory
of mindset is a psychological theory it is well supported by brain researchers in relation to the
plasticity of the brain  (e.g. Woollett & Maguire, 2011; Helden & Bekkering, 2015). Nerve cells, or
neurons, can make better and more connections throughout our lives (or loose connections when not
in use). This allows a rich distributed dynamic network with many opportunities to learn new things,
also referred to as neuroplasticity. Because of this neuroplasticity people have the opportunity to
learn and expand their knowledge. It is not just the capacity to learn a new language but also new
hobbies and new habits. For example, if you fear failure through training you can learn to become
more confident (Hanson, 2009). It is like walking a new path through the jungle; first you need a
machete to break through, but after some time when you use the same track more often, a path is
created and it gets easier and easier to travel.

At the schools this part of the intervention started with a presentation for all students on the 
functioning of the brain and on the theory of mindsets. The corresponding task was to make a 
difficult mathematical assignment without the explanation of new theory. A student with a fixed 
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mindset would not like this, they avoid starting out of fear of making mistakes. A student with a 
growth mindset would like to continue, thinking “I'm going to try it” or “If it doesn't work out I ask 
it.” The role of the teacher is to give the right growth feedback and to regularly remind students of 
the neuroplasticity of the brain. 

2) The importance of making mistakes and learning from errors. Brains of people who make mistakes 
with a growth mindset are more active than the brains of someone who makes mistakes with a fixed 
mindset (Boaler, 2016). When students do not understand the assignment right away and they are 
thinking with a fixed mindset, they might believe “Now everyone will notice that I am not smart.” 
They start to get stressed and stress hormones ensure that no new connections between the neurons 
grow (Dirksen, 2012). Students with a growth mindset will see obstacles more as challenges. They 
can see that making a mistake is the beginning of learning something new (Chödrön, 2006). They 
then start to feel more confident which in turn sets the brain in a responsive mode, and this stimulates 
making new connections in the brain (Hanson, 2009). The teachers are stimulated to use feedback 
like “I want to understand the way you think and together we can discover what the next step is.”  

This intervention started with a presentation about the function of making mistakes and the role of 
mindset. The teachers started several lessons with “My favorite no” (Alcala, 2011). To change the 
way in which teachers cope with mistakes is also an aspect of this intervention.  

3) The use of feedback. It is important that teachers are aware of the feedback they give, especially 
while making errors. If they say “what a stupid mistake” they can bring students more towards a 
fixed mindset. And it is not just the words but also the body language and tones they use. The 
challenge is to give feedback not on properties or features but on the process (Boaler 2016). It may 
seem great to hear that you are smart. However, it is a kind of label, leading to overconfidence, or to 
self-doubt like: yes I am smart now but what if I make a mistake, will they call me dull-brained?  
(Mueller & Dweck, 1998).  When giving feedback on the process it should be true feedback; only 
when a student has really worked hard one can evaluate this.  

It is not just the feedback that students get from others, it is also the feedback they give themselves. 
In a class, it is helpful to listen carefully to what students say while making the assignments or as 
they chat. For example, when they say “this is too hard”, this can be associated with a fixed mindset. 
Whereas when they are saying “this may take some time” this can be associated with a growth 
mindset.  

The attitude of the teacher is important; when a teacher, from a fixed mindset, has the opinion that 
the performance of the students stays the same throughout the year it might lead to stagnation. On the 
other hand, when a teacher, from a growth mindset, believes that the performance of the students can 
grow than students evolve more easily. Good teachers believe in development of intelligence and 
talent, which is a growth mindset, and they are fascinated by the learning process (Dweck, 2006). 

At the start of this intervention on feedback the students were shown a short presentation on 
feedback, words, and the link to mindset. The assignments they then got were low-floor-high-ceiling 
tasks, for example “what is the largest surface you can make with 36 piles of 1 meter?”.  Students can 
easily start and while working can make things more and more difficult. The teacher helps them by 
giving growth and encouraging feedback and challenge them.  
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To participate in this study teachers were asked – as a minimal requirement – to teach the previously 
described elements of the intervention (on the plasticity of the brain and the consequences for 
learning, the importance of errors, and the role of feedback in learning). Furthermore, they were 
asked to implement at least one growth-mindset task with every intervention. Finally, they were 
invited to examine their own attitude towards mistakes and to practice with growth-mindset feedback 
in their classroom.  

Procedure of the intervention 
At the start and at the end of the intervention, students filled in a questionnaire to determine their 
mindset. This questionnaire consisted of 25 statements that were compiled from the literature of 
Blackwell and Dweck (Blackwell, Trzesnieuwski, & Dweck, 2007; Dweck, 2006). Students were 
asked to label their level of agreement to the statements on a 6-point Likert scale. The statements 
were divided in four types: mindset, effort belief, response to failure, and learning goals. With these 
different types the impact of the intervention could be measured in different domains. Example 
questions were:  

Q1. You have a certain amount of intelligence and you cannot do much to change it  

Q3. An important reason why I do my schoolwork is because I like to learn new things 

Q5. It does not matter who you are and where you come from, you can always change your level of 
intelligence 

Q16. If you have to work hard for a subject, you are probably not very good at it.  

During the interventions at five schools a lesson with the intervention was observed and students and 
teachers were interviewed about their experiences.  

Results 
In Figure 1 the mean differences in the total score of the questionnaire are represented. It can be seen 
that in only five classes the total scores after the interventions had lowered, indicating a more fixed 
mindset. In the remaining sixteen classes the scores went up, indicating a more growth mindset. The 
Grade 7 classes are drawn in black and Grade 10 in blue, with no clear differences emerging. 

Figure 1. The mean differences in the total scores per class 
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In Table 1 the average scores on the different scales are given for the two grades. It can be seen that 
the effect of the interventions is most clear for the mindset score (e.g. +3.1 for the Mindset scale in 
Grade 7). Both in Grade 7 and Grade 10 the post intervention mindset scores are higher.  

Table 1: Results of the scores of the pre- and posttest (the questionnaire before and after the mindset 
interventions); the average of the different grades in the different domains 

(Grade 7 N = 246 Grade 10 N = 137) 
Sub scale Grade level Pretest Posttest Difference 
   M SD M SD  
Mindset Grade 7 27.8 6.8 30.9 6.6 +3.1 

 Grade 10 27.1 6.2 29.0 7.0 +1.9 
 Total 27.5 6.5 30.2 6.8 +2.6 

Learning goals Grade 7 16.2 3.4 15.6 3.8 -0.6 
 Grade 10 14.3 3.6 14.8 3.7 -0.5 
 Total 15.5 3.6 15.3 3.8 -0.2 

Effort belief Grade 7 28.8 3.4 29.0 3.7 +0.2 
 Grade 10 27.3 3.3 27.8 3.8 +0.5 
 Total 28.2 3.5 28.5 3.8 +0.3 

Response to failure Grade 7 38.8 4.9 38.8 5.0 0.0 
 Grade 10 37.5 5.4 36.9 5.8 -0.6 
 Total 38.4 5.1 38.1 5.3 -0.3 

Total score Grade 7 111.6 12.9 114.2 12.8 +2.6 
 Grade 10 106.3 13.2 108.4 14.8 +2.1 

  Total 109.7 13.2 112.1 13.8 +2.5 
       

 
In Table 2 the results of the changes of the individual students show a similar pattern of more 
pronounced changes in the mindset score compared to the scores in the other domains. Also, here the 
change towards a more growth mindset is larger in the Grade 7 classes (67.5%). This trend may 
indicate that the mindsets of the Grade 7 students are more intensely influenced by the interventions. 

 

Table 2: Results of the changes of the individual students  
Change on Percentage of changes* Difference between grade 7 and 10 
Total score 
 

39.7% negative change  
4.7% no change  
55.6% positive change  

Grade 7: 38.6% negative, 6.1% =, 55.4% positive 
Grade 10: 41.6% negative, 2.2% =, 56.2% positive 
 

Mindset score 
 

29.0% negative 
7.3% no change 
63.7% positive 

Grade 7: 26.4% negative, 6.1% =, 67.5% positive 
Grade 10: 33.6% negative, 9.5% =, 56.9% positive 
 

Learning goals 
 

45.2% negative 
14.4% no change 
40.4% positive 

Grade 7: 49.6% negative, 16.3% =, 34.1% positive 
Grade 10: 37.2% negative, 10.9% =, 51.8% positive 
 

Believe in effort 
 

39.7% negative 
14.6% no change 
45.7% positive 

Grade 7: 42.7% negative, 12.2% =, 45.1% positive 
Grade 10: 34.3% negative, 19.0% =, 46.7% positive  
 

Response to failure 
 

45.4% negative 
14.1% no change 
40.5% positive 

Grade 7: 41.9% negative, 15.9% =, 42.3% positive 
Grade 10: 51.8% negative, 10.9% =, 37.2% positive 
 

* a negative change is a change towards a fixed mindset; a positive change is a change towards a growth mindset. 
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All the teachers were very much involved in the intervention. During the interviews they made 
comments like: “As a mentor, and as a teacher in mathematics, I can now discuss more easily how 
important it is to learn from your mistakes. I also designate my own mistakes more consciously, and I 
explain how I deal with them.’’ 

Another teacher writes that she has become more careful with her words. Even small, seemingly 
unimportant words like quickly (make your assignments quickly) she tries to avoid as it disempowers 
her lessons. The classes that show a decrease or stability in mindset scores are one Grade 7 class and 
two Grade 10 classes. Two of these teachers were starting teachers who were very enthusiastic about 
the intervention but for whom teaching itself was relatively new. The third teacher was a more 
experienced teacher and also very committed to the interventions. However, in his class there were a 
lot of changes in the composition of the class, which may have influenced the outcome.   

The questionnaire at the end of the intervention included questions about which part of the 
intervention the students appreciated most. They valued the entire intervention because of its content 
and also because of the changes in their teacher’s attitudes. The lesson on the brains and on the 
mistakes were most highly appreciated. One student explained: “I have to stop thinking ‘this will cost 
too much time’, or ‘I really cannot do this’; instead I can persevere or try again later.”  

The personal interviews with students also revealed that the lesson on making mistakes was 
experienced as the most positive, though also after the interventions one student made the following 
remark: “I did learn that making mistakes does not matter, however I still do not like it.”  

Students and teachers reported during the interviews that an important element of working with 
mindset is the use of words. One student noticed “It sometimes seems as if we have learned a new 
language together.” Another student said “Sir, this feels like a fixed remark, do you mean it like 
that?” One teacher said: “I find it a real challenge, you have to pay attention to all the words the 
students are saying, also the words they say to each other and to themselves. To be able to do that of 
all the students is not (yet) possible, however with a few students separately I do succeed.” 

Discussion 
The mindset theory addresses issues that are highly relevant for current teaching practices in 
mathematics education. We are aware that changing teachers’ teaching and students’ learning 
behavior can hardly be achieved through a one-day training for teachers. Nevertheless, this study 
shows that teachers did become sensitive for changing their practice towards fostering a growth 
mindset after a training of only five hours and some initial experiences with the interventions. From 
this study, the effects of changing practices on student achievements are not clear. What it does show 
is an obvious attitude change towards students’ own learning and towards the importance of making 
mistakes in learning mathematics. These are important first steps towards a changing culture in the 
mathematics classrooms. Finally, teachers reported that the mindset theory provides an inspirational 
vocabulary and set of tools to implement and improve daily teaching practices. 

The training of teachers was first seen as a preparation for the three elements of the intervention 
mentioned above, but actually it turned out to be a separate intervention. Once teachers were familiar 
with the theory of the mindset they changed their lessons: teachers were more aware of the mindset 
from which they taught their students, of the importance of learning from their mistakes and the 
feedback they gave. And this had a direct impact on the mindset of their students.  
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Low achiever’s mathematical thinking: The case study of Maya 
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In this paper, one low achiever’s, Maya’s, mathematical thinking is reported. Mathematical thinking 
is studied through problem solving and view of mathematics. The results indicate that Maya has 
severe gaps in mathematical knowledge and problem solving. Furthermore, affect hinders her 
learning and activities in mathematics. Despite the challenges, Maya wants to learn mathematics and 
succeeds in giving an answer to every mathematical problem in the study. In addition to further 
support in mathematics and affect, she could benefit from learning to use different representations in 
mathematics and picturing the tasks in real life. 

Keywords: View of mathematics, problem solving, metacognition, affect, meta-affect. 

Introduction 
Finnish pupils’ success in mathematics has been acknowledged in international studies such as PISA 
and TIMSS (see e.g. Välijärvi, 2014) and national assessments show that Finnish pupils’ performance 
is at a satisfactory level (e.g. Hirvonen, 2012). However, the most recent studies indicate that Finnish 
pupils’ performance is descending (ibid.; Rautopuro, 2013), showing also the diminishing number of 
high achievers and the growing share of low achievers in Finland (Kupari & Nissinen, 2015). 
Furthermore, pupils’ affect towards mathematics is alarmingly low at the end of lower secondary 
school (Tuohilampi & Hannula, 2013). 

To understand the recent development, we need to know more about Finnish pupils’ mathematical 
thinking. What is it like at the end of comprehensive school? Previously, Viitala (2017a) has reported 
on four Finnish high achieving pupils’ mathematical thinking. These pupils all liked mathematics, 
were successful problem solvers and enjoyed learning mathematics. However, a deeper look into their 
problem solving and view of mathematics revealed very different skills and competences in 
mathematics. Nevertheless, whatever their strengths and weaknesses were, their strengths 
compensated their weaknesses in mathematics. How is the situation different with low achievers? 
What is it that separates low achievers from high achievers? In addition to differences in mathematical 
knowledge, what might be the possible reasons for the low performance in mathematics? 

In this paper, one low achiever’s, Maya’s, mathematical thinking is reported. The data is collected 
through problem solving and view of mathematics. The purpose is to study Maya’s strengths and 
weaknesses in mathematics that go beyond her mathematical knowledge. The purpose is to answer 
the question ‘What characterizes Maya’s mathematical thinking at the end of lower secondary 
school?’ 

Theoretical framework 
Following the recent theories on affect, mathematical thinking can be viewed through two temporally 
different aspects; state and trait (cf. Hannula, 2011; 2012). While thinking is always situational and 
contextual, a state, it is also influenced by more stable constructs such as beliefs and attitudes, traits 
(cf. ibid.). These two temporally different sources of data together can reveal the dynamic and 
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complex thinking processes that pupils go through while thinking mathematically (for an example, 
see e.g. Viitala, 2017b). 

In this study, the state aspect is studied through problem solving. The pupils’ actions and explanations 
during problem solving are interpreted as visible signs and expressions of their mathematical 
thinking. In addition to the mathematical knowledge and heuristics in problem solving, pupils’ 
problem-solving behaviour is influenced by their metacognition, affect and meta-affect that occur in 
a problem-solving situation (cf. Schoenfeld, 1992). 

The successful application of problem-solving activities at the correct moment is a result of 
metacognitive skilfulness (e.g. Schoenfeld, 1987; Flavell, 1979). These skills include for instance 
monitoring one’s actions and directing resources in a problem-solving situation (Schoenfeld, 1987). 
Affective state influences problem-solving activities for instance through the feeling of confidence, 
and meta-affect transforms individuals’ feelings (DeBellis & Goldin, 2006) directing pupils’ 
problem-solving behaviour (Carlson & Bloom, 2005). 

Problem-solving processes can show patterns of thought that can be interpreted as signs of more 
stable ways of thinking. These patterns, together with pupils’ view of mathematics, represent the traits 
in this study. Pupils’ view of mathematics is studied through five components: mathematics as a 
science and as a school subject, oneself as a learner and user of mathematics, learning mathematics, 
teaching mathematics (Pehkonen, 1995), and view of mathematical thinking.  

The structure of pupils’ view of mathematics is derived from belief-research that has traditionally 
been studied as traits (see e.g. Op’t Eynde, de Corte, & Verschaffel, 2002). However, in separation 
from many earlier studies, in this study pupils’ view of mathematics is considered as psychological 
phenomenon that is a mixture of cognitive, motivational and emotional processes (Hannula, 2011; 
2012). In addition to beliefs, these processes include also for instance attitudes, values, feelings and 
motivation (ibid.; thus the word ‘view’, see Rösken, Hannula, & Pehkonen, 2011). 

Methods 
Data collection 

At the time of data collection, Maya was 15 years old. She was in 9th and final year of Finnish 
comprehensive school. She was a low achiever in mathematics (mathematics grades between 5 and 6 
on a whole number scale of 4 to 10). 

The data was collected in three cycles over the course of three months. In each cycle, 1-2 
mathematical problems (PISA tasks) were solved in an ordinary classroom situation. In class, Maya 
solved the tasks individually, but she could talk about the tasks with her friends and ask help from 
the teacher. In the third cycle, Maya was absent from class and solved the problems in the interview. 
Maya was video recorded while she solved the tasks and her solutions on paper were collected. 

Here is an example of a PISA task used in data collection: ‘This problem is about planning the best 
route for a holiday. Figures A and B show a map of the area and the distances between towns [in a 
table]. […] Calculate the shortest distance by road between Nuben and Kado.’ (OECD, 2006, pp. 77-
78; for a part of the task, see also Figure 1). 
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Maya was interviewed three times, on the same day or on the next day after each of the problem-
solving lessons. The interviews were semi-structured and contained two parts. The first part 
concentrated on Maya’s view of mathematics. It followed the categorisation introduced in theoretical 
framework: background, mathematics as a school subject and as a science, oneself as a learner of 
mathematics, learning mathematics, teaching mathematics (following Pehkonen, 1995; cf. Op’t 
Eynde et al., 2002), and view of mathematical thinking (for example questions, see Table 1). 

Theme Example question 
Background Tell me about your family. 
Mathematics Does mathematics exist outside of school? Where? 
Oneself and mathematics Is mathematics important to you? 
Mathematics learning How do you learn mathematics? 
Teaching mathematics Does teaching matter to your learning? How? 
View of mathematical thinking How do you recognise mathematical thinking? 

Table 1: Interview themes and example questions 

The second part concentrated on problem solving. The data from class was used as stimuli when 
Maya’s problem-solving processes were discussed. She was asked to explain her thinking and actions 
during the problem-solving situation. Also supporting questions were asked (e.g. What are you 
thinking now? Why are you doing so?). 

Finally, in each of the three interviews, Maya was asked to assess her confidence before, during and 
after solving the problems, as well as to assess her confidence in school mathematics using a 10 cm 
line segment (scale from ‘I couldn’t do it at all’ to ‘I could do it perfectly’). All interviews were video 
recorded. 

Data analysis 

The analysis was divided into two sections: problem solving (state) and view of mathematics (trait). 
First, problem-solving processes were analysed through four problem-solving phases: orienting, 
planning, executing and checking (Carlson & Bloom, 2005). Then, the results were complemented 
with the metacognitive activities of orienting, planning, evaluating and elaborating (see examples in 
van der Stel, Veenman, Deelen, & Haenen, 2010), affect (cognitive, emotional and motivational states 
and traits; Hannula, 2011; 2012) and meta-affect (DeBellis & Goldin, 2006) emerging in the problem-
solving processes. Finally, Maya’s confidence to solve the problems were analysed. 

Second, Maya’s view of mathematics was analysed following the themes of data collection 
(Pehkonen, 1995). After data condensation, a pupil profile was created. Pupil profile is a short 
description of the pupil that is used as background information. It is based on Maya’s mathematics 
grade, motivation to learn mathematics, and ability, success, difficulty, and enjoyment of mathematics 
also known as the core of herself as a learner of mathematics (Rösken et al., 2011). 

In the end, the results from problem solving (state) and view of mathematics (trait) were compared 
and combined to get a holistic view of Maya’s mathematical thinking. 
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Results 
Pupil profile: Maya is a low-achieving, very unsure and quite anxious mathematics learner. She does 
not value mathematics as important, but would still like to learn it. Her low level of mathematical 
knowledge and skills go hand in hand with her low level of affect and meta-affective skills in 
mathematics. 

The most prominent result of the study is the low level of affect that Maya has in and towards 
mathematics. When we begin discussing about mathematics, Maya starts by saying that she is very 
bad at mathematics, has always been. She then continues to express her low level of affect throughout 
the study: She explains that she has no idea what mathematics is as a science because she is very bad 
at mathematics; Mathematics is not important because she does not really know mathematics; She 
does not feel confident in mathematics; She feels anxious in mathematics classes and especially so in 
tests; She feels that she has never succeeded in a mathematics test; Or simply, mathematics is too 
difficult for her. 

Maya has great difficulties also in solving problems. She felt stressed in problem-solving situations 
and the tasks felt difficult. Before she could start solving the problems, she needed confirmation from 
the teacher (or from the researcher in the interviews) that she had understood the problem correctly. 
Unfortunately, Maya is not initiative in asking help in class. She feels afraid of making mistakes, she 

Figure 1: A partial caption of the task ‘Holiday’ (OECD, 2006, p. 77) and Maya’s interview notes 
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is afraid that the teacher asks questions or gives critique, and she is afraid that her classmates notice 
her problems. This mismatch between the need for help and not asking for it, and consequently staying 
stuck, is just one example of the low level of meta-affective skills that Maya has in mathematics. 
Fortunately, though, when the teacher approaches her, she usually gets the help she needs to continue 
with the problem. 

In addition to the low affect and meta-affective skills in mathematics, Maya’s mathematical skills are 
quite limited. For example, in the problem introduced above, Maya had difficulties in reading the 
table and in adding. First, she did not understand what the numbers in the table represent before the 
teacher explained the table to her. Even then, she took the distances she needed from the first cell 
next to the town names (500 next to Nuben and 850 above Kado; see Figure 1). Maya explained that 
she did not understand the table until the interview. 

After getting the distances she needed from the table, Maya had to add the numbers together. She 
explained that she could not add the numbers (500 and 850) mentally, so she calculated them on paper 
(for a reproduction of the calculation, see Figure 1). Maya’s calculation was a mixture of adding and 
multiplying rules and the result was incorrect. In the interview, Maya explained that she took the first 
and last two numbers as the result and ignored the third and fourth numbers. Even though the method 
seems absurd, there is something positive: she had a realistic view of the magnitude of the answer. 

There are severe problems in Maya’s knowledge base and affect. Metacognitive actions are almost 
non-existent, also meta-affective actions, and she needs very much and very concrete help to solve 
the problems. However, there too is something positive: She does want to learn mathematics. She 
recognizes that for her own learning, she needs to follow teaching in mathematics classes and ask 
questions. She has noticed that when the teacher relates new knowledge to old knowledge, it helps 
her to learn mathematics. Even though she has emotional obstacles in communicating with her 
teacher, she seeks and gets more mathematical help from their special needs teacher. She emphasizes 
the importance of doing homework alone and undisturbed. And, she recognizes that she needs 
mathematics in future studies and jobs. 

In mathematics learning, Maya needs help in developing her conceptual and procedural skills, and 
support to overcome many emotional issues. However, in connection to problem solving, there is one 
concrete thing that rose above other issues. When Maya got stuck in problem solving, she understood 
the problem best with a new representation. Moving the task to real life or drawing a picture was 
enough to help Maya to understand the problem. Moving between different representations in 
mathematics could help her to improve her problem-solving skills and her conceptual knowledge. 

Discussion 
This paper aimed at answering the question ‘What characterizes Maya’s mathematical thinking at the 
end of lower secondary school?’ Maya is best characterized through the low level of mathematical 
knowledge and skills, and through the low level of affect towards mathematics. More specifically, 
the very negative view of herself in mathematics seem to hinder her learning and solving 
mathematical problems. This negative trait connected with the negative state reactions to the 
problems and problem-solving situations, as well as nearly non-existent meta-affective skills, almost 
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prevented her to solve the problems in the study. The low level of mathematical and metacognitive 
skills support the situation.  

In addition to the low level of mathematical knowledge, the low level of meta-affective and 
metacognitive skills seem to be what separates Maya most from the high-achieving students in the 
research project (see the high-achieving students’ results in Viitala, 2017a). Being unsure and having 
negative affect towards mathematics are features that students in all achievement levels experience. 
In fact, the most recent national studies show that Finnish pupils’ affect towards mathematics is 
unnecessary negative at the end of comprehensive school (Tuohilampi & Hannula, 2013; Hirvonen, 
2012). However, while Maya seem to paralyse when experiencing difficulties in solving 
mathematical tasks, the high-achievers use their meta-affective and metacognitive skills to overcome 
them (see e.g. Viitala, 2017a). What all students in the research project have in common, though, is 
the positive feeling they get when they succeed in mathematics, and the will to learn mathematics, on 
their own levels and on their own terms. 

The national studies also show that pupils start school with positive attitudes, but their attitudes 
towards mathematics as well as self-efficacy beliefs decrease consistently throughout comprehensive 
school, and pupils’ anxiety in mathematics increase in lower secondary school (Tuohilampi & 
Hannula, 2013; Metsämuuronen & Tuohilampi, 2014). Maya’s affect fits well with the results of 
Finnish large-scale studies at the end of comprehensive school. However, the results indicate that the 
situation has not been positive even at the beginning of her school years. For instance, Maya states 
that she has always been bad at mathematics and she cannot remember ever succeeding in a 
mathematics test. Having a different mathematics teacher in every grade might also been a factor in 
Maya’s learning of mathematics: While Maya is shy and very unsure of herself in mathematics, it 
takes time for the teacher to get to know her thinking so that the teacher could have the best tools to 
help Maya to develop mathematically.  

So, what can be done to help pupils like Maya first to create and then to maintain more positive 
attitude towards mathematics, and to build mathematical knowledge and skills at their own rate? One 
solution could be to increase the amount of problem solving in mathematics classes. Even one 
monthly problem-solving lesson has shown to slow down the decreasing trend in girls’ attitudes 
towards mathematics (Tuohilampi, Näveri, & Laine, 2015). Problem solving is also an effective tool 
for the teacher to learn about pupils’ mathematical knowledge and thinking. Additionally, referring 
to real-life situation helped Maya to solve problems. Problem solving and applying mathematics to 
real-life situations are written as learning goals also in the Finnish curriculum (see FNBE, 2014). 

One way of supporting Maya’s growth in mathematics could also be setting long-term goals for her 
learning. In Maya’s case, the long-term goal could be referring to real life and learning to use different 
representations in mathematics and problem solving (cf. Heinze, Star, & Verschaffel, 2009). Setting 
and evaluating the long-term goals in learning discussions, using written self-evaluation and 
supporting the development through formative assessment in mathematics classes, have shown 
promising results for students learning in a small pilot study implemented during spring semester 
2018 (see more in Viitala, 2018). However, how and if these activities help pupils in a longer period 
of time, is a matter of a long-term continuation study with a larger number of pupils. 
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In this paper, we describe the impact of a mathematics game programming project on the 
intrinsic motivation of eighth grade students (n = 8). We investigate which aspects of the project 
contributed to student motivation based on a taxonomy that distinguishes individual (e.g., 
challenge) and interpersonal motivation aspects (e.g., recognition). We also employ these 
aspects to compare the programming project to regular mathematics education. The findings 
reveal that students appreciated the project because it was challenging and they had freedom of 
choice. All group members had a positive attitude towards learning. In regular mathematics 
classes, they experienced a lack of challenge while the freedom of choice was minimal.  

Keywords: Intrinsic motivation, autonomy, mathematics education, programming. 

Introduction 
To foster intrinsic motivation, a learning environment needs to respond to students’ needs for 
autonomy, feeling of competence, and social belonging (Ryan & Deci, 2000). A key question in 
secondary mathematics education is: what can teachers and educators do to create such an 
environment? As the motivation1 for mathematics decreases during secondary school (OECD, 
2013), we need to find ways to make educational practice more motivating. 

The need for autonomy is especially complicated to promote in a formal learning context. 
Autonomy can be supported by anticipating students’ intrinsic values and interests and by 
creating a context in which they feel at the root of their own learning behavior. This is 
diametrically opposed to the situation in mathematics education in many countries including our 
own, where educational practice is strongly guided by textbooks and national examinations.  

The research question addressed in this paper is: how can aspects of a formal learning 
environment in which students’ autonomy is supported contribute to an increase of the intrinsic 
motivation of students with a positive attitude towards learning? We describe the results of an 
intervention in which such an environment has been developed in the form of a mathematics 
game programming project for eighth graders. The learning goal was two-fold: while the main 
goal was to learn programming, as a secondary goal the project also aimed to extend students’ 
mathematical knowledge. Since joining the project was on a voluntary basis, the eight 
participants were all motivated at the beginning of the project. Following them for a period of 
nine months and interviewing them at the end of this period gave us the opportunity to analyze 
what kept them motivated. The results of this study provide insights into the potential of giving 
(supervised) autonomy and a challenging task to students that are willing to learn.  

1 In the remainder of this paper, when we speak of ‘motivation’, we mean ‘intrinsic motivation’ 
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Theoretical framework 
Research has delivered opposite findings with respect to the possible gain of playing computer 
games in education. Whereas several researchers measured a positive impact on problem solving 
capacities, no consensus has been reached with respect to the influence on motivation and 
attitudes towards mathematics (Kebritchi, Hirumi, & Bai, 2010; Perrotta, Featherstone, Aston, & 
Houghton, 2013; Wouters, Van Nimwegen, Van Oostendorp, & Van der Spek, 2013; Wouters, & 
Van Oostendorp, 2017). Wouters et al. (2013) came up with three reasons for the lack of 
improvement of students’ motivation: they had limited autonomy, the connection between game 
design (focus on entertainment) and instructional design (focus on learning) is not natural, and 
the instruments used to measure motivation may not be appropriate.  

Although research has been conducted on the potential of playing computer games in education 
(student as consumer), the potential of letting students develop and create such games (student as 
producer) has been explored insufficiently. Ke (2014) concluded after a six-week experiment 
using the Scratch programming environment that developing games stimulated the process of 
mathematical thinking and gave students a more positive attitude towards mathematics. He did 
not investigate why students’ attitudes improved.  

Intrinsic motivation is a multi-faceted concept that can be investigated from different 
perspectives. Self-determination theory (SDT) takes the learners’ needs as a starting point and 
states that a motivational environment supports the needs for autonomy, feeling of competence, 
and social belonging (Ryan & Deci, 2000). The ARCS model of motivational design 
distinguishes four steps of promoting and sustaining motivation in the learning process: 
attention, relevance, confidence, and satisfaction (Keller, 2009). According to Malone and 
Lepper’s (1987) model based on what makes gaming fun, motivation can be supported at the 
individual level (challenge, curiosity, control, and fantasy) and at the interpersonal level 
(cooperation, competition, and recognition). Elements that threaten to reduce students’ intrinsic 
motivation are tangible rewards, threats of punishment, time pressure, and overly close 
surveillance (Ryan & Deci, 2009). The exploratory study described in this paper focuses on the 
impact of creating mathematical games on student motivation on the basis of Malone and 
Lepper’s model and contrasts the programming project with regular mathematics education. The 
project was based on a constructionist approach to education (Papert & Harel, 1991): students 
learned through creative making processes and discovered the necessary knowledge themselves 
instead of receiving it passively. 

Methods 
The design of the programming project was driven by students’ need for autonomy. During the 
first phase, they learned the basics of the Processing programming language, and all had to do 
the same assignments. This phase ended with the design and creation of a simple computer 
game. The second phase started with an advanced programming course. As the students’ skills 
developed, their level of autonomy increased, which also meant that they got more freedom. In 
the final assignment, they designed and created their second computer game, with the only 
requirement that their game included a mathematical element (in the topic and/or in the code). 
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This assignment required many skills from students: they had to be creative (mathematical topic, 
design, rules, goals), to estimate their level of competence, to acquire new skills (mathematical 
and programming), and to manage their own process. The mathematical knowledge they 
acquired differed depending on their game. 

Eight students (aged 13–14, grade 8) took part in the programming project, which was organized 
as an extracurricular activity open for all eighth graders in the school pursuing junior university 
preparatory education (VWO, 171 students) or junior general secondary education (HAVO, 94 
students). Twelve students started in the project, but four of them withdrew after completing the 
introductory course due to health problems (1), a lack of interest (1), or school results (2). This 
paper focuses on the eight remaining students, who all pursued junior university preparatory 
education. They had in common that they were all motivated to learn programming, while they 
differed in intelligence, diligence with respect to schoolwork and math interests. Three of them 
had been diagnosed as gifted students of various types (Neihart & Betts, 2010): type 1 (opts for 
safe route), type 5 (demonstrates inconsistent work), and type 6 (autonomous learner). For the 
statistical analysis, the students who dropped out have been included in the test group. 

Since the programming project was a long-term, extracurricular project, random selection of 
participants was not possible. As a consequence, we were not able to compose a control group 
that was similar to the test group. To position the participants within their cohort of eighth 
graders (‘comparison group’, 𝑛𝑛 = 171), they all completed the Attitude towards Math Inventory 
(ATMI) questionnaire before and after the project, which consists of 40 five-point Likert-scale 
items on attitudes towards mathematics related to self-confidence, value, enjoyment, and 
motivation (Tapia & Marsh, 2004). For this research, the motivation scale (5 items; 𝛼𝛼 = .793 
(pre-test), 𝛼𝛼 = .803 (post-test)) is especially relevant. The scores on mathematics tests in grade 8 
have been collected for all students from the test and comparison groups as well.  

Before joining the project, students were asked to write a motivation letter. At the end of the 
project, they completed a questionnaire covering several themes: (1) their motivation for 
programming, (2) the learning outcomes, (3) the transfer from programming to mathematics, (4) 
a comparison between the programming project and regular classes, and (5) the supervision 
during the project. Their answers to the questions were the starting point for semi-structured 
individual video-recorded interviews. We analyzed the motivation letters and interviews to 
identify students’ reasons for joining the programming project and the factors of the learning 
environment within the project that contributed to the students’ motivation using the categories 
distinguished by Malone and Lepper (1987) as a frame of reference: challenge, curiosity, control, 
cooperation and recognition. Fantasy and competition have been left out, since these were not 
relevant in this intervention. In addition, the interviews were analyzed to find out what lessons 
can be learned from the project for traditional mathematics class in grade 8.  

Results 
Preliminary analysis 

As could be expected on the basis of students’ voluntary participation and preference for STEM 
subjects, the score on the ATMI motivation scale was significantly higher in the programming 
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(M = 3.58, SD = 0.48) than in the non-programming (M = 2.66, SD = 0.71) group (t(159) = 4.05, 
p < .001, effect size Hedges’ 𝑔𝑔 = 1.32). This was still the case after the project ended (t(155) = 
3.16, p = .002, 𝑔𝑔 = 0.99).  

Students’ intentions  

The students’ reasons for joining the project as described in the motivation letters can be 
summarized into four types, all of them related to cognitive curiosity. The first and most 
common reason concerned preparation for their future. They had a preference for STEM subjects 
in school and considered a programming job in the future as a likely option. As a second reason, 
students liked the challenge of learning something completely new. Third, some students who 
had already been introduced to programming wanted to deepen their skills. They did not manage 
to learn programming on their own, either because the learning materials were not suitable or 
because they missed support and guidance. As a last reason, one of the students wanted to learn 
programming, because the possibilities with respect to programs that can be coded are limitless. 
In the interviews, the eight students indicated that the project lived up to their expectations: it 
was more challenging, the assignments were more open, and they learned more than expected. 
The results are described in more detail below on the basis of Malone and Lepper’s (1987) 
motivation taxonomy. 

Individual motivation 

Challenge  

Providing an optimal level of difficulty for learners is important for motivation (Malone & 
Lepper, 1987). During the project, it went too fast or was too complicated for some students at 
the beginning of the introductory course and at the beginning of the advanced course. Despite the 
level of difficulty being too high during these moments, the eight participants did not withdraw. 
Their reasons to persevere were diverse: practical (“waste to stop after investing so much time”), 
social (“nice group”), and personal (“want to be proud of own accomplishment”).  

At the end of both phases, in which students designed and built their own games, the difficulty 
level was adapted to the skills of the student in a natural way, which made it challenging for 
everyone. The outcome was uncertain, as they did not know in advance whether they would 
manage to implement all their plans. They were creating something completely new that had not 
been created in the same way by others before. The students challenged themselves to make the 
best games possible and acquired additional skills when needed, both at the programming and at 
the mathematical level (e.g., gravity, radians). Both the weaker and stronger programmers 
appreciated that they were able to work at their own pace and difficulty level. 

A challenging learning environment provides learners with structure in the form of short-term 
and long-term goals. This was the case in the programming project as well. During the learning 
phases, weekly short-time goals had to be accomplished. The final assignment (creating a math 
game) was split into some smaller short-term goals as well. For example, the students were not 
allowed to start programming before tutors approved their idea on paper. Although the students 
got frustrated when they did not get the green light directly, they were aware that the detailed 
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plan helped them during the rest of the development process. In this phase, the students also had 
to set their own goals, because all of the games where different and required their own planning.  

Performance feedback helps to keep students motivated (Malone & Lepper, 1987). An advantage 
of programming is that some basic feedback is provided directly by the computer: does the game 
do what I want it to do? However, when a program does not work properly, it is often difficult to 
understand what is going wrong, and therefore human feedback is useful as well. The small 
group size, the weekly sessions, and the availability of the WhatsApp group enabled prompt 
performance feedback. The feedback was always constructive and if an explanation was not 
immediately clear, students kept asking until their problem was solved. Tutors and peers 
promoted the self-esteem of the students during class as well as during group presentations.   

Whereas the programming project was challenging for all students, this was not the case with 
their mathematics classes. When it comes to giving feedback, programming was considered 
superior to mathematics as well. The direct feedback provided ‘for free’ in programming (e.g., 
error messages, output on the screen, behavior of the game) is not available when making 
mathematics homework where it requires effort from students to receive feedback.  

Curiosity 

Cognitive curiosity was one of the motives for students to participate in the project. Some of 
them had basic programming knowledge and wanted to learn more while others had no 
experience at all. When such curiosity and eagerness to learn something new is not present at the 
start, it will be more complicated to get students involved. Despite the absence of formative tests, 
students stayed actively involved and were willing to invest time and effort to achieve their 
learning goals because of their cognitive curiosity. According to one of the students, cognitive 
curiosity is not always stimulated properly in math class. Their teachers explain everything 
instead of promoting inquiry-based learning. 

Control 

According to Malone and Lepper (1987), having influence on your own learning process is a 
prerequisite for being motivated. All students appreciated the fact that they had the opportunity 
to follow their own paths in the introductory and the final assignment. Only one of the students 
indicated that the assignments could have been even more open (not restricted to games). The 
final assignment, where the students got several months to create their own math game, 
especially promoted their feelings of autonomy. It gave them a sense of power to be able to 
create their own game: 

I really liked programming. It was problem solving, which took a great deal of time and when 
I then succeeded, it made me happy: “Yes, I finally did it”. 

The final assignment created a highly responsive learning environment, where students and 
tutors were continuously interacting on how to proceed. Even during holidays and weekends, 
questions were being asked and answered in the project WhatsApp group.  

In the video-interviews and on the questionnaire all students (strongly) agreed that they got 
enough freedom to work on their own plans. One of them explained why he enjoyed the level of 
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freedom in the project over the common practice at school: in the programming project he could 
use his own imagination and creativity instead of “following a cookbook recipe”. 

Interpersonal motivation 

Cooperation  

Although programming is partly a lonely activity, the programming project incorporated 
cooperation between students at several levels as well. The first way in which cooperation was 
ensured was the level of instruction. Instead of a teacher being in charge, peers who were only 
three years older (‘tutors’) gave the lessons and guided the students’ projects. This peer-to-peer 
structure made the setting more informal and lowered the threshold for students, especially when 
they needed help outside of the classroom. As a second way of promoting cooperation, there 
were no classroom rules with respect to seating, walking around or talking. Throughout the 
project, the students got to know each other and they got more and more involved in each other’s 
games. They also started to help each other and shared ideas. The third cooperation mechanism 
was the WhatsApp group, where students shared their questions with their peers. Students who 
asked more questions during class were also more active in the app group, both in asking and 
answering questions. The tutors did not always provide ready-to-use solutions, but asked 
questions and gave suggestions to stimulate students to come up with their own solutions.  

Cooperating on school tasks was not common for these students during class. The reasons given 
for their difference in behavior between the programming project and regular classes are the lack 
of challenge and social pressure in their regular classes.  

Recognition 

The students developed real games that could be played by others and their efforts were clearly 
appreciated by their surroundings. They were given the chance to present both their games once 
they were (almost) finished. The first presentation marked the transition of the introductory 
course to the advanced course. Their parents and siblings were invited at school for this 
presentation, where the students also received a certificate. They presented their games, but there 
was also time to try and play all games. The second presentation was given at the end of the 
project. The students sometimes showed their games to their friends and got recognition from 
them as well for their efforts. 

Discussion and conclusions 
The question to be answered was how aspects of a formal learning environment in which 
students’ autonomy is supported contributed to an increase of the intrinsic motivation of students 
that have a positive attitude towards learning. Malone and Lepper’s (1987) taxonomy provided 
an appropriate framework for understanding what happened during the intervention. Although 
the number of participants was small and the outcomes could not be compared with a control 
group, we have reasons to believe that providing autonomy indeed had positive consequences for 
many motivational aspects, both at the individual (challenge, curiosity, and control) and the 
interpersonal (cooperation, recognition) level. Most importantly, compared to traditional 
mathematics classes, the learning process became more challenging, because students were 
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allowed to set their own goals and could make their games as complicated as they wanted. 
Focusing on the need for autonomy directly affected the needs for feeling competent and social 
belonging as well (Ryan & Deci, 2010). Integrating autonomy with guidance and support 
increased students’ feelings of competence and thus the motivation potential. In addition, the 
autonomy to choose their own level of difficulty allowed all students to feel competent. The need 
for social belonging was unintentionally met: the eight students coming from five different 
classes developed a pleasant working atmosphere together, which increased their motivation to 
proceed and persevere even when they found it difficult.  

As a follow-up of this project, it would be interesting to implement the motivational aspects from 
the programming project in a regular class, including students with less positive attitudes 
towards learning. Another question for future research is whether focusing on the need for 
autonomy in regular mathematics classes could also strengthen students’ feelings of competence 
and social belonging. The current attention for problem solving in mathematics education in the 
Netherlands (Doorman et al., 2007) is a promising step in this direction, because this provides 
opportunities for responding to students’ need for autonomy. Lessons learned from our 
intervention are that it is important to make problems as open as possible allowing students to 
use their own creativity and to make them understand why problem-solving skills are relevant.  

The focus of the current study was on the impact of autonomy on motivation. Another aspect that 
could be analyzed would be the influence of such a programming project on the students’ 
creative thinking skills and their mathematical knowledge. The students indicated in the 
interviews that the programming project was more challenging and more interesting than their 
mathematics classes. Although the participants’ motivation for mathematics was higher in the 
current study, they did not outperform their peers with respect to mathematics test scores before 
the project started. The learning outcomes with respect to mathematics have not been analyzed in 
detail in this study. 

The way in which the programming project was organized shares characteristics with the Maker 
Movement, a community of hobbyists, engineers, hackers, and artists that builds on each 
person’s ability to create things (Martin, 2015). The movement did not start in education, but 
educators are becoming interested in adopting the making activity into secondary education to 
enhance opportunities for students to engage in STEM practices. The Maker Movement makes 
learning more tangible and less abstract. The programming project has shown that this motivates 
students and that it makes them proud if they manage to create something they designed 
themselves. As a follow-up of the programming project, the eight project participants decided to 
participate in a national competition in which they are going to program a robot (the micro:bit). 
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Many students experience the content of the mathematics classroom irrelevant to their lives. At the 
same time, achievement in mathematics is widely regarded as an important part of general 
education. In this paper, we report on a study regarding students’ relevance beliefs. For this, we 
network Engeström’s cultural-historical activity theory with Skovsmose’s theory on foregrounds, 
and introduce the terms ‘realized’ and ‘emergent’ activity systems. Students provided a wide variety 
of beliefs, in which the belief of mathematics as door opener to higher education and key to options 
in life was leading. The belief in the exchange-value of mathematics overshadowed beliefs on the 
use-value of school mathematics (for other school subjects, for undefined jobs or for mental 
training). We recommend teachers and textbook authors to include more information on the 
relevance of mathematics in future studies and jobs. 

Keywords: Beliefs, exchange-value (of mathematics), cultural-historical activity theory, emergent 
activity systems, relevance (of mathematics).  

Introduction 
Many teachers of mathematics encounter the question “why do we need to learn this?”. While 
sitting in the mathematics classroom, listening to the teacher, doing tasks and tests, many students 
find little relevance in the mathematical activities they are made to engage in (Bishop, 1988; Onion, 
2004). Rather than learning about the usefulness of mathematics or using mathematics to solve 
authentic problems from out-of-school contexts, the students learn that mathematics is about 
mathematical objects (numbers, triangles, x, etc.), and that they must find an appropriate procedure 
to reach a correct answer (and only one) within a short time frame (Dowling, 2002). 

The finding that students ask this ‘why?’ question has been consistent for several decades. It opens 
a range of questions: why is it that many students find school mathematics irrelevant, how can 
mathematics teachers convey relevance, can mathematical modelling improve students’ experiences 
of relevance, do experiences of relevance influence performances, and so forth. We cannot cover all 
these issues. In the present study we focus on students and their reasons for engaging in advanced 
mathematics; if they chose that path, then they must somehow see it as relevant. 

Students’ reasons for engaging in advanced mathematics are part of their belief system. Students 
have beliefs about themselves, about the school, about their peers, about life, and so forth. 
According to Skott (2014), beliefs are mental constructs that are subjectively true for the person in 
question, beliefs are considered relatively stable, and beliefs affect the person’s interpretations of 
experiences.  

Following Hernandez-Martinez and Vos (2018), relevance is a connection between (1) a person’s 
subjective perception, (2) an activity by the same or another person, (3) an objective (an aim), and 
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(4) a value. In the present study, we consider relevance beliefs as a category of students’ beliefs 
connected to a deliberate activity, in this case, choosing a certain course. Students’ relevance beliefs 
can be mediated by the mathematical content, but also by interactions with others. A different 
category of relevance beliefs is part of teachers’ beliefs and pertains to a teacher’s perception of the 
relevance of mathematics to their students. 

In the Norwegian school system, students in upper secondary can choose among several 
mathematics courses with differing aims, scope and difficulty. Students make a selection while 
negotiating contradictions, such as those between the apparent irrelevance of school mathematics, 
and the image of mathematics that is drawn out in the media as a subject of paramount importance 
for the future economic development of society (Lange & Meaney, 2018; Valero, 2017). This 
duality puts the students who engage in the hardest mathematics in an interesting position: how do 
they reason about selecting and pursuing the most advanced mathematics course available to their 
age group? Once they are in this course, they encounter mathematical topics such as derivatives, 
integrals, and trigonometry. In the school system, they encounter little information on how these 
mathematical topics are useful out-of-school. The few situated tasks are quite inauthentic. Also, 
teachers of such courses, generally, have a background in university mathematics with little 
emphasis on the mathematics’ use-value outside of the school context. Our research on students’ 
relevance beliefs regarding school mathematics was operationalized by the research question ‘what 
reasons do students provide for engaging in a challenging mathematics course?’ 

Literature review 
The discussion on the reasons for teaching mathematics has developed over the past two decades. 
According to Heymann (2003), mathematics is taught as preparation for later life, for promoting 
cultural competence, developing an understanding of the world, developing critical thinking, 
developing a willingness to assume responsibility, as practice in communication and cooperation, 
and to enhance student’s self-esteem. Ernest (2005) provides a similar list, although he 
differentiates between reasons to teach practical versus advanced mathematics. In either case, it 
remains questionable whether students get to ‘see’ these reasons. Also, it has been argued that the 
above reasons remain at the pupil’s level without considering the social role of school mathematics. 
For example, Pais (2013) suggests that school mathematics is important not only for its intrinsic 
purposes (use-value, aesthetics, etc.) but also because it has exchange value, for example as a 
testing and grading device that gives some students access to prestigious positions in society, and 
other students not. In the public discourse, school mathematics is typically associated with socio-
economic development, in particular with the development of advanced technology (Lange & 
Meaney, 2018) and economic parameters on the individual and national level (Valero, 2017). In this 
cultural-political tug-of-war, it seems that school mathematics is struggling to communicate the use-
value of mathematics.  

A crucial challenge is the dialectics of two processes, the mathematization of knowledge and the 
demathematization of society (Jablonka & Gellert, 2007). The first has to do with mathematics 
being increasingly important in social, economic and political issues, for example in dealing with 
complex data through modelling and visualizations. This mathematization process is accompanied 
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by a demathematization process where mathematics is hidden and trivialized, for example when 
software encapsulates mathematical practices and datavisualizations can be generated in 
standardized formats by a few clicks. 

Various teaching approaches to mediate relevance have been proposed. For example, in a study 
with engineering students, Hernandez-Martinez and Vos (2018) used tailored mathematical 
modelling activities and an invited talk by a professional to demonstrate how mathematics is used 
and valued amongst engineers. They found that several students experienced these activities as 
relevant to their future career, but some s found the extra activities irrelevant, because their primary 
aim was to obtain a passing grade for the course.  

Theoretical background: Cultural-historical activity theory 
To study relevance beliefs, we consider students as having different backgrounds (where they come 
from) and foregrounds (aspirations, opportunities). The term foreground was developed by 
Skovsmose (2005) as analytic construct for interpreting learning processes, and is framed within the 
students’ current political, cultural and social context. Additionally, we wanted to capture students’ 
engagement in activities (doing mathematical tasks), which take place within a community (a 
classroom, peers, etc.), in which there are norms and conventions (e.g. the answers must be correct), 
tools (incl. language and symbol systems). To engage into an activity, a person is driven by a 
motive. In order to capture how the student (subject) is connected to the community and the object 
(aim of the activity), we adopted cultural-historical activity theory (CHAT) (Engeström, 2015), in 
which an activity system is a basic unit of analysis, see Figure 1.  

 

 

 

 

 

 

 

 Figure 1: Engeström’s (2015) model for an activity system 

To analyse students’ relevance beliefs, in particular their reasons for engaging with advanced 
mathematics, we assume that these can be affected by (1) the students’ backgrounds (e.g. having a 
parent who uses mathematics in her workplace), (2) the environment in which the learning of 
mathematics takes place (the activity system of the classroom), and (3) the students’ foreground 
(Skovsmose, 2005). This foreground can entail complex imagined activities, of which the student 
may not know much about; a student imagining herself as a future engineer may not know anything 
about the daily activities of an engineer, but nevertheless can aspire to become one. Thus, the 
activities envisioned in a student’s foreground are not realized activity systems but emergent activity 
systems.  
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Method 
To find participants, we contacted a teacher from an urban public upper secondary school. The 
teacher and the school were well-known to the first author, as he had previously worked there. The 
teacher agreed and informed the students in his class about the project in advance. Thus, students 
had time to consider whether or not they wanted to participate. When the interviewer visited the 
class, eight students (3 f, 5 m) agreed to participate. The interviews were conducted three days later.  

The students were in grade 12, which in Norway is the second year in upper secondary school, and 
the year before the final exams. All had chosen the most challenging mathematics course available, 
referred to as R1, the name used in the local context. The students were interviewed in pairs for 
mutual support and comfort. All student names were anonymized, and the pairs follow the alphabet: 
A(ndré) and B(jørn); C(hristian) and D(aniel) and so on. The student pairs were interviewed for 
approximately 20 minutes on their back- and foregrounds. The interviews were semi-structured 
(Wellington, 2015) and the interview guide followed Kvale and Brinkmann (2015).  

All interviews were audio-taped, transcribed, and analyzed using Skovsmose’s (2005) constructs of 
back- and foreground, and the CHAT frame by identifying activity systems, particularly 
communities and associated objects and whether the activity systems were emergent or not. The 
statements were then interpreted in terms of relevance beliefs based on categories from the literature 
(exchange-value, use-value) and themes emerging from the data (Wellington, 2015). 

Results 
In the following, we present excerpts from the interviews. Due to space limitations, some answers 
very similar to others were left out. First, we asked the students why they chose the R1 course: 

Bjørn:  I like mathematics and get good grades. 

Daniel:  It's pressure from parents of course, and also some from my friends. Many of 
them are performing very well. I want to be on the same level, you know. Also, I 
suppose, career aspirations and further studies are… about having a relatively 
high-educated job which pays well... and is fun. I think that's very important. 

Fredrik:  The reason I chose R1, it is kind of a continuation. I always performed well in 
maths … and it went well in grade 11, so R1 was the natural choice. 

Gjertrud:  I think math is fun. It’s great fun when you get the same answer as the answer list. 
There aren’t tons of pages about "it may be this", or "it may be that". It’s great! 

Hilde:  Because I want to keep the possibilities open because I don’t know what to do 
next. 

We see that students reacted very differently to this question. Two students, Gjertrud and Bjørn, 
answered to have chosen R1 because they liked mathematics, whereby Gjertrud emphasizes the 
clarity, and Bjørn likes getting good grades. Their answers are within the activity system of the 
present classroom, unlike the other students, who mention their background (e.g. parents’ pressure, 
having been good in maths in the past), or their foregrounds (e.g. keeping options open, getting a 
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well-paid job). The second question asked the students explicitly about wishes and ambitions for 
future studies and career (foregrounds). They answered as follows: 

André: Likely that it'll be something related to science or technology. Or I'd study sports! 

Bjørn: I'm very unsure about further education, but probably I will do some university 
studies, and that will most likely be within science or technology. But I don't 
know much more than that, really, I'm a little unsure. It could be sports but it 
could also be social anthropology or psychology, those are things that I'm also 
interested in. 

Christian: I always had a dream of going into ... engineering direction for example ... be a 
marine engineer. That’s what I have always wanted. But ... I don’t know yet. I like 
to draw things, be creative, look at buildings, how they are built. And boats, how 
they break waves, how they manage to stay on water, not go down, like that. 

Emilie: I don't know what I want to become, but I'm taking IB [International 
Baccalaureate, a prestigious examination program] next year and then perhaps 
NTNU [Norwegian University of Science and Technology]. 

Fredrik: I just try to keep all the doors open. 

Gjertrud: I think it will be something within science, like biology. But I also want to study 
psychology, I think everything is very exciting and I can't decide! 

Hilde: Nothing (…) I don’t know. 

The question on students’ foreground showed that all students mentioned a future, but the range and 
focus differed. With the exception of Christian who had a clear goal, all were insecure and wished 
to keep options open. Many of them indicated future studies, most of which were within science and 
technology, and no one mentioned economy or business administration. Above, we see only 
Christian and Emilie mentioning a future profession beyond their studies, although for Emilie it was 
vaguer than for Christian. Towards the end of the interview, we asked why they thought they had to 
learn mathematics: 

André: I think [maths] is mostly about … just having the foundation for further study. 

Bjørn: I think maths is really only about testing understanding and testing how the mind 
can assemble patterns and stuff. (…) it's about exercising the mind, IQ-testing … 

Christian: … ehh I think especially the maths we are learning now, for example, we will 
need it in physics. It is ideal for the ... calculations there ... to figure things out 
there. 

Daniel: I think a lot of mathematics we're learning is a little redundant. Of course, I see 
that many topics can be useful. Like what we're learning about now with 
differentiation, I think finding rate of change everywhere, can be relevant. But 
there are also the unnecessary things. Logarithms are actually one of the things 
that I'm not so sure of whether it is useful or not. 
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Emilie:  I can help my kids, my little brother [with homework]. 

Gjertrud:  I really feel that what we're learning is, like, further, that we're learning something 
we can use for … Just like when you learned the multiplication table. Why do we 
need to learn multiplication? Now I use it all the time. 

Most of the students considered their foreground. They mentioned that mathematics can be useful in 
future activities, for example in future studies. One student, Daniel, expressed concern that some 
mathematical topics may be useless. Only one student, Bjørn, considered the present activity system 
of the classroom when mentioning that the subject of mathematics has the purpose to train and test 
students’ mental abilities. Emilie considered her present and emerging family activity system when 
she mentioned helping her kids and little brother. However, we must acknowledge that by first 
asking the students about their foregrounds, we primed the students to focus on their foregrounds 
thus biasing them towards focusing on the exchange value of mathematics. 

Conclusion, Discussion, Recommendations 
The present study on relevance beliefs was guided by the research question: what reasons do 
students provide for engaging in a challenging mathematics course, R1?. The interviews revealed 
that for some students, their backgrounds (parents, earlier success) and their present achievement 
and enjoyment in mathematics play a role. However, most students mentioned the belief that the R1 
course is relevant for their future. Here, we saw different patterns emerging. For example, Daniel 
(“I want a relatively high-educated job which pays well... and is fun”) did not have a concrete plan 
for his future and strived to “keep his doors open”, he aspired a high-status job, possibly within 
engineering. Similarly, Christian (“I always had a dream of going into engineering and be a marine 
engineer”) looked beyond the course. The object of their engagement in the mathematics classroom 
had an exchange-value for getting into some form of higher education that led to a desired job. 
Their image of activities in higher education and workplaces were emerging activity systems, rather 
than realized activity systems. So, two subsequent emerging activity systems are in their 
foreground, see Figure 2 (left). For other students, such as Emilie (“I don't know what I want to 
become, but I'm taking IB and then perhaps NTNU”) and Gjertrud (“It will be something within 
natural sciences, everything is exciting, I can’t really decide”), the R1 course was relevant as having 
exchange-value to enter some form of higher education and keep options open. They looked at a 
nearer future in higher education without concrete ambitions regarding professions. Thus, their 
foreground was one or more emergent activity systems at early stages, see Figure 2 (right). 

Two students believed mathematics to be useful, for other subjects (Christian mentions physics) or 
in an undefined use (Gjertrud: “we're learning something we can use”). Not one mentioned 
usefulness for their daily life, nor did they say anything about how mathematics can be useful, for 
example in modelling, data analysis or data visualization. Others believed that some mathematics 
could be useless (Daniel: “logarithms, I'm not sure of whether it is useful”). They also mentioned 
the mental strengthening function of mathematics (Bjørn: “exercising the mind”). The most 
frequently given reason for choosing the R1 course was that they believed it keeps their options 
open, apparently knowing the hurdle function of mathematics. This exchange-value of mathematics 
overshadowed its use-value, as already indicated by earlier research on Scandinavian secondary 
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students (Nosrati & Andrews, 2017; Pedersen, 2013). This suggests that a demathematization of 
school mathematics has happened, where the usefulness of mathematics has become obscured, and 
beliefs about other social functions of mathematics, for example its exchange-value, have taken 
over. 

 

Figure 2: Students realized activity systems in the mathematics classroom, with emergent activity 
systems as objects; the case of Daniel (left) and the case of Gjertrud (right) 

The networking of Engeström’s (2015) and Skovsmose’s (2005) theories proved fruitful in our 
analysis for connecting relevance beliefs to an activity (choosing a particular mathematics course). 
As a result of this, we found that for research on relevance beliefs regarding school mathematics, it 
is necessary to take into account students’ (1) background, (2) current situation and (3) foreground.  

Among the items on Heymann’s (2003) list of reasons for teaching mathematics, the students on our 
study are clearly aware of its role in preparing for later life, although exclusively for further 
education and future workplace activities. The frequent reference to ‘keeping all doors open’ shows 
clearly that the students were aware of school mathematics’ exchange value: a passing grade in this 
course is critical to many study programs that are otherwise not accessible. Furthermore, Daniel’s 
assertion that the advanced mathematics course might lead to a “high-educated, well-paid and fun 
job” indicated an awareness of Pais’ (2013) suggestion that school mathematics has a role in 
distributing prestigious positions in society. Based upon our research, we recommend, first, that 
beliefs may be divided into different categories, and ‘relevance beliefs’ regarding the usefulness of 
school mathematics is a separate category within students’ belief system. Second, teachers, teacher 
educators and text book authors ought to create resources for students to inform them about the use-
value of mathematics, not only within professions typically associated with mathematics (e.g. 
engineering and economy) but also its use-value in medical and social disciplines for purposes of 
modelling, analyzing, communicating and visualizing data. Clearly, many of the reasons for 
teaching mathematics mentioned in the literature have not reached the students. 
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In pursuing the writing and presenting of ‘autonomous’ conference texts –i.e., conference texts 
functioning in terms of meaning making on their own–, all authors deal with issues of reduction, 
transformation and representation of the concepts and contexts of initiation and development of their 
research. In this introduction, we point to challenges tied to the writing and presenting of language-
sensitive mathematics education research for communication in conference formats. We discuss some 
ideas for the improvement of current guidelines and standardised decisions relative to processes and 
texts produced within the CERME culture. Drawing on experiences provided through our roles as 
co-leaders of the ‘Mathematics and Language’ thematic working group (TWG09), along with the 
insights gained from the TWG09 set of papers and posters on the occasion of CERME11, each of us 
brings a focus to the discussion of challenges and changes that might be feasible and worthwhile.    

Keywords: Research communication, conference formats, written and oral languages, language-
sensitive mathematics education research, representational challenges.  

Introduction  
In conference papers, but also in journal articles, we often read sentences like “because of space 
restrictions, we do not show the totality of the interview transcript”, or “the lesson data transcribed 
has been translated into English”, “the lesson data translated into English have been transcribed”. It 
is also common to find written research without explanation of, or reference to, the original languages 
involved in data collection and/or the ways of addressing the transformation and reduction of data 
into certain written formats. These types of omissions and their implications at many levels deserve 
discussion in any domain of study. Such discussion is even more relevant in mathematics education 
research that is largely language-sensitive, regardless of the analytical traditions and theoretical 
standpoints taken. Indeed, throughout meetings of the ‘Mathematics and Language’ Thematic 
Working Group of ERME (TWG09), including the most recent meeting at CERME11 in Utrecht, 
many participants have expressed interest in challenging and improving some of the tacit typical 
practices when dealing with lesson and interview oral data in papers and posters. 

In the following sections, we identify four major challenges around fostering a more language-
responsive communication of research work, and propose specific changes and directions that could 
help in this respect. The two guiding questions that we pose to ourselves are as follows: 

- What are some of the challenges of communicating language-sensitive mathematics education 
research in written and oral conference formats, particularly the CERME format? 
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- What changes in both the tacit positions of researchers and the written/oral products could 
improve the communication and understanding of the research reported?  

Drawing on the experiences provided by our roles as co-leaders of TWG09, along with the insights 
gained from the TWG09 set of 28 papers and 2 posters on the occasion of CERME11, each of us 
brings a different focus to the discussion of challenges and changes that might be feasible and 
worthwhile. We hope that the sections below will give a sense of how research in the domain of 
mathematics education and language can inform important reflections for the whole field. Although 
there is increased understanding of the relevance of language in the various domains of mathematics 
education research, the point at which language issues are considered in written and oral conference 
formats is inconsistently reported and sometimes treated as a minor question. In our discussion below, 
each challenge is based on and arises in a number of papers and posters presented at CERME 11, 
however, each paper and each poster is only used once to illustrate the points being made.  

The challenge of original language information   
The papers of Azrou, of Mizzi, of Prediger, Uribe and Kuzu, and of Salekhova and Tuktamishov are 
examples of work conducted in multilingual classroom settings addressing issues of mathematics 
education and language diversity. Mizzi provides two-column transcripts with the bilingual lesson 
data in the source languages, Maltese and English, in one column and the target English language in 
the other, hence doubling the length of the transcript in terms of space taken in the paper. When 
confronted with text formats of eight pages, doubling transcripts may require about two-thirds of the 
totality of the report for data presentation. In the papers of Azrou, of Prediger, Uribe and Kuzu, and 
of Salekhova and Tuktamishov, transcripts of the Arabic-French, Turkish-German and Tartan-
Russian source versions of bilingual talk in the respective lessons are not shown, with all the written 
pieces of data translated into English, its alphabet and writing direction. Similarly, Ranges and Eikset 
refer to Norwegian students’ home language, while presenting transcripts in English, and Rønning 
and Strømskag present data of conversations in a planning meeting with teachers of Norwegian 
schools in English. The use of Norwegian is limited to translating technical vocabulary and occasional 
incorrect terminology. In their presentations, some of these authors claimed practical reasons for the 
option chosen and particularly mentioned their willingness to share the original data with those 
participants who had further interest in their works.  

Looking back at the whole set of papers and posters across ERME thematic working groups compiled 
in the CERME10 Proceedings (Dooley & Gueudet, 2017) and given the space restrictions, it is not 
surprising that the presence of original languages tends to be avoided with the resulting monolingual 
bias in the perception, representation and communication of the contexts of research. Any option in 
this respect is problematic. For those papers that incorporate information of original language with 
translated language text, accomplishment of space restrictions is not trivial. On the other hand, for all 
papers that have languages other than English in their contexts of research, translation between 
languages is not trivial either. At CERME11, in his paper, Sträßer refers to the many challenges of 
translating data and ideas from a source language to a target language (see also Geiger & Sträßer, 
2015). Overall, we find several examples of papers dealing with the decision of how to communicate 
in English what is said in the source language. In Chesnais’ paper, the discussion refers to French 
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grammatical features of the students’ interactions, while the presentation of interaction transcripts 
and of their interpretation is done in English. This can also be found in Erath’s paper, where the focus 
is on lexical and syntactical means produced in German but are presented and written in English. At 
the most recent meeting of TWG09, only the papers of Ingram and Andrews and of Postenilcu report 
work developed in a situation in which the source language of data is English exclusively.  

Despite the difference of options being used, over these years the discussions in TWG09 clearly 
reveal that groups of authors, and in general all participants, consider data in the original languages 
as relevant evidence, not a technical distraction or tangential to the work we do. Reflections in this 
respect can be found in Planas, Chronaki, Rønning and Schütte (2015), Planas, Ingram, Rønning and 
Schütte (2017), Planas, Schütte and Morgan (2018), and Rønning and Planas (2013), among other 
CERME presentations and publications. The belief that untranslated source data is worthwhile, and 
that access to it is key, are strongly shared and rooted in our working group. We are very aware that 
untranslated source material retains a great deal of linguistic information that is of interest and can 
disappear in translation, with important implications for data analysis, interpretation and results. 
Importantly, the source languages provide vital information for gaining insight and understanding in 
multilingual contexts of mathematics education research, as well as for developing critical awareness 
of the monolingual emphasis under which most research products are shaped in our field. 

Furthermore, the body of CERME Proceedings brings up paradoxical situations such as having a 
paper with the source data in French that is only read in its English translation by researchers who are 
French speakers or who are proficient in this source language and could therefore have a more 
comprehensive and direct understanding of the research reported in its original language. For each 
paper or poster, a number of researchers have the expertise and are able to review material in the 
original languages. With that in mind, ERME could possibly consider some changes oriented to 
facilitate access to the source languages without the necessity for a dramatic reduction of the space 
available for discussion in papers. In the age of technological developments and virtual environments, 
new arrangements could be made to include a multilingual site for registered access to repositories of 
source data matched with printable texts in the conference proceedings. Such arrangements would be 
similar to the practical experiences of what some journals do in the electronic version. This way, after 
consultation, authors could choose the option of linking their papers to the protected site containing 
information regarding the materials and texts that can be made available in the data’s original 
languages. By using this option, authors could improve the communication of the research reported 
in the conference format.  

The challenge of choosing what data is relevant for the paper 
The current practice of CERME papers is to offer authors who are transcribers the choice of two 
transcript styles. Either they may use Transcript or Numbered Transcript if the author needs to refer 
to specific lines in the text. However, the template does not number lines, it numbers turns. In 
language and interactional research within mathematics education, there is often a need to be more 
precise. For example, it is frequently interesting to consider interactions where two or more people 
are speaking at once, or when their turns overlap, particularly when considering classroom 
interactions where there are multiple speakers and the data is often messy, such as in the work by 
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Friesen, Schütte and Jung. Gestures, gazes and movements, such as pointing, that occur in social 
interaction are also often highly relevant to the analysis and these often occur concurrently with the 
spoken discourse. In these situations, line numbers rather than turn numbers are more appropriate, as 
well as the potential to use specifically designed transcription systems. Conforming to the 
transcription styles often results in a reduction of the data that members of TWG9 can present, and in 
some cases results in the loss of that data in the written presentation, as authors need to rely on their 
short presentation to share certain features of their data. More flexibility in the transcription formats 
is necessary if we are to offer closer representations of the language data that we are researching. 

Greater flexibility in the transcription formats also implies some reference in the template for authors 
who choose to emphasize the multimodal nature of the data they work with, and who particularly do 
not produce verbal representations of gestures, body movements and uses of physical space and 
material objects, but opt for multimodal transcription systems. With the increasing use of video 
recording in our research field and the development of newer visual methods and analytical 
frameworks such as digital ethnography, the question of inserting photos and images in the transcript 
is very timely. Much of the research in TWG09 combines gestural, visual and verbal data, and hence 
goes beyond the purely verbal mode. This is the case of the papers by Fyhn and Hansen on how 
meaning of pattern changes depending upon the objects with which students are familiar and interact 
with, and by Götze on meaning-related language for understanding multiplication where the language 
is tightly associated with visual representations. The idea of communication ‘mode-switching’ 
(Sindoni, 2014), which relates to an important feature of multimodal data, is also present in the paper 
by Peters regarding learners’ reactions and responses to auditory material from radio podcasts.  

Some theoretical traditions (e.g., conversation analysis, corpus linguistics) have a specific 
transcription system of annotation and coding associated with them where not only line numbers are 
required. There is a specific font and way of spacing transcripts to illustrate features such as pausing, 
overlapping speech and concurrent gestures (see the topic of transcription decisions and related 
representational differences and analytical implications in Ingram & Elliott, 2019). These systems 
often come with complex notation to indicate not only what was said, but also how it is said and this 
notation needs to be explained in the paper in order for the reader to make sense of the transcripts, 
which is another challenge to face in meeting the length requirements. Many of the papers in TWG09 
are focusing on how students make sense of the mathematics they are engaging with, and this involves 
a combination of spoken interactions, written materials, and ways of interacting with objects. The 
current traditions around the written presentation of papers limit how this data can be shared as well 
as how much data can be shared. As suggested above, the repository of source data could enable the 
sharing of video or audio data that is often used during the presentations. This might also be a solution 
to the issue around the need to share transcription conventions, as well as offering an opportunity to 
share longer (multimodal) transcripts or additional transcripts for the interested reader. 

The challenge of comprehensibility of theory development  
The last two challenges differ in nature to the previous ones since they focus on how to make theory 
and conceptual development more accessible to the readers and the audience. In the domain of 
mathematics and language, many researchers are guided by a qualitative-reconstructive methodology 
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and they use methods of qualitative social research in their inquiry design. The aim of many research 
endeavors is to reconstruct underlying structures and patterns of specialized verbal processes of 
negotiation through extensive analysis of data and the help of a comparative approach (“constant 
comparative method” in Strauss & Corbin, 1994, p. 273). Generally, research gaps can be identified 
and based on these gaps components of local theories or theories with limited scope but high 
comprehensibility are developed using the processes of conjecture and abduction (Peirce, 1991). In 
the conference proceedings and oral presentations of TWG09 –presumably similar to what happens 
in other working groups of CERME– only a small portion of the data can be communicated in form 
of a transcript. However, a transcript excerpt does not usually display, nor even illustrate with 
precision, the complex process of theory development. Rather, the process emerges across many 
structural comparisons within an analysis of constant selection of features, decontextualization to a 
certain degree, and theoretical abduction. In oral presentations and conference proceedings authors 
can usually only show the best possible visualization, explanation and synthesis of the developed 
theories, which are mostly striking examples from instances of data materials.  

Some of the papers declare and address the challenge of presenting moving from concrete instances 
of data to theory development in the short space available. The papers by Sauerwein, by Keuch and 
Brandt, by Alfaro, by Bednorz, and by Umierski and Tiedemann all include some mention to the 
complexity of making theoretical development explicit and precise by means of the choice and use 
of selected empirical material. In some of these papers, the examples mirror the process of gradual 
theory development with local scope in a limited way and are not as comprehensible as originally 
intended or expected. The empirical material in the transcripts does not, and cannot, provide a 
sufficiently clear illustration of the theoretical argument. Cohors-Fresenborg and Mackay, Thurlings, 
Schüler-Meyer and Pepin, during the time for oral presentation of their respective posters, were 
reflective about the limits of communicating theory development and conceptual abstraction through 
the examination of examples. For understanding the concepts in the poster of Cohors-Fresenborg, for 
example, the relationship between what is observed in the lesson data and the scope of application of 
the concepts introduced by this author is very important.     

For compatibility reasons with future research endeavors, especially from early career researchers, it 
would be preferable if publications and presentations could give a deeper insight into the cumulative 
process of theory development. Following the line of suggestions in the previous sections, this could 
also be made possible through a protected area, where researchers could provide further material for 
the working group. Thus, the gradual process of theory development for a certain period of time could 
be demonstrated and shared. This would include transcripts that are not yet published but were crucial 
for the forming of the developed theory components in the course of the constant comparative 
method. Additionally, there would be an opportunity to allow any author including early career 
researchers who have completed their PhD, to present their research process at the conference and 
give them the opportunity to publish a longer paper in the protected area. Anyone interested could 
hand in an 8-page paper, from which some could then be selected to be offered the opportunity to 
write a longer ‘master-paper’. All this would certainly contribute to the generation of more activity 
and transparency in theory building.  
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The challenge of meeting informed audiences   
The struggle of TWG09 participants to find new ways of expressing an updated understanding of 
what research on mathematics and language means today, and what the identity features of the domain 
are, frames the context for this last challenge. On the occasion of CERME11, due to the increase of 
the group size, a division of TWG09 into participants attending either Group 09A or Group 09B for 
all sessions was necessary. There were no ‘subtitles’ for the subgroups; rather, papers and posters 
were grouped into (usually) sets of threes by the TWG co-leaders, based on a perceived commonality 
among them. The organizational need for a practical division due to the number of participants, 
however, brought up a more profound conceptual discussion. Half of the papers had multilingual 
settings in common and hence, the recognition that a number of papers shared some multilingual 
specificity and fitted with each other was used in the final grouping. In the end, one language group 
consisted mostly of papers that considered language, interaction or mathematics within contexts that 
are (at least overtly) monolingual, as was the case for the paper of Theens (Swedish), and of Farrugia, 
which describes a context wherein English was used as lingua franca. In these studies, the languages 
of the speakers are (generally) not taken into account, unless the speakers themselves make it relevant. 
The second language group was then mostly constituted by papers wherein the presence of two or 
more languages in the mathematics classroom is a key element of the discussion, as were the papers 
of Schüler-Meyer, Prediger and Weinert (German-Turkish), of Ní Ríordáin and Flanagan (Irish-
English), and of Chico (Catalan-Spanish). 

While the arrangement appeared to make sense and to ‘work’, and participants’ collaboration ensured 
that things ran smoothly, during the last day it was suggested that multilingual specificity and 
interactional foci had been central to both Group 09A and Group 09B. In fact, throughout the working 
sessions the emergent discussion of the multilingual specificity in the papers presented in each 
subgroup became somehow problematic. The characteristic of ‘multilingual’ as being restricted to 
group languages was unintentionally suggested at some points in the discussions of the two subgroups 
and hence, the broader interpretation of switching between vocabularies, grammatical constructions, 
intonations, gestures, and so on was less attended to in one of the subgroups but considered in parallel 
to multilingualism in the other. For a long time, our group has discussed studies that focus on 
linguistic challenges faced by students that are not necessarily related to a diversity of ‘natural’ 
language systems but generally involve multilingualism in the form of (mode) switching between 
ways of communicating in mathematics lessons. In his paper at Utrecht, for example, Gíslason 
presented the linguistic and communication repertoires and challenges faced by students who are low 
attaining in mathematics. The determination of operational criteria for splitting TWG9 is not trivial 
at all and what is difficult indeed is to find labels of conceptual distinctiveness that do not diminish 
the opportunities for all participants to share their research with the interested audience.  

In particular, the challenge of the group size with the subsequent splitting of TWG09 leads to the 
challenge of allocating the papers and posters for their presentation to the most appropriate audience. 
The conference format of short presentations does not allow much time for clarification of approaches 
and meanings that participants in the audience must then infer. What can be a rather comprehensible 
presentation for an audience, may not be equally comprehensible for an audience unfamiliar with 
specific theoretical stances and research emphases. With respect to this situation, it seems again 
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important to offer authors the possibility of uploading additional material of their work in a protected 
site so that other participants can more easily follow the ideas and reasoning both in advance and after 
the working sessions. It is important, for instance, to know what is involved in the use of common 
terms like ‘languaging’ that may refer to very different stances and emphases (Shohamy, 2006). As 
can be attested by the variety of topics addressed by the papers and posters in TWG09, studying 
language in mathematics education may take many forms of languaging, some of which involve 
different ‘natural’ languages or language systems, while some others are related to the alternation of 
discursive practices necessary for participation in mathematical activity. The papers by Fetzer and by 
Albano, Coppola and Ferrari show a kind of languaging focused on written practices of 
argumentation, with shifts between ‘natural’, symbolic and pictorial languages within one language 
system (German/Italian). Other papers with multilingual lesson data show a kind of languaging placed 
in the newer tradition of ‘translanguaging’ as the act of utilizing one’s full linguistic repertoire (García 
& Kleyn, 2016). Participants also need to know what is involved in the use of the term ‘multilingual’. 
TWG09 participants are aware that attempting to talk about group languages in the classroom context 
as separate (or separable) systems is artificial and hence, unhelpful for research purposes, but there 
may be substantially different ways of consider multilingual specificity in data. Of course, the use of 
group languages overlaps with the use of classroom- or subject-specific discursive practices, so that 
‘language in the mathematics classroom’ is a complex area of study with a number of stances and 
emphases that cannot be introduced in short presentations.  

We anticipate that the group size will require organizational measures in the near future. Due to the 
overlap between general language or discursive elements and the ‘media of instruction’ of the 
classroom, but also to questions regarding the precise meaning for contested terms in the domain, it 
would be important that the two subgroups find the time to have a joint session. There is a lot of 
commonality in the theoretical and methodological approaches that all members of the group draw 
upon or consider in their work, and thus identity distinctiveness should be addressed very cautiously. 
It will be an internal decision amongst TWG09 participants as to how to utilize the separate and joint 
sessions, in order to encourage fruitful and deeper discussion; however, it will be equally crucial that 
the CERME organization allows for the flexibility needed with regard to the organization of sessions 
as well as the provision of additional information and materials.  

More challenges in what comes next 
The idea for this introduction paper began as a response to guiding questions posed to ourselves 
regarding challenges and revisable options of communicating language-sensitive mathematics 
education research in the written and oral CERME formats. Attention to these questions has been of 
help to uncover a number of theoretical and reflective issues behind the intricacies of improving the 
representation and sharing of our work within the CERME community. In our role of co-leaders we 
have done our best to become openly critical in bringing together some of the challenges that emerge 
when addressing the writing and presenting of language-sensitive mathematics education research for 
communication in conference formats. Despite the focus on, and discussion of, conference formats, 
we can also learn something important about the heterogeneous nature and theoretical complexity of 
the activity that goes in TWG09. Some of these many different challenges and approaches to 
mathematics education research on language will be investigated more closely in the diverse papers 
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and posters that constitute this chapter of the proceedings. Through these papers and posters, we will 
be able to find out what the authors themselves consider the challenges to be that make a strong case 
for their studies and professional development as researchers in the domain. The creative dialogue 
with all their points of view will enrich what we have written in more specific and unique ways.   

References 

Dooley, T., & Gueudet, G. (Eds.) (2017). Proceedings of the Tenth Congress of the European Society 
for Research in Mathematics Education. Dublin, Ireland: DCU Institute of Education and ERME. 

García, O., & Kleyn, T. (2016). Translanguaging with multilingual students: Learning from 
classroom moments. New York: Routledge. 

Geiger, V., & Straesser, R. (2015). The challenge of publication for English non-dominant-language 
authors in mathematics education. For the Learning of Mathematics, 35(3), 35-41. 

Ingram, J., & Elliott, V. (2019). Research methods for classroom discourse. Oxford, England: 
Bloomsbury Academic.  

Peirce, C. S. (1991). Schriften zum Pragmatismus und Pragmatizismus (Trans. K. O. Apel). Frankfurt 
am Main, Germany: Suhrkamp.  

Planas, N., Chronaki, A., Rønning, F., & Schütte, M. (2015). Challenges and research priorities in 
the context of mathematics and language. In K. Krainer & N. Vondrová (Eds.), Proceedings of the 
Ninth Congress of the European Society for Research in Mathematics Education (pp. 1318-1324). 
Prague, Czech Republic: Charles University and ERME. 

Planas, N., Ingram, J., Rønning, F., & Schütte, M. (2017). Introduction to the papers of TWG09: 
Mathematics and language. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of 
the European Society for Research in Mathematics Education (pp. 1231-1234). Dublin, Ireland: 
DCU Institute of Education and ERME. 

Planas, N., Schütte, M., & Morgan, C. (2018). Mathematics and language. Lessons and directions 
from two decades of research. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), 
Developing research in mathematics education: Twenty years of communication, cooperation and 
collaboration in Europe (pp. 196-210). London, England: Routledge.     

Rønning, F., & Planas, N. (2013). WG9-Language and mathematics: Its origin and development. In 
B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European 
Society for Research in Mathematics Education (pp. 1491-1497). Antalya, Turkey: Middle East 
Technical University and ERME. 

Shohamy, E. (2006). Language policy: Hidden agendas and new approaches. London, England: 
Routledge.  

Sindoni, M. G. (2014). Through the looking glass: A social semiotic and linguistic perspective on the 
study of video chats. Text & Talk, 34(3), 325-347.  

Strauss, A., & Corbin, J. (1994). Grounded theory methodology. In N. K. Denzin, & Y. S. Lincoln 
(Eds.), Handbook of qualitative research (pp. 273-285). London, England: Sage.  

Thematic Working Group 09

Proceedings of CERME11 1589



 

 

Taking advantage of the different types of mathematical languages to 
promote students’ meaningful learning 

Helen Alfaro Víquez 

University of Tampere, Finland; helen.alfaroviquez@tuni.fi 

The low performance in mathematics of non-mathematics majors has forced higher education 
institutions to implement different measures to address the problem. Many of these measures have 
focused on curriculum modifications. This study presents a methodological way of approaching the 
problem, using written exercises, which combine symbolic, natural and pictorial languages to 
improve the mathematical learning of university students. These exercises promote the development 
of essential mathematical skills to achieve successful mathematical learning. In this paper, I describe 
one exercise and analyze the solutions of 28 students of Calculus 1 course, at the University of Costa 
Rica. The results suggest that the exercises allow exploring the benefits of different mathematical 
languages, so that the students can make connections between knowledge and theoretical concepts. 

Keywords: Mathematical languages, university mathematics education, languaging exercises. 

Introduction 
During the last few years, improving the mathematics performance of university students has been an 
important issue. Special attention has been paid to students of non-mathematics majors in the 
transition process from school to university (Goodchild & Rønning, 2014), since the students’ 
mathematical background is not strong enough when they enter university. They may reach the levels 
of reproduction of procedures, but without understanding the mathematical significance of the 
contents involved (Winsløw et al., 2018). Thus, the students do not have the level of mathematical 
reasoning, abstract thinking and rigor required at university (Gruenwald, Klymchuk, & Jovanoski, 
2004). This situation is reflected in the alarming failure and dropout rates presented in the initial 
courses, from many students who have mathematics in their academic programs (Biza et al., 2016). 

This gap in the mathematical knowledge of students has led universities to implement several 
measures to improve the problem. For instance, peer work, bridging courses, mathematical support 
centers, interactive lectures, videos, digital assessment, among others (Mustoe & Lawson, 2002). 
White-Fredette (2009) highlights that the actions taken for facing this situation should consider the 
instructional level. Similarly, Gruenwald et al. (2004) suggest that teachers should look for effective 
ways to help students to “understand the abstract concepts, master the formal language, follow 
rigorous reasoning, get a good feeling for the mathematical objects and acquire so-called 
mathematical maturity” (p. 12). In a nutshell, attention should be paid to the students’ understanding 
of the mathematical concepts and the need to develop their mathematical thinking. 

Considering this need, I present the written languaging exercises as a teaching resource to improve 
the understanding of mathematical concepts by students, using different languages. The exercises ask 
students to provide written explanations or justifications using symbols, drawings or their own words. 
In this way, they must organize their thoughts and review the reasoning that led to their solution, 
being aware of the knowledge and concepts used, and the connection between them. In Finland, the 
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languaging exercises applied in university engineering mathematics (Joutsenlahti, Ali-Löytty, & 
Pohjolainen, 2016) and honor mathematics courses (Silius et al., 2011) have showed promising 
results. In this paper, I present the outcomes of applying languaging exercises in a Calculus I course 
for non-mathematics majors in Costa Rica. 

Theoretical background 
As literature indicates, it is necessary to promote conceptual understanding in students (Engelbrecht 
& Harding, 2015), teach them how to make connections between concepts (Nardi, 1996) and how to 
deal with the abstract nature of mathematical concepts and the complexity of mathematical thinking 
(Biza et al., 2016) required at the university level. Those actions may help students to experience a 
successful learning of mathematics and facilitate the process of transition from school to university. 
The mathematical proficiency theory offered by Kilpatrick, Swafford, and Findell (2001), proposes 
the development of key mathematical skills that help in this purpose. The theory suggests five main 
competences that are necessary to accomplish effective mathematics learning: conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning and productive 
disposition. These competences promote, among other, the ability to identify connections between 
concepts; to understand and provide justifications and reasons for procedures; to perform procedures 
flexibly, accurately and efficiently, knowing how, when and why to do it; to think logically, to 
represent, formulate and solve mathematical problems in different context; and to consider different 
strategies of solution. All the strands are therefore interwoven and should be practiced equivalently. 

The mathematical proficiency competences can be developed by means of languaging exercises, 
which are designed based on the languaging theory. Languaging is defined as the students’ expression 
of their mathematical thinking using different languages (Joutsenlahti et al., 2016), including 
mathematical symbolic language (SL), natural language (NL) and pictorial language (PL). In this 
way, the languaging written exercises combine models and tasks, which aim to promote different 
mathematics competencies. As well, the exercises use different languages to access the characteristics 
of the mathematical objects and students’ mathematical thinking. 

Languages play an important role in mathematics communication. Following the semiotic approach, 
it is a tool for representation, communication, thinking and constructing knowledge (Schleppegrell, 
2010). Lemke (2003) argues that the integration and cross-referring of NL, SL and PL languages 
“form a single unified system for meaning-making” (p. 215) and is the combination of them that make 
possible the mathematical reasoning (Schleppegrell, 2010).  In addition, research evidence that for 
students, the use of the three languages facilitates the understanding of concepts and mathematical 
exercises (e.g. Alfaro, 2018; Joutsenlahti et al., 2016). The use of different languages allows the 
exploration of more properties of a mathematical object than using only one (Dreher, Kuntze & 
Lerman, 2016), because each one shows specific features and connotations (O’ Halloran, 2015). 

The choice of written languaging exercises is based on research which suggests that by writing, 
students have to organize their thoughts, review and clarify the mental processes they went through 
in the solution of a task (Morgan, 2002). Furthermore, they must try to express it in a clear and 
concrete way, so that readers can understand their mathematical thinking (Morgan, 2002). According 
to Kline and Ishii (2008), this process improves students’ understanding. 
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Context and method 
Due to the high rates of failure of non-mathematics majors in Calculus 1 course in the University of 
Costa Rica, the School of Mathematics decided to introduce the pre-calculus course, in order to 
provide students with the necessary knowledge for studying mathematics at university level. 
However, the high failure rates simply transferred to this new course, and the problem remains 
unsolved. Therefore, in this study, I suggest a different way of approaching the problem, with a 
resource that can be introduced in classes for students to have meaningful learning, by analyzing their 
solution processes when they have to write or explain them.  

These languaging exercises were applied to 28 voluntary participants of non-mathematics major 
taking Calculus 1 course at the University of Costa Rica. There were 17 languaging exercises (see 
Alfaro, 2018, for details) that were used in class or as homework during the study of the derivative. 
The exercises were designed combining different tasks, including: explain with your own words, 
complete missing steps, identify mistakes, argumentation of the solution, organizing solution steps, 
and follow given solutions; combined with the use of the three languages. The purpose of the 
exercises is to promote the different competences of the mathematical proficiency theory, especially 
procedural proficiency, conceptual understanding and adapting reasoning; and to allow students to 
experience the use of different languages to express their thoughts. 

The aim of this paper is to answer the research question: how the students’ understanding of the cases 
where the function is not derivable, can be evidenced by SL, NL and PL. For that purpose, I describe 
one exercise (number 3) which exemplifies the use of the three languages to make different 
representations of a mathematical knowledge. The intention is to provide evidence of the languaging 
exercises as an effective teaching resource for improving students understanding of mathematical 
concepts. For the analysis of students’ solutions, I did a qualitative analysis based on the stablished 
knowledge of derivatives for the Calculus I course, studies about students’ difficulties with 
derivatives (e.g., Asiala et al., 1997) and my teaching experience. 

Description of the exercise 

Exercise three (Figure 1) consists of a table that presents three cases in which a function is not 
derivable. Each case is exemplified with one language: symbolic, natural or pictorial, and the students 
must complete the empty boxes with examples in the missing languages respectively, as shown in 
Figure 1. The use of the three languages allows students to explore different characteristics and 
properties of each case. Case I is described in NL with the phrase “At points where the curve presents 
peaks, since the lateral derivatives would be different.” This statement has several characteristics. 
First, it does not refer to a particular function; therefore, students are not limited to the examples they 
can provide. In addition, it emphasizes the pictorial features by mentioning the graphical form (sharp 
points) of the function where the derivability requirement is violated. Finally, it refers to the 
theoretical aspect that fails (the lateral derivatives are different as shown in Figure 1). 

For the case II, the example is given in SL, and refers to the situation in which the function has a 
vertical tangent line, at a point. This example refers to a specific function. However, the students must 
interpret from the symbolic expression what case it refers. It means that the student has to recall the 
definition of derivability to identify the characteristic that makes the function not derivable. Finally, 
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case III shows a graph of a function that presents a discontinuity in the point x0. As in the previous 
case, the student must identify which case is presented in order to express it in NL. 

The objective of the exercise is to observe if students understand the concepts and rules involved, in 
such a way that they can interpret them from any of the given representations and can express them 
in different ways. 

 
Figure 1: Languaging exercise #3 

In the next section, I will present some excerpts of the students’ solutions, as an evidence of the 
different uses of the languages they made, the different ways in which the students expressed the 
cases in their own words and some errors of interpretation and formality. 

Results and discussion 
Case I: Statement in natural language 

For this case, students have to offer examples in symbolical and pictorial language. In the column of 
SL, they wrote diverse function samples such as absolute value and piecewise functions, with criteria 
of minor and greater complexity (Figure 2). As well, some included general expressions such as 
𝑓𝑓−′(𝑐𝑐) ≠ 𝑓𝑓+′(𝑐𝑐), and calculated the values of the lateral derivatives.  

  
 

 

Figure 2: S9 and S15 examples in SL 

In most cases, students (n=10) did not make explicit in which point of the function the derivative does 
not exist, neither in the SL, nor in the PL. From this situation the questions of whether the students 
are aware of what is important in their example is the specific point where the derivative does not 
exist and what happens in it, can be raised. In the solutions in which it was possible to associate the 
example in SL with PL, one could verify if the student knew in what point the function described was 
not derivable by referencing the drawing. However, in the others, it was not clear. There were 
students’ examples in which the function presented two cases where the derivative does not exist, and 
if they did not mark the point, one cannot know if they understood the case under discussion. 

What are the possible cases in which a function is not derivable? 
Give examples of each of them using the three types of language. 

 Mathematical symbolic: 
numbers, symbols. 

Natural Language: written 
words. 

Pictorial Language: 
drawings, graphs, etc. 

I 
 

At points where the curve 
presents peaks, since the 
lateral derivatives would 

be different. 

 

II 𝑓𝑓(𝑥𝑥) = √𝑥𝑥3 , 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0   

III 
  

 

 

Thematic Working Group 09

Proceedings of CERME11 1593



 

 

It is important to note that all the examples chosen by the students were correct and represented the 
given case, which means that they were able to interpret correctly the sentence in NL. In addition, by 
combining the SL and PL columns, it was possible to evaluate the students' abilities to graph functions 
correctly, pointing out asymptotes and points of intersection, as shown in Figure 3. 

 

 

 

Figure 3: Function with two cases of no derivability (S10) 

Finally, some errors of rigor can be observed when writing in SL, as in example B of Figure 2, where 
the student writes the limit without indicating the function involved. 

Case II: Example of the criteria of a function in SL 

In this case, the most interesting results were presented in the NL column. In the PL column, most of 
the students drew the plot of the given function and a few drew the tangent line. The results in NL, 
however, show that the students were not sure about how to explain this case. Among the expressions, 
there were students (n=11) who could not even identify what was happening, arguing that the function 
was indefinite at that point, was discontinuous, had vertical asymptote or was constant. Nevertheless, 
there were cases (n=8) in which the students seemed unable to express their ideas in a mathematically 
correct way. Examples as such are when referring to a vertical line as the function: “where the 
function is a vertical line” or when associating the derivative with the line instead of the slope: “where 
the derivative is vertical.” 

Within the phrases they used to explain the phenomenon in case two, we can identify different 
connections between concepts that students used to justify their claims. Some made references to the 
calculation of the limit of the derivative at that point and others properly to the relationship between 
the derivative and the slope. Examples can be found in Table 1. Although in these sentences one can 
identify some conceptual errors, such as the idea of a “vertical function”, they show that the students 
had an idea of what was happening in the given case. 

When the tangent of the point is vertical, as in this case, it is considered that the function is not derivable at 
that point. (S3) 

In the points where there are vertical lines, because this has no slope and therefore has no derivative. (S15) 

In the points where the derivative tends to+∞, since this would mean a perpendicular tangent line, which 
does not exist. (S10) 

When solving the limit results in 𝑥𝑥
0
, then it is a vertical function. (S5) 

Table 1: Students’ answers in NL 

Case III: The graphic of a discontinuous function 

The task of the students in this case was to complete the SL and NL columns. In the SL column, 
responses with different characteristics were presented. Some students wrote piecewise functions in 

At points where the 
curve presents peaks, 

since the lateral 
derivatives would be 

different. 
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which, as in case one, they forgot to point out the point of discontinuity. However, in other cases, the 
students, in addition to the criterion of the function and the point where the function was not derivable, 
also added the calculations of the conditions of continuity: lateral limits and the value of image in the 
point (Figure 4A). This was also evidenced in answers as in figure 4B. Nevertheless, in this case they 
used a more general form.  

 

 

 

 

Figure 4: S12 and S4 examples in SL 

Regarding the answers in NL, students were able to express the case of discontinuity recurring to the 
graphical feature of the “jump” or “breaks” (n=2) and others mentioned conceptual aspects as the  
fact that the lateral limits were different or the that limit does not exist at the point (n=9), the  
discontinuity of the function (n=15) and the fact that if a function is not continuous in x = a, then it is 
not derivable in x = a (n=6). Considering the different answers, it is possible to observe that students 
were able to recall different knowledge about continuity and the conditions of derivability to correctly 
explain what happened in the point.  

Final considerations 
As stated at the beginning, when students begin their university studies, they lack mathematical skills 
and knowledge required for university level. I suggest languaging exercises as a methodological tool 
to address those issues and promote students’ meaningful learning. The written languaging exercises 
offer an option for boosting students’ understanding of mathematical concepts and noticing the 
connections between concepts, the rules and properties that justify the procedures and the different 
representations. The use of the three languages reinforces different strands of mathematical 
proficiency, such as conceptual understanding, adaptive reasoning and strategic competence. For 
example, from the results it is possible to conclude that for solving the exercise students must 
understand, identify and verbalize the connections between concepts, as well as represent 
mathematical situations in different situations. These actions are associated with conceptual 
understanding. It is important to highlight that in each case, in order to complete the empty boxes, the 
students had to interpret the given example, and from that point they were already connecting between 
representations. The adaptive reasoning is evidenced in the justifications and explanations that the 
students provide in natural language, and the strategic competence is present since the task presented 
to the students is not common for them, so they must show a flexible approach to solve this novel 
situation. All these actions helped them to experience meaningful learning and think about the 
concepts involved in the exercises instead of solving them mechanically. 

The different languages allow studying different characteristics of the mathematical concepts 
involved. NL evidenced the theoretical knowledge involved and, how the connections between the 
ideas were made. SL showed aspects related to the correct use of the symbols and specificities in 
relation to the examples, as in the mention of the point where the derivability was violated. In PL, all 

A) B) 
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the features were combined and represented. In addition, the use of different languages makes it 
possible to observe the gaps in knowledge, misconceptions or difficulties the students have. As 
evidenced in case 2, where most of the students could make the graph from the interpretation of the 
symbolic expression, but they faced problems when trying to explain the situation in NL, for which 
deeper knowledge of the subject was required. 

This experience shows the potential of the use of different languages to improve the mathematical 
learning of the non-mathematics major students and to promote their competences to become 
mathematically proficient. However, more studies are required to explore various ways to integrate 
different languages in mathematics learning at the university level. 
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In this paper, some students’ difficulties, related to learning mathematics in a second language 
(French) when entering university, in Algeria, are examined. I present these difficulties as part of 
other difficulties caused by the transition from high school to university. The analysis of students’ 
interviews, using Cummins’ theoretical framework, revealed that low mastery of French as natural 
language and low mastery of Arabic as academic language impeded several students from performing 
well in mathematics and expressing them in French academic language. 

Keywords: French as second language, learning mathematics, students’ difficulties. 

Introduction 
While mathematics is often seen as language free, in many ways learning mathematics fundamentally 
depends on language (Barwell, 2008; Planas, 2014). The relationship between language and 
mathematics has been considered within a range of perspectives: political perspective, social and 
cultural perspectives, epistemological perspective and cognitive perspective. Learning mathematics 
in a second language at different school levels has also been a subject of many investigations. 

On the other hand, Ní Ríordáin and O’Donoghue (2007) expose two opposite positions about learning 
mathematics in a second language with many references; studies which argue about positive aspects 
and satisfying achievement (immersion programs) and studies which argue about the 
underachievement of pupils (submersion programs). Research about teaching and learning 
mathematics in a second or a third language is very popular at many school levels, but little research 
has investigated this issue at the undergraduate level so far. 

The present study has been motivated by a PhD research about undergraduates’ difficulties with proof 
and proving in Algerian universities. The findings indicated that the weak mastery of French as a 
second language for learning mathematics was one of the reasons for third year university student’ 
difficulties with writing a proof text. Even though I acknowledge that low students’ proficiency in 
languages is associated with underachievement in mathematics (Cummins, 2000), I tried to 
understand better how this really works. In this paper, I studied this relationship particularly with 
students at the beginning of the university, where they learn mathematics completely in French for 
the first time. I focused on the mathematical difficulties that are originated in the relationships 
between French language, dialect and Arabic considered as tools to approach, develop and report 
mathematical thinking; I also investigated students’ behaviours when they make mathematics in 
French and their related opinions. 

Linguistic overview of Algeria 
Algerian population communicate in different languages, according to different regions, ethnic 
groups, institutions and circumstances. The most spread languages are Classical Arabic, Dialect, 
Berber language and French (first foreign language). Classical Arabic is shared by Arabic countries. 
The Dialect is the common language; it is the most used spoken language in daily life in Algeria; it’s 
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a mixture of classical Arabic, French and other languages (Spanish, Turkish, Italian…). In Algeria, 
people speak in their families either Berber language (indigenous language) or dialect, which is the 
same in all the country with slight differences in some words and accents. The language of instruction 
in schools is classical Arabic, so children learn from primary school on in a different language. Only 
Arabic language is used for writing, but for the oral, the situation has declined; around thirty years 
ago, Arabic language was used also for the oral, but dialect has been used more and more. Actually, 
it’s rare for teachers and students to speak only Arabic in the school. French is the first foreign 
language in Algeria, it is taught from grade 3 to grade 12. With the exception of French language, all 
courses in all school levels are taught in classical Arabic. Teaching French has been affected during 
the dark decade of the civil war (1990-2000) by the lack of teachers in many regions; consequently, 
many students have not had French courses for many years. On the other hand, the technological 
development and the increasing use of English for computers, cell phones and social media have 
pushed students to be distant from French. At the end of high school level it is quite rare to find 
students who master correctly the speaking and the writing of this language, in spite of ten years of 
learning French. 

Languages of teaching mathematics in Algeria 

The teaching of mathematics in Algeria has shifted from French to classical Arabic (oral, writing and 
mathematical symbols) for the three school levels (primary, middle and secondary school) since the 
70’s. Teaching mathematics in classical Arabic (including Arabic symbolism) has lasted more than 
thirty years, till the beginning of the 21st century, when it shifted again. In 2005, there was a big 
change in teaching mathematics: in school formulas and symbols are written from left to right with 
Latin alphabet (that stands for French), while comments, terminology and verbal expressions are 
maintained in classical Arabic (from right to left). This is an example to see how to read and write in 
both senses: the area of the square ABCD is equal to 20 m2 (arrows show the direction to read). 

 m 220تساوي  ABCDمساحة المربع

 

This reform has been undertaken to make the transition to university mathematics (taught in French) 
less difficult. However, this situation has resulted in a mess and caused some difficulties for students 
at different school levels. The language of higher education, in Algeria, has always been French for 
scientific and technical disciplines (medicine, mathematics, architecture, computer science, 
engineering sciences, etc.) with French textbooks; while the other disciplines (history, Arabic 
literature, humanities, psychology, etc.) are taught in Arabic. 

Literature review 
The interest is in investigating undergraduates’ difficulties when they learn mathematics in a second 
language. Durand-Guerrier et al. (2016) pointed out delicate points related to language, which might 
present difficulties for students. In particular, same words in two languages have different 
mathematical meanings when we translate from a language to another (decimal in English and 
decimal in French); and even mathematical notations that “contain a lot of information, so that being 
able to decode or unpack such information is an important part of mathematical proficiency” (Durand-
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Guerrier et al., 2016, p. 87), like gcd (greater common divisor). The difficulty of interpreting formal 
statements in their native language that undergraduate face might be worsened when learning in a 
second language. Students might have problems when they learn new mathematical words they 
already know in the natural language (like group or distance) “learning the new vocabulary that is 
centrally mathematical may be easier than learning the technical meanings for words that students 
already know in other contexts” (Schleppegrell, 2007, p. 142). Students should be encouraged to 
express mathematics using a language, otherwise, their learning would be sterile, “at college level, 
there are few opportunities to put into practice long term activities aimed at improving linguistic 
skills. Requiring high degrees of correctness to students with a poor linguistic background just means 
inducing them to learn by heart or to use stereotyped expressions with no understanding” (Ferrari, 
2004, p. 389). When students do not master the second language they fail to understand their teachers 
communication (spoken and written), mostly the part that is expressed in a highly academic language; 
“the language of textbooks and instruction frequently calls for a high degree of familiarity with words, 
grammatical patterns, and styles of presentation and arguments that are wholly alien to ordinary 
informal talk (Fillmore, 1982, p. 6)” (Cuevas, 1984, p. 135); what Cummins (1980, p. 43) has 
identified as the difference between basic interpersonal communicative skills (BICS) and cognitive 
academic language proficiency (CALP) as “the manipulation of language related to literacy skills in 
academic situations” Another major issue is the assessment of mathematics achievement of students 
when made in the second language, many researchers argue that one principal reason for 
inappropriateness of tests is the use of language that students do not understand (Cuevas, 1984). 

Method 
Theoretical framework  

Given that this research concerns difficulties of undergraduates when learning in a second language, 
it is important to examine how do students shift from Arabic to French and how do they behave with 
their teachers talking, and with their written courses. I will use, for the analysis, Cummins’ theory. 
Cummins distinguishes between conversational and academic languages, as being respectively basic 
interpersonal communicative skills (BICS) and cognitive academic language proficiency (CALP). 
The latter is defined as “the extent to which an individual has access to and command of the oral and 
written academic registers of schooling” (Cummins, 2000, p. 67), in other words, it is the ability to 
think in and use a language as a tool for learning, by using abstractions in a sophisticated manner. 
What is important to note here is that, while second language learners may pick up oral proficiency 
(BICS) in their new language in as little as two years, it may take up to seven years to acquire the 
decontextualized language skills (CALP) necessary to function successfully in a second language 
classroom (Cummins, 1979). Later, Cummins expanded these concepts to include two different types 
of communication, depending on the context in which it is involved: context-embedded 
communication and context reduced communication; both concern conversational fluency and 
academic language proficiency. Context-embedded communication provides supports to the listener 
or the reader (as gestures, images or basic math computations) in order to make the information 
comprehensible. Context-reduced communication provides less support to understanding (as a phone 
conversation or lecture with few illustrations). Moreover, Cummins makes the difference between 
cognitively demanding and cognitively undemanding communications. And considers that BICS (in 
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both contexts) are cognitively undemanding, while both contexts of CALP are cognitively 
demanding, as shown in his model, illustrated in Figure 1. 

 
Figure 1: BICS and CALP (Cummins, 2000) 

This theory is furthered by his Interdependence Hypothesis, which proposes that the greater the level 
of academic language proficiency developed in the first language, the stronger the transfer of skills 
across to the second language (Cummins, 2000). I suppose that, for many students, BICS in French 
language are poor, which would effect the development of their CALP, and the few students who 
could have developed BICS in French, need much more time to develop their CALP. Moreover, I 
hypothesize that students did not develop university mathematics in an academic Arabic language in 
high school because school mathematics are reduced to algorithms and management of formulas that 
do not require such a level of academic language proficiency. Consequently, students are faced with 
the difficulty of going from context-embedded tasks (B quadrant, Figure 1) to context-reduced tasks 
(D quadrant), which is the most difficult for students. 

Formulation of research questions 

I would like to answer the principal research question: How undergraduates’ difficulties with 
mathematics are related to learning in French as a second language? 

According to literature and my PhD work, I made two research sub-questions, each question related 
to specific difficulties, about how students deal with the teaching and learning of mathematics in 
French during the first university year, taking into consideration Cummins’ theory. Being inspired by 
the research cited before and observing students and interacting with them as a teacher made us aware 
of some facts that stand for first hypotheses.  

1. Students confuse some French words as they have close pronunciation in French, for example:  
‘ou’, ‘où’ and ‘d’où’ (same pronunciation) which are ‘or’, ‘where’ and ‘hence or thus’. Example: x=1 
ou x=0, où x≠0, d’où x=1, this might mean ‘x=0’ for a student who considers all of them as the same 
as ‘ou (or)’, (because ‘P or Q’ is true if either P or Q is true). Students miss the meaning of the 
uniqueness when we use ‘le’ or ‘la’ (as ‘the’) with the use of ‘un’ or ‘une’ (the article ‘a’) – a difficulty 
which might not depend on mastery of French only. When we talk about bases in vector spaces, we 
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say B is ‘une’ base and ‘la’ dimension because we can have more than one base for a vector space 
but only one dimension. This meaning packed in these articles is not clear for students.  

RQ1. Why do students not perform well in French as an academic language? Is it only about 
second-language performance? 

H1. I suppose that their weak BICS is a major reason for their problems in CALP. But also their 
CALP in Arabic has not been developed, which prevents them to make the transfer to French 
CALP.  

2. Most of the time, students are not able to read parts of their course notes, written by them, because 
they might not know what is the meaning of what they wrote or even to spell exactly what they wrote 
(written sometimes wrong). In general, I perceive students’ big difficulties when I observe their 
behaviours when dealing with CALP with context reduced tasks (and communication). Taking into 
consideration that teachers write in French, explain in French and in Arabic (both classical and 
dialect), while students write in French – but several of French words are unknown to them.    

RQ2. Why do students meet difficulties in managing their mathematics activities (reading, 
memorizing and revising their notes from lectures and exercises’ sessions)?  

H2. I suppose that even if teachers would simplify their explanation in Arabic (or dialect), 
students face the difficulty of shifting between three languages when copying, revising the 
courses and writing their own responses in French.  

Interviews and students’ responses 

In order to confirm my hypotheses and find out more about the difficulties of students when they 
learn mathematics in a second language, I designed semi-structured interviews for first university 
year (18-19 year old) students in the University of Medea (Algeria). The statistics show that more 
than half of the students (first year) fail, but only one third repeat the year. Eighteen students were 
chosen (half of them are male) within the discipline of mathematics and computer science. This 
discipline has two main courses, at the first year, algebra and analysis, where students manifest many 
difficulties. I included two students with very few difficulties and good marks, ten students with some 
difficulties and average marks, and six students who are remaking the first year (had many difficulties 
and low marks last year: RPT student). Interviews have been audio-recorded in May 2018. I have 
categorized the questions according to the two stated hypotheses as follows:  

Q1. If teachers write and speak only in French, would it be better? H1. 

R1. 18 students said ‘no’. In the first year, some student are bad in French language, that’s why 
they give up when teachers speak and write only in French’; ‘no, it depends on the level of 
students in French language but for me, this method did not help me’ (4 RPT students).  

Q.2. If teachers translate orally into Arabic (classical and dialect), would it be better? H1 

R2. 18 students said, yes. ‘We could at least follow what teachers is dealing with, otherwise, we 
are lost’; ‘if the teacher explains in Arabic, yes it would help us, because we memorize the words 
better’ (a RPT student). 
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Q3. When you make mathematics in French, do you translate to Arabic or do you try to 
understand in French language? H2 

R3. 17 students said they always translate in Arabic then try to understand. ‘I always translate to 
be able to understand in Arabic language’ (a RPT student).  

Q4. How do students copy their courses in French? What if some words are not clear? H2 

R4. 14 students said, they write everything even if they do not understand. ‘we should copy, in 
case a word is not clear we copy it as it is’. Students say they should copy any unclear words 
because they are part of the course: ‘If the teacher wrote them, they are part of the course and 
must be important, so we copy them as they are, even if we have to draw them’. ‘Students do not 
ask questions about the unclear words, because they do not understand them and because they 
cannot speak French very well.’ One student said that he writes just what he needs (a good 
student), two students said, they write and try to understand, one student said ‘when I write I try 
to understand what I am writing, and if I can’t understand I ask the teacher to help, because if I 
try to translate maybe it’s not the same meaning as the teacher’s’ (a good student).  

Q5. What happens when a student writes the solution, in French, on the exam-sheet? H1, H2 

R5. All the 18 students declared to have difficulties with the use of words when they write their 
solution on the exam paper. Four students said, they wrote in classical Arabic if they could not 
write in French language. ‘I am not good at French language so, if I can’t write a solution in 
French I write in classical Arabic’ (a good student); ‘Naturally, I translate the question in Arabic 
in order to get the solution but often when I try to shift into French language it is difficult’ (a 
RPT student); ‘If I write something wrong the teacher would not understand it’; ‘I had always 
difficulties in writing the solution, this is why I’m always scared’ (a RPT student). 

Q6. In which language do you think when you solve an exercise? H1, H2 

R6. All students said, they think in Arabic language first, then they write their solution in French 
language. ‘I think in Arabic to understand the question then I write in French language’ (a RPT 
student). 

Q7. There is almost no student speaking good French and understanding perfectly French, but 
how did students who succeeded do, according to you? H1 

R7. 10 students responded that students, who cannot speak French and succeeded, rely on 
memorization (3 RPT students). Among the responses ‘I think those students learn with 
memorizing’. 8 students said that students rely on mathematics formulas without using words, 
‘maybe they are good in mathematics and so they don’t need language, they would use only 
symbols’. 

Results of the analysis of the interviews 
All students do not accept that teachers speak only in French, they need teachers speaking in Arabic 
to better understanding, according to responses to Q1 and Q2. Students who failed last year declared 
that they are lost if they hear explanations only in French; according to them, Arabic would help them 
also to memorize the words they need often in mathematics (as mathematical terms or as verbs and 
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words that are used regularly). Responses to Q3 and Q5 show that almost all students translate into 
Arabic language to understand mathematics (the exception was for one good student). In lack of 
developed CALP in Arabic language, translating in Arabic is not of much help too. In fact many 
confusions, and misunderstandings can occur. This validates H1 about weak mastery of natural 
language that affects logical aspects of mathematics. 

Answers to questions Q4, Q5, and Q6 show that students have difficulties with the writing, most of 
them copy down what teachers wrote on the blackboard as it is, even without deciphering the letters. 
Because students believe that it is their job and cannot ask questions about unclear words (literally or 
semantically) as their understanding is very limited and also, because of their weak mastery of French 
language (to make a clear question). This impedes them to revise their course notes at home. The 
difficulty of writing is showed more during the exams, when students have to translate from Arabic 
(used to think), to French (used to write). Most students have doubts about their written texts to be 
not understood by the teacher when correcting them; consequently, they feel powerless and 
unconfident. These responses show the big difficulty when they deal with tasks involving context-
reduced communication with a high cognitive level, as expected in H2. Responses to Q7 reveal two 
criteria that were mentioned by students: memorization and focusing on symbols and formulas. 
Students’ conception of mathematics from their long school experience dictates them the fact that 
language is not so important. They believe that formulas or symbolic expressions are more important 
and so, language has a secondary role. In doing so, their BICS do not improve and so will be their 
CALP. This sustains H2. 

Conclusion 
Students depend completely on translation, they expect teachers to talk in Arabic, explain in Arabic 
and translate all the words given in French. They also think in Arabic, translate in Arabic and then 
try to translate again to French for the writing. This fact shows that students’ BICS in French is weak 
and will persist to be so. This fact persists longer as sustained by students’ beliefs about language as 
being not so important in learning mathematics that are reduced to formulas and calculations. I also 
think that this belief is strengthened by the way they learnt mathematics before (formulas in French 
and verbal expressions in Arabic). They repeat the same experience: as mathematics in high school 
focus mainly on calculation, the role of Arabic language is minimal, consequently, students behave 
similarly with university mathematics whose formulas are clear for them (as they are written as 
before), and verbal language (in French) might not be important, as before. Thus, students would 
ignore verbal expressions and focus only on mathematical formulas; consequently, they might 
memorize a chain of formulas as a procedure for solving some exercises as they are used to do in high 
school. This is caused, according to me, by two important factors; the first one is due to their 
mathematical conception from school; that presents to students mostly exercises that are solved by a 
chain of formulas based on calculation rules. The second factor is the loss of the logical structure in 
mathematical statements and the lack of knowledge about the process of solving problems. This 
suggests the validity of H1. If students manage what teachers say orally in Arabic, when it comes to 
writing, students are in front of a difficult process. When they copy down from the board, they might 
lose the ideas they got before (in the listening process) because the words (in French) are meaningless 
for them, that is why they copy them incorrectly or just transcript them as they are presented. Under 
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the didactic contract, students think that they have to copy down what teachers write in the boards, 
even if it means nothing for them. Moreover, they hesitate and do not ask questions because their 
French is so weak. The problem of writing rises again, when students have to write by their own, the 
solution of the tasks of the exams. Students face serious difficulties with CALP with reduced context 
tasks. This validates H2. 
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Language is a major factor in learning mathematics. Language learners or those with a low 
socioeconomic status have special difficulty solving mathematical tasks with high language 
demands. The project evaluates linguistic task difficulties in mathematics. This paper discusses 
the first step of the project: empirical evaluation of textual configurations and analysis of the 
lexical and grammatical structures of a corpus of 348 tasks. An explorative factor analysis is 
used to analyze the configuration of 17 linguistic variables. The analysis revealed a reduction 
of the variables to five factors, which are interpreted as different textual configurations of 
mathematical tasks based on their obligatory allocation of typical situational use. The structure 
offers potential for an empirical model to evaluate the difficulties. 

Keywords: Language, language variation, mathematics education. 

Introduction 
Language is omnipresent in human life; it helps us to create a cultural base for human 
interaction. Language enables a direct interaction to make meaning between people. To define 
what language is and what potential relevance language has to learn math, this paper introduces 
the systemic functional linguistic (SFL) theory. The important theoretical terms to describe 
language for the analysis are the instantiation and realization of language. Furthermore, the 
notions of register and the contextual configuration are presented in the theoretical part of this 
paper. Registers and contextual configurations are only considered in terms of the objectives of 
the empirical results in this paper. Afterwards, the research questions of the project “Language 
Difficulties in Mathematical Tasks” (LIMiT) are presented, followed by the empirical method 
and the results of the factor analysis. Finally, a prospectus is made of the next goals of the 
project LIMiT.  

Theoretical framework 
The framework conditions for successful pedagogical processes are constantly changing, and 
the importance of language is becoming more relevant for mathematics classrooms. In addition 
to the content specific requirements of mathematical tasks, language requirements are a factor 
that determines the complexity of mathematical tasks (Abedi & Lord, 2001). To solve tasks 
with content related subject, on the one hand students need to have contextual knowledge, 
which are essential to solve the problem which are presented in the tasks. On the other hand, 
the grammatical and lexical textual basis of mathematical tasks are important factors of 
difficulties for understanding (Abedi & Lord, 2001). In particular, language learners and 
learners with a low socioeconomic status show special difficulty in mastering mathematical 
tasks (Abedi, Hofstetter, & Baker, 2001; Haag & Heppt, 2015; Martiniello, 2008). The 
academic language and mathematical language are theoretical constructs to explain the 
language requirements in mathematics tasks (Maier & Schweiger, 1999; Morek & Heller, 2012; 
Prediger, Wilhelm, Büchter, Gürsoy, & Benholz, 2015). On the perspective of academic and 
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mathematical language as register, the difficulties can be explained by the variation of language. 
Register tend to vary, especially in lexical and grammatical features (Morek & Heller, 2012).  

Language in mathematics classrooms  

With the focus on language variation, a possible theoretical approach to explain the relevance 
of language in mathematics classrooms is the SFL theory (Halliday, 2014; Halliday & Hasan, 
1989). The SFL theory describes, theorizes and analyzes language through the meaning of the 
environment (Halliday, 2014). Language is considered in a systemic functional approach as a 
resource for making meaning. To develop meaning, humans use different kinds of semiotic 
systems which are useful or functional in a specific context (Eggins, 2004). 

Instantiation of language 

According to Halliday (2014, p. 28) language is described through a “cline of instantiation”, 
with two different poles, one potential pole and one instance pole. On the instance pole, a 
specific textual instance is embedded in the context of a situation. The context of a situation is 
characterized after Halliday (2014) with three variables called field, mode and tenor. According 
to Eggins (2004, p. 90), field refers “what the language is being used to talk about”, mode 
describes the way language functions in interaction and tenor focuses on the relationship of 
interactants involved in the discourse which are a short description of the three variables. The 
potential of a particular language is described by the contextual conditions within a culture 
(Halliday, 2014). Halliday (2014, p. 33) defines this contextual potential of a community as the 
“context of culture”. The context of culture describes what members of a community may mean 
by cultural terms. Culture is described as a system of higher importance, as an environment of 
meanings in which different semiotic systems function. This describes a “multi-dimensional 
semiotic space” (Halliday, 2014, p. 34) that we also find in mathematics classrooms. The 
perspective for exploring culture is the reduction to specific cultural domains, such as analyzing 
different contexts of situations within an institution. The isolation of culture relative to the 
institution allows the linguistic analysis of language used within the institution.  

The concept of register  

It is clear that situations vary depending on the location, time and participants. It is not quite so 
clear that at the same time, language varies corresponding to various situations. The notion of 
a register describes the variation in language in relation to the context of situation (Eggins, 
2004). One viewpoint to define registers, especially for a quantitative purpose is that registers 
are systemic probabilities of the use of language in specific situations or a set of possibilities 
for the entry in a situation (Halliday, 2014; Halliday & Hasan, 1989). For example, symbolic 
notation will occur more frequently in mathematical texts than in stories, and the graphic proof 
of the Pythagorean theorem will occur more frequently or even exclusively in mathematical 
texts compared to geography textbooks. According to Morek and Heller (2012) as mentioned 
above, registers vary according to usage and tend to vary within semantics, especially in 
grammar and vocabulary. This leads us to Table 1, which shows a possible categorization for 
the variation of language in typical situations (Eggins, 2004). Furthermore, the three variables 
field, tenor and mode constitute the language used in a situation. Because of the changing 
situation, these three variables are also called register variables (Eggins, 2004). The value of 
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each register variable defines the language used in a text. Eggins (2004) combined the three 
variables with typical situations of use which enables a lexical and grammatical fixation of the 
systemic probability of specific lexical features. 

Register 
variables 

Field Mode Tenor 

Typical 
situations of 
language use 

Everyday 
situation 

Technical 
situation 

Spoken 
language 

Written 
language 

Informal Formal 

Selection of 
characteristic 

features 

everyday 
terms (words 
we all 
understand), 
standard 
syntax 

technical 
terms 
(words only 
‘insiders’ 
understand), 
acronyms, 
abbreviated 
syntax 

everyday 
lexis, 
content-
dependent, 
low lexical 
density, 
open-
ended, non-
standard 
grammar 

prestige lexis, 
context 
independent, 
high lexical 
density, 
closed, 
standard 
grammar 

attitudinal 
lexis, 
colloquial 
lexis, 
typical 
mood 
choices 

neutral lexis, 
formal lexis, 
incongruent 
mood 
choices 

Table 1: Summary of register variables and characteristic features (Eggins, 2004) 

Contextual configuration 

Within cultural practice, similar linguistic structures or obligatory linguistic features are used 
among other things for pragmatic reasons. Halliday and Hasan (1989) describes these structures 
as contextual configurations which are recurring in similar situations. Similar situations, framed 
by a context of culture or an institutional basis, lead to the realization of specific values for 
field, tenor and mode, which can be described as a contextual configuration. The contextual 
configurations do not imply a concrete situation, but a type of related situations. As such, the 
contextual configuration instantiates through a multiplicity of instances of related types which 
can be classified by specific values for a particular purpose. Applied to mathematical learning 
processes, this means that the contextual configuration of specific, similar situations is 
characterized by the inclusion of recurring elements or structures. Thus, the introduction to a 
mathematical problem differs from the solving of the task and each sequence has a set of 
possibilities for the realization of the register variables. 

Theoretical model and research question of LIMiT 
For mathematical tasks, as a standard mathematical classroom situation, the same conclusions 
apply to contextual configurations. A mathematical task is contextualized with a textual 
structure which forms the textual basis of a mathematical task. In addition to the textual 
structures, there are additional activities that determine the contextual configurations in the 
process of solving a task, including receptive processes such as extracting information and 
productive processes such as creating a solution. However, the textual basis of mathematical 
tasks forms the initial structure of mathematical problems which can be interpreted as 
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particularly crucial for the further processes of problem solving. The starting point of the study 
is the analysis of textual configurations of mathematical tasks and the interpretation of the 
specific values for field, mode and tenor, based on a selection of grammatical and lexical 
features as seen in Figure 1. The model lies in terms of the cline of instantiation between the 
system pole and the instance pole. Considering the fact that registers vary in lexical and 
grammatical structures in particular, and this variation may present difficulties for learners, 
textual structures should be analyzed in the project. This model is preliminary in the way that 
it serves to illustrate the empirical analysis. For the project, a further extension of this model 
based on the metafunctions ideational, interpersonal and textual function. The textual 
configurations will be analyzed, and the following questions emerge: Which textual 
configurations can be extracted from mathematical tasks? How can the extracted structures be 
interpreted? 

 

 

 

 

 

 

 

 
 
 
 

Method 
The empirical analysis was based on 348 tasks from nine different secondary-school textbooks 
for mathematics classrooms. The textbooks are designed for students aged between 10 and 16 
years. For each task, 17 different lexical and grammatical features were determined. A part of 
the lexical and grammatical features was quantified by expert ratings, such as mathematical 
terms, other parts of the data was quantified using corpus analysis, such as determining the 
frequency of words in a comparable corpus to determine the rarely used words (Michalke, 
Brown, Mirisola, Brulet, & Hauser, 2017). The selection of the lexical and grammatical features 
was made because of their relevance in the literature. The findings on difficulty-generating 
traits indicate that there are particular difficulties, especially in vocabulary, the presence of 
compressed structures but also in relational connections (Caplan & Waters, 1999; Kintsch, 
2007; Leisen, 2013; Maier & Schweiger, 1999; Ozuru, Rowe, O'Reilly, & McNamara, 2008). 
Table 2 shows the chosen association between lexical and grammatical features and the typical 
situations of language use. Compared to Table 1 some changes were made. Thus, the category 
relator was added in mode, which can be regarded as essential for math problems, and 

Figure 1: Theoretical model of LIMiT 

Thematic Working Group 09

Proceedings of CERME11 1609



 

 

furthermore, the everyday situations were excluded from consideration for the empirical 
analysis, since there is no clear evidence regarding difficulty-generating traits.  

Register 
variables 

Field Mode Tenor 

Typical 
situations of 

language 
use 

mathematical 
situations 

spoken 
language 

written 
language 

relator informal formal 

Lexical & 
grammatica

l features 

mathematical 
terms, 
mathematical 
symbols, 
discontinuous 
text, numbers 

compound
s, lexical 
density, 
synonyms, 
passive 
voice 

filler 
words, 
present 
perfect 

prepositions, 

conjunctions 

modal 
verbs 

nominalization, 
propositional 
density, rarely used 
words, impersonal 
language 

Table 2: Selection and arrangement of lexical features 

Results 

The suitability of the correlation matrix for the use in a factor analysis was checked with the 
Bartlett test of sphericity, the test criteria have been met (χ2 = 454.31, p <0.001). The KMO test 
for checking the adequacy of the data indicates only a moderate fit (overall MSA = 0.67). The 
moderate result can be explained by the fact that in the case of lexical and grammatical 
variables, a low share of common variance can be assumed. Accordingly, the present MSA may 
be considered sufficient for the adequacy of the data. Overall, a potential five-factor solution, 
can achieve a variance explanation of 45%, with a reduction of totally 70.6 % of the variables. 
The scree plot in Figure 2 shows the possible number of factors. To select the number of factors, 
the parallel analysis, shown in Figure 2, was used. According to the parallel analysis, a choice 
of 5 factors is sufficient. 

 

 

 

 

 

 

 

 

Figure 3 and 4 presents the five-factor solution in different versions. Figure 3 shows the 
loadings of the variables for each factor. This figure illustrates the specific characteristics 
variation of the variable for each factor. To illustrate which are the central variables with high 

Figure 2: Scree plot to determine the factor solutions 
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loadings, the simplified factor diagram in Figure 4 is used. The figures illustrate that factor 5 
and factor 3 have a simple structure, which means that on these factors only single variables 
have high loadings. For factor 5, the variable mathematical symbols has the highest loading. In 
addition to mathematical symbols, the variable mathematical terms have also a characteristic 
loading on factor 5. Small loadings on factor 5 also show prepositions, numbers, and lexical 
density. The second factor with a simple structure is factor 4. Particularly relevant variables for 
this factor are the lexical density, rarely used words with a high negative loading numbers. 

 
            Figure 3: Factor loading diagram                    Figure 4: Simplified factor diagram 

The remaining three factors have more complex structures. At factor 3, the three variable 
synonyms, modal verbs and perfect are the variables with the highest loadings. In addition to 
the three factors, mentioned in the simplified factor diagram, lexical density, and numbers are 
variables with characteristic loadings. Furthermore, as can be seen in Figure 3, mathematical 
terms, and discontinuous text have relevant high negative loadings. For Factor 2, the variables 
compounds, passive constructions, lexical density and discontinuous text loading high on this 
factor. Other loadings with characteristic loadings are propositional density, nominalization, 
and modal verbs. The results of Factor 1 show high loadings of seven variables. On this factor, 
conjunctions, prepositions, impersonal language, nominalization, numbers, mathematical 
terms and filler words are loading high. 

Interpretation 

To interpret the results of an exploratory factor analysis, simple structures are the easiest way 
to choose appropriate names. However, in the present results of the explorative factor analysis, 
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three out of two factors do not show a simple structure, and the designation of the factors may 
be problematic. To simplify the problem, Table 3 is used to assign the different variables to the 
typical situations of language use. To name the factors, the variables with the highest loadings 
are considered and to which situation of the language use they can be assigned to. 

The factor 5 is referred to mathematical textual configurations due to the high loadings of 
variables from typical mathematical situations of language usage. The variables from typical 
formal language situations load high on factor 4. This results in the naming formal textual 
configuration for factor 4. The term informal written textual configuration for factor 3 derives 
from the association of high loading variables from informal and written situations of language 
use. For factor 2, situations of written and mathematical use are central. However, it should be 
noted that the assignment applies only to discontinuous text. Accordingly, the term written 
discontinuous textual configuration for factor 2 is chosen. As expected, Factor 1 has the greatest 
variety of characteristic situation of language use. Here are relational, mathematical and formal 
situations of language use characteristic elements. Hence the term formal relational 
mathematical textual configuration was chosen. 

In summary, there are five textual configurations due to the loadings and the variations of the 
variables on the different factors: mathematical TC, formal TC, informal written TC, written 
discontinuous TC, and formal relational mathematical TC. 

Outlook 
The naming of the factors shown above are qualitatively further specified in the present project 
in more details by individual instances. This means that regression scores are calculated for the 
individual variables and extreme cases are used to allow a further qualitative specification of 
the factor names. However, this specification is not possible at this point due to the focus of the 
paper. Rather, this paper should show that lexical and grammatical variables can be reduced to 
factors on which each variable varies. 

In summary, the SFL-theory shows potential to analyze linguistic difficulties of learners in 
mathematical classroom. With SFL theory, the patterns of variation in the empirical study can 
be explained theoretically and thus, it is possible to present relevant implications for teachers. 
Moreover, the analysis of language on an SFL-perspective is content specific and therefore, 
more concrete for mathematics classes and provides pedagogical accessibility. The factor 
analysis, as an empirical method, is useful to identify textual configurations, but also contextual 
configuration in general of mathematical tasks. As shown above five factors can be identified, 
which provides an approach, on the one hand, to evaluate the difficulties. On the other hand, 
on this basis, a model for language proficiency in mathematical classrooms can be developed 
and implications for the practice of teachers can be made. The analysis provides an approach 
to determine the difficulty for each factor. The next steps of the project LIMiT are the theory-
based interpretation and designation of the five textual configurations of the mathematical task. 
This is to be followed by the use of a further empirical method to evaluate the difficulties. Based 
on the results, a conception of an empirical model of task difficulties in mathematics and the 
construction of a pedagogical model for language proficiency in mathematics classrooms will 
be carried out. 
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Relations between school achievement and language abilities in 
mathematics classrooms 

Aurélie Chesnais 

University of Montpellier, France; aurelie.chesnais@umontpellier.fr 

My research aims at studying how school achievement is related to social background in mathematics 
classrooms. I am comparing two sessions held in two contrasted schools, by the same teacher on the 
same subject. The analyses show that the fact that some elements related to the language of 
mathematics are “transparent” to the teacher might explain the differentiation in students’ 
achievement. The discussion will show how this research, conducted in a French context, meets 
preoccupations of the international community of researchers, in particular about the 
characterization of mathematical language and the question of multilingualism.  

Keywords: Teaching practices, learning inequalities, multilingualism. 

Introduction 
My research focuses on the social dimension of language in order to investigate how learning 
inequalities are produced inside mathematics classrooms. This meets some preoccupations of 
CERME researchers, but with a point of view built in the French didactic research context. Building 
on the seminal work of Bourdieu and Passeron in the sixties that drew attention to the correlation 
between school achievement and sociocultural background, sociologists in France assume a 
“relational hypothesis”, stating that “the production of learning inequalities results from a 
confrontation between the socio language and the socio cognitive dispositions of the students on the 
one hand, and the obscurity and the implicit character of school requisites on the other hand” (Bautier 
& Goigoux, 2004). This implicit character results from the fact that these requisites are “transparent” 
to teachers which renders them “invisible” to students (Rochex & Crinon, 2011). This implicitness, 
which is nevertheless a condition of learning (Erath & Prediger, 2015; Planas, Morgan, & Schütte, 
2018) sometimes creates ‘misunderstandings’ (Rochex & Crinon, 2011) for students who don’t have 
the ‘keys’ to decode it.  

Moreover, sociolinguists like Bernstein, or Lahire and Bautier in France established that among these 
requisites, the ones concerning linguistic competencies play a fundamental role in the production of 
learning inequalities. This concerns not only linguistic competencies, but also competencies related 
to uses of language (Bautier, 1995; Planas et al., 2018): in everyday life, language is mostly used to 
support action in a given situation, whereas in learning activities, language is used to reflect on the 
world, speculate on it and categorize it using concepts. Students are more or less familiar with these 
latter forms, according to their sociocultural background.  

An open question that interests researchers in mathematics education is trying to understand how the 
learning and teaching process within the classroom produces these learning inequalities, when 
specific knowledge is at stake (here, mathematics). Investigating this question supposes to identify, 
among the features of the language of mathematics and mathematics education (Pimm, 2004), 
linguistic competencies that might be unequally mastered by students, and the way they interfere in 
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the teaching and learning process in classrooms. The issue here is also to be able to consider 
alternatives especially to provide resources to support new teaching practices, in order to contribute 
to reducing learning inequalities by fostering every student’s learning.  

In this study, I considered the way language issues are handled in mathematics classrooms and the 
potential effects on learning outcomes in relation to students’ sociocultural background. In this paper, 
I compare lessons held in two contrasted schools, one of which was situated in a ‘disadvantaged’ 
area, while the other school was not. The lessons were given by the same teacher on the same 
mathematics topic. Our analyses of the lessons aim at pointing out how differences in what occurs 
might induce differentiated learning for the students in the two classes; in particular, I try to 
understand the role played by linguistic competencies in these differences.  

After presenting the theoretical framework and my methodology, I am presenting the preliminary 
analysis of the knowledge at hand, and of the tasks students are working on, during the observed 
sessions. I shall particularly stress linguistic issues. In the third part, I will present the results of the 
analyses.  

Theoretical framework and methodological implications 
My theoretical framework is based on Activity theory adapted to mathematics teaching and learning 
in a school context (Robert & Rogalski, 2005; Vandebrouck, 2013). The main hypothesis is that 
learning results from students’ activity which results (mainly) from the tasks the teacher chooses for 
students and the way s/he implements them in the class. Learning is defined as conceptualising. 
Conceptualization (as a product) of a specific piece of knowledge is characterized by three aspects, 
namely: the ‘availability’ of the knowledge to solve tasks in which it is relevant, its integration in the 
network of prior knowledge, and the use of associated ‘signs’ (in particular linguistic ones). 
Conceptualisation results from opportunities to use this piece of knowledge in various tasks, with 
various “adaptations” in the activity to solve the tasks1 . From a Vygotskian perspective, managing 
specific linguistic signs - in particular verbal language - is an integral part of conceptualising, and the 
use of signs and the availability of a piece of knowledge to solve tasks develop dialectically. Our 
hypothesis on the role of the teacher in this process, resulting from the combination of Vygotskian 
and Piagetian ideas (Rogalski, in Vandebrouck, 2013), is that the teacher has to foster the activity of 
students to solve mathematical tasks, but s/he should also ensure that the solving of tasks actively 
supports opportunities for conceptualising. Interactions in classroom are then considered as potential 
opportunities for students’ conceptualising but also as traces of how students interpret the 
mathematical and classroom norms (Planas & al., 2018). 

The collected data consists of videos of the sessions about the notion of angles in two different 
classrooms of the first year of secondary school (6th grade) in two different schools: one which is 
situated in a disadvantaged area and one which is not. I shall respectively call them class 1 and class 
2. In the two classrooms, the teacher, ‘Mathew’, is the same one and he is the regular teacher of both 

                                                 
1 Robert, in Vandebrouck 2013, identified seven types of adaptations including the fact of mixing different pieces of 
knowledge or having to establish a procedure with several steps. 

Thematic Working Group 09

Proceedings of CERME11 1615



 

 

classes. Mathew explained in an interview that he sees no reason to make differences between the 
tasks he chooses for students of the two schools because his choice is made based on the coherence 
between the task and the aimed knowledge. 

In the following section, I first explain the learning issues related to the mathematical content at stake 
(including official instructions), particularly stressing linguistic issues. I then describe the tasks set 
by Mathew to his students, predicting the possible activities that students might develop when 
completing them. Following this, I analyse the implementation of the tasks in the classroom. Using 
video-recordings, transcripts and in-situ observations (especially of the tracks of students’ activity - 
what they do or say), I characterize students’ activities as precisely as possible. Analysis of the videos 
also includes identifying what the teacher does or says and how it impacts directly on students’ 
activity, but also the transformation of students’ activity into learning.  

Analysis of the mathematics at stake in the classroom sessions 
Preliminary study of mathematical contents 

In France, official instructions recommend to introduce the notion of right angle in grades 1 to 3 when 
pupils learn to distinguish between different geometric shapes (triangle, square …), but the general 
angle concept is introduced in grades 4-5. In grades 4-5, pupils learn how to compare angles (by 
superimposing one on the other) and how to reproduce a given angle using a template of it on tracing 
paper. They discover the different types of angles (acute, right or obtuse angles), and they use a set 
square to validate visual estimations.  

In 6th grade, students are still supposed to deepen their understanding of angle as an attribute, but the 
main teaching objective is learning how to use a protractor to measure angles and to construct an 
angle with a given measure. Moreover, the objects of geometry are supposed to change progressively, 
from drawings to theoretical objects, from the end of primary school to the end of lower secondary 
school. At the end of primary school, conceptualising of elementary geometrical figures is then still 
in progress: students are expected to know, in particular, about squares and right, isosceles and 
equilateral triangles and they can use instruments to confirm that a given figure is one of them, 
checking right angles using a set square and checking the equality of sides’ lengths using a ruler. 
However, this does not guarantee that these figures are already fully conceptualised. In particular, 
students may know about squares and equilateral triangles, but do not necessarily conceptualise “the” 
square or “the” equilateral triangle as a figural concept. In particular, considering elementary 
geometrical figures as concepts eliminates the ideas of position and orientation in space, thickness 
and particularly size: the concept of square represents any square whichever dimensions it has. 
Indeed, what discriminates forms is angles, which is the element which is invariant under similitudes.  

Thus, a crucial linguistic issue is to be able to discriminate between “a” square, “the” square, “all” 
squares or “any” square2. These terms may be used correctly unconsciously by experts, but carefully 
considering these variations appears to be fundamental when it comes to mathematics learning and 
teaching. Following Vygotsky, it may be assumed that a reasoned use of these determiners constitutes 

                                                 
2 The same distinctions also exist in French: “un carré”, “le carré”, “tous les carrés”, “n’importe quel carré”.  
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a tool to foster the conceptualising of elementary geometrical figures. It also constitutes an indication 
of this conceptualisation when it is used by students. However, discriminating between these uses is 
complicated by the fact that the determinant “the” could either be used to refer to the concept, in its 
generic sense (“the square is a figure which angles are all right ones”), but also to refer to a specific 
object, in its deictic use (“look at the square we draw on the board”). Note that in French, unlike in 
English, the determiner used to signify singular or plural is not the same and the adjective also agrees 
with the noun (“the equilateral triangle” translates as “le triangle équilatéral”, whereas “the equilateral 
triangles” translates as “les triangles équilatéraux”).  

Analysis of the tasks 

During the two sessions I observed, Mathew uses two tasks he found in a paper in a specialized 
journal3. The paper contained the description of a whole scenario about the teaching of angles which 
had been designed by a group of teachers. The idea of the project was to use a polyhedral box with 
faces that are squares, equilateral triangles and right isosceles ones. The first task of the scenario 
consisted of cutting models of the box with different scales to separate the faces and then group them 
to make ‘families’. Students are then asked to name and describe the families.  

The second session was devoted to finding the measures of each angle of the faces, knowing that a 
right angle measures 90° (this value being announced by the teacher). I will particularly focus on the 
goal of establishing that the angles of the equilateral triangle(s) measure 60°. The expected activity 
of students is to put together three equilateral triangles (in adjacent positions) and observe that they 
obtain a “flat angle” (they are not supposed to know this expression) and that it corresponds to two 
right angles put together. They are then supposed to compute the double of 90 and divide the result 
by 3. This constitutes a complex reasoning in 6th grade, because there are a lot of subtasks and 
adaptations: for example, a lot of different knowledge is supposed to be used (about geometry, 
measure and numbers). Moreover, it relies (more or less implicitly) on the use of the property of 
additivity of adjacent angles’ measures. It also supposes to use the fact that angles of any equilateral 
triangle are equal and/or that all the angles of all equilateral triangles are equal. These properties are 
trivial for mathematicians (one can even consider that they define the equilateral triangle as a figure), 
but they are not necessarily known by 6th graders. At this age, a triangle still refers to a specific 
drawing and not necessarily to a figure as a concept; moreover, the notion of angle is not yet 
conceptualized either. In particular, students may not master the fact that angles are invariant under 
similitudes, i.e. that the measure of an angle does not depend on the length of its sides. Finally, 
equilateral triangles are generally characterized for students by the equality of their sides. 
Mathematically speaking, these properties concern THE equilateral triangle as a concept. The options 
offered to students then are either to first observe the fact that all three angles of a given equilateral 
triangle are equal, then apply the procedure and then generalize to all the equilateral triangles of any 
size, or to observe the fact that all the angles of all the equilateral triangles that they have are equal, 
whatever their size might be, and then apply the procedure. Both options seem to be difficult for 6th 

                                                 
3 A journal that includes papers that present propositions for teaching (or for teacher training), coming either from 
researchers in mathematics education or from teachers.  
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graders. Completing the task and understanding what knowledge is at stake also implies considering 
the pieces of paper as representing geometrical figures and that some of them are the same figure, 
whichever size they are or even if they are not exactly superimposable because of the imprecision of 
cutting. Given all these considerations, these tasks might contribute to the conceptualizing of 
elementary geometrical figures as concepts, but it is not an explicit objective in the initial scenario, 
which is centered on angles.  

The two classroom sessions 
At the end of the first session, families have been characterized in both classrooms by properties 
stated by the students: right angles and equal sides for the squares, one right angle and two equal sides 
for the right isosceles triangles; finally, about the equilateral triangles, students in both classes 
mentioned the equality of the sides, but only in class 2 did they mention the equality of angles.  

Differences in students’ activities  

Analyses show that in class 2, almost all students suggest solutions after 10 minutes. In class 1, 
Mathew observes that after 6 minutes students seem lost and he suggests putting some equilateral 
triangles together and observing if anything special happens. Only 5 students suggest answers (which 
remain partial) when the teacher stops individual work after 12 minutes. These differences suggest 
that students in the different classes were not equally able to complete the task: whereas students from 
class 2 do not seem to experience major difficulties completing it, the task seems very difficult for 
students from class 1. Analyzing the concluding phase in class 1 provides some clues to understand 
these differences. After showing that putting together three equilateral triangles gives a straight line 
(which is suggested by the most advanced students) Mathew tries to have students understand how 
this helps finding the measures of the angles. The addition of two right angles and the resulting 180° 
is mentioned, as well as the idea of dividing by 3 and the resulting value of 60°. After this, Mathew 
suggests writing down the whole solution on the board, but what appears is that some students’ 
activity remains very far from what is expected, making me doubt their ability to seize the task as a 
real opportunity for learning. The following excerpt illustrates were the misunderstanding lies: 

T:  If I put the angles together, the angles of, of, which angles? 

S1:  of 60°.  

T:  each one measures 60°, but they are angles from which piece(s)4?  

S2:  equilateral triangle. 

T: [writing on the board] if we put together three angles. 

S1:  the three angles of each triangle, one angle from each triangle. 

S3:  from each triangle. 

T:  from which triangle(s)? From any triangle? 

                                                 
4 French language doesn’t allow discriminating between singular and plural in the oral discourse.  
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S1:  the three over there [pointing at the board, where pieces are magnetically hung] 

T:  yes, but from which- Are they all three the same or not the same? 

S1:  they are identical.  

S2:  equilateral 

T:  [writing on the board] yes. If we put together three angles from equilateral triangles 
[…] 

The question the teacher asks about “which piece(s)” and later “which triangle(s)” refers to the type 
of triangle and waits for “equilateral triangle(s)” as an answer but S1 refers to the material pieces: the 
discourse is not about the same objects. One might reasonably doubt that the students previously 
identified that all equilateral triangles have all their three angles that are equal (whereas, in class 2, 
students knew it from the first task). Note that, at the end, Mathew resolves the (theoretical) problem 
by mentioning the fact that all these triangles are “the same”, but it is probably not sufficient to make 
sure that all the students understand the reasoning. 

The question that remains and is of great importance (in order to understand how why school 
achievement in mathematics is differentiated according to the sociocultural background of students) 
is to understand if these differences in students’ achievement could result from teacher’s choices, 
either because he does things differently or because some things he does similarly don’t have the 
same effect on all the students.  

Differences in the teacher’s discourse in the two classes 

This excerpt suggests that the teacher has not understood what enables students, in class 1 to 
understand the reasoning. Moreover, the role of the property that all angles of all equilateral triangles 
are equal seems “transparent” to him: not only is it not explicitly stated when exposing the proof, but 
Mathew has students check that all the angles of all the equilateral triangles (all the pieces they have 
in their hands) are equal only afterwards.  

I also compared the discourse of the teacher during the whole sessions. What appears as common 
between the two sessions is that Mathew alternates between saying “the equilateral triangles” and 
“the equilateral triangle”, attesting that these two expressions are equivalent for him. A difference 
that appears and seems important is that in class 2, he will earlier and more systematically use 
geometrical language: when presenting the task, he talks about “finding the measure of the angles of 
each figure”, whereas in class 1, the question is firstly formulated as “if I take this piece, the question 
is, this point, can I know how much it measures?” which is rapidly rephrased as “the aim is to say, 
for each piece, each angle, what is its measure?”. Vocabulary is more mathematical in the last 
formulation (for example he uses “angle”), and I conjecture that talking about the pieces instead of 
the figures does not help students to focus on the relevant objects. Moreover, it might explain why, 
at the end of the session (see excerpt above), some students still have not identified that what is at 
stake is the measure of the angles of the figure represented by the pieces of paper of the same family, 
and not the measure of the corner of each piece of paper.  
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Discussion and conclusion 
Differences between what happens in the two classrooms might explain some of the variability of 
students’ activity and hence, learning. These differences seem to be related to elements introduced by 
either the teacher or the students, but without the teacher being aware of the possible impact of these 
differences (i.e., transparent elements). For example, mentioning “the” equilateral triangle might have 
implicitly helped some students to identify what was at stake but was not sufficient for others, 
especially in class 1. Moreover, the fact that the teacher mentions the pieces of paper in class 1 might 
have helped the students to start working, but jeopardized their identification of the learning issue.  

Our study illustrates how the combination of socio linguistic and sociocultural characteristics of 
students on one hand and the transparency of some elements for the teacher on the other hand, appears 
to result in differentiating students’ opportunities for learning in the two classes. The question that 
remains concerns the causes of the transparency for the teacher of elements that seem crucial to 
explain differentiation in students’ achievement. I hypothesize that the issue of conceptualizing 
elementary geometrical figures is hidden behind language elements: the fact that “the equilateral 
triangles” becomes “the equilateral triangle” is very subtle. This is probably aggravated by the fact 
that elementary geometrical figures (and associated verbal language) are elements that are 
“naturalized” for teachers, like most of elementary mathematical knowledge, especially concerning 
mathematical logic (see Durand-Guerrier, 2013, or Chesnais, 2018).  

Even if this research appears as closely related to the French context (by the fact that observations 
were conducted in French classrooms and concern French language but also that the research was 
conducted using French theories), it meets some crucial CERME’s preoccupations for three reasons. 
First, following Pimm (1987), some features of mathematical language are common to diverse 
languages. Thus, considering the issue of the use of determiners in relation to quantification and 
conceptualization could constitute a relevant common object of research. Second, the transparency of 
issues related to mathematical language in classrooms is shared by teachers in all countries, and this 
hypothesis would be worth investigating. Third, the impact of the sociocultural background of 
students in school achievement could meet some preoccupations related to multilingualism. When 
multilingualism is related to poorer school achievement, it is often related to social backgrounds (in 
France and countries like South Africa as Phakeng, 2018, shows). Mixing the two preoccupations 
could help, in research about multilingualism, not to focus essentially on the mastery of language in 
terms of lexical and syntactical elements, but also on uses of language, which might be of greater 
importance to explain difficulties in school achievement (Bautier, 1995). This could explain why 
multilingualism seems to be an obstacle for students with lower sociocultural background whereas it 
appears as an advantage for students with upper sociocultural background. Even if the French 
educational system deliberately ignores multilingualism (except for new arrival students), French 
schools situated in disadvantaged areas often have a large number of students for whom French is not 
the first language. Considering the impact of multilingualism in mathematics achievement may allow 
enrich the approach of these students’ difficulties and resources (Planas et al., 2018).  
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Construction of mathematical discourses on generalization during 
group interaction 

Judit Chico 
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This study aims at analysing the impact of group interaction on the construction of learners’ 
mathematical discourse on generalization in the classroom. Comparative and inductive analysis were 
applied to examine five group discussions with learners aged 15 and 16 involved in problem solving. 
I report the analyses of two segments of group discussion to illustrate how certain forms of interaction 
influence the production of mathematical language and the construction of discourses on 
generalization of patterns. Results show the positive effect of social interaction by minimizing the 
ambiguity of the language, connecting different linguistic expressions of a mathematical object and 
identifying the variables to construct a symbolic generalization. 

Keywords: Group discussion, mathematical language, social interaction, generalization discourse. 

Introduction 
In Planas and Chico (2013), we reported the analysis of learning opportunities around the construction 
of algebraic thinking in the context of classroom group discussion. In that report, we established the 
bases for the study of the impact of social interaction on students’ mathematical learning in a middle 
school classroom. On this occasion, I present the analysis of group discussion of another lesson of 
the same data corpus, with the purpose of arguing the impact of certain forms of interaction on the 
development of the language of mathematics in class. The mediation role of social interaction on 
classroom mathematical learning is key to social theories (Planas, 2014, 2018), but it is still necessary 
to expand and refine arguments about how this mediation occurs and with what effects for tasks 
focused on specific mathematical topics. Data, results and reflections in this report respond to the 
goal of identifying the impact of certain forms of interaction on the production of mathematical 
language and the construction of discourses on generalization processes. 

In what follows I briefly present my theoretical views of social interaction, mathematical learning 
and discourse on generalization. Then I introduce the orientation of the methods applied in the 
research. From here, I comment on two lesson episodes to illustrate how certain forms of interaction 
influence students’ mathematical discourses on generalization with specific implications for the 
development of languages of mathematics. I end with reflections on the relationship between social 
interaction and students’ mathematical discourses on generalization. 

Social interaction, mathematical learning and discourses on generalization 
Within the social theories of learning, I draw on the tradition of symbolic interactionism and socio-
constructivism in mathematics education research (Krummheuer, 1995). Here social interaction is 
seen as a process in which individual actions are influenced by the interpretation of, and reaction to, 
the system of actions taking place in a setting. Specifically, my study is based on the tradition of 
micro-analyzing classroom discourses by interpreting empirical data in terms of participants’ actions. 
The focus is on actions aimed at communicating and negotiating mathematical meanings articulated 
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in, and for the production of, mathematical discourse on generalization. A collective action is 
generated by linking participants’ actions and depends on the individual meanings constructed in the 
interpretation process of the interaction (Blumer, 1969). If we add the vision of learning as recognition 
and use of meanings assignable to a discourse, we can say that while collective construction of the 
language of mathematics is produced, the bases for the individual mathematical learning of the 
participants in the interaction are established (Morgan, 2005). Accordingly, mathematical learning 
results from social interaction in contexts of use of the language of mathematics and the meanings 
associated with the appropriation of the school culture. From this perspective, I understand the notion 
of discourse as language in use with meanings depending on the context in which it occurs (Planas, 
2018). Then, the conception of mathematical learning can be refined, seeing it as the recognition and 
use of meanings of a discourse by participating in it. 

Mathematical learning understood as the development of the language of mathematics in a school 
culture requires the modification of student's discourse in those aspects that are far from the formality 
of the school mathematical discourse. Drouhard and Teppo (2004) claim that clear ordinary languages 
are a basic resource to facilitate the understanding of algebraic symbolism and syntax in problem-
solving environments. The interpretive nature of assigning meaning to algebraic symbols and syntax 
requires substantial experiences with meaning-making activities around letters, words, and syntactic 
structures in ordinary school languages used to represent and discuss the problem to be solved (Planas 
& Chico, 2013). Difficulties in the recognition, understanding and symbolic representation of 
variables and their functional relationship endure over time for lower, upper secondary and university 
students (Ursini & Trigueros, 2006). Sorales and Kieran (2013) recommend classroom activities that 
allow connecting and developing syntactic and semantic levels to achieve a rich understanding of 
algebra. The problem-solving approach of generalization of patterns adopted in this research helps to 
develop both levels since it facilitates meanings for symbols from a functional perspective (Carraher 
& Schliemann, 2007). 

As Radford (2010) claims, not all patterning activity leads to algebraic thinking in the same way as 
using symbolic language to express a pattern does not imply generalization reasoning. This is the case 
of inductive reasoning, frequently used by students, even if the inductive process can be expressed 
using symbolic language. Accordingly, I distinguish between inductive discourse originated by 
guessing strategies and generalization discourse that requires seeing something general in the 
particular. Moreover, algebraic generalization of patterns requires the use of symbols to reason about 
and to express a generalization (Kieran, 1989). If we see generalization of patterns as a route to 
algebra, there are different degrees of generalization (arithmetic, factual, contextual and symbolic) 
depending on the material form used to reason and to express the general (Radford, 2010). While an 
arithmetic generalization is based on “a local commonality observed in some figures, without being 
able to use this information to provide an expression of whatever term of the sequence” (Radford, 
2010, p. 47), factual, contextual and symbolic generalization depend on the way a general rule is 
expressed, namely, using gestures and movements (factual), linguistic expressions (contextual) or 
algebraic language (symbolic). 
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Research context and methods 
A sequence of five lessons with five problems involving generalization of patterns was designed to 
facilitate algebraic thinking in a mathematics classroom with eight students aged 15 and 16. For each 
lesson, the teacher presented a problem and then the students discussed it in pairs while the teacher 
walked around the room. For the last thirty minutes, students were asked to discuss their approaches 
in a group and to examine and compare resolution strategies. The teacher acted as a facilitator of 
students’ interactions. The students were used to pair work and group discussion. They were also 
used to problem-solving dynamics, to listening to each other, and to communicating their 
mathematical ideas. The problems included imaginable contexts outside mathematics and drawings 
of the first terms of a sequence. The questions were structured considering algebraic thinking: 1) 
concrete, considering small quantities; 2) semi-concrete, considering big quantities; and 3) abstract, 
using symbols (Carraher & Schliemann, 2007). Within the 5-problems sequence, the difficulty of a 
problem was also controlled by omitting the semi-concrete question and introducing a question that 
requires understanding of symbolic expressions as objects that can be manipulated (see Figure 1). 

 
Figure 1: Example of one of the problems in the study 

Data collection consisted of audio and video recordings of lessons. We began by transforming audio 
and video files into transcripts. First, I explored data of pair work and constructed a narrative detailing 
some aspects of students’ interaction and generalization processes (Chico & Planas, 2011) to better 
understand the mathematical activity in group discussion. Regarding group discussion data, I began 
a process of comparative and inductive analysis (Glaser, 1969) to elaborate interactional codes. These 
codes mark students’ actions informing about the continuation of mathematical content initiated in 
prior turns. In the interpretative process of codifying social interactions, two criteria were followed: 
i) attending to the closest context of interaction by differentiating the interaction between peers of a 
pair, ii) giving priority to the function of the language in relation to the mathematical content rather 
than to the linguistic form (see more detail in Chico, 2014). The interactional codes discussed in this 
report are: Initiating (new approach to the resolution), Co-Initiating (new approach to the resolution 
in pairs), Co-Reflection (on a resolution in pairs). To segment the transcript into episodes, I looked 
for changes in students’ discourse on generalization, distinguishing between inductive discourse and 
arithmetic, factual, contextual or symbolic generalization discourses (Radford, 2010). The transcript 
of each episode was examined to complete the interactional codes with mathematical actions. From 
a linguistic perspective, I focused on mathematical actions that have an effect on the language used 
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such as word refinement, word (symbol)-meaning clarification, pattern linguistic (symbolic) 
expression or variable linguistic (symbolic) expression. At this point I had episodes characterized 
with interactional codes and mathematical actions. It took time to search for relationships between 
interactional codes and mathematical actions and regularities among the episodes. According to my 
goals, I looked for regularities of mathematical actions involved in a particular type of interaction. It 
gives information about the impact of social interaction on the production of mathematical language. 
Then, I looked for regularities in the combination of certain forms of interaction involved in changes 
in students’ discourses on generalization. Hereunder, I present two episodes that represent what 
happened at different moments of the group discussions throughout the sessions. 

From inductive to symbolic generalization discourse  
In the excerpt below, students discuss solutions for the second question of the problem in Figure 1. 
The interactional codes in this excerpt are Initiating, Co-Initiating and Co-Reflection. Initiating [1] 
and Co-Initiating [2-9] refer to the introduction of a resolution in the group discussion but while the 
first code is an individual action the second code refers to consecutive actions articulated by the peers 
of a pair to explain a new resolution. This is also the case of Co-Reflection [10-13], which indicates 
a reflection produced in and by pair interaction during group discussion. 

1 Irene: We have used a rule of three, if for one row there are eight pine trees, for n there 
will be x orange trees. Oh! What a mess! x pine trees. 

2 Gabriel: We have found directly that if we multiply eight times the number of rows it gives 
us the number of fir trees. 

3 Jose: Of pine trees. 
4 Gabriel: That’s it. Of pine trees. First we have seen this observing the first and the second 

case. And then we have seen why.  
5 Jose: Yes. Later we have seen why. We have seen that multiplying times two the number 

of rows, we have the number of pine trees that make a side of the square, this one. 
But not one. We already count one as being from the other. 

6 Gabriel: The one on the corner. 
7 Jose: Minus the one on the corner that we already count for the other side. Then, if it has 

three rows, three times two are six, so that here there are six pine trees, here six 
more, here six more, and here another six. Therefore, the number of rows times two 
gives you the number on one side and then you multiply times four that are the sides 
of the square. 

8 Gabriel: Then if you multiply 2n times four it gives you 8n, which is the x. 
9 Jose: That it is what we had seen before and we did not know why. 
10 Óscar: It is more direct, is the developed formula. 
11 Irene: It is like a simplification of ours if you do it. 
12 Óscar: Ok… Theirs is thoughtful, we have been trying. 
13 Irene:  This is true. Theirs has a reason to be. Ours just worked. 

The excerpt starts when Irene introduces the algebraic expression [1/8 = n/x] based on inductive 
reasoning co-constructed with Óscar during pair work. Gabriel reacts by exposing a generalization 
based on multiplicative reasoning co-constructed with Jose during pair time [2]. Jose interrupts 
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Gabriel to suggest the use of the word "pines"-written on the wording problem- instead of "first" [3] 
and Gabriel accepts the suggestion [4]. Later, Gabriel points out the meaning of "one", the one on the 
corner [6], that Jose validates by including this linguistic expression in his explanation [7]. Gabriel’s 
first explanation is based on the linguistic expression of the general rule x=8n, expressing the letters 
by referring to their meaning in the context [2]. Then Jose explains the counting strategy underlying 
the general rule as a commonality that can be applied in all terms of the sequence [5]. To name the 
variables, both students use the expressions “the number of rows” and “the number of pines”, that is, 
linguistic generic expressions that can be applied in whatever term you may want to consider [2, 5]. 
Jose continues his own explanation of the counting strategy, making gestures on the pattern drawing 
to show how the general rule works in a particular term of the sequence. Gabriel follows-up by 
expressing the counting strategy and the final general rule using symbolic language [8]. In short, Jose 
and Gabriel share the responsibility of constructing a comprehensible discourse about a symbolic 
generalization that they have negotiated. The communication between them helps to make more 
explicit the language used and to connect linguistic expressions with different degrees of formality 
of the same generalization.   

By the end of the excerpt, the direct communication between Irene and Óscar produce co-reflection 
on their discourse on generalization. First, they recognize the equivalence between the two symbolic 
expressions of the general rule, appreciating the syntactic simplification of the symbolic expression 
constructed by Gabriel and Jose [10-11]. Then, they reflect on their discourse as opposed to Gabriel 
and Jose’s [12-13]. Although both pairs find and explain a general rule to solve the problem and use 
symbolic language to represent it, the heuristics of their discourse on generalization are different. 
Irene and Óscar’s discourse is based on an inductive reasoning and using a trial and error strategy, 
they propose to apply a rule of three in a few particular cases. Gabriel and Jose’s discourse points out 
what seems to be general in the common features of the given drawings. Irene and Óscar value the 
generalization discourse over the inductive because the generalization is “thoughtful” or “has a reason 
to be” and the inductive “just worked” by “trying” [12-13]. This suggests a qualitative modification 
of Irene and Óscar’s discourse on the meaning of generalization mediated by the discourse 
constructed in the interaction between Jose and Gabriel. 

From arithmetic to symbolic generalization discourse 
In the second excerpt the conversation is focused on another resolution to the second question of the 
problem in Figure 1. Cristina and Maria co-initiate the discussion by taking turns speaking to 
construct a generalization developed together during pair work [14-18]. Maria explains the meaning 
of the linguistic expression “the result” used by Cristina in the previous intervention [15-16]. This 
student validates and tests in case 5 what was said by Maria, who also incorporates the mathematical 
information given by Cristina [15]. Finally, Cristina synthesizes and orders the mathematical 
information of the previous turns to explain a counting strategy that depends on visual perception and 
does not contemplate the functional relationship between variables [18]. Thus, the interaction 
between these two students has a positive effect on the cohesion of the discourse that makes Cristina’s 
explanation more comprehensible. The introduction of this approach in group discussion and the 
implicit request for help by Cristina [18] focus the subsequent conversation on the representation of 
this generalization in a symbolic language. This action was coded as Requesting. This code is a key 
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and repeated action that refers to the demand for clarification or help regarding an exposed 
mathematical reasoning. Gabriel and Irene request clarifications that lead to connecting the perceptual 
dependence of the counting strategy with the lack of references to the independent variable in the 
context [21-22]. Cristina implicitly asks for help in [23] and Irene identifies the independent variable 
[24], which is crucial to represent Cristina's resolution in a symbolic language. Irene connects the 
linguistic expression of the variable, “the rows”, with the symbolic expression, n. Then Jose refers to 
the algebraic expression 2n used in his resolution to represent the pine trees on one side minus one 
(see the previous excerpt) [25]. Although he does not explain the meaning of 2n in the context of the 
problem, Maria represents the counting strategy in a symbolic language [26]. 

14  Cristina:  I said, if you multiplied… you subtracted four from the result, the ones on the 
corners… I don’t know… 

15  Maria: You count one more in each side, the one on the corner. If there are four sides, four 
vertices… 

16  Cristina: That is it! Four times eleven… adding the two corners in each side… 
17  Maria: You add all and then subtract four, the ones on the corners. 
18 Cristina: What you do is, from every side you count how many pine trees there are with the 

two corners. Then you multiply by four and then you must subtract four because 
you have counted the corners twice. But I am not able to write it down. 

19 Óscar: Like in a formula? 
20  Cristina: Yes. 
21  Gabriel: But the number of sides, I mean, the number of pine trees, you cannot know it, 

right? 
22 Irene: That’s right, how could you know the number of pine trees if you do not have a 

drawing of it? 
23 Cristina: But you guys knew it, right? 
24 Irene: Sure! With the rows. The n. 
25 Jose: Right with the rows, it is 2n. 
26 Maria: Then it will be 2n. No! 2n plus one, we multiply all times four and then we subtract 

the four vertices. 
27 Cristina:  And that is the number of pine trees, right? That is what we weren’t able to do. We 

didn’t find the relationship which holds, we have been trying, but we haven’t found 
it. 

28 Maria: Because this was the number of rows, not the number of orange trees… We haven’t 
done it with the number of rows. 

29 Cristina:  Right, because of that we didn’t find that those 11 were the 2n plus one. 

The excerpt finishes with co-reflection between Cristina and Maria on their discourse [26-29]. 
Cristina's initial discourse points to what is general in the particular. It can be said that it is a discourse 
about generalizing in the mathematics classroom, but not so much about generalizing algebraically. 
The development of algebraic thinking through the generalization of patterns implies representing the 
general case through the language of algebra in order to be able to later use a symbolic expression as 
a structural object (Kieran, 1989). This step is not trivial and involves identifying and representing 
variables symbolically as well as thinking about algebraic generalization as a functional relationship. 
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The modification of Cristina and Maria's discourse lies not only in the use of symbolic language to 
express a pattern, but in the recognition of the need to identify which are the variables to represent a 
functional relationship. 

Discussion 
I have shown changes in students’ mathematical languages along with the interactions involved in 
co-construction of processes of generalization. Results indicate that some forms of interaction have a 
special impact on the development of languages of mathematics and students’ mathematical discourse 
on generalization. This is the case of Co-Initiating. The direct communication between students who 
were involved in the co-construction of a resolution have a positive effect on the explicitness of the 
students’ language used and the cohesion of the discourse on generalization constructed. Peers of a 
pair share the responsibility to produce a comprehensible discourse to explain a resolution to the rest 
of the group. Students respond to, and build upon, the peer mathematical contributions in some 
appropriate way according to the classroom culture. Linguistic expressions with different degrees of 
formality to represent the same mathematical object are connected in the discourse co-produced by a 
pair in the group discussion. This fact mediates in discourse changes on generalization of other 
students as it was argued in the first except. Requesting is also crucial to achieve changes in discourses 
on generalization. In the second excerpt, the identification along with the linguistic and symbolic 
expressions of the independent variable is influenced by Requesting and helps Maria and Cristina to 
move from arithmetic generalization to symbolic generalization discourse. These qualitative changes 
on generalization discourses are reflected again in the communication between students who were 
working together during pair time after they confront other discourses. Although these conversations 
have a private nature and are addressed to specific interlocutors, they are publicly produced and 
constitute a learning opportunity for the whole group. Under the assumption that the form of the 
students’ participation in the classroom is determinant to mathematical learning, the role of the pair 
in the group has an important impact in the production of school mathematical languages used to 
construct discourses on generalization. Restructuring and connecting mathematical meanings in the 
group discussion represents a learning opportunity for all participants who, regardless of their 
participation in the construction of the certain discourse, are potential receivers of the mathematical 
information and are susceptible to experience conceptual changes on generalization. 
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Theoretical background 
Although metacognition is widely regarded as a promoter of sustainable learning processes (Dignath 
& Büttner, 2009), little is known about the implementation of metacognition and the mode of its 
functioning in classroom communications (Lingel, Neuenhaus, Artelt, & Schneider, 2014). When 
metacognition during classroom discussions is in the scope of interest, its conceptualization must 
refer to a broader scope of activities than in the case of problem solving. It cannot be restricted to 
metacognitive processes understood as cognition about one’s own or others cognition, but should take 
into account also cognition about the inputs, subjects and results of cognition (calculation, verbal or 
written information, argumentations, questions). According to this conceptualization, the objectives 
of metacognition in learning mathematics are, for example, to plan the use of mathematical tools, 
methods, and representations to justify an argumentation or to explain an idea; to control and evaluate 
the accurateness of argumentations, the adequateness of external (e.g. formal) or internal representa-
tions of mathematical concepts, the correctness of the use of tools and procedures; to reflect on the 
ways of reasoning, defining or proving, and on similarities and differences in conceptions and argu-
ments. The learning process in a class can lead to a deep understanding of concepts, representations 
and tools only if the planning, monitoring and reflection related to them are elaborated, take students’ 
ways of thinking into consideration, and build a coherent discourse. Therefore, the class discussion 
must feature discursivity. Discursivity means activities carried out to support the coherence and pre-
cision of a discussion. On the contrary, negative discursivity means activities with a negative influ-
ence on understanding what is meant (Cohors-Fresenborg & Kaune, 2007). 

A rating system for evaluating metacognitive-discursive instructional quality 
During the last three years1, we worked on the design of a rating system for evaluating metacognitive-
discursive instructional quality in different school subjects. The rating procedure consists of two lev-
els: first an extended version of the category system developed by Cohors-Fresenborg and Kaune 
(2007) is used to categorize metacognitive and discursive activities in students’ and teacher’s utter-
ances; then, seven high inference rating scales are used for a global rating of the instructional quality 
of these activities in the given lesson (Nowińska, 2016). Each scale consists of an item (guiding ques-
tion) focusing rater’s attention on aspects to be evaluated, and of 3-5 answers describing in detail how 
these aspects are reflected in the discussion. The two-level rating procedure was tested and evaluated 
in the DFG-project, based on 24 videotaped lessons (6 teachers/classes à 4 lessons, grade 6 and 7). 
For 6 out of 7 rating scales, the generalizability studies indicate a high inter-rater reliability and a 

                                                 
1 A research project supported by the DFG (German Science Foundation) under the reference CO 96/8-1. 
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relatively high stability of the evaluated aspects across lessons (g-coefficients >0.78); only 3 lessons 
per class/teacher would be needed to get reliable and generalizable (over the lessons) assessments of 
the 6 aspects of the instructional quality (Nowińska & Praetorius, 2017). 

Some Insights from the Qualitative Lessons Analysis 
When analyzing lessons an interesting type was observed in the case of some teachers/classes: there 
are many metacognitive, discursive, and only few negative discursive activities; but the class discus-
sions are only on the surface of the underlying problems. If the mathematical content becomes a little 
bit more substantial, then the inability of the teacher and the students for elaborate metacognitive 
mathematical activities breaks through, and indicates the lack of metacognitive-discursive education 
of this class. Now, the classroom discussion shows a lot of metacognitive activities, but also lots of 
negative discursivity. Consequently, the global rating of the metacognitive-discursive instructional 
quality leads to many low marks: the metacognitive activities are not elaborate, do not build a coher-
ent discourse, and therefore the students do not learn something substantial in this class. This obser-
vation is contrary to our hidden theory underlying the invention and use of the primary version of the 
category system (Cohors-Fresenborg & Kaune, 2007), as it was represented in this paper. The new 
observation can explain the low correlations between observed metacognition and learning achieve-
ments as sometimes reported in the literature. We assume that high ratings achieved with the two-
level rating system are needed for a deep understanding of mathematics, and that such ratings can be 
regarded as an indicator for an intellectual kernel of classroom discussions in learning mathematics. 
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Explorative study on language means for talking about enlarging 
figures in group work 

Kirstin Erath 
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This paper presents a first step for designing language support for Grade 9 students working 
collaboratively on the topic of similarity, more precisely an adaptation of Brousseau’s tangram task. 
The qualitative study identifies (topic specific) language means which students use for talking about 
their ideas on how to enlarge figures, combining geometrical and arithmetical ideas. Furthermore, 
a textbook analysis shows the target language that students should use and understand at the end of 
the teaching unit. The identified difference between both repertoires of identified language means 
calls for developing language-responsive teaching-learning arrangements in the future in which both 
language repertoires can be bridged systematically by macro-scaffolding trajectories. 

Keywords: Language means, language repertoire of the learner, macro scaffolding, design research. 

Background: Need for supporting language means for rich discursive practices 
Students’ participation is pointed out as crucial for learning mathematics by many researchers (e.g., 
Sfard, 2008) and is seen as “a process of enculturation into mathematical practices, including 
discursive practices (e.g., ways of explaining, proving, or defining mathematical concepts)” (Barwell, 
2014, p. 332). Qualitative studies identify sequences of explaining and arguing as especially 
important for students’ conceptual learning, in whole class discussions as well as in small group work 
(e.g., Mercer, Wegerif, & Dawes, 1999; Erath, 2017). However, especially for students with low 
language proficiency, participating in discursive practices that allow talking about conceptual 
knowledge is challenging (Erath, Prediger, Quasthoff, & Heller, 2018). Since language acts as a 
medium of thinking (Vygotsky, 1987) and following Interactional Discourse Analysis (Erath et al., 
2018), this calls for supporting students in accomplishing demanding discursive practices in order to 
provide access to mathematical learning opportunities. Whereas in whole-class discussions, 
overcoming language-related obstacles can be spontaneously supported by the teacher, group work 
requires a prepared support when the teacher is absent. One dimension of prepared support refers to 
the establishment of norms about the ways students talk to each other, such as the “ground rules” 
proposed by Mercer (e.g., Mercer et al., 1999), emphasizing activities such as sharing relevant 
information and discussing alternatives. Students with low language proficiency often need additional 
support for accomplishing these norms, when lexical means or syntactical structures are required for 
explaining and arguing in the mathematical topic. Thus, referring to Gibbons’ (2002) approach of 
macro scaffolding, these language means can be provided in prepared ways. 

As Prediger & Zindel (2017) emphasize, the identification of mathematically relevant lexical and 
syntactical means for a specific mathematical topic is an empirical task; it can be conducted by 
analyzing textbooks and teaching-learning processes. Following the research approach of empirically 
identifying relevant language means, this study investigates a textbook and empirical video data for 
identifying the language means students initially use, the target language means, and for exploring 
possibilities of bridging between them. 
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Research context: Exploring similarity in the Tangram Task 
Especially teaching-learning arrangements that activate students’ individual ideas and allow pro-
cesses of solving problems and discovering mathematics have the potential to elicit vivid discussions 
about mathematics (e.g., Brousseau, 1997) and make demanding discursive practices necessary. For 
identifying students’ initially used language means, the presented study focuses on the first task in a 
teaching unit on similarity using an adaption for four students of Brousseau’s (1997, p. 177ff.) 
tangram task (see Figure 1; translated from German by the author). The task follows a more dynamic 
perspective on similarity since it leads to an understanding of similarity as the result of the process of 
enlarging figures true to scale: Hölzl (2018) terms approaches to similarity as dynamic if they relate 
to transformation geometry and as static if they refer to Euklid and define similar figures by identical 
angles and aspect ratios.  

 
Figure 1: Task 1 of the teaching-learning arrangement of enlarging figures 

Thus, this paper empirically investigates students’ initial language means in group work related to a 
task on enlarging figures true to scale and compares this repertoire to the target language means as 
identified in a widely used textbook by following these two research questions: 

RQ1: Which language means can be identified in students’ talk and in textbooks? 

RQ2: Do some of these means have the potential to bridge between the identified repertoires? 

Methods: Qualitative analysis of students’ interactions solving the tangram task 
The presented analysis is part of the larger project MAGENTA that is conducted in the tradition of 
design research (Gravemeijer & Cobb, 2006). It aims at developing a language-responsive teaching-
learning arrangement for the topic of similarity in German Grade 9 classrooms as well as building 
local theories on the students’ learning processes.  

Methods of data collection 

This paper reports research from the second cycle of collecting video data. The design experiments 
were conducted by two preservice mathematics teachers for their master thesis. Altogether, 6 groups 
of two or three students each (at the end of Grade 8 or 9; aged 14 to 16; all from the same lower 
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secondary school in an urban quarter in the Ruhr area) worked for 3 lessons on similarity. For all 
students, the design experiment was the first lesson on the mathematical concept of similarity. 
Following the idea of establishing ground rules, the importance of explaining and arguing and the 
way of working together was discussed with the students. For this paper, video data and written 
documents of the first task of the teaching-learning arrangement (Figure 1) were analyzed for 
investigating students’ initial language means by making collections of the original expressions that 
were later on group by the used language means. The textbook analysis was conducted along the most 
sold textbook for comprehensive schools in North Rhine-Westphalia “mathe live” focusing on the 
pages introducing the topic of similarity until the summary (Böer et al., 2008, p. 20f.). 

Methods of data analysis 

First, all sequences were collected in which students were working independently on Task 1, until 
students proceeded with another task or until the teacher started to intervene. Second, these sequences 
were transcribed and enriched by students’ written products. The third step followed inductive 
category formation (Mayring, 2015) and coded all utterances by generalized versions of the language 
means that were used (i.e. language means using variables instead of numbers) in order to gain a 
repertoire of students’ lexical and syntactical means. For the presented analysis, only categories re-
lated to talking about changing the sides of figures are considered due to space restrictions. The text-
book analysis collected all language means in tasks related to enlarging figures and in the summary. 

Empirical results: language means for talking about enlarging figures 
First, students’ initially used language means and the target language means in textbooks are identi-
fied. Afterwards, the idea of bridging between these identified repertoires is discussed. 

Students’ language means for talking about enlarging figures 

Task 1 proved highly suited for eliciting discursive group work, especially if students had different 
strategies for enlarging their parts, like in the group of Julian, Lara, and Nitika. Julian is the only 
student in the data of the presented research that utters the mathematically sound idea of multiplying 
each side with a constant factor that he calculates by using the rule of three (in German “Dreisatz” is 
a term for the rule of proportion) and that he furthermore connects with the idea of scale:  “I don’t 
know if this is correct now, but this 4 cm (…) this is like such a scale thing, right? So if 4 cm are 7 cm 
and 4 cm it is asked fort wo, the half, and the half of 7 is 3.5. Do you know what I mean?” 
(F1_V1_T1_G1, line 53). All other students with multiplicative ideas think of enlarging a figure as 
doubling the lengths of the sides (which is only correct in special cases). Most students have additive 
ideas for enlarging figures. Hamsa, Jussuf, and Younis serve as an example for students talking about 
additive ideas, especially representing students struggling with expressing their mathematical ideas. 
The extract (F1_F2_V1_T1_G6; translated from German by the author) starts after the boys discover 
that their enlarged pieces do not fit together as a square: 

72 Hamsa: [holds up Jussuf’s enlarged piece] What’s that? [all laughing] 
73 Younis: This is much too small! 
…  
78 Younis: Eh, mine is also a bit too large after all… 
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79 Hamsa: [towards Jussuf] Make new again! 
80 Jussuf: Why? This is 7 cm, I think. 
81 Hamsa  well you have to- look, if 4 cm become 7 cm, you have to make larger by 3 
82 Jussuf: There’s from 4 to 7 after all… 
83 Hamsa: You should do this one, right? [points to the drawing in the task] That are 

6 cm here. They become 9. [unclear] 
84 Jussuf: [also points to the drawing] I see, we should use from THESE data. I see. 

Well then. [starts to draw] […] 
Like all groups, the boys first describe quite broadly that somehow the size of the figures or some 
sides of them are too small or large (lines 73 to 78). Afterwards, Hamsa explains Jussuf how to 
additively enlarge the sides of the figure using the language means “if… (then)…” (line 81), “x cm 
become y cm” (lines 81 and 83), and “making larger by x” (line 81). The mathematically inadequate 
idea of enlarging the sides by adding 3 cm to all or some sides occurs in nearly all groups of the study. 
An overview on students’ language means for talking about enlarging figures is printed in Table 1, 
sorted by the related mathematical ideas. 

Language means Examples from students’ talk 
Students’ language means for talking about additive ideas 
to make x cm Did you also make everything 3 cm, Leonie? 
(to calculate) x plus y / plus x  Yes, I did everything plus 3. / So then you calculated 6 plus 3? 
x become y  That are 6 cm here. They become 9. 
x longer / larger / higher / 
more / … 

Yes, I though 3 cm longer. / Everything 3 cm larger. / 
Um, maybe it’s just always 3 cm higher […] to be 3 cm more? 

x more / longer than You have to be 3 cm more than true to scale. /  
You have to write 3 cm more than normal. 

x on top There was written that there are already 4 cm that you should enlarge on 7 cm 
in that I just calculate 3 cm on top. 

to make larger by  look, if 4 cm become 7 cm, you have to make larger by 3 
to enlarge on  There was written that there are already 4 cm that you should enlarge on 7 cm 

in that I just calculate 3 cm on top. 
difference between x and y I think 10.5, because 9 is only calculated plus 3. And that’s just the difference 

between 4 and 7.  
Students’ language means for talking about the idea of doubling 
to take / make the double / 
to double 

And eh it says 4 cm. And then I just took the double. Thus 8. And then this is 
enlarged. And quasi doubled. 

Students’ language means for talking about multiplicative ideas 
x corresponds to y / x are y So, 4.5 are 7.875. So, this side is 4 cm long eh 4.5. But to begin with let‘s put 

away the 0.5. So, if we then calculate 0.5 corresponds to 0.875. 
x times y Just take the 6 cm and then 1.75 times 6. Simply just calculate times. 
to calculate with the rule of 
three 

Ehm, I did calculate with the rule of three for 1 cm 1.75 times 6, because it 
was 6 cm, that makes 10.5 

on x cm  I have the rule of three, thus on 1 cm. To 3 cm because my side, well two were 
3 cm, I think at least […] 

from x to … From 100 to .. And then from 1 times 3 and 1.75 times 3 are 5.25. 

Table 1: Students’ language means for talking about enlarging figures identified in 6 groups 

Like Hamsa in line 81, students with additive ideas often initially use language means related to visual 
impressions of larger, more, higher, huger and related verbs. Furthermore, they often describe 
processes (instead of e.g. talking about characteristics or relations). Some groups also use the phrase 
“x cm become y cm” (like Hamsa in lines 81 and 83) that is also offered in the text of the task.  
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Another interesting inside refers to the line “x more/longer than” in Table 1 (not printed in the 
transcript but from this group): Jussuf’s utterance “You have to be 3 cm more than true to scale” 
(F1_F2_V1_T1_G6, line 249) combines two ideas in one sentence: the inadequate idea of additively 
enlarging the sides and the concept of scale which usually refers to the mathematically sound multi-
plicative idea of scaling with a magnification factor. Here, Jussuf seems to use “true to scale” for 
referring to the length in the original figure and/or for expressing that the shape is conserved. The 
phrase “true to scale” is taken up by the group and later on even used in their written general 
instruction for enlarging figures (Figure 2). But, since it is not discussed regarding its mathematical 
meaning, the term stays vague and is still used in connection with additive ideas.  

    
Figure 2: General instruction on enlarging figures from Hamsa, Jussuf, and Younis  

The analysis of further language means related to multiplicative ideas reveals two important points. 
First, talking about the rule of three makes it necessary to talk about corresponding numbers, for 
example by the means “x corresponds to y” or “x are y” (see Table 1). These language means are 
relatable to a static perspective on similarity since they do not only describe a process but also 
relations. For example, the static perspective also talks about ‘constant length ratios of corresponding 
sides’. The expression “x corresponds to y” could also work with additive ideas but is not observed 
in this way in the analyzed data.  Instead, only the expression “x becomes y” is identified which is 
very close to the formulation of the task and also has another meaning than “x corresponds to y”. 
Particularly, “x becomes y” (as a lot of the language means related to additive ideas) describes a 
process and not a relation and is thus more related to a dynamic perspective on similarity. Second, 
calculating with the rule of three makes it necessary to talk about calculating “on 1”. Mathematically 
this parallels the idea of calculating the magnification factor which is introduced in most German 
textbooks as the constant result of dividing the lengths of corresponding sides (see next Section). 

Language means identified in a textbook 

The analyzed textbook starts with a page headed “Enlarging and Reducing” and introduces the new 
topic by referring to the dynamic perspective on similarity: several tasks ask students to draw 
enlarged/reduced pictures without giving any instruction. Task 5 is the only one talking about the 
process of reducing by “merging several boxes” (Böer et al., 2008, p. 20; see Figure 3 on the left 
side). The second page has the caption “Similarity” and starts with the questions “Which data does 
the drawer need to draw an enlarged version of the house? How do the line segments change, how do 
the angles change during enlarging?” next to a small and a larger drawing of a house, directly followed 
by the summary printed on the right side of Figure 3. Whereas the first question refers to a dynamic 
perspective on similarity, the second question is unclear but might be intended as a transition to the 
static perspective. In the summary, the first sentence refers to a dynamic perspective without talking 
about the corresponding processes, the remaining text to a static perspective. 

You have to be 3 cm longer than the scale. Then 
you draw it on the sheet. When you is all true to 
scale you cut it out thoroughly. At the end you put 
together the figures. 
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Figure 3: Extracts from the textbook (Böer et al., 2008, p. 20f.), translated by the author 

On the one hand, it was to be expected that the book does not offer a general instruction for enlarging 
figures on the first pages, since it follows the tradition of taking up students’ ideas. Thus, except for 
“merging boxes”, there are no language means for the dynamic perspective identified. On the other 
hand, the summary focuses on the static perspective on similarity with a strong emphasis on the 
concept of scale (most textbooks use the term ‘magnification factor’ which is here only mentioned as 
marginalia). The more mathematical perspective of this lack of transition between the perspectives 
will be discussed elsewhere. The analysis of language means shows, that “enlarging true to scale”, 
“being similar to each other”, “length ration” and “scale” (not as the concept scale but as the name 
for the quotient of length of the line segment in the picture and in the original) are language means 
that are of importance but not used in the tasks or texts before. The expression “corresponding” is 
used in this example only in connection to the angles. Other textbooks use this mean more prominent 
and especially for corresponding sides. A short review of more textbooks shows that starting with a 
dynamic perspective on similarity is quite common. After these first tasks of investigating how to 
enlarge figures, there is often a cut towards the summaries which are written from a static perspective 
on similarity, i.e. about “length ratios”, “magnification factors”, etc. which coincides with a change 
in the used language means from describing processes towards talking about relations. The 
comparison of students’ initially used language means and the target language identified in textbooks 
shows that there is a gap: On the one side students talk about processes and visual impressions, 
especially if they refer to additive ideas. On the other side, textbooks initiate thinking and talking 
about this dynamic perspective on similarity (without offering related target language) but focus often 
exclusively on the static perspective in the printed summaries which is connected to talking about 
relations. Thus, even though using different tasks, the challenge of leading over from a more dynamic 
to a more static perspective on similarity can be identified in the textbook itself as well as by 
comparing the task from the project and the textbook. 

Bridges from students’ language means to the language means of textbooks 

Of course, it is not possible to compare students’ oral language in the process of understanding with 
the written language of textbooks that display the already understood version of mathematics. Never-
theless, students need to be able to relate their language and the corresponding mathematical ideas 
from the phase of discovering mathematics with the counterpart from the textbook that is often the 

5 Drawings in squared grid can be 
reduced by merging several small 
boxes. Merge four boxes each for 
reducing in your notebook. 

Is an original figure enlarged or reduced true to scale, the picture figure 
and the original figure are similar to each other. The length ratio 
between the line segments of the picture and original figure is 
determined by the scale k. […]  
Each angle of the picture figure is just as big as the corresponding angle 
of the original figure. 

Thematic Working Group 09

Proceedings of CERME11 1637



 

 

basis for all other lesson phases (e.g., also as an idea in Gibbons 2002). Exploring possible bridges 
between students’ initial language means and textbooks, three points appeared central: First, the text-
book analysis revealed a cut between the use of the dynamic perspective in the first tasks and the use 
of the static perspective in the summaries which is paralleled in the used language means. Since the 
textbook does not offer language means for talking about the process of enlarging, it can be assumed 
that students in classrooms speak quite similar to the students in this study. This emphasizes the need 
of developing tasks that explicitly work on this transition of mathematical ideas along with supporting 
the corresponding language means in small groups or teacher guided whole-class discussion. Second, 
the notion of scale is used by Jussuf and Julian as well as in the presented textbook. But, this notion 
seems problematic since it is tied to a specific mathematical concept that needs to be understood in 
order to be used properly. Third and most important, the identification of language means used for 
talking about similarity in a dynamic perspective shows that students with additive ideas often use 
language means related to the visual change of sides and their language is very tied to describing 
processes. This also holds for the most cases in which students talk about their idea of doubling. In 
contrast, if students talk about the multiplicative idea, they tend not to use language means related to 
visual change. Especially Julian uses the language mean “x corresponds to y” which is close to 
“corresponding angles/sides” used in textbooks and also displays a more static perspective. Thus, the 
language means around “corresponding” can be identified as possible bridges between students’ 
language and the language in textbooks since it can be used to describe parts of the process of 
enlarging as well as to talk about relations between features of figures. This could also hold for the 
expression “calculate on 1” which refers to the rule of three used in the process of enlarging but can 
be also interpreted as talking about the magnification factor which describes a relation. 

Conclusion and outlook 
The study is limited in the small size of student groups that were observed. Thus, it is planned to 
extend the analysis to more groups and to enrich the data with more textbooks. Nevertheless, the 
presented research points to important directions: On the one hand, the study shows that students 
mainly talk about processes and refer to visually observable change, often staying a bit diffuse and 
not using mathematical wording (like adding, plus, etc.). On the other hand, textbooks often talk about 
similarity by means of characteristics and relations. This gap between students’ initial language 
means and the target language parallels the difference between talking about similarity from a 
dynamic or static perspective. This highlights the need for developing a task that explicitly picks out 
this transition as a central theme and supports students by offering language related support. This 
especially holds for students with low language proficiency that are still acquiring language and 
discourse practices that allow talking about characteristics and relations of figures. The analysis 
points to two language means that have the potential to bridge between students initial language 
means and the target language: “x corresponds to y” and “calculate on 1” can be used for talking 
about similarity from a dynamic perspective and static perspective. Nevertheless, there is a need of 
further research for developing language-responsive teaching-learning arrangements in the future in 
which both language repertoires can be bridged systematically by macro-scaffolding trajectories as 
well as for teacher moves for supporting the group work and following whole class discussions.  

Thematic Working Group 09

Proceedings of CERME11 1638



 

 

Acknowledgment 

The Deutsche Telekom Stiftung funds ‘MAGENTA–Explaining mathematics, discovering geometry, 
and participating in small group processes. Design research study on supporting mathematical 
explanations of language learners in grade 9’ (Senior Fellowship Fachdidaktik MINT to K. Erath). 

References 
Barwell, R. (2014). Language background in mathematics education. In S. Lerman (Ed.), 

Encyclopedia of mathematics education (pp. 331-336). Dordrecht, the Netherlands: Springer. 

Böer, H., Kliemann, S., Puscher, R., Segelken, S., Schmidt, W., Trapp, M., & Vernay, R. (2008). 
mathe live Erweiterungskurs 9. Mathematik für die Sekundarstufe I. Stuttgart, Germany: Klett 

Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, the Netherlands: 
Kluwer Academic Publishers. 

Erath, K. (2017). Talking about conceptual knowledge. Case study on challenges for students with 
low language proficiency. In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of 
the 41st Conference of the International Group for the Psychology of Mathematics Education 
(Vol. 2, pp. 321-328). Singapore: PME. 

Erath, K., Prediger, S., Quasthoff U., & Heller, V. (2018). Discourse competence as important part 
of academic language proficiency in mathematics classrooms. Educational Studies in 
Mathematics, 99(2), 161-179. doi: 10.1007/s10649-018-9830-7 

Gibbons, P. (2002). Scaffolding language, scaffolding learning. Teaching second language learners 
in the mainstream classroom. Portsmouth, NH: Heinemann. 

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van 
den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research 
(pp. 17-51). London, England: Routledge. 

Hölzl, R. (2108). Ähnlichkeit. In H.-G. Weigand et al., Didaktik der Geometrie für die 
Sekundarstufe I (pp. 203–225). Berlin, Germany: Springer Spektrum. 

Mayring, P. (2015). Qualitative content analysis. Theoretical background and procedures. In A. 
Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in 
mathematics education (S. 365–380). Dordrecht, the Netherlands: Springer. 

Mercer, N., Wegerif, R., & Dawes, L. (1999). Children’s talk and the development of reasoning in 
the classroom. British Educational Research Journal, 25(1), 95-111. 

Prediger, S. & Zindel, C. (2017). School academic language demands for understanding functional 
relationships. A design research project on the role of language in reading and learning. Eurasia 
Journal of Mathematics Science and Technology Education, 13(7b), 4157-4188. doi: 10.12973/ 
eurasia.2017.00804a 

Sfard, A. (2008). Thinking as communicating. Cambridge, England: University Press.  

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press. 

Thematic Working Group 09

Proceedings of CERME11 1639



 

 

Young children’s mathematising during free play with ‘loose parts’  
Marie Therese Farrugia 

University of Malta, Faculty of Education, Malta; marie.t.farrugia@um.edu.mt 

‘Learning through play’ is an oft-quoted maxim for Early Years education. I was interested in 
investigating how free play with ‘loose parts’ (blocks, acorns, pebbles, etc.) might support children’s 
experiences of mathematics. In this paper I discuss the first part of a study carried out with four 4-
year-old children in Malta. The children were presented with various loose parts and allowed to play 
freely without adult intervention. I noted whether the children gave mathematical interpretations as 
they played; my main interest was numerical/quantitative interpretations. As a theoretical framework 
I drew on Vygotsky’s theory of play and on the notion of ‘mathematising’ (Sfard), or participation in 
mathematical discourse. I considered this in terms of the relations set up by way of terminology 
(Walkerdine). My data showed that spontaneous mathematising during the free play was limited.  

Keywords: Mathematics and play, early childhood education, mathematising; loose parts. 

Introduction 
As part of the recent Maltese National Curriculum Framework (Ministry for Education and 
Employment, 2012), the ‘Early Years’ (ages 3–7) has been recognised as a key period of education. 
The document emphasizes that the pedagogy to be used during this time should be distinguished from 
the more structured pedagogy used in the Primary years. In Malta, non-compulsory kindergarten 
education has been offered within State school settings since the mid-1970s, although, as Sollars 
(2018) explains, staff training, qualifications, recruitment and retention have posed challenges over 
the years. With the recent introduction of undergraduate training for kindergarten teachers, the hope 
is that over time, informal pedagogy will counter the established practices of formal literacy and 
numeracy sessions commonly carried out in kindergartens. My involvement in the new degree 
programme prompted me to carry out a study, in which I considered one type of play situation, namely 
invitations to engage with ‘loose parts’ (sets of items such as blocks, acorns, pebbles). My first 
research question was whether children would spontaneously give mathematical interpretations when 
playing freely with loose parts; I also asked if, and how, interpretations would be influenced when 
numbers were added to the sets of items available. A third question was how an adult’s (myself) 
contributions could influence the children’s apparent ‘mathematising’. In this paper, I report on the 
first two questions.   

Mathematics and play 
Björklund (2016) conjectures that there is hardly any early childhood educator or researcher who 
would not argue for the value of children’s play. However, May (2016) reflects on what ‘learning 
through play’ means, highlighting that early years educators are pulled between two ‘poles’ (p. 21), 
namely construction and instruction. While ‘construction’ emphasizes more freedom for the child to 
discover and create meanings independently, ‘instruction’ assumes a greater role for the adult in the 
learning process. Several studies that have been carried out in Early Childhood settings focus on 
contexts wherein adult guidance is involved (e.g., Brandt, 2013; Sayers, Andrews & Björklund 
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Boistrup, 2016). It is less common to find studies on children playing freely. One notable exception 
is Helenius et al. (2016), who use free play situations to theorize what renders play ‘mathematical’. 
Helenius et al. (2016) suggest that play is rendered mathematical if it is creative, participatory and if 
it includes rule negotiation. They thus place social processes in the forefront of their analysis and 
used these criteria to describe episodes of 6-year-olds’ play as being mathematical or otherwise. They 
distinguish their method from a more common approach to associate the mathematics of young 
children with school topics such as number, geometry, pattern or measurement. I myself have taken 
the latter stance in my study for three reasons: First, I was interested in quantitative dimensions of 
reality (van Oers, 2014) from the perspective of the child; second, ‘Numbers’ are stressed in our 
kindergartens, and third, I wished to focus on the use of subject terminology to complement my 
research in primary classrooms (e.g., Farrugia, 2017).   

Helenius, Johansson, Lange, Meaney and Wernberg (2016) explain that the acknowledgment of the 
importance of the educator in Early Childhood education has led to questions about the kind of 
learning that children gain when ‘left to their own devices’ (p. 7). Indeed, Lee and Ginsburg (2009) 
note that early childhood mathematics is broad in scope and doubt that much of it will emerge in free 
play. Similarly, Clements and Sarama (2018) argue that ‘mathematical centres’ (classroom areas set 
up with materials that might encourage mathematical tasks) might promote some incidental learning, 
but rarely build one mathematical idea on the next, which is a key characteristic of this content area. 
My interest in studying free play is founded on my knowledge that such periods are common in 
Maltese kindergartens. Sollars (2013, and works in progress discussed in personal communications) 
studied a large number of local early childhood settings, and has noted a common pattern of adult-
guided structured activities interspersed with ‘free play’ at various times of the day. Structured 
activities (hence, ‘instruction’ time) include painting and crafts, storytelling, and also worksheets 
aimed to fulfil school and parental expectations for learning to recognize and write numbers and 
letters. Free play (presumably ‘construction’ time) might involve the home corner, table-top toys, 
coloured dough, wooden puzzles and sets of ‘loose parts’ (e.g., blocks, sticks, pebbles).  

My interest in focusing on play with loose parts in particular derives from the assumption that such 
items, being open ended, are intended to invite interaction and creativity. With regard to mathematics, 
Tucker (2010) suggests that they offer opportunities for counting, sorting, pattern making, operations, 
investigations into weight and length, and problem solving. I am aware of only one project that (in 
part) focused on mathematics and loose parts. This was carried out by Novakowski (2015), who 
worked with teachers to provide children with ‘Reggio Approach’ inspired provocations. However, 
most of the activities were set up with an intention in mind (e.g., a pattern with gems is displayed, 
prompting the children to explore patterns of their own, or the children are challenged to try stacking 
five pebbles). It is not my intention to argue that this type of play is necessarily more/less suitable 
than other types of play for prompting mathematical interpretations. Rather, my intention is to offer 
an original focus by reflecting on young children’s mathematising during free play with loose parts.   

Theoretical framework 
Vygotsky (1967) held that imaginary play had an enormous role in a child’s development, in that it 
is a transitional stage through which a child can ‘sever thought from an object’ (p. 12). The liberating 
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of thought and meaning from their origin in the perceptual field, provides the foundation for the 
further development of speech and its role in advanced forms of thinking. This liberation of meaning 
from object is facilitated by means of what Vygotsky referred to as ‘pivots’. If a child uses a stick as 
a horse, the stick acts as a pivot to transition to the child from a real situation to an imaginary one. 
Vygotsky (1978) further explains that when using a stick as a horse, the child retains the property of 
the thing, but changes its meaning. It is the meaning, in play, that now becomes the central point and 
objects are moved from a dominant to a subordinate position. Indeed, Vygotsky believes that a key 
characteristic of play is that it is a stage between, on one hand, the purely situational constraints of 
early childhood and, on the other hand, adult thought which can be totally free of real situation. Just 
as Vygotsky recognised play items as pivots for more abstract and imaginative thought, in this study 
I view the ‘loose parts’ as pivots that offer potential opportunities for mathematical interpretation. 

Working within a Vygotskian perspective, van Oers (2010) explains that an unintentional, or 
spontaneous, action/utterance by a child may be taken as a cultural form [e.g. mathematics] and 
reacted to accordingly by an adult; in time, through participation in such interactions, the child 
him/herself may acknowledge the [mathematical] meaning of the adult reaction, and finally, of his/her 
own actions as well. The mastery of new language develops through communications with other 
people, even in play contexts (Van Oers, 2010). Sfard (2008) refers to the participation in 
mathematical discourse as ‘mathematising’. In her classic book, Walkerdine (1988) posits that a shift 
to mathematical discourse is a shift from one practice/system of signification (e.g. an ‘everyday’ 
activity) to another practice/system of signification (e.g. mathematics), wherein new relations are set 
up. For my analysis, I planned to focus on the children’s utterance of words that indicated a 
mathematical idea, and also on apparent relations expressed through these words. Relations may have 
been expressed by way of language alone, or with reference to the play items. I believed that the 
expression of such relations would allow me to discuss (a) whether the children engaged with 
mathematics ‘spontaneously’ in their play (first part of study); (b) if, and how, my prompts ‘pushed’ 
the children in the direction of considering the play items from a mathematical perspective (second 
part). My main interest was number and counting, although other ideas may also have been noted.  

Research design 
The choice of school and classroom was opportunistic. I was acquainted professionally with the Head 
of School, who then put me in touch with a volunteer teacher who allowed me to work with her 4-
year olds. I sat in the class a few times in order that the children and I become familiar with each 
other. Since the 14 children in the class came from varying language groups, the teacher used English 
as a lingua franca. This is a common language strategy used in Malta, where English is the country’s 
second language. The four children who participated in my study were chosen by the teacher such 
that they would feel comfortable playing together. Parental consent and the children’s own assent 
were also necessary. Mario and Sarah were Maltese, Dorina was Hungarian and Ling was Chinese. 
All four children understood English; they could also speak English, with Sarah and Dorina being the 
more fluent. During the study sessions, I used English, although switched to Maltese if Mario chose 
to speak to me in Maltese. Their teacher reported that they all ‘liked mathematics and numbers’.  
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Eight 30 minute video-recorded sessions were carried out in the school library. Sets of ‘loose parts’ 
were prepared in boxes/dishes and the children were free to choose items to play with; a selection of 
the following items were provided on various days: acorns, small tree slices, sea shells, plastic 
coloured blocks, plastic coloured connecting camels, white and black river pebbles, gemstones, 
coloured foam dice. Numerals in various forms were introduced in Session 5. My main interest was 
number/quantity, but I was open to note other mathematical ideas that might arise. The children 
generally played around a table, sometimes moving to other parts of the room. For the first five 
sessions, children played freely, with minimal interaction from my part. Although the intention was 
not to intervene at all, in practice I found that simply watching without saying a word was unnatural; 
some interaction was inevitable. However, for Sessions 6–8, I interacted much more, and with 
purpose, as they played. In this paper I report on the first part, Sessions 1 - 5.  

Analysis of the data was done by viewing the videos and noting where ‘mathematical’ vocabulary 
was used by the children. Short transcripts were produced of these excerpts in order to trace 
interaction (for example, to document if, and how, a child’s comment was reacted to by the others).  

Results 
The children played with the items eagerly. For much of the time each child was focused on their 
own task, albeit communicating with the others, and being influenced by the play going on around 
them. For example, if Dorina made a ‘necklace’ with connecting camels, the others picked up the 
idea and made their own necklaces, bracelets and crowns. At times Sarah and Ling played together. 
A lot of the play was imaginative and centred on the idea of birthday parties, an idea originated by 
Sarah. An element that persisted throughout all the sessions was making ‘cakes’ by filling the plastic 
dishes with pebbles and the other items. Pictures of children or monsters were sometimes placed in 
the dish to represent party guests; the table was sometimes decorated in various ways and the children 
sang ‘Jingle Bells’. The most popular items were the sea shells, gemstones and connecting camels. 
Figure 1 shows two cakes and a necklace.  

  
 

Figure 1: Examples of children’s play creations 

There were a number of comments relating to size and shape, and a high proportion of these were 
stated in the first session, when the children first saw the sets of items, for example “Oh! Tiny little 
shell!” (Dorina); “This is a pointy one” (Sarah); “This small one” (Ling). Not enough was said here 
for me to be able to conclude that the children were operating beyond an everyday use of qualitative 
descriptions (Walkerdine, 1988), although Mario did express direct comparison, a first step to the 
quantitative aspect of measurement (“Mine is going to be bigger than yours”). In relation to shape, 
Dorina once said that her camel arrangement was a rectangle, and Mario commented “it’s oval” in 
relation to a shell. Hence, they applied names of geometric shapes to their play items, even if the 
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labelling was imprecise. Occasions when numbers were mentioned were few. When the children first 
saw the monster pictures, and prompted by Dorina, they started commenting on the number of eyes 
(“One eye”, “two eyes” etc.); on two of the days, Dorina also selected monsters according to their 
eyes. In the first session, Ling pointed to the cameras saying “One, two.” At another point in the same 
session, Mario asked me why I had two cameras. These spontaneous uses of numbers were clear 
examples of quantification, and hence of these three children’s participation in the cultural practice 
of using numbers for expressing cardinality. It was interesting that quantity was alluded to more when 
a problem of limited number of each type of resource arose. Comments like “I don’t have enough of 
these” (Dorina), “But I need one of those!” (Mario) and other similar comments were heard, as 
children vied for the items they wanted/needed. The first time the problem arose this happened since 
we had limited space to work in, so I had to cut down on resources; then, the following day I limited 
the number of items purposely in order to confirm my observation. Mario and Sarah spontaneously 
indicated ‘emerging’ mathematical ideas relating to million as a large number, and half as part of a 
whole: “It was my birthday; it was a million birthdays” (Mario), “Hey Ling! You took half them!” 
(Sarah, referring to the gems) and “Għax jinkiser bil-half” [Because it will break with half] (Mario, 
in relation to a delicate shell). On the other hand, I had included a set of foam dice to offer an 
opportunity for the children to focus on the dot arrangement, perhaps to subitise. However, the 
children used the dice as part of the cake decoration, or to construct a tower. Dorina mentioned that 
she had once had ‘one like this’ (a die), had lost it, and now had a new one. Although generally I was 
not intervening in the sessions, I pointed to the spots and asked Dorina if she knew what they were, 
to which she answered, “Yes, spots”. Thus she gave an everyday interpretation of the spot pattern, 
and did not spontaneously subitise. 

On the fifth day I introduced numerals (1–10): a set of large red/blue/yellow plastic numbers, a set of 
magnetic numbers and cards with pictures of balloons printed on them. Dorina showed an interest in 
them immediately, crying: “Numbers!!!” She took magnetic numbers and laid them out in order on a 
metal sheet pointing to each one and naming them: “one, two, three …” The relation between the 
positioning of the tangible numbers and the recitation of the names illustrated that Dorina could 
engage in the practice of counting using the one-to-one and stable order principles (Gelman & 
Gallistel, 1986). She proudly showed up the display to the others, but they showed no interest, 
continuing with their own activities. Dorina then moved on to making a necklace with the camels. 
Similarly, Mario started the session by looking through the large numbers, naming some of the them 
as he did, thus giving evidence that he could ‘name’ the items appropriately; however he very quickly 
lost interest and turned to the box of camels instead to make a crown and other things. Ling showed 
evidence of being familiar with the cultural practice of putting a number candle on a birthday cake: 
she placed a number 4 on her cake, stating “I’m four year”, then placed other different numbers on 
the other cakes. I consider this to be evidence of an ‘emerging’ mathematical idea, since although the 
symbol was used appropriately in relation with the ‘cake’, it is unlikely that such a young child would 
have a conception of the time measurement of ‘4 years’.  

Other uses of the number items were non mathematical, for example as when Dorina grouped them 
by colour, placed them in different dishes and stated “I am making pies of the same colour”; Ling and 
Sarah used the magnetic numbers as they did the pebbles, acorns, etc., that is, to fill a dish to create 
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a cake. When I asked Ling why she had put ‘these new ones [items]’ on top of her cake, she answered 
“because this number cake”; in previous sessions she had made a ‘birthday cake’ and a ‘rainbow 
cake’. Sarah used the large plastic numbers as decorations around the cakes, as she had used the 
children/monster/balloon cards. At the end of the session, having exhausted all the items except the 
magnetic numbers, Ling and Sarah turned to these items and used them to ‘draw’ what they called a 
number castle (that is, a castle drawn with the numbers).  

Discussion and conclusion 
Prior to the study, I had anticipated that the children might spontaneously engage with mathematics 
in general, and number in particular. This assumption was based partly on the fact that at school they 
were systematically learning the numbers and their values, and partly on research and pedagogy texts 
(for example, Seo & Ginsburg, 2004; Charlesworth, 2012 respectively) that mention how children 
‘spontaneously’ engage with mathematical ideas. However, in my small study I noted limited 
spontaneous focus on ideas that I might classify as ‘mathematical’. That is, mathematical terminology 
was used only a little, and not necessarily in a way that implied mathematical relations (Walkerdine, 
1988). In the absence of certain relations, one cannot conclude that the children were ‘mathematising’. 
Even when prompted with numbers, the children’s attention to the quantities related to these numbers 
was limited. Since I had seen large dice in the classroom, one with numerals and one with the spot 
pattern, I introduced the dice to prompt subitising, but these were used as blocks or decorations. 
Hence, following Helenius, Johansson, Lange, Meaney and Wernberg (2016) and others, I too query 
the amount of mathematics that children engage with when left to play freely, although it is worth 
noting that restricting the number of resources increased talk related to quantity/number. There was 
some evidence of ‘emerging’ mathematical ideas, such as when the children used discipline-related 
words in an approximate or referential manner. This is similar to when the children use grammar rules 
in an inappropriate way. Examples of the latter are when Ling said to Dorina “You broke-ed them” 
or Mario said “Ajma, subajji” [Ow, my finger]. In both cases the child was applying a general 
grammar rule (shown here underlined) which did not actually apply to the word being used. Still, as 
an adult I recognized the emergence of language rules that, presumably, the child was appropriating 
through social interaction over time. From the perspective of mathematising, ‘emergent mathematics’ 
might be viewed as the crossing of boundaries (Walkerdine, 1988) from one practice (everyday 
experiences and ways of expression) to another (school mathematics).  

One possible explanation for the limited mathematising might be found in the children’s classroom 
experiences. The class teacher had explained that she targeted mathematics (mainly numbers) through 
daily routines (e.g. counting children present) and storytelling (e.g. counting the fruit the hungry 
caterpillar ate) and also through worksheets focusing on number recognition and quantities which 
were expected to be carried out. While the children were regularly given periods of free play (house 
corner, table top toys, puzzles, sets of loose parts and so on), the teacher admitted that during such 
time she did not interact with the children but tended to use the time to catch up with required paper 
work, to set up an activity, disinfect toys or to sit with individuals to help them through a worksheet 
(numbers / letters). It seems that the mathematics they were learning in the structured curriculum 
remained distinct from their play. Another reason may have been that from the children’s perspective, 
there was no ‘need’ or interest to count items or to engage with the numbers provided in a 
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mathematical sense. Rather, the tasks of (mainly) making cakes and joining up camels took over the 
children’s attention almost completely. Although the children initially admired the pebbles, etc. and 
the numbers, ultimately, the use of all items appeared to be subordinated to the main task of interest, 
e.g. filling a dish to make a cake, ‘drawing’ a picture and so on. This may have been compounded by 
the fact that many of the items provided were novel and caught the children’s attention/imagination.  

Vygotsky (1967) has written about the development of abstract thought through free play; he theorises 
how meaning becomes central, while objects themselves are moved to a subordinate position. There 
is still much to be done in exploring the transition from a play situation to one where play items are 
given an abstract ‘mathematical’ interpretation. That is, focusing on the numerical/quantitative aspect 
rather than, for example, on the item’s potential use in the creation of a cake. In the second part of 
my study, I made a systematic attempt at using the play items as ‘pivots’ for mathematising. My 
initial analysis (still to be reported) supports the argument that purposeful intervention can be 
effective for prompting a focus on mathematics. According to Walkerdine (1988), this focus involves 
creating new relations, even when using lexical elements already familiar from ‘everyday’ (hence 
different) experiences. In the context of free play - where children rightly assume a freedom to play 
as they please - the process is a challenging one.  
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The goal of this paper is to start an investigation on how high school teachers evaluate students’ 
argumentative texts. In particular, as an argumentation requires dealing with some mathematical 
content, to produce a verbal text, possibly equipped with diagrams and formulas, and to make clear 
the links between premises and conclusion, we are interested in finding out whether teachers focus 
on all of the three aspects or on one or two of them only. We have gathered the comments of 12 high 
school teachers on five argumentations written by university science students in order to justify their 
answers to a problem involving formulas and graphs. 

Keywords: Argumentation, language, evaluation, teachers, mathematics education. 

Introduction 
The importance of argumentative practices in mathematics teaching at all levels has been increasingly 
highlighted in the last years. In the transition from high school to university these practices are 
especially important. This holds also for the mathematics classes for science undergraduates, as it is 
often necessary to teach some basic concepts to large numbers of first-year university students with 
assorted levels of competence and motivation, in a short span of time. In this context, it might happen 
that some students try to learn some content by heart or to solve problems through strategies not based 
on some interpretation of the meanings involved. The practice of asking for argumentations to explain 
and justify their solution procedures when dealing with mathematical problems has proved effective 
both to assess students’ competence and to help them to adjust their learning processes. Still, a number 
of students seem not to be acquainted with argumentative practices, regard them as abnormal and 
cannot tell the difference between a correct and justified procedure and a correct but unjustified one. 
These remarks induce us to guess that there are some problems about the development of 
argumentative skills in high school. So we decided to start a study about how high school teachers 
interpret and assess argumentative text produced by students, in order to see which aspects are, in 
their opinion, relevant. Throughout the paper we use some terms (such as ‘proof’, ‘argumentation’, 
‘argument’, ‘explanation’, ‘justification’) in a broad sense, without referring to some distinctions 
proposed in literature, such as, for example, Duval’s distinction between proof and argumentation 
(2007), or Johnson’s distinction between ‘argumentation’ and ‘explanation’ (2000), or the 
distinctions between ‘argumentation’ and ‘argument’ proposed in literature (e.g., Johnson, 2000, 
p. 105; Bermejo-Luque, 2011, p. 68). We regard the proof of a theorem, as well as the justification 
of a resolution procedure of a mathematical problem, as texts that, in some way, describe and make 
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explicit instances of the semantic relation of logical consequence1. We shall try to make this point 
clear in the a priori analysis.  

Theoretical framework 
The evaluation of an argumentation involves at least three main aspects: the analysis of the ideas 
related to the semantic domain of the discourse, in our case mathematics; the linguistic analysis of 
the text produced and the analysis of how the links between the premises and the conclusion are made 
explicit. These three aspects are to some extent autonomous, since an argument might happen to be 
appropriate related to one or two of them and not to the other(s). As remarked by many authors, such 
as Bermejo-Luque (2011), an argument is, first of all, a piece of text. So language is to be regarded 
as a relevant factor in the analysis of arguments. We adopt a functional-linguistic perspective 
according to Halliday (1985) and Hasan (2005). This perspective fits well with frameworks assuming 
that language plays a major role in the development of thought, and also with a sociocultural, non-
platonistic view of mathematics. In particular, we assume Hasan’s description of the central role of 
verbal language (2005) and Halliday’s definition of the three metafunctions of language, ideational, 
interpersonal and textual (1985). In short, the ideational metafunction is related to the representational 
meaning, i.e. what the text is about. The interpersonal metafunction is concerned with interactional 
meaning, i.e. what the text is doing as a verbal exchange between people. The textual metafunction 
regards the organization of the message, i.e., how the text relates to the surrounding discourse, and to 
the context of situation in which it is produced. We believe that in a context of communication like a 
classroom, all of these components are involved and so are to be taken into account. In particular, the 
textual metafunction is closely related to argumentation, since explaining the links between premises 
and conclusion requires a well-organized text. The debate on argumentation theory is widely complex 
and involves a number of stances. In our opinion both the specific features of the semantic domain of 
mathematics and the fact that an argumentation is essentially a text are to be taken into account.  

Goals 
The main goal of this study is to begin to understand how high school teachers of different subjects 
evaluate the written argumentations produced by students, and in particular what weight they assign 
to each of the three aspects mentioned above, and how. This is important in order to reflect on the 
transition from a model of learning based on the acquisition of content only to a model aimed at 
developing the competencies required to take part in a discourse on such content. Arguing on a subject 
requires a different and somewhat deeper understanding of the subject itself.  

More specifically, our main research question is: do the teachers involved also take into account the 
logical structure of the arguments they are evaluating (i.e., how the parts of the argumentative text 
are linked each other)? 

Methodology 
We asked a group of 12 high school teachers of different subjects (9 Mathematics, 2 Philosophy, 1 
Science) to evaluate the argumentations proposed by 5 first year science undergraduate students to 
                                                 
1 A sentence P is a logical consequence of a set G of sentences if any interpretation satisfying all of the sentences of G 
satisfies P as well.  
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justify their answers to a problem administered during a tutorial session. The teachers were involved 
in a long-term in-service training course focused on transversal competences. We asked them to write 
down their evaluation of the arguments and any comments they felt appropriate. In particular we 
asked them to state if they regarded the arguments acceptable for students at the end of high school, 
with regard to mathematical correctness, linguistic adequacy and explicitation of the links between 
the parts of the argument. Afterwards we interviewed them. The aim of the interviews was not to 
elicit further information but to be sure of our interpretation of what they meant in their written 
evaluations, as it was possible that teachers of different subjects might use some words with different 
meanings. One example of such a word is ‘formal’ [‘formale’], which can be associated to a range of 
different meanings, such as ‘independent from content’ or ‘conformed to a given pattern’ or even 
‘related to structure rather than to function’. The problem under discussion is shown below.  

Let f be the function defined on real numbers by: 2( )
2x

f x
e

= -
+

. Among the following graphs one is 

associated to f. Mark it and explain in detail. 
A 

 

B 

 

 C  

 

D 

 

 

A good translation from one language to another, which is usually based on grammar, often succeeds 
in rendering the ideational meaning of a text. With interpersonal and textual meanings there are 
sometimes problems. In particular, the textual organization of Italian is quite different from English. 
For example, in the text of Student 1 some subjects are missing. In English this is both a grammatical 
and a textual error, whereas in Italian it is textually inappropriate but not grammatically wrong. In the 
translation, if we put the subjects, as we have been taught at school, we hide the textual inadequacy 
of the text, if we do not, we add a grammatical error (which affects the ideational meaning) to a text 
which was just textually inappropriate. So we have added the Italian original version. 

Student 1: I exclude the graphs A and B because we have calculated f’(0)=2/9 and 2/9  is the slope 
of the tangent line to f(x) in x0. As is positive, the function is increasing, but in A and 
B we see that decreases => I exclude them. Moreover, doing the sign of the function 
-2/(ex+2)>0 we notice that the function is always negative, because of tf’(0)=2/9  he 
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minus in front of the function (otherwise positive). Then we exclude the graph C, since 
from 0 onwards it is positive. The choice then falls on graph D, correct.  

 [Escludo i grafici A e B poiché abbiamo calcolato e 2/9   è la pendenza della retta 
tangente a f(x) in x0. Essendo positiva la funzione è crescente, ma in A e B notiamo che 
decresce => li escludo. Inoltre facendo il segno della funzione -2/(ex+2)>0  notiamo 
che la funzione è sempre negativa, per via del meno davanti alla funzione (altrimenti 
positiva). Allora possiamo escludere il grafico C, poiché da 0 in poi è positiva. La 
scelta ricade allora sul grafico D, corretto.] 

Student 2: The exact graph is D since by computing f(0) = -2/3 I found the point where the 
function cuts the y axis, that is -2/3. Furthermore, by computing f’(0) = 2/9 I see that 
the function in zero is increasing because the derivative in 0 is positive.  

 [Il grafico esatto è il D poiché calcolando f(0) = -2/3 ho trovato il punto in cui la 
funzione interseca l’asse y cioè -2/3. Inoltre calcolando f’(0) = 2/9 noto che la funzione 
in zero è crescente poiché la derivata in zero è positiva.] 

Student 3: Surely graph C does not correspond to f(x) as it passes through the origin. Graph A 
does not correspond to f(x) since it is decreasing in x=0 whereas f’(0) = 9/2 which is 
positive, so f(x) for x=0 is increasing. Graph B does not correspond to f(x) since it is 
decreasing in x=0 whereas f’(0) = 9/2  which is positive, so f(x) for x=0 is increasing. 
The graph that most likely represents f(x) is D.  

 [Il grafico C sicuramente non corrisponde a f(x) in quanto passa per l’origine. Il grafico 
A non corrisponde a f(x) in quanto è decrescente in x=0 mentre f’(0) = 9/2  che è 
positivo quindi f(x) per x=0 è crescente. Il grafico B non corrisponde a f(x) in quanto è 
decrescente per x=0 mentre f’(0) = 9/2  che è positivo quindi f(x) per x=0 è crescente. 
Il grafico che più probabilmente rappresenta f(x) è il D.] 

Student 4: Graph C does not correspond to f as it passes through the origin. I know that in f’(0) 
the derivative is positive, so its function must be increasing in that point. In A and B 
this does not happen. So the graph of the function is letter D.  

 [Il grafico C non corrisponde a f in quanto passa per l’origine. So che in f’(0) la derivata 
è positiva, quindi la sua funzione deve essere crescente in quel punto. In A e B ciò non 
avviene. Quindi il grafico della funzione è la lettera D.] 

Student 5: We exclude letter C at once since for x=0 it passes through point (0; 0) while f (0) ≠ 
0. If we consider that f’(0)>0 holds, the function is increasing in 0 so I exclude letters 
A and B, as they represent functions decreasing in 0 and a differentiable function 
decreasing in a point has a non-positive derivative in that point.  

 [Escludiamo subito la lettera C perché per x=0 passa nel punto (0; 0) mentre f(0) ¹ 0. 
Considerando che vale f’(0)>0 la funzione f è crescente in 0 quindi escludo le lettere 
A e B, in quanto rappresentano funzioni decrescenti in 0 e una funzione derivabile 
decrescente in un punto ha la derivata non positiva in quel punto.] 
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A priori analysis 
Students are requested to find which graph out of a set of four corresponds to f and to justify their 
answer. Teachers are requested to evaluate those explanations. The relation linking the answer to the 
data is that of logical consequence: the fact that graph D corresponds to f is a logical consequence of 
the data. In other words, students have to illustrate a mathematical, semantic relation by means of a 
verbal text, with the option of adding symbolic expressions and other signs. Basically students had at 
least three kinds of data: (1) those available from the definition of f; (2) those available from the four 
graphs; (3) the ‘closure’ condition “Among the following graphs one corresponds to f ”. The sentences 
that are logical consequence of the definition of f (in the context of classical mathematics) are of 
course a countable infinity. Of course we expect that students will focus on a small choice of them, 
such as, for example, f(0) = -2/3 or  f (0) < 0 or f’(0)=2/9. As regards graphs, the sentences obtainable 
are infinite too. The process is a bit more complex as the interpretation of graphs anyway requires 
some conventions. Properties like domain, continuity, differentiability and passage through given 
points cannot be inferred from the graph alone. At any rate, it is crucial for science students mastering 
multiple representations. The competencies required to devise counterexamples showing that 
properties of the kind mentioned above cannot be inferred by the graphs are not included in 
mathematics curricula for science undergraduates. So there is no alternative to compromise, in 
relation to the teaching goals. In our classes we usually accept that students, when dealing with a 
graph, adopt naive interpretations of properties like domain, continuity and differentiability. We 
usually require a more critical attitude towards properties such as the behavior of the function out of 
the range represented and the choice of the units of the axes. All of these aspects can be explained by 
means of examples, problems and activities that are within the reach of our students. So we expect 
that from the graphs the following properties are inferred. 

Graph A: the function associated (fA ) is negative and decreasing in (–3, 0);  –1 < fA(0) < –0.5 
Graph B: fB  is negative in (–3, 2); –1 < fB(0) < –0.5 
Graph C: fC is negative in (–3,–1), positive in (1, 3), increasing in (–3, 3); fC (0) > –0.5 
Graph D: fD is negative in (–3, 3) and increasing in (–3, 3); –1 < fD(0) < –0.5 

The closure condition (see above) is perhaps the most important piece of information, as it makes 
reasoning by exclusion possible. Without this piece of information the problem would not be solvable. 
As a matter of fact, in many cases (even though not in all) it is possible to decide that a given graph 
does not correspond to a given formula, but it is never possible to be sure that a graph corresponds to 
a given formula. A Cartesian graph, for example, represents a function only in a limited range and in 
an approximate way. For any graph given in a real interval, there are infinite functions that might be 
associated to it. In a wide range of school problems, and in particular in many of real world ones, data 
are almost never usable at once, but they need anyway to be identified and extracted and afterwards 
they require some basic competencies in order to be used. Also, a seemingly primitive property like 
f(0) = -2/3 requires to operate a replacement  and apply some arithmetic operations, which implicitly 
involve a number of properties (and competencies). Even the recognition that the function fD is 
negative in the range displayed requires some acquaintance with the conventions usually adopted to 
draw graphs, and some linguistic competence to master the meaning of words like ‘negative’ without 
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confusing it with ‘decreasing’ or with other words. In the same way, recognizing fD as ‘increasing’ 
requires some knowledge of the appropriate definition. 

Criteria 

In order to analyze teachers’ comments, we have taken into account the following aspects. 

1. The aspect of the argumentation they have focused on (e.g., mathematical, linguistic or logical 
correctness, communicative adequacy, explicitation level of logical relationships). 

2. The overall evaluation of each argumentation, with special care to contrasting evaluations. 
3. Any other specific remarks about mathematical, linguistic and argumentative aspects.  

Outcomes 
Of the 9 mathematics teachers only one (Flavia) considered the texts from the viewpoint of 
argumentation, while 7 of them almost exclusively focused on mathematical content. One of them 
focused on both mathematical content and language. Also Maria, the Science teacher, and Alberto, 
one of the Philosophy teachers, considered aspects related to argumentation. In particular Maria took 
into account the explicitation of the links among the parts of the texts produced by the students. Sara, 
the other Philosophy teacher appeared more interested in language. As far as mathematical content is 
concerned, the two Philosophy teachers did not make any remarks.  

The teachers provided different and even contradictory evaluations of the argumentations, especially 
as far as Student 2 is concerned. Ada, Franca, Oriana and Sara place it among the best, whereas Aldo, 
Carlo, Fabia, Giulio, Lisa and Maria place it among the worst ones. Claudia and Giorgio considered 
the five texts substantially equivalent. The first group of teachers appreciated the conciseness of the 
argumentation of student 2. On the contrary, some of the other teachers found the argumentation 
incomplete. Giulio commented on this text in a different way compared to the other teachers. He 
claimed that “it is impossible to find –2/3 on the graph, unless the unit is given divided into three 
parts, which is not the case, since on the y-axis there are multiples of 0,5 only”. He also claimed that, 
even this would be possible, “it would not be enough to exclude graphs A and B”.2 From the interview, 
we gathered that Giulio thought that student 2 had stated two relevant facts but had failed to relate 
them with the goal of the argument. The text of student 3 has been criticized by some teachers as 
“redundant”. As a matter of fact, the student has explicitly excluded three cases to select the fourth. 
The structure of his argument is logically much more acceptable than explanation 2, which is 
compatible with wrong interpretations of logical consequence. 

The most common objection raised by some mathematics teachers concerns the association of the 
sign of the derivative at a point to the monotonicity of the function at that point, whereas speaking of 
intervals would have been more correct. For example, Lisa, commenting on explanation 4, writes: 
“Once more we find confusion between pointwise derivative and monotonicity of the function in an 
interval”. Nonetheless, the same teacher, when summing up, states: “The reference to pointwise 
derivative, which is common to all explanations, could be accepted if one assumes that the students 
mean to refer to a neighborhood of the point”.3 

                                                 
2 From f(0) = –2/3 one can exclude graph C only. To exclude graphs A and B more information is needed, such as f’(0).  
3 This difference is not relevant to this problem as all of the functions involved are continuously differentiable. 
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Some of the criticism involves aspects related to style, such as the use of plural forms (“We exclude 
…”, “… we consider …”) or of expressions like “letter D” in place of “graph D”. For example Ada 
comments: “In the conclusion expressions like ‘the graph of the function is letter D’ do not sound 
well”. Some other remarks involve the (linguistic) confusion the between “graph” and “function” or 
between a point and its y-coordinate, labelled as “imprecisions”. On the other hand, Aldo, Fabia and 
Maria spot problems that severely affect the understandability of the text, such as the lack of subjects 
or of connectives. Fabia speaks of explanations “linguistically inadequate for undergraduates”. 
Student 3 has been criticized for the use of “probably”, even though with different motivations. 
Giorgio thinks it is a mathematical error, for in classical mathematics a sentence is either true or false. 
Oriana claims that “it cannot be accepted in any case”. On the other hand, Ada, Fabia and Lisa 
interpret it as lack of confidence. For example, Lisa writes “the student is not fully convinced that the 
others can be excluded”. 

The specific issue of argumentation has not been dealt with much. Aldo is the only one who explicitly 
analyzes the structure of arguments, in a classical way, in terms of premises-conclusions, possibly 
related to the model of Aristotle’s syllogisms. In his opinion “In no argumentation are premises and 
conclusion properly identified”, although he regards the arguments overall acceptable. Fabia, Giorgio 
and Maria underline the topic of the explicitation of the links among statements and remark that the 
argument of student 3 is the most explicit of the lot.  

Final remarks 
Most of the mathematics teachers involved have focused on mathematical content. It seems that their 
view of mathematics is still oriented to knowledge rather than to competence or reasoning. In other 
words, their view seems sharply acquisitional rather than discursive. Moreover, some of the 
objections raised involve aspects (such as the questions related to pointwise differentiability) that are 
not crucial for students who need a basic mathematical education only. The same teachers seem not 
regard argumentation as a relevant part of mathematical instruction. This suggests to teacher 
educators that there is still much attention to pay to teachers’ interpretation of mathematics education 
and to familiarise them with the learning potential of argumentation. It suggests also that teacher 
formation should focus on argumentation as a component of mathematical competence, rather than 
as an additional subject to be taught. A nice discussion, at the educational level, of these topics, has 
been provided by Freudenthal (1988), who clearly related the logical topics in mathematics education 
to language. The interdisciplinary character of argumentation is damaged if it is narrowly interpreted 
according to the schemes of some content domain, such as mathematical logic, philosophy or law. 
Most of them seem to regard linguistic competence as conformity to some pattern rather than 
adequacy to some functions or goal. This is the case of teachers criticizing the use of plural forms or 
of expressions like ‘letter D’. These may not correspond to some stylistic patterns but surely do not 
severely damage the readability of the text. Moreover, some teachers seem to give value to concise 
texts rather than to more extensive ones. It is possible that high school teachers’ expectations of 
undergraduates’ linguistic competence are too high and that they assume that undergraduates can 
fluently use literate registers, i.e. the more educated varieties of language. This unfortunately does 
not often happen. The use of plural forms and of ‘probably’, which has been criticized by some 
teachers, seem to be related to the interpersonal metafunction of language rather than to the ideational 

Thematic Working Group 09

Proceedings of CERME11 1654



 

 

one. In other words the students using such wordings did not mean to express some specific content 
but to position themselves in relation to the instructors or even to the other students. On the other 
hand, only three teachers notice some more substantial weaknesses of the texts, such as the lack of 
subjects or of connectives, which severely damages the accessibility of the text. In our experience of 
undergraduate teaching, this is a major problem with a number of students. This is not just matter of 
style, but, in a framework assuming that language plays a major role in the development of thought, 
it is a major obstacle for students, who lack the means for effectively representing and compacting 
information and verbally expressing the organization of their thinking process. It seems that some 
teachers do not recognize the importance of the language demands of a formal proof and do not relate 
them to the field of mathematical instruction. Verbally expressing argumentation can allow students 
to become aware of its logical structure, but the language means to do that, such as connectives and 
their combination within sentences, are crucial (Prediger & Hein, 2017). We have a feeling that some 
of the teachers involved had too high expectations about the mathematical competence of the students 
involved, as far as they were at university rather than at high school. In the future we need to improve 
the methodology to reduce the bias caused by the teachers’ view of undergraduate studies, for 
example by asking them to evaluate argumentations produced by high school students of their or other 
schools. We propose also to expand the number of teachers involved (including both mathematics 
and other subject teachers) and to use these results in teacher education activities. 
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A lot of research is being done on the interplay of mathematical learning and language skills. 
However, graphic aspects have been met with little response so far. What role does writing play in 
the process of improving language proficiency? This paper empirically reconstructs how language 
use develops within one lesson that provides manifold opportunities for students to negotiate and 
discuss. Special attention is paid to the role pupil’s written notes play within that development. 

Keywords: Language skills, writing processes, mathematical learning. 

Introduction  
We know that language plays an important role in mathematical learning. Consequently, mathematics 
education is not only about teaching and learning mathematical ideas and concepts, but also about the 
development of a language that reaches the demands of describing mathematical activities and 
expressing fundamental ideas. Mathematical and language learning accompany each other. One 
approach to improve mathematical and language skills in an interconnected way is to initiate 
interactive learning situations. Such discursive situations are meant to encourage language use and 
mathematical learning. Why should that work? First, language serves a communicative function. So 
it appears to be a platitude that learning language requires using language and interacting with others. 
Second, language fulfills a cognitive function. The challenge to develop mental mathematical objects 
is strongly linked to the availability of appropriate means of expression and language skills. Not only 
theories on language support the assumption that interactive learning situations are beneficial for 
cross-linked mathematical and language learning. However, the conceptualization of learning as a 
social process backs that idea. Learning takes place in the process of participating in interactive 
situations (Miller, 1986; Fetzer, 2007a). Referring to social frameworks of learning, all participating 
students should benefit from such a proceeding. Those who actively contribute to a mathematical 
discourse improve their language skills by developing an appropriate language that has the potential 
to convey their idea. Those who rather receptively attend the situation might profit by being part of a 
mathematical discourse. They might not only catch up mathematical ideas, but also ways to express 
them. But how does language use develop in classroom interaction? Graphic aspects seem to play an 
important role in settings that challenge mathematical language development; taking notes on solving 
processes, recording explanations and accounting for answers in a written way are constituent 
elements of cooperative classroom settings. Consequently, when studying processes of learning to 
speak mathematically, the role of writing should be taken into account. What role do graphic aspects 
play within that development? This paper provides a closer look at the two essential situations 
concerning these research questions: the phase of writing, and the phase of presenting on the basis of 
graphic notes. 

Development in language use  
In order to describe developments in language use, we need to specify. Koch and Oesterreicher (1985; 
Oesterreicher, 1997) offer a distinction in two dimensions of language: the medial and the conceptual. 
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The medial dimension is dichotomic: language can be either specified as phonic, when something is 
said and can be heard, or, it is assigned to graphic forms like writing. In contrast, the conceptual 
dimension is gradual. Language can be conceptually rather oral or rather written. It stretches between 
the poles of communicative nearness (oral) and communicative distance (written). This specification 
applies for both, medially graphic and medially phonic, forms of language. Talking with a good friend 
for example is closer to the conceptually oral pole than a presentation at a conference. A newspaper 
article is ‘more’ written than a twitter post. If we talk to our child when having breakfast, we might 
use short and incomplete sentences and combine them with gestures. As we are in a face-to-face 
situation, we can react directly to our counterpart and spontaneously negotiate our roles. Koch and 
Oesterreicher call this a language of nearness. The strategies of communication belong to the pole of 
orality. In contrast, conceptually written language refers to the pole of literacy and language of 
distance. It is used when the interlocutors are not necessarily in direct relation and the processes of 
speech production and speech reception might be separated from each other. Thus, aspects of the 
situational and cultural context have to be made explicit. Consequently, sentences are more complex, 
main clauses and subordinate clauses are formulated. Specific terms come into play to be precise and 
explicit. Koch and Oesterreicher call this a language of distance. Examples are a text of law (graphic) 
or a scientific lecture (phonic).  
Koch and Oesterreicher help to classify the registers of everyday language and academic language 
(Cummins, 2008). Halliday describes a register as “a variety of language, corresponding to a variety 
of situation” (1985, p. 29). According to him, the term register points to the detection that individuals 
adapt their use of language to a given situation. Thus, the register of everyday language is rather 
conceptually oral, no matter which medium is realized. It has to fulfil the function of a fast and 
unproblematic communication in our everyday life. As such, the oral language may be supported by 
gestures or by reference to a context. Words do not have to be clearly defined and sentences may be 
short or even incomplete. In contrast, the register of academic language is conceptually written, again 
irrespective of its medium. In academic contexts, language should be as explicit and precise as 
possible and intelligible without any reference to a specific situation. For that reason, words have to 
be well defined. Sentences might be complex in order to reflect relations.  

Eventually, there is the register of mathematical language. It is an academic register related to a 
certain field; mathematics. Technical terms like probability, multiplication or subtracting, as well as 
specific sentence structures, are constituent elements of mathematical language. Especially on the 
medially graphic level, very short and decontextualized sentences or graphic representations are 
characteristic for that register. 

In mathematics classes, we face the challenge to develop individual language use from orality towards 
literacy, from everyday language in the direction of learning to speak and write mathematically. The 
learning and teaching situation remains the same: students and teacher know each other and interact 
face-to-face. Nevertheless, a development towards precise and decontextualized academic, 
respectively mathematic, language has to be initiated. Fetzer (2007a; b) proves empirically that 
writing in mathematical classes and mathematical discourse on the basis of students’ written works 
fundamentally support mathematical learning. In this paper, special focus is put on language 
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development, and the way in which the implementation of medially graphic elements helps to provoke 
a move in the direction of literacy is reconstructed. 

Data and methodological aspects 
The examples analyzed in this paper are taken from the empirical study MitMaL (Miteinander Mathe 
Lernen) (Co-operative Mathematical Learning). In this study, cooperative and individual learning 
settings are compared to each other. Two math classes were observed and video- recorded for a couple 
of weeks. Both groups dealt with the same mathematical subject, but implemented different 
methodical approaches. In one class (group i), individual learning situations dominated. In contrast, 
the other teacher predominantly initiated cooperative group work and provided the opportunity for 
mathematical whole class discussion (group c). Pre-test, post-test and follow-up-test constitute the 
quantitative part of the study. Analyses on the transcripts of the videos account for the qualitative part 
of the study. They are conducted in a reconstructive manner applying analyses of interaction (Cobb 
& Bauersfeld, 1995). This method refers to the interactional theory of learning and is based on the 
ethnomethodological conversation analysis. In contrast to conversation analysis, it focuses on the 
thematic development of a given face-to-face interaction rather than on its structural development. 

The videos for this paper are taken from group c, who worked in a cooperative manner. In order to 
reconstruct the development of language use, the paper concentrates on one single math lesson on 
probability in grade four. Debora is accompanied throughout the whole lesson. In this way, her 
individual performance and development can be reconstructed from the beginning until the end of the 
lesson. Special attention is paid to the role the notes taken in the group work play in the presentation. 
How do they influence the verbal language skills? 

Empirical example 
The empirical example is taken from a math lesson on probability. 24 students of grade four try to 
find out which of the four given rules is the best to win when turning a colored wheel of fortune. The 
wheel of fortune is equally divided into eight sections, numbered 1 to 8. Two fields are red, two are 
blue, three are green, and one is white. The rules are: (1) You win with 1, 2 or 3; (2) You win with red; 
(3) You win with white or blue; (4) You win with 2, 4, 6 or 8. Card four is the most probable to win. 

The lesson starts with a thematic introduction in a whole-class situation. The tutor presents the wheel 
of fortune, and some students go for a first attempt. Afterwards, the children work in groups of four. 
They are equipped with a wheel of fortune, one set of cards with rules, and with a task sheet: Work 
together and find out which rule is likely to be the best to win. Why do you think so? The challenge is 
to work on the tasks, take notes and give reasons in written form. At the end of the lesson, children 
and tutor come together. They discuss their findings with their written notes at hand.  

Language use in the context of probability: Talking about probability requires mathematical terms 
like probable, improbable and equiprobable. In German, ‘probable’ sounds familiar to children. The 
expression is used in everyday language and is applied in the sense of ‘perhaps’ or ‘might be’. In 
contrast, ‘improbable’ and ‘equiprobable’ sound rather strange to young students. These expressions 
belong to the academic, respectively mathematical, register. However, talking and writing 
mathematically requires more than academic expressions and mathematical terms. Describing, 
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explaining and giving reasons require academic language proficiency on the sentence level. In this 
particular task, the students first have to describe their selection in written form. This is possible using 
a main clause. Conceptually spoken language in everyday register meets the demands. In addition, an 
explanatory statement on their selection is required. This is much more challenging, as German 
language demands subordinate clauses in order to formulate causal connections. In contrast to main 
clauses that are structured subject – predicate – object, subordinate clauses are put together in an 
inverted structure: subject – object – predicate. This inversion does not necessarily belong to the 
everyday register. The outstanding challenge in the context of probability is the fact that we do not 
only need a causal conjunction followed by a subordinate clause with inverted sentence structure, but 
also an infinitive clause as a third component. This last aspect clearly belongs to academic language. 
To put it in other words: in order to compliment the decision with reasons and justification, not only 
mathematical terms, but academic registers and complex sentence structures are especially necessary. 

Material for the group work: The rules rely on conceptually spoken language. They address the 
students directly and refer to the concrete given context of turning the wheel here and now. 
Mathematically spoken, it rather aims at a situational or context-bound understanding of probability 
and representativeness of personal attempts rather than at abstraction. The rules provide for a strong 
link to the students’ experience on the one hand, and to their everyday language on the other hand.  

The tasks (see above) apply conceptually rather spoken language as well. Again, the students are 
addressed directly. None of the mathematical terms of probability is used. Instead, the children are 
asked to choose one of the cards. A second sentence aims at an explanation. Interestingly enough, 
these colloquial questions can hardly be answered on a conceptually spoken level: if you work on the 
task in the order of appearance, you first have to determine the selection. That is easy. Afterwards, 
you need a causal subordinate clause and the infinitive clause, which is grammatically complex. In 
principle, conditional connections could be a solution: “If you choose…, you are likely to win. That 
is because…” This structure is much easier in German than the causal connection. Nevertheless, it 
clearly belongs to the academic register. However, such an answer is only possible if the students 
have already reached a rather high level of abstraction at this time. Condensed: if students work on 
the tasks and provide answers, they either have to fulfil a move on the conceptual level from spoken 
to written language, or they have to develop an abstract understanding that enables them to choose a 
slightly less complex language use. 

Beginning of the lesson (phonic): Children and tutor are sitting in a circle around a colored wheel 
of fortune ready to be spun. Debora does not contribute to this opening. The tutor starts the lesson 
referring to the students’ experiences with wheels of fortune: “Perhaps you know something like this. 
Such a wheel of fortune has something to do with winning or not. This is why it’s called wheel of 
fortune, cause if you win, you are lucky”. (Wheel of fortune is ‘Glücksrad’ in German, and being 
lucky is ‘Glückhaben’). In the first introduction to the theme, the tutor links not only the context of 
own experiences with the mathematical context of probability, but also different language registers. 
She plays on the fact that Glück bridges both registers. Pointing at the paper wheel of fortune, she 
moves her finger around in circles and says: “Today we have a closer look at the wheel of fortune.” 
Repeatedly in this introduction, she moves her finger in this manner as if she spun the wheel. By 
doing this, she might strengthen an activity-orientated representative understanding of probability: 
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Rule X wins because my own (little) random sample ‘proves’ it. This understanding does not claim 
for decontextualized academic language.  

The tutor’s language changes within the introduction. First, she seems to pick the students up and see 
them through by applying the everyday register. She distinguishes “good rules” you are likely to win 
with, rules you might “not necessarily” win with and rules that make it “quite impossible” to win. 
When explaining the task, she even grades further down and speaks of “a good way to win” and 
“stupid cards”. This colloquial language is accompanied by the turning gesture. Acting and speaking 
like this, the tutor marks the concrete situation as the starting point of the experiment on probability. 
Not before her last sentences, she uses the mathematical expressions: “For example, with this card, 
you will most probably win; with these two cards, it is perhaps equiprobable to win; and with this 
one, it is rather improbable.” This is the only time these terms are quoted in the introduction scene. 

Group work (phonic and graphic): For a closer look at the group work, Debora’s group is chosen 
exemplarily. Three phases of language use can be reconstructed within the working process: (1) 
conceptually spoken language, (2) everyday language with scattered mathematical terms, (3) 
everyday language with specifications and conjunctions. 

(1): Debora is the girl to take the initiative in the group. She suggests cutting the wheel out. While 
doing this, she lays the foundations for an activity-orientated approach and context-specific 
experiences. This first phase is dominated by the register of everyday and conceptually spoken 
language. Sentences remain incomplete; gestures play an important role for understanding. The 
challenge of writing is no issue of negotiating yet. The following scene emerges as soon as the girls 
have read out the rules. It illustrates the register of everyday language the girls apply.  

Debora: Points at Dalya That’s best 
Sara: Yes 
Debora: to Dalya say it again reaches for the wheel and takes it  
Dalya: I got reads out her card you win with 2/ 4/ 6/ or 8\ 
Debora: puts her fingers on the wheel it’s the majority- all fields but three- 
Sara: points at one field 
Debora: I see- moves her fingers on the wheel five as well/ 
Sara: no 
Debora: looking at the wheel, fingers still fixed on fields makes no difference- it’s equal\ 

However, they work straightforward on the task and find a first solution that is mathematically 
correct. The choice is formulated using conceptually spoken, deictic and context-bound language: 
“That’s best.” No mathematical term is applied. A first approach to explanation might be the physical 
detection (by touching) of four (out of eight) ‘lucky’ fields.  

(2): The second phase can be characterized by conceptually spoken language with scattered 
mathematical terms. Graphic aspects still do not come into play. In this scene, one can reconstruct 
one example of how mathematical language works its way into the discourse: Debora picks up a 
comment from a neighbouring group “Red is the most improbable.” She spontaneously integrates the 
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term in her active language use and confirms with a look on the wheel: “Yes, red is the most 
improbable.” In the following, this term remains a constituent part of the interactive process. All four 
girls stick to conceptually spoken language using the register of everyday language. Their sentences 
remain incomplete with scattered mathematical expressions. For example, Debora sums their findings 
up as follows: “Red is the most improbable. One, two or three is same, and Dalya’s is best.” 

(3): As soon as it comes to writing, there is no way of supporting words by pointing or showing. 
Written language has to carry the whole meaning. Accordingly, writing mathematically arises the 
necessity to develop language use. Debora’s group works sequentially. First, they answer the first 
part of the task: Work together and find out which rule is likely to be the best to win. They choose the 
conceptually spoken wording of their verbal formulation from the beginning “That’s best” and 
elaborate on it: “Best is card four which says you win with 2, 4, 6 or 8.” The deictic component of 
the face-to-face interaction is replaced by naming the card “card four”. The necessity to write results 
in specifying the concrete situation. The rule is taken from the card and copied word by word. This 
appears to be an appropriate strategy to create an answer that is socially accepted as ‘good 
mathematical language’. At the same time, the sentence structure remains conceptually oral. The 
elements ‘specification by concreteness’ and ‘copying phrases’ are put together one after the other. 
Though the subordinate clause is introduced with the appropriate conjunction, it is not conducted in 
the right grammatical arrangement.  

Later in the group work, the tutor reminds them to provide reasons for their decision. Subsequently, 
Dalya picks up the pencil.  

Julia: Because they are well spread\ 
Dalya: holding the pen Yes- 
Julia: points her finger to the paper Well- because they are well spread on the turntable\  
Dalya: yes writes 
Julia: Wheel of fortune – write wheel of fortune\ 
Dalya: Well- we’ve found a because- uhm I’ve written reads out best is card four which 

says you win with 2 4 6 or 8 because they are well spread on the wheel of fortune.  
Debora: spread thumb up 

In this short scene, the justification is graphically recorded. The aspect of the winning fields being 
evenly or well spread on the wheel of fortune was mentioned earlier only once by Julia. At that time, 
her idea would not come through in the interactional process. Why is she successful now? The tutor 
directly addresses the group and asks them to find a justification. The girls are running out of time. 
In this situation, Julia starts her suggestion with “because”. Her first utterance is rather vague. Perhaps 
feeling supported by Dalya’s “yes”, she then elaborates “the turntable”. As a third move towards 
improved language, she implements a mathematical term “wheel of fortune.” Summing up, her 
suggestion is put forward at the right time within the solving process. Julia is working with the 
elements of specification and integrating mathematical terms. The conjunction ‘because’ indicates a 
justification. That was the task. The sentence structure itself still reminds of spoken language. This 
form of speaking mathematically appears to be convincing to the group members. Debora seems to 
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try that wording on her own by repeating it. Her thumb up can be understood as acceptance. Again, 
she picks up an expression and integrates it spontaneously in her active vocabulary.  

End of the lesson (phonic and graphic): Gathering for the end of the lesson, the students have their 
sheets with their written works at hand. Debora is the first child to contribute in the presentation. As 
she hesitates and starts over twice, it seems as if she has to orientate herself first. In this situation, her 
group’s notes appear to be helpful. After a quick glance at the paper, she performs much more 
fluently: “Best we found out is card four.” In German, this is an example of conceptually spoken 
language: her word order is irritating. Precisely, ‘best’ is used as an adverb referring to ‘to find out’. 
Taking into account the given context, it appears to be more reasonable that she uses ‘best’ to 
characterize card four. Thus, her sentence structure is grammatically incorrect. Instead, it might reveal 
her order of remembering: we had to select (“best”), we had to work (“we found out”), we made a 
decision (“card four”). Here, the notes appear to support the memory: what did we do? In the 
following, her language develops. “Cause best is card four”. This is, in fact, only half a sentence. But, 
in contrast to the first attempt, it is in the right German word order. Then, she reads from the notes, 
probably in order to make sure to get the correct wording: “which says you win with 2 4 6 or 8”. 
Turning her eyes away from the notes and looking to the tutor, she proceeds: “Cause they are quite 
well spread on the wheel of fortune.” On the notes, the subordinate clause is in the wrong word order. 
Speaking aloud, she corrects the sentence structure. This can be interpreted as a step towards 
abstraction and language of distance. Her language develops towards academic register. Summing 
up, the notes warrant three aspects: orientation, reminder and thematic reassurance that helps to 
develop language skills. 

Analysing the other contributions in this presentation confirms these findings. Every single 
contribution is thematically on point. Obviously, graphic notes help to orientate. Moreover, the 
students supply their comments with phrases that structure the whole presentation process: “We found 
out the same” or “Not as the others”. That provides for orientation and structure not only within 
individual understanding processes, but also within the interactional discourse. The aspect of 
reminding of the own working process appears to take affect strongly. Every single student who 
contributes to the whole class presentation thematically closely links his or her comment to the notes. 
The quick glance at the paper is to be reconstructed in each sequence. Especially the observation that 
medially verbal language use improves compared to the graphic version in the notes confirms as an 
empirical result. For example, in one group, the notes say: “Weil Gewinnkarte vier das halbe 
Glücksrad einnimmt.” (Cause winning card four takes half the wheel of fortune.). Contributing in the 
class, the presenting boy turns ‘half’ into a noun and combines it with a genitive construction (“nimmt 
die Hälfte des Rades ein”). Using substantives and genitive constructions is a German speciality, 
which is especially characteristic for academic register. Accordingly, this is understood as 
development in language skills.  

Conclusions 
How does language use develop in cooperative classroom settings? What role do graphic aspects 
play? This paper provides a closer look at the two essential situations concerning these research 
questions: the phase of wiring, and the phase of presenting on the basis of graphic notes.  
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The necessity to write mathematically activates a development in language move at the conceptual 
level. Mathematical terms are embedded in rather spoken sentence structures; a first move towards 
mathematical language. Specification on the concrete context serves for more precision in 
descriptions. Even at the level of sentence structure, first developments can be reconstructed. On the 
one hand, students implement phrases that were socially accepted earlier as mathematically 
elaborated. On the other hand, they implement conjunctions. If-clauses and causal-clauses are 
characteristic elements of academic and especially mathematical register.  

Presenting is eventually a medially verbal action. But, in the given case, graphic aspects work their 
way into interaction. They contribute fundamentally to orientation, structuring and reminding both 
individual learning processes, and the interactional process. Particularly the graphic notes 
thematically reassure students and thus provide capacity to develop language skills. 
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From an interactionist perspective, interaction is seen as a foundational constituent of mathematical 
learning, as it creates the possibility for students to negotiate meaning, which then can lead to the 
construction and/or modulation of meanings which outlast the situation - framings. According to 
Krummheuer (1992), this is seen as learning. In multi-age classes, students have even more diverse 
framings then in single-age classes and when they are given the opportunity to learn collaboratively, 
an increased need to coordinate their framings might lead to an optimised possibility for learning. 
This research project has the objective of identifying how students participate in processes of 
collective negotiation of meaning and therefore how possibilities for learning mathematics emerge. 
First analyses show that the possibilities for learning emerging in the interaction vary depending on 
whether differences in framings can be coordinated and a taken-as-shared meaning is brought forth. 

Keywords: Multi-age education, collaborative learning, interactional analysis. 

Multi-age education 
No matter the school, students in a classroom are never homogeneous, also in relation to their learning 
preconditions. Each individual is unique and therefore has differing abilities and experiences. Using 
age as the distinguishing factor for placing students in specific classes is the norm, because it is seen 
as a possibility to make classes as homogeneous as possible. But even in learning groups which are 
homogeneous in age, the differences in students’ preconditions for learning can be up to five years at 
the time they enter into school (Lorenz, 2000, p. 22). One concept with the aim to purposefully value 
and meet this existing diversity is merging students of different ages and grades in one class 
deliberately (Prengel, 2007, p. 69), which can be referred to as multi-age classes. The benefit in 
making learning groups heterogeneous in age is e.g. seen in that, because the diversity of learning 
preconditions increases, the necessity for differentiation increases also. However, mathematics is 
often presumed to be a subject built up rectilinear whose content can only be learned following a 
specific order (Lorenz, 2000, p. 19). Nührenbörger and Pust (2006) found that because of this 
common assumption students in multi-aged classes are rarely given the opportunity to learn from and 
with others in mathematics classrooms. Instead, this often causes extremely individualised and 
separated learning to take place as teachers either feel they need to separate the learners back into the 
different age groups or they need to let each student learn individually at their own pace in order to 
meet the increased diversity of the students. However, both of these waste the opportunity seen in 
collaborative learning (Nührenbörger & Pust, 2006, p. 17), especially from an interactionist 
perspective on mathematics learning.  

Besides overarching concepts, which have been developed for collaborative learning within multi-
age mathematics teaching (e.g., Nührenbörger & Pust, 3006), interactions between learners who are 
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heterogeneous in age have been examined within multi-age mathematics education research. These 
studies predominantly focus on dialogues between two students from different grade levels and 
concentrate either on how knowledge is constructed in the interaction (Nührenbörger & Steinbring, 
2007) or on when interactions are beneficial for learning in these settings (Gysin, 2018). Our focus is 
also on possible benefits for students’ learning conditions when children with diverse preconditions 
interact with each other while solving problems collaboratively. However, we base our study on the 
interaction theory of learning, which will be described below, and include analyses of group settings 
of three students working together. 

Interaction theory of (mathematical) learning 
From an interactionist perspective, the individual process of learning is constituted in the social 
process of the negotiation of meaning. The social interaction, therefore, holds the potential to generate 
meanings new to the individual. Especially for young learners, interaction is seen as a foundational 
constituent of learning. In this context, Miller (1986) creates a sociological theory of learning of at 
least two individuals – the theory of collective learning processes – in contrast to psychological 
theories of learning which predominantly focus on isolated individuals. Hereby, he does not, on 
principle, question that learning is also an individual process, but rather that, when learning 
fundamentally in the early stages of a child’s development, an interactive collective process precedes 
or determines this process of learning something new (Jung & Schütte, 2018). In this sociological 
theory of learning, the concept of argumentation is essential and Miller (1986, p. 37) differentiates it 
from “communicative action.” Argumentation, and hereinafter more specifically collective 
argumentation, is mainly characterized by the aspect of rationality, whereas communicative action is 
based on something uncontroversial. Mathematical learning, therefore, takes place when two or more 
people negotiate what is viewed from a mathematical perspective as rational. Krummheuer and 
Brandt (2001) draw on this aspect of learning in collective argumentation and create an interaction 
theory of mathematical learning. For them, it is of great importance that students participate in 
collective argumentation within classroom interaction in which meaning is collectively negotiated 
(Krummheuer & Brandt, 2001, p. 20). This, at best, will lead to learning to occur which is seen as the 
construction and/or modulation of meanings which outlast the situation – also called framings (see 
below) (Krummheuer, 1992; Jung & Schütte, 2018, p. 1091) and can be reconstructed in the 
increasingly autonomous participation in these collective argumentations (Krummheuer & Brandt, 
2001). Based on this understanding of learning and the significance of interaction in mathematics 
learning, diverse theories with rich empirical content have been developed in recent years from a 
foundation of “sensitizing concepts” (Blumer, 1954, p. 7) – a kind of theoretical skeleton for the 
interaction theory of learning, which will be described below. 

At the beginning of an interaction, the participants develop preliminary interpretations of the situation 
on the basis of their individual experiences and knowledge – called definitions of the situation 
(Krummheuer, 1992). Furthermore, participants in the interaction attempt to attune their definitions 
of the situation to each other, ideally leading to the production of taken-as-shared meaning (Voigt, 
1995, p. 172), a working consensus. The participants’ interpretations of a situation can never be 
exactly the same, however, by creating an understanding between them concerning the objects, ideas 
and rules of the interaction, the participants are enabled to work together. The result of the 
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participants’ negotiation only is something “temporarily” which serves as a basis for further processes 
of negotiation but might also be rejected or transformed as the interaction unfolds (Bauersfeld, 
Krummheuer, & Voigt, 1988; Voigt, 1995). The taken-as-shared meaning – the working consensus 
(Goffmann, 1959, p. 9) – is on the one hand socially constituted and, on the other, potentially novel 
for the individual if it pushes systematically beyond his or her interpretive capacities. The working 
consensus represents the ‘stimulation potential’ of individual cognitive restructuring processes. When 
taken-as-shared meanings are brought forth repeatedly in the interaction, the participants’ individual 
definitions of situations can become standardized and routinized and can therefore be produced by 
the individual in similar situations. Drawing on Goffmann (1974), Bauersfeld et al. (1988) call these 
definitions framings. Thus, ideally, mathematical ascriptions of meaning which sustain beyond the 
situation (framings) are constructed, or the working consensuses, which are repeatedly collectively 
negotiated, ‘converge’ in individual mathematical framings.  

However, it often happens that the framings produced by young learners either among themselves or 
in interaction with individuals with advanced skills are not in alignment with each other 
(Krummheuer, 1992). Students, for example, each interpret situations based on framings from the 
environments they have experienced outside of school and in their previous school career. In order to 
maintain the progressive mutual negotiation of content relating to a particular theme, the differences 
in framing between the participants need to be coordinated. This coordination should be done by an 
individual who is advanced in the subject-specific interaction. While these differences in framing can 
make it more difficult for the participating individuals to adjust their definitions of the situations to 
fit each other, they also provide the “‘motor’ of learning” (Schütte, 2014, p. 927) since, on the 
interactional level, they generate a certain necessity for negotiation. 

Analysing students’ participation in processes of negotiation of meaning 
One of the unique characteristics of multi-age education is that learners most likely have even more 
diverse framings then in single-age classes. We believe that this can provide and optimized 
opportunity for learners when working collaboratively, as there is an increased need to coordinate 
their differences in framing by negotiating meaning. In order to coordinate the differences in 
framings, the students have to bring forth a working consensus collectively. This can then lead to the 
construction and/or modulation of framings which is seen as learning. Based on this interaction theory 
of learning, the overall question this research seeks to address is: How do students participate in 
processes of collective negotiation of meaning within multi-age mathematics education and do 
possibilities for learning mathematics emerge. 

Interactionist approaches of classroom research 
Methodologically, this work can be located within qualitative methods of social research which 
follow a reconstructive-interpretative qualitative approach and have the aim to ‘understand’ the 
actions of the individuals participating in class and develop local theories (Schütte, 2011, p. 776). 
More specifically, this work is located within interactionist approaches of mathematics educational 
classroom research (e.g., Krummheuer, 2011). For this study, the classes are filmed several times 
over a period of one to two years in order to reconstruct possible age-specific changes concerning the 
participation in collective argumentation of the children. The interactions of the students are then 
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transcribed and analysed using the interactional analysis, which was first deployed in the area of 
interpretive classroom research in mathematics education in studies by Bauersfeld et al. (1988). The 
interactional analysis allows to reconstruct the ways in which negotiations of mathematical meaning 
are interactively constituted by individuals. Furthermore, it can help to reconstruct patterns and 
structures of verbal actions of the teacher and the students. Overall, this research seeks to describe 
how mathematical learning takes place collaboratively in multi-age education and will use the 
sensitizing concepts in order to describe these processes.  

Collective argumentation of students in multi-age education 
The group works analysed in this paper are from a mathematics lesson in a multi-age class including 
24 children from first, second and third grade. At the beginning of the lesson, the students are divided 
into groups of three which mostly contain one student of every grade level. The students are given 
this task: “Tina and her family want to decorate their Christmas tree with hand painted Christmas ball 
ornaments1. They want every ornament to look different. To paint the ornaments, they have the 
colours red, green and blue. With these colours, they can paint dots or stripes. For each ornament they 
want to use two colours and one pattern at the most. Which possibilities do they have when painting 
their ornaments?” To solve this task, the students have material on their tables which includes circles, 
stripes and dots of each colour to try out different combinations without painting them. The 
interactions of two groups of three students, including a student from every grade level, working on 
this task were analysed and the summaries of these analyses will be presented below. Afterwards, the 
analyses will be compared to each other and a conclusion will be drawn. 

Analysis of the first group work 

The first group includes Isabella (1st grade), Hans (2nd grade) and Elias (3rd grade). During the first 
part of this group work, the students start by creating two green circles, one with red stripes and one 
with blue dots. Then the following interaction emerges. 

Transcript 1: Excerpt of the first group work 

1  Isabella I wouldn’t just use green now but (if we) also the other two colors [points to the blue and red circle] 

2  Elias on red wait [takes a big red circle from the pile] on red we could [picks up a small blue dot] 

3  Hans no now now [touches red dots] now green dots [picks up two small green dots] 

4  Elias no we already have green dots . twice [first points to a big green circle and then with two fingers to 
the two green circles with patterns on them]  

5 < Elias now we have to 

6 < Hans but green dots [places his two green dots on the red circle in front of Elias] 

7  Elias yes okay . that that yes 
 

In this excerpt, Isabella argues that they should not only use green circles but also the two other 
colours because they should not only use the same colour <1>. Elias then picks up this idea and starts 

                                                 
1 In Germany, Christmas trees are often decorated with different kinds of ornaments (e.g. ball ornaments) which can be 
in one or more colors. Therefore, children in Germany are usually familiar with ball ornaments. 
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suggesting to put blue dots on a red circle <2>. Hans also follows up on Isabella’s idea and suggests 
to put green dots on a red circle <3>. Elias seems to misunderstand Hans’ utterance and reiterates 
Isabella’s idea <4>. Then Hans repeats his idea to clarify it <6> and Hans and Elias agree on creating 
a red circle with green dots <7>. Hans and Elias then briefly disagree on the number of dots they 
should use but both seem to implicitly agree that for the differentiation of the possibilities the number 
of dots is not relevant. After settling for three, they also disagree on which background colour they 
should continue with. Elias now suggests to use a blue circle but Hans disagrees and suggests to create 
a second red one using the other colour left for the pattern (blue). They then agree on using a red 
circle and add two blue stripes. Isabella says that she has found another possibility and points to a 
blue circle with one green stripe. Contrary to Elias who then says he wants to create another red circle 
with a pattern, Hans explains that they have created two green and two red ones so far and suggests 
to now create blue circles. All three quickly agree that they will first use a blue circle with red dots.  

In this part and in the continuation of this group work, one can see that all three children participate 
in the creation of the possibilities. All of them contribute suggestions but also disagree with each 
other directly. However, before they continue working on the next possibility, they always come to 
an agreement concerning a possibility. In doing so, they collectively negotiate their suggestions. In 
the arguments, which are brought forth in the processes of reaching agreements on the procedure and 
correctness of the specific possibilities, various strategies of the children can be reconstructed (even 
usage of all colours; maximum difference in the materials used; alternating colours and patterns at 
the same time; aesthetic reasons such as using the same or deliberately different number of dots and 
stripes; conservative usage of materials to avoid wasting materials). The two strategies which prevail 
– even usage of all colours, as well as the variation of the number of dots and stripes for aesthetic 
reasons – are both introduced by Isabella first and then picked up by Elias and Hans. It is noticeable 
that Isabella contributes a lot of ideas but does not implement them directly but rather formulates 
them in the subjunctive. Because she mainly relies on verbal suggestions without using the material, 
whereas Hans and Elias often directly use the material while bringing forth a suggestion (e.g. <3, 4>), 
her suggestions and arguments are often very explicit. Elias, in particular, takes up Isabella's 
suggestions over and over again and implements these as well as his own suggestions. Hans primarily 
takes up Elias’ suggestions but often also contradicts them and starts acting directly on his own. 
However, in these contradictions - at the beginning especially between Elias and Hans – no 
competition develops for who prevails, instead the contradictions are used for finding the best 
possible strategies and methods for solving the given task. Elias, in particular, involves everyone in 
the process of solving the task by asking for their approval. Therefore, a working consensus seems to 
establish that all three participants should agree on a suggestion (or at least no longer disagree on a 
suggestion) before moving to the next possibility. This leads to the group bringing forth collective 
argumentations in order to solve the emerging differences in framing. Throughout this entire task, 
they all continue to work collaboratively because, even though they briefly start working alongside 
each other once in a while, they always agree collectively on a possibility before moving forward.  

In this group work, the differences in framings seem to be coordinated as the children bring forth a 
working consensus through collective argumentations. Therefore the possibility for learning can be 
reconstructed as this working consensus can lead to the students constructing new or modulating 

Thematic Working Group 09

Proceedings of CERME11 1668



 

 

existing framings. In further analyses, different roles of the individual students within these 
negotiations could be reconstructed more specifically. Elias, for example, seems to act as one who 
coordinates the differences in framings and therefore seems to help them come to a working 
consensus as a group. 

Analysis of the second group work 

The second group includes Kim (1st grade), Erich (2nd grade) and Hannes (3rd grade). In this group, 
we can also see that all three children participate in the creation of the possibilities by making 
suggestions, responding to the suggestions of others, but also by acting immediately on their own 
suggestions. As a group, however, they only agree on a possibility briefly before revising it again. At 
the beginning, they start by working on one possibility collectively, however Erich's proposal is 
rejected by Kim and Hannes without giving clear reasons. Kim only says „no I believe I don’t know 
if that will work with red dots I don’t believe [takes the red dots off the blue circle]“ <78> and after 
Erich moves the blue circle Hannes says „no Erich red needs to go [takes the blue circle which Erich 
moved and puts it in front of himself] <82>. From then on Erich withdraws from working 
collaboratively. The disagreements between the children are often solved by exercising authority and 
rarely by giving arguments and if an argument is given, this is not taken up by the others. This is also 
reflected in the fact that from the start Hannes repeatedly contradicts suggestions by referring to the 
task – only two colours may be used – but then does not comply with it himself. Therefore, a pattern 
is established in which all three children work side by side. Kim and Hannes seem to interpret this 
situation as aimlessly trying out various possibilities, as Kim, for example, repeatedly rejects or 
reverses possibilities and never leaves a possibility permanently. Erich, on the other hand, seems to 
be looking for possibilities in a more structured way. His structured approach can also be 
reconstructed by him letting his suggestions remain visible and not taking them apart again like the 
other two. At different times during the group work, Kim looks at other tables and then introduces 
new suggestions for strategies for solving the task (using the sheet of paper; gluing the patterns onto 
the circles; using a more structured approach) but her suggestions are not taken up or even rejected 
by Hannes and Erich. All in all, it can be seen that all three act very autonomously right from the start 
but do not find a working consensus about how to solve the task. They then start working side by 
side, presenting their own suggestions to each other but when contradictions arise they neither bring 
forth arguments (other than aesthetics), nor agree on possibilities and secure their results as a group.  

In this second group work, the few attempts of the participating children to coordinate the differences 
in framing, which emerge, fail and therefore no working consensus seems to emerge. This may be 
due to the fact that they bring forth separate arguments but no collective argumentation is brought 
forth. From an interactionist perspective, the possibility for learning in this group work is therefore 
limited as without bringing forth a taken-as-shared meaning the possibility for constructing new or 
modifying existing framings is impeded.  

Conclusion 
When comparing the interactions of the two groups, even though all children participate in solving 
the task, from an interactionist perspective, only in the first group an optimized possibility for learning 
can be reconstructed. Therefore, solving problems collaboratively in multi-age classes can vary in the 
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way it enables possibilities for learning to emerge. In further analyses, collective argumentations 
seems to be initiated e.g. when learners explicitly verbalize disagreements or ask questions about the 
correctness of a solution as this seems to put the other learner(s) – often the more advanced ones - 
into an interactive obligation to bring forth arguments. In the process of the students then bringing 
forth the argumentation collectively, both the advanced and the less advanced student seem to have 
the possibility for learning even though these may be different (cf. Friesen, forthcoming). However, 
as seen in the two group works presented in this paper, this interactive obligation does not always 
lead to a collective argumentation in which a taken-as shared meaning is produced. In both groups, 
there are arguments that are brought forth but only in the first group these are brought forth 
collectively as can be seen in the excerpt. In the second group, the students do sometimes give an 
argument when a disagreement is verbalized, however, these are not taken up by the others and 
therefore no argumentation is brought forth collectively. In the future, these analyses will be 
compared with analyses of further group work in order to more clearly describe the patterns that 
enable children to bring forth and participate in collective argumentation. 
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As part of a research project focusing on investigative approaches to mathematics, a teacher in a 
Sámi school created an interdisciplinary teaching unit about patterns: skiing- mathematics- Sámi 
language. The 1–2 grade students painted their own patterns and they created patterns using their 
skis and poles in the snow. The analysis shows that the students developed their rules for what 
constitutes a pattern when the context changed from classroom work to skis on snow. One more aspect 
of pattern is focused: Sámi languages do not use any overarching term for pattern. At least three 
words are needed to cover the meaning of pattern in the mathematics curriculum.  

Keywords: Pattern, hearva, language, Sámi upbringing, skiing.  

Introduction 
This paper presents an analysis of an investigative teaching unit, which focuses on patterns related 
mainly to the students’ local culture and some physical activities. Regarding pattern as mathematical 
concept(s), two aspects of language are highlighted, a) relations between Indigenous (Sámi) language 
and majority (English and Norwegian) language and b) how students express their conceptions of 
hearvvat (patterns) in paintings and through their physical activities. Unjárgga oahppogáldu/Nesseby 
oppvekstsenter/Unjárgga centre of education is a mixed age school where the students have either 
Sámi or Norwegian as their first language.1 Sámi is the first language of the teacher and the students 
in this paper. Sámi schools, like Unjárgga oahppogáldu, have to provide an education that is based 
on Sámi culture, language and social life (Sámediggi, 2017). As part of the research project SUM 
(Coherence through inquiry based mathematics teaching), the school develops investigative teaching 
units in mathematics from kindergarten to grade 10. Outdoor schooling is on the school’s regular 
program. During a SUM meeting with teachers and the researcher, Anne, Lisbet got the idea of an 
open task where the students investigate skiing patterns they create in snow. She argued, “… I could 
work with patterns with skis. They could investigate patterns, because that is an open task…” 
(Transcript from conversation, 18.06.2018). In January 2018, students in grades one and two carried 
out an interdisciplinary teaching unit skiing - mathematics - Sámi. Lisbeth teaches mathematics and 
Sámi language for grades 1–2, so she often works interdisciplinarily with these subjects.  

Trinick, Meaney and Fairhall (2016) point out that revitalization and maintenance of Indigenous 
language, including the teaching of mathematics, is insufficient unless cultural knowledge is also 
revitalized and maintained. The teaching unit considers their point, and thus mathematics, language 
and culture are intertwined in the teaching unit. According to Vorren (1995), there are several findings 
                                                 
1 Sámi and Norwegian languages are equal in the Norwegian municipalities governed by the Sámi language act.  
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of ancient Sámi skis from the Unjárga area. One of these, the Mortensnes ski, is two thousand years 
old, so skiing has strong roots in the students’ local culture. 

Zazkis and Liljedahl (2002) point out, that patterns are the heart and soul of mathematics, but the 
exploration of patterns does not always stand on its own as a curricular topic or activity. According 
to the national mathematics curriculum’s competence aim for grade 2, the students shall be able to 
“make and explore geometric patterns... and describe them orally” (Ministry of Education and 
Research, 2013). The teaching unit in this paper is about students’ understanding of geometrical 
patterns. The teacher and the researcher communicate in Norwegian, while the teaching unit’s 
language is North Sámi. Sámi culture and languages has a variety of pattern concepts, related to 
meaning and context. There is no overarching concept of pattern. Germanic languages, on the other 
hand, like English and Norwegian, use pattern and mønster, respectively, as overarching concepts.  

Students’ exploration of patterns/hearvvat in snow is the teaching unit’s main mission. Hearvvat is a 
new concept for many of the students and the teaching unit opens with hearvvat in contexts related 
to clothes and fabrics. One goal is to provide the students with experiences of investigative 
approaches to mathematics, related to local culture. An additional goal is for students to develop their 
understanding of hearvvat through oral reasoning and reflections. The research question is; how can 
students’ investigations of patterns in different contexts contribute to their conception of pattern? The 
data is a) an audio recording of teacher Lisbet’s narrative about the teaching unit and b) posters with 
the students’ work. The teaching unit includes five steps in total; two preparatory lessons that focus 
on patterns in fabrics, on clothes and in students’ paintings, two outdoor skiing lessons and one 
reflection lesson in the classroom. The preparatory lessons intend to provide the teacher with an 
overview of the students’ previous knowledge and to create a common idea of hearvvat.  

Sámi languages and Sámi upbringing  
Fishman, Gertner, Lowy and Milán (1985) point out that language itself is a part of culture and every 
language becomes symbolic to the culture with which it is intimately associated. The Sámi is an 
Indigenous people who live in northern Scandinavia and in the Kola Peninsula of Russia. There are 
ten different Sámi languages and Sámi culture can be described as diverse. This paper refers to North 
Sámi language. Sámi handicraft, duodji, is a powerful identity marker and generator of many 
traditions, such as language, social relationships, customary rules etcetera (Helander-Renvall & 
Markkula, 2017). The traditional Sámi livelihood of hunting, fishing, trapping and reindeer husbandry 
are important for sustaining Sámi culture and language (Keskitalo & Määttä, 2011). Skiing is an old 
Sámi tradition and the art of skiing originates from the ancient Sámi hunting, fishing and trapping 
culture (Birkely, 1994; Vorren, 1995). Skis are among the eldest relics of culture from Sámi 
settlements, and variations in landscapes and snow conditions caused the development of a variety of 
skis and sleds, for which the Sámi languages developed a wide nomenclature of expressions (Vorren, 
1995). Due to the Norwegianization process (Heidemann, 2007) many of these words are not in daily 
use any more. In Unjárga today, Norwegian terms for skiing are commonly used in the students’ Sámi 
language. The teaching unit introduces students to Sámi skiing concepts.  

The main goal of traditional Sámi child rearing is to develop independent individuals who can survive 
in a given environment; and to give the children self-esteem and zest for life and joy (Balto, 2005). 
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The focus is on the learning process and less on teaching, so evidently experience-oriented learning 
is favoured. Trial and error is important for the learning process. As for skiing, knowing how to ski 
uphill and downhill is learned through trial and error and from the support of grown-ups and the older 
children. Keskitalo and Määttä (2011) developed a framework for Sámi pedagogy, where Balto’s 
(2005) work has the central position. Upbringing is based on story-telling, connection with nature, 
and independence. Sámi pedagogy is based on a holistic and constructivist idea of learning. 
Strengthening the Sámi language is a core factor in the framework of Sámi pedagogy (Keskitalo & 
Määttä, 2011). All students should have the possibility to develop as language users at their own pace. 

According to Balto (2005) as well as Keskitalo and Määttä (2011), autonomous students is a central 
theme in Sámi upbringing; the role of the teacher is to be advising, guiding, and trusting, while the 
students’ role is to be active, flexible, and autonomous. Children should be provided with 
opportunities to find information and learn in nature and other places outside the classroom. 
Skovsmose (2001) underlines the importance of leaving the traditional mathematics textbook-based 
lessons when the teacher aims to support the students’ autonomy. A move towards more investigative 
approaches can cause the students to be acting subjects in their learning process. The teaching unit 
allows the students to learn at their own pace and to develop as autonomous individuals. 

Mathematisation of hearvvat or patterns 
To mathematise phenomena from a non-mathematical or insufficiently mathematical matter, like 
skiing, means learning to organize it into a structure that is accessible to mathematical refinements 
(Freudenthal, 1991). Mathematising patterns in cloth, gloves, and skiing involves representing 
phenomena from these contexts by mathematics, for instance as drawings and geometrical figures, or 
representations by more or less mathematical concepts, expressed in different languages. However, 
topics related to Sámi culture exist because they are intertwined with cultural context; they cannot 
just be mathematised as if they exist independently from context. This is an important issue to 
consider for researchers and teachers with non-Indigenous backgrounds. Lakoff and Núñez (2000) 
point out, that mathematical symbols are just symbols and not ideas. The intellectual content of 
mathematics lies in its ideas, not in the symbols themselves. Symbols are representations of ideas that 
often can be expressed in more than one way. In this paper, we present students’ descriptions of 
mathematical ideas; students’ own hearvvat, patterns, with a focus on their drawings and their words.  

Context plays an important role when translating the English word pattern into Sámi. Repeating 
patterns in woven bands and around gloves’ wrists, like in Figure 1, are called hearvvat in Sámi. 
According to Nielsen’s (1932/1979) dictionary, hearva means finery, adornment, and ornamentation. 
He presents two more Sámi words for pattern; minsttar, which means pattern, model or template, and 
girje, which has two meanings. Girje means a spot of another colour (on an animal). In plural form, 
it means coloured ornamental patterns, like girjefáhccat; gloves that are patterned all over. However, 
the word girje’s second meaning is book. According to a more recent dictionary (Kåven, Jernsletten, 
Nordahl, Eira & Solbakk, 1995), hearva means decoration, trimming, or embroidery, while minsttar 
means pattern or formula, and girji means book, letter, or spot. So, in total there are three different 
North Sámi words that can mean pattern in English. The North Sámi version of the mathematics 
curriculum (Ministry of Education and Research, 2013) consequently uses minsttar for pattern 
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(Norwegian: mønster). Minsttar may work for number patterns, but not for the geometrical patterns 
in the teaching unit. Lisbet uses the word hearva in the teaching unit. She discussed the question of 
using minsttar or hearva with Harald Gaski who is a professor in Sámi culture and literature. He too 
found hearva to be more appropriate for pattern in the teaching unit’s contexts. Gaski (1998) 
describes the lyrics in the traditional Sámi song, luohti, as something that follows a pattern. In that 
context, he uses the Sámi word girji for pattern. Pattern is a central concept in mathematics, but the 
literature has not problematized the Sámi translations of it.  

 
Figure 1. Example of hearvafáhcca: The patterned Unjárgga/Nesseby glove (photo: Lisbet Hansen) 

Sámi languages do not use overarching terms to the same extent as Norwegian and English do, they 
have chosen different ways of expression (Fyhn, Eira, Hætta, Juuso, Nordkild & Skum, 2018). This 
should be an important issue to consider for mathematics education in Scandinavia. Bishop (1990) 
warns that it is very difficult for anyone conditioned to the western way of naming and classification 
to imagine that there exists other ways of conceptualizing and using language. McMurchy-Pilkington, 
Trinick and Meaney (2013) point at the importance of debating standardization of terms and the place 
of dialectical differences, in the development of Indigenous mathematics curricula. It could be that 
hearva and minsttar are used differently in eastern and western parts of the North Sámi area. 

The teaching unit’s preparatory steps 
The first step of the teaching unit was based on a collection of patterns that the teacher brought to her 
classroom; Unjárgga gloves as shown in Figure 1, pieces of fabric like the examples in Figure 2a and 
2b, an apron, homemade woollen socks, and a holbi from an Unjárgga gákti (the bottom part of the 
local Sámi dress) as shown in Figure 2c. Stars and candles in Figure 2a were the first items the 

   

Figure 2a. Stars and candles Figure 2b. Stripes Figure 2c. Holbi from Unjárga 

students managed to recognize and name here. The students’ discussions lead to a common rule for 
what counts as a hearva; it has to be a system of colours. When asked to search for repetitions, 
everyone found something; for example red-green-red-green …, square-rectangle-square-rectangle 
… and star-candle-leaf-star-candle-leaf… After a while, one student pointed at two fabrics, claiming 
that one has hearva while the other has not. This student distinguished between what is hearva and 
what is not by a counterexample; that something is not hearva. 
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In Step 2, most of the students’ work was autonomous. This is in accordance with Keskitalo and 
Määttä’s (2011) description of Sámi pedagogy and with Balto’s (2005) description of traditional Sámi 
child rearing. The students’ task was to create and paint their own hearvvat and the teacher had no 
control of their choices. Every student created multiple paintings. The paintings in Figure 3 show 
how three students represent their ideas of hearva, pattern. Each painting shows a system of colours. 
Each painting also shows repetitions of something. The three paintings show repeating dots. The 
leftmost painting shows repetitions of blue dots; some dots are only blue and some dots have a brown 
circumference. The two other paintings also show zigzag patterns, this could be related to the zigzag 
pattern in Figure 2c, which is named njunnesuorránat. Considering that the Sámi word hearva means 
finery, adornment and ornamentation in English, it is reasonable to expect that the students include 
colours as a property of hearva. The other paintings also showed systems of colours and repeating 
items. 

      

Figure 3. Three painted hearvvat 

Work with hearvvat, patterns, in snow 
Step 3 took place outdoor. When the teacher asked if the students could make any hearvvat, patterns, 
in the snow with their skis and poles, the answer was no. Then Lisbet skied around the schoolyard 
with the students following her trail. Pointing at the fresh ski trail, she asked if there were any 
hearvvat. This is interpreted to be a leading question, a support for those who had ideas they did not 
dare to present the first time they were asked. Several students answered no and no one objected. This 
is interpreted to mean that the students’ conceptions of hearvvat did not include patterns in snow. 
Most likely it was limited to coloured patterns on clothes, fabric and paper. The students’ rules for 
hearva included a system of colours. The white snow is just white; there is no system of colours. The 
teacher’s aim was that the students developed their ideas of what constitutes a hearva to something 
independent of colours.  

The teacher offered the students time for thinking. After a while, one student suggested that maybe 
the poles create hearvvat in the snow. Lisbet then asked whether the skis make any hearva. One 
student replied that the skis make lines, like the stripes in the fabric in Figure 2b. When you go skiing, 
you usually move forwards while the patterns and marks from your skis and poles appear behind you. 
One student expressed this as “Ovddes guvlui go čuigen šadde sárgát” [when you skied forwards, 
there appeared some lines] (Lisbet, transcript from conversation, 18.06.2018). In order to see what 
you have created, you have to look behind you. Children at school age are familiar with what ski trails 
look like. Students’ investigations of skiing patterns also include investigations of how they move 
their entire bodies; they learn at their own pace, “In one way they investigate the hearva as well as 
the skiing technique… they have to try things out to see what happens”, (Lisbet, transcript from 
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conversation, 18.06.2018). “They have to try things out”, means that the students are acting subjects 
in their learning process, as Skovsmose (2001) underlines. This is in accordance with Sámi traditional 
upbringing (Balto, 2005) and Sámi pedagogy (Keskitalo & Määttä, 2011).   

   

Figure 4a. Spiehččut Figure 4b. Duolbmá Figure 4c. Guolli 

Step 4 took place at the school’s soccer field. The students were asked to create their own hearva in 
the snow. They explained their hearvvat to the others, and Lisbet captured photos of their work. 
Usually, the students use Norwegian skiing concepts when they speak Sámi, but now they have started 
using Sámi concepts like spiehččut (herringbone skiing) as shown in Figure 4a, and duolbmat 
(sideways uphill tramping) as shown in Figure 4b. When you perform skiing techniques like in Figure 
4a and 4b, the outcomes are patterns in the snow. These patterns are named by the technique; by the 
way you move your body. So, the students’ ideas of hearvvat were represented by how they moved 
and by the marks made by their skis and poles. At the end of the lesson, the teacher and the students 
looked at all the patterns. The students explained in their own words. The two students in Figure 4c 
first made a dávgehápmi (curved shape) and njuolga sárggá (straight line) and then rieggát (rings). 
The result was guolli (a fish). One student said, “When I skied forwards, the result was straight lines.” 
In order to bridge the students’ daily Sámi language and their mathematical language, Lisbet supplied 
their choice of words with mathematical terms like circle.  

The drawings and texts in Figures 4a–c present outcomes from Step 5; a reflection lesson that took 
place in the classroom. The students were presented to A4 photos of their snow hearvvat, and they 
recognized the photos and discussed their hearvvat. Each student chose one photo, made a drawing 
of the hearva and wrote a text for that drawing. The teacher had no control of the students’ choices. 
Some of them needed assistance in writing down their words related to the photo; they asked how to 
spell some of the words and the teacher then showed them before they wrote on their own. The 
students were active and autonomous, while the teacher’s role was supporting and trusting; this lesson 
was in line with Sámi pedagogy. The first graders needed more assistance in writing than the elder 
ones.  
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Closing words 
The conversation between the teacher and the researcher revealed that the teaching unit provided the 
students multiple experiences with investigative approaches to mathematics related to their local 
culture. Students were acting subjects in their learning process by creating their own hearvvat, 
patterns in different contexts. Their development of rules for what is a pattern was guided by the 
teacher. The students’ first rules for what is hearva, pattern, was related to clothes, fabrics and 
paintings; it had to be a system of colours and it had to be repetitions of something. When the context 
changed to skiing, the students at first found no hearva. Maybe that is because there were no 
contrasting colours or maybe that is just because the context changed. The teaching unit caused a 
development of the students’ concept of hearva such that it does not have to include different colours. 
The teaching unit highlights the challenge students meet when they move from one context to another; 
students do not automatically transfer knowledge into a new context. The analysis also revealed a 
need for discussing the mathematics curriculum’s choice of Sámi terms for pattern. It turned out that 
the three different Sámi words hearva, girji and minsttar all can be translated to pattern. These words 
are related to different cultural contexts. This may have influenced the students’ ideas when they 
made up their rules for what a hearva is. More research is needed on the meaning of these words in 
order to prevent misunderstandings between teachers, students, and parents, not to mention those who 
write textbooks and curriculum texts. The teaching unit also appreciates and strengthens local Sámi 
language; the students used Sámi concepts for skiing techniques that they usually refer to with 
Norwegian concepts in their daily Sámi language. An interesting follow-up study would be to 
interview Lisbet’s students one year later in order to see what words they use, when describing what 
is meant by hearva, and what is meant by minsttar, the curriculum’s word for pattern.  
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Centripetal and centrifugal forces in teacher-class dialogues in 
inquiry-based mathematics  

Ingólfur Gíslason 

University of Iceland, Iceland; ingolfug@hi.is  

In this report I examine classroom dialogue in the practice of a teacher who is explicitly committed 
to a dialogical, inquiry-based approach to teaching mathematics. Of primary interest are the ways 
in which the dialogues on the mathematical tasks are in continual tension, alternately being pulled 
towards and pushed away from a proper mathematical discourse, as seen from my perspective as a 
mathematics educator and an observer of the lessons in the classroom. 

Keywords: Classroom communication, discourse analysis, inquiry-based learning, dialogism.  

Introduction 
If students are to gain a command over mathematical discourse, they need to practice talking 
mathematics. It is well documented that in traditional classrooms it is predominantly the teacher that 
talks mathematics, and the IRE (initiation- (short) response-evaluation) format of teacher-student 
interaction is ubiquitous. Many studies show the meaning making potential of inquiry-based teaching-
learning, where the students do more of the mathematical talk (e.g., Boaler, 2002; Goos, 2004; 
Lampert, 1990) but there is little research on mathematical discourse in inquiry-focused classrooms 
on the upper-secondary level. I report here on my longitudinal case study of inquiry-based teaching-
learning in the practice of an upper-secondary level mathematics teacher working in a challenging 
classroom in Iceland. I analyse teacher-class dialogue on realistic tasks from a dialogical perspective, 
showing how the concepts of the centripetal and centrifugal forces (Bakhtin, 1981) may be used to 
describe and understand the dynamics of the dialogue. 

Theoretical perspectives and prior research 
In line with discursively focused research, I consider mathematics learning as the increased command 
of mathematical discourse, a progress from discourse confined to informal everyday language 
towards the command of a more advanced and formal mathematical discourse – the culturally 
specific, tool-mediated, historically established ways of communicating that competent users of 
mathematics use (e.g., Sfard, 2008; Chapman, 1997; Barwell, 2016; Roth & Radford, 2011). 
Dialogues are the primary objects and units of analysis, and I consider dialogue, following Linell 
(1998, p. 13) as “interaction through language (or other symbolic means) between two or several 
individuals who are mutually co-present”. A dialogue is a chain of utterances, which are the complete 
meaningful contributions persons make to the dialogue. An utterance is always a response to what 
has gone before, addressed to someone(s) in anticipation and expectation of future responses. 
Utterances contain intentions, emotions, evaluations, which are dependent on context, and sometimes 
conveyed through means such as tone and gestures. From a dialogical viewpoint, utterances do not 
have fixed meaning but they do have partly open meaning potentials rooted in culture, history and 
ideology and the specific speech genres and social languages they belong to. Communication does 
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not presuppose or produce total shared-ness of meaning; rather it consists in people’s continued and 
on-going attempts to expose and test their understandings (Linell, 1998). 

In the inevitable difference of two or more perspectives inherent in each utterance Bakhtin identifies 
a tension between a centripetal force towards uniformity, a shared and common meaning, and a 
centrifugal force towards diversity of discourse, the meanings made in particular situations by 
particular persons (Bakhtin, 1981). These forces are depicted in Figure 1 as opposite directed arrows, 
as we imagine the dialogue happening on a boundary surrounding a shared meaning. 

 
Figure 1: Forces in dialogue 

From this Bakhtinian viewpoint I consider the mathematics teacher as working towards the (relative) 
uniformity of mathematical discourse, while the students make and express more diverse meanings, 
as they are imbued with language, values and views from their social worlds. When people attend 
mathematics classes and sense it as a painful, or even meaningless experience, this is because the 
words of the teacher and the textbooks do not resonate with them and do not move them. Following 
Bakhtin (1981) we say that the discourse lacks inner persuasiveness. In this all too familiar case, 
students do not make the discourse their own, it is alien to them. They behave as factory workers 
although they are not producing things of value for capitalist owners. Rather, they are producing 
strings of symbols, that are as such of no market value, in order to prove their own value (as good 
students and future productive citizens). Research published on mathematics in secondary school in 
Iceland points to a dominance of this kind of alienated form of mathematics work: an emphasis on 
symbolic manipulations but little emphasis on meaning and no, or very little, exploratory work; the 
textbook dominates and the class sessions are characterized by teacher transmission and students 
sitting at desks solving exercises individually (Bjarnadóttir, 2011; Gunnarsdóttir and Pálsdóttir, 2015; 
Jónsdóttir et al. 2014). 

Research method 
The setting of the study is an upper-secondary school classroom in which most of the students have 
a history of very low achievement in mathematics. In order for me to make sense of the classroom 
dialogues I was present in the classroom the whole semester-long course as a mostly passive observer, 
concentrating on capturing audio and video of the speaker(s) who have the floor at a given time. I 
attended the class with a videorecorder in 32 of the 39 classrooms sessions of the course which lasted 
from late August to December 2012. Although my role was mostly passive, I did interact with 
students, discussed the situation of me being present in the classroom, asking for permissions to 
record a pair or small group conversation and sometimes responding (usually rather minimally) to 
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questions about the mathematics tasks. For the purposes of this paper I focus only on the three lessons 
where there was a public whole-class discussion about realistic mathematics tasks. The tasks are all 
teacher translations of tasks from Swan, Pitts, Eraser, and Burkhardt (1985). A video analysis tool, 
Transana, (Fassnacht & Woods, 2012) was used to transcribe video segments synchronously.   

I coded the teacher-student dialogues using open coding, drawing on a grounded theory approach 
(Charmaz, 2006) aided by the dialogical principle that it is the participants' responses that provide 
evidence for the meaning of a prior utterance. Still, it should be borne in mind, as Bakhtin argues, 
that “understanding a dialogue as a researcher implies participating in that dialogue as a ‘third voice’.” 
(Wegerif, 2007, p. 21). This means that I, as the researcher, make sense as the other participants, 
anticipating, responding, and creating tentative sense in my own way, based on my cultural 
background and personal history. After a few iterations, recurrent themes emerged that seemed to 
capture the different ways the participants responded to the tasks presented, thus contributing to 
different types of dialogue. In the following I present purposefully selected short sequences of 
dialogue to illustrate the types. These fragments are then analysed in more detail in order to bring 
further attention to the centripetal and centrifugal effects of the contributions to the dialogue. 

In order to make the reading of the fragments feel natural, the students have all been given unique 
pseudonyms.  

Results and discussion 
Inspired by Bakhtin’s ideas of learning as adopting words (and gestures, phrases, drawings and all 
means of communication) of others and using them with one’s own intentions with varying degrees 
of “our-own-ness”, and his notions of centripetal and centrifugal forces operating in a dialogue, I 
classified four types of dialogue. Two of the types refer to distancing in dialogue: the alien word (11) 
and irony (29) and two are types of accepting dialogue: authentic real world (123) and emerging 
mathematical dialogue (48). The numbers in brackets indicate a count of utterances contributing to a 
types’ appearance to give some indication of their relative frequencies, although an utterance does 
not always contribute clearly to only a single type of dialogue. The first three types function more 
centrifugally than centripetally. 

To illustrate the most frequent type, authentic real-world dialogue, I present a fragment of a dialogue 
on the question of the nature of a general relationship between the weight of a person and her high-
jump ability. The task text states: “Suppose you were to choose, at random, 100 people and measure 
how heavy they are. You then ask them to perform in 3 sports; High Jumping, Weight Lifting and 
Darts. Sketch scattergraphs to show how you would expect the results to appear, and explain each 
graph, underneath. Clearly state any assumptions you make.” The following sequence of utterances 
starts after the teacher has drawn positive coordinate axes on the whiteboard and has exchanged a few 
turns with students about the nature of the task.  

Ari: Like, like, the body weight shouldn't matter crucially, like in high jump. [Eagerly] 

Teacher: What. 

Ari: Like the guy who is one ninety and a guy who is one sixty. A guy who is one ninety 
could be heavier than the guy who is one sixty, isn’t that right? 
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Teacher: But if you have two guys that are one ninety and one is heavier and the other is 
lighter, who 

Ari: The lighter guy. 

Teacher: What do you think about that? [Addressing the class]  

Bjarni: Not necessarily. 

Ari: It depends on the technique and where he is muscular. 

The request for a relationship immediately provokes a comment from Ari that a functional 
relationship between body weight and height jumped is not appropriate, body weight is not the most 
important thing to consider in this context. He also introduces the theme of the height of the imagined 
people and the relations between those and their body weights. This is not at all mentioned in the task 
but may be related to the general knowledge that taller people usually are better at the sport of high 
jump and because the heights of people were a theme of a task these students worked on earlier. In 
their apparently sincere discussion about the context, they pull the theme of the dialogue from 
mathematical representations to sports and body types which I understand as a centrifugal force away 
from the core of mathematical discourse. Ari and the other students are perhaps understandably 
confused by the realism of the task. They do not know that they are expected to focus on an abstract 
(and arbitrary) relationship and that for the mathematics teacher it is not important what is important 
for success in high-jumping. The teacher attempts to pull the dialogue back, trying a what-if question 
where the real-world factors are controlled, trying to bring the attention to the variables of 
mathematical interest. The students seem unaffected by the centripetal force of the teacher’s utterance 
and go off on a further tangent. There followed an animated discussion about important factors 
relating to the sport of high jump, while the intended task of representing a statistical functional 
relationship by a scatter graph receded from the dialogue. It is open to question whether some amount 
of this type of dialogue could actually be a necessary precursor to emerging mathematical dialogue. 
It can be seen as building emotional connections between teacher and students, showing that their 
thinking and perspectives are valued and not brushed aside.  

The alien word was infrequent as a type of sustained dialogue. This is because usually when students 
experience mathematics as alien to them, they are simply silent, or show their alienation indirectly. 
They might for example choose to look at irrelevant computer programs, play with their phones, or 
talk with peers about social matters. Only rarely does the theme of the alien word become explicit in 
dialogue. 

Teacher: Are you all following what we are doing? (...) Do you think this is mathematics? 

Einar: I think this is unnecessary bother. 

Teacher: Unnecessary bother? 

Einar: Yeah. 

Gunnar: It’s philosophical mathematics. 
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Anna: If you think about it in that way, see, that this is the weight plus the weight, but like 
in weightlifting, I don’t feel we are talking about mathematics, rather talking about 
sports than mathematics. 

The first utterance in this sequence was a response of the teacher to the situation that the majority of 
the student group seemed to be confused by the discussion and had ceased to participate in the 
dialogue. He tries to pull the class into a meta-discussion about the nature of mathematics and 
mathematics class, but Einar rejects the question on the grounds that it is unnecessary and a bother. 
Mathematics to him does not include students’ own consideration of real-world complexities. His 
contribution also indicates that what is important is the amount of bother expected of him. He 
evaluates bother negatively. Gunnar partially supports Einar in that this is a special type of 
mathematics. These contributions are centrifugal. Anna makes an interesting comment that resonated 
with me, as she expressed what I was thinking about the dialogue up till then. It was about sports and 
not about mathematics. In a way this contribution is centripetal in two ways. She gives a reasonable 
answer to the teachers’ question (she is affected by his pull) and criticizes the discussion on grounds 
that (in my theoretical terms) it is an authentic real-world dialogue, which she considers (again, in 
my theoretical terms) to be centrifugal and not conducive to mathematical discourse.  

Irony means saying one thing and meaning another. To illustrate irony as a type of dialogue, there 
follows a dialogue on a task the point of which is to investigate the relationship between the number 
of workers and the time it would take them to finish a task. The task text asks the student to sketch a 
graph describing the time it would take to harvest a field of potatoes, depending on the number of 
potato pickers. The task is presented with unmarked axes in the positive direction, with the label 
“Total time it will take to finish the job” on the y-axis, and “Number of people picking potatoes” on 
the x-axis. The students were asked to work on this in their seats, the task being in their text. One 
student soon exclaims: “I don’t understand” and the teacher goes to the whiteboard in front of the 
class. 

Teacher: We are going to think about ... can we maybe assume. What are we going to say 
that one person would take long to harvest this field? 

Siggi: How big is this field? 

Teacher: Well, you just decide. 

Siggi: Okay, it’s just one meter. 

Teacher: One meter. [Disbelief in the voice] 

Siggi does not answer the teacher’s initial question but asks a different one, and I assume he thinks 
this is an important question to answer in order to finish the task (in fact in the abstract mathematical 
model this is completely irrelevant and does not need to be answered). The teacher does completely 
shut down this line of inquiry but indicates a choice available for the student even if it does not really 
matter what the choice is. Siggi then responds with an extreme example that does not make sense if 
interpreted in the context of the real-world. Double-voiced discourse is a discourse that has “a twofold 
direction” (Bakhtin, 1984, p.184); it is directed toward someone else’s discourse or toward someone 
else’s position. One interpretation of the student’s response is that that the task does not make sense 
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to him or that he is not committed to make sense of it, that the question (and therefore the teacher) is 
silly and his answer is going to be silly; that the question is too open, and he will test its boundary. It 
contains an evaluation of the whole situation; it is an ironic rejection to engage authentically in 
dialogue. The teacher’s final utterance in this sequence is an echo, a repetition of the prior utterance, 
but in a falling tone, with a different pattern of stress on the syllables. I interpret this as an expression 
of disbelief, and as if to say, “that is ridiculous, you know it, reconsider your suggestion”. An 
alternative interpretation could have been possible: in mathematics it can be informative to specialize 
(try out specific values in a general expression) with extreme values (not infrequently 1 or 0). The 
student’s ironic assumption could have been taken as an attempt to specialize to see what happens in 
an extreme instance. However, in light of the effect of the utterance on the teacher and the dialogue 
closing up at this point, it seems clear that the teacher takes Siggi’s contribution to be ironic, and 
some form of rejection to take the task seriously.   

To illustrate the emerging mathematical type of dialogue I present a fragment where students are 
working further on the potato picking task. They have been asked to draw a graph of the relationship 
between the number of workers (x-axis) and time it takes to harvest a potato field. The teacher has 
circulated and comes to the whiteboard and says that he has seen “a lot of these” and draws a straight 
line segment with y-intercept at 100 and a negative slope, but not touching the x-axis. The students’ 
drawings are consistent with the fact that they have not had much (or any) experience with other kinds 
of graphs in their mathematics in school. Their repertoire of graphs consists of straight lines, as this 
is what a graph means to them, and they use it to express increasing or decreasing functions. After 
some students confirm that this is how it is and the teacher acknowledging “in a way, approximately” 
expecting something more, there follows: 

Katie: You need to know how many people you want at the end. 

Teacher: Do we? 

Katie: Yes. 

Teacher: Can’t we just… 

Katie: If you have the time, you know, the maximum time … how many people are you 
going to have in the end. 

Siggi: We’re going to have thirty people. 

Katie: Okay, if you are going to have thirty people you just do a hundred divided in thirty, 
then you have the time a single person has. 

Teacher: Okay, you gave us some, what, four hundred eighty minutes? But can we do this 
like … in mathematics we can add people infinitely. Although there might not be 
enough room in the field for everyone. 

First, Katie expresses that for the task to make sense and be solvable we need to know the maximum 
number of people. This is reasonable from a real-world perspective, as it would be impossible to have 
an infinite number of workers, or even a too large number of people. After a contribution from Siggi, 
Katie tries to express the relationship time divided by number of workers, getting the “time a single 
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person has” where it would be correct to say that this is the total time it takes, but indeed this is also 
the time each single worker would have to work. My interpretation is that Katie’s answer confused 
the teacher or that the teacher interpreted her as thinking that the workers would work in succession, 
one at a time. Therefore, he does not build directly on her contribution but returns to a particular 
number (480) of minutes mentioned long before in the dialogue, and to the question of whether we 
need to know the maximum number of workers. He indicates that they could be infinitely many, 
because such is mathematics, even if not realistic. 

After the sequence above, there follow over a hundred turns where the teacher and the students slowly 
clarify the meaning of the graphical representation, the role of the axes, and what the points refer to, 
they discuss the assumptions needed to make a model, and then gradually move away from a linear 
model towards a reciprocal one, and at last some students articulated this by themselves, incorporating 
the model into their own discourse. Here then, the teacher and the student group continually exposed 
and tested their understandings and perspectives against each other, and the centripetal force was 
strong enough to keep the dialogue mathematical, bringing students closer and closer to shared 
mathematical discourse. 

Concluding remarks 
The students seem to orbit around mathematical concepts while the teacher tries to pull them into a 
more mathematical discourse. This is the dominating feature of the first three types of dialogue above. 
The authentic real-world type of dialogue is of particular importance. The students show sincere 
interest and enthusiasm for the real-world situations in which they recognise important features of the 
situation. Unfortunately, these features are tangential to the mathematical discourse the teacher tried 
to draw them into and may result in the dialogue drifting away from mathematical discourse.  

To make sense of a mathematical task, the students need to attend to the context and not suspend 
sense making, while at the same time it also demands that the context is downplayed and not taken 
too seriously. In that way, the official mathematical discourse itself is double voiced and ironic. It 
does not really care about the high-jumping ability of people and what factors are most important to 
consider when estimating or predicting these abilities. It only cares about using graphs and functions 
to represent idealized phenomena. The teacher needs to convey this and then slowly lead students to 
productive ways to make mathematical sense, building on the sense made previously. For example, 
he suggests particular numbers (specializing) to think about or gently challenges the students’ answers 
while often recognizing that they are onto something. In this way the mathematical discourse becomes 
internally persuasive, at least for some students. We saw how the teacher and the students slowly 
achieve a more shared understanding in the dialogue in the last example, as it slowly approaches a 
more mathematical discourse, through constant exposure and testing of understandings.         
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The importance of a meaning-related language 
 for understanding multiplication 
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Multiplicative thinking is much more than recalling number facts. Furthermore, it is much more than 
repeated addition. It is about links and relationships and knowing how multiplicative ideas are 
connected and why multiplicative grouping processes work as they do. Supporting this conceptual 
understanding of multiplication among underachieving primary school children is the goal of a 
single-case intervention study presented in this paper. These children were fostered in a language 
sensitive way placing emphasis on the relationship of different multiplicative representations and a 
meaning-related vocabulary associated with this operation. The in-depth analysis of an individual 
learning trajectory of a low-achieving child shows that the progress may depend on whether and to 
what extend the meaning-related vocabulary becomes the vocabulary of thinking for these children.  

Keywords: Multiplication, mathematical concepts, verbal learning, low achievers. 

During their first years of school, children should not just be able to execute multiplication tasks, but 
more than anything else, should also understand them in terms of content as well. For primary school 
children who have not acquired a multiplication concept it is much more difficult to achieve higher 
learning targets (e.g. Downton & Sullivan, 2017; Moser Opitz, 2013). This is particularly the case 
because an understanding of multiplication represents a fundamental requirement for understanding 
further learning contents such as proportionality, algebra, fractions, decimal numbers, percentages… 
(Downton & Sullivan, 2017). In this respect, it is by now accepted that the development of a 
conceptual understanding for the multiplication is of far greater importance than learning the times 
tables off by heart (Gaidoschik, Deweis, & Guggenbichler, 2018; Moser Opitz, 2013).  

Theoretical background: Fostering a conceptual understanding of multiplication 
Kilpatrick, Swafford and Findel (2001) define the conceptual understanding as an understanding of 
mathematical concepts, operations and relationships. A mathematical concept is said to be understood 
when it constitutes a part of the mental knowledge and is said to reach a higher level if it is 
interconnected with existing knowledge and can be used to solve diverse mathematical tasks 
(Kilpatrick et al., 2001). What this means for the multiplication specifically is that children need to 
understand that cardinal quantities are combined with each other, wherein, formally speaking, the 
multiplier represents the frequency of the cardinal quantities and the multiplicand represents the size 
of the cardinal quantity (Figure 1). Both factors are therefore not equal (Downton & Sullivan, 2017). 
However, multiplication is often introduced in the form of repeated addition, which is the preferred 
strategy used to solve the multiplication tasks particularly in low-achieving children (Moser Opitz, 
2013). But this equating of multiplication with repeated addition leads to an incorrect understanding 
of multiplication (Downton & Sullivan, 2017), in the case of addition, both numbers represent a 
respective quantity, which can be cardinally translated and merged. Multiplication, however, means 
to coordinate interrelated units.  
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If children tend to equate the multiplication with repeated addition or with count-by sequences (“four, 
eight, twelve”) – as another typical strategy of low-achieving children – this differentiation between 
multiplier and multiplicand does not become 
clear. Furthermore, the knowledge in relation 
to associative and distributive contexts is not 
accessible to them. Additionally, those solution 
strategies are very limited and cannot, for 
example, be used when it comes to fractions or 
decimal numbers (Downton & Sullivan, 2017).  

In this respect, many researches have shown 
that a conceptual understanding of 
multiplication instead of automaticity needs to 
be fostered in the first place. Many of these 
studies take a strategy-training approach (e.g. Gaidoschik et al., 2018; Woodward, 2006). Particularly 
remarkable is that predominantly low-achieving children – even after a strategy-training – seldom 
use derived-fact strategies compared with normal-achieving children (Zhang, Xin, Harris, & Ding, 
2014) or have difficulties in deriving (Gaidoschik et al., 2018). On the one hand, this can be traced 
back to the fact that the use of decomposition strategies is very working-memory demanding and low-
achieving children are characterised by their limited working memory (Zhang et al., 2014). On the 
other hand, the cause can be seen in an insufficient conceptual understanding of multiplication 
(Downton & Sullivan, 2017). These children do not seem to have fully understood what phrases such 
as “three times four” or “four multiplied with three” actually mean. This means that perhaps the 
differentiation between multiplier and multiplicand needs to become more obvious for these children 
as a central basis for developing derived-fact strategies. However, current research projects have 
repeatedly shown that the transition from the repeated addition or count-by strategies to the 
understanding of multiplication is a – if not the – critical obstacle to the conceptual understanding of 
multiplication especially in the case of low-achieving children (e.g. Zhang et al., 2014). Therefore, in 
future research, this should be the starting point to identify which steps could help children overcome 
this critical obstacle. But if phrases like “three times four” or “four multiplied by three” are initially 
of no meaning to these children other phrases such as “three groups of four”, “the four three times”, 
“three rows of four columns each” may support the development of a conceptual understanding. It 
has still not been researched sufficiently whether and to what extent this “basic meaning-related 
vocabulary” (Prediger & Wessel, 2013; Pöhler & Prediger, 2015) supports a conceptual 
understanding of multiplication in low-achieving students. In terms of increasing a conceptual 
understanding of division among low-achieving children, it has been shown that the understanding 
of division can be fostered with the help of meaningful verbalisations such as, for example, “12 
divided by 4 means how many fours fit into 12” (Götze, 2018). Whether or not students benefit from 
such support seems to primarily depend on whether this meaning-related vocabulary will become the 
students’ language of thinking (Pöhler & Prediger, 2015). This means that in the course of such 
fostering, it might primarily depend on if and to what extent the students are able to internalise these 
verbalisations and how they can contribute to the forming of mental models. In this respect, the single-
case research project presented in this paper focuses on the following research question: 

 
Figure 1: Visualization of multiplier and 

multiplicand in the rectangular array 
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How does a language sensitive support of multiplicative grouping promote a conceptual 
understanding of multiplication in low-achieving children? 

Methodology of the study 
The study presented in this paper pursues the goal of conducting a detailed in-depth analysis of the 
learning processes for the development of a conceptual understanding of multiplication among low-
achieving children. Therefore, the study is structured as a single-case didactical design research 
(Pöhler & Prediger, 2015). The data presented are from the first circle. 

A total of ten pairs, consisting of one normal- and one low-achieving child, were assisted by one 
trained preservice elementary teacher. The cooperative setting was selected because the discursive 
negotiation of meaning among heterogeneous children has proven itself to be very beneficial for 
learning in other studies as well (Götze, 2018; Zhang et al., 2014). The pairs of children were provided 
with fostering help on a total of four remedial lessons. Each of these remedial lessons lasted 
approximately 25 to 30 minutes. They were provided by three pre-service teachers who had been 
intensively trained beforehand. 

At the time of the study, the participating children were in the third grade in a German primary school 
and had already learnt multiplication in their second year in school. As a side note, in Germany the 
rows of times tables are determined by the second factor. So, 1 x 2, 2 x 2, 3 x 2, 4 x 2... are second-
row tasks, 1 x 5, 2 x 5, 3 x 5, 4 x 5... are tasks from the fifth row. For these children, the tasks 3 x 4, 
3 x 6, 3 x 9 belong to different rows. 

Based on the review of the current research, these children were fostered in a language sensitive way 
placing emphasis in the relationship of different multiplicative representations (concrete, iconic and 
symbolic representations) and a meaning-related multiplicative (not additive) vocabulary associated 
with this operation. For doing this, the following central learning and diagnosis steps were applied in 
order to foster a conceptual understanding (based on Pöhler & Prediger, 2015): 

- Step 1: Informal thinking starting from students’ resources. 
- Step 2: Focusing meaning-related vocabulary for understanding multiplicative grouping and 

connecting this vocabulary with concrete, iconic and symbolic representations. 
- Step 3: Independent use of the meaning-related vocabulary. 
- Step 4: Use of meaning-related vocabulary in order to initiate decomposition strategies. 

Especially in the second support unit (step 2) the children had to find reasons for the assignment of 
iconic rectangular arrays and symbolic terms. At the same time, the multiplicative understanding was 
addressed directly: “three times four” means that there are three fours or there are three groups, each 
of which has four in one group. The children should always explain this relationship: Where do you 
see the number of the groups? Where do you see the group size? Subsequently, during the third 
support unit (step 3), this understanding was deepened further through more game-based assignments 
(for example pairs card games). The children were furthermore required to name the matching terms 
for orally described rectangular arrays. In the case of difficulties, they were allowed to lay the 
rectangle. Then, the children should lay rectangular arrays selected by themselves with manipulatives 
and describe these in a similar fashion. The children were repeatedly asked to interpret the group 
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number (the multiplier) and the group size (multiplicand) in terms of content. The constant alteration 
between language reception and language production was intended to form mental models. During 
the transition to the decomposition strategies in the fourth support unit, the children needed to think 
about which arrays could be laid next to each other and which overall term would match. They were 
given some rectangular arrays, which they could distributively combine in sometimes different ways. 
What was important here once again was the fact that the children had to explain why, for example, 
3 x 4 and 2 x 4 together make 5 x 4, but also why 3 x 4 and 3 x 1 together make 3 x 5. This required 
them to pay attention to the differentiation between multiplier and multiplicand, as well as to verbally 
describe their meaning and importance. This makes it absolutely necessary to have mentally 
understood the previous actions carried out on the rectangular arrays or to be able to fall back on these 
once again.  

Therefore, the following section gives an insight into the learning pathway of the low-achieving child 
Ilay. The goal of the analysis is to ascertain under which conditions the use of meaning-related 
vocabulary fosters learning for the development of a conceptual understanding of multiplication and 
as a basis for developing derived-fact strategies. For a deeper insight and a comparison between 
different children’s development see Götze (under review). 

The individual learning trajectory of Ilay 

Ilay (I) worked together with his normal-achieving classmate Nelli (N) during the fostering course. 
Ilay is a very communicative child who likes to contribute to class discussions and really likes to 
explain how he arrived at his solution. This is less the case with Nelli. 

During the first support unit Ilay knew many multiplication tasks from the times tables off by heart. 
Otherwise he used the strategy of repeated addition or count-by sequences. While doing so he usually 
started to recite the times tables from one, something which was very time consuming. For instance, 
he needed a total of 45 seconds until he could provide the correct solution to the problem 6 x 7. While 
reciting, he raised individual fingers one after another sometimes even two at once, which would 
indicate additive calculation. He explained how he arrived at the solution as follows. 

56  Ilay: Because when you now, when you now... aahmmm... then that’s 7 (points to 
his thumb) plus 7 (points to his index finger) are then 14. And then you work 
out these 2 (points to his middle finger and his ring finger) are also 14. There 
are 28 in total. And then you only need to add this 14 (holds up the next two 
fingers). In total around 42.  

57 Teacher: And what comes out at the end of this problem? (points to the task 7 x 7) 
58 Ilay: Around... 48 (he starts to count his fingers forward once again, whispers) 14, 

28, 42. So... (after 25 seconds) 49.    
Ilay worked out the result by availing of additive references (turn 56 and 58). For him it appeared that 
being asked to multiply was more a request to count up. In doing this, Ilay displayed typical one-
sided additive ideas with respect to multiplication and little strategic knowledge (Gaidoschik et al., 
2018). Furthermore, he was not able to derive the solution for the new task 7 x 7 from the previous 
task 6 x 7.  
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In order to emphasise the differentiation of multipliers and multiplicands for Ilay, during the second 
support unit the meaning-related vocabulary for the same groupings was introduced (step 2). In the 
following scene, approximately ten different rectangular arrays were laid out in front of the children, 
which also included the correct array for the task 3 x 5 (for Ilay and Nelli a task from the fifth row). 

7  Teacher: I will now give you the problem. Do you know the game, “I spy with my little 
eye”? We will now play using the cards: I spy with my little eye lots of 3 
groups of 5 each (places the note “3 groups of 5 each” in front of the children).  

8  Nelli: 3 groups of 5 each? 
9  Teacher: Do you have any idea which dot image I mean? 
10 Ilay: (points uncertainly at the card containing the dot image relating to 3 x 5) 
11 Teacher: Why could that match? 
12 Ilay: Yes, because here are 5 (points to the uppermost row) 
13 Nelli: ... because there are 5 in each row. 
14 Ilay: ... because there are 5 in each row, so... 
15 Nelli: ... 15. 
16 Ilay: So when you now calculate (takes the card with the rectangular array 3 x 5), 

1, 2, 3 (tips each of the respective first dots of the first column), there are 3 
below and here, calculate 1, 2, 3, 4, 5 (tips each of the respective dots of the 
first line), then these are 15 and here are 3 groups of 5 each (points to the note 
with the same sentence). 

17 Teacher: Okay, so where are the 3 groups of 5 each? 
18 Ilay: 3? 
19 Teacher: You have already said that these are 3 and 5. But where are the groups of 5? 
20 Nelli: Here at the top (moves along the top line). 
21 Ilay: Exactly, and we then have a group of 5 here (moves along the top row), two 

groups of 5 together, three groups of 5 together (moves along the other rows).  
It can be seen that the children initially react in an uncertain manner to this unknown vocabulary (turn 
8, turn 10). Even when Ilay directly found the requested dot image (turn 10), he was still not able to 
immediately explain why the description “three groups of five” matched this dot image. He pointed 
to the first column and the first row (turn 12, turn 16). This focus can be seen in many low-achieving 
children and indicates a limited conceptual understanding (Moser Opitz, 2013). Nelli, on the other 
hand, seemed to understand the content immediately, which can often be seen in the case of normal-
achieving children (Götze, 2018). She emphasised that in each row there must be five dots (turn 13), 
which Ilay then repeated word-for-word (turn 14). Thus, Ilay had not yet understood the content of 
this formulation because he could not answer the follow-up question of the teacher (turn 17, turn 18). 
The teacher correctly recognised that although Ilay pointed to the numbers three and five of the term 
in the rectangular array in his customary manner, he had not yet started to think of cardinal groups of 
always five dots. It was only when Nelli pointed out the group of five in the dot image to him that 
Ilay rethought (turn 21) and recognised this new perspective. 

The overall evaluation of the data from the support units of all ten low-achieving fostered children 
demonstrated that this scene appeared to be a key scene in the learning process for low-achieving 
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children such as Ilay. If they were to understand the grouping concept, they had to be given a new 
way of looking at the rectangular arrays by means of the new language being offered. In order to 
ensure that the children did in fact understand the content of the subject matter, substantial repetition 
was needed in order for the children to make this new way of looking at rectangular arrays a part of 
their own mental models. 

In this respect, in the third support unit Ilay showed that he began to integrate the meaning-related 
vocabulary into his own mental thought patterns (step 3). It was astounding that already in the third 
support unit he seemed to give up on his additive viewpoint that he had so strongly been focussed 
upon up to that point. He explained why the term 6 x 6 matched to the corresponding rectangular 
array without having to be asked to do so by the teacher. 

123  Ilay: So, I took this one here because that is 6, so 6 is here (moves along the left 
column with his finger) and there are 6 groups (moves his finger from left to 
right several times) ... And here 1, 2, 3, 4, 5, 6 (taps on each of the respective 
points in the first row), there are 6 in a group, and when you count down 
(moves the finger from top to bottom), then 1, 2, 3, 4, 5, 6 (taps on each of 
the respective points in the first points), that’s actually really easy. 

First, he addressed the groups number, in other words the multiplier, by pointing to the six groups in 
the right corner (“there are 6 groups”). Subsequently, he described the meaning of the second six in 
the term (“there are 6 in a group”). Drawing on the meaning-related vocabulary he had learnt, he 
completely independently explained the differentiation of both sixes in the term 6 x 6: one indicates 
the number of groups, the other the group size.  

In order to obtain first indications about a possible further development of derived-fact strategies, in 
the fourth support unit, the children were supposed to try to make deductions between the tasks. In 
the following scene, Ilay was asked to think about why 7 x 5 is always seven more than 7 x 6.  

47 Ilay: Because, that (points to the multiplier) stays the same and that (points to the 
multiplicand), that should, if you jump over one, then that should now also be 
7s. 

48  Teacher: I don’t quite understand that. What do you mean, if you jump over one? 
49 Ilay: If you count one to here (points to the multiplicands 5 and 6), then that will, 

then it is, if you, a 7, if you (points to both multiplicands) count up to 7. 
50 Teacher: So, if we have 7 times 5 and 7 times 6. Why is it 7 more? 
51 Ilay: Nelli, you count it. 
52 Teacher: That’s right. But I am not convinced yet. 5s become 6s. 
53 Ilay: Oh! Because here, here, you have 6. And then one always comes in here, 

(points to both multiplicands), it only comes, if we do that with the dots, it 
only comes, so one, so one, so one row, so one dot always becomes more. 

At the beginning of the scene, Ilay initially tried to explain the correlations with his own linguistical 
means and using lots of pointing gestures (turn 47). Indeed, he also occasionally used meaning-related 
vocabulary such as “sevens” but could not yet use it to explain the content-related correlation of 7 x 5 
and 7 x 6. Only the direct reference of the teacher in turn 52 (“fives turn into sixes”) seemed to activate 
the meaning-related vocabulary for him. He was then able to use it to explain the multiplicative (not 
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additive!) correlations very independently (turn 53). In contrast to the first support unit, he did not 
use his finger to count the rows but thought purely in terms of content. This content-related thinking 
in multiplicative structures was shown several times in the fourth support unit. 

It can be seen in the above analysis that Ilay completed the intended four learning steps. After the 
introduction of the basic meaning related vocabulary, he first needed some time for practice and 
networking with concrete representations (step 2), before this vocabulary slowly became Ilay’s own 
vocabulary of multiplicative thinking (Pöhler & Prediger, 2015; step 3). Perhaps this newly formed 
content related multiplicative thinking provided the basis for using derived-fact strategies. Repeated 
addition was a dead end for him in multiplicative understanding. With this respect, the meaning 
related vocabulary fulfilled a cognitive and epistemic function for him. Expressions such as “3 times 
5” were no longer a “secret language”, and the multiplication in rectangular arrays was really 
perceived in a multiplicative way via these expressions. 

Discussion and limitation 
Ilay’s learning trajectory stands representative for other fruitful learning trajectories of other children. 
All these learning trajectories have in common that the children start to think in groups of the same 
size. The fostered vocabulary seems to support the development of a mental model in all these 
children. The meaning-related verbalizations become the language of thinking and therefore, the 
children can understand how to decompose or derive multiplication tasks. This multiplicative point 
of view has apparently not been obvious to the children in their previous learning biography through 
formal expressions such as “3 times 4” or “3 multiplied with 4” or “4 multiplied by 3”. However, 
basic meaning-related phrases such as “3 groups always with 4 (dots) in a group” or “3 groups of 4” 
illustrate thinking in multiplied groups of equal sizes. This vocabulary then fulfils epistemic functions 
in the learning process and contributes to conceptual understanding. The problem with this is 
repeatedly having to detach low-achieving children from using their old, supposedly safer strategy of 
repeated addition. Throughout, the children use both additive and multiplicative ideas at the same 
time. The in-depth analysis of children such as Ilay therefore shows how central it is to continue to 
promote this new multiplicative point of view. Furthermore, the in-depth analysis demonstrates that 
the multiplicative thinking seems to be a good basis for the development of decomposition strategies. 
If children can think in a content-related way they can also derive tasks from each other and recognise 
correlations between tasks. 

Despite that, not all supported children show these learning developments (for details see Götze, 
under review). The most striking factor however is that these children do not start to think 
multiplicatively. The meaning-related vocabulary does not become the vocabulary of thinking for 
these children. This is mostly caused by the teacher who starts to retrieve facts and vocabulary (for 
example “Where are the groups in this term? Where are the number of groups in the rectangular 
array?”) instead of supporting multiplicative thinking. Especially in this paper only one single-case 
study can be presented. For a comparative analysis it would be helpful to contrast Ilay’s individual 
learning trajectory with those of other children (see Götze, submitted). But that would go far beyond 
the scope of this paper. 
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This study is laid out as qualitative Didactical Design Research (Pöhler & Prediger, 2015). First of 
all, the aim was to derive hypotheses about the effectiveness of the support and not to operationalize 
them. Therefore, the duration of the fostering was very short, with just four support units. Yet, the 
study provides first indications that the conceptual understanding of multiplication can be promoted 
in a language sensitive manner when we can achieve that the children use the meaning-related 
vocabulary as their vocabulary of thinking. How long the fostering should actually last for the 
supported children to be able to independently think in a content-related way, remains unanswered. 
Future research must therefore check the hypotheses made in this paper.  
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Claims and demonstrations of understanding in whole class 
interactions 

Jenni Ingram and Nick Andrews  
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One aim of teaching mathematics is to develop students’ understanding of mathematics.  In this paper 
we examine how teachers and students do understanding in interaction, and how this understanding 
is handled interactively during whole class interactions.  Taking a Conversation Analytic approach, 
we look at interactions between teachers and students where there is claim of understanding and 
where there is a demonstration of understanding.  We show how these two situations are handled 
differently, by the teacher and the students, with only the latter situation being concerned with 
students’ understanding. 

Keywords: Conversation Analysis, classroom interaction, understanding.  

Introduction 
One aim of mathematics teaching is to both develop students’ understanding of key ideas, concepts 
and methods, and to respond to difficulties students encounter in understanding mathematics.  
Studying understanding in mathematics education is not original, but the existing research largely 
treats understanding as something real, as something that students do or do not have.  However, 
understanding is also used by teachers and students in interaction for practical purposes, and this use 
or display of understanding is observable and analysable.  The aim of the analysis in this paper is to 
investigate what the uses of words like ‘understand’, ‘sense’ or ‘mean’ do in interaction, focusing on 
how teachers and students are using these words to achieve different things.  We use Sack’s notions 
of claiming and demonstrating understanding as is observable in the interaction, rather than making 
any claims as to whether students actually understand or not, which is not directly observable in 
interaction. 

Pedagogic interactions, and in particular teacher-student classroom interactions, are dominated by the 
IRE interactional structure. The IRE (or IRF) sequence, teacher initiation-student response-teacher 
evaluation, has been written about extensively (e.g. Hellermann, 2003; Mehan, 1979; Sinclair & 
Coulthard, 1975; Wells, 1993).  This characterisation, however, only focuses on the broad structure 
of the interaction, rather than the multiple activities being done within it.   The third turn, the 
evaluation turn, in particular does more than evaluate a student’s answer as correct or not, but also 
comments on its adequacy as a response to the initiation, and its appropriateness for the broader 
interactional and pedagogical purposes of the interaction (Macbeth, 2003), and influences the 
interaction that follows. What is being assessed or evaluated by the teacher in this third turn is not 
necessarily focused on the content of the student’s response, but could also, or alternatively, focus on 
how the response enables the interaction to progress, they are task-oriented rather than content-
oriented (Antaki, Houtkoop-Steenstra, & Rapley, 2000).  Koole (2012) also showed that teacher 
assessments in this third turn can focus on students’ knowing, students’ doing or students’ 
understanding.  However, positive assessments largely focused on students’ knowing, treating their 
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response as shared knowledge on which to build on, but negative assessments largely focused on 
students’ doing or understanding. 

In this paper we focus on IRE sequences where the content focus includes understanding, or not 
understanding. In particular, we examine instances where evidence of understanding (or not 
understanding) is displayed by teachers or students in whole class interactions.  These instances can 
include situations where the teacher-initiation requests students to claim or demonstrate 
understanding, which might include teachers themselves claiming or demonstrating understanding or 
not understanding, or situations where it is the students who make claims or demonstrations of 
understanding relevant in their response turn, or finally situations where the teacher’s evaluation turn 
treats the student’s turn as a claim or demonstration of understanding. Our analysis of these sequences 
takes a Conversation Analytic approach drawing upon Sacks’ discussions of ‘how understanding is 
shown’ (1992:II:140).  We make use of Sacks’ distinction between claiming and demonstrating 
understanding and show that the teachers in these interactions treat claims and demonstrations 
differently, being content-oriented when there are demonstrations of understanding but task-oriented 
when there are solely claims of understanding.  

Methodology 
This analysis was carried out on a video corpus collected in fifteen mathematics teachers’ classrooms 
in ten schools in England of secondary educations (students aged 11-18).  All names used are 
pseudonyms.  These videos were transcribed using Jefferson transcription (Jefferson, 1984) and the 
analysis focused on these transcripts, but they are presented here in a simplified form for ease of 
reading. The transcripts of all whole class interactions in a total of 39 lessons were analysed using 
Conversation Analysis (CA) (Sidnell & Stivers, 2012).  The CA approach was used to develop a 
collection of cases (Sidnell, 2010) examining how the topics of understanding and sense-making are 
treated by the teachers and students as they interact.  These cases include 299 interactions where the 
teacher explicitly talks about understanding and 58 where a student explicitly talks about 
understanding (including interactions about making sense, getting it, and finding meaning).  In this 
paper we focus on those interactions that broadly follow the IRE structure in that they involve both 
the teacher and the students, rather than those that occur during a teacher explanation for example.   

From a CA perspective understanding does not refer to a cognitive state but to an interactional object 
where teachers and students do understanding as they interact.  For example a student saying ‘I don’t 
know’ is often used to request help from the teacher, or to initiate a complaint about an explanation 
(Lindwall & Lymer, 2011). As such, we are not making any claims about what teachers or students 
understand, instead focusing on how they use understanding in interaction to achieve particular 
things.  Within CA research a distinction is made between demonstrating and claiming understanding 
(Sacks, 1992).  For example, a teacher can demonstrate understanding of what a student has said by 
responding with an alternative formulation as in the following extract: 

25 Teacher: … what is the difference then, what makes a histogram a histogram. Jin? 
26  Student:  because the bars can be wider 
27  Teacher:  exactly in a histogram, you can have different width um bars… 

Extract 1: Tom’s lesson on statistical diagrams 
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Alternatively, the teacher or student could just respond ‘yes’ or ‘good’ which would merely claim 
understanding. 
In classrooms teachers generally ask questions that they already know the answer to, and as such 
student responses are demonstrations that they also know the answer.  However, students can respond 
in a way that shows that they have understood, or in a way that shows what they have understood 
(Koole, 2010).  Whilst showing that they have understood can involve either a claim or a 
demonstration of understanding, showing what they have understood requires a demonstration of 
understanding.  Koole (2010) also showed that teacher questions of the form “do you understand” are 
usually followed by a claim of understanding and not a demonstration of understanding. 

Results 
In the data we present here we will demonstrate that claims of understanding support the smooth 
progression of interaction (Stivers & Robinson, 2006) that is underpinned by shared understanding 
(Weatherall & Keevallik, 2016). That is, claims of understanding are affiliative joint 
accomplishments that enable the interaction, and the lesson, to continue, but tell us nothing about 
what students understand. On the other hand, demonstrations of understanding tell us something 
about what students do or do not understand, but also lead to more extended interactions that focus 
on the content of these demonstrations, rather than moving the interaction on. 

Claims of Understanding 

Claims of understanding usually follow an understanding check by the teacher, such as “do you 
understand?” or “does that make sense”. 

70 Teacher:  is (.) does that make sense? 
71  Students:  yeah 
72  Teacher:  okay Simone did you do it exactly the same. (.) no slightly different. thank 

you Steve. er Simone could you (.) explain what you did. was it- 

Extract 2: Becca’s lesson on multiplying fractions 

Here the students have made a claim of understanding in their answer yeah in turn 71, but there is no 
evidence of what they understand or the nature of their understanding within the interaction.  The 
teacher acknowledges this claim in turn 72 before moving on to a different student and asking them 
to explain their method. 

Another situation where there is a claim of understanding but without a demonstration of 
understanding is given in extract 3. 

173  Teacher: numbers pick one of the numbers as a value for n. work out the missing 
numbers, using the same shape, apply that rule to somewhere else, see if you 
can add them up to be um using this rule like this one if I draw that C 
anywhere else I should find that I get er five n add two will tell me, if I draw 
a C in here, er draw this c in one two three four five. five times thirty-two is 
a hundred and sixty, add two makes a hundred and sixty-two. SNAME 

174  Student:  I don't understand 
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175  Teacher:  okay I'll come and see you. it will be seven minutes, to have a go, starting 
now. 

Extract 3: Ryan’s lesson on a hundred square investigation 

In turn 173 Ryan is describing how to draw a letter C on a hundred square and then sum the numbers 
in the letter C by treating one of the squares as n.  In turn 174 a student makes a claim of not 
understanding but does not add anything that would indicate what they do not understand, so no 
demonstration of understanding or not understanding.  This claim is requesting help from the teacher.  
Ryan acknowledges this request but defers dealing with the issue before continuing to talk to the rest 
of the class. 

These teacher turns that include understanding checks are not always followed by student responses 
as in extract 4: 

178 Teacher: …but if I drew another rectangle and had that as two and four, that isn’t 
similar to that cus they’re not in the same proportions, yeah? does that kind 
of make sense? It’s a bit of a weird mathematical word. right? but we have to 
get used to it in a mathematical thing, so it doesn’t quite but congruent 
certainly is going to come up. okay. so we’re going to start with reflections, 
but… 

Extract 4: Imogen’s lesson on transformations 

Here Imogen asks “does that kind of make sense?” but without pausing and without any students 
responding continues here turn before moving on to a new topic at the end of the extract.  

Where there is a claim of understanding (or not understanding) but no demonstration of 
understanding, the interaction continues without any reference to what has, or has not, been 
understood.  Where the teacher has invited a claim of understanding but no student response is given, 
again the interaction continues without any reference to what has, or has not, been understood.   Since 
‘do you understand’ or ‘does that make sense?’ questions prefer a claim of understanding rather than 
a demonstration of understanding (Koole, 2010), when no response is given it is a claim of 
understanding that is ‘noticeably absent’ (Bilmes, 1988) and in every case in this data where there is 
no response, the interaction continues in the same way as if there had been a positive claim of 
understanding. In contrast, as we will show in the next section, when there is a demonstration of 
understanding, or not understanding, the following interaction focuses on the content of the 
understanding and extends the IRE sequence (Schegloff, 2007). 

Demonstrations of Understanding 

Teachers can explicitly ask students a question that requires them to demonstrate their understanding.  
In extract 5, Fiona asks the student to explain so that she and the other students can understand, and 
the student gives an explanation in turn 188.  In the turn that follows Fiona focuses on one part of the 
student’s explanation and asks a follow up question. 

187  Teacher:  right explain it to me so that I understand but also so that people that haven't 
done this one understand ‘cause I know that there's quite a few people who 
haven't done it 
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188  Student:  is it because Rio is forty degrees and I've worked out that Khartoum is thirty-
five degrees you just add five 

189  Teacher:  right where did you get thirty-five from for Khartoum, was that one of the 
ones that we've worked out 

Extract 5: Fiona’s lesson on negative numbers 

In extract 6, Tom is asking why it makes sense to take a moving average over four points when 
dealing with quarterly sales of ice cream.   The student, Sayed, gives an explanation which Tom then 
follows with a prompt to be more specific in turn 70, to which the student responds with more detail. 

68  Teacher:  yeah it is because of that so why, why does that make sense, can you say so 
why does that makes sense to use four in the numbers. it is something to do 
with the fact that it's quarterly. Sayed?  

69  Sayed:  because there's four quarters 
70  Teacher:  where 
71  Sayed:  in the end, in a year 
72  Teacher:  yeah there's four quarters in a year but, so, you know so … 

Extract 6: Tom’s lesson on moving averages 

One of the most common ways that teachers ask about students’ understanding is in relation to the 
meaning of mathematical vocabulary. 

11  Teacher:  ah that's a good word isn't it isosceles. what do you understand by isosceles 
12  Student:  erm two lines that are perpendicular they're straight lines and then they have 

two of the same angles 
13  Teacher:  we're getting lots of different mathematical words aren't we. um two lines are 

perpendicular what do you mean perpendicular. 

Extract 7: Dave’s revision lesson 

In turn 10, before the transcript begins, a student has given a justification for an angle having a 
particular value as being because the triangle is isosceles.  Dave follows this up in turn 11 by asking 
this student what he understands by isosceles, which he explains in turn 12, (inappropriately) 
introducing the word perpendicular to describe the two sides with equal length.  Dave then follows 
up on this and returns the turn to the student to explain what he means by perpendicular. 

In these three extracts the teacher’s initiation includes an explicit request for a demonstration of 
understanding, which the student gives in their response, and which is followed by the teacher asking 
a follow-up question focused on the content of the students’ demonstration which returns the turn to 
the student. Demonstrations of understanding can also occur when a student is indicating that they do 
not understand something.  In extract 8, a student has given the equation of a straight line using the 
gradient and the y-intercept which Dave repeats in turn 71.  Dave then opens up the floor to invite 
questions from the students at which point a student asks how to find the equation and states that he 
does not understand.  This is both a claim of not understanding and a demonstration of what it is that 
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is not understood1.  The teacher follows this with an explanation for how the class found the equations 
of straight lines in previous lessons as well as giving a rule. 

71 Teacher:  …yes three x plus one. um okay that's fine. who wants to ask anything about 
the first side, you do. go on 

72  Student:  um how do you find out the um equation I don't understand it 
73  Teacher:  no okay. this three I remember we went to the computer room and drew some 

things didn't we this three turned out to be the gradient and this one turned 
out to be where it goes through the y axis. so once you've found out the 
gradient is three you can just stick it in there um that requires quite a bit of 
thought doesn't it um at this stage with the exams coming up just stick it in 
there in front of the x and you put plus one on the end because of that and it 
all fits in with the pattern we saw when we drew lots and lots and lots of these 
in the computer room … 

Extract 8: Dave’s revision lesson 

Furthermore, whilst the student in turn 72 treats the issue as one of understanding, the teacher’s 
following turn treats it as an issue of remembering (Koole, 2012). 

In each of these cases where there is a demonstration of understanding, or not understanding, the 
teacher’s follow up turn focuses on the content of the students’ responses. This is in contrast to the 
situations where there was only a claim of understanding where the teacher’s follow up turn moved 
the interaction on.  This arises both in situations where the teacher has asked students about their 
understanding as well as where students indicate that they do not understand.  However, this second 
situation is rare in whole class interactions.  Also, where the teacher has requested the demonstration 
of understanding in their initiation, the teacher’s third turn also returns the turn to the same student.  
The preference for moving the interaction on following claims of understanding is reinforced by the 
numerous occasions where teachers as “do you understand” but does not wait for an answer before 
moving on to the next topic (as illustrated in extract 4), which occurred in just over 40% of cases of 
understanding checks in this data (in contrast to Koole (2010) where the students always responded). 

Conclusion 
In this paper we have focused on how claims and demonstrations of understanding are dealt with by 
teachers and students in their interactions.  Within the IRE structure, teachers can invite either claims 
of understanding or demonstrations of understanding in their initiation, and this distinction is further 
supported by the students who in their responses give either a claim or a demonstration as required 
by the teacher’s initiation.  However, teachers and students are doing different things when they invite 
or give claims to when they invite or give demonstrations.  Claims of understanding are treated as 
ways of supporting the progressivity of the interaction (Stivers & Robinson, 2006) and do not deal 
with the content or issues of what is or is not understood.  In contrast, demonstrations of 

                                                 
1 Whilst the student utterance of “how do you find out the um equation” could be interpreted as an issue of knowledge or 
knowing, the student treats it as an issue of understanding by following it with “I don’t understand it” rather than “I don’t 
know”. 
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understanding lead to the interaction focusing on the content of these demonstrations and an 
expansion of the IRE structure. 

Transcript Notation (Jefferson, 1984) 

[ text ] Brackets Indicates the start and end points of overlapping speech. 

(.) Micropause A brief pause, usually less than 0.2 seconds. 

.  Period  Indicates falling pitch or intonation. 

?  Question Mark  Indicates rising pitch or intonation. 

, Comma Indicates a temporary rise or fall in intonation. 
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Talking about standardized units in preschool – supporting language 
and mathematical learning  
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Today, the important role of language use for successful (early) mathematical learning processes is 
widely accepted and researched. Starting from the preschool teacher as an influencing variable for 
language learning and the mathematical content of measuring, this paper reconstructs opportunities 
for supporting conceptual as well as language learning in small group interactions planned for 
mathematical learning in preschool. The way preschool teachers talk about units ranges between a 
linguistically rich ‘language bath’ and an action-oriented ‘activity bath’ and thus offers different 
learning opportunities.   

Keywords: Early mathematics education, measuring, linguistic competence, oral language.  

Introduction 
Despite the fact that large-scale studies have shown the impact language has on mathematical learning 
processes, the German school system is still in need of concepts to support children with 
disadvantageous starting conditions, for example migration background, low socio-economic 
background or developmental speech disorders. These children are still not provided with equal 
chances to take part in (mathematical) educational processes (Gogolin & Lange, 2011). Ensuing from 
these observations, for example, Prediger (2015) claims that academic language education processes 
should start as early as possible. While most research on language-sensitive teaching in Germany 
focusses on primary or secondary schools (Gogolin & Lange, 2011; Leisen, 2015), fostering 
academic language in preschool could contribute to improving educational injustices. Further, 
academic language education processes should be designed age-appropriately and oriented towards a 
specific content. Prediger and Zindel (2017) ask for more topic specific research in order to specify 
the concrete linguistic demands for mathematical contexts. Studies show that preschool teachers 
possess only insufficient knowledge concerning basic linguistic terminology, language acquisition 
and effective interventions (Michel, Ofner, & Thoma, 2014). These results are especially alarming if 
one takes into account that even preschool children who speak only one language are still language 
learners (Volmert, 2005). Hence, there is not only a lack of concrete concepts for integrated 
mathematical and language learning, but also for professionalizing preschool teachers in order to be 
able to implement such concepts. With the analysis of language usage in interactions during 
mathematical activities, we try to address this gap.  

Our overall aim is to raise preschool teachers’ language awareness and practical knowledge for 
fostering academic language proficiency (Isler, Künzli, & Wiesner, 2014) and mathematical learning. 
In a first step, we specify this aim by looking at the use of language in kindergarten interactions 
concerning magnitudes. On a linguistic as well as mathematical level, units are a crucial part of 
measuring. Since we found measuring of children’s body length and the accompanying measured 
values as a recurring theme, we take a deeper look at the verbalization of units and indications of size. 
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After elaborating on linear measuring, the topic of our content-specific research, we present the 
empirical data, some results and a preliminary discussion.  

Linear measuring in preschool 
Measuring is not only one of Bishop’s (1988) six basic mathematical activities, but is also seen as a 
basis for the development of mathematics as a science in all cultures and many curricula for early 
mathematics education in Germany put emphasis on measuring. Further, it represents a link between 
mathematically abstract concepts and everyday life, and comprises multiple inner-mathematical 
relations, especially with numbers and geometry. Beyond, the concept of measuring can be seen as a 
basis for further concepts, for example fractions and rational numbers (Barrett et al., 2011). While we 
take research on children’s acquisition of a (geometric) concept of magnitudes, milestones and 
difficulties (Sarama, Clements, Barrett, van Dine, & McDonel, 2011) as a background for our 
linguistic analysis, we will not discuss it in detail. Although an integrated approach for different 
spatial magnitudes, especially in early education, is seen as reasonable in order to understand the 
differences and the fundamental idea of measuring as comparison with a unit (Barrett et al., 2011), 
here we only concentrate our linguistic analysis on length. Length and area are more easily 
perceivable and accessible for young children than other magnitudes, although they might be difficult 
to distinguish (Skoumpourdi, 2015). The activity of measuring length concentrates on the 
determination of a linear expansion. Therefore, you have to distinguish between objects with a rather 
clear linear characteristic, for example sticks or distances, and those objects with more than one 
dimension that can be measured (width, height, depth) (Nührenbörger, 2002; Skoumpourdi, 2015). 
Consequently, it becomes obvious that speaking about length comes along with specific linguistic 
challenges, for example concerning the characteristic of linearity and the differentiation from area. In 
order to obtain a profound concept of measuring, children need to understand the act of iteration. In 
order to obtain a measure, a subdivision of a certain length is translated. Each of these subdivisions 
has to be equal, the concept of identical unit. With these identical units, you fill out a certain space, 
the so-called tiling. In order to fill out a space completely, it might be necessary to partition units. 
Lastly, measures can be added so that a measure of eight units can be thought of as a composition of 
five and three suggests the concept of additivity (Lehrer, Jaslow, & Curtis, 2003). While some 
research suggests starting with non-standardized units and only introducing units like centimeter and 
meter later in the process, this rarely meets the children’s reality. Based on this theoretical 
background, we focus on the following research questions:  

· Which linguistic resources are at preschool teachers’ disposal when talking about 
standard linear units?  

· How are the acquisition of (academic) language and mathematical application 
supported in these interactions?  

In order to answer the research questions, we follow methods from interactional linguistics (Couper-
Kuhlen & Selting, 2000). Interactional linguistics takes an interdisciplinary and cross-linguistic 
perspective on language. It looks at the structure and use of language, capturing it in its natural 
environment, the social interaction. Based on the linguistic element used in the utterance, we look at 
their role in the conversation. In our context, these linguistic elements are utterances containing 
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standardized units to describe or accompany measuring processes. We are interested in situations in 
which units are used in ways which might lead to meanings within the child’s and the kindergarten 
teacher’s mind. Apart from that, we are interested in structures that deviate from a normatively correct 
way and which might therefore inhibit the construction of measuring concepts or at least make it 
harder for children to understand the concept of length. If applicable, the central concepts in linear 
measuring that might be transmitted through the preschool teachers’ utterances are pointed out.  These 
questions are part of a larger project which also looks at the language used with other magnitudes, 
older children at primary school and syntactical, lexical and semantic aspects, because “developing 
measurement sense can be conceptualized as learning the language of measurement, with attention 
paid to the semantics, syntax, grammar and pragmatics of measurement” (Joram, 2003, p. 65). 

Empirical data and results  
The data basis for our analysis consists of videotaped mathematical situations designed by preschool 
teachers from the project erStMaL (early Steps in Mathematical Learning) (Acar Bayraktar, Hümmer, 
Huth, & Münz, 2011). From this data basis, seventeen situations are concerned with magnitude and 
measuring, which are the corpus of our project (for detailed information on these situations see Brandt 
and Keuch (2017)). These small group interactions with one preschool teacher and two to five 
children were transcribed and annotated using the transcription and annotation tool EXMARALDA 
(Schmidt, 2002). Ten of these seventeen situations deal with the magnitude length. In order to be 
included into the following analysis, the utterance has to include some kind of standardized linear 
unit. In a first step, we differentiated between units that accompany numbers (indication of size) or 
that appear on their own. Indications of size are further analyzed according to which units are used 
and how they are combined with the respective number(s). The following utterance by one of our 
preschool teachers serves as an illustration for the different types of using units in indications of size:  

Sabine: You are one meter and nineteen centimeters. Look, that’s what the number looks 
like. One hundred nineteen centimeters are one meter nineteen.  

For the first indication of size in her utterance, Sabine uses a number (one), then the unit (meter), the 
conjunction ‘and’, then another number (nineteen) and another unit (centimeter). So this part of her 
utterance is annotated as ‘x m and y cm’. In the second part of her utterance she uses centimeters 
only, so this would be coded as ‘x cm’, and then she uses a shortened, colloquial form without ‘and’ 
and without ‘centimeters’. This would count as ‘x m y’. Preschool teachers use units more than four 
times more often than children (see Table 1) do. Moreover, only three children produced utterances 
containing units. In most cases, preschool teachers use units within indications of size. Teachers talk 
four times more often about centimeters than about meters. If they use mixed forms, they tend to use 
a shortened, colloquial version. In contrast, children never use mixed forms (but they use numbers 
without units to indicate size, which are not included in this analysis). Preschool teachers use units 
without numbers to list the different units that exist in different countries, but without giving further 
explanations as in the following example: “You can measure in meter or in centimeter and in America 
I think you measure with inch. We measure here with meter and centimeter”. The following table 
shows how numbers and units are combined within indications of size and how often each variation 
is used in all ten situations dealing with length:   
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 Units 
total 

without 
numbers 

x cm x m x m and y 
cm 

x m y x inch 

Preschool Teacher 88 13 41 10 4 19 1 

Children 19 5 11 3 0 0 0 

Total 107 19 52 13 4 19 1 

Table 1: Use of units in all ten situations dealing with length 

After this global view on the general usage of units, we now look at explanations that preschool 
teachers give for the meaning of units. Only two of them, Berna and Sabine1, try to explain what a 
unit (in their cases centimeter) is, hence we concentrate our following analysis on them.  

Sabine: Every number is a centimeter. That means such a small piece is a centimeter. You 
see that also on the ruler, don’t you? 

Berna: From one long line to the next, so just this little box yes? That’s a ... that’s a 
centimeter there.  

In the first part of her utterance, Sabine compares the numbers on the folding stick with centimeters, 
the numbers equal the centimeters. With this explanation, she might want to address the concept of 
identical units. Barrett, Jones, Thornton, and Dickson (2003) warn that focusing on the numbers or 
marks on a measuring device might impede seeing length as an aggregation of segments or units. 
Berna, however, hints at the distance between two-centimeter marks on a tape measure, which she 
calls ‘little box’. This expression can be (mis-)interpreted as a two-dimensional square (for example 
on graph paper) or as a three-dimensional object. In any case, defining linear units by using two- or 
three-dimensional objects like ‘piece’ or ‘little box’ might lead to confusions with area measuring 
(Keuch & Brandt, 2018). Starting from the former defined centimeter, Sabine tries to explain the need 
for other units like meter and hint to the concept of partitioning: “But when we now uhm calculate 
everything in centimeters, then the numbers must be much too big”. Sabine hints to the inverse 
relationship between the number of units and the size of the unit (Grant & Kline, 2003). However, 
she never explains what exactly a meter is (or its relationship with centimeters), but puts a folding 
rule on the floor, folded in a way that it is one meter long, claims that ‘that’ is a meter and goes on 
with the next activity: “Look! And that’s a meeeter! Do you now want to know how tall you are?”  

Berna explains the relationship between meter and centimeter (partition) in two steps. First, she 
elaborates on ten centimeters and finally she draws the link to one meter, hinting at the decadal 
structure. However, the children’s job in the second step is simply to read out the number hundred:  

Berna: That’s a meter. And in one meter, from the beginning to the end are? Which number 
is this?  

Friedel: Mhm hundred.  

                                                 
1 The children in these two situations are 6;0 – 6;2 (Berna) and 4;11 – 5;11 (Sabine) years old. 
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Berna: Hundred centimeters. So that means that in such a meter are hundred … little boxes.  

Berna tries to initiate a number of tasks that hint at the idea of iteration, identical units and tiling while 
referring to different measuring devises: “So, from the beginning to the seven are how many 
centimeters then Can?”2 When she notices the children’s difficulties, she refers back to her 
explanation of little boxes and rather focuses on counting discrete little boxes (although there are no 
clear visible boxes on the folding stick) instead of continuous units:  

Berna: One little box is always one centimeter and now count the little boxes up to seven.  

Berna: Look, it is … the numbers don’t play any role now. From one to the other mark, 
only one little box, is always one centimeter. Yes?  

With this statement, she indirectly hints to the concept of identical units and also to the fact that every 
point on a measuring device can be used as a zero point. No such utterances that contain the idea of 
identical units, iteration or tiling were found in any other situation. Moreover, one has to consider 
that the children in the interaction with Berna are the oldest children in the corpus of our project. 
Sabine as well as Berna hint to the concept of additivity. While Sabine, in an indirect way, puts 
emphasis on the difference between the heights of two children, Berna takes two measuring results 
and adds them up in order to get a result, which equals one of the children’s height.  

Sabine:  And you are one meter twelve tall (…) one centimeter bigger than Theresa! 

Berna: So we have now twenty-five and hundred centimeters. So, one meter are hundred 
centimeter, plus the twenty-five to that. Then now I can tell you that Can is one 
meter and twenty-five centimeters long.  

Interestingly, Berna first transfers one meter into hundred centimeters and then adds more 
centimeters. Her result however is a mixed indication of size consisting of meter and centimeter. 
Sabine seems to immerse the children in a kind of ‘language bath’ to offer them a linguistically rich 
environment and she might hint to the concept of partitioning and additivity. In this situation, units 
accompany the measuring process. She never asks the children questions about units but rather 
integrates them as ‘silent’ participants into the measuring process. When measuring the children’s 
body length, Sabine uses units in various ways to express their size, also using adjectives or reading 
out the single digits to make those numbers that exceed the children’s actively mastered number range 
more comprehensible:  

Sabine: Oh you’ve got a funny number. You are one meter eleven tall. Look! One meter 
eleven is a one, a one and another one. 

Berna makes the children participate mentally and physically by posing different questions or asking 
the children to show her a centimeter with their fingers on a measuring device but also limits her talk 
on units to these devices. When she determines the children’s body length, mainly non-standardized 
units like building blocks are used, except when she calculates Can’s body length. However, she asks 

                                                 
2 In German (“So, vom Anfang bis zu der sieben sind wie viele Zentimeter dann, Can?”) the utterance is not completely 
grammatical and the author tried to stay as close as possible to the original.  
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many questions concerning units so that the children get a chance to test and apply their mathematical 
and language knowledge:  

Berna: From one long to the other long mark it’s a…?  

Friedel: Meter! 

Berna: Noo one centimeter, but you were really close. Well done Friedel!  

While we were able to show that Berna tends to correct lexical mistakes very often and very directly 
(Brandt & Keuch, 2018), she seems to have a quite relaxed attitude towards the difference between 
meter and centimeter. While from a linguistic perspective, there really is just one prefix that 
differentiates the two words, mathematically there are ninety-nine centimeters in between.  

Conclusion  
In this paper, we looked at the use of standard units in small group interactions in preschool. It became 
obvious that preschool teachers used units more often than children did. The children rarely spoke 
about units. This might have to do with limited elicitations by the preschool teachers. They, on the 
contrary, used units and indications of size in various ways, with the latter most often expressed in 
mixed and incomplete structures. When the context is clear, leaving out units in everyday settings 
would not inhibit the understanding, but it contradicts the idea of fostering academic language. 
Focusing on Berna and Sabine, both preschool teachers seem to possess pedagogical as well as 
didactical knowledge. Yet, we could only observe limited language awareness regarding the 
introduction of standard units. Central concepts of linear measuring like iteration, identical units, 
tiling, partition, and additivity are addressed rarely and mostly indirectly. In both situations, it is not 
clear which (if any) conceptual understanding of units and scale values the children develop beyond 
the actual context. The negotiation process related to the mathematical content stayed at the surface 
especially for linguistically less competent children since some explanations might not have been 
accessible for them and therefore they did not get a chance to improve their mathematical and (active) 
linguistic competences. Berna almost completely restricted units to the scales of measuring devices. 
Nevertheless, the children might have gotten a better idea of the actual size of a centimeter (although 
it might interfere with area) because of her multiple questions and tasks. It remains unclear how far 
the children were able to transfer their knowledge to the actual measuring activities in the situation 
and beyond. Because of Sabine’s lack of questions and tasks concerning units, the actual concept and 
size might have stayed unclear. Following her rich ‘language bath’ concerning body sizes, the 
children in this situation might get a feel for expressing indications of size, even beyond this situation. 
This ‘language bath’ was integrated in the cultural practice of measuring with standard units. Through 
this subjective-bodily involvement, she might enable more indirect learning which can leave marks 
and offer connectivity options for later (direct) mathematical and language learning opportunities.  
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Introduction 
Mathematical reasoning is recognised as an essential means for promoting students’ mathematical 
understanding and is central to students’ mathematical proficiency (e.g., Kilpatrick, Swafford, & 
Findell, 2001). However, the teaching and learning of mathematical reasoning – here understood as 
a discursive practice – remains challenging in secondary school classrooms, with students often 
relying on mathematically superficial reasoning (e.g., Sidenvall, Lithner, & Jäder, 2015). Teachers 
need to have at their disposal effective discursive teaching practices to foster students in developing 
their ways of mathematical reasoning. This raises the question of how teachers can be supported in 
developing such discursive teaching practices with respect to mathematical reasoning. This question 
is addressed in the PhD-project of the first author. The intention of this poster is to elicit feedback 
concerning the inferences made from the analysis of mathematical reasoning teaching practices, 
within a discursive framework. 

Theoretical framework 
Sfard (2008) argues that ‘doing mathematics’ is a discourse, that is, the use of specific, well-defined 
communication. As such, mathematical reasoning can be considered as the line of thought, both the 
inter- and intrapersonal discourse, that is utilised to produce statements and reach conclusions while 
solving a task. Mathematical discourses are framed as a type of communication that is distinct to 
others through the permissible “vocabularies, visual mediators, routines and endorsed narratives” 
(Sfard, 2008, p. 297). Routines are a set of rules defining a discursive pattern that repeats itself in 
certain situations. For example, the use of the quadratic formula is a routine. Endorsed narratives are 
an ordered sequence of expressions which are labeled as true. They describe mathematical objects 
(e.g. numbers, functions, and formulae), relationships between objects, and the processes through 
which the objects are constructed. Examples of narratives endorsed by the mathematical community 
(e.g., mathematicians and teachers) include definitions, axioms, and theorems as well as acceptable 
forms of presenting solutions to specific tasks (e.g., answer models within state exams). 

The completion of a mathematical (school) task can be considered as the production of an endorsable 
narrative from existing narratives (Sfard, 2008). The activity of choosing which previously endorsed 
narratives are relevant to the task at hand and how these narratives are to be manipulated to create a 
new (endorsable) narrative is fundamentally what mathematical reasoning is. In this process, students 
need to adhere to well-defined rules within the mathematics community. Fostering mathematical 
reasoning thus requires the teacher to explain the rules and mechanisms of endorsing narratives in 
classroom conversations. Such a meta-discourse about rules and mechanisms can be considered as a 
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mathematical discourse in itself because it has its own vocabulary, visual mediators, routines and 
endorsed narratives. This discourse is coined mathematical reasoning discourse.  

Methodology 
As part of a larger project, the present study is conceived to examine the mathematical reasoning 
discourse that teachers employ in their classrooms. At the time of CERME11, the present study was 
in the data collection phase. The results of this exploratory study will be used as one of the inputs, in 
the following study, for the design and evaluation of a professional development module in relation 
to advancing teachers’ mathematical reasoning discourse. 

The exploratory study consists of ten lesson (video) observations and stimulated recall interviews 
with five Dutch mathematics teachers at the upper secondary level. The interviews consist of non-
evaluative questions asked while watching pre-selected video-scenes of their classroom routines. The 
questions are designed to stimulate the participant to relive the lesson, and, through this, to reflect on 
his/her routines (Geiger, Muir, & Lamb, 2016), to identify the conditions influencing their choice of 
routines and the types of routines they employed (Cooper & McIntyre, 1996), and what they deem as 
a successful implementation of their routines (cf. closing conditions of routines, Sfard, 2008).  

The planned approach to the data analysis is the following: 

1. Video sightings for identifying teacher routines in the mathematical reasoning discourse (also 
used as stimulated recall)  

2. Qualitative discourse analysis of the (video) observations to examine the discursive means 
(narratives, keywords, visual mediators) for fostering the students reasoning  

3. Qualitative discourse analysis of the stimulated recall interviews to uncover teachers’ 
intentions behind their routines and as such meta-rules for mathematical reasoning discourse  

From the design of the exploratory study, the expected output would include (successful/promising) 
routines that teachers use, and the associated meta-rules in relation to mathematical reasoning 
discourse. However, this raises the following question for discussion in the context of TWG09: how 
can inferences be made from the here presented exploratory study to a broader teacher community in 
order to inform the design of the professional development module?    
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This paper presents a research study about the different functions of languages in teachers' 
translanguaging practices at primary level in the Maltese islands. Translanguaging denotes learning 
environments which support individuals to activate different languages in the learning or teaching 
process for facilitating interaction between individuals for constructing and communicating 
knowledge cross-linguistically. Bilingual primary teachers, Maltese and English-speaking, were 
accompanied during the introduction of mathematical concepts in order to identify the different 
functions of both languages in their discourse when teaching mathematical concepts. 
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Introduction 
Language plays an important role in mathematics learning, not only to communicate mathematical 
knowledge to each other, but also to construct mathematical knowledge cognitively (Maier & 
Schweiger, 1999). Several studies highlighted the importance of integrating content and language 
learning in mathematics learning environments, wherein, along with the content itself, language 
development is also a learning goal (Wessel, 2015; Farrugia, 2017). Other studies about 
multilingualism in learning environments state how important it is to consider the students' first 
language in contexts where the second language is the language of education (Cummins, 1981). 
However, more research is needed to investigate the different functions which two languages have in 
multilingual mathematics classrooms, especially when teachers use both languages to teach 
mathematical concepts bilingually.   

The ongoing research project focuses on how two languages, which are both used by teachers and 
students in Maltese mathematics classrooms, influence mathematics teaching and learning at primary 
level. The use of both languages by teachers will be observed during the introduction of mathematical 
concepts in order to achieve insights into the functions of both languages. The main research question 
is: What are the functions of two languages used by bilingual primary teachers when translanguaging 
in their mathematics teaching? 

Theoretical background 
A quite common notion in linguistics research about multilingualism is the concept of codeswitching. 
Codeswitching denotes the process of switching from one language to another at discourse level for 
a more effective communication between bilingual speakers. In contrast to codeswitching, 
translanguaging denotes teaching methodologies which incorporate the use of one language for 
supporting the development of the second language for facilitating student understanding (Lewis, 
Jones & Baker, 2012). Lewis et al. (2012) emphasize that the use of two languages is cognitively 
high-demanding for students and this process should not be merely considered as translation:    
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The process of translanguaging uses various cognitive processing skills in listening and reading, 
the assimilation and accommodation of information, choosing and selecting from brain storage to 
communicate in speaking and writing. Thus, translanguaging requires a deeper understanding than 
just translating as it moves from finding parallel words to processing and relaying meaning and 
understanding. (Lewis et al., 2012, p. 644) 

Similarly, Baker describes translanguaging as "the process of making meaning, shaping experiences, 
understandings and knowledge through the use of two languages" (Baker, 2011, p. 288). According 
to Baker (2001) advantages of using translanguaging includes a deeper understanding of the content 
and support of the weaker language in the learning process. Hence, translanguaging focuses on the 
cognitive processes during learning and does not only emphasize the external mode of communication 
when switching from one language to another (as in the case of codeswitching). Nevertheless, 
codeswitching is a prerequisite in order to get insights into the cognitive processes in translingual 
teaching and learning environments.   

The use of two languages for teaching and learning of mathematics leads to multidimensional 
symbolic representations of mathematical knowledge in the context of translanguaging, as it has been 
illustrated by a model about the different representations of mathematical knowledge under 
consideration of multilingualism by Prediger and Wessel (2011). This model emphasizes that 
different registers can be realized using different languages, e.g., first language on the level of 
everyday language and second language for mathematical language.  

Research design, methods and implementation 
In order to qualitatively research the functions of two languages when teaching mathematical 
concepts, a case study with different teachers was designed. It was important to find a scenario where 
teachers and students speak both languages, where both languages have roughly the same status in 
the society, and where translanguaging is the norm in the educational context. Due to these 
prerequisites the case study was conducted in Malta, where both Maltese and English are used for 
teaching and learning at primary and secondary level. Maltese primary teachers are allowed to use 
both languages for teaching mathematics and in order to support mathematical learning independently 
from the language chosen in the classroom, as stated in the Maltese primary mathematics curriculum: 

The class teacher, in accordance with the school strategy, is to decide what language must be used to 
facilitate the development and acquisition of mathematical concepts. Once, this objective is achieved, 
however, it is essential that children are exposed to the mathematical ideas in English (...) However, on no 
account should the use of either language (Maltese or English) impede upon the children's learning of 
mathematics. (Department of Curriculum Malta, 2014, p. 10) 

The research study was conducted in a fourth and sixth grade at a primary school in Gozo, an island 
in the Maltese archipelago. Two teachers were observed during the introduction of several 
mathematical concepts. The fourth-grade teacher introduced the concepts of fractions and their 
equivalency and weight and mass in two different lesson units. The sixth-grade teacher introduced 
the concept of percentages. Nearly all students in the observed classes have Maltese, a Semitic 
language and first language for the majority of the Maltese population, as their first language, and 
English, the language of the former colonizers, as the second language. Both languages are taught at 
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school starting from first grade in primary schools. The same language conditions apply for the 
participating teachers, who additionally studied educational studies in English at university in Malta.  

The lessons of the teachers in the units were audio-recorded and observed in the classroom in order 
to note the different materials (e.g., books, smartboard, hands-on, etc...) used by the teachers when 
introducing the mathematical concepts. The recordings were transcribed and analyzed qualitatively 
in order to investigate the use of translanguaging, in particular, the different functions both languages 
fulfill during the teaching of mathematical concepts.   

Results 
Preliminary analyses of the recorded data show that teachers use translanguaging intensively when 
introducing mathematical concepts in both classrooms and that language choice also tends to depend 
on materials used (e.g., hands-on). Three main functions of the first and second language during the 
introduction of the concepts were identified and are described in the upcoming subsections.    

First language as oral and second language for the fixation of the mathematical language 

A particular remarkable observation is the different functions of the two languages regarding oral and 
written modes. The first language, Maltese, was used by both teachers only orally, whilst the written 
form of mathematics was only realized using English. Maltese was often used for communicating 
mathematical phenomena orally, and English was used to capture the mathematical insights written, 
as it can be observed in Transcript 1 (T stands for teacher and S for student): 

Transcript 1  

 Original in Maltese and English Translation 

T1 (...) ħa naraw bejn wieħed u ieħor kemm 
jiżnu l-affarijiet. Aħna rajna li one packet 
of flour, li tfisser dqiq, f-l-o-u-r jiżen one 
kilogram. (...) Biex nkunu kapaċi 
nagħmlu estimate. Inqabblu bejn il-ħaġa 
li tiżen iktar jew inqas minn pakkett dqiq. 
Iktar jew inqas minn one kilogram? 
Rajna li around five oranges weigh one 
kilogram. Għadkom tiftakru kemm jiżen 
baby tat-twelid? 

(...) we are going to see how much things 
weigh approximately. We saw that one 
packet of flour, which means flour, f-l-o-
u-r weighs one kilogram. (...) So that are 
able to estimate. Comparing whether one 
thing weighs more or less than the packet 
of flour. More or less than one kilogram? 
We saw that around five oranges weigh 
one kilogram. Do you remember how 
much a newborn baby weighs? 

Choir Three or four. Three or four. 
 

 
Figure 1: Whiteboard inscriptions accompanying Transcript 1  
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The scene in Transcript 1 originates from the introduction of weight and mass in grade 4, after the 
students (S) had learnt how to read the weight using different scales. This transcript shows an extract 
from the introduction to comparison and estimate of objects' weight. In this scene the first or second 
language is not merely used for translation purposes. The lesson goal is formulated by the 4th-grade 
teacher (T1) in Maltese but summarized using the concept estimate in English. The knowledge about 
objects, especially their weight, e.g. “around five oranges weigh one kilogram”, is formulated and 
written down in English (see Figure 1). English is the textbook language in Maltese mathematics 
classes, and this is reflected in the choice of writing mathematical phenomena in English. In contrast, 
Maltese is used for the oral description of the mathematical phenomena, especially the action of 
comparing the weight of objects. In other instances, Maltese is used for activating learnt knowledge, 
e.g. “Rajna li... ” (We saw that...) or “Għadkom tiftakru...” (Do you remember...) in Transcript 1. 

First language for concrete experiences and second language for the abstraction of 
mathematical phenomena 

The use of two languages in mathematics classrooms was noticed during the teaching of mathematical 
phenomena which are first based on concrete representations and becoming more abstract in further 
learning processes. The first language seems to be more used for activating everyday knowledge, and 
the second language is used for abstracting the underlying processes, as it can be observed in 
Transcript 2, in which the 4th-grade teacher (T1) introduces equivalent fractions using hands-on:  

Transcript 2 

T1 Illum, we have twenty-four small 
squares, (...) if I want to eat one fourth 
of the chocolate, if one, two, three, four 
(pointing to four students) are going to 
share the chocolate, ha naqsmu ċ-
chocolate bejn one, two, three, four, 
(...) kemm se tieħdu kull wieħed? 

Today we have twenty-four small squares, 
(...) if I want to eat one fourth of the 
chocolate, if one, two, three, four (pointing 
to four students) are going to share the 
chocolate, we are going to break down the 
chocolate among one, two, three, four, (...) 
how much will each get? 

S1 Two? Two? 

T1 Two? (pointing at the squares of the 
bar) One two, one two, one two, u one 
two, jibqa’ din il-biċċa. (...) 

Two? (pointing at the squares of the bar) 
One two, one two, one two, and one two, 
this piece remains. (...) 

S2 Six. Six. 

T1 Nistgħu npinġuha u naqsmuha 
f'erbgħa. One, naqsmu waħda minn 
nofs, u waħda minn nofs hawn (uses 
gestures to show how to break the bar 
into half and then each into halves). (...) 

We can draw it and break it down into four. 
One, we break down one in half, and one in 
half here (uses gestures to show how to 
break the bar into half and then each into 
halves). (...) 

S3 Teacher, jew taqsam hekk. One, two, 
three... (points along the rows) 

Teacher, or we break it like this. One, two, 
three... (points along the rows) 
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T1 That's another method, very good. (...) 
K'naqsmuha f'erbgħa, one, two, three, 
four, dawk ir-rows, kull wieħed kemm 
jieħu? Għoddu! 

That's another method, very good. (...) If we 
break it down in four, one, two, three, four, 
these rows, how many does each get? 
Count! 

Choir Six. (...) Six. (...) 

T1 What fraction? (...) How many pieces? 
Six. (...) What fraction? 

What fraction? (...) How many pieces? Six. 
(...) What fraction? 

S4 Six from four. (...) Six from four. (...) 

T1 Six on? Out of how many? Six on? Out of how many? 

S4 Four. Four. 

T1 Ara, are there only four in all? How 
many in all? 

Look, are there only four in all? How many 
in all? 

S4 Six times four. Six times four. 

T1 Six out of twenty-four. (...) Kieku 
naqsmu ċ-ċikkulata hekk, u kull wieħed 
se jieħu one fourth, kemm hemm 
squares? 

Six out of twenty-four. (...) If we break 
down the chocolate like this, and each gets 
one fourth, how many squares are there? 

Choir Six. Six. 

T1 Six. Mela, what is another fraction? 
What can I say instead of six on twenty-
four? (...) 

Six. So, what is another fraction? What can 
I say instead of six on twenty-four? (...) 

S2 One fourth. One fourth. 

T1 (...) So what can you tell me about these 
two fractions? Six on twenty-four and 
one fourth. What can you tell me about 
them? Jekk jiena rrid niekol ħafna 
ċikkulata, liema nagħżel din jew din 
(shows on the two fractions)? 

(...) So what can you tell me about these two 
fractions? Six on twenty-four and one 
fourth. What can you tell me about them? If 
I want to eat a lot of chocolate, which one 
do I choose, this or this? (shows on the two 
fractions)? 

In Transcript 2, the 4th-grade teacher activates the concept image of distributing parts of a whole using 
a (six times four) chocolate bar to be shared among the students. The teacher states the number of 
subgroups (four students), the fraction, and poses the question, “How many pieces per child?”. 
Although more English is used in the teacher's discourse, both languages are used to fulfill different 
functions at concrete and abstract level. Although the lesson goal is stated in both Maltese and English 
separately, the focus is on the act of sharing or breaking down the chocolate and on how much each 
child shall receive, which is often emphasized in Maltese by the teacher: “ħa naqsmu ċ-chocolate” 
(We are going to break down the chocolate) and “Kemm se jieħu kull wieħed? ” (How much does 
each get?). English is used to denote the fraction, “one fourth of the chocolate”, and to represent the 
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underlying information. The more the transcript progresses, the more Maltese is used to denote the 
action of breaking down or sharing, whereby at a certain point even the Maltese numbers accompany 
this action, in “K'naqsumha f'erbgħa” (if we break it down into four), in order to denote the break 
down number. However, the parts broken down into are named using English numbers, the ordinal 
aspect of natural numbers. The English numbers are also used to describe the denominator and 
numerator of the intended fraction, and at the end of Transcript 2, the teacher uses mainly English to 
encourage the students to compare both fractions (see Figure 2), however, at a certain point, she uses 
Maltese again for activating student everyday knowledge (the act of eating chocolate) at the end of 
Transcript 2. Overall this episode shows that whereas the first language, Maltese, was more used in 
contextual situations of mathematics learning, English became more dominant when representing 
abstract mathematical objects, which were introduced concretely.    

 

Figure 2: Whiteboard inscriptions accompanying Transcript 2 

First language for action-based processes and second language for static concepts in 
mathematics classroom 

The third distinction regarding the functions of the first and second language in translanguaging in 
mathematics lessons is between the static and dynamic processes of mathematical knowledge. 
Analyses of the previous transcripts led to the hypothesis that Maltese tends to be used more for 
action-based processes, e.g. comparing weights in Transcript 1 or breaking down objects in Transcript 
2, whereas English is more used for representing static concepts, e.g. estimate, square, numbers, etc. 
The next transcript from Grade 6 shows how the first language is primarily used for dynamic process, 
whereas the second language is used more for static contexts of mathematics knowledge.   

Transcript 3 

T2 (...) ġo dan is-sejf għandna sixty euro w 
l-mami tgħidlek: ara, tista’ tonfoq ten 
percent minnhom kull xahar. U kif se 
nsir naf jien kemm nista’ nonfoq? Ten 
percent xi tfisser? (...) 

(...) in this safe we have sixty euro and mum 
tells you: look, you can spend ten percent of 
it monthly. And how can I find out how 
much I can spend? What does ten percent 
mean? (...) 

Choir Ten minn hundred. Ten from hundred. 

T2 Ten out of hundred. Ten percent ta' xiex 
nista nonfoq jien? 

Ten out of hundred. Ten percent of what can 
I spend? 

Choir Tas-six... From the six... 

T2 Ta' sixty. Mela kif se naħdimha? Ten 
percent of? 

Of sixty. So how can I calculate it? Ten 
percent of? 

Choir Sixty. (...) Sixty division hundred. Sixty. (...) Sixty division hundred. 

T2 (...) Li tiġi? Fejn hu l-point bħalissa? (...) Which is? Where is the point now? 
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Choir Wara. Behind. 

S1 Wara zero point six. Behind zero point six. 

T2 Kemm se jaqbeż? How much will it jump? 

S1 Tnejn. Two. 

T2 Lil fejn? Where to? 

Choir ‘l hemm. (lifting their hands and 
pointing to their left) 

There. (lifting their hands and pointing to 
their left) 

T2 Għaliex? Why? 

Choir Għax division. Because it's division. 

T2 Għax ħa jiċkien. Wieħed. Tnejn. (...) 
X'iktar? lesta? (...) 

Because it will decrease One. Two. (...) 
What else? Am I finished? (...) 

Choir Times ten. Times ten. 

T2 ‘l fejn se jaqbeż il-point? Where will the point jump to? 

Choir ‘l hemm. (pointing to their right) There. (pointing to their right) 

In the above transcript, Transcript 3, the 6th-grade teacher introduces the exercise 10% of 60 Euros in 
percentages using the everyday register. In order to solve “ten out of sixty”, the students start using 
division, sixty division by hundred, however the underlying processes in the division exercise are 
perceived and hence also verbalized using the first language. Such processes include the identification 
of the decimal point, how many steps and in which direction the decimal point must be moved and 
whether the number value increases or decreases. Similar to Transcript 2, numbers (in contextual 
situations) associated with actions or movements, such as moving the decimal point, are represented 
using the first language, e.g. “Għax ħa jiċkien. Wieħed. Tnejn” (Because it will decrease. One. Two) 
in Transcript 3. English is more used for static insights on mathematical concepts, for concept names, 
e.g., Division or Multiplication ("times" in Transcript 3) or for number names (e.g., ordinal aspect). 

Conclusion 
The above transcript and their analyses in the results section show how two languages can have 
different functions in translingual mathematical classrooms and they are not merely used for 
translation purposes. The teachers participating in this study used one language for oral explanations 
and communication of mathematical phenomena and the second language for 'fixiating' the 
mathematical language and learnt knowledge. Findings showed how the first language is more used 
for verbalizing concrete representations of mathematical knowledge, since it is dominant in the 
students' everyday life. For instance, actions on objects are more likely to be communicated using the 
first language. The second language is required to abstract the mathematical phenomena, especially 
when the context is no longer in focus; For example, during the introduction of equivalent fractions 
in Transcript 2 the teacher tended to use Maltese for expressing actions on hands-on, whilst English 
was used for denoting the fractions and their comparison. Further findings showed that the first 
language was more used when mathematical actions were verbalized, whilst the second language was 
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high used for static mathematical concepts. Hence, languages can fulfill different functions in a 
translingual mathematics classroom in order to enhance language and content learning. Similar to the 
thesis that the development of the mathematical language requires the use of everyday language as a 
basis (Wessel, 2015), the use of the first language (especially in the introductory phase) is crucial in 
order to develop, learn and use the abstract mathematical language in multilingual classrooms.  
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This study examines the use of languages by bilingual undergraduate mathematics learners. It adopts 
a commognitive lens to examine whether language use by bilingual undergraduate mathematics 
learners impacts upon meta-level mathematical processes of learners, in particular in relation to 
functions. The findings suggest that there was a lack of code switching between languages when 
engaged in mathematical tasks and completing the mathematical tasks individually or in pairs 
impacted on the choice of language employed in the discourse. There was greater evidence of meta-
level thinking through the medium of Irish than in English.  

Keywords: Commognitive approach, language use, functions, bilingual students. 

Introduction 
An evaluation of the Irish and English languages demonstrates that differences exist in relation to 
syntax and semantics and that this may impact on the processing of mathematical text, and advantage 
those learning through the medium of Irish (Ní Ríordáin, 2013). Specifically, this paper examines 
two first year undergraduate students’ (approx. age 18 years) thinking about functions and which 
language(s) (Irish and English) are used to facilitate their thinking. These students were participating 
in a bilingual first year Calculus module. In particular, we focus on concepts relating to functions, 
which are fundamental to mathematics learning across all levels of education, inclusive of university-
level education (Gücler, 2016). We adapt Sfard’s (2008) commognitive framework as an analytical 
lens to support our investigation of bilingual mathematics learners. This framework is adopted for a 
number of reasons including: to enable an examination of participants’ discourses relating to 
functions; to facilitate a comparison of object-level and meta-level developments of functions in both 
English and Irish languages; and accordingly, to examine when participants are utilising their 
languages when engaged in mathematical thinking.  

Therefore, considering object-level and meta-level level thinking and requirements in relation to 
functions, this research aims to make a contribution to the field by examining how languages (Irish 
and English) are utilised by bilingual undergraduate learners when engaged with functions discourse. 
Utilising Sfard’s (2008) commognitive perspective, mathematical thinking is viewed as a form of 
communication, and that learning mathematics entails extending one’s discourse from object-level to 
meta-level constructs. Adopting this perspective on thinking and considering that discourse is 
language dependent, the authors contend that discourses may differ between languages (Kim, Ferrini-
Mundy & Sfard, 2012). In particular, the authors propose that there are variances between different 
linguistic forms of ‘“the same discourse”’ (Kim et al., 2012, p.2) and accordingly it may impact on 
how bilingual students utilise their language(s) when engaged in mathematical thinking.  
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Planas and Setati (2009) argue that bilinguals switching between their languages is not just dependent 
on their proficiency in the languages but also due to the social situations and contexts. It is important 
that we study bilingual learners and their diverse contexts in order to gain a better understanding of 
the complexity of the issue and the influence of language(s) on mathematical thinking. It is well 
established that the ‘choice’ and use of language(s) may differ depending on the context (e.g., Planas 
& Setati, 2009). Research suggests that the type of mathematical tasks students encounter as well as 
the situated learning experiences facilitated, can influence language use and code switching 
(Moschkovich, 2007). Moschkovich asserts that some students may opt to use their first language 
when working on a task individually and code switch as necessary when engaged in interactive 
discourse concerning the same mathematical problem. Alternatively, if students associated 
mathematics with a particular language, it is reasonable that the students would then communicate 
their thinking in that language, i.e. their second language. Another alternative is that students might 
opt to code switch throughout the mathematical discursive processes. For example, Planas and Setati 
(2009) established differences in the ways that immigrant bilinguals utilised their languages whilst 
completing mathematical tasks. Switching between languages (Catalan and Spanish) occurred with 
changes in the complexity of the mathematical tasks required by the teacher. In general, they found 
that the students used their languages for different purposes and was dependent on the social context 
set up within the classroom (ibid). Ultimately, research suggests that that primary influencers of how 
students use their languages for learning mathematics are (1) the mathematical discursive 
competencies in a given language, (2) the social context, and (3) relative experience of mathematics 
(Moschkovich, 2007). 

Theoretical frame 
Gee’s (1996) concept of discourse as encompassing, verbal, written, technical and physical modes of 
language use informed the close analysis of mathematical discourse in this study. The authors were 
cognizant of the social aspect of language use in learning and required a framework that allowed for 
the examination of discourse as a complex form of communicating while paying close attention to 
the cognitive processes of mathematical thinking. Therefore, the authors adopt Sfard’s (2008) 
commognitive approach to analysing mathematical discourse in order to provide for the particular 
methodological considerations and central constructs of the study (mathematics discourse, 
bilingualism and language use). Sfard expresses thinking as comprising both personal and 
interpersonal communication and outlines four unique features of mathematical discourse, which this 
study explores as a process of socialisation into a mathematical community of practice. These 
discourse tenets are: 1) words use, 2) visual mediators, 3) routines, and 3) endorsed narratives. For 
the purpose of this paper the authors focus on word use and routines.   

Word use is characterised by Sfard (2008) in terms of passive-driven (recognition or memorisation), 
routine-driven (using phrases or definitions), phrase-driven (task association) and object-driven 
(meaning-making) usage. Objectification is a feature of word use in mathematical discourse, which 
occurs through a process of reification (structural thinking) and alienation (impersonal presentation 
of phenomena). Therefore, this research was interested in whether participants engaged in objectified 
talk and in which language(s) this occurred. To this end, word use was categorised as above and 
considered in line with the routines feature of mathematics discourse. Sfard categorises routines as 
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deeds (a change in the environment), rituals (cooperative acts of learning) and explorations 
(producing an endorsed narrative). Of particular significance to this study was the course of action 
employed by learners to solve mathematical problems (deeds) and the mathematical reasoning 
provided (explorations). A particular emphasis was placed on the language(s) in which each routine 
was discussed or employed. The practice of learners alternating between their languages is referred 
to as code switching in this paper.  

The authors align with Gee’s (1996) concept of discourse as a sense-making process, comprising 
modes of communication and participation in communities of practice. Comprised of both talk and 
non-talk forms of communication, Gee (1996) describes discourse as ‘stretches of language that 
“hang together”’ and are embedded in the situated and sociocultural practices of its use’ (p.115).  
Further, the authors define meta-level developments in mathematical thinking as a process of 
endorsing the rules that govern the particular mathematics discourse, while object-level mathematical 
thinking refers to familiarisation with the objects of the discourse (Sfard, 2008). In terms of 
mathematics as discourse, the authors view mathematics as a complex register comprising subject 
content conveyed through the interchangeable use of everyday (colloquial) and mathematical 
(literate) discourses. As such, developing an advanced mathematics discourse culminates in a shift 
from a colloquial to a literate use of mathematical language, which signifies conceptual (meta-level) 
knowledge.  

Methodology 
At the National University of Ireland, Galway (NUI Galway), first year undergraduate mathematics 
students are afforded the opportunity to study honours mathematics through a bilingual approach. 
Modules offered bilingually are Calculus and Algebra. Four weekly lectures are provided through the 
medium of Irish, with all mathematics terminology offered bilingually (Irish and English). In 
addition, lecturers may opt to describe more complex concepts (such as the limit of a function) 
bilingually. The lectures are supplemented by the provision of a weekly tutorial in English in addition 
to an Irish-medium tutorial. Participants were comprised of two students, Val and Jean. Two Irish-
medium education contexts exist – Irish-immersion education in English-speaking communities and 
schools located in Gaeltacht (Irish-speaking) regions. Val was from a Gaeltacht region and attended 
primary and secondary schools in that region, and therefore Irish was his dominant language. Jean 
attended immersion primary and secondary education, with English her dominant language. 
Accordingly, both Val and Jean learned Mathematics through Irish but in different contexts in terms 
of the dominance of the English and Irish languages. At university, the dominant language of informal 
communication for both participants was English.  

The study adopted a mixed methods approach to data collection. This study identified the plausible 
mathematical discourse trajectories in relation to functions for both the English and Irish languages. 
The purpose of these discourse trajectories is to examine object-level and meta-level developments 
in the both languages, and consequently identify which language(s) are used and how, as related to 
functions (Kim et al., 2012). Participants also completed a questionnaire. The purpose of the first part 
of the questionnaire was to gather participants’ background data. The second part of the questionnaire 
engaged participants in functions discourse through the use of mathematical questions appertaining 
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to graphing and limits of functions. All questions were presented bilingually, providing participants 
with the option of utilising English or Irish or both languages. Jean and Val were invited to think-
aloud their thought processes as they recalled prior knowledge and experiences of mathematical 
discourses while answering the questions (Desimone & Carlson Le Floch, 2004). Finally, cognitive 
interview methods were employed in which both students were provided with the same mathematical 
problems as they had solved individually in the questionnaire (one week later). Students were invited 
to discuss their understandings, processes and thinking about how they approached the various 
questions and to negotiate their respective thinking towards substantiating the narrative of the 
particular mathematical constructs in question (functions). This method was employed to acquire 
comprehensive knowledge about what students’ discursive patterns revealed about their 
comprehension of the specific mathematics functions concepts central to the study (Desimone & 
Carlson Le Floch, 2004).  

Qualitative data analysis included a synthesis of thematic, framework, video and discourse analysis 
procedures. Sfard’s (2008) Commognitive Framework for analysing mathematics discourse was 
employed to analyse students’ meta-level mathematical thinking and related language use. The data 
was coded, recording both data-driven and concept-driven codes (Gibbs, 2007). Concept driven codes 
were the discourse tenets: word use, visual mediators; routines and endorsed narratives (Sfard, 2008). 
Meta-level discursive statements and linguistic patterns were gathered at this stage. Cross coding was 
employed to code a piece of data for more than one code. Three rounds of coding allowed for similar 
codes to be grouped and re-characterised and redundant codes were set aside. Parent and Child themes 
(Gibbs, 2007) were employed to further categorise the data and all codes, categories and themes were 
considered in terms of English, Irish or both languages, as well as object or meta –level learning.  

Findings 
A learning example is provided in Figure 1 which details students’ mathematical problem solving 
routines and their language use. Both the individual explanations and the paired discussions are 
provided. Val and Jean mostly utilised Irish in the individual interview and English in the paired 
interview.  In the example provided, the students’ answers are provided in the language in which they 
spoke/wrote, with English translations provided for those instances where Irish was utilised.  

Questions:  (i) What is the natural domain of a function 𝑓𝑓(𝑥𝑥) =  𝑥𝑥2? (ii) Explain to your friend how the domain for 𝑓𝑓 must change 
if the inverse of 𝑓𝑓 is to exist. (iii) Explain what the inverse function 𝑓𝑓−1 is when 𝑓𝑓(𝑥𝑥) =  𝑥𝑥2 (with suitable domain). 

Val’s Individual Answer: 

Original text: Anseo f(x), tá sé os cionn, mar síos anseo [pointing to the third quadrant] tá uimhreacha diúltacha ar fad, so abair 
lúide a haon, lúide a dó. Mar x cearnaithe [x2] níl ann ach dá uimhir, [pauses] an uimhir x fá [meadaithe fá] é féin, so lúide a haon 
fá lúide a haon sin a haon. So chuile dá uimhir diúltach beith siad, em deimhneach. So, caithfidh gach páirt a bheith anseo [pointing 
to the region within the u-shape line drawn on the graph]. So sin é an graif. Maidir leis an inbhéarta ní, níor, like, ní cuimhin liom é 
a dhéanamh. Tá a fhios agam go ndearna muid é ach ní cuimhin liom and ábhar sin sa rang. 

English translation: Here 𝑓𝑓(𝑥𝑥), it is above [the 𝑥𝑥 axis], because down here [pointing to the third and fourth quadrants]  the 
numbers are all negative. So let’s say minus one, minus two. Because 𝑥𝑥2, it is just a number [pauses], it is the number x multiplied 
by itself, so minus one multiplied by minus one is one [−1 × −1 = 1]. So every second negative number would be positive. So, 
every part has to be here [pointing to the region within the u-shape line drawn on the graph]. So that’s the graph. With regards to 
the inverse, I don’t remember how to do it. I know we did it but I don’t remember that topic from class.  
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Jean’s Individual Answer: 

Original text: So an céad piosa ann, tá an fearann na réaduimhreacha go léir mar níl aon, níl aon fadhb leis. Mar shampla an ceann 
eile [referring to the previous question] bhí roinnt ar naid. Agus anseo, an inbhéarta, caithfidh an fearann a bheith x níos mó ná, nó 
cothrom le naid, mar nuair a déanainn tú amach an inbhéarta, an chaoi a déanann mise é, ‘swapáil’ mé an x is an y agus cuireann 
mé  x ar  y , like, leis féin. So faigheann tú préamh  x , agus chun préamh  x a ríomh, caithfidh  x a bheith deimhneach, nó naid.  

English translation: So for the first part, the domain is all the real numbers because there is no problem with it. For example, the 
other one [referring to Q1] it was to divide by zero. And here, the inverse, the domain must be 𝑥𝑥 more than or equal to zero, because 
when you do the inverse, how I do it is, I swap the 𝑥𝑥 and the 𝑦𝑦 and I put 𝑥𝑥 on 𝑦𝑦, like, on it’s own. So you get the root of 𝑥𝑥. And to 
calculate the root of 𝑥𝑥, 𝑥𝑥 has to be positive or zero. [does not complete (iii)] 

 

 

 

Paired answer (original text was in English):  

1. Val: [reads Q.2) Can that be Z?  

2. Jean: Which one is Z again?  

3. Val:  ℝ, isn't  ℝ like from 1 up and Z is like all the negative numbers and all the positive numbers?  

4. Jean: Isn't N, N from 1 up, I think? I'm not sure, I was never really any good at this.  

5. Val: And then, yeah, yeah, and  ℝ then is N and Z, isn't is?  

6. Jean: Is it? OK.  

7. Val: That makes more sense, I think so. [reads Q.2 part (ii)]. 

8. Jean: I don't remember what I did here [in relation to Q.2(ii)]. [Writes the answer on answer sheet]  

9. Oh yeah [shows her answer sheet to Val]. See like, the way in secondary school how I learned to 
get the inverse was change the 𝑥𝑥 and the 𝑦𝑦  

10. around, like say the original one is like that [writes 𝑦𝑦 = 𝑥𝑥2]. And then put y instead of 𝑥𝑥 and 𝑥𝑥 
instead of 𝑦𝑦, and then get 𝑦𝑦 on it's own to get 11. like, the inverse [circles 𝑥𝑥 on answer sheet].  

12. Val: Oh yeah, OK, OK.[Reads part (iii) and says:] I don’t have a clue for that one.  

13. Jean: Yeah, to be honest I didn't know either. 

Val’s written answer: 

 
Jean’s written answer 

 

Figure 1: Learning example 

Word use 

In his explanation Val utilises Irish and employs a combination of deictic language with colloquial 
and some literate discourse. Deictic language, such as ‘os cionn’ (above), ‘anseo’ (here) and ‘síos 
anseo’ (down here) (in reference to the Cartesian plane), is combined with gestures (pointing to the 
associated quadrants on the graph) to highlight where the domain on the Cartesian plane is for 
function f(x) =  x2. There are elements of routine-driven words being employed since Val is 
describing the graph. There is little evidence of flexibility in Val’s word use and objectified talk about 
the global features of the graph is not evidenced. In general, Val does not address the domain in this 
question and the mathematical explanation remains at an object-level of understanding. In contrast, 
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Jean uses routine-driven mathematical words such as ‘fearann’ (domain), ‘réaduimhreacha’ (real 
numbers), ‘inbhéarta’ (inverse), and the phrase ‘níos mó ná, nó cothrom le’ (more than or equal to), 
which signifies familiarity with the subject content and related procedures and ease of use of the 
mathematical discourse in the Irish language. However, even when utilising Irish, Jean does not fully 
explain what R is or why in fact there is no problem with it in this instance, indicating that word use 
here is routine-driven and procedural. In their discussion of this same mathematics questions, Val 
opens this interaction in English and despite both students utilising Irish in their respective individual 
interviews, neither Val nor Jean negotiate their preferred language use for mathematics learning 
(which is Irish, as indicated in the questionnaire). When both students discuss in English the natural 
domain of function 𝑓𝑓(𝑥𝑥) =  𝑥𝑥2, they employ passive-driven words such as ‘positive numbers’ and 
‘negative numbers’, and expressions such as ‘from 1 up’. Their word use in English does not progress 
from passive-driven towards more object-driven usage as it tended to when the students utilised Irish.  

Routines 

In Figure 1, explaining the natural domain of a function 𝑓𝑓(𝑥𝑥) =  𝑥𝑥2, Jean explores the inverse of a 
function in the individual interview by first explaining (in Irish) that the domain must be x more than 
or equal to zero in order for the inverse of f to exit. Jean then clarifies that this reasoning is related to 
the routine of “doing” the inverse: ‘an chaoi a déanann mise é, ‘swapáil’ mé an x is an y agus cuireann 
mé x ar  y, like, leis féin. So faigheann tú préamh  x , agus chun préamh  x a ríomh, caithfidh  x a 
bheith deimhneach, nó naid.’ (I swap the x and the y and I put x on y, like, on it’s own. So you get 
the root of x. And to get the root of x, x has to be positive or zero). There is an attempt at reification 
with the use of the word ‘inbhearta’ (inverse) as a verb. However, overall Jean’s rituals (routines 
utilised for social rewards) define the repetitive discursive action or metarules for “doing the inverse” 
but there is little evidence of routine flexibility or explanations of why these rituals constitute an 
appropriate series of steps (meta-level thinking).  Instead, there is a focus on pre-learned associations 
and repetitive patterns or routines (the domain of the function is R but does not explain what R is) 
and rote practices (learning how to swap the x and y).  

Discussion and conclusion 
There was a lack of language negotiation and code switching engaged in by both students throughout 
the learning process. Therefore, as Planas and Setati suggest (2009) the social situations and context 
of the learning scenario play a role in how the learner utilise their language for engaging in 
mathematics discourse. Both students employed Irish mostly when engaged individually in 
mathematics discourse but employed English when communicating with one another about the same 
mathematics topic. This is similar to Moschkovich (2007) who affirms that some students may opt to 
use their first language when working on a task individually. However, code switching was not 
evident in our study, even though the same mathematical problem was utilised in both the individual 
and paired tasks. Since there were two students only undertaking the bilingual stream of this 
undergraduate program, the whole group discussion was limited and group work was not facilitated. 
Hence, there were very few opportunities for social interactions within the learning context and as a 
result the opportunities for language choice and negotiations were also limited. Within the lectures, 
students conformed to the classroom linguistic norm of speaking Irish and carried this through to 
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individual interviews. However, the language of paired communication was English, which is the 
dominant language within the Irish third level education setting. This study has found that the choice 
of language used by bilingual undergraduate students in this context was influenced by their views of 
language use in given situations (Caldas & Caron-Caldas, 2002). The impact of the social context is 
a key consideration for future studies relating to bilingual undergraduate mathematics learners.  

Overall the learners demonstrated a combined use of colloquial and literate words and tended towards 
more colloquial word use when communicating together and through English. There are perceptible 
determinations from learners, especially Jean, to shift their discourse from colloquial to literate, 
particularly in Irish. Also, considering learners’ word use in English remains mainly passive-driven, 
it appears that their word use tends towards literate and phrase-driven when communicating about 
functions individually through Irish. This discursive shift in word use is an indicator of meta-level 
thinking (Sfard, 2008; Moschkovich, 2002). However, although a shift from colloquial to literate 
discourse is evident, there is little evidence of objectified talk, even when Irish is utilised as the 
primary language of communication.  

This study demonstrates that students utilised their languages in different ways when engaged in the 
same discourse (Kim et al., 2012), with greater evidence of meta-level thinking evident through the 
medium of Irish. Interestingly, both students show more competency and mathematical skills when 
using Irish in their individual explanations of the routines they employ to solve the problems and 
begin to shift towards a more literate and less colloquial discourse. In contrast, when engaged in 
conversation in English about the mathematics problems, they remained at a colloquial level of word 
use. In both instances, Irish was the preferred language utilised in the individual interview, whereas 
English was the language utilised during the paired interview. Although Jean displayed more 
dominance in mathematical discourse in the individual interview in Irish, this is not shown in the 
paired interaction. Jean does not use the same words nor employ the same visual mediators to explain 
the domain of function f. This might suggest a gap in Jean’s discourse perhaps pertaining to meta-
level understanding of the question, mathematical competency, or linguistic ability to discuss 
mathematics through English. Although learners displayed competence in terms of ritual-based 
routines from previous learning, either at university or school, reliance on such processual thinking 
resulted in occasional errors, or highlighted a lack of meta-level thinking when endeavouring to 
substantiate a particular narrative, in either language. This study demonstrates the importance of 
studying bilingual learners in diverse contexts in order to gain a better understanding of the intricacy 
and impact of their languages on mathematical thinking (Planas & Setati, 2009). 

Overall, these students’ mathematics discourse followed a basic language trajectory when engaged in 
functions discourse in English and collaboratively, whereas their mathematics discourse tended 
towards a more advanced mathematics discourse trajectory when engaged in functions discourse in 
Irish and individually. However, despite their mathematical language use progressing in Irish, this 
does not equate to progressing towards meta-level thinking, in either language. This insight raises 
additional questions relating to bilingual mathematics students’ learning, in particular the role of the 
teacher in developing students’ discourses and if there is value in explicitly teaching meta-level 
thinking/rules (Gücler, 2016) as related to language use by bilingual learners in undergraduate 
education.  In additional, the social setting impacted on students’ language choice in this study and 
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raises the more general question of how the context of bilingual undergraduate mathematics learning 
influences choices relating to language use in bilingual mathematical discourse. 
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This paper offers insight into my pilot study on the use of radio features for specialised language 
support in mathematics education at the primary school level. With the help of design research, 
various possible applications of radio resources as auditory learning material are developed and 
analyzed. One example is described in this paper. The aim of this research is not only to investigate 
the effects of auditory material on the learning procedure in general, but also to investigate how 
auditory material can serve as a supportive language example and as a provided language model. 
First results show that auditory material can indeed be effectively implemented in teaching practice 
and reveal just how these effects look like. 

Keywords: Auditory learning, radio resources, design science, language support. 

Background: Cooperation with a radio station  
In 2015, the Department of Mathematics Education at the University of Giessen started a project in 
cooperation with a regional radio station “hr2 – Hessen Radio for Culture”. This radio station 
developed, inter alia, a series of radio broadcasts on mathematical topics for the primary school level, 
collected in the multimedia offering “Kinderfunkkolleg Mathematik” (www.kinderfunkkolleg-
mathematik.de). Within this collaboration project, future mathematics teachers developed auditory 
material for use in mathematics education at the primary level. More information about this first 
project can be found in the proceedings of the ERME topic conference 2018 (Peters, 2018). In a 
second project, future mathematics teachers planned teaching units for performance in schools, using 
auditory educational material as a central element. It was important to interrupt longer listening 
phases and repeat the segments while giving listening tasks in between. The auditory material could 
be used as preparation of a topic or as a base for discussions, as well as for explaining and deepening 
new content or repeating previously covered topics. The units were realised in different schools, 
reflected on in the seminar, optimized and then turned in. After being corrected and edited, the units 
were then allocated for the download center of the “Kinderfunkkolleg Mathematik,” as accompanying 
material. Based on this project, I started developing research aims and the design of my pilot study 
to further research on the effects of radio resources as auditory learning material. The material, used 
in this study is developed and owned by professional radio authors and producers who received help 
from experts in our university department. 

Auditory learning 
In order to research the effects and the use of auditory material, one has to understand how auditory 
learning is working. According to Baddeley (2007), in the working memory visual and auditory 
information are processed in different sensory channels. Auditory learning reduces sensory 
impressions on the visual channel, so that the auditory channel is required and therefore trained more. 
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Acoustic information is processed through various memory processes. The echo memory saves 
mostly unprocessed sensory impressions for a short period of time. In a next step, the working 
memory with its limited capacity decodes and processes the acoustic information. It can also build 
temporal connections that are necessary for remembering the beginning of a sentence while hearing 
its end (Leuders, 2011). According to Leuders, an increase in efficiency of the working memory is a 
training effect. Since the processing of auditory information takes place in the working memory, one 
can assume that the increase in auditory learning efficiency is a training effect. This is a fundamental 
trigger for my interest in research on auditory learning materials in mathematics education. 

Another important aspect is the Cognitive Load Theory by Sweller (1994), more recently taken up 
by Rink (2014) for the research on digital media in mathematics education. The Cognitive Load 
Theory says that the capacities of the working memory are limited and should not be exhausted by 
extrinsic factors. One of those extrinsic factors is reading. Reading difficulties can exhaust the 
working memory and lead to not understanding mathematical content as well as not being able to 
solve mathematical tasks. Keeping mathematical concerns in the center of learning processes while 
reducing extrinsic factors, is one important approach for auditory learning. That’s why Rink (2014) 
uses audio recordings as a support for solving written tasks. 

Auditory learning material 
As a first function, it can be stated that auditory support can aid children with reading difficulties to 
understand mathematical contents and tasks without the need of having to read coherently and extract 
the meaning. This, however, does not mean that reading should be replaced by hearing. Auditory 
support should only be provided if needed. 

Another function of the use of auditory material is the development of active listening skills. Such 
competence is a primary requirement for education, but it is seldom supported or even trained (Pimm, 
1987). In Germany, education standards for the subject of German language make it very clear: These 
require, not only the competences of reading and writing, but also speaking and listening. Speaking 
is required to be consciously organized, while terminology is to be trained and (the use of) language 
is to be examined. Regarding listening, children are to listen attentively and perceptively, while 
registering others’ statements and constructively dealing with them. Of course, listening also takes 
place in the form of frontal teaching, but this kind of listening is difficult for most students. This is 
why supportive elements for auditory learning are necessary – both in frontal teaching and by means 
of group work. 

Mathematics register acquisition 
The mathematics register can be seen as “consisting of technical terms, diagrams, and grammatical 
constructions, such as logical connectives” (Meaney, Trinick, & Fairhall, 2012, p. 199). These 
elements are learned throughout the entire school process and students are constantly “introduced to 
further layers of meaning for the terms and expressions they already know” (Meaney et al., 2012, p. 
199). Leung (2005) points out that learning vocabulary in mathematics means learning both formal 
and semantic features of words in various contexts, and involves thinking with and through the 
concepts. She calls it an “incremental activity” (ibid.), stating that meanings can develop and expand. 
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The model for mathematics register acquisition (MRA) was developed to categorize teachers’ 
strategies in teaching the mathematical register and is divided into four stages (Meaney et al., 2012). 
The first stage is “Noticing”. In this stage, teachers introduce new terms or expressions, use them 
frequently and then encourage students to using them as well. The second stage, “Intake”, describes 
the process of understanding. Students start to explore and work with the new terms. In the next stage 
titled “Integration”, testing, feedback and modification takes place. Students have a good 
understanding of the new term and are responsible for using it, but might be supported or reminded 
of their knowledge. In the last stage, “Output”, there is a fluent use of the new terms. Teachers do not 
need to support, but should provide activities where the use of these terms would arise naturally. The 
control of teachers and support through scaffolding is only necessary in the first two stages; in the 
final two stages, students gain control. The teacher only needs to provide opportunities to use the new 
terms. Regarding auditory material, we can see that it can be of use in the first two stages. It can be 
used to introduce new terms and to repeat them frequently in the stage “Notice”. In the stage “Intake”, 
it can serve as a language model with which students can work. 

Specialized language support through auditory material  
As already mentioned, the learning of a language can be supported by training listening competence. 
Active processing is important for meaningful processing and for memorization of what has been 
heard. Reasonable and profitable use of auditory material is needed for these processes, e.g., good 
embedment, listening tasks or segmenting principle. With this in mind, teaching concepts can be 
developed, in which radio features or other auditory material serves as impulse in the sense of 
didactical reduction. As acoustic representations are volatilely, there is the need of adding 
opportunities to document the content of the heard and results of the related tasks within the teaching 
units. By these means, specialized language support can be ensured. Following these ideas, my 
research can be focused on the evaluation of auditory educational material in various settings, 
particularly regarding possible learning effects. The main interest of this research is the use of radio 
features in mathematics education for specialized language support at the primary level. 

Prediger and Krägeloh (2016) refer to a model of three registers relevant for mathematical learning 
(everyday register, school register and technical register). This model illustrates different levels of 
verbal representation and how they are connected or built onto each other. Particularly interesting for 
my research is the question of how children can be led from everyday register to school or even 
technical register. 

School register is an important and necessary factor for successful learning in mathematics. It is a 
shared language basis and helps with explaining, describing and justifying (Götze, 2015). However, 
children do not bring this type of language to school with them. It must be learned, like registering a 
new language. This applies not only to children with special needs in language development but to 
every other child. That is the reason why they need linguistic models to develop educational language 
and to fill terms with representations. These linguistic models are scaffoldings onto which children 
can lean (Gibbons, 2002). Lexical storages, which only include words, are not sufficient, as new terms 
must be used in whole phrases and sentences. According to Götze (2015), language acquisition is, in 
practice, merely a continuous learning process. There can be setbacks and sometimes children express 
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themselves better in written than in spoken language. This is because everyday register is predominant 
in spoken language and, oftentimes, deictic expressions are used. This is valid for children as well as 
for teachers – even if they do so unaware and unintentionally. At this point, auditory educational 
material could be a useful and profitable addition. 

Research questions 
The aim of my research is to find out in what way auditory learning material could be of use for 
language support in mathematics education. For this cause, I want to ask how auditory material, as a 
language model, can stimulate the development of the school register and how auditory material can 
support listening competence. In a second step, I want to research what a profitable use of such 
material could look like. 

Methodological approach 
Regarding the data collection, I decided to use the design research, based on Wittmann’s Design 
Science (1995). Subject of the Design Science is the construction and research of teaching concepts, 
including accompanying theories. According to Wittmann (1995), this science is a practice-oriented 
core area for mathematical education, since it refers to the construction of artificial objects (teaching 
concepts, curricula etc.) and the research on possible effects in different educational settings.  
Based on the Design Science, Prediger et al. (2012) developed the model of design research. The aim 
of this method is to effectively implement innovations for educational development in teaching 
practice and empirical research, carried out under realistic conditions. In order to do this, one has to 
undergo a cycle as pictured in the following illustration. 

 
Figure 1: Model for didactical design research (Prediger & Krägeloh, 2016, p. 95) 

The cycle starts at the upper left side of the illustration with the specification and structuring of the 
learning subject. In my case, this would be the mathematical content of the used auditory material, 
which will be specified later in the explanations of the pilot tests. Learning goals have to be developed 
and the content has to be structured matching those goals. This also means, that important sequences 
of the feature have to be chosen and cut as the whole feature is far too long (10-12 min) for a profitable 
use in classroom. Based on this preparatory work, a design is to be developed for the specific learning 
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topic of the used auditory material. In a third step, the developed design is to be performed by means 
of a design-experiment. In this phase, the concept was tested in teaching practice, data was collected 
by filming and said data was evaluated. To analyze the student’s utterances, the analysis of interaction 
is used (Krummheuer & Naujok, 1999). Based on the analysis of this data, local theories about the 
learning subject and the teaching concept can be developed in the last phase. The local theories are 
the starting point for next rounds of the cycle, in which they can help to optimize the learning goals 
and concept. Later on, they can be developed to or lead to new local theories itself. Thus, more 
experiments, data collections and evaluations are to follow, along with new local theories. In this 
way, after a few cycles, we will not have a perfect teaching concept or representative research results, 
but rather new and tested theories on the use of auditory media for specialized language support. By 
now, I finished the first cycle and am currently using my initial experiences to develop local theories, 
as well as structure the learning goals and teaching concepts anew for the second cycle. 

Pilot testing 
For the pilot testing, I designed a teaching unit in the form of a project day in a fourth-grade classroom 
with four 45-minute classes. The class is made up of 16 children, all of whom participated in this 
project day. A teacher, who was specially trained for this project, instructed the unit. The topic of the 
unit was “Probability and Random Experiments”, as it was developed based on the radio feature 
“Wann ist ein Spiel fair?“ (When is a game fair?) from the Kinderfunkkolleg Mathematik 
(https://www.kinderfunkkolleg-mathematik.de/themen/wann-ist-ein-spiel-fair). In this feature, four 
students are planning to play a game in order to make a decision. They realize the need to test the 
fairness of the game, start an experiment to do so and find out that the game is unfair, since they don’t 
have equal chances. While testing the game and talking about the mathematical problem, they use 
school register and mathematical terms. Thus, the students in the class that was observed and filmed 
were confronted with new terms in a playful way. The overall aim of the unit was the conceptual 
development of “fairness” (through language) while the linguistic aim was the understanding of the 
following terms which were presented in the radio feature: double, street (as the subject of the feature 
was a dice game with the winning options “double” and “street”), probable, option, coincidence, fair, 
unfair, unsafe, unlikely, likely and safe. Those aims work together: language development can help 
to develop the concept. Throughout the entire day, both the class situation as well as the working 
phases in smaller groups were filmed. This way, enough data was gathered referring to the individual 
processes of the children’s speech development, while at the same time it was possible to research on 
what a profitable use of this material could look like. For the second testing, these experiences can be 
used to improve the unit and the use of auditory material. 

The first lesson began by listening to the first part of the radio feature in which two children were 
arguing about the fairness of a dice game. In class conversation, the students repeated the content of 
the heard, reviewed the game and tested the fairness of that game in various steps that built on one 
another. In between those steps, more parts of the radio feature were presented, and a lexical memory 
was collectively developed based on the content of these features. In the second part of the day, the 
students verified the chances of winning and determined the fairness of various other games during 
learning stations. Hereby, they had to transfer their acquired knowledge whilst using the structures of 
language and reasoning they had been offered and trained through the radio feature. In Figure 2, you 
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see two exemplary stations referring to game fairness. Other stations were about dicing with different 
winning numbers and about dicing with six- or ten-sided dice, about throwing different amounts of 
reversible tiles and about picking different colored balls from an urn. 
 

 
Figure 2: Exemplary stations of the learning stations 

In groups of two, students chose a game for which they would be experts. Each group had to test 
every game, but they only had to work on a worksheet for their expert station. On that worksheet they 
had to describe and to reason whether or not that specific game was fair or unfair. If the game was 
unfair (which all of them were), they also had to explain why the game is unfair and how one could 
make this game fair i.e. how to increase the chances of winning for the losing card, colour etc. so that 
the chances become equal. After the learning stations, students ended the unit with the presentation 
of their “expert stations”. Each group presented their station, outlined how they examined the game 
and shared their results. They also presented a solution on how to make the game fair. 

Initial experiences 
Initial observations showed that students were highly concentrated while listening to the radio 
features. Due to the fact that students know audio-plays from their everyday life and free time, this 
proved to be highly motivational and made the mathematical content more exciting. The feature and 
its “story” involving mathematical content served as an effective conversation starter for the students’ 
discussion. It can already be reported that the method is currently being adjusted for the second cycle 
of the design research by designing the testing more as a laboratory situation and less of a whole 
teaching experiment. In that way, it is possible to research more about the individual processes of the 
speech development of the children. Still, it can already be stated that nearly every student was able 
to correctly repeat what he or she had heard. If anything was unclear, it was easy to repeat a certain 
part of the radio feature individually or in front of the whole class. In this way, auditory material can 
counteract transitory learning through possible repetition. Through the combination of listening, 
repetition (if needed) and conversation, the use of radio features successfully aided the development 
of lexical memory and was helpful when introducing new terms. In the beginning of the unit, the 
students were only able to explain abstract terms such as “fair” with help of examples: 
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Teacher: So what actually is fair? 

Student 1: Uhm fair is.. mh.. when you say for example if t w o uhm for example o n e gets a 
gummi bear and the other one not then they find this unfair and fair is if the other 
one also gets a gummi bear. 

This explanation could be considered a form of everyday register, as the speaker describes an 
everyday example using everyday register. However, this changed throughout the four hours of the 
project. During the final presentation of their investigated games, the students were allowed to look 
at their worksheet and their written answers for support. Interestingly, they did in fact use the new 
mathematical terms and phrases while arguing about the game’s fairness. 

Student 1: Uhm it’s unfair because uhm the game is unfair because there are eight of blue, one 
of red, red of two uhm.. red two of them. 

Student 2: No there’s only one of red. 

Student 1: Yes. Two of green and four of orange. Because you have more chances with blue 
and the others have less.. (reads the next question) If the game is unfair, what would 
you have to do to make it fair? You’d have to change the game so that everybody 
had equal amounts of uhm cards of every colour then everyone would have equal 
chances and the game would be un uhm fair. 

Teacher:  Very good, thank you. 

Here we see that the speaker uses school as well as technical register. Mathematical terms and phrases, 
such as, “It’s unfair because…”, “more chances”, “equal amounts of…” and “equal chances” – that 
appeared in the radio feature when the protagonists were examining their dice game – are not only 
used by the students, but also used correctly. Referring to the MRA model explained above, there has 
been a development from the stage “Noticing” – where new terms or expressions are introduced – to 
the second stage “Intake” – which describes the process of understanding. There are also first 
elements of the third stage “Integration”, as there is testing, feedback and modification in the 
investigation of the game’s fairness. To reach the last stage “Output”, the children would need to be 
able to use the new terms fluently without support. In this case, the children still have the support of 
their written answers on their worksheets while presenting their results, so we are unable to tell for 
sure if they reached this stage. However, it is clear that there is a development from stage one to three 
– from noticing to integration. This indicates that there is an apparent improvement in the students’ 
mathematical expression throughout the teaching unit. Children are offered professional language 
and are thus challenged to intake and use it. The absence of visuals, gestures and deictics in auditory 
material (unlike YouTube videos etc.) is a big challenge and opportunity for language development 
which worked out in my pilot testing quite well. Thus, as a first conclusion, it can be stated that radio 
features or auditory material in general can indeed serve as verbal language support in mathematics 
education. The goal of my main study is to verify and specify this statement for other mathematical 
topics, to further research on the use of the features in laboratory situations and to develop various 
possible applications of radio resources as auditory learning material. 
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Classroom communication: Defining and characterizing perpendicular 
lines in high school algebra  

Valentina Postelnicu 

Texas A&M University-Corpus Christi, USA; Valentina.Postelnicu@tamucc.edu 

A study was conducted with a high school algebra teacher and her students with the purpose of gaining 
insight into the students’ difficulties with perpendicular lines. The study reported here focuses on the 
communication between the teacher and her students, and the nature of their messages. Classroom 
observations were conducted, and a written task was administered to students. The communication was 
analyzed using constructs from Hall’s theory of culture. The analysis revealed that the teacher’s 
messages were not received by her students in the way intended by the teacher. The students had 
difficulties defining perpendicular lines, representing graphically and characterizing them algebraically, 
and connecting between representations.  

Keywords: Classroom communication, perpendicular lines, high school algebra.  

Introduction 
Research on students’ difficulties with perpendicular lines and linear equations in the context of high 
school algebra is scarce (Postelnicu, 2017).  Some studies point to students’ difficulties with graphical 
representations and connecting among various representations (Arcavi, 2003; Knuth, 2000), and 
teachers’ failure to identify the nature of their students’ difficulties in geometric context (Gal & Vinner, 
1997). The purpose of this study is to gain insight into the students’ difficulties with perpendicular lines 
and their equations in the context of high school algebra, as it is taught and learned in a public school in 
the United States. The focus is on the mathematical knowledge constructed during the classroom 
interaction (Steinbring, 2005), i.e., on the communication between the teacher and her students, the 
nature of their messages, and their different interpretations of those messages. Nührenbörger and 
Steinbring (2009) studied the different interpretations by the teacher and two students of a mathematical 
statement, and pointed to the dominance of the teacher’s ideas during the observed interaction. In the 
study reported here, the relations between the teacher’s language (her messages), the language of the 
learners (students’ messages), and the language of mathematics (textbook’s messages) (Planas, Morgan, 
& Schütte, 2018; Planas & Schütte, 2018) are studied using Hall’s (1959) theory of culture. 

Theoretical framework: Hall’s theory of culture  
The teaching and learning of mathematics are cultural activities that take place in various institutions 
(e.g., the classroom from this study). The theoretical framework used to analyze the classroom culture 
abides by several principles (Hall, 1959):   

i) Culture is equivalent with communication. “Culture is communication and communication is 
culture” (Hall, 1959, p. 217). This principle of equivalence between classroom culture and classroom 
communication, allowed us to account for the teaching and learning of mathematics in the observed 
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classroom by analyzing the communication between the teacher and her students. The idea of equivalence 
between doing mathematics and communicating mathematically is also found in Sfard (2008). 

ii) We communicate through messages. A message is constituted by sets communicated in patterns. 
Sets are constituted by isolates.  When one communicates using a language, one uses words (sets) that 
are made of sounds (isolates). The words are communicated in some context using a specific syntax 
(pattern) “in order to give them meaning.” (Hall, 1959, p. 124). Old words, communicated using a 
pattern, are used to give meaning to new words.  When we learn a new language, the words (sets) are 
perceived first. It takes time to understand the pattern of communication in a new language and construct 
meaningful sentences. As well, it may take a long time to master the sounds (isolates) of the new language 
and pronounce them without the accent from the old language. At the academic level, the mathematical 
knowledge is communicated in statements like axioms, definitions, or theorems. These statements 
constitute the sets. Examples of such sets are the definition of perpendicular lines, or the theorem of 
algebraic characterization of two perpendicular lines. The isolates are the mathematical objects and their 
properties - like line, slope of a line, lines that intersect to form a right angle. In scholarly mathematics, 
the pattern of communication is the formal proof; it gives meaning to statements/theorems. Old 
statements, already accepted as true, are used to logically derive new statements, using the accepted rules 
of inference. Oftentimes, when validating a new statement, the steps of the argument are expressed in 
natural language and employ previously validated statements (e.g., see Postelnicu (2017) for an example 
of a proof of the theorem of algebraic characterization of two perpendicular lines described as a “Key 
Concept” in Table 1, below). The communication pattern changes with the cultural context/institution. 
In school mathematics, the pattern of communication may be a justification (e.g., see Wallace-Gomez & 
Miller (2011) for a visual justification of the “Key Concept” from Table 1, below). In United States high 
schools, researchers point out that proofs are found mainly in geometry courses, and are almost non-
existent in algebra courses (Martinez & Superfine, 2012). In the study reported here, the participants used 
an Algebra 11 textbook (Larson et al., 2007) that contains mathematical statements (e.g., “key concepts”) 
without proofs. The pattern of communication consists of stating the “key concepts” and providing 
examples of algorithms to execute tasks.  

iii) We can only observe a message at one level of communication at a time. When a message is 
communicated from one cultural context to another, its meaning may change. As observed in this study, 
the message changes when the level of communication changes (from textbook to teacher, and from 
teacher to students). Consequently, it is imperative to account for the way the textbook message (with its 
pattern of communication, sets, and isolates) changes into the teacher’s message, and then into the 
students’ message. 

Methods 

The study reported here is part of a larger study with an Algebra 1 high school teacher and her students 
from a public high school in the United States. The study lasted four weeks and included a teaching 

                                                 
1 In the United States, students take the first algebra course before the geometry course.  
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experiment with multiple episodes, with the author as a witness (Steffe & Thompson, 2000), classroom 
observations carried out by the author (Erickson, 1985), and the administration of various written tasks 
to students. Only 58 students out of 137 agreed to have their answers reported in this study. The focus is 
on the classroom communication, as observed by the author, the day after the teacher communicated to 
her students the definition of perpendicular lines and the “Key Concept” about the slopes of perpendicular 
lines (described in Table 1, below). The author observed all six classes taught by the teacher in one day, 
took observation notes, and collected copies after the students’ written answers to the following  task 
administered by the teacher,  Task 1:  

“a) Sketch the graph of the line that is perpendicular to 2
4
3

-= xy  and goes through the  point

)6,2( - . What is the equation of the new line you created? 
b) How did you determine this?  
c) A fellow student does not understand what perpendicular lines are. Explain to them in as much 
detail as possible what perpendicular lines are and how you find them.” 

Before administering Task 1, the teacher assigned a warm-up task on parallel lines, similar to Task 1a2, 
and solved it on the whiteboard. She also included in her the post warm-up communication a review of 
the knowledge on perpendicular lines, necessary to execute Task 1a. Students’ written answers to Task 
1 were collected. Due to space constraints, I analyze only Task 1c. In my analysis I refer to the 
connections between Tasks 1a, 1b, and 1c.  

Analysis and results 
Table 1, below, represents the levels of communication taken from the Algebra 1 textbook (Larson et al., 
2007), the author’s observation notes on the teacher’s communication with her students, and the students’ 
written answers to Task 1c.  The analysis considers the messages at each level, as well as the changes in 
message from one level to another. The messages are decomposed in sets (titled in bold, for example 
Statements 1-4, at the student level), and the isolates are presented with bullets. The textbook messages 
are presented in the first column from Table 1, followed by the teacher’s messages, preceded by “T:”. 
The teacher’s messages were subsets of the textbook messages, hence the presentation in the same 
column from Table 1. The Venn diagrams and the arrows illustrate the change in message from the 
teacher level to the student level. Table 2, following Table 1, presents examples from the students’ written 
answers on Task 1c. Each of the Statements 1-4 is accompanied by Examples from the students’ 
answers. For continuity of presentation, Table 2 restates in its first columns the student messages (sets 
with their isolates), exactly like in Table 1. The analysis follows each message (set and its isolates) 
horizontally in Tables 1 and 2, respectively. As mentioned before, when one encounters a new language, 
the words (sets) are perceived first, therefore the analysis  was conducted at the level of sets.  

It can be seen in Table 1 that in the context of Task 1c, three sets were communicated at the textbook 
and teacher level: the definition of perpendicular lines, the “key concept” stating the theorem of algebraic 

                                                 
2 Sketch the graph of the line that is parallel to 3

2

1
-= xy and goes through )1,2( - . 
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characterization of two perpendicular lines, and the first step of the algorithm for executing Task 1a, the 
step referring to identifying the slope of a line perpendicular to a given line. Each of those sets are 
analyzed at the textbook, teacher, and student level. It can be observed in Table 1 that the sets at the 
student level were constituted from the isolates at the textbook and teacher level.  

Communication at the textbook and teacher level (T) Communication at the student level  

Sets Isolates Sets Isolates 
“Perpendicular Lines: Two lines in the 
same plane are perpendicular if they 
intersect to form a right angle.” (Larson 
et al., 2007, p. 320) 

 
 
T: “ Perpendicular lines intersect and 
form a right ( 90o ) angle.”  

 

· two lines that 

intersect  

to form a right angle”             

 

· two lines in the same 

plane  

Statement 1 about 
intersecting lines: 
Perpendicular lines 
are lines that 
intersect. 
(N=35)* 

· line 

· two lines  

· two lines that 

intersect 
 

Statement 2 about 
intersecting lines 
forming a right 
angle: 
Perpendicular lines 
are two lines that 
intersect to form a 
right ( 90o ) angle. 
(N=6) 

· two lines that 

intersect 

· angle 

· right angle 

 

“Key Concept: If two nonvertical lines 
in the same plane have slopes that are 
negative reciprocals, then the lines are 
perpendicular. If two nonvertical lines in 
the same plane are perpendicular, then 
the slopes are negative reciprocals.” 
(Larson et al., 2007, p. 320) 
 
T: “Perpendicular lines have slopes 
negative (opposite) reciprocals.”  
 
Algorithm for Task 1a (Step 1):  
Identify the slope m of the new line based 
on the “key concept” (perpendicular lines 
have slopes negative reciprocals). 
(Larson et al., 2007, p. 321)  
 
T: “You take the slope of the original 
line, a/b, that is ½, flip it, b/a, that is 2/1, 
and change its sign, -2/1.”  (Note: Given 
the line and the point from the warm-up 
activity, the teacher drew the line through 
(2, -1) with the slope -2/1).  

 

 

· perpendicular lines 

· lines with slopes that 

are negative 

reciprocals 

 
 

 

· slope of the  

given line 

 

· slope of the 

perpendicular   

line is the opposite 

reciprocal of the 

slope of the given 

line 

 
 

· nonvertical lines 

Statement 3 about 
the slopes of 
perpendicular 
lines: Perpendicular 
lines have slopes 
that are negative 
reciprocals.  
(N=8) 

· two perpendicular 

lines 

· slope  

· negative 

reciprocals  

Statement 4 about 
finding the slope of 
a perpendicular 
line: To find the 
slope of a line 
perpendicular to a 
given line, you find 
i) the slope of the 
given line, and  
ii) the negative/ 
opposite reciprocal 
of the slope of the 
given line. 
(N=28) 

· given line  

· slope of the given 

line 

· the negative/ 

opposite 

reciprocal of the 

slope of the given 

line  

· perpendicular line  

* (N=35), after Statement 1, represents the number of students who communicated that statement. 

Table 1: Representation of levels of communication  
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The first set in Table 1 (column 1) defines perpendicular lines. The textbook marks one of the right angles 
formed by two perpendicular lines in a graphical representation similar to the one from Table 1 and points 
to the “Key Concept”  necessary to execute Task 1a (a 90orotation of a line generates a perpendicular 
line, and the two lines have slopes that are opposite reciprocals). At the textbook level, the definition 
contains isolates like “two lines in the same plane” and lines that “intersect to form a right angle” (Table 
1, column 2). At the teacher’s level, the isolate “two lines in the same plane” was omitted, and the right 
angle was sometimes referred to as a “ 90o angle.” As noticed in Table 1 (columns 2 and 3) at the student 
level, the teacher’s isolate referring to two lines that “intersect to form a right angle” changed into two 
sets, Statements 1 and 2, the first referring to intersecting lines and the second referring to intersecting 
lines that form a right angle. Consequently, more than half of the students (N=35) defined perpendicular 
lines as lines that intersect. The isolate “line” was not problematic for students with respect to their 
graphical representations (all students graphed lines), but the other isolates from Statement 1, “two 
lines” and “two intersecting lines” posed difficulties. The examples accompanying Statement 1 in Table 
2 suggest the following difficulties: i) conceiving of the second line, given one line (Example 1, “a 
perpendicular line is a line that intersects with something”); ii) connecting between representations 
(parallel lines were represented in Example 2, but described as “lines that intersect, they both share the 
same point,” and parallel lines that “do not ever touch” were described in Example 3, where intersecting 
lines were graphed);  iii) conceiving of the intersecting point (the point of intersection was mentioned in 
three of the students’ answers but was not marked in any of the students’ answers, making questionable 
the meaning of “intersecting lines” in answers like in Example 4 where intersecting lines were described 
as “touching or crossing over each other”). 

Continuing with the Statement 2 in Table 2, only six students mentioned “lines that intersect to form a 
right (or 90o) angle, three of them did not have matching graphical representations (see Example 5, 
where the lines intersect but do not form right angles), and three of them had matching graphical 
representations like in Example 6. The analysis of the students’ answers including Statement 2 indicates 
that while the isolate “two intersecting lines” did not pose difficulties, the isolate “right angle” was 
problematic. This issue raised the question if the difficulty was limited only to the measure of the angle 
or if it extended to the concept of angle itself.  

To execute Task 1a, one needs the theorem of algebraic characterization of two perpendicular lines in a 
Cartesian system of coordinates (see the “Key Concept” in Table 1, column 1), and the algorithm to 
apply it (see also the Algorithm for Task 1a (Step 1)). At the teacher level, the theorem was stated 
“Perpendicular lines have slopes negative reciprocals,” and sometimes “negative” was replaced by 
“opposite” to emphasize that the slopes of perpendicular lines have opposite signs. The isolate 
“nonvertical lines” was not mentioned by the teacher during classroom observations. As mentioned in 
Methods, the teacher reminded her students how to determine the slope of the line perpendicular to the 
given line (1/ 2) 3y x= - , by finding the opposite reciprocal of the slope of the given line: “You take the 
slope of the original line, a/b, that is 1/2, flip it, b/a, that is 2/1, and change its sign, -2/1.”    

The teacher matched the algebraic and graphical representations (see the last figure in Table 1, column 
1). The students used the isolates from the teacher level (Table 1, column 2) to constitute their sets, 
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Statements 3 and 4 (see Table 1, column 3).  Statement 3 refers to a characteristic property used by 
students to define two perpendicular lines, while Statement 4 refers to the algorithm of finding the slope 
of a line perpendicular to a given line, y mx b= + . None of the students who stated the property from 
Statement 3 used it correctly in the algorithm described in Statement 4. Although the students  
mentioned “slope” and “negative reciprocals,”  they failed to identify the slope of the given line or its 
negative reciprocal. Therefore, the students’ answers were reported separately for Statements 3 and 4. 

Communication at the student level   Examples from the students’ written answers 
Sets  Isolates Example 1: “A 

perpendicular line is a line 
that intersects with 
something.“ 

  
Example 2:”Perpendicular 
lines are lines that intersect, 
they both share the same 
point.”  

 

Example 3: “Perpendicular lines are 
lines that are side by side and do not 
ever touch each other.” 

 
Example 4: “Perpendicular lines are 
lines that are straight but are touching 
or crossing over each other.” 

 

Statement 1 about 
intersecting lines: 
Perpendicular lines are 
lines that intersect. 
(N=35) 
 
 
 
 
 

· line 

· two lines  

· two lines that 

intersect 

 

 

 
 

 

Statement 2 about 
intersecting lines 
forming a right angle: 
Perpendicular lines are 
two lines that intersect to 
form a right ( 90o ) angle. 
(N=6) 

· two lines that 

intersect 

· angle 

· right angle 
 

Example 5: “Perpendicular 
lines […], the intersection 
of the lines form 90o

angles.” 

 

Example 6:  
“Perpendicular lines- lines that 
intersect with a 90o angle.”  

 

Statement 3 about the 
slopes of perpendicular 
lines: Perpendicular lines 
have slopes that are 
negative reciprocals.  
(N=8) 

· perpendicular lines 

· slope  

· negative reciprocals  

Example 7: “A 
perpendicular line are 2 
nonvertical lines that have 
negative reciprocals.” 

 

Example 8: “Perpendicular lines are 
two nonvertical lines that have 
negative reciprocals. Slopes are a/b 
and -b/a.” 

 

Statement 4 about 
finding the slope of a 
perpendicular line: To 
find the slope of a line 
perpendicular to a given 
line, you find i) the slope 
of the given line, and  
ii) the negative/ opposite 
reciprocal of the slope of 
the given line. 
(N=28) 

· given line  

· slope of the given 

line 

· the negative/ 

opposite reciprocal 

of the slope of the 

given line  

· perpendicular line  

Example 9: “Perpendicular 
lines touch, you must flip 
the sign and make it a 
negative.”  

 
 

Example 10: “Perpendicular lines-
lines that intersect with a 90o angle. 
In order to find them you need to plot 

the original 1 3
2

y x= + , then make 

everything opposite of that, 
2 3y x= - + , then graph.” 

 

Table 2: Representation of the communication at the student level 
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Only one of the eight students who referred to Statement 3 in their answers had a graphical 
representation of perpendicular lines. The other answers had graphical representations of parallel lines 
and non-perpendicular, intersecting lines (see Examples 7 and 8, respectively, accompanying Statement 
3 in Table 2).  In Examples 7 and 8 perpendicular lines were described as “lines that have negative 
reciprocals,” and in Example 7 “slope” was omitted. The isolate “perpendicular lines” remained 
problematic for students. Likewise, the isolate “slope” posed great difficulty, especially in the graphical 
representation. The isolate “negative reciprocals” or “opposite reciprocals” was used by 28 students (see 
Table 2, Statement 4 and Examples 9-10). However, isolates like “perpendicular line” and “given line” 
and its “slope” posed difficulties for students, as shown in their graphical representations (see Example 
9  with parallel lines).  In Example 10, the slopes of the two lines are those from the teacher’s example 
used in the post warm-up communication, the student wrote “make everything opposite,” although the 
y-intercept of the lines was not changed, and the graphical and algebraic representations did not match. 
Only 14 students determined correctly the slope of the perpendicular line in Task 1a, but they failed to 
find the correct y-intercept. Notwithstanding a minor sign error, two students found the equation of the 
perpendicular line from Task 1a, but their algebraic and graphical representations did not match.  

Conclusions  
The communication between the teacher and her students, analyzed at the level of sets, showed the 
following features: 

1) The lessons observed in this study were “ritualistic” and abided by the following “routine” (Lavie, 
Steiner, & Sfard, 2019): like in the textbook, the teacher stated the “key concepts” and presented a 
“model” for executing a task, then asked the students to execute a similar task. The pattern of 
communication lacked justifications or proofs. 

2) The teacher’s messages were not understood by the students in the way the teacher intended.  The 
teacher communicated using sets like those from the Algebra 1 textbook (Larson et al., 2007), but 
only some of the isolates of those sets were received by students.  The students communicated using 
sets that were constituted from the teacher’s isolates, with a pattern lacking justification or proofs. 

To overcome the effects of the “ritualization,” Lavie et al. (2019) recommend turning rituals into 
explorations. In our case, another way to think about teaching about perpendicularity would have been 
to look for patterns of isolates within each set. For example, in the case of the isolate “right angle,” one 
such pattern might have been constituting all four right angles that are formed by two perpendicular 
lines, pointing to their vertex and sides (to constitute the isolate “angle”), describing them (their 
measure), giving counterexamples (acute and obtuse angles), and connecting the verbal and graphical 
representations. An example of an exploration to justify the “Key Concept” (see Table 1, column 1) is 
described by Wallace-Gomez and Miller (2011).  
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Empowering multilingual students for mathematics learning requires building on their multilingual 
repertoires. Although this claim has often been repeated, the students’ repertoires and the interplay 
of their components have so far only been partly understood. The repertoire comprises different state 
languages but also different registers and representations serving as multimodal sources for mean-
ing-making. This paper contributes to unpacking students’ personal repertoires for meaning-making 
of mathematical concepts (comparing fractions). A qualitative study of three newly arrived Syrian 
immigrants’ learning processes identifies (re)sources that the study subjects have that are different 
from those of native residents that had been found in former studies. These results show that teaching-
learning arrangements should connect the registers and representations in more flexible trajectories.  

Keywords: Multilingual repertoires, language, qualitative case study, newly arrived multilinguals. 

Background: Disentangling personal multilingual repertoires as a research gap 
Theoretical background: Multilingual repertoire as a resource for mathematics learning 

Academic and pedagogical discourses on multilingual mathematics classrooms have undergone sev-
eral shifts, not only from language-as-problem and language-as-right to language-as-resource (Planas 
& Setati-Phakeng, 2014), but also from focusing on students’ resources in different national lan-
guages from quite static perspectives to more dynamic conceptualizations carried by the construct of 
a person’s language repertoire (Barwell, 2018; Planas, 2018). Blackledge, Creese, and Kaur Takhi 
(2014) define a person’s communicative repertoire as “the collection of ways individuals use lan-
guage and … other means of communication to function in the multiple communities in which they 
participate” (p. 487) and emphasize its dynamic character. Disentangling these personal repertoires 
is crucial for teaching approaches that build upon these resources. In order to do this, we need to focus 
on the communicative role of personal repertoires but also on their epistemic role in the interactive 
construction of meanings for mathematical concepts (Prediger & Wessel, 2013). When personal rep-
ertoires are conceptualized as sources for meaning-making (Barwell, 2018), it is even more crucial 
that they contain different national languages as well as overlapping registers (i.e., the functional 
varieties of language use) tied to social practices (Halliday, 1978) and social languages (Planas, 
2018). Besides these language registers, other multimodal sources such as graphical or symbolic rep-
resentations, gestures, and prosody must also be taken into account as sources for meaning-making 
(Prediger, Clarkson, & Bose, 2016). This paper contributes to disentangling relevant sources of mean-
ings in the personal repertoires of multilingual students with diverse immigrant backgrounds. 

Relating registers and representations as a teaching approach for building upon students’ 
personal repertoires 

Dynamic, multimodal conceptualizations of multilingual repertoires resonate with teaching ap-
proaches that outline the didactical potentials of relating registers and representations for meaning 
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making (see Figure 1 from Prediger, Clarkson, & Bose, 2016; similarly, Moschkovich, 2013). In 
many teaching approaches, teaching-learning arrangements start by activating students’ informal ex-
periences in concrete and graphical representations or familiar contexts and mobilizing their everyday 
languages, all of which are later systematically re-
lated to the target formal registers and representa-
tions. For multilingual students, this approach is ex-
tended to home languages (Moschkovich, 2013; 
Planas & Setati-Phakeng, 2014): Informal experi-
ences and everyday language resources in home lan-
guages can be activated in multilingual mathemati-
cal discourses. Still, “meaning-making is relational” 
(Barwell, 2018), that is, it takes place by relating 
languages, registers, and representations to each 
other across all languages of the learners. 

Previously, based on this teaching approach, a bilingual German/Turkish teaching intervention on 
conceptual understanding of fractions was designed for multilingual seventh graders (native residents 
whose parents or grandparents born in Turkey). The study of this intervention provided quantitative 
evidence for the efficacy of the intervention despite the students’ limited experience with the technical 
register in Turkish and qualitative insights into the functioning of relating languages, registers, and 
representations along the sketched learning trajectory from informal resources to formal learning con-
tent (Schüler-Meyer, Prediger, Kuzu, Wessel, & Redder, 2019).  

In the current step of this research, the qualitative study has been extended to newly arrived immi-
grants from Syria. The analysis of Syrian textbooks and interviews with Syrian teachers gave indica-
tions that Syrian math classrooms prioritize the formal register and symbolic representation over the 
meaning-related register and the contextual and graphical representations. Thus, empirical research 
is required to investigate whether these different mathematical practices might influence the students’ 
use of their multimodal repertoires.  

Research gap: Disentangling the repertoires for newly arrived students from Syria 

In order to adapt the main ideas of the teaching approach of relating registers and representations to 
multilingual repertoires of newly arrived students, it is therefore crucial to identify these personal 
repertoires and their activation empirically. Therefore, the learning-process study in this paper pur-
sues the following research question: Which personal repertoires do newly arrived students activate 
for meaning-making in the subject of comparing fractions? 

Methodological framework for the learning-process study 
The research question was pursued in a learning-process study that was part of the larger mixed-
methods project, MuM-Multi (Schüler-Meyer, Prediger, Kuzu, Wessel, & Redder, 2019), based on a 
teaching-learning arrangement developed by Prediger and Wessel (2013). 

Methods of data gathering  

Intervention. The project investigates a bilingual teaching intervention for developing multilingual 
students’ conceptual understanding of fractions (especially organized for the research project). The 

Figure 1:  Relating registers and representations  
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intervention was conducted in small groups of 2-5 students each, and all groups were videotaped. The 
teaching material was provided in German and Arabic (or Turkish in the previous study), teachers 
spoke both languages. 

Sample. The intervention addressed newly arrived Syrian students (n = 18, 12-15 years old) who are 
emergent German speakers (abbreviated as emergent multilinguals). Their prior formal education in 
Syria (5-8 years) took place in their Arabic. We present a case study of three students, Manal, Malik, 
and Zarah, who have learned German for 1.5-2.5 years and reached a German proficiency level of 
A2.2 in the Common European Framework of Reference for Languages. Among the three, Malik has 
the strongest mathematics achievements in the pre-test, and Zarah is slightly more proficient in Ger-
man language than the others. The data was later compared to findings from the first intervention 
with native residents who spoke both German and Turkish (n = 41, 12-14 years old) who had grown 
up in Germany with no prior experience in activating their home language, Turkish, for institutional-
ized mathematics learning situations. 

Selected task for the case study. While many ep-
isodes from the video data corpus were analyzed 
in order to identify the students’ repertoires, the 
case study presented here is focused on the task 
in Figure 2. It stems from the second session of 
the intervention, when students had already 
worked on the part-whole concept. The task 
aims at consolidating the students’ part-whole 
concept by addressing shares for different 
wholes (10 GB and 5GB) and at preparing the 
comparison of fractions. Subtask C follows the 
variation principle: Students usually solve it by 
either lengthening the bar in the graphical repr-
esentation (the teacher then asks them to also re-
late this to the symbolic representation, e.g., ar-
ticulating that 7/10 is less than 8/10 or that 7/10 
must be added by 1/10 to reach 8/10) or starting 
in the symbolic representation and formally adding 1/10 (the teacher then asks them to also show 
what this means in the graphical representation). The relation of meaning-related, formal language 
registers and different representations is at the core of developing conceptual understanding.  

Methods of qualitative data analysis 

The transcripts of the selected videos were qualitatively analyzed in two steps with respect to stu-
dents’ conceptual development across languages, registers, and representations:  

· In Step 1, teachers’ questions and students’ answers were analyzed turn by turn with respect to 
the uttered individual theorems- and concepts-in-action (Vergnaud, 2016) on the part-whole con-
cept and the students’ emergent ideas for comparing fractions.  

· In Step 2, each utterance was coded by the register and/or representation the speaker refers to 
and with a “+” if two registers/representations were related within the utterance or between two 

Finding equal-sized parts in the fraction bars  
     Badr has already downloaded 7 GB of a 10 GB film. 

Aziza has downloaded 4 GB of a 5 GB film. 
A Draw Aziza’s and Badr’s parts into the fractions bars 

and write down the fractions for their shares.

 
B Who has loaded the larger part of the whole?  

How do you see that in the bar?  
C What do you have to modify so that the parts  

become equal size? 

Figure 2: Fraction tasks in the case study and  
its preliminary solution by Zarah 
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utterances. For example, “multiply,” “denominator,” and “times” are coded as terms from the 
technical register, “part of whole,” “colored bar,” and “equally long” as terms from the meaning-
related academic register (Prediger & Wessel, 2013). Although some terms appear in different 
registers, their use is specific to the different registers, for example, “equally large” as a technical 
term vs. “equal” as an everyday term. As some English translations of terms do not exactly re-
flect the register character of the German or Arabic original, the original language was focused.  

Insights into learning processes of newly arrived emergent multilinguals:  
Case study of Manal, Malik, and Zarah and equal-sized parts of the bars 
In the episode in view from the first session, the newly arrived students Manal, Malik, and Zarah 
work with a German- and Arabic-speaking native resident bilingual pre-service teacher (TeaA) and a 
German-speaking teacher (TeaG) on the comparison of fractions (tasks printed in Figure 2). In earlier 
tasks, the fraction bars were introduced in the download context. Prior to seeing the printed part of 
the transcript, the students solved Task A (see Figure 2 for Zarah’s solution), drew the colored parts 
of the bars and wrote down the fractions. They then discussed Task B with TeaA in Arabic: Which 
child has downloaded a larger part of the whole, Badr’s share of 7/10 or Aziza’s share of 4/5. Alt-
hough the graphical representation was drawn, their discussion with TeaA in Task B mainly refers to 
the technical Arabic register and the symbolic representation and less to the download context and 
related everyday language. In contrast, neither the graphical representation nor any meaning-related 
term, such as “share,” “part,” or “whole,” are explicitly addressed. TeaG takes over when students 
arrive at Task C.  
45 TeaG Now, we want to think about, how can we make this equal [points at  

the end of the colored parts of the bars]? How can we make 7/10 and 4/5 
equally large? Do you have an idea?  

T graphical repr. + 
technical reg. + 
everyday reg. 

46 Zarah Five times two and four times two. Z symbolic repr.  
47 TeaG Yeah, you have an idea how to do this by [symbolic] calculations.  

But then, they are not yet equal, I think, because there is 8/10 [points at the bar 
of 4/5] and 7/10 [points at the shorter bar]. Do you have an idea, perhaps,  
when you look at the picture? Manal, you look as if you have an idea.  

T (explicit): not 
symb., but graph-
ical repr.  

48 Manal Aziza is very, pretty large [points at the 4/5 bar of Aziza] Mn graphical repr. 

In Turn 45, the teacher asks how to modify 7/10 so that the colored part of the bar becomes equally 
long as the colored part in the 4/5 bar. He uses the everyday terms “make equal” and the technical 
term “equally large” while pointing at the graphical representation, intending to connect these three 
registers and representations. But his plans are not fulfilled: Zarah (in Turn 46) does not refer to the 
graphical representation but only to the verbalized symbolic representation. In Turn 47, the teacher 
acknowledges that her procedure for finding an equally large fraction for 4/5 is mathematically cor-
rect. He continues asking her to explain also how to modify 7/10 so that it reaches 8/10, and makes 
explicit that he wants her to refer also to the graphical representation. This repeated hint leads Manal 
to refer to the expected representation: Manal uses the graphical representation as the source for the 
comparison of fractions for the first time in Turn 48. Although she visibly struggles while searching 
for adequate German terms (“pretty great”) and does not complete the sentence in a grammatically 
correct form, her German is still sufficient to express her meaning-related ideas on the comparison, 
together with gestures. In contrast, Malik stays in the more familiar technical register: 
49 TeaG Exactly, Aziza is larger and what can we do so that Badr is equally large? T graphical repr. 
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50 Malik Simple, Simplify […] 10 gigabytes.  Mk context lang. + 
symb repr.  …   

55 TeaG How can you do it in the picture? [hints to graphical representation] […] T graphical repr. 
56 Malik The ten divided by two becomes five [points at the longer and shorter bars]. Mk technical register, 

hints to graph. repr  

Although Malik receives several prompts to refer to the graphical representation (Turns 49, 51, 53, 
55), he talks in the technical register (Turns 50-56). His interpretation of “equally large” seems to be 
“of same denominator,” without satisfying the teachers’ (perhaps unusual) expectation of adding 1/10 
to the bar. In Turn 56, he finally gestures to the graphical representation. The teacher tries once more 
to focus students’ attention to the elongation of the colored part of the bar:  
57 TeaG [...] Then […], but this would be until here and for Aziza this would be until 

here [hints again to the ending points of both bars of unequal length]  
What would we have to do so that both shares become equally large We have 
seen, 7/10 is less than 4/5. But do you have an idea how to modify 7/10? 

T graphical repr. 

58 Zarah Well, we can change this [points at the eighth piece in the 7/10-bar].  
And then, five times two and four times two becomes eight, like that?  

Z graphical +  
symb repr. 

59 TeaG Hmm, exactly, but what you said first, this was a very good idea.  
What did you say?  

T strengthens  
graphical repr. 

60 Zarah We can here [imitates the coloring of the eighth piece] Z graphical repr. 
61 TeaG Do it, actually. Because, what happens if you color this piece?  T graphical repr. 
62 Zarah That becomes equally long [points at the ending points of the colored bars] Z graphical repr. 
63 TeaG Then, the shares are also equally large.  T graphical repr. 
64 Zarah Then I do this? [all students now color the eighth piece in the 8/10-bar] Z graphical repr. 

The teacher’s repeated prompt to focus on the graphical representation finally leads to Zarah’s idea 
to relate the graphical and the symbolic representations in Turn 58 (“change this”). Again, she uses a 
minimal set of words to address her meaning-related ideas with gestures, deictic means, and prosody, 
but without explicitly articulating meaning-related terms. Once she has expressed her meaning-re-
lated ideas of modifying the part of the fraction bar, she can make explicit the meaning of “equally 
large” in the meaning-related register describing the graphical representation: “That becomes equally 
long” (in Turn 62). Here, the graphical representation is used to solve the task for the first time, not 
only as a diagram to read off numbers. In her solution, she considers both colored bars and their 
relation, as originally intended by the task. After this, the teacher asks for a justification: 
65 TeaG Yes, exactly, and why are the shares equally large, then? [...] T graphical repr. 
66 Zarah Five times two and four times two # Z symbolic repr. 
67 Malik  #Eight Mk symbolic repr. 

The teacher’s “why” question in Turn 65 brings Zarah back to the technical register and the symbolic 
representations (Turn 66), and Malik joins her (Turn 67). Based on her experience with mathematical 
practices, justification in mathematics requires symbolic representation, as she formulates in another 
part of the transcript. However, this time, the symbolic procedure is related to the graphical shift from 
one bar to the next. Thus, Turns 58-67 indicate an activity of relating registers and representations.  

Some turns later, the Arabic-speaking teacher talks to the students again and they switch to Arabic. 
Manal admits to have not yet understood (grey letters mark Arabic parts of the transcript): 
79 TeaA […] You do not know how to write it?  
80 Manal No, I have not understood it.  
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…    
83 TeaA [to Malik] […] Can you explain to her [points at Manal] how you found  

the result, why you have drawn one more? 
T graphical repr., 

meaning-rel. reg. 
84 Malik Because they are equally large. Mk graphical repr. 
85 TeaA First, this is longer and that is why she got the idea to add one. T + technical reg. 

The Arabic discourse gives Manal the space to admit that she has not understood (Turn 80). The 
teacher makes sure that she constructs the meaning of the graphical representation (Turns 81, 83, and 
85). Malik explains in the technical register what the graphical representation means (Turn 84), and 
then the teacher explains the graphical modification, also, remarkably, in technical terms (“add one”). 
During the whole discussion of Task C, the Arabic terms for “whole bar,” “colored part of the bar,” 
and “share” are not formulated by either the students or by the teacher. 

In total, this episode shows that students and teachers activate different sources for meaning-making: 
Whereas the German teacher intends to construct meanings for the symbolic 7/10 + 1/10 = 8/10 = 4/5 
by working within the graphical representation and the meaning-related register, the students show a 
huge distance from the graphical representation, but a familiarity with the symbolic representation 
and a preference for the technical register. After longer negotiations, the teacher and the students 
jointly construct the meaning for the graphical representations by means of the context (not shown 
here) and by means of the symbolic representation. This huge difference in the students’ sources of 
meaning-making and felt need for meaning-making for unfamiliar representations are more influen-
tial to the situation than the missing meaning-related vocabulary, which the students compensate for 
by gesturing and other multimodal sources.  

Contrasting the learning processes of native resident multilingual students and 
newly arrived emergent multilinguals  
To contrast the presented case of Manal, Malik, and Zarah with native resident multilingual students, 
we draw upon findings in earlier publications (e.g., Schüler-Meyer et al. 2019) from native resident 
students who spoke both German and Turkish. The case study of Manal, Malik, and Zarah suggests 
drawing the emergent multilinguals’ repertoires in a different way: not in hierarchical levels of suc-
cessive abstraction from bottom to top, as shown in Figure 1, but in three columns, where the sym-
bolic, graphical, and contextual representations serve as mediators between the home language and 
German language in each of the registers, as shown in Figure 3.  

Although theoretically the languages and registers could be related in different combinations, Figure 
3 shows the combinations that were empirically identified. Native resident multilingual students in 
previous studies have often appeared to feel alienated from symbolic representation and prefer the 
everyday register and contextual representations, from which they access the graphical representation 
and the meaning-related academic register in both languages and, in the end (with teacher’s support), 
also the technical register and the symbolic representation. In their processes, travelling between both 
languages in bilingual connective modes was a major resource for their meaning-making processes 
(Schüler-Meyer et al., 2019; similarly in Moschkovich, 2013; Barwell, 2018).  
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Figure 3: Contrasting the multilingual repertoires in parallel episodes 

In contrast, for the three newly arrived students in the current case study, connecting both languages 
in either of the registers rarely occurred, mainly because they strictly reserved German for the Ger-
man-speaking teacher and Arabic among themselves and for the bilingual teacher. The fact that they 
adopted only a dual monolingual mode with rare exceptions might be traced back to the teachers’ 
languages (Planas & Setati-Phakeng, 2014, emphasize the language context as a crucial influence) 
and also to the fact that their German was not yet fluent, which shows why the term emergent bilin-
gual applies. Furthermore, newly arrived students who are familiar with the symbolic representation 
can easily transfer the basic technical terms from their home language to German. With some teacher 
support, they can unpack the meaning of the symbolic elements by using implicit meaning-related 
references to the graphical register. In our video material, all newly arrived students were acquainted 
to verbalizing the symbolic representations in German, and they activated this resource to construct 
meanings for a more unfamiliar representation.  

Hence, for the investigated students, the different prioritization of representations in Syrian and Ger-
man lessons appeared to have a direct impact on different uses of students’ repertoires. Those who 
grew up in classrooms where the technical register and the symbolic representation were more valued 
developed other learning pathways through their individual resources for meaning making. These 
pathways have not yet been considered, in either the international theoretical discourse (Barwell, 
2018; Planas, 2018; Planas & Setati-Phakheng, 2018) or in classroom practices in Germany.  

Discussion and outlook 
As this case study has shown, students’ personal multilingual repertoires can be very diverse. 
Whereas native resident students in Germany usually refer to contexts, graphical representations, and 
everyday registers as their sources for meaning-making (Moschkovich, 2013; Planas, 2013; Barwell, 
2018), some of the newly arrived immigrants have strong resources in symbolic representations and 
thereby more quickly acquire the German technical register that their resident peers have to first get 
to know. In contrast, they can be unfamiliar with an emphasis on graphical representation, which is a 
typical shared practice in German classrooms, but not all over the world.  
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Although the case study is far too selective and limited in sample and scope to generalize these pat-
terns, it already contributes to theorizing the dynamic conceptualizations of personal repertoires: rep-
ertoires are diverse and include registers and representations, beyond state languages (Barwell, 2018; 
Planas, 2018). We add that it should also take into account different mathematical practices in dealing 
with representations and registers. These theoretical extensions also have practical consequences for 
classrooms: Rather than planning only one learning trajectory that starts from the everyday register 
and concrete representations towards the formal and symbolic (Prediger & Wessel, 2013), more flex-
ible learning trajectories should be planned. Here, we can add that for newly arrived students, it can 
even be beneficial to start from symbolic representations and technical registers and then continue 
towards graphical representations and meaning-related registers. 
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In this paper, we investigate how preservice teachers (PTs) express their awareness about 
language diversity in mathematics classrooms. We use “language as resource” and “language 
as a problem” as theoretical constructs. The data is taken from PTs´ group assignments, 
including transcriptions of dialogues between the PTs and multilingual students, and from PTs´ 
written reflections about teaching in multilingual classrooms. We found that in the dialogues, 
PTs and multilingual students produced meanings together through negotiating a shared 
repertoire from out-of-school and in-school mathematics context. Nevertheless, the students’ 
home languages were not evident as resources in PT´s dialogues and reflections. A deficit 
perspective was present in their reflections. These findings lead us to rethink our teacher 
education courses so that language as a resource becomes more prominent. 

Keywords: Language as resource, language as problem, preservice teachers. 

Background 
In this paper, we explore preservice teachers (PTs) understandings of how to teach mathematics 
in multilingual classrooms. In particular, we consider if, and how, they used the construct of 
“language as a resource” in their interactions with multilingual students and in their written 
reflections about teaching in multilingual classrooms. 

The construct of “language as resource” has been developed as a framework to understand how 
languages are used and perceived in multilingual mathematics classrooms (Planas, 2018; Planas 
& Setati-Phakeng, 2014). Planas and her co-authors build on Ruiz’s (1984) policy planning 
concepts of language as a right, as a problem, and as a resource. Ruiz focused on the resource 
perspective. This inspired Planas (2018) to develop a theoretical framework for exploring and 
theorizing how language can be seen as a resource in mathematics education. The focus on 
“language as a resource” has the potential to contribute to a shift away from seeing home 
languages, which differ from the instruction language, from a deficit perspective. This shift is 
also identified in CERME’S 20-year history (Planas, Morgan, & Schütte, 2018).   

Nevertheless, how to understand and operationalize “language as resource” in multilingual 
classrooms can be challenging in teacher education, schools and in research. One attempt to do 
this is to use ideas about translanguaging in mathematics lessons. Planas (2018) described the 
focus of translanguaging as being on what learners do to convey meaning, on how they use all 
their languages, and not on the normative performance of the language of instruction. This 
includes “situations in which multiple mathematical sign systems, iconic representations of 
mathematical objects, and narratives of mathematical ideas co-exist” (p. 218). According to 
Planas, the concept of translanguaging supports a move from a focus on correct language to a 
more deliberate use of language resources in the participants’ meaning making so that they 
develop mathematical ideas together. This is seen as deeply connected to equality in the 
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classroom, as multilingual students often find themselves being viewed as lacking because their 
home languages are suppressed (Barwell, 2018).   

Teacher education context in Norway and in former research 

The “ordinary” mathematics classroom in Norway has changed in the last 20 years from being 
monolingual to multilingual. In Norway, there are three official languages, Norwegian, Sami 
and sign language. Norwegian dominates as the language of instruction in most municipalities. 
In some classrooms with language diversity, there can be many different languages, spoken by 
refugees and immigrants. Often there will be students who will not have any classmates or 
teachers who can understand their home language. The discourse around classrooms with 
language diversity seems to be dominated by a “Norwegian only” attitude (Naustdal, 2017), 
similar to what has been identified in neighbouring Sweden, where the described discourse is 
“Swedish only” (Norén, 2016).  

In teacher education in Norway, there has been little focus on language diversity in mathematics 
education. For example, in the former National Guidelines for Teacher Education, language 
diversity is mentioned once in the chapter about mathematics and then only as something the 
PTs should learn to take into consideration. In the new National Guidelines (Universities 
Norway, 2016), the resource aspect is added: “the students’ different needs, where cultural, 
linguistic and social backgrounds must both be taken into consideration and seen as a resource 
in the teaching” (p. 23). Our study is situated in this change, as we re-focus our teacher 
education to incorporate the view that all students’ languages can be a resource in the learning 
and teaching of mathematics. Through a four years long research project Learning about 
teaching Argumentation for Critical mathematics Education in Multilingual classrooms 
[LATACME], our research group aims to develop both tools for teaching and theories about this 
development through an educational design research program. The aim in this paper is to 
identify our starting point, namely, how preservice teachers are currently aware of, and 
interpret, multilingual diversity in mathematics teaching and learning as resource, which will 
be the basis for subsequent interventions. 

Internationally we find few studies on how teacher education can develop understandings of 
language diversity in mathematics classrooms. For instance, McLeman, Fernandes and 
McNulty’s (2012) study from the USA revealed that issues about mathematics education of 
English learners needed to have more prominence and to be integrated into teacher education 
to hinder the development of a deficit perspective among PTs. They explicitly suggested that 
PTs would need to be provided with experiences within the context of mathematics to help them 
better understand the interconnection between language and mathematics.  

Based on three different contexts (South Africa, Malawi, and Spain/Catalonia), Essien, Chitera 
and Planas (2016) found that even though the mathematics teacher educators are aware of the 
linguistically diverse contexts, the “teacher education institutions rarely attend to the 
complexity of teaching mathematics to linguistically diverse mathematics student teachers in a 
structured way in their programs” (p. 107). Yet even when there is such awareness, it is 
challenging to change discourses (Eikset & Meaney, 2018). In their analysis of their 
conversations about preparing PTs for teaching in multilingual classrooms, Eikset and Meaney 
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found that other competing discourses, such as the PTs´ expressed needs for learning more 
mathematics, gained priority.  

The data for this paper is collected from a mandatory group assignment in the first compulsory 
mathematics course for those who will become teachers in Grades 1-7. The PTs were asked to 
write 8-10 pages about number sense connected to children’s language and to link this to theory 
and experiences from their practicum. As part of the process, they had supervision with the 
second author. The PTs had to include a research question and transcriptions of dialogues 
between themselves and students. These PTs were in language diverse classrooms, and their 
interpretation of teaching in the multilingual classroom became an important part of their text. 
The PTs were encouraged to use their own home language as resource in their problem solving 
during their teacher education program and were aware of the concept of language as resource. 
Consequently, our research question is: How do PT express their awareness and understanding 
of the construct “language as resource” through written dialogues and reflections? 

Theoretical framework 
Planas (2018) described “language as a resource” in mathematics education research as being 
used more as a metaphor than as a defined concept in the last decade. She demonstrated that 
“language as resource is not about the unproblematic functioning of language as producer of 
meaning taken as mathematical and shared” (p. 226). From her perspective, language 
contributes to the realization of normative meaning in the culture of schooling and school 
mathematics and does so by reproducing discourses connected to these cultures. In addition, 
knowledge of language enables learners to influence the process of gaining meaning through 
interaction. Therefore, language can be a resource both for meaning making and for the 
relocation of culture in learning situations in mathematics classrooms. From this perspective, 
mathematical language cannot be separated from the learning gained from other languages or 
be given priority. Instead, there is a need for language from different contexts, both in and out 
of school, to be combined in meaning production. In Bakhtin’s dialogism, learning can occur 
in the tension between different forces (Bakhtin, 1981). Tension can occur between voices 
where different opinions, understanding and linguistics settings are expressed. For example, 
demands to use the correct language can be one force, while focus on solving a mathematical 
problem can be another. Tensions might occur in the mathematics classroom between the 
stratified and formal mathematical language and the language of instruction on one side and the 
more informal and diverse multivoicedness on the other side (see for example Barwell, 2018; 
Planas, 2018). However, tensions provide opportunities to negotiate meaning and in 
multilingual classrooms to learn both language and mathematics.  

In their investigations of what happens in classrooms, both Barwell and Planas have focused 
on translanguaging. Barwell (2018) emphasized the view of students and teachers as 
languaging, where they use “a repertoire of language practices that draws on students’ varied 
experiences of communication in multiple contexts to make meaning in mathematics” (p. 161), 
whereas Planas (2018) stated, “translanguaging refers to what people actually do with language 
to convey meaning” (p. 218).  This is a change of focus, from the language systems and the mix 
between them, to what students and teachers do with language. This includes the use of different 
representations and mathematical signs to make sense and convey meaning.  
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Methodology 
The data was collected during the autumn of 2017 when groups of PTs completed a written 
assignment about mathematics, in particular number sense, connected to children’s language, 
conceptual knowledge and representations in mathematics. The PTs were in their second year 
of a course to become teachers of Grades 1-7 and were in their first of two semesters of 
mathematics education. During this semester, teaching mathematics in a multilingual classroom 
was one of several topics. In their assignment, they were asked to take into consideration how 
they could adapt their teaching. Two groups chose to include language diversity as an issue in 
their assignment, and one of these will be analysed in this paper. It was mandatory for the PTs 
to obtain data that included oral responses from students, where the PTs’ role was not to 
evaluate or judge their students. They were asked not to collect any personal data about the 
students. The assessment was completed before the PTs received a written request about 
whether this material could be analysed for research purposes. The dialogues presented in the 
group’s assignment were between a PT and a student in grade 6 in a classroom setting (18 
students). The PTs had given the students some tasks, provided them with individual help and 
in some cases asked the students to explain their thinking.  

We analyse two excerpts containing dialogues between a PT and a multilingual, primary-school 
student and the PTs’ reflections on the dialogues and their comments about language and 
multilingual students. We use a two-layered analysis. First, we sought to identify what PTs and 
students did to convey meaning, how they used languages, and which repertoire they used, in 
order to identify instances of translanguaging. Second, we sought to identify language as a 
resource or as a problem in PTs reflections. To do this, we searched for tensions between voices 
and the potential for learning that they can create (Planas, 2018; Barwell, 2018).  

The original dialogues were in Norwegian and have been translated into English as faithful as 
we could to retain the original sense. Where the PTs have transcribed incorrect words that the 
student used, we place the word [incorrect Norwegian] in brackets.  

Result and discussions 
The PTs’ aim in the activity was for the students to discover the connection between 
multiplication and division. Although this was the headline on the student work sheet, the PTs 
claimed that the student, Laban, whose home language is not Norwegian, did not read it. The 
task was 98/7= 

PT: Can you explain for us how you were thinking here? 

Laban:  Here I took 7, but the 9 is bigger. We minus [minuse] only with the nine, nine 
minus 7 is 2. Then we take the eight and wait… 14… so we took only 1 here 
(points to the second digit for tens) with 2 which is 28, then we take 7 up to 
28 so that is 4, so that is 28 minus 28, which is zero. You should all the time, 
when it’s 7 just you should just insert 1 up here, then it becomes 7 and if you 
take up till 9. Then it’s 14, it can’t be that, so we just take 7 times 9 then 
minusing [minuse] the 9. I can do it all in my headed [hoden]. 
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PT:  Oh yeah! That is so cool, have you worked a lot with the timetable 
[gangetabell] before? 

Laban:  No, division. 

PT:  That is sort of times, multiplication. It’s kind of, the twin of division. 

Together with his written solution, Laban managed to explain to the PT how he was thinking. 
Laban demonstrated that he saw the connection between multiplication and division when, for 
instance, he said “which is 28 then we take 7 up to 28 so that is 4 so that is 28 minus 28 which 
is zero”. He was switching constantly between multiplying up (7 up to 28) and reversing by 
subtracting so he could check if there would have been zero left to divide.  

In the PT’s response to Laban’s explanation, s/he amplified Laban’s explanation by exclaiming 
“Oh yeah! That is so cool”. The PT also asked Laban if he had worked a lot with times tables 
(gangetabell) which is an informal word for the multiplication table in Norwegian.  Laban 
denied this by saying, “No, division”. His “No, division” is an interesting change as division is 
a more formal expression, even if the PT uses an informal expression “times” (gange) instead 
of multiplication. The PT then followed up with “that is sort of times” before s/he changed the 
wording to “multiplication”, “It´s kind of, the twin of division”. The introduction of 
“multiplication” as “the twin of division” seems to be a new language construction, perhaps to 
support Laban to be more aware of the connection between multiplication and division, even 
though he already demonstrated this in his explanation. As the student and PT used resources 
from their informal and formal language to make meaning together, they were languaging 
(Barwell, 2018). The student’s idiosyncratic language of “minuse” (subtract), and his 
conjugation of a noun into a verb as in “headed” (hoden) was in the transcription in the group 
assignment. However, the PTs did not highlight these examples. In this case the tension in 
language use was apparent in the juggling between formal and informal mathematical language, 
rather than between a home language and the language of instruction. 

When Laban explained and requested time to think, indicated by his “wait”, he used informal 
words and sentence construction. While he was answering the PT’s question, he began to use 
formal mathematical words, such as division, which belong to the school mathematical 
vocabulary. The dialogue between PT and Laban is characterized as a mutual willingness to 
make sense together. It seems that the student affected the language choices of the PT.  

The group of PTs reflected on the dialog in their assignment:  

He explained his way of thinking and led us through his calculations. This gave us the 
impression that it was not his number sense that was the challenge for Laban. He is a student 
we can clearly see has gained much practice in mathematics.  

By mentioning that Laban explained his thinking and led them through his calculation, they 
recognized his skills to communicate and his number sense. However, they indicated that there 
was still something which was a challenge for Laban, without specifying what this was. By 
including his language errors, one interpretation is that the PTs saw language as a problem even 
as they recognized his communication skills. In the summary, the PTs repeated their belief in 
Laban’s and another multilingual student´s number sense and their explanation skills: 
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The students could also explain their way of thinking, the different types of calculations and 
how they could use this in their daily lives without much difficulty. … Thus, we will say 
that it is not the numerical understanding or the number concept that hinders the students 
from dealing with mathematics, but rather that it is insufficient understanding of the 
concepts.  

By stating that the students can “explain their way of thinking” and that “numerical 
understanding or number concept” is not the problem, they recognized the skills the students 
had, and implicitly that the students were able to use language in Norwegian as a resource to 
make others understand their thinking. However, they also mentioned what hinders the students 
from “dealing with mathematics”; the multilingual students had “insufficient understanding of 
concepts”. In this way they saw the student in a deficit perspective and the lack of concepts in 
Norwegian as a problem. 

As an example of the problem that a multilingual child had with understanding mathematical 
concepts, they included this conversation with another multilingual student, Ahmed: 

Ahmed:   What is “even” [jevent] I don’t understand… 

PT:  You play soccer Ahmed, don’t you? 

Ahmed:  Yes, Tuesday and Thursday 

P.T:   Then you divide into two teams and play against each other, don’t you? 

Ahmed: Yes! 

PT:  When you divide into teams, what is important? 

Ahmed: That it’s fair. That there are equally many on each team. 

PT: YES! That is another way of explaining “even”.  

The PT used an example from a familiar situation for Ahmed, soccer, to explain what “even” 
means in mathematics. By using language repertoires that they had in common from outside of 
school mathematics, they had made sense and gained a shared understanding of the 
mathematical concept.  In their assignment, they explained how they used the example of soccer 
as a translational link to help the student understand the concept of “even”. The PTs used the 
conversation as an example of where language can cause a problem, as they write “the student 
does not have an understanding of Norwegian term for the concept of even”. At the same time, 
they demonstrated how they used language as a resource in the dialogue by drawing on the 
example from soccer as translation link. They used repertoires from different contexts, formal 
and informal school mathematics, and out of school activities as soccer, to make sense together.  

A question arises about whether the students’ and PTs’ use of languages from different 
situations, can be considered translanguaging (Planas, 2018). In the Norwegian context, it was 
repertoire from formal and informal Norwegian which were being transformed as meaning is 
being made. The PTs’ understanding of language in multilingual classrooms also reflected a 
tension between how they made use of theirs and the students’ language resources from 
different contexts, and seeing their student from a deficit perspective where language is a 
problem:  
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During the practicum, we learned that there is a connection between being able to master 
mathematics and to master the language. Minority-speaking students may have limited 
vocabulary and little understanding of Norwegian terms. This may be because the student 
speaks little Norwegian at home, in his immediate social environment, or never experiences 
situations where the terms are used.  

The PTs recognized the connection between language and mathematics learning. It is clear from 
their perspective, that it could be a disadvantage for a student to not have Norwegian as their 
home language, which could cause limited understanding of Norwegian terms. The PTs only 
mentioned the Norwegian language. The home language and mathematical concepts that the 
students may have in this language were not discussed. There was no evidence that the PTs saw 
the students using their home languages in mathematics. This suggests that it may be difficult 
for PTs to know how to use the students’ language and cultural background as resource and this 
pedagogical practice remains more an idea than an experienced reality in primary schools. 

Concluding remarks 
In this study, we identify tensions in more than one sense. There is a tension between “language 
as resource” captured in the transcribed dialogues and “language as problem” in the PTs’ 
reflections. This tension could provide opportunities for learning if this tension become topics 
for discussion. In addition, we find a tension between students’ and PTs’ language use with 
informal and formal mathematical terms. Together they were languaging by using experiences 
of communication in multiple contexts to make meaning (Barwell, 2018, p. 161), as when they 
used soccer to explain even, and in the PTs’ effort to connect concepts, when making the new 
language construction, multiplication as “twin to division”.    

Planas’ (2018) conceptualisation of language as resource has given us the opportunity to see 
how PTs use a repertoire from different contexts in their meaning making. The opposite 
metaphor, language as problem, made us aware of where PTs see language diversity in the 
mathematics classroom as a problem and how the students’ home languages are neglected. 

If language as resource, which includes translanguaging, is going to be valuable in PTs’ 
teaching in the future, they need to be exposed to broader understandings about multilingual 
teaching both in teacher education and in the practicum, as McLeman, et al. (2012) suggested. 
How can different languages be present in Norwegian schools where there can be so many 
different languages in one classroom and when the “Norwegian only” discourse is so strong? 
There is a need to develop a common understanding of what language as resource can be 
together with the teachers in the schools where students do their practicums. As the PTs’ 
dialogues demonstrated, repertoires from different contexts, informal and formal, and the 
students’ culture, such as soccer, can be resources in teachers’ mathematical dialogues with 
students. Identifying these potential resources in shared repertoires of experience can be 
developed further to include students’ home language. Teacher educators need to engage in 
open discussions with PTs about which discourses dominate and which discourses should be 
developed to avoid language being viewed from a deficit perspective. Our next step is to 
develop an intervention in which practicum teachers, PTs and teacher educators explicitly 
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discuss tensions between language as resource and language as problem. Working together to 
change our discourses may help us to explore how different languages can be present.   
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This paper is based mainly on a planning meeting involving teachers and researchers before 
classroom sessions in a Norwegian school where 7-8-year-old children are working with concepts 
connected to geometrical shapes. During the planning meeting different conjectures were made about 
possible confusion that might occur concerning the names of the parts (elements) of a polygon (edges 
and vertices). Comparing these conjectures to what actually happened in the classroom, it turns out 
that the group of experienced teachers and teacher educators were not able to foresee all the nuances 
in the children’s sense and reference concerning concepts connected to polygons. The findings 
suggest that these concepts may be more challenging than previously assumed. The classroom 
sessions are designed using principles from Brousseau’s Theory of didactical situations (TDS).  

Keywords: Register, sense and reference, polygons, milieu. 

Introduction 
The project Language Use and Development in the Mathematics Classroom (LaUDiM) is an 
intervention study carried out in collaboration between researchers at the Norwegian University of 
Science and Technology and two local primary schools in the period 2014-2018. A central part of the 
project is to design and implement teaching sequences. The design process takes place in close 
collaboration between researchers and teachers. The teachers are responsible for the implementation 
in their respective classes, with researchers present in the classroom. The core of the project is 
twofold: to study pupils’ development and use of mathematical language to express their ideas, and 
their use of language in arguing and justification; as well as to study and develop teachers’ 
mathematics teaching practices. The design of each teaching sequence is guided by principles from 
The theory of didactical situations, TDS (Brousseau, 1997). A teaching sequence typically consists 
of a planning meeting between teachers and researchers followed by two or three classroom sessions. 
Between the classroom sessions there are reflection sessions to discuss what happened in the 
classroom and, if necessary, revise the plans. 

This paper is mainly based on data from the planning meeting preceding one particular sequence of 
teaching sessions where the main aim is pupils’ development of a precise mathematical language for 
describing elements and properties of polygons. The actual classroom sessions were reported on in 
(Rønning & Strømskag, 2017). In the present paper, some of the findings from the first classroom 
session are mentioned in order to be able to reflect on what happened in the planning meeting. Also 
the reflection session after the first classroom session will be mentioned. The paper will shed light on 
the importance of the planning session and how different discourses influence the planning, as well 
as deepen the knowledge about the complexity regarding the, apparently simple, concepts involved. 
We will in particular compare teachers and researchers’ conjectures about pupils’ language use about 
polygons to what actually happened in the classroom. 
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Theoretical framework 
In this paper we see a word as a sign, or signifier, and, in the language of Frege (1892) we connect 
the sign with its Sinn and its Bedeutung. The German words Sinn and Bedutung can be seen translated 
into English in different ways. We shall follow the translation in (Geach & Black, 1960), using the 
words sense and reference, respectively. Here, the reference is the object that the sign refers to and 
the sense comprises all thoughts and ideas connected to the sign. In his work, Frege gives examples 
to show that two different signs may have the same reference but different sense. One example used 
by Frege is the following, from Euclidian geometry. Let a, b and c be the medians of a Euclidian 
triangle. Let A be the intersection point between a and b, and B be the intersection point between b 
and c. Then A and B have different sense but from a theorem in Euclidian geometry the points A and 
B coincide, so A and B have the same reference (see e.g., Geach & Black, 1960, p. 57). 

A distinction similar to Frege’s sense vs. reference is made by Peirce in his definition of a sign: “A 
sign is a thing which serves to convey knowledge of some other thing, which it is said to stand for or 
represent. This thing is called the object of the sign; the idea in the mind that the sign excites, which 
is a mental sign of the same object, is called the interpretant of the sign” (Peirce, 1998, p. 13). Also 
Ogden and Richards (1923/1948) describe a similar model when they talk about a symbol as being 
connected to a referent via a thought or reference. They state that “[b]etween the symbol and the 
referent there is no relevant relation other than the indirect one, which consists in its being used by 
someone to stand for a referent” (p. 11). They further state that “[a] true symbol = one which correctly 
records an adequate reference. … [W]hen it will cause a similar reference to occur in a suitable 
interpreter” (p. 102). A given word is therefore a true symbol if it causes the same reference in 
different interpreters. Successful communication in a mathematics classroom depends on symbols 
causing the same reference in the actors involved, usually teachers and pupils. 

Halliday (1979) defines the term register as “a set of meanings that is appropriate to a particular 
function of language, together with the words and structures which express these meanings” (p. 195). 
So, changing between registers can mean that the same word gets both a different sense and a different 
reference. The mathematical register is characterised by the property that words have very precise 
sense and reference. Sometimes the same word may be used both in the mathematical register and in 
the register of everyday language but with different sense and reference. This feature is language 
specific so that for a given word it can be part of both the mathematical and the everyday register in 
one language but translating into another language may lead to different words in different registers. 
When the same word is used in both the mathematical and the everyday register in a language, it is 
of particular importance to be aware of possible discrepancies in sense and reference because such a 
word may not be seen as a challenge in the learning process. 

Design and research question 
Each teaching sequence in the project starts with a planning meeting where teachers and researchers 
work together to plan the activities for two or, in this case three, classroom sessions. In this planning 
meeting TDS plays an important role. TDS provides a model for instructional design, where a 
didactical situation is designed with a problem that has the target piece of knowledge as an optimal 
solution (Brousseau, 1997). The didactical situation consists of four phases—action, formulation, 
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validation, and institutionalisation—designed with milieus so as to make the knowledge (necessary 
to solve the given problem) progress from informal knowledge to increasingly formal (mathematical) 
knowledge. More precisely, in action, the pupils use an implicit strategy to solve the problem given 
to them; in formulation, they need an explicit strategy because they are supposed to use the knowledge 
to make another pupil solve the problem; in validation, the knowledge needs to be mathematical 
knowledge in order to jusitfy that the solution is valid in general; and, in institutionalisation, the 
teacher decontextualises the knowledge reached to become scholarly knowledge. For a more detailed 
account, and exemplification, of the evolution of knowledge and the teacher’s role in the different 
phases, see (Strømskag, 2017). 

A teaching sequence was designed according to the teachers’ and researchers’ expectations  regarding 
pupils’ sense and reference of words connected to polygons (see Rønning & Strømskag, 2017). 
However, the data collected during implementation of the sequence gave us insight into the pupils’ 
actual sense and reference of the words in question. This design was instrumental for creating 
opportunities for revealing the challenges of the learning process. For this paper however, the 
concepts from Brousseau’s theory will not play a significant role. 

Between the first and the second classroom session follows a reflection session, where adjustments 
are made for the second session. Researchers present in the classroom interact with the pupils but are 
not directly involved in the teaching. The planning meeting and classroom activities are video 
recorded, and the reflection meeting is audio recorded. After completing a cycle of planning, 
reflection and classroom sessions, teachers and researchers meet to watch parts of the video 
recordings from the classroom. This is also video recorded, but is not used as data for this paper.  

The topic of polygons turned out to be interesting for several reasons. It demonstrated how the 
phenomenon that words (signs) may have different reference in the mathematical and everyday 
registers constrained pupils’ conceptual development and although parts of this phenomenon could 
be foreseen in the planning meeting, unexpected observations were made, showing that there are 
challenges involved in the apparently simple concepts involved when talking about polygons.   

This paper is addressing the following research question: To what extent do teachers’ and 
researchers’ expectations regarding pupils’ sense and reference of words connected to polygons fit 
with actual experiences from the classroom? 

The main data are the transcribed video recordings from the planning meeting. In a line by line 
analysis of the transcription, we look for evidence of contributions from the different participants in 
the meeting. Then these contributions are compared to what actually happened in the classroom at 
one of the schools. Here we will refer to findings in (Rønning & Strømskag, 2017). 

The Norwegian language and the mathematical terms involved 
The relevance of the work with the topic of polygons is connected to particular features of the 
Norwegian language. In Norwegian, polygons are named after the number of edges, using ordinary 
number words. That is, an “n-gon” is called an “n-edge”, where n can be three, four, …. The 
Norwegian word for edge is kant. For n ³ 5 this is in line with English, except that the English words 
are based in Greek (e.g. pentagon), and therefore they have no obvious meaning for young children. 
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In the paper, we will use the Norwegian word kant (plural kanter) and whenever this word occurs, it 
is written in italics. In everyday language, the word is used in expressions like “falling off the kant of 
the cliff”, “walking along the kant of the road”, “sitting on the kant of the table”. Edge is also a word 
in English everyday language but vertex is a mathematical term, not used in everyday language. The 
Norwegian language does not have a strictly mathematical term for vertex. The word hjørne is used 
(corner in English). In the sequel, we will use hjørne (plural hjørner), written in italics. Since the 
names for the figures are made up of everyday terms, it is generally believed that  learning the names 
of and distinguishing between different polygons is an easy task. In German, the situation is very 
much like in Norwegian, except there the focus is not on the edges but on the vertices, i.e. a firkant 
(four edge) is referred to as a Viereck, meaning “four corner”. Since the number of edges is equal to 
the number of vertices (V = E) it does not matter whether the edges or the corners are referred to, the 
number word connected to the figure will be the same.  

Another feature is that the edges may be referred to by different words depending on the situation. 
For instance, when stating the formula for the area of a square, it is often said “side times side”. Then 
the word “side” (or “sidekant”) is seen as a variable denoting the length of the line segment making 
up the edge. The word side corresponds to the English word ‘side’. 

The planning meeting 
A starting point for the discussion is that the participants (teachers and reseachers) present their 
experiences with the topic and also some evidence of confusion regarding language. Present at the 
planning meeting were the teachers Ruth and Pam, and the researchers Anne, Becky and Cathy. 

Ruth: We mostly talk about kanter so far. There is not so much talking about hjørner.  
Anne.: Or they do not agree on what a kant really is. Is this the kant (strikes along the side 

of the table), or is this the kant (marks the transition between the table top and the 
side).  

Ruth: We have discussed this a little in the staff room. Is it side or is it kant? Because 
when you talk about the area of a square, for instance, then it is like side times side, 
and why is it then called side when it is called trekant [triangle] and firkant 
[quadrilateral] and how many kanter has a … ? But when you come to three 
dimensional figures, then the kant is in a way, when you see from one side, then it 
is one of the sides.  

Pam: Sidekant I think it is called. 
Ruth: Yes, because you also have the concept sideflate [face], and that is on a three-

dimensional figure. And that is the side, that is what we call the side. So, I think it 
is best that the line in a two-dimensional figure is called a kant.  

Ruth has observed that the same object in a geometric figure may be given different names in different 
contexts. When talking about the line segments making up a polygon, the word kant is used but when 
the length of the line segment is referred to, e.g. for calculating the area of a square, the word side is 
used, as in the formula side times side. This indicates that the words kant and side have different 
sense, although they refer to the same element of the polygon, i.e. they have the same reference. It 
could be argued that in the formula side times side the reference is not the actual line segment itself, 
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but a number representing the length of the line segment. In the beginning, Ruth also admits that they 
have not talked so much about hjørner, mostly about kanter. This may be because it is the word kant 
that appears in the names of the polygons. Ruth also refers to the three-dimensional situation where 
the word sideflate is used for the face (F) but also sometimes just side, for short. She finds this 
confusing and suggests to stick to the word kant.  

Anne: A hjørne is where two kanter meet.  
Becky:  Yes, so then at least we agree. 
Ruth:  This is a much simpler definition. 
Anne: Yes, but it isn’t. When we discuss this with student teachers, they do not agree on 

what a kant is. Some envisage, yes, a trekant, it has three kanter, yes, what I would 
call kanter, and like you Pam, call sidekanter, but it also has three hjørner. So if 
you say trekant and think about hjørner, there is no mismatch.  

Pam:  And I heard a mother asking, when we had about hjørner and kanter on the working 
plan; hjørner AND kanter, but isn’t that the same? That is the same, so why?  

Cathy:  I have not at all thought like this. I have thought like you, a hjørne is a hjørne.  
Pam:  Yes, and that is correct. But I think many have a wrong opinion about this.  

Anne gives a precise mathematical definition of the term hjørne, and both Becky and Ruth seem to 
be happy about this, recognising it as a simple definition. However, Anne claims that it may not be 
that simple because she has evidence from student teachers not agreeing on what a kant actually is. 
They say kant and mean hjørne, and because of the relation V = E for polygons they get away with 
it. This is supported by Pam who has evidence from a mother of one of the pupils claiming that hjørne 
and kant are two words for the same thing. Cathy has not reflected on this being an issue. This 
conversation shows evidence that the word kant may be used by different people with different sense 
and different reference and also that some people think that the two words are two different signs 
with both the same sense and reference. The fact that the group discussing this is a group consisting 
of experienced teachers and teacher educators indicates that the topic may not be as simple as it may 
seem at a first glance.  

There is agreement that one should stick to the concepts kant and hjørne, and that it is important to 
stick to one word in the beginning, and Ruth says that kant seems to be the most precise word.  

The reflection session 
The reflection session is based on experiences from the first classroom session and took place 
immediately after the classroom session. The classroom session is discussed in (Rønning & 
Strømskag, 2017). These are some of the observations made: 

- Most pupils used the word kanter to refer to the vertices but there were also some who used 
it correctly, to refer to the edges.  

- Some pupils refer to a vertex as a hjørne when they approach it from the inside and as a kant 
when they approach it from the outside.  

- In a quadrilateral with one reflex angle and three acute angles, the vertex at the reflex angle 
is sometimes referred to as a hjørne and a vertex at an acute angle is referred to as a kant.  
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The classroom session revealed that for most of the pupils the sense of the word kant was something 
sharp. This was emphasised when they talked about kanter as “the pointed parts [spissene]”. The 
word hjørne was not often in use but when used, it had the sense of a space, something one can stay 
in, corresponding to the expression “stand in the corner” [stå i hjørnet]. It can therefore be said that 
the pupils use two different words for the same reference but each word has its own sense which is 
connected to the size of the angle at the vertex, or whether they see the vertex from the inside or from 
the outside. 

Pam was surprised that they did not use the words correctly. They mainly used the word kant with 
the reference expected of the word hjørne and paid very little attention to the actual kanter, i.e. the 
edges. Diana, a researcher who was not present at the planning meeting, suggests to use sidekant 
about what they call strek [line]. Then there is a discussion about how the words kant and hjørne 
could be connected to everyday settings. Diana had observed in the classroom that some pupils talked 
about a “soft kant”, and said that that is a hjørne (with reference to a part of a local shopping centre), 
but a “real kant” is sharp. For 3D objects it makes sense to talk about an edge (kant) as being sharp. 
This may transfer to 2D objects. One of the tasks for the pupils was that they should write the name 
of a given geometrical figure and explain why it had this name. Based on the pupils’ workings it 
seemed that they used the words in a correct way. They could draw e.g. a quadrilateral and write “this 
is a firkant because it has four kanter”. Here the reference of the word firkant is the drawing of a 
quadrilateral, as it should be, and the sense of the word is that the figure has four kanter. This is also 
correct, and the written statement will not reveal the misconceptions.  

In the reflection session, it is discussed how the activity could be developed to overcome the 
misconception. In the first classroom session, it turned out that using the abstract geometrical figures 
as reference context was inadequate to stimulate the correct concepts connected to the words kant and 
hjørne. Therefore, the teacher suggested to use a mini-pitch as a reference context. This was assumed 
to be a context from the pupils’ everyday experience and at the same time a context with properties 
sufficiently similar to an abstract geometrical figure, in this case a rectangle. Then the idea was 
presented to take the pupils out into the mini-pitch in the school yard and give commands like “go to 
the hjørne”, “walk along the kant” and similar expressions. 

Discussion 
The target knowledge of the teaching sequence was that the pupils should develop the scientific 
language for naming 2D shapes and become aware that these names are based on the number of edges 
(kanter) in the shape. To know the difference between edges (kanter) and corners/vertices (hjørner) 
will then also be part of the target knowledge.  

The planning session revealed certain conjectures about the use of the words kant and hjørne. The 
different participants in the session had different expectations, based on different experiences. The 
teachers had experienced confusion based on previous work with pupils and also based on 
conversations with parents. Teacher educators in mathematics had experienced confusion among 
student teachers, whereas the general educators were not necessarily aware that these words could be 
a source of confusion. For most adults, at least adults with some mathematical background, it is so 
obvious what is a hjørne and what is a kant that they do not envisage any problems with this. And 
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also, the connection V = E, ensures that the naming of geometrical figures will be consistent even if 
there is confusion about what is what. But when the sign is broken down into components, tre = three 
and kanter = edges, we see that the sense and reference are not as desired.  

Kant Sense Reference 

Mathematical discourse A straight line segment E.g. AB, BC, CD and AD in  
quadrilateral ABCD. 

Pupils’ discourse Something sharp 
A real kant is sharp 
The pointed parts 

E.g. A, B, C and D in a convex 
quadrilateral ABCD, when seen 
from the outside. 

Table 1: Sense and reference of kant 

Hjørne Sense Reference 
Mathematical discourse A point where two kanter meet E.g. A, B, C and D in quadrilateral 

ABCD. 
Pupils’ discourse A spacious area 

A soft kant 
 

E.g. A, B, C and D in a convex 
quadrilateral ABCD, when seen 
from the inside.  
A non-convex vertex. 

Table 2: Sense and reference of hjørne 

Even if some confusion was expected, the classroom sessions brought new knowledge to the sense 
and reference of the words kant and hjørne. This means that even for such seemingly simple 
mathematical concepts as here, the group of experienced teachers and teacher educators could not 
fully forecast how the terms would be handled by the pupils. Using the terms from Ogden and 
Richards (1923/1948) we may say that the words kant and hjørne did not function as true symbols 
because they did not cause the same reference in all persons involved.  

The insight we got during the classroom sessions was used to redesign the adidactical situation with 
respect to the conventional sense and reference of the words kant and hjørne. The desired statuses of 
knowledge in formulation and validation, as described above, were decisive for the team in designing 
a material milieu and a game (for acting on the milieu) with adidactical potential regarding the target 
knowledge, so the pupils could know whether their responses were adequate or not. The new material 
milieu is shown in Figure 1. It consists of 12 tiles, where on one side of the tile was depicted a polygon 
where the edges had one colour and the vertices were marked with another colour. On the reverse of 
the tile was written descriptions like e.g. “firkant (quadrilateral) with blue sidekanter”. This game 
was played in pairs of pupils both having the full set of tiles. One pupil reads the text and the other 
one is supposed to pick the correct shape. After picking he/she can turn the tile and read the text to 
see if the correct shape has been picked.  

The conditions described in this paper indicate that there is a need to address the concepts hjørne and 
kant in Norwegian schools. The naming of figures by counting the kanter using ordinary Norwegian 
number words, like in firkant, may indicate that there is no need to go further into the topic. Also, the 
books that are used for the pupils seem to take the concepts for granted, there is never any indication 
of what is actually hjørne and what is kant. The discussion in the planning session also shows that 
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there is varying consciousness about the topic among teachers and researchers. And those that are 
conscious about it are so because they have previous experiences indicating that there may be some 
confusion.  

Distinguishing between edges and vertices can also be seen to be important for future learning, e.g. 
about polyhedra, where the number of edges and the number of vertices are not the same.  

Figure 1: Material milieu for classification of polygons 
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Studies on the impact of bilingualism on academic performance in mathematics generally focus on 
potential problems faced by bilingual students rather than potentials and opportunities. The current 
research took an alternative approach and explored whether learning advantages for bilinguals may 
reveal themselves in solving difficult mathematical tasks that require abstract reasoning. Sixty-two 
bilingual and monolingual first-year students of Kazan Federal University participated in the 
experiment. No differences were found between bilingual and monolingual samples in solving easy 
and medium mathematical tasks; however, an advantage on the side of the bilingual students was 
observed with some of the most difficult tasks. The results from this study therefore show that 
bilingualism may be related to abstract thinking abilities and mathematics learning. 

Keywords: Abstract thinking, learning mathematics, bilingualism. 

Abstract thinking and bilingualism 
Abstract thinking is a type of cognitive activity when a person moves away from specific details and 
begins to reason in general, using concepts, judgments and conclusions, among other structures. 
Moreover, abstract thinking allows us to find new things and create something new, to deviate from 
the rules and dogmas and to consider the phenomenon or process from different sides. The formation 
and development of the pupil’s abstract thinking - the ability to use symbolic representation or logic 
– is an actual task of mathematical education.  

There are many kinds of research on the relationship between mathematics and bilingualism, but only 
a few papers, which suggest that bilingualism may improve a person’s ability to engage in more 
abstract or symbolic thinking processes. For example, in her work Planas (2014) argues that 
bilingualism can actually create opportunities for learners to deal more deeply with mathematical 
concepts. She observed a small sample of Catalan language learners interacting with dominant 
Catalan speakers while solving algebra problems in groups. The Catalan language learners used 
different problem-solving strategies (e.g., using a geometric approach to understand an algebraic 
expression) to overcome the lack of specific mathematical terminology in the academic language of 
instruction. The Catalan language learners also focused more on the meaning of mathematical terms 
than dominant Catalan speakers did because they were unfamiliar with the required terminology.  

In recent years, more and more research studies have focused on the potential cognitive benefits of 
bilingualism. Several studies confirm that the experience of using more than one language can create 
unique opportunities in the bilingual brain, leading to cognitive benefits for bilinguals (Adesope, 
Lavin, Thomson, & Ungerleider, 2010). However, the exact nature of these benefits has proved 
difficult to determine in relation to specific subject contents.  

On the other hand, the bilingual experience may provide other cognitive benefits. A number of 
researchers have supported the hypothesis that the constant switching of bilinguals from one language 
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to another leads to an increase in executive functions (Bialystok, Craik, & Luk, 2012). Other scientists 
have not found any advantages for bilinguals over monolinguals in executive functioning (Paap & 
Greenberg, 2013). Cummins (1991) have shown that bilinguals can learn new rules more effectively 
than monolinguals and have an advantage in meta-linguistic awareness.  

Specific research by Gentner and Goldin-Meadow (2003) confirms that knowledge representation 
depends on the language of instruction; hence, there may be negative consequences when knowledge 
is transferred from one representative system to another. In other words, negative effects are observed 
when the languages of learning mathematics and knowledge extraction differ. This was confirmed by 
Spelke and Tsivkin (2001), Campbell, Davis and Adams (2007), but also in work from our context 
developed by Salekhova (2016, 2018).  

A bilingual student may have problems understanding the essence of a mathematical problem if he 
or she is not familiar with the terms used, which are associated with abstract mathematical concepts. 
Conversely, there may be a positive cognitive effect due to multiple transpositions. They arise 
whenever an abstract concept is used and transferred from one representative system to another, when 
there are two different language terms in the language repertoire of a person. A number of studies 
have shown that the linguistic complexity of texts in mathematical achievement tests can negatively 
affect the performance of bilinguals for whom the language of instruction and the language of testing 
is not their mother tongue (Haag, Heppt, Stanat, Kuhl, & Pant, 2013). However, it is unclear which 
specific features of language complexity contribute to this deficiency. 

The present study explores whether bilingualism can potentially influence the development of 
abstract thinking that plays a crucial role in learning mathematics. The study’s research question 
derives from the assumption made by the Russian psychologist Lev Vygotsky (1962). He believed 
that bilingualism could have positive consequences for the flexibility of human thought. He argued 
that the ability to express the same thought in different languages allows us to understand the symbolic 
function of words, to consider words in more abstract, semantic terms and to see that any particular 
language is only one semiotic system among many. Vygotsky studied issues concerning the 
relationship between bilingualism and flexibility of thinking following the awareness that bilinguals 
can be (dis)advantaged in traditional learning environments of Russia at that time. 

Research context - bilingualism in Russia and Tatarstan 
A large number of ethnic groups living within the boundaries of the Russian Federation is evidence 
of a complicated history of migrations, wars, and revolutions. In the process of its historical 
development, Russia has emerged as a multinational, multicultural and multilingual state. About 150 
languages are spoken in the territory of Russia. This ethnic diversity has had a strong influence on 
the state education policy. The Russian Constitution guarantees all ethnic groups the right to maintain 
their mother tongues. Although Russian is the official language, some ethnic republics have the right 
to establish their own official languages besides Russian. The use of an ethnic language in education 
depends on the development of its written forms and literary standards.  

Tatarstan is one of the ethnic republics of Russia, and Tatars constitute 53% of its population. There 
are two official languages – Russian and Tatar in Tatarstan. They are used for teaching almost all 
school subjects and the choice of the language of instruction depends on the school location (rural or 
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urban) or the model of bilingual education (immersion, partial immersion, CLIL). Tatar is spoken by 
most of the people in Tatarstan as either a dominant or a second language. It plays a strong role in the 
construction of the Tatar cultural identity. Russian–Tatar, and Tatar–Russian bilingualism is 
widespread in Tatarstan if we consider bilingualism as the ability to speak two languages. 

Experiment and materials  
The present experiment sought to address the research question of whether bilinguals would 
outperform monolinguals on solving difficult symbolic math tasks. Algebra typically represents the 
students’ first encounter with abstract mathematical reasoning and it therefore causes significant 
difficulties for students. Symbolic abstraction is a significant component of algebraic thinking. 
Algebra is a fundamental discipline in higher mathematics and plays a major role in the field of STEM 
education. The transition from arithmetic to algebra is a challenging task for learners, as algebraic 
thinking requires a shift from calculating exact values to considering relationships between quantities 
and operations with unknown values and variables.  

One of the important topics of algebra is the study of functions, and many researchers favor teaching 
other algebraic topics, such as the solution of equations and inequalities based on functions. Students 
usually perceive functions as a tool to get answers but not as a mechanism to express the relationship 
between variables presented as symbolic abstractions. 

Since abstract thinking represents the ability to process information, special symbolic algebraic tasks 
were developed in order to test for possible bilingual advantages in symbolic abstraction. Images and 
symbols are often used in abstract thinking, and their meaning derives solely from the thinking 
process. Algebraic functions are presented in an unconventional form; a new symbol is used to 
represent a certain sequence of basic mathematical operations. The task in our study has the following 
form: x&y=xy+x-y. What is 5&3? The solution of this task requires an abstract-symbolic approach 
and the understanding that the new symbol indicates the relationship between the variables and a 
certain set of mathematical operations (see Table 1). 

Sample tasks 
The first task with its solution is given as an example. The answers are provided for the remaining 
tasks.   
1. x∞y=xy+x-y                                What is 4∞5?  

Solution: 4∞5=4×5+4-5=19                               Answer: 19 
2. x y=x/y+y-3                                What is 6 2?               Answer: 2 
3. x≠y=7x-2y                                   What is 5≠3?             Answer: 29 
4. xαy=(3y-4x)+5                            What is 1α4?             Answer: 13 

Easy tasks 
1. x@y=(x-y) + (2x+3y)                 What is 4@2? 
2. x§y=(xy) (x+y)                            What is 5§3? 
3. x€y=(x+y)2 /(x-y)                        What is 4€2? 
4. x#y=x3-y +2x+3y                        What is 1#7? 

Medium tasks 
1. x→y=(xy) (x+y)                          What is (4→2) →3? 
2. x©y=y2 +xy                                 What is 5©(3©2)? 
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3. x≤y=xy      x≥y=x/y                     What is (9≤2)≥3? 
4. [x]=x2 /2   {y} =y+2                    What is [7]/ {7}? 

Difficult tasks 
1. <x>=4x-2         2-<x>=x-1           What is x? 
2. x?y=11x/y        z?7=200               What is z? 
3. x•y=(x-2y)/y    4•5=z•10              What is z? 
4. (x)=x2-x       (y) =(y-2)                 What is y?  

Table 1: Symbolic mathematical tasks  

Mielicki, Kacinik and Wiley (2017) introduced the types of tasks in Table 1 for school pupils. We 
modified them to suit our adult participants in the research. The tasks in the current study were 
designed to test the development of participants’ abstract thinking in a way that is intended not to 
depend on their previous academic experiences dealing with algebraic functions.  

Participants  
Sixty-two bilingual and monolingual first-year students of The Institute of Philology and Intercultural 
Communication of Kazan Federal University (Russia) aged 18 to 20 years participated in this 
experiment. They perceived this kind of symbolic problems as new because they were not familiar 
with the concept of binary algebraic operation.  

Participants were categorized as early bilinguals (N=29) and monolinguals (N=33). Bilinguals who 
have had a prolonged exposure to more than one language before the age of 7 are called early 
bilinguals. Prolonged exposure is when both parents in the family speak a language other than Russian 
or when the individual attended a school in which he or she did not study in Russian. We selected 
only early bilinguals to identify and test positive effects based on previous studies examining the 
cognitive benefits associated with early bilingualism (Bialystok, Craik, & Luk, 2012). Native 
speakers of Russian, who did not experience prolonged exposure to another language from early 
childhood, were considered monolinguals.  

The language history of the participants was compiled with the help of interviews. In the sample of 
bilingual respondents, 57% indicated Tatar as their dominant language. Other dominant languages 
were Russian (18%), Mari (7 %), Udmurt (6%), Bashkir (4%), Tajik (3%), Uzbek (2%), Kazakh 
(1%), Azerbaijani (1%), and Chinese (1%).  

Researchers have tried to measure dominance for many years. Some scientists use such criteria as 
pronunciation and vocabulary to evaluate a bilingual's languages. Others apply various tests such as 
naming images, recognizing words, executing a command, or translating sentences from one language 
to another. Based on these, the experts rate the dominant language of the participant. However, these 
different approaches are criticized for primitivism in the analysis of language knowledge and 
bilingual behavior, as the two languages are evaluated independently. We preferred an approach in 
which bilinguals themselves assess their level of bilingualism. We defined the dominant language as 
one in which the bilingual has reached an overall higher level of proficiency at a given age, and/or 
the language used more frequently, and in a wider range of domains. 
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Bilingual participants were asked to describe their level of proficiency in the dominant and the second 
language on a scale of 0 to 10 (0=no, 10=perfect) for “speech activity” and “understanding”. 
Bilinguals reported similar levels of proficiency in the dominant language (M=8.36; SD=1.48) and 
in the second language (M=8.49; SD=1.24) for “speech activity”. Similar levels were reported in the 
dominant (M=8.66; SD=1.34) and second languages (M=8.88; SD=1.03) for “understanding”. 

Russian was the dominant language of all the monolinguals. The average age of onset for second 
language acquisition was 7.13 (SD=1.53). Unlike bilinguals, monolinguals reported a higher level of 
proficiency in speaking Russian (M=9.61; SD=0.93), and a lower level in their second language 
(M=2.23; SD=1.16). Monolingual participants also described their level of understanding in Russian 
(M=9.65; SD=0.76) as higher than their second language (M=2.97; SD=1.57). 

Procedures and results 

Subsequently, the participants were offered to solve symbolic mathematical tasks (see Table 1): four 
types of symbolic math tasks of increasing complexity, consisting of four items. The solution to the 
first problem in each variant was given as an example. After completing each of the remaining three 
tasks, participants were informed whether they had answered correctly or incorrectly. Then the 
participants solved 12 more tasks of three levels of difficulty (easy, medium and difficult). The level 
of difficulty was determined by the number of new characters in the problem, as well as the number 
of operations required to solve the problem. 

The tasks were presented in increasing complexity, and all participants performed the same tasks in 
the same sequence. Tasks were shown on the computer screen; the participants recorded the answers 
on a special worksheet. They were asked to make as many transformations and calculations as 
possible mentally but also had a pencil and paper, which they could use if necessary. Participants 
performed the tasks at their own pace and received one point for each correct answer.  

Figure 1 shows the distribution of the number of correctly solved symbolic math tasks at each level 
of complexity by monolinguals and bilinguals. It signals minor differences between bilinguals and 
monolinguals in favor of the latter in solving easy and medium level problems. However, significant 
differences emerge in the other sense in solving symbolic math tasks of high complexity.  

 
Figure 1: Performance of bilinguals and monolinguals on symbolic math tasks 

A paired-samples t-test was conducted to determine the effect of bilingualism on solving symbolic 
math tasks. There was no significant difference between monolinguals (M=0.97; SD=0.18) and 
bilinguals in easier tasks (M=0.79; SD=0.41); t(60)=2, p=0.05. No evidence exists that bilingualism 
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has an effect on solving easy symbolic math tasks that require abstract reasoning. Similarly, there 
was no significant difference between monolinguals (M= 0.75; SD=0.44) and bilinguals in medium 
tasks (M=0.83; SD=0.38); t(60)=2, p=0.05. Thus, no evidence exists that bilingualism has an effect 
on solving medium symbolic math tasks. However, there was a significant difference between the 
group of monolinguals (M=0.1; SD=0.034) and the group of bilinguals in the solution of difficult 
math tasks (M=0.22; SD=0.041); t(60)=2, p=0.05. Hence, we concluded that bilingualism influences 
the ability to solve difficult symbolic math tasks requiring advanced abstract thinking.  

Bilinguals in our study performed better, particularly with the difficult problems. The advantages 
observed here illustrate that bilinguals may be faster to adapt to the demands of novel math tasks. 
Higher performance suggests that bilinguals may have some advantage in implementing the 
understanding of new symbolic rules in a new context. These results show that bilinguals can have 
superior skills in flexible selection and application of new procedures compared to monolinguals. 

Discussion 
Most prior research focuses on the problems encountered while learning mathematics and teaching 
mathematics to bilinguals and students whose home language is not the language of instruction. 
However, as the current study shows, bilingualism can facilitate the development of abstract thinking, 
which is consistent with Planas (2014). Since our sample was small, we cannot make global 
conclusions about the advantage of bilingualism in abstract reasoning. However, our research 
confirms to some extent the results obtained by Mielicki, Kacinik and Wiley (2017) for USA college 
students that bilinguals solve better difficult mathematical problems that require advanced abstract 
thinking. Our study found that bilingual students coped better with difficult abstract mathematical 
problems. This is how the synergetic effect of bilingualism and experience in abstract thinking 
manifested itself; it became obvious in those tasks that contained more ambiguity.  

It is believed that executive functioning plays a crucial role in solving problems and previous studies 
have shown the benefits of executive functioning among bilinguals (Adesope, & Ungerleider, 2010; 
Bialystok, Craik, & Luk, 2012). The advantage of bilinguals in the development of executive 
functions could also explain the results obtained in this experiment, because memory, inhibitory 
control, fluid intelligence, mental flexibility and selective attention are involved in the abstract 
reasoning process while solving abstract math tasks.  

One of the drawbacks of our investigation is the assumption that the monolingual and bilingual groups 
used in the study were truly comparable in every aspect, except for their linguistic skills. Paap and 
Greenberg (2013) expressed concern that some previously identified differences between 
monolinguals and bilinguals might actually be the result of differences in socioeconomic status 
between samples. Since socioeconomic status is known to be associated with different cognitive 
skills, it is important to ensure that monolingual and bilingual samples come from the same socio-
economic background and share other important family characteristics (e.g., parents' education). This 
fact should be noted, thus an alternative explanation based on the status differences among the 
bilingual and monolingual participants cannot be ruled out.  

Teachers and educators need to be aware of the strengths and weaknesses of bilingual students and 
teach them accordingly. The differences between bilinguals and monolinguals, if any, are specific to 
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a particular task and can be quite subtle. Further research can explain our experimental results, which 
enrich the growing research on the complex picture of the existing effects of the bilingual experience 
and the strategic intellectual resource of bilingualism when learning mathematics.  
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Teaching mathematics in an international class: Designing a path 
towards productive disposition 
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How can we design a teaching environment for an international class of refugees seizing its natural 
variety to encourage a path towards productive disposition? The article discusses and evaluates a 
potential answer by sketching a multiply implemented teaching approach to algebraic expressions 
and their manipulation via figurate numbers. The intended goal of that approach is twofold: On the 
one hand challenging pupils’ beliefs of mathematics and its teaching, and on the other hand providing 
a suitable substantial learning environment for the introduction to elementary algebra. As 
multicultural classrooms, where the language of education differs from the learners’ mother tongue, 
ask for special, language-sensitive teaching approaches, this approach considers the linguistic 
accessibility and tends to serve as a catalyst for further linguistic and mathematical development. 

Keywords: Elementary algebra, refugees, genetic principle, figurate numbers, heterogeneity. 

Introduction 
In Germany, IVKs (German abbreviation for International Preparation Class) have been established 
since 2015 to structure the education of foreign pupils who migrated to Germany. Most pupils are 
refugees from conflict and war zones all over the world, with medium to non-existent German 
language skills. In general, pupils can attend these classes for up to two years (depending on the state), 
and the goals of these classes can be very diverse: different school degrees, transition into the regular 
educational system or qualifying for the start of an apprenticeship. As in every class there is a natural 
diversity with respect to the pupils’ mathematical giftedness and abilities. However, this natural 
heterogeneity is intensified by a larger age spectrum (of at least 8 years) and previous experiences in 
the pupils’ various homelands and the conditions of their flight to Germany. 

Modelling strands of heterogeneity 

In the tradition of Wittmann’s view of mathematics education as a ‘design science’ (Wittmann, 1995), 
I identified, in cooperation with various experienced teachers, different strands of heterogeneity in a 
design research project with multiple implementation cycles (Sauerwein, 2020). A few of these 
(provisional) strands serve as a basic framework for the reasoning in the article to emphasise the 
crucial differences between teaching the IVK and regular classes: 

· Communicative strand: There is no common daily language - neither for informal 
communication nor for discussions in the classroom. Learning German as a foreign language 
thus is not only restricted to the classrooms: It encompasses the complete daily routine. The 
pupils’ knowledge of the German language is in-between the levels A1 and B2 (with respect 
to the CEFRL); some do not even cover A1. 

· Emotional strand: The linguistic problems are not separated from daily life. This can 
contribute to an overwhelming frustration of feeling inadequate in nearly every respect of 
everyday life.  Even prior to our project, we observed many pupils approaching mathematics 
with more courage than other subjects, where they remained passive or even missed lessons. 
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· Mathematical strand: The prior knowledge of mathematics is very individual and reaches 
from a rudimental number sense in in the number range 1–10 up to twelve years of 
mathematics education. Moreover, the primary focus in the pupils’ previous mathematical 
education seems to lie on the symbolic languages of arithmetic and algebra. 

· Cultural strand: Regular school attendance is not part of every culture. In some countries, the 
pupils are expected to contribute to their families’ income. Nevertheless, all pupils had a 
positive attitude towards school and were grateful for every help. However, for some pupils, 
a structured week with a time schedule and the learning commitments were new and resulted 
in an overextension. Rapid changes between gratitude and frustration were observable. 

· Institutional strand: The school system in Germany probably differs from the pupils’ 
experiences in their respective homelands. According to what some pupils tell me, teaching 
here is less authoritarian and contains more independent working phases; learning by heart is 
less dominating. This implies that lessons for these pupils are more demanding as they ask for 
creativity, self-initiative or mathematical discourse. 

Problematic consequences 

Although these strands are not explicitly addressed in class, they influence teaching in many subtle 
ways. For example, different beliefs of mathematics and its teaching seemed to appear in the IVK. 
These expressed themselves in the following observed misconceptions in practice: 

· In mathematics, there is only one correct solution and it’s either the teacher’s or the 
calculator’s job to decide. 

· Mathematics is a finished product and consists mainly of mimicking the teacher’s solutions 
in a formal way with no deeper insights or discussions (in class). 

This experience cannot certainly be generalised towards a statement about non-European school 
systems. These attitudes towards school in general and views on mathematics can prevent the pupils 
from building sustainable mathematical concepts. On top of that, they can cause challenges with 
respect to the integration into regular classes. 

Research question 

The description of different strands of heterogeneity does not imply that these could be addressed 
separately, as posed in Gorgorió and Planas (2001, p. 28): “It is very difficult to disentangle the social 
and cultural conflicts of a multiethnic mathematics classroom from the language issues.” 

As argued before, the above-mentioned intertwined strands influence the teaching. For simplicity we 
assume that they characterise the heterogeneity in the IVK. The context of an IVK is fundamentally 
different to bilingual classrooms (e.g., in Malta, Farrugia, 2017; in Catalonia-Spain, Planas & Setati, 
2009; in Germany Schüler-Meyer, 2017). In general, one cannot expect to have a common language. 
The broad research question from the beginning can be rephrased to: Can figurate numbers help to 
address the special situation within an IVK in a holistic way to stimulate a meaningful learning of 
elementary algebra? In the next section, I address the topic of figurate numbers by building partly on 
data and findings of my doctoral dissertation (Sauerwein, 2020).  
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Figurate numbers 
“If human actors invite the object to be a part of the discourse, objects can challenge the students 
to find a new language […]. This aspect is of special interest from a didactical point of view. 
Objects cannot only relieve students on the language level, but also challenge them. They can be 
‘supporters’ in the development of mathematical thinking and of a precise mathematical 
language.” (Fetzer & Tiedemann, 2015, p. 1392) 

Inspired by typical generalising approaches to algebra (e.g. Mason, 1996) we define a figurate number 
as a sequence of dot patterns including the corresponding integer sequence:  

 
Figure 1: "𝟑𝟑,𝟔𝟔,𝟗𝟗, … " 

As the definition is based on sequences and thus incorporating the (hidden) rule of construction, 
Figurate numbers demand naturally for a pursuit to find this rule. In keeping with Bruner’s (1966) 
three modes of representation of knowledge, enactive – iconic – symbolic, figurate numbers possess 
iconic and symbolic components. The iconic nature allows the pupils of the IVK to find linguistically 
more accessible common ground for mathematical discussions and development.  

Such workshop languages [or intermediate languages] which are characterised by a high vividness, 
situatedness and grammatical looseness, which are often supported by gestures and which may 
hardly be comprehensible to non-participants, will emerge inevitably from themselves and their 
communicative importance must be highly appreciated. (Winter, 1978, p. 13, my translation) 

It should be noted that, although the language is more accessible, it does not result in a cutback with 
respect to the richness of its mathematical content. Similarly, Moschkovich (1999) implicitly 
criticises some teaching practices which limit the pupils’ opportunities by the early introduction of 
compulsory mathematical vocabulary: 

“[…] [L]anguage learners can and do participate in discussions where they grapple with important 
mathematical content. […] But it is only possible to uncover the mathematical content in what 
students say if students have the opportunity to participate in a discussion and if this discussion is 
a mathematical one.” (Moschkovich, 1999, pp. 18-19) 

Practical perspective 

Each of the four implementations of the learning environment Figurate Numbers started with the dot 
pattern in Figure 1 which was easily continued by all pupils in an iconic way. In almost all cases – 
with one interesting exception mentioned below – the resulting dot pattern was a 3 ∙ 4-rectangle. 
Since not all pupils knew the word for rectangle, they used gestures to distinguish between columns 
and rows while saying a number, meaning the number of dots in that particular part of the dot pattern. 
In this way, they were eventually able to describe the pattern and its underlying rule of construction: 

- The next dot pattern consists of three horizontal rows with four dots each. 
- The next dot pattern consists of four of these columns. 
- One always adds the first dot pattern. 
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- The right dot pattern consists of the preceding two. 

The first three descriptions imply that the next dot pattern consists of 12 dots. From there on, many 
pupils continued the number sequences in a symbolic mode, thus identifying it with the multiples of 
3. Although this change of mode of representation seems to be economic, one loses some structure: 
The expressions 3 ∙ 4, 3 + 3 + 3 + 3 and 9 + 3 all yield 12, but each of them also encodes a certain 
perspective onto the iconic representation, namely how it is structured and consequently counted. 

What is the meaning of the fourth description? The pupil’s idea incorporates the triple Fibonacci-
Numbers. Cutting the dot pattern horizontally it is easily be seen that the pupil’s construction is the 
law of construction of the Fibonacci-Numbers 1, 1, 2, 3, 5, …. Pupils were confronted with the fact, 
that different views on the given data permitted different and equally legitimate solutions; while the 
multiples of three later offered an obvious description as a closed term the pupils discovered the 
essential truth that mathematical observation, if taken seriously, might lead to open ends which cannot 
be immediately tied up on the basis of available knowledge. Therefore, it is fair to say that this insight 
was achievable due to the different perspective on the innocent looking figurate number.  

Consider now the filling glass: 

 
Figure 2: "𝟔𝟔,𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏, … " 

The filling glass with its richer iconic structure allows more different approaches to counting. Pupils 
introduced the notion of “negative points” (the missing points in the lowest row) to arrive at “recipes” 
like 4 ∙ 4 − 2 , they observed symmetry (arriving at 2 ∙ (2 ∙ 3 + 1)). To communicate these ideas the 
pupils used gestures and inscriptions into the dot patterns, thus enriching them – as diagrams - with a 
basis for socially accepted reasoning (in the sense of Dörfler, 2006). All these views are potential 
starting points for generalisations. When changing the iconic pattern is allowed too (for instance 
changing the position of the two points to a position below the first two columns), more terms can be 
found, and the observation of equivalence can be generalised to consider terms as objects for further 
studies and in this context understanding equality among terms on a level beyond syntactical limits. 

When in a later state, pupils manipulate terms according to algebraic rules they can, if necessary, find 
in adapted iconic representations and the study of their geometric transformability into each other a 
reliable basis for their mathematical discourse. 

Meta perspective 

In the beginning of each implementation of our project we were met with the pupils’ objection that 
these dot patterns were nothing but a puzzle for children and no mathematics at all. This pupils’ 
prejudice, which can well be understood from the mathematical and institutional strands explained 
above, in the course of our project changed into a qualified appreciation of the subject.   

Presenting patterns of small dots (i.e. the iconic representation of the first few elements of a figurate 
number) proved to offer several possibilities and – referring to our intentions – advantages, which are 
closely related to their “simplicity”:  
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· Each pupil can count the dots; hence the figurate numbers create a productive entry for 
different levels. Since in our project every pupil had a certain fluency in counting activities 
and basic arithmetic (even if limited to a certain range of numbers) the low-threshold 
accessibility of our project could be taken for granted.  

· No tools such as calculators or other digitals tools are needed. Only a piece of paper, a pencil 
and a rubber are needed to gain access to the dot patterns. Taking up on Mason’s (1996) 
distinction of looking at vs. looking through, the plainness combined with a thorough 
investigation offers the chance to look through the particular pattern and grasp the general 
rule. Thus, the picture becomes literally a “diagram” (Dörfler, 2006) and a tool for new 
insights. 

· All but one pattern which we used in our design project corresponded to linear counting 
expressions. From a mathematical viewpoint these expressions are rather elementary. As this 
form of representation is new to the pupils, they have to accept and discover the iconic 
representations as worthwhile objects of further studies and later the possibility to switch 
between different representations, for example between the dot pattern and the number 
(maybe written as sum or product) as a tool to prove the validity of an algebraic argument. 

This outlined simplicity yields a situation where pupils can express their own ideas even though their 
skills of the German language would not allow them to do so. The stimulated discussions between 
the pupils were making use of a certain intermediate language (Winter, 1978): The iconic 
representation becomes the basis for discussion enriched with gestures and rudimental symbolic 
notations. Winter emphasises the necessity of this intermediate language as a foundation for the 
symbolic language. Thus, he argues, one should not rush through this stage. 

Epistemological perspective  

An historical and epistemological analysis of Kvasz (2008) suggests that figurate numbers were a 
crucial step for the development of the symbolic language of algebra. Kvasz points out that there was 
no direct development from arithmetic to algebra as Frege proposed (1891). Instead, there were two 
instances of a certain pattern of change which he calls re-coding: 

 
Figure 3: The Re-coding Arithmetic – Geometry – Algebra 

Considering arithmetic and algebra as symbolic languages and geometry as an iconic language, re-
coding can simplistically be seen as change of the mode of representation. The first re-coding is 
strongly related to the Pythagoreans who invented figurate numbers by using ψῆφοι (calculi). A first 
detailed account on figurate numbers can be found in Nikomachos’ Introduction to Arithmetic 
(D’Ooge, 1926) where he introduces polygonal and polyhedral numbers apart from the two 
fundamental sequences of quadratic and oblong numbers (Figure 4). By the inscribed gnomons it is 

Arithmetic

Geometry

Algebra
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easily possible to continue each sequence. The second re-coding is the symbolisation of the notion of 
a variable which was only implicitly used as a line segment of indefinite length, thus freeing the 
variable from three-dimensional space. The analysis of Kvasz and his view on the language of 
mathematics with its different stratifications where each layer has its own potentials (or cognitive 
aspects), yield the necessity to widen the definition of algebra as calculating with letters – it is more 
than just arithmetic with letters. The introduction of the symbol notation is only the first step to a new 
symbolic language (Kvasz, 2012). It also involves new ways of operating with the newly introduced 
symbols. Therefore, one can conclude that typical mathematical activities such as generalising, 
conjecturing, proving, etc. are part of the use of the language of algebra. 

 
Figure 4: The quadratic and the oblong numbers 

Communicative and linguistic connotations of figurate numbers 

The notion of language occurs in different contexts within this report. These contexts are strongly 
related to different aspects of figurate numbers. On the one hand, there is language as a medium of 
communication. According to the communicative strand this function influences all teaching in the 
IVK. In this sense of language, figurate numbers serve as a tool for discussion of pupils without a 
common language. On the other hand, they act as a vehicle in a process of conceptualisation, that is, 
the conceptualisation of the iconic manipulations which lead to language of elementary integer 
algebra in the sense of Kvasz (2008).  

In contrast to the perspective of Kvasz which describes the development of mathematics, the 
individual process of learning algebra is not linear and straightforward. From a didactical point of 
view, the pattern of re-coding should be used in both ways. Consequently, figurate numbers become 
a mediating tool between the languages. In particular, the interplay between the iconic and symbolic 
components of a figurate number turned out to be fruitful. Figurate numbers opened a context where 
pupils could conjecture, generalise, prove, discuss, etc. 

Résumé 
The aforementioned examples from practice showed that figurate numbers can address the special 
situation in an IVK by seizing the mathematical and communicative strands: The appearance of 
different counting strategies led to different counting expressions for the quantity of dots and 
ultimately to the quest to prove equivalence of different solutions on a legitimate and more concise 
basis than merely counting dots in examples. The iconic form of the figurate numbers served as a 
sustainable and workable representation compensating the lack of a common language in the class. 

Furthermore, the other strands of heterogeneity were confronted: The pupils in the IVK were not 
familiar with the possibility that there could exist various correct solutions and that mathematics could 
consist of more than numbers and symbols. Thus, the opportunity arose to tackle the mentioned 
misconceptions. Moreover, the correctness of a solution was not judged by the teacher; it followed 
from a consistent argument based on different perspectives of the structure of figurate numbers. It 
could be observed that the sketched approach to figurate numbers was not only addressing the strands 
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of heterogeneity and some of their consequences but also contributing to the ambitious goal of the 
pupils’ empowerment. 

The strands of heterogeneity cannot be treated separately as they are strongly intertwined. 
Nevertheless, the initially observed positive attitude within the IVK towards mathematics seemed to 
be an appropriate starting point: This inclination of the pupils encouraged me to develop it into a 
“productive disposition” (NRC, 2001, p. 116).  

The figurate numbers here act as a generic example for the context of elementary algebra. It could be 
worthwhile looking for other subject matters with similar potential with respect to mathematical and 
linguistic development in this social and cultural context of an international class for refugees. 
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Although bilingual mathematical learning opportunities have often been requested for multilingual 
students, little quantitative evidence has been provided that activating two languages has measurable 
effects on learning gains. This study uses data from a bilingual teaching intervention to investigate 
which factors coincide most with the mathematical learning gains in conceptual understanding of 
fractions. Students’ individual and family characteristics have been assessed and participation and 
language use have been coded in ~95h videotaped teaching-learning processes. A regression analysis 
shows that students’ learning gains can best be explained by students’ German language proficiency 
and their use of Turkish and mixed mode, while talking time did not coincide with learning gains. 
Thus, the connection of languages seems to be even more important for mathematical learning gains 
than the isolated use of home languages or active participation. 

Keywords: Multilingual math learning, teaching intervention, supply-use-model, learning gains. 

Research gap on factors for effective multilingual mathematics learning  
Many qualitative case studies illustrate benefits of activating multiple languages in mathematics 
classrooms (Planas, 2014). Multilingual resources have been shown to support mathematics learning 
and engaging students in discursive practices of problem solving, when drawing on multilingual 
everyday experiences (Domínguez, 2011). In fact, multilingual resources can support problem 
solving processes in general (Wagner, Redder, Kuzu, & Prediger, 2018), especially when students 
are highly proficient in their languages (Clarkson, 2006). Furthermore, the activation or 
acknowledgement of students’ multiple languages can have a positive effect on students’ agency 
(Norén, 2015). Summing up, multiple positive effects have been qualitatively identified. However, 
little quantitative evidence could so far be provided that bilingual interventions have measurable 
effects on the mathematical learning gains (Reljić, Ferring, & Martin, 2015).  

In order to close this research gap on quantitative evidence, the project MuM-Multi conducted a 
randomized control trial with Turkish-German seventh graders comparing a bilingual and a 
monolingual German intervention aiming at conceptual understanding of fractions in small group 
teaching (Schüler-Meyer, Prediger, Kuzu, Wessel, & Redder, 2019a). The analysis showed that on 
average, mathematical learning gains in the bilingual intervention were comparable to the 
corresponding monolingual intervention. The differential analysis of learning gains shows that they 
were significantly higher for the students with high Turkish language proficiency (ANOVA: F(group x 

time) = 4.49, p < .01, h² = .16). Additionally, a strong variance in learning gains was found for the 
different small groups (for which Cohens d varied between -0.12 and 2.22). A first hypothesis was 
that these differences might be traced back to different intensity in Turkish modes. 
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Hence, this study systematically investigates the factors contributing to the effective use of multiple 
languages in mathematics classrooms. For this, a video analysis was conducted to capture students’ 
language use (Schüler-Meyer, Prediger, Wagner, & Weinert, 2019b) with this research question:  

Which factors in individual and family characteristics and students’ language use  
significantly coincide with students’ learning gains in the bilingual teaching intervention?  

This research is framed by the supply-use-model (Brühwiler & Blatchford, 2011; Helmke, 2009), 
which is outlined in the next section, before the methods of the study and its results are presented.  

Research framework: Supply-use-model for quantitatively capturing  
potentially relevant factors for bilingual interventions 
The supply-use model (Brühwiler & Blatchford, 2011; Helmke, 2009) has often proven to be 
powerful in quantitative classroom research for modelling the factors that influence whether a 
supplied learning opportunity is really used to its full potential by students in a classroom and how 
this impacts the learning outcome. The assumption is that the relations between supply, use and 
outcomes (learning gains) can be influenced by context factors or students’ individual or family 
characteristics. Figure 1 shows the general model and its adaptation for the current research (justified 
in detail in Schüler-Meyer et al., 2019b). 

 
Figure 1: Supply-Use-Model adapted from Helmke (2009) by Schüler-Meyer et al. (2019b) 

(factors held constant are colored in light grey, varying factors in dark grey) 

Following the research question, we investigate the learning processes of multilingual seventh graders 
with equal conditions in the language context (cf. Schüler-Meyer et al., 2019a): All students stem 
from multilingual Turkish-German families (all factors held constant are colored in light grey in 
Figure 1), their shared language context is shaped by only monolingual math classroom experiences 
and the limited prestige of their home language Turkish. All small groups are taught by teachers 
which share many characteristics and preparations. They follow the same bilingual intervention with 
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equal design principles and teaching materials, thus the supplied learning opportunities are held 
constant in the bilingual intervention on fractions.  

The research question focuses on the individual use of supplied bilingual learning opportunities (in 
terms of percentage of individual talking time and language use) and students’ characteristics. 
‘Percentage of individual talking time’ was chosen as a use factor because active participation has 
often been qualitatively described as influencing learning gains (Gresalfi, Martin, Hand, & Greeno, 
2009). The second use factor concerns individual language use: As all prior math experience was 
monolingual German, it was crucial to control whether students really use both of their languages. 
Like for most multilinguals, the bilingual modes are expected to be characterizable by mixed modes 
(e.g. various forms of Code-switching between German and Turkish), also for the second- and third-
generation Turkish immigrant students (Auer, 2010).  

Methodology of the study in the supply-use-model 
Design of the bilingual teaching intervention  

The investigated bilingual Turkish-German teaching intervention was designed to foster the 
conceptual understanding of fractions, which encompasses the part-of-whole concept, equivalence, 
and order of fractions. The intervention consists of five 90-minute weekly sessions and builds on 
three principles for fostering multilingual learning (cf. Schüler-Meyer et al., 2019a): (1) Providing 
rich contexts and problem tasks for language production (Domínguez, 2011); (2) macro-scaf–folding, 
which included encouraging the use of Turkish with bilingual teaching material, bilingual teaching 
practices (e.g. revoicing), explicitly addressing and developing the Turkish and German academic 
language, and (3) systematically relating registers (Prediger, Clarkson, & Bose, 2016). 

Design of the overarching project MuM-Multi and video corpus for the current study 

The randomized control trial (Schüler-Meyer et al., 2019a) was conducted in a pre-post-follow-up 
design with conceptual understanding of fractions as dependent variable. The family and individual 
characteristics mentioned in Fig. 1 served as control variables and the contrast between mono- and 
bilingual intervention served as the independent variable. The groups in the bilingual intervention 
were taught by trained Turkish-German speaking preservice teachers in small groups of 2-5 students, 
for 5 sessions of 90 minutes. This study focuses only on the bilingual intervention, for this 13 x 90 
minutes video material of the third session was coded from 13 small groups. The third session in the 
middle of the intervention was chosen because teachers had developed their routines, and the students 
had a chance to overcome first barriers of using Turkish in the classroom. 

Measures for data collection for the individual and family characteristics 

At three measurement time points, several measures were administered:  

· Measures for students’ conceptual understanding of fractions. The test has 28 items to test for the 
understanding of the part-of-whole concept, equivalence, and order of fractions. The test has a 
satisfactory internal consistency with Cronbach’s a=.83 (28 Items, N=1120).  

· Measures for students’ socioeconomic status and general cognitive abilities. Students’ socio-
economic status was measured with the economic and reliable book scale (r=0.80). The students’ 
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fluid intelligence was measured using an adapted matrix test BEFKI 7 (with Cronbach’s a=.763 
in the initial full sample of N=1124).  

· Measures for German and Turkish language proficiency. Students’ language proficiencies were 
measured by C-tests, which provide an economic and valid measure based on cloze texts. The C-
tests are highly reliable: the Turkish C-Test with a=.874 (N=254) and the German C-Test with 
a=.774 (N=1122). Students’ German academic language proficiency is measured with a test 
which assesses the use of nominalizations and other academic language features (BiSpra). 

Initial sample and sample of the bilingual teaching intervention  

The initial full sample encompasses N=1124 seventh-grade students from twelve secondary schools 
(48% female and 52% male). From the 303 Turkish speaking students, a subsample of 254 students 
self-selected themselves by accepting to work on the Turkish C-test (Table 1). For the intervention, 
students with a low conceptual understanding of fractions were selected (Cut-off of 28 points in the 
fraction test). This group consisted of N=128 students who were then stratified along the control 
variables and randomly assigned to the intervention groups. The sample of this study consisted of 
n=35 students who participated in the third sessions of the bilingual teaching intervention on fractions. 
Due to missing follow-up data, the statistical analysis has a sample of n=33 students.  

 Initial sample 
(N=1124) 

Bilingual subsample  
(N=254) 

Sample of this 
study (n=35) 

Family characteristics     

Percentage of German-Turkish speaking students  27% 100% 100% 

Socio-economic status (low, medium, high SES)  35%, 33%, 31% 38%, 30%, 31% 40%, 20%, 40% 

Individual student characteristics    

Mathematics achievement by fraction pre-test, m(SD)  10.31 (4.73) 9.81 (4.69) 8.03 (2.70) 

General cognitive ability by BEFKI, m(SD) 7.94 (3.41) 7.25 (3.23) 7.49 (2.72) 

Turkish language proficiency by C-Test, m(SD)  23.95 (13.17) 25.97 (13.07) 

German language proficiency by C-Test, m(SD) 35.27 (9.17) 33.18 (8.34) 32.77 (5.52) 

German academic language prof. by BiSpra-Test, m(SD) 19.06 (5.34) 17.03 (4.92) 17.20 (4.35) 

Age by self-report, m (SD) 12.76 (0.70) 12.79 (0.78) 12.77 (0.65) 

Table 1: Descriptive data for the full sample, the bilingual subsample, and the sample of this study 

Methods of data analysis I: Coding the video corpus of the third intervention sessions 

All utterances of the students (S1-S4) and teachers (T) were categorized turn-wise with respect to (a) 
speaker and starting / ending time of the utterance, and (b) language use (Turkish, German, mixed 
mode). Utterances with one switch from one language to the other were splitted and each part cate-
gorized. Utterances with borrowings or multiple code-switchings were coded as mixed mode. This 
categorization captures lexical aspects of language, while grammatical mixes are left out. The 
duration of the utterances is used for operationalizing the two use factors. 

· Percentages of talking time: The operationalization of participation has to account for the fact 
that students in differently sized groups have different allotted talking times. Two students and a 
teacher theoretically have 30 min. of talking time each, while four students would only have 18 
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min. Hence, the allotted talking time is the theoretical talking time per group member with x group 
members, hence 90/x. The individual percentages of talking time is the share of actual talking 
time from the allotted talking time (which can be bigger than 100%). Students on average 
participated 90,45% of the allotted talking time. The averages in the groups are between 72% and 
110%, and the individual participation varies between 20% and 210%. 

· Modes of language use: The individual language use is operationalized as the share of Turkish, 
German and mixed modes from the total individual talking time. Table 2 shows the descriptive 
data for the modes of language use.  

Methods of data analysis II: Hypotheses and model for the statistical data analysis  

For statistically investigating the research question, the following hypotheses were validated by 
correlations: The learning gains of the bilingual intervention is connected to H1 the percentage of 
talking time; H2 the Turkish language use; H3 the language proficiency in Turkish and German. For 
comparing the influences of factors, a regression analysis was conducted with the software R 
(https://cran.r-project.org/) for validating Hypothesis H4: Among the different factors, some exist 
which coincide significantly with the learning gains. If a Shapiro-Wilk test confirms the normal 
distribution, Pearson’s Product-moment correlations r were determined, if not, Kendall’s Tau τ was 
used. To rule out an effect of the groups on the investigated variables, the intra class correlation ICC 
was determined and tested for significance with boot-strapping.  

Results 
Descriptive findings for the modes of language use 

Table 2 shows that both, teachers and students, participated in bilingual modes, i.e. in a mixed mode 
or in Turkish. On average, 52% of the overall talk time was Turkish or mixed (72% teachers, 30% 
students). Hence, there is a high degree of productive and receptive use of Turkish. Furthermore, a 
large percentage of the talk time is in mixed mode, so that both teachers and students seem to use 
every-day bilingual practices of code-switching and -mixing. However, individually, there are 
substantial differences in the language use. The group averages between teachers and students also 
vary strongly. This suggests that individual preferences of language use might in part be a result of 
group-specific practices of activating multiple languages. Nevertheless, in a teaching intervention in 
which teachers consequently invest in the use of Turkish and mixed language, these numbers show 
that students can nevertheless be engaged in bilingual learning processes, compensating the low 
prestige of Turkish and the previous monolingual education.  
 German mode Mixed mode Turkish mode 
Teachers’ average use of languages 27.5% 34.6% 37.4% 
Students’ average language use (all groups)  68.9% 13.6% 16.2% 
Teachers’ span of language use (min. – max. of the groups)  9.2% – 53.5% 15.7% – 56.4% 12.7% – 72.0% 
Students’ span of group average (min. –max. of the groups) 51.3% – 85.2% 4.9% – 26.5% 2.5% – 36.1% 
Students’ span of language use (min. – max. of all students)  16.1% – 96.8% 0% – 32.3% 1.5% – 56.1% 

Table 2: Distribution of modes of language use for teachers and students (n=37 students) 
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Findings of influences of different factors 

For investigating Hypotheses H1–H3, correlations were determined between the learning gains 
(difference between pre-test and follow-up-test) and the potential factors: The correlation with the 
German language proficiency is τ = 0.38, with the Turkish and mixed modes in language use it is τ = 
0.32, these are two relatively high correlations. For the language use of only Turkish modes, the 
correlation is low with τ = 0.14. No correlation exists with the percentage of individual talking time 
where τ = -0.03. Thus, the hypothesis on relevance of active participation must be refuted.  

To investigate the joint effects of the different factors on the learning gains (H4), a regression analysis 
with a stepwise model selection was performed (Table 3). As the learning gains of the small groups 
provide a non-significant ICC-value of 0.29 (p > .05), a multiple linear regression model is adequate.  

 Regression  
coefficient b 

Standard  
error (b) 

Standardized re-
gression coefficient  

Model 1: All variables (R2 = 0.35, R2(korr.) = 0.14, F(7,22) = 1.68, p > .05) 
Intercept –9.45 6.2  
German language proficiency (C-Test) 0.32 0.17 0.40 
Fluid intelligence (Befki) –0.0007 0.33 –0.0004 
German academic language proficiency (BiSpra)  –0.05 0.26 –0.05 
Turkish language proficiency (C-Test) 0.034 0.09 0.10 
Socio-economic Status (Book index) 0.79 0.82 0.20 
Use of Turkish and mixed mode  5.25 4.88 0.23 
Percentages of talking time –0.91 1.91 –0.092 

Model 2: After systematic model reduction (R2 = 0.35, R2(korr.) = 0.30, F(2,30) = 7.973, p < .01) 
Intercept –9.90 * 4.17  
German language proficiency (C-Test) 0.34 * 0.13 0.41 
Use of Turkish and mixed mode 6.90 3.64 0.30 

Model 3: Only German language proficiency as variable (R2 = 0.27, R2(korr.) = 0.25, F(1,31) = 11.39, p < .01) 
Intercept –10.63 * 4.32  
Proficiency in German 0.44 ** 0.13 0.52 

Model 4: Only Turkish and mixed modes as variable (R2 = 0.20, R2(korr.) = 0.18, F(1,31) = 7.873, p < .01) 
Intercept 0.28 1.45  
Use of Turkish and mixed mode 10.33** 3.68 0.45 

Table 3: Results of the regression analysis with stepwise model selection 

Model 1 with all variables, while being complete, is not significant. A stepwise model selection 
results in a significant Model 2 (F(2,30)=7.973, p < .01), which includes German language 
proficiency as significant factor for learning gains (p < .05). In comparison, Model 3 and 4 are models 
with single variables, namely German language proficiency and the use of Turkish and mixed mode, 
respectively. Overall, Model 2 has the best model accuracy with R2(korr)=0.30. This model shows 
that a higher German language proficiency leads to higher learning gains: One additional point in the 
C-test leads to higher learning gains of 0.34. Also, the use of Turkish and mixed language is a relevant 
factor: 10% more use of Turkish and mixed language leads to 0.69 more points in the learning gains.  

In sum, the learning gains in the bilingual teaching intervention coincide with the German language 
proficiency, but not the Turkish language proficiency or the German academic register. This student 
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characteristic is combined with the use factor ‘use of Turkish and mixed mode’, which also shows a 
strong connection to learning gains. 

Summary and discussion  
This study contributes to the research discourse on multilingual mathematics learning as follows:  

· Within usual language policies of monolingualism, the percentage of the mixed-language mode 
used by teachers and students is remarkable (Norén, 2015). By implementing certain principles 
for activating multiple languages, multilingual students can be fostered to activate their multiple 
languages in mathematical teaching learning situations, despite a language context which 
devalues the immigrant language Turkish.  

· The finding that the share of Turkish and mixed language use in students’ utterances best explains 
the learning gains in the bilingual teaching intervention (together with German language 
proficiency) is a quantitative evidence for many qualitative results which show how 
multilinguality can be a resource in learning processes (Planas, 2014; Norén, 2015).  

· The students’ percentage of individual talking time is not correlated to the learning gains. This 
confirms skepticism on too simple conceptualizations of active participation as talking time. 

· In light of studies illustrating how conceptual tasks involving problem solving are especially 
accessible to multilingual students by means of certain discursive practices like discussing (e.g. 
Dominguez, 2011), the finding that students’ German language proficiency significantly 
coincides with the growth of conceptual understandings may hint at a more complex relation 
between conceptual tasks and their utilization in discursive practices, and the languages used.   

Interestingly, not the share of Turkish from an individual student’s talk time, but the share of Turkish 
and mixed mode together have the second strongest influence on the long term achievement (Table 
3). This is in line with Auer (2011) who identifies the mixed mode as the norm for Turkish-German 
multilinguals, and not the “pure” use of Turkish. This suggests that in bilingual classrooms the 
multilingual register and mixed mode are central pillars of the classroom discourse. Furthermore, it 
may suggest that a mixed mode allows deeper conceptual understanding (Wagner et al., 2018). Hence, 
in spite of its methodological limitations, this study confirms research which hints at the relevance of 
activating multiple languages in learning processes.  
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With English as the language of the vast majority of highly regarded international journals in 
Didactics of Mathematics (research in mathematics education), authors who do not have English as 
their dominant language face the challenge of producing a text in a target language different from 
their working language (source language). The paper presents first results of a survey on how a 
number of highly recognised international journals in Didactics of Mathematics handle this issue and 
identifies some of the related challenges. Some challenges are linked to specific customs and norms 
related to the generation and credentialing of new knowledge within communities of research 
practice. Others are connected to semantic and pragmatic characteristics of transforming thoughts 
and texts from a source to a target language. The paper also provides insight into types of support 
offered by major journals to English non-dominant language authors. 

Keywords: Translation, heteroglossia, centripetal versus centrifugal forces, journal survey. 

Coming to the issue 

This paper started in the experience of the author when publishing in journals of Didactics of 
Mathematics where the English language was obligatory. As I am not a native nor dominant1 English 
speaking author, I had to express my ideas in English, which I had developed in a German speaking 
scientific community. My way out of this dilemma was asking a friend (Vince Geiger) to help me 
with transforming my texts from German English to Australian English. After some experiences with 
this simple arrangement, we came to reflect on this practice – what ended up in a presentation at a 
conference and later in a journal publication (see Geiger & Straesser, 2015). This publication was 
very well received and encouraged us to continue work on publishing about the issue of English non 
dominant language (EndL) authors in scientific journals of Didactics of Mathematics (see Geiger & 
Straesser 2017; Geiger, Margolinas, & Sträßer, 2018). In this paper I aim to progress this line of 
research inquiry by examining the ways in which major journals in mathematics education provide 
support for non-dominant English language authors. 

Helpful concepts and ideas 

In addressing the issue of the challenges faced by EndL authors when attempting to publish in major 
international journals in mathematics education, two major issues stand out: the transformation from 
a source language into a target language, and heteroglossic considerations. Publishing as an English 

                                                 
1 The word “dominant” is used deliberately, because it best covers the situation to be analysed. The Merriam-Webster 
Dictionary offers two major explanations for “dominant”: “more important, powerful, or successful than most or all 
others” or “most common”. As can be seen for some colleagues, the dominant language is not always the language with 
which a person has grown up. “Dominant” also captures the power relation inherent in the dominance of a language. 
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non dominant language author in scientific journals inevitably invokes the challenge of transforming 
one's own dominant language, the source language, into English as the dominant language of 
international scientific discourse and of majors journals, which, at least in Didactics of Mathematics, 
is into the target language English – see section 3 for typical pitfalls as identified in the 
German/French/English context. 

There are also challenges related to issues within a single language – normally discussed inside 
linguistics under the concept of heteroglossia. Heteroglossia was coined as a concept by translators 
of Bakhtin and provides a perspective relevant to learning a language different from a dominant 
language. The concept refers to the diverse, multiple layers of meaning and understanding embedded 
within speech and speech types (Barwell, 2014). In this respect, Busch (2014) distinguishes “between 
… the multiplicity of (social-ideological) speech types or discourses, … the diversity of (individual) 
voices, and [the] linguistic variation or the diversity of languages”, in distinguishing between 
multidiscursivity, multivoicedness and linguistic diversity (see Geiger & Straesser, 2015, p. 37). In 
particular, Bakhtin’s concepts of “centripetal” and “centrifugal” forces account for the tension that 
exists between a variety of languages or language types co-existing in communication within one 
language (Barwell, 2014). Centripetal forces place pressure on speakers or authors to adopt a single 
standardised linguistic code - an “official” language that must be adopted to gain full acceptance into 
a professional community or other social system. Working against this influence are centrifugal forces 
that push the language used by speakers and authors towards more diverse expression. Centrifugal 
forces arise because of differences between people, due to multivoicedness, and the multidiscursivity 
of linguistic diversity associated with geography, culture or membership of specific social groups. 
Such forces are seen at work within mathematics education through the diversity of its focuses and 
endeavours.  

Challenges and pitfalls 

This section can be read as a summary of a number of types of challenges identified in previous 
research and draws primarily on work within English, German and French language contexts. 

The question of the name of the discipline 

At least for researchers from French or German speaking communities, translating into English first 
starts with a choice of an adequate name of the researcher's “home discipline”. Is it Didactique des 
Mathématiques, Mathematikdidaktik or … (Research in) Mathematics Education – as expected by 
anglophone communities? A loophole to this dilemma may be the rarely used Science of Mathematics 
Education/Sciences de l'Éducation Mathématique / Wissenschaft vom Mathematik-unterricht. 
However, this solution is a marker of a major problem. Different language-based communities of 
practice of a discipline have chosen to use names for their research activity, now well established and 
deeply rooted historically, that carry “baggage” when used in other languages. From the European 
perspective, Didactique/Didaktik, for example, has wide acceptance because of the famous Didactica 
Magna by Comenius (1896/1907), often cited as foundational publication from the early days of the 
discipline. However, for the anglophone researcher Didactique des Mathématiques/ 
Mathematikdidaktik, has an undesirable association with “didactic” approaches to teaching and 
learning (e.g. teacher directed modes of instruction), while Mathematics Education for the French 
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and German speaking researcher is too wide and also covers the day-to-day practice in school, and 
does not focus on research. 

Shared and non-shared references and respective theoretical frames 

When developing an annotated translation of the English language article by Geiger & Straesser 
(2015) into French, we became aware of another major difficulty of EndL authors. Research papers 
across the disciplines must demonstrate that they take into account existing research on the topic at 
hand and that they provide a contribution to new knowledge. Translating a paper into another 
language, however, usually requires additional work because an initial publication in one language 
tends to have extensive references to research originating from the source language and the tradition 
within a (national) discipline. Often these lists include few, if any, references from the target language 
– this holds true even for journals with an international reach and readership, for example, Recherches 
en Didactique des Mathématiques (RDM) or Educational Studies in Mathematics (ESM). 
Unsurprisingly, reviewers tend to look for references in the dominant language of the journal, which 
for the author/translator may imply a longer search for appropriate papers to be referenced. In the 
worst-case scenario, this requires a literature search from scratch to have the basic seminal papers of 
the target language cited. This shift from papers in one language group to another within mathematics 
education can also require a revised reflection on the results and the re-writing of the 
results/conclusion section(s) in order to situate findings in a different theoretical landscape. 

Type of ‘acceptable’ research reports 

Communities of research practice do not only have sets of seminal reference points but often a very 
clear perspective on how to report on research activities. This is especially true for US-American 
research in mathematics education with an accepted structure around introduction, methodology, 
results, discussion and conclusion (Geiger & Straesser, 2015, p. 36). Such a tendency towards 
prescriptiveness can also be seen in other mathematics education research communities. For example, 
it is only for some five years that the International Group for the Psychology of Mathematics 
Education (PME) has accepted not only “Reports of empirical studies”, but also “Theoretical and 
philosophical essays”. For researchers from the French community, the dominant reporting structure 
for journals publishing in English, typified by PME, is highly problematic for reports on empirical 
investigations. For the French researcher, the expected structure requires a description of the 
theoretical framework that includes an extensive introduction to situate and justify the investigation 
and the precise methodological choices (the so-called a priori analysis). Further, the PME distinction 
of results and conclusions hinders an integrated presentation of empirical and often epistemological 
facets of a research, which would be common in a publication in French. There are also difficulties 
for German speaking researchers who adhere to the 'German' approach to Didactics of Mathematics 
called Stoffdidaktik when trying to follow the traditional PME structure (for this approach see 
Straesser, 2014 or Hußmann et al. 2016). The focus of research according to Stoffdidaktik is on 
disciplinary mathematics and so scientific progress is often recognised through identifying possible 
approaches to a specific mathematical topic (i.e. obtained with mathematical, not primarily empirical 
analysis) and will seldom fit with the definition of empirical investigations prioritised in empirical 
English language publications.  
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Semantic differences in scientific debates in different languages 

Translating from a source language to a target language often implies the challenge of “false friends”, 
i.e. the fact that using a word from the source language in the target language produces incorrect, if 
not misleading associations. Using the French word (and in French didactics: theoretical concept, see 
Brousseau 1997, p. 56f and p. 214) milieu in English will hide the theoretical role of milieu in the 
French Théorie de Situation (TDS), where the concept also includes material aspects of an 
environment, whereas in English, milieu is only designating the social and cultural environment, not 
its material aspects. As a consequence and from the point of view of semantics, milieu has a broader 
sense in French than in English and so should not be used for a translation from French into English 
without qualification. If authors, especially those drawing from the French TSD, do not change the 
term when publishing in English and continue to use milieu, they widen the signification of the word 
in English. Thus, in theoretical terms, they exercise a centrifugal force in the sense of Bakhtin. If 
authors accept the difficulty of Anglo-phone researchers with the narrow understanding of milieu and 
– in contrast to its use in the TSD – only apply it in the narrow, dominant sense of social milieu, they 
surrender to the centripetal forces of the English language community. 

Another challenge may be the absence of two different words from the source language in the target 
language. Geiger et al. (2018, p. 36f), discusses this case with the example of an adequate translation 
of the concepts of savoir and connaissance from French into English. The terminological problems 
(already existing) in French are exacerbated by the complexity associated with finding an appropriate 
word in English. The English language does not have the same depth, the granularity for the semantic 
field, for the term knowledge; this limit in vocabulary implies different solutions for the translation 
of the two French nouns connaissance and savoir, for example, to use the noun knowing for 
connaissance and reserve knowledge for savoir. Given these difficulties, an author would first require 
a very clear idea about the differences between these two terms within the Theory of Didactical 
Situation (TSD) and would then have to find a way to describe and explain this difference in English. 
By linking connaissance and situation on one hand and institution and savoir on the other (see 
Margolinas, 2014), a linguistic solution may be possible when attempting to communicate with 
English as dominant language speakers. Adding two adjectives to differentiate the only available 
noun knowledge instead of creating one or two new noun(s) has been used in a course about 
Brousseau’s work in English commissioned by ICME – with Margolinas and Bessot introducing the 
terms situational knowledge and institutional knowledge to deal with this situation. 

The situation can be even worse for a translation. What if there is no word in the target language that 
can convey the meaning of an expression in the source language? In Didactics of Mathematics, the 
translation of Bildung from German into English is simply not possible. While there is a widespread 
debate in Germany of the relationship of Bildung to mathematics education, a number of publications 
on the topic (e.g., Winter, 1975) and a special topic study group on Bildung in the German research 
association Gesellschaft für Didaktik der Mathematik (GDM), this activity has not produced an 
adequate translation of the term Bildung in either English or French. An attempt to translate texts that 
refer to Bildung and its ramifications for mathematics education in German schools, would need an 
extensive description of the cultural history of the concept Bildung, which itself would only be a faint 
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echo of discussions in the pedagogical and didactical debate in Germany after world-war II (for the 
respective seminal book in pedagogy see Klafki 1985). 

How journals in Didactics of Mathematics handle the issue – a survey 

In order to gain insight into the support of EndL authors from major international journals in Didactics 
of Mathematics / Mathematics Education, a survey of the seven most highly recognised journals in 
the field was conducted. Journals were identified via the list in a study by Leatham and Williams 
(2017, especially the list on page 390) into those journals. After trialling the survey with the editor of 
the journal ranked 8th, the editors of the top 7 ranked journals were invited to respond to a survey. 
The survey was based on questions on the support offered by the journal for EndL authors before, 
during and/or after the processes of submission, review, proofing and publication. To date, there are 
five complete responses. Preliminary results of this survey are presented below. 

The responses represent a wide spectrum of handling manuscripts from EndL authors. One extreme 
is the tendency to place all of the responsibility for conforming to a journal’s expectations of language 
usage on the author, clearly communicated in the following response. 

We expect language-edited papers for authors, whose mother tongue is not English, but many 
manuscripts still have strong deficits, when they reach us. We have language editing at the end by 
NN [name cancelled], but that comprises only a check of correct usage of terminology and correct 
academic writing. 

At the other end of the spectrum, there are comments such as: 

Thank you for investigating this important issue. Around 40% of articles published in NN [name 
of the journal] come from countries where English is not the dominant language, but the proportion 
of EndL authors is higher than this when one considers all submitted manuscripts. However, some 
caution is needed in looking for causes of manuscript rejection – language is not the only reason, 
and perhaps not even the main reason. Many authors struggle to frame and communicate their 
research so that it is relevant and accessible to an international audience, and this can be a 
consequence of differences in the significance of research questions across cultural contexts. So 
language diversity is part of a bigger global challenge in understanding culturally inflected ways 
of framing and communicating research. 

None of the journals that have provided responses to date have a formal, institutionalised provision 
or special procedure for manuscripts submitted by EndL authors, but at least two of the editors-in-
chief, indicated they take special care with such manuscripts. One of them tries: 

… where possible, to align the language expertise [of handling editors] with the dominant language 
of the corresponding author [and tends] to support several rounds of major revisions to help the 
EndL author produce a publishable article. (Only one or at most two major revisions would be the 
norm for other manuscripts.) [In addition, the editor-in-chief spends]…many hours on language 
editing of the penultimate version of each EndL-authored manuscript that I handle. I aim to not 
only achieve an acceptable standard of academic English but also preserve some of the distinctive 
linguistic features of the author’s first language (lexical choices, syntactic structures, etc.). I want 
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readers to “hear” the traces of the author’s first language rather than obliterate it and produce a 
bland and rather boring set of articles in each journal issue. 

Another Editor-in-Chief states that 

… after a submission is accepted the Editor works with the author(s) to improve the presentation 
of the article. Depending on the situation this can range from offering advice on rewriting, to 
offering suggested rephrasings. 

In total, in two of the responses, language editing by the editors-in-chief is mentioned. At least one 
journal Editor indicated it was actively encouraging EndL authors to submit to their journal. 

As Editor I actively seek contributions from non-English speaking researchers. … This includes 
requesting members of our Advisory Board, which includes researchers from around the world, to 
suggest possible authors, and approaching potential authors at conference, etc. When a submission 
is received the evaluation of it is carried out on the basis of its content, and the editors are 
experienced in reading work by authors writing in a language other than their mother tongue, and 
so we are able in most cases to evaluate the content independently of the presentation. Some of 
our reviewers offer corrections at the grammatical level when commenting on a submission but 
not all. It is chiefly my responsibility as Editor to address any remaining language issues once an 
article has been accepted. That is, it is possible for an article to be accepted with ‘heavily accented’ 
writing. I then work with authors to ensure that their ideas are presented as clearly as possible to 
... readers. An approach I have discussed with some potential authors, but which has not yet been 
implemented, is the submission of articles in a language other than French or English. Our 
Advisory Board includes researchers who are able to read many languages and so the first stage 
of our reviewing process (the internal review) could occur in another language. 

In addition to this, the same journal even provides complimentary subscriptions to: 

…national organizations, or research teams, in countries from which we rarely receive submissions 
… on the theory that if more people in that country read [name of the journal], more people will 
submit articles to it. 

Other responses indicate some journals manage the handling of manuscripts by EndL authors via the 
identification of appropriate reviewers, for example, 

Selection of reviewers would take into account multiple factors, including familiarity with the 
theoretical and methodological approaches and often the local research context, in addition to the 
author’s language and cultural background. 

By looking through the lens of centripetal / centrifugal forces within the major journals, the 
“standard” position in the answers is “There is no preferred form of English, but there does need to 
be consistency in using either US or English spelling within an article.” Thus, consistency is generally 
seen as the vital principle of English language usage. By contrast, the response of one Editor-in-Chief 
stands out by stating 

Our instructions to authors state 'Contributions may be submitted in English or French. (The 
English may be American, British, or hybrid.)' How exactly this is interpreted has varied from 
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editor to editor. As I am not personally familiar with many dialects of English, and I find [..] 
English quirky and inconsistent, I tend to edit submissions to either US or UK spelling. NN style 
includes a mix of punctuation rules from US, UK and [...] sources, and some that have simply 
evolved as ‘the way NN does things’. As Editor I take responsibility for making sure the style of 
each article is close enough to NN style that most readers notice no inconsistencies. 

This approach appears to be a special form of centripetal action in that while some diversity is 
allowed, expression is limited to only three forms of English. 

Conclusion 

Two conclusions can be drawn from the previous study of the challenges faced by EndL authors and 
their opportunities to publish in highly recognised journals. English (in the form of the UK, USA and 
other dialects or a mixture of them) is the “lingua franca” of international research in mathematics 
education / Didactics of Mathematics. At the same time, fruitful and innovative research in the field 
depends on the healthy life of “local” research communities, which need opportunities of publishing 
ideas and results in the individual dominant language of their “own”. The initial findings of the survey 
indicate that the support offered to EndL authors attempting to publish in highly recognised journals 
varies considerably. The spectrum of support ranges from an almost non-interventionist approach 
through to significant editorial support before publication in journals targeting the broad mathematics 
education / Didactics of Mathematics community. 
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The purpose of this study is to deepen the understanding of the relation between features of the text 
of mathematics tasks and the tasks’ demand of reading ability. Variations in students’ reading pro-
cesses when they work with PISA mathematics tasks with high demand of reading ability are identi-
fied and analyzed. These variations can be related to linguistic features of words, phrases, or sen-
tences in the tasks, which in turn can be possible sources for the high demand of reading ability. 

Keywords: Mathematics tasks, reading comprehension, reading process, PISA. 

Introduction 
Mathematics tasks are a common way to assess students’ mathematical knowledge. They are used in 
examinations, nationwide tests, and also in international assessments like the Programme for Inter-
national Students Assessment (PISA). They are meant to assess mathematical ability, that is, acquired 
proficiency in mathematics, but a written task usually also requires that the student can read natural 
language in the task text, which can make the task also assess reading ability. Some reading ability 
can be seen as a necessary part of mathematical communication which is an aspect of mastering 
mathematics (NCTM, 2000). However, to ensure that the task assesses what it is intended to assess 
and nothing else, unnecessary demand of reading ability not connected to mathematical ability should 
be avoided. This unnecessary demand of reading ability can be caused by linguistic features of the 
task text which may be avoidable if they are not connected to mathematics (e.g., use of uncommon 
words not belonging to mathematical vocabulary or complex sentence structure). Therefore, it is im-
portant to identify which linguistic features of mathematics tasks are related to an unnecessary de-
mand of reading ability. This demand may become apparent in variations in students’ reading process 
when working with mathematics tasks (e.g., stumbling at a word or rereading a sentence). Analyzing 
these variations, and identifying the units of the text where they occur, makes it possible to determine 
features of the task text potentially causing an unnecessary demand of reading ability. 

This study thus detects and analyses variations in students’ reading processes when working with 
mathematics PISA tasks identified as having high unnecessary demand of reading ability. Also, fea-
tures of the tasks’ text and their possible impact on the tasks’ demand of reading ability are discussed. 

Background 
This section presents the theories about reading comprehension and reading of mathematical texts 
that are used in this study to characterize the variation in the students’ reading processes. It will also 
give a short overview of earlier research concerning sources of (unnecessary) demand of reading 
ability in mathematics tasks. 
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Reading comprehension 

A simple description of reading comprehension is given by Hoover and Gough (1990) who describe 
decoding and linguistic comprehension as necessary for successful reading. Decoding means the abil-
ity to recognize words, that is, being able to connect written words to mental lexical information. 
Linguistic comprehension is the ability to derive meaning out of lexical information. In the concept 
of reading comprehension, these two are combined into the ability to derive meaning out of written 
information. In addition, Österholm, Bergqvist and Dyrvold (2016) identify three aspects of reading 
comprehension that can be related to reading difficulties. These are phonological, syntactic, and se-
mantic aspects. The phonological aspect concerns sound and the flow of reading, since phonological 
memory supports listening comprehension and thus, indirectly, reading comprehension (Perfetti, 
Landi, & Oakhill, 2005, p. 238). The syntactic aspect concerns the decoding of grammatical structures 
at the sentence level. Finally, the semantic aspect refers to the depth and breadth of knowledge of 
word meaning (Nation, 2005, p. 254).  

The different parts and aspects of reading comprehension are used in this study to identify possible 
sources for issues students encounter when reading mathematics texts. 

Reading mathematics text 

This study concerns reading of mathematics tasks. It is therefore relevant that there exist features that 
are typical for mathematics texts, like special mathematical words (e.g., differentiate), words that 
have a different meaning in mathematical context than in everyday language (e.g., product), or the 
use of numbers and formulas (see, e.g., Schleppegrell, 2007). In this study, an assumption is therefore 
that reading and understanding a mathematical text requires a certain kind of reading ability that is 
part of the mathematical ability that a mathematics task intends to assess. But a mathematics task text 
can also contain features unconnected to mathematical ability, for instance, long or unusual “non-
mathematical” words or complex sentences with subordinate clauses. These features might cause an 
unnecessary demand of reading ability that is unconnected to mathematical ability. In this case, a 
student needs, besides mathematical ability (including the aforementioned mathematics-specific read-
ing ability), also a reading ability not connected to mathematics to solve the task. Therefore, it is 
important to separate necessary and unnecessary demands of reading ability of a mathematics task.  

Österholm and Bergqvist (2012a) developed and confirmed the reliability and validity of the statisti-
cal measure for the unnecessary demand of reading ability (DRA) of a mathematics task used in this 
study. A principal component analysis of students’ results on both mathematics and reading tasks 
extracts two main and partly overlapping components; a mathematics and a reading component. 
Mathematics tasks are loading mostly on the mathematics component, but are also, to varying degree, 
loading on the reading component. The loading on the reading component excludes the effects from 
the overlap between the components, and can therefore be interpreted as a measure of DRA. 

In a mathematics task that is supposed to measure mathematical ability only, DRA should be avoided 
as far as possible. To be able to avoid DRA, it is necessary to identify not only tasks with high DRA, 
but also which features of a mathematics task are related to high DRA. 
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Sources of DRA 

Since DRA measures a task’s demand of reading ability that is not part of mathematical ability, it is 
plausible that linguistic features of the task text can be sources of DRA. These could be features 
connected to readability in general, such as long words (e.g., Lenzner, 2014), unfamiliar words (e.g., 
Abedi & Lord, 2001), or complex sentence structure (e.g., Dempster & Reddy, 2007). In an earlier 
study, Österholm and Bergqvist (2012b) found correlations between DRA and both word length and 
information density for the Swedish mathematics tasks of PISA 2003 and 2006. In a more recent 
study, Bergqvist, Theens, and Österholm (2018) identified tasks in the Swedish version of the PISA 
2012 mathematics assessment having high DRA. In that study, however, the DRA was not correlated 
to any of the investigated features (word length, sentence length, task length, and information den-
sity). Identifying possible sources of DRA in mathematics tasks might help task constructors and 
teachers to avoid DRA or, at least, to make them aware of these issues. 

Purpose of the study 
The purpose of this study is to deepen the understanding of the relation between features of the text 
of mathematics tasks and the tasks’ demand of reading ability. Therefore, this study identifies and 
analyzes variations in students’ reading processes when they work with PISA mathematics tasks with 
high demand of reading ability (DRA) and then relates these variations to the linguistic features of 
the task texts. Thus, the research question is: Which kinds of variations appear in students’ process 
of reading Swedish mathematics PISA tasks with high DRA? 

After having identified the variations, by examining the units of the text where they occurred, I at-
tempt to identify and discuss which features of the text can be possible sources for the DRA  

Research Method 
To investigate the variations in students’ reading process, I collected and analyzed think-aloud-pro-
tocols (TAP) of students reading and solving mathematics PISA tasks in Swedish. These TAPs are 
part of a bigger data collection including students from both Sweden and Germany, several PISA-
tasks, and follow-up interviews. In this study, I used the part of the TAPs where Swedish students 
read the tasks. The different steps of data collection and analysis are described in more detail below. 

Task selection 

For this study, I chose two tasks from the Swedish version of the 2012 PISA assessment that were 
identified having high DRA in an earlier study (Bergqvist et al., 2018). Since these PISA-tasks are 
confidential they cannot be reproduced here. The two tasks differ in several properties: Task 800Q01 
(Dataspel/Computer Game) is a single task without subtasks and contains relatively little text. It is a 
selected-response (multiple choice) task made up of two shorter sentences and a table with numbers. 
Task 446Q01 (Termometersyrsan/The Thermometer Cricket) is the first subtask of two in a longer 
task. It contains more text than 800Q01 - three long and two shorter sentences - and a photo showing 
the insect. It is a closed constructed-response item, that is, the students have to calculate an answer 
and write it down. They do not need to show their calculations. 
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Selection of participants and data collection 

The students were recruited from three different schools, two from rural areas and one from a bigger 
city. They voluntarily agreed to participate when their teachers asked the classes. All twelve students 
spoke Swedish fluently and gave their informed consent to take part in the study. Six students were 
working with task 446Q01 and seven students with task 800Q01. One of the students worked with 
both tasks. The eight girls and four boys were between 14 years and 6 months and 16 years and 1 
month old, that is, about the age of 15, which is the age for which the PISA tasks are designed.  

The students were told to read and think aloud during their attempt to solve the tasks. Everything the 
students said was recorded with a Livescribe Echo® smartpen, which also recorded everything the 
students wrote and connected it to the audio data. If the students were silent for a while they were 
encouraged to continue talking.  

Think-aloud-protocols have the advantage that it is possible to follow the students’ reading process 
and to get to know in which order they are reading the task text. Even if reading aloud is a somewhat 
unnatural way of reading mathematics tasks, it makes visible which words, phrases, or sentences may 
be problematic for the students, since oral reading fluency is an indicator for reading competence in 
general (Fuchs, Fuchs, Hosp, & Jenkins, 2001).  

Data analysis 

To find the variations in students’ reading process when solving the tasks, I performed an analysis in 
two steps. In step 1, I analyzed the TAPs to identify all variations and sorted them in different cate-
gories of types of variations. In step 2, I analyzed the categories found in step 1 to find patterns in the 
variations. The steps are described in more detail below. 

Step 1: While listening to the TAPs, I made a note every time a student made any deviation from a 
“straight-on” reading process. This straight-on process is understood as starting to read at the begin-
ning and reading all text once to the end without any interruptions. The straight-on process is not 
assumed to be an ideal way of reading, but used as a guiding norm to highlight variations. I also 
noticed if a student did not make any deviations from the straight-on process. Each time a variation 
occurred, I labeled it with a category. When this type of variation occurred for the first time, a new 
category was defined. When a variation of the same category had occurred before, this existing cate-
gory was used. Examples for the categories are stumbling, misreading, or rereading. 

Step 2: To get a clear picture of the nature of the categories of variations, I sorted the categories in 
two dimensions. The first dimension referred to which kind of unit of the text the category concerned. 
That is, whether the variations occurred at a single word, a phrase consisting of several words, or a 
whole clause or sentence. This division facilitated the identification of text features that might trigger 
variations in the reading process, since, for example, syntactic aspects of reading comprehension 
concern decoding at the sentence level, whereas phonological aspects concern word level. Some of 
the categories of variations can occur at several different units, for instance, a student could stumble 
at a single word or a longer phrase. For other categories, it is more difficult to determine which unit 
they concern. If a student, for example, makes a filler sound (like “er”) in the beginning of a sentence, 
this variation could be categorized as being at word level (the first word of the sentence) or at sentence 
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level. In cases like this, I had to interpret within the context which unit the variation concerned, as 
described in the results paragraph below. 

The second dimension referred to which aspect of reading the variation concerns. That is, whether it 
deals with the accuracy, the flow, or the order of reading. The accuracy of reading concerned what is 
read, that is, if the student reads exactly what is written in the text, or if he/she leaves out anything, 
reads anything wrong, or adds words to the text. The flow of reading concerned interruptions in the 
reading, for example, stumbling or hesitating. It also included repeating a word or phrase directly 
when reading it, which is a form of stammering. The order of reading concerned which order the 
student reads the text in, that is, if he/she starts at the beginning or, for example, by reading the 
question, and if he/she rereads any parts of the text. 

Results 
The analysis of the think-aloud-protocols (TAPs) revealed several different categories of variations 
in students’ reading process when solving mathematical PISA tasks with high DRA. A very common 
category was reading words and phrases correctly and with flow. On the other hand, there was only 
one student who read a whole task (Computer Game, 800Q01) straight-on, that is, read all text just 
once from beginning to end without any interruptions. In Table 1, the categories of variations that 
deviated from straight-on reading are sorted by the two dimensions mentioned above. Some of the 
categories are described in more detail below and exemplified in the discussion. 

Variations at word level 

Many of the observed variations in the students’ reading process were connected to a single word, 
like the ones categorized as hesitating or stumbling. Hesitating means that the student paused within 
a sentence before reading a certain word, interrupting the flow of reading. Stumbling also occurred 
in relation to phrases but the students mostly stumbled at single words, that is, they started to read the 
word, eventually read wrong, stopped in the middle of the word, and started over. Other types of 
variations concerning single words were reading slowly and different types of misreading. These 
variations occurred for example in task 800Q01 for the word “kriterium” (English: criterion) and in 
task 446Q01 for the words “snöträdssyrsan”, “termometersyrsan”, and “temperatursyrsan” (different 
names for the thermometer cricket), and “Fahrenheit”.  

Variations at sentence/clause level 

At the sentence/clause level the observed variations concerned rereading or making filler sounds like 
“er” or “um” in the beginning of a sentence or clause. Filler sounds almost only occurred in the 
beginning of a sentence or clause and not within sentences. Therefore, this variation was categorized 
as sentence/clause level when occurring at the beginning of a sentence or clause. 

There was no type of variation where the students changed the order of reading when they were 
reading the task for the first time. All students started reading the tasks at the beginning and read them 
until the end, that is, none of them started by reading the question written in the end. For task 446Q01, 
all students but one reread some part of the text task at some point after having read the complete text 
first — either before or after having solved the task, or both. For task 800Q01, four of seven students 
who worked on the task did not reread any clause or sentence of the task text. 
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Word Phrase Sentence/clause 

Accuracy of 
reading 

· misreading, becomes a different word 
· misreading, becomes meaningless 
· misreading, becomes a synonym 
· misreading a number 
· skipping a word 
· adding a word 
· wrong pronunciation 
· mumbling 

· mumbling 
 

Flow of reading · hesitating 
· filler sounds 
· stumbling 
· pausing within a word 
· reading slowly 
· repeating 

· stumbling 
· repeating 

· filler sounds 

Order of reading 
  

· rereading after hav-
ing read everything 

· rereading after hav-
ing solved the task 

Table 1: Categories of variations in the students’ reading process deviating from straight-on reading  

Discussion 
Some of the observed variations in students’ reading processes may indicate problems for the students 
when reading the tasks’ text. These reading problems can relate to different aspects of reading com-
prehension (phonological, semantic, or syntactic) depending on features of the word, phrase, or sen-
tence/clause that was problematic. In this section, I discuss some of the variations that may indicate 
sources of unnecessary demand of reading ability (DRA). 

Variations at word level 

Several types of variations occurred in relation to the different Swedish words for “the thermometer 
cricket” (“snöträdssyrsan”, “termometersyrsan”, “temperatursyrsan”) in task 446Q01. Some students 
were stumbling or hesitating when reading these words. These expressions are long compounds of 
shorter and more common words such as “snö” (English: snow) or “syrsan” (cricket), which can make 
it difficult for the students when they read them for the first time. Since the observed categories of 
variations concern decoding of written text into sound, they relate to the phonological aspect of read-
ing comprehension (Hoover & Gough, 1990; Perfetti et al., 2005). Two other types of variation oc-
curring for these words are related to semantic aspects of reading comprehension, since they refer to 
the meaning of the words. One type of variation was that some students read “...syran” (acid) instead 
of “...syrsan” (cricket) the first time they read the word. A possible explanation is that reading the 
context and seeing the photo of the cricket eventually helped them realize that the text was about an 
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insect, and they did not make this mistake any more. The other type of variation was that some stu-
dents read simply “syrsan” (cricket) instead of “thermometersyrsan” (thermometer cricket) when they 
reread the sentences. A possible explanation is that they had understood that the text was about some 
kind of cricket and realized that the exact name was less important. Since DRA for a task concerns a 
demand of reading ability that is not part of mathematical ability, and since knowing and reading 
these names for the cricket cannot be seen as a part of mathematical competence, the use of these 
long compound words in this task may be a source of high DRA. 

Another word in task 446Q01 where the variations hesitating, stumbling, and reading slowly occurred 
was “Fahrenheit”. For Swedish students, this is not a common word in their everyday language since 
temperature is measured in degrees Celsius in Sweden. The use of different units can be seen as being 
a part of mathematical language and, thus, a part of mathematical competence. In this case, the use 
of “Fahrenheit” is not likely to be connected to high DRA, since DRA concerns the part of reading 
ability that is not included in mathematical ability. In task 800Q01, some students were hesitating and 
reading slowly the word “kriterium” (English: criterion). This is a shorter word than, for example, 
“snöträdssyrssan” but not a compound of shorter common words and not common in the students’ 
everyday language either. Since it does not belong to the vocabulary that is necessary or common 
when communicating mathematics at these students’ school level (year 8-9), it might contribute to 
DRA of the task. 

Variations at sentence/clause level 

At the sentence/clause level, one variation was that students reread sentences or clauses after having 
read the whole text first. At task 446Q01, this occurred most frequently at sentence 3, which was a 
long sentence presenting the way to calculate. It also occurred at sentences 4 and 5, where the question 
was posed, but never at sentence 1 and 2 that contained general information about the cricket. At task 
800Q01, it occurred mostly for sentence 2 that contained the question and more seldom for the first 
sentence that presented the situation. The same pattern occurred when students were reading sen-
tences or clauses again after having solved the task. I see two aspects as possible explanations for 
this, either individually or in combination of both. After having read the text once, it is possible that 
the students had figured out in which sentences the information necessary to solve the task was pre-
sented. Based on this conclusion, they could have deemed it unnecessary to reread, for example, the 
first two sentences in task 446Q01, since these only presented general information about the cricket. 
This behavior would be an indication that the students mastered the semantic aspect of reading com-
prehension, which refers to meaning (Nation, 2005). 

Another possible explanation for these variations, in particular the common rereading of sentence 
three in task 446Q01, can be syntactic issues. This sentence is long (37 words) and contains three 
subordinate clauses. Such sentence complexity could cause DRA, that is, a demand of reading ability, 
not connected to mathematical competence. 

Conclusions 
This study has shown that there are different kinds of variations in students’ process of reading when 
they are working with mathematics tasks that have a high demand of reading ability (DRA) not con-
nected to mathematical ability. These variations occur both at single words, longer phrases, and whole 

Thematic Working Group 09

Proceedings of CERME11 1808



 

 

sentences and may be of different types. Some of the variations, such as stumbling or hesitating, can 
indicate reading problems that the students encounter. In this study, I found some examples in the 
two tasks investigated that may be related to these issues. Further research with more students and 
tasks can help to identify more text features that may cause DRA. 
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In the reported project, the focus is put on the process of generalizing distributive structures: How 
do primary school children use different communicative resources in order to express their 
generalizations? Thereby, the use and function of language is of particular importance. When 
analyzing the interview data, the central questions are: How does the interplay of different resources 
vary? What does that consequently mean for the level of generalization? In this paper, we present 
first results from a pilot study. They suggest, among other things, that language and manipulatives 
can fulfill quite contrasting functions when they are used in combination.  

Keywords: Generalizing, distributive structures, resources, language. 

Introduction 
“Generalization is the heartbeat of mathematics, and appears in many forms” (Mason, 1996, p. 65). 
According to Mason (1996), generalizing can be described as one of the basic skills in mathematics. 
The ability to notice a local commonality in patterns or terms and to distinguish between different 
aspects (Radford, 2006) enables learners to generalize this across all terms. Then this identified 
generality can be used as a basis to develop strategies (Lannin, 2005).  

It becomes apparent that generalizing is not only important from a propaedeutic point of view, but is 
already important in primary school itself. In accordance with Lannin (2005), in some contexts using 
a strategy means using a general rule, for example generalized distributive structures can be used to 
derive multiplication tasks. Therefore, instead of investigating generalizations of patterns, like it is 
commonly done, this study will focus on how primary school children generalize distributive 
structures. In primary school, different resources, such as images or mathematical signs, are available. 
Primary school children can use these resources for generalizing as well. Language as one resource 
stands out, because it enables students to detach from concrete objects and to make mathematical 
structures visible (Radford, 2003). Moreover, if students can express complex structures in a more 
condensed way with language, it indicates a bigger availability of those structures (Caspi & Sfard, 
2012). Therefore, the way how structures are expressed with language can be used as an estimation 
of the level of generality (Caspi & Sfard, 2012). This is why - concerning generalization - language 
seems to be an important aspect. Hence, the interplay between language and other resources and its 
function and role are to be investigated in this study. 

In this paper, at first generalizing is defined, the meaning of generalizing in context of distributive 
structures and the students usage of combinations of resources are outlined. According to the current 
theoretical framework, our research interest and results of the pilot study are presented.  

Thematic Working Group 09

Proceedings of CERME11 1810



 

 

Theoretical framework 
Generalizing in mathematics 

Generalizing as a process consists of multiple parts with different focuses. Hence, the term 
generalization is not used consistently. Nevertheless, most definitions refer to the ability of “seeing a 
generality through the particular” (Mason, 1996, p. 65). When generalizing, commonalities across 
different cases have to be identified and regularities have to be derived and extended to other cases 
(Ellis, 2007; Fischer, Hefendehl-Hebeker, & Prediger, 2010; Harel & Tall, 1991) 

The biggest difference between the definitions is the prioritization within the process of generalizing. 
While Harel and Tall (1991) emphasize that in generalizing the scope of a mathematical object is 
extended and transmitted, Fischer et al. (2010) highlight the understanding of commonalities in a 
general context. Furthermore, Ellis (2007) distinguishes between generalizing actions and reflections. 
On the contrary, Radford (2003, 2006) distinguishes between the comprehension and the expression 
of a generality. The formal way in which generalizations are expressed is not overly important for 
Ellis, while it is crucial for Radford. Nonetheless, for both researchers the grasping of a general 
structure is the first step of generalizing. Average primary school children are not able to refer to 
algebraic language such as variables (Britt & Irwin, 2008). This is why the focus on how primary 
school children expressing generalizations, becomes especially interesting. 

Students can use different ways to express a generalization, for example gestures or colloquial means 
(Radford, 2003). According to Radford (2003, p. 65) “language allowed the students to carve and 
give shape to an experience out of which new general objects emerged”. Additional resources, like 
manipulatives, are available in primary schools. Usage of and switching between representations, 
which can be used as resources (Greeno & Hall, 1997), support the development of mathematical 
understanding (Duval, 2006). The expressions themselves may differ in their degree of generality. In 
particular, the usage of language to express a generality can indicate the level of generality (Caspi & 
Sfard, 2012). According to that, three levels can be claimed within the process of generalizing. At the 
first level, processual description, language is used to express and describe a calculation. The 
calculation is presented in the order of its execution. Generalizations at the second level, granular 
description, still include description of a process but also (linguistic) parts that transform procedural 
elements into an object, like ‘the product of…’. This change from an operational conception (process) 
to a structural conception (object) is called reification (Sfard, 2008). At the third level, objectificated 
description, all processes are reificated and students use them as fully fledged objects, for example 
‘if two products have a common divider, they can be combined into one fact’. General expressions 
“will now be used in alienated (depersonalized) descriptions of relations between objects” (Caspi & 
Sfard, 2012, p. 51). 

While Radford (2003) emphasizes the importance of natural language, Caspi and Sfard (2012) focus 
on the meaning and level of generality of language and Duval (2006) classifies language as one of 
four equally important representations. With the help of these different perspectives on language, 
various expressions and the associated interplay of different resources and its consequences for 
generalization are to be investigated.  
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Generalizing distributive structures 

It should be noted that many studies refer to the generalizations of pattern sequences (Akinwumni, 
2012; Blanton & Kaput, 2005). However, Ellis, Lockwood, Moore, and Tillema (2017, p. 677) are 
correct to point out, that “there remains a need to understand how students construct generality in 
more varied and more advanced mathematical domains”. Our interview study aims to investigate how 
primary school children express their generalizations of distributive structures. Since generalizing as 
a form of algebraic thinking represents a general capability, results from previous studies serve as a 
first empirical basis and should be compared with results of this study. 

The skillful use of arithmetic laws supports students to develop strategies for solving arithmetic 
problems (Lannin, 2005). In order to be able to use arithmetic laws skillfully, students have to grasp 
structures in concrete tasks and generalize them. Only if general regularities are extended beyond a 
case (Harel & Tall, 1991), they can be related to other contexts and used to the student’s advantage. 
According to Mason (1996), generalizing can be described as the identification of a general rule 
through particular tasks. This generalized rule in combination with fact based knowledge can serve 
as a strategic tool. Therefore, in the context of multiplication, generalizing means the recognition of 
the systematic construction of multiplication and the classification of separated facts in its 
construction.  

In primary school, the distributive law is often implicitly used. Primary school children do not learn 
to automate multiplication task by learning the times table off by heart. Instead they learn to acquire 
an understanding of the multiplicative operation and to automate facts that are easier to remember in 
order to derive facts that are more difficult to remember (Gaidoschik, 2016). Students do not have to 
acquire and automate all 100 multiplication facts, merely the facts of the one, two, five and ten times 
tables. If students have insights into distributivity, they can systematically derive all further facts of 
multiplication (Gaidoschik, 2016). Therefore, individual cases do not always have to be treated as 
new phenomena but are assigned to a certain structure, so that the memory of students who automated 
a lot of structures is much less stressed (Fischer et al., 2010). In summary, from this perspective the 
use of deriving strategies includes a form of generalization of distributive structures. 

Expressing generalizations: Language and other used resources 

According to Radford similarities and differences of structures are grasped and expressed through 
and with linguistic expressions (2003, 2006). Language is particularly suitable in this process, 
because it turns experience into knowledge (Halliday, 1993). “With […] speech, words become signs 
capable of being used with a certain autonomy regarding the objects they denote” (Radford, 2003, p. 
63). Since generalizing means to abstract from the particular to the general (Mason, 1996), language 
is particular suitable as a resource. Therefore, it is assumed that regardless of its level or function, 
language takes part in expressing generality. 

However, language is assumed to be especially challenging for some students (Fetzer & Tiedemann, 
2015) and in primary school students use other resources, such as manipulatives, in addition to 
language to acquire and communicate mathematical understanding. Therefore, instructions “should 
include how students use the situation, the everyday register, and their first language as resources as 
well as how they make comparisons […] and use mathematical representations” (Moschkovich, 2002, 
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p. 208). In this study, the term resource refers to all representations, such as language or 
manipulatives, which students can use in order to express generalizations. Figure 1 provides an 
overview of these possibly used resources. The structure of the figure is based on the distinction 
between different representations (e.g., Duval, 2006) and the assumption that language always plays 
a role in generalization. Therefore, a distinction is 
made between three different types of 
combinations of representation language and 
mathematical signs, language and actions and 
language and images and the representation 
language. These (combinations of) 
representations are available resources that can 
potentially be used for generalizing. In previous 
studies, particular resources are identified as 
appropriate for the process of generalizing 
(Akinwumni, 2012; Britt & Irwin, 2008) are 
consequently relevant for our study, too. These 
resources have been assigned to the 
combinations of representations (Figure 1). 

As figure 1 shows, it is assumed that resources are not used separately but mutually in relation to each 
other. Language can have different functions within these combinations. While the use of language 
in form of word-variables can refer to grasped structures, reificated objects as Sfard (2008) calls them, 
language can serve to describe generalized numbers (Akinwumni, 2012), relations and other 
resources as well. In conclusion, language has a functional character for all available resources and 
the interplay within the combinations can vary according to the individual use. Moreover, the switch 
between two or more combinations of representations, like language and actions and language and 
mathematical signs is possible as well. According to Duval (2006), the process of switching between 
different representations reveals whether a given mathematical structure has been understood. Thus, 
generalizing can be understood as a form of understanding: A child that is expressing a given structure 
in two different representations, in this context two different combinations of representations, is 
generalizing this particular structure. Moreover, “forms of representations are tools that students can 
learn to use as resources in thinking and communicating” (Greeno & Hall, 1997, p. 362). Therefore, 
various resources should be made available for primary school children should be used.  

Research interest 

According to the theoretical assumptions, we are looking for answers to the following questions: 
(How) do children use language in order to generalize distributive structures? And can language, as 
a consequence, be regarded as the essential resource for the purpose of expressing generality? 
Correspondingly, we want to learn more about language and other used resources of the children 
while generalizing distributive structures. This focus touches two aspects, the interplay within the 
combinations of resources on an interactional level and the switch between different combinations 
and its respective consequences on a content level. To describe the use of resources and combinations, 
we refer to children’s multi-resource statements and at first focus on the following two questions:   

Figure 1: Combinations of resources in generalizing 
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a) How do students use different combinations of resources in the process of generalizing?  
b) How do two resources interplay within a combination in the context of generalizing? 

Research design 
Our study is designed as an interview study. In order to pursue the research interest, the interview 
questions and tasks are in accordance with the classification (see Figure 1) of the interplay within and 
between the combinations of resources. It refers to the assumption that language always takes a part 

and its function is determined in relation to other resources. Based 
on a guideline, children are asked to decide whether they can 
identify a distributive structure in different resources. In this 
paper, the use of one resource, the multiplication blocks, is 
presented as an example. Those blocks are manipulatives like 
given blocks that are composed of different amounts of cubes (see 
Figure 2). These blocks are fixed, glued together wooden cubes, 
which cannot be attached but laid against each other.  

Therefore, the interviews are designed according to the different resources. In addition, the interview 
differentiates between the two “directions” of the distributive law: One interview part focuses on 
decomposing one multiplication fact and the other interview part focuses on combining two 
multiplication facts. Within the part of combining, two different types of tasks serve as basis. In the 
first type of task, two multiplication facts may be combined to one multiplication fact, e.g. 2x3 + 3x3 
= 5x3. In the second type of task two multiplication facts cannot be combined to one multiplication 
fact, e.g. 2x3 and 1x4. Table 1 illustrates an extract of the second type of task of the pilot study 
guideline. In order to emphasize the relation to the mathematical context of the distributive law, a 
section of the interview talks about concrete facts in the form of mathematical symbols. The relation 
to mathematics is also established by naming the blocks according to their respective facts. 

Resource Questions Research interest 

        
2x3-block     1x4-block  

 
2x4-block 

• Can you combine these two 
facts to one fact?  
•Why yes or no? 
 
• And what about this fact? 
Why can I now combine two 
facts?  

• What aspects are the learners focusing on? 
• How and with which resources do they 
generalize? How do these interplay? 
 
• Does the generalization change?  
• How do they talk about the new situation? 

Table 1: Interview guideline and associated research interest 

The interview is conducted with second- and third-grade students of different primary schools. One 
of the schools is supposed to be a language school, a school for children with language disorders. 
These two types are chosen because, on the one hand, the difference between children with and 
without language disorders should be emphasized. On the other hand, the difficulties of children with 
language disorders may point to general aspects of the relation between language and generalizing. 

Figure 2: Multiplication blocks 
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In order to reconstruct the processes of generalizing distributive structures, we transcribe the recorded 
interviews and subsequently use the analysis of interaction (Cobb & Bauersfeld, 1995). This method 
serves to reconstruct the processes of negotiation between the child and the interviewer and reveals 
the content-related ideas which emerge in the interaction. This allows us to determine levels of 
generalization (Caspi & Sfard, 2012) with a special focus on the interplay of resources.  

First results 
To give an impression of the results from our pilot study, some illustrative examples are presented in 
the following. In May 2018, six second-grade students of a primary school for children with language 
disorders, were interviewed. Reference was made only to the combination of action (blocks) and 
language. First results indicate that depending on the type of task (two multiplication facts can be 
linked distributively or not), students generalize on different levels. According to Caspi and Sfard 
(2012) generalizing is distinguished regarding to the level of generality. In tasks of the first type 
students used language to generalize in form of chronological description, for example: “first there 
was 3x3, then 2x3 was added and then it is 5x3”. Relating to Caspi and Sfard (2012), these 
descriptions comply with the first level processual description. On contrary during completion of the 
second type of task, students used vocabulary like “here is always one more” or “because now this 
has two and this has two, too”. These terms correspond to the second level granular description. Parts 
of their generalizations such as the “two” are objectified, as it stands for the second times table and 
hereby for the general distributive structure. In conclusion, the two types of tasks could be used to 
induce various level of generality when generalizing distributive structures.  

Further results can be seen when generalizing is distinguished regarding to its expressions (following 
Radford 2003, 2006). According to the theoretical framework of resources, the interplay of resources 
have been analyzed. The participating children with language disorders used the offered manipulative 
combined with language. Their generalizations were quite often grammatically incomplete and 
incorrect. In addition, they tended to use gestures and linguistic references, such as pronouns like “it 
does not fit, here (1x4-block), to that (2x3-block) two more”. In this example, the student 
compensated missing language with the help of provided material and used place deictic words. 
According to Fetzer and Tiedemann (2015), manipulatives are used to relief language. Thus, the scope 
how to interpret the expression extents. At this point it is assumed that the manipulatives function as 
generic example, because the example is used to explain conditions of a general structure (Harel & 
Tall, 1991). The function of language is to emphasize the aspect that is being referred to.  

Similar interviews were conducted at another primary school with no particular specialization on 
children with language disorders. These students used considerably more nouns, conditional 
sentences, and explained their processes in a more detailed way. The example “this stone (single cube 
of 1x4-block) must go, then we would have 3x3” shows a combination of manipulative and language 
as well, but the manipulative does not relief language. Language is used to structure the process and 
to construct an example, which includes parts of a generic example, such as the use of a conditional 
statement. The use of language makes it possible to construct relations that are not visible. 
Nevertheless, the description is close to the concrete example, like “must go”. Because of this, the 
utterance is interpreted as an example with the potential to be generalized.  
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The comparison between both participating student groups indicate a difference in expressing 
generalizations of distributive structures. Both examples refer to the same mathematical content and 
in both cases a granular description (Caspi & Sfard, 2012) is given. Both children describe a process 
combined with facts (2x3, 3x3), which are used as reificated objects (Sfard, 2008). Furthermore, the 
same resources are involved. However, the interplay within the combination of the resources 
language and manipulative differs. Two different types of resource interplay in the process of 
generalizing have been identified. While in the first example the manipulative enriches the linguistic 
expression, linguistic expressions enrich the manipulative in the second example. Consequently, we 
can see that children express comparable generalizations by using resources differently.  

Outlook 
These first results indicate different functions of language in the process of generalizing. According 
to the interplay of resources, it further will be analyzed how the other resources (images and 
mathematical signs) interplay with language. To figure out how language and the other resources 
interplay in detail and its consequences for generalizations is one of the main goals of the further 
research project. In addition, the objective of the study is to analyze how an interviewer or another 
child interprets expressions within an interaction. Both examples provide potential that can be 
identified as generalization. Regarding to the two different types of resource interplay, it will be 
worked out how expressions will be grasped and how the types influence the generalization of 
distributive structures. In addition to the resources, it will be investigated, how and if the 
consequences through the two types of tasks can be confirmed and which conclusions arise regarding 
generalizing. The analysis of the pilot study also shows that new impulses must be developed to 
facilitate generalization. For example, we should no longer talk about concrete facts, but about a rule. 
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Scope and Focus 
Thematic working group 10 is interested in discussing mathematics education within the realms of 
culture, society and the political. TWG10 builds on the premise that mathematics education is always 
more than the encounter between an individual and an object. Such encounters are embedded within 
wider contexts than just classroom settings. They are shaped by the social, cultural and political 
contexts in which they take place. Being social, cultural and political encounters themselves, they 
reflexively contribute to constituting the wider context in which they are embedded. Research in this 
group is characterized by an effort to reflect its own double-role in not only analysing but also shaping 
the possibilities of seeing and inventing mathematics education practices.  

The call for papers invited participants to address how diversity affects possibilities in mathematics 
education. The group’s work was based on a broad understanding of diversity, including: 1) Diversity 
as expressed in terms of attributes of people, such as gender, ethnicity, language, socio-economic 
status, social class, (dis)abilities, needs, achievement, life opportunities; 2) diversity as expressed in 
terms of ways of perceiving the world and giving structure to it, such as aspirations, worldviews, 
ideologies, school systems, and governance structures; 3) diversity in relation to the variety of sites 
where mathematics education takes place, such as schools, homes, workplaces, after-school 
organisations, communities; and finally, 4) diversity in relation to who is doing the research and who 
is being researched, posing methodological issues of an ethical nature. Diversity thus also refers to 
the wide variety of doing mathematics education research within the realms of culture, society and 
the political. As all these multiple diversities intersect, the group made an effort to develop reflexive 
approaches. The group invited to explore, deconstruct and even reinvent the concept of diversity. 

Organisation of TWG 10’s work 
Understanding research as a practice that is situated within the realm of the cultural, the social, and 
the political has implications for practicing research in situ. We strived to organize the group to work 
in a way that 1) cultivates a change of perspectives and fosters reflexivity and 2) creates consciousness 
about the power relations underlying TWG10’s work as a community of practice. The introduction 
in the first session gave a brief overview about the controversies that have unfolded within the TWG 
in previous CERMEs, highlighting that controversies do not only occur between (groups of) scholars 
but also occur within individuals or within allegedly homogeneous “camps”. Fostering controversy 
was intended to counteract dichotomization and facilitate the deconstruction of binaries. 

Thematic Working Group 10

Proceedings of CERME11 1819



The development of reflexivity was sought by following the principle of peer presentation, namely 
that authors do not present their own paper, but give a short (5 minutes) presentation of a colleague’s 
paper. This peer presentation included a description of the main ideas from the perspectives adopted 
in the paper and the formulation of questions from the presenter’s own perspective that opened up 
subsequent whole-group discussion (15 minutes). In addition, two sessions each involved, firstly, a 
small group breakout discussion (30 minutes) and, secondly, a synthesis (30 minutes) to support 
participants in drawing connections between contributions. In an attempt to make poster contributions 
visible to the whole group, posters were also presented. However, since the poster presentations were 
not followed by discussions, this procedure did not only make visible the posters, but also visualized 
and potentially stabilized the hierarchical distinction between papers and posters. 

The papers discussed  
In order to encourage and also facilitate drawing connections between papers, they were grouped in 
thematic pairs before the conference. As any classification does, this grouping highlighted some 
connections while displacing others. In the 1st session the contributions of Wright and Black et al. 
critically sounded out possibilities of practicing progressive pedagogy in favour of underprivileged 
students. In the thematic pair on democratic experiences, Daher sought for ways of assessing 
democratic practices using a quantitative analysis of questionnaires, and Sachdeva took a closer look 
on how students experience learner autonomy in mathematics classes. In the first half of the 2nd 
session, Maheux et al. invited us to consider school mathematics as a possible reference for 
mathematics itself, hence disrupting traditional understandings of mathematics, where professional 
mathematics is often seen as the reference for school mathematics. Salazar reported on how students 
of colour developed a practice of mathematics in problem solving activities similar to the practice of 
professional mathematicians, thereby disrupting institutional racism in traditional school 
mathematics. In the second half of the session, Cabral et al. proposed Solidarity Assimilation 
Methodology not only as a way of disrupting traditional pedagogy, but also as a way of subverting 
the recurrent mode of capital accumulation embodied in assessment practices. Bagger et al. analysed 
how a neoliberal regime of assessment has expanded into the domain of preschool-class education in 
the Swedish context. The first half of the 3rd session was devoted to the connections between 
mathematics and life. Aizikovitsh-Udi reported on a teaching unit that aimed at explicitly teaching 
critical thinking skills. Yolçu problematized the forms of responsibilisation, reason and rationality in 
a course on “mathematical applications” in Turkey. In the second half, the contributions of Kollosche 
and of Lüssenhop et al. focused on language diversity, the former proposing guidelines for analysing 
and developing teaching materials, the latter exploring the practices of teachers in international 
preparatory classes for refugees. In the 4th session, Makramalla et al. explored the gaps between the 
“mathematical ideologies” of the Egyptian curriculum, of the teachers and of the teachers’ practices, 
yielding the potential for change within the contextual power dynamics operating in Egypt. Foyn 
confronted an emerging public discourse in Norway on disadvantaging boys with data from a 
longitudinal study, highlighting the need to nuance the debate and not lose track of the discourses that 
still disadvantage girls. Critically reflecting the power relations between the researcher and her/his 
informants, Lembrer raised methodological questions concerning the use of photo-elicitation for data-
collection in the context of early years mathematics education. Kara et al. presented their research on 
the relation between students’ social backgrounds and their problem-solving competencies. Nordkild 
et al. reported on a culturally sensitive teaching unit in Finland. The unit was developed by students 
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with a Sami background to teach geometry to peers from their own culture. The first half of the 5th 
session was devoted to mathematics teacher education. Povey reflected on the potential of her own 
teaching practice as an embodied case of a “living education theory” to serve the aims of social 
justice. Dexel et al. showed how a course on inclusive mathematics teaching for pre-service teachers 
fostered a potential-related perspective on diversity within teacher-students. This potential-related 
perspective on diversity was further developed in the second half by Padilla et al. who proposed the 
conjunction of interdisciplinarity, culturally sustaining pedagogies and pandisability cultures as a 
point of departure for co-creating diverse mathematics learning contexts. The need for such co-
creation was empirically consolidated by Nieminen who reconstructed discourses of otherness in self-
reports of university students with special needs. The 6th session zoomed in on the mathematics 
student. Both the contributions of Röj-Lindberg et al. and Doğan reconstructed students’ 
perspectives. The former did so through a longitudinal study that provided insight into why some 
students develop negative identifications with mathematics despite the reform-related efforts of their 
teachers. The latter turned the focus on a popular Turkish social medium, where almost a thousand 
users reported on their moments of farewell to mathematics and constructed it as an individual and 
subject-related fate. The last thematic pair focused on students’ identities. Taking an intersectional 
approach, Sabbah et al. investigated how categories of gender, ethnicity and religion play out in the 
formation of agency and identity in female Arab students entering university mathematics in Israel. 
Gebremichael explored in an Ethiopian context how students perceive the relevance of mathematics 
and how this is closely linked to the development of identity. His analysis also sheds light on how 
little Ethiopian mathematics education is attuned to Ethiopian society’s needs and the possible 
historical reasons for this. 

Common conclusions 
All contributions and discussions were characterized by a strong openness to perspectives and 
methods that are not yet established within the field of mathematics education, but belong to the state 
of the art in the corresponding disciplines of reference. This interdisciplinary character was 
consistently appreciated. It also led participants to collectively question the “nature” of mathematics: 
How do we define it? What are legitimate sources of reference? Who decides what is legitimate? The 
group agreed that these questions must remain undecided. Another issue that found unrestricted 
approval was the necessity of bringing theory and practice together, not only rejecting theory for 
theory’s sake but in a similar manner rejecting excessively inductive empirical research. This 
commitment to (social) theory is related to the critical spirit that participants saw as common ground, 
binding the group together. Work in this group is largely concerned with a critique of the status quo. 
This critique may concern educational institutions or the societies we live in more broadly. Group 
members were united in the desire to change systems, whilst at the same time being aware that they 
are part of these systems themselves. This insight resulted in a self-critical attitude when it comes to 
assessing the ethical ramifications and also the generalisability of research. The self-critical attitude 
expressed itself in the fact that participants consensually cherished TWG work as an opportunity of 
“decentring oneself”, an opportunity to experience their own perspective as one among legitimate 
alternatives, thereby allowing a reflection about each perspective’s social, cultural, and political 
foundations. It was also expressed in a deep concern for the power relations that pervade instances of 
mathematics learning and teaching as well as research practice and the dynamics within the working 
group itself. 
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Open questions / controversy 
While the participants all agreed on conceptualizing power as simultaneously having both restricting 
“negative” as well as empowering “positive” effects, the group remained undecided about the 
normative ramifications related to identifying power relations. For example, the group addressed the 
question of whether there is a boundary between acceptable and unacceptable values. What would a 
strictly horizontal organisation of values imply? If we do not privilege some values over others, how 
can we, then, talk back to and fight against socially accepted forms of oppression and violence? 
Related to the question of equality of values is the question about the role and function that we assign 
to schools: Is it their task to adapt to students’ backgrounds? Or is it exactly their task to treat students 
irrespective of their background, or at least help them to transcend their backgrounds? Reflecting the 
political and moral underpinnings of each of the participants’ stance certainly created tensions within 
the group. Some participants may identify with dissolving tensions to one side or the other, a third 
part of participants may identify with the contradiction inherent in the tension itself. While the group 
agrees that it is a collective task to deal with these contradictions and tensions, there may be different 
normative stances on how this should be done: Once power relations within the group surface, should 
the use of power be regulated? Can the group benefit in the future from explicit rules so that 
“privileged” participants develop techniques to govern themselves, re-distributing power to the “non-
privileged”? Or would this suffocate the attempt to embrace controversy, finally leading to 
synchronization of perspectives and thereby jeopardizing the cherished opportunity of decentring 
oneself? Another controversial issue was the role of utopia in our research: Is utopia the generator of 
change that allows us to think of something in rupture with what exists? Or is utopia actually 
preventing change to materialize by outsourcing change into some displaced “alternative reality”? 
Finally, identifying all these controversies led  to commonly posing the question: How much diversity 
can a thematic working group on “diversity” productively handle? 

Future tasks 
The group identified a need to ensure the productivity of diversity and saw the danger of losing depth 
in the discussion. Depth, here, applies both to the scientific quality as well as to the social quality of 
mutual intellectual engagement. Two ideas that found approval were 1) the reformulation and 
specification of the group’s theme and 2) a stronger focusing and specification of the group’s call for 
papers. Concerning the theme, the group agreed that even though diversity adequately described the 
spirit of the group, it factually did not serve anymore as the thematic pivot. It is a designated task for 
the future TWG-leaders to maintain this spirit of diversity. However, the contributions rarely 
addressed diversity explicitly. The group suggested to exclude diversity from the title, nevertheless 
making sure that the call maintains the thematic inclusion of diversity as a theme (among others). 
Further, the call should more explicitly demand authors to interrelate “the micro” and “the macro” 
which also implies a stronger attentiveness to social, cultural and political theory. If the next group-
leaders should, however, decide to keep diversity in the title, there is a need to sharpen the call for 
papers in that direction. In order to develop in any of these directions, the group requires a clearer 
and more concise focus in order to maintain its scientific and intellectual productivity.  
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“Probability and Statistics in Daily Life” 

Einav Aizikovitsh-Udi  

Davidson Institute, Weizmann Institute of Science, Israel; einav.aizikovitsh@weizmann.ac.il 

This paper presents a teaching experiment that combined the explicit teaching of critical thinking 
with the content of an existing mathematics unit called “Probability and Statistics in Daily Life”. The 
original unit was designed to teach probability and statistics through real-life scenarios at the high-
school level. I took the original mathematical content and “infused” it with a progression of critical 
thinking skills, so that both the mathematics and the critical thinking competencies developed 
hierarchically, growing more and more complex as the unit progressed. This paper illustrates the 
mutual benefits of this “infusion” to both the teaching of statistics and of critical thinking. The paper 
discusses the problem of transfer of critical thinking skills and shows some promising elements in 
that sense, deriving from the analysis. Finally, it also discusses some educational implications of the 
work done, the limitations of the unit’s first run and the improvements that may yet be made. 

Keywords: Critical thinking, probability, statistics in daily life. 

Introduction 
This paper reports a research project undertaken into the utilisation of the mathematics classroom for 
the specific development of critical thinking skills through probability instruction (Aizikovitsh-Udi, 
2012). In this paper, critical thinking skills are taken as representative of the aspirations of the 
majority of mathematics curricula. I suggest that the mathematics education community needs to 
investigate why the consensus regarding the importance of higher order thinking skills in mathematics 
has not led to greater consistency and success in its classroom implementation. This research 
represents one attempt to give classroom reality to this curricular aspiration and examined the 
processes of construction of critical thinking skills (e.g., identifying variables, suspension of 
judgment, referring to sources, searching for alternatives) during the study of the “Probability in Daily 
Life” learning unit in an infusion approach. In particular, I closely reviewed the contents of the 
learning unit for connection to relevant thinking skills. The skills that were found relevant were: (a) 
identifying variables; (b) referring to sources; (c) identifying assumptions; (d) evaluation of 
statements; (e) suspending judgment; (f) offering alternatives.  

Theoretical Background  
The term “critical thinking” (CT) has been used in academic circles for less than a century, but 
evidence of the relevance of this concept in education is far older, spanning several forms of human 
endeavor and 2500 years of human history since the Greek Antique. The universal applicability of 
these “ancient” skills is perhaps more relevant than ever in today’s complex and ceaselessly changing 
reality, which requires independent decision-making on a daily basis. Fostering and developing 
students’ ability to think critically, to be capable of engaging in inquiry and evaluation based on 
rational considerations regarding the various messages they are exposed to in different areas of life, 
is therefore a particularly important part of their education (Bryan, 1987; Feuerstein, 2002; Glaser, 
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1972). While this need to focus on the promotion of CT skills has long been widely recognized by 
educators (Ku, 2009), they have not yet reached a similar consensus regarding how best this should 
be done. This on-going debate raises the question of whether critical thinking should be taught as a 
topic in its own right, or integrated into a topic already present in the school curriculum. This question 
in turn raises additional questions – for instance, if critical thinking is integrated, which subjects 
should it be integrated with? Furthermore, when teaching CT skills in conjunction with another topic, 
should these skills be taught implicitly, as a hidden component ‘immersed’ in the primary material, 
or should they be an explicit part of the learning experience, in which the students’ attention is drawn 
to their presence as an additional component ‘infused’ into the material through which it is being 
taught?  

Amongst those who believe that critical thinking should be taught in conjunction with other subjects, 
one of the topics suggested for this purpose is mathematics. In the field of education, mathematics 
has traditionally been considered a branch of knowledge particularly suited to the teaching and 
learning of higher-order thinking skills such as critical thinking. Mathematics curricula all over the 
world, including Israel, identify the acquisition of these skills as one of their goals. The idea that 
mathematics is a discipline suited to teaching critical thinking also appears in the research literature 
in a more or less explicit way (Elder & Paul, 1994; Paul, Elder, & Bartell, 1997).  

However, in spite of this assumption, very few empirical studies to date have engaged with the 
question of whether the study of school mathematics indeed develops or even requires this mode of 
thinking. The answer to this question is far from being clear. The study upon which this paper is based 
attempts an approach to teaching critical thinking through mathematics that explicitly integrates the 
topic into a learning unit designed to teach high-school level probability and statistics. This topic is, 
I believe, particularly well-suited for the acquisition and practical application of critical thinking 
skills. Our model is based on the combination of two theoretical elements: the hierarchical model of 
critical thinking skills presented in Ennis’ (1985, 1987a, 1987b) taxonomy and the “infusion 
approach” to teaching posited by Swartz & Parks (1994), To create the new learning unit, whose 
classroom implementation is presented in this paper, I took the mathematical content of an existing 
learning unit called “Probability and Statistics in Daily Life” (Lieberman & Tversky, 2001) and (in 
collaboration with one of this unit’s co-creators) I “infused” it with a hierarchical progression of 
critical thinking skills according to Ennis’ taxonomy (Ennis, 2002). In this paper, I present, in order 
of increasing complexity, a series of three samples from the classroom implementation of the unit. 
These illustrate a) how the two topics develop hierarchically together, and b) how each lesson 
combines them anew, calling on the students to draw on both their mathematical and their critical 
thinking skills to solve problems based on daily life. 

Methodology 
The “Probability and Statistics in Daily Life” learning unit as a basis for teaching CT 

“Probability and Statistics in Daily Life” is a preexisting learning unit developed by Lieberman and 
Tversky (2001), which was expanded and modified for the purposes of this research. I selected this 
unit as a basis upon which to build the teaching experiment reported in this paper because it was 
designed to teach mathematical content using problems and stories from daily life, and because its 
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rationale already alluded to “elements of critical thinking”, citing these among the “issues relevant to 
daily life” that it hoped to teach (Lieberman & Tversky  , 2001, p. 3).   

The original unit was based on Tversky and Kahneman’s well-known work on making decisions in 
conditions of uncertainty (Tversky & Kahneman, 1974; Kahneman, Slovic, & Tversky, 1982). It 
covers topics in statistics and probability in hierarchical order, connecting each to daily-life scenarios 
and decisions. The purpose of the original unit was to turn students into ‘intelligent’ consumers of 
information by introducing them to modes of thinking that went beyond the mechanics of 
mathematical calculation. The use of problems from daily life exposed the students to various 
additional fields such as medicine, economics, and law, illustrating the practical applications of 
probability and statistics to these fields and showing the students the ways that statistical 
considerations are inextricably woven into our lives. Furthermore, the unit’s composition required 
them to analyze problems, raise questions and think critically about the numerical data and the 
information placed before them. Faced with problems that did not necessarily have one correct, clear-
cut answer, the students learned not to be satisfied with arriving at a numerical solution, but to assess 
the validity of data, and to assess the problems before them in a qualitative – and not just a calculative 
– manner. I composed a revised version (Aizikovitsh-Udi, 2012). The unit combines the hierarchy of 
topics in probability and statistics with a corresponding hierarchy of topics in critical thinking, so 
that, as the students progressed in the former, they would also progress in the latter. 

Setting, population and data collection 

Results presented here are from a subgroup of one class taken out of a larger population of six classes 
(147 students in all, three experiment groups [70] and three control groups [77]). The larger 
population was used for deriving quantitative results regarding the experiment’s efficacy, which are 
not presented here. In this paper, I will present two groups: 18 students were taught by the researcher 
in high school 1, 20 students were also taught by the researcher in high school 2 in central Israel.  

The experiment consisted of 15 sessions (90 minutes each) during the course of the academic year 
and served as the “probability and statistics” section of the students’ mathematics curriculum for that 
year. The group whose sessions are described here was the one taught by me, in my capacity as these 
students’ regular mathematics teacher. Data collection was conducted by way of triangulation 
between the following sources: (i) The students’ written products, including exams, in-class papers, 
and homework were collected. (ii) Sessions were recorded, transcribed and analyzed (paying special 
attention to their relation to CT skills). The teacher kept a log on every session. In general, data were 
processed by means of qualitative methods, which enabled me to follow the students’ patterns of 
thinking. (iii) Personal interviews: 27 students were randomly chosen (four from each of the seven 
experimental classes) and interviewed at the end of the first and second semesters, in the middle and 
at the end of the unit. Personal interviews were conducted in order to reveal changes in the students’ 
attitudes towards critical thinking throughout the academic year. The interviews were of two kinds: 
closed/structured interviews, based on questions chosen in advance, and open/semi-structured 
interviews, where only part of the questions chosen in advance was asked (possibly in modified form) 
according to the interviewees’ answers. The interview questions were: (a) What do you think about 
the importance of critical thinking ability? In which fields/activities is it important?  (b) Can you give 

Thematic Working Group 10

Proceedings of CERME11 1825



 

 

an example of a situation (from school, everyday life, etc.) where critical thinking is necessary? Have 
you used it? Did it help you? (c) In your opinion, is it possible to develop/improve critical thinking 
ability? How? Do you have any suggestions for improving it? (d) In your opinion, is it possible to 
change dispositions for critical thinking? How? What influences the dispositions? Do you have any 
suggestions for improving them? (e) Did your studies in the other disciplines improve your ability for 
critical thinking? If yes, in what course and in what way? If not at all, why not? (f) How would you 
evaluate yourself in the area of critical thinking? The intended aims of the six questions were: (1) To 
ascertain the degree of students’ awareness of the nature of critical thinking (mainly questions a, b, 
e, f, through the pertinence of the examples and the answers). (2) To identify students’ ideas about 
possible fields of application for critical thinking (a, b), and in particular to identify suggested fields 
far from those proposed during the course (as a sign of interiorization and a premise for a possible 
transfer). (3) To get feedback about students’ perception of which aspects/moments of the course had 
an impact on their CT skills and dispositions (c, d), as a way to assess students’ awareness of the aims 
of the course.  

Results 
Analysing the Findings by two lessons 

In what follows, I present two lessons, taken from three progressive points within the learning unit.  
For each, I present the daily-life topic upon which the lesson was based and show how first the 
mathematical content and then the thinking skills were integrated into it. In addition to exemplifying 
how the two topics were tied together, the succession of the lessons shows how both the mathematical 
content and the critical thinking skills built upon themselves hierarchically as the unit progressed, 
involving students in meaningful activities related to the aims of the learning unit (development of 
both CT and mathematical competencies). Each of the three selected samples also highlights a 
different element of the program. The first lesson, in which the students are sent outside of the 
classroom to gather data for themselves, highlights the centrality of the practical “daily life” element 
in the study unit. As this example shows, each daily life story or problem places the students in a 
position where they must draw on both the mathematics and the critical thinking skills to gather the 
information they need to make their decision. The second lesson is the most elaborated and detailed 
of the three examples, and it shows (through a long excerpt and the related analysis), how the melding 
working hypothesis was implemented (thus showing its feasibility). It also shows how by that point 
in the learning unit specific features of CT had already been interiorized by students, and how specific 
CT expressions entered students’ language and were used by them in an appropriate way (see 
Discussion). The third example stresses the four-step format of each lesson, and emphasizes the 
function served by each: It shows how the daily life scenario triggered the students’ intuitive response, 
which was then informed and modified by the mathematics before being rethought and adjusted a 
second time by further application of CT. This problem shows the unit’s lessons at their final and 
most advanced stage, where the students see that CT can be used not only to support conclusions 
based in mathematics, but also to look beyond them. 
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Example #1: The shoe size problem as an introduction to Simpson’s Paradox1 

This lesson (Aizikovitsh & Amit, 2008),, taken from the point of transition between chapters one and 
two, introduced the mathematical concept of the “mediating factor” (see below). In terms of critical 
thinking, it engaged the students in: a) identification of relevant questions and variables; b) locating 
the source of information; c) evaluating/analyzing the validity of statements. The students were given 
the following dialog called “Shoes and Mathematics”: 

Avi: “There is a connection between shoe size and level of mathematical knowledge.” 
Beni: “Can’t be.” 
Avi: “Go to the school in the next building and see for yourself.” 
Beni: “You are right, the kids who wear bigger shoes really know math better!” 
Why is this phenomenon true? What do you think about the conclusion? 

The purpose of this lesson was to show the students that while causal connections are predicated on 
the presence of statistical connections, the presence of a statistical connection does not necessarily 
mean that a causal connection exists. Most of the students had a strong initial intuition that the causal 
connection was impossible, but they did not yet know how to explain and support it mathematically.  
After the preliminary discussion of the students’ intuitions, several of them were sent out to ‘gather 
evidence’ at the nearby elementary school, stopping random students and asking them: a) their shoe 
size, and b) what mathematical topics they were familiar with. This exercise introduced a critical 
element into the lesson, with the students validating the reliability of their source by gathering the 
(seemingly) corroborative data themselves. The ultimate purpose of this lesson is that the students 
recognize the logical fallacy in the connection suggested here between shoe size and mathematical 
knowledge by realizing that this connection is generated by a mediating element (the child’s age). 
The mathematical content of the lesson consisted in the translation of the information into a 
mathematical format (set theory) and the use of a two-dimensional matrix. I also performed new 
calculations that included the mediating factor C. I found that statistical connections exist between A 
(shoe size) and C (age), as well as between B (mathematical knowledge) and C (age). This, I argued, 
is the reason for the statistical connection between A and B. By means of this process and its 
illustration through the real-life example of shoe size, the students were introduced to Simpson’s 
Paradox and the concept of the mediating factor. The critical thinking portion of this lesson consisted 
primarily in the students learning to evaluate and question the validity of their information, even when 
they had obtained that information themselves, in recognizing the fallacious connection and in 
drawing an alternative, valid conclusion.  

                                                 
1 Simpson’s Paradox refers to the situation where normalizing data from different ways of partitioning the same population 
will provide incompatible conclusions about the associations that hold in the total population. For example, a partition by 
gender might indicate that both males and females fared worse when provided with a new treatment, while a partition of 
the same population by age indicated that patients under fifty, and patients fifty and older both fared better given the new 
treatment. The relevant element for this paper is the role of the mediating variable (age or gender).  
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Discussion & Conclusion  
As the examples above show, the mathematical content of statistics and probability is well suited to 
being ‘infused’ with instruction in critical thinking skills. The hierarchical patterns in which both the 
content and the skills can be taught complement one another structurally, with more elements of 
critical thinking coming into play as the mathematics becomes progressively more complex.  The two 
instructional goals (statistics and critical thinking) are also mutually beneficial in terms of content: 
The mathematics provides the students with a means to engage in critical thought and pursue 
independent challenges and confirmations to the information they are given. The “Probability in Daily 
Life” unit provides the mathematics with a practical ‘real-world’ context that can help the students 
comprehend the material more concretely as more than the abstract manipulation of numbers on a 
page. The various critical thinking skills could then be taught explicitly in the context of using 
mathematics to solve problems in the real-world situations. The addition of critical thinking provides 
an added reflective dimension to the mathematical treatment rendering both the approach and the 
results more meaningful to students. 

Analyzing the findings, I have arrived at the following generalizations regarding the process of critical 
thinking skills construction and teaching: (1) It seems that critical thinking skills do not develop 
spontaneously and that even good students acquire them by means of explicit instruction. This finding 
is in direct opposition to Tennyson & Rasch (1988) claim that learning skills and learning strategies 
develop in the student spontaneously, without direct instruction. (2) To a large extent, the construction 
and teaching of critical thinking skills are determined by specific contents and tasks the teacher uses. 
In this research, the skills were chosen with respect to the contents and the increasing difficulty level 
of the learning unit. (3) It is possible to significantly influence and change the mathematical discourse 
of the classroom and the students’ language of critical thinking, by providing appropriate conditions 
and using appropriate instruction methods. This type of learning emphasizes the development of skills 
in the process of solving mathematical problems.  

In much of the literature, critical thinking development is referred to as an important goal of the 
educational system. This research may contribute to the public discourse of the mathematical 
education community on this issue. It also raises the public awareness of the need to develop critical 
thinking in the framework of mathematical education, which may enable future examination and 
promotion of critical thinking development through mathematics teaching in a fuller and more 
informed way. To conclude, the main contribution of this research lies in revealing the connection 
between critical thinking and the teaching of mathematics. It should be possible to strengthen the 
status of the study of mathematics in imparting higher-order thinking skills, both in parallel with and 
beyond the formal education program. This paper has reported an investigation into the use of the 
infusion approach to teach critical thinking skills while also teaching conventional probability and 
statistics content. The students acquired critical thinking skills that they came to value.  
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One of the latest reforms in Sweden in order to increase equity and quality in education is making 
national assessment compulsory in preschool-class (age 6). The claimed political volition is all 
students’ best possible mathematical development. In this paper, we examine the preparatory work, 
the assignment to the National Agency of Education, and the assessment material itself, searching 
for what meaning is inscribed regarding the student, mathematics and assessment. The results imply 
that the politics of the assessment might exaggerate a search for flaws and control instead of 
promoting all students learning and in addition contributing to the schoolification of preschool-class. 

Keywords: Early assessment, preschool-class, development in mathematics, national assessment. 

National assessment in mathematics 
National and standardised assessment has been vastly criticised and described as driven by a neo-
liberal logic and securing market values (Dreher, 2012; Luke 2011; Lundahl, 2016). Equality and 
values of social justice, diversity and democracy are shown to be threatened by these kinds of tests 
(Hudson, 2011; Lundahl, 2016; Peters & Olivers, 2009; Rustique-Forrester, 2005). In Sweden there 
are currently three national tests in compulsory school that all students have to take: in grade 3 (age 
9), grade 6 (age 12), and grade 9 (age 15). National assessment in mathematics, in the form of a 
support material, is also compulsory in grade 1, and voluntary in grade 2. The national assessment 
system has recently been evaluated (Regeringen, 2016). Since autumn 2019, this has led to a 
supplementation with compulsory national assessment also in preschool-class (age 6), which is a 
separate school form within the Swedish school system. The everyday assessment discourses in the 
classroom of the preschool-class are characterized by an activity-specific educational culture, which 
is meant to stand between the pre-school’s and the school’s norm systems (Vennberg, 2015). 
Important reasons claimed for developing the system are to direct teachers’ attention, use of 
mathematical concepts, and efforts in certain directions, and through that striving towards equity and 
quality. These are in other words areas that are understood as important to govern. A core issue in 
assessment of preschool-class students’ knowledge is also to early identify students in need of 
support. This is considered as a prerequisite for affording equal opportunities to learn, regardless of 
background factors. Another argument is to diminish the decrease of measured knowledge in grade 
9, and the identified differences in the quality of support given to various students and in different 
schools (Regeringen, 2017a).  

According to Boistrup (2017), a lack of equality can be found in the context of assessment at different 
levels within the school as a system. Assessment in mathematics can be said to hold a gatekeeping 
dispositive regarding the access to success. This dispositive may play out in the immediate situation 
of assessment if students belonging to disadvantaged groups face obstacles in displaying knowledge. 
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An example is when the teacher feels that securing multi-lingual students’ equity could threaten the 
tests validity (Bagger, 2017). These findings from earlier research indicate that it is urgent to continue 
to investigate how the assessment and the teacher are governed. In this paper, assessment in 
mathematics education is understood as an element of governing (Foucault, 1994), where purpose 
and how it is carried out have impact on aspects related to quality and equity. Newton (2007) stresses 
that if several purposes of assessment – to evaluate education, to make grounds for decisions of 
recourses, and assessment of knowledge – are active simultaneously, conflicts of interests are built 
into the assessment, and a test will work poorly for all or mainly for some of the purposes. Further, 
how the teacher understands the student and the teaching content will have impact on the 
mathematical support (Scherer, Beswick, DeBlois, Healey & Opitz, 2016). Related to this, a study by 
Bagger (2017) indicates that the educational segregation in the teaching and learning of mathematics 
might occur earlier with earlier testing. Simultaneously, there are indications that if the preschool-
class teachers get skilled in assessing mathematical knowledge, students at risk in preschool-class 
reach similar achievements as their peers in the national test in grade 3 (Vennberg & Norqvist, 2018). 
Our assumption is that assessment in the preschool-class constitutes a risk for but also an opportunity 
to levelling disadvantage. 

The purpose of this study is to increase our knowledge of how policy documents govern the 
implementation of national assessment in preschool-class in mathematics. This is achieved through a 
systematic exploration of how some central aspects are discursively constructed: the student, 
mathematics, and assessment. 

Theory and methods 

In this paper, discourse is taken as representations of power, truth and knowledge that govern 
individuals and society. Truth and knowledge are further understood as social constructs and as such 
they evoke power relations (Foucalt, 1994). Popkewitz (2004) draws on Foucault’s thinking and uses 
the concept of fabrication as a governing technology. Categories, for example central notions adopted 
in assessment practices, are conceptual constructs through which reality can be understood and is 
simultaneously fabricated. These fabrications communicate versions of truth, knowledge and power, 
and coincide with processes of exclusion and inclusion. Governing texts are regarded as inscription 
devices that attribute terms, possibilities, and characteristics (Popkewitz, 2012). In this case, the 
governing texts are the testing material, political preparatory work, and decisions, through which the 
student as a mathematician, the teaching content, and the assessment are understood as attributed with 
terms, possibilities and characteristics. In other words, the texts fabricate the student, the assessment 
and the subject, and also inscribe meaning into them. This might by extension affect how the student, 
subject and assessment are handled and understood in the practice and governing of national 
assessment in preschool-class. The governing may then concern what is considered as ‘true’, what 
counts as ‘knowledge’, how students’ knowledge is valued, and how results should be used. 

The texts selected to explore the fabrications of mathematics, the student and the assessment are 
preparatory work and political decisions regarding the assessment in preschool-class and the material 
for assessment (see Table 1). Initially, in the analytical process, statements concerning preschool-
class were selected from the texts into a scheme in which each text was in its own column. After that, 
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all utterances depicting the student, the mathematics, or the assessment were coded in different 
colours. The next step was to ‘translate’ such utterances into explanatory paraphrases. The 
fabrications were thereafter narratively construed with regards to how terms, possibilities, 
characteristics, and demarcations were attributed. An example of the analysis is displayed in Table 2.  

Text Responsible author and short description  
Skolverket (2016)  Comments to curriculum. Swedish National Agency of Education (SNAE). The purpose 

and content of mathematics in preschool-class.  
Skolverket (2018)  National support for assessment in mathematics in preschool-class 
Regeringen 2017a  Swedish Government (SG). The assignment to the SNAE to develop the national system for 

assessment including the material for assessment in preschool-class.  
Regeringen (2017c)  SG. A bill guarantying support in reading, writing and counting.  
Utredningen om 
nationella prov (2016).  

SG. A bill in which the need for assessment in preschool-class is put into the context of 
national assessment and the quality and equity of education.  

Table 1: Overview of the five documents analysed in this paper 
Selected text Explanatory paraphrases Construed fabrication 

“To observe the students’ mathematical 
abilities in different areas of importance for 
development of mathematical thinking”  

The purpose of the assessment is to 
identify student’s mathematical 
thinking 

Lack of mathematical thinking 
is fabricated as the supposed 
obstacle for goal achievement 
in grade 3.  Assessment will 
level inequalities in teaching 
and grant high quality and 
equal support earlier. Another 
threat against equity is the 
teacher who draws wrong 
conclusions regarding support 
or the displayed knowledge. 
So, they also need support. 

“... early identify students who show 
indications of not achieving the goals in 
learning that are set for grade 3” 

This is needed in order to identify 
students in need / at risk of not 
reaching goals three years later. 

“the assessment will help teachers to know 
what support to possibly put in” 

Teachers need help to know how to 
support. 

“National material might increase the equity 
of the quality in the support given”  

There is a lack of equity in the 
support now – another aim with 
assessment. 

“… solutions should be evaluated by 
someone else than the teaching teacher” 

The teacher should not evaluate the 
solutions of her/his own students. 

Table 2: Example of the analytic procedure and construction of the narrative 

Findings 
A narrative was constructed by depicting how mathematics, the assessment and the student were 
fabricated. All texts are in Swedish and quotes have been translated by the authors. 

The fabrication of mathematics 

One aim of mathematics, as construed from the analysed texts, is to be a caretaker of curiosity and 
understanding: “The teaching shall take care of students curiosity and afford them the opportunity to 
develop their interest in mathematics and understanding for the possible use of mathematics in 
different situations” (Skolverket, 2016, p. 13). Also: “students shall be challenged and stimulated to 
use mathematical concepts and reasoning to communicate and solve problems in different ways 
through different representations and to explore and describe their surroundings” (p. 13). The areas 
of mathematics that preschool-class is supposed to pay attention to in order to reach the aim is: 
“Mathematical reasoning and different ways of solving problems” (p. 20) together with 
“Mathematical concepts and representations” (p. 21). Mathematical reasoning is defined as a “logical 
mathematical argument that is used for motivating an answer or a choice” (p. 20), and mathematical 
problems are defined as “situations or tasks in which the students do not know beforehand how to 
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solve the problem” (p. 20).  The mathematical contents that the students are supposed to be offered 
to meet are:  

the characteristics of natural numbers and how they can be used to designate cardinality and 
ordinality…. mathematical concepts and representations in order to explore and describe space, 
location, shape, direction, pattern, time and change. (Skolverket, 2016, p. 21) 

Mathematics is, through the above-mentioned statements, fabricated in the curriculum for preschool-
class as a nurturing and caretaking assignment that will grant the student an opportunity to further 
develop an already existing curiosity, interest and understanding. The mathematical content is 
fabricated as a kind of founding building blocks needed in order to explore and investigate various 
problems and arguments. Problems and reasoning that could impose interest and curiosity are 
additionally fabricated as deriving from visuospatial elements of the student’s surroundings. We 
interpret the intentions of mathematics education, as described in the curricula, as a way of supporting 
the students in experiencing themselves in the world, appreciating diversity in ideas and recognising 
their own competence to deal with problems.  

In the title of the material for assessment itself, mathematics is labelled as mathematical thinking: 
“Find the mathematics. Evaluation material in mathematical thinking in preschool-class” (Skolverket, 
2018, p. 1). In other words, it is fabricated as something that resides within the student. The material 
encourages the teacher to promote different arguments, reasoning, examples, and not to stop or be 
content with just one solution from students. This approach towards exploring is in line with the 
curriculum’s intentions. The areas through which the mathematical thinking is supposed to be 
explored and evaluated are patterns, maps, counting, sorting, and volume. The focus on experiencing 
the world and relations in it, in both the curriculum and the material, fabricates mathematics as 
something concrete and visible that constitutes reality.  We wish to connect this to Straehler-Pohls 
(2015) writings of distributive rules in relation to school mathematics;  

The foundation of this distribution is a stratification of mundane and esoteric meanings. In this 
stratification, esoteric meanings inevitably take the dominant role, as it is these meanings that 
transcend the spatial and temporal materiality that bear the potentials to think yet unthinkable 
solutions that draw on (contextually) external frames of reference” (p. 3).  

Mathematics as concrete and constituting is further interpreted as fabricating school mathematics in 
preschool-class as mundane, at the same time as the exchanged meaning making is supposed to take 
place in an esoteric form through an exchange of different understandings and reasoning. The 
promoted variation in reasoning and solutions connects to a fallibilist (Ernest, 2014) view on 
mathematics in which knowledge is considered fallible and open for revision. In the assessment 
material, there is an attached observation scheme in order to register the student’s knowledge. A text 
on this is: “date when the observation point is reached/finished” (Skolverket, 2018, p.1 in compilation 
form). This assumes knowledge to be possible to observe, reach and check at a certain date, 
fabricating mathematical knowledge as situated in an absolutist perspective (Ernest, 2014) in which 
knowledge is secure, fixed and objective. This is opposed to the fallibilist view, represented in the 
previously described encouragement in the material and curriculum; to explore and negotiate 
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solutions and arguments. It also fabricates the mathematical thinking, or knowledge, as something 
that could and should be reached – as if there were goals to achieve in preschool-class.  

The fabrication of assessment 

The title of the assessment material is: “Find the mathematics: Evaluation of mathematical thinking” 
(Skolverket, 2018). Assessment is thereby fabricated as needed in order to capture the inner world of 
the student, the thinking, or the lack thereof. The thinking is further fabricated as promoting or 
threatening a development of knowledge towards the goals in grade 3: “… is carried out during 
autumn in preschool-class so that the teacher can early identify students who show indications of not 
achieving the goals in learning that are set for grade 3” (p. 3). This message is also repeated in the 
preparatory work and the assignment to the Swedish National Agency of Education to develop this 
material. In addition, assessment is in these preparatory texts fabricated as something that will level 
inequalities in teaching and grant high quality and equal support earlier: “Nationally produced 
material might also increase the equity of the quality in the support given and contribute to a common 
terminology regarding assessment, progression and knowledge requirements which will lead to 
higher quality of judgements” (Regeringen, 2017a, p. 5). Teachers are fabricated as being responsible 
for detecting where in the development the student is and to adapt teaching so that the student can 
achieve the goals in third grade. This is seen in several parts of the texts and in the instructions to the 
material. For example: “to give teachers a clearer basis for assessment of the student’s knowledge 
development and more information on what support to introduce” (p. 2). Also, the material will 
evaluate the teaching and help teachers to correct it through “affording preschool-class teachers and 
teachers support in seeing how opportunities and obstacles in the teaching impacts on students 
learning.” (pp. 1–2).  The proposition further fabricates assessment as insecure and invalid due to the 
teacher and relations involved: “solutions should be evaluated by someone else than the students’ 
teacher, and such solutions should be de-identified” (p. 1). Another statement fabricating the teachers 
as the ones in need of support is in the assignment to the national agency of education: “the material 
will be completed with a supportive material for analysing evaluations” (p. 2). The assessment is then 
fabricated as a tool to control and support teachers in the assessment process.  

The fabrication of the student 

In the curriculum, the student is fabricated as already mathematically able and interested: “Teaching 
shall take students curiosity into consideration and give them the opportunity to develop their interest 
in mathematics and their understanding of how mathematics might be used in different situations” 
(Skolverket, 2016, p. 13). This harmonises with statements in the instructions to the material in which 
the use is presented as an opportunity in itself to learn mathematics: “By allowing students to meet 
activities that differ in character, they can develop trust in the ability to solve problems in different 
situations and contexts” (Skolverket, 2018, Instruction to material, p. 4). The student is thereby 
fabricated as a learner, rather than a test-taker. This stands in contrast to other statements in which 
the students are depicted as needed to display their knowledge. Such statements occur in the 
preparatory work and the material itself. The curiosity and interest that was fabricated as 
mathematical entities within the student and as something that the school should build on in the 
curriculum is instead fabricated in the material as a kind of mathematical knowledge that the student 
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must display. “When the student shows curiosity and interest for the mathematical content, it reflects 
how the student participates in the activity” (p. 4). The participation is further fabricated as the notion 
that will inform the teacher about “where the student is in her/his development” (p. 5). In the 
preparatory work, the assignment, and the material, there is an overweight towards the student being 
fabricated as lacking or possibly missing knowledge, that those errors may grow and therefore need 
to be identified and corrected through adaptations of education. 

Conclusions and discussion  
A higher degree of goal achievement and increase of test-results have been central arguments in the 
evaluation of and revision of the national system for quality measuring (Regeringen, 2017b). This 
stands in contrast with the preschool-class’s pedagogical assignment of being a bridge between 
preschool and school. National and compulsory assessment in preschool-class is a new phenomenon 
and it is crucial that it is implemented in a manner that is in line with this educational spirit of 
preschool-class. Otherwise, the assessment might not present an opportunity to nurture interest, 
curiosity and the identity of being a mathematical learner and explorer, but instead contribute to an 
approach in which it is the performed interest or competencies that counts. The preschool-class could 
risk being colonised by the prevalent neoliberal logics of governing that exists in compulsory school 
including schoolification of the assessment practice in mathematics.  

A focus on mathematics as the observed and displayed activity, and the assessment of knowledge as 
making achievement visible, positions the 6-year-old preschool-class student as a test-taker and the 
teacher as the controller and corrector of knowledge. The mathematical thinking and development 
were fabricated in the data as having a certain order or being a destination. To identify where the 
student is positioned on this map or road, is claimed as a key for giving adequate support early. A 
question to raise is how the teacher is supposed to position the students’ place in development through 
observing their displayed participation, as suggested (and we are reluctant to the idea of assigning 
students places in developmental ‘paths’, but that is not in focus in this text). It may be many factors 
that affect how and if a student participates, several of these have to do with the organisation of 
education and teaching. These are mentioned in the material with regard to the importance that 
students are allowed to express different ideas, which can also happen with other modes than spoken 
language. The stress laid on the freedom to communicate and try ideas indicates that it should be an 
explorative and playful situation. Also, knowledge can be displayed outside these situations or with 
other alternative and adaptive settings. These fabrications stand against the one of control and goal 
achievement. An adapted and creative mathematical teaching is supposed to be the possible outcome 
from the analysis of the material. We question how this can this happen, in a practice deriving from 
an assessment that is only assessing a few mathematical items. This is significant, not least since the 
risk of ‘teaching to the test’ is obvious. Another aspect is how the mathematical processes, selected 
and tested in the material, are promoted as the mathematics, which is limiting in itself. There is a risk 
that the material may contribute to the narrowing of implemented curricula, teaching to the test, and 
seeing students as their levels of achievement, as reported in previous research (Wrigley, 2010). 
Thereby, the material may unintentionally limit possibilities for development and knowledge in 
mathematics, which is opposed to the purpose of increasing equity and quality. 
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The described use of the assessment material is easy to interpret as being about a search for problems, 
rather than promoting education for all. The strive towards high quality and quality in equity is then 
becoming an issue of everyone doing the same thing, having the same focus and the same demarcation 
in regard to the support given and the mathematics taught. A final question is: Is this assessment 
material a material for teaching or a material for controlling, and if so, what is being controlled and 
thereby restricted, locked in, or included? What is excluded when it comes to kinds of students, kinds 
of mathematical knowledge and kinds of teachers’ ways of teaching? Our hope is that the discursive 
fabrications, presented in this paper, of assessment, mathematics and who the student is, may 
contribute to revealing some of the underpinnings in the so-hard-to-grasp patterns or structures of 
disadvantage in mathematics education.  
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This paper considers what the praxis of ‘Funds of Knowledge/Identity’ (FoK/I) might offer to 
researchers and practitioners of mathematics education. Building on a critique of FOK/FOI as 
reflecting cultural capital (in Bourdieu’s sense) we posit the notion of ‘use value’ in the knowledge 
and practices of oppressed communities: in knowing how to live poor, how to resist capital, and how 
to solidarise in social movements related to class, nationality, race, gender, sexuality etc. We focus 
on ‘dark’ FOK - defined as difficult or challenging experiences for learners and/or communities; we 
reconceptualise these as related to the objective relations of oppression under capitalism whereby 
‘dark funds’ are the surfacing of class contradictions in our learners’ experiences. The implications 
for critical mathematics education are led by these considerations: in the problems we choose to 
tackle, the partners we choose to work with, and the research methodologies we adopt.  

Keywords: Funds of knowledge, funds of identity, social class, mathematics. 

Introduction 
The Funds of Knowledge (FoK) (and more recently Funds of Identity – FoI) perspective has 
increasingly been utilized by those interested in addressing issues of inequality and oppression in 
education (including mathematics education, González, Andrade, Civil, & Moll, 2001). Arguably, 
mathematics is a significant area of the curriculum for such work given the commonly accepted 
‘gatekeeper’ role it plays in sorting and selecting who has access to high status careers/subjects and 
its function in excluding those from disadvantaged backgrounds (Jorgensen, Gates, & Roper, 2014). 
In this paper, we present a narrative review of the literature on FoK/FoI in order to demonstrate how 
key critiques present important implications for how we conceptualise and how we ‘do’ critical 
mathematics education.  

Funds of Knowledge/Funds of Identity in/for Mathematics Education 
The ‘Funds of Knowledge’ (FoK) approach, originally developed by Moll and colleagues at the 
University of Arizona working with Latino immigrant communities and schools, has sought to 
emphasize the rich resources children have access to and experience in the home/community 
environment. In order to challenge the normative assumption that children from such communities 
are in some way ‘deficient’, it presents home activities (and the associated knowledge) as a rich 
resource for developing and teaching a school curriculum orientated towards social justice which are 
embedded in complex/rich social networks. The premise is that building a curriculum on these ‘funds’ 
will establish more meaningful connections between the school curriculum and learners lives beyond 
school. In one example, Moll, Amanti, Neff, and Gonzalez (1992) documented the development of a 
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learning module around the FoK evident in the home of one child, Carlos, who engaged in buying 
and selling Mexican sweets to friends and relatives after visits to Mexico. This is presented as a hybrid 
curriculum since it initially involved bringing the home experience into the classroom (e.g., parents 
came into the classroom to make Mexican sweets with the children) but then incorporated formal 
curriculum knowledge (e.g., the ingredients of Mexican and American sweets and comparison of their 
nutritional value). According to Moll et al. (1992) the term ‘funds’ originated from the ‘household 
funds’ paradigm (in anthropology) and refers to the funds that households must juggle to make ends 
meet – rent, social funds, ceremonial funds – each fund entailing a wider set of activities requiring a 
specific body of knowledge. 

The essential cultural practices and bodies of knowledge and information that households use to 
survive, to get ahead or to thrive […] acquired primarily, but not exclusively, through work and 
participation in diverse labour markets. (p. 21) 

More significantly, Moll et al. (1992) were keen to point out that a FoK approach is not merely a 
culturally sensitive curriculum – or rather a ‘static grab bag’ of food, dances and celebrations which 
prove tokenistic (here they align with studies on ethnomathematics/culturally responsive pedagogies 
in mathematics education which also makes a similar critique). But rather this type of knowledge is 
strategic to households’ or communities’ functioning, development and well-being, and particularly 
may relate to the social, economic and productive activities of people in a local area.  

More recently, Esteban-Guitart and Moll (2014) extended their approach to include ‘Funds of 
Identity’ (FoI) which refers to moments where a FoK is used to make some claim to be a certain kind 
of person: 

funds of knowledge become funds of identity when people actively internalize family and 
community resources to make meaning and to describe themselves. (p. 33) 

In this sense, they argue that education/teaching-learning should be about identity development as 
well as knowledge creation since the two are interwoven. Drawing on Vygotsky’s notion of 
perezhivanie (defined as an emotional experience having developmental potential, Blunden, 2016) 
they emphasise the subjective significance of the situation on the persons as they consume and use 
FoK. More so Esteban-Guitart and Moll (2014) define ‘the term funds of identity … [as] a set of 
resources or box of tools and signs’ (p. 37). The authors highlight five types of funds of identity: ‘(1) 
Geographical Funds of Identity…, (2) Practical Funds of Identity…, (3) Cultural Funds of Identity..., 
(4) Social Funds of Identity…, and (5) Institutional Funds of Identity’ (p. 38). 

FoK/FoI approaches have been utilised within mathematics education (Moll et al., 2009; Gonzalez et 
al., 2001) and clearly there is commonality with the ethnomathematics tradition (d’Ambrosio, 1985) 
and Critical Mathematics Education (CME) (Gutstein, 2006; Skovsmose & Nielsen, 1996); although 
CME is usually viewed as perhaps more explicitly political, involving critical interpretations of the 
world and political engagement (see, e.g., Skovsmose, 2016). The FoK approach is largely deemed 
critical because it rejects a deficit point of view on the learners (typically of immigrant or otherwise 
disadvantaged or marginal communities) vis a vis their ‘capital’. Moll and colleagues (2009) argue, 
and their research findings establish this, that many children bring funds or resources that could be 
useful to teaching/learning, but that go unrecognized by the teachers/schools because of their 
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ignorance of the culture involved. In this respect, this perspective also sits well with the Vygotskyan 
idea of the everyday/spontaneous practices of the learner as providing potential for ‘making sense’ 
of the formal, academic concepts of the school curriculum and its teachers.  

Critiquing the ‘Funds’  
Williams (2016) has offered a critique of this work, drawing on Bourdieu, which illustrates how 
FoK/FoI has been used to refer to the surfacing of capital in the home/community as a means to re-
position the learner with ‘access’ to the school curriculum. For instance, Moll et al. (2009) describe 
how the teachers-researchers involved in their projects discover one Mexican family’s educational 
values and high aspirations for their children which were previously been unseen/unrecognised by 
the school. Here the identification of FoK may be to enable the redistribution of such ‘capital’ by 
making visible and legitimate home resources and by providing the machinery to ‘scaffold’ the 
movement of such capital from the home into the educational field as a means to access ‘success’ and 
capital growth. According to Williams (2016), in such cases, identifying FoK does not necessarily 
challenge the process of capital exchange, but instead serves to strengthen its orthodoxy as ‘natural’ 
and open to all. As Zipin (2009) notes, the very act of identifying ‘everyday’ or ‘lifeworld’ knowledge 
to facilitate access to more powerful or ‘elite’ cultural artefacts entails the loss of its use value 
(productivity) and transforms such knowledge into objects with exchange value to be mobilized for 
capital growth in the educational market (he defines this as an ‘asset’ perspective).  

When schools operate as high-stakes competitive markets, the use values of diverse people’s 
cultural assets are sadly diminished in relation to ‘gold standards’ of restricted exchange value. (p. 
319) 

However, poor communities also have resources which may not be valued as ‘capital’ and may even 
function to resist capital exchange within the educational field – for example, parents who question 
how they are positioned by schools in terms of capital ‘deficit’ and express confusion as to why 
schools do not teach the ‘life skills’ they practice ‘everyday’ as a function of ‘being poor’ (Howker, 
2018). Both Bourdieu and Freire – were they alive today – might argue for the need to disrupt the 
‘orthodoxy’ which occurs when FoK/FoI approaches are used to merely surface capital in the 
home/community (thereby strengthening the process of capital exchange). For Bourdieu and 
Wacquant (1992), it is the reflexive sociologist who, having made visible the processes of capital 
production/reproduction, might support practitioners/communities in identifying with a heterodoxa 
in a given field (i.e., an alternative frame which challenges orthodoxy and so threatens the ‘doxa’ in 
place). Similarly, Freire’s (1970) Pedagogy of the Oppressed suggests that emphasis should not be 
placed on resources ‘latent’ in the home/community practices which are useful to a formal curriculum 
of some sort but rather on how such resources can be brought to consciousness in order to ‘name’ 
(and challenge the limits of) the systems/relations/institutions which produce/reproduce 
oppression/inequality. Freire also outlines a process of conscientization where collective 
agency/solidarity and social movements are mobilized to fight struggles of injustice pertaining to 
class, race, etc. Through the pedagogy of the oppressed students can “perceive the reality of 
oppression, not as a closed world from which there is no exit, but as a limiting situation which they 
can transform” (p. 85). Here the agents are students/community members/teachers/activists rather 
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than the social scientist (as per Bourdieu), although special status is given to the ‘educator’ whose 
role is to draw out the learners’ view of reality and enable him/her to question it.  

All of this suggests the need to situate FoK/FoI in relation to the objective relations of oppression, 
which under capitalism may be understood as relations of class position (dominated/dominating, 
working/leisured, disowned/owning class positions in Bourdieu). In identifying the types of 
knowledge embedded in homes/communities and the subjective experiences they engender (FoI), it 
is not sufficient to relate to ‘domains’ of activity (e.g., home/community etc.) in which they arise or 
even the social function that such activities serve (e.g., practical/institutional etc.). But rather we need 
to recognize how FoK/FoI function in relation to objective structures which (re)produce ‘capital’ 
(either through alignment or resistance) if we wish such an approach to challenge oppression/ 
alienation of those from disadvantaged communities.  

Dark/Existential FoK/FoI 
In relation to the above critique, Zipin (2009) notes the difficulty of developing a curriculum based 
on the ‘use-value’ of FoK and anticipates the challenges and limitations presented by institutions 
whose function is to mechanize capital exchange (Bourdieu, 1986). In this sense, he critiques the 
tendency of researchers/teachers to gravitate to what he terms ‘light’ FoK or rather positive 
experiences and to omit what is seen as more difficult or challenging sides of living in disadvantaged 
or poor communities. As such, dark FoK are conceptualised as knowledge/resources/experiences 
which may be painful, challenging or difficult (e.g., bullying, poverty, incarceration, mental ill-health, 
exploitation, or other problems with social relations) and which Zipin (2009) argues are significant if 
we wish to fully recognize how poverty and class position permeate the ‘habitus’ of children. More 
recently, Poole and Huang (2018) have made a similar argument in relation to existing accounts of 
FoI (Esteban-Guitart & Moll, 2014) critiquing the heavy focus on the learner’s positive experiences, 
rather than capturing the whole range of human subjective experience. They suggest that difficult 
experiences or rather ‘existential FoI’ (identified through an ‘experience as struggle’ lens) are 
significant since they indicate a perezhivanie, that is emotional experiences which are/can be 
developmental in that they provoke the need to work through or reflect and subsequently overcome. 
Thus whereas Zipin (2009) sees dark funds/difficult experiences as offering a potential FoK approach 
which can counter the logic of capital exchange in teaching and learning (since ‘dark funds’ are not 
merely a matter of identifying ‘assets’ for capital exchange), Poole and Huang (2018) suggest such 
potential be located at the subjective level – with difficult or challenging experiences viewed as 
developmental in that they may bring about ‘human growth’: 

Existential funds of identity are defined as positive and negative experiences that students develop 
and appropriate in order to define themselves and to help them grow as human beings. Existential 
funds of identity are presented as an additional category of funds of identity that are designed to 
complement the typology consisting of geographical, social, cultural, institutional, and practical 
funds of identity as developed by Esteban-Guitart. (Poole & Huang, 2018, p. 126) 

In the above quote we can see how Poole and Huang (2018) equate existential FoI to other categories 
proposed by Esteban-Guitart and Moll (2014) as if they are merely an alternative form of 
resource/experience which individuals encounter. However, our own work on perezhivanie has begun 
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to look at how emotional experiences (difficult/challenging or otherwise), although experienced 
subjectively, may also be related to objective structural conditions whereby contradictions arise. For 
instance, in Black, Choudry, Pickard-Smith, Ryan, and Williams (2018) we present the case of 6-
year-old Nico who experiences his classroom mathematics as ‘boring’ and in contradiction with his 
home/community activities where he is able to ‘see’ some embedded mathematics ‘in practice’. We 
have highlighted in this paper how this contradiction is experienced subjectively but also how it arises 
objectively in social structures, that is as a manifestation of the family habitus regarding school 
mathematics as ‘not for them’ which contradicts the embedded mathematics used by Nico, his family 
and his community in their everyday practice. Thus, we propose that dark/existential FoK need to be 
reconceptualised as manifestations of (and so refracted though subjective experiences of) objective 
relations of oppression under capitalism whereby ‘dark funds’ arise from the surfacing of class 
contradictions in learners’ experiences. In general, the habitus of the oppressed is not well aligned 
with the cultural capital needed to resource the acquisition of power in the various fields and in the 
field of power generally. However, just as we must imagine a world beyond such arbitrary power 
structures, we must imagine the potential of such experiences to resource developments of new 
understandings and consciousness of ways to live differently. In this simple formula we may 
reposition Vygotsky’s conception of perezhivanie in a critical class context, as the potential of 
experiences for development of newer and bolder class consciousness. 

Implications for Critical Mathematics Education 
Our critique of Poole and Huang’s (2018) conceptualisation therefore suggests that ‘dark’ 
experiences, if they are understood in the way we outline above, can give insight into how we might 
relate productively to them, and how they might be made to become developmental in a critical sense. 
This may entail finding ‘uses’ of mathematics in the home/community and in class struggles which 
can be mobilised to fight real issues of poverty or oppression in the way Freire (1970) envisaged. See, 
for example, Gutstein (2016) for a course designed with this explicit orientation. Examples where 
such an orientation integrates with actual struggles and campaigns are far rarer, however. Williams, 
Bertholt, Nardi, Jornet-Gil, and Vadeboncouer (2018) have more recently made the distinction 
between ‘critical’ and ‘domesticated’ forms of CH-AT in educational praxis: Our remarks in the 
previous paragraph suggest a critical perspective on perezhivanie to balance the more domesticated, 
personalized one attached to psychotherapy (i.e., that ‘development’ is a purely personal, therapeutic 
one rather than an emergence of class consciousness). The critical perspective may involve working 
with the experiential ‘resources’ that capital is not interested in, but that allows or encourages a 
different ‘knowledge/know-how’. Zipin, Sellar, and Hattam (2012) refer to such resources as 
‘knowledge that has use’ as opposed to knowledge that ‘has market-exchange value’ thus:  

knowledge that has uses for social life in those settings – not abstracted from living social use by 
a logic of accumulation of knowledge that, due to its scarcity, has ‘market-exchange value’ which 
can be parlayed by either individual ‘entrepreneurs of the self’ or networked collectives of ‘social 
capitalists’. (p. 181) 

We should add to this ‘knowledge that has use’ in the struggles of the oppressed. Most obviously 
such ‘resources’ relate to how to ‘live poor’, but we also argue, following Freire, the need to recognize 
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and legitimate practices and know how involved in sharing/mobilising solidarity with others who are 
oppressed and also how to engage in collective action, for example through social movements and 
community, union or party activity. One might also see how such resources can challenge the ‘limits’ 
Freire refers to in the education-industry, for example in asserting the need to overcome the 
disciplinary boundaries (in curriculum and pedagogy), spatial and temporal structures in educational 
institutions, and above all assessment and qualification structures (Williams et al., 2016). 
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This paper discusses the solidarity assimilation methodology (SAM) under the critical scrutiny of the 
community, as a strategy of intervention in an inherently exclusionary school system. This 
intervention has been operating for almost 40 years in direct contact with the classroom and in the 
context of institutional obstacles faced by the authors. The core principles of SAM is to distinguish 
promotion from evaluation and to conflate rewarding effort with content progress as promotional 
criterion leading to credit.  SAM adopts the motto “we teach when we listen, we learn when we talk”. 
We argue that this common belief in progressive pedagogies acquires a deeper meaning under a 
Lacanian perspective. Rewarding effort is less easy to digest because it forces us to politicise our 
work. The problem of universal failure will not be solved by SAM, but SAM provides an 
understanding-in-action of the role of failure in the resilience of school practices.  

Keywords: Solidarity Assimilation, Hegel, Marx, Lacan 

Introduction 
Solidarity assimilation methodology (SAM) is an intervention into capitalist schooling that started in 
Brazil through the work of Roberto Baldino and Tânia Cabral. Contrary to other approaches in 
mathematics education, SAM is not a bird’s-eye view on the teaching and learning of mathematics, 
developed by a researcher who is not teaching mathematics. Instead, it born out of the necessity to 
deal with the daily difficulties that Baldino experienced when trying to teach mathematics to his 
university students at the Federal University of Rio de Janeiro in the early seventies. Since then, other 
people, including Alexandre Pais, have joined in the development that is now well documented in the 
research literature (e.g. Baldino, 1997, 1998a, 1998b; Baldino & Cabral, 1989, 1998, 1999, 2006, 
2008, 2010, 2013; Baldino & Carrera, 1999; Cabral, 1993, 1998, 2015; Gluz, Cabral, Baggio, Livi, 
& Mallmann, 2008; Pais, 2011; Persad, 2014; Silva, 1997). In the present article, we briefly describe 
the main aspects of SAM and point to a research project to be developed in the years to come. The 
following personal testimony of Alexandre Pais completes our introduction.  

The reality of the classroom forces teachers to believe that we are all struggling for “mathematics for 
all”, at the same time making it difficult to sustain the illusion that a complete pedagogy can be 
achieved. This led Alexandre – at the time a mathematics teacher in a Portuguese school – to find in 
the work of Baldino and Tânia elements to understand his everyday reality. For the first time 
Alexandre saw a lucid account of the sociopolitical problems he was experiencing as a teacher. While 
mathematics education research was roughly divided between a ‘didactical’ approach, with no social 
or political concerns whatsoever, and a ‘postmodern’ approach, with its emphasis on discourse and 
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power relations, Baldino and Cabral were using old Marxist categories to analyze their work as 
mathematics teachers at the university (e.g., Baldino, 1998a, 1998b; Baldino & Cabral, 2006).  

Their research spoke to Alexandre because he felt in their work an attempt to show the “shit” (Pais, 
2015) involved in schooling, instead of trying to disguise it through the report of successful 
experiences which teachers find difficult to associate with their practice. Indeed, the reader will have 
to search hard to find in Baldino and Tânia’s research one example of a successful experience. This 
is because they are not talking from above to an arranged classroom (where someone else is doing 
the work of teaching). They are researching their own teaching and, as such, cannot afford to play the 
narcissistic game that so often populates mathematics education research (see, for instance, Pais, 
2017).  

One can say that Baldino and Tânia anticipated what is now known as the “social turn” in mathematics 
education. Studies within this vein emphasize the importance of considering how what is happening 
in a classroom depends on the entire social, cultural and political frame. These studies highlight the 
importance of “social interactions” and the role of “culture” when learning mathematics; they also 
raise broader issues of equity and social justice in accessing mathematics education (Gutièrrez, 2013; 
Sriramann & English, 2010). A problem with these studies however, is their disavowal of the 
economy when addressing the question of failure in school mathematics (Pais, 2014).  

Despite the diversity of studies animating the social turn, what binds them is the rejection of a central 
organizing principle, which takes into account how schools manifest the totality that capitalism is 
today. In a postmodern research-world, it is not easy for researchers to posit capital as the “concrete 
universal” of our times (Baldino & Cabral, 2018). To do so, will imply a questioning of not only the 
structures and actors that exercise damaging influence on school mathematics (governmental policies, 
discourses, etc.) but also a questioning of our own role worsening what we intend to improve (Pais, 
2015). In what follows we briefly present what can be considered the main principles of SAM.  

SAM’s birth scenario   
Here, we briefly describe the political context where SAM was born so that the reader can understand 
why we say that this methodology is an intervention in an elitist undergraduate teaching context and 
how it is an understanding-in-action of a system which is inherently thwarted. 

In 1972, under the military dictatorship, the Brazilian economy was growing steeply, an illusion that 
did not last long. In that scenario, students’ meetings were strictly forbidden, many professors had 
been expelled from universities, some students were killed in demonstrations, others disappeared, the 
press was under control and observers disguised as students watched every classroom. In 1969, a 
university reform had opened access to underprivileged students to higher education. A radical elite 
expected that failure, especially in calculus courses, would push these newcomers out. Most teachers 
developed personal strategies to accommodate the situation. People engaged in SAM1 called the 
prevailing exclusionary pedagogy, current traditional teaching (CTT). 

                                                 
1 Mainly, Charles Guimarães and his group. 
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According to the military, teachers were supposed to speak for the entirety of the class, and the 
students should listen quietly. Teachers of CTT dedicated their attention to stimulating stronger 
students while passing the weaker ones who had not learned enough, based on criteria tinted with 
social and ethnical prejudice; for instance, manners and speech associated with those of the upper 
class counted as hidden subsidiary criteria. As a consequence, CTT stimulated rote learning and 
enabled students' to gain credit without learning. 

Implementing an alternative pedagogy became an urgent political issue to those who opposed the 
regime. Baldino tried to approach the students who were repeatedly failing in the two mid-terms and 
one final exam each semester. However, the prompt answers of the academically successful  elite 
presented an obstacle when he tried to address the difficulties of these students, e.g. by offering 
simpler questions during class. Extra class activities were monopolized by questions from the 
mathematically stronger students. His attempts to reduce the number of students per class had little 
support from the administration and faced considerable opposition from the leading students.  

SAM’s pedagogy 
There is much literature on pedagogy and didactics but the meaning of these terms is not always clear. 
In order to develop SAM as a pedagogy of intervention, we must say that, by pedagogy we refer to 
the institutional conditions designed to engage the students with the learning task, mostly through 
what Vinner (1997) called the credit system. We acted on these conditions introducing rules to get 
credit in group work. These so-called norms of SAM were developed over a decade. Each semester 
began with a description of the rules adopted in the previous one, followed by a report of defective 
results. Then, a modification of the rules was suggested and a question was made: does anyone have 
a better idea? We finally arrived at a stable set of norms to include assessment of classroom work as 
a promotional criterion leading to credit, thereby distinguishing SAM from other pedagogies based 
on assessment. These norms provided us with the necessary empowerment to face the disruptive elite. 
They allowed contact with weaker students during classes, without harm to stronger students, and 
with all students separated into ability groups. In this way, SAM became an efficient instrument to 
rebuff disruption or the monopolization of classes by the radical elite. SAM intervened in CTT by, 
on the one hand, culturally rewarding underprivileged students according to what they could give, 
namely work and, on the other hand, constraining the white-male elite to submit to the classroom 
organization.  

Basically SAM conflates effort-based with content-based promotional criteria. The class is organized 
into groups of four; the students are expected to engage in the task of solving and understanding the 
solution of assigned exercises. SAM norms, under the form of a work contract, are presented in the 
first class; after a two or three weak clearance trial they are put to a vote, against CTT. Generally the 
supporters of SAM prevail. Before asking for help, the group must decide what they are going to ask. 
In case of divergence in the group, each student must report the point of view of the other. The group 
must work together on each exercise and never pass to the next without showing understanding of the 
solution of the former. If everything goes well, the group receives credit points proportional to the 
duration of the work. Only effort, not content progress counts at this moment. These points count as 
a bonus to be added to the grades obtained in the classical CTT summative assessment represented 

Thematic Working Group 10

Proceedings of CERME11 1848



 

 

by individual exams. Individual disruption of the norms, count negatively to the whole group; group 
disruption of general classwork, such as failure to be silent at collective moments, count negatively 
to the whole class. Cases of disruption are reported in the fifteen-minute final plenary session 
occurring after each one-hundred minute class.  

Difficulties with implementing this strategy in the classroom can be addressed, provided that we 
recognize the differential progress of different ability groups and adjust our help accordingly, 
formulating different questions to different groups. The organization of the SAM classroom is further 
discussed in Baldino (1998a), and Baldino and Cabral (1999, 2010). The content progress made in 
each class, is what we call understanding and how operational and preferential this understanding 
will be in the next class, is what we call learning. SAM was developed under the supposition that 
understanding implies learning. However, along the way we have found out that this is not necessarily 
so (Baldino & Cabral, 2005). We tell the students that we can assure understanding, but learning is a 
result of their attitude with respect to the discipline, the university and, in general, to life.  

It soon became clear that opposition to SAM was not only an “educational” questioning, but a truly 
political one. We are not advancing effort-based promotion as the solution to the segregation problem, 
but these questions force us to examine the promotional criteria used in CTT– how do we, as teachers, 
arrive at a “grade” that is supposed to condense everything that the student did during a certain period 
of time? Once we take up such political questions, new ones emerge. What criteria do we have to 
impart credit to some students and deny it to others? What are the consequences of our denial to the 
life of a particular student? Should we base our promotional criterion exclusively on assessment of 
content progress? Are we allowed to take our own classrooms as objects of research, introducing 
unexpected changes? SAM has been considering such question since the 1980s (e.g., Baldino & 
Cabral, 1989).  

SAM’s psychoanalytical slant 
From first pioneering report (Baldino, 1997) to the recent presentation in MES 10 (Cabral & Baldino, 
2019a), our work (see below) reports the results of our classroom practice based on SAM, and is 
mainly concerned with economy and psychoanalysis. Here, we only have space for a brief discussion. 

“You teach when you listen, and you learn when you talk.” This motto calls up the vast literature that 
posits the student as constructor of her own learning and holds that the teacher’s role is to formulate 
questions, not to give answers. Relying on Lacanian psychoanalysis, SAM reformulates some 
meanings of progressive pedagogy. Within SAM, ‘making questions’ in a situation of individual 
tutoring, means driving the student into contradiction. ‘Listening’ means to let oneself be hypnotized 
by what the student says, in an “upside-down hypnosis” (Lacan, 1973, p. 245). ‘Not giving answers’ 
means to follow up the student's saying with new questions, to keep the focus of the initial 
contradiction until she perceives what irreducible signifier she was attached to. Finally, ‘talking’ 
refers to the student's expression of her new understanding.  

SAM adapts the directives of the clinic to the classroom through the concept of pedagogical 
transference (Cabral, 1998), where the teacher controls the level of anxiety by opening and closing 
the lack of understanding that the student perceives with respect to mathematics. The teacher assumes 
a special position, called the Other’s position, in such a way as to suggest that she may also have a 
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mathematical lack. When the teacher listens, the student cannot figure out whether he is just trying to 
understand what she says or whether he is trying to take time to think. SAM seeks to assure the student 
that she will not find in this Other, the fulfillment of the lack that would allow her to pass (gain credit) 
using rote learning. The teacher endeavors to keep the student’s fault open, leading her to ask herself: 
Did I understand? What do I really want?  

In fact, anxiety emerges when the student presupposes that this lack may lack, that is, when she 
evaluates that she has actually understood; in this case she becomes vulnerable: what if in her next 
answer the lack is filled with a negative teacher’s verdict? The teachers’ listening is selective, but 
sufficient to detect signs of anxiety in the student's gestures and speech. Negative individual verdicts 
should be avoided and replaced by further questions, otherwise they may cause unbearable anguish. 
The organization of the classroom into ability groups is fundamental in SAM: a negative verdict 
which addresses a common mistake made by the whole group, produces coalition and positive 
excitement instead of anxiety.  

If, on the contrary, the teacher hides his own lack behind a position of subject supposed to know and 
provides ready-made explanations, he obliterates both lacks, his and the student's. From this position, 
he produces the illusion that the student understood and he denies the student the opportunity to face 
her ghosts and develop her own savoir about her learning process. She has no chance to come to “love 
maths anxiety” (Baldino & Cabral, 2008).  

SAM is a way of sustaining the student's lack and accepting her initial position of not wanting to 
know about a savoir that she actually detains. She asks may I do this? We answer if it is right you 
may, if it is wrong you may not; let us check it. This is how SAM allows the student to learn by 
speaking and the teacher to teach by listening. The word has a high value for the speaker; it is 
important to the student to be sure that she will be listened carefully. SAM has allowed us to approach 
the student’s ignorance regarding his preferential ways of justifying mathematics that expose her 
cognitive difficulties. 

The economic issue: school opposition and resilience 
A discussion of the valorization of effort instead of content is virtually absent from mathematics 
education research. Typing <“reward effort” “mathematics education” calculus> into Google shows 
70 entries, none of which thoroughly discusses, much less advocates rewarding effort. Summative 
assessment is highly underrepresented in the literature (Cabral & Baldino, 2019b), not even in the 
Routledge yearbook 2017: Assessment inequalities. As an exception, the possibility of rewarding 
effort appears en passant in Jablonka (2017) as though in a devaluated rise. The system demands that 
measuring achievement be the only promotional criterion. SAM provides a way to teach inside the 
system, but not “according” to the system. It is bound to face opposition.  

We assign the reason for the absence of effort rewarding studies in mathematics education to the need 
to cover up that school is an economic enterprise where the production of qualified-labor-power 
threatens to become evident (Baldino & Cabral, 2013). In this sense, the usual requirement of 
reviewing literature in this eight-page article would cut the space for presenting the new and would 
corroborate the cover up. 
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Although a student can spend an entire year in school, going to classes, participating in all the regular 
activities, if after everything she does not get a certificate, she will not receive anything for all the 
work she did. On the contrary, those who get the diploma may vaunt their merit of having superseded 
those who failed. As a commodity, qualified-labor-power has to be sold in the market for higher 
salaries, otherwise the investment would not be worthwhile. From this perspective, failure is 
necessary for school functioning, as argued by Baldino and Cabral (1998, 2013). It is because some 
of us fail that others can achieve higher positions in social hierarchies. The value produced by the 
ones who flunk is appropriated by the ones who pass. This is the scandal that SAM-in-action threatens 
to reveal.  

The years to come 
The dialectical movement that has generated SAM and CTT as opposite poles goes on today in a wide 
scenario. The hippy movement of the sixties was the first sample. Not only does capitalism penetrate 
all pores of private life, but it also offers advance role scripts for its eventual opponents (Baldino & 
Cabral, 2018). What this sort of late capitalism cannot admit to is the demonstration of the dialectical 
movement from which it emerges as one of the poles. It has to present itself as the only natural truth. 
In particular, it cannot admit that school is an economic enterprise producing qualified-labor-power. 
It must hide its truth under a thick layer of priestly teaching and ‘helpful’ mathematics education 
research that we call CTT.  

Therefore, research in SAM for the years to come should aim at eliciting such dialectical movement. 
SAM is an intervention into capitalist schooling that defines itself in opposition to CTT. Nevertheless, 
it is not a cosmology or a formula on how school should be. We are not implying that literature on 
assessment must move beyond content progress evaluations. SAM is not intended to replace CTT; 
insofar as this could happen, SAM would lose its raison d’être. Contrarily to globalized liberal 
capitalism, SAM recognizes itself as one of the poles generated by the same dialectical socio-
historical movement.  
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Assessing students’ perceptions of democratic practices in the 
mathematics classroom  

Wajeeh Daher  
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Though there exists considerable literature exploring the connections between mathematics 
education and democratic society, much of this literature is theoretical about what could or should 
occur. This situation has led some researchers to call for the development of empirical research 
regarding democratic practices in the mathematics classroom. This paper attempts to advance 
quantitative empirical research in this area by presenting a questionnaire that examines students’ 
perceptions of four democratic factors: freedom, engagement, equality and justice. The proposed 
questionnaire is factorable and explains 58.72% of the variance of a more general democracy score. 
The questionnaire was distributed to 398 ninth grade students, and the data collected was analyzed 
by computing a one sample t-test to assess participants’ scores in relation to the four democratic 
factors. The results indicated scores are ‘less than the good’. 

Keywords: Democratic practices, mathematics classroom, questionnaire 

Introduction 
Democratic teaching practices may have a positive influence on students’ learning outcomes in the 
mathematics classroom. This may be because successful democratic teaching and learning is 
conceived as situations where individuals are able to think for themselves, judge independently, and 
discriminate between good and bad information (Dewey as in Orrill, 2001). Therefore, it is desirable 
or necessary to enact democratic practices in the mathematics classroom. In addition, such democratic 
practices need to be assessed to ensure they are appropriately implemented, and to see if they 
influence specific variables of students’ mathematics learning positively (e.g. emotions). One way to 
assess democratic teaching and learning practices and their relation with other variables is through 
quantitative methods, with a questionnaire as the main tool. The present research tries to do this and 
presents a questionnaire to assesses four democratic practices: freedom, equality, engagement and 
justice in the mathematics classroom.   

Research goals and rationale 

Vithal (1999) argues that the literature exploring connections between mathematics education and 
democratic society is generally theoretical, which indicates the need for research that studies what 
happens actually in the mathematics classroom regarding this link. Aguilar and Zavaleta (2012) agree 
with Vithal and point to the need for empirical studies to test and expand such theoretical ideas. The 
present research offers one step towards providing such empirical research, in that it offers a 
questionnaire to assess students’ perceptions of democratic practices relating to four democracy 
components: Freedom, engagement, equality and justice. It does so in the context of the Palestinian 
ninth grade mathematics classroom.  
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Literature review 
Democracy in general is described as consisting of distinct components. Kesici (2008) found that 
teachers, who adopted democratic practices, talked about democratic classrooms where fair behaviors 
are demonstrated towards students, students’ range of personal freedom is enlarged, and students are 
provided with equality of opportunity. Thus, Keisci (2008) presents three categories of democracy: 
fairness, freedom and equality, where fairness can be related to justice and freedom and equality can 
be related to equity which includes the consideration of individual needs. Regarding equality, Kesici 
(2008) emphasizes that equality does not mean that teachers should treat all students the same way, 
but they should give equal opportunity to all students, so to meet their needs. 

Democracy in the mathematics classroom 

Aguilar and Zavaleta (2012) identified three links between mathematics education and democracy. 
Firstly, mathematics education can provide students with the skills to analyze critically real life 
phenomena. Second, the mathematics classroom can encourage values and attitudes essential to 
building and sustaining democratic societies. Third, mathematics education can function as a social 
filter that restricts students’ opportunities for development and civic participation. 

The possible links between mathematics education and democracy have attracted the attention of 
mathematics education researchers for at least three decades, where different aspects of teaching and 
learning practices have been studied in the mathematics classroom. Some of these aspects are: 
authority (Amit & Fried, 2005), students’ voice (Daher, 2017; Kaur, Anthony, Ohtani, & Clarke, 
2013), the right to equal access to mathematical ideas (Allen, 2011; Ellis & Malloy, 2009), promoting 
equality (Croom, 1997), promoting democracy (Allen, 2011; Ellis & Malloy, 2009), diversity of 
curriculum and classroom (Ellis & Malloy, 2009), revisiting old ideas in new ways (Ellis & Malloy, 
2009), dialogue (Ball, Goffney, & Bass, 2005; Skovsmose, 1998), proving (Almeida, 2010; 
Skovsmose, 1998), and engaging in ethnomathematics (Ball et al., 2005; Skovsmose, 1998). This 
literature has indicated the complexity of the construct of ‘democratic practice’ in teaching and 
learning mathematics, which indicates the need for an assessment tool to better understand this 
construct.  

Assessing democratic practices in the classroom 

Educational researchers have offered various questionnaires to assess democratic practices in the 
classroom (Daher & Saifi, 2018; Kubow & Kinney, 2000). For instance, Ahmad, Said, and Jusoh 
(2015) designed a questionnaire to assess the relationship between democratic classroom practices 
and students’ social skills development. In addition, the tools used to collect data related to democracy 
in the mathematics classroom have included open ended questions (Daher, 2012) and questionnaires 
with Likert items (Bulut & Yilmaz, 2014). The questionnaire suggested by Bulut and Yilmaz (2014) 
consists of a single scale to assess democratic practice. In the present research we suggest a 
questionnaire that offers multiple factors relating to democratic teaching and learning practices 
described in the literature.   
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Methodology 
Research context and sample 

398  Grade 9 students participated in the research. The distribution of these students according to 
gender and level in math is described in Table 1.  

 
Level in math 

Total Poor acceptable good very good Excellent 
Gender male 41 34 33 22 10 140 

female 59 65 76 52 6 258 
Total 100 99 109 74 16 398 

Table 1: The distribution of the sample according to gender and level in math 

The descriptive statistics of the questionnaire items are given in Table 2. 
Item M SD Skew 
We can express ourselves freely in the mathematics lesson. 2.84 1.35 .19 
We can express our opinion regarding the teacher’s presentation. 2.67 1.30 .32 
We can express our opinion regarding the teacher’s solution methods. 2.70 1.29 .32 
We can give different solution methods for a mathematical problem. 2.55 1.47 .281 
We can give a faulty solution method for a mathematical problem. 2.46 1.30 .77 
The mathematics teacher does not give additional time for solving problems. 3.62 1.34 -.66 
The mathematics teacher ignores some students’ discussions. 3.39 1.46 -.37 
The mathematics teacher does not give the same time to all students to answer 
questions. 

3.08 1.40 -.01 

The mathematics teacher does not give the same time to all students during 
discussions. 

3.16 1.31 -.07 

The mathematics teacher does not give different solutions to accommodate 
differences between individual students. 

2.92 1.53 .11 

The mathematics teacher ignores some students’ solutions. 3.41 1.41 -.35 
The mathematics teacher encourages us to give new mathematical ideas. 2.58 1.29 .48 
The mathematics teacher encourages us to justify our mathematical ideas. 2.48 1.29 .45 
The mathematics teacher encourages us to give different answers to a 
mathematical question. 

2.50 1.46 .52 

The mathematics teacher encourages us to engage in mathematical 
discussions. 

2.30 1.26 .73 

The mathematics teacher encourages us to ask questions. 2.25 1.24 .62 
The mathematics teacher does not clarify the reasons for giving marks on the 
mathematics exam. 

3.34 1.20 -.14 

I cannot have explanations in the mathematics classroom on the issues that I 
have not understood. 

3.69 1.25 -.61 

Table 2: Means, standard deviations and skewness of the questionnaire items (N=398) 
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Analysis method of the level of democratic behavior scores in the Palestinian ninth grade 

To calculate democracy mean scores for the students participating in the research, we computed first 
grouped frequency distributions (Stockburger, 1998). Then we compared the resulting democracy 
mean scores with a ‘good democracy score’ and a ‘normal democracy score’. We computed the 
normal democracy score by dividing 4 by 5 (4 items divided by 5 possible scores where 1 is the lowest 
score of any item, and 5 is the highest). This resulted in0.8 which was used to calculate intervals on 
a scale presented in Figure 1. We considered point (1.8) to be a ‘low democracy score’, (2.6) to be a 
‘normal democracy score’ and (3.4) to be a ‘good democracy score’ on this scale. Thus, the scores 
between 1 and 1.8 were considered ‘very low democracy scores’, the scores between 1.8 and 2.6 ‘low 
democracy scores’, the scores between 2.6 and 3.4 ‘normal democracy scores’, the scores between 
3.4 and 4.2 ‘good democracy scores’, and the scores between 4.2 and 5 ‘very good democracy scores’. 

 

  

Figure 1: Intervals related to the democracy scores of any item 

To compare the students’ mean scores with the ‘normal democracy score’ and the ‘good democracy 
score’ we used a one-sample t-test and compared with the appropriate democracy value.  

Results 
Initially, the factorability of the 18 democracy items was examined. Several well recognized criteria 
for the factorability of a correlation were used. Firstly, it was observed that all the items correlated at 
least .3 with at least one other item, suggesting reasonable factorability. Secondly, the Kaiser-Meyer-
Olkin measure of sampling adequacy was .89, above the commonly recommended value of .6, and 
Bartlett’s test of sphericity was significant (χ²(153) = 2562.90, p < .001). The diagonals of the anti-
image correlation matrix were also all over .5. Finally, the communalities were all above .4, further 
confirming that each item shared some common variance with other items. Given these overall 
indicators, factor analysis was deemed to be suitable with all 18 items.  

Table 3 presents factor loadings based on rotated principal components analysis with Oblimin rotation 
for 18 items from the above scale (N = 218).  

Principal component analysis was used because the primary purpose was to identify and compute 
composite scores for the factors underlying the scale. Initial eigenvalues indicated that the first four 
factors explained 33.56%, 9.96%, 7.81% and 7.39% of the variance respectively. The fifth factor had 
an eigenvalue 5.02, while the other factors (from the sixth to the eighteenth) explained less than 4% 
of the variance. 

Our adoption of the four-factor model depended on the results of the principal factor analysis, 
including the total-variance-explained table and the scree plot (see Figure 2 below). There was little 
difference between the four-factor Varimax and Oblimin solutions, thus both solutions were 
examined in subsequent analyses before deciding to use a Varimax rotation for the final solution. 
According to this solution, the four factors explained 58.724% of the variance in the democracy 
scores.  
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 Component 
Item  F En Eq J 
We can express our opinion regarding teacher’s presentation. .78    
We can express our opinion regarding the teacher’s solution methods. .75    
We can express ourselves freely in the mathematics lesson. .74    
We can give different solution methods for a mathematical problem. .74    
We can even give a faulty solution method for a mathematical problem. .47    
The mathematics teacher encourages us to justify our mathematical ideas.  .75   
The mathematics teacher encourages us to engage in mathematical 
discussions. 

 .73   

The mathematics teacher encourages us to ask questions.  .72   
The mathematics teacher encourages us to give new mathematical ideas.  .71   
The mathematics teacher encourages us to give different answers to a 
mathematical question. 

 .68   

The mathematics teacher does not give the same time to all students to 
answer questions. 

  .77  

The mathematics teacher does not give the same time to all students during 
discussions. 

  .77  

The mathematics teacher does not give different solutions to accommodate 
differences between individual students. 

-.45  .63  

The mathematics teacher ignores some students’ discussion.   .60  
The mathematics teacher ignores some students’ solutions.   .54  
The mathematics teacher does not clarify the reasons for giving marks on 
the mathematics exam. 

   .77 

I cannot have explanations in the mathematics classroom on the issues that 
I have not understood. 

   .72 

The teacher gives additional time for solving.    -.49 

Table 3: Factor loadings based on Oblimin-rotated principal components analysis (N=398), 
F=Freedom, En=Engagement, Eq=Equality, J=Justice 

 

 

 

 

 

 

Figure 2: Scree Plot of the items factorization 
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Validity and reliability analysis 

Validity and reliability analyses were performed for the four factors. To ensure validity, the first-
version of the questionnaire was presented to experts in mathematics education or in the social aspect 
of learning to analyze it and thus verify its validity for data collection. After this analysis, the 
necessary corrections were made to the scale in accordance with their comments, which gave the 
present 18-item 5-point Likert type rating scale. To ensure reliability, Cronbach’s Alpha was 
computed for each of the four democratic factors. This computation gave .81 for Freedom, .82 for 
Engagement, .78 for Equality, and .54 for Justice. These reliability results indicate good reliability 
for the constructs: freedom, engagement, and equality (Field, 2009) because these reliabilities are 
around .80. However, the reliability of justice is not sufficient, and we suggest the need to add 
additional items to the questionnaire in order to improve the reliability of this construct (Field, 2009). 
The Cronbach Alpha computation for the whole questionnaire is .88 which indicates high reliability.  

Level of democratic practices in Palestinian middle schools 

To assess the level of democratic practices in the Palestinian mathematics classrooms, we computed 
means and standard deviations for the four factors: freedom, engagement, equality, justice s. We also 
conducted a one-sample t test to assess the statistical significance of the variation of each factor with 
a low, normal and good level of democratic practice (see Table 4). 

  T value 

Component M (SD) Low Normal Good 

Freedom 2.64 (1.01) 16.60** 0.87  

Engagement  2.42 (1.00) 12.34** -3.58**  

Equality 2.81 (2.04)  3.97** -11.40** 

Justice 2.45 (0.91) 14.22** -3.26**  

General democracy 2.59 (0.77) 20.54** -.135  

Table 4: Level of democratic practices in the Palestinian mathematics classrooms (N=398), ** p<.000 

Discussion and conclusions 
Empirical research regarding democratic practices in the mathematics classroom is still in its infancy. 
One way to develop such empirical research is to develop quantitative tools, such as questionnaires, 
to assess the level of democratic practice in mathematics classroom. The present research offers a 
questionnaire that assesses four democratic factors: freedom, engagement, equality and justice. These 
four constructs/factors explain 58.72% of the variance in the overall democracy score across our 
sample. Previous research, using questionnaires to assess democratic practice has suggested one scale 
consisting of only one factor that explains 47.701% of the variance of an overall democratic score. I 
argue that a scale with four factors addresses the concerns regarding scales with only one or two 
factors, which may not provide an accurate representation of the construct (Pett, Lackey & Sullivan, 
2003). Also, further democracy constructs, such as autonomy and decision making, could also be 
assessed in future research. 
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The questionnaire suggested in the present research may help researchers study the level of 
democratic practice in mathematics classrooms. Here, I used the suggested questionnaire to examine 
the democratic practices in Palestinian ninth grade mathematics classrooms. The results indicate that 
the level of democratic practice in this context is less than good. There may be various reasons that 
explain this level of democratic practice, such as authoritarian styles of teaching by teachers (Ramahi, 
2015). These authoritarian styles cannot foster critical or independent thinking, which may impact 
negatively the future functioning of students. In addition, the ‘less than good’ level of democratic 
practice may be a result of students’ and teachers’ limited awareness of the student’s right to a 
democratic space in the mathematics classroom.  

The present research indicates the need to improve the level of democratic practice in the Palestinian 
mathematics classroom. This could be done by different means. First, by holding workshops for 
mathematics teachers with the goal to increase their awareness of democracy factors and discuss with 
them ways to increase democracy in their classrooms. These workshops need to be based on 
pedagogic approaches that enhance student agency and voice, foster creative and critical thinking, 
and enable students to collaborate, share their mathematical ideas, and negotiate their decisions 
regarding their mathematical learning (Daher, 2017; Ramahi, 2015). Moreover, these workshops need 
to be supported by the ministry of education as it calls for inclusive education in the schools (Ministry 
of Education & Higher Education, 2015). Second, special emphasis needs to be put on enhancing 
students’ awareness of their democratic rights. These workshops to advance democratic practices in 
the Palestinian context could benefit from similar attempts around the world (see, e.g., Varnham, 
Evers, Booth, & Avgoustinos, 2014). 
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Diversity raises different questions such as how an adequate education of student teachers can be 
organized in this context. Against the background of a potential-related view, this paper outlines an 
exemplary concept of an interdisciplinary seminar and an evaluation study about possible impacts 
reflected by student teachers as barriers in inclusive mathematics teaching. Qualitative data were 
generated by learning maps in a pre-post-design and analyzed by a reconstructive pedagogic-
iconological interpretation. The results indicate that the foundation of the seminar leads to a more 
complex reflection of student teachers’ individual educational paths. 

Keywords: Diversity, inclusive mathematics education, teacher education. 

Introduction 
According to Ainscow (2007), inclusion is seen “as a reform that supports and welcomes diversity 
amongst all learners” (p. 3). Its aim is to analyze barriers to participation and learning experienced 
by students within school systems. In some countries, inclusive education is seen as teaching children 
with disabilities within general education, traditionally by special educators. Slee and Allan (2001), 
who express their skepticism about inclusion as co-location of pupils, criticized this understanding 
earlier. There is a similar discourse in Germany: Hinz (2013) states that inclusion moved from 
ignorance to being unrecognizable, reminding us that inclusion had been ignored by educational 
science and politics, and now the scientific discourse shifts its attention from inclusion to de-
segregation: Instead of focusing on barriers, the individual problems of pupils with special needs and 
their location in regular schools are discussed. This causes consequences for teacher education: 
Mathematics teacher education for inclusion is often realized by implementing elements of special 
education (Werner, 2017), or inclusive mathematics education is reduced to the question of how 
pupils with special needs learn and what can be done to compensate for their deficits (Krause, 2017). 
Three problems can be found in this approach: Empirical research showed that marking pupils with 
special needs is highly influenced by socio-economic status or migration, leading to negative 
consequences for further schooling and to the potential danger of stigmatization (Sturm, 2016). 
Secondly, a focus on categories might neglect other children who do not belong in a predetermined 
category and, therefore, become marginalized (Messiou, 2017). Finally, concentrating on pupils’ 
individual deficits ignores the role of the social and political environment in mathematics education 
and individualizes failure (Veber & Fischer, 2016). An alternative approach and the framework of 
this paper is given by viewing inclusion not limited to deficits or categories like gender or social class, 
but by perceiving individuals’ differences as an advantage. We will outline that addressing pupils’ 
differences in this sense of diversity, which we call potential-related, understanding inclusion as a 
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concept welcoming diversity, and a focus on barriers to participation are suitable frames for 
mathematics teachers’ education (Benölken, Berlinger, & Veber, 2018). In this paper, we address the 
learning and reflection of student teachers in the context of inclusive mathematics education. 
Therefore, we do not only describe our attempts on inclusive teacher education but focus on the 
students attending these courses. The following questions will be investigated: How can a seminar 
for student teachers be conceptualized into inclusive mathematics education from a potential-related 
perspective? How do student teachers reflect on barriers in inclusive mathematics teaching before 
and after taking part in the seminar? First, brief overviews of the theoretical frameworks will be 
given. On these bases, the seminar concept will be outlined. Finally, the design and results of an 
exploratory study analyzing learning-maps in a pre-post-comparison by applying methods of 
pedagogic-iconological image interpretation will be subsumed and discussed. 

Theoretical framework: A brief overview 
Inclusive education demands a positioning in the understanding of ‘inclusive’. While most of German 
mathematics education research regards the concept in the sense of special education, an alternative 
approach is a potential-related view. Benölken, Berlinger and Veber (2018) identified three axioms 
of inclusion: (1) The rejection of labels such as ‘disabled’ or ‘dyscalculia’ for pedagogical actions is 
an inherent part of inclusive approaches. It means that differences are produced in contexts and not 
determined in a static way. Most pedagogical categories emphasize negative aspects and, therefore, 
reduce people to one dimension of their individuality. Vice versa, a potential-related view focuses on 
the resources of learners. (2) The traditional German school-system is based on homogeneity, 
assuming pupils learn better if they visit schools for their specific needs. For example, the Gymnasium 
for supposedly ‘intelligent’ children or the Förderschule for ‘disabled’ children. Inherent is the 
assumption that heterogeneity poses an obstacle for successful learning. In contrast, a potential-
related view demands to accept and to appreciate differences, which is represented in the term 
diversity. (3) Inclusion has a political approach. It is based on human rights, and it demands for 
changes in society (Slee & Allan, 2001). The research status on inclusion in German mathematics 
education is characterized by proposals for inclusive lessons (Häsel-Weide & Nührenbörger, 2017), 
often using the concept of natural differentiation. There are few concepts that include other aspects 
such as co-teaching, diagnostics and beliefs (Käpnick, 2016). There tends to be a lack of a theoretical 
discussion about the principles of inclusive mathematics education. Often, the needs of pupils with 
difficulties in learning mathematics are discussed to design learning environments; the role of 
mathematics education itself as a producer of inequality is hereby neglected. The international 
research on inequality and exclusion has given useful suggestions on reflecting discriminating 
structures and the influence of mathematics education and its teachers (e.g., Bishop, Tan, & 
Barkatsas, 2015). Consequently, we think that it is not sufficient to add special needs courses to 
mathematics teacher education. We suggest reflexive inclusion as a promising theoretical construct 
(Budde & Hummrich, 2013). Reflexive inclusion means both to perceive differences when it is 
needed and to make discrimination visible, but at the same time a rejection of implicit norms and 
institutional categorization. In this understanding, reflexive inclusion is an interdisciplinary task of 
mathematics education, special education and pedagogy. In contrast to other concepts, it is not 
reduced to the dimension of disability, but framed intersectionally, that is, several dimensions of 
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diversity act in combination. This understanding meets our axioms and provides the theoretical 
background of a potential-related view. Thus, it is relevant for student teachers to learn that 
differences need to be deconstructed when possible, and to recognize discrimination. Furthermore, 
specific knowledge about pedagogical diagnostics and categories of social inequality such as 
disability, gender, milieu and such is necessary. Therefore, it is of interest to scrutinize seminar 
designs, and to explore the development of student teachers’ reflection, knowledge or perhaps beliefs 
on, for example, ex- and including factors.  

Survey of a seminar conception 
We will outline an exemplary teaching concept (for further details see Benölken, Berlinger, & Veber, 
2018). It has proven itself in implementations at the Universities of Münster, Osnabrück, Halle and 
Kassel as well as at the Pedagogical University Tyrol. It aims at students who have already acquired 
their first subject-didactic and subject-scientific knowledge. Thus, it requires a level of ambition that 
enables students to expand and network knowledge already acquired with a focus on the organization 
of inclusive mathematics lessons. Against the background of interdisciplinary networks, the aim of 
the seminar is to enable students to plan, reflect and analyze inclusive mathematics lessons. The 
overarching questions of the seminar sessions can be identified as follows: Which influencing factors 
must be considered in the design of inclusive mathematics lessons? How can concrete mathematics 
didactic implementations be identified, and, conversely, do they meet the requirements of inclusive 
education? The seminar concept approaches these questions with a potential-related understanding of 
inclusive education. Consequently, various facets that are discussed in the relevant literature 
concerning the realization of lessons for all children without exclusion are taken into account: 
Attitudes and experiences, professional competencies in relation to various diversity facets (including 
facets relevant to special education), diagnostic and methodical spectra, educational framework 
conditions, social relationships as well as cooperative forms of teaching. In summary, the complex of 
all presented aspects mirrors a holistic approach to student teachers’ education, and they explore 
single facets of the complex as well as interrelated patterns by research-based learning, that is, by 
raising relevant questions, developing corresponding concepts and sometimes examining them in 
greater depth in bachelor and master theses. The organization of the seminar combines usual demands 
of higher education didactic such as different methods and both traditional and digital media, 
multifaceted combinations of theoretical contents and authentic practical examples. Additionally, 
there are supplements of expert lectures (often as ‘best practice’ information), school visits and 
workshops, in which student teachers can network and deepen their knowledge. A recurring highlight 
are discussions about both potentials and possibilities of implementing developed ideas, concepts and 
findings in inclusive mathematics teaching. In each case it is scrutinized whether work products meet 
both mathematics educational and inclusive pedagogical postulates of organizing teaching-learning 
processes. 

The study 
The study focuses on the question how student teachers reflect on barriers in inclusive mathematics 
teaching before and after taking part in the seminar. The sample consisted of 124 participants (101 
f., 23 m.), who were primary and secondary student teachers and took part in the study during the 
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semester in which they attended the seminar. The data originated from implementations of the 
seminar concept in Münster (between the winter semester 2015/2016 and the summer semester 2017), 
Osnabrück, and Innsbruck (each in the summer semester 2018). Mostly, the participants were in their 
first year of undergraduate studies. The study has an explorative character, that is, generalizations 
were not intended, but existential propositions (Lamnek, 2010). Thus, a qualitative design was 
advisable. As to the method, qualitative data were generated by applying learning maps in a pre-post-
comparison, which were anonymized by codes to ensure unbiased interpretations. In the maps’ 
header, the student teachers were given the impulse to craft their way between their current status and 
their future work at schools: “Inclusive education is currently considered as the greatest challenge for 
teachers. The question arises as to how teachers can structure their specialized instruction in such a 
way that (really) all children can learn together in order to reach their respective zone of proximal 
development. This joint learning of all children without exclusion might arise opportunities, 
challenges, stumbling obstacles and much more. What does this mean to you personally? Which way 
have you covered or which way will you have to cover in the future? Please lay out your way” 
(translated from German). All participants designed the maps for the first time, and the maps were 
created at the beginning of a semester and its end. As to the analysis, the pre- and post-maps were 
compared by a reconstructive pedagogic-iconological image interpretation, following its 
characteristic steps: (1) Discussion of previous history and selection of key motives, (2) image 
description and analysis (with regard to the factual, expressive and form-related sense), (3) context 
analysis, and (4) comparative analysis (Schulze, 2013). The evaluation procedure was piloted in a 
research workshop with student teachers in the summer semester 2016; afterwards, the analyses were 
conducted in a research group.  

 
Figure 1: Example of a pre-map 
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Figure 2: Corresponding post-map to Figure 1 

Results 
As to the map’s previous history, the reflections’ interpretations must be seen in the context of the 
seminar, which attempts to combine school requirements in dealing with diversity and university 
teaching. For example, led by theory, the student teachers develop concrete task formats in the 
seminar, which provides one of the topics in the context of methodical spectra. This framing implies 
that the student teachers receive a view of school practice from the university perspective between 
the pre- and post-drawings, which produces impacts on the post-maps’ design. Additionally, the 
seminar’s evaluation was conducted in a mixed-method design, where the maps provide one 
constituent. Regarding key motives and their description, main types were drawing both (1) paths (or 
a systems of paths), and (2) obstacles. Subsequently, we focus on spotlights of the reconstructions of 
one example shown by the Figures 1 and 2, which reflect typical features (the figures show facsimiles 
with translations from German; the original data can be requested from us). 

As to the factual sense of the pre-map (Figure 1), the most important symbols are a path and a 
mountain. With regard to the sense of form, the path begins and ends relatively narrow, and it winds 
directly before the finish. The mountain is on the path. Additionally, some persons at the end of the 
path smile and stretch their arms into the air. As to the sense of expression, another noteworthy detail 
is that the remarks are often written in questions. The expression is rather sober. As to the factual 
sense of the post-map (Figure 2), the spotlights are basically repeated. Additionally, at the beginning 
of the path is a large suitcase, which is taken along: Small suitcases are carried by a person walking 
on the path. With regard to the sense of form, the path is not winding, but it leads straight to the 
destination without detours. The suitcase is swung back and forth by the person. The mountains stand 
beside the path in the background. As to the sense of expression, most of the remarks do not represent 
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questions, but statements. The bigger person smiles and stretches the arms upwards. Colors are used 
to highlight single aspects. 

As to a context analysis of the pair of maps, the feet drawn in the pre-map (Figure 1) seem to indicate 
that the creator of the map reflects that he or she has started the journey to inclusive teaching, but 
there are several aspects showing ambiguity like the real starting line is not reached yet or the 
annotations are phrased as questions. The creator still seems to expect to gain experience, knowledge 
and the like as shown by both the words on the path and the envelopes, especially the big one with 
the question mark, but his or her bases are “empathy” and “experience” (which is not explained in 
detail here). With regard to the central symbol ‘mountain’, an ambivalence must be noted: On the one 
hand, mountains can block the view, can be a hurdle. On the other hand, mountains represent 
challenges that require effort but offer opportunities in relation to the goal being achieved, and both 
the ‘path is the goal’ and the ‘goal is the goal’; climbing and reaching the summit can cause a ‘flow’. 
The latter can justify the previous effort. Mountaineering can also be influenced by different weather 
conditions and the like, that is, different conditions that require special equipment. Thus, the symbol 
‘mountain’ can stand for different chances but also challenges and dangers (on the part of the teachers, 
but not only there) and this requires a specific preparation. As indicated, in the pre-map, the mountain 
is drawn on the path, which seems to reflect that the creator can imagine to cope with inclusive 
teaching at school in principle (which is also indicated by the cheerful group of people at the school), 
but he or she still perceives barriers that will be difficult and challenging to overcome. This 
interpretation is confirmed by the fact that a curve is drawn between the mountain and the school. 
The comparison with the post-map (Figure 2) suggests that the creator now reflects to perceive a 
direct access to inclusive teaching: The big suitcase seems to indicate that he or she can classify own 
experiences in a more differentiated way. Experiences and likeness are reflected to be more 
comprehensive than it was the case in the pre-map. The potential-related perspective can be assumed 
as an essential impulse for this fundamental change (e.g., “knowledge about different children and 
their diverse needs”). Questions posed in the pre-map (e.g., “who?”, “how?”, “what?”) turned to 
concrete intentions and planning steps (as expressed by the phrasings on the path or the “wishes” of 
the bigger person on the right). Especially, as to the central symbol ‘mountain’, in the pre-post 
comparison two aspects appear central: the position of the mountains in relation to the path and their 
number. As to the position of the mountains, it should be noted that, at the beginning, the mountain 
stands in the way as a hurdle and it makes it necessary to overcome it. Those who want to walk the 
path cannot avoid overcoming the mountain. In the end, the position of the mountains has shifted 
significantly, as the path now leads less curvy in front of the mountains: climbing changes from a 
compulsory to an optional experience. In connection with the altered position, the increasing number 
of mountains indicates that in the end the ambivalence of mountains is perceived to a much greater 
and more intensive extent. However, these opportunities and risks no longer appear to be hurdles that 
cannot be circumvented. Thus, the symbol ‘mountain’ allows exemplary illustrations of a deeper 
interpretation of the observable changes considering the previous history of the maps: The student 
teacher experiences a paradoxical situation, since a synchronization of university theory and school 
practice provokes numerous difficulties (mountain peaks) within the framework of inclusion. 
However, the mountains are no longer obstacles (i.e., a key motive was reinterpreted). This 
interpretation is confirmed by the facts that the path is drawn continuously and no longer winding. 
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Furthermore, there are different impressions reflecting a higher level of confidence like the swinging 
of the small suitcases, the use of colors (e.g., the ‘sun’ on the right) or the big person, whom one may 
assume to be the creator him- or herself. The synthesis of his or her size and his or her cheerful 
expression might be interpreted as a symbol of prospective knowledge and experience, that is, he or 
she can now well imagine coping with diversity at school and experiences him- or herself better 
equipped for the journey (e.g., by the suitcases). 

Based on these typical examples, a comparative analysis of all pre- and post-maps suggests that both 
the paths of student teachers and their experience of walking on the paths, thus, the reflections of 
barriers in inclusive mathematics teaching, changed to more confident characteristics. In sum, these 
changes can be described by three reflexively connected levels: key motives, lines of development, 
and their antitheses or contrasts. For example, the symbol ‘mountains’ clearly shows that the student 
teachers change their image of inclusive mathematics teaching in the course of the seminar. On the 
one hand, it becomes more differentiated and extensive, since in their opinion it is no longer sufficient 
to simply overcome a hurdle and the goal is already in front of their eyes. It rather seems that inclusion 
in mathematics teaching offers numerous challenges. These offer opportunities, but also dangers for 
teachers. The given pre-post-map-example represents a main type of all pairs of maps, the ‘expectant 
expert’. A feature of this type is that knowledge about inclusion increases and the person develops 
confidence in inclusive teaching. Another type shows similar characteristics, but in a lower level of 
contrast, which we named the ‘optimistic novice’. In both cases, we reconstructed an increase of 
knowledge and reflection, so we assumed deeper understanding of – or at least insight in – the 
possibilities and challenges of inclusive education. Finally, the type ‘interested layman’ was 
reconstructed showing much lower levels of confidence’s increase (forming the subtypes ‘positively 
stagnating’ and ‘no process’), but it was rarely found.  

Discussion  
The results indicate that participating in a seminar which takes a potential-related perspective on 
inclusive education and which considers the idea of research-based learning as well as intertwining 
theory and practice in a university context contributes sustainably to student teachers’ reflections of 
removing barriers in inclusive mathematics teaching. Thus, beyond the context of mathematics 
education, the results suggest the hypothesis that the seminar’s foundation provides an appropriate 
approach to student teachers’ education in the field of diversity, which is, for example, reflected by 
the main type ‘expectant expert’. Of course, the study’s character is explorative and it has obvious 
limitations, for example, the reconstructions were conducted within a group of researchers, but it 
remains uncertain if a consensus view is the right one (Lamnek, 2010). The interpretations reported 
in this article focus on the most important spotlights, especially regarding the characterization of the 
previous history of the images’ geneses, the connection between motives emerging from the previous 
history and the central symbols applied in the maps’ drawings, or the introduction of different types. 
As to the sample, all data collected between 2015 and 2018 were included in the analyses in order to 
get both various and sustainable impressions, although single conceptual improvements were 
conducted during this period because of feedbacks from the single evaluations. However, the basic 
principle of a potential-related perspective always remained the same. Subsequent research might 
focus on a deeper clarification of the evaluation of the seminar’s theoretical framework in the context 
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of both mathematics education and education in different subjects. Another step could be adapting 
contents of the seminar to different types of learners we found in the comparative analysis. 
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A farewell to mathematics: A personal choice or social exclusion? 
Oğuzhan Doğan  
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One of the dimensions that the socio-political understanding of mathematics education brings to 
mathematics education research is the study of how students are excluded from mathematics 
education. Social media could be a fruitful site to examine students’ exclusion from mathematics. 
Therefore, the purpose of this study is to analyze how some social media users describe the moments 
of their farewell to mathematics and discuss what these moments imply to mathematics education 
researchers, specifically to the critical ones. Content analysis was utilized to analyze social media 
users’ description of their own farewell moments to mathematics. From the analysis of these 
descriptions, it was concluded that almost all stages of the formal education system from the 
beginning of elementary school to the very last day of university, and almost all mathematics topics 
from multiplication to differential equations could be the moments of farewell to mathematics.  

Keywords: Mathematics education, farewell to mathematics, exclusion, social media, ekşisözlük.  

Introduction 
Understanding mathematics education as socio-political construct has been finding increasingly more 
place in the mathematics education research community in the last 20 years. Straehler-Pohl, Pais, and 
Bohlmann (2017) portrayed this increase prominently: 

Established conferences like ICME and CERME now incorporate in their programmes working 
groups exclusively dedicated to sociopolitical studies; the “Mathematics Education and Society” 
conference series has become an inherent part of the field; on a regular basis, themes like “equity”, 
“diversity”, “social justice” and “critical education” are problematized in edited collections and 
special issues of the most renowned journals; and one of the four sections that compound the very 
recent Third International Handbook of Mathematics Education is dedicated to “Social, Political 
and Cultural Dimensions in Mathematics Education”. (p. 2) 

Although educational conferences, journals, edited collections or handbooks provide particular 
spaces for the social and political dimension of mathematics education, it is questionable whether or 
not such understanding reflects on educational policies and public opinion. For example, for the case 
of Turkey, ‘equity’ is still only a mathematics topic but not a policy identifier (Doğan & Haser, 2014).  

One of the dimensions that this socio-political understanding of mathematics education brings to 
mathematics education research is the study of how students are excluded from mathematics 
education. The social, cultural, class-, gender- and race-based explanations of this exclusion are 
clearly presented in critical mathematics education literature (Jablonka, Wagner, & Walshaw, 2013; 
Jorgensen, Gates, & Roper, 2014; Kollosche, 2017). However, we still have limited knowledge of 
how this exclusion is explained by the excluded themselves.  

In the last decade social media has become one of the important places that individuals use to 
communicate with each other, explain their point of view, share their ideas, discuss different 
perspectives and so help the construction of public opinion. With the awareness of the common 
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popularity of social media and its growing potential, it could be fruitful to examine social media 
shares to understand their relations with mathematics. Considering this potential, this paper will 
examine a popular social media site (eksisozluk.com/sourtimes.org) in Turkey in terms of how social 
media users describe their exclusion from mathematics education.  

Exclusion in Mathematics Education 
Similar to what Marx and Engels (1848) indicated about the written history of mankind, “the history 
of all hitherto existing society is the history of class struggles” (p. 14), it could be argued that the 
history of all hitherto existing mathematics classrooms is the history of exclusion. In the first 
handbook of research on mathematics teaching and learning, Secada (1992) highlighted this history 
as such: 

For over 40 years, we have been confronted with an ever-growing body of research documenting 
that the American educational system is differentially effective for students depending on their 
social class, race, ethnicity, language background, gender and other demographic characteristics. 
This differential effectiveness has been found in mathematics as well as in many other academic 
subjects. (p. 623) 

Following comprehensive reviews on mathematics education research (Jablonka, Wagner & 
Walshaw, 2013; Bishop & Forgasz, 2007) also emphasized that a wide range of students (from 
different racial, ethnic and religious minorities, working-class students, female students and students 
with disabilities) had suffered from conflicts with mainstream mathematics education. It can be 
concluded from this consistent body of literature that disadvantaged groups of students are excluded 
from mathematics education on both micro level (in mathematics classrooms) and macro level 
(national tests, higher education entrance, job preference etc.). Mathematics has an important role in 
the intellectual selection, preparation and guidance of students to enter higher education studies and 
has used to help select those who will occupy different social positions. Thereby it serves as a critical 
filter. Understanding these exclusion processes can help us to understand the role of mathematics 
education in the reproduction of social inequalities. 

These exclusion processes or moments are investigated under the roof of different theoretical 
frameworks. Within a traditional Marxist perspective, it can be argued that working class children 
have fewer resources (economic opportunities, family support etc.) to be successful in mathematics 
and are subjected to be a member of future working-class thorough education/schools (Bowles & 
Gintis, 1976). With a Žižekian contribution to this perspective, it can be argued that failure or 
exclusion in mathematics education is not an observed singularity that can be solved through better 
mathematics classrooms with hard-working mathematics teachers, but a necessary feature of existing 
schooling and mathematics education (Pais, 2012; Straehler-Pohl & Pais, 2014). As Pais (2012) 
influentially stated “the ‘slogan’ or ‘motto’ ‘mathematics for all’ is used as an exemplary case for the 
social fantasy that is concealing the crude reality that, as any mathematics teacher knows, 
mathematics is not for all” (p. 58). 

In addition, in a Bourdieusian sense, it can be argued that working class students or students with 
limited cultural baggage do not have the necessary cultural capital to ‘play the game’ that is involved 
in the learning of mathematics and are less likely to understand the mechanisms required to succeed 
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in mathematics (Lareau & Horvat, 1999; Doğan and Haser, 2014). Similarly, based on Bernstein’s 
theory of the language and codes used in educational settings, it could be argued that some context 
or language use in mathematics lessons can results in mathematical exclusion (Helenius, Johansson, 
Lange, Meaney, & Wernberg, 2015). 

Moreover, from a Foucauldian perspective, the concept of ‘power’ can be an expressive tool to 
understand moments of exclusion. For example, Valero (2007, p. 226) indicated that viewing power 
as a “capacity to participate by taking and defining the positions and conditions for engaging in social 
practice” offers investigation of the microphysics of power in mathematics education practices. 
According to her, such an analysis clarifies the mechanisms through which different actors get 
positioned as more or less influential participants and thereby get included and excluded.  

These perspectives can provide mathematics education researchers a supplementary toolbox for 
understanding and portraying the processes and moments of exclusion. On the other hand, how these 
processes and moments were interpreted by the excluded themselves needs to be clarified. Therefore, 
the purpose of this study is to analyze how some social media users describe the moments of their 
farewell to (or exclusion from) mathematics and discuss what these moments imply to mathematics 
education researchers, specifically to the critical ones. 

Methodology 
In line with the purpose of the study, the research questions are: (i) How do social media users 
describe the moments of their farewell to mathematics? (ii) What are the themes that emerge as a 
portrayal of these farewell moments? and (iii) What are the implications of these farewell moments 
for mathematics education researchers? 

To answer these questions, one of the most popular social media sites in Turkey, Ekşisözlük (Sour 
Dictionary) was analyzed. Ekşisözlük can be considered a unique website, somewhat similar to 
Wikipedia, in which each member of the dictionary writes their own definition/description of a 
specific concept, people, event etc. For example, you can find users’ own definitions of lasagna, Deep 
Purple, Utrecht or the latest comments of political figures. In 2018, there are almost 500.000 active 
members writing in Ekşisözlük and it (www.eksisozluk.com) is the 15th most visited website in 
Turkey.  

The research methodology was content analysis. The content of the users’ definitions (entries) of ‘the 
moments of farewell to mathematics’ was investigated in this study. There were 945 different entries 
under this heading (https://eksisozluk.com/matematige-veda-edilen-an--4614088), which means that 
945 different users describe their own farewell moments to mathematics. As an example, the last 
entry was “In the second year of university, when I passed the differential equations. I got rid of 
mathematics, but then I faced more terrible things”.  

The 945 entries under the heading ‘the moments of farewell to mathematics’ were retrieved from the 
website in June 2018 with the help of NVivo 11 (NCapture for NVivo 11). Each entry was read in 
the beginning of data analysis. 236 of the entries were not related with the title and did not include 
any meaningful definition, so they were omitted in the further analysis. After this first reading, the 
possible themes for the farewell moments were constructed, such as the year of the farewell and the 
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specific reason of the farewell. Each entry was coded according to these initial themes with the help 
of NVivo 11, and through the analysis the themes were combined, separated or re-constructed. 
Finally, the data (709 entries) were re-coded with the final version of themes, sub-themes and codes. 

Findings 
To clarify how I examined Ekşisözlük users’ description of their farewell moments, I will present 
some of the representative entries and try to explain how I interpreted these entries. One of the entries 
under the heading ‘the moments of farewell to mathematics’ was this: 

Entry 1: I think, for everyone, there is a moment when they say goodbye to mathematics. 
Some go away when they see ‘x’ or ‘y’, some wait for the derivatives. The moment 
that I feel I did not understand mathematics at all was the first grade where we saw 
the multiplication with 7. I am still mad at this multiplication table. 

As it can be seen, the user pointed out the first grade of primary school and multiplication table as the 
moment of farewell. S/he did not identify any specific reason for the farewell but only indicated the 
mathematics topic (multiplication with 7). There were a lot of similar entries indicating specific 
mathematics topics and grade levels, for example: 

Entry 2: Math was my favorite lesson in primary school. However, when the letters came 
into stage I fell out of love with mathematics. 

Entry 3: My body was fumbling with functions, and the last blow was trigonometry. 

The writer of Entry 2 pointed out the ‘letters’ as the farewell moments, so it can be inferred that the 
mathematics topic was algebra and the time was elementary school (although there is no specific 
grade level, algebra is one of the main mathematical concepts of elementary schools (5th to 8th grade) 
in Turkey). Entry 3 pointed out two mathematics concepts (functions and trigonometry) from high 
school as the farewell moments.  

In addition, some of the entries gave further reference to the users’ reasons of farewell. For instance: 

Entry 4: With the start of limit-derivative-integral and because of the teachers who cannot 
explain what these topics mean. 

While the user specifically indicated the topic (calculus) and so also the grade level (High school, 
12th grade), s/he also pointed out the teachers and their lack of explanation as the reason of farewell.  

On the other hand, some of the entries did not specify any mathematics topics or reasons of farewell 
but indicated a national exam. As an example: 

Entry 5: It is the moment that you give up hope from KPSS (Exam for Civil Servant 
Selection). 

Five main themes have emerged as a result of content analysis of the farewell moments; the grade 
level of the farewell, the specific mathematics topic of the farewell, the specific national exam of the 
farewell, the reasons of the farewell and no farewell. The number of entries that have specific 
reference to these main themes is presented in Table 1.  
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Theme Code # of entries 

Grade Level  232 

 High School (Grade 9-12) 70 

 University 53 

 Primary School (Grade 1-4) 41 

 Elementary School (Grade 5-8) 40 

 Passing the University Entrance Exam 19 

 Graduation 9 

Mathematics Topic  167 

 Calculus 43 

 Algebra 31 

 Trigonometry 20 

 Functions 15 

 Advanced Calculus/Mathematics 11 

 Multiplication Table 11 

 Equations 5 

 Negative Numbers 5 

 Others (Sets, Logic, Fractions, etc.) 26 

Reasons  64 

 Teachers  42 

 Poor grades 20 

 Friends 2 

National Exams  24 

 ÖSS (University Entrance Exam) 17 

 ALES (Exam for Graduate Study) 4 

 KPSS (Exam for Civil Servant Selection) 3 

No Farewell  47 

Table 1. The number of entries that have specific reference to main themes 

When the grade level theme was examined, it can be seen that the users identify all stages of education 
from elementary school to university graduation as a farewell moment. While high school and 
university grades were the most referenced grades, a significant number of users emphasizes the 
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farewell moments almost at the start of their education career, primary school (41; 18% of grade level 
references). 

In addition, when the mathematics topic theme is examined, it is understood that the users have 
highlighted a variety of mathematics topics from multiplication table to calculus as a farewell 
moment. Calculus (43; 26% of mathematics topic references) and algebra (31; 18% of mathematics 
topic references) were the most referenced mathematics topics.  

Moreover, when the reasons of the farewell are examined, two main reasons emerge: the teacher and 
poor grades. In addition, it should be noticed that most of the entries did not include any specific 
reason of farewell: only 64 entries (9%) of 709 entries pointed out a specific reason. 

Lastly, 47 (7%) of the entries indicated that it is not possible to say goodbye to mathematics and so 
there can be no such farewell moment. Two examples were these:  

Entry 6: I think there is no such moment, math is life. 

Entry 7: Only death can separate us. 

To sum up the findings of this content analysis, it can be argued that Ekşisözlük users portrayed their 
moments of farewell by drawing mostly on specific mathematics topics and grade level but do not 
identify socio-political reasons of these farewells. When they indicated a specific reason, it was either 
the teacher or their poor grades.  

Conclusion and Discussion 
From the analysis of the Ekşisözlük users’ description, it can be concluded that almost all stages of 
the formal education system from the beginning of elementary school to the very last day of 
university, and almost all mathematics topics from multiplication to differential equations could be 
the moments of farewell to mathematics. It could be re-stated after these findings that the history of 
all hitherto existing mathematics classrooms is the history of exclusion. Additionally, when the grade 
level and mathematics topics are considered together, it can be concluded that multiplication table in 
primary school, algebra in elementary school, functions and trigonometry in high school and calculus 
in university emerged as the key moments of farewell to mathematics. 

Furthermore, another conclusion can be drawn from what was absent in these descriptions. Although 
Ekşisözlük users identified (i) mathematics itself (they mostly identify specific mathematics topics 
as the farewell moments), or (ii) the difficulty of mathematics (poor grades as the farewell moments), 
or (iii) teachers as the reasons their farewell, they did not give any reference to social, cultural, 
political, gender- or class-based reasons for their farewell. While identifying the reasons of their 
farewell, social media users did not cross the wall of mathematics classrooms, therefore they 
oscillated between their teachers and themselves.  

From this absence of socio-political reasons among the reasons of farewell, it can be inferred that 
although understanding mathematics education as socio-political construct finds increasingly more 
space in the mathematics education research community, it seems that this understanding could not 
get across through the walls of mathematics education research to reach public opinion. While we, as 
(critical) researchers in mathematics education, examine and emphasize that one of the most 
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important variables affecting mathematics education is socio-economic status, that gender is both a 
factor in achieving mathematics and in selecting mathematics-based studies/jobs, that cultural capital 
is responsible for mathematics scores, our students mostly emphasize the individual or mathematics-
specific factors as the reason of their farewell to mathematics.  

Following these conclusions, the implications for mathematics educators and researchers are two-
fold; firstly, there are strong personal reasons for farewell to mathematics, such as mathematics being 
perceived as difficult and unachievable (reference to poor grades), complex and meaningless 
(referenced the specific mathematics concepts). Therefore, the inside of the classroom should be 
organized to make mathematics more meaningful and achievable for students. Additionally, as 
Kollosche (2017) emphasized “auto-exclusion is not merely the result of psychological dispositions 
of the individual, which could then be changed by pedagogical intervention, but that auto-exclusion 
is created in the interplay of the individual and the social environment” (p. 2). So, counter-acting 
auto-exclusion from mathematics is as much an issue of changing the social environment outside the 
classroom as it is an issue of changing the mathematics classroom itself. 

Secondly, social, cultural, political and gender- and class-based factors that divorce students from 
mathematics need to get more reference in the public sphere. In spite of the socio-political turn within 
mathematics education, specific working groups in educational conferences and special issues in high 
stake journals, it could be argued that the social, cultural, political and class-based exclusion in 
mathematics education is not publicly echoed adequately. Therefore, as critical mathematics 
educators, it would be better to demand more to get more public spaces so as to not confine ourselves 
to special issues or handbook chapters.  
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A call for nuancing the debate on gender, education and mathematics 
in Norway 
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This paper aims to scratch beneath the surface of a domestic concern with boys’ ‘underperformance’ 
in school in Norway. Focusing on mathematics, I argue that there is more to the ongoing debate on 
gender and education than meets the eye. Exploring the unexpected emergence of a gendered context 
in a 10th grade mathematics class, I show the need for revisiting the gender and mathematics debate. 
Characterising the current debate in Norway as a binary concern with boys struggling in the 
educational system versus successful girls, I argue that the current moral panic is detrimental for 
girls in mathematics, where challenges remain for those choosing to study at a level which enables 
access to further studies in the STEM field. The Norwegian debate in this field needs to be more 
complex and nuanced than first impressions and assumptions about gender equality suggest. 

Keywords: Gender, mathematics, discursive challenges, Norway. 

Introduction: Presenting two discussions in the education debate in Norway 
Current debate in Norway addresses how boys are outperformed by their female peers, from the early 
school years onwards. Led by Camilla Stoltenberg, Director General of the Norwegian Institute of 
Public Health, a National Commission on Gender Equity in Education was convened to explore 
gender differences in school and make recommendations to address inequities. Their report, published 
in February 2019, concludes that there are differences in girls’ favour in the Norwegian educational 
system (NOU, 2019). The Commission’s work has gained a lot of media attention, leading to 
headlines such as “Girls continue to storm ahead of boys in school”1 (Solvang, 2017). While Camilla 
Stoltenberg has strongly expressed her worries about boys, academics such as Harriet Bjerrum 
Nielsen (2017) and Kristoffer Chelsom Vogt (2018) have challenged this view in public debate, 
arguing that it over-simplifies complex gender relationships in current Norwegian society.  

Mathematics is not a central focus in this domestic discussion, apparently because differences in test 
results between boys and girls are small. Girls are performing slightly better than boys in 
mathematics, but the gap is less noticeable in comparison with other subjects and reading (Backe-
Hansen, Walhovd, Huang, 2014; Nordtvedt, 2013; Statistisk Sentralbyrå [SSB], 2017). However, 
Norwegian students’ overall level of performance in mathematics has caused school authorities a 
headache since the “PISA-shock” of 2000, in which Norway did not perform well in comparison to 
other countries, triggering major policy-level attention on the improvement of mathematics teaching, 
including the introduction of National Tests in reading, English and numeracy in grades 5, 8 and 92.  

                                                 
1 Translated from «Jentene fortsetter å rase fra guttene på skolen» 

2 These are distinct from national level examinations in mathematics in grade 10, at the end of lower secondary school. 
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My experience as a secondary school mathematics teacher has meant that I have frequently seen 
students who seem to give up on mathematics during the years in upper secondary school, or on the 
other hand begin to connect to mathematics. Reflecting on the issue of Norwegian students’ poor 
results in mathematics, I have wondered why some students seem to change their attitude towards 
mathematics during these crucial years of early adolescence. Hence, I embarked on a longitudinal 
study of students in a lower secondary school mathematics class, aiming to understand their 
developing relationships with mathematics, whether in a positive or negative direction.  

Having tracked a class for one and a half years from 8th to 10th grade, I noticed gender dimensions in 
the 10th grade which are not captured by the general discussion of gender and education in Norway. 
This unexpected emergence of gender patterns led me to look more closely at the current debate. In 
this paper, I describe how a longitudinal analysis of individual students’ trajectories in this class 
provides a very different account of gender in comparison to basic test statistics. I will argue that the 
ongoing debate on gender, education and mathematics has to be both more nuanced and given more 
attention, in order to be fair to the all the students in the Norwegian educational system.  

Setting the scene: “Class A” 
“Class A” is a 10th grade class (age 15) in a lower secondary school in Norway, just outside Oslo. 
The school is situated in a high income socio-economic area with a largely well-educated population, 
of whom the majority are ethnic Norwegians. I have been tracking “Class A” since midterm in the 8th 
grade (age 13), observing classes and holding focus group interviews.  These data are supplemented 
with information on students’ test3 performance and teacher assessments. “Class A” is in general a 
high-achieving class with results remarkably better than the national level in mathematics, even those 
one grade above. The average grade in their 9th grade final test was 4,65, in comparison with national 
results in 10th grade examinations of between 2,9 and 3,6 in recent years4 (SSB, 2017).   

 Average grade in 8th grade Average grade in 9th grade 

Boys 5,0 5,2 

Girls  4,25 4,4 

Table 1: Average grades for boys and girls in 8th and 9th grade 

Table 1 illustrates the picture gained from the basic statistics for boys and girls in 8th and 9th grade.  
These give the impression that boys are performing remarkably better than girls in this class. If we 
go beyond average grades a more nuanced picture appears. As we can see in Table 2, at the end of 9th 
grade, all boys are labelled as high achievers in the terminology used in the Norwegian assessment 
system (students achieving grade 5 or 6). Their grades are largely stable or improving, and only one 
boy is an exception to this pattern. The girls not only lag behind the boys in terms of basic grades, 
but, as a group, their grades seem to be more unstable, either remaining static or declining. Just one 

                                                 
3 These are school-level tests, designed by the teachers. 

4 The Norwegian grading scale in grades 8-10 runs from 1 to 6, with 6 as the best possible grade to achieve.  
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girl improved her results from 8th to 9th grade. No girls achieved the top grade in either 8th or 9th grade, 
although four boys did so in 8th grade and three boys in 9th grade. 

Test Grade  Number of boys achieving each grade Number of girls achieving each grade 

8th grade 9th grade 8th grade 9th grade 

6 4 3 - - 

5 3 5 6 5 

4 2 1 3 4 

3 1* - 3 (2*)  1  

Table 2: Overall patterns of attainment by gender (*Moved to a group for struggling students) 

Given the current debate on education, gender and mathematics, this emergent gender pattern was 
unexpected. The apparently more unstable situation of girls in “Class A” led me to question whether 
gender matters or not in Norwegian mathematics classrooms. Could “Class A” be just an exception 
from the norm in Norway?  Thinking further on this question, a contrary question presented itself: 
“Could it be that the binary gender debate in Norway needs further nuancing in order to bring genuine 
equity for both boys and girls in Norwegian mathematics classrooms?” Could it be time for a 
discussion of the challenges for girls as mathematics students in the Norwegian context where gender 
is ostensibly not an issue? The importance of scratching beneath the surface of the debate on gender, 
education and mathematics in Norway thus became difficult to ignore and is my aim in this paper.  

The context of gender, education and mathematics in general in Norway   
The current debate on education and gender in Norway emphasizes that girls outperform boys. When 
it comes to school results, data from the Norwegian Central Bureau of Statistics (SSB) show that girls 
perform better than boys in almost every subject except gymnastics. The gender gap is most 
significant in Norwegian and English, and least in mathematics (SSB, 2017). The high school drop-
out rate is higher for boys, and the general picture in higher education is that girls are in the majority 
in universities and colleges (Hollås, 2007). With this established reality of gender patterns in 
education, there is little room for worrying about girls, while ensuring boys’ success is at stake. 

However, although women may be in the overall majority in higher education, this is not the case in 
the STEM area, where in Norway they are in a minority (Hollås, 2007; Olofsson, 2016). International 
studies of this situation in the Netherlands and the Nordic countries have labelled this phenomenon 
“the gender-equality-paradox” (Stoet & Geary, 2018), noting the contradiction between high rates of 
women’s emancipation and hence gender equality in these countries and their underrepresentation in 
STEM higher education. Even though this pattern is also known in Norwegian statistics and has 
gained attention in the past (Tønnessen, 2018), it seems that it has been forgotten in the current debate.  

Consideration of why women are a minority in the STEM area in Norway suggests that the years 
before students make their choices for higher education must be influential. It makes sense to look 
for traces of this pattern in the field of mathematics in the secondary school years, since mathematics 
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is a key subject for all students who intend to continue with study in the STEM area. Girls’ situation 
in mathematics is in danger of becoming a blind spot in this domestic debate on gender and education. 

Digging beneath the surface of gender equality issues in Norway  
To move beyond a binary picture of gender in the Norwegian education context, we need to draw on 
different data from that provided by the SSB analysis of test results. PISA 2012 (Kjærnsli & Olsen, 
2013) not only presented data on test results, but also on students’ relationships with mathematics. 
Nordtvedt’s (2013) analysis of PISA 2012 was that although girls performed slightly better than boys, 
there were no significant gender differences in mathematics performance in Norway; differences were 
more prominent in reading and in English. However, when it comes to students’ relationships with 
mathematics, another perspective on gender and mathematic appears. Jensen and Nordtvedt (2013) 
reported that boys scored more positively on intrinsic motivation, stamina, assessment of their own 
capacity in problem solving, self-perception and self-efficacy. Focusing on extrinsic motivation and 
anxiety, while there were no differences in the former, girls scored more highly on the latter.  

Turning to national test data from the 5th, 8th and 9th grades, 2017 data show that girls achieve better 
results in reading, while boys have better results in numeracy (UDIR 2017a, 2017b). These results 
are in line with those of previous years. Even though boys seem to be ahead of girls according to 
these national tests, statistics show that when it comes to the 10th grade examination in mathematics, 
they do not gain better grades, suggesting a decline in the last year of high school. As the SSB (2017) 
notes, the tests differ in terms of both form and content, but they nevertheless raise issues regarding 
gender which suggest that we need to understand more about students’ experience of mathematics.  

At the end of lower secondary school, students choose different education pathways. Bjørkeng (2011) 
reports that girls’ participation in the more theoretical mathematical pathway for science drops from 
48% in 11th grade to 40% in 13th grade, even though they perform better than boys on the same 
pathway. Bjørkeng (2011) argues that girls have a need for better grades than their male peers do, in 
order to choose this mathematics pathway. She concludes that although girls often have equally good 
results as boys, they have less motivation and poorer perception of their skills, corresponding to the 
conclusions of PISA 2012 and drawing attention to the impact of girls’ relationships with 
mathematics on their participation in post-compulsory mathematics, in spite of their better grades.   

Discursive issues in gender and mathematics in international and Scandinavian 
contexts 
“Whether the issue is gender difference or gender equity, in the Nordic countries the underlying issue 
will always be equal opportunity” (Wedege, 2007, p. 252). If equality of opportunity is the pathway 
towards gender equity, it is difficult to see why women are still in a minority in STEM and the 
mathematics pathway for science in egalitarian Norway. However, international studies have shown 
the impact of discursive challenges for girls who study mathematics, where mathematics is inscribed 
as a male domain (Mendick, 2005; Rodd & Bartholomew, 2006). In the Scandinavian context, 
Brandell and Staberg’s (2008) research in Sweden finds that despite the country’s “fairly good record 
concerning gender equity” (p. 495), female participation in intensive mathematics programmes is 
38% in upper secondary school, dropping to 30% at undergraduate and 26% at graduate levels. They 
found that even in the egalitarian context of Sweden, mathematics was more likely to be perceived as 
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a male domain among high school students. Boys had more positive relationships towards 
mathematics, and while both boys and girls conceived of mathematics as difficult and unattainable, 
these negative qualities were seen as more applicable to girls. Szabo (2017) similarly reports that 
boys and girls in accelerated mathematics classes in Sweden differ in their experience of mathematics.  

Foyn, Solomon and Braathe’s (2018) study of high-performing 10th grade girls in Norway also reports 
on the discursive challenges for girls in mathematics. They document the social cost of being a “clever 
girl” and its effect on the dynamics between students in this group. In line with these findings, With 
and Solomon (2014) found that the dominant Norwegian discourse of gender equality seemed to have 
little impact on upper secondary school students’ attitudes towards mathematics. They found that 
girls positioned themselves as “just” hard workers and as lacking natural ability for mathematics. 
These studies suggest that there are challenges for high-performing girls when making choices to 
study mathematics, even in the Norwegian context. 

Returning to “Class A” 
The importance of understanding more about students’ relationships with mathematics than basic 
statistics can tell us is illustrated further by looking at “Class A” from another perspective. Looking 
beyond the impression given by the students’ overall results, and instead exploring individual 
trajectories in mathematics in the period from the second half of 8th grade and throughout 9th grade, 
suggests a complex picture of gender in mathematics.  

Figures 1 and 2 show individual students’ trajectories in mathematics as they move through grades 8 
and 9. Close inspection shows a pattern of gender differences which appear to be important. As we 
can see, boys show a more stable development than girls. Focusing on Figure 1, five of the boys 
gained better results at the end of 9th grade than at the beginning of 8th grade. One shows a drop at 
the beginning of 9th grade, but is back on track at the end of 9th grade. Another has lost his top mark, 
but he is still achieving very good results and these could be interpreted as stable with a slight dip. 
Turning to the girls, their individual trajectories show a more unstable situation. Figure 2 shows that 
there is only one girl whose results improve. The rest of the girls are in a more unstable situation, 
either declining or showing a dip before getting back on track. The girls’ unstable situation is a 
potential indicator in terms of their future as mathematics students. 

   
Figure 1: Boys’ grades from grade 8 to 9, based on written tests and teacher assessment combined 
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Figure 2: Girls’ grades from grade 8 to 9, based on written tests and teacher assessment combined 

Data from focus group interviews adds a further interesting perspective. Those girls who described 
themselves as enjoying working with mathematics in 8th grade did not maintain their positive attitude 
during 9th grade. None said that they still enjoyed working with mathematics. On the other hand, boys 
who expressed positive attitudes toward mathematics in 8th grade maintained this view in grade 9. 
The most stable higher achieving girl in the group expressed a very negative attitude towards 
mathematics, using expressions such as “I really don’t see the point”. A final comment worth 
mentioning is that, in 8th grade, the teacher named just one girl among the best students in 
mathematics. She was not on the teacher’s top list in 9th grade.  

A need for expanding the debate of mathematics and in Norway 
Having argued that the debate on gender, education and mathematics is more complex than the 
impression given by basic statistics and average grades, my claim is that we need to take a more 
nuanced view of the role of gender in mathematics. Including data on students’ attitudes and 
relationships to mathematics, the course of individual trajectories and the role of popular discourse 
and peer cultures in student choice underlines the complexity of the issue. Knowing that women are 
underrepresented in the STEM area, combined with knowledge of discursive challenges for girls as 
students in mathematics in the educational system, my conclusion is that there is a gender dimension 
in mathematics in Norway which we need to be aware of. Maintaining the binary picture of boys 
struggling while girls effortlessly succeed in school will not be fair to either boys or girls.  

The problem of girls being in a minority in mathematics for science is not being treated as in need of 
attention in the Norwegian context. Quoting Harriet Bjerrum Nielsen (2017a), it seems as if the alarm 
is louder when there is a problem for boys rather than for girls. From an economic point of view, 
failing to give this situation further attention means that Norway will suffer from the lack of women 
with important skills in mathematics in the STEM area. More theoretically, there is little basis for 
such a binary conception of boys and girls, and it does disservice to both (Francis, 2012).  

The case of Class A shows the importance of conducting longitudinal, qualitative studies of students 
in Norwegian schools in mathematics. Important knowledge about the situation in mathematics will 
get lost if we continue to rely only on basic statistics and ignore issues of relationships towards 
mathematics and the dynamics of the mathematics classroom. My preliminary analysis raises issues 
which cannot be captured by the ongoing debate, and the emerging gender pattern shows the 
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importance of scratching beneath the surface. Finally, these words from Harriet Bjerrum Nielsen 
(2017a) will highlight my conclusion: “Those who think that boys are being neglected in schools 
nowadays have most probably not been in a classroom for a long time”. 

References 

Backe-Hansen E., Walhovd, K. B, & Huang L. (2014). Kjønnsforskjeller i skoleprestasjoner: En 
kunnskapsoppsummering [Gender differences in school performance: A summary of knowledge.] 
Oslo: Norsk institutt for forskning om oppvekst, velferd og aldring. 

Bjørkeng, B. (2011). Jenter og realfag i videregående opplæring [Girls and science in secondary 
education]. Oslo: Statistisk sentralbyrå. 

Brandell, G., & Staberg, E.-M. (2008). Mathematics: A female, male or gender-neutral domain? A 
study of attitudes among students at secondary level. Gender and Education, 20(5), 495–509. 

Foyn, T., Solomon, Y., & Braathe, H. J. (2018). Clever girls’ stories: The girl they call a nerd. 
Educational Studies in Mathematics, 98(1), 77–93. 

Francis, B. (2012). Gender monoglossia, gender heteroglossia: The potential of Bahktin’s work for 
re-conceptualising gender. Journal of Gender Studies, 21(1), 1–15. 

Hollås, H. A. (2007). Kvinner dominerer på nesten alle områder [Female dominance in almost all 
areas]. Oslo: Statistisk sentralbyrå. Retrieved from https://www.ssb.no/utdanning/artikler-og-
publikasjoner/kvinner-dominerer-paa-nesten-alle-nivaaer  

Jensen, F., & Nordtved, G. (2013). Holdninger til matematikk [Attitudes towards mathematics]. In 
M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå (pp. 97–117). Oslo: Universitetsforlaget. 

Kjærnsli, M., & Olsen, R. V. (2013). PISA 2012: Sentrale funn [PISA 2012: Central findings]. In M. 
Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå (pp. 13–40). Oslo: Universitetsforlaget 

Mendick, H. (2005). A beautiful myth? The gendering of being/doing ‘good at maths’. Gender and 
Education, 17(2), 89–105.  

Nielsen, H. B. (2017a). Når gutter fremstilles som tapere går alarmklokkene langt høyere enn når jenter 
er tapere [When boys are made appear as losers, the alarm is louder than when girls are losers]. 
Retrieved from https://www.aftenposten.no/meninger/kronikk/i/voeGj/Nar-gutter-fremstilles-som-
tapere_-ringer-alarmklokkene-langt-hoyere-enn-nar-jenter-er-taperne---Harriet-Bjerrum-Nielsen 

Nielsen, H. B. (2017b). Frafall og presisjestudier: Gutter er ikke bare gutter [Drop-out and high-status 
studies: Boys are not only boys]. Retrieved from https://www.aftenposten.no/meninger/debatt/i/ 
blkrl/-Frafall-og-prestisjestudier-Gutter-er-ikke-bare-gutter--Harriet-Bjerrum-Nielsen 

Olofsson, C. (2016). Positive trend stalled: Women still underrepresented in STEM subjects. 
Retrieved from http://www.nikk.no/en/news/positive-trend-stalled-women-still-underrepresented-
in-stem-subjects/ 

NOU. (2019). Nye sjanser – bedre læring: Kjønnsforskjeller i skoleprestasjoner og utdanningsløp [New 
chances – better learning: Gender disparities in school achievement and education] Retrieved from 
https://nettsteder.regjeringen.no/stoltenbergutvalget/files/2019/02/nou201920190003000dddpdfs.pdf 

Thematic Working Group 10

Proceedings of CERME11 1884



 

 

Nordtvedt, G. (2013). Resultater i matematikk [Results in mathematics]. In M. Kjærnsli and R. V. 
Olsen (Eds.), Fortsatt en vei å gå (pp. 67–92). Oslo: Universitetsforlaget. 

Rodd, M., & Bartholomew, H. (2006). Invisible and special: Young women’s experiences as 
undergraduate mathematics students. Gender and Education, 18(1), 35–50. 

Solvang, T. M. (2017). Jenter fortsetter å rase fra guttene på skolen [Girls continue to storm ahead of 
boys in school]. Retrieved from https://www.nrk.no/norge/ekspertutvalg-skal-undersoke-hvorfor-
jenter-gjor-det-bedre-enn-gutter-pa-skolen-1.13706126 

Statistisk Sentralbyrå [SSB]. (2017). Guttene havner bakpå [Boys are lagging behind]. Retrieved from 
https://www.ssb.no/utdanning/artikler-og-publikasjoner/guttene-havner-bakpa  

Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in science, technology, engineering, 
and mathematics education. Psychological Science, 29(4), 581–593. 

Szabo, A. (2017). Matematikundervisning för begåvade elever – en forskningsöversikt [Mathematics 
education for talented students—a research overview]. NOMAD, 22(1), 21–44.UDIR. (2017a).  

Tønnessen, E. (2018). Fortsatt få jenter på ingeniørfag [Still a few female engineering students]. 
Retrieved from https://khrono.no/ikt-norge-tekna-jenter-og-teknologi/fortsatt-fa-jenter-pa-
ingeniorfag/210901 

UDIR. (2017a). Analyse av nasjonale prøver på 8. og 9. trinn 2017 [Analysis of national tests in 8th 
and 9th grade]. Retrieved from https://www.udir.no/tall-og-forskning/finn-forskning/tema/ 
nasjonale-prover/resultater-fra-nasjonale-prover-pa-8.-og-9.-trinn/ 

UDIR. (2017b). Analyse av nasjonale prøver på 5. trinn 2017 [Analysis of national test in 5th grade]. 
Retrieved from https://www.udir.no/tall-og-forskning/finn-forskning/tema/nasjonale-prover/ 
resultater-fra-nasjonale-prover-pa-5.-trinn/ 

Vogt, K. C. (2018). Svartmaling av gutter [Catastrophising boys]. Norsk Sosiologisk Tidsskrift, 2(2), 
177–193. 

Wedege, T. (2007). Gender perspective in mathematics education: Intentions for research in Denmark 
and Norway. ZDM – The International Journal on Mathematics Education, 39(3), 251–260.  

With, K., & Solomon, Y. (2014). Choosing mathematics in Norway and England: Discourses of 
gender, equity and choice. Philosophy of Mathematics Education Journal, 28.  

Thematic Working Group 10

Proceedings of CERME11 1885



 

 

The relevance of mathematics and students’ identities 
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This paper reports on a project, which explores the relevance of mathematics to students in an 
Ethiopian school. The data collection, which involved group interviews, was undertaken in 2010-
2011. The analysis process identified themes that captured diverse perceptions of relevance and 
students’ identities. The focus of this paper is on diverse aspects of students’ identities and their 
relationship with students’ perceptions of the relevance of mathematics. The analytic framework is 
cultural historical activity theory. The results indicate that the students’ perceptions of relevance and 
identity are dialectically related. 

Keywords: relevance, identity, mathematics curriculum, dialectical relation. 

Introduction 
This paper reports on data collected in 2010–2011. It is part of a research project, which was launched 
in 2009, and had two phases: a pilot study and a main study. The participants were students of a 
preparatory school (equivalent to an upper secondary school) in Ethiopia. The study examined 
students’ perceptions of the relevance of mathematics to their future goals, their everyday life and 
society. Previous studies have investigated perceptions of mathematics’ relevance focusing on upper 
secondary school (e.g. Sealy & Noyes, 2010; Black et al., 2010) and middle school (e.g., Masingila, 
2002). Sealy and Noyes (2010) identified three different categories regarding the perceived relevance 
of mathematics to students’ future goals: usefulness, exchange value and transferable skills. They 
note how students’ perceptions are varied across different schools, and argue that such variations are 
linked to differences in the social and cultural situations of students as well as differences in the social 
context of the schools. They assert that the mathematics curriculum and its pedagogy should be 
framed in accordance with these varied perceptions of relevance. 

Black et al. (2010) relate students’ identities to the exchange value and use value of mathematics 
focusing onstudents’ aspirations to study mathematically demanding subjects and their future career 
plans. They argue that the exchange value and use value of mathematics frames students’ motives for 
studying mathematics. Use value relates to how mathematics enables one to pursue a vocation, and 
exchange value refers to what mathematics offers, e.g. it may enable one to join the university or 
obtain an academic degree. Black and colleagues suggest that identity develops alongside the motive, 
students’ identities influence their perceptions of the use value and exchange value of mathematics. 

Students’ perceptions of the relevance of mathematics to their everyday life has also been examined 
previously (Masingila, 2002). Masingila’s study is about students in Kenya. Her aim is to close the 
gap between students’ experiences of mathematics in the classroom and its use in out-of-school con-
texts. She identifies six mathematical categories which are consistent with Bishop (1988): counting; 
measuring; explaining; playing; locating; and designing. Furthermore, some studies relate mathemat-
ical identities and perceptions of relevance to students’ cultural backgrounds (e.g., Nasir, 2002; Nasir 
& Saxe, 2003). Nasir’s (2002) study highlighted how students establish a sense of identity as learners 
in relation to their African-American cultural backgrounds. She argued they learn better when tasks 
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relate to their sociocultural backgrounds, such as playing dominoes and basketball. A similar study 
by Nasir and Saxe (2003) reported that students experience tensions between how they are situated 
in school and in out-of-school cultural practices (Nasir & Saxe, 2003). This body of work highlights 
how identity relates to race, and its influence on power (Nasir & de Royston, 2013) supporting Gutiérrez 
(2013) who also calls for the sociopolitical turn in exploring racial identity in mathematics education. 

The Ethiopian sociocultural context has peculiar features and its schooling has a peculiar history. 
Before the introduction of modern education in Ethiopia, there have been traditional education 
associated with Islam and Orthodox Christianity. Modern education was introduced in Ethiopia 
around the beginning of the 20th century (Wagaw, 1979). In 1908, a modern school was opened in 
Addis Ababa (Hoot, Szente, & Mebratu, 2004). It was named after the Emperor, Minilik II, who ruled 
the country in that period. Modern education was not in line with the country’s needs in some ways, 
where Many of the subjects were languages such as Arabic, English and French (Wagaw, 1979). 
Wagaw assert that though local languages such as Amharic and Ge’ez were taught as subjects, the 
language of instruction was not any of the local vernaculars (the language of instruction for the 
participants in the current study is also English). Although education was considered as a gateway to 
getting a job, some parents were sceptical about ‘modern education’ fearing it would not maintain 
cultural values (Wagaw, 1979). According to Wagaw, the clerics also expressed concern about 
maintaining Ethiopian values, a worry shared by some scholars. 

Participants of the current study were 16 to 18 years old, yet distinguished from the rest of their age 
group as they are considered as elites (high ability). Because they joined the preparatory school based 
on their success in the second of the three national examinations in the Ethiopian school system. They 
expect to join university after sitting the third and final national examination.  

It is important to examine if students perceive that mathematics is relevant to their everyday life, society 
and future studies, and how students perceive the reason for learning and engaging with mathematics. 
Preliminary results of this study were reported earlier (Gebremichael, 2013). The purpose of the 
current paper is to show the relationship between perceptions of mathematics’ relevance and students’ 
mathematical identities. This introduction provides background information, which can help the 
reader to understand the results. In the following sections, I provide the theoretical and methodolo-
gical issues before presenting the data and its analysis. I finalize the paper with my concluding remarks. 

Theoretical issues 
Cultural historical activity theory (CHAT) is adopted as the theoretical perspective in this study. I 
employed Engeström’s mediational triangle (Engeström, 2001) to understand how the students spend 
their time at home and at school. In the current study, the school and the family-life are considered 
as two different activity systems (see Figure 1). In the school, students experience and use artifacts, 
signs and tools such as textbook, lessons, etc. while undertaking actions towards the goals of learning 
mathematics and the other school subjects. The students are subjects of the schooling activity, and 
interact with the object (Roth et al., 2004). The object of an activity system consists of material 
objects, the motive, and the goals (Roth, 2007). The object of the school activity system consists of 
the motive and the goals, including students’ future goals. The school’s motive could be producing 
students who can succeed in the national examination to attend university and become capable of 
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solving problems of everyday life and society. The school’s goals could be providing adequate 
knowledge for realizing the motive.  

The artifacts, rules, community and division of labor mediate this interaction (Roth, 2007). There are 
rules, which govern members of the community. According to the rules, students should follow the 
classroom norms, attend to specific topics and sit examinations. Students are members of the school 
community, which also interacts with the object. These relationships are also mediated by the division 
of labor among members of the school community; the students and the teacher have different roles. 
There could also be differences in the roles of students. There are authorities, who have roles in 
deciding who will go to preparatory school and university. These authorities are represented by the 
school administrators, who enforce the rules set by these authorities and form part of the community. 
The students are divided into social science (SS) and natural science (NS) streams. These are also 
communities. The mathematics teacher also classifies them in terms of achievement level. The 
teachers of the various school subjects are members of the school community. According to the school 
rules, the students are operating in a school, which implements a nationally designed curriculum. 
Mathematics teachers are required to follow the nationally produced textbook (Federal Democratic 
Republic of Ethiopia Ministry of Education, 2010). This artifact influences another school artifact, 
the lesson. It is from this textbook that teachers give classwork and homework.  

 

 
 
 
 
 
 
 

 

 

 
 

Figure 1 shows that the components of the activity systems are related to each other, and the double 
arrows represent the dialectical relationship between them. The figure represents two activity 
systems: school and family-life. As in the school activity, the student is subject of family-life activity, 
and interacts with the two objects as an actor. The object of the family-life activity system consists 
of material objects, home tasks, motive and goals. The motive of the family-life activity could be 
survival of the family, and one goal of this activity is a student’s personal development. As part of 
this goal, the student engages in school tasks and family members provide support. Participants 
experience contradictions between the components of activity systems, and contradictions are 
considered as sources of development (Roth et al., 2004). Students may experience contradictions 

Figure 1: Network of activity systems adopted from Engeström (2001) 
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between objects of the school and out-of-school activities. For example, as we will see in the data 
presentation, preparatory mathematics is hardly seen as useful in everyday life and society. These 
contradictions can be sources of development of particular perceptions of relevance and identity. 

As long as there is activity, there is an acting individual, and the individual’s identity is integral to 
the activity (Roth, 2007). Roth et al. (2004) distinguish between social and personal identity. In my 
study, the students seem to form aspects of identity as they participate in the school and out-of-school 
activities. Personal identity is where the individual student recognizes her/himself as such, and the 
student can also have a social identity where other members of the community recognize her/him as 
such (Roth et al. 2004). For example, a student is recognized by others as a high achiever. Roth and 
Lee (2007) suggest a third aspect of identity, collective identity, which an individual holds as a 
member of a group. Students are recognized as members of SS or NS streams. Collective identity is 
associated with the structure, which includes the components of activity systems (Roth & Lee, 2007). 
The national curriculum and the instruction language (which is foreign to them) are parts of the 
structure.  

Artifacts, rules, community and division of labor mediate students’ identities (Roth et al., 2004). For 
example, the teacher recognizes students as such based on their roles in the classroom. The division 
of labor also mediates the perceptions of relevance as the teacher directs students’ attention to what 
might be of value for future studies in both the SS and NS communities. The school rules, which 
enforce the significance of success in examinations, can mediate the students’ personal as well as 
social identities. The rules direct the students’ attention to the importance of examinations scores for 
recognizing themselves or others. The teacher’s recognition of students as such is also based on 
examination scores. In addition to the rules, which enforce the adopted curriculum, the school and 
out-of-school artifacts mediate students’ identities as Ethiopians and perceptions of mathematics’ 
usefulness. The contradictions, which they experience between the objects of the school and out-of-
school activities, can be sources of development both in relation to their national identities and in 
addressing doubt about mathematics’ usefulness in everyday life and society.  

Methodological issues 
Group interviews were undertaken where each group had three students of the same sex and same 
class. Each group had high, medium and low achieving students. The intention of the grouping is to 
make students feel comfortable and remind each other of their respective experiences. Following 
Miles and Huberman (1994), I conducted data reduction through listening to the video-recorded 
interviews. This was done to simplify the data and obtain focus by deciding on which pieces of data 
provided the best idea of what each participant is saying. This data reduction process was influenced 
by the research questions and aimed to expose the students’ perceptions of the relevance of 
mathematics. I made a table indicating the time and a description of what the interviewer and 
interviewees said. I transcribed the utterances of students that possibly exposed their perceptions of 
the relevance of mathematics and related issues. Then, I followed Miles and Huberman, and 
undertook coding. Miles and Huberman (1994) explain that coding of written transcripts can be 
undertaken based on the research questions and can employ concepts that are often used in certain 
theoretical perspective. The excerpts reported in the data presentation and analysis are students’ 
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responses to the interview questions about the relevance of mathematics. After coding was completed, 
the next step was to examine the coded text to obtain themes (e.g., Miles & Huberman, 1994). I 
grouped the data segments with the same recurring topic into a particular theme. 

Data presentation and analysis 
This section presents examples and analysis of the interview data under two subsections as follows. 

Students’ personal and social identities and the relevance of mathematics to future goals 

Students tell stories which relate to their identities and mathematics’ relevance to future goals. 

Andualem: What do you want to study in the future? Is mathematics useful for what you want 
to study? How do you come to know about its use? 

Milkias: I want to study law. I … do not think that it has mathematics ... Some teachers say 
to us, you [SS students] are not serious about mathematics because you think you 
do not need it in the future. [12th grade, SS, male] 

Andualem: Why do you learn and engage in mathematics? 

Beliyu: Primarily, to get a higher rank in the class. I derive pleasure from it [getting a higher 
rank] …. to get some knowledge because I have a target to meet.... The reason for 
coming to school is that I have a target that I hope to meet. In order to meet that 
target, I have to work now.... My target is to learn well and become someone in a 
field of study I like. ... I want to study medicine. [11th grade, NS, female] 

Sofia: It is joyful answering about something you know. .... It tells who you are. Let us 
say I graduated [from the university] and someone asked for help, how could I 
explain to him, if I do not know about it? However, if I know it, I can explain it 
without feeling ashamed. Therefore, I enjoy knowing it, even though I do not 
benefit from it.  

Andualem: Do you have such experience of helping others in mathematics? 

Sofia: I have little brothers and sisters and I help them ... My brother used to help me and 
advise me using his own experiences. Now, he is studying at the university. [11th 
grade, SS, female] 

Identities and perceptions of relevance seem to emerge as students participate in school and out-of-
school activities (e.g., Sofia’s story). They emerge in the interactions between the subject, the 
communities and the objects of the activities (Milkias’s story). The rules and the division of labor 
mediate students’ identities as well as their perceptions of relevance (Beliyu and Milkias’s stories). 
The school rules, which enforce that students should master certain mathematics topics and are ranked 
in the class based on examination scores, direct their attention to the relevance of mathematics to their 
future goals and to recognize themselves as such (see Beliyu’s story). The division of labor also 
mediates their identities; for instance, their teachers recognize Beliyu and Sofia as high-achieving 
students. In the family-life activity, there is interaction between the community and the object, in 
which members of the family have roles in the student's personal development (e.g., Sofia’s story). 
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The rules in family-life activity enforce that students should follow what their elders tell them to do 
and that elders should care for the younger. Members of the family recognize each other as such. The 
rules and the division of labor in family-life activity direct students’ attention to recognize themselves 
as such in connection with mathematics. The division of labor also determines their perceptions of 
relevance as the teacher directs the students’ attention to the relevance of mathematics with respect 
to their current community and their future study (Milkias’s story). The students also perceive that 
mathematics has exchange value (e.g., Beliyu’s story). The school rules, which mediate the students’ 
identity, mediate this perception of relevance. 

Other members of the community such as the mathematics teacher, recognizes the individual student 
as such (e.g., Beliyu and Sofia). This could be their social identities (e.g., Roth et al., 2004). There is 
a distinction between the areas of study, which students of SS and NS streams can progress to at 
university. There is also evidence of a collective identity (e.g., Roth & Lee, 2007). Based on their 
membership of either SS or NS streams, students recognize themselves or others recognize them as 
members of these communities, particularly, in connection with the implications this membership has 
for the use of mathematics in future studies (e.g., Milkias’s story).  

Students’ national identities and the relevance of mathematics to the nation 

Students tell stories relating to national identity and mathematics’ use in everyday life and society. 

Andualem: Is preparatory mathematics useful in everyday life? In the society? 

Akalu: I think that is the difference between the others [other countries/ societies] and us. 
They are more practical, but we grasp the theory and we get confused where to 
apply it. That is the problem. [11th grade, NS, male] 

Haleluya: We learn to change our situations in a scientific way. Therefore, what we learn has 
to be related to our everyday life ... After consuming two or three pages, you get … 
numbers. …, what is its importance in my life? …. Or something related to … 
society. Our country might not have a need for mathematics. However, in 
economics, many people want to know …, and about business, about alleviating 
unemployment ... How we can use our resources. [12th grade, SS, male] 

The students perceive that preparatory mathematics is hardly useful in everyday life and society. The 
lessons and the textbooks mediate the perceptions of relevance by offering mathematics topics with 
hardly any usefulness in everyday life and in Ethiopian society (e.g., Haleluya’s story). These artifacts 
direct students’ attention to recognize themselves in connection with their attending of a national 
mathematics curriculum. The rules and artifacts, which enforce the content of school subjects for SS 
and NS communities, mediate students’ identities by directing the students’ attentions to the available 
gaps (e.g., Haleluya’s story). The division of labor, which gives students the role of grasping the 
theory and does not allow students to have a clear idea of where to apply it, directs students’ attention 
to recognition of themselves as such (e.g., Akalu’s story). In addition, participants experience 
contradiction between the objects of the school and out-of-school activities in Ethiopian society (e.g., 
Akalu’s story). The experiencing of this conflicting situation can be a source of the development of 
national identity. The students belong to a society, which uses artifacts and has a cultural heritage that 
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are Ethiopian, though diverse. They operate in an Ethiopian school system, which enforces Ethiopian 
education policy. Students are experiencing a national mathematics curriculum, which hardly 
embraces the situation in Ethiopian society (e.g., Haleluya’s story). They learn in a foreign language. 
These national features form the structure in which national identity emerges. 

Concluding remarks 
The different aspects of students’ identities and their perceptions of relevance are dialectically related 
(one presupposes the other). They recognize themselves as preparatory students, who have a future 
goal of joining university. Then, they perceive that preparatory mathematics has an exchange value 
in giving access to this future goal. Thus, an exposition of students’ perceptions of relevance 
presupposes their identities. In addition, students’ expositions of identities presupposes their 
perceptions of mathematics’ relevance as having exchange value in giving access to university study, 
as well as in being ranked high in examinations. The teacher’s recognition of students as SS and NS 
students presupposes the relevance of mathematics to these students’ future study, which influences 
their perceptions of relevance. The students’ perceptions of relevance also presupposes their identities 
as SS and NS students as well as their identities as future students of certain disciplines. The 
exposition of perceptions of mathematics’ relevance to everyday life and society appears to 
presuppose who they are as mathematics learners in this Ethiopian situation. On the other hand, their 
expositions of national identities are based on perceptions of mathematics’ relevance to Ethiopian 
society and everyday life. 

The current study exposed national identity, which is different from ethnic or racial identity (e.g., 
Gutiérrez, 2013; Nasir, 2002; Nasir & de Royston, 2013; Nasir & Saxe, 2003). These works attempt to 
examine identity of particular minority groups within a larger national culture (e.g., American culture, 
American school system where school rules enforce the American curriculum). But each national 
context has peculiar features. The sociocultural situations, including out-of-school activities, and the 
artifacts students experience in the school and outside of the school are likely to be different in various 
national contexts. National identity is a collective identity, and consistent with Roth and Lee (2007) 
the focus is on the structure. It is important to examine this identity in national contexts with peculiar 
features of the structure including adopted curriculum, use of language foreign to them, etc. 

Therefore, mathematics education in Ethiopia must consider the sociocultural situation in which it 
sits. The situations that separated parents from students, in the introduction of modern education, still 
appear to prevail in the students’ learning of mathematics. Students feel detached from their society 
with respect to the usefulness of mathematics. Further investigations need to be undertaken in this 
direction. 
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Theoretical background 
In the recent German school curriculum, mathematical problem solving is anchored obligatorily as 
an important competence for mathematics learning. Since 2008, competence expectations for 
problem solving have explicitly indicated what the pupils are supposed to have acquired at the end of 
grade 4 (Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen, 2008). But 
empirical research results indicate that the demands can generate inequalities with regard to social 
origin (Cooper & Dunne, 2000; Lubienski, 2000). Achievement studies confirm the impact of socio-
economic status on mathematic achievement (Stubbe, Schwippert, & Wendt, 2016). Research in 
mathematics education on social inequalities in the acquisition of mathematical competences 
observes different achievement in dealing with problem solving tasks specific to social class (Cooper 
& Dunne, 2000; Piel & Schuchart 2014). The study by Lubienski (2000) shows differences between 
students with different socioeconomic status (SES) dealing with problem-centered materials. The 
analyses show, for example, that,  

In general, lower-SES students focused more on giving the right answer to a question (...), whereas 
higher-SES students were more inclined to discuss a method or an idea. (...) lower-SES students 
were more likely to use language in “common-sense” reasoning that was closely tied to the context 
of the problems. (...) Higher-SES students were more likely to contribute in relation to abstract, 
strictly mathematical contexts and to use generalized language and reasoning. (p. 369) 

Based on the theories of Bourdieu (1987) and the research work of Lareau (2011), in the study 
presented here, the problem-solving process is analyzed from a perspective of socialization. The 
theory of habitus (Bourdieu, 1987) is used as an analytical tool for the mediation between the 
individual problem-solving process and the structural conditions of the social background. Lareau 
(2011) identified two milieu-specific child-rearing approaches and characteristic practices associated 
with the two educational styles: Middle-class families concerted child rearing on cultivation, 
working-class families concerted child rearing on accomplishment of natural growth. In particular, 
Lareau (2011) describes the two approaches as differently beneficial learning environments and 
socialization conditions for school practice. For example, while the discussion and argumentation 
between child and parents is an essential feature in the child-rearing approach of concerted cultivation 
of the middle classes, the child-rearing approach of accomplishment of natural growth of the working 
class is characterized by direct instructions. If the characteristics of child-rearing approaches are 
considered in competence expectations and the inherent structure of problem-solving, origin-related 
differences in competence development can be expected through habitual dispositions. The danger 
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that mathematical competence expectations have undesired impacts for less privileged students, 
which in turn can have the consequence that accessibility to mathematical contexts and the intended 
learning processes become more difficult or blocked, is subject of this investigation.  

Design and methods of the study 
The praxeological approach theory establishes dialectical relationship between objective structures 
and structured dispositions of the acting actors and serves as the epistemological fundamentals for 
the investigation. A mathematics performance test and student and parent questionnaires were used 
to select and classify pupils according to mathematical achievement level and social background. 
Data was then collected within the framework of individual clinical interviews during the processing 
of a total of three mathematical problem-solving tasks to get an insight into possible differences in 
the process. 

Results 
The preliminary analysis according to the phases model of Schoenfeld (1985) gives an indication of 
milieu-specific ways of acting through the phenomenon of the abridged analysis and exploration of 
mathematical problem-solving tasks of students from families of less privileged origin. The focus on 
a direct approach like one-word-answers without complete comprehension of the task has so far only 
been observed in students of less privileged origin. The correct answer seems to be more important 
than the understanding or discussion of the task which is unfavorably supported by the abridged 
analysis and exploration.  
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An ongoing research project aims at analysing and improving materials for teaching mathematics at 
German community colleges to non-native speakers of German. This paper first gives details on the 
circumstances of the study. Because of a lack of empirical research on the analysis and design of 
appropriate teaching materials for multilingual mathematics classrooms, this paper then discusses 
research findings from socio-political, linguistic and socio-linguistic perspectives and theoretically 
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Analysing teaching materials for multilingual mathematics teaching in Germany 
As a basis for teaching elementary mathematics to adults who experienced difficulties with 
mathematics, the German Community College Association had both a curriculum and teaching 
materials developed for corresponding courses (Deutscher Volkshochschul-Verband, 2017). Course 
contents are organised in three different entry levels, beginning with a therapeutic approach to 
dyscalculia, covering basic arithmetic operations with bigger numbers, and arriving at secondary 
school mathematics contents which are considered useful in private and vocational environments. 
The development was pursued on the basis of empirically founded theories of learning mathematics 
but the materials were not themselves tested in practice. In a follow-up project, which is headed by 
the author of this paper, the practical usefulness of the materials is to be evaluated theoretically and 
empirically with the aim to guide and implement improvements. It is paramount to understand that 
the teaching materials constitute the central manifestation of the idea of the course, for teachers in 
German community colleges, even those teaching mathematics, are usually laypersons in 
mathematics who orient their teaching by the materials available. Apart from the questions in how 
far the available materials mirror the educational philosophy of the curriculum and whether they are 
practical to use with students who experienced difficulties with mathematics, the evaluation project 
lays a special focus on the suitability of the materials for learners whose first language is not German. 
Irrespective of the other goals of the project, this paper will illuminate how teaching materials in 
mathematics can be analysed for their suitability for non-native speakers of German. 

Despite a substantial increase in research publications on multilingual mathematics classrooms during 
the last two decades (e.g., see the edited volumes of Barwell, 2009; Barwell et al., 2016; Halai & 
Clarkson, 2016; or, for the German case, Prediger & Özdil, 2011), insights on suitable material is still 
scarce. In her recent meta-study of all 51 anglophone journal articles on mathematics education in 
multilingual classrooms published between 1970 and 2012, Setati Phakeng (2016) found only six 
articles that explicitly discuss didactical and methodological aspects of teaching in such environments, 
whereas the majority of the publications focusses on linguistic explanations for critical moments in 
the learning process. As Prediger and Wessel (2011) argue, the same is the case for the German 
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research community, “for up to now there are relatively few empirically founded insights on the 
question what constitutes special linguistic and subject-related obstacles for multilingual learners of 
mathematics and with which support (of empirically tested efficacy) such obstacles can be overcome” 
(p. 163, my translation). Clearly, the question of material-use in multilingual mathematics classrooms 
has yet to be studied, a task that cannot be achieved in this project. As the goal of this project is to 
analyse available teaching materials from the perspectives of multilingual learners, the following 
discussion sets out to synthesise the results from previous studies on multilingual mathematics 
classrooms and to deduce guidelines for the analysis of teaching materials. Accordingly, it can be 
understood as an early theorisation of material use in multilingual classrooms. 

The specific situation of Germany and its community colleges 
As this project is located at community colleges in Germany, some information on the local 
circumstances is required to interpret the following discussion from an international perspective. 
Although Germany knows some autochthonous languages other than German, some of which are 
accepted as official languages in small regions of Germany (e.g., Danish and Sorbian), plus some 
regional languages (e.g., Low Saxon) and a large variety of regional dialects of High German, 
Germany constructs its national identity as a monolingual country. Immigrants are expected to learn 
German and school education is almost exclusively organised in German. In most cases, 
multilingualism is based on immigration. Nearly every forth German citizen has an immigration 
background (i.e. at least one parent born with a nationality other than German). Many immigrants, 
mostly but not exclusively of Turkish descent, were invited to West Germany in the 50s and 60s as 
so-called guest workers, stayed and founded families. In addition, people with German ancestors 
resettled to Germany in the last decades, mostly from the former Soviet Union. Germany has also 
welcomed a large variety of refugees with an especially large population from Syria, Iraq and 
Afghanistan arriving in the last years. Consequently, education in Germany faces a wide variety of 
cultural backgrounds and proficiency in the German language, with many students of immigrant 
background being born and educated in Germany, some speaking mostly German with their parents, 
and some having been learning German for a few years only. Nevertheless, the German situations 
differs a lot from the situations in bilingual communities (as on Malte, in French Canada or in 
Spanish-speaking communities in the USA), in classrooms with different regional languages (as in 
South Africa or India), and in classrooms with revitalised a language (as in Ireland). Therefore, it has 
to be checked carefully in how far research results from these socio-cultural settings can be transferred 
to the German situation.  

The German educational system appears to be ill-equipped to face the challenges of multilingual 
classrooms, given that, irrespective of intellectual capability, an immigration background is highly 
correlated with under-average achievement in national assessment (OECD, 2007). As a lack of 
proficiency in the German language has been shown to influence learning negatively, the perceived 
achievement gap is mainly being associated with language deficits (Herwartz-Emden, 2003). Indeed, 
a recent study with 766 pupils of Turkish descent attending a German primary school labelled about 
a half of this population as not competent in German, seeing their chances to participate in the 
German-speaking classroom substantially limited (Dollmann & Kristen, 2010). All in all, estimates 
assume the proportion of students who did not learn German as a first language to lie around 20%, 
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thus identifying a large proportion of the student population in risk of being disadvantaged by the 
German school system (Chlosta & Ostermann, 2008). In regard to mathematics education, studies 
suggest that the under-achievement of multilingual learners can partly or even totally be explained 
by language deficits (e.g., Heinze, Herwartz-Emden, Braun, & Reiss, 2011). For example, differences 
in achievement between first and second language speakers of German disappeared when problems 
were presented symbolically instead of verbally (Heinze et al., 2011). Some authors go as far as 
claiming that “subject learning can essentially be understood as language learning”, thereby 
accentuation the focus on linguistic obstacles towards the learning of mathematics (Gellert, 2011, 
p. 98, my translation). Consequently, research in the last two decades has aimed at explaining how 
multilingual students in German mathematics classrooms are systematically disadvantaged and at 
exploring how education can create a supportive and inclusive environment for such students. 

However, the situation of students in German community colleges differs from the situation of 
students in regular schools and has not yet been studied in relation to mathematics education: Students 
in mathematics courses at community college attend these courses voluntarily, as adults they have 
more extensive life and work experiences, and they assume to have problems with mathematics. As 
a consequence, different to the situation in the regular school system, mathematics courses at 
community college are first and foremost concerned with learning mathematics in a supportive 
environment rather than with simultaneously improving the mastery of German. 

On the politics of multilingualism in mathematics classrooms 
Discourses on language use in public education are usually ideologically biased as they closely 
interfere with national language, minority and immigration policies. Such bias has also been found in 
research. For example, Leung, Harris and Rampton (1997) revealed that the anglophone discourse on 
multilingual classrooms implicitly assumed that multilingual students do not use English at home, 
primarily learn English in school and thereby face comparable problems, altogether assumptions that 
do not withstand any closer analysis. Nevertheless, they constitute the group of those whose first 
language is not the language of instruction as a distinct group of others, sharing specific problems 
and needing the same kind of support. It is in such ways that the multilingual student is constructed 
as a deficient learner in spite of the fact that multilingual students differ a lot in their abilities and 
needs (Halai, Muzaffar, & Valero, 2016). As will be explained later, an alternative explanation resting 
on the distinction of certain language registers allows to analyse a wide range of linguistic difficulties 
of first and second language speakers simultaneously, leading the focus away from first language 
status and towards language proficiency in general. 

Linguistic obstacles for multilingual learners are partly created by the classroom policy of promoting 
German as the only language of communication in school (except in foreign language classes). This 
limitation means that often students cannot use all of their language resources, not even when they 
work in pairs or groups with their language peers, thus denying them options of participation that 
have proven highly beneficial (Meyer, 2016). Instead, students learn not to use their first language 
for their learning endeavours, a process that leads to a devaluation of immigrant languages (which, in 
an act of resistance, might be used as a solidary signs of a specific ethnic affiliation) and to the 
installation of German as the hegemonic language in science and politics (Setati, 2005). This 
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attribution of social status to the different languages spoken by the students leaves its traces in the 
micro-structure of education. For example, Schütte (2009) revealed that mathematics teachers 
communicate the meaning of mathematical language almost exclusively in an implicit form, thereby 
systematically leaving behind many multilingual learners who rather require explicit explanations 
(Tshabalala & Clarkson, 2016, provide similar results from English-speaking classrooms). 

In an attempt to discuss the situation of multilingual mathematics learners from a perspective that 
does not construct under-average achievements as an issue of individual deficits, recent studies have 
promoted the ideas to valorise multilingualism as a resource (Barwell, 2018). Indeed, several studies 
prove that competent multilingualism is closely related to achievement in mathematics, probably 
because of meta-cognitive abilities either pre-existent or acquired by the learning of multiple languages 
(e.g., Clarkson, 1992). In German mathematics classrooms with students of Turkish background and 
a policy of free language use, code-switching between German and Turkish has proven beneficial for 
the understanding of mathematics (Meyer, 2016; Özdil, 2011). However, Swain und Cummins (1979) 
found that positive effects of the use of multiple languages in class depend on a language-friendly 
atmosphere where the learners’ first languages share the same privileges as the language of 
instruction. In this respect, Meyer (2016) reports that he needed to have students teach him how to 
count in Turkish before they would feel comfortable to use Turkish in classroom conversation. 

The impact of differences in language proficiency 
Instead of focussing solely on the traditional categories of lexicon and grammar, a considerable part 
of differences in languages proficiency can more appropriately be explained by the analysis of 
different language registers. Already in the 50s, Bernstein (1996) started to analyse how the English 
language is used rather differently in different discursive situations and among different groups of 
society. He found that speakers of the working class often use a “horizontal code” which uses a 
particular set of vocabulary, rather easy grammatical constructs, and organises knowledge along 
personal stories and shared experience, while middle class speakers rather use a “vertical code” which 
uses more loanwords and nominalisations, more complex grammatical structures and an organisation 
of knowledge along universal logics. Above all, Bernstein also showed that students often lack the 
means to recognise the structure of the meaning-making process in the code they are not used to. This 
phenomenon results in substantial disadvantages for the participation of horizontal speakers in the 
primarily vertically organised discourse of school and mathematics education (Cooper & Dunne, 
2000). In an adaption to the German situation, Gogolin (1988) differentiated between everyday 
language (Alltagssprache), erudite language (Bildungssprache) and subject-specific language 
(Fachsprache, in our case mathematical language), with each of them differing in their use of 
vocabulary, grammar and knowledge-organisation. For example, “if and only if” is a phrase that is 
typical for mathematical language but hardly used in everyday and erudite language. 

While proficiency in everyday language can be obtained in about two years (Cummins, 2010), erudite 
and subject-specific German language takes four to eight years to learn for second language learners 
(August & Shanahan, 2006), creating a barrier for understanding and participation in the mathematics 
classroom (Gellert, 2011; Özdil, 2011). Vertical discourses in German can be extraordinarily difficult 
to decipher because of its synthetic grammar and extensive use of nominalisations, compounds, 
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dependent clauses, prepositional phrases and participial attributes – at times even causing German 
native speakers to pose linguistically problematic tasks as teachers (Rösch & Paetsch, 2011). Deseniss 
(2015) could show that students in Germany can much more easily describe the characteristics of 
erudite and mathematical language if their first language is German instead of any other language. 
However, proficiency in the vertical registers of the first language has been shown to support the 
acquisition of the vertical registers in the language of instruction (Celedón-Pattichis, 2004). It 
becomes clear that language-related learning barriers are not only a matter of immigrant background 
but to a large extent a question of a learner’s socio-economic background. En passant, the same holds 
true for the learners’ familiarity with situational context which might differ tremendously between 
learners of different socio-economic conditions, for example when it comes to planning a bicycle trip 
or reading the bicycle’s speedometer (Rösch & Paetsch, 2011). So, while it is true that everyday 
vocabulary might pose a barrier for non-native speakers of German, for example when words such as 
“to remove”, “to spend” or “to disappear” are used to explain subtraction, large parts of the 
mathematical language are equally unknown to speakers of the language of instruction, starting 
already with the quantity-based conception of words such as “more” and “less” (Walkerdine, 1988). 
The same is certainly true for the understanding and use of register-specific grammar. Consequently, 
a language-sensitive teaching of mathematics education should explicitly address the characteristics 
of the vocabulary, phrases and grammatical structures involved in erudite and mathematical language, 
for the sake of both non-native and native speakers of German (Gellert, 2011). 

Finally, another problem arises from linguistic interferences, that is from the confusion of seemingly 
similar but functionally different linguistic structures in two languages. Confusion begins at the pre-
verbal level, for example with different number symbols or with differences in marking bundles of 
thousands and the beginning of decimals (for “3,835.4” Germans write “3.825,4”), and extend to 
verbal constructions of numbers (Germans literally say “seven-and-fifty” instead of “fifty-seven”) and 
other mathematical objects (“three-fifth” literally translates to “in five three” in Turkish) (Frenzel, 2017). 

Consequences for the analysis and design of teaching materials 
Instead of a summary of the ideas discussed above, the last section of this paper will deduce guiding 
questions for the analysis and design of teaching materials in multilingual mathematics classrooms. 
The underlying assumption is that, especially in educational environments were teachers are usually 
laypersons in mathematics, materials and the comments provided on them can provoke or hinder 
certain activities in the classroom and thus influence teaching substantially. In this sense, the question 
is in how far materials can constitute or induce new barriers for multilingual learners and in how far 
materials can be designed to include and support multilingual learners. The guiding questions are: 

(1) Does the text of the material include everyday language words of German which are used to 
clarify the meaning of mathematical content but might be unfamiliar to some learners? Research in 
language-sensitive education proposes to collect and discuss the relevant vocabulary, to illustrate it 
in labelled pictures, to document it in various forms of word lists and to train its use by filling word 
puzzles or writing mathematics-related texts (Leisen, 2011). 

(2) Does the text of the material feature unnecessarily complex grammatical forms? While such 
grammatical features can be understood as attempts to introduce learners to vertical registers of the 
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language of instruction, they pose a barrier for the understanding of mathematics for many students. 
Often such text can be reformulated into more comprehensible versions (see, e.g., Grießhaber, 2011). 

(3) Does the material allow or provoke an explicit discussion of the new mathematical vocabulary 
and phrases that come with the covered mathematical content? If not, materials such as mind-maps 
with appropriate words and phrases or building sets with chuncks of mathematical phrases can help 
(Leisen, 2011). Mathematical writing appears to be an activity that strongly supports learners in 
building up competence in vertical registers (Morgan, 1998), probably because it grants students more 
time and chances for revisions for the struggle with the language than verbal communication does. 
Reports from an unexpectedly successful Latino classroom in the United States, where a culture of 
mathematical writing was cultivated, support this assumption (Chval & Licón Khisty, 2009). 

(4) Does the material encourage learners to compare German formulations and notations with other 
languages in order to identify possible misunderstandings based on linguistic interference? Even 
monolingual students may profit from an explicit comparison of different possibilities of expressing 
mathematical ideas. Such a comparison may be introduced by easy prompts: “If you speak any other 
language than German, do you know how to say this in the other language? Which way do you prefer?” 

(5) Does the material allow or provoke the use of other languages in the learning process? As Meyer 
(2016) discovered that students have often internalised the German-only policy of the classroom and 
are inhibited from the use of other languages, more or less detailed prompts to provoke the use of 
other languages seem necessary if the resources of other languages are to be used in the classroom. 

(6) Does the material build on situational contexts which might not be well-known to some students, 
especially because of cultural and socio-economic differences? If it does, it would be worth to check 
if the context can be changed to one all students are familiar with, or if the situational contexts can 
be clarified before proceeding with the mathematical analysis of the situation. 

These theoretically deduced guidelines do only constitute a first approach towards the research-based 
analysis and design of teaching materials for multilingual mathematics classrooms. They refer more 
closely to the situation in German community colleges than to other localities of mathematics education. 
Its usefulness will be tested when the available teaching materials of the German Community College 
Association are analysed first on-the-paper and then in practice. For reasons of word limitations, this 
paper could not include a closer discussion of ethno-cultural obstacles towards the learning of 
mathematics, which Setati Phakeng (2016) sees in danger of being neglected in the mostly language-
focussed discourse in academia. For example, Deseniss (2015) could identify different beliefs about 
the usefulness of mathematics and mathematics education between native and non-native speakers of 
German and even between different groups of non-native speakers. More research will be needed to 
apply the insights from cultural, linguistic, sociolinguistic and socio-political perspectives on 
multilingual classrooms to the analysis and design of appropriate teaching materials. 

References 

August, D., & Shanahan, T. (2006). Developing literacy in second-language learners: Report of the 
National Literacy Panel on Language-Minority Children and Youth. Mahwah, NJ: Erlbaum. 

Barwell, R. (Ed.). (2009). Multilingualism in mathematics classrooms. Bristol: Multilingual Matters. 

Thematic Working Group 10

Proceedings of CERME11 1901



 

 

Barwell, R. (2018). From language as a resource to sources of meaning in multilingual mathematics 
classrooms. The Journal of Mathematical Behavior. https://doi.org/10.1016/j.jmathb.2018.02.007 

Barwell, R., Clarkson, P., Halai, A., Kazima, M., Moschkovich, J., Planas, N., … Villavicencio 
Ubillús, M. (Eds.). (2016). Mathematics education and language diversity. Cham: Springer. 

Bernstein, B. (1996). Pedagogy, symbolic control and identity. London: Taylor & Francis. 

Celedón-Pattichis, S. (2004). Alternative secondary mathematics programs for migrant students: 
Cultural and linguistic considerations. In C. Salinas & M. E. Fránquiz (Eds.), Scholars in the field: 
The challenges of migrant education (pp. 197–210). Charleston, WV: ERIC. 

Chlosta, C., & Ostermann, T. (2008). Grunddaten zur Mehrsprachigkeit im deutschen Bildungs-
system. In B. Ahrenholz (Ed.), Deutsch als Zweitsprache (pp. 17–30). Freiburg: Fillibach. 

Chval, K. B., & Licón Khisty, L. (2009). Bilingual Latino students, writing and mathematics. In R. Bar-
well (Ed.), Multilingualism in mathematics classrooms (pp. 128–144). Bristol: Multilingual Matters. 

Clarkson, P. C. (1992). Language and mathematics: A comparison of bilingual and monolingual 
students of mathematics. Educational Studies in Mathematics, 23(4), 417–429. 

Cooper, B., & Dunne, M. (2000). Assessing children's mathematical knowledge: Social class, sex, 
and problem-solving. Buckingham: Open University. 

Cummins, J. (2010). Language, power, and pedagogy. Clevedon, England: Multilingual Matters. 

Deseniss, A. (2015). Schulmathematik im Kontext von Migration. Wiesbaden: Springer Spektrum. 

Deutscher Volkshochschul-Verband (Ed.). (2017). DVV-Rahmencurriculum: Rechnen. Bonn: DVV. 
Retrieved from https://www.grundbildung.de/projekte/rahmencurriculum-transfer/material  

Dollmann, J., & Kristen, C. (2010). Herkunftssprache als Ressource für den Schulerfolg? Das 
Beispiel türkischer Grundschulkinder. Zeitschrift für Pädagogik, 56(Suppl. 55), 123–146. 

Frenzel, B. (2017). Sensibel für Mehrsprachigkeit: Mathematikunterricht für neu zugewanderte 
Schülerinnen und Schüler. mathematik lehren 201, 39–41. 

Gellert, U. (2011). Mediale Mündlichkeit und Dekontextualisierung. In S. Prediger & E. Özdil (Eds.), 
Mathematiklernen unter Bedingungen der Mehrsprachigkeit (pp. 97–116). Münster: Waxmann. 

Gogolin, I. (1988). Erziehungsziel Zweisprachigkeit. Hamburg: Bergmann + Helbig. 

Grießhaber, W. (2011). Zur Rolle der Sprache im zweitsprachlichen Mathematikunterricht. In S. 
Prediger & E. Özdil (Eds.), Mathematiklernen unter Bedingungen der Mehrsprachigkeit (pp. 77–
96). Münster: Waxmann. 

Halai, A., & Clarkson, P. C. (Eds.). (2016). Teaching and learning mathematics in multilingual 
classrooms: Issues for policy, practice and teacher education. Rotterdam: Sense. 

Halai, A., Muzaffar, I., & Valero, P. (2016). Research rationalities and the construction of the 
deficient multilingual mathematics learner. In R. Barwell et al. (Eds.), Mathematics education and 
language diversity (pp. 279–295). Cham: Springer. 

Thematic Working Group 10

Proceedings of CERME11 1902



 

 

Heinze, A., Herwartz-Emden, L., Braun, C., & Reiss, K. (2011). Die Rolle von Kenntnissen der 
Unterrichtssprache beim Mathematiklernen. In S. Prediger & E. Özdil (Eds.), Mathematiklernen 
unter Bedingungen der Mehrsprachigkeit (pp. 11–33). Münster: Waxmann. 

Herwartz-Emden, L. (2003). Einwandererkinder im deutschen Bildungswesen. In K. S. Cortina, J. 
Baumert, A. Leschinsky, K. U. Mayer, & L. Trommer (Eds.), Das Bildungswesen in der 
Bundesrepublik Deutschland (pp. 661–709). Reinbek: Rowohlt. 

Leisen, J. (2011). Sprachsensibler Fachunterricht. In S. Prediger & E. Özdil (Eds.), Mathematiklernen 
unter Bedingungen der Mehrsprachigkeit (pp. 143–162). Münster: Waxmann. 

Leung, C., Harris, R., & Rampton, B. (1997). The idealised native speaker, reified ethnicities, and 
classroom realities. TESOL Quarterly, 31(3), 543. 

Meyer, M. (2016). Productivity and flexibility of (first) language use. In A. Halai & P. C. Clarkson (Eds.), 
Teaching and learning mathematics in multilingual classrooms (pp. 143–156). Rotterdam: Sense. 

Morgan, C. (1998). Writing mathematically: The discourse of investigation. Bristol, PA: Falmer. 

OECD. (2007). PISA 2006: Science competencies for tomorrow’s world. Volume 2: Data. Paris: OECD. 

Özdil, E. (2011). Zur linguistischen Analyse mathematikdidaktischer diagnostischer Interviews. In S. 
Prediger & E. Özdil (Eds.), Mathematiklernen unter Bedingungen der Mehrsprachigkeit (pp. 117–
142). Münster: Waxmann. 

Prediger, S., & Özdil, E. (Eds.). (2011). Mathematiklernen unter Bedingungen der Mehrsprachigkeit: 
Stand und Perspektiven der Forschung und Entwicklung in Deutschland. Münster: Waxmann. 

Prediger, S., & Wessel, L. (2011). Ein fach- und sprachintegrierter Förderansatz für mehrsprachige 
Lernende im Mathematikunterricht. In S. Prediger & E. Özdil (Eds.), Mathematiklernen unter 
Bedingungen der Mehrsprachigkeit (pp. 163–184). Münster: Waxmann. 

Rösch, H., & Paetsch, J. (2011). Sach- und Textaufgaben im Mathematikunterricht als 
Herausforderung für mehrsprachige Kinder. In S. Prediger & E. Özdil (Eds.), Mathematiklernen 
unter Bedingungen der Mehrsprachigkeit (pp. 55–76). Münster: Waxmann. 

Schütte, M. (2009). Sprache und Interaktion im Mathematikunterricht der Grundschule. Münster: Waxmann. 

Setati, M. (2005). Teaching mathematics in a primary multilingual classroom. Journal for Research 
in Mathematics Education, 36(5), 447–466. 

Setati Phakeng, M. (2016). Mathematics education and language diversity. In A. Halai & P. C. Clarkson 
(Eds.), Teaching and learning mathematics in multilingual classrooms (pp. 11–23). Rotterdam: Sense. 

Swain, M., & Cummins, J. (1979). Bilingualism, cognitive functioning and education. Language 
Teaching, 12(1), 4–18. 

Tshabalala, L., & Clarkson, P. (2016). Mathematics teacher’s language practices in a grade 4 
multilingual class. In A. Halai & P. C. Clarkson (Eds.), Teaching and learning mathematics in 
multilingual classrooms (pp. 211–225). Rotterdam: Sense. 

Walkerdine, V. (1988). The mastery of reason. London: Routledge. 

Thematic Working Group 10

Proceedings of CERME11 1903



How do we teach mathematics to refugee students? A qualitative study 
of the teaching and learning of mathematics in International 

Preparatory Classes  
Maike Lüssenhop1 and Gabriele Kaiser2 

1University of Hamburg, Germany; maike.luessenhop@uni-hamburg.de  
2University of Hamburg, Germany, gabriele.kaiser@uni-hamburg.de 

Although migration itself is not a new phenomenon, the rising numbers of refugees in Germany and 
Europe are influencing the population composition leading to greater diversity within our society. 
This particularly affects school systems, as a great number of refugees are of school age and have to 
be provided with adequate schooling. In this paper, we discuss how the German education system, in 
particular in the city of Hamburg, deals with the schooling and integration of refugee students in 
what are called International Preparatory Classes. We describe a research study, which is examining 
what aspects influence teaching practices in mathematics lessons in these classes for refugees. The 
study investigates how teachers in these classes design their lessons from a mathematical and a 
linguistic perspective, how they deal with the task of providing refugee students with adequate 
instruction and how students experience mathematics.  

Keywords: Refugee students, teaching practices, mathematics classroom, diversity, mathematics 
education and language. 

Introduction 
[H]ow school systems respond to migration has an enormous impact on the economic and social 
well-being of all members of the communities they serve, whether they have an immigrant 
background or not. Some systems need to integrate large numbers of school-age migrants and 
asylum seekers quickly; some need to accommodate students whose mother tongue is different 
from the language spoken in the host community or whose families are socio-economically 
disadvantaged; some systems are confronted with all three challenges at once. (OECD, 2015a, p.1)  

Indeed, it is a major challenge for the German school system to teach refugee students with limited 
knowledge of the German language and to provide them with adequate support. Refugee children and 
young adults are perceived as a vulnerable group with a diverse range of special needs. In Hamburg, 
refugees and other immigrant students attend International Preparatory Classes (IPCs). IPCs prepare 
them for admission into German mainstream classes. Currently, scarcely any research studies how 
mathematics teachers work with students in these particular IPCs. Moreover, little is known about 
how they design lessons while they are confronted with linguistic, cultural and performance-related 
heterogeneity (Benholz, Magnus, & Niederhaus, 2016). Supporting refugee students’ development in 
general, and specifically in mathematics, is crucial for their participation in society and their ability 
to contribute to the society as a whole. Our study aims at contributing to close the existing gap in 
research but will also allow others (e.g., authorities) to use the knowledge gained for educational 
changes on several levels (Cornely Harboe, Mainzer-Murrenhoff, & Heine, 2016). In this paper, we 
present two case studies from two different mathematics classrooms. Sharing ideas and best practice 
examples in order to improve the schooling of refugees in the European Union and worldwide is of 
great importance for the international community as recognized by the OECD report (OECD, 2015b). 

Thematic Working Group 10

Proceedings of CERME11 1904



In the following, we introduce the current state of research on IPCs from a German perspective and 
present first results of our ongoing research. 

National frameworks for IPCs 
Although German federal states implement different school-organizational models of teaching 
children and adolescents from refugee families, three basic models can be recognized: 

• Integrative model: In this model, the students of refugee families are taught in regular classes with 
additional language support in German. 

• Parallel model: In this model, children and adolescents from refugee families are taught in separate 
classes that are set up for them. The greatest amount of teaching is dedicated to the acquisition of 
the German language. 

• Semi-integrative models constitute a transition between these two models: Students who are taught 
in IPCs can already take part in regular classes, depending on the level of subject-specific 
competences in individual subjects (Massumi & Dewitz, 2015). 

The three models outlined here are also prevalent internationally (OECD, 2015a). Countries deal very 
differently with the schooling of refugee students. Some countries such as Iceland and Norway follow 
the integrative model (Ragnarsdóttir, Berman, & Hansen, 2017), others such as Spain follow the 
parallel model (Gorgorió & Planas, 2001). 

The framework for IPCs of the local education authorities in Hamburg provides insight into the 
current situation of schooling of refugees in Hamburg and Germany, since each year school-aged 
refugee children and adolescents move to Hamburg with little to no knowledge of the German 
language. According to the Geneva Convention, all children are guaranteed the right to education.  
The Geneva Refugee Conventions (Article 21), the UN Universal Declaration on Human Rights 
(Article 26) and the UN Convention on the Rights of the Child (Article 28) as well as the German 
Basic Law (Article 3) explicitly encourage compliance with this right (El-Mafaalani & Kemper, 
2017). In IPCs at different types of schools (primary/middle/high school etc.), refugee students are 
prepared for entry into mainstream classes.1 The objective of IPCs is to enable children and 
adolescents to learn the German language and thus to facilitate their integration into the German-
speaking environment as smoothly as possible. Students that are able to write in the Latin script, start 
in IPCs that focus on learning the German language and basic knowledge of other subjects. Students 
who are illiterate2 or literate in a different script – such as Arabic – gain German reading and writing 
skills in literacy classes. These classes focus on reading and writing in the Latin script and on basic 
German skills. IPCs aim at providing a quick transition to an age-appropriate class, suiting students’ 
individual education level at general or vocational schools (mainstream classes). Refugee students 
can be admitted into IPCs at any time of the year and stay in them for a period of twelve months. The 
number of students in each class is around 15. The language learning process in all different forms of 
IPCs is divided into two phases in the first year of schooling. In the first phase (basic level), students 
acquire basic knowledge in German and receive guidance in dealing with, and acting within, the 
                                                 
1 Immigrant students from EU-countries or other countries are also schooled in IPCs. In our study, however, we focus on 
refugee students who recently and forcibly fled from their country of origin. 

2 By illiterate, we mean that these students can neither read nor write. 
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German-speaking world. This first phase should not be longer than 6 months. At the end of this phase, 
the parents receive information about the performance and learning development of their children in 
learning development talks organized by the teachers. These meetings advice parents on further 
schooling and acts as an exchange on how best to support the development of their children.  

The second phase (advanced level) focuses on the preparation of the students for classroom 
communication and the use of subject-specific language in different subjects. After six months, 
students receive a transition certificate. At the end of the second phase, students transfer into 
mainstream classes and receive additional language tutoring for another year.  

The basis for teaching in IPCs are the frameworks and curricula of German as a Second Language in 
IPCs at each school level, in which minimum requirements and assessment for performance are set. 
The level of difficulty of teaching is oriented towards the Common European Framework of 
Reference for Languages. Subject-specific instruction, such as mathematics, is based on the minimum 
requirements laid down in the curricula offered in each grade. The framework for IPCs in Hamburg 
focuses more on the macro level of the regulation of the schooling process than on the micro level of 
actually teaching the subject. It recommends, however, that teachers orient themselves towards the 
minimal requirements of the mathematics curricula for mainstream classes.  

Current state of research on IPCs 
In empirical educational research (in general), there are numerous and comprehensive analyses of the 
educational opportunities of various groups of refugees. In particular, the research field covers studies 
on participation in education, educational transitions, acquisition of competencies, and school 
success. In-depth analyses focus especially on social background, gender and ethnic background 
and/or migration background. Despite this highly differentiated field of research, the long history and 
increased presence of refugees, it is surprising that the educational opportunities and conditions of 
refugee students have not been steadily researched (El-Mafaalani & Kemper, 2017). Unsurprisingly, 
however, since Germany had a high influx of refugees in 2015, interest in education policy and 
research into the education of refugees has increased. This interest is also reflected in the literature 
and more recent research publications (Kleist, 2017).  

Nevertheless, a paucity of research is still especially obvious when the focus turns to subject-specific 
instruction in IPCs, including mathematics education. Some studies use ‘wordless methods’ of 
teaching mathematics to circumvent possible language barriers. In his study, (Oswald, 2017) used 
‘wordless methods’ with adolescent refugees and found that it had a positive impact on the motivation 
of the students and the teachers. Furthermore, Mink & Sauerwein (2017) conducted a teaching project 
in one IPC on figured numbers and proofs without words. They found that only after intensive study 
of the material the mathematics could be understood, and it remained questionable whether students 
who see a visualization for the first time can use this to carry out complex proofs, since they are still 
unfamiliar with elementary mathematical activities. Despite the intention of these ‘wordless 
methods’, it is not possible to avoid oral explanations, which were difficult for participating students 
to understand. Most of the respective research projects implemented so far focus on language and 
mathematics (Prediger & Schüler-Meyer, 2018), or mathematics in the context of migration 
(Deseniss, 2015). In other words, this research does not consider mathematics lessons with refugee 
students and their teachers. Exceptions are the studies by Oswald (2017) and Mink and Sauerwein 
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(2017), which focus on new teaching methods for IPCs. However, there currently exists no research 
on the actual classroom practices of teachers in IPCs. Although an increasing number of textbooks 
and teaching materials for refugee students are published by publishers all over Germany, there is 
clearly a gap in scientific research concerning the needs and challenges of teachers and students in 
IPCs.  

Apart from the German state of research, there exists an extensive discussion on the teaching and 
learning of mathematics in multilingual classrooms that highlights social, cultural and linguistic 
aspects of mathematics teaching and learning (Gorgorió & Planas, 2001; Moschkovich, Wagner, 
Bose, Rodrigues Mendes, & Schütte, 2018). As most of these studies focus bilingual or multilingual 
classrooms and not classrooms with only refugee or immigrant students, we can only draw partially 
on these studies. For example, Barwell et al. (2016) stress that situations of language diversity have 
been extensively examined, such as bilingual and multilingual context. They underline that there is a 
need in researching trilingual contexts where learners are exposed to home languages, a national and 
an official language. However, they do not focus on students that are second languages learners 
(sometimes referred to as minority learners, immigrant students) with different native languages. 
Furthermore, refugee students might come from countries with multiple national languages, which 
equals bilingual students, but most of them have no knowledge of the academic language, in this case 
German, at all, when they enter IPCs. However, Barwell et al. focus partly on second language 
learners. Gorgorió & Planas (2001) conducted research on language and socio-cultural aspects of 
mathematics education in a classroom with a high percentage of immigrant students and they are 
particularly convinced of the importance of continuing to study the teaching and learning of 
mathematics in multiethnic and multilingual situations. Moreover, they emphasize the need for 
continuing studies not only in terms of equity and social justice, but also in terms of the richness of 
the research ground.  

Overall, these studies and the above-mentioned gaps in the research highlight the need for a deeper 
understanding of what is happening in the IPC mathematics classrooms, what affects the (teaching) 
practices of teachers and the challenges they face when it comes to teaching materials, previous 
knowledge of refugee students etc. This research project aims at narrowing this research gap. 

Research questions and aims of the study 

Overall, it can be stated that the framework for IPCs does not offer advice for teachers on how to 
teach mathematics to refugee students except to focus on the minimum requirements of the same or 
similar grade of general schools. Furthermore, the analysis of the current state of research on IPCs in 
the previous section shows that there is a research gap in the field of mathematics in the context of 
IPCs relating to best practices, teaching materials and theoretical approaches. Hence, our study 
highlights findings from research that explores mathematical teaching practices and aims at 
researching mathematical teaching approaches and mathematical practices within the IPC 
mathematics classrooms.   

Our research project investigates the following research questions:  

How do teachers deal with the task of designing and implementing mathematics lessons for refugee 
students? What kind of practices and which materials do they use, and how do social, cultural and 
linguistic aspects influence the learning and teaching of mathematics in IPCs? 
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Overall, the aim of this study is to generate knowledge about how teachers design lessons, which 
theories from other subjects their lessons are based on, and whether these fit the needs of the students 
they teach. More insight is necessary on the challenges mathematics teachers are encountering in 
IPCs, and how they deal with them within the mathematics lessons in order to develop supportive 
learning environments for refugee students.  
Design of the study 
The study is embedded in the project “Mathematics and refugees” at the University of Hamburg, a 
subproject of the state-funded research network “Everyday Mathematics as Part of Basic Adult 
Education”, the so-called “Hamburg Numeracy Project”. The research network focuses on (adult) 
numeracy practices and their use of everyday mathematics, focusing on particularly vulnerable 
groups, for example refugees and asylum seekers, over-indebted, and disabled persons. The presented 
study is qualitatively oriented and focuses on the IPC mathematics classroom and the practices of 
mathematics teacher and their students. The sample of the study consists of teachers and students 
from three comprehensive schools at lower and higher secondary level in Hamburg. For the data 
collection, we use different methods such as classroom observation, guideline-based interviews with 
the mathematics teachers and narrative interviews with 3-4 students from each class.  

The study has been conducted in the last 6 months of 2018 and this paper emerges from a larger 
research project which we described above. At first, informal talks to gain a first impression of the 
research field have been carried out with teachers outside of the classroom. After that, participatory 
observations of four lessons each lasting 45 minutes have been conducted. From these observations 
and the literature we draw on, we generated questions for the guideline-based interviews. Each IPC-
teacher has been interviewed for approximately one hour. The interviews focused on the question 
how teachers design mathematics lessons in IPCs, for example how they deal with the particular 
heterogeneity of the learning group, how they proceed methodically and didactically, which 
challenges occur and how they deal with them, and so forth. Moreover, we conducted narrative 
interviews with refugee students from each class. The interviews focused on the experiences of the 
students inside the mathematics classroom of their country of origin and in their new school in 
Germany. The data collection and analysis has been based the coding paradigm of Grounded Theory 
(Corbin & Strauss, 2015). All interviews conducted have been recorded and transcribed. Furthermore, 
the data collected has been or will be evaluated with MAXQDA.  

Preliminary results 
In the following, we focus on two IPCs at two different comprehensive schools in Hamburg, which 
were selected as paradigmatic cases reflecting general characteristics of the whole database. We 
summarize selected aspects of the observation of four lessons in the mathematics classroom and 
informal conversations with teachers and students. In this paper, we name these classes IPC A and 
IPC B to distinguish certain aspects of the observation. Both IPCs are linked to grade 7/8 teaching 
groups (inter-year groups) situated in parts of Hamburg with a low social index.  

Both classes consisted of approximately 12-15 students at the age of 12-16 years. The majority of the 
students came from Syria, Afghanistan and Iraq. According to both mathematics teachers, the 
students were very heterogeneous in terms of their mathematical competences and educational 
biography. Some students from Afghanistan had never gone to school before having fled to Germany, 
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others had finished primary or secondary school in Syria and directly joined the German system, and 
again others had not gone to school for many years. In addition, both classes had students from 
Eastern European countries, for example from Bulgaria, or students from countries such as Thailand, 
Turkey, Ghana and Togo. 

Teachers’ mathematics and teaching experiences    

The mathematics teachers of both IPCs had a very different educational biography but both were class 
teachers of the observed classes, meaning that they taught most of the subjects and lessons of their 
IPC. The teacher of IPC A completed her teacher education, worked and researched abroad, had a 
PhD and worked as a lecturer at university level in educational science, particular in multilingualism, 
migration and education. It was her first year teaching an IPC and the first time teaching mathematics 
to students. She emphasized that she did not study mathematics as a subject in her studies, but she 
had a very good knowledge of the didactics of German and German as a Second Language and carried 
out extensive research in the field of migration. The teacher of IPC B has completed his teacher 
education and taught mathematics in IPCs for seven years. He did not study mathematics as a subject 
at university but completed an additional course in mathematics some years ago. At that time, there 
was no specific teacher education program for IPC classes. Since the increase of new immigrant 
students in recent years, many teachers who have been employed for the newly created school classes 
have completed a German as a Second Language degree. Often these teachers have to teach 
mathematics lessons in their IPCs, also due to the existing lack of teachers of mathematics. This 
means that many teachers lack the didactic and mathematical knowledge of mathematics. In some 
cases, underqualified teachers were also recruited because the positions in the IPCs could not be filled 
otherwise. This highlights the fact that apparently many teachers have very different experience with 
IPCs and teaching mathematics as a subject.  

Linguistic aspects  

Teacher A paid significant attention to the native languages of the students, which is in line with the 
accepted research results. A table with important German sentences hang on one of the walls of the 
classroom, such as “What does that mean in German?”, “Good Morning”, “Can you help me?”. 
Students added a translation of these sentences in their own mother tongue. Throughout the school 
year, the teacher studied all sentences of the languages of her students herself. At the beginning of 
each week, students were allowed to test her language skills. Apart from this, language comparisons 
between German and the native language of the students were an integral part of the lessons. In 
addition, two of the weekly lessons in mathematics focused on subject specific vocabulary. With 
teacher B the picture was contrary. Even if some posters with German grammar were hanging on the 
walls of the classroom and some dictionaries were available, a set of rules was attached to the teachers 
table forbidding or avoiding the usage of native languages of students. This seemed to be a general 
rule for the IPCs of this school. This handling of the native language of the students contradicts 
findings from language teaching research and general pedagogy, and yet seems to be widespread. 

Mathematical Aspects 

In IPC A, students were taught in cross-class teaching two hours per week in homogenous groups 
regarding their performance in mathematics, and the other two-hour classes on subject-based 
mathematical language in their original classes. Some students sat in groups according to mother 
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tongue, topics or performance. There were chalk-and-talk phases within the lesson and reflections on 
mathematical vocabulary. Work sheets with topics such as addition, subtraction, multiplication of 
fractions and subtraction of fractions with different denominators, text problems etc. mainly focused 
on basic mathematics. Students were working on different worksheets with diverse topics. After each 
lesson, the teacher collected the sheets, corrected them and handed them back during the next lesson. 
Furthermore, the teacher offered some enactive materials such as wooden fraction models. In IPC B, 
each student worked on his/her own work plan. The teacher talked to each student for 5-10 minutes 
and gave personal support, no chalk and talk phases occurred. Topics were similar to IPC A and 
focused on basic mathematics such as subtraction, addition, fractions and so on. In both classes, some 
students worked with the mathematics textbook that was being used in the mainstream classes they 
are supposed to transfer to after completing IPC.  

Discussion and looking ahead 

The two case studies presented here emphasize the great diversity of the design of the lessons in IPCs 
and the learning opportunities provided by the two teachers based on the heterogeneous group that 
they were teaching. Socio-cultural aspects played a crucial role, as students seem to have very 
different backgrounds according to their previous educational development and different linguistic 
background (and possibly experiences with flight, conflict and/or war). The role of the linguistic 
aspects in the observed lessons was handled very differently by the two teachers and let to different 
learning environments. Drawing on the research results of Prediger and Schüler-Meyer (2017) and 
other scholars, who emphasize that the appreciation of the students’ native language has positive 
effects on students’ motivation and confidence, we find it a concern that only one of the two teachers 
was drawing on these findings. This might indicate that there is a need of further education in terms 
of the inclusion of the native language of the students.  

Furthermore, the initial results of the study point out that the two teachers design their mathematics 
lessons very differently. Nevertheless, both of them tried to adapt their classes to the need of the 
students, in a way that they think is best for them. Earlier on, we demonstrated that there is no official 
curriculum for mathematics in IPCs and few adequate teaching materials that have been developed 
in the last years. This is also reflected in the initial results, as both teachers’ lessons are mostly based 
on self-developed materials. Overall the two case study presented in this paper provide first insights 
into how teachers deal with the task of carrying out mathematics lessons to refugee students. The 
research seems to suggest that the educational background of the teachers influences the way in which 
they carry out this task, especially concerning lingual aspects and the role of mathematical content 
and the kind of its inclusion, but also how external factors influence the learning and teaching of 
mathematics, such as socio-political and socio-cultural aspects.  
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In this paper, I examined the use of photo elicitation interviews as a method for gathering data from 
parents, whose views are not often investigated in research in early childhood mathematics 
education. The parents shared and discussed photos of their children engaged in mathematics. This 
method for gathering parents’ views is investigated using Bourdieu’s theoretical lens of the field. The 
findings suggest both advantages and disadvantages that established rules of the field which could 
interfere with or enhance relationships. Photo-elicited interviews can provide insights into parents’ 
knowledge, experiences and views, revealing broader perspectives on mathematics activities at home. 
However, the choice of photos influenced the interview, limiting or silencing parents if they were 
unable to recognise any mathematics in what the children were doing in a photo. 

Keywords: Home environment, parents, photo elicitation interview, research methodology 

Introduction 
In this paper, I discuss the advantages and disadvantages of using photo elicitation focus group 
interviews to gain insights from nine parents, who have children in preschools in Norway, about 
mathematics education at home. In a photo elicitation interview (PEI), a single photo or a set of photos 
are used as stimuli during a research interview (Hurworth, 2004).  

Vasilyeva, Laski, Veraksa, Weber, and Bukhalenkova (2018) concluded that parents’ involvement in 
school and preschool practices has a significant impact on children’s development and learning. 
Studies have shown that there is generally a positive association between parents’ engagement in 
their children’s education and students’ academic outcomes (e.g., Galindo & Sheldon, 2012). These 
studies concluded that parents and family members have a role in children’s achievement in preschool 
and school. Therefore, it is not surprising to find that parents’ funds of knowledge when interacting 
with children at home have been recognised by researchers (Björklund & Pramling, 2017), with 
parents and families being acknowledged as children’s first educators (Phillipson, Gervasoni, & 
Sullivan, 2017). The relationships between parents, teachers and children has consequences for 
children’s engagement with mathematics.  

Nevertheless, issues remain about the kind of role parents are expected to have. Most research focuses 
on parents’ limited ability to support their children’s mathematics learning at home. Although parents 
might feel welcome at preschool (Hujala, Turja, Gaspar, Veisson, & Waniganayake, 2009), Whyte 
and Karabon (2016) suggested the communication is typically one-way, from preschool to home. 
Although parents, such as immigrant parents, can have different views (Civil, Bratton, & Quintos, 
2005), their views about mathematics done at home are often marginalized or absent in mathematics 
education research (Milner-Bolotin & Marotto, 2018). It is the teachers’ expertise which is expected 
to enhance parents’ awareness of their children’s learning of mathematics (Streit-Lehmann, 2017). 
Consequently, some researchers, such as Anderson and Anderson (2018), have stressed the need for 
more understanding of the mathematical experiences of young children that adults mediate at home. 
To conduct research which values parents’ views about mathematics education for young children at 
home there is a need for an appropriate methodology.  
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To better understand the views of parents about the mathematics that their children engage with at 
home, I wanted to use photo elicitation interviews. PEIs are considered more effective in gaining 
insider views than information gained through exclusively verbal methods (Hurworth, 2004). In PEI, 
participants are asked to take photos on a topic (Epstein, Stevens, McKeever, & Baruchel, 2006). 
Using the photos as stimuli in interviews supports participants to reflect on a moment or an action 
(Torre & Murphy, 2015). Frith and Harcourt (2007) stated, “We saw the photographs as a reference 
point to be used in conversation rather than an objective representation of reality that has a meaning 
independent of these conversations” (p. 1342). Conversations around photos of everyday life can 
provide understandings how both the photographer and the viewer construct meaning. Thus, PEI are 
considered to facilitate dialogues that participants find enjoyable (Pain, 2012) and which enhance 
collaborative and participatory forms of data collecting.  

In early childhood studies, photo elicitation has been used in several ways to try to gain participants’ 
views on particular issues. Clarke and Robbins (2004) stated that discussions between parents and 
teachers when sharing photos taken by the parents created opportunities for a better understanding of 
aspects of activities captured in these photos: “The nature of these and the parents’ ability to articulate 
them was a surprise to many of the teachers in the project” (p. 181). 

In this paper, I examine photo elicitation interviews as a methodology for gathering data from parents 
about their views on mathematics. The paper is divided into three further sections. First, I outline 
Bourdieu’s notion of a field as the theoretical framework for identifying the advantages and 
disadvantages for gathering data in this way. Secondly, I describe my study of parents’ views, before, 
finally, I use examples from my study to discuss PEI’s advantages and disadvantages. 

Theoretical framework 
Parents’ involvement in and preparations for PEI occur within power relationships, as they are 
influenced by the knowledge they have about the subject of mathematics and how this knowledge is 
then described by the researcher. As well, within a social situation such as the group interview, there 
is a negotiation of power and this determines which parents’ views are heard. Thus, I have used 
Bourdieu’s notion of a field to consider how parents and their social positions are located (Bourdieu 
& Wacquant, 1992). Social positions refer to the knowledge, skills, resources and dispositions that 
parents take into their discussions with other parents and myself as the researcher. These inform the 
types of relationships that parents have in society and with the institution of preschool.  

Key aspects of Bourdieu’s notion of a field are production and the material resources of power and 
capital. Capital refers to the variety of resources, noticeable and hidden, through which agents can 
further their aspirations and achieve “success” in the field (Bourdieu, 1975). A social position arises 
from an interaction between the rules of the field, the parent’s habitus and the parents’ capital (social, 
cultural and economic). The field is the social arena in which positions are available for agents, each 
with a different habitus (behaviour, dispositions to act in the social world), and which are constructed 
by relations between agents in this field. These relations are bound by rules, which are dynamic in 
that they can differ within the field and be changed and adjusted by circumstances. Additionally, 
understanding the impact of capital can help to unpack and explain what is hidden, for example, in 
the parents’ photos as it determines what is valued as mathematics activity. Identifying the capital 
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that parents make use of within PEIs provides an opportunity to see how this affects their sharing of 
views.  

Habitus can also help to unpack the set of dispositions parents use to identify the mathematics in their 
children’s activities, as these are rooted in their experiences of schooling (Grenfell & James, 1998). 
Habitus includes a sense of parents’ place in a social situation and the status they bring, such as how 
comfortable they feel in an interview and their views about what is expected of them to say or do. 

The data in my study 
Using Bourdieu’s notions, I discuss the advantages and disadvantages of photo elicitation interviews 
by using examples from my study of nine Norwegian parents’ (4 males, 5 females) views on 
mathematics activities their children engage in at home. This is a typical sample size for photo-elicited 
research involving both the production of visual data (photos) and participants’ discussions and 
reflections of the photos (e.g., Clark-Ibáñez, 2004; Miller, 2015). Participants received guidelines in 
a letter about what to photograph (children engaged in mathematics), how many photos to take (10), 
time to complete this task (one week) and where to send the photos after completing the task. No data 
that could identify participants, such as income, education and family structure, and demographic 
details, were collected. The parents were asked to attend focus group interviews in which some of the 
photographs were used as stimuli. In group one, there were four parents, in group two five. During 
the interviews, the parents used their photo and those of others as a basis for sharing their views about 
children’s mathematics activities.  

In reflecting on my use of PEI, I was able to identify both advantages and disadvantages associated 
with gaining an insider view on parents’ understanding about their children’s mathematics activities. 
In the reflection, I also need to consider how my position as the researcher and facilitator of PEI may 
have affected my understanding. I come from a working-class background, was a preschool teacher 
in a low-income household area, and am a mother of two children. My research focuses on 
mathematics education in preschool and at home. These personal characteristics and experiences 
influence my position in the field and affect my habitus and doxa (organising the rules of PEI in the 
field of social situation to discuss photos). Reflecting on PEI supports me to understand how my own 
background can hinder or support me making sense of parents’ views. 

Discussion 
Reflecting on PEI contributed to identifying advantages and disadvantages in generating data from 
it. In particular, the parents’ cultural capital seemed to affect their sharing of views about their 
children engaging with mathematics.  

Disadvantages of PEI 

Drawing on Bourdieu’s theoretical notion of the field, I could identify some of the parents’ available 
positions which were affected by parents’ habitus and dispositions to discuss mathematics activities 
and the status they brought to the situation. Although earlier research suggested that PEI is an 
effective strategy to gather data for investigating parents’ views, it has some challenges.  

PEI requires participants to be provided with more or less detailed instructions about what to 
photograph. However, the field in which these instructions are given in my study is that of research, 
a field in which not all participants can determine the implicit rules. For example, the participants 
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needed to understand how the photos would be used, including ethical, privacy and sampling issues, 
but this information was not provided. It was clear that their interpretation of these issues shaped how 
and what they took photos of in their home environments. This sometimes resulted in the parents not 
being able to describe their views on the mathematics young children could engage in. For example, 
a parent stated, “I think he shows fingers too, but I did not manage to take a picture to capture that”. 
For a researcher, knowing the context of the discussion stimuli is important. However, like this parent, 
it did not always occur to the participants to take notes about the circumstances of a photo. This lack 
of knowledge about the research field affected how much each photo contributed to the discussions. 
If the parent who had taken the photo could not remember why they had taken it, then it was often 
difficult to provoke a discussion amongst the other participants. Thus, it seems that I needed to be 
more aware of the habitus and dispositions that the participants brought to the task. 

Although it is stated that PEI offers insights that might not be achieved through verbal-only methods, 
the usefulness of the data is still dependent on the interviewing skills of the researcher. Within the 
field of research, the researcher is accepted as being more knowledgeable about how to do the 
research than participants are. This power dynamic can affect participants’ willingness to discuss the 
topic if I, as the researcher, impose my own view, as occurred in the following example:  

Researcher:  Is Yahtzee a game that you play a lot in Norway? 

Parent 1: It is a (holiday) cottage phenomenon. 

Parent 2:  Yes, yes, yes! 

Researcher:  Okay. 

Parent 1: Yes, everybody plays Yahtzee. 

Parent 2:  All Norwegians that have respect for themselves have Yahtzee in their (holiday) 
cottages. 

Researcher:  So, you can claim that all children know Yahtzee in Norway? 

Parent 2:  Yes, I think so. They probably have the same in preschool too. 

Researcher: But I mean, do you have it at home? 

Parent 2: Yes, it’s quite common to have it at home. 

Parent 3:  Yes, it’s a regular game to have a home. Yes! 

The rules of PEI used by myself, as the researcher to construct or, as Bourdieu stated, to produce, 
circulate and exchange knowledge, pushed the conversation in a particular direction through my 
follow-up questions. Although I was seeking clarification, the parents’ responses suggest that the 
conversation was somewhat awkward as they are not entirely sure what was being clarified and why. 
The parents’ answers suggest that they assumed that I as the researcher would have the same 
knowledge (cultural capital) about what would occur in holiday cottages, and as this was an 
experience shared by all Norwegians, it appeared not need elaboration. They seemed confused as to 
why I continued to question them about the presence of Yahtzee in Norwegian homes. The status 
they brought was not embedded in my habitus for understanding parents’ embodied views.  
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In the Yahtzee, example parents were placed in a position of having to convince me, which could 
affect their behaviour in later discussions, hence limiting their possibilities to develop a sense of trust 
in how I would make sense of the information they were providing. In another example, the angle of 
the photo of the outdoor game “stone skipping” did not provide an immediately recognisable 
mathematical situation for myself or other parents.  

Parent 4:  I think of distance, but I am unsure if this is correct. 

Researcher:  What are you doing? 

Parent 4:  My son will throw stones in the lake and has two stones, one in each hand. I do not 
know if you see here (pointing on the photo). No, you cannot see his hands! 

Researcher:  What you are thinking about this situation? 

Parent 4:  I think distance, but he does not. I do not know, maybe how far he should throw the 
stone? 

The lack of response by other parents suggests that they perhaps did not share the social capital hidden 
in Parent 4’s photo, and thus did not “see” the potential mathematics that the child was engaging with. 
Whereas Parent 4’s habitus could be explained as a disposition to act in this activity, for the researcher 
to see a possible identification of mathematics in “stone skipping” to some degree was uncertain. 

As well, differences in social capital between parents and the researcher can interfere with providing 
recollections about the content of the photo and its social context. For example, after a father spoke 
about playing an app on a tablet, a mother asked me, as a researcher, for an opinion about children 
playing apps. That parent seemed to consider that I had a form of cultural capital that gave me the 
possibility to evaluate the value of another parent’s point of view. 

In summary, PEIs have some disadvantages, related to how parents’ positions are located in the field. 
As the facilitator of the PEIs, I, as the researcher, had more status and the social capital that I brought 
with me seemed to be considered more relevant for this research field. This unacknowledged valuing 
could limit the possibilities for parents’ views to be valued appropriately in the discussions. As a 
researcher, I needed to be aware of how I could overcome these disadvantages.  

Advantages of PEI 
Bourdieu’s notion of field situates parents’ positions (knowledge, skills and relationships) in 
interactions in which their habitus (behaviours and dispositions) is evident. From this notion, I could 
identify opportunities for gaining insights into parent’s views about mathematics activities at home 
for young children in the PEIs. In my project, 23 coloured photos were used to stimulate discussions. 
Parents used the photographs to discuss the mathematics they considered their children engaged with. 
Parents’ positions were constituted by the system of the relationships they had to each other as parents 
and having an interest in discussing and presenting their views on children’s mathematics activities 
at home.  

Sharing photos engaged parents in discussions about their children engaging in a variety of 
mathematics situations at home (e.g., gaming, cooking, playing, building etc.). Some situations, such 
as playing the board games Ludo or Yahtzee, were recognized in the photos by many parents, 
suggesting that they shared social capital that allowed them to relate to these activities. This then 
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allowed them to share their understanding about their family resources to describe different strategies 
the family used to play these games with children. Within the social field of the group interview 
context, there were possibilities to uncover what parents had in common as the first educators of 
young children. The similar strategies for supporting children in the games, such as manipulating the 
game so that younger siblings had a chance to win or participate, suggested that the parents could 
“read” each other’s habitus and confirmed each other’s views on these situations being mathematical. 
The parents supported each other in a confident manner when discussing their children’s actions, for 
example, when they were using dice. In the field, there are different positions available for persons 
with different habitus, and they are equipped with different capitals. Their capitals can be valued 
differently and also in different ways (Bourdieu, 1975). Bourdieu stated that what is valued is 
important as what it is, and different ways of being engaged in mathematics at home may also be 
given different values. This is an example of a condition for being qualified as a capital. 

For some parents, the sharing provided them with new ways to think about everyday activities. For 
example, a parent stated:  

In a busy day at home, it is a bit difficult to think about mathematics, it’s not easy at all. You are 
not thinking about it. But once you are aware of it, you are going to find it, you’ll find it all over 
the place.  

From the everyday activities, these parents could identify and discuss mathematics and its possible 
relevance in home environments. As considered with cultural capital, parents’ views about 
mathematics activities can be gained through PEI and it becomes relevant to reflect on mathematics 
from their point of view.  

The photos taken in environments well known by the parents supported them to express their point 
of view. The parents’ photos had been taken because the parents believed that they showed their 
children engaging with mathematics, based on their knowledge of what could be labelled 
mathematical. As parents’ participation in PEI includes a system of power relations between 
positions, the parents seemed to share cultural capital by recognising that they also engaged in similar 
situations, which meant they were able to take powerful positions as experts within the research field. 
This was in contrast to situations where PEI did not support the sharing of views – a result of one 
person, often me as the researcher, being seen as having more valuable knowledge or by acting as 
though that was the case. 

Conclusion 
Drawing on Bourdieu’s notion of the field to reflect on the impact of using PEIs in early years 
mathematics research, habitus was a tool for understanding parents’ dispositions and had to do with 
conditions that are set up in the field. The way in which the parents understood the structure of PEI 
and how this knowledge was incorporated in their habitus was influenced by the new experiences of 
discussing photos with others. The condition of PEI was structured internally in terms of power 
relations between parents and researcher and had an impact on gaining insights into parents’ views 
about mathematics activities of young children. Parents views are embedded between structure, their 
habitus and capitals and are representations of implicit relations that affect what is considered as 
mathematics activities. In the field of research, parents struggle over the unequal distribution of and 
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definition of what are the most valued views. Therefore, it is a matter of distinguishing the most 
worthwhile efforts and methodology where parents’ views can be carried out.  

A field can be considered as a social arena of the positions available for persons, each person with a 
different habitus. In a certain field different capitals are valued (Bourdieu, 1975). As a method for 
gathering data, PEI includes certain kinds of rules which made a limited set of positions available for 
those who participated in a study. PEIs are described as enabling participants to record and reflect on 
their own perspectives and concerns, by promoting dialogue about issues and views through 
discussions about photos (Miller, 2015). When initiating PEI, I had no doubt that parents’ dispositions 
to take an active position in discussion required me to be reflective. As the parents had already 
identified mathematics activities at home when they decided to take specific photographs, they came 
into the interviews situated as experts. In the parts of the interviews in which they could situate 
themselves as experts, parents were able to discuss the different photographs by talking about the 
mathematics that they saw their children engaged with at home.  

However, there were challenges in using PEIs which hindered the parents is retaining the position of 
expert in those interviews. As a researcher, I was located within the research field, where I organized 
the rules and guidelines for PEI. Although the formal rules were sent out with the information letter, 
there were invisible rules connected to the field of research that the parents were unaware of such as 
keeping notes about the photos they had taken, which affected the data which was produced.  

The PEI methodology is a social activity, where parents could contribute with a certain kind of 
knowledge, based on their capitals and habitus. Parents suggested that taking photos gave them new 
views on the activities their children engage in at home. They also found the task to be of interest and 
helpful to unpack their own views about mathematics education for young children at home. As a 
researcher, reflecting on the use of PEI to gather data has helped me understand how my actions can 
support or limit parents providing their views about the mathematics that their children engaged with 
at home. This is important if I am to be able to evaluate my own research questions as well as give 
information back to the preschool sector about the expertise that parents could have about 
mathematics activities that could be used as a basis for activities in preschool. 
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When it comes to appreciating school mathematics, there is a strong tendency to turn to the work 
of professional mathematicians as a reference. Although we see good reasons to do so, in this paper 
we question that reference to professional mathematicians as a “standard” for school mathematics 
and pay more attention to what the practice of mathematics in school itself has to offer. This raises 
significant political and cultural issues for school and research practices. The concept of 
doing|mathematics is discussed for this purpose, along with that of proffering. 

Keywords: School mathematics, mathematicians’ practices, reference, doing|mathematics. 

Introduction 
Historically and culturally, learning mathematics has often, if not always, been closely associated 
with the work of professional mathematicians. Evidence of this, for example, can be found in 
ancient Babylonian and Egyptian traditions, where training seems to mingle formal education and 
apprenticeship (Karp & Schubring, 2014). Closer to us, when the French decided to establish 
widespread public education after the 1789 Revolution, they naturally turned to mathematicians 
like Monge, Laplace, Lagrange, and Carnot to design and teach mathematical curricula to young 
people. One also thinks of Klein, who supervised the publication in Germany of many volumes on 
teaching mathematics at all levels. This turn toward mathematicians appears quite natural, because, 
after all, professional mathematicians are said to be the experts of the discipline: They spend their 
days doing mathematics and so they probably know better than anybody what mathematics is really 
about and what one needs to do in order to know about mathematics and practice it (Hersh, 1997). 

Hence, we could say we have good reasons to refer to what mathematicians do to think about what 
is going on in schools. For one, paying attention to how mathematicians work helps us see the 
difference between doing mathematics and learning about mathematics (Papert, 1972). We also 
realize how much asking questions and trying out ideas is central to this practice (e.g., Brown & 
Walter, 2005; Lockhart, 2009). Also, we understand why problem-solving or mathematical 
modeling cannot be reduced to linear 4- or 5-steps procedures (Schoenfeld, 1985). Looking at what 
it means to do mathematics for a professional mathematician thus provides us with good grounds 
to challenge the simplistic idea of direct instruction and the possible overemphasis on the 
procedural part of school mathematics. Attending actual professional mathematicians’ work is also 
important to humanize the discipline: mathematics is often seen as cold, uncreative, abstracted from 
real-life, homogeneous, and indubitable: all aspects that a close account of professional struggles 
and enjoyment of mathematicians can help transform (Burton, 2004).  

This being said, we are, however, also familiar with the disastrous political upshot of the “new 
math” movement started in the 1960s, when governments tried to include “up to date” topics such 
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as modular arithmetic, matrices, symbolic logic, and Boolean and abstract algebra in elementary 
and secondary school. This was also the case in the vivid discussions we know as the 1990 “math 
wars” in the US and elsewhere. The political role that mathematicians played in school mathematics 
was then talked about in relation to so-called traditional and reform mathematics philosophy and 
curricula; these ideas were often criticized as being conceived in an isolated way and disconnected 
with the everyday reality of the classroom. Nevertheless, it is still common today to hear 
mathematicians comment on how school mathematics “should” be: One thinks of Wolfram (2010) 
in the US, of Liu (2000) in Canada, and of Villani and Torossian (2018) in France.  

Mathematicians undoubtedly have something to contribute to school systems, but the nature of that 
contribution might be interesting to discuss and not left unquestioned. Thus, in this paper, we raise 
a number of these questions, and in turn raise cultural and political issues, by reflecting on the issue 
of referring to mathematicians’ practices. Through drawing on the concept of doing|mathematics 
(Maheux & Proulx, 2015, 2018), we consider what the practice of mathematics in schools offers, 
and even proffers, as we call it, to mathematics itself as a discipline. 

Referring to mathematicians’ practices 
One way of examining how mathematicians’ work relates to school mathematics is to think about 
how we use this work to talk about what is, or needs to be, happening in schools. As mentioned 
above, it is quite common to refer to mathematics as practiced by professional mathematicians to 
express or orient what students ought to be doing in a mathematics classroom. Schoenfeld (1994), 
for example, describes true mathematics as the science of patterns and thus suggests that curricula 
be organized in the form of mathematical inquiry resembling what mathematicians do. The idea of 
being “authentic” to what mathematics is really about is also often used to critique didactical 
approaches to teaching mathematics in schools in order to promote a variety of practices that are 
said to be better aligned with what mathematicians really do: for example, problem solving (Borasi, 
1992; Lampert, 1990), modeling-driven curricula (English & Gainsburg, 2016; Lesh & 
Zawojewsky, 2007), and classroom culture (Bauersfeld, 1998; Papert, 1996).  

This notion of referent, when considered in relation to mathematicians’ practices for school 
practice, is multifaceted. One of the facets consists of referring to mathematicians’ practice as what 
ought to be happening in the classrooms. This would entail tailoring students’ mathematical 
experiences to what doing mathematics represents for a mathematician and try to have them 
experience this. So, if much of what mathematicians do is read papers, ask questions, try to find 
answers to these, and eventually change the questions based on the answers they find, this is also 
what students ought to be doing in classrooms. Of course, we do not see this often, but some parts 
of it are easily selected from what mathematicians do as we decide what to ask of students.  

A second facet is referring to mathematicians’ practices as considering them as an objective to 
attain, that is, as the finality of school mathematics work, and the end goal to achieve. In that sense, 
students are not expected to reproduce the mathematicians’ activity, but to prepare themselves to 
perform it. From this perspective, one could say that although students might need to start learning 
how to ask good mathematical questions, they might mostly need to “learn the basis” (or the basics) 
so they can later engage in mathematicians’ practices. This is a common view, especially in 
undergraduate mathematics. However, there is no easy agreement on what exactly students most 
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need as preparation to become mathematicians. For some, the answer to this question might be 
exactly what is suggested in the first facet. 

A third facet is related to referring to mathematicians’ practices as a means of devising classroom 
practices. In analyzing what mathematicians do, we can identify key elements around which 
educational practices or activities can exist. For example, one could draw on mathematicians’ ways 
of discussing during conferences to organize classroom debates or boil down peer-review processes 
to students through checking one another’s work in writing, or again transform mathematicians’ 
lab interactions as small-group talk. Hence the activities considered are not necessarily direct 
examples of mathematicians’ practices, nor are they done to prepare students to be mathematicians, 
but are mostly inspirations from which to guide the design of specific activities. That is, the starting 
point could even be any given school practice (like testing, lecturing, note-taking, homework) into 
which some of the “essence” of mathematicians’ practices has been injected. 

A fourth way of referring, more at a meta-level, is for mathematicians’ practices to be used, referred 
to, as a source of justification of practices attempted in schools. For example, the idea of changing 
a mathematics classroom’s ethos to make it more engaging for girls because we do not see enough 
of them in the professional community would be one example. Arguing in favor of introducing the 
history of mathematics because of its importance to the discipline itself could be another. Here, it 
is about mathematics as a practice, but more as an authority for justifying actions. Obviously, the 
three facets mentioned above can also be seen as a way of doing just that. 

Although all these make sense for taking the mathematicians’ practice as a referent, one can wonder 
if they are legitimate for thinking of school mathematics. Hence, aside from the habits of doing 
things like this culturally, aside from political agendas related to curriculum aimed at reproducing 
societies’ current goals, one can wonder: is this reference to mathematicians’ practices, in all their 
possible facets well aligned with school mathematics’ practices? 

Questioning professional mathematics as a referent 
If only to make more transparent the choices we make, the reference to mathematicians’ practices 
is something to be examined. Indeed, a number of possible questions could be raised in relation to 
this reference. For example, who are the mathematicians to whom we are referring? Squalli (2010) 
answers this question, first by wishing to include all people who have a university mathematical 
background, but then arguing that we should be more inclusive and consider any person who uses 
or produces mathematics. This would include not only engineers, economists and many artists, for 
example, but also teachers of mathematics and even students who do mathematics every day. For 
Squalli, all these persons can be considered mathematicians because they are all engaged in 
activities that produce1 mathematics at various levels, for diverse uses and needs. From this angle, 
the concept of mathematicians’ practices as a referent no longer makes much sense: If everybody 
engaged with mathematics is a mathematician, then everybody acts as its own referent! Albeit 
lightly, this raises questions about the relevance of mathematicians’ practices for school purposes. 
And many other questions can be raised on the matter, each leading to different viewpoints on the 
                                                 
1 In the sense of making mathematics happen, causing it to take place, to come into existence. It thus includes both the 
invention of some “new” mathematics and realization of any mathematical work, since both are based on the 
occurrence of some mathematical activity, or, again, as one mathematician in Burton’s (2004) study argues, re/creation 
for oneself. 
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use of professional mathematics as a referent for the classroom. We offer here a sample of these 
questions, as a range of reflections frequently heard of when discussing mathematics education 
matters. This list is obviously not exhaustive, nor does it raise all possible matters on the issue. 

· It is said that mathematics is everywhere around us, that we use it all the time. Would it not be 
more relevant to use everyday life mathematics skills as a referent? 

· Mathematics is an evolving domain, as are mathematicians’ practices. How can we use 
mathematicians’ practices as a referent for school if they are not fixed and established? 

· Most teachers have not been trained as mathematicians. Is it reasonable to expect teachers to 
have mathematicians’ practice as a referent if they have not experienced it themselves? 

· For many, school mathematics should prepare for citizenship, for example, by reproducing 
values that society deems relevant. How is mathematicians’ practice of any help for this, 
especially if mathematicians’ work is seen as lodged in a space where relevance to society is 
rarely desired, or even cumbersome?  

· We often assert that mathematicians have a tendency to conceive mathematics as a 
platonist/absolutist domain. Is this a reference aimed at for school mathematics? 

· Mathematicians are not homogeneous and are widely oriented (topologists, algebraist, logicians, 
etc.) by diverse (kinds of) problems, expectations, goals, and so forth. When we refer to 
mathematicians’ practices, to whom are we referring? 

· Mathematicians engage in the solving and posing of problems never solved or encountered 
before. How is this a valid referent for school when most problems, if not all, already have the 
answers at the end of the textbook?  

· Mathematicians do not gather in a room to solve, in a given time frame, problems imposed by 
someone else. How close can school be to professional mathematicians’ context? 

· We might generously estimate the number of mathematicians on earth at 100 000. This contrasts 
with millions of kids doing mathematics in schools. Is it fair to impose the view of a few on the 
many? 

· Most (previous and current) mathematicians are white occidental males living in privileged 
countries. How equitable is it to aim at reproducing their practices in schools? 

· We know that pure and applied mathematicians, as well as engineers and other professionals, 
do not use the same mathematics and do not do mathematics in the same way. How is this to be 
taken into account as a referent for school practices? 

· Almost all mathematicians learned their mathematics in school and use that knowledge to create 
new mathematics. Would not professional mathematics then be considered as a form of applied 
school mathematics? Which would be the referent of which? 

· Studies have shown that even in the university, classes taught by mathematicians do not align 
with mathematicians’ practices. Hence, how is this “project” doable for schools if it cannot even 
be achieved in the university by the mathematicians themselves?  
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Each one of these questions could also be examined closely as a way to clarify why and how we 
think or not about mathematicians’ practices as a reference for schools. These questions highlight 
how using mathematicians’ practices as a referent for school mathematics is not trivial and hides 
diverse interpretations or outcomes, as well as agendas. But, while we see how the reference to 
mathematicians can be questioned, the notion of “referent” in itself can also be scrutinized.  

Doing away with the referent? From referring to proffering 
Desiring a referent for school mathematics comes with a prescriptive attitude. Why do we wish to 
look at the classroom mathematical activity from the outside, if not to “judge” it, one way or 
another, in relation to something else? A question we might ask is: what does it mean to refer to 
something? The verb refer comes from the Latin referre meaning “carry back”, from re- “back” + 
ferre “bring”. We refer to professional mathematicians’ work when we turn back to it in order to 
appreciate what is going on in school, to describe either what it is, what it is not, or what it can be.  

Reference is a relation in which one object designates another. As such, it suggests the defined, 
rather static existence of these objects in themselves. Searle (1983) explains that descriptive content 
of the sentence “Aristotle was a philosopher” does not define the name (what is “Aristotle”) but 
establish the name’s reference. There is something called “a philosopher”, there was someone 
called “Aristotle”, and by saying “Aristotle was a philosopher” we do not at all fix or change who 
Aristotle was and what a philosopher is: we simply state an assignation relationship. This view on 
language is challenged by other linguists (e.g., Bakhtin, Wittgenstein) for that very reason: thinking 
that a word can actually represent something is too restricting in regard to how words live in actual 
languaging (where their signification changes with the intonation, the context, the intention, the 
response, and so on), and the continually evolving nature of meanings (across time or cultures, for 
example). “Carrying back” school mathematics to professional mathematicians’ work can certainly 
be unsatisfactory in this sense. What we mean by being a mathematician or doing mathematics is 
something open, fluid, and so is school mathematics. The designation relationship is problematic 
once we accept the dynamic, irreducible complexity evoked by the words “school mathematics” or 
“professional mathematician’s practices”. 

One way to go around this tension is to think in terms of self-reference: an approach developed in 
many fields of studies, such as language, biology, philosophy and others. In mathematics, for 
example, self-reference is fundamental to the notion of fractals: mathematical objects exhibiting 
similar patterns at various scales. The specific nature of a given fractal is expressed in how it 
recursively reproduces its structure. Looking at coherence and similarity at various scales of 
mathematical activity (in and out of school) could be one way to further examine and develop it 
without having to make continual comparison with some externally posited entity. We offered 
elsewhere such conceptualization of mathematical activity (Roth & Maheux, 2015), contrasting the 
idea of defining mathematics “in itself” (i.e., as a fixed, independent, objective thing) with a 
dynamical approach in which mathematics is a way of making difference “in its own terms”. 
Coherently, these terms are themselves observer-dependent and evolve under their own movement.  

We have explicitly discussed this idea through the use of the dialectical expression 
doing|mathematics (Maheux & Proulx, 2015, 2018). Doing|mathematics is both doing something 
(some thing) recognizable as mathematics, but also producing mathematics as this thing that we 
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are doing when what we do is mathematics. The Sheffer stroke between “doing” and “mathematics” 
serves here to emphasize the dialectical relationship between the two terms. Doing|mathematics, 
as an activity that produces mathematics in its production, represents as much the activity of 
mathematics than the mathematics produced: it is an act of meaning-making, where meaning is 
made through it. Thus, in this view, it is doing|mathematics, its activity and its product, which 
constitutes the landscape that we call Mathematics. That landscape is a “reference” for any 
mathematical idea or activity, but it is also something to which all contribute by nourishing, 
complexifying, defining and developing this very landscape of “reference”. The two processes are 
inherently tied, dynamically: As we contribute to the mathematics landscape, this landscape 
influences us, and as it influences us, we contribute back to it. This also means that students, 
university professors, statisticians, teachers, and so on, in their ways and time, all indirectly but 
inescapably influence one another through this evolving landscape. 

What is suggested here is also to consider school mathematics more like a response, a dialogue 
with mathematicians’ professional activity, and not merely something that exists in reference to it. 
In this sense, school mathematics as an instance of doing|mathematics, is an act of proffering: 
offering itself as an answer to what it means to do mathematics. If mathematicians are seen as 
producers of mathematics, it is precisely because they engage in an activity that we identify as 
mathematics. They do mathematics in order to produce what we recognize as mathematical, while 
that very product of their activity also affects how we conceive of mathematics. It is the same for 
mathematics in schools, or in any other places where mathematics happens: workplace, street, 
institutes, etc. Mathematics in schools affects itself and contributes to itself while being influenced 
by the mathematical landscape with/in which it occurs and evolves. From such perspective, school 
mathematics legitimately has a life of its own (something often called for, see Hart & Johnson, 
1984; Watson, 2008). But like just any other living entity, it is in constant interaction with other 
life forms (as non-living material).  

Focusing on school, we could say that classroom mathematics dialogues with professional 
mathematician’s practices; not to see what ought to be, but in terms of possibilities that they both 
embody. Thinking about what might happen is very different from setting something as an 
objective. Enabling students to further engage in mathematics can mean many things. Similarly, if 
school mathematics is seen as contributing in its own terms to the landscape, that is, to 
understandings of what it means to do mathematics, thinking of how students might experience 
things similar or different to what mathematician do is not merely justifying or reducing the later 
to the former, but exploring the very nature of those experiences. Considering how similar or 
different mathematical experiences might occur outside school or professional practices simply 
adds to these possibilities and enriches their very nature and essence. To some extent, this is at the 
core of ethnomathematical research (e.g., Powell & Frankenstein 1997), leading to wonder what 
really are “mainstream” mathematics practices. These are, of course, only very general orientations: 
something to be discussed, worked on, and engaged with more deeply. 

Coda: On mathematics education research 
The term proffering is provocative. It suggests turning the tables and thinking about what school 
mathematics actually offers to our understandings of mathematics as a practice. The idea that 
professional mathematicians could learn from schoolchildren does have a revolutionary twist. 
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Taken more generally, the proposition is less aggressive: we can learn about what is mathematics 
and mathematical activity from both lay and professional mathematicians. Following such an 
assertion, one might ask: what is the role of mathematics education research in relation to this? 

Evolutionary epistemology (Campbell, 1974) teaches us that by paying attention and studying a 
concept (or phenomenon) in order to understand it, that very concept (or phenomenon) is 
transformed. Studying professionals’ or schools’ mathematical practices also has this effect. By 
reifying, deconstructing and explicating them, we affect those practices. Analyzing a phenomenon 
renders some elements (more) salient; it imposes an interpretation that changes how we view things 
(regardless of how we acted on them or not). Observing always disturbs the observed, and discourse 
always shape how we do things. From this perspective, we can see mathematics education research 
as also contributing to the development of mathematics in a broad sense. If research investigates 
mathematical practices in schools and elsewhere, it not only makes these mathematical practices 
available to one another, but it also contributes in its own ways to them, affecting them in the 
process, and thereby also contributing to the mathematical landscape through it. So, coherently, 
whatever comes out of mathematics education research is not to be taken as the reference for 
mathematical activity. Proffering is also something mathematics education research does. 
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This paper builds on Ernest’s five ideologies for mathematics education in order to explore the socio-
cultural buy-in of mathematical problem solving tasks within the context of private schools that are 
governed by the Egyptian national mathematics curriculum. The research contributes to the 
contextual understanding of teacher beliefs and school power dynamics that affect the adoption or 
rejection of a culturally foreign teaching ideology of problem solving. Findings from one teacher 
focus group revealed that the teachers had a good understanding of the features that align with a 
literature-based classification of problem solving tasks. Yet, a disparity was found between desired 
and existing best practices for classroom implementation of problem solving tasks. This disparity is 
argued to be a function of power tensions between inner and outer circles of contextual influence. 
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Introduction 
Literature argues against school education being viewed as a neutral enterprise (Apple, 2004). The 
skill and knowledge dissimilation process in schools is arguably better understood when viewed from 
the perspective of the schools’ position in a dynamic and turbulent context that incorporates complex 
social and cultural power relations (Bernstein, 1971). This study explores the specific context of 
mathematics instruction at Egyptian private schools that teach the national curriculum. As will be 
elaborated further in the upcoming sections, this context is particularly interesting as it embodies – at 
the private school level – a teaching culture that appreciates an inquiry-based enactment (Apple, 
2004) of the mathematics curriculum. This culture is however situated and controlled by an imposed 
national curriculum agenda that is rather stagnant and one-sided in nature (Hargreaves, 1997; Naguib, 
2006). The study aims to unravel the mentioned inner and outer circles of influence and how these 
play a role in shaping mathematics teachers’ beliefs and practices, particularly in relation to their 
teaching of mathematical problem solving.  

Literature Review 
Literature claims that social and cultural configurations govern the outcome of schooling in order to 
ensure the reproduction of an existing culture of stratified social class relations (Apple, 2004). In line 
with that view, Alexander (2000) unpacks the term ‘education’ and focuses on three particular 
aspects, namely curriculum, assessment and inspection. He claims that the formation of those is bound 
by different forms of policy and power. Our study focuses on the first element and argues that, since 
education cannot be viewed as a neutral enterprise, similarly curriculum design and knowledge 
distribution schemes cannot be viewed as neutral. According to Apple (2004), curriculum design and 
enactment which govern the process of skills formation and cultural capital distribution (Bourdieu, 
1986) are controlled by power dynamics that relate to a given context’s social class hierarchy.  
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Particularly in relation to science and mathematics curricula, literature suggests that the general 
tendency to move towards a curriculum design where students are taught to become independent 
inquirers is often quenched by a culturally selective curriculum enactment tradition where educators 
may choose to teach certain skills or forms of knowledge in order to re-enforce certain configurations 
of social power. This selective tradition, which in turn is governed by social and cultural power 
dynamics, can be better understood when considering the historical roots that led to its formation 
(Apple, 2004; Bourdieu, 1986).  

Scholars (e.g., Alexander, 2000; Apple, 2004) have added to the discussion about forces affecting  
curriculum design and enactment the dimension of political control. In his comparative study on 
primary education in five different cultures, Alexander (2000) claims that the national constitutional 
identity plays a vital role in prescribing curriculum outlines and elevating certain forms of knowledge 
and skill transfer over others. According to scholarship, to better understand the question of political 
control, the question of centralizing (or de-centralizing) systems of curriculum design and enactment 
is crucial to consider (Alexander, 2000).  

In light of that understanding, we intend to map the situation of primary stage mathematics curriculum 
enactment and design in Egypt. A wider study from which this work is derived has elaborately 
addressed, drawing on relevant literature (Heyworth-Dunne, 1968; Sika, 2010), the historical 
evolution of education in modern Egypt. It sought to map out social and cultural configurations and 
power tensions against educational outcomes of skills and cultural capital distribution. While it is 
beyond the scope of this work to elaborately address the overall historical mapping of education in 
modern Egypt, we consider it as important to use sections of that mapping, particularly to better 
understand political and social control forces governing the purpose and identity of curriculum 
enactment and formation. In light of Alexander’s (2000) views about political control, it is worth 
mentioning that, since the republic of Egypt was formed in 1953, curriculum design and enactment 
agendas have been standardized. A centralized system that is governed and tightly controlled by the 
Ministry of Education (MOE) strategically selects the forms of knowledge acquisition and skill 
transfer that are to be enacted by the national curriculum to all schools of Egypt. Literature (Naguib, 
2006) shows that for the case of the mathematics curriculum the focus is on factual knowledge and 
the transmission of a one-sided set of facts that are not to be questioned or debated. Mathematics 
instruction is meant to take on the form of a procedural, teacher-led, exam-oriented structure (Sika, 
2010). The national curriculum in Egypt is taught in all public schools and also in the so-called 
‘national curriculum private schools’. Both forms of schooling stem from different social, cultural 
and historical roots (Heyworth-Dunne, 1968). The historical plotting, referred to earlier, indicates a 
so-called cultural migration (Alexander, 2000) of educational values which governed the original 
institution of foreign private schooling, even before the republic of Egypt was formed. Those values 
are centered around a more multi-façade, student-centered scheme for curriculum enactment. 
Nevertheless, being under the governance of the MOE, a centralized system ensures that the 
curriculum enactment follows the same format across all types of national schools in Egypt 
(Hargreaves, 1997; Naguib, 2006; Sika, 2010).  

Alexander (2000) claims that schools are micro-cultures mediating imposed curricula in such a way 
that reflects some of the school’s own flavor. It is true that, despite the fact that the same mathematics 
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curriculum is meant to be applied across the mentioned wide base of schooling,  curriculum enactment 
remains quite a complex process (Remillard & Heck, 2014). This paper presents a case study that 
addresses the interplay between a centrally governed curriculum and its contextual enactment in the 
culture of a private school. More specifically, we will focus on how the factual nature of the national 
mathematics curriculum translates into the formation of teacher beliefs about problem solving and 
how in turn these beliefs affect, according to the teachers, their curriculum enactment decisions in the 
classroom. The research questions to be addressed are the following:  

(1) Within the context of a private school in Egypt that is bound to follow the national curriculum, 
how do school mathematics teachers perceive features of problem solving tasks? 

(2) Within this same context, how do school mathematics teachers view the contextual suitability of 
adopting their perceived problem solving tasks into their local teaching setting? 

Theoretical Framework 
In his model of educational ideology for mathematics, Ernest (1995) situates the wider aims of 
mathematics education along with the specific function of school mathematics teaching, learning and 
assessment within a context that is bound by the theory of society, the theory of the child and the 
moral ideologies attached to a given society. Ernest (1995) differentiates between five educational 
ideologies in viewing teaching and learning mathematics and maps those out against cultural power 
configurations in society. He views these ideologies from various social and pedagogical 
perspectives. Three of those perspectives form the theoretical grounding of this paper (Figure 1).  

 
Figure 1: Mathematical ideologies: Three perspectives (adapted from Ernest, 1995) 

As illustrated in Figure 1, it is not possible to dissociate a teacher’s perception of mathematics, which 
in turn translates into a teaching and learning theory, from the student’s experience when learning 
mathematics and from the wider nature of viewing and experiencing mathematics both by the teacher 
and by the student. Figure 1 shows how five different mathematical ideologies manifest themselves 
in the experience of the teacher and the learner. These ideologies extend all the way from viewing 
mathematics as a set of fixed truths and teaching it in a rather authoritarian and transmission-based 
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mechanism all the way to viewing mathematics as a subject of constructive nature and the teaching 
of it as being rather more inquiry- and discussion-based. In turn, the learning of mathematics is viewed 
as lying on a spectrum that extends from the mastery of formulas and procedures on the one end to 
the learning of inquiry skills and negotiation on the other end. Ernest’s (1995) discussion of the latter 
features align broadly with our understanding of problem solving skills as discussed in the literature 
(Schoenfeld, 1992; Stein, Smith, Henningsen, & Silver, 2000).   

Various scholars (Polya, 1945; Schoenfeld, 1992) have sought to conceptualize mathematical 
problem solving as a construct and apply that understanding in the formulation of mathematical tasks. 
As an extension of the scholarly view that perceives mathematics as ranging from the pure application 
of rules on the one side of the spectrum to problem solving on the other (Schoenfeld, 1992), Stein et 
al. (2000) identified four types of mathematical tasks: memorisation tasks, procedures without 
connections tasks, procedures with connections tasks, and doing mathematics tasks. While we 
acknowledge that the term “problem solving” has been used in different ways in the literature 
(Schoenfeld, 1992; Reiss & Törner, 2007), for the purpose of this work we have adopted Stein et al.’s 
(2000) perspective on problem solving which, at the task level, has been conceptualized by the authors 
as “doing mathematics tasks” (p. 16). According to the authors, doing mathematics (or problem 
solving) tasks are unique in that they invoke student analysis based on conceptual understanding of 
the underlying mathematical principles, their solution process has an unpredictable nature and a high 
level of ambiguity, they place on the solvers high cognitive demands and they require solvers to self-
regulate their thought process. The broad understanding of the ideologies that formulate a teacher’s 
and a learner’s view of mathematics along with the specific unfolding of that view in the form of 
mathematical tasks constitute the foundation to conceptualizing the upcoming analysis.  

Methodology 
As part of the larger project exploring contextual power dynamics in relation to framing teacher 
perceptions of mathematical problem solving, this research adopts the methodology of a multiple case 
study, conducting various focus groups across a wide range of private schools in Egypt. It is worth 
mentioning that, in Egypt, private schools annually serve a wide base of students (approximately two 
million) from various sociocultural family backgrounds (CAPMAS Yearly Report, 2017). The case 
studies have been carefully selected to represent the high end, the low end, and the middle of the 
socio-cultural map of private schooling. Each case study represents findings of two focus groups 
conducted at different schools that are both classified within the same socio-cultural cluster of 
schooling. In the following, we present findings from one focus group that has been classified by 
local partners as lying on the high end of the private schooling spectrum. This classification has been 
also confirmed based on an assessment of the school location, the school fee and the selection criteria 
of both students and teachers. The sample comprised a group of six mathematics teachers. 

Being a contextual study, it was important that the method selected was locally fitting. Researchers 
have investigated the suitability of using focus groups as a research method in the Arab context and 
have argued that focus groups are well received by participants (Thomas,  2008). Being a collective 
culture (Thomas, 2008), teachers’ choices and practices are governed and influenced by each other’s 
perceptions making it unlikely for a teacher to adopt a practice in their classroom if it is not 
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collectively perceived as best practice by most other teachers. Hence group power dynamics 
represented a cultural reality that needed to be taken into consideration.  

The data collection protocol was framed around prompts of a Task Sorting Activity (Friedrichsen & 
Dana, 2003) followed by a more holistic focus group discussion. For the Task Sorting Activity, eight 
tasks were put together ranging across Stein et al.’s (2000) mathematical task spectrum. The tasks 
showed an interesting variation in terms of their presentation, including numerical tasks, word 
problems, and visual integration tasks. The participating teachers were unaware of the existing task 
pre-classification and were prompted to classify the eight tasks according to (a) which tasks they 
considered to be problem solving tasks (cf. RQ1) and (b) which tasks they would be more likely to 
use in their classrooms (cf. RQ2). Each of the sorting prompts was followed by a more elaborate 
focus group discussion about teachers’ task sorting choices. 

The data analysis followed an inductive data-driven approach. Incidents in the data demonstrating 
task features that were associated by teachers to problem solving tasks (cf. RQ1) were grouped 
together to form codes and clusters. Based on the constant comparative method (Glaser, 1965), the 
coding scheme was developed over three levels of analysis. First, incidents in the data were compared 
to each other. More specifically, three different focus group transcripts were chosen representing low, 
high and middle socio-cultural levels. Incidents in those three transcripts were cross-compared and 
clustered to create a preliminary coding scheme representative of all three sets of data. Secondly, the 
created code was compared to another set of incidents, represented by three other focus group 
transcripts also varying across socio-cultural standings. Resulting from that was a more elaborate 
coding scheme. Finally, created codes were compared against each other, yielding a saturated format 
of codes and clusters. This saturated code was then utilized for the frequency count analysis of all 
focus group transcripts. Occurrences in the transcripts that aligned with the codes in the saturated 
coding scheme were counted in order to trace the popularity of certain task features. Following the 
same method, a separate set of codes was created to represent task features that teachers perceived to 
be suitable for their local classroom practices (cf. RQ2) given the constraints of the national 
curriculum framework. Contrasting the findings obtained from these two sets of codes cast some light 
on the power tensions between teacher perceptions and the contextual reality. 

Findings 
Results of the analysis revealed the following task features to be most popularly associated by 
teachers with problem solving tasks:  

Nature of the task: The task layout has to be relevant to students’ everyday lives. Also, the task 
needs to be approachable by a range of different methods, thereby giving space for a wide audience 
of learners to address the task, each in their own way.  
Teaching the task: Students need to independently tackle the task, thereby exploring new and often 
unfamiliar territories. However, the teacher needs to be in tight control of that exploration process.  
Learning from the task: In order to solve the task, students would need to go through an inductive 
process, to develop a yet unknown formula or solution procedure, that can then be adopted to find 
the solution to the problem. This creative process of invention was said to be cognitively 
demanding and was argued to naturally trigger student enjoyment.  
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These results show a high degree of alignment of teacher perceptions of problem solving task features 
with Stein et al.’s (2000) conceptualization of problem solving tasks (referred to as “doing 
mathematics tasks” in their classification). Indeed, teachers seem to agree with the literature about 
the knowledge creation process that ought to be triggered in students’ minds as they engage in 
problem solving tasks.  

When asked about the suitability of adopting such tasks in the classroom, teachers admitted that these 
tasks would not naturally align with the national curriculum agenda. Yet, they also made it clear that 
they would favor adopting this type of tasks over the tasks that fulfil the national curriculum textbook 
requirements. The teachers described the latter kind of tasks as follows:  

Nature of the task: The task layout has to be tangible and relevant to students’ everyday lives. Its 
formulation needs to be straightforward and needs to align with the formulation of expected 
examination questions.  
Teaching the task: The teacher presents to the students the task solution process. This is often 
coupled with a more elaborate explanation of the concepts that relate to that solution process. 
Students are encouraged to follow teacher explanations and ask questions. 
Learning from the task: The task needs to be quickly and easily solvable by an average student. 

When contrasting the two descriptions of task features, we see a gap between (1) the kind of tasks 
that align with the curriculum requirements and that the teachers perceived to be suitable for local 
adoption and (2) the kind of tasks that the teachers perceived to be problem solving tasks and would 
rather enact in their classrooms if they were given the choice. Figure 2 maps our classification of the 
two aforementioned task types on to the framework developed in Figure 1. The symbols (x) and (*) 
have been used to mark the position of the first and second kind of tasks, respectively.  

 
Figure 2. Mapping of findings  

As illustrated in Figure 2, there seems to be a variation between the ideology that the curriculum 
dictates and the mathematical ideology that would rather be implemented by the teachers and that in 
their view relates to problem solving. In their focus groups, teachers commented about them being 
governed by a one-size-fits-all curriculum model that does not align with their own views about 
mathematics. They also argued to be bound by a narrow time schedule that is dictated by the national 
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curriculum requirements which results in them mostly having to enact a rather more procedure-based 
(Stein et al., 2000) mathematics view in their teaching. 

Nevertheless, the discussion still revealed traces of teachers attempting to enact their own 
mathematical ideology in the classroom despite being bound by a different curriculum ideology. 
Teachers expressed their belief in the importance and relevance of integrating into their teaching the 
tasks that they defined to be problem solving tasks. Being foreign to the national curriculum, it would 
be difficult to integrate this type of tasks as a student-led activity. Nevertheless, teachers claimed that 
those tasks could still be useful as a pedagogical tool to introduce students to new mathematical 
concepts and to involve them in the development of formulae and procedures in relation to those. In 
that way, the teachers’ definition of a problem solving task experience would be partially fulfilled. 
The task would trigger knowledge construction, yet it would only serve as a teacher explanation tool.  

Discussion 
In response to the research questions about teacher perception and enactment of problem solving 
within the context of the mathematics national curriculum, the following can be stated: 

(1) Teacher perceptions about mathematical problem solving seem to align more with the ideology 
that is found in literature (Stein et al., 2000) rather than with the ideology that is dictated by the 
curriculum (Naguib, 2006; Sika, 2010).  

(2) In view of curriculum enactment, the ideology dictated by the national curriculum seems to have 
superiority on classroom enactment choices when compared to teachers’ ideological preferences. 
Nevertheless, there is some evidence of a partial realization of problem solving task integration 
in the classroom, which aligns more with teachers’ preferred ideology. 

These results re-emphasize the indicated gap between the inner and outer circles of culture and 
contextual influence. In line with the plotting at the onset of this paper, the historical roots of cultural 
migration that led to the formation of a different cultural footprint of foreign private schooling in 
Egypt seem to still have an impact on teacher belief formation and desired curriculum enactment 
practices. As the results indicate, teachers seem to be more oriented towards inquiry-orientated 
curriculum enactment practices. Despite the fact that the mathematics curriculum in Egypt is meant 
to be centralized around schemes dictated by the MOE and that its enactment is meant to be unified 
across all national Egyptian schooling types, the investigation of the actual enactment seems to offer 
more variety and complexity. Findings of this study indicate some traces that re-emphasize 
Alexander’s (2000) views of schools being microcultures transferring their own cultural flavor. As 
the findings indicate, teachers seem to find it important to integrate problem solving tasks into their 
daily instruction, even if those do not align with requirements of the national curriculum. Results also 
indicate an apparent power dynamic that gives superiority to the influence of the national curriculum 
ideology, resulting in teachers’ mathematical ideologies being trapped and only being partially 
realized in terms of practical enactment in the classroom. This superiority seems to only influence the 
practical enactment, yet it seems not to affect the formation of teacher beliefs about mathematical 
problem solving. Findings reported in Figure 2 also indicate a disparity between the national 
curriculum’s views of teaching and those of learning mathematics. While teaching mathematics 
seems to be associated with the teaching of structures, the learning of mathematics was associated by 

Thematic Working Group 10

Proceedings of CERME11 1934



 

 

teachers as a routine process of recalling knowledge. According to Ernest’s (1995) framework there 
seems to be a mismatch between both views that is worth investigating in future research.  

References 

Alexander, R. (2000). Culture and pedagogy: International comparisons in primary education. 
Malden: Blackwell. 

Apple, M. W. (2004). Ideology and curriculum. Abingdon, Oxon: Taylor & Francis. 

Bernstein, B. (1971). Class, codes and control: Towards a theory of educational transmittion. 
London: Routledge & Kegan Paul. 

Bourdieu, P. (1986). The forms of capital. In I. S. Kaposy (Ed.), Cultural theory: An anthology (pp. 
81–93). West Sussex: Wiley-Blackwell. 

CAPMAS Yearly Report. (2017). Statistics of educational measures. Cairo: Ministry of Planning. 

Ernest, P. (1995). The philosophy of mathematics education. London: Falmer. 

Friedrichsen, P. J., & Dana, T. M. (2003). Using a card-sorting task to elicit and clarify science-
teaching orientations. Journal of Science Teacher Education, 14(4), 291–309.  

Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 
12(4), 436–445. 

Hargreaves, E. (1997). The diploma disease in Egypt: learning, teaching and the monster of the 
secondary leaving certificate. Assessment in Education: Principles, Policy & Practice, 4(1), 161–176.  

Heyworth-Dunne, J. (1968). An introduction to the history of education in modern Egypt. Bristol: Burleigh. 

Naguib, K. (2006). The production and reproduction of culture in Egyptian schools. In C. A. Torres 
(Ed.), Cultures of Arab schooling (pp. 25–53). New York: State University of New York Press. 

Polya, G. (1945). How to solve it. Princeton: Princeton University Press. 

Reiss, K., & Törner, G. (2007). Problem solving in the mathematics classroom: The German 
perspective. ZDM International Journal on Mathematics Education, 39(5–6), 431–441.  

Remillard, J. T., & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in 
mathematics education. ZDM Mathematics Education, 46(1), 705–718.  

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and 
sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics 
teaching and learning, (pp. 334–370). New York: MacMillan. 

Sika, N. (2010). Educational reform in Egyptian primary schools since the 1990s: A study of the 
political values and behavior of sixth grade students. Lewiston: Edwin Mellen. 

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. A. (2000). Implementing standards-based 
mathematics instruction: A casebook for professional development. Reston: Teachers College. 

Thomas, A. (2008). Focus groups in qualitative research: Culturally sensitive methodology for the 
Arabian Gulf? International Journal of Research & Method in Education, 31(1), 77–88.  

 

Thematic Working Group 10

Proceedings of CERME11 1935
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To meet the needs of student diversity, universities have often implemented the principles of Universal 
Design in their instruction. However, previous literature knows little about the effectivity of these 
practices. In this study, two students with special needs are given a voice to share their experiences 
about a Universally Designed undergraduate mathematics course. The study uses the view of a 
Foucauldian discourse analysis in order to investigate how these students construct discourses on 
their position in the context of the course. According to the results, the students positioned themselves 
as the Others, constructing a discourse of “different learners”. The study implicates that there is a 
need to shift the existing discourses to open up alternative subjectivities. 

Keywords: Discourse analysis, otherness, special needs, university mathematics, Universal Design. 

Little is known about disabled students’ perceptions of their studies in the field of postsecondary 
mathematics. Indeed, disabled students are often marginalized in mathematics educational research. 
These students are rarely seen as mathematical thinkers and doers rather than focusing on cognitive 
deficits (for a review see Tan & Kastberg, 2017). What is known about disabled mathematics students 
is that they are not encouraged in their studies (Feigenbaum, 2000) and that university staff might 
also be reluctant to change their teaching methods in order to take these students into account 
(Thurston, Shuman, Middendorf, & Johnson, 2017). It is also known that especially dyslexic students 
are shown to struggle in studying tertiary mathematics because of environmental barriers for learning 
(Perkin & Croft, 2007). In general, it is known that disabled students often struggle while participating 
in higher education. These students are less likely than others to persist until completing their 
educational program (Mamiseishvili & Koch, 2012). According to Weeber (2004) students might see 
their disability status as an undesirable factor in how they perceive themselves as the campus 
environment does not provide enough support. In a Finnish report, it was found that accessibility was 
rarely thought about when learning environments were designed (Laaksonen, 2005). However, in this 
study it was the staff who assessed the level of accessibility, and the disabled students themselves 
were never given a voice. I argue that there is a critical silence, in terms of Seale (2014), when it 
comes to researching disabled students in the field of postsecondary mathematics. 

In this study, an undergraduate mathematics course was designed to be more accessible. By using 
Foucaldian discourse analysis on power, the voices of the students with special needs themselves 
were heard. The aim of this study is to examine how these students positioned themselves in this 
course that tried to promote inclusion for all through the framework of Universal Design. 

Background of the study 
Discourse and power as theoretical frameworks  

This article draws on Foucauldian discourse analysis. Discourse analysis is not used simply as a 
research method; it serves as a broad theoretical framework for understanding discourse and its 
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importance in social life. According to Foucault, discourses are “practices that systematically form 
the objects of which they speak … [they] are not about objects, they constitute them and in the practice 
of doing so conceal their own invention” (Foucault, 1977, p. 49). Discourses, therefore, produce 
normality by constructing what can be taken as granted. By studying discourse, we can gather 
information on social organizations and identities, since they are constructed by rules about what is 
normal. The way language is used shapes reality. Observing the ways in which social constructions 
form our world are the core of discourse analysis and form the theoretical base for this study. 

Discourses produce meaning and knowledge, and these Foucault (1977) connected with power. 
Foucault (1977) proposed that in modern societies, we must move forward from analyzing dyadic 
relations of a ruler and a subject, and instead focus on finding these power relations in institutions 
that are so often labeled as ‘humane’.  He defined the concept of disciplinary power, a form of power 
that is understood to be the body of knowledge and those discourses takes as the ‘truth’. According 
to Foucault (1982), personal identities are only produced through institutional or societal power and 
knowledge. In other words, subjectivity is constructed through the productive power of discursive 
practices. Various scholars have also emphasized the socially constructed nature of mathematical 
identity – how discourses construct mathematical identities and agency (Alderton & Gifford, 2018). 
Because discourses truly produce our social reality, they are all about power. Some voices are heard 
as meaningful and authoritative, while some others are not. When power and knowledge are 
combined, hegemonic discourses are constructed (Dant, 1991). By this, Dant means that certain 
socially constructed discourses are considered as facts. 

Universal Design 

Inclusive pedagogy has often been introduced as a way to promote positive discourses of students 
with special needs by promoting a view of disability as a social construction. While the traditional, 
medical model views disability as an abnormality that has to be cured and assisted, the social model 
emphasizes the idea that disability is constructed when the environment cannot account to the needs 
of the disabled (Seale, 2014). The social model is often fostered in higher education by using 
Universal Design (UD), an environmental design that is accessible for everyone (Burgstahler, 2015). 
According to Burgstahler, the learning environments create barriers for learning, and UD aims to 
reduce these by taking into account the needs of the diversity of students. Often, UD is fostered by 
using the guidelines by the Center for Applied Special Technology: 1) engagement 2) representation 
3) action & expression (CAST, 2018). These guidelines are tied to brain research on how people 
learn. Another common and practical way to enhance inclusion in higher education is to implement 
the Principles of UD of Instruction (UDI) into learning environments: 1) equitable use 2) flexibility 
in use 3) simple and intuitive 4) perceptible information 5) tolerance for error 6) low physical effort 
7) size and space for approach and use (Burgstahler, 2015). Often, two additional principles are used: 
8) community of learners and 9) instructional climate (Shaw, Scott, & McGuire, 2001). 

Althought UD has been used as a base for legislation (e.g., the USA; Higher Education Opportunity 
Act 2008), we know surprisingly little about whether it works in higher education (for a review, see 
Roberts, Park, Brown, & Cook, 2011). The warm-hearted idea of supporting inclusion through UD is 
not to be judged, but there is a need for more research-based evidence. Also, the voice of disabled 
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students themselves is usually not heard in the research on UD in higher education (Seale, 2014; 
Griful-Freixenet, Struyven, Verstichele, & Andries, 2017). Griful-Freixenet and colleagues underline 
the fact that it is impossible to “tackle the need of all learners” and calls for a need of responsiveness. 
I argue that there is need for studies that would, at the same time, break the silence surrounding UD 
and also examine the power structures surrounding it. This study examines whether the framework 
of UD, aimed to promote the socially constructed view of disability, was able to promote discourses 
that would see students with special needs as an equal part of the learning community. 

Aims of the study 

In this study, the power relations in a Universally Designed university mathematics course are brought 
into light through students’ own voices. The objective of this study is to examine the subjective 
positions that the students with special needs have constructed during the course. 

Methodology 
Context of the study 

The study was conducted on a proof-based undergraduate mathematics course with over 400 
participants that lasted for 7 weeks. The course arrangements reflected the principles of UD: All of 
the three principles of CAST (2018) and the nine principles of Burgstahler (2015) and Shaw, Scott 
and McGuire (2001) were implemented in the course examined in this study. Each week, students 
were given a set of problems to solve, both pen-and-paper and digital. After that, they received various 
feedback on the tasks (peer feedback, automatic feedback, feedback from the teacher and the teacher 
assistants) and participated in mathematical conversation during active lectures. There was no exam, 
and the final course grade was self-assessed. Table 1 shows an overview of the course components. 

Engagement Representation Action and learning 

Applied tasks relevant to 
different majors 

Accepting and supportive 
classroom climate8, 9 

Active lectures based on 
discussion; minimizing the 

social demands7, 8 

Learning objective matrix 

Formative assessment used 
to value process and effort5 

An open learning space with 
tutor students offering 

support when needed2, 4, 6, 7 

Course material been 
developed for years to be 

simple and intuitive, 2 

Materials in Finnish and in 
Swedish2 

Mathematical discussion was 
one of the learning    

objectives8, 9 

Concept maps about the 
relationship of concepts 

A guide for producing clear 
mathematical text was 

provided3 

Various options for returning the 
tasks (LaTex, drawing...)2 

Digital WhatsApp groups for 
group discussion8,9 

Anonymous discussion forum8, 9 

Digital GeoGebra tasks 

Digital polls during lectures8, 

Digital Moodle environment as a 
“base” for the course1, 3 

Social interaction in the open 
learning space; students are 

guided to tutor each others5, 8, 9 
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Peer-assessment5 

Formative and summative 
self-assessment 5 

Flipped learning approach5, 8 

Dynamic geometry 
(GeoGebra) offering multiple 

representations 

Progressive information 
releasing; first simple, then 

more advanced tasks 

Personal goal-setting through 
formative self-assessment 

Various kinds of digital feedback; 
automatic, from tutors5, 8, 9 

Octave software for computing 

Table 1: The course components through the lense of the principles of UD (CAST, 2018), linked with 
the elements of UDI (with superscript; Burgstahler, 2015; Shaw, Scott, & McGuire, 2001) 

Participants 

All of the participants of the course were emailed an advertisement about the study. Six students, self-
reporting as having some kinds of special needs during the course, were interviewed. Because of the 
page limit, only two of these six interviews were used in this study, the ones of Jesse and Nico; these 
two interviews were chosen as representative examples of the phenomenon. Jesse, aged 20, had been 
studying for two years and self-reported having difficulties with dyslexia. Nico, aged 23, was also 
studying in their second year and stated to have been diagnosed with ADHD. Both of the participants 
could explain as much about their diagnosis as they wanted to, and their choice was respected. Self-
report about the diagnosis was needed; no diagnostic documents were collected for this study. Jesse 
and Nico were both majoring in mathematics or related science. Both of the names are gender-neutral 
pseudonyms – gender of the participants is not reported in order to provide anonymization. Gender 
neutral pronouns they/them are used throughout the text. “Special needs” is the term used in this study 
to describe the participants. The purpose is not to label these students as one group and contribute in 
constructing a discourse of “students with special needs” as one subject. Instead, this label is used to 
underline that the students, usually neglected in studies, are given a voice here (Seale, 2014), even 
though mediated by the researcher. 

Data collection and analytical process 

Data was collected after the course using semi-structured interviews, with the questions concerning 
perceptions of the course components. The students were able to give feedback on the course 
arrangements and therefore participate in the development process of the course. 

The first cycle of analysis consisted of careful familiarization with the data. The transcripts of the 
interviews were read through multiple times to gather a general understanding of the discourses of 
the students. The focus on the first cycle was on the position that the students created for themselves. 
Foucaldian concepts of discourse and power were used in order to unpack the ways students described 
themselves as participants of the course. This first part of the analysis was led by the question “Do 
the students position themselves as included or excluded in the learning community, and how is that 
inclusion or exclusion created?”. The analysis was guided by identifying hegemonic discourses. 

The second analysis changed the view towards examining how the students constructed the discourses 
on their subjective position and how they contributed in building hegemonic discourses. The data was 
read through the lens on simplifications: When did the students choose to rely on simplifications over 
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complexity and contradictions? How were these simplifications made seem convincing (Dant, 1991)? 
The concept of naturalization (Fairclough, 1989) was used in the analysis as an ultimate form of 
simplification; this kind of a process happens when socially constructed discourses and practices are 
taken as natural and are even connected to the nature itself. The analysis of simplifications 
reconstituted as follows: when do the students see social orders arranged by nature and not by people, 
and how are these discourses justified? During the analysis it was noted that there is a need for an 
analytical tool that would frame the asymmetrical power constructed through naturalization. This is 
why the theory of otherness was implemented; as a part of the reliability of this study, I describe this 
process as it chronologically happened in my findings. 

Findings 
The first analysis cycle: The discourse of ‘a different kind of a learner’ 

The first notice, after getting familiar with the data, was that both of the students described a very 
lonely learning process. This loneliness was connected with the difficulties the students faced in this 
course. An evident part of this loneliness was that throughout the data, the students spoke almost 
entirely in the first-person point of view as is evident through all the citations used in this article. In 
the entire data, there were no references to us. 

Jesse:  When I am doing an exercise, the exercise number one. Everyone else has started 
that exercise at the same time as me but they are already doing the task number five 
when I’m moving forward to task number two. I just progress so much slower. – – 
I realized a long time ago that for me it is better to work on my own. 

The clear, choiceless segregations made between me and them were seen as building blocks of the 
discourse about difference. The discourse was named by the researcher as ‘the discourse of a different 
kind of a learner’ after Nico’s feedback on the course: 

Nico:  I think it is good if there is a will to map out the needs of different kinds of learners. 

One way of constructing difference between these students and the others was the discourse of 
different kinds of study methods. The students did not want to lean on to the ready-made methods, 
built for them by the teacher. On the contrary, they created their own study strategies by themselves, 
because they could not make use of the normal ways of studying. This smaller discourse was seen as 
a legitimator for the stronger discourse of difference. Even these kinds of helper discourses might 
have some serious real life consequences. 

Jesse: Well. I have been to small groups or so. Where you need to do group work with 
other people. These kinds of situations have always been very bad for me since. I 
mean, goodness. You have to write very fast, just whatever comes to your head. 
And the answers to the tasks, they are what they are.  

Nico: I tried to study in a way everyone else is studying and. In the end of the year I 
realized that I wasn’t even getting grades from my courses. Now then, I built this 
learning strategy. So, maybe I don’t learn like other people, so I’ll just have to learn 
completely in my own way. – – I was using a timer with these exercises. For 
example, I decided that at 5 pm I’ll start doing these exercises. 
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The discourse of difference was also identified when the students gave feedback on the course. This 
was most clear with Nico, who told that they almost did not use any of the social course components, 
yet still they praised the existence of these arrangements. They told that they did not attend the lectures 
nor the open learning space, and neither wanted to take part on the digital discussion groups of the 
course. According to Nico, there was nothing wrong with the course components, designed with the 
principles of UD; they were just meant for someone else. 

Nico: I would say that compared to last year. Well, this is. A hundred times better 
arranged, this course. So, keep going like this and it’ll be very good. 

As shown, there was a hegemonic discourse of ‘a different kind of a learner’, a strong discourse that 
was obviously constructed way before attending this course. But how was this kind of a hegemony 
legitimised? For further analysis, a new tool was needed: the concept of otherness. 

A plunge back to the theory: Otherness and power 

Individual subjects construct their reality and identity under the supervisory of normalizing practices 
that impose homogeneity and build discourses on norms (Foucault, 1977). This leads to monitoring 
one’s behavior, a process that is constantly judged. Fenwick (2003) uses the concept of internalisation 
to describe the process where identities are produced through following norms, thus leading to being 
dependent on the disciplinary power the subjects have directed on themselves. 

When norms produce inclusion and exclusion through disciplinary power, they produce otherness. 
Staszak (2008) conceptualizes otherness as a discursive process which is produced by a dominant 
group by stigmatizing a difference. The creation of otherness thus constructs two different group: 
them and us. Asymmetry of power is the key feature in constructing otherness: Only the more 
powerful group of them and us is able to maintain hegemonies and construct their own identity, while 
the identity of the other is only constructed in a relation to these powerful discourses. Discipline 
power is found when the others define themselves in relation to the dominant group, not having equal 
power to define themselves by their own means. When otherness is seen in a negative way through 
dominant discourse, the results tend to be very real and reflect the power structures (Okolie, 2003). 

The second analysis cycle: The discourse of otherness 

Because of the asymmetrical power structure that was found at the first cycle of analysis, the 
‘discourse of a different kind of a learner’ was renamed as the ‘discourse of otherness’. It was kept 
up with simplifications; strong discourses that left no room for seeing things from different angles. 
Internalisation of norms created otherness when the students saw their differences as something that 
could not be taken account by the course or the university staff. The students positioned themselves 
as the others that cannot and therefore should not be helped by the course. This is a strong hegemonic 
discourse: This learning environment of university mathematics is not meant for them, even if it is 
constructed with the principles of UD. This is an obvious simplification, since the learning 
environments could, of course, be adjusted for these students too. 

Jesse:  It would have been nice if I would have bought the physical copy. And not just read 
the material from the screen of my computer, since there is that backlight. I always 
become so confused about the line I’m reading. – – It costs money. So no thank you. 
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Nico: I would say that if you are a different kind of a learner, then the most important 
thing you should do immediately after you start your university studies is to find 
out how you learn. 

Naturalization was the key element in constructing otherness. This kind of a process was most evident 
in Nico’s interview. Nico referred to themselves as an ‘ADHD person’ and constructed otherness 
through neurology. Also, Jesse made references of dyslexia as a biological state that prevented them 
of studying in a normal way. These kinds of discourses can be seen as ultimate ways of asymmetrical 
power between them and me. 

Jesse:  Well. Always, it would be nice to get. Some kind of an assistance. When it comes 
to dyslexia. Which means more hours to a day, but that just isn’t possible. 

Discussion 
This study examined how students with special needs position themselves in a Universally Designed 
undergraduate mathematics course. Even though the theories of UD and UDI were reflected in the 
course design, it was found that the two students interviewed constructed a discourse of otherness 
(Staszak, 2008; Okolie, 2003). Asymmetrical power structures were found in the way they distanced 
themselves from the other students. 

Mathematical identities are known to be formed through institutional power. As educators and 
researchers, we need to see our responsibility in how we create discourses – or silence. There is a 
growing need to admit there are students with special needs in undergraduate mathematics, both in 
research and practice. What we can do is to transform the experiences and possibilities of students 
with special needs (Alderton, & Gifford, 2018). This study showed how naturalization helped to build 
the discourse of otherness. If we normalize this kind of inequity, we are constructing a hegemonic 
discourse that legitimizes subordination through asymmetrical disciplinary power. 

UD offers a way to change our view towards more equal mathematics teaching in higher education 
by challenging the medical model of disability. However, implementing the principles of UD into a 
course is not enough if discourses of otherness in mathematics are not shifted. The study suggests 
that that designing inclusive environments for disabled students is not enough, since, in the end, that 
would reflect the medical model of disability and not social. Seale (2014) sees participation, both in 
research and practice, as a way to truly foster inclusion. Maybe this would be a way to shift the 
discourse of otherness and truly include disabled students in the mathematical learning environments. 
In university mathematics, the first thing to do would be to listen to these students. 
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Introduction 
Sápmi is the Sámi term for the Sámi homeland and society, the land area extends from Central 
Norway, Sweden and Finland to the Kola Peninsula in Russia. In Norway, the Sámi as a population 
has status as an indigenous people, which means that the Sámi have the right to develop their own 
culture and language on their own premises. Traditionally the Sámi people has lived as hunters and 
gatherers and in connection with this, they lived a nomadic life. The lávvu is a temporary dwelling, 
and the design of it reflects the Sámi culture as a community. Families travel in small groups, and the 
lávvu is designed so that even one person could quickly set it up with little effort. 

Teachers at a Sámi school in northern part of Sápmi in Norway have for several years developed 
teaching units for all grades in lower secondary school with lávvu as an overall theme. When students 
attend their last year at lower secondary school, they develop their own teaching unit in mathematics 
with the lávvu. This study builds on research by Fyhn et al. (2016), Fyhn, Meaney, Nystad, and Jannok 
Nutti (2017), and Jannok Nutti et al. (2015), where the Sámi culture founds basis for mathematics in 
school. The research question investigated here is: How do students use the lávvu in mathematics 
teaching? 

Theoretical framework 
The Sámi pedagogy reflects the Sámi culture, and the culture has a holistic conception of knowledge 
(Balto, 2005; Keskitalo & Määttä, 2011; Siri & Hermansen, 2018). The holistic view is also central 
in the upbringing of the Sámi children. Culturally-responsive teaching is about teaching that founds 
basis in cultural knowledge and insight (Gay, 2013). It is essential that this teaching must not take 
cultural phenomena out of its context, because the student can experience that the teacher and the 
school simplify the students own culture (Fyhn et al., 2017). 

Method 
The analysis of the data in this study can be characterized as abductive, and the data material has been 
analyzed towards Sámi pedagogy and culturally-responsive teaching. The data is based on 
observation, audio recordings of the teaching activity and conversation between authors. Ole Einar 
was the teaching students’ supervisor in the development and performance of the teaching. Siv 
participated in the teaching as a participating observer following one group of learners. 
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Findings 
There were five lávvues in the schoolyard. Each of them had different themes in which it was taught. 
These topics were cooking in the lávvu, building a traditional lávvu, storytelling and luohti (Sámi 
traditional song), the history of the lávvu and mathematics in lávvu. In addition, each lesson in the 
lávvu lasted for approximately 30 minutes. The students who were taught were divided into four 
groups, and each group of learners were visiting all lávvues. In Sámi pedagogy the place where 
teaching happens does not necessarily need to be situated in the traditional classroom (Keskitalo & 
Määttä, 2011). This teaching is literally situated outside the classroom. It takes place in lávvues in the 
schoolyard. The teaching combines the Sámi culture and the Norwegian upper primary school level 
curriculum. Four of the lávvues addressed phenomena and activities in relation to the Sámi culture. 
The fifth lávvu, where mathematics was taught, stands out in such a way that it was based on lávvu, 
but it related to geometry. All the lávvues had to be included in the teaching because this gave a 
holistic perspective and cultural-responsive teaching, even though the mathematics teaching could be 
characterized as deductive. 
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We argue for the need to reframe interdisciplinarity to encompass pandisability. Such reframing 
enhances cultural experiences and genuine diversity through collaborative creation of mathematics 
learning contexts and culturally sustaining pedagogies. We explore ways to undo vertical hierarchy 
patterns of relationality that hinder exchanges across differences. In these equity-driven pedagogical 
interventions, we call for conflating multiple disciplinary fields within and around mathematics as 
well as diverse layers of practice, namely in research, teaching, teacher education, disability 
advocacy, parenting, youth self-determination, rehabilitative sciences, and so forth. We recognize 
that these practices relate to multiple disability experiences and identity formation trajectories that 
enrich mathematics as a collaborative space for all and of all within and outside schooling. 

Keywords: Mathematics education, disability culture, radical interdisciplinarity, pandisability.  

Introduction  
The present paper highlights the need to reframe interdisciplinarity in conjunction to pandisability 
cultural experiences to enhance genuine diversity in the collaborative creation of mathematics 
learning contexts inside and outside schooling. Pandisability refers to the full scope of disability 
categories, including disability modes of identity not yet labeled as such by system actors or not fully 
accepted by recipients of disability labels. The unique knowledges afforded by this sense of difference 
must be deliberately incorporated into mathematics learning pedagogical interventions, competency 
assessment, and process standards in meaningful ways. Doing so enriches not only the collective 
experiences of students with disabilities but most especially those imbued with privileged status as 
expressions of embodied normalcy (Davis, 1995, 2002, 2013; Goodley, 2003; Hughes, 2007). In this 
introductory section we touch on interdisciplinary knowledges as typically conceived in ways that 
marginalize experiential spaces such as those afforded by pandisability culture. In the next section, 
we tackle the link between pandisability cultural knowledges and mathematics learning. The section 
that follows dives into the theoretical and practical implications of using culturally sustaining 
pedagogies (CSP) in conjunction with interdisciplinarity. We conclude by drawing a few critical notes 
on ways to enhance CSP as it becomes part of the everyday practices of disability studies in 
mathematics education (DSME). To this end, we use the example of the braille literacy crisis, 
showing how expansive views on pandisability culture can help CSP and mathematics education 
practices transcend typical interdisciplinary boundaries and knowledge creation pre-conceptions. 
Importantly, the reader should note that DSME’s pedagogical and learner-centered practices are 
radically distinct from special and mathematics education approaches that rest on medical and 
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behaviorist models with their fixing, deficit-driven attitude toward students with disabilities (see, for 
example, the DSME-centered meta-analysis of recent mathematics education empirical work carried 
out by Tan, Lambert, Padilla, & Wieman, 2018).   

Interdisciplinarity is portrayed as a set of practices designed to bridge multiple knowledges. 
Unfortunately, by its very definition, the implementation of interdisciplinarity privileges disciplinary 
knowledges (Bhasker & Danermark, 2006). Therefore, the experiential wealth of knowledges such 
as those afforded by disability identity and alterity tends to be neglected and/or marginalized as 
external to the making of interdisciplinarity. Likewise, parallel knowledges of interdependence 
actors, for example, families or friends of learners with disabilities tend to be discarded as 
insignificant or completely ignored.   

We are appealing to an international audience. Our positionality is grounded in DSME research and 
practice contextually based in the United States. As such, through the present paper we aspire to 
engender an invitational dialogue which revolves around the need to explore ways to articulate a new, 
much more embracing conceptualization of interdisciplinarity that transforms the way everyday 
mathematics education practices inside and outside the classroom are conceived and enacted. The 
aim is to incorporate disability difference and the knowledges it affords into why and how things are 
approached and learned by students with and without disabilities. Our purpose is to capture the 
multiple layers of diversity associated with disability knowledges and ways of knowing in the making 
of mathematics as their equity-centered learning space for belonging and reciprocal interactions of 
collaborative creativity. Such creativity is nurtured by special modes of disability-centered 
multicultural difference and parallel spheres of intersectionality with identity areas such as gender, 
class, race/ethnicity, multi-lingual richness, and so on.  

Why pandisability?  
Disability is a social category of culture in action. It flows in reciprocal interaction with 
institutionalized settings (Blanton, Pugach, & Bóveda, 2018; Kuppers, 2011). Each disability 
category constitutes a sub-cultural sphere. Disability’s unique difference-based sense of richness can 
enhance collective contexts for mathematics learning in special ways. Take for example the meaning 
of musical silences as a mathematical unit susceptible to rhythmic and trans-melodic embodiments. 
How many of our readers have ever wondered if or how deaf learners and their interdependence 
partners would contribute to enriching our understanding of the mathematical depth of musical 
silences? The absence of questions such as these in mathematics learning circles is quite telling. Yet, 
answering these questions is only viable by unleashing the power of true belonging in co-learning 
spaces for sharing. Those knowledges are already brewing within the vitality of deaf learner 
experiences and those of their interdependent partners. Excluding them, we are also depriving the 
contextual whole from one of its core learning parts.  

Now consider visual mathematics dimensions as they get experienced by blind and/or visually 
impaired individuals and their interdependent partners. To what extend do stereotypical conceptions 
of visuality prevent us from dialoguing with these kinds of learners?  

An example outside mathematics may help us appreciate the power of non-visual knowledges and 
ways of knowing in terms of their intuitional relationality. We allude to an essay by critical 
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anthropologist Michael Taussig (1991) who builds on Walter Benjamin’s (1969) suggestion that one 
should place the sense of sight under the guidance of tactility for the sake of aesthetic interpretation. 
From this idea, Taussig implies that tactility can guide everyday interpretations to an extent non-
realized by actors. Taussig (1991) states:  

Surely this sense includes much that is not sense so much as sensuousness, an embodied and 
somewhat automatic ‘knowledge’ that functions like peripheral vision, not studied contemplation, 
a knowledge that is imageric and sensate rather than ideational and as such not only challenges 
practically all critical practice across the board of academic disciplines but is a knowledge that lies 
as much in the objects and spaces of observation as in the body and mind of the observer. What’s 
more, this sense has an activist, constructivist, bent; not so much contemplative as it is caught in 
media res working on, making anew, amalgamating, acting and reacting. We are thus mindful of 
Nietzsche’s notion of the senses as bound to their object as much as their organs of reception, a 
fluid bond to be sure in which … ‘seeing becomes seeing something’. (pp. 147-148) 

Taussig is talking here about the interpretative processes and intuitional knowledges experienced and 
created by sighted individuals. If he had developed statements like these in relation to experiences of 
blind students or scholars, the depth of what he was saying would immediately vanish. This vanishing 
is the byproduct of ableist readings of blindness as mere impairment or as an incapacitating/ 
paralyzing state.  

What if pedagogically one takes Taussig’s idea of tactility and asks blind students to become teachers 
of sighted students and perhaps prospective teachers on how they enact and embody tactility as 
students of disciplines like mathematics and the arts? In doing so, one should be prepared for all kinds 
of outcomes. For instance, thinkers with visual impairments such as David Bolt (2014) criticize the 
over-representation of haptic constructions in relation to the blind. In Bolt’s view, this haptic over-
emphasis is an expression of ocularcentrism, that is, the belief that knowledge is only possible under 
sighted guidance, under the “light” of wisdom and proper directionality, which contrasts with the 
frightening darkness and vacillation inherently associated with tactility. What if there is a culture of 
resistance toward tactility among these teaching blind students? What if there is more cultural 
plurality among them than initially anticipated by non-blind audiences? Ultimately, only these 
teaching individuals could show us the lights and shadows of tactility as a dynamic knowledge-
creating tool and as a multifaceted expression of cultures of blindness.  

Exploring interdisciplinarity along with culturally sustaining pedagogies and 
dialogicality  
A great part of the problem with narrow conceptualizations of interdisciplinarity stems from a dualist 
split between thinking and doing, and knowing and experiencing. Disciplinary knowledges, if they 
do something, the doing is conceptually framed as encapsulated within abstract thinking. This is a 
Cartesian legacy. Our mind is always “in interaction with others, that is, with individuals, groups, 
institutions, cultures, and with the past, present and future” (Marková, 2016, p. 91).  

It is precisely with our mind’s interaction with, within and beyond the boundaries of disability 
cultures that we are concerned with as we reframe the dialogical enactment of interdisciplinarity to 
encompass experiential knowledges typically excluded from its purview. Our invitation engages the 
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special implications of these culturally contextualized interactions for the making and re-making of 
mathematics as a learning space for all and of all. Therefore, the value of CSP as a core component 
of this process becomes paramount.  

Paris (2012) suggests the use of CSP terminology as a much more accurate conceptualization of the 
dynamics pursued as one engages with cultural contexts of diversity that are threatened by their 
systematic marginalization within learning spaces. It does not suffice to keep talking of culturally 
relevant or culturally responsive pedagogies (as has been done in United States educational contexts 
of critical multiculturalism for at least three decades, but especially with the publication of Ladon-
Billings, 1995; along with this terminology there are other less diffused similar terms that have been 
used in the literature such as culturally congruent pedagogy, Au & Kawakami, 1994, culturally 
compatible pedagogy, Jacob & Jordan, 1987, engaged pedagogy, hooks, 1994, everyday pedagogies, 
Nasir, 2008, and critical care praxis, Rolón-Dow, 2005) 

The next logical step is to grapple with another core question: What are the concrete areas of cultural 
practice one is trying to sustain and why? Paris and Alim (2014) interrogate this dimension. They 
argue that important as it is to employ asset-based pedagogies, it is paramount to dynamize their 
applicability to keep up with the evolving transformations of youth cultural processes at the local 
level and throughout the globe, as well as counteract the myriad of institutionalizing practices that 
aim at stifling this relational learning dynamicity. The latter is of crucial significance for youth and 
adults with disabilities in their mathematics of all experiences inside and outside schooling contexts. 
Paris and Alim (2014) point out their own sense of responsibility in the areas of practice they criticize:  

[S]ome of our own research and teaching has uncritically taken up and built on previous notions 
of asset pedagogies, has at times reified traditional relationships between race/ ethnicity and 
cultural practice, and has not directly and generatively enough taken up problematic elements of 
youth culture. ... we live, research, and write with the understanding that our languages, literacies, 
histories, and cultural ways of being as people of color are not pathological. Beginning with this 
understanding ... allows us to see the fallacy of measuring ourselves and the young people in our 
communities solely against the White middle-class norms of knowing and being that continue to 
dominate notions of educational achievement. Du Bois ... of course, theorized this over a century 
ago with his conceptualization of double consciousness... (p. 86)1.  

Double consciousness means a state in which people of color, students with disabilities, gendered and 
lower-class subaltern individuals reject their own selves, adopting a stance that favors dominant 
cultural patterns. For students with disabilities this might entail rejecting sign language, in the case 
of deaf youths, or, in the case of blind individuals, rejecting braille or wanting to continue driving 
motor vehicles at the onset of visual impairments to deny any pandisability linkages. All of these self-
isolation and self-rejecting behaviors are likely to impact negatively the enactment of edifying 
mathematics learning habits as well as collaborative learning prospects grounded on pandisability 
culture and interdependence.  

                                                 
1 see also, Du Bois (1965). 
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Let us transpose this to the field of DSME. In terms of teaching and research practices, the plight of 
students with intellectual disabilities illustrates quite well what happens. There is a dualism that tries 
to transform deficit-centered scenarios but falls into rather ritualistic mathematics learning attempts. 
Many modalities of direct teaching with their repetitious behavioralist exercises guided by deficit-
centered conceptions of intellectual disabilities seldom involve youth with disabilities themselves as 
drivers of their own transformational mathematics learning as well as that of the institutional 
environments where their education takes place. Our own review of the specialized mathematics 
education literature for the past decade (Tan, Lambert, Padilla, & Wieman, 2018) makes evident a 
minoritarian status for those instances of research where DSME principles are explored. Sadly, this 
exploration is often timid and, in none of the studies we found are students with disability involved 
as co-designers of their learning or the mathematics education research that pertains to them. Of 
course, we know that this very prospect would alarm many mathematics education researchers For 
whom the very configuration of research studies is a continuous exercise that corroborates their self-
fulfilling prophecy: that these students are not capable of complex operations. Thus, it would be 
temerity to leave their learning destiny in their disabled hands or pretend that one can have a 
meaningful collaboration toward pedagogical ends and processes with them as responsive agents. 
Double consciousness acquires an internalized status in the lives of these students with disabilities. 
Learned helplessness, learned hopelessness are not an unlikely outcome for them. After all, the 
symbolic exposure to exclusion messages in classroom settings for years at times is taken to heart 
(Ayres, Lowrey, Douglas, & Sievers, 2011; Baglieri, 2017; Connor, 2008a, 2008b; Connor & Ferri, 
2007; Connor, Ferri & Annamma, 2016; Duckworth, 1995; Erevelles, 2000, 2005; Gallagher, 2004; 
Graham & Slee, 2008; Paris & Alim, 2017).    

Concluding Remarks 
One example of possible interdisciplinary applications of CSP and disability-centered double 
consciousness examinations is the so-called braille literacy crisis faced by students with visual 
impairments in the United States. This is a crisis that indirectly impacts mathematical inclusivity 
practices. It involves youth self-advocates, families and blind membership organizations. Teaching 
institutions and researchers could design collaborative research models aimed at tackling culturally 
sustaining ways to approach the crisis and transform it creatively into a broad, long-term co-learning 
opportunity. This collaborative research approach would build momentum. It would allow multiple 
layers of collaborating partners to discover, discuss critically and undo from the inside out those youth 
cultural practices collectively identified as detrimental and alienating, instead of assuming a priori 
things about which researchers only have very tenuous knowledge. Most significantly, it would avoid 
blaming the victim and perpetuating the very top-down systemic practices that originated the braille 
literacy crisis in the first place (teacher certification requirements, limited incorporation of blind 
teachers, distancing from youth needs, downplaying of braille, special mathematics coding tools 
developed with and for the blind, etc.), letting it deepen as years went by.    

There are many other innovative paths of interdisciplinary applications of CSP and disability-centered 
double consciousness examinations which are in their own right interdisciplinary and desperately 
needed in order to change the lives of individuals with disabilities in and out of mathematics 
classrooms. Yet, one problem in tackling these explorations is that CSP in its original design has 
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ignored disability issues. Waitoller and Thorius (2016) suggest remedying this by combining CSP 
with Universal Design for Learning (UDL) techniques. This solution only addresses the problem in 
part. Both UDL and CSP lack a genuinely global/international approach for dealing with educational 
contingencies and are too circumscribed to narrowly conceived schooling dynamics. Therefore, we 
hope that our CERME discussions will help elucidate innovative ways to correct these deficiencies 
particularly in relation to how disability studies and mathematics education can embody a true sense 
of interdisciplinary collaboration.  
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The teaching of higher education mathematics by pre-service 
mathematics teacher educators: How might this contribute to social 

justice? A consideration of a possible approach 
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This paper considers the teaching of higher education mathematics as part of pre-service teacher 
education and the potential for it to contribute to social justice. In it I ask and seek to offer one 
possible answer to the following question: By enacting within their own higher education 
mathematics teaching an enquiry-based pedagogy informed by considerations of fairness and 
equality, can mathematics education tutors open up possibilities for their students to engage more 
deeply with such practices and the attendant commitment to social justice? A set of exemplar 
practices drawn from my own teaching is briefly described and discussed and responses from a cohort 
of students considered. 

Keywords: Neo-liberalism, mathematics education, pre-service teacher education, activism. 

Introduction 
Socio-political researchers in mathematics education have connected active, engaged, meaning-
making pedagogies with the possibilities for social justice in school mathematics classrooms 
(Skovsmose, 1994; Gutstein, 2006; Boaler, 2008). Although there is a rich literature about innovative 
and critical approaches to other aspects of pre-service teaching (for example, Cochran-Smith, 1991; 
Nolan, 2012), there has been comparatively little written about the impact of such pedagogies on 
those teacher education students who study academic mathematics as an undergraduate subject in its 
own right. We know that talking about and recommending practices that go against the grain 
(Cochran-Smith, 1991), whilst essential, have, in themselves, comparatively little effect in teacher 
education (Nolan, 2012) – but that, in other educational contexts, enacting recommended practice 
may do so (Alexander, 2008). 

In England, over the last three decades, neo-liberalism has been successful in colonising educational 
discourse to such an extent that we are left with just “the rubble of words” (Berger, 2016, p. 7)1. It 
becomes almost impossible to think outside neo-liberalism’s world view and, therefore, to think how 
things could be otherwise (Llewellyn, 2017): Our human priorities have been “systematically 
sprayed, not with pesticides, but with ethicides – agents that kill ethics and therefore any notion of … 
justice” (Berger, 2016, p. 83). Education has been marketised as a consumer good and no longer 
understood as a moral enterprise, leading to relentless managerial auditing ruthlessly imposed and 
internalised by practitioners who have to constantly remake themselves as neo-liberal individuals 
(Povey, Adams, & Everley, 2017). I argue that offering the experience of countervailing ways of 
being in the world (often momentarily) can open up other ways of thinking about and acting in the 

                                                 
1 Space allows for only a brief statement of these ideas here and in the next paragraph. See Povey & Adams (2018) for a 
fuller argument. 
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world: “Revolutions are about little things. Little things which happen to you all the time, every day, 
wherever you go, all your life” (Rowbotham, 2000, p. 211). Routine preservice classroom practices 
are part of this everydayness. 

In this study, I largely bracket, for the time being, whilst accepting them as always already essential 
for critique, a set of difficulties and dilemmas present in any critical engagement in socio-political 
mathematics education research. In capitalist societies, inequity and exclusion are consubstantial with 
the acts of teaching and learning mathematics (Pais, 2017). Mathematics itself creates pernicious 
collateral damage (summarised in Povey & Adams, 2018, and developed in some detail in Ernest, 
2016, and Skovsmose, 2016). Nevertheless, as well as critiquing existing patterns of inequality, I 
intend my research and writing to contribute to the struggle for a more just, democratic and socialist 
mathematics education, to enable us to act in the world, however necessarily unstable and temporary 
that positioning and analysis may be. My project is an activist one, not functioning as we are supposed 
to do as researchers (Straehler-Pohl, Pais, & Bohlmann, 2017, p. 13) but otherwise and utopian in 
seeking to catch an occasional, penumbrian glimpse of “the speculative could” (p. 3). 

This paper asks: Can teacher educators, by enacting the approach considered here, open up 
possibilities for their students to engage more deeply with (and therefore perhaps adopt) such 
practices and the attendant commitment to social justice? Neo-liberal discourses regulate practices 
(Nolan, 2012), reproduce existing class relations and valorising being “strong and selfish” (p. 210). 
Can we enable our students to reassert in education a moral landscape of autonomy and trust 
(Stronach, Corbin, McNamara, Stark, & Warne, 2002, p. 130), an interpersonal enterprise 
contributing to understanding how we should live and challenging hegemonic neo-liberalism? 

My practice 
There is a categorical difficulty in trying to represent practice given its “dense, continuous, expressive 
nature” (Coldron, 2013, np.). Practice, a set of “socially produced, culturally constructed activities” 
(Holland, Lachicottee, Skinner, & Cain, 1998, p. 41), can probably only be properly conveyed by the 
practice itself. Nevertheless, it is expressed and mediated by spoken discourse, materiality and 
embodied practices: It is opened by and entered through artefacts (Holland et al., 1998, p. 251) which 
assume and express intentionality. In this case, the mediating artefacts include: 

· my language and the implicit and explicit rules I set up for classroom talk – for example, 
discussing and disallowing talk about people as ‘clever’ or ‘able’ or, including about oneself, as 
‘useless’, ‘thick’ or ‘stupid’, encouraging talk which is collective, supportive and reciprocal; 
welcoming mistakes and queries as prompts for thinking rather than worrying about being wrong; 

· the physical space for studying – for example, preparing the room with mathematical posters and 
frequently taking in eye catching and intriguing objects to promote inter-cultural respect and the 
awareness of possibilities of communicating mathematics outside a common vernacular; arranging 
tables in groups of about six; 

· promoting collaboration across the whole class – for example, putting students in heterogeneous 
groups chosen by me; restructuring each time a new topic is introduced; discussing my research-
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evidenced conviction that this supports building a learning community; requiring that everybody 
in a table group must understand before the group moves on; 

· questions or other responses where answers might be expected - for example, developing a sense 
of themselves as being sources of authoritative knowing when they look to me for conventional 
'help' and it is not forthcoming and offering instead, say, 'Can you apply that reasoning to this 
one?', 'How does what he is saying connect with what we were discussing last week?', 'You two 
don't agree - excellent - an opportunity for mathematical argument!' 

· the tasks set - for example, ensuring that they are group-worthy; adapting the curriculum according 
to students' responses; 

· the pattern of attendance - for example, making some sessions explicitly optional and others 
justified as essential, required for honouring and contributing to the learning community; allowing 
extended periods for an enquiry; 

· the physical objects used - large, colourful physical models, shared task recording sheets, cards to 
be flexibly sorted and organised rather than static texts, erasable short-term responses to group 
questions; 

· characteristics of the final assessment - for example, open book where students can take in 
anything except things that connect with the internet; more marks available than needed so that 
any work submitted can be rewarded.2 

For almost all of the students, the effect of these mediating practices in mathematics education is “a 
totally new experience” (interview data).  

The study 
This action research case study offers a “serious example” (Skovsmose, 1994, p. 9) of practice, that 
bundling together of “co-dependent (mutually constitutive) sayings, doings, understandings, physical 
arrangements, purposes, feelings, roles and identities” (Coldron, 2013, np.). It is framed within my 
“living education theory” (Whitehead, 1989, p.41), undertaking research as thoughtful practice. I have 
been teaching very similar mathematical content with very similar intentions to very similar students 
for many years and the theory which guides my practice has become embodied and enacted with 
increasing complexity over time. McNiff and Whitehead (2010) describe the process thus: 

Because you are a living person, you are changing every day; and because you are reflecting 
consciously on what you are doing, and making adjustments as you go, your theory is also 
developing with you. Your theory is part of your thinking and living, which is continuously 
transforming. So your theory, as part of your own thinking, is living… In living educational 
theories the explanations are produced … in the practice of enquiries of the kind, ‘How do I 
improve what I am doing?’. (pp. 252–253) 

                                                 
2 For much greater detail and exemplars see Povey (2017). 
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I used interview data from students to explore their experience of and reaction to my practice. The 
participants were from a class of 40 who were following an undergraduate pure mathematics module 
comprising a third of their final year study taught within a mathematics education centre by staff who 
had been school teachers (Povey & Angier, 2007). 

The group interviews, each of which lasted about an hour, were conducted by a researcher unknown 
to the participants using a very open, semi-structured protocol. I explained the purpose of the enquiry 
in writing, making it clear that they were under no obligation to take part and could withdraw from 
the study at any time. I assured them that all data would be reported anonymously unless they 
specifically requested otherwise. I guaranteed that the data would not be viewed by me until I had 
finished teaching and assessing them, hoping in this way to address the ethical issues involved. 
Everyone in the class agreed to be interviewed but logistical constraints during a pressurised time of 
year meant that only eighteen ended up being able to participate. Overall, the groups were 
heterogeneous and not composed of friendship subgroups from the class. 

The interviews were all transcribed by an independent transcriber (with occasional editing for clarity 
and brevity). The initial analysis, despite being careful and systematic, was iterative and somewhat 
‘messy’. I worked with the transcription texts, reading and re-reading them many times, tentatively 
extracting what seemed to me to be interesting and coherent passages of dialogue. I printed each of 
these onto a separate sheet of paper and physically grouped, de-grouped and re-grouped the sheets, 
searching them and annotating emergent themes. I did not identify the individual participants in the 
transcripts at this stage in order to gain a little distance from the texts. I then listened to all the tape 
recordings more than twice, attempting “radical listening” (Clough & Nutbrown, 2012, p. 99), 
immersing myself in the full data set to gain a sense of how the emerging themes were, or were not, 
grounded in the data. I then repeated the initial process of working with the transcripts, checking out 
and supplementing the existing themes and looking for new ones. No new themes emerged but some 
were modified and/or enriched. Finally, I referred to my record of which students had participated in 
which group interview and listened carefully to the tapes for a final time in order to identify the 
participants in the extracted passages. 

Analysis 
The interviews were cultural spaces where the students, through improvisation, articulated an 
understanding of their experiences of the module. In analysing them, I asked to what extent and in 
what way (i) my “living theory” was visible to them and (ii) they were willing to experiment with 
embracing aspects of it in their sense of who they were becoming. All but one suggested some such 
identification. After interrogating the data, I identified a number of themes which there is no space 
here to discuss. Rather, I present extracts from the data which link to just one aspect of working for 
social justice in and through mathematics education, that of experiencing solidarity. 

Solidarity involves challenging the discourse of ‘ability’ (Marks, 2013) and destabilising attendant 
hierarchies, offering equal value and equal respect towards each other. 

Anna: I think we’re all on kind of a level as well. Like we all have obviously our strengths 
and weaknesses in certain areas, but they’re all different so we can actually get that 
collaborative kind of thing that everyone’s talking about. 
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Matt: There’s one example where the vast majority of all the groups thought one 
particular answer was correct and then one person disagreed and that person was 
the one that got it right… that’s kind of a bit of an indicator… It’s not the fact that 
95% have got it wrong. It’s the fact that one person got it… it’s almost like reverse 
psychology... instead of feeling left out because you’re the one that hasn’t got it 
right, it’s like everybody else thought ‘we can do it as well’ …Does anyone know 
what I’m trying to say there? 

Rach: … Because you’ve got a group mentality you sort of think ‘One of us has got it so 
between us we’ve managed it and with a little bit of work it’s not out of reach for 
us all’. 

Developing links in a learning community expressed metaphorically as being a family (comp. Angier 
& Povey, 1999) becomes a shared preference and brings pleasure: 

Anna: It encourages a different way of working… you don’t get the chance to work in a 
group very often normally for maths. It’s seen as a very solitary subject, but I think 
it makes it a lot more interesting and a lot more enjoyable when you can sit and 
work with people on a subject and on a problem particularly. 

Will: I do like it a lot better …It’s more like a little family, ain’t it? 

Rach: There’s a lot of us who will come into uni when we haven’t got set lectures… 
because we want to sit and work as a group of us rather than sitting at home doing 
the work… 

Int: Would you have done that before? 

Rs: [several] No, no never. 

They appreciated that the nature of their tasks supported this. These group-worthy tasks and the 
discourse of collaboration are used by the students to position themselves as agentic in the face of 
doubt or difficulty. Such a sense of agency and authority has been found to be a central characteristic 
of those mathematics teachers who were able to interrogate taken-for-granted practices in schooling 
and work for progressive change (Povey, 1997). The approach to answers plays a part in developing 
their shared conviction and authority. 

Dora: I think a lot of the tasks though because they’re quite open-ended, it’s not stuff you 
can do individually. You have to do it with other people’s inputs, so you’re using 
other people’s ability… at first it got us kind of gelling together and then we just 
naturally did it afterwards. 

Sally: I think it’s a lot more open to ask questions… 

Beth: Yeah, I think it definitely encouraged me to keep going with problems when I’ve 
been stuck… when you’re in a group and you see that other people have understood 
it, you know that it is possible and it just pushes you to keep going that bit further. 
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Julia: She asks us to convince each other what the right answer is… she rarely actually 
gives us answers. You know, we have to work to the answers between us until we’re 
all happy that we have got the answer… 

Dora: I feel it almost takes away that kind of elitist side of maths where somebody’ll be 
like ‘I have the answer. You don’t have the answer’, because it doesn’t particularly 
work like that because we’ve all been discussing. Nobody really knows who’s got 
what, but we’ve all gained. 

Working together and supporting each other is expressed through an ethic of caring (Collins, 2000) 
where the experience of being left behind is turned around to be an opportunity to demonstrate 
solidarity with each other. 

Sue: I think maybe if everyone on the table understands it and… [you’re the one] left 
behind… I’m not always the one [laughter and cross talking]… times like that it’s 
not fantastic, but it’s very rare that actually happens anyway because everyone tends 
to help everyone in our group. 

Sally: … there’s always somebody in the group… they’ll go through it again and again if 
need be and I’ve been in the situation where I’ve understood something and 
somebody else hasn’t and they’ve been getting a bit stressed out and I’ve been able 
to explain to them, like taking it back a step and going through things. 

Rach: Yeah, people are very good at giving you the time if they can see something’s 
bothering you… helping you through… getting everybody to the same level before 
everyone moves on. 

Conclusion 
In order for hegemony to be questioned, students have to be able to gain a critical and reflective 
distance from the taken-for-granted. This cannot be accomplished without theoretical engagement 
with the workings of power and our own complicity in perpetuating and reproducing hegemonic 
discursive practices (Nolan, 2012). Here, however, I have foregrounded the significance also of 
experience in shaping our understanding of what it is possible to be and to do, of who we are and who 
we might become and of how we might act in and on the world. This springs from a conviction that 
inhabiting “potentiary” (Holland et al., 1998, p. 250) imaginative spaces defies the corruption of the 
capacity for hope that neo-liberalism engenders (Berger, 2007). 

The interview data suggest that the students distanced themselves from neo-liberal discourses and 
experimented with other ways of constructing themselves and others, enacting new selves-in-practice, 
engaged, confident, authoritative, agentic and participatory selves, selves which allow for a 
commitment to social justice. Mathematics is par excellence the discipline that is used to separate 
learners from each other, to valorise individuals, to rank them and to place them in hierarchies in 
order to justify fundamental inequalities as appropriate and merited. In addition, it epitomises a 
separated, de-personalised, moral-free epistemology. Combatting these ways of using and 
understanding mathematics with the experience of solidarity – challenging ‘ability’ hierarchies, 
experiencing pleasure and caring within a learning community and developing agency and both 
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personal and shared epistemological authority – has the potential to support the fight for social justice 
in mathematics education. 
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The student’s perspective on school mathematics – a case study   
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This paper is based on a long-term case study of students’ experiences of reform mathematics 
classrooms in Finland. Specifically, it focuses on emerging school mathematical actions and 
activities experienced by three committed and engaged students. Students described their experiences 
in interviews during and ten years after lower secondary school. The paper asks why taking part in 
certain practices makes some students learn to like and others to dislike school mathematics, despite 
high attainment concerning reform-related objectives on achievement and responsibility. The case 
study showed the importance of making classrooms places where all students belong to communities 
in which mathematical knowledge is negotiated. 

Keywords: Habits of the mathematics classroom, long-term case study, spaces for participation, 
student perspective. 

Introduction 
In mathematics education, it is challenging to develop classroom cultures in which students maintain 
positive relationships towards mathematics after their first school years (Sullivan, Tobias, & 
McDonough, 2006). Although Finnish students have performed well in mathematics in international 
comparisons, especially in the Programme for International Student Assessment (PISA), many 
Finnish students’ attitudes, self-confidence and engagement are poor in comparison to other 
countries. Based on PISA 2003, Viking Brunell (2007) found that only one third of the students in 
Swedish-speaking classrooms in Finland looked forward to mathematics lessons, and one half did not 
express any interest in mathematics whatsoever. Later, the 2015 Trends in International Mathematics 
and Science Study showed that Grade 4 Finnish students had a less positive attitude towards school 
mathematics than those in other European countries (Mullis, Martin, Foy, & Hooper, 2016). This was 
especially the case with girls, who chose to invest in subjects other than mathematics quite early on 
(Metsämuuronen, 2017). While much research has confirmed some students’ negative relationship 
with mathematics (cf. Brunell, 2007; Lewis, 2016), very few studies have focused on why engaged 
and committed students develop negative attitudes and abandon mathematics by neglecting to study 
advanced courses in the subject at upper secondary level. The aim of this paper was to contribute to 
our understanding of the reasons behind these choices. 

For some decades, attempts have been made in many countries to improve/reform school mathematics 
to make it more meaningful for all students (Fennema & Scott Nelson, 1997). This has also been the 
case in Finland. This paper was situated in a reform context in a Swedish-speaking lower secondary 
school in Finland. The reform emerged in connection with a three-year action research project that 
focused on learning processes and assessment, especially those involving problem-solving and 
investigative project work. The national core curriculum declared that solving problems and attending 
to the internal logic of mathematics were the two most important principles for mathematics teaching 
(Finnish National Board of Education, 1994). By probing and assessing the mathematical thinking of 
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students, teachers wanted to encourage the discovery of useful and viable mathematical ideas that 
they described as ‘active’ knowledge and to support individual students’ emerging sense of control 
over and responsibility for learning to a greater degree than was possible through ‘ordinary’ 
classroom practices.  

Few studies have investigated school mathematics from students’ perspectives, and we have not come 
across any studies that involved students as legitimate participants in an interpretive research 
methodology that relates to teachers’ reform work during lower secondary school and beyond. In the 
doctoral study on which this paper was based (Röj-Lindberg, 2017), participating students were 
interviewed several times from the age of 13 to approximately 25. In this paper, we aimed to answer 
the following question, “Why do some committed and engaged students develop a negative identity 
concerning mathematics during lower secondary school?” 

School mathematics from the student’s perspective  
About thirty years ago, Alan Schoenfeld (1988) argued that school mathematics might unintentionally 
produce “disasters” even though most actions and activities in mathematics classrooms proceed as 
envisaged by teachers in terms of the curriculum and teaching practices. As a result of his inquiry, 
Schoenfeld called for broad research agendas that should aim “to understand the world from the 
student’s point of view” (p. 165). His message was that if learning could be perceived as much more 
than what can be inferred from observing students in classrooms, including their mathematical 
performance, different forms of assessments, and so on, then the voices of students really should start 
to matter in school mathematics and educational research. Since then, the same type of request has 
been formulated repeatedly both outside and within mathematics education (Berinderjeet, Anthony, 
Ohtani, & Clarke, 2013).  

Jo Boaler (2003) defined classroom practices as the recurrent activities and norms that develop in 
classrooms over time. We argue here that even if researchers are strongly focused on changing 
classroom practices, they have tended to apply a top-down perspective, looking at students and 
processes of learning from the outside. Classroom practices have been studied in isolation from 
students themselves, though they have been conceptualized as methods of teaching1 that provide a 
social context that influences and allows the experiences and expectations of students. From an 
observer’s perspective in a classroom, it may be possible to describe and conceptualize regularities 
within observable actions and activities. But such a stance does not take into account the notion that 
activities and actions in the classroom are complex when seen from the perspectives of students who 
are the immediate participants.  

Here, we have taken reflexivity as a premise of the research and argue that students’ accounts of what 
happens or is expected to happen in mathematics classrooms are socio-cultural in their very nature. 
We have accepted that social situatedness should be taken as a premise when students’ perspectives 
are the focus of interest. Whatever else might be innate, students’ expectations concerning school 

                                                 
1 In the literature, teaching methods have been described in different ways, for instance, as open, progressive, traditional, 
constructivist and discussion oriented. 
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mathematics are not; these are formed over the years, largely through students’ interactions with their 
parents, peer group and teachers. Based on such a premise, we interpreted the experiential accounts 
given by students in interviews as having a social and cultural origin. Interpretations can be created 
through “zooming in” (Lerman, 1998) on the complex territory of classroom practices through 
accounts given by students and by looking at classroom actions and activities through students’ 
‘eyes’. On the other hand, one must “zoom out” to view individual students’ experiential accounts 
without losing contact with the actions and activities that constitute school mathematics in their 
individual classrooms.  

The study was embedded in social practice theory and focused specifically on students’ alignment 
and their development of identities and imagination in relation to classroom practices in which they 
took part. Learning was defined as increasing participation in classroom practices, which were 
understood as social processes where meanings are negotiated and students become or avoid 
becoming persons for whom mathematics is important (Wenger, 1998). 

Methodology 
This paper was based on a case study (Röj-Lindberg, 2017) within the context of teacher-initiated 
action research and reform work. The main case record material (see Bassey, 1999) was semi-
structured interviews with four to five students from each reform classroom, in total 120 interviews 
with 27 students. Four to five interviews were done with each of them during the three lower 
secondary school years. Students were asked to describe and comment on their experiences of school 
mathematics, including their wishes and expectations, for instance, in relation to recent mathematics 
lessons. Students were also probed about their views on problem-solving activities and other reform-
related activities, for instance, on being asked to explain one’s thinking publicly. Interviews with 
three committed and engaged classmates, Joakim (male), Kristina and Nette (females), were selected 
for further analysis for the case study. These three students, who had experienced the same classroom 
context, were also invited to look back on their experiences as adults. Adult interviews were 
conducted when the three students had finished university and focused not only on lower secondary 
school classroom practices but also on mathematical practices more widely. The first author’s 
preliminary interpretations of the lower secondary school interviews were used as inputs in the adult 
interviews, which were conducted to deepen the researcher’s understanding of school mathematics 
from a student’s point of view, not for fact-finding.  

The analysis of the interviews, which were conducted in Swedish, was first inductive and then 
deepened through holistic interpretations of each interview (see Merriam & Tisdell, 2016). The 
researcher’s responsiveness to emic issues appearing in students’ accounts was high. Important emic 
issues were structure and closure emerging from the lower secondary school interviews and 
experiences of identity work from the adult interviews (see Röj-Lindberg, 2011, 2015). Emic issues 
were theoretically connected to Wenger’s social practice theories. In the final analysis, they were 
connected to other theoretical constructs from this theory, such as communities of practice (applied 
to school mathematics), negotiation of meaning, modes of belonging and students’ trajectories within 
a specific practice. These were applied during the interpretation of interview accounts. It is beyond 
the scope of this paper to give a thorough explanation of the use of these constructs. It is also 
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impossible to give an exhaustive account of the extent to which the reform influenced activities in the 
classrooms (for detailed information, see Röj-Lindberg, 2017). Yet, when presenting the results we 
connected the issues brought forth by students to relevant classroom events. The quotes have been 
translated into English by the first author. Results presented here do not intend to generalise but to 
understand school mathematics as it emerged in one reform classroom from students’ perspectives. 

Results 
In the following section, we have introduced the students, Joakim, Kristina and Nette, and their 
trajectories (Wenger, 1998) in mathematical practices. Next, we have reported two reasons that we 
claim to be of crucial importance to students who make negative choices concerning the role of 
mathematics in their lives. These reasons are neither mutually exclusive nor exhaustive. They are 
more like what can be seen in a kaleidoscope; each turn gives a new view of school mathematics from 
the student’s perspective.  

Student trajectories 

As newcomers in the seventh grade, Joakim, Kristina and Nette were highly engaged students. Nette’s 
engagement clearly related to an imagined future as a veterinarian, while Joakim and Kristina were 
generally confident about the significance of learning mathematics. During lower secondary school, 
they were responsible students who were evaluated by the teacher as skilful/capable in different types 
of assessment. They wanted to take part in actions and activities in school mathematics communities, 
and they appreciated the problem-solving activities that were introduced within the reform. In short, 
we can describe them as successful students who expressed strong alignments in relation to reform 
objectives. Nevertheless, their trajectories and identifications related to school mathematics were 
constituted very differently over the following school years, which strongly affected their futures. 
Joakim’s trajectory continued to be structured by positive choices concerning mathematics. He passed 
the advanced mathematics courses he had selected in upper secondary school2 with success and chose 
a mathematics-intensive university program to obtain a MSc in engineering. The trajectories of 
Kristina and Nette differed significantly from Joakim’s. Both of them chose basic mathematics 
courses at secondary level and neither of them chose university programs that included mathematics. 
Nette’s dream of becoming a veterinarian turned into a claim that mathematics was not for her, and 
she chose a university program in psychology. Kristina described school mathematics as a more or 
less alienating experience, but in contrast to Nette, she continued to be very accepting. However, she 
dropped her plan of studying science, because she did not want to align with the workings of the 
mathematics classrooms she had experienced in school. Instead, she chose a university program in 
pedagogy. 

The dominant habits of the mathematics classroom  

From a student perspective, the actions and activities in a mathematics classroom are complex. A 
characteristic that supports participation in the case of a student at one moment in time might not be 

                                                 
2 The upper secondary mathematics curriculum is divided into basic and advanced level courses. Only students who select 
advanced courses must take mathematics in the matriculation examination. 
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supportive for all students and might not continue to be supportive for that student over time. 
However, our analysis of students’ interview accounts showed recurrent patterns in mathematics 
classrooms that we described as dominant habits. As the space of the paper does not allow us to 
thoroughly account for all habits, we have chosen those that most likely led to the development of 
non-participation (Wenger, 1998) of Kristina and Nette in the long run. Two dominant habits that 
appeared in all student interviews in the case study were as follows:  

(1) The “all-look-alike” structure of lessons, which contributed to the sense that mathematics was a 
monotonous subject and led to a kind of meaninglessness for students who did not accept non-
participation as an adventure (see the work of imagination, Wenger, 1998, pp. 185–186):  

All lessons look alike, we have theory and write down the things we are doing. The teacher asks 
different things. Then, we may count at our own pace from the book. The last lesson we did x 
times x and such. (Nette, Grade 7) 

I don’t think there have been any changes. It just continues from year seven to year eight and then, 
to year nine. In my opinion, nothing has changed. It has been fairly similar all the time. Of course, 
they follow and teach by the book. (Nette, Grade 9) 

(2) The general mode of working individually during lessons, which meant that students were mostly 
left by themselves to struggle for coherence regarding mathematical structures. Hence, there were 
limited opportunities to develop a sense of belonging to any community where mathematical 
knowledge was negotiated in the classroom: 

We do work alone all of us. It is like that anyhow, the teacher has to come to everybody, so it is 
the fastest way to ask the one you sit next to, so you talk to everybody. (Kristina, Grade 9) 

Joakim continued to take part in communities that included the teacher and students he described as 
“smart”. Moreover, the support he received from his teacher reminded him repeatedly of his 
membership in communities of mathematically-able people. 

The textbook continued to be the main pedagogical artefact during the reform, and teachers continued 
to structure the tempo of student learning with the textbook. The habit of working alone with textbook 
tasks may have added to some students’ sense of enjoyment. But as Kristina stated, the positive effect 
emerged only “when you succeed and keep up with new things”. In the long run, both Kristina and 
Nette expressed a sense of not keeping up with the tempo. Hence, the way the textbook was used in 
the classroom may have contributed to their developing identities of non-participation.  

All students who took part in the case study welcomed reform-related activities, such as investigative 
project work, which “did show a little what mathematics can be”, as Joakim stated as an adult. 
However, some students considered investigative project work to have a marginal role in their 
learning of mathematics even if their accounts clearly described the opposite:  

You learn things that don’t have so much to do with mathematics. I did learn about unemployment 
rates in Finland. But this has nothing to do with mathematics. I think that I haven’t learned anything 
that has to with mathematics. I mean, like what we are doing in the book for (math) theory. I don’t 
learn in that way when I do investigative work. (Kristina, Grade 9) 
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In general, reform-related activities had the potential to increase participation for all students. Yet, as 
the extract above shows, students did not always see the connection between these activities and their 
development of mathematical knowledge. Therefore, the activities did not necessarily enhance 
students’ participation.  
The character of spaces for participation in classroom practices  

We defined learning as increasing participation in classroom practices. Thus, it is natural to consider 
the character of mathematical spaces where meanings were negotiated in the classroom (Wenger, 
1998). We have attended here to the most obvious characteristics that seem to have contributed to 
some students becoming persons for whom mathematics was not important.  

The most important aspect was that “right or wrong” classroom practices limited the possibilities for 
constructing mathematical knowledge for all students. Nette succinctly captured this aspect and her 
perspective on one of its side effects, which was that questioning might be interpreted by the teacher 
as a lack of responsibility for learning and not as comments from students striving for understanding: 

You cannot dispute lower secondary school mathematics, because it is right-or-wrong 
mathematics. If you start questioning it, the teacher thinks you are trying to escape. (Nette, adult) 

Within “right-or-wrong” practices, there was little room for social, playful and investigative 
mathematics. Aligning to the practice meant individually struggling for coherence and understanding 
by listening to the teacher. The struggle for understanding was accompanied by feelings of insecurity, 
because the act of giving a wrong answer in public was shameful.  

When students are supposed to answer in public, I get fairly nervous. I think what if I give the 
wrong answer. (Nette, Grade 7)  

You have to listen all the time to what the teacher is saying and you get so tired. As soon as you 
talk just a little bit with your friend then it goes, oh, now I do not understand anything again. It is 
rather strenuous. You should have a better ability to concentrate. (Kristina, Grade 9) 

Reaching the right answers rapidly was, from the students’ perspective, a sign of understanding and 
often meant immediate rewards, such as praise from the teacher or not being constrained by 
homework. The case study showed that tentativeness, wrong answers, misinterpretations or extended 
interpretations of textbook tasks were not considered by students to be characteristics of a space where 
every student could belong and participate. For some students such as Nette and Kristina, this 
situation contributed to the development of negative identifications towards mathematics, which 
strongly affected their futures.  

Discussion 
We argue that a main concern for reforms in mathematics education should be a critical focus on the 
reality of the classroom, which from students’ perspectives is even more complex than interviews can 
reveal (see Berinderjeet et al., 2013). Also, dimensions that extend the classroom level had an impact 
on students’ relationship to mathematics. According to Gregg (1995), reformers should encourage 
teachers to think in new ways by implementing new ‘idioms’ into their stories and explanations. This 
is, however, exactly what teachers who were involved in this case study did; they were supported by 
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the scholarly community to integrate new idioms based on constructivism (see, for example, Black 
& Atkins, 1996) into their talk about classroom practices. Idioms such as active learning, discovery 
processes and responsibility for knowledge construction were strongly present when teachers talked 
about reforming their practice. Yet, they did not oppose the epistemological hegemony of academe 
by asking, “What if we lift our gaze from the student as a ‘constructing individual’ to zoom out and 
include the ‘socio-cultural whole of the student and ourselves?’” They attended to the practice-in-
individual but not to the individual-in-practice (Lerman, 1998). The latter perspective confronts us 
with the question “What is the nature of school mathematics practices in which all students should 
become qualified in order to develop positive identifications and to enhance the role of mathematics 
in their lives?” This question must be the starting point whenever we want new curriculum ideas to 
change classroom culture in a direction that makes participation an inclusive experience for as many 
students as possible. This is an issue to which hardly any research attends.  

Several factors interacting in a complex manner influence students’ choices and relationships to 
mathematics, and, therefore, it is valuable to explore some cases deeply to understand them. In this 
study, Wenger’s (1998) theoretical constructs proved fruitful for revealing hidden regularities behind 
the development of students’ negative identifications concerning mathematics. According to Wenger, 
learning is so much more than gaining skills and knowledge, it is a process of becoming that 
transforms both who the learner is and what the learner can do (p. 215). Concerning the results 
presented here, this a very strong statement. When students, regardless of gender or school 
mathematical practices, learn disengagement (e.g., Sullivan, Tobias, & McDonough, 2006) or 
explicitly refuse mathematics in school (e.g., Chronaki & Kollosche, 2019), their lives as adults, and 
especially their possibilities to partake in the working life, might be diminished.  

References 

Bassey, M. (1999). Case study research. Maidenhead: Open University Press. 

Berinderjeet, K., Anthony, G., Ohtani, M., & Clarke, D. (2013). Student voice in mathematics 
classrooms around the world. Rotterdam: Sense Publishers. 

Black, P., & Atkin, J. M. (Eds.). (1996). Changing the subject. Innovations in science, mathematics 
and technology education. London: Routledge. 

Boaler, J. (2003). Studying and capturing the complexity of practice: the case of the dance of agency. 
In N. Pateman, B. Dougherty, & J. Zillox (Eds.), Proceedings of the. 27th Conference of the 
International Group for the Psychology of Mathematics Education, (Vol. 1, pp. 3–16). Honolulu: 
Center for Research and Development Group, University of Hawaii. 

Brunell, V. (2007). Klimat och resultat i den finlandssvenska grundskolan: En fördjupad analys av 
PISA 2003 [Climate and achievement in the Finland-Swedish comprehensive school: An in-depth 
study of PISA 2003]. Helsingfors: Svenska Kulturfonden.  

Chronaki, A., & Kollosche, D. (2019). Refusing mathematics: A discourse theory approach on the 
politics of identity work. ZDM Mathematics Education. https://doi.org/10.1007/s11858-019-01028-w 

Fennema, E., & Scott Nelson, B. (Eds.). (1997). Mathematics teachers in transition. Mahwah: 
Lawrence Erlbaum. 

Thematic Working Group 10

Proceedings of CERME11 1968



 

 

Finnish National Board of Education. (1994). National core curriculum for comprehensive school. 
Helsinki: Finnish National Board of Education. 

Gregg, J. (1995). The tensions and contradictions of the school mathematics tradition. Journal for 
Research in Mathematics Education, 26(5), 442–465. 

Lerman, S. (1998). A moment in the zoom of a lens: Towards a discursive psychology of mathematics 
teaching and learning. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 66–81). 
Stellenbosch: University of Stellenbosch. 

Lewis, G. (2016). Disaffection with school mathematics. Rotterdam: Sense Publishers. 

Merriam, S., & Tisdell, E. (2016). Qualitative research. San Francisco: Jossey-Bass. 

Metsämuuronen, J. (2017). Oppia ikä kaikki: Matemaattinen osaaminen toisen asteen koulutuksen 
lopussa 2015 [Lifelong learning: Mathematical knowing at the end of secondary level 2015]. 
Tampere: Painatus Juvenes Print. 

Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in 
mathematics. Retrieved from http://timssandpirls.bc.edu/timss2015/international-results/ 

Röj-Lindberg, A.-S. (2011). Structure and closure of school mathematical practice: The experiences 
of Kristina. Philosophy of Mathematics Education Journal, 26. 

Röj-Lindberg, A.-S. (2015). School mathematical practices as experiences of identity work: The 
learning journeys of three students. Nordic Studies in Mathematics Education, 20(2), 5–26. 

Röj-Lindberg, A.-S. (2017). Skolmatematisk praktik i förändring: En fallstudie [School mathematical 
practice in the process of change: A case study] (Doctoral dissertation). Åbo Akademi University, 
Åbo, Finland. Retrieved from http://urn.fi/URN:ISBN 978-952-12-3618-1. 

Schoenfeld, A. (1988). When good teaching leads to bad results: The disasters of “well-taught” 
mathematics courses. Educational Psychologist, 23(2), 145–166. 

Sullivan, P., Tobias, S., & McDonough, A. (2006). Perhaps the decision of some students not to 
engage in learning mathematics in school is deliberate. Educational Studies in Mathematics, 62(1), 
81–99. 

Wenger, E. (1998). Communities of practice. Cambridge: Cambridge University Press. 

Thematic Working Group 10

Proceedings of CERME11 1969



 

 

Agency and identity of female Arab students entering a technological 
university 

Soryna Sabbah1 and Einat Heyd-Metzuyanim2 
1Technion, Israel Institute of Technology, Israel; sorynas86@gmail.com 
2Technion, Israel Institute of Technology, Israel;  einat.metz@gmail.com 

This report studies the progression of cultural and mathematical identities of female Arab students 
during their first semester of engineering studies in a technological university in Israel. The report 
focuses on the cases of two students, Mira and Lena, who demonstrated remarkably different 
trajectories of identity development. Data was analyzed by closely examining narratives in students’ 
Space of Authorship related to gender and ethnicity. Findings show that Mira’s Space of Authorship 
included multiple narratives relating to ethnic and religious conflicts, upon which Mira enacted 
agency by debating and choosing specific courses of action both in social life and in mathematics 
learning. In contrast, Lena’s Space of Authorship drew upon psychological discourse to explain her 
difficulties in ways that did not afford her agency to act back on the challenges she was facing.  

Keywords: Agency, identity, gender, Arab students, undergraduate education  

Introduction and theoretical framework 
The Arab minority in Israel is an involuntary minority (dependent on their collective identities in 
relation to the dominant group) (Flum & Kaplan, 2016) which consist of 20.5% of the general 
population. There are long standing tensions between the Jewish majority and the Arab minority in 
Israel, which have encouraged geographical, political and social separation between them (Flum & 
Kaplan, 2016; Kaplan, Abu-Sa’ad, & Yonah, 2001). This separation also exists in the education 
system, where the K-12 education systems of the two populations are completely separated. Thus, 
universities are usually the first multicultural encounter between Arab and Jewish students. University 
courses are taught in Hebrew, while in school Arab students study mostly in Arabic. In addition, Arab 
students have multiple challenges connected with their minority status and the political and ethnic 
conflicts it entails. For female students, these are compounded by difficulties relating to changing 
gender roles in this relatively traditional society (Arar & Masry-Herzalah, 2014). As female students 
enter the predominantly Jewish university, they are exposed to social narratives that question their 
ability to succeed (similar to Jewish female students). Yet, for Arab females, university studies are 
often the first occasion to leave their home-village and be exposed to Western, secular culture. This 
is a transition that often causes “culture shock” (Arar & Haj-Yahia, 2016). 

The report is a part of a large study whose goal was to explore the process that Arab female students’ 
identities undergo through their entry into a predominantly Jewish university, both in relation to these 
students’ academic and mathematical learning, and in relation to their sense of ethnic and cultural 
belonging. Data shows high rates of failure of this particular minority on entry-level mathematics 
courses at the Technion. We employ a socio-cultural lens on the activity of mathematics learning to 
study the relation between cultural transitions and the development of a student’s mathematical and 
learning identity (Sfard & Prusak, 2005; Wenger, 1998). In particular, we rely on a sociocultural view 
of learning as becoming a participant in a certain community (Lave & Wenger, 1991; Sfard & Prusak, 
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2005). Communities are characterized by shared values, forms of action and interpretative schemes. 
These have been defined by Holland, Lachicotte, Skinner, and Cane (1998) as “figured worlds”, 
where a figured world is defined as “a socially and culturally constructed realm of interpretation in 
which particular characters and actors are recognized, significance is assigned to certain acts, and 
particular outcomes are valued by others” (p. 52). In the case of Arab students, the home, family and 
village figured world is extremely different from the predominantly Jewish, technological and 
western figured world of the university.  

In our work, we rely on Holland and colleagues’ (1998) concept of “space of authorship”, which links 
between figured worlds and the identity participants author for themselves within these figured 
worlds. Holland et al. point out that the space of authoring, in which people figure their identity, is 
always a contested space. We link these ideas with Sfard & Prusak’s (2005) definition of identity as 
a set of reifying, significant and endorsable narratives about a person. Space of authorship, for us, is 
the realm of narratives from which identity narratives are picked up, contested against and negotiated. 
Agency, defined by Holland and colleagues (1998) as “the realized capacity of people to act upon 
their world” (p. 42), is enacted through the orchestration “arranging the identifiable social 
discourses/practices that are one’s resources” and form his/her space of authorship (p. 272). Thus, the 
question of this study is: How do cultural and mathematical identities of female Arab students develop 
during the initial phase of their college level mathematics studies and in what ways do these students 
enact agency in relation to the narratives regarding ethnicity and gender in their space of authorship? 

Method 
The cases of Mira and Lena were taken from a larger study in which we followed 13 female Israeli 
Arab undergraduate students during their first semester at the Technion, a technological university in 
Israel. All of the participants were studying in either the Computer Science faculty or the Electrical 
Engineering faculty, where 40-50% of the courses taken in the first semester are mathematics courses 
(usually Calculus I and Algebra I), both of which are among the most coveted faculties in this institute 
and have very high entrance qualifications. The students’ ages ranged between 18 and 19.5 years. 
They were recruited voluntarily, during the first week of the semester, through an institutional 
mentoring project for Arab students in which senior students mentor the incoming students. Students 
were promised complete confidentiality and signed informed consent forms. The study was approved 
by the Institutional Review Board of the Technion.  

All the students were interviewed at the beginning and at the end of their first semester. Interviews 
were semi-structured and conducted by the first author in Arabic. They lasted between 30 and 90 
minutes. Students also completed two midterm diaries, which included answers to questions sent to 
them by email.  The final interview consisted of questions eliciting reflections about the past semester. 
In addition, students were requested to reflect upon and answer some of the questions from their final 
calculus exam. Data was analyzed using a combination of inductive and deductive codes (Saldana, 
2016). Inductive coding searched for recurring themes in students’ interviews. For example, a 
common conflict described by the students regarded social encounters, whether to “hang out” with 
certain people and with whom to study. Deductive codes were based on the theoretical orientation of 
figured worlds. In particular, we searched in the interviews’ transcripts for valued actions, valued 
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outcomes, significant actors and roles in the home vs. Technion figured worlds. The main themes 
arising in all the interviews in relation to conflicts between the home figured world and the Technion 
figured world related to narratives about ethnicity and gender. In relation to these conflicts, we 
searched for indications of agency both in the actions descried by participants (e.g., “I try to study 
hard”), or lack thereof (“I feel I am not focused” – with no mention of possible action to become 
focus). We also searched for agency in the manner in which interviewees spoke about the conflicts – 
as a given situation or as something that can be acted upon.  

Findings  
Mira and Lena were chosen for this report since they exemplified very different trajectories of 
acclimation to the figured world of the Technion. While Mira ended the first semester with passing 
grades and relative success, Lena failed several courses and was quite discontented with herself at the 
end of the semester. The different trajectories afforded opportunities to view and contrast different 
processes of change in identity narratives and the ways in which these changes drew upon certain 
spaces of authorship. We first explore the figured world of Mira and Lena, as seen through the 
collective narratives told by them. We pay attention here to what they say about gender/ethnicity and 
their positioning with relation to the conflicts they talk about. 

Mira’s stories about her family and village drew a figured world that is mono-ethnic and mono-
religious. She reported in her first interview that she was having trouble living in a multi-cultural 
environment. She also identified herself as a “non-social person by nature”, perhaps to minimize the 
potential conflicts that could arise as result of the multi-cultural environment at the Technion. Mira 
also reported being the first in her family to attend university and that she felt pressure from her 
family to succeed: 

I’m the first one [from my family] to ever attend a high academic institution. Everyone at home 
has expectations (from me) and that’s a bit stressful. (Mira, 1st interview)   

Positioning her academic skills in relation to her family seemed to be important to her:  

I have four older brothers and they were not strong at school, and a sister (who is) a year older 
than me. I’m better than her academically. She has not yet begun her academic studies. (Mira, 1st 
interview) 

Although Mira authored herself as “strong” academically, she confessed in her first interview that 
mathematics was not a subject she preferred: “to tell (you) the truth, I do not like mathematics”. Her 
goal was to study computer science and mathematics was seen only as a means towards that cause.  

Unlike her academic identity, which included narratives of relative strength and did not include many 
conflicts in its space of authorship, regarding her ethnic identity as an Arab student Mira’s space of 
authorship was much more conflictual. In the initial interview, Mira reported that she had not 
encountered people from other religions before she started studying at the Technion. Her first close 
encounter with someone of a different religion occurred when she entered the dorms:  

I live with a Christian student in the dorms; she is from a different religion. At first, I worried 
about the idea of living with her, because I am a Muslim and she is Christian. I was worried I 
would feel restricted and not able to behave freely. (Mira, 1st interview)  
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Mira’s justification of her worries as based on the fact that the student was “Christian” while she was 
“a Muslim” indicated that, in her space of authorship, the mere religious identity of a person could 
cause problems while living together and “not behaving freely”. Notably, the fact that the Christian 
student was also Arab was not mentioned but taken for granted, and the possibility of living with a 
Jewish student was not mentioned at all. Yet, like in many other instances, where Mira only reported 
about conflicts in retrospect, this encounter was already authored as resolved. She ended the story by: 

Later I discovered that if I give her the space to behave according to her beliefs and religion, she 
will give me back the same space I need. (Mira, 1st interview) 

Her agency in relation to this conflict could be seen in the actions she described (“give her space”) 
that resulted in what she needed (“the same space I need”). As the semester progressed, Mira 
repeatedly recounted encounters with students of other religions and gave them significance. 
Although Mira expressed an acceptance of students from different religions, her diary entries clarified 
that she was engaged with conflictual narratives around ethnicity and religion and that these were 
entering her space of authorship:  

Every day and all the time, I face differences. First, the atmosphere at the Technion is not like the 
atmosphere at home at all. Here everyone is independent and each person is responsible for himself 
and his own decisions. There are people from different places, different religion[s], different 
thoughts and different values and cultures. For example, I came from a village where everyone is 
Arab and we all belong to the same religion, whereas at the institute I meet people from all over 
the world and from different religions. I see people behaving in a way that goes against my values 
and that is a new atmosphere for me, I am constantly trying to stay on the side and not get involved 
with anyone. (Mira, 1st diary) 

Several issues relating to this excerpt are worth mentioning. First, Mira is explicitly talking about 
“differences” between the “Technion” and “home”. In other words, it is clear that she is constructing 
the two locations as different figured worlds. The differences mainly point to differences in relations 
between the individual and the social community (“here everyone is independent”), hinting that in 
her home figured world, people are interdependent and not responsible for their own decisions. The 
interdependence is linked in Mira’s words to the Arab ethnicity and to the religious homogeneity of 
her home village. Thus, it is clear from Mira’s words that she is able to locate the conflict, the values 
that are at stake, and her positionality with relation to this conflict. Notably, there are signs of agency 
in this story too. Mira writes about the conflict and immediately states her actions in relation to it (“I 
try to stay on the side and not get involved”). Later in the semester, this action of “staying on the 
side” seems to mature into a more nuanced positioning and identification of herself with relation to 
the “others”: 

I came from a traditional and relatively conservative family, where I grew up with values that I 
believe are correct. However, at the Technion, I encounter many people who behave against my 
beliefs, and it makes me feel that I am an extreme person or something like that. Yet I continue to 
believe in my tradition as they continue to believe in theirs. (Mira, 2nd diary)  

This excerpts hints at several processes that Mira underwent during the semester. First, there are 
beginnings of separation from “her beliefs”. Whereas these beliefs were stated in the first diary as 
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simply “her values” (“I see people behave against my values”), here, these beliefs are located in time 
and space (“I came from a traditional … family”, “I grew up with values”). Moreover, the statement 
about values “that I believe are correct” shows hints of voices that position these beliefs as 
“incorrect”. These voices are later located in people “who behave against my beliefs” and that, 
whether directly or indirectly, make Mira feel she is “an extreme person”. The taken-for-granted 
“beliefs” and “values” have thus been questioned and contested for Mira, and this has raised a conflict 
with regard to identity narratives concerning religion and ethnicity. In the face of these conflicts, Mira 
enacts agency in choosing to adhere to her home values.  

With relation to her mathematical identity, Mira reported finding her mathematics studies to be 
surprisingly satisfying. In her first diary, she wrote: 

The most interesting lecture in my weekly schedule is a Calculus lecture, because I learn 
mathematics differently… I learn how to learn mathematics, how to think outside the box and how 
to find ideas or solutions for different mathematics problems. It is a hard course but the lecturer is 
a wonderful person and he makes it an enjoyable course. (Mira, 1st diary) 

Her satisfaction with her mathematical studies continued throughout the semester despite hurdles and 
setbacks. In the last interview Mira reported failing in the first take of the calculus exam because of 
being “unprepared unlike I should have been”, then studying better and passing the second take with 
a satisfying result.  

To summarize, Mira retold her identity at the end of the semester as stronger in mathematics than at 
the beginning, despite recounting many stories of conflicts with relation to her ethnic and religious 
identity in a foreign figured world. With relation to almost all the descriptions of conflict, Mira’s talk 
was full of agency, whether it was related to decisions she made to adhere to her religious values, or 
with regard to changing her methods of study. Along with that, some changes in the space of 
authorship of her ethnic and religious identity occurred. These could be detected mainly in how she 
narrated her “values” and “beliefs” – from being inherently “hers” to being a result of her 
“upbringing” and her home figured world. In addition, the space of authorship came to include also 
third person narratives about her being identified as an “extreme” person by others, something which 
forced Mira to reexamine her beliefs and values and to make choices regarding them.  

Unlike Mira, who was hesitant about her connection with mathematics in the first interview, Lena’s 
first person mathematical identity was authored in the interview as highly successful. To signify her 
success, she narrated the following story:  

I don’t know if you know the Elkasmi competitions? (Interviewer nods.) I participated in this 
competition from fourth till ninth grade, almost I won the first place, once I won second place and 
once third place… that means it (mathematics) was for me. (Lena, 1st interview) 

Elkasmi is a competition for gifted students in mathematics in the Arab community. Lena was 
signifying her strength in mathematics by drawing on the significance that participating and winning 
these competitions has in her community, a significance she made sure was shared by her interviewer.  

Apart of the Elkasmi story, Lena relied, similarly to Mira, on her family’s narratives when authoring 
her first person academic and mathematical identity. She reported that her family thought of her as a 
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strong student, who could achieve anything she wanted. These expectations were talked about both 
as a reassuring element and as a stress factor:  

They (parents and family) always remind you that you have potential. So I somehow try to turn 
this potential (to reality) ... So that’s my parents’ expectations in particular, and my sisters think 
that I’m ‘Rambo’. That I could do anything and get along. Most people expect so. (Lena, 1st 
interview) 

Unlike Mira, Lena was not a first generation university student in her family. Her parents both had 
academic degrees. Yet similarly to Mira, she also reported feeling stress from her family’s high 
expectations. Again, it was clear from her talk that she was highly accountable to her family and 
community with relation to her academic choices and achievements. Yet unlike Mira, Lena’s talk 
about her studies was mostly devoid of agency. Her authoring of herself as successful was based on 
the diagnosis that “math is for me”, justified by her winning math competitions during her childhood. 
Also in revoicing the voices of parents and significant narrators (“they always remind you”), these 
voices narrated her as “having potential” and “turning this potential into reality”. This diagnostical 
discourse was most noticeable in the main conflict Lena talked about from her first interview – that 
relating to her gender:  

I will not begin now by saying that boys are smarter than girls, but I believe that boys have more 
self-confidence in the science field than girls. They (boys) always think that the science field is for 
them, and girls think that they are less … that is what I read and see around me. Here I see the 
difference between boys and girls, but that does not mean anything about the final results because 
sometimes the way the girl thinks help her beat all her competitors. (Lena, 1st interview) 

Notably, already at this initial phase of her studies, Lena was contesting voices that were saying “boys 
are smarter than girls”. She was negating them, yet endorsing the narrative that “boys have more self-
confidence than girls”, which she justified based on what she “read and saw around her”. Again, there 
were no signs of agency in Lena’s talk. Her talk was diagnostic (“here I see the difference between 
boys and girls”), but there was no mention of her own actions in relation to this conflict.  

As the semester progressed, the gender related narratives turned into first person identity narratives. 
In her first diary, she wrote:  

Despite all the faith I have in myself, I feel that I’m not confident enough, in comparison with 
boys, at least with a boy who I study with. I think it comes from old stereotypes about the 
composition of the boy’s brain versus the girl’s brain. Sometimes I fear that these stereotypes are 
true and that my mental ability is not enough. (Lena, 1st diary) 

Again, Lena’s authoring of the narratives about gender and mathematics/technological studies was 
solely diagnostic and devoid of agentic descriptions. She was examining her “beliefs in herself” and 
her “self-confidence” against “old stereotypes”, indicating at least a partial endorsement (“sometimes 
I fear these stereotypes are true”) of these narratives about “the composition of the boy’s brain versus 
the girl’s brain”. Importantly, these “stereotypes” were about “brains” of males and females, 
something that was clearly beyond Lena’s agency to change. Lena was examining and identifying 
herself within this figured world of fixed-ability gender-related narratives, without any indication that 
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she had a choice to accept or reject them. The gender-related narratives evolved in the second diary 
into a mini-theory of the relation between her “self-confidence” and her actions:  

When a person is less confident, I don’t know how (to explain this) … But sometimes you do not 
believe in yourself, sometimes you do not want to meet anyone. That (decision), not wanting to 
meet anyone, is not the best decision in the world. You have to be with people who you see every 
day and share with them what you solved, and what you did not (solve). So that it helps you keep 
going. Sometimes it made me stop or slow down. (Lena, 2nd diary) 

This quote exemplifies well the psychological discourse that Lena drew upon to explain her perceived 
failure during the first semester. Explanations about her failure (which is not mentioned here 
explicitly, only hinted at) use psychological keywords (“self-confidence”, “belief in oneself”) to 
justify her decision “not to meet anyone”. The self-diagnostic statements are written about as pre-
given and beyond Lena’s control. Further, these psychological states have led Lena, according to her 
narrative, to certain decisions that she regrets (“you have to be with people”), yet there is no indication 
that Lena had a choice regarding these decisions. They were a direct result of her low “self-
confidence”. In the final interview at the end of the semester, Lena’s discourse was full of such 
regrets:  

I started the semester as a little girl, I was not focused … I was very nervous about people around 
me so I did not study in the library and stayed at the dorms. Everyone asks you ‘what’s going on?’, 
‘Did you solve the homework?’ Why should they ask me? I felt pressure. (Lena, 2nd interview) 

Again, this quote is full of psychological terms relating to maturity, cognitive and emotional 
functioning (“a little girl”, “not focused”, “very nervous”). As was common in all her interviews and 
diary entries, there is no mention of any difficulties relating to her ethnic or cultural status.  

The final interview also had indications that Lena was re-authoring her identity as a high-school 
student (at least to the audience of the interviewer). She said: “I have never been in a place like this, 
even in high school there were difficulties but it isn’t like here.” This narrative was different than 
those authored in the first interview, where Lena talked about herself as successful and being “made 
for” mathematics. She now talked about her high-school career as containing difficulties too, yet not 
as extreme as in the Technion. The lack of agency with relation to these difficulties was consistent. 
Lena talked about wrong decisions that she made during the semester (such as not asking for help) 
but always in retrospect, and always with relation to how these decisions were unhelpful.  

Summary and Discussion 
Multiple studies have discussed the relationship between being part of a minority group and success 
in school or academic studies (Arar & Haj-Yahia, 2016; Flum & Kaplan, 2016; Nasir & Saxe, 2003). 
According to these studies, higher education allows minority students to move from the margins of 
society closer to its centers of power. Yet, at the same time, institutions of higher education pose 
significant barriers and conflicts for minority students. In the case of the Arab minority in Israel, and 
in particular, female students, these barriers are only starting to be understood. In this study, we shed 
light on two contrasting cases of first semester acclimation. These two cases hint that agency may be 
a crucial aspect of such acclimation, in the face of complex social and political conflicts. Mira’s story 
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demonstrates a case of high agency, along with very explicit positioning of herself in relation to ethnic 
and religious conflicts. This agency seems to have helped her overcome difficulties in the social, as 
well as the academic and mathematical aspects of the Technion’s figured world. In contrast, Lena’s 
story demonstrates a case of very little agency, along with a total neglect of her positionality with 
regard to ethnic and religious conflicts. Paradoxically, although Lena seemed to start the semester as 
better acclimated to the figured world of the Technion, her lack of awareness of the constraints 
imposed on her by her minority status may have led to lack of agency. The significance of our study 
lies in turning attention to the importance of Arab female students’ awareness of the social and ethnic 
conflicts they face upon entering a foreign figured world. This awareness may cultivate choice, which 
is the necessary condition for these students’ agency to cope with challenges. 
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Students’ experiences of learner autonomy in mathematics classes 
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This paper presents representative excerpts from post-project interviews conducted with 8th and 9th 
grade students from a Norwegian countryside school. Interviews attempt to explore students’ 
experiences of learner autonomy in mathematics classes. These students participated in a larger study 
where they responded to a pre-project questionnaire followed by solving practical group projects 
using mathematics and science knowledge and post-project interviews. Preliminary interview 
analysis reveals that students’ experiences with learner autonomy in mathematics classes are limited 
to opportunities provided by their teachers together with an insecurity in perceiving themselves as 
responsible autonomous learners. However, these learners clearly exhibit a desire to acquire 
autonomy, the potential to suggest changes, and participate in discussions and decisions concerning 
their mathematics teaching-learning process, together with their teachers. 

Keywords: Student experience, learner autonomy, classroom environment and mathematics 
instruction. 

Introduction 
Developing autonomy in learners has been emphasized as a goal of mathematics education (Ben-Zvi 
& Sfard, 2007; Yackel & Cobb, 1996). Learner-centered teaching strategies such as mathematics 
teaching based on real-life contexts, inquiry-based and problem-centered learning (Wheatley, 1992; 
Yackel & Cobb, 1996) have been discussed to increase learners’ autonomy in learning mathematics. 
However, discussions related to autonomy in mathematics education literature have mostly depicted 
it as an intellectual attribute to be acquired while working with mathematical problems in order to 
identify, enquire and develop alternative solutions, and/or as the ability to scaffold mathematical 
algorithms and procedures in a better way (McConney & Perry, 2011; Mueller, Yankelewitz, & 
Maher, 2014; Wood, 2016; Yackel & Cobb, 1996). Specifically, intellectual autonomy has been 
defined as, “students’ awareness of and willingness to draw on their own intellectual capabilities 
when making mathematical decisions and judgements” (Cobb & Yackel, 1998, p. 170). However, 
less researched aspects of autonomy in mathematics classes are the ones in which learners themselves 
“develop a particular kind of psychological relation to the process and content of [their mathematics] 
learning” (Little, 1991, p. 4). Developing such a psychological relationship with their mathematics 
learning can help students better understand, intervene and improve the ways they learn mathematics. 

The first section of chapter one of the Norwegian Education Act (NEA), states that “[through 
education] students and apprentices must learn to think critically, and act in an ethically and 
environmentally conscious way. They must have co-responsibility and the right to influence [their 
education]" (Opplæringsloven, 1998/2018, italics added). For pupils to have the responsibility and 
right to influence their mathematics education, they need to take charge of their own learning in 
mathematics, that is become autonomous, at least partially. Further, if learners are supposed to apply 
their mathematical knowledge toolkit effectively in order to solve real-life problems after finishing 
formal education, they should be autonomous learners. Not only to solve their own real-life problems 
using mathematics, but also to participate as critical, responsible and active future citizens of society, 
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learners need to have experience and training in understanding and thinking over their current 
situations along with taking right decisions and actions to reach desired outcomes. This would require 
learners to acquire and practice both, the intellectual (i.e., the capability to take reasoned decisions), 
and the psychological aspects (i.e., a perception and an experience in exercising) of their autonomy. 
Although each learner is autonomous and possesses some decision-making skills, these should be 
nourished by getting an experience of exercising them within their immediate community and own 
peer-group (in the mathematics class). By learning how to balance power, authority, freedom and co-
responsibility among themselves, students would effectively use their autonomy to take charge of 
their own lives, decisions and their consequences, and benefit society. Consequently, researching 
psychological aspect of learner autonomy in mathematics classes, in addition to its intellectual aspect, 
is equally significant if learners are to be motivated to succeed in mathematics (George, 2012). 

By learner autonomy in this paper, I mean learners’ ability to develop a psychological relation with, 
and freedom to take responsibility of their own mathematics learning process. This responsibility 
includes learners taking initiatives, participating in discussions, planning and executing self-
beneficial mathematics learning activities, making decisions about what one wants to learn, how one 
likes to learn, at what pace and why together with their teachers, and simultaneously reflecting on 
these choices. Learner autonomy is a widely researched concept and is considered to be an essential 
attribute for learners of any second/foreign language because of its positive correlation with language 
learning (Little, 2003). However, the positive influence of acquiring leaner autonomy may not be 
limited only to second/foreign language learning. Therefore, in this paper, I explore the research 
question “What can young learners’ descriptions communicate about their experiences of learner 
autonomy in their mathematics classes?” in order to explore young learners’ experiences with learner 
autonomy in mathematics classes as per the aim of NEA. 

Background of the study 
This study is a part of a bigger research project called Local Culture for Understanding Mathematics 
and Science (LOCUMS, 2016). This project explores if using practical activities rooted in learners’ 
own culture can benefit them in learning mathematics and science in lower secondary classes. 
Building on experiences from a former research project where solving practical tasks rooted in 
students’ local culture in discipline design and technology promoted their school engagement (Lysne 
& Hoveid, 2013), LOCUMS intends to research if similar approach can increase students’ interests 
in learning mathematics and science. While reviewing the literature, I observed that learner-centered 
intervention studies carried out in mathematics classrooms are often planned either by the researchers 
or the teachers, and learners’ choices remain un(der)stated. For designing practical activities rooted 
in students’ local culture for learning mathematics and science, it was important to get informed about 
learners’ interests. Therefore, I designed a pre-intervention questionnaire consisting open and closed 
ended questions about themes such as: learner’s general views about education, perceptions about 
mathematics and science education, their activities of interest, what they desire to learn about at the 
school, their thoughts on culture etc. The purpose of these questionnaires was two-fold – to design a 
learner-centered teaching approach voicing learners’ opinions, choices and interests which acted as 
an input for designing practical activities; and to explore learners’ potential of taking reflected 
decisions and responsibility of learning mathematics. It was while analyzing students’ questionnaire 
responses such as “I don’t know what I want to learn in mathematics”, “I do not know what [content] 
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is useful to learn in mathematics”, “I am not interested in learning mathematics, yet learning 
mathematics is important”, to open-ended questions concerning mathematics that the notion of 
learner autonomy in mathematics classes emerged as my research interest. Therefore, learners’ 
autonomy was investigated further through semi-structured interviews. Data gathered for LOCUMS 
was directed towards both mathematics and science, and consisted of a cycle of pre-project student 
questionnaires, practical group tasks, followed by individual semi-structured interviews with selected 
students. Group tasks required knowledge of mathematics and science to be solved. Semi-structured 
interviews were focused to probe learners’ experiences of autonomy in mathematics classrooms 
among broader themes such as getting a vision of learners’ experience on project day, their general 
outlook towards learning mathematics and science, the extent of activities used in the mathematics 
and science teaching and its relevance etc. Learners’ responses about experiences of learner autonomy 
in mathematics classes collected in the first ten semi-structured interviews are presented in this paper. 

Theoretical framework 
Learner autonomy was first defined as “the ability to take charge of one’s own learning” (Holec, 
1981). The rationale of fostering autonomy in learners “… is quite simply that a teacher may not 
always be available to assist. Learners need to be able to learn on their own because they do not 
always have access to the kind or amount of individual instruction they need …” (Cotterall, 1995, p. 
220). The first definition of learner autonomy was later elaborated by Little (1991) as, “a capacity – 
for detachment, critical reflection, decision-making, and independent action” (p. 4). Further, Little 
(2003) mentions that, “… autonomous learners understand the purpose of their learning program …, 
take initiatives in planning and executing learning activities, and regularly review their learning and 
evaluate its effectiveness” (p. 4, italics added). Therefore, learner autonomy entails more than 
intellectual autonomy, meaning the learners can “act freely with a sense of volition and choice” (Deci 
& Flaste, 1996, p. 89) and involves an activating psychological process in order to attain autonomy 
in relation to one’s learning processes. Little (1991) moreover reminds of the difference between an 
autonomous learner and an independent learner. Being an autonomous learner does not mean that one 
is an independent learner and is able to learn without any assistance of the teacher, but it means taking 
a partial control of one’s own learning process. By having a partial control, the learner should 
her/himself understand and reflect upon one’s learning curve in order to figure out what strategies 
work best for her/himself. Resultantly, a learner can comprehend how one learns better and design, 
plan, execute and analyze self-beneficial mathematics learning strategies. 

Students’ intellectual autonomy has been discussed, but, I found fewer studies devoted to promoting 
learners’ autonomy among students in mathematics education research literature. Research initiatives 
in directions such as critical mathematics education (Skovsmose, 2014), culturally-responsive 
mathematics education (Greer, Mukhopadhyay, Nelson-Barber, & Powell, 2009), mathematics 
education for social justice (Gutstein, 2003), and sociocultural and sociopolitical awareness 
(Sriraman & Knott, 2009) have illuminated social implications of learning mathematics for the 
learners and our future society. These research areas address concerns to acknowledge learners’ 
interests, promoting pupils’ critical awareness towards sociocultural and sociopolitical issues 
involving mathematical calculations, and engage students in struggle for social justice through 
mathematics education. For learners to become mathematically literate critical citizens of society, 
they should be able to understand their responsibility of learning mathematics, comprehend the role 
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mathematics plays in their lives and society, and make decisions involving mathematical calculation. 
These capabilities require students to understand and take charge of their own learning in 
mathematics. Skovsmose (2014) mentions that, “It is a preoccupation of critical mathematics 
education … to develop a mathematics education that might provide new possibilities for the 
students” (p. 117). This study tries to enhance research concerning learner autonomy in mathematics 
education by providing the learners with an opportunity to express their experiences regarding learner 
autonomy in mathematics classes. The focus is to explore if learners are aware of their responsibility 
and can suggest changes to improve the quality of mathematics classes, provided they can assume 
more control of their mathematics teaching-learning process, as NEA expects from them. 

Method and study participants 
Qualitative research design using semi-structured interviews with students was adopted as a method to 
learn about students’ experiences. Since I wanted to know individual opinions, perceptions and thoughts 
of the learners participating in mathematics classes, interviewing seemed as an optimal way to proceed. 
Semi-structured interviews provided me with the opportunity to engage the learners in a free conversation 
with occasional follow-ups, without the restrictions of time limitations and a strict structure. In this 
way, participants could also, to some extent, control the direction of the interview, so that I avoided 
being the steering authority in the interview, and could gather authentic and trustworthy information. 

Learners of age 13 to 14 years, studying in 8th and 9th grade in a countryside school located in central 
Norway were informants of this study. One learner per group was chosen from 4 or 5 groups in each 
class, based on the level of their activity on the project day. Keeping in mind the principal of 
representativeness, an attempt was made to select students with different interests, level of activity 
(high, medium and low), achievement in mathematics (high, moderate and low achievers) etc. so that 
various experiences could be gathered. Here, I present representative excerpts from interviews with 
5 girls (one of them with Sámi background) and 5 boys (one of them with Eritrean background). Most 
of these students’ parents were working or driving farms, holding an average socio-economic status.  

Results and discussion 
The interviews were conducted in Norwegian, translated to English and interview transcripts were 
analyzed in order to identify learners’ experiences regarding learner autonomy in mathematics 
classes. Interview questions were designed so that learners had to reflect on their mathematics 
teaching, make choices, take decisions and suggest changes in it; and were analyzed to find learner 
responses involving words such as control, decision, responsibility etc. concerning their mathematics 
education. This section presents selected interview excerpts followed by the descriptive analysis of 
learners’ responses from the first ten informants. In the following transcripts, I indicates the 
interviewer and Lnumber indicates which of the ten learners is responding. Interviews were conducted 
after practical group activities and hence in the first extract presented below, the interviewer is asking 
how in the learners’ experience the learning situation on the day of project was different from the 
learning situation in their usual mathematics classroom. The following snippet illustrates the learners’ 
experience: 

I: eh… do you think this way to repeat mathematics and science content was different 
from the usual teaching? 

L3: yes… 
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I:  how would you describe that why was it different from usual teaching? … … how 
would you describe that the situation was different then? what was the difference? 

L3:  … we did not sit in the classroom and raised our hands and talked like… we do not 
calculate like we discuss so much and find it together… 

I: but is it then different form usual teaching or would you say that it’s also you who 
controls there as well? 

L3: no… there it’s the teacher who has more control 

I: but do you get it [the responsibility] usually like in mathematics and science 
classes? 

L6: or… like we don’t get to decide everything on our own because then it’s like they 
have already decided what we should do from beforehand but also… 

Both of the learners’ responded that the learning situation they experienced on the day of project was 
different in terms of having control and responsibility. These experiences of learners about usual 
mathematics classroom exhibit limited experience with self-control and self-decision where the teacher 
is usually the one who manages the class and everything that is to happen in the classroom is decided 
beforehand. These classroom experiences, where learners are not exposed to the responsibility of 
their own learning, may inhibit learners’ potential to understand, reflect, analyze and make decisions 
to improve their own learning processes for their self-benefit. Therefore, only when provoked a bit to 
assume autonomy, most of the learners suggested probable improvements in mathematics classroom: 

I:  are you satisfied with the way teachers teach you? 

L4:  yes… 

I:  why do you think that this way to be taught is alright? 

L4:  because… eh… I don’t know maybe I’m used to having it like that like this so…I 
have done it all these years so, I think it’s a fine way to learn… 

I:  but if you had a chance… would you change the teaching in mathematics …? 

L4:  no… 

I:  nothing? 

L4:  maybe a bit more activities in mathematics but otherwise I don’t think so of anything… 

I:  would you have included any other activities like some practical activities in 
mathematics teaching? 

L8:  eh… I would have done it because what we’ve done in the whole 8th grade is just 
to write, write and write and solve the task and then it becomes quite boring and 
you lose the interest and you sit there just to write and when the class is over so you 
think “oh yes, finally finished…”. 

In the first snippet, learner L4 expresses being used to have been taught like this as the reason of being 
satisfied with the teaching. Consequently, thinking about some other way of being taught or 
suggesting a change to the usual way sounds like a difficult task to him/her. However, when asked 
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again in a way where she/he could choose, she/he suggested an improvement in the mode of 
mathematics instruction. Similarly, the frustration of mathematics classes lacking practical activities 
and a suggestion to include the same if given the opportunity is evident in L8’s response. The next 
excerpt shows that given the possibility to suggest changes and design their mathematics teaching 
themselves, learners can acquire autonomy in mathematics learning. 

I:  hmmm… now when you have a suggestion about that you could have learnt to set up a 
budget… have you also thought of how would you have liked to learn it? In what way? 

L5:  eh… if we could have got a realistic situation… and then we could have got a task 
about it so it would have… for example set up a budget for a whole family for a 
month and you get different expenses and the teacher and you get the income and 
you have to pay the tax and you have to pay different and you should have a bit sum 
as saving if you sometimes get into a trouble and such things… like which are 
important to learn like you don’t need to take a loan and you don’t have a lot of 
debt because you just got into a trouble which you never expected in your budget… 
so we learn how one should use his money because I mean that mathematics… we 
use a lot of mathematics in society like money and much is controlled by money 
and money gives power so… because people should not use up… because of people 
should have better … … like I don’t have any concept of… like I don’t know what 
1 million kroner is… it’s a lot and lot but you can’t manage to buy a house for one 
million kroners… so we should learn more about the value like how much 1000 
kroner is worth … and such… 

The learner (with Sámi background) not only mentions what he/she desires to learn but also suggests 
how the lesson could be planned and what kind of tasks they could have worked on. This segment 
shows that learners have a potential of developing autonomy and co-responsibility in mathematics 
learning. Further, the extract below presents learners’ response to the question of sharing 
responsibility of their learning with the teacher:   

I: what is the difference between if it’s only me [who, as a teacher] decided everything 
and if you are also with me when I decide? 

L9:  it becomes more fun if both decide… then… I think it could have happened that 
people would have liked to come to school more often... 

I:  when they are asked…? 

L9:  yes… when they get to decide a bit what they do at the school… 

As indicated in the response of L9 (Eritrean immigrant, in Norway since three years), the thought of gaining 
a little bit charge over one’s own learning can not only encourage their autonomy but also that they 
would have liked to come to school more often, exhibiting the importance of listening to student voices. 

Conclusion 
Learners’ responses concerning autonomy in their mathematics classroom exhibit limited experience 
with self-control and self-decision. This indicates that decisions regarding what will happen in 
mathematics classroom are usually made in advance by school authorities and the teachers, which 
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can act as a constraint for learners’ autonomy to emerge and being practiced. Consequently, learners 
get used to mathematics classes, trust decisions of their school and teachers, and consequently see the 
traditional way to be the only way of mathematics education. This can leave learners unfamiliar with 
assuming autonomy to comprehend their learning processes in depth and limit their creative potential 
to experiment with better and self-beneficial ways of learning mathematics. Moreover, if concerns 
for social justice, adopting a critical stance towards mathematics’ role in society and learners’ 
personal lives, and raising consciousness towards sociopolitical and socio-economic issues through 
mathematics education are to be fulfilled; learners need to experience autonomy in their mathematics 
education. This way they can feel confident to put forward their argument, discuss and design better 
learning opportunities in mathematics with their teachers and, moreover, get engaged in, discuss and 
debate about social issues and initiate social changes in wider society.  

Moreover, enthusiasm of learners to experience a partnership and co-responsibility of their own 
mathematics learning is the same regardless of their ethnic background. Interview excerpts from 
learners L5 and L9 depict similar experiences in mathematics classrooms and they desire similar 
changes (i.e., a culture of promoting learner autonomy) in mathematics learning as their Norwegian 
classmates. Similar responses from learners having diverse backgrounds complemented my focus on 
youth culture instead of ethnic backgrounds in this study.   

Observing learners’ potential to suggest, design, co-operate and improve teaching-learning strategies 
in mathematics, I conclude that learners should be heard, encouraged to be critical, take responsibility 
and decisions regarding their mathematics education to make them autonomous, cooperative and 
responsible mathematics learners fulfilling the aim of NEA, and become mathematically literate 
critically aware citizens to deal with challenges of our future society. For encouraging learners to be 
autonomous, they should be provided with time and space to plan and execute their own learning 
strategies together with their teachers, and approaches promoting autonomous behavior (Deci & 
Ryan, 1987) should be adopted. Moreover, to make learners think critically, decide, have more control 
and co-responsibility of their learning with teachers, just asking them simple questions (Croninger & 
Croninger, 2016) can be the first step of an interaction leading them to assume autonomy. Learner 
autonomy can make learners aware of their right to social justice by balancing the power relations 
between students and teachers. Autonomous learners can build a personal relationship with 
mathematics and gain experience of participation and authority of understanding mathematics’ role in 
his/her personal (i.e., their home, classroom, school etc.) and wider society (as visible in L5’s response). 
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In this study I investigate whether mathematical knowledge inherently carries fragments of its socio-
political-historical development or if mathematics itself is value-free and can only get a political 
dimension attached to it by how it is used in society. I empirically approached the problem by studying 
a laboratory classroom collectively solving a problem. This classroom served as a proxy for a 
community of practicing mathematicians and I particularly investigated how conceptions of 
mathematics endorsed in this classroom could support (local) disruption of racism. Theories guiding 
this study include critical realism and critical race theory and analyzed data includes video records 
of instruction in this laboratory classroom. Results show that creating opportunities for students to 
engage in more authentic mathematical practices can support (local) disruption of racism.  

Keywords: Mathematical knowledge, institutional racism, normativity. 

The problem I am addressing and how I am doing it 
Mathematics often enjoys a distinctive status among the sciences. Such highly regard status comes 
from the idea accepted by most practicing mathematicians that mathematics is universal, objective, 
and certain (Ernest, 1999), or, in other words, mathematics is an a priori knowledge that deals with 
truths that are true by virtue of necessity, and with objects that are abstract (Linnebo, 2017). These 
ideas however, are not unanimous, and disagreement about such assumptions can be traced back to 
the work of Plato and Aristoteles (Machado, 2013). Whereas refined arguments were developed to 
support one or another claims, the debate is still open. The work of Kitcher (1984) and Ernest (1998) 
are relatively recent work supporting an a posteriori view of mathematics that is intrinsically 
dependent of human activity in society, but introductory texts on philosophy of mathematics such as 
George and Velleman (2002) still presuppose that mathematical knowledge can be philosophically 
investigated disregarding its social and historical construction. 

Mathematics education researchers that are concerned with socio-political dimensions of 
mathematics education have been interested in these philosophical disputes. Such scholars have a 
long-term commitment in understanding the relationships between mathematics education and 
society, particularly relationships involved in social inequality and injustice. To these scholars it is 
important to understand if mathematics inherently carries fragments of its socio-political-historical 
development or if mathematics itself is value-free and can only get a political dimension attached to 
it by how it is used in society. It is clear for socio-political researchers that mathematics and 
mathematics education are deeply connected with our contemporary social structure that privileges a 
group of people over others. What is not so clear is whether this connection comes from pure 
mathematical knowledge itself or not. 

Thematic Working Group 10

Proceedings of CERME11 1986



 

 

So far, many philosophers have argued in favor of one option or the other employing a variety of 
philosophical techniques to support their claims. I am adopting a different strategy. To investigate 
whether mathematical knowledge is independent of the human activity that produced or discovered 
it, I study a small community solving a mathematical problem together. This small community is an 
elementary mathematics laboratory classroom and it serves as a proxy for a broader community of 
practicing mathematicians. There are striking differences between both communities, and yet many 
similarities I expect to be helpful in illuminating the problem I am investigating. For example, in this 
classroom, the teacher functions as a permanent knowledge authority, being responsible for, 
ultimately, legitimating a mathematical claim in this environment, while in a community of practicing 
mathematicians, there is an institutionalized peer-reviewing system responsible for legitimating 
mathematical claims. The discussions the students participate in, however, are very comparable with 
mathematics seminars run by mathematics departments. There are discussions about whether a 
mathematical idea is true and arguments are laid out so other participants can be convinced of the 
validity of mathematical claims. 

Moreover, I will look to a specific social dimension, namely institutional racism, so I can investigate 
it in depth and gather a better understanding of the connection of mathematical knowledge and the 
(re)production or disruption of racism. A pilot study showed that, in this classroom, there are 
instructional practices that support local disruption of racism (Salazar, 2018), the question now is if 
these practices were the only ones responsible for promoting such disruption or if the mathematics 
itself was also important in promoting local disruption of racism in this classroom. The research 
question I want to answer in this study is: What conception of mathematics is endorsed in this 
laboratory classroom and how can it support (local) disruption of racism? 

Conceptual framework 
Critical race theory 

Critical race theory (CRT) is a theoretical framework for research that foregrounds race, racism, and 
racialized experiences. To critical race scholars, race is a complex social construct that goes beyond 
the color of skin and citizenship (Ladson-Billings, 1999), and brings real consequences to people 
once they are identified as member of a particular racial group (Bonilla-Silva, 2006). The kind of 
racism CRT is interested in exposing and challenging is institutionalized racism that permeates daily 
social interactions as opposed to individual blatant acts of racial prejudice. Finally, CRT posits that 
people of color experience racial oppression differently based on their individual background and 
multiple identities and insists in a non-essentialist approach (Delgado & Stefanic, 2001).  

Critical realism 

Critical realism (CR) is a philosophy of science that starts from a realist conception of the world, and 
the real things that make the world are then structures and mechanisms, or, in other words, causal 
laws (Bhaskar, 2008). In this perspective, in spite of being socially constructed, race is real because 
it has causal powers; race brings real consequences for the lives of people (Bonilla-Silva, 2006). In 
CR phenomena cannot be completely determined by scientific laws, they are only influenced by them. 
When I say that race causes segregation within schools through tracking, I am describing a tendency 
of over-representing White and Asian students while under-representing African American and 

Thematic Working Group 10

Proceedings of CERME11 1987



 

 

Latinx students in advanced classes, and over-representing African American and Latinx while under-
representing Whites and Asian in lower tracks (Oakes, 1995). Race influences but does not 
completely determine what is going to be a student placement. 

In CR the real things in the world can be combined in a way that, because of their structure and not only 
its individual properties put together, a new thing emerges in the world. This new thing, also called 
“entity” or whole, possesses “properties or capabilities that are not possessed by its parts” (Elder-Vass, 
2010, p. 4). The whole is then not just the sum of its parts, but something else, with a new causal 
power that is, of course, derived from the individual properties of its parts. But not only this, the way 
the parts interact and relate with each other is also responsible for the emergence of the new thing. 

The concept of emergence forms the laminated view of the world. A particular whole is said to be in 
a higher level than its parts. The same whole, however, can be a part of another emergent structure; 
in this case the whole is in a lower level than the new emergent structure. Individuals are seen as the 
lowest level of the social world, the whole society as the highest level, with many intermediate levels 
in between, such as social institutions. The immediate higher level to an individual is, according to 
Elder-Vass’s (2010) definition, a norm circle. The norm circle is defined by the group of individuals 
who hold a normative belief of endorsing a social norm or, in other words, each individual in the 
norm circle acts to reinforce the norm and discourage behavior that does not conform to the norm. 
Elder-Vass’s argument is that the norm circle is actually an emergent structure rather than only a 
group of people because it has a new causal power: to increase conformity to the norm.  

The content within instruction 

In this work, I view instruction as defined by Cohen, Raudenbush, and Ball (2003) as “interactions 
among teachers and students around content, in environments” (p. 122). Figure 1 shows a 
representation of this definition. I am looking to social normativity as a particular environment, and 
to classroom interactions as individual actions in light of norms enforced by norm circles when some 
or most of these norms are oppressive and perpetuate institutional racism. In this study, I am 
narrowing my gaze to the role of the content in these relationships. 

 
Figure 1: Representation of instruction from Cohen, Raudenbush, and Ball (2003, p. 124) 

Methods 
The laboratory setting and collection of data 

In this study I analyzed episodes of instruction from a mathematics elementary laboratory classroom. 
This classroom is the main part of a summer program held each summer at a large research university 
in the United States. In this program, an experienced White teacher teaches lessons to a group of 
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rising fifth grade students (students going to start fifth grade at the subsequent fall) in public––that 
is, while over 70 other educators observe. Because this summer program is a site of research for 
student learning and teaching practices, different types of data are collected by the research team. The 
data set includes video records of instruction, video records of pre-brief and de-brief meetings with 
learning teachers, copies of students’ notebooks, pictures of classroom records such as charts, lesson 
plans, class materials such as handouts for students, etc. The majority are African American and most 
come from low-income households. Only a few of them are White. The students have different levels 
of English proficiency and their mathematical performance in school is homogenously low. 

The train problem 

At this edition of the summer program, the students worked on collectively solving the train problem 
(Figure 2) over the span of the entire two weeks of the program. Students worked on this problem 
every day since the second day of the program at the second half of class that lasted about one hour 
each day. In this study, I focus on data related with students working on this problem, so video records 
of classroom, detailed lesson plans for each class, copies of student work (notebooks, homework, and 
assessments), photos of every collective record produced in classroom (such as charts and white board 
records). I am focusing on this problem because it is unusual to work in problems of this kind at this 
level, but some of its characteristics are very common in the field of mathematics, which makes it 
interesting to investigate practices of doing mathematics in a community. The solution of part 1 is 
that the SP company can build trains that hold 1 to 15 passengers. Part 2 actually does not have a 
solution and, in this case, solving the problem means mathematically explaining why it is not possible 
to find a train that meet all the conditions of the problem. 

The Train Problem 
The SP Train Company has five different-sized train cars: a 1-
passenger car, a 2-passenger car, a 3-passenger car, a 4-
passenger car, and a 5-passenger car. These cars can be 
connected to form trains that hold different numbers of people. 
 

 

Part 1  
You can use only these five types of cars to build trains, and 
you can use at most one of each type of car in each train.  
What are the different numbers of people that the SP Train 
Company can build trains to hold?  
Part 2 

Ms. McDuff wants to order a special 5-car train that uses exactly 
one of each of the different-sized cars. Ms. McDuff wants to be 
able to break apart the 5-car train to form smaller trains that hold 
exactly each number of people from 1 to 15. The customer 
wants to be able to build these smaller trains using cars that are 
next to each other in the 5-car train. Can the SP Train Company 
build Ms. McDuff’s order? Explain how you know. 

Figure 2: Summer program train problem 

Analysis 

I watched and wrote fieldnotes from all video records. From the fieldnotes, I wrote a description of 
how the class solved the train problem. Then I selected episodes from interactions of the teacher and 
the students that showed students working and discussing pieces of the solution of the train problem. 
Each episode was then re-watched and a more detailed description was written. In each episode I 
investigated mathematical normative practices that could illuminate the nature of the knowledge 
produced in this laboratory classroom. I also look for schooling normative practices that could 
intersect with mathematical practices. Additional data from student work and detailed lesson plans 
were used to check and refine hypotheses. 
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Enacting math: Collectively solving the train problem 
The class worked to find the solution of the train problem. The process started in class 2 and involved 
individual and small group work, as well as whole class discussions. To solve part 1, the strategy 
consisted in finding the smallest train that the SP company could build, then the greatest, then find 
trains “in between”.1 In this initial discussion, La’Rayne2 (La-rain’)3 said wr4, which holds 3 
passengers, is the smallest possible train because w=1 and r=2. Other students loudly say “no”, 
disagreeing. La’Rayne immediately revised her thinking, saying that you could use just the red or the 
white, unless no train would be made at all. They agreed 1 (or zero) was the smallest train. The class 
did not reach a consensus about the greatest train as quickly, so they worked independently or in small 
groups on this question. During this work, the teacher discussed with La’Rayne about the train she 
was testing. She first thought her train held 19 passengers, but after discussing with the teacher she 
realized it actually held 15. Then she and the teacher had a very dynamic interaction, with questions 
and answers being said immediately on top of each other. In this interaction, La’Rayne explained that 
the biggest train held 15 passengers because it used all the rods, and that it was not possible to build 
a train for 19 because there would be no rod left to add to the train. The class continued their collective 
work and concluded that the company could build trains of size 1 to 15 by the end of class 3. 

The solution of the part 2 spanned across the remaining 7 classes. They started doing some 
exploratory work to understand the problem and make sense of the conditions. During this part of the 
work they build collectively one train that holds 15 passengers, namely yrpwg, and broke it apart in 
different ways, trying to understand how they could break it, how they could not, and what were 
smaller trains they could built from it. They agreed that this train did not work because they could not 
build 9, 13, or 14. Then they started testing out other trains of size 15 and begun making records of 
all the trains they were testing that did not work. In this work, the teacher talked with the pair Layla 
and Olivia who said they were done, meaning they found a train. As a result of this interaction, teacher 
and girls realized they “were moving” things around, or, in other words, they were violating the 
condition that the cars had to be next to each other to form the smaller trains. Many students had 

                                                 
1 I am using the idea of size to talk about the number of passengers a train holds. So, a train of size 7 holds seven 
passengers, a train of size 7 is smaller than a train of size 11, and the greatest train is a term used to refer to the train who 
holds the greatest number of passengers. 

2 The research consents and IRB approval permit us to use the children’s real first names. Other identifying information 
(e.g., last names) are not used. 

3 Names of African Americans in the U. S. often have unusual spellings. Additionally, their names are frequently 
misspelled or mispronounced. In this work, I am trying to use their first names with correct spelling and pronunciation as 
a sign of respect. When I cite a name with an unusual spelling and/or pronunciation, I will write the pronunciation in 
parenthesis with emphasis after the first time I write the name, so La’Rayne is pronounced La-rain’. 

4 The letters used here are a reference to the first letter of the name of the color of the train cars. So the train wr is the train 
white-red which holds 1+2=3 passengers. Similarly, yrpwg is the train yellow-red-purple-white-green which holds 
5+2+4+1+3=15 passengers. 
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similar confusion and interactions with the teacher. With practice and interactions with the teacher, 
the students seemed to overcome such difficulty, and also progressed to make more organized records 
of their attempts. They continued the exploratory work of testing out trains for about three days. 

On class 7 they made some important progress with respect to understanding the mathematical work 
they were doing: they discussed why it is always possible to make trains for 1 to 5 (only one car is 
needed to build these trains) and for 15 (all cars are needed), how to decide a train did not work (only 
one number that does not work is enough), and started to think what are the numbers that are difficult 
to make and why it that so (“big” numbers, such as 11, 12, 13, and 14). 

On day 8, the students received the red and white clue: “If there is a train that can be made for Ms. 
McDuff, it will have to have the red car (2) on one end and the white car (1) on the other end.” This 
clue contains a logic implication that was not easy for the students to understand. Moreover, the clue 
was given to the students with the idea that it could be a “wrong” clue, so before they could use it, 
they would need to find out whether the clue was valid. Students were confused in the beginning, 
they thought the clue was wrong because they were testing trains with the red and white cars in the 
ends of the trains and still could not find a train that works. It was only on class 9 that the students 
agreed the clue was right, meaning that if they were to find a train that works, they needed to build 
trains for 13 and 14, and that was only possible with red and white in the ends. Then using the clue, 
they arrived at the conclusion that they only needed to test six trains: wgpyr, wgypr, wpgyr, wpygr, 
wygpr, and wypgr. On class 10, the students were divided into six groups, so each group were to test 
one of the six possible trains. After a final discussion in which each group reported their train did not 
work, the class seemed convinced there was no train that could fulfill Ms. McDuff’s request. 

When school norms intersect with mathematical norms 
There were often school norms and mathematical norms shaping the interactions observed in this 
laboratory classroom, and in some instances such norms were conflicting. In other words, in some 
cases, a school norm assigned a behavior for a particular situation, while a mathematical norm 
assigned a different behavior for the same situation. For example, this interaction occurred after the 
brief discussion described above on day 7 about what numbers need to be checked in each train. After 
talking about not needing to test one to five, the teacher asked if he needed to check 15. He answered: 

Kassim: No. 

The teacher asked why not, which seemed to be interpreted as a wrong answer, so Kassim changed it: 

Kassim: Oh, yes. 

Teacher again immediately asked why. Then Kassim presents a full explanation: 

Kassim: No, because all of these is equal to fifteen. [Pointing to the rods.] 

In this interaction between the teacher and Kassim, the boy tried to guess what would be the answer 
the teacher was expecting. He answered, waited for the teacher’s response to his question, and quickly 
changed his first answer after the teacher’s reaction was not confirming. This behavior can support 
school success given the role teachers have in assigning grades often based in students correct 
responses to questions. In this classroom, however, the teacher tried to promote mathematical 
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reasoning. Thus, frequently her responses to students’ answers were follow-up questions asking for 
more explanation. In the end, to answer in a way that aligned with teacher expectations, Kassim would 
need to do a mathematical explanation, and so did he.   

Another issue generated by the conflict between school norms and mathematical norms arises when 
students are “solving” a problem that has no solution. It is common in school, even more at this grade 
level, that mathematical problems always have a solution, often a unique one. Problems with no 
solutions, or with multiple solutions will most likely only appear in algebra in secondary school 
mathematics. Moreover, even when students deal with this kind of problems in algebra, it is not 
always discussed how this kind of problems are “solved” by mathematicians. In the field of 
mathematics, “solving” a problem with no solutions means to prove the problem is unsolvable. In this 
laboratory class, the students had to negotiate between a school norm, in which they had to find a 
solution to the problem, and a mathematical norm, in which they had to prove there was no solution 
to be found. On day 7, Luiz commented when testing one train: 

Luiz: I was so close, I needed two more, 13 and 10. 

He expressed the frustration of not finding a solution. Later, on day 10, the class received the visit of 
Ms. McDuff and they had to report how her request cannot be fulfilled. They had discussed before 
she arrived how they were going to report it to her. They were all sure there was no solution, and they 
discussed how they were going to talk about the red and white clue, how they tested all the “possible 
trains” and none works. But when she arrived, they struggled to say it. Even Olivia who had said 
before very clearly “there is no train” was speaking more quietly, seemed ashamed of not having a 
train to report, saying “we couldn’t figure out a train”. The discussion proceeded and the teacher 
supported students in reporting what they had actually discovered. Eventually, Miah (Maya) said very 
clearly that her train was impossible, and Chandler spoke loudly, raising her hand to her front with 
the palm upwards when Ms. McDuff asked what that meant: 

Chandler: Your train is impossible, we can’t make it. 

And Jerone added: 

Jerone: So what we’re saying is that your train could never be made. 

Ms. McDuff replied that she will have to find another company and students responded loudly at the 
same time “no no no”. 

They continued a brief discussion afterwards, and students talked to her about the red and white clue 
and how they tested all the “possible trains” and none works. They were then able to convince Ms. 
McDuff her train could not be made and she did not need to keep requesting it from any other company. 

Discussion 
In this classroom, students engaged in doing mathematics in similar ways mathematicians do. They 
explained their reasoning mathematically, why some trains always worked, so they did not need to 
test them; why they did not need to find all small trains they could not build from the whole train to 
be sure the whole train did not work; why the red and white clue was right and how to use it to solve 
the problem. They used strategies to solve problems frequently used in mathematics, such as finding 
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the small and greatest possible train for part 1, then look for trains “in between”. When engaging in 
these practices of doing mathematics, the students took an active role in producing mathematical 
knowledge in their community. The active enactment of mathematics by these students was crucial 
to support local disruption of racism. When the students described in this report, mostly African 
Americans, one Latinx, boys and girls, performed mathematics they countered the idea that 
mathematics intelligence is a function of being White (and male). In this classroom, mathematics is 
something you do, rather than know, and they could all do it. In spite of the intersection between 
school normativity and mathematical norms, creating the opportunity for students to engage in more 
authentic mathematical activity opened up the classroom space for students, specially students in this 
classroom, to participate in mathematical discussion they usually cannot, and that is disruptive. 
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Visible pedagogy and challenging inequity in school mathematics 
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This paper reports on the initial findings of a research project aiming to explore ways of addressing 
concerns regarding the persistent gap in mathematics achievement between children from different 
socio-economic backgrounds and low levels of engagement of significant numbers of students with 
school mathematics. It argues that such concerns can be addressed without the need to abandon a 
commitment towards progressive teaching approaches. It highlights the potential of adopting a 
critical model of participatory action research for challenging existing classroom practices that 
contribute towards reproducing inequities in mathematics education. It demonstrates how developing 
strategies for making progressive pedagogies more visible offers students the chance to become more 
aware of the intentions of the teacher and what they need to do to be successful in school mathematics.  

Keywords: Inequity, participatory action research, school mathematics, visible pedagogy. 

Introduction 
This paper reports on the initial findings of a research project which aimed to develop strategies to 
address the large gaps in mathematics achievement existing in schools between children from 
different socio-economic groups. Evidence suggests that ‘progressive’ teaching approaches, which 
involve providing opportunities for students to work independently and collaboratively on solving 
open-ended problems, can lead to higher levels of engagement and more equitable outcomes amongst 
mathematics students. However, there is also a danger that their relatively unstructured character can 
further disadvantage children from less wealthy backgrounds who are more likely to misinterpret the 
intentions of the teacher or to miss the point of the lesson. The project aimed to develop strategies 
teachers can use to make their pedagogy more visible, so that all students are able to recognise their 
intentions as teachers, and to identify research processes and methods that enable this to happen. 

Background 
Wide gaps in achievement in school mathematics persist worldwide between children from different 
socio-economic backgrounds. There is evidence of a strong and persistent correlation between 
students’ attainment and participation in school mathematics and their family income (Boaler, 
Altendorf, & Kent, 2011). Whilst other differences in achievement (e.g., between boys and girls) have 
narrowed, socio-economic disadvantage remains the most decisive factor in determining success in 
school mathematics (Jorgensen, 2016). This is the case in England despite recent government policies 
aimed at highlighting and reporting differences in attainment and, since the introduction in 2011 of 
the ‘pupil premium’ (based on eligibility for free school meals), targeting resources at poorer students. 
Since mathematics qualifications play a critical role in regulating access to higher-paid employment, 
under-performance in school mathematics restricts the social mobility of disadvantaged children and 
contributes towards the reproduction of inequality from one generation to the next (Jorgensen, 2016). 

Concerns have also been expressed for a number of years over the quality of mathematics teaching. 
Traditional teacher-led approaches, based on routine use of repetitive closed tasks, have been blamed 
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for an alarming decline in students’ attitudes towards mathematics as they progress through secondary 
school, causing them to opt out of further study (Williams & Choudhury, 2016). Learning of 
mathematics is too often limited to memorising and practising procedures with little understanding 
of their application, purpose or underlying concepts (OFSTED, 2012; Foster, 2013), resulting in many 
children (and adults) continuing to exhibit alienation from mathematics (Nardi & Steward, 2003). In 
contrast, more ‘progressive’ teaching approaches, characterised by open-ended activities, 
collaboration between learners and an emphasis on developing problem-solving and reasoning skills, 
can lead to more equitable outcomes and greater levels of engagement amongst all students (Boaler, 
2008; Wright, 2017). There is a growing consensus amongst the mathematics education community 
that a more relevant and engaging mathematics curriculum is needed, with a greater focus on open-
ended tasks, problem-solving and conceptual understanding (ACME, 2011; Hodgen, Foster, Marks, 
& Brown, 2018; NCETM, 2008; OFSTED, 2012). This is reflected in the renewed focus on reasoning 
and problem solving in the revised National Curriculum in England (DFE, 2013).  

However, some researchers have highlighted a formidable challenge for mathematics teachers 
concerned with issues of equity who wish to adopt progressive teaching approaches. Barrett (2017) 
warns of the danger of denying students access to ‘powerful knowledge’ in an attempt to widen access 
to school mathematics by emphasising ‘everyday knowledge’. In a study in the United States, 
Lubienski (2004) describes how the relatively unstructured nature of progressive teaching approaches 
resulted in disadvantaged children being less likely than others to recognise the intentions of the 
teacher, for example by failing to notice hints and clues and by missing the point of class discussions. 
Bernstein (2000) argues that children from disadvantaged backgrounds, because of their upbringing, 
are generally less able to decipher the ‘rules of the game’, that is the ‘recognition rules’ (identifying 
relevant meaning from tasks) and ‘realisation rules’ (formulating appropriate and legitimate 
responses). This poses something of a dilemma for mathematics teachers committed to addressing 
inequity in their classrooms: should they avoid progressive approaches altogether or explore ways to 
make pedagogical rationale more explicit to learners? Classroom-based studies exploring whether 
making pedagogies more visible can address issues of inequity have been mostly limited to science 
education (Morais & Neves, 2017) and literacy (Bourne, 2004). This project focuses on developing 
strategies for making teachers’ pedagogy more visible to learners in mathematics classrooms, to help 
all students recognise their intentions when adopting progressive approaches to teaching. It seeks 
ways to enable all students to be successful in mathematics, whilst embracing progressive pedagogies.  

Methodology 
The project adopts a Participatory Action Research (PAR) methodology, that is a collaborative approach 
to research in which academics aim to carry out research ‘with’, rather than ‘on’, research participants. 
PAR recognises how ‘academic researchers’, with their expertise in conducting research, and ‘teacher 
researchers’, with their detailed knowledge of the classroom, each have a distinct, but essential, role 
to play. It seeks positive social change, through generating knowledge that is of greater relevance to 
practitioners, whilst developing a deeper understanding of ‘theory-in-practice’ amongst teachers 
(Brydon‐Miller & Maguire, 2009). In contrast to conventional mathematics educational research, 
which is often conducted in artificial situations (Skovsmose, 2011), PAR pays closer attention to 
challenges, constraints and opportunities teachers experience on a day-to-day basis. It can offer a 
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systematic and critical approach to research based on clearly-defined processes including: reflecting 
critically on current practice in relation to research literature; articulating an alternative vision; trying 
out new approaches whilst taking account of realities and practical constraints; analysing outcomes 
of these trials to evaluate the feasibility of the alternative vision (Andersson & Valero, 2016). 

Practitioner-led research is often criticised as lacking rigour and being limited in scale (Myhill, 2015). 
In a recent review of practitioner-led collaborative research in mathematics education, Robutti et al. 
(2016) reported how most studies failed to theorise ‘collaboration’, relying instead on theories 
relating to a ‘community’ in which it is assumed to take place. Much practitioner-led research has 
been criticised for lacking a critical element, either because it involves general agreement in advance 
of the intended outcomes, or because the focus is left open for practitioners to decide, without 
questioning the legitimacy of existing modes of practice (Kemmis, 2009). Critical reflection requires 
teachers to view their own practice as problematic, and to question the consequences of their actions, 
in relation to wider historical, cultural and political values and beliefs (Hatton & Smith, 1995; Liu, 
2015). It is driven by external support and stimulus, which is seen as essential for challenging existing 
practice and without which collaborative inquiry is likely to perpetuate existing practice through the 
process of ‘alignment’ with accepted norms (Jaworski, 2006). Critical action research involves 
partners working together to “change their social world collectively, by thinking about it differently, 
acting differently, and relating to one another differently” (Kemmis, 2009, p. 471). 

This project aimed to develop, refine and evaluate research processes and methods that facilitate 
effective collaboration and critical reflection amongst academic and teacher researchers. This is seen 
as particularly important when applying PAR to the mathematics classroom situation where existing 
practice has proved otherwise resistant to change. Research methods employed during the project 
include the joint design of student surveys and interviews (to be implemented by the teachers 
themselves), carrying out peer observations, and making use of video-stimulated reflection to 
evaluate lessons (Geiger, Muir, & Lamb, 2016). The project was innovative in that it sought to make 
the collaborative and critical characteristics of such methods and processes explicit. 

Research design 
The research project was situated in a comprehensive secondary (age 11 to 18) school in North 
London with an above-average proportion of disadvantaged students (approximately 30% of students 
qualified for the ‘pupil premium grant’ in 2016-17 compared with a national average of 27%). The 
two-year project was initiated in November 2017. This paper reports on initial findings from the first 
year of the project. The project was a collaboration between myself, as academic researcher, and two 
teacher researchers, Tiago and Alba, who shared an interest in developing progressive teaching 
approaches and exploring issues of equity in mathematics classrooms. (I will refer to the three of us 
collectively as the ‘research group’.) The school’s mathematics department had recently incorporated 
a series of problem-solving activities into its scheme of work and was gradually moving away from 
a rigid setting structure towards mixed attainment grouping in the lower years. There was a whole-
school focus on developing ‘oracy’, which in the mathematics department included encouraging 
students to articulate and communicate their reasoning through ‘think-pair-share’ strategies (thinking 
about a problem as an individual, before sharing with a partner and then the whole class). 
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The focus of the study was to explore strategies teacher researchers could use to make their pedagogy 
more visible, that is to help all pupils recognise their intentions as teachers when adopting progressive 
approaches to teaching secondary mathematics. In so doing, it was hoped to develop strategies that 
might be effective in reducing the large gaps in mathematics achievement existing between children 
from different socio-economic groups within the school. The research questions were: 

1. Which teaching strategies are successful in helping students develop their ability to decipher the 
recognition and realisation rules of the mathematics classroom? 

2. What impact do these strategies have on students’ mathematical achievement and engagement, 
particularly for those from disadvantaged backgrounds? 

3. What characteristics of PAR enable academic and teacher researchers to work collaboratively to 
bring about transformations in mathematics classroom practice? 

A series of nine research group meetings were held at the school during the first year. At the first 
meeting, I provided Alba and Tiago with journals in which they were encouraged to reflect on their 
experiences and write a commentary on the development of their thinking and classroom practice 
over the course of the project. The initial meetings included jointly agreeing the research design and 
a focus on critical reflection on existing practice in relation to the research literature. The teacher 
researchers read and presented for discussion key research papers (identified by me) during these 
meetings. We decided that Alba and Tiago would work with two similar Year 7 (age 11-12) groups 
that they taught, making use of teaching materials that already existed within the department. This 
enabled them to focus on developing strategies to make their pedagogy more visible, alongside the 
progressive approaches to teaching mathematics already in use. Two ‘plan-teach-evaluate’ action 
research cycles were carried out in order to try out strategies devised during meetings. We jointly 
designed a survey to give students after the first cycle in order to evaluate the impact of these 
strategies. We also discussed and agreed the questions that were asked and the protocols that were 
adopted during semi-structured interviews conducted by Alba and Tiago after the second cycle with 
six disadvantaged students (identified on the basis that they qualified for the ‘pupil premium grant’). 

The focus of the surveys and interviews was on assessing the impact of the strategies on students’ 
success in, and engagement with mathematics, their dispositions towards learning, and their 
awareness of the pedagogical rationale employed by the teacher. We arranged for four of the lessons 
(two for each teacher) to be video-recorded and observed by either myself or the other teacher 
researcher. The observer created a time line of key events during the lesson so that these could be 
quickly located in the video recording during subsequent meetings. We carried out detailed 
evaluations of the strategies through reflective discussions during research group meetings. These 
discussions were prompted by watching back extracts from the video recordings and relating these to 
survey and interview responses and notes kept by Alba and Tiago in their reflective journals. 

Data was collected through making audio-recordings of discussions held during research group 
meetings and audio-recordings of interviews conducted with the six students. These recordings were 
transcribed and fully anonymised, with pseudonyms being used throughout the data analysis for 
students and any third parties mentioned. During the thematic analysis, categories were assigned to 
extracts of text from the transcripts using a combination of deductive and inductive coding. Since the 
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project involves applying theory to pedagogical practice, an initial coding structure was derived from 
the theoretical framework. This structure was developed through a process of repeatedly reading the 
transcripts to allow familiarization with the data and to interrogate the relevance of the categories. 
Further amendments and additions were made during the coding process to increase the relevance of 
the categories to the data. The categories included in the coding structure fell into four broad groups: 
1) students’ understanding of recognition/realization rules; 2) students’ recognition of educational 
disadvantage and relational equity; 3) teachers’ pedagogical strategies; 4) students’ dispositions 
towards learning. NVivo software was used to facilitate the comparison of extracts of text which had 
been assigned similar categories, and to explore ‘commonalities’, ‘differences’ and ‘relationships’ 
between these and other categories, enabling themes to emerge from the data (Gibson & Brown, 
2009). These themes were then related back to the research questions and underlying theoretical 
framework in order to generate meaning (Kvale & Brinkmann, 2009). 

Initial findings 
The findings reported below are based on an initial analysis of the interview and survey data only, 
from the first year of the project. Further analysis is currently being undertaken of the data from the 
research group meetings, which will enable a fuller discussion of the research methodology and the 
collaborative and critical nature of the research design to be reported in due course. 

It was noticeable from the responses to the surveys completed at the end of the first cycle that students 
often did not fully appreciate the intentions of the teacher in adopting progressive teaching 
pedagogies, resonating with Lubienski’s (2004) conclusions described earlier in this paper. Many 
students misread the rationale behind teaching approaches aimed at enhancing mathematical learning, 
often perceiving them as being designed to enforce compliance. One example that illustrated this 
tendency was an open-ended problem given to students that involved calculating the area of different 
sections of a flag. There were several alternative methods that could have been used to solve this 
problem. There was nothing remarkable about this open-ended, problem-solving task, or about the 
‘think-pair-share’ approach that was used to introduce it, both of which were employed routinely by 
Alba and Tiago in their teaching practice prior to their involvement in the project. However, they 
developed strategies to use alongside the task that had not previously been a focus of their practice. 
In this case students were asked first to think about the problem on their own, discuss it in pairs, and 
then to explain their partner’s thinking to the rest of the class (rather than explaining their own 
thinking). The completion of the task was followed by a whole class discussion prompted by teacher 
researchers asking: “Why do you think I asked you to present your partner’s ideas rather than your 
own?” Students were encouraged to put forward suggestions which were then discussed with the 
teacher enabling her/him to help students appreciate how the teaching approach adopted was designed 
to facilitate deeper mathematical understanding. Prompting students to present their partner’s ideas 
and the follow-up discussion of the pedagogical rationale represented a change in teachers’ practice. 

In the survey administered at the end of the lesson, students were asked the following question: “Why 
do you think the teacher asked you to explain your partner’s thinking and not your own?” The responses 
of some students suggested they had correctly interpreted the teacher’s intentions, for example “So 
that we understand other’s point [of] view”, “So you can share everyone’s methods”, “Because it 
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helps you to understand different opinions on the maths problems and different paths to the answer”, 
“Because you can get two different perspective[s] and it may help you finalise your idea”. However, 
a majority of responses suggested most students misinterpreted the strategy as simply an implicit way 
of enforcing listening, for example “To make sure you listen”, “To see if you’re listening to your friend.” 

The strategy described above was aimed at making pedagogies visible that would otherwise remain 
implicit (and often not at all transparent) to learners. The intentions of the teacher thus become an 
explicit focus for discussion and consideration by learners. Another strategy employed during the 
second cycle was to scribe students’ responses to questions verbatim, that is to write down exactly what 
they said regardless of whether they were correct or incorrect. This was followed up with a discussion 
with students around the rationale for doing so, in this case to draw out ambiguity in language used 
by students and to enable students to identify errors and misconceptions for themselves. 

It appeared, from interview responses at the end of the second cycle, that disadvantaged students were 
developing a greater awareness of some (but not all) of the primary reasons for teachers’ pedagogical 
choices. Four of the six students interviewed, Marcus, Sophia, Mary and Keira (all pseudonyms), 
appeared to recognise the primary purpose of identifying and addressing errors and misconceptions 
when they were asked why they thought the teacher wrote down exactly what students said: 

To maybe see like where we go … because it’s better if you say it out than keep it in because the 
teacher could help you and try and improve from wrong to right. (Marcus, interview) 

Cos then you can compare the correct and incorrect answers together and see, like, where you went 
wrong, and how you, you know, changed the answer to get the correct one. (Sophia, interview) 

It was nice to like write down it, and then look at our mistakes. … Because of, then we can, like, 
fix the mistakes. … But usually people will like … if we make a mistake, and then they just change 
it. They just tell you it’s this, but they don’t tell you why … and then next time they do the same 
mistake. (Mary, interview) 

It will be showing us that you think we’ve gone wrong a little bit. And by writing everything we’ve 
said, that will help, not just like the person, it will show everyone like where it went wrong. Instead 
of like you telling us, and that, we can learn from our mistakes. (Keira, interview) 

However, Ennis demonstrated only a partial appreciation of the primary purpose, identifying a reason 
that might be valid in a different situation, whilst Neal was not able to articulate a valid purpose: 

So other people can know how to do it. And so everyone could like … everyone can understand 
from it, and see what they’ve done wrong, if they’ve got it wrong, and see what they’ve done 
correct, if they’ve got it correct. (Ennis, interview) 

Maybe they never got it right, but then someone worked out the same way but still got it right. 
And then you will show the person who did it how … they should do it correctly. (Neal, interview) 

There was a similar pattern for other strategies that Alba and Tiago tried out for making pedagogy 
more visible, with most students recognising at least one purpose identified as primary by the teachers 
during research group meetings. However, students also articulated other purposes, some considered 
potentially valid in other situations but not primary for these strategies, and others considered invalid. 
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Conclusion 
From an initial analysis of the data from the early stages of the research project, it appears that 
developing strategies for making teachers’ pedagogical rationale more visible to learners has the 
potential to increase students’ appreciation of the intentions of the teacher, although some 
misinterpretation is likely to persist. This offers the promise of eliciting more appropriate responses 
from a wider range of students, including those from poorer backgrounds, when less-structured 
teaching approaches are employed. This in turn suggests ways of developing classroom practice that 
can begin to address issues of inequity in mathematics classrooms without the need to abandon 
progressive pedagogies. It offers a positive way forward for teachers who are committed towards 
closing the gap in achievement between advantaged and disadvantaged students and who also believe 
that adopting collaborative and problem-solving teaching approaches promotes greater mathematical 
understanding. It highlights the need for further research to explore, refine and disseminate strategies, 
that can be adopted alongside progressive pedagogies, to help all students recognise the intentions of 
the teacher and hence to respond appropriately and achieve greater success in mathematics. 
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Real-life mathematics: Politicization of natural life and rethinking the 
sovereign 
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The aim of this paper is to examine the connections made between real life and school mathematics 
as politics of mathematics education. The analysis focuses on an elective course, “mathematics 
applications”, offered for middle graders in Turkey. I explore, first, how mathematics education 
discourses authorize responsibilization, reason and rationality for the administrative needs of a 
society. Second, my analysis focuses on how the natural lives of humans lie at the center of the 
political calculations where sovereign decisions are taken. The connection between natural life and 
life as a citizen offers alternative ways to think about modern sovereignties. 

Keywords: Discourse analysis, equity, mathematical applications, politics of education 

Introduction  
Mathematics is considered as central to young people’s preparation for life in contemporary societies 
(e.g., see, OECD, 2013). The will to teach and learn mathematics for better lives, however, has a 
political dimension where it conceives mathematics as having a positive role to cultivate the new 
generations into that knowledge and to the related values (Valero, 2004). In these processes, desire 
for a “better” life in/through mathematics education discourses constitutes particular subjectivities 
and differences (e.g., Diaz, 2017). Parallel with the aim of preparing youth for “better” lives, an 
elective course, “mathematics applications”, is offered for middle school students in Turkey to make 
the school mathematics more real and relevant to life. This course has been the most elected course 
by students since its initiation (Karagözoğlu, 2015). The course is less about teaching mathematical 
content (i.e., fractions, triangles or equations); rather, instructional material consists of problems, 
games and interdisciplinary tasks that include the real life of the child (MNE, 2013). This paper does 
not treat the “inclusion” of real life in the curricular and instructional materials as natural, but it rather 
problematizes the processes of associating real life and mathematics as a politicization of natural life. 
Specifically, I analyze how mathematics is associated with “better” life. In doing so, my aim is, first, 
to explore how connection processes produce administrative tools to govern people at a distance 
without domination, and second, to examine how these processes make biological life as object of 
sovereign decisions (i.e., who is allowed to live/die) in today’s politics. 

Research has already spent some time examining how school mathematics embodies a set of practices 
that govern students’ being and acting as future citizens (see, e.g., Diaz, 2017; Valero, 2004; Yolcu 
& Popkewtiz, 2018). These studies provide important insights about the way in which particular 
subjectivities and their differences are made in/through school mathematics to configure (im)proper 
modes of life as citizens. For example, it is argued that calculations inscribe a bureaucratic mode of 
thought among students in modern states where mathematics functions as a technology of trust 
(Kollosche, 2014). Nevertheless, in today’s societies, calculations are not merely used for 
bureaucratic-administrative purposes, but become the politics of life itself (Rose, 2001).  
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That is, the biological existence of humans becomes the object of politics within narratives of security, 
health or any kind of crisis. Chronaki (2018), in this vein, uses a fictional environmental crisis to 
argue how a totalitarian mathematical ban may also function as a form of sovereign power that can 
penetrate the bodies, locate traces of biological lives and decide who is allowed to live. This provides 
an insight in how life becomes the object of sovereign decisions. In today’s societies, nonetheless, 
connection between mathematics and life is made without domination, but through an inevitable 
“need” of mathematics for “better” lives. This vanishing point between sovereignty and productive 
power relations (i.e., relationship between natural life and life as citizen) necessitates further analysis 
to grasp the nature of contemporary politics. 

Contemporary Political Paradigms and Life 
For Agamben (1998), there were two different meanings for the word “life” in the classical world. 
First one is zoē, which is the natural life that is common to all living beings. The other one is bios, 
which is the form of life that is proper to a group (i.e., citizens). The distinction between the two had 
constituted the “city”, consisting of people with a proper form of life, until Foucault (1990) makes 
visible how natural life is included in political calculations. For Foucault, modern power is exercised 
through different political rationalities and governmental technologies than the sovereign power –
those in monarchies, kingdoms or empires. For instance, contemporary government forms administer 
lives of self and others in the light of conceptions of what is good, healthy, normal, virtuous, efficient 
or profitable in order to ensure maximal functioning in civil life and to secure the best possible future 
for its subjects (Rose & Miller, 1992). In this way, power is exercised through a set of practices that 
make up citizens as a particular kind of human (Hacking, 2007; Rose, 1999). According to Foucault 
(1990), this has not always been the case. While “sovereignty took life and let live” in societies ruled 
by monarchs or religious authorities, he points out the emergence of practices that tend to make lives 
and let them die (p. 247). In the realm of modernization processes, such practices form human life as 
the object of politics that authorizes particular action and social participation. He calls them 
“biopolitics of the population” as they focus on human life as species to maximize its well-being, 
health and security (Rabinow & Rose, 2006). 

Nevertheless, according to Agamben (1998), there remain several questions that relate to the original 
activity of sovereign: If governmental practices are no longer “taking the life” but rather they are 
“making the life,” how can we understand the explosion of numerous and meticulous techniques to 
control populations at the level of biological/natural life, which are the ones closest to death? If power 
is exercised at the level of human’s biological life, how are its practices and strategies different from 
domination and repression? To deal with these questions, one should account for the hidden yet 
converging point between the juridical-institutional and the biopolitical models of power since the 
inclusion of human’s natural life in political strategies points to the original activity of sovereignty: 

Placing biological life at the center of its calculations, the modern State therefore does nothing 
other than bring to light the secret tie uniting power and bare life, thereby reaffirming the bond 
between the modern power and the most immemorial of the arcana imperii. (Agamben, 1998, p. 
6, emphasis original) 
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In those converging points or in the bonds, the body becomes a vital living system where “real” life 
become molecularized and organized with the gaze of biological and natural sciences, their 
institutions, procedures, instruments and spaces of operations (Rose, 2001). Health, for example, 
provides a transactional zone between political concerns of modern states and personal techniques 
for the care of the self. It is usually offered as a universal human right to protect persons and as a 
dignity for their living vital bodies. Here, subjects are rendered responsible for their own biological 
or natural lives, which previously was the duty of sovereign. This does not mean the disappearance 
of the sovereign, but refers to modification of practices, operating in the horizon of a natural life. 

Within the scope of this paper, I take these changes as a historical continuity rather than a threshold 
of modernity. Following Agamben’s (1998) works and Foucault’s (2007) lectures on biopolitics, my 
aim is to make visible the modifications of how governmental technologies constitute a complex 
network of practices that blur the distinctions between sovereign, disciplinary and control relations 
in the field of school mathematics and in the society as well. Affirmation of bare life offers new and 
more dreadful rationales and foundations for sovereign decisions (i.e., who is allowed to live), not 
the sovereign himself, because natural life and its needs become politically decisive facts. 
Mathematics education is part of those rationalities and technologies since one of the concerns in the 
field is the inclusion of real or natural lives in order to make mathematics relevant for “all”. The issue, 
here, is not merely providing equitable access to mathematics because the discourse of “all” is already 
proven to produce exclusions (see, e.g., Diaz, 2017; Yolcu & Popkewitz, 2018). A fundamental 
activity of these processes is the production of bare life through the politicization of natural lives in 
its calculations so that any decision for those “excluded” can be taken. In this way, sovereign logic is 
normalized and made permanent with notions of security, health, and biological productivity.  

This paper offers alternative ways to think about sovereignty in modern societies. Rather than treating 
natural life and life-as-citizen as separate entities, the examples presented in the paper make visible 
the indeterminate relationship between the two as the political paradigm of modern sovereignties. In 
this way, the politics becomes a set of techniques and strategies that legitimize the connection of 
natural life and life-as-citizen as paradoxes of inclusion and exclusion such as deciding who is going 
to live and die. I deal with specific ways and techniques of school mathematics that operate at the 
level of natural lives, the very biological making of humans. To do this, curricular documents and 
teacher guidebooks of a “mathematics application” course are analyzed. The reason why the focus is 
on this elective course is to make visible political rationalities and technologies that are far from 
domination but similar to sovereignty. I have purposefully selected examples from the textbooks that 
relate biological processes of life. A numerical analysis of the problems indicates that the examples 
that relate to natural life constitute approximately twenty percent of the total (n=132) across the 
middle school grades (5th–8th). The rest of the problems are mental games, strategy development 
tasks, market relations that are concerned with informed shopping or budgeting, and geometry-
measurement problems. Analysis of curricular and instructional texts does not assume that they are 
the same with teacher practice itself. Nonetheless, discourses are results of practices and, at the same 
time, they produce further practices (Popkewitz, 2013). This reciprocal relation shows possibilities 
of change without assuming a pre-existing subject (e.g., teacher) as an agent of change. 
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 “Adolescent” as an object of school math: Cultivating reason and rationality 
The child in the curricular statements of the mathematics application course is configured as a 
particular kind of human who is “in transition” and needs math to realize their potentials: 

These ages are sensitive transition periods in the life of the students, since the rapid changes are 
the periods of adolescence. [...] The perceptions of what they get from these ages shape their 
attitudes towards the course in the coming years and affect their achievements in mathematics [...]. 
If students challenge the limits of knowledge and skills in mathematics courses in the school, and 
if they receive the support they need, they will have the best chance of achieving their 
mathematical potential (MNE, 2013, p. 1, all originally Turkish texts translated by me). 

Here, the adolescent is the object of teaching and the target population. Students are configured as 
“adolescents” who are to learn particular skills to find reasonable and rational solutions to the 
problems of real life. Adolescent, here, is not merely a label, but a particular kind of human and a 
fictional construction that comes to being by generating ideas about how one lives or should live (see, 
e.g., Lesko, 2012). They are to take responsibility in the process so that they would be able to show 
their agency or “mathematical potentials” in their future lives when they become adults.  

The emphasis of the course is not at the end products but the processes of connecting real-life and 
mathematics in group settings. In this way, students, as future adults, are to learn to find not merely 
the correct answer but reasonable and rational solutions: “In this course, students need to look for 
rational and reasonable solutions with their classmates through collaboration rather than finding 
correct answers” (p. 1). These statements cannot be interpreted as purely domination; rather they are 
technologies of automation and responsibility that enable the ‘proper’ life as citizens (Rose, 1999). 

Let us take one of the problems, connecting the life as citizen and natural lives of 
humans. It is related to energy saving through using energy-efficient bulbs. 
Students are expected to learn about the “importance of energy saving” and 
“calculating the possible saving” for this particular problem (MNE, 2012, p. 45). 
Energy saving, here, is neither a personal issue nor about saving money for 
personal interest. Rather, the mathematical task is contextualized around concerns 
for human life since energy usage is correlated with CO2 emission that has a 
negative impact on earth where we, human beings, live. The image in Figure 1 
illustrates how the problem is situated in wider world issues with implications 
on human’s biological lives. Of course, the issue is important and the problem 
relevant. Nevertheless, the specific questions that are addressed by students 
through mathematical task assemble with particular processes of making 
responsible citizens. As stated: “You can also contribute to energy saving. What 
are your responsibilities for this? In which areas can you save money?” (p. 44).   

The mathematical part of the problem is the calculation of the energy saving amount if energy-
efficient light bulbs are used or if one avoids unnecessary usage of electricity. In this regard, the 
emphasis of the questions is on everyday habits of people, not on the mathematics itself. Asking 
questions such as “How many bulbs do you use at home?”, “How many hours are the lights turned 
on in the living room?” or “How much savings do you get when you turn unused bulbs off?” (p. 44) 

Figure 1 
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bring the everyday life into a calculation practice. However, these are not merely prompting questions 
that push students into the mathematics, but become specific practices that order (im)proper lives in 
order to socialize ‘adolescents’ in effective ways. When students denote the correct amount of saving 
following the calculations, they learn energy-efficient ways of living not just mathematics. 

The processes that connect real-life and mathematics do not only regulate human conduct, but also 
connect with biological lives. The link between the two makes a kind of human who is committed to 
science, humanity and the world through taking care of nature, life of self and humanity. 

There is a release of 1.5 kilograms of CO2 into the air for 1 kilowatt of energy production from 
fossil fuels. Calculate how many kilograms of CO2 emission you prevented with your energy 
savings. Show the results you find with tables and graphs. (p. 44) 

As the above text shows, energy saving is both a personal and social problem, an issue that the whole 
society should be “accountable” for. Individual efforts are to take care for the natural life, which is a 
concern for everyone. In addition to this, the ability to “show the results” is not the domination of 
mathematics but a specific technology that mathematics education offers for taking ownership in the 
processes of finding reasonable solution for their own lives. In this way, the truth is not imposed upon 
student’s mind. Individual contribution is valued, but calculations, tables and graphs, simultaneously, 
create boundaries of rationality in their own solutions and so in their “natural” lives: “All these 
processes will enable students to take ownership of mathematics and solutions by allowing them to 
make personal contributions and take responsibility instead of trying to find the “right” solution in 
the teacher’s mind” (MNE, 2013, p. 7). 

Students, aged between eleven and fifteen, are regarded as people-in-transition who are to become 
future citizens. The real-life application of mathematics is the technology to make them part of the 
society with a sense of belonging so that there would not be any noise, social disorganization or 
natural disorder in the unknown future. Practices that make the people responsible are embedded in 
the connection processes in order to ensure the integration would happen in a harmony neither by 
force nor through domination. In this way, “freedom” is ensured but it is regulated with reason and 
rationality for their own well-being and natural lives. 

Calculations of real life: Irreversible clock time and progressive human nature 
Some problems in the mathematics application textbooks are directly contextualized with biological 
processes of human beings when making the connection between mathematics and real life. See, for 
instance, how a problem is introduced in a 5th grade teacher guidebook: 

The heart is a marvel of biological engineering with its general structure and function. Even the 
hearts of people who do not do sports are very strong in terms of durability. Our heart, which has 
a high-density vessel structure, has about 2000 capillaries per square millimeter. This allows 
oxygen to reach the heart muscle continuously and safely at a sufficient level (MNE, 2012, p. 12). 

Here, heart as a vital biological character of living human beings, including its health and durability, 
is the main context that drives the problem. It is described as a “marvel of biological engineering” 
and a natural mechanism that allows oxygen circulation throughout the body. The mathematical part 
of the problem is counting and calculation of the frequency of heart rate at a given time, including a 
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minute, an hour, a day, a week, a month and a year. At the end, students present their heart rate 
frequencies with peers or the whole class and discuss results aiming to learn the relationships between 
second, minute and hour but also between day, week, month and year (p. 13).  

Such practices are not simply mathematical tasks but activities that engage students in a process where 
they learn the irreversible time that provides qualities of growth, development and progress to human 
nature. That is to say, the linear time is being made and associated with the accumulated heart rate 
counts, biological productivity and developmental clock-time. This association generates the “nature” 
of human life as a linear experience similar to the forms of civilization, evolution, development, 
acculturation, and modernization (Fabian, 2014). The temporal yet accumulated view of human 
nature is accompanied with the construction of the child as “adolescent” and, thus, it authorizes proper 
life as a citizen in companion with the processes of making up their natural lives. 

As students count heart rates, they are also encouraged to see and discuss different measurements 
from different groups. Specifically, students evaluate the different results in terms of “physically 
active bodies”, “other personal characteristics” or “gender” (MNE, 2012, p. 13). Here, numbers 
become the agents to see and differentiate the modes of life through vital processes of human nature, 
such as heart rates. However, more is required to secure the best possible future with “healthy” bodies 
in addition to the comparing different kinds of people in terms of their heart rate measurements. In 
the 7th grade guidebook, for instance, a similar heart rate context is offered. This time, a caution for 
possible health problems is presented with algebraic equations for the “recommended maximum heart 
rate” (i.e., y= 208-(0,7 x age)): “Due to health problems, people have to obey certain limits when 
doing sports activities. For example, if a certain heart rate is passed while doing sports, this can cause 
health problems for people” (MNE, 2017, p. 27). 
In this way, students are to calculate the recommended hearth rate and how the results change with 
respect to age. The issue, here, is not simply a matter of comparison. Bodies are calculated with 
appropriate heart rate at a given age and associated with the kinds of people who do physical activities 
or who smoke. Techniques of making “normal” bodies also employ rationales to act on those deviate 
from those normal lines. With numbers revealed from algebraic equations, doing physical activity or 
quitting smoke become self-authorizations for “adolescents” to “correct” their life, to improve 
themselves biologically as part of human species and to adapt their bodies in line with the proper 
modes of life as a citizen. There is no elimination of unhealthy or foreign bodies that are disruptive 
to progressive human nature; rather, it is a matter of classifying and correcting in the face of death.   

Politicization of natural life, life as citizen, and school mathematics 
This paper has examined some mathematics education discourses within the scope of contemporary 
political paradigms. In connecting mathematics and real life, the body is subjugated in a double sense. 
First, the child is constituted as an object, which is to be made a future citizen, embodying a particular 
form-of-life through socio-cultural integration. Second, natural life emerges at the center of 
calculations that make the child a subject who decides for his/her own well-being in that political 
zone. In other words, biological processes of human life are located at the center of the connections 
made between mathematics and real life and enabling self-authoritative techniques to maximize 
health, biological productivity or well-being of their own bodies and also themselves as human 
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species. In these linked ways, people seek for better, healthier or secure options through a continuous 
“need” for mathematics since the issue becomes natural life and survival, not only framed in 
economic but also in biological terms.  

The specific case of the “mathematics application” course is important to consider since those 
students taking the course, in fact, are outside of regular mathematics classes. Taking the elective 
course is considered as extra mathematics support by themselves or their parents (Çoban & Erdoğan, 
2013) or as a mean to reduce mathematics anxiety and to develop positive attitudes towards 
mathematics (MNE, 2013; Keşan, Coşar & Erkuş, 2016). Although those students are excluded, they 
are still in the system in paradoxical ways, through an “inclusive exclusion” (Agamben, 1998). The 
student body for this particular course does not actually fit to the regular classes but is simultaneously 
engaged with additional mathematics through the “need” for mathematics for their well-being and 
future survival. This generates topological relations of inclusion/exclusion rather than a polarization.  

Instead of immobilizing with the unquestionable need of mathematics to make the individual’s lives 
better, healthier or more productive, reading mathematics education discourses through contemporary 
political philosophy makes visible how the logic of sovereignty circulates along the modern life, 
which is configured as citizen life. That is, as discourses connect natural/biological life and life as 
citizen, the sovereign decisions become possible. The analysis, here, allows us to rethink the tactics, 
tools and governmental technologies of modern sovereignties such as affirmation of real-life in 
mathematics problems. Rethinking makes visible the possibilities as well. We could reconsider 
questions that seek to discover whose lives are properly represented because the political issue 
discussed here is less about authentic representation of real life but it is the representation itself. Each 
of us has a heart rate and we all are exposed to CO2 emission.  

Political potentialities, which need further explorations, could start with contesting the 
representational paradigms that seeks to emancipate, live or survive with the mathematics. Or more 
generally, they could challenge and problematize identity politics that “liberate” people within given 
and historically polarized populational categories. This is partly because exclusions are being 
generated through inclusion of real life in mathematical practices. Sovereign logic circulates in these 
processes where life itself becomes the object of politics that organize its survival and death.  

References 

Agamben, G. (1998). Homo sacer: Sovereign power and bare life. Stanford, CA: Stanford University. 

Chronaki, A. (2018). The unbearable lightness of dis|appearing mathematics: Or, life and reason for 
the citizen at times of crisis. The Mathematics Enthusiast, 15(1), 8–35. 

Çoban, F. N. & Erdoğan, A. (2013). Ortaokul ogretmenlerinin matematik uygulamalari dersinde 
karsilastiklari sorunlar [Difficulties encountered by middle school teachers in mathematics 
application]. Turkish Journal of Computer and Mathematics Education, 4(3), 242–258. 

Diaz, J. (2017). The paradox of making in/equality. A cultural history of reforming math for all. 
New York: Routledge. 

Fabian, J. (2014). Time and the other: How anthropology makes its object. New York: Columbia 
University. 

Thematic Working Group 10

Proceedings of CERME11 2008



 

 

Foucault, M. (1990). The history of sexuality. New York: Vintage.  

Foucault, M. (2007). Society must be defended: Lectures at College de France, 1975–76. New York: 
Picador. 

Hacking, I. (2007). Kinds of people. Proceedings of the British Academy, 151, 285–318. 

Karagözoğlu, N. (2015). Ortaokul 5. sınıflarda tercih edilen seçmeli dersler ve tercih nedenlerinin 
öğrenci ve veli görüşlerine göre değerlendirilmesi [Evaluation of elective courses and reasons in 
the 5th grade according to students and parents’ opinions]. Pegem Eğitim ve Öğretim Dergisi, 
5(1), 69–94. 

Keşan, C., Coşar, M. Ç., & Erkuş, Y. (2016). Matematik uygulamaları dersini seçen ortaokul 
öğrencilerinin derse ilişkin görüşleri [Views of secondary school students for mathematics 
applications]. Batı Anadolu Eğitim Bilimleri Dergisi, 7(14), 33–44. 

Kollosche, D. (2014). Mathematics and power: An alliance in the foundations of mathematics and 
its teaching. ZDM Mathematics Education, 46(7), 1061–1072. 

Lesko, N. (2012). Act your age! A cultural construction of adolescence. New York: Routledge  

Ministry of National Education [MNE]. (2012), Matematik uygulamaları 5. Sınıf: Öğretmenler için 
öğretim materyali (Mathematics application 5th grade: Teaching material). Ankara: MEB. 

Ministry of National Education [MNE]. (2013), Ortaokul ve ı̇mam hatı̇p ortaokulu matematı̇k 
uygulamaları dersı̇ öğretı̇m programı (Middle and imam hatip middle school mathematics 
application course program). Ankara: MEB. 

Ministry of National Education [MNE]. (2017), Matematik uygulamalari 7. Sınıf: Öğretmenler için 
öğretim materyali (Mathematics application 7th grade: Teaching material). Ankara: MEB. 

Organization for Economic Co-operation and Development [OECD]. (2013). PISA 2012 assessment 
and analytical framework: Mathematics, reading, science, problem solving and financial 
literacy. Paris: OECD Publishing.  

Popkewitz, T. S. (2013). The impracticality of practical knowledge and lived experience in 
educational research. Nordic Studies in Education, 33(02), 124–139. 

Rabinow, P., & Rose, N. (2006). Biopower today. BioSocieties, 1(2), 195–217. 

Rose, N. (1999). Powers of freedom: Reframing political thought. Cambridge University. 

Rose, N. (2001). The politics of life itself. Theory, culture & society, 18(6), 1–30. 

Rose, N., & Miller, P. (1992). Political power beyond the state: Problematics of government. The 
British journal of sociology, 61, 271–303. 

Valero, P. (2004). Socio-political perspectives on mathematics education. In P. Valero & R. 
Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: 
Issues of power in theory and methodology (pp. 5–23). Dordrecht: Springer. 

Yolcu, A., & Popkewitz, T. (2018). Making the able body: School mathematics as a cultural 
practice. ZDM Mathematics Education. https://doi.org/10.1007/s11858-018-1003-8  

Thematic Working Group 10

Proceedings of CERME11 2009



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TWG11: Comparative studies in mathematics 

education 

Thematic Working Group 11

Proceedings of CERME11 2010



 

 

Thematic working group 11: Comparative studies in mathematics 
education 

Paul Andrews1, Eva Jablonka2, and Constantinos Xenofontos3 
1Stockholm University, Sweden, paul.andrews@mnd.su.se 

2The Free University of Berlin, Germany, eva.jablonka@fu-berlin.de 
3University of Stirling, Scotland, constantinos.xenofontos@stir.ac.uk 

Introduction 
As with earlier CERMEs, TWG 11 adopted an eclectic perspective in its interpretation of 
comparison as referring to any study that documents, analyses, contrasts or juxtaposes cross-cultural 
or cross-contextual similarities and differences across all aspects and levels of mathematics 
education. In this way the TWG aimed to encourage critical but supportive discussions around a 
number of themes, some of which were predetermined by the papers received by the group, while 
others emerged from them.  

A recurrent but very productive aspect of this working group has been the relatively small number 
of paper presentations, although this has also led to the group being constantly on the verge of 
extinction. This year, thirteen papers and one poster were received. Unfortunately, for various 
reasons, two papers were withdrawn, leaving eleven papers and a single poster. This created space 
not only for colleagues to share their research in detail but for everyone to engage in lengthy and 
inclusive discussions on the nature of comparative mathematics education research and the means 
by which it can be meaningfully and rigorously undertaken. In particular, as is discussed in more 
detail below, the group came to realise that concepts like ‘unit of analysis’ meant different things to 
different people according to the research traditions from which they derive. The various 
contributions fell naturally into five themes that framed the different working group sessions.  

Theme 1: Assessment in mathematics education 

The first theme drew on two papers with very different foci and methodological conceptualisations 
focused on assessment in comparative mathematics education research. On the one hand, Cascella 
and Giberti’s paper, drawing on Italian national test data, highlighted significant gender differences 
in the ways in which students respond to different presentations of the same arithmetical task. Such 
findings remind us that the debate concerning gender differences in mathematical understanding are 
by no means resolved. On the other hand, Simsek, Jones, Xenidou-Dervou and Dowens’ study, 
framed by the important assertion that if “the same instrument is used in different cultures, no bias 
should arise from the particular characteristics of an instrument or its administration, focused on 
children’s understanding of mathematical equivalence. Their use of an extant American scale with 
English and Turkish students yielded a different factor structure from the original, highlighting the 
difficulties of assuming the validity of a test developed in one cultural context for use in another. 
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Theme 2: Mathematics teacher education 

The second theme, drawing on three papers, dealt with issues concerning mathematics teacher 
education. The first of these papers, presented by Clivaz and Miyakawa, reported on how two 
groups of students, one Swiss and one Japanese, collaborated, both at a distance and face-to-face, 
on the planning of the same problem-solving lesson. After planning, each group of students taught 
the lesson repeatedly in their own cultural contexts. Analyses of the two sets of plans and their 
respective lessons highlighted well the cultural norms that underpin beginning teachers’ practices. 
The second paper, presented by Gorgorió, Albarracín and Laine and written with the aim of 
evaluating admissions policies, examined the impact of recent changes to the admission 
requirements for primary teacher education programmes in Barcelona and Helsinki. The study 
found that such tools are too contextually situated to facilitate genuine comparison and argue for a 
better theorisation of the expected knowledge of such students and a measure appropriate for cross-
cultural application. Finally, in this session, the paper by Zhang and Wray examined similarities and 
differences in the sequences and patterns of teachers’ questioning practices in secondary 
mathematics classrooms in the UK and China. Drawing on observations of a dozen teachers in each 
country, the authors’ discourse analyses identified clear distinctions between the collectively-
focused questioning of the Chinese teachers and the individually-focused questioning of the 
English. 

Theme 3: The analysis of mathematics textbooks 

The third theme, based on two papers and a poster, focused on the analysis of mathematics 
textbooks. The first paper, presented by Hemmi, Lepik, Madej, Bråting and Smedlund, examined 
the presentation of material focused on expressions, equations, inequalities, and the meaning of the 
equal sign in textbooks in grades 1-3 in Estonia, Finland and Sweden. They found considerable 
variation in the presentation of such material, with concomitant opportunities for the later learning 
of algebra, both between countries and between different language groups within countries. The 
second paper, presented by Xenofontos, examined the use of the word ‘problem’ in the state 
mandated upper primary and lower secondary textbooks of the Republic of Cyprus. He found, with 
inevitable consequences for the coherence of children’s learning of mathematics, that while the 
word was used frequently and consistently in the primary books, it was used rarely and less 
consistently in the secondary. Finally, Palm Kaplan presented her poster comparison of the algebra 
tasks found in year 8 Swedish textbooks and the TIMSS 2003 assessments. Her discourse analytic 
approach showed considerable differences in the privileged content of the two sets of data. 

Theme 4: Curriculum 

The fourth theme, comprising two papers, focused on curriculum. The first paper from a 
multinational group of scholars, Van Steenbrugge, Krzywacki, Remillard, Koljonen, Machalow and 
Hemmi, examined recent mathematics curriculum reform efforts in the US, Finland, Sweden, and 
Flanders. Drawing on a range of data sources they showed that curriculum reform that is both 
region-wide and supported by teachers is a major challenge, not least in systems where teachers 
enjoy autonomy and textbooks are largely unregulated. Jablonka’s study, the second in this theme 
and initiated by international tests of achievement, found that the mathematics taught in Germany 
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was intellectually more challenging than that taught in China. However, bringing to the group a 
concept that provoked much discussion, Chinese teachers experienced greater discretionary space 
than their German colleagues. That is, they had more adaptive freedom in the planning of their 
teaching.   

Theme 5: Methodology 

The final theme, drawing on two papers, differed from the others in its explicit focus on 
methodology. The first of these, Petersson, Sayers and Andrews, presented an analysis of textbooks 
based on the use of moving averages to highlight the location and extent of different content 
emphases. Such an approach, which facilitates comparison between textbooks, offers an important 
visual support to conventional frequency analyses. The second, Chan and Clarke, alerted group 
members to the importance, particularly for comparative research, of identifying an appropriate unit 
of analysis. This particular presentation, despite the issue having been discussed in previous 
CERMEs, provoked a long discussion, which is revisited below, on how the expression ‘unit of 
analysis’ is construed differently by different cultural groups. 

Discussion 
As with previous CERMEs, the variety of topics and methodologies brought to the group 
highlighted well the diversity of work undertaken within the broader field. All papers offered 
insights to remind us that comparative research, which includes much mainstream work undertaken 
in single cultural contexts, is a messy and complex undertaking reliant on strong theoretical 
foundations and clearly-defined constructs. In this latter respect, the group’s discussion on unit of 
analysis was particularly interesting as it became increasingly clear that colleagues were not talking 
about the same thing. On the one hand, colleagues working in a theory-driven tradition tended to 
construe the unit of analysis as the theoretical framework within which they worked. On the other 
hand, colleagues working in a problem-driven tradition, typically Anglophone, saw the unit of 
analysis as the individual piece of data to be analysed. These very different conceptions of the 
phrase highlighted well the difficulties faced by all researchers and the dangers of assuming a 
common understanding of what one might typically expect to be unproblematic. Of equal interest, 
as indicated, was the notion of discretionary space. Here, colleagues were able to see the 
methodological advantage such a simple yet powerfully evocative concept brings to analyses of 
curricula and teachers’ engagement with them. 

As always, the various contributions brought to the group reflected not only cultural diversity but 
also methodological pluralism. For example, studies included those that were informed by a priori 
theoretical assertions and those that were not. There were equal numbers of qualitative and 
quantitative studies focused on a range of aspects of children’s and teacher education students’ 
learning of mathematics. All studies confirmed the extent to which mathematics and its teaching 
and learning are culturally normative. 
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Differential Item Functioning (DIF) analysis carried out within the framework of the Rasch model 
has been used to compare scholastic performance in sub-groups of students matched on ability and 
clustered by some features (such as, for example, gender). In this paper, we use DIF to understand 
if misconceptions about multiplication with decimal numbers act on boys and girls differently, i.e. if 
this can lead boys and girls to approach a mathematics item differently and, in some cases, to 
encounter it not successfully. We present empirical evidences revealed on a sample of 1647 students 
attending grade 8 of lower intermediate school. Results highlighted that misconception about 
multiplication of decimal numbers strongly disadvantages girls relative to boys and pose new 
research questions about mechanisms causing these results. 

Keywords: Mathematics achievement test, Misconceptions, Gender gap, Rasch model, Differential 
item functioning. 

 

Introduction. 
Italian National standardized assessments, called INVALSI test, are administered every year to all 
Italian students in different grades from primary to secondary school. In recent years the importance 
given to these tests has increased and researchers in mathematics education are starting to use the 
INVALSI results.  

Results of national and international surveys have highlighted that in many countries there is a strong 
gender gap in mathematics in favour of males and Italy is one of the countries in which this gap is 
more remarkable (Mullis et al., 2016; OECD, 2016; INVALSI, 2017). This phenomenon has been 
deeply studied in mathematics education research. Recent works overcome the idea that the main 
causes of gender gap are related to biological differences (Hill, Corbett & St Rose, 2010): the main 
reasons of this gap must be sought considering factors related to the social and cultural context in 
which the students live, such as the level of gender inequality which is strictly related to the gap in 
mathematics (Guiso, Monte, Sapienza & Zingales, 2008). Furthermore, the beliefs of teachers and 
parents on students’ ability and differences in metacognitive aspects such as self perception, self 
concept and anxiety related to mathematics are fundamental to explain the reason of the observed 
gender gap (Fredericks & Eccles, 2002; Cargnelutti, Tomasetto, & Passolunghi, 2016; OECD, 2016; 
Pajares, 2005). Finally, recent research has revealed that factors related to classroom practices, 
learning strategies and curriculum variables have a strong influence on gender differences in 
mathematics (Leder & Forgasz, 2008; Giberti, Zivelonghi, & Bolondi, 2016; OECD, 2016). 
Moreover, in previous studies we have shown the influence on gender differences of micro-social 
factors, strictly related to the milieu habits (Brousseau, 1988) and to the interrelation between the 
student and the teacher. From this perspective we highlighted that misconceptions, as a product of 
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classroom practices, have a stronger impact on females rather than males (Bolondi, Cascella & 
Giberti, 2017) and our aim is to investigate more in depth this issue.  

In this paper we propose the analysis of a specific item, which is part of a wider research program 
called “Variazioni 2” and financed by INVALSI, aimed at exploring the relationship between 
variations in item formulation and in its psychometric functionality. Much research in mathematics 
education has studied the impact of a variation in item formulation with a particular attention to ‘word 
problems’. An updated literature review has been proposed by Daroczy and colleagues (2015). 
Literature considers the influence of linguistic variations as well as other kinds of minor changes on 
students’ responses and solving strategies (e.g. Nesher, 1982; De Corte, Verschaffel & Van Coillie, 
1988; D’Amore, 2000). Duval in 1991 defines all these modifications as “redactional variables”, and 
Laborde in 1995 uses this term to include also non-verbal changes, e.g. introduction or modification 
of pictures. Using a specific statistical strategy, in this paper we analyze data collected in the project 
“Variazioni 2” to understand if and how a specific variation might affect differently male and female 
solving strategies to solve a mathematics item. In particular, we analyze an item included into a 
mathematics achievement tests to explore a specific didactical issue concerning misconceptions in 
multiplying decimal numbers (Fischbein, Deri, Nello, & Marino, 1985; Sbaragli, 2012). 

Research questions. 
The term misconception is widely used in research in education and takes different meanings; in this 
research, following D’Amore & Sbaragli (2005), we define a misconception as a concept 
momentarily incorrect, standing by for a more critical and developed cognitive arrangement. A typical 
misconception (D’Amore & Sbaragli, 2005; Hart et al., 1981) is due to the premature formation of a 
conceptual model of multiplication when students operate exclusively with natural numbers. Students 
learn multiplication with natural numbers and, observing that the product of two numbers is always 
greater than its factors, they are led to believe that “multiplication always increases”. This is true for 
natural numbers (excluding 0 and 1), but this is not always true for decimal numbers. This 
misconception, thus, leads students to make mistakes when they operate with decimal numbers, and, 
for instance, D’Amore and Sbaragli (2005) explain that the answer of many students of different 
grades to the question “What is the result of 4 × 0.5?” is 8. In order to explore this phenomenon, we 
compared two versions of the same item (Table 1). 

  
Table 1: Different formulations of the item D9 

The two formulations differ only in factor order. This allows us to understand if the idea that 
“multiplication always increases” is related to both factors of the multiplication or mostly to one of 
the two factors. In particular, our hypothesis is that the intuitive model (Fischbein, Deri, Nello & 
Marino, 1985; Mulligan & Mitchelmore, 1997) of multiplication as a repeated sum is easier to apply 
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in the second version (0.5 × 4) and this strategy led students to overcome easier the misconception. 
This is of course also related to the language used: in Italian we read the multiplication 4 × 0.5 as “4 
repeated 0.5 times” while in English and in many other languages it is “4 times 0.5”.  

This only one of several misconception related to the transition between natural numbers and 
decimals and, in previous studies focused on misconception in comparing decimal numbers (Bolondi, 
Cascella & Giberti, 2017; Giberti, 2018) we observed that females have more difficulties than males. 
For this reason, we decided to investigate if this misconception and the variation carried out, affects 
differently boys and girls. Therefore, our research questions are: 1) Does the misconception here 
analyzed act on boys and girls differently? In other words, does this misconception cause different 
item functioning in male relative to female subgroup? 2) What is the impact of the inversion of factors 
into a multiplication (e.g., 4×0.5 in place of 0.5 ×4) on students’ answers? What is its impact on item 
functionality? Does the inversion of factors have different effects on boys and girls? 

Participants and measures. 
Starting from a mathematics achievement test developed by INVALSI for students attending grade 8 
(lower intermediate school), in the project ‘Variazioni2’, we developed three further mathematics 
achievement tests, complete in terms of mathematical content and level of difficulty. These four forms 
(F1, F2, F3 and F4) were administered to a probabilistic sample of 1647 students attending grade 8. 

Analytic strategy. 
Our four mathematics achievement tests were administered by means of a spiraling process 
(according to which different forms are administered to different students within each classroom) in 
order to randomly assign forms, in this way each form was administered to approximately 400 
students. When using this design, differences between group-level performance on administered 
forms are taken as direct indications of the differences in difficulty between forms (Kolen & Brennan, 
2004) and it is particularly adequate to make comparable answers given by different subgroups of 
students. In addition, all achievement tests were equated to make estimations directly comparable. 
Both item and person parameters estimated via the Rasch model (Rasch, 1960) were scaled in an 
empirical range equal to [-4; +4] logits, where 0.00 logit does not mean absence of ability but it is the 
ability-difficulty level in relation to which students have a probability equal to 0.5 of encountering an 
item successfully.  

In the result section, we provided a summary of psychometric characteristics of the item D9 in F1, 
F2, F3, and F4. In order to compare, male and female performances, we provided a visual display of 
the set of observed means for each person factors level (i.e., for boys and girls) across each of the 
class interval present in the item-trait test-of-fit specifications. Each level is plotted in relation to the 
Item Characteristic Curve, i.e. the theoretical curve estimated by the Rasch model according to which 
no factor other than students’ intrinsic ability can explain the probability of a correct answer. At the 
bottom of the table, we reported the distractor plots drawn for males and female, separately, in order 
to explore their answer behavior in relation to each answer option. 
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Results. 
The table below (Table 1) reports on differences in item functionality in F1, F2, F3, and F4. For each 
of them, in addition to information about fit (i.e., Weighted MNSQ) always close to 1 and thus good, 
the distribution of correct and wrong answers provided by students is available in order to provide a 
first glance on the differences between booklets. 

Booklet F1 Booklet F2 
item:19(D9)       item:18(D9)       
Weighted_MNSQ 0.87      Weighted_MNSQ     1.02     
Label Score % of tot Pt Bis t  (p) PV1Avg:1 PV1 SD:1 Label Score % of tot Pt Bis t (p) PV1Avg:1 PV1 SD:1 

A 0.00 3.83 -0.07 -1.40(.161) -0.12 0.85 A 0.00 4.90 -0.17 -3.47(.001) -0.67 0.49 
B 0.00 4.31 -0.18 -3.68(.000) -0.77 0.67 B 0.00 4.66 -0.19 -3.83(.000) -0.81 0.74 
C 1.00 75.36 0.49 11.41(.000) 0.27 0.84 C 1.00 69.85 0.51 11.94(.000) 0.19 0.81 
D 0.00 15.55 -0.41 -9.23(.000) -0.68 0.68 D 0.00 19.36 -0.35 -7.61(.000) -0.65 0.60 

Miss 0.00 0.96 -0.12 -2.49(.013) -0.88 0.41 Miss 0.00 1.23 -0.17 -3.42(.001) -1.27 0.64 
Booklet F3 Booklet F4 

item:19(D9)       item:19(D9)       
Weighted_MNSQ    0.89  Weighted_MNSQ    0.88     
Label Score % of tot Pt Bis t (p) PV1Avg:1 PV1 SD:1 Label Score % of tot Pt Bis t (p) PV1Avg:1 PV1 SD:1 

A 0.00 1.95 -0.08 -1.54(.124) -0.60 0.63 A 0.00 4.03 -0.19 -3.98(.000) -0.75 0.93 
B 0.00 2.19 -0.10 -2.13(.034) -0.64 0.67 B 0.00 2.68 -0.19 -3.99(.000) -0.94 0.65 
C 1.00 81.51 0.45 10.24(.000) 0.18 0.92 C 1.00 80.31 0.47 11.30(.000) 0.23 0.93 
D 0.00 13.38 -0.39 -8.66(.000) -1.01 0.62 D 0.00 12.08 -0.33 -7.46(.000) -0.91 0.79 

Miss 0.00 0.97 -0.16 -3.25(.001) -1.37 0.95 Miss 0.00 0.89 -0.13 -2.87(.004) -2.07 1.34 

Table 1. Item functionality in F1, F2, F3 and F4 

Item formulation shows little variation comparing booklets F1 and F2 and it’s the same also 
comparing booklets F3 and F4. As already explained, in both versions the question intent is the same 
but the inversion of factors into the multiplication might change the influence of the misconception 
on decimal numbers and the answering strategy activated by students to solve the item might change. 
Indeed, we observe a lower percentage of correct answers (Table 1) in the first version, included in 
booklet F1 and F2, than in the second one, included in F3 and F4. 

To analyze gender differences, we provided a visual display of the set of observed means for each 
person factors level (i.e., for boys and girls) across each of the class interval present in the item-trait 
test-of-fit specifications. Each level is plotted in relation to the Item Characteristic Curve, i.e. the 
theoretical curve estimated by the Rasch model according to which no factor other than students’ 
intrinsic ability can explain the probability of a correct answer. Distractor plots drawn for males and 
female, separately, showed differences in answer behavior between boys and girls in relation to each 
answer option (Table 2). In particular, option B is more attractive for low-ability male students 
relative to females with the same ability level. Instead, it is evident that females are more attracted by 
option D, which is strictly related to the misconception, since they give the result of 4×5 instead of 
4×0.5. Little differences can be disclosed also in relation to option A, more attractive for low-ability 
girls and all these evidences are confirmed also by percentage reported in Table 2. Most of these 
differences are more remarkable in F2 (Table 3), with a clear advantage of males relative to females. 
Nevertheless, by exploring Distractor Response Curves drawn by gender, response patterns for the 
set of distractors associated with D9 presented in F1 and D9 presented in F2 are similar. The main 
difference between them can be disclosed into the distractor plot drawn for males in Table 3: high-
ability boys are not attracted by any distractors, while distractor D is attractive also for high-ability 
females. 
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Males 

 

Females 

 

Table 2: Responses by gender and Analysis of Variance by Gender for item D9 administered in 
booklet F1 (top-left) - DIF-plot (top-right) - Distractor Plot of males (bottom-left) and females 

(bottom-right) 

 
 

Males 

 

Females 

 
Table 3: Responses by gender and Analysis of Variance by Gender for item D9 administered 

in booklet F2 (top-left) - DIF-plot (top-right) - Distractor Plot of males (bottom-left) and 
females (bottom-right) 

Both in booklet F3 and F4 (Table 4 and 5), the item D9 proposes the inversion of factors, i.e. 0.5×4 
in place of 4×0.5. The analysis of answers to the item D9 in booklet F3 confirms an overall advantage 
of males. Differently from previous cases, higher differences are observable especially at medium-
ability level along the latent trait (around 0.0 logit). Nevertheless, differences observed for low ability 
students are the most result of this analysis: from -1.5 to -0.5 logit all differences are in favor of 
females. This evidence is strongly confirmed by analyzing F4 data: the probability of a correct answer 
is 20% higher in female than in male group, from -1.50 to -0.5 along the latent trait. In both cases, 
distractor analysis shows interesting dissimilarities. The most interesting differences between boys 
and girls can be observed in F4. In particular, option B is attractive for males and not attractive for 
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females, while option D is more attractive for girls especially at the lower level of the latent trait, 
confirming the evidences emerged in F1 and F2. 

 
 

Males 

 

Females 

 
Table 4: Responses by gender and Analysis of Variance by Gender for item D9 administered in 
booklet F3 (top-left) - DIF-plot (top-right) - Distractor Plot of males (bottom-left) and females 

(bottom-right) 

 
 

Males 

 

Females 

 
Table 5: Responses by gender and Analysis of Variance by Gender for item D9 administered in 
booklet F4 (top-left) - DIF-plot (top-right) - Distractor Plot of males (bottom-left) and females 

(bottom-right) 

Conclusions. 
In this paper, we compared two versions of the same item with the purpose of analyzing a specific 
misconception concerning multiplication with decimal numbers. The results showed interesting 
evidence that will be investigated in further studies from a qualitative point of view. The analysis 
showed that our new formulation (0.5×4) is simpler (in terms of item difficulty) than the first one 
(4×0.5) and this is particularly due to the improvement of the performances of girls. This result is 
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coherent to the model of multiplication as a repeated sum proposed by Fischbein, Deri, Nello, & 
Marino (1985) or by Sbaragli (2012). In particular, our new formulation seemed to affect low-ability 
girls positively suggesting that they are more prone than boys to the effect of misconception. 
Moreover, empirical findings showed a sharper difference between boys and girls at the higher ability 
level, unless boys confirmed their superiority in encountering this task independently on its 
formulation at the top level of the ability distribution. Furthermore, in both versions, distractor D (i.e., 
product equal to 20) which is strictly related to the misconception, is always preferred by females. In 
particular, we observed that the inversion of the two terms of a multiplication has a huge impact on 
students’ answering behavior especially on females: strong gender gap emerges in favor of males in 
the first version (4×0.5) for students scaling at the upper-tail of the latent trait and in favor of females 
in the second version (0.5×4), especially at the lower tail of the ability distribution. In the second 
form the influence of the misconception appears lower and (probably for this reason) the item is easier 
since students can calculate the product by using the implicit model of multiplication as repeated 
addition and this particularly helps low-ability girls. 
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Multi-theoretic research designs are increasingly seen as a useful approach to connect and 
compare multiple theories employed in the in-depth investigation of specific research settings or 
specific phenomena. Central to multi-theoretic designs is the comparison of the analytical accounts 
arising from the application of different theoretical lenses to data relating to the same research 
setting. We argue that the selection of a suitable unit of analysis is critical to the legitimacy of these 
acts of comparison. This paper discusses the issues arising from consideration of the unit of 
analysis in multi-theoretic research designs and illustrates these issues with examples drawn from 
the Social Unit of Learning project. The degree of correspondence between the units of analysis 
employed in the different analyses has implications for the connections that might be made between 
the parallel analyses. 

Keywords: Classroom research, research design, research methodology, social interaction. 

Introduction 
Multi-theoretic research designs are increasingly seen as a useful approach to connect and contrast 
multiple theoretical perspectives on the same research settings or in relation to the same phenomena 
(Bikner-Ahsbahs & Prediger, 2014; Clarke et al., 2012). Such research designs generally involve 
the parallel application of multiple theories and associated research methodologies and methods 
within a single research design for analysing data relating to the same setting or situation in order to 
investigate the phenomenon and the theories of interest. Although many educational researchers 
over the years have drawn from multiple perspectives in their work (cf. Cobb, 2007), the meta 
discussion of the issues, contradictions, and affordances of such research designs is an emerging 
discourse in the field of educational research, resembling the discourse concerning mixed methods 
research designs in the early 2000s (Johnson & Onwuegbuzie, 2004). This paper particularly 
addresses the issues arise from the consideration of the unit of analysis in multi-theoretic research 
designs.  

Multi-theoretic research studies (e.g., Clarke et al., 2012; Even & Schwarz, 2003) create a need for 
researchers to consider more carefully the epistemological, theoretical and practical implications for 
juxtaposing multiple theoretical perspectives within a single research study. As argued elsewhere 
(Chan & Clarke, 2017a), we posit that theories can be complementary in their conceptual totality 
(having different epistemological and ontological bases) but nonetheless invoke operationalised 
versions of specific constructs common to both theories, which could be used to interrogate the 
setting, and form the basis for interpretive accounts which can then be juxtaposed with respect to 
their implications for practice. Commensurability was suggested as a possible important 
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consideration in multi-theoretic research, as it obliges researchers to articulate the nature of the 
comparability between theoretically-grounded interpretive accounts when juxtaposing theories. We 
argue that the commensurability between separate analyses can be examined in terms of: (a) what 
constitutes evidence within the realm of an analytical framework, (b) the unit of analysis, and (c) 
the conclusions that can be drawn from the analyses (Chan & Clarke, 2017a). 

The unit of analysis 

Central to multi-theoretic designs is the need to compare and connect the analytical accounts arising 
from the application of different theoretical lenses to data relating to the same research setting. We 
argue that the selection of a suitable unit of analysis is critical to the legitimacy of these acts of 
comparison. Säljö (2009) suggested that in the area of learning theories, there is a need to recognise 
the differences and possible incompatibilities in ontologies and epistemologies between different 
research traditions (e.g., behavioural, cognitive, and socio-cultural theories) through dialogues 
regarding what counts as evidence of learning in these different traditions. This paper argues that 
the discussion of the unit of analysis can serve such an important dialogic function because the unit 
of analysis reflects “the choice of a conceptualisation of a phenomenon that corresponds to a 
theoretical perspective or framework” (Säljö, 2009, p. 206). We take the position that the unit of 
analysis also operationalises the focal construct in terms of specific empirical data. 

According to Neuman (2003), unit of analysis refers to “the type of unit a researcher uses when 
measuring” (p. 156). The unit of analysis employed in a study can differ depending on the field of 
research (e.g., psychology or sociology), research techniques (e.g., survey or content analysis), and 
research topics and questions. Although the concept of the unit of analysis seems to have come 
from quantitative research, the concept appears to be a useful research consideration in other forms 
of research (e.g., qualitative research) for examining the internal coherence of a study (Neuman, 
2003) and the commensurability between studies (Chan & Clarke, 2017a). In order to expand the 
concept of unit of analysis to go beyond quantitative studies in terms of measurement, we define 
unit of analysis as the unit of empirical data a researcher uses to make distinction in relation to a 
focal construct. This definition is further elaborated. 

As will be argued in this paper, the choice of the unit of analysis also affects the meaningful 
comparison between theoretical perspectives and between interpretive accounts (Chan & Clarke, 
2017a). The next section provides an overview of a research project which utilised a multi-camera 
technology to generate a rich source of classroom data for multi-theoretic analyses. Three parallel 
analyses that were employed using the same data set are used in this paper as illustrative and 
contrasting examples. The paper addresses the questions, “What was the decision-making process 
involved, relating to the selection of the units of analysis in the project?” and “What are the possible 
consequences where the units of analysis employed in parallel analyses are the same or different?” 

Method 
The Social Unit of Learning Project used the Science of Learning Research Classroom (SLRC) at 
the University of Melbourne to examine individual, dyadic, small group (four to six students) and 
whole class problem solving in mathematics and the associated/consequent learning. The project 
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aimed to distinguish the social aspects of learning and, particularly, those for which “the social” 
represents a fundamental and useful level of explanation, modelling and instructional intervention. 

Data generation 

The SLRC laboratory classroom is equipped with 10 built-in video cameras and up to 32 audio 
channels. Intact Year 7 classes were recruited with their usual teacher in order to exploit existing 
student-student and teacher-student interactive norms. Two classes of Year 7 students (12 to 13 
years old; 50 students in total) provide the focus for this report. Each of the classes participated in a 
60-minute session in the laboratory classroom involving three separate problem solving tasks (e.g., 
Sullivan & Clarke, 1991) that required them to produce written solutions. The students attempted 
the first task individually (10 minutes), the second task in pairs (15 minutes), and the third task in 
groups of four to six students (20 minutes). The resulting data collected in the project included: all 
written material produced by the students; instructional material used by the teacher; video footage 
of all of the students during the session; video footage of the teacher tracked throughout the session; 
transcripts of teacher and student speech; and pre- and post-lesson teacher interviews. 

Parallel data analyses 

As an entry point for analysing the project data, the written solutions, transcripts, and video record 
were used to understand the social process that took place to produce the written solution. The 
instructional material and teacher pre- and post-lesson interviews provided insights about the class 
capabilities and social relationships that the researchers would not otherwise be able to access. 

In this project, a theory was recruited for its capacity to address constructs, artefacts or situations 
distinct from those addressed in other theories being employed – that is, for its capacity to 
complement those already selected. Several parallel analyses were undertaken, drawing on the 
established research expertise of classroom research communities in multiple countries. This paper 
particularly focuses on three of the analyses as illustrative examples of different definitions of units 
of analysis: 

1) Student negotiative foci led by Chan and Clarke; 
2) The sophistication in mathematical exchange led by Tran; and 
3) Student motivating desires led by Tuohilampi. 

Chan and Clarke (2017b) conducted an analysis that identified the negotiative foci of the students’ 
social interactions during collaborative problem solving, taking the social negotiation of meaning as 
a key constitutive element of learning (e.g., Clarke, 1997). Tran (Tran & Chan, 2017) examined the 
sophistication of the mathematical exchange between students by applying the frameworks of 
cognitive demand (Stein & Lane, 1996) and mathematical practices (Common Core State Standards 
Initiative [CCSSI], 2010). While the cognitive demand framework assumes a hierarchy of skills, the 
mathematical practices framework does not assume a hierarchy and suggests possible co-occurrence 
and interrelation between each type of mathematical practice. Tuohilampi (2018) carried out an 
investigation of the affective enablers and disablers of student participation in collaborative group 
work, drawing on the work of motivating desires (Goldin, Epstein, Schorr, & Warner, 2011) to 
explore the extent to which a group of students established a productive affective micro-culture.  
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These three analyses offer distinct perspectives and approaches for examining the data in the 
project. Initially, attempts were made to standardise the unit of all the analyses applied in this study 
in order to make “fair” comparisons between the coding. However, we soon realised that such 
standardisation would create a mismatch between the theories underpinning some of the analyses 
and the coding or categorisation that these different theories required to be applied to the data (cf. 
Säljö, 2009). Several analytical approaches were considered, including: coding using a fixed, 
common transcript unit as the unit of analysis (e.g., negotiative events or speaker turns); the 
interpretive annotation of interactions; or the narrative reconstruction of interactive sequences. In 
each of these analytical approaches, the degree of researcher interpretation and reconstruction of the 
data is different. However, some of the particular analyses undertaken in this project (e.g., 
negotiative focus and mathematical sophistication) could be carried out using the same or very 
similar units of analysis, while some (e.g., student motivating desires) required a different unit of 
analysis entirely. The degree of correspondence between the different units of analysis has 
implications for the connections that might be made between the parallel analyses. 

The analysis of negotiative foci by Chan and Clarke (2017b) employed the negotiative event as the 
unit of analysis for analysing the transcripts. In this analysis, a negotiative event is defined as “an 
utterance sequence constituting a social interaction with a single identifiable purpose” (Clarke, 
2001). For example, consider the following excerpt during the discussion of the Task 2 pair activity 
between Pandit and Anna (the number within the square brackets denotes speaker turn): 

[28] Pandit: … The average. 
[29] Anna: No. The average age is 25. 
[30] Pandit: I know. So 25 times five is average. 
[31] Anna: No. 
[32] Pandit: What do you mean? Do you know average? 
[33] Anna: You know what average is? 
[34] Pandit: Yes. Do you know what average is? 
[35] Anna: Yes. 
[36] Pandit: (Laughs) Okay. What's an average (laughs)? 
[37] Anna: So one of them is Year 7, right? 
[38] Pandit: Yeah. One of them is Year 7. 
[39] Anna: Yeah. 
[40] Pandit: So there's one dude that's 13 years old. Year 7 is 13 years old. 

The excerpt began with Pandit and Anna trying to clarify each other’s understanding of average. 
When Pandit persisted and requested an answer from Anna (Turn 36), Anna changed the subject 
(Turn 37) and revisited the task instructions in terms of the Year 7 student that they had to take into 
account as part of the task. Turns 28 to 36 can be considered a single negotiative event related to 
clarifying each other’s understanding of average (a goal that is not really achieved), while Turns 37 
to 39 constitute a separate negotiative event. In the negotiative foci analysis, the full transcript was 
partitioned into negotiative events and then subsequently coded according to the negotiative focus 
of each event (mathematical, sociomathematical, or other social focus). 
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In the case of Tran’s analysis (Tran & Chan, 2017), he initially considered an overall rating of each 
group of students in terms of the mathematical sophistication of the students’ exchange. However, 
an overall rating of the entire interaction was deemed too coarse grained, as it overlooked the 
dynamics of the student reasoning as the conversation progressed. Tran’s later analytical approach 
involved interpretive annotation of student interactions looking for demonstration of a particular 
level of thinking process (e.g., unsystematic or non-productive exploration; memorisation; use of 
procedures without connections to concepts, meaning, and/or understanding; or use of procedures 
with connections to concepts, meaning, and/or understanding) (see Stein & Lane, 1996) or a 
particular set of mathematical practices (e.g., making sense of problems and persevering in solving 
them; reasoning abstractly and quantitatively; constructing viable arguments and critiquing the 
reasoning of others; model with mathematics; etc.) (CCSSI, 2010, pp. 6–8). Also applying 
negotiative events as the unit of analysis (Clarke, 2001), Tran summarised the student interactions 
in terms of the highest level of cognitive demand attached and types of mathematics practices 
displayed by the student pair within each negotiative event. Different from Chan and Clarke 
(2017b), only verbal exchange between students with a mathematical focus was considered in the 
coding. The definition of “negotiative focus” was also re-defined in his analysis in terms of 
mathematical reasoning resulting in generally larger “event chunks” than that in the analysis 
conducted by Chan and Clarke. In addition, employing an entirely different unit of analysis, Tran 
also created storylines to trace the reasoning of the students individually and as a cognising student 
pair and a small group unit. 

The analysis of motivating desires by Tuohilampi (2018) focused on the key affective events 
(Goldin, 2017) of student interactions. Her analysis involved reconstructing the interactive 
sequences between the students during video episodes of half a minute to one minute each. For 
example, Tuohilampi (2018) described a one-minute episode (Episode 0) involving Anna, Pandit, 
John, and Arman during the group task (Task 3). During that episode, the motivating desire of John 
appeared to be Commitment, where he was pondering about the task on his own without a lot of 
interaction with the other three people in the group. However, when the previous half-minute 
episode (Episode -1) was taken into consideration, the interpretation of John’s motivating desires in 
the initial episode had to be revised to account for his apparent difficulty with communicating with 
the other people in the group due to language difficulties (Avoidance). Yet, when another half-
minute episode (Episode -2) which took place one minute before the initial episode (Episode 0) was 
considered, John’s language difficulty did not seem to have affected his friendly interaction with 
Arman. The researcher’s interpretation of the students’ motivating desires therefore could change as 
more episodes and more background information about the students were considered. 

Discussion 
Using unit of analysis as a connecting construct, we can begin to examine the commensurability 
(Chan & Clarke, 2017a) between the various analytical approaches reported in this paper. 
Consistent with Säljö (2009), central to the decision-making process involved relating to the 
selection of the units of analysis in the project, is consideration of the correspondence between the 
unit of analysis, the conceptualisation of the phenomenon of interest, and the theoretical perspective 
employed. The above examples of parallel analyses applied in the Social Unit of Learning Project 
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illustrate the close connection between the unit of analysis and the conceptualisation of the 
phenomenon of interest, which in turn corresponds to the theoretical perspective or framework. In 
the case of the negotiative focus analysis, the social negotiation of meaning was taken as a key 
constitutive element of learning (e.g., Clarke, 1997). The application of negotiative events as unit of 
analysis (Clarke, 2001) helps the researchers to focus on the purpose and content of the student 
exchange. 

The multiple analytical approaches used by Tran (Tran & Chan, 2017) highlighted the variety of 
possibilities for examining the mathematical sophistication of student exchanges. When the goal of 
the analysis of the mathematical sophistication level of the student exchange was set at the 
characterisation of the overall individual, student pair, or student group level, this focus on 
“mathematical sophistication” as a generalised attribute true of a particular social unit (individual, 
pair, group), demonstrated throughout a particular episode, reflected a theory of competency of 
learning, where a person’s behaviours are a reflection of the skills or knowledge that the person 
holds (cf. Gagné, 1962). Despite the re-conception of the unit of analysis as indicative of levels of 
thinking processes displayed throughout the student exchange, the approach still assumes a 
hierarchy of behaviours consistent with a competency view of learning. The application of the 
mathematical practices framework (CCSSI, 2010), on the other hand, appears to assume a process 
model where students may call upon or generate different skills and knowledge as they interact with 
each other during a collaborative task. 

Tuohilampi’s (2018) analysis suggests that a fixed unit of analysis such as negotiative events 
employed in the negotiative focus analysis (Chan & Clarke, 2017b) and the analysis of the 
mathematical sophistication of student exchange (Tran & Chan, 2017) is unsuitable for the analysis 
of motivating desires. A negotiative event based on the transcript appears to be too restrictive to 
interpret a person’s affective responses and ascertain the person’s motivating desire. The analysis of 
motivating desire requires interpreting the intention(s) of the actor, where the intention(s) are fluid 
and can be defined and re-defined depending on how the situation perceived by the researcher, 
taking in to account the prior and subsequent behaviours of the people involved, and the 
consequence(s) of the interactions. 

The second question that this paper addresses is: “What are the possible consequences where the 
units of analysis employed in parallel analyses are the same or different?” The multi-theoretic 
research design of this study makes possible the comparison and contrasting of multiple analytical 
approaches. While the use of a standardised unit of analysis may suggest that it is possible to 
directly compare the results of the parallel analyses in terms of their application to a specific 
“piece” of data, the validity of individual analyses could be compromised in terms of their 
correspondence to the theoretical perspective and the phenomenon of interest. In order to preserve 
the coherence of individual analyses, the standardisation possible between analytical approaches is 
limited. Nevertheless, the common data source and setting that the separate analyses draw upon 
provide important points of connection between the analyses. 

In the past, our capacity to connect analyses of the learning process employing different theoretical 
perspectives has been limited to comparison of the reports of research undertaken in relation to 
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different individuals interacting in different learning environments. The inevitable internal 
alignment of data with the choice of analytical lens within each separate report has made the 
comparison and connection of these separate analytical accounts difficult. Multi-theoretic research 
designs afford the comparison and connection of analytical accounts in relation to the same setting 
and data source. This represents a significant advance in our capacity to deal with the complexity of 
a particular social setting, through the combination of perspectives offered by multi-theoretical 
designs. This also affords the delineation of the zone of applicability of each of the theoretical 
lenses applied. These advantages remain whether or not the different analytical accounts employ the 
same unit of analysis. 

The use of multiple theories is motivated by two goals: understanding of the setting and delineation 
of the field of feasible application of the theory. Careful attention to the unit of analysis is required, 
if these two goals are to be met. It is through analytical accounts grounded in the designated units of 
analysis that comparisons are made and whether comparison of these accounts can serve as an 
adequate surrogate for the comparison of the related theories will depend on the coherence with 
which each unit of analysis is connected to the relevant superordinate construct and the theory from 
which it was drawn. 

Conclusion 
Acts of comparison are fundamental to all forms of research, and are dependent on the careful 
selection of the units of analysis by which these acts of comparison are undertaken. Our use of 
multiple theories serves to highlight this critical consideration. It is not surprising that analyses 
informed by different theories should require different units of analysis. We would like to 
emphasise, however, that strategic consideration of the units of analysis can facilitate the 
identification of connection and distinction between multiple theories and therefore enhance our 
understanding of both the theories and the phenomenon of interest. With the emerging meta-
discourse about multi-theoretic research, it is hoped that the explication of the issues concerning 
units of analysis provided in this paper will contribute to the further theorisation of multi-theoretical 
research approaches. 
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We present a comparative micro-study analyzing whether the changes made to the admission 
requirements to the primary teacher training programs of the Universitat Autònoma de Barcelona 
and the University of Helsinki in the academic year 2017-18 have had an impact on the background 
mathematical knowledge of those admitted to the programs. We are interested in finding elements 
that provide information for university admission policies. Our results show that significant changes 
only took place in Barcelona and these were a consequence of the variations in the academic profile 
of the students admitted. We conclude that working with a context-bound instrument, while making 
comparison difficult, directs the researchers’ attention to the need for an in-depth theoretical 
discussion about the mathematical knowledge of candidates to initial teacher education programs 
and a methodological discussion on how to evaluate this knowledge.  

Keywords: University access requirements, primary teaching degree, background mathematical 
knowledge.  

Introduction 
Our study is among those that attempt to determine what factors influence the development of 
mathematical knowledge for teaching during teacher education. According to Blömeke and Delaney 
(2012), some of these variables are the institutional characteristics of each program, the idiosyncrasies 
of the national and social context, and the individual characteristics of the students attending the 
programs. The survey we present here is a small part of an emerging comparative study that aims to 
contribute to the discussion of university policies regarding access to primary teacher education 
programs while promoting a theoretical debate about what the desirable mathematical knowledge of 
students admitted to these programs would be (for more details about the project, see e.g. Albarracín, 
Gorgorió, Laine, & Llinares, 2018; and Gorgorió et al., 2017). We understand that the admissibility 
criteria and the requirements for access to educational programs, as institutional particularities, 
contribute to defining the individual characteristics of their students. We assume that the 
mathematical knowledge with which students access primary teaching programs – henceforth, 
background mathematical knowledge – influences the development of the knowledge needed to teach 
mathematics during their education. 

As educators of primary school teachers, we are interested in finding elements that provide 
information for university admission policies so that requirements can be established to ensure a 
minimum of mathematical knowledge among admitted students. Comparative studies between 
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different national realities that evaluate the mathematical knowledge of the candidates in relation to 
the admission criteria can help to explain the success differences between the different training 
programs, thus identifying variables that may otherwise remain hidden in national studies and hence 
remain unquestioned.  

Since 2014, at the Universitat Autònoma de Barcelona, Catalonia – henceforth BCN – we have been 
evaluating the background mathematical knowledge of students admitted to the primary teaching 
program through a specific test. In the 2016-17 academic year, we decided to also administer the test 
to the students admitted to the Master of Education degree at the University of Helsinki, Finland – 
henceforth HEL – to study the results comparatively, taking the entrance requirements into account. 
We then observed that students at HEL performed significantly better than students at BCN.  

In this paper, we present a comparative micro-study analyzing whether the changes introduced in the 
2017-18 academic year regarding requirements for admission to the primary teacher training 
programs in Catalonia and at the University of Helsinki have had an impact on the background 
mathematical knowledge of those admitted to the programs. The changes are of a very different nature 
and have to do with the idiosyncrasies of the respective university and school systems. For the 
students admitted to a teaching degree in Catalonia, and in particular to BCN, September 2017 was 
the first time they had to pass a specific mathematics test. At HEL the change consisted in increasing 
the proportion of candidates for whom not only the VAKAVA-test and suitability test but also the 
mathematics and Finnish grades of the matriculation examination were considered for admission. 

We exploited quantitative data collected in the academic years of 2016-17 and 2017-2018, i.e. before 
and after changes took place in the admission criteria both at BCN and HEL. Here we discuss how 
the changes introduced have impacted students’ performance on the test, comparing the performance 
across years, both within and between universities. We are especially interested in seeing whether the 
differences occur as result of the changes in the academic profile of the admitted students prior to 
their University studies.   

Admission to a primary teaching degree at BCN and HEL  
The recent introduction of the requirement to pass a specific mathematics test for admission to the 
primary teaching degrees in Catalonia justifies the presence of BCN in the research study. Since the 
results of the first PISA Study were published in 2000, there has been widespread international 
recognition of the success of Finland’s educational model. Even though this success is due to many 
factors, the most important aspect is believed to be the quality and competence of its teachers 
(Salhberg, 2011). For this reason, it seemed logical to include a Finnish program in this study. In 
addition, since the policies and admission requirements to the primary teaching program in Helsinki 
are very different from the Spanish ones, we consider it interesting to compare HEL and BCN.  

Since 1979, primary teachers in Finland need to have completed a Master of Education degree (300 
ECTS). After compulsory education, youngsters can enter the job market directly or instead attend 
either university-preparatory Upper Secondary School or Vocational School. At Upper secondary 
school, students can choose to do either intermediate mathematics or advanced mathematics. At the 
end of Upper Secondary School, students take the Finnish Matriculation Examination, 
Ylioppilastutkinto in Finnish (henceforth YLIO), which is the only national-level test in Finland. Each 

Thematic Working Group 11

Proceedings of CERME11 2032



 

 

examinee is required to complete at least four exam papers, only one of them (mother tongue) being 
mandatory. The remaining three are chosen by the student and may include one in mathematics, either 
intermediate or advanced. Graduates of Vocational School may also gain admission to university. In 
Finland, students interested in becoming primary teachers, after passing the YLIO, must go through 
a special two-stage application process. The first stage involves taking an exam (the so-called 
VAKAVA testi) based on a set of education-related readings. Those who perform well on this exam 
go on to the second stage, a suitability test that assesses their motivation to study and suitability to 
work as teachers. Universities in Finland agree on the number of new admissions in cooperation with 
the Ministry of Education. At HEL, fewer than 10% of applicants are accepted annually for the 
primary teacher education program. In 2016-17, 48 students (40%) were selected based on the 
suitability test alone and 72 students (60%) were selected based on the suitability test and their grades 
in the YLIO in 4 subjects – Finnish and 3 optional subjects. In 2017-18, only 24 students (20%) were 
selected based on the suitability test alone, and 96 students (80%) based on the suitability test and the 
grades in the YLIO in Finnish and mathematics. Thus, the number of students at HEL who took a 
mathematics test in the YLIO increased by at least 20 percentage points. 

In Spain, primary teachers are required to have completed a Degree in Primary Teaching (240 ECTS). 
Access to primary teaching degrees can be gained via the Baccalaureate (2 years of non-compulsory 
education) or through a vocationally-oriented Professional Cycle. Those who study Baccalaureate 
may choose a track containing mathematics – either mathematics or mathematics for social sciences 
– but some tracks do not contain any mathematics subjects. The professional cycles from which 
students gain access to the primary teaching programs do not have mathematics courses. Those that 
have completed the baccalaureate have to pass the Pruebas de Acceso a la Universidad (henceforth 
PAU) to be admitted to any university program. Four of the exam papers of the PAU are universal 
for all students across Spain, but this is not the case for mathematics, which is an optional subject. 
Students who have completed a Professional Cycle may also gain access to university. Therefore, 
applicants to teacher education programs in Spain will not have taken any mathematics courses in 
post-compulsory education unless they have taken one of the two tracks of the Baccalaureate that 
include mathematics. It is important to point out that the number of student places in primary teaching 
degrees in Spain bears no relationship to the actual number of teaching jobs in the market. At BCN, 
around two thirds of the applicants were admitted for the academic years 2016-17 and 2017-181. In 
the academic year 2016-17, there was no specific requirement for admission to Primary Teaching 
programs in Spain outside the universal procedure described above. However, in Catalonia, starting 
in the 2017-2018 academic year, a specific complementary entrance examination – which includes a 
mathematics test – was implemented. 
Data collection 
Instrument 

The instrument we used to collect our data was the mathematics test that had been designed and used 
to pilot the specific complementary entrance examination in Catalonia mentioned above that had the 
                                                 
1 http://universitats.gencat.cat/ca/altres_pagines/informe_i_estadistiques/informes_i_estad_pre/ 
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administrative purpose of regulating access to primary teaching degrees in Catalan universities. The 
mathematics test was intended to ensure a minimum mathematical content knowledge of admitted 
candidates (for a detailed description of how the test was created and validated see Albarracín et al., 
2018). The test evaluated disciplinary knowledge of a conceptual and procedural nature.  

The test had 25 questions, with an open-answer format, related to the prescribed curriculum of 
Spanish compulsory education – Numbers and Arithmetic, Space and Shape, Relations and Change, 
Magnitude and Measure, and Statistics and Randomness. The weight given to each content area was 
related to the actual presence of said contents in the school practice. Thus, there were 7 items on 
numbers and arithmetic (procedural and conceptual exercises with natural, integer, fraction and 
decimal numbers), 5 items on magnitude and measure (concepts of length and area, calculation of 
perimeter and area, and units change, in both decimal and sexagesimal systems), 5 items on relations 
and change (3 items on proportionality, 1 patterns, and 1 graph interpretation), 4 items on space and 
shape (2 conceptual on plane geometry, 1 visualization, 1 representation) and 4 items on statistics (1 
reading and 1 construction of bar charts, 1 interpretation of a pie chart, all of them procedural, and 1 
on conceptual measures of central tendency). Students had 90 minutes to answer the test and no 
calculators were allowed. 

The following are examples of the items in the test: 

· 4- A product is on sale. According to the label, the normal Price is £125. The sale price is £100. 
What percentage of discount has been applied? 

· 7- Which prime number can be made by subtracting two multiples of 7? 
· 14-  What is the surface area of a square with a permiter of 32 cm? 
· 16- Which of the following figures must have equal diagonals? a) square; b) rhombus; c) 

rectangle; d) trapezium 
· 18- How many cm are in 7.8 km? 
· 24- What number would we add to the list in order for the mean to equal 7? {2, 6, 6, 6, 8, 8, 9} 

From the beginning we were aware that the test, as it had been defined, was going to be culturally 
context-bound to the idiosyncrasies of the educational system in which it had arisen. Although the 
curricula in Finland and Spain are not so different, the emphasis placed on each of the subjects and 
the way they are taught in class is. We have purposely included some of the items of the questionnaire 
as examples that will serve to illustrate how the questionnaire was bound to the context. For example, 
it was already expected that item 7 shown above would harm students’ results in HEL, since, although 
they work on divisibility, the term “prime number” is not as familiar to them. Another example would 
be item 16 since it includes the idea of a rhombus, which is rarely used in Finland – it is not a category 
in itself in the classification of quadrilaterals that schoolchildren learn, contrary to what happens in 
Spanish school mathematics lessons, where the rhombus gives rise to a category in itself. A full 
discussion of how the test was context-bound can be found in Albarracín et al. (2018).  

Participants and data collection 

In HEL, the test was taken by the 116 students starting their primary teaching education program in 
2016-17 and 2017-18, at the very beginning of their courses in August. In BCN, the 254 students that 
initiated their teaching education in 2016-17, and the 276 that did so in 2017-18, took their test in 
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February, at the beginning of the second semester. Neither in HEL nor in BCN had students taken 
any university class on mathematics or mathematics education at the time of the test.  

Students had to answer the test on a worksheet, without using a calculator and in a maximum time of 
90 minutes. The answers were marked, assigning 1 point when the answer was completely correct 
(meanings, calculations, units, etc.) and 0 points if it was not. The students’ grades in the exam are 
part of our data, the other group being the information they gave us about their previous academic 
trajectory, allowing us to gain information on which (if any) mathematics courses they had taken as 
part of their pre-university education.  

Results 
Reliability of the instrument 

First, to test the reliability of the data obtained in the test, we calculated the Cronbach’s alpha, both 
overall and for each campus, as an internal consistency estimate of the reliability of the test scores. 
The results that we obtained  (α BCN·16·17 = 0.8157;  α HEL·16·17 = 0.8106; α BCN·17·18 = 
0.7963; α HEL·17·18 = 0.7579; α Overall = 0.7985), in all cases higher than the reference value of 
0.7, were a suitable indicator of the internal consistency of the instrument, meaning that the different 
questions of the test evaluate the mathematical knowledge with which students arrive at the teacher 
education programs, in a coherent way and from a disciplinary perspective. In this way, we consider 
that the instrument sufficiently and consistently approaches our idea of background mathematical 
knowledge.  

Differences in performance  

Table 1 presents the basic statistics that describe the centrality and distribution of the scores in the 
test by the students in HEL and BCN in 2016-17 and 2017-18 academic years.  

Variable HEL·16·17 HEL·17·18 BCN·16·17 BCN·17·18 

N 116 116 254 276 

Mean 17.233 17.595 15.996 17.750 

SE Mean 0.405 0.368 0.302 0.264 

StDev 4.363 3.963 4.812 4.389 

Minimum 7.000 6.000 3.000 4.000 

Q1 14.000 15.000 12.000 15.000 

Median 17.500 18.000 16.000 18.000 

Q3 21.000 21.000 20.000 21.000 

Maximum 25.000 24.000 25.000 25.000 

Table 1: Centrality and distribution of marks 

A series of mean comparison t-tests allows us to establish the significance of differences (Table 2) 
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 Estimate for 
Difference 

Confidence Interval for 
difference (95%) 

p-value 

HEL·17·18 vs. HEL·16·17 0.362 (-0.716; 1.440) 0.509 

BCN·17·18 vs. BCN·16·17 1.754 (2.539; 0.969) 0.000 

HEL·16·17 vs. BCN·16·17 1.237 (0.242; 2.232) 0.015 

HEL·17·18 vs. BCN·17·18 -0.155 (-1.084; 0.773) 0.743 

Table 2: T- tests comparison of score means across universities 

As can be seen in Table 2 for 2016-17, students at HEL obtained significantly better results than 
students at BCN. It also shows that at HEL there was no significant change in performance between 
2016-17 and 2017-18. However, results at BCN were significantly better in 2017-18, to the extent 
that such results cannot be statistically distinguished from the results in HEL of the same year. 

Impact on the academic profile of students admitted to BCN 

We note that there are only significant differences between the results before and after the 
implementation of a new requirement at BCN, this being the only change affecting entry conditions 
at BCN. In Albarracín et al. (2018) we had found that the academic profile of students prior to entering 
university generated different results. Therefore, it is interesting to explore what aspects have changed 
in the profile of admitted students – we have no information about those who applied for admission 
but were not admitted.  

We labelled BCN students who had only taken the compulsory mathematics BCN·COM and those 
who had followed the Baccalaureate track containing mathematics BCN·BAC. Table 3 shows the 
proportion of students and the mean of the scores obtained in the test by the students in each subgroup, 
as well as the standard deviations. Table 4 shows the results of the T-tests comparing the mean scores 
of the subgroups. 

 

Table 3: Proportion of students that had taken mathematics after compulsory education, and the mean 
scores of each subgroup, with standard deviations 

 

 Percentage of students 
in each subgroup  

Mean score 
(max. 25) 

Standard 
deviation 

BCN·COM·16·17 42.52% 13.611 4.488 

BCN·BAC·16·17 57.48% 17.760 4.263 

BCN·COM·17·18 32.61% 15.967 4.348 

BCN·BAC·17·18 67.39% 18.613 4.153 
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 Estimate for 
difference 

Confidence interval 
for difference (95%) 

p-value 

BCN·COM·16·17 vs. BCN·BAC·16·17 -4.033 (-5.175; -2.891) 0.000 

BCN·COM·17·18 vs. BCN·BAC·17·18 -2,646 (-1.580; -3.712) 0.000 

BCN·COM.1718· vs. BCN.COM.1617 2.356 (3.601; 1.110) 0.000 

BCN.BAC.1718 vs. BCN.BAC.1617 0.853 (1.766; -0.061) 0.067 

Table 4: Results of the T-tests comparing the mean scores of the subgroups depending on whether they 
had taken mathematics after compulsory school 

In both the 2016-17 and 2017-18 academic years, students who had studied mathematics during 
Baccalaureate obtained better test results than those who had not. In addition, the 2017-18 academic 
year increased the number of students in the first group by 10 percentage points. In the 2017-18 
academic year, students who had studied mathematics during Baccalaureate obtained better results 
than the same group in the previous academic year, but by a few thousandths we cannot say that this 
difference is significant. However, the difference is significant between 2016-17 and 2017-18 for 
those who had not studied mathematics during their post-compulsory education.  

Discussion 
In our contribution we analyzed the impact of changing the criteria and requirements for admission 
to the teacher education programs of the Universitat Autònoma de Barcelona and the University of 
Helsinki. In both cases, the change implies a greater demand in relation to mathematics. However, 
we see that while in Barcelona the impact is significant, in Helsinki it is not so.  

The results from BCN show that the introduction of the mandatory requirement to pass a mathematics 
test in order to gain access to the teachers’ education program has generated a change in the academic 
profile of admitted students and their mathematical background knowledge has improved 
significantly compared to the previous academic year. We found that the number of students who 
continued to study mathematics after completing their compulsory schooling has increased by 10 
percentage points. Our knowledge of the Catalan university system allows us to state that the only 
variable that could have generated this change in the academic profile of the students is the 
introduction of this new requisite. In addition, those who dropped out of mathematics at the end of 
compulsory schooling have also proven to have a better background mathematical knowledge than 
those in the same group the previous year. From informal conversations with the students, we dare to 
say that they have prepared for the new specific mathematics test that was part of the new entrance 
requirements.  

However, we did not observe any significant changes in Helsinki. We believe that this is essentially 
due to the fact that the instrument used to collect our data was bound to the Catalan context. Although 
access to the primary teaching program in Helsinki had increased its mathematical demands, the 
terminology and formalism of the test that we used are still elements that have little weight on the 
education of Finnish students. In Hel, the new entrance requirement implies that a greater number of 
admitted students have studied secondary mathematics. However, the mathematics of intermediate or 
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advanced courses of upper-secondary in Finland are of little help to answer test questions linked to 
an approach that is characteristic of another national context. 

We find it interesting to compare data from two cultural realities as different as the university systems 
of Finland and Catalonia. These results provide us with ideas that a study restricted to only one 
country would not generate, and these ideas can contribute to decision making. In particular, the 
changes introduced in Helsinki in the 2017-18 academic year are a consequence of the analysis of the 
results obtained by its students in the 2016-17 academic year. In Catalonia, our study can help to 
support the changes introduced that are beginning to be questioned by the media. We plan to 
incorporate data from other European universities into our study in the near future. 

We are aware that working with a context-bound data collection instrument generates dilemmas, such 
as those suggested by Clarke (2013), that appear when an international comparative study is carried 
out. In spite of this, researchers working together who are outsiders with respect to each other’s data, 
cultural contexts and national realities leads to richer and more nuanced interpretations. In addition, 
working with a context-bound instrument, while it makes comparison difficult, directs the 
researchers’ attention to the need for an in-depth theoretical discussion about what the desirable 
mathematical knowledge would be for candidates to initial teacher education programs. An agreement 
on the theoretical level on what basic knowledge an entrance examination should evaluate would help 
to agree on the characteristics of the examination on the methodological level, to avoid it being strictly 
tied to a context.  
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This cross-cultural study focuses on specific features concerning the introduction to early algebra 
in three neighbouring countries – Estonia, Finland and Sweden – that, despite having relatively 
similar school systems, have different student results in international evaluations. The data consists 
of commonly used mathematics textbooks for Grades 1-3, and the focus of analysis is particularly 
on the treatment of expressions, equations, inequalities, and the meaning of the equal sign. The 
results show differences not only between the countries but also between different language groups 
within the same country, and similarities between the same language groups in different countries. 
We exemplify the most significant characteristics identified in different contexts in relation to 
various approaches to early algebra described in research literature, and discuss the implications 
of the findings for our research field.  

Keywords: early algebra, comparative analysis, mathematics curriculum, primary education 

Background 
Early introduction to algebra has been in focus in recent research, and several researchers point out 
that it is beneficial to start working with important ideas within algebra already in primary school 
(e.g. Blanton, Stephens, Knuth, Murphy Gardiner, Isler & Kim, 2015). For example, an intervention 
study by Blanton et al. (2015) shows that students can improve their understanding of so-called big 
ideas of algebra with an appropriate teaching approach and relevant material. International 
comparisons show that there are great differences between approaches to the teaching and learning 
of algebra in different countries (e.g. Cai, Lew, Morris, Moyer, Ng & Schmittau, 2005; Leung, 
Park, Holton & Clarke, 2014). These comparisons have mainly concerned countries with 
significantly different cultures and school systems. In contrast, the present study investigates the 
early introduction to algebra in the three neighbouring countries of Estonia, Finland and Sweden, 
where the school systems are quite similar. For example, all three have nine years of compulsory 
school with no tracking. Moreover, national steering in the three countries is relatively weak, with 
no approval process for   curriculum materials that are commercially produced. We deem that the 
similarity of the school systems facilitates the identification of specific features concerning the 
views on early progression in algebra in these countries. In international evaluations, there are 
differences between the countries in students’ learning outcomes, making it interesting to discuss 
different approaches to early algebra in relation to this variation. While Estonian and Finnish 
students’ results in international comparisons have been relatively good, algebra has not been the 
strongest area in Finland (Yang Hansen et al., 2011). In Sweden, students’ results in algebra have 
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been low since the 1960s regardless of the variation in other mathematical topics (Hemmi et al., 
2018).  

Curriculum materials are produced within certain educational traditions, and may therefore be 
shaped by national perspectives on the specific school subjects (cf. Andrews, 2007). In all three 
countries, mathematics textbooks are an important part of classroom work. Therefore, in this paper, 
we exemplify and discuss typical characteristics of the approaches to early algebra in Estonia, 
Finland and Sweden as identified in our textbook analysis concerning Grades 1-3 (ages 7-9 years). 
We have also included textbooks produced by Finnish Swedish1 authors in the analysis, as there are 
differences between the two language groups in Finland when it comes to students’ learning 
outcomes, as well as teachers’ relation to mathematics textbooks (e.g. Pehkonen, Hemmi, 
Krzywacki & Laine, 2018). We acknowledge that the textbooks can be used by teachers in various 
ways when designing and enacting mathematics lessons (e.g. Lepik et al., 2015; Röj-Lindberg, 
Partanen & Hemmi, 2017; Kilhamn, 2014). However, we deem these kinds of studies important as 
we learn how textbook authors interpret the introduction of early algebra in different cultural-
educational contexts. The following research question guides the study: What are the specific 
characteristics of early algebra in textbooks series produced in four different contexts?  

Relevant research and theories 
Few comparative studies address the progression of algebra in different countries’ curricula. Cai, 
Lew, Morris, Moyer, Ng and Schmittau (2005) study how algebraic concepts are developed and 
represented in the curricula of the US (Investigations curriculum), China, Singapore, South Korea 
and Russia (Davydov curriculum). The study by Cai et al. (2005) shows that the three Asian 
countries build informal equation solving on the use of inverse operations and the related doing-
undoing. In the Russian Davydov curriculum for Grades 1-3, children develop algebraic thinking by 
exploring and comparing quantities before the study of arithmetic and, in contrast to the US 
Investigations curriculum, letters are used from the very beginning (Cai et al., 2005). Both the 
Russian and the US curricula address real-life problems, but in fundamentally different manners. In 
the former, they are carefully planned and sequenced to help students develop a theoretical 
understanding of mathematical concepts and an ability to analyse problem situations (Cai et al., 
2005). Rather than proceeding inductively from the concrete to the abstract as  Investigations does, 
the Davydov curriculum develops students’ ability to see the same abstract relationships across 
different concrete contexts. Investigations engages students in mathematical problems embedded in 
authentic contexts and these applied problem-solving activities require US students to explore 
problems in depth, construct their own strategies and approaches utilizing a variety of tools (e.g., 
manipulatives, computers, calculators), and communicate their mathematical reasoning through 
drawing, writing, and talking (Cai et al., 2005).    

Based on recent research on early algebra and the language of learning progression, Blanton et al. 
(2015) have identified five so-called big ideas connected to algebraic thinking. These big ideas 
                                                 
1 About 5% of the Finnish population has Swedish as their mother tongue, and have the right to receive education in 
Swedish.  
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consist of: 1) equivalence, expressions, equations and inequalities; 2) generalized arithmetic; 3) 
functional thinking; 4) proportional reasoning; and 5) variables. In a recent study, we used the big 
ideas as the basis for an analytical tool in order to analyse the algebraic content in the current 
Swedish curriculum for mathematics as well as two Swedish textbook series for Grades 1-6 
(Bråting, Madej & Hemmi, 2019). In the study reported in this paper, we look more in-depth at 
Grades 1-3 and the first two big ideas. The first – equivalence, expressions, equations and 
inequalities – includes relational understanding of the equal sign; representing and reasoning with 
expressions, equations, and inequalities; as well as relationships between and among generalized 
quantities. The second big idea – generalized arithmetic – involves reasoning about structures of 
arithmetic expressions (rather than their computational value) as well as generalizations of 
arithmetical relationships, which include fundamental properties of numbers and operations (e.g., 
the commutative property of addition) and inverse properties of operations (Blanton et al., 2015).   

Method 
We chose the textbooks to be analysed based on our knowledge of their popularity in each region. 
In order to examine the variation within different contexts, we chose two textbook series each in 
Estonia (Matemaatika by Koolibri and Matemaatika by Avita), Finnish Finland (hereafter FinFin) 
(Kymppi and Tuhattaituri), and Sweden (Eldorado and Matte Safari). Only one series has been 
produced in the Finnish Swedish context (hereafter FinSwe), Lyckotal. In the data analysis, we 
identified the sections connected to the big ideas of equivalence, expressions, equations, and 
inequalities as well as generalized arithmetic. The insider(s) in each region conducted the analysis 
according to our collective interpretation of the categories based on our thorough discussions, and 
the analyses were then discussed by the whole research team. The analysis was qualitative, 
identifying the character of the texts and their order/place of appearance throughout the three grades 
in order to understand the progression of this big idea within various topics. The only quantification 
that took place in the analysis was connected to the identification of possible dominating topics. For 
example, if a certain kind of task occupied a great number of pages in a textbook or occurred 
regularly throughout the grades, it was marked in the analysis protocol. While it is not possible to 
report the results of the entire study within the scope of this paper, in the following we will 
describe, exemplify, and discuss the most striking differences and similarities displayed in the 
textbooks from the four regions.        

The results with illustrative examples  
Estonia 

Addition and subtraction are introduced simultaneously in Grade 1, with subtraction introduced as 
the inverse of addition. In Grade 2, multiplication and division using whole numbers are introduced 
in a similar manner. Students are to find missing values using the inverse property of the operations 
(Figure 1). They should learn the names of the components and results of the four arithmetic 
operations in order to be able to reason about informal equation solving using the inverse property 
of the operation at a more general level. In addition, the trial and error strategy is introduced for 
searching the value of an unknown. At this stage, various symbols (box, blank, letter) are widely 
used in the textbooks to represent a variable or an unknown. Children are expected to learn to use 
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letters to express the relationships between quantities and determine the correct order of operations 
in expressions (parentheses, multiplication/division and addition/subtraction) from Grade 2. The 
notions of equivalence and inequality of two expressions (incl. letter expressions) are introduced 
and practiced using the formal signs (=, <, >) from the beginning. 

 
Figure 1. Division as the reverse of multiplication in Estonian Grade 2 textbook, (Matemaatika by 

Koolibri) 
Rather than seeing equations as simply objects to manipulate, in Estonian primary textbooks from 
Grade 2 the equations describe relationships between varying quantities that arise from 
contextualized situations. Children are required to schematically represent the internal quantitative 
relationships in word problems and to write expressions of these relationships (Figure 2). This 
process is sequenced by the authors so that the same abstract relationship appears in different 
concrete contexts. Textbooks also systematically guide students in composing their own word 
problems for given expressions. 

 
Figure 2. Modelling word problems in Estonian Grade 2 textbook (Matemaatika by Koolibri) 

Finland 

In the FinFin textbooks, equalities and inequalities are presented with formal signs (>, <, =) in 
parallel from the very beginning of Grade 1 and are used consistently throughout the three grades. 
First, only numbers are compared, and later during Grade 1, expressions are compared. This 
approach is different from the FinSwe style, in which the equal sign is introduced in Grade 1 while 
the signs for inequalities are only briefly introduced and practiced. Similar to the Estonian 
textbooks, one of the FinFin textbooks (Tuhattaituri) introduces the inverse property of addition 
and subtraction and guides students in using it in informal equation solving during Grade 1. The 
same is done with multiplication and division in Grade 2. This is not the case in the FinSwe 
textbooks, however, where equations start to appear at the beginning of Grade 1 in connection with 
the partition of specific numbers, for example with the number 5 in Figure 3. 
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The inverse property of addition and subtraction is introduced very briefly in the FinSwe textbooks 
during the first school year using so-called number families, whereby the student is tasked with 
writing out different expressions with the numbers 10, 3 and 7 in the shape of a triangle with + and 
– signs included. Hence, the students are expected to see how the members of this “family” are 
connected to each other via the operations. No explicit connections are made to guide students in 
using the inverse properties in equation solving. In the FinFin textbooks, the informal equation 
solving proceeds step-by-step by first focusing only on equations in which the same term of the 
operations is missing, while in the FinSwe books, diverse and sometimes open equations start 
appearing quite early in Grade 1. For example, students are asked to create two different 
expressions that are equal to each other during the first school term by filling out empty spaces (e.g. 
_ + _ = _ + _), or with expressions in which the operations are missing (e.g. 4 _ 3 = 5 _ 2). 

 

 

 

 

Figure 3. Partition of the number 5 in the FinSwe textbook (Lyckotal) 

Contrary to the FinFin textbooks, at no point during Grade 1 are students asked to check their 
solutions by using the inverse operation. Neither the FinFin nor the FinSwe textbooks use letters for 
variables or unknown quantities during Grades 1-3; instead, they use gaps or pictures such as 
flowers and hearts. Thus, in the textbooks from the two language contexts students are expected to 
write the expressions of operations based on pictures or real-world problems from the beginning. 
The FinSwe textbooks also guide students in finding real-world problems for expressions, which we 
do not find in the FinFin textbooks. 

 

a) 16: 4 + 15: 5                        b)                     
       = 4 + 15: 5 

       = 4+3 

Figure 4. Handling of expressions (a) and informal equation systems (b) in the FinFin mathematics 
textbooks 

In the FinFin context, the priority rules are presented in Grade 2 and students learn to systematically 
calculate the value of expressions with two operations, stepwise marking every new phase below 
the previous expression. In Grade 3, students are to handle expressions with three operations in a 
similar matter, as in Figure 4a, where the first line includes two divisions and one addition. For 
Grade 3 the FinSwe textbooks state that the multiplicative operation is done before the additive, but 
all calculations are done in a straight line, i.e., not each below the previous as in the Finnish 
textbook Kymppi, shown in Figure 4a. The commutative properties of operations are presented 
during Grade 1 (addition) and Grade 2 (multiplication) in the FinFin textbooks. The formal names 
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of the operations are used from the beginning, and in Grade 3 students are to choose the correct 
expressions for sentences, for instance “Subtract from the quotient of 18 and 2 the product of 2 and 
3.” A special feature of the Finnish textbook is its repeated exercises from the very beginning in 
solving systems of equations in an informal manner (see Figure 4b).  

Sweden 

What characterizes the Swedish textbook series, especially Matte Safari, is the emphasis on open 
number sentences (see Figure 5). Inverse expressions occur in the context of number families, but 
the connection between addition and subtraction is barely visible in practice. As in the FinSwe 
textbooks, no explicit connections are used to guide students in applying the inverse properties in 
equation solving. We found only one example in a single textbook (Eldorado) in which students 
were to check their solutions using the inverse property.  

 

Figure 5. Practicing of open number sequences (Matte Safari) 

Both textbook series present the commutative property of addition and state that subtraction is not 
commutative. Multiplication is introduced in Grade 2, and the commutative property of 
multiplication is shown in both textbook series. The inverse relation between multiplication and 
division is only presented in Eldorado. Expressions are addressed in both textbook series, but more 
often in Eldorado. In both series, the expressions go “both directions”, i.e. students are expected to 
write an expression from a real-world problem or a picture, but also to create their own text problem 
for a given expression. This is similar to the Estonian and FinSwe textbook series. An example of 
this is the task “Draw and write text problems” in Grade 1, in which students are to create text 
problems for the expressions 5+3+2 and 12-5. 

 

  

 

 

Figure 6. Examples of equations in the Swedish Grade 1 textbook (Eldorado) 

Priority rules are not considered in either of the two Swedish textbook series; and neither are 
inequalities, even though one of the textbooks guides students in using the symbols for “greater 
than” and “less than” to express which of two numbers is larger or smaller. However, this appears 
only one single time and in the other textbook these symbols are not used at all. The relational 
meaning of the equal sign is emphasized in both textbook series, especially Matte Safari. For 
example, students are asked to write = or ≠ between expressions like 9 - 2 and 4 + 4 or 7 + 3 and 2 
+ 8. There are also fully open number sentences, such as _ + _ = _ + _, in line with the FinSwe 
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textbooks. Neither of the textbook series introduces formal equation solving. Yet, one of the 
textbooks introduces “the symbol x” as a placeholder in Grade 1, using the sentence “The symbol x 
has a value which makes the equality true”, and lets students find the value of x through inspection 
(Figure 6). However, this is not followed up in Grade 2 or 3. 

Discussion and conclusion 
Our analysis reveals both differences and similarities between the four regions. Next, this will be 
discussed in light of relevant research. 

The Estonian textbooks and one of the Finnish textbook series frequently use inverse properties of 
operations in connection with informal equation solving, which is similar to how informal equation 
solving is prescribed in the Singaporean and Chinese curriculum documents (Cai et al., 2005). 
Meanwhile, the Finnish Swedish and the Swedish textbook series use inverse properties of 
operations in the context of “number families” (Figure 3), but not explicitly in connection with 
informal equation solving. Instead, they both frequently use open number sentences to introduce 
students to equation solving. In Sweden, this approach might be connected to the emphasis on the 
meaning of the equal sign, which is explicitly pointed out in the current Swedish mathematics 
curriculum for Grades 1-3 (Bråting, Madej & Hemmi, 2019). In all textbook series from the four 
regions, the handling of expressions appears to varying degrees and students are expected to write 
expressions based on real-world problems. However, it is only in the Estonian textbooks that 
students are expected to create letter expressions and equations, which is in conformity with the 
Russian Davydov curriculum in which letters are used from the very beginning (Cai et al., 2005). 
The Swedish and the FinSwe series guide the students in finding real-world problems for 
expressions by means of writing and drawing. This approach is analogous to the US Investigations 
curriculum, in which students are required to explore problems in depth and construct their own 
strategies using a variety of tools (Cai et al., 2005).  

We know that both Estonian and Finnish students have had outstanding results on PISA 
(Programme for International Student Assessment), in which concrete real-life problems are solved. 
Both Estonian and FinFin textbooks focus on the creation of quite complicated expressions in 
Grades 1-3, which might enhance students’ structural understanding of problems. This is something 
to delve into more deeply in further studies. Perhaps the most striking result is the difference we 
found between the Finnish language contexts. Although they follow the same national curriculum, 
the FinFin textbooks contain elements similar to the Estonian textbooks, while the FinSwe 
textbooks seem to have been influenced by Swedish traditions or vice versa. In fact, there seems to 
be a greater difference between the two Swedish textbook series than between one of the Swedish 
series and the Finnish Swedish textbook series. There is no government auditing of the textbooks in 
the three countries, and we are seeing an increased exchange of curriculum material between 
countries (e.g. Hemmi, Krzywacki & Liljekvist, 2018). In addition, some publishing companies 
have emerged across the countries. This might lead to greater variation between textbook series 
within single contexts, but also similarities across various contexts, making our understanding of 
the connections between curriculum materials and student outcome within a certain context more 
difficult.   
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 A preliminary comparison of Chinese and German state mandated 
curricula for mathematics education (years 1 to 6) 
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The paper presents a preliminary analysis of official state-mandated curriculum documents for 
compulsory school mathematics education in China and Germany with a focus on years one to six. 
Both documents were issued in the context of relatively recent reform initiatives. In the context of 
these reforms some have observed an international harmonization of curriculum goals via the 
educational discourse disseminated by the OECD. This trend motivates the comparison. The 
preliminary comparison presented in this paper is part of a larger upcoming project that investigates 
how curriculum objectives are interpreted by actors at different levels of governance in systems with 
differing policies for controlling curriculum implementation. As a starting point for investigating the 
discretionary space granted to schools and teachers in their micro-curricular planning, the 
comparison presented here identifies the level of detail in the content standards.  

Keywords: Mathematics curriculum, curriculum research, cross cultural studies, educational goals. 

China and Germany – comparing the incomparable? 
In China, after an incipient period in the 1950s where Soviet mathematics education was investigated 
and “sinocised” through translating and adapting Soviet textbooks (Ye, 2018), subsequent 
explorations of other systems appear much more diverse and critical. At a national forum convened 
by the Ministry of Education of the P.R.C. in 1959, investigations of Eastern European curriculum 
reforms were initiated; in the 1960s comparisons included the German Democratic Republic, the 
Soviet Union as well as the United States and Japan. In the late 1970s and the 1980s, the People’s 
Education Press investigated textbooks from Germany (along with some from England, France, Japan 
and the United States) in order to look at the structuring of mathematical knowledge and arrangement 
of topics (Xu, 2013). Some dimensions of the recent Chinese curriculum reform were originally 
initiated by investigations of trends in mathematics education in a range of countries, including 
Germany, Hong Kong, the United States and Taiwan in the 2000s (Lv & Cao, 2018; Ye, 2018).  

In the context of incipient reforms in the 1950s, classroom pedagogy in some regions in northern 
China was found to draw on a five-step formal sequencing model for instruction (preparing; 
prompting; making comparisons; summarizing; applying) developed by the German philosopher 
Friedrich Herbart (who held Emmanuel Kant’s chair in Königsberg) and his followers; the model was 
imported during the New Culture Movement. According to Ruan and Zheng (2012) this sequencing 
of instruction is still seen in many classrooms in China at the beginning of the 21st century.  

Over the last decade the Chinese mathematics curriculum has been subjected to continuous reforms. 
Some shift in focus is according to Zhang (2018, p. 480) motivated by the needs created in an era of 
“knowledge-based economies and information-based societies, the fierce international competition 
and challenges”, which require a capability for “knowledge innovation and scientific innovation, to 
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be able to collect, sort and express information using mathematical methods, establish models, solve 
problems, and create value for society.” The resulting revised compulsory mathematics curriculum 
standards (issued in 2011; implemented in autumn 2012) stress the importance of mathematical 
thinking and problem solving, including problems in real-world settings, in addition to the traditional 
emphasis on developing basic mathematical knowledge and skills (Wang et al., 2018). Further, 
aspects of what often is associated with allegedly ‘Western’ pedagogies, including ‘student-centered’ 
activities such as experimenting and conjecturing, argumentation and discussion have found their 
way into official Chinese recommendations for curriculum implementation (Li & Li, 2018). The 
changes in China also entailed a de-centralizing of educational administration and textbook 
production in order to allow for more diversity (Cai & Nie, 2007). In comparison to the previous 
policy for controlling curriculum implementation via textbooks, this entails a shift towards proposing 
the use of a range of resources, only harmonized by the national standards, which consequently 
(compared with the old syllabus) expanded in scope and depth (Xu, 2013; Wang et al., 2018).  

In Germany, the unexpectedly low national performance in the OECD’s PISA as well in the IEA’s 
TIMSS-tests at the turn of the millennium stimulated a major debate on the quality of schooling and 
resulted in a new focus in educational policy. The Federal Ministry of Education and Research 
(BMBF) inter alia justified the need for developing outcome-oriented national educational standards 
by comparisons with some more successful education systems in the PISA-ranking. As a matter of 
fact, the selected comparator countries not only had adopted national curriculum standards, but also 
engaged in regular external evaluations of student achievement-outcomes. As Ertl (2006) points out, 
this new attempt of curriculum alignment across the Länder of the Federal Republic of Germany was 
conceptually different from earlier approaches of the Standing Conference of the Ministers of 
Education and Cultural Affairs (KMK) to reaching agreement on shared national standards since the 
late 1990s. The initiative not only aimed at modernizing and homogenizing local curricula, but also 
at alignment of educational aims and assessment. According to an expertise commissioned by the 
BMBF, the new national curriculum should describe competencies at a level of detail that not only 
affords conversion into learning tasks for students but in principle also into test items so that it 
becomes “possible to check whether the desired competencies have actually been acquired.” And 
further, “This will determine the extent to which the education system has fulfilled its mandate 
(educational monitoring), and schools will receive feedback on the results of their work (school 
evaluation)” (Klieme et al., 2003, p. 10, transl. EJ). At the same time the expertise recommended that 
standards should determine competency outcomes (instead of listing topics to be covered) and so 
leave sufficient freedom for schools and teachers for micro-curricular planning.  

The resulting national curriculum document bears some similarities with the US National Council of 
Teachers of Mathematics (NCTM, 2000) standards in its descriptions of general (topic- and context-
independent) processes and the structuring of mathematical topics in broader areas. All Länder have 
agreed to use the national standards as a basis for developing new local curricula as well as in teacher 
education. In parallel they also founded institutes responsible for the control and the improvement of 
the quality of schooling. These institutes not only employ assessment for educational monitoring and 
school evaluation, but also aim at developing teachers’ professional practices by exemplary 
operationalization of the curriculum standards in the form of assessment tasks (Blum et al., 2006).  
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The above sketch of diverse reform movements, in the context of which the Chinese and German 
mathematics curriculum documents have been produced, suggests that the texts under scrutiny 
represent hybrids of a range of pedagogic discourses from antecedent national curricula and other 
educational policy texts, international curricula as well as national recontextualisations of policy texts 
produced by supra-national institutions. The stated curriculum objectives in both systems reflect 
international mathematics education discourses that frame the outcomes as not only relevant for 
developing disciplinary knowledge, but stress applications (‘mathematical literacy’, ‘practical 
mathematics’, ‘numeracy’) (Jablonka, 2015). Consequently, these curricula can be expected to share 
some objectives and so have sufficient in common to make an investigation of their differences 
meaningful. Further, while in both systems there are centralized education regulations, there are 
differences in modes of governance that shape the decisions of actors (schools, teachers, textbook 
writers etc.). The production of textbooks in the two systems certainly recontextualises official 
pedagogic discourse in different spheres, with more or less intersections with the economic field. 

Goals and methodology 
In addition to other curriculum control instruments, such as officially sanctioned textbooks, external 
assessments, school inspections and other measures of evaluation, an investigation of curriculum 
documents provides a starting point for investigating how much interpretive action is granted to 
teachers. Depending on the level of detail in prescriptions of curriculum standards, teachers might 
perceive greater or lesser freedom to decide upon what content to bring into focus and how to adapt 
their instructional strategies in line with their school ethos, their professional identities, and personal 
values. In turn, such curriculum adaptations might either mitigate or (unintentionally) reinforce 
unequal access to mathematical knowledge: on the one hand, access to the generative principles and 
styles of mathematical reasoning that underpin disciplinary knowledge, and on the other, to more 
skill-based forms (e.g., Dowling, 1998; Jablonka & Gellert, 2012). This concern has been raised in 
the context of curriculum reforms in both systems: in China particularly with respect to increasing 
social inequality (Cai & Nie, 2011); in Germany with a focus on the challenges for teachers in finding 
ways to address the needs of heterogeneous groups of students (Siller & Roth, 2016). 

Based on the general research interest stated above, this preliminary comparison explores at which 
level of detail the prescriptions operate and which forms of mathematical knowledge and skills they 
privilege. It is part of a larger upcoming project that investigates how curriculum objectives are 
interpreted by actors at different levels of governance in systems with differing policies for 
controlling curriculum implementation. The larger project will investigate the articulation of 
curriculum objectives at three levels, which are commonly conceptualized as macro-, meso- and 
micro-levels, and will include case studies of classroom practice. While conceptualising the relation 
between these levels as “recontextualisation” of pedagogic discourses (Bernstein, 1996), in the 
project this is not interpreted as constituting a hierarchical relation. 

The focus of the comparison are the state mandated curricula for mathematics education for years 
1  to  6. For Germany, the recently issued common mathematics curriculum standards for Berlin and 
Brandenburg (Senatsverwaltung für […], 2015; henceforth the “G-BBM”) has been chosen as an 
example. The document has been developed in order to align the local with the statewide standards. 
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In the two Länder primary school comprises 6 grades (instead of the usual four). The Chinese national 
curriculum standards for compulsory mathematics education (Ministry of Education P. R. C., 2012; 
henceforth the “C-NCM”) are grouped into three stages, grades 1-3, grades 4-6, and grades 7-9. Only 
the first two stages are of interest for the comparison. The G-BBM is for grades 1-10. It is structured 
in levels A-H within topics. For years 1-6, “as a rule” the levels A-D are to be reached and so these 
have been chosen for the comparison. One shared feature of the two documents is the coherent 
structuring of the mathematical topics beyond grade six, which affords useful comparison.  

The most obvious challenge of this comparison is language. The Chinese document was subjected to 
a machine translation into English as well as into German. In some instances, these versions 
complemented each other and lead to improvements. The draft was further edited with the aid of an 
online German-Chinese dictionary. In many cases only knowledge of school mathematics helped to 
edit the translation. In addition, a semi-official English translation of an early trial-version has been 
consulted along with translations of key concepts in publications authored by insiders. Still, there 
remained quite some nonsensical portions of text. 

Both the C-NCM and the G-BBM contain sections with mathematical topics (entitled “Content 
Standards” and “Topics and Content”, respectively). These sections contain short statements with 
some thematic coherence under one or two levels of headings and subheadings with names for school 
mathematical areas and specific topics. In the texts, these statements are clearly separated by lay-out 
(paragraph spacing, arrangement in table cells, numbering). For the analysis, each visually separated 
portion of text has been counted as one statement. While simply counting statements admittedly does 
not provide deep insights about the authority relations established by the state-author with the teacher-
reader, this simple comparison of content standards might reveal differences to be explored further. 

A difference that emerged when reading the content statements concerns the “discursive saturation” 
of the suggested student activity; the notion here is used in the sense of Dowling (2009). While 
interpreting the translated curriculum statements has been aided by an explanation of “action verbs” 
used in the curriculum document found in the Appendix of the C-NCM, an in-depth analysis of 
envisaged student learning activities clearly is not possible with the machine translation. However, 
Bernstein’s (1996) notion of “classification” can be applied to the structuring of the content in the 
documents, as his notion does not differentiate between forms of expression and content. 

Outcomes 
The C-NCM has four main sections: “Section I: Preamble”; “Section II: Curriculum Objectives”; 
“Section III: Content Standards”; “Section IV: Recommendations” (including suggested pedagogic 
strategies, evaluation recommendations, guidance on textbook development, development and usage 
of resources). If from Section III only the text for grades 1-6 is taken (which is relevant here), the 
proportions of the sections (pages of the English version) are very roughly as follows: One fifth for 
sections I and II together; one fifth for section III; three fifths for section IV. Obviously, the section 
that describes content standards is comparatively short.  

The German G-BBM has three main sections: “1. Development of Competencies in Mathematics”, 
“2. Competencies and Standards”, “3. Topics and contents”. If from Section 3 only the text for levels 
A-D is taken, the proportions of the sections (pages) are very roughly as follows: Five eights for 
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sections 1 and 2 together; three eights for section 3. Obviously, the section that describes “topics and 
content” is also comparatively short, but fills a larger proportion of the document than in the C-NCM. 

Table 1 depicts the number of statements for each stage by topics and subtopics in “Section III: 
Content Standards” of the C-NCM. The abbreviations are explained under the table. Topics and sub-
topics are enlisted in rows and columns in the order of appearance in the text. “Practical and integrated 
applications” (in some publications the English term is “Practice and Synthesis Application”), aims 
at providing opportunities for cross-disciplinary work as well as for inner-disciplinary connections, 
and so guide “students to focus on practice and application” and “making the abstract mathematical 
concepts deeply rooted in children’s real lives” (Wang et al., 2018 p. 67). The standards for statistics 
and probability obviously are less detailed than for the other topics.  
 

 First Stage 
(Grades 1-3) 

Second Stage  
(Grades 4-6) 

 
Sum 

Numbers and Algebra 
 

NA1 NA2 NA3 NA4 NA1 NA2 NA5 NA6 NA4  

7 8 5 1 9 10 4 4 1 49 

Graphics and Geometry  
 

GG1 GG2 GG3 GG4 GG1 GG2 GG3 GG4   

7 6 3 2 9 8 4 4  43 

Statistics and Probability 
 

no sub-division SP1 SP2     

3 6 2    11 

Practical and Integrated Applications 
 

no sub-division no sub-division  

3 4 7 

 Sum Total 110 

Table 1: Number of statements in “Section II: Content” (First Stage and Second Stage) of the C-NCM.  
Abbreviations used for subtopics in Table 1 are as follow: NA1 Knowing Numbers; NA2 Number Operations; 
NA3 Common Quantities; NA4 Exploring Patterns; NA5 Expressions and Equations; NA6 Direct and Inverse 
Proportion; GG1 Knowing Figures; GG2 Measurement; GG3 Figures and their Transformation; GG4 
Figures and their Positions; SP1 Simple Statistical Data Processing; SP2 Random Phenomena. 

Table 2 (next page) depicts the number of statements for the levels A-D by topics and subtopics in 
the section “3. Topics and contents” of the G-BBM. 

A comparison of the two tables suggests that the German content standards (Berlin-Brandenburg) 
provide more detailed descriptions than the Chinese. There are three levels in structuring the content 
in G-BBM, while in the C-NCM there are only two. As to the content, the school mathematical area 
Quantities and Measuring of the G-BBM, a topic that only appears in the German document, is in 
the C-NCM integrated into Numbers and Algebra in the subtopic Common Quantities (NA3), and into 
Graphics and Geometry in the subtopic Measurement (GG2). Here the classification of the C-NCM 
is stronger as it reflects classificatory principles of academic mathematics. The other extra topic in 
the G-BBM, namely Equations and Functions, is in the C-NCM largely contained in the topic 
Numbers and Algebra. The German G-BBM does not include an extra cross-topic field (such as 
Practical and Integrated Applications in the C-NCM), but outlines six mathematical “process 
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standards” (generic skills or key competencies), which are described in the section “1. Development 
of Competencies in Mathematics” and “2. Competencies and Standards”.  

 
 Level B 

(End of grade 2) 
Level C 
(End of grade 4) 

Level D 
(End of grade 6) 

 
Sum 

Numbers and 
Operations 

Na Nb Na Nb Na Nb  

Na1 Na2 Na3 Nb1 Nb2 Na1 Na2 Na3 Nb1 Nb2 Na1 Na2 Na3 Nb1 Nb2  

8 5 5 4 6 4 4 4 4 7 5 5 6 5 7 79 

Quantities and 
Measuring 

Qa Qb Qa Qb Qa Qb  
Qa1 Qa2 Qb1 Qa1 Qa2 Qb1 Qa1 Qa2 Qb1  

7 5 3 7 4 4 8 8 6 52 

Space and 
Shape 

Sa Sb Sa Sb Sa Sb  

Sa1 Sa2 Sa3 Sb1 Sb2 Sa1 Sa2 Sa3 Sb1 Sb2 Sa1 Sa2 Sa3 Sb1 Sb2  

6 3 9 4 4 4 5 7 3 4 3 5 4 2 2 65 

Equations and 
Functions 

Ea Eb Ea Eb Ea Eb  

Ea1 Ea2 Eb1 Eb2 Eb3 Ea1 Ea2 Eb1 Eb2 Eb3 Ea1 Ea2 Eb1 Eb2 Eb3  

3 6 3 2 1 4 5 2 2 2 3 3 2 2 1 41 

Data and 
Chance 
 

Da Db Da Db Da Db  

Da1 Da2 Da3 Db1 Db2 Da1 Da2 Da3 Db1 Db2 Da1 Da2 Da3 Db1 Db2  

2 3 3 3 3 2 2 3 2 5 1 2 1 1 2 35 

 Sum Total 272 

Table 2: Number of statements in section “3. Topics and Contents” (levels A to D) of the G-BBM.  
Abbreviations used for subtopics in Table 2 are as follow: Na Conceptions of Number: Na1 Perceiving and 
representing numbers; Na2 Ordering numbers; Na3 Describing number relationships; Nb Conceptions of 
Operations and Calculation Strategies: Nb1 Developing conceptions of operations; Nb2 Using calculation 
procedures and strategies; Qa Conceptions of Quantities and Measuring: Qa1 Utilizing conceptions of 
quantities and their units; Qa2 Determining expressions for quantities; Qb Calculating with Quantities: 
Qb1 Calculating quantities in contexts; Sa Geometrical Objects: Sa1 Describing geometrical objects; 
Sa2 Describing relationships between geometrical objects; Sa3 Representing geometrical objects; 
Sb Geometrical Transformations: Sb1 Utilizing geometrical transformations and their properties; 
Sb2 Carrying out geometrical transformations; Ea Terms and Equations: Ea1 Representing terms and 
equations; Ea2 Solving equations; Eb Mappings and Functions: Eb1 Exploring mappings and functions; 
Eb2 Representing mappings and functions; Eb3 Utilizing properties of functional relationships; Da Data: 
Da1 Collecting data; Da2 Representing data; Da3 Evaluating statistical investigations; Db Counting strategies 
and probabilities: Db1 Using counting strategies; Db2 Determining probabilities of events. 

Concluding comments 
Contrary to what might have been expected, the German content standards (Berlin-Brandenburg) 
describe learning outcomes at a much higher level of detail than the Chinese. This conflicts with the 
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official policy discourse which preceded their development. According to Klieme et al. (2003), the 
new standards should describe broader competency outcomes. The similarities in the main structuring 
of the topics in both documents suggests some cross-system harmonization of objectives in the 2000s 
(see Lv & Cao, 2018; Ye, 2018). The Chinese content standards, however, appears to leave more 
discretionary space to teachers and schools for making micro-curricular decisions. In both contexts, 
the role of accountability measures vis-à-vis the standardization of the curriculum needs to be 
investigated. Regarding the naming of the topics and sub-topics, the Chinese appears to be more 
specialized, but complemented by the topic Practical and Integrated Applications. If Bernstein’s 
(1996) concept of “classification” is applied here, this interpretation suggests an intended move 
towards weakening (internal and external) classification by establishing more relations with other 
school subjects as well as with everyday practice. This might be one of the reasons for the opposition 
against the reform from mathematicians reported by Yin (2013). 

One conspicuity that emerged in the course of the investigation concerns the use of verbs that refer 
to students’ competencies in terms of “experiencing”, “developing a feeling for” or “grasping”. 
Examples of such statements are, “[Students are] able to feel the meaning of large numbers when 
associated with realistic material, as well as to make estimations.” (First Stage, “Numbers and 
Algebra: Knowing Numbers”), “Experience that amongst all lines connecting two points the segment 
is the shortest.” (Second Stage, “Graphics and Geometry: Knowing Figures”). The German document 
does not contain similar statements. A consistent investigation of this observation has been hampered 
by the low-quality machine translation. However, it can be taken as an indication for a greater focus 
on non-discursive dimensions of mathematical practice. A systematic investigation of differences in 
curriculum statements with regard to privileged forms of knowledge and skills will have to include 
an analysis of stated overall objectives as well as pedagogic recommendations or examples of student 
activities that are given to exemplify the envisaged classroom practice. An important follow up 
question then is whether the documents aim at providing insights into the principles on the basis of 
which the curriculum has been developed.  
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Background 
In the Swedish curriculum reform of 2011, TIMSS and PISA were explicitly mentioned as a point of 
departure (Skolverket, 2011). More precisely, algebra was singled out as a topic where students 
needed to improve their knowledge. Given the large influence of international large-scale 
assessments, ILSAs, the items of these tests should be further investigated (Säljö & Radišić, 2018). 

Comparative studies using data from ILSAs have concentrated on their results, not their tasks 
(Jablonka, Andrews, Clarke, & Xenofontos, 2018). Moreover, while textbook tasks are common in 
comparative studies, these often focus on how the learning of a specific topic is presented in textbooks 
from different countries (Jablonka et al., 2018). They are not considered in relation to curriculum 
reforms. 

The aim of this study is to problematize the role of ILSAs in national curriculum reforms. It builds 
on results from a previous study of textbook tasks by Palm Kaplan and Prytz (submitted) and is a part 
of a thesis project which problematizes the role of ILSAs and textbooks in curricular reform, by 
looking at the algebra in TIMSS 2003–2015 and algebra chapters in Swedish textbooks. This study 
focuses the case of Swedish school algebra and the 2011 curriculum reform through looking at algebra 
items from TIMSS 2003, compared to changes in year 8 algebra tasks in three Swedish textbook 
series. The research question is 

· To what extent is the algebra in TIMSS consistent or in conflict with algebra chapters in 
Swedish textbooks? 

Theory and method 
The algebra items in TIMSS 2003 are studied to understand what the student is expected to engage 
with, when solving the items. To get a detailed picture of the items, discourse analysis is combined 
with an analysis of the algebra offered. These two aspects are discussed in terms of school algebra 
discourses and algebraic activities respectively. The school algebra discourses are constructions in 
linguistic resources (Luke, 1995), steering what choices are possible to express different ideas while 
the algebraic activities mainly builds on Blanton et al.’s (Blanton et al., 2015) ‘big ideas’ in algebra. 
One of these is functional thinking, which is the activity to investigate, represent and generalize 
relationships between co-varying entities (Blanton et al., 2015), e. g. number patterns. The analytic 
frameworks are further developed on the poster and in Palm Kaplan and Prytz (submitted). 

The analysis is conducted in several steps. The two aspects mentioned above are analyzed in the items 
to obtain the distribution of the algebraic activities in the school algebra discourses. The distribution 
is then compared to the results of the Palm Kaplan and Prytz (submitted) textbook analysis of 1557 
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algebra tasks from algebra chapters in six Swedish textbooks. These books come from three textbook 
series which were on the market before and after the 2011 curriculum reform. TIMSS 2003 entail 45 
valid algebra items out of 47. Two trend items are left out since in TIMSS 2007, they are coded by 
TIMSS as data and chance instead of algebra. Items including more than one activity or more than 
one discourse are also left aside in this study, for reasons concerning statistical analysis in the thesis. 
All items are used with permission from the Swedish National Agency of Education. They are chosen 
as a starting point for further analysis, which will also include the algebra items from TIMSS 2007, 
2011 and 2015 in order to understand the development of TIMSS’ algebra.  

Results 
The distributions of the algebraic activities in the school algebra discourses are reasonably 
corresponding when TIMSS-items are compared to Swedish algebra chapters. However, there are 
differences between the proportions in the distributions: Swedish algebra chapters concentrate on 
mainly two algebraic activities while TIMSS 2003 entail other algebraic activities to a larger extent. 
For example, functional thinking is more stressed in TIMSS. The proportions of the school algebra 
discourses also differ in the TIMSS-items from the Swedish algebra chapters, and a whole new 
discourse, the Relational discourse, was identified in the TIMSS-items. This discourse constructs 
algebra as relationships between variables in graphs, tables and symbols; whereas the other 
discourses, identified in the algebra chapters, do not use graphs as a resource and only occasionally 
use tables. In Swedish textbooks though, chapters on functions and relations are often saved for year 
9, which is the year after the TIMSS-test is taken. Though it is difficult to assess since there are few 
algebra items in one TIMSS-test compared to in textbooks, these results make one of the points of 
departure for the Swedish curriculum reform in 2011 questionable.  
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In this study we introduce time series analysis, specifically moving averages, as a novel strategy for 
analysing mathematics textbooks. Such analyses show how different topics or mathematical processes 
are emphasised over different time periods, whether at the level of the lesson, the week, the month or 
year. In this paper, by way of example, we show how one of the eight categories of foundational 
number sense (Andrews & Sayers, 2015), namely simple addition and subtraction, is distributed and 
sequenced across three English, year one, textbooks. The analyses are compared empirically with 
four other methods found in the literature to show how time series analysis using moving averages 
helps address the shortcomings of these different approaches. 

Keywords: comparative textbook analysis, foundational number sense, moving average, time series. 

Introduction 
For many teachers of mathematics, irrespective of where they work, the textbook they use is not only 
the major resource for lesson planning and the provision of tasks for students but also the means by 
which the curriculum within which they work is realised (Stein & Kim, 2009; Tarr, Cháves, Reys & 
Reys, 2006; Stacey & Vincent, 2009). However, textbook analysis is in some way probabilistic in the 
sense that teachers make decisions as to how they use any book, leaving the analytical question “what 
would students learn if their mathematics classes were to cover all the textbook sections in the order 
given? What would students learn if they had to solve all the exercises in the textbook?” (Mesa, 2004, 
pp. 255–256). That is, researchers are typically interested in understanding  the “likely impact of the 
text on the users (teachers and students)” (Stacey & Vincent, 2009, p.276). Moreover, in those 
cultures in which textbooks are unregulated, often leading to a plethora of choice for teachers, 
students may receive very different opportunities to learn (Charalambous, Delaney, Hsu & Mesa, 
2010; Huntley & Terrell, 2014; Tarr et al., 2006).  

Much of the world’s textbook-related research has employed some form of qualitative description, 
typically aligned with an analytical framework related to the topic under scrutiny, supplemented by 
frequency analyses. That is, researchers often count and compare the number of occurrences of 
particular forms of task in different textbooks. Such studies usually focus on either mathematical 
content knowledge or mathematical processes, although there are exceptions such as Borba and 
Selva’s (2013) study of calculator use in Brazilian primary school textbooks. Research focused on 
mathematical content knowledge has included, for example, studies of primary school textbooks’ 
treatment of fractions in Kuwait, Japan, and the USA (Alajmi, 2012), Cyprus, Ireland, and Taiwan 
(Charalambous et al., 2010), division of fractions in grades six and seven in Chinese, Japanese and 
US textbooks (Li, Chen & An, 2009), multiplication and division of fractions in grades five and six 
in the textbooks of the USA and Korea (Son & Senk, 2010), inverse relations in US and Chinese 
primary textbooks (Ding, 2016), functions in the middle school textbooks of 15 countries (Mesa, 
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2004); geometry in English and Japanese grade eight textbooks (Jones & Fujita, 2013), number sense 
in year one textbooks in England and Sweden (Löwenhielm, Marshall, Sayers & Andrews, 2017) the 
distributive property (Ding & Li, 2010) and so on.  

Textbook-related studies on mathematical processes has included, for example, examinations of 
mathematical problem solving (Brehmer, Ryve & Van Stenbrugge, 2016; Fan & Zhu, 2007), 
mathematical problem posing (Cai & Jiang, 2017), general perspectives on reasoning and proof in 
Australia (Stacey & Vincent, 2009) and the USA (Stylianides, 2009), geometry-related proof for 
students in the grades 6-9 in the USA (Otten, Gilbertson, Males, & Clark, 2014) and France and Japan 
(Miyakawa, 2017), calculus-related reasoning and proof for upper secondary students in Finland and 
Sweden (Bergwall & Hemmi, 2017).  

Other studies have attempted to identify and demonstrate the different emphases within a textbook 
by going beyond simple quantification. For example, Tarr et al., (2006), in their analysis of American 
teachers’ use of different types of textbooks, introduced what they called the emphasis index, which 
was defined as the number of lessons taught by a teacher on a topic divided by the number of lessons 
in the textbook on the same topic. Interestingly,  a similar procedure could be applied uniquely to a 
textbook, where the emphasis index would be the number of lessons on a particular topic in the book 
divided by the total number of lessons. 

However, while frequency analyses have the potential to offer insight into the topics privileged by a 
textbook’s authors they typically offer little with respect to how mathematical ideas are sequenced. 
Indeed, even though some scholars have conceded that they “examined only proportions of various 
types of opportunities and did not attend to the sequencing of activities, which may be important with 
regard to students’ learning” (Otten et al., 2014, p.75), few have examined the distribution of codes 
within a text. Of those studies that have attempted explicitly to examine the distribution of codes, four 
methods stand out. Firstly, method 1, researchers have identified, in the sequence of all tasks, the 
position of the first task of interest (Fujita, 2001). Secondly, method 2, researchers have analysed the 
proportion of a textbook covered before an occurrence of interest (Alajmi, 2012; Li et al., 2009). 
Thirdly, method 3, studies, particularly those analysing  series of textbooks that cross several grade 
boundaries, have displayed relative percentages across grades (Borba & Selva, 2013; Ding, 2016). 
Moreover, Ding displayed results in a line diagram, where the distribution of a code per grade level 
in one book series could be compared with the distribution of the same code per grade level in another 
book series. This takes us to our final method and the inspiration for our contribution. Fourthly, 
method 4, studies have exploited timeline analyses, whereby coded observations were presented as 
dots on a horizontal axis representing the sequence of all tasks through the textbooks. With such an 
approach, “large swaths of these textbooks were not coded”, allowing the reader to see, at a glance, 
how topics under scrutiny are both located and emphasised (Huntley & Terrell, 2014, p. 758). One 
advantage of such diagrams is that they give a picture that is fine-grained down to occurrence of 
individual codes. However, this is also its draw-back. For larger data sets, the graphic in the time-line 
diagram might get too jammed making it difficult to discern any useful information in the diagram. 
In this paper we present a comparison of several of these methods before offering a novel 
methodological perspective on the analysis of textbooks that goes beyond what others have achieved. 
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In so doing, we aim to make a meaningful contribution to the methods of comparative textbook 
analysis. 

The context of this study 
This paper is a preliminary account of textbook analyses conducted as part of the Foundational 
Number Sense (FoNS) project, which is an ongoing Swedish Research Council-funded study of how 
FoNS, a set of eight core number-related competences, is acquired by year one children in England 
and Sweden. These core competences, which research has shown to be essential for later 
mathematical success, derived from a constant comparison analysis of literature from mathematics 
education, psychology, special educational needs and generic education (Andrews & Sayers, 2015). 
While it is important to understand how textbooks structure opportunities for learning, England and 
Sweden are of particular interest as both systems, due to perceptions of systemic failure on 
international tests of achievement like TIMSS and PISA, have begun importing and adapting 
textbooks used in high-achieving countries. In Sweden, textbooks from Finland and Singapore have 
been imported, while in England, textbooks from Singapore and Shanghai. 

In the study presented here, which is principally a methodological contribution, we examine aspects 
of three textbooks used with English grade 1 classes, Abacus, Inspire Maths (hereafter, Inspire), and 
Maths - No Problem (hereafter, MNP). These were chosen because Abacus is a long-standing series 
written by a well-known primary mathematics education researcher. The other two, drawing on 
societal perceptions that English mathematics teaching would be improved by the adoption of 
Singaporean practices, were English-authored adaptations of Singapore textbook series. 

Comparing different display methods on the same data 
Many educational research analyses yield codes of zeros and ones for the absence or presence of 
specific phenomena, particularly analyses of the tasks found in textbooks. Thus, depending on 
whether analysed properties are present in each task, one outcome of this process might be a sequence 
{0, 0, 1, 0, 1, 1,...} of ones and zeros. The manner in which the results from such analyses are 
displayed necessarily depends on the research question and could be the presentation of frequencies 
or the distribution of such codes throughout the data. When comparing textbooks, differences in the 
frequencies of particular codes can be compared by means of, say, χ2 tests. However, when the 
research goal is to focus on the sequential distribution of codes, the focus of this paper, other methods 
are needed. In this paper, as a response to this, we offer time series analysis as a novel method for 
comparing the sequential distribution of particular task properties in textbooks. In so doing, we 
compare this novel approach with others found in the literature. 

In the following, as indicated above, we draw on FoNS-related analyses of three English year one 
textbook series, in which every task that explicitly expected a student response was coded for its 
FoNS-related opportunities. Thus, every task could be represented as set of eight ones and zeros 
ranging from (0, 0, 0, 0, 0, 0, 0, 0,), in which no FoNS-related codes were identified, to (1, 1, 1, 1, 1, 
1, 1, 1), in which all FoNS codes were identified (Löwenhielm et al., 2017). However, with the 
objective of comparing methodologies, space prevents an analysis of all eight FoNS categories, so 
we restrict this presentation to just one, in order to exemplify the advantages and disadvantages of 
different analytical approaches. Thus, the following focuses solely on FoNS category seven, simple 
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addition and subtraction within the number range 0 – 20 due, in part, to the significance of such 
competence in later mathematical learning. 

The figures of table 1 show the results of the two methods employed by Fujita (2001) and Alajmi 
(2012) respectively. The first, based on the position of the first occurrence of the code in question 
(Fujita, 2001), shows substantial differences in the number of tasks completed before simple 
arithmetical operations are introduced. However, due to differences in the total number of tasks in 
each series, it is not necessarily straightforward, without additional calculation, to discern whether 
the positions of the first occurrence are comparable across the three books. In this respect, the second 
method, based on the percentage of all tasks presented before the first occurrence (Alajmi, 2012), 
gives a better indication of how deep into the book the first occurrence of each code occurs and, of 
course, their relative positions. Thus, it can be seen that the introduction of simple arithmetic in the 
two textbooks based on the Singaporean tradition, Inspire and MNP, occurs not only substantially 
later than in the English textbook, Abacus, but also in different positions relative to each other. 

Book FoNS category 
Position of first 

occurrence 
Percentage of tasks 

before first occurrence 

Abacus  7 22nd of 1522 1% 

Inspire  7 168th of 907 18% 

MNP 7 175th of 1955 9% 

Table 1. Method 1 (1st occurrence) and method 2 (% tasks before first occurrence) 

The third method, represented in Table 2, shows the relative percentages across the various 
workbooks in each series (Borba & Selva, 2013). Here, each series is partitioned into a different 
number of booklets; Abacus is in three booklets, Inspire in four and MNP in two. What is clear, 
interestingly, is the variation in the distribution of tasks focused on code 7, simple addition or 
subtraction, across the three sets of workbooks; Abacus incorporates substantial proportions of such 
material across all three booklets, while both Inspire and MNP incorporate such tasks only in the first 
half of their respective series. Of course, presenting the same data as line diagrams in the manner of 
Ding (2016) may have offered a clearer picture, but little by way of additional insight into the actual 
sequencing of the tasks. 

The fourth method, Figure 1, shows a timeline with the position of each task coded for simple addition 
or subtraction, code 7, shown as a dot (Huntley & Terrell, 2014). As with method 3, this highlights 
well differences between Abacus and the two Singapore-based books, Inspire and MNP. The former 
shows simple arithmetic tasks distributed throughout the workbooks, while the latter confirms that 
such tasks only occur within the first half of the series. They also show a not dissimilar pattern within 
the two Singapore-based books, with periods of extended opportunity, followed by a gap with 
occasional revisitations before a second extended opportunity. That being said, such graphs offer 
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insight only into the sequencing of activities within a textbook and not necessarily an indication how 
children’s day-to-day learning may be structured. 

Abacus 

(3 booklets) 

Inspire 

(4 booklets) 

MNP 

(2 booklets) 

56% 

24% 

35% 

55% 

35% 

0% 

0% 

40% 

0% 

Table 2. Method 3 (% occurrences per booklet) for code 7 

 
Figure 1. Method 4 (timeline dot plot) for code 7 

Moving averages 

The fifth method, which is our contribution to the debate, involves moving averages as an approach 
to time series analysis in which data are logged at equally spaced points in time. Typically, these are 
undertaken to “understand the underlying dynamics, forecast future events, and control future events 
via intervention” of stochastic processes (Fan & Yao, 2003, p. 9). Now, while a school mathematics 
textbook is not stochastic, the use of time series, whereby data are successive tasks, should offer a 
clear indication of a textbook’s sequential emphases over time. However, the graphs yielded by time 
series analyses are typically extremely noisy, as with daily records of air temperature (Wakaura & 
Ogata, 2007), a problem that can be overcome by means of moving averages. Here, rather than report 
single data points, moving averages are based on a sequence of overlapping sets of data or moving 
windows. This process smoothes out short-term fluctuations in time series so that longer-term patterns 
become more visible and the influence of outliers is eliminated. Mathematically, a moving average 
means substituting a single data point (tk, yk) with (tk, y�k), where  y�k is the arithmetic mean of its 
neighbouring data points yj as in equation 1. 

(Equation 1)  𝑦𝑦�𝑘𝑘 = ∑ 1
2𝑛𝑛+1

𝑦𝑦𝑗𝑗𝑘𝑘+𝑛𝑛
𝑗𝑗=𝑘𝑘−𝑛𝑛  

Of interest here, is the size of the divisor, 2n + 1, which represents the total number of data points 
included in the calculation and is dependent on the time period chosen for the calculation. That is, 
2𝑛𝑛 + 1 refers to the original point, 𝑦𝑦𝑘𝑘, and its 2𝑛𝑛 neighbouring data points, n before and n after. In 
the context of a mathematics textbook, the width 2𝑛𝑛 + 1 of this window could be the number of tasks 
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that an average student is expected to cover each day, or each week or each month and this choice 
depends on the research question. Thus, one choice of the width of the moving average window could 
be 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑛𝑛 𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘 𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑏𝑏𝑠𝑠 𝑏𝑏𝑛𝑛𝑖𝑖 𝑦𝑦𝑖𝑖𝑎𝑎𝑠𝑠

40 𝑖𝑖𝑠𝑠ℎ𝑏𝑏𝑏𝑏𝑎𝑎 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖
, roughly corresponding to a single week’s workload across the 

year. This means that wherever the moving average diagram shows ‘above zero’, then the pupil would 
have met that coded property during that week. Figure 2 shows the results, for code 7, simple addition 
or subtraction, for different time periods. The vertical axis refers to the average code score, taking 
values from 0 to 1, for any given time interval, and the horizontal axis the year for which the textbook 
is intended for use. The solid line refers to MNP, the dotted line to Inspire and the dashed line to 
Abacus. 

 
Figure 2. Method 5 (moving average) for code 7 

As can be seen, analysing the daily opportunities for code 7 produces a noisy diagram that is difficult 
to interpret, particularly with the three textbooks are presented together. However, as seen in the 
weekly graphs, a longer time period begins to smooth out much of this short-term variation and 
expose patterns of emphasis. Therefore, in such analyses it is important to select a window that is 
sensitive to the context of the data source in to obtain a graph that shows neither too little nor too 
much of the data’s details. In the context of this study, the monthly graph is probably the most 
illuminating. The two Singapore books are virtually indistinguishable but Abacus, shows continued 
exposure, albeit at different levels of intensity, to tasks focused on simple addition and subtraction, 
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opportunities, we know from several of the analyses above, missing in the second half of the two 
Singapore-inspired series.  

In conclusion, we believe that graphs presenting moving averages offer a novel but methodologically 
important tool in the analysis of textbooks. In fact, it can be argued that it represents a generalisation 
of the four methods compared above, albeit dependent on the choice of time interval. For example, 
where the moving average curve in figure 2 rises above zero, it shows where the first occurrence of 
a code occurs, which is the information provided by methods 1 and 2 in table 1. Moreover, it shows 
where in a series of books a code occurs, as yielded by method 3 in table 2, corresponding to a non-
overlapping (disjoint) average, while moving averages do overlap. Finally, moving averages offer a 
direct generalisation of strategy 4, since a moving average with a window of length one would 
reproduce the diagram in Figure 1. 
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This paper relates to the mathematics curriculum systems of the United States, Finland, Sweden, and 
Flanders (Belgium). These four regions are in the midst of curriculum reform, which provides 
interesting grounds for cross-cultural comparison. Our analysis builds on a framework that focuses 
on curriculum policy, design and enactment in each of these regions and draws on interview data 
with teachers in all four regions, sample cases of curriculum use, context descriptions, and available 
descriptions of mathematics education in these four regions. This leads to a more nuanced 
understanding of the particular curriculum systems through which reform manifests, and sheds light 
on a challenging balance concerning a curriculum reform that is both coherent across a region and 
supported by teachers. 
Keywords: Cross-cultural study, Curriculum reform, Mathematics education 
 

Mathematics curriculum reform: a delicate process 
Curriculum reform is a delicate process because multiple factors influence implementation, and, 
ultimately, student performance. If a curriculum is to promote region-wide reform, it should be 
coherent across that region. Further, there is evidence that the teacher has a crucial role, in that 
teachers should embrace the underlying vision (e.g., Tarr et al., 2008). Also crucial for educational 
change is to understand the educational system to which the reform applies (Andrews, 2007; 
Miyakawa & Winsløw, 2017; Stigler & Hiebert, 1999). This paper aims to add to a better 
understanding of the mathematics curriculum systems in the U.S., Finland, Sweden, and Flanders 
(Belgium). All four regions have recently undergone mathematics reform, or are in the midst of 
reform, which makes them interesting sites for comparison of curriculum systems. The paper’s central 
goal is to describe the curriculum systems of these four regions, and to consider consequences for 
teacher involvement in, and region-wide coherence of the region.   

                                                 
1 This study is funded by the Swedish Research Council (2016-04616). 
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Curriculum policy, design, and enactment framework 
Because we understand teachers’ use of resources to be situated in a broader school system, we draw 
on the curriculum enactment process as conceptualized in Remillard and Heck (2014) (See Figure 1). 
Remillard and Heck differentiate between an official and operational curriculum. The official 
curriculum, authorized by governing agencies includes curricular aims and objectives; assessments; 
and the designated curriculum – a set of instructional plans specified by a governing agency. The 
operational curriculum captures the enactment process. It acknowledges the central role that teachers 
have in interpreting and mobilizing curriculum resources and differentiates between a teacher-
intended and enacted curriculum and student outcomes. The location of instructional resources 
outside of the official and operational curriculum allows to fit both (centralized) systems in which the 
instructional resources are part of the official curriculum, and other systems in which they are not.  
The framework assumes a definition of curriculum, which we also subscribe to: “a plan for the 
experiences that learners will encounter, as well as the actual experiences they do encounter, that are 
designed to help them reach specified mathematics objectives” (Remillard & Heck, 2014, p. 707). 
We use the term instructional resources to refer to the resources used to support curriculum 
enactment. These resources include curriculum resources that sequence a particular content such as 
student textbooks and teacher’s guides, but also other resources such as digital (online) applications.  
 

 
Figure 1. Visual model of the curriculum policy, design, and enactment system (Source: Remillard & 

Heck, 2014, p. 709) 

Context and method of study 
This study is part of a larger cross-cultural study on elementary school teachers’ use of printed and 
digital instructional resources in the U.S., Finland, Sweden, and Flanders (the northern part of 
Belgium, which has its own educational system). Although largely an opportunity sample, the 
selection of these four regions addresses both constants and contexts (Osborn, 2004) comprising a 
sound rationale for comparison. Talking to the constants, all four regions value local educational 
authority, emphasize similar aspects as to the mathematical curriculum, and teachers rely on (printed) 
curriculum resources when teaching mathematics. Our previous analyses of printed curriculum 
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resources also shed light on differences in provided teacher support, surfacing context-specific 
assumptions of teaching and learning mathematics (e.g., Remillard, Van Steenbrugge, & Bergqvist, 
2016). 
When designing and analyzing interviews on resource use in the four regions, we were faced with 
challenges of equivalence, validity, and comparability (Clarke, 2013; Osborn, 2004), and with 
challenges related to the undertake of such a study in a cross-cultural team of researchers. To develop 
the team’s prerequisite intersubjectivity (Andrews, 2007) needed to fully understand the completed 
interviews as situated in their specific context, we developed case descriptions illustrating curriculum 
use for one teacher per context, and context descriptions. This paper draws primarily on these four 
case and context descriptions, but also on interview data specifically relating to the selection of 
instructional resources and additional readings on mathematics curricula in these four regions (i.e., 
Hemmi, Krzywacki, & Partanen, 2017; Remillard & Reinke, 2017; Van Steenbrugge & Ryve, 2018; 
Verschaffel, 2004). 
Ten teachers in Finland, the U.S., Flanders, and Sweden were interviewed in fall 2017 and again in 
spring 2018 on their use of resources when planning and teaching mathematics (Note: In Sweden and 
the U.S., one teacher was unavailable for the second interview; in Finland, nine instead of ten teachers 
have been interviewed so far). The first interview was more general and addressed teacher and school 
backgrounds, what resources teachers used, teachers’ views on the curriculum resources being used, 
and teachers’ general beliefs on teaching and learning mathematics. The second interview focused in 
more detail on teachers’ actual use of both print and digital resources, centered around a walk-through 
of planning, decisions, and enactment of a lesson that the teacher taught recently. Input for Interview 
1 initially came from team members’ previous related research on curriculum use and was modified 
during subsequent team meetings. Interview 2 was also developed collaboratively, based on findings 
and experiences from Interview 1 and our knowledge of each of the contexts. 
Each case description was prepared by a team member who is a cultural insider, written in English 
for shared use. We first applied low-inference codes to the interviews to index excerpts of the 
interviews. These codes identified, for instance, teachers’ descriptions of resources, how they were 
used, reasons for use, background information on the teacher and school, and teacher beliefs on 
curriculum use and teaching and learning mathematics. The process of coding was tried out 
individually, discussed in, and refined by the team. Having coded two interviews for one teacher per 
region, we gathered similarly-coded statements and applied the following structure to the cases: a) 
teacher education and teaching background, b) information about school and class, c) selection 
process of the resources, d) use of resources and purposes for use, e) teacher beliefs and conceptions, 
f) changes in resource use.  
The process of writing and reading cases made us aware that significant insider knowledge was 
necessary to make sense of them, which is why we also developed context descriptions. Context 
descriptions are organized according to the following structure: a) school system-structure, b) 
pathways into teaching elementary mathematics, c) school environment, d) financial resources for 
organizing education, e) decision-making mechanisms in schools in relation to mathematics 
education (including the selection of instructional resources), f) student assessment, and g) 
monitoring and quality assurance of education. 
An important step in the process of developing the cases and context descriptions was full-team 
review and discussion of them. In fact, we arrived at a common structure and approach through 
incremental development, review, and discussion. 
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Building on the curriculum policy, design, and enactment framework (Remillard & Heck, 2014), we 
came to the following analytical structure to compare the four educational systems, based on case and 
context descriptions, interview data, and the abovementioned additional readings: 

- Educational jurisdiction and school funding; 
- Most recent central mathematics curriculum, including name and launching date, initiators, 

structure, novel aspects, requirement of adoption; 
- Role of assessments; 
- Curriculum specification in addition to central curricular aims and objectives; 
- Instructional resources and influential factors, including resource market, designers of 

curriculum resources, embedment of a digital platform, selection of resources, acceptance 
criteria. 
 

Curriculum systems in the U.S., Finland, Sweden, and Flanders 
Table 1 includes our descriptions of the curriculum systems of the U.S., Finland, Sweden, and 
Flanders. Looking across the table helps to attain a more nuanced understanding of these curriculum 
systems, which, from the outset share similarities such as local authority, use of a primary (usually 
printed) curriculum resource available from a commercial publishing market, and the raise of digital 
resources. Surfaced similarities and differences relate to a) regulations and incentives to steer local 
authority, b) role of curriculum resources in curriculum reform, and c) curriculum interpretation. We 
discuss these aspects below and relate them in a final section to two crucial aspects of curriculum 
reform: coherence and embracement of the reform by teachers. 
 

 U.S. Finland Sweden Flanders 

Educational jurisdiction and school funding 

Jurisdiction School districts 
with oversite 
from states 

Finnish 
government 

Swedish 
government 

Flemish 
government 

School 
funding 

State and local 
taxes 

National and 
local funding 

Government to 
municipals to 
schools 

Government; also 
targeted funding 

Most recent central mathematics curriculum 

Name & 
launching date 

Common Core 
State Standards 
(CCSS), 2010 

National Core 
Curriculum 
(NCC), 2016 

Läroplan (LGR 
11), 2011 – 
revised 2018 

Attainment 
targets; 
1998/under 
development 

Initiative State governors 
& educational 
leaders, private 
foundations 

Finnish National 
Board of 
Education 
commissioned 
expert group 

Swedish 
government 
commissioned 
the National 

Flemish 
government 
commissioned an 
entity 
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(about every 10 
years)  

Agency of 
Education 

Structure Grade-by-grade 
content and 
practice 
standards 

Content, 
competences, 
learning 
environment 
descriptions, 
assessment 
criteria; grades  
1-2, 3-6, 7-9 

Core content, 
mathematical 
abilities, 
knowledge 
requirements; 
grades 1-3, 4-6, 
7-9 

Required 
knowledge, skills, 
attitudes by end 
of grade 6 

Novel aspects Emphasis on 
visual models 
and conceptual 
understanding 

Cross-curricular 
competences 
(e.g., digital 
competence)  
 

Mathematical 
competences,  
digital 
competence 
 

Structured around 
16 key 
competences 
(e.g., digital 
competence) 

Adoption Not required; 
Federal 
government 
incentivizes 
states toward 
CCSS & 
assessment 
adoption 

Required, but 
not checked 

A nationwide 
professional 
development 
program was 
launched (2012-
2016) to support 
adoption; 
checked by 
school 
inspectorate 

Required, 
checked by 
school 
inspectorates 
 

Assessments 

Grades & aim Grades 3-8: 
annual 
standardized 
tests, often 
consequential 
for student 
promotion, 
teacher 
employment, 
school funding 

Schools are not 
monitored by 
national 
assessments; 
Teachers are 
responsible for 
assessment 

Grades 3, 6, 9: 
Mandatory 
national tests 
support equality 
& check 
performance on 
school and 
population level 

Tests assess 
mastery of 
attainment targets 
on student 
population level 
(since 2002 and 
on a 7-year 
interval) 

Continued curriculum specification 

Level & 
content 

Districts and 
schools often 
specify 
instructional 
resources to be 

National board 
of education 
hosts a website 
that lists 
available 

/ Three umbrella 
organizations 
issue learning 
plans, which 
break down 
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used, and issue 
pacing 
guidelines 

instructional 
resources;  
School teams 
and/or local 
authorities 
concretize NCC 
into a central 
school-level 
curriculum 

attainment targets 
per grades, add 
goals and 
didactical 
suggestions 

Instructional resources and factors that influence resources and use 

Instructional 
resource 
market 

Commercial 
enterprise,  
limited number 
of publishers 

Commercial 
enterprise,  
limited number 
of publishers 

Commercial 
enterprise,  
limited number 
of publishers 

Commercial 
enterprise,  
limited number of  
publishers 

Designers 
(printed) 
curriculum 
resources 

Mathematicians, 
prior teachers, 
researchers 

Teacher 
educators, 
researchers, 
teachers 

Teacher 
educators, 
teachers (during 
their free time) 

Teacher 
educators, 
teachers, 
members of 
inspectorates, 
representatives 
umbrella 
organizations 

New 
curriculum 
resources 
accompanied 
by digital 
platform? 

Yes Yes Yes Yes 

Selection 
instructional 
resources 

Main 
curriculum 
resources & 
larger digital 
platforms: 
districts & 
schools;  
Digital 
resources: 
teachers 

Main curriculum 
resource & 
digital 
resources: 
teachers 

Main 
curriculum 
resource: 
schools;  
Digital 
resources: 
teachers 

Main curriculum 
resource: schools; 
Digital resources: 
teachers, schools, 
school groups, 
umbrella 
organizations 

Acceptance 
criteria 

By some 
states/districts 

No No No 

Table 1. The curriculum systems of the U.S., Finland, Sweden, and Flanders 
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Regulations and incentives to steer local authority are present to different extents. The curriculum 
systems of the U.S. and Flanders have the most explicit mechanisms to steer local authority. In the 
U.S., states possess authority in relation to educational policy and, sometimes, delegate policy to 
school districts, but the Government by means of applying specific funding mechanisms influences 
policy and curriculum use at state, district, and school level. In Flanders, schools are in principle free 
to determine how to work toward the attainment targets, but the Government, through regulations 
such as school inspectorates and the requirement to adopt a learning plan, and through targeted 
funding, sets the framework of the curriculum system and influences curriculum policy and use at the 
local school level. In Sweden, the Government also sets the framework of the curriculum system, but 
influences curriculum use at a more implicit level, through rolling out a nation-wide professional 
development program following the curriculum reform. From our study, it appears that central 
regulation is the least well manifested in Finland. The Finnish National Board of Education 
commissions on regular interval-base an expert group to develop a new curriculum. Schools and 
teachers are provided with guiding documents and regulations, but are not checked upon application 
of the guidelines and regulations. 
Across the four regions, curriculum resources served as interpreters of the official curriculum, hereby 
serving as mediators between the intended curriculum and the classroom (Valverde, Bianchi, Wolfe, 
Schmidt, & Houang, 2002). Additionally, and talking to the systems of Finland and Flanders, 
curriculum resources can also potentially influence curriculum making. In Finland, teachers at times 
rely on the learning sequence in commercial curriculum resources to design their crucial school-level 
curriculum. Currently in Flanders, new curriculum resources, often complemented with digital 
applications, are published before the actual launch of the new attainment targets, hereby possibly 
influencing the novel aspects of the mathematics reform related to digital competence. 
Following the curriculum policy, design, and enactment framework (Remillard & Heck, 2014), we 
allocate teachers to have a central role in interpreting and mobilizing the curriculum. Indeed, we find 
related evidence in our interview data. Our comparative analysis also reveals differing levels where 
significant curriculum interpretation happens to reside. In Sweden, the bulk of interpretation happens 
at the individual teacher level. In Finland, significant interpretation is applied to compose a school-
level curriculum, whereas in Flanders, major interpretation of the attainment targets is located above 
the school-level, by the umbrella organizations issuing learning plans. In the U.S., significant 
curriculum interpretation resides in the assessments.  
 

Curriculum reform: a delicate balance between region-wide coherence and 
teacher approval 
Our study of the mathematics curriculum systems of the U.S., Finland, Sweden, and Flanders, 
suggests that a curriculum reform that is both region-wide and supported by teachers, is a challenging 
balance. Both Flanders and the U.S., through their layered curriculum infrastructure, succeed most 
toward a region-wide curriculum coherence, but this goes at the cost of teacher involvement in the 
reform process. In Finland, teachers are most involved in reform through the design of a school-level 
curriculum, but this goes at the cost of a nation-wide curriculum-coherence. Sweden stands out in 
that teachers were asking for reform and that the Government answered the call by means of rolling 
out a nationwide professional development program. It still has to be seen to what extent that results 
in curriculum coherence. In all four regions, commercially published curriculum resources are a 
central aspect in a region-wide curriculum reform. Given this significant position, it is remarkable 
that only in the U.S., sometimes quality criteria are issued that curriculum resources have to pass.  
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The use of problem in upper-primary and lower-secondary textbooks 
of the Republic of Cyprus 
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Research suggests that transitions from primary to secondary education typically have negative 
influences on pupils’ mathematical performance, motivation, and self-efficacy. In acknowledgement 
of these issues, I examine how the term ‘problem’ is used in the upper-primary and lower-secondary 
national maths textbooks in the Republic of Cyprus, in an attempt to explore the coherence between 
the instructional materials pupils are exposed to in the two school levels. More specifically, all tasks 
explicitly labelled as ‘problems’ in the two textbook series were identified. For analysing the tasks, 
an adapted version of Borasi’s (1986) framework about the structural characteristics of problems 
was utilised. Findings conclude that coherence between the two textbook series is limited, as in the 
primary series the term ‘problem’ is extensively used in a particular way, while in the secondary 
series, a significant decline of the number of tasks labelled as problems is observed.  

Keywords: Transitions, mathematical problem, textbooks, primary, secondary  

Transitioning from primary to secondary school 
Many pupils preparing to transition from primary to secondary school appear to have predetermined 
ideas about the challenges and difficulties of mathematics at the next school level (Attard, 2010). As 
a consequence, there is a general decline of pupils’ engagement with mathematics as they move from 
primary to secondary education (Martin, Way, Bobis, & Anderson, 2015), a decline of their self-
efficacy beliefs, motivation, and performance (Bouffard, Boileau, & Vezeau, 2001), and the 
reinforcement of stereotypes regarding gender and mathematics performance (Denner, Laursen, 
Dickson, & Hartl, 2018). While research evidence suggests that the observed differences could partly 
be attributed to teachers’ self-efficacy beliefs (Midgley, Feldlaufer, & Eccles, 1989), as well as to 
teachers’ and parents’ emphases on goal (Friedel, Cortina, Turner, Midgley, 2010) across the two 
school levels, little is known about the impact of the use of instructional materials by primary and 
secondary mathematics teachers (Howard, Perry, & Tracey, 1997), and more specifically, how 
similarly or differently textbooks are used at these two school levels (Fan, Zhu, & Miao, 2013).  

Here, I focus on the national textbooks of a highly centralised educational system, that of the Republic 
of Cyprus. The mathematics curriculum of Cyprus (as with all school subjects) is prescribed centrally 
by the Ministry of Education and Culture - MoEC (Mullis, Martin, Goh, & Cotter, 2016). In order to 
bridge the gap between the previous primary and secondary mathematics curriculum, the curriculum 
in effect, introduced in 2010, is built around the same five general topics, from pre-primary education 
up to the last year of upper-secondary education (MoEC, 2010). These five topics are numbers, 
algebra, geometry, measurement, and statistics-probability. Furthermore, this unified mathematics 
curriculum claims to be built on four principles, with principle 2 stating that the curriculum places 
emphasis on problem solving (MoEC, 2010). Yet, no further clarifications are provided as to what a 
problem is, what problem solving means, and what kind of related skills are desirable.  
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Both in primary and secondary education, the vast majority of mathematics teachers’ instruction 
methodology depends on the respective national textbooks, prepared by the MoEC (Xenofontos, 
2014; Xenofontos & Papadopoulos, 2015). Although I do not, in this study, examine textbook use by 
teachers, I do explore how the concept of problem is presented in the upper-primary (grade 6) and 
lower-secondary (grade 7) textbooks, which were introduced after the initiation of the reform in 2010. 
Such an approach sees textbooks as a potentially implemented curriculum (Schmidt, McKnight, & 
Raizen, 1997), or, as Mesa (2004, p. 255–256) puts it, “a hypothetical enterprise: What would students 
learn if their mathematics classes were to cover all the textbook sections in the order given? What 
would students learn if they had to solve all the exercises in the textbook?”  

Why problem?  
In the mathematics education literature, the term problem is one of the most widely used; yet, there 
does not seem to be an agreement as to what it means. In general, my views coincide with 
Schoenfeld’s (1985, p. 74) statement that “being a ‘problem’ is not a property inherent in a 
mathematical task. It is a particular relationship between the individual and the task that makes it a 
problem for that person”. For the purposes of this study, however, I do not want to use any particular 
definition of the term, as my goal is to examine how problem is conceptualised and formed in the 
national textbooks of Cyprus. Such a deliberate choice may serve as a proxy to how problems and 
problem solving are conceptualised at the level of policy-making, that is, the intended curriculum 
(Mullis et al., 2016; Schmidt et al., 1997). Also, I acknowledge that a number of comparative studies 
have concluded that problem and problem-solving are perceived differently across educational 
systems (Cai, 1995; Xenofontos & Andrews, 2014).  

In attempts to analyse the types of problems found in mathematics textbooks, various colleagues have 
used well-defined frameworks. For instance, in their work with two widely used textbook series in 
Singapore, Fan and Zhu (2000) distinguish between routine and non-routine problems, with various 
other categories falling under the latter (namely problem-posing problem, puzzle problem, project, 
journal task). In subsequent work, Fan and Zhu (2007) identified various similarities and differences 
in the promotion of problem-solving strategies in Chinese, Singaporean, and US textbooks, again, 
using a very structured, predetermined framework related to how the researchers understood the 
concepts of problem and problem-solving. In the same spirit, Xin (2007) examined the distribution 
of seven types of word problems (namely: multiplicative comparison-compared, multiplicative 
comparison-referent, multiplicative comparison-scalar, rate times a quantity, fair share or 
measurement division, and proportion problem type) in Chinese and US middle school textbooks, 
noting a more balanced distribution in the former than the latter. In turn, Son & Kim (2015) 
investigated how teachers select problems from textbooks and present them in class; however, the 
researchers “use problems and tasks interchangeably” (p. 493), meaning that they did not utilise a 
specific definition of what a problem might be.  

Methodology 
This study is based on the following research question: 

How similar/different are the characteristics of the tasks explicitly labelled as problems in the upper-
primary and the lower-secondary national textbooks of Cyprus? 

Thematic Working Group 11

Proceedings of CERME11 2074



 

 

This question is of particular significance, mainly because in its rhetoric the MoEC declares that the 
new unified curriculum aspires to promote a smooth transition from one school level to another 
(MoEC, 2010). 

Instead of utilising a predetermined definition of the term problem, I chose to focus only on those 
tasks explicitly labelled as problems in the two textbook series. By explicitly, I refer to a presentation 
of the term ‘problem’ in the instructions provided, i.e. “solve the following problems”. Nonetheless, 
to enable comparisons to be made, I used an adapted framework based on Borasi’s (1986) ideas about 
the structural characteristics of problems. In her work, Borasi acknowledges the difficulties in 
deciding whether a specific task is a problem or not, the same way Schoenfeld (1985) recognises the 
role of the individual solver in the labeling of a task as a problem. Borasi, therefore, proposes four 
structural characteristics of tasks, which are independent of the solver. The first is the formulation, 
and refers to how instructions about what needs to be done are presented. These can take three forms: 
a question, a statement, or no presentation of instructions at all (open for the solver to decide). The 
second is the context in which the task is presented, and can take two forms: purely mathematical or 
applied (Blum & Niss, 1991). The third is the set of the acceptable solutions. There may be no 
acceptable solution to a problem, one and only solution, or more than one. Finally, the fourth 
characteristic has to do with the methods of approach. In respect to this, Polya (1981) classified 
problems in four categories: one rule under your nose (when the problem can be solved by simply 
applying an algorithm just presented), application with some choice (when the suitable algorithm 
must be selected among others previously studied), choice of a combination (when in order to reach 
the solution some of the algorithms previously learnt must be suitably combined), and approaching 
research level (when the elaboration of a new algorithm is required or when the task cannot be solved 
algorithmically). The term ‘approaching research level’ is used by Polya himself to refer to tasks that 
are genuinely problematic, and perhaps is closer to Schoenfeld’s (1985) views about what a problem 
is. 

As explained earlier, this paper focuses on the tasks explicitly labelled as problems in the upper-
primary (grade 6) and lower-secondary (grade 7) national mathematics textbooks of Cyprus. Each 
task was described in terms of the four structural characteristics (formulation, context, set of 
acceptable solutions, methods of approach). For grade 6, the textbooks are organised in six parts, 
while for grade 7 they are organised in two parts.  

Findings  
In grade 6 textbooks, 228 tasks were identified as being explicitly labeled as problems, while in grade 
7 textbooks, only two tasks were identified. Although the total number of tasks (labelled as problems 
or not) in the two series was not counted, a quick scan through the textbooks shows that in each grade 
(6 and 7) there are more than 1000 tasks. 

Below, figure 1 presents an example from grade 6, and how it was coded with the use of Borasi’s 
(1986) four structural characteristics. Figure 2 demonstrates another example from the textbooks of 
grade 6, which, contrary to the algorithmic task of figure 1, was identified as approaching research 
level, as there is no standard algorithm that could be applied for its resolution. In figure 3, one of the 
two tasks identified in grade 7 textbooks is presented. In fact, both tasks were coded under 
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“approaching research level”, due to their high complexity and lack of any particular algorithm to be 
applied.  

Table 1 illustrates the distribution of these tasks for each form of a structural characteristic.  

 
Figure 1: An example of a task (grade 6, part B, page 89) 

 
Figure 2: An example of a task (grade 6, part B, page 106) 

In both grades’ textbooks, certain tasks were identified, in which the term problem appeared in the 
instructions. However, these were classified as problem-posing tasks, as they invited pupils to write 
a problem that would meet particular criteria (i.e. ‘translate’ a symbolic expression/representation 
into a real world situation). In the textbooks of grade 6, eleven such tasks were identified, while in 
the textbooks of grade 7, there were four tasks of this type. Below, figures 4 and 5 demonstrate an 
example from the primary and secondary textbooks, respectively.  
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Figure 3: An example of a task (grade 7, part A, page 94) 

 

Structural 
characteristic 

Forms of each structural 
characteristic 

Upper-primary 
(grade 6) 

Lower-
secondary 
(grade7) 

Formulation 

 

 

Question 166 2 

Statement 62 0 

Open 0 0 

Context Purely mathematical 5 0 

Applied 223 2 

Acceptable solutions None  0 0 

One 228 1 

More than one 0 1 

Methods of approach One rule under your nose 110 0 

Application with some choice 37 0 

Choice of a combination 73 0 

Approaching research level 8 2 

Table 1: The identified tasks and their structural characteristics  
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Figure 4: A problem-posing task (grade 6, part D, page 21) 

 
Figure 5: A problem-posing task (grade 7, part A, page 80) 

Discussion  
When approached from different perspectives, the findings of this study offer insight into at least two 
matters. Firstly, regarding transition from primary to secondary education, this paper suggests that 
pupils in grade 6 (upper primary) are significantly exposed to the term problem when interacting with 
their mathematics textbooks, compared to grade 7 (lower secondary). There appears to be a change 
of discourse, as we move from grade 6 to grade 7. This does not necessarily mean that children in 
grade 7 are exposed to less tasks that, according to Polya (1981), approach research level. 
Nonetheless, an abrupt disappearance of the term problem as children move from primary to 
secondary education is apparent. Although the latest educational reform intends to bridge the gap 
between the mathematics curricula at various transition points (MoEC, 2010), this does not seem to 
be happening in an effective manner. In fact, questions are raised about the extent to which the 
intended “cohesive and coherent curriculum from pre-primary to upper secondary education” (MoEC, 
2010, p. 15) is, in reality, cohesive and coherent. Secondly, when these findings are taken as a whole, 
and especially when the problem-posing tasks in the two series are added to the equation, the study 
echoes my previous work examining pre-service teachers’ problem-solving related beliefs 
(Xenofontos, 2014; Xenofontos & Andrews, 2014). In the Republic of Cyprus, there seems to be a 
very particular, perhaps culturally specific, understanding of what a mathematical problem is:  

A ‘problem’, for the educational system of Cyprus, seems to be a real-world task, in which the 
instructions regarding what needs to be done are mainly presented in the form of question, or, 
sometimes, with a statement. There is always one (and only) acceptable solution to this task, which 
can either be solved by applying a straight-forward method/algorithm or a combination of 
methods/algorithms, which in any case, are already known.  
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Such a cultural perception of mathematical problems is, I think, extremely problematic, especially 
when the new curricula claim, in their rhetoric, to be placing emphasis on problem solving (MoEC, 
2010). Nevertheless, I do acknowledge that this study, as all studies, carries a set of limitations that 
has the potential to introduce new research avenues. As explained, in this paper I only examine those 
tasks explicitly labelled as problems. There appear to be other tasks in the textbooks that are not 
labelled as problems, the methods of approach of which, in Polya’s (1981) terminology, approach 
research level. Furthermore, even though teachers in Cyprus seem to rely heavily on textbooks 
(Xenofontos, 2014; Xenofontos & Papadopoulos, 2015), what we don’t know is how they use 
textbooks and other instructional materials in the classroom. Finally, future research could examine 
and compare primary and secondary in-service teachers’ beliefs and practices in relation to problem-
solving, so that we can have a complete picture of how to make the transition, as smoothly as possible, 
from one school level to another.   
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Teacher questioning has been extensively studied in countries such as the UK since 1980s, 
however, such study within the specific context of mathematics classrooms has not received 
much attention. Moreover, there does not exist a direct comparative study between the UK and 
China with a focus on teachers’ questioning in secondary mathematics classrooms. Therefore, 
this article aims to fill the gap in the literature. This paper looks for similarities and differences 
in the sequences and patterns of teachers’ questioning practices in secondary mathematics 
classrooms in the UK and China. By making a comparison between the two countries, it is 
possible to examine the perceived cultural differences and similarities underpinning the use of 
teachers’ questioning.  

Keywords: Teacher questioning; Secondary mathematics classrooms; the UK; China 

Introduction 
The UK government launched a project called ‘The Mathematics Teacher Exchange’ in 2014, 
which involved secondary mathematics teacher exchange between schools in England and 
Shanghai (Boylan et al., 2017). Its intention is to improve students’ achievement through 
copying the Chinese education model. This programme is believed to be successful (ibid) and 
has been extended to 2020. However, despite the fact that Chinese students have repeatedly 
outperformed their UK counterparts in school mathematics in various international 
comparative assessments, there is little comparative research into teacher questioning between 
the UK and China. Alexander (2009) further suggests a deliberate ignorance of comparative 
studies of pedagogy in the UK. To address this gap, this exploratory study aims to direct 
comparative studies of pedagogy in the UK and China, with a focus on teachers’ questioning 
in secondary mathematics classrooms in the hope of providing some explanations from a 
social-cultural perspective. 

There has been a long history of research investigating teacher questioning in the UK context. 
Extensive research into teacher questioning has witnessed a radical shift in focus from 
exploring the relationships between teacher questioning and student achievement based on the 
process-product paradigm in studies conducted before the 1980s (e.g. Mehan, 1979), towards 
examining questioning from social constructivist perspectives (Chin, 2007). This has followed 
the educational reform from a traditional transmissive teacher-centred teaching to an inquiry-
based teaching that emphasises the social and linguistic nature of knowledge construction in 
UK classrooms. However, very few studies of teacher questioning have been carried out in 
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places like China (Ma & Zhao, 2015), where cultural values are different from the UK (Leung, 
2001) and where teachers may be constrained by having to deal with larger classes (Chin, 2007) 
or high-stake examinations (Wong et al., 2012). Traditionally, Confucianism was first and 
foremost a distinctly Chinese teaching, but it then spread into many East Asian countries such 
as Japan, Korea, and as well as territories with predominantly Chinese populations such as 
Hong Kong and Singapore. Confucianism defines much of these East Asian countries’ identity, 
especially in relation to philosophical thoughts and practice (ibid). Wu (1993) studies teachers’ 
questioning patterns in Hong Kong and discovers that students generally have a habit of waiting 
to be called up before answering teachers’ questions. Such student passiveness and reluctance 
may be explained from a cultural perspective. Chin (2007) carries out several investigations of 
teacher questioning in science classrooms in Singapore and goes on to suggest that, given the 
predominant Confucian views of teaching and learning, teachers typically are perceived as 
expert role models for students, which makes them relatively active in lessons compared to 
students. Such activeness of a teacher in a lesson can manifest in the form of teacher 
monologue. Lending support to such findings, Ma & Zhao (2015) have observed 13 primary 
mathematics lessons in China, and found question-answer exchanges to be the most dominant 
dialogic form between teachers and students, in which almost all mathematical questions are 
raised by the teachers.  

Teacher questioning is a frequent component of classroom talk. The use of questioning in the 
West can be traced back to Plato and Socrates, and contemporaneously teachers use questions 
to stimulate students’ thinking (Chin, 2007). Research examining teacher questioning has 
shown the importance of the kinds of questions teachers ask. Open-ended questions that are 
not limited within a set of answers can encourage more meaningful responses from students 
and further stimulate students’ logical thinking; whereas closed questions which often refer to 
those with predetermined answers, tend to limit students’ responses into a few simple words 
and produce merely recall of facts and concepts (Chin, 2007). Thinking about the questions 
teachers ask is vital, but equally important is thinking about the questioning patterns or 
sequences that they employ. It is therefore necessary to understand more deeply what happens 
in classroom exchanges after an initial question is posed, or in other words, what questioning 
patterns or sequences can occur. Franke et al. (2009) examine teachers’ questioning sequences 
following students’ explanations and find that students tend to produce fully complete and 
correct explanations of their mathematics when asked by teachers’ sequential probing 
questions. Therefore, the focus of this paper is to explore teachers’ questioning sequences and 
patterns employed by two groups of teachers in the UK and China in order to investigate the 
following research questions:  

What are the similarities and differences in UK and Chinese teachers’ questioning 
sequences and patterns in practice? 

Methods 
A combination of both classroom observation and individual interview were employed, with a 
group of 11 mathematics teachers of Key Stage 3 pupils (aged 11-14 years) in the UK and a 
group of 12 mathematics teachers of Year 7 and Year 8 students (aged 11-14 years) in China. 
Four lower-secondary schools (two from Beijing and Hangzhou, two from Coventry and 
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Birmingham) were selected, all of which were national-run, state schools. The teachers were 
teaching various different topics from multiplying decimals to equations with algebraic 
fractions, and with a wide range of years of teaching experience from newly qualified to very 
experienced (e.g. some teachers had been teaching for nearly 40 years). The class size ranged 
from 8-55 students (50 students on average in China, 30 in the UK). Classroom observation 
was undertaken to answer the research question, focusing on identifying questioning strategies 
that the teachers might adopt in practice. These were carried out in naturalistic settings in the 
hope that they could provide rich descriptions of classroom settings to examine naturally 
occurring teacher questions and to understand the underlying silent social norms and cultural 
values behind the teachers’ behaviours. The individual follow-up interviews were semi-
structured and conducted as a supplement to observation to further understand and justify 
certain patterns of teachers’ questions from their own perspectives, which may differ from the 
researchers’ interpretations. Through this, it was hoped that some interesting themes would be 
uncovered which may not otherwise have been accessible to the researcher. All data were 
audio-recorded and transcribed and analysed in original languages. Thematic analysis was 
adopted in this study as it is the most widely used method for identifying themes and patterns 
of meaning with a clear set of procedures in qualitative research (Braun & Clarke, 2006). 

To consider a teacher’s question, the research focused on a teacher’s utterance that had the 
grammatical and intonation form of a question, whether it was for the purpose of eliciting 
information about students’ knowledge or thinking or was social act for keeping students’ 
attention. Questions in whole class settings were selected from each observation to analyse. 
The research attempted to use a discourse analysis approach to analyse the teachers’ 
questioning. The main unit of analysis here was of content units (Hsu, 2001). “A content unit 
is a piece of discourse that consists of a main question and all the verbal moves made by 
classroom participants that are directly related to that question in content” (ibid, p. 62). A 
content unit may not only include a question-answer exchange but might go beyond into the 
sequences of connected talk associated with a main question. The following extract offers a 
good example of a content unit: 

Excerpt 1 (example from a Chinese lesson) 

Teacher: It is what of the previous call? What exactly? 

Student: The cost of a call.  

Teacher: What? Is it the cost of a previous call?  

Students: Length of a call.  

Teacher: It is it call cost or length of a call? 

Students: Length of a call.  

Teacher: S3, is it the call cost or length of a call?  

Student: Length of a call. 

In the process of analysing interview data, both an inductive and deductive approach were used, 
which included some of the themes taken from the classroom observation. During the analysis, 
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new issues emerged from the data, therefore, the researcher worked to refine the codes and sub-
codes back and forth in a process of inductive and deductive coding. 

Results 
Individualised vs. collective questioning 

One distinct difference lay in the number of students involved in teachers’ questioning, which 
illustrated two opposite questioning patterns. The questioning patterns used by Chinese 
teachers often took the form of collective questioning, whereas British teachers’ questioning 
patterns were more likely to involve individualised questioning. Specifically, the Chinese 
teachers frequently posed their questions to the entire class and often involved verbal 
interaction more than one student. The excerpts above (Excerpt 1) and below (Excerpt 2) are 
respectively typical examples of questioning to the entire class and questioning to individuals 
that also involves the rest of the class. The following distinct pattern was only found in the 
Chinese classrooms. Every single teacher observed adopted this questioning strategy, and used 
it multiple times in their lessons. A teacher asked students to solve a practical mathematical 
issue in choosing from three sampling strategies in the textbook.  

Excerpt 2  

In order to know the eye health of all students from secondary schools across the nation, 
someone presented the following three sampling methods:  

1. To get eye tests for all secondary school students  

2. To get eye tests for students from one secondary school  

3. On the country level, firstly, divide the country into five areas: east, west, south, north, 
and middle. Secondly, pick three secondary schools from each area. Thirdly, 
carry out eye tests for all students from the 15 secondary schools picked. 
Which sampling method do you think is the most appropriate?  

Teacher: So, someone presented these three sampling methods in order to understand 
the vision situation of all secondary school students across the country. Li, 
which one do you think is best?  

Li: The third one. 

… 

Teacher: … what kinds of issues would rise if we get eye tests for the entire country?  

Students: Waste of time.  

Teacher: Waste of time. Some students are right. What do we waste?  

Students: Waste of energy, waste of people and waste of money…  

T&S:  Waste of money.  

In this excerpt, the teacher asked questions to an individual student Li, but his questions were 
not individual-centred, because when the teacher continued questioning Li, he set his eyes on 
the rest of the class, welcoming others to join in this process. Along with the question-answer 

Thematic Working Group 11

Proceedings of CERME11 2084



exchanges, his follow-up questions with Li were shared and answered among all students in 
the class, and eventually the teacher and students answer the questions all together. 

In contrast, UK teachers asked their questions mostly at an individual level, sticking to one 
individual student, and keeping eye contact with that individual student until they finished 
answering the questions or came to the correct understanding. In the process, no other students 
were allowed to interrupt the interaction between that individual student and the teacher, even 
when the individual student’s solution was incorrect. A classic example can be seen below in 
Excerpt 3. In one lesson on grouping different cubes and a list of numbers to make a square, 
rectangle and stick, a teacher had given each group a set of different tasks to complete. As they 
were looking at square 4 on the board, the following conversation ensued.  

Excerpt 3  

Teacher: Hannah, how’s that 4 made up on the board? How many rows?  

Students:  (Inaudible) 

Hannah: (Inaudible) 

Teacher: No, it’s Hannah I’m talking to. The 4, Hannah, how many rows has it got?  

Hannah: 2.  

… 

Teacher: 5, well done.  

Moreover, the UK teachers often began by asking questions based on the tasks for all the 
students, but soon followed this with individual students. Depending on how well they 
answered the questions, their follow-up questions were frequently modified according to the 
student’s response. In one lesson on Trigonometry’s problems, a teacher asked Jane to give 
solutions to question 2, as shown below. 

Excerpt 4 

Question 2: ∠C = 71º, BC = 8 cm, get y.  

Teacher: ...means the hypotenuse on this side. (Pointing to line BC) What is 8? (Using 
SOHCAHTOA approach) 

Jane: Opposite.  

Teacher: Why Opposite?  

Jane: Because it’s the shortest one.  

Teacher: No... Is the 8 opposite the given angle?  

Jane: No it’s the other one.  

Teacher: Okay so what’s the 8?  

Jane: Adjacent.  

… 

C 8 cm 

A 

B 
71º 

y 
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Teacher: Which one has got the adjacent and the hypotenuse in? Is it sin, cos or tan?  

Jane: The middle one.  

Teacher: The middle one which is what?  

Jane: I don’t know.  

Teacher: The middle one which is what? Sin, cos or tan? 

Jane: Cos.  

Teacher: Cos, lovely. 

In the excerpt above, the teacher insisted on questioning Jane alone until she came to the final 
correct answer. Every time when she replied with ‘I do not know’, the teacher asked more 
followed up questions that probed or guided her understanding. 

The findings from interviews reveal that class size has always been a challenge for Chinese 
teachers. In order to accomplish lesson objectives in such a short, limited time, it was very hard 
to ask individualised questions. The UK teachers, in contrast, tried to question every student 
during the lesson. The lower the ability of the group, the smaller the group size would be: a 
higher ability group tended to be bigger in class size, but no bigger than 30 students. Classroom 
management was also seen as a concern by the Chinese teachers. They were not as interested 
in their students’ answers but instead on keeping the lesson going and keeping students all 
focused. Furthermore, it is believed that most mathematics questions were shared by all 
students. Instead of questioning one student alone, it would be best to ask the entire class, so 
that everyone could benefit. Their lesson objectives took priority, the lesson pace was fixed 
and set to get 2/3 of their students to understand their lessons. In contrast, the UK teachers 
believed that individualised questioning worked best for their individual students’ needs. Each 
student has their own capacity in learning mathematics, and they should work at the pace of 
their individual students. When a child fell behind, they would increase questioning specifically 
to that child. 

Discussion 
The Chinese questioning pattern has been described by Alexander (2017, p. 28) as “teachers 
and children address learning tasks together, whether as a group or as a class, rather than in 
isolation”. In the Chinese classrooms observed, teachers and students were facing each other 
during the whole lesson, and maintained eye contact as much as possible between one adult 
and a class. These teachers indicated an orientation towards learning together, also called 
collective orientation (Leung, 2001), and the questioning pattern in their classrooms became a 
rather collective form of questioning. This collective questioning has been found in other 
studies investigating Chinese classrooms (Ma & Zhao, 2015). Most of the teachers’ questions 
were answered by all students in unison, echoing the notion of social harmony and the 
‘obligation of the individual to fit into the social structure’ (Leung, 2001, p. 44). In contrast, 
the UK teachers’ questioning pattern demonstrates an orientation towards individualised 
learning described as individual orientation (ibid), illustrating a relatively individualised 
questioning pattern. The UK teachers observed firstly started questioning with a task-driven 
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purpose, but soon followed this conversation with individual students and assessed how well 
they answered the questions. Their follow-up questions were frequently modified to 
accommodate the individual student’s response, in a much more student-centred approach, 
which fits the description of Western culture seeing the individual as being of prime importance 
(Leung, 2001). The difference in the two groups of teachers’ questioning patterns is in line with 
Alexander’s (2017) conclusions of collectivism- individualism in Western and Eastern 
countries. The collectivism-individualism concept refers to “the extent to which the individuals 
of a society are perceived as autonomous” (Kaiser & Blömeke, 2014, p. 406). The underlying 
assumptions are about the relations between individuals and the community. Collectivism 
emphasises “human interdependence, caring for others, and sharing and collaborating, but only 
in as it serves the larger needs of society, or the state, as a whole” (Alexander, 2003, p. 25). 
Individualism as its counterpoint, puts “the self above others and personal rights before 
collective responsibilities”. This may create different joint identities for students and teachers 
in China and the UK, which may then explain their classroom questioning behaviours and their 
explanations for choosing certain questioning patterns. Most of the time, the Chinese teachers 
questioned students as a group, rarely as isolated individuals, as they emphasised learning 
common mathematical knowledge together and sharing uniform learning outcomes, following 
a single curriculum for all. On the contrary, the UK teachers’ student-centred questioning 
strategy viewed “knowledge as being personal and unique”, embracing “individual intellectual 
differentiation and divergent learning outcomes” (Alexander, 2009, p. 936). 

Another issue pertinent difference is class size. Consistent findings concerning class size 
effects on classroom processes show that small class size is strongly related to the 
individualisation of teaching, whilst large class size is associated with classroom management 
and classroom control (Blatchford et al., 2011). Specifically, class size seems to alter the 
proportion of time spent questioning the whole class, or with individuals. With a large class 
size of over 50 students, the collective questioning pattern may be adopted in the interest of 
maximising participation by as many students as possible, encouraging them all as a whole to 
contribute to the answers. In the smaller class sizes of the UK classrooms, the teachers may be 
able to offer more personalised questioning to their students who are more often the focus of 
the teachers’ attention (Blatchford et al., 2011). It further reveals that the UK teachers and 
individual students were often engaged in a sequence of several question-answer exchanges. 
This may suggest that small class size can sustain teacher-student interactions, whereas large 
class size tends to cut teacher-student interaction short. The Chinese teachers favoured content-
based questioning, the remaining third of their students often comprising the least able students 
may be potentially left out. In contrast, in the UK, students’ abilities are strongly linked to the 
size of a class. This has given teachers the possibility to challenge and extend all students at 
their own levels of understanding in mathematics. 

To conclude, this study suggests that teacher questioning is a cultural-based pedagogy. Thus, 
it is hoped that policy makers such as the Department for Education in the UK or the Ministry 
of Education in China can be openly looking at and learning from other education systems, and 
incorporating parts in a culturally appropriate way. 
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Introduction 
History of mathematics in mathematics education, and  history of mathematics education continue to 
receive much attention. However, empirical research and coherent theoretical/conceptual frameworks 
within this area have emerged relatively recently. The purpose of this CERME TWG is to provide a 
forum to approach mathematics education in connection with history and epistemology. 

TWG12 welcomes both empirical and theoretical research papers, and poster proposals related to one 
or more of the following issues: 

1. Design and/or assessment of teaching/learning materials using the history of mathematics, 
preferably with conclusions based on empirical data; all levels can be considered, from early-
age mathematics to tertiary education and teacher training. 

2. Surveys on the existing uses of history or epistemology in curricula, textbooks, and/or 
classrooms in primary, secondary or tertiary levels, and in teacher training; 

3. History of mathematics education; 
4. Relationships between, on the one hand frameworks for and empirical studies on history in 

mathematics education and, on the other hand, theories, frameworks and studies in other parts 
of mathematics education research. 

Even though the inception of this TWG is fairly recent – it started in CERME6 (2009) – it has deeper 
institutional roots within the maths education research community. Indeed, the HPM study-group 
(History and Pedagogy of Mathematics) was created at the 1972 ICME conference; it has been 
organizing satellite conferences to the ICME meetings since 1984, and has several active regional 
branches (HPM-Americas, European Summer Universities). In CERME11, 13 papers and 3 posters 
were presented in TWG12, with participants coming from a large range of European countries and 
beyond (Brazil, Tunisia). The topics covered by TWG12 were also reflected in Kathy Clark’s plenary 
address on History and pedagogy of mathematics in mathematics education: History of the field, the 
potential of current examples, and directions for the future. 

Before going into any details, it should be stressed that this TWG has four general but distinctive 
features which give these meetings their specific flavour. Firstly, its topic lies at the intersection of 
different fields of research – maths education research and history of mathematics – which requires 
versatility and methodological vigilance (Fried, 2001; Chorlay & Hosson, 2016). Secondly, the 

Thematic Working Group 12

Proceedings of CERME11 2090



 

 

strength of the historical and the HPM community varies greatly among countries, and these meetings 
play a crucial role for researchers working in relative isolation, and with difficult access to resources 
in the field. Thirdly, the scope of TWG covers both history in mathematics education and history of 
mathematics education, which are two significantly different research topics (TSG 24 and 25 in 
ICME13); connecting the two lines of investigations is a constant challenge. Fourthly, since the topic 
of TWG12 is neither specific to one level of the educational system (from primary education to 
teacher- training) nor to any single mathematical topic (be it fraction concepts, algebra, proof, etc.), 
the work in TWG12 intersects that of most other TWGs. It should be noted that, for this edition, there 
was little intersection with what was covered in TWG8 (Affects and the teaching and learning of 
mathematics), TWG10 (Diversity and maths education), in spite of the fact that it is not uncommon 
for outsiders of the HPM research community – among which most policy-makers and curriculum-
designers – to ascribe such goals to the historical perspective in teaching. 

These four features made this meeting not only useful but also challenging and exciting. As the final 
discussion made clear, the general feeling among the participants was that one of the main outcomes 
of this meeting is that we actually learned a lot from the one another, both from their papers and from 
the lively discussions. 

Some significant features of the 2019 conference 
A large share of the papers bore on teacher training, either for prospective or in-service maths 
teachers. Two case studies, one presented by Barreras and Oller-Marcén, and one by Bernardes and 
Bruna-Correa, showed how confronting teachers with mathematical documents from the past can be 
a tool both for research into teachers’ content knowledge, and for the professional development of 
teachers. From another perspective, van den Bogaart and Schorcht focused on teachers’ beliefs, either 
when studying some history of maths as part as their per-service training, or when assessing the 
didactical potential of classroom activities with some historical content.  

By contrast, few papers were dedicated to what has long been a central line of research in the HPM 
community, namely the use of historical documents in the classroom. However, these few papers 
point to fresh research directions. For instance, the poster of Olsen and Thomsen aimed to connect 
the studies on history of maths in the classroom with those on the use of ICT. Chorlay’s paper bore 
on primary school mathematics and argumentation, thus illustrating the new approach in the French 
IREM community, with its greater emphasis on the actual teaching effects of experimental sessions 
and its rather new involvement with pre-secondary mathematics. This new approach led to the 
publication of a textbook (Moyon & Tournès, 2018), which was awarded the 2019 prize for best 
science teaching resource by the Paris Academy of science. 

On a par with teacher-training, a significant share of the papers bore on the history of mathematical 
education; a fact which bears witness to the vitality of this research field at the international level. 
We are pleased that TWG12 of CERME provides opportunities for researchers working in different 
fields – mathematics education research, history of mathematics, and history of mathematics 
education – to interact fruitfully. The papers on topics from history of maths education presented in 
this CERME conference gave food for thought for mathematics education researchers working on 
textbooks (Hatami and Pejlare), resources for teaching and the professional development of teachers 
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(Krüger), testing and assessing (Smestad & Fossum). Several papers (Zwaneveld & De Bock, Weiss 
& Känders) bore on fairly recent historical developments, thus shedding a new (and occasionally 
critical) light on current trends. History of education was complemented with inputs from sociology 
in Hamann’s work, in order to sketch a general model for education reform. 

References 

Chorlay R., & de Hosson C. (2016) History of Science, Epistemology and Mathematics Education 
Research. In B. Hodgson, A. Kuzniak, J.-B. Lagrange The Didactics of Mathematics: Approaches 
and Issues. A Homage to Michèle Artigue (pp. 155-189). Springer International Publishing 
Switzerland. 

Fried M. (2001). Can Mathematics Education and History of Mathematics Coexist? Science and 
Education 10, 391-408. 

Moyon, M., & Tournès, D. (Eds.) (2018). Passerelles : enseigner les mathématiques par leur histoire 
au cycle 3. Paris : ARPEME. 

Thematic Working Group 12

Proceedings of CERME11 2092



 

 

Generalizing a 16th century arithmetic problem with prospective 
Secondary education teachers 

Álvaro Barreras1 and Antonio M. Oller-Marcén2 
1Universidad Internacional de La Rioja, Logroño, Spain; alvaro.barreras@unir.net 

2Centro Universitario de la Defensa de Zaragoza, Spain; oller@unizar.es 

The use of history of mathematics and, in particular, of historical problems is a very useful tool for 
teacher training. In this work we present some partial results obtained after the design and 
implementation of an activity based upon an arithmetic problem from the “Conpusicion de la arte 
de la arismetica y juntamente de geometria” by the Spanish 16th century Dominican friar Juan de 
Ortega. This activity was conducted with 48 prospective Secondary education teachers enrolled on 
an on-line Masters’ degree. We focus on the part of the activity related to generalization and, more 
particularly, on the relation between generalization and use of algebraic language. Our results 
show that there exists a positive significant relation between generalization and the use of algebraic 
language. However, we also found out that many students were able to provide correct and 
satisfactory generalizations using just natural language. 

Keywords: History of mathematics, word problems, teacher training, generalization, algebraic 
language. 

Introduction and objectives. 
The use of history of mathematics in mathematics education can be approached in many different 
ways and with many different motivations and objectives (Jankvist, 2009). Regarding the classroom 
implementation, one interesting possibility is the use of historical problems and, in particular of 
problems “having clever, alternative, or exemplary solutions” (Tzanakis et al., 2000, p. 224).  

In the context of teacher training, Mosvold, Jakobsen and Jankvist (2014) show how all the 
different domains of teachers’ Mathematical Knowledge for Teaching (MKT) might profit from the 
use of history of mathematics. In particular, the analysis of historical problems and their solutions 
can be a very interesting task for prospective teachers (Meavilla-Seguí & Oller-Marcén, 2015).   

Generalization belongs to the two main domains of the MKT model described by Ball, Thames and 
Phelps (2008): Subject Matter Knowledge (SMK) and Pedagogical Content Knowledge (PCK). 
From the point of view of SMK it is clear that generalizing is one of the main components of 
mathematical activity (Harel & Tall, 1991). Regarding PCK, Ellis (2007, p. 221–222) points out 
that “one of the primary aims of educational practice is to help students to develop robust, 
generalizable knowledge that will support their abilities to create generalizations in the classroom”. 
Generalizing and specializing are two key aspects of one possible approach to algebra (Lee, 1996) 
and the use of symbolic algebraic language is strongly related to the generalization of arithmetic 
properties or to the modelization of different situations (Usiskin, 1988). 

Even in the absence of symbolic algebraic language, the search for some kind of balance between 
generalization and specialization can be clearly seen in many ancient mathematical texts. These 
texts included very long collections of problems possibly hoping that the reader would be able to 
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infer the general rules used to solve the seemingly different problems. In the Zhou bi suan jing, a 
Chinese text from the 3rd century, this idea was even explicitly stated in a dialogue between a 
master and a student:  

Illuminating knowledge of categories [is shown] when words are simple but their application is 
wide-ranging. When you ask about one category and are thus able to comprehend a myriad 
matters, I call that understanding [my] Way. (Cullen, 1996, p. 15) 

This underlying philosophy can still be found in Fibonacci’s Liber Abaci (Sigler, 2002), for 
example, about one thousand years later. In fact, many mathematical texts written during the 16th 
and 17th centuries contained series of problems whose solutions were just the description of the 
operations that had to be performed with the given data. 

In this work, we analyze part of an activity designed for and implemented with prospective 
Secondary school teachers which is based on an arithmetic problem excerpted from a 16th century 
Spanish arithmetic textbook. Our main objective is to explore if and how the participants are able to 
provide generalizations of the statement and the solution of the problem. More particularly, we 
focus on the interplay between generalization and the use of algebraic language. In other words, we 
focus on two ways to generalize, according to which semiotic register is used: algebraic language or 
natural language. 

The source. 
The only known biographical facts about friar Juan de Ortega is that he was born in Palencia, that 
he was a Dominican and that he taught mathematics in Spain and Italy both publicly and privately 
(Madrid, 2016).  

As far as we know, he only wrote one book, the Conpusicion de la arte de la arismetica y 
juntamente de geometria (Ortega, 1512). Ortega’s book was rather popular and it was reedited 
several times in different countries during the 16th century (Rey Pastor, 1926). In fact, it was 
reprinted (sometimes with slightly different titles) and translated at least in Roma and Lyon (in 
1515), Messina (in 1522), Sevilla (in 1534, 1537, 1542 and 1552) and Granada (in 1563). Some 
authors (Carabias, 2012) point out that the 1515 translation published in Lyon was the first text on 
commercial arithmetic written in French. Marquant (2016) presents an interesting discussion on the 
authorship of some of these translations. 

Regarding its content, the book consists of 204 folios organized according to 36 chapters and it 
covers the usual topics in a Renaissance commercial arithmetic text: elementary operations with 
natural and fractional numbers, progressions, square and cubic roots, rule of three and its 
applications and some elements of geometry. The editions of 1534, 1537 and 1542 included a 
method to approximate square roots that improved the known methods at his time, on this issue we 
refer the reader to the classical works by Rey Pastor (1926, pp. 72–81) and Barinaga (1932). 
Finally, the 1552 edition included a collection of 13 problems solved using algebraic techniques 
that was inserted by Gonzalo Busto, the editor of this probably posthumous edition. This is an 
interesting feature of the text, since the first book with a systematic introduction to algebraic 
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language written in Spanish, the Libro Primero de Arithmetica Algebratica (Aurel, 1552) was 
published that very same year (Puig & Fernández, 2013). 

In addition to many classical problems (Métin, 2018), in chapters 14 through 17, Ortega provides a 
collection of 34 examples of what he calls “extraordinary rules” and that he defines (Ortega, 1512, 
fol. 60r) as “rules outside the usual way of adding, subtracting, multiplying and dividing and that 
involve hidden ways to apprise those who know little”. They are, in fact, a collection of arithmetic 
problems and their solutions presented in a merely descriptive fashion. For example, the eleventh 
example from chapter 14 goes as follows (our translation): 

If you wanted to know, or if it was asked to you, which are those three numbers such that two 
fifths of the first one is the same as three sevenths of the second one and the same as four ninths 
of the third one, you will do the following. Put the numbers as you see here:2

5
 3
7

 4
9
. Then, multiply 

the 5 below the 2 by the 3 above the seven to get a 15. Multiply this 15 again by the 4 above the 
9 and you will get 60, which is the first number. After that, multiply the 7 below the 3 by the 4 
above the 9 to get a 28, which you shall multiply by the 2 above the 5 in order to get a 56, which 
is the second number.  After that, multiply again the 9 below the 4 by the 2 above the 5 and you 
will get an 18 which you shall multiply again by the 3 above the 7 to get 54. This is the third 
number. If you want to check that it is true, look for the two fifths of 60 and you will see that it is 
24. In the same way you will see that three sevenths of 56 is 24 and that four ninths of 54 is 24, 
as you see in the example. (Ortega, 1512, fols. 63r–63v) 

Activity and participants. 
The experiment was carried out in the context of the subject “Didactics of arithmetic and algebra” 
during the academic year 2017-2018 with 48 students of the online Master’s degree in Didactic of 
Mathematics in Secondary education from the International University of La Rioja. The age of the 
participants ranged from 25 to 56 (with a mean of 37.7 and a standard deviation of 7.9) and most of 
them (91.7%) had at least six months of prior experience teaching mathematics at secondary level. 
Even though background of the students was diverse, most of them had prior teaching experience or 
a degree on a STEM or education discipline and hence a good knowledge of mathematics could be 
assumed. Table 1 provides further information about the participants. 

Gender Nationality Degree 
Male Female Spain Colombia Ecuador Mexico STEM Education Other 
52% 48% 17% 44% 37% 2% 61% 35% 4% 

Table 1: Some data about the sample 

The designed activity was based upon the problem transcribed above. It consisted of three exercises, 
each of them addressing to a different issue. Being an online Master’s degree, the students had to 
complete this activity at their homes and they were given a two-week deadline in order to obtain as 
many answers as possible. 

· In exercise 1, a short version of the original problem was presented using modern natural 
language and the students were asked to solve it using whichever method they wanted. 
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· In exercise 2, a short version of the original solution was presented using modern natural 
language and the students were asked to: 
§ Give their opinion about this solution. 
§ Compare this solution with their own solution from exercise 1. 
§ Explain which of the two solutions is “better” and in which sense. 

· In exercise 3, the students were asked to provide a general version of the statement of the 
problem from exercise 1 and a general solution based on the solution from exercise 2. 

As we see, exercises 1 and 3 mostly deal with purely mathematical aspects so they are more related 
to SMK. Exercise 2, on the other hand, is more focused on PCK because it involves the analysis of 
different solutions to the same problem, their comparison and the reflection about the advantages 
and disadvantages of each of them. In this work, we will present the results of the analysis of 
exercise 3. In particular, we will focus on two variables: generalization and language. For the first 
one we will focus on its correctness (correct or incorrect) and on its completeness (partial or full) 
while for the second one we will consider the attributes natural and algebraic. 

Results. 
Although in this work we focus only on exercise 3, it is interesting to point out that almost all the 
students (46 out of 48) were able to solve the problem in exercise 1 at some extent. However, not all 
the answers were equally complete. For example, very few students mention that the problem has 
an infinite number of solutions. In any case, we conclude that the students were able to understand 
the problem 

Exercise 3 was answered by 47 out of the 48 participants. Only 28 of them (about 60%) were able 
to provide some kind of correct generalization for the statement and the solution of the problem. In 
Table 2 we see that those participants that used algebraic language were more capable to provide a 
correct generalization of the situation. In fact, performing a χ2 test of independence, we obtain a 
statistically significant relationship between both variables (significance level of about 95%).  

 Algebraic language Natural language 
Correct generalization 18 10 

Incorrect generalization 7 12 

Table 2: Correctness versus use of algebraic language 

Most of the wrong answers that tried to generalize the problem using only natural language simply 
provided incomplete statements. One student’s answer, for example, was: “Do the following 
exercise, multiplying one denominator by the remaining numerators”, which is a just simple 
explanation of the method rather than a generalization. 

 
Figure 1: Incorrect generalization 
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The incorrect generalizations that used algebraic language mostly looked like the example in Figure 
1. The statement of the problem (top of the figure) is expressed incorrectly and, at the bottom, we 
just find the required operations expressed symbolically.  

It is noteworthy that some students seem to identify the process of generalization just with the use 
of symbols. Figure 2 is an interesting example of this phenomenon. There is no generalization in the 
student’s answer, just the use of the letters X, Y and Z to denote the unknown numbers. 

 
Figure 2: Use of symbols that does not imply generalization 

We recall that 28 students provided a correct generalization of the original problem and its solution. 
However, not all of them provided a full generalization of the situation. In Table 3 we analyze the 
relation between the use of algebraic language and the degree of generalization of the answer. 

 Algebraic language Natural language 

Full generalization 4 7 

Partial generalization 14 3 

Table 3: Degree of generalization versus use of algebraic language 

We obtain again a statistically significant relationship between both variables (significance level of 
about 95%) showing that the students that were able to correctly generalize the original situation 
using natural language provided full generalizations more often than their partners. The following 
transcription is a good example of full generalization that essentially uses only natural language: 

If in a set of n numbers that are proportional to each other in a rational way, we multiply the 
denominator of one of them by the (n – 1) remaining numerators, we obtain that number. If we 
successively proceed in this way, we will obtain the n numbers of the solution. Since it is a 
compatible and indeterminate system with (n – 1) equations and n unknowns, the system has 
infinitely many solutions… 

 
Figure 3: Full generalization using only algebraic language 
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Regarding the 4 answers that fully generalized the problem using algebraic language, three of them 
combined algebraic and natural language and only one (Figure 3) could be described as “completely 
algebraic”. Only one of these 4 answers stated that the problem has infinitely many solutions. 

Now, 17 students provided correct generalizations that were only partial generalizations. In 
particular, they only considered a situation with three unknown numbers as in Figure 4. 

 
Figure 4: Partial generalization using algebraic language 

Even if most of these 17 answers were very similar to that in Figure 4 (only varying in the degree of 
use of algebraic language), two of them were particularly incomplete generalizations. For example, 
in Figure 5, a student considers arbitrary fractions in the statement of the problem but imposes a 
very particular relation between numerators and denominators inspired by the particular numbers of 
the original problem. 

 
Figure 5: A very restricted generalization 

The other restricted generalization imposed the additional conditions that the numerators (ni) of the 
three fractions are consecutive numbers and the denominators are of the form 2ni + 1. 

Discussion and final remarks. 
From the purely mathematical point of view, it was somewhat surprising that about 40% of the 
students were not able to provide a correct generalization of the given situation. This might be 
caused in some cases just by some lack of SMK (Figures 1 or 2) while in other cases it might be 
related to a misconception about generalization that identifies it with the mere use of symbols in any 
way (see Figure 2). Regarding the completeness of the generalizations we see that, in terms of Ellis 
(2007, p. 235), many students generalize just by removing particulars (what we called partial 
generalization, like in Figure 4) rather than by expanding the range of applicability (what we called 
full generalization, like in Figure 3). It is also noteworthy that some students show a different 
behavior between the statement and the solution. For example, in Figure 2, the student does not 
generalize the statement at all (he only introduces letters for the unknown quantities) but in the 
solution he refers to “each fraction” instead of to particular values. This fact probably deserves 
more attention. 

Throughout the students’ responses there is a varying degree in the use of algebraic language. From 
those using only natural language to those using only algebraic language. Nevertheless, most of the 
students lie in between showing in their answers a mixture of algebraic and natural language. The 
results of our work suggest that the use of algebraic language facilitates the process of 
generalization of the considered problem, illustrating, as Usiskin (1988) points out, that one of the 
main uses of variables is as “pattern generalizers”. However, and somewhat paradoxically, this use 
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of algebraic language seems to constitute some kind of obstacle in order to fully generalize the 
considered situation. There can be several explanations for this phenomenon. One reason can be the 
context of the exercise, since the answer that was provided to the students only used natural 
language. Another reason can be related to SMK, because some students might be uncomfortable 
using algebraic language. Finally, the beliefs, conceptions and expectations of the students about the 
notion of generalization (Strachota, 2015) might play an important role in their performance. 

Zazkis and Liljedahl (2002, p. 400) reached similar conclusions finding out that “there is a gap 
between students’ ability to express generality verbally and their ability to employ algebraic 
notation comfortably”. Nevertheless, it must be noted that they worked with preservice elementary 
school teachers in a context of pattern generalization, while we have worked in a purely arithmetic 
setting with Secondary education teachers. Either way, there exist contradictory results in the 
literature. For example, in (Richardson, Berenson & Staley, 2009) most of the elementary 
prospective elementary teachers participating in the study expressed their explicit generalizations 
using algebraic notation. 

The designed activity, an example of using history as a tool (Jankvist, 2009), involved other 
exercises. We have already mentioned that most of the students solved the problem correctly. 
However, after a preliminary and incomplete analysis, we have observed different solving methods 
some of which involve the use of other semiotic registers besides algebraic or natural language. For 
example, a few students solved the problem using diagrams. It would be interesting to analyze the 
influence of different aspects of the students’ solution to the problem over their ulterior process of 
generalization.    
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On the didactical function of some items from the history of calculus 
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The article draws attention to some individual results from the history of calculus and explains their 
appearance in a course on the didactics of analysis for future high school mathematics teachers. 
Specifically it is shown how these results may serve as a vehicle to address and reflect on three 
major didactical challenges: determining the meaning of a result, concept or topic to be taught, 
teaching mathematics as a coherent subject and understanding the source of misconceptions.  

Keywords: Didactics of analysis, meaning, coherence, misconceptions. 

Why do we have to learn this historical stuff, although this is a course on didactics? This is a 
question frequently posed by future high school mathematics teachers taking my third semester 
course on the didactics of analysis at the university of Duisburg-Essen. In this course we consider 
and compare several different approaches to differentiation and integration, uncover some of the 
relationships of analysis with other mathematical subdomains and try to settle the role and meaning 
of analysis within the high school curriculum. Although the students have mastered a typical first 
semester university course on real analysis before taking my course on the didactics, I feel obliged 
to incorporate several mathematical digressions into this course. These digressions especially 
include some episodes from the history of calculus that weren’t discussed in the course on real 
analysis. I teach these episodes, however, not as an end in itself or as an introduction to the history 
of mathematics, but as a means in order to be able to seriously address the didactical issues at stake. 
In the following article I will mention some of those episodes and I will try to point out their 
relevance and value from a didactical point of view.   

Three didactical challenges – meaning, coherence and misconceptions 
Let us consider a typical first semester university course on real analysis. With such a course we 
may associate the following keywords: axioms for the real numbers, convergence of sequences and 
series, Heine-Borel, Bolzano-Weierstrass, differentiability, monotony, continuity, integrability, 
intermediate value theorem, mean value theorem, fundamental theorem of calculus and epsilon-
delta proofs. This course has a lot to offer to its students. It introduces them to the mathematical 
quest for rigor, generality and structural results. It shows that the knowledge about differentiation 
and integration learned at school can be embedded into a beautiful large-scale deductive system, 
and thereby exemplifies the architectural nature of mathematics.  

One might believe that this course would form a sufficient background regarding the mathematical 
content knowledge with respect to analysis for a future high school mathematics teacher. However, 
teaching analysis at school may serve quite different aims than the university course we considered. 
For instance one might want to teach analysis as a tool to formulate and understand some 
Newtonian physics or more generally speaking, on might want to teach analysis as an example 
showing the applicability of mathematics and its role for the other sciences. In any case, in contrast 
to the university course, analysis nowadays usually isn’t taught architecturally at school and 
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according to Freudenthal (1973) and his legacy it wouldn’t be a good idea to do so either. One 
should be acquainted with a subject, with local orderings of its results and concepts before one 
should work on or be confronted with a global ordering of that subject. From this situation, namely 
teaching analysis in a different way, a didactical challenge arises: Find the role and meaning of the 
concepts and results to be taught with respect to the overall approach chosen, e.g. genetic, 
applicational or problem-oriented. In the axiomatic approach the concepts and results receive their 
meaning from their place within the system. The mean value theorem for instance occupies a central 
position within the system. It can be seen as the linchpin of the theory. Continuity is treated as a 
central concept. In a different approach, however, the roles and meanings of the concepts and 
results might be completely different.  

A central concept developed and used by the German-speaking educational sciences in order to 
direct the discussion of school curricula is called `Allgemeinbildung´. The concept elaborates on the 
functions of school and thereby it serves as a framework and a benchmark for the development and 
analysis of curricula. Each school subject is then requested to determine its individual contribution 
to the Allgemeinbildung. In Heymann’s (1997, p.2) version of the concept, which is especially 
prominent in mathematics education, one major task of school is to teach the subjects in such a way 
as to endow cultural coherence, meaning not only the relationship between past, presence and 
future, which Heymann would rather have called `cultural continuity´, but also the interrelations of 
different subcultures. Analysis seems the perfect choice when trying to reveal the interrelations of 
mathematics and physics. However, even in mathematics itself there are subcultures or rather 
subdomains, whose relationship one should uncover. The didactical challenge, therefore, consists in 
discussing the unity of mathematics and asks the following questions: How is analysis related to 
geometry, how is it related to algebra? The first semester course on real analysis imagined hardly 
addresses this issue, since it rather focuses on presenting analysis as a self-contained subject. 

Teacher students are usually keen to learn about pupils’ misconceptions and the best recipes on how 
to treat them. It is important for them to notice, however, that the instruction itself may cause some 
of those misconceptions and that a different instruction, using for instance a different approach, may 
again cause quite different misconceptions. Thus, some misconceptions may be ‘typical’ in general, 
whereas some of them may only be ‘typical’ relative to a given instruction. It is an important 
didactical challenge to determine the misconceptions belonging to a certain instruction. Since every 
mathematics teacher student shares the experience of roughly the same first semester course on real 
analysis, it appears to be a good exercise to think about misconceptions that this course might favor.  

In the preceding passages I have formulated three didactical challenges (‘meaning’, ‘coherence’ and 
‘misconceptions’) and I have tried to indicate their importance for mathematics teacher students. 
These challenges form an integral part of my course on the didactics of analysis. My students, when 
confronted with these issues in the beginning of the course, have a hard time dealing with them. 
This is understandable, considering that their analytical background consists solely of a first 
semester course on real analysis. However, teaching a few episodes from the history of calculus, 
already helps them to handle the challenges in a much more appropriate and satisfying way. I will 
now, for each challenge separately, mention the results from the history of calculus that I teach and 
I will explain how they may contribute to the discussion on the respective challenge.  
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Meaning – the integral integrates, the calculus calculates 
What is the meaning of the integral? What is the meaning of the calculus in general? What is the 
meaning of the fundamental theorem of calculus? A mathematics teacher needs to be able to answer 
these questions in a satisfying way, since ‘how’ he teaches a certain subject or course should of 
course highly depend on ‘why’ he regards the content as being worth to be taught in the first place. 
In my view, the best way to approach these questions is to look at the prehistory of the calculus. Let 
us consider Roberval’s determination of the area (see Whitman, 1943) under the cycloid (Figure 1) 
and his comparison of the length (see Pedersen, 1971) of an Archimedean spiral with that of a 
certain parabola (Figure 2).  

 
Figure 1: Roberval – The area of the cycloid 

 
Figure 2: Roberval – The length of the Archimedean spiral 

To solve the ‘area’ problem Roberval uses Cavalieri’s principle. To solve the ‘length’ problem he 
employs his kinematic approach to tangents (see Pedersen, 1969). Thus, the two solutions are based 
on two completely different methods. This is interesting, since in the world of calculus both, the 
length problem and the area problem, have become one and the same, in the sense that both ask you 
to compute some integral. Apparently the integral does what it promises. It integrates the two basic 
problems associated with a curve. Determine its length and its area. Of course the concept of the 
integral incorporates ‘volumes’, ‘centers of gravity’ and many other things as well. Wouldn’t this be 
one possible meaning of the integral that we might wish to convey to learners of mathematics? 
After all Poincaré once said (see Verhulst, 2012):  
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Mathematics is the art of giving the same name to different things. (Poincaré, 1914, p.23) 

Let us now think about the meaning of calculus and its fundamental theorem. To this end, let us in 
addition to Roberval’s two results consider Archimedes’ quadrature of the parabola (see Dörrie, 
1965, p.239) and Huygens’ determination of the area (see Maanen van, 2003) between the cissoid 
of Diocles and its asymptote (Figure 3). After looking at these four problems and their solutions one 
might get the impression that before calculus every curve was treated individually, that at that time 
people were extremely well acquainted with the geometrical properties of these curves and that one 
had to come up with a new ingenious idea for every other curve. Today, on the other hand, it needs 
no ingenuity to solve these questions. With the calculus at hand, these problems have become more 
or less straightforward routine exercises. The routine goes like this: Formulate the problem in terms 
of an integral and apply the fundamental theorem, that is, look for an antiderivative and plug in the 
limits of integration. Finding an antiderivative might be a problem, but that is where the calculus 
with its powerful tools, integration by parts or by substitution, sets in. We could therefore view the 
calculus as a facilitation of a major part of mathematics. With calculus everyone has the chance to 
learn how to handle areas under curves. It seems to be exactly this meaning that Leibniz himself 
saw in his calculus:  

For what I love most in this calculus is that it gives us the same advantage over the ancients in 
the geometry of Archimedes as Viete and Descartes gave us in the geometry of Euclid and 
Apollonius; by relieving us of working with the imagination. (as cited in Blåsjö, 2016, p.17) 

 
Figure 3: Huygens – The area of Diocles’ cissoid 
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Coherence – calculus seen as the algebra for transcendental curves 
Which of the following terms does not fit with the others?  

‘Similarity of triangles’, ‘Thales’ theorem’, ‘Pythagoras’ theorem’, ‘differential equation’.  

Of course the last term does not fit, since the first three terms belong to geometry, whereas the last 
term belongs to calculus. Huygens’ determination of the area of the cissoid, however, may cast 
some doubts about this decision. To the modern eye his problem might appear as a ‘calculus 
problem’. His method, on the other hand, is purely geometrical. Thales, Pythagoras and similarity 
(compare Figure 3), these are exactly the tools that Huygens employs. Calculus and geometry, this 
is the morale of Huygens’ result, are not as divorced from each other as the typical courses on these 
subjects might let one think. By looking for instance at Johann Bernoulli’s lectures on the calculus 
(Bernoulli, 1924) one realizes that differentials and their equations were just an additional tool 
incorporated into the old game of geometry. Thales, Pythagoras, similarity and a differential 
equation, in Bernoulli’s determination of the tangents to a cycloid (Figure 4) we have all this at one 
place.  

 
Figure 4: Bernoulli – The tangent of the cycloid 

We now turn to the relationship between calculus and algebra. A major challenge in teaching these 
two subjects coherently is to show where the algebra ends and where the calculus begins, that is, to 
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reveal their line of demarcation. At least according to Leibniz the line runs precisely between the 
algebraic curves and the transcendental curves: 

As far as the differential calculus is concerned, I admit that there is much in common between it 
and the things which were explored by both you [Wallis] and Fermat and others, indeed already 
by Archimedes himself. Yet now the matter is perhaps carried much further, so that now those 
things can be accomplished which in the past seemed closed even to the greatest geometers as 
Huygens himself recognized. The matter is almost the same in the analytical calculus applied to 
conical curves or higher: Who does not consider Apollonius and other ancients to have had 
theorems which present material for the equations by which Descartes later preferred to 
designate curves. In the meantime the matter has been reduced to calculation by the method of 
Descartes, so that now conveniently and without trouble that can be done which formerly 
required much effort of contemplation and imagination. In the same way, by our differential 
calculus, transcendentals too, which Descartes himself excluded in the past, are subjected to 
analytical operations. (as cited in Blåsjö, 2016, pp.16-17) 

In this picture the relationship between geometry, algebra and calculus is beautifully simple. At first 
we have the Euclidean geometry with compass and ruler only. Then Descartes allows some other 
kinds of construction tools, which on the side of the equations correspond exactly with the algebraic 
curves. This world can be studied by means of algebra. Leibniz, finally, goes even further and 
includes modes of constructions that allow also transcendental curves to enter geometry. Algebra 
falls short of these curves and calculus is needed. A good way to experience this situation is by 
starting with Descartes’ double-root method for finding normals and tangents and by trying to get as 
far as possible with this method. This is performed in detail in (Range, 2011). One first of all shows 
that there is a unique line through each point of the graph which intersects the graph at that point 
with multiplicity at least 2. Then one generalizes this fact to rational functions and finally to 
algebraic functions. When it comes to transcendental functions, of course, one gets stuck. It is at 
that point, that one has to generalize one’s definition of tangent. It is at that point, where the ‘limits’ 
come into play.   

Misconceptions – tangents require limits, areas require rectangles 
Instead of Descartes’ double-root method we might also consider the notion of tangent that Euclid 
employed in his third book when dealing with the circle: 

 A straight line is said to touch a circle which, meeting the circle and being produced, does not 
cut the circle. (Euclid, 1956, p.1) 

How far can we get with this notion? If we take the notion literally, it already fails when confronted 
with a parabola, since through each point of a parabola there are two different lines that have only 
one point in common with the parabola, one of them being a line parallel to the axis of symmetry of 
the parabola. We can, however, rule out these parallels by requiring the tangents to stay on one side 
of the parabola. This leads to the following modification of Euclid’s definition: A line, which has a 
common point with a curve, is called tangent to that curve, if the curve lies on one side of the line 
and if it is the only line through the common point with that property. Huygens, for instance, 
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worked with this notion, as one can see in his work on the cycloid (see Aarts, 2015, pp.3-4). For 
convex curves this notion works fine, but already in the case of such a simple non-convex curve as 
the cubical parabola (𝑓𝑓(𝑥𝑥) = 𝑥𝑥3) not one single point would have a tangent according to this 
notion. However, for all but one point on the cubical parabola, the problem is easily resolved by 
only requiring the curve to stay locally on one side of the line. The point not covered by this 
extended notion is the inflection point. It seems that we have to give up on Euclid’s notion of 
tangents ultimately when it comes to inflection points. Arnold Kirsch, however, has shown in 
(Kirsch, 1960a) how to overcome this obstacle. After defining smoothness of convex functions by 
means of the modified version of Euclid’s notion of tangent, he goes on to define smoothness of 
functions in general essentially as follows: A function is smooth in some point, if the function lies 
locally between two smooth convex functions that both go through that point and that share a 
common tangent at that point. In (Kirsch, 1960b), Arnold Kirsch shows that this notion of 
smoothness is equivalent to our usual notion of differentiability. This is certainly an interesting 
result, since it clashes with the widespread belief that one needs the concept of limit in order to 
define differentiability and tangents in general.  

Another major misconception I come across among teacher students more often than one might 
imagine is the belief that one can determine areas associated with curves only by means of the 
Riemann integral or rather by exhausting the relevant area with rectangles. This conception seems 
to consolidate itself in the course of the received instruction, since children, which have not yet 
been ‘enlightened’ by a course on calculus, apparently still use all kinds of figures, triangles, 
trapezoids, squares or whatever suits, in order to cover the area in question. Against this background 
it seems important to elaborately discuss examples such as Archimedes’ quadrature of the parabola 
(see Dörrie, 1965, p.239), which uses triangles, or Huygens’ determination of the area of the cissoid 
(see Maanen van, 2003), which uses trapezoids and triangles instead of the notorious rectangles. 

Summary and discussion  
In this article I have shared my approach on how to address three major challenges (‘meaning’, 
‘coherence’ and ‘misconceptions’) in a course on the didactics of calculus for future high school 
mathematics teachers. In order to discuss the meaning of the calculus I provided the students with 
results from Roberval and Huygens, which show firstly, what can be done even without calculus 
and secondly, how much insight is needed for this. In this way the students may see and appreciate 
the calculus, just as Leibniz apparently does, as a ‘mechanization’ of geometry. It should be 
critically noted that the historical episodes chosen play within geometry and due to this we have left 
the meaning of calculus for other branches of mathematics and especially its role in Newtonian 
physics completely untouched. In order to show the coherence between calculus and geometry I 
offered some examples from Bernoulli’s lectures on the differential calculus. To this end it is also 
worthwhile to consider two different rather recent geometrical approaches (Apostol & 
Mnatsakanian, 2002 and Kaenders & Kirfel, 2017) to the integration of the basic functions, treated 
in high school. Both of them, the sweeping-tangent approach by Apostol and Mnatsakanian and the 
approach using geometrical transformations by Kaenders and Kirfel link calculus and geometry 
each in their own way. To show the coherence between calculus and algebra I focused on the 
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difference between algebraic and transcendental curves, especially by maxing out Descartes’ 
double-root method. Finally, regarding the misconceptions, I tried to point out that some of them 
might be ‘instruction-generated’. For example, I showed that generalizing Euclid’s notion of 
tangent can lead to a ‘limit-free’ general notion of tangent, a fact that seems to clash with the 
calculus related beliefs of many students. By way of the three didactical challenges I tried to show 
that and to indicate how courses on the didactics of mathematics may benefit from a selective and 
targeted recourse to the history of mathematics.  
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renaud.chorlay@espe-paris.fr  

In this progress report, we present the outline and the first results of a research project which aims 
to study the argumentative capacity of year 3 (age 8) to year 6 (age 11) students, in a numerical 
context involving natural and decimal numbers. This project centers on a technique for dividing 
natural numbers by two, a technique which appears in Al-Khwarizmi’s Kitāb al-ḥisāb al-Hind. 

Keywords: Al-Khwarizmi, primary school, operations, place value, proof. 

Preliminary remark: This paper is a progress report on an ongoing project. In Chorlay 
(forthcoming), which was written before the first classroom experiments were carried out, we 
presented in some detail the historical background, the general motivation, and elements on the a 
priori analysis; these will only be sketched here. Our main goal is to present some of the empirical 
data gathered, and discuss the theoretical tools which can help us analyze them. 

Rationale. 
Historical background. 

Although Al-Khwarizmi is usually remembered for his treatise on algebra and quadratic equations, 
he also wrote several other books for which the oldest manuscripts available now are Latin 
translations. In particular, in his Book on Indian Reckoning (Kitāb al-ḥisāb al-Hind), he introduced 
into the Arabic-speaking scientific community a technique to write whole numbers (the decimal 
place value system), and written calculating techniques relying on this conveniently uniform coding 
system; techniques for addition, subtraction (with the borrowing method), mediation and 
duplication (i.e. division and multiplication by 2), multiplication, division, and square root 
extraction (with mediation as one of its steps). Although he found these in the Indian mathematical 
and astronomical traditions, it should be noted that they were also in use in Chinese mathematics.  

Both the book on algebra and that on Indian reckoning were first translated into Latin in the 12th 
and 13th centuries, more often than not by scientists working in Andalusia with a prime interest in 
astronomy. For a recent study on these treatises, we refer the reader to Allard’s edition and French 
translation of the three oldest extant Latin translations/adaptations of the lost Arabic text (Al-
Khwarizmi, 1992).  

General didactical motivation. 

For reasons which we will spell out below, we thought the algorithm for mediation (i.e. division by 
2) could be used in mathematics education research, in order to study phenomena which have no 
direct connections to the use of history of mathematics in the classroom. In a general report on the 
future of mathematics education published in 2003, a French study-group headed by Pr. Kahane 
stressed that: 
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(…) Most of the reckoning algorithms whose teaching and learning took so much school-time 
are now available in the most basic calculator. By contrast, new questions emerge, in particular 
about the digital representation of the mathematical objects on which they bear (such as 
numbers), and about the efficiency of algorithms (beyond their correctness) … question which 
were not issues in teaching until now. The calculating power of the new tools (…) calls for 
renewed investigations into the connections between calculation and reasoning, and fosters 
exploration, simulation and experimentation. (quoted in (Charnay, 2007, p. 204). Our free trans.) 

On this basis, Roland Charnay suggested that the main interest of studying written calculating 
techniques was that they provide  

opportunities to work on the properties of numbers and operations by focusing the greater part of 
the effort on understanding and justifying these algorithms (…). This requires that we do not 
content ourselves with a technicist teaching (bearing on the how), but endeavour to justify the 
various steps and their connections (the why) … and actually do mathematics! (Charnay, 2007, p. 
206. Our free trans.).  

Of course, these statements call for qualification: on the one hand, it would not be fair to say that 
the justification of numerical algorithms played no part in teaching, even in elementary school (for 
instance, see Clivaz (2016) and Constantin (2017) for recent investigations into teacher practices 
and mathematical-knowledge-for-teaching with regard to the justification of reckoning techniques). 
On the other hand, it is likely that some familiarity with calculation routines is a prerequisite to 
entrust students with meta-tasks – “meta” in so far as do not bear on specific numbers or numerical 
problems, but on mathematical procedures; procedures which are to be described, reformulated, 
compared with others, assessed, or justified (Chorlay, 2016). In this context, the procedures change 
status: from epistemic tools (i.e. answer-generating tools, which can, in themselves, be black-boxes) 
to epistemic objects (i.e. question-generating objects). It should be pointed out that, as stressed in 
Chorlay (2016), this change of status allows for the insertion of justification tasks in the larger set of 
meta-tasks. One of the underlying macro-hypothesis is that enculturation of the students into the 
class of meta-task could be a viable pathway to the teaching of the specific and highly demanding 
meta-task “prove”.  

Al-Khwarizmi’s technique. 

The three oldest Latin texts expound variants of the same technique. The Dixit Algorismi reads1: 

To divide any number by two, begin with the first place and divide it by two. If its number is 
odd, divide the pairs [or: the even one] in two halves, and there will remain one to be divided by 
two – that is, to be divided in two halves – and you shall set one half, which is a fraction of thirty 

                                                 
1 Cum volueris mediare aliquem numerum, accipe a prima differentia et media eam. In qua si fuerit numerus impar, 
media pares, et remanebit unum quod mediabis, idest divides in duas mediates, constituesque medietatem unam triginta 
partem ex sexaginta (…). Deinde mediabis sequentem differentiam, si fuerit numerum eius par. Et si fueris impar, 
accipe medietatem paris et pone eam in loco eius, et constitue medietatem unius residui quinque, et pone eos in 
differentia que est ante ipsam. (…) et similiter operare in universis differentiis. (Al-Khwarizmi, 1992) 
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out of sixty (…). Then, you shall divide by two the next place, if its number is even. If it’s odd, 
take half of the even one and put it in its place; set 5 as half of the remaining unit and put it in the 
place before. (…) Operate the same way for all places. (Al-Kwarizmi, 1992. Our trans. based on 
Allard’s translation into French). 

No justification for this specific technique is given, but the three manuscripts provide justifications 
for most of the others and probably consider this one to be self-explanatory. Even though the 
meaning of “first place” is ambiguous in this excerpt, it is not in the treatises: it denotes the units; 
so, if we write the number in today’s standard form, the algorithms works from right to left, from 
units to tens, then to hundreds etc. When applying the technique to 92, one can display the 
successive states of the slate as the shown in the boxes below: 

92   [2 ® 1]  91  [9 = 8+1; 8® 4]  41   [carry 5 to the right, 1 ® 6]  46 

In square brackets, we described the operations to be carried out either on the slate (® for “erase 
and replace”) or mentally (decompose2, carry).  

From a purely mathematical viewpoint, the validity of this algorithm rests of the fact that halving a 
sum is the same as summing the halves (which can be seen as a special case of the distributivity of 
´ over +, if we agree to count “one half” as a number), on the multiplicative linearity of the 
“halving” and, eventually, on the canonical decomposition of whole numbers in a place value 
system. The fact that we are working in base ten is reflected in the “carry 5 to the right” rule: a “1” 
digit in the second place stands for “ten”, so its half is 5 units; a “1” digit in the third place 
represents one hundred, which is 10 tens, so its half is 5 tens etc. If numbers were written in base 4, 
the technique would be the same except for a “carry 2 to the right” step. Resting on the same 
mathematical bases, this algorithm is structurally similar to the other “Indian” algorithms: you don’t 
need to consider the number as a whole; rather, you iteratively apply the same procedure to every 
digit, which means that you can process any whole number as long as you can process 1-digit 
numbers. A more detailed analysis can be found in Chorlay (forthcoming). 

First report on the experiments. 
Outline of the experiments and theoretical background. 

The fact that this technique is not known to French students, but rests only on the basic principles of 
the decimal place-value system (namely: place value, and the “exchange rate” of 10 between two 
adjacent places3) led us to assume that it was fit to be used to investigate whether or not meta-tasks 
– including “justify” – could be entrusted to young students. In school year 2017-2018, we designed 
teaching experiments based on this material and tried it out in a year 6 class (1st year of middle-

                                                 
2 Or “subtract one”, or “consider the predecessor”, or “take the greatest even number less than (or contained in) 9”. 

3 The validity of the algorithm also rests on the distributive property, a property which is not taught explicitly before 
year 7 in France. However, the distributive property is used in act at very early stages in the study of multiplication, 
either in mental calculation, or in the standard written techniques. We assumed that the distributive property of 
“halving” would “go without saying” for students, that is, would neither be mentioned nor questioned explicitly. 
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school in France, students aged 11) and in a year 3 class (students aged 8). A key difference lies in 
the fact that year 6 student know decimal numbers, whereas year 3 students do not. Indeed, in the 
experiments, year 3 students typically said that halving 3 is impossible – or cannot be carried out 
completely accurately –whereas all year 6 students said that half 3 is 1.5.  

 For the researchers to gather data, students were asked to produce written traces of their individual 
reflection. These worksheets were collected, and the collective phases were video-recorded. The 
experiment took place in ordinary classes of about 25 students each. The class was taught by the 
regular teacher (or maths-teacher in year 6); the teachers had been associated to the design of the 
sessions from the outset. The researcher was present but played no active part in the sessions. 

We have no room here to present the specifics of the teaching sessions, which differed for year 3 
and year 6 students. To put it in a nutshell, the starting point was a silent performance – on the 
blackboard, by the teacher – of a few instances of mediations along Al-Khwarizmi’s technique, with 
even whole numbers, some with even digits only, some with odd digits as well. Over the course of 
the sessions, the various tasks entrusted to students were: 

1. Make hypotheses as to the function performed by the algorithm (that is: division by 2). 
2. Emulate the technique with new even numbers (with or without odd digits). 
3. Write (for year 6 students) or describe orally (for year 3 students) the method shown. 
4. Justify its correctness. 

Before we focus on points 3 and 4 (which, as we will see, were not treated independently by most 
students), let us mention a few empirical results regarding points 1 and 2. Regarding point 1, even 
year 3 students guess very quickly that it is a halving technique. When asked how they could test 
this conjecture, they suggested the following three correct techniques: add the output with itself and 
compare with the input; multiply the output by 2 and compare with the input; subtract the output 
from the input and compare with the output; they had not yet studied Euclidean division. By 
contrast, few students managed to identify the procedure for the treatment of odd digits (that is: 
subtract one, halve the result4, and add a carry of five to the digit of the output immediately to the 
right). Thus, tasks 2 turned out to be significantly more difficult than task 1. 

As far as points 3 and 4 are concerned, we wanted to investigate: 

A. What – if any – knowledge about the decimal place value system was used by students to 
describe, then make sense of or justify the algorithm. 

B. What forms of justification – if any – did students supply. 

In our investigation into A, we relied on the work of Frédéric Tempier (2016) who, after Christine 
Chambris, regards “tens”, “hundreds” etc. as a system of (non-independent) units. In his analysis of 
the work of students at the end of primary school he identified four interpretations of numbers 
written in standard form: 1. Juxtaposition of identical units (584 seen as 5 units, 8 units and 5 units); 
2. Place-value juxtaposition (the student is able to read in terms of “hundreds”, “tens”, and “units” 
but with no functional connection between these terms); 3. Simple units (584 seen as 500 units plus 
                                                 
4 Or: halve the greatest even number contained in (less than) the odd number; halve the number before/the predecessor. 
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80 units plus 5 units); 4. System of units (“units”, “tens”, “hundreds” are seen as units, and 
relationships such as 1 hundred = 10 tens = 100 units are available). Of course, when dealing with 
numbers (either in rewriting tasks, as studied by Tempier, or to justify mediation), interpretations 1 
and 2 are not functional, whereas interpretations 3 and 4 are. A key aspect is that many students 
tend to regard written calculation as a black-box operating only on number signs, and indeed, the 
strength of place value systems lies in the fact that the algorithms can be described (and applied) as 
series of graphic operations bearing on written signs; of course, applying these techniques rests on 
properties of one-digit numbers, properties which are usually to be learnt by heart for an efficient 
and routine use of the technique. In the following, we will not consider the use of memorized 
numerical facts bearing on one-digit numbers to be indicative of an engagement in justification. 

As far as argumentation is concerned, our starting point is the seminal work of Nicolas Balacheff 
(1987). He distinguished between two forms of “proof”: pragmatic proof (by actually performing 
and checking) vs intellectual proof (through a discourse bearing on object, thus dependent on means 
of representation of the objects). He also considered a hierarchy of forms of argumentation: naïve 
empiricism (check on a few cases), experimentum crucis (the generality issue is considered, and 
addressed by checking a specially difficult or large case), generic proof (where the actions are 
performed on a specific object which is used as a representative for a class of objects, and one 
claims that arguments – or moves –  hold – or can be performed – for all other cases “just as well”; 
see (Yopp & Ely, 2016) for a recent survey), the thought experiment (the action is described 
without being performed on a specific case, and the general properties are indicated in some other 
way than by the result of their use), and formal proof. This framework has since proved 
inspirational for many at an international level, also in works bearing on primary school 
mathematics (Stylianides, 2007). In recent years, Balacheff also suggested that we should 
distinguish between explanation (which strives for coherence) and demonstration (striving for a 
type of proof). 

A sample of results. 

We will focus on the results for year 6, with occasional asides about year 3. After silently carrying 
out several mediations on the blackboard, the teacher staged a first collective discussion on the 
nature of the results. Once a consensus had been reached on the fact that it worked out halves (or 
divided by two) the teacher asked students to work on individual worksheets for 5 minutes. The two 
questions were: 1. “A schoolmate of yours has not seen the teacher carry out this operation and 
would like to divide by two as he did. Write down the method for him.” 2. “Justify each step of the 
method”. 

One student – we will call him K – gave a remarkable answer; an answer which is actually quite 
close to that of the medieval treatises: 

1. First write down the number that you want to divide by 2. Consider the number of units5, if 
it’s even write down its half, if it’s odd take away 1, write down its half. You add “.5”. Move on 

                                                 
5 Strictly speaking this is incorrect, at least for numbers greater than 9. The correct version would read: the unit digit. 
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to the number of the tens, if it’s even write down its half under it6, if it’s odd we take away 1 
from the number; write down its half under it, and add five to the number that came before. Do 
the same for the hundreds, the thousands, the millions. 

2. It works because even numbers are divisible by 2, and odd numbers are even numbers +1, so 
we work out the half + 0.5.      1:2 = 0.5 

Beyond its thoroughness and clarity, this answer differs from all the others in the sample in three 
significant ways. First, K is the only one who gave separate and clearly distinct answers to 
questions 1 and 2, thus distinguishing between the algorithmic-imperative and the justificatory 
genres of text. As we will see below, all the other students gave a single answer, and inserted 
elements of “justification” as they described the technique. Second, he is the only student who 
anticipated the adaptation of the technique to odd numbers. Third, we claim that the numerical facts 
he relied on put him in Tempier’s category 4. In the written worksheet, he resorted to decimals to 
make sense of the role of “5”, but in the second session, while commenting on a mediation of 256 
on the occasion of which another student claimed that “half of 5 is 2.5” but was unable to explain 
why a “5” should be added to the 3, he explained that “duh! In fact it’s simple, because, for real, it’s 
not 2.5 but 2.5 tens, so … .5 is for units”. The recordings show that, when the teacher asked the 
class if they agreed that “2.5 tens” was equal to 25 (which had been suggested by another student to 
clarify K’s remark), he stirred puzzlement in many, even disbelief in some students. 

By contrast, the written work of other students shows no distinction between the expression of the 
algorithm and attempts at accounting for / explaining / justifying the steps; on the basis of the 
written traces, we hypothesize that the approach of most students was: 1/ endeavour to devise a 
technique to divide by two (without using Euclidean division), 2/ check whether or not it gives the 
correct results, and 3/ compare it with the teacher’s technique. In year 6, for lack of a preliminary 
phase enabling us to assess whether or not students were able to emulate the technique for new even 
inputs, we cannot say whether they regarded looking for their own technique as the only possibility, 
or as something which they took to address the “justify” question. The low level of identification of 
the technique in year 3 (where it was tested independently of its written description), and the 
absence of a divide between the “describe” and the “justify” answers suggest that the first 
alternative holds for a large majority of students. In year 6, besides K, only two students clearly 
stated the “add five to the right” step in their description, without any justification though. 

Some students tried to devise a written technique for mediation by adapting steps or moves they 
were familiar with in other calculating techniques. In year 6, 3 out of 24 students tried to use the 
“bridge-trick” from their technique for Euclidean division; for instance, in order to divide say 345 
by 4, you start from the left and try to divide 3 by 4; since you can’t, you try to divide 34 by 4 etc. 
Unfortunately, in mediation, this trick works in cases such as 834 (one half of 4 is 2, one half of 3 – 
stop, one half of 34 is 17 [probably from mental calculation], one half of 8 is 4, so half of 834 is 
417), but not so well with several consecutive odd digits. This can be seen in some students’ 
worksheets, for example when dealing with 334. In year 3, student G suggested a mediation 
                                                 
6 On the blackboard, the output of the algorithm was written under the input. 

Thematic Working Group 12

Proceedings of CERME11 2114



 

 

technique which used the “borrowing” trick from the subtraction technique he knew: to divide 9014 
by two, starting from the left, write 4 (half of 8), and in 9014 write 10 instead of 0 (“because we 
took away 1 from 9”), so the half is 5 etc. This is a correct and efficient techniques, but not Al-
Khwarizmi’s. We did not investigate whether G was able to justify this “trick” on the basis of 
numerical properties, or just performed a graphic operation which he considered legitimate because 
1. It was already in use in class (in another context, however), 2. It worked. 

Let us finally compare two other suggestions. To do this, we will use the notion of unfolding of a 
numerical algorithm. We will call an unfolding of algorithm X, the description of another algorithm 
X’ along with: 1. A (possibly crude) description of how its steps are related to that of X, and 2. 
Indications that its connection to X’ accounts for X; as we will see below (analysis of C’s 
unfolding), we consider that accounts can but need not be justificatory. This notion emerged from 
our analysis of Liu Hui’s first justification of the correctness of the technique for fraction 
multiplication in the Nine Chapters (Chorlay, 2017): he described a longer algorithm than the one 
actually performed, but which necessarily gives the same results (the extra-steps it involves 
neutralize one another) and whose correctness rests on explicit general properties of multiplication. 

 

  

Figure 1: Worksheets of students L (left) and C (right) 

L’s method (fig. 1 left) rests on a type 3 decomposition (in Tempier’s framework), as his oral 
explanations in session 2 showed: “3 is the half of 6, 25 is the half of 50, and 200 is the half of 
400”. So he devised a correct technique for mediation and was able to justify it by mentioning valid 
and relevant properties of the numbers involved, which we take to be indicative of a proof by 
generic example. We have no way to say if he only looked for a mediation technique (which he 
managed to justify), or actually considered this to be an unfolding of the teacher’s technique.  

The technique used by C (fig.1 right) is correct in so far as it leads to correct halves, and is clearly 
an unfolding of Al-Khwarizmi’s technique, embedding it in a larger algorithm involving 
calculations (with decimal numbers) and a “carry five to the right” step. She described her diagram 
as something which shows what she “did in her head” when applying Al-Khwarizmi’s technique. 
However, we do not take C’s correct unfolding to be of a justificatory nature, since, when asked 
why the .5 in 1.5 and 3.5 could be used as a “+5 to the right”, she mentioned no numerical 
properties. She justified her moves by saying that writing 1.5 under 3 was “impossible” (meaning: 
this is not a proper standard form), so she just wrote 1; and the fact that the output had extra “5”s 
(although in the “.5” form) could account for the move she had identified in the technique: “carry 
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five to the right”. So she unfolded the technique as a graphic algorithm dealing with number signs, 
and her unfolding achieves coherence (between what she knows about halves of one-digit numbers, 
and the steps of Al-Khwarizmi’s technique), without providing proof.  

Perspectives. 

Let us mention three alterations considered for a new round of classroom experiments in 2018-
2019: 

· Since a large share of students (even in year 6), fail to identify the “carry 5 to the right”-
step, it should be made explicit before any attempts to entrust students with description or 
justification tasks. 

· Asking for written traces helps the researcher gather data, but has several drawbacks: 1. 
Many students are not willing or able to engage in this writing tasks, which results from a 
combination of cognitive (in particular when comparing students of different ages) and 
social factors (Bautier & Goigoux, 2004). 2. As the cases of L and C show, the extent to 
which written traces testify to an actual engagement in justification is difficult to assess 
without a follow-up interview. 

· We would like to study how students assess the various “arguments”.  
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To describe the implementation of New Math in West German primary schools (known as 
“Mengenlehre”/”set theory” up to today) in the 1970s, a framework model is developed. The model 
shows an educational reform as a two-dimensional process, characterized by a chronological as 
well as an institutional dimension wherein for the latter the educational system is divided into four 
layers. The model is introduced and specified when used for the description of New Math. 
Suitability of the framework for this suggests that it might be well transferable to the historical 
description of further educational reforms. 

Elementary school mathematics, elementary school curriculum, history of mathematics education, 
New Math. 

Initial questions and aim 
In West Germany the New Math movement had a massive impact on mathematics education at 
primary schools from 1972 on, especially regarding the curricular contents and classroom methods 
of elementary instruction. The most remarkable innovation was the introduction of concepts from 
naïve set theory to young children and the use of materials such as colored blocks (the most famous 
being the Logic Blocks credited to Z. P. Dienes) in the classroom. However, there is still a broad 
consensus within a considerable part of German society that the reform failed miserably. A 
subsequent valuation whether the reform, its concepts and implementations were “any good” cannot 
be accomplished nowadays as there exists hardly any empirical data from back then. A statement 
whether “Mengenlehre” must be considered a failed experiment from the historical point of view, 
though, would require a thorough definition of the concept of “failure”, which – as far as the author 
of this paper is aware – does not exist in this context. An estimation of the historical significance of 
New Math within the development of primary mathematical education in Germany is yet to be 
given. 

Hitherto, existing analyses of the reform in the Federal Republic are widely limited to works by 
contemporary witnesses, naturally lacking historical distance (Damerow, 1977; Zumpe, 1984; 
Keitel, 1980, 1996), and short summaries as part of general overviews of the historical development 
of primary education (e. g. Padberg, 2011). The need for a broader account that allows a historical 
grading of the “Mengenlehre” reform and a well-founded verdict on its historical impact and role 
within German mathematics education is obvious. Any judgement from a historical point of view 
requires a comparative integration of the event into a broader context, and this again requires a 
description of the historical event first. The challenges one meets when taking up the description of 
the introduction and implementation of New Math in West German primary schools must be 
considered typical, as they are inherent in any reform within a public educational system. The aim 
of this paper is to introduce a theoretical model, which provides a framework that has proven 
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suitable for describing the case of “Mengenlehre” reform. It will then be shown how the model has 
been used for this purpose.  

A framework model for the description of educational reforms 
A reform is never an isolated event, but a process bound in a multitude of influences (general 
cultural and societal conditions as well as current developments) and outcomes, and for describing 
it numerous aspects and directions – or dimensions, as will be the term used in this paper – must be 
taken into consideration and be structured in a sensible way. The obvious dimension is the 
chronological one as a reform does not happen in an instant but in a certain timeframe. Not only is 
there an initial situation as well as an aftermath, but the reform period itself takes time and in the 
course of events ideas, conditions and actions might be subjects to change. But especially in the 
case of governmental reforms there is another, non-chronological dimension, which might be called 
the institutional one. Numerous protagonists act on diverse institutional levels and layers and 
thereby take an active part in the course of reform. These institutional layers do not function 
independently, but they influence each other in a certain way. So altogether, the description of a 
public educational reform must consider multi-dimensionality of reforms. In order to allow 
describing the institutional dimension a model is needed, which identifies separate layers and their 
respective protagonists. 

H. Fend (2008, pp. 30-33) has developed a model for the educational system consisting of four 
(more or less) separate layers that influence each other from top to bottom. In his model Fend 
assumes that the protagonists on each of the levels interpret the ideas, that are covered in products 
from the respective level above, from their very own point of view, in their own specific contexts, 
and that this re-interpretation always necessarily leads to substantial changes, shortenings and 
adjustments. He denotes these changes and adaptations as “recontextualizations” (p. 13). The four 
layers in Fend’s model are the following: 

1. the layer of culture: within each cultural sphere certain ideals of education exist and from these 
educational objectives are generated 

2. the layer of curriculum: educational aims serve as starting point, from which subjects and 
contents are deduced that seem suitable to meet the aims; products on this layer are curricula as well 
as textbooks etc. 

3. the layer of practical schooling: this is the layer where teachers plan and perform their lessons 
regarding the specific nature of their students 

4. the layer of reception: pupils (and their parents) comprehend and assimilate contents in their 
specific, subjective way and make sense of it 

Fend has generated his model in the context of his studies in educational sociology, it is therefore 
not fully applicable to the history of mathematics education. It serves as a suitable starting point but 
needs to be adjusted to the subject of educational reform.  

As the model considers the educational system as one, the subjects play a minor role. Educational 
research institutions appear as part of the layer of curriculum where their function is limited to a 
descriptive one, whereas their normative function in designing educational concepts is not 
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mentioned. Looking upon the educational system from a subject didactical point of view the 
scientific discipline as well as didactical research and design need an evident place within the 
model, and regarding New Math this applies even more, as on the one hand the reform has been 
grounded on subject science to a high degree and on the other hand mathematics educationalists 
were widely responsible for designing practical concepts, courses and textbooks. Hence, it is 
obvious that (despite some overlappings) there is a considerable difference between the protagonists 
responsible for writing curricula (mainly personnel in politics and administration) and those writing 
textbooks. Due to their importance for classroom practice mathematics didactics is given a layer of 
their own.  

Science in general is part of culture putting it on the layer of culture. However, it belongs to a 
global kind of culture, that is not limited by a community’s borders. Undoubtedly, national culture 
and traditions in general are highly relevant for any educational reform within a nation’s borders but 
they comprise such a vast number of aspects that they cannot be described in detail within the frame 
of a work like this and are therefore neglected. Mathematics as a theoretical discipline is different 
from didactical science regarding the latter’s practical implementations and the former’s function in 
providing a basis for the latter’s work. That is why the two scientific branches must belong to 
different layers. Of course, the scientific subject is not the only discipline educationalists refer to 
when designing their concepts, educational sciences like pedagogy and the psychology of learning 
play an important role, as well. 

As mentioned before, when it comes to New Math contemporary empirical data is scarce and 
gathering an amount of data to be able to describe the layer of reception in a satisfying way (e. g. by 
interviewing former pupils) is certainly a desideratum in due research, but as it cannot be part of 
this work either the layer is integrated in the layer of school practice in this case. 

From all these specifications in consideration of an educational reform derive the following adapted 
layers of the educational system: 

1. the layer of theoretical scientific discipline: institutions and protagonists on this layer are 
scientists from subject and educational science; their products are subject-specific foundations, 
scientific theories for example on the development of knowledge etc. 

2. the layer of curriculum: institutions and protagonists are personnel from politics (e. g. from the 
ministry of education) and administration, sometimes educationalists as far as they contribute to 
decisions concerning curricula; their products are curricula, syllabi, decrees etc. 

3. the layer of classroom concept: institutions and protagonists are subject didactics, textbook 
authors (these can be teachers, as well), editors and publishers of schoolbooks etc.; their products 
are textbooks, workbooks, teacher’s handbooks, manipulatives, suggestions for instruction etc. 

4. the layer of practical schooling: institutions and protagonists are schools, teachers in classroom, 
pupils, parents; their products are lessons, learning progress, knowledge as well as tests, written 
tasks, exercise books, portfolios, reports and so on 
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As for personal overlaps between the layers (i. e. someone acts on more than one level) it is 
assumed that the actor’s function is a different one on each layer and that they must recontextualize 
their own ideas in another context, as well.  

On each of these layers the chronological dimension additionally comes to effect. If we stick to the 
top-down model developed by Fend, the adapted model can be visualized as follows, the arrows 
meaning “recontextualized by”. 

 
Figure 1: Adjusted layer model  

This framework model now allows concretization dependent on the specific reform that is about to 
be described, the sources that have been selected and the focus chosen. Guiding questions that are 
implicitly suggested by the model are: 

1. What central aims and/or ideas (on content, didactical principles, methods, curriculum 
concept…) can be deduced from the products of each layer? 

2. How can one characterize the process(es) of recontextualization between the different layers? 

3. How did ideas and concepts develop and change over time? 

 
New Math in West German primary schools – sources, focus and findings 
Choice of sources and focus 

We are already dealing with a model naturally underlying diverse reductions. Nevertheless, further 
reductions become mandatory when one chooses exemplary sources for each layer and decides on a 
focus. 

It has been mentioned before that sources for pupils’ (and parents’) reception of “Mengenlehre” 
courses are scarce, the same is true for the whole layer of practical schooling, therefore this part of 
the educational system will not be the focus. From a subject didactical point of view the layers on 
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which scientific personnel is most active – that are the layer of theoretical scientific discipline and, 
at least in the case of New Math, the layer of classroom concepts – seem the most relevant, that is 
why the emphasis will be laid on these. By this, the layer of curriculum gets assigned the role of an 
intermediary, which is relevant, if one wishes to describe the recontextualization that has been 
taking place between the other two layers, so that it must be looked at, as well.  

In this case however, analysis of curricular documents leads to a specific difficulty, based on the 
German federal system, which involves that issue of curricular documents belongs to the federal 
states’ field of responsibility. Hence, the number of syllabi that has been generated during the time 
of reform cannot be surveyed at once, and there is no work yet giving the due overview of primary 
school curricula in the way Damerow (1977) has provided of secondary school curricula. There are 
few nationwide documents, though, which must be taken into consideration. Explicitly concerning 
mathematics as a school subject, there are two directives on behalf of the Kultusministerkonferenz 
(the common conference of the federal states’ ministers of education, referred to in figure 2 as 
KMK), the first one from 1968, which at the same time is seen as the starting point of reform in 
Germany, and the second one from 1976. In order to get an impression of at least one example of 
federal state curricula (Rahmenrichtlinien, referred to in figure 2 as RRL), those of Lower Saxony 
were chosen. The latest of these syllabi shows a massive decrease of the concept of “Mengenlehre” 
and therefore, its year of release, 1984, marks the terminal of the time axis. 

Of course, the sources for classroom concepts are numerous, as well. Due to the facts that during 
the New Math reform primary school textbooks were written by mathematics educationalists and 
that they were widely accompanied by teachers’ handbooks giving explicit insight into aims, 
concepts, didactical foundations and methods intended, samples from textbook series provide 
adequate sources for the layer of classroom concept. Here, the sample that has been chosen for 
thorough analysis of conceptual elements comprises 1st grade materials from three textbook series.  

The textbook series are alef by H. Bauersfeld et. al. (1970), Wir lernen Mathematik (“We learn 
mathematics”, referred to in figure 2 as N & S) by W. Neunzig and P. Sorger (1968) and 
Mathematik in der Grundschule (“Mathematics in primary school”, referred to in figure 2 as F & B) 
by A. Fricke and H. Besuden (1972). Alef is a textbook series that derived from the only large-scale 
empirical project in the history of New Math in Germany, namely the Frankfurter Projekt, in the 
course of which children were educated with specially designed all new materials throughout their 
elementary school years. Wir lernen Mathematik was the earliest textbook containing 
“Mengenlehre” to be released in West Germany, even earlier than the first Kultusministerkonferenz 
directive, and thus it holds a special role in the process of the reform. Mathematik in der 
Grundschule has been chosen because it initially appeared in pre-reform times and has then been 
adapted to the reform standards. Of all three textbook series several editions exist, which are 
compared and thus contribute to the question how concepts developed and changed along the time 
axis. 

As for the layer of theoretical scientific discipline, pedagogy has usually not been a point of 
reference for “Mengenlehre” concepts, so there is no need to consider the subject of pedagogy any 
further. Scientific mathematics, especially the Bourbaki work, is said to have had a big impact on 
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the global New Math movement but going into the scientific subject any further would lead astray. 
A major impulse to the start of reform activities within Europe is attributed to the seminar, which 
was organized by the OEEC (precursor of the OECD) and took place in Royaumont, France, in 
1959. The seminar was attended by high school teachers and university mathematicians, who put a 
strong focus on how modern scientific mathematics could find its way into school, turning them 
into protagonists from the layer of theoretical scientific discipline. So, the report from the 
Royaumont seminar (OEEC, 1961) serves as source for the influence of scientific mathematics and 
according to the impact of the event, the date of the seminar serves as starting point of the time axis. 

Another discipline the authors of textbooks have constantly referred to is the psychology of 
learning. Especially the landmark findings and theories by J. Piaget (e. g. Piaget & Szeminska, 
1965) were most prominent. J. S. Bruner on the other hand has had a big influence even on modern 
day German curricula and his theories, which emerged in pre-“Mengenlehre” time, as well, were 
well-known. One of the biggest influences on primary school math certainly was Z. P. Dienes. 
Dienes is not easily allocated to one of the layers as he provided a vast amount of concrete 
classroom examples. As he never created a complete course, though, but rather provided theoretical 
foundations for German courses which partly arose from his own psychological research, Dienes is 
assigned to the scientific layer, as well. 

From the above the general model can now be specified as it is filled with names of the documents 
that serve as sources for the description of New Math in West German primary schools. The arrow 
indicates the focus on the process of recontextualization from basic ideas and concepts as they can 
be derived from the layer of theoretical science to their concretization in textbooks on the layer of 
classroom concepts. 

 
Figure 2: Layer model filled with sources used for the description of “Mengenlehre” in West Germany 
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Findings1 

Regarding the focal question for recontextualization of the scientific roots of reform it becomes 
obvious that the extent to which original ideas have been implemented differs. Altogether they have 
not been fully transferred to textbooks, but the authors of each course have selected a certain part 
and by this, shortened the original concept towards their own respective purpose. Bauersfeld comes 
closest to the ideas from the scientific layer but in this case, he was forced by decisions coming out 
of the curriculum layer to apply changes to his concept. The shortcomings that are caused by the 
incomplete transfer of the original concept altogether lead to diverse inconsistencies in the 
implementation of “Mengenlehre”. Independently of what happened on the layer of practical 
schooling, this finding even allows us to state that New Math at West German primary schools has 
indeed been a failure, and as educational reforms never go without recontextualization processes 
there is a high probability for extensive innovations in the classroom to fail according to this 
definition of failure. 

Another finding concerns the influence of the layer of practical schooling. The sources suggest that 
teachers’ customs, beliefs and attitudes, along with an education that did not meet the demands 
presented by New Math, proved as an obstacle in classroom. Many parents are said to have had 
reservations towards reform, anyway, and these most probably increased as soon as things were not 
implemented according to plan. Presumably, one political reaction to this was a change in curricula, 
which in turn led to a change in textbooks and therefore, regarding recontextualization processes 
along the time axis, one finds that the process of reform cannot be described using a top-down-
model. Instead, within the framework model, mutual influences rather must be pictured the 
following way: 

 
Figure 3: Layer model showing the process of reform 

In this case, even though the original model did not prove fully suitable for a description of New 
Math in West German primary schools, it still served as a useful device for illustrating the process 
of reform. 

                                                 
1 This paper presents an extract from a bigger research project. Due to the focus that has been set here findings can only 
be displayed in a strongly abridged way. For details and a complete account of the sources see Hamann, 2018. 
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Conclusion 

It was the aim of this paper to introduce a framework model for description of complex educational 
reforms from a historical point of view. As for the example of New Math in West German primary 
schools, the model proved suitable for providing a restricting frame, a helpful device for structuring 
the work and a starting point that could be adjusted according to the process of the reform. It 
therefore allowed relevant findings which may function as a ground on further research on the topic. 
All of this suggests that the model of recontextualization might be suitable for historical studies on 
other educational reforms, as well. 
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Mathematics teaching took place long before the formation of teacher education institutes and 
university courses for mathematics teachers. Very little is known about the ways teachers acquired 
the necessary knowledge and skills before the mid-19th century. In the Netherlands, from the late 
16th century on, a tendency is noticeable to have all children taught reading, writing and 
increasingly often some arithmetic. Moreover, as was the case in England, there was an expanding 
group of mathematical practitioners who needed some knowledge of the relevant mathematics. 
Consequently there were many small schools with lowly paid primary teachers, and there were 
many private mathematics teachers and small private schools where some mathematics was taught. 
In the 18th and 19th century many journals were published in the Netherlands, including 
mathematics journals for teachers. In this paper the relevance of such journals for 
teachers’improvement of their mathematical skills and position in society is discussed.  

History of mathematics education, mathematics journals for teachers, primary schools, teacher 
examinations. 

Introduction 
In the process of teaching and learning mathematics, the mathematics teacher is an important actor; 
consequently his/her skills, Mathematical Content Knowledge (MCK) and Pedagogical Content 
Knowledge (PCK) are the subject of a body of research. Analysis of three historical Dutch cases of 
mathematics education shows, that already in 1600 the relevant mathematical knowledge and 
pedagogical qualities of the mathematics teacher were considered very important for the successful 
implementation of mathematics curricula (Krüger & van Maanen, 2013; Krüger, 2014, pp. 463-
474). The question arises how mathematics teachers in the past acquired the necessary knowledge 
and skills to be succesful. Recent research on this topic is often concerned with the present 
educational structures, restricting itself to the late 19th and the 20th century, e.g. (Candeias, 2017; 
Menghini, 2017). However, in Europe as elsewhere, mathematics was taught for centuries before 
the creation of the present stable educational structures, with its formal teacher education institutes. 
The Netherlands form a rich case for several reasons: 

- Starting in the late 16th century, a drive to teach all children reading, writing and gradually also 
some arithmetic, in combination with a complete absence of central regulation of education, 
until 1806. There were no teacher training institutes until the 19th century, very few until the 20th 
century. 

- A relatively high demand for mathematics teaching, due to the growing number of mathematical 
practititoners (navigators, geometers, wine gaugers, engineers, etc.), who one way or another, 
had to learn the relevant type of mathematics.  

- An abundance of publishers of journals, from the late 17th century onwards. Many printers and 
editors were active in the Netherlands, not only in the larger cities, but also in the smaller towns.  
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Thus journals, relatively low priced and flexible, could play a role in the dispersal of knowledge for 
teachers. The first mathematics journal for teachers was published in 1754, probably the first 
journal for this specific group in Europe (Gispert, 2018). On the topic of mathematics journals for 
teachers, recent publications mainly concern the second half of the 19th century or later, when 
teacher education institutes were established, e.g. (Furinghetti, 2009; Oller-Marcén, 2017).  
Preveraud (2015) published a paper on mathematical journals, published during the first half of the 
19th century in the USA and instrumental in the transmission of French mathematical education to 
American higher and secondary education. The present paper concerns mathematics journals for 
teachers in primary and advanced primary education, in the 18th and early 19th century. Secondary 
education was not formally part of the educational system until 1863 (Boekholt & De Booy, 1987; 
Krüger, 2014).  

The number of mathematical journals aimed at teachers increased during the first half of the 19th 
century. With regards to the question “How did Dutch teachers of mathematics acquire their 
knowledge before there was formal teacher education?” the focal question of this paper narrows to 
“Which role did mathematics journals have in the acquisition of knowledge by Dutch teachers in 
the 18th and early 19th century?” 

The main method of research is analysis of a limited number of journals from the period (1754-
1835), with regards to the occupation of the subscribers, the topics treated and the style of 
treatment. These journals are included in the database of Cirmath1 . 

Mathematics: a boost for the teacher’s career, 1750-1800  
In the 18th century nearly every village and each town in the Netherlands had at least one primary 
school, a so-called ‘Dutch’ school, supervised by the local council and the local reformed church, in 
which children could learn the catechism, reading, writing, and usually arithmetic. There were also 
many private schools with often more advanced primary education, with a few more mathematical 
subjects, so-called ‘French’ schools, and there were private schools for specialized mathematical 
instruction. Subjects taught in these small mathematics schools depended on the specialization of 
the instructor: algebra, geometry, geography, surveying, navigation, bookkeeping, fortification, 
astronomy, architecture, etc..  

Being knowledgeable in mathematics had several advantages for teachers in primary schools: 
improved results in the comparative exams for the better paid teaching posts, the possibility to give 
private lessons to students or to start a French school or even a specialized mathematics school and 
thus to improve one’s income in several ways (Krüger, 2018, 2). One could also combine working 
as a mathematical practitioner with teaching. Most aspiring teachers lacked the financial means and 
the required knowledge of Latin to study at a university. So their main means to learn mathematics 
were private lessons and self-instruction.  

A teacher at a Dutch school usually had a very low salary, supplemented by the fees parents paid 
for each subject or part of subject taught to their child, by chores for the church and other jobs, e.g. 
gravedigger. As parents were encouraged, but not obliged, to send their children to school, the 

                                                 
1 Circulation des mathématiques dans et par les journaux: https://cirmath.hypotheses.org/  
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income varied through the year, with in rural areas a severely diminished income in the summer 
months.  In the more expensive French schools the pupils were also taught French and other 
subjects, such as advanced arithmetic, bookkeeping, geometry, algebra, geography and drawing and 
the fees were paid for longer periods. A consequence of the lack of a national curriculum and of 
national teacher qualifications was a large variation with regards to the level and quality of 
instruction between the various Dutch schools and also between French schools.  

The teachers and their journal 

Working as an assistant-teacher was the usual way to start a teaching career. When there was a 
vacancy in a Dutch school, local councils usually required a comparative examination, in writing, 
reading from the Bible, singing hymns and increasingly often in mathematics. Mostly arithmetic, 
but by the mid-eighteenth century in the western part of the country there were also exams covering 
several mathematical subjects (Krüger, 2018). Those exams were often set by a teacher, either the 
departing teacher or from a school in the vicinity. Examples of such examinations, with different 
levels of mathematics (Mathematische Liefhebberye, 1754,  1755): 

- On 24 November 1754 in Lopiker-Kapel, a small village in the province of Utrecht (in the 
middle of the country), the exam consisted only of reading from the Bible and singing a hymn. 
It was not a well paid position, only assistant-teachers applied.  

- On 8 December 1754 in Oost-Zaan, a small town in Holland, near Amsterdam, 4 teachers took 
part in the examination, which included ten arithmetic problems.  

- In 1751 in Purmerend, a slightly more important town in the same area as Oost-Zaan, a new 
town’s schoolmaster and cantor was appointed after a strenuous exam, consisting of fourteen 
questions on arithmetic, twelve questions from geometry (plane and solid), ten problems on 
navigation and six problems on spherical trigonometry.  

From 1754-1769 Pieter Jordaan, librarian in Purmerend, published the first Dutch mathematics 
journal for teachers, a monthly with news of primary schools (vacancies, examinations, etc.) and a 
section on mathematics, Mathematische Liefhebberye [Mathematical Pastimes]. Each month 
mathematical problems, from the editor and the readers, were published, as were solutions to 
problems published in previous months, also from the readers, sometimes discussed by the editor. 
The mathematics editor until 1765 was Jacob Oostwoud, teacher in Oost-Zaandam, surveyor, 
mapmaker and author; he was succeeded by Louis Schut, also a teacher. A specific goal of the 
editors was support for teachers who were inexperienced in mathematics, by more experienced 
teachers and practitioners. In total 3000 problems were published, apart from the questions of the 
local examinations for teaching posts, also published frequently. There was some theory, on topics 
such as arithmetic theorems, series and probability. More than 100 subscribers, amongst whom a 
few women, were active in sending questions and even more sent solutions. The problems mainly 
came from existing publications, recent ones, but often from the 17th century as well. German 
authors were a favourite source; later on English journals were mentioned as origin of some 
problems. Over the years a wide range of topics was addressed, arithmetic and algebra, but also 
geometry (calculations and constructions), both plane and solid geometry, simple problems in 
probability, navigation problems (spherical trigonometry) and maximum-minimum problems, 
solved by means of a new technique, differentiation. Obviously arithmetic and algebra were 
important subjects for all teachers, and there is a large range of topics which may be put under these 
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headings. Simple questions, for beginners, modelling of a situation, resulting in equations or 
systems of equations from linear up to the fifth power, series, proportionality, also in mechanics, 
mixtures of substances, distances travelled (Krüger, 2018).  

The journal may be seen as an example of informal teacher training, by experienced teachers and 
practitioners. It gives the impression of eagerness and a combination of learning and recreation. The 
journal offered problems from elementary mathematics to fairly advanced mathematics and the 
editors positively encouraged readers at all levels to join in.  

Mathematics: obligatory for primary teachers 
From 1795, with the proclamation of the ‘Bataafse Republiek’ [Batavian Republic], a process of 
centralization was set off, also for education. The first Dutch constitution (1798) mentioned 
‘national education’, there was mention of responsibility of the national government for education 
and in 1806 the first national law on primary education was accepted. The law and its regulations 
specified amongst many other matters the subjects which had to be taught (reading, writing, 
arithmetic and Dutch language), the required content knowledge for primary teachers and the 
obligation to pass an examination, also in mathematics, as a prerequisite for a teaching post. 
Primary school teacher was on its way to become a profession.  

The teaching certificate recognized four ranks of male teachers; there was only one rank for women. 
For the lowest rank (4) one had to show reasonable skills in reading, writing and basic arithmetic, 
with whole numbers up to and including simple proportions (rule of three). For the third rank the 
candidate had to show for mathematics also skills in calculations with fractions and in use of 
calculations in problems from daily life. For the second rank the candidate should also have 
theoretical knowledge of arithmetic; for the first and highest rank, one had to show proficiency in 
mathematics and science, amongst other things. For each rank there were other requirements as 
well, for example level of teaching skills, knowledge of geography, etc. The mathematics exam 
always had a section on theory and practice of arithmetic, in whole numbers, fractions and decimal 
fractions and problems pertaining to daily life (for rank 1-3). As an addition one could take exams 
in specialist subjects, such as languages or advanced mathematics. The primary schools were 
ranked as well, with the salary in accordance to the rank of the school.  A teaching rank 1 or 2 gave 
the right to be appointed at the highest ranked and best paid schools.  So any primary teacher with 
ambition tried to reach at least second rank. The first rank was rather sparingly handed out by the 
regional examiners (Boekholt & de Booy, 1987, pp.109-110). 

So this law put in place formal requirements on a national level for primary teachers, male and 
female, in order to improve education for all children. The teachers would get payment from the 
council and classroom teaching to groups of similar abilities was introduced. Regional school 
inspectors, appointed by the national government, would see to enforcement of legislation; they 
encouraged modern teaching methods and actively strove to improve the quality of teachers. 
However, it took a long time before the changes became reality in all parts of the country.  

Secondary education continued to be privately organised with French schools and specialist 
schools. Latin schools, also called gymnasia, where mainly the classics were taught as a preparation 
for university, were from 1826 obliged to provide instruction in mathematics, following at least a 
minimal curriculum (Smid, 1997). At some gymnasia a primary teacher of first rank was engaged to 
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teach mathematics, as often the professors at the Latin schools looked down on mathematics and/or 
didn’t know enough to teach the subject.  

The teachers and their journals 

In order to become a teacher in primary education, the usual way still was to find a teacher with 
whom one could work as an apprentice, while in the evenings studying for the examinations. The 
assistant-teacher was now called ‘kwekeling’ or ‘secondant’. To improve the content knowledge 
and pedagogical knowledge of primary school teachers, the government promoted the formation of 
local teacher societies [onderwijzers gezelschappen], whose members were inexperienced teachers 
as well as experienced teachers and school directors. They had regularly meetings to discuss the 
subjects and teaching methods (Boekholt & de Booy, 1987, p.111) and practiced for the teacher’s 
exams. The teacher societies started small libraries, with textbooks and journals. Mathematics 
journals, which had as explicit aims improving the mathematical and pedagogical knowledge of 
teachers in primary and advanced education, were published from the 1820’s. They can be 
classified into four categories: journals on general mathematics; on arithmetic; on arithmetic, 
algebra and geometry; on mathematics and sciences. Only the first three categories will be 
discussed in this paper (Table 1).  

Table 1: Dutch mathematics journals for teachers, 1820–1850   

Tijdschrift ter Bevordering der Mathematische Wetenschappen (TBMW) [Journal 
for the Improvement of Mathematical Sciences] 

1823–1828 

Magazijn voor de rekenkunst (MR) [Magazine for the arithmetic art] 1828–1835 

Bijdragen tot de beoefening der zuivere wiskunde (BBZW) [Contributions to the 
practice of pure mathematics] 

1829–1833 

Magazijn voor stel- en meetkunst (MSM) [Magazine for algebra and geometry] 1830–1835 

Bijdragen tot de beoefening der gewone cijferkunst (BBGC) [Contributions for the 
practice of simple arithmetic] 

1831–1840 

Tijdschrift voor  reken-, stel- en meetkunst (TRSM) []Journal for arithmetic, algebra 
and geometry] 

1839–1842 

Nieuw tijdschrift voor reken-, stel- en meetkunst (NTRSM) [New journal for 
arithmetic, algebra and geometry] 

1843–1847 

Tijdschrift der toegepaste rekenkunst voor onderwijzers en gevorderde leerlingen 
(TTR) [Journal of applied arithmetic for teachers and advanced pupils] 

1850–1852 

These journals existed ususally between four and ten years; often with a change of editor(s) a 
journal got a new or slightly different name and so became a new but very similar journal as its 
predecessor. For example one of the first journals in the 19th century with many teachers among its 
subscribers, was the Journal for the Promotion of Mathematical Sciences, or TBMW for short2, on 
general mathematics. It was published by J.P. Bromstring in Purmerend; the editor was Jacob (Jan) 
                                                 
2 In this paper the abbreviations, introduced in Table 1, will be used, to save space.  
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van Cleeff, mathematics teacher at the Academy for Drawing, Architecture and Navigation in 
Groningen (Beckers, 2003, p.77). In 1823 there were 250 subscribers listed. In the last volume the 
readers were informed that Mr van Cleeff had decided to discontinue as an editor, due to his 
workload, however there would be a new journal with Hendrik Strootman, subscriber and 
contributor to TBMW, as editor. This new journal was BBZW, also on general mathematics; the 
number of subscribers had increased to about 420.  Hendrik Strootman taught mathematics at the 
Royal Military Academy, since 1828 situated in Breda. From 1830 this journal was published in 
Breda. Another example is the succession of TRSM by NTRSM. The editors are unknown, but the 
publisher and format were the same for both journals.  

All journals in Table 1 were quarterlies; they all published problems and their solutions, usually 
also other forms of content, such as articles and reviews of books and they encouraged subscribers 
to send solutions and new problems. The subscribers, usually listed in the first volume, are 
differentiated in four categories: educators (teachers, assistant-teachers, mathematics teachers, 
teacher societies and school inspectors), other occupations, including military, no occupation 
mentioned and booksellers. The two journals on general mathematics, TBMW and BBZW, treated 
similar topics as are found in the 18th century journal for teachers. However, in the 18th century the 
journal was aimed at teachers (and other practitioners) who were also ‘lovers of mathematics’; 
presenting mathematics as both useful and a pleasant pastime was usual in the 18th century in the 
Netherlands. This attitude shows in the interactions with the readers, which is lively and frequent. In 
the 19th century mathematics was less seen as a pastime, it was, for teachers, military and other 
practitioners, a serious requirement for their profession.  All teachers had to learn at least some 
mathematics, whether they liked it or not, and the more the better from the point of view of career. 
The style of the journals was modern; the solutions of problems were clear and well formulated, the 
theoretical articles, if present, were usually well written. If sources were mentioned by the editors, 
they were from recent authors, such as De Gelder, Lacroix, Floryn and Prinsen, who were 
comfortable with the new, more exact style of mathematics and with modern teaching methods.   

Another difference was the absence of women. In 18th century journals on mathematics most 
subscribers were males, but there were a few subscribers recognisable as women who occasionally 
sent problems and also solutions. Though the law on primary education stated that ‘primary 
education is taught by teachers of both genders’3, the lists of subscribers was invariably titled: ‘the 
gentlemen subscribers’. Mathematics was by now a very serious and consequently male business, 
women who wished to subscribe may have done so through a bookseller, remaining invisible.  

Between 40% and 50% of subscriptions was ordered by booksellers, it is as yet not clear why so 
many ordered their copy through a bookseller. Of the personal subscriptions TBMW and TRSM 
both had around 70% working in education. TBMW aimed at practitioners and teachers, TRSM 
aimed at inexperienced and experienced teachers of Dutch and French primary schools. For the 
other journals this percentage was between 44% and 61%. It is remarkable that for all journals, 
irrespective whether they aimed specifically at teachers, up to 16% of the personal subscriptions 
was taken by other professionals (military, skippers, farmers, bookkeepers, shopkeepers, notaries, 

                                                 
3 Reglement voor het Lager Schoolwezen en Onderwijs binnen de Bataafsche Republiek 1806, art. 4 
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etc.). The first journal on arithmetic only (MR) was very popular. It was meant for student-teachers 
and advanced pupils in primary schools, as was BBGC. The journals on algebra and geometry, 
MSM, TRSM, NTRSM, were aimed at the teachers of French schools and the advanced classes of 
Dutch schools, with older pupils. They also served the teachers who studied for a higher certificate. 
Evidently, even it there was some specialization among the journals for teachers of primary scools. 
TTR was slightly different: it was meant for ‘teachers, advanced pupils, farmers, builders, 
stonemasons, carpenters, painters, shipbuilders, etc.’ It contrasted the ‘high level of accuracy, the 
rigour of calculations in school’ with the situation in the professional life, in which one had to be 
able to give a quick approximation, to work fast and to produce useful answers in calculations. 
Again, both teachers (presumably of older pupils) and professionals subscribed to this journal. 

Concluding remarks 
From the mid-18th century mathematics journals, primarily meant for teachers, but subscribed to by 
other practitioners as wll, were published in the Netherlands. In the 18th century mathematics was 
both a respectable pastime and a means to improve the situation of those teachers, who were 
prepared to learn mathematics; learning mathematics was each teacher’s individual choice. 
Mathematische Liefhebberye set out to disperse and enhance mathematical knowledge among 
teachers in the 18th century. It meant to be a support for those inexperienced in mathematics by 
more knowledgable colleagues, while also offering interesting mathematics for the experienced 
readers. From the early years of the 19th century, one consequence of efforts by the government to 
improve the quality and standing of primary school teachers was the obligation for all teachers to 
learn at least some mathematics and preferably more. Mathematical knowledge and pedagogical 
skills formed from 1806 on part of the requirements for all teachers. All journals discussed above 
had as their aim to further mathematical knowledge and skills among their readers, primarily 
through encouraging them to solve problems and send new ones, just like was the case with 
Mathematische Liefhebberye. In this way the emergence of an informal learning community was 
facilitated, with experienced and less experienced teachers. The very diverse and active group of 
readers with a wide range of mathematical topics of the 18th century made place for a more 
narrowly defined group of readers (though still with practitioners amongst them)  less topics, more 
specialization, in the first half of the 19th century.  A common focus of the whole period discussed 
is the driving force of mathematics exams. In the 18th century occasionally, for some vacancies and 
differing very much between towns; in the 19th century compulsory for all primary teachers, 
probably not that different from region to region, but with increasing demands for higher ranks. All 
journals provided material which could be used for teaching and catered for those who practised for 
exams. We conclude that these journals played an important role in the professional development of 
teachers. 
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Tractional motion is an almost forgotten theory involving machines to geometrically solve inverse 
tangent problems. It was at the basis of Leibniz’s development of calculus and interested many 
important mathematicians (e.g. Euler) mainly in the 17th and 18th centuries, before its 
disappearance because of the decrease of importance of geometric constructions. In this work, we 
analyse the exploration of a tractional motion machine using the framework of Theory of Semiotic 
Mediation. This is just a very first work in the perspective of introducing this kind of machine to 
students in order to mediate the meanings of transcendental curves and infinitesimal analysis. 

Keywords: History of mathematics, tangent, mathematical machines, tractional motion, semiotic 
potential. 

Introduction. 
The use of historic machines is a well-established practice to mediate mathematical meaning 
(Maschietto & Bartolini Bussi, 2011). Specifically, many studies have been published about the 
construction of geometric curves as traces of both ideal and practical machines, but most of such 
studies focus on algebraic curves. In this work, we deal with an approach to transcendental curves 
with machines, that is new1 in mathematics education. Such an approach, called “tractional motion,” 
was so relevant to the conception of infinitesimal analysis (e.g. for Leibniz, who designed in 1693 a 
material instrument to practically solve quadrature problems). As deepened in Tournès (2009), 
tractional motion mixed theoretical developments and concrete constructions of artefacts for the 
resolution of the inverse tangent problem. Those artefacts could be interesting for STEM education. 
In our approach, before proposing them to students, the analysis of cognitive processes of 
exploration by experts is necessary. In the paper, we aim to present the first elements of this 
analysis for a particular tractional machine. 

Brief history of tractional motion. 
As clearly exposed in Bos (2001), in 17th century Descartes proposed a class of machines tracing 
algebraic curves as synthetic part of his method, and polynomial algebra as an analytical tool in 
order to simplify the problems. That determined a dualism between “geometric” and “mechanic” 
curves (in modern terms, algebraic and transcendental curves), being only the first one considered 
acceptable in the Cartesian setting. Soon after the spreading of Descartes’ canon, mathematicians 
got habituated to polynomials, that became no longer an extremely important step for the problem 
solving, but directly the solution. In that period, there were only a few curves that were considered 

                                                 
1Such approach is not in use today, but it was already adopted in Italy by Giovanni Poleni in Padua (first half of the 
18th century) and Ernesto Pascal in Naples (beginning of the 20th century). 
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“mechanic” (e.g. the quadratrix or the cycloid), but a new general method to generate curves 
beyond Cartesian limits was going to emerge. The main idea underlying behind such constructions 
was given by a problem proposed by the architect Claude Perrault in Paris in the 1670s. The 
problem was easily described: if we move the end of a chain watch along a line slowly enough to 
avoid inertia, what curve does the watch describe? Cartesian tools appeared powerless to answer. 

In the case of Perrault’s watch, the motion is given by the traction of a cord: that gave the name to 
such constructions by “tractional motion.” The described curve (called “tractrix”) is constructed 
given its tangents: while the watch moves, the tangent to the obtained curve is given by the 
direction of the chain in traction. This is a new kind of tangent problem: instead of the classical 
tangent problem (given a curve, finding its tangent that satisfies certain properties), known at least 
since classical Greek period, this time the tangent properties are given, and the curve has to be 
determined as the solution. That’s the rise of “inverse tangent problems.” 

But how can inverse tangent problems be concretely implemented? The reference to a heavy load 
having friction on a plane (as the watch) involved physical problems that should be kept away from 
the domain of pure geometry, e.g. the unwanted role of velocity (because of the inertia that the load 
acquires) or the non-perfect horizontality of the plane. It was missing a clear instrumental 
embodiment of the theoretical concept “driving the direction of a curve” (as a pair of compasses 
embeds the concept of equidistance): mathematicians as Huygens and Leibniz worked on it. 

To sum up, after the habituation of mathematicians to consider polynomials as solutions, which 
brought to a loss of interest to machines for algebraic curves, at the end of 17th-century machines 
got a new importance; this time to justify the construction of transcendental curves (Bos, 1988). 

In the 18th century, it was particularly interesting the role of Giovanni Poleni. Mathematician, 
physician, astronomer and also interested in engineering studies, Poleni (1729) proposed machines 
for the tractrix and the logarithmic curve, that were also built and used in cabinets for exhibitions 
and in teaching. In 1739, he obtained the creation, at the University of Padua, of a laboratory of 
experimental physics (“Teatro di filosofia sperimentale”) which was unanimously praised by his 
contemporaries. He took the opportunity to set up one of the first university courses based on 
laboratory experiments (previously, he had students coming to his home in his personal scientific 
cabinet). For this reason, Poleni got a particular attention to the design of his tractional machines: 
they were no longer only theoretical machines but also practical instruments guaranteeing an 
adequate usability and accuracy. In this period, curves like the tractrix or the logarithmic were well 
known and generally accepted, thus it was no longer necessary to justify their introduction as 
solutions to certain problems, but it became important to give them concreteness (something similar 
to the possible needs in today classrooms). The main component behind such machine was the 
introduction of the “wheel” to drive the direction of the curve (as in the front wheel of a bike). 
Poleni’s publication (1729) made a strong impression on the geometers of his time. Leonhard Euler 
(1736) read it and found in it an interesting mode of construction to address the differential 
equations that he could not integrate in finite form by algebraic methods. Among other results using 
tractional motion, Euler succeeded in integrating the famous Riccati equation, which had remained 
unsolved for a long time. From there, an epistolary dialogue continued between Euler and Poleni for 
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more than four years, revealing interesting interactions between theoretical and practical concerns 
(Tournès 2009, p. 95-96): in particular, at Euler’s request, Poleni gave the description of an 
instrument for drawing the tractrix of a circle. 

Following on from Euler's work, Vincenzo Riccati (1752) published in Bologna a treatise in which 
he demonstrates that it is possible to exactly integrate any differential equation using tractional 
motion. From a theoretical point of view, Riccati’s work is the culmination of the ancient tradition 
of problem-solving through the construction of curves. Descartes had shown the construction of 
algebraic curves by a simple continuous motion using linkages. Riccati, for his part, established that 
transcendental curves can also be constructed by a simple continuous motion from the differential 
equations that define them. 

After the middle of the 18th century, the theory and the practice of the tractional motion got rapidly 
lost. The geometric paradigm was no longer dominant, and new mathematicians were interested in 
exploring only the analytical counterpart of infinitesimal analysis. However, in the late 19th and 
early 20th centuries, a new generation of mathematicians and engineers reinvented essentially the 
same solutions of Poleni, increasing just the complexity of these instruments (the “integraphs”). 

The tractional machine of our study. 
One of the most interesting features of tractional motion is the deep link between its instrumental 
and theoretical components. Specifically, the possibility of introducing some transcendental 
constructions from history to classroom might be mediated by the exploration of a machine.  

Out of the tractrix, the most famous construction easily given by tractional motion is for the 
logarithmic (or exponential) curve. As visible in Figure 1 (left and centre), for tracing this curve, a 
machine can implement the property of having a constant subtangent2. Poleni, who designed and 
build a machine tracing the exponential, also evinced that one tractional machine could generate 
both algebraic and transcendental curves. That was a fundamental idea while conceiving our 
machine: according to the notation of Figure 1, if we change the direction of the wheel in the 
machine for the exponential (i.e. we put the wheel direction perpendicular to the segment QS), the 
machine traces a parabola (Figure 1, right). 

More specifically, according to Figure 2, the machine3 proposed in this study is made up by a 
horizontal wooden table with two parallel fixed wooden guides in which a wooden frame can slide. 
A brass cylinder is forced to remain within the frame, free to rotate and to slide perpendicularly to 
the two fixed guides. Inside the cylinder, there is a wheel perpendicular to the plane. The cylinder 
rotation is determined by a rod that is constrained to pass through a pin fixed on the frame. 

                                                 
2In a Cartesian plane, given a curve C passing through the point (x,y), the subtangent to C in (x,y) is the segment 
between (x,0) and the intersection of the line tangent to C in (x,y) with the x-axis. Referring to the Figure 1, the 
subtangent in S is the segment QP. 

3Simulations of this machine are available online: https://www.geogebra.org/m/zrMyFGdd (for the parabola) and 
https://www.geogebra.org/m/LXugImiH (for the exponential). This machine was introduced by Milici & Di Paola 
(2012) and described with more details in Salvi & Milici (2013). 
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Figure 1:[Left] The exponential y=ax has constant subtangent QP; [Centre] machine for exponentials; 
[Right] machine for parabolas 

 

Components: 

1. wood translating frame 

2. brass hollow cylinder 

3. tyred wheel that rotates inside the 
cylinder (2)  

4. rod giving the direction of the cylinder (2) 

5. pin with a hole where the rod (4) slides 

6. holes where to put the pin (5) 

Figure 2: The various components of the proposed machine 

Artefacts in mathematics education. 
Basing on previous works on the use of artefacts in mathematics education (for instance, the 
mathematical machines in Maschietto & Bartolini Bussi, 2011; www.mmlab.unimore.it and 
macchinematematiche.org), the analysis of the machine proposed in this paper is carried out within 
the framework of the Theory of Semiotic Mediation (TSM) developed by Bartolini Bussi & 
Mariotti (2008) in a Vygotskian perspective. In this, a teacher uses an artefact as a tool of semiotic 
mediation for mediating mathematical meaning to students by managing didactical cycles 
(composed of small group work, collective mathematical discussion and individual work). The first 
proposed activity is a small group work with the artefact, because its use solicits a certain semiotic 
activity (where the sings can be language, gestures, drawings, ...) that is the base for the teacher’s 
intervention. The exploration of the chosen artefact related to the educational objectives is carried 
out following four questions (Bartolini Bussi, Garuti, Martignone & Maschietto, 2011, p.128): 
“How is the machine made?”, “What does the machine make?”, “Why does it make it?”, “What 
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could happen if ...?”. Within this framework, the choice and the educational use of an artefact is 
based on the analysis of its semiotic potential. In the TSM, the distinction between meanings 
emerging from the practice (use of artefact) and the mathematics knowledge evoked in the expert’s 
mind is very important. Mariotti & Maracci (2012) specify the notion of the semiotic potential of an 
artefact to make that distinction explicit: 

By semiotic potential of an artefact we mean the double semiotic link which may occur between 
an artefact and the personal meanings emerging from its use to accomplish a task and at the same 
time the mathematical meanings evoked by its use and recognizable as mathematics by an 
expert. (Mariotti & Maracci, 2012, p. 61) 

Our research questions are about if and how we could use the machine as an instrument of semiotic 
mediation with secondary school and/or university students. As in other research on mathematical 
machines, we intend to propose first a material machine rather than its simulation in a DGS, 
because we assume the relevance of the exploration by the hand (allowing touching, decomposing 
the machine, perceiving the resistance to movement or not, ...). In order to answer to those 
questions, the first step is the analysis of the semiotic potential of the machine, considering the 
description of the machine by an expert that already knows it on the one hand, and the exploration 
of the machine by other subjects, experts in other kinds of machines or university students in 
mathematics. In this way, we aim to analyse what kind of semiotic activity can emerge from the 
exploration and use of the machine. In particular, we focus on: which are the processes of 
exploration of the machine? Do people identify the role and the meaning of the wheel? How? 

Methods. 
We have videotaped two exploration processes of the machine. We chose three people that knew 
the mathematical machines and the TSM, and were experts in mathematics but without any 
knowledge of tractional motion. The first exploration was carried out by two secondary teachers, 
following the structure of four questions that they knew very well. In the exploration, the researcher 
had to often put the attention on the wheel and its way of use, thus, for the second case, we began 
proposing only some components of the machine. The second exploration was performed by a 
postgraduate student in mathematics that studied mathematical machines during a university course. 
In this case, the machine has been disassembled and gradually reassembled by the researcher: first 
the cylinder with inside the rolling wheel (cf. Figure 2, (2) and (3)) is given free to move on the 
table; then the rod (cf. Figure 2,(4)) is added, in the two positions (parallel and perpendicular to the 
wheel direction); finally, the cylinder is put into the wood frame (cf. Figure 2, (1)). 

Findings and discussion. 
The analysis is based on videotapes and drawings produced by the people exploring the machine. 
More specifically, we analyse the part of the two explorations in which people detect the movement 
and constraints of the wheel and identify the link between wheel and the line tangent to the curve.  

First exploration: Alberto and Bianca. 

During the first moments of the exploration of the machine (corresponding to the first question, 
“how is it made?”), Bianca describes the machine but she does not seem to pay particular attention 
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to the presence of the wheel, even if she considers it as a component of the machine. When the 
machine is then used to trace (intentionally, the ways of use are not suggested to her), this lack of 
attention is evident by how Bianca acts on the frame and on the wheel: sometimes the wheel rolls 
and sometimes it slips, tracing a curve or a straight line. The resistance to the slipping of the wheel 
is not noticed by Bianca, who raises doubts on how to use the machine until the researcher 
intervenes by asking it explicitly (“Don’t you feel resistance?”), by specifying the principle of 
operation (“[the machine] works when the wheel turns”) and by explaining the relationship between 
the resistance and the constraint of the machine (“you're forcing a constraint of the machine”). 

The machine doesn’t seem to offer feedback sufficiently strong to actions that force the constraints; 
while forcing the wheel not to follow its direction, the resistance of the tyre is mixed with friction 
by other structural parts, such as the frame. This certainly is an important point to take into account 
for paying attention to the wheel as a new element, compared to other curve drawers (such as the 
ones using taut threads). To foster the identification of the role of the wheel in tracing the curve, the 
researcher asks to specify the physical constraints of the machine allowing that tracing; he also 
suggests a comparison with a tracer (which corresponds to the point of a pen) (“If, instead of the 
wheel, there had been a tracer, would it have been the same?”). The question corresponds to “What 
could happen if ...?” of our educational framework. However, it is a question that can be asked to 
expert people. Here are some excerpts of exchanges with Bianca, Alberto and the researcher. 

Alberto:  It would have been different. 

Bianca:  That is ... 

Alberto:  Then, the wheel... 

Bianca:  Yes, it would have been different. 

Bianca:  If there is a point... that is a wheel... 

Alberto:  It would slip, ... it would move randomly. 

Researcher:  And, so, what must the wheel do? 

Bianca:  It turns [laughter] 

Bianca:  It must not slip, because if it slips ... 

Alberto:  Turning without slipping. 

Then, they turn their attention to the geometrical property of the machine. The relationship between 
the wheel and the tangent to the curve appears in terms of “direction.” 

Alberto:  [The properties] of the tangent line, isn’t it? But physically ... I don’t know why it 
is physically ... that is, the small wheel gives the direction [gesture by the hand] 
that is not ... any direction to the curve. 

Researcher:  And then, what do we know ... having the small wheel this direction? ... at the 
drawn point. 

Alberto:  The curve must have that direction. 
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These excerpts show that the exploration is in discontinuity with the explorations of the curves 
drawers that Alberto and Bianca are familiar with. This seems to confirm the deep change quoted 
above from the epistemological point of view. The emergence of the link between the wheel and the 
tangent line to the curve is fostered by the researcher. However, some questions are not 
immediately understood by Alberto and Bianca, as they do not link the task and their personal 
meanings on curve and machine. The difference between rolling and crawling seems to emphasize 
such a change. 

Second exploration: Corrado. 

According to researchers’ queries, Corrado moves the cylinder with inside the rolling wheel 
(cf. Figure 2, pieces 2 and 3) on the plane and defines some properties of the traced curve with 
consciousness (“It is not constrained to stay on a straight line or a circumference or a parabola or a 
branch of hyperbole, if we let it free it can go up and down in every place. ... It traces a continuous 
line, [...] can do edges but without jumps”). When asked to describe more precisely his interactions 
to make the machine move, he immediately defines the two degrees of freedom. In terms of the 
analysis of the semiotic potential, we could affirm that the task links the manipulation to Corrado’s 
personal meanings of the curve.  

Unlike Bianca, when Corrado is asked to explore the fully reassembled machine, he seems aware of 
the mechanical resistance to certain motions, and he is able to interpret it in relation with the 
constraints of the instrument. Specifically, when the wheel is put in the vertex of the parabola, 
Corrado notices that the machine “resists” when he tries to move along the direction of the axis of 
the parabola. To explain such behavior, he puts his attention on the idea of direction: “[the machine 
cannot move that way] because it cannot [with a gesture indicates to move along the axis direction], 
it is constrained here [indicates the pin, component 5 of Figure 2], it cannot invert, get comfortable 
[with a gesture of the hand: change the direction] and trace, it has to stay this way and it is unnatural 
to draw [gesture: in the direction of the axis], it cannot rotate this way [gesture of the rotation of the 
wheel perpendicularly to the direction of the wheel]. It [the wheel] draws only while rotating and in 
the direction of its rotation.” Later on, he is asked to characterize the traced curve that he identified 
as a parabola. Corrado is able to find independently the role of the tangent for the wheel: “if we 
hypothesize that this [with the hand indicates the direction of the wheel] gives the direction of the 
tangent, the wheel is always perpendicular to this rod and so ... [he looks for a conjecture on the 
tangent perpendicular to something, but doesn’t find any].” 

Therefore, as a very early conclusion, we can suppose that disassembling the machine eases the 
understanding of the constraints of the machine. However, we cannot affirm that disassembling can 
also ease the characterization of the curve because Corrado tried to verify that the traced curve was 
a parabola focusing on the points traced on the plan and neglecting tangent properties. This 
corresponds to another aspect of the epistemological change that characterizes the machine. 

Concluding remarks. 
At our knowledge, this is the first empirical work aimed at analysing the semiotic potential of a 
tractional machine. As a first result, we can evince that the passage from algebraic to transcendental 
constructions, so groundbreaking from a historical and epistemological perspective, recalls also 
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very different abilities in the exploration (the explorations were not trivial even for experts of 
mathematical machines). In particular, the relation between the wheel and the tangent did not 
appear immediately, but the idea of disassembling the machine in order to investigate simpler 
components appeared quite fruitful (even though it requires to be much more deepened). This 
suggests a possible task, but this is not enough sufficient for constructing worksheet for students.  
What done is only a very first step in this direction. We need other experimentations to clearly 
define the mathematical contents to be mediated (tangents, derivatives, integrals, differential 
equations) and the level of the exploration (high school, university). 
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The content of Adam Ries’ book (1574) with the instructions to written arithmetic fostered an 
enlightening for citizens at this time since they learned how to calculate themselves making it 
obsolete to pay a "Rechenmeister" for this task. In the early modern times algorithms entered the 
industrial world by mechanical automatisms intended to take away the routines from people. 
Nowadays algorithms hidden in many technical devices have become a part of our daily procedures 
often staying unaware for people. The paper discusses the historical development of the concept of 
algorithm and its potential for mathematics and general education today. 

Keywords: Algorithms, enlightening, fundamental ideas, mathematics education 

A historical view on the mathematical aspects of algorithms 
The history of algorithms as part of mathematics started in the very early days since the systematic 
solving of mathematical problems is part of doing mathematics. For example, during the Old Greek 
times Euclid (300 v. Chr.) gave a rule to calculate the greatest common divisor of two given natural 
numbers. Another well-known algorithm is the sieve of Eratosthenes, a step-by-step procedure 
giving prime numbers up to a certain given natural number. Several hundred years later it was Al-
Khwarizmi who presented a number of mathematical applications for traders. These were translated 
into Latin with the title "Algorithmi" containing the artificial word "arithmos" that is derived from  
“number” and the name of the mathematician (cf. Chabert, 1999). 

Hundreds of years later Adam Ries (1574) wrote a booklet on basic arithmetic operations which had 
great influence on the German citizenship at that time. In the year 1614 the Scottish John Napier 
published a book on logarithms which made him look like the inventor of logarithms. Leonardo da 
Vinci (1452-1519) as another significant personality of the Renaissance era demonstrated with the 
“Vitruvian Man” his understanding of proportions blending geometric descriptions with the 
Renaissance art. Another hundred years later Leibniz (1646-1716) used the binary code and 
algorithms on that basis.  

In 1815 Augusta Ada Lovelace was the first woman to program for the (technologically 
underdeveloped) calculator of Charles Babbage (1791-1871). 1931 Gödel destroyed the dream of 
many mathematicians that all mathematical theorems can be proved by algorithms by his 
Incompleteness Theorems:  

They imply that there is no algorithm with a finite number of steps that can decide if an arithmetic 
statement is true or false in all cases imaginable.  

Furthermore, it is impossible to prove consistency for a formal system whose complexity is the 
same as that of the natural numbers.  
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In this context we also must accept an incompleteness of arithmetic:  

There is no (finite) algorithm that proves the valid statements of arithmetic on the whole. 
(Ziegenbalg, 2010; translated by the authors).  

Later on during the 20th century von Neumann and Turing provided the mathematical basis for 
computing with which they started the new era of computer science (Chabert, 1999, p. 457). 

During the last decades the development of “artificial intelligence” progressed so rapidly that the 
nature of algorithms became in immense multiple ways complex (e.g. voice recognition, decision 
making systems). This development was possible because of rapidly advanced technical conditions 
which as a consequence offered an improvement in calculating speed and storage space. As an 
organizational form cloud computing brought enhancements.  

Concluding this very short historical view on the successive appearances of algorithms through the 
centuries it becomes apparent that in former days they were documented in a written form by books 
with the aim of becoming public to scientists and citizens. Even in the case of military purposes, 
namely cryptography, the secrecy of the underlying algorithm was not considered appropriate. Only 
the "key" that gives details of a general – even public – encryption process had to be hidden, which 
is the subject of Kerckhoff's principle (Kerckhoff, 1883, p. 12). Nowadays the algorithms behind 
apps and programs often stay hidden because they are part of a business secret often with the idea to 
gain money. The question arises when exactly the balance turned from transparency to its opposite 
and how we can deal with this new situation. One can expect insight from sociological and 
historical analyses that are not yet been finally concluded.  

Today’s mathematical exactification and its impact on education 
During centuries an algorithm was understood as a series of instructions. The development 
algorithm’s understanding led to distinguished properties.  

Steps towards formalization 

For the longest algorithms consist of a finite series of instructions to solve a given problem like it 
was apparent with the sieve of Eratosthenes. Generally accepted are also the following properties 
which led to a general view and that can be understood as postulates for algorithms (Saake et al., 
2010): 

(1) The algorithmic procedure must end up with the same outcome in case of the same 
preliminaries. 

(2) Any next step to take is uniquely determined. 

(3) The description of an algorithm implies a finite length of the source text which needs to 
consist of a limited number of signs. 

(4) An algorithm is requested to have a limited storage space at any time during its 
procedure. 

(5) An algorithm stops after a finite number of steps. 

Thematic Working Group 12

Proceedings of CERME11 2142



 

 

For didactical purposes it is therefore clear what solving procedures fall under the concept of an 
algorithm. Like with the concept of sets there is a naïve version of it. And after being confronted 
with logical difficulties (Russell, 1903) the need of exactification became apparent and was solved 
in form of axiomatization. The naïve perception of algorithms has its limits, exactified by the work 
of Turing and especially of Gödel’s Incompleteness Theorems. Both topics, sets and algorithms, 
finally lead to questions of cardinality and self-reference. 

Didactical perspectives for math classes 

The idea of an algorithm appears several times in school in mathematics classes. On the elementary 
level the four basic written arithmetic calculations have algorithmic nature and are named as such in 
mathematics literature. In our daily practice we do not observe a very detailed reflective attitude; 
neither teachers nor pupils seem to reflect on their algorithmic nature. At the beginning of the 
secondary I level the well-known Euclidean algorithm is subject matter in class. Very often this is 
the first time that pupils get aware of the concept of an algorithm. It is regarded as a prototype of an 
algorithm since it is named like it.  

Following the spiral principle other examples of algorithms occur on the secondary I level (in the 
German system meaning classes 5 – 10: the methods used to solve linear and quadratic equations as 
well as systems of linear equations. Typical examples on the secondary II level occur with curve 
sketching, finding extrema, points of inflection and other properties of functions. At this stage the 
systems of linear equations are again subject matter with an even more algorithmic procedure (Gauß 
algorithm). 

In school algorithms also occur using a calculator or tablets including software for educational 
purposes. That is for example the dynamic geometry software (DGS; GeoGebra, Cinderella) and 
Computer Algebra systems (CAS). Nowadays Witzke (2018) uses 3D-Plotters in math classes on 
different levels to not only visualize mathematical objects but to materialize graphs and geometric 
solids. This means that algorithms generate didactical tools not only iconical, but even haptical. 

Comparing all the mentioned school examples above very few are labeled explicitly as algorithms 
through the names as the Euclidean and the Gauß algorithm and are therefore more obvious to the 
pupils. The algorithmic character of other parts of the curriculum is also not easily recognized by 
the pupils. Even with algorithms whose names prove to be programmatic the teaching normally 
emphasizes the arithmetic acting and often fails to reflect upon the concept and the meaning of an 
algorithm. Furthermore, the use of the recently introduced tools in mathematics classes serve 
didactically as technical devices to manage some type of mathematical problems. However, several 
of them create some kind of didactical bubble. Some calculators for the secondary level are 
meaningful only for math classes. 

Algorithms as fundamental ideas – alibi or truth? 

In 1905 Felix Klein (1849-1925) claimed functional thinking as a guiding principle for mathematics 
education which was implemented in the German curriculum through the last decades. Already in 
the seventies of the last century the importance of algorithmic thinking was claimed (Engel, 1977, 
p. 5). This was expressed in the light of the situation 40 years ago. Nowadays, there should be no 

Thematic Working Group 12

Proceedings of CERME11 2143



 

 

doubt that the situation became much more prominent. The fact that the relevance of algorithms is 
still not in the center of educational issues is apparent with the “German Bildungsstandards” 
(Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland 2004, 
2012): On the primary level algorithms are not mentioned at all and on the secondary I and II levels 
some of the well-known procedures are classified as algorithms but mostly because of their 
repetitive character and not in terms of their entire meaning.  

We observe a simplified and shortened understanding of the notion on the part of the pupils and 
teachers as well, in particular relating to its potential in science, society, economy and culture in 
general. The latter is only recently a subject of scientific research. In the last decades algorithms and 
their different mechanical realizations have infiltrated our whole life in various and subtle ways. 
They are omnipresent in every angle of our daily routines. Social networks (like Facebook) and 
search engines (like Google or Yahoo) are selecting, ordering and evaluating our data, our inputs 
and their results. Especially the selecting part based on evaluation is a sensitive issue that the 
companies and institutions have not made transparent, let alone to make an enlightening out of it. 
On the contrary, many companies admit that they hide the conditions of their procedures, and one 
often gets the impression of a conscious deception of the public. Advertisements are individualized 
simulating or pretending that some kind of care plays a vital role. However the companies gain 
money by using or selling our data and neutrality and objectivity became illusions. 

The role of algorithms for general (math) education 

Since our daily life is influenced by algorithms in the ways described above the question arises 
whether mathematics education can play an enlightening role. The aim here is not only the listing of 
typical, historically well-known examples, but the task is to elucidate about the significance of the 
impact on all facets of society. Heymann (2013) emphasized general education in the light of 
fundamental mathematical ideas. He aimed at showing that the fundamental ideas indicate the 
universality of mathematics and their relevance for the “entire culture” (Heymann, 2013, p. 158) 
and this needs to become apparent for the pupils during their school life.  

Here we follow the structure of Heymann’s frame of reference. The criteria include their relevance 
for the mathematical development and show the essential nature of mathematics: 

(1) Preparation of life; 

(2) cultural coherence; 

(3) global orientation; 

(4) critical use of reason; 

(5) sense of responsibility; 

(6) communication and cooperation. 

There can be no doubt that algorithms affect our daily life in an increasing manner. Therefore, 
school and especially math classes need to prepare for this fact. Although it is apparent that 
different countries answer with different attitudes: Europe, primarily the European Union, looks for 
governmental regulations while the USA care less about rules. The Far East, that is predominantly 
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China, responds to the situation with even stronger governmental rules. In this light cultural 
coherence as an aim seems to be out-of-date, and, at the same time, the developed global view is an 
inevitable consequence of it. Hence the critical use of reason becomes more urgent than ever before. 
The sense of responsibility needs to be revised and also discussed and reflected in school. And this 
even more since the situation became much more complex and it is not easily apparent what is for 
the benefit of humanity and what will harm. Of course communication and cooperation stay 
important in this light.  

Towards an implementation of algorithms in math classes 

Both concepts, the set and the algorithm, are simple enough to be presented on the primary level: a 
set as a Venn diagram (as understood within naïve set theory) and an algorithm as a series of 
instructions as in a cooking recipe. Therefore both can be represented on the enactive level (Bruner 
1974) and are accessible for the iconic one. Their difference lies in the fact that sets can be regarded 
foremost as a static phenomenon simultaneously due to time, while temporal processing is in the 
nature of algorithms. In this sense they are complementary. On top of it the concept of sets plays a 
vital role in the succession of math classes (spiral principle) as the notion of algorithms could and 
should also (Bruner, 1976). 

Closely connected is a theory of conceptual progression of mathematical concepts (Vollrath, 1987). 
Vollrath presents a didactical theory of learning and teaching mathematical terms. He outlines in 
general what kind of various steps lead to a certain understanding of mathematical notions: 

(1) Intuitive level; 

(2) content level; 

(3) integrated level; 

(4) formal level. 

On the intuitive level the pupils have an idea of a series of steps as a first access to algorithms. This 
may be represented by game rules or cooking recipes. On the second level they explore typical 
properties of algorithms. Actually on the third level a network should be recognized on the part of 
the pupils. In the case of an algorithm we observe that the notion itself provides a conceptual 
network. We distinguish two levels of formulation: Firstly, there is an exact description of certain 
mathematical issues through algorithms represented by flow charts or simple programming 
languages. Secondly, the notion of the concept of an algorithm itself is to be formulized. 

It is apparent that the exactification makes the idea of an algorithm accessible for pupils already 
during early schooling. It became apparent that the idea of an algorithm is rich enough to be taught 
on all levels with a shifting emphasis. Therefore mathematics education is obliged to prove again its 
self-established claim for general education. This needs to be done on the conditions of the presence 
and how they have developed. 
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Analysis on consequences for the teaching and learning of algorithms 
In early historical times algorithms started as a scientific insight on a mathematical problem and 
additionally gave information for a systemized solving procedure. Paul Ernest (2004, p. 5) describes 
it like this:  

An example is provided by algorithms. These denote precisely specified sequences of actions, 
procedures which are as concrete as the terms they operate on. They establish connections 
between the objects they operate on, and their products. They are a part of the rich structure that 
interconnects, and thus helps to implicitly define, the terms, and hence the objects of 
mathematics. This must be relativized to the solver, for what is routine for one person may 
require a novel approach from another. It is also relative to a mathematics curriculum, which 
specifies a set of routines and algorithms. 

At the very end of the middle ages when Adam Ries, standing at the brink of the abacus using 
concrete tokens and the decimal number system using symbols on paper, the arithmetic operations 
in form of a booklet had an enlightening impact on the citizens; an enlightening event that is surely 
not often recognized in history (Deschauer, 1992). It is an example of a practice through all these 
times when it was mostly the aim to inform, to get insight and to support people’s solution 
practices.  

In order to simplify the solving practices and to avoid mistakes, Babbage, for instance, designed a 
mechanical machine (1923). And, as soon as machines came into place, the questions also involved 
avoiding counting errors. Later on the development continued with electronic devices aiming at 
more and better efficiency which first was the storages place and later the shortening of time.  

We observe that the chances of an enlightening process in today’s society got at least diminished as 
soon as commercial ambitions entered the global scene and the hiding of information was part of 
the business practices. And now our so called informational society is confronted with many 
different “black boxes”.   

Here, mathematics and its didactics have a long enough history to feel responsible to undertake the 
task to clarify the situations and to offer enlightening insights. A view into history confirms once 
again that we do not observe totally new phenomena. Babbage dealt with a similar situation during 
the early 19th century. In his “Reflections on the Decline of Science in England“, first published in 
1830 (Babbage, 2013), he complained about scientific mishaps: He observed that scientific results 
were whitewashed: by trimming (levelling of irregularities), cooking (quoting of results which fit to 
a theory, omitting results that contradict) and forging (inventing of scientific results which fit a 
conventional meaning or can be fitting to a desired doctrine).  

Concluding our observations on the development of algorithms and our analyses on their position 
today we notice that they bear only minor enlightening character anymore compared to former 
times. In order to answer to this situation there needs to be a focus in math classes on prototypes of 
today’s computers. These elementary simplifications could make apparent that the programmed 
algorithms are combined with money-making commercial ambitions which have to do with 
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evaluating, selecting and, as a result, manipulating. This goes along with Fredenthal’s idea of a 
guided reinvention within his concept of “mathematics as a human activity” (Freudenthal, 1983). 

We do not favour teaching algorithms as it developed chronologically. This might be an interesting 
experiment, but would be naïve to push the analogies between ontogenesis and history of science to 
the limit. Instead of it we support a refinement of historical awareness and instruct students to pay 
attention to the conditions that caused today’s appearance of algorithms – one of several possible 
implementations of a few fundamental ideas of mankind. This is what Paul Ernest (2015) calls the 
“postmodern perspective”. According to Lyotard (1984), postmodernism can be narrowed to 
scepticism towards meta-narratives. Since different fields focus on and deal with unlike sometimes 
divergent ideas and phenomena, their historically developed metanarratives differ enormously 
among each other. Therefore analysing (deconstructing) metanarratives means to retrace historical 
developments and the decisions made on the way. This endeavour reveals choices which were taken 
along the historical evolution within each field. 
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In this paper, we present a proposal for problematizing activities organized in task rounds, each 
one consisting of three stages: a triggering task, a historical task, and reflections on teaching. This 
model is part of a doctoral research project and it is being tested in a module of a professional 
master’s program for mathematics teachers. We draw from the commognition framework (Sfard, 
2008), combining the mathtask model (Biza, Nardi, & Zachariades, 2007) and Kjeldsen & 
Petersen’s approaches (2014). More specifically, we discuss how we used history to design the 
historical task of the first task round, based on the so-called Aha problems from Ahmes’ Papyrus. 
History of mathematics is used in the problematizing activities to move teachers out of their comfort 
zone and to legitimate different ways of producing mathematical knowledge. Some episodes are 
presented only to illustrate our discussion. 

Keywords: Commognitive conflict, history in teacher education, mathtask, Ahmes’ Papyrus. 

 

Introduction 
How do teachers deal with their students’ unexpected solutions? We believe that acknowledging 
and legitimating different kinds of mathematical reasoning in all educational levels is a crucial 
aspect of teachers’ knowledge and professional activity, and, therefore, this discussion cannot be 
put aside in teacher education programs. With this motivation, we have investigated how teachers 
deal with students’ different solutions for mathematical problems in lower and upper secondary 
schools. 

The experience reported in this paper is part of the doctoral research of the first author, jointly 
supervised by the other two authors. The aim is to design activities to problematize teachers’ 
understandings of mathematical knowledge production, in particular their own mathematical 
knowledge production, and how they legitimate (or not) students’ mathematical knowledge 
production. We understand problematizing as considering different alternatives for something that 
is usually taken for granted, which opens ways to explore questions that are usually not even 
regarded as relevant. In this paper, we focus on the use of historical problems and contexts to 
trigger problematization. For this, we consider recent trends of the historiography of mathematics, 
which builds upon the perspective of social and cultural contexts within which mathematical 
practices are produced. Our research combines frameworks on the integration between history of 
mathematics and teaching of mathematics and on teachers’ education. 

From the historical framework, we draw from Kjeldsen and colleagues’ (e.g Kjeldsen & Petersen, 
2014) work, which suggests that the history of mathematics is a source of discourses governed by 
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different metarules. We believe that history can be used to legitimate unusual practices in specific 
contexts. From the teacher education framework, we consider the importance of a kind of 
knowledge which is developed through school practice (Tardif, 2000). For this reason, the 
participants in our study are experienced teachers, who were taking a professional master’s 
program1. Our field work took place in a module, which was part of their degree. In the sessions, 
participants were invited to analyse solutions for mathematical problems from Brazilian school 
syllabuses, including students’ strategies and historical approaches. This was done by combining 
tasks inspired by Biza et al. (2007) and Kjeldsen and Petersen’s history approach (2014). The field 
work’s methodology was designed in the light of commognitive framework (Sfard, 2008), which 
will also be used in data analysis. The aim of this paper is to discuss the use of history in the design 
of these tasks. Episodes from the sessions are reported only to illustrate our task design. 

Theoretical Background 
According to Sfard, learning is understood as participating in a discourse and mathematics is a kind 
of discourse. For the author, discourse is a “special type of communication […] distinguishable by 
their vocabularies, visual mediators, routines, and endorsed narratives” (Sfard, 2008, p. 297). She 
adds: “In mathematics, endorsed narratives are those that constitute mathematical theories.” (idem, 
p. 298) However, Sfard does not reduce narratives to formal written texts. For her, narratives 
correspond to a series of spoken or written utterances, whilst routines grasp a set of metarules. 
These rules are related to the actions of discursants and are historically established, changing 
through the different discourses. Sfard (2008, p. 260) also points out that commognitive conflict 

appears when one encounters a discourse incommensurable with one’s own – when familiar 
routines are confronted with other people’s alternative ways of implementing the same 
discursive tasks, grounded in different metarules. 

Commognitive conflicts are at the core of our research. Thus, to lead participants to discuss and 
reflect on different ways that mathematics can be produced, we expose them to different discourses 
in two ways: using historical sources, and through tasks inspired by mathtasks (Biza et al., 2007). 
Biza et al. (2007) propose mathtask as a situation-specific task designed to engage teachers with 
classroom situations, to which they are invited to discuss attitudes they would take in the actual 
classroom. These situations are usually hypothetical, yet data grounded and likely to occur in the 
actual practice. The connection between history of mathematics and the commognitive framework 
is inspired by Kjeldsen’s work. Since history is a source of discourses governed by different 
metarules (e.g. Kjeldsen & Petersen, 2014), it provides different ways of approaching problems and 
their solutions. 

Arcavi and Isoda (2007, p. 112) highlight the importance of teachers’ listening capabilities, that is, 
“giving careful attention to hearing what students say (and to see what they do), trying to 
understand it and its possible sources and entailments”. This is close to our goal, since we aim to 
problematize teachers’ criteria to legitimate (or not) students’ production of mathematical 

                                                 
1 In Brazil, legal certification to teach at school is granted by an undergraduate degree. So, this master program is a 
professional development and is also a way to increase public school teachers’ income. 
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knowledge. In our work, history is used to reach this problematization by discussing historical 
solutions to mathematical problems, which may differ from the usual strategies teachers are familiar 
with. Thus, the problematizing activities we propose are designed to use historical sources that 
move teachers out of their comfort zones, by revealing consistent practices within specific social 
contexts. 

The Problematizing Activities Design 
The problematizing activities we propose are organized in task rounds, each one consisting of three 
stages: triggering task, historical task, and reflections on teaching. Our field work was conducted in 
a module of a professional master’s program for mathematics teachers. Participants were 12 
mathematics experienced teachers (who teach students with ages range from 11 to 18) who were 
taking this module. The module comprised thirteen 3-hour sessions (organized in three task rounds), 
including students’ assessment. In this paper, we discuss how we used history, in articulation with 
frameworks on teachers’ education, to design the activities, with a special focus on the historical 
task. We address the case of one of the three task rounds – based on the so-called Aha problems 
from Ahmes’ Papyrus. Some episodes are presented, in order to illustrate our discussion. It is not an 
aim of this paper to rigorously analyse this empirical data. 

The task rounds’ structure 

Each round starts with a triggering task, in which participants are given hypothetical student’ 
solutions to a mathematical problem. The aim is to bring about the ways they deal with students’ 
responses, and to which extent they are open to unusual solutions. This is followed by a historical 
task, in which participants are presented to excerpts from original sources. The aim is to shake 
participants’ comfort zones formed by the kind of solutions they are familiar with, since the 
historical discourses are usually different from the ones used in the classroom. In the last stage of 
each round, reflections on teaching, participants are again given hypothetical student’ solutions, 
which now also draw upon historical solutions. 

 
Figure 1: Structure of task rounds 

The structure of the triggering task and the reflections on teaching stages are inspired by Biza et al. 
(2007) mathtask model, namely: firstly, participants are asked to solve a mathematical problem; 
then they are asked to analyse student solutions to this problem, and to describe the feedback they 
would give to students in an actual classroom situation. In each of the three stages, participants are 
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first asked to write down individual responses, and then invited to collective discussion. Either by 
bringing historical excerpts, or by using mathtasks, we try to promote a commognitive conflict 
(Sfard, 2008). Our goal is to encourage the participants to reflect and discuss on: i) their own 
routines regarding their classroom practices, ii) how they understand mathematics, and also iii) the 
criteria they apply when judging their students’ mathematical solutions and reasonings. For the 
choice of each task round’s topic we take into account: potential to allow different solutions; 
relevance to the participants’ practice; and availability of primary and secondary historical sources. 

The first task round: context and structure 

Our first task round is built around the simple false position rule, according to which the solution is 
reached by using an “experimental number” that is adjusted by a factor. Thus, the process of finding 
the solution is not based on a representation for the solution, as in the case in the contemporary 
algebraic methods. We choose the context of the ancient Egyptian Aha problems (e.g. Roque, 2012; 
Chace et al., 1927) from Ahmes Papyrus to explore different solutions to problems modelled by 
linear equations nowadays, as a potential trigger of commognitive conflicts. We could consider 
many metarules regarding the discourse from Aha problems (e.g. the ones related to the Egyptian 
symbols, the ones related to the structure of the Aha problems, the ones related to the Egyptian 
mathematical practices), but we focus on the metarule related to the assumption of an “experimental 
number” to start the Aha problem – which considerably differs from representing the unknown 
quantity by a letter and operating with it. Thus, we use the simple false position rule as a means of 
problematizing algebraic solutions commonly used at school. The choice of this activity is also 
justified by the fact that the false position rule is grounded in the notion of proportionality. Despite 
this is a key concept in school mathematics, it is sometimes underestimated in the teacher education 
programs (at least in the Brazilian context). The triggering task consists of a mathtask with two 
hypothetical solutions to the following problem: 

Marina likes to make problems for her father inspired from what she learns at school. One night 
she said: “Dad, find out how many Reais2 I have! The tip is: if I add a quarter of what I have to 
what I have, I’ll get R$15,00.” 

Ten participants attended this session, all of which presented an algebraic solution, as expected. A 
mathtask with two students’ solutions to the problem was then discussed. The mathtask’s context 
was an introductory lecture on algebra at elementary school for 12/13 years old students. The first 
solution uses a diagram to split the whole in 4 parts, and then add a fourth one. So, 15 is divided by 
5, and the result is multiplied by 4. The second solution is a “trial and error” strategy. Aiming to set 
up commognitive conflicts, both student solutions were designed considering routines different 
from the algebraic solutions. The metarules behind the first solution’s routine are related to the use 
of fraction bars, whilst the ones in the second solution routine are related to the use of a trial and 
error strategy. 

                                                 
2 Brazilian currency. 
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Designing the historical task: our methodological option 

The historical task concerns two well defined moments: an immersion in original sources and a 
historical overlook. These approach were inspired by Arcavi and Isoda (2007)’s hermeneutic 
method. The authors propose a sequence of tasks aiming to 

parsing the source, posing questions to oneself (or to a peer) around it, paraphrasing parts of the 
text in our words and notations, summarizing partial understandings, locating and verbalizing 
what is still to be clarified, and contrasting different pieces for coherence. (Arcavi & Isoda, 2007, 
p.116) 

Thus, immerging in a source is the opportunity to analyse and understand different mathematical 
practices, contrasting them with the participants’ own ones. In the historical overlook, we discuss 
(mathematical and cultural) contexts of the source and some aspects of the Egyptian mathematics. 
We adopt this approach as a means to lead participants to experiencing “other perspectives”, as 
Arcavi and Isoda (2007) posit, which, in the context of the history of mathematics, may be the ones 
from the primary sources, as we used in this research. As these authors suggest, in the context of the 
classroom, the “other perspective” is the students’ ones. So, they argue that trying to understand 
historical sources may lead teacher to be more receptive to students’ productions, specially the 
unexpected ones. 

The aim of the first round was to explore Problem 25 of the Ahmes’ Papyrus, which states: “A 
quantity whose half is added to it becomes 16.” Firstly, we invited participants to analyse Problem 
25 in Hieratic and Hieroglyphic (Figure 2), as it appears in the Ahmes’ Papyrus (Chace et al., 
1927). Next, they were presented to Problem 25, as it appears in Figure 3, with translation to 
English and to (our) Portuguese. After presenting a brief contextualization on Ancient Egypt, the 
role of the scribes in the society organization, and what Ahmes’ Papyrus and, particularly, the Aha 
problems are about, we presented Problem 25 again as it appears in Figure 3, and invited 
participants to explore it. We then proposed tasks from Arcavi and Isoda’s work, including: the 
elaboration of a dictionary of Egyptian symbols, especially numbers; a problem with Egyptian 
multiplication; and a set of tasks exploring Problem 243 (Arcavi & Isoda, 2007) in stages. Finally, 
we discussed Ancient Egyptian mathematics, especially number system, fractions and operations, 
using Roque (2012) as the main reference. 

                                                 
3 Problem 24 is quite similar to Problem 25 and states “A quantity whose seventh is added to it becomes 19.” 
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Figure 2: Hieratic and Hieroglyphic solutions of 

Problem 25 

 

Figure 3: Modern translation of the Problem 25 

We then resumed Problem 24’s solution and encouraged the participants to understand the solution 
as a whole. As Arcavi and Isoda suggest, we asked them to try to present a solution using a different 
experimental number. Moreover, we invited them to try to compare the solutions for Problems 24 
and 25. The solution was written in modern terms and the expression “false position rule” was 
presented. Finally, the questions (inspired by Winicki, 2000) were posed to guide the discussion: 1) 
In modern terms, to which kind of equations do the Aha problems correspond? 2) Present a 
justification for the false position rule. 3) In the false position rule, does the result depend on the 
experimental number? 4) Does the false position rule work for all kinds of Aha problems? Why? 
5)Why do you think such a rule was invented? 6) Why is it anachronic to claim that the Egyptian 
“solved equations”? 

To conclude the historical part, we asked the teachers about simple false-position-rule rationale, that 
is, to explain why the method is valid. After a brief discussion, we presented a modern justification, 
using a linear function’s graphic in order to show the proportionality between the experimental 
number (false position) and the solution. The reflections on teaching stage was guided by a 
mathtask presenting a situation in which a 12-year-old boy that doesn’t know algebra yet solves 
Problem 25 by trial. His father wants to convince him that it is easier to solve the problem through 
the use of an equation. The boy tells the story to his teacher and asks her why does his dad insist on 
the equation. The participants were asked to explain how they would answer the boy, if they were 
his teacher. By the end of the task round, we had 5 different types of solutions for a linear equation: 
i) algebraic one, ii) using diagrams (fraction bars), iii) trial and error, iv) simple false position, and 
v) another one by trial presented by the boy (i.e., 3 solutions by trial). We invited the participants to 
compare these solutions. 

During the whole first task round, we tried to promote commognitive conflicts, since the discourse 
of the historical Egyptian source, the discourse of the solutions presented in the mathtasks are 
modelled by different metarules (Sfard, 2008; Kjeldsen & Petersen, 2014) and are (supposed to be) 
different from the teachers own’s discourses. This strategy aimed to stimulate the participants to 
reflect about the way they deal with their students’ different solutions and reasonings. 
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The first task round: what happened 

The first task round took a bit more than two sessions, guided by the first two authors, and with the 
participation of 12 teachers (four of which attended all of the three meetings). During the sessions, 
we repeatedly asked the participants about how they deal with different reasonings and solutions 
brought by their students. Almost all participants have long-term experience in teaching 
mathematics at public and private schools. The sessions were audio and video recorded. There were 
separated audio recordings for each small group of 3 or 4 teachers, that discussed each task. The 
individual written answers to the mathstasks and to the historical task were collected. After each 
session, the participants were asked to write individual reflective diaries, in which they recorded 
their impressions of the session. Those data will be analysed in a next stage of the doctoral research 
project. 

Impressions from the first activity’s round implementation 
In general, the participants engaged with the tasks and discussions conducted in the first task round. 
We could discuss the approaches to equations and algebra teaching they use in classroom. When 
asked about how they deal with unusual solutions brought by their students, they acknowledge that 
they recognize them, sometimes sharing them with the rest of the class. However, although we tried 
to relativize the supremacy of algebra over other approaches, their discourses suggest that their 
main goal is to develop students’ algebraic reasoning and writing. That is, even though they 
recognized some value on other approaches, they kept pursuing their goal, namely to lead students 
to understand that algebra makes solutions faster. For example, when we discussed solutions by 
trial, they repeatedly highlighted that if the numbers were bigger, they would have spent much more 
time, whilst algebraic solutions take the same amount of time regardless of how big the numbers 
are. None of them seemed to consider that experimenting with some examples could lead to an 
understanding of the problem, in such a way that testing all numbers would not be needed. One of 
the reasons for the teachers keep pursuing the algebra in classrooms might be the important role 
played by the algebra in the school syllabus in Brazil. 

One of the participants, who we will refer to by the pseudonym Ulisses (who were present in all 
sessions) caught our attention in two different ways. Firstly, he told us that he used Ancient 
Egyptian multiplication algorithm (which had been discussed in the task round) with his students. 
He reported that, as his students were facing difficulties with the standard multiplication algorithm, 
he decided to show the Ancient Egyptian method. The students understood it and claimed that it 
was easier. We remark that we did not make any suggestions for the participants to apply specific 
approaches in their classrooms, and Ulisses did so by his own initiative. This kind of attitude is 
relevant to our work, since this teacher allowed himself to experiment in his own classroom with 
historical practices discussed during the sessions. During the discussion about Problem 25’s 
solution, Ulisses once more surprised us: he thought of non algebraic solutions. Even though he 
wrote down the equation, he tried out different values. He noted that 10+5=15 and 12+6=18. 
Looking to 10+5=15, he noticed that 1 more was necessary, so he split 1 in three pieces 1/3, 1/3 and 
1/3, of which two should be with 10 and one with 5 – and he reached the solution. 

Arcavi and Isoda (2007, p. 125) posit that 
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the intention to nurture attentive listening by creating a gap between our method and the 
Egyptian had a slightly counterproductive effect for some: the symbolic method is so powerful 
and efficient why bother to even consider a complicated alternative so difficult to understand. 

Contrary to this, in our case, the teachers considered all methods – of simple false position and the 
ones that were used in the mathtasks – correct and valid. 

Final Remarks 
The continuation of our field work included two more task rounds. The second one explores 
Euclid’s approach to areas without numbers (quadratures) and the role of the Pythagorean 
Theorem’s in Euclidian tradition. The aim is to problematize the teaching of areas, which is mainly 
based on formulas in Brazil. The third task round is designed around the development of the 
concept of function, and some of its historical definitions, aiming to foster the reflection of image of 
mathematics as an immutable science. 

The episodes reported above indicate that our proposal combining mathtasks and historical tasks 
seems to be a promising way to problematize teachers’ understandings of mathematical knowledge 
production, in particular their students’ mathematical knowledge production. When data analysis 
from our field work is completed, we will have more evidence to deepen the understanding of our 
proposal’s potential. Nevertheless, the episodes from the first task round indicate that at least this 
group have been receptive to the use of the history of mathematics. We highlight that Ulisses 
spontaneously tried the Egyptian multiplication out in one of his classrooms. This indicates that he 
problematized, at least to some extent, not only his own and his students’ mathematical knowledge 
productions, but also his teaching practices. 
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Thales theorem may have different functionalities when using distances, algebraic 
measurements, or vectors. In addition to that, the utilization of a figure formed of secant lines 
and parallels or a figure relating to two similar triangles.  

The aim of this work is to categorize different formulations of Thales theorem and explain 
why in teaching we must know the appropriate mathematical environment related to each 
Thales Theorem statement. The analysis of many geometry books in history makes it possible 
to distinguish two points of view according to different forms, demonstrations and 
applications of this concept.  
The Euclidean point of view 
The general statement of Thales theorem shows us the idea to move from one triangle to 
another, moreover, the link with similar triangles (immediately following it and generally 
with similar figures) is a characteristic of this point of view. 

Proposal 2 of Book VI states that: 

“If a straight line be drawn parallel to one on  

 the sides of a triangle, it will cut the sides of the  

 triangle proportionally; and, if the sides of a 

 triangle be cut proportionally, the line joining the  

points of section will be parallel to the remaining side of the triangle". (Heath, 1956). 

The demonstration is based on the surfaces method; using equalities of triangles cases and 
making cuts and re-compositions in order to compare surfaces. 

The point of view of transformations 
This point of view is characterized by the disappearance of the link between Thales theorem 
and similar triangles, and, a passage from one line to another by projection appears in a figure 
of type: "parallels and secants". 

In the seventeenth century, Euclidean treaty did not seem to satisfy some researchers. In fact, 
the latter prefer not to prove a result on lines using surfaces. In Thales theorem proof, Arnold 
rejects the detour by the surfaces made by Euclid. 

For Arnold (1667), the statement of Thales theorem uses several parallels cut by secants: 

"If several lines, being differently inclined in the same parallel space, are all cut by parallel 

 lines to this space, they are cut proportionally" 

 
Figure 1 : figure of Euclid 
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When applying the Thales theorem, we find essentially the search of 4th proportional, and the 
division of a segment with a given ratio. 

This type of statement is also found in Hadamard (1928) where the study of figures marks the 
appearance of transformations that coexist with traditional objects of geometry. 

The homothety, introduced with distances, consolidates for Hadamard dynamic aspect of 
geometric figures. It also provides the possibility to use similarity of polygons by 
decomposing them into triangles. 

Note that starting from the 20th century, new conceptions of geometry appeared and benefit 
from linear algebra. The traditional methods of Euclid and his successors were eventually set 
aside. 

With Choquet (1964), Dieudonné (1964) and other renowned researchers, geometry is 
evolving in each century. For Choquet, Thales theorem allows proving the relation
a a a(u+ v) = u+ v , in order to study the linearity of an oblique projection. 

Conclusion 
In Thales theorem proof, Euclid uses surfaces method to avoid problems of irrational 
numbers. In majority of perused publications, Thales theorem proofs often use 
commensurable segments, thus, the transition to immeasurable segments is admitted.  

In teaching, it is important for instructors to conceive the real line without holes. We also 
think that the two points of view of Thales theorem have their efficacy and both should have 
enough time to reach the students. We recommend set each one of them in the appropriate 
mathematical environment that can result in a better understanding of geometric themes 
introduced in class. 
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         Figure 2 : Figure of Arnold 
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The focus of our master’s thesis in Mathematics Education was on how 4th grade students (10-11 
years old) connect working with ICT and reading original mathematical sources in ways that 
support the development of a competency, mathemacy, “which may help students to reinterpret 
their reality and to pursue a different reality” (Skovsmose & Nielsen, 1996, p. 1263). Our study 
indicated that ICT and original sources complement each other in terms of the students’ learning 
activities. The students’ experimental activities in ICT supported their understanding of the original 
source. Their work with the original source supported a development of a mathematical 
consciousness and sharpened their awareness of hidden mathematics (Jankvist & Toldbod, 2007) 
and black box situations (Buchberger, 2002), which means that the students didn’t just accept the 
results of a computer – they also questioned the mathematics behind when using ICT. Furthermore, 
the students’ awareness of differences between working with contemporary ICT and original 
sources seemed to increase a balanced and critical stance towards mathematics as a universally 
given thing – making them see both mathematics and ICT as something that develops and changes 
over time. 

Our research design was inspired by Skovsmose’s (2006) description of critical research based on 
three situations: The current, the imagined and the arranged, as well as three processes: 
Pedagogical imagination, pedagogical experimentation and explorative analysis. The three 
situations and processes were used in our planning, implementation and analysis of the 3 x 90 
minutes teaching session we conducted. The students were asked to carry out a final individual 
evaluation. We performed three types of data collection: 1) Focus group interviews prior to the first 
teaching session, 2) Teaching session observations, and 3) students’ products from each teaching 
session. Data category 2 and 3 we regarded as pedagogical experimentation data helping us describe 
the current situation. We used this situation and our pedagogical imagination to prepare the next 
imagined situation. Based on the collected data we performed an explorative analysis and planned 
the next arranged situation and so on. The first current situation was based on data type 1. In our 
planning and analyses of the learning activities we were among other inspired by Jankvist’s (2009) 
framework concerning the use of history in mathematical education as a goal (meta-issues) or as a 
tool (in-issues). Our study focused on history both as a goal and as a tool. We extended Jankvist’s 
categorization also to deal with the students’ work with ICT. The mathematical content was kept 
relatively simple letting the students work with only Euclid’s Proposition 1, book I, To construct an 
equilateral triangle on a given finite straight line and equilateral triangles in GeoGebra. For the 
meta-issues we focused especially on hidden mathematics in software (Jankvist & Toldbod, 2007) 
and the fact that mathematics develops over time (Jankvist, 2009). Inspired by Jankvist and 
Kjeldsen (2011) and Kjeldsen and Blomhøj (2012), we used Sfard’s (2008) theory of discourse and 
commognitive conflicts. We considered Euclid’s proposition 1, book I, and GeoGebra as two 
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different discourses. Within these two discourses we saw meta-issues and in-issues as two different 
discourses. During the teaching sessions, we made a common ‘discourse-poster’ on which we 
gathered the students’ statements they agreed to during the classroom discussions. The students 
worked with the construction part and the proof part in relation to Euclid’s Proposition 1, book I, 
and equilateral triangles in GeoGebra. This gave rise to common discussions about the difference 
between proof; in terms of Euclid’s proposition and in terms of working with GeoGebra. One 
student for example compared Euclid’s proof to a game; he found one circle, then the next and so 
on. The students were asked to construct as many equilateral triangles as possible in GeoGebra and 
formulate their own proofs for these. The outcome of this assignment was what they called three 
different types of ‘proofs’ for equilateral triangles: Measuring, the computer outcome as a proof in 
itself and the Euclidian way. There were different opinions among the students about which type of 
‘proof’ they found most credible, which we regarded as an in-issue discussion; understandings of 
different kinds of proofs within the two discourses were to some extent generating commognitive 
conflicts. Furthermore, the students discussed whether the computer always tells the truth and if 
mathematic will change in the future as well – a meta-issue discussion based on their experiences 
by working within the two different discourses. In addition to this, we arranged special learning 
activities, which focused on the meta-issues, for example asking students to write and discuss pros 
and cons of using Euclid’s proposition and the use of GeoGebra in mathematical education. Several 
students found that working with both Euclid’s proposition and GeoGebra was a good idea and had 
increased their learning. The students became aware of that computer outcome may contain a lot of 
hidden mathematics. Hopefully, this will support their reflexive use of ICT and also later in life 
qualify their critical stance towards the outcome of mathematical modelling.  
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The present paper considers an important cultural treasure in the early Swedish history of 
mathematics education. After the reformation in the 16th century it became possible to study 
mathematics in Sweden. The first printed textbook in Swedish on arithmetic appeared in 1614, but 
already in 1601, the oldest known manuscript in Swedish on arithmetic was written by Hans 
Larsson Rizanesander. In this paper we investigate Rizanesander’s manuscript in its historical 
context. 
Keywords: Mathematics history, history of education, arithmetic, mathematics education.  

Introduction  
Swedish school mathematics has a history of about four centuries. During recent years there has 
been an increased research interest in the history of Swedish mathematics education (see, for 
example, Hatami (2007), Lundin (2008), Pejlare (2017), and Prytz (2007)). However, not much 
research has been conducted on the early history of Swedish mathematics education. The first 
printed textbook on arithmetic in Swedish was written by Aegidius Aurelius (c.1580–1648) in 1614 
(Aurelius & Johansson, 1994). However, the oldest known manuscript in Swedish of a mathematics 
textbook was written in 1601 by Hans Larsson Rizanesander (1574–1646); this manuscript is the 
focus of the present paper. The manuscript, entitled Recknekonsten (The art of arithmetic), 
constitutes a significant part of the history of Swedish mathematics education. There seems to be a 
pedagogical idea behind the structure of the text, and it contains numerous examples with solutions. 
Even though it was never printed, and it is not known to what extent it was used, it can give us 
insights into the early history of Swedish mathematics education. Hatami and Schéele have 
interpreted the handwritten manuscript, and in 2018 it was, after more than 400 years, finally 
printed (Rizanesander, 2018). Hultman (1868–1871, 1874) wrote on the Swedish history of 
arithmetic, but he was probably not aware of Rizanesander’s manuscript, since it was not 
mentioned. In his dissertation on the Swedish history of mathematics up to 1679, Dahlin (1875) 
summarized parts of Rizanesander’s manuscript, but he did not consider it in the context of the 
Swedish history of mathematics education. The present paper is part of the outcome from a larger 
project aiming to contribute to the understanding of the early history of mathematics education in 
Sweden. The aim of this paper is to investigate Rizanesander’s manuscript as well as possible 
influence on him by other authors. We conduct a content analysis on relevant parts of the 
manuscript and perform comparisons to other textbooks on arithmetic that he may have had access 
to. In order to better understand the context in which Rizanesander wrote his manuscript, we will 
first give an overview of the Swedish history of mathematics education (13th to 17th century).  

Swedish history of mathematics education  
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To better understand the cultural value of Rizanesander’s manuscript and its importance for 
mathematics education, we will first give a summary of the history of Swedish mathematics 
education until the 17th century. The Swedish education has its origin in the 13th century, when 
education was committed at cathedral schools, convent schools and provincial schools. Through the 
Fourth Council of the Lateran, convoked by Pope Innocentius III in 1215, each cathedral was 
committed to have a school where future priests could get free education. In 1237 the Dominican 
Order established the first Swedish convent school in Åbo. The convent schools were oriented 
towards theology, but gave a higher education than the cathedral schools. In particular, those 
belonging to the higher states had the possibility to get educated.  However, many nobles on the 
continent could not read or write and possibly it was the same in Sweden. During the reformation in 
the 16th century the convent schools were closed and the opportunity of higher education 
disappeared. King Gustav Vasa (1496–1560) took over the management of the cathedral schools 
and provincial schools, but there was no particular interest of education among the people. Not until 
1842 there was a Royal decision to implement a public-school system in Sweden (Lundgren, 2015). 

The oldest university in the Nordic countries is Uppsala University, which was founded in 1477, 
and it was the only university in Sweden until King Gustav II Adolf in 1632 founded the university 
of Dorpat, which today is the University of Tartu in Estonia. During the Reformation there was very 
little activity at Uppsala University, but during the synod of the Lutheran Church of Sweden in 
1593 the Duke Charles (later King Charles IX) gave new privileges to the university, which 
reopened in 1595 (Pejlare & Rodhe, 2016). Until the reformation the traces of mathematical 
knowledge in Sweden are few; only at the end of the 13th century the Arabic numerals became 
known (Dahlin, 1875). At the beginning of the 14th century there probably were a few that were 
skilled in using the Arabic numerals in simple calculations, but at the beginning of the 16th century 
there were most likely very few Swedes who could perform calculations except with finger 
calculations or with an abacus.  

The first Swede mentioned to own mathematical literature is the canon Hemming from Uppsala, 
who testamented his mathematics books to a relative when he died in 1299. Among these books we 
find those written by two of the most well-known mathematicians of that time: Campanus of 
Novara (c. 1220–1296) and Johannes de Sacrobosco (John of Halifax, c.1195–1256) (Dahlin, 
1875). The oldest Swedish mathematical work known is a short overview of the calendar with the 
title Tabula cerei paschalis, written in Uppsala in 1344. The first Swedish mathematician 
mentioned to have been relatively knowledgeable of mathematics and astronomy is King Charles 
VIII (c. 1408–1470), but some details of what kind of knowledge he had is not known.  

When Uppsala University was given new privileges in 1593, Ericus Jacobi Skinnerus (deceased 
1597), became the first Swedish professor of mathematics (Rodhe, 2002). No mathematical works 
by Skinnerus have been encountered.  Nevertheless, he was an avid supporter of the French 
philosopher Petrus Ramus’ (1515–1572) controversial ideas (Rodhe, 2002): Ramus questioned the 
Aristotelian theories that were then dominating in the academic world. Even if we cannot see any 
clear traces of mathematical activity during the time of Skinnerus, his interest of ramism should 
have provided a basis for a positive development of education.  

The first Swedish professor of mathematics whose activity we know somewhat well is Laurentius 
Paulinus Gothus (1565–1646). He was a professor at Uppsala University from 1594 to 1601 where 
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he lectured on arithmetic, algebra, logic, geometry and philosophy (Dahlin, 1875). He also studied 
the mathematical works by Ramus, and in his spirit Paulinus struggled for the Aristotelian theories 
to be removed from school. Ramus preached on the usefulness of science, which for mathematics 
implies the search for applications to other subjects. The followers of Ramism in particular fought 
the mysterious and superstitious features found in the Aristotelian scholastics (Rodhe, 2002). In 
1637 Paulinus became arch bishop and promulgated a program for students of theology: the demand 
for becoming a priest would be to have good knowledge of arithmetic, Euclid’s Elements, Ramus’ 
physics and in astronomy, in particular the doctrina sphærica and the calendar (Dahlin, 1875).  

During the end of the 16th century it became possible to teach mathematics at the cathedral schools 
as long as the teaching did not have a negative influence on other subjects. In the curricula from 
1611, Skolordningen 1611, we can read that in school the children should be educated in 
Buscherus’ arithmetic and in “Sphæra Johannis de Sacro busto” with the condition that no other 
subjects would be neglected (Dahlin, 1875). Buscherus, or Heizo Buscher (1564–1598), was a 
German philosopher. His book on arithmetic, Arithmeticæ logica methodo conscriptæ libri duo 
(1590), was an important textbook in Sweden during the early 17th century (Vanäs, 1955) and was 
later reedited by the Swedish bishop Johannes Bothvidi (1575–1635). Johannis de Sacro busto most 
likely refers to Johannes de Sacrobosco, who wrote a book on astronomy, Libellus de sphaera, that 
was widely used at universities during the middle ages.  

The first known mathematics book on arithmetic in Sweden is a handwritten manuscript in Latin on 
the rule of three, by Peder Månsson (c.1465–1534), written in the early 16th century (Hultman 
1870). In 1609 Olof Bures’ (1578–1655) book on arithmetic, Arithmetica instrumentalis abacus, 
was printed. The first printed textbook on arithmetic in Swedish is Aegidius Aurelius’ Arithmetica 
eller Räknebook, medh heele och brutne Taal (Arithmetica or arithmetic textbook, with integers and 
fractions), which was published in eleven editions between 1614 and 1705. But already in 1601, the 
first Swedish textbook on arithmetic was written: Recknekonsten by Hans Larsson Rizanesander. It 
is written in Swedish at a time when education was reserved for privileged boys with knowledge of 
Latin, and when mathematics education still was not generally in question. 

Rizanesander and Recknekonsten  
Not much is known about Hans Larsson Rizanesander (1574–1646). He studied at Vasa Akademi in 
Gävle – a school that had been founded by King Gustav Vasa in 1557 – and became a judge in 
Gästrikland, a province north of Uppsala, in 1605. Originally, he came from Rotskär in Älvkarleby. 
The linguistic origin of the name Rizanesander is a Greek translation of the Swedish word Rot-skär-
man (in English: Root-skerry-man), i.e., Rhiza-nes-ander.  

Rizanesander wrote his manuscript in Tallinn, which during this time was a dominion of Sweden 
called Räffle or Reval. Today the manuscript is kept at the university library Carolina Rediviva at 
Uppsala University; to our knowledge it only exists in one copy. The manuscript is dated the 21st of 
August 1601. It does not have a title, but since the word Recknekonsten (The art of arithmetic) is 
used in the dedication this is how we will refer to the book. The manuscript consists of 147 pages, 
including twelve pages that may have been written by Rizanesander’s son Lars Hansson. It is 
divided into 20 chapters: The first two chapters contain definitions and explanations of the hindu-
arabic positional notation (4 pages), as well as a description of the abacus (4 pages). The following 
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four chapters deal with addition (11 pages), subtraction (7 pages), multiplication (10 pages) and 
division (12 pages), both on the abacus and with numerals. Chapters VII and VIII deal with the 
greatest common divisor (1 page) and the least common multiple (4 pages). Chapters IX to XIII 
deal with fractions (3 pages) and the four basic mathematical operations with fractions (5, 4, 3, and 
4 pages, respectively). Chapter XIV deals with arithmetic and geometric series (10 pages), and 
chapters XV and XVI deal with the rule of three (14 pages) and reversed rule of three (2 pages). 
The last four chapters deal with general counting (3 pages), square roots and cubic roots (19 pages), 
regula cecis (also called regula virginum, 7 pages), and the rule of false position (8 pages).   

The manuscript is dedicated (4 pages) to Duke John (1589–1618), son of King John III of Sweden. 
At this time Duke John was 12 years old. In the introduction Rizanesander claims that the art of 
arithmetic is indeed a glorious and useful art, since God herself used arithmetic. He also refers to 
Plato, who demanded that kings and princes should have the acquirement of the art of arithmetic. At 
the end of the introduction Rizanesander asks Duke John for financial support in order to have the 
manuscript printed. It is not known if there was any contact between Rizanesander and Duke John, 
but apparently Rizanesander never got any funding, since the manuscript was not printed. It is not 
known if Duke John ever mastered the art of arithmetic. However, he never became king; twice he 
gave up the throne and he died only 28 years old.   

Recknekonsten or The Art of Arithmetic 
Rizanesander begins the first chapter of Recknekonsten by stating that “The art of arithmetic is a 
knowledge of calculating well”1. He uses nine significant digits (1–9) and one insignificant (0) 
called Nulla or Ziphra.2 The insignificant is explained to “do nothing by itself”3 but it fills up the 
space where there is no significant digit. This means that the zero only has a meaning as an empty 
place indicator in the place value number system; the zero does not yet have a meaning in itself. 
These ten significant and insignificant digits are explained to be “the wood of the art of arithmetic 
of which it is built in the same way as a house is built by timber, stones, lime, clay and sand”4. It is 
further explained how numbers should be pronounced. Rizanesander does not have a word for 
numbers greater than 1000. To pronounce a great number, he uses a dot on each thousand to 
indicate how many multiples of thousand the digits represent. The example he gives, 
13̇456̇798̇654̇321̇062̇489, should be pronounced as follows:  

Thirteen thousand, thousand thousand, thousand thousand times thousand 
Four hundred fiftysix thousand thousand thousand, thousand times thousand 
[…] 
four hundred eighty nine5 

                                                 
1 ”Recknekonsten ähr een lärdom till att wäll Reckna” (Rizanesander, 1601, p. 3 r). 
2 In modern Swedish the word for zero is noll and the word for numerical digit is siffra. 
3 “förmå inthett vthi sig sielff” (ibid, p. 3 r). 
4 ”wirkin till Reckne konsten af hwilken hon warder vpbÿgd medh Lijka såsom till itt hus att vpbyggia hörer Stocker, 
Stenar, Kalck, Leer och Sandh” (ibid, p. 3 r). 
5 Thretton tusendh, tusend tusend, tusend tusend gånger tusend fyre hundrade femtiyosex tusend tusend tusend, tusend 
gånger tusend […] fyre hundrade ottotiye niyo (ibid, p. 4 v).  
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This method is not very efficient, but any great number can be pronounced with it. In Christopher 
Clavius’ (1537–1612) Epitome arithmeticæ practicæ from 1583 great numbers were also marked 
with dots and described to be pronounced in the same way. 

After presenting numbers and how to pronounce them, Rizanesander continues to give a description 
of the abacus (see Figure 1) and the meaning of the lines and their spacing on it. A coin on the lines 
represents, from below, a unit, a tenth, a hundredth and so on. A coin in the spaces between the 
lines represents five, fifty, five hundred, and so on. His abacus resembles a traditional abacus but 
with the supplement that a coin below the bottom line represents half a unit. This is interesting, 
considering that Rizanesander has not yet introduced fractions. 

 
Figure 1: Rizanesander’s abacus representing the number 268,957,129 (Rizanesander, 1601, p. 6 r). 

Rizanesander proceeds through the following four chapters by explaining the four basic operations 
addition, subtraction, multiplication and division, both with the abacus, and with algorithms. The 
abacus will only be used in these chapters; in later chapters numerical methods, only, will be 
considered. The chapters on the four basic operations with numbers include many examples. Most 
of the examples concern money, but there are also some numerical examples without a context 
where it is explained how to carry through the algorithms.  

The algorithm for the addition of numbers is the same as the standard addition algorithm that we 
use today, starting from the right. However, when Rizanesander describes subtraction with 
numbers, he starts the algorithm from the left, which forces him at each step to look at the position 
to the right in order to decide whether he has to decompose and recompose the numbers or not. For 
example: 

One asks how many years there has been since we wrote 1574 and now write 1601? Reliquus 27. 
Put   1 6 0 1

1 5 7 4. Say 1 from 1 is nothing left. Draw a line through them both. Say again 5 from 6 

Reliquus is 1, which should be written above. But the next number, 7 could not be taken from 0. 
Therefore, write under :| less than one is 0 |: and keep this. Draw a line through 6 and 5. Say 
again from 10 :| Since you had it in memory to do so |: Reliquus is 3. But write less that is 2 
above, the same reason as before, draw a line through 0 and 7, and again keep one in memory; 
Thereafter take four from 11 Reliquus is 7 which can complete be written above. Draw a line 

through 1 and 4 and now the example is thus:  
       2 7

 1 6 0 1 
1 5 7 4

.6 

                                                 
6 Een frågar huru månge åhr, ähre sedan thz skreffz 1574 och nu skriffwes 1601? Reliquus 27. Sätt såledhes. 1 6 0 1

1 5 7 4. 
Sägh 1 ifrå 1 ähr inthz öffwer. Dragh så en linie igenom them bådhen. Sägh åther 5 ifrå 6 Reliquus ähr 1, hwilkett skulle 
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Ramus used the same algorithm for subtraction in his Arithmeticæ libri from 1555, but Clavius in 
1583 used the same subtraction algorithm as we do today. 

Chapter V deals with multiplication, and this chapter Rizanesander begins by presenting the 
Pythagorean table (see Figure 2), which he states has to be learned by heart.  

 
Figure 2: Rizanesander’s table of multiplication (Rizanesander, 1601, p. 16 r). 

Interesting is that Rizanesander uses a triangular table, where the commutative law implicitly has to 
be considered. This means that from the table of multiplication with 2 to the table of multiplication 
with 9 the length of the tables successively gets shorter. Also, other mathematicians active during 
the 17th and first half of the 18th century, such as for example Aurelius, but also Nils Buddaeus 
(1595–1653), Nicolaus Petri Agrelius (c. 1625–1681) and Anders Celsius (1701–1744), have taken 
the commutative law into account when they designed their multiplication tables, which makes the 
table triangular and compact. However, Swedish mathematics textbook authors during the end of 
the 18th century, such as Nils Petter Beckmarck (1753–1815), Olof Hansson Forsell (1762–1853) 
and Per Anton Zweigbergk (1811–1862) used quadratic multiplication tables and do not focus on 
the commutative law. Clavius (1583) also used a quadratic multiplication table, but Ramus (1555) 
only presented a multiplication algorithm and not a multiplication table. 

Rizanesander refers to the Pythagorean table when he describes division with numbers. The division 
algorithm with numbers he uses is a scratch method, or divisione per galea, which was a common 
method in the middle ages (Vanäs, 1955). Characteristic for this method is that the divisor is written 
under the dividend and is moved one position for every new quotient digit, and the quotient is 
written to the right. As the computation is performed, the digits belonging to the same number does 
not have to be written next to each other on the same line and the remainder is written above the 
dividend. Also, the partial products are computed from the left to the right and are subtracted as 
they are computed. 

After the chapters on the four basic mathematical operations, Rizanesander proceeds with finding 
the greatest common divisor, and the least common multiple, of two numbers. He needs this in his 
rendering of fractions and the four basic mathematical operations with fractions in the following 
chapters. Compared to the presentation of the four basic operations with numbers, the presentation 
of the four basic operations with fractions is different. Both presentations contain numerous 
                                                                                                                                                                  
skriffwas offwanföre. Men her till nest föliande taal, icke kunna 7 tages vthaf 0. Derföre skriff ret vnnder :| mindre ähn 
eett ähr 0 |: och beholtt thz. Dragh een linie igenom 6 och 5. Sägh åther ifrå 10 :| Ty war thu i sinnett hadhe gör thz så |: 
Reliquus ähr 3. Men skriff i mindre som ähr 2 offwanföre, för förne orsackz skuldh; drag een linie igenom 0. Och 7, och 
beholtt åther eet i sinnett; Tagh sidhan fyra ifrå 11 Reliquus ähr 7 hwilken kan fulkommeligen schriffwas offwan före. 

Dragh och een Linie igenom 1 och 4 och ståår nu hele Exemplett såledhes. 
       2 7
 1 6 0 1 
1 5 7 4

 (Rizanesander, 1601, p. 14 v–15 r). 
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examples, but when the examples with numbers often are in a context there is, with only one 
exception (unit weights), no context in the examples with fractions. Also, there is no explanation of 
how the fractions should be interpreted: focus lies instead on how the algorithm should be carried 
through. However, in the following chapter XIV on arithmetic and geometric series we find 
examples where fractions are used in a context. One example of an arithmetic series is the 
following: 

I would like to know how many times the bell rang since it rang at one during the night until it 
rang at 12 during the day.7  

Many of the examples use a context with money. The money used in Sweden at this time was 
thaler, mark, öre and penningar (pg). The thaler was an international silver coin used throughout 
Europe. One thaler is four mark, one mark is eight öre, and one öre is 24 penningar. One example of 
a geometric series in the context of money, which resembles an example we also find in Buscherus’ 
Arithmeticæ (1590), is the following: 

One buys a horse that is shoed with 32 nails and give 1 pg for the first nail, 2 pg for the second 
nail, 4 pg for the third nail and 8 for the fourth and so on doubling. How expensive is the horse? 
Answer: 4̇294̇967̇295 pg, that is 5̇592̇405 thaler 1 mark 6 öre 19 pg. That was an expensive 
horse.8  

This was indeed an expensive horse. But Rizanesander has actually made an arithmetical mistake 
when he changes his money: the correct answer should be 5,592,405 thaler, 1 mark, 2 öre and 15 
penningar.  

Concluding remarks 
Being the oldest mathematics textbook in Swedish, Rizanesander’s manuscript is an important 
source through which we can learn more on the early Swedish history of mathematics education. 
The manuscript includes a rich repertoire of examples, giving students the possibility to master the 
art of arithmetic. However, explanations to, for example, why certain algorithms work, are not 
given. Regarding the algorithms, we see some similarities with both Ramus’ and Clavius’ books, 
indicating that Rizanesander was influenced by them. Also, it is indicated that he was influenced by 
Buscherus’ book. We suggest that further investigations of Rizanesander’s manuscript should be 
done; in particular it would be valuable to consider not only the algorithms, but also the 
contextualization of the examples in order to further investigate in what way he was influenced by 
Ramus, Clavius and Buscherus.   
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I Spy with my Little Eye – Teachers’ linkages about historical snippets 
in textbooks 

Sebastian Schorcht 

Justus-Liebig-University Giessen, Germany; sebastian.schorcht@math.uni-giessen.de 

The aim of this explorative survey is to identify teachers’ beliefs about tasks concerning the history 
of mathematics. This poster proposal will give an insightful view on a pilot study on teachers’ 
beliefs about historical snippets in textbooks. First results of these pilot study can be discussed at 
CERME11 and may help to develop the main study. 

Keywords: History of mathematics, beliefs, textbook. 

Research topic 
Textbooks play a crucial role in most mathematical lessons (Hiebert et al., 2003). Interactions 
between teachers and textbooks are an active process of re-sourcing the resource (Adler, 2000, p. 
207) and have an impact on mathematical lessons (Brown, 2009). If we consider that tasks 
concerning the history of mathematics are included in textbooks and that teachers use their 
pedagogical design capacity to interact with these tasks, the following research questions are 
formed: Which connotations do the teachers have over these textbooks’ tasks? Do teachers identify 
the same benefits on history of mathematics in education like researchers do? 

Theoretical framework 
The presented pilot study uses historical snippets to stimulate prospective teachers’ linkages, due to 
the fact that historical snippets are the most founded tasks in German textbooks (Schorcht, 2018). 
Tzanakis and Arcavi shaped the concept of “historical snippets” (Tzanakis & Arcavi, 2002, p. 214): 
A Historical snippet informs students or stimulates students’ activity. The detailedness ranges from 
simple dates into specifics about the history of mathematics. The possible content of a historical 
snippet could be, for example, biographical dates, photographs, introduction into topics, etc.  

The international overview shows only small variations on types of tasks over different countries. 
For example, Xenofontos and Papadopoulos (2015) identify two types of tasks in Greek and Cyprus 
textbooks: those which inform students about the history of mathematics and those which lead to 
students’ mathematical activity. In German textbooks Schorcht (2018) identifies similar types of 
tasks. In comparison with the results of the studies, the presented survey determines three types of 
tasks: informative type, acting type and personalization type. 

Method and Sample 
The pilot study shows participants three historical snippets in an online instrument1. These tasks are 
selected to represent one of the three types of tasks: one informative type, one acting type, and one 
personalization type. The topics are Pounds and Hundredweights, Egyptian Fractions, and Sofia 
                                                 
1 For a closer look into the online instrument, use the following link: https://surveys.hrz.uni-
giessen.de/limesurvey/index.php/794939?lang=de (online available until CERME11 and in German). 
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Kowalewskaja’s biography. All tasks are from German textbooks of grade 3, 4 and 6. The 
participants are German mathematics pre-service teachers studying for primary level at University 
of Giessen. During the online survey, the participants should name similarities of two tasks and 
describe a third task in a different way. For example, the first two tasks (Pounds and 
Hundredweights, Egyptian Fractions) deals with mathematics, the third task shows a biography of 
Sofia Kowalewskaja. In this way, pairs of attributes of tasks emerge by the participants (for 
example: “deals with mathematics” and “shows a biography”). Afterwards, the participants define 
their pairs of attributes (for example: “deals with mathematics” = “the task request students to do 
math”). This kind of method is named as Repertory grid method (Kelly, 1955). The outcome of this 
online instrument will be a table, where each task can be assigned to one or more attributes. These 
attributes allow an insight into teachers’ connotations about these tasks.  

Conclusion 
The poster will show some tables from participants and figures of the used tasks. The Repertory 
grid method may give an overview on teachers’ linkages about historical snippets. The results 
presented at CERME11 should initiate a discussion about the research questions and the developed 
pilot study. The hypothesis is, teachers didn’t realize the benefits of history of mathematics in 
education and therefore integrate historical snippets without any idea how they should exhaust the 
benefits for the students. 
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Exams in calculations/mathematics in Norway 1946–2017 – content 
and form 
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Mathematics has been a constant part of Norwegian primary schooling. This impression of 
constancy is misleading, however. In the period from 1946 to 2017, the subject ‘regning’ 
(calculations) had its name changed to mathematics and has gone through a long series of reforms. 
The goals of the subject have changed with each reform.  

Based on content analyses of a selection of school leaving exams, we will describe how the content 
of mathematics has changed over time. As the demands on pupils’ language have increased, so 
have the demands on their ability to use different tools and handle different task formats and 
information presented in different ways. In summary, the knowledge and skills that pupils need to 
complete the exams today are very different from the skills they needed in 1946.  

Keywords: Mathematics Education, history, exit examinations, language. 

Background 
Mathematics as a school subject has been evolving over time, and this development can be studied 
through the examination of curriculum documents, exams and other sources. In this paper, we will 
study the school subject in Norway through its exams. While this is interesting in itself, we also 
hope that this study may be built upon to study trends in different countries.  

In 1889, ‘folkeskolen’ (‘folk school’) was established by law in Norway. Pupils would enter school 
at age 7 and finish at age 14. There was a difference between the urban schools (byskoler) with 40 
weeks of schooling per year and the rural schools with mostly 12 weeks per year at the program’s 
inception (Thune, 2017). In 1890, the first ‘normal plan’ for folkeskolen was put forward; it was 
revised in 1922/25.1  

The law was again revised in 1936 (with new ‘normal plans’ in 1939). At this time, most children 
aged 7–14 did attend school. In 1959, a common law for both urban and rural areas was introduced, 
making schooling compulsory for everyone for 7 years. It even became possible to expand 
compulsory schooling to 9 years (this was to be decided locally). A new curriculum for the trials 
with 9-year schooling was published in 1960. By law, in 1969, school was extended to 9 years for 
everyone. It was extended to 10 years in 1997. New curriculum documents went into effect in 1974 
(M74), 1987 (M87), 1997 (L97) and again in 2006 (LK06) (Thune, 2017). The next curriculum 
document is expected to go into effect in 2020. 

The subject was called ‘regning’ (calculation) until 1959 but was renamed ‘matematikk’ 
(mathematics) in the curriculum documents from 1960 onwards. The different curricula had 

                                                 
1 The normal plan for rural areas was revised in 1922, the one for urban areas in 1925. 
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different focuses, but Table 1 suggests a clear trend: new subjects have regularly been included, but 
rarely have subjects been removed. The subject ‘datalære’ (computer technology) was first a subject 
on its own in the 1987 curriculum, and computer technology has remained part of the curriculum in 
some form (although not in the original form with the intention of working on algorithms). 
However, according to the preliminary versions of the 2020 curriculum, it seems that it will be 
coming back.  

 1939 1974 1987 1997 2006 

Numbers and calculation x x x x x 

Geometry x x x x x 

Measurement x x x x x 

Algebra and equations  x x x x 

Functions  x x x x 

Application: private economy  x x x x 

Problem solving   x x x 

Statistics   x x x 

Probability and combinatorics    x x 

IT (‘Datalære’)   x   

Table 1: Subjects in the curriculum documents 

Such a classification can never convey the full scope of the curriculum documents; there will be 
nuances in which parts of these subjects are included and how they are described. For instance, in 
the 1997 curriculum documents, the history of mathematics was explicitly included in the 
description of what pupils should learn, but not as a subject on its own. 

By 1939, the plan stressed the active pupil, in the sense that the pupils should ‘do as much 
independent work as possible’ (Mosvold, 2002, p. 12, our translation). This was adhered to in the 
1960 plan. In a temporary plan in 1971, this idea was gone, and the plan was based on the New 
Math and on teaching the correct definitions and rules. However, by 1974, heavy criticism led to the 
return to the concept of the active pupil, and most of the New Math ideas were removed (Mosvold, 
2002). Throughout the 1987, 1997 and 2006 documents, the focus on active pupils has remained 
important, even though the latest curriculum documents have been more concerned with teachers’ 
autonomy in choosing their own teaching methods. 

Theory and earlier research 
The development and implementation of curriculum happens on several levels: societal, 
institutional and instructional (Goodlad, 1979). The development of the exam in Norway is 
currently done on the institutional level by an ‘eksamensnemnd’ (‘exam committee’) appointed by 
the directorate of education. The exam and the results are important for the pupils, and the results 
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on the school level are published and influence the standing of the schools in the community. 
Exams play an important part in what pupils and teachers do – what is tested influences what is 
considered important (Au, 2007; Niss & Jensen, 2002; Wideen, O’Shea, Pye, & Ivany, 1997). 
Teachers also use earlier exams in their teaching (Andresen et al., 2017). Therefore, exams are an 
important object of study used to investigate the implementations of the curriculum over time. 

In an evaluation of the 2017 exam (Andresen et al., 2017), comparisons with the 2009 exam show 
that, even in such a short time, there are important developments in terms of the content tested and 
the language, illustrations, question formats and so on. 

Andresen et al. (2017) include a summary of international research on language traits that make 
mathematics tasks difficult to understand. These traits can exist on the word level (long words, 
infrequent words etc.), on the sentence level (for instance, long noun clauses) and on the text level 
(such as lack of connection between sentences). They can make tasks more difficult on their own or 
when combined with other traits, but difficult language can also be partially offset by helpful 
illustrations. 

Our research question is this: How has the content and form of primary school exams in 
calculations/mathematics in Norway changed in the period from 1946–2017? 

The choice of the particular period to study is governed by the availability of full sets of exams. We 
would like to stress that we do not study the difficulty of the exams, as the difficulty depends on the 
content of the education that has been presented. Neither will this article include an analysis of the 
contexts used in the tasks.  

Method 
To answer the research question, we performed content analysis of the selected exams. The analyses 
considered several different aspects of the exams: the subjects, the answer formats, the language 
and the illustrations. In the analyses of language, the same method and operationalization are used 
as in the evaluation of the 2017 exam (Andresen et al., 2017).2 This means that we analyse language 
features that are known to contribute to making understanding mathematics tasks more difficult: the 
number of words, long words (>6 letters), compound words and general academic words.3 In the 
analyses of illustrations, we are inspired by Van Den Heuvel-Panhuizen (2005) and the different 
roles illustrations can have, but we use a simpler categorization: illustrations that are necessary to 
solve the task, illustrations that are helpful and illustrations that are simply decorative. 

The choice of exams has been somewhat convenience-based, as not all exams are easily available in 
complete versions suitable for the different analyses we plan to do. Also, we have chosen exams 
from different time periods. For this paper, we include the exams from 1946, 1960, 1979, 1985, 
1995, 2006 and 2017. 

                                                 
2 Indeed, some of the results of the analyses of the 2017 exam have been used here directly. 

3 According to Academic Wordlist: http://www.tekstlab.uio.no:4000/ 
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The 1946 and 1960 exams were made locally, and the ones we include are from Oslo, the capital of 
Norway, for the entire period. The remainder of the exams are national. 

Year School Grade Hours 

1946 Oslo Folkeskole 7th 4h 

1960 Oslo Folkeskole 7th 4h 

1979 Grunnskolen 9th 5h 

1985 Grunnskolen 9th 5h 

1995 Grunnskolen 9th 5h 

2006 Grunnskolen 10th 5h 

2017 Grunnskolen 10th 5h 

Table 2: Exams chosen for analysis 

In some of the exams, there are tasks that not everyone is supposed to do in the same way. The 1946 
exam included one task that girls could choose not to do, as they had less teaching than boys. We 
have included that task in our analyses. The 1985 exam was in two parts: part 1 was to be done 
without a calculator, but part 2 came in two versions, one for use with a calculator and one without. 
We have analysed the version where the calculator was allowed. In 2006, there was a considerable 
number of tasks (62) of which pupils were supposed to choose only some (39). While we have 
analysed all 62 tasks in tables and graphs, here we include only numbers based on 39 tasks.4 In 
1960, 1979, 1995 and 2017, every pupil was supposed to do all the tasks included in the exam. It is 
an interesting finding on its own that the scope of choices has varied so much through the years. 

For most of the exams, it was not apparent whether all subtasks counted the same towards the 
result. Therefore, in these analyses, we use unweighted counts of the subtasks.  

Results and discussion 
The analysis of the content of the tasks is in accordance with the general goals of the curricula. 
While numbers and calculations were part of all sub-questions in the 1960 exam, today they 
comprise about half of the tasks. There appear to be two reasons for this: partly because new topics 
are included in the curriculum and partly because the tasks seem to be ‘purer’, in that there are more 
examples of tasks that test only one topic.  

                                                 
4 To be precise, we calculate the average of the numbers that would be right if the students always chose the first 
available option and the numbers if the students always chose the last available option. 
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Figure 1: Percentage of tasks testing different topics, 1946–2017 

In addition, the answer formats have also become more diverse. In 1946 and in 1960, all exam tasks 
were answered with a short calculation and an answer (called ‘open’ here). In 2017, 24% of the 
tasks were multiple-choice items. In addition, some tasks are to be answered using a spreadsheet, 
some using a graphing program (Geogebra, for instance) and some (17%) were to be answered with 
the answer only. 

 
Figure 2: Answer formats in exams 
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The tools that pupils have available and are supposed to master have changed through the years. In 
1946, the pupils probably had no other tools than pen or pencil and paper. In 2017, pupils are 
supposed to use graphing software (such as Geogebra) and spreadsheets in addition to more 
traditional tools, such as calculators, compasses and rulers. Today, computer algebra systems (CAS) 
are also allowed. 

Table 3 shows the number of sentences and the number of words in the exams. The amount of 
language has varied, with a decrease from 1946 to 1960. However, the main tendency is that the 
amount of language has been increasing since 1960 and that it was higher in 2017 than in any other 
year in our sample. 

 1946 1960 1979 1985 1995 2006 2017 

Number of sentences 95 62 63 113 143 111 158 

Number of words 756 464 456 896 945 924 1240 

Table 3: Number of sentences and words in the exams 

In this table, the number of sentences and words that the pupils in 2006 were exposed to is 
understated. If we suppose that many pupils read all 62 tasks in order to choose which 39 to do, 
they would have to read 164 sentences with a total of 1,434 words, making the 2006 exam the most 
voluminous of all of these exams. Additionally, there was a 539-word information booklet which 
the pupils were supposed to have read in advance of the test. 

More challenging than simply evaluating the number of words is trying to say something concrete 
about how the language has changed. In analyses of language traits that make tasks difficult to read, 
long words, compound words and general academic words are of interest. 

 
Figure 3: The ratio of long words, compound words and general academic words in exams 
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words. The general academic words are noteworthy – examples of these are ‘describe’, ‘function’, 
‘example’ and ‘explanation’. While pupils in 1946 were mostly asked to do something (calculate, 
usually), in 2017 they were asked to compare, describe and explain, which may be more 
demanding.  

In addition to pupils having to deal with more tools and a more academic language, the exams are 
also visually different: there is a large number of illustrations in modern tasks. We look at which 
illustrations are necessary to solve the task, which are helpful, and which are only decorative. 

 1946 1960 1979 1985 1995 2006 2017 

Necessary 0 0 2 (2) 4 (3) 8 (8) 14 (13) 17 (15) 

Helpful 0 0 2 (1) 0 0 3 7 (1) 

Decorative 0 0 0 0 0 10 9 

Table 4: Illustrations in exams: necessary, helpful or decorative. In parenthesis are the numbers of 
illustrations that are explicitly mentioned in the text of the task 

Table 4 shows that, in our material, illustrations were not included until 1979, and at that time only 
as illustrations that were necessary or helpful to solve the task. In the 21st century, there have also 
been more illustrations that are simply decorative, and even illustrations that are necessary to solve 
the task are not necessarily mentioned explicitly in the text. Even though illustrations can make the 
tasks easier to understand, at the same time, they make more demands on the pupils – in 2017 there 
were 33 illustrations, and for each, the pupils had to decide if they needed to use them to solve the 
tasks. 

While it is important to consider that the 1946 and 1960 exams were for 14-year-olds, while the rest 
of the tests are for 16-year-olds, most of the development noted seems to have been independent of 
that change. 

Conclusion 
The overall picture is complex. Thematically, mathematics as a subject has become more diverse. 
While the exams in ‘folkeskolen’ consisted mainly of calculations, often involving measuring units 
and everyday economics, today they involve more topics. However, at the same time, the 
connections among different topics seem to be included less often – fewer tasks now include more 
subjects at once. 

More tasks are multiple-choice, making it possible to get through more tasks in the same amount of 
time. Also, there is a need for speed because in the five hours allotted, pupils must demonstrate their 
skills with more tools than previously, including spreadsheet and graphing software and CAS.  

The demands on the pupils’ language skills have also increased. The number of words has 
increased, and the proportion of long words and general academic words has increased as well. 
There are far more illustrations than before, and the illustrations serve several different functions.  

Consequently, although we cannot say whether the difficulty level of the mathematics has increased 
or decreased, the complexity of the exams – a greater variety of topics, answer formats, tools and 
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greater language difficulty – means that there are many more factors that pupils must deal with than 
previously. At the same time, the number of questions has increased substantially, meaning that the 
students have far less time to consider each sub-question while handling the different complexities. 
Thus, speed is implicitly seen as an important value in mathematics, and while this is rarely 
questioned by teachers, it is often questioned by mathematics education researchers. 

In conclusion, such an analysis of exams may give a clear picture of the development of 
mathematics as a school subject which can complement the results of curriculum analyses. To the 
extent that exams do not develop in the same direction as the curriculum documents, it is an open 
question as to whose concept of mathematics will prevail. International comparative studies would 
be an interesting next step to see how trends in exams are similar or different across borders. 
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In most teacher training programs for Dutch mathematics teachers, history of mathematics is a 
required part of the curriculum. The courses provide historical background knowledge of certain 
mathematical developments to the students. This knowledge could also affect prospective teachers’ 
views on the nature of mathematics and the pedagogical choices they make for their classrooms. 
These effects have been examined in a small qualitative research project with two different groups 
of students from a teacher-training program in Amsterdam. The results are discussed in this paper 
and can be useful in describing and evaluating the relation between knowledge of history of 
mathematics and classroom activities. 

Keywords: History of mathematics, teacher training, empirical study. 

 
Introduction.  
I have been teaching history of mathematics courses at the University of Applied Sciences in 
Amsterdam (in Dutch: Hogeschool van Amsterdam, in short: HvA) for the last eight years. Over 
time, the goals of the courses I designed have shifted from providing background knowledge of 
history of mathematics, to demonstrating what this could mean in terms of pedagogical choices and 
classroom activities. This assumes that there actually is a relation between the two. In my research I 
want to focus on this relation, in part to describe it and in part to evaluate it. 

 
Organization of the paper. 
This paper is organized in three sections. First the Dutch system of teacher training is briefly 
described; in particular the way history of mathematics is incorporated. In the first section I will 
also focus on the situation at HvA, the context in which the empirical part of the study took place. 
Next, the aim of the study and the research method are described in the second section. Finally, the 
results are presented and discussed. Acknowledgements and references will conclude this paper. 

 
History of mathematics in Dutch teacher training. 
To become a mathematics teacher in the Netherlands, there are two main options. There is the 
university program, which consists of a three-year undergraduate program in mathematics, followed 
by a two-year master’s program in science education. This route leads to a teaching qualification for 
all secondary levels in mathematics, for pupils aged 12 to 18. This is called a first degree 
qualification, or a master’s degree in teaching. However, in this paper the focus is on the other 
option, chosen by the large majority of (future) Dutch mathematics teachers. (Van den Bogaart et 
al., 2018)  
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The alternative route consists of a four-year program at a university of applied sciences. This leads 
to a teaching qualification for the lower secondary levels in mathematics (pupils aged 12 to 15). 
This is called a second degree qualification, or a bachelor’s degree in teaching. Once these four 
years are successfully finished, teachers have the opportunity to advance in another three-year 
program at a university of applied sciences. This finally leads to the full first degree qualification 
for all secondary levels, or a master’s degree in teaching. 

Institutions for teacher education have autonomy in designing their curriculum, but the programs 
are grounded on formal ‘knowledge bases’ (Kennisbasis in Dutch, KB in short). Since the Dutch 
system recognizes two degrees of teaching, there is a separate KB Mathematics Bachelor for second 
degree teachers and another KB Mathematics Master for first degree teachers in programs at 
universities of applied sciences. I will refer to the two KBs in Mathematics as KBM2 and KBM1. In 
both KBM1 and KBM2, history of mathematics can be found as a specific subdomain. 

The subdomain history of mathematics in KBM2 consists of eight learning outcomes, for instance 
“The teacher can give examples of the development of mathematics in relation to cultural and 
historical contexts”. History of mathematics is also mentioned explicitly in the last domain of 
KBM2, which deals with pedagogy. “The teacher can use history of mathematics to enrich his/her 
pedagogical skills”. (Kennisbasis Wiskunde Bachelor, 2017, p. 19) 

History of mathematics is not an obligatory subdomain in KBM1, but it can be chosen as extra or 
can be integrated in the rest of the curriculum. For instance the history of non-Euclidean geometry 
can be integrated in a geometry course, (Kennisbasis Wiskunde Master, 2012).  History of 
mathematics is not explicitly mentioned in the pedagogical domain of KBM1. 

The curriculum at HvA. 

In the second degree mathematics teacher training program at HvA a course on history of 
mathematics is programmed in the first semester of the third year. The course is equivalent to 3 
ECTS. Over a period of seven weeks, the students receive an overview of history of mathematics 
from the early ages until the beginning of the seventeenth century. There is a 100 minutes lecture 
once a week. Students are provided with texts (a textbook, additional articles, some primary 
sources), videos and exercises. To pass, students complete a written exam.  

In the first degree mathematics teacher training program at HvA a course on history of mathematics 
is programmed in the second semester of either the first or the second year. The course is equivalent 
to 5 ECTS. Students learn about the history of mathematics, starting with the seventeenth century 
and finishing in the early 20th century. Over the course of an entire semester there are six lectures of 
150 minutes each. Students are provided with texts (two textbooks, additional articles, some 
primary sources), videos and exercises. They are expected to perform a bit of historical research 
themselves on a mathematical subject of their choice. To pass, they must hand in several written 
assignments (individually) and a research report (group work). In both the research project and one 
of the other assignments they have to design a classroom activity. One of the criteria for the 
research report is that there has to be explicit mentioning of the implication(s) of the research 
project for their practices as teachers. Finally, they present the research to their classmates. 
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The subjects that are dealt with in both courses, either discussed in the lectures or explored in the 
provided materials, are chosen by me and my colleagues at HvA, with the future teaching practice 
of our students in mind. The subjects are closely related to subjects that they will discuss 
themselves with their pupils (such as preliminary algebra and Euclidean geometry in the second 
degree training and calculus and analytical geometry in the first degree training). Some of the 
exercises we do in the course are exercises that can be done in the students’ own classrooms, 
without any modification. However, most of the texts and problems that are discussed in the course 
are on a more advanced level. The purposes of these activities can be different, such as: demonstrate 
the level of sophistication of the mathematicians and cultures of the past (and by doing so testing 
the level of mathematical knowledge of the students), discuss what conceptual obstacles were 
overcome, illustrate the circumstances under which discoveries took place and the human factor in 
all that. The two instructors of the courses (myself and a different colleague on either first and 
second degree training) both emphasize the importance of the historical knowledge for mathematics 
teachers on a regular basis. 

 

Description of the research. 
The starting point of this research was the evaluation of the courses on history of mathematics at 
HvA with special interest to their effects on the beliefs and teaching skills of the students. Did the 
course on history of mathematics affect students’ views and is there some form of transfer to their 
classroom activities? If the students could not identify any effects, or mainly describe the personal 
gain of the course they took as simply historical background knowledge with little relation to their 
teaching, this could serve as input for redesigning the courses. 

There is very little empirical data on effects of integrating history of mathematics in mathematics 
education (Jankvist, 2009). The amount of empirical information on the effects of this integration in 
teacher training is even less. Although this research is partially set up in a quantitative way, its main 
goal is to gain qualitative information, as input for further research. 

One can think of a number of ways in which information about the history of mathematics can have 
an effect on students, in particular student teachers. Literature on the use of history of mathematics 
in the context of teacher training provided a list of possible effects/influences, stated below.  

a) Influence on attitude and beliefs on the nature of mathematics as a subject (Schubring et al., 
2000), (Charamboulous et al., 2009)  

b) Insight in the development of mathematics and its curricula (Schubring et al., 2000) 

c) Acknowledgement of processes and obstacles that can occur in developing mathematics, and 
thereby enhancing one’s own comprehension of mathematics (Schubring et al., 2000) 

d) History is an inspirer of strategies of teaching (Furinghetti, 2007) 

e) Learning to use history of mathematics in own teacher practices (Schubring et al., 2000) 

f) Influence on self-efficacy (the degree to which a teacher considers himself as capable of 
affecting student learning) (Charamboulous et al., 2009) 
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These six possible effects were reformulated into six statements (in Dutch), to which the students 
were asked to react (see Table 1). Do they (partially) agree with the statement or not? Students were 
asked to react to the statements on a five-point Likert-scale from completely disagree (1) to 
completely agree (5). Statement A corresponds to effect (a), statement B to effect (b), etc.  

Following the course on history of mathematics has... 1 2 3 4 5 

A) affected my view on the nature of mathematics       

B) enhanced my own comprehension of certain 
mathematical concepts 

     

C) made me more aware of conceptual- or process-
related obstacles that my pupils have 

     

D) expanded my pedagogical repertoire      

E) taught me how to use history of mathematics with my 
own pupils 

     

F) enhanced my self-efficacy as a math teacher      

Table 1: Statements in questionnaire (transcription) 

In addition to reacting to these six statements, students were invited to comment on each statement 
separately. It was not required to comment on every statement, but in the instructions given by the 
researcher to the students upon filling out the questionnaire, the value of their additionally provided 
explanations, examples and/or information was amplified. For each statement there was a separate 
question added, to be able to connect the comments to the right statement and also provoke 
sufficient reactions. For instance, the additional question to statement A was: “Can you comment on 
the way in which your view has changed? How was it before and how is it now?”. 

The group of students of the first degree training, who took the course on history of mathematics 
from January until July 2017, was asked to fill out the questionnaire in September. Almost the 
entire group had finished the course by then (some still had to hand in an assignment or do some 
revision work on the research project). Some students had left the teacher training program 
altogether, or simply were not present at the time the questionnaire was taken. Approximately 60% 
of the students who took the course participated in this research. In November and December 2017 
the course on history of mathematics in the second degree training took place. Over 70% of the 
students who took this course filled out the questionnaire in March 2018.  

The questionnaire was filled out in class, on paper, at the start of a lecture of another course that 
most students were expected to take. I chose not to combine filling out the questionnaire with the 
written test or peer presentations at the end of the course. This way the complete course, assessment 
included, could be taken into account by the participants, after the entire course had finished.  

The results were imported to a spreadsheet to calculate the mean of the reactions to the statements. 
The open responses to the questionnaire were qualitatively categorized. The categories used were 
not defined in advance, but were a work-in-progress. Some categories turned out to be useful for 
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open responses on several statements, which show interesting relations between some of the 
statements. I discuss these relations in the next section. 

 

Results. 
The results of both questionnaires are presented separately, since the students took separate courses 
and have different backgrounds and teaching practices. I first summarize the quantitative results on 
the statements, and then I address the reactions to the statements (open responses). Finally, I 
provide some remarks on similarities and differences between the results of the two groups. 

First degree training questionnaire. 

Twenty-three students filled out the questionnaire. Table 2 shows the mean value of student 
reactions to the six statements and also the number of students who commented on each statement.  

Statement A B C D E F 

Mean 3.35 3.35 3.22 3.61 3.57 2.70 

Comments on statement 13 12 8 15 13 7 

Table 2: Reaction to statements by first degree training group 

The calculated means were not meant to be interpreted separately, but can be used to arrange the 
statements from strongest agreement to weakest agreement. The statements on pedagogy and 
classroom activity (D and E) resonated most strongly with these students, while the statement on 
self-efficacy (F) received the weakest agreement. As for the comments, in what follows I briefly 
review the statements, specify the categories used to label them, and give examples of statements 
made by the students.  

Comments on statement A were arranged into five separate categories. They are presented here in 
order of declining frequency. The majority of responding students mentioned they gained more 
background information (i), some started seeing mathematics more as a dynamic subject rather as a 
fixed set of techniques (ii), some started seeing mathematics more as a human activity (iii), some 
discovered more coherence within mathematics itself (iv), and finally one student realized that 
mathematics can be ambiguous and debated (v). 

Sample student comments on statement A: 

Student #M17: From abstract science to human activity. 

Student #M20: I see mathematics now more as a process rather than a result (toolkit). 

On statement B, most of the responses listed mathematical topics or concepts that were understood 
better due to the gained knowledge of their history, but some also specifically mentioned the 
increased insights in coherence (see also category (iv) from statement A). When asked to comment 
on statement C, half of the responses described in some way that their pupils should also experience 
mathematics as a process rather than a product, so that can be seen as a form of transfer of category 
(ii) to the learning process of their own pupils. 
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Additional remarks to statements D and E on the possible expansion of their own pedagogical 
repertoire and use in their own classrooms produced mostly broad topics of school mathematics 
such as geometry or algebra. Some students made general remarks on using history of mathematics 
as a way to introduce new mathematical concepts or create more variation in lesson activities. 

Statement F (on self-efficacy) had the lowest average on the Likert-scale and also produced the 
lowest number of reactions. A number of students explicitly stated that there was no relation 
between their knowledge of history of mathematics and their self-efficacy as a teacher. They almost 
seemed offended by the suggestion. On other statements they would simply leave a blank space if 
they disagreed. Students who did see a positive influence formulated it in a general way, e.g., more 
background knowledge gives me more insights in mathematics and therefore enhances my self-
confidence as a teacher. This seems equivalent to category (i) in the first statement. 

Second degree training questionnaire. 

Seventeen students completed the questionnaire. Table 3 shows the mean of student reactions to the 
six statements and the number of students who commented on each statement. 

Statement A B C D E F 

Mean 3.65 3.88 3.53 3.76 3.29 2.88 

Comments on statement 13 10 9 10 9 5 

Table 3: Reaction to statements by second degree training group 

When statements are ordered by calculated means of the Likert-scale of agreement, statement B (on 
their own understanding of mathematics) appears first. This seems logical, since the mathematical 
knowledge of this group of students in the bachelor program is obviously much less than that of the 
students in the master program, so there is more room for growth. Statement F also scores lowest in 
this group, the same as in the first degree training group, with similar comments that explicitly deny 
the relation. The statement on the use of history of mathematics in their own classrooms comes in 
second to last, which can be explained by the fact that this group consists of less-experienced 
teachers, which might be holding back on this type of activity in their teaching. 

Comments on statement A were divided into five separate categories, which mostly correspond to 
the categories in the other group. Again the order is by declining frequency. Students mentioned 
they gained more background information (i), recognized, in particular, more different cultural 
contributions in the history of mathematics (ii), started seeing mathematics more as a dynamic 
subject rather as a fixed set of techniques (iii), saw more coherence within mathematics itself (iv), 
and made connections with the learning of their own students (v). The new category (ii) seems 
appropriate, since this course explicitly pays attention to the contribution of non-Western cultures to 
the development of mathematics.  

Statements B and C were commented on in a rather similar way. Almost all comments contained 
examples of specific topics or concepts of school mathematics. Amongst those topics the concept of 
number (e.g., negative numbers, fractions, square roots, and zero) was mentioned frequently, as 
well as solving linear and quadratic equations. 
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Sample student comments on statement D: 

Student #B3: For instance to visualize equations with geometry. 

Student #B14: Introducing variables with “The thing plus the root of the thing.” 

Although statement D scored rather high quantitatively and the comments on this statement 
produced plenty of concrete examples (like the ones on statement B and C), the use of history of 
mathematics in students’ own classrooms (statement E) mostly resulted in general ways of using 
history of mathematics, such as introduction or variation. 

Overall remarks. 

It was surprising to see students describe effects that taking the course on history of mathematics 
had on them with such detail, especially in the first degree training group. Without any concrete 
examples mentioned by the researcher, students were able to mention words like coherence, human 
activity, and ambiguity. This can indicate advanced personal reflection skills on the part of students, 
or this may have been provoked successfully by the course. 

Some of the differences in reactions between the two groups seem naturally connected to the level 
of their knowledge of mathematics and teaching experience. Students in the second degree training 
group were better at specifying the relation to the topics in school mathematics, which seems logical 
considering the contents of their course. Early developments of mathematics can actually be found 
in the curriculum for 12 to 15-year-olds, until the coordinate system of Viète and Descartes in the 
early 17th century, but when we discuss Weierstrass and Cantor with students in the first degree 
training, this has much more distance to the concepts they teach in their own classrooms. 

Both groups were rather firm in their rejection to influence on their self-efficacy. One could argue 
that the gained knowledge, both mathematically and pedagogically, should be rather closely 
connected to the confidence of a teacher, but for the students who took these courses and completed 
the questionnaire this was a bridge too far.  

 
Discussion. 
The obvious point of discussion here is the design of the courses. This was not aligned with the six 
effects of the use of history of mathematics in the context of teacher training which were obtained 
from literature. Further research is necessary to focus on one or more effects, which must be 
attended to beforehand in the design of the courses. In particular, the way the courses are assessed 
should be taken into account. Still the results of this research give us valuable information on what 
effects take place, by courses designed in the described manner, at least as reflected by the students 
themselves. This leads to another point of discussion. 

It is important to note that the results are purely based on self-reported opinions of the students 
themselves, on their self-assessment of their knowledge, and their views ‘at the desk.’ That means: 
this is what they think of themselves, their views and skills, outside the classroom. To get a better 
picture of the effects there should be some form of  ‘in action’ research in their classrooms. 
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The results of this pilot empirical study indicate an added value of knowledge of history of 
mathematics for teachers. The results can be used as input for the redesign of these courses and 
other activities involving history of mathematics in teacher training. They may also be useful for 
further research on the partnership between mathematics, history and education. 

 

Acknowledgements. 
This research project has been made possible by the financial support of both the Research Center 
and the Department of Science teacher training of the Faculty of Education of the HvA. Thank you 
to Ron Oostdam, Monique Pijls and Andrea Haker for their support. The courses on history of 
mathematics that I taught in 2017, which were the context for the research in this paper, were taught 
together with two wonderful colleagues: Lidy Wesker-Elzinga (first degree training) and Peter 
Lanser (second degree training).   

 

References. 
Charalambous, C. Y., Panaoura, A., & Philippou, G. (2009). Using the history of mathematics to 
induce changes in preservice teachers' beliefs and attitudes: Insights from evaluating a teacher 
education program. Educational Studies in Mathematics,71(2), 161-180. 

Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies 
in Mathematics, 66(2), 131-143. 

Jankvist, U.T. (2009). A categorization of the ‘whys’ and ‘hows’ of using history in mathematics 
education. Educational Studies in Mathematics,71(3), 235-261. 

Kennisbasis Wiskunde Bachelor (2017). Kennisbasis docent wiskunde bachelor. 10 voor de leraar. 
Retrieved from https://10voordeleraar.nl/publicaties 

Kennisbasis Wiskunde Master (2012). Kennisbasis docent wiskunde master. 10 voor de leraar. 
Retrieved from https://10voordeleraar.nl/publicaties 

Schubring, G., Cousquer, É., Fung, C.-I., El Idrissi, A., Gispert, H., Heiede, T., et al. (2000). 
History of mathematics for trainee teachers. In J. Fauvel & J. van Maanen (Eds), History in 
mathematics education – The ICMI study (pp. 91-142). Dordrecht, The Netherlands: Kluwer.  

Van den Bogaart, T., Daemen, J., & Konings, T. (2018). Secondary mathematics teacher education 
in the Netherlands. In M. van den Heuvel-Panhuizen, P. Drijvers, M. Doorman, & M. van Zanten 
(Eds.), Reflections from inside on the Netherlands didactic tradition in mathematics education. 
Utrecht, The Netherlands. 

Thematic Working Group 12

Proceedings of CERME11 2187



 

 

History of mathematics and current developments in education 
Ysette Weiss1 and Rainer Kaenders2 

1Johannes Gutenberg-University, Institute of Mathematics, Mainz, Germany; yweiss@uni-mainz.de 
2University of Bonn, Hausdorff Center for Mathematics, Germany; R.Kaenders@uni-bonn.de 

With the introduction of so-called educational standards, the German government has mandated by 
law that German schools, universities and teacher training colleges use the language of 
competences as a universal language to describe, plan, test and develop teaching and learning 
processes. This shift to output orientation resulted in a break with the formerly internationally 
recognized educational tradition of the Enlightenment. In order to understand and highlight the 
magnitude of this, we look at different historical perspectives regarding these reforms.    

Keywords: Democracy, history of mathematics, educational reforms. 

Introduction 
The present paper responds to a desire that several of our colleagues had expressed at the 
International Conference on the History of Mathematics Education (ICHME) in Utrecht in the 
Netherlands in 2017: To place current developments in German mathematics education in a 
historical context. The reasons for this request were that these colleagues realised similar 
developments sometimes, possibly with a time shift, in other European countries, such as output 
and competence orientation, the introduction of educational standards, central tests and global 
assessments, or the economization, centralization and digitalization of the education system. The 
study of the history of mathematics and mathematics education seems to support a critical view of 
these developments. It was pleasant to find congeniality. However, it immediately rose questions 
which of these issues constitute a common concern. What precisely is going on with these 
developments? Another aspect of this debate inspired by our lively discussions was whether and 
how the study of history can support the teaching of critical judgement and the safeguarding of 
democracy and human values in pedagogy. 

In the meantime, some new perspectives such as a better understanding of the origins of 
competence orientation in psychology (cf. Ryan & Deci, 2000 or Gelhard, 2011) emerged from the 
study of the developments in mathematics education at the end of the last millennium, and from the 
authors’ attempts to incorporate them into seminars on mathematics education. The reforms and 
changes we are going to discuss are, however, not specific to mathematics education. Therefore, 
this discourse should be relevant to the history of education, pedagogy, sociology and psychology. 

However, the changes in German education policy at the beginning of our millennium were 
accompanied by a shift in the subjects and theoretical foundations of educational sciences towards 
applied psychology, empirical research and the notions of evidence and measurability. The latter 
had an impact on school development and beliefs and convictions about the superior importance of 
factors that contribute to good teaching and "effective" learning. Still, if there were to be a lecture 
about the history of current reforms in education, it would probably be attended by only a few 
people. Most students put educational sciences on a par with a general methodology (cf. Jahnke, 
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2008), and therefore, above all, want to receive the latest and empirically proven approaches in 
these subjects in order to be able to adapt themselves to the requirements of their future working 
situation. Here the economization of the university system and the new role of students as 
customers and future employees plays its part. 

Why should the history of mathematics education be taught to future teachers and in which form 
can it be incorporated in mathematics education? 

Learning from history does not automatically mean that history prevents us from repeating 
mistakes. Politicians are not supposed to be historians: Historical situations never completely recur, 
and therefore the future cannot be predicted from even the most profound knowledge of the past. 
However, on a small scale with limited demands, it is quite possible to learn from history (Geiss, 
2019). The recognition of constellations and gradient patterns occurring over time plays an essential 
role in this. Even though it is not possible to transfer causal connections, the study of structural 
components, which recur and make up these constellations and patterns, can certainly contribute to 
sharpening political judgement. However, the tightrope between showing such patterns and 
indoctrination through the political or even ideologically influenced production of time references is 
extremely narrow (Bergmann, 2002).  

Because of this, and the highly political significance of the reforms, we are going to work 
backwards: We start with a description of the current situation and ask the students to find 
differences with the practices, school subjects and events of the past, which look at first sight very 
similar or carry similar names to those of today. Thus, the formation of analogies does not arise 
through our study of historical sources, but is rather questioned by these sources.  

In the implementation of educational policy requirements, teachers in Germany have a great deal of 
freedom in the design and application of these requirements through the legally guaranteed freedom 
of methods (Gasser, 1982). Dealing with the history of mathematical teaching can help to appreciate 
existing structures, to include experiences from the history in change processes and to relativize so-
called “new approaches”.  

Through taking a historical perspective on the development of mathematics education and related 
educational policy, our goal is to support our students’ need to question the reasonableness and 
necessity of political reforms and to shape them as responsible future teachers.  

Some features of educational reforms 
The study of the history of educational reforms and their theoretical foundations is particularly 
relevant today. German students have experienced several reforms during their school time. The 
theoretical foundation of these reforms has not yet taken place. Keywords for these reforms are 
output and competence orientation, the introduction of educational standards and central tests, the 
abolition of the orientation classes and pre-school education, the reduction of upper secondary 
classes by one year, the digitalization of learning environments, the restructuring of secondary 
schools, and the overall present inclusion1.  

                                                 
1 Political activities of the Government to implement the UN Convention on the Rights of Persons with Disabilities. 
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In particular, these political reforms have been pushed through with tremendous pace. Therefore, it 
is certainly worthwhile to engage in reforms, which had been prepared and installed during half a 
century; e.g. the Meraner Reform was discussed widely and implemented in small steps (Schubring, 
2007). However, the current reforms have a different character. The abolition of the orientation 
level2 and pre-school education, the reduction of upper secondary classes by one year, the 
restructuring of secondary schools, the shift from special schools for specific disabilities to 
integrated/ inclusive forms of schooling, the shift from the three-tier school system towards a 
comprehensive school: All these can be seen as structural reforms of the school system. Looking 
back at the history of German schools, it strikes us that every of the former changes in the education 
system was related to just one type of school and perhaps their related types, and was prepared for 
and carried out over a period of 200 years. The current reforms, however, took place almost 
simultaneously in a period of just 20 years and involved all school forms at once.  

It is worth studying the history of different school types and of preschool education separately and 
to investigate their links to teacher training and assessment development for teachers and students 
(Leschinsky & Roeder, 1983). There is a large body of literature now starting from original sources 
like school archives, commission reports and resolutions, as well as secondary literature, which 
studies these reforms from the point of view of institutional history (Müller et al., 1987). Of course, 
the study of these sources relates institutional aspects to the biography of its main actors and of the 
study of political and economic contexts. It is noteworthy that it is often difficult to find historical 
sources with plans, programs and resolutions, but if one does find them, one knows the names of 
the main institutional actors. This is not the case with the present documentation of reforms. Here, 
the authors hide behind huge organizations and their programs. It is hard to find out who is 
responsible. 

Another approach when looking at the history of reforms is to see the teaching community as a 
community of practice. When doing so, the importance of associations, societies, clubs, unions etc. 
should also be taken into account. One can also study reforms as the history of concepts, ideas and 
value systems as they develop in communities.  

In order to describe the current changes in mathematics education as a change of value systems 
from input3 to output orientation in terms of economization with a measurable and an only 
functional notion of education, we here give a short historical overview of where the notion of 
competences comes from. 

What is the dispute about competence orientation all about?  
The concept of education systems, which is based entirely on economic aspects, has a long tradition 
in the OECD. The conference documents and the results of the discussion at the “OECD 

                                                 
2 Grade 5 and 6 of secondary school were supposed to be an orientation period in order to decide about the type of 
school. 

3 Input orientation is often misleadingly referred to as the lack of qualification goals and results as well as interpreted 
evaluations see (Ladenthin, 2011, p.1). 
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Conference in Washington”, which was also decisive for the entire public discussion of educational 
and educational issues, showed unequivocally in 1961 the limited economic and technical view of 
human development and progress: 

“‘It goes without saying that the educational system must be an aggregate of the economy, it is 
just as necessary to prepare people for the economy as real assets and machines. The educational 
system is now equal to highways, steel works and chemical fertilizers’. Thus the claim can be 
made ‘without blushing and with good economic conscience that the accumulation of intellectual 
capital is comparable to the accumulation of real capital – and in the long range may outmatch 
it.’” (Graupe & Krautz, 2014, p. 3)  

Earlier, Graupe and Krautz explicated: 

“The same conference volume states that, with regard to developing countries, it would be 
‘nothing short of cutting a million people loose from a way of life that has constituted their living 
environment for hundreds or thousands of years. Everything achieved by these countries’ schools 
and education until now has served social and religious aims which have primarily allowed for 
resignation and spiritual comfort; things that completely go against any economic sense of 
progress. Changing these century-old approaches may perhaps be the most difficult yet also most 
important task for education to accomplish in developing countries.’” (loc. cit., p. 2) 

Here, human development is reduced to economic growth and technical progress. Socio-historical, 
cultural and educational aspects are not only ignored, but also presented as disturbing and negative. 
In essence, the views expressed by the OECD have not fundamentally changed since then, but the 
causes of the need for unifying reforms are now general concerns, such as the growing globalization 
of the economy and the new requirements of a technological society. 

50 years on, the OECD has in its own words, “become central, providing indicators of educational 
performance that not only evaluate but also help shape public policy.” (Gurría, 2011, p.318). The 
introduction of competence orientation is not a particularly German phenomenon. However, it 
seems that in Germany it leads to more radical changes in the educational system than elsewhere. 
The pretext for a radical change in education policy was the “moderate performance” of German 
students in the PISA test 2003, which was not in line with social expectations. In the media and by 
politicians it is referred to as the “PISA shock”. 

Although the OECD had already tested in mathematics decades before, and the TIMS study had 
already taken place (since 1995), the second PISA test in 2003 was suddenly taken as “the truth” by 
German politicians and media about the German educational system and as an indicator of what 
students “really” know. The political goal became to improve the result of tests such as PISA or the 
TIMS study. Competence orientation promises, among other things, to be able to do this and turn 
education into a manageable system: 

“Educational standards with their reference to student competences are explicitly formulated in a 
way that allows them to be checked with the help of corresponding questions or tests. This 
measurability characterizes them nationally and internationally, and with all due modesty, it is 
this characteristic that makes it possible to determine at certain points in time whether and to 
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what extent students are adequately prepared for life or whether there is a need for optimization.” 
[Blum et al. 2006, p. 9, translation by the authors] 

As a measure against the PISA shock, in 2004 the German Conference of Ministers of Education 
adopted the so-called “educational standards” (Bildungsstandards) and reorganized the curricula on 
the basis of competence orientation. 

However, is ‘competences’ really just a new word for something akin to learning goals? Has that 
not always been around? And, who can object to schools and universities at least formulating the 
goal of ensuring that graduates are fully competent when leaving? Would anyone not want them to 
apply this knowledge meaningfully and use it to solve “inner-mathematical problems” as well as 
real-world ones? Do the practitioners and theoreticians of mathematical doctrine focus on an enemy 
who is not actually a threat? Is it not good that requirements are standardized so that they can be 
taught systematically? This critical discourse may appear to large parts of a general mathematical 
audience as splitting hairs. The introduction of competence orientation as a universal and legally 
prescribed paradigm for the description and design of learning processes, however, has a very 
specific impact on the mathematical culture in teaching and research. The definition, which is based 
on the German competency orientation, goes back to Weinert: 

Competences in this context are the cognitive abilities and skills available to or learnable by 
individuals in order to solve specific problems and the associated motivational, volitional and 
social readiness and ability to successfully and responsibly use the solutions in variable 
situations. (Weinert, 2002, pp. 27-28, translation by the authors) 

The introduction to this definition in the above-cited text is rarely added: 

In this context, the OECD has repeatedly suggested that the ambiguous concept of performance 
should generally be replaced with the concept of competence. 

It is vital for mathematics teachers in schools and universities to understand these developments 
more thoroughly and to engage in a humanities discourse with pragmatic consequences that cannot 
be fundamentally clarified by empiricism and that only partially takes place within the 
mathematical culture. In competence orientation, we are dealing with a fundamental change in our 
understanding of learning. Is it about learning to understand something, or is it about convincing 
others on the basis of measurable output that I have understood something? 

The conceptual system of competence orientation derives from applied psychology (Gelhard, 2011). 
For a long time it was used for the selection and adaptation of workers who were meant to meet 
specially defined psychological requirements in the workplace, such as patience, accuracy, speed, 
etc. Although competence orientation with regard to teaching was promoted on the initiative of the 
OECD (cf. Weinert, 2002, p. 27) and by pedagogical psychologists and educationalists working 
predominantly on a quantitative empirical basis, there is still no unequivocal empirical evidence to 
date that suggests that the competence orientation currently implemented by the state has a positive 
effect on the knowledge and skills of high school graduates or new students.   

As of now the concept of competence, the credo of the testing industry, based on a definition by 
Franz Weinert, has become the central concept of the transformation of our entire education system. 
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It has evolved from a psychological selection tool into the guiding principle for quality control of 
industrial production of human capital, as the OECD has promoted for decades. After all - and this 
cannot be emphasized enough - competences are a psychological instrument. Modeling, 
collaborating, arguing and even moral competences (Weinert 2002, p. 28) etc. are elevated to 
context-free problem-solving activities. As they do not have to do justice to any context, they 
become observable and measurable psychological categories. 

Are there developments in the past akin to competence orientation and 
educational standards? 
If we look at competence orientation as a promise of salvation, as a concept of being able to acquire 
skills applicable to any subject without learning to be an expert in that subject, then we cannot find 
similar developments during the last 200 years: Skills and knowledge are traditionally closely 
related to content, either from the perspective of vocational training or from the perspective of 
humanistic education.  

The existence of very general concepts guiding educational reforms leads us to the reform of school 
geometry, driven by the slogans such as “Neue Geometrie” (new geometry) or “Los von Euklid” 
(away from Euclid), both in the 19th century. We may also think of the Meraner Reform and its 
motto of “Erziehung des funktionalen Denkens” (Education of functional thinking) or the “Neue 
Mathematik” (New Maths movement) (Schubring, 2014, pp. 241-257), In all these cases, the 
principles for the reforms were inspired by developments in mathematics such as projective and 
other non-euclidian geometries, descriptive and analytic geometry in the 19th century and 
functional analysis, algebra, logic and set theory, and probability theory at the turn of the last 
century.  

If we think about the pretext of the reform the so-called “PISA shock”, it sounds quite similar to the 
“Sputnik shock” on the eve of the New Maths reforms. The Sputnik shock however, was part of 
world affairs whereas PISA was enacted especially to get an influence on national educational 
systems. 

We traced the development of the notion of competences back to its original use as a psychological 
selection tool and its modern use to limit the notion of “Bildung” to practical usefulness and 
functionality. The discourses about role, extent and place of applications and modeling in todays 
mathematical education have also a history and can be retraced to discussions during the twenties, 
fifties and eighties. The current so-called modeling problems in A level tests became part of 
German school mathematics in the context of the PISA shock and its subsequent reforms to 
improve the poor performance of students in the field of modeling competences. 

As we can see, there are various ways to explore the history of mathematics education: On the one 
hand, we went back to the roots of current educational reforms; on the other, we looked for similar 
patterns in the past. 
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Conclusion 
We did not answer the question of how to continue the discourse, which started at ICHME, but it 
inspired us to look for ways to include the history of mathematics education in teacher education. 
The current gradual shift in the fundamental principles of the German education system make 
reflecting on these foundations even more important.  

Notably the von Humboldt Bildungsideal is built on two notions: the autonomous individual and the 
cosmopolitan or Universalist (Weltbürger) – that is, a universally interested person who cares about 
the important questions of humankind. The university should be – both for students and professors 
– a place for autonomous individuals to become such a Weltbürger. Student teachers, who are about 
to become responsible experts for Bildung at school, not only need to come in contact with these 
ideas, but should also be given opportunities to work on their own Bildung and personal 
development. 
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We describe the role of Lucas Bunt at the start of the teaching of probability and statistics in the 
last two years of Dutch secondary schools in the early 1950s. Together with his co-authors, Bunt 
developed an experimental text which, from the mid-1950s on, became a regular textbook. We 
further sketch Bunt’s other – mostly international – activities with respect to the curriculum reform 
movement initiated at the Royaumont Seminar in 1959. Bunt’s experiment can be seen as one of the 
initiatives related to this reform. Finally, we present what happened with statistics teaching in the 
Netherlands “after Bunt”. 

Keywords: Mathematics curriculum, Probability, Secondary school mathematics, Statistics. 

Introduction 
The attention to statistics in Dutch secondary school mathematics arose in the early 1950s when a 
student text about statistics was developed by a group of mathematics teachers led by Lucas Bunt. 
The text was used in experiments in the last two years of secondary schools that prepare students 
for the university, initially only for the non-exact streams of these schools. Bunt’s reason to develop 
this text was a proposal made by Liwenagel, one of the two associations of teachers of mathematics 
at that time1, to include statistics into the curriculum for these students. The proposal cannot be seen 
independently from the worldwide trend after World War II to include applications of mathematics 
into the secondary school curricula (De Bock & Zwaneveld, in press). During the 1950s the call for 
curriculum change was so strong that the OECD took the initiative to organize, in 1959, the 
Royaumont Seminar with representatives from different western countries to initiate the reform. 
Bunt attended “Royaumont” and many other international meetings related to this reform 
movement.  

Although Bunt’s pioneering role in statistics education is well-known in the Netherlands, a proper 
scientific review of his work is still missing. Moreover, his acting at the international math 
educational scene was not given appropriate attention so far, especially in the debates about a 
possible introduction of statistics at the secondary school level.  

We present Bunt’s role in the Dutch curriculum reform movement of the 1950s, more specifically, 
his activities related to the development of a statistics program as a part of it. Based on written 
historical sources and a few oral testimonies of contemporaries, we first provide some elements of 
Bunt’s professional career. We then report about his experiment with the teaching of statistics in 
secondary school classrooms and about the actions he took to ensure that his ideas became 

                                                 
1 The other organization of teachers of mathematics was Wimecos. Both organizations, Liwenagel and Wimecos, were 
the predecessors of the Nederlandse Vereniging van Wiskundeleraren [Dutch Association of Mathematics Teachers]. 
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consolidated. Finally, we report what happened with statistics in Dutch secondary mathematics 
curricula “after Bunt” and we present some conclusions. 

Lucas Bunt 
Lucas Nicolaas Hendrik Bunt (Figure 1) was born in 1905 in Edam, a small village north of 
Amsterdam. He studied mathematics at the University of Amsterdam where he also defended, in 
1934, his PhD thesis, entitled Bijdrage tot de theorie der convexe puntverzamelingen [Contribution 
to the theory of convex point sets]. In the early 1930s, Bunt started his career as a mathematics 
teacher in Leeuwarden where he likely met his wife, a chemistry teacher at the same school. In the 
late 1940s Bunt became mathematics teacher trainer at the University of Groningen. From 1948 to 
1969 he was appointed as a full-time mathematics teacher trainer at Utrecht University, a position 
that he combined with that in Groningen. In 1968, immediately after the retirement of his wife, he 
and his family migrated to Arizona (US) where Bunt became a professor of mathematics at Arizona 
State University. We assume that Bunt had already developed strong professional ties with the US 
in the early 1960s to secure this appointment, but could not verify this any further. Bunt died in 
1984 in the US. 

 

                                 
Figure 1: Lucas Bunt (left: detail of a picture of the Mathematics Working Group, 1948; right: 

attending the public defense of the PhD thesis of his son Harry at the University of Amsterdam, 1981) 

Bunt became active at the math educational scene in the Netherlands shortly after World War II as a 
member of the Mathematics Working Group, a group that critically reflected on the existing 
secondary school curricula and developed proposals for new curricula (La Bastide-van Gemert, 
2015). Bunt’s international career started in 1959. Recommended by Hans Freudenthal to the Dutch 
Ministry of Education, Bunt was one of the three representatives for the Netherlands at the famous 
Royaumont Seminar and he co-edited the Seminar’s Proceedings with Howard F. Fehr (OEEC, 
1961). In the late 1960s, Bunt translated and adapted, in cooperation with Harrie Broekman, a series 
of booklets that were developed by the School Mathematics Study Group in the US. This resulted in 
a six-volume programmed instruction course for Dutch secondary school students.   

Bunt was primarily a mathematician who explained mathematics to a non-mathematically schooled 
audience. We mention his textbook Statistiek voor het voorbereidend hoger en middelbaar 
onderwijs [Statistics for preparatory higher and secondary education] (1956), intended for Dutch 
students, aged 16 to 18 years, who prepared themselves for university studies in social sciences, 
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economics, geography, etc., based on an experiment of which Bunt published the report (Bunt, 
1957). For an international audience, Bunt (co-)authored An introduction to sets, probability and 
hypothesis testing (with Howard F. Fehr and George Grossman) (1964) and Probability and 
hypothesis testing (1968).  

First experiments with statistic education at the secondary level 
Bunt took the initiative to develop an experimental text about statistics in some gymnasia A2. The 
text was initially mimeographed, in 1956 it was printed as a textbook (Bunt, 1956). As mentioned 
before, one of the reasons for Bunt to start with an experiment about the teaching of statistics was a 
proposal of a commission established by the organization of mathematics teachers Liwenagel, 
intended to study the opportunities and possibilities of “a re-organization of mathematics education 
in the A-streams of the gymnasia and the gymnasium sections of the lyceums” (1950). Bunt was a 
member of that commission and, although it is not mentioned, likely the main author of the 
commission’s report. 

It is worth mentioning that Bunt did not develop the experimental text and the textbook on his own, 
although this was a common practice in the Netherlands at that time, but in cooperation with a team 
of teachers. In the Preface of the textbook Bunt wrote (translated from Dutch): 

… was an educational experiment in statistics, organized by the Department of Didactics of the 
Pedagogical Institute of the State University of Utrecht. The following teachers cooperated: Dr. 
Cath. Faber-Gouwentak, Barlaeus-Gymnasium, Amsterdam; Sr. E. A. de Jong, Rectrix 
[Headmistress] St.-Theresia-Lyceum3, Tilburg; D. Leujes, Grotius-Gymnasium, Delft; Dr. H. 
Mooy, Barlaeus-Gymnasium, Amsterdam; Dr. P. G. J. Vredenduin, Co-rector [Vice 
Headmaster] Stedelijk [Municipal] Gymnasium, Arnhem. (Bunt 1956, p. v) 

At that time in the Netherlands, statistics was not a part of the official curriculum that only included 
algebra and geometry, topics that were also part of the final exams, organized centrally by the 
government. However, based on an exception rule, the Inspection of Education could allow teachers 
to change parts of the exam program. Such exception was obtained for the statistics experiment. 

In 1957, Bunt published the report in which he describes the experiment with the student text that 
was used during the years 1951-1955 (Bunt, 1957). The reason why the textbook was published 
before this report was, as Bunt wrote in the textbook’s Preface: “The recent proposals of the 
mathematics teachers associations Wimecos and Liwenagel about the curriculum change for 
mathematics in the B-stream of the secondary schools, in which statistics is included as a new topic, 
made it desirable to make, as soon as possible, the text public” (Bunt, 1956, p. v). Bunt’s report has 
two parts: part A includes the motivation and explanation about the selected topics, and the way 
they are treated; part B is the student text (it is not included in the printed version of the report). 

                                                 
2 At that time, the gymnasia in the Netherlands had two study streams: The A-stream, preparing students for university 
studies such as languages, economics, psychology, sociology, history, and geography, and the B-stream, preparing 
students for university studies in mathematics, science and technology. 
3 A lyceum was a school for secondary education with two sections: gymnasium and Hogere Burger School (HBS) 
[Higher Citizens School], similar to gymnasium but without Latin or Greek. 
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We focus on some highlights of part A. Bunt motivated the reasons for choosing statistics as 
follows: to students in university disciplines such as economy, psychology and sociology, an 
extensive study of algebra is less useful than a well-balanced treatment of the first concepts and 
principles of statistics. Statistics in university turns out to be very difficult and uncommon to these 
students. Moreover, they have to learn it in a rather short period of time. Statistics in secondary 
school is not only useful for the aforementioned students, but for all citizens in modern society. By 
reducing the algebra content, Bunt found the necessary 35 classroom hours for his statistics course. 
After that, he justified the chosen topics. In the first experimental text, these topics were: frequency 
distribution, histogram, frequency curve, cumulative frequency, average, median, quartiles, range, 
mean deviation, standard deviation, quartile distance, permutations, variations (without repetitions), 
combinations, Pascal’s triangle, Newton’s binomial formula, some simple theorems from 
probability calculus, the binomial distribution for p = 0.5, the normal curve as a limit of the 
histogram of the binomial distribution (graphical, not with formulae). At the end of the course, 
some applications of the normal curve for calculating probabilities were presented. Linear 
regression and correlation were left out, because of being too time-consuming. Especially on the 
insistence of his cooperators, Bunt drastically changed the end by including a final chapter on 
hypothesis testing: estimating some characteristics of a population on the basis of a sample. 

Bunt extensively deals with the principles of probability calculus for which he presents an 
axiomatic approach. Probability is a function that assigns to an event a number in the interval [0,1]. 
He starts from the following two axioms: (1) If p →¬q, then P(p or q) = P(p) + P(q); (2) If p is the 
sure event, then P(p) = 1. From these axioms Bunt derives the complement and product rule. He 
illustrates these rules with examples about rolling dice. In the textbook, however, Bunt introduces 
the concept of probability differently. There he starts with the definition of Laplace: the probability 
of an event is the number of outcomes favorable for that event, divided by the total number of 
outcomes (under the condition of mutually exclusive and equally likely outcomes). After having 
dealt with the complement, the sum and the product rule, he introduces “another” definition: if it 
turns out that in a large number of repetitions of an experiment, n, an event happens k times, then 
we are convinced that every time we repeat this experiment a sufficient number of times, this event 
will happen in k/n part of this number. We then state that the probability of that event equals k/n. 
For probabilities derived from that “new” definition, the complement, sum and product rule keep 
their validity. We note that Bunt’s approach contrasts sharply with that of his contemporary 
Gustave Choquet, then president of the International Commission for the Study and Improvement of 
Mathematics Teaching (CIEAEM), who proposed at the 9th meeting of the CIEAEM a definition of 
probability based on the mathematical concept of measure (translated from French): 

In a set U, one chooses a family F of subsets E, to each of which we attach a number m(E), 
called the measure of E. These subsets have the following properties: their union and their 
intersection are again part of F, even if the number of E’s is infinite. In the case of probabilities, 
the set U has measure m(U) = 1. Each element of U represents a possible event: all favourable 
events constitute a subset E with measure m(E). The probability of the favourable event is given 
by m(E)/m(U). (Carleer, 1955-6, pp. 63–64) 
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The difference between Bunt’s and Choquet’s approaches illustrates the debate during the mid-
1950s between the mathematics-didacticians and the mathematics-structuralists on how statistics 
should be introduced at the secondary school level. 

Because of its innovative character, we discuss in some detail how Bunt explained the concept and 
procedure of hypothesis testing. He wrote about this:  

On the basis of a sample of 10 marbles out of a box with 5000 white and 5000 red marbles the 
probabilities of 0, 1, 2, …, 8, 9, 10 red marbles in that sample are 0.001, 0.010, 0.044, 0.117, 
0.205, 0.246, 0.205, 0.117, 0.044, 0.010, 0.001. It follows that in 1.1% of all samples of 10 
marbles there are 0 or 1 red marbles, and even so, in 5.5%, there are 0, 1 or 2 red marbles. And, 
in 5.5% of all samples there are 8, 9 or 10 red marbles. And moreover, in 1.1% of all samples 
there are 9 or 10 red marbles. Now suppose that the fraction p of red marbles is unknown and we 
take a sample of 10 marbles. We shall agree that if p = 0.5 and there are 0, 1, 9 or 10 red marbles 
in the sample, we shall reject the hypothesis p = 0.5. If the hypothesis p = 0.5 is right we have a 
risk of 1.1% + 1.1% = 2.2% that we, in spite of this, reject the hypothesis. More precisely, there 
is a probability of 1.1% that we reject the hypothesis p = 0.5 on the strength of too small (or too 
large) a number of red marbles. Because, in this connection, we, for the time being, do not want 
to risk a greater probability than 2.5%, we stick to the mentioned agreement. This agreement, 
therefore, conforms to the following conditions: (a) if p = 0.5, we risk, both for too small and for 
too large a number of red marbles in the sample, a probability of not more than 2.5% that we 
reject the hypothesis p = 0.5; (b) both for too small and for too large a number of red marbles this 
probability lies as close to 2.5% as possible. When we reject the hypothesis p = 0.5, we say the 
hypothesis p = 0.5 is rejected with an unreliability of not more than 5%. (Bunt, 1957, p. 12) 

The fraction v is introduced as the number of red marbles divided by the number of marbles in the 
sample and its values which are or are not thought contradictory to p = 0.5 are represented by, 
respectively, dots and circles on an axis (Figure 2). 

 
Figure 2: Axis representing values of v with dots and circles 

Repeating this procedure for different values of p, one gets the two-dimensional scheme (Figure 3):  

 
Figure 3: v-axes for different values of p 
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By making the values of v and p “continuous”, one gets a figure on which the different boundary 
lines refer to different sample sizes (Figure 4). The textbook contains two of these, corresponding to 
unreliabilities of 5% and 10%, called by Bunt “nomograms”. From these nomograms, the student 
can observe that the probability of rejecting a false hypothesis increases with the sample size. 

 
Figure 4: Nomograms for different sample sizes (left, the unreliability is 5%, right 10%) 

Consolidation and internationalization 
In 1954-1955 a curricular commission of Wimecos published a report including a draft curriculum 
and central examination program for mathematics in HBS-B. Bunt had been a member of that 
commission representing the Dutch mathematics didacticians and mathematics teacher trainers. In 
the commission’s report, it is stated that statistics had been important sources for the commission. 
The commission basically confirmed the conclusions of the report of Liwenagel (Liwenagel, 1950-
1951), but now generalized to all students who prepared themselves for university studies. In 1958, 
the new curriculum was actually implemented, but, although it entailed a considerable change, 
statistics only became an optional subject for gymnasium A. 

The fifth edition of Bunt’s textbook (Bunt, 1968) had a slightly different title, a consequence of the 
curriculum reform consolidated in 1968 by a new law for secondary education. The subtitle, 
statistics for preparatory higher and secondary education, was changed into: statistics for 
preparatory scientific education. This new curriculum reform was prepared and supervised by the 
Commissie Modernisering Leerplan Wiskunde (CMLW) [Commission for Modernization of the 
Mathematics Curriculum]. The task of that commission was to prepare the mathematics curriculum 
reform in line with the ideas of Royaumont Seminar. Bunt was a member of the CMLW. The 
commission was officially set up in June 1961 by the Ministry of Education, Arts and Science, but 
already in January 1961, Bunt had proposed to the Ministry to establish such commission. 
However, the Inspection of Education had given a negative advice to the Ministry because the 
commission as proposed by Bunt was too small. In 1968 the new curriculum for mathematics, in 
which statistics played a clear role, was implemented in all schools for secondary education in the 
Netherlands: Bunt had achieved what he had started working on in 1951. 

During the late 1950s and early 1960s, Bunt disseminated his ideas about the teaching of statistics. 
Already on May 24, 1959, he was invited to report on his experiment about the teaching of statistics 
at the annual meeting of the Société Belge de Professeurs de Mathématiques [Belgian Association 
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of Mathematics Teachers] and the Société Belge de Statistique [Belgian Association of Statistics], 
held in Brussels on May 24, 1959 (Bunt, 1959). The manner in which statistics became a part of the 
secondary-school curriculum in the Netherlands was also the topic of Bunt’s paper at the 
Royaumont Seminar (OEEC, 1961). In the period after Royaumont, Bunt had the opportunity to 
actively participate in meetings held in order to coordinate, monitor and refine the implementation 
of the Royaumont recommendations (Aarhus, 1960; Athens, 1963, Echternach, 1965).  

More recent developments 
According to the law for secondary education of 1968, two types of schools could prepare students 
to higher education: Voorbereidend Wetenschappelijk Onderwijs (VWO, six grades for students 
from age 12 to 18) [preparatory scientific education], preparing for university studies, and Hoger 
Algemeen Voortgezet Onderwijs (HAVO, five grades for students from age 12 to 17) [higher 
general continued education]. The mathematics curricula of these school types were prepared by the 
CMLW. The curriculum of VWO included probability theory and statistics, that of HAVO only 
included descriptive statistics. These topics were meant to be taught in the last two years of these 
school types. We restrict ourselves to statistics teaching at VWO. Although Bunt’s textbook was 
available, CMLW judged that it was better to not implement statistics immediately, but first to 
develop a new text and conduct an experiment with a restricted number of schools. The argument 
was that Bunt’s textbook was only intended for students in the “old” gymnasia A, whereas statistics 
now had become a compulsory subject for all students. A statistics development team started in 
1970, first under the supervision of the CMLW, from 1971 under the supervision of the then started 
IOWO, the predecessor of the Freudenthal Institute.  

After a first draft the team developed the textbook (Nijdam et al., 1973) including the following 
content: Introduction, Probability rules, Probability distributions, Hypothesis testing and reliability 
intervals, Parameters of a distribution, Use of the normal distribution. The introduction contained an 
example with a prognosis of the number of students of VWO that should follow science or 
mathematics at the university, based on data of the Dutch Central Bureau of Statistics. From that 
example, terms as sample, population, random, representative, testing – for instance with respect to 
the quality of the production of certain items – were introduced. In this textbook the students 
themselves started with a probability experiment. There was a box with 1000 small marbles, 600 
red and 400 black. With a kind of spoon with 20 wholes, they drew a random sample of 20 marbles. 
This box with the “spoon” was used to simulate various probability experiments.  

Conclusions 
The mathematician Lucas Bunt played a crucial role in promoting and developing materials for 
statistics education at the secondary level, in the Netherlands but also at the international level. 
Indeed, in the post-Royaumont era, probability and statistics were seen as valuable elements of a 
worldwide reform of the mathematics curricula. Although Bunt explained his approach in a rather 
classical way, starting with some probability axioms (in pure New Math style), the approach in his 
textbook was very pragmatic. Bunt did not emphasize “theoretical aspects”, accepted properties 
without proof and provided many clarifying examples. This pragmatic style enabled Bunt to explain 
the basic principles of hypothesis testing at the end of his course, in a limited number of lessons. 
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Nowadays in the Netherlands and in several other countries, probability and statistics are included 
in the mathematics programs, at least for some streams at the secondary level, but in the 1950s and 
1960s, it was quite revolutionary to propose to teach these topics at that school level.  

Because of his didactical work in general and more specifically on statistics, Bunt was important in 
Dutch mathematical education in the post-WWII period. Due to his participation to Royaumont and 
other international conferences, and his textbooks in English, Bunt may also have played a role in 
debates about the gradual introduction of statistical curricula for the secondary school level in other 
countries. However, this role has not yet been clarified and is a topic for follow-up research. 
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Introduction 
The Early Years Mathematics working group shares scholarly research revolving around 
mathematics for children aged 2-8. This includes different areas of mathematics and attention to 
how mathematics is approached implicitly and explicitly by children and teachers alike. The broad 
age range affords attention to several transitions within preschool, and from preschool to the early 
grades of primary school. At each CERME-conference (since CERME 6), the working group on 
early years mathematics has spent time considering differences in Europe (and outside Europe) 
regarding the organization of preschool and the cultural approaches of different countries to 
education at this young age. Some countries have one preschool curriculum for children aged 1-5 
(6), while others distinguish between nursery and preschool. The number of children attending 
preschool in different countries also differs greatly, with consequences for transitions. As an 
example, Norway has one preschool curriculum and 91.8 % (ages 1-5) and 97.1 % (ages 3-5) of 
children attended kindergarten in 20181. 

Prior to the conference in Utrecht, paper and poster authors were requested to prepare and send to 
the leaders a brief text outlining the main points of their contribution. This helped the leaders plan 
the discussions and presentations, and served as a basis for this introduction. Each of the 22 papers 
were allocated 30 minutes for presentation and discussion. For each paper, an author of a different 
paper was requested in advance to prepare questions and comments for the paper presenters. The 
seven posters were also briefly presented in a group session, followed by a group discussion in a 
one-hour session.  

The number of participants in TWG13 in Utrecht was greater than the number of participants in 
previous years. In addition to participants from Europe, there were also stimulating contributions 
from outside of Europe (Japan, Canada, and Malawi). In total, 38 participants from thirteen 
different countries attended the working group (see table below). 

1 Published on the website by The Norwegian Directorate for Education and Training  https://www.udir.no/tall-og-
forskning/statistikk/statistikk-barnehage/tall-og-analyse-av-barnehager-2018/barnehager/ (the website is currently 
written only in the Norwegian language) 
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Country Number of papers Number of posters Number of Participants 

Canada 1 1 

Germany 5 3 10 

Greece 2 2 

Israel 1 1 

Italy 1 1 

Japan 1 1 

Malawi 2 2 

The Netherlands 1 

Norway 6 10 

Poland 1 1 

Sweden 3 1 5 

Spain 1 1 

UK 1 2 

TOTAL 22 7 38 

A variety of topics 
Several contributions to TWG13 concern classical, but indeed crucial areas in early years 
mathematics, such as numbers and arithmetic skills. Björklund and Runesson consider children’s 
way of experiencing numbers, and found evidence of six different ways children can experience 
numbers. Bjørnebye investigates children’s ability to synchronize multiple representations of 
numerosity in the embodiment of a counting-on-strategy. He argues that bodily experiences could 
support early appropriation of a counting-on strategy. Lüken highlights the role of finger use during 
numerical considerations, and considers how the role and use changes over time. Sprenger and Benz 
consider children’s ability to perceive and use structures in sets. They argue that eye-tracking, as a 
data collection instrument, together with observations, provide strong insight into the two processes 
of perception and determination of the cardinality of sets of objects. Bakos and Sinclair consider the 
role of a digital app on the development of children’s multiplicative awareness. In particular, they 
consider the relation between bodily movement and mathematical meaning-making. Bakos and 
Sinclair found two primary gestures used by children which they discuss. Müller and Tiedemann 
report from an ongoing study which focuses on children’s development of conceptual subitizing, 
while Bruhn looks at first graders’ creative processes when working on arithmetical open-ended 
problems. Tzekaki and Papadopoulou consider different levels of generalization that children can 
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develop in arithmetic learning by systematically adopting teaching approaches with relevant tasks 
and discussion.   

Another branch of studies considers approaches that facilitate children’s learning of mathematics 
during the early years. Grimeland and Sikko study children’s development of mathematical literacy 
in a second-grade classroom working with play-coins in an inquiry-based setting. Inquiry-based 
settings are also the frame for the study by Skoumpourdi. However, her study is related to another 
area of mathematics – plane geometrical shapes. Skoumpourdi found that cooperative exploration, 
discussion, and justification processes were fostered in the inquiry-based setting. Pettersen and 
Volden look at the transition from mathematics in kindergarten to school mathematics. They argue 
that inquiry-based mathematics education was found to be helpful for children’s ability to 
remember and recognize mathematical activities across the transition. 

A study of Matsuo and Nakawa consider whether preschool children can improve their 
understanding of length and area measurement. In particular, their concern is on direct and indirect 
measurement, as well as measurement by an arbitrary unit. Their findings pinpoint that area 
measurement is found hardest to grasp, but partly in play-based settings, while direct comparison is 
easiest. Vanegas, Prat and Rubio characterize the learning trajectory of children aged six to eight 
years old when acquiring the notion of length measurement. The group also had a contribution by 
Bräuning that look at children’s development of strategies for a combinatorial task and argues for a 
process-oriented view.  

Palmér and Björklund focus on 2-3 years-old toddlers’ ability to explore structural elements while 
playing “hide the toy-dragon”, and pinpoint indications of emergent structural awareness among the 
small children. The inclusion of toddlers, as young as 2 years, within the scope of focus for TWG13 
came as a result of the CERME10 conference and as an overall desire to increase insight into 
children’s learning of mathematics (Levenson, Bartolini Bussi, & Erfjord, 2018). Nordemann and 
Rottmann look at how children’s repeating pattern competencies can be fostered by physical 
activity, and report that development can be found especially for children with learning difficulties 
in mathematics. Nergård studies five-years-olds children’s use of mathematical concepts, and found 
evidence of such use when they compare, explain and argue about natural phenomena.  

Erfjord, Hundeland, and Carlsen characterise the mathematical discourse evolving as a teacher 
facilitates a mathematical activity for five-year-old children in kindergarten. Their findings indicate 
that mathematical discourse was characterised by engaging only one or two of the six children in 
longer periods and children’s contributions were often of a non-mathematical nature. Gifford and 
Thouless address how teachers develop young children's pattern awareness.   

Maffia and Mancarella consider children’s interpretation of equalities represented through images, 
and found evidence that relational thinking can be supported when children work with number 
sentences containing equivalence. Maj-Tatsis and Tatsis look at characteristics of tasks that promote 
mathematical reasoning among young children. Tasks that required a shift from geometrical 
structures to numerical ones were found most difficult for children. Wernicke et al. look at social 
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training of spatial perception and spatial cognition in an ongoing study based on a training program 
of children in a day-care centre. 

In two studies situated in Malawi, Gobede investigates mediation strategies used by early years 
mathematics teachers and Mandala explores how primary teacher education prepares pre-service 
teachers to teach early years mathematics. Svensson focuses on pre-school teacher students’ ability 
to capture children's learning of mathematics in activities in preschool while Johansson, 
Tossavainen, Faarinen, and Tossavainen analyse student-teachers' perceptions regarding teaching 
mathematics for young children. Johansson et al. found evidence of different pedagogical beliefs 
and expectations regarding what mathematics teaching in preschool should be. Breive considers the 
balance between freedom and structure in kindergarten teachers’ orchestration of mathematical 
learning activities. Tsamir, Tirosh, Levenson and Barkai investigated preschool teachers’ self-
efficacy for teaching patterning, with attention to why teachers report high self-efficacy before the 
professional program involved. Finally, Vogler focuses on the indirect processes of learning in 
preschool situations, which may be considered as an opportunity for children to participate and 
learn in what may be denoted as a “double layer structure’ of every day meanings and abstract 
mathematical meaning”. 

Methodological approaches 
In TWG13, there has been an ongoing discussion regarding methodological approaches to 
investigating early mathematics learning. These approaches often reflect the culture of educational 
settings for children. In some countries in Europe, all kinds of testing and even organised activities 
are considered problematic when it comes to preschool. The role of play, from (total) children 
initiated free play to strong teacher guided play is another important discussion that has been 
ongoing in the group (Levenson, Bartolini Bussi, & Erfjord, 2018). In CERME 11, this discussion 
again arose and emphasised e.g., by Breive, who considered the balance between freedom and 
structure in mathematical activities for five-year-old children in kindergarten. 

Most of the research reported in TWG13 follows a qualitative data collection approach, with 
interviews or observations, or lesson observations and video data. However, a variety of ways for 
analyzing the data were adopted such as: cross-case, process oriented, interpretative, and 
hermeneutical approaches. There are also reports from a few experiments or design research 
studies, with pre and post examination of children, mainly with interviews and qualitative analysis. 
There are also a few quantitative approaches, utilizing tests or questionnaires, and one mixed study. 
These differences reflect the scope of that area of research, and that different kinds of research can 
contribute differently.  

Reference 
Levenson, E. S., Bartolini Bussi, M. G., & Erfjord, I. (2018). Early years mathematics. In T. 

Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing research in 
mathematics education: Twenty years of communication, cooperation and collaboration in 
Europe (pp. 106–114). New York, USA: Routledge. 
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Pips (times) Pods: Dancing towards multiplicative thinking 
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This paper examines the design of an iPad touchscreen application (TouchTimes), that provides 
children with the opportunity for direct mathematical/multiplicative mediation through fingers and 
gestures. We describe the explorations of a pair of third-grade students with this technology, in which 
engagement with number in a multiplicative sense draws on a singular interaction between the eyes 
and both hands. Using a theoretical perspective informed by tool use and by embodiment in 
mathematical thinking and learning, we seek to gain insight into the affordances of the TouchTimes 
app in the development of multiplicative awareness in young children, with a specific focus on the 
multimodal nature of their mathematical interactions.  

Keywords: Touchscreen technology, multiplicative reasoning, primary, tangible. 

Introduction 
Multiplicative reasoning is the ability to work flexibly and efficiently with “the concepts, strategies 
and representations of multiplication (and division) as they occur in a wide range of contexts” 
(Siemon, Breed & Virgona, 2005, p. 2), concepts that include direct and indirect proportion. Among 
other things, such reasoning involves learners viewing situations of comparison in a multiplicative 
rather than an additive sense. As students progress to larger whole numbers – and then to decimals, 
fractions, percentages, ratios and proportions – multiplicative reasoning becomes key to a large 
number of mathematical situations found in upper elementary and middle school (Brown, Küchemann 
& Hodgen, 2010). 

In the primary grades (K–3), however, the action of repeated addition is commonly used as the initial 
(and, for some, the sole) means for introducing and working with multiplication, and it tends to 
become firmly entrenched as the dominant perception of multiplicative situations, both for students 
and for primary teachers (Askew, 2018). This becomes problematic when students begin to engage 
with mathematics that requires a direct capacity to think multiplicatively (e.g. Siemon et al., 2005). 
Consequently, multiplication may prove a crucial turning point in student learning, possibly a turnstile 
for mathematical competence. Rather than rely exclusively on repeated addition, approaches need to 
be developed and implemented in the early grades that highlight the function aspect of multiplicative 
reasoning that can be so critical to future success with mathematics.   

Since Vergnaud (1983) wrote about the conceptual field of multiplicative structures, considerable 
attention has been given to the comparison of quantities using multiplicative thinking. Extensive 
research has documented difficulties students have with employing it in middle school and beyond, 
which Brown, Küchemann & Hodgen (2010) claim has not improved since the 1970s. Limited student 
experience with different multiplicative situations is proposed as a contributing factor to this 
significant challenge (e.g. Downton & Sullivan, 2017). Furthermore, Askew (2018) contends that the 
lack of development of multiplicative reasoning in the primary grades is “a consequence of 
predominant approaches to teaching multiplication limiting access to opportunities through which 
thinking functionally can emerge” (p. 1).  
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Multiplicative reasoning and digital technology 

Digital technology is providing new resources and means that show promise in supporting the 
mathematical learning of young children (e.g. Sedaghatjou & Campbell, 2017). In particular, the 
multi-touch affordances of TouchCounts (hereafter TC) allow children to produce and transform 
objects directly on an iPad screen using fingers and contact gestures, providing new counting and 
early arithmetic opportunities that are enabled by the app’s visible, audible and tangible design. 
Sinclair and de Freitas (2014) show how the interaction in TC between fingers and eyes—between 
the tangible and the visual—enables new ways of thinking about number.  

TouchTimes (TT), a novel extension of TC, is a gesture-based, multi-touch environment for 
multiplication designed to improve children’s flexible and relational understanding of multiplication. 
Multiplicative rather than additive, TT allows children to create the “visual images of composite unit 
structures in multiplicative situations” (p. 306) that Downton and Sullivan (2017) argue are 
fundamental to developing multiplicative reasoning directly. Children can produce and transform 
objects directly on an iPad screen, using new gestural experiences of multiplication that provide direct 
feedback through both symbolic and visual representations. Our research focus involves exploring 
the influence of TT as a gesture-based modality for conceptualizing, visualizing, experimenting with 
and communicating about multiplicative relationships with students in primary grades (2–4).  

Brief description of TouchTimes 

TouchTimes is an iPad application, which when initially opened displays a blank screen that is split 
in half by a vertical bar (Figure 1a). A user can place and hold her fingers on one side of the screen 
to create coloured discs, which we call “pips”. (In what follows, we presume that the user has chosen 
the left side of the screen, but the description is also symmetric for the right side of the screen.) Each 
finger that maintains continuous contact with the left side (LS) produces a different coloured pip 
(Figure 1b). When the user taps her finger(s) on the right side (RS) of the screen, a unit of coloured 
discs appears. These units, which we call “pods”, are comprised of the coloured pips that correspond 
to those pips being created by the user’s fingers in contact on the LS (Figure 1c). As each tap creates 
a new pod, TouchTimes displays the number sentence that corresponds with the pips and pods created 
by the user. When a finger is taken off a pod, it remains on the screen, but becomes slightly smaller, 
so that users can create numerous pods. As long as at least one finger remains in contact with the LS, 
the pips are maintained within the pods, but when the user removes all fingers, the pods disappear 
(“multiplying by 0”). Contact with the screen can be made either one finger at a time or several fingers 
simultaneously. Pods can be dragged into the trash, at the bottom of the screen. 

Pimm and Sinclair (2015) note that TouchCounts ‘takes care of the counting’ through both symbolic 
and auditory means in response to the user’s fingered requests. Although done in a different manner, 
TT ‘takes care of the multiplying’, both in terms of making sure that the pods on the RS are reflective 
of the number of pips on the left, and in terms of ensuring that the equation on the screen corresponds 
to the pips and pods that are displayed in response to the fingered requests of the user. 

Downton and Sullivan (2017) argue “that the co-ordination of composite units is the core of 
multiplication, and that young children’s (8 year-olds) concept of multiplication is based on the 
meaning they give to the composite units they construct” (p. 306). Thinking multiplicatively involves 
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the ability to simultaneously think about units of one and units of more than one. TT embodies a 
multiplicative model that involves the co-ordination of two quantities similar to Figure 1d below 
(Boulet, 1998, p. 13). One way to conceptualise this action is to see the LS touches as the number of 
pips which are then unitised into pods, with the pods then unitised into the product, as in the 
Davydovian approach (see Boulet, ibid.). In this view, the sentence 3 x 4 = 12 is read as the 
multiplicand times the multiplier equals the product, which reverses the typical North American 
approach (3)(4x). Of course, it is also possible to see the pods as being groups of pips, which can be 
understood in terms of repeated addition. However, the simultaneity of the two-handed touching 
retains less of the temporal, sequential sense of repeated addition. Part of the research goal is to 
develop tasks that promote a more multiplicative sense of multiplication.    

    

Figure 1: (a) Initial screen of TT; (b) Creating pips; (c) Creating pods; (d) Multiplicative model 

Theoretical Framing 
The theoretical orientation of this study draws principally on theories of embodiment and the relation 
between bodily movement and mathematical meaning-making (see Nemirovsky et al., 2013; Radford, 
2009). We take the monist, ontological position found in inclusive materialism (de Freitas & Sinclair, 
2014) on the nature of body and mind, which does not subordinate sensorimotor actions to thinking, 
but instead recognizes the way in which new ways of moving one’s body are new ways of thinking. 
For this reason, we are less interested in studying TT as a manipulative involving acts of moving 
structures and are more interested in the structured acts of moving that TT modulates. Given this 
orientation, and the gesture-rich design of TT, our focus will include not only verbal explanations but 
also gesture-based actions, as we are particularly interested in the structured acts of gesturing that 
arise through the use of the app. The epistemic and communicative nature of gestures has been well 
documented in the literature (see Sinclair & de Freitas, 2014) and warrants our attention to gestures 
as particularly relevant structured acts of moving. Since the multitouch environment also enables 
children to work together, we will also focus on jointly structured acts of moving. Therefore, we will 
be investigating how a pair of students’ interactions with TT prompts new gestures and how these 
new structured acts of moving are related to multiplicative thinking. 
Methods 
The data for this paper comes from an exploratory conversation conducted by one of the authors as 
part of an iterative design experiment aimed at refining the TT prototype and developing appropriate 
tasks for use with grade two and three children. After the researcher requested a pair of students who 
had not yet used TT (three pairs of children had already participated), the two girls, whom we refer 
to as Jacy and Kyra, were selected by their classroom teacher to explore TT with the researcher. This 
interaction occurred in an elementary school in a culturally diverse and affluent neighbourhood in 
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British Columbia, where the interviewer worked for approximately 30 minutes with the pair. A video-
recording of this interaction was created, and the drawings produced by the girls were kept. The 
children were initially given time to become familiar with TT through independent exploration prior 
to any specific requests or questions from the interviewer. Given that this was the pair’s first 
encounter with TT, it provided an opportunity to observe how they made sense of the app and if their 
interactions with TT would lead to an ability to identify certain multiplicative aspects with distinct 
handedness. After a period of free exploration that lasted about seven minutes, the interviewer began 
to use prompts to focus the attention of the children on certain features of their creations on the iPad 
screen. Using TT, in conjunction with the significant presence of an adult, the initial aim of this 
research was to understand better the impact of the affordances of TT on young children’s 
multiplicative thinking, with a particular focus on the multimodal and joint nature of the mathematical 
activity of two girls working together on a single iPad.  

Data analysis 

In order to account for the multimodal, distributed nature of the phenomenon seen in the video-
recordings, following our theoretical tenets, we produced an orchestral transcription of ten-second 
increments involving three separate, but interacting modalities: voices, hands and the iPad screen 
itself (Figure 2). The top three rows were designated for the voices of each child and the interviewer, 
thus providing a way to sequence the speaking visually in a manner that would effectively display 
overlapping voices. Descriptions of what the children’s hands were doing on both sides of the iPad 
screen, were sequenced in time with the voices transcribed in the section above.  

As the importance of the iPad screen itself became apparent, additional rows were created to reflect 
what could be seen on the top, left and right sides of the iPad screen, supplemented by screen shots 
to illustrate these ideas. The orchestral transcription enabled us easily to identify patterns of structured 
acts of moving throughout the course of the interaction, by comparing the images.  

Voices 
Jacy      Laughs…………………………             
Kyra Wait, now I’ll make a three.     And then… laughs      They’re dancing! Laughs 
Interviewer 

Hands Left Screen 3-finger simultaneous touch (RH) 3 sequential finger touches 
Right Screen     Pointer finger touch (RH)             Hold two fingers 

iPad 
Screen 

Top of Screen 3           3x1=3 2x1, 2x2, 2x3 

Left Screen 3 pips 

Right Screen      1 pod 1, 2, 3 pods 

Figure 2: Orchestral transcription 

Results 
From the orchestral transcript we chose two intervals that illuminate some of the gestures made by 
the girls during their exploration of TT that we see as being relevant to multiplicative thinking. Prior 
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to presenting these two intervals, however, we describe the pair’s initial interactions with TT, which 
began with the researcher giving the pair permission to “play a little bit”. Each girl placed and 
removed her pointer finger on and off the screen in what appeared to be random motions. After 
approximately fifteen seconds, Jacy placed her thumb on the screen in addition to her pointer finger, 
creating two pips. Kyra next touched the screen, creating a pod composed of two pips (Figure 3a). 
Jacy then began to use both hands. It is shortly thereafter that Jacy said, “How do you get those mini 
ones?”, thus marking a transition from random tapping to more intentional actions on the iPad screen.  

Disappearing pips and ‘dancing’ pods 

Approximately five minutes into the exploration, Jacy instructed Kyra to “Wait, just press a lot. Press 
your whole hand.” Kyra responded by placing all five RH fingers simultaneously on the LS and 
waited while Jacy created pods on the RS one at a time with her index finger. The top of the iPad 
screen read 5x1, 5x2, 5x3, 5x4, 5x5, 5x6 until Kyra abruptly removed her hand from the screen, 
causing both girls to laugh. At this point, Jacy began directing the creation of pips through the 
placement and removal of Kyra’s fingers on the LS: when Kyra returned her five fingers to the iPad, 
Jacy physically removed her partner’s pinky and thumb from the screen, causing some confusion. 
Jacy tried again, telling Kyra to “Wait. Put those [indicating Kyra’s RH fingers] and then take up 
your pinky and thumb.” Kyra placed three fingers on the LS, while Jacy created one pod on the RS. 
This was clearly not what Jacy was after, and she further instructed Kyra to “Press your pinky and 
thumb away. No wait. Put your pinky and thumb down [Jacy physically presses Kyra’s pinky and 
thumb down (Figure 3b)] and now take them away.” Each time Kyra’s pinky and thumb touched the 
screen, the resulting pips changed colour, and the composition of the pod that Jacy was ‘holding’ 
changed from three pips to five pips and back to three pips as Kyra alternated rhythmically, making 
the pod appear to be swinging back and forth (Figure 3c). Jacy created a second pod and at this point 
Kyra pointed to the pods with her free hand and declared with a laugh that “They’re dancing!”.     

   

Figure 3: (a) Two fingers; (b) Pinky and thumb down; (c) Pinky and thumb up 

Throughout this brief episode, Jacy became interested in exploring how the creation and deletion of 
pips on the LS affected the shape and colour of the pods on the RS, as demonstrated by both her 
comments and her actions. This complex interplay between the girls and TT involved a coordination 
of two pairs of hands, which resulted in a joint holding and repetitive-tapping gesture. The appeal of 
the ‘dancing’ pod seemed to draw the girls’ attention to the relation between the RS and LS finger 
touches, which we see as significant in terms of multiplicative thinking. It involved the intentional 
co-ordination of two quantities: the multiplicand (three or five pips) and the multiplier (the one pod). 
The girls’ joint gestures expressed their attention to the way in which the pods on the RS are directly 
affected by changes related to the number of pips controlled by the finger actions on the LS. 
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Counting by fours and fives 

After seven minutes of exploration, the interviewer asked Kyra to put four fingers down, which she 
did with a simultaneous four-finger gesture, creating four pips on the LS. Without prompting, Jacy 
created a single pod on the RS with her index finger (Figure 4a). When questioned about what she 
noticed, Jacy replied, “Four times one equals four”. She then created additional pods with her thumb 
while maintaining her index finger on the original pod (Figure 4b). When asked how Jacy could make 
five with one finger on the RS, Kyra’s thumb touched the screen to create five pips, while Jacy 
continued to add pods on the RS (Figure 4c). After a pause, the interviewer asked, “Are you making 
a five now?” At this point Jacy, who had been creating additional pods with her thumb, glanced 
towards the top of the screen which displayed 5x10=50, then 5x11=55. She said, “Fifty-five, sixty…” 
and with excitement, “Wait! It’s counting up by fives! Sixty-five, seventy, seventy-five, eighty, 
eighty-five, ninety, ninety-five…”. The pair were then asked what they could do to count by fours. 
Kyra removed one of her five fingers from the screen. Jacy said, “Count up by fours?” and physically 
moved closer to the left side of the screen, causing Kyra to remove her hands. While placing her 
thumb and all fingers except her pinky on the screen, Jacy explained that you would “Put four fingers 
down”. Meanwhile, Kyra used her index finger on the RS (reaching over Jacy’s arm) to create pods 
(Figure 4d). Jacy then said, “Two, four, six, eight, twelve” then “wait, what?” after she noticed the 
product displayed on the iPad screen go from eight to twelve. She silently observed the next product 
and then began to count aloud again: “Twenty, twenty-four, twenty-eight…We’re counting by fours.”  

    
Figure 4: (a) First pod of 4; (b) Second pod of 4; (c) Many pods of 5; (d) Crossover pod making  

The girls had transitioned away from single touches and were now making a simultaneous touch 
gesture, as in the four-finger gesture described above. The interviewer’s first question was meant to 
draw attention to the number/colour of pips in the 4-pod they had created, but Jacy described the 
multiplication statement instead. The interviewer then hoped to elicit the making of a 5-pod in order 
to prompt the unitising of five pips into one pod. With Kyra’s additional finger on the LS, Jacy did 
indeed begin creating 5-pods, but she did not seem to be aware of the shift from 4-pods until she 
noticed the multiplication statements, and that the product was increasing by five with each RS touch. 
This induced a particular kind of joint skip-counting gesture in which one girl was responsible for 
holding pips while the other girl’s sequential touches created pods. The pair then switched roles to 
skip-count by four, with Jacy holding pips and Kyra sequentially making pods. Unlike the skip-
counting that occurs in many classrooms, where children count intransitively by the unit (“four, eight, 
twelve”, etc.), the skip-counting in TT explicitly involves gesturally expressing the unit (the pips) 
and the number of units (the pods).  

Jacy’s counting self-correction seems to indicate a shift from rote counting to co-ordinating the joint 
skip-counting gesture (tangible expression) with the products (symbolic expression) that she could 
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see on the iPad screen. When asked how Jacy could create a 5-pod, Kyra who was in control of 
creating the pips, immediately added a finger to the screen and later removed a finger when prompted 
to count by fours. Kyra was controlling the effects of the multiplier (the pips) on the multiplicand (the 
pods) with her fingers. Jacy, however, did not attend to the effects of each added pod on the product 
until after she noticed the product changing in the equation at the top of the iPad screen. Skip-counting 
in TT using the joint skip-counting gesture involves co-ordinating two quantities (instead of one) and 
is therefore more multiplicative than additive.   

Discussion  
The intent of the TT design was for learners to notice the relation between the number and colour of 
pips, and the shape and content of the pods, as this is the basis for the multiplicative operation. 
Although the girls created numerous pips and pods, it was not until the joint holding and repetitive-
tapping gesture that they seemed to co-ordinate this relation. Indeed, it appeared to be the shifting 
pod shape, and then the changing pip colour, that initially drew their attention. The joint holding and 
repetitive-tapping gesture, which arose from manipulating the screen in exploratory ways, became a 
gesture for expressing the relation between pips and pods. The girls were able to make visible the 
effect of changing the unit through the tapping on and releasing of pips, which resulted in the changing 
size, shape and colour of the pods. When there was more than one pod on the screen (as in Figure 
4c), the joint holding and repetitive-tapping gesture produced the multiplicative effect in which one 
new tap produced a new pip in every pod simultaneously.  

In the previous section, we outlined how the joint skip-counting gesture can be viewed as more 
multiplicative than additive. However, we think that a gestural shift from tapping one finger at a time 
to create new pods, to tapping several fingers simultaneously would provide an even stronger 
multiplicative effect. We know from prior TouchCounts research that sequential tapping was more 
frequent than simultaneous tapping, during children’s initial interactions. Since the girls rarely created 
several pods simultaneously, we hypothesise that such a gesture involves a more difficult co-
ordination and may need to be prompted by a particular task.   

Another significant aspect of the actions described throughout this paper involves the joint nature of 
the girls’ interactions. In both of the gestures identified, the pair must co-ordinate their hand 
movements and there were a few instances during the 30-minute exploration in which one of the girls 
“took over” TT. We wonder how a situation with two children co-ordinating multiple hands would 
differ from one in which a single child coordinates only her own hands.  

Conclusion 
Designed to support the development of multiplicative thinking, TT provides young learners with 
ways of thinking about multiplication that are not solely dependent upon the use of repeated addition. 
Two intervals were described in the 30-minute episode reported above, in which the girls created and 
sustained particular structured ways of moving their hands that we hypothesise as being relevant to 
the development of multiplicative thinking. The two primary gestures discussed were the joint 
holding and repetitive-tapping and the joint skip-counting gestures. The former prompted and enabled 
the girls to attend to the relation between the number/colour of pips and the pods, and thus the co-
ordination of the two quantities. The latter enabled the girls to produce multiples of a number 
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determined by the number of pips. Attention to the symbolic expression on the screen was particularly 
salient in the second interval. We highlight that the girls primarily engaged in free exploration 
throughout this experiment, with few prompts from the interviewer. In future explorations, we intend 
to build upon the insights gathered here to design tasks that can effectively prompt and support similar 
types of gestures, and to link these gestures to other off-line and TT-based actions. 
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This study contributes to the field of arithmetic learning a framework based on a conjecture that 
learning is a change in ways of experiencing numbers – decisive for what is possible to do with 
numbers in arithmetic tasks. 309 task-based interviews with 5-6-year-old children were used to 
develop the framework. To validate its use for studies on arithmetic skills development we selected 7 
children who between two interview occasions developed from scoring 0 in the first interview to 
>75% correct answers in the second interview. Based on the results of these children’s changing 
ways of experiencing numbers, we conclude that arithmetic skills development can be found 
empirically related to changes in the children’s ways of experiencing numbers, which validates the 
framework as being a useful tool to follow and describe children’s arithmetic skills over time. 

Keywords: Arithmetic skills, early childhood education, mathematical development, variation theory 
of learning.  

Background and aim 
Early arithmetic development has raised an increasing interest during the last decades, providing the 
mathematics education field with observations of children’s counting strategies (Carpenter, Moser & 
Romberg, 1982) and learning trajectories (Clements & Sarama, 2009; Cross, Woods & 
Schweingruber, 2009). Multiple studies within this knowledge area have proven that learning 
arithmetic is complex but most children do in fact learn to solve simple arithmetic problems during 
their preschool years. Nevertheless, the development of arithmetic skills is a challenge to study, not 
least because arithmetic computation includes knowledge and awareness of several aspects of 
numbers and principles (Baroody, 2016). Even if children have strategies to solve a task, their 
strategies may not be based on conceptual understanding of relationship between and within numbers 
and arithmetical principles, but rather on procedural knowledge (see Fuson, 1992). Relying on 
procedural knowledge alone has not shown to facilitate further learning and may even induce 
mathematics difficulties when encountering more advanced arithmetic tasks (Gray, 1991; Gray & 
Tall, 1994; Neuman, 1987). Of educational and scientific interest is thereby to be able to interpret the 
way a child understands numbers and what s/he can do with numbers in arithmetic tasks. 

Our approach to learning and development is experiential, based on Variation theory of learning 
(Marton, 2015), meaning that how a child acts when trying to solve an arithmetic task depends on the 
child’s way of experiencing numbers in the task. Variation theory explains learning failures in a 
specific way and spells out the conditions of learning; when learners fail to learn what was intended, 
they have not discerned aspects that are necessary to discern. So, the very core idea of Variation 
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theory is that discernment is a necessary condition of learning. Furthermore, the way a learner is 
experiencing numbers is expressed in the way the learner is acting in solving arithmetic tasks. This 
approach adds to the field of research an alternative approach to understanding development and 
learning as changes in ways of experiencing numbers in arithmetic tasks, that is what is discerned by 
the learner and what is yet to be discerned, rather than learning to use more sophisticated strategies. 

The aim of this paper is to describe a framework of children’s ways of experiencing numbers. To 
validate its use for studying arithmetic skills, we used empirical data of children’s acts and utterances 
in interviews from a smaller sample of the whole data set and discuss to what extent these children’s 
increased arithmetical skills can be explained in terms of different ways of experiencing numbers. 

The study 
This particular study is part of a larger project (FASETT) in which a pedagogical program to enhance 
children’s number knowledge and arithmetic skills was developed. To assess this project we needed 
a framework to consolidate our conjecture of how children develop arithmetic skills that would allow 
us to study children’s development and find theoretically and empirically sound explanations for their 
learning and possible impact of implemented teaching programs. 

103 preschool children participated in researcher-designed interviews based on addition and 
subtraction tasks (number range 1–10). The interviews were conducted at three occasions: in the 
beginning of the last preschool year (5-yearolds), in the end of the last preschool year (8 months later) 
and after another year in pre-primary school (3 x 103 children = 309 interviews). Each interview was 
video-recorded, with the legal representatives’ permission, to ensure repeated analyses. Ethical 
clearance has been provided to collect personal data for the longitudinal investigations of the children. 
Furthermore, we chose one group of children (n=7) who made substantial improvements in their 
interview scores between interview 1 and 2 (from 0 to >75% correct answers on arithmetic tasks) for 
thorough analyses of their answers in the interviews. 

Developing a theoretically informed framework 

The interview data, consisting of 3 x 103 interviews (0% falling-off), was used as empirical basis for 
developing a framework of the outcome space of different ways of experiencing numbers. The 
children’s acts and utterances regarding eight items were the unit of analyses. Several researchers 
participated in this thorough work, both individually and collectively to fine-tune the characteristics 
for each category. Six different ways of experiencing numbers have been found. They are distinct in 
that each category forms a qualitatively different way of seeing and thus understanding what is 
possible to do with numbers in an arithmetic task. The framework is generated from the analysis of 
answers to each task, not as a general expression of a specific child. The ways of experiencing 
numbers are thus analysed as unique observations of each item in the interviews, which gives us a 
sample of approximately 2400 observations (309 interviews x 8 items). 

Validating the framework 

The purpose of this paper is furthermore to validate the framework as a tool for studying children’s 
arithmetic skills development. We thereby compared a group of children (n=7) who in the first 
interview scored low concerning correct answers (0 of 8 possible) and high in the second interview 
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(>75%), eight months later. Our concern is to what extent the improvement can be explained by their 
different ways of experiencing numbers. These children’s ways of experiencing numbers are, in line 
with the framework, analysed as unique observations of each item in the interviews, which gives us 
a sample of 56 observations (7 children x 8 items). 

The framework 
The result from analysing the interviews constitutes six distinct ways of experiencing numbers (Table 
1, left column). These are described in terms of criteria for inclusion (Table 1, middle column).  

Ways of 
experiencing 
numbers 

Criteria for category inclusion Strategies enacted when experiencing 
numbers in respective ways 

As words - Number words are used in 
quantitative contexts but without 
numerical meaning 

- Random number words are used 
solely or as a sequence, or 
- Number words from the given task 
are repeated 

As names - Numbers are ordered in a sequence 
- Number words describe “the nth” 
object, no cardinal meaning 
- Names cannot be added or subtrac-
ted from other names, because they 
lack cardinal meaning 

- Ascribing number names to objects 
- Saying the following number word 
in the counting sequence as an answer 
to an arithmetic task 
- Static way of representing a number 
with fingers 

As extent - Numbers are approximate with a 
cardinal meaning 
- Some sense of plausible quantities 
related to the task 

- No attempts to count single units 
- Numbers are used to give a plausible 
description or comparison of quantities 
(however not exact) 

As 
countables 

- Strong influence of the ordinal 
aspect of number 
- Added units of ‘ones’ 

- Counting all parts and the whole 
- Exceeding the subitizing range 
imposes counting to determine a set 

As structure - Numbers are composite sets 
- The part-part-whole relation is 
constituted in the act  

- Using finger patterns to structure 
numbers’ parts and whole 
- Operating on the relation between  
parts and/or the whole  

As known 
number facts 

- Numbers are instantly recognized as 
a part-whole relation 

- Giving an instant (correct) answer 
- Retrieving from known facts 

Table 1. Overview of the criteria for category inclusion and empirical expressions 

Furthermore, the way to experience numbers is conjectured to be related to what is possible to do 
with numbers, which means that how children use numbers and express their understanding in words 
and in gestures are keys to interpreting their ways of experiencing numbers (Table 1, right column). 
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In the following these different ways of experiencing numbers and the implications for solving 
arithmetic tasks will be described with examples from the interviews. 

Numbers as words 

Children expressing their experiencing numbers as words say random numbers, either solely as an 
answer to a task, or as a sequence of words (not in an orderly fashion). This category includes 
instances when a child repeats one of the number words appearing in the task. Thus, numbers are 
words used in certain contexts but there is nothing you can do with numbers to solve the task at hand. 

Task:  Seven marbles are hidden in two hands. How many could be in each hand?  
Child: Five, eight, nine [taps her finger at the right hand of the interviewer, once for each 

number word], ten [points at both hands], six [points at the right hand] and seven  
[points at the left hand]. (PFÅ09-1) 

Number words are said as an answer to a question with a numerical content, but as shown in the 
excerpt above, there is hardly a numerical reasoning guiding the child’s way of using numbers. 
Number words are in this sense experienced as a type of word in a certain context. They refer to 
quantitative situations, but the child does not know what numbers they refer to (Wynn, 1992).  

Numbers as names 

Children seeing numbers as names have been observed by Neuman (1987), and described as a 
procedure of ‘word tagging’ by Brissiaud (1992). The child considers number words as names given 
to a counted item and the last uttered word denotes only that single object.  

Task: You have ten candies and eat six of them. How many are left? 
Child: [shows all the fingers on the left hand and the thumb on the right raised] Ate six. 

This is six. And then I took the thumb away. So, it’s five. (ASJ10-1) 

Numbers as names means that each item within a group is given a specific number name. Taking 
away one (the thumb) of the six fingers and answering “five” to this specific task, is a reasonable 
answer if the thumb is seen as “the six”. Such named items cannot be added to or subtracted from 
anything in a true sense, since they do not have a cardinal meaning. What characterizes this way of 
experiencing numbers is thus the ordinal aspect, which means that for example when fingers are used 
to count on, each finger is given a specific number name and this name cannot be altered because the 
other fingers are given their unique number names. The lack of cardinal meaning of these number 
names is also expressed when children answer with the following number word in the counting 
sequence. This makes sense to the child since the order of the number words implies that the addition 
of a quantity will include (at least) the next word in the sequence (the nth  item). 

Numbers as extent 

Experiencing numbers as extent means that children have an awareness of numbers in that they use 
quantities as approximate (Neuman, 1987). 

Task: Seven marbles are divided in two closed hands, how may the marbles be divided? 
Child: [points on the closed right hand] One in that one [points at the closed left hand] five 

in that one. 
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Interviewer: How did you figure that out? 
Child:  [points at the left hand] Eight in that one and two in that one [points at the right 

hand]. (PLS05-1) 
To experience numbers as extent are in a sense cardinal: children give plausible approximations of 
smaller and larger numbers that together are close to the correct answer. The lack of ordinality means 
that children do not make any attempts to count in order to determine the quantity of a set. This also 
makes it impossible to add or subtract in other ways than giving an approximate estimation of more 
or less than the given numbers in the task. The answer may though be quite close to the correct answer. 

Numbers as countables  

Experiencing numbers as countables is strongly influenced by the ordinal aspect of numbers, as 
children count to make a number, often using their fingers to count on. Numbers are thus seen as 
added units of ‘ones’ which may be difficult to coordinate in an arithmetic task. 

Task:  You have two shells and your friend five. How many do you have together? 
Child:  One, two [points at his little and ring finger] wait, I have to start over, 1, 2, 3, 4, 5 

[pointing at fingers starting from long finger, index, thumb and thumb, index on the 
other hand. Then starts again from the little finger] 1, 2, 3, 4, 5. Five! (AVT09-1) 

This child knows how to count fingers as representations for the items mentioned in the task. 
However, he does not seem to discern any structure that would help him solve the task in an easier 
way – he is able to create parts but has trouble coordinating them (c.f. Steffe, Thompson & Richards, 
1982). Numbers as countables further implies that numbers are not comprehended as a composite set, 
they are created by adding ‘ones’. This becomes visible when using the strategy “counting all”. Some 
children do however experience small sets by subitizing for example three fingers (that will not be 
counted), but when the quantity exceeds the subitizing range the numbers have to be counted in ones.  

Numbers as structure  

A structural approach in arithmetic problem solving is assumed to promote children in developing 
their conceptual knowledge of numbers (Davydov, 1982; Lüken, 2012; Schmittau, 2004).  

Task:    You have two shells and your friend five. How many do you have together? 
Child:  [puts her left hand with all fingers unfolded on the table, then the right hand with 

thumb and index finger unfolded, looks at her hand shortly] Seven! [with a 
confident smile] (HNV02-2) 

The child knows the finger pattern for five and two, but needs to create the whole by seeing the parts 
simultaneously both as parts and as a whole, related to each other. This means that some parts may 
need to be counted, while other parts are experienced for example as finger patterns, but the parts and 
the whole are experienced as related to each other and are thus possible to handle as a triad (see 
Baroody, 2016). The difference, compared to experiencing numbers as countables, is the way children 
experience the parts as composite sets that relate to another set and/or the whole. This opens up for a 
different way of handling arithmetic tasks, for example in “seeing the five in the eight”. This has also 
shown to be a key feature of some young children’s spontaneous ways of successfully solving 
arithmetic problems (Björklund, Kullberg, & Runesson Kempe, 2019). 
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Numbers as known facts 

The last category of experiencing numbers reflects an advanced understanding of number relations. 
Either, the number relations are known to the child and s/he does not need to calculate, or s/he has an 
advanced way of reasoning and using retrieved facts to come up with the answer. 

Task: Seven marbles are divided in two closed hands, how may the marbles be divided? 
Child: Four in that one and three in that one. ‘Cause, if you have three and one more it 

makes four. You have three in that one [points at the left closed hand] and three in 
that one and one more, makes seven [points at the right closed hand]. (HRM01-2) 

In this example the child knows how three, four (seen as ‘three and one more’) and seven are related 
and is able to retrieve from memory known facts (‘three and three makes six’) that he can operate 
with to find a plausible solution. The difference between numbers as structure and numbers as known 
facts lies in the child’s approach to the arithmetic task. The former is focused on structuring numbers 
in that the missing addend will be possible to discern (it appears in the structure), while this latter 
category means that the child sees number relations instantly and is often able to describe how s/he 
retrieves the answer from known number relations. 

Validating the framework 
The categories outlined above derives from the 309 interviews and 8 tasks given in each interview. 
Our theoretical conjecture has a pedagogical purpose, which directs our attention towards the extent 
to which the framework can be used to understand children’s developing arithmetic skills. Thus, we 
analysed the target group who made substantial improvements during an eight months period. Table 
2 shows the number of observations within each category in the first and the second interview.  

words names extent countables structure known facts 

10 / 0 11 / 0 10 / 6 1 / 9 0 / 22 0 / 16 

Table 2: Occurrences of ways of experiencing numbers, interview 1 / interview 2 

In Table 2 we can see that children in the first interview are with only one exception found in the 
three first categories: Numbers as words, Numbers as names and Numbers as extent. From earlier 
research we know that a simultaneous awareness of numbers’ cardinal and ordinal aspects are 
important for the child’s ability to operate with numbers. Without these aspects coordinated in the 
arithmetic problem solving process it is not possible to use any counting strategies or arithmetic 
principles (Davydov, 1982; Fuson, 1982). Experiencing numbers in these ways do not include this 
crucial aspect of arithmetic skills and the children’s low achievement on the arithmetic tasks in 
interview 1 is thereby no surprise.  

The second interview includes most observations within the categories Numbers as countables, 
Numbers as structure and Numbers as known facts. Children’s way of experiencing numbers change, 
in this group, towards ways that allow them to handle numbers in prosperous ways in arithmetic 
problem solving. However, there are differences in these categories concerning what they enable the 
children to do with numbers. In some addition tasks the children who experience numbers as 
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countables manage to solve the problems by ‘counting all’ and thus working with added ‘ones’. This 
way of experiencing numbers stand in bright contrast to numbers as structure or as known facts, in 
which the parts to be added or taken away already from the beginning are seen as related to each other 
as composite sets. Because of this latter relational approach to a task, the child usually avoids 
cumbersome strategies such as working with one unit at a time. In other words, they can handle 
arithmetic tasks in a more prosperous way when numbers are experienced as structure. 

Discussion 
The framework was developed first through qualitative interpretations of a large sample of children’s 
different ways of experiencing numbers in simple arithmetic tasks. In this study, we then used the six 
categories derived from the large data, to test the extent to which it was possible to use the framework 
to explain differences in arithmetic skills. The results suggest a confirmation of basic principles of 
Variation theory that failing to solve a task is due to the learner not being able to discern necessary 
aspects within the task and the strategies children use reflect what aspects they discern. Consequently, 
the children who score 0 on their initial interview have not discerned necessary aspects of numbers. 
This is also shown in our definition of the different ways of experiencing numbers. The validation of 
the framework further shows a hierarchical structure of the categories: when more necessary aspects 
are discerned there is also an advancement in what the child can do with the numbers in the tasks.  

When analysing children’s ways of experiencing numbers, their strategies for solving arithmetic tasks 
become possible to understand, what works and why? Their ways of experiencing numbers change 
in most cases from primitive ways (that do not enable them to operate with arithmetic tasks) to quite 
advanced ways of experiencing numbers (that allow them to solve arithmetic tasks as part-part-whole 
relations). The framework opens for interpreting how new experiences may advance children’s 
arithmetic skills that does not depend on correct answers, or learnt strategies, instead it offers an 
alternative: what it means to learn about numbers and how to do simple addition and subtraction.  

The analysis of the changes in ways of experiencing numbers seems to be solid enough to explain 
why some children have difficulties solving arithmetic tasks. Since our target group contained 
children who scored 0 points and improved to almost perfect score, we would suggest that changes 
in ways of experiencing numbers are possible over time and the ways to experience numbers have 
significant impact for children’s possibilities to solve arithmetic tasks. We would argue that more 
attention should be directed towards what children are able to discern in arithmetic situations, than 
strategies to come up with a correct answer. However, more research on a larger sample is needed to 
confirm our statement.  
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Pre-schoolers’ ability to synchronise multiple representations of 
numerosity in embodiment of a counting-on-strategy  

Morten Bjørnebye 

Inland Norway University of Applied Sciences, Norway; Morten.Bjornebye@inn.no  

Based on an outdoors intervention where 4- and 5-year olds were guided in articulated physical 
mapping of a counting-on-strategy, this study aims to examine their ability to embody a min-strategy 
in terms of using and cohering to multiple representations of numerosity. Video of individual post-
tests of the child’s interaction with the affordances are from an interpretive stance analysed from the 
perspective of embodied cognitive theory. Pattern analysis shows that the activity might support early 
appropriation of a counting-on-strategy, and the cross-case analysis reveals diversities in use and 
synchronisation of bodily affordances with verbalised number-space mappings. In particular, it 
demonstrates quality differences in the children’s ability to integrate the kinaesthetic and semantic 
modalities with respectively tactile, visual and mental based representations of numerosity in terms 
of supporting fluency and solving proficiency in counting-based addition.  

Keywords: Embodied cognition, multimodal, addition, counting, strategies  

Introduction 
Mastery of counting based addition is an important stepping-stone to the development of more 
mature, efficient and fluent arithmetic that involves retrieval and decomposition strategies, and the 
counting-on strategy is thus a critical competence in early arithmetic (Clements & Sarama, 2013). A 
conceptual shift occurs when the child refines informal use of a counting-all-strategy (e.g. count both 
addends in 3+2) into a counting-on-strategy and starts to count from the smallest or largest addend, 
which are termed respectively as the max- and min-strategy. The min-strategy involves stating the 
largest integer and count on the number of times equal to the smallest addend.  

Several developmental theories (e.g. Vygotsky & Piaget) and an extensive research literature (e.g. 
Howison et al., 2011; Lakoff & Núñez, 2000; Seitz, 2000) suggest that children learn best through 
play and bodily activities, which underlines a whole-child approach that stimulates cognitive, motor 
and social development. Moreover, there is a rapidly growing literature within the multimodal and 
embodied domain which highlights the use of fingers and gestures as mediating tools for the 
development of arithmetic skills and concepts (e.g. Crollen & Noël, 2015). Yet, little is known about 
how children’s informal motor skills and the use of other bodily semiotic resources might be 
integrated in multimodal interaction for the development of proficiency in addition. Hence, in order 
to address this gap, 10 pre-schoolers were engaged in a 5 weeks guided intervention. They used their 
body to physically map a counting-on-strategy on a 100-dotted matrix. Based on individual post-tests, 
this study examines the participants’ ability to use and integrate multiple representations of 
numerosity into coherently structured articulated body-spatial mappings of an additive min-strategy. 
By coherence we mean the ability to integrate multimodal representations (e.g. kinaesthetic, tactile, 
auditory, visual, semantic) of numerosity according to the structure of the min-strategy (cf. Zmigrod 
& Hommel, 2013) as outlined below.  
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Theoretical framework 
The view that mathematical knowledge is embodied seems to meet a growing acceptance in the 
research domain of mathematical education (Thom & Roth, 2011). Stevens (2012) uses the notions 
“embodiment as conceptualist” and “embodiment as interactionist” as two complementary theoretical 
understandings of embodied cognition. The conceptualist stand provides a profound understanding 
of the nature of human thoughts and how they are organised in vast unconscious and conscious 
conceptual systems that are grounded in everyday activities, motion and physical experiences. An 
interactionist perspective of embodiment acknowledges that the body produces meaning and actions 
in diverse modalities. These often happen in combination and include the use of supporting means 
and tools such as movement, gestures, pointing, physical position and speech (Stevens, 2012). 
Moreover, embodied cognition holds that basic arithmetic is closely related to physical and embodied 
experiences (Lakoff et al., 2000). Hence, embodied actions and use of tools might follow basic laws 
of arithmetic and therefore possess the potential to be an integrated part of mathematical cognition 
that might subserve mental calculations (Johansen, 2010). 

Clements et al. (2013) suggest that the understanding of counting-on strategies rests on the integration 
of the learning trajectories’ counting, subitising and addition. The first trajectory might be elaborated 
by Gelman and Gallistel’s (1978) five counting principles, which form a skeleton structure for 
children’s early development of counting. Applied on a multimodal scene, the one-to-one-
correspondence between items of sets requires the child to relate countable units across modalities 
(e.g. kinaesthetic and visual tags). In counting-based addition, a prerequisite skill which addresses 
the stable order principle is verbal enumeration from a given number-word (e.g. “four, five, six” in 
4+2). This requires the child to understand the relation between the semantic expression of the addend 
and the quantity (Fuson, 1988), which reflects the core of the cardinal principle. The abstraction 
principle is mediated via knowledge of the relations between countable items of sets with various 
abstract or physical modalities; for example, visual and mental units might be included in a count and 
in use of numerical equivalence for comparing sets across modalities. The next trajectory, subitising, 
refers to the immediate perception of the numerosity of small sets of items (Clements, 1999). 
Moreover, the term pattern recognition, which refers to direct visual perception of the numerosity of 
a learnt configuration (e.g. dice), is complemental and dialectical to subitising in early 
conceptualising of cardinality. Finally and central to the learning trajectory of addition is parts-whole 
relations of numbers that comprise an understanding of cardinality as an invariant property across 
any partitioning of a set (e.g. part-part- or part-ordinal-structure). Hence, mental fluency in additive 
manipulation might be mediated across modalities in the form of direct retrieval or decomposition 
strategies (e.g. 2+3=5 and 2+3=2+2+1=4+1=5, respectively), whereas counting-on-strategies build 
on both ordinal and cardinal properties of numbers.  

Methodology 
Participants, intervention and qualitative analysis 

Ten 4- and 5 year olds (4 girls, 6 boys; mean age at point of post-test 4:9) participated in a 5 weeks 
intervention programme, which included seven 1-hour sessions outdoors in the vicinity of their 
kindergarten (mean participation 6.4 sessions). Give-N-post-tests assessing knower-level of 
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cardinality (Lee & Sarnecka, 2010) showed that nine participants were Cardinal Principle-knowers 
(CP-knowers) as they mastered the use of verbal counting for exact enumeration. Moreover, one child 
showed consistency in the production of the maximum four objects on request and was accordingly 
classified as a C4-knower.  

Each session integrated the min-activity as a guided part of a free construction activity. In order to 
get a piece for their design, they had to role two dice (e.g. 3 and 5), and outside a 100-dotted matrix 
(d = 4 m, see Figure 1) verbalise and physically express the largest integer in a simultaneous manner 
(i.e. use the feet to “tag” the dice and say “Five”). Then, inside the matrix and informed by the other 
dice, they had to verbalise and physically tag the smallest addend in a sequential order (i.e. “six, 
seven, eight”). In mapping the sum, they had to hold a one-legged body-pose.  

Based on an interpretive stance, a mix of pattern and cross-case analyses (Yin, 2009) were adapted 
to our objective to examine the participants ability to integrate multimodal representations of 
numerosity according to the min-strategy. First, we examined coherence in each participant’s 
interaction and the use of cross-modal representations of numbers across trials. Then, in order to 
identify differences and similarities in use and integration of modalities, a cross-case analysis was 
conducted. Based on this, categories of task-solution emerged and were synthesised.  

Procedure of the min-task 

Individual post-testing in the 100-dotted matrix (see Figure 1) was conducted by a researcher and 
recorded on video. First, the participants were introduced to the min-task: “You are to do as we did 
in the game earlier (cf. the min-activity described above). Can you toss the dice? Which dice should 
you pick up? What do you do with the other dice?” If necessary, the child was guided via a practice 
trial. Next, in order to ensure variation in numbers to add, at least three tasks were given at each level 
1 to 3: Level 1 – two dice 1 to 4; Level 2 – one dice 1 to 4, one 1 to 6; and Level 3 – one dice 1 to 6, 
the other set to 3, 5 and 6, respectively. During task-solution, the researcher could ask: “What did you 
get?”, “What do you say/do?” and “How many did you get?” 

Results 

 

Figure 1: A small 
circle outside the 
100-dotted matrix 

 

Figure 2: Tagging 
the largest addend 
(Stage 2) 

 

Figure 3: Touch-
counting (Stage 3) 

 

Figure 4: Visual 
counting (Stage 3) 

 

Figure 5: Physical 
expression of the 
final tag (Stage 4) 

The results show that five participants solved all tasks, two had one tagging error while one child 
developed solving abilities across trials after three errors on the first two levels. This adds up to a 
solution rate of 94 % (i.e. 82/87) for the eight participants who showed solving proficiency. The two 
remaining children, C4-knower Garth and CP-knower Hans, failed to solve the tasks (i.e. 0/19). With 
the exception of one-more-tasks (e.g. 6+1, 3+1), most participants showed consistency in strategy 
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usage. However, some children used different representations depending on whether the smallest 
integer exceeded the subitising range 1 to 4 or not. Basically, the children’s cross-modal 
representations of numerosity in the min-task involved four steps or stages: 1) Place the dice with the 
largest addend in the small circle, pick up the other dice; 2) Articulate and physically tag the largest 
integer simultaneously as a whole (see Figure 2); 3) Enter into the matrix and sequentially physically 
tag dots and verbally count the number of units equal to the smallest addend (see Figures 3 and 4); 
and 4) Verbalise the sum and physically gestalt the final tag (see Figure 5). Guided by this framework, 
the next section provides an elaborated presentation of the general results.   

Stage 1: Most CP-knowers used subitising or pattern recognition to determine the outcome of the 
dice. However, one CP-knower had to count dice with numerosity 6, and C4-knower Garth used 
verbal touch counting to perceive the numerical value of dice from 4 to 6. Regarding the more-and-
less-relation, all participants shared the ability to distinguish between the two dice according to size. 
However, in contrast to Garth who picked up the dice with the largest addend, the rest of the children 
placed the dice with the largest integer in the small circle.  

Stage 2: While the CP-knowers verbalised and body-tagged the largest addend in the little circle, C4-
knower Garth ignored the dice on the ground. Physically, some stated the largest integer in the form 
of a two-legged tagging, while others integrated the tagging in gait or jumped into the circle to 
perform a distinct one-legged pose in parallel with an exaggerated articulation of the number word. 

Stage 3: Inside the matrix, the CP-knowers mapped only one physically tagging of a dot onto one 
semantic expression of a number word (cf. the one-to-one principle). This transformation of units 
from the hand-held-dice was based on visual, tactile or mental representations of numerosity. Except 
for Hans who linguistically treated the two addends as separate parts, the CP-knowers showed verbal 
skills in counting on from the largest addend (cf. the stable order principle). C4-knower Garth also 
started to count from “One”, but he kept on counting past the cardinality of the hand-held dice. 
Regarding the spatial and temporal features of the kinaesthetic modality, some participants walked in 
a delayed mode while others combined jumping and rhythmic moves in a rapid, precise and flexible 
appropriation of the spatial layout of the dots.  

Stage 4: Regarding the final body-spatial tagging that stated the sum, a recurring kinaesthetic pattern 
for the CP-knowers was to halt in a one-legged body-pose. Some also attributed an auditory 
dimension as the final step was expressed in a more physically distinct way. This behaviour was often 
accompanied with an accentuated and prolonged articulation of the sum. Some children also 
attributed personal gestalts, bodily rotations and aesthetic moves to the physical tagging of the 
cardinal value. In contrast, C4-knower Garth continued to count and walk past the numerosity of the 
hand-held-dice without assigning a final tag to any physical or semantic significance. Regarding 
conceptualisation of the sum, participants with solving proficiency either stated the cardinal value 
unasked, repeated the last articulated number-word by request or via the counting-all-strategy.  

The results show that major differences across solution proficiency were mediated in their multimodal 
use and synthesis of numerosity in the counting-on part of the min-task (cf. Stage 3). In particular, 
four children showed a preference for the use of tactile support, two for visual and two for mental 
based representations of numerosity, while two showed flexibility in a varied use of these forms of 
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representations in the integration with the semantic and kinaesthetic modalities. Based on this, the 
next section presents examples and rich description for each of these categories.  

Preference in tactile based representations of numerosity: A shared feature for this group is the 
use of fingers for touch-counting the dots on the dice (cf. Stage 3, see Figure 3). Hence, tactile sensory 
information supported the synchronisation of articulation, visual perception and physical tagging of 
the configuration of the dice and the spatial layout in the matrix.  

Preference in visual based representations of numerosity: A core feature of the “visual counters” 
is their use of the eyes to coordinate visual pointing and tagging of dots in the transformation of 
numerical information to the counting-on part of the min-task (cf. Stage 3, see Figure 4). Rich 
descriptions of Jon’s task solution aim to illustrate this group’s proficiency: A recurring pattern was 
to physically tag the largest addend as a whole, then slowly walk into the matrix and, supported by 
visual examination of the dice in between each tagging, continue to map the numerosity onto the 
semantic and kinaesthetic domain to produce the sum. However, in the following excerpt, which starts 
after the dice show 6 and 6, he deviates from his normal pattern: 

Jon: Six and six [Jon uses a finger to touch-count the dots on both dice] One, two … 11, 
12. [He picks up a dice and tags the other using his right leg] Six. [He jumps into 
the matrix and without looking at the dice he continues in direct physical tagging 
in synchronisation with verbalising] Seven, eight … 11, 12 [In a one-legged pose, 
he articulates the sum in an extended manner] 

C4-knower Garth is also categorised as a “visual counter”, although incompletely compared to the 
proficiency described above. For example, in the 5+3- and 6+5-tasks, he counted to 10 and 22 
respectively and only partially based his actions on what seemed to be “visual tagging”. Moreover, 
in these sequences, he lost control over the feet-dot mapping.  

 

Figure 6: Multimodal 
mapping of the largest 
addend (Stage 2) 

 

Figure 7: Rhythmic 
mapping (Stage 3) 

 

Figure 8: Rapid, fluent 
and precise physical 
mapping  (Stage 3) 

 

Figure 9: Bodily 
rotation in expressing 
the sum  (Stage 4) 

Preference in mental-based representations: Shared features for this group comprise the use of 
subitising or pattern recognition to perceive numerical information from the dice (cf. Stage 1), 
articulated one-legged body-pose in mapping of the largest addend (cf. Stage 2) and mentally 
maintaining and retrieving numerical information to support the counting-on part of the min-strategy 
(cf. Stage 3). The smallest addends within the subitising range were most often mapped directly. 
However, when the smallest integer was larger than three, they could also perceive visual information 
from the dice one time during the process. Additional recurring patterns were in the form of precise 
and rapidly articulated body-spatial mapping, which was mediated as rhythmic verbalisations and 
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steps in between dots in expressing the ordinal structure of the counting based addition (cf. Stage 3, 
see Figures 7 and 8). Moreover, they often attributed an exaggerated verbalised and prolonged 
physical mediation of the sum with creative moves and aesthetic body-poses (cf. Stage 4, see Figures 
5 and 9). Below, rich description of Oda’s task solution illustrates this group’s proficiency. In tasks 
where the smallest addend is less than and sometimes equal to four (e.g. 5+2, 5+3, 6+3 and 6+4), Oda 
showed mental fluency in the numerical mapping, as she did not look at the dice after entering the 
matrix (cf. Stage 3). The following excerpt exemplifies her behaviour when the smallest addend was 
larger and it starts after the dice show 6 and 6:   

Oda: [Oda picks up one dice and tags the other with her left foot] Six. [She briefly holds 
the gestalt, jumps into the matrix and tags dots in a rapid motion in synchronisation 
with articulating] Seven, eight, nine, 10 [She halts and quickly looks at the dice 
before she continues in rhythmic tagging] 11, 12 [The articulation of the sum is 
extensive as she performs a one-legged bodily rotation]   

Cross-modal variations in use of representations: Two participants showed flexibility across tasks 
in terms of a varied use of mental, tactile and visual support for modulation of numerical information 
in the counting-on part (cf. Stage 3). This is exemplified by Viola, who applied retrieval of mental 
magnitudes when the smallest addend was within subitising range and varied between using visual- 
and tactile based representations to solve other tasks (e.g. 6+5 and 5+5).   

Discussion 
Based on the shared experiences of 4- and 5-year olds in a matrix to support early appropriation of 
the min-strategy, this study investigates the participants use and coherence of multimodal 
representations of numerosity in task-solution. The post-tests show that eight of the participants 
mastered the min-task, while two of the children lacked solving proficiency. Beyond this dichotomy, 
the preference for touch-counting, visual-counting or mental based representations of numerosity 
reflects major categories concerning the integration of modalities in the min-task.  

A core signature for children with a preference to the retrieval of numerical information to support 
embodiment of the ordinal structure of the min-strategy is a fluent numerical interaction between the 
semantic and kinaesthetic modalities. This is exemplified by Oda in the 5+3-task, where she projects 
a visual pattern recognition of the largest addend and the subitising of the smallest integer into a two-
staged coherent motion in parallel with the articulation “five” and then “six, seven, eight” (cf. Stage 
2 and 3, respectively). This group’s ability to maintain mental magnitudes and modulate cognition of 
addition into compound body movements is further exemplified in the 6+6-task. Based on visual 
pattern recognition of the numerosity, Oda’s interaction suggests that she mentally decomposes the 
additive structure into three parts (i.e. 6, 4, 2), which are perceived and retrieved one at a time and 
holistically expressed as a three-staged movement trajectory reflecting a part-part-part-structure of 
the whole (i.e. 12). Moreover, this group’s preference in mental retrieval seems to support motor 
creativity and verbal manipulation across the four stages of task solution. This is mediated in the form 
of a louder articulation and a harder physical tagging of the largest addend and the sum, rhythmic 
mappings of the smallest addend and in the integration of personal gestalts and bodily rotations in 
expressing the sum (cf. Figures 5 to 9).  
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The “eye- and touch-counters” are characterised by the use of visual or tactile based representations 
of numerosity in a resource demanding integration with the kinaesthetic and semantic modalities. 
Shared features include the use of the hand-held dice for cross-modal transformation of one unit at a 
time and this ordinal structure seems to be projected in a stiff body-spatial mapping. However, in the 
6+6-task “visual counter” Jon deviates from this pattern as a pre-count enables him to mentally 
maintain the sum of the addition during action. Hence, he replaces visual counting and a delayed gait 
with a fluent multimodal mapping of the counting-on-strategy. 

Regarding the children who do not solve any of the tasks, Garth is not able to follow the rules of the 
min-strategy, nor is he able to recognise or enact the multimodal correspondence between the spatial 
information of the affordances and the kinaesthetic and semantic domains. Moreover, his proficiency 
in exact enumeration as a C4-knower might explain his lack of the necessary abilities to embody the 
parts and the whole of the additive structure. By contrast, Hans demonstrates proficiency in coherent 
mappings of numerosity across modalities, but he is not able to use verbal skills to combine the two 
addends into a whole. Thus, this suggests that his mastery of the min-tasks is a linguistic matter in 
terms of a flexible use of the stable order principle (Gelman et al., 1978).     

To sum up: The findings show cross-modal variations in the participants’ mediation of partitioning, 
boundaries and the interior of the additive structures. The results also suggest that the ability to apply 
the abstraction principle in terms of storage and retrieval of mental magnitudes supports fluency in 
the semantic and physical modalities of numerosity. In contrast, participants that mapped information 
from the dice in between each mapping seem to use their cognitive and motor resources with the 
complex synchronisation of eye, dice, finger, feet and matrix. These variation in strategy usage might 
be explained in individual differences in working-memory capacity (Noel et al., 2003), the 
participants’ competences in applying bodily semiotic resources and their proficiency in the learning 
trajectories counting, subitising and addition (Clements et al., 2013).   

Summary and concluding remarks 
Countering a view of cognition which sees mathematics as a fixed disembodied phenomenon, this 
study presupposes that arithmetic structures must be embodied by each child, as the body with its 
motor system is an integrated part of thinking that works dialectically with and under the guidance of 
both external factors and cognitive processes (Seitz, 2000). Thus, by grounding the additive structure 
in the body language of 4- and 5-year olds, we examine their use and coherence of multimodal 
representations of numerosity in counting-based addition. The findings show that mediation of the 
min-strategy rests on the children’s ability to structure and synchronise cross-modal and mental based 
partitioning of numbers and manipulation of the interior and the boundaries of sets. Hence, this study 
contributes to embodied cognitive theory, which regards the body as an open and available resource 
for thinking, learning and social activity (Stevens, 2012). In particular, it demonstrates how embodied 
experiences in ecological rich milieus might conflate with arithmetic structures (Lakoff et al., 2000). 
However, the study is limited in the sense that we cannot make any claims of strategy generalisation 
(Siegler & Jenkins, 1989). Yet, even though some participants have problems to discern the additive 
structure embedded in the complex scene, our overall results suggest that the min-activity might 
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facilitate 4- and 5-year olds ability of to synchronise multimodal representations of numerosity in a 
manner that reflects coherence of the min-strategy.  

References 

Clements, D. H. (1999). Subitizing: What is it? Why teach it? Teaching Children Mathematics, 5(7), 
400-405.  

Clements, D. H., & Sarama, J. (2013). Rethinking early mathematics: What is research-based 
curriculum for young children? Reconceptualizing early mathematics learning (pp. 121–147). 
Dordrecht, The Netherlands: Springer. 

Crollen, V., & Noël, M.-P. (2015). The role of fingers in the development of counting and arithmetic 
skills. Acta Psychologica, 156, 37–44.  

Fuson, K. C. (1988). Children's counting and concepts of number. New York, NY: Springer. 

Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: 
Harvard University Press. 

Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011). The mathematical imagery 
trainer: From embodied interaction to conceptual learning. Paper presented at the Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems. 

Johansen, M. W. (2010). Embodied strategies in mathematical cognition. In B. Löwe, & T. Müller 
(Eds.), PhMSAMP Philosophy of mathematics: Sociological aspects and mathematical practices 
(pp. 179–196). London, England: College Publications. 

Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings 
mathematics into being. New York, NY: Basic Books. 

Lee, M. D., & Sarnecka, B. W. (2010). A model of knower‐level behavior in number concept 
development. Cognitive Science, 34(1), 51–67.  

Noel, M.-P., Seron, X., & Trovarelli, F. (2003). Working memory as a predictor of addition skills and 
addition strategies in children. Current Psychology of Cognition, 22(1), 3–24.  

Seitz, J. A. (2000). The bodily basis of thought. New Ideas in Psychology, 18(1), 23–40. doi: 
http://dx.doi.org/10.1016/S0732-118X(99)00035-5 

Siegler, R., & Jenkins, E. (1989). How children discover strategies. Hillsdale, NY: Erlbaum.  

Stevens, R. (2012). The missing bodies of mathematical thinking and learning have been found. 
Journal of the Learning Sciences, 21(2), 337–346.  

Thom, J. S., & Roth, W.-M. (2011). Radical embodiment and semiotics: Toward a theory of 
mathematics in the flesh. Educational Studies in Mathematics, 77(2-3), 267–284.  

Yin, R. K. (2009). Case study research: Design and methods. (4th ed.). Thousand Oaks, CA: Sage 
Publications. 

Zmigrod, S., & Hommel, B. (2013). Feature integration across multimodal perception and action: A 
review. Multisensory Research, 26(1-2), 143-157.  

Thematic Working Group 13

Proceedings of CERME11 2232



 

 

Development of strategies for a combinatorial task by a 5 year old 
child 
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The transition from kindergarten to first grade is a very special time for children. In a longitudinal 
research project over two years, we interviewed children up to 6 times individually. They solved 
several tasks from different mathematical areas. In this study, I will present one combinatorial 
problem and analyze approaches to solve it by one child over two years as a case study using the 
strategies of Hoffmann (2003). How does this child solve the combinatorial problem before school, 
just after the school start and at the end of grade 1? What kind of different information do we get if 
we analyze the data product-oriented or process-oriented? Observing and analyzing the child’s 
approaches and development over time will be at the heart of this paper. 

Keywords: combinatorics, combinatorial reasoning, Piaget, preschool education, elementary school 

Introduction 
The domain of combinatorics is a very interesting and fertile field for research in mathematics 
education. Even young children can discover the rich mathematical structure and can become 
acquainted with mathematics as the art and science of patterns (Devlin 1995). Still this topic is not 
the best recognized one in elementary school, as English (1991, p. 451), almost 30 years ago 
mentioned. Hoffmann (2003, p. 3) indicates that combinatorial problems are interesting because 
previous knowledge is not necessary. It is possible to solve combinatorial problems in an activity-
oriented and material-oriented fashion; it is easy to build analogous problems on a higher level; one 
can choose different ways to arrive at the solution. Furthermore, problem-solving approaches can 
become apparent and children are encouraged to mathematical communication and argumentation 
skills. 

Theoretical background 
Piaget and Inhelder (1975) investigated in their studies the development of a combinatorial system 
connected to the Piagetian developmental stages. They find out that children in the preoperational 
stage search without a system, in the concrete operational stage they search for a system and in the 
formal-operational stage, they search systematically and use the odometer strategy. Their ability to 
reason and argument is increasing similar to their search for a system. Combinatorial problems play 
not only an important role in cognitive development but mathematics education researchers like 
Piaget and Inhelder (1975) found that they may promote students’ reasoning and generalization 
processes. Further research showed that there are first steps to a systematical search and that the task 
should be in a more suitable and meaningful context and material should be more child appropriate 
(English 1991, p. 453). 

Further studies investigated the strategies of the children when solving a combinatorial task. I refer 
to two studies explicitly because in my study I deal with almost the same age range and videotapes 
like English (2005) and with a case study like Martino (1992). English (2005, p. 129) videotaped 50 
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children between 4.5 and 9 years, solving combinatorial tasks. She analyzed the video material 
without transcripts. In comparison to English, I observe the children several times over two years. I 
use transcripts to reconstruct the approach of the child when solving the combinatorial task. Martino 
(1992) dealt with the understanding and development of mathematical ideas using combinatorial tasks 
as one example. She looked at three case studies. She observed children in grades 2, 3 and 4 in pairs 
or a group of three without the intervention of a teacher. I observe children from 5 to 7 years old in 
one-to-one-interviews with an interviewer, as an observer, and so I examine a younger group of 
children. Looking at younger children is especially interesting because combinatorial problems also 
“facilitate the development of enumeration processes, as well as conjectures, generalisations, and 
systematic thinking” (English 2005, p. 122) and these are key components of mathematical 
understanding. 

Hoffmann (2003), based on the two studies mentioned above, worked out that there are macro and 
micro strategies. Macro strategies are guiding actions for a structured finding of all combinations. 
One strategy is the odometer strategy, “holding one item constant while systematically varying each 
of the other items” (English 1991, p. 451). Other strategies are, the entire counterpart construction, 
and looking for the solution in phases. Micro strategies describe patterns of action to find the next 
combination or find some of the combinations. For my study, only the following seem relevant: 1- 
and 2-constant-principle, stair formation, counterpart construction and turn around. In the analysis 
part, I will describe them on more detail. 

The study reported here made use of two levels of manipulative materials. The concrete external 
representation enables the children to handle the material and keep their focus on the solving process 
without representing their solution on paper. English (1991, p. 453) stressed that young children 
would display more sophisticated combinatorial approaches than suggested by the Piagetian studies. 
Further on English (2005, p. 128) assumes that preoperational children (like the children in my study) 
“generate combinations only in an empirical manner by randomly associating elements” and her 
conclusion is that “there is a lack of systematic method”. This study addressed this assumption in the 
course of a longitudinal study over two years where each child solved the same combinatorial task 
up to six times in a one-to-one-interview. The idea of repeating always the same task without teaching 
is that the children need time to become acquainted with this task. In addition, the verbalization 
competence is restricted with young children, but they have the possibility to show their thinking by 
using materials, gestures, deictic expressions (Werner 2018) and also by us observing their actions in 
process. Previous studies looked at the products children developed when they solved combinatorial 
tasks and because of the young children, I take a process-oriented view on the children’s actions. 
Even more, I could not find any studies, which had a longitudinal view on the solving of combinatorial 
tasks of young children. English (2005, p. 130) observed the learning across the set of tasks dealing 
with combinatorics at one interview point. 

The present report examines the following research questions focused on one case study for a first 
small analysis of all collected data: 

What kind of approaches does a child, aged 5 to 7 years, use in solving the same combinatorial 
problem several times over two years? 
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To what extent does the analysis method, product-oriented or process-oriented, show a different view 
on the way of finding all combinations for a combinatorial task of one child (5-7 years)? 

Research project 
Sample 

The study is called “mathematics and first day at school – talking with children in the transition from 
kindergarten to primary school” (MaScha). The key aspect of this study is to investigate the 
(re)interpretation and strategy diversity of children from the last year of kindergarten (preschool) to 
the end of grade one in several different mathematical areas. It includes finger patterns, one problem 
solving task, one combinatorial task and the attitudes of children to mathematics teaching and 
mathematics as a teaching content. In this paper, I will only focus on the combinatorial problem. 

The study involved 14 children (8 boys, 6 girls) from a rural area. They all attended the same 
kindergarten and the same class in primary school. At the beginning of the study, they are all in their 
last year of kindergarten (5 or 6 years old). The end of the study is at the end of first grade and they 
are almost all 7 years old. Surveys were conducted every three months in the last year of kindergarten 
(December 2015, February 2016, May 2016) and every 5 months at the beginning, in the middle and 
at the end of the first school year (September 2016, February 2017, June 2017). Each child is 
interviewed for about 30 minutes in a one-to-one-interview. The interviews are all video documented 
and interesting parts are transcribed for analysis. The interviews take place during school time but are 
additional to teaching. The interviewer is either a pre-service teacher who attended a seminar on 
talking with children about mathematics or the researcher. It follows a semi-structured interview 
guide, which is competence-oriented and can be widened with questions to better understand the 
comprehension of the child and with additional analogous tasks if necessary. The semi-structured 
interview guide remains the same over the two years because I can only recognize changes or process 
of development in the (re)interpretation and strategy use of the children when they were familiar with 
the task and knew what to do. Especially the assisted problem solving with the interviewer could help 
the children, and like Freudenthal (1973, p. 110) said, “the best way to learn an activity is to perform 
it”. On the other side, the tasks have to be sufficiently challenging so the children have to solve the 
tasks every time from scratch and cannot remember the solution like an easy calculating task. 

The competence of the interviewer influences the results of the interviews with the children. 
Therefore, the same interviewer interviews most of the children over the two years to keep the 
influence constant. The interviewer sometimes gives instructions or intervenes (Bräuning & 
Steinbring 2011) to establish a “common base of understanding” (Bräuning & Steinbring 2010) 
between the child and the interviewer and to give the children the chance to deal with unfamiliar 
tasks. The kindergarten teacher and the primary teacher were only told that the interviewer is talking 
with the child about mathematics for around 30 minutes. They were not given the tasks so that the 
teacher is not able to train the children and cannot intervene. 

The combinatorial task called bears task is: “You have three bears, a yellow, a blue and a green bear. 
They move into a tower. Each bear lives on one level. How many different ways can they live in the 
tower?”. The children were given eight towers (without a roof to avoid confusion) drawn on paper 
and several yellow, blue and green plastic bears (more than 20 bears). 
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Figure 1: Solution of the bears task interview 1 with Lena final product 

We offered the children more material than needed so that they have to decide if they found all 
combinations on their own. Similar to the bears task the problem is often presented with blocks which 
the child puts together. The advantage for the bears task is that through the tower on paper and the 
placing bears, two dimensions for representing the child’s approach are available. Especially if a very 
detailed process-oriented view on the approach is taken the researcher can identify on which level at 
what time the child is placing a bear and where the child is looking at to find a new combination. 
Through the video documents and the transcripts, eye and head movements are observed. This would 
be easier using eye tracking, but it probably would be an artificial situation for the child, therefore we 
did not use it. 

Realization of the interview 

When the child solved the task with material there was preferably no inquiry. At the end the question, 
“How many ways did you find” is posed. If the child found the same combinations several times, or 
less than three combinations the interviewer asked: “Can you find double combinations in how you 
have bears living in towers? Can you find additional combinations? How often can you find yellow 
(blue, green) on the lower (middle, upper) level?” I think these questions are very important because 
during the analysis there occurred the phenomena that some children had a lot of trouble with 
understanding equality. Some of them interpreted equal as identical so that every tower constellation 
even with the same order of colors was a new combination for the child. 

In the reflection phase, the children were asked: “What can you notice if there is yellow twice on the 
lower, middle and upper level? Are you sure you found all combinations? Please explain”. Hoffmann 
(2003, p. 260) observed that her youngest participants (7-9 years old) could not justify repositioning 
their combinations. As this challenge was too much for them, I decided for the 5 to 7 years old 
children not to pose this demand. Instead, we asked them to explain why they think that they 
completed the task. Some of the children developed their argumentation skills and were able to 
explain their approach. By means of these explanations, the macro strategy can probably be identified. 

Analysis of one case study 
I will present as a case study Lena. She is interviewed six times. I chose her because five interviews 
were conducted by the same interviewer, and only the fifth interview was by another interviewer. 
Therefore, the influence of the interviewer is kept almost constant. This is especially important 
because the interviewer posed different questions, which I distinguish in subject-specific questions 
and non-subject-specific questions. In another paper, I will analyze the influence of these two types 
of questions for the explorative investigation of the child’s thinking. I will present the analysis of 
three interviews of three specific moments. The analysis of her first interview represents the first 
contact of Lena with this task. Her fourth interview is just one month after the first day of school and 
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so she is still getting used to this new institution. At the end of first grade, the sixth interview shows 
the end of development in her approaches because it is the final interview of this study. 

In the product-oriented analysis, I always present the final product of the solving process in the 
interview and in the process-oriented analysis I describe each change and the whole process precisely 
in order the child placed the bears in the tower and the order of the towers. The eight towers on paper 
are represented in two rows of four towers. The researcher when transcribing the video document 
writes down the order. In the coding table, you will find the order of towers with T1, T2, etc. and the 
order of placed bears in an extra column for each tower. The researcher and his team watch the video 
several times to identify each hand and eye movement and analyse the transcript qualitatively. 

The following micro strategies referring to Hoffmann (2003) are identified in the previous analysis: 

1-constant-principle: the color of one level will be fixed. For three-dimensional combinatorial tasks, 
an implicit 1-constant-principle occurred in the process-oriented analysis where at first two colors 
will change places and then the constant will be placed implicitly or automatically the third color 
keeps constant. 

Stair formation: the colors “walk” through the levels (entire or single stair formation) 

Counterpart construction: changing the two possible colors between two combinations (only for 
multiples of two-dimensional combinatorial tasks). With three-dimensional combinatorial tasks, this 
corresponds to the 1-constant-principle or the implicit 1-constant-principle. 

Turn around: two combinations are the same when rotated 180°. 

The macro strategy is reconstructed out of the most frequent occurrence of micro strategies and the 
verbal justification of the child. 

In the first interview with Lena in December 2015, she found six combinations. Tower 6-4 means 
that Lena found this combination after rejecting three other possibilities. I present the solution in this 
table because I want to compare Lena’s solutions at different interview points and to give more 
consistency (you can see the real picture in Figure 1). 

T5 
Blue 
Yellow 
Green 

T6-4 
Yellow 
Blue 
Green 

  

T4 
Green 
Yellow 
Blue 

T3 
Yellow 
Green 
Blue 

T2 
Green 
Blue 
Yellow 

T1 
Blue 
Green 
Yellow 

Table 1: Solution of the bears task interview 1 with Lena final product 

From T1 to T2 yellow remains constant and so the 1-constant-principle can be identified. The 1-
constant-principle also occurs as from T3 to T4 blue is constant and from T5 to T6-4 green is fixed. 
T2 to T3 is an entire stair formation. T4 to T5 is a “turn around” or a 1-constant-principle where 
yellow remains in the middle. In consideration of the identified micro strategies, a kind of odometer 
principle is inherent, because Lena uses a lot the 1-constant-principle. Analyzing the same approach 
with a process-oriented view provides another insight into strategies Lena used. 
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T5 
Blue 
Yellow 
Green 

 
3 
2 
1 

T6-4 
Yellow 
Blue 
Green 

 
10 
9 
8 (I) 

    

T4 
Green 
Yellow 
Blue 

 
3 
1 
2 

T3 
Yellow 
Green 
Blue 

 
2 
3 
1 

T2 
Green 
Blue 
Yellow 

 
3 
1 
2 

T1 
Blue 
Green 
Yellow 

 
1 
2 
3 

  T6-1 
Blue 
Green 
Yellow 

 
3 
1 
2 

T6-2 
Green 
Blue 
Yellow 

 
5 
4 
- 

T6-3 
Green 
Yellow 
Blue 

 
- 
7 
6 

Table 2: Solution of the bears task interview 1 with Lena process 

From T1 to T3 there is a single stair formation and between T2 and T3 even an entire stair formation. 
T3 to T4 is not identified and T4 to T5 is a “turn around”. T5 to T6-1 is an implicit 1-constant-
principle and T6-1 to T6-2 a 1-constant-principle where Lena detect the identity to T2 and rejects this 
combination. T6-2 to T6-3 is also the 1-constant-principle and identical to T4; Lena also rejects this 
combination. From T6-3 to T6-4, there is an implicit 1-constant-principle. In consideration of the 
identified micro strategies we can recognize that Lena’s’ approach is very inconsistent and cannot 
identify a macro strategy. English (1991, p. 458) named this strategy trial-and-error-procedure with 
random item selection and rejection of inappropriate items whereupon in this study the interviewer 
asked the child if there are identical combinations. In addition, I present some of the interviewer’s 
questions posed to Lena. “Are they all different (the towers) which you posed here?”, “How often 
does a yellow bear live in the lower level?”, “Compare these two (towers)”, … These questions 
influenced of course the way of Lena’s solving process, but these affects occur in the product-oriented 
and process-oriented analysis and nevertheless there is a difference. Even more the interviewer 
wanted to give stimuli to deepen the mathematical thinking of the child. 
 Product Process 
Micro strategies T1/T2: 1-constant-principle 

T2/T3: entire stair formation 
T3/T4: 1-constant-principle 
T4/T5: turn around or 1-
constant-principle 
T5/T6-4: 1-constant-principle 

T1-T3 single stair formation 
T2/T3 entire stair formation 
T3/T4 ? 
T4/T5 turn around 
T5/T6-1 implicit 1-constant-principle 
T6-1/T6-2 1-constant-principle, identical to T2 
T6-2/T6-3 1-constant-principle 
T6-4 implicit 1-constant-principle 

Macro strategies Mainly 1-constant-principle -> 
odometer principle 

??? 

Table 3: Comparison of the product-oriented vs. process-oriented analysis of Lena’s solution 1 

I will only present the comparison of the product-oriented vs. process-oriented analysis of Lena’s 
solution 4 and 6. 
 Product Process 
Micro strategies T1-T3: entire stair 

formation 
T4-T5: entire stair 
formation 

T2/T4 1-constant-principle, yellow remains in the middle, 
blue and green change 
T3/T5 1-constant-principle, yellow remains in the lower, 
blue and green change 
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T6/T7 identical to T3 
T8 identical to T1 

T4/T6 1-constant-principle, green remains in the middle then 
see identical to T1 
T5/T6 1-constant-principle, yellow remains in the lower, 
then blue and green change 
T6/T7 identical to T3 
T8 identical to T1 

Macro strategies Mainly stair formation 
-> odometer principle 

Mainly 1-constant-principle -> odometer principle 

Table 4: Comparison of the product-oriented vs. process-oriented analysis of Lena’s solution 4 

In September 2016 some weeks after the first day of school, Lena had her fourth interview. She 
already used an emerging pattern in item selection. Interesting is that it is the same micro strategy for 
the whole solution process but a different one for product-oriented or process-oriented analysis. Lena 
did not identify the identical ones and she could not justify her approach. 

 Product Process 
Micro strategies T1/T2 turn around 

T2/T3 stair formation 
T3/T4 1-constant-principle, yellow remains 
in the upper level, green and red change 
T4/T5 stair formation 
T5/T6 1-constant-principle 

T1/T2 implicit 1-constant-principle 
T1/T2/T3 green in every level, single 
stair formation 
T3/T4 1-constant-principle 
T5/T3 1-constant-principle 
T6/T1 1-constant-principle 

Macro strategies ??? Mainly 1-constant-principle -> 
odometer principle 

Table 5: Comparison of the product-oriented vs. process-oriented analysis of Lena’s solution 6 

In the sixth interview with Lena in June 2017, the product-oriented analysis cannot find a macro 
strategy but if we look at the process-oriented analysis, there is evidence that Lena uses the odometer 
principle without rejecting any combination. She does not use the odometer principle visibly from 
the beginning but if she checks her solutions, one can observe it. Even more she justifies her approach 
after the question “how can you quickly check that they are all different?” with “these two have to 
change all the time (points to T6 and T1) and these also (points to T5 and T2) and also those (points 
to T3 and T4)”. Looking at Lena’s progression from the first to the sixth interview, she developed a 
more efficient solution procedure, which is only observable with the process-oriented analysis and is 
confirmed by Lena’s verbal justification of her approach. 

Closing remarks and outlook 
To answer the posed research questions, I refer to the studies of English (1991, 2005). English (2005, 
p. 128) assumes that preoperational children (like the children in my study) “generate combinations 
only in an empirical manner by randomly associating elements” and her conclusion is that “there is a 
lack of systematic method”. Looking at the analysis of the case study, Lena uses quite different 
strategies when analyzing her approaches product-oriented or process-oriented. In her first interview 
in the product-oriented interview, it seems that Lena is already “emerging pattern in item selection, 
with rejection of inappropriate items” (English 1991, p. 458). This could be traced back to the 
interviewer’s questions. If you compare it to the process-oriented analysis you can see that Lena uses 
the trial-and-error-procedure with random item selection and rejection of inappropriate items. In the 
sixth interview the interviewer does not pose any questions and in the process-oriented analysis it 
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seems evident that she uses the “odometer principle without rejecting any combination” (English 
1991, p. 461). There is an obvious development in Lena’s solving approaches when using the process-
oriented analysis. It seems that the process-oriented analysis method is more appropriate to this young 
child and probably to all young children with restricted verbalization possibilities. So probably 
preoperational children are already able to evolve strategies from dealing several times with the same 
task and an explorative supervision of the interviewer. In the sixth interview, Lena is able to justify 
her conclusion by making the following statement: “these two have to change all the time (points to 
T6 and T1) and these also (points to T5 and T2) and also those (points to T3 and T4)”. Hoffmann 
(2003, p. 260) observed that her youngest participants (7-9 years old) could not reposition their 
combinations with justification. There will be further analysis of the children’s development over two 
years especially qualitative interpretative analysis of the communication and interaction between 
child and interviewer (Bräuning & Steinbring 2011). The possibilities of young children to express 
their mathematical thinking is quite different to that of older children and adults. Looking at the 
approaches of young children, researchers should seek methods to observe and to analyze strategies 
of children who have limited possibilities to verbalize their thinking. 
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This paper reports on a multiple-case study which focuses on four kindergarten teachers’ 
orchestration of mathematical learning activities with respect to the degree of freedom, and what 
impact their orchestration has for children’s mathematical learning possibilities. The study draws on 
Valsiner’s (1987) zone theory to investigate the relationship between zone of free movement (ZFM) 
and zone of promoted action (ZPA) which the kindergarten teachers set up to canalise children’s 
actions and thinking and thus development. The results show that in the kindergarten where the ZFM 
is gently set up and limited to mathematics, and where the kindergarten teacher sensitively sets up 
the ZPA and promotes children to share, argue for and explain their mathematical ideas, and 
explicitly promotes the children to collaborate, is where most problem-solving interaction occur and 
thus facilitate children’s learning possibilities the most.  

Keywords: Kindergarten, mathematics, orchestration, zone of free movement, zone of promoted 
action.  

Introduction 
This paper reports on a multiple-case study which aims to investigate four kindergarten teachers’ 
(KTs’) orchestration of pre-designed mathematical learning activities and what impact their 
orchestration has for children’s learning possibilities. The current debate about mathematics in 
kindergarten is seldom about whether or not mathematics should be part of the curricula in 
kindergarten, rather on how mathematical activities in kindergarten should be orchestrated1 
(Gasteiger, 2012; Hirsh-Pasek, Golinkoff, Berk, & Singer, 2009; van Oers, 2010). Children’s 
opportunities to take part in mathematical discourses are important in learning mathematics, but in 
activities where the kindergarten teacher has a pedagogical aim, it may be difficult to balance teacher-
talk and child-talk (Dovigo, 2016). The study reported here focuses on four KTs’ orchestration of 
mathematical learning activities with respect to the degree of freedom2 and aims to:  

· Investigate the characteristics of four kindergarten teachers’ orchestration of pre-designed 
mathematical activities with respect to the degree of freedom, and;  

· Investigate what impact the four kindergarten teachers’ orchestration of the mathematical 
activities has for children’s mathematical learning possibilities.  

                                                 
1 The term ‘orchestration’ is used in accordance with Kennewell (2001), as a broad metaphor for how the KTs structure 
or organise the activity through use of questions, cues, prompts, information, demonstrations etc.   

2 The term ‘degree of freedom’ is used in accordance with van Oers (2014) as a characteristic of the way an activity (in 
cultural-historical activity theory) is carried out and refers to the “degrees of freedom allowed to the actor in the choice 
of goals, tools, or rules” (p. 113, emphasis in origin), which in turn initiates the actor’s choices of actions. 
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Theoretical framework 
The study reported here draws on Valsiner’s (1987) zone theory to investigate the relationship 
between freedom and structure in four KTs’ orchestration of mathematical learning activities. The 
balance between freedom and structure is the main focus when Hirsh-Pasek et al. (2009) and 
Weisberg, Kittredge, Hirsh-Pasek, Golinkoff, and Klahr (2015) discuss ‘playful learning’ as an 
educational approach in kindergarten. Playful learning captures both ‘free play’ where children play 
without interference from adults, and ‘guided play’ where the KT organises the learning environment 
and guides the play in desired directions with respect to a learning aim. Weisberg et al. (2015) argues 
that, although the KTs initiate and guide the activity in guided play, the KTs must make room for 
children’s self-directed exploration, and it is this balance between freedom and structure that makes 
guided play such an effective teaching tool. Similar van Oers (2014) argues that playful learning 
activities should contain some elements of instruction. “The nature of the actions embedded in play 
can vary with respect to their degree of freedom allowed, as long as the activity as a whole remains a 
playful activity” (van Oers, 2014, p. 121). The learning activity must be engaging and give 
possibilities for the players freedom to explore the (mathematical) objects in their own manner.   

In his study on preschool children’s argumentation, Dovigo (2016) investigates children’s learning 
opportunities in different types of conversations (peer-talk and child-teacher talk). Dovigo found that 
children had richer opportunities to participate and asked more questions in peer-talk than in child-
teacher talk. It was a clear tendency that in child-teacher talk, the KT talked more than the children. 
However, the children’s abilities to build arguments were limited in peer-talk and were facilitated in 
child-teacher talk. The KTs facilitated children’s explanations and helped them to elaborate their 
argumentations, which again improved children’s critical thinking and abilities to collaborate.    

Through his zone-theory, Valsiner (1987) explores the development of children’s actions and thinking 
through organisation of person-environment relationships. The physical environment of the child is 
the cultural frame which the child is acting within and thus develop its thinking. Valsiner’s theory 
emphasises that both the developing child and the environment are structurally organised, however 
the structuring nature of the child and the environment is continuously and dynamically transformed. 
Valsiner (1987) uses three zone concepts to conceptualise the dynamic environmental structures that 
organise the child’s development: Zone of Free Movement (ZFM); Zone of Promoted Action (ZPA); 
and Zone of Proximal Development (ZPD). The ZFM is co-constructed by the child and the adult and 
organises the “child’s (1) access to different areas in the environment, (2) availability of different 
objects within an accessible area, and (3) ways of acting with available objects in the accessible area” 
(p. 97). Within the ZPA there may be activities or objects which the child is promoted to engage with. 
An important characteristic of the ZPA is its non-binding nature: The child does not need to follow 
the ZPA and can act with other objects (in other ways) within the ZFM. The child cannot be ‘forced’ 
to accept the ZPA unless the ZPA is turned into ZFM. The ZFM and ZPA must be considered as a 
unit and Valsiner (1987) labels it the ‘ZFM/ZPA complex’. The ZFM/ZPA-complex work as a 
mechanism to canalise the child’s actions and thinking and thus development in culturally accepted 
ways. In addition, Valsiner (1987) discusses how ZPD relates to the ZFM/ZPA-complex, but due to 
space limitations, this study focuses primarily on the relationship between ZFM and ZPA in four 
kindergartens with respect to mathematics.   
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Methodology 
The study reported here is a multiple-case study (Yin, 2014), which aims to characterise four KT’s 
orchestration of pre-designed mathematical activities and its impact for children’s mathematical 
learning possibilities. It is part of a larger study on mathematical teaching and learning in kindergarten 
and situated within a Norwegian research and development project called the Agder Project3 (AP). 
The intervention of the AP was based on mathematical activities which were pre-designed in 
collaboration between researchers (including myself) and the KTs in the focus groups of AP. The 
mathematical activities suggest how to organise learning sessions, what materials to use and suitable 
questions to ask etc. in order to promote a playful and inquiry-based approach to the teaching and 
learning of mathematics. The activities were meant as suggestions not as scripts which the KTs 
needed to follow to the letter and this was communicated both verbally and in written form to the 
KTs before the intervention. The activities are described in Størksen et al. (2018), a book containing 
one-page outlines of the activities. This study takes a qualitative approach to data collection and data 
analysis and the empirical material was collected over two observation periods (autumn 2016 and 
spring 2017) during the intervention of the AP. Observations were conducted of approximately 40 
minutes sessions where the four KTs, who were part of the focus groups of the project, implemented 
the pre-designed activities. Interviews were conducted in each kindergarten after each observation 
period. Overview over data sets (observations and interviews) in each kindergarten is illustrated in 
Table 1 below. All four KTs have at least 15-years working experience. 

 KT1 KT2 KT3 KT4 

Autumn 2016 5 obs. + 1 interv. 4 obs. + 1 interv. 5 obs. + 1 interv. 3 obs. + 1 interv. 

Spring 2017 6 obs. + 1 interv. 7 obs. + 1 interv. 0 obs. + 0 interv. 4 obs. + 1 interv. 

Table 1: Overview over data sets (observations and interviews) in the four kindergartens 

The empirical material was collected through ethnographic field notes (Emerson, Fretz, & Shaw, 
2011) from observations and interviews. Field notes were written during and/or straight after each 
observed session and were supplemented when having conversations with the KTs after each session. 
Field notes from the interviews were made straight after the interviews and were extended when the 
video-recordings of the interviews later were watched. Field notes should not, ideally, include 
interpretations of the observed interaction (Emerson et al., 2011). However, as Emerson et al. (2011) 
argues, when the fieldworker starts to work with the field notes, he/she orders patterns of interactions 
and decides what to include and leave out from the field notes. In this research study the research 
questions were made before conducting the field work, which guided what I was especially looking 
for and thus what I included and left out from the field notes. The field notes must therefore, to a 
certain extent, be regarded as interpretative or analytical.  

                                                 
3 The Agder project is funded by the Research Council of Norway (NFR no. 237973), The Sørlandet Knowledge 
Foundation, The Development and Competence Fund of Aust Agder, Vest Agder County, Aust Agder County, University 
of Agder and University of Stavanger. 
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Processing and analysing data went through an iterative process. Instead of using the field notes as 
‘raw material’ from which I started a coding process, I worked directly with the field notes and 
carefully contracted them into profiles of the KTs orchestration and their interaction with the children. 
Since the field notes were already to some extent analytical, they served as a useful starting point for 
this purpose. The profiles concern four key points: (1) Children’s access to different areas in the 
environment; (2) children’s freedom to act (physically) within the accessible area; (3) children’s 
freedom to contribute with questions, mathematical ideas and argumentations etc.; and (4) the degree 
to which problem-solving interaction was promoted (that is the degree to which the children were 
promoted to ask questions and explain and argue for their ideas to solve mathematical problems). Key 
points 1-3 concern the KTs’ orchestration of the mathematical activities with respect to the degree of 
freedom and intends the ZFM. Since the ZFM is co-constructed by the child and the adult, children’s 
eagerness to participate and take initiative are also used to identify ZFM. Key point 4 concerns how 
the KTs promote children to ask questions, explain and argue for mathematical ideas to solve 
mathematical problems, which intends the ZPA. As Valsiner (1987) argues, ZFM and ZPA are related 
and work as a unit to canalise children’s development, and in this case, learning and development 
related to mathematics. In this study I identify learning possibilities whenever the KTs and the 
children together solve mathematical problems through questions, explanations and argumentations. 

The profiles, which will be presented below, are of course tendencies not absolute characteristics. 
The KTs’ orchestration with respect to the degree of freedom changes dynamically during each 
session and from session to session. In addition, the profiles are relative, which means that the degree 
of freedom in one kindergarten is relative to the three other kindergartens and cannot provide an 
indication for how it relates to other KTs’ orchestration in other contexts.  

Profiles of four kindergarten teachers’ orchestrations 
Kindergarten teacher 1 

KT1 orchestrated the mathematical activities with a relatively high degree of freedom, which is based 
on the way that the children were allowed to move around in the room (and even walk out of the 
room) and to talk about almost whatever they wanted, like birthday parties or their parents’ 
occupation etc. The KT never told the children to sit down and pay attention, instead she promoted 
the children to do so by the way she enthusiastically presented the activities, which captured the 
children’s attention. For example, in an activity about reflection symmetry, the KT introduced the 
activity having diverse reflection symmetrical objects in a plastic bag without telling what was inside. 
She shook the bag and whispered, “Listen!”, which made the children curious and created joint 
attention. Another characteristic of the KTs orchestration was that the KT listened to almost every 
child’s contribution (not only related to mathematics). In one of the conversations with the KT, she 
expressed that her desire to listen to and appreciate every child’s contribution could be a hinderance 
for her, because her attention became very shifty. She rapidly turned her attention from one child to 
another. The children eagerly participated in the activities, however, as mentioned above, they often 
contributed with other ideas than mathematics. The KT expressed that she had a challenging group 
of children but their ability to pay attention to mathematics grew during the intervention. There were 
a lot of ‘golden moments’ for problem-solving interaction. The KT and the children initiated a lot of 
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interesting ‘topics’ for investigation, but very few ideas were thoroughly discussed. Mathematical 
questions were often (not always) considered briefly, and the children seldom had to ponder about 
problems and to express mathematical ideas, argue for and explain their ideas in order to solve the 
problem. Because the KT gave the children a lot of freedom to talk and payed attention to almost 
every contribution, the conversations moved very quickly from one topic to another.  

Kindergarten teacher 2 

KT2 gave the children a relatively high degree of freedom to talk, however she often restricted 
children’s talk to mathematics by ignoring some of the contributions that were about the children’s 
everyday experiences. The KT also restricted the children’s freedom to act (physically) to areas or 
with objects relevant to the mathematical activity. Although the KT for the most part focused attention 
to mathematics, she gave the children freedom to suggest other mathematical issues than what she 
initially introduced. Similar as KT1, the KT2 presented the activities in an exciting way, by use of 
for example excited face expressions and whispering, which captured the children’s attention and 
promoted the children to contribute. But sometimes she also asked questions directly to children to 
capture their attention. For example, when Carl was distracted by something else, she said: “Carl, do 
you know how many building blocks there are in the red tower?” When Carl said that he didn’t know, 
the KT further asked “Would you like to help me count?” This helped Carl, who often had difficulties 
paying attention, to focus his attention on mathematics. The conversations between the KT and the 
children were almost always mathematical, and sometimes the KT and the children had longer 
conversations about mathematical problems. The children had to argue for and explain their ideas in 
order to solve the problems, and the children eagerly participated with mathematical ideas and 
explanations. In addition, the KT seemed to focus on collaboration. For example, the KT had a 
conversation with the children about the meaning of collaboration, and the KT promoted the children 
to help each other if needed. She also promoted the children to listen to each other by for example 
asking the group of children: “Did you hear what Ada suggested?”.  

Kindergarten teacher 3 

KT3 was a football trainer in his spare time, which was somehow recognisable from his orchestration 
of the activities. He gave the children a relatively high degree of freedom to act (physically) and 
focused on ‘doing’ mathematics, which for him was when the children got opportunities to use their 
hands, their body and various artifacts to solve mathematical tasks. In one of the conversations with 
the KT he expressed that ‘doing’ mathematics was for him an important feature of mathematics in 
kindergarten and therefore he especially liked physical outdoor activities. In addition, he was giving 
short ‘missions’ for the children to perform. For example, in the ‘Sorting Shoes’ activity, when the 
children had to figure out how many shoes there were in each category, the KT gave each child a 
‘mission’ to draw equally many lines in the bottom of the diagram as there were shoes in each 
category. The KT expressed several times that it was important to give the children challenging but 
manageable tasks, so they felt they succeeded. He often encouraged the children, in an enthusiastic 
manner, with comments like “good” or “great” etc. It seemed that the children enjoyed the activities 
and the way that the KT encouraged them. The children eagerly participated and seemed to have fun. 
There was relatively little problem-solving interaction and the children often solved tasks without 
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having to explain or argue for their ideas. For example, in the activity called ‘Tripp, Trapp’, where 
the children should count stairs in a staircase and find out what number each stair had, the KT made 
A4 papers with numbers from 1-24 on and the children, one by one, had to pick an A4 sheet and place 
it on the correct stair. (Stair number 15 should have the A4 sheet with the number 15 on). The children 
just performed the tasks, without having to explain what they did, and why they did what they did. 
Sometimes the KT promoted the children to reflect on their solution strategies in retrospect, however 
the children’s explanations were seldom helping them to solve problems in the first place. 

Kindergarten teacher 4 

KT4 gave the children relatively little freedom to act (physically) or talk which is based on the way 
that she, to a large degree, controlled who was going to talk (or ‘do’ something) and when. For 
example, in an activity called ‘The Farm’ the children were, at one point in the activity, supposed to 
find how many animals there were on the farm. First the KT asked a girl, “Helene, can you figure out 
how many animals there are all together?”. After Helene had counted and answered the KT asked a 
boy, “John, can you find how many different animals there are?”. The KT continued to give similar 
‘missions’ to each child. The KT made sure that each child got the opportunity to answer or ‘do’ 
something mathematically, and she appreciated children’s contributions by comments like ‘that’s 
correct’, ‘very good’ etc. The KT expressed in one of the conversations that it was important that the 
children learnt to respect the other children and to wait for their turn in an activity. The KT also 
expressed that some activities were difficult to implement as outdoor activities, because the children 
often got disturbed by other things. These characteristics are of course tendencies, and sometimes the 
activities were a lot more open where the children had a lot more freedom to act. But, as she also 
expressed in one of the interviews, she thought it was difficult to ‘hold back’ and give room for the 
children to figure out the problems themselves without too much interference. It is difficult to state 
how ‘eager’ the children were to participate, because they seldom answered or did something without 
being asked. They accepted the KTs request to sit and wait for their turn. In some activities, like when 
they measured how much water there was room for in a tank, the children laughed and were having 
fun and showed eagerness to participate. Still they were asked to wait for their turn and respect that 
each child got the same opportunity to fill water. There were few incidents where the children together 
solved problems by expressing ideas and arguing for solutions. The children were waiting for their 
turn to answer or to perform ‘missions’. The KT sometimes asked the children to explain what they 
did when they solved a task, but this explanation did not help the children to solve the problem, but 
to reflect on their strategy in retrospect.  

Discussion 
From the results above, it seems that KT1 is very concerned about freedom, and the ZFM is relatively 
wide compared with the ZFM the other KTs set up, both with respect to what the children are allowed 
to talk about and what they are allowed to do (physically). The children are even allowed to walk out 
of the room if they want to, and they can talk about whatever they want. KT2 restricts the ZFM to 
mathematics, both what the children can physically do and what the children are allowed to talk about. 
However, KT2 gives the children freedom to talk about and work with other mathematical objects 
than what she initially promotes. KT3 restricts the mathematical talk to specific mathematical areas, 
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however the ZFM is relatively wide when it comes to what the children are allowed to do (physically). 
The KT3 gives the children freedom to move physically and to make loud voices when they solve the 
mathematical tasks. KT4 is the most controlling of the four KTs, and the ZFM is relatively narrow 
both with respect to what the children are allowed to do (physically) and what the children are allowed 
to talk about.  KT4 decides, to a large degree, who is allowed to talk (or ‘do’ something), when the 
children are allowed to talk (or ‘do’ something) and what the children are allowed to talk about.  

Considering the ZPA, the results illustrate how the KTs promote children to ask questions, explain 
and argue for their ideas in order to solve mathematical problems. The children do not need to accept 
the ZPA set up by the KT, but instead of turning the ZPA into ZFM the KT may, I hold, ‘advertise’ 
for the ZPA to promote the child to act in a desired manner. In K1 the KT promotes children to act 
mathematically by acting in an exciting way, and by introducing the activities in a manner which 
makes the children curious. The children sometimes accept the ZPA, but sometimes they do not. The 
KT1 is carefully promoting the children to think mathematically, but the ZPA (related to 
mathematics) is never turned into ZFM. The KT2 also promotes children to think mathematically by 
acting in an exciting way. The ZPA is related to specific mathematical areas, however the ZFM is 
related to mathematics in general. Sometimes, especially related to some children, the KT2 carefully 
turns the ZPA into ZFM, that is the KT limits the ZFM to specific mathematical tasks whenever the 
children do not pay attention. In addition, the KT explicitly promotes the children to help each other 
and to collaborate which, I hold, is important for the way that the children solve problems together. 
KT3 promotes children to think mathematically or ‘do’ mathematics by a quite tight ZFM related to 
mathematics. The ZPA is often turned into ZFM by asking the children to perform ‘missions’. 
However, the ZFM is relatively wide related to physical actions. KT4 almost always turns the ZPA 
into ZFM. What the KT promotes the children to do is also what the KT allows the children to do.  

Considering the characteristics of ZFM/ZPA complex in each kindergarten which according to 
Valsiner (1987; 1997) canalise children’s actions and thinking and thus development, it seems that 
the KTs who limit children’s actions to mathematics, but where the children’s freedom is relatively 
wide related to what the children may talk about within mathematics and who is allowed to speak, 
promotes most problem-solving situations (KT2), and thus children’s opportunities for learning. How 
the ZFM/ZPA complex canalise children’s development is not only related to the boundaries of the 
zones itself, but how the ZFM and ZPA are set up. The KT2 is relatively mild in her way of setting 
up the ZFM, and instead of turning the ZPA into ZFM she acts in an exciting way which promotes 
the children to accept the ZPA. The KT2 ‘advertise’ for the ZPA by the way she presents the 
mathematical problems and makes the children want to pay attention and accept the ZPA. The KT4 
is not that enthusiastic, and perhaps that is why she must turn the ZPA into ZFM to make the children 
pay attention and to accept the ZPA. The KT1 is also enthusiastic in setting up the ZPA, but since the 
ZFM is relatively wide, the children often choose to act in other ways than what the KT promotes. 
The results support Hirsh-Pasek et al. (2009), Weisberg et al. (2015) and van Oers (2014) who 
emphasise that playful learning activities should have some structure as long as the activity as a whole 
remains a playful activity and as long as the KTs gives freedom for children’s self-directed play, so 
they may explore the content in their own manner. The results also supports Dovigo’s (2016) results 
in the sense that whenever the KT is structuring the environment around mathematics, but opens up 
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for children’s own exploration around mathematical ideas, the children are canalised into more 
problem-solving activity and thus create possibilities for children’s mathematical learning.  

The results indicate that instruction which structures children’s actions around mathematics but 
introduces the mathematics in an ‘exciting’ way and allows and promotes children to contribute with 
various mathematical ideas not necessarily related to the aimed subject area, captures children’s 
attention and promotes their voluntarily participation in the problem-solving activity and thus 
facilitates children’s possibilities for mathematical learning. 

Limitations of the study 
This study focuses on the KTs’ orchestration and its consequences for children’s learning possibilities 
and does not consider how the children, in light of for example their background, influence the KTs’ 
orchestrations and the nature of interaction in each kindergarten. Moreover, in this study the 
ZFM/ZPA complex is considered on a group level. It would be interesting to investigate the 
ZFM/ZPA related to each child in the groups, to see which children benefitted the most from the KTs’ 
different orchestrations. 
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Creative processes of one primary school child working on an open-
ended task 
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A lot of mathematical tasks challenge primary school children to be mathematically creative. But 
how exactly is mathematical creativity embeded in primary school education? And: How are the 
mathematical creative processes of one first grader working on an open-ended task displayed? 
Therefore, two creativity patterns are analyzed. The first illustrates the flexibility within the free 
working process. The second depicts the child’s ability to structure and describe her solutions during 
the elaboration process. Purposeful and adaptive prompts support the child in both creative 
processes. The results of this pilot study show, that the child develops a qualitative new structure of 
her solutions and, therefore, is able to expand her solution space.  

Keywords: Mathematical creativity, primary school children, open-ended tasks.  

Introduction 
In most standards for mathematics education (e.g. MSB NRW 2008; NCTM 2003) creativity is part 
of the competences children from the early years onwards have to exercise and develop in their 
mathematical education. However, the construct of creativity is often sparsely characterized but rather 
all process-oriented abilities in mathematics implicate creative behavior as a fundamental 
competence. Already Vygotsky (1930/1998) described creativity as “one of the basic mechanisms 
that facilitate development of new knowledge” (Leikin & Pitta-Pantanzi, 2013, p. 162) Therefore, it 
is necessary to define creativity more precisely in a content-specific way to make this term more 
adaptable for mathematics instruction.  

In this paper, I present my research project on the creative processes of primary school children in 
Germany. I illustrate my working definition of mathematical creativity at school based on various 
studies within the psychological and mathematical research sphere. Additionally, a case study of one 
child at the end of the first grade from the pilot study I have realized so far is presented. Therefore, 
my greater research question is: How are creative processes of a primary school child displayed?  

Theoretical Background 
Mathematical creativity 

Creativity is nothing mystical (Sternberg & Lubart, 1999) but rather a construct that is being 
researched not only in psychology but also in various other disciplines like e.g. arts, language, 
mathematics, and pedagogy (Torrance, 1966). Logically, there is no coherent definition of creativity 
in general. Also in the particular field of mathematics education “the word creativity is ‘fuzzy’ and 
lends itself to a variety of interpretations” (Sriraman, 2005, p. 20). Thus, there is a large body of 
research discussing the different approaches on defining mathematical creativity (e.g. Leikin & Pitta-
Pantanzi, 2013).  
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Kwon, Park, and Park (2006) state that, when analyzing all different approaches, there are overall 
only two main positions: The first one is the definition of mathematical creativity as “the creation of 
new knowledge” (Kwon et al., 2006, p. 52). The moment, a student finds a new, adequate, and – more 
important – insight-based and therefore mathematically adaptive solution to a mathematical problem, 
the person acts creatively (Liljedahl & Sriraman, 2006; Silver, 1997). In contrast, the second position 
focuses on the “flexible problem-solving abilities” (Kwon et al., 2006, p. 52) that every child is 
supposed to develop at school (NCTM, 2003). Children show flexible competences by finding not 
only one but various differing solutions to a task (also called divergent thinking (Guilford, 1967)). In 
doing so the children act creatively. Therefore, the definitions of mathematical creativity referring to 
the first position mainly focus on the creative product, while the ones referring to the second position 
analyze the individual creative processes that students show. I locate my research at the second one 
because my motivation is to observe, illustrate, and appreciate the creative process of primary school 
children in detail. 

Creative person, product, process, and press 

When talking about creativity there are four creative domains which constitute the specific 
mathematical creativity: person, product, process, and press (Leikin & Pitta-Pantanzi, 2013). Every 
domain has an overlap to the other three so that complex connections within these aspects occur. 
Haylock (1987) postulates that in many research studies product and process are focused and 
connected. This connection results from reconstructing the creative process by analyzing the child’s 
creative product as well as the child’s procedure in finding the solutions. I follow Haylock’s 
assumption in this pilot study and focus on the creative process, while analyzing the creative product.  

To think of the other two domains, the situation in which the child solves the task marks the creative 
press. However, I do not concentrate on details of the creative environment or person itself. In contrast 
to many definitions that link mathematical creativity to giftedness (e.g. Sriraman, 2005) or advanced 
mathematical thinking (e.g. Ervynck, 1991), I assume that every primary school child has the ability 
to be a creative person. It has to be considered, though, that “creativity in school mathematics differs 
from that of professional mathematicians” (Leikin, 2009, p. 131). Referring to Vygotsky’s “division 
into subjective and objective imagination” (Vygotsky, 1930/1998, p. 164), the term of relative 
creativity in contrast to absolute creativity in the work with children is suggested. Relativistic 
creativity means that the creativity level is not compared to the ability of a professional 
mathematician. Instead, a person’s creativity is compared within a specific peer group. That is why 
every student can be creative and thus shows a creative process (Liljedahl & Sriraman, 2006). 

Characteristics of the mathematical creative process 

There are as many different approaches to characterizing the creative process as well as definitions 
of mathematic creativity itself. Due to the assignment of this study to the second definition position 
presented before, the characterization of the creative process is based on the student’s ability to think 
divergent. Following Guilford (1967), Torrance (1966) defines for his psychological test four 
categories of creativity: fluency, flexibility, originality, and elaboration. These “characterize students’ 
creative process” (Leikin & Pitta-Pantanzi, 2013, p. 163). Many recent studies on mathematical 
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creativity use these characteristics for their research, whereas the most of them only use the first three 
concepts, excluding elaboration, and investigating on students grade 6 and higher (e.g. Leikin, 2009).  

Leikin‘s (2009) and Silver‘s (1997) concept on creativity are based on Torrance’s categories but fit 
to mathematical tasks: Fluency means the total number of solutions and thus, focus on the quantity. 
In contrast, to depict the quality of a creative process, flexibility measures the number of solution 
strategies which are “based on different representations, properties (theorems, definitions, or auxiliary 
constructions), or branches of mathematics” (Leikin, 2009, p. 137). Hence, if the child finds a vast 
number of solution this does not automatically mean that he/she shows a high flexibility score. 
Originality in Leikin’s understanding evaluates the relativistic singularity and novelty of an idea. 
Leikin showed in her study on mathematical creativity that only a few children had higher originality 
scores. Based on her results, she attributes originality to gifted students (Leikin, 2009). In contrast, 
Silver  (1997) defines originality (or novelty) as the ability to explore many given solutions to a 
mathematical task and then generating a new, different one. The production of a novel solution refers 
to Leikin’s concept of original ideas, because the child has to find a solution, which was not stated in 
the solution space before. While exploring the given solutions the child has to describe, illuminate, 
and generalize the solution strategies, which relates to Torrance’s (1966) characterization of the 
category elaboration: The elaboration displays the amount of detail in the responses and shows the 
ability to describe, illuminate, and generalize the responses. 

I aspire to illustrate the quality of the creative process of primary school children in a neutral, not 
judging way. In contrast, many studies aim to evaluate the mathematical creativity of children or 
adults (e.g. Leikin, 2009). This is why I mainly and directly focus on the aspects of flexibility and 
elaboration, and only indirectly on fluency and originality: 

Flexibility, in my research, means that children find solutions by different changes of ideas. An idea 
either can be structurally inferred from the idea before or is newly generated. The concept of fluency 
is considered by the total number of the solutions.  

Elaboration means the children’s ability to describe and structure their own solutions to find 
additional solutions, and thus to expand their solution space. The new found solutions could be 
considered as original following Silver’s definition, and therefore the concept of originality is 
implicitly included.  

Open-ended tasks 

Hashimoto (1997) outlines that at today’s schools children do not have to be creative, because most 
tasks prompt the students to find only one correct solution. He states that a good mathematical 
education needs appropriate tasks to allow children to explore and develop their creativity. There are 
many notations in the international references, which describe these tasks: e.g. multiple solution tasks 
(Leikin, 2009) or open-ended problems (Silver, 1997). It is essential that in my study the creativity 
fostering tasks have to allow the students to demonstrate their fluency, flexibility, originality, and 
elaboration abilities. Therefore, I characterize an open-ended task as a task that invites the children 
to find various solutions and has no verbalizations like “Find all solutions…”. In addition, the task 
has no limited number of solutions and challenges every student. Most important, the tasks entail 
quantitative and especially qualitative differences of the solution spaces.   
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Prompts 

Fostering children’s ability to show creative processes working on open-ended tasks, the children can 
be supported by instructional prompts. Prompts are “recall and/or performance aids, which vary from 
general questions to explicit executions instructions” (Bannert, 2009, p. 139). Based on the research 
results on instructional prompts, the combination of cognitive prompts (explanation) and 
metacognitive prompts (regulation) has a high effectiveness on supporting children’s self-regulated 
learning (Wichmann & Leutner, 2009). Cognitive prompts “directly support a student’s processing 
of information for example by stimulating memorizing/rehearsal, [or] elaboration” (Bannert, 2009, 
p. 140). This relates to the two in this study primarily focused characteristics of creativity: flexibility
and elaboration. Metacognitive prompts in general tend to support children’s monitoring and
controlling when working on specific tasks like mathematical open-ended tasks (Bannert, 2009).

Research questions 

My research aim is to illustrate the individual creative processes of a primary school child working 
on open-ended tasks. Considering the theoretical background, I attempt to answer the following 
detailed questions in the case study: 

1. How is the child’s individual flexibility displayed in her solutions?
2. How does the elaboration and the prompts support the child to find additional solutions?

Method 
The intention of my first pilot study was to try out various ideas concerning the tasks, interview 
design, procedure and material, the interview guideline, and the instructional prompts. Below these 
decisions are illustrated and the results of the presented case study are discussed.  

Participants 

In July 2018, I realized a first pilot study with three children at the end of first grade (age: 6;11, 7;0, 
and 7;9). They are primary school children of a municipal primary school in a large German town. 
The children were chosen because I expect first graders to be more open-minded and less affected 
from in school thought mathematical structures and strategies than older school children. Thereby, it 
is more likely to accurately reconstruct the creative processes of these children. The primary school 
teacher selected these three children due to their current mathematical development. In this paper, I 
present as a case study the creative processes of Maria (7;9 years), who shows an age-based 
mathematical development. 

Design, materials, and procedure 

During an individual interview, the first grader worked on the following arithmetical open-ended 
task, because arithmetical ideas can explicit be categorized and thus, flexibility can be analyzed: 

Find different tasks with the number 4. [Finde verschiedene Aufgaben mit der Rechenzahl 4.] 

The interview was divided into two creative working phases that built on each other and used different 
sort of materials: 
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1. Free working process: The child found as many different solutions as he/she could and, at the 
same time, produced his/her own documentation of the solutions. I offered the first graders blank 
filling cards to write down each solution and arrange them on the table.  

2. Elaboration working process: Afterwards I asked the children to explain their solutions and the 
process of generating them. Then I invited them to restructure their solutions and explain this 
arrangement of the written cards for me. This procedure was supposed to help the children in 
finding additional solutions and adding them to the arrangement. 

Furthermore, I gave adaptively cognitive and metacognitive “just-in-time-prompts” (Bannert, 2009, 
p. 142) during the elaboration working process to support the child in his/her creative processes. The 
used metacognitive prompts tended the first grader to follow the open-ended task in the working 
processes. The explicit questions was e.g. “Can you find further solutions?”. For cognitive prompts, 
I used to write a new solution on a card and asked the child to explain, whether this solution match 
to his/her solutions, and if so, if he/she can find further solutions. Thus, children with a very 
systematic approach might be encouraged to admit new ideas and conversely, children who found 
many new ideas might be motivated through a prompt to structure their solutions in a systematic way.  

Analytical tool 

To illustrate the flexibility and elaboration in the two working processes I conducted a category-lead 
analysis for each child. I deductively constituted a catalogue of categories for the changes of ideas 
children can use in their solutions. There are three main categories of changes of ideas: new, inspired, 
or structured ideas. A new idea has no connection to the idea before (e.g. 3 + 4 = 7 followed by 
20 − 16 = 4). A structured idea connects two consecutive ideas by a mathematical structure like the 
sub-category law of constancy (e.g. 3 + 1 = 4 followed by 2 + 2 = 4) or the complement principle 
(e.g. 3 + 1 = 4 followed by 4 − 3 = 1). An idea is inspired either if it was used in a former structure 
and is picked up again in another structure (e.g. 3 + 1 = 4 followed by 2 + 2 = 4 (law of 
constancy) and by 4 − 3 = 1 (complement principle)), or if a previously used structure is resumed.  

Thus, I got two individual creativity patterns (ICP’s) which I represented graphically in a sort of a 
sequential tree diagram. Afterwards I contrasted the two patterns to show how they differ and how 
the new structure extends the solution space. Due to the lack of space in this paper, I present the ICP’s 
in a reduced schema only concentrating on the main categories – new (green), inspired (orange), and 
structured (red) ideas – but categorizing them in detail in the description. 

Results  
Maria generated 13 solutions during her free working process on the open-ended task “Find different 
tasks with the number 4”. She wrote every solution on a single card and placed them randomly on the 
table. She did not look back on the inscribed cards but only on the blank cards in front of her. I was 
not able to see any system in the arrangement of the cards. Moreover, her ICP illustrates that she 
found her solutions by generating mainly new ideas. I analyzed ten new and two structured ideas. 
First, Maria produced six different tasks, which differed in the used operation – addition or subtraction 
– and in the placement of the number 4 either as the first summand or as the result. Afterwards she 
showed one of the two structured ideas by inferring a solution from the one before by the law of 
constancy: 8 − 4 = 4 followed by 9 − 5 = 4. Maria generated the second structured idea in the same 
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way but with the operation of addition: 1 + 3 = 4 followed by 2 + 2 = 4. In between and after these 
structured ideas Maria produced constantly new ideas with the number 4 as the result of the task. The 
following schema illustrates Maria’s complete first ICP (see figure 1):  

Figure 2 shows the schema of Maria’s second 
ICP. The red lined tasks are the tasks, which 
Maria produced in addition to her free working 
process. The dotted arrows symbolize that she 
produced more solutions in the prior pattern. 

Maria’s second ICP, illustrating her elaboration 
process, differed widely from her first one. She 
expanded her first solution space from 13 to 
now 31 solutions consisting of two new, four 
inspired and 18 structured ideas. First, she 
picked up her two written cards 1 + 3 = 4 and 
3 + 1 = 4, arranged them side by side and 
labeled them turn arounds [Tauschaufgaben]. 
This structured idea is based on the additive 
commutative law. She then displayed a new 
structured idea – the complement principle – by 
connecting the two cards 4 + 5 = 9 and         

Figure 2: Maria’s ICP of the elaboration working 
process 

Figure 1: Maria’s ICP of the free working 
process 
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9 − 5 = 4. I gave her a metacognitive prompt by saying that there is one more pair of matching cards 
based on the complement principle. She found them and placed them near the first pair. Hence, Maria 
reconsidered the previously used structured idea and thus, showed an inspired idea connecting the 
task 9 − 5 = 4 with the tasks 4 + 6 = 10 and 10 − 6 = 4. Subsequently, she thought for a while and 
after a metacognitive prompt, if she could write more solutions, she wrote the matching tasks within 
the complement principle to all previously found solutions. This means that Maria was able to respond 
to the given prompt and produce seven additional solutions by following a structured idea. After one 
more metacognitive prompt, if she could find further solutions, she generated in the previous used 
focus four new solutions, thus, two additional pairs. Finally, and without a prompt, she showed a new 
idea by writing the solution 13 − 9 = 4. For this solution she combined two different structural ideas. 
Primarily, Maria interpreted her solution in the previously used structure based on the complement 
principle, and wrote 4 + 9 = 13, and thus, showed an inspired idea. Then she focused on the law of 
constancy and derived 13 − 9 = 4 from the solution 14 − 10 = 4. Maria repeated this pattern twice 
with the tasks 14 − 10 = 4 and 16 − 12 = 4. Then she stopped the production but was able to 
explain how she could find further solutions in this way.  

Discussion and Outlook 
The case study gives an insight into the potential of a high-resolution view on the first graders’ 
creative processes when working on arithmetical open-ended problems.  

Referring to the first research question the analyzed processes of the first grader Maria exhibit that 
there are interesting differences in the flexibility (and fluency) of the two ICP’s from the two 
processes themselves and in the transformation. She first produced mainly new ideas and then 
completely changed her ICP when elaborating and expanding her own solution space. Especially her 
last composition, the combination of the complement principle and law of constancy, is stunning. 
Thus, a qualitative view at and analysis of the four characteristic of mathematical creativity seems to 
be necessary to define this term more precisely in a content-specific way. The second research 
question tended on the expanding of the child’s solution space through elaboration and prompts. In 
the case study, Maria was able to react to the given prompts, and thus, the level of support of the 
metacognitive prompts themselves were high. Maria did not need any sort of cognitive prompts to 
expand her solution space. Thus, the following assumption can be made: The higher the ability of 
elaboration (and originality) of the child, the lower the need for various instructional prompts.  

Following the previous presented insights of this case study from the pilot study, there have to be two 
implication for my future main study from March to July 2019:  

First, an interview design needs to be developed in which all characteristics of mathematical creativity 
– still focused on flexibility and elaboration – can be analyzed in one first grader’s creative process 
working on an arithmetical open-ended task. Looking at more such creative processes may lead to 
additional and complex ICP’s.  

Second, the prior stated assumption about the relationship between the elaboration abilities and the 
reaction to the instructional prompts has to be researched precisely. Furthermore, the effectiveness of 
the prompts itself must be considered in more detail. Therefore, all participants in my main study will 
be interviewed twice with two arithmetical open-ended tasks but the same instructional prompts.  
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In this study we investigate the mathematical discourse in a kindergarten. The mathematical 
learning activity engaged with was initially designed by researchers for 5-year-olds, and the 
kindergarten teacher orchestrated the mathematical activity. Observational data was quantitatively 
analysed by measuring how time and talk were distributed between the kindergarten teacher and 
the children. We also analysed whether the talk was focused on mathematics or not. Our analysis 
shows that the time elapsed during the activity was distributed unequally, the nature of the 
participants’ utterances shared both similarities and differences, while the engagement nurtured 
upon the kindergarten teacher’s request varied from each of the requests. Based on these results we 
characterise the mathematical discourse and hypothesise about the children’s potentials for 
mathematics learning.  

Keywords: Discourse, inquiry, kindergarten, mathematics, playful learning. 

Introduction 
Researching teaching and learning of mathematics in a kindergarten setting has been gaining 
improved focus over the last decade. Since the establishment of the early years mathematics 
research group at the 6th Congress of the European Society for Research in Mathematics Education 
in Lyon in 2009, a multitude of research foci have been launched and 50-100 research studies have 
been conducted (see CERME proceedings, www.mathematik.uni-dortmund.de/~erme). This is not 
to neglect journal articles published in the same period as well as before 2009. Early years 
mathematics has gained its place as a research field with mathematics education research also due 
to the four POEM conferences we have seen so far (POEM - A Mathematics Education Perspective 
on early Mathematics Learning). A huge portion of the conducted studies have been qualitative in 
nature, as case studies have been conducted, observations and interviews have been made 
(Levenson, Bartolini Bussi, & Erfjord, 2018). This study is an attempt to broaden the qualitative 
research scope and include quantitative aspects of mathematics discourse in a kindergarten context. 

The aim of the analyses made in the current study is thus to quantitatively characterise the 
mathematical discourse evolving as a kindergarten teacher (KT) orchestrates a mathematical 
activity for her five-year-olds. In the analysis we seek to develop an analytical approach which 
quantifies the collected qualitative data. We use the term mathematical discourse in line with Sfard 
(2007), as a type of communication featuring mathematical words that “bring some people together 
while excluding some others” (p. 573). According to Sfard, a mathematical discourse has the 
features called visual mediators, narratives, and routines as well. However, in the current study we 
focus at the verbalisations made by the KTs and the participating children. The results of our 
analysis will be discussed in light of the framework of mathematics discourse in instruction (MDI), 
developed by Adler and Ronda (2015), which heavily build on Sfard’s (2007, 2008) work. For the 
present study we have formulated the following research question: 

What characterises the mathematical discourse in a kindergarten in which a kindergarten teacher 
and five-years-old children engage with a planned mathematical learning activity? 
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In our analysis we have particularly focused at three dimensions: (1) the distribution of time in the 
activity; (2) the nature of the participating persons’ utterances; and (3) the engagement nurtured 
through the KT’s initiatives, requests, and prompts. Our focus at adult-child interactions has been 
studied elsewhere (e.g. Carlsen, Erfjord, & Hundeland, 2010; Dovigo, 2016; Vogel & Jung, 2013). 
Dovigo (2016) studied argumentation as a basis for collaborative learning and problem solving in a 
preschool setting. Dovigo adopted a sociocultural approach in his analysis, compared teacher–
children talk and peer-talk, and investigated the role of argumentation in empowering children’s 
collaboration and problem solving through discursive practices. Results from quantitative and 
qualitative analyses show that argumentation is effective in cultivating shared and critical thinking 
amongst the children. 

The mathematical activity that was orchestrated by the KT (one of many) was designed by 
researchers in mathematics education (the authors of this paper among others) in collaboration with 
the KT (among others), as part of the research and development project called “The Agder project”1 
(AP). This is why we use the term planned mathematical learning activity in the research question.  

These planned mathematical activities were designed based on the principles of playful learning and 
inquiry approach to the learning of mathematics. Playful learning as a construct comprises free play 
(child-initiated and child-directed play) and guided play (adult-initiated and child-directed play). In 
AP we drew on the principle of guided play as the KTs were empowered to orchestrate and guide 
the children’s play in the mathematical activities in purposeful directions in order to plausibly reach 
aims for the activities. Furthermore, The KTs functioned as catalyst for the interest, curiosity, 
engagement, and mathematical sense-making of the children (cf. Weisberg, Kittredge, Hirsh-Pasek, 
Golinkoff, & Klahr, 2015). Adopting inquiry as an approach to the learning of mathematics is in 
accordance with Jaworski’s (2005) inquiry as “a way of being in practice” (p. 103). Inquiry as a 
way of being is empowering when five-year-olds and their KT interact to achieve insights in 
mathematics. By seeking answers to mathematical prompts and questions, the children’s curiosity 
and excitement are nurtured and met.  

Mathematical Discourse in Instruction 
Adler and Ronda (2015) developed the MDI framework to analyse the mathematics made available 
for students to learn in the classroom. The framework was developed for a South African classroom 
setting, deviating from a Norwegian kindergarten context. We have thus slightly adapted the 
framework in order for us to purposefully employ this framework in our analyses of orchestrations 
of mathematics activities. However, the main components are adopted in our use of the framework. 
But as will be seen, we have adapted the definitions of these components to also encompass a 
Norwegian kindergarten context.  

According to Adler and Ronda (2015), it is important to focus on what mathematics students are 
supposed to learn, when analysing teaching. Thus, the object of learning, e.g. a concept, procedure, 
                                                           
1 The Agder project is funded by the Research Council of Norway (NFR no. 237973), The Sørlandet Knowledge 
Foundation, The Development and Competence Fund of Aust Agder, Vest Agder County, Aust Agder County,  
University of Agder and University of Stavanger. 
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algorithm, is the starting point for the MDI framework. In our context and analysis, acknowledging 
and accommodating the social pedagogy tradition of Norwegian kindergartens’ enterprise, we use 
the concept of intention to address what the children are supposed to meet and make experiences of 
in the mathematical activities. Further, Adler and Ronda (2015) argue that the mediational means 
used in teaching to reach the object of learning, are exemplification (examples and tasks), 
explanatory talk (naming and legitimations), and student participation. We believe learning takes 
place in social, communicative settings, in which children and adult(s) actively participate, engage, 
and argue in interaction. Hence, it is of importance to consider children’s possibilities to talk in the 
orchestrations, their opportunities to “speak mathematically and to verbally display mathematical 
reasoning” (Adler & Ronda, 2015, p. 245). 

The mediational means of exemplification manifests itself as examples and tasks. Examples used in 
mathematics teaching/orchestration serve the purpose of being a representative of a larger class, one 
particular case of that class from which it is possible to generalise (Zodiak & Zaslavsky, 2008). 
Deliberate use of examples is important to reach the intention/object of learning. Tasks are also 
commonplace constituents of mathematics teaching/orchestration. Tasks are given by the 
teacher/KT to bring to the fore certain mathematical properties, actions etc. Tasks are thus what the 
children are supposed to do with the examples given (Adler & Ronda, 2015).  

The mediational means of explanatory talk comprise what is to be done and known, that is to name 
and legitimate the focus and content of the talk between the teacher/KT and the children. To address 
this, Adler and Ronda (2015) coin the terms naming and legitimation. Naming is “the use of words 
to refer to other words, symbols, images, procedures or relationships” (p. 244). Naming may be 
either colloquial, non-mathematical everyday language, or mathematical, either mathematical words 
used or reading strings of symbols (Ms) or formal mathematical language used (Ma). Legitimation 
comprises four domains: mathematical, non-mathematical, curriculum and teacher. Within the 
mathematical domain there are local (L) criteria (specific case, convention) and general criteria 
(partial (GP) and full (GF) that give authority. Within the non-mathematical domain there are also 
criteria that give authority, called visual (V), positional (P), assigning the authority to the speaker, 
and everyday (E) knowledge and experience. The significance of addressing all these criteria is, 
according to Adler and Ronda (2015), “the opportunities they open and close for learning” (p. 244).  

The KT’s utterances will be analysed according to the levels in the MDI framework (cf. Adler & 
Ronda, 2015), where level 1 is a type of mathematical discourse in which the children contribute 
with answers to yes/no questions or single words to the KT’s unfinished utterances. Level 2 is a 
type of mathematical discourse in which the children contribute with answers to what/how 
questions in phrases/sentences. Level 3 is a type of mathematical discourse in which children 
contribute with answers to why questions and present ideas and where the KT 
revoices/confirms/asks questions (cf. Adler & Ronda, 2015). 

In our discussion we adapt the MDI framework in order to analyse the KTs’ orchestration of 
mathematical activities. Thus, not all facets of the MDI framework will be used in the discussion. 
The reason for our adaptation is that the MDI framework is developed to analyse mathematics 
teaching in (South African) schools. The Norwegian kindergarten context differs significantly from 
that school context. As will be seen in the analysis, to approach the intention/object of learning of 
the mathematical activity, the KT exemplifies by the use of examples, use of tasks made explicit 
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through questioning, and explanatory talk. The children participate in the interaction with the KT, 
question and argue for their opinion(s).  

Our analytical approach 
In this study we collected video data from the orchestration of a mathematics activity by one 
kindergarten teacher. The activity involved five five-years-old children in this kindergarten who 
participated in AP, selected by the KT. The studied KT and children were chosen out of 
convenience, based on the consideration that the only criterion for selection was that the observed 
KT and children had to participate in AP and voluntarily participate in this specific study. 

In order to analyse the mathematical discourse emerging from the KT’s orchestration of a 
mathematical activity, we developed an analytical tool that fitted our purpose of quantifying 
qualitative data. Quantification of qualitative video data has also been studied by Vogel and Jung 
(2013), however from a slightly different perspective. The first step of our analytical process was 
that we agreed upon making ‘quantification of qualitative’ data the main focus of our analysis. With 
this idea in mind, the second step of our analysis continued as two of the researchers met and 
discussed ways of making this quantification. These two researchers agreed that use of time was a 
critical element in the orchestration, who had the floor? Were any questions asked, and by whom? 
Were the questions mathematical ones or not? What other comments were made, and by whom? 
Were these comments mathematical or not? etc.  

The result of that meeting was submitted to the third researcher, who had not been taking part in the 
discussions so far, comprising a third step in our analysis. This researcher critically scrutinised the 
preliminary analytical tool, asked critical questions and made modifications to the tool.  

All three researchers met for the fourth step of our analysis as we refined the analytical approach, 
agreed upon the various dimensions necessary to scrutinise in order to analyse the mathematical 
discourse in the kindergarten, as well as pinpointed sub-categories within the three dimensions. The 
idea behind our analytical approach is to steadily funnel down to the core of our analysis. The 
distribution of time is seen as a first attempt to separate the various elements of the activity. 
Secondly, we discriminate between what we call verbal mathematical contributions and non-
mathematical or colloquial contributions. Thirdly, we have chosen to make a deeper analysis of 
those verbal contributions in which mathematics is focus, what Sfard (2008) would label a 
mathematical discourse. Our analytical approach is summarised in the following table (Table 1): 

 Distribution of time between the KT and the children 
Who Number of minutes Description of category 
KT active Informing, Demonstrating, 

Explaining, Exemplifying 
Dialogic communication Questions and prompts from KT and 

answers from children 
Children active 
(KT interference 
tolerated) 

The children work with concrete 
materials, explore mathematical 
relationships «on their own» 

Verbal utterances 
Who Mathematical (#) Non-mathematical (#) 
KT 
Children 
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Mathematical engagement nurtured 
Initiatives from KT Child 1 Child 2 Child 3 Child 4 Child 5 
1      
2      
…      
N      

Table 1: The analytical approach to quantification of qualitative data 

 
Analysis of the mathematical discourse associated with ‘The secret bag’ 
The mathematical activity called ‘The secret bag’ was orchestrated by the KT Tone (pseudonym). 
The activity addresses geometrical shapes of both two and three dimensions and an in-transparent 
fabric bag. The KT and the children talked about and discussed the various geometrical shapes, and 
they talked about the connections between two-dimensional shapes and three-dimensional shapes, 
as some two-dimensional shapes may be turned into three-dimensional ones and vice versa. 
Continuing from this, the KT put all the shapes in the in-transparent bag, and let one child at a time, 
hold his/her hand into the bag, pick one of them and tactilely reason what shape the picked one has. 
As seen in Table 2, the KT holds the floor for approximately 1/3 of the total time used, the children 
are active discussing more or less on their own for about 15 % of the time. About 50 % of the time 
was used for dialogic communication between the KT and the children. 

Category Distribution of time 
KT active 00:07:16 
Dialogic communication 00:10:54 
Children active (KT interference tolerated) 00:04:11 

Table 2: Distribution of time between the KT and the children 

Concerning the verbal communication going on in the activity, we found that the KT made 125 
mathematical utterances and 99 non-mathematical utterances. The children contributed with 103 
mathematical utterances and 86 non-mathematical utterances. An utterance is here viewed as an 
instance of speech. However, the non-mathematical utterances enable the mathematical utterances 
to emerge. Thus, all utterances contribute to the ongoing mathematical discourse (cf. Sfard, 2007, 
2008).  

Verbal utterances 
Who Mathematical (#) Non-mathematical (#) Sum 
KT 125 99 224 
Children 103 86 189 

Table 3: Categorisation of utterances 

In this study we are occupied with the KT’s utterances that we characterise as mathematical and the 
verbal engagement nurtured amongst the 5 children involved. Upon the KT’s verbal utterances, we 
counted the number of contributions of the various children, see Table 4. 

Table 4: Number of verbal contributions distributed over the children 

 Erik Ivar Ida Mari Nina >1 Sum 
Number 62 29 23 24 22 29 189 
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We further registered the number of children responding to the KT’s questions and prompts, thus 
we see this number as a measure of the mathematical engagement nurtured, see Table 5. Three 
questions from the KT were not responded to at all, and none of questions/prompts engaged all five 
children. At 46 occasions it was only one child responding to the KT’s question/prompt. However, 
each child might contribute with several responses to the initial question/prompt. Thus, the total 
number of responses in Table 5 (120 responses) is less than the 189 verbal contributions mentioned 
above. 

# of children engaged 0 1 2 3 4 5 Sum 
Frequency 3 46 23 4 4 0 77 
# of children responding in total 0 46 46 12 16 0 120 

Table 5: Children responding to the KT’s questions/prompts 

Adopting an inquiry approach to the orchestration of mathematical activities in kindergarten, will 
plausibly create mathematical engagement amongst the children. We thus further scrutinised each 
of the 77 contributions of the KT that engaged the children mathematically, and we analysed the 
mathematical discourse that these contributions initiated according to the levels of discourse in the 
MDI framework (cf. Adler and Ronda, 2015). From this analysis we found that 49 mathematical 
discourses were at level 1, 24 of the discourses were at level 2 and four discourses were at level 3, 
see the right-hand column of Table 6.  

# of children engaged 1 2 3 4 Sum 
# of mathematical discourses at Level 1 31 14 2 2 49 
# of mathematical discourses at Level 2 14 8 0 2 24 
# of mathematical discourses at Level 3 1 1 2 0 4 
Total 46 23 4 4 77 

Table 6: Number of children involved versus the levels of mathematical discourse 

Amongst the 49 mathematical discourses at level 1, 31 engaged only one child, 14 of those 49 
discourses at level 1 engaged two children, 2 discourses engaged 3 children and 2 discourses 
engaged four children. From Table 6 we also observe that approximately 64 % of the mathematical 
discourses were at level 1, and 36 % were at level 2 & 3. We also observe that rarely more than 2 
children were engaged by the KT’s questions and prompts, 69 (46 + 23) out of the 77 mathematical 
discourses, and in those occasions 45 were at level 1 and 22 at level 2 and only two discourses were 
at level 3.  

Examples of the KT’s questions and prompts that we analysed as initiating a mathematical 
discourse at level 1 were: “Are all the edges (of the rectangle) of equal length?” and “Is it (the 
rectangle) two dimensional?” Examples of the KT’s questions and prompts that we analysed as 
initiating a mathematical discourse at level 2 were: “What is this (a sphere)?” and “What is your 
thinking with respect to that one (a cone)?”. Examples of the KT’s questions and prompts that we 
analysed as initiating a mathematical discourse at level 3 were: “Why is that a rectangle?” and 
“Why does this quadrilateral (a square) have another name?”.  

Discussion 
We have addressed the question: What characterises the mathematical discourse in a kindergarten in 
which a kindergarten teacher and five-years-old children engage with a planned mathematical 
activity? Firstly, the mathematical discourse analysed is dominated by the KT. She holds the floor 
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on individual basis for about 1/3 of the elapsed time for the whole activity. She is also dominating 
the dialogic communication going on, a category comprising approximately 50 % of the elapsed 
time. This result is also documented by Dovigo (2016). Secondly, we observe that the distribution 
of verbal utterances amongst the KT and the children is fairly equal, both regarding utterances 
categorised as mathematical and utterances categorised as non-mathematical. However, we also 
observe that the children do not contribute equally to the mathematical discourse. Erik is 
dominating and the other four children are contributing approximately at the same level. Thirdly, 
the mathematical discourse is characterised by engaging only one or two children. Additionally, 64 
% of the mathematical discourses were at level 1 and 36 % at level 2 and 3 according to Adler and 
Ronda (2015).  

The sparsity of occasions where three or four children were engaged, and at the same time engaged 
in a mathematical discourse at level 2 and 3, we hypothesise has consequences for the mathematical 
learning potential in this orchestrated mathematical activity. According to Sfard (2007), “Learning 
mathematics may now be defined as individualizing mathematical discourse, that is, as the process 
of becoming able to have mathematical communication not only with others, but also with oneself” 
(p. 573). We thus hypothesise that the children in this activity have limited opportunities to 
individualise the mathematical discourse occurring.  

We took the KT’s questions and prompts as point of departure in our analysis, and scrutinised the 
mathematical discourse associated with these various questions and prompts. The mathematical 
discourse was then analysed according to the levels of Adler and Ronda (2015) regarding children’s 
participation. From this analysis, we came to the result communicated in Table 6 above. Our initial 
hypothesis was that it seems reasonable to argue that the levels of children participation comprise 
an increasing opportunity for learning. Thus, the potential of learning associated with a level 3 
mathematical discourse is more promising than mathematical discourses at level 2 and level 1 
respectively. Our analysis shows that most of the mathematical discourse was at level 1 (64 %). 
From the analysis we argue that the KT often initiated a mathematical discourse at level 1 through 
asking a yes/no question. However, these mathematical discourses evolved into mathematical 
discourses at level 2 and level 3 in several occasions. Thus, mathematical discourses that from the 
outset may seem to have a limited learning potential evidently may improve into mathematical 
discourses at levels comprising a higher mathematical learning potential. 

We also find that the KT adopts an inquiry approach to mathematics teaching and learning (cf. 
Jaworski, 2005), due to her mathematical questions and prompts. However, how to engage the 
children in mathematical inquiries is a different matter. An implication from our study is thus how 
to empower the children’s inquiry by discussing more between themselves. More research 
regarding what characterises mathematical activities that empower children’s own inquiry into 
mathematics is needed. 
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Introduction 
Young children’s patterning, defined as “finding a predictable sequence”, has been identified as 
significant for later mathematical achievement, with promising intervention research (Rittle-Johnson, 
Fyfe, Hofer & Farran, 2017, p. 3). Two years ago we began a collaborative project with English 
teachers of three to five year olds, drawing on the work of Papic, Mulligan and Mitchelmore (2011) 
and Mulligan and Mitchelmore (2016). Our research question is: How do teachers develop young 
children’s pattern awareness? We analyse our findings as learning in a ‘community of practice’ 
(Wenger, 1998), focusing on a teacher innovation of paper plate patterns. 

Methodology 
Wenger (1998) identifies a community of practice as a group whose members have a joint enterprise, 
are mutually engaged in an activity and have a shared repertoire of customs of practice. Accordingly, 
learning is defined as a change in participation in the community of practice. Bannister (2018) 
identifies benefits of teacher communities of practice as providing better outcomes for teachers in 
terms of opportunities to learn and improved working conditions. Our group was formed of 12 
experienced nursery and reception teachers who volunteered to trial teaching patterning, working in 
six socially diverse state-funded schools in London, UK. We offered number and pattern assessment 
activities, and a core teaching sequence, which we encouraged teachers to adapt for their children and 
settings. In total we held 14 after-school meetings, where we introduced the next month’s topic and 
teachers shared how they had been teaching pattern, with photos and accounts. We visited three times 
to assess focus children with teachers and three times to conduct informal interviews about teachers’ 
work, discuss records of children’s progress and once to observe teaching and learning. The data 
reported here derive mainly from three sources: field notes from teachers’ reports at project meetings 
and informal interviews, our observations of teaching and learning and semi–structured group exit 
interviews. We analysed notes and transcriptions to identify common themes in relation to our focus 
on learning in a community of practice. 

Findings 
As a community of practice, the teachers developed convergent pedagogical approaches, such as 
integrating patterning into whole class routines and encouraging children’s independent ‘co-
working’, including challenging each other to continue patterns or spot errors. In Bannister’s (2018) 
terms, teachers reported benefits for themselves in increased subject knowledge of patterning 
progression and in improved working conditions through peer support for ‘marginalised’ early years 
teachers in primary schools. One example of learning was a teacher’s innovation of circular repeating 
patterns as an interim stage before Papic et al.’s (2011) border patterns. The latter present the 
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challenges of making a continuous pattern, turning corners (by rotating the frame or carrying the 
pattern mentally through a rotation) and fitting the unit of repeat into a fixed number of squares. 
During the second year, Sam reported that paper plates enabled children to make continuous patterns 
by adjusting the size of the unit to fit, which allowed discussions about whether a pattern ‘worked’. 
The other teachers took up this idea in their practice and in subsequent meetings Tess and Pam agreed 
that their children found it easier to make a pattern around a circular border than a square one since 
this avoided turning a corner. Several teachers noted disadvantages in using plates and made 
adaptations: for example, Pam said, “Dave wanted to put another circle inside the first one, maybe 
because he thought that he had to fill in the plate. He wanted to match the inside and outside circle 
but didn’t realise that the numbers couldn’t match. So I coloured the inside of the circle so that the 
children didn’t feel like they had to fill in the middle.” Two other teachers developed a further interim 
stage of making a border around the outside of rectangular shapes, which involved turning corners, 
without a fixed number of squares. We observed two children fitting pom-poms around a rectangular 
border by changing the pattern unit from “white, white, white, yellow, yellow, blue” to what they 
jointly described as “white, white, white, 3 whites” and “yellow, blue and start over and over”. The 
refinements made by the teachers seem to enable these children to analyse and identify the unit of 
repeat in a continuous pattern. 

Conclusion 
The teachers’ learning in this community of practice was evident in changes in their participation as 
they took up the research and applied it to their teaching, developing new activities based on 
children’s responses and mutually engaging in sharing and refining each other’s ideas. The strength 
of this community of practice lay in participants’ willingness to share and develop their pedagogy, 
which resulted in the teachers creating significant interim stages in the trajectory of developing 
pattern awareness. 
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Introduction 
Teaching mathematics to children in their early years of primary schooling is a very challenging 
undertaking. Teachers usually find it difficult to design tasks that can keep young minds engaged and 
motivated throughout the lesson. In Malawi, the task is even more difficult considering that 60% of 
learners do not have the opportunity of attending some form of pre-school education; hence most 
children are formally introduced to concept of number in grade 1 at the age of six, or more (Robertson, 
Cassity, & Kunkwenzu, 2017). If number sense is not properly introduced to learners, the result might 
be a wide gulf between school mathematics and their everyday experiences of actual mathematics, 
making them disengage their minds in the subject despite efforts of the teacher (Boaler, 2016).  For 
children in Malawi, the problem of lack of understanding Mathematics is often observed from the 
perpetual low scores attained by learners during standardised national examinations and international 
assessments in mathematics and numeracy. As such, this study seeks to understand ways in which 
early years mathematics is taught in Malawi and assess the opportunities of learning offered through 
their approaches. The study will seek to answer the question: How do Malawian teachers mediate 
mathematics during lessons in the early years of primary school? The main question will be answered 
through the following subsidiary questions: How do teachers in early years work with tasks and 
examples during lessons? How do mathematics teachers use artifacts during early years of primary 
school? In what ways do teachers use inscriptions to represent mathematical processes in early years? 
What talk/gestures do teachers use to generate solutions to problems, make mathematical connection, 
and advance learning connections? 

Theoretical Framework 
This study is guided by the Mediating Primary Mathematics (MPM) framework developed by Venkat 
and Askew (2018). The framework focuses on the nature of the mathematics that is made available 
to learn and enables a detailed exploration of the quality of primary mathematics instruction. The 
MPM framework applies variation theory to understand teachers’ use of example spaces during 
instruction (Kullberg, Kempe, & Marton, 2017). It is grounded on Vygotskian concept of mediation 
as the major requirement for learning and adopts sociocultural theory to understand the teacher’s role 
as the sole mediating agent in the classroom, determine the goals in mathematical instruction, and 
determine sociocultural materials and practices for mediation. The framework identifies four 
overarching means of mediation (called strands), which are: Tasks/examples, artifacts, inscriptions, 
and talk/gesture. 
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Research Design and Methodology 
The research will adopt a qualitative exploratory case study design. One rural primary school in a 
remote village will be purposively selected as a paradigmatic case of exemplary performance during 
standardised national examinations, despite having limited teaching and learning resources. Lessons 
will be observed from four outstanding mathematics teachers (one in each of the first four early years 
classes), identified by the school authorities. The classroom observations will be followed by video-
stimulated recall interviews (VSRI) with each teacher to elicit their thinking behind the choices made 
during the lesson. Document analysis will also be done on learners’ notebooks, textbooks, 
mathematics syllabi, teachers’ guides, lesson plans, schemes and records of work. Recorded videos 
of lessons will be analysed using MPM’s tool for lesson analysis (Venkat & Askew, 2018).  

Pilot Findings 
The study was piloted with a grade 2 teacher at another well performing rural primary school. The 
findings from the pilot study indicated substantial use of arttifacts to explain new concepts during 
lessons. Single-use artifacts were mainly developed by the teacher while multiple-use artifacts, such 
as counters, were brought by children in collaboration with their parents.  Chalkboard inscriptions 
were also used to reify the artifacts when representing concepts during lessons. Highest levels of 
abstraction were achieved with talk and gesture that corresponded with the tangible artifacts and the 
written inscriptions. This shows that highest opportunities for learning are afforded when artifacts, 
inscriptions, talk and gestures are used concurrently to represent a single concept.  
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In this paper we discuss how focusing on inquiry-based learning may contribute to the development 
of mathematical literacy in the early grades. We analyze a grade 2 lesson with play-coins with a 
particular view on what it means for students to have a critical orientation. 
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Introduction 
The work reported in this paper is part of a longitudinal study on mathematical and scientific literacy 
and inquiry-based learning in two Norwegian primary schools. The project group consisted of 
university didacticians from both the mathematics and the science sections of the teacher education 
department working together with teachers at the two schools. At the start of the project, the students 
were in grade 1. The data analyzed in this paper was collected when the students were at the start of 
second grade, at ages 6- and 7-years old. Using data from an IBL-inspired lesson with students at 
their start of second grade, we explore affordances for students’ critical meeting with mathematics in 
a ‘realistic’ context. While a lot has been said and written about literacy in general and also the 
particular topic of mathematical literacy, what mathematical literacy constitutes in the earlier grades 
has been less discussed (e.g., Askew, 2015, p. 708). In this paper our research question is: Which 
opportunities do students have to be critical in mathematics in a second-grade classroom, and how 
can an IBL approach foster this? 

Literature review 
The use of more inquiry-based learning has been launched as a way to make mathematics and science 
more relevant to students, preparing them for an uncertain future where the ability to ask questions, 
to reason, explore, explain and develop a creative and critical mind is seen as essential (e.g., Maaß & 
Artigue, 2013). Also for early years mathematics inquiry-based activities has been launched as 
beneficial to develop critical and creative thinking (e.g. Skoumpourdi, 2017). Through working 
inquiry-based, teachers will expand their teaching repertoire and will also be better able to meet 
different types of students, including students who struggle with mathematics. Inquiry-based learning 
has been shown to be effective in rich and real-life contexts and may have a positive effect on students 
who otherwise perform poorly (Kogan & Laursen, 2013). Through context-based approaches, 
students gain insight into meaningful use of mathematics and this results in improving students' 
motivation and attitudes towards learning, which in turn affects academic achievement (Bruder & 
Prescott, 2013). In this way, IBL appears as a framework that is productive in terms of building 
mathematical literacy. There is no universally agreed upon definition of inquiry-based learning. Core 
elements of IBL include developing a questioning mind and a scientific attitude. In the EU funded 
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Primas project (Maaß & Reitz-Koncebovski, 2013), aspects related to students, teachers, classroom 
culture, valued outcomes and learning environment were identified and summarized, see Figure 1. 

Figure 1. The multifaceted understanding of IBL (Maaß & Reitz-Koncebovski, 2013, p. 8) 

Whereas mathematical literacy has been propagated by policy makers and educational authorities, the 
term is not well defined within the scientific literature. Terms like numeracy and quantitative literacy 
have been used, more or less synonymously with mathematical literacy, without any determinate 
definition of what the term entails (Geiger, Goos, & Forgasz, 2015). Niss and Jablonka (2014) pointed 
out that researchers from non-English speaking countries may have reservations towards the use of 
the term based on the fact that it is not easily translated and lack counterparts in many languages, 
including German and the Scandinavian languages. For the PISA assessments, OECD made a 
working definition that has been slightly amended through the years. In its latest version it reads 

Mathematical literacy is an individual’s capacity to formulate, employ and interpret mathematics 
in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, 
procedures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognize the role that mathematics plays in the world and to make the well-founded judgements 
and decisions needed by constructive, engaged and reflective citizens. (OECD, 2017, p. 4) 

An aspect that is downplayed by this definition is the critical aspect. Some authors see the 
development of a critical disposition as a primary aspect of mathematical literacy. In the model 
developed by Goos, Geiger and Dole (2014) a critical orientation is seen as an overarching element. 
D'Ambrosio (2003) used the term matheracy along with literacy and technoracy as essential for the 
“providing, in a critical way, the communication, analytical, and technological instruments necessary 
for life in the twenty-first century” (p. 237). Matheracy is not about counting or measurements, but 
about thinking and philosophy, about the ability to derive, suggest hypotheses and draw conclusions 
from data. Literacy, according to D'Ambrosio, is the ability to process information, such as the use 
of spoken and written languages, of characters and gestures, of codes and numbers. Ole Skovsmose 
(1998) introduced the term mathemacy as a parallel to the way Paulo Freire has used literacy, namely 
by linking it to being able to function in society, and thus not only to number sense or basic skills in 
arithmetic (p. 199). To Skovsmose, mathemacy is about the competence to be able to function in 
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society structured by mathematics. Against this we can ask to what extent mathematics education 
educates students to become critical citizens who can challenge the authorities. Askew (2015, p. 708) 
argued that being critical can be addressed in at least three ways: 1) being critical within a particular 
mathematical model; 2) being critical of the choice between mathematical models; and 3) being 
critical of what is modelled mathematically. Askew emphasized that these three forms of being 
critical are not to be seen as separate to each other or mutually exclusive, but rather “co-construct 
each other” (p. 709). Being critical within a particular mathematical model is the approach in most 
papers about young students, this is about reflecting on the chosen methods/approaches used by the 
students towards finding the required answers or results. It is less clear what being critical to the 
choice of mathematical model or being critical to what is being modelled may constitute in the lower 
grades. Does being critical presuppose mathematical knowledge to a certain degree? And which 
comes first, Askew asked, the mathematical knowledge that enables you to be critical, or the critical 
orientation towards practice? The problems posed in mathematics classes has a long tradition of being 
‘made up’ to look like real problems, and posed to be solved by the algorithms of mathematics. On 
the other hand, “real-life problem solving is pragmatic and seeks effective solutions to particular 
problems, rather than the generality and abstraction sought in formal mathematics” (Askew, 2015, p. 
709). There are, however, no quick fixes according to Geiger et al. (2015): “The question of how to 
best promote numeracy capabilities remains an open question. (…) there appears to be little research 
that outlines the characteristics of effective numeracy tasks or how these tasks promote student 
learning” (p. 544). 

Methodology 
The data was collected as part of a seven-year longitudinal study where four groups/classes in two 
different primary schools and their teachers partake in lesson study cycles focusing on inquiry-based 
approaches to mathematics and science. Each group of children with their teachers partake in two 
lesson study cycles each year, in science or mathematics, starting with the children’s first year in 
school and until they leave primary school after 7th grade. At the time of the lessons reported on here 
the students were at start of their second year at school. Skoumpourdi (2017) pointed out that “it is 
not easy for teachers to design inquiry-based activities and implement them in the classroom” (p. 
1906). To implement new pedagogical and didactical ideas, it is beneficial for teachers to work 
collaboratively and with support from outside ‘experts’. Lesson studies in the form of planning 
lessons together and observing each other’s teaching in cyclic processes of design and redesign is a 
particular efficient way of professional development (e.g., Yang & Ricks, 2013). In our project, each 
lesson study cycle is initiated by the in-service teachers choosing a topic or teaching goal, building 
on the national curriculum, in either mathematics or science.  The research group and the teachers 
meet to develop a detailed lesson plan for the teaching. The planning meeting is audio-recorded. One 
of the in service-teachers then conducts the lesson, which is video-taped, while the other teachers and 
researchers observe the lesson, using observation sheets that have been developed as part of the 
planning sessions. In addition, the teacher wears an audio-recorder, and additional audio-recorders 
are placed among selected groups of students. After the lesson the researchers and the in-service 
teachers meet to reflect on the lesson and redesign it. A (possibly different) teacher conducts a new 
lesson with the new redesigned lesson plan in another group/class. A new reflection and redesign 
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meeting is held after this second run-through. This is also audio-recorded. In addition, annual 
interviews are conducted. Students are interviewed in groups of 3-4, while teachers are interviewed 
individually and respond to questionnaires. For this paper the data analyzed comes from two lessons 
in the lesson study cycle.  The first group of students comprised 16 students and the second 14 
students. The same teacher, who is one of the two regular teachers sharing these two groups, 
conducted both lessons. The underlying mathematical goal concerned addition with natural numbers 
up to twenty. The mathematics was introduced in a context that involved Norwegian coins (values 1, 
5, and 10 kroner), bringing the ‘real’ world into play. We use the word ‘play’ here deliberately to 
emphasize that the real world for children is as much a world of playing games and not only the real 
adult world. At the same time, using coins relates to the adult world and prepares students for 
meetings with, and they may already relate to, money in the real world. Thus, the tasks were partly 
presented as small ’mysteries’ where the students were supposed to find solutions, as if solutions to 
real problems and not pure mathematical tasks. A particular aim in the design of the tasks was to 
focus on the different types of number of solutions a mathematical problem may have: one unique 
solution, several or infinitely many solutions, or no solution at all. For the students, working 
collaboratively, in pairs, was an explicit goal for the lesson. Students had access to number lines, play 
coins similar to Norwegian 1, 5 and 10 kroner coins, and A3-size sheets of paper, pencils and crayons. 
Each lesson was divided in three parts: 1) plenary gathering around the smartboard, where the topic 
was introduced; 2) students working in pairs with up to five different tasks. The tasks were printed 
on laminated A5-size paper sheets and handed to the students as they asked for it. 3) plenary session 
were students were asked to present their findings. Data sources used for the analysis in this paper 
are the audio- and video-recordings and transcripts of the lessons, observation sheets filled in by the 
authors during the lessons, and copies of the A3 sheets filled in by the students. The multiple data 
sources enhances the construct validity (Yin, 2018, p. 43). Data analysis started by the two of us 
watching the video recordings together. Whenever anything in the video was unclear, the audio 
recordings were consulted, and sometimes also copies of the student work sheets. Together with the 
lesson plan and the observation sheets this gave us an overview of the lessons. Subsequently, the 
transcripts were analyzed by each of the authors with respect to two lines of inquiry: 1) are any of the 
aspects of IBL as identified by Maaß and Reitz-Koncebovski (2013) apparent? and 2) are any of the 
three ways of being critical as identified by Askew (2015) apparent?  We then sat together to exchange 
scripts and discuss our findings to enhance inter-rater reliability. Part of this also included consulting 
the video- or audio recordings or the students work sheets whenever anything needed to be clarified. 

Findings 
All together there were six available tasks for students to work on, labelled 1a, 1b, 1c, 2a, 2b, 2c. All 
students were able to work with at least the two first ones, and some students were able to finish all 
tasks. We arrange our findings according to the tasks, with an analysis of student answers to the first 
four tasks. The students started out on task 1a), that had a unique solution, namely: Jens has four 
coins in his pocket. The value of the coins are 17 kroner. Which coins is it? In the conversation below 
we see an example where the students have already solved the mathematical problem by representing 
the answer with play-coins but without writing or drawing. The teacher asks them to write and draw 
the answer, and the calculation. They found a short plenary talk where the teacher reminded the class 
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that they should collaborate and use the available resources when needed, as something that disturbed 
them:  

24 Student 2: We are already finished with these coins. We managed to find out  before you 
began with your talking-thing 

30 Teacher: But, you, can’t you say how you were thinking, and write it? Draw coins, 
write the addition? Write the answer! 

In this interaction with the teacher the students have a solution, and rather than giving the students an 
opportunity to explain their thinking with the play coins, they are encouraged to make a written record 
on paper. The teacher does ask them to draw the coins, while in the video it is clear that the students 
have used the play-coins to solve the problem. We see here that there is some discrepancy between 
the students’ and the teacher’s ideas about how to solve the problem. This can be interpreted as the 
students being critical within the mathematical model, the first of Askew’s (2015) three ways of being 
critical. 

Task 1b): Jens has 17 kroner in his pocket. Which coins can that be?  This task has several solutions, 
however only a finite number using Norwegian coins.  

66 Student 1:  OK. 17 kroner. OK. One ten, one five, plus two. Like that. You can write it. 
Student 2 asks whether to write the same answer as in 1a), but Student 1 says 

70 Student 1: No, no, no. You do different ways. 
The students explore different ways to make a sum of 17 kroner from the Norwegian coins, realizing 
that there are lots of solutions.  

104 Student 2: Maybe we can fill the whole sheet only with b). 
This type of task, with several solutions, is not very common in Norwegian text-books and 
classrooms. In their conversation, Student 1 sees only one possible solution, however Student 2 points 
out that there are in fact many solutions, and they continue to explore this together.  

Task 1c): There are 4 coins in the bag. Which coins can it be and how many kroner? This task poses 
the same challenges as the previous one, as there are several solutions, though only a finite number 
using Norwegian coins. Many of the students did not realize that the coins did not need to hold the 
same value in this task. Several were happy with the solution 1+1+1+1, and needed prompting from 
the teacher to realize that there were other possible solutions. Two of the students found several 
possibilities and started discussing whether there are more than already discovered. Further in the 
discussion a question arises: 

416 Student 2:  Is it allowed with minus? Because there are no more numbers. 
This can be interpreted as the student questioning the choice of model in this setting, which is the 
second way of being critical according to Askew (2015). It is not within the model or given context 
natural to consider that you add some of the coins in the pocket and subtract any. These students are 
in the early stages of learning addition and subtraction and so it is natural to also question which 
mathematical operation that is valid in a given situation. And indeed, considered as a purely 
mathematical problem, subtraction is also part of the additive context. 
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Task 2a): Kari has 5 coins in her pocket, in total 20 kroner. Which coins does Kari have in her 
pocket? This task does not have any solutions using Norwegian coins. The students’ first reaction 
was 

468 Student 1:  OK, that is easy. No, what? 
The two students discussed it, trying out possible solutions.  

511 Student 1:  We need one … It doesn’t work 
513 Student 2:  Yes, but it has to work, Hm … 
515 Student 1: This also does not work. Definitely not this. Kari has five in her pocket … 
527 Student 1: It would have worked if there was a 2-coin. 
529 Student 2: OK. Oi, oi, oi. This is totally … Hm … Five .. 
537 Teacher:  What are you doing? 
539 Student 2: We are working with this one, with 5 coins, it is not possible to divide in 

twenty or something. Ones, too few. All of them, too little. And fivers, too 
much, and tens, too much. 

567 Student 2: Four. If we need, then,… If it was supposed to be 19, then we would have 
found the answer immediately. There should have existed 2-coins. 

Not all mathematical tasks have a solution, and quite a few mathematical tasks do not have a solutions 
within the number set you are working with; e.g. 3 – 5 does not have a solution in the natural numbers, 
3 : 5 does not have a solution in the integers, a set of linear equations represented by non-identical 
parallel lines does not have a solution; etc. In this case this fact is discovered by the students, when 
they realize that if you had a coin with value 2 kroner then the problem could be solved.  Two other 
students, Student 3 and Student 4, also working with 2a), turned critical to the idea of having this type 
of tasks. Their relationship with the teacher is one of confidence and trust, allowing expression of 
honest opinions of frustration without being interpreted as rude or angry. 

445 Student 3: So this is a nonsense task? 
447 Teacher:  Or an impossible task? 
449 Student 3: Did you make this so that we should not be able to solve it, just sit there 

struggling and struggling? 
These students questions the teachers motivation for choosing a task that does not have a solution. 
This can be seen as the students being critical to what is being modelled mathematically, the third 
way of being critical as identified by Askew (2015). 

Discussion 
The multi-faceted understanding of IBL consisting of five related areas displayed in Figure 1 was 
used as a guiding map during the planning of the lesson, and the analysis shows that several 
characteristic aspects of IBL could be discerned in the lessons. The learning environment was 
characterized by problems that afforded diverse possible solution strategies, and apart from task 1a) 
they all had a number of possible solutions. Furthermore, the problems could be experienced as real 
for the students, and there was access to tools such as play-coins, number lines, paper and pencils. 
Explanation of solutions were encouraged, as made clear by the teacher both at the start of the lesson 
and during the students’ problem solving. The realistic restrictions to the coin-problems by using only 
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Norwegian coins afforded the students opportunities to discover firstly that not all problems are 
solvable with these restrictions, secondly that if there were other coins such as a coin with value 2 
kroner the problem could be solved, and thirdly, in the real world there is actually no coin in Norway 
with value 2 kroner. Understanding what a solution means, under what circumstances and limitations 
solutions can be found, and being able to see that changing conditions may lead to other solutions, is 
an important part of learning mathematics, and in particular an important part of developing a critical 
orientation in mathematics, e.g. as identified by Goos et al. (2014) and Askew (2015). Additionally, 
it is certainly also an important part of being able to solve problems in the society. This brings us 
closer to those aspects of learning mathematics that are proposed by D’Ambrosio (2003), Skovsmose 
(1998) and which are some of the underlying ideas and valued outcomes of IBL (Maaß & Reitz-
Koncebovski, 2013). For some students, such as students 1 and 2, we observed that they had to be 
encouraged specifically to do writing and drawing by the teacher. They had already solved the 
problem using play-coins but not made a written record. Learning to communicate your solution, 
making your thinking visible to others in a multitude of ways, is an important part of building 
mathematical literacy. At the same time, forcing children to represent their answers in particular ways 
may distract from their learning of the mathematical content, and prevent them from going into deeper 
thinking. One risks, as D’Ambrosio (2003) pointed out, to emphasize manipulation of numbers and 
symbols rather than developing matheracy.  We believe that this tension between steering children 
towards particular representations and letting them explore more freely, is something we have to live 
with. By emphasizing the importance of writing or drawing as representations and as means for 
communicating results, one risks downplaying the importance of other, for instance oral 
communication (which is also something one would like to foster). From the empirical data we also 
see that the students engaged in the inquiry cycle with the five E’s, engage, explore, explain, extend 
and evaluate while working collaboratively in pairs. The teacher encouraged students’ reasoning by 
asking students about their ways of thinking, both in plenary and when students were working in 
pairs. From the data it is evident that it was necessary for the teacher to prompt students to collaborate 
and inquire, even if this prompting when done in plenary was seen as ‘disturbing’ for some students, 
as evident from transcript line 24 above. Developing a classroom culture that values questioning, 
exploration and where mistakes are seen as a necessary part of learning mathematics is emphasized 
as important in IBL (Maaß & Reitz-Koncebovski, 2013) and is essential for students to develop a 
critical disposition that is essential in being mathematically literate. In our data it is evident how the 
teacher tried to achieve this, both by her innate experience as a teacher and by using the IBL oriented 
lesson plan. The start of the lesson with the students all gathered around a smart-board where the 
coins and the problems were introduced, was used to create a classroom culture of shared ownership 
and purpose, and where the students were encouraged to explore and work together. Valued outcomes 
in an IBL setting include developing critical and creative inquiring minds. This echoes some of the 
ideas proposed by D’Ambrosio (2003) and Skovsmose (1998) and also the critical orientation 
underlined by Goos et al. (2014). It is not straight forward to answer the question about what it means 
to be critical in a mathematics lesson, in particular at the lower grades of primary school. Our data 
shows that it is possible to identify the three ways of being critical (Askew, 2015) even in 2nd grade, 
if the setting and atmosphere in the classroom is encouraging, e.g. the classroom culture and learning 
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environment are as described in the IBL model. Planning a lesson using an IBL model like the one 
used here may help fostering mathematical literacy, including developing a critical disposition.  
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This article reports on how a group of preschool and primary student teachers define the concept 
“teaching mathematics in preschool” in the beginning of their studies.  The background for this pilot-
study is the recent change in the Swedish curriculum, which means a shift from play-based to more 
teaching oriented activities, and the actual Swedish debate on the role of teaching in preschool. 

Keywords: Young children, Teaching, Learning, Mathematics, student teachers, preschool. 

Introduction. 
In 2011, a new national curriculum for Swedish preschool was implemented. In this text, and also in 
the previous curricula for preschool, the concept of teaching is not discussed. Instead of that, the 
guidelines for preschool teachers highlight the learning opportunities that should be provided to 
children, and these indicate indirectly what kind of mathematics preschools should provide to children 
(Swedish National Agency for Education, 2011). The concept of teaching is however used in the 
Swedish educational act (SFS, 2010:800). According to Öqvist and Cervantes (2017), this was the 
first time the concept of teaching was used in a steering document for preschools in Sweden. On the 
other hand, it seems to be important for preschool teachers not to work in the school-like way and, 
hence, they tend to avoid using the word “teaching” to describe their professional work (Hedefalk, 
Almqvist, & Lundqvist, 2015). 

In Sweden, there is an ongoing discussion about what teaching in preschool means (Rosenqvist, 2000; 
Doverborg, Pramling, & Pramling Samuelsson, 2013; Hedenfalk, Almqvist, & Lundqvist, 2015; 
Jonsson, Williams, & Pramling Samuelsson, 2017). Palmér and Björklund (2016) provide an 
overview of eight Nordic articles which show a large diversity of aims and goals within preschool 
mathematics. There is not a common understanding or view of what teaching in preschool is, could 
or should be. Quite recently, this question was raised when the Swedish National Agency for 
Inspection (2017) reported that there is a lack of teaching in the Swedish preschools and that there is 
uncertainty about what the concept teaching in preschools is. This debate is our primary motivation 
for the present study.  

Secondly, according to Clarke, Clarke and Cheeseman (2006), the research into mathematics in 
preschools has often been driven by the school curriculum with its emphasis on number knowledge. 
Researchers have investigated various aspects of children’s learning of mathematics and numerous 
theories concerning children’s mathematical learning exist. Yet the everyday of the teaching of early 
mathematics has received much less attention in Nordic countries (Saebbe and Mosvold, 2016; 
Vallberg Roth, 2018).  
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A third motivation for this study is the fact that the views and beliefs of student teachers (and teachers) 
affect the way they plan their teaching, what kind of materials they use, and their performance in 
mathematics during their teacher studies (Wilson & Cooney, 2002; Tossavainen, Väisänen, 
Merikoski, Lukin, & Suomalainen, 2015). Hannula (2002) emphasises, in his widely applied 
framework for analysing individuals' attitude towards mathematics, the role of expected 
consequences and relating the attitudes to personal values. So, by surveying prospective preschool 
and primary teachers' views of the teaching of mathematics for small children we hope to get 
knowledge about their personal values and what they expect the outcome of their own mathematics 
education during teacher education and mathematics education in preschool will be. 

Theoretical perspective 
Benz (2016) synthesised the professional competences needed for supporting children’s early 
mathematical thinking. These competences are also important for teacher education and hence can 
contribute to the understanding and the impact of beliefs on the teaching of mathematics. She 
specified three categories of competences found in previous research: (a) content knowledge, 
pedagogical content knowledge, and knowledge of children’s development, (b) action competencies, 
and (c) attitudes and beliefs. In this article, we will focus on the third point, the attitudes and beliefs. 
These play an important role when it comes to providing learning opportunities for children in 
mathematics in preschools. Indeed, teachers' view of what counts as mathematics and what 
mathematics teaching for young children is have a remarkable effect on their everyday practice.  

Hannula (2002, p. 30) defines attitude as a category of behaviour that is produced by different 
evaluative processes which concern emotions, values and expectations. These processes are 
influenced by the social setting and former experiences. In the present paper, we are interested 
especially in students' values and expectations. 

Concerning the beliefs, we use the following definition: “…teachers’ pedagogical beliefs refer to 
pedagogical attitudes and values such as educational goals and norms, the definition of their own 
pedagogical role, beliefs about developmentally appropriate practices, as well as the educational goals 
of preschools” (Anders and Rossbach, 2015, p.308). More specifically “mathematics-related beliefs, 
which include the implicitly and explicitly held subjective conceptions about mathematics education, 
the self as a mathematician, and the social context, i.e., the class-context” (Op’t Eynde et.al. 2002, 
p.14). In this paper, we focus on the explicitly held subjective conceptions about teaching in 
mathematics education. 

Our research questions are:  

(i) How do student teachers describe mathematics teaching in preschool in the beginning of their 
university studies?  

(ii) Are there differences between the different groups of students, and if there is, how can they be 
described?  
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The study 
This study aims to investigate student teachers’ beliefs about the concept of teaching in mathematics 
education for young children, specifically in preschool. In order to do that, we collected data from 
three different groups of students by using a printed questionnaire. The participants of the study 
(N=94) represent Swedish university students from three different teacher education programs. The 
first group studies (N=27) to become preschool teachers, the second (N=42) to lower primary teachers 
(Swedish classes F-3) and the third group (N=25) to upper primary (Swedish classes 4-6) teachers. 
All of the respondents were in the beginning of their university studies and had therefore not yet taken 
any mathematics courses contained in their university program.  

The motivation for including these three different groups is the fact that the primary teachers continue 
the work of the preschool teachers, so, it is important to see if they share the same ideas and goals 
related to mathematical education. Another reason for the three groups is that we want to see whether 
students' views on teaching arise during the teaching education programme or are they based on their 
earlier beliefs. Therefore, we need to examine whether or how these groups' views differ from one 
another already in the beginning of university studies. 

The first part of the questionnaire surveyed the participants’ educational background concerning 
mathematics. In the second part, the participants were asked to make a concept map of their definition 
of mathematics education in the Swedish preschool. The third part contained a set of statements 
related to teaching of mathematics for young children with the seven-point Likert-type scales. In this 
article, we focus on the participants’ concept maps i.e. the second part of the survey. The task was 
presented in the questionnaire as follows: “The definition of mathematics teaching in preschool: 
Spend a few minutes on reflecting teaching mathematics to young children and what it brings to your 
mind. Then, using a concept map, define what mathematical teaching in preschool education in 
Sweden should in your opinion be. Focus on the essential features, more detailed questions follow on 
the next page.” 

The students then provided concept maps where they had a centre of the map and then added essential 
features of the question around this centre.  Using a concept map may provide other information about 
teachers’ views and beliefs than open questions and Likert-type scale questions. This method is 
mostly used for investigation concept understanding (Rosas & Kane, 2012) and, hence, we found that 
it might be a way also to investigate beliefs and views on the concept of teaching mathematics in 
preschool since this is in line with the definition and focus of the paper, the conceptions about teaching 
of mathematics.  When analysing the students' concept maps we realised that they often had more 
features of a mind map than a concept map. According to Davies (2011), one important difference 
between a mind map and a concept map is that a concept map has a hierarchical structure with several 
levels. This was not the case with these students, most of their maps had only one level. 

We used content analysis in order to find the essential categories of sub-concepts that occur in the 
students' concept maps. The analysis focused on qualitative differences in students' values and 
expectations. It did not however take into account at what levels in the concept maps these sub-
concepts were mentioned. The categories were derived purely from the data, i.e., the words found in 
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the maps are grouped and after the grouping the categories are defined. When it comes to the written 
answers (a few students gave a written response instead of drawing a concept map), they were added 
to the categories after the grouping of the words. 

Result 
In this section, we first present the categories found in the concept maps and then give examples of 
different categories and their content. Secondly, we discuss the differences or similarities that can be 
seen between the three different groups.  

The following categories were found in the concept maps: Motivation, Methods for teaching, 
Children-centred, Everyday, and Content. 

Motivation is the first one of these categories. Here we have words like fun, enjoyable, meaningful, 
play based, play, inspiring, interesting and creative. We interpret these words as describing how 
mathematics teaching should be for young children. They focus on feelings as a tool for motivation. 
We also attached play and play-based to this category even though they could be placed also in the 
category methods for teaching.  

The category Methods for teaching also answers the question how mathematics teaching should be 
for young children, but with a focus on the organization of the teaching or learning rather than the 
motivational aspects. Here we find words like practical, concrete, concrete materials, games, digital 
tools, mathematics in all activities, variation, exploration and group work. 

The next category can also be seen to answer the question how, but it focuses on children and their 
world. Therefore, we call it Children-centred. Here we find words like draw on children experiences, 
on the child’s level, and suitable level. 

Everyday is another category putting a child in the centre. In this category, we find words like 
everyday situations, connect to the everyday, connected to reality and use the everyday.    

Content is the last of the categories and here the students have given examples of mathematical 
content that the children should meet in the preschool. Here are words like numbers, counting, shapes, 
develop concepts, space, symmetry, geometry, arithmetic, problem-solving and sorting. This category 
is not analysed in detail here due to limited space but it is of interest for further investigations. 

Motivation Children-

centred 

Everyday Methods for 

teaching 

Content 

Preschool 

N=27 

17 

64% 

12 

44% 

4 

15% 

5 

19% 

17 

63% 

Lower Primary 

N=42 

26 

62% 

7 

17% 

9 

21% 

16 

38% 

18 

45% 

Upper Primary 

N=25 

7 

28% 

1 

4% 

3 

12% 

11 

44% 

21 

84% 

Table 1: Distribution of the categories for each group 
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In Motivation, we have few (7) response from upper primary student teachers, and of these seven, six 
mentions play. On the other hand, play is not mentioned at all by the preschool student teachers, this 
is surprising given that play as a base for learning is a foundation for the Swedish curriculum for 
preschool.  For the preschool student teachers, we have 17 responses and for the lower primary student 
teachers we have 26 responses in this category. To conclude this category seems to be important for 
preschool student teachers and for lower primary student teachers.   

The category Children-centred seems to be important for the preschool student teachers but not so 
important for the other groups, only one of the upper primary student teachers has a word in this 
category, and there are only few words from the lower primary student teachers and then even less 
for the upper primary student teachers. 

Surprisingly, Everyday does not have that pattern. Here the lower primary student teachers have the 
mode while preschool student teachers and upper primary student teachers only have 4 and 3 
responses, respectively. 

In Methods for teaching, the preschool student teachers have few words in this category and they all 
say variation. This is in contrast to lower primary student teachers group where they have 16 and 
upper primary student teachers have 11 and gives a variety of methods. 

Content is the largest category overall and seems to be important for all the groups, and it will be a 
subject to a separated analysis later on. It is the only category that is almost the same in all three 
groups and almost all student teachers have words in this category. 

One important thing that was noticed in the analysis was the fact that the students had different words 
in the centre of their concept maps. The formulation of the task mentioned explicitly “The definition 
of mathematics teaching in preschool” and from this expression the students had chosen different 
centre words for their maps. This may have had an impact on the concept maps and, hence, it is 
important to present the different centerwords as well. They are: mathematics, mathematics learning, 
mathematics teaching and mathematics in preschool. The remaining 19 students either does not have 
a centre word, have written a short text describing, or it is not obvious what the centre word is. 

 
Mathematics Mathematics 

in preschool 

Mathematics 

learning 

Mathematics 

teaching 
Preschool 
N=27 7 

26% 
3 

11% 
9 

33% 
1 

4% 

Lower Primary 
N=42 8 

18% 
17 

39% 0 14 
32% 

Upper Primary 
N=25 9 

39% 
6 

26% 0 1 
4% 

Table 2: Concept map centres across the student groups 

As we can see in Table 2, only one of the student teachers for preschool has written about mathematics 
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teaching. This is not surprising since we know from previous research that this is typical for in-service 
preschool teachers (Hedefalk, Almqvist, & Lundqvist, 2015). So, the fact that the same pattern 
appears for upper primary student teachers is more interesting. On the other hand, none of the primary 
student teachers has used the mathematics learning in their centre. The lower primary student teachers 
have focused on mathematics in preschool or mathematics teaching and the upper primary student 
teachers on mathematics and mathematics in preschool. The difference between the groups is 
noticeable and can only partly be explained by the fact that they have started their studies. They are, 
as mentioned before, in the beginning of their studies and have not yet taken the mathematics course.  

Discussion 
As mentioned above, this is just a pilot study with a relatively small group of students, and the results 
discussed in this article are only due to an analysis of one of the parts of the survey. The next step 
would be to investigate how these results are connected to the students' responses to the statements 
measures on a Likert-type scale; some preliminary results have been reported by Tossavainen, 
Johansson, Faarinen, Klisinska and Tossavainen (2018). Nevertheless, the above results give us an 
overview of what prospective preschool and primary teachers expect mathematics education in 
preschool to be and what they value in the teaching of mathematics for small children.  

One point that needs to be addressed here is that the students had chosen different words in the middle 
of their concept maps. The formulation of the task mentioned explicitly “The definition of the 
teaching of mathematics in preschool” and it seems that, from this expression, the students have 
chosen different centre words for their maps. This may have impacted the concept maps and, hence, 
it is important to present the different subcategories as well. They are: mathematics, mathematics 
learning, mathematics teaching and mathematics in preschool. The fact that most students have 
mathematics learning as the concept centre is compatible with previous research (Hedefalk, Almqvist, 
& Lundqvist, 2015) but a new finding is that this view is already present when they start their studies 
at university. Similarly, it is surprising that their concept centres differ already at this stage. 

The lack of the word play in the preschool student teachers’ concept maps is another point is worth 
more investigations. One way to interpret this is that, for this group of students, play is so obvious 
that it does not have to be mentioned, yet this is not self-evidently supported by our data. 

The fact that the lower primary student teachers seem to have a broader view than the other groups 
would be even more evident if we studied the students’ concept maps at individual level.  

To answer our research questions, the three groups of students give different descriptions about what 
teaching in mathematics in preschool is, and they focus on different parts of the teaching of 
mathematics. We can say that they in fact have different pedagogical beliefs and expectations 
regarding at least what mathematics teaching should be in preschool, how it should be provided, and 
also which focus the teachers should have. The category Content gives us some indications of 
attitudes and values regarding their educational goals. Since this category is shared by all groups and 
is the largest one, we can conclude that this is an important base for all the teachers’ pedagogical 
beliefs.  The categories Everyday and Children-centred give information regarding expectations and 
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values conserning the teachers' pedagogical role. Here the focus for the preschool student teachers is 
on the child and the focus for the lower primary student teachers is on the everyday. These are not so 
important for the upper primary student teachers, and this could possibly be explained by the fact that 
they have not thought about the pedagogical role of the teacher since they will not teach themselves. 
Methods for teaching and Motivation give information about attitudes and values about appreciated 
practices. These can be found in all the groups but with different focus. For the preschool student 
teachers, the focus is on motivational issues and, the for the primary student teachers, on the methods. 
This is one of our main results since it gives us information about the preschool student teachers' 
beliefs that teaching in preschool is not their main interest but they prefer to focus on other parts of 
the educational practice. 
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Using finger patterns – the case of communicating age 
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Young children spontaneously use their fingers to represent numerosities. However, there has been 
relatively little research on how and in what contexts young children use finger patterns, which is 
critical to understanding the role fingers play in early numerical development. This study examines 
a very common situation in which young children use finger patterns: answering the question “How 
old are you?” In one-on-one interviews 158 children age three to five were asked their age; additional 
tasks to measure the child’s early number development were administered. Results show a decrease 
in the spontaneous use of finger patterns for older children. Interestingly, all finger patterns for four 
and five were shown canonically and produced statically. This hints at the fact that finger patterns 
might function symbolically. Furthermore, older children who spontaneously used finger patterns vs. 
verbally said their age differed according to their early number development. 

Keywords: Finger pattern, numeracy development, number representation. 

Introduction 
The use of fingers during numerical considerations is a frequently and cross-culturally observed 
action in early childhood. Children use their fingers in different ways and for various purposes: 
Fingers are used to point at objects that are being counted (pointing gestures; Gelman & Gallistel, 
1978). Fingers themselves are counted or rather raised consecutively to accompany the recital of 
number words (finger counting; Wasner, Moeller, Fischer, & Nuerk, 2014). Over the last couple of 
years, a growing body of research has shown that the ability to represent one’s fingers mentally is 
correlated with math skills (finger gnosia; Noël, 2005). Later, fingers are used in solving arithmetic 
problems (finger arithmetic; Butterworth, 1999). The research presented in this paper focuses on yet 
another purpose of fingers in early mathematical development: Like number words and written 
numerals, fingers can be used to represent numbers, for example holding up a certain number of 
fingers to represent a set size. Various terms like finger pattern (Butterworth, 1999), finger montring 
(Di Luca & Pesenti, 2008), finger numeral configuration (Di Luca & Pesenti, 2008), cardinal number 
gesture (Gunderson, Spaepen, Gibson, Goldin-Meadow, & Levine, 2015), or finger symbol set 
(Brissiaud, 1992) are used in this context. Coming from mathematics education, in particular a pattern 
and structure background, I use the term finger pattern throughout this paper. 

Children from most cultures spontaneously use their fingers to represent numerosities, and, on some 
occasions, adults still use their fingers to communicate with other people about numerosities (Di Luca 
& Pesenti, 2008). Despite their ubiquity across cultures, there has been relatively little research on 
how and in which contexts young children use finger patterns, which is critical to understanding the 
role fingers play in early numerical development (Gunderson et al., 2015). And, although I personally 
have observed children spontaneously produce finger patterns as early as two years of age, most of 
the existing research has focused on adults’ use of finger patterns (e.g., Di Luca & Pesenti, 2008). 
This research, therefore, specifically looks at how young children use finger patterns. To start with, 
a very common case was chosen: children communicating their age by showing a finger pattern. 
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Theoretical Background 
“Finger dialects” and canonical configurations of finger patterns 

Although the use of finger patterns to show numerosities can be found in most cultures (Ifrah, 1981) 
there are no universal finger patterns; instead, they differ by culture. Butterworth (1999, p. 221) calls 
this phenomenon “finger dialect”. The finger pattern that represents three would be for most Germans 
and Southern Europeans the raised thumb, index, and middle finger, for most Northern Americans 
and Northern Europeans it would be the raised index, middle, and ring finger (Butterworth, 1999; 
Pika, Nicoladis, & Marentette, 2009). For these kinds of finger patterns the term conventional gesture 
is used to emphasize that their form and meaning are established by the conventions of specific 
communities (McNeill, 1998). Di Luca and Pesenti (2008) used the term canonical finger numeral 
configurations in their study with young adults when evaluating the understanding of canonical and 
non-canonical finger patterns. Subjects were instructed to say as fast and as accurately as possible 
how many fingers they saw. Canonical finger patterns included only those that would occur during 
cardinal finger montring (showing a finger pattern to others), whereas non-canonical finger patterns 
showed an assembly of random fingers (e.g., index, ring, and pinkie finger raised to mean three). 
Results showed that subjects were better in naming the correct number when a (for the individual) 
canonical (and not a random non-canonical) finger pattern was presented. Furthermore, canonical 
finger patterns, but not non-canonical, prime nearby numbers based on their proximity to the target 
in the same way that Arabic numerals do (Di Luca, Lefèvre, & Pesenti, 2010). These findings suggest 
that adults’ finger patterns function symbolically and possess semantic meaning based on their 
canonical configuration, rather than deriving their meaning merely from the number of raised fingers. 
Using finger patterns might even be a form of pattern recognition in which well-known patterns are 
recognized and employed, similar to the dot-patterns on dice.  

In the context of mathematics education it is important to look at the way, i.e. how a finger pattern is 
produced. Finger patterns can either be constructed by raising the fingers successively (by counting) 
or simultaneously (Gaidoschik, 2007). The first would be called a dynamic, the second a static finger 
pattern (Lorenz, 1992). If a child produces a static finger pattern it might be supposed that it has the 
pattern for the specific number memorized and does not need to count up to the specific number 
(pattern recognition). However, it possibly might be that lacking fine-motor skills hinders a child to 
simultaneously raise his/her fingers and instead the child raises the fingers one by one until the 
produced finger pattern matches the one he/she has memorized for the specific number. In this case, 
the dynamically produced finger pattern is not a result of a counting process. 

Finger patterns as number representations 

Fingers are an easily accessible, concrete, and always available device that can aid children in the 
development of number concepts. Fayol and Seron (2005) see finger-based representations and finger 
use as a link between concrete numerosity and abstract number. Fingers themselves are concrete but 
at the same time, “finger representations exhibit an iconic relation to numerosities, since they preserve 
the one-to-one matching relation between the represented set and the fingers used to represent it” (p. 
29). Furthermore, fingers have an additional abstract dimension. Similar to number words they can 
stand for various different objects: “[…] the same pattern of raised fingers can equally well represent 
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three giraffes, three toys, or three elements in an argument.” (p. 29). By this dual capacity, fingers 
moderate the transition from an understanding of concrete numerosities to an understanding of 
abstract number (Rösch, 2016). The use of specifically finger patterns has a lot of theoretical potential 
to support children’s development of number concept, namely the cardinal principle, subitizing, part-
whole concept (Resnick, 1983), and the concept of base (Fayol & Seron, 2005). As the first two are 
relevant for this research, they are explicated further in the following. One of the basic number 
concepts, young children acquire, is that numbers are not only represented as sequences of single 
units (e.g., fingers, finger counting; ordinality) but that number also corresponds to the whole set of 
fingers (finger pattern; cardinality). Finger patterns directly reflect the cardinal aspect, i.e. the 
quantity of number; a specific finger pattern is associated with a particular number. Thereby, each 
number between 1 and 10 has its own culture-specific finger pattern. Considering fingers as 
manipulatives they can be used for exercises in quickly and simul-taneously determining quantities 
(subitizing; Schipper, 2005). Because of their base-five structure it is possible to conceptually subitize 
quantities bigger than four (Butterworth, 1999). Closely connected with subitizing is the pattern 
recognition of canonical finger patterns. Similar to dice-pattern, the specific arrangement is 
recognized and connected to the corresponding number word. 

Research on young children’s competencies for labeling set sizes with finger patterns 

Current research with young children on their use of finger patterns when labeling sets shows 
somewhat contrary results. Nicoladis, Pika, and Marentette (2010) assessed the correctness of 44 
preschoolers’ (aged two to five) answers in determining set sizes when using number words vs. finger 
patterns. They found that children perform better on verbal than on gestural (finger pattern) number 
tasks. They conclude that children’s early understanding of number words is not aided by finger 
patterns. Gunderson and colleagues (2015) examined the number words and finger patterns 3- to 5- 
year olds (n = 155) used to label set sizes. They found that young children who had not yet mastered 
the cardinal meaning of number words performed significantly more accurate in labeling set sizes 
when giving a gesture response (finger pattern) than a speech response. They conclude that finger 
patterns may play a functional role in young children’s development of number concepts. 

Understanding of number and the use of finger patterns do not only occur in situations in which set 
sizes are labeled. Therefore, when trying to assess finger patterns contribution to young children’s 
development of number concepts, study designs should take alternative contexts into account. 

Research questions 

This research aims at contributing to our understanding of the role, finger patterns play in children’s 
development of (cardinal) number concept. Therefore, I take a closer look at children’s use of fingers 
in a common, everyday situation, namely young children conveying their age. I specifically address 
the following questions: 
How do 3-, 4-, and 5-year old children spontaneously communicate their age? 

- If children show finger patterns, do they use a canonical or a non-canonical pattern? How do 
they produce the finger pattern (dynamic vs. static)? 

Does the way in which children convey their age relate to their early number development?  
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Method 
Participants 

Consent was obtained for 158 children attending 14 kindergartens1 in a metropolitan area in the 
northwestern part of Germany. The kindergartens were chosen to cover a broad range of socio-
economic backgrounds. The sample consisted of 54 children aged 3 (30 girls, Mage = 3 years 6 months, 
SD = 2.7 months, range = 2 years 11 months – 3 years 11 months, 43% with a migration background2, 
76% speaking German as family language), 64 children aged 4 (33 girls, Mage = 4 years 5 months, 
SD = 3.2 months, range = 4 years 0 months – 4 years 11 months, 36% with a migration background, 
81% speaking German as family language) and 40 children aged 5 (15 girls, Mage = 5 years 4 months, 
SD = 3.9 months, range = 5 years 0 months – 5 years 11 months, 58% with a migration background, 
80% speaking German as family language). Children participated voluntarily and with informed 
consent of their parents. 

Design, Materials, and Procedure 

Using a clinical format, individual interviews with each participant were conducted. After being asked 
for their age, children completed several patterning tasks, followed by tasks on early number 
development. The patterning tasks are not object of this paper. Interviews were conducted by four 
members of the research team and were videotaped. 

Task on finger pattern (asking for age). Right at the beginning of the interview the child was asked 
“How old are you?”. If the child indicated his/her age by showing a finger pattern the child was then 
asked if he/she could also tell the age using a number word (“Please, also tell me with words how old 
you are!”). If the child used a number word in the first place the child was prompted to also show 
his/her age with fingers (“Please, also show me your age with your fingers!”). 

Tasks on early number development. To explore a possible relation between children’s use of finger 
patterns and their number development in early childhood, children’s rote counting, enumeration, and 
subitizing skills were measured. I adapted the tasks from the Australian “Early Years Numeracy 
Interview” (DEET, 2001). They included counting forward from 1 (total possible score was 5 points), 
counting onward from 4 and 8 (max. 4 points), counting backward from 7 (max. 3 points), and 
identifying the number before/after 4 and 8 (max. 4 points). For enumeration the children were asked 
to enumerate 4, 7 and 12 object sets (max. 7 points), counting out 3 objects (max. 1 point), and 
compare sets of 3 and 4 objects (max. 1 point). Materials were red, yellow, and blue little plastic bears 
(see DEET, 2001). During enumeration children’s abilities regarding the counting principles were 
observed (Gelman & Gallistel, 1978), including the one-one principle, the stable-order principle, the 
cardinal principle, and the order-irrelevance principle (max. 5 points). For subitizing children were 
presented with seven 9x9cm cards with sets of 2, 5, 4, 1, 9, 3, and 6 dots placed regularly on each 

                                                 
1 German kindergarten comprises the three years before school entry, i.e. children start kindergarten when they are three 
years old. 
2 Migration Background is defined here as: the child or one parent or both parents not born in Germany. 
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card. The cards were displayed for two seconds each in the above order (max. 7 points). The total 
possible score for all items on early number development was 37 points. 

Analysis 

Children’s initial reactions to the question “How old are you” were inductively categorized according 
to their way of communication. Furthermore, the correspondence of finger pattern and number word 
was assessed. I also looked at how the finger pattern was produced (dynamic vs. static) and at the 
produced finger pattern itself in terms of canonical vs. non-canonical use. For Germany (see German 
Math textbooks and finger pattern based intervention programs, e.g., Claus & Peter, 2005), a 
canonical finger pattern would be for three the raised thumb, index, and middle finger. For four two 
different versions are common. Depending on the children’s fine motor abilities they would either 
raise thumb, index, middle, and ring finger (pinkie finger folded) or raise index, middle, ring, and 
pinkie finger (thumb folded). The canonical finger pattern for five is the raised fingers of one complete 
hand. The answers to every task on early number development were coded by correctness; the scores 
were added for each child. 

Results 
The three main ways children communicated their age was by either naming a number word (category 
1), showing a finger pattern (2) or doing both, i.e. uttering a number word and showing a finger 
pattern simultaneously (3). Only three 3-year olds were not able to convey their age at all. As number 
words only whole numbers of years were used by all children. The distribution of frequencies (see 
Table 1, left) shows a distinct pattern: the older the children, the more frequently they used verbal 
number words and less frequently their fingers to spontaneously indicate their age. Comparing the 
children’s mean scores for the number tasks regarding their way of communicating their age revealed 
some significant differences. The 4-year olds who answered by saying the number word (1) scored 
significantly higher on average for the number tasks than the 4-year olds who were showing their 
fingers (2) (t(48) = 2.43; p<0.05; d = 0.7). This difference did not apply for the 3-year olds. As the 
sample size for the 5-year olds who were showing a finger pattern was too small (n = 5) a t-test was 
not executed. For comparison purposes it has to be said though that the difference between the 5-year 
olds answering by number word (1) and the 5-year olds doing both (3) was significant (t(33) = 2.49; 
p<0.05; d = 0.87), with the former scoring higher on average. As the sample sizes of the sub-groups 
are quite small these results should be treated carefully. 

All 4- and 5-year olds (except one) who communicated their age by spontaneously showing a finger 
pattern were able to verbalize their age when asked to do so, and vice versa. This was different with 
the 3-year olds. Additional to the three who were not able to communicate their age at all, four were 
merely able to show a finger pattern and not name the number word, and three could not show the 
finger pattern for their age (plus one missing data: one 3-year old was not asked the second question). 
When children were able to use both ways in communicating their age, the finger pattern matched 
the spoken number word in 63% of the cases for the 3-year olds. With 94% for the 4-year and 98% 
for the 5-year olds the percentage of concordant number word and finger pattern was much higher 
(see Table 1, right). The children with whom the finger pattern and number word did not match were 
distributed quite evenly over the categories 1 to 3 for the initial question. 
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% first reaction to the question “How old are you?” 
[number tasks mean scores] 

accordance of number word 
and finger pattern 

age 

number 
word (1) 

finger 
pattern (2) 

number word 
and finger p. 
simult. (3) 

not able to 
tell/ show 
age (4) 

accordance no accordance 
or not able to 
tell/ show age 

3 28  [10.4] 50  [9.9] 17  [10.4] 5  [4.0] 63 37 

4 56  [19.3] 22  [14.5] 22  [17.9] 0 94   6 

5 60  [24.8] 12  [18.4] 28  [20.8] 0 98   2 

Table 1: Relative frequencies for children’s reactions to the question “How old are you?”; mean scores 
for number tasks (in brackets); accordance of number word and finger pattern 

In looking at the way children produced their finger pattern (see Table 2, left) it is striking to see that 
(nearly) 100% of the 4- and 5-year olds raised their fingers simultaneously (static finger pattern) and 
not as an end-product of a counting process. Most of the 3-year olds (67%) did the same, still over a 
fifth (22%) raised their fingers one by one. A similar pattern can be found for the type of finger 
patterns (see Table 2, right). Nearly 100% of all 4- and 5-year olds showed canonical finger patterns. 
Over half of the 3-year olds showed canonical, but one third showed non-canonical finger patterns. 

% production of finger pattern finger pattern 

age 
static dynamic shows no fingers 

at all 
canonical non-canonical shows no 

fingers at all 

3   67 22 11         56 33 11 

4   98   2   0         98   2   0 

5 100   0   0       100   0   0 

Table 2: Relative frequencies for way of production and type of children’s finger patterns 

Discussion 
This study examined young children’s use of finger patterns in a very common, everyday situation, 
and, furthermore, related children’s number development to it. Results show that 3- to 5-year olds 
spontaneously communicated their age by either showing a finger pattern, saying a number word, or 
simultaneously doing both. The frequencies in which they did so, however, changed over the years 
with the younger children signing, the older children using number words most frequently. The 
increase in verbal answers might be due to the general language development during early childhood. 
Children might also adapt their reactions to the adults’ way of verbally talking numbers.  

Comparison of children’s number development with regard to their initial reaction showed no 
significant differences for the 3-year olds but for the 4-year olds. The direction, though not significant 
due to low power, was the same for the 5-year olds, suggesting that older children who told their age 
by saying the number word have developed a deeper understanding of number concepts than their 
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peers who showed a finger pattern. This does not mean that early mathematical educators should aim 
to quickly and early detach children from using finger patterns. In my opinion it rather shows the 
relevance and potential of finger patterns as an aid in the acquisition of number concepts from 
concrete to abstract number representation. A finger pattern, therefore, may be one of the concrete 
foundations that is needed at the beginning and is left behind when a mental concept of the particular 
number is developed. These findings contribute to Gunderson and colleagues (2015) results that 
children who had not yet mastered the cardinal principle performed significantly more accurate in 
labeling set sizes when responding by finger pattern than by number word. Together they strengthen 
the evidence for taking age and specific number knowledge into account as factors for finger patterns’ 
relevance in early numerical development. For further studies it seems reasonable to differentiate 
between very young (2 to 3 years) and young children (4 years and older) and specifically look at the 
number concepts these children already have or have not acquired. 

This study adds to previous research because it explicitly looks at the way young children produced 
their finger patterns. All finger patterns for four and five were presented canonically. This is not 
surprising as the finger pattern for five equals simply holding up one hand. The only alternative would 
have been to produce different hand shapes with each hand, a difficult task at this age. As I considered 
four with the folded thumb as well as with the folded pinkie finger as canonical, all produced finger 
patterns for four and five were canonical for the children’s countries of origin. Together with the fact 
that nearly all patterns for four and five were produced statically, I conclude that the 4- and 5-year 
olds have the respective finger pattern memorized like a familiar pattern. They use it as a symbol, 
similar to the verbal number word. As there are more possibilities to produce a non-canonical finger 
pattern for three, it is not surprising that a third produced a non-canonical and just above half of the 
3-year olds a canonical finger pattern. This fact can only partly be explained by the children’s 
migration background. Over half of the non-canonical showers were German children. The younger 
children also differed from the two older groups in the way they produced the finger pattern. With 
over a fifth unfolding three fingers one by one (dynamically) until three fingers were reached and still 
a tenth not being able to produce a finger pattern for three at all, it might be suggested that the 
utilization of fingers in order to represent age develops in early childhood (possibly starting between 
the age of two and three). Further research, therefore, should look at 2-year olds’ ways of 
communicating their age and in general their knowledge and utilization of finger patterns. In 
summary, the presented study results show that finger patterns are an important preverbal way of 
experiencing and communicating numbers for many young children. 

References 

Brissiaud, R. (1992). A toll for number construction: Finger symbol sets. In J. Bideaud, C. Meljac & 
J.-P. Fischer (Eds.), Pathways to number. Children’s developing numerical abilities (pp. 41–65). 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Butterworth, B. (1999). The Mathematical Brain. London, England: Macmillan. 

Claus, H., & Peter, J. (2005). Finger, Bilder, Rechnen. Förderung des Zahlverständnisses im 
Zahlenraum bis 10. Göttingen, Germany: Vandenhoeck & Ruprecht. 

Thematic Working Group 13

Proceedings of CERME11 2291



 

 

DEET (Department of Education, Employment and Training). (2001). Early numeracy interview 
booklet. Melbourne, Australia: DEET. 

Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-
canonical finger numeral representations. Cognition, 117(1), 95–100. 

Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral 
configurations. Experimental Brain Research, 185(1), 27–39. 

Fayol, M., & Seron, X. (2005). About numerical representations: insights from neuropsychological, 
experimental and developmental studies. In J. I. D. Campbell (Ed.), Handbook of mathematical 
cognition (pp. 3–22). New York, NY: Psychology Press. 

Gaidoschik, M. (2007). Rechenschwäche vorbeugen: Das Handbuch für LehrerInnen und Eltern. 
Wien: öbv & htp. 

Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: 
Harvard University Press. 

Gunderson, E. A., Spaepen, E., Gibson, D., Goldin-Meadow, S., & Levine, S. C. (2015). Gesture as 
a window onto children’s number knowledge, Cognition, 144, 14–28. 

Ifrah, G. (1981). Histoire universelle des chiffres. Paris, France: Robert LaVont. 

Lorenz, J. H. (1992). Anschauung und Veranschaulichungsmittel im Mathematikunterricht. 
Göttingen, Germany: Hogrefe. 

McNeill, D. (1998). Speech and gesture integration. In J. M. Iverson & S. Golding-Meadow (Eds.), 
The nature and functions of gestures in children’s communication (pp. 11–27). San Francisco, CA: 
Jossey-Bass. 

Nicoladis, E., Pika, S., & Marentette, P. (2010). Are number gestures easier than number words for 
preschoolers? Cognitive Development, 25(3), 247–261. 

Noël, M.-P. (2005). Finger gnosia: A predictor of numerical abilities in children? Child 
Neuropsychology, 11(5), 413–430. 

Pika, S., Nicoladis, E., & Marentette, P. (2009). How to order a beer. Cultural Differences in the Use 
of Conventional Gestures for Numbers. Journal of Cross-Cultural Psychology, 40(1), 70–80. 

Resnick, L. (1983). A Developmental Theory of Number Understanding. In H. P. Ginsburg (Ed.), 
The Development of Mathematical Thinking (pp. 109–151). London, England: Academic Press. 

Rösch, S. (2016). Förderung früher numerischer Kompetenzen im Vorschulalter unter 
Berücksichtigung des Einflusses der Finger. Doctoral Thesis: Tübingen. 

Schipper, W. (2005). Modul G 4: Lernschwierigkeiten erkennen – verständnisvolles Lernen fördern. 
Kiel, Germany: SINUS-Transfer Grundschule. 

Wasner, M., Moeller, K., Fischer, M. H., & Nuerk, H.-C. (2014). Aspects of situated cognition in 
embodied numerosity: the case of finger counting, Cognitive Processing, 15(3), 317–328. 

Thematic Working Group 13

Proceedings of CERME11 2292



 

 

Evidence of relational thinking at kindergarten level 
Andrea Maffia1 and Simona Mancarella2 

1 University of Pavia, Italy; andrea.maffia@unipv.it  
2University of Bologna, Italy; simona.mancarella@studio.unibo.it  

Taking inspiration from recent literature about algebraic thinking at early grades, we wonder if and 
how we can prompt and recognize relational thinking at the kindergarten level. Adopting a design-
based research approach, we analyze students’ answers to a task, both with the aim of developing its 
potential in prompting relational thinking and the aim of getting clues about how to recognize 
relational thinking at the kindergarten level. Analyzing students’ behavior while facing our task, we 
find evidence of relational thinking in students aged 5, even if at different stages. The task proves to 
be effective in stimulating children relational thinking and in making distinguishable their answers.  

Keywords: Kindergarten, Relational Thinking, Number sentence 

Introduction 
The distinction between instrumental and relational understanding of mathematics has been originally 
defined as, respectively, knowing just how mathematical procedures work and knowing both the how 
and the why (Skemp, 1976). Such definition found application in the field of arithmetic: several 
researchers paid attention on prompting students in understanding operations’ properties standing 
behind calculation algorithms. A commonly proposed task consists in finding the missing number in 
an equality between two arithmetical operations like 39 + 52 = ¨ + 55. Usually, it is assumed that 
relational thinking is shown if students do not resort to calculation of the results on the two sides of 
the equality, but they find a solution by compensation or other strategies based on operations’ 
properties and numbers decomposition (Carpenter, Franke, & Levi, 2003; Stephens & Wang, 2008).  

According to Mason (2018), “recognizing that 87 + 54 = 84 + 57 without doing any calculation 
contributes to and is part of algebraic thinking” (p. 343) and it is never too early to let children 
thinking in this way. He claims that “the use of natural powers which, when expressed in words and 
symbols is recognizable as algebra, is called upon from birth if not before” (Mason, 2018, p. 347).  
Such claim is a starting point for us in wondering if and how we can prompt and recognize relational 
thinking at the kindergarten level. Adopting a design-based research approach, we analyze students’ 
answers to a task, both with the aim of developing its potential in prompting relational thinking and 
the aim of getting clues about how to recognize relational thinking at the kindergarten level.  

Number sentences written with arithmetical symbols could be inaccessible to students aged 5. This 
same issue was dealt by Steinweg and colleagues (2018) and Lenz (in press). They developed a 
suitable task to let kindergarten students approach unknowns. In their task, there are two fictitious 
characters playing with marbles. They both have the same amount of marbles, but some of them are 
visible and others are inside colored boxes. Boxes of the same color contain the same amount of 
marbles. The student is asked to understand how many marbles are in the boxes. Figure 1 schematizes 
a possible instance of the task by Steinweg et al. They administered the task to students aged from 5 
to 10. 

Thematic Working Group 13

Proceedings of CERME11 2293



Figure 1: Schematization of the task by Steinweg and colleagues (2018) 

Steinweg et al. (2018) observe that many fourth graders show relational thinking while facing this 
task. However, according to their data, it seems that younger students have difficulties in dealing with 
it relationally: “While the majority of kindergarten children indicate numerical values, some children 
in grades 2 and 4 are already able to describe relationships or dependencies” (Lenz, in press). 
Kindergarten students “neither describe a relation nor display the dependency between the amounts 
of marbles in the boxes” (Steinweg et al., 2018, p. 19). We modified the task: In our modified version, 
students know that there are two characters having the same number of marbles. The first character’s 
marbles are completely visible, while part of the marbles of the second character are in a box. Children 
have to figure out how many marbles are in the box. Differently than the original task, the amount of 
marbles in the box is fixed. An example of our task is obtainable taking away the red boxes from 
Figure 1. We analyzed students’ behavior in solving this task assuming the perspective described in 
the following section. 

Theoretical framework 
When analyzing their data, Steinweg et al. (2018) consider as evidence of relational thinking those 
cases in which a student can express verbally a relation between the quantities of marbles in the boxes: 
according to them, sentence like “In the green box is always one marble more, than in the orange 
box” (p. 19) can be considered as relational, because there is an explicit connection between the 
amounts of marbles in the boxes. Those cases in which students just tell the number of marbles that 
are in a box were interpreted by them as evidence of the fact that children see the amounts as fixed. 
We are convinced that some of these cases could be applications of relational thinking. We believe 
that this can be unveiled by analyzing the process that is enacted by the student to find such results. 

Carpenter et al. (2003) describe four different benchmarks in the interpretation of number sentences 
containing the equal sign. 

· First benchmark: a very first step in interpreting the equal sign is the student’s ability to
express his/her own interpretation of the equal sign.

· Second benchmark is achieved when students accept equivalences that are not in the standard
form a+b=c, for instance c=a+b or a+b=c+d.

· Students at third benchmark compare the two sides of the equal signs carrying out the
calculations on each side of the equal sign.

· Fourth benchmark is achieved when students can compare the sides of the equality without
performing calculations. According to the definitions above, this is relational thinking.
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We must stress that, in this paper, we are analyzing a task that is not the same that was used by 
Carpenter and colleagues to describe these benchmarks. Numbers, operations and equality are not 
expressed symbolically, but by means of boxes, marbles and verbally. Furthermore, our version of 
the task does not require calculation on both sides of the equality: the number of marbles on the left 
side is visible. The algebraic structure of our task is a=x+b with known a and b (number of visible 
marbles) and unknown x (number of marbles in the box). 

We reinterpret benchmarks by Carpenter et al. (2003) in the context of our task. According to our 
interpretation the first benchmark is reached when children can explain that the number of marbles 
on the two sides must be the same. Literature shows that understanding the property of ‘being the 
same in quantity’ is not granted at kindergarten level (Sfard & Lavie, 2005). 

Second benchmark is achieved if students recognize the structure of the equivalence a=x+b. This is 
not the case if the student gives a as value for x, interpreting the first part of the equivalence as a=x. 
This is not reached even if the student counts all the marbles, interpreting the equivalence as a+b=x. 
Evidence of the reaching this benchmark could be guessing a value for x that is smaller than a. When 
the third benchmark is reached, students use counting to determine the value of x. They can count-on 
starting from b until they reach a, or they count backward from a to b. We can say that a student 
reaches the second benchmark, but not the third, when s/he tries to guess a number for x but s/he 
cannot use counting as a checking strategy. Students at the fourth benchmark can find the number of 
marbles in the box without a counting procedure, but decomposing numbers, hence showing relational 
thinking. For instance, they can split a marbles in a group of b marbles and consider that the remaining 
marbles are as much as those in the box. 

We analyzed students answers to the task coding them according to the reached benchmark. The aim 
is that of answering the following research question: Administering the task, which benchmarks can 
we observe, distinguish and describe at the kindergarten level?  

Methods 
Kindergarten children may not be aware of what an adult means while saying that two quantities are 
“the same” (Sfard & Lavie, 2005). For this reason, we organized a first session in which the task was 
implemented with concrete objects. A group of 21 Italian kindergarten students (aged 5) was divided 
in small groups of four or five. They seated in front of two paper-characters, one of them holding a 
box (Figure 2a). Plastic balls were used as marbles. A certain quantity of balls was put in front of the 
character without box (Marco). The interviewer said that the character with the box (Penelope) had 
the same quantity of marbles. Some of them were onto the box and some of them were inside. 
Children were asked to say how many marbles were inside the box. After they said a number, they 
could actually check by opening the box. We will refer to this first session as training session. 

In a second session, the students were again divided in groups of four or five. The task was 
administered showing images on an interactive whiteboard (Figure 2b), so this time they did not have 
the chance to open the box to check the number of marbles inside it. The interviewer asked them to 
say how many marbles are in the box. She also interacted with them asking how they figured it out. 
In this paper, we analyze video-data from this second session, that we call testing session. Both the 
training and testing sessions were completely video-reordered and fully transcribed. While 
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transcribing, texts were enriched with screenshots from the video when gestures were performed. 
Students interventions have been coded with the benchmarks described in the previous section. Both 
authors discussed together to decide on such coding. 

 

        
Figure 2: Settings during training session (left side) and testing session (right side) 

Data analysis 
Due to the limit of space, we are not able to show here the complete data analysis. We selected some 
examples of the different benchmarks that we were able to detect and interpret in our data. 

The first benchmark is not reached by all children: When asked to explain the situation, few of them 
are not able to express in words that the two characters must have the same number of marbles. 
Apparently, they do not understand what is asked to them and they remain in silence or they change 
the topic. The following is an example in which we consider that the first benchmark is reached: 

Interviewer: Do you remember what we did the last time?  

Sofia: Because they always took the balls in the same number, so if he… if Marco took 
seven, Penelope could take seven because they became friends at the end of the 
story.  

Here the interviewer prompts the child to recall the training session. The student uses the expression 
‘the same number’ to refer to the fact that the two characters have the same amount of balls. 
According to Sofia, the two sets of balls must have the same property of being seven. Similar 
explanations are found in other children. They never talk about a correspondence between the two 
sets of marbles; in other words, they never refer to the fact that for each marble of Marco there is one 
of Penelope. Statements like that by Sofia, with different numbers as example, are common. 

Concerning the second benchmark, we have several examples of children who did not achieve it. For 
instance, the following excerpt reports the discussion of a group while facing the task in the case in 
which Marco has six marbles and Penelope has just two marbles outside her box. 

Interviewer: What is going on there?  

Martina: Penelope has just two balls.  

Interviewer: Just two balls? […] 

Martina: No, because the others are inside the box. 

Interviewer: And where are those two? […] I heard ‘outside’. Is it right? 
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Emma: The two balls are outside, but the others are inside. 

Interviewer: How many are inside? 

Asia: Eight! 

Asia answers to the interviewers’ question naming the number eight, that is the total amount of 
marbles that are shown in the image (two belonging to Penelope and six belonging to Marco). Even 
if the question is specifically referring to the marbles inside the box, the student is interpreting the 
equivalence differently than expected. She is not considering the situation in the form 6=x+2 but as 
if it were 6+2=x. According to our interpretation, the second benchmark is not yet reached. This 
happens again in the same little group of students when they face the situation of Marco having five 
balls and Penelope with four balls outside the box. The students suddenly state that they have the 
same number, so the interviewer invites them to check by counting; they react counting all the marbles 
that are shown in the figure. We can notice that reaching the first benchmark is necessary to achieve 
the second one, but it is not enough. This is shown clearly in the following excerpt. 

Luca: They must have the same number.  

Interviewer: They must have the same number; Marco has seven and Penelope has three, how 
many has she got in the box? 

Luca: She must have… 

Emma: Seven balls? 

Luca: Seven. 

Luca can state that the two character must have the same number of marbles, however he interprets 
this sentence relating the number of Marco’s marbles with those in Penelope’s box. Emma and Luca 
seem to interpret the equivalence 7=x+3 as if it were 7=x, ignoring the role of the ‘+3’, and so they 
give the number seven as answer. This is like some cases documented by Carpenter et al. (2003), who 
found children justifying the presence of an additional number after the equal sign with statements 
like “it is there just to trick you”. 

In our data, we do not have cases of students who reached the second benchmark but not the third. 
Indeed, all those who interpreted correctly the equivalence, then used some counting strategy. 

Leonardo: If Penelope has two outside…  

Ginevra: The other four are inside the box. 

Leonardo: Because two plus four… 

Ginevra: Here she has two [she points the two marbles that are drawn outside the box] so 
here she has four [she points the box].  

Leonardo: Two [he raises two fingers of his right hand] plus four [he raises four fingers of his 
left hand], how much is it? Count! [he faces Ginevra, Figure 3a] 

Ginevra: One, two, three, four, five, six. 

Giulia: Indeed, they are six. 
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In this last excerpt, we can see that Leonardo do not determine the sum 4+2 by himself, but he 
involves his peers in calculating it to check if the result of such operation is the number of marbles 
owned by Marco. It is not clear how Ginevra determined that the number of marbles in the box is 
four. One possibility is that she guessed. Indeed, we have evidence of tentative numbers that are put 
aside after checking that they are not correct.  

(a)  (b)   (c) 

Figure 3: Leonardo’s and Ginevra’s gestures 

Interviewer: Who wants to tell me what he sees? 

Rebecca: Penelope now has two balls while Marco has many. 

Interviewer: How many? 

Rebecca: Six. 

Interviewer: So, Marco has six balls. And what about Penelope? Does she have just two balls? 

Sofia: Penelope has got two outside. Like the last time. Marco has got six, so if she has 
two outside, it could be that she has… that she has two inside. […] 

Emma: If there are two balls outside and other two inside it makes four and Marco has six, 
so it is not the same number. 

Apparently, Sofia is trying to guess the number of marbles in the box, she tries with the number two. 
Emma follows Sofia’s reasoning and she confutes it by summing the supposed amount of marbles 
with the number of visible marbles owned by Penelope. She realizes that the total amount is different 
than the number of Marco’s marbles and so she rejects Sofia’s hypothesis. This kind of guessing and 
testing strategy could appear not sophisticated but, as Mason notices, “Guess & Test is not only good 
mathematics, but it can develop over time into more sophisticated versions: Try & Improve, in which 
the guess is modified according to some principle rather than being essentially random” (Mason, 
2008, p. 85). It cannot be considered as relational thinking, but it constitutes a preliminary step for it. 

Counting as strategy to determine a sum is frequently used to check the correctness of suggested 
amounts for marbles in the box. Determining the right number of marbles in the box with different 
processes appears less frequently. The following excerpt shows one of the few examples. The children 
are facing the task in the case of Marco having seven marbles and Penelope with three marbles outside 
the box. They are discussing about the number of marbles that are inside Penelope’s box. 

Leonardo: They aren’t four. 

Emma: Yes, four! Because there are seven there. 

Thematic Working Group 13

Proceedings of CERME11 2298



 

 

Ginevra: Look! Here she has three [she moves her finger along the three marbles that are 
outside the box, Figure 3b]. Look: here he has three [she moves her finger along 
three of Marco’s marbles] and he has four [she points with both hands to the 
remaining four Marco’s marbles, as she were grasping them, Figure 3c]. So here 
she has three [she repeats the gesture in Figure 3b pointing to marbles that are 
outside the box] and here [she repeats the ‘grasping gesture’ on Penelope’s box] 
she has four. 

Interpreting Ginevra’s gestures, we can notice that she creates a correspondence between Marco’s 
marbles and Penelope’s one. She selects three marbles among Marco’s one and she isolates them 
from the remaining four. Then she notices that Penelope’s marbles can be divided again in a group 
of three (that is shown) and a group of four that is inside the box. The correspondence is made evident 
by the use of the same gesture (moving the finger along the balls) to point to the groups of three, and 
a different gesture (grasping the balls with both hands) to point the groups of four. Ginevra is 
decomposing the number 7 has the sum 4+3 and so she finds the amount of marbles in the box making 
use of such decomposition. We consider this as an evidence of reaching the fourth benchmark. 

Discussion and conclusion 
Developing suitable task to let kindergarten students think relationally appears as an important 
objective if we believe that it is never too early to start thinking algebraically (Mason, 2018). In this 
paper, we try to develop such kind of task basing our work on that made by others before. We have 
modified the task proposed by Steinweg, Akinwunmi and Lenz (2018) because we were not 
convinced by the fact that they could not observe evidence of relational thinking in children at 
kindergarten level. Mutuating benchmarks by the work by Carpenter et al. (2003), in our data we can 
observe different levels of interpretation of a number sentence containing an equivalence. In 
particular, most of students reach the first benchmark, being able to state what they mean while saying 
that two amounts are the same in number. We noticed that there are children that are not achieving 
the second benchmark: they interpret the equivalence a=x+b as if it were a+b=x or a=x. Apparently, 
they reinterpret the equivalence according to schemes that are more familiar to them.  

We do not have evidence of students reaching the second benchmark without reaching also the third 
one. Using counting to add numbers is used to check the correctness of the amount of marbles in the 
box. It is not clear if they are using a guess and test method (Mason, 2008), or if there are other mental 
processes leading students to suppose a number for the unknown marbles in the box. Evidence of the 
fourth benchmarck are rare, but there are some. Eventually, we can answer to our research question 
stating that we find distinguishible evidence of all the four benchmarcks. 

This result appears in contrast with that by Steinweg et al. (2018), however we must notice that it is 
not easy to directly compare their work with ours. Indeed, even if we are both speaking about 
relational thinking, it is not sure that we are speaking about the same thing. We used the benchmarks 
by Carpenter et al. (2003) who consider relational thinking equivalent to the fourth benchmark. We 
interpreted students’ utterances, but also their gestures, as evidence of the process enacted to solve 
the task. Steinweg and colleagues (2018) use just the words as data and so it is possible that they 
interpreted differently some cases that we would interpret as relational thinking. 
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We are aware that there are limitations in this study. Our theoretical framework is modified for this 
situation, adapting it from the original one that was thought for primary school level. This was 
necessary because we do not have frameworks for relational thinking at kindergarten level. The 
framework works well here in describing differences between the behaviors, however it should be 
tested in other contexts. 

We are convinced that the task proved to be effective in terms of eliciting students’ processes in 
determining an unknown quantity in a simple number sentence. Taking the perspective of the 
designers, we can notice that the task is effective both in stimulating children and in making 
distinguishable their answers. However, there is still a problem in evidencing those cases in which 
the second benchmark is reached while the third one is not. Modifications to the task could solve this 
problem. We can also notice that in our data we have interesting examples of kindergarten students’ 
arguments; it seems that the task could be suitable also to solicit argumentation.  
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In the paper we examine possible factors that enhance young students’ mathematical reasoning. 
Particularly, we present the characteristics of seven mathematical tasks, which were chosen based 
on an a priori analysis, in order to elicit reasoning among a pair of young students. Additionally, 
we examine the reasoning processes that were manifested during the students’ interactions while 
solving the tasks. Our results show how particular task characteristics affect reasoning processes. 

Keywords: Task design, mathematical reasoning, task characteristics.  

Introduction 
Algebra constitutes one of the most significant elements of mathematics, and children, even at a small 
age, have access to mathematical ideas such as mathematisation, connections, argumentation, number 
sense and mental computation, algebraic reasoning, spatial and geometric thinking, data and 
probability sense (Perry & Dockett, 2002). This has led to the “Early Algebra” movement, which has 
been the background of a number of studies (see, e.g., Kieran, Pang, Schifter & Ng, 2016). The main 
process involved in algebraic thinking – and in all mathematical activities – is undoubtedly 
generalisation (Mason, 2005), which therefore has been the focus of the majority of studies in early 
algebra. However, other significant processes are also involved in algebraic thinking: Blanton et al. 
(2011) (as cited in Kieran et al., 2016, p. 12, our emphasis) refer to “the processes of generalizing, 
representing, justifying, and reasoning with mathematical structure and relationships”. One of the 
questions that may then arise is whether it is possible to design and propose mathematical tasks that 
enhance reasoning among young students. Having this question in mind we designed a case study 
aiming to examine how particular task characteristics relate to the reasoning processes of two eight-
year-old students. Thus, our main research question is what are the characteristics of the tasks which 
promote mathematical reasoning. Particularly, we aim to examine how specific factors of the tasks 
are related to reasoning processes. 

Algebraic reasoning and task design 
Algebraic thinking is defined as “a process in which students generalize mathematical ideas from a 
set of particular instances, establish those generalizations through the discourse of argumentation, 
and express them in increasingly formal and age-appropriate ways” (Kaput & Blanton, 2005, p. 99). 
This is in line with “Early Algebra”, which can be characterised by the following shift:  

... from a traditional content-centered characterization of algebra to that of the mathematical 
reasoning processes and representations that would seem appropriate for young children, as well 
as to the nature of the early algebra activities that might promote the development of these 
processes and representations (Kieran et al., 2016, p. 5). 
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The above statement leads us to the importance of engaging young students in activities that promote 
reasoning. But how should such activities look like? This question might prove misleading, since 
there are various factors that contribute to a learning situation: besides the task itself, we may refer to 
the teacher and the students participating and interacting. This list is not exhaustive; one could also 
consider the wider social and classroom context, the available resources and artefacts, the histories 
of the students and their interactions, etc. 

In our research paper, we focus on the teacher (as a task designer), as well as on the students (their 
reasoning activities as they manifest during their interactions). The importance of task design in 
enhancing students’ engagement and promoting mathematical reasoning has been stressed in research 
focused on reasoning (Francisco & Maher, 2005) as well as assessment (van den Heuvel-Panhuizen, 
2005). These studies have provided comprehensive suggestions on task characteristics, including the 
expected teacher and students’ roles. They can be summarised as follows: 

· “the problems must be accessible, inviting and worthwhile to solve” and “the students must 
have the opportunity to give their own answers in their own words” (van den Heuvel-
Panhuizen, 2005, p. 3); moreover, pictures play an important role as context-bearers and they 
serve multiple functions (van den Heuvel-Panhuizen, 2005); 

· “the development of a sense of ownership of the mathematical activity enhances the building 
of personally meaningful mathematical understanding and students’ confidence in their 
abilities” and working collaboratively and discussing “helps the students become flexible in 
problem comprehension and adaptive rather [than] routine experts at solving problems” 
(Francisco & Maher, 2005, p. 371). 

Context of the study and methodology 
Based on the type of our research questions we have adopted an exploratory case study approach 
(Yin, 2014). The participants were two eight-year-old female students studying together in the 2nd 
grade of a public primary school in an urban area in Poland. They both had good marks in 
mathematics and volunteered to participate in the research. The session took place in one of the 
students’ house, lasted for two hours and was videotaped, after the parents’ consent was obtained. 
Both authors of the paper were present in the session and both were familiar to the students, who 
worked together for solving the tasks. The role of the first author of the paper consisted of the 
following: challenge pupils, support pupils, evaluate their progress, think mathematically in order to 
pose challenging and interesting mathematical questions, supply and recall information and promote 
pupils’ reflection (da Ponte, 2001). 

A priori analysis of the tasks 

Task design was based on the assumptions mentioned in the previous section. Seven tasks were 
chosen from two sources (Lankiewicz, Sawicka & Swoboda, 2012; Treffers, 2008), based on: their 
potential to stimulate students’ interest, be solvable, or at least approachable, in more than one way 
and without the use of tricks, illustrate important mathematical ideas, serve as first steps towards 
mathematical explorations and be extensible and generalisable (Schoenfeld, 1994). Table 1 below 
presents all tasks, except Tasks 3 and 5, which will be presented and analysed later. 
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Task 1: Chairs 

 
How you can divide the chairs into 2 sets of 4 
chairs in each? 

Task 4: Tiles 
Uncle Ted tiles three terraces. Here are the tiles he uses. 

 
· Help uncle Ted in his work and draw your propositions 

for the tiling. Check different possibilities. Write under 
every proposition the number of used tiles.  

· Try to tile the following terraces by using the tiles of 
uncle Ted. 

· Count and write how many tiles you used for every 
terrace. Do you notice any changes? Which ones? 

Task 2: Fish 

 
How many fish can you colour by three 
colours so that every fish is different? You 
have three colours: green, orange and blue. 

Task 7: Caterpillar 
You choose two numbers less than 
100. Each succesive number is the 
sum of the previous two. For 
example: 
Try to make a 5-part caterpillar with 100 as the last 
number. 

Task 6: The parrot Waku-Waku 
 This is a talking parrot; his 
name is Waku-Waku. 
Unfortunately, he can say only 

one word: five. You want to show your 
friends how clever parrot you have. Ask him 
some questions, for which the answer is 
“five”.  

Table 1: Five of the given tasks  

Our a priori analysis of the tasks initiated by identifying the mathematical concepts and processes 
involved in the tasks’ solutions as anticipated by us and, wherever applicable, by the original task 
designers. The mathematical fields contained in the tasks correspond to those included in the Polish 
curriculum for the particular age group. All tasks contained a written description, but in our a priori 
analysis we also analysed the role of the accompanying images, according to van den Heuvel-
Panhuizen’s (2005) pictures’ functions: motivator (M: making the task more attractive), situation 
describer (S: describing the context of the task), information provider (I: providing necessary 
information), action indicator (A: an action is elicited that has the potential of a strategy that leads to 
a solution), model supplier (MS: the picture structuring possibilities that can be used to solve the 
problem), and solution and solution-strategy communicator (SC: the picture contains the solution and 
aspects of the applied strategies). The analysis of the tasks’ contexts was based on de Lange’s (1999) 
assessment framework: zero-order (0): fake context, not considered for the solution (to this category 
we also inserted mathematical contexts, e.g. Task 5, which will be analysed later); first-order (1): 
relevant context, needed for the solution; second-order (2): relevant context, mathematisation needed 
for the solution; third-order (3): the context serves for constructing or reinventing mathematical 
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concepts. Finally, each task was categorised as open or closed. As shown in Table 2, all tasks but one 
were open. 

Task Field Concepts Image Context Type 
1 set theory categorisation I 1 open 
2 combinatorics combinations I 0 closed 

3 geometry & 
arithmetic 

dimensions, shapes, areas, 
multiplication & properties S & MS 2 open 

4 geometry & 
combinatorics areas, tiling, combinations I & A 2 open 

5 arithmetic addition & properties I 0 open 

6 arithmetic & 
algebra 

numbers, operations, 
equations M 0 open 

7 arithmetic addition, subtraction & 
properties I 0 open 

Table 2: Task characteristics 

A posteriori analysis of the tasks 
In our a posteriori analysis, we focused on the interactions that took place among the students and the 
researcher, during the research session. For this analysis we have adopted Lannin, Ellis and Elliot’s 
(2011) manifestations of essential understandings related to mathematical reasoning: developing 
conjectures, generalizing to identify commonalities, generalizing by application, conjecturing and 
generalizing using terms, symbols, and representations, investigating why, justifying based on 
already-understood ideas, refuting a statement as false, justifying and refuting the validity of 
arguments and validating justifications. To these we added: reformulating conjectures or 
justifications, monitoring each other (a form of collaborative reasoning), concluding and explaining 
(a form of informal justification). After identifying the above understandings, we made a cross-
analysis of all tasks, in order to identify commonalities and differences among them. 

Results 
As we see in Table 3, the reasoning processes which persevered were: developing conjectures and 
reformulating conjectures or justifications. 

Reasoning processes / Tasks 1 2 3 4 5 6 7 
R1 developing conjectures ü ü ü ü 
R2 identifying commonalities ü ü 
R3 generalizing by application ü 
R4 investigating why ü ü 
R5 justifying based on already-understood ideas ü ü ü 
R6 refuting a statement as false ü ü ü 
R7 justifying and refuting the validity of arguments ü 
R8 validating justifications ü 
R9 reformulating conjectures or justifications ü ü ü ü 
R10 monitoring each other ü ü ü 
R11 concluding ü 
R12 explaining ü ü ü 

Table 3: Tasks and reasoning processes 
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Next, we present the analyses of Tasks 3 and 5; these tasks are chosen because they demonstrate the 
range of reasoning processes that we have encountered.  

    

Figure 1: Task 3 and Task 5, containing students’ work 

Task 3: Christmas baubles 

In Figure 1, on the left, we read: “Design different boxes in which you can put 12 Christmas baubles 
in such a way that every bauble is in one compartment.” The mathematical concepts come from 
geometry (shapes, dimensions, area) as well as arithmetic (numbers and multiplication); we 
anticipated that students will shift from the geometrical representation of the problem to an arithmetic 
one. The image of the grid can be categorised as a situation describer and a model supplier. The 
students – signified by A and M, while R stands for the researcher (the first author of the paper) – 
started by drawing a 4×6 rectangle on the grid and placing their drawn baubles in every second 
compartment. Initially, it was hard for them to imagine how the baubles can be arranged. Later, they 
discovered that the box they designed can contain more baubles than they thought, and they justified 
it. However, they were not able to use this knowledge for the design of boxes of different sizes; they 
were more focused on the shape, the colours and the sizes of the baubles. In the following excerpts 
our notes are in brackets and (...) signifies an omitted part of the discussion. The number(s) of the 
reasoning processes (as they appear in Table 3) are put in brackets at the end of the respective lines. 

R: Could we put more baubles to this box? [the box on the right edge of the grid]. For example, 
could we put one more bauble? 

A: I guess not. 

R: If I had one more bauble and I would tell you: girls, put that bauble to your box… 

M: I would pack it in such a square. (…) 

R: (…) then how many could we pack here? 

A [immediately]: More, 24. 

R: How do you know that 24? You didn’t count. 

A: Because there are 12 baubles and 12 empty places. [R5] 

R: And how do you know that there are 12 empty places? 

Thematic Working Group 13

Proceedings of CERME11 2305



 

 

A: Because here in the 4 squares there are 4 places and in 2 of them there are baubles and those 2 
are left. And in the same way you can count to the bottom so it will be 24. [R9] 

M: Or 4×6 [showing the dimensions of the rectangle]. (…) [R9] 

R: Are those boxes different? [showing the four boxes drawn on the grid] 

A: Uhm. 

R: By what? [A and M thinking]  

A: Here are bigger baubles [the second and third box] and here smaller [the first box]. 

M: And these are medium ones [the fourth box]. 

During the whole interaction only two aspects of mathematical reasoning were manifested: 
justification and reformulating the justification. The students eventually discovered different 
arrangements of the baubles (in different boxes) but they could not find any relations between them, 
neither geometric nor arithmetic. 

Task 5: Magic squares 

In Figure 1, on the right, we read: “Complete the empty fields so that the sum of the numbers in rows 
and columns is 20”; and then: “Try to create a similar table for your friend or somebody from your 
family”. The main mathematical concept is addition and its properties: identity, commutative and 
associative. The images of the task are information providers. An extensive analysis of the students’ 
interactions (Maj-Tatsis & Tatsis, 2015) has led to the following understandings related to 
mathematical reasoning: developing conjectures, generalizing by application, refuting a statement as 
false, justifying and refuting the validity of arguments, validating justifications, reformulating 
conjectures, monitoring each other and explaining. Thus, this task has proved fruitful for 
mathematical reasoning among our students. In the following excerpt the students have completed 
working on the first magic square and are discussing on the second. It is interesting that student M 
started filling the square by number 9 (which means that then one has to put 0 in the third square) 
which was the extreme case in the first square, and it took them some time to accept it.  

M: Here for example 8 [in the centre] and put 1 here [above 8] [R1] 

R: Aha (…) What if here we put 7 [in the centre], then what will be here? [above] 

M: 2 

R: And what if 6? 

A & M: [loudly] 3! 

R: How do you know it’s 3? 

A: Because when it was 7 then it was 2. And if we decrease it more then it will be 3. [R1, R12] 

R: What if we put 5? 

M: Then 4 (…) 

R: What’s the biggest number we can put in the centre? (…) 
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M: For me 9, because 10+11 would be already 21. [R1, R7] 

The differences between this task and the Christmas baubles task lie not only in the extent of 
reasoning processes, but also in their depth. Although in this task the students were able to articulate, 
justify and validate mathematical conjectures in order to support their mathematical reasoning, in the 
baubles task they did not manage to cross the boundaries between arithmetic and geometry; this has 
resulted in limited opportunities for extensive mathematical reasoning. 

Cross-analysis of the tasks 

We have seen the greatest extent of reasoning processes in Tasks 5 and 7 (followed by Tasks 2 and 
4), while Tasks 1, 3 and 6 proved the poorest concerning the manifested reasoning processes by the 
students. The common characteristic of Tasks 1 and 6 is that they both required the identification of 
commonalities and explanations; furthermore, the students’ interactions have shown that there was 
no explicit need for justification or generalisation. Tasks 5 and 7 were similar concerning the 
mathematical concepts involved (addition and its properties); additionally, they were both open, but 
with a finite number of solutions (unlike Task 6). At the same time, the only task with a single solution 
(Task 2) allowed for a considerable extent of mathematical reasoning; this was probably due to the 
many ways of solution. Task 3 was the one that demonstrated the influence of context: the students 
were engaged in a non-mathematical investigation concerning the size and the type of baubles, which 
in turn minimised the reasoning processes and hindered a thorough investigation of the task. It might 
be also the influence of the geometrical nature of the task that had created obstacles in its 
generalisation.  

Discussion 
The fact that reasoning processes were manifested in all tasks goes in line with relevant studies of the 
“Early Algebra” movement and strengthens the claim that students at a young age are able to reason 
mathematically. The variety of our tasks has proved that young students, even with a minimum help, 
can develop, justify, validate and refute mathematical conjectures.  

Our main research question was what are the characteristics of the tasks which promote mathematical 
reasoning. Firstly, we have not seen any influence of the images that accompanied the tasks; however, 
we have seen that context might move students away from reasoning (Task 3). Some tasks have 
proven more fruitful than others concerning the reasoning processes they evoked. It seems that open 
tasks do not pose any difficulties to the students, when they have a finite number of solutions (Tasks 
5, 7). The same is the case with closed tasks that can be solved in many different ways (Task 2). On 
the contrary, our students experienced difficulties when faced with a task that required a shift from 
geometrical structures to numerical ones (Task 3). At the same time, they manifested a variety of 
reasoning processes during another geometrical task (Task 4), which did not require an explicit shift 
to numerical properties. Based on all the above, although our exploratory study has not led to 
conclusive results, we believe that it may assist the design of mathematical tasks aiming to promote 
reasoning among young students. 
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Introduction  
Learner underachievement in mathematics still remains an issue of concern in primary schools in 
Malawi. Analysis of Early Grade Mathematics Assessment (EGMA) indicates that learners in the 
early grades continue to perform poorly and experience mathematics as memorization of facts and 
procedures to determine the correct answer to questions, instead of experiencing it as a meaningful, 
sense-making, problem-solving activity (MTPDS, 2010). This may mean that the teaching of 
mathematics in early years is not being effective. Teachers tend to approach mathematics as facts that 
need to be learned through practice and speed drill (Boaler, 2016). This approach to teaching 
mathematics to beginning learners raises questions on how teachers are trained to teach mathematics 
in early years, bearing in mind that pre-service teacher education is the principal source of teacher 
knowledge (Shulman, 1986). Ball & Forzani (2011) recognize that there are different factors that 
affect educational outcomes, such as curriculum, assessment, parents; however, they argue that 
learner success basically depends on skilful teaching which is largely a result of well trained teachers. 
They claim that if teachers fail to help learners learn, it is possibly because, among other reasons, 
they do not receive enough preparation during training. Scherrf & Singer (2012) argue that pre-service 
teachers enter training programs with their own perspectives of mathematics teaching from their 
learning experiences. Thus, their pre-service training should help them refine their perspectives. If 
they receive insufficient preparation, they may likely be compelled to teach according to their own 
experiences of learning. 

In Malawi, to the best of my knowledge, research is silent on preparation of pre-service teachers to 
handle mathematics in early years. It is against this gap in knowledge that this study seeks to gain an 
understanding of how primary teacher education prepares pre-service teachers to teach mathematics 
in early years, which include standards (grades) 1 to 4. The study seeks to answer the following 
question: How does primary teacher education prepare pre-service teachers to teach early years 
mathematics? And the following are the specific questions: What examples, tasks and explanations 
do mathematics teacher educators use when teaching the concept of number and operations to student 
teachers? How do mathematics teacher educators involve student teachers in their lessons on early 
years mathematics? How do student teachers use knowledge obtained from teacher training to teach 
mathematics in early years during teaching practice? 

Theoretical framework 
The study is guided by Adler & Ronda’s (2015) Mathematical Discourse in Instruction (MDI) 
framework. MDI is theoretically grounded in the sociocultural theories and empirically grounded in 
mathematics teaching practices. The framework was chosen because it specifically targets 
mathematics teaching practices and constitutes interrelated elements that are encouraged in 
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mathematics teacher education, which include object of learning, exemplification, explanatory talk 
and learner participation. The study focuses on how mathematics teacher educators encourage the use 
of these elements as they teach pre-service teachers. 

Research Methodology 
This is a qualitative case study in which 4 mathematics teacher educators from one public teacher 
training college will be observed teaching and then interviewed. Pre-service teachers practicing their 
teaching in any 4 teaching practice schools belonging to the participating college will be involved in 
focus group discussions. Document analysis on mathematics schemes of work, lesson notes, lecturers’ 
and students’ handbooks will be done to supplement information on where teacher educators get 
examples and tasks. Participants were purposively sampled based on mathematics teaching 
experience at college level for teacher educators and accessibility for teaching practice schools. FGD 
participants are all student teachers teaching mathematics in lower classes in the sample schools. Data 
will be analyzed thematically. Transcribed data will be read carefully, coded, and then sorted into 
potential themes. 

Piloting 
Piloting was done on one mathematics teacher educator. Preliminary pilot results show that in terms 
of exemplification, mostly, one or two examples were used in the lessons. In all the lessons, there 
was more emphasis on what resources to use when teaching a concept. In student participation, 
student teachers were invited to participate by mostly answering yes/no questions, finishing teacher’s 
sentences, group discussions, and demonstrating how an activity is done. 
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This study assesses preschool children’s understanding of length and area measurement through the 
activities of a mathematics program in Japan. Japanese preschool children do not formally learn 
mathematics; thus, we designed mathematical measurement activities for young, less-experienced 
preschool teachers to implement for nine five- to six-year-old children. We conducted structured 
clinical interviews with the children individually, both before and after the measurement activities, 
and qualitatively analyzed the results by comparing their answers and connecting them to the activity 
contents. Results indicate that children learn to understand direct comparison through activities; 
however, it is more difficult to establish understanding of measurement by non-universal units. 

Keywords: Preschool children, mathematical activity, length measurement, area measurement 

Research on measurement in preschool 
Much of the current research focuses on elementary mathematics education for preschool children 
and younger elementary school students (e.g., Brandt, 2013); however, measurement has not been 
sufficiently included in these studies (Sarama, Clements, Barrett, Van Dine, & McDonel, 2011; 
Smith, van den Heuvel-Panhuizen, & Teppo, 2011), even though it is an important real-world area of 
mathematics used in everyday life. In addition, Hachey (2013) states that mathematical conceptual 
change in young children is as effective as a substantial change in early childhood mathematical 
teaching practice, as a large body of developmental research advocates that young children are born 
mathematicians, and therefore, early childhood mathematics education is vital.  

It is known that the development of children’s understanding is related to foundational or key ideas 
of measurement such as comparison, unit iteration, number assignment, and proportionality (Lehrer, 
Jaslow, & Curtis, 2003; Wilson & Osborne, 1992), and several kinds of teaching methods for 
measurement have been developed (Battista, 2006; Kamii, 2006). Although Piaget (1968) assumed 
that children up to seven years old are unable to consider more than one stimulus dimension in their 
judgments, subsequent research has demonstrated that preschoolers can consider two dimensions; for 
example, they can consider the width and length of rectangles to estimate their area (Wilkening, 
1979). Further, Ebersbach (2009) addressed the question of whether children can also take three 
stimulus dimensions into account and showed that preschoolers have the cognitive competencies 
required for multidimensional reasoning. There have also been numerous other important studies on 
preschool children’s understanding of measurement. Sarama et al. (2011) proposed a learning 
trajectory for length and area in the early years and evaluated it. Zöllner and Benz (2013) concluded 
that four- to six-year-old children could compare directly and indirectly, but cannot measure using a 
non-standardized unit. Tzekaki (2017) indicated that a seven-month intervention helped preschoolers 
improve their abilities to reflect on their own activities and express their ideas regarding 
measurement. Skoumpourdi (2015) verified that preschoolers do have some strategies for length 
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measurement, but confuse the concept of length with perimeter and area. Finally, Kotsopoulos (2015) 
showed that a free exploration approach in the context of a play-based learning environment is more 
effective in teaching length measurement than guided instruction and center-based learning.  

This article examines whether preschool children can improve their understanding of length and area 
measurement, especially direct and indirect measurement, as well as measurement by non-universal 
units. It does so with an elementary mathematics play-based program, which can even be 
implemented by young, less-experienced teachers who have not been trained in mathematics 
instruction, thereby fostering children’s understanding of measurement. These play-based activities 
are intended as a further contribution to the existing research. The article also seeks to explain the 
specific reasons the program is effective. First, we compare pre- and post-interview results for five- 
to six-year-old children. Next, we intentionally choose two children with different degrees of change 
between their pre- and post-interview results. Finally, we discuss the reason the change occurred, 
scrutinizing each child’s actions and attitude during the activities, as well as his/her post-interview. 

The early childhood mathematics program in Japan 
Elsewhere, we have proposed a framework for constructing an early childhood mathematical 
curriculum (Matsuo, 2016). The theoretical and methodological underpinnings of our program are 
social constructivism (Ernest, 1994), mathematical guided-play (Weisberg et al., 2013), and the 
Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs, 1982). This program 
presents a scope for the content of preschoolers’ activities, while the learning process of those 
activities are explained from the viewpoint of sequence, based on the relationship between age and 
modes of representation and focusing on activities for five- to six-year-old children to create a 
program tailored to these concerns. Based on this framework, we have proposed a mathematical 
education program to enable a smooth transition from preschool to elementary school mathematical 
education (Matsuo, 2017). Less-experienced preschool teachers should be able to use these activities 
to better incorporate mathematical content into children’s play and recognize activities that will make 
children think and act mathematically. This practical program was designed for preschools and 
elementary schools. 

Methodology 
Research participants  

The preschool kindergarten in an urban area of Kanagawa Prefecture of Japan participated in our pilot 
study. This article focuses on nine five- to six-year-old children in the oldest classes. The children are 
all Japanese, coming from middle- and upper-middle-class families in Japan. There were six boys 
and three girls. The school’s focus was on physical activities, as well as entrance to candidate schools 
for the International Baccalaureate (IB). Children started to learn Japanese letters and English to 
prepare themselves for primary education in September 2017.  

The oldest classes of the preschool had two teachers: Teacher A, a male teacher with three years of 
experience teaching preschool, and Teacher B, a female teacher with two years of experience teaching 
preschool. Teacher A taught the first three sessions of measurement activities in the first cycle of the 
program and Teacher B taught the latter three sessions in the second cycle. For the analysis, we 
intentionally chose two children, T1 and T7, based on the results of pre- and post- interviews, to 
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intensively examine their outcomes and learning processes, as well as to determine the relations 
between the interview results, their actions, and the detailed observations of the teachers during the 
activities. T1 was actively engaged in the activities, but provided incorrect answers in the post-
interview. T7 was not actively engaged in the activities, but made correct observations and provided 
correct answers in the post-interview. To compare the two children’s understanding, we discuss the 
level of understanding of direct and indirect measurement, as well as measurement with non-universal 
units, in connection with the young teachers’ instruction.  

Data collection and analysis  

In the project, we developed six play-based activities related to numbers, measurement, and shapes. 
Among these activities, we carefully chose those that were better tailored to relate to numbers, 
shapes, and measurements, things that are necessary for our curriculum to focus on and develop. To 
evaluate the improvement of children’s mathematical skills after these activities, we developed pre- 
and post-interview questions. Pre-interviews were conducted in June 2017 and all six activities were 
implemented twice; therefore, twelve activities were implemented after the pre-interview. After all 
activities had been completed, a post-interview was conducted with each child in February 2018. 
Sixteen questions were developed for the pre-/post-interviews, corresponding with the planned 
activities and previous research by the author (Matsuo, 2016), as well as the SOLO taxonomy. Four 
of the sixteen questions were in the area of measurement, as shown in Table 1.  

Table 1: Description of the interview questions and the problem contexts 

  

Methodologically, the authors conducted structured clinical interviews (Goldin, 1998). To alleviate 
children’s anxiety, the teachers conducted the interview themselves, while one of the authors sat next 
to the child to record. The assigned teachers rehearsed the interviews to be consistent with 
mathematical words and expressions. During the implementation, each child came to the room 
randomly and the teacher sat in front of the child. The pre-interviews took fifteen to twenty-five 

Q12 

Prepare four different pencils, each of a different length, as 
shown in the diagram, and ask, “Which do you think is the 
longest pencil of the four? And tell me the order of the length, 
from longest to shortest.” 

Q13 

Show four different pencils, each of slightly different 
length as shown in the diagram, and ask, “Which do you 
think is the longest pencil of the four? And tell me the 
order of the length, from longest to shortest.” 

Q14 

Prepare four different rectangles as shown in the diagram, 
and ask, “What do you think is the biggest rectangle of the 
four? And tell me the order of the area, from biggest to 
smallest.” 

Q15 

Prepare four different rectangles as shown in the diagram, 
and ask, “What do you think is the biggest rectangle of the 
four? And tell me the order of the area, from biggest to 
smallest.” 
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minutes, and the post-interviews took ten to fifteen minutes. During the interview, the children could 
use a ruler, transparent paper, grid paper, and clips to answer questions 12 to 15. The results were 
qualitatively analyzed. 

Description of measurement activities in the intervention 

Teacher A taught the children the first course in how to measure the length of something carefully 
using clips as non-universal units. They measured assorted items by connecting clips (e.g., measuring 
the edge of the desk, the mat, the height of the teacher). Teacher B taught the second course, in which 
the children tried to connect eight clips in order to use them to measure shorter objects than the ones 
measured in the first course. After the children used the connected clips to measure a building block 
or a box, the teacher asked the children to find objects with lengths equivalent to eight clips. Next, 
they looked for objects with lengths equivalent to sixteen clips. They lined up sixteen red magnets 
and set out to measure them using the clips. 
In the area measurement activity, the children employed indirect comparison and measured using 
non-universal units, such as length measurement. The activity was implemented like a code-breaking 
game, and when the code was solved, figures whose areas were objects for measurement were 
supposed to be arranged in descending order. A teacher directed the children to count the square grids 
covered in rectangular paper to measure the total area. First, the children copied the target onto plain 
paper, put this paper on grid paper, and counted the number of squares as non-universal units. The 
sizes of the three kinds of rectangles (thirty-two, forty, and forty-eight squares) were relatively large, 
and the children had been actively counting quite carefully. Finally, the paper with a number written 
on it was matched with a corresponding letter, which enabled them to solve the code. Letters with 
meaning were arranged in order so that the numbers became larger. 

Results and Discussion 
Table 2 shows that there is not a significant difference of the correctness toward questions between 
length and area measurement.  

Looking at the transition of the results from the pre- to post-interview, problems whose answers are 
incorrect in both pre- and post-interview cannot be seen except for T1. In the case of Q12 and Q14, 

Child 
No. Gender Birthday Q12 Q13 Q14 Q15 

Pre Post Pre Post Pre Post Pre Post 
T1 F MAY 1 1 0 0 1 1 1 0 
T2 M JULY 1 1 1 1 1 1 1 1 
T3 M NOVEMBER 1 1 0 1 1 1 0 1 
T4 F NOVEMBER 1 1 0 1 1 1 0 1 
T5 F AUGUST 1 1 1 0 1 1 1 0 
T6 M JUNE 1 1 0 1 1 1 1 0 
T7 M DECEMBER 0 1 0 1 0 1 0 1 
T9 M JULY 1 1 1 1 1 1 0 1 

Table 2: Pre- and post-interview results for measurement of  length and area 

* 1 means correct, 0 means incorrect 
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children got the correct answers in the pre- and post-interview, excluding T7. Since the edges of some 
part of the figures in these problems are aligned, it is possible to judge the difference in size from the 
difference in other parts by visual observation. Children were thought to be mature, developable, and 
able to maintain natural demeanor. Regarding Q13 and Q15, about half of the children answered 
correctly in the pre-interview, but they had incorrect answers in the post-interview. T2 had correct 
answers for everything both pre- and post-interviews. T9 also had correct answers, except for Q15, 
in the pre-interview. T8, who was absent from the length and area measurement activity of the second 
course, was excluded from analysis. 

Comprehensive analysis of eight children’s understanding of measurement  

Table 2 indicates that every child understood direct measurement in Q12 and Q14 in the post-
interview, though in Q13 and Q15, a few children did not understand indirect measurement nor 
measurement by non-universal units. An erroneous view prevails that the area measurement is harder 
to understand than length measurement, as the number of dimensions is higher. As Ebersbach (2009) 
stated, not only length and area but also volume can be estimated by a young child, and the rate of 
correct answers does not change much between children and adults. It is possible for preschoolers to 
tackle activities that are not limited to length, area, and volume measurement, as we inferred from the 
results of our survey; however, even though children were working well on the measurement 
activities, most of them gave incorrect answers for area measurement.  

T3, T4, and T7 answered incorrectly in the pre-interview but correctly in the post-interview for Q13 
and Q15. Although they answered visually for Q13 and Q15, they were correct. We infer the program 
implemented had a positive effect, especially because the measurement using non-universal units is 
not commonly done at home or in preschools. While there were scenes in which they could not be 
regarded as proactively working on the program activities, in many cases, it is mentioned that they 
were working on collaborative and individual work well and could observe other subjects’ behavior. 

Conversely, T1, T5, and T6 had incorrect answers in the post-interview even if they were correct in 
the pre-interview, revealing that the influence exerted by the activities of the mathematics program 
are strongly related to this fact. Let us consider why they did not have correct answers for Q15, even 
if they were trying to answer based on measurements in non-universal units using tools and enjoyed 
it in the post-interview. It is probably because children could not distinguish between the 
measurement of length and area and did not associate the numerical value measured in non-universal 
units with the results of the comparison of length and area, or because they could not understand the 
meaning of the work and retain this understanding even if they acquired skills related to measurement. 
This can be judged from the state of the post-interview.  
Qualitative analysis for two children who had different results and processes of playing 

We will now compare and examine the results of two children, T7 and T1, their post-interview 
responses, and the teacher’s findings regarding them in Table 3. 

T1 was engaged in acting as a group leader in length measurement. After the clip-connecting activity, 
she was looking for various items to measure, like building blocks, etc. She was highly interested in 
the length-measurement activity. Further, in the area-measurement activity, she actively worked on 
counting. She did the measurement work again, but her answer was not correct. She did not seem to 
have an opportunity to objectively review the meaning of the work after she had concentrated on it. 
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It can be surmised that because the meaning of the work was unclear, she confused length and area. 
The result of this study is consistent with previous studies (e.g., Skoumpourdi, 2015). The length and 
the area are different in dimension, and in daily life, for a child, the length comparison is familiar and 
more understandable than the area comparison. 

 

Table 3: Results of T1 and T7 for Q12-15, post-interview results and teachers’ findings 

Conversely, T7 did not do much work and wandered around. He did not work as actively as the other 
children, though he observed the other children’s activities well. During area measurement, everyone 
was absorbed in drawing figures and counting the squares, while he also worked and looked around. 
It is highly likely that his reply was affected by this behavior. As a result, T7 who did not actively 
work, gave the correct answer by visual observation. It can be inferred that this is due to the child’s 
rich sense of length and area, fostered during the activities (Schoenfeld, 2016). Through these 
activities, it seems that the sense of long/short, wide/narrow is more sharpened. Preschool children 
may not have this vocabulary, but instead use “big” or “small” to express differences in quantity. 
Since children who observed better than doing their own work seemed to grasp the size correctly by 
visual observation in the post-interview, rather than just doing work, by sharing the work process of 
early mathematical activities, it can be said that the sense of quantity has been enhanced.  

Further, even when it seems that a child is not actively working on a problem, or appears not to be 
thinking too much, we must accept the fact that the child considers silently and may still answer 
correctly. According to Shinohara (1942), since observation is an educationally effective activity, like 
experiments, it is important for children to observe others’ behavior and imitate it. In the case of 

Q12 She replied visually, pointing with her finger.

Q13 She took the fine-grid tracing paper, and after a little measuring, she answered, "Oh, I
understood it."

Q14 She replied visually.

Q15

She laughed and took the clips first, and asked, "Can I measure them sideways?" She joined
the clips, measured the  length of the rectangle sideways, adjusting the length of the joined
clips. Next, using the tracing sheet (with a grid), she aligned the edges and measured the
length of the rectangle.

Post-test
state

She said, "I was looking forward to it today," and "It's fun to find different lengths in
measuring activities."

Teachers'
findings

She is not good at detailed work. She is good at drawing. She loves playing football and
moving her body. She would rather move her body than sit and work. She is interested in the
alphabet.

Q12 He pointed in a sequential order visually.
Q13 He pointed in the descending order visually and quickly without using tools.
Q14 He pointed in the descending order visually and quickly.

Q15 He pointed in the descending order visually and quickly.

Post-test
state

He worked silently. He did not use any tools at all in the measurement, and answered quickly
and visually. He enjoyed the math activities and especially enjoyed using the clips to measure
the room. He did not seem to be an noteworthy type.

Teachers'
findings

He is good at fine work and studying. Currently, he is learning division and fractions
progressively. He is shy and not good at speaking in front of people.

T1

T7
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young children, it is often difficult for them to express in words; therefore, it is important for the 
teacher to observe the situation and guess from the usual activities or the activities with other children. 
From the countereffect by the program, it appears that by depending on teachers’ questioning, 
summary, etc., children concentrate on the work without thinking about its meaning.  

Conclusion  
Children in this study showed different outcomes of learning in measurement. The children continued 
to understand direct comparison in all activities; however, it was difficult to establish understanding 
of measurement by non-universal units. The intervention activities seemed to affect their learning 
outcomes, although we only focused on how two children’s actions related to their interview results. 
Play-based activities offered by the young teachers influenced children’s understanding in both 
positive and negative ways. This suggests that play-based activities are effective, but should be 
meaningful and substantial mathematical activities, not superficial. This study only analyzed a small 
number of children’s understanding of measurement, and therefore cannot be generalized further. 
Future research should analyze a larger number of children.  
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Introduction 
Recent research shows that structure plays an important role for the arithmetical development and the 
development of number sense (Lüken, 2012; van Nes, 2009). In this context, using structure for 
identifying the cardinality of a set of objects is a main achievement of children´s competence in the 
early years (Clements, 1999; Schöner & Benz, 2018). The ongoing study presented in this poster 
focuses on language to foster children’s structure abilities. The aim is to explore which language 
children (can) use to talk about structures when determining the cardinality of sets. 

Theoretical Background 
The use of structure to determine the cardinality of a set of objects is defined as conceptual subitizing 
(Clements, 1999; Sarama & Clements, 2009). Structuring a set of concrete objects into subsets which 
can be determined easily and used to determine the cardinality of the whole set of objects is an 
important mathematical ability and should be learned and fostered during the early years (Clements, 
1999). In a recent study Schöner and Benz outline that many children aged between 5 and 6, who are 
able to perceive and use structure to determine the cardinality of a set, “often lack the words to 
describe their constructions and approaches” (2018, p. 141). The most common way to describe their 
approaches is counting (Schöner & Benz, 2018). It seems like children are missing language to 
describe structure and their use of it. In order to be able to foster conceptual subitizing in the everyday 
interaction in kindergarten, we want to explore which language children (can) use to talk about 
structures in sets of objects and their use of this structures when determining the cardinality of sets. 
This is an important issue, because language and communication play an important role in the 
learning process of children. Communicating about mathematical concepts can foster the insight into 
the abstract mathematical notion (Maier & Schweiger, 1999). Furthermore communication can 
facilitate a deeper reflection on the mathematical structures and structures that may still be implicit 
can become explicit (Maier & Schweiger, 1999). Thus, talking about structures in sets of objects 
possibly helps children to interpret numbers as wholes which can be composed to larger wholes.  

In order to analyze the specific language requirements for describing the process of conceptual 
subitizing, we refer to Sfard´s (2008) approach of reification. With a view to mathematical discourses, 
she distinguishes between two types of discursive entities: mathematical processes and mathematical 
objects. According to Sfard (2008, p. 47), mathematical objects can be understood as reified 
processes: In a discursive transformation mathematical processes can be reified into mathematical 
objects. We can use this approach for analyzing how children describe structures in sets of objects 
and their use of this structures. Thus, one example of the distinction between processes and objects 
is that of natural number. We can talk about numbers by talking about the process of counting (e.g. 
“one, two, three,…”) or we can talk about numbers as static objects which can be manipulated as 
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wholes in new processes (e.g. “four times three”) (Sfard, 1991, 2008). In terms of determining a set 
of concrete objects the talk about numbers as objects is prerequisite for describing conceptual 
subitizing. Children who subdivide the whole set in structured subsets which can be recognized and 
manipulated as wholes (e.g. three and four) and composed to a larger whole (e.g. seven) need a 
specific kind of language: In order to describe conceptual subitizing in discourse, they need  language 
for talking about numbers (subsets) as objects and language for the new process “linking”. Thus, 
they talk about numbers as objects which can be used and manipulated in a new process. 

Method 

This theoretical analysis of the language requirements leads to two distinct questions: 

How do children talk about objects and processes while they determine the cardinality of a set of 
objects? How do children adopt ways of describing from the discourse with an adult? 

To answer this questions, preschoolers, aged 5 to 6, will be interviewed individually. The interview 
will be divided in to two parts: At the beginning of the interview, the child will constantly be 
encouraged to describe his or her process of determining the cardinality of a set of concrete objects. 
Depending on the child´s talk about the objects and processes, the interviewer will make adaptive 
offers of language.  
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Sixteen assemblies in a Norwegian kindergarten have been studied to identify characteristics pointing 
to when and how 5-year-old children use mathematical language when expressing their thoughts. 
When participating in an assembly the children are in a situated social context where communication 
is an important part of the context. The analysis shows that children use mathematical language when 
they compare, explain and argue. This paper links the way children use mathematical language in 
interaction with others through verbal language, body language and body movements. 
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Introduction 
In all mathematical activities and play, language and the use of concepts are an important part of 
learning (Riccomini, Smith, Hughes, & Fries, 2015). According to Clements (2001), we may look at 
mathematics as a language based on structure and logic, where rich interaction with mathematical 
concepts is important for the development of children’s mathematical knowledge (Purpura, Napoli, 
Wehrspann, & Gold, 2016). Even though research shows connections between children’s linguistic 
understanding and their mathematical achievements, the causal relationship between mathematical 
language and mathematical knowledge has not been fully investigated (Purpura et al., 2016). By 
examining patterns in dialogues and interactions between adults and children it may be possible to 
gain a better understanding of which linguistic elements are important for the child’s mathematical 
thinking and understanding (Trawick-Smith, Swaminathan, & Liu, 2016). 

Children`s development of mathematical vocabulary cannot be ignored as it is of great importance 
for their further learning of mathematics in school (Monroe & Orme, 2002). The article will focus on 
the use of mathematical language in a kindergarten. The study, exploring the use of mathematical 
language, is relevant both in relation to the increasing interest in the learning aspect and the increasing 
focus on language and mathematics in Nordic kindergartens (Hammer, 2012). 

To contribute to the discussion about mathematics and the place of mathematical language in 
Norwegian kindergarten this article has the following research question: How do some five-year- olds 
use mathematical language when they express their thoughts about natural phenomena? 

The research methods involved studying 16 assemblies in a Norwegian kindergarten. The Nordic 
kindergarten tradition is placed in what the OECD (2006) calls a “social pedagogical tradition”, with 
a broad and open view of learning where children are seen to learn by playing and through their 
everyday activities. An activity which is often a regular feature in the kindergarten is the assembly. 
Assemblies in a Norwegian kindergarten involve typically 12 – 32 children. One characteristic of the 
assembly tradition is that it is organised and planned in advance by the adults and is probably the 
most structured and adult-led activity in the kindergarten. Children and adults come together to take 
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part in various activities focusing on a topic for the assembly. Assembly may be considered a social 
situated practice where learning can take place. This then is a particular, pedagogic and social context 
where the child uses language as a tool in interaction with others to explain and find words for his or 
her thoughts. 

Mathematics in the kindergarten 
Bishop (1989) divides children’s experience with mathematics into six fundamental mathematical 
activities: 1) explanation, 2) locating, 3) measuring, 4) counting, 5) design and 6) playing. He states 
that these mathematical activities are independent of culture and are reflected in children`s everyday 
lives. Bishop (1989) claims that the number of activities is not important. What is important is how 
these six mathematical activities might help us gain a broader and more nuanced perception of what 
mathematics is and can be for children in kindergarten (Bishop, 1989).  

Counting and measuring are both related to numbers, but in different ways. Counting relates to the 
perception of numbers and ways of determining numbers, while measuring refers to describing a 
magnitude by means of a system of numbers. In kindergarten, children gain experiences of counting 
using numerals, they count and experience that the numerals describe different amounts, where 
language becomes a tool for explaining how much of something they have. When measuring, children 
use numbers to compare and when put things in order to indicate how much there is of something or 
how big something is. When children measure, the need arises to sort things so that they can compare 
the objects they measure to find similarities and differences in their magnitudes rather than in their 
attributes. 

According to Bishop (1989), locating and design are two important ways of developing mathematical 
thoughts based on the need to order space. Locating refers to the ability to describe where objects are 
placed in space, while design is about describing the form of a shape or how it is created. Bishop 
states that locating is a description of how several objects are placed in relation to each other and 
refers to how the children use language to say something about direction and placement, to orient 
themselves and to find their way in the three-dimensional space they are in. Design basically refers 
to the language children use to describe the characteristics of an object independent of location. 

Explanation is used by children to express their experiences through language and action, while 
playing are the methods or activities through which children may experience mathematics. Bishop 
maintains that while counting, measuring, locating and design are related to our physical 
environment, play and explanation are also connected to our social environment. Through explanation 
and argumentation the child is challenged to give grounds and explain, find words for thoughts and 
tell about his or her reasoning. The child’s power of explanation depends on his or her linguistic 
ability to express logical conclusions (Bishop, 1989). 

Mathematics and language 
Children who do not master the mathematical language or understand the mathematical concepts may 
experience that they do not understand the mathematics required of them when they enter school. 
Mathematical language is used to describe structures, and language plays an important part when 
children develop their understanding of mathematical concepts. In mathematics, a mathematical 
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language is a verbal and written linguistic expression, body language, such as looks, gestures and 
movements, and also characters, words and number symbols (Clements, Baroody, & Sarama, 2014). 
Understanding a concept is nevertheless much more than merely recognising the word designating 
the concept. The children needs to hear the word used in different contexts and with different 
meanings, and to understand not only the concept but also the changed meaning of the particular 
word. Understanding mathematical vocabulary allows children to understand the meaning of 
mathematical discussions with others as well within instructional learning activities (Purpura et al., 
2016).  

There are two specific aspects of mathematical language which turn out to have an important role in 
early learning of mathematics: quantitative language and spatial language. Quantitative language, 
referring to amounts includes concepts such as fewer, less than, more than and many. Understanding 
quantitative concepts helps children to make and describe comparisons between numbers and 
amounts. The magnitude of amounts (cardinality) and order of numbers (ordinality) comprises a 
language which may be particularly difficult for many, as teaching often uses explanations which rely 
on one`s understanding of verbal language, for example concepts such as big, little, more, few, before, 
after or next (Barner, Chow, & Yang, 2009). 

Spatial language includes concepts such as above, before, near and over. Some spatial words, such as 
after and before, indicate magnitude as well, as they are often connected to the number sequence and 
indicate decrease and increase in quantity (Purpura et al., 2016). Understanding of the spatial 
language is related to children’s spatial thinking, where the concepts help the children to talk about 
relations between objects and numbers, and not least help children to develop spatial skills that are 
important for mathematical development. Also, children with rich spatial language may be able to 
decrease the cognitive load involved in mentally transforming and describing a shape (Pruden, 
Levine, & Huttenlocher, 2011). Mental rotation and spatial visualization are related to geometric 
problem-solving, and in order to describe spatial relationship and create mental images of geometric 
shapes the children need to use spatial concepts such as top and bottom (Ferrara, Hirsh-Pasek, 
Newcombe, Golinkoff, & Lam, 2011). 

The process goals in the Framework Plan for Kindergartens in Norway (Ministry of Education, 2017) 
states that pre-school teachers must support the mathematical development  of children through 
everyday activities in the kindergarten. Pre-school teachers must encourage children to undertake 
systematic reflection and thinking and make mathematical relationships visible for them. Moreover, 
pre-school teachers must actively use mathematical language in a reflective manner so that the 
children develop understanding of basic mathematical concepts and are inspired to undertake 
mathematical thinking. By enriching the play the pre- school teachers will help children to experience 
the joy of mathematics. In such an educational practice it is important that learning in kindergarten 
is based on play (Björklund, 2014). The Nordic kindergarten didactics is child-centred and based 
on the pedagogical idea that children are playing and learning individuals in a socio-cultural society 
(Doverborg, Pramling, Pramling Samuelsson, & Haukeland, 2015). From a socio-cultural 
perspective, communication and the use of language are very important and are the link between the 
child and his or her environment. Socio-cultural theory is based on the thoughts and ideas of Vygotsky 
(1978). Language has a key role in Vygotsky`s theory, where all thinking is based on language. To 
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understand this view the concept of language must be expanded to include other ways of expression, 
such as drawings, body language and gestures. Ehrlich, Levine and Goldin-Meadow (2006) suggest 
that using gesture to instruct children may have a profound and positive impact on the development 
of early spatial skills. Gesture provides children with a second, complementary problem-solving 
strategy that can be integrated with spoken language and lead to better understanding of the principles 
of mathematical equivalence (Wakefield, Novack, Congdon, Franconeri, & Goldin-Meadow, 2018). 

Methodology 
Design, data and participants 

The data used in this article is a part of a larger data set collected for my PhD. Video observations of 
everyday activities in a Norwegian kindergarten were collected over a period of seven weeks spread 
over one year in a privately-operated kindergarten, in a city in southern Norway. This kindergarten is 
special in the way it focuses on natural science activities. The participants are adults and 25 five-year-
old children in this kindergarten. 

This paper reports from the study of 16 assemblies. The examples in this paper are from two of the 
16 assemblies. In these two assemblies mathematical language where most utilized. The structure and 
topics of the 16 assemblies differed. However, the adults used a particular method when they were 
working on experimentations with natural phenomena. The adults explained and demonstrated a 
natural phenomenon, and asked questions like; “What does this look like?”, “Why do you think this 
happens?” and “Why would this one sink?” The children participated by answering, describing, 
asking questions and experimented in different ways with the natural phenomena.  

Analytical approach 

The analytical approach used was the constant comparison method (Corbin & Strauss, 2008), where 
comparisons are made in a socially situated context and regularities or patterns in when and how 
adults and children used mathematical language are identified. Coding the videos directly allowed for 
both verbal and visual cues to be considered, such as gesturing, movements and the use of artefacts. 
Six salient categories emerged from the data 1) children compare, 2) children explain and argue, 3) 
children respond to questions, 4) adults describe, 5) adults ask question and 6) adults respond. 

This paper focuses on two of the six categories: 1) children compare and 2) children explain and 
argue. Bishop’s (1989) six fundamental mathematical activities are used to illuminate the findings 
and to describe which mathematical activity the children are relating to when they use mathematical 
language. 

Findings 
Comparison 

During the assemblies the children were asked to observe and compare objects. When the children 
observed, they would often respond that “it looks like” or “it is similar to”. They observed and 
explained the similarities and dissimilarities of the objects, familiar objects and activities presented 
to them. Features used by the children to describe the similarities and dissimilarities were aspects of 
color, shape, size and function. 
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One assembly presented the planets and the adults showed a model of each planet in the solar system. 
During this assembly, the children used many verbal comparison expressions. They compared the 
shape using expressions such as “it looks like a ball” and “they’re all round”. Measurements were 
used when comparing the size of the planets, with such terms as “it’s the smallest”, “it’s bigger than 
Earth” and “Jupiter is the biggest”. One child also used comparison in the description of how hot the 
sun is. He stated, “It’s just as hot as the asphalt is in summer”. This child uses measurement and 
describes a quality using his experiences of the concept “hot”. 

When the children describe qualities of objects and phenomena this can be seen in conjunction with 
their nascent learning of mathematics, where it is important to distinguish between similarities and 
dissimilarities to be able to sort and classify. Sorting and classification are about creating order, 
structure and having an overview. Ordering the object by size helps the children to use quantitative 
language, which is important in early mathematics (Barner et al., 2009). 

The children often used gestures in the comparison given of what things look like and what they 
resemble, and when they explained themselves. In the assembly where they were to describe the 
planets and what characterized them, size and shape were expressed by gestures. The children would 
draw a circle in the air while saying “the planet is round”. Here the concept of circle is supported by 
a physical gesture. When comparing the size differences of the planets they demonstrated it by 
drawing circles in the air, either smaller or bigger than the last circle. One child supported the non-
verbal language by saying “it’s sooo big”, drawing a big circle in the air. Body movements can be 
seen as a physical comparison of the size of a circle. When using the body in making comparisons 
between the planets, the non-verbal language helps the children to visualize what they are thinking 
and comparing. Children would often measure verbally while demonstrating with their body, testing 
out language in their comparison. I observed this in several cases where the children described height 
by lifting their hands up, width by stretching out their hands to the side, and little by holding two 
fingers close together. Such gestures complemented the children`s verbal expression to visualize their 
understanding of different sizes (Wakefield et al., 2018). 

Explanation and argumentation 

During the assemblies the children got opportunity to explain and argue what they thought. By 
explaining verbally, the children expressed what they were thinking; they gave reasons for their 
thoughts and explained relationships. 

An example of this is from an assembly exploring if objects float or sink. Each child was given an 
object to feel its mass in their hand before describing its property and state whether they believed it 
would float or sink. For each object to be explored, the child was allowed to describe the object to 
the others and give reasons why he or she believed it would float or sink. In children’s explanations 
about whether objects would float or sink they argue according to previous observations or what has 
taken place earlier in the assembly. Different explanations, such as “this is as heavy as an rock so I 
know  it  will  sink”,  “it’ll  sink  because it’s bigger than the other one we put in”, “this will float 
because it has the same material as a sponge” and “it’ll float because it’s only plastic” show that the 
children base their argumentation on different experiences. The children emphasized different 
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arguments for what was going to happen based on the size, weight, mass and characteristics of earlier 
known objects. 

Explanation and argumentation by the children in this assembly were often supported by using their 
sensory impressions. The children used their tactile sense by holding two objects, each in one hand. 
They begin discussing the weight of the two objects by lowering the hand where they felt the most 
heavy object, this to determine whether the object would float or sink. In doing so, these children 
were able to compare whether the object had more or less mass. No measuring instruments were used 
and so no specific quantification was mentioned. Instead, the comparisons were described using terms 
about heavy and light (Helenius, Meaney, Lange, Wernberg, & Johansson, 2016). 

Some children were still unable to explain verbally why they meant an object would float or sink and 
would use the objects in their explanation. One boy experienced that a small object sank and a big 
one floated, despite that he had predicted otherwise. To explain why he had predicted that the small 
object would float and the big one would sink, he took the two objects out of the water and held them 
close together, while saying “this is why I think this one would sink, because it`s bigger than this 
one”. Then he held up the smallest object and said “this one have the same size as another who 
floated”. 

The children’s explanations in this assembly helped them to use mathematical language related to 
their understanding of the aspect of measurement, and they described what they meant by heavy and 
light, by both using spoken language, body language and the artefacts. The children gained experience 
with measuring and explaining mass in different ways. 

Discussion 
The analysis shows that when children compare what they see, hear or touch, they deal with 
mathematical language, which in particular can be seen in relation to Bishop’s measuring, design and 
counting mathematical activities. By identifying similarities and differences in objects relating to 
measuring and design, the children use mathematical language, which become tools for classifying 
and ordering objects according to size and quantity, and they used a quantitative language to compare 
(Barner et al., 2009). When children were asked to explain their thoughts about an object or 
phenomena, the analyses show that the children used mathematical language in relation to Bishop`s 
locating, design and measuring. 

The mathematical topics shape and size were mostly explained by using both words and gestures. By 
supporting their verbal language with physical movements, the children demonstrated visually with 
their bodies how they believed the shape appeared. In the situations where the children used non-
verbal language in their comparisons, the analyses show that design was also present in their 
communication. 

If the children did not have the language to give a verbal comparison or explanation they would show 
what they meant by using body language. Non-verbal responses – such as pointing, shaking their 
head and moving objects – were frequently prominent. The children showed their solution strategies 
by using their body language or the artefact as a support for the spatial language (Pruden et al., 2011). 
When the children explained and argued by using the artefact they supported their body-language 
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with mathematical words related to locating and size, they expressed their spatial movement while 
they moved the their body or the artefacts. 

In the social interaction and ongoing dialogues in the assemblies, the children encounter mathematics, 
which is related to locating, measuring, counting and design. The analysis shows that the children 
used mathematical language to make sense of the situation and their experience, to clarify their 
thinking and to communicate their understanding to others. The mathematical language in the 
informal talk around a natural phenomenon might help the children to gain a better understanding of 
the situation, and rich interaction with mathematical concepts in the communication might contribute 
to the children`s mathematical development.  

The analyses of the children’s comparing, explanations and argumentation show that they classify 
and sort what they see, hear or touch during the assemblies. Despite the fact that the topic in the 
assemblies was on natural science phenomena, my analysis shows that the children were, in a large 
extent, using mathematical language to express their thoughts about natural phenomena. By acting 
and thinking freely they were given the opportunity to discover mathematical relationships. 
Descriptions of what the children do, see and think help them to use mathematical language they need 
if they are to talk about their actions. Mathematics then becomes a way of thinking and a language 
used to solve problems (Björklund, 2014). An identification of when children use a mathematical 
language shows a multifaceted opportunity for speaking about mathematics in kindergarten. 
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Introduction 
Studies on early pattern competencies in the primary grades show a close relationship between 
children’s competencies in this domain and their general mathematical competencies. Furthermore, 
several studies suggest that children’s pattern competencies can be fostered by implementing 
patterning activities in intervention programs or in regular mathematics lessons (Lüken & 
Kampmann, 2018). Those interventions usually involve concrete objects or iconic representations. In 
contrast, the exploratory study presented in this poster focuses on physical activity to foster children’s 
patterning abilities. This pilot study aims to develop, implement and evaluate movement games 
dealing with a variety of activities concerning repeating patterns.  

Theoretical Background  
In accordance with Lüken and Kampmann (2018) a mathematical pattern can be defined as any 
predictable regularity. One of the types of patterns relevant for the primary grades are repeating 
patterns with a cyclic structure, consisting of a sequence of elements (the unit of repeat) that is 
repeated indefinitely (e.g., ABAB…). A longitudinal study reported by Lüken et al. (2014) reveal a 
significant effect of children’s repeating patterning abilities one year prior to school on their 
mathematical competencies at the end of grade 1. Furthermore, elaborated repeating patterning 
abilities are also relevant for further mathematical developments, e.g. in algebraic thinking (Warren 
& Cooper, 2006). Tasks and interventions are frequently based on a variety of activities, such as 
conceiving, reproducing, and extending repeating patterns (Warren & Cooper, 2006), often involving 
concrete materials. While dealing with materials solely involve fine motor activities, a higher level 
of motoric engagement is realised by whole-body movements. In this domain, two approaches can be 
distinguished: either the movement accompanies the learning process only in time, or it is directly 
related to the content (Bayer & Rottmann, 2018). While there is evidence of positive effects of 
physical activity for the learning process in general, research investigating the added value of 
connecting the movement to the specific content is largely missing. One of the few exceptions is the 
exploratory study by Bayer and Rottmann (2018), which shows an improvement of first and second 
graders understanding of multiplication in an intervention based on movement games.  

Methodology 
The exploratory study (09-10/2017) reported in this poster aimed to answer the following research 
question: To what extent can children’s repeating pattern competencies be fostered by physical 
activity? Therefore, a diagnostic tool and three movement games directly related to repeating patterns 
have been developed and trialed in a German primary school with 19 first graders. The trial included 
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seven teaching units. The diagnostic tool was conducted as a paper-pencil-test in the first and the last 
unit in a pre- and post-test-design. It contained tasks to reproduce and extend repeating patterns with 
various units of repeat as well as tasks demanding to identify the unit of repeat, extrapolate a pattern 
and create a new one. Typical movement games from physical education (e.g. “Reversal Relay Race”) 
were implemented in the remaining five lessons. Each movement game focused on different activities 
relating to the learning content. For example, to extend a repeating pattern by physical activity in the 
Reversal Relay Race, children had to rerun a unit of repeat consisting of single whole-body 
movements like jumping with one’s legs apart – jumping with one’s legs tightly to move on in the 
gym. A reflection phase to direct children’s attention to the unit of repeat in the pattern was integrated 
into each game. Apart from playing the games in physical education lessons once a week, further 
teaching of repeating patterns did not take place. 

Results and Outlook 
The results of the pre- and post-test indicate a positive development of children’s repeating pattern 
competencies. In the pre-test, an average of 9.2 tasks (from 16 tasks in total; 58% of tasks) is answered 
correctly, whereas the number of successfully solved tasks increases to an average of 12.7 tasks (79% 
of tasks) in the post-test. It is conspicuous that there are considerable differences within the sample 
regarding students’ mathematical competence level. Compared to the pre-test, the group of four 
students with difficulties in learning mathematics demonstrated an increase of 5.25 tasks solved 
correctly in the post-test. Progress was related with identifying the unit of repeat, continuing and 
completing repeating patterns. These first results indicate a positive influence of physical activity on 
children’s repeating pattern competencies. However, it is still an open question to what extent this 
positive effect was caused by the physical activity itself, or by the respective (linguistic) reflection of 
the activity induced in the reflection phases following each movement game. A subsequent research 
project is in preparation to further investigate this question. 
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The focus of this paper is on possibilities for children to discern elements of structure and to develop 
structural awareness through play. In Sweden, preschool is part of the education system why teaching 
is to be conducted. At the same time, play is to be promoted and consciously used. In this paper, we 
explore possibilities for the youngest preschool children (2-3-yearolds) to discern structural elements 
in a rule-based play. In the example, discerning structural elements becomes of importance for being 
able to participate proficiently in the play. As such, the example shows that a conscious use of play 
may promote toddlers’ development of structural awareness which in turn is of importance for further 
mathematical learning and for their participating in the play.  
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Introduction 
Studies show that early mathematics has positive effects on later school performance (Duncan et al. 
2007; Ginsburg, 2009) but there is no consensus when it comes to how early mathematics is to be 
conducted (Palmér & Björklund, 2016). A long-time debated question is if teaching is to be integrated 
with or separated from children’s play (Bennet, 2005) and similar to other countries there is a 
discussion in Sweden regarding the relation between play and teaching. In this discussion, play-
oriented activities withholding mathematical content sometimes are set as a counter-pole to syste-
matic teaching of a content. At the same time as there are researchers emphasizing a consolidation of 
play and teaching (Pramling & Pramling Samuelsson, 2011) there are traditions that uphold children’s 
right to play, undisturbed by adults, for the sake of play itself (Sundsdal & Øksnes, 2015).   

In this paper we will not immerse in this debate but instead focus on an example where children need 
to mathematize the idea of structure, to be able to participate proficiently in an ongoing play. 
Structural awareness has been researched by Mulligan and Mitchelmore (2013a,b) and been shown 
to be both salient and critical to children’s mathematical learning. Mulligan and Mitchelmore (2013b) 
have made interventions to promote children’s structural awareness. These interventions showed that 
teachers can plan and direct children’s attention towards patterns and structures in a developmentally 
suitable way. In this paper we analyze an example where young children (2–3-yearolds), to be able 
to participate in an ongoing play, need to discern the elements of the structure of the play. Thus, the 
children in this example are younger than the children in the studies by Mulligan and Mitchelmore 
(2013b) and the setting is very different. The aim of this paper is to explore if the research on structural 
awareness by Mulligan and Mitchelmore (2013b) is applicable in this context and how these young 
children with support of their preschool teacher may discern structural elements in the ongoing play. 
This is of interest since such a discernment would be of value both for their possibility to participate 
proficiently in the ongoing play and for their further mathematical learning, as suggested by Mulligan 
and Mitchelmore (2013a,b).  
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Teaching and play 
In Sweden, preschool is a non-mandatory pedagogical practice available to all children aged one to 
six years. Preschool is part of the education system why teaching is to be conducted (Education Act 
2010:800). At the same time, play is to be promoted and consciously used in relation to children’s 
learning (National Agency for Education, 2010). In the national curriculum it is however not 
expressed or exemplified how play is to be incorporated with children’s learning.  

According to van Oers (1996), the relation between teaching, mathematics and play can be seen as 
either “mathematics made playful” or “mathematizing elements of play” (p.74). Games in which 
counting, sorting and different mathematical operations are prominent are examples of mathematics 
made playful while mathematizing elements of play implies that the primary act is play but a teacher 
introduces mathematical concepts or operations into the play. The teacher’s way of acting towards 
children’s play thus have implications for how mathematics is introduced and thereby made 
meaningful to the children. Walsh, McGuinness and Sproule (2017) have found three different 
approaches towards children’s play that are considered to be based on the teacher’s views on play, 
learning and teaching. Some teachers do not participate in children’s play as they think children learn 
and develop naturally through play why the participation of preschool teachers would primarily 
destroy a natural process. An opposite to this is teachers that continually interrupt children’s play by 
asking questions, questions that seldom are meaningful in relation to the play but rather connect to 
different curriculum content. The third approach includes a balanced commitment to participation in 
children’s play: not entirely child-centered or teacher-led but a balanced mix of reciprocity and 
listening to children’s initiatives and need for support. This third approach was shown to be most 
successful for children's learning in the study of Walsh et al. A similar approach based on empirical 
studies is found in so called Developmental Education (van Oers, 2012) which has been further 
developed and theorized as play-responsive teaching in a recent study by Pramling et al. (in press). 
Both these theoretical stances emphasize a starting point in children’s meaning making and a 
collaborative structuring (between children and teacher) of activities (for example play) that are 
enriched with cultural meanings (for example mathematics) in interactive processes. 

Teachers who actively take part in children’s play with pedagogical intentions may however do this 
in distinctly different ways which has been observed by Björklund, Magnusson and Palmér (2018). 
Some confirm children’s direction of interest, which implies that the teacher responds to and confirms 
the children’s initiatives and ideas. A teacher may also contribute by providing strategies, which is a 
more goal-oriented act of directing the child towards skills or tools that will help him/her master a 
challenge. Thus, providing strategies can be understood as the teacher providing the child with new 
strategies to facilitate the activity the child is involved in. If a teacher is situating known concepts, 
this implies that the teacher is applying a mathematical concept known from another situation into 
the play, enabling generalization of the concept. Finally, when challenging concept meaning, the 
teacher highlights or introduces a mathematical problem or concept within the play context where the 
child/ren need to work together in an intellectual way to solve the problem or to clarify the concept. 
All of these different ways to actively take part in children’s play can be considered as a balanced 
commitment of participation (c.f. Walsh, McGuinness & Sproule, 2017) that may extend the 
child/ren’s knowledge and may also add new value to their play.  
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Pattern and Structure 
It is well known that preschool children can both note and construct different kind of patterns. 
However, it is only more recently that research has shown that children’s exploration and construction 
of patterns may have positive influence on their general learning of mathematics (Cross, Woods & 
Schweingruber 2009; Mulligan, Mitchelmore, Kemp, Marston & Highfield, 2008). For example, 
exploration and construction of patterns offer children opportunities to discover and understand 
repeating structures, which in turn is fundamental for later understanding of variables, functions and 
algebra (Moss & Beatty, 2006).  

According to Mulligan and Mitchelmore (2013a) awareness of mathematical pattern and structure is 
both salient and critical to mathematical learning, since effective mathematical reasoning involves 
the ability to note patterns and structure. They define pattern as involving a predictable regularity and 
structure as the way in which various elements (for example in a pattern) are organized and related. 
Based on studies on children aged 4-8 Mulligan and Mitchelmore (a.a) divide children’s development 
of structural awareness into four levels. Prestructural awareness implies children taking notice of 
properties or features that appeal to them but often the properties or features are not relevant to the 
underlying mathematical concept. Emergent structural awareness implies that children start to 
distinguish some regularities and/or structures but they are unable to organize them appropriately. 
Partial structural awareness implies that children distinguish several patterns and/or structures but 
they still struggle with organizing and representing them as a whole. The forth level is structural 
awareness, which implies that the children correctly organize and represent a given structure. In the 
studies by Mulligan and Mitchelmore (a.a) the children’s structural awareness were consistent across 
tasks and the level of structural awareness correlated with the children’s mathematical performance. 
In later studies, Mulligan and Mitchelmore (a.a) added a fifth level, advanced structural awareness, 
implying children being able to generalize underlying features between contexts.  

Based on the above, Mulligan and Mitchelmore (2013b) have made interventions to promote 
children’s structural awareness. These interventions show that teachers can plan and direct children’s 
attention towards patterns and structures in a developmentally suitable way. When children in their 
interventions had developed structural awareness they learned basic properties of number, space and 
measurement more easily and they also made more connections between numerical, measurement 
and spatial mathematical ideas. There are few studies on structural awareness among preschool 
children below three years but there are examples of an emerging senses of structure and internal 
relations expressed when children are allowed to explore materials and activities in play-based 
manners or with guidance (Björklund, 2016), relationships that however may not always be based on 
logic but on the child’s own experiences and intuitions (Björklund, 2014). 

The Study 
The empirical material in this paper stems from a larger research project [1] aiming to investigate the 
teaching-play relation in Swedish preschool practice. Data for analysis consists of teachers’ self-
collected video-documentations where the teachers together with their preschool children are engaged 
in different kinds of play. Only children with written consent from their legal guardians (in 
accordance with ethical guidelines from the Swedish Research Council, 2017) participate in the 
video-documented activities. For this particular study, one video-documentation is chosen as it 
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contains a teacher initiated rule-based play where certain acts and roles are necessary to comprise. To 
participate proficiently in the play it becomes important to discern certain structural elements. 
Because the play contains repeated parts of actions, it is possible to gain a comprehensive 
understanding of the complexity of the play and the necessary skills that are needed to conduct the 
play. Thus, the example is information-orientated aiming to maximize the utility of information from 
small selection (Flyvbjerg, 2006). In the analysis we explore how the youngest preschool children (2-
3-yearolds) discern structural elements in the play. We also explore if Mulligan and Mitchelmore’s 
(2013a) four levels of structural awareness is possible to apply on a situation quite different from the 
situations in their studies. In their studies, the analysis is based on children’s written documentations 
and the level of structural awareness is set in relation to different mathematical concepts. In this paper 
the analysis will be based on children’s actions in the play and the level of structural awareness is set 
in relation to children’s discernment of the structural elements in the play.  

In the following section the example will first be presented divided into 7 episodes. Each episode 
constitutes a part of the play where the teacher and the children initiate an act and follow it through. 
These episodes are then analysed through thematic analysis (Braun & Clarke, 2006) to identify 
themes or patterns in the observed activity that are interpreted in accordance with a theoretical 
framework; in this case the levels of structural awareness (Mulligan and Mitchelmore, 2013a).  

Discerning elements of structure – an example 
Three boys and one girl, aged 2 and 3, are to play hide the key with their preschool teacher. Instead 
of a key they have a green toy dragon that is to be hidden. It is a new play for the children and to be 
able to participate proficiently in the play the children need to discern the elements of structure in the 
play. The video-documentation is ten minutes long and will be presented and discussed through 7 
episodes where the children are called boy 1, boy 2, boy 3 and girl 1.  

 
Figure 1: Picture of the room where the play is conducted. The door is in the upper corner. 

Episode 1: The children are standing outside the room while the teacher hides the dragon behind a 
basket standing under a shelf. She opens the door, sits down and says that she has hidden the toy 
dragon far down, not high up. She emphasizes down and high by movements with her hand. The 
children are then encouraged to start looking for the toy dragon. Boy 1 finds the toy dragon before 
the others have even started their search.    

Episode 2: The teacher says that now the child who found the toy dragon is to hide it, that he can 
hide it far down or high up but he should wait until the others are outside the room. Boy 1 who is to 
hide the toy dragon is left alone in the room. He is standing in the middle of the room holding the toy 
dragon in his hand up towards the ceiling. He says “high up”. After a little while the teacher opens 
the door to ask if he is finished. 

Teacher:  Can I help you? 
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Boy 1:  I hide it up. (stretches his hand with the dragon towards the ceiling) I hide it head.  
Teacher: In the ceiling? 

The teacher takes the toy dragon and hides it high up (not visible where in the video). The boy opens 
the door and the other three children instantly run to the previous hiding place. The teacher says to 
the boy who has hidden the toy dragon not to tell where it is hidden but to tell if it is hidden far down 
or high up. Boy 1 then looks up and points towards the hiding place.  

Episode 3: Boy 2 is in turn to hide the toy dragon and he shows with his hands that he wants to hide 
it far down. The teacher helps him to find a hiding place behind some big pillows under a table (to 
the right in Figure 1). After he has opened the door to let the other children in he himself directly 
walks to the hiding place and points towards the toy dragon. The girl follows him and takes the toy 
dragon but then boy 2 gets angry. Boy 3 does not take notice of them but instead searches at the first 
hiding place. While the teacher explains to boy 2 that it is now the girls turn to hide the toy dragon 
the girl walks out and closes the door. The teacher goes after her telling that she should stay inside 
because it is now her turn to hide the toy dragon. Then the girl takes the toy dragon and before the 
other children has had time to leave the room she puts it on same shelf as the first hiding place. Boy 
1 and 2 leave the room by themselves and the teacher walks boy 3 out of the room.  

Episode 4 When all three boys are outside the room, the girl again hides the toy dragon on the same 
shelf as the first hiding place. Then she walks to the door. It seems like she is going to go out and 
close the door but the teacher stops her and asks her to let the other children in and tell them that the 
toy dragon is hidden quite far down.  

Episode 5: Boy 3 is to hide the toy dragon and he chooses the same hiding place as in episode 1 and 
4. He himself also “finds” the toy dragon immediately afterwards, before letting the other children 
into the room. The teacher explains that he instead should let the other children into the room. When 
he does, they go directly to the hiding place. 

Episode 6: Boy 1 says that it is now his turn to hide the toy dragon. The girl immediately goes out of 
the room and the other two boys follow her. The teacher tells boy 1 that he is to hide the toy dragon 
in a new place and she emphasizes far down and high up. She also tells him not to tell the others 
where it is hidden. He hides the toy dragon at a new place under a box standing on the floor. When 
he lets the other three children into the room they directly run to the previous hiding place. When the 
toy dragon is not there they seem to get a little confused. They start to look at other places but find 
the toy dragon first after some guidance from the teacher.  

Episode 7: Boy 2 is about to hide the toy dragon and he chooses the same hiding place as in episode 
1, 4 and 5. The teacher tells him not to tell the others where it is hidden but to tell them if they should 
look far down or high up. When the children are let into the room the boy himself runs to the hiding 
place and “finds” the toy dragon. As the teacher tries to explain for him that it was the others who 
were to search for the toy dragon the girl walks outside the door.  

Analysis - structural awareness in the play 
According to Mulligan and Mitchelmore (2013a) structure is the way in which various elements are 
organized and related. To make use of a structure the child needs to recognize the internal relationship 
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between the elements. In the “hide the toy dragon play” there are various elements that form the 
structure of the play that the child has to discern and relate to other necessary elements:  

- choose between two options of hiding positions: far down or high up
- all but one should leave the room and close the door when the toy dragon is to be hidden
- only the one who is to hide the toy dragon can stay in the room
- the hiding place should be different from the previous turn
- after hiding the toy dragon the door is to be opened and all children gather inside the room
- when being let into the room you are to search for the toy dragon
- if you have hidden the toy dragon you are not to tell where it is hidden but indicate with spatial

instructions “high up” or “down low”
- the one who finds the toy dragon is in turn to hide it the next time
- all children are to hide the toy dragon once which is not an element of the play but connected

to fairness

During the play the children successively distinguish some of the elements above but they are unable 
to organize them appropriately which is labeled as emergent structural awareness by Mulligan and 
Mitchelmore (2013a). For example, all children know that they should search for the toy dragon when 
they enter the room (observed in all episodes). However, mostly they start to search at the same hiding 
place as the previous turn (episode 2, 3, 5, 6) and boy 3 “finds” the dragon when he is “the hider” 
(episode 5). Often they also hide the toy dragon at almost the exact same place as the teacher did in 
episode 1 (episode 3, 4, 5).The element of leaving the room after the toy dragon has been found is 
not discerned by boy 3. Instead, the teacher takes his hand and walks him to the door each time (for 
example episode 3). This element is however immediately discerned by the girl who very quickly 
leaves the room each time the dragon has been found. On the other hand, she does not recognize the 
specific circumstances of being the “hider” to which this element does not apply, which is shown as 
she leaves the room when she is the one who found the dragon and thus in turn to enact the hiding 
element (episode 3). The girl has discerned that one is to leave the room after the toy dragon has been 
found but has not yet discerned the internal relationship of being a hider and a searcher, a role that in 
turn is determined by who found the dragon. Thus, one issue that increases the difficulty in discerning 
the elements of the structure in the play is that the structure’s internal relationships change when you 
are the one who finds the toy dragon. Another expression of this complex relationship is shown when 
the boys in episode 3 and 7 “finds” the toy dragon they themselves have hidden.  

Discussion 
Mulligan’s and Mitchelmore’s (2013b) interventions showed that teachers can plan and direct 
children’s attention towards patterns and structures. The children in our study are younger and the 
setting is very different why we in the analysis explored possibilities for the youngest preschool 
children (2-3-yearolds) to discern structural elements based on an ongoing play. We also explored if 
the four levels of structural awareness is possible to use when analysing a play situation. Even though 
the teacher’s mathematical focus initially seems to be on far down and high up she provides strategies 
(c.f. Björklund et al., 2018) for the children to discern elements of structure. The example illustrates 
that elements of structure is possible for children to discern within play if a teacher provides strategies 
for this. The example also indicates that emergent structural awareness starts to develop among 
children younger than those in the studies by Mulligan and Mitchelmore. The notion of mathematizing 
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implies a process where mathematics becomes of importance when children explore different 
phenomena (Freudenthal, 1968). The example in this paper can be seen as mathematizing structural 
elements of play (van Oers, 1996), not in the sense that the teacher tries to introduce mathematical 
concepts or operations into the play but instead in the sense the teacher tries to make visible 
mathematical elements of the play. By repeating the play several times children’s discernment of 
important features becomes visible. It also becomes visible how the teacher has an important role in 
this discernment process. The teacher shows a balanced commitment in the play (Walsh, McGuinness 
& Sproule, 2017), with a mix of reciprocity and listening to children’s initiatives and need for support. 
Considering the emphasis in the Swedish curriculum on play as a way to teach and learn in preschool, 
this study broadens our knowledge of how discerning structural elements becomes of importance for 
children to be able to participate proficiently in rule-based play. While Mulligan’s and Mitchelmore 
(2013a,b) have shown that structural awareness is both salient and critical to children’s mathematical 
learning the analysis in this paper indicates that structural awareness may start to develop among 
children even younger than previously thought and in situations not obviously labelled as 
mathematical.  

 [1] The study is funded by the Swedish Institute for Educational Research, grant no. 2016/112. 

 

References 

Björklund, C. (2014). Klassificering och mönster – förskollärares intentioner och småbarns initiativ. 
Tangenten, 3, 35–43. 

Björklund, C. (2016). Playing with patterns – conclusions from a learning study with toddlers. In T. 
Meaney, O. Helenius, M. Johansson, T. Lange & A. Wernberg (Eds.), Mathematics Education in 
the Early Years. Results from the POEM2 Conference. (pp. 269–287). Cham, Switzerland: 
Springer. 

Björklund, C., Magnusson, M., & Palmér, H. (2018). Teachers’ involvement in children’s 
mathematizing – Beyond dichotomization between play and teaching. European Early Childhood 
Education Research Journal. Special issue ‘Mathematics in the EY’, 26(4), 469–480. DOI: 
10.1080/1350293X.2018.1487162 

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in 
Psychology, 3(2), 77–101. DOI: 10.1191/1478088706qp063oa 

Cross, C.T., Woods, T.A., & Schweingruber, H. (2009). Mathematics learning in early childhood: 
Paths toward excellence and equity. Washington, DC: The National Academies Press.  

Duncan, G.J., Dowsett, C.J., Claessens, A., Magnuson, K., Huston, A.C., Klebanov, P., Pagani, L. 
S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). 
School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.  

Education Act (2010:800). Stockholm: Ministry of Education and Research. 

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative inquiry, 12(2), 
219–245. DOI: 10.1177/1077800405284363 

Thematic Working Group 13

Proceedings of CERME11 2337



Freudenthal, H. (1968). Why to teach mathematics as to be useful? Educational Studies in 
Mathematics, 1(1), 3–8. 

Ginsburg, H.P. (2009). Early mathematics education and how to do it. In O.A. Barbarin & B.H. Wasik 
(Eds.), Handbook of child development and early education: Research to practice. (pp. 403–428). 
New York, NY: The Guilford Press. 

Moss, J. & Beatty, R. (2006). Knowledge building in mathematics: Supporting collaborative learning 
in pattern problems. International Journal of Computer-Supported Collaborative Learning, 1(4), 
441–465. DOI: 10.1007/s11412-006-9003-z 

Mulligan, J. & Mitchelmore, M. (2013a). Early awareness of mathematical pattern and structure. In 
L.D. English & J.T. Mulligan (Eds.), Reconceptualizing early mathematics learning. (pp. 29–45). 
New York, NY: Springer.  

Mulligan, J. & Mitchelmore, M. (2013b). Reconceptualizing early mathematics learning. The role of 
pattern and structure. In L.D. English & J.T. Mulligan (Eds.), Reconceptualizing early 
mathematics learning. (pp. 47–66). New York, NY: Springer.  

Mulligan, J, Mitchelmore, M., Kemp, C., Marston, J., & Highfield, K. (2008). Encouraging 
mathematical thinking through pattern and structure. An Intervention in the first year of schooling. 
APMC, Australian Primary Mathematics Classroom, 13(1), 10–15. 

National Agency for Education (2010). Curriculum for the Preschool Lpfö98. [Revised 2010.] 
Stockholm, Sweden: National Agency for Education. 

Palmér, H. & Björklund, C. (2016). Different perspectives on possible – desirable – plausible 
mathematics learning in preschool. Nordic Studies in Mathematics Education, 21(4), 177–191. 

Pramling, N., Wallerstedt, C., Lagerlöf, P., Björklund, C., Kultti, A., Palmér, H., Magnusson, M., 
Thulin, S., Jonsson, A. & Pramling Samuelsson, I. (in press). Play-responsive teaching in early 
childhood education. Springer. 

Pramling, N. & Pramling Samuelsson, I. (Eds.) (2011). Educational encounters: Nordic studies in 
early childhood didactics. Dordrecht, The Netherlands: Springer. 

Sundsdal, E., & Øksnes, M. (2015). Til forsvar for barns spontane lek. Nordisk tidskrift for 
pedagogikk og kritikk, 1, 1–11. DOI: 10.17585/ntpk.v1.89 

Swedish Research Council (2017). God Forskningssed. [Good research practice] Stockholm, 
Sweden: Vetenskapsrådet. 

van Oers, B. (1996). Are you sure? Stimulating mathematical thinking during young children's play, 
European Early Childhood Education Research Journal, 4(1), 71–87.  

van Oers, B. (2012). Developmental education: Foundations of a play-based curriculum. In B. van 
Oers (Ed.), Developmental education for young children. Concepts, practice and implementation  
(pp. 16–26). Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-94-007-4617-6 

Walsh, G., McGuinness, C., & Sproule, L. (2017). It’s teaching ... but not as we know it’: Using 
participatory learning theories to resolve the dilemma of teaching in play-based practice. Early 
Child Development and Care. [pre-publ. online] DOI: 10.1080/03004430.2017.1369977 

Thematic Working Group 13

Proceedings of CERME11 2338



 

 

What can five-, six- and seven-year-olds tell us about the transition 
from mathematics in kindergarten to that in school in Norway? 

Geir Olaf Pettersen and Monica Volden 

UiT The Arctic University of Norway, Norway; geir.olaf.pettersen@uit.no, monica.volden@uit.no 
As we grow from small children to adults, we experience several transitions. This paper focuses on 
children’s voices on the transition from mathematics in kindergarten to that in school. What are their 
thoughts on going from one institution to another with a different curriculum, culture and values 
regarding mathematical learning? This paper reports answers from focus group interviews with 
children, ages five, six and seven, about mathematical learning. The study was situated within a 
research and development project SUM at UiT The Arctic University of Norway. The findings show 
that even though the transition is clear for teachers, both in kindergarten and school, we need to 
discuss how to present mathematical activities to children such that these activities help to ease the 
transition from one level of education to another.  
Keywords: Mathematics, kindergarten, transitions, school. 

Introduction 
The transition to school is one of many transitions that children experience during childhood, youth 
and adolescence. First, they undergo the transition from home to kindergarten. In Norway, we use the 
term kindergarten for institutions providing early childhood education and care for children from ages 
one to five years. Next, they experience the transition from kindergarten to school and therefore go 
from one institution to another, which have different curricula. Finally, the transition to higher 
education and/or work occurs. 

This study was situated within a research and development project called SUM (Blomhøj, 2016) – 
the acronym for the Norwegian title of the project, Sammenheng gjennom Undersøkende 
Matematikkundervisning. SUM focus on five transitions in the educational system. These are 
Kindergarten => Primary school => Middle school => Lower secondary => Upper secondary => 
University. At all five transitions students typically experience a discontinuity in their mathematics 
teaching. For each transition, a group of teachers and researchers will design, test and evaluate inquiry 
based mathematical activities. One assumption in SUM is that inquiry based mathematics education 
(IBME) can help students to explore the transitions as more continuous and transparent. IBME can 
be seen as a way to motivate students to learn mathematics through investigation in and with 
mathematics (Artigue & Blomhøj, 2013). Consequently, it is necessary to listen to the students voices 
on both mathematical activities and how they explore the transitions. 

This paper presents children’s descriptions of mathematics and mathematical activities in 
kindergarten versus school, and their thoughts about the differences going from kindergarten to 
school. Do we as professional teachers take some aspect of the transition for granted? Accordingly, 
our research question was as follows: What can children, ages five, six and seven, tell us about 
mathematics in kindergarten and in school and the transition between these institutions? 
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Theoretical background 
Transitions have been recognised as a challenge for children. Einarsdóttir (2007) reports that children 
characterise preschool and first grade in similar ways. They expect a change from more free play in 
preschool to more academic work in primary school. According to Hogsnes and Moser (2014), 
kindergarten teachers and schoolteachers agree on the importance of children experiencing a 
connection in the transition to school and it being well-defined. However, Hognes and Moser also 
stress that the transition will have to represent some changes. The children also expect this distinction, 
as Einarsdóttir (2007) finds. Further, Hogsnes and Moser (2014) argue that one way of making the 
connection is to allow children to present in school something in which they were involved in 
kindergarten. Almost 70% of the kindergarten teachers in their study see this presentation as 
important, whereas 60% of the schoolteachers find it somewhat important or unimportant.  

The Framework Plan for Kindergartens (Kunnskapsdepartementet, 2017) defines the content and 
tasks for kindergarten in Norway. The core values of kindergarten shall be “promulgated, practised 
and manifest in every aspect of a kindergartens pedagogical practices” (p. 7). This means that play 
and the children’s initiative are important parts of the curriculum. The framework is structured on the 
basis of learning areas instead of traditional subjects. For mathematics, the learning area is called 
quantities, spaces and shapes and is based on Bishop’s six mathematical activities. Regarding the 
transition, the Framework Plan states that “working in partnership with the parents, the kindergarten 
shall ensure that the child has a safe and good transition from kindergarten to school” (p. 33). 

Bishop (1988) defines six universal mathematical activities – namely, counting, locating, measuring, 
designing, playing and explaining. For these six activities to provide a useful structure to help children 
experience a successful transition into formal mathematics, he argues that it is necessary to embed 
them in the value-laden frameworks of the classroom (Bishop, 2016). Bishop presents six value 
clusters, grouped into three sets of complementary pairs. The first pair is ideology: rationalism and 
objectism. Argument, reasoning, logical analysis and explanation are all aspects of rationalism. 
Encouraging students to search for different ways to symbolise and represent ideas falls under the 
value of objectism, as does appreciating and creating mathematical objects. The second pair is 
sentiment: control and progress. Control involves rules and prediction. Valuing control means 
emphasising not just the correct answer but also the checking of answers and explaining why other 
answers are not correct. Progress concerns how mathematical ideas grow and finding alternative and 
non-routine solutions. This value also contains individual liberty and creativity. The third and last 
pair is sociology: openness and mystery. Valuing openness means appreciating sharing and defending 
answers in class. A good practice is asking students to explain their ideas to the whole class. Valuing 
mystery means promoting thinking about the origin and nature of knowledge. This can be done by 
telling stories about old mathematical puzzles and searches for negative numbers and zero. Bishop 
(2016) concludes that values in preschool and school are not the same and we must be conscious of 
the differences.  

In the curriculum for the common core school subject of mathematics (Kunnskapsdepartementet, 
2013), the focus in years 1–4 is on numbers, geometry, measurements and statistics. After years 2 
and 4, competency goals are formulated. Regarding the curricula for school and the Framework Plan 
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for Kindergartens, there are some important differences to note. The most obvious difference is 
between the competency goals in school and more process-oriented goals in kindergarten. This also 
means that there are cultural and value differences between these Norwegian institutions. However, 
both plans emphasise the importance of explorative, playful, creative and problem-solving activities, 
which is also the aim for the SUM project. 

Developing the IBME theoretical framework in order to address challenges in transitions is the focus 
in the SUM project (Blomhøj, 2016). The teachers and researchers jointly designed two inquiry based 
mathematical activities. Both activities followed the phases from inquiry-based mathematics 
education (Artigue & Blomhøj, 2013). However, since this was the first year of the SUM project, the 
emphasis was on phases one, setting the scene, and two, students’ investigative work. The teachers in 
school and kindergarten tested the activities. The aim of the activities in SUM is to investigate if and 
how they can contribute to a transparent transition. 

The first activity involved a tangram. The given introduction was the story about how Tan wanted to 
impress the emperor. Then the children had to conduct the investigative work of determining ways 
of putting the tangram into different figures. The progress differences from kindergarten to school 
were visible through the focus on visualisation in kindergarten and on properties and counting edges 
in school. The second activity involved word problems and early arithmetic. Here, the introduction 
was aimed at creating a story that could make room for word problems. The jointly developed story 
was about a bus, and the focus was passengers who got either on or off the bus at bus stops or stories 
from inside the bus. An example is as follows: “There are seven seats in the bus. Three are taken. 
How many are free?” One group of kindergarteners created a story about a human-like creature from 
Sami folklore, Stallo, who likes to eat people. 

Data collection and analysis methods 
Data were collected using focus group interviews with eight groups from kindergarten and elementary 
school (Cohen, Morrison, & Manion, 2007). There were four groups from two different kindergartens 
(age 5), two groups from year 1 of school (age 6) and two groups from year 2 of school (age 7). In 
total, 13 children from kindergarten and 12 schoolchildren participated. We used convenient sampling 
for selecting the participating children. All interviewed children are participants in the SUM project. 
The argument for including also second graders (age 7) was that they in general have more developed 
language. The interviews were semi-structured and the questions were based on different aspects of 
mathematics from the SUM project. Each interview began with the same question: “What is 
mathematics (about)?” Subsequent questions concerned what they do when they do mathematics; 
whether we need mathematics (and for what); whether they find mathematics interesting; and how to 
be good at mathematics. Some questions differed for children in kindergarten and those in school. 
The kindergarteners were asked what they thought mathematics would be like in school. Conversely, 
the schoolchildren were asked what mathematics they had done in kindergarten. In addition, we 
brought tangrams to the kindergarten interviews to help the children remember the activities from 
SUM. The schoolchildren were asked to show examples of mathematics on paper. 

The interviews were video-recorded and transcribed to the written Norwegian standard bokmål, and 
then translated into English. NVivo 12 was used to analyse the data. For each question in the 
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interview, we coded the answers and created categories. E.g. for the first question “What are 
mathematics about?” the categories were counting, calculating, numbers, shapes, measurement and 
others, like homework. The presented excerpts are to be seen as anchor examples of the categories.  

Interviewing children can be challenging also due to which term to use. The term mathematics was 
challenging because the children did not seem to use the term themselves or have a full understanding 
of it. However, we clarified the term together with the children. We therefor used the term in the rest 
of the interview. 

Results 
This section will present and discuss our findings from the interviews. The section is structured 
according to the interview questions. 

What is mathematics about? 

When asked what mathematics is about, most of the kindergarteners were silent or said that they did 
not know. After some consideration, two children answered that mathematics is about counting and 
adding things together. Some children also answered making movies, reading and homework.  

To move the interview along, the interviewer proposed that mathematics could be about doing 
arithmetic. In the curriculum in Norway the term calculate is used as a synonym for doing arithmetic. 
The children then said that they knew about calculation. John said, “Calculation is about doing 
homework”. However, what he meant by “calculation” was unclear, because he later said he added 
letters. Olivia said that she had heard about mathematics because her older sister was doing 
mathematics; however, she did not clarify what she meant by “doing mathematics”. 

The picture gleaned from the schoolchildren’s interviews is more diverse. Some of the six-year-olds 
were not familiar with the term mathematics, but the most common answers were counting and 
calculating numbers, followed by shapes and measurements.  

In terms of children’s understanding of mathematics, some differences between the children in 
kindergarten and the schoolchildren are evident. The children in kindergarten gave in addition 
examples of activities like making movies, reading and colouring. These are not typically 
mathematical activities but can include and give children experience with mathematics.  

Do we need mathematics? 

When asked if we need mathematics, most kindergarteners and schoolchildren answered yes, but their 
answers differed somewhat. One group of kindergarteners said that there was no need for mathematics 
in kindergarten because they were so young. The following example is from an interview in a 
kindergarten:  

John Because we then know what to do in school. 

Interviewer Do we need mathematics outside of school? 

John Maybe 

Olivia Yes 
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Interviewer When do we need mathematics? 

John Because we try to learn all the things we are going to do at school. 

Interviewer What do you think, Olivia? When we are not at school, you said we need 
mathematics. When do we need it? 

Olivia I do not know. I am not thinking about it. I am just thinking about butterflies. 

John said, “Because we then know what to do in school”. Then the interviewer asked if we need 
mathematics outside of school. John did not really answer this question; instead, he returned to his 
original statement about knowing what to do at school. When Olivia was directly asked about 
mathematics outside of school, she replied, “I am just thinking about butterflies”. This may indicate 
a lack of interest in mathematics, at least in the interview situation. 

The schoolchildren agreed with the kindergarteners that mathematics is not necessarily required in 
kindergarten. However, they gave more examples of situations where we need mathematics – namely, 
shopping, readiness for work and to carry out mathematical tasks. The following excerpt is from an 
interview with seven-year-olds. 

Interviewer Why is it wise? 

Lucy Because it is easier to go shopping 

Kate and, if someone gives you a math task 

Lucy It is wise to know. 

Lucy argued that we need to know mathematics because it is wise to know in order to go shopping. 
According to the schoolchildren, this is the most common situation where we need mathematics. 
Kate’s statement, “and, if someone gives you a math task”, may indicate that mathematics is 
something you only need in school. 

How to be good at mathematics 

In general, the kindergarteners and schoolchildren said that practising and working with mathematics 
can make you good at mathematics. They also considered homework as a significant factor. 

Interviewer How can you be good at mathematics? 

Lucy We have to practise and make mistakes 

Kate Yes 

Sarah You can learn from your mistakes 

… 

Interviewer In what way can you learn from others? 

Lucy If you have an older brother or sister, you can learn mathematics. 

Interviewer Can you learn from students in your class? 

Lucy Yes 
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Lucy (age 7) started by stating that you need to practise, but also that you can learn from your 
mistakes. Sarah and Kate agreed with that statement. Learning from mistakes places the focus on 
finding one right answer, but also that a wrong answer can lead to an opportunity to learn. Instead of 
focusing on correct answers, the children in kindergarten were more focused on doing mathematics. 

What do you do in kindergarten and how do you expect it will be in school? 

The kindergarteners said that the mathematics they were doing was mostly about counting, arithmetic 
and shapes. They also mentioned making movies and baking as mathematical activities.  

In the interviews, we asked the children directly about the activities in SUM.  

Interviewer Do you remember what you have been doing? Have you done Formjakt (an activity 
that entails looking for different shapes)? 

Audrey  No, we did the bus 

Interviewer What was that about? 

Audrey It was about counting. 

“We did the bus” is a reference to the word problem activity in SUM. The children remembered the 
activity and clarified that it was about counting.  

Audrey and we have put shapes together 

Audrey and we remember the man who made a nice gift and… 

Leah … then he fell on the steps. And then… 

Audrey … we had to build it up again. 

Audrey But it was just a story. 

Audrey and Leah showed that they remembered the story about Tan. Even though their initial 
response was that they did not remember, without help from the interviewer they recalled important 
actions from the story. They also remembered that they had to put it all together. We can identify 
both the setting of the scene and investigative work components of the activity from SUM. In the last 
statement, Audrey clarified that overall, it was just a story.  

In the kindergarten where the setting of the scene was about the Sami creature Stallo, we wanted to 
see if the children remembered the activity. They confirmed with “mm”, meaning yes. 

Interviewer Maybe I could create a word problem 

Sophie I can make one. Once upon a time there were three bears sliding down a hill. And 
at the bottom of the hill, there was Stallo. 

This is a clear reference to the activity. Sophie could recall the situation and was able to create the 
beginning of a word problem. The reason why she referred to bears instead of children is most likely 
that we had introduced counting bears in the interview. It is quite challenging to create a word problem 
on the fly and in an interview like this. We recognised this as a sign that they had remembered the 
activity and had gained experience from the first two phases. Regarding the children’s expectations 
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of what mathematics would entail in school, they emphasised learning about numbers and doing 
arithmetic.  

What do you do in school and how is it compared to kindergarten? 

Concerning this question about mathematics in school, it became apparent that the schoolchildren 
could name more mathematical activities, including discussions and playing games. However, they 
still mostly brought up activities like calculating numbers, working with shapes and using textbooks 
or worksheets. 

They did not remember much about their experience of mathematics during kindergarten. As Lucy 
said, “No, I think maybe in the last year. Sometimes, maybe once. We gathered to do worksheets – 
math worksheets – very easy tasks”. Several children mentioned easy tasks in kindergarten as things 
they remembered. For example, Ryan (7 years old) said the following: 

Interviewer Do you find the mathematics in kindergarten simple? 

Ryan Yes 

Interviewer Do you find the mathematics in school hard? 

Ryan It was not so easy in kindergarten either, because we were much younger. Then it 
was the same as we have it now, in kindergarten. 

First, he claimed that mathematics in kindergarten is easy. After the interviewer followed up this 
statement, he did not directly answer the question, but gave a reflection on learning.  

Discussion and implications 
First, we wish to discuss the content of, and the need for, mathematics as children see it. Our data 
show that children in kindergarten, in general, are not familiar with the term mathematics. Sæbbe and 
Samuelsson (2017) offer a possible explanation: most kindergarten teachers avoid using the term 
mathematics when they engage children in mathematical activities. According to the kindergarten 
teachers, they are afraid that the activities could be regarded as boring and “schoolish”.  

In the curricula for both kindergarten and school, mathematics is about helping children understand 
the world. Although the aim is to prepare the children for developing a broader understanding of 
mathematics, our data show that the kindergarteners and schoolchildren had a narrow understanding 
of mathematics, viewing it mostly as being about doing something with numbers, shapes and 
counting. The schoolchildren, however, also talked about subjects in mathematics. 

Significantly, according to Bishop (2016), the values in school and kindergarten are different. Lucy 
said that you can learn from your mistakes. This could indicate a focus on checking answers and 
knowing why an answer is not right, similar to Bishop’s control value. At the same time, children in 
kindergarten have a strong focus on doing – hence, progress. This could be an indication of the 
distinction between the process aim in the kindergarten curriculum and the competence aim in the 
school curriculum.  

When we asked about doing mathematical activities, the kindergarteners and schoolchildren gave 
more detailed examples. It is clear from our data that the children remembered activities from SUM, 
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but did not necessarily see them as mathematical. This raises some new questions regarding the 
transition to school. Is mathematics a Trojan horse, as Fosse et al. (2018) claims? Does the term 
mathematics scaffold the transition or is it an obstacle? One way to investigate this further would be 
through projects like SUM. In SUM, the goal is to develop enquiry-based activities that follow the 
curricula and cultures of both kindergarten and school. Our data suggest that activities may be the 
missing link in order to make the transition more transparent. Our findings also imply a need for a 
discussion on how to present activities so that children have the opportunity to discover the 
mathematical ideas regardless of whether the term mathematics is used. 
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Although inquiry-based education is an approach that supports student-centered ways of teaching 
involving students in the development of their own learning, it seems that inquiry-based instruction 
has not been employed broadly in the subject area of mathematics and the few studies that have been 
conducted are not focused on very young children. In this paper an inquiry-based implementation of 
a mathematical activity in a kindergarten classroom is presented investigating the way it was applied 
by the teacher and the way students participated into it. The activity was related with plane 
geometrical shapes as a mathematical construct that cause difficulties to young students. From the 
results it emerged that even though the inquiry-based implementation is a demanding approach it 
had many benefits for both teacher and students.  

Keywords: Inquiry-based education, early childhood education, mathematical activity, plane 
geometrical shapes.  

Introduction  
A mathematical construct that cause difficulties to young students is the plane geometrical shapes. It 
is a concept that needs to be communicated multimodally (Clements & Sarama, 2007), because their 
iconic representations need ‘observation’, ‘reading’ and parallel ‘description of this reading’ in order 
to be understood (Skoumpourdi, 2016). The ‘observation’ factor has to do with shape’s visual 
perception. The ‘reading’ factor is focused on shape’s figural properties. The ‘description of this 
reading’ factor requires the description/communication of the above. The above three factors can help 
students face their difficulties, so as, to develop gradually the shape’s concept, but through the 
appropriate teaching method, since, geometrical thinking is main influenced by instruction. 

Inquiry-based teaching is a theoretical approach that supports more student-centered ways of 
teaching. It is an approach that actively involves students in the development of their own learning 
supporting their active participation to the teaching/learning process. But, the effects of inquiry-based 
teaching remain limited and the inquiry-based education has been slow in mathematics due to several 
reasons such as the very low attention that has been paid to that approach, the imprecise definition of 
the approach, as well as, the peculiarities and the demands that are required for its adoption and 
promotion. 

Taking the above into consideration an educational design research study is conducted, aiming to 
investigate how teachers and students adopt and apply the inquiry-based approach in the mathematics 
classrooms. In this paper an inquiry-based implementation of a mathematical activity related with 
plane geometrical shapes in a kindergarten classroom is presented investigating the benefits and the 
demands of such an implementation in order to design the gradual adoption of the approach in the 
subsequent educational levels. The research questions were the following: 1. How the teacher 
implements a mathematical activity related to plane geometrical shapes, in a kindergarten classroom, 
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grounded on the inquiry-based approach? 2. How the students participate in the inquiry-based 
implementation of a mathematical activity related to plane geometrical shapes? 

Geometrical Shapes in the Kindergarten 

Kindergarten children identify and describe shapes through levels. The first one is the pre-recognition 
level (Clements & Sarama, 2007), in which children may recognize only a subset of a shape’s visual 
characteristics. In this level, children cannot distinguish the basic shapes from their counterexamples. 
The other levels are the first two of Van Hiele’s levels of thought (Yin, 2003). At the first one, 
‘visualization’, children identify shapes according to appearance and cannot form mental images of 
them. At the second level, ‘analysis’, children start analyzing and naming properties of geometric 
figures. They use shapes’ properties to recognize and characterize shapes.  

Circle, square, triangle and rectangle, when represented in a prototype way can be recognized and 
named by kindergarten children. Shape’s features and whether they can be defined (closeness, straight 
sides and exact number of sides) or not (orientation, position, sides’ length and angles’ size) influence 
the accuracy of children recognitions (Satlow & Newcombe, 1998). Young children identify circles 
accurately, they are less accurate in identifying triangles and their average accuracy for rectangles is 
low (Clements & Sarama, 2007).  

Children in the age of five-years-old have a difficulty in describing shapes. The language that children 
use to describe shapes is gradually developed (Clements & Sarama, 2007). Initially they answer the 
question “what shape?” with the use of just a word, the shape’s name. Then they match this word 
with specific shape examples. After that, they combine the correct shapes’ names with the 
prototypical examples of the shapes. When children are asked to explain their decision, they are 
induced to describe shapes’ features, using, initially, a subset of the shape’s visual characteristics, 
such as the quantity and the size of sides (Yin, 2003). Although children’s primary descriptions may 
include various terms and attributes they usually base these descriptions in the comparison with the 
specific shape’s representation. Later, children become more capable of distinguishing attributes and 
adding to their descriptions other visual-spatial elements like right angles.  

Children’s written schematisation for a circle is something closed and ‘rounded’, for a square 
something closed with almost equal sides and nearly right angles, for triangle something closed and 
‘pointy’ and for a rectangle something closed with ‘long’ like-parallel sides (Clements & Sarama, 
2007). 

Instruction influences the development of geometric thinking more than age does (Van Hiele, 1986). 
But in traditional geometry programs, during formal and informal instruction, little emphasis is given 
on understanding plane shapes, incorrect statements and terminology are used, no new content is 
added (Clements & Sarama, 2007) and inappropriate examples of geometric shapes are used. On the 
other hand, in contexts such as team games, that teacher's guidance is limited, it seemed that 
kindergartners recognized shapes in different types, sizes and orientations and could describe some 
of the shapes’ basic attributes such as sides and angles (Skoumpourdi, 2016). But children did not 
use more sophisticated descriptions related to shapes’ specific characteristics like the equality of 
shapes’ sides, and the schematisations they used in the game, to describe an atypical shape, were not 
accurate. Thus, it was hypothesized that inquiry-based approach could be an effective method of 
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teaching plane geometrical shapes in the kindergarten.  

Inquiry-Based Mathematics Education  

Inquiry-based mathematics education, is one of the main aspirations of innovation in the field of 
mathematics education focusing more on cooperative problem solving, on understanding, on learning 
processes and strategies, on posing and answering questions and on cultivating exploratory practices, 
than learning mathematical skills only (Calder, 2015). Students in that approach are in the center of 
the learning process. They are actively involved in explorations and discussions, in posing questions, 
in making assumptions, in expressing, explaining and communicating their opinions, presenting their 
solutions to a problem, justifying them in a way that is understood both by the other students and the 
teacher (Eckhoff, 2017). Teachers create opportunities to students and work cooperatively with them 
to facilitate and support their mathematical constructions. They transfer the problem-solving 
responsibility to the students by posing questions linked with the inquiry-based activity, giving 
meaning to student’s actions and developing their understanding without, at least initially, intervening 
and suggesting ways of thinking. 

Research results highlight the benefits and demands of inquiry-based method on teaching practices. 
When analyzing a teacher's practice following an inquiry-based program, it emerged that although 
the teacher at the beginning of the program had very limited knowledge of the subject, after the 
program he was able to apply inquiry-based practices (Towers, 2010). Also, in a research program, it 
came out that although the process brought uncertainties and tensions within the teachers’ practice 
and between the practices of teachers and didacticians, the value of the approach for the learning 
emerged by the knowledge gained by participants (Goodchild, Fuglestad, & Jaworski, 2013). In a 
study on how prospective teachers adopt inquiry-based approach in their professional development it 
seemed that they: 1. resisted to the adoption of the inquiry approach, 2. partially adopted the inquiry 
approach, or 3. fully adopted the inquiry approach. At the end of the course all students stated that 
they built a theoretical understanding of the inquiry teaching and they felt a bit more able to design 
and implement inquiry-based activities (Σκουμπουρδή, 2017). Teachers’ difficulties to adopt inquiry-
based pedagogies, to develop and manage collaborative cultures within the classroom and plan 
lessons that adapt to the emerging needs of learners (Swan, Pead, Doorman, & Mooldijk, 2013) are 
mentioned in research. Other obstacles and difficulties that the teachers face in adopting the inquiry-
based method for teaching are the lack of experience and of complete understanding of the method, 
the lack of enough allocated teaching hours, as well as the lack of believe that students can be prepared 
for succeeding in tests with that method (Chin & Lin, 2013). The lack of teachers’ familiarity with 
the method and the need of advanced professional development, which will equip them with multiple 
teaching strategies to create an adaptive and enriched learning environment is also indicated in 
research (Wu & Lin, 2016). In sum, active teachers lack knowledge of the inquiry-based approach, 
they have difficulty in adopting and applying this approach in practice, as well as they have difficulty 
in designing inquiry-based activities. These obstacles might cause the lack of inquiry-based 
instruction being employed broadly in the subject area of mathematics and the lack of studies being 
conducted with a focus on very young children. 

Taking into consideration the above results an ‘inquiry-based implementation’ of an activity related 
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to plane geometrical shapes, was conducted in a kindergarten, investigating the way it was realized 
by the teacher as well as the way that kindergartners participated in such an intervention.  

Method 
For the main research study, which aims to investigate how teachers and students adopt and apply the 
inquiry-based approach in the mathematics classrooms, the design-based research is used, as the 
methodology to develop learning theories and tools designed to support learning (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003). Through this method, which is intrusive in nature, changes and 
revisions are taken place, in every stage of the main research which enables the simultaneous 
development and testing of the inquiry-based approach as an innovative learning environment, giving 
an insight into whether, how and under which circumstances this approach can work. In this paper 
the benefits and the demands of the approach in a kindergarten classroom is presented. 

The kindergarten classroom and the mathematical activity 

The kindergarten classroom, where the intervention took place, had 25 students divided by the teacher 
in four teams and was chosen because the teacher uses student-centered methods, cultivating the 
conditions for math discussion. She is also positive to innovations.  

The author explained to the teacher the basic characteristics of the inquiry-based approach and 
encouraged her to use it through the Framework for Inquiry-Based implementation of Activities 
(FIBA) (Skoumpourdi, 2017). The FIBA consists of seven stages: 1. Τask: A problem-based task is 
invented and presented. 2. Exploration: Children use their own problem-solving strategies to explore 
the problem. 3. Presentation: Children share their explorations with the whole class by presenting 
their solutions. 4. Connection: Teacher, in cooperation with students, connect the presented solutions 
with each other, with the task that was explored and with the mathematical aims. 5. Generalization: 
Teacher is generalizing students’ solutions. 6. Translation: Students translate their solutions through 
different modes—verbalizing, gesturally and schematizing. 7. Expansion: Expanded problems are 
posed. For the implementation of the mathematical activity by the teacher the FIBA was used.  

The mathematical activity, designed by the author, was developed in such a way as to problematize 
and incite children, engaging them in a problem solving and posing process. The problem to be solved 
was a non-standard, unfamiliar, a bit complex and novel situation in order not to be solved just by 
applying existing knowledge and already-known strategies, but through exploration and discussion.  

                  
       Figure 1: The ‘Enchanted butterfly’                              Figure 2: Students shapes’ schematizations           
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The scenario of the task was the following: "Once upon a time, a strange magician, who envied the 
happiness of the Shape-Town, captured with his spells its inhabitants (shapes) on the wings of 
butterflies flying around his enchanted forest. This strange magician would be good enough to solve 
the spells only if the children would help the inhabitants-shapes to liberate. The spells would be solved 
only if the children managed to recognize the shapes hidden in the butterflies' wings". The butterfly 
had in its wings the four-basic plane geometrical shapes (circle, square, rectangle and triangle) in 
various types and orientations, as well as counterexamples of them (Figure, 1).  

Results  
In the beginning, the problem-based task was presented by the teacher through the context of the 
‘Enchanted Butterfly’ (FIBA’s 1st stage: Task). The teacher in this stage asked each team of children 
to mark one kind of shape. The 1st team had to mark the shapes they thought to be circles, the 2nd 
team the squares, the 3rd team the rectangles and the 4th team the triangles. 

Each team independently explored the shapes on the Butterfly, posing questions to each other and to 
the teacher in order to identify and mark the correct shapes giving a right answer to the problem 
(FIBA’s 2nd stage: Exploration). Although, in general, each child thought about the problem on their 
own and marked a shape, each in turn, there were instances in which wrong shapes were marked and 
thus interesting discussions between children of each team and with the teacher took place regarding 
the identity of the shapes. Debates of whether a shape is a triangle or not, is a square or not, is a 
rectangle or not, is a circle or not, took place. An example is described in the following dialogue [The 
letter T refers to the teacher and S1, S2 etc. refer to the young students. The symbol ( ) is used when 
many children speak simultaneously and our notes are in brackets]: 

S1:  Is this a circle? 

T:  You will discuss with your team and you will find out. 

():  It is circle, it is not, it is circle, it is not, it is circle but is a small circle [a girl tried 
to mark it but the other girl pushes her hand away] …., it is not a circle, is an oval. 

S3:  These are the ovals: one, two [a boy counted by showing the oval shapes].  

S2:  Mrs, is that correct [shows the marked circle that created a debate in the first stage]? 

T:  What shape is it? 

S2:  It is circle. 

T:  Yes, it is. 

S2:  I was telling you … [said to her classmate that she insisted that the shape was oval] 

Similar debates were also carried out for the other shapes and especially for the non-prototypical 
examples and the counterexamples. The identity of the triangles, the squares and the rectangles were 
justified, by the children, by counting shapes’ angles. But this strategy was not always effective. For 
example, when a girl showed a counterexample as a triangle, another child told her: “No, this is a 
‘square’ because it has four angles” and the other team members disagreed by saying “No, it is not, 
it is a shuttle”. The orientation of the shapes did not seem to confuse the children. This might have 
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occurred due to the way the team members sat around the table, allowing them to have different 
perspectives of the shapes. Once they explored the shapes and discussed about them each team 
marked ‘their shapes’.  

After that, each team shared their explorations with the whole class by presenting/describing their 
shapes (FIBA’s 3rd stage: Presentation). The teacher, in that stage, observed and organized each 
team’s presentation, posing questions to help children describe, explain and open out their 
explorations, as well as to ensure effective and understandable presentations. For example, during the 
‘circle team’ presentation the following discussion took place: 

T: How did you understand that all these shapes are circles? 

S2: Because it is round, and this is round, and this is round … 

T: I think that this is also round [showed an oval, placed horizontally]. 

S3: No, this is like an egg. 

T: So, is not a circle? 

(): No. 

T: Is that shape circle [showed an oval placed vertically]?  

(): No, this is not a circle. 

T: But in my opinion is round, why it is not a circle? 

S2: Because it is oblong [showed with her hands] and the circle is not oblong. 

T: Why are these shapes circles? 

S3: Because they do not have angles. 

S2: And because circles are thicker than ovals 

For the other shapes, children’s answers in the question ‘why these shapes are triangles 
(squares/rectangles)?’ were focused on the amount of their angles as well as the amount of their sides, 
with the usual answer being that: “It is triangle because it has 3 angles and 3 lines/sides”.  

The teacher posed advanced questions to the members of each team. For instance, when a boy 
presented his teams’ shapes and said that “this shape is rectangle because it has four sides”, the teacher 
continued, by showing a square near it, asking “So I can assume that this shape is also a rectangle 
because of its four sides?” and vice versa. Or, she was addressing to the children supposing that “this 
shape (showing counterexamples) is e.g. triangle (rectangle)” calling them to reflect on that statement. 
Children, in general, had answers to those questions, justifying them by relying on the specific iconic 
representation. Their answers were as follows: “It is not a rectangle because it has different height”, 
“It is not a square because it is thin”, “It is not a triangle because this shape has seven lines”. When 
children had difficulty in their justifications they used gestures in order to present their solution: “It 
is not a rectangle because it is like that … (trying to show the curvature sides by gestures)”.  

After the presentations, teacher, in cooperation with all the students, orchestrated a mathematical 
discussion trying to connect presentations with each other, with the ‘Enchanted Butterfly’ task, as 
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well as with plane geometrical shapes concept so that a shared meaning to emerge (FIBA’s 4th stage: 
Connection). She also tried to generalize plane geometrical shapes concept connecting it with 
students’ previous knowledge (FIBA’s 5th stage: Generalization). She posed combining questions to 
the students, bringing back, for negotiation, issues that were discussed such as: “Does the circle looks 
like the triangle?” or “Does the square looks like the rectangle?”. In the first question, children' one-
word answers, through the re-questions of the teacher, were transformed into 'documentations', such 
as “Circle does not look like triangle because circle does not have angles”, “the triangle is pointed … 
the circle is not”. Teacher’s second question seemed to confuse children and their answers differed, 
claiming that they look like, but the rectangle is bigger or that they do not resemble because they are 
different shapes with different sizes. These issues, such as the similarities and differences of shapes 
(circle and oval, square and rectangle), expanded the activity and could be the context of new activity 
in order to be discussed more thoroughly (FIBA’s 7th stage: Expansion). At the end of the activity, 
students were asked to make a painting in order to explain to their parents what they had done in that 
activity (FIBA’s 6th stage: Translation). Children’s schematizations looked like the visual prototypes 
except the rectangle which was placed vertically (Figure 2). 

Conclusions-Discussion 
An inquiry-based implementation of a mathematical activity is a complex situation, that requires from 
the teacher time, effort and deep knowledge of both the approach and the subject matter and from the 
students to develop various skills, abilities and capabilities to be actively involved in their own 
learning, constructing mathematics concepts and ideas. From the results of the implementation it 
seemed that the FIBA, as a readymade framework, helped the teacher to adopt and realize an inquiry-
based teaching process encouraging exploration, presentation, connection, generalization, translation 
and expansion, cultivating cooperation, communication and justification, through a child-centered 
approach. In all the FIBA’s stages, teacher activated students’ questions, ideas, actions and comments 
and tried to turn them into learning opportunities. She also successfully scaffolded the mathematical 
discussion between the students and herself, guided team work and the whole classroom as a 
community of learning. Inquiry-based approach helped students to develop their cooperation, 
communication and justification capabilities. It also helped them to construct the idea of plane 
geometrical shapes.  

The research results about young children' abilities for plane geometrical shapes were confirmed in 
this paper. But it also became obvious that although there were children in the pre-recognition level, 
recognizing only some of shape’s visual characteristics, they moved on the visualization and the 
analysis level using shapes’ properties to recognize and to characterize typical and atypical shapes 
through the cooperative exploration, discussion and justification process. Children, initially, 
described or compared the shapes using specific shapes’ representation features. All shape’s features 
either defined or undefined were recognized by children because of the way the activity presented 
and implemented. Students had identified and named plane geometrical shapes in various forms and 
orientations, recognized them among counterexamples, communicating their descriptions, discussing 
about their characteristics and particularities. They had also translated their solutions and 
constructions to schematic representations that looked like the visual prototype but there were also 
variations. 
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The investigation of children’s perception of structure gains in importance in research of 
mathematics education. In this article we discuss a three-level evaluation process to generate 
hypotheses about the way preschool children perceive structures and how they use them to determine 
the cardinality of sets. Eye-tracking data can help to get some deeper insights into these processes of 
perception and determination. In sum it is shown that the interaction of three different types of data 
(observation aspects, explanation and eye-tracking data) are important to generate some final 
hypotheses about the two processes. 

Keywords: Perceiving structures, structural use, eye-tracking, preschool education, early 
mathematics education. 

Introduction 
Structures play an important role both in the daily life of children and also in mathematics and 
therefore in mathematics in early childhood education (Schöner & Benz, 2018). Looking on 
children’s mathematical development, structures are obviously essential e.g. for geometrical and 
arithmetical patterns, for learning the number sequence from twelve onwards but also for identifying 
quantities. Mulligan & Mitchelmore (2013, p. 31) point out that structure “has been also a growing 
theme in the past two decades of research on students’ development of numerical concepts.” 

Theoretical background 
Hunting (2003) describes very clearly the importance of perceiving structures for numerical 
development by emphasizing the ability to change the focus of counting every single item to 
perceiving and identifying structures of parts in sets. If children are able to identify structures in sets 
they have the chance to develop a mental image of a number which does not only exist of many single 
items but also of parts. A mental image of a set consisting of parts is equivalent to the part whole 
understanding of numbers. Studies confirm the connection between the ability to perceive structures 
and part-whole understanding (e.g. Young Loveridge, 2002) and also general arithmetical abilities 
(Lüken, 2012, Mulligan et al., 2004; Obersteiner, 2012). 

Because perceiving is an individual and invisible act it is not easy to investigate how and if children 
perceive structures. Eye-tracking can help to get some insights. Eye tracking data “draws on the so-
called “eye-mind” hypothesis (Just & Carpenter, 1976) meaning that what a person looks at is in the 
focus of the person’s cognitive processes and that a person’s eye-movements are tightly related to 
their cognitive processes (Jang et al., 2014)” (Schindler & Lilienthal, 2017, p. 47). Still, using eye-
tracking with young children is quite new in the field of mathematics education and data has to be 
interpreted carefully (Schöner & Benz, 2018). Especially concerning young children’s perception of 
structures in sets there is no comparable eye-tracking data available. Therefore, the aim of the study 
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reported in this paper is to investigate if and how children perceive structures in sets and if and how 
they use it for identifying the cardinality of sets. When children determine the cardinality of a set, 
observations such as audible counting can indicate how a child has determined the number. 
Subsequently, the child can also be questioned how the number was determined. But, in order to get 
insights into the perception process, in this paper it is examined how the research tool eye-tracking 
can help to give insights into this invisible act of perception. In order to analyze the data a theoretic 
model is used, in which it is distinguished between the process of perceiving a set and determining 
cardinality. These processes can be subsequent or coincide e.g. as it is the case by (structural) 
subitizing (Schöner & Benz, 2018). 

Research question 
In this paper we aim to answer the research question regarding the way of investigation visual 
structuring abilities of preschool children: 

What can the eye-tracking data contribute to the analysis approach of children’s perceiving and 
determination processes concerning the use of structures? 

Design 
The presented study has a pre-, post-, follow-up-design. 95 children were interviewed individually at 
three times. The children were between five and six years old and they attended the last year of 
kindergarten. They were divided in a treatment group (n=55) and a control group (n=40). The first 
interview took place at the beginning of the kindergarten year, the second after an implementation 
phase for four months and the third at the end of the kindergarten year. The treatment group got a box 
with different materials and games which offer the opportunity to discover and facilitate perceiving 
structures in sets and using the structures to determine the cardinality. The control group didn’t get 
these materials and games. All the three interviews with the children described above consist of 
different parts. In this paper we focus only on the part with photos of egg cartons of ten eggs. This is 
the usual package for eggs children usually know from daily life. Different numbers of eggs were 
presented on a monitor. With the help of an eye-tracking camera the eye-movements of the children 
were recorded. In the presented evaluation, the six items with the cardinality of five, seven and nine 
were used (cf. Figure 1). 

Figure 1: Items that have been evaluated 

Before the interview started, the children had been told that the interviewer always wants to know 
"how many eggs" there are and that they should say the number as soon as they know it. The children 
were given no time restrictions. As soon as the child said a number, the interviewer asked for example: 
"How do you know that there are n eggs?" In addition to the eye-tracking camera, there were two 
more cameras. Activities such as finger pointing or lip movements could be observed through an 
external camera positioned diagonally behind the child and through a webcam. These gestures are 
considered when evaluating the processes of perception and determination. 
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Task 

Each child was shown photos of egg cartons on a monitor. On the photos different numbers of eggs 
were presented at the same position on the monitor. Each item started with the presentation of a closed 
egg carton. Then an open egg carton with eggs appeared. The child said a number, the interviewer 
asked how it came to the result, the child explained and then a closed carton was presented again. 

Aspects of analyzing 

The basis of the analysis consists of qualitative categorization processes. Based on a theoretical model 
(cf. Schöner & Benz, 2018) the analysis of the data is divided in two processes: the process of 
perception (PP) and the process of determination (DP) (cf. Figure 2). Hypotheses about these 
processes are generated on three different types of data. There are observation aspects generated 
during the time the child sees the egg carton until it says the number of eggs such as gestures, sounds 
or promptness of the answers. Additional information by eye tracking data is gained recording the 
eye tracking movements until the child says the number of eggs. The eye-tracking data provides 
insights into the children's process of perception. After the child said the number there is also data of 
children’s explanation (cf. Figure 2).  

 
Figure 2: Scheme of evaluation process 

Based on these three kinds of data, hypotheses about perceiving structures in sets and structure-using 
strategies to determine the cardinality can be formed. These three kind of data lead to a final 
hypothesis about the perception process (PP) and the determination process (DP). Because of the 
limitation of the number of pages the way coming to these final hypotheses cannot be presented in 
detail here (see Schöner & Benz, 2018). So the evaluations are based on a hypothesis-generating 
process. In the following, the frequencies are given for perceiving structure or perceiving no structure 
during the PP and using structure or using no structure for the DP. Only hypotheses which could be 
assigned to these categories are included, all other categories are here not taken into account. 

Results and first interpretations 
In the following tables the arithmetic average of strategies solving the five described items is given. 
In this paper, the focus is not on significant differences between points of investigation or groups, the 
percentages are rather used to show how the three types of data can help to give insights into the 
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analysis process. The percentage frequencies given in Table 1 are based on the observation aspects. 
They are divided in the two processes the PP and the DP. The range for structure perception and 
structural use for determination is between 2% and 9% for both groups. Perception is very difficult 
to observe because it is actually an invisible act (cf. Schöner & Benz, 2018). This fact could be one 
possible interpretation for these low percentages. An observation aspect which could be assigned to 
the category structure for example is, when a child uses his hands to show a structure or verbally 
names a structure. As shown in Table 1 observation aspects which indicate that a child does not 
perceive a structure (cf. Table 1) could not be found. On the other hand, for the non-structural use in 
the determination process for both groups, the range of the percentage frequencies is between 30% 
and 58%. Nodding, pointing with the finger or audibly counting are aspects which can be observed 
easily. Therefore counting every single item, which means using no structure to determine the 
cardinality is more obvious to observe. Here, both groups show a different decrease: 16% for the 
control group and approximately 28% for the treatment group. An assumption for the decreasing 
frequencies of counting every single item from t1 to t3 is that perhaps the children start to use more 
and more structures to determine the cardinality. 

 Perception Process (PP) Determination Process (DP) 

 structure no structure structure no structure 

 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

treatment 8.5 5.2 4.5 0.0 0.0 0.0 4.2 2.4 3.9 57.6 37.3 29.7 

control 5.4 7.5 5.4 0.0 0.0 0.0 3.3 5.4 4.2 47.8 40.4 32.1 

Table 1: Arithmetic mean of percentage frequencies based on observation aspects 

Table 2 shows the percentages of structural and non-structural perceiving as well as the use for 
determination based on the child’s explanation after saying the number (cf. Figure 2). Such an 
explanation could be, for example, the naming of subsets or the statement "I have counted". Based 
on the explaining, more structural perceiving and structural use could be observed than based on the 
observation (cf. Table 1). The variation in (not) perceiving structures and (not) using structures are 
very similar in both groups and for both processes. Both in terms of perceiving structures and using 
structures to determine the cardinality, an increase of approximately 36% from t1 to t3 can be 
observed. In addition, the non-structural use to determine the cardinality decreases from t1 to t3 in 
both groups. 

 Perception Process (PP) Determination Process (DP) 

 structure no structure structure no structure 

 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

treatment 31.2 49.4 66.7 0.3 0.3 0.0 27.0 45.2 63.6 13.0 9.1 2.4 

control 29.2 42.9 67.1 4.6 7.9 0.0 32.9 48.8 66.3 18.3 7.9 2.1 

Table 2: Arithmetic mean of percentage frequencies based on explanation 

Thematic Working Group 13

Proceedings of CERME11 2358



 

 

In Table 3 the arithmetic mean of percentage frequencies of structural and non-structural perceiving 
and using based on the eye-tracking data is shown. The eye-tracking data shows in which order and 
how long the child has fixed the (individual) eggs. An illustration of Table 3 is presented in the 
diagram in Figure 3. 

 Perception Process (PP) Determination Process (DP) 

 structure no structure structure no structure 

 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

treatment 31.2 47.6 60.6 30.9 21.2 17.9 26.1 40.0 54.5 30.6 26.4 23.0 

control 50.4 48.8 54.6 18.3 22.9 19.6 37.1 40.0 48.3 24.6 29.6 24.6 

Table 3: Arithmetic mean of percentage frequencies based on eye-tracking data 

For all categories the range based on eye tracking data is between 18% and 61% for both groups. The 
range for the structural perceiving and using is between 26% and 61%, the range for the non-structural 
perceiving and using is between 18% and 31%. In the determination process an increase for the use 
of structures could be observed for both groups. In sum, a lot of hypotheses could be built. Looking 
on the PP there are differences between the groups. An increase of approximately 30% is observed in 
perceiving structures of the treatment group (from 31% (t1) to 61% (t3)). The control group starts at 
t1 at a higher frequency, and increases in total from t1 to t3 only by about 4% (from 50% (t1) to 55% 
(t3)). Also a decrease from t2 to t3 is observable (cf. Table 3). The frequencies of perceiving structures 
in the treatment group at t3 are higher than those of the control group. In the DP, a similar tendency 
can be seen. An increase of approximately 30% is observed in the structural use of the treatment 
group (from 26% (t1) to 55% (t3)). The control group starts at t1 again with higher percentages, but 
increases in total from t1 to t3 by about 10% (from 37% (t1) to 48% (t3)) (cf. Table 3 and Figure 3). 

  
Figure 3: Arithmetic mean of percentage frequencies based on eye-tracking data 

The percentage frequencies given in Table 4 are based on all three types of data: observation, 
explanation and eye-tracking data. These frequencies correspond to the final hypotheses briefly 
mentioned above. 

 Perception Process (PP) Determination Process (DP) 

 structure no structure structure no structure 
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 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3 

treatment 40.9 57.0 67.0 27.9 17.0 13.3 30.6 44.5 57.0 60.9 45.8 35.5 

control 56.3 55.4 63.8 14.2 17.1 15.0 40.0 45.0 55.4 49.6 49.2 38.8 

Table 4: Arithmetic mean of percentage frequencies based on 
observation aspects, explanation and eye-tracking data 

An illustration of the frequencies of Table 4 can be seen in Figure 4. Here similar tendencies can be 
seen as in the data based only on the eye-tracker (cf. Figure 3). 

The frequencies of the structural perceiving and using both for the PP and DP of the control group 
are also higher at t1 than of the treatment group. Nevertheless, the percentages of the treatment group 
increased both for the PP and DP, so that the percentages of structural perceiving and use at t3 are 
higher than those of the control group. In the determination process an increase for the structural use 
could also be observed for both groups. For the frequencies of non-structural perceiving and use an 
opposite tendency can be noticed for the treatment group. The more structures are in the PP and DT, 
the less non-structural can be seen or vice versa (cf. Figure 4). In the control group a similar tendency 
can be observed. It’s remarkable that in the PP there is a decrease from t2 to t3 and overall, a smaller 
increase can be seen compared to the treatment group (cf. Table 4). 

  
Figure 4: Arithmetic mean of percentage frequencies based on 

observation aspects, explanation and eye-tracking data 

Summary of the results 

Observation aspects only provide few data (range: 0-9%) for perceiving and using structures. For the 
development of perceiving and using structures to determine the cardinality only few hypotheses can 
be derived. The sole exception is found in the DP concerning non-structural use. In the DP, a decrease 
is observed in non-structural use in both groups (control group: 16% from t1 to t3, treatment group: 
about 28% from t1 to t3). A possible interpretation would be that non-structural use decreases but 
perceiving structures increases. The latter case could not be seen in the observation aspects but 
nevertheless the conclusion about an increase in perceiving structures becomes possible. 

Data based on explanation provide more information about structural use in DP and PP (range: 27%-
67%). There are very similar tendencies: In each group, an increase of approximately 36% in 
perceiving structures and structural use is observable. Similar to data based on observation aspects 
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no information can be gained for non-structural use in the PP. In the DP there is less information 
available than for data collected with observation aspects. 

Data based on eye-tracking (cf. Table 3) provide more information than data based on observation 
aspects and explanation. The data show an increase in perceiving and using structures to determine 
the cardinality (Treatment group: PP: 30% from t1 to t3, DP: 30% from t1 to t3 / Control group: PP: 
4% from t1 to t3, DP: 10% from t1 to t3). In both cases (PP and DP) the control group starts at t1 at 
a higher frequency and the frequencies of perceiving structures in the treatment group at t3 are higher 
than those of the control group. In sum, a lot of hypotheses could be generated. 

Hypotheses based on all three kinds of data (observation aspects, explanation, eye-tracking) show 
similar tendencies as the eye-tracking data. The frequencies show nearly the same increase of 
perceiving and using structures to determine the cardinality in the treatment group (PP: 26% from t1 
to t3, DP: 26% from t1 to t3). In comparison to this a very small increase is also observable in the 
control group (PP: 8% from t1 to t3, DP: 15%) (cf. Figure 3 and Figure 4). Also the frequencies for 
no structural perceiving and using are similar. In sum, the changes in perceiving and using structures 
for determining the cardinality are almost identical to the changes shown by the eye-tracking data (cf. 
Table 3 and 4). 

Discussion and Conclusion 
The following tendencies about perceiving and using structures to determine the cardinality are 
generated only from the observation aspects and the explanation (without eye-tracking data): The 
data from the observation aspects show a decrease of the non-structural use which leads to the 
interpretation that there is a simultaneous increase of using structures to determine the cardinality. In 
the data of explanation an increase of perceiving and using structures can be observed and also a 
decrease in non-structural use. This leads to the conclusions that there is a consensus in the increase 
for using structures to determine the cardinality and also for perceiving structures. Both groups nearly 
have the same frequencies and ranges. 

Coming back to the research question: What can the eye-tracking data contribute to the analysis 
approach of children’s perception and determination processes concerning the use of structures? One 
advantage of the eye-tracking is to get some deeper insights in the invisible perceiving process when 
making it visible. This could for example be interesting if children have a lack of words to describe 
how they perceived a structure. These linguistic difficulties may be due to the linguistic development 
(because of the age of the children) or to another native language. The eye-tracking data leads to 
additional information especially for the PP. The data also show that in the treatment group a clearer 
development in perceiving structures and using structures to determine the cardinality has taken place 
than in the control group. In a next step, the significance for these frequencies are checked. 

However, eye-tracking data has to be interpreted. So far, there are no comparative data from children 
in this age from other studies that could help or give some directions. In order to come to an 
interpretation of the recorded eye-movements, the explanations and the observation aspects of the 
children are often important. So an inductive approach to generate hypotheses from the eye-tracking 
data is necessary about how children perceive structures in sets. 
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In the first step of analysing data most of the eye tracking data only could be interpreted because of 
the additional information from the observation aspects and the explanation. Due to this data, 
categories could be generated in order to analyse the eye-tracking data. In a second step of analysing 
the data it could be referred to these categories of eye-tracking data, especially in cases where no 
additional data exists. For this reason, all three types of data are important not only for the 
interpretation of the eye-tracking data but also for generating the final hypotheses. Thus, in this study 
the three-level evaluation turned out to be viable, because the observation aspects, the explanation 
and the eye-tracking data complement each other and interdepend. 
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In university education, students are prepared for a future that is both known and unknown (Marton, 
2014). Educators try to prepare the students in the unknown by raising the known. The best and most 
powerful way is to try to develop and contribute tools that can support students for new situations in 
future professions as a teacher (Marton, 2014). Investments in teacher education indirectly affect what 
opportunities for education future students have. In Sweden, several studies have made it clear that 
students' skills are not enough internationally. This has increased focus on preschool opportunities to 
contribute to higher goal achievement later on in school. Furthermore, discussions about higher goal 
achievement can be discussed in relation to how pre-school teacher education contributes to the 
opportunities for students in future enable success in the subject of mathematics. Niss (2001) argues 
that the term mathematics constitutes five different "faces", each face representing mathematics in a 
certain context. A mathematical content can thus be interpreted differently depending on the face or 
context from which it is considered. For example, teacher education can be taken into account as both 
a very important element as very different in the fourth face. Furthermore, Alrø and Johnsen-Høines 
(2010) argue how communication between educator and child affects the quality of mathematics 
learning. They consider that teachers in the early ages rather use an evaluation strategy of mathematic 
knowledge than investigative methods in their mathematic teaching. This teaching strategy could 
impede a more exploratory approach to mathematics education (Alrø & Johnsen-Høines, 2010). A 
strategy that can be related to Marton's (2014) argument for the development of deep understanding. 
It can be put in context in the sense of deepening their own mathematical understanding in order to 
identify others' understanding of the subject. In order to highlight the complexity it means to visualise 
understanding of a subject and thus the understanding of others, by using more theoretical frameworks 
(a.a). Several arguments arise in relation to the teacher's importance in creating a structure for the 
learning in mathematics in preschool. Research in mathematics teacher education is therefore of great 
importance because the quality of education affects the quality of future teacher training, which in 
turn affects the quality of student performance. In this study teacher students are challenged during 
an intervention study based on theoretical knowledge input consisting of Bishop's six mathematical 
activities (1988) and variation theory (Marton, 2014). This leads to the following question: In what 
way does theoretical knowledge input contribute pre-school teacher students to identify children's 
mathematical understanding in different learning activities in preschool? 

Theory    

Within the variation theory, the purpose of learning is the ability to do something with something 
(Marton, 2014). In order to understand learning, especially what is crucial for learning, it is necessary 
to take into account what is actually learned in different learning activities (Marton, 2014). Further in 
variation theory, the differences in which aspects are perceived at the same time are significant for 
learning. In order to experience or understand something in a certain way, certain aspects must be 
perceived. It is the perception of these aspects that are crucial to learning (Marton, 2014). From an 
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educational point of view, aspects that are considered important on the basis of the learning of a 
chosen learning object. Marton (2014) describes how a difference in how the same phenomenon is 
experienced has to do with differences in discernment. Discernment based on variation theory which 
focuses on learning activity (Marton, 2014). Furthermore, learning is also a question of being able to 
distinguish and differentiate which aspects are considered critical to a specific group in a specific 
situation based on a chosen learning object. It is thus through increased understanding of what is 
critical to distinguish that increases knowledge and conditions for learning in relation to the goals.  

Method  

A pre and post -test has been constructed consisting of eleven learning activities in preschool based 
on Bishop's (1988) activities. The empirical data consists of data from the respondents' written 
reflections of the pre-and post -test. Data collection has taken place three times before, between and 
after they have participated in teaching with different designs. The two different designs within the 
course consist in offering two groups (73 students) of six more opportunities for teacher supervision 
by teacher educators, who are involved in both theories, based on their completed documented field 
studies that integrate theory and practice. All six groups have been taught in the two theoretical 
elements but individually. Analysis of the collected empirical data consists based on variation theory, 
focusing on identifying differences in how students in the different groups distinguish the object of 
learning for the children and the opportunity for the children`s understanding on the same.  

Results and Conclusion 

Preliminary results indicate that the teacher students who are offered more support into the two 
theoretical elements at the same time, identify more mathematical learning objects in the constructed 
pre- and post-test. Which leads to discussion of what in the theoretical input contribute and support 
meta-reflection in relation to deeper understanding of other mathematical understanding. A 
contribution to the development of the student's profound understanding through theoretical input at 
the same time as a mathematical content and structure of teaching in pre-school, focusing on the 
actual learning of learning ability. The latter as an important element in preparing the teacher student 
to identify others' mathematical understanding of the learning ability. The poster will visualize and 
discuss the students' understanding of the intentional learning object for the children in the designed 
pre and post-test, based on the different teaching design the teacher students were included in the 
intervention. 
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As teacher educators, we recognize the importance of considering teachers’ self-efficacy for teaching 
mathematics. In this study, we investigate preschool teachers’ self-efficacy for teaching repeating 
patterns, both before and after participating in a professional development program. Findings from 
questionnaires indicated that self-efficacy related to subject-matter knowledge changed little, while 
self-efficacy related to pedagogical-content knowledge, increased. Interviews with teachers shed light 
on these findings. 

Keywords: Repeating patterns, self-efficacy, preschool teachers, professional development 

Introduction 
Recently, several countries have introduced specific guidelines for introducing mathematical 
concepts during the early years. Along with new guidelines comes a need for enhancing preschool 
teachers’ knowledge for teaching mathematics. Knowledge, however, may not be sufficient. Teacher 
self-efficacy is another factor which may impact on teachers’ classrooms interactions and student 
achievement (e.g., Guo, Piasta, Justice, & Kaderavek, 2010). Teacher self-efficacy may be 
conceptualized as “a teacher’s individual beliefs in their capabilities to perform specific teaching 
tasks at a specified level of quality in a specified situation” (Dellinger et al. 2008, p. 752). With regard 
to mathematics, Hackett and Betz (1989) defined mathematics self-efficacy as, “a situational or 
problem-specific assessment of an individual’s confidence in her or his ability to successfully perform 
or accomplish a particular [mathematics] task or problem” (p.262).  

This paper focuses on preschool teachers’ self-efficacy for engaging young children with repeating 
pattern activities. Repeating patterns are patterns with a cyclical repetition of an identifiable 'unit of 
repeat' (Zazkis & Liljedahl, 2002). For example, the pattern ABBABBABB… has a minimal unit of 
repeat of length three. According to the Israel National Mathematics Preschool Curriculum (INMPC) 
(2008), "patterning activities provide the basis for high-order thinking, requiring the child to 
generalize, to proceed from a given unit, to a pattern in which the unit is repeated in a precise way" 
(p. 23). In this paper we take a close look at a group of preschool teachers who attended the Repeating 
Patterns professional development Program (RPP) aimed at enhancing their knowledge and self-
efficacy for teaching repeating patterns. We examine their self-efficacy before and after the program, 
and through interviews, we attempt to untangle variations in their self-efficacy beliefs. 

Background 
For the past several years, we have been employing the Cognitive Affective Mathematics Teacher 
Education (CAMTE) framework for investigating preschool teachers’ knowledge and self-efficacy 
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for teaching mathematics, as well as planning for professional development with preschool teachers 
(Tirosh, Tsamir, Barkai, & Levenson, 2017). The framework is based on Shulman’s (1986) 
recognition of teachers’ subject-matter knowledge (SMK) and pedagogical-content knowledge 
(PCK), as well as Ball, Thames, and Phelps’s (2008) refinement of these elements.  

Subject-matter Pedagogical-content 

Solving Evaluating Students Tasks 

    K
now

ledge 

Cell 1: 

Defining, drawing, 
extending 
repeating patterns  

Cell 2: 

Identifying 
examples of 
repeating 
patterns 

Cell 3: 

Knowledge of 
students’ ways for 
drawing, extending, 
and comparing 
repeating patterns 

Cell 4: 

Designing and choosing 
tasks for promoting and 
evaluating children’s 
knowledge of repeating 
patterns 

Self-efficacy 

Cell 5: 

Mathematics self-
efficacy related to 
Defining, drawing, 
extending 
repeating patterns  

Cell 6: 

Mathematics 
self-efficacy 
related to 
evaluating 
solutions 

Cell 7: 

Pedagogical-
mathematics self-
efficacy related to 
children's 
conceptions 

Cell 8: 

Pedagogical-
mathematics self-
efficacy related to 
designing and evaluating 
tasks 

Table 1: The CAMTE framework illustrated within the context of repeating patterns 

Regarding teachers’ knowledge of patterning, several studies pointed out the need to promote 
teachers’ knowledge of the language of patterns. For example, Waters (2004), described how one 
preschool teacher showed the children dress materials with, what she called, patterns. Some of the 
materials contained a mixture of shapes, colors, hearts, and stars, and demonstrated random designs 
without any regularities. The teacher did mention the need for repetitions, but did not focus on what 
exactly is repeated. Similarly, in our study of preschool teachers’ patterning knowledge (Tirosh, 
Tsamir, Levenson, Barkai, & Tabach, 2018), we found that teachers have difficulties verbalizing what 
exactly is repeated, although most referred in some way to the unit of repeat and to the notion of 
repetition. We also found that when asked to draw or continue repeating patterns, teachers mostly 
drew repeating patterns that have three cycles of the unit of repeat and a unit length of three. In 
addition, teachers’ continuations of given patterns indicated a strong tendency to end patterns with a 
complete unit of repeat.  

For each knowledge cell in the framework, there is a related self-efficacy cell, emphasizing teachers’ 
mathematics self-efficacy as well as their pedagogical-mathematics self-efficacy, i.e. their self-
efficacy related to the pedagogy of teaching mathematics (see Table 1). This differentiation was also 
pointed out by Bates et al. (2011), who investigated the relationship between early childhood (pre-K 
to third grade) preservice teachers’ mathematics self-efficacy and their mathematics teaching self-
efficacy. Results of that study showed that teachers who reported higher mathematics self-efficacy 
were more confident in their ability to teach mathematics than teachers with a lower mathematics 
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self-efficacy. However, participants with a high mathematics teaching self-efficacy did not 
necessarily perform well on the mathematics skills test. Some teachers who scored low on the skills 
test still felt confident to teach mathematics. We also note that self-efficacy beliefs are not only 
domain-specific (e.g. mathematics, history, science) and content-specific (e.g., within the domain of 
mathematics there is numeracy, patterns, geometry, etc.), but also task-specific (e.g., extending 
patterns, duplicating patterns, etc.) (Zimmerman 2000).  

The aim of this paper is to report on preschool teachers’ mathematics self-efficacy as well as their 
pedagogical-mathematics self-efficacy, before and after the Repeating Patterns Program (RPP). The 
teachers in this study met seven times (21 hours in total) over a period of about four months. All 
lessons were planned by the four authors of this paper. The fourth author did the actual teaching. The 
program revolved around patterning tasks that we designed, which teachers could implement with 
children, but could also be used to engage teachers with the mathematics involved in patterning, and 
promote their knowledge of patterning tasks and children’s ways of solving those tasks. Towards the 
end of the program, teachers implemented patterning tasks with children in their classes, video-taped 
their implementations, and then brought those recordings to the program for discussion. (See Tirosh 
et al. (2017) for additional information regarding this program.) Specifically, we ask: (1) Was there 
a change in teachers’ self-efficacy from before to after the program, and if so, what was the nature of 
this change? (2) When reflecting on self-efficacy, how do teachers explain their self-efficacy beliefs? 

Methodology 
Participants in this study were 18 preschool teachers enrolled in the RPP. All had a first degree in 
education, between 1 and 38 years of teaching experience in preschools, and were currently teaching 
children ages 4-6 years in municipal kindergartens. All sessions were videotaped and transcribed. 

Before the program began, and again during the last session, teachers were asked to fill out a 
questionnaire which began with the following self-efficacy statements: I am able to say what a 
repeating pattern is; if shown a repeating pattern along with several suggestions for continuing the 
pattern, I am able to choose appropriate continuations; I am able to point out repeating patterns that 
most preschool children are able to continue appropriately; I am able to choose tasks for investigating 
children’s patterning knowledge. A four-point Likert scale was used to rate participants’ agreements 
with self-efficacy statements: 1 – I do not agree that I am capable; 2 – I somewhat agree that I am 
capable; 3 – I agree that I am capable; 4 –I strongly agree that I am capable.  

Approximately one month after the program was over, seven teachers, chosen to reflect a variety of 
responses (e.g., no change in self-efficacy, increased self-efficacy, decreased self-efficacy) were 
interviewed individually. The aim of the interview was to further investigate teachers’ self-efficacy 
beliefs for teaching patterning by evoking their reflections on these beliefs, and focusing on changes 
that may have occurred with regard to self-efficacy. In general, the interview questions were of the 
form: “Before the program began, you wrote that you strongly agree (somewhat agree/agree/do not 
agree) that you are capable of ______. At the end of the program you wrote ________. Can you tell 
me more about this?” The blanks were filled in with the different tasks taken from the questionnaire 
and teachers’ self-efficacy assessments in the pre- and posttests. In addition, teachers were 
encouraged to freely reflect on their self-efficacy beliefs. Interviews were recorded and transcribed. 
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Findings 
Results from the questionnaires 

Table 2 shows the mean values for teachers’ self-efficacy scores before and after the program (on a 
scale from 1-4). As can be seen, teachers had a rather high regard, both before and after the program, 
in their ability to define a pattern and to choose appropriate continuations for a given pattern, with 
their self-efficacy rising slightly after the program. Teachers also had a high self-efficacy for 
identifying patterns that children could continue, with seemingly no change between before and after 
the program. The greatest change was noted in the last question. Before the program, teachers were 
not so confident in their ability to choose appropriate pattern tasks for investigating children’s pattern 
knowledge, whereas after the program, their self-efficacy was noticeably higher. 

 Self-efficacy statement Pre Post 

Mean SD Mean SD 

SMK I can say what a pattern is. 3.3 .59 3.8 .44 

I can choose appropriate continuations for a repeating pattern. 3.6 .62 3.8 .38 

PCK I can point out patterns that most preschool children can 
continue. 

3.2 .56 3.3 .69 

I can choose appropriate tasks for investigating children’s 
patterning knowledge. 

2.2 .79 3.4 .72 

Table 2: Means and SD per self-efficacy statement before and after the program (N=18) 

Taking a closer look at the distribution of self-efficacy scores, Table 3 presents the frequencies of 
teachers whose self-efficacy scores increased, stayed the same, or decreased.  

 Self-efficacy 

Statement 

Increased No 
change 

Decreased  

SMK I can say what a pattern is. 6 12 - 

I can choose appropriate continuations for a repeating 
pattern. 

5 13 - 

PCK I can point out patterns that most preschool children 
can continue.* 

4 9 4 

I can choose appropriate tasks for investigating 
children’s patterning knowledge.** 

12 4 - 

*One teacher did not respond. **Two teachers did not respond. 

Table 3: Changes in self-efficacy beliefs between pre and posttests (N=18) 

In general, approximately two-thirds of the teachers did not feel a change in their self-efficacy related 
to SMK, while the rest of the teachers’ self-efficacy increased. However, when it came to PCK-related 
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self-efficacy beliefs, findings were more complex. With regard to knowledge of students, 
approximately half of the teachers did not feel any change, but 25% of the teachers felt a rise in their 
self-efficacy and 25% reported a decrease. With regard to knowledge of tasks, approximately 75% of 
the teachers’ self-efficacy scores increased, with the rest showing no change. 

Interviews: Reflecting on self-efficacy 

As seen in the previous section, most teachers’ SMK-related self-efficacy beliefs were high and did 
not seem to change. When asked to comment on her SMK-related self-efficacy, Michelle (this and 
all other names are pseudonyms), who rated her self-efficacy both before and after the course at level 
4, said, “Before the course, I don’t think I knew how to define a pattern. I’m trying to remember when 
I learned this topic. But after we studied this in depth during the program…I know a lot more now.” 
While Michelle does not explain why in the beginning of the course she had such a high self-efficacy, 
thinking back, she realizes that her SMK regarding defining a pattern actually increased. 

With regard to being able to choose appropriate continuations to a pattern, Anne explains why she 
rated her self-efficacy as very high before the course, “Before the course, I knew that a pattern could 
be continued in several ways.” However, she adds, “But now, I understand the reasoning behind these 
options, and I can explain it better to the children.” In other words, although her self-efficacy rating 
has not changed, she feels that her knowledge has increased. Rina, who also had rated her self-efficacy 
as 4 both before and after the course, had a different reason for why no change was reported: 

In the beginning of the course, when they asked me these questions, I think I didn’t really know 
what they [repeating patterns] meant. At the end of the course, now, I understand what is meant 
by a repeating pattern, that it can end in the middle [with a partial unit of repeat]. Now, the question 
is clear. I don’t remember what I wrote in the beginning. 

In other words, Rina reflects back on before the course, and can now say that before the program, she 
did not really know what was meant by a repeating pattern, and was not aware that patterns do not 
have to end with a complete unit of repeat. This is similar to Michelle. Both teachers seem to 
acknowledge that their self-efficacy ratings in the beginning of the course were incorrectly high. In 
fact, when Rina was asked what score she should have given herself in the beginning of the course, 
she answered, “Now, I’m a 3-4. Then, maybe a 2, because I did know a little.” 

When it came to reflecting on their PCK self-efficacy beliefs related to knowing children’s patterning 
abilities, teachers again had varied responses. Prior to the program, Anne had evaluated her self-
efficacy at level 3, and at the end she reported level 4. She told the interviewer that her self-efficacy 
increased and explained, “Today, I can define it [a repeating pattern] better. I know that there is a 
minimal unit of repeat, and that it is made up of elements. This definition organizes my thoughts and 
adds to my self-efficacy.” Although Anne was asked to relate to her ability to point out patterns that 
most preschool children can continue, her response focused on her ability to define a repeating 
pattern. It could be that for Anne, her knowledge of the centrality of the minimal unit of repeat, 
affected her belief in her ability to assess children’s knowledge. 

Rina, who consistently rated her self-efficacy to assess children’s knowledge at 4, said, “If, in the 
beginning of the course, I didn’t really understand about repeating patterns, then of course, I couldn’t 
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really know about the children.” Rina is acknowledging her over-confidence in the beginning of the 
course. Moreover, she connects her SMK with her PCK, by connecting her knowledge of patterns to 
her knowledge of students. Sharon, who consistently rated her self-efficacy at level 3 said, “I’m not 
so sure of myself here. I think I need more experience working with children to feel more sure of 
myself in this area.” This explains why currently, her self-efficacy is a 3 and not a 4. When asked to 
reflect back, she adds, “Before (the course), I would give myself a 2. I didn’t engage with patterns as 
much as I do now, and so I’m more self-confident now that I can do things better.” She now 
acknowledges that her self-efficacy in the beginning of the course was too high. 

Lottie’s self-efficacy for assessing children’s patterning knowledge decreased from a 4 to a 3. During 
her interview, she stated the following: 

For me, before the course, I would have children make patterns by giving them a red sticker, and 
then a yellow sticker, and so on. This course was a wake-up call. Patterns can be made with 
different materials… I was stuck on one type. There is also the pattern ABB. Before, I engaged 
the children with patterns, but without reflecting on what I did. 

Lottie states that before the program, she engaged children with patterning tasks. This could be the 
reason that in the beginning, she felt very strongly that she could say which patterns children would 
be able to complete. After the course, Lottie acknowledges that her previous patterning knowledge 
was limited. Perhaps, this causes her now to be unsure regarding her knowledge of children.  

Finally, we review teachers’ reflections regarding their self-efficacy for choosing appropriate tasks. 
Recall that most teachers’ self-efficacy for choosing tasks increased. Rina, who increased her self-
efficacy from a 3 to a 4, commented, “I did work with repeating patterns with children, but they were 
not so varied, they did not end in the middle (with a partial unit of repeat).” Sharon, who went from 
level 2 to 4, said, “The program gave me lots of tools, and also self-confidence.” However, she 
qualifies her response by adding, “I think I still need more experience.” Similarly, Anne, who also 
went from a self-efficacy of 2 to 4, said, “The patterns that Ruthi (the program instructor) gave us in 
the course, really helped me to organize my thoughts and implement them in the kindergarten. I know 
that another teacher also uses them, and even when in the yard she uses sound patterns, because it’s 
very nice, and we really liked it.”  

Summary and discussion 
This study examined preschool teachers’ mathematics self-efficacy as well as their pedagogical-
mathematics self-efficacy, related to teaching repeating patterns, as well as teachers’ reflections on 
these beliefs. Regarding teachers’ SMK-related self-efficacy beliefs, results indicated that no 
significant change was felt. That teachers reported high SMK-related self-efficacy beliefs at the end 
of the program, was satisfying. However, we are left with two questions: How is it that teachers had 
such a high self-efficacy before the program began? In addition, even though the reported self-
efficacy beliefs did not change, did teachers feel some change? 

Regarding the first question, it could simply be that teachers indeed knew how to complete these tasks 
in the beginning, although to a lesser extent than they did in the end. In a previous study (Tirosh et 
al., 2018), we found that most preschool teachers did recognize that a repeating pattern must have 
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unit of repeat, but missed stating that the unit must be structured. On the other hand, they could all 
construct and extend given repeating patterns. Regarding the task of choosing an appropriate 
continuation for a given repeating pattern, in general, teachers were able to choose appropriate 
continuations, although they had greater success in choosing appropriate continuations for the 
patterns which ended with a complete unit, than for the pattern which ended in a partial unit.  

Teachers’ interviews shed additional light on the issue of their self-efficacy. During the interviews, 
some teachers acknowledged that their first self-efficacy reports were higher than they should have 
been. They explained these initial high self-efficacy reports by saying that the topic of repeating 
patterns was not new to them. Thus, it might be that teachers did feel a change in their knowledge, 
but that this change was not reflected in the questionnaires. This finding raises the complexity of 
investigating self-efficacy beliefs. First, it could be that a scale of 1-4 was not sensitive enough to 
capture changes. In addition, this study, like most self-efficacy studies (e.g., Bates et al., 2011), relied 
on Likert-scales. It was the addition of interviews that revealed teachers’ changes in their beliefs. 
Thus, we encourage the use of interviews when investigating self-efficacy.  

Regarding teachers’ PCK-related self-efficacy beliefs, from the questionnaires, it seemed that 
teachers did not feel a change in their self-efficacy related to knowing children’s patterning abilities. 
Taking a closer look, we found that some teachers’ self-efficacy increased, some stayed the same, 
and some teachers’ self-efficacy decreased. As one aim of the course was to support teachers’ self-
efficacy beliefs, this result is surprising. One explanation is that after the program, teachers realized 
how much more there is to learn. They also mentioned feeling the need for more experience engaging 
children with patterning activities. Thus, this may actually be positive outcome of the program.  

Regarding teachers’ self-efficacy for choosing patterning tasks that can investigate children’s 
knowledge, we ask, why is it that before the course this particular self-efficacy belief was relatively 
low? One possibility is that we asked teachers if they could choose tasks for the purpose of 
investigating children’s pattern knowledge. It could be that if they were asked to choose tasks that 
had the potential to promote, rather than assess knowledge, their self-efficacy might have been 
greater. In a previous study of preschool teachers’ knowledge and self-efficacy for teaching three-
dimensional figures (Tsamir, Tirosh, Levenson, Tabach, & Barkai, 2015), we found that teachers’ 
self-efficacy related to designing tasks for promoting knowledge was greater than their self-efficacy 
related to designing evaluation tasks.  

Finally, this study highlighted the connection between teachers’ SMK-related self-efficacy and their 
PCK-related self-efficacy. When asked about her self-efficacy for knowing children’s pattern 
abilities, Anne referred to her improved ability to define a repeating pattern. Rina and Lottie also 
connected their knowledge of repeating patterns, including that a repeating pattern does not have to 
end a complete unit of repeat, to their knowledge of children and patterns. While previous educators 
(e.g., Ball, Thames, & Phelps, 2008; Shulman, 1986) connected teachers’ SMK to PCK, this finding 
connects teachers’ SMK-related self-efficacy to their PCK-related self-efficacy, and suggests that if 
we wish to promote positive self-efficacy for teaching mathematics, we should also consider teachers’ 
self-efficacy for solving mathematical tasks.  
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Research in the field of early arithmetic and relevant international educational programs present a 
variety of approaches (activities, tasks and material) that aim at teaching children from early age to 
count verbally or count quantities or to recognize and compare without counting, etc. However, a 
deeper insight into underlying arithmetic thinking, reasoning and early generalization always 
remains required. In our study, 23 preschoolers (of 5 to 6 years) participated in a program focusing 
on generalizing in early arithmetic. Task-based interviews before and after this program were 
conducted to examine children’s improvement in conceptual development and generalization related 
to numbers. Findings indicate that appropriated teaching approaches with relevant tasks and 
discussion supported children to extract more general ideas about numbers, their properties and 
interrelations.  

Keywords: arithmetic learning, number sense, generalization  

INTRODUCTION 
Arithmetic learning is one of the most well-known and recognized mathematical field of teaching and 
learning in early years, thereby, there is an extensive related literature with different approaches and 
views. Programs around the world suggest a wide variety of projects, tasks and materials aimed at 
effective numerical learning. Thus, children from early age learn to recognize and compare quantities 
without counting, recite the arithmetic sequence, count objects, etc. What is though genuine 
arithmetic learning and how can we ensure it? Researchers have long ago pointed out that daily 
numerical activities or involvement with arithmetical elements with numbers and operations could 
not assure the development of numerical meaning. First references regarding this issue started with 
Brownell (1947) who attempted to distinguish 'meaning of' from 'meaning for' that essentially 
differentiates the use of numbers in real life from generalizations that lead to mathematical 
conceptualization. 

Long ago also, researchers highlighted the gap between everyday use of numbers and development 
of mathematical number concepts in education (Carraher et al., 1985). The value of spontaneous or 
informal use of mathematics by students or practitioners is generally recognized and studied, but this 
use does not automatically link mathematical elements to relevant mathematical concepts. It could be 
supported that counting quantities or realizing other numerical tasks in everyday situations keep a 
‘concrete’ aspect that is not simply transferred out of its context. Thus, the development of number 
sense towards the correspondent mathematical meaning demands a shift from the specific situation 
and content in which it functions to a broaden level through systematic generalization processes. As 
it was recently underlined by many researchers related to the learning and teaching of arithmetic in 
early years “…our knowledge of how children develop accurate and general understanding of basic 
arithmetic principles and make use of them as strategies for arithmetic problem solving remains 
incomplete…” (Björklund et al., 2018, p. 126)”. 
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In this paper, we will attempt to highlight different levels of generalization that pre-schoolers can 
achieve in arithmetic learning when they are systematically encouraged by relevant teaching 
approaches. 

Arithmetic Learning 
Research in the field of early arithmetic and consequent educational programs presents a variety of 
supplementary or complementary approaches, activities, tasks and material, emphasizing their 
importance for later mathematical proficiency. However, while all these advances support the need 
of meaningful arithmetic knowledge and the development of number sense, cognitive expectations 
and educational outcomes remain to be clarified by teachers and educators. Moving away from the 
(initial) Piagetian logical operations related to arithmetic learning and from other relevant 
psychological research, newer approaches such as subitizing and counting-based arithmetic appear to 
focus more on quantity and number sense (e.g. Clements & Sarama, 2014). Current suggestions orient 
also their interest to number structure and connections (Venkat & Askew, 2017). 

Researchers who emphasized the importance of counting as a base upon which number concepts 
could be developed, supported that counting connects knowledge coming from outside with in-school 
understanding (Fuson, 1988). However, when children count quantities by reciting a sequence of 
number names and pointing out one by one different objects (even respecting the relevant principles: 
ordered names, one-to-one and cardinal principle, Carpenter et al., 2016) follow a rather procedural 
than conceptual understanding (LeFevre et al, 2005). Studies have revealed that while young students, 
knowing in general object counting, attempted to complete a simple task of change (e.g. 4 to 8 or 8 
to 5) stayed more depended on counting or perceptual information (use of fingers or blocks) than on 
numerical facts. Subsequently later, research in early arithmetic learning (e.g. Baroody, 2004; 
Clements, 1999, etc.) studied the representational flexibility of subitizing that reinforced children to 
interconnect and generalize numerical concepts, maintaining however the importance of counting and 
recognition of number interrelations for arithmetic learning.  

In this brief presentation, we attempted to justify why, despite the volume of research related to early 
arithmetic, a deeper insight into underlying arithmetic thinking, reasoning and early generalization 
remains always required. 

Generalizing in early arithmetic 
Generalization is an important prerequisite for arithmetic learning, similarly to every other 
mathematical learning. As presented in an earlier paper, generalization (Tzekaki & Papadopoulou, 
2017, p. 1926) “…could be firstly identified as the level at which students, starting from specific 
situations, proceed to more general ideas and conclusions, identifying patterns, structures, 
relationships etc.” (see, e.g. Döfler, 1991; Kaput, 1999), with fundamental elements the “reflection 
over actions” and the “expression of more generalized ideas or rules”. Despite its importance in the 
mathematical development, research in early childhood generalization is mainly limited to patterns. 

On the other hand, research and proposals in early arithmetic place its focal points on counting, 
subitizing, ordering and connecting quantities and numbers. Relevant proposals underline the need 
of pupil’s shift from ‘quantity sense’ to ‘number sense’, by first perceiving the magnitude of numbers, 
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then understanding their multiple interrelations and finally operating on them (Wagner & Davis, 
2010), thus, moving beyond perceptual or procedural practices, both in counting and subitizing or in 
operating with other means such as fingers or relevant material (Dehaene, 1997).  

Combining views on generalization with proposals for early arithmetic we attempted to examine 
whether young children were able to overcome perceptual subitizing or verbally object counting in a 
concrete content and apprehend numbers in a more generalized level. Thus, in our study we examined 
whether preschoolers managed to approach and verbally express more global ideas about quantities, 
numbers and their interrelations, beyond perceptual or procedural practices in the four strands of early 
arithmetic (1) verbal counting up to 10, (2) subitizing, (3) analyzing and combining quantities and 
numbers, (4) relating and ordering quantities and numbers (Clements & Sarama, 2014). Moreover, 
we investigated whether these ideas could be evolved when working in teaching approaches that 
systematically encouraged generalizations.  

Methodology 
23 preschoolers aged 5 to 6 years (selected by classroom teachers on the basis of their common age 
and attendance in the same school and school area) participated in an 8-month teaching program 
focusing on generalization related to all fields of early mathematics education (shapes, patterns, 
measurement and numbers, Tzekaki & Papadopoulou, 2017), with the number module to be the last, 
form late April to late May. Task-based interviews were conducted to examine pre-schoolers’ 
arithmetic achievement and levels of generalization before and after the teaching program (following 
a design study). The content of the task-based interviews followed the strands mentioned earlier: 
counting quantities up to 10 (4 cases), subitizing quantities up to 10 (3 cards), combining numbers (1 
task with quantities in dot cards) and transforming numbers (2 tasks of change, see tasks in Table 1). 
The interviews’ questions aimed at examining statements related to children’s conceptualization of 
numbers concerning their way of acting (e.g. what did you do to …, how did you do it…), children’s 
thinking (e.g. what did you think to …, what did you notice to...), children’s justification (e.g. why did 
you do it…) and finally children’s more general ideas (e.g. Is it always the same or it may be 
different…, how can we find that…) (Dougherty et al., 2015). The interviews were conducted 
individually, recorded and transcribed. 

To approach children’s ideas about numbers, we analyzed their utterances in the transcribed 
interviews and categorized them in a three-stage generalization model, following current literature. 
Preschoolers’ explanations at a first stage do not present any characteristics or properties or 
relationships related to quantities or numbers, as children remain verbally reciting the number 
sequence (see, e.g. Baroody, 2004). Children’s explanations at a second stage show a perceptual or 
procedural approach of characteristics, properties or relationships related to quantities, as children 
order or combine quantities mainly by counting or by subitizing small quantities and recognize only 
a part of interrelations (see, e.g. Clements, 1999).  Children’s expressions at a third stage start 
presenting a certain awareness of characteristics, properties or interrelations of numbers, as children 
conceptually subitize and stabilize number facts (see, e.g. Clements & Sarama, 2014; due to space 
restrictions examples of each stage will be presented along with the results). After their initial 
examination and categorization, these 23 pre-schoolers, individually or in teams, dealt in their 
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classroom with rather usual arithmetic tasks, materials and games for four weeks (e.g. games for 
verbal counting quantities forward and backward, games for subitizing dot cards with different 
configurations, tasks for comparing, ordering or analyzing quantities, recognizing numbers in 
numbers cards, etc., see Clements & Sarama, 2014). During this program, they were systematically 
encouraged by their teacher to discuss about their actions, strategies, methods, decisions, reasoning 
and to proceed to verbal formulations regarding more general ideas related to their outcomes of their 
activity. Thus, they were reinforced to move from a local level with conclusions made out of a specific 
task or activity (e.g. way of doing it) to a broader level with assumptions about mathematical ideas 
(e.g. number 4) and finally formulation of rules or propositions (e.g. numbers’ relations) (Dougherty, 
et al., 2015) and they were reexamined in similar tasks. After working for several months on other 
mathematical fields, these children improved, in general, their flexibility to find common elements in 
different contents, to reflect on their actions and produce more general conclusions deriving from 
specific situations. 

Results 
The table below (Table 1) shows differences between the initial and final examination of the children 
as they appear in the transcripts of their interviews. These results provide an overview about pre-
schoolers’ achievement and progress in relevant tasks after a rather short teaching period.  

Items Quantities or Numbers Initial Final 

Verbal counting Up to 10, one by one or by twos, forward and 
backward 

6 18 

Subitizing  Dot-cards with 5, 7, 8 dots 3 15 

Combining Quantities with dot-cards to form 6 8 17 

Transforming 7 to 4 and 2 to 6 (in numbers) 3 15 

Table 1. Number of correct answers before and after teaching period in numbers. 

Correct answers in this table concern: for verbal counting, correctly counting in all four cases (one 
by one or by twos, forward and backward), for subitizing, correctly recognizing all dot cards with 5, 
7 and 8 dots without counting, for combining, putting together dot cards in all possible combinations 
(5+1, 3+3, 4+2 and 2+2+1) and for transforming from 7 to 4 and 2 to 6, correctly completing both 
changes.  

Seeking for a deeper insight into preschoolers’ number conceptualization and, thus, their underlying 
more generalized ideas about numbers and interrelations, we analyzed their explanations in the 
interviews according to the three-stage generalization model, presented earlier (in brief: reciting the 
number sequence, perceptually subitizing or procedurally approaching relationships, conceptually 
subitizing and stabilizing number facts). In general, there were no children at the first stage. 

- In the initial examination of verbal counting (Baroody, 2004), all 23 children were able to recite the 
arithmetic sequence one by one forward, but did not show the same stability in all counting tasks (by 
twos or backward, by ones or twos). Seven children who were identified as being at the second stage 
(mostly procedural) were able to count one by one, but could not do it backward, hesitating especially 
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for numbers after 7, missing one or two numbers in the sequence or starting counting with their 
fingers. They had greater difficulties in counting forward or backward by twos, not being, thus, able 
to realize that number sequence was stable (e.g. 5,7… so backwards 7, 5…) or to perceive 
relationships between numbers. For example, a child said, “It may be something else...” and another 
one “10, 8, 6, 2, 0, … there must be some numbers missing”. Eleven children, who were considered 
as being at the third stage (more advanced procedural), recited the arithmetic sequence fluently, but 
did not have the same fluency in counting backward or counting by twos, while the rest (5) with the 
same procedural approach were able to count by using the one by one correspondence and to explain 
based on it, e.g. “0, 2, 4 (plus 1), 5, (plus 1), 6, …”, showing, thus, an awareness of stability and 
simple relationships between numbers (see Table 2). 

In the final examination of verbal counting, 22 children verbally counted correctly in all cases and, 
furthermore, declared that the order of number sequence was stable, being identified thus at the third 
stage. However, their explanations regarding this order might be indicative of different levels of 
generalization, as 6 of them who recognized certain relationships (e.g. 8 and 1 is 9 or 3 and 2 is 5) 
could not generalize them throughout the whole number succession, or other 5 children who had 
stabilized knowledge of succession one by one, were not in the same state when counting by twos. 
Finally, with more or less complete understanding, 11 children seemed to be aware of numbers’ 
interrelations that generate the number sequence, appearing to be at a more advanced level (see Table 
2). 

- In subitizing dot cards (Clements, 1999), initially most of the children (15) could not recognize 
quantities or explain how to do it by perceiving subgroups of quantities and interrelations between 
them, being thus at the second stage. Very few children (3) could recognize quantities with more than 
3 dots and, except one, they said that they counted silently. Some other also (5) used the combinations 
they knew, e.g. “I saw 3+3 that is 6 and then 7…” (partly recognizing and partly counting). These 8 
children were identified as being at the third stage. In the final examination, after working with 
relevant tasks and discussing on number characteristics and relationships, 15 children declared that 
they recognized subgroups and did not use counting, e.g. a child said “No, I didn’t count, I did 3+3 
and plus 2…”. Some children (6) made use of patterns of previous cards and said “this was 7, then 
this is 8”. Some other still (2) combined subitizing small quantities and counting. These different 
approaches (some procedural and some conceptually subitizing) show also different kinds of 
generalization at the third stage (see Table 2).  

- While combining dot cards to form the number 6 (Clements & Sarama, 2014), 15 children initially 
presented only the combination 5+1 of one 5-dot card and one 1-dot card. The children (8 in total) 
who provided all the right combinations were divided into two groups: in the first group 3 pre-
schoolers mainly used a ‘trial and error’ method and counted the dots one by one, without knowing 
if always 4 plus 2 was equal to 6. For example, a child started with a 5-dot card and put it together 
with a 2-dot card and counted all the dots, as the result was 7 s/he changed with a smaller card. In the 
second group, 5 children put cards together using the relationships they already knew, but they 
checked the result by counting. This group of children remained mainly at a procedural and, thus, 
second stage.  
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In the final examination, 15 children were able to present all the combinations for 6 (third stage) while 
8 remained in 1 or 2 -3 of them (second stage). Eleven of the 15 pupils did not use the method of 
“trial and error” or of counting, but, in general, they were able to put together groups of quantities, 
showing, thus, an awareness of relationships of quantities and numbers. They could be considered 
being in a course of a conceptual understanding, as they were competent to explain with numbers e.g. 
“I said 3+2 makes 5, plus 1, 6…” and “…then 3+3 makes 6”. For the other four pupils of this stage, 
the interrelations between quantities and numbers were generally less developed, as they verified 
every suggestion by counting, showing that they remained at a procedural stage.  

- Finally, in the task of transforming 7 to 4 or 2 to 6, initially all the children were at the second stage. 
Twelve of them counted in different ways, e.g. a child said “I counted with my fingers and (showing) 
if I put out 3 remains 4 fingers”, or, more generally, they did it with number sequence, “I put out 1, 6 
and then 5, so we get 4”, while 11 children were not able to find a way of doing it (see Table 2).  

But in the final examination, 12 children were identified as being at the third stage, but in different 
levels of conceptualization. Thereby, a group of 5 children explained the changes with numbers in a 
more general way e.g. “3 and 3 and 1 equals 7, if you keep 4 you have 3...” showing a conceptual 
understanding, while 7 others did the same without being sure about the results (between conceptual 
and procedural). E.g. for 7 to 4, a child said “I can see a group with 3 and a group with 4… so 
(hesitates)… then 3…” or they put groups together and counted (in a procedural stage). The rest 11 
children were still not able to do it correctly. This analysis is summarized in the Table 2 in which the 
initial three-stage model was analyzed in more details, as there was no child in stage 1 but, as it was 
previously presented, differences were revealed in other stages.  

Pre-schoolers’ explanations of stage 2 are divided in three sub-stages: 2a, in which their utterances 
revealed a procedural recognition of quantities and basic relationships, with no specific awareness; 
2b, in which they presented a wider procedural recognition of quantities and relationships and 2c, in 
which they showed children mainly able to manage procedurally quantities and numbers. For 
example, in the task of combining dot cards to form a quantity of 6 dots, children of 2a put together 
cards with 5 and 1 (basic) dots, without being able to present other combinations, while children of 
2b started putting together more cards by counting them and children in 2c were able to find cards 
and in case of errors (e.g. 4-dot card and 3- dot card) to directly change with other dot cards but also 
count for checking. 

Pre-schoolers’ explanations of stage 3 were also divided in three sub stages: 3a, in which their 
utterances revealed recognition of a part of groups/subgroups of quantities and numbers or their 
interrelations, 3b, in which they presented a wider recognition of interrelations of quantities or 
numbers but without consolidation and (a final) 3c, in which children recognized numbers, their order 
and their interrelations. For example, in the task of subitizing, children of 3a started by recognizing 
small quantities and continuing by counting, while children of 3b recognized some of the proposed 
cards and explained e.g. for a 5- dot card “I saw these 4 and this 1”, but still misjudged a 7–dot card, 
finally 3c children recognized all cards and explained e.g. “2 plus 2 and 1 equals 5” or “3 plus 3 plus 
2 equals 8” showing the relevant groups in the cards.  
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 Stage 2: perceptual and 
procedural approach 

Stage 3: procedural and 
conceptual approach 

 Stage 2a Stage 2b Stage 2c Stage 3a Stage 3b Stage 3c 
Reciting Initial 4 3 0 11 5 0 
 Final 0 0 1 6 5 11 
Subitizing Initial 8 5 2 5 2 1 

 Final 0 0 0 2 6 15 
Combining Initial 15 3 5 0 0 0 
 Final 4 4 0 3 1 11 
Transforming Initial 11 9 3 0 0 0 
 Final 4 4 3 7 3 2 

Table 2. Number of children in different generalization stages in the initial and final examination 

This table provides an overview of these children’s improvement in approaching and verbally 
expressing more global ideas about quantities, numbers and interrelations indicating, thus, a more 
substantial conceptual understanding. 

Discussion 
The results presented indicate in brief that the participating children were initially able to count 
verbally up to 10, but they did not recognize more generalized interrelations between quantities or 
numbers, remaining mainly in this procedural counting. Conversely, after working in the teaching 
program that systematically encouraged them to reflect over this counting and express more 
generalized ideas related to quantities and numbers, most of these children (almost 19 out of 23) 
started developing flexibility in combining quantities and numbers, in realizing numbers’ 
relationships and consolidating several numbers’ facts. Despite the small sample that does not allow 
wider conclusions, these outcomes suggest that guiding young children to focus on dynamic and 
relational aspects of numbers and express more general ideas related to their numerical tasks could 
support decisive numerical understanding and more generalized arithmetic knowledge. 

Arithmetical learning has many approaches, but the dominance of counting tasks does not often make 
apparent whether children develop number sense, structural numerical elements or relationships, as 
this study attempted to show. Many deficiencies in the first arithmetic learning prove to cause 
difficulties to students to conceptualize the multiplicative, relational and repetitive structure of 
numerical system. Teaching approaches that encourage children to generalize seem to be required for 
numbers as they are for any other mathematical concept, since learning mathematics is not only to 
practice in situations with material, but also to reflect and draw more general ideas out of this practice   
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The goal of this study is to identify the learning trajectories that students aged 6 to 8 years old follow 
during the construction of the notion of length measurement. An instrument based on the construct of 
a hypothetical learning trajectory was designed to ascertain the different levels of understanding of 
this notion among the children. The implementation of the said instrument and the subsequent 
analysis are described. The results obtained from the study were used to situate the children on their 
predominant learning trajectory level. At the same time, the results reveal what mathematical topics 
teachers should focus on to ensure that children can move on to the next level of their trajectory and 
thus consolidate their learning.  

Keywords: Learning trayectories, length measurement, early years. 

 
Introduction 
From the standpoint of the pre- and primary school education mathematics curriculums, measurement 
is a fundamental area of content and strongly related to the mathematics used in everyday life 
(Battista, 2006; Clements & Sarama, 2009; Chamorro, 2003; Smith, van der Heuvel-Panhuizen, & 
Teppo, 2011; Antonopoulos, Zacharos & Ravanis, 2009). Nonetheless, sometimes not enough effort 
is invested in teaching length measurement formally because it is considered social knowledge that 
will be acquired by students outside school (Chamorro, 2003). 

Length measurement has the potential to connect different mathematical domains such as numeracy 
and geometry (Clements & Sarama, 2009; Smith, van der Heuvel-Panhuizen, & Teppo, 2011). It is 
also a tool without which many descriptions of a spatial type would be vague and imprecise (Battista, 
2006) and it provides a practical skill that is important in everyday life (Buys & De Moor, 2005). 

On the other hand, like Sarama, Clements, Barret, Van Dine and McDonel (2011) we believe that an 
understanding of the learning trajectory involved in length measurement gives us, as teachers, 
resources to improve teaching and learning strategies that support children’s acquisition of this 
competence. The goal of this study is to identify the learning trajectories followed by pupils aged six 
to eight years old in order to construct the notion of length measurement.  

Learning length measurement 
Research on measurement learning at an early age shows that educators place the focus on arithmetic 
(counting, comparing quantities) and geometry (constructions, shapes and patterns) rather than on 
measurement (Benz, 2012), despite the huge presence of measurement in children’s day-to-day lives. 
Copley (2006) expresses himself in similar terms when noting that measurement is an often-neglected 
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mathematics topic in the education of young children; and also, Barret et al. (2012), for whom 
measurement learning is little connected to its mathematical foundations, often meaning that 
educators miss opportunities to strengthen measurement concepts such as the idea of the unit. And as 
pointed out by Clements and Sarama (2009) mechanical learning of the notion of measurement should 
be avoided. 

Piaget, Inhelder and Szeminska (1960) define the notion of length measurement as the synthesis of 
subdivision and change of position, which includes extracting a part of the total and iterating this unit 
throughout the entire object. Measurement for Clements & Sarama (2009) “can be defined as the 
process of assigning a number to a magnitude of some attribute of an object, such as its length, relative 
to a unit” (p.163). These attributes are measured in continuous quantities so that they can always be 
divided into smaller quantities (Clements & Sarama, 2009). For these authors “length is a 
characteristic of an object found by quantifying how far it is between the end points of the object” (p. 
164). Thus, to determine the length it is necessary to first subdivide the object into equal units of 
measurement and iterate them along the object (Clements & Sarama, 2009). 

According to Clements and Sarama (2007; 2009), learning of measurement, and in particular of length 
measurement, involves the comprehension of eight concepts: (i) understanding of the attribute (of 
length); (ii) conservation (of length); (iii) transitivity; (iv) equal partitioning of the object to be 
measured; (v) units and unit iteration; (vi) accumulation of distance and additivity (the number of 
iterations indicates the space covered by the units up to a specific point); (vii) origin; and, (viii) 
relation between number and measurement. 

Hypothetical Learning Trajectories 
The construct of the Hypothetical Learning Trajectory (here in after HLT) was developed by Simon 
(1995) as part of his teaching cycle model. According to this author, an HLT is built around three 
components: a) the learning goal, b) the mathematical tasks that will be used to promote learning, and 
c) the hypotheses about the learning process. The aim is to make a prediction of how students can 
learn a certain mathematical content based on their previous knowledge and experience. 

Clements & Sarama (2009) state that children follow natural processes of development when learning 
mathematics. These developmental paths form the basis of learning trajectories. Thus, in a similar 
way to what was proposed by Simon (1995), these authors consider that learning trajectories involve 
three essential components: a) a mathematical goal; b) a developmental path; and c) a set of instructive 
activities or tasks typical of the levels of thinking of the path. They also suggest that the use of learning 
trajectories can help answer key questions concerning teaching and learning processes: the goals to 
be set; where to start; how to decide the direction of the next step; and how to achieve that next step. 

Specifically, in the case of length measurement, Clements & Sarama (2009) propose an HLT 
organized at different levels of development, with some associated instructional tasks. It is assumed 
that these levels indicate the path taken by children while constructing meanings for length 
measurement. Some learning goals defined by key aspects of the curriculums of each pre and primary 
school class level are considered in order to specify these levels. Importance is given to the fact that 
children initially have to identify the attributes of measurement and compare objects using these 
attributes. Later they must be able to order objects according to their length. As the children advance 
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in their understanding of numbers, their learning should be geared towards the recognition of 
connections between the metric and numeral systems, making measurements that imply the use of 
units and counting those units. Finally, children must be able to recognize the need to have units of 
equal length, through the use of standard units, and be able to identify and use measurement tools. 

The levels proposed by Clements and Sarama (2009) for the learning trajectory involved in length 
measurement are as follows: Pre-Length Quantity Recognizer (PR); Length Quantity Recognizer (R); 
Length Direct Comparer (DC); Indirect Length Comparer (IC); Serial Orderer to 6+; End-to-End 
Length Measurer (EE); Length Unit Relater and Repeater (RR). 

To improve children’s understanding of length measurement, it is necessary to identify how they act 
in the various situations that involve this notion. We see the HLTs as a construct that serves to verify 
this understanding and thereby provide key elements for the definition of specific actions related to 
the teaching and learning processes.  

In this study, we use the HTL construct in order to design our instrument and also as an analytical 
framework. Particularly we compare the current performance of each child with the hypothetical 
learning trajectory about length measurement. 

Methodology 
Our research uses qualitative methodology. An ad-hoc data collection instrument featuring open and 
manipulative activities was designed to respond to the research goal. The instrument was used in 
interview format with 20 students aged six to eight years old. The data was recorded audio-visually. 
The following factors were considered when defining the sample: a) Gender, there were eight boys 
and twelve girls. b) The time of the year when they were born, with six participants born in the first 
four months of the year, six in the second four months and eight born during the last four, the children 
were distributed by age, which resulted in a more homogeneous sample. c) Diversity in mathematical 
performance, we find children who are able to solve different mathematical activities and others who 
usually have some difficulty in carrying them out.  

The data collection instrument considered the components of the HLT. It consisted of seven activities 
related to the key concepts underlying measurement: recognition, comparison, ordering and iteration. 
By way of an example, Table 1 presents instrument activities 1 and 3, consisting of the goal, the task, 
the description and a series of questions that guide the dialogue during its implementation. 

 Goal Activity Description Image Dialogue 

R
ec

og
ni

tio
n 

 

Find out 
whether the 
child 
recognizes 
the attribute 
of length in 
objects.  
Assess 
whether the 
child is on 
the PR or R 
level. 
 

Discussion 
about the 
length of 
pieces of 
string 

Four pieces of strings are 
handed out, with different 
attributes: thickness, 
colour, and length. The 
idea is children talk about 
the attributes of the pieces 
of string during the activity 
and that they clearly refer 
to the notion of length. 

 

What differences do you 
observe between these 
pieces of string? Are the 
four the same? How are 
they different? Can you 
see any other features 
that are different? 
How do you say it when 
they are different in 
their “bigness? 
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C

om
pa

ri
so

n 
 

Find out 
whether the 
child can 
make 
indirect 
comparisons 
between 
objects in 
order to 
discover 
which is 
longer. 
Assess 
whether the 
child is at IC 
level. 

Comparing 
pencils with 
a piece of 
string. 

An object is placed on the 
table (notebook or box) that 
prevents the child from 
seeing both pencils at the 
same time. A pencil is 
placed on one side of the 
notebook and the child is 
asked to place his/her 
pencil on the other side. 
The child can look at and 
touch the pencils without 
moving them from their 
place. They can use any 
object they have available. 

 Can you use the piece 
of string to discover 
which pencil is longer? 
Can you use another 
object to measure 
them? 

Table 1: Data collection instrument activities 1 and 3  

The data collected came from 20 videos, one per student, lasting between 9’ 21’’ and 26’ 28’’. Each 
student was tagged with a number in chronological order. The analysis focused on the actions and 
processes performed by the children in order to situate their level (L) on the trajectory for each activity 
(Act.) carried out. Using the levels proposed by Clements and Sarama (2009), some indicators 
associated with each of the activities are described (Table 2). 

Act. L Indicators 

1 R The student is capable of identifying the attribute of length 

2 DC The student is capable of making a direct comparison 

3 IC The student is either capable of making an indirect comparison or does not do so properly, 
but he/she certainly understands the notion that two objects can be measured using a third 
one in order to know which is longer 

4 O The student is capable of ordering the five strips using length as a criterion. 

5 EE The student takes into account the origin and purpose of the objects when measuring them 
but does not show any signs of understanding that the accumulation of units of 
measurement serves to measure the total length. He/she overlaps the units of measurement, 
leaves gaps between them, or does not show an understanding of the possible subdivision 
of units of measurement 

6 EE/RR The student takes into account the origin and purpose of the objects when measuring them 
and shows some signs of understanding that the accumulation of units of measurement 
serves to measure the total length. He/she does not perform the procedures needed to carry 
out the measurement in the right way (i.e.by avoiding overlaps, gaps and unequal 
positioning of units of measurement) 

7 RR The student takes into account the origin and purpose of the objects when measuring them, 
and shows that he/she understandsthat the accumulation of units of measurement serves to 
measure a total length 

Table 2: Correspondence between activities and levels 

Once the videos were transcribed, the dialogues generated by each activity were established as units 
of analysis. The information about each student was then organized according to the following 
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factors: the activity, the unit of analysis, the graphic evidence and the researchers’ observations. At 
this point the level evidenced by the children in each unit of analysis was identified (Table 3). 

Act. Unit of analysis Evidence Observations  L 

2: 
Direct 
comparison 
of two 
pencils  

Student: This one.  
 

Lining up the ends DC 
Tutor: This one? How do you know? 
Student: Because this is the small one and 

this is the big one. Because this 
one is longer. 

Tutor: Ok, but how do you know? What 
did you do with the pencils to 
find out? 

Student: Measure them, and I saw 
(pointing to where the pencils 
are different) that this one was 
longer than that one. 

 
 
5: 
Measuring 
pencils with 
paperclips 

Tutor: Why do you put them like that, 
on the other side too? Can you 
tell me what you’re doing now?  

 
 

The student places 
them at an equal 
distance but on both 
sides. She always 
uses paperclips of 
the same size. 
 
She leaves gaps 
between the 
paperclips. The 
student does not 
take into account 
the beginning and 
the end of the 
pencil. 
 
She does not 
understand the 
accumulation of 
units of 
measurement 
because if she did 
she wouldn’t 
measure the pencil 
on both sides. 

DC
/IC
/O 

Student: That’s it. 
Tutor: That’s it? How many paperclips 

long is it? 
Student: (counts) 6. 
Tutor: 6? Ok 
Student: 1,2,3,4,5,6. 
Tutor: And why do you do it like that? 

Can you tell me? 
Student: Because I put them in 3s. 1,2,3, 

1,2,3 and that’s how I know. 
Tutor: Ok. And why have you put them 

on both sides. Wasn’t one side 
enough?  

Student: No... 
Tutor: Did you have to put them like 

that?  
Student: Yes, I had to put them like that. 
Tutor: (...) 
Student: I think it’s 6 metres. 
Tutor: 6 metres? Or 6 paperclips? 
Student Well, 6 metres I think 

7: 
Measuring 
pencils with 
a ruler 

Student: It measures a 1 and a 7.    
 

The student puts the 
pencil under the 
ruler. She lines up 
the beginning with 
the ruler.  
 
This is the only 
moment when we 
see EE. 

EE 
Tutor: A 1 and a 7. Do you know what 

number that is? A 1 and a 7? 
Student: Twenty.... seven? Isn’t it? 
Tutor: I don’t know, I’m asking you.... 
Student: 17. 
Tutor: 17 what? 
Studen: 17 metres. 

Table 3: Example from analysis instrument corresponding to student A10 
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Results 
The results of this research visualise the individual trajectory of each student and these trajectories 
provide a characterization that encompasses the whole sample. Thus, it can be seen in Table 3 that 
student A10 is capable of recognizing the attribute of length, of making direct and indirect 
comparisons, and ordering. To contrast the hypothetical learning trajectory with the real trajectory of 
each student, we drew up a two-dimensional adhoc graph that relates the activities to the levels. 

Figure 1: Real learning trajectory of student A10 in relation to the HLT 

According to Figure 1, student A10 performs the first activities (Act 1 - Act4) in consonance with the 
HLT. However, in the activities geared towards measurement levels (Act 5 - Act 7) there is no 
consonance. As shown by the data collected in Table 3 and Figure 1, we can position student A10 on 
the IC level. At this level children are able to use rulers but often show a lack of understanding or 
ability. We only find student A10 performing actions on the objects on the EE level during the last 
activity. 

It is important to clarify that the purpose of the graph contrasting the HLT with the real trajectory 
(Figure 1) is to provide a visual overview that shows where each child is situated during the 
performance of each activity. For this reason, although the transition from one level to another is not 
always the same, when drawing up the graph the levels have been positioned equidistantly. This 
makes the HLT appears to rise on a steady gradient, which is not really the case. 

In Figure 2, the results obtained by the sample are presented visually, indicating in what levels the 
students are for the set of activities. Each point on the graph represents one student’s level in each of 
the respective tasks of the instrument.  

Figure 2: Learning trajectories in the sample 
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Once the individual trajectories of the children had been established, it was observed that 70% of the 
group were either moving between the EE and RR levels or on the RR level. Only 20% showed no 
signs of the RR level, with 15% located at the EE level and 5% at the CI level. On the other hand, we 
can see that in activities 5, 6 and 7 related to the levels of measurement, the students were moving 
between the EE, EE/RR and RR levels but they did not necessarily stay at the same level during the 
performance of the three activities. In activities 1 and 4 all students were situated at the corresponding 
HLT levels. In Activity 2, all students except one were on the DC level.  

Discussion 
This study provides an overview of the group on the basis of the children’s levels and trajectories. 
All the children, except one, were situated on levels EE and RR or were moving between them. 
According to Clements & Sarama (2009) and Barrett et al. (2012) children reach the EE level of 
measurement when around six years old and the RR level when around seven. This affirmation 
concurs with the data generated by this study. The transition between these two levels is very subtle 
and for this reason we decided to divide it into two sub-levels so that we could see more clearly where 
the children were situated. 

During the analysis of the data, it was observed that children, although they are shown to be working 
mostly on one of the HLT levels, apply concepts and perform actions on the objects that correspond 
to levels considered higher. And, of course, they also apply strategies and perform actions on objects 
that belong to lower HLT levels (Sarama et al., 2011). 

Once the data was analysed, we noted that despite the fact that all the children except one were above 
the EE level, not all of them were able to cope with the challenge of transitive inference. Although 
we are aware that the study is limited by the performance of only one activity linked to the IC during 
data collection, and the fact of working with only 20 children, in our case we suggest the following 
explanation: the EE level is either usually reached a little before the possibility of transitive inference, 
or work on specific mathematical experiences related to this inference is needed prior to its 
development. In this respect Sarama et al., (2011) conclude in their study: “(...) children achieved the 
Indirect Length Comparer level of thinking just prior to the End to End measurer level” (p. 678).   

In this study we found students who, despite being mostly on the RR level, were not able to make 
explicit transitive inferences. This finding also supports the idea that children do not need to acquire 
conservation, nor the concept of transitivity, in order to acquire certain notions about measurement 
(Hiebert, 1981; Clements, 1999, cited by Sarama et al., 2011). 

It is noteworthy that in this type of study is relevant to consider the influence of the interaction 
between the child and the tutor, as it could make a difference in the evaluation of actions in the various 
activities. In some cases, this could be considered a limitation of the study. In our case, the tutor who 
participated is a teacher who knew the children and was involved in the research. 

A knowledge of the Hypothetic Learning Trajectory and its levels can enhance the teaching of length 
measurement (Barrett et al., 2012). This study showed us where the six-to-eight-year-olds in our 
sample were situated and which mathematics topics demand greater attention to enable them to move 
on to the next level of the trajectory and thereby consolidate their learning. 
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Chances and obstacles of ‘indirect’ learning processes  
in situations with preschool teachers  

Anna-Marietha Vogler 
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From a co-constructive perspective, interactions are key variables for learning processes. In the 
context of learning preschool mathematics, these interactions are often characterized by ‘indirect’ 
negotiations of mathematical meaning: while, on the surface, everyday problems are discussed, 
‘mathematically rich contents’ are nevertheless involved and negotiated latently in these interactions. 
The following paper focuses on such interactions that emerge in situations with preschool teachers 
and children in self-designed learning situations in German “Kindergärten”. I will point out how 
different forms of interactive support entail different opportunities for the children to participate in 
the interaction and especially in the ‘mathematically rich contents’ of the ‘indirect’ learning 
situations.  

Keywords: preschool teacher, interaction, indirect learning processes. 

Introduction 
For children, entering primary school is not the first time when they learn mathematics. It is rather 
the preschool or the family context in which children collect first experiences with mathematics. 
Compared to a time when toddlers and infants were seen as mostly incapable of learning mathematics, 
today, the appraisement changed to the concept that mathematics is - besides the early learning of the 
mother tongue - an important topic to learn and that the early years are a sensitive period for learning 
it. In addition to the early learning at home, learning mathematics in preschool has been a field of 
increasing attention over the last decades. While learning at home with parents and siblings is surely 
a formative learning context, learning in kindergarten is also an important factor for children’s 
learning biographies: it is the first time of institutional learning for young children and also builds a 
crucial basis for future schooling (Claesens & Engel, 2013). Hence, the question arises regarding how 
mathematics learning can be integrated and supported in preschool to make use of this ‘potential’.  

From an educational point of view, preschool teachers play an important role in supporting young 
children’s leaning. Preschool teachers are major attachment figures as well as “more competent 
others” (Vygotsky, 1979) who support children in their interactive learning processes. For this reason, 
the following paper focuses on these interactions between preschool teachers and children. The 
analyzed interactions take part in the self-designed learning situations of the preschool teachers. But, 
while some researchers observe, analyze and evaluate teaching and the quality of preschool teachers 
acting and content knowledge, below, the interplay and the negotiation of meaning between the 
preschool teachers and the children is centered. There is a particular situation on which this paper 
focuses in which so-called ‘indirect’ learning processes take place and mathematical meanings are 
not explicitly negotiated, but rather implicitly involved within the interaction. This focus is chosen 
because indirect learning can be considered as characteristic for co-constructive learning processes 
since it conforms with ‘discovery learning’. But, missing explicitness within the process of 
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negotiation of meaning cannot only be seen as characteristic; from some perspectives, it can also be 
perceived as an obstacle for learning. On the one hand, it can be obstructive if learners are not able to 
interpret the ‘hidden’ meaning and, as a result, cannot participate in the learning process. On the other 
hand, it is also hindering if the “more competent other” is not able to recognize what the learner 
associates with the interaction. Hence, it seems fruitful to examine to which extent mathematical 
interactions between preschool teachers and children are characterized by missing explicitness and 
whether this form of indirect interactive learning is really an obstacle for learning. An important 
consideration is the kind of supportive guidance from preschool teachers that helps children to 
discover also ‘hidden’ meanings. 

Preschool learning and curricula in Germany 
In response to the low performance of German learners in international comparative studies such as 
PISA and the already existing curricula for preschool learning in other counties, Germany has also, 
since the early 2000s, established different ‘curricula’ for “Kindergärten” (meaning: preschool) and 
“Kindertagesstätten” (meaning: day care centers) for children 0 to 10 years in each of its states. 
Concerning mathematics, there is more or less concrete advice regarding how to ‘teach’ different 
mathematical contents. Co-constructive learning is picked out as a central theme for all contents in 
all these curricula. Thus, even mathematics should be learned within situations where children are 
actively helping to shape the interactional process. Furthermore, several studies could prove that 
children develop a sustainable understanding of elementary mathematics by being integrated in such 
co-constructive learning processes.  

Theoretical Framework 
Co-constructive learning processes within the preschool context 

Under the co-constructive approach, interactions are ‘key variables’ for learning (mathematics). 
Within these interactions, children actively construct meaning by themselves in interplay with others. 
From this perspective, learning is conceptualized as the increasing autonomy of participation within 
interactional practice (Sfard, 2008). Therefore, the more or less active participation in processes of 
negotiation about mathematical meaning gives learners the opportunity to also recognize 
mathematical contents as the interactive rules for presentation and interpretation. Concerning the 
learning of mathematics, the children should participate in interactions that can be characterized as 
‘mathematically rich’ to develop mathematical meaning that is full of relations and outlives the 
situational context. Especially in preschool interactions, these mathematical meanings are not 
necessarily negotiated directly; rather mathematics “is, as knowledge of abstract relations, not directly 
accessible” (Steinbring, 2015, p. 281), and mathematical meaning is developed in a process of the 
increasing ‘mathematization’ of situated contexts. For primary school classrooms, Maier and Voigt 
(1989), were able to show that, in most situations, the teacher keeps the interaction going on rather 
than explicitly negotiating mathematical (complex) meaning. Even in preschool situations, teachers 
and children seem to negotiate mainly every day meanings like how to tidy up or how to play with 
different materials. While, on the surface, every day meanings are discussed, mathematically rich 
meaning is sometimes nevertheless (latently) involved. For mathematics, this conclusion seems to be 
obvious because, in some cases in mathematics, the concrete and every day meaning already contains 
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the general and abstract mathematical meaning. Hence, the concrete meaning superimposes the 
abstract. The result is a ‘double layer structure’ where learners can participate on both levels of the 
interaction – the concrete situational and the abstract mathematical meaning. However, successful 
mathematical learning can be characterized as an increasing participation on the (latent) abstract level 
of meaning – only, of course, when there is mathematical content contained on this level. But, which 
level of meaning is accessible for the learner depends on her or his subjective interpretations. 

Indirect learning mathematics in the early years 

Krummheuer (1997, p. 9) calls learning processes, which are characterized by this ‘double layer 
structure’ of the process of negotiation of meaning, “indirect learning processes” (Krummheuer, 
1997, p. 9). In his approach of “the narrative character of learning”, he stresses that the indirect 
learning processes are characteristic of early learning in primary school. Krummheuer (1997) 
revealed that indirect learning processes are sometimes obstructive for learning because learners and 
teachers must have high interpretation competences to cope with this kind of learning (Krummheuer, 
1997, p. 95). For mathematics learning in secondary school, other researchers also found evidence 
for cumbersomeness in indirect learning processes (e.g. Strähler-Pohl, Fernández, Gellert & 
Figueiras, 2014). Oevermann, Allert, Kunnau and Krambeck (1979, p. 384) more generally describe 
that children in their early ages often do not interpret meanings which are socially constructed and 
latently involved in interactions; rather, they perceive the meaning of interaction as naturally 
undistorted, and, so to speak, affectively truthful. In this synopsis on several studies on indirect 
learning processes, the following questions emerge:  

(1) whether early mathematical learning in preschool is also characterized by mainly indirect 
processes of negotiation of meaning, and  

(2) whether this kind of learning is a necessary obstacle for learning because it consequently 
drops children out from early learning mathematics.  

From the findings above, the demand also evolves to analyze how preschool teachers can support 
children in indirect learning processes. 

Methodology  
To analyze the different direct and indirect processes of negotiation of meaning, a two-step  analysis 
is implemented. In order to analyze the explicit processes of negotiation of meaning and the included 
opportunities of the children to participate, (1) the interactional analysis is used (e.g. Krummheuer, 
1997). For the not explicitly negotiated but latently involved meanings, an extension of this analysis 
is needed, because interactional analyses mainly take situational processes into account that generate 
“taken as shared meanings” (Krummheuer, 1997). Thus, mathematical concepts or processes that are 
not negotiated explicitly within the situation cannot be analyzed in a sophisticated manner. Therefore, 
(2) the interactional approach is enlarged by elements from the objective hermeneutical approach as 
developed by Oevermann et al. (1979). This approach focuses on the “latent rules of the interactional 
system” that are characteristic of the indirect learning processes on which this paper focuses. Hence, 
the enlargement also provides the opportunity to even reconstruct meanings that originate from 
individual ‘fields of experiences’ (Bauersfeld, 1983). By this means, it is possible to also reconstruct 
the ‘hidden’ meaning of the interaction that originates from one of the participants of the interaction. 
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For this purpose, (linguistic) “markers” within the interaction are taken into account. These markers 
are words or phrases that are used by the recipients to interpret the meaning of a communication 
(Heller, 2015). The final ‘product’ of that analytical process is a reconstruction of different levels of 
interpretational perspectives that emerge in the interactions, which are summed up in the following 
matrix (e.g. Figure 1). With the help of this matrix, it is possible to determine (1) meanings that are 
latent, which means they are not explicitly negotiated and interpreted in the interaction and only 
reconstructed by the so-called markers, (2) explicitly negotiated meanings, called manifest, that are 
interpreted by the participants in the situation, as well as (3) manifest meanings that are negotiated 
and that have trans-situational origins, and (4) latent meanings that can be only understood with the 
help of knowledge outlying the situational process and stems from a wider knowledge background. 

 situational trans-situational  

latent  
meanings 

situational,  
latent fields of experience 

trans-situational,  
latent fields of experience 

manifest  
meanings 

situational 
manifest fields of experience 

trans-situational 
manifest fields of experience 

Figure 1: Representation of the different levels of interpretational perspectives 

The situational and also trans-situational latent levels of interpretational perspective are both levels 
of the interaction that are more or less implicit. In the following sections, I will summarize how these 
levels of interpretational perspectives can be found in a situation with preschool teachers and how 
indirect learning processes take place in these situations.  

Empirical Results - Obstacles and chances of indirect learning processes 
The presented empirical data is part of the erStMaL study (early Steps in Mathematics Learning) at 
the IDeA center (Individual Development an Adaptive Education of Children at Risk)1. Within the 
study, the research team encouraged 25 preschool teachers from different “Kindergärten” to develop 
and implement mathematical situations with groups of two or four children by themselves each year 
(from 2009 to 2012). Therefore, the teachers were asked to create the situations in reference to one 
of the five mathematical domains. The situations are videotaped and transcribed. One of these 
situations is presented below. The situation can be seen as a paradigmatic example of ‘successful’ 
learning situations in preschool – even if that is not directly obvious. 

“Which are belonging together? … Compare!” – Increasing autonomy through constancy of 
the level of latent meaning 

The analyzed situation takes place with four children from a kindergarten in Germany: Hannah (3.3 
years), Michael (3.7 years), Bettina (4.7 years) and Martha (5.3 years); and their preschool teacher 
Nicola. The materials which are used include two green paper circles with different diameters (0.5m 
and 1.0m) and a burlap sack which is filled with ten different yet pairwise similar objects - in each 
case in two different sizes. In the following described scene, two nails (3cm and 5cm) and two 
building blocks (15x7x4cm and approx. 5x3x2cm) are mentioned. The blocks, as well as the nails are 
lying together with the other, yet pairwise similar objects on the two paper circles (e.g. Figure 2). 
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During the time of the situation, the children are sitting on a carpet together in front of the paper 
circles with the teacher.  

 

 

 

Figure 2: Arrangement of the objects on the paper circles 

At the beginning of the scene, the kindergarten teacher Nicola asks the children to find two things 
that belong together. She asks: “And which are belonging together?”. After a girl, Bettina, pointed at 
two building blocks, Nicola continues with her instructions. 

Scene 1 

456 Nicola: Take a look Bettina. (.) Put two things together. Here we make a line.2 
457  pointing with her finger in a line right beside the paper circles parallel to the 

edge of the carpet   … 
459  Start right here. 
460  pointing at one point near the edge of the carpet 

In line #456, Nicola instructs Bettina to locate (the) objects on the edge of the carpet where they are 
separated from the paper circles. She says that they have to be located in a line. She marks with a 
gesture the starting point of the array and the accompanying expression: “start right here” #459.  

469 Bettina: placing the bigger pin to the place that is marked second and the  
  smaller pin to the place that is marked first by the nursery teacher 
470 Nicola: Exactly! This way.   
471  adjusts the pins on the carpet the way that they are lying parallel to the edge 

of the carpet and the heads of the pins are abreast  
472  Who wants to search for two things that belong together now? 

When Bettina lays down the nails #469 on the positions marked by Nicola in #460, the teacher 
corrects the arrangement by putting the nails side by side until the nails are parallel to each other and 
the carpet’s edge. She additionally confirms the successful ending of the task through her expression 
“Exactly! This way!” in #471 and asks the kids who would like to find the next objects that belong 
together in #472. In the next scenes, the kids position pairs of objects on the carpet in a line with the 
first two nails. Later on, the children compare the objects in the different lines and the teacher Nicola 
accompanies these interactions linguistically using phrases like ‘which is the biggest’ and other 
superlatives that underline the process of comparing.  

Scene 2 

583 Nicola: What else can we do with it? Does anybody have an idea? 
584 Martha: Compare. 
585 Nicola: Compare! How would you do that, Martha? (…) 
586 Martha: There you can see it. It is beautiful like that. 
587 Nicola: mh? 
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588  turning to Martha 
589 Martha: It is beautiful like that. … 
592 Nicola: The way it is lying here or different? (..) 
593 Martha: The way it- 
594 she squirms 
595 Bettina: is lying there. 
596 Nicola: The way it is lying here? 
597 Martha: mh! 
598 Nicola: okay! mhhh (5 sec) now (.) which is the absolutely biggest of the things? 

In that scene, Nicola asks the children about the use of the two ‘lines’ of objects lying on the carpet. 
Martha specifies the use as ‘comparing’ #584. But, after Nicola asks for the way to compare, the girl 
astonishingly replies that one can see it because it is beautiful #586. And the girl maintains her 
opinion, although Nicola asked again – probably to change Martha’s mind. Bettina even agrees with 
Martha #595. At the end of the episode, Nicola modified her question and explicitly asked for the 
biggest ‘size’ #598.  

Reconstruction of the different levels of meaning 

Nicola’s last turn, in line #598, particularly provides evidence that there is also a latent meaning 
involved in the interaction in Scene 2, as well as in Scene 1. On the surface, it could be interpreted 
that Scene 1 deals with putting nails on a carpet, but, on the latent level of the interaction, especially 
in Scene 2, it is understood that the preschool teacher Nicola introduces an early concept of ‘size’ by 
directly comparing objects of equal shapes and different sizes. The latent meanings are also revealed 
within Scene 1. This can be mainly interpreted from the marker in line #472. Based on this marker 
and the interpretations from the other scene (amongst others, #583-598), different levels of the 
negotiated meaning can be reconstructed. They are presented in the following matrix. 

situational trans-situational 

latent 
meanings 

One big and one small pin from the paper pad 
should be placed on the carpet at a time 

Two objects of similar shape and different size are 
building a pair and should be placed to visualize the 
exact geometrical difference in size in order to 
enable a direct mathematical comparison 

manifest 
meanings 

The pins are placed on the carpet 

Marker: Nicola adjusts the pins on the carpet so 
that they are lying parallel to the edge of the carpet 
and the heads of the pins are abreast #471 

Figure 3: Representation of the different levels of negotiation of meaning in Scenes #456 - 472 

Three of the latent and manifest levels in Scene 1, from #456 to #472, can be reconstructed: on the 
manifest and situational level of interpretation, Nicola and the kids ostensibly put some objects in 
order, but, on the latent level, it is obvious that, within the interaction, the preschool teacher also 
tagged on mathematical issues concerning size. Thereby, an interpretation of these mathematical 
themes is possible on the situational level. Here, it is perceptible that two similar objects are belonging 
together because they are equal in shape and different in size. Together with the interpretations of the 
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second scene, from #583 to #598, the mathematical theme is additionally enlarged. The preschool 
teacher Nicola also addresses direct comparisons and size. This interpretation is only possible with 
the knowledge about the mathematical concepts.  

Participation and Support 

When looking at the participation of the children, it becomes apparent that the girl, Bettina, first 
participates on the level of manifest meaning where the (right) placement of pins is negotiated - 
although she could interpret the latent meaning as well. In Scene 2, it is Martha who describes the 
use of the lines and manifests the meaning, which is also latently involved in Scene 1. Additionally, 
Martha characterizes the arrangement of the objects in two lines (side by side) as beautiful. Thereby, 
she introduces a further aspect to the interaction that can be interpreted as profound from a 
mathematics perspective: one could say she described a kind of mathematical well-ordering with 
words of the aesthetic kind (e.g. Sinclair, 2006) when she says the lines can be compared because 
they are beautiful #586. As the second scene shows, the girl Martha, and maybe also Bettina, 
participate as a result of the ‘rich’ mathematical contents of the interaction and rather manifest them 
over time. In addition, they contribute some own mathematical ideas in the form of the aesthetic of 
the lines which are to be compared. It can be assumed that the increasing autonomy of the children 
emanates from the coherence of latent meaning throughout the situation, which is maintained by 
Nicola. She supports the children by consequently focusing on the size of the objects and the direct 
comparison. Unfortunately, she does not recognize Martha’s idea #586. Further, it can be supposed 
that the ‘double layer structure’ of the indirect process of negotiation of meaning, which can be 
analyzed in Scene 1 in Figure 2, is supportive because it helps the children to participate over time. 
As does Bettina, for example, the children get the opportunity to be active on the manifest level of 
the interaction on which every day meanings are negotiated, while they can also interpret the latent 
meanings which are more abstract and maybe ‘hard’ to understand. In the course of the ongoing 
situation, a bunch of markers open several opportunities for the child to participate on more than just 
the every day level.  

Discussion 
The aim of this paper was to examine whether learning processes in preschool situations with teachers 
and children can be characterized as ‘indirect’ and whether that has to be seen as an obstacle for the 
participation of children. While the indirect processes of learning in the context of school are seen as 
repressive for learning (e.g. Strähler-Pohl et al., 2014), the analysis of the situation provides evidence 
that indirect learning in preschool situations can be seen as a chance for children to participate and 
‘learn over time’. Crucial for the success of this learning over time is a ‘double layer structure’ of 
every day meanings and abstract mathematical meaning. Thereby, especially the latent and abstract 
mathematical meaning has to be coherently introduced throughout the whole situation. Thus, the 
learners can discover the mathematics and mathematize their everyday experiences over time. By 
means of such a ‘supportive’ structure, maybe even ‘struggling’ learners could have the opportunity 
to participate (somehow) within the interaction and recognize further latent meanings later on. Of 
course, that structure also involves risks for the learning processes of young learners, because they 
can be unable to perceive the meaning of the markers that lead them to the further implicated 
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meanings, as many studies observe. Further analysis should show, how other interactional aspects 
could also support the interpretation process of young leaners. 

Notes 
1. For more information, please visit: www.idea-frankfurt.eu 

2. All characteristics of the spoken language (mistakes) are mentioned in the translation of the transcribed sequence. 
Pauses within the speech are coded using a dot for every second in round brackets. All names were made anonymous. 
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Introduction 
Numerical magnitude understanding by young children, ways of stimulating this f.e. with intervention 
programs and their impact on future mathematics achievement, started in cognitive neuropsychology, 
is now a virulent field of research in the didactics of mathematics. Some others like pattern and 
structure assessment (Mulligan et al., 2015) or the role of executive functions in mathematics 
achievement (Van Dooren & Inglis, 2015) are getting more attention recently, linking mathematics 
education and neuropsychology again. Neuropsychological evidence suggests that abilities of 
processing spatial information play a significant role in grasping magnitudes and emphasize the 
potential benefit of promoting their development early on (Verdine et al., 2014). However, studies 
have still to attest a beneficial value of trainings for spatial abilities. The current study focuses on the 
development and evaluation of such a training program for preschoolers. The training was developed 
on the bases of two trainings designed for children with constructional apraxia (Schroeder, 2015; 
Muth et al. 2001). Constructional apraxia is a visuomotor disorder with deficits in perceiving the 
extrapersonal space and building/drawing objects (Hanser, 2000). Tasks within these trainings focus 
on the perception of shapes, angles, lengths and spatial axes, cognitive processes like mental changes 
in perspective, spatial orientation and navigation as well as the construction of 2- and 3-D objects. 
Materials and tasks were partially derived, adjusted in difficulty and modified to fit in a coherent 10-
days training with 27 consecutive tasks. Afterwards, the training was reviewed by preschool teachers, 
revised and implemented for evaluative purposes.          

Methods 
Six daycare centers with 60 preschoolers (31 males; ages from 5.5 to 7.2 years; Mage = 6.2) 
participated. Thirty-seven children received the training (EG; experimental group), while 23 children 
resumed their normal day routine (CG; control group). Before and after the training, performance 
tests (sustained attention: DL-KG, numbers and magnitudes: ZAREKI-K, motor skills: M-ABC-2, 
intelligence: CFT) were applied to measure training effects. In addition, preschool teachers were 
asked to evaluate the improvements of each child during this period on targeted skills (spatial 
perception, spatial imagination, math skills, fine and gross motor skills, social skills) and not targeted 
skills (artistic skills, verbal skills) on stepless scales between “degraded” and “improved”. For further 
improvement of the training, teachers rated each task on stepless scales between “adverse” and 
“beneficial” for target skills. All stepless scales deliver values between -5.0 and +5.0. They also 
assessed difficulty, excitement and entertainment value of each task as indirect moderators of general 
learning success (e.g. via motivation and attention) on 5-point Likert scales.  
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Results 
MANOVAs were applied to reveal training effects (EG > CG) on improvement ratings A significant 
effect of the training was found for target skills, V = .88, F(6,5) = 6.62, p =  .03. The univariate F 
tests showed a significant difference between EG and CG for spatial perception, F(1,10) = 9.93, p =  
.01, η2 = 0.49 and spatial imagination, F(1,10) = 6.11, p =  .03, η2 = 0.38. Due to unevenly distributed 
missing values, pre-post improvements were contrasted between EG and CG with t-Tests, revealing 
benefits for intelligence (CFT; t(42) = 1.81, p = .04) and a tendency for higher improvements of 
sustained attention (DL-KG; t(52) = 1.47, p = .07) in the EG. 

On average, the training was rated as beneficial (+2.8) by preschool teachers. Each task was 
considered beneficial (> +2.5) for at least one target skill. The difficulties of 9 tasks need to be 
increased. Ratings of excitement were mainly mediocre. The entertainment value of 19 tasks was 
rated positive.          

Discussion 
Overall, beneficial effects of the training were reported by subjective teacher ratings for spatial 
perception and imagination. Furthermore, intelligence increased more strongly in children with the 
training. Considering the relation between intelligence, working memory and mathematical abilities 
(Alloway & Alloway, 2010) this training-related increase might also be moderated by an increase in 
math skills. Developing a specific diagnostic tool for spatial abilities as well as applying follow-up 
tests might be promising to reveal objectively measured benefits for targeted skills. As one main goal 
of the current survey, feedback revealed several approaches for improving the effectivity of the 
training and thereby paving the way to the next phase of the evaluation. 
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Introduction 
The TWG14, University Mathematics Education (UME), was launched in CERME7 (Nardi, 
González-Martín, Gueudet, Iannone, & Winsløw, 2011) showcasing the fast growth of research in 
UME and also the specificity of the research context. In particular, the abstract, formal nature of a 
significant portion of the mathematical content; the absence of national curriculum guidelines, and 
therefore the great variations in organization and practices across institutions; the general lack of 
professional development or of systematic preparation for teaching; and, the volume of content to 
learn in a short period of time, and the degree of autonomy expected from the students and faculty. 
The consolidation of this research area, both outside and inside CERME, was recognized by the 
ERME community in inviting the first, three-time leader of this TWG to present a summary of 
UME research as a CERME10 plenary lecture (Nardi, 2017). Moreover, an ERME Topic 
Conference, International Network for Didactic Research in University Mathematics (INDRUM) 
was launched in 2015 with two successful conferences (INDRUM2016 and INDRUM2018) since 
then, with the first one leading to a special issue in the International Journal of Research in 
Undergraduate Mathematics Education, the new journal in the UME field. Future developments 
include a forthcoming book on Research and development in University Mathematics Education 
(Durand-Guerrier, Hochmuth, Nardi, & Winsløw, in preparation). 

The number of papers submitted to TWG14 has been increasing since its inception. This year, we 
received 52 paper and 13 poster submissions, with 35 papers and 15 posters presented at the 
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conference and published in the proceedings. Having received the largest number of papers in 
CERME10 and the second largest in CERME11, the number of papers led to the decision to split 
TWG14 into two isomorphic groups, TWG14A (18 accepted papers) and TWG14B (17 accepted 
papers) that ran in parallel; we held some common sessions during the conference. Each of the 
groups covered the same range of areas of research pertaining to UME, therefore the isomorphic 
label. The decision was prompted because splitting thematically would have resulted in losing 
perspective on the complexity of the issues that participants wanted to address. Furthermore, 
because the call for papers was open to a range of themes it would be unfair to assign contributions 
to a new group that might not align with the authors’ original aim. This introductory paper 
summarizes the works presented in both groups organized according to the discussed themes, as 
well as the common discussions. 

Some themes continue work from CERME10. For instance, we received a large number of papers 
focusing on students’ learning of specific topics (10 papers), such as calculus, reasoning, and proof. 
We accepted seven papers proposing interventions, whereas in CERME10 we received five papers; 
however, relative to CERME10, the number of papers about teachers and their practices and about 
mathematics for non-specialists decreased from ten to four and from seven to two, respectively. We 
had two new themes: one on curriculum and resources and one on transition. In the next section, we 
briefly present the seven themes used to organize the work this year, with examples from paper 
contributions. It is important to note that many papers could fit in more than just one theme; this 
classification helped us to structure the presentations and the discussions during the sessions. 

Themes and paper contributions 
Students’ learning of specific topics 

Ten papers were classified under this theme: Aaten, Roorda, Deprez, & Goedhard; Gabel & 
Dreyfus; Herrera Alva, Figueroa, & Aguirre de la Luz; Kondratieva; Kontorovich; Lankeit & 
Biehler; Malaspina & Torres; Bašić & Milin Šipuš; Mkhatshwa; and, Pinto & Cooper. 

Calculus was prominent in several papers (Aaten et al.; Herrera Alva et al.; Lankeit & Biehler; 
Malaspina & Torres; Mkhatshwa), with an increasing interest in two-variable calculus (Malaspina 
& Torres; Mkhatshwa) and analysis (Kondratieva). Under-researched topics were also present: 
differential geometry and its connections with two-variable calculus (Bašić & Milin Šipuš) and the 
use of conventions (Kontorovich). We also received papers addressing reasoning and proof (Gabel 
& Dreyfus; Pinto & Cooper). 

Some of the papers discussed in this theme also concerned questions related with teachers and 
teaching. For instance, an intervention to improve in-service teachers’ comprehension of 
discontinuity in one or two variables was also presented (Malaspina & Torres), as well as studies 
about the challenges in providing feedback that is actionable by students when revising a proof 
(Pinto & Cooper) or when teaching proofs (Gabel & Dreyfus). These last two studies raised 
questions in relation to the teaching of, and communication about, proof relevant to other themes 
we discuss below. 
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Resources and curriculum 

Five papers were discussed in this theme: Bosch, Hausberger, Hochmuth, & Winsløw; Howard, 
Meehan, & Parnell; Pepin & Kock; Sabra; and, Viirman & Jacobsson. 

From a student perspective, but also in relation to lecturers’ intentions, Pepin and Kock explored 
what type of resources first year engineering students use and how they use/orchestrate these 
resources for their study of mathematics. They found that students’ type and use of resources varied 
in relation to the type of course and the lecturer’s expressed expectations. In relation to assessment, 
Howard et al. discussed student engagement with resources and continuous assessment in a 
mathematics course for business students. 

Some of the papers studied the relation of university mathematics instructors with resources. For 
instance, Viirman and Jacobsson put forward the role of the mathematical content in the didactical 
choices made by university mathematics lecturers in course design; they highlighted how 
differences in the epistemological character of the topics to be taught may have affected the course 
design. Similarly, Sabra showed how different teachers with different training may focus on 
different aspects of the content to teach using some resources. 

Finally, Bosch et al. presented a study about the didactic transposition processes that lead to the 
creation of undergraduate mathematics programmes, which fills a gap on the rationale behind the 
creation of such programmes. Overall, the papers discussed in this theme show how the use of 
resources is related to learning and teaching practices, a question that was discussed in the other 
themes as well. 

Transition 

Four papers were discussed in this theme: Bampili, Zachariades, & Sakonidis; Bergsten & 
Jablonka; Doukhan & Gueudet; and, Pinkernell. 

Different aspects of transition were present in these papers. For instance, Doukhan and Gueudet 
studied praxeologies in pre-university and university courses regarding the notion of random 
variable; they showed that the content learned in secondary school may not prepare students for 
tertiary courses. Regarding institutional support, Bampili et al. showed how institutional support (or 
the lack of it) at university can influence the trajectories of novice students. Furthermore, Pinkernell 
reported on a frame (WiGORA), founded on five characteristics of understanding mathematics, for 
supporting students’ transition towards university mathematics. 

Transition towards and within university courses has been investigated in the last years through 
several lenses. Bergsten and Jablonka presented a review of literature concerning the secondary-
tertiary transition, referring to five theories. Their review evidenced that, while there is a move 
towards socio-cultural theorizing, some dimensions pertaining to social issues still appear under-
researched.  

Literature on transition addresses, in many cases, students’ challenges. This calls for intervention, 
and some specific examples were discussed in the following theme. 
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Interventions 

Seven papers were discussed in this theme: Feudel & Dietz; Florensa, Barquero, Bosch, & Gascón; 
Ghedamsi & Lecorre; Hochmuth, Schaub, Seifert, Bruder, & Biehler; Kuklinski et al.; Thomas, 
Jaworski, Hewitt, Vlaseros, & Anastasakis; and, Uysal & Clark. 

A relatively recent approach to constructing interventions—framed by the Anthropological Theory 
of the Didactic (ATD)—is the study and research paths (SRPs); SRP is a specific form of inquiry-
based intervention. Florensa et al. discussed ten years of SRPs implemented at university level, 
showing their utility as a methodological tool for the systematic design of interventions. Other 
interventions included the implementation of a coaching program to support conceptual learning in 
a first-year mathematics course (Feudel & Dietz) or innovative lectures that foster more social 
interactions and student engagement than traditional ones (Kuklinski et al.). These studies 
investigated the impact of the interventions on student engagement. Finally, Uysal and Clark 
reported on the use of history in learning mathematics and its potential to support mathematical and 
emotional aspects of students’ transition from high school to university. 

On a more theoretical level, Ghedamsi and Lecorre compared and contrasted the Theory of 
Didactical Situations (TSD) and ATD with the aim of combining them in the design of a teaching 
intervention on real numbers and sequences. Many papers presented in this theme were related to 
other themes. Hochmuth et al. presented the structure of a diagnostic and evaluative test that helps 
students decide about what bridging courses are more appropriate for them; this paper has 
connections to the transition theme as well. Thomas et al. presented a project involving a bridging 
module, and showed that student-partners in task design furthered their own understanding of the 
topics (complex numbers) and developed didactical insights when designing mathematical tasks for 
others; this paper has connections to the transversal issue of collaborations in UME. 

Students’ identity and experience 

Three papers were discussed in this theme: Thoma & Nardi; Toor, Mgombelo, & Buteau; and, 
Voigt, Rasmussen, & Martínez. 

Students’ experiences were seen by Thoma and Nardi in relation to their participation in the 
mathematical discourse. They used the theory of commognition to study students’ substantiation of 
claims in exam scripts, in a first-year course called “Sets, Numbers and Theory.” They 
demonstrated that students’ participation in mathematical discourse, at least in the exam, was 
mostly ritualized. On the other hand, Toor et al. studied the experiences of post-secondary 
mathematics students learning to use programming as a computational thinking instrument for 
mathematics. They argued that identity is essential to the development of productive dispositions in 
learning to program for mathematics investigation and modeling. The notion of identity was central 
in the work of Voigt et al. as well. Adopting a sociocultural perspective and the notion of figured 
world, they showed how three different variations in a calculus course can have an impact on a 
student’s trajectory and relationship with mathematics. 
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Teachers and teaching 

Four papers were discussed in this theme: Costa Neto, Giraldo, & Nardi; Mali, Cawley, Duranczyk, 
Mesa, Ström, & Watkins; Mesa, Duranczyk, Watkins, & AI@CC Research group; and, Stewart, 
Epstein, Troup, & McKnight. 

The involvement of and the tension between different communities in relation to the teaching of 
mathematics was addressed by Costa Neto et al. Using a re-storying methodology, their study 
examined disputes between mathematicians and mathematics educators in Brazil over the 
curriculum of a pre-service teacher education program. Teaching at the post-secondary level is the 
focus of Mesa et al. who describe the development of an instrument for the evaluation of 
community college algebra instruction, Evaluating the Quality of Instruction in Postsecondary 
Mathematics (EQIPM), through the analysis of video recorded data that include codes for student-
content, instructor-content and instructor-student interactions. Specifically, Mali et al presented two 
of the twelve characteristics of instruction included in EQIPM: Instructors Making Sense of 
Procedures, and Student Mathematical Reasoning and Sense Making. Although these 
characteristics can contribute to the quality of instruction, the authors showed that exemplary 
instances of instruction with these characteristics were relatively rare. Finally, Stewart et al. 
addressed the work of a mathematician preparing his course on eigenvalues and eigenvectors, 
showing how the use of some didactic constructs may be useful for the mathematician to organize 
content and to reflect on his practice. 

Use of mathematics by non-mathematicians 

Two papers were discussed in this theme: González-Martín & Hernandes-Gomes and Tetaj & 
Viirman. 

Artigue, Batanero, and Kent (2007) stated ten years ago that the study of issues related to 
mathematics as a service course would certainly need the use of sociocultural approaches. This is 
the case of the two papers discussed in this theme. For instance, González-Martín and Hernandes-
Gomes studied the teaching of mathematics to future engineers with an institutional perspective 
based on ATD. Using textbook analysis, they compared how the integral is taught in a calculus 
course and in a mechanics of solids course for engineers. The authors identified a rupture in the 
study of a similar task (the sketching of the graph of an antiderivative), likely to prevent students 
from using their calculus knowledge in professional courses. Tetaj and Viirman used the 
commognitive approach to analyze the mathematical discourse of undergraduate biology students. 
Their results showed students’ tendency to develop a ritualized approach, as well as their 
difficulties to mathematize a biological phenomenon; their lack of familiarity with relevant 
construction routines may prevent them from developing abilities to deal with certain problems. 

Transversal issues addressed in plenary discussions 
Resources in university mathematics education 

Research on resources and their use in UME is growing, with works investigating the use of 
textbooks (e.g., González-Martín, Nardi, & Biza, 2018; Mesa & Griffiths, 2012) and technology 
(e.g., Lavicza, 2010). Some authors consider a general concept of resource, as anything likely to re-
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source the activity of a teacher (e.g., Gueudet, 2017) or a student (e.g., Gueudet & Pepin, 2018). 
Since CERME10, TWG22 has been dedicated to studies related to the use of resources in 
mathematics education, but, in TWG14, some papers explicitly or implicitly addressed resource use 
and analysis of resources. For instance, the design of interventions is linked to the design of specific 
resources and the teaching of mathematics for non-specialists uses particular resources. The 
discussions on this topic in TWG14 raised several questions. Choosing an appropriate definition of 
resource is a first complex step. Should this definition encompass mathematical knowledge, 
professional knowledge (in the case of teachers), or affect? Different definitions may be needed 
depending on the question studied. The question of the use of resources for the research activities of 
the lecturers, as well as lecturers’ interactions (or absence of interactions) with resources for 
teaching also requires further study. 

University mathematics: teachers and teaching 

Relative to school settings, research on teachers and teaching is less common in UME (e.g., Speer, 
Smith III, & Horvath, 2010). In contrast, CERME has three groups dedicated to teachers and 
teaching (TWG18, TWG19, and TWG20), four if one counts assessment (TWG21). The growing 
interest of UME in this area is evidenced in our TWG14, which discussed some of the challenges of 
working at the intersection of university mathematics teaching and research in mathematics 
education (RME). To begin with, the conception of what it means to know mathematics at 
university may be quite different from conceptions that are common in pre-tertiary RME. As a 
result, the models of university-level teaching may not be consonant with theoretical models and 
frameworks that typically guide RME. This state of affairs can be particularly challenging for 
researchers who set out to investigate their own mathematics lecturing. Another type of challenge 
has to do with relationships between the two communities involved: university lecturers do not 
always value RME as a scientific field, while educational researchers are often critical of lecturers’ 
approach to teaching. Thus, to support research-based professional development for university 
lecturers there is a need for teacher educators with expertise in both content and teaching, 
credentials that may be scarce. These challenges and others were addressed in TWG14 
contributions, as summarized in the Teachers and Teaching section. Finally, many research works 
involving the study of practices (e.g., teaching, resource use, planning, and assessment) of 
mathematics lecturers and also mathematicians call for the development of fruitful collaborations. 

Collaboration with mathematics lecturers, mathematicians, and other professionals in 
research and development in UME 

Collaboration and relationships between mathematics lecturers1 (ML) and mathematics education 
researchers have been addressed in UME research studies (e.g., Nardi, 2008). This collaboration can 
be seen from (at least) two different perspectives: (1) through the roles of each group in such 
collaboration (e.g., UME researchers researching the practice of ML; ML researching their own 

                                                 
1 We use “mathematics lecturer” or “mathematics teacher” to refer to a person who teaches mathematics at university. 
This person may be active in research in mathematics or not. 
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practice in collaboration with UME researchers; or UME researchers and ML collaborating in UME 
research and development); and (2) through the contribution of research in UME to developmental 
projects in industry and practice (e.g., what is the ‘utility’ of research to practice?) and to 
mathematics teaching and curriculum development (e.g., how a research finding is transformed in 
order to be used as a curricular ‘product’?). Collaborations and tensions in such collaborations were 
addressed in contributions to this conference as we have exemplified in the themes above. The 
discussion on this topic had two directions: (a) theoretical and methodological tools that will help to 
study such collaborations and make them fruitful; and (b) the role and impact of theory in such 
collaborations, from the perspective of both UME researchers and ML. Indicative points raised in 
the discussion concerned the observation that collaborations engage communities with different 
practices, as a result we should work on the:  need of theoretical tools to study collaborations; need 
for tools to study boundary crossing, even though the boundaries between the communities are not 
clear (e.g., ML may also be UME researchers); need of ways to identify the goals and expectations 
of different professionals (e.g., mathematicians, chemists, biologists, engineers, etc.) who are 
involved in such collaborations; and, a need for better understanding of institutional factors (e.g., 
institutions may or may not facilitate such collaborations). 

Reflection and ways forward 
We initiated the discussion in the concluding session of our work at the conference summarizing 
some of the main points of the chapter Research on university mathematics education (Winsløw, 
Gueudet, Hochmuth, & Nardi, 2018), published in the book celebrating twenty years of CERME. 
Winsløw et al. (2018) synthetize the main contributions of CERME to research in UME in terms of: 
(a) what is it?, namely research into current practices of UME (with no direct intervention), such as: 
mathematical content; methods and resources; transition phenomena; student experiences; and, 
teaching non-mathematics specialists; and (b) what could it be?, namely developmental or 
experimental research, that includes an intervention design as part of the research project (e.g., 
research on, and for innovation in UME; i.e., interventions in specific courses or programmes) and 
professionalization of UME practice (preparation of ML). 

In our discussion in the concluding session we reflected on these areas as well as on the studies we 
discussed at the sessions and we suggested the following ways forward: 1) because many areas and 
topics of UME require the establishment of varied collaborations (with ML, mathematicians, 
engineers, school mathematics researchers) we need to develop theoretical tools to study these 
collaborations; 2) some papers presented an articulation or networking of different perspectives 
which could be a way to study complex phenomena (there were papers using “external” theories, 
e.g., sociology); 3) large-scale studies are needed to consolidate some results; 4) innovative 
methodologies are also being developed, such as those to study the use of digital textbooks; 5) most 
of the current studies in UME are local, and therefore, we need to develop studies and tools that 
help to transfer findings to other educational contexts; and 6) new topics appeared in this 
conference: the use of history of mathematics, curriculum design and its origin, the role of course 
coordinators. We predict more new topics will appear in the years to come. We anticipate that the 
coming CERME conferences will allow us to pursue research on the areas and questions discussed 
this year and to bring research on some of these areas forward. 
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How Lisa’s mathematical reasoning evolved at undergraduate level     
– on the role of metacognition and mathematical foundation 
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Undergraduates’ mathematical reasoning often lacks mathematical foundations and metacognition. 
This is worrying since it may negatively influence mathematics learning. Little is known however 
about whether and how undergraduates’ reasoning foundations and use of metacognition evolve over 
time. In preparation of an educational intervention to enhance undergraduates’ mathematical 
reasoning, we investigate the evolution of students’ mathematical reasoning on calculus tasks during 
bachelor studies in mathematics, using a framework on mathematical reasoning we developed in an 
earlier stage. In this article, we discuss the case of Lisa to shed light on mathematical reasoning 
evolution, and on the role of mathematically founded reasoning and metacognition in this evolution. 

Keywords: Mathematical reasoning, undergraduate students, calculus, metacognition. 

Introduction 
Since Lithner (2003, 2008) introduced his theoretical framework on mathematical reasoning, many 
studies have used his distinction between creative mathematically founded reasoning and imitative 
reasoning. Lithner (2003) showed how undergraduates’ reasoning is often not mathematically 
founded, but instead relies on imitation of exemplary or recalled solution strategies. Jonsson, 
Norqvist, Liljekvist, and Lithner (2014) have investigated learning effects of tasks requiring creative 
mathematically founded reasoning and found that it enables students to solve the same task at a later 
point in time. For moderately non-routine tasks however, undergraduate mathematics students have 
difficulties to think of suitable strategies (Selden, Selden, Hauk, & Mason, 2000). To gain more 
insight into undergraduates’ mathematical reasoning, also on moderately non-routine tasks, we 
investigated its development at undergraduate level at two research universities and used Lithner’s 
ideas concerning creative mathematically founded reasoning as a starting point.  

Framework to analyze mathematical reasoning 
For our research, we used Lithner’s (2008) concepts in a different manner than in the original 
framework, because of its limitations for characterizing any reasoning observed in students’ task 
solving (Aaten, Deprez, Roorda, & Goedhart, 2017; Mac an Bhaird, Nolan, O’Shea, & Pfeiffer, 
2017). From the single category of creative mathematically founded reasoning, we disentangled two 
dimensions: reasoning foundation and novelty. Furthermore, we added a third dimension: 
metacognition level. Building upon Lithner (2008), we define mathematically founded reasoning as 
reasoning in which decisions are based on mathematical properties that are relevant to the decision. 
Superficially founded reasoning is reasoning that is not mathematically founded. Lithner (2008, p. 
266) defined novel reasoning in situations when “a new (to the reasoner) reasoning sequence is 
created, or a forgotten one is re-created”. Since we encountered difficulties in discerning whether a 

Thematic Working Group 14

Proceedings of CERME11 2408



 

 

reasoning sequence is new or not, we choose to see novel reasoning as the opposite of recall, where 
recall means that a strategy is selected because the strategy was used before to solve similar tasks. 

Metacognition levels 

Since metacognition plays a central role in learning mathematics (Desoete & Veenman, 2006; 
Schneider & Artelt, 2010) it is important to include this aspect into our analysis. Several studies 
indicate that undergraduates’ use of metacognition is limited (De Backer, Van Keer, & Valcke, 2012; 
Radmehr & Drake, 2017). However, not much research has been done on the evolution of 
metacognition during undergraduate mathematics courses. Since Flavell (1979) introduced the notion 
of metacognition, various conceptions have been developed. In this study we build upon research that 
distinguishes levels of metacognition explicitly, or implicitly by discerning types of metacognition or 
metacognitive behavior. Wilson and Clarke (2004) consider three aspects of metacognition: 
awareness, evaluation, and regulation, where awareness concerns the connection between the task at 
hand and past experience, evaluation is about the task solving actions just undertaken, and regulation 
anticipates specific task solving actions. In analyzing students’ solutions, they discern regulation that 
builds upon awareness (e.g. retrieval of procedures) from regulation that builds upon evaluation of 
awareness, for instance, regulation as a “consequence of the need for a decision [...] as to how best to 
proceed” (Wilson & Clarke, 2004, p. 38). This distinction is similar to Koichu’s (2010) distinction 
between circular heuristic behavior and spiral heuristic behavior. The former concerns employing 
strategies without building upon the intermediary outcomes, while the latter does build upon 
intermediary outcomes. Nunokawa (2005) similarly distinguishes initial problem analysis and 
knowledge application from problem solving by building upon obtained information, e.g. 
transforming the problem or finding new perspectives.  

Based upon these models, we define two metacognition levels. High-level metacognition builds upon 
evaluation of components of the task solving situation. By task-solving components we mean the task 
itself, strategies that are used or considered, intermediary outcomes of strategies, and sub-goals 
formulated during task-solving. Low-level metacognition lacks such evaluation, for instance, if a 
student takes the decision to use a different strategy without reflecting upon what could be learned 
from the steps taken so far.  

Research question 
In the light of the above, we aim to answer the question: in what way do undergraduates’ reasoning 
characteristics evolve over the course of bachelor studies in mathematics and what is the role of 
mathematical foundations and metacognition? In our larger study on undergraduates’ mathematical 
reasoning when solving calculus tasks, we noticed how some students’ reasoning barely evolved over 
the years, while the reasoning of other students did develop, even though the courses taken by the 
students, and the way the courses were taught (lectures and tutorials, a little project work), were 
similar. To answer the research question of this study, we focus on a student whose reasoning did 
evolve over the years: Lisa1, who started off unsuccessfully but improved over the years is a bachelor 

                                                 
1 Pseudonym 
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student in mathematics but has taken courses in econometrics before. In the first year of her 
mathematics studies, Lisa’s average exam scores were low but sufficient to pass most exams.  

Method 
To investigate students’ reasoning, the first author administered 
task-based think-aloud interviews in three different years. In each 
interview, Lisa solved three tasks, see Table 1. In post-interviews 
after each task, she explained her solutions and answered questions 
such as: ‘How did you come to think of using this strategy?’, ‘How 
certain were you that this strategy would help you solve the task, and 
why?’, ‘Have you seen this type of task before?’. The interviews 
were video and audio recorded and transcribed. 

The tasks used are indefinite 
integrals that can be solved with 
methods from the first year course 
on integral calculus. We chose 
these tasks, because students had 
learned a large number of 
integration strategies they could 
choose from, and because we 
expected that these specific tasks 
would be difficult to many 
students. This would give rise to 
longer and more elaborate 
solutions compared to solutions of routine tasks, therewith giving more insight into students’ 
reasoning. To be able to compare reasoning over the years, some tasks have been used each year. In 
order to be able to correct for a possible test-retest effect, we alternately used task A and B. Although 
Lisa was given task A both in year 1 and in year 3, Lisa did not seem to recognize the task. 

Analysis 

To analyze the interview transcripts, we used the coding scheme in Table 2. For each dimension, one 
code is given per task solution as a whole, based upon Lisa’s on-task utterances, and upon 
explanations and answers during the post-interview. We made use of Lisa’s own analysis of her 
reasoning (e.g., that she recalled a strategy) and of our impression of her reasoning inferred from 
Lisa’s statements and actions. These various angles served to complement each other and where 
possible to triangulate our findings. This analysis led to nine codes for each dimension, which together 
give the global picture of Lisa’s reasoning evolution, or more specifically, the evolution of each of 
the dimensions. 

To determine one code per dimension per task, we chose to focus on the phase of strategy selection, 
since that phase is especially essential in solving difficult tasks (Selden et al. 2000). This implied in 
general that the initial orientation phase is left out of the analysis, just like the execution phase. While 
one solution often contains various strategy selection phases, we focus on the phases in which the 

Table 1: Overview of tasks 
given to Lisa. 

Table 2: Coding scheme  

CODE: CODE ASSIGNED IF:
Mathematically 
founded reasoning

student explicitly gives relevant mathematical reasons
for why the strategy selected will help to solve the task

Superficially 
founded reasoning

reasoning does not comply with the criterion for
mathematically founded reasoning

Recall student selects strategies because they have been used
before to solve similar tasks

Novel reasoning reasoning does not comply with the criterion for recall
High-level 
metacognition

student evaluates components of the task solving
situation when selecting a strategy

Low-level 
metacognition little to no evaluation takes place for selecting strategies
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solution progressed, or was close to making progress. Considering these progressing task selection 
phases, we determined what type of reasoning was prominent.  

When coding the reasoning characteristics, we deliberately ignored mathematical correctness of 
calculations and arguments, but we did evaluate the success of the solution as a separate category. 
This code is given somewhat indulgently: if a (lengthy) task was solved 
correctly almost completely, and only a minor error or lack of time 
appears to have been the cause of not finding the correct answer, the 
solution is coded as successful.  

Codes are visualized in the scheme in Figure 1. Coding of the 
transcripts using the framework was executed by two of the 
authors independently. Discussion until agreement led to minor 
adjustments of the coding only. In the results section we include 
fragments from the interview transcripts to illustrate our coding.  

Results  
We first describe how Lisa’s reasoning on task A evolved over time. Due to space limitations, Lisa’s 
reasoning on the other tasks is not discussed in detail, but the codes are included in the overview. 

Lisa’s reasoning on task A: ∫ 𝟏𝟏
𝟏𝟏+𝒆𝒆𝒙𝒙

𝒅𝒅𝒙𝒙 

We briefly describe and illustrate Lisa’s solutions. In year 1, Lisa used only one strategy to solve this 
task: she calculated the derivative of the integrand, then considered what adjustments should be made 
to the integrand to obtain the anti-derivative. We call this strategy derive-and-correct.  

Lisa: Eh, what sometimes helps is taking the derivative of that part. I am not sure whether 
that will help this time. Sometimes I see a pattern that I can apply to the integral. I 

will try that now. � 1
1+𝑒𝑒𝑥𝑥

�
′
 […] = 1+𝑒𝑒𝑥𝑥−𝑒𝑒𝑥𝑥

1+𝑒𝑒𝑥𝑥
= � 1

1+𝑒𝑒𝑥𝑥
�
2
  

She made an error here, in applying the quotient rule, but did not notice.  

Lisa: Well, the only similarity I see is that both have a fraction 1
1+𝑒𝑒𝑥𝑥

, but this is twice that 

fraction. 1
1+𝑒𝑒𝑥𝑥

∙ 1
1+𝑒𝑒𝑥𝑥

. Ehm, to find the anti-derivative, I would, in one way or another 
(1 + 𝑒𝑒𝑥𝑥)1/2, the fraction, I think. […] Let’s see if I get the same. I’m afraid I won’t, 

but I can always try. (Then she calculated the derivative of � 1
1+𝑒𝑒𝑥𝑥

�
1
2 ) 

Here, Lisa again made an error, interchanging taking-power and taking-derivative, which are not 
commutative. She continued for some time, observing intermediary 
outcomes, considering what to infer to adjust the presupposed anti-
derivative, et cetera. She did not find the correct answer.  

There was no progress in solution, so we considered all strategy selection 
phases. Lisa did not explicate relevant mathematically founded reasons for 
her strategic decisions: her reasons are non-mathematical (“I can always 
try”) or merely superficially related to the task (“this is twice that fraction” 

Figure 1: Framework visualization 
(with exemplary coding) and legend 

Figure 2: Coding of 
Lisa’s reasoning, task 

A , year 1  
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to decide to take the square root). This latter quote illustrates how Lisa, although superficially and 
incorrectly, did evaluate intermediary outcomes for how to proceed, which is coded as high-level 
metacognition. Lisa used only one strategy, which she also used when solving the other tasks in the 
interview. She chose it because it ‘sometimes helps’, which we coded as recall. See figure 2.   

In year 3, Lisa employed various strategies to solve task A: ∫ 1
1+𝑒𝑒𝑥𝑥

𝑑𝑑𝑑𝑑  

Lisa: Eh, I try to solve this integral by substitution. Let’s see whether that works. I take 
𝑢𝑢 = 𝑒𝑒𝑥𝑥 → 𝑑𝑑𝑢𝑢 = 𝑒𝑒𝑥𝑥, so this is equal to ∫(1 + 𝑢𝑢)−1. Ah wait, this is getting 
complicated. […] Ehm, if I take 𝑢𝑢 = 𝑒𝑒𝑥𝑥, then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
= 𝑒𝑒𝑥𝑥 => 𝑑𝑑𝑢𝑢 = 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑. Ehm. This 

is not correct. 

Then Lisa attempted substituting 𝑢𝑢 = 1 + 𝑒𝑒𝑥𝑥 but stopped. She then decided to derive the integrand. 

Lisa: I don’t see it. Eh. I’ll check what the derivative becomes. Perhaps that will help. 
� 1
1+𝑒𝑒𝑥𝑥

�
′

= [… ] = 𝑒𝑒𝑥𝑥

(1+𝑒𝑒𝑥𝑥)2
. (silence) […] If I take the derivative of this, [1 + 𝑒𝑒𝑥𝑥]′, 

then I have = 𝑒𝑒𝑥𝑥, so that is not possible either. Hmm. 

Next, Lisa modified the integrand. 

Lisa: And…   ∫ 1
1+𝑒𝑒𝑥𝑥

𝑑𝑑𝑑𝑑 =  ∫ 𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥(1+𝑒𝑒𝑥𝑥)
𝑑𝑑𝑑𝑑. If I take this 𝑢𝑢, take 𝑢𝑢 = 𝑒𝑒𝑥𝑥, 𝑑𝑑𝑢𝑢 = 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑. Ehm. 

Then it becomes  = ∫ 1
𝑑𝑑(1+𝑑𝑑)

𝑑𝑑𝑢𝑢. Does this help?  

After some more thinking, Lisa thought of partial fractions, and solved the task correctly. 

The episode in which the integrand is modified after which substitution is implemented, is the 
progressing phase in the solution. Here, the task is manipulated in such a way that the task is 
simplified. In the post-interview, Lisa explained how she came to think of this:  

Lisa: I took the derivative to see whether there is a pattern […] to see what step you can 
use to find the antiderivative […] Sometimes you obtain an 𝑒𝑒𝑥𝑥, you see what to do 
to find the anti-derivative. So in the end it did help for this step. So I thought, wait, 
if I multiply with 𝑒𝑒

𝑥𝑥

𝑒𝑒𝑥𝑥
, that is simply times 1. Then I used again 𝑢𝑢 = 𝑒𝑒𝑥𝑥 for 

substitution. […] And I thought, what if I put an 𝑒𝑒𝑥𝑥 here, multiply the anti-
derivative2 with 𝑒𝑒

𝑥𝑥

𝑒𝑒𝑥𝑥
. […] Because I still had this substitution (𝑢𝑢 = 𝑒𝑒𝑥𝑥) in mind, and 

then, if you have an extra 𝑒𝑒𝑥𝑥, then you have 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑 and 
that can be replaced by 𝑑𝑑𝑢𝑢.  

In this last phase, Lisa evaluated how she could use the intermediary 
outcome obtained by deriving the integrand and combined it with the 
requirements of the previously attempted substitution 𝑢𝑢 = 𝑒𝑒𝑥𝑥, which 
indicates high-level metacognition. She did give relevant mathematical 
foundations for these strategic choices: “if you have an extra 𝑒𝑒𝑥𝑥, then you 

                                                 
2 Probably Lisa meant: integrand 

Figure 3: Coding of 
Lisa’s reasoning, task A, 

year 3  
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have 𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑 and that can be replaced by 𝑑𝑑𝑢𝑢”. Lisa did not make any statements that indicate she 
recalled the strategy to use for this type of task, but instead she considered various substitutions and 
task modifications, which indicates novel reasoning. The coding is visualized in Figure 3. 

Lisa’s reasoning evolution 

We analyzed Lisa’s reasoning on nine tasks over three years. The codes for each dimension for each 
task in each year are put together in Figure 4 and summed in Figure 5. We summarize the coding 
below and frame them based upon observations in the data. Since Lisa was given task B only once, 
her reasoning on task B is excluded from the analysis of reasoning evolution. However, since task A 
and B require the same integration strategies, we did consider them sufficiently comparable for the 
global analysis of Lisa’s reasoning evolution.  

On task A, we see a change from superficially 
founded reasoning to mathematically founded 
reasoning, and from recall to novel. Level of 
metacognition is high in both years. A factor 
that was apparent from the data but not visible 
in these codes is that in year 3 Lisa used a much 
larger variation of strategies.  

On task C, we see a change from low-level 
metacognition to high-level, from superficially 
founded reasoning to mathematically founded 
reasoning, and from novel to recall. In addition 
to these codes we remark that Lisa’s solution 
in year 1 was extremely brief, without any real 
solving attempt. After the interview in year 2, 
Lisa had looked up the solution to this task, 
which she recalled in year 3. 

On task D, Lisa’s reasoning was consistently superficially founded, changed from recall to novel 
reasoning, and with varied level of metacognition. We add that in year 2 she used various strategies, 
and made several correct manipulations. In year 3, Lisa built upon her successful solution strategy 
used on the related task C. She modified that strategy to fit task D, which appeared somewhat 
mathematically founded, but her explanations were not explicit enough to code her reasoning as 
mathematically founded. 

For each year, the number of tasks characterized by the codes of mathematically founded reasoning, 
novel reasoning, high-level metacognition, and 
success are included in Figure 5. These numbers 
give an overview of how Lisa’s reasoning evolved 
over time. The overall impression is in line with the 
examples described and the coding per task: at the 
beginning of her bachelor in mathematics, Lisa used 
high-level metacognition, no mathematical 

Figure 5: Number of times each code is given 
per year (maximum is 3) 

Figure 4: Overview of codes given to Lisa's 
reasoning on the tasks over the years 

Lisa
Lisa

Math. F. 0 0 0 0 0 1
Superf. F. X 0 X 0 0 0

Math. F. 0 0 0 0 1 0
Superf. F. 0 X 0 X 0 0

Math. F. 0 0 0 0 0 0
Superf. F. X 0 0 X 0 X

Recall Novel Recall Novel Recall Novel

 

X

Task C Task C Task C

Task DTask DTask D

Task A Task B Task A
Year 1 Year 2 Year 3

low-level metacognition
high-level metacognition

task not successfully solved
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foundations, little novel reasoning and was not successful in solving the tasks. Over time, Lisa 
consistently used high-level metacognition, used more mathematically founded, some novel 
reasoning, and was more successful in solving the tasks. 

Conclusion and discussion 
The analysis of Lisa’s reasoning using the framework shows how her reasoning evolved during three 
years of bachelor studies in mathematics, which is especially interesting given the many worrying 
characteristics in the first year: Lisa’s reasoning was superficially founded (like often observed in 
undergraduate students), the solutions were full of errors and not successful. In this first year, Lisa 
appeared to have limited access to strategies and to be unaware of what mathematical properties are 
relevant in selecting a strategy. Given these rather weak characteristics, coding Lisa’s reasoning as 
using high-level metacognition even seemed somewhat out-of-place. However, in comparison to 
other students who reasoned superficially founded, Lisa’s metacognition level was clearly higher. 
The finding that Lisa’s reasoning evolved towards mathematically founded (while other students’ 
reasoning remained superficially founded) suggests that high-level metacognition may play a 
supportive role in developing mathematically founded reasoning.  

The variety of strategies used by Lisa increased, which is captured by the ‘novel’ code. Thinking of 
suitable strategies to solve moderately non-routine tasks is difficult (Selden et al., 2000) and requires 
insight into what mathematical characteristics are relevant for choosing strategies (Mason, 2013), 
which is needed to make mathematically founded strategic decisions. In Lisa’s reasoning, we see that 
her use of high level metacognition preceded mathematically founded strategy choices. This 
observation can be used as a starting point to stress the use of high-level metacognition in mathematics 
teaching.    

Limitations 

Our choice to use integration tasks has influenced the reasoning observed in this study, so we should 
be careful about extrapolating the findings to other contexts. However, the tasks have proven to arouse 
extensive reasoning of various kinds and, by using the same/similar tasks over the years, to bring to 
light an evolution in the way Lisa reasoned about challenging integration tasks.  
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Theoretical considerations and method 
To explore students' interpretation of the definite integral and to deepen their understanding of its 
application, I draw on the works of Tall and Vinner (1981) and Sfard (1991). Tall and Vinner (1981) 
consider an individual’s concept image for a given concept is “the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated properties and 
processes” (p.152). They used the expression “evoked concept image” to indicate the elements of the 
concept image that were uncovered by their responses. According to Sfard (1991) a mathematical 
concept possesses two aspects: a process aspect and an object aspect. The first one identifies the 
operational nature when students focus their thinking on the procedure, action and algorithms 
contained in the concept. The second one identifies the structural nature when students conceive the 
mathematical concept as if it is an abstract object. Sfard notes that an individual is said to have a 
pseudo-structural conception when the object conception manifested by that individual does not refer 
to the objects of lower levels and to the processes that led to it. For the definite integral concept, the 
image of the area and antiderivative conceptions are usually due to insufficient abstraction of the 
integral image. However, the limit of approximation is due to the reification of the summation process 
into the symbol ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎  . So I consider that students of this category possess both the process and 
the object aspects of the evoked concept image. It is important to emphasize that students concerned 
by this study may possess elements that are never uncovered by their responses. Therefore, I am 
exploring their involved conceptions in response to given questions. Students participating in this 
study attended a first-semester calculus course at Bizerte University of Science. The year before this 
study, they had all succeeded at the baccalaureate examination with mathematics as an option. They 
were 18/19 years old. Eighteen students were interviewed in January 2017 and fifteen others in 
January 2018. The test consisted of five questions that focused on students’ conception of the definite 
integral. The students written responses were analyzed according to Jones’ categories. In this paper, 
I focus on the first question of the test:  

Q1: Suppose ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = 𝑘𝑘, 𝑘𝑘 is a real number. Explain what 𝑘𝑘 means and how it was obtained.  

This question was designed to explore how students interpret definite integral when asked to describe 
its meaning.  

Preliminary results 
Based on Jones' categorization (2015), my preliminary analysis of students’ responses found three 
categories. The first category describes the definite integral in terms of anti-derivative. This category 
focuses on symbolic representation of integrand function. K is evaluated by manipulating the FTC: one 
takes an anti-derivative 𝐹𝐹 of 𝑓𝑓, and substitutes 𝑏𝑏 for 𝑥𝑥 and 𝑎𝑎 for 𝑥𝑥 and finally evaluate ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎   by 
subtracting the values of 𝐹𝐹 at the endpoints of the interval [𝑎𝑎, 𝑏𝑏]. The second category describes the 
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definite integral ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  as an area under the curve, where 𝑓𝑓 is a positive function and that 𝑎𝑎 < 𝑏𝑏, 

the boundary being the x-axis and the vertical lines 𝑥𝑥 =  𝑎𝑎 𝑎𝑎𝑎𝑎𝑑𝑑 𝑥𝑥 =  𝑏𝑏 as illustrated in Figure 1. 
Finally, the third category describes integral as an approximation process. They write this type of 
response “∫ f(x)dxb

a = k is the area of the region that lies under the graph of the function f which 
represents the limit of the sum of the areas of approximating rectangles as shown in the Figure 2 
below”. 

                                                 
                 Figure 1: area conception                        Figure 2: limit of approximation conception 

Discussion    
Preliminary results from the analysis show that most of the students (42%) interpret the definite integral 
as an area underneath the graph of the function and roughly, half of the remaining students (27%) 
describe it in terms of an antiderivative. The area conception involves the idea that an integral 
represents an area even though 𝑓𝑓 is a negative function on [𝑎𝑎, 𝑏𝑏]. It is based on generalization of a 
special case (𝑓𝑓 ≥ 0). This consideration is not always evident, it produces unsatisfactory results in 
some situations where 𝑓𝑓 < 0. Students of this category confuses between definite integral and area. 
They should be reminded that integral could be negative, zero or positive value. It is interesting that, 
although area conception leads to the procedural aspect of definite integral, this conception is it is 
necessary to develop a conceptual learning. The second category bases its reasoning on FTC. 
However, the response of students in this study is quite unsatisfactory since it conflicts with the formal 
definition of the definite integral. One of the students of this group thinks about a symbolic expression 
of the FTC. Even though it is a satisfactory response, it is not sufficient for structural understanding. 
It joins definite integral to antiderivative and limits it to algebraic representation. It is noteworthy that 
15% students describe ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎  as an approximation process. This conception enables the students 
to understand the meaning of definite integral, not only as a process but also as an object.  Moreover, 
it brings out the epistemological aspects of integration. All students show that the definite integral 
represents an infinite process, however they focus only on positive functions. These preliminary 
results show that the large number of the students in this study evoked conceptualizations of 
integration that fail to emphasize the underlying structure of the definite integral. It seems to be a 
pseudo-structural thinking as described by Sfard (1991).  
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The present paper reports on a study of the challenges faced by two first year mathematics 
undergraduate students during their transition from secondary to tertiary education, focusing on 
the institutional issues that shape the initiation into their studying university mathematics practice, 
through the lenses offered by the Communities of Practice framework. We consider transition as 
developing a new identity of studying mathematics, that is, of studying university mathematics, 
aiming to examine the trajectories of this development. Data were gathered over students’ first two 
semesters of attendance predominately through interviews. The results of our analysis reveal that 
the students’ introduction into an unknown, strongly institutionalized community of practice has a 
powerful effect on their initiation into the new practice of studying university mathematics. 

Keywords: Transition, studying university mathematics practice, identity, institutional issues.   

Introduction 
The transition from high school to university mathematics is itself an exciting and often confusing 
experience for students. After tough examinations, the successful students have yet to adjust to new 
learning environments, new modes of study, and above all, higher expectations of the self. The 
transition from high school to university mathematics can be seen as the result of many interacting 
transitions: social, institutional, mathematical content transitions as well as others (Alcock & 
Simpson, 2002). The aim of this paper is to study how two first-year students in a Mathematics 
Department of a Greek University dealt with transition issues, focusing on the ways that 
institutional conditions, in fact the institutional support provided, affect students’ studying 
university mathematics. For this purpose we draw on data gathered over the students’ first year of 
attendance predominately through interviews. To situate our study within this institutional 
perspective on studying, we identified certain crucial elements of the Mathematics Department 
under consideration as an institution and of participating in this institution as a student. 

Literature review 
Students in transition undergo changes requiring an adjustment of learning strategies, time 
management skills and a shift to more independent studying. Mathematical practices at university 
level are distinguished from those at secondary level for reasons related to the mathematical content 
as well as to the participants in each of the two practices (i.e., teachers and students) (Biza, 
Jaworski, & Hemmi, 2014). Considering a mathematics department as a community of practice, 
teachers and students, as members of this community, distinguish themselves as well as they 
develop shared ways of doing things, forming a unique identity in the community (Hemmi, 2006). 

The new environment demands a different type of critical thinking; students witness an increased 
emphasis on the precision and rigor of the mathematical language something for which students are 
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not necessarily prepared (Biza et al., 2014; Clark & Lovric, 2009). Hence, learning new 
mathematics via independent studying might involve developing some new skills (Alcock, 2013). 
Liebendörfer and Hochmuth (2015) state that students’ autonomy depends on both the person 
(including competence) and the environment and that learning strategies and institutional norms are 
critical. Hernandez-Martinez et al. (2011, p.119) see the transition “as a question of identity in 
which persons see themselves developing due to the distinct social and academic demands that the 
new institution poses”. 

University as an institution and university mathematics are encountered as new worlds, where new 
communication and participation rules are required to live in, which might make the novice student 
feel like a foreigner (Gueudet, 2008). Winsløw, Barquero, De Vleeschouwer and Hardy (2014) 
claim that two viewpoints, the internal viewpoint and the viewpoint of external observers, are 
needed to treat in depth questions, such as: “What can be done to help my students pass the 
exams?” The external viewpoint focuses on the conditions and constraints for university 
mathematics education practices, which refer, among others, to more general constraints derived 
from the way our societies organize the study of mathematics.  

The above suggests that students studying mathematics at university level enter a new community 
where the practice of being a student differs from that of the school community. Hence, the need for 
shifting to new ways of ‘being’ and ‘belonging’ signifies the need for developing a new identity of 
practicing mathematics.  

Theoretical framework 
We employed the Communities of Practice (CP) framework based on the work of Lave and Wenger 
(1991) and Wenger (1998) to explore the ways in which the subjects of the study dealt with identity 
issues through analysing the changing forms of their participation to the studying university 
mathematics practice during the transitional phase: from entrance as a newcomer, to becoming an 
old-timer. 

Within this perspective, the person is defined by as well as defines relations, which are in part 
systems of relations among persons (Lave & Wenger, 1991). Activities and understandings are part 
of broader systems of relations in which they have meaning. In this sense, identity in practice arises 
out of an interaction of participation and reification. Lave and Wenger consider learning as 
increasing participation in CP, which concerns the whole person acting in the world: 

…a community of practice is a living context that can give newcomers access to competence and 
also can invite a personal experience of engagement by which to incorporate that competence 
into an identity of participation (Wenger, 1998, p. 214) 

The transition from newcomer to old-timer involves differing trajectories of identity.  According to 
Wenger (1998), a trajectory can be seen as a continuous motion through time that connects the past, 
the present and the future. The characteristics of the mathematical identity of high school students 
‘good in mathematics’ might be: ability to solve exercises following specific methodologies 
predetermined by the teacher, to identify if an exercise corresponds to some worked examples, to 
probably leave the teacher to take responsibility for deciding how much practice is needed. In other 
words, as Solomon (2007, p.90) states: “… students experience mathematics as something ‘done to 
them’ rather than ‘done by them’”. On the other hand, studying university mathematics requires a 
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‘shift’ to independent learning, thinking in productive ways, deepening in definitions and theorems, 
proving and focusing on conceptual understanding (Breen, O’Shea, & Pfeiffer, 2013). These 
features, some of which are incompatible to those of the way students were used to at school, 
require/signal a qualitatively different way of studying mathematics. Wenger (1998, p.154) states: 
“As we go through a succession of forms of participation, our identities form trajectories, both 
within and across communities of practice”, including peripheral (never leading to full 
participation) and inbound (from the periphery to the centre) trajectories. Furthermore, an 
individual’s identity is shaped by combination of participation and non-participation in the 
community of practice. With respect to the interaction of participation and non-participation, he 
distinguishes two cases: peripherality (some degree of non-participation enables a less full 
participation) and marginality (non-participation prevents full participation).  
As far as the institutional perspective on studying is concerned, we draw on Sierpinska, Bobos and 
Knipping (2008) concept of institution. An institution constrains the individual behaviour of the 
“participants”, through formal as well as informal rules and norms. Members of an institution, 
which participate in several communities within it, share certain values and goals and give common 
meaning to the actions (regularised collective actions, as well as enforced actions) of the institution. 
Participants’ actions are adjusted to rules, norms and strategies of achieving the objectives. 
The study 
Greek students go through hard preparation to pass the university entry exams. During their final 
high school year, most of the students undergo a strictly structured life program, including many 
hours of daily study almost always under the guidance of school teachers and private teachers in 
paid courses after school. Hence, the social (family, friends-classmates) and the institutional (school 
and private lessons) communities are aligned: all support them with the aim of passing university 
entrance exams, an achievement highly valued in Greek society. On the other hand, as soon as they 
succeed, they are not aware of automatically entering, as students, in a centrifugal process, without 
strong supports. Some of them continue to flirt with the margin: not to let the centrifugal force to 
throw them out, because the social (friends-fellow students) and the institutional communities might 
not be aligned. Flirting with the margin, according to Solomon (2007), might mean alignment with 
the rules of the community of undergraduates emphasizing summative assessment and surface 
learning. In what follows, we present those features of the new institutional community which 
might create centrifugation with a high degree of containment difficulty for students, preventing 
them from completing their studies on scheduled time (8 semester’s time).   

The Mathematics Department under consideration has a highly demanding curriculum: a student 
has to pass at least 36 courses to get his/her degree, 14 of them are basic courses (mandatory). There 
is an indicative curriculum, but no prerequisite courses: one can take any courses he/she wants, in 
any of the 8 semesters required to graduate. What is there is a maximum number of courses that can 
be chosen in one semester, depending on the semester. The indicative curriculum suggests, for 
example, the following courses for the first semester: Calculus I (Axiomatic foundation of the real 
number system. Axiom of completeness and consequences, convergence of sequences, functions, 
algebraic functions, preliminary definition of the trigonometric functions, exponential function, 
limits and continuity, etc.), Linear Algebra I, Computer Science I (all three are mandatory courses), 
and to choose three at most from the elective courses Foundations of Mathematics, Combinatorics Ι 
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and Theories of Learning and Teaching. In Calculus I and Linear Algebra I, students are introduced 
to formal definitions, proofs of various theorems and theoretical exercises using mathematical rigor. 
There are three exam periods each academic year. A student can try as many times as required to 
pass the exams. On average, students need 13 semesters to get their degree. Students are required to 
deal daily and consistently with the subject.  First-year students have to attend 27 hours of lectures 
per week, in overcrowded auditoriums. They do not often know how to make lectures work for 
them (i.e. how to learn in lectures, how to study after lectures), how to manage time, etc. On the 
other hand, no institutional support is provided for their effort to effectively attend lectures, for 
example, pre-university bridging courses, mathematics support centers, bridging lectures in the first 
semester, support systems accompanying traditional lectures, such as extra tutorials or student 
learning advisory. Thus, it could be argued that attending lectures and studying daily and 
consistently highly demanding courses with almost no institutional support are typical features of 
the practice of studying university mathematics. The work reported in this paper concerns the ways 
that the institutional support provided affects students’ studying university mathematics. This is 
because contrary to what they had experienced as high school students, the features of the new 
community of practice, which first year students are invited to join, are to a large extent conflicting: 
high institutional expectations with reduced institutional support. Thus, the research question 
pursued in the study is as follows:  

“How does the institutional support shape trajectories of identity related to studying university 
mathematics practice by first-year students”?   

In October 2015 we started surveying incoming first-year students (October 2015-June 2016), 
collecting information. Twelve students volunteered to be interviewed individually to help us look 
at the interface between social, institutional and studying mathematics aspects of the transition. 
Four semi-structured interviews (in the beginning of the first semester, before the semester exams, 
in the middle of the second semester and before the second semester exams) were carried out, each 
lasting between 25 and 45 minutes; these were audio-recorded and fully transcribed. The questions 
concerned three aspects of the transition: i) social (e.g. how did they deal with the changes in their 
social-personal life; how did they experience relating to classmates and friends) ii) institutional (e.g. 
did they feel being supported in the new learning environment and to what extent; how did they 
experience teacher-student relationship) iii) studying mathematics (e.g. how was their experience of 
school mathematics different from that at the university). The analysis of students' answers to the 
questions related to each of the above three aspects focused on the identification of the specific 
ways that students experienced the aspects under consideration. Two of these students, Sonja and 
Paola (pseudonyms), are the focus of the work presented here: Sonja’s responses during the 
interviews strongly indicated that she was undergoing changes (from a peripheral participant to an 
almost full participant) regarding studying mathematics. On the other hand Paola, from the 
beginning to the end of her first university year felt that she could not meet the requirements of her 
studies. 

Results 
Drawing on Sonja’s and Paola’s answers to questions concerning institutional issues and studying 
mathematics aspects, we identified that they both highlighted two features respectively: institutional 
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support and the difficulty of the subject matter knowledge. Some characteristic comments related to 
these features, as expressed in the four interviews, are presented in Tables 1 and 2 and discussed.  

As far as the institutional support is concerned, Sonja had great expectations for academic staff 
support at the beginning. Her adjustment was getting better with great mental and spiritual effort. 
Regarding studying mathematics, she lost her self-confidence right at the beginning. She struggled a 
lot with the difficulty of the subject. As time went by, she confronted studying mathematics as a 
challenge: to turn her disappointment and stress to something powerful and effective (Table 1). 

Sonja 1st interview 2nd interview 3rd  interview 4th interview 

Institutional 
support 

IS1: “I have great 
expectations for 
academic staff 
support, like in high 
school”. 

IS2: “I believe that 
professors take it 
for granted that 
students understand 
mathematics. They 
have high academic 
expectations from 
them. I am afraid to 
ask the professor, 
because he may 
think that I am 
stupid”. 

IS3: “I am 
negatively 
influenced by 
the absence 
of any 
support. Why 
don’t we 
have some 
tutorials?” 

IS4: “…Although I 
have to admit that 
some professors 
guided us well 
enough, my 
adjustment was 
getting better after 
a long time with 
great mental and 
spiritual effort”. 

Studying 
mathematics 

MS1: “In high school, 
I thought that I was 
good in mathematics 
because of my good 
school grades and 
because I passed the 
university entrance 
exams also achieving 
good grades. When I 
started studying 
university 
mathematics, I was 
desperate. I was 
wondering if I had 
taken the right 
decision”.  

MS2: “If I could say 
only one thing that I 
still struggle with, 
this is the difficulty 
of the subject. … I 
felt I turned my 
love to mathematics 
to something sick. I 
try to change the 
way of studying. I 
try very hard on my 
own to understand”.  

MS3: “…I 
realized that 
to do well on 
the first 
semester 
exams, I had 
to use my 
“simple” 
knowledge 
inductively to 
solve a 
problem, 
rather than 
knowing 
many 
things”. 

MS4: “I feel more 
confident. I passed 
the exams with 
good grades”. 

Table 1: Sonja’s comments related to institutional support and studying mathematics aspects  

Paola encountered difficulties of adjustment from the beginning until the end of the first year. She 
had encountered problems with the effectiveness of her studying even from the university entrance 
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exams. Studying university mathematics is harder than she expected, and until the end of the first 
year she could not find a way to study and learn independently (Table 2).  

Paola 1st interview 2nd interview 3rd  interview 4th interview 

Institutional 
support 

IP1: “Students 
have to deal alone 
with their studies 
more than I 
expected”.  

IP2: 
“...professors do 
not make any 
effort to help 
students 
understand their 
lectures”. 

IP3: “I am 
negatively affected 
by the absence of 
any help. We do 
not have either a 
Student Learning 
Advisor or a 
Tutor”.  

IP4: “I need some 
help. I struggle 
alone to find out 
which courses to 
take, how to study 
effectively…”. 

Studying 
mathematics 

MP1: “Although I 
have studied hard, 
I am negatively 
affected by the 
fact that for the 
university entrance 
exams I could not 
achieve the grades 
that I expected”. 

MP2: “I think it 
was a good 
decision to study 
mathematics, 
but the subject is 
more difficult 
than I 
expected”. 

MP3: “I could not 
pass the 1st 
semester exams. I 
think that even if I 
study hard I will 
again fail the 
exams”. 

MP4: “I am 
struggling a lot. If I 
get my degree with 
a low score, how 
will I find a job 
afterwards?” 

Table 2: Paola’s comments related to institutional support and studying mathematics aspects  

The results indicate that the lack of studying support, which is a feature of the new institutional 
environment, affected Sonja almost until the end of the first year. She struggled a lot to achieve 
necessary changes something that also affected her self-confidence as a mathematics student (IS2, 
MS1, MS2). Her great mental and emotional effort as well as the influence of some inspiring 
professors (MS4, IS4) helped her to take the next step. After the first semester exams and more 
clearly near the end of the first year, it looks like she had also managed to find the needed way of 
studying (MS3, MS4). Overall it might seem that her identity was forming somehow an inbound 
trajectory (she was close to finding her place within her new community, which is a feature of an 
old-timer). With regard to Paola, the analysis of the data show that the lack of studying support also 
affected her until the end of the first year (IP2, IP3, IP4). Although she had no doubts about her 
decision to study mathematics (MP2), the fact that she could not achieve the grades that she 
expected for the university entrance exams (MP1), affected her self-confidence as a math student 
(MP3). It seems that it was difficult for her to find her place within the new community (forming an 
identity of non-participation which is close to marginality). She failed the first semester exams and 
almost felt losing her motivation (MP4). 

Discussion and conclusions 
We consider transition to university as an opportunity to develop a new identity of studying 
mathematics. In CP terms, developing an identity as a student of mathematics is about negotiating 
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what counts as legitimate ‘being’ within various communities, in university and school, comprising 
shifting conceptions of what mathematics studying is or should be. The results of our analysis 
reveal that high institutional expectations, with insufficient institutional support, shape differing 
trajectories of identity. Sonja was negatively affected because of the overwhelming changes 
imposed in the new institutional environment that strongly influenced her studies; she even 
considered quitting. For the benefit of her ‘being’ within the community, she managed to overcome 
the institutional lack of support with great mental and spiritual effort, as well as with the guidance 
of some professors forming what Wenger (1998) defines as a trajectory from the periphery to the 
center. On the other hand, Paola’s responses indicated that she was struggling (at least to be a 
peripheral participant) regarding studying mathematics. She was also negatively affected by the 
changes imposed in the new institutional environment, but, unlike Sonja, she could not help herself 
to find a place into the new community: the difficulty of the subject and the lack of support was a 
major mismatch for Paola. She could not meet the requirements of her studies and at the end of the 
first year she almost felt losing her motivation. Thus, it could be argued that she was constantly 
flirting with the margin: not to let the centrifugal force to throw her out.  

Students’ position in multiple communities of practices, in university and school, with opposing 
rules of engagement, implies differential experiences of identity (Solomon, 2007). Some of them, 
who considered themselves to be ‘good’ in mathematics at school, develop negative relationships 
with mathematics which might marginalize them and can turn them against further study. The 
implication of our analysis might be that, if we want to ensure that studying mathematics as a 
discipline is not only for those who are ‘talented’ and/or can show great mental and spiritual effort, 
it is important to take into account that studying mathematics is experienced by some students as 
excluding, because the features of the new community of practice, which first year students are 
invited to join, can be to a large extent conflicting. Sierpinska states that   

institutions are difficult to change. They are based not only on conventions and rational rules of 
economy, but also on values that are considered "natural"… Any attempt at changing or 
developing an institution in certain desired direction must therefore be based on a thorough 
understanding of…what are the things that can be changed without jeopardizing its existence. 
(Sierpinska, 2006, p.127) 

An interesting element in the direction of moderating the emerging contradictions might be the 
following: in the Mathematics Department under consideration, among the freshmen who took 
Calculus I exams in the first semester, 23% passed and only 2 achieved 10/10 (Sonja was one of 
them). In the next academic year freshmen who took Calculus I could choose to participate in 10 
tests during the semester.  Among those who took at least 3 tests, 84% passed the final exams and 
19 achieved 10/10. This might be seen to suggest that, if high demanding institutional expectations 
are somehow aligned with sufficient institutional support, university mathematics students may 
experience transition as well as the formation of a new identity of studying mathematics as a 
challenge rather than a ‘problem’. 
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The aim of this study is to investigate mathematics students’ understanding of geometrical objects 
such as curves and surfaces in space, when these objects are presented algebraically, that is, by 
their equations. Flexible use of different representations, in this case geometric and algebraic, as 
well as the ability to convert between implicit and parametric types of equations, is often assumed 
as a prerequisite in multivariable calculus. We have performed an in-depth analysis of students’ 
answers to exam questions to identify types of students’ difficulties in these conversions. However, 
our results also point to the impact of the didactic contract on students’ productions which possibly 
prevented students to fully present their understanding. 

Keywords: Transition across university mathematics, multivariable calculus, curve, representation, 
didactic contract 

Introduction  
In this paper we investigate learning difficulties that students face in the transition from the first 
courses in linear algebra and multivariable calculus, to more advanced mathematical courses that 
involve mathematical analysis of functions of several variables. As described by Kondratieva and 
Winsløw (2018), requests for efficiency and economy of exposition at university level often lead to 
narrow and disconnected teaching modules. Our teaching experiences indicate similar disparities in 
the transition from courses in analytical geometry, linear algebra and calculus on one side, to 
mathematical analysis of functions of several variables and differential geometry on the other. We 
noticed misconceptions and knowledge gaps in dealing with basic objects such as curves and 
surfaces in three-dimensional space, in using their implicit and parametric representations, and in 
converting from one representation to the other. These notions are essential for calculating curve 
integrals, applying Green-Stokes theorem, or in introductory lessons in differential geometry, for 
instance, the introduction of curve and surface curvature. 

A curve in three-dimensional space can be presented either by a parametrization, that is, as a trace 
of a moving particle, or by a system of equations in three variables, that is, as an intersection of 
surfaces. Transitions from one representation to the other and vice versa are theoretically 
underpinned in multivariable calculus by implicit and inverse function theorems. However, 
students’ work in basic examples usually happens in the domain of algebra and geometry – solving 
systems of (not necessarily linear) equations and giving them geometrical meaning. We noticed 
many students’ difficulties in this process, starting from a non-meaningful manipulation of 
equations in a way that just leads to new equations, understanding what a solution of a system of 
equations is, especially when a solution is not unique, and, finally, providing a geometrical 
interpretation of the obtained objects. Students’ difficulties in the same field but with linear objects, 
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in recognition of lines and planes given by their implicit (Cartesian) and parametric equation, and 
the presentation of these objects as sets (subsets in space satisfying the same conditions or 
equations) are well evidenced (Artigue, 1999; Alves-Dias; 1998; Nihoul, 2016). However, students’ 
work related to curved objects in space is an under-researched area. 

Motivation  
Our study was motivated by the following question posed as one of five questions in the midterm 
exam for the course Introduction to differential geometry in spring semester 2017: 

The question could be answered by following the procedure taught during the exercise classes (for a 
somewhat more complicated curve), which requires a curve to be parametrized. From the 
parametrization, one calculates its torsion, which should vanish for a planar curve, or determines its 
binormal field, which should be constant. However, in the above example the tedious calculation of 
a torsion (which often results in a calculation error) could have been avoided by using the definition 
of the planar curve emphasized during lectures. By a simple manipulation of the given equations, it 
is possible to eliminate the square terms to get 2x + 2y + z = 1, which could be recognized as an 
equation of a plane in which the curve lies. Among 136 students who provided any answer to this 
question (of 172 who participated in the exam), only 7 % (10 students) solved the task using that 
approach, and 10 % more solved it using both approaches, that means, they obtained the equation 
2x + 2y + z = 1, and then still parametrized the curve and applied the tedious procedure. Some 27 % 
of students obtained the plane equation without providing an interpretation, and 30 % of students 
solved the question by immediately parametrizing the curve and appling the procedure only. The 
remaining 26 % did not obtain the equation nor a correct parametrization. This high number of 
students who focused only on procedure and failed to apply the definition of a planar curve, 
encouraged us to implement a more though-out approach in the next year courses followed by a 
deeper analysis of students’ work.  

Theoretical framework and research questions 
Mathematical concepts are identified and represented through various representations, which reflect 
possibly different features of a concept, but simultaneously complement each other. Treating a 
concept within a certain representation (representational mode or register) and successfully 
converting between different registers of representation, is considered as a prerequisite for 
conceptual understanding. Conversion processes entail recognition of the same mathematical 
objects through representations from different registers and therefore require coordination of 
registers. Many students’ difficulties can be described and explained by the lack of coordination of 
different registers of representation (Duval, 1993, 2006). Research provides examples (Artigue, 
1999; Alves-Dias, 1998; Nihoul, 2016) of students’ difficulties in using the algebraic representation 
of lines and planes in space, and vice-versa, in recognizing straight lines and planes in space from 
their equations, and in converting between parametric and implicit viewpoints. 

Question. Prove that the space curve given by 2 2 2 2, 2 2 1x y z x y x y+ = + + + =  is planar and 
determine its osculating plane. 
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In this study we tried to answer the following research question: What are students’ learning 
difficulties in relation to different representations of curves and surfaces in 3-dimensional space? 

As observed in the motivational example, it seems that students tend to use lengthy procedures as 
opposed to conceptual definitions. This indicates that the work of some students does not show their 
complete mathematical understanding and difficulties, but rather that their answers are governed by 
reasons of didactical nature. We use the notion of didactic contract from the Theory of Didactic 
Situations (TDS) by Brousseau (1997), a framework useful to study phenomena at university level 
(González-Martín, Bloch, Durand-Guerrier, & Maschietto, 2014): 

A core TDS conceptual tool is Brousseau’s notion of the didactic contract, the implicit set of expectations 
that teacher and students have of each other regarding mathematical knowledge and regarding the 
distribution of responsibilities during the teaching and learning processes. … The didactic contract is 
linked to an institution and, in particular at university level, the terms of the didactic contract can be quite 
strong. (pp. 119, 131) 

Although our ultimate goal is to study the cognitive and epistemological dimensions for the concept 
of a curve in space, we first had to analyze the didactical constraints that govern students’ answers.  
Hence, motivated by our students’ work we wanted to trace the impact of the didactic contract on 
students’ exam productions and investigate if students’ understanding could be improved through 
some changes in this contract. 

Methodology and mathematical context 
The participants of our study in 2018 were in total 173 students at a department of mathematics in 
Croatia, while participating in elective course Introduction to differential geometry (students of 
undergraduate program in mathematics and in mathematics education). The course has 2 hours of 
lecture and 2 hours of exercise class per week for 13 weeks. It is naturally divided into two parts, 
with the first part that focuses on the use of differential calculus to study geometrical properties of 
curves in 2D and 3D (curvature and torsion). The second part focuses on the study of surfaces and 
special curves on surfaces. The emphasis of the course is on low dimensions to encourage students 
to use the geometrical register in interpreting and understanding the results. The second author is 
the lecturer, while the first author is one of three teaching assistants for the course. 

In 2018, during the exercise classes, the teaching assistants led the discussion about the exam 
question from the year before. The aim of this discussion was to re-negotiate the didactic contract 
built during previous courses in which teachers assign tasks and students answer in the way they 
were taught. In this case, it means that students apply the lengthy procedure, not the definition of a 
planar curve in space, which is intuitive and, although presented during the course, not exclusively a 
part of differential geometry content. As learning can be accomplished, in many cases, through the 
ruptures of the didactic contract (Brousseau, 1997), the assistants showed both strategies and 
emphasized that the aim of the course is to encourage students to use the geometrical interpretation. 
In other words, it is the conceptual and not the lengthy approach that was expected and aimed for. It 
was important for the students to hear that all correct answers are acknowledged at the exam, not 
just those that follow procedures from the exercise classes, since their comment during the 
discussion on the “non-standard” approach was that “they did not know this was allowed”. In 
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addition, the teaching assistants addressed other students’ difficulties observed by the preliminary 
insight into students’ work in 2017, like false generalizations and analogies from plane to space 
geometry (2D to 3D) in interpretation of equations and non-adequate conversions between implicit 
and parametric viewpoints of a curve.   

The source of data for the in-depth analysis were midterm exam solutions. Questions were 
formulated in the geometric register, where curves are given as intersections of surfaces. The 
properties of the intersection curve can be recognized algebraically (from its equation) or 
geometrically (by some geometrical properties, such as its curvature). In this paper we analyze the 
questions presented in Figure 1.  

 
Figure 1: Exam questions analyzed in the study 

In Question 1, the set of points satisfying both equations, the equation of a hyperboloid of one sheet 
and a special plane, is to be identified either from a system of transformed implicit equations, or 
from its obtained parametrization which enables determining the curvature. Simple calculation in 
the algebraic register gives the system of transformed implicit equations as x = y, z = ±2, therefore 
the intersection set consists of two parallel lines that are given as intersections of two pairs of non-
parallel planes. 

In Question 2, the expected solution is to state that y = x + 1 is an equation of a plane, so the curve 
is planar by definition. For the second part it is expected that the equation of the sphere is 
recognized, and that the curve is a circle since it is the intersection of the sphere and the plane. The 
radius R of the circle may be determined geometrically, so the curvature can be expressed as 1/R. 

The projection onto xz-plane is given by the equation 2 212( ) 8,
2

x z+ + = which is the equation of an 

ellipse. Another correct approach is to parametrize the obtained curve, and then to calculate its 
curvature by using the formulas from the lecture. Conclusion that the curve is a circle should follow 
from the fact that the curvature is a non-zero constant, and the projection curve could be recognized 
from the parametrization with y = 0. 

Students’ answers were processed in an iterative way. First, based on our mathematical analysis of 
the question, we formulated codes regarding the register in which the task was solved: algebraic 
(following the algebraic procedure given in the exercise class) or geometric (geometrically 
interpreting equations), as well as the success of the students (if the calculation was completed or 
the conclusion reached). Second, the codes were refined to track students’ different strategies and 

Question 1. Determine the set of points in space given by the equations 2 2 2 4,x y z- + + =  
0.x y- =  Find its parametrization and determine its curvature. Which object does it represent 

geometrically? 

Question 2. The curve c is given by the equations 2 2 2 17 , 1.
2

x y z y x+ + = = +  (a) Explain why c 

is planar. (b) Determine the curvature of c and decide what curve it is. (c) What curve is obtained 
by projecting c onto the xz-plane? 
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unexpected answers pointing to some difficulties. Next, the observed categories and special cases 
were discussed between the authors and an agreement was reached to cluster the codes with low 
frequency pointing to the same type of difficulties. As an example, in Table 1 we present the data 
for Question 2 (a). 

Table 1: Codes and frequencies for Question 2(a) 

Results  
In Question 1, approximately half of the students (51 %) noted correctly that the intersection of a 
doubly-curved surface (an hyperboloid of one sheet) and a plane is a pair of parallel straight lines. 
Most of the students (76 %) who reasoned correctly relied on parametrizing the obtained set as c(t) 
= (t, t, ±2) and calculating its curvature, which turned out to be 0 in all of its points, and some (29 
%) relied on recognizing the lines from the system of transformed equations, whereas 5 % of 
students used both approaches.  

Among students who did not provide a complete solution, approximately half gave no answer at all, 
further 30 % succesfully obtained transformed equations or calculated the curvature, but did not 
interpret the  result geometrically and approximately 20 % misinterpreted the obtained result. Most 
of the errors in the last group occcured when trying to interpret a transformed implicit equation, 
which was seen as the requested intersection curve, and not as a new surface on which the 
intersection curve lies (the intersection set described as a plane, a cone, or a hyperbolic paraboloid); 
many errors also come from the misinterpretation of a transformed implicit equation without z-
coordinate as a curve (a hyperbola instead of a hyperbolic cylinder).  

In Question 2, 46 out of 173 students (27 %) noted that the given equation is an equation of a plane 
and successfully concluded that the curve is planar without further calculation, and a smaller 
number (18 %) of them went still for calculation of the torsion. More students than in 2017 
successfully concluded that a curve is planar by the first approach, but still more than 70 % did not 
use this approach. Among the students that did not provide a solution, 9 % stated that y = x + 1 is an 
equation of a straight line in space, which is a well-evidenced false generalization in transition from 
2D to 3D in linear algebra (Nihoul, 2016). Further students’ false argumentation runs as follows 
“since this is a line, and lines belong to a certain plane, therefore the curve is planar”. Furthermore, 
careless approach to ambient space in which a curve is given seems to generate another case of false 
transition from 2D to 3D, since 38 students chose the formula for curvature that is the formula for 
curves in IR2, not in IR3.  

Question 2 (a)   
No answer 57 33% 
Recognizing the equation of the plane  46 27% 
Using torsion = 0 

as criterion  
Showing that torsion equals 0 8 5% 
Only stating the criterion 23 13% 

Wrong arguments 
y = x + 1 is a line, and lines lie in planes  15 9% 
x2 + y2 + z2 =17/2 is a plane  7 4% 
Substituting and stating that the curve is an ellipse in yz-plane  17 10% 

Thematic Working Group 14

Proceedings of CERME11 2430



 

 

Among 122 students who tried to parametrize the curve, 80 students (65 %) used the local 
parametrization 2 2( ) ( , 1, 17 / 2 ( 1) )c t t t t t= + - - +  of the intersection curve, which is not adequate 
to conclude that the (whole) curve is planar, contrary to the linear case, where the standard 
procedure provides a global parametrization. To determine the curvature of the curve, students 
predominantly (70 %) used parametrization for further calculation over geometric approach. Only 
15 (9 %) of them used a geometric approach by stating that the plane intersection of a sphere is a 
circle, with only 4 of them even moving forward to determine geometrically the radius of a circle.      

Discussion  
In general, we may state that students’ difficulties in converting algebraic equations into 
geometrical objects are persisting, even after the first courses in linear algebra and calculus. In the 
case of a planar curve identification, students predominantly focus on the known procedure, 
although it is burdened with calculation, over using the conceptual definition of a planar curve 
which involves recognizing a plane by its implicit equation. We may also say that we observed the 
influence of the didactic contract, as the students tried to ensure that their answers included newly 
learned procedures during the exercise classes. However, students’ difficulties in recognizing a 
plane by its equation can be seen as a particular case of a more general lack of coordination between 
algebraic equations and spatial geometrical objects. When manipulating equations defining a spatial 
curve, students interpret the new implicit equation as that intersection curve, not as a new surface on 
which the curve lies. 

The above general observations point out to several further remarks. The first remark concerns 
evidence on students’ false generalizations and analogies in their passage from 2D to 3D. As 
already stated, this was particularly the case when they identified the equation of a special plane 
with a line, a circular cylinder with a circle, or a hyperbolic cylinder with a hyperbola. Similar 
difficulties are observed in linear algebra, e.g. in the case of a plane in space given by an equation 
ax + by = c (Alves-Dias, 1998; Nihoul, 2016). It is a clear example of the fact that a piece of 
existing knowledge (a single equation represents a curve) may undergo a hasty generalization, and 
therefore standing in the way of full comprehension. It is not irrelevant to notice that the missing 
insight of different ambient (2D and 3D) is also identified in students’ inappropriate use of formulas 
for the curvature of curves. 

Our second remark concerns students’ use of and conversion between the implicit and the 
parametric representation (viewpoints) of curves. Again, students’ difficulties in this process in 
linear algebra are well evidenced (Artigue, 1999; Alves-Dias; 1998; Nihoul, 2016). In our study 
with curved objects, we observed that students did not invoke the need for conversion to a 
parametric representation, nor is the conversion found as flexible as it is assumed, already discussed 
in the case of linear algebra (Artigue, 1999, p. 1384): 

Flexibility seems to be considered as automatically internalized once one has “understood” the notion, 
as if it were a simple question of homework that one can leave to the private work of the student. 

Another remark is related to students’ difficulty coming from the character of non-linear problems. 
Conversion from implicit equations to parametrization and vice-versa, that relies on a procedure of 
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“eliminating a parameter” or “substituting a variable by a parameter” from linear algebra has a local 
character in the non-linear case and cannot produce an instant answer as in the linear case. This 
conversion brings many different transformation approaches, usually non-routine ones (especially 
when trigonometric and hyperbolic functions are involved). For example, in Question 2, a local 
parametrization is not adequate to conclude that the curve is planar. A relevant explanation can be 
provided with the implicit and inverse function theorems, which although do not provide a recipe to 
change representation, should be discussed during the class to emphasize the subtleties in the non-
linear case. Students’ focus on procedures suggests that their knowledge is an “amalgamation of 
practical blocks” (Brandes & Hardy, 2018, p. 506). Moreover, the observed absence of theoretical 
insight in students’ knowledge might be seen as a missing brick in Transition of type 1 (Winsløw, 
Barquero, De Vleeschouwer, & Hardy, 2014). 

Conclusion 
Different representations of curves and surfaces and their flexible conversions are essential for 
various mathematical courses that involve the analysis of functions of several variables. We also 
repeat that our study tries to see some of the students’ bad performances as a result of the impact of 
the didactic contract. However, students’ productions firstly point out to the existence of difficulties 
which were also observed in linear algebra in representations of lines and planes (Artigue, 1999; 
Alves-Dias; Nihoul, 2016). False generalizations from 2D to 3D appear (a line in space is 
represented by a single implicit linear equation, and vice-versa, single implicit linear equation with, 
for instance, no z-coordinate is an equation of a line in space; the same student’s reasoning appears 
for e.g. a circle and a circular cylinder). This observation may also point to the presence of some 
learning obstacles in the sense introduced by Brousseau (1997), which needs to be further explored. 
According to Brousseau, obstacles of various origins can stand in the way of an efficient learning of 
mathematics. Brousseau distinguishes between cognitive (due to the state of mental development), 
didactical (due to a certain way of teaching) and epistemological obstacles (due to the very nature of 
mathematical concepts). Clear distinction among them, due to the complex nature of human’s 
knowledge acquisition, is not always possible. Obstacles become evident in students’ errors which 
are not related to chance but persist, or in difficulties and problems that students encounter that slow 
down the learning process. When this becomes evident, it does not point out to the lack of 
knowledge, but often to the piece of knowledge that was adequate in a previous situation, but now 
leads to incorrect reasoning. Brousseau suggests that to overcome an obstacle, a sufficient flow of 
new situations challenging old knowledge is needed. Whether careful task design with different 
potentials for student learning would be beneficial as well (Gravesen, Grønbæk, & Winsløw, 2017), 
is another question to be explored in the future. 
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The paper reports a review of studies on the secondary-tertiary transition in mathematics. With an 
interest in the contribution of theories, it intends to explore what insights empirical studies using new 
theoretical lenses have added. While there is a move towards socio-cultural theorizing, some 
dimensions pertaining to issues of social (re)production still appear under-researched. 

Keywords: university mathematics, sector transition, theories, socio-cultural studies. 

Introduction 
In mathematics education, the expression ‘transition problem’ commonly refers to difficulties when 
students enter a new school sector, or begin a new more ‘advanced’ course. While the notion has been 
used also for passages between other contexts, this contribution focuses on the transition from school 
to university, which has long been described as particularly problematic (e.g., De Guzman, Hodgson, 
Robert, & Villani, 1998), inter alia alerting to high dropout rates. Nevertheless, a difficult transition 
may not only be seen as a problem for the students, but also “as something potentially positive for 
their development and future opportunities” (Jablonka, Ashjari, & Bergsten, 2017, p. 76). 
‘Smoothing’ the transition may not necessarily be desirable. Conceived as problematic, the transition 
has attracted much attention in mathematics education over the years, and the analytical lenses 
employed for its study have been diverse. However, a comparison of the overviews in De Guzman et 
al. (1998) and Gueudet (2008) shows that new theories might contribute to deepening the 
understanding of the secondary-tertiary transition. While De Guzman et al. categorized ‘types’ of 
problems in ‘theoretical’ categories (epistemological/cognitive; sociological/cultural; didactical), 
their discussion also included under-theorized notions (e.g., type of mathematics, contact to teachers, 
ways of studying). Gueudet (2008) used similar categories (thinking modes, mathematical language 
and communication, and didactical transposition and contract) but in contrast to De Guzman et al. 
(1998) explicitly contained the discussion within a range of theoretical frameworks with reference to 
empirical research drawing on these frameworks. In a later “survey of the state of the art” regarding 
transitions in mathematics education, Gueudet, Bosch, DiSessa, Kwon and Verschaffel (2016) 
pointed to the diversity of theoretical orientations, but also to the importance of complementarity. 

In this paper studies from the last ten years on the secondary-tertiary transition in mathematics 
education will be reviewed with the aim to trace the development in terms of the theoretical 
approaches taken and how these have contributed to new insights regarding the transition. 

Method 
For an initial literature search, articles published during the last ten years in major (mathematics) 
education research journals and conference proceedings as well as articles listed in the MathEduc 
database that explicitly addressed the secondary-tertiary transition were identified. From these, only 
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articles reporting empirical studies with an explicit theoretical approach were included in a first step 
of the analysis. From these around 100 articles, a final sample of around 50 articles drawing on 
theories not already discussed in Gueudet (2008) was selected for a second step; weakly theorized 
quantitative studies were not included. The main stated results of the studies were used to identify 
how theoretical approaches contribute to insights regarding the transition. For the notion of theory, 
the selection was guided by the discussions in Radford (2008) and Jablonka and Bergsten (2010). 
Certainly, some of the theoretical orientations discussed in Gueudet (2008) continued to be used and 
developed during the period studied; for example, in the first step of the analysis around ten articles 
drawing on ATD and/or TDS and five using a cognitive approach were found. These represent an 
important part of the theoretical development of the area but will not be included here due to space 
limitations. As the literature review was not based on a fully comprehensive search, some recent 
theoretical developments might have been omitted. The categorization made from the analysis of the 
sample, however, has a strong base in the articles found. 

In the next section, the dominating theoretical approaches identified will be presented. These were 
found in 37 (of the 50) papers; single studies employing Horizon content knowledge (MKT) and 
Three worlds (Tall), use-and-exchange-value, communities of practice, a framework for textbook 
comparison, as well as a few studies using theoretically less specified notions such as competences, 
interest, expectations, transmissionist pedagogies, and perspective, will not be discussed here. 

Contributions of different theoretical approaches 
In the selected articles, five theoretical approaches not discussed in the review by Gueudet (2008) 
were identified, which unavoidably only adumbrate distinct categories: Bourdieusian sociology, 
Bernsteinian sociology of education, Cultural anthropology, Cultural Historical Activity Theory and 
Commognition. How these contribute to the understanding of the transition will be illustrated by way 
of examples of specific studies. 

Bourdieusian sociology 

A group of studies drew on Bourdieu’s notions of habitus and capital to analyse students’ struggles 
during the transition. Kleanthous and Williams (2013) employed the notion of habitus to develop a 
framework for measuring parental influence on students’ inclination to pursue mathematics studies 
in higher education. They interpreted their findings to be consistent with a Bourdieusian view in that 
“family influences might inculcate a mathematical habitus that encourages choosing mathematically-
advanced courses at school, which thus enhance mathematical confidence and inclination, and shapes 
positive dispositions to study mathematically-demanding courses in the future.” (p. 64). 

That also those students who find the transition hard may hang on to successfully complete the 
transition was illustrated in Hernandez-Martinez and Williams (2013), where these students were 
labelled as resilient, defined as a socio-cultural term. For the analysis the authors employed 
Bourdieu’s notions of cultural and social capital, adding that “students can develop capital through 
reflection” (p. 49), a capital allowing agency for example during transition to align “their habituses 
with the conditions of the new field” (p. 49). Based on a narrative analysis of data from two student 
interviews, the authors identified biographical “narratives of resilience” (p. 50) that showed how 
reflexivity led to the development of a capital during schooling that eventually became valuable 
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during the transition, for example when experiencing risks to progression. For education practice the 
authors therefore suggested that “processes that encourage reflexivity in students should be 
incorporated in pedagogical practices at all levels” (p. 57). 

Bergsten and Jablonka (2013) interviewed students at the beginning, middle and end of their first year 
of study in a five years engineering programme at two Swedish universities, and interpreted their data 
in terms of Bourdieu’s notions of field as well as cultural, economic and symbolic capital. Regarding 
the choice of programme at university, the outcomes corroborated those of Kleanthous and Williams 
(2013), showing how “the cultural capital possessed by the families influence the choice to enrol at a 
university” (Bergsten & Jablonka, 2013, p. 2293). Students also appeared to have acquired a cultural 
capital in their science- and technology programmes at secondary school that has developed into a 
disposition towards academic studies (many talking about “a natural continuation”). While 
expectations about future professions differentiated between students from different study 
programmes in terms of the importance of cultural and economic capital as well as the symbolic 
capital that multiplies their impact, the views of the role of mathematics in this context were more 
coherent, with a focus “less on particular mathematical skills as a form of cultural capital”, but more 
on “a general habituation to solve problems in a rational way” (p. 2294). 

Bernsteinian sociology of education 

To identify issues and operationalize notions seen as critical for the transition, some studies employed 
key concepts from Bernstein’s theory of pedagogic discourse, in some instances combined with other 
theoretical constructs. Kouvela, Hernandez-Martinez and Croft (2018) focused on the discourses that 
frame the changes in teaching and learning practices during the transition from school to university, 
and how these discourses transmit messages to the students that affect how they experience and 
handle the transition. Drawing on Bernstein the authors distinguished strongly classified and strongly 
framed messages. The empirical study involved first-year mathematics students and two lecturers, 
and included lecture observations, student questionnaires and interviews; a grounded theory approach 
amounted to categories of messages (what students should do during and after lectures, assessment, 
general study habits). These messages, transmitted by the lecturers to their students, were analysed in 
terms of classification and framing helping to decompose each message and “identify, through the 
underlying structures of power and control, in what ways the message can be influential on students’ 
transition” (p. 173). The general conclusion was that messages common between school and 
university ease the transition, while differences can “prompt action to be taken by students and can 
change their thinking” (p. 181). 

Jablonka, Ashjari and Bergsten (2017) investigated how first year students interpreted the type of 
mathematics they encountered at university. To explicate the expression ‘type of mathematics’ and 
create a language of description for the reading of the empirical data, an analytical framework drawing 
on Bernstein’s notions knowledge classification and recognition rules, elements of social semiotics 
by Halliday and Hasan, Eco’s conception of a model reader, and Sierpinska’s idea of mathematical 
and didactical discourses as mathematical and didactical layers in textbooks was developed. In 
individual interviews, textbook excerpts were shown to 60 first year engineering students at two 
Swedish universities, asking them to rank the texts according to which they saw as “more 
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mathematical”. The framework allowed a description of students’ articulation of their recognition 
rules, and the authors concluded that “recognition of differences in strength of classification of 
different mathematical discourses emulated in a range of pedagogic practices relates to success in the 
examinations” (p. 87). The study thus illustrates how academic success relates to a recognition of the 
university mathematical discourse. 

Cultural anthropology 

A couple of studies used theories that can be located in the rather broad field of cultural anthropology. 
Four research groups referred to the idea of a phased rite of passage, coined by Arnold van Gennep 
at the beginning of the 1900s. Clark and Lovric (2008) first suggested that this is a useful model for 
the study of the transition to university (mathematics). The transition period is characterised through 
a separation phase (end of school, anticipating university life), liminal phase (from finishing school 
to beginning university), and incorporation phase (first year at university). It thus constitutes first of 
all a formal grid for framing the transition but does not specify what or how to approach the particular 
issues related to the phases.  

One attempt to apply the model is found in a pilot study by Bampili, Zachariades and Sakonidis 
(2017), which presents data from interviews involving 12 students during their transition to 
mathematics studies at a Greek university. At the three phases of Clark and Lovric’s model questions 
were asked regarding the dynamics of the social-personal life, academic life and mathematical content 
dimensions to investigate how “the academic and social dimensions interact to shape the passage 
from the liminal to the incorporation phase regarding mathematical content” (p. 1987). In the paper, 
data from one student were discussed “because her responses during data collection strongly indicated 
that she was undergoing a rite of passage regarding mathematics” (p. 1987). Based on their findings 
the authors considered the study as “a good starting point for exploring specific issues considering 
transition more extensively” (p. 1991).  

Wade, Sonnert, Sadler, Hazari and Watson (2016) conducted an online qualitative survey involving 
secondary and tertiary level mathematics teachers in the USA about what they conceived as good 
high school preparation for students for the college calculus courses. As a framework for interpreting 
their data they used the rite of passage. In particular, the separation and incorporation phases were 
investigated through thematic analyses that revealed five categories in which secondary and tertiary 
teachers “differed significantly in the relative frequency of addressing them” (p. 7). While teachers 
at university pointed at preparation of specific areas within algebra and precalculus as vital, teachers 
at secondary level highlighted “classroom environment realities of teaching in the separation phase.” 
(p. 7). The authors concluded that a better understanding of the “gap between the teachers’ and the 
professors’ outlooks” is needed and that these two groups need to “realize more clearly that they are 
part of one and the same rite of passage process” (p. 13). 

Corriveau and Bednarz (2017) drew on cultural theory (referring to the work of Edward T. Hall), in 
particular the distinction between formal, informal, and technical modes of culture and on 
ethnomethodology. They sought to understand how differences in secondary and post-secondary 
teachers’ “ways of doing mathematics” rather than differences in formal or technical aspects of 
mathematics present difficulties for students. More specifically, the secondary teachers aimed at 
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“giving form” to symbols that “speaks” to the student, representing particular generalisations, while 
the post-secondary teachers worked to “give voice” to the pre-existing general symbols. The authors 
concluded that “the ‘informal’ mode of mathematical culture specific to each teaching level plays a 
key role in attempts to better grasp transition issues” (Corriveau & Bednarz, 2017, p. 1). 

Cultural Historical Activity Theory 

Several transition studies used Cultural Historical Activity Theory (CHAT) to frame their research. 
In a project in the UK on student participation in post-compulsory mathematics education, Black et 
al. (2010) interviewed 40 students at three occasions during the transition period. In doing so, they 
used a notion of identity, which in their reading of CHAT is “historical in origin and emerges from 
the subjectivities (how one views oneself) we experience in the process of doing activities” (Black, 
Williams, Hernandez-Martinez, Davis, & Wake, 2010, p. 58). The authors argued that what they 
termed leading identity (based on Leont’ev’s concept leading activity) defines a student’s motive for 
study and also influences the relation to mathematics. A narrative analysis of interviews with two 
students with different experiences and showing “contrasting aspirations in their interviews” (Black 
et al., 2010, p. 59) was conducted. For the analysis an operationalization of the constructs leading 
activity, leading identity, cultural models (such as ‘math is hard’) and troubles/obstacles used to read 
the data was developed. The two students were both drawing on “cultural models regarding learning 
mathematics and studying in general” (p. 68) which framed their leading identities; in one case to 
become an engineer, in the other to obtain a university degree. The authors suggested that a leading 
identity implying the use value of mathematics as a motive for its study has a stronger potential to 
“bring about a commitment to persisting with mathematics, particularly for at-risk students who may 
face more difficulties or challenges than others” (p. 71). 

Within the same project, investigating the transition from school to college mathematics in the UK 
through student pre- and post-transition interviews, Hernandez-Martinez et al. (2011) categorised the 
transition ‘problems’ in social dimension, continuity of curriculum/pedagogy, and individual-
progression/differences. Rather than only a discourse focusing on problems, the authors also 
identified “a more positive discourse on challenge, growth and achievement” (p. 119). They focused 
on the notion of identity, relying mainly on CHAT, in particular the ideas of self in practice and 
consequential transitions. As a result, the authors suggested it to be viable to “re-think transition as a 
question of identity in which persons see themselves developing due to the distinct social and 
academic demands that the new institution poses” (Hernandez-Martinez et al., 2011, p. 119). 

Commognition 

A number of studies drew on the theory of commognition (Sfard, 2008) to analyse the transition to 
university mathematics education as a discursive shift that may involve a commognitive conflict, that 
is “the encounter[s] between interlocutors who use the same mathematical signifiers (words or written 
symbols) in different ways or perform the same mathematical tasks according to differing rules” 
(Sfard, 2008, p. 161). This approach provides a language for describing mathematical work as 
discursive practices, characterized by their shared word use, visual mediators, endorsed narratives 
and routines. In a UK context, Thoma and Nardi (2018) investigated how a group of first year 
mathematics students solved closed book exam tasks, and also interviewed the two lecturers involved 
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in the courses. In the students’ scripts four manifestations of (unresolved) commognitive conflict 
were observed, two of which (the numerical domains involved, and visual mediators and rules of 
school algebra and set theory) seen as “stemming from the use of visual mediators and rules from the 
school mathematics discourse” (Thoma & Nardi, 2018, p. 165). A challenge for beginning students 
at university is then to recognise the switch and adapt to different discursive contexts, which was not 
required in the arithmetic and algebra dominated school mathematics. Some further examples are 
found in Nardi, Ryve, Stadler and Viirman (2014) who discuss empirical studies highlighting 
“commognitive conflicts that characterise the transition to literate mathematics” (p. 194). 

Discussion 
The studies reviewed above illustrate how the framing of the secondary-tertiary transition in 
mathematics education has widened in scope during the last decade. With the exception of 
commognition, the theoretical approaches identified as “new” have been developed outside 
mathematics education; however, most of them have been imported first into other research areas in 
mathematics education. Many of the studies recruit a combination of different theoretical resources 
in order to achieve their research aims. Overall, the transition as a process has come more into focus, 
which is also reflected in the methodologies (e.g., interviewing students at different points in time). 
Referring to recent work, Gueudet et al. (2016) made a similar observation in noticing a trend towards 
approaches that intend to grasp transition as a process in its complexity.    

Notably, all approaches discussed might be subsumed under “socio-cultural” theorizing. This is a 
move away from views that essentialize students’ mathematical and cognitive dispositions that may 
(or may not) make them successful in crossing the boundary between school and university 
mathematics education. The new approaches illustrated above certainly have enriched the field, as 
transition is not only pictured as problematic but as necessarily involving discontinuities. By drawing 
on theoretical tools developed within coherent frameworks in the analyses of mathematics-specific 
practices, critical experiences of the transition as well as social and cultural (dis)continuities have 
been identified that otherwise would have remained hidden; some questions would not have been 
asked without turning to theories developed outside mathematics education. This applies not only to 
such issues as implicit rules for the use of mathematical symbols or modes of argumentation, but also 
to the organization of the content of mathematical courses, their modes of study and resources used. 
This development is also in alignment with the general trend in mathematics education research, 
including university level (cf. Inglis & Foster, 2018). However, the dominant focus here is on the 
“cultural” to the detriment of the “social” in “socio-cultural” theorizing. How social orders or 
hierarchies are (re)produced in the transition remains under-researched, despite numerous statistical 
reports on underrepresentation or dropout in higher (STEM) education of particular social groups. 
While, for example, ATD offers a precise language of description for conceptualising differences 
between mathematical cultures, sociological approaches, in particular if they allow a description of 
mathematical practices, discourse and knowledge structures in relation to mechanisms of inclusion 
and exclusion, are important to understand how particular social hierarchies are (re-)produced within 
particular mathematical cultures (see e.g., Bergsten, Jablonka, & Klisinska, 2010; Bergsten & 
Jablonka, 2013; and the review of sociological theories in mathematics education in Jablonka, 
Wagner, & Walshaw, 2013).  
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As to the cultures of doing mathematics, similarly as noted by Gueudet (2008), technology as one 
area relevant for the transition appears under-researched in our sample of papers. While as long as 30 
years ago technology (in particular CAS) was seen as a key resource for ‘reshaping calculus’ in the 
USA, “the potential of technology in helping students in the ‘rite of passage’ to tertiary education has 
not yet been researched” (Bardelle & Di Martino, 2012, p. 787). There are however recent attempts 
in theorizing technology use in the transition (Gueudet & Pepin, 2018). Still, even after suspending 
traditional ways of doing university mathematics (e.g., through technology), going through a status 
of liminality will be necessary in the process of enculturation. 
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Undergraduate mathematics programmes in Europe are typically delivered in hierarchical structures 
of modules whose contents are in general assumed to be quite similar across universities. These 
programmes and the mechanisms through which they are maintained, revised and developed, have 
so far not been the subject of systematic research, as most research (including intervention-based 
research) takes the programme for granted. This paper furnishes a theoretical and methodological 
framework for undertaking didactic research in this area and provides some results from a first study 
in four universities in Denmark, France, Germany, and Spain. 

Keywords: undergraduate mathematics, external didactic transposition, curricula. 

Introduction 
As one of the main challenges for future research on university mathematics education (UME), 
Artigue (2016, p. 22) noted the need to “maintain some connection between the living field of 
mathematics [...] and undergraduate mathematics education”. She relates this to the fact, already 
noted by Kahane (cited in Bass, 2005, p. 417), that “in no other discipline is the distance between the 
taught and the new so large”. It is an illusion that the contents of university mathematics teaching 
flow directly from the source of research, being continuously updated with the advances of 
mathematics.  

Most research studies consider teaching and learning processes related to a given mathematical piece 
of knowledge that takes place within one or a few curriculum subjects, domains or modules. These 
modules seem to function as a context of the study that is not in itself submitted to research—neither 
at the level of the entire study programmes nor at the level of the modules and their syllabi. In some 
studies, this context is found to offer constraints or even obstacles to student learning and teaching 
innovation of the piece of knowledge considered, but the module itself—its structure and place in the 
curriculum—is rarely put under question. The need for research to go beyond this relationship to 
curricula was emphasized in the conclusion of the chapter on university mathematics education of the 
recent volume celebrating the 20th anniversary of ERME: 

We should mention also the potential, but currently quite limited, impact [of research on UME] at 
the level of innovation of curricula and policy. Some of the more global problems identified by 
[research on UME] […] clearly call for research and impact at this level (Winsløw, Gueudet, 
Hochmuth, & Nardi, 2018, p. 71). 

Creating a research-based approach to the development of undergraduate mathematics programmes 
appears as an important challenge. Bosch and Winsløw (to appear) have started to address this 
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question from the perspective of university didactic transposition, using some research available on 
the evolution of university mathematics programmes (e.g., Huntington, 2015; Tucker, 2013). In this line 
of research, this paper presents the first results from a study of the structure and evolution of 
undergraduate mathematics curricula at selected universities in four European countries. Its main aim 
is to outline some theoretical and methodological directions for this line of research.  

Theoretical framework and research questions 
We problematize the elaboration and evolution of university curricula by using the framework of the 
didactic transposition (Chevallard, 1991; Chevallard & Bosch, 2014). We use this framework as a 
tool to investigate the precise organisation and structure of the knowledge to be taught. Study 
processes—at all levels—are defined in terms of learning goals to be reached by a given group of 
people under certain conditions. In the case of European university degrees, these goals are defined 
in terms of general competencies, materialised in study programmes, which are first concretised in a 
set of modules (or subjects). Modules receive a name that can correspond to a sector or domain of a 
discipline (Algebra, Analysis, Geometry) or to a specific selection of contents (Perspectives in 
Mathematics, Mathematical language and reasoning, Mathematical modelling). At a second level of 
concretion, modules are described through a syllabus where the learning goals are more precisely 
defined in terms of subject-based contents and often also skills, learning outcomes, textbooks, 
prerequisites, etc. Taking the word “knowledge” in a broad sense—to include formal knowledge but 
also informal practices, skills and competencies, attitudes, etc.—we can say that study programmes, 
modules and syllabi are the way used by universities to define the knowledge to be taught.  

The notion of didactic transposition points to the fact that teaching and learning processes do not 
begin when teachers and students meet in a classroom. The starting point is the selection and 
elaboration of the knowledge to be taught from what is called the scholarly knowledge, which gives 
legitimacy to the knowledge to be taught. Three institutions intervene in this process: the scholarly 
institution of knowledge producers and users (the “experts” or scholars); the school institution where 
the scholarly knowledge has to be transposed (which in our case corresponds to the university); and 
the noosphere which is defined in the neighbourhood of both and includes all those who make 
decisions about the teaching processes at play. In the case of UME, these three institutions have a 
large intersection. However, even if they share many of their subjects, we should differentiate the 
positions occupied and the roles assumed by their subjects. Therefore, a mathematics researcher can 
act as a subject of the scholarly institution—a scholar—when she produces mathematics and acts as 
an expert of the discipline. She can also act as a subject of the noosphere when she makes decisions 
about the study programme of a given degree. And she is also the subject of the school institution—
this or that university or faculty— when she teaches a module.  

The process of selecting, adapting, organizing and declaring the “knowledge to be taught”—
beginning from scholarly knowledge and ending with all the teaching materials that can be proposed 
in a given course—is called external didactic transposition (EDT), while the subsequent step towards 
the “actually taught knowledge” is called internal didactic transposition (Chevallard, 1991, p. 35). 
One can interpret almost all existing research on UME as primarily concerned with internal didactic 
transpositions, since (as noticed above) the programmes and syllabi are merely considered a context 
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of teaching and learning processes. When putting the EDT at the core of the study, we consider the 
following research questions: What are the main processes and rationales in the EDT processes 
leading to UME study programmes and modules? What are the institutional forces that influence them 
(from the scholarly institution, the noosphere, and the school)? What common tendencies can be 
found in European universities, regarding these questions?  

Methodology 
This paper only presents a first attempt to provide some pieces of answer to these research questions 
throughout an exploratory study mainly based on four one-hour interviews with experienced 
undergraduate mathematics teachers from Denmark (DK), France (FR), Germany (GE) and Spain 
(ES). Teachers were selected for their experience with recent curriculum drafting. They are all 
professors in mathematics departments and researchers in different areas of pure mathematics: 
topology, number theory, algebra, combinatorics, and functional analysis. The main selection 
criterion was our facility to approach them and their willingness to participate in the study. The 
bachelor programmes of mathematics of the four universities were analysed before preparing the 
interviews and used as the empirical basis of our interaction with the interviewees. They are not 
necessarily representative of other programmes in the same country. 

The interview guide contains four sections. The first section asks a rough description of one of the 
latest undergraduate modules the interviewee had taught. The second section is about the history of 
this module, the genesis of its syllabus and possible conditions for changing it. The third section 
includes questions about the whole study program, compared to past programs and to programs of 
other universities. Finally, the fourth section refers to processes involved in the elaboration of the 
program, obstacles for changing it, and factors of influence within and outside the department. To 
support the discussion, the informants were given a copy of the course structure diagram of their 
faculty, showing modules with titles, ECTS credits and time organisation. In particular, the 
informants drew arrows on this diagram to show the dependency between modules and referred to it 
while commenting on the design of the study plan as a whole. Both the design of the interview guide 
and the choice of informants reflect our assumption that EDT in this context is closely related to the 
internal didactic transposition, including the daily teaching experience. 

The interviews were audio-recorded and afterwards transcribed, and translated into English if not 
conducted in this language (one of the four was not). After a first reading of the interviews, we 
identified four themes, which were also to some extent built into the interview guide. Given our 
research questions, the themes focus on the product of EDT (themes 1 and 2) and its functioning as a 
dynamic process (themes 3 and 4). We scanned the interviews for utterances about these themes and 
then identified emerging, shared viewpoints on the EDT. These are presented in the next sections. 
When quoting informants, we refer to their country (DK, ES, FR, GE). 

Theme 1: Form and contents of study programmes 
We first note some initial observations mainly based on the documentation of the study programmes. 
We focused on bachelor programmes in (pure) mathematics. All four universities also offer master 
programmes in this area. Therefore, the bachelor programmes may not qualify students for a job in 
the “real world” but could mainly provide a basis for master studies, which in all four cases may lead 
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to a job as a secondary school teacher, among other options. All programmes offer a common core of 
courses on analysis, linear algebra, algebra, numerical methods, and stochastics. The programmes 
also include some auxiliary subjects such as programming or informatics (all), physics (France and 
Spain), or a secondary “minor” subject (Germany), but the interviews show that the core mathematics 
subjects do not rely on such auxiliary modules. Even the use of digital tools such as CAS for analysis 
courses is mostly optional. A quite substantial difference among the programmes is that in the Spanish 
and the French ones, almost all modules in the three years are fixed and mandatory, while the Danish 
and German programmes reserve at least 40 ECTS for elective courses. The elective courses cover 
many fields, some of which are mandatory in the other two programmes: geometry, topology, 
functional analysis, advanced algebra, stochastics or statistics, etc. The size of individual modules is 
also quite different: In the Spanish case all modules are 6 ECTS, the French programme contains 
courses from 2.5 up to 7.5 ECTS and the Danish and German programmes mostly have 10 ECTS-
modules. All larger modules include lectures, and usually also tutorials, labs or problem sessions.  

There seems to be a tendency to keep a core of courses that cover the same mathematical domains, 
with a strong consensus on these core domains: 

This program gives a solid foundation for most of the mathematical directions that you would, we 
want to cover here. I mean you do a solid background in analysis and in algebra... (DK) 

On the other hand, details, and emphases of the study programme also depend on local conditions 
like staff composition, established research units and so on: 

If people from the staff are more, say, predominantly from applied mathematics, they tend to shift 
pure mathematics from the syllabus. And the reverse is true too. (ES)  

In spite of differences between the programmes, the interviewees claim that the structures of modules 
are hard to change (DK) and that there is not very much to play with (ES). 

Another common facet relates to the basic idea underlying the overall structure of the programmes 
and in particular the sequencing of the modules: they are organized according to the logical 
dependency of notions, definitions, and theorems (mathematics as a product). In the interviews, there 
was only the case of a discrete mathematics course where the content seems, at least partly, to be 
organized around problems: 

[We] rather start from a concrete problem, a problem that they know, the Fibonacci numbers, and 
look how the method is developed in that problem you see, how to do, how to get a functional 
equation for the generating function and then use partial fractions. (GE) 

Theme 2: Form and usage of module syllabi 
The first part of the interviews centres on a recent module taught by the informant. This provides 
further information about one particular syllabus, and the ways it functions to structure and direct the 
actual teaching. Considering all four interviews, we can identify some common points, as hypotheses 
about how undergraduate mathematics syllabi are elaborated and used more generally. The first 
common point is that the syllabus consists of a short list of mathematical concepts or results that form 
the core of the module, while still leaving some initiative to the teacher: 
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There is still some flexibility, particularly how far one would go with certain topics. (GE) 

Not surprisingly, more choice is left to the lecturer in the case of modules that are more “free-
standing”, such as a course on order structure and social choice theory. In courses within a longer 
sequence, such as the first analysis course, the constraints are stronger: 

The curriculum was sort of written beforehand and I basically had to stick to it [...] You do have 
some influence on the weight you would put on certain topics, and I think I spent more time and 
focus on continuous functions than was perhaps originally intended. (DK) 

When the informants describe one of the undergraduate courses they have taught recently, they almost 
exclusively refer to their lectures, including the particular choices they make in terms of emphases, 
what to cover, etc. When asked, some of the informants also mention the exercises, often taught by 
assistants in different sessions, but without giving them crucial importance in the structure of the 
course. Tutorials are strongly related to the lectures, as the relevant theory should always be treated 
before being applied in exercises. The exercises are also related to the final exam in the module: 

 [Tutorials teachers] teach on the blackboard, have 100 students in front of them and they solve 
the exercises on the blackboard. [...] the list of exercises is a list that comes from father to son. It’s 
the same list that has been there for the past 10 years. [...] they are trained in the classroom with 
the same kind of exercises that will be at the exam. [...] the key for 60 or 70% of the students to 
pass is to do an exam that is not essentially different from previous ones. (ES) 

All informants agree that their own activity as researchers does not directly influence their activity 
and choices as lecturers, because the material of the undergraduate course is very elementary: 

It’s so basic, all of it. [...] I mean, I think most people would agree these are the kind of things that 
you would include in a course like that, so I am not sure that my particular line of research has 
played a significant role. (DK) 

The interviewees all agreed that syllabi can be revised in reaction to experiences while taking into 
account the function of the module as a prerequisite for other ones. However, most changes described 
in the interviews seem to respond to more global changes of an administrative character, such as the 
passage from quarters to semesters. In two of the universities, changes were also due to the passage 
from a structure where some basic courses, including calculus, were shared with other study 
programmes, to a programme where all courses are tailored exclusively to mathematics students. The 
contents are mainly justified by such a collegial consensus, the needs in other courses and the 
preparation for the master level, and sometimes also students’ prerequisites. Two informants (GE and 
DK) also made passing references to the perceived needs of future teachers, but otherwise, the 
contents are not related to needs or factors outside of the programme. All the informants express, in 
various ways, that the contents of the core modules must be kept: 

Changes on the content are really dangerous because either you omit things which are important 
for other modules or [you add something new in relation to previous years, with the result that] 
the exam, it’s going to be a full disaster. (ES) 
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Theme 3: Process of design of study programmes and modules 
We seek to identify the main constraints of the EDT as a process conducted inside the mathematics 
department, seen as an institution within the university. External constraints may originate from other 
disciplines within the university (interrelations of programmes), the university as a whole (coherence 
and economy of study programmes), the ministry of education (accreditation), the European Union 
(the Bachelor-Master-Doctorate (BMD) structure or other aspects of the Bologna process), or the 
socio-economic sphere (needs for qualified labour force in specific domains).  

The collected interview data gave an overall picture of EDT as a rather informal process: 

There may be two or three people who go teaching this course, and I think we will (for the new 
accreditation) just sit together again and see what everyone agrees to. (GE) 

The module descriptions are thus done by teachers who volunteer, motivated by their involvement in 
the teaching. The formal constraints imposed by national authorities seem weak and concern only the 
formal structure of the study programme: 

Before the BMD reform, the size of the modules and their names were given by law. The 
legislation regulated the number of hours of integration theory, differential calculus, and so on, 
and checked on the syllabus that the study programme fulfilled the expectations of the degree. 
With the BMD, universities are totally autonomous. (FR) 

The autonomy of institutions is indeed furthered by the Bologna Accord. In some cases, this is used 
as an opportunity to create more independent and pure mathematics programmes. External constraints 
due to other fields are limited to the few cases when modules are shared with them: 

In this version of the programmes, great autonomy was given to the departments, with little 
constraints on the potential navigation of students between different study programmes. This 
choice was made by the ruling committee of the faculty of sciences and the consequence that I can 
see is that it leads to a disciplinary retreat. (FR) 

Constraints due to the socio-economic environment were also mentioned: “Here, you have a lot of 
insurance companies and banks, so we lose some students in this direction” (GE). However, its impact 
on the EDT seems weak: “In the curriculum, you don’t see it” (GE). Again, students’ mobility was 
also pointed out, to justify that mathematics programmes need to be fairly similar. 

Because of the overall weakness of perceived external constraints, the interviewees came to identify 
students as the main constraint that EDT meets as a process:    

The real constraints are the students. How to build a study programme that is suitable to open to 
advanced studies in mathematics but also matches the level of students that we find in front of us? 
This is very complicated. (FR)  

Theme 4: Evolution of programmes and modules 
When asked about major evolutions of the study programmes over the last decades, two main changes 
were mentioned: the tendency to structure programmes in a higher number of (smaller) modules, and 
the incorporation of new modules related to computer science, programming and discrete 
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mathematics. All interviewees agreed that the strong compartmentalization of knowledge leads 
students to specific study strategies, resulting in a loss of connections among subjects: 

So, it’s not so much the curriculum, but what matters is how people learn. I take my exam after 
the end of this course right away and then I can forget about it and come to the next thing. So this 
was different in the diploma system. You had the oral exams after two years and you had a big 
exam at the end after four or five years. This makes a big difference. (GE) 

Another change that can be observed is the incorporation of what we can call “propaedeutic” courses 
in the first semester of some universities: “Mathematical language and reasoning” (ES), “Perspectives 
in Mathematics” (DK). In the French case, a more unified start has been achieved by merging the 
modules of analysis and algebra in the first semester: 

In the first years, you need to give substance to a set of mathematics, to have more possibilities of 
interaction between the different elements of the subject to facilitate the links. (FR) 

As for the modular structure, the fragmentation seems to be reinforced by the repartition of subjects 
among groups of researchers: 

[What introduces changes in the curriculum is] the sociological evolution of the laboratory, that 
is, the number of colleagues that are in this or that team, their thematic orientations. (FR) 

The tendency towards disciplinary “purism” also means that subjects which are not linked to research 
groups in the department tend to be reduced or even disappear.  

There appears to be strong stability in the core-curriculum shared by the four programmes, and we 
see no signs of substantial disagreement about the overall profile of the programmes.  

Conclusion and outlook 
Our exploratory study considers the EDT, its processes and rationales, institutional forces and 
common tendencies, mainly through the lens of experiences reported by lecturers and their reflections 
on internal didactic transposition processes—how it is framed, determined by obstacles and goals. 
Our main results (in fact, hypotheses of general trends) are the following: 

§ Although the programme structures of the universities look quite different, they have a common 
core of courses (analysis, algebra, probability, and statistics, etc.), reflecting a broad consensus 
among mathematicians at large. The interviewees describe and justify relations between the 
modules in terms of inner-mathematical (logical or theoretical) dependencies.  

§ A module is a lecture-based course and it is described essentially through a short list of topics, 
especially notions and theorems. This list outlines what the lectures should cover, leaving room 
for variations, but with very little reference to what the students are asked to do (types of 
problems, exams, etc.).  

§ The process of curriculum design is very informal, with no systematic and explicit organisational 
principles, thus relying on a set of shared assumptions and on the dependence between faculty 
and teaching needs. Moreover, the interviewees experience weak external constraints (influence 
of the socio-economic environment, students’ mobility) together with a high autonomy to make 
changes, which seem to reinforce disciplinary purism. 
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§ An increased modularisation is seen in the last 20 years with a trend towards early specialisation 
in mathematics. When changes are operated in a study programme, the core of the programme is 
preserved but some auxiliary modules may be added or replaced, to support students’ learning of 
generic skills (e.g. mathematical reasoning), to introduce new domains (graphs, modelling, etc.) 
or provide new tools (computer programming). 

At this stage of the research, we are far from being able to propose or support initiatives towards a 
more systematic and knowledge-based EDT—that is, to produce curricula and syllabi that optimize 
mathematics programmes in relation to institutional contexts and specific sets of constraints. One 
major motivation is that, if we want to pursue specific agendas—such as broader and more efficient 
preparation of secondary school teachers, new paradigms of “inquiry-based” teaching, and so on—, 
we need to understand the processes of EDT that determine the set of conditions and constraints under 
which such agendas are pursued. 

Acknowledgments 

Funded by Ministerio de Economía y Competitividad, MINECO/FEDER, EDU2015-69865-C3-1-R 

References 

Artigue, M. (2016). Mathematics Education Research at University Level: Achievements and 
Challenges. In E. Nardi, C. Winsløw & T. Hausberger (Eds.), Proceedings of the First INDRUM 
Conference (pp. 11–27). Montpellier, France: University of Montpellier and INDRUM. 

Bass, H. (2005). Mathematics, mathematicians and mathematics education. Bulletin of the American 
Mathematical Society, 42(4), 417-430. 

Bosch, M., & Winsløw, C. (to appear). The external didactic transposition of mathematics at 
university level: dilemmas and challenges for research. Educação Matemática Pesquisa. 

Chevallard, Y. (1991). La Transposition didactique: du savoir savant au savoir enseigné (2nd edition). 
Grenoble, France: La Pensée sauvage. 

Chevallard Y. (2015) Teaching Mathematics in Tomorrow’s Society: A Case for an Oncoming 
Counter Paradigm. In J. S. Cho (Ed.). Selected regular lectures from the 12th International 
Congress on Mathematical Education (pp. 173-187). Switzerland: Springer. 

Chevallard, Y., & Bosch, M. (2014). Didactic Transposition in Mathematics Education. In S. Lerman 
(Ed.), Encyclopedia of Mathematics Education (pp. 170-174). Netherlands: Springer. 

Huntington, H. (2015). A historical analysis of the mathematics major requirements at six colleges 
in the United States from 1905 to 2005. Ph.D.-thesis, University of Columbia.  

Tucker, A. (2013). The History of the Undergraduate Program in Mathematics in the United States. 
The American Mathematical Monthly, 120(8), 689-705. 

Winsløw, C., Gueudet, G., Hochmut, R., & Nardi, E. (2018) Research on University Mathematics 
Education. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger & K. Ruthven (Eds.), Developing 
research in mathematics education - Twenty years of communication, cooperation and 
collaboration in Europe (pp. 60–74). Oxon, UK: Routledge. 

Thematic Working Group 14

Proceedings of CERME11 2449



 

 

Students’ difficulties to learn derivatives in the Tunisian context 
Rahma Bouguerra 

Université virtuelle, ISEFC, Tunis, Tunisia; rahmabouguerra@gmail.com 

Keywords: Concept image, formal definition, language, articulation of knowledge, non-
technological environment.  

Introduction and research problem 
In my research, I focus on the concept of derivative at a point; this concept was selected as a means 
to study students’ conceptions and difficulties when learning derivatives. This concept has been 
chosen because it poses problems to students throughout the teaching / learning process. It is known 
that this concept is connected to many other concepts and it can be represented in various ways. So 
there are many ways and different interpretations to understand it. In particular, there are many 
findings reported in the mathematics education literature related to my topic; these include the study 
of students’ difficulties with tangents (Tall, 1986; Vinner, 1983) of with the understanding of 
derivatives at a point (Park, 2013). 

Since 1957, mathematics education in Tunisia has known five reforms at the secondary level. In the 
current reform, derivatives are first introduced as an instantaneous speed in the third year of 
secondary school (17-18 years). 

In this research, my goal is to identify the obstacles and constraints that prevent students from 
understanding the concept definition of a derivative and from having adequate concept images of it. 
My study is guided by the following questions: 

1. Does this introduction guarantee a good conceptualization of the derivative at a point? 
2. What are the difficulties that prevent secondary and university students from apprehending 

and visualizing this concept? 

Theoretical framework 
In my research, I draw on the frame of Concept Image and Concept Definition (Tall & Vinner, 
1981), which is a powerful theoretical construct that allows for analyzing students' representations 
of derivatives. The total cognitive structure associated with a derivative in a student’s mind can give 
us many ideas about the reasons for the misconceptions and lack of understanding that students 
have. In this study, I consider the interpretation of a derivative as an instantaneous rate of change, 
which plays an essential role to strengthen students’ concept image. 

Methodology 
The participants in my research are third-year secondary students (17-18 years) in the mathematics 
section in a Tunisian public school, as well as first-year university students in the Mathematics 
program in a Tunisian University. I chose these participants to identify some types of difficulties 
that persist for University students. Sixty secondary students and twenty university students were 
interviewed in January 2019. They also filled a questionnaire. 
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Data analysis and discussion 
The results show that participants learned by heart the definition of a derivative at a point and 
therefore give its symbolic representation without knowing that the derivative at a point is an 
instantaneous rate of change. We interpret this as a result of the teachers’ practices (that focus on 
procedural understanding), as well as the absence of the term "rate of change" in the formal 
definition in the third-year secondary textbook. Furthermore, institutional choices do not seem to 
propose contextualized activities where rates of change are used. 

This introduction does not help pupils / students understand the derivative at a point, because in 
physical sciences they have not learned that instantaneous speed is an instantaneous rate of change 
and in mathematics they cannot find the term “rate of change” in the formal definition. Then, 
students’ difficulties also lie in the articulation of knowledge from physical sciences and from 
mathematics. 

The slope of a tangent is the main representation in their concept image, and to explain their evoked 
concept image, they use some words referring to language difficulties because their first language is 
Arabic. 

This traditional teaching (where technology is absent) does not allow students either to visualize the 
concept definition of a derivative nor to develop adequate concept images. There is much to learn 
and this traditional teaching (using blackboards and static images) does not allow students to see the 
dynamic characteristics of derivatives especially when there are interplays between settings. These 
traditional practices hinder our pupils from seeing the link between the slope of the secant line and 
the slope of the tangent line. 
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This paper presents elements of a preliminary research on teaching and learning of the concept of 
derivative in higher education to be conducted in a Brazilian university. In the research we intend to 
study the interactions between teachers and resources systems according to the documentational 
approach to didacts (Gueudet & Trouche, 2010) in order to answer the following research question: 
How can we develop a joint researcher / teacher actions in the design of resources and analysis of the 
documentational work of higher education teachers when they approach the concept of derivative? 

Literature review 
We conducted a literature review and found that some researches in Brazil on the teaching and 
learning process of the concept of derivative, for example, Leme (2016), and Almeida (2017), show 
that students express  more satisfaction in situations that involve operative aspects than in situations 
that involve conceptual aspects of derivative. An analysis of didactic books, used in the teaching of 
differential and integral calculus, in engineering and mathematics Brazil courses, showed that most 
of these books privilege the use of the technique, offering a superior amount of exercises that focus 
the technique than in exercises that conceptual aspects. 
Theoretical Framework: The Documentational Approach to Didactics 
The documentational approach to didactics (Gueudet & Trouche, 2010) refers to the notions of 
resources, scheme, documentational work, among others that support the development of 
Documentational Genesis theory, an extension of Instrumental Genesis (Rabardel, 1995) to Didactics 
of Mathematics. There is still in this theory the proposition of the dialectic resources / documents that 
renew it and even give more force to the questions of the professional practice of the teachers. In the 
Documentational Genesis (Gueudet & Trouche, 2009), the teachers’ documentation, in the action of 
preparing and implementing their classes, is at the core of the teachers’ professional activities and 
development, and implies: the research of new resources, selection and creation of mathematical tasks 
for sequential planning and development, time management, and artefact management. For Rabardel 
(1995), the use of technology invokes the need for any technological artefact that should become an 
instrument, that is, when the artefact acquires a meaning for the subject, therefore, according to 
Gueudet, and Trouche (2009, p. 204), this process occurs when an "instrument results from a process, 
named  instrumental genesis, through which the subject builds a scheme of utilization of the artefact, 
for a given class of situations". Today, digital resources have become an important part of teacher 
and student resources systems, and schemes of use: an integration of these resources into teaching 
and learning practices in mathematics; their appropriate uses within a myriad of available options, 
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allowing them to be tailored to the specific learning objectives in question and their orchestration1 
and use by students; student resource systems; monitor teacher preparation before and during 
challenging tasks; and, the role of digital resources in the evaluation performance. Resources with 
such schemes of use become a document for teachers.  

Methodology  
This research will follow a reflective methodology (Gueudet & Trouche, 2010) of the principles of: 
long-term follow-up, monitoring the process, extensive collection of the used resources and evidence 
of documentational work and reflective accounts of documentational work. The research subjects 
consist of six teachers who teach differential and integral calculus in the early years of a bachelor's 
degree in mathematics and in aeronautical engineering, computer engineering, electrical engineering, 
and production engineering courses. Research on teachers’ documentational work, both within and 
outside the classroom, through the reflective methodology described above, has been extensively 
developed with high school teachers and even with higher education teachers. For example, Gueudet 
(2017) interviewed, collected resources and analyzed documents and resources systems specific to 
the university context of six French university teachers. 

Conclusions 
In the literature review carried out so far, we found a few studies on higher education with focus on 
teachers’ resources and documents systems. We envisage that the direct observation of teacher work, 
including testimonials and their interactions with students, will provide important insight into their 
practices. We consider, as at other educational levels that documentational work is essential in the 
practices of university teachers and has high potential in university mathematics education research. 
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1 An instrumental orchestration is the systematic and intentional arrangement of the elements (artefacts and human 
beings) of an environment carried out by an agent (teacher) in order to effect a given situation and, in general, to guide 
learners in the instrumental geneses and evolution and balance of their instrument systems (Trouche, 2005). 
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We address agency and disputes of mathematicians and mathematics educators over a pre-service 
mathematics teacher education programme. The format of these courses has been debated (and 
disputed) within Brazilian academic communities over decades. We use a re-storying methodology 
(Nardi, 2016) to construct a fictional dialogue to present and analyze data from interviews with four 
retired lecturers affiliated with mathematics education, who played key roles in the development of 
the curriculum of the teacher education undergraduate programme in a large Brazilian university. 
We support our discussion through a framework that articulates teacher education and curriculum 
theory. Our analysis indicates that these disputes and agency take place within a landscape that 
transcends teacher education and reaches broader and more complex political and epistemological 
terrains closely related to the binarism of mathematics and mathematics education. 

Keywords: university mathematics education, curriculum, mathematics teacher education. 

Introduction: mathematics and mathematics education communities in the 
preparation of teachers 
Nardi (2016) comments that the “relationship between mathematicians and mathematics educators 
has been the focus of debate since at least the 1990s” (p. 362), and adds that this relationship has been 
often portrayed “as at best fragile” (ibid.). Theories in the field of curriculum may help to unveil 
possible theoretical or political disputes in the terrain of undergraduate education in general, and 
undergraduate mathematics teacher education in particular. These disputes (Gabriel, 2013) tend to 
take place mainly because there are different knowledge areas involved, with differences in agency, 
acknowledgement by scientific community, and affiliation to scientific domains (mathematics in the 
Exact and mathematics education in the Social Sciences). The complexity of these disputes is 
highlighted by authors affiliated to post-critical curriculum theories (e.g. Lopes, 2013) and transcend 
a binarism that typically permeates this discussion. Our study explores this complexity. 

The research we report in this paper is part of a broader study, which is the ongoing doctoral research 
project of the first author supervised by the second author and aims to investigate the curriculum of 
the undergraduate programme for pre-service mathematics teacher education in the Mathematics 
Departments at the Federal University of Rio de Janeiro, Brazil (UFRJ), since the 1980s, from the 
perspective of the institutional and political terrain in which successive curricular versions were 
conceived and developed. The study focuses on: (i) the institution, and its official documents; (ii) the 
lecturers as actors who directly influenced these curricular versions; and, (iii) students (prospective 
teachers), whose professional preparation took place within this context. 

Thematic Working Group 14

Proceedings of CERME11 2454



 

 

In this paper, we report data and analysis from the broader study which address the disputes between 
Mathematicians and Mathematics Educators over the conception and development of these 
successive curricular versions. As previous research indicates (e.g. Nardi, 2008), teaching and 
management in undergraduate mathematics programmes, in particular curricula design, often involve 
negotiations and disputes between mathematicians and mathematics educators. This can be the case 
also when prospective mathematics teacher education is concerned. This is the focus of our paper in 
which we address the following research question: How, and to which extent, do negotiations and 
disputes between Mathematicians and Mathematics Educators take place in the context of an 
undergraduate programme for mathematics teacher education? We seek to answer this question 
through analysing the views of lecturers who are involved with this curricular design. Similarly to 
Nardi (2008), we characterise a participant as mathematician or mathematics educator according to 
their academic and professional activities, not necessarily their formal qualifications. 

Research on pre-service teachers’ education has been accumulating a significant theoretical corpus 
in the last decades, with strong influences  from the field of Education, such as Shulman (1986), and 
Tardif (2013), and the field of Mathematics Education, such as Ball et al. (2008), and, specifically in 
Brazil, Moreira (2012), Moreira & Ferreira (2013) and Fiorentini & Oliveira (2013) on debates 
concerning the design of undergraduate programmes for mathematics teacher education. These 
debates are situated within broader considerations of research in university mathematics education, 
which, in recent years, has been consolidating significantly (Winsløw et al, 2018) and has been more 
attentive to institutional, disciplinary and curricular factors that, within broader political contexts, 
may influence the what, why and how of teacher preparation in undergraduate programmes. 

In Brazil, there are separate undergraduate programmes in pure and applied mathematics (called 
“Bacharelado” and, in general, intended for future academic careers in Mathematics), and in 
mathematics teaching (called “Licenciatura”, which legally certifies school teachers). The Brazilian 
Mathematics Education research community (e.g. Moreira, 2012; Moreira & Ferreira, 2013) has been 
advocating that undergraduate programmes for mathematics teachers should take more into account 
a professional-oriented perspective (Tardif, 2013), which should be informed by reflections on school 
practice, and should integrate more explicitly mathematical knowledge for teaching (Ball et al, 2008). 
In the Brazilian context, this debate is evidenced in the curricular reforms of undergraduate 
programmes for prospective teachers, at least since the 1980’s. 

For instance, Moreira (2012) critiques the influence of the “Bacharelado” over the conception of the 
“Licenciatura” programmes. This influence is mostly expressed by the “three-plus-one” model – three 
years on “mathematical content”, followed by one year on “didactics” – which was dominant in 
“Licenciatura” programmes in Brazil until the early-1990’s. In this model, pre-service teacher 
education consisted of two separate, non-overlapping  clusters. According to Moreira, even though 
this organization has been progressively put aside in most Brazilian universities, its internal logic 
remains largely unchanged and still underlies current curricular structures, which are variations of the 
“three-plus-one” model. One such variation is the inclusion of a third cluster of modules, the so-called 
“integrating disciplines”, which focus on mathematics teaching. However, mathematics teaching is 
often assumed to consist of practical knowledge (that is, an ensemble of techniques on “how to teach 
a certain topic”), with little overlap with other curricular components. Commenting on attempts to 
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integrate these clusters of modules, Moreira (2012) argues that “the institutions do not manage to 
accomplish this task, because its accomplishment is impossible under the three-plus-one logic” (p. 
1141). Fiorentini & Oliveira (2013) refer to this variation as a “quasi trichotomy”, alluding to an 
analogy with the dichotomic logic of types of knowledge (mathematical, pedagogical) needed for 
teaching. Moreira & Ferreira (2013) claim that, in teacher education in Brazil, there is an explicit 
clash between two strands – one that understands teachers’ knowledge to be plural in nature, with 
specificities emerging from school practice; and another that regards mathematical content 
knowledge as reference knowledge for teacher education and practice – and that in Brazil and 
elsewhere, there are disputes for “hegemony” over these two strands (p. 1001). 
The Study 
Context, aims and data production 

As part of the broader research project, we conducted semi-structured interviews with four retired 
lecturers of the Mathematics Institute at UFRJ (IM-UFRJ), who played central roles in the curricular 
reforms over the last 50 years. Criteria to choose these participants included their degree of 
engagement with the undergraduate programme, including not only teaching but also academic 
administration positions during the above-mentioned timespan. The participants formally agreed with 
the study’s terms of confidentiality: their personal identities will be kept confidential, through the use 
pseudonyms, but the Institution (IM-UFRJ), which provides the context of this research, is known. 

The interviewees are identified by the pseudonyms Ana, Elis, Inês and Olga. All have undergraduate 
and masters degrees in mathematics, and have worked as school mathematics teachers before 
becoming university lecturers. Ana has a doctorate degree in pure mathematics, Inês and Olga in 
mathematics education, and Elis does not have a doctorate degree. All have experience of research in 
pure mathematics, at least as masters students; and all migrated their affiliation to research in 
mathematics education during doctoral studies (Inês and Olga), or later, as lecturers (Ana and Elis). 
They are all currently retired, and were lecturers at IM-UFRJ from late 1960’s to early 2000’s (Ana 
from 1978 to 2017; Elis from 1964 to 1993; Inês from 1979 to 2010; Olga from 1976 to 1996). Their 
academic careers at UFRJ were marked by administrative positions in different levels, active 
participation in the design of successive curricular versions of the mathematics teacher education 
undergraduate programme, participation in the Projeto Fundão (a research and development 
programme on in-service teacher education, and development of instructional resources for the 
teaching of mathematics at elementary and secondary school). Furthermore, Ana and Olga 
participated as lecturers in the Graduate Programme in Mathematics Education since its creation in 
2006; Ana until 2011 and Olga until now. 

The interviews were conducted individually with each participant by the first and the second authors, 
and were fully transcribed. Interview questions aimed to better understand issues unclear from the 
analysis of the official documents of the programme (which was part of a previous phase of the study); 
and, to explore participants’ views on the relationships between Mathematicians and Mathematics 
Educators. The desing of the interviews scripts was also intended to shed light on lacunar issues that 
emerged from the analysis of the official documents. 
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In this paper, we present parts of the interviews with focus on disputes over the undergraduate 
programme’s curriculum. Thus, we focus on participants’ responses to the two questions, stated 
below. As the interviews were semi-structured, these questions were not necessarily made to the 
interviewees at the same moment, and depended on the flow of the discussion with each. 

Question 1: Do you believe that there are disputes between mathematicians and mathematics 
educators concerning the undergraduate programme for pre-service teacher education at UFRJ? If 
yes, for which reason(s)? If yes, how do these disputes take place? 

Question 2: Do you believe that there is room for mathematicians and mathematics educators to work 
jointly in the design of the undergraduate pre-service teachers education curricula? If so, how? 

We present data in a dialogic format (Nardi, 2016) which provides readers with an intimate look at 
contradictions and convergences in the participants’ statements. We wish to allow readers different 
interpretations of the data, but we put in evidence the complexity inherent to the disputes that 
characterize the curricular terrain in which these participants have worked. We stress that the first 
and the second authors cannot be regarded as external or neutral observers. On the contrary, both are 
former students and are currently lecturers at UFRJ, working in departments (Application School and 
Mathematics Institute, respectively) with joint responsibilityfor the Licenciatura programme. They 
are therefore deeply involved with the institution under study However, we do not see this as a 
compromise of the research, but as part of the research itself. That is, the results we report here are 
shaped by the perspectives, (shared) experiences, alliances and divergences of the interviewees and 
the researchers. What we report is a restoried narrative (Nardi, 2016) of the agency and disputes of 
mathematicians and mathematics educators in the undergraduate mathematics teachers education 
programme at UFRJ – that is, a possible version of this story, through the lens of its actors 
(participants and researchers) which gives prominence to participants’ voices. 

Data analysis method: From individual interviews to fictional dialogue among four lecturers 

To put in evidence the voices of the participants, and to reveal points of agreement, disagreement, 
and possible contradictions, we gather the voices of the four participants in a fictional dialogue among 
the four interviewees, grounded on raw data extracted from the transcripts. Conducting the interviews 
individually was important to avoid inter-participant influence. By gathering them together, we aim 
to grasp the gist of their responses to the questions we wish to investigate. Such methodology is 
consistent with the logic that “narratives constructed from testimonials of actors who collaborated in 
educational research can provide access to the senses and emotions evoked at the moments of data 
collection, opening space for several interpretations” (Barbosa, 2015, p. 359). 

In order to promote this interweaving of the participants’ discourses, we use elements of the 
“narrarive approach of re-storying” (Nardi, 2016, p. 362-3), a process for constructing a story from 
original data, taking into account features, such as a problem, characters involved with a scenario in 
which they discuss and act upon the problem and its resolution.  Here, we identify a common scenario 
evidenced in the interviews. This scenario, as presented by the interviewers, concerns the views on 
the relationships between Mathematicians and Mathematics Educators by the interviewees, who 
worked in the same institution, in a concomitant timespan, and with academic trajectories presenting 
similarities and distinctions. Each participant’s utterances presented here correspond to their actual 
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responses in the respective individual interviews. However, these interviews took place separately, 
and the order of these utterances was reconstructed by the authors in the process of composing the 
fictional dialogue. The interviewer’s utterances are introduced in the re-storied dialogue in order to 
make sense of connections between interviewees’ utterances, put together as a whole conversation. 
Thus, we offer a re-reading of the original data – as we believe to be the case for any kind of data 
description, including those that present full original transcriptions. The order of the utterances and 
the connections between them in the composed, fictional dialogue and the fact that the first and the 
second authors are deeply involved in the institution under study produce a particular interpretation 
of the story, one possible narrative1. As Nardi (2016) points out, the proximity of the authors to the 
raw data, the transparency of the process that makes it “accountable and replicable” (p.364), and 
(specifically in this work) the possibility of establishing communication between Mathematicians and 
Mathematics Educators are important constitutive elements of the re-storying method. 

To organize and present data, we firstly separated and classified the interviewees’ statements 
regarding agreement or not about the existence of disputes between Mathematicians and Mathematics 
Educators. Then, drawing on the arguments posed by the interviewees, we constructed the sequence 
of responses and interactions between them, to create a fictional dialogue among five characters – the 
Reseacher and participants Ana, Elis, Inês and Olga – in which the alternation of ideas and the views 
of the characters on the disputes at stake are present.  Thus, we mean fictional in the sense that it is 
presented as a dialogue between five individuals but it is based on four conversations conducted with 
each one separately. Our design includes a respondent validation phase in which the participants read 
and comment on the fictional dialogue (at the time of writing, a preliminary part of this phase had 
been conducted through scrutiny of samples of the dialogue by critical friends in our research group). 
Our method resonates with that of Nardi (2008, 2016), where the composition of the fictional dialogue 
was based on interviews with groups of participants conducted separately and choices were made in 
the light of the study’s theoretical underpinnnigs, literature influences and research questions. We 
now present a sample of the fictional dialogue resulting from this process. 

A fictional dialogue among four mathematics lecturers and a mathematics education researcher 

The Researcher asks whether there are disputes between mathematicians and mathematics educators 
concerning the Licenciatura programme. Elis says “No”. 

Inês:   I agree. Mathematicians have no interest in undergraduate teacher education. 

Olga:  As far as the Licenciatura programme is concerned, I don’t know if there are 
disputes. But I believe there are disputes about hiring of new lecturers. 

Researcher:  What are the reasons for such disputes? 

Ana:   They want pre-service maths teacher education out of the Mathematics Institute. 

Elis:   I think mathematicians do not value teacher education. They think it’s just not worth 

                                                 
1 In order to allow readers to judge our composition and, possibly, even produce different interpretations, the raw data is 
in https://drive.google.com/file/d/1BUm5gGCUQPVuyyhyuSag09WvNgnNXl16/view. 

Thematic Working Group 14

Proceedings of CERME11 2458



 

 

it, that it’s a lesser thing. 

Inês:   But this happens because it’s just not their interest. Their interest has always been 
the Bacharelado. It’s to push good students to finish undergraduate fast, and put 
them in the pure maths graduate programme. It’s not to prepare teachers, they never 
had that in mind. Their interest is to prepare researchers in pure maths. 

The Researcher asks Olga why she thinks this dispute has to do with hiring new lecturers.  

Olga:  Those people with doctorates in pure and applied maths want to grab everything for 
them. They want all the new lecturers to them, everything to their fields, dynamical 
systems, algebra, differential equations. They think only that is mathematics. 

The Researcher asks whether mathematicians from the Institute have really no interest in the 
curriculum of the Licenciatura programme at all.  

Ana:   They won’t care about that. At most, they will say: “But why is there no Analysis 
at Rn there?”; “Why is there no Calculus with Complex Variables?” 

Elis:   That’s true. But it’s funny how though they think Licenciatura has no importance, 
they yet believe that to be a maths teacher one needs to know a lot of maths. 

Inês:   People tend to keep retrograde positions: “let’s not change anything”. They stand 
against changes because they wanted Licenciatura under their own control. They 
stand against changes because they don’t want to get involved with other 
programmes, only in the ones that they have interest in. 

The Researcher asks whether there is room for mathematicians and mathematics educators to work 
collaboratively in the Licenciatura programme. 

Olga:  On the one hand, I think that it’d be very good, but I feel a little afraid of putting 
these lecturers with no link with mathematics education to teach modules in the first 
year, for example. 

Elis:   I think that, nowadays, maybe yes. For that, there must be more guidelines for 
lecturers, to try to get the mathematicians who are more committed more involved. 

Ana:   I think this is not possible. I’m too pessimistic, because I’m way apart from the 
Institute. But what I see is people with intransigent positions, which have no factual 
support. There’ll be collaborative work in the same way there is in the Engineering: 
we go there, teach our lectures, some do the job very well, other put a lot of effort 
for students to learn, other just don’t care. This kind of “collaborative” work always 
existed, and will keep on existing. 

Inês:   I have no doubt joint work between mathematicians and mathematics educators is 
possible. But it has to be with lecturers who do not want to transform prospective 
teachers into prospective mathematicians. However, I think there are few people 
with this kind of mentality. I have managed to have very good partnership with a 
colleague with a doctorate in pure maths at the Institute. But that’s rare. 
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Commentary on the dialogue and closing remark 

Our interpretation of the participants’ responses to Question 1 suggests that they do not consider that 
such disputes exist, since there is no interest from the mathematicians with respect to teacher 
education. One of the participants conjectures that such disputes do take place when hiring new 
lecturers. The claim is that mathematicians appear to resist changes in the curriculum of the 
Licenciatura programme, and intend on keeping it close to the Bacharelado. These statements confirm 
that there are disputes, not with respect to different conceptions of mathematics teacher education, 
but to keep the political territories intact. As evidence for this, we also include the purposes to prepare 
new undergraduate or graduate students and to hire new lecturers to their own fields. 

On Question 2, the divergence of opinions among the participants was remarkable. Thus, concerns 
towards the participation of mathematicians in the first year of the undergraduate programme, the 
need to engage mathematicians more interested in teacher education, the polysemy and fragility of 
the term “collaboration”, and the highlight of the need to differentiate prospective teachers and 
prospective mathematicians are brought about in a debate that implicitly underlines the 
acknowledgement of disputes between mathematicians and mathematics educators. 

Our interpretation of the debate around the two questions suggests that these participants, clearly 
affiliated with mathematics education, acknowledge the professionalization and the orientation to 
school practice as constitutive aspects for the education of mathematics teachers, as per, for example, 
Tardif (2013) and Nóvoa (2009). In this context, disputes initially seem to be over the consideration 
of what constitutes mathematical knowledge for teaching (Ball et al, 2008) in pre-service mathematics 
teacher education, as Brazilian research literature advocates (e.g. Moreira, 2012). However, the 
debate among the participants indicates that these disputes are situated in more strategic goals: the 
preservation of political terrains, where students in the mathematics department, here prospective 
teachers, are background characters who suffer the side effects of someone else’s quarrels. As others 
have noted (Lopes, 2013; Gabriel, 2013), the complexity of the disputes we discuss briefly in this 
paper is evidenced by a displacement of a more local terrain (undergraduate mathematics teachers 
programmes) to a broader one (preservation of fields and professional agency). The divergence of 
responses concerning possible collaborations also reinforce this complexity, since the binarism and 
tensions between mathematics and mathematics education (Nardi, 2008, p.257-292) was not always 
prominent in the participants’ utterances. Such inferences were only possible because of the particular 
data analysis design we adopted. These utterances, which appeared initially in each individual 
interview, were intertwoven, revealing convergences and contradictions at the same time as they 
produce dialogues on ideas that might not be present in a collective interview. These ideas are shaped 
under the authors’ own standpoint, which, as we stressed earlier, is not neutral. 

In the broader doctoral project, we are now collecting and analyzing data from discussion groups of 
former and current students of UFRJ’s mathematics teachers education programme. The perspectives 
put forward in the overall study will therefore be enriched and complemented by our  triad of analyses 
of institution (through analysis of official documents), lecturer and student data. 
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Motivation and teaching format 
More than 100 years ago Felix Klein described the problem of the double discontinuity and its 
consequences. With his “three worlds of mathematics” model, David Tall (2008) saw the problem in 
the existence of different worlds in school and university, namely a conceptual-embodied respectively 
proceptual-symbolic world at school and an axiomatic-formal world in university. We wanted to 
counteract the problem of the double discontinuity by connecting the different worlds of mathematics. 
Therefore we designed a teaching format that should illustrate the interdependencies of mathematics 
taught at school and mathematics taught at university in the field of geometry. That these connections 
do not emerge automatically was already stated by Bauer and Partheil (2008). To aid the learning 
process of the students our teaching format was supported by a blended learning course and 
mathematical maps. Mathematical maps are a didactical tool to show interrelations between topics 
and development of a subject matter in time (Brandl, 2008; Schwarz et al., 2017). 

Theoretical framework and empirical study 
To measure the effect of our teaching format, we used the theoretical framework of concept image 
by Tall and Vinner (1981). The term concept image describes “the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated properties and 
processes” (Tall & Vinner, 1981, p. 2). It is built up over time by engaging with the concept and 
changing as new mental connections are made or older connections are exposed as imperfect. So for 
us it is interesting how the concept image of the students changed after attending the teaching format 
and if more mental connections between aspects of the concept taught in school and aspects taught in 
university are observable. We focused on the concepts of line, circle, congruence and sum of interior 
angles for this evaluation because they are broadly discussed in school and university. 

Data collection and analysis 
For our exploratory pre-post-survey we used a guided interview because it allowed both students who 
attended the full teaching format to answer freely on the question what they connect with a certain 
concept and then we were able to specifically ask questions on aspects that were not addressed. In all 
interviews the questions were the same to provide comparability. For each of the four concepts the 
theoretical notion of concept image was operationalized into different subcategories to which the 
statements of the students were assigned. We then examined the relations between aspects taught in 
school and aspects taught in university in these subcategories. 

Results and discussion 
We want to show changes in the concept image exemplarily. For both students, we call them S1 and 
S2, the summed up concept image of a line in the first interview was very close to school matters. 
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Lines were only seen as a linear function, 𝑦𝑦 = 𝑚𝑚 ⋅ 𝑥𝑥 + 𝑡𝑡 (S1) and as a slanting dash upwards (S2). 
The line equation, the slope of a line, parallelism of lines and the number of points of intersection 
were correctly explained by both students. In the second interview lines were seen as an infinite set 
of points (S1 & S2) that satisfies the line equation, 𝑦𝑦 = 𝑚𝑚 ⋅ 𝑥𝑥 + 𝑏𝑏 (S2) and also from an analytical 
perspective as reference point and direction vector (S1 & S2). S1 even gave the axiomatic definition 
of a line as a set that contains at least two different points and that there is exactly one line for any 
two points. Contentwise you see a change in the concept image of a line. The conception of a line 
changed to include different aspects, a set theoretical approach of a line as an infinite set of points, 
which is mainly used in university and an algebraic and analytical approach which is used in school. 

In the first interview S1 understood congruence as being the same shape and size, which is the graphic 
description from school. She also made a connection to the criteria for congruence of triangles which 
are taught in school. In the second interview S1 added the following excerpt. 

Student 1: [Congruence means that] you can map it onto each other with a motion. And a 
motion is achievable with a maximum of three reflections […]. 

This shows that S1 was able to connect the previously very school based knowledge with formal 
mathematics. The answer to the question which functions are congruence functions reinforces this. 

Student 1: Well, so reflections and rotations definitely are congruence functions. Translations 
too, but dilation and contraction are no congruence functions. 

Overall these results suggest that our teaching format positively influenced the concept image of 
different terms of geometry. Aspects from school were not replaced by but extended with aspects 
from university. Especially with the abstract concepts of congruence and sum of interior angles more 
mental connections between aspects of the concepts taught in school and aspects taught in university 
can be observed. This suggests that the students were able to establish interrelations between what 
they learned – and will be teaching later – at school and what is taught at university. 
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The work presented here concerns the teaching and learning of random variables at the secondary-
tertiary transition. Our study takes place in France, where discrete random variables are studied in 
grade 11 and in the first post-secondary year. Comparing textbooks, we observe that random 
variables are introduced as tools for the modelling of random situations at grade 11, while they are 
presented theoretically at the post-secondary level. The answers of first year students to a test confirm 
this difference: they are able to use random variables to produce interpretations in a concrete 
situation, but are not prepared for the learning of theoretical definitions. These results can contribute 
to design a teaching intervention concerning probabilities for first year students.  

Keywords: Praxeologies, Probabilities, Random variables, Registers, Secondary-Tertiary transition.  

Introduction  
Difficulties encountered by students at the secondary-tertiary transition have been analyzed in many 
research studies in mathematics education, with different perspectives (Gueudet & Thomas, in press). 
Some of these studies focus on particular mathematical topics: calculus or linear algebra for example. 
The transition issues concerning probabilities have been less studied so far; yet probabilities are 
present in many tertiary courses, for non-specialists of mathematics in particular, like biologists or 
economists. Our study, taking place in France, addresses this issue with a focus on the concept of 
random variable. Our research questions are the following: 

- How is the concept of random variable taught at secondary school, at the beginning of tertiary 
education? Which similarities or differences can be observed? 

- What do the students know about random variables after the end of secondary school, and 
does this prepare them adequately for what is taught in the first year of tertiary level?  

We study these questions with an institutional perspective. We present in the next section our 
theoretical tools, and studies about the teaching and learning of probability which inform our research. 
Then we expose in Section 3 the context of our study and our methods. In Section 4 we present our 
results, coming from a textbook study and a test proposed to first year students. We draw conclusions 
from these results and present them in Section 5.  

Theoretical frame and related works 
In our work we consider the secondary-tertiary transition as an institutional transition: the 
mathematics taught is shaped by the teaching institution, and is thus different at secondary school and 
university. We use the Anthropological Theory of Didactics (ATD, Chevallard, 2006), which 
introduces, in particular, the concept of praxeology. A praxeology has four components: a type of 
tasks, T; a technique, t to accomplish this type of tasks; a technology q which is a discourse explaining 
and justifying the technique; and a theory Q. Comparing the praxeologies at the end of secondary 
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school and at the beginning of university can illustrate different kinds of changes in the mathematics 
taught (see e.g., Winsløw, Barquero, De Vleeschouwer & Hardy, 2014). Some changes are very 
general: for a given type of tasks, a single technique is taught at secondary school, while several 
techniques can be expected at university; similarly, at university the theoretical block (formed by the 
technology and the theory [q,Q]) is more important than the practical block [T, t]. Other changes 
concern a particular type of task, for example in our case: “Determine the probability distribution of 
a random variable,” studied below.  

We also use in our work the concept of semiotic registers (Duval, 2017). Mathematical concepts, in 
particular random variables, can be described through different semiotic registers: a text, a table, or a 
graph. Compared with secondary school, the institutional expectations concerning the flexible use of 
different registers increase at university (Gueudet & Thomas, 2018). Hence observing the registers 
used, in particular the need to combine several registers in the same technique for a given task, can 
illustrate discontinuities in the transition process.  

Concerning probability, several works acknowledge the specific nature of probabilistic reasoning. 
Batanero et al. (2016) state for example that “probabilistic reasoning is a mode of reasoning that refers 
to judgments and decision-making under uncertainty and is relevant to real life” (p. 9). Such link 
between probability and real-life is emphasized by many authors, and in the curriculum of different 
countries (Batanero et al., 2016). However, some studies indicate that an important proportion of 
probability problems proposed to students are not related to real life situations and that the problems 
involve more algebraic than probabilistic reasoning (20% in entrance tests to university in Andalucía 
according to Batanero, López-Martín, Arteaga, & Gea, 2018). Student difficulties are observed and 
connected with the teaching practices; for example Burrill and Biehler (2011) claim that a formal 
teaching of probabilities focusing on set theory and counting techniques can hinder the understanding 
of the associated phenomena.  

Research in mathematics education concerning random variables is scarce. At the beginning of 
university, Amrani and Zaki (2015) observed student difficulties, after a very formal teaching about 
random variables. Given a random experiment, they had difficulties proposing a model with an 
appropriate random variable and determining the probability distribution for a given random variable. 
Nevertheless these authors did not observe the impact of a less formal teaching.  

Context and methods  
Our research takes place in France, where probability is an important part of the official curriculum 
at secondary school, starting at Grade 9. We focus here on Grade 11 of the scientific track (called “S 
section”). Students encounter random variables for the first time at Grade 11, in the context of discrete 
random variables. The concepts of probability distribution, expected value, and variance are defined; 
the Bernoulli and binomial distributions are introduced. According to the official curriculum: “The 
concept of probability distribution of a random variable permits the modelling of random situations 
and their study with the tools of probability”. At Grade 12 students encounter continuous random 
variables, with the concept of density and the Gaussian distribution.  

We chose to focus on “preparatory classes” in the tertiary level, selecting high-achieving students, 
who want to enter a “grande école” after two years of preparation. The classes are organized is 
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similarly to secondary school, hence we claim that the institutional differences mainly come from the 
mathematics taught. Moreover, because they are high achieving, the difficulties encountered by these 
students should not come from an insufficient grasp of secondary school praxeologies. The official 
curriculum of the first year of preparatory classes (in our case an “Economics and Commercial –
Scientific, ECS,” preparatory class) concerning random variables is limited to discrete random 
variables (continuous random variables appear only in the second year). The curriculum revisits the 
notions taught at Grade 11: random variable, probability distribution, expected value, and introduces 
the study of pairs of random variables, and independent random variables. The official curriculum 
states that “Modelling simple random situations with random variables is a skill expected from 
students”, meaning that the preparatory classes institution is not responsible for this modelling skill. 

In the study presented here, we used two kinds of methods. First, we performed a comparative 
analysis of a secondary school textbook, and a preparatory class textbook. The secondary school 
textbook (Barbazo, 2015), is used by a large number of Grade 11 teachers in France. The students in 
the preparatory classes did have a textbook, but they often bought books to complement the course 
given by their teacher. The content across books was quite similar, so we chose Gautier and Warusfel 
(2012). We compared the chapters concerning random variables according to five characteristics: the 
structure of the chapters in terms of course vs exercises (theoretical vs practical block), the definition 
of random variable given (considered as an important aspect of the theory), the registers of 
representations used, the types of tasks and associated praxeologies, and the contexts in which the 
exercises and examples were situated. For each chapter studied, we listed and counted the types of 
tasks requested in each exercise or worked example. The theoretical block appeared mainly in the 
content parts of the chapters (definitions, theorems, demonstrations, proposals) whereas the practical 
block appeared in the exercise and example parts of these chapters.  

Second, we designed a test and submitted it to the students from a first year ECS class before the 
teaching of random variables (see Appendix). The teacher only allowed us to use 20 minutes to 
administer the test in class, so we had to limit its length. The test started with three questions: 
mathematical definition of a random variable, how to explain to a Grade 12 student what a random 
variable is, and give an example of random variable; then an exercise in an economical context was 
proposed. This exercise, taken from a website for Grade 11, was typical from what can be found in 
secondary school textbooks for this level. It corresponded to a random situation in a “real” context. 
Nevertheless the students’ responsibility for modelling was reduced: the random variable to be 
studied was given in the first question. The types of task were: “Determine the distribution of a 
random variable (described by a text)”; “Compute the expected value of this random variable and 
interpret it”; and “Study the influence of a change in the initial data on the expected value”. Forty-
four students took the test at the beginning of a course. We analyzed the students’ answers using the 
following categories: for Questions 1 and 2: elements of theory and technology used, errors, ideas or 
elements related to randomness, and type of answer (theoretical, related to randomness, other). For 
the Question 3 we looked at example correct or not, if not why, in what context it was stated, and 
which registers were used. For the exercise, the categories were: answer correct or not, the technique 
used, the technology (justification of the answer), use of registers, and result correctly interpreted.  
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Modelling “real” situations and mastering formal definitions 
Comparing secondary school and preparatory classes textbooks 

We noted a large difference in the proportions of courses/exercises within the chapters studied, in 
terms of number of pages dedicated to each: 15% for course in the Grade 11 textbook; more than 80% 
in the ECS textbook. We consider this as an indicator of the much greater importance of the 
technological-theoretical block in higher education, compared to secondary education. 

Concerning the definition of random variable, in the Grade 11 textbook the students already knew the 
concept of sample space W; a random variable X was defined as “a function from W to IR”. We claim 
that this definition was difficult for Grade 11 students, who mostly met functions from IR to IR. The 
definition of the probability distribution; as a function from IR to IR, followed immediately and it was 
more familiar. In the ECS textbook, the definition of random variable was situated at a much more 
general level. The definition of s–algebra was introduced together with the notion of probability 
space as a triple (W, F, P). In this context a very general definition of a random variable was given: 
“an application X from W to IR such that ∀x∈ IR, {w∈ W/ X(w)≤ x} belongs to F”. 

We categorized the registers of representations present in the parts of courses, in the examples of the 
courses and in the exercises of the chapters studied. We observed seven different registers: symbolic, 
natural language, and five kinds of graphical registers: tree diagrams, function graphs, tables for 
representing the random variable distribution, some charts representing the random situation and 
various illustrations (e.g., photos). The symbolic register and the register of natural language were 
omnipresent in both textbooks. The graphical registers were more frequent in Grade 11 (68 examples 
used these registers) than in ECS (18 examples). There were, in particular, many illustrations in Grade 
11, and none in ECS. There were 36 tables representing the random variable distribution in Garde 11 
and only six in ECS. Overall, there were very few tree diagrams. In the secondary school textbook, 
random situations were often represented by charts or diagrams, but relatively few by trees. 

Regarding the contexts in which the examples and exercises were posed, we distinguish two 
categories: exercises and examples in a non-mathematical context and in a mathematical theoretical 
context (what Batanero, et al. 2018 call “problems with no context,” p. 113). This choice is governed 
by the claim of the secondary school curriculum, about the importance of random variables for “the 
modelling of random situations” (Ministère de l'Education Nationale, 2010, p. 5).  

In the first category, exercises and examples in a non-mathematical context, we identified real-life 
situations such as the lifespan of a robot or the waiting time at a doctor, but also “artificial” situations 
such as a flea moving on a graduated axis or a drawing of balls from an urn. There were also situations 
in other scientific fields such as the study of physical uncertainty of measurement. The proportion of 
examples and exercises in a non-mathematical context is 78% for Grade 11 and 67% for ECS (out of 
a total of 108 exercises and examples, respectively 66). 

In spite of this difference, we observed similarities concerning the types of tasks. For both Grade 11 
and ECS, the three most frequent types of tasks were: “determining the probability distribution of a 
random variable,” “proving that a random variable admits an expected value and/or calculating it,” 
and “proving that a random variable admits a variance and/or calculating it.”  

Thematic Working Group 14

Proceedings of CERME11 2467



 

 

For example, for the type of task “determining the probability distribution of a random variable,” the 
following technique was described in the Grade 11 textbook: “(1) determine the possible values xi for 
X; (2) compute the probabilities P (X = xi); (3) summarize them in a table”. This technique was linked 
with the fact that in most cases, the random variable took a limited number of values (in our test for 
example, X takes 4 different values), that could be presented in a table. In the Barbazo textbook, 104 
exercises amongst 106 were about random variables taking a limited number of values. In the ECS 
textbook, in 20 exercises amongst 21 the random variable took its values between 1 and an integer n. 
To determine the distribution, the technique is consisted of finding a formula giving P(X=k) for 1 ≤ 
k ≤ n. The associated technologies in the two institutions were provided by the definitions mentioned 
above. Thus the praxeologies were clearly different in each textbook. 

Also the differences concerning the context lead, for similar types of tasks, to different responsibilities 
of the students in terms of modelling. In Grade 11, 19 exercises asked students to calculate an average 
payout or determine whether a game would be favorable or not to the player, with no intermediate 
tasks. For this type of task, the technique used was to select the appropriate random variable, and then 
determine its distribution in order to calculate the probability of a certain event. This modelling work 
is totally absent for ECS, although the proportion of exercises in the context of artificial situations is 
high. In these exercises, the random variable is always given and the types of tasks present are 
"determining the probability distribution" or "calculating its expected value". 

Students responses to the test 

We recall here that the test started with three questions, concerning: the mathematical definition of a 
random variable, the explanation for a Grade 12 student of what a random variable is, and an example 
of random variable. These questions were directly linked with the theoretical block [q,Q]. Twenty-
three of 44 students (52%) answered the first question, 33 of 44 students (75%) answered the second 
question, and 26 of 44 students (59%) answered the third question.  

The answers were very often false or incomplete. The most common errors were confusion between 
the random variable and the probability distribution (which we expected, considering the definitions 
given in the textbook) and confusion between the definition of a random variable and its properties. 
In the first question concerning the theory, six students confused the definition of a random variable 
with its properties, and five students confused the random variable with the probability distribution. 
In the second question (in which students are expected to produce a technological discourse), three 
students confused the random variable with the probability distribution. In the third question, 11 
students confused the random variable with the probability distribution. 

The vocabulary and mathematical notations used by the students allowed us to distinguish two types 
of answers: theoretical answers in which we find a symbolic register with mathematical concepts and 
notations, and answers in relation to randomness in which we find a vocabulary in relation to 
randomness. Such answers contain ideas linked to chance, for example: “randomly draw a sample,” 
“results of a random experiment,” or “depends on chance.”  

For the first question, students mainly gave a theoretical answer (19 of 23 students); only 4 gave an 
answer in relation to randomness. An example of theoretical response by student S2 is:  
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“A random variable is a law that associates a variable entity (price, size) with X.” (our translation) 

The second question generated more diversity in the registers used by the students in their responses. 
We distinguish for this question a new type of response, in which students responded with a specific 
example of the use of a random variable. Almost a fourth of the students produced such a 
technological discourse, explaining in their answers how a random variable can be used (see the 
example below). These students seem to have incorporated the perspective of the official curriculum: 
random variables as tools for the modelling of random situations. 

An example of this type of response by student S38 is as follows:  

"it will be a question of insisting on the fact that a random variable is not fixed, it will allow 
specially to make calculations of returns, of profits. Know through expected value if it is relevant 
or not to play a game of chance. In order to be able to work on its expected value for example it 
will be necessary to draw up the law of probability (table of values)". (our translation) 

Finally, on the third question, we were interested in the contexts in which students set their example. 
Eight of 26 students who answered this question gave an example in a real-life situation (e.g., the 
price of a chocolate bar, the price of a car, the life of a light bulb or the size of a plant) while four of 
26 of students gave an example in an artificial context (e.g., a betting game, a die roll, or a drawing 
of balls from urns).  

The students were more successful with the exercise than with the three preliminary questions. Thirty-
seven of 44 students answered the first question that asked them to determine the distribution of a 
random variable (described by a text), 38 of 44 students answered the second question that asked 
them to compute the expected value of this random variable and interpret it, and 29 of 44 students 
answered the third question that asked them to study the influence of a change in the initial data on 
the expected value. Students who responded to these questions often offered a correct and well-
justified answer.  

Concerning the first question, a fourth of the students who answered used a technique involving the 
representation of the probabilistic situation with a diagram or a tree diagram. Questions of 
interpretation were often well addressed. Almost two thirds of the students who answered the second 
question gave a correct interpretation of the expected value. 

Finally, we note that these students (who were high-achieving at secondary school) were able to use 
a random variable for the modelling of a concrete random situation. They interpreted the situation to 
find the distribution of the random variable, used it to solve a question concerning an expected value, 
but were unable to produce the correct theoretical/technological discourse needed at tertiary level.  

Conclusion  
The questions we studied here about the concept of random variable concerned on the one hand the 
differences between secondary and tertiary levels; and on the other hand how well prepared students 
were by their secondary school for the teaching proposed at tertiary level. 

The textbooks’ comparative study evidenced as expected that the practical block was more important 
at secondary school while the theoretical block was more important in the preparatory classes. The 
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definition of random variable given at secondary school was less general, and immediately associated 
with the definition of the distribution, which is central in the exercises. Similar types of tasks were 
found in preparatory classes, but they corresponded to different praxeologies. For example, 
techniques were different because random variables met at secondary school had a limited number of 
values, while random variables in preparatory classes had values between 1 and n. At secondary 
school, random variables are introduced as tools to study situations and the focus was on the 
distribution, represented by a table. In preparatory classes, in contrast, the concept of random variable 
and the associated theory became central.  

The student responses to the test are coherent with the textbook study: they were able to use a random 
variable for the study of a given situation but did not seem to handle well the theoretical and 
technological aspects. In particular they confounded random variable with its distribution. The 
textbook analysis suggests that secondary school teaching is probably not a sufficient preparation for 
what is expected at tertiary level, and our small sample of students seems to confirm this. Even if the 
concepts are the same, students at tertiary level are likely to meet difficulties for connecting the new 
theoretical aspects with their previous knowledge.  

Beyond these observations, similar to the results obtained by studies about the secondary-tertiary 
transition for other topics (Gueudet & Thomas 2018), our work raises theoretical and methodological 
issues. Concerning the theory, the importance of modelling within the theme of probabilities leads to 
questions about “modelling praxeologies”: how can the praxeology be described? Which kind of 
theory is involved in it? It is necessary to answer these questions, in particular, to design a teaching 
intervention in which modelling plays a central role, and theory is also present. Concerning the 
methods, we have observed that the analysis of textbooks can contribute to identify changes of 
praxeologies between different institutions. Nevertheless, identifying the theoretical and the practical 
blocks in a textbook is not always straightforward; different textbooks can have very different 
structures. We consider that this is a direction open for a further methodological work, especially 
important for transition studies. 

Naturally the study presented here remains limited. In a further work we will consider the learning of 
probabilities by non-specialists in the first year of university, with the aim to propose a teaching and 
associated resources combining the modelling of real-life situations and theoretical aspects. 
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Rationale  
In line with declarations to improve the education and literacy of women, Malawi, like many other 
African governments, has implemented various policies and action plans to improve access and 
participation of girls in both primary and secondary education. Since 1994 the government has 
progressively promoted a policy of 50:50 for selection of girls and boys to secondary schools 
(Ministry of Education, Science and Technology [MoEST], 2001). This policy has been accompanied 
by several gender reforms and interventions by the government and Non-Governmental 
Organizations (NGO's) to support the participation of girls in secondary schools, including school fee 
waivers, cash transfers, and building of additional hostels for girls in boarding secondary schools. 
Furthermore, the MoEST developed a National Girls’ Education Strategy aimed at strengthening and 
improving girls’ access and participation at all levels of education (MoEST, 2014). Despite these 
interventions, female students’ access, success and retention in mathematics and science continue to 
be a challenge throughout secondary and higher education (Mbano & Nolan, 2017) sectors. This 
might be because the interventions mainly focus on improving general performance of the girls in 
schools and not necessarily focusing on girls’ participation in mathematics and science subjects. We 
have not found any studies that have been conducted to find out how these female students sustain 
themselves both academically and socially during tertiary education in the absence of the 
interventions they were offered during primary and secondary education. This is important because 
after access to university, retention of the girls is necessary. Therefore, the purpose of this study was 
to examine the participation of female students in mathematics courses at the University of Malawi, 
and to explore possible strategies that would support and sustain participation of female students in 
mathematics at university. 

Methodology 
The study adopted a mixed method approach using quantitative and qualitative techniques to 
investigate how female mathematics students cope academically. Quantitative methodology involved 
a desk study that analysed secondary data regarding female students’ access, performance and 
retention in mathematics courses. Three cohorts of all students enrolled into Bachelor of Science and 
Bachelor of Education Science programmes in 2013, 2014 and 2015 were followed to their 
completion in 2016, 2017 and 2018, respectively. Qualitative methods involved interviews and focus 
groups discussions with 41 female mathematics students to gain in-depth insights into their views and 
experiences regarding access, participation and retention of female students in mathematics. Data 
analysis for quantitative data used Microsoft Excel to calculate frequencies and percentages. For 
qualitative data, responses were coded and categorised into themes that were not predetermined. 
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Findings  
Retention  

 Results from desk study indicate that 15.1% of potential female mathematics majors at second year 
(compared with 24.7% for males) proceed to take at least two mathematics courses at years three or 
four due to various reasons including lack of support systems and planted fear resulting from, among 
other issues,  negative correlation between entry grades and semester grades.  

Motivating factors to continue with Mathematics 

When asked about what motivated them to study mathematics, and what will compel them to continue 
with the subject, students gave several reasons including: scoring good grades, having role models, 
learning the practical use of mathematics in the industry, and wanting to be role models to other girls. 
However, the most prominent response was the encouragement from fellow students and lecturers.  

Strategies and support that would help the learning and better performance in mathematics 

When asked about strategies and the support that they think would help them in the  learning of 
mathematics, all students (100%) mentioned tutorials for practice, while other strategies ranged from 
availability of teaching and learning materials (75%), conducive learning environment (50%), 
motivation talks (25%), and use of YouTube  (10%).  

Implications  

The study is ongoing, such that results after interviews with male students and lecturers will be 
reported in a separate poster or paper. However, the following implications can be drawn from the 
results this far:  

1. The mathematics department need to introduce support systems for female mathematics students. 
2. The department need to enhance and increase frequency of mathematics tutorials. 
3. The department need to work together with stakeholders for continued policy interventions for 

female mathematics students. 
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Many university freshmen have difficulties in first year mathematics courses due to inappropriate 
study skills and learning strategies. In large mathematics service courses the effect of poor study 
skills is even worse because individual support is hardly possible. Past research shows that it is not 
sufficient to introduce new study skills because students often do not use these; they need first to be 
supported when working with them. In this paper we describe one possible support with a coaching 
program for a tool that aims to assist students in learning mathematical concepts. We describe the 
aims, the design, and the implementation of the coaching program supporting the students’ work 
with the tool provided, as well as some evaluation results concerning reported students’ benefit 
from the program, their attitudes towards the tool, and the frequency of use of the tool at the end of 
the coaching. 

Keywords: Study skills, methodological support, mathematics for non-mathematics degree, 
coaching for study skills 

Introduction and embedding of the research 
Many students have problems in their first year mathematics courses at university due to 
insufficient study skills (Anthony, 2000). Empirical evidence suggests that promoting study skills in 
tertiary mathematics courses might lower students’ difficulties in learning university mathematics 
(see, e.g., Cornick, Guy, & Beckford, 2015; Mireles, Offer, Ward, & Dochen, 2011). Teaching 
study skills is in particular successful if respective programs are integrated into the regular course 
(Hattie, Biggs, & Purdie, 1996). Hence, the second author, a mathematician, developed a 
methodological support program named CAT (Checklist, Ampel [=Traffic Lights], Toolbox) and, in 
2010, integrated it into his course ‘Mathematics for economics students’ at the University of 
Paderborn. This program consists of several tools addressing different study skills (for details see 
Feudel & Dietz, 2019). 

Past research, however, also showed that many students fail to use study skills and learning 
strategies taught to them or just do not use them at all (Anthony, 1996; Dembo & Seli, 2004). In a 
joint previous research project at the Centre for Higher Mathematics Education in Germany, the 
authors of this paper identified five additional reasons for such failure: 1) perceived time and effort 
required to use the methods provided, 2) difficulties in working with them, 3) perceived 
unhelpfulness of the methods, 4) perceived lack of benefit from them, 4) insufficient understanding 
of them, 5) using personal methods, and 6)  no need (see Feudel & Dietz, 2019 for more details).  

To address these problems, the authors developed a coaching program for one of the tools of the 
CAT program, the ‘Concept Base’ that aims to help students learn mathematical concepts. This tool 
was chosen because the authors conjectured that a suitable coaching program could address the two 
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main reasons for not using it: ‘perceived time and effort compared to the benefit’ and ‘difficulties 
when working with the methods’. These two reasons are also described (not verbatim but in terms 
of the content) as important reasons for not using study skills taught or optional resources provided 
in literature (Dembo & Seli, 2004; Guthrie, 2010). The ideas behind the coaching program to 
address these reasons for the non-use of the Concept Base can be also probably transferred to other 
study skills or optional resources provided in mathematics courses.  

Short description of the Concept Base tool 
The tool was conceived as a study skill that should help students learn mathematical concepts. The 
‘Concept Base’ is a system of various categories that students should attend to in order to make 
sense of a mathematical concept. These categories include: the definition of the concept, examples, 
non-examples, visualizations, statements involving the concept and applications. The category 
system was developed by the lecturer H. Dietz of the course based on his teaching experience. But 
these categories are also labeled as crucial in didactic literature for gaining understanding of 
mathematical concepts (Tall & Vinner, 1981; Vollrath, 1984). 

The lecturer H. Dietz advises the students to attend to the Concept Base categories for each 
mathematical concept taught in the course. He also points out that the knowledge of the categories 
is also required in the exam. Further, he recommends the students to write them down for important 
concepts, for example for the ones covered in more than one lecture. These written Concept Bases 
may also serve as summaries when preparing for the exam later in the semester. The students can 
download an empty template from the course homepage as support (Figure 1).  

 
Figure 1: Template of a Concept Base (scaled down from one page) 

A written ‘Concept Base’ as a summary of aspects of a mathematical concept is also closely related 
to the idea of a ‘concept map’ by Novak and Cañas (2008) that organizes knowledge related to 
mathematical concepts. However, the latter focuses more on linking different concepts while the 
‘Concept Base’ focuses on categories crucial for gaining an understanding of a single concept (for 
acquiring an adequate concept image in the sense of Tall & Vinner, 1981).  
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Framing of the coaching program to support the use of the Concept Base 
As pointed out in the introduction, the majority of the students did not use the tool ‘Concept Base’ 
after its introduction in the course in 2010, although the lecturer advised them to do so. To address 
two of the reasons identified in prior work on reasons for not using the Concept Base (Feudel & 
Dietz, 2019), specifically ‘perceived time and effort required for the creation of the Concept Base 
compared to its benefit’ and ‘difficulties when trying to create Concept Bases’, the authors designed 
a coaching program addressing these problems in the winter semester of the academic year 2016-
2017. Its goal was to help students overcome difficulties with the tool ‘Concept Base’ and see its 
benefit, so they might use it on their own.  

The design of the coaching program was based on the ‘Decoding the disciplines’-model by 
Middendorf and Pace (2004). The model consists of seven steps that are important for a successful 
implementation of subject-specific study skills and working techniques into a university course. It 
was developed by faculty members of different disciplines at Indiana University at Bloomington on 
the basis of similar problems they had experienced when trying to implement study skills and 
learning strategies in university courses. The seven steps are:  

1) Identification of students’ difficulties 
2) Identification of strategies that experts of the subject (here: the lecturer as a mathematician) 

would use to overcome these difficulties 
3) Demonstration of the strategies in the course 
4) Exercise of the demonstrated strategies with the students including feedback 
5) Motivation of the students to continuously use the strategies provided 
6) Evaluation of the effectiveness of the strategies provided  
7) Sharing of the knowledge acquired  

In our case the recognition of the students’ difficulties by the lecturer, the development of the 
Concept Base and is implementation into the mathematics course were exactly steps 1-3.  

Steps 4)-6) were realized in a systematic manner with the coaching program that was developed, 
implemented, and evaluated. Although students had practiced creating Concept Bases in the course 
tutorials that accompanied the lecture before 2016, the frequency and the intensity of its use varied 
across the tutorials because there was no mandatory guideline. 

Design and implementation of the coaching program 
The program consisted of two parts: I. one workshop to practice the creation of Concept Bases 
(Step 4 of the ‘Decoding the Disciplines’-model), and II. submitting four written Concept Bases for 
further practice including feedback (still Step 4) and for motivating further regular use of the 
Concept Base (Step 5 of the model). The workshop was carried out after the Concept Base was 
introduced in the lecture in December 2016 by the first author and another tutor of the course who 
was familiar with the Concept Base. The second phase, the submission of the Concept Bases, took 
place afterwards during the second half of December 2016 and during January 2017, and was also 
conducted by the first author.  
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Participants of the coaching: Due to capacity restrictions only 50 participants could take part in 
the program (workshop + submission phase, 48 finished both). They volunteered to take part by 
writing an email to the first author (a randomized design was not possible due to ethical reasons, but 
the participants did not receive a reward). Hence, when evaluating the coaching, one has to take into 
account that these students were willing to work and to invest time for their study program.  

Detailed description of the two parts of the coaching program:  

Part I - the workshop: The workshop had several aims: 

1) Clarifying the benefit of the Concept Base to the students 
2) Providing different suggestions how Concept Bases can be created  
3) Helping students to overcome first difficulties when creating Concept Bases 

It consisted of four phases:  

1. Explanation of the benefit of Concept Bases by the leaders of the workshop 
2. Creation of a Concept Base for the concept ‘preference relation’ on a poster in groups of 4-5 

students (supported by the leaders of the workshop if questions occurred) 
3. Comparison of the different Concept Bases in a poster session with discussion 
4. Revision of the Concept Bases based on the discussions in Phase 3 

Afterwards, pictures of the Concept Bases that had been created in the workshop, were taken and 
sent to the participants via email as stimuli for creating their own Concept Bases.  

These activities were meant to address three problems found out in previous research causing the 
non-use of the Concept Base. First, the reason ‘difficulties with creating a Concept Base’ was 
directly addressed by helping the students during the workshop. Second, the reason ‘perceived lack 
of benefit’ was addressed by communicating one main benefit of the Concept Base explicitly right 
at the beginning: the possibility to use it as summary when preparing for the exam. And third, the 
reason ‘use of own methods’ was addressed. It had been found out that students felt constrained by 
the template in Figure 1. Hence, the adaptability of the ‘Concept Base’ according to the students’ 
own preferences was underlined by (1) emphasizing that the important aspect of a Concept Base is 
the categories and not how they are arranged on the paper, (2) by motivating the students to extend 
their Concept Bases by further categories if needed (e.g., by a personal concept definition, Tall & 
Vinner, 1981), and (3) by providing lots of different examples of Concept Bases in the workshop.  

Part II: Submission of four written Concept Bases with feedback: The aim of this phase was to 
continuously support the students when creating Concept Bases to further reduce the difficulties 
with the tool. In addition, the authors wanted for the students to get more experience creating 
Concept Bases and become more time efficient, which could address the reason ‘time effort’ for not 
using the Concept Base.  

This phase was implemented as follows. The students were asked to create a Concept Base for four 
concepts: 1) monotonicity, 2) derivative, 3) convexity, and 4) Cartesian product of sets. The first 
three concepts were simultaneously taught in the lecture. The Cartesian product had already been 
taught at the beginning of the semester. This concept was chosen to motivate the students to also 
create Concept Bases for the concepts taught before the introduction of the tool in the course. 
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The first author provided feedback to the students on each of the four Concept Bases. The feedback 
had one quantitative and one qualitative component. The quantitative component was a list of 
aspects of the concept the authors expected the students to know. If an aspect on the list was found 
in the student’s Concept Base it was marked with a check. Otherwise it was marked with a cross. In 
this way students could get an idea of the scope of the concept. In the qualitative feedback the 
students were given methodological hints for future Concept Bases, for example to structure the 
Concept Base on the basis of its categories. Mathematical mistakes in the students’ Concept Bases 
were marked as well. The feedback gave the students ideas about what to include concretely in 
Concept Bases, and to help them become more efficient in their creation.  

Evaluation of the Concept Base coaching  
For the 6th step of the ‘Decoding the disciplines’ framework we carried out an evaluation. In order 
to find out (1) to what extent the Concept Base coaching was helpful to the students, (2) to what 
extent they saw the benefit of the Concept Base before and after the coaching, and (3) whether the 
students used the Concept Base on their own in the following semester, several data was collected:  

1. Data from a questionnaire administered to the coaching participants in January 2017 (N = 48)  
2. The results of the final exams (in February 2017) of all students from the course (N = 821) 
3. Data from one follow-up question administered in the next semester in June 2017 (N = 357) 

1) Questionnaire for the coaching participants: The questionnaire comprised of two blocks of 
questions. 

I. To find out if the coaching program and its components (workshop, submission of four Concept 
Bases) was helpful to the students the questionnaire contained 10 Items with statements about the 
perceived helpfulness of the coaching program. An example is ‘The Concept Base coaching helped 
me to get a better understanding of the concepts, to which a Concept Base had to be submitted.’ The 
answers format was a 1-6 Likert-scale (1=‘Do not at all agree’ to 6=‘Totally agree’). The items can 
form a scale ‘perceived helpfulness of the coaching program’ (𝛼𝛼 = 0.778). Furthermore, the survey 
contained two items asking if the time for the participation was well invested.  

II. To find out if the students saw a benefit of the Concept Base before and after the coaching the 
questionnaire contained a question asking about the perceived benefit of the Concept Base before 
and after the coaching program. The students could choose from several options that had been 
identified in previous research (Feudel & Dietz, 2019). Sample options were ‘better understanding 
of the concepts’ or ‘summaries for the preparation of the exam’. Multiple answers were possible. 

2) Consideration of the results of the final exam: To get an idea if the coaching might have had a 
positive effect on the students’ performance, we also looked at the exam results. To mediate the 
effect that the participants were probably more motivated, we generated two special groups for the 
comparison of the exam results by asking all students of the course the following two questions1: 

                                                 
1 These questions were administered in January 2017 and were part of a larger survey about the tool ‘Concept Base’ not 
described in detail here because the focus of the paper is on the coaching.  
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‘Would you participate in the coaching program if it was offered next semester again?’ 
‘How often do you use the Concept Base?’ (answer format was a 1-6 Likert-scale from 
1=‘never’ to 6=‘every week’) 

We suspected that students who would agree on the first question and did not take part in the 
coaching were probably as motivated as the current coaching participants. With the second question 
we wanted to find out if the coaching really made a difference (and not just the use of the tool 
alone). Finally, all students were asked for their final grades in mathematics at school to find out if 
better results might only be due to better initial mathematical qualification.  

3) Follow-up question in the next semester: In the following semester all students in the subsequent 
lecture “Mathematics for economics students II” were again asked the question ‘How often do you 
use the Concept Base?’, in order to find out if the participants of the coaching continued using the 
Concept Base on their own.  

Some results of the evaluation 
Results concerning the perceived helpfulness of the coaching program by the participants: Many 
participants found the coaching program helpful. The parameters of the 10-item scale ‘perceived 
helpfulness’ mentioned above ranging from 1=’not at all helpful’ to 6=’very helpful’ are: �̅�𝑥 = 5.08, 
𝑥𝑥� = 5.3, 𝑠𝑠 = 0.58. The distribution of the answers to one sample item is shown in Table 1.   

The Concept Base coaching helped me to get a better understanding of the concepts, to which 
a Concept Base had to be submitted. 

1 2 3 4 5 6 �̅�𝑥 𝑥𝑥� 𝑠𝑠 

- - 4% 11% 40% 45% 5.26 5 0.820 

Table 1: Sample item concerning the perceived helpfulness of the Concept Base coaching 

Moreover, the two items concerning the time effort indicate that, on average, the participants 
believed that the time spent for the coaching was well invested (�̅�𝑥 = 4.57, 𝑥𝑥� = 5.0, 𝑠𝑠 = 0.99), 
although there was more variation than in the scale ‘perceived helpfulness’.  

Results concerning the perceived benefit of the Concept Base by the coaching participants: The 
coaching participants saw a greater benefit of the tool Concept Base after the coaching than before, 
in particular the benefit of the deep processing of mathematical concepts during the time consuming 
process of their creation (due to limited space details cannot be presented here).  

Results concerning the success in the exam: The pass rate in the exam of the whole mathematics 
course (N = 815) was 57%, which mirrors the pass rates in former years. The pass rate among the 
coaching participants (N = 48) was significantly higher than of the rest: 81% versus 55% (p < 0.01). 
These differences are not necessarily due to better initial mathematical qualification of the coaching 
participants because the final grades in mathematics at school did not differ significantly.   

The comparison with the two comparison groups can be seen in Table 2. The differences between 
the coaching participants and the comparison groups are again significant (p < 0.01). 
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 Participants of the coaching 
(N = 48) 

Comparison group 1 
(N = 91) 

Comparison group 2 
(N = 49) 

Pass rate 81% 62% 55% 

Table 2: Pass rates in the final exam of the participants and the two comparison groups  

Assuming that students who did not take part in the coaching program but wanted to take part in the 
next semester (Comparison Group 1) are as similarly motivated as the current coaching participants, 
Table 2 suggests that the better performance of the current participants was not only due to higher 
motivation. The comparison with the students of the Comparison Group 2 (students who answered 
the question ‘How often do you use the Concept Base’ with 5 or 6 on a 6-point Likert-scale, but did 
not take part in the coaching), suggests that the coaching program and not just the tool ‘Concept 
Base’ were important.  

Results concerning the continuous use of the Concept Base: The last important result is that most of 
the coaching participants continued using the Concept Base in the next semester (see Table 3). 
Hence, the coaching had a sustainable effect on the students’ study behavior. 

 1 2 3 4 5 6 �̅�𝑥 𝑥𝑥� 𝑠𝑠 

Participants - - 8% 46% 8% 38% 4.77 4 1.09 

Others 38% 19% 17% 17% 5% 4% 2.41 2 1.44 

Table 3: Comparison of the use frequency of the Concept Base of the coaching participants (N = 14) 
with the others (N = 343) in the following semester. Answers ranged from 1=’never’ to 6=’every week’ 

Unfortunately, due to schedule difficulties, only 14 coaching participants took part in the 
mathematics course in the following semester. Hence, the result only yields a tendency; because the 
result is only based on one item, the interpretation also needs to be made cautiously.  

Summary and Discussion  
The major finding of the research presented here is that the coaching program aiming to support the 
students in working with the Concept Base was helpful and important so that the students could 
become familiar with it, see its benefit (even despite the necessary time effort), and become more 
successful in the course. It furthermore indicates that, as a consequence, they tended to continue to 
use the tool on their own in the next semester (with the caveat of the small sample size of coaching 
participants taking part in the subsequent course). 

Besides the problem of the small sample size of coaching participants in the next semester two other 
limitations of the research need to be mentioned that may be a starting point for future research: 

1) The data cannot show in which way coaching program and the tool Concept Base itself helped 
the students to perform better in the exam exactly. It would be important to find out if the 
Concept Base really helped students to acquire a solid understanding of mathematical concepts. 

2) Even if we tried to mediate the effect of motivation by choosing two comparison groups, of 
which we expected that they were also willing to invest time for their studies, we should keep in 
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mind that our coaching participants might nevertheless have been a group with special 
attributes. The results in the case of less motivated students may be different. Hence, scaling up 
this experiment on the whole course might be another important point for further research.  

A last issue concerns the tool ‘Concept Base’. Although literature like Vollrath (1984) suggests that 
the categories of the Concept Base are crucial for understanding a mathematical concept, we did not 
investigate empirically how mathematicians in general concern themselves with these categories 
when trying to make sense of new mathematical concepts, which would be interesting for future 
research as well.  
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Description of the research topic 
This contribution documents an excerpt from a conducted research study concerning the integration 
of digital learning materials into a voluntary, attendance-based bridging course for freshmen majoring 
in different engineering subjects at the University of Paderborn, Germany. The focus of the study was 
to evaluate the acceptance of digital learning materials by the students during the lectures and self-
regulated learning days of the four-week course. Based on the use of an audience response system 
(ARS), we developed an instrument to collect feedback from the students immediately after elements 
of blended learning – such as students’ usage of interactive applets and digital, self-evaluating tasks 
with solutions and different elements using the ARS – were implemented during the lectures of this 
course to obtain students’ reactions as instantaneous as possible. 

The digital material was provided in form of the studiVEMINT-online course, which can be found 
on the website www.studiport.de as free-access material (only available in German yet). This learning 
material was designed and implemented by our research team during the years 2014 to 2016 and was 
created as an independent online course in mathematics that can be used for free by any person who 
wishes to prepare her- or himself for university mathematics (e.g., Biehler, Fleischmann, Gold, & 
Mai, 2017; Colberg, Mai, Wilms, & Biehler, 2014; studiVEMINT homepage: 
go.upb.de/studivemint). 

Additionally, we prepared work assignments for this digital course that the students were asked to 
work on during the self-regulated learning days with the intention to support them in repetition and 
deepening their knowledge.  

The study was conducted to answer (among others) the following research questions: 

1. Do students appreciate the integration of digital learning materials in the lecture, i.e. do they 
experience it as a support for their learning process and do they find pleasure in using the 
materials? 

2. How much time do the students invest to work with the provided learning materials on the self-
regulated learning days? 

Theoretical background and method 
ARSs can support feedback from learners and provide a means to collect data for research purposes. 
Ebner, Haintz, Pichler, and Schön (2014) suggest a distinction between front-channel (direct feedback 
during lectures) and back-channel (asynchronous feedback during and out of the lecture) of those 
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systems. They further distinguish these into qualitative and quantitative forms of feedback. The focus 
of the study is the evaluation of the presented teaching scenario in mathematics with its elements of 
blended learning (e.g., Bernard, Borokhovski, Abrami, Schmid & Tamim, 2014) via the ARS. 

We used the ARS functionality regarding quantitative front channel feedback (Ebner et al., 2014) 
during the lectures to collect reactions to the use of the digital elements as instantaneous as possible. 
Furthermore, we asked the students how much time they spent working (as they were requested to 
do) with the digital learning material on the self-regulated learning days in each subsequent lecture. 
Supplementary data was collected by a pen and paper questionnaire issued at the first and the last day 
of the course. 

Results and discussion 
The feedback concerning the integration of the digital learning materials into the lectures was largely 
positive. However, while looking at the results more closely, we found that more students appreciated 
the support of the digital materials for their learning processes than reported having pleasure while 
working with those materials. Another result was that the time students spent on their self-regulated 
learning days decreased dramatically during the four weeks of the course, even though students 
reported that the work on the tasks for these days was helpful for their individual learning and 
understanding. Further and more detailed results from the study have been presented at the 
conference. 
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After more than 10 years of designing, implementing and analysing study and research paths (SRP) 
at university level, we present a retrospective analysis of the SRP implemented in different university 
degrees. We focus on the main methodological tools for the SRP design and managing, together with 
some results about their viability at university level. We come across different SRPs and underline 
the methodological tools that have worked better. We also show how they have evolved to set up a 
more systematic methodology. 

Keywords: Study and Research Paths, ATD, IBME education, didactic engineering. 

Introduction 
During the past two decades, Inquiry Based Mathematics Education (IBME) has spread widely. It has 
been promoted by governments and international organizations through specific programs and 
curricula reforms, such as the PRIMAS and Fibonacci projects in Europe, or the Common Core State 
Standards in the United States. Artigue and Blomhøj (2013, p. 802) describe how different research 
frameworks offer “particular perspectives on the conceptualization and implementation of IBME”. 
Their analysis reveals that there exists shared principles such as the “authenticity” of questions and 
activities; their epistemological relevance; the progression of knowledge; the development of extra-
mathematical questions and the role of mathematics as a modelling tool in inquiry processes. One of 
the problems emerging from this diversity of approaches is that the concretion of IBME in research 
experiences may only rely on these general principles, lacking a clear systematic methodology to 
design, manage and analyse the implemented experiences, and to provide specific research tools to 
develop these tasks.  

Study and Research Paths (SRPs) are an inquiry-based teaching formats proposed by the 
Anthropological Theory of the Didactic (ATD) (Chevallard, 2015). They are initiated by a generating 
question (Q0) addressed by a community of study (a set of students X and a set of guides of the study 
Y) that form a didactic system S(X, Y, Q0). The aim of the didactic system is to generate a final answer 
A♥ to question Q0. The work of the community of study and the knowledge involved can be described 
as a concatenation of derived questions and their associated answers that will led to the development 
of A♥. The inquiry process will combine moments of study of information available, with moments 
of research and creation of new questions and answers, including the adaptation of the information 
to the specific (initial and derived) questions addressed. 
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The goal of implementing an SRP is twofold. On the one hand, SRPs can be understood as a teaching 
device to promote a shift from the pedagogical paradigm of “visiting works” to the new paradigm of 
“questioning the world” (Bosch, Gascón, & Nicolás, 2018; Chevallard, 2015). On the other hand, 
SRPs can also be considered as a research tool to identify, modify and study didactic phenomena, 
that is, regular facts that take place in teaching and learning processes and that are specific to the 
content involved. The implementation of SRPs is an empirical tool to generate data to evaluate to 
what extent and how didactic phenomena can be modified and to work on the definition and design 
of alternative epistemological and didactic models in which the knowledge at the stake and its related 
teaching practices are questioned and newly organised.  

The ATD framework has developed diverse subtheories enabling researchers to analyse study 
processes and SRPs in particular. Two of these tools are the Herbartian schema (Chevallard, 2008) 
(see Fig. 1) and the media-milieu dialectics. The first part of the schema represents the didactic system 
S(X; Y; Q0) that faces the task to generate an answer to an open question Q0. The second part of the 
schema describes the process of elaboration of an answer (A♥) of the community of study to the 
generating question Q0. The hallmarked answers and works are preexisting knowledge developed in 
different institutions that the community of study will access in the media. This information obtained 
is then studied, deconstructed and adapted to the (sub)question addressed and incorporated to the 
milieu. This media-milieu dialectic that explicitly appears in the Herbartian schema allows researchers 
to question and analyse the external information (and its diversity) addressed by the community of 
study and how it is validated.  

Following Artigue (2014), Barquero and Bosch (2015) have described four main phases in the design 
and research methodology related to Didactic Engineering: the identification of didactic phenomena; 
the design or a priori analysis of an SRP; the in vivo analysis of the SRP; and the evaluation or a 
posteriori analysis of the ecology and economy of the SRP. This is a crucial point of SRPs: including 
an explicit epistemological questioning differs heavily with other PBL approaches.  

However, as Bosch (2018) and Florensa, Bosch and Gascón (2015) stated, this theoretical and 
methodological apparatus is difficult to be transposed to teacher and lecturers practice, especially 
when they are not at the same time familiar with the ATD framework. In fact, most of the experienced 
SRPs at university level have been led by researchers in the ATD or by lecturers working closely with 
them. In this paper, we present a retrospective analysis of previous SRP implementations at university 
level in order to identify the evolution of the used didactic tools. When examining this evolution, we 
intend to set up the foundations of a more systematic methodology for the design and managing of 
SRPs in university classrooms and for their viability.  

The experienced SRPs 
Table 1 presents a brief account of the SRPs implemented during this past decade by the ATD 
research team based in Spain. Details of their design and implementation can be found in the 
references. Let us just point out that the integration of the SRPs has adopted different modalities to 

Figure 1 Herbartian schema 
[S(X ; Y ; Q0)⤴{Q1, Q2, …, Qm; A◊

m+1, A ◊
m+2, …, A ◊

n; Wn+1, Wn+2, …, Wp}] ⤵ A♥ 
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be integrated in the traditional organization of the university courses. SRP1 and SRP2 ran as 
workshops in parallel to the regular course, as weekly 2-hour sessions for a total of 60 hours both, 
thus complementing the lectures and problem sessions. SRP3 consisted in an elective workshop that 
lasted about 9 sessions of 2 hours at the end of the course about forecasting the Facebook users’ 
growth. SRP4 was fully organized as an SRP lasting a whole 6 ECTS subject (17 weeks, 4 hours per 
week). SRP5 was implemented after 8 weeks of lectures, labs and problem sessions, for the 7 last 
weeks of the course, thus covering a total of 21 h. 

SRP Subject Level and degree Period References 

1 Mathematics 
Population dynamics 
1st year Chemical engineering 
(groups of 30-35 students) 

2005-2009 
Barquero, Bosch & Gascón (2011; 
2013)  

2 Mathematics 
Sales of products 
1st year Business administration 
(groups of 40-60 students) 

2006-2014 
Serrano (2013), Serrano, Bosch & 
Gascón (2010) 

3 Mathematics 
Evolution of Facebook users 
1st year Business administration 
(groups of 20 students) 

2015-2017 
Barquero, Monreal, Ruiz-Munzón & 
Serrano (2018) 

4 
Strength of 
materials 

How to make a slatted bed base? 
3rd year Mechanical engineering 
(group of 20-25 students) 

2015-2018 
Bartolomé, Florensa, Bosch & Gascón 
(2018) 

5 
General 
elasticity 

How to make a bike part? 
2nd year Mechanical engineering 
(groups of 30 students) 

2015-2018 
Florensa, Bosch, Gascón & Mata 
(2016) and Florensa, Bosch, Gascón & 
Winsløw (to appear) 

Table 1. List of experienced SRPs by the ATD research team in Spain  

Dealing with knowledge in an SRP: the language of modelling 
The traditional “transmissive” way of knowledge dissemination at university level tends to sacralise 
the bodies of knowledge to be taught (Bosch, 2018). Therefore, tasks such as describing, organizing 
the work, collecting data, and searching well-established (and labelled) knowledge are not always 
part of the students’ responsibility. And, when they are, they appear as non-problematic for the 
students, who only have to retake and at most summarize the accessed pieces of knowledge. In 
addition, the dominant pedagogical paradigm tends to hide the questions for which a specific 
knowledge is relevant, or at least leave them for the very end of the study process. These phenomena 
generate important constraints when implementing an SRP in a school institution. In the design and 
implementation of SRPs, the dialectics between the questions posed and the construction of answers 
is central, as well as the share of new responsibilities between teachers and students in the inquiry 
process. The development of tools enabling changes, especially those relating to the way “content” 
is described and managed, have appeared since the first implementations of SRPs. 

Barquero, Bosch and Gascón (2013) present one of the first SRPs experienced at university level 
(SRP1). The SRP was implemented along the annual course of “Mathematical Foundations for 
Engineering” with students of Industrial Chemical Engineering, in the so-called “Workshop of 
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mathematical modelling” which was created only to develop the SRP and which ran in parallel of the 
regular course based on lectures and problem sessions. This three university teaching devices were 
easily coordinated because there was only one group of about 35 students and two lecturers, the one 
responsible of the theoretical sessions and the other (second author of this paper) who guided the 
problems sessions and the workshop. Although there was a study programme to accomplish, the 
lecturers-researchers had freedom to carry it out in the most convenient way. The generating question 
of the SRP was “How can we predict the long-term behaviour of a population size, given the size of 
a population over some previous periods of time? What assumptions should be made? How to forecast 
the population size’s evolution and how to test its validity?” The design and implementation of this 
SRP wanted to address the problem of teaching modelling at university level and to deal with the 
widespread didactic phenomena of reducing modelling activity to the simple “application” of some 
pre-established models and contents. Researchers designed the SRP paying special attention to the 
modelling process to be developed with students. The a priori design included a careful delimitation 
of the generating and derived questions that could be posed and of mathematical models and 
knowledge that would appear to provide answers.  

One of the first necessities experienced by the lecturer guiding the modelling workshop was to share 
and institutionalise a new discourse to talk about the mathematical activity students were developing. 
In this occasion, most of the discourse needed was about modelling, which was quite new for the 
students. Introducing terms referring to systems and models, to the formulation of hypotheses, to the 
actions of validating the models or discussing the scope and limitations of the models, was a new 
logos for the students to describe, organise, justify and report their activities. 

A second aspect highlighted by Barquero et al. (2013) is the necessity to create new didactic devices 
to transfer new responsibilities to the students who had “to produce their own answer […] considering 
intermediate (sub)questions and write and defend a team report […] with their temporary answers” 
(Barquero et al., 2013, p. 326). The main didactic devices to manage the implementation of the SRP 
and to institutionalize the modelling activities were the weekly reports that students developed and 
presented. From the second year on, these reports were based on an explicit fixed structure, including 
a description of the questions faced, the mathematical models built, the answers obtained, and the 
new questions proposed to follow with. Moreover, each team had to designate its own “secretary”, a 
student in charge of explaining and defending the team’s report at the beginning of each new 
workshop session. A whole class discussion followed these presentations, to state the main progress 
and to agree on how to continue with the inquiry. At the end of the SRP, each student individually 
had to write a final report of the entire study where she had to analyse the whole modelling process 
followed (Barquero et al., 2013, p. 327). 

The implementation of SRP2 was initially done as a workshop that took place during the Mathematics 
course of a 1st year degree in Management. The workshop lasted for 5 weeks with two 2-hour sessions. 
The generating question of the SRP was: “A firm registers the term sales of its 7 main products during 
3 years. What amount of sales can be forecasted for the next terms? Can we get a formula to estimate 
the forecasts? Which are its limitations and guarantees? How to explain them? What products sales 
are increasing more than 10% a term? Less than 12% a term?” It is important to highlight that the 
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lecturers established two kinds of sessions: one devoted to autonomous group work under the 
lecturers’ supervision and another to share the results obtained and validate them by the big group. 

From modelling to questions-answers maps 
SRP3 was initiated by the following question: “How can we model and fit real data about the 
evolution of the number of Facebook users to provide our forecasts about the short-term evolution of 
the users of this social network?” (Barquero et al. 2018). Its implementation took place in the 
academic years 2015-16 and 2016-17 with first-year students of a Business Administration and 
Innovation Management degree, at Pompeu Fabra University. It run as a teaching device created for 
its implementation called the “Modelling workshop” that was independent of the mathematics 
courses. Students voluntarily participated in the workshop, with the possibility of adding an extra 
point to their final mathematics grade. The responsible of guiding the workshop was the lecturer of 
the mathematics course who, for the first time, was not a researcher in the ATD. The workshop run 
for 2 hours every week for 9 weeks, although most of the modelling work was developed by students 
working in groups out of the class. This SRP combined online sessions and face-to-face sessions. The 
workshops sessions were devoted to students’ presentations and to the debate about the questions 
posed, new questions to inquire and the models, tools and answers found out. 

When designing the SRP, a group of researchers and the lecturer participated in it. In its design, the 
understanding of mathematics as a modelling tool was central, but the description of the “skeleton” 
of the SRP in terms of questions (Q) and answers (A) took the central role for many reasons. First, 
there was an intensive work in the designers’ team to delimit the structure of the SRP in terms of Q 
and A, which define the epistemological models of reference upon which they started to plan and 
analyse the implementation—as proposed in other research works, Florensa, Bosch, & Gascón, 2018; 
Winsløw, Matheron, & Mercier, 2013).  

Second, the weekly reports remained to be the main communication tool and were explicitly asked to 
be done in terms of questions and answers. To accomplish this, the virtual platform (called a c-book 
unit developed in the frame of the European project MCSquared) was extremely useful to provide 
students with dynamic tools to structure their reports (Barquero et al., 2018, p. 20-24).  

Moreover, questions and answers maps were also used by the lecturer to analyse the development of 
each workshop session in collaboration with the researchers. It was then decided to start a journal of 
implementation as a tool facilitating the lecturer-researcher interaction and to report on the type of 
knowledge appearing in the inquiry process. As the authors describe, in this journal:  

[…] the researchers indicated, before a workshop session, the questions they had to present, the 
way to organize student participation, some indications about the gestures and strategies they could 
follow, and so on. After each workshop session, the lecturers and researchers met to analyse the 
work of students, and compared it to the a priori design. (Barquero et al., 2018, p. 20) 

SRP4 (Bartolomé et al., 2018) was implemented during the 2016/17 academic year in a “Strength of 
Materials” course of a Mechanical Engineering degree at Univ. Autònoma de Barcelona. The 
generating question of the SRP was: “You are working as an engineer in a company manufacturing 
slatted-beds. Your company supplies beds to an American client (a chain of motels). Recently, you 
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have been commissioned to provide them with single slatted-beds, capable of supporting the weight 
of a 120 kg person”. The SRP was implemented during the whole semester in all the sessions (17 
weeks, two 2-hour sessions per week). In this work the management and description of knowledge 
was done using question-answer maps. This tool played an important role: it allowed both students 
and lecturers to communicate and they were also used to describe the final answer. An important 
difference between previous implementation was the explicit training of participants in the use and 
development of this tool. During this initial training session, the students were informed that the 
sessions would be structured in four phases. The first part of the session was devoted to check the 
status of the project using a common question-answer map followed by a brainstorming session to 
decide the next question(s) Qi relevant to the problem. In the second phase the group was divided in 
different small groups each tackling a specific question. The third phase was devoted to team work 
developing an answer to the assigned question. The final phase consisted on each small group 
presenting a specific Q-A map describing their answer to the whole group. Figure 2 exemplifies the 
Q-A after the two first sessions. In addition, SRP4 also included the media - milieu dialectic as a 
managing tool. During the four phases of the sessions, students described not only their work in terms 
of answers and new subquestions but also, they had to incorporate the media they used to grasp 
information to generate the answer. In addition, the students had also to justify their answer presenting 
proofs or data in order to show to what extent the acquired data and its study and modification were 
adequate to generate an answer to the question tackled. 

SRP5 was implemented in an “Elasticity” course in the same engineering degree than SRP4. In 
contrast, this SRP was implemented during the last 7 weeks of the semester, keeping the traditional 
structure along the 10 first weeks. In this implementation students were organized in small groups (3-
4 students) and each group was in charge of designing and validating part of a machine (a bike for 
the first edition and a formula student car in the second edition). The assessment and management of 
the SRP was done using weekly reports in where Q-A maps become the main content. In contrast to 
the previous SRPs, the final report took the form of a technical report addressed to the company that 
commissioned the design work.  

Conclusions 
The revision of different SRP implementations shows the evolutions that have occurred concerning 
the different didactic tools used in the design and managing of SRPs in university classrooms. We 
have focused on showing how, along the different investigations, these tools have been made 
available to the participants (students and lecturers) to deal with the knowledge and to organize the 
study processes. In addition, our retrospective study reveals that the tools needed by lecturers and 
students to manage and experience SRPs are diverse. We have identified aspects related to the 
language level: participants in SRP1 had to develop a specific terminology concerning modelling that 
was absent in the institution of study. 

Another aspect relates to the need to describe and communicate how knowledge evolves during the 
inquiry process. Q-A maps have been satisfactorily adopted in different implementations helping 
teachers and lecturers to overcome this problem. Another useful aspect in one of the implementations 
is the transposition of the media-milieu dialectics—a research tool of ATD—to help teachers and 
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students organise their work. Making the search for information in the media and its confrontation 
with or integration into the milieu explicit helped to assign tasks. 

Figure 2: Initial Q-A maps generated during the SRP concerning the dimension of a slatted bed 
(Bartolomé et al., 2018) 

Another aspect that our study has identified is that the degree of explicitness of the implemented tools 
is increasing in each implementation. In the last editions of the SRPs, working with lecturers that 
were not researchers in didactics required a presentation of the ATD tools used. Finally, it is important 
to highlight that these tools (Q-A maps, media-milieu dialectics) come from the research and have 
been transposed to the community of study level for its use. We consider that these findings should 
encourage the community of researchers to more systematically use these tools in further SRP 
implementations. It seems to be a promising way to deal with some of the institutional constraints 
that have been found to hinder the dissemination of SRPs in university education, especially those 
related to the lack of epistemological terms to deal with inquiry processes.  
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Introduction 
Teaching and learning real numbers is not an easy topic, and it is probably for this reason that most 
secondary school curricula do not develop it, even if they are used. Several studies have been 
conducted on this subject, but often focusing on the double decimal representation of decimal 
numbers or on irrationality (Oktaç & Vivier, 2016) made a recension of researches on these theme). 
More recently, the emphasis has been placed on the completeness of R, for the topology of the 
order, as one of the key characteristic properties to be achieved (e.g. Bergé, 2010; Durand-Guerrier, 
2016). It has been hypothesized that these properties of R are important for understanding real 
analysis. We are in line with this hypothesis with a positioning in favour of an algebraic approach, 
but how to develop the simultaneous study of algebraic and topological properties of R? In 
particular, we have built situations that may introduce the completeness of R, on the basis of the 
algebraic properties of R. In the two preliminary studies we present here, we analysed the students’ 
mathematical work using the Mathematical Working Space theory – MWS- (Kuzniak, Tanguay, & 
Elia, 2016). 

Calculations with real numbers 
This situation presents the basic algebraic operations in relation to the completeness of R. In fact, 
the definitions of the sum and the product in R are based on the completeness of R. They are rarely 
worked at the secondary level, as if these definitions were trivial. 

We asked the students to find the roots x1, x2, x3 of the polynomial P(x) = x3−60x2+980x−4700 
using adjacent sequences of decimal numbers. At this educational level, it is only possible to 
calculate approximate values of these roots since exact values need more advanced mathematics 
(unless using an algebra calculator). We, then, asked them to calculate the results of the basic 
operations on the three real roots, such as x1+x2+x3, that is actually 980 with the root properties of a 
polynomial. The visualization process is based on increasingly precise approximations (of the 
adjacent sequences) defining small nested intervals, and the signs (such as the tables of values), are 
used to support these processes. The main goal was to encourage work of visualization to conjecture 
the limits of each adjacent sequence, to recognize the polynomial coefficients.  

This situation has been proposed to 6 grade 12 students by pairs, in France in 2018. The data are 
made on the student’s dialogues and their written productions. Finally, the visualization of the 
limits did not take place, but this did not prevent elements of completeness from appearing 
spontaneously, as for the convergence and the intersection of the nested intervals, or from students 
confronting the epistemological obstacle of the potential infinite and the actual infinite.  
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Functional equation of the real exponential 
The fact that it is hard to distinguish the density and completeness of R by graphical representation 
(especially in technological tools). In this sense, we propose to construct algebraically a function 
that allows a visualization of the discrepancy between density and completeness. This situation is 
attractive because it allows using and connecting of a wide range of academic knowledge.  

The mathematical task consists in searching for the functions f defined on E, where E is the usual 
numbers sets N, Z, D and/or Q and R, with values in R, which satisfy the conditions: (a) f(1) = 2  
and (b) ∀x ∀y on E f(x+y)=f(x)·f(y). The first question proved that f > 0 and that f(0)=1. Then, there 
is a unique function (the exponential) in N, Z, D and Q but this is not the case in R. More 
specifically, we ask for certain values and graphical representations. The functional equation is used 
as an artifact by calculating the values of f algebraically, and a graph is drawn for each set.  

A first study in Chile with 6 students by pairs was conducted in 2017. The data are made of written 
students’ answers and direct observation. For sets N and Z, there were some technical problems in 
using (b) to compute values and some students drew a continuous line but quickly realize that the 
context is discreet. For D and Q, the discussion is based on the line drawn and the density: do we 
represent a continuous line? Finally, a significant obstacle arose for R because of the need of 
topological arguments. We think that asking more explicitly to build a function f on Q.1+Q.Ö3 
(additive subgroup of R - 1.a+Ö3.b; a\in Q, b\in Q) with f(Ö3)=1 could help, and so do the use of a 
technological software like Geogebra. 

Conclusion and discussion 
We presented two preliminary studies with these situations that have a great potential. Nevertheless, 
it seems that the introduction of an algebraic work allows to clearly show the topological jump 
made when "passing" from Q (or D) to R. Moreover, R cannot be reduced to its sole property of 
completeness: the uniqueness of R is based on several other properties, like its algebraic structure. 

MWS theory has allowed us to design these situations and interpret the results obtained. Thus, the 
three dimensions of MWS has been activated: the work is done on the visualized signs (semiotic 
dimension), on the mathematical knowledge itself (discursive dimension) and on the technological 
tools to produce signs (instrumental dimension). 
REFERENCES 
Bergé, A. (2010). Students’ perceptions of the completeness property of the set of real numbers, 

International Journal of Mathematical Education in Science and Technology, 41(2), 217–227.  
Durand-Guerrier, V. (2016). Conceptualization of the Continuum, an Educational Challenge for 

Undergraduate Students. International Journal on Undergraduate Mathematics Education, 2, 
338-361. 

Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical working spaces in schooling: An 
introduction. ZDM, 48(6), 721-737. 

Oktaç, A. & Vivier, L. (2016). Conversion, change, transition… In B.R. Hodgson, A. Kuzniak, & 
J.-B. Lagrange (Eds.), The Didactics of Mathematics: Approaches and Issues. A Hommage to 
Michèle Artigue, (pp. 87-122). Switzerland: Springer. 

Thematic Working Group 14

Proceedings of CERME11 2493



 

 

To whom do we speak when we teach proofs? 
Mika Gabel1,2 and Tommy Dreyfus2 

1Afeka - Tel Aviv Academic College of Engineering, Tel Aviv, Israel; mikag@afeka.ac.il 
2Tel Aviv University, Tel Aviv, Israel; tommyd@post.tau.ac.il  
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considerations of mathematical proofs by relating to two proofs of the ‘Two Pancakes theorem’. We 
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Reconnecting mathematics and rhetoric 
The notion ‘flow of a proof’ has been used by Gabel and Dreyfus (2017) to examine different aspects 
of classroom presentation of proof: the way that the lecturer chooses to present the logical structure 
of the proof, to incorporate informal features into the presentation and to account for various 
mathematical and instructional contextual factors. The analysis of the informal and contextual 
features requires a theoretical lens that can account for rhetorical features of the presentation. 
However, traditionally, scholars perceive rhetoric and mathematics as antithetical disciplines (Reyes, 
2014), two banks of a river. On one bank - mathematics, dealing with the establishment of 
unequivocal truths based on the rigorous laws of formal logic, and on the other bank - rhetoric, mostly 
related to the study of style, expression and ornamental aspects of discourse.  

Yet, scholars have been gradually building bridges between the two banks by using rhetorical 
concepts to gain better understanding of mathematics and mathematical education. Davis and Hersh 
(1987), for example, challenged the then prevailing opinion that "mathematical truth is established 
by a unique mode of argumentation, which consists of passing from hypothesis to conclusion by 
means of a sequence of small logical steps, each of which is in principle mechanizable...” (pp. 59-60) 
and claimed that “mathematical proof has its rhetorical moments and its rhetorical elements" (p. 60). 
Ernest (1999) related to other scholars who share that approach and stated that in education this 
approach is less controversial than in mathematical and philosophical circles. Reyes (2014) adds that 
mathematics, as a practice of writing, thinking, and arguing, should be studied by rhetorical scholars, 
and that rhetorical scholars should explore mathematics discourse as its importance is constantly 
increasing. In this work, we analyse rhetorical features of mathematical proof presentation through 
the lens of an argumentation theory called ‘The New Rhetoric’ (PNR, Perelman and Olbrechts-
Tyteca, 1969). PNR is a comprehensive theory that allows the considerations of a varied range of 
argument aspects within a single unifying theory and ties these different aspects to the adaptability to 
the audience for whom the argumentation is intended. Therefore, it enabled us to relate to different 
aspects of the flow as well as to the ways these aspects are intertwined.   
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Perelman’s new rhetoric (PNR) 

PNR assumes a speaker addressing an audience and studies techniques that aim to increase audience 
adherence to the theses presented by the speaker. It concerns the effective use of informal reasoning, 
i.e. reasoning that promotes audience adherence. PNR was initially designed to complement formal 
logic and to show how choices, decisions, and actions can be justified on rational grounds; thus, it 
relates to dialectical, rhetorical and contextual features. It asserts that form is subordinated to content 
and to the effort to persuade, and that reducing an argument to its formal features undermines the 
rhetoric features that support its meaning. PNR offers a description of various aspects of 
argumentation: (i) scope and organization, which is a result of the lecturer's need to take into account 
a complicated, at times contradictory, set of considerations in the proof presentation; (ii) the 
constitution of a shared basis of agreement between the speaker and the audience (iii) the manner by 
which the lecturer uses rhetorical figures to endow elements with presence and to focus audience’s 
attention on them; and (iv) different argumentation techniques. Moreover, PNR stresses that an 
effective argument must be adapted to the audience. In Gabel and Dreyfus (2017) we explained our 
adaptation of PNR for analysing mathematical proof teaching and how we use PNR to account for 
different aspects of the flow of a proof; we also discussed aspects (i) and (iii). In the current paper, 
we focus on PNR’s notion of audience and examine its relation to inherent tensions in the teaching 
of mathematical proofs. 

The universal audience and the particular audience in Perelman’s new rhetoric (PNR)  

The audience plays a pivotal role in PNR. Perelman and Olbrechts-Tyteca (1969) make a distinction 
between argumentation aimed to persuade the particular audience addressed by the speaker, which 
is the actual, physical audience (and therefore the argumentation needs to be adjusted to particular 
knowledge, experiences, expectations, opinions and norms), and argumentation that transcends 
particularity and is aimed to convince what is called a universal audience. The universal audience is 
a mental construct of the speaker, composed of all normally reasonable and competent people, where 
competence is specific to a discipline or culture, and consists of a series of beliefs, agreements and 
language that are typical for this discipline, whether it is of scientific, juridical or other nature. Such 
agreements may be the result of certain conventions that characterize audiences, usually 
distinguishable by their use of a technical language of their own (van Eemeren et al., 2013). While 
every argument is directed to a specific individual or group, the speaker decides what information 
and approaches will be convincing according to the universal audience that s/he has in mind. Thus, 
some arguments appeal only to particular groups in a particular context and some arguments attempt 
to have a broader appeal. By addressing differences between universal and particular audiences, 
Perelman believes he can better distinguish between a merely effective argumentation that persuades 
a particular audience, and a genuinely valid argumentation that convinces the universal audience. In 
that sense, a universal audience may be used as a standard of relevance (Crosswhite, 1989). 

Rationale and goals 
This work is situated within the growing research field concerned with different styles that 
mathematical lecturers employ (e.g., Hemmi; 2010) and the various pedagogical considerations they 
apply while teaching proof (e.g., Dawkins & Weber, 2017; Lai & Weber, 2014).   
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The goals of this paper are firstly to present different pedagogical dilemmas that mathematicians have 
when teaching proof at the undergraduate level and secondly to demonstrate how these dilemmas can 
be interpreted by using PNR’s notion of two audiences. We show how the tension between the 
universal and particular audiences can explain decisions taken by mathematics lecturers and focus on 
conflicts that emerge during proof teaching between the lecturers’ own views of mathematics and the 
characteristics of their students.  

Method 
We present findings from interviews conducted with five experienced mathematics lecturers (10-40 
years of experience), teaching a variety of tertiary level mathematics courses to diverse student 
populations (engineering students in college or university, mathematics students, prospective 
teachers, computer science students, high-school students). They volunteered to be interviewed and 
were asked about features of mathematical proofs and considerations for proof teaching by relating 
to the ‘Two Pancakes theorem’ and its two proofs (Davis and Hersh, 1983) outlined below: 

Theorem: Given two arbitrary closed and bounded areas in the plane, A and B, there exists a line that 
simultaneously bisects the two areas. 

Proof 1 uses an arbitrary point O and a directed line l rotating through O (Figure 1); one defines 
functions p(θ), q(θ): the coordinates on l of the lines perpendicular to l that bisect areas A, B. If 
r(θ)=p(θ)-q(θ) is positive for some θ, then it is negative for θ+180°. Hence, there exists θ0 for which 
r(θ0)=0, i.e. p(θ0)=q(θ0), according to the intermediate value theorem (IVT).  

 
Figure 1: Drawings for Proof 1 and Proof 2 (Case 3, Case 4) 

Proof 2 is based on five successively more general cases. Cases 1-2 are trivial: If A and B are circles 
(concentric in Case 1, non-concentric in Case 2) then the line through their centres bisects both. Case 
3 (Figure 1): A is a circle, B does not overlap A; when rotating the diameter of A, the part of the area 
of B that lies on one side of the diameter, p(θ), changes from 0 to 1; the existence of θ0 for which 
p(θ0)=0.5 follows from the IVT. Case 4 (Figure 1): A is a circle and B partially overlaps A; now 
p(0°)+p(180°)=1, and the claim follows from the IVT on 0°≤ θ ≤180°. Case 5: Two arbitrary areas; 
the same argument as in Case 4 applies with the diameter of A replaced by a line that halves the area 
of A.  

The interviews were semi-structured. Most questions related to features of mathematical proofs in 
general and pedagogical considerations for teaching proof. The interview began with questions 
relating to the proofs of the above theorem and proceeded to more general questions. The interviews 
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were audio-recorded, transcribed and analysed using principles of verbal analysis (Chi, 1997). The 
analysis was carried out in five steps: (1) Segmenting and reducing: Segmenting the transcriptions 
into modules that contain an answer to a specific question. Each module was reduced by selecting 
significant utterances; (2) Coding and organizing: Most categories were created naturally by the 
interview questions and some were created when reading the reduced data. The relevant utterances 
were summarized and placed in the appropriate category; (3) Operationalizing evidence: A collection 
of utterances that constitute evidence for each category was created; (4) Seeking for patterns in the 
organized data. When such patterns emerged, they were validated by looking for further evidence; 
(5) Repeating the procedure in order to verify the coding and alter it if necessary.  

In this paper, we focus on the lecturer’s answers to the following three questions:  

1. Which of the two proofs would you use for teaching this theorem, and why? 
2. What aspects of the proof do you emphasize when teaching a proof? 
3. What language (formal/informal) do you use when teaching a proof? 

Findings 
We start by presenting the interviewees’ answers to the first question: which of the two proofs they 
would teach and why. Proof 1 was chosen by three interviewees: Sally, Dana and Max. Max claimed 
that Proof 1 is more correct and properly built: “[it] is built as a proof: you start at the beginning and 
reach the end. [In Proof 2] I am told: take a case and prove it... What would happen if there were 79 
cases?! … It’s more elegant to find one proof that does not require the separation into cases”; he also 
stated that “students should learn the proper way to prove claims” and that the many cases of Proof 2 
might “drive the student crazy”. Dana stated that the division into cases makes “Proof 2 hard to 
remember” and Sally stated that it worries her: “…I am always concerned that a case is missing, it’s 
stressful...”. Proof 2 was chosen by Tara and Anne who stated that it is more intuitive and less ‘tricky’. 
Tara said: “I relate better to the idea of halving the first domain and then the second one, than to the 
idea of the perpendicular lines”. Anne said that “it enables to teach students how to ‘play’” and that 
the gradual increase in complexity allows students to fully understand each case before proceeding. 

The lecturers also suggested how to improve the proofs. Sally, Dana and Max preferred teaching 
Proof 1 but were aware of its difficulties, mainly the ‘Deus ex Machina’ nature of the function r(θ). 
Sally suggested to “divide the board, write down the stages and finally … fill in the details. First the 
‘how’ then … the ‘what’… define a-priori where [you are] heading”, because “…completing the 
details is [only] half of the work…”. Max suggested using Cases 1-2 of Proof 2 to increase students’ 
intuition regarding the meaning of the claim. Dana suggested emphasizing one central idea: the 
construction of the distances. These lecturers chose Proof 1 because it agrees with their beliefs about 
what a “good, proper mathematical proof” is, but contemplated how to improve its communication 
to their students. Tara and Anne preferred teaching Proof 2; they felt its intuitive nature is better 
adapted to their students. The division into cases, a disadvantage for others, is an advantage for Anne, 
who believes that the gradual increase in complexity improves students’ learning experience. Tara 
said that Proof 2 is more intuitive to her than the perpendicular lines of Proof 1; She said: “…I don’t 
like it when proofs are based on an idea that I would not spontaneously think about… if it can be 
done… without ‘tricks’, I prefer it”. Yet she suggested shortening the proof by omitting Cases 1-2. 
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Although these findings indicate different lecturer choices, there were noticeable commonalities in 
their answers. Firstly, Tara and Max chose different proofs, but were both bothered with the imprecise 
way of using the IVT and stated that one should explicitly define functions and justify their continuity 
before applying the IVT. For them, some standard of mathematical rigor is important.  Secondly, 
several lecturers refer to meta-proof issues. For example, Sally refers to a proof plan, Anne to pre-
proof activities (‘play’) and Max to the pedagogical value of using precise language. Thirdly, the 
lecturers address affective aspects, and subjectivity is demonstrated by the opposite attributes that 
different lecturers relate to the same proof feature. Whereas Sally and Max feel that the division into 
cases might disturb the students, Anne sees the gradual increase in complexity as giving students a 
sense of understanding and stability. Thus, the lecturers’ choice of proof is highly influenced by their 
perception of the students attending the lesson. Moreover, earlier in the interview, when asked about 
their proof preference some lecturers stated that the choice mostly depends on the intended audience. 
Sally, for example, stated that Proof 1 is clearer in her opinion but that Proof 2 is better for her 
students. Then, when asked to choose which proof to teach she chose Proof 1 and described 
pedagogical ways to improve its presentation. The choice of proof appears to be an amalgam of 
mathematical and pedagogical considerations, personal preferences and convictions. 

In the second question, the interviewees were asked what aspects they emphasize while teaching 
proofs. They all stated that their answer is population dependent. Table 1 summarizes their answers 
and reveals that lecturers invest a lot of effort in communicating the proof, and raising students’ 
awareness of meta-proof and rhetorical aspects (e.g., aesthetics, and significance). Tara tries “…to 
look for… the significance, why this conclusion… [and] the way [it] was derived is important…”. 
Anne focuses on pre-proof activities and states that she partly “… wants to teach them how to 
transform a ‘game’ into a proof…how to produce… the simplest example that still maintains the 
features of a problem, … [how] to try to prove or refute when you still don't have a clue if the claim 
is true or false…”. Max adds that his verbal explanations are what “really explains it to students”. 

Highlighted aspects Suppressed aspects 
1. Ideas that are: 

(i) repeated in future proofs or  
(ii) related to the current content {A, S, D} 

2. The thoughts and intuitions that led to the proof {M} 
3. What was proved and what "skipped" {T, D} 
4. Beauty, aesthetics {T} 
5. Intermediate summaries {S} 
6. Proof structure, proof type (e.g., proof by induction) 

{A}; dividing the proof into stages/ parts {M} 
7. Flow; one thing arises from another, like a chain{A} 
8. Completely justifying each passage {A} 
9. Useful “pre-proof” activities: how to formulate an 

effective example; how to approach the proof when 
it is still not known if the claim is true or false {A} 

10.  Difficult points in the proof {M} 
11.  Significance and relevance of the theorem {T, D} 

1. Repetitive stages that do not 
contain new ideas or new 
calculations {D, S} 

2. Details that are not directly 
relevant to the work of the 
students {S} 

3. Stages that are too difficult to 
the current level of the students 
{S}  

4. Sometimes – formality, if the 
proofs are trivial enough and 
the concepts have been 
thoroughly exercised {A} 

Table 1: Proof features that are highlighted or suppressed while teaching 
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In the third question, four were explicitly asked about their use of formal language (the fifth 
interviewee referred to the use of formal language throughout the interview). Sally used an analogy 
to explain the importance of using formal language: “… lawyers use words that have meaning only 
in the context of the law discipline.  It's not the same meaning as their dictionary definition…” She 
says that similarly, students should master the proper way of writing proofs, using the necessary 
symbols and language. Tara and Anne demonstrate flexibility regarding the use of formality in places 
where it might obstruct student’s learning. For example, Tara states: “in one classroom I might 
describe the concept of a limit very informally… as a sequence of values getting nearer some value; 
in a different classroom, I have to use the epsilon-delta definition with extreme formality”. Anne 
admits that “…somewhat reducing the formality” might harm students’ understanding but supports 
her choice by stating that otherwise students may “… lose their grasp of ‘the whole’… they need to 
deal with parts… [and] sub-parts that are not well constructed yet…” Dana’s approach marks the 
other end of the range, for she speaks of ‘gluing’ things in a non-formal way and clearly expresses 
her preference to emphasize central ideas rather than to dwell on technical steps. Dana advises 
students to concentrate on the main, less technical, proof ideas. Thus, the lecturers’ answers to the 
third question reflect a range of attitudes: from a strict use of formal language, via compromises 
between formality and audience, to an entirely context dependent attitude. They balance between 
helping the students to be sufficiently acquainted with the customary mathematical language on one 
hand, and not getting lost in the rigidness and details of extreme formality on the other hand. At the 
same time, the proof presented to the students should reasonably satisfy some standard of the 
mathematical community, the same way a legal document should accept approval of law experts. 

To summarize, the interviewees discussed a rich collection of proof features, constantly referring to 
pedagogical considerations. Two themes, subjectivity and context-dependent value of proof features, 
particularly the type of student population, were prominent throughout the interview.  

Discussion of the findings within PNR framework 
The findings show that the interviewed lecturers have a clear vision of different mathematical ideas 
and features of the two proofs, combined with a rich collection of pedagogical considerations. These 
findings are consistent with the literature (e.g., Hemmi, 2010; Lai and Weber, 2014). However, we 
wish to focus on the manner in which the lecturers consider their students, i.e. the audience, while 
teaching proofs. Lai and Weber (2014) explored factors that mathematicians claim to consider when 
preparing a pedagogical proof and found that audience diversity influenced mathematicians in four 
aspects: (a) the assumed previous knowledge; (b) the actions that need to be taken to avoid potential 
student difficulties; (c) using techniques students find familiar or comfortable; (d) what mathematical 
ideas are emphasized by the proof. Indeed, most of these issues were also raised by our interviewees.  

Our data show that when mathematicians teach proofs a tension between two poles arises: the first 
pole is the wish to present the proofs in a rigorous manner acceptable to professional mathematicians 
(as Max said “the proper way to prove”); the second pole is the wish to accommodate students’ 
cognitive and affective needs so that they will gain adequate understanding and a rewarding learning 
experience. This tension is widely found in the literature (e.g., Dawkins and Weber, 2017; Lai and 
Weber, 2014).  Dawkins and Weber (2017), for example, investigate values and norms of 
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mathematicians regarding proof and acknowledge that sometimes the needs of the mathematical 
community differ from those of the classroom community, which cannot perfectly mimic practices 
of professional mathematicians. They claim that expecting students to adopt mathematicians’ proof 
norms without perceiving the underlining values might cause a dissonance between the 
mathematicians’ and the students’ communication culture. They also state that one outcome is that 
“researchers... have sensibly advocated loosening various norms for the purpose of encouraging 
students’ genuine insights” (p. 133). Within PNR, this dilemma is an inherent feature of 
simultaneously addressing the universal and particular audiences. It is not about “compromising” but 
about adjusting the argument and creating a shared basis of agreement with the students while 
maintaining a proof presentation that would still be acceptable by professional mathematicians 
(possibly imagined as sitting at the back of the class). Moreover, PNR not only relates to the 
difference between the lecturer’s and the students’ norms and values but also to other rhetorical and 
informal features of the proof classroom presentation (Gabel and Dreyfus, 2017), as well as to other 
types of lecturer-student gaps in the argumentation and their sources.    

This may also explain why during the interview, the lecturers frequently answered interview 
questions focused on mathematical proofs in general by raising pedagogical considerations related to 
the particular audience, constantly shifting between two perspectives: mathematician and teacher. We 
give three examples. Sally stated that that as a mathematician, she prefers Proof 1, but Proof 2 better 
fits her students. Nevertheless, when asked to choose a proof to teach she chose Proof 1, suggesting 
pedagogical ways to improve its presentation. Sally also stressed the importance of formal language 
in class, but admitted skipping repetitive stages of proofs, and suppressing details that might currently 
be too difficult for her students. A similar tension can be found in the suggestion Max made regarding 
the improvement of Proof 1. Max declared the importance of proof formality and preciseness and 
chose Proof 1 both as his personal preference and as the better proof to teach. However, he suggested 
improving the presentation of Proof 1 by adding Cases 1–2 of Proof 2, in order to enhance students’ 
intuition regarding the claim’s meaning. A similar tension appeared when Anne, who chose to teach 
Proof 2 for the feeling of understanding it provides referred to formal language by saying that “…one 
can skip formality if one has the ability to reconstruct it … but [students] don't know how to do that, 
so it’s a kind of ‘pretence’ understanding”.  

Mathematics lecturers address two audiences when teaching proofs: particular and universal. The 
particular audience is the actual group of students attending the lesson, who bring with them their 
previous knowledge, attitudes, learning habits, beliefs and cultural conventions. The lecturer needs 
to address the needs of the particular audience, to maintain a shared basis of agreement with the 
students and persuade them that the claim was truly proved. In parallel, the lecturer needs to convince 
the universal audience, which is a mental construct of the lecturer; it may include professional 
mathematicians, experts of the taught material or admired lecturers. Convincing the universal 
audience requires different standards of formality, preciseness and rigor. Whenever mathematics 
lecturers teach proofs, they need to balance between the different requirements of both audiences. 
The need for this balance is demonstrated, for example, by Dana, who admits that in class she prefers 
to emphasize important ideas rather than to dwell on technical steps “in an attempt not to give up on 
classroom proving altogether because then understanding drops to a very low level”. 
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Thus, PNR is a unifying and comprehensive theoretical framework that can be used to interpret a 
major challenge of proof teaching. Within PNR this challenge is considered an inherent tension that 
always exists between the need to present a proof that is convincing to the universal audience, in our 
context a complete, flawless proof accepted by expert mathematicians, and between the need to 
persuade the particular audience, in our context the students actually attending class. PNR also relates 
to other rhetorical and informal features of classroom presentation of proof, such as means to endow 
proof elements with presence (Gabel and Dreyfus, 2017) as well as to lecturer-student gaps in the 
argumentation and their sources. Therefore, PNR may be used not only to describe mathematicians’ 
proof presentations but also to evaluate the presentations and to provide practical suggestions of how 
to improve them.  
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It is often said that understanding the complex teaching and learning issues at university level 
requires the networking of several theories. In this paper, we study how the Theory of Didactic 
Situations and the Anthropological Theory of the Didactic can be combined to address a 
developmental research issue at university level. We refer to criteria provided by Design-Based 
Research to compare and contrast the two theories. This preliminary study should allow us to design 
a teaching intervention related to Calculus at university. 

Keywords: Calculus, hypothetical learning trajectory, Theory of Didactic Situations, 
Anthropological Theory of the Didactic, Design-Based Research.  

Delimitation of the project’s context 
The final aim of our research is to design a teaching intervention in relation to real numbers and 
numerical sequences at university. At the entrance to university, real numbers and numerical 
sequences represent an important part of the real analysis curriculum in the mathematical sciences 
and pre-engineering in France and Tunisia where our experiment will take place. The goal of this 
chapter is to establish rigorously the properties of real numbers and their interpretation by means of 
numerical sequences, and its structure is generally founded (as requested by the curriculum) on the 
continuity principle of the set of real numbers: Any non-empty subset bounded from above has a least 
upper bound. This principle in conjunction with the ordered field properties achieves the implicit 
axiomatic construction of the theory of real numbers and other properties follow: Archimedean 
property, density of rational numbers and sequence’s interpretation, sequence’s interpretation of the 
continuity principle (monotone convergence theorem), adjacent sequences theorem, Bolzano-
Weierstrass theorem and Cauchy completeness theorem. In line with Winsløw, Gueudet, Hochmut 
and Nardi’s claim (2018) about the stability of the mathematical contents (including Calculus) at the 
first year of university, this chapter requires typical practices involving logical reasoning about the 
formal existence of real numbers or the aforementioned properties. Relying on different paradigms 
(e.g., cognitive, socio-cultural, semiotics), research on the secondary-tertiary Calculus transition has 
highlighted over the years students’ difficulties to engage in these practices at the entrance to 
university and beyond (e.g., Bressoud, Ghedamsi, Martinez-Luaces & Törner, 2016; Winsløw et al., 
2018). We decided to use a Design-Based Research approach (Anderson & Shattuck 2012) with the 
aim of designing a teaching intervention for learning real numbers and sequences that provides details 
about what is likely to happen and why. The DBR approach leaves an open choice concerning the 
theories involved in the design. Moreover, comparing and contrasting theories can contribute to 
improve these theories (Prediger, Bikner-Ahsbahs & Arzarello 2008). Here we have chosen to 
network the Theory of Didactic Situations (TDS, Brousseau 2008) and the Anthropological Theory 
of the Didactics (ATD, Chevallard 2015). TDS and ATD are indeed two neighboring theories with 
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strong epistemological concerns and with the same research program, so that: "[…] each one 
reinterprets and reformulates the problems raised by the other." (Artigue, Bosch, Gascón & Lenfant 
2010, p. 1535). In this paper, we firstly focus on basic variables for comparing and contrasting TDS 
and ATD by means of the DBR methodology. We secondly present our preliminary thoughts on the 
elaboration of the Hypothetical Learning Trajectory (HLT) of Calculus at the entrance to university 
(related to the interconnected properties of real numbers and sequences). The HLT is a fundamental 
component of DBR. It mainly contains mathematical learning goals, mathematical problems and 
specific learning and teaching assumptions in the context of these problems; it has a dynamic 
character and can change during the different phases of the research. The interaction between the 
HLT and the empirical results is the cornerstone element for developing the teaching intervention. 

Design-Based Research as a methodological research  
Reports on what is DBR are numerous. In this paper we retain Anderson and Shattuck claim (2012): 
"Design-based research (DBR) evolved near the beginning of the 21st century and was heralded as a 
practical research methodology that could effectively bridge the chasm between research and practice 
in formal education." (p. 16). We focus our description of DBR on its main methodological 
components: 1) iterative cyclic process; 2) deciding on orienting theory and design guidelines 
framework; 3) HLT; and 4) selection of research instruments and techniques. The DBR methodology 
classically consists of intertwined cycles of three phases each: elaboration of the intervention 
(design); teaching experiments and analysis on the fly; and retrospective analysis. The collaboration 
between researchers and practitioners (teachers) is the key feature of the quality of the iterative 
adjustment and refinement of the intervention. This collaboration is carried out through prospective 
and reflective processes before, during and after each teaching experiment. The results of the 
retrospective analysis phase mostly supply a new cycle of three phases. Concretely, the research’s 
aim (i.e. the development of an empirically and theoretically grounded teaching intervention for 
specific mathematics education aims) has to be firstly transformed into research questions and 
subquestions with the help of the orienting theory and of the design guidelines framework. The design 
guidelines framework is a theoretical construct describing how to design the intended learning and 
teaching environment. For an illustration of these choices, see for example the DBR project for 
statistics education of Bakker and Van Eerde (2015) where a semiotic approach is combined to the 
Realistic Mathematics Education framework. These theoretical frames guide the development of the 
HLT through the different phases of the research. In the first cycle, the design phase involves the 
reflection on what students should learn about the targeted mathematical topics and how this should 
be done. This first identification leads to the formulation of temporary mathematical learning goals 
which initiates the design of mathematical problems, identification of learning processes and teacher 
management of these processes. Informed by concrete mathematical tasks, the HLT is progressively 
shaped during this phase. An elaborated HLT contains: "[…] mathematical learning goals, students’ 
starting points with information on relevant pre-knowledge, mathematical problems and assumptions 
about students’ potential learning processes and about how the teacher could support these 
processes." (Bakker & Van Eerde, 2015, p. 446). In the teaching experiment phase, the HLT is used 
by both teachers and researchers and could be adjusted or changed on the fly (i.e. during the lessons 
linked to one teaching experiment phase) sometimes by using additional theoretical considerations. 
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In the retrospective analysis phase, the evolving HLTs are the researcher’s guideline to generate 
conjectures about students’ learning and thus to create the teaching intervention. Reciprocally, the 
teaching intervention is progressively enriched by the evolving HLTs. The DBR methodology 
involves several instruments and techniques that connect theoretical concerns and concrete 
experiences in the form of testable hypothesis (potential HLT). For instance, task oriented analysis 
and longitudinal cyclic approach are useful to test and refine the HLT in the retrospective phase. 
Researchers who are familiar with TDS can quickly see similarities between Didactical Engineering 
(DE) as the research methodology of TDS (Artigue, 2000; Brousseau, 2008) and DBR methodology. 
The specialists of ATD may possibly connect DBR methodology with the theoretical construct of 
Study and Research Path (SRP) (Chevallard, 2015; Winsløw Barquero, De Vleeschouwer & Hardy 
2014). Nevertheless, designing teaching experiments drawing on DE or SRP, specifically in the case 
of university mathematics education (UME), remains a challenging issue that requires further 
investigation. We claim that DBR can contribute to this investigation. 

TDS and ATD from the DBR perspective 
Variables of the networking 

We draw here on the methodological components of DBR to generate appropriate variables for 
comparing and contrasting TDS and ATD. The selection of these variables is conducted with respect 
to the strategies that have been discussed and adopted by the researchers in the field of networking 
theories (e.g., Kidron et al., 2018). For the sake of clarity, we find helpful to firstly reorganize the 
whole DBR methodology through three stages according to the developmental process of HLTs: 1) 
the upstream stage; 2) the ongoing stage; 3) the downstream stage. In the following description of 
each stage, the role of both teachers and researchers and their potential collaboration, if any, are 
carefully stated. The instruments and techniques (questionnaires, interview, methods of analysis, etc.) 
used are a main issue that we cannot discuss here. The upstream stage is substantially linked to the 
chosen theoretical approach and leads to the formulation of the research question or problem by 
means of the epistemological and cognitive assumptions of this approach. At this stage, researchers 
need to carefully reflect on the (educational) aim of their project/intervention, by using two questions: 
V1: how to model the mathematics to be learnt and to be taught? V2: how to model mathematics 
learning and teaching processes? These questions represent the two first variables V1 and V2. The 
ongoing stage involves the development of series of HLTs and should be carried out by both the 
researchers and the teachers mainly at the experimental step. The potential variables are then: V3: the 
design guidelines; V4: the process of implementation. The downstream stage is related to the evolving 
HLTs and the improvement of the intervention, and it is supposed to be conducted by the researchers. 
The last two variables are: V5: the potency of the elaborated HLT and V6: transferability of the 
teaching intervention in other contexts.  

Primary interpretations of the variables for TDS and ATD 

Starting from a concrete phenomenon or a set of data, the problem of the questions formulated by 
theories on them, was raised from the beginning by the researchers working on networking theories 
(Kidron et al., 2018). In the case of our project, the research question refers to the design and 
implementation of a replicable teaching intervention that focuses on transition issues and enhances 
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students' learning of Calculus at the beginning of the university. A more general question forms the 
basic goal of the research program of both TDS and ATD: 1) TDS’s formulation: "how to design, 
regulate and make controlled observations of experimental situations where mathematical content 
appear as the optimal way to address a mathematical problem?" (González-Martin, Bloch, Durand-
Guerrier & Maschietto, 2014, p. 120- slightly adapted); 2) ATD’s formulation: "how to design a 
didactic organization that places central questions at the starting point of mathematical activity, 
making mathematical content appear as models constructed to provide answers to these questions? 
And what is the ecology of these didactic organizations?" (Winsløw et al., 2014, p. 106). In the case 
of our study, the refinement of our research question depends primarily and mostly on the values of 
each of the following variables.  

V1. The ATD models mathematics through the construct of Epistemological Reference Model (ERM) 
which is formulated by taking into account all the institutions involved in the process of didactic 
transposition (i.e. the adaptation of mathematical scholarly objects to mathematical objects to be 
taught and learnt). The construct of Fundamental Situation (FS) models mathematics in the TDS 
approach. Its formulation takes into account the sources of the meanings of mathematical objects and 
defines the conditions for saving these meanings when they are concerned by didactic transposition.  

V2. In TDS, the process of learning and teaching mathematics is modeled under the central construct 
of Situation: the system of relationships between the students, the teacher and a mathematical milieu 
(Ghedamsi, & Lecorre, 2018). Situation is defined by means of two levels: didactic (situation of 
institutionalization) and a-didactic (situation of action, situation of formulation, and situation of 
validation). In the didactic level, the use by the teacher of knowledge developed by the students in a-
didactic level improves learning and its link to the teaching goal. In the case of ATD, this process is 
modeled into didactical organization (a set of didactical praxeologies modeling teaching and learning 
activities) which is strongly connected to the mathematical organization (a set of mathematical 
praxeologies) that this didactical organization aims to implement. The different didactical 
organizations are defined by means of the notion of moment of study: exploratory moment, technical 
moment and technological moment (Bosch & Gascón, 2001).  

V3. In the case of TDS, the design guidelines are divided into two steps. In the preliminary step, the 
researchers conduct an epistemological, cognitive and didactical analysis in order to identify specific 
characteristics of the targeted mathematical objects, the complexity of the potential cognitive process 
for students and the actual teaching environment. These analyses aimed to identify the didactical 
variables (namely the parameters that influence students’ learning of the targeted mathematical 
object(s)) that structure the whole design. In the second step, the construct of the milieu which 
structures the interactions between students, the teacher and the mathematical milieu in the a-didactic 
level is used to test several values of these variables. The researchers deploying ATD analyze all the 
steps in the didactic transposition process linked to the targeted mathematical objects or domain of 
objects: their origin, their relation with other objects, their integration in mathematical praxeologies, 
etc. in order to elaborate the related ERM and then to establish the generating question. This question 
should go over the school level (see the notion of scale of levels of determination (Bosch & Gascón 
2006)) and be linked to specific subjects raised by the society. The study of this question will lead to 
new questions that make the study open and the learning goal not determined in advance. However, 
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in the rare case where the analysis must guarantee that students meet specific praxeologies, the 
learning goal should be clearly defined. Otherwise, it is the responsibility of students and teachers, 
during the study, to choose the trajectory which will determine the praxeologies they encounter.  

V4. The implementation with ATD follows at least three criteria: a) the distribution of responsibility 
between teacher and students is continuously renegotiated, b) the access to intermediate answers is 
mediated by media (books, journals, TV, internet, etc.) and validated with regards to the didactical 
milieu, c) the final answer, if any, must include a learning goal. In the case of TDS, the improvement 
of the interactions among students is ensured by the teacher’s enrichment of the mathematical milieu. 
Depending on the complexity of the mathematical objects, especially at the entrance to university, 
the teacher can manage the values of the didactical variables without minimizing students’ 
responsibility in generating knowledge. The experimental situation evolves according to the rules of 
the didactic contract: "the implicit set of expectations that teacher and students have of each other 
regarding mathematical knowledge and regarding the distribution of responsibilities during the 
teaching and learning processes." (González-Martin et al., 2014). The teacher should support the 
change in the didactic contract by strengthening the link between the outcomes of the a-didactic level 
and the institutionalization level. Due to space constraints, we will not say more about the remaining 
variables. Figure 1 synthesizes the values of these variables for TDS and ATD.  

 TDS ATD 

Global 
Vision 

Socio-constructivist vision of learning and teaching 
mathematics.  

Socio-cultural vision of learning and teaching 
mathematics.  

 

 

V1 

Fundamental situation of a mathematical object: 
Mathematical game (or problem). The problem 
should satisfy the same criteria as those developed 
in mathematical games theory. The object targeted 
by the problem should not be explicitly referenced 
and must provide an optimal method for solving it.  

Epistemological Reference Model (ERM) related to 
mathematical object or domain of objects: 
Organization of local and regional mathematical 
praxeologies through sequences of connected 
praxeologies. Praxeologies (composed of two 
interrelated blocks: practical and theoretical) model 
human activity (including mathematical). 

V2 Situation at two levels didactic and a-didactic  Didactical organization and moments of study 

 

 

 

Preliminary design 

Researchers: Identification of didactical variables to 
determine global and local organizations of the 
design.  

Researchers: Identification of a question with 
generating power for praxeologies and with 
significance in the context of students’ life.  

V3 A priori design 

 Researchers/Teachers: set the variables at certain 
values to achieve the learning goal.  

Researchers/Teachers: the question is rarely 
accompanied by a learning goal.  
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V4 

Teachers: a) more active role of teachers at the 
university (manage the values of didactical variables 
that are already decided), b) gradual change of 
didactic contract.  

Teachers: a) distribution of responsibilities between 
teacher and students, b) dialectic media/milieu 
(Chevallard, 2008), c) final answer, if any, with a 
learning goal. 

 

V5 

Researchers: Testing the learning goal and the 
validity of the theoretical assumptions of TDS 
through the actual teaching and learning process  

Researchers: Testing the actual teaching and 
learning process.  

V6 Reproducibility and paradigmatic didactic contracts  Ecological issues (institutional conditions and 
constraints; scale of levels of determination)  

Figure 1: TDS and ATD from the DBR perspective 

This comparison enables the discussion on the potential of each theory by means of DBR 
methodology. In our case, this discussion will be developed through the project of elaborating a 
teaching intervention for real numbers and sequences at the entrance to the university. Among the DE 
studies on the transition towards university Calculus, Ghedamsi (2008) (see also González-Martin et 
al., 2014) discussed ways of designing a milieu that helps students deepening their understandings of 
the interrelated properties of real numbers and sequences at the entrance to the university. The 
epistemological hypothesis of the design is formulated as follows: numerical approximation methods 
connect the practical and theoretical existence of the mathematical objects stated in the interrelated 
properties of real numbers and sequences (see first section). These properties become the arguments 
to validate the used methods. The elaboration and the experimentation of the design have been 
undertaken through TDS constructs where the epistemological hypothesis has been cognitively 
formulated so that it can be verified or falsified. In the last section, we use the choices made in this 
DE as a filter to start a brief discussion on how to elaborate the HLT of the present research. 

First steps towards the elaboration of the HLT 
This paper presents a theory networking study which is a preliminary step required to design the HLT. 
The succinct comparison above highlights the necessity to keep the coherence of the whole theoretical 
foundations when engaging in an intervention project. We retain three fundamental results from this 
study: 1) the two theories complement each other to address transition issues; 2) the implementation 
of the design in the context of university mathematics needs the planning of an ad-hoc didactical 
milieu; 3) the study of the replicability of the intervention necessitates the identification of 
paradigmatic university expectations about learning and teaching mathematics. We will not develop 
more the conclusion of this study; we have chosen to end this paper by presenting the first step 
towards the elaboration of the HLT. The process of modeling the mathematical contents related to 
the interconnected properties of real numbers and sequences is a fundamental step towards the 
elaboration of the HLT. The epistemological aspect constitutes the starting point for engaging the 
elaboration of the design for both theories i.e.: 1) the design of a collection of mathematical 
problem(s) where the interconnected properties of real numbers and sequences appear as providing 
the optimal solution, according to TDS; 2) the design of central questions where the interrelated 
properties of real numbers and sequences appear as models (mathematical praxeologies) constructed 
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to provide answers to these questions, from the ATD point of view. As claimed by TDS, the 
construction of mathematical problems, that create the need for these properties, requires firstly 
investigating the mathematical meaning of their relationship and its fundamental significance. This 
investigation should be done by using fundamental mathematical sources (i.e. the several 
theorizations of the set of real numbers) and by deepening insights on their historical growth. As 
researchers involved in TDS approach know, designing a collection of problems that connects 
rationally these properties remains a real challenge. The main reason seems to be that the didactical 
variables that may emerge must preserve the meaning of the relationship between these properties at 
the moment of their transformation into mathematics to be learned. For instance, the DE experimented 
by Ghedamsi (2008) shows that the mathematical organization related to the interconnected 
proprieties built upon the expectations of the curriculum (i.e. start with the self-evidence of the 
continuity principle) does not fit cognitive requirements. The fundamental reason was that during the 
teaching experiments, the students employed spontaneously the nested intervals theorem which is 
closely linked to the adjacent sequences theorem. However, the nested intervals theorem, in 
conjunction with the Archimedean property, generates all the targeted properties and leads to another 
foundation for real numbers theory. So, this theorem deserves more attention in the elaboration of the 
HLT. ATD materializes a mathematical organization by a set of connected mathematical 
praxeologies. In the case of the properties of real numbers and sequences, each set of praxeologies, 
including the one proposed by the official curriculum, is grounded on a specific theory of real 
numbers. Thus, the theoretical components of each set achieve a fundamental significance (in the 
terms of TDS) of the relationship between these properties. In the case of our project, the 
mathematical problems of the HLT must include in particular the theoretical aspects of the 
mathematics involved. At least two questions may guide the elaboration of these problems: what are 
the mathematical meanings produced by each set of praxeologies? How should several sets of 
praxeologies be combined to support learning? These comments provide some information to start 
thinking about the development of the HLT but to go further supplementary analysis is needed, in 
particular for formulating the learning goals.  
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The graph of a function and its antiderivative: a praxeological analysis 
in the context of Mechanics of Solids for engineering 
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The notion of integral is usually first introduced to engineering students in their calculus courses 
before later being used in their professional engineering courses. In this paper we analyse the 
textbooks used as main references in two engineering courses: a calculus course and a mechanics 
of solids course. Specifically, we compare how each textbook presents the task of sketching the 
graph of an antiderivative in the context of kinematics. Our results indicate that the mechanics of 
solids course presents this task by emphasising the notion of area and basic geometric calculations, 
using different notation and rationale than in the calculus course. We discuss the possible impact of 
these differences on the training of engineers. 

Keywords: Mathematics for engineers, teaching and learning of calculus, textbook analysis, 
anthropological theory of the didactic, antiderivative. 

Introduction 
The mathematical education of engineering students is a topic of increasing concern for 
mathematics education researchers, university mathematics teachers and professional associations 
(Bingolbali, Monaghan, & Roper, 2007, p. 764). In particular, calculus is considered an important 
component of basic engineering curriculum, providing notions, skills, and competences that are 
deemed necessary for the following professional courses. Nonetheless, the difficulties that calculus 
courses pose for students are not restricted to engineering programs (Rasmussen, Marrongelle, & 
Borba, 2014), and they may become a factor leading to the abandonment of STEM degrees (Ellis, 
Kelton, & Rasmussen, 2014).  

In the case of engineering, there is still a lack of understanding about how calculus notions are used 
in professional engineering courses; and by better understanding this use, some changes could be 
made to the content of calculus programmes. For instance, our previous research (González-Martín 
& Hernandes Gomes, 2017, 2018) indicates that the notions of bending moment and first moment 
of an area (used in civil engineering) are used in tasks that are not present in calculus courses, 
despite these notions being defined as integrals. Nor does their use require techniques that are 
explicitly derived from practices introduced in calculus courses. In the case of the notion of bending 
moment (González-Martín & Hernandes Gomes, 2017), some professional engineering textbook 
tasks require students to sketch the graph of the antiderivative of a given function. For this reason, 
we are currently interested in the connections between functions and antiderivatives, as well as their 
graphic interpretation, in professional engineering courses. 

Some difficulties that students encounter in interpreting the graph of a function and the graph of its 
derivative are well known. For instance, Borgen and Manu (2002) identified that some students may 
be able to perform the necessary calculations to find the stationary points of a function, but that the 
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same students would not see these points as a part of the graph. In addition, Ubuz (2007) identified 
several difficulties students encounter in sketching the graph of the derivative of a function by 
looking at the graph of this function. In the same vein, some studies point out students’ difficulties 
relating the graphs of a function and its antiderivative. Swidan and Yerushalmy (2014) found that 
some students try to guess the shape of the antiderivative function based on the position of the 
function graph, instead of correlating the y-value of the function graph with the tangent slope value 
of the antiderivative function graph. Finally, Marrongelle (2004) investigated how undergraduate 
students in an integrated calculus and physics curriculum used physics to help them solve calculus 
problems. The circumstantial evidence exposed in this study “supports the view that students come 
to understand graphs, as well as other mathematical representations, by recalling or imagining 
physical events” (p. 271). 

Because we are interested in the training of engineering students and how they use mathematics in 
their professional courses, we examine whether the ability to visualise and interpret graphs of 
antiderivatives is required in professional engineering courses (besides the notion of bending 
moment) and how this relates to practices taught in calculus courses. Our research program’s first 
step is to analyse textbooks used in these courses. In the next sections, we present the theoretical 
tools we used in our study, as well as our methods and main results. 

Theoretical framework 
To analyse the use of visualisation and the production of graphs in professional engineering 
textbooks, we use tools from the anthropological theory of the didactic (ATD – Chevallard, 1999). 
ATD considers human activities, as well as the production of knowledge, as institutionally situated; 
this means that knowledge about these activities and why they are important (or why we need to 
learn them) is also institutionally situated (Castela, 2016, p. 420). 

One key element of ATD, essential in our analyses, is the notion of praxeology (in the case of the 
study of mathematical activity, mathematical organisation or mathematical praxeology – MO 
hereinafter). A praxeology [T/τ/θ/Θ] is formed by four elements: a type of task T to perform, a 
technique τ which allows the task to be completed, a rationale (technology) θ that explains and 
justifies the technique, and a theory Θ that includes the rationale. These elements are grouped in the 
practical block [T/τ] (or know-how), and the knowledge block [θ/Θ] which describes, explains and 
justifies what is done. To describe mathematical knowledge (including its production, its use, and 
its learning), these two blocks permit an analysis of what needs to be done, how it is done, and the 
justifications for this. ATD distinguishes different types of MO: punctual, which are associated with 
a specific type of task; local, which integrate multiple punctual MOs that can be explained using the 
same technological rationale; and regional, which integrate local MOs that accept the same 
theoretical rationale (Barbé, Bosch, Espinoza, & Gascón, 2005). 

Knowledge (and also praxeologies) can be used in institutions other than where it was created, 
which implies transpositional effects on the concerned praxeologies (Chevallard, 1999), causing 
some (or all) elements of the original praxeology to evolve. Although these changes may have little 
impact on experts, they may make it difficult for students to recognise “the same” knowledge used 
in another institution. Therefore, it is important to analyse the types of tasks and techniques as well 
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as the rationales employed (for instance, in different courses) to identify the challenges these 
transpositional effects pose for students. To that end, our research identifies specific local MOs 
present in professional courses; we analyse how calculus notions are used (practical block) and the 
explanations given (knowledge block) in relation to the way the notions are usually presented in 
calculus courses. 

Methodology 
As we have noted, the study presented in this paper continues our previous work examining how 
calculus notions are used in professional engineering courses. Our latest work focuses on future 
engineers’ use of integrals (first, to define shear forces and bending moments, and second, to define 
the first moment of an area – see, respectively, González-Martín & Hernandes Gomes, 2017, 2018), 
which is why we are pursuing the current study along these lines. As in all our studies concerning 
future engineers’ use of calculus notions, we worked with teachers of professional engineering 
courses (all of them holding engineering degrees, some of them active engineers), who guided us in 
identifying key notions of engineering that are based on calculus notions and helped us grasp the 
important elements of these notions. Our current study focuses on two courses at a Brazilian 
university (although the textbooks we analysed are distributed internationally): Calculus (I and II), 
and Mechanics of Solids for Engineers. In the latter course, students need to work with functions, 
interpreting their graph and constructing their antiderivative graph to solve problems related to 
motion. At this stage of our research, we chose to work with the reference texts for each course. 
Guided by our collaborating engineering teachers, we examined the following books: Calculus, by 
Stewart (2012) and Vector Mechanics for Engineers: Statics and Dynamics (Beer, Johnston, 
Mazurek, & Cornwell, 2013), an international book used in the discipline of mechanics of solids. 
We consider the courses to be two different institutions, since practices vary greatly between them. 

At this university, calculus is taught in the first year of the engineering program over two semesters, 
in two courses: Calculus I and Calculus II. Integrals appear towards the end of the first course and 
are the main topic in the second course (the second author of this paper has taught Calculus I for 15 
years and Calculus II at this same university for two years). Both courses follow the structure of 
Stewart (2012) fairly closely, but it is worth mentioning that the Brazilian version of this textbook is 
divided in two volumes: volume 1 (Calculus I - chapters 1 to 6 of the international edition) and 
volume 2 (Calculus II - chapters 7 to 10 of the international edition). Mechanics of Solids is taught 
during the third semester of the program (second year), and, as stated above, the main reference for 
this course is Beer et al. (2013). We identified the pages in Stewart (2012) covering the introduction 
of integrals, and identified the pages in Beer et al. (2013) where content related to kinematics of 
particles in one dimension is taught. Within these pages, we then pinpointed tasks related to 
sketching the graph of an antiderivative and the proposed technique(s), paying attention to the use 
of given definitions and properties. We also identified each task’s rationales (technologies) and 
whether they are implicit or explicit. Therefore, for each book, the identification of common 
rationales allowed us to recognize local MOs, which enabled us to propose an overall organisation 
for the content related to sketching the graphs of antiderivatives for each book. The next section 
provides specific details of our analysis. 
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Data analysis and discussion 
Organisation of Stewart (2012) 

The content concerning integrals in volume 1 of the Brazilian version of Stewart (2012) is 
distributed among chapter 5 (integrals), 6 (applications of integration), 7 (techniques of integration), 
and 8 (further applications of integration). In these chapters, content is basically structured using 
two local MOs. The first, MOM1, presents notions and results justified by the definition of integral, 
the use of limits, and some theorems. It informally introduces Riemann sums to define definite 
integrals, interpreting them as areas, and leads to the Fundamental Theorem of Calculus (FTC) and 
the calculation of definite integrals using Barrow’s rule; this then leads to some applications of the 
integral (area, volume, etc.). The tasks involve the use of the sigma notation, calculating integrals 
using series, calculating areas, proving some properties, and so on. The second, MOM2, although it 
requires knowledge of the notion of integral, makes use of many algebraic properties of functions. It 
introduces techniques for calculating indefinite integrals (immediate integration to begin with, 
followed by various integration techniques). Many of the techniques used in MOM2 are derived 
from MOM1. 

The word antiderivative appears in the book for the first time in chapter 4 to introduce its definition: 
“A function F is called an antiderivative of f on an interval I if F’(x) = f(x) for all x in I.” (Stewart, 
2012, p. 344). The connections between the graph of a function and its antiderivative are explained 
only in chapter 5, as a part of MOM1, among other tasks of this MO. Section 5.3 presents the FTC, 
which is followed by an application to sketch the graph of the antiderivative of a function (g(x) = 

ò
x

dttf
 

0 
)( ) knowing the graph of f(x). The technique consists of estimating the area under the curve 

up to certain points (based on the technology that an integral represents an area). For instance, for 
the graph of Figure 1a, the value of g(1) corresponds to the area of a triangle; the value of g(2) 
corresponds to the area of the triangle and the rectangle; for g(4) we can estimate that:                 
g(4) = g(3) + ò

4 

3 
)( dttf  » 4.3 + (-1.3) = 3.0 (Figure 1b). Students are given five exercises to practice 

this technique. A second technique to validate the sketch of the graph of g(x) is based on the fact 
that it is an antiderivative, and by estimating the slopes of tangents at different points we should get 
the graph of f(x) (Figure 1c). Note that this technique could be seen by students as coming from 
another MOM3 (developed in the chapters on derivatives – section 4.3. How derivatives affect the 
shape of a graph – and using the relation between the sign of the derivative and the shape of the 
graph as technology). Tasks involving the connection between the graph of a function and its 
antiderivative appear spread out until chapter 7, but in all these cases the technique calls for 
validation using notions from derivatives exclusively (increase, decrease, maxima, and minima). 
We find, for instance, arguments such as: “Notice that g(x) decreases when f(x) is negative and 
increases when f(x) is positive, and has its minimum value when f(x) = 0. So, it seems reasonable, 
from the graphical evidence, that g is an antiderivative of f ” (Stewart, 2012, p. 409). 

The number of exercises in which students are asked to relate the graphs of a function and its 
antiderivative is quite limited: seven exercises in section 5.3 (only five require students to sketch the 
graph of the antiderivative by hand), four exercises in section 5.5, five exercises in the summary of 
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chapter 5, four exercises in section 7.1, six exercises in section 7.2, and two exercises in section 7.4. 
None of them has a context of motion. 

 
a 

 
b 

 
c 

Figure 1. Solved example showing how to sketch the graph of a antiderivative (Stewart, 2012, p. 387) 

Organisation of Beer et al. (2013) 

In Beer et al. (2013), chapters 1 to 10 are devoted to statics. The study of dynamics begins in 
chapter 11, where the graphic interpretation of antiderivatives appears. This chapter deals with 
particles in rectilinear motion; that is, the position, velocity, and acceleration of a particle. This 
chapter presents an MOE1 with the main goal of studying kinematics problems. It uses several 
elements from MOM3 to introduce the notions of average and instantaneous velocity and 
acceleration. The task of sketching graphic solutions is introduced at the end of the chapter, section 
11.7 (pp. 632-634), as a complimentary technique to the analytical approach. We focus our analyses 
on this part, comparing with the approach to solve graphic tasks in Stewart (2012). A first graphic 
interpretation of these elements appears on page 606, relating the graphs of a particle’s position     
(x = 6t2 + t3), velocity, and acceleration (Figure 2). Note that the notation used in MOE1 is different 
from that used in the calculus textbook, particularly the use of x as a dependent variable (compare 
Figures 1 and 2). 

 
Figure 2. Graphs of position, velocity, and acceleration (Beer et al., 2013, p. 606) 

On page 632 we find the type of tasks in which we are interested: the introduction of graphic 
techniques to solve problems involving rectilinear motion. The book states that both v = dx/dt and  
a = dv/dt have a geometrical significance and that v and a can be seen, respectively, as the slope of 
x and v (p. 632). This fact, sustained by elements from MOM3, leads to the introduction of the 
backwards process to sketch the x–t and v–t graphs given the a–t curve (Figure 3). This technique is 
based on elements from MOM1. We note, however, that in MOM1, elements related to this visual 
interpretation are rather marginal. There is also no physical interpretation, and different notation is 
used. In particular, after presenting cases where a is constant and linear, the following technique is 
given: “In general, if the acceleration is a polynomial of degree n in t, the velocity will be a 
polynomial of degree n + 1 and the position coordinate a polynomial of degree n + 2; these 
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polynomials are represented by motion curves of a corresponding 
degree.” (Beer et al., 2013, pp. 632-633) 

We note that this technique is introduced almost as a mnemotechnic 
rule, without any explicit connections to elements of MOM1 or MOM2 
(where techniques of integration are studied). We also observe that it 
is written using terms from MOE1, and not explicitly relating to the 
language used in calculus. These elements are used to solve 
problems such as the one in Figure 4. The application of the given 
technique, as well as basic geometric considerations, leads to the 
solution in Figure 5. 

Two main observations can be made: 1) the sketching of the 
antiderivative is based mostly on explicit elements from MOE1, 
which are implicitly related to elements of MOM1 and MOM3; 2) 
however, we note that the technique in MOE1 calls attention more 
directly to the analysis of the area under the curve and to geometric 
considerations, whereas the tasks of sketching an antiderivative 
graph introduced in MOM1 shift mostly to properties of the derivative 

(from MOM3). Moreover, this section of the book groups together 28 exercises for students to 
practice this type of task. One factor that may hinder students’ appropriation of this type of task is 
that the technique presented relies more heavily on basic geometric considerations, does not make 
explicit connections with the rationale from the calculus book, uses many interpretations based on 
area and kinematic ideas, and uses sensibly different notation. 

 

 

 

 

 

 

Figure 3. Backwards process 
(Beer et al., 2013, p. 632) 

Figure 4. A kinematic problem (Beer et al., 2013, p. 634) 

Figure 5. Solution of sample problem 11.6 (Beer et al., 2013, p. 634) 
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Final considerations 
Our results indicate that there is an important rupture in the study of a similar task (sketching the 
graph of an antiderivative) as presented in two different textbooks used in two different courses. In 
the calculus book, the task is presented marginally, with a first technique practised in only five 
exercises and a second technique that emphasises properties of derivatives without taking into 
account students’ known difficulties with the graphic interpretation of the derivative. On the other 
hand, the engineering book emphasises interpretations using the notions of area and kinematics, 
which seems to be a way of helping students better grasp antiderivatives graphs (Marrongelle, 
2004). An important element to take into account is that the presentation of the task in the 
mechanics of solids book (through MOE1) does not make explicit connections to the content and 
techniques of the calculus book (mostly, through MOM1 and MOM3). 

These findings are coherent with our earlier results concerning other engineering notions 
(González-Martín & Hernandes Gomes, 2017, 2018). Our previous research indicates that in 
professional engineering courses, although integrals are used to define certain engineering notions, 
tasks and techniques are presented without an explicit connection to the language and rationale of 
calculus, and the many techniques learned in calculus courses are not called upon to solve 
engineering tasks. We believe that an important element of students’ difficulties in seeing the 
connection between calculus and their professional courses may be due to the following: although 
the “same” notions are used in both courses, they are used with different techniques and rationales, 
which may hinder students’ ability to recognise these notions. Our results also indicate that a task 
such as the graphic sketching of an antiderivative (and its interpretation) is performed in at least two 
engineering courses: strength of materials (bending moments) and mechanics of solids (kinematics). 
More research is needed to identify whether this type of task is performed in other courses, which 
may justify spending more time on it in calculus courses. 

Finally, we highlight the fact that the books analysed in our previous papers and in this one are of 
international distribution, so our analyses, although restricted to two different books, may be 
representative of a general situation in engineering programs. Moreover, the results regarding 
different topics seem to go in the same direction. We believe that more research is needed to better 
understand the real use of calculus notions in professional engineering courses, as well as teachers’ 
practices and whether these practices reproduce what is presented in the reference books, to have a 
more precise idea of how these notions are actually introduced and used. Research on these issues 
will help advance an international discussion about the content traditionally taught in calculus 
courses and its adequacy in training engineers (especially in light of the fact many students abandon 
their programs due to their failing of calculus courses). Our research program intends to contribute 
to this discussion and our results will be the topic of future publications. 
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In this paper, we examine the conditional reasoning of 14 undergraduate Mathematics 
students. The used instrument consisted of four questions in the context of the essential 
contents of Calculus. The analysis was based on the written answers given by students and 
five semi-structured interviews. We found two important logical flaws that prevailed among 
students’ reasoning: 1) use of the invalid inference denial of the antecedent, and 2) incorrect 
use of negations of conjunctions involved in a structure of the type 𝑃𝑃 → 𝑄𝑄. 

Keywords: Calculus, advanced mathematical thinking, logical reasoning. 

Introduction 
In an undergraduate degree, a first course in Calculus is actually a course about its 
foundations. In this type of course, students are required to develop their mathematical and 
logical reasoning, specifically their conditional reasoning. Students’ difficulties in 
conditional reasoning tasks have been demonstrated in several investigations (Hoyles & 
Küchemann, 2002). Some of them consisting of obtaining valid inferences from a rule given 
in the form P → Q, and a minor premise, for example to assume Q or not P (Evans, Handley, 
Neilens, & Over, 2007; Inglis & Simpson, 2008). In general, given a statement P→Q there 
are four commonly drawn types inference, two are valid and two are invalid. The valid 
inferences are modus ponens (MP) (P→Q) and modus tollens (MT) (not Q→ not P); the 
invalid inferences are the denial of the antecedent (DA) (not P→ not Q) and affirmation of 
the consequent (AC) (Q→P). There are three types of contexts where tasks of this kind can 
be made: verbal and mathematical contexts (Stylianides, Stylianides & Philippou, 2004), and 
abstract context (Evans et al., 2007; Inglis & Simpson, 2008; Attridge & Inglis, 2013). 
Specialized literature reported that verbal and mathematical contexts can influence when a 
logical inference is made (see, for instance, a study carried out by Stylianides (2004) on the 
use of MT inference in a verbal and mathematical contexts). In this paper, we use Toulmin’s 
scheme to study the following question: can invalid inferences be identified from a 
conditional mathematical proposition by students who have completed a first course of 
university Calculus? 

Theoretical Framework 

In this work we used the term difficulty as Gueudet (2008), that is: “the association of an 
inadequate mathematical production and of various levels of factors likely to have caused 
this production” (p. 239). On the other hand, we will understand conditional reasoning as 
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those inferences that can be made from a rule –major premise– of the form “P → Q” and a 
given minor premise, for example, suppose Q or not P. In general, the statement “P → Q” 
lead to four types of inferences summarized in Table 1. 

Inference Premise Conclusion Legitimacy 

MP P Q Valid 

DA Not P Not Q Not valid 

AC Q P Not valid 

MT Not Q Not P Valid 

Table 1: Model of logical inferences 

In our research we examined the performance of 14 students –who had successfully 
completed a first course in university Calculus– through a task that included DA inference in 
the context of Calculus. Two questions were proposed (P1 and P2) in which the students 
were to use fundamental concepts of Calculus already learned with in their previous course, 
and two auxiliary questions written in two versions (P1a and P1b) with the purpose of 
minimizing the possible influence of context on the students' reasoning. 

We used Toulmin’s argument pattern (TAP), to analyze arguments students provided to 
support their written answers. This scheme was designed to analyze arguments from different 
scientific and philosophical areas, and it has become an important instrument in mathematics 
education researches as a way to analyze arguments (Pedemonte, 2007; Simpson, 2015; 
Zazkis, Weber & Mejía, 2016). The scheme focuses on the content of the arguments and not 
on their logical structure. According to Simpson (2015), many authors adapt the Toulmin’s 
scheme to their data and intentions for analysis. Toulmin identifies six elements in his model: 
Data (D), the available information which the claim is based; Conclusion (C) what is stated; 
Warranty (W) that justifies the transition of data to conclusion; the support (S) where 
warranty backs, for instance, a law, a theorem or a theory; a modal qualifier that assigns the 
degree of certainty in the conclusion, words such as probably, always, sometimes, never are 
examples of modal qualifiers; finally, Toulmin incorporates into his model the conditions of 
rebuttal (R) that show the possible invalidity of the conclusion (Toulmin, 2003; Simpson, 
2015). 

Toulmin’s argument pattern and the logical inferences model were appropriate to analyze the 
students’ written answers. By mean of the use of these two tools, we were able to specify and 
analyze both the structure and the content of the arguments. 

Methodology 
The research instrument is composed of two questions (P1 and P2) that involved the use of 
fundamental concepts of Calculus studied in the first semester in Mathematics; and one 
auxiliary questions, written in two version (P1a and P1b), whose purpose were to minimize 
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the possible influence of the context in students’ reasoning. Invalid DA inference has been 
considered within P1 and P2 answers options. 

P1 (Weierstrass Theorem) If 𝑓𝑓 is continuous in interval 𝐼𝐼 , which is closed and bounded, then 
𝑓𝑓 is bounded and has a maximum in 𝐼𝐼. What would you say if interval 𝐼𝐼 is not bounded? 
Indicate which of the following statements are true. 

a) The theorem states that, if the three conditions are fulfilled, then 𝑓𝑓 is bounded and has a 
maximum. Since 𝐼𝐼  is not bounded, then 𝑓𝑓 has not maximun; b) The theorem does not 
establish anything, if any of the hypothesis is not fulfilled; c) Since 𝐼𝐼 is not bounded, then 𝑓𝑓 
is not bounded in 𝐼𝐼; d) Although 𝐼𝐼 is not bounded, 𝑓𝑓 can be bounded and have a maximum.  

P2. (Quotient Law of Convergent Sequences) Let (𝑎𝑎𝑛𝑛) and (𝑏𝑏𝑛𝑛) be two sequences of real 
numbers. If they fulfill: 1) lim

𝑛𝑛→∞
𝑎𝑎𝑛𝑛 exists, 2) lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 exists, and 3) lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 ≠ 0. Then, 

lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � exists and  lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � = 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 . Based on this theorem, indicate which options are 

true and which are false: 

a) If lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0, then 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 is not defined; b) Theorem states that if the three conditions 

are fulfilled, then lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � exists. Therefore, if lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0, we can affirm that necessarily 

lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � does not exist; c) Theorem does not state anything if any of the hypotheses is not 

met; d) Even when lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0 occurs, the lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � may exist. 

In relation to the P2 question, we assumed that the prohibition on the division by zero would 
influence the inferences of the students (Tsamir & Sheffer, 2000; Kajander & Lovric, 2018). 
To minimize the impact of this prior knowledge, we opted to include an auxiliary question 
in our research instrument, which refers to the definition of the derivative of a function in its 
two versions: lim

ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 (P1a) and  lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 (P1b). The purpose of considering two 

versions of the definition of the derivative of a function was to investigate if students would 
accept some quotients, whose denominator tends to zero for its popularity as consolidated 
topics in Mathematics, for example, P1a; or whether they actually apply the concept of limit. 
In addition, we considered both expressions thinking in the possibility of some students 
would know the definition of derivative in one or another version. 

The research instrument was applied to 14 students who had completed their first university 
course in Calculus at the Facultad de Ciencias de la Universidad Nacional Autónoma de 
México (UNAM). Due to the incorporation of the auxiliary question (in its two versions), we 
decided to apply the research instrument in two sessions so that, it would not immediately 
influence the students’ answers to P2. In the first session, students formed two groups: we 
applied (P1 and P1a) to one group and (P1 and P1b) to the other. After two days, the second 
session took place. Question P2 was applied to both groups at the same time. Experimentation 
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lasted 35 minutes. To deepen the arguments that students provided to support some of their 
answers, we carried out five semi-structured short interviews of 15 minutes. 

Questions P1 and P2 have the same logic structure, see Figure 1. 

 
Figure 1: Logic structure of questions P1 and P2 

Question P1 has two correct answer options b) and d), the first makes clear the impossibility 
of decision of the theorem if any of the three hypotheses A, B or C are not satisfied; and the 
second, i.e. d), alludes to the possibility that when hypothesis C is not satisfied, there are 
particular cases in which statements D and E are fulfilled. The answer options a) and c) are 
incorrect and contemplate the DA inference. 

Question P2 has three correct answer choices: a) it is a distractor, b) it refers to the 
impossibility of deciding the theorem when one of the hypotheses is not satisfied; and option 
d) again opens the possibility that even when A ∧ B ∧ ¬C occurs, D and E can happen. 

Discussion and analysis of results 
We provide the analysis and discussion for each question P1 and P2. Due to space 
restrictions, we will present only one TAP referring to P2, which reflect the general reasoning 
of most of the students. 

About Question P1 
Only three of the fourteen students chose options b) or d), which are the correct answers. It 
should be noted that none of these 3 students chose b) and d) simultaneously. Most of the 
rest of the students chose c), they argued: “if it is a continuous function in an interval that is 
not bounded, then function is not bounded”; “all hypothesis must be met so we can say that 
a function is bounded in a closed interval I”. In some cases, students that chose a), confused 
the maximum of a function with the maximum of the interval: “in order an interval has a 
maximum, it must be in the set, that is, it has to be closed and bounded”. 

We highlight the logical flaw in the reasoning of these students; they think that the falsehood 
of the premise of a proposition necessarily implies the falsehood of what is stated in the 
conclusion (DA inference). Figure 2 shows the logical structure of the reasoning of most of 
them. 

            
Figure 2: Logical structure of students’ reasoning in Question P1 

In terms of Gueudet (2008), this inadequate mathematical production was caused by factors 
of logical and mathematical type, that is, both the lack of knowledge of logical structures and 
the misuse of the concepts of Calculus, determined this inadequate production. 
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About Question P2 

The results reveal that 10 of the 14 students did not answer this question correctly. Before 
beginning the analysis of P2, we will briefly comment on what happened in the answers to 
the auxiliary question (P1a and P1b). Most students expressed that the existence of the limit 
in both P1a and P1b depended on the nature of the function. More precisely, in the case of 
P1a, most students identified this limit with the derivative of a function, and still two students 
stated that such a limit did not exist because the denominator tended to zero. In the case of 
P1b, although no student directly related it to the derivative, none said that this limit was 
indeterminate, even two students argued that this limit was equal to 1. Regarding P2, it might 
seem strange that most students failed in this question a few days after having faced a similar 
situation with the definition of derivative of a function, since the expressions in P1a and P1b, 
and lim

𝑛𝑛→∞
�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � share the same structure of a quotient where the denominator tends to zero. 

However, the analysis of the students' responses and the interviews revealed the cause of this 
problem.  

Figure 3 shows student A's TAP. The answer provided in the instrument by this student was 
incorrect and reflect the general reasoning of most of the students. However, the student 
identified the type of incorrect reasoning during the interview. As the initial data (D), the 
student considered (Quotient Law of Convergent Sequences) and lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 = 0, and his 

conclusion (C) was that the limit of the quotient lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � does not exist. The student chose 

the word “always” as the modal qualifier (Q), and used as warrants (W) the flawed reasoning 
“the negation of the premise implies the negation of the conclusion”, the prohibition of 

dividing by zero, the impossibility to calculate 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 and the equality lim

𝑛𝑛→∞
�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � =

lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
. 

Notice that the warrants (W) of student A were also justified by support (S) that consisted of 
the properties of real numbers, the theory of limits, and the DA inference. The rebuttal 
conditions (R) were considered during the interview with student. Student A was presented 
with some examples of quotients of sequences where the sequence in the denominator was 
convergent to zero.  
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Figure 3: TAP of student A, who identified the incorrect type of reasoning 

The interview  

During the interview, student A was asked to calculate lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
𝑏𝑏𝑛𝑛

 , where 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛 = 1
𝑛𝑛. 

 Teacher: Please find the limit of the quotient. 

Student A: But, that limit does not exist. 

Teacher: Why do you think that the limit does not exist. 

Student A:      Well, mmm… because, 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 is indeterminate, and lim

𝑛𝑛→∞
�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � =

lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
. 

At first, student A was reluctant to calculate the limit because he was convinced that the 
limit did not exist (C) and (Q). 

Teacher: Please try to calculate it. 

Student A: Ok! oh! the limit is 1! Is the theorem wrong? Let me see… 

When the student finished the calculations, he was surprised to find the existence of this one 
(R) and, for a moment, questioned the validity of the theorem. After the interview, the student 
managed to modify his reasoning and obtained the correct answer. 

The main obstacle to correct reasoning was the impossibility of calculating 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 when 

lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0.  That is, The student A could not distinguish between the existence of lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � 

and the validity of the formula lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � =
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
, because he considered these expressions 

as equivalents.  
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In general, the reasoning of the majority of the students was: since  lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0, necessarily 

the quotient  
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 is not defined (which is correct), and therefore lim

𝑛𝑛→∞
�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � does not exist, 

see Figure 4. 

 
Figure 4:  Scheme of reasoning for P2 

There are two flaws that stand out in the logic used by these students: 
1) Accept the DA inference in considering certain: if lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 = 0, then necessarily lim

𝑛𝑛→∞
�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 �  

does not exist. 
2) They did not become aware that the conclusion of the theorem is a conjunction of two 

statements: one about the existence of lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � and the other about equality 

lim
𝑛𝑛→∞

�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 � =
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 . Both mistakes came from the impossibility to calculate 

lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
 , 

when  lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 0, because students know that division by 0 is not allowed. 

In terms of Gueudet (2008), the acceptance of DA inference, the impossibility to calculate 

the quotient 
lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 
  and the failure to identify that the conclusion of the theorem is a 

conjunction of two statements were the associated factors for an inadequate mathematical 
production. 

Final considerations 

Our study suggests the importance of understanding the logical structure of mathematical 
statements; not being aware of it can cause additional difficulties for students, especially 
novice students who are barely getting involved in conceptual Calculus. Not knowing such 
structures can lead the student to false conclusions, for example, accepting invalid DA 
inference, or misapplying certain theorems, i.e., inadequate mathematical production. 

The types of logical inferences (MP, MT, DA and AC) have been studied extensively, 
especially in abstract contexts, and are known to be difficult to assimilate. Our research 
focused solely on DA inference and revealed that this problem is further increased when 
conjunctions are involved in the premise and conclusion of a conditional-type structure in a 
mathematical context, particularly Calculus. Although the participants were students who 
had successfully completed their first course in Calculus of the Mathematics career and 
therefore already knew and had worked on the concept of derivative, the theorem of 
Weierstrass and the theorem of the limit of the quotient of sequences, even after all this, it is 
observed that these difficulties in the management of logical structures persist in a significant 
number of them. 
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Our study suggests that, in order to promote a better understanding of the students in the 
contents of Calculus, it would be very useful to pay special attention to the type of logical 
difficulties reported here, to insist on the structures of mathematical statements, to make them 
explicit and to point out their scope.  
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VEMINT (Virtual Entrance Tutorial for the STEM subjects), a joint project by researchers from the 
universities of Darmstadt, Kassel, Paderborn and Hannover, has worked on material and course-
designs for bridging courses for more than 15 years. In recent years, VEMINT has focused on the 
development of a psychometrically validated test to provide students with appropriate hints for the 
use of material and to evaluate the impact of teaching and learning activities. In this paper, we 
present elements of the test, which are based on ideas from Feldt-Caesar (2017), who combined 
cognitive activity and action control theoretical approaches in the development of a three-
dimensional competence structure model, and on Anthropological Theory of Didactics, to explain 
content-related differences between dimensions of the model. Validating Rasch-analyses show that, 
in accordance with the design ideas, a three-dimensional Rasch-model fits with empirical data. 

Keywords: Bridging course, diagnosis, transition, calculus, Rasch-Analysis  

Introduction 
The average dropout rates of mathematics and engineering programs in universities in Germany are 
47% and 36%, respectively (Bildungsberichterstattung, 2014). These rates are higher than the 
overall average drop-out rate which is 33% for all study programs at German universities. In 
addition to the lack of acquisition of key competences such as the ability and willingness for self-
reflection and self-motivation (Hilgert, 2016), the literature (e.g., Cramer & Walcher, 2010) 
highlights that the lack of prior mathematical school knowledge is one of the major reasons for the 
high proportion of dropouts.  

As a measure to reduce the number of dropouts, most universities and higher education institutes 
have offered mathematical remedial activities in the form of bridging courses to support students’ 
learning of university mathematics in recent years. The idea is to reduce the gap between school and 
university mathematics while maintaining the standards of the programs. One of the major 
challenges is to design remedial bridging courses that are sensitive to individual needs. For 
example, while some of the students need more support in simplifications of algebraic expressions, 
other students may need support in elementary calculus. It is also important for the students to know 
what prior knowledge is needed to take the courses at the university. To support students in 
deciding which of the modules of the bridging course to take, it is desirable to have an appropriate 
diagnostic tool available. Such tool should also measure the impact of bridging courses. A 
substantial content analysis is essential in order to provide detailed feedback to individual learners 
and advice to lecturers in choosing topics and in deciding how intensely topics should be taught in 
transition courses (Biehler & Hochmuth, 2017; Hochmuth, 2018). For more than 15 years, the 
universities of Darmstadt, and recently also Hannover, Kassel, and Paderborn, have been offering 
bridging courses in the cooperative project Virtual Entrance Tutorial for STEM subjects (VEMINT, 
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STEM in German is MINT) for students who wish to pursue mathematics-related programs (Bausch 
et al., 2014; Fischer, 2014). In recent years, the authors have also worked on developing a 
diagnostic test, the VEMINT-test, which is the focus of this paper.  

The structure of the paper is as follows. After sketching the main goals of the VEMINT-test, we 
outline basic ideas of the competence structure model that underlies our test design and provide a  
briefpraxeological content analysis of tasks assigned to the dimensions of the model. Finally, we 
present results from a Rasch-Analysis empirically validating the three dimensions of the 
competence structure model.  

The Development of the VEMINT-Test  
The development of the VEMINT-test follows two partly opposing, goals: While working as a 
diagnostic test to understand better students’ prior knowledge and gaps, it should also help to 
evaluate the impact of bridging courses. In addition, the pre-test needs to give information in a short 
time so students can decide what modules they need to take in the bridging course. In recent years, 
the diagnostic test has been refined several times based on both empirical and theoretical findings. 
Thereby, our main aim was to develop a standardized diagnostic instrument in two essentially 
equivalent versions (Form A and Form B), which can be used every year at the beginning and at the 
end of a bridging course. An expert rating determined the particular content of the test, which 
focused on analysis and elementary algebra and took into account the German minimum standard 
requirements (see, Cooperation Schule Hochschule, 2014). The items were adjusted according to 
quality criteria for tests and technical possibilities (e.g., the use of the Moodle STACK plug-in, 
Sangwin, 2007).  

The final test in two forms (A and B) was designed for 60 minutes and comprised 22 tasks from 
secondary levels I and II in German schools. The examined topics are algebraic terms, equations, 
functions and calculus (differentiation and integration). The test was developed using a three-
dimensional competence structure model that will be described next. Afterwards we present results 
from a Rasch-Analysis, considering data that has been collected in the winter semester of 
2017/2018. These results empirically reproduce the three-dimensional structure, thus validating our 
test-design in this respect. 

A Competence Structure Model and its Dimensions 
The competence structure model is based on the idea of “Basic Mathematical Knowledge” (BMK), 
which has been introduced by Feldt-Caesar (2017) as follows:  

Basic mathematical knowledge and skills refer to the mathematical knowledge, skills and 
abilities which are to be retrievable to all pupils at the end of the two secondary levels in the 
form of mathematical terms, theorems and procedures in the long term and independently of the 
situation, i.e. in particular without the use of aids. (Our translation, p. 182) 

BMK serves “as a prerequisite for successful further learning, especially in a course of study" (our 
translation, p. 180), which requires that knowledge be sustainable and connected in the sense of 
“intelligent knowledge” (Feldt-Caesar, 2017; Weinert, 2000) and, furthermore, transferable and 
connectable with new content (Feldt-Caesar, 2017; Nitsch Bruder & Kelava, 2016). For related 
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diagnostic and feedback goals these ideas imply that items of a test should cover not only calculus-
oriented tasks but should also aim at “intelligent knowledge” and “understanding oriented 
knowledge” where the latter is not the same as "understanding." We agree with Skemp (1976) that 
no “understanding,” neither instrumental nor relational understanding, is validly testable without 
additional intersubjective interactions. On the other hand, “understanding oriented knowledge” 
including knowledge necessary for “relational understanding” beyond knowledge necessary for 
“instrumental knowledge” is an important basis for further learning (Bruder, Feldt-Caesar, Pallack, 
Pinkernell & Wynands, 2015; Skemp, 1976). These general underlying goals call for a sample of 
tasks which cover various qualitative facets of knowledge and associated mental activities. 
Moreover the sample should be helpful both in regards to diagnostic and evaluation goals as well as 
for providing appropriate feedback. To cover and operationalize the idea of such different 
qualitative facets we have developed a three-dimensional competence structure model on the basis 
of ideas from Feldt-Caesar (2017) and applied Anthropological Theory of Didactics (ATD, 
Chevallard, 1992)) for the content analysis of tasks.  

In Feldt-Caesar (2017), cognitive, activity and action control theoretical approaches are combined 
to describe and analyze mental activities with respect to five conceptual levels. Within our context, 
the levels “elementary actions,” including identification and realization, and “basic actions,” 
including recognizing, describing, linking, applying and justifying, are important. In Feldt-Caesar 
(2017), both types of actions have been related to the so-called “content elements” that are 
conceptualized in terms, theorems, and procedures. In view of our focus on analyzing test tasks 
within the institutional context of the transition from school to university mathematics, it turned out 
that a praxeological view on “content elements” was probably more appropriate for the current 
project.  

Accordingly, in the following we apply a few basic praxeological notions from ATD: The 
simplified [P, L]-model with P representing the praxeological block (i.e., the technical aspect(s) 
connected to a type of task and) with L representing the technological-theoretical block. The latter 
covers in particular: describing a technique, validating (e.g., proving or justifying how and that a 
technique works), knowledge about the efficiency and motives of a technique as well as knowledge 
about variants and simplifications, and finally, knowledge required or useful for controlling the 
application of a technique, which is particularly relevant for connecting practices and praxeologies. 
Our starting point for the identification of P and L lies in the single tasks of the test, curricula school 
books and in the VEMINT group consented experiences concerning the actual implementation and 
institutionalization of praxeologies and corresponding technical and technological aspects of school 
mathematics. There are, of course, further relations between above mentioned cognitive notions like 
“instrumental” and “relational understanding”: From the viewpoint of knowledge and meaning 
structures, they can be referred to qualitative differences in relationships between practical and 
technological-theoretical blocks of one or several praxeologies. A more detailed analysis of such 
issues, however, lies beyond the scope of this paper. Here, the praxeological notions mainly serve 
as a tool for describing and analyzing qualitative aspects of “content elements” with regard to the 
three dimensions of the competence structure model.  

Dimension I (which is associated to instrumental understanding) is characterized by elementary 
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actions and cognitive operations such as identification and realization, and usually refer to a content 
element that does not have to be transferred to other content elements. The actions to be taken 
consist of a single step and are related to a “first elementary level” of mental activities in Feldt-
Caesar (2017). Content-wise and in praxeological terms, Dimension I covers tasks from school that 
can be solved by techniques without especially taking into account technological aspects like 
supporting argumentations, proofs, or contextual embedding, etc. The techniques in Dimension I 
tasks are more or less extensively institutionalized in school mathematics, represent typical tasks of 
school examinations, and, at least partly, also appear in final exams (e.g., baccalaureates). A 
characteristic task in the test is the calculation of the derivative of . It can be calculated by 
algebraic operations that can be executed without referring to basic rules and notions. This kind of 
tasks, focusing on techniques without links to technologies and supporting mathematical 
organizations, seems to be dominant in school internationally (e.g., Barbé, Bosch, Espinoza & 
Gascón, 2005).  

In Dimension II, the one-step approach is maintained but a linking to content elements of the same 
topic is necessary to solve the associated tasks. 
Such tasks are characterized by the main reference 
to one content element and possibly to other 
content elements, directly related to the main 
content element. Besides elementary actions, 
cognitive operations such as describing, linking, 
applying, and justifying are necessary in most 
cases. These tasks cannot be solved by simple 
calculations and are often unfamiliar to students 
(so that they need probably relational 
understanding). Content-wise, Dimension II covers 
tasks that relate to technological-theoretical blocks 
of praxeologies implying validation and 
justification. Students are not sufficiently trained in 
techniques of Dimension II tasks such that such 
technological aspects are superfluous for solving 

the tasks. Moreover, in the school context, this type of tasks typically demands verbal descriptions 
or even verbal justifications. A further common aspect of Dimension II tasks is that the 
technological aspects need no additional validation, for example by linking to technological aspects 
of praxeologies living in other domains; hence they are of a local nature. Figure 1 presents an 
example for a Dimension II task. It is expected that to solve this task students use relationships 
between verbal, graphical, and symbolic representations and switch across those representations. In 
order to solve the task, the second derivative is to be interpreted as the curvature of the function f. 
What is unusual about this task is that the values of the second derivative are given and, conversely, 
a function f must be reconstructed based on the given information.  

Dimension III tasks are multi-step tasks, and characterized by several elementary actions and 
cognitive operations (associated to “intelligent knowledge”). The tasks refer to content elements 

A polynomial function fulfils the following 

properties:  is negative for  and positive for 

 Which of the graphs belongs to ? 

Figure 1: Example for a task of dimension II 
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Figure 2: Scatterplot of the rank of difficulty 
 

from at least two different content areas. Thus, solving of Dimension III tasks combines techniques 
from different praxeologies; the techniques involved are often more complex, or the technological 
aspects relevant for the combination of the techniques are either weakly established or combine 
aspects of different praxeologies. A task of this type, that combines techniques and is well-
established in school, looks as follows (Feldt-Caesar, 2017): “The function  is given by 

 Determine the equation of the tangent , which touches the graph of the function  
at the point .” In this task, content elements of differential calculus must be linked and the 
results of the differential calculus must be used to establish a linear function (equation of a tangent). 
Thus, both content from secondary level I and secondary level II must be applied. Another task 
(item 13) of Dimension III is the following: “Simplify the following expression and collect the 
variables .” In this task, the required combination of techniques from 

division of fractions and power calculations is nested; in addition, related technological aspects 
have to be combined in an appropriate way. This means that it is not enough to apply simple and 
local techniques from different domains. Content-wise, the main characteristic of Dimension III 
tasks is the link of different techniques and technologies, which is as such not well-institutionalized 
in school mathematics.1  

Rasch-Analysis 
Roughly one half of 362 students from three German universities who participated in bridging-
courses (29% female) filled out test-form A before and test-form B after the courses. The other half 
took the opposite order. No sequence effects were found. Each participant received each test-form 
only once, and, although pre- and posttest samples were related (both samples consisted of the same 
participants), the occurrence of test-effects is not plausible. Using pre- and posttest samples in one 
analysis reduces the probability of the occurrence (respectively the effect) of a possible limitation of 
variance, which can lead to a possible underestimation of all correlational measures and possibly 
limiting the information value of assertions 
regarding validity. Participants were tested before 
and after a bridging course and therefore were not 
on the same performance level at both times of 
measurement.  

To scale the data, we first estimated two one-
dimensional Rasch-models, one for each 
measurement point. A Rasch-model is a 
probabilistic psychometrical model for generating 
measurements from categorical data (e.g., right/wrong-answers in a performance test) as a function 

                                                 
1 It should be noted that assigning tasks to a single of the dimensions is not always possible due to different possible 
solutions of a task. For the classification, several possible solutions were anticipated and the most probable one was 
used to determine the dimension. Analyses of some of our test tasks can be found in Feldt-Caesar (2017), which 
investigates validation issues.  
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Table 1: Results of the Rasch-Analysis 

of the relation between the ability of the respondents and the item difficulty (Rasch, 1980). 
EAP/PV-reliabilities were suitable, R = .868 (resp. .865 for Model 2), as well as the variances, 
V = 2.256 (resp. 1.967 for Model 2). Figure 2 shows the 

scatterplot of the rank of the difficulty parameters. Most importantly, the correlation of the 
difficulty parameters is high, R2 = .95. For this reason, measurement invariance can be assumed.  

Because of the high correlation between both measurement points, the approach of virtual cases 
could be applied (see Hartig & Kühnbach, 2005; Rost, 1996). If a participant took part at both 
measurement points, he or she represents two cases in the data. This approach has two advantages: 
Firstly, resulting scores are in a consistent metric and secondly, the appearance of the problem of 
constrained variance is less likely (see above). With this approach, a data set of 724 cases resulted. 
Again, a one-dimensional model was calculated but also a three-dimensional model consisting of 
the three performance levels described before. Results are shown in Table 1. Both models show 
good variances and EAP/PV-reliabilities as well as discrimination indices.. The three-dimensional 
model shows significantly less deviance than the one-dimensional model (p < .001), so it fits the 
data better.2 Figure 3 shows the wright-map of the three-dimensional model. Thus, the Rasch-
analysis empirically confirmed the three-dimensional structure of the test.  

 

 

 

 

 

 

 

 

 

The order of tasks within the dimensions could be understood as 
a consequence of how intensively and how often (regarding 
different classes, schools etc.) the tasks are practiced; the order 
could hardly be deduced by theoretical considerations alone. In 
accordance with our content analysis, Dimension II in fact 
includes tasks which need conversions between different 
representations of a function, even if these tasks are not unfamiliar. The task in Figure 1 is even 
rated as a rather difficult one within Dimension II in the Rasch model. Within Dimension III, 
besides the degree of institutionalization and the time of treatment of indicated techniques in school, 
                                                 
2 One item (Item 3) shows a weighted MNSQ larger than 1.2 (values should lie in the range of 0.8 < MNSQ < 1.2). This 
is not too problematic for all other indices perform very well. 

Dimensionality One-
dimensional 

Three-dimensional 

Performance Level  I II III 
Number of tasks 22 8 10 4 
Variance 2.216 2.346 1.963 3.661 
EAP-PV-Relilability .872 .868 .856 .842 
Weighted MNSQ .86-1.32 .92-1.12 .83-1.24 .93-1.06 
Discrimination Indices .36-.69 .52-.68 .39-.71 .69-.73 
Deviance 16293.17612 16258.04687 
Estimated Parameters 44 31 
Difference Deviance 35.12925 
Difference Parameters 5 
Sig. (χ2-Difference-Test) < .001 
Note: EAP/PV-Reliability – Expected-A-Priori / Plausible-Values-Reliability (see Rost, 
1996) 

Figure 3: Wright-map of the 3D 
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the praxeological interconnectedness seems to be reflected in the order of tasks (items 3, 7, 10, 11, 
12, 13, 15, 18, 20, 22). It is perhaps a little bit surprising that the complex term transformation task 
(item 13) turned out to be the most challenging task of Dimension III.  

Discussion 
The main aim of bridging courses is to support students by providing learning materials and 
samples of tasks for their self-evaluation. From the design of material and courses as well as the 
point of view of teaching, specific test instruments are required for a possibly objective evaluation 
of the impact of support measures. The test instruments should be most sensitive for specific 
mathematical knowledge domains and should allow relating pre-post-comparisons to specifics of 
bridging courses in order to adopt courses in view of actual pre-test results. Our results show that 
our test takes into account qualitatively different knowledge dimensions and might be a valuable 
tool for reaching these goals, which, of course, needs further investigations. 
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Previous research has shown that students’ use of module resources strongly relates to the timing of 
the module’s continuous assessment. In our case study of a large first-year mathematics module for 
Business students, Maths for Business, we examine this relationship and the resources relied on by 
students for completing their continuous assessment. In Maths for Business, students have the choice 
of using live lectures or online videos or a combination of both. We find that students who incorporate 
lectures into their approach engage consistently throughout each week with module resources, while 
others adopt a just-in-time approach for each weekly quiz. We also show that the introduction of 
remediation of quizzes can boost participation with resources, in particular feedback resources.  

Keywords: Continuous assessment, student participation, remediation, undergraduate mathematics, 
service mathematics. 

Introduction  
Research shows that student engagement in a module is strongly related to the timing of assessment 
(Rust, 2002; Marriott & Lau, 2008; Holmes, 2018). In this study, we focus on this relationship in a 
service mathematics module, showing that through module design which includes frequent 
continuous assessment, students can be encouraged to consistently access resources both prior to, and 
post assessment (through feedback). While this relationship seems evident, we analyse electronic data 
to demonstrate it. To this effect, we analyse resource usage in a large first-year undergraduate module 
entitled Maths for Business (based on the 2015/16 student cohort). Continuous assessment is an 
integral component of Maths for Business, with 40% of the final module mark designated to a 
student’s best eight (out of ten) weekly quizzes. We investigate which resources students access when 
preparing for the assessment; and when specific resources (lectures, online videos, worksheets, Maths 
Support Centre and quiz solutions) are accessed; and, whether the approach taken relates to a surface 
or a deep learning approach to learning (Rust, 2002).   

While some research focuses on resource usage in preparation for continuous assessment (Holmes, 
2018), we also wish to investigate the relationship specifically with feedback resources. In 2016/17, 
we introduced a ‘remediation system’ whereby students who did not receive the full five marks on 
their weekly quiz, had the opportunity to resubmit their quiz one week later with an explanation of 
their error(s) and corrections for one additional mark. We examine how the introduction of the 
remediation system increased students use of feedback resources. Subsequently our research 
questions are: 
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1. In Maths for Business, what is the relationship between the timing of continuous assessment 
and module resource usage? 

2. In Maths for Business, what resources do students access when preparing for their continuous 
assessment? 

3. Is there a relationship between students’ choice of resource and their learning approach? 
4. Through incentivising remediation, can students be encouraged to access module resources? 

Unlike our prior work on Maths for Business (Howard, Meehan, & Parnell, 2018; Howard, Meehan, 
& Parnell, 2019), this study focuses on examining resource usage in the context of the timing of 
continuous assessment, rather than the reason behind students’ choice of module content resources 
(Howard et al., 2018), or, whether the remediation system benefitted students based on their end-of-
semester examination (Howard et al., 2019). 

Theoretical Framework and Related Literature  
Engagement and participation 

In educational literature (Fredricks, Blumenfeld, & Paris, 2004), student engagement is considered 
under three sub-themes or constructs: behavioural, cognitive and emotional. Behavioural engagement 
(Fredricks et al., 2004) encompasses positive student conduct and participation or on-task behaviour 
for example effort, persistence, concentration, attention, asking questions, and contributing to class 
discussion. Fredricks et al. (2004) note there is a difference between active and passive behaviour. In 
this study, we refer to participation as the interaction students have with resources which is measured 
by log or attendance data. When we consider students’ participation or resource usage, we are 
considering a narrow, limited definition or application of behavioural engagement.  

Continuous assessment and engagement  

Holmes (2018) argues for the importance of student engagement owing to its relationship with student 
satisfaction and the quality of the student experience. Her research aims to improve the student 
experience by influencing the relationship between resource-use and assessment. Holmes (2018) 
shows that the introduction of frequent low-stakes assessment leads to a consistent increase in the use 
of online resources in a university geography module. This particularly benefits students with 
“weaker” prior knowledge in a module, as research suggests that they benefit more from participation 
with resources than their peers (Nordmann, Calder, Bishop, Irwin, & Comber, 2018). Marriott and 
Lau (2008), and the references within, argue that assessment is the main variable in accounting for 
how students approach their learning. Rust (2002) expands on this relationship, by noting that 
students will study the content or resources that they believe will be examined. Anastasakis (2018) 
uses activity theory to explore in detail engineering and mathematics undergraduates’ resource-use. 
Anastasakis (2018) found that assessment rules were the main regulator of students’ use of resources. 
Other, less significant factors included: students themselves including their learning preferences, 
degree and year of study; resources’ usability; the level, nature and familiarity of the mathematics; 
and, lecturers and past members of students’ community. In addition to encouraging pre-assessment 
resource usage, continuous assessment can also encourage engagement through the feedback 
provided for assessment. 
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Alternative to examining students’ specific resource-use, one could consider whether students take a 
surface or deep learning approach to learning. A surface approach is often associated with rote 
learning and extrinsic motivation, whereas a deep approach is associated with learning for 
understanding and intrinsic motivation. Biggs, Kember, and Leung (2001) presents a survey to 
examine these approaches, the ‘Revised Two Factor Study Process Questionnaire: R-SPQ-2F’. 
Trenholm et al. (2019) used the R-SPQ-2F to examine learning approaches in two mathematics 
modules where students had the option of attending lectures or/and viewing recorded lecture videos. 
Despite the modules being located in different universities, they found in both cases that a decrease 
in live lecture attendance combined with regular use of the recordings was associated with an increase 
in surface approaches to learning. 

Module Context  
Maths for Business is a large first-year undergraduate module with approximately 500 business 
students enrolled annually. In Maths for Business, students have the choice of completing the module 
material by attending approximately 32 live lectures or watching 67 online videos or a combination 
of both. Each short video (average length of 7.5 minutes) was designed and created by the lecturer – 
second author of the paper. These videos were created using the Explain Everything app 
(https://explaineverything.com/), and consisted of the lecturer writing on “skeleton” slides while 
explaining the topic. Students also have access to the Maths Support Centres (the university drop-in 
centre and a dedicated module drop-in centre). All resources in Maths for Business – worksheets, 
lectures or online videos – list the specific learning outcomes which they address. The module is 
examined through an end-of-semester written 2-hour examination and ten weekly quizzes. These 
contribute 60% and 40% respectively towards a student’s final mark. Students best eight (out of ten) 
quizzes contribute 5% each to the continuous assessment mark of 40%. From week three of the 
twelve-week teaching semester, all students sit the weekly quizzes on Tuesdays under the supervision 
of a teaching assistant. Further detail on the module can be found in Howard et al. (2018). Between 
2015/16 and 2016/17, there were no changes to the learning outcomes of the module. While the 
content and aims remained the same, the quizzes were changed to ensure students did not copy from 
the prior year’s quizzes.   

In Maths for Business in 2016/17, a ‘remediation system’ was introduced (Howard et al., 2019). In 
the remediation system, any student who did not receive the full five marks on a quiz, had the 
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27th of September - 1 - - - 

4th of October 1 2 1 - Quiz 1 pdf & video solutions 

11th of October 2 3 2 1 Quiz 2 pdf & video solutions 

Table 1: Example of the remediation timeframe 
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opportunity to resubmit their quiz with corrections and an explanation of their error(s) for one 
additional mark. Table 1 provides an example of the remediation time-frame. Both the pdf and video 
solutions highlighted relevant video resources for the quiz questions. Owing to the fortnightly 
remediation cycle, students only had the opportunity to remediate the first eight quizzes. Students 
were encouraged to use the Maths Support Centre for help with their remediation, particularly 
students who received a low score on their quiz.  

Data Collection and Analysis 
We use a case study approach as we are not controlling the behavioural approaches of students and it 
allows for a mixed method approach. The case study approach allows for the examination of the real-
life relationship between continuous assessment and resource usage in the context of Maths for 
Business. In accordance with our permission from the UCD Ethics Committee, for two years of Maths 
for Business, we collected students’ lecture attendance, log data for online resources, Maths Support 
Centre attendance, Irish post-primary terminal mathematics examination grade (as an indicator of 
prior mathematics learning) and marks in the module. In total, there were 522 students in 2015/16 
and 480 students in 2016/17. In addition, a survey that included the ‘Revised Two Factor Study 
Process Questionnaire: R-SPQ-2F’ (Biggs et al., 2001) was distributed to the 2015/16 cohort at the 
end of the teaching semester. We received 161 survey responses. For this paper, we are examining 
the results from the ‘R-SPQ-2F’ and one open-ended question from the survey, “How do you study 
for the weekly quiz, making specific reference to the resources you use (online videos, lecture slides, 
external sources, friends, worksheets, class notes, Monday drop-in session, Maths Support Centre)?”. 
These survey results are beyond our prior research (Howard et al., 2018). 

To examine the time dynamic between continuous assessment and resource usage, we use descriptive 
statistics in the form of graphs. We do not include resource usage data relating to the revision and 
examination period of the semester (prior to the end-of-semester examination) as the number of views 
increases substantially during this time as expected. To analyse the open-ended survey question on 
which resources are used in studying, we use thematic analysis (Braun & Clarke, 2006). 

Results 
RQ1: What is the relationship between continuous assessment and module resource usage? 

Based on the 2015/16 cohort, analysis of the video views shows that students access videos prior to 
the weekly Tuesday continuous assessment (on Monday and Tuesday). Similarly, students mainly 
access the worksheets and Maths Support Centre prior to the weekly quiz. Alternatively, we could 
investigate the timing of resources based on a finer scale which considers students’ main content 
resources. If we classify students according to their use of live lectures or online videos or 
combination of both (see Howard et al. (2018) for details of the classification by clustering analysis), 
we have four distinct groups: Dual-Users, Lecture-Users, Video-Users and Switchers. Switchers 
either start the semester predominantly using lectures and progress to predominantly using videos or 
choose between videos and lectures for content based on the timing of a lecture. Lecture-Users and 
Video-Users predominantly use lectures and videos respectively, while Dual-Users use both lectures 
and videos to review the same material. Figure 1 shows the standardised number of video accesses 
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for each cluster over the semester (views are divided by the number of students in each cluster). When 
examining video accesses in relation to the time in the semester for Dual-Users, Video-Users and 
Switchers, the distribution is of weekly peaks prior to the continuous assessment albeit with 
increasing peaks for Switchers as the semester progresses. However, for Lecture-Users, this pattern 
is not maintained initially. As the semester progresses, the limited number of videos seem to be 
accessed for assessment purposes. Dual-Users, and to a lesser extent Lecture-Users, use resources 
throughout the semester whereas Video-Users and Switchers use them on Mondays and Tuesdays. 
There are limited accesses of resources once their associated quiz has occurred. 

RQ2: What resources do students access when studying for their continuous assessment? 

Our findings from the first research question suggests a strong relationship between the time when 
students’ access module resources and the date of the continuous assessment. After each quiz, 
students prepare for the next quiz rather than revising past quizzes. In order to understand the 
resources students use to study, towards the end of the 2015/16 semester, we asked students how they 
studied for the weekly quiz. From thematic analysis (Braun & Clarke, 2006) of the responses, a central 
and important theme identified is ‘Order of Study’. Students often explained the order of their study 
approach using the word “then”. For example, one response consisted of:  

Firstly I go through all the videos and write out notes. Then I attempt the worksheet and highlight 
all the good examples and things that I need to remember. I then look back over the notes I took 

Figure 1: Maths for Business video accesses for 2015/16. The number of accesses for each cluster has 
been divided by the number of students in each cluster to allow for comparisons 
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and the completed worksheet. I went to the math support centre when I couldn’t get the answer to 
a question.  

 Generally, students’ study pattern for the weekly quiz fall into three stages:  

Stage 1: Review the relevant module material - this is completed through videos or/and lectures. 
Students may also create their own notes at this stage. 
Stage 2: Attempt/complete the worksheet, may refer to videos to help with the worksheet. 
Stage 3: If stuck on the worksheet, seek assistance from friends and Maths Support Centre. 

There are students who deviate from this, for example students who listed a single resource as their 
response such as worksheets or videos. Male students were more likely to list a single resource, 
whereas in contrast female students or Dual-Users were more likely to seek support as described in 
stage 3. Similarly to Figure 1, worksheets and Maths Support Centre were accessed in the days prior 
to the quiz. We have no data for when friends were consulted.  

RQ3: Is there a relationship between student’ choice of resource and their learning approach? 

Using Biggs et al.’s (2001) ‘R-SPQ-2F’, for the 2015/16 cohort, we examined students’ approaches 
to learning, namely surface versus deep approach. The results from the five-point Likert scale 
questions were summed (as outlined in Biggs et al., 2001) to extract a numerical measure for students’ 
surface and deep approach to learning. Surprisingly, using an analysis of variance approach, there 
was no statistical difference between the surface and deep approach of Lecture-Users, Dual-Users, 
Video-Users and Switchers. Following Trenholm et al.’s (2019) methodology, we also divided users 
into regular or low video users using the median number of videos accessed. Upon examination, there 
was no difference in the learning approach of these two groups. However, Trenholm et al. (2019) 
measured the learning approaches of students at two points in the semester whereas we measured the 
learning approach at one point, the end of the semester. They found an increase in the surface 
approach of students who regularly used lecture-capture videos combined with lower lecture 
attendance. The difference in results could possibly be caused by our lack of examining learning 
approaches at two time points or an innate difference between lecture-capture and short-designed 
videos for mathematics courses or possibly owing to a difference in survey respondents as our survey 
respondents were biased towards higher marks in comparison to our overall population.  

RQ4: Can students be encouraged to consistently use module resources? 

In 2015/16 cohort, resources were accessed prior to the quizzes. In 2016/17, we introduced the 
remediation system where students could gain an extra mark out of five quiz marks if they resubmitted 
their quiz within one week of having it returned with an explanation of their error(s). While the 
primary motive of this was to encourage students to identify and learn from their errors in a timely 
manner (Howard et al., 2019), a potential side-effect was students engaging with quiz or/and feedback 
material post-quiz i.e. within a week after the quiz. The feedback resources provided included: the 
graded quizzes; oral tutor feedback; the lecturer providing a video entitled “Most Common Errors”; 
and, a pdf copy of the quiz solutions that also highlighted the most relevant online videos from the 
module. In addition, students could seek help from friends and the Maths Support Centre. We found 
(Howard et al., 2019) that the main resource students made use of was the pdf solutions, with limited 
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use of the videos and the Maths Support Centre. Upon further examination, with a focus on timing, 
students accessed the pdf solutions at the end of the remediation cycle i.e. prior to resubmission of 
their quiz. This just-in-time approach results in a similar distribution or pattern to the video accesses 
(Figure 1). This is in contrast to the prior year of 2015/16 as seen in Figure 2. For the teaching 
semester, the number of views for the pdf solutions doubled between the two cohorts (see Figure 2). 
Figure 2 indicates that students can be encouraged to positively participate with feedback resources. 

Discussion and Conclusion 
In Maths for Business, we have examined resource-use in relation to its main influencer - continuous 
assessment. Continuous assessment is linked to students’ resource use in two distinct forms: firstly, 
in preparation for the continuous assessment; and, secondly through students engaging with feedback 
on their assessment. Resources are accessed prior to the Tuesday quiz except for live lectures which 
are timetabled. Although the students are using a just-in-time approach, they are still accessing the 
resources weekly, and in that sense, consistently. The use of resources is divided into three stages or 
into the following order: module material review; practice questions; and, external help. While not 
all students will pursue each stage, females are more likely to seek external help from friends or the 
Maths Support Centres. For the 2016/17 cohort, a positive outcome of the remediation system was 
that students were encouraged to use feedback resources (pdf solutions). However, similar to 
preparing for the weekly quiz, a just-in-time approach was adopted for the feedback resources. As a 
limitation, we note that without qualitative data, we cannot confirm for what percentage of students 
this was the case. In comparison in 2015/16, there is no obvious distribution to viewing the pdf 
solutions (after the initial weeks). However, the number views are significantly lower.      

In the broader context, continuous assessment can be used to encourage engagement by students and 
subsequently student satisfaction and the quality of the student experience (Holmes, 2018). Arguably, 
continuous assessment may lead to a ‘study-to-the-test’ approach. In Ireland, students’ learning in the 
post-primary environment tends to be structured, leading to students struggling with the transition to 
becoming an independent learner at third level. Maths for Business is an entry-level module and the 

Figure 2: The number of pdf solution views for Maths for Business students by year and day. 
Duplicate views by a student on a specific day have been removed 
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continuous assessment within allows students to maintain some structure following the transition 
between education levels. Students’ end-of-semester evaluations show an appreciation for the weekly 
quizzes and the opportunity to have module marks prior to the final examination through low-stakes 
assessments. This approach may not be applicable for specialist or higher-level mathematics modules. 
Currently, there is debate surrounding whether recorded lectures or specialised videos have a negative 
effect on students’ learning when used as a replacement for the traditional lecture. In contrast to the 
current literature, we found no relationship between surface or deep learning approach and students’ 
choice of resource. More research is needed to identify any influencing factors, for example the nature 
of the video, in this relationship.   
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Research objective and questions. 
It is increasingly important for all students, regardless of educational level, to acquire mathematical 
skills for use in various contexts, especially in real-world situations. An education that fosters such 
skills is often referred to as mathematical literacy education, the aim of which often includes 
improving students’ attitudes toward mathematics and deepening their interest in the subject. This 
raises the question, “How can we assess the success of such courses?” Accordingly, this study focused 
on students’ text feedback, which is a rich resource that represents students’ learning and attitudes 
(cf. Di Martino and Zan, 2010), and examined whether students’ comments could be useful in 
assessing their mathematical literacy learning. With this aim, this study analyzed the students’ 
reflection comments collected during one semester. Our research questions are as follows: 

(RQ1)  What categories are identified in students’ reflection comments?  

(RQ2)  Do the students’ responses stem from their actual learning? Or do they instead stem from their 
prior learning in high school or even from their attitudes at the beginning of the course? 

Two analyses on students’ comments in mathematical literacy education. 
A qualitative and quantitative analysis was conducted on students’ comments collected during a 
mandatory one-semester mathematical literacy course for first-year students in social sciences and 
humanities majors. The course was designed as “learning mathematics through application,” but the 
lecturer emphasized the nature of mathematical knowledge in each lesson. Students’ reflections were 
collected over 14 weeks from an area reserved for comments on each lesson’s worksheet. There were 
68 first-year students in the class, and a total of 952 comments were collected. We distributed a 
questionnaire at the beginning of the course; before the students attended the class, we collected data 
on their courses in high school (science-oriented or humanities-oriented) as well as their attitude 
toward mathematics (good/bad at math, like/dislike math), using a five-point Likert scale.  

The first analysis focused on RQ1, and an open coding method was used to determine a set of 
categories in order to understand how students described their learning. In the analysis, students’ 
comments were segmented, and we assigned one code to each segment. The analysis was conducted 
with the help of the following three models: a three-dimensional model for attitudes toward 
mathematics by Di Martino and Zan (2010); the three phases of learning by Polya (1981, chapter 14); 
and the ICE model (Fostaty Young and Wilson, 2000), in which learning outcomes are distinguished 
in three levels. We found seven important categories that indicate learning progress or attitude 
improvement. We listed the categories with short explanations, and indicated the percentage of 
comments containing segments that were assigned with the codes: IA (expressing their Interest in 
Application, 17.1%), IM (expressing their Interest in Mathematics, 17.2%), MR (expressing their 
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Metacognitive Reflection, 7.9%), EL (expressing their Enjoyment of the Lesson, 7.9%), RQ (Raising 
Questions that extend their learning, 5.1%), MM (expressing their Motivation in using/learning Math, 
8.5%), and RA (expressing their Reduced Awareness of being bad at math, 2.4%). IM and RA were 
regarded as being related to “vision of mathematics” and “perceived competence” in the model of Di 
Martino and Zan, respectively. MR was regarded as being related to a phase of “verbalization and 
concept” in Polya’s model and to a level of “connection” in the ICE model.  

The second analysis focused on RQ2. Using statistical analysis, this study examined the codes IA, 
IM, and MR, and investigated whether the frequency of comments corresponding to each category 
per student depended on students’ courses in high school or on their attitude toward mathematics at 
the beginning of the course. For the second analysis, this study set the following groups based on the 
students’ answers for the aforementioned questionnaire: S+/S- (students who took science-
oriented/humanities-oriented courses in high school), G+/G- (students who are good/bad at math), 
and L+/L- (students who like/dislike mathematics). The numbers of students in each group were 24 
(S+), 43 (S-), 13 (G+), 38 (G-), 19 (L+), and 29 (L-). Next, the differences in the frequency of 
comments corresponding to each category per student between S+ and S-, between G+ and G-, and 
between L+ and L- were examined. A significant difference was found in the frequency of MR per 
student between L+ and L-. A Mann-Whitney test indicated that the frequency of comments 
containing descriptions corresponding to the rate of MR per student was greater for L- (Mdn=1) than 
for L+ (Mdn=0), U=371.5, p=0.032. No significant difference was found for other codes, and no 
significant difference was found between the differences in students’ courses in high school. 

Discussion. 
The first analysis showed that students’ comments collected from lessons in a mathematical literacy 
course contained multiple descriptions, including both their attitudinal change toward mathematics 
and their metacognitive reflections. An interesting result of the second analysis was that less-
motivated students showed better results in terms of metacognitive reflection. The second analysis 
also suggested that students’ comments that showed their interest in mathematics or their 
metacognitive reflection did not stem from their prior learning in high school or their attitude toward 
mathematics before attending the course. These results seem to indicate that students’ comments are 
potentially useful to assess their mathematical literacy learning. However, more research is needed. 
One of future tasks is to analyze the changes in students’ comments over time. 
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A praxeology comprises a type of task, a technique to accomplish it, a discourse (technology) 
explaining this technique and a theory supporting this discourse. We consider a situation where a 
praxeology was presented to students in a lecture, but they discovered an alternative one while 
working on a routine exercise. This exercise was then followed by a more challenging question 
related to immediate results obtained by the students. We analyzed this student experience in view of 
Chevallard’s six steps of constructing a praxeology. We suggest that observing students’ work on 
standard exercises may give some productive and innovative ideas for the design of tasks that help 
students deepen their understanding and encourage theoretical justifications of their solutions. We 
also comment about possible effects of the explicit requirement to search for the most efficient 
solution on the formation of praxeologies by students. 

Keywords: Praxis, logos, task design, osculating plane, parametric curve.  

Introduction  
It has been observed that the majority of university mathematics classes are given in the format of 
lecture and largely employ the pedagogy of “massive scaffolding and direct telling” (Sfard, 2014, p. 
202). This teaching approach has been criticized for its limited capacity to empower students in both 
critical reflection on given information and applying their knowledge in unfamiliar situations. In 
contrast, within the inquiry-based approach learners start with considering a problem, and then 
planning, developing and validating their own solutions (Polya, 1945). In this adidactic phase 
(Brousseau, 1997) learners construct their knowledge by working on a problem via thinking about it 
autonomously, studying related literature and talking to peers. In the didactic phase the teacher 
discusses the ideas produced by students, corrects them, validates and develops the subject further. 
However prolific it may sound, this approach is not fully applicable in teaching university 
mathematics due to the large amount of advanced material to be studied in a relatively short 
timeframe. Nevertheless, one can ask: to what extent is it possible to embed elements of inquiry in 
the lecture format courses? Where do we find questions that promote students’ “intellectual needs” 
(Harel, 2012) for critically processing the information given in the lecture? What principles should 
guide the design of educational tasks that help students to progress from the direct application of 
given methods to the analysis and justification of them (Gravesen, Grønbæk & Winsløw, 2017)? 

Perhaps the central requirement to these tasks is that they should help students to think about and 
reflect on their actions – what am I doing and why? – so that students can extract new knowledge 
directly from solving tasks. It is desirable that tasks have adidactic potential letting students to “find 
at least initial and partial answers” (Gravesen et al, 2017, p. 15). The same material can be taught 
with a different degree of initiative required from students. Typical examples illustrating general 
concepts and methods may be shown in class and then students can be assigned questions that are just 
a slight variation of already considered tasks. Such questions, known as exercises, contain little 
challenge but permit verifying students’ initial grasp of the material, as students basically mimic 
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instructor’s actions and adjust them according to his or her expectations. In contrast, problems require 
an adaptation or alternation of a given method or a combination of several previously discussed ideas 
and serve as a form of inquiry. A task that stimulates students to “construct new inferences between 
results or definitions, reformulate, generalize and instantiate them” is said to have a deepening 
potential (Gravesen et al, 2017, p. 13). Similarly, research potential of a task measures the possible 
degree of engagement with activities similar to ones of research mathematicians. However, even if a 
task is specifically designed, its potential may not be realized in a particular didactic situation. Thus, 
it is important to consider cases when students gain rich mathematical experience and to notice the 
circumstances that have a positive effect. This paper presents such a case confirming that even when 
a lecturer “tends to tell the learner what to do” and “rushes to present their own solutions” (Sfard, 
2014, p. 200) it is possible and desirable to delegate to students some work that aims at the 
development of theoretical knowledge “while working on her own in the quiet of her room” (Sfard, 
2014, p. 201). 

Theoretical framework and research question 
We work under the assumption that “mathematics is a human activity of study of types of problems” 
(Barbé, Bosch, Espinoza, & Gascon, 2005, p. 236) and mathematical learning (even in a lecture based 
course) results from solving educational tasks (e.g. problems). Each task is a system of “given-
required”, where “given” includes objects and relations between them, while “required” challenges 
the solver to derive new facts based on the “given” and their existing knowledge. A solution to a 
mathematical problem can be considered from two angles: “What is done?” and “Why does it work?”. 
In terms of the Anthropological Theory of Didactics (ADT) proposed by Chevallard (1999), the first 
question belongs to the domain of praxis, which includes techniques such as formulas, algorithms 
and methods, while the second - to the domain of logos, which provides corresponding theory, 
conditions of applicability, derivations and relations to general settings. The praxis consists of the 
types of tasks and corresponding techniques to solve them. The logos includes technology 
(explanations of the techniques, proofs of related theorems) and a broader theory within which the 
theorems are stated. Together praxis and logos components form a praxeology, described by 
Chevallard (2006, p. 23) as a “basic unit in which one can analyze human activity at large”. 
Praxeologies can occur at different levels of generality: punctual, local, regional or global. Punctual 
praxeologies address a unique type of task. Several punctual praxeologies can be integrated in 
different local mathematical organizations each of which provides a common technological discourse 
(e.g. algebraic). Local technologies can be further integrated into regional ones.  

In the teaching of primary and secondary mathematics there is a tendency to focus on the praxis 
component with very minimal exposition of the students to the related logos. Even at the university 
level, there exists an artificial division of courses into e.g. Calculus and Analysis, assuming 
significant dis-balance towards the praxis in the former and leaving the theory until the latter (see 
Kondratieva & Winsløw, 2018). The lack of an explanation of why and when a technique works (i.e. 
lack of technology) leads to incomplete praxeologies; this is a disservice to learners at all levels as it 
kills natural learners’ curiosity and reduces the flexibility of the technique. Even if technology is 
given by the teacher it may not necessarily lead to formation of a praxeology by students – to the 
practice when the use of a technique is informed by related technology. In this paper we look at a 
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case when students were engaged in the formation of a praxeology; the research question being: what 
are the instructional conditions making this possible at the undergraduate university level? 

Our discussion will refer to the following six moments of creating a praxeology (Chevallard, 1999).  

1) The moment of first encounter of a certain type of problem related to a praxeology; 
2) The exploratory moment of finding and elaborating techniques suitable for the problem; 
3) The technical moment of using and improving the technique; 
4) The technological-theoretical moment in which alternative techniques are assessed; 
5) The institutionalization moment, when one is aiming to identify the elaborated praxeology; 
6) The evaluation moment, when one examines the value of the constructed praxeology. 

Here the adidactic situation leads students to propose some techniques that need to be assessed and 
theorized. Students react on the situation in accordance with an existing didactic contract (Brousseau, 
1997), that is, a set of responsibilities, rules and norms of schooling behavior. In our instructional 
setting we encountered a slightly modified sequence of events presented below.  

Instructional settings and observations 
This section describes several episodes that occurred in a vector calculus course taught by the author 
of this paper in the Spring 2018 term at Memorial University (MUN) in Canada. The episodes had 
been selected in order to present the story of success. They describe a didactic contract, an error and 
its correction, made by students, leading to formation of a new praxeology.  

The settings 

The vector calculus course is the last course in the sequence of calculus courses offered by the 
department of Mathematics and Statistics at MUN. One-hour lectures are given three times a week 
for a twelve-week period (with regular homework assignments and a midterm exam) followed by a 
3-hour written final exam. The course discusses such topics as parametric curves and surfaces, 
multiple integrals, Green’s, Stokes’ and the Divergence theorems with some motivations from 
physics. The course is usually taken by students majoring in either mathematics, physics, computer 
science or engineering. Similarly to preceding calculus courses it focuses mostly on computational 
techniques and obtaining numerical answers. Some sketches of proofs are discussed in lectures but 
they are not tested in exams. While the syllabus of the course is prescribed, the instructor has some 
freedom in composing questions for assignments and tests. In the considered case the homework 
assignments were marked by the instructor and consisted of the following types of questions: (1) short 
summary describing definitions, formulas, and conditions of their applicability as discussed in 
lectures; (2) exercises in direct application of formulas listed in (1); (3) problems that require minor 
alternations of formulas listed in (1); (4) bonus problems that may require additional reading and 
creative thought. Note that questions of types (1) and (4) were not typical in students’ previous 
experience. Twenty students completed the course in Spring 2018.  

The observations and interventions 

Episode 1: Efficiency of solutions as a part of didactic contract. This observation took place in the 
very beginning of the course. The students just learned how to find the curve length given a parametric 
description of a curve 𝒓𝒓(𝑡𝑡) = ��𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)�, 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏]�. Using the integration formula 
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∫ �(𝑥𝑥′)2 + (𝑦𝑦′)2 + (𝑧𝑧′)2𝑏𝑏
𝑎𝑎 𝑑𝑑𝑡𝑡 they were able to find the length of some exotic curves such as a part 

of a helix. However the assignment also included examples of parts of a straight line and a circle. 
Many students still used the general method to find the length of these curves even when they had 
recognized them correctly. It was then pointed out to students that they should aim at the most 
efficient way of finding their answers or at least mention that their calculations were consistent with 
the obvious answer. For example, the length of a straight line 𝑟𝑟(𝑡𝑡) = {(𝑐𝑐𝑐𝑐𝑐𝑐(2𝑡𝑡), 2,1), 𝑡𝑡 ∈ [0, 𝜋𝜋

2
 ]} 

connecting points (-1,2,1) and (1,2,1) (Figure 1, left) is obviously 2, which makes the calculation in 
(Figure 1, right) unnecessary. Similar situations appeared in other assignments. Some hints referred 
to efficiency in numerical calculations, such as  

      
Figure 1: Student’s work on curve 𝒓𝒓(𝒕𝒕) = {(𝒄𝒄𝒄𝒄𝒄𝒄(𝟐𝟐𝒕𝒕),𝟐𝟐,𝟏𝟏), 𝒕𝒕 ∈ [𝟎𝟎, 𝝅𝝅

𝟐𝟐
 ]}. Description and length  

a suggestion to use the property �(𝑘𝑘𝑎𝑎)2 + (𝑘𝑘𝑏𝑏)2 = 𝑘𝑘√𝑎𝑎2 + 𝑏𝑏2 (𝑘𝑘 ≥ 0), or warned that the 
simplification √𝐴𝐴 + 𝐵𝐵 = √𝐴𝐴 + √𝐵𝐵 is not valid unless AB=0. All in all, such systematic instructional 
feedback shaped the didactic contract for this group of students. 

Episode 2: Accidental efficiency. Another assignment included a problem of finding an osculating 
plane for the curve 𝒓𝒓(𝑡𝑡) = (cos 𝑡𝑡, sin 𝑡𝑡, cos 𝑡𝑡) at 𝑡𝑡 = 𝜋𝜋/2. The instructor explained a method, which 
consisted of the following steps: 

1. Find the unit tangent vector 𝑇𝑇 = 𝑟𝑟′

�|𝑟𝑟′|�
 to the curve at a given point. 

2. Find the unit normal vector 𝑁𝑁 = 𝑇𝑇′

�|𝑇𝑇′|�
 to the curve at a given point. 

3. Find the unit binormal vector 𝐵𝐵 = 𝑇𝑇 × 𝑁𝑁 to the curve at a given point. 
4. An osculating plane by definition includes vectors T and N and therefore is orthogonal to 

vector B. Thus the equation of the plane is 𝐵𝐵 ∙ (𝑟𝑟 − 𝑟𝑟0) = 0, where 𝑟𝑟 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 𝑟𝑟0 is the 
point on the curve where the plane is required.  

An example considered in class in order to illustrate this method was helix of radius 𝛼𝛼: 𝑟𝑟(𝑡𝑡) =
(𝛼𝛼 cos 𝑡𝑡,𝛼𝛼 sin 𝑡𝑡, 𝑡𝑡). Note that in this case 𝑟𝑟′(𝑡𝑡) = (−𝛼𝛼 sin 𝑡𝑡,𝛼𝛼 cos 𝑡𝑡, 1) and so �|𝑟𝑟′|� = √1 + 𝛼𝛼2 is t-

independent. Consequently, the normal unit vector 𝑁𝑁 = 𝑟𝑟′′

�|𝑟𝑟′′|�
. However, if �|𝑟𝑟′|� is a function of t, this 

must be taken into consideration when calculating N. When working on the assignment described 
above, some students ignored this circumstance and used the formula 𝑟𝑟′′

�|𝑟𝑟′′|�
 for N in step 2. 

Thematic Working Group 14

Proceedings of CERME11 2547



 

 

Nevertheless, they still got a correct answer for the proposed problem, the plane 𝑧𝑧 = 𝑥𝑥. The mistake 
was pointed out by the instructor during a lecture, but the fact of accidental efficiency was surprising 
for students and caught their attention leading to an in-class discussion. Their first thought was that 
maybe the value of the parameter 𝑡𝑡 = 𝜋𝜋/2 was special, but the “wrong method” still gave a correct 
equation of the osculating plane for 𝑡𝑡 = 𝜋𝜋/4 and some other variations they tried. So, a bonus problem 
naturally emerged: to explain why and when the “wrong method” works.  

Episode 3: A praxeology given in the lecture. The method of finding the osculating plane was not 
completely unexplained in the lecture. Prior to Episode 2 the students were presented with the 
statement that if a vector-function 𝑓𝑓(𝑡𝑡) has a t-independent norm ||𝑓𝑓|| ≡ �𝑓𝑓 ∙ 𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 then the 
vector function 𝑓𝑓′(𝑡𝑡) is orthogonal to 𝑓𝑓(𝑡𝑡) for every t. Indeed, if we differentiate both sides of the 
equation 𝑓𝑓 ∙ 𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 we obtain 𝑓𝑓′ ∙ 𝑓𝑓 = 0. Now, the unit tangent vector has norm ||𝑇𝑇|| = 1, 
therefore 𝑇𝑇′(𝑡𝑡) is orthogonal to 𝑇𝑇(𝑡𝑡) by the above statement. After normalization it gives the unit 
normal vector 𝑁𝑁(𝑡𝑡). The cross product of two unit vectors gives a unit vector orthogonal to both 
initial vectors. This way the binormal unit vector 𝐵𝐵(𝑡𝑡) is obtained. These explanations presented a 
technology related to the praxis of finding an osculating plane. However, as it could be inferred from 
the error made by the students who were somehow misled by the example of helix in Episode 2, this 
praxeology, given by the instructor, remained external to them and the application of the method was 
not guided by the related theory. This revelation prompted the instructor to encourage students to 
develop their own explanations of the method that they had accidently discovered.  

Episode 4: Towards a new praxeology construction by students. Proving was not a well developed 
skill for many students, so their initial attempts naturally were flawed. We will follow the progress 
of a student called Sam (a pseudonym). Firstly, Sam arrived at the correct statement, but it was not 
very useful in the situation he needed: if 𝑟𝑟′(𝑡𝑡) ⊥ 𝑟𝑟′′(𝑡𝑡) for 𝑡𝑡 ∈ [𝑎𝑎, 𝑏𝑏] then 𝑁𝑁 = 𝑟𝑟′′

�|𝑟𝑟′′|�
. Indeed, the 

conclusion was desirable but the condition was not met in the problem they had. After some time 
Sam managed to prove algebraically that if 𝑟𝑟′(𝑡𝑡0) ⊥ 𝑟𝑟′′(𝑡𝑡0) then 𝑁𝑁(𝑡𝑡0) = 𝑟𝑟′′

�|𝑟𝑟′′|�
 (Figure 2, left). When 

this result was shared with others in class, it was noted by students that the statement is obvious from 
the geometrical point of view: if both vectors 𝑁𝑁 and 𝑟𝑟′′ are orthogonal to 𝑟𝑟′, they must be proportional. 
In this way the case 𝑡𝑡 = 𝜋𝜋/2 was successfully explained. However, it was still unclear why the 
“wrong method” gave the correct equations of the osculating plane even in the case when 𝑁𝑁 was not 
proportional to 𝑟𝑟′′ (see e.g. calculations for case 𝑡𝑡 = 𝜋𝜋/4 in Figure 2, right). 

  
 Figure 2: Student’s work on a proof for the alternative technique: cases 𝒕𝒕 = 𝝅𝝅

𝟐𝟐
 (left) and 𝒕𝒕 = 𝝅𝝅

𝟒𝟒
 (right) 
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Episode 5: The new method explained. After looking at several examples that produced a correct 
osculating plane by the “wrong method”, Sam started to realize that he should not try to prove that 𝑁𝑁 
is proportional to 𝑟𝑟′′ (which in general is not so) but instead he should try to prove that the span on 
vectors 𝑟𝑟′ and 𝑟𝑟′′ forms exactly the same plane that the span of vectors 𝑇𝑇 and 𝑁𝑁 does. This shift of 
attention made Sam perceive a new property, which according to Mason (2008, p. 38) is feasible 
“when you are aware of a possible relationship and you are looking for elements to fit in”. Once he 
knew what he was looking for, a simple line sufficed: since 𝑟𝑟′ = �|𝑟𝑟′|�𝑇𝑇, by differentiation we obtain 
𝑟𝑟′′ = 𝑣𝑣′𝑇𝑇 + 𝑣𝑣𝑇𝑇′, where 𝑣𝑣 = �|𝑟𝑟′|� and 𝑣𝑣′ are scalars. Thus, vector 𝑟𝑟′′ is a linear combination of vectors 
𝑇𝑇 and 𝑇𝑇′, or equivalently of vectors 𝑇𝑇 and 𝑁𝑁. Therefore, whenever 𝑣𝑣 ≠ 0, vectors 𝑟𝑟′ and 𝑟𝑟′′ can be 
used for finding the osculating plane initially defined by vectors 𝑇𝑇 and 𝑁𝑁.  

Concluding discussion 
In this paper we explored the possibility of imbedding an inquiry task, allowing students to construct 
technique-technological links and eventually to develop praxeologies by themselves, within a praxis-
dominated lecture-based calculus course. Here we refer to the six moments of constructing a 
praxeology (listed in the Theoretical Framework section) in order to comment on two conditions that 
in our view had a positive effect on the successful outcome reported in Episode 5.  

The first condition is the systematic attention paid by the instructor to the issue of the efficiency of 
students’ work. This requirement for a solution of a problem is entwined with the inquiry-based 
methodology. In a situation when more than one approach is applicable to a problem in hand, one 
would naturally ask for the simplest answer, which is based on the insight about the nature of the 
situation and avoids unnecessary lengthy calculations. Indeed, “as mathematical thinking develops, 
it should become not only more powerful, but more simple” (Tall, 2013, p. 19) because “not only 
mathematics, but science as a whole progresses only if we understand things … and explain [ideas] 
in simple terms” (interview with Sir M. Atiyah, as quoted in Tall, 2013). Episode 1 confirmed the 
observation that students in North America spend little time on planning their solution and jump into 
calculations right away (Schoenfeld, 1985). While the cognitive mechanisms for finding simple 
solutions in general are not clearly understood (see discussion in Koichu, 2010), it is important to 
establish the work habit of looking for legitimate simplifications whenever possible. Viewed as a part 
of didactic contract, the higher efficiency of the alternative method of finding the osculating plane 
prompted the students to keep trying to justify it. This efficiency gave the value to the praxeology 
being constructed (moment 6: evaluation). 

The second condition is the fact that an additional new task emerged from the instructor’s feedback 
on a mistake made by students while solving an exercise. Let us look at it a bit closer. The initial task 
in Episode 2 was to find an osculating plane for a curve at a point, which was defined in terms of the 
unit tangent and normal vectors -- the objects that were introduced to the students at the same time as 
was the osculating plane. The definitions prescribed the way of constructing all listed above objects. 
Thus, in the scenario of Episode 2 the first two moments (first encounter, exploration) were missing 
as such, and in this sense the task was an exercise in which a given technique was supposed to be 
used (a modified moment 3). On the other hand, the curve was chosen in such a way that it allowed 
a more intuitive approach in line with examples discussed in Episode 1. A “simple”, intuitive solution 
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was to notice that the curve belonged to the intersection of the cylinder 𝑥𝑥2 + 𝑦𝑦2 = 1 and the plane 
𝑧𝑧 = 𝑥𝑥. Therefore the entire curve lied in the plane 𝑧𝑧 = 𝑥𝑥, which thus was the osculating plane for any 
value of the parameter t. Finding this solution relied on explorations and noticing specific relations 
between components of the vector-function 𝑟𝑟(𝑡𝑡) describing the curve. Indeed, several students had 
commented on this but only after they found the answer by a different method. Erroneously, they 
altered the method given to them attempting to (illegitimately) reduce the amount of calculations. 
The fact that the altered method provided an answer consistent with the “simple” intuitive approach 
led to a new task: to explain why it happened. It was the instructor’s role to formulate this task, but 
because the method appeared from the students’ own omission they claimed ownership of this task. 
Here the adidactic phase occurred later in the process and the development of praxeology by students 
basically started from moment 4, that is, from the assessment of the alternative technique. The 
successful outcome in Episode 5 was warranted by students’ reflection on the ideas related to the 
original praxeology with technology presented by the instructor in Episode 3, and modifying them 
accordingly. The institutionalization moment (5) was completed after Episode 5, when related 
physical motivation was also discussed in the lecture. Indeed, the observation that played the key role 
in the justification of the alternative method could be interpreted as follows: no matter how the object 
moves through the space the acceleration vector 𝑎𝑎 = 𝑟𝑟′′ always belongs to the osculating plane: 𝑎𝑎 =
𝑣𝑣′𝑇𝑇 + 𝜅𝜅𝑣𝑣2𝑁𝑁, where 𝜅𝜅 = ||𝑇𝑇′||/𝑣𝑣 is the curvature of the trajectory and 𝑣𝑣 = ||𝑟𝑟′|| is the speed of 
motion. Vector 𝑇𝑇 gives the direction of the motion and vector 𝑁𝑁 points in the direction the object is 
turning. So 𝑇𝑇 and 𝑁𝑁 describe the (osculating) plane to which the trajectory of motion locally belongs. 
The expressions for the tangential and normal components of the acceleration vector make sense if 
we think of a passenger in a car making a turn (Stewart, 2003, p. 875). 

Note that the praxeology developed by students in Episodes 2, 4 and 5 is punctual as it addresses just 
one particular problem of constructing an osculating plane. It is a refinement of the initial praxeology 
given in Episodes 2 and 3, and we conjecture that due to students’ involvement in its justification it 
will be more readily integrated in the future in local and regional types.  

In sum, our case involved a routine exercise and a lot of “direct telling” as in a typical calculus course. 
This setup presumes that the two steps (first encounter, exploration) in the construction of a 
praxeology could be missing. Instead, through working on exercises using given information and 
techniques, the groundwork for developing alternative techniques and raising new questions is 
established. This situation gives us a clue about possible sources of questions that appeal to students 
and are perceived as important or meaningful, questions that help them to critically process given 
information and eventually develop praxeologies. We conclude that innovative ideas for task design 
can come from observing and analyzing students’ mistaken work with practice exercises. Sometimes 
the instructor can predict or even provoke those mistakes. Reshaping standard exercises so that they 
have multiple ways to solve them, like in our case above, may enrich the possibilities for the tasks 
that follow. If these tasks “aim directly to develop and refine knowledge in progress” (Gravesen et 
al., 2017, p. 28), or explain certain puzzling phenomena, they will have the deepening potential and 
perhaps the research potential, helping students to work with new material in a meaningful way and 
gain richer experience of mathematical work. Because of their origin such tasks (compare to a priori 
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designed ones) may have a stronger and more personalized effect on learners when used in a didactic 
setting.  
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What can be ‘annoying’ about mathematical conventions?  
Analysing post-exchanges of mathematically competent discursants 
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The study reported in this paper is concerned with mathematical conventions, a discussion on which 
unfolded among mathematically competent discursants. The data came from a rich online thread, 
where practicing mathematicians, mathematics lecturers, graduate students and undergraduates at 
advanced stages of their studies were asked to share mathematical conventions “that are annoying, 
those that nobody likes but it’s too late to cancel”. Grounded in the commognitive framework, the 
study aims to delineate some rules that this discussion abided. Two discursive rules are presented 
herein: one rule calls for the use of the same symbols in different discourse communities to denote 
the same objects. The second rule appeals to a goodness-of-fit between mathematical objects and 
their conventional symbols. Some affordances that a discussion on conventions can bring to 
educational research and teaching practice are sketched. 

Keywords: Conventions, commognition, mathematicians, mathematical symbols, online forums. 

Introduction and background 
Accepting established mathematical conventions – for instance, definitions of concepts, their names 
and symbols – is necessary for participating in a literate mathematical discourse (cf. Hewitt, 1999). 
However, research offers colorful instances of students and teachers grappling with some broadly 
accepted conventions. For example, in Kontorovich and Zazkis (2017), we asked pre-service teachers 
to propose arguments for denoting reciprocals and inverse functions with the same superscript ‘-1’. 
One of the teachers rejected the possibility that the two may have something in common beyond the 
symbol. After a comprehensive classroom discussion that revolved around the notion of closure under 
operation, the teacher amended his position and started using the terms “multiplicative inverse” and 
“inverse function”. Yet, he still refused to use “inverses” for referring to reciprocals and inverse 
functions together. The rest of the class, myself included, remained rather defeatist about the abstract 
algebra argument being not convincing enough for the teacher. These communicational clashes 
resonate with Sfard’s (2008) definition of a discourse as a type of communication “that draw[s] some 
individuals together while excluding some others” (p. 91); in the described episode, this feature could 
be ascribed to a discourse on mathematical conventions (DoMC).  

At least two features distinguish DoMC from its mathematical congeners. First, it is substantially less 
deductive. While sequences of apodictic moves lead from a problem to a solution or from a theorem 
to a proof, the above episode illustrates that it might be difficult to justify a convention to a critical 
interlocutor (cf. Hewitt, 1999). Thus, familiar ways of mathematical communication might turn to be 
not transferable to DoMC. Second, DoMC mostly occurs among professional mathematicians (e.g., 
Kontorovich, 2016a; Knuth, 1992) and, in my experience, it rarely unfolds in regular mathematics 
lessons at school and university. Furthermore, a handful of studies show that teachers might 
intentionally avoid engaging in such a discourse with their students. Fukawa-Connelly (2015) reports 
on a lecturer in abstract algebra who wanted his students to engage in inquiry-based learning. He was 
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more successful, however, in delegating the responsibility for proving to the students – i.e. making 
conventional moves, rather than for developing definitions – i.e. introducing conventions. In 
Kontorovich (2016b), I show how thoroughly three mathematicians promoted particular conventions 
in their teaching, while being fully aware that they contradict the conventions promoted by their 
colleagues. Thus, little seems to be known about discursive practices that can be considered as 
characteristic of DoMC.  

The study at hand is interested in drawing attention of the mathematics education community to 
DoMC as it unfolds in mathematics classrooms and professional mathematics communities. Research 
has repeatedly shown that a disciplinary inquiry into experts’ thinking and doing can benefit the 
mathematics education community practically and theoretically (e.g., Poincaré, 1909/1952). This 
gives reason to believe that exploring the participation of mathematically competent discursants in 
DoMC might be insightful as well. 

Theoretical framework 
This study is grounded in the commognitive framework (Sfard, 2008), whose usage in mathematics 
education in general and in university mathematics education in particular has been on the rise (e.g., 
Nardi, Ryve, Stadler & Viirman, 2014). Commognition posits that mathematical discourses are 
distinguishable through characteristic words (e.g., “reciprocal”, “inverse function”) and their use; 
visual mediators (e.g., the superscript ‘-1’ symbol) and their use; generally endorsed narratives (e.g., 
conventions); and routines, which are repetitive sets of metadiscursive rules (or metarules) that attest 
to actions and re-actions of the discursants. Object-level rules, in turn, “are narratives about 
regularities in the behavior of [usually mathematical] objects of the discourse” (Sfard, 2008, p. 201).  

Sfard (2008) posits that “object-level rules of mathematics, […] once formulated, remain more or less 
immutable” (p. 202), which might explain her main interest in discursant-centered metarules. The 
discourse of interest in this study revolves around mathematical conventions, a discourse the rules of 
which are said to be less known. Accordingly, the aim of this study is to discern some object-level 
rules that emerge from participation of mathematically competent discursants in DoMC. 

The notion of object has an operational definition within the commognitive framework. Sfard (2008) 
argues that when communicating, we operate with perceptually accessible signifiers (e.g., words, 
symbols) that are realized into other signifiers. For instance, “inverse” can be realized into “∎−1”, 
which can be realized even further forming a realization tree. In this way, “[t]he discursive object 
signified by S in a given discourse on S is the realization tree of S within this discourse” (ibid, p. 166). 
This definition turns discursive objects into personalized and contextualized structures. However, our 
occasional success in coming up with mathematical narratives that are endorsed by our interlocutors 
show that there is room for expanding the notion beyond a particular person. In this study, some 
mathematical objects are ascribed to discourse communities in the sense that their object-
names/symbols and corresponding realizations and narratives are shared by people who are 
recognized as community experts in mathematics. 
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Method 
This is exploratory research, the data for which comes from an online mathematical forum hosted on 
a popular social network. The forum communication occurs in Hebrew and it is far from sporadic. 
The forum has a clearly stated scope and descriptions of topics that are welcome for discussion. These 
include challenging theorems and problems in post-graduate mathematics, historical developments, 
and career paths in the discipline. Consequently, the forum brings together practicing mathematicians, 
university lecturers, graduate students, and undergraduates at the final stages of their studies. The 
forum activity is overviewed by a group of moderators who make sure that the posts are within the 
forum’s scope. Posting in the forum requires registration, and the posts appear next to full and real 
names of their creators. This rather rigid frame of communication allows arguing that the forum 
discursants are committed to the ideas that they share in the forum at least to some degree. 

As part of regular forum activity, one of the forum participants (FPs) raised the question, “Which 
conventions do you know in mathematics that are annoying, those that nobody likes but it’s too late 
to cancel?” While this forum participant (FP1) did not elaborate any further on the meaning of the 
word ‘annoying’, the responses of FPs allowed to operationalize it as a tension between one’s 
reconciliation with a particular mathematical convention and their awareness to its normative status 
in a broader mathematics community. The request for ‘annoying’ conventions was especially 
fortunate for this study, as it served as a methodological tool for illuminating discursive rules through 
breaching them (see Herbst & Chazan, 2011 for the use of breaching experiments in mathematics 
education).  

FP1’s call grew into a rich thread where 36 FPs enthusiastically engaged in a discussion on 
conventions and generated 132 telling posts. The thread constituted the data corpus for this study1. 
The sought discursive rules were inductively developed through an iterative analytical procedure 
(Glaser & Strauss, 1967). At the first stage, the posts were divided into mathematical conventions 
around which they revolved. Then, the conventions were grouped according to their similarities in 
the ‘annoyance’ that they raised for FPs. This categorization identified a potentially confusing use of 
words and symbols, which instigated me to engage reflexively with the commognitive framework in 
a search for the underlying tenets that these situations violated. This step yielded initial rules that 
were reapplied to the whole data corpus aiming to check whether the commognitive logic concurs 
with FPs’ posts. Such systematic alternations between the framework and data resulted in four rules; 
two of them, the ones that accounted for the majority of discussed conventions, are presented next. 

Two discursive rules that ‘annoying’ conventions violate 
“Same object-symbol – same object” rule 

To illustrate the first rule, let us consider Figure 1 for two narratives that FPs posted at FP1’s request. 
Both narratives are concerned with conventional signifiers that feature in discourses that differ in 
their use of words and symbols, which results in conflicting narratives. In the first narrative, the ‘⊂’-

                                                 
1The study abided the recommendations of the University of Auckland Human Participants Ethics Committee for research 
with data collected from the public sphere.  
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symbol characteristic to set theory is used for signifying subsets by some and proper subsets by others. 
Figure 2 illustrates the second narrative with excerpts from popular textbooks that reflect discourses 
on vector decomposition in physics and mathematics. The same symbols ϕ and θ are used in both 
discourses, but their realizations are inverted: in the physics textbooks, we can see that ϕ signifies the 
angle on the xy-plane and θ denotes the angle with z-axis; in the mathematics textbooks, ϕ signifies 
the angle with z-axis and θ is used for the angle on the xy-plane. 

 
Figure 1: Example of the violation of the rule “same object-word/symbol – same object” 

The presented narratives exemplify a wider set of conventions that FPs shared, all violating the rule 
stating that in different communities of discourse, the same object-symbol should stand for the same 
discursive object. To put it more precisely (and more mathematically), I suggest determining the 
sameness of discursive objects S1 and S2 through an existence of a relation preserving one-to-one 
mapping between the realization trees of S1 and S2. The presented examples illustrate that the mapping 
might require conversion of signifiers, which is what Sfard (2008) coins as discursive attuning – 
interlocutors reaching a consensus around their usage of particular words and symbols. Indeed, 
physicists and mathematicians do not disagree on how to decompose a vector, they disagree on how 
these components should be labeled. 

  
Felder and Felder (2016, p. 232) 

Mathematical methods in engineering and physics 
Larson and Edwards (2010, p. 825) 

Multivariable calculus 

Figure 2: Incommensurable approaches to spherical coordinates in physics and mathematics textbooks 

In turn, the sameness of object-symbols goes beyond their written and pronounced identity as it 
pertains to whether the signifiers are perceived as the same by the interlocutors. For instance, one FP 
shared that when studying probability and statistics, he often confused between visually similar 
symbols ‘χ’, ‘X’ and ‘x’, which led to multiple misunderstandings. When the difference between the 
symbols was clarified, many misunderstandings faded because the narratives that conflicted when 
assigned to the same object were distributed between different ones. 
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“The goodness-of-fit” rule 

The second discursive rule is concerned with a goodness-of-fit between mathematical objects and 
their symbols. In statistics, a goodness-of-fit is used for capturing the quality of a match between the 
factual data and the one that was predicted with some quantitative model. I discern a reflection of this 
idea among FPs, who were ‘annoyed’ when some key properties of a mathematical object were 
misrepresented in its conventional symbol. Figure 3 illustrates this rule violation with ‘|’ – a 
conventional symbol of divisibility. 

 
Figure 3: Example of violation of the goodness-of-fit rule 

In the presented exchange, the discursive object of divisibility is separated from its conventional 
symbol ‘|’ and the attention is drawn to the mismatch between the two. In [1], FP26 addressed the 
mismatch in terms of symmetry: a visual symmetry that the symbol has and a symmetrical relation 
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that divisibility does not satisfy. In [7], FP10 focused on the inconsistency of equivalent realizations 
“m is divisible by n”, “m/n=integer” and “n|m”: while in the two former realizations m appears to the 
left of n, the order is inversed in the third realization. The participants of the exchange seem to endorse 
the badness of the symbol’s fit since the exchange quickly refocuses on possible alternatives. 

Figure 3 demonstrates two criteria of the goodness-of-fit that FPs recurrently praised in their 
narratives. The first criterion pertains to visual similarities between symbols of related objects. 
Indeed, FP14’s ‘//’-symbol in [11] is closely linked to ‘/’ – a conventional symbol of division. The 
second criterion suggests that the symbol should be accepted in some literate mathematics 
community, which can be shown through references (see [3] and [6]). More often than not, a 
promotion of unfamiliar symbols was criticized (see [8-9] as an example). Figure 3 also illustrates 
that it is not always easy to satisfy both criteria with the same symbol.    

Discussion 
This study has been concerned with DoMC and the rules that this discourse abides. While the 
mathematics community tends to be explicit about object-level rules of discourses on well-defined 
mathematical objects (e.g., numbers, functions, triangles), this is not the case of DoMC. 
Metaphorically speaking, this discourse mostly unfolds in “corporate mathematical kitchens”, whose 
doors are firmly closed for outsiders. An online space though seems like a spectacular arena for 
observing how DoMC can unfold almost in the real-time (Kontorovich, 2016a). This being said, it 
seems worthwhile to highlight that the scarcity of our research knowledge on mathematicians’ 
communication about conventions should not tempt us to generalize discursive patterns emerging 
from a particular subcommunity to the mathematics community as a whole.  

Two discursive rules were reported in this paper: same object-symbol – same object and goodness-
of-fit between objects and their symbols. The first rule, stating that the same objects should be denoted 
with the same object-symbol in different discourse communities bears resemblance to the renowned 
intuitive rule “same A – same B” (e.g., Tirosh & Stavy, 1999). With “same A – same B”, Tirosh and 
Stavy refer to a reasoning principle, according to which the sameness in one property of two objects 
is often conceived as sufficient for deriving their sameness in another property. The FPs of this study 
would probably classify the resemblance between the discursive and intuitive rules as ‘annoying’ 
because the overlap of the italicized terms conceals the incommensurability of their epistemological 
origins. Building on the work of Fischbein and Piaget, Tirosh and Stavy concentrate on perceptual 
objects (e.g., geometrical figures) and their properties (e.g., length, perimeter). The study at hand, 
however, leveraged commognition for indicating regularities between discursive objects and their 
leading signifiers (i.e. names and symbols). Therefore, it would be more accurate to acknowledge that 
the intuitive and discursive rules agree on the “transition of sameness”, when the cognitive and 
commognitive foundations offer substantially different answers to “sameness of what?” and 
“transition to where?” Another similarity between the two rules is in the ways they are enacted. 
Tirsosh and Stavy (1999) refer to their rule as “intuitive” since it is accepted as true without a need 
for any further justification. In a similar manner, the FPs of this study neither offered nor sought 
explanations for the nature of the ‘annoyance’ that they or their peers experienced when the 
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corresponding discursive rule was violated. This might suggest that the emotional disturbance was 
self-evident in these cases. 

The goodness-of-fit rule emerged from the exchanges where FPs discussed how some key realizations 
of mathematical objects are poorly reflected in their symbols and what alternatives may ensure a 
better fit. Commognitively speaking, such a discussion requires a separation between a ‘root’ – 
conventional object-word or symbol – and the rest of the realization tree. This discursive move cannot 
be taken for granted. Sfard (2008) associates one’s understanding of a mathematical object with a 
particular form of talk, where mathematical intangibles are discussed in a manner that is similar to 
the physical congeners. Such a talk could not be possible without tightened connections between a 
leading signifier and the rest of the realization tree. In this way, the study shows that some 
mathematically competent discursants are capable of separating and contrasting between the two for 
judging the quality of the fit. Further research may explore the relations between this capability and 
one’s proficiency in a mathematical discourse.         

Teaching-oriented remarks 
The interest in conventions that was identified in this study among mathematically competent 
discursants, begs us to consider the affordances that DoMC could offer to the educational research 
and the teaching practice. Three affordances are sketched next.  

First, this study shows that mathematically competent discursants can be ‘annoyed’ with conventions 
featuring in a variety of mathematical areas. The nature of some of their ‘annoyances’ is not very 
different from the one identified in Kontorovich and Zazkis (2017) with pre-service teachers and 
some other studies with school and university students. This rare similarity between substantially 
different cohorts allows me to propose that the endorsement of some conventions requires exceptional 
discursive leaps. In other words, newcomers’ struggles with conventions might be interpreted in some 
cases as an expert-like sensitivity to a radical discursive change rather than a knowledge deficiency 
or a result of infelicitous teaching. 

Second, all discursants in this study lamented over conventions that are often positioned as “well-
established” and advocated for their less-celebrated alternatives (e.g., ‘|’ as a symbol of divisibility). 
In an educational context, this result delineates a barely explored teaching practice of choosing 
conventions for architecting classroom discourses (Kontorovich, 2016b). This conceptual delineation 
invites research on whether teachers are aware of the status of conventions in mathematics, how they 
choose between mathematically incommensurable alternatives, and how these choices impact 
discourses that students develop. I hope that the rules identified in this study will instigate teachers 
to make more informed and thought-through choices. Indeed, if mathematically competent 
discursants complain about same signifiers standing for different objects and the badness of symbols’ 
fit, then it seems reasonable to predict that students might struggle with such conventions as well. 

Lastly, the discursants in this study transitioned between objects that are characteristic of different 
mathematical areas; they referred to definitions, symbols, and theorems; and they reasoned and 
communicated with each other. These desirable practices raise the question of whether students 
should also be given a space to actively participate in DoMC. The debate on this issue is ongoing (see 
Hewitt, 1999 and Kontorovich & Zazkis, 2017 for opposite views). I believe that opening this space 
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for students will also open a research space for articulating and challenging conventions that we, 
mathematics educators, hold about teaching and learning. 
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The study of teachers’ beliefs has a rich tradition (Calderhead, 1996), and several key categories of 
beliefs have been identified: teachers’ beliefs about mathematics and the learning and teaching thereof 
(Ernest, 1989). Although the study of beliefs has largely focused on K–12 teachers, researchers have 
sought to extend this work to instructors of collegiate mathematics (e.g., Speer, 2008). Our study adds 
to this body of literature by focusing on a particular subset of college mathematics instructors, namely 
those who have been recognized with teaching awards. Although we do not equate winning a teaching 
award with teaching excellence, we note that recognized instructors are nominated by fellow 
colleagues and/or students, have had cause to reflect on their own teaching, and by winning the award 
have had their teaching explicitly commended by their department and college. Such an award adds 
weight to their voices in matters of teaching and makes them teaching role models. Thus, we seek to 
explore recognized instructors’ beliefs about mathematics and the learning and teaching thereof.  

Below, we present our study’s preliminary findings from a series of interviews we conducted with 
recognized college mathematics instructors. We align with Ernest’s (1989) conceptualization of 
beliefs and mirror his focus on beliefs about mathematics and the teaching and learning thereof. 
Furthermore, we espouse Speer’s (2005) view that researchers attribute beliefs to participants and 
concur that interviews alone do not do justice to our participants’ beliefs. Thus, we see our interviews 
as forming the first step of a larger study including detailed classroom observations. 

Method 
At a large US institution, six mathematics instructors who had won at least one teaching award each 
were randomly chosen—from the set of thirteen mathematicians who had won a teaching award 
within the last five years—and individually interviewed for around one hour using a semi–structured 
interview protocol. Two of the participants were non-PhD mathematicians, the other four held PhDs 
in mathematics. One of the non-PhD mathematicians was male (Aleph), the other female (Beth), 
whereas the four PhD mathematicians were all male (Gimel, Dalet, Waw, and Zayn).  

All interviews were transcribed and coded with the help of MAXQDA, a qualitative data analysis 
software. A coding scheme was iteratively developed by the two authors with four top-level domains 
(Learning, Teaching, Mathematics, Miscellaneous) and several subcodes allowing for more nuanced 
coding. Separately from this coding scheme, declarative statements were highlighted.   

Results 
Thus far, we have identified three interesting findings. First, the interviews with the non-PhD and the 
PhD instructors took markedly different turns. For the non-PhD mathematicians, who had typically 
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taught incoming undergraduate students, students’ motivation was perhaps the most dominant issue. 
Both Aleph and Beth agreed that students require intrinsic motivation for true learning, which their 
students lacked. As a result, both had embraced efficiency in their teaching, for instance via course 
handouts containing most of the lectures’ content. For the PhD mathematicians, motivation was 
hardly a topic of concern: They took intrinsic motivation for granted—perhaps because they were 
teaching mainly upper-division courses.  

Second, the beliefs of the PhD mathematicians varied widely: Beliefs ranged from learning is solitary 
to learning is collaborative. Whereas Gimel believed that learning happened when one was working 
alone on a problem, Dalet took a more moderate approach and stated that learning could be both a 
solitary and a social activity. In opposition to Gimel’s belief, Waw asserted that learning is social. 
The last PhD mathematician, Zayn, noted that he did not want to impose his own learning experiences 
onto others and that there are as many ways of learning as there are students. Thus, even among this 
small number of PhD mathematicians, beliefs varied widely, and no dominant view emerged.  

Last, PhD mathematicians’ own learning experiences aligned with how they spoke about their 
teaching. Gimel, Dalet, and Waw all taught in a way that reflected how they themselves had learned. 
Even Zayn, aware of the possible differences between his and his students’ learning, realized during 
the interview: “[The course] is made in my image, now that I think about it. I went through all that 
trouble of saying I don't want them to learn the way I learned, but now that you're making me say it 
…” Thus, the PhD instructors’ teaching mirrored their learning experiences. 

Discussion  
Our results lead us to ponder several issues. First, we wonder whether college mathematics is too 
broad a term. Perhaps a more fine-grained view that distinguishes between lower- and upper-division 
courses might be beneficial for untangling college instructors’ beliefs. Second, we note that 
instructors holding a wide variety of beliefs were able to win teaching awards at this institution. 
Lastly, the interview with Zayn demonstrated that one’s teaching may be in-line with one’s learning 
preferences even when one is aware of differences between one’s own and others’ learning 
experiences and wishes to be considerate of these differences. 
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To support students at the often-times difficult transition from high school to university mathematics, 
some universities in Germany have introduced innovative lectures. The WiGeMath project evaluated 
to what extent these measures fulfill their self-set goals. During the evaluations, specific 
questionnaire items and lecture observations were applied to investigate which characteristics made 
these lectures different from traditional ones and in how far students valued these features in 
achieving the courses’ learning objectives. The results show that students in the redesigned lectures 
value guidance and clarification rather than abstractions and that redesigned lectures include more 
social interactions and student engagement than traditional lectures. 

Keywords: Mathematics Education, Novel approaches to teaching, Observation, Secondary-Tertiary 
Transition, Higher Education  

Background and aim of the paper 
Many students face difficulties at the transition from high school to university mathematics (Gueudet, 
2008). Some universities give support by establishing redesigned lectures, by which we mean lectures 
that are usually held during the first semester and, unlike traditional lectures, do not focus on 
university mathematics content. They may, for instance, rather help students who have already failed 
certain tests to revise the necessary foundations for their further studies or they focus on study 
techniques like problem solving. Good experiences with lectures or courses that do not focus on the 
presentation of new theory have been documented in the UK with focus on problem-based learning 
of analysis (Alcock & Simpson, 2002) or problem solving activities (Tall & Yusof, 1998). 
Meanwhile, traditional lectures are still both widespread and criticized for neither promoting students’ 
active learning nor exploiting their potential in drawing students into higher mathematical thinking 
(Pritchard, 2015). Promoting innovative support is the goal of the WiGeMath project (german for 
Effects and success conditions of mathematics learning support in the introductory study phase), 
which is a joint research project of the Universities of Hannover and Paderborn (Colberg et al., 2016). 
It evaluates diverse support measures including redesigned lectures. First, the project developed a 
taxonomy that serves to categorize features and goals of support measures (Liebendörfer et al., 2017; 
Kuklinski et al., 2018). This taxonomy was then used to lead guided interviews with the lecturers 
about the courses’ goals. Previous research showed that redesigned lectures were successful in 
meeting at least some of their goals (Kuklinski et al., 2018). Students’ mathematical self-concept and 
self-efficacy did not decline significantly in these lectures unlike in traditional lectures (Rach & 
Heinze, 2017), and toolbox beliefs decreased. Our research questions are (1) which course features 
named by lecturers did students find helpful in reaching learning goals and (2) which observable 
characteristics distinguish these courses from traditional ones.  
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Method 
With regard to research question (1), we will first report on a questionnaire survey and then, for 
research question (2), on lecture observations. After we had interviewed the lecturers about their 
concepts of the redesigned lectures, covering their envisioned teaching strategies, the learning goals 
they wanted students to achieve and which activities they hoped the students would engage in to reach 
the goals, we developed questionnaires that aimed at evaluating if attending students felt the lecturers 
succeeded in meeting their own goals. We applied a special concept for lecture course evaluations 
called the Bielefelder Lernzielorientierte Evaluation (BiLOE, Frank & Kaduk, 2017) which serves to 
investigate to what extent students feel they have reached certain learning objectives, which activities 
they found helpful in achieving those they feel confident they achieved and what reasons they see for 
not reaching the others. The items looked as displayed in Figure 1. 

  
Figure 1: Example items of the BiLOE 

This questionnaire was given to the students towards the end of the term. The students were asked 
only to fill out the part of the helpful activities for those goals they felt they had reached or rather 
reached. An overview of our samples is given in table 1. 

Cohort Engineering students Pre-service teachers 

Location Kassel Stuttgart Kassel Oldenburg Paderborn Würzburg 

𝑛𝑛 (f/m) 13 (0/13) 55 (11/44) 12 (6/6) 102 (54/48) 45 (18/27) 41 (20/21) 

Method Paper-pencil Online Paper-pencil 

Table 1: Overview of the sample size (𝒏𝒏) and the numbers of female (f) and male (m) participants 

Moreover, we conducted lecture observations. We used the WiGeMath taxonomy to develop a 
guideline to observe the redesigned lectures and created an observation sheet where the observer has 
to mark different categories as they apply during five-minute-sections that we split the whole session 
into. The observation sheets for the non-participating observation contained a series of tables like in 
figure 2. As to the categories of jargon of mathematics and memorizing, these were coded if the 
lecturer explained the use of a mathematical formula/ character or named a character like ∈ or if he 
asked students to learn a definition, proof scheme or calculation rule by heart, respectively. 
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Figure 2: Extract from the observation sheet 

For each of the evaluated lecture courses, we employed two student assistants to observe the lecture 
course at three times during the semester, once in November, once in December and once in January 
(the semester lasts from October to January). The observers studied mathematics but were not 
regularly taking part in the lecture courses observed. They had been given the observation sheet and 
a manual including examples and they had been trained using a short video episode of a lecture to 
make sure they had understood the categories and their handling in the way we had intended them. 
The students were advised not to communicate so we would get independent results from them which 
led to a few disagreements in their codings but their overall assessments matched. To have a reference 
point as to the deviation that the evaluated lecture courses showed from traditional lecture courses, 
we also had two students evaluate a traditional linear algebra section and a traditional analysis section 
for first semester students. 

Results 
We will first look at the results of the BiLOE and then analyze the lecture observations. For the 
BiLOE, the lecturers named some activities that they expected students to engage in, which did not 
seem to deviate from traditional lectures. These included attending the lecture sessions, working on 
homework alone or in groups or revising the lecture notes.  

Yet, there were other activities that seemed to be of a more innovative and supportive kind. These 
activities very much appealed to the students as can be seen from the percentage of students that 
found them to be rather helpful or very helpful in achieving the lectures’ learning objectives. 
Although the lecturers were free to name any activities they wanted without having been given 
categories or guidelines, the activities they named could be grouped into five different classes, namely 
reflection, testing oneself in a safe place, work with examples, work with prototypes and social 
interactions, see table 2. 

With regard to research question (1), the categories of reflection and work with prototypes seemed to 
be the most helpful ones in the eyes of the students as more than 60% (for some of the activities a lot 
more than that) found them rather helpful or very helpful for all given learning objectives. All 
categories seem to reflect a learning atmosphere that is closer to school life than to university life. 
The categories of reflection, work with examples and work with prototypes all suggest that students 
hope for guidance and clarification rather than abstractions. Moreover, they do not like the feeling 
that they have to prove themselves, they rather want to work without pressure or in cooperation with 
others.  
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Reflection Paying deeper attention to common mistakes  
Reflecting on every step while solving problems 
After solving a problem, reflecting which solution techniques 
were used   
Reflecting the preconditions and the steps in every proof of 
the lecture  
Looking for common patterns in proofs 

76% - 92% 
67% - 83% 
74% - 90% 
 
75% - 85% 
 
67% - 96% 

Testing 
oneself in a 
safe place 

Writing mathematical texts myself 
Doing smaller proofs myself 
Working on difficult problems in an easier form at first   

42% - 59% 
77% -100% 
68% - 80% 

Work with 
examples 

Revising the examples from the lecture  
Having the lecturer demonstrate how to prove  
Having the lecturer explain different proof methods in detail   

40% - 77% 
82% - 92% 
63% - 86% 

Work with 
prototypes 

Getting to know problems with many different facets  
Working with very appealing proofs  

78% - 85% 
60% -100% 

Social 
interactions 

Asking the lecturer for help when I got stuck  
Asking the lecturer for feedback even where my solutions 
were correct 
Working on content together with others 

59% - 79% 
54% - 72% 
 
40% - 88% 

Table 2: Activity categories and percentages of students who found the activity rather helpful or very 
helpful for all given learning objectives 

With question (2) in mind, we will now focus on the observation results. Although the predominant 
media used was limited to the blackboard almost exclusively, just as in traditional mathematics 
lectures, we found some interesting deviations in the social interactions that took place as well as in 
the way that students were engaged in problem and task solving processes. In all lectures, we observed 
various instances where the lecturer asked questions and students answered, indicating that 
interactions took place regularly. Besides, students also asked questions repeatedly. This suggests 
that the learning atmosphere in the lectures made students comfortable to openly express their 
comprehension difficulties. Yet, we did not encounter instances where a student asked a question and 
another then answered. In consequence, discussions did not take place and neither did typical teaching 
conversations. Although we observed a few phases of single, partner or group work, these stayed an 
exception which also indicates that the lecture atmosphere stayed distinct from a typical school 
classroom. Rather, the format of a lecture remained central and the two forms of interaction that were 
predominant in all courses were the lecturer talk facing the blackboard and the lecturer talk facing the 
students. But the fact that other forms of interactions did occur is enough to make the lectures distinct 
from traditional ones. In fact, phases where the students were actively engaged in problem or task 
solving processes did not occur in the traditional lectures we observed (Analysis I in Figure 3). In 
contrast, such phases were observed in all redesigned lectures and there was even one observation 
where students were active to this effect in 95% of the time (cf. Figure 3). 
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 Figure 3: Engagement of students in problem solving in some of the lectures  

As students rated the category of testing themselves in a safe place as helpful in the BiLOE, it seems 
like they profited from these periods of student task solving.  

Discussion 
Methodological discussion 

To examine the features of redesigned lecture courses and in how far students find them helpful, we 
decided to make use of an established evaluation instrument called the BiLOE and to hire students 
who observed lecture sessions focusing on certain categories based on the WiGeMath taxonomy 
which we provided them with. To be precise, in applying the BiLOE we used an established 
evaluation method that we connected to the WiGeMath taxonomy and we developed an observation 
instrument that is easy to use with small training effort of the observers. Moreover, we did not rely 
on single observations but employed two raters.   

The results of the BiLOE must be interpreted as personal estimates only. Though the students 
indicated how helpful they found the given activities to be in achieving the learning goals, we cannot 
say whether they actually did achieve these goals. Other indicators like exam results or homework 
assignments would have had to be examined to make a qualified statement in this respect. It would 
also be possible to use a pre- and post-test design to measure the students’ understanding of the 
content. Moreover, the results we got from the BiLOE may be biased as we only surveyed those 
students that attended the lectures. Had we questioned all registered students of the course, results 
might have been different.  

Concerning the observations, the two student observers did not always agree in their codings. 
However, we could not calculate inter-rater reliabilities due to unmatched timings by the observers. 
We recommend parallel timing for both observers in future research and maybe a more elaborate 
training. Yet, our results show that the use of simple methods can reveal important lecture features. 

Discussion of the results 

The data show that successful, innovative lectures may benefit from the five elements of reflection, 
testing oneself in a safe place, work with examples, work with prototypes and social interactions. It 
is possible to implement such elements in traditional settings and students value these elements. 

According to Slomson (2010) the format of lectures remains the dominant way of teaching for 
university mathematics students at the beginning of their studies and he claims that they have hardly 
changed for 40 years. Our results show, that changes are possible. They contradict the text of Wood 
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et al. (2007) referring to Gibbs et al. (1992) who claim that university lectures are more or less 
uninterrupted monologues by lecturers where student activity was limited to listening and note-taking. 
The innovative approach of the projects in WiGeMath is visible as in the traditional lectures we only 
encountered lecturer talk and no problem solving by the students during the lecture. In fact, Slomson 
(2010) gives four characteristics of lectures and one of them is that there is scarce interaction between 
the lecturer and his audience and the focus of the lecturer lies in transmitting a set amount of material. 
Moreover, Wainwright et al. (2004) also observed traditional mathematics lectures and did not 
encounter any instances where students collaborated or interacted with other students or the lecturer. 
Yet, students do seem to be interested in being more engaged during lectures just as we found in our 
research. In fact, Willcoxson (1998) found that students value teacher-student and student-student 
interactions in the lectures they attend and as Cavanagh (2011) makes clear lectures that engages 
students in more than just note-taking have positive effects in students’ approaches to learning and 
their long-term understanding. 

That students found social interactions and the work with examples helpful in achieving the learning 
goals goes hand in hand with the findings by Slomson (2010) that students prefer lectures with exactly 
these features and by Anthony (2000) that students believe that availability of support helps to lead 
to students’ academic success. Moreover, Wood et al. (2007) explain the lasting percentage of 
students attending lectures where they could easily access the material online by the importance that 
these students must place on human contact in their university learning experience. 

In another study that evaluated the success of so-called lectorials which blend traditional lecturing 
with more engaging activities where students learn cooperatively also found that most of the students 
valued these activities as they helped them in deeper understanding the content and in staying 
interested (Cavanagh, 2011).  

While students in our surveys found the work with prototypes and examples helpful in achieving the 
learning goals, Anthony (2010) found that students did not allocate an important role to the practice 
with examples for achieving academic success. Yet, Anthony (2010) refers to the self-directed study 
of examples rather than the work with examples during lecture time. Conversely, Cavanagh (2011) 
found that students valued an abundance of examples in the lectorials he surveyed as they increased 
motivation and interest in the tasks.  

An important question is, however, what caveats lecturers see in these innovative formats. A major 
concern might be the pressure they feel to cover all the contents (Johnson, Ellis, and Rasmussen, 
2016). We should then discuss extending the time given for such lectures as well as the sustainability 
of students’ learning. 

Implications for research, policy and teaching 

Our results indicate that lecturers should consider restructuring their lectures so that students feel 
more secure to engage with the contents as well as with the lecturer and other students. Where 
possible, an abundance in examples might help students in understanding and then feeling more 
confident in the lecture content. So even though the traditional format of the lecture cannot be said to 
be useless in transmitting mathematical knowledge, our results indicate that students value social 
interactions and more lively formats which make the content illustrative by means of examples.  
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The lecture courses we evaluated differ from traditional lecture courses in more respects than the ones 
we focused on in this paper. In the categorization of the WiGeMath taxonomy, their focus on revisions 
of content and on study techniques or mathematical working techniques rather than on mathematical 
content would be differences in the individual and system-related goals of the measures. Yet, the 
measures also show specificities in their frame conditions and their characteristics. For example, the 
measures for engineering students in Kassel and Stuttgart are set out with small groups where the 
students work in an atmosphere that resembles school lessons. The lecture courses in Kassel and 
Oldenburg, where we focused on the pre-service teachers, indeed address this group predominantly 
rather than traditional lecture courses which mathematics majors and pre-service teachers attend 
together. The lecture course in Paderborn uses two tests in the course of the semester to prepare the 
students for the final exam and the structure of university mathematics exams in general whereas the 
lecture course in Würzburg does not include any examination at all. In this text, we looked at some 
further aspects of the lecture courses’ learning culture and didactical features but to evaluate in how 
far students find these other features helpful in their learning process might be an endeavor worth 
undertaking in the future. 
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Students’ work with a task about logical relations  
between various concepts of multidimensional differentiability 
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The purpose of this study is to identify student difficulties concerning the linkage of various 
concepts of differentiability in ℝ𝑛𝑛. For that reason, we designed a task where students are 
encouraged to explore the logical relations between these concepts and analyse how university 
students work with this task. Based on a detailed a priori analysis of the task building on TDS, we 
present results of an analysis of students' written work on the task, produced in tutorial group 
meetings. We identify different types of reasoning and compare difficulty levels of the different 
relations.    

Keywords: College mathematics, multidimensional analysis, task design, tutorial groups. 

Introduction and literature review 
Differentiability and derivatives are essential topics in school and university mathematics and have 
been studied for many years (e.g., Orton, 1983; Zandieh, 1997). However, as Rasmussen, 
Marrongelle, and Borba (2014) point out, studies looking beyond first topics of calculus, for 
instance in multivariable calculus, are rare. From informal discussions with students and lecturers, 
and from our own teaching experience, we know that multivariable differentiation, an exciting and 
essential topic covered at the university level, is not an easy topic for many students. The transition 
from the one-dimensional into the multidimensional case is far from trivial, especially since there 
are inequivalent concepts of differentiability in ℝ𝑛𝑛. Nevertheless, the literature on the difficulties of 
students working with these different concepts and relating them to differentiability in the one-
dimensional case is scarce. Martínez-Planell, Gaisman, and McGee (2015) studied students’ 
understanding of the differential calculus of functions of two variables using APOS theory and 
found out that the geometric interpretation of functions in two variables and especially of their 
partial derivatives and total differential are problematic for students. However, they focused on the 
geometric understanding and did not define the total differential as a linear function and especially 
did not look at the students’ understanding of the relationships of the different concepts. Since we 
could not find any literature concerning students’ understanding of the relationship between the 
different concepts of differentiability in ℝ𝑛𝑛 as such, we had to refer back to the one-dimensional 
case. Of course, there exists only one concept of differentiability (with different interpretations), 
and the concept of left- or right-hand differentiability usually plays no important role, whereas 
directional differentiability becomes an important notion in the multidimensional case. Students’ 
knowledge and difficulties in linking differentiability, continuity and integrability in the one-
dimensional case could provide helpful insights. Juter (2012) and Duru, Köklü, and Jakubowski 
(2010) found that many students believed continuity implied differentiability in the one-
dimensional case. Additionally, students who found the correct relations between these concepts 
were often not able to give sufficient justifications. When looking at the relations between 
differentiability, continuity and integrability, success rates are even lower (Sevimli, 2018). In some 
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cases, students used the teaching sequence as an argument for the stated relations. Generalising 
from this, we expect even more difficulties in the multidimensional case, which may exacerbate, if 
the knowledge on the one-dimensional case is still fragile. A further challenge for the students is the 
linkage of the one-dimensional to the multidimensional case. This linkage requires that the students 
have acquired the interpretation of the derivative as the best linear approximation and not just the 
interpretation of it as a tangent line, as a local rate of change or as the limit of the difference 
quotient (for these different interpretations, see Greefrath et al., 2016).  

In this article, we are especially interested in the way students work with different concepts of 
differentiability in ℝ𝑛𝑛. We designed a task asking to explore the logical relations between these. 
The task was given to students in their weekly tutorial group meetings in an Analysis II class 
(which is, from an international perspective, more on the level of upper-division proof-oriented 
Real Analysis courses in the US than typical lower-division Calculus courses). We will present the 
task and selected results from our study examining how students in their second or higher semester 
worked on the designed task, showing success rates for rating and justifying the validity of different 
relationships and selected ways of argumentation. Thereby we want to improve understanding of 
students’ knowledge and learning of differentiability concepts and hopefully contribute to designing 
suitable learning environments regarding this subject area in the future.  

Theoretical framework 
We base our task design and analysis on Brousseau’s Theory of Didactical Situations (TDS) 
(Brousseau, 2006). A situation describes the circumstances in which students find themselves 
concerning their milieu (the set of objects on hand, available knowledge and interaction with 
others). The distinction between didactical and adidactical situations is essential. A situation is of 
adidactic nature if the teacher does not instruct, but students work autonomously and learn by 
adapting to the milieu whereas, in a didactical situation, acculturation happens through 
institutionalisation and devolution. For a more detailed description and a well-presented 
introduction of TDS, see for example Artigue, Haspekian, and Corblin-Lenfant (2014).  

According to Gravesen, Grønbæk, and Winsløw (2016, p. 10), “exercises are the cores of situations 
of learning”. They developed a framework for task design and analysis, based on TDS and focusing 
on four specific “potentials” of tasks. The adidactic potential of a task describes the possibilities of 
a task to be used in an adidactical situation: Which possibilities does a student have to engage with 
the task and develop new knowledge independently without additional interactions with the 
teacher? A task’s research potential is measured by the possibilities to engage with one or more 
research like activities formulated by Gravesen et al. (2016). Linkage potential represents the 
possibilities for students to connect “old” and “new” knowledge. At last, deepening potential means 
the task’s potential to intensify and elaborate the students’ knowledge regarding results, notations 
and methods.  

Research questions 
We designed a task with adidactical, research, linkage and deepening potential and put the students 
into an adidactical situation of working on that task. We investigate how the students link the 
different concepts of differentiability in ℝ𝑛𝑛 and want to identify students’ difficulties in this subject 
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area. In this paper, we want to answer the following research questions: RQ 1: Which of the logical 
relations seem to be more difficult for the students? Is the order of difficulty levels the same for the 
decision of validity and the associated argumentation? RQ 2: What kind of reasoning do the 
students use when explaining the relationships? RQ 3: How is this reasoning related to the 
reasoning and identified problems that we anticipated in the a priori analysis? In this paper we focus 
on students’ work on the two questions “Does partial differentiability imply differentiability?” and 
“Does continuity imply the existence of all directional derivatives?”.  

Methodology and study design 
The method of didactical engineering (Artigue, 1994), evolved from TDS, provides the link 
between the theoretical framework of TDS and the practical implementation in this study to answer 
our research questions. It is composed of a preliminary analysis of epistemological, cognitive and 
didactical dimensions of the mathematical knowledge that is to be learned in the situation. It 
includes the design of the situation including an a priori analysis with the students' expected 
behaviour based on the choice of the didactic variables, the experimentation (usually a classroom 
implementation of the situation) and an a posteriori analysis with evaluation and comparison of a 
priori and a posteriori analyses. Guided by these steps, we will now provide a short description of 
our approach.  

Step 1: Designing a task that supports our research interests. We used the described method of 
didactical engineering and conducted a preliminary analysis at first (not shown here). For this, we 
analysed some broadly established Analysis II books used in German universities (e.g., Heuser, 
1992) concerning the essence of the concept of multidimensional differentiability. When designing 
the task, we oriented ourselves by the four “potentials” according to Gravesen et al.’s framework. 
The task analysed in this article aims at supporting the students in gaining an overview of how the 
different concepts of differentiability are connected. After working on this task, students should be 
able to explain how the concepts are connected and to give counterexamples of functions having 
only some of the properties. The task discussed in this paper was preceded by a prompt to 
recapitulate which of the connections the lecture had already covered. The discussed task was given 
to the students after they completed this. In the task, students are asked to examine whether 
different implications (called “T1” to “T15”) are valid or not. The diagram used in the task can be 
seen in Figure 1 together with the success rates. We created the visual representation of the logical 
relations (similar to a concept map) in order to support students' reasoning. In particular, the 
diagram is to support an abstract knowledge network, which students can use as an abstract 
reasoning tool that some implications are true / cannot be true because other logical relations have 
already been proven. We were interested in how the students would use this network vs try to proof 
or refute a particular implication by specific arguments.  

Step 2: Conducting an a priori analysis of the task. The a priori analysis of two implications 
(T10 and T15) can be found in the next section. It was conducted before the implementation of the 
task.  

Step 3: Task milieu and data collection. The situation of working on the task is characterized by 
the task itself and the milieu in which the students found themselves. The task, which was 
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coordinated with the teacher and teaching assistant, was given to the students of an Analysis II 
course in their weekly tutorial group meeting. Most of the students worked in pairs or small groups 
and discussed the task. They also used their lecture notes and could ask the tutor if they needed 
help. For this particular meeting, particular instructions for the tutors were developed: They were 
asked to only give strategic hints and mostly just let the students work on their own. The written 
work the students (n=31) produced during the tutorial group meetings was collected anonymously, 
scanned and then handed back to the students (without comment or marking).  

Step 4: Analysis of data. We analysed the students’ written solutions concerning two aspects: the 
correctness of students’ solutions and their ways of argumentation. At first, we used a normative 
approach by rating the solutions: For every implication arrow, there are two separate tasks: A. 
deciding whether the implication is true or false, and B. stating a correct justification which could 
be a counterexample or a proof. Two types of missing values are coded: If there are none of the 
boxes checked (A) or nothing was written down (B), but subsequent subtasks were worked on, we 
coded it as a "missing, but attempted", i. e. we believe the lack of written work was not due to time. 
If nothing is written down but none of the subsequent tasks was worked on, we coded it as 
"missing". For the last subtask, we decided to count as attempts every work where one of the boxes 
for T5 or T15 was checked, or anything was written down for B. The correct decision of A is rated 
one point if correct and 0 if wrong. B is rated as follows: a (nearly) right justification (i.e. correct 
with a minor formal error) is rated two points. We give one point for a meaningful attempt for a 
justification, including argumentations containing consequential errors or correct counterexamples 
without arguments why these are counterexamples. Wrong or incomprehensible justifications, 
including wrong counterexamples, are rated zero points. Two total solution rates for A and B were 
calculated. Here, we defined the success rate per task as the sum of the scores divided by the 
number of students who attempted the subtask multiplied by the maximum score (1 for A and 2 for 
B). For analysing the students’ ways of argumentation, we used qualitative content analysis 
(Schreier, 2012) with categories deducted from ned the a priori analysis complemented with 
inductively found categories. 

A priori analyses 
The a priori analysis is the first result and serves as a research tool in the data analysis as well since 
the results will be compared to our expectations.  

A priori analysis of “Does partial differentiability imply differentiability?” (T10) 

Most students will probably state correctly that this implication is not true. A hint for this could be 
that if it were true, it would have probably been covered in the lecture when the other direction was 
discussed. Moreover, why should the lecturer introduce two different concepts if they turn out to be 
equivalent? We call these reasons “didactical-contract reasons”. They are not mathematical reasons 
but based on assumptions on what constitutes the didactical contract (Brousseau 2006) of the 
lecture. For proof, there are several options. Since the students are in their second semester or 
higher and are used to using counterexamples, we expected that they would look for an example of 
a partially differentiable function that is not differentiable. The function used in the lecture to show 
that partial differentiability did not imply continuity (Example VII.1.5, see Figure 1) and stated in 

Thematic Working Group 14

Proceedings of CERME11 2573



 

 

part b) of this task, which is such an example, should come to mind quickly. Some students will 
probably only give the counterexample without explaining why it contradicts the implication. 
Others will explain why the function is not differentiable by calculating the error term φ and 
showing that 𝜑𝜑(ℎ)

�|ℎ|�
 does not converge to 0 as ℎ → 0. Another possibility is that students will argue on 

the abstract level of logical relations and might take advantage of the argumentation that 𝑓𝑓 is not 
continuous and therefore cannot be differentiable due to the contraposition of T3. However, it may 
also occur that students think the implication is true in the first place or that they have difficulties to 
construct own counterexamples. Based on this analysis, we expected that most students would solve 
task T10 successfully. 

A priori analysis of “Does continuity imply the existence of all directional derivatives?” (T15) 

It is important to note that the lecturer defined directional derivatives as one-sided limits in this 
lecture. Students could have developed a general sense of what we may call “levels or degrees of 
smoothness” in ℝ1. These students might quickly come to the conjecture that this implication is 
probably not true by making the courageous generalisation from ℝ1 that only continuity will not 
imply any differentiability whatsoever. A strategy may also be to check the meaning of this 
implication in ℝ1. Students may know that ℝ𝑛𝑛-continuity for n = 1 is the same as one-dimensional 
continuity. Moreover, the existence of directional derivatives for n = 1 means that the function has a 
left- and a right-hand derivative (which need not be the same). With this clear picture, they 
remember that 𝑥𝑥 ↦ |𝑥𝑥| is continuous and has both left- and right-hand derivatives, so the question 
is whether there is an ℝ1-example that is continuous but has no left- and right-hand derivatives. 
Alternatively, students may initially think that 𝑥𝑥 ↦ |𝑥𝑥| is a counterexample but then discover with a 
closer look that this is not the case. Some students might take this as a hint that the implication is, in 
fact, true, mainly because the only examples for continuous but non-differentiable functions coming 
to their minds might be jagged functions. Another example for a non-differentiable but continuous 
function that the students could know is the square root function ℝ → ℝ, 𝑥𝑥 ↦ �|𝑥𝑥|  in 0, which will 
provide a valid counterexample for T15, having a “vertical tangent” in 𝑥𝑥 = 0. If they do not know 
this example, it might be tough for them to construct a counterexample themselves. It could also 
happen that students look for counterexamples not in ℝ1 but in ℝ2 or higher dimensions, but we did 
not expect that they would be successful with that. Students might also try to use the logical 
network, but this will not be rewarding.   

 

Figure 1: The two success rates for each implication. The first number per arrow depicts the success 
rate for A (correctness of decision); the second number is the B success rate (correctness and quality of 

argumentation). We marked correct implications white, wrong implications dark grey. The 
implications without success rates had been covered in the lecture before. 
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Description of selected results 
Our expectation that the implication T10 would be one of the most straightforward tasks was 
correct (see Figure 1). A success rate of 100% for A (decision what is correct) is notable and 
satisfying. We credited 72% of the attempts in T10B with 2 points, 10% got 1 point, 7% 0 points 
and 10% of the attempts did not contain any written work concerning this task. The success rates in 
A for the recognition of the correctness of the implication T15 are lower than we expected. We 
expected low success rates in B for the justification in T15, but the fact that the rates lower than the 
rate for T2 (where the counterexample is not intuitive at all) is somewhat surprising to us. None of 
the students received 2 points for their reasoning, 35% of the attempts got 1 point, whereas 26% of 
the attempts got 0 points and 39% was coded as missing but attempted.  

Results of the qualitative analysis of the written reasoning (B) in subtasks T10 and T15 

For T10, we found the following categories from the a priori analysis and the data. We assigned two 
points for stating the function from Example VII.1.5 in the lecture as a counterexample and 
showing “by hand” that it is not differentiable by calculating the error term (coded “B1”) or the 
argumentation that it cannot be differentiable because it is not continuous (“B2”). Another 
argumentation assigned two points was working logically with the diagram saying that if T10 were 
true, together with T3, it would imply T6 which is wrong without stating a counterexample (“A”). 
A different correct counterexample with appropriate argumentation (“E1”) would be assigned two 
points as well. We assigned one point for stating the function from Example VII.1.5 as a 
counterexample without an explanation (“B0”). Giving a wrong counterexample (“E0”) resulted in 
0 points. Typical examples for the two most common argumentations for T10, “A” and “B2”, can 
be found in Figure 2. 

 
Figure 2: Typical examples for “B2” (left) and “A” (right) (translated by the first author) 

Concerning T15, we assigned two points for stating a correct counterexample with appropriate 
reasoning. We expected the square root function as a counterexample, with different possible 
explanations: stating that it is continuous but not all directional derivatives exist (“W1”), this 
explanation with specifying the point of interest 𝑥𝑥 = 0 (“W2”) or a calculation that the directional 
derivatives in 𝑥𝑥 = 0 don't exist (“W3”). We gave one point for stating the square root function as a 
counterexample without an explanation (“W0”). The statement that the absolute value function is 
not a valid counterexample (“Bx”) was also rated one point. Additionally, some students gave 
explanations using the logical structure and wrong implications they thought were true in preceding 
tasks to argue without a counterexample, namely T12 and the fact that T4 is not true (“Z1”) or T13 
and the fact that T5 is not true (“Z2”). Stating the absolute value function as a counterexample 
resulted in 0 points. For both implications, other argumentations were coded as “X”. The number of 
students who used these different kinds of argumentation can be found in Table 1 (T10) and Table 2 
(T15). It can be seen that we could not assign some of the categories to any student, e.g., “B1” for 
T10. 
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Points  
(10 B) 

Code Number of 
students 

 2 B1 0 
B2 13 
A 8 
E1 0 

1 B0 1 
X 2 

0 E0 1 
X 1 

Table 1: Student answers for T10 

Points  
(15 B) 

Code Number of 
students 

2 W1/W2/W3 0 
1 W0 1 

Bx 1 
Z1 2 
Z2 1 
X 2 

0 B 5 
X 1 

Table 2: Student answers for T15 

Discussion of results 
RQ 1: Most of the students were able to decide correctly for most of the implications whether they 
were true or not. The calculated success rates give hints concerning the level of difficulty of the 
implications. We can conclude that deciding whether an implication is true and stating the right 
reason are not the same, as illustrated by T15. It corroborates findings from studies reviewed in the 
introduction that students often cannot give correct justifications for relationships between different 
concepts in the one-dimensional case. However, students in our study were in general more 
successful than in some of the described studies. That could indicate that working with logical 
relations between new concepts becomes more accessible for students as they pursue their studies.  
RQ 2: When they could, nearly all students used the logical structure of the diagram for answering 
whether a new implication is true, instead of constructing a new proof or a counterexample. In some 
cases, properties of examples were established by reference to the logical structure instead of 
verifying the property with calculations with the example itself (for example in T10). When they 
could, students traced the question back to one-dimensional cases and tried to find counterexamples 
there (which was possible for many of the implications and was our purpose in the design, utilising 
the task's linkage potential). The teaching sequence was not given as an argument (as was the case 
in Sevimli, 2018), which could be either because students knew from experience that this is not 
true, or because these concepts (except continuity) were introduced in a short period after another.  
RQ 3: The a priori analysis was based mostly on our intuition because we could not find literature 
concerning didactics of multidimensional calculus, which is something we want to contribute to in 
the future. There were some lines of argument we did not anticipate, especially concerning incorrect 
reasoning. We found it surprising that a not negligible part of the students incorrectly considered the 
absolute value function as a counterexample in T15 although it was proven a week before that all 
directional derivatives of the absolute value function exist. There were some lines of argument we 
expected some of the students to use that were not used at all (like showing that the error term in 
T10 does not have the required property). This fact might, however, also be due to the rather small 
sample of only 31 students. Our estimates of the subtasks' difficulty were most often appropriate.   

For further investigation, including what leads students to their decision, we additionally filmed 
eight pairs of students while working on the task. The analysis of these is expected to provide more 
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insights concerning the questions where the students got stuck and why. This analysis will be 
especially interesting because often students who made the wrong decision did not explain why they 
thought that (e.g., in T15). Our data will be analysed more thoroughly in the next months.  
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Teaching of discontinuous functions of one or two variables: A didactic 
experience using problem posing and levels of cognitive demand  

Uldarico Malaspina and Carlos Torres 

Pontificia Universidad Católica del Perú, Lima, Perú; umalasp@pucp.pe 

This paper is a part of an ongoing research that seeks to propose sequences of problem-posing and 
problem-solving tasks that will help students to develop deeper comprehension of jump discontinuity 
of functions. We present a teaching experience focused on problem-posing in the context of 
discontinuous functions of one or two real variables, and analyze the cognitive demand that underlie 
the posed problems. We developed this experience in a real analysis course for in-service teachers. 
The teaching experience shows that it is possible to design a sequence of didactic tasks of problem-
posing grounded in daily life situations, which facilitate the perception and intuitive comprehension 
of jump discontinuity of real functions. This experience suggests also to delve into the relationship 
between problem posing and cognitive demand.  

Keywords: Problem solving, problem posing, discontinuous functions, cognitive demand, university 
mathematics.  

Introduction 
The concept of function has been considered for a long time as the most important in the whole 
development of mathematics. However, in mathematics education research, there are few 
publications related to discontinuity of functions at the university level. In one of them, Hitt (1994) 
claims that “when teachers came to construct functions they showed a marked tendency to think in 
terms of continuous functions. […] Even if they had learned about discontinuous functions, the 
concept has not become on active element of their mathematical thinking” (p.19). Furthermore, 
Jayakody and Zazkis (2015) state that the type of definition that is used on continuity of functions is 
important for the teaching of this mathematical object. Thus, according these researchers, students 
must face different definitions and representations, depending on the context. Based on our previous 
researches, we claim problem posing (PP) tasks help to deep into definitions and representations of a 
mathematical object previously chosen. Certainly, this innovation should be addressed by a teacher 
who should have the competence for analyzing his/her mathematical practices (didactic analysis 
competence) (Torres & Malaspina, 2018). 

In our research, we are developing PP tasks with emphasis on the observation of the discontinuity of 
functions. Even more, with the purpose of contributing to the improvement of in-service teachers’ 
didactic analysis competence around this topic, we analyze the levels of cognitive demand (LCD) of 
the posed problems. With this feedback, the future similar sequences of tasks to be proposed could 
have more possibilities of adaptation to different groups of students. As Georgius (2013) says, 
“Teachers need to learn to differentiate between tasks of high and low cognitive demand and select 
tasks that require students to make deep mathematical connections.” (p. 9). 

Our main research goals are: (i) To examine the cognitive demand of the problems posed by in-service 
teachers, from daily life situations, in the mathematical environment of the functions with jump 
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discontinuities; (ii) to propose a didactic sequence for the teaching of functions with jump 
discontinuities. 

Theoretical framework 
Problem posing and mathematical teacher’s competence 

It is worth mentioning that there are different positions in terms of what researchers understand by 
engaging in problem posing activities (Cai, Hwang, Jiang, & Silber, 2015). In this study, we adopt 
the proposal from Malaspina, Mallart and Font (2015), according to which problem posing is a 
process through which a new problem is obtained. If the new problem is obtained by modifying a 
given problem, it is said that the new problem was obtained by variation. If the new problem is 
obtained from a given situation or from a specific requirement, whether mathematical or didactic, it 
is said that the new problem was obtained by elaboration. These scholars also consider that problems 
have four fundamental elements: information, requirement, context (intra-mathematical or extra-
mathematical) and mathematical environment; in that approach, problem posing by variation entails 
quantitative or qualitative modifications of one or more of these elements in a given problem; and 
problem posing by elaboration can be done specifying these four elements from the given situation.  

Usually, in order to develop and assess students’ mathematical knowledge and skills, instructional 
strategies mainly focus on problem solving. We consider that a teacher must not only have the ability 
to solve mathematical problems, but also choose, modify and pose problems with educational 
purposes, which means to facilitate or delve into his students’ learning and stimulate their 
mathematical thinking (Tichá & Hošpesová, 2013; Torres & Malaspina, 2018). Moreover, we 
consider that the teachers’ experiences, both in the problem posing and in the determination of their 
LCD, will contribute to the quality of the problem posing tasks when they design mathematical units 
of study, including the assessment of the learnings; i.e., such experiences will contribute to improving 
their didactic analysis competence. 

Cognitive demand to discontinuous functions 

As one can imagine, conducting research regarding cognitive demand of mathematical problems is a 
wide endeavor. Most of the studies related to these topics apply quantitative research, which means 
to describe the LCD based on psychometrical methods. In our study, we want to go deep into 
cognitive demand from a qualitative perspective, because as Wilhelm (2014) claims “there is 
evidence suggesting that mathematical knowledge for teaching and conceptions of teaching and 
learning mathematics are likely to be related to the enactment of cognitively demanding tasks and 
that they might be interrelated in complex ways”. In this sense, the cognitive demand of mathematical 
tasks as a research topic has been of interest for mathematics education researchers (Gutiérrez, 
Benedicto, Jaime, & Arbona, 2018; Smith & Stein, 1998).  

The Cognitive Demand model proposed by Smith and Stein (1998), characterizes the mathematical 
tasks according to their potential to engage students in high-level thinking. It includes four levels of 
cognitive demand that assess the cognitive effort required from students to solve a mathematical task. 
Moreover, they argue the importance to examine the cognitive demand required by tasks because of 
their influence on student’s learning. 
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Certainly, the proposal developed by Smith and Stein (1998) has been a seminal reference at this 
time. These researchers gave us a set of criteria to classify mathematical tasks or problems into four 
levels of cognitive demand corresponding to different grades of cognitive effort required to solve 
them. However, if we want to determine a LCD to the posed problems on discontinuous functions, 
we consider necessary to make adjustments to the characteristics of these LCD (Table 1). It is worth 
mentioning that there are already studies taking this approach. For example, Gutiérrez et al. (2018) 
made a particularization for pre-algebra problems.  

Taking into account the importance of the LCD, expressed by mathematics education researchers, 
and considering cognitive demand as a characterization of the complexity of the reasoning required 
for solving a mathematical task, we think that having criteria and examples to assign levels of 
cognitive demand to problems on real discontinuous functions, will serve as a basis for assigning 
tasks on this mathematical object; even more, if the purpose is to work with non-routine problems, 
such as those proposed by the teachers themselves, based on situations from daily life. 

We use the LCD proposed by Smith and Stein (1998) as a reference for our purposes. In Table 1 we 
describe these four LCD that we have adjusted to problems posed by variation or elaboration on 
discontinuous real functions. We take into account that in the given problem or in the given situation, 
a discontinuous function could be implicit or explicit.  Each level is exemplified and some of the 
examples come from problems 1 to 7, which emerged in this didactic experience and are shown in 
the results and discussion section. 

Levels of cognitive demand 
Some characteristics of posed problems (by variation or by 

elaboration) on discontinuous functions 

 Low-level  

Routine procedures 
(A) 

Calculating values of a given function near, by left and right, to a 
point of jump discontinuity. (e. g. calculate f(1.5) and f(2.5), where f 
is the greatest integer function; See Problem 1) 

Procedures without 
connections to 
concepts or meaning 
(B) 

Non evident values of an implicit discontinuous function of one or 
two variables in a given situation are calculated. (e.g., Suppose that 
for each kilo of rice you pay 3 dollars, but if you buy 4 kilos or more, 
you have a total discount of 10%. How much will you pay for 3.5 
kilos of rice? And for 4 kilos of rice? See Problem 4 and Problem 6) 

High-level  

Procedures with 
connections to 
concepts and 
meaning (C) 

Tasks focused on discovering the underlying contents and gaining 
mathematical understanding. (e.g. Make a graphic representation of 
the greatest integer function; See Problem 2 and Problem 5.) 

Doing mathematics 
(D) 

Specify algebraically a discontinuous function of one or two 
variables, given implicitly in a situation. (e.g. Find the algebraic 
expression and its graphic of the pay function given as example in 
level B; See Problem 3 and Problem 7) 

Table 1: Characterization of the LCD to problems posed on discontinuous functions 
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The study methodology 
This study is based on an experimental case study, exploratory and descriptive, taking as unit of 
analysis the problems posed by the teachers participating in the workshop. We use the LCD stated in 
Table 1 to analyze problems posed by the participants. They developed a sequence of tasks of PP 
aimed at guiding them in understanding the basic ideas related to functions with jump discontinuities. 
To determine the LCD of each problem, we examined the link between its information and its 
requirement, the solutions presented by the participants and the solutions we developed. Finally, we 
compared the characteristics found in our analysis with the characteristics given in Table 1. 

Sample and experimental setting 

The sample for this study comprises of 22 in-service teachers who were enrolled in the Analysis in 
the real line course and Analysis in several real variables course from the Master’s Program in 
Mathematics Education at Pontificia Universidad Católica del Perú. Most of them are in-service 
teachers, and some of them are engineers. None of them has had previous experience neither in PP 
whose objective is to facilitate learnings nor in studying discontinuous functions in daily life contexts.  

We developed the experience in 6 phases: Phase 1: Become familiar with PP as part of the topics of 
the class; for example, given a daily life situation related to shopping in a convenience store, pose 
and solve a problem in the mathematical environment of affine functions. Phase 2: Choose a real 
situation corresponding to a single variable real function, discontinuous at points of integer abscissa, 
and ask for questions related to the given situation. Phase 3: Present the definition of continuous 
single variable real function at a point of accumulation of the domain of the function by using limits. 
Analyze the definition and jump discontinuity at a point using the questions and answers to Phase 2. 
Phase 4: Present a daily life situation and ask to use it to pose problems that illustrate cases of 
continuity and discontinuity of a single variable real function. Phase 5: Propose daily life situations 
favorable for graphic representations of subsets of the plane related to points of discontinuity of a 
two-variable real function. Phase 6: Use the results from the previous phase to formally define a two-
real variable function with discontinuities. Analyze the definition and jump discontinuity at a point. 

Results and discussion 
In this section, we analyze the results from the didactic experience, focusing on the LCD of the 
problems posed and solved by the participants, following the specifications given for each level in 
Table 1. We analyzed the cognitive demand of all the problems posed by the participants, but due to 
space limitations, we will show only some of them.  

In Phase 1, we focused on what happened when students were asked to pose a problem based on the 
following situation: A convenience store sells a specific brand of juice in one-liter bottles at 6 dollars 
each, and offers 3 bottles for the price of 2. The problems posed were of different LCD, but due to 
space limitations we don't refer explicitly to them as we do for other phases, directly related to 
discontinuous functions with real variables. 

We worked on Phase 2 with a common daily life situation, such as paying for a parking space. There 
are fees such as: "4 dollars hourly or less". Students were asked to write problem-questions that could 
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be posed in the mathematical environment of real functions of a real variable. We chose some of the 
questions, considering the different LCD they entail: 

Problem 1: How much will you pay for parking for 1 hour and 15 minutes? 

Problem 2: What is the graph like of the payment function for parking for x hours? 

Problem 3: What is the algebraic expression of the payment function 
for parking for x hours? 

Students worked in pairs and some of them came to the correct 
graph of function P = P(x): ‘the payment of P(x) dollars for parking 
for x hours’, as the one shown in Figure 1. After sharing   this graph, 
we asked the following question: If Mary says she parked her car 
for about 2 hours, can we know how much Mary paid for parking? 

With the graph (Figure 1) and the question, participants intervened 
saying expressions like ‘discontinuity’, ‘left-hand limit’ and ‘right-hand 
limit’. 

All of this we used for formally introducing the concept of continuity at a point of the domain of a 
real function of a real variable by using limits, when that point is a point of accumulation of its 
domain; that is, for developing Phase 3. We used the following 
definition: If f is a real function of a real variable, a is a point of 
domain and a point of accumulation of f; then f is continuous for          
x = a if and only if lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎). We analyzed the meaning of 

this definition using the representations made by the participants. 
We can see that Problem 1 requires a direct calculation, so we place 
it in Level A. Problem 2 explicitly requires the graph of a function, 
so we place it in Level C. Problem 3 requires complex and non-
algorithmic thinking of the solver, so we place it in Level D.  

For Phase 4, we proposed the following: Use the following situation 
to pose a problem whose solution shows cases of continuity and 
discontinuity of a function in the interval [0; 17]. In a convenience store there is a sign with the 
following offer: 6 kg bag of rice for 15 dollars. Price per kilogram: 3 dollars 

Most of the participants proposed using the situation to define a function and represent it graphic and 
algebraically, as shown in Figure 2.  

For Phase 5, we proposed the following situation: 
At a market, rice and sugar are sold for 3 and 2.40 dollars per kilogram, respectively. Also, as a 
special offer, 3-kg-rice and 2-kg-sugar packages are sold for 10 dollars. 

Figure 1: Graph of the 
payment for parking 

function 

Figure 2: Graph of the 
payment function using the 

offer. Problem 2 
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The idea was to use the situation so that, assuming the 
quantities of rice and sugar bought can vary in intervals of 
real numbers, it is perceived that by taking the offer it is 
possible to find points near each other, whose 
corresponding payments are not near. Finding the function 
f  of two variables, which expresses paying    f (x; y) dollars 
for x kg of rice and y kg of sugar by taking the offer as 
long as it is possible, and assuming variables x, y can 
take every non-negative real number, it is a problem 
requiring high cognitive demand. We didactically 
consider it is important and necessary to pose problems 
that facilitate the comprehension and solution of this problem; in other words, pre-problems, which 
is the term used in our PP approach (Malaspina, Mallart, & Font, 2015). The basic idea for such pre-
problems was to identify points and regions of the plane where the convenience store’s offer cannot 
be taken up on. Thus, we proposed participants to pose problems by using the given situation and 
different possibilities in relation to taking the convenience store’s offer. Some of the problems were: 

Problem 4. How much should you pay if you take up on the offer for 4 kilos of rice and 3 kilos of 
sugar? 

Problem 5. How much should you pay if you take up on the offer – when possible - for the following 
cases? 2.95 kilos of rice and 8 kilos of sugar; 3 kilos of rice and 8 of sugar; and 3.05 kilos 
of rice and 8 of sugar? 

Problem 6: How much should you pay if you take up on the offer for 7 kilos of rice and 5 kilos of 
sugar? 

Problem 7: When buying what quantities of rice and sugar is it not possible to use the offer? 

We invited the authors of problems 4, 5 and 6 to socialize their problems and solutions. Some doubts 
were clarified after a short discussion. 

Due to the simplicity of these problems, we will stop at Problem 7, which is the one that implies the 
greatest cognitive demand. Its complexity requires restrictions and graphic representations of the 
corresponding regions. We asked all participants to solve it, telling them to use x as the variable 
representing kilograms of rice and y as the variable representing kilograms of sugar, both of which 
can take non-negative real numbers.  

Something particularly important in this context is to consider strips of points where the offer cannot 
be taken up on since x < 3 or y < 2. After examining this observation, participants stated that they 
understood the solution presented by their colleague A3 (Figure 3). 

The problems posed by the participants and the solutions they analyzed – specially Problem 7 – 
created favorable conditions to go to Phase 6: define a function f whose variables x and y have the 
meanings already assigned, so that 𝑓𝑓(𝑥𝑥;  𝑦𝑦) expresses the payment made to buy x kilos of rice and y 
kilos of sugar by taking the offer, as long as it is possible. To simplify, the purchase was restricted to 
5 kilos of rice and 4 kilos of sugar maximum, and we asked to examine how much should one pay 

Figure 3: Solution of the Problem 7 
presented by participant A3 (set L
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for several (x; y) points in which the offer cannot be taken up on. After some rich mathematical and 
didactic discussion, it was agreed to name the given set as L in Figure 4, and the set of all possible 
purchases as A, considering the given restriction.  

A = [0; 5] x [0; 4]   and  L = ([0; 3[ × 𝑅𝑅)  ∪ (𝑅𝑅 × [0; 2[ ).   𝐴𝐴 ∩  L  is shown in Figure 4. 

Using these sets and calculating values such as f(3; 2);  f(2.9; 1.8);  f(2.9; 2.1); f(3.25; 3); f(2.9; 4); 
f(5; 1.9)  we came to the following function: 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = �
3𝑥𝑥 +  2.40𝑦𝑦 ,                                 if  (𝑥𝑥;  𝑦𝑦) ∈ 𝐴𝐴 ∩  L

10 +  3(𝑥𝑥 − 3) +  2.40(𝑦𝑦 − 2),     if (𝑥𝑥;  𝑦𝑦) ∈ 𝐴𝐴 − 𝐴𝐴 ∩  L 

It became evident that f values for points near (3; 2) were not necessarily 
near f(3; 2), and that is how the discontinuity of this function was perceived 
at point (3; 2). It is worth mentioning that f is a discontinuous function not 
only at (3; 2) and that it was obtained by PP, considering an extra-
mathematical context taken from a daily life situation. Following this 
discussion, the formal definition of continuous function at point a = 
(𝑎𝑎1;  𝑎𝑎2) of its domain was given, when the function is real of two real 
variables and a is an accumulation point of its domain, similar to what was 
done for single variable functions in Phase 3. 

We placed problems 4 and 6 in Level B because they were basically calculations that were not 
straightforward. Problem 5, by proposing calculate values of the implicit function corresponding to 
points with non-whole abscise, and near to the point (3; 8), contributed to the perception that the 
values of the function at a point of its domain are not necessarily near the value of the function near 
that point. Furthermore, that (3; 2) is not the only point with that characteristic (point of discontinuity), 
but there are many other points of discontinuity on the line with equation x = 3. Thus, we place it in 
Level C. Problem 7 is placed in Level D. It requires the perception of a subset of the plane that do not 
contain its boundary, precisely because at some boundary points the offer can be used.   

Final considerations  
Based on the previous section, as well as on the results of the examination made at the end of the 
course, we consider that the didactic sequence, with the above described phases, to pose problems of 
different LCD, facilitate perception and intuitive comprehension of single and two-variable real 
functions, which have jump discontinuities at one or more points of their domains and which are 
related to daily life situations. Moreover, it allowed us to introduce and analyze definitions and 
representations of continuity and discontinuity of functions as Jayakody and Zazkis (2015) claimed 
to be helpful for understanding theses mathematical objects.  

The adjustments that we propose of Smith and Stein’s model of cognitive demand levels for analyzing 
problems on discontinuous functions and their examples emerged from the experience, give us 
elements for new proposals oriented to the improvement of teachers' didactic analysis competence. It 
could be useful as a starting point for similar experiences and deepening the research of teaching and 
learning single or two-variable discontinuous real functions, including LCD analysis. We consider it 
important that teacher educators and researchers of university mathematics education have examples 

Figure 4: 𝑨𝑨 ∩ 𝑳𝑳 shaded 
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of problems about discontinuous functions created from daily life situations and characterized with 
specific LCD. It is also worth mentioning the students’ positive comments about the tasks that they 
developed. Moreover, they value the links shown between daily life situations and the university 
mathematics, which are usually dealt only in intra-mathematical contexts. This experience, which 
links university mathematics, PP and cognitive demand, suggests research should be done to delve 
into these links that are not so present in the researches in these fields.  
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As part of a large-scale study of algebra instruction at two-year post-secondary institutions in the 
United States, we have developed a qualitative video analysis framework, Evaluating the Quality of 
Instruction in Post-secondary Mathematics (EQIPM). In this paper, we present two of twelve 
characteristics used to describe instruction (Instructors Making Sense of Procedures, and Student 
Mathematical Reasoning and Sense Making), which describe students and instructors engaging with 
mathematics so their ideas or ways of thinking are evident. We use examples taken from our corpus 
of videos to exemplify these two characteristics of instruction and how they contribute to its quality. 
We also offer suggestions for professional development activities. 

Keywords: Instruction, College mathematics, Postsecondary education, Community colleges, 
Instructional quality. 

In the United States, 43% of all undergraduate students enroll in public post-secondary institutions 
that offer courses for the first two years of their undergraduate degree. These institutions, hereafter 
called community colleges, provide students with many options to further their educational goals, 
some of which include remediation, transfer to university undergraduate programs, vocational 
training, general education, continuing education, and workforce development (Blair, Kirkman, & 
Maxwell, 2018). Community colleges target diverse students who are mostly non-traditional (e.g., 
older, working, or with family responsibilities), offer flexible schedules, and charge very low tuition 
compared to universities. Because of the wider range of students who enroll, these colleges offer a 
broad range of mathematics courses, from developmental mathematics (designed to prepare students 
for collegiate level study of mathematics) to mathematics courses taught in the first two years of an 
undergraduate major. The failure rates in algebra courses at community colleges range from 30% to 
70% (Bahr, 2010). Because algebra skills are of paramount importance for advancing into higher 
level mathematics, investigating algebra instruction at community colleges becomes important; 
however, community colleges are largely under-researched (Mesa, 2017). 

In Algebra Instruction at Community Colleges: An Exploration of its Relationship with Student 
Success (AI@CC, Watkins et al., 2016), we seek to investigate the relationship between the quality 
of characteristics of algebra instruction and student learning as evidenced by student grade as a 
percent. In this paper, we exemplify two characteristics of algebra instruction at community colleges, 
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Instructors Making Sense of Procedures, and Student Mathematical Reasoning and Sense Making. 
We focus on observed instances that evidence mathematical sense-making1, to start addressing the 
wider question: What is the nature of sense-making evidenced in algebra instruction at the community 
college level of post-secondary mathematics education? 

Background and supporting literature 
We used the instructional triangle to define algebra 
instruction as the interactions between instructors, 
students, and the content studied in community 
college environments (Figure 1, Cohen, Raudenbush, 
& Ball, 2003). To characterise algebra instruction, we 
drew on two frameworks that analyse the quality of 
instruction created for school-level mathematics 
education (Mathematical Quality of Instruction 
(MQI), Hill, 2014; Quality of Instructional Practices 
in Algebra (QIPA), Litke, 2015). These frameworks 
describe and code (with ratings from 1 to 5) 
instructional practices from video-recorded class sessions by rating consecutive 7.5-minute segments. 
Although the two frameworks provided useful language to describe the characteristics of instruction, 
the actual descriptions were tied to elementary or high-school content and interactions that bore little 
resemblance to instructional practices at community colleges. We retained some of their 
characteristics, but modified the descriptions for our purposes, through multiple iterations that 
involved the use of video recordings of 15 class sessions in Fall 2016, ranging between 45 and 120 
minutes (see Cawley et al., 2018). From this work we developed the video-coding framework called 
Evaluating the Quality of Instruction in Post-secondary Mathematics (EQIPM). This paper includes 
two EQIPM characteristics, Instructors Making Sense of Procedures and Student Mathematical 
Reasoning and Sense Making, which emphasise ways in which instructors or students engage in 
algebraic sense-making in community colleges. Version 3.0 of EQIPM is presented in Figure 22. 

The definition of ambitious mathematics instruction (NGA, 2010) supports 11 of 12 characteristics 
of instruction in EQIPM. In ambitious instruction, the instructor engages students in challenging 
tasks, observing and listening while they work on those tasks providing an appropriate level of 
support to diverse learners. The instructional goal is to ensure that all students do high quality work 
instead of only expecting fast and correct execution of mathematical procedures. Classroom 
Environment emerged from our observations of community college lessons. This characteristic is 
informed by Danielson (2015) who advocated that in a respectful and open environment, student 
opinions are encouraged, and student contributions are validated in ways that make them feel safe. 

                                                 
1 We use the NCTM (2009) definition of sense-making which accounts for students discovering coherence across 
mathematical domains and seeing connections between new concepts and their existing knowledge. 

2 The development of EQIPM is ongoing. See Mesa et al. (2019) for the most recent changes in the code structure. 

Figure 1: Instructional Triangle (Cohen, 
Raudenbush, & Ball, 2003) 
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The American 
Mathematical Association 
of Two-Year Colleges’ 
IMPACT3 guide (2018) 
presents a vision to 
improve mathematics 
education in the first two 
years of college. The 
IMPACT guide concludes 
that for students to 
achieve proficiency in 

mathematics it is necessary 
for them to, among other things, (1) know mathematics procedures and execute core computations 
fluently, (2) make sense of and solve problems, and (3) demonstrate evidence of mathematical 
understanding (AMATYC, 2018, p. 25). Research by Star (2005) provides additional evidence of the 
importance of linking conceptual understanding with procedural skills. 

Methods 
The data for this paper were collected in the Fall of 2017. Trained observers video-recorded all class 
sessions on two of three topics from 40 instructors: linear, rational, or exponential equations and 
functions. The instructors, who volunteered to be observed, were at six diverse community colleges, 
which represent a range of institution size, degree of urbanicity, region (Southwest, Midwest, and 
Central in the U.S.), and student background. This round of data collection resulted in 131 class 
sessions, which ranged in duration between 45 and 150 minutes. Fifty-four percent of these sessions 
were solely in a lecture context and 85% included some elements of a lecture. 

Starting in the Summer 2018, 17 trained coders used EQIPM to rate the characteristics of instruction 
that appeared in each segment4 (n = 1,576 coded segments of which 1,236 are full 7.5-minute 
segments) of every class session. For each segment, the quality of each characteristic was coded along 
the 12 characteristics using a rating from 1 to 5. The coders provided a justification for their rating, 
including the specific time stamp in which the coder noticed evidence that justified that rating, and a 
brief explanation of the quality of the characteristic based on specific guidelines of EQIPM. For the 
most part, a rating of 1 was reserved for “no evidence” except for the Mathematical Errors and 
Imprecisions in Content and Language in which the ratings are reversed. A rating of 3 was considered 
an acceptable quality, usually indicating a modal rating. A rating of 5 was reserved for exemplary 
cases; cases we interpreted as best examples of that characteristic against EQIPM. Ratings of 2 and 4 
were reserved for ‘in between’ cases. When some features were present but they were of less quality 

                                                 
3 Improving Mathematical Prowess and College Teaching (IMPACT) 

4 Hill et al. (2012) used a segment length of 7.5-minutes after several comparisons of coding using various lengths. All 
lessons were parsed into 7.5-minute segments; the last segments of the lessons were usually shorter than 7.5 minutes. 

Figure 2: Dimensions and characteristics of instruction in EQIPM 
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than what a rating of 3 would have been, a 2 was assigned. When the quality was better than a rating 
of 3, but not truly illustrative of an exemplary quality, a 4 was assigned.  

Instructors Making Sense of Procedures refers to instructor work that fosters students’ sense-making 
about how a procedure moves from one step to the other, rather than merely reproducing the steps of 
the procedure (Star, 2005). For this code, the coder is trained to assess the extent to which instructor 
practices of using mathematical definitions, symbols, properties, structures, examples, and 
interpretations of solutions motivate understanding of a mathematical procedure. Examples of such 
instructor practices include, but are not limited to attending to the type of solution generated by a 
procedure and its interpretation, using a series of examples of an abstract formula to extract key 
features, and clarifying symbols of definitions. For a 7.5-minute segment, an exemplary 5 rating of 
the characteristic is assigned in the event that the coder interprets that the practices identified motivate 
mathematical understanding and belong to either a range of instances or a sustained, prolonged 
instance with instructor practices for fostering student sense-making. A rating of a 5 only indicates 
that sense-making happened in an exemplary way, attending to elements of a procedure or the 
algebraic concepts in a procedure. Other codes in the framework will pick up additional elements of 
instruction that together may allow one to determine high-quality instruction. 

Student Mathematical Reasoning and Sense Making entails the components of reasoning and sense-
making for students. Mathematical reasoning includes student practices such as drawing logical 
conclusions from patterns identified, providing conjectures, offering counter-claims in response to a 
proposed mathematical idea, and mentioning the mathematical properties that underlie a procedure. 
Evidence for sense-making includes student practices such as asking mathematically motivated 
questions while requesting explanations, leveraging previous mathematical ideas while responding to 
a question, and interpreting the solution generated by a procedure. A 5 rating includes either a 
combination of instances that meet these criteria or a sustained instance that saturates the 7.5-minute 
segment with student reasoning or sense-making so that student ideas are evident and contribute to 
the development of the mathematics. 

Coders adhered to three additional rules when coding: (a) assigning a higher rating rather than a lower 
rating when in doubt, (b) rating each segment in isolation from other segments within the same class 
session, and (c) focusing on evidence that was seen and said in the video, rather than what coders 
thought should be in the video. Following Hill (personal communication, September 2017), 10% of 
randomly selected class sessions were double-coded; the coders held calibration meetings to discuss 
discrepancies in ratings and agree upon final ratings. The data used for the analysis reported in this 
paper came from the coding of 903 segments. 

Findings 
EQIPM offers a close and granular examination of the quality of algebra instruction at community 
colleges, but no element of EQIPM can stand alone to suggest high-quality instruction. Breaking 
down instruction into parts is a first important step towards efforts to understand the current status of 
instruction at community colleges, and a valuable activity that may help instructors develop their 
teaching skills. Qualities we interpreted as exemplary included cases of algebra instruction identified 
with a 5 rating. Only 89 out of 920 segments (10%) were identified as exemplary in at least one of 
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the 12 codes. There were 398 segments (43%) with a rating of 4 and 5. We identified 29 exemplary 
segments (5,3%) where instructors supported students in making sense of procedures and seven 
segments (1%) where students demonstrated exemplary mathematical reasoning and sense-making 
in class. Examining instances with a rating of 4 or 5, the cases increase to 95 (10%) and 37 (4%) 
respectively. In light of these percentages in the community college setting, we think that there is 
much room for improving instruction, and existing practices of exceptional quality can act as 
resources for improving instruction and student outcomes. 

Instructors making sense of procedures 

In a lesson on rational expressions, Instructor 110 discussed with the students the procedure of finding 
domain restrictions. She started her lecture by asking what is 0

5
 and why 7

0
 is undefined, gradually 

moving student attention to rational expressions and the denominator of x+5
x−7

. She asked students to 
find 𝑥𝑥-values for which the aforementioned rational expression is undefined, and students suggested 
𝑥𝑥 = 7. After the instructor made the calculations for the suggested value and confirmed that the 
outcome is 12

0
, which is undefined, she asked whether there were suggestions for other values for 

which the rational expression is undefined. She waited for 11 seconds for a response, and suggested 
𝑥𝑥 =  −5 for which the expression becomes 0

−12
. The students recalled this fraction equals zero so the 

rational expression is defined for 𝑥𝑥 = −5. The instructor then gave the students time to find domain 
restrictions for a series of more complicated examples of rational expressions with denominators that 
are binomials, trinomials, and other polynomials (e.g., x+4

x2−3x−10
 and x

2−x−2
x2−25

). The use of instructor 
practices was rated as an exemplary case for this characteristic, because the instructor attended to the 
type of solution (i.e., denominator equals zero) generated by the procedure of finding domain 
restrictions, first using integers, which the students are familiar with in this level of education, then 
interpreting increasingly complicated examples of rational expressions. The students successfully 
suggested -7 for 12

0
 and related 0

−12
 back to the information in the beginning of the lecture. 

In a lesson on exponential functions, Instructor 102 discussed the reason behind the growth pattern 
of exponential functions. He created tables of values of a linear function, a quadratic function, and an 
exponential function in which the x-values started at 0 and increased by 1. He calculated the 
difference of consecutive y-values of each of the three functions, and found that for the linear function 
the difference was always 2, but for the quadratic function the difference each time increased by 2. 
He generalised the finding about the differences by saying for both functions that “It doesn’t matter 
it is a 2, it could be any constant.” He then found that for the exponential function the difference of 
consecutive y-values, even the difference of the difference of consecutive y-values, would never 
become constant or increase by a constant value; rather, the difference of consecutive y-values will 
repeat the growth of the exponential function. The instructor’s use of the structure of three kinds of 
functions—a linear, quadratic, and exponential—to clarify the meaning of exponential growth was 
rated as an exemplary case for this characteristic. In particular, he used various numerical y-values of 
the functions and their differences to find patterns and exemplify the exponential growth. Later in the 
lesson, all students went to the board to determine the type of growth of various types of functions 
and they were asked to classify the growth of functions as either exponential or linear. 
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Student mathematical reasoning and sense making 

In a lesson on rational expressions, Instructor 610 worked with the students on simplifying rational 
expressions. After the first half hour of the 150-minute lecture, the instructor asked students to tell 
her what simplifications she should carry out for the expression 3𝑦𝑦

y2+3y−10
− 6

y2+3y−10
. A student 

correctly suggested the instructor to write 3𝑦𝑦−6
y2+3y−10

, to factor the polynomial in the numerator and 

denominator, and to simplify the rational expression. Another student correctly suggested for the 
expression 5

7
+ 4

21
 that the instructor could multiply both the numerator and the denominator of 5

7
 by 

3 and perform all calculations needed. A third student correctly suggested for the expression 1
5
− 2

3
 

that the instructor multiply the numerator and the denominator of 1
5
 by 3, the numerator and 

denominator of 2
3
 by 5, and perform all calculations needed. This instance where different students 

contributed to the lecture by leveraging the mathematical idea of Least Common Denominator (LCD) 
in various cases (e.g., the LCD is the same as or different from both of the denominators) while 
simplifying expressions lasts for about two of the 7.5 minutes of the segment. A follow-up instance 
in the same segment lasted for about four and a half minutes. It included a fourth student who orally 
provided the calculations he performed to find the LCD for the expression 19x+5

4x−12
+ 3

2x2−12x+18
. By 

factoring the latter expression, it becomes 19x+5
4(x−3)

+ 3
2(x−3)2

. The student reasoned the LCD was 

4(𝑥𝑥 − 3)2 because the LCD included the highest exponent from all multiples of the factors of the 
denominators. Two other students found the LCD for each of two different rational expressions, using 
their fellow student’s reasoning. The combination of two prolonged instances that saturate the 
segment with student reasoning and sense-making so that student inputs contributed to the 
development of the meaning of the LCD was rated as an exemplary case for this code. 

A rule for deciding on the rating of Student Mathematical Reasoning and Sense Making was that 
there must be clear evidence of students engaging in mathematical reasoning or sense-making through 
verbal utterance(s) and/or through written work. A limitation for finding such evidence was that 
despite the premium quality of our audio-visual equipment, the recordings sometimes did not capture 
clearly student voices or written work. Although we found instances that saturated the 7.5-minute 
segments with student reasoning or sense-making, the audible or visible evidence found within a 
segment could not qualify for an exemplary case. That resulted into lowering the quantity of 
exemplary cases found for this characteristic of instruction in the community college classes.  

Discussion 
This paper described two characteristics of instruction captured in EQIPM, Instructors Making Sense 
of Procedures and Student Mathematical Reasoning and Sense Making. The common theme in the 
three examples given can be summarized as 1) a sustained effort to provide sense-making behind 
procedures by use of a variety of examples in varying complexity while 2) prompting students to 
provide solutions to the examples with an explanation of their reasoning. The instructors’ approach 
paved the way for students to develop proficiency in mathematical procedures; this is a new insight 
into community college instruction because educational research in this context is still rather limited. 
Rules were not given to simply be followed but ideas were presented with concrete examples to apply 
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sense-making. We currently work on improving the codes and ratings of EQIPM. In recent iterations 
for the development of EQIPM, we widened the mathematical content of the codes of the dimension 
Instructor-Content interaction. Instructor Making Sense of Procedures, for example, includes sense-
making whether it occurred while supporting a procedure, a mathematical idea or ways of thinking. 

In Instructors Making Sense of Procedures, instructor practices that motivated sense-making included 
the search for patterns, the use of integers or numerical y-values of functions which were familiar to 
students, and the careful selection of examples with increasing rigor. The latter can help students 
build their own understanding of rate of change, and later connect this idea to the concept of derivative 
in calculus. In Student Mathematical Reasoning and Sense Making, the instructor offered different 
students the opportunity to suggest how they would simplify rational expressions and to justify their 
choices, sometimes using their peers’ language and reasoning. This practice also provides the 
instructor with the opportunity to overlay student discussion with more precise language and connect 
student ideas. Such video-recorded instances of exceptional qualities of algebra instruction at 
community colleges can be leverage points to discuss with instructors, compare, and build up the 
current instructional practices that are in place. EQIPM nevertheless is not intended to become a score 
system to evaluate teachers. It is created to understand what the characteristics are that constitute 
instruction at community colleges and what features make that instruction of high quality. 

The AMATYC IMPACT guide provides a vision for mathematics instruction in the first two years of 
college and identifies key attributes that point to the importance of students making sense of 
mathematics and demonstrating evidence of mathematical understanding (AMATYC, 2018). The 
opportunities for students to develop these attributes, as evidenced by our video analysis, is not 
common practice at community colleges. Our findings indicate that exemplary implementation of 
Instructors Making Sense of Procedures, and Student Mathematical Reasoning and Sense Making 
occurred in only a small number of cases. Professional development using instances of exemplary 
practices that support high quality algebra instruction can help change the landscape of mathematics 
instruction at community colleges by helping instructors provide opportunities for their students to 
develop key attributes tied to mathematical proficiency. In the next phase, we will work to identify 
ways for instructors to support students to develop mathematical proficiency and to subsequently 
improve student performance and preparation for higher mathematics. 
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Introduction 
Little is known about the transition from being a university mathematics student to being a post-
secondary teacher (e.g. Speer & Hald, 2008), particularly in cegep institutions (general and vocational 
colleges), the first step in postsecondary education in the province of Quebec, Canada. The program 
in those institutions covers, notably, calculus and linear algebra. Our goal is to explore that transition 
into being a teacher, while focusing on the (past and present) experiences of new teachers in relation 
to mathematics, and its teaching and learning. We do so by conducting a narrative inquiry with 5 new 
teachers with less than 5 years of experience, with whom we have met individually seven times over 
a semester. We lived alongside them and heard about their stories, their lives and their experiences. 

In our work, we speak of “being a teacher” in the sense of acting and thinking as a teacher, rather 
than holding a teaching job. We see it as a “process of becoming” (Beisiegel, 2007, p. 23) that starts 
before the first teaching job and that will continue long after. It is supported by the idea that 
mathematics students receive implicit teacher training during their time as students, where their life 
experiences in a mathematics department shape their “views of the discipline and its teaching” 
(Beisiegel, 2009, p. 42). We see “being a mathematics teacher” as involving, among other things, 
thinking about mathematical concepts, with teaching and learning in mind, in a way that reminds us 
of Shulman’s (1986) pedagogical content knowledge. It also involves thinking, to various degrees, 
about the role of a teacher, presentation, assessment and the creation of material. 

As we analyzed all the stories these 5 new teachers shared with us, we came to the realization that 4 
out of the 5 participants were not “being teachers” during their studies in mathematics; for them, this 
“being a teacher” only happened when they actually held a teaching position, even if some of them 
were aiming for a teaching career. This triggered two reflections for us.  

Firstly, we identified essential differences between what they need to emphasize to be successful 
students versus what they need to emphasize to be successful teachers. On a daily basis, to succeed 
as a mathematics student, they needed to create and validate proofs a professor deemed important, 
figure out what is expected from them to succeed in assessments and researching for proofs that may 
not even exist. To be teachers, instead, they would need to think about what is important for their 
students to learn while keeping it at a level that is adequate, what work would represent a passing 
grade in a particular course and choosing problems that would be interesting to solve, not for them, 
but for their students. The gap between these two needs suggests that there was no time or space 
during their studies in mathematics to “be a teacher.” This reflection shows us one way in which the 
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transition to post-secondary teaching could be different than the transition to school teaching since 
such time and space is probably not lacking in university teacher training.  

Secondly, too often, mathematics faculty who focus on teaching are perceived by their colleagues as 
weak mathematicians who could not succeed as researchers; these “second-class” mathematicians are 
not good enough to participate in the very competitive mathematical community (Kline, 1977, cited 
in Beisiegel, 2009). Beisiegel (2009) showed the influence of this culture for graduate students, saying 
that “as [they] attended to the existing practices of the department, there were suggestions and rites 
of passage which revealed that only […] becoming a mathematician, really counts” (p. 287). Also, 
Beiseigle (2007) states that “many dichotomies exist in mathematics and, in [the mathematics] 
community, you either are or you are not a mathematician” (p. 23); if you are a mathematics teacher, 
you are not a mathematician. Again, we can briefly underline how different this situation is from 
university teacher training, where students are not, most likely, torn between two different identities, 
as becoming a teacher is the goal of their education. 

One of the participants in our study, however, seemed to have been successfully a mathematician and 
a mathematics teacher during her degree in mathematics. Indeed, as a student, while keeping up with 
the highest standard of performance in her classes, she would constantly look at how the class was 
presented, thinking how she would do it when she would get to stand in front of a classroom, 
collecting great explanations of things as models and always asked herself, “why?” and “what if?” 
specifically so that she would be more prepared to teach certain pieces of mathematics. We believe 
that those two differences put her in a similar position than a student in a teacher training program 
(Lee & Shallert, 2016). Our research explores why it is that she was “being a teacher,” according to 
our definition above, in the midst of a mathematician’s training, while the others did not.  

This research goes into detail of some stories shared by the participants about their transition from 
mathematics student to teacher. Because we found that it is possible to do both, “be a mathematician” 
and “be a teacher,” during a mathematicians’ training, we ask how we can help mathematics students 
to “be teachers” while in their mathematics training and to help them use this time to their advantage. 
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Evaluating the Quality of Instruction in Post-secondary Mathematics (EQIPM) is a video coding 
instrument that provides indicators of the quality of instruction in community college algebra lessons 
(AI@CC Research Group, 2017)1. It grew out of two instruments that assess the quality of instruction 
in K-12 settings—the Mathematical Quality of Instruction (MQI) instrument (Hill, 2014) and the 
Quality of Instructional Practices in Algebra (QIPA) instrument (Litke, 2015). We present a revision 
of EQIPM prompted by results of factor analyses performed with preliminary data, then discuss next 
steps and research implications. 

Keywords: Algebra, instruction, video coding, community colleges. 

Various reports have established an indirect connection between students leaving science, 
technology, engineering, and mathematics (STEM) majors because of their poor experiences in their 
STEM classes (Herzig, 2004; Rasmussen & Ellis, 2013). Most of these reports, however, are based 
on participants’ descriptions of their experiences in the classes, rather than on evidence collected from 
large scale observations of classroom teaching (Seymour & Hewitt, 1997). When such observations 
have been made, they usually focus on superficial aspects of the interaction (e.g., how many questions 
instructors ask, how many students participate, or who is called to respond, Mesa, 2010) or their 
organization (e.g., time devoted to problems on the board, or lecturing, Hora & Ferrare, 2013; Mesa, 
Celis, & Lande, 2014). Undeniably, these are important aspects of instruction, yet these elements are 
insufficient to provide a characterization of such a complex activity as instruction.  

A key concern in post-secondary mathematics education is the lack of preparation that mathematics 
instructors receive in their graduate education (Ellis, 2015; Grubb, 1999).  We argue that the lack of 
a reliable and valid method to fully describe how instruction occurs hinders our understanding of the 
complexity of instructors’ work in post-secondary settings and therefore limits the richness of 
preparation and professional development opportunities focused on the faculty-student-content 
interactions (Bryk, Gomez, Grunow, & LeMahieu, 2015). As part of a larger project that investigates 
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California State University, Pomona; April Ström, Chandler-Gilbert Community College; Randy Nichols, Delta College; 
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University of Groningen; David Tannor, Indiana Wesleyan University; Jon Oaks, Macomb Community College; Nicole 
Lang, North Hennepin Community College; Carla Stroud, and Judy Sutor, Scottsdale Community College; Saba Gerami, 
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the connection between the quality of instruction and student learning in community college algebra 
courses, we have developed an instrument, EQIPM (Evaluating Quality of Instruction in 
Postsecondary Mathematics), that seeks to characterize instruction. This paper focuses on the 
instrument and its validation, and to this effect we present the fourth revision prompted after results 
from exploratory and confirmatory factor analyses and a discussion with our advisory board 
suggesting several areas that needed refinement. 

Theoretical Perspective 
We assume that teaching and learning are phenomena that occur among people enacting different 
roles—those of instructor or student—aided by resources of different types (e.g., classroom 
environment, technology, knowledge) and constrained by specific institutional requirements (e.g., 
covering preset mathematical content, having instructional periods of 50 minutes, see Chazan, Herbst, 
& Clark, 2016; Cohen, Raudenbush, & Ball, 2003). We focus on instruction, one of many activities 
that can be encompassed within teaching (Chazan et al., 2016) and define instruction as the 
interactions that occur between instructors and students with the mathematical content (Cohen et al., 
2003). These interactions are influenced by the environment where they happen and can change over 
time. Empirical evidence from K-5 classrooms (5-11 year olds) indicates that ambitious instruction 
(Boston, 2012) is positively correlated with student performance on standardized tests (Hill, Rowan, 
& Ball, 2005). Understanding mathematics instruction requires attention to the disciplinary content 
and the mathematical knowledge for teaching and learning. Therefore, we assume, first, that quality 
instruction is illustrated through the experiences of instructors and students while interacting with 
mathematical content that have a significant impact on what students are ultimately able to 
demonstrate in terms of knowledge and understanding, and second, that it is possible to identify latent 
constructs that might account for the observed quality of instruction. We seek to corroborate findings 
from Hill et al. (2005) in the community college context. 

Instruction is central to EQIPM. EQIPM (see Figure 1) was designed to assess the three main 
interactions that Cohen and colleagues (2003) used to define instruction: (1) Quality of Instructor-
Student interaction, (2) Quality of Instructor-Content Interaction, and (3) Quality of Student-Content 
Interaction, which are hypothesized by our framework for instruction (Cohen et al., 2003, see Figure 
1). An additional aspect, Mathematical Errors and Imprecisions in Content and Language, is also 
hypothesized to be an indicator of the quality underlying all the interactions (Hill, personal 
communication, 2017). The Mathematical Errors and Imprecisions in Content and Language code 
is intended to capture all uncorrected errors or imprecisions that may occur within a segment; 
including those advanced by students. This code is the only code that attends to errors and 
imprecisions within the segment. Within each quality construct we propose codes adapted from 
existing rubrics (Hill, 2014; Litke, 2015) in order to capture specific observable behaviors that can be 
used as a proxy for the construct. Thus, the Student Mathematical Reasoning and Sense-Making code 
is a proxy for the quality of student interaction with content as it seeks to describe and qualify 
instances in which students make their thinking evident. Likewise, the codes Connecting Across 
Representations and Situating the Mathematics provide evidence for such interaction (Leinwand, 
2014). In a similar way we chose four codes under the instructor content interaction, Instructors 
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Making Sense of Mathematics a code that 
seeks to assess the extent to which  
instructors assist students in making sense 
of the mathematics they are teaching. This 
code is related, but different from, 
Mathematical Explanations, which attends 
primarily to the quality of the mathematical 
argumentation and justifications that 
instructors provide for any particular 
mathematical process or idea. While sense 

making might use informal language or 
everyday contexts, explanations require in 

addition that definitions or proofs be used in sound mathematical arguments.  Supporting Procedural 
Flexibility was included in order to account for the quality of the teaching of procedures, an important 
component of the teaching of algebra (Litke, 2015; Star, 2005; Star & Newton, 2009). The last code 
in this dimension, Organization in the Presentation, originally from Litke’s (2015) instrument, was 
included because there is evidence that such organization contributes to student performance 
(Cabrera, Colbeck, & Terenzini, 2001). Finally, the codes under the third dimension seek to capture 
the way in which instructors and students negotiate the work in the classroom, the extent to which 
their contributions are taken up to shape the direction of the lesson (Continuum of Instruction), how 
instructors respond to and seek to understand student misconceptions (Remediation of Student Errors 
and Imprecisions), and how the interactions produce a class environment that is conducive to learning 
(Classroom Environment). These codes directly reveal the quality of the student and instructor 
interactions. The codes under Features of Segment help characterize the activity in the segment 
without qualification (e.g., Nature of math: procedures, applications, etc.; Modes of instruction: 
lecture, group work, etc.; Technology use: graphing calculators, etc.). These codes are not assessed 
on quality, only on presence and are used to describe the lessons. 

Understanding how the instrument works 
In the Fall 2017 semester, we video-recorded 131 lessons in intermediate and college algebra classes 
from six different community colleges in three different states. These lessons ranged in duration 
between 45 and 150 minutes, and were taught by 40 different instructors (44 different unique courses 
video-recorded; 4 instructors taught 2 sections of a course). The majority of the lessons covered one 
of three topics: linear equations/functions, rational equations/functions, or exponential 
equations/functions. These topics were chosen because they offered opportunities to observe 
instruction on key mathematical concepts (e.g., transformations of functions, algebra of functions) 
and to attend to key ways of thinking about equations and functions (e.g., preservation of solutions 
after transformations, covariational reasoning), which are foundational algebraic ideas that support 
more advanced mathematical understanding (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; 
Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). The development of EQIPM was iterative process 
similar to that used by Hill and colleagues (2008) and by Litke (2015). Their instruments subdivided 
video-taped lessons into 7.5-minute segments, after testing the efficacy of 3 to 15-minute segments, 

Figure 1: Dimensions and codes for the EQIPM 4.0 
instrument 
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they found that 7.5-minutes provided coders with a segment long enough to capture mathematical 
practices and events in a cohesive way when rating all segments within a lesson without 
compromising quality of coding that is experienced in long segments. In the Spring 2018 semester, 
our iterative process produced the EQIPM version 3a which was used in the first round of coding 
(AI@CC Research Group, 2017). Coders were given up to four consecutive 7.5-minute segments to 
reduce bias due to familiarity with the previous work. Coders recorded their ratings and justifications 
in a spreadsheet developed for this purpose after watching each segment.  Each segment was rated on 
each of the codes on a 1 to 5 scale (see Mali et al., 2019 for more information on rating and 
exemplification of codes). Ten percent of segments were randomly chosen for double-coding. Each 
pair of coders held calibration meetings to discuss codes with ratings with a discrepancy greater than 
one point; the pairs reconciled their new rating by consensus. 

Following an exploratory factor analysis [EFA] using 169 segments (Mesa, Duranczyk, Bardelli, & 
AI@CC Research Group, 2018) we identified a three-factor structure that corresponded to our 
hypothesized dimensions (see Figure 2a). This analysis also identified two problematic codes 
(Remediation of Student Errors and Imprecisions and Mathematical Errors and Imprecisions in 
Content and Language). A subsequent confirmatory factor analysis [CFA] with 306 coded segments, 
suggested instead a two-factor structure (Instructor-Content interaction and Student-Instructor 
interaction) and four problematic codes (one had poor loading, Connecting Across Representations, 
and three could not be used in the analysis, Mathematical Errors and Imprecisions in Content and  

 
(a) 

 
(b) 

Figure 2: (a) Loadings for the EFA 3-factor solution; (b) Loadings for the CFA 2-factor solution 

Language, Organization in the Presentation of the Procedure, and Classroom Environment, see 
Figure 2b). In addition, in both analyses, some codes did not load into the hypothesized dimensions 
(e.g., Situating the Mathematics, Connecting Across Representations, Student Mathematical 
Reasoning and Sense Making). We called a meeting with our advisory board to discuss the conflicting 
results. Their review of the instrument and the findings helped us identify two issues that required 
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substantial revision of the instrument (EQIPM 4.0, see Appendix for the revised definitions of the 
codes) to better describe the ratings and de-confound: 1) quality with quantifiable elements and 2) 
low quality with absence. We discuss these next. 

Confounding quality with quantifiable elements 

For some of the codes we had assigned low or high ratings depending on either the time span in which 
the behavior was observed (or not observed) or other visible quantifiable aspects of the observed 
behavior. For example, for the code Student Mathematical Reasoning and Sense Making we were 
assigning a high rating to cases in which the work was “sustained” over the duration of the segment; 
if an instance was observed but it was “not sustained” or “not the focus” of instruction in the segment, 
the instrument directed coders to lower the rating. In another case, in the Connecting Across 
Representations code we accounted for number of representations that were visible in the segment in 
addition to the quality of the connections made; a high rating would be assigned only to lessons in 
which the instructor used 3 or more representations. Such approach resulted in lower ratings for 
segments in which instructors made really good connections but only used two representations; these 
segments were rated as a 3. We believe that this attending to number of representations possibly over 
quality of the connection might explain why this particular code had low loadings in both factor 
analyses. In EQIPM 4.0 we have eliminated language across all codes that refers to quantity or 
duration, and instead focused strictly on quality. 

Confounding low quality with absence 

The rating system that we chose, a 1 through 5 scale, was adopted following prior work by Hill (2008) 
and Litke (2015). Our instrument included similar language in describing a rating of 1 which was 
assigned to two scenarios. For example, a 1 rating for Mathematical Explanations read as follows: 
“No mathematical explanations provided by instructor or student. OR Explanations do not include 
mathematical reasoning or justification; instructor or students provide only steps of a procedure.” 
This way of defining a 1 was problematic, because in some codes a rating of 1 meant not present 
(e.g., Situating the Mathematics), in others (e.g., Classroom Environment) it represented the lowest 
quality, and yet in others it meant both (e.g., Mathematical Explanations, the example above). Our 
advisory board pointed out that the ambiguity makes it difficult to interpret what a low score in a 
scale would represent. In EQIPM 4.0, the revision of the meaning of a rating of 1 also required a 
decision about the scale for assessing quality. We had followed Litke’s practice of using a rating of 
3 to be “modal practice,” meaning practices that could be expected in many instances or that would 
not be extraordinary (in terms of both high and low quality). Ratings of 2 and 4 were defined as “in 
between” levels, less than or better than 3, without being the extremes. Defining the scale in this way 
was problematic for several codes, especially for those in which 1 could mean not present. In those 
codes the change from 1 to 2 was not commensurable to a change from 2 to 3, 3 to 4, or 4 to 5 on our 
rating scale. The recommendation was to use a four-point scale in order to force the coders into 
differentiating four levels of quality, with 1 being the lowest and 4 being the highest. We assigned a 
rating of 0 for “not present” which will facilitate their exclusion as needed. 
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The revised EQIPM 4.0 instrument 
The current version of EQIPM is presented in Figure 1. Once the data are recoded we will run a split 
sample EFA/CFA to understand the revised instrument’s factor structure. The preliminary analyses 
with the previous instrument lend support to the structure underlying the instrument. One issue we 
face is the high number of segments in which lecture is the main mode of instruction (75%, 688 of 
920 segments coded as of this writing had lecture combined with other modes of instruction, e.g., 
group work, and 487 of those used only lecture). We believe that with the revised instrument we will 
be able to differentiate interactions that are solely led by the student. If there are enough segments in 
which students lead the interactions, we will run an analysis to see whether the three-factor structure 
holds.  

As we move forward we will account for (1) the multi-level structure of our data, specifically, 
segments within lessons, lessons within instructors, and instructors within colleges, which will 
address the possible non-independence of some of these codes, (2) lesson duration (e.g., in some 
lessons, student work individually at the end) and (3) coder bias. We anticipate that the structure will 
be stable in these cases as well and that as lecture diminishes as consequence of exposure to 
professional development, we may see that data will fit with three distinct factors as student 
interaction with content increases. 
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Appendix: Revised Definition of the Codes 
Code Revised Definition: The following codes assess… 

Student Mathematical 
Reasoning and Sense-
Making:  

student utterances that showcase reasoning and sense-making about mathematical 
ideas (e.g. drawing logical conclusions, providing conjectures, counter-claims, 
reasoning and engaging cognitively in problem solving) 

Connecting Across 
Representations: 

the connections that instructors or students make between and across representations 
of the same mathematical problems, ideas, and concepts 

Situating the Mathematics: how instructors or students make connections to other aspects of the algebra 
curriculum, related topics, or the broader domain of mathematics, situating and 
motivating the current area under study within a broader context. 

Instructors Making Sense 
of Mathematics:  

how instructors attend to specific aspects of mathematics (e.g., solution, symbols, 
conditions) to clarify their nature 

Mathematical 
Explanations:  

how mathematical reasons and justification for why something is done are provided 

Supporting Procedural 
Flexibility:  

how instructors identify what procedure can be applied, and when and where to 
apply them, or makes connections across procedures 

Organization in the 
Presentation:  

how complete, detailed, and organized the instructor’s or students’ presentation 
(either verbal or written) of content is when outlining or describing the mathematics 
at hand. 

Instructor-Student 
Continuum of Instruction:  

how the investment that students make in their own learning and development of 
mathematical understanding by expressing thoughtful ideas that advance their 
learning. 

Classroom Environment:  how instructor and students create a respectful and open environment in their 
classroom conducive to learning; high quality mathematical work is the norm. 

Inquiry / Exploration:  the amount of exploration and inquiry of the mathematics that students do in the 
classroom 

Remediation of Student 
Errors and Difficulties:  

how remediation in which student misconceptions and difficulties with the content 
are addressed 

Mathematical Errors and 
Imprecisions in Content or 
Language:  

mathematically incorrect or problematic use of mathematical ideas, language, or 
notation. 
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Figure 1: Relationships studied in 
the didactical tetrahedron (adapted 
from Rezat & Strässer, 2012, p. 241) 

University Student Use of Dynamic Textbooks:  
An Exploratory Analysis 

Vilma Mesa1, Angeliki Mali2 and Elena Castro-Rodríguez3 
1University of Michigan, Ann Arbor, MI, USA; vmesa@umich.edu 

1University of Groningen, Groningen, The Netherlands, a.mali@rug.nl 
3Universidad de Granada, Granada, Spain; elenacastro@ugr.es 

Keywords: Textbook research, instruction, educational resources, didactical tetrahedron, linear 
algebra 

Within the array of resources for teaching and learning, the textbook continues to be the most 
prevalent one for instructors and students. Textbook formats have been changing from paper to 
digital, open source formats, including sophisticated tools such as computing cells, annotation tools, 
and powerful search engines, easing access at relatively low cost. Importantly, open source 
textbooks never expire or go out of print and can be distributed at no cost to students, making them 
practically fully accessible. The main study seeks to describe how instructors and students use two 
open-source, technologically enhanced textbooks (linear algebra and abstract algebra for math 
majors). We use Rezat and Strässer’s (2012) didactical tetrahedron to investigate how resources 
support instruction (Cohen, Raudenbush, & Ball, 2003). The tetrahedron suggests a relationship 
between textbooks, students, instructors, and the content at 
stake and suggests that instructors, and the nature of linear 
algebra, can influence the interactions between the students 
and their textbooks. We investigate the use of the textbook by 
the students (student-textbook interaction, arrow a in Figure 1) 
and how linear algebra chapters of the textbook and instructor 
planning influence such use of the textbook by the students 
(arrows b and c, respectively, in Figure 1.) 

We analyzed bi-weekly log1 data from 102 students from four 
instructors in four different states who were using a dynamic 
linear algebra textbook (Beezer, 2017). The textbook can be accessed on any device with any 
commonly available browser. It is online, free, open-source, enhanced with computational cells.2 It 
includes standard linear algebra chapters (e.g., systems of linear equations, matrices, vector spaces, 
etc.) and is written in a definition-theorem-proof format, with exercises and some solutions towards 
the end of each chapter. The textbooks used in the project have a tracking system that allows to 
identify which sections of the textbook are being viewed and for how long.  

                                                 
1 A log was an online survey that contained between four and seven questions about the use of the textbook during the 
past two weeks. We used thematic analysis to group log responses regarding student use of the textbooks. 
2 Students did not use the open-source feature, and infrequently used computational cells. 

Thematic Working Group 14

Proceedings of CERME11 2604



 

 

The analysis of the viewing data revealed, unsurprisingly, that viewing tended to occur during the 
days when the classes were offered (mostly during class sessions), close to exams days, or when 
homework was due. The students mainly used solutions of exercises—in 17,405 viewings, 81% of 
the viewing time was for solutions of exercises, 15% for examples, and 5% for all the other 
elements. In the log responses students reported that they checked the textbook the day before class 
or the last day of their break; they also used it to study for the upcoming class, or when they were 
stuck, missed class, or had not understood their instructor’s explanation. Students reported using 
mainly problems, exercises, and examples as they were preparing for class. When asked about their 
use of theorems, definitions, and examples, students said those were mainly used when producing 
notes for later use because they wanted to make sure they were connecting ideas and knew the basic 
definitions. In addition, students created class notes, homework documents or solutions, and 
textbook notes in order to improve their understanding, for practice, and reminders or 
memorization, and used many other resources (classmates, Internet, Google, YouTube, Chegg, 
Khan Academy, and class lecture videos). 

We have been tracing how the various uses students reported relate to the specific content covered 
in the courses and to decisions instructors had made about the course. We  noticed that students did 
not use features that were not required by their instructors; in general, the students (and their 
instructors) seemed reluctant to take full advantage of novel features (such as the programming 
cells). We speculated that by itself, the design of the textbooks was insufficient for pushing users 
into adopting different ways of using these textbooks in teaching and learning linear algebra. 
Instructors might need training, perhaps in the form of conversations with designers and authors or 
in authorship that takes advantage of the open nature of the textbooks, so that they can envision new 
ways in which these textbooks can be used for teaching and learning. Textbook production is 
expensive, and thus, research that documents how open access textbooks can be made widely 
available is important. Yet, without knowing how to best take advantage of the new technologies, 
we might not realize their potential within mathematics classrooms.  
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An exploratory study of calculus students’ understanding of 
multivariable optimization problems 
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Contributing to the growing body of research on students’ quantitative reasoning at the 
undergraduate level, this study reports on students’ reasoning about a multivariable optimization 
problem that involves finding the dimensions of the largest volume bag a passenger can carry on an 
American Airlines flight. Analysis of verbal responses and work written by 11 students when solving 
the problem revealed that finding the required dimensions was easy for nearly all the students. 
However, showing that these are the dimensions of the largest volume bag was problematic for a 
majority of the students. Implications for instruction and directions for future research are discussed. 

Keywords: Optimization problems, quantitative reasoning, problem solving, calculus education. 

Introduction 
Optimization problems form an essential part of the study of differential calculus at the undergraduate 
level in the United States. Findings of a comprehensive review of literature on students’ 
understanding of various topics in university calculus by Speer and Kung (2016) indicate that research 
on students’ reasoning about optimization problems is lacking. A growing body of research (e.g., 
Borgen & Manu, 2002; Dominguez, 2010; LaRue & Infante, 2015) has examined students’ reasoning 
about univariate optimization problems (UOPs). We define UOPs as optimization problems where 
the objective function, that is, the function whose minimum/maximum value(s) is to be found is a 
real-valued function of a single variable. Only one study (Heid, 1988) has reported on students’ 
understanding of multivariable optimization problems (MOPs), that is, optimization problems where 
the objective function is a real-valued function of two variables. Heid found that determining 
minimum/maximum values of objective functions when solving MOPs where algebraic forms of the 
objective functions were given was problematic for a majority of the 135 students who participated 
in her study. We remark that the focus of Heid’s study was more on the impact of resequencing skills 
and concepts on students’ understanding of fundamental concepts in calculus, and less on students’ 
understanding of MOPs. 

While Heid’s study has provided beneficial information about how students calculate 
minimum/maximum values when solving MOPs, there is still much to be explored about how students 
set up and solve MOPs in situations where an algebraic form of the objective function is not given, 
which is the motivation for this study. Thus, to build on Heid’s study, we intend to explicitly examine 
students’ understanding of the key steps (e.g., setting up the objective function, finding critical points 
of the objective function, and using the critical points to find the minimum/maximum value(s) of the 
objective function) that are generally involved in the process of solving MOPs algebraically.  

Research on students’ understanding of UOPs 
While the focus of this study is on students’ understanding of MOPs, it is important to discuss the 
research literature on students’ understanding of UOPs for comparison. Specifically, we use the 
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literature base on students’ understanding of UOPs to identify trends in students’ reasoning about 
UOPs that may be comparable to the results found in this study. There are three themes that emerge 
from the research that has looked at students’ understanding of UOPs: (1) students’ difficulties with 
setting up the objective function, (2) students’ difficulties with determining and interpreting critical 
numbers and/or extrema, and (3) students’ difficulties with justifying/verifying extrema (the 
minimum/maximum value(s) of the objective function). Following is a brief discussion of each of the 
aforementioned themes. 

In the first theme, several researchers have found that setting up the objective function is problematic 
for high school and undergraduate students (e.g., LaRue & Infante, 2015; Swanagan, 2012). 
Swanagan (2012) reported on a high school student who used the equation of the parabola, 𝑦𝑦 = 𝑥𝑥2, 
as the objective function in a task about finding a point on the parabola closest to the point (1,0). In 
the same study, another high school student used the perimeter function as the objective function in 
a task about minimizing the cost of fencing a rectangular plot of land. LaRue and Infante (2015) found 
that formulating the objective function when solving contextualized optimization problems is 
problematic for undergraduate students even if the objective function is simple and the context of the 
problem is familiar to the students. 

In the second theme, evidence from research (e.g., Dominguez, 2010; Mkhatshwa, 2018; Swanagan, 
2012) shows that determining and interpreting critical numbers and/or extrema when solving 
optimization problems that have real-world contexts is problematic for high school and undergraduate 
students. Two of the five high school students in Swanagan’s (2012) study occasionally relied on 
guesswork to determine extrema in a cost minimization context. Interpreting extrema in a profit 
maximization context was problematic for a majority of the 94 undergraduate calculus students who 
participated in Dominguez’s (2010) study. In another profit maximization context, Mkhatshwa (2018) 
reported on three undergraduate business calculus students who conflated extrema (maximum profit) 
with a critical number (profit maximizing quantity).  

In the third theme, research by Borgen and Manu (2002) and Mkhatshwa (2018) shows that 
justifying/verifying extrema is problematic for undergraduate students. Borgen and Manu (2002) 
reported on a student who presented a perfect solution to the problem of finding the minimum value 
of the function 𝑦𝑦 = 2𝑥𝑥2 − 𝑥𝑥 + 1. However, when asked for a justification on why the function has a 
minimum value and not a maximum value, the student incorrectly claimed that since the coefficient 
of the linear term of the function is negative, the function must have a minimum value. Mkhatshwa 
(2018) found that 16 of the 24  students who participated in his study had difficulty verifying extrema 
(maximum profit) while reasoning about a profit maximization task. 

Relationship between UOPs and MOPs 
Solving MOPs algebraically may be more difficult for students than solving UOPs for several reasons. 
First, setting up the objective function for a MOP is more difficult than for a UOP. Part of the 
difficulty stems from the fact that in the case of a MOP the objective function is a real-valued function 
of two variables, where as in the case of a UOP the objective function is a real-valued function of a 
single variable. Second, the algebra involved when solving a MOP may be more challenging than the 
algebra involved when solving a UOP. In particular, to find a critical point(s) for a MOP, students 
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have to simultaneously solve a system of equations, where as in the case of a UPO, they only have to  
solve a single equation (the derivative of the objective function) to find a critical number(s). Third, 
algebraic procedures such as the Second Derivative Test (Stewart, 2016) for verifying extrema when 
solving a MOP are much more complex than algebraic procedures for verifying extrema in the case 
of a UOP. Thus, one can expect the aforementioned students’ difficulties with UOPs to carry over to 
MOPs. 

Theoretical perspective 
This study draws on the theory of quantitative reasoning (Thompson, 1993; Thompson, 1994b; 
Thompson, 2011). Quantitative reasoning (hereafter, QR) is the act of analyzing a problem situation 
in terms of the quantities and relationships among the quantities involved in the situation (Thompson, 
1993). In this study, QR refers to how students: (1) constructed formulas for quantities, (2) how they 
evaluated these formulas to determine numeric measures for quantities, (3) how they interpreted 
quantities, and (4) and how they reasoned about relationships between or among quantities while 
solving a MOP situated in a volume maximization context. Thompson (2011) identified several tenets 
that are central to the theory of QR. We describe three of those tenets that are related to the study 
reported in this paper. These tenets are: a quantity, a quantitative operation, and quantification. A 
quantity is a measurable attribute of an object. Examples of quantities (i.e., measurable attributes) in 
this study include the volume, length, width, and height of the carry-on bag (i.e., the object) mentioned 
in the task that appears in the methods section. Thompson (1993) distinguished between a quantity 
and a numerical value: A quantity has a unit of measurement but a numerical value does not.  

A quantitative operation is the process of creating a new quantity from other quantities (Thompson, 
1994b). The task used in this study provided a number of opportunities for students to create new 
quantities (partial derivatives) through the process of differentiation, that is, to perform quantitative 
operations. More precisely, one way students could use to solve this task successfully is to find a 
model (algebraic formula) that relates the quantities in the task. In this task, an appropriate model 
would be the formula for calculating the volume of the carry-on bag (hereafter, bag), i.e., 𝑉𝑉 = 𝑙𝑙𝑙𝑙ℎ 
where 𝑉𝑉 is the volume of the bag, 𝑙𝑙 is the length of the bag, 𝑙𝑙 is the width of the bag, and ℎ is the 
height of the bag. Multiplying the length, width, and height of the bag would result in the creation of 
a formula for the quantity of volume for the bag. In addition, differentiating this model (preferably, 
after first writing it as a function of two variables by taking into consideration the constraint on the 
dimensions of the bag given in the task) partially with respect to two of the dimensions (e.g., width 
and height) of the bag will result in the creation of new quantities (partial derivatives). Quantification 
is the process of assigning numerical values to quantities (Thompson, 2011). The task used in this 
study provided several opportunities for students to engage in the process of quantification. For 
example, evaluating the formula for the quantity of volume, 𝑉𝑉 = 𝑙𝑙𝑙𝑙ℎ, after the dimensions of the 
length, width, and height that will maximize the volume of the bag have been found would lead to 
the determination of a numerical value for the quantity 𝑉𝑉. Our study was guided by the following 
research question: How can we interpret the theory of quantitative reasoning in the context of students 
solving MOPs? 
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Methods 
This qualitative study used task-based interviews (Goldin, 2000) with 11 students. The interviews 
lasted for about 34 minutes, on average, and contained two tasks. In this paper, we report on how the 
students reasoned quantitatively about one of the tasks: 

American Airlines requires that the total outside dimensions (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ + 𝑙𝑙𝑤𝑤𝑤𝑤𝑙𝑙ℎ + ℎ𝑙𝑙𝑤𝑤𝑙𝑙ℎ𝑙𝑙) of a 
carry-on bag not exceed 45 inches. What are the dimensions of the largest volume bag that a 
passenger can carry on an American Airlines flight? 

The students worked through the task while the interviewer asked clarifying questions about their 
work. After the student concluded their work on the task, the interviewer asked the following 
questions about the task and the content of their solutions: (a) Have you seen a problem like this 
before? (b) What did you do to solve the problem? (c) What does your answer tell you? (d) What 
does each quantity you used throughout your solution mean?  (e) What are the units of each quantity 
that you used in your solution? (f) What was the easiest part when solving this problem? (g) What 
was the challenging part when solving this problem? Eight students acknowledged having seen or 
even solved a similar task prior to participating in this study.  

Setting, participants, and data collection 

The study participants were undergraduate students at a research university in the United States. 
These students represented most of the high-performing students who were enrolled in two sections 
of a traditional calculus III course taught in the spring semester of 2018. The students were chosen 
based on their willingness to participate in the study, and on their ability to explain their thinking 
when engaged in problem solving. In addition, drawing on my my past experience with inviting 
students to participate in research studies similar to the one reported in this paper, high-performing 
students are more likely to accept the invitation than average or low-performing students. The 
students were familiar with formal techniques (e.g., the Lagrange multiplier method) that can be used 
to solve the problem posed in the task from course lectures and the course textbook (Stewart, 2016). 
We state as a remark that the students in this study had limited exposure to optimization problems 
that are situated in real-world contexts through classroom instruction and/or homework assignments. 
At the time of the study, four students were mathematics majors, another four students were 
engineering majors, two students were physics majors, and one student was an economics major. We 
note that this is a required course for mathematics, engineering, and physics majors, and that students 
outside the aforementioned disciplines rarely take this course as an elective. Eight students were 
freshmen, and the other three students were sophomores. Data for the study consisted of transcriptions 
of audio-recordings of the task-based interviews and work written by the 11 students during each 
task-based interview session.  

Data analysis 

Data analysis was done in two stages. In the first stage, we used a priori codes that consisted of the 
themes on students’ difficulties when solving UOPs discussed earlier. Specifically, we carefully read 
through each interview transcript and coded: (1) instances where students reasoned about the 
objective function, (2) instances where students reasoned about finding and interpreting critical points 
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and/or extrema, and (3) instances where students reasoned about justifying/verifying extrema. In the 
second stage of the analysis, we looked for patterns in each of the codes identified in the first stage 
of the analysis. These patterns included trends in the students’ understandings, or difficulties they had 
in connection with each of the a priori codes identified in the first stage. The common understandings 
or difficulties in students’ reasoning found in the second stage of our analysis provided answers to 
our research question. 

Results  
There are three main findings from this study. First, setting up the objective function was easy for 
nearly all the students. Second, most of the students successfully determined and correctly interpreted 
critical points and extrema. Third, verifying extrema was problematic for a majority of the students. 

Setting up the objective function 

Ten students were successful in setting up the objective function (i.e., the volume function) for the 
problem posed in the task. These students performed a quantitative operation by conceptualizing a 
measure of the quantity of volume as a quantitative product, i.e., volume as the product of the length, 
width, and height of the bag. The following excerpt illustrates how Sally, whose reasoning is 
representative of these students, thought about the objective function and constraint function. 

Researcher:  What was the first thing you did when solving the problem? 

Sally:  I wrote down the equations for the volume [𝑉𝑉 = 𝑙𝑙𝑙𝑙ℎ], which is what we are trying 
to solve for and maximize, and our constraint [𝑙𝑙 + 𝑙𝑙 + ℎ = 45] that we have, in 
terms of the variables we have, which is length, width, and height of the carry-on 
bag. 

Researcher: What are the units of the 𝑙𝑙, 𝑙𝑙, and ℎ? 

Sally:  They will be in inches. 

Researcher:  How about the units of 𝑉𝑉? 

Sally:  Cubic inches. 

After reading the problem statement, Sally recognized that the volume of the bag is the product of the 
length, width, and height of the bag, and that to maximize the volume of the bag, the sum of the 
dimensions of the bag will have to be 45 inches. She quickly turned these recognitions to algebraic 
equations for the objective function and constraint function. Sally also recognized the volume, length, 
width, and height of the bag as quantities (and not as unit-less variables) when she assigned units of 
measure to the variables 𝑙𝑙, 𝑙𝑙, ℎ, and 𝑉𝑉. Only one student, Andy, had difficulty setting up the objective 
function. This student conflated the objective function with the constraint on the dimensions of the 
bag given in the task. Consequently, he incorrectly claimed that the volume function would be 𝑓𝑓(𝑥𝑥) =
𝑥𝑥𝑦𝑦𝑥𝑥 = 45, where 𝑓𝑓(𝑥𝑥) represents “the volume of the bag” and 𝑥𝑥, 𝑦𝑦, and 𝑥𝑥 represents the length, 
width, and height of the bag respectively. Andy’s notation for the volume function suggest that this 
student either did not know how to write the correct function notation for a real-valued function of 
three variables or that he treated the variables 𝑦𝑦 and 𝑥𝑥 as constants. 
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Determining and interpreting critical points and/or extrema 

Eight students correctly determined the critical point of the objective function using algebraic 
methods. The following excerpt illustrates how Ronda, who is representative of how six of these 
students used the Lagrange multiplier method (hereafter, LMM) to find the critical point of the 
objective function. 

Researcher:  What did you do next [after finding the objective function and constraint function]? 

Ronda:  I found the partial derivatives for the volume equation [𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑥𝑥) = 𝑥𝑥𝑦𝑦𝑥𝑥 in Figure 
1], and I did the same thing for the other equation [𝑙𝑙(𝑥𝑥, 𝑦𝑦, 𝑥𝑥) = 𝑥𝑥 + 𝑦𝑦 + 𝑥𝑥 in Figure 
1]. From there, I tried solving. I used the Lagrange multipliers [method] but I don’t 
know if that is what I was supposed to do but that’s what I ended up doing. I ended 
up getting that the length, the width, and the height will equal each other, and I got 
45/3 or 15 inches for all of those [length, width, and height].  

 
Figure 1: Ronda’s solution 

Ronda correctly used the LMM as presented during classroom instruction and in the course textbook 
to find the critical point of the objective function. When asked about the meaning and units of the 
quantities she used in her solution, Ronda stated that the variables 𝑉𝑉, 𝑥𝑥, 𝑦𝑦, and 𝑥𝑥 represent the volume, 
length, width, and height of the bag respectively and that the units of the variable 𝑉𝑉 are “inches cubed” 
while those of 𝑥𝑥, 𝑦𝑦, and 𝑥𝑥 are “inches.” In the process of using the LMM to find the critical point of 
the objective function, Ronda created new quantities (i.e., performed quantitative operations). Three 
of the quantities she created are the partial derivatives 𝑓𝑓𝑥𝑥 = 𝑦𝑦𝑥𝑥,𝑓𝑓𝑦𝑦 = 𝑥𝑥𝑥𝑥, and 𝑓𝑓𝑧𝑧 = 𝑥𝑥𝑦𝑦 . When asked 
about the meaning of the partial derivative 𝑓𝑓𝑥𝑥 = 𝑦𝑦𝑥𝑥, Ronda said, “that would be saying like the width 
and the height would both be constant, so they wouldn’t be changing at all, 𝑥𝑥 is the only variable.” 
While Ronda’s interpretation of the partial derivative 𝑓𝑓𝑥𝑥 shows that she clearly understood that only 
𝑥𝑥 is allowed to vary while 𝑦𝑦 and 𝑥𝑥 are held constant, it does not show that she understood the partial 
derivative to be a “rate” quantity. She stated that the units of the partial derivative 𝑓𝑓𝑥𝑥 = 𝑦𝑦𝑥𝑥 would be 
“inches cubed,” suggesting that she conflated a “rate” quantity with an “amount” quantity, i.e., 
volume. Ronda gave similar interpretations and units for the other two partial derivatives, namely 𝑓𝑓𝑦𝑦 
and 𝑓𝑓𝑧𝑧. Ronda and three other students (Sally, Austin, and Tim) went on to engage in quantification 
by evaluating the volume function at the critical point they found (i.e., 15 inches for the length, width, 
and height respectively) to determine the volume of the bag. 
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Two other students (Noel and Paul) used another algebraic method to find the critical point of the 
objective function. Because of space limitations, we will not show student work that illustrates the 
method used by these students. Two other students (Tom and Austin) drew on their prior experiences 
with calculating volumes of rectangular prisms and correctly determined the critical point of the 
objective function. Another student (Andy) incorrectly assumed that the length, width, and height of 
the bag will each be √453  inches long. 

Verifying extrema 

Eight students had difficulty verifying that the dimensions of the bag they found would result in a bag 
of largest volume. For example, when asked how they can convince someone that the dimensions of 
the bag they found are the dimensions of the largest volume bag a passenger  can carry on an 
American Airlines flight, Ronda commented, “honestly, I am not sure” while Garry said “I would 
probably google Lagrange multipliers to refresh myself. Lagrange multipliers would sort of be my 
proof.” In response to the same question, one of the students who gave an acceptable response, stated 
that he could use a numerical approach that involves randomly trying other numeric values for the 
quantities of length, width, and volume besides 15 inches and showing that these values would result 
in a smaller volume than when each side of the bag is 15 inches long. He also stated that the Second 
Derivative Test, discussed during classroom instruction and in the course textbook, could be used. 
The student correctly explained how this test could be used, in addition to using it correctly to verify 
extrema in another task not reported in this paper. 

Discussion and conclusions 
Although previous research (e.g., LaRue & Infante, 2015) has reported on students’ difficulties with 
setting up the objective function when solving UOPs, this was not the case for most of the students 
in this study. To some extent, findings of this study suggest that students’ difficulties when solving 
MOPs are similar to students’ difficulties when solving UOPs. In particular, verifying that the 
dimensions of the bag the students found (correct or incorrect) were the dimensions of the largest 
volume bag a passenger can carry on an American Airlines flight was problematic for eight of the 11 
students who participated in this study. Similar results have been reported among students when 
solving UOPs (Borgen & Manu, 2002; Mkhatshwa, 2018). One student (Ronda) interpreted a “rate” 
quantity represented by a partial derivative as an “amount” quantity with units of volume (i.e., inches 
cubed). Similar results have been reported in other studies that have examined students’ reasoning 
about “rate” and “amount” quantities in real-world contexts (e.g., Mkhatshwa & Doerr, 2018). As 
noted earlier, the students in this study had limited exposure to solving MOPs that have real-world 
contexts. The presentation of optimization problems during course lectures closely followed the 
presentation of optimization problems in the course textbook. In particular, verifying extrema using 
informal and formal techniques such as the Second Derivative Test received minimal attention during 
course lectures. Hence, we argue that the students’ difficulties with verifying that the dimensions they 
found would result in a bag of largest volume may be directly related to the limited opportunities they 
had to verify extrema via examples that were given during course lectures. Calculus instructors may 
have to supplement examples given in course textbooks in order to maximize students’ opportunity 
to learn about MOPs. Future research might examine whether or not there are gaps in students’ prior 
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knowledge that impact them in understanding MOPs and the use of technology (especially graphs 
and spreadsheets) during classroom instruction to help students understand MOPs. 
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In this study we explore (1) which kinds of ‘resources’ engineering students use in selected first year 
university mathematics courses (Calculus, Linear Algebra); and (2) how they use/orchestrate them 
for their study of mathematics. Using a case study and mixed methods approach, we found that in the 
large Calculus course students followed various study paths. Moreover, it appeared that in such 
courses students used/included human and social resources extensively. In the smaller Linear 
Algebra course students could follow the study path established by the lecturer/course designer, with 
all resources provided for students to pass their examinations. At the theoretical level, we coined the 
term Actual Student Study Path to describe their self-reported ways of how they identified and 
orchestrated their chosen resources for their study of the mathematics. 

Keywords: Student use of resources, university mathematics education, actual student study path/s. 

Introduction 
In most western (engineering) universities students now have access to a plethora of resources, both 
digital/online resources and ‘traditional’ curriculum resources, such as textbooks, readers (course 
textbook/set of materials prepared by the lecturer), worksheets, provided by the university and by 
lecturers. In particular in large first year courses (e.g., Calculus), students are typically expected to 
use and blend the available resources according to their individual needs, to support their learning. 
The rationale for our study is that, in times where students have access to almost limitless learning 
resources online, it becomes increasingly important to understand which resources are preferably (and 
beneficially) used by students from the ones on offer, and how they orchestrate them for their study 
of mathematics. This, in turn, is likely to inform the designers and teachers/lecturers of mathematics 
courses in their efforts to enhance their courses. 

The use of particular curriculum resources by teachers and students in higher education mathematics 
has been subject of current research. In a recent review study (Biza, Giraldo, Hochmuth, Khakbaz, & 
Rasmussen, 2016), the opportunities afforded by introductory university mathematics textbooks and 
the actual use made of these curriculum materials by students are described. Anastasakis, Robinson, 
and Lerman (2017) investigated the different types of tools (‘external’ to the university, and 
‘internally’ provided resources) that a cohort of second year engineering undergraduates used. Their 
results showed that although to some extent students used resources external to their university, their 
practices were dominated by tools that their institution provided. The students in their sample chose 
certain tools mainly because these enabled them to pursue their examination-driven goals. 
Specifically, the use of visual resources (e.g. online lectures) has been studied by Inglis, Palipana, 
and Ward (2011). Using the Documentational Approach to Didactics, Gueudet (2017) investigated 
mathematics teachers’ interactions with resources at university, and Gueudet and Pepin (2018) 
explored how Brousseau’s (1986) Didactic Contract can be seen through the lens of the use of 
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curriculum resources. Whilst the learning of Calculus (CS) has been studied extensively (e.g. 
Bressoud, Mesa, & Rassmussen 2015), Linear Algebra (LA) learning has had less attention (e.g. 
Grenier-Boley 2014).   

However, we note here that relatively little research is available on the broad range of resources 
available to first year university students to learn the mathematics, and moreover how students 
actually orchestrate the resources in order to study mathematics. Typically, studies include the 
curriculum resources made available or recommended as part of mathematics courses (e.g., 
textbooks), but there are also social resources (e.g. lecturers, tutors, peers) that students tap into, and 
digital and other resources mobilized by students themselves. Inglis et al. (2011) suggest that students 
might need explicit guidance on how to combine the use of various resources into an effective learning 
strategy. Before this guidance can be given, more in-depth information on students’ actual use of 
resources is needed. Hence, we ask the following research question: 

How do first year engineering students identify and use the available resources for their study of 
Calculus and Linear Algebra in their first year at university, and what kinds of paths do students 
describe? 

Theoretical frames/literature review 
The lens of resources 

Leaning on the Documentational Approach to Didactics (e.g. Trouche, Gueudet, & Pepin, 2018), in 
this study we use the notion of re-source/s that students have access to and interact with in and for 
their learning. We assume that the ways university students learn the mathematics is 
influenced/shaped by their use of the various resources at their disposal. By use of resources we 
denote, for example, which resources students choose (amongst the many on offer) and for what 
purpose (e.g. revision); the ways they align and orchestrate them (e.g. first lecture then checking the 
textbook); which ones seem central to achieve particular learning goals (e.g. for weekly course work, 
for examinations, for their engineering topic area). However, we do not address the specific learning 
of CS and LA, that is how students interact with particular (e.g. cognitive) resources to learn particular 
topic areas in CS and/or in LA.  

Gueudet and Pepin (2018) have coined student resources as anything likely to re-source (“to source 
again or differently”) students’ mathematical practice, leaning on Adler’s (2000) definition of 
mathematics re-sources, in Adler’s case used by teachers. In this study, following Pepin and Gueudet 
(2018), we distinguish between (1) material/traditional text/curriculum resource (including digital 
resources); and (2) human/social resources. As to (1) material/traditional text/curriculum resources: 
a further distinction has been made between (a) curriculum resources (those resources proposed to 
students and aligned with the course curriculum), and (b) general resources (which students might 
find/access randomly on the web).  Curriculum resources are developed, proposed by teachers and 
used by students for the learning of the course mathematics, inside and outside the classroom. They 
may include text resources, such as textbooks, readers, websites and computer software, to name but 
a few. General resources are the non-curricular material resources mobilized by students, such as 
general websites (e.g. Wikipedia, YouTube). (2) In terms of social resources, we refer to formal or 
casual human interactions, such as conversations with friends, peers or tutors/lecturers. 
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Actual student study paths 

The research literature in mathematics and science education shows many different terms and 
concepts linking to student study paths, often associated with instructional theory and curriculum 
design, such as Hypothetical Learning Trajectory (HLT) (Simon, 1995); Learning Trajectories/ 
Progressions (Lobato & Walters, 2017); or, Learning Trajectories in mathematics education (Weber, 
Walkington, & Mc Galliard, 2015). Whereas some of the approaches focus primarily on learners (e.g. 
Lobator & Walters, 2017), Simon’s (1995) HLT approach includes instructional supports for learning 
and was originally conceived as part of a model of teachers’ decision making. Simon and Tzur (2004) 
later highlighted the importance of and principles for selecting tasks that promote students’ 
development of more sophisticated mathematical concepts. Building on this work, Clements and 
Sarama (2004) define learning trajectories as 

descriptions of children’s thinking and learning in a specific mathematical domain and a related, 
conjectured route through a set of instructional tasks designed to engender those mental processes 
or actions hypothesized to move children through a developmental progression of levels of 
thinking, created with the intent of supporting children’s achievement of specific goals in that 
mathematical domain. (p. 83) 

Whilst recognizing this important work, it is clear that we have to define what we mean by student 
study paths for our purpose: first, when using the lens of resources to investigate students’ study 
paths, we look at the alignment and orchestration of resources, and not at the actual tasks or activities 
and how students develop understandings of mathematical concepts; second, we view this from the 
students’ perspective, how they actually orchestrate and align the resources for their own learning, 
and how they give meaning to these self-reported paths. We call these Actual Student Study Paths. 

The study 
Using a case study approach, we explored two first year mathematics courses in a Dutch engineering 
university: Calculus (CS) and Linear Algebra (LA), as our cases.  

LA was taught to one group of approximately 130 students, mainly mathematics and physics students. 
The LA course was organized with four hours of lectures per week, and four hours of tutorials (in 
groups of approximately 30 students). The learning aims were described as the acquisition of 
mathematical skills, and to help students develop the skills and appreciate the importance of correct 
mathematical communication, including writing formal proofs. Completing a mathematical writing 
assignment was part of the course requirements to reach this aim. According to lecturers, the purpose 
of LA was to prepare students for higher mathematics (used in the mathematics and physics courses). 

CS was taught as an obligatory subject to approximately 2000 students, in 6-7 groups of 300 students 
each (all types of engineering). The CS course was organized with six hours of lectures and one hour 
of tutorials (in small groups of approximately eight students). It was also differentiated at three levels 
(A, B, and C), according to perceived level of difficulty and with varying level of emphasis on formal 
aspects of mathematics (e.g. proof). The aim of the CS course (according to lecturers) was to provide 
students with a basic set of mathematical/computational tools they could subsequently use in their 
engineering studies and in their future work as engineers. 
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In terms of participants, in total 24 students participated in the study; all of them ‘opted in’ after a 
general mail to all CS and LA students: 18 CS students, involved in nine different engineering 
programs and all taking the B level CS course; 1 CS student who dropped out of university; 5 LA 
students, all studying for the applied mathematics engineering course. In terms of background, of the 
interviewed CS students 15 came from secondary schools in the Netherlands, three came from other 
educational systems. 

For this paper we used data from the following data collection strategies:   

- Individual and focus group interviews with students (24): 19 CS + 5 LA. The CS students 
were interviewed in four focus groups, and one individual interview. The LA students were 
interviewed in two groups of two, and one individual interview. 

- CS students’ drawings (see example Figure 1): students were asked to draw Schematic 
Representation of Resource System (SRRS - see Pepin, Xu, Trouche, & Wang, 2017) during 
the interviews, to illustrate the particular resources each student used, and how. During the 
interviews students were asked to explain their resource use based on their SRRSs. The SRRSs 
were a methodological tool, to help the researchers better understand student use of resources.  

- Interviews with course designers/lecturers and tutors (of the CS and LA courses): 3CS + 2LA.  
- Selected observations of CS and LA lectures and tutorials, and examination of 

documents/curriculum materials provided by the university for the students, such as syllabi, 
textbook/s, reader/s, and lecture videos (mainly to understand the context in which students 
were working). 

In terms of analysis, the interviews were first transcribed and interview quotes were coded using 
ATLAS-ti software. The codes were based on our knowledge from the literature (e.g. concerning the 
different curriculum resources and their use) and on our knowledge about student approaches to 
learning mathematics. Second, student drawings were compared with their explanations (within case 
comparison): how they explained their identification of (for them) suitable resources and the 
orchestration of these resources; this resulted in self-reported study paths. Third, these self-reported 
study paths were compared (across case comparison), and this resulted in particular types of study 
paths. In another step, the findings from CS and LA were compared, also taking into account our 
knowledge of the context and course organization. 

Results 
Overall, students used different/additional resources in the two courses, and they used the available 
resources differently for LA than for CS: (1) Basically, all LA curriculum resources offered/provided 
were used, and students worked with them according to the lecturer’s guidance. (2) The CS resources 
seemed to be a large bag of ‘tools’, a ‘pile of bricks’, that the students could pick from (according to 
their needs) and use for their learning. However, how students could orchestrate and align the 
resources for the learning of CS was not clear. These differences appeared to be related to (a) the size 
and student audience of the courses (130 students in LA; 2000 in calculus), and this, in turn, was 
connected to different organizations of the courses (4 hours lecture and 3 hours tutorials in LA; 6 
hours lecture and 1 hour of tutorial in calculus); and (b) the organization and alignment of the 
resources with the assessment/tests. For example, there was a clear intended (by the lecturer) learning 

Thematic Working Group 14

Proceedings of CERME11 2617



 

 

trajectory in LA, with exercises aligned with the examinations. Students mentioned that if they 
worked according to/with the reader and did “all exercises in the reader”, and the obligatory weekly 
assignments, they could expect to pass the examination. In the CS course, many support tools were 
proposed (e.g. on the web, in print), with many exercises and tasks that, according to the students, 
were not always clearly aligned with the examinations. Students said that it was not possible to do all 
exercises, read all materials provided, and they often had considerable difficulties choosing from the 
immensity of resources provided.   

From the interviews based on students’ drawings of their resource system, we could identify several 
study paths, which were the paths students perceived/drew when we asked them which resources they 
used, the importance of those resources (their role with respect to their perceived study paths), and 
how they orchestrated them for their learning. The study path of the LA course appeared to be 
relatively traditional and most students followed it: students could identify core resources (e.g. the 
lecture, the reader, past examinations, weekly tests), and a particular blending of the different 
resources was recommended by the lecturer. This would help students to understand the weekly 
coursework and to pass the final examinations. In addition, students had time to work together (in 
tutorials), and they also used human resources (e.g. peers, tutor/s, lecturer) during that time. In this 
course the number of tutorials was balanced as compared to the number of lectures (4 + 4). 

In contrast, the students on the CS course outlined several study paths, based on their individual 
preferences and experiences, and for each path different resources came into play, and different core 
resources were described. For example, in the interviews based on their drawings, only two students 
put the lecture as a center point for their learning. For others, it appeared that the lecture was for 
information only of what students had to learn: “If I hear them talk about it, it’s easier for me to 
revise/practice when I’ve already seen it, heard about it” (see Joanna’s1 drawing in Figure 1). 

 
Figure 1: Joanna’s drawing of her resource system 

                                                 
1 All names are pseudonyms 
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At the same time, either the lecture or lecture notes were mentioned by all students as a supporting 
resource for their learning of CS. Interestingly, a large number of students pointed to human 
resources, in particular their friends and peers, and the tutor, as resources they often used. As perhaps 
expected, books and tests/quizzes/exercises were mentioned as a huge help, and the digital resources 
(e.g. YouTube; Khan Academy) seemed to gain importance compared to high school. Altogether, the 
CS study paths showed a complex picture of students using a mixture and ever-increasing number of 
external resources, in particular of human and digital nature. Due to the interviews based on the 
SRRSs, we could identify a small number of (for students) ‘productive’ study paths that students self-
reported upon. What made a study path ‘productive’ was that it allowed the students to orchestrate 
the different resources around a particular focus, in such a way that the students felt the demands of 
the course could be met. 

The study paths we present here had different foci: (1) tests and examinations, weekly homework; 
(2) lecture; (3) friends and social media; and (4) understanding.  

(1) For most students the weekly homework, tests and examinations were the focal point, hence 
they described the resources that helped them to solve the associated tasks (e.g. “last resort 
professor”). Some students described a real trajectory of how they prepared for solving 
particular tasks or homework, and for passing tests and examinations. 

(2) Selected students chose the lecture as focus:  

Dirk’s path: from lecture à tests à tutor hour & old exams à YouTube/Khan academy à 
homework (“reading text” & “do it”)  

Naomi’s path: from lecture (every week) à tutor time à homework every weekà on-course 
extra questions & weekly quiz à discussion with friends à “my own comments” /writings 
to prepare for exam.  

(3) Example of human resources and social media as focus:  

Rebecca’s path: from “human resources” (at center) - first friends & summary chapters 
(book)/exercises & weekly homework à lecture “for orientation & overview, not in depth” 
(video lecture “only if I missed an essential”)à Matlab “own curiosity & personal interest” 
à Tutor hour (falling asleep).  

Jop’s path: social media at the center   

(4) Example of students who differentiated between resources used for different kinds of learning: 
Melissa’s path: she made a distinction between (a) procedural understanding: solving 
exercises/passing exams (resource/s: e.g. tutor, weekly quiz, online practice test), and (b) 
conceptual understanding: “if you do not understand underlying thought/concept” (resource: 
YouTube). 

Conclusions 
From our findings, it can be seen that students’ use and orchestration of resources were largely shaped 
by the course organizations. In one case (LA), the lecturer/course designer provided a ‘home-made’ 
reader (no other textbook was needed) which provided all necessary and important information in 
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terms of the mathematics (e.g. concept explanation) and the most relevant exercises. All other 
curriculum resources were aligned with the reader, and in line with the learning objectives/course 
aims (as described in the course guide booklet). In addition, the lecture and tutor hours afforded 
opportunities to discuss problems and ask for help from the lecturer/tutors, or indeed from peers. In 
the case of CS (at the B level), a commercially produced textbook was used, and several lecturers and 
tutors were involved. Moreover, in terms of opportunities for learning, the lectures were foregrounded 
(6 hours), with only one hour of tutor support. In addition, several resources had been prepared and 
were provided within the course web environment, as a support for students. However, it appeared 
that in this environment students looked for their own ways to use the affordances of the resources 
on offer (e.g. opportunities offered by textbooks and other resources, see Biza et al., 2016). They 
sometimes had difficulties navigating their ways around the different resources, benefitting from the 
quality of the resources on offer, with little (time and) guidance from the tutors. There were many 
(and new) resources to choose from, and the “didactic contract” (Gueudet & Pepin, 2018) was not 
clear to them; hence, students created their own actual study paths.    

Based on our results we claim that it is not sufficient to provide a plethora of curriculum resources, 
may they be digital, traditional text or human resources, but that serious consideration should be given 
to how students might work with these resources, and orchestrate them into productive Actual Student 
Study Paths. In addition, it is advisable to help, perhaps even to train students how to develop such 
study paths, and these might be different from one subject to another (even from one mathematics 
course to another). This, we claim, is the responsibility of the lecturer/teacher/course designer. Such 
course design would involve purposeful design, including the development of particular (intended) 
study paths, and the design of particular resources supporting such paths. Simply providing access to 
curriculum resources does not seem to help students to orchestrate the resources on offer, neither to 
develop their individual study or learning strategies, but may rather confuse and overwhelm them 
(due to the immensity of resources on offer), and drive them towards “learning for the test”. As 
Anastasakis et al. (2017) claim, under such conditions “students use the most popular resources [and] 
they aim mostly for exam-related goals” and use “certain tools because these enable them to pursue 
their exam-driven goals” (p. 67). 

References 
Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics 

Teacher Education, 3, 205–224.  
Anastasakis, M., Robinson, C.L., & Lerman, S. (2017). Links between students’ goals and their 

choice of educational resources in undergraduate mathematics. Teaching Mathematics and Its 
Applications, 36, 67-80.  

Biza I., Giraldo V., Hochmuth R., Khakbaz A., & Rasmussen C. (2016). Research on Teaching and 
Learning Mathematics at the Tertiary Level: State-of-the-Art and Looking Ahead. ICME-13 
Topical Surveys. Cham: Springer. 

Bressoud, D., Mesa, V., & Rassmussen, C. (Eds.) (2015). Insights and recommendations from the 
MAA National Study of College Calculus. Washington, DC: Mathematical Association of 
America. 

Thematic Working Group 14

Proceedings of CERME11 2620



 

 
Brousseau, G. (1986) Fondements et méthodes de la didactique. Recherches en Didactique des 

Mathématiques, 7(2), 35–115.  
Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical 

Thinking and Learning, 6(2), 81–89.  
Grenier-Boley, N. (2014). Some issues about the introduction of first concepts in linear algebra during 

tutorial sessions at the beginning of university. Educational Studies in Mathematics, 87(3), 439–
461. 

Gueudet, G. (2017). University teachers’ resources systems and documents. International Journal of 
Research in Undergraduate Mathematics Education, 3(1), 198–224. 

Gueudet, G., & Pepin, B. (2018). Didactic contract at university: a focus on resources and their 
use. International Journal of Research in Undergraduate Mathematics Education, 4(1), 56-73. 

Inglis, M., Palipana, A., Trenholm, S., & Ward, J. (2011). Individual differences in students’ use of 
optional learning resources. Journal of Computer Assisted Learning, 27, 490-502.  

Lobato, J., & Walters, C.D. (2017). A taxonomy of approaches to learning trajectories and 
progressions. In Cai, J. (ed.) The Compendium for Research in Mathematics Education (pp. 74-
101). National Council of Teachers of Mathematics (NCTM).  

Pepin, B., & Gueudet, G. (2018). Curricular resources and textbooks. In S. Lerman (Ed.), 
Encyclopedia of mathematics education. Cham: Springer. 

Pepin, B., Xu, B., Trouche, L., & Wang, C. (2017). Developing a deeper understanding of 
mathematics teaching expertise: an examination of three Chinese mathematics teachers’ resource 
systems as windows into their work and expertise. Educational Studies in Mathematics, 94(3), 
257-274.  

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 
Journal for Research in Mathematics Education, 26(2), 114–145.  

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: 
An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 
91–104.  

Trouche, L., Gueudet, G., & Pepin, B. (2018). Documentational approach to didactics. In S. Lerman 
(Ed.), Encyclopedia of Mathematics Education. Cham: Springer. 

 Weber, E., Walkington, C., & McGalliard, W. (2015). Expanding notions of “learning trajectories” 
in mathematics education. Mathematical Thinking and Learning, 17(4), 253–272.  

 

Thematic Working Group 14

Proceedings of CERME11 2621



 

 

Conceptualising knowledge of mathematical concepts or procedures 
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At the 10th CERME in Dublin, Pinkernell, Düsi and Vogel (2017) introduced a model of proficiency 
in elementary algebra that serves as a frame of reference for analysing and constructing material for 
diagnostic and supporting measures for students at the entry level of university. One basis of this 
model was a systematic analysis of the mathematical concepts and procedures of elementary algebra 
with regard to five aspects of understanding mathematics. This paper introduces this framework in 
detail, thus contributing to a genuine mathematics educational conceptualisation of content oriented 
knowledge for STEM subjects at university entry. 

Keywords: STEM Education, Secondary Education, Assessment, Knowledge, Understanding. 

Conceptualisations of knowledge at university level 
The recent years have shown a growing interest of mathematics educators for the transition from 
secondary to tertiary phase, which is mainly being characterised as a gap between mathematical levels 
and institutional cultures. In her analysis Gueudet (2008) describes differences with regard to modes 
of conceptualising mathematical objects, also different levels of rigour in communication or 
reasoning, and institutional differences, e.g. concerning the didactics of teaching and learning 
mathematics. Thomas, de Freitas Druck, Huillet, Ju, Nardi, Rasmussen and Xie (2015) come to 
similar findings when they analyse the transition from four different theoretical perspectives. One 
aspect that adds to these cognitive, didactical and institutional differences, however, is the content 
orientation that appears to dominate discussions about the demands and deficits of students in STEM 
subjects at university entry. This becomes manifest, for example, in catalogues of minimum 
mathematical requirements (e.g. cosh, 2014) or in a large-scale delphi study with mathematics 
teachers in the tertiary sector (Neumann, Pigge, & Heinze, 2017). Yet when it comes to devising 
diagnostic and supporting measures, what students need to know can only be made clear when there 
is a notion of what knowing means.  

Among the frameworks for conceptualising knowledge that are familiar at university level is the so-
called Bloom taxonomy, which in a revised version by Anderson and Krathwohl (2001) differs 
between various categories of knowledge about subject matter content as well as various forms of 
cognitive activities on that subject matter content. According to Krathwohl (2002) the reasons for 
revision were to update to new psychological models of knowledge as well as to meet with 
terminology use among teachers or educators. This resulted, e. g., in formulating four categories of 
knowledge, which are factual, procedural, conceptual and metacognitive knowledge. This framework 
had been designed for trans-disciplinary purposes (Krathwohl, 2002), which is seen as an advantage 
since it seems suitable for interdisciplinary use (Maier, Kleinknecht, Metz, & Bohl, 2010). While the 
procedural-conceptual dichotomy is not only part of many models of general knowledge but of 
mathematical knowledge as well (e.g. Hiebert & LeFevre, 1986; de Jong & Ferguson-Hessler, 1996; 
Rittle-Johnson & Alibali, 1999), it appears that for analysing mathematical content knowledge, the 
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four categories do not quite fit to how the knowledge of mathematical concepts or procedures is seen 
from within mathematics education. Firstly, Star and Stylianides (2013) have shown that while 
psychologists see procedural and conceptual knowledge as merely two different types of knowledge, 
in mathematics education these two are regarded as of different quality. For many school teachers, 
conceptual knowledge is preferable over procedural knowledge which is seen as simply recalling 
facts or applying algorithms “without significant thought.” (Star & Stylianides, 2013, p. 178) 
Secondly, this again seems to be in contrast to how many university teachers view procedural 
knowledge. They see procedural proficiency as a necessary basis for following or performing 
symbolic mathematical reasoning. In fact, since the process of learning abstract mathematical 
concepts can be described as a progression from procedures to concepts (Tall, 1991; Sfard, 1994), the 
procedural-conceptual dichotomy does not quite grasp the nature of knowledge in mathematics where 
concepts and processes are seen as part of the very same knowledge entities (see also Kieran, 2013). 
In fact, Star and Stylianides (2013) suggest “abandon[ing] the conceptual/procedural framework 
entirely and select new words or phrases to describe knowledge outcomes of interest.” (p. 179) 

This paper proposes a genuine mathematics educational approach to conceptualising mathematical 
knowledge at the transition from the secondary to the tertiary level. While procedural and conceptual 
knowledge is still implicitly present, it addresses specific forms of accessing or understanding a 
mathematical object, thus acknowledging the content orientation and other characteristics of 
mathematical knowledge as it is seen at university level. 

Content orientation from perspective of mathematics education 
The following ideas are rooted in the German Stoffdidaktik (subject-matter didactics) tradition. It 
shares the conviction that student oriented approaches to abstract mathematical objects are possible 
without compromising on the mathematical validity. At the centre of didactical efforts of 
Stoffdidaktik is a thorough analysis of the mathematical concept. In the past this took on the form of 
mathematical rigour that seemed unsuitable for the use in learning situations (Hußmann, Rezat & 
Sträßer, 2016). While subject of an ongoing dispute, the ideas of Stoffdidaktik are still present in 
German mathematics education. Prediger and Hußmann (2016) for example plead for a combination 
of a thorough content analysis and empirical evaluation, for which they describe four phases: 1. a 
formal analysis of mathematical conceptualisations of the teaching object, 2. a semantic analysis of 
meaningful interpretations of the teaching object, 3. a structural orchestration of the findings in the 
form of a teaching unit, and 4. constant empirical evaluation and subsequent modifications of steps 2 
and 3 to adapt to students' needs. Especially the first two phases indicate that formal 
conceptualisations and meaningful interpretations of mathematical objects can be part of one 
didactical framework, which seems suitable for purposes at the transition from school to university 
where formal and educational perspectives meet. 

The WiGORA frame of reference 
Before going into details, this section starts with an outline of necessary a priori settings that reflect 
the area where the framework is being used, which is the transition from secondary to tertiary maths: 
First, it is a concise and summative view on what facets of knowledge of a given mathematical object 
a student needs to have at his or her disposal once it has been taught, not a formative view on how 
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knowledge should be developed during school-time. Further, the facets of knowledge are considered 
normative, that is they are meant to cover mathematically sound ways of accessing a mathematical 
object which include, e.g. explanatory models or visualizations that are structurally equivalent to the 
object. Moreover, considering the formal level at which mathematics is being taught at university 
(Gueudet, 2008; Thomas et al., 2015), a correct use of terminology and definition based access to 
mathematical objects will be addressed explicitly. Simultaneously, since formal and abstract nature 
of mathematical objects requires a flexible use of representations (Duval, 1999), this aspect will be 
addressed explicitly, too. And last, this framework is for conceptualising an “intelligent content 
knowledge base” (Klieme et al., 2007) for developing higher level competencies, it is not a framework 
for higher level competencies itself. 

The acronym WiGORA derives from the German labels for the five facets of knowledge that make 
up the frame of reference. In the following each facet will be introduced and illustrated by tasks that 
address the concept of integral. 

· Declarative knowledge (“Wissen”) refers to the ability to recall or identify correct definitions, 
rules or characteristic properties of a mathematical concept or procedure as well as the 
necessary terminology associated with it. Declarative knowledge basically is knowledge 
about facts and information (Anderson, 1976). It seems rather less present in 
conceptualisations of mathematical knowledge as compared to procedural or conceptual 
knowledge. While in its strictest sense it does not allow for weighting knowledge regarding 
significance, declarative knowledge here also comprises prototypical knowledge that 
characterises, but not necessarily defines, the object (Rosch, 1983; Tall & Bakar, 1992; 
Weigand, 2004). The following task asks for prototypical knowledge that differs between 
definite and indefinite integrals. 

Which of the four statements are correct? 

∫ 𝑓𝑓𝑏𝑏𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑥𝑥 is a number. ∫ 𝑓𝑓𝑏𝑏𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑥𝑥 is a function. 

∫𝑓𝑓 (𝑥𝑥)𝑑𝑑𝑥𝑥 is a number. ∫𝑓𝑓 (𝑥𝑥)𝑑𝑑𝑥𝑥 is a function. 

· Explanatory models (“Grundvorstellungen” or GV for short) refers to the ability to recall or 
identify conceptualisations of a mathematical object that "make sense" (vom Hofe & Blum, 
2016; Greefrath et al., 2016; Weber, 2017). The concept of GV is one of the key concepts of 
German Stoffdidaktik, which “should be able to, on the one hand, accurately fit to the 
cognitive qualifications of students and, on the other hand, also capture the substance of the 
mathematical content at hand” (vom Hofe & Blum, 2016, p. 227). In international context, 
GV are also being referred to as “basic ideas”, “basic notions” or “conceptual metaphors” 
(Soto-Andrade & Reyes-Santander, 2011). In its broadest sense, GV comprise normative, 
descriptive and constructive aspects. Here, at the transition from school to university, the 
notion of GV is restricted to its normative aspect. As such, a GV could result from a semantic 
analysis of a mathematical object (Hußmann & Prediger, 2016). For example, 
“reconstruction” of rates or speed is one of the GV for the concept of the definite integral 
(Greefrath et al., 2016) and is subject of the following task.  
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The graph shows for any point of time the current 
fuel consumption for each of  two vehicles A and B. 

Which of the vehicles has a higher consumption overall 
over the period shown? 

 

· Operational flexibility (“Operationale Flexibilität”) refers to the ability to apply, adapt and 
modify mathematical procedures for situational needs. Going beyond simply reproducing 
step-by-step instructions this facet refers to the cognitive construct of operations in the sense 
of  Piaget and Aebli. Characterised for example by reversibility or transitivity of the mental 
operations involved (Fricke, 1970), corresponding tasks would require reversing procedures 
or selecting efficient over routine procedures (“strategic flexibility”: Rittle-Johnson & Star, 
2007). Here, procedures are not restricted to algorithms for calculating numbers or trans-
forming algebraic expressions. A procedure can be any method for solving a mathematical 
task, which e.g. could also involve switching representation forms. The following example 
shows a reverse task which can be answered by mentally visualising a graph and/or recalling 
prototypical information about the periodicity of trigonometric functions. 

Specify as many a ≠ b as you can find 
such that ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏

𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑥𝑥 = 0. 

· Representational flexibility (“Repräsentationale Flexibilität”) refers to the ability to switch 
within and between representational forms or registers of a mathematical object. Following 
Duval (1999), this ability is specific to understanding higher level mathematics since a 
mathematical concept, being essentially abstract, can not be addressed otherwise: “From a 
didactical point of view, only students who can perform register change do not confuse a 
mathematical object with its representation.” (Duval, 1999, p. 318). As to the many possible 
forms in which a mathematical object can be represented, this framework is restricted to those 
that are conventionally used in mathematics such as numerical, algebraical, geometrical 
representations, or verbal paraphrasing. 

Order by value: 

∫ 𝑓𝑓𝑎𝑎𝑎𝑎 (𝑡𝑡)𝑑𝑑𝑡𝑡,  ∫ 𝑓𝑓𝑐𝑐𝑎𝑎 (𝑡𝑡)𝑑𝑑𝑡𝑡,  ∫ 𝑓𝑓𝑑𝑑𝑎𝑎 (𝑡𝑡)𝑑𝑑𝑡𝑡,  0,  

∫ 𝑓𝑓𝑑𝑑𝑐𝑐 (𝑡𝑡)𝑑𝑑𝑡𝑡 

 
by H. Körner (in Pinkernell et al. 2015) 

· Knowledge application (“Anwendung”) refers to the ability to identify a mathematical 
concept or procedure as suitable for solving a problem. Here, the given concept or procedure 
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is considered as a potential model for mathematising situations within or outside mathematics 
(“Mathematisierungsmuster”: Tietze, Förster, Klika & Wolpers, 2000). This facet, as all five 
facets do, focusses on meaning and use of a given mathematical object. It does not refer to the 
modelling process or parts of it, but it addresses the content knowledge base of modelling. 
The following example asks for the average of values of a continuous function over an interval  
1

𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓𝑏𝑏𝑎𝑎 (𝑥𝑥)𝑑𝑑𝑥𝑥 which here is determined by graphical estimation.  

The graph shows the temperatures 
during a day in July. 

What is the average temperature 
of that day? Give a best possible estimate. 

 

 

Discussion 
With WiGORA, this paper proposes a frameworkonfsk for conceptualising mathematical knowledge 
at the university entry level. With focussing on single concepts or procedures WiGORA follows a 
similar approach as the familiar taxonomies of Bloom or Anderson and Krautwohl, yet with a genuine 
theoretical base from mathematics education. When compared with Anderson and Krathwohl (2001), 
the most significant difference is that the well-known dichotomy of procedural and conceptual 
knowledge has been abandoned. It has been replaced by facets of knowledge that take specific aspects 
of objects from formal mathematics into account, which roughly can be characterised as being 
abstract “by definition”. The facet “Grundvorstellungen” (GV) asks for the activation of explanatory 
models for the abstract mathematical object at hand. Such models can be hands-on activities on real 
or virtual material or situational interpretations within or outside mathematics. Equally, the facet 
“Repräsentationale Flexibilität” reflects the abstract nature of mathematical objects by asking for a 
flexible use of representations of this object. Also, the facet “Operationale Flexibilität” derives from 
the cognitive nature of mental operations as being abstractions from step-by-step procedures when it 
asks for heuristic flexibility in adapting mathematical procedures to situational needs. Among these 
facets, procedural and conceptual aspects of knowledge are still present though not explicitely. From 
the two other facets, “Wissen” corresponds to the category “factual knowledge” from Anderson and 
Krauthwohl (2001). 

The five facets of the WiGORA framework all stand for viewing the same mathematical concept or 
procedure from different perspectives. Although the perspectives are different, the tasks that result 
from operationalisations following the framework are not necessarily disjunct. In fact, the very same 
task could address several facets. E.g., among the five examples above, three require representation 
change. And since GV are often associated with actions and concepts from everyday life, they identify 
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obvious applications for the mathematical objects. For example, the GV “average value” (Greefrath 
et al., 2016) points to applying the integral for measuring the average of a continuous function, as 
shown in the fifth task. Hence, WiGORA has its main use for analysing or devising test material that 
is based on a list of given concepts or procedures. It is meant to serve as a model of reference for 
checking whether the five facets are being covered in a diagnostic tool. 

With focussing on single objects, WiGORA does not allow for analysing a whole network of 
knowledge of a mathematical field, which from an educational perspective is characterised by a 
meaningful use of the specific language or the mastery of key concepts from that field. In the field of 
elementary algebra, these would be various aspects of knowledge specific to the structuring, 
transforming and interpreting of algebraic expressions (Pinkernell et al., 2017), as e.g. aspects of 
giving meaning to expressions (structure sense: Hoch & Dreyfus, 2006; systemic vs. surface structure: 
Kieran, 1989), or aspects of interpreting the equation sign (operational vs. relational meaning: 
Baroody & Ginsburg, 1983). Hence, the object related facets of knowledge from WiGORA would 
need to be integrated into a larger educational conceptualisation of the knowledge of that area. 
Presently, as part of the German optes+ project (Mechelke-Schwede, Wörler, Hübl, Küstermann, & 
Weigand, 2018), this is being done for the areas secondary arithmetic, functions and geometry. 
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Formative assessment of proof comprehension in undergraduate 
mathematics: Affordances of iterative lecturer feedback  
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Research shows that lecturer feedback on students’ proofs is crucial for developing proof-
comprehension in advanced mathematics courses, yet students often fail to comprehend lecturer 
feedback, and only rarely receive further feedback on their revisions. In this study we investigate the 
affordance of a novel formative-assessment scheme, designed and enacted by a mathematics 
professor, which employed multiple rounds of lecturer-feedback / student-revision. We analyze one 
such round, focusing on various facets of proof comprehension that underlie the lecturer’s feedback 
and the student’s subsequent revisions. On the basis of this analysis we discuss various ways in which 
lecturers can leverage feedback/revision cycles, not only for gaining insight into students’ 
comprehension, but also for fostering meta-level ideas, and affording opportunities for students to 
develop agency and holistic proof comprehension.  

Keywords: Undergraduate mathematics education, proof comprehension, formative assessment. 

Introduction 
One of the most prominent learning activities in advanced mathematical courses is proof reading. 
Students listen to their professors as they present proofs in lectures, and are expected to continue 
studying these proofs extensively after class, using their lecture notes or the course textbook (Weber, 
2012). However, reading, validating and comprehending mathematical proofs are not easy tasks. It 
involves not only strategic knowledge in specific content areas, but also knowledge and norms 
specific to proof and reasoning (Knapp, 2005). In a study of students’ proof validation practices, 
Alcock and Weber (2005) found that students focused on superficial features of proofs, while failing 
to develop a holistic view of the proof and neglecting arguments’ explicit or implicit warrants. In 
spite of these difficulties, instructors rarely attend directly to proof reading in their teaching, 
presumably because knowledge related to proof reading strategies is largely tacit (Weber, 2012). 
Weber (2012) concludes that the mathematicians he interviewed provided “little guidance to students 
on how to engage in the complicated process of reading and comprehension of proofs and, by their 
own admission, lacked adequate methods for assessing students’ understanding of a proof” (p. 478). 

Lecturer feedback is an important aspect of assessment practice. Moore (2016) has argued that 
lecturer feedback is instrumental not only for proof comprehension, but also for developing the notion 
of proof and the ability to write proofs. Yet, relatively little empirical research has been conducted 
on how proofs are assessed in undergraduate mathematics courses, particularly in relation to lecturer 
feedback. Moore, Byrne, Hanusch, and Fukawa-Connelly (2016) have investigated students’ 
comprehension of written lecturer feedback, and found that students “were generally quite capable of 
writing revised proofs that remediated the issues indicated by the professor’s marks and comments, 
even when they could not fully explain the rationale for the comments” (p. 320). Consequently, 
students’ written proofs were found to be insufficient for distinguishing between different levels of 
comprehension. These findings highlight that when students do not resubmit their revised proofs, 
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neither the students nor the lecturers have a way of knowing whether students have interpreted the 
feedback and respond to it in ways that promote proof comprehension. 

One way to address this limitation is by having students’ work iteratively critiqued and resubmitted 
until deemed acceptable by the lecturer. Our research goal is to investigate how multiple rounds of 
lecturer feedback and student revision can be used effectively for formative assessment of proof 
comprehension. We use the term formative for assessment that is integrated with teaching to 
contribute, through feedback, to student learning. Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff 
(2012) have proposed a conceptual framework for proof comprehension based on an extensive 
literature review and on interviews with mathematicians. Based on this framework, they have 
proposed an assessment model that comprises questions for probing various facets of proof 
comprehension. They suggest that this model can be used by researchers “to examine how proof 
comprehension develops in students and to evaluate different means of improving it” (p. 4), and by 
lecturers to “inform what specific aspects of a given proof students understand and what aspects they 
do not understand” (p. 4). In this study we draw on Mejia-Ramos et al.’s work in order to scrutinize 
the affordances for formative assessment of proof comprehension of a novel assessment scheme that 
includes cycles of feedback/revision, which was designed and enacted by a mathematics professor.  

Setting 
The assessment scheme examined in this paper was used in a proof-oriented Real-Analysis course at 
a large public research university in the United States. The key aspect of the assessment scheme was 
the instructor's decision to replace the “traditional” problem sets (weekly homework assignments; 
exams) with a term-paper assignment: Students were required to produce and submit weekly ‘lecture 
notes’ that would present selected proofs taught in the lecture in the students’ own words. The 
instructor, whom we will call Mike, is a research mathematician who had been teaching proof-
oriented courses for more than two decades. In the term under investigation he invested a great deal 
of time and effort in this novel assessment scheme, planning his lectures accordingly, redesigning the 
assignments for the course, and providing extensive written feedback on student submissions. 
Assessment of the students’ proofs proceeded in cycles of feedback and revision until the instructor 
was satisfied. These submissions were a passing requirement for the course. 

Prior research of Mike’s goals and expectations for the term-paper assignment revealed that it was 
meant to promote students’ proof comprehension by scaffolding their independent proof reading 
(Pinto & Karsenty, 2018). Thus, the term paper assignment can be seen as part of a formative 
assessment scheme for proof comprehension. Though this assessment scheme was not designed by 
educational researchers, it nevertheless seemed to address some of the key limitations for formative 
assessment of traditional assessment practices (e.g., Moore et al., 2016). Many of the students’ initial 
submissions contained numerous flaws. Mike’s assessment scheme gave him more flexibility when 
facing feedback related challenges, for example:  

· Prioritizing comments: Indicating all of the deficiencies in a proof can be overwhelming for 
students, while selective feedback may be misconstrued as endorsement of unmarked errors. 

· Diagnosing student (mis)comprehension: Deficiencies in a proof can be linked to different kinds 
of miscomprehension. Has the instructor correctly diagnosed them?  
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· Providing effective feedback: What will students learn or mis-learn from the instructor’s 
comments? Will they be able to leverage the feedback to produce a satisfactory proof? 

In this paper we describe how Mike addressed these challenges in one feedback/revision cycle and 
present an in-depth analysis of its affordances for formative assessment, thus shedding light on ways 
lecturer and students can leverage feedback/revision cycles to promote proof comprehension. 

Methodology 
The main source of data for our analysis is iterations of students’ proofs, along with Mike's comments 
on each iteration. Additional background data include: video-documentation of lectures; field notes; 
informal discussions; and two 90-minute interviews with Mike, one conducted at the beginning of 
the course and the other after its conclusion. The interviews focused on the course design and aimed 
at eliciting Mike’s goals and expectations (for further detail, see Pinto & Karsenty, 2017).  

For the study reported herein we chose to analyze a particularly long cycle: six submissions of a 
student, whom we will call Ben, for a proof of the theorem, a non-empty subset of the real numbers 
bounded above has a least upper bound. The 6th submission was accepted without comment. Mike 
defined the real numbers as the set of all decimals and proved the theorem in class by constructing 
the least upper bound, digit after digit in an infinite iterative process. In his first submission, Ben tried 
a different approach for proving the theorem. This submission had numerous deficiencies, including 
a structural flaw, as Ben relied on a corollary of the theorem he was attempting to prove. The number 
of iterations and the variety of flaws in Ben’s first submission, which intensify the dilemmas 
discussed in the previous section, made this cycle particularly suitable for our investigation.  

We view students’ submission of a proof “in their own words” as an opportunity for assessing their 
comprehension of the proof presented during the lecture. Such assessment is formative when the 
instructor, in his feedback, invites students to reflect on and develop their comprehension of the proof. 
We characterize opportunities for formative assessment through analysis of the instructor’s feedback 
(i.e., which aspects of proof-comprehension he stresses) and of the students’ subsequent revisions 
(i.e., how they attend to the feedback). For this analysis we draw on the seven facets of proof 
comprehension proposed by Mejia-Ramos et al. (2012, see Figure 1), which were grouped into local 
– discerned by studying a few related statements within the proof – and holistic – ascertained by 
inferring the ideas or methods that motivate a major part of the proof or the proof in its entirety.  

These seven facets were operationalized in terms of 19 assessment items (pp. 5–6). In coding Mike’s 
feedback, we asked ourselves: “to which of the 19 assessment items is Mike implicitly asking students 
to attend?” For example, the feedback “one can only prove a statement, not a bound” (Figure 1) was 
coded as meaning of terms and statements, because Mike appears to want Ben to notice that the 
statement should have been “to prove the existence of an upper bound,” and therefore his feedback 
could have been rephrased as “explain the meaning of the term prove a bound.” In coding Ben’s 
submissions, we listed all the deficiencies that we found in his proof, and for each we asked ourselves: 
“Which of the 19 assessment items can we conclude that Ben has responded to inadequately?” For 
example, if a statement was correct but did not serve a logical purpose in the proof sequence, we 
coded for logical status, because Ben would apparently not have had an adequate response to the 
implicit question “identify the purpose of the sentence.”  
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Figure 1: Seven facets of local and holistic proof comprehension (Mejia-Ramos et al., 2012) 

The coding was conducted in three stages. In the first stage, each author individually coded local 
facets of each of Ben’s submissions, as a backdrop against which to consider the instructor’s 
feedback. We refrained from coding holistic facets, which would have been highly speculative. In the 
second stage, each author individually coded Mike’s feedback on Ben’s submissions. Some feedback 
addressing normative mathematical writing (e.g., inadequate notation) did not align with the 
framework, and was excluded from the analysis. Disagreements in coding were discussed and 
resolved. In the third stage, we located Ben’s responses to Mike’s comments, and coded them 
according to the deficiencies that they did or did not address. Our analysis of the coding had three 
foci: 1. Ben’s initial submission, reflecting the range of issues from which Mike could choose what 
to attend to; 2. Subsequent interplay of feedback and revision; 3. Ben’s final submission and overall 
appraisal of the assessment process.  

Analysis  
1. Ben’s first submission: In Ben’s 
first submission (see Figure 2, 
only the highlighted text was 
added in the second submission) 
we recognized substantial flaws: 
Ben relied on a corollary of the 
theorem he was attempting to 
prove; this is a case of cyclic 
reasoning, which we coded as 
logical status of statements and 
proof framework, because we 
assume he might have responded 
inadequately to the question 
“identify the purpose of the 
sentence within the proof 
framework.” Furthermore, the 
proof of this corollary that was 
presented in the lecture relied on 
properties of the construction of ℝ, 

Figure 2: Ben’s 2nd submission; revisions of the 1st submission 
are highlighted; Mike’s feedback appears in red  
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a crucial point that Ben did not mention in the proof. We coded this oversight as justification of 
claims, because Ben would presumably have failed to answer the question “make explicit an implicit 
warrant in the proof.” We coded Ben’s use of the phrase “it is clear that” as another case of 
justification of claims, because in our judgment what followed required elaboration, suggesting that 
Ben had not appreciated how subtle the justification of this claim might be. The phrase “it must be 
proved that” was coded as logical status of statements, because in fact it is not necessary to prove the 
claim that followed, but rather it is sufficient.  

2. Interplay of feedback/revisions: Mike’s feedback on the 1st submission referred only to the holistic 
structure of the proof, without explicitly drawing attention to the issue of cyclic reasoning: “Your 
argument cannot be correct because you are not using the definition of real numbers and therefore 
your argument equally applies to rational numbers [where] the statement […] is false.” We note that 
the course definition of the real numbers had a central role in the lecture proof of the existence of 
least upper bounds in the domain of real numbers. Thus, Mike’s feedback underlined a key idea that 
was absent in Ben’s 1st submission, and was therefore coded Holistic: High-level ideas. In response 
to this feedback, in his 2nd submission, Ben made two changes (Figure 2, highlighted text): he added 
the full statement of the corollary that he was relying on (Local: Meaning of statements) and he added 
justifications as to why the corollary’s conditions are satisfied (Local: Justification of statements). 
The remainder of the proof was unchanged. Therefore, there is a discrepancy between Mike’s holistic 
feedback and Ben’s local revisions. Seeing that the structural flaw was not resolved, Mike reiterated 
his criticism in his feedback on Ben’s 2nd submission: “I’ve already voiced my objection to this 
argument last time…” (Holistic: high-level ideas) and added an example of how the corollary does 
not hold for rational numbers (Holistic: illustrate with examples). Mike also commented on local 
issues that were already present in Ben’s 1st submission, criticizing Ben’s use of the phrase “it is clear 
that…” (Local: Justification of claims) and drawing attention to his misuse of the word “prove” 
(Local: Meaning of terms). There were several additional indicators of possible comprehension issues 
that we identified in Ben’s 2nd submission that Mike did not comment on. For example, it is sufficient 
and not necessary to verify the conditions of the corollary (Local: Logical status of statements).  

Synopsis of submissions 3-6: In his 3rd submission, Ben reverted to the proof that had been presented 
in a lecture, though it is not clear to what extent he appreciated the structural problem in his initial 
approach. In his 3rd feedback, Mike implicitly endorsed Ben’s new approach, and his feedback 
addressed issues of local comprehension as well as providing structural hints (e.g., “Now prove that 
b* is an upper bound, and is smaller than any other upper bound,” Local: proof framework). The 4th 
feedback included a mix of local and holistic comments; the 5th and final feedback was strictly local. 
In both the 4th and 5th feedbacks, Mike focused on notational issues. Our analysis–comparing 
successive submissions–highlighted improvements in Ben’s proofs, yet Mike did not comment on 
this, limiting his feedback to errors and deficiencies. Our analysis also highlighted that in many cases, 
Ben’s revisions, while attending to Mike’s feedback, introduced new local issues, some of which 
were commented on and subsequently revised.  

3. Ben’s final submission: While most of Mike’s comments were resolved by the 6th submission, our 
analysis reveals some unresolved issues. Nevertheless, it was implicitly endorsed when accepted 
without comment.  
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In spite of several apparent local issues in Ben’s 1st submission, Mike chose to focus his first feedback 
on big ideas, attending to them in a holistic manner, stressing that as long as there is no use of 
properties of real numbers the proof cannot be correct, because it would apply to rational numbers 
where the claim does not hold. He illustrated this through a counter-example: The set of rational 
numbers less than √2 does not have a rational least upper bound. Ben’s revisions generally attended 
to Mike’s comments, yet he did not always attend to them immediately. For example, in his 4th 
feedback, Mike criticized local aspects of Ben’s definition of a sequence of nested sets: “here there 
needs to be a condition on a.” Ben’s 5th submission did not address this problem, so Mike commented 
again in his 5th feedback, and Ben eventually addressed it in his 6th and final submission. 

Discussion 
Our analysis highlights potential affordances of multiple cycles of feedback and revision for 
formative assessment of proof comprehension, which we now turn to discuss while keeping in mind 
the three feedback-related challenges discussed in the Setting section: prioritizing comments, 
diagnosing student (mis)comprehension, and providing effective feedback.   

Our analysis of Ben’s 1st submission highlighted various deficiencies. In a traditional assessment 
model, providing only one opportunity to provide feedback, Mike might have responded to Ben’s 1st 
submission by commenting on all deficiencies, which could have been overwhelming for Ben. 
Alternatively, Mike could have picked one or two issues that he considers most crucial. He would 
need to be quite explicit in his feedback, because he would not have the opportunity to clarify subtle 
points that Ben could not make sense of on his own. Instead, in the cycle we have analyzed, Mike’s 
feedback began with holistic structural issues, later moving to local issues of notation, terms, and 
logical status and justification of claims. Mike did not need to be exhaustive in his feedback, knowing 
he would have opportunities to return to unattended issues later on. This transition suggests lecturers 
can leverage multiple cycles of feedback for prioritizing feedback according to a didactic agenda. 
Postponing feedback related to local issues until resolving issues related to structure and big ideas of 
a proof does not only support students’ development of proof comprehension, but also signals which 
aspects of comprehension are most valued. For example, in his feedback to Ben’s first two 
submissions, Mike highlighted a meta-level idea related to proof and proving–does the proof make 
use of all the assumed conditions, and how would it fail without them? This is a central theme in 
university mathematics, where the domain of a result is of interest, and reflects a “mathematical habits 
of mind” of tinkering (Cuoco, Goldenberg, & Mark, 1997).  

In the cycle we examined, there were deficiencies that Mike highlighted in his feedback that were not 
resolved in Ben’s next submission, and deficiencies that emerged during the revision process. While 
an analysis of Ben’s proof comprehension is beyond the scope of this paper, we note that these 
additional data provide valuable insights into Ben’s comprehension that were not salient in the 1st 
submission, which suggests that multiple rounds of feedback and revision could support lecturers’ 
diagnosis of their students’ proof comprehension. In addition, we found discrepancies between the 
facets of proof comprehension that Mike and Ben addressed in their respective feedback and revision. 
In particular, we found that in some cases Ben responded to holistic-oriented feedback with local-
oriented revisions, and responded holistically only after Mike reiterated his comment. Thus, our 
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analysis indicates that multiple rounds of feedback and revision could support lecturers in providing 
feedback that students could leverage to produce a proof that the lecturers would find acceptable. 

This case study also illustrates that it may be necessary to support students in harnessing lecturer 
feedback to develop their holistic proof comprehension. Research indicates that it is difficult for 
students to develop holistic comprehension of proofs even when instructors’ explicitly highlight 
holistic aspects of proofs in their lectures (Lew, Fukawa-Connelly, Mejía-Ramos, & Weber, 2016). 
Cycles of feedback and revision may offer affordances for holistic comprehension. Mike’s first 
feedback on Ben’s alternate proof scheme was not prescriptive—he did not tell Ben how to correct 
his proof. Providing open questions as feedback is a risky move in a traditional single-round 
assessment, as students may fail to answer these questions and revise the proof, as Ben’s second 
submission illustrates. However, because Mike was able to monitor Ben’s revisions and provide 
further feedback, he was able to provide Ben the opportunity not only to reflect on the inadequacies 
of his own submissions, but also on the ways in which they are addressed in the lecture-proof that he 
eventually reproduced (e.g., the role of the definition of real numbers in the proof). The discrepancies 
between Mike’s holistic feedback and Ben’s local revisions, along with Mike’s comments on these 
discrepancies, highlighted gaps in instructor-student communication that were likely to remain hidden 
in a traditional single-round assessment of Ben’s first submission. 

We now turn to discuss a potential affordance of multiple cycles of feedback and revision from the 
student perspective. In his first submission, Ben attempted a proof scheme different from the one 
presented in class. In his re-submissions, Ben postponed attending to some feedback, splitting his 
responses to Mike’s 4th feedback over his 5th and 6th submissions. While we can only speculate on 
Ben’s considerations, we recognize in his readiness to submit an original proof and to prioritize his 
revisions an indication of agency that in our experience is not common in undergraduate mathematics 
courses, particularly in relation to proof writing. A consequence of instructors’ tendency to grade 
proofs by reducing points for deficiencies rather than assigning points for merit is that students might 
avoid taking risks and constructing original arguments that expose their thinking and 
(mis)comprehensions. In contrast, if students know they will have the opportunity to resubmit their 
work, and that their work will be graded on the quality of their final submission, then they have little 
to lose and something to gain from constructing an original argument. Thus, students can leverage 
multiple cycles of feedback and revisions as an invitation to explore and take risks in their proving.  

Concluding thoughts 
We have discussed various potential affordances of an assessment scheme that include multiple 
rounds of feedback/revision for formative assessment of students’ comprehension of mathematical 
proof. We note an advantage of such a scheme in relation to the scheme proposed by Mejia-Ramos 
et al. (2012); whereas Mejia-Ramos et al. propose designing sets of questions to probe various facets 
of student comprehension, multiple rounds of feedback and revision seem more compatible with 
traditional practices of assessment grounded in proof validation, and thus may be more accessible and 
appealing for some instructors. We acknowledge that multiple rounds of feedback and revision are 
demanding for both instructors and students, because each new homework assignment entails 
reviewing/revising any number of prior assignments. Furthermore, it is not clear when the process 
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should end. Ben’s 6th and final submission included several substantial deficiencies. Did Mike deem 
it “pedagogically acceptable”? Did he decide that in spite of its flaws, his time and effort would be 
better spent commenting on Ben’s submissions of more recent assignments? Or did he simply tire of 
the process? Cutting the feedback process short could have serious consequences, because refraining 
from comment on a student’s proof could be misconstrued as implicit endorsement of its correctness. 
It is also important to recognize that although multiple iterations of feedback and revision may 
provide invaluable opportunities to engage students with the various facets of proof comprehension, 
lecturers and students will not necessarily capitalize on these opportunities. Mike noted, in retrospect, 
that in some cases students ended up copying proofs from the textbook. In the final interview, he 
mentioned several examples where students’ revisions of their proofs, in light of his comments, 
revealed that “they did not understand what they were talking about.”  

Thus, there is still much we need to learn about enacting assessment schemes based on multiple 
rounds of feedback and revision effectively. We call for further research that will develop and validate 
various formative assessment schemes, towards promoting student proof comprehension. 
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Felix Klein (1872) put forward a double discontinuity: in addition to the secondary-tertiary transition, 
a second discontinuity occurs at the end of university studies when a student who obtains a teaching 
position is appointed to teach mathematics in high-school. This discontinuity is observed through the 
difficulties faced by postgraduate students in France to perceive the links between the knowledge of 
mathematics learned at university and the knowledge acquired in high school (for example between 
the integral as a measurement of an area and the Lebesgue integral, even with the Riemann Integral). 
These postgraduate students are therefore often reluctant to work on advanced mathematics (e.g. 
upper division undergraduate courses) as part of their teacher training. 

Winsløw and Grønbæk (2014) formalized this double discontinuity in the language of the 
Anthropological Theory of The Didactics (ATD), using the notion of personal relationship R to an 
object of knowledge within an institution, introduced by Chevallard (2007). Let us consider: the 
institution, which here will be either high school (L) or university (U); an individual x who occupies 
different kinds of positions in his path through the institutions: first as a student in high school (s), 
then as a student at university (𝜎𝜎) and then back again in high school as school teacher (t); an object 
of knowledge, that lives in the institutions and noted o in high school and 𝜔𝜔 when considered at 
university level. Klein's double discontinuity may be expressed as the following diagram: 

 

The purpose of my research project (PhD thesis) is to study the second transition between 𝑅𝑅𝑈𝑈(𝜎𝜎,𝜔𝜔) 
and 𝑅𝑅𝐿𝐿(𝑡𝑡, 𝑜𝑜) by choosing an object of knowledge from the field of analysis: the integral. Students 
meet integrals in different institutions and in different theories (Newton Integral in high school, 
Riemann and Lebesgue integrals, and Measure Theory at university). So a first research question is: 
how does a math teacher in high school mobilize his knowledge of university mathematics to teach 
integrals in high school? To study this question, we formulate sub-questions: What links are put 
forward by the institutions between the different integration theories? Conversely, which gaps can be 
observed in the curricula? How are the continuities and discontinuities perceived by teacher 
students? What training courses may be proposed to help students draw connections? The poster 
presents the overall methodology of my study and some preliminary results obtained so far. 

The methods used are of a qualitative nature. Epistemological Models of Reference (EMR; Florensa, 
Bosch, & Gascón, 2016) are built in order to describe the relationships to knowledge, beginning with 
𝑅𝑅𝑈𝑈(𝜎𝜎,𝜔𝜔) and 𝑅𝑅𝐿𝐿(𝑠𝑠, 𝑜𝑜). The EMR is a tool for the researcher who operates a reconstruction of 
knowledge. The elaboration of the EMR is based on epistemological analyses related to historical 
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epistemology (supplemented if necessary by a study of contemporary epistemology by means of 
interviews with mathematicians) and the analysis of official syllabi and curricula, teaching materials 
and textbooks. This model is constructed both to analyze continuities, discontinuities and gaps in the 
path of the learner through institutions and to identify possible entry points for the design of a didactic 
engineering. 

A first study (conducted in the context of my Master's degree thesis) consisted of comparing EMRs 
between the logos block of praxeologies related to the Riemann integral at university and the integral 
in high school. The main results and their consequences for learning (in the form of hypotheses for 
further research) are as follows: on the one hand, the praxeologies related to the measurement of areas 
at high school contain an implicit logos that a teacher student will probably have difficulties to relate 
to academic knowledge on the integral (a substantial mathematical work would be necessary to link 
the notion of area from high school with Measure Theory, taught as a highly abstract subject at 
university); on the other hand, the academic praxeologies involving Riemann’s integral focus on 
computational techniques for antiderivatives rather than working on the corresponding logos, apart 
from abstract questions on integrability (probably out of reach for a majority of students). As a result, 
it is likely that students will draw little connections between the block of the logos of Riemann 
praxeologies and the methods for approximate computation of integrals at high school since they will 
not grasp the conceptual scope of Riemann sums. 

In order to study Klein's second transition and to propose training courses for future teachers, didactic 
praxeologies of the teacher need to be investigated: indeed, the tasks of the teacher are not limited to 
solving problems, but also to elaborate problems that promote adequate conceptualization and 
learning, make pertinent choices of didactic variables, and provide adequate feedback to students. 
The development of a model to describe these praxeologies will be based on observations of 
classroom practices and teacher interviews, in order to determine the role and then explore the 
possibility of strengthening the use of academic knowledge in didactic organizations of the teacher. 
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In the United States (US) improvement efforts at the school level have a long history of bringing 
teachers together to plan lessons, discuss issues of student learning, create assessments, etc. For 
example, lesson study has been implemented across American schools as one way to create 
community among teachers and improve teaching and learning (e.g., Lewis & Takahashi, 2013). 
Professional learning communities are another way of building community among teachers to 
improve instruction. At the university level, coordination of high enrolment introductory courses 
provides a similar opportunity for bringing faculty at the same institution together to improve student 
success. Coordination systems are particularly popular as a response to the large numbers of students 
enrolled in calculus courses and the wide range of instructors teaching them. Robust coordination 
systems, led by one or more coordinators (who are typically ladder rank faculty) consist of two major 
elements: uniform course elements (e.g., common text; exams) and regular instructor meetings. 
Regular meetings convened by course coordinators are important because they provide opportunities 
to bring faculty together to discuss issues of learning, assessment, pacing, etc. Robust coordination 
systems can, therefore, have the effect of turning calculus instruction into a joint enterprise, 
engendering a community of practice (Rasmussen & Ellis, 2015).  

While coordination systems are widely used in the US, such systems are under-theorized. In this 
report, we draw on case study data from five universities to begin theorizing about coordination 
systems more broadly and the role of the coordinator in particular. More specifically, we address the 
following research goal: How might we characterize coordination systems and the role of 
coordinators in these systems? A better theoretical understanding of these phenomena will contribute 
to pragmatic efforts aimed at improving the teaching and learning of high enrolment, coordinated, 
undergraduate mathematics courses. The 2-3 day case study site visits we conducted were part of a 
larger national study of successful calculus programs in the US (Bressoud, Mesa, & Rasmussen, 
2015). We employed thematic analysis (Braun & Clarke, 2006) of the data corpus, which included 
interviews with faculty, administrators, classroom observations, and student focus groups.  

Our theoretical framing of coordination systems and coordinators draws on work in behavioral 
economics, thus bringing a novel point of view to university mathematics instructional systems. In 
particular, we draw on the work of Thaler and Sunstein (2008), who offer an insightful perspective 
on how libertarian views of free choice can be profitably combined with paternalistic structuring of 
choices for others in the marketplace. A central construct in their thesis of libertarian-paternalism is 
that of choice architect. A choice architect is someone who is responsible for organizing the context 
in which people make decisions. For example, the person responsible for arranging the way in which 
school cafeteria food is displayed has the potential to influence the food choices that kids make. What 
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should be placed at eye level, cookies or green beans? The power of a choice architect lies in focusing 
peoples’ attention in a certain direction, and “nudging” them to make particular choices, rather than 
making the choice for them. Similarly, we argue, this is what effective course coordinators can do. 

In our analysis of the five case studies, we came to see the coordination systems more broadly as an 
example of coordinated independence. The notion of coordinated independence, much like that of 
libertarian-paternalism, embraces the oxymoron that individuals can be part of a system that directs 
their choices, but maintains a certain level of autonomy. Our retrospective search of the literature for 
use of the term coordinated independence revealed the original coining of this phrase to describe the 
premier jazz drummer “Cozy” Cole in the late 30’s. Cozy Cole was renowned for the way in which 
his hands and feet acted independently yet produced a harmonious sound that was highly coordinated. 
In a similar way, we theorize that effective course coordinators allow for instructor independence yet 
result in a harmonious calculus instructional system. 

Drilling down into the particulars of what the course coordinator does to promote this culture of 
coordinated independence, we posit that the coordinator functions much like a choice architect as 
described by Thaler and Sunstein (2008). In our analysis we identified the following overlaps in the 
roles of a choice architect in the market place and the various roles of the coordinator in an educational 
setting: makes life easier by setting default options; provides feedback to users; makes mappings easy 
to understand; and provides information about what others are doing. For example, Thaler and 
Sunstein describe how a computer manufacturer functions as a choice architect by making life easier 
for users by pre-setting screen-saver default settings. A user can change the default options but doing 
so takes time and requires taking some action. We found that the calculus coordinator similarly sets 
a number of “default” options for instructors, including homework problems, exams, class activities, 
syllabus, and rubrics for exam grading. In our interviews with instructors we learned that the vast 
majority of instructors very much appreciated the coordinator taking care of these decisions, while 
still allowing for pedagogical autonomy and some choice within these default setting. Our poster 
presentation gives illustrative examples of this and other roles of coordinator as choice architect.  
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Introduction 
Many students perceive the transition from school to university mathematics as problematic. Existing 
studies not only discuss difficulties broadly but promise that so-called bridging courses can help to 
reduce the gap between school and higher education. Also for students studying science, technology, 
or engineering (STE), mathematics is an important prerequisite for successful studies. For them, 
mathematics is mainly used as a tool for other subjects. We focus on these STE-students, who have 
a high heterogeneity with regard to their mathematical knowledge before entering university. Taking 
this phenomenon into account, creating a bridging course in mathematics especially for this group of 
students is important in order to build a common level of mathematical knowledge, which professors 
can take for granted and rely upon when students enter university.  

The OPTES+-project – optimizing the self-study phase 
OPTES+ is a project funded by the BMBF (Ministry of Education and Research) that includes several 
universities in Germany working together to reduce the drop-out rate in STE-related subjects. The 
heart of the project is an online mathematics course, similar to a traditional mathematics book, but 
enriched with additional interactive elements. The whole course is implemented in the open source 
learning management system ILIAS. All the material offered by OPTES+ will be accessible for 
universities and other educational institutions in the future. The contents of the course are based on 
the experience of the involved lecturers and the cosh-catalogue (Cosh group, 2014), a catalogue 
written by representatives of schools and universities to list the minimum requirements in 
mathematics that students should have when starting their studies in economy or a STE-related 
subject at university. Moreover, as engineering per se often requires the application of mathematics, 
not only mathematical knowledge is important, but also the development of mathematical 
competencies. Weinert defines mathematical competencies as an individual’s available or learnable 
cognitive abilities and skills to solve certain exercises, as well as the connected willingness and ability 
to use the solutions in variable situations in a successful and responsible way (Weinert, 2001). For 
that reason, apart from the mathematical contents, the bridging course should also concentrate on 
mathematical competencies, which leads to the following questions. 

Research Questions 
(Q1) Which model can be used to describe the learners’ mathematical competencies and 
simultaneously provide a basis for differentiation within the course?   
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(Q2) How can the chosen competency model be implemented into the online course? 

(Q3) How could, after the construction and implementation of the model, an evaluation and reflection 
of it take place as a step of design-based research? 

The Ability Matrix 
We decided to take the HarmoS-model (Huber, Späni, Schmellentin, & Criblez, 2006; 
Schweizerische Konferenz der kantonalen Erziehungsdirektoren [EDK], 2011) as foundation for 
constructing our own model – the so-called Ability Matrix (AM), as the aspects of action used in the 
HarmoS-model seem to fit well the competencies the future engineer students should acquire. Figure 
1 illustrates the AM. 

 

Figure 1: The Ability Matrix 

Outlook 
While (Q1) and (Q2) concentrate on theoretical considerations that are answered by the construction 
and usage of the Ability Matrix, we plan to run a pilot study in January and February 2019 to answer 
(Q3) and to investigate if the chosen competency model and its implementation are suitable for our 
setting. To do so, we will compare the measured competencies before and after the course to see if 
the attendance of the course (including the feedback the students get by the visualization of the Ability 
Matrix) brings any improvement of the students’ competencies. Based on the results of this pilot study 
we will evaluate the used competency model and reflect on possibilities of adjusting it. 
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This paper concerns the teaching of mathematics for student-engineers. We focus on the theme of 
sequences in the first year of engineering education. We claim that teaching sequences in the first 
year of engineering education requires different kinds of connections: connecting different topic 
areas, different concepts, and different registers. We use here the concept of connectivity, to analyze 
resources in the case of an engineering school in France. We provide elements from interviews 
showing that the teachers can strengthen some forms of connections during their use of resources.  
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Context of the research 
The present paper concerns the teaching of mathematics in the context of engineering. We present an 
analysis of resources collectively designed by teachers in a French Engineering School 
(undergraduate education). We address the issue of the connections made in mathematics for student-
engineers. We focus on the theme “sequences”. 

The textbook is a crucial artifact for university teachers (González-Martín, Nardi, & Biza, 2018). 
However, the appropriateness of the content offered by textbooks in some academic paths remains a 
controversial issue; Randahl (2016) shows that student-engineers do not perceive the mathematics 
offered by the textbook as relevant for the engineering context. She considers that the issue of how 
the textbook is combined with the context of lectures and task solving sessions might “provide 
learning opportunities with meaningful use of the textbook” (Randahl, 2016, p.67).  

Research literature highlights the gap between the mathematics taught in mathematics courses and 
the use of them in engineering courses (Biehler, Kortemeyer, & Schaper, 2015). Minding this gap 
supposes to understand the reasons behind it. Research evidences also the necessity of making explicit 
connections between theory and practice to make the mathematical content in engineering education 
relevant to students (Flegg, Mallet, & Lupton, 2012). According to Gueudet and Quéré (2018), 
engineers in the workplace identify missing links in the mathematics taught during their studies: links 
between mathematics and the real world, and between different mathematical contents. 

All these sources suggest that the teaching of mathematics in engineering education should propose 
specific “connections”. The main question we address here is: what type of connections is present in 
the resources used and in teaching practices regarding mathematics for engineering students?  

Connectivity in resources: topic areas, concepts and semiotic representations 
“Connections” can be related with (at least) three issues that could influence the teaching of 
mathematics; some of them are specific to the context of engineering education. 

(1) Within mathematics, the networking between mathematical objects and their representations 
(Hiebert & Carpenter, 1992), identified as essential for the understanding of mathematical facts. 
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(2) The need to build links between mathematics courses and engineering courses.  

(3) The modifications of learning processes in the digital era prompted Siemens (2005) to introduce 
the concept of connectivism. He considers learning as an “actionable knowledge” that can reside 
outside ourselves. The learning in this case depends on the ability to build a network of connections 
between, and across, the available resources (or databases) and users of these resources. 

Based on these works, we have proposed the concept of connectivity (Gueudet, Pepin, Restrepo, 
Sabra, & Trouche, 2018) developed in the frame of e-textbooks analysis. This connectivity has two 
components: “macro-level connectivity” that refers to the potential of linking to and between users 
and resources outside the textbook (practical aspect); and “micro-level connectivity”, where the focus 
is on a particular mathematical topic within the e-textbook to look for connections in, between, and 
across individuals’ cognitive/learning tasks and activities. We define therefore connectivity in a set 
of resources for teaching a mathematical theme as a linking potential for a given user (student or 
teacher) both practically as well as cognitively. We only use here micro-level connectivity. We indeed 
consider, in the case of sequences, the connections present in resources between different topic areas 
or mathematics fields, between different concepts, and between different semiotic representations.  

For Duval (2006), semiotic representations are productions constituted by the use of signs belonging 
to the same “register” (natural language, formalism, algebraic formula, graph, figure, etc.). A register 
of semiotic representation allows the following activities: to represent a concept; to treat 
representations within the same register; to convert representations from a given register into another. 
According to Duval (2006), the conceptual acquisition of a mathematical object necessarily passes 
through the acquisition of one or several semiotic representations. However, the connection between 
different representations, seems absent in engineering programs. Quéré (2017) interviewed French 
engineers about their mathematical needs in the workplace. They declared that the teaching of 
mathematics they received during their studies “did not make enough connections” particularly 
connections between different mathematical contents and between different representations. 

From the institutional point of view, the mathematics taught are shaped by the institution where they 
are taught (Chevallard, 2003; González-Martín et al., 2018). We consider, as Quéré (2017), that in 
engineering education, mathematics courses constitute an institution different from engineering 
courses. Different institutions could shape the teaching of mathematical topics in different ways. 
Moreover, teachers’ personal relationship with those topics, which results from their experiences in 
different institutions (Chevallard, 2003; González-Martín et al., 2018), could shape the mathematics 
taught. Indeed, the teaching actually implemented by a teacher using a given resource can offer more 
connections than this resource. Teachers might develop an “unexpected” connectivity in practice, by 
their discourse, examples produced “on-the-spot”, and how they show proofs, etc. Here, there is the 
issue of the combination between potential connectivity and effective connectivity developed in use, 
which could be also related to the teacher’s perception of students’ needs and difficulties. 

Our aim here is to consider the connectivity in the case of teaching sequences in the first-year in a 
French Engineering School. Therefore, we reformulate our general question as follow:  

Q1: Which connections concerning sequences appear in resources for a mathematical engineering 
course? 
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Q2: Which is the effective connectivity of the curriculum implemented by different teachers using 
these resources? 

Sequences in the French curriculum and in the engineering education 
Our choice of to focus on sequences is related to its importance in some engineering paths. Within 
mathematics courses, sequences constitute an entry for other concepts (single and double integrals, 
series, etc.). They are also essential for studying Fourier series. In engineering courses, sequences are 
needed in a different way: in the study of some processes of discretization (transferring of continuous 
models into discrete models), in numerical analysis (numerical resolution of differential equations or 
heat equations, etc.), and in the “signal processing” course.  

In France, the first encounter of students with sequences happens in grade 11. The curriculum 
recommends that the teaching of sequences in grade 11 goes through the modelling of real-life 
situations. Connections in terms of registers are recommended. For instance, the curriculum requests 
using the spreadsheet (numerical representation) or the calculator (algorithms) to compare the 
evolution of arithmetic and geometric sequences, as well as to represent the term of a sequence 
graphically. According to the curriculum, in grade 12 the concept of “limit of a sequence” should be 
studied in order to prepare the introduction of “limit of a function”.  

In different engineering education paths, the introduction of sequences usually appears in the calculus 
courses. Randahl (2016) notices that calculus is part of the basic mathematics courses for engineering 
students, and it has many formal aspects. Compared to the secondary level, more time is dedicated 
for mathematical reasoning and the use of formal representations. Research literature on the teaching 
and learning of sequences acknowledges the existence of strong links between both concepts “limit” 
and “sequences” (Alcock & Simpson, 2004; Roh, 2008). Regarding the concept of “convergence”, 
studies highlight the importance of the graphical representation to make sense of it, as well as to 
facilitate the appropriation of its formal representation (Alcock & Simpson, 2004).  

Context of the study and methodology 
The context of our study is a French Engineering School. It is one of the three technological 
universities in France. Mathematics teachers in this Engineering School have different statuses 
(teacher-researcher, full-time teacher, etc.) and various specialties (mathematicians, engineers, 
physicists, etc.). Four semesters structure the first and second academic years, where there are “basic 
science courses”, including mathematics, physics and chemistry. There are four mathematics courses. 
Each of them followed in consecutive semesters. Sequences are introduced in the first chapter of the 
mathematics course of the second semester. In this context, our methodology consists in two parts: 
1) collection and analysis of resources on sequences; 2) interviews with 3 teachers and their analysis. 

The resources collected are collectively designed and used by teachers. They contain the textbook’s 
lesson distributed to students; the slideshow projected during the lecture sessions; the tutorial that 
contains tasks to solve and problems; and the Practical Work tutorial (PW) composed of online 
exercises on a moodle platform.  

To analyze the resources, in terms of micro-level connectivity, we used the grid developed by 
Gueudet et al. (2018). We adapted it to our case, according to the definition of connectivity we 
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discussed above. We then analyzed the resources following four steps. In the first step, we identified 
concepts used in the resources, we mentioned the connected concepts and the way they are connected 
by definitions, propositions, theorems, examples, and/or exercises. Within this step, we studied the 
connections that concern “progression” chosen by the designers (connections with previous 
knowledge and further knowledge). In the second step, for each concept (or connected concepts), we 
characterized the different moments of their appropriation (lesson, examples, exercises, problem 
solving, or practical tasks); we considered also the context of this appropriation (different topic areas 
within mathematics, different disciplines, real-life situations, etc.). In the third step, for each concept 
(or connected concepts), we identified the registers of semiotic representation used or that can be used 
in solving tasks; we characterized them in terms of the three cognitive activities “to represent”, “to 
treat”, or “to convert” (Duval, 2006). In this step, we determine, where appropriate, the connections 
made with particular tools (software, calculator, etc.). The fourth step concerns particularly the 
exercises; we determined the different strategies to solve them, and the variations of the same 
exercises. The fourth step allowed us to understand the connections that the designers emphasize 
between concepts, registers and mathematics topic areas. 

We also conducted interviews with three teachers. We chose teachers with contrasting profiles in 
terms of their specialties and academic education, and in terms of their status. T1 is a physicist, he 
has a PhD in theoretical physics and modeling, he teaches mathematics, modeling and physics; T2 is 
an engineer, he has a PhD in Engineering, he teaches mathematics and engineering courses; T3 is a 
mathematics teacher, he has an “agrégation” in mathematics (French competitive examination that 
must be passed to teach at university). We hypothesize that the contrasted profiles can inform us on 
different forms of connectivity developed in implementation of mathematics resources.  

The interview grid covers four axes, according to which we analyzed the teachers’ declarations. The 
first concerns the connections to make across the different mathematics topic areas, across different 
disciplines, or with real-life problems. The second axis concerns the teachers’ point of view on 
students’ difficulties, which influences the connectivity they could emphasize in their use of 
resources. The third axis concerns the place of the examples they add, which allows to make 
connections between concepts or to use the registers of semiotic representation. The fourth axis 
concerns the place of mathematics proofs in engineering education, and their role in enhancing 
connectivity. We aim by the analysis of the interviews to identify elements on the effective 
connectivity of the curriculum implemented by different teachers using the same resources. 
Nevertheless, we are limited here to what teachers declare about the use of resources.  

Potential connectivity in resources for teaching sequences 
We identified in the resources for teaching sequences: 7 definitions, 10 theorems, 29 exercises, and 
9 examples. The PW contains three exercises, where the use of Wiris CAS calculator is requested.  

In terms of previous knowledge, some basic concepts from secondary school are reintroduced but in 
a formal register (convergence and limit of sequences). We note that continuity and limits of functions 
are taught in the first semester. We also note that the sequential definition of limits of functions is not 
taught. The order used to teach the concepts of “limit of sequences” and “limit of functions” is 
different from the choice made in the curriculum of secondary school (see above).  
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The connections between both concepts “limit of sequences” and “convergence” are emphasized. The 
resources also emphasize, in the properties and exercises, the connections between “convergence”, 
“variation of sequences” and “bounded sequences”. For instance, there is in the tutorial an exercise 
with nine different sequences; students are asked to study the convergence of sequences and calculate 
their limits when it is possible. The sequences given need different strategies to solve the proposed 
tasks (a sequence bounded by another one that tends to 0; a decreasing sequence and bounded from 
below by 0; a task that needs the use of properties about the quotient of convergent sequences; etc.). 
Recursive sequences are particularly emphasized in the different components of the resources. The 
exercises related to recursive sequences allow students to establish connections with “upper bound”, 
“lower bound” and functions.  

There is no connection between different topic areas 
within mathematics. In terms of different semiotic 
representations, the resources contain particularly one 
semiotic representation, the formal representation. In 
general, the treatment of tasks remains within the same 
representation. The resources contain rarely tasks where 
students are asked to represent mathematical objects in 
a given register. The PW constitutes an opportunity to 
make new connections between mathematics topic areas 
as well as between semiotic representations. 
Nevertheless, it is restricted to three exercises. The 
connections between semiotic representations are 
strengthened; there are, for example, tasks that need the 
graphical study of the given sequences. Besides, the 
algorithmic topic area changes to study the behavior of 
recursive sequences by dynamic representations (Figure 
1). The use of Wiris CAS software offers the potential 
to make connections between algorithms and the 
graphical register. 

In the analyzed resources, sequences constitute a theme where the mathematical materials are mainly 
limited to the calculus topic area. This is very similar to the content presented to mathematics majors. 
There are strong connections between concepts (convergence/divergence, limit of a sequence, 
function, upper/lower bound, recursive sequences). The tasks and activities propose mainly 
treatments within the formal register. In addition, there are no authentic situations, real life problems, 
or problems referring to other disciplines. All the examples, exercises and applications are intra-
mathematical, which could strengthen a possible gap with the institution of engineering courses. 

Analysis of interviews: towards effective connectivity in the enacted curriculum  
Concerning the characteristics of a mathematics teaching well suited to engineering education, we 
identify three different trends in the answers of the interviewed teachers: T1 emphasizes the need for 
“contextualization”; T2 perceives his profile as interesting for teaching mathematics in engineering 

Figure 1. It is required to act on the 
cursor “n” to relate the two dynamic 

representations (Wiris CAS). 
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education; T3 perceives himself as a teacher who applies the mathematics as are “recognized in the 
university institution”. T1 notices that teachers who are mathematicians have a reluctance to integrate 
problems referring to other disciplines. He supposes that they need some support in the design and 
the implementation of this kind of problems. T2 states he has “ability” to make connections between 
contents to ensure a continuum of learning between mathematics courses and engineering courses. 
He sees himself as a “specialist in mathematics for engineers”. He says:  

T2: Specialist of mathematics no, I am not a mathematician. Otherwise, am I a specialist in 
mathematics for engineers? I think I have a lot of experience to know how math tools are used 
in the workplace. [Our translation] 

He presents mathematics content as tools that have utility in the workplace of engineers:  

T2: We try often to remind students that later on they will need mathematical tools and they have 
to build them. They have to be able to manipulate them properly. [Our translation] 

T3 only considers the mathematics courses in terms of utility within mathematics.  

In their answers about students’ difficulties, the teachers referred to: 1) reasoning (T1, T2, T3); 2) 
treatment of tasks within the formal representation (T2, T3); 3) the capacity of abstraction (T1, T3). 
It seems that the emphasis on formal representations in resources accentuates these difficulties. 

According to their declarations in the interviews, the examples they add during the classroom sessions 
appear as revealing their will to support connectivity in different ways. Each teacher, in his 
preparation of the course, designs his own examples. T1 says that the examples he designs should 
enhance the meaning of the concepts at stake. He presents examples referring to other disciplines. T2 
says that he gives examples particularly during the introduction of concepts, “intra and extra-
mathematical examples”. According to T1 and T2, examples referring to other disciplines of real life 
situations are opportunities to make sense of the contents. T3 says that he gives examples after having 
stated a theorem. He uses examples to illustrate the “operability of the theorem”.  

Concerning proofs, all interviewed teachers stated that they do not do, in the classroom sessions, all 
the proofs given in the resources. The reasons they gave could be interpreted in terms of personal 
relationship with calculus [our translation]:  

T1: the proofs I like are usually the useful proofs. I do not like for instance the “trapping” proofs 
for which if you do not have the right intuition, you cannot start. 

T2: When you look at the theorem and the proof does not come to your mind right away, and you 
finally find out that the proof is based on tricks, I think this proof should be replaced by 
examples. 

T3: If the proof requires little effort and seems important to me, I do it. I do not do it if I think we 
can understand the theorem without the proof, sometimes the proofs help to understand. 

T1 and T2 show in class the proofs that can support the learning of a form of reasoning, which is, 
according to them, essential for future engineers. T3 shows the proofs that can help to understand 
theorems and properties, even if they sometimes require fastidious techniques. However, the 
interviews allowed us to identify criteria the teachers consider for choosing the proofs to do in the 
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mathematics courses in engineering education: they can help improve the understanding of theorems; 
they allow highlighting the importance of a given theorem; they can help – during the proof – 
implement a mathematical reasoning. Each of these criteria could promote a specific form of 
connection between concepts. 

The additional resources that the teachers design individually can strengthen specific connectivity in 
their teaching. T2, for instance, prepares examples to motivate the introduction of a given concept or 
to replace “tricky” proofs. T1 designs resources to show situations from other disciplines. T3 designs 
additional resources (exercises and examples) to strengthen links between mathematics concepts.  

Discussion and conclusion 
We present in this paper the issue of connectivity concerning a mathematics course in engineering 
education. We analyze the potential connectivity of resources, collectively designed, for teaching 
sequences theme. We highlight elements on effective connectivity that teachers, as users of these 
resources, could develop in their implementation.  

The potential connectivity in resources for teaching sequences appears as restricted to the calculus 
topic area. The register of formal representation occupies an important space. According to two of 
the interviewed teachers (T1 and T2), making connections with engineering contexts, real-life 
problems or other disciplines “remains a dimension to enhance”.  

It appears by the interviews that the way the teachers use resources is likely to lead to an effective 
connectivity different from the potential connectivity, and this could be related to their personal 
relationship with the topic at stake. The teachers stated that students struggle with making sense of 
formal properties. Hence they attempt to support students by designing additional resources. They 
add examples and select separately the proofs to show in lectures sessions. These individual teachers’ 
choices could strengthen some forms of connections. The physicist (T1) tries to enhance the 
connections in terms of other disciplines; the engineer (T2) constructs mathematical tools and tries to 
make connections with the engineering courses; the mathematics teacher (T3) tries to maintain 
connections within mathematics. 

The analysis of the interviews draws our attention to the need to take into consideration the macro-
level connectivity (Gueudet et al. 2018), especially connectivity across disciplines, in terms of 
teachers’ own resources, as well as in terms of teachers’ and students’ joint work. Besides, based on 
the analysis of the interviews, we highlight the necessity to observe how the teachers select and 
implement proofs in their sessions, which could tell us more about the effective connectivity built. 

The issue of connectivity in resources and the connectivity developed by their use seems to be relevant 
in the context of engineering education, where the connectivity between theory and practice is crucial. 
Each of these elements requires further study with a larger sample of teachers, considering different 
mathematical topics and articulating the analysis of resources and classroom observations.  
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Introduction 
At CERME11 two groups addressed mathematics education research concerning technology. 
TWG15 focused on issues related to teaching, teacher education and professional development, 
whereas TWG16 focused on students’ learning with technologies, alongside software and task design 
issues (see Introduction to TWG16 in this volume). 

The TWG15 work was stimulated by contributions in the form of 12 research papers and 8 posters 
that had responded to the call that had highlighted the following themes: 

· The specific knowledge, skills and attributes required for efficient/effective/equitable 
mathematics teaching with generic and mathematics-specific technologies and resources. 

· The design and evaluation of initial teacher education and teacher professional development 
programmes (to include MOOCs) that embed the above knowledge, skills and attributes. 

· Theoretical and methodological approaches to describe the identification/evolution of 
teachers’ practices (and of ‘best’ practices) in the design and use of technology and resources. 

· Theory and practice relating to the formative/summative assessment of mathematical 
knowledge in technological environments. 

The work of TWG15 drew upon research from 13 countries: Austria, Brazil, Denmark, England, 
France, Iceland, Israel, Germany, Greece, Norway, Portugal, Sweden and Turkey. 

Organisation of the TWG15 at the conference 
During the conference the TWG15 convenors piloted a new format for the 30-minute paper 
presentations. Two weeks in advance of the conference, each lead paper author was paired with 
another participant in the group, their partner, and it was this partner who was invited to present the 
paper. She or he was asked to share their presentation slides, which were required to include some 
questions to the author. In reality, this led to email exchanges, online calls and face-to-face meetings, 
most of them before the conference, and some during the early days of the conference. The resulting 
presentations enabled the ideas in the submitted papers to be explored in much more depth than at 
previous CERMEs - often requiring the author(s) to show examples of tasks, resources and 
functionalities from within their selected technologies. Alongside this, the TWG15 poster 
submissions were thematically aligned with the TWG session programme and the poster authors were 
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invited to give a brief overview of their research. Following these paper and poster presentations, 
small group discussions were instigated within the TWG that focused on understanding the presented 
work in its cultural context. In particular, we probed the terminologies and contexts within the 
reported research that related to technological, pedagogical, mathematical, theoretical and 
methodological ideas. The TWG leaders supported the analytic and synthetic processes of the group 
by capturing the comments and questions made by participants as an ongoing process. We reflect on 
participants’ perspectives of this approach later in the TWG15 introduction.   

The emergence of TWG15 sub-themes 
During the final two TWG sessions, the group spent time to discuss and agree the emergent sub-
themes, which were: teachers’ uses of students’ (digital) productions; sorting and organising digital 
content such as: simulations, applets, Open Educational Resources (OERs); the teaching of 
computing/programming in, and through, mathematics; teachers' choices and beliefs concerning 
technology use; and the group’s ongoing grappling with theory. The TWG sub-divided into smaller 
groups, each of which then contributed text to the summaries that follow. 

Teachers’ uses of students’ productions 

A number of papers and posters described research that featured teachers’ practices when using 
students’ work as a basis for discussion in the mathematics classroom. In these projects different 
technologies were employed, e.g. c-book units (Diamantidis, Kynigos & Papadopoulos), videos 
(Kristinsdóttir, Hreinsdóttir & Lavicza; Fidje & Erfjord), connected classroom technologies 
(Fahlgren & Brunström), and mini-whiteboards (Eidissen, Hreinsdóttir & Lavicza). These 
technologies served to both make students’ thinking visible and to stimulate classroom discussions 
based on students' own work/solutions, which are known to be important formative assessment 
practices (Black & Wiliam 1996).  

However, orchestrating class discussion based on students’ contributions was reported to be 
challenging for teachers for which the selection, deliberate grouping and sequencing of student 
productions are useful strategies. When it comes to sequencing, the role of teacher preparation was 
considered important, however sometimes students’ responses opened opportunities for discussion 
that could not have been realistically predicted by the teacher. Such opportunities can contribute to 
the classroom discussion, if the teacher has both the flexibility to take it up and it aligns with the 
teacher’s goals for the lesson. As such, this relates to the existing framework of instrumental 
orchestration (Trouche, 2004) within the socio-mathematical norms where students’ various personal 
meanings of concepts are valued and ‘up for discussion’ as a crucial factor to foster classroom 
discourse. The TWG group agreed that the aforementioned technologies might aid teachers in this 
endeavour. 

The use of students’ productions in education was exploited by Diamantidis et al., who focused on 
the role of students as co-designers - with teachers - of digital resources for learning mathematics. 
Their project design involves collaboration between students and teachers, who used digital tools for 
mathematics education for the design and production of c-books, a set of narrative units blended with 
digital artefacts. The research, which was framed by the documentational approach (Gueudet & 
Trouche, 2010), aims to research the design phase as a learning process for the students as they search 
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for new mathematical meanings that emerge around the concept of co-variation (in the sense of 
Thompson, 2002). 

Kristindóttir et al. presented a poster on the use of silent videos to the whole class in Iceland, with the 
possibility for the students to view them as often as they want. The students, divided in pairs, were 
asked to plan and to record their voice-over for the video. The role of the teacher is of facilitator, 
encouraging students in many ways, for example by reminding them that their voice-overs might help 
their classroom peers to gain access to the mathematics shown in the video. The research is 
highlighting how the use of silent video in this way is particularly helpful to teachers as a form of 
formative assessment, because data about students’ knowledge can be collected in an indirect way.  

Fidje and Erfjord’s research also focused on videos produced by students, this time in Norway, which 
are used to stimulate discussions that are coordinated by the teacher. Their project Digital Interactive 
Mathematics Teaching, explores the use of digital tools in three lower secondary mathematics classes. 
The student-produced videos are presented as a tool for the students to show strategies related to 
inquiry-based tasks given by the teacher (in this case, relating to similar triangles). The idea emerged 
from the teachers as they wanted to explore different uses of videos in teaching, both teacher- and 
student-produced. The three-part lesson sequence used in the analysed lesson was developed by both 
teachers and researchers in a workshop. The aim for both teachers and researchers was to develop an 
approach for eliciting student talk in full-class mathematics discussions. The results show that the 
teachers adopt different ‘teacher moves’ to steer the discussion towards both didactical and 
mathematical goals. 

The final two research studies that relate to this sub-theme are those of Fahlgren and Brunström and 
Eidissen et al.. Both sets of authors presented posters of work in progress. Fahlgren and Brunström’s 
study concerns research into the impact of connected classroom technology, a networked system of 
personal computers or handheld devices specifically designed to be used in a classroom for interactive 
teaching and learning, through a design-based study with Swedish mathematics teachers to establish 
design principles for its use for formative assessment purposes. The contribution by Eidissen et al., 
notable by its absence of digital technology, proved to be a significant one for the TWG as it 
challenged the group to consider how theories such as instrumental genesis and orchestration 
(Trouche 2004, and Drijvers’ plenary paper in this volume) might be applied for classroom practices 
involving non-digital resources.  

Sorting, organising, and increasing quality of mathematical digital content 

The current diversity, complexity and potential of mathematical digital content demands research 
studies to support better understanding and communication of the main characteristics, constraints, 
didactical value, and quality. The abundance of digital resources for the teaching and learning of 
mathematics highlights the need to provide teachers with guidance and support to make discerning 
choices. In the previous CERME, a paper was addressed specifically on discerning quality issues of 
web materials useful for teaching mathematics with technologies (Kimeswenger, 2017). In this 
CERME, TWG15 included several contributions that had adopted both empirical and theory-driven 
research approaches to address the challenges to sort, organise and make judgments about the quality 
of mathematical digital content. 
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Wörler focused on finding central features of digital simulations for learning mathematics, and 
articulate the underlying traits that can be derived within the context of mathematical modelling. The 
resulting research question concerned how these features and traits might enable an a priori 
classifications of mathematical simulations. This question, and the results of the study give some 
order within the field of modelling and simulation for teaching mathematics and enable comparisons 
between the products used in different countries and contexts. Considering the importance of 
variation in the field of simulation, the author introduced a classification based on the kind of 
variation, number and possibilities of varying elements in a simulation model, and kind of 
representation used. In this way, different simulation applications are classified with a quantitative 
scale based on different levels of manipulation, and the classification is useful to both researchers and 
teachers.  

Alongside simulations, applets are also widely (and increasingly) available for the teaching and 
learning of mathematics and it is widely evidenced that teachers find it challenging to select which 
ones to use, highlighting a need for some related quality criteria (Nakash-Stern & Cohen). The authors 
reported research that concluded teachers’ choices, which were classified by the intended 
mathematical learning goals, the role of the applet in the planned lesson and the nature of its planned 
use. Nakesh-Stern and Cohen’s research aims to support teachers to cope with the propensity of such 
OER by offering a methodological tool (a meta-data map, as shown in Figure 1) to link a teacher's 
pedagogical-content considerations with the didactical aims.  

 
Figure 1. A Map for applets integration in teaching sequence (Nakash-Stern & Cohen) 

The specific case of gamification within mathematics is addressed by Russo, whose research has 
reviewed the features of existing gamification platforms for mathematical learning to develop a 
framework for the evaluation of their motivational aspects. This is to be used to inform the 
development of a gamification editing platform that will be explicitly designed for teachers’ uses. 
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Braukmüller, Bikner-Ahsbahs and Wenderoth offer a publisher’s perspective to the same challenge 
in their consideration of teachers’ needs whilst developing a digital tool for learning algebra in the 
German multimodal algebra learning (MAL) project. They argue that, as textbooks are the dominant 
media in mathematics teaching, research with textbook authors is necessary to derive principles for 
integrating the MAL digital tool within textbook authoring. 

These different approaches all address the aim to facilitate teachers’ choices, uses and evaluation of 
all manner of digital tools in classroom practice. The collaborative work of the TWG resulted in new 
ideas for future research focusing on some aspects that are considered useful when evaluating a tool, 
for instance motivational features, authoring systems, types of use and levels of interaction/activity. 
Basically, two different approaches arose: platforms that suggest some tools according to teacher 
needs (using filters) and the provision of frameworks to evaluate a specific tool for a special use case. 

Teaching computing/programming in and through mathematics 

Discussions in the group revealed that several of the represented countries are now implementing 
computing curriculum in schools (England) and/or mandating compulsory technology usage 
(Denmark, Sweden). The legacy of Seymour Papert (1980) and his seminal work that resulted in the 
computer programming language LOGO stimulated the TWG discussions on this sub-theme. 

The ScratchMaths project (Clark-Wilson, Noss, Hoyles, Saunders & Benton), a large-scale evaluation 
project in English primary schools focused on making the mathematics explicit by focusing on an 
explicit pedagogical framework, the 5 Es (Explore, Explain, Envisage, Exchange, bridgE). The 
research reports the important methodological considerations in relation to the teachers’ adoption and 
adaptation of the pedagogical ideas as a means to assess the fidelity of classroom implementations of 
the computing curriculum. 

In Norway, Munthe is undertaking design-based research with upper secondary students on an elected 
science and mathematics pathway in which they are presented with mathematical problems to 
investigate how the use of programming can facilitate their learning of mathematics in the classroom. 
His poster is a good example of how the mathematics explored was explicit, within the problem of 
solving quadratic functions with no real roots. 

This idea is researched from the teachers’ perspective in the paper by Misfeldt, Szabo and Helenius, 
in Sweden, where teachers’ perceptions of the relationship between mathematics and programming 
is explored within the context where teachers are expected to integrate compulsory programming 
within the mathematics curriculum, without deep thought about its value. 

There is a diversity in the perspectives of the different papers in relation to both the definition and 
positioning of computational thinking within the school mathematics curriculum, which lead to 
differing approaches to curriculum and teacher development. Critical to this were the questions, 
where is the mathematics? and how is the mathematics transformed (in terms of syntax. 
representation and meaning) through the use of different programming tools? - and the implications 
of these approaches on teachers’ roles and actions. 
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Teachers' choices, beliefs and practices with technology 

A number of TWG15 contributions addressed issues related to mathematics teachers’ attitudes to, 
and uptake of, digital technological tools. The paper by Thurm and Barzel adopts a quantitative 
approach to explore the link between teachers’ self-efficacy and their use of mathematical analysis 
software (MAS).  They adopt Bandura’s definition of self-efficacy, ‘a judgement of one’s ability to 
organize and execute the courses of action required to produce given attainments’ (1997, p. 3), to 
develop and validate a scale that concludes that teachers with high self-efficacy tend to use MAS 
more frequently. Furthermore, high teacher self-efficacy is less well-correlated with the teachers’ 
level of experience with technology. A different methodological approach to explore teachers’ 
perceptions of their technology use is evident in the work of Bang et al., who use a stimulated 
interview task to research how Danish teachers are integrating computer algebra software (CAS) into 
their teaching.  

In his presentation of ongoing doctoral work, Dreyøe declares the integration of digital tools by 
teachers of mathematics to be a wicked problem, a phrase first coined by Rittel and Webber for 
problems with many interdependent factors making them seem impossible to solve (Rittel & Webber, 
1973). Dreyøe’s study explores the impact of participatory design with mathematics teachers as a 
means to create shared understanding of their declared intentions and practices with digital tools.  

Focusing more on mathematics teachers’ particular practices with digital tools, research by Rocha 
and Yemen-Karpuzcu & Isiksal-Bostan adopt a micro approach with respect to particular 
mathematical content. Rocha’s study explores Portuguese teachers’ representational fluency when 
teaching functions at high school level and the impact of their choices of representations within their 
practice, concluding hierarchies in algebraic, graphical and tabular forms. Yemen-Karpuzcu & 
Isiksal-Bostan research Turkish teachers’ mathematical practices as they taught a sequence of lessons 
addressing the concept of slope that used both concrete and technology-based resources. Their 
findings highlight the nuances of teachers’ practices, which vary by: the mathematical construct, their 
own understanding of it; and their knowledge of their students’ understandings of the same construct. 

The use and application of theories within TWG15 
Over the years, and especially this year, the TWG15 papers have shown a strong appreciation of 
theory, which is used to inform hypotheses, research questions and research methodologies. During 
TWG15, this work continued as we discussed theories in relation to: individual papers; by making 
links with other papers in the group; the CERME plenaries; or other papers in the literature. One 
theory that continues to be present has been instrumental genesis, with its origins in French cognitive 
ergonomics (Verillon & Rabardel, 1995) and its applications in mathematics education (Artigue, 
2002; Guin & Trouche, 2002). One discussion point was the complexity of two key components: 
instrumentation and instrumentalisation. In particular: how (and whether) to interpret these from a 
user perspective or an instrument perspective; their meaning in digital and non-digital contexts; and 
whether to consider each separately or in a more dialectic relationship. However, as addressed by 
Paul Drijvers in his plenary, instrumental genesis or, in other words, the emergence of utilisation 
schemes, emerges from the intertwinement of mathematical concepts and the employed techniques 
for the proposed task. In this process the tools have a central role but such tools ‘come with [their 
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own] affordances and constraints, with opportunities and obstacles’. Our discussion. and resulting 
consensus was that instrumental genesis is a long and continuing process (as exemplified by Paul 
Drijvers’ piano recital in the Dom church), in which the user continually and spontaneously shapes 
his/her techniques and associated cognition. Consequently, the separation of instrumentation and 
instrumentalization as distinct processes is not an easy task and may not be observable. The paper by 
Bozkurt et al. prompted rich debate on the process of instrumentalization as, in their research, they 
had particularly ‘focused on a stage of discovery’ of a specific tool and how this related to the 
instrumentation of other tools.  

Moreover, to describe the design of material in a technological context, Diamantidis et al. used the 
documentational approach (derived from the instrumental approach, Gueudet & Trouche, 2010). The 
interesting and new perspective introduced in this study is the involvement of students alongside with 
teachers in the phases of design.  

An emergent phenomenon in the TWG15 contributions is the increasing number of studies that report 
the involvement of teachers in mathematical, technological contexts as active protagonists, not only 
as consumers of professional development made by researchers. The engagement of teachers in 
working, not only learning, is the novelty coming to the fore of the theme in the last years, over the 
world: teachers as designers, with researchers or with students, teachers involved in the research, 
teachers aware of the materials produced, of their role, of their choices.  

And, for the future, it seems increasingly important to research situations where teachers are working 
more collaboratively with each other and more knowledgeable others for the purpose of developing 
knowledge of, and practice with, digital mathematical tools.  For that reason, theoretical approaches 
that take care of praxeologies of the teacher both in the activity of teaching (i.e. didactical), as well 
as in the activity of working and learning (i.e. meta-didactical), can be used to describe possible 
evolution and improvement of teachers in their learning and working trajectories. The recently 
announced 25th ICMI Study: Teachers of mathematics working and learning in collaborative groups 
will be an opportunity to explore the role of technology in this respect. 

Areas for further research 
Following the conference, the group created a ResearchGate1 project page to enable the community 
to share, and comment upon research projects, articles and conference presentations that align with 
the TWG15 focus. 

The group identified the following emergent research themes that might be included in future TWG 
calls for proposals: 

· Teachers’ decision-making for the selection and use of digital tools for teaching and learning 
mathematics. 

· Quality criteria for digital tools that enable the teaching and learning of valuable and 
meaningful mathematics. 

                                                 
1 https://www.researchgate.net/project/CERME10-TWG15-Teaching-Mathematics-with-
Technology-and-Resources 
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· Developing collaborative groups to scale digital mathematical implementation – How to 
implement different technologies in schools? What are the challenges and barriers? What 
makes a successful implementation?  

· The implications of the emergence of ‘big data’ in mathematics education and its impact on 
how mathematics is assessed. 

· Teachers’ appropriations of emerging technologies, for example virtual and augmented 
reality, artificially intelligent digital tools etc. 
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Background 
Teachers in Danish upper secondary schools are expected to independently plan and implement 
teaching, basing content and didactic approach on their own preferences - customized to student level, 
useful teaching materials, time spent etc. Use of technology - especially CAS – is extensive and 
reflected in tasks and techniques, in the sense of Artigue (2002), in both the classroom and within 
final examinations. The technological dimension changes the conditions for organizing teaching, 
which makes continued in-service teachers training an urgent need.  
CMU has met these challenges by establishing a community of teachers and offering coaching to 
smaller groups or individuals, allowing for a dialogue that respects the teachers' wishes and needs 
while providing solid support in the process (Bang, Grønbæk, & Larsen, 2017a). Among the issues 
that we have identified during the coaching process are: 
- The teachers' own mastery of the instruments – technically as well as educationally. 
- Questioning how much the students themselves can do with the instrument in terms of time 

consumption, classes and student types, software for which the school has access, etc. 
- The relationship between doing tasks with CAS and (also) doing without, expressing itself in 

many ways, e.g. which procedures you want to teach, what non-CAS assumptions you should 
have in terms of using CAS, and how work with CAS supports non-CAS work. 

- Teachers' awareness of the relationship between procedural and conceptual development in a 
technological context, while respecting mathematical content in a longitudinal perspective.   

- Standards for CAS responses opposed to non-CAS. The latter having a long tradition, while the 
first may depend on software, instrumentation, etc. 

- Students' motivation - not least the motivation triggered by final exams. 

Fruitful aspects of the outsourcing metaphor. 

The complexity of these interlaced issues involves many approaches, imposing a lot of theory on 
teachers not being one of them. We therefore need pragmatic ideas that can form a basis for dialogue 
with the participants and among the teachers themselves. Outsourcing (to technology/CAS) is to some 
extent used as a metaphor for how procedures that have been time-consuming maybe/may be 
advantageous with CAS. We have explored the concept, and its dual partner, insourcing, covering 
procedures and approaches done with or without technology, promoted in teaching (Bang, Grønbæk, 
& Larsen, 2017b). We are especially draw to the control aspect, e.g. a company outsourcing 
procedures and thus losing control of them e.g. product quality, how the product fits in with the 
company's other production. Conversely, insourcing allows for control in the sense that you have 
clarity about qualities, resources, etc. Out-/insourcing can take place with or without technology. 

Interviewing teachers posting tasks for students on maps. 
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Based on the interviewee’s generic teaching experiences e.g. 2nd degree polynomial, initial 
differential calculation, we asked her to post different tasks on a two-dimensional map (fig.1). The 
teachers quickly connected to the idea and although placing specific topics gave rise to discussion, 
e.g. possible placement in several places, there was rarely doubt about the general ideaa . 

           
                   Fig.1                                                          Fig.2                                                                 Fig. 3  

Identifying choices and research questions. 

We have tentatively placed teachers' reasons for their choice in three interrelated categories (Fig.2): 
1. Mathematics involved -derived from what promotes mathematics in a longitudinal perspective 
2. Local pedagogical - approaches, that work in a specific class setting. 
3. Systemic - approaches derived from e.g. requirements for examinations or grades. 
Our RQs: How can analyses of teachers' choices promote better understanding of relations between 
(in-sourced) procedures and objects. What kind of activities with technology could stimulate interest 
in realistic mathematics? What kind of technology use at upper secondary mathematics is fruitful in 
a transitional perspective?  
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a One of the many tasks in question was the parallel shift of a parabola, e.g.  to display formula for vertex. You can choose 
completely to outsource the procedure, but also choose to insource parallel shift of absolute value and do it by hand, or 
you can choose to look at Geogebra etc. to enhance students control of the procedure. A large part of the interview would 
be the teacher elaborating on their choice. 
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The aim of this paper is to investigate a preservice mathematics teacher’s instrumental 
genesis of ‘dilate from point’ tool in a dynamic geometry system. Data is collected through a 
series of task-based interviews including seven specific construction tasks regarding the use 
of dilate from point tool with a Turkish preservice mathematics teacher. Video-recorded 
interviews and screen recorder software productions were triangulated and analysed within 
the theoretical lens of instrumental genesis. According to the findings, the participant firstly 
explored the properties of the dilation transformation and its relation to other geometrical 
concepts and transformations. Secondly, the participant developed instrumented schemes 
related to the dilate from point tool for applying appropriate strategies in the construction 
tasks.  
Keywords: Preservice mathematics teachers, Dynamic geometry system, Construction tasks, 
Instrumental genesis. 

Introduction 

Geometric similarity is regarded as a crucial concept in most school geometry curriculum. 
Likewise, in Turkish secondary school mathematics (MoNE, 2018a; MoNE, 2018b) this 
concept has its place focusing on making connections between measurement of angles and 
side lengths of two polygons through reasoning about the concepts of ratio and proportion. 
Considering the similarity related terms and concepts, the importance of dilation and scale 
factor has been emphasised in the related literature (e.g. Cox, 2013) since the deep 
understanding of these concepts do not only enable learners to solve similarity problems but 
also help them to involve in ratio-related problems. However, these concepts do not take place 
in the Turkish mathematics curriculums as a geometrical transformation. Instead, the focus is 
on investigating similar polygons in different sizes by focusing on the ratio between side 
lengths through paper folding tasks or drawing activities on a plotting paper (MoNE, 2018a). 
Also, tasks based on the basic proportionality theorem (MoNE, 2018b) are addressed without 
mentioning the concepts of scale factor or centre of dilation. Starting from this point, we focus 
on teachers learning of dilation as a geometrical transformation. This is particularly crucial in 
teacher education as it is essential for preservice mathematics teachers to have a wide and 
deep understanding of geometric similarity before their actual teaching in classrooms.  
Focusing on these concepts, dynamic geometry systems (DGSs) in particular measurement 
and dragging facilities are considered as having a critical role to support learners’ reasoning 
processes on the ratio and proportional relationships between two figures (Denton, 2017). In 
this regard, we focus on a preservice mathematics teacher learning dilation and scale factor 
concepts in a DGS as Simsek and Clark-Wilson (2018) in their review stated that there is a 
need to know about how dynamic technology tools shape teachers knowledge on geometric 
similarity related concepts. Considering the geometrical transformation tools in a DGS, it has 
become apparent that dilate from point tool is an unfamiliar tool for Turkish preservice 
mathematics teachers in its practical use as well as in its mathematical content. Along this 
direction, we focus on encouraging a preservice mathematics teacher to explore dilate from 
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point tool as a geometrical transformation tool in which she first had a difficulty in making 
the mathematical meaning of the tool. 

Theoretical Framework 

Instrumental genesis offering a model to describe the process of learning to use technological 
tools is chosen as a theoretical perspective in this study (Artigue, 2002). This is derived from 
the instrumental approach issuing from cognitive ergonomics (Vérillon & Rabardel, 1995) 
pointing out the difference between the terms ‘artefact’ and ‘instrument’ and the fact that 
using a tool is a dialectic between the user and the instrument. In this approach, the process 
through which an artefact becomes part of an instrument is called instrumental genesis 
‘involving the construction of personal schemes or, more generally, the appropriation of 
social pre-existing schemes’ (Artigue, 2002, p. 250). The instrument is used in a 
psychological sense, which is developed by the user through mental schemes in order to use it 
for specific tasks. Instrumental genesis consists of two interrelated processes 
instrumentalisation and instrumentation. The former is directed towards the artefact and 
concerns the way in which the artefact is shaped by the user. The latter is directed towards the 
user and concerns ‘the emergence and evolution of schemes of a subject for the execution of a 
given task’ (Guin & Trouche, 2002, p. 205).  
For the aim of this study, both instrumentalisation and instrumentation processes are of 
crucial importance. For the instrumentalisation process, we will focus on a stage of discovery 
of dilate from point tool and a process of differentiation of this tool itself in which 
instrumentation of the other DGS tools can emerge (Guin & Trouche, 2002). For the 
instrumentation process, we will focus on instrumented schemes for working on dilation and 
scale factor related tasks in a DGS. Hence, the research question addressed in this study is: 
How does instrumental genesis process of a preservice mathematics teacher occur in 
utilisation of dilate from point tool while solving enlargement/reduction and scale factor 
related construction tasks in a DGS?  

Research Context and Methods 

This paper is part of an ongoing research project that is designed as a case study focusing on 
instrumental genesis of preservice mathematics teachers while they commence GeoGebra. For 
the sake of page constraints, this particular study reports the case of one preservice 
mathematics teacher, Selin’s (pseudonym) appropriation of dilate from point tool in 
GeoGebra while working on construction tasks. She enrolled in a secondary mathematics 
teacher education program at a state university in Turkey. She took several courses (e.g. 
abstract and discrete mathematics, calculus, geometry and linear algebra) before the 
interviews were completed. She was selected mainly because she had no previous experience 
with GeoGebra in particular while solving construction tasks. Also, we considered her 
performance on geometry course since she achieved A from geometry for the grades F (fail) 
to A (excellent). In addition, her communication skills especially in terms of expressing her 
thinking clearly has been taken into account.   
Data was collected from three task–based interviews, during which the participant 
talked/explained her solutions while working on a mathematical task. These interviews were 
recorded through a video-camera filming the participant’s working environment, which 
included a laptop with GeoGebra installed in front of her. Screen recorder software was also 
used to capture the techniques she employed during the tasks in detail. All the collected data 
were triangulated and analysed through thematic analysis techniques. Codes and themes were 
assigned by researchers according to the participant’s solutions for each task, and the tools 
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utilised by the participant and her reasoning behind it with reference to the used techniques 
during her solutions.  
 
The Tasks 
For exploring the process of instrumental genesis of dilate from point tool, we prepared seven 
different construction tasks. Since the participant initially had no insight into how dilate from 
point tool worked, the first task consisted of the analysis of this tool. The interviewer showed 
Selin the icon of dilate from point tool in GeoGebra and the task was proposed as: explore this 
tool and explain its mathematical feature. Then she was asked three different construction 
tasks focusing on enlargement/reduction concepts without the use of this tool:  
● Dilate a circle by scale factors of 2 and 3 (without using dilate from point tool),  
● Dilate a triangle by scale factors of 2 and 3 (without using dilate from point and reflect 

object in point tools), 
● Dilate the given QRS triangle from the centre point T by the scale factor of –1/3 (without 

using dilate from point tool). 
By this way the participant was encouraged to think about possible ways to obtain dilation 
transformation by using other GeoGebra tools. These three tasks were proposed in order for 
her to become familiar with the use of dilate from point tool and elaborate its mathematical 
meaning, hence the focus was on the instrumentalisation process. Finally in order to explore 
the participants’ instrumented schemes for this specific tool, three more tasks were asked: 
● Construct the centre of gravity point in a given triangle (without using line construction 

tools),  
● Divide a line segment into two parts by a certain ratio (without using parallel line 

construction tool), 
● Construct a trapezoid with a given triangle (without using parallel line construction tool) 
During these tasks, the participant was asked to develop strategies without the use of some 
tools in order to encourage her to think indirect ways of constructing a figure which aimed to 
give deeper insight into the extent of the participant’s knowledge. 
 

Findings 

Initial analysis of the ‘dilate from point’ tool 
Task 1: Explore the dilate from point tool and explain its mathematical feature  
Selin started her analysis by selecting the tool, respectively clicking 
on point A (as object) and point B (as centre of dilation), and entered 
the number 5 as a scale factor. As a result, she assumed that the 
distance between the two points (A and B) on the screen would be 
five (the image of the point A was not seen on the screen). After 
making use of distance or length tool, she found the distance AB 3.1 
(Figure 1) and refuted her initial conjecture. She then said: “I would 
like to say that there is a certain proportion between points but I 
don’t see a third point so I am confused”. Figure 1 

Thematic Working Group 15

Proceedings of CERME11 2665



Selin applied the dilate from point tool again for C as object and D 
as centre of dilation. Then she used the zoom out tool to look for a 
third point, to her, which was possible to emerge on the screen as the 
image of C (Figure 2). When she found the point C' (image of the 
original point) on the screen, she said: ‘aha, now it is OK’.  
She then chose a triangle (as object) and a point (as centre of 
dilation), and entered 5 as a scale factor. Figure 2 
She stated that the tool constructed a bigger triangle which was constructed by the ratio that 
was entered as 5.  
She also worked on the two triangles and explained the similarity 
between them based on the basic proportionality theorem (Figure 
3).  
Selin then applied the dilate from point tool on various other 
figures (a triangle and a circle) and examined the relationships 
between the original figures and their images. She suggested that 
the scale factor affected each point of the original figures and 
made an assumption that the original shapes and their images 
were similar. 

Figure 3 

In order to support her assumption, she used the distance or length and area tools and justified 
it with proportional relational facts. Based on this, she explained the similarity of figures and 
ratios.  
In the second step of the analysis process, she examined the simple fractions and negative 
numbers as scale factors. After examining the new shapes that appear as a result of her 
operations, she stated that for fractions the smaller versions of the original shape occurred as 
its images, whereas for negative numbers, the similar versions of the original shape occured at 
the opposite side of the centre of dilation. 
Elaboration of the ‘dilation’ by the use of other types of transformations 
Task 2: Dilate a circle by scale factors 2 and 3 respectively without the use of dilate from 
point tool. 
During this task, she, by following the steps below: 
● drew a circle with the centre P through point Q and chose a 

point called R as centre of dilation, 
● reflected the point R in the point Q and also in the point P by 

using reflect object in point tool,  
● obtained two new points R' and R1', 
● constructed the new circle with these points by using circle 

with centre through point tool, which was a dilation image of 
the original circle by scale factor 2 (Figure 4), 

● reflected the point Q in the point R' and reflected the point P in 
the point R1' for the dilation image by scale factor 3 (Figure 4). 

Figure 4 

The reasoning behind this instrumented action was notions of extending a segment by 
projecting it by its own length. 
Task 3: Dilate a given triangle by scale factors 2 and 3 respectively without the use of dilate 
from point or reflect object in point tools.  
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At this step, Selin focused on the use of translate by vector tool. She, by following the steps 
below: 
● drew a vector from the centre of dilation V to one of the 

vertices of the given triangle,  
● translated the triangle by the vector (Figure 5).  
After this operation, she noticed that while there was a ratio of 2 
between V and one vertice of the constructed image, this ratio 
was not preserved for the other two vertices of the image and 
she concluded: “I now translated the whole triangle by the same 
vector”. Then, she, by changing her operations as follows:  Figure 5 

● translated each vertices of the original triangle by vector 
(similar with the use of ‘reflect object in point’ in the 
previous instrumented action), 

● drew three different vectors from the centre of dilation V to 
the three vertices of the given triangle and translated each 
vertice by the corresponding vector, 

● obtained three vertices of the dilated image of the original 
triangle by scale factor 2 (Figure 6), 

● did the same operation for scale factor 3. 
The reasoning was again related to extending a segment by 
projecting it by its own length. 

Figure 6 

 
Task 4: Dilate the given QRS triangle with a centre of dilation T by a scale factor of –1/3 
without using the dilate from point tool. 
Selin initially said: “the image should be on the right side of the dilation centre and needed to 
be smaller than the object. How can I do that? For instance, the image of point Q needs to be 
somewhere on the line QT (collinear) and its distance from the centre should be one third of 
the line QT. So then if I divide QT line segment into three parts and reflect the point in the 
dilation centre I think that I could obtain its image by –1/3”.  
In this sense, her initial aim was to divide line segment QT into three equal parts. At this point 
she, by following the steps below: 
● drew two lines (QT and RQ), 
● constructed three equal line segments on the line RQ through 

constructing three new points called R', Q' and R'' by using 
the reflect object in point tool (e.g. reflected R in Q, then 
reflected Q in R', and reflected R' in Q'), 

● drew the line segment TR'', 
● constructed parallel lines passing other two points (R' and Q') 

to the line segment TR'', 
● constructed three equal line segments on the line segment QT 

based on the basic proportionality theorem  (Figure 7),  
● specified the point U on the line segment QT, which was the 

intersection point of the parallel line passing Q' and QT 
(Figure 8), 

 

Figure 7 
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● applied the same division method on the other two lines (RT 
and ST), 

● constructed the vertices of a new triangle (UZW) which was 
the image of QRS triangle by a scale factor of 1/3,  

· reflected the points U, Z, and W in the centre of dilation T 
and constructed U'Z'W' triangle, which was the reduction 
image of QRS triangle by a scale factor of -1/3 (Figure 8). 

 
In this task, she developed an instrumented scheme in which she 
related the reduction with division of line segments and negative 
scale factors with reflect object in point. 

 

Figure 8 

Construction of the centre of gravity point in a given triangle 
Task 5: Construct the centre of gravity point in a triangle without the use of line tools.  
In the solution process, she, by following the steps below: 
● firstly constructed the midpoints (D1, E1, F1) of the sides of a 

triangle (A1B1C1) with the use of ‘midpoint or centre’ tool 
(Figure 9),  

● and then reasoned on the ratio between the parts of median 
that separated by the gravity point. 

 
Figure 9 

In order to obtain the ratio between the parts as 1/3, she decided to use dilate from point tool 
and thought about what value should be entered in the scale factor window by considering the 
procedural features of the tool. As a result, she chose B1 as object and E1 as the centre of 
dilation. She said: “since the image should be on the left side of centre of dilation, the scale 
factor should be positive and since the ratio is 1/3, the scale factor should be 1/3”. Therefore, 
she put the value 1/3 as a scale factor and completed the task.  
Division of a line segment into two parts by a certain ratio  
Task 6: Selin was given two different line segments (called 
RS and UV). The line segment RS was divided into two parts 
from the point T (Figure 10). The task was to divide the line 
segment UV into two parts with the same ratio of |RT|/|TS| 
without the use of parallel lines. 
She started considering the ratio concept and the use of 
dilate from point tool. She, by following the steps below: Figure 10 

● constructed a line segment F1G1 which was equal length 
to the ratio of |RS| / |TS| with the use of segment with 
given length tool (Figure 11), 

● used dilate from point tool by choosing U as object, V as 
centre of dilation and the distance F1G1 as a scale factor.  

However, she noticed that the point, which she wanted to 
construct, appeared outside of the UV (Figure 11). 

 
Figure 11 

Then she said: “the image should be between object and the centre of dilation therefore I need 
to use a fraction as a scale factor”. Finally she changed the scale factor as 1/distanceF1G1 and 
repeated the operation again and finished her construction. She concluded that she could also 
use distanceTS/distanceRS as a scale factor which would have done the same operation.  
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Construction of a trapezoid with a given triangle as part of the trapezoid 
Selin was firstly asked to examine the properties of the given quadrilateral in Figure 12 
(M1N1L1K1) focusing on its variants and invariants through dragging. At this step, she stated 
that the given quadrilateral was a trapezoid for the reason that two opposed sides were always 
parallel within the quadrilateral. After her explanations, she was ensured to remember the 
diagonal based definition of trapezoid.  
Task 7: A triangle (P1Q1R1) was given to her and she was asked 
to reason on how a trapezoid can be constructed if the given 
triangle was formed by the diagonals of the trapezoid (Figure 12) 
without the use of parallel line tool. 
Selin focused on using dilate from point tool by considering the 
fact that the diagonals of a trapezoid divide each other into two 
parts by the same ratio. Then, she, by following the steps below: Figure 12 

● extended one of edges of the triangle by using the line tool 
and marked a random point on this line as third vertice of the 
trapezoid (point S1) (Figure 13),  

● examined the ratio of the distances of the opposed vertices 
(S1 and R1) from the intersection point of the diagonals Q1 by 
using the length measurement tool (Figure 13), 

● selected the dilate from point tool and chose Q1 as object, P1 
as the centre of dilation, and distanceS1R1/distanceQ1R1 as a 
scale factor, 

● constructed U1 as the fourth vertice of the trapezoid (Figure 
14) and completed the task by using the segment tool.  

As a second solution to the same task, she dilated the given 
triangle (P1Q1R1) as a whole, by chosing the given triangle as 
object, the intersection point of the diagonals Q1 as a centre of 
dilation and –distanceS1Q1/distanceQ1R1 as a scale factor. 
 

Figure 13 

Figure 14 

Discussion and Conclusion 

This study focuses on instrumental genesis of a preservice mathematics teacher’s use of dilate 
from point tool working on enlargement/reduction and scale factor related construction tasks 
in GeoGebra. For the initial analysis and elaboration of the tool, the participant discovered 
and understood the use of dilate from point tool particularly by engaging in thinking of the 
use of other tools to perform dilation. After that, she developed a number of instrumented 
schemes regarding the dilate from point tool while working on construction tasks related to 
proportional relationships.  
During the initial analysis and elaboration of the tool, on the one hand, she differentiated the 
properties of the dilation from other geometric transformations (e.g enlarging the given 
triangle by the use of translate by vector). On the other hand, she made connections between 
the properties of dilation and other transformations, which enabled her to develop a deeper 
understanding of dilation concept. For instance, in the example of dilating the given triangle 
by a scale factor of –1/3, it was seen that she mainly engaged in geometric thinking and used 
other concepts/transformations (e.g. division of line segments for reduction, the use of reflect 
object in point for negative scale factors) to complete the task. By this way, she extended and 
supported her understanding of the dilate from point tool regarding its underlying 
mathematical meaning and its practical use.  
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Considering the instrumentation process of the dilate from point tool, it was observed that she 
developed different schemes for positive/negative scale factors as well as for 
integer/fractional scale factors. For the former, she refered to the direction of the image from 
the centre of dilation (i.e. when the value of scale factor is negative, the dilation takes place in 
the opposite direction from the center of dilation). For the latter, she considered the size of the 
image whether it would be bigger or smaller than the original object and also the proportional 
relationships between the distances of the points of object and its image. In addition, she 
developed schemes related to the concept of dilation as a geometrical transformation in which 
centre point and scale factor are considered as parameters. These schemes about dilation and 
scale factors in a DGS indicated also some connections between algebraic and geometric 
strategies of the participant (Cox, 2013). 
To conclude, this study focused on the learning process of dilation transformation in a DGS in 
the context of the instrumental genesis of the dilate from point tool. The results of this 
research indicated that the instrumental genesis process for a DGS tool provided scaffolding 
in the construction and understanding of the dilation and scale factor related concepts. 
However, this study examined one specific preservice mathematics teacher’s solution 
processes of different construction tasks, which needs to be borne in mind. 
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The aim of the research project MAL (multimodal algebra learning) is to develop a digital algebra 
learning system (MAL-system) that provides an accessible approach for teaching and learning 
algebra. The subproject MAL textbook conducts an expert study with secondary school teachers 
who are also textbook authors to identify current teaching practices and needs. These are 
reconstructed by three iterations combining group discussions and questionnaires. The results are 
considered in the design of the MAL-system and lead to principles for integrating the MAL-system 
into textbooks. This paper shows how the surprisingly high commitment to the balance model is 
extracted from the data and its impact on the design of the MAL-system. 

Keywords: Delphi technique, textbooks, digital tools, anthropological theory of the didactic. 

Introduction 
Although digital tools are available for everyday classroom practice, researchers as well as teachers 
are questioning how the use of digital tools can improve teaching and learning (Hillmayr, Reinhold, 
Ziernwald, & Reiss, 2017). Despite from the digital tool itself, two main factors are responsible for 
students’ success: the teachers’ integration of digital tools into classroom practice and a 
supplementary use of digital and traditional resources (Hillmayr et al., 2017). Teachers’ integration 
requires change or innovation of current teaching practices. Research on innovation of teaching and 
learning shows that teachers are more likely to use digital tools if they address teachers’ needs. 
Moreover, fruitful innovation in schools should rather be an incremental process building on current 
teaching practices than a revolutionary break (Bikner-Ahsbahs & Doff, 2019). These teaching 
practices are highly influenced by textbooks: on the one hand, textbooks specify the mathematical 
content; on the other hand, they shape the didactic style that teachers apply in their teaching 
(Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002). Thus, textbooks represent teaching 
practices as well as traditional resources. Taking this into consideration, to provide the potential for 
integrating a digital tool for learning in classroom practice, already the development of the tool 
should follow a user oriented design that supports students’ learning and furthermore takes into 
account the textbook and teachers’ practices and needs. 

In the research and development project Multimodal Algebra Learning (MAL), the overall goal is to 
develop a digital algebra learning system (MAL-system) that supports the students’ transition from 
arithmetic to algebra, however, this paper is restricted to linear equations. With the design of the 
MAL-system we want to overcome the disadvantages of using either digital or physical 
manipulatives by integrating physical manipulatives in a digital environment (Reinschlüssel et al., 
2018). The subproject MAL textbook focuses on (A) integrating teachers’ perspectives into the 
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design process of the MAL-system and (B) providing strategies for using the MAL-system 
facilitated by textbooks. This will be achieved by answering the following research questions: 

(1) What kind of teaching practices do teachers consider when confronted with the concept of the 
MAL-system? 

(2) What kind of needs for teaching do teachers address for the design of the MAL-system? 

(3) What kind of criteria for accepting or rejecting the MAL-system do teachers express? 

(4) Which principles for integrating the MAL-system into textbooks can be extracted from (1)-(3)? 

This paper focuses on the methodical design of the MAL textbook study based on a Delphi study. It 
will show that this choice is fruitful to inform research and development of digital tools with 
teachers’ practices. These practices are conceptualized in the subsequent theoretical framework. 

Theoretical Framework 
In order to consider established teaching practices in the design of the MAL-system and, beyond 
that, to develop guidelines to include the MAL-system into established textbooks, the theoretical 
framework should address institutionalized forms of teaching and learning. This is possible by 
considering a theory that captures these teaching practices, the Anthropological Theory of the 
Didactic (ATD). The ATD (Bosch & Gascón, 2014) models human activities by the concept of 
praxeology. According to ATD, human activity splits up into a practical and a theoretical 
component. The former is broken down into a set of types of tasks and a technique that tells how 
these tasks are or might be carried out; the latter is broken down into technology and theory. The 
technology explains how and why a technique works. The theory comprises basic assumptions and 
views supporting and justifying the technology. In many cases, it is hard to reveal the theory 
because it is usually taken for granted. The practical component is often referred to as the know-
how, whereas the theoretical component is the knowledge behind, in the sense of raison d’être. The 
set of all praxeologies of one person is called her praxeological equipment. In general a person’s 
praxeological equipment emerges out of previous and current institutional settings including the 
people surrounding her. 

Algebra tiles and the MAL-system 
The MAL-System is developed based on algebra tiles (Dietiker, Kysh, Sallee, & Hoey, 2010). 
Algebra tiles can be used for modeling linear and quadratic expressions and equations with integers. 
A small square represents the number one, a big square represents x², and a rectangle with the side 
lengths of the two squares represents the variable x. The three types of tiles usually have three 
different colors on one side and are all red on the other side. The red side indicates a “negative sign” 
(Figure 1 a). For modeling a linear equation a so-called equation mat with two distinct sides, left 
and right, is needed. By laying out the appropriate tiles, an equation is modeled (Figure 1 b). The 
equation can be solved by taking away or adding the same tiles on both sides and dividing both 
sides into the same number of equal sets. A subtraction zone – an area where all the tiles within are 
supposed to be subtracted – can be introduced; either to mark the difference of sign and arithmetic 
operator or to express subtraction without negative Tiles (Figure 1 c). 
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Figure 1 a:  algebra tiles; b: equation with negative tiles; c: equation with subtraction zone 

As the focus in this paper is on linear equations only, x²-tiles are not addressed in this paper. 

Methodology and Method 
In Germany, textbook authors are primarily in-service teachers. Therefore, they are familiar with 
established teaching practices in their schools and many of the teachers’ needs for teaching. As 
these teachers author a certain textbook series in a team, they are also influenced by the teaching 
practices provided by this textbook series. Hence, their praxeological equipments are affected by 
their experience as teachers as well as textbook authors. This awareness of relevant praxeologies 
makes these teachers experts for the MAL textbook study to inform the design of the MAL-system 
through established teaching practices and relevant needs for teaching algebra. In order to gain main 
directions of consensus for adapting the MAL-system to these practices and needs, an expert study 
in the style of a Delphi study is conducted. 

According to various definitions, any Delphi study comprises an expert group communication with 
several iterations and guided feedback to achieve consensus on a given question (Linstone & 
Turoff, 1975). The MAL textbook study conducts three iterations combining group discussions and 
questionnaires building on one another (Figure 2). Three groups of authors, working on books for 
three different performance levels are involved (Math Alpha: comprehensive school (covers and 
combines lower secondary education, secondary education and high school education); Math Beta: 
special school; Math Gamma: high school). These groups are selected because they cover a wide 
range of school types at different performance levels in Germany. The first iteration includes group 
discussions of the teams Math Alpha and Math Beta. Due to organisational reasons the team of 
Math Gamma did not participate. The topics are algebra learning, digital learning, gamified 
learning, and the MAL-system, introduced by a concept video. The second iteration includes all 
experts to answer an online questionnaire readdressing the topics from the first iteration by open 
and closed items. For example, the high relevance of the balance model to the experts came up in 
both discussions. As this was unexpected, the questionnaire asked for advantages and disadvantages 
of it within the whole expert group. In the third iteration, comprised statements based on the 
answers in the second iteration are evaluated by the experts. According to the example with the 
balance model, this iteration reveals tendencies on the central advantages and shows the willingness 
to make compromises concerning disadvantages. 

The group discussions are audio taped, transcribed and analysed in a sequential way (Przyborski, 
2004) based on ATD concepts to reconstruct the textbooks’ and teachers’ praxeologies, identify 
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teachers’ needs and principles for textbook integration. The data set of the second iteration is 
analysed by theory-driven content analysis (Mayring, 2015) to capture individual praxeologies and 
needs based on the authors’ experiences in school. The final data set is analysed by descriptive 
statistics to identify quantified relevancies of the praxeological elements from the iterations before. 

 
Figure 2: Procedure of the MAL textbook study 

Results  
This section shows the three steps of data analysis applied to reconstruct the praxeological 
equipment of the expert authors. Presenting the results, we focus specifically on the balance model 
since the teachers have shown a strong commitment to it throughout the three iterations. 
Praxeological elements that came up while comparing algebra tiles and the balance model in the 
first iteration are presented. As the experts could hardly detach from the balance model while 
judging algebra tiles, the second iteration asked separately for advantages and disadvantages of the 
two models. The categorized range of experts’ opinions extracted from data analysis is then 
presented. From the third iteration, the final evaluation of selected (dis-) advantages is presented. 

The first iteration 

In the first iteration, the teams Math Alpha (12 participants) and Math Beta (5 participants) took 
part in a group discussion each. The researcher gave an introduction on algebra tiles and the experts 
were invited to work with them. Afterwards, the experts were asked if they can imagine using 
algebra tiles in class. Both groups immediately refused to do so, giving the same technological1 
arguments. Similar to expert A102: “[the balance model] is just easier for the kids to understand” 
(#236-237)3, teacher expert B2 said: “the balance model is much easier” (#76-77) and narrowed to 
“more illustrative” (#78) by B3. Another technological argument that came up in both groups in the 
beginning is that algebra tiles are “too abstract” (A10, #238) or rather “very abstract” (B3, #82).  

                                                 
1 The reconstructed praxeological elements are highlighted in italics. 

2 The experts from Math Alpha are named AXX and those from Math Beta BXX. 

3 (#236-237) refers to the lines in the original transcript that is not shown here due to the limited space. 
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In the discussion of the Math Alpha team, A1 then mentioned that “the problem of the balance 
model is clearly that I cannot express negative numbers with it” (#239). This was a turning point in 
the discussion towards algebra tiles, validated by three more experts. A1 continued to point at a 
technique based on algebra tiles: “one can slide the […] xs that cancel out each other together” 
(#242-243). This was justified by the technology that “this […] also always helps” (#243). At this 
point, the Math Alpha group stopped comparing algebra tiles and the balance model. 

The process in the Math Beta group was slightly different. B6 presented a “counter technology” 
concerning two different techniques. One was working with the balance model on the iconic level; 
the other was working with algebra tiles on the enactive level. Based on the technological argument 
that the enactive helps in real life and the iconic does not, B6 saw an advantage of algebra tiles 
versus the balance model. Based on that, B5 suggested a didactic technique combining the two 
models. She started with the core technology: “the equal sign […] means the balance” (#125-126) 
that was substantiated by the technology that the pupils should interpret the equal sign as a 
relational and not as an arithmetical sign. Based on that, her didactic technique related to the 
balance model began with using it, “this [equal sign] could maybe be introduced with the balance” 
(#126-127). But then B5 suggested to use algebra tiles “in the beginning really only using additive 
elements” (#128-129), before involving the subtraction zone or negative tiles. This was justified by 
the didactic technologies that the concrete action of laying out tiles is helpful and the subtraction 
zone “is a demanding conception” (#132). 

This analysis shows that the experts’ praxeological equipments on teaching linear equations is 
highly bound to the use of the balance model. The experts could hardly think of didactic techniques 
involving algebra tiles that fit to their theoretical arguments and moreover they could hardly detach 
their theoretical arguments from the balance model. Even the positive statements on algebra tiles 
were mostly connected to weaknesses of the balance model. To reveal theoretical arguments 
detached from comparing the two models we asked for advantages and disadvantages of the two 
models separately in the second iteration. 

Second iteration 

In the second iteration a questionnaire was sent to 37 experts. 20 of them answered (5 Math Alpha, 
4 Math Beta, 11 Math Gamma) the questionnaire. The answers on the advantages and disadvantages 
of the balance model are summed up in categories in Table 1. 

 Advantages Disadvantages  

Balance 
model 

· illustrative 
· intuitively accessible 
· enactive and iconic working 
· builds on students‘ knowledge 
· prepares new knowledge 
· illustrates equivalence (transformations) 

· no negative numbers or quadratic 
equations 

· hard to illustrate fractions 
· more enactive working needed 
· transition to symbolic level problematic 
· students do not know the balance 

Algebra 
tiles 

· illustrative 
· negative numbers and quadratic equations 

· abstract 
· linking of area and term is difficult 
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· explain more than the balance model 
· link algebra and geometry 
· combinable with balance model 
· enactive and iconic working 

· explanation takes much time 
· do not illustrate equivalence 

(transformations) 
· not intuitive for students 

Table 1: Categorized results of (dis-) advantages of balance model and algebra tiles 

We focus on the complementary findings in this iteration. As expected, the experts mentioned the 
core technology from the first iteration as an advantage: the balance model illustrates equivalence 
very well. In contrast, this is a disadvantage of algebra tiles, e. g. one expert from Math Alpha 
stated “[the] equivalence is taken for granted […]”. This technology is connected to the 
technological argument: the balance model is intuitive for the students whereas algebra tiles are not.  

The other way round, an advantage of algebra tiles is that negative numbers and quadratic equations 
can be illustrated. In particular, the lack of expressing negative numbers was mentioned as a 
disadvantage of the balance model several times. This also already occurred in the discussion of 
Math Alpha in the first iteration as a technique to favor algebra tiles. 

The third iteration offers further clarity about the experts’ preferences by rating the findings above.  

Third iteration 

In the third iteration, the 37 experts were again asked to answer a questionnaire. We received 19 
answers (6 Math Alpha, 4 Math Beta, and 9 Math Gamma). Figure 3 shows the evaluation of the 
four complementary statements: (1) The balance model enriches my teaching because it illustrates 
the equivalence very well. (2) The algebra tiles are insufficient for my teaching because they do not 
illustrate the equivalence. (3) The use of algebra tiles would enrich my teaching because it can 
represent negative numbers. (4) The balance model is insufficient for my teaching because it cannot 
represent negative numbers. 

 
Figure 3: Ratings on complementary statements (BM: balance model; AT: algebra tiles) 

These results emphasize the importance of the core technology substantiating the use of the balance 
model. More than 80% of the experts agreed that the balance model enriches teaching because it 
illustrates the equivalence very well. In contrast to that, about 50% of the experts rated algebra tiles 
as insufficient for their teaching because the intuitive access to equivalence is missing. Only 20% 
did not take this as a barrier for classroom teaching. 

The strongest advantage of the algebra tiles over the balance model is the possibility to represent 
negative numbers. More than 50% of the experts evaluated this feature as enriching for their 
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teaching, and only 10% disagreed on that. However, only one third of the experts evaluated the 
balance model as insufficient due the lack of negative numbers and as one half of them disagreed, 
the balance model was still rated positive on average.  

All in all, the results show that the balance model is indispensable in current teaching practices, 
however, the lacking representation of negative numbers gives space for the algebra tiles to enter 
classroom practice. 

Discussion 
The didactic technique - teaching linear equations with the balance model - reconstructed in the 
previous section reveals insight into current teaching practices. Independent of the type of school, 
the balance model turned out to be the most relevant model for teachers when teaching linear 
equations. However, the experts were aware of the problems and limitations of the model, e. g. no 
negative numbers, special kind of balance is unknown to kids, limited possibilities to explore 
equations concretely, aspects also discussed in the literature (e.g. Vlassis, 2002). Especially the 
missing representation of negative numbers points to a need in current teaching. The results from 
the third iteration suggest a complementary use of the two models allowing to address strengths of 
both models in a complementary way. We suggest introducing equations with the balance model by 
working enactively with the balance in class to make the students experience the equal sign as a 
relational sign of keeping two collections of weights in balance. The balance may then be 
readdressed in the MAL-system as a feedback symbol for equality when the students begin to work 
with algebra tiles. Starting only with positive tiles and additive equations, a balance in the middle, 
that is balanced or not (depending on the correctness of the actions carried out) instead of the equal 
or unequal sign is used. 

As the authors theoretical and technological arguments on teaching linear equations are highly 
influenced using the balance model, it should not be replaced by the MAL-system. The balance 
model seems to be very fruitful for teaching in all the three types of schools in Germany since it 
provides intuitive access to the equal sign of equations and the equivalence relation. Addressing a 
current need like the representation of negative numbers which is missing in the balance model 
turns out to be a criterion for accepting the MAL-system. In addition, a careful integration of the 
MAL-system into textbooks could compensate the teachers’ judgement of algebra tiles as being 
abstract. This could be done by creating a context that makes algebra tiles more accessible to 
students, for example by gamification or as an expanded digital environment for exploring 
problems. An important issue for increasing acceptance of the MAL-system is its correspondence to 
textbook praxeologies, as well. 

Looking back to the methodology, the Delphi study with the three iterations has proven to be 
fruitful for investigating teachers’ needs for teaching, their praxeologies and textbook praxeologies. 
The discussions have led to three important insights: the teachers’ strong commitment to the 
balance model; contrasting the balance model with Algebra Tiles has made the teachers sensitive to 
disadvantages of a given technique that is normally not questioned; it has shown that a negotiation 
process is needed to disclose hidden needs for teaching underlying the praxeologies. The second 
iteration has provided the possibility to readdress aspects not considered before like the balance 
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model. The final questionnaire supplies a quantitative overview, showing possible differences 
according to the types of schools. In conclusion, the three steps of the Delphi study exactly fit the 
purpose of the MAL textbook study. As they are not tied to the topic of algebra, they unlock 
potential for further research on the role of textbooks in reform processes with a wider scope. 
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Background  
It is well established that formative classroom practice in mathematics has a positive impact on 
students’ learning and development. The widely used theoretical framework for formative assessment 
(FA) by Black and Wiliam (2009) identifies five key strategies and three agents (teacher, learner, 
peer). The strategies are:  

1. clarifying and sharing learning intentions and criteria for success; 
2. engineering effective classroom discussions and other learning tasks that elicit evidence of 

student understanding; 
3. providing feedback that moves learners forward; 
4. activating students as instructional resources for one another; and 
5. activating students as the owners of their own learning (p. 8) 

The literature on formative assessment has emphasized the potential of technology to enhance FA 
strategies in mathematics education (Clark-Wilson, 2010). The European project Formative 
Assessment in Science and Mathematics Education (FaSMEd) investigated different aspects of the 
use of digital technology to promote formative assessment. Besides the five key strategies and the 
three agents introduced above, the FaSMEd framework identifies a third dimension consisting of 
three technological functionalities: (a) sending and displaying, (b) processing and analysing, and (c) 
providing an interactive environment. Interactive environment refers to a learning environment in 
which interactions, both between user and machine and between classroom participants, are based on 
mathematical exploration activities (Cusi, Morselli, & Sabena, 2017).  

In the planned study, we will investigate educational use of the type of technology referred to as 
Connected Classroom Technology (CCT). Irving (2006) defines CCT as “… a networked system of 
personal computers or handheld devices specifically designed to be used in a classroom for interactive 
teaching and learning.” (p. 16). To date, several studies, primarily conducted in the US, have 
demonstrated that CCT facilitates several FA strategies. This literature emphasizes how the ‘sending 
and displaying’ functionality of CCT can be used. For example, teachers could use CCT to access 
more comprehensive information about students’ mathematical thinking which could be used to guide 
immediate adaptation of subsequent instructions (Shirley & Irving, 2015). Moreover, by facilitating 
the display of different student solutions, CCT can support the teacher in engaging students in whole-
class discussions in which they receive feedback, both from the teacher and their peers (Cusi et al., 
2017), providing a forum for reflection on their own responses in comparison to their peers. These 
activities relate to the third, fourth, and fifth FA strategy. Cusi et al. (2017) argue that this could also 
be a way to activate the first FA strategy by focusing on criteria for success when discussing different 
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solution strategies. Concerning the functionality, ‘processing and analysing’, CCT often includes a 
classroom response system (CRS) which processes student responses and presents statistics, e.g. in 
the form of charts (e.g. Clark-Wilson, 2010). In relation to the ‘providing an interactive environment’, 
Shirley and Irving (2015) describe how teachers have used CCT to collect and analyze student data 
received by laboratory-based investigations.  

Aim and study design 
The aim of the proposed research and development activity is to develop design principles to guide 
formative teaching activities using CCT: 

· principles for designing tasks that have good potential to make use of CCT facilities 
· guiding principles for teachers in monitoring, selecting and displaying student solution(s) 

to use as a base for dialogues 
· guiding principles for teachers in their choice of interaction type (e.g. group discussion, 

student presentation, whole-class discussion) in different situations  
· guiding principles for teachers in the orchestration of various digital resources to enhance 

an interactive classroom in which all students are engaged 

These principles will be refined through successive cycles of design-based experimentation, across a 
range of teaching contexts. In each cycle, the current version of the principles will be made 
operational in curriculum materials and teacher guides designed to support the use of formative 
teaching processes within a particular course unit. Through testing across a range of contexts in each 
cycle, and across a range of topic units over successive cycles, the principles – and classroom 
techniques through which they can be operationalised – will be refined.  

The intervention to be developed and evaluated, then, consists of (a) the system of design principles 
to guide formative teaching activities using CCT, and (b) the operationalisations of these principles 
in the curriculum materials and teacher guidance for the (different) topic-specific course units 
designed in each cycle.    
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The ScratchMaths (SM) intervention was designed in response to changes in the primary curriculum 
in England to incorporate mandatory computer science - aiming to exploit this change in the interests 
of mathematics learning.  In this paper we describe SM and its critical components for 
implementation with fidelity. We present preliminary case studies of two high-fidelity schools, which 
point to variation in fidelity of implementation. We conclude with a derivation of quantifiable 
measures for the identification of high, middle- and low- fidelity schools (O’Donnell, 2008). 
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Introduction 
In 2014 in England, the previous information and communications technology (ICT) primary 
curriculum was replaced by a new computing curriculum specifying mandatory content (but no 
pedagogical guidance) for the teaching of computer programming to all pupils (Department for 
Education, 2013). Some factors that contributed to Logo and other early programming initiatives not 
fulfilling their potential have been described in earlier work (Benton, Hoyles, Kalas, & Noss, 2016), 
a key factor being identified by Noss and Hoyles (1996) as the importance of fostering a sense of 
teacher understanding and ownership of any programming innovation.  

There have been significant technological developments since this early teaching of computer 
programming, with a number of block-based languages such as Scratch now freely available and 
widely used. These environments have helped to address some of the difficulties of mastering 
programming syntax, but there remains the challenge of ensuring that teachers first appreciate why 
they are introducing programming as part of mathematics - and then have opportunities to develop 
appropriate skills to teach programming. 

The ScratchMaths (SM) 2-year intervention1 aimed to develop the mathematical knowledge of pupils 
(aged 9-11 years) through programming. The SM approach was to select and design activities around 
core computational ideas that would then be used as vehicles to explore specific mathematical 
concepts and promote mathematical reasoning. For example, the concept of variable is developed by 
enabling pupils to first explore the Answer block, initially on its own, but then in association with its 
companion block Ask in the context of a short script that draws polygons. Pupils encounter the 
limitations of the Answer block when confronted by a situation that needs the answer to contain two 

                                                 
1 https://www.ucl.ac.uk/ioe/research/projects/scratchmaths 
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different values simultaneously, stimulating a need to introduce the new idea of Variable. This 
approach enables parts of computing to be taught within, or as a supplement, to mathematics lessons.  

SM initially adopted a design research methodology to produce pupil and teacher materials along 
with professional development (PD) to support the teachers to exploit the powerful ideas of 
computational thinking as a way to engage pupils in mathematical thinking (see Benton, Hoyles, 
Kalas, & Noss, 2017 for a detailed account of the design of the study). SM is also being independently 
evaluated by another university through a randomized control trial (RCT, see Education Endowment 
Fund, 2016 for the detailed research design of the RCT). The first year’s content (Y5 in England) 
focuses primarily on the computing curriculum and developing pupils’ programming skills. In the 
second year (Y6), pupils utilise these programming skills to explore key mathematical ideas within 
the primary mathematics curriculum (place value, polygons and ratio and proportion). 111 English 
primary schools (6300 pupils) were recruited to the project by open invitation through networks such 
as the National Association for Advisers in Computing Education (NAACE) and regional information 
events. The schools were randomly assigned to the control and treatment groups at the school level. 
Schools did not pay to participate in the project and the teaching materials are freely available from 
the ScratchMaths website under creative commons licensing (www.ucl.ac.uk/scratchmaths). 

The primary research question for the RCT conducted by the external evaluators was “What has been 
the effect of the intervention on the development of pupils’ mathematical skills as measured by a 
randomised control trial?” However, in parallel to this the authors of this paper sought to research 
how the curriculum materials were used by teachers to seek to understand its effects. The research 
reported here concerns the latter study.  

Theoretical background of ScratchMaths and its pedagogical design 
The SM design was framed by constructionist theory whereby pupils would engage with the 
mathematical ideas by building programs to explore them. (See Noss & Hoyles, 2017). This 
constructionist approach was operationalized in a pedagogical approach structured by five key ideas, 
called the ‘5Es framework’ derived from the theoretical underpinning of constructionism (Papert, 
1980) and described in Noss & Hoyles (2017), see also Benton et al. (2016). These five unordered 
constructs are: 

Explore: Pupils learn from computer feedback. Pupils should have opportunities to explore different 
ways of dealing with constraints and ambiguity as well as investigating their own and others’ ideas 
and debugging different types of errors. Through this exploration pupils should be encouraged to take 
control of their own learning and understand the reasons behind different outcomes. 

Explain: Pupils use different modes of communication to articulate learning and the reasoning behind 
choices of approach. Pupils should have opportunities to explain their own ideas as well as answer 
and discuss reflective questions from the teacher and peers. Pupils should be encouraged to use the 
programming language as a ‘tool to think with’ and to support explanations of key mathematical 
ideas. 

Envisage: Pupils predict outcomes of their own and others’ programs with specific goals prior to 
testing out on the computer. Pupils should be given opportunities to consider program goals and the 
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outcomes of different strategies before conducting their own exploration in Scratch. This should be 
balanced with activities which allow discovery through exploration.   

Exchange: Pupils develop ideas through interacting and comparing with others. Pupils should have 
opportunities to share and build on others’ ideas as well as being encouraged to both justify their own 
solutions and understand another’s perspective on a problem. 

bridgE: Pupils make links between contexts beyond the Scratch programming environment and the 
mathematics domain by explicit re-contextualization and reconstruction within the language of 
mathematics. 

Our overall aim in developing this framework was to chart a course for pupils in which they could 
begin to express mathematical ideas in Scratch and to provide guidance for teachers on the 
pedagogical strategies (which the English National Curriculum does not stipulate) that could lead to 
successful implementation of the SM intervention.  

Professional Development 

Prior to teaching each year of the SM intervention, teachers were offered two full days of professional 
development, spaced a few months apart. During these sessions, the teachers were introduced to 
Scratch and the SM curriculum content. The 5Es framework guided the design of these highly 
interactive sessions, with teachers given the opportunity to participate in activities that incorporated 
exemplars of these different pedagogical strategies. After experiencing for themselves the 
pedagogical approach, as modelled by the PD leaders, teachers were also explicitly introduced to the 
approach and the definitions of each of the constructs.  

Curriculum Materials 

The learning objectives of all activities within the SM curriculum are focused towards one or more 
of the 5Es. The connection with the different constructs is made explicit within the teacher materials, 
with a range of activities such as Scratch-based tasks that require pupils to explore within the Scratch 
environment and then subsequently explain and exchange their programs with the rest of the class as 
well as ‘unplugged’ tasks (away from the computer) which require pupils to envisage outcomes of 
particular programs and bridgE to their existing mathematical knowledge to calculate the correct 
inputs.  

Findings 
Measurable constructs for the fidelity of ScratchMaths 

Fidelity of implementation within an education context has been defined as “the determination of 
how well an intervention is implemented in comparison with the original program design during an 
efficacy and/or effectiveness study” (O’Donnell, 2008). Using the criteria of program differentiation, 
the SM team evolved some critical components for implementation with fidelity of the SM 
intervention, leading to the derivation of quantifiable measures for the identification of high-, middle- 
and low- fidelity implementation. There is a tension between a high-fidelity implementation of the 
original designed intervention and the potential for the intervention to be adaptable and flexible 
enough to fit within a range of contexts, which could lead to higher rates of adoption and sustainability 
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(O’Donnell, 2008). Therefore, finding an appropriate measure of fidelity that identifies the critical 
components of an intervention that must remain unchanged but allows for appropriation to local 
context was important. 

The fidelity of implementation was defined in terms of five school-level measures as: days of 
professional development attended; availability of computer technology; curriculum coverage; the 
amount of time spent teaching SM and the sequence of progression followed through the materials. 
The criteria are given in Table 1. 

Fidelity criteria High Medium Low 

Days of professional 
development  

Y5 and Y6 teachers 
each attended at least 
two days of PD. 

Y5 and Y6 teachers 
each attended at least 
one day of PD. 

Y5 and/or Y6 teacher 
had limited PD from a 
more experienced 
person away from the 
organised sessions. 

Technology Computers running 
Scratch 2.0 online or 
offline.  

Minimum 2:1 pupil 
to computer ratio. 

No classification Computers running 
Scratch 2.0 online or 
offline.  

Minimum 3:1 pupil to 
computer ratio. 

SM curriculum 
coverage 

Pupils taught at least 
some of the core 
activities across 5 
different modules. 

Pupils taught at least 
some of the core 
activities across 4 
different modules. 

Pupils taught at least 
some of the core 
activities across 3 or 
fewer different 
modules. 

Curriculum time Time spent teaching 
SM is at least 20 
hours in Year 5 and at 
least 12 hours in Year 
6. 

Time spent teaching 
SM is at least 12 
hours in each year. 

Time spent teaching SM 
is fewer than 12 hours 
per year. 

Progression The order of modules 
and order of 
activities are mostly 
followed in general. 

The order of modules 
and order of 
investigations are 
mostly followed in 
general. 

The order of modules is 
mostly followed in 
general. 

Table 1: The ScratchMaths fidelity criteria 

All schools participating in the trial received online surveys to complete at the end of the 2015-16 
and 2016-17 school years to collect information about SM implementation. 28 of the 55 ‘treatment 
schools’ provided data to both surveys and are included in our analysis presented below. Whilst a 
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more complete set of research data would have increased the validity and reliability of our findings, 
we could only work with the data that we received. Indeed, it is a finding that, despite their initial 
enthusiasm to participate in the project, with institutional participation agreed by the headteacher, 
approximately half of the schools did not respond to project communications. Hence the survey 
results of these 28 schools, alongside data triangulation by follow-up communications and school 
visits, were then used to classify the schools according to their fidelity. 

School level fidelity 

The spread of fidelity scores for the 28 schools is shown in Figure 1. 

 
Figure 1: Spread of fidelity measures (n=28 schools) 

Probing the survey and interview data further revealed a number of findings. 

Professional development: The school-level fidelity measure reveals high commitment to the PD. 
However, probing the data further revealed that 43% of schools were hampered by internal staff 
changes and teacher movement in and out of the schools (teacher ‘churn’). So, in fact the teachers 
who were trained did not necessarily match with the actual classes being taught SM. 

Technology access:  Only one school was unable to provide the pupil:computer ratio of at least 2:1, 
which resonates with recent OECD data on the high levels of computer access in UK schools (OECD, 
2015). 

Coverage: Three quarters of the schools reported that they had struggled to cover the SM curriculum. 
This was particularly evident in Y6 where the demands of the high–stakes National tests are great, 
with the result that a huge proportion of class time was spent ‘teaching to the test’ and associated 
revision activities.  

Curriculum time: The allocation of curriculum time was challenging for about half of the schools, 
again more evident in Y6 due to pressures of the National test. 
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Curriculum progression: All of the schools were high fidelity in that they followed the order of the 
teaching modules and the activities within them. (In lower fidelity schools, teachers reported that they 
varied the sequencing or skipped activities).  

This analysis identified 15 schools that were high fidelity for all five criteria. From this group, an 
opportunity sample of 2 schools was selected for follow-up visits and semi-structured interviews with 
teachers and headteachers during the 2017-18 school year, focusing on three general questions to 
elicit respondent’s experiences and perceptions of the SM curriculum: How and why they got 
involved in the SM project? How they implemented SM, and what were their impressions of SM? 
Both schools were in the same geographical (rural) area about one mile apart. The resulting data was 
used firstly, to triangulate the fidelity judgement for each school and secondly, it was coded in relation 
to the 5 Es as a means to establish a deeper understanding of the quality of the implementation. 
Arriving at a school level judgement for a project that had spanned two years proved to be complex 
due to the differing experiences, perceptions and memories of the people involved.   

The demographic information for the two schools is given in Table 2. 

School Number of 
pupils on roll 

Scaled score in 
mathematics 
(100 = National 
expected score) 

School progress 
in maths score2 

% of pupils eligible 
for free school 
meals (Measure of 
socio-economic 
status) 

School A  420 102 Average 

(-0.9) 

28.9% 

School B 424 101 Below average 
(-3.1) 

3.6% 

Table 2: Overview of the schools3 

Although similar in overall size, the pupil demographic and attainment measures were notably 
different; one might have expected School A to achieve rather lower progress given the social 
background of the pupils. This difference is highlighted in School B’s lower ‘progress score’, a 
comparative measure of pupil progress in similar schools.  Both schools taught the SM curriculum in 
the teaching time allocated for the teaching of computing and none of the teachers in either school 
also taught mathematics to the same pupils. We now highlight aspects of the quality of delivery that 
were discernible from the research data, to provide deeper insight in relation to school-level 
implementations. 

                                                 
2 A government-defined measure of school progress with respect to pupils’ mathematical outcomes at age 11. 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/560969/Primary_scho
ol_accountability_summary.pdf.pdf  

3 2017 data taken from https://www.compare-school-performance.service.gov.uk  
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School A was confirmed as a high-fidelity school as it became clear that the two teachers involved 
(Peter and Carol) had worked in a highly collaborative way and had both embraced the SM 
curriculum, dedicating their planning and preparation time to becoming familiar with all of the pupil 
activities in advance of the lessons, as highlighted by the following response: 

Peter: You couldn’t just pick it up and follow it, and then expect the children to 
understand. And, then we thought, ‘Well, if we have got to spend this amount of 
time getting our heads around it, it is a big ask for the children to do it in the same 
time’.   

Concerning the 5Es, Carol referred to the ways in which she encouraged children to Explain,  

Carol: Once they got it, we kind of said, ‘Well, try to show the person next to you, if they 
haven’t,’ and then sometimes, if they showed them one little bit, they were alright 
then… 

Peter highlighted how the pupils Exchanged their ideas,  

Peter: And, I make a point at the end of sessions now, I leave 15 minutes before the end 
so that anyone who has done what I have asked them to do, essentially gets to share 
their work.  And, they absolutely love it, whether they have not quite got it, or they 
have done more… … I put it up on the big screen for them.  

In addition, School A had made the SM materials locally accessible and created files of exemplar 
student work, which had supported alignment between the two teachers’ pedagogic approaches. 

The overall fidelity criteria for school B was also confirmed to be high as the two teachers described 
how one of them (David) had taught the Y5 curriculum to both classes and the second teacher (Tim) 
had done the same in Y6. During interview, Tim described his pedagogic approach thus,  

Tim: We sort of gave them the option to explore the bits and for them to … trying to link 
it to the real world, to explain the steps behind it… why they have done what they 
have done, why they think it is may be more efficient or whatever.  And as I say, I 
think we did the envisioning with a lot of the debugging ones [activities].  

David commented on his use of the unplugged activities, highlighting how he encouraged pupils to 
Envisage, Explain and Exchange their ideas, 

David: I would put up, for example, one of the algorithms and I say, “Well, what would 
this algorithm do if we clicked on it,” and they would talk it through with a partner 
and then… I could pop one up on the board and say, “Right, what would this do?”  
And, “If we changed this bit, how would that change the outcomes?” and things 
like that. 

Final comments  
It is hard to assess in such a large-scale study how far the implementation of SM was faithful to the 
designers’ goals (Fullan, 2001). Many of these goals were generic, and we make no claim to 
originality on this score. For example, teacher ‘churn’ was both ubiquitous and destructive - quite 
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frequently SM teachers had not engaged fully with the PD. However, where we saw specific variation 
in fidelity, it tended to be related to the particularities of attempting a novel and demanding curriculum 
based on a somewhat daunting field of knowledge – programming – where teachers had little or no 
background. In such circumstances, the curtailment of teaching time due to the pressures of national 
testing was a strong impediment.  

Clearly, some factors supported SM implementation: local access to the resources, exemplar student 
work and pre-written computer models.  The excellent collaborative practice of School A that enabled 
them to overcome the challenges is noteworthy and echoed in other high-fidelity schools.  

We noted little teacher adaptation at this first stage of implementation, but with more fluency and 
familiarity with the SM approach, this is likely to grow, leading, we conjecture to less emphasis on 
‘curriculum coverage’ and more time to explore the mathematical ideas. 
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In this study we focus on the role of students as co-designers of digital resources for learning 
mathematics. Students with the use of c-book technology construct in collaboration with their 
teachers units of narrative blended with artifacts and constructions designed with digital tools for 
mathematics education, acting as designers. We see the design phase as a learning process for 
students, searching for new mathematical meanings that emerge around the concept of co-variation. 
For our analysis we use the lens of Documentational Approach as a means of a deeper understanding 
of the learning process. 

Keywords: c-book, Documentational Approach, design of digital tools, co-variation 

Introduction  
Proposing answers on how to create didactic objects that may provoke reflective mathematical 
discourse in the classroom, fostering students to make significant mathematical advances and 
transforming grounded conceptual understandings about certain mathematical concepts constitute a 
generic aim of instructional design research (Thompson, 2002). The design of didactic objects entails 
making assumptions on students’ and teachers’ way of participating in this discourse. However, there 
is a productive tension between teachers’ intentions and actions when they design tasks and the 
students’ activity when they are involved in them (Johnson, Coles & Clarke, 2017), that could be 
studied in more detail. Research into the design and use of mathematical tasks accommodating 
students’ intentions, actions and interpretations to the same extent as those of teachers’ is fragmented. 
Focusing on the use of digital media in mathematics education, the students’ agency during the 
learning process and its confluence on instructional design could become more visible; students along 
with mathematics teachers may share the role of co-designers of digital resources that can be used as 
didactic objects. In this report we build on previous research about students’ activity with a ‘c-book’ 
technology, a new digital environment where storytelling is blended with mathematical tasks 
(Papadopoulos, Diamantidis & Kynigos, 2016). But, now we make a step further, using c-book 
technology to put students in the role of the co-designer (the ‘narrator’) in the sense of building on 
the notion of design as a learning process and as a means to intervene in educational practice 
(Kynigos, 2015a). We focus on the question: How does the students’ role as co-designer affect the 
mathematical meanings they make through the design process? In our research, we employed the 
Documentational Approach (DA) a framework hitherto used to understand and support teachers as 
they iteratively design and use resources in the classroom (Gueudet & Trouche, 2009), in order to 
understand classroom practice and student meaning making.  

Theoretical Framework  
The focus of this research is on the design of a digital medium as a learning process; a group of 
teachers and students jointly design such a resource for learning mathematics through the pages of a 
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digital narrative. Assuming that the element of storytelling may provoke students’ initiative, the 
design process could be a field of dense interaction between students and teachers. It could yield a 
series of digital artefacts (i.e. narrative meshed with constructionist digital 'widgets') as foregoing 
versions of the end product, along with discussion among the members of the group that refers mostly 
to argumentation about them, reconstruction and exchange of different versions of artifacts. From the 
constructionist point of view, this communication between teacher and students results to a learning 
collective where meaning making process occurs naturally (Papert & Harel, 1991). In this sense, the 
digital medium to be designed is more than a product for the designers’ group; it may be an object-
to-think-with (Brennan, 2015; Kynigos, 2015b). Especially for students, the design process of this 
kind of medium could foster the generation of new meanings around mathematics. 

To investigate this aspect in detail we have chosen the approach of DA (Gueudet & Trouche 2009; 
Guin & Trouche, 1999) that describes the creation of new resources. Taking into account that DA has 
been used to study teacher’s role as a designer of digital resources, we adopted it to study the students 
as they co-design resources with the teacher being part of the mathematics course. According to 
Documentational Genesis (DG) (Gueudet & Trouche 2009; Guin & Trouche, 1999), a ‘document’ is 
the set of the existing resources the designer uses together with the scheme of use for these resources 
in a certain class of situation; i.e. when a mathematics teacher constructs a certain task for teaching 
functions with a digital medium (this is the class of situation), he/she attaches a scheme of use for a 
set of resources (the curriculum, another related task, a discussion with other teachers etc), shaping a 
document. In parallel, this task can be a new resource for him/her or others. In this study, we have 
students collaborating with teachers in the design of new resources, shaping new documents about 
mathematics blended with the element of narrative, which might affect the set of the existing 
resources. Teachers, at the same time have their own teaching agenda. Thus, in terms of instructional 
design, the documents that teacher and students jointly create can be seen as didactic objects, as well. 
Thus, we found DA useful to help us enhance our understanding of a process through which new 
mathematical meanings for students may emerge.  

In this paper, we present instances of students as they generate meanings around the concept of co-
variation. Following Thompson and Carlson (2017) approach of co-variational thinking we build on 
the hypothesis that co-variation emerges when students conceptualize a situation envisioning two 
quantities varying simultaneously and dynamically. Quantity refers to students’ conceptualization of 
an object’s attribute that can be measured. A quantity is varying in the sense that students envision 
the object having momentary states, thus its attribute has momentary values (Thompson, 2002). 

The Digital Medium  
The c-book technology 

C-book technology affords the design and use of modules named c-book units. Each c-book unit 
consists of a narrative blended with diverse “widgets”; hyperlinks, videos and mostly instances of 
digital tools like GeoGebra, DME (Digital Mathematics Environment) and MaLT2 (Kynigos, 2015b). 
DME provides also an authoring tool for the teacher to design new modules, while MaLT2 is a web-
based Turtle Geometry environment which affords the design through Logo programming along with 
dynamic manipulation of 3D geometrical objects using sliders. GeoGebra and MaLT2 allow 
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customization and personal construction of tools (Healy & Kynigos, 2010) in the form of 
microworlds, fostering the meaning making process. The end users (mostly students) of a c-book unit 
can explore the narrative, experiment with the “widgets between the lines” and be involved in 
mathematical tasks. C-book environment also includes the “Workspace”, a tool that affords 
asynchronous discussions between the designers or the users of a c-book unit organized in ‘trees’ 
(Fig.1).  

 
Figure 1: A c-book unit page on left hand side. The Workspace on right hand side. 

The Design of the Study  
Jewelry c-book unit was jointly designed from scratch by a group of students and teachers, for the 
purposes of this study. The storyline in this c-book unit is about a dinky merchant named Sonier back 
in 1820 who got an inheritance after his uncle’s death. However, the size of the uncle’s assets was 
not clear, so Sonier got in a quest to detect the inherited goods. His adventure - full of math related 
riddles and playing cards - involved a trip from Berlin to his uncle’s house in Vienna. His uncle’s 
passion for gambling -in contrast to his love for mathematics- was well-known. Widgets were used 
by the designers’ group to make up challenging tasks as parts of a riddle. A riddle was formed either 
by one task alone, or by a sequence of tasks, and the answer of each task was prerequisite for solving 
the next one and moving forward with the story. The plot was narrated through comic frames and text 
giving hints that might help the readers to solve the riddles (Fig. 1).  

The group of designers consisted of three Grade-9 students in a public Experimental School in Athens 
(where teachers follow the same curriculum with other schools, adopting innovative teaching methods 
and/or conducting teaching experiments in collaboration with the University) and two teachers of 
mathematics. One of the teachers was the school teacher of the students and he additionally shared 
the role of the “participant observer”. The communication between students and teachers while 
making the c-book unit, took place exclusively in a shared digital Workspace. The whole process 
lasted almost two months. Students and teachers were exchanging ideas and widget drafts in the 
Workspace in order to discuss and decide their inclusion to the c-book unit. Whilst the students were 
akin to the use of digital media, they did not have the competence to make changes in an already 
designed widget, so when they wanted to suggest a modification of an existing widget, they used to 
“draw a picture” to inform their teachers.  The 68 posts uploaded in the Workspace and the produced 
c-book unit constituted our data. The analysis of the collected data took place on the level of 
identifying and analyzing critical episodes defined as selected segments of (discourse) activity with 
a single theme as a focus in the discussion among the design group members in the Workspace 
(Kynigos & Kolovou, 2018). The focus in these episodes lies on instances that show how the 
storytelling affected the emergence of new mathematical meanings around co-variation. 
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Results  
The theme of “Jewelry” was used by the teachers as a sparker for the content of the c-book unit from 
the very first moment. As a result, one student posted in the Workspace a short story that triggered 
the whole group to make a decision about the main idea of the plot: The heir of a probably great but 
mysterious fortune. From the beginning of the discussion among students and teachers, the question 
“what kind of task should be constructed to be included in the c-book unit?” became the epicentre.  
Teachers (T1 & T2) proposed a couple of tasks, and posted them on the Workspace. The main issue 
for the reader was to fix a buggy-by-design diamond constructed in MaLT2 (Figure 2). The teachers’ 
aim was to underpin learning through tinkering. Students (S1 & S2) expressed a discontent, saying 
that this could be boring. Instead, they made a suggestion: 

1 S1:  I think this could be a little boring. It seems better if we had riddles,  
2  not pure math problems; like an orientation game we recently played. 
3 S2: Yes! And the riddles could be connected to each other; you must solve one  
4  riddle before moving to the next, and go on with the story. 

This was the designers’ first goal, to construct a ‘chain of riddles’ connected to each other in a way 
that the narrative would be garbled if one or more riddles remained unsolved. The teachers posted 
suggestions on possible twists of the narrative, including clues about riddles, as an effort to find out 
what a proper riddle might be for students, while students made their own suggestions. Soon, it was 
obvious that riddles’ selection would leave its mark on the narrative or vice versa: 

5  S1:  The uncle could have hidden a different diamond in each room at his house.  
6  Sonier should replicate the correct diamond using MaLT2. The challenging  
7  thing is that Sonier should find the correct room number, by solving an  
8  equation, or by calculating a value of a variable x (Figure 2). 
5  T2: Why is it challenging? 
10 S1: It is more difficult to make these calculations, than having a number 
11  ready to be used.  

In the previous extract, S1 uses the word “variable” referring to a numeric expression (Fig. 2), maybe 
just because the value of x is not obvious or easy to calculate. Students made a suggestion about a 
riddle, where the challenge was to unlock a room, by calculating x’s value which was the door’s 
‘key’. In the next couple of days students reflected on their design, inferred with frustration that if 
someone solves the door’ riddle once, then he/she had no interest in reading the c-book unit again, 
since he/she knows the answer:  

12 S2: The value of x must be different every time someone opens the c-book unit. 
13 T1: We could use a slider in GeoGebra. 
14 S1: T1, in which way? S2’s idea reminds me of a book I read. The story  
15  had many different endings. We could also do the same; the flow of  
16  the narrative can vary in relation to the value of the variable x. 
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Figure 2: The GeoGebra widget-riddle on left hand side. The ‘diamond’-riddle in MaLT2 on right 

hand side. Designers used these artifacts in the c-book unit to form a narrative with alternate endings. 
On top left hand side: the ‘x’ of line 8. 

This might be considered the ultimate aim of the designers; A c-book unit that would be interesting 
to be read repeatedly. Soon, they realized that it was not feasible to have a different answer for the 
riddle every time someone opens the c-book unit. Hence, there was a shift in the group’s effort. They 
turned to the connection between the readers’ choices and the alternate versions of the narrative. 
Teachers made up a microworld that afforded the variation of a line’s position on the Cartesian plane, 
by the use of two sliders in GeoGebra, as a sparker for students to make a riddle. Therefore, the use 
of the slider came up again, as an option (Workspace):  

17 T1: See the graph in GeoGebra. What changes when you move the sliders? 
18 S1: The position of the line. 
19 S2: We can relate the diamond’s shape that Sonier asks for, with the line.  
20 T1: To what characteristic of the line?  
21 S2: The sliders change the angle between the line and x-axis. We could imply  
22  through the narrative that this angle should be equal to diamond’s angle. 

Ιt seems that the designers came up with the idea of using the notion of angle as an element that would 
give a potential relation between two riddles. Thus, students made up a story in GeoGebra as the first 
riddle. There was a map of Vienna on a Cartesian plane with a line on it. The position of the line was 
determined by two sliders. The reader should put the line in a position of his/her choice, in order to 
make a path. Then, using the size of the angle between the line and x axis in degrees, as a hint, the 
reader should fix the buggy diamond in MaLT2 (Fig. 2) that had been proposed by the teachers at the 
beginning; this was the second riddle. The twist of the narrative was depended on the diamond that 
was constructed, since its shape was crucial for the storyline. It seems that the designers used the 
answer of the first riddle as an output magnitude necessary for solving the second one. When the 
content (microworlds and narrative) was ready to be used, students suggested making a trial on how 
it works focusing on the use of constructions: 

23 S1: We should play a couple of times, maybe more, to see how it works. 
24 S2: Yes, we should draw a line that changes smoothly and normally in order to  
25   coordinate its angle with the angle of the diamond.  
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So, the students tested the two microworlds many times, to observe if the variation of the line’s 
position in GeoGebra had an elegant effect on the diamond’s shape in MaLT2, through the common 
angle measure. Finally, they decided to use the same name ‘phi’ as the name of the variable for both 
the diamond’s angle in MaLT2 and the angle in GeoGebra, too (the angles mentioned in line 25). 

Discussion 
For the analysis of the Jewelry’s design, under the lens of DA we have distinguished four phases. In 
the first phase, although they shared the same class of situation, i.e. to design a c-book-unit, students 
and teachers seemed to have their own separate agendas. Teachers suggested an instance with a 
buggy-by-design figure of diamond in MaLT2 which mostly promoted the added value of learning 
mathematics through tinkering, while students overrated the amusement of the reader. Furthermore, 
students at first almost rejected the microworld as ‘pure mathematics’ (line 2), suggesting to use 
riddles ‘like in a game they recently played’ instead of mathematical problems. This reaction may be 
in line with the hypothesis that students’ set of resources was mostly related to storytelling, than to 
the design of mathematical tasks. This became more evident in the second phase, where the designers 
tried to make up riddles linked to each other, which probably is a good description of the new class 
of situation for the group. Despite the consensus on that, there was no common understanding of what 
kind of riddles should be used. Students made up an intriguing story about hidden diamonds in locked 
rooms, trying in the same time to involve a variable x as the ‘key number’ to unlock the door. We 
assume that they made an effort to use resources with mathematical content, such as a narrative based 
on the use of a variable, representing it with x (line 8). However, this effort was fruitless, since they 
did not manage to operate the variation of x. In the sense of co-variational thinking, the dysfunctional 
use of x seems to be congruent to Thompson’s view (2002); although a person operates successfully 
on algebraic representations, it is hard to talk about the represented relationship. In the third phase, 
the aim of the design was more apparent. The riddles should be constructed in a way to provoke the 
reader to read the c-book-unit many times, which as a class of situation was more specific. To 
construct this kind of riddles, teachers proposed an instance in GeoGebra where a line changed 
position through the use of sliders (line 13). The core idea was to relate each time the ‘key number’ 
of the locked door to a different position of the line; Unfortunately, this did not work. It seems that 
the relation between sliders’ manipulation and the line’s changing position was not a usable case of 
co-variation for the students, since the varying attributes of the line might not be clear in the 
momentary states of its variation (Thompson, 2002). Using this kind of instance as a design unit might 
not be feasible for the students according to their scheme of use for their set of resources. However, 
students made a contribution which determined the final product, the c-book-unit as a ‘document’. 
They proposed that the c-book-unit should have alternate endings, in order to be provoking. This idea, 
came up from a resource related with storytelling, (i.e. a book read by S1, line 14), and was soon 
adapted by the rest of the designers as the main goal of their efforts, during the fourth phase. 
Therefore, the role of instances-riddles was to give to the narrative the characteristic of different twists 
of the plot. To achieve this goal students and teachers used the instance in GeoGebra, along with 
buggy diamond in MaLT2, trying to ‘link’ them. Thus, it seems that they conceptualized this linking 
as a situation of two objects (the diamond and the line) varying simultaneously and dynamically. This 
became clearer, when students tried to coordinate the manipulation of the line in GeoGebra with the 
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diamond in MaLT2 (lines 23-25), so that a move of the sliders in GeoGebra should correspond to an 
‘elegant’ and ‘normal’ change of shape of the diamond. This action seems to be in line with 
Thompson’s (2002) view of co-variation that points out the importance of coordinating actions among 
two attributes with an ‘operative image’ of their co-variation so that one can act out how the two are 
related. In phase four, students’ goal was to conceptualize and define a ‘co-variational relationship’ 
between two attributes; the position of the line in GeoGebra and the diamond’s shape in MaLT2. It 
seems that students, by making use of the two sliders that represented angles’ measures (one related 
to the line and another related to the diamond), they envisioned these two attributes’ momentary states 
varying simultaneously (lines 17-22). Thus, they decided to use a common variable ‘phi’ related with 
both angles as an operative image of the co-variation between line’s position and diamond’s shape, 
linking the two riddles. According to Johnson, McClintock, Hornbein, Gardner and Grieser (2017) 
students are facing fewer difficulties to discern co-variation among quantities (in the sense of 
Thompson) that can be measured with linear units. Building on this position, we assume that, in our 
case, students employed such a quantity ‘phi’ (that represented an angle’s measure) to define and use 
a ‘co-variational relationship’ among two objects/attributes (the position of the line and the shape of 
the diamond) that could not directly be measured.  

Conclusions 
In this study, the focus was on the role of students as co-designers of a digital medium, a c-book-unit, 
i.e. a digital narrative blended with tasks and constructions with mathematical content. We used the 
DA theory to understand in detail the way new meaning around co-variation during the design process 
emerged. During the four phases of the design process the students’ set of resources and their scheme 
of use seemed to be in flux. In the beginning, the use of resources had mostly to do with storytelling. 
Τhis changed progressively, and in the last phase a combination of narrative with mathematical 
resources was used. It was in this phase when, according to our analysis, students made meanings 
around the concept of co-variation, while ‘building’ a relationship for the needs of the storyline. It is 
remarkable that, after building this relationship, students tried to attune the mathematical content to 
the narrative, referring to the line in GeoGebra, as a path on a map. It seemed that initially, the 
differentiation between students’ and teachers’ resources and their schemes of use, worked as a barrier 
to the design process. However, from the analysis of the ‘document’ is evident that when resources 
were related to both narration and available mathematical tools, this led to the emergence of new 
meanings. From this point of view, it seems that when students act as designers using this kind of 
media, they take the role of both the storyteller and learner. Given the lack of research in this field, 
we believe that such enquiries should come up, assuming that these two roles -of storyteller and 
learner- should not be seen as separated, since the interaction between different kinds of resources 
was crucial for the design as a learning process. 

References 
Brennan, K. (2015). Objects to think with. Constructivist Foundations, 10(3), 313–314. 

Gueudet, G. & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? 
Educational Studies in Mathematics, 71(3), 199–218. 

Thematic Working Group 15

Proceedings of CERME11 2695



 

 

Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical 
instruments: The case of calculators. The International Journal of Computers for Mathematical 
Learning, 6(2), 143–165 . 

Healy, L. & Kynigos, C. (2010). Charting the microworld territory over time: design and construction 
in mathematics education. ZDM Mathematics Education, 42(1), 63–76. 

Johnson, H. L., McClintock, E., Hornbein, P., Gardner, A. & Grieser, D. (2017). When a critical 
aspect is a conception: Using multiple theories to design dynamic computer environments and 
task to promote secondary students' discernment of co-variation. In T. Dooley, & G. Gueudet 
(Ed.), Proceeding of the 10th Congress of European Research in Mathematics Education (pp. 
2738–2745). Dublin, Ireland: DCU Institute of Education & ERME. 

Johnson, H. L., Coles, A. & Clarke, D. (2017). Mathematical tasks and the student: navigating 
“tensions of intentions” between designers, teachers, and students. ZDM Mathematics 
Education, 49, 813–822. 

Kynigos, C. (2015a). Constructionism: Theory of Learning or Theory of Design? In S. J. Cho (Ed.), 
Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 
417–438).Cham, Switzerland: Springer. 

Kynigos, C. (2015b). Designing Constructionist E-Books: New Mediations for Creative 
Mathematical Thinking? Constructivist Foundations, 10(3), 305–313. 

Kynigos, C. & Kolovou, A. (2018). Teachers as designers of digital educational resources for creative 
mathematical thinking. In L. Fan, L. Trouche, C. Qi, S. Rezat, & J. Visnovska (Eds.), Research 
on Mathematics Textbooks andTeachers’ Resources: Advances and issues ICME-13. Cham, 
Switzerland: Springer. 

Papadopoulos, I., Diamantidis, D.,& Kynigos, C. (2016). Meanings around Angle with Digital Media 
Designed to Support Creative Mathematical Thinking. In C. Csikos, R. A., & J. Szitanyi (Eds.), 
Proceedings of the 40th Conference of the International Group for the Psychology of 
Mathematics Education. 4, (pp. 35–42). Szeged, Hungary: PME. 

Papert, S. & Harel, I. (1991). Situating Comstructionism. In I. Harel & S. Papert (Eds.), 
Constructionism. Norwood, NJ: Ablex Publishing. 

Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. 
Gravemeijer, R. Lehrer, B. v. Oers, & L. Verschaffe (Eds.), Symbolizing and Modeling In 
Mathematics Education (pp. 191–212 ). Dordrecht, The Netherlands: Kluwer. 

Thompson, P. W. & Carlson, M. P. (2017). Variation, co-variation, and functions: Foundational ways 
of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education 
(pp. 421–456). Reston, VA: National Council of Teachers of Mathematics. 

Thematic Working Group 15

Proceedings of CERME11 2696



 

 

Addressing the problem of digital tools with digital methods 
Jonas Dreyøe 

Aalborg University, Department of learning and Philosophy, jmd@learning.aau.dk   

Keywords: Digital tools, wicked problem, capacity building, data handling, digital methods. 

Introduction 
This poster presents a research design on how mathematics teachers can be involved in creating a 
shared understanding of their declared intentions and practices with digital tools in their mathematics 
teaching. The context of this poster is an ongoing PhD project with two strands. On one hand it aims 
to investigate and map the reasoning for mathematics teachers’ use or non-use of digital tools (CAS, 
Spreadsheets, Dynamic geometry) in their practice. On the other hand, it aims to explore a method of 
high practitioner participation with data and digital methods. The project’s research question is: How 
can the utilization of the workshop format inspired by participatory data design involve mathematics 
teachers in creating a shared understanding of their declared intentions and practices with digital tools 
in their mathematics teaching? 

Digital tools in mathematics teaching as a wicked problem 
Digital tools heavily influence mathematics teaching on many levels. The presence of tools amounts 
to a more complex teaching situation, because the tools themselves affect the teaching (Tabach, 
2013). On one hand the process of learning mathematics is different when the tools are used because 
they transform mathematical actions and goals. These transformations can certainly amount to new 
ways of learning mathematics, they also cause a series of problems and difficulties as the key 
mathematical operations can be accomplished without the students understanding the underlying 
mathematical processes (Jankvist & Misfeldt, 2015). 

In this way, digital tools can amount to barriers in learning mathematics as a metacognitive shift 
towards the tool can occur instead of focusing on the mathematical concepts in question. On the other 
hand, it is also known that digital tools can increase children’s mathematical horizon and competence. 
The mathematics teacher is thus situated in a dilemma; if digital tools are included without 
critique/blindly it can lead to learning difficulties. If they are not included the students’ mathematical 
competence can be subverted. The usage of digital tools, that is the object of inquiry, in the Danish 
primary and lower secondary school can by this be viewed as a wicked problem – a problem, which 
does not have a single solution, but only more or less appropriate solutions. To handle a wicked 
problem, it is needed to create a shared understanding of the problem and consider concrete dilemmas 
(Rittel, 1972). Pedagogical research highlights collaboration as a valuable impetus for professional 
development of teachers. The aim of this project is to support capacity building of teachers by teacher 
collaboration and dialogue concerning their didactical practices and intentions with digital tools. 

Addressing and understanding the wicked problem by using digital methods 
Collaboration and discussions among teachers can be improved and qualified if data about teaching 
and learning is included. It is especially recommended by the learning analytics field, which has 
shown that data can be utilized in facilitating well-informed decision-making processes. This project 
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thus aims at developing an approach where the collection and visualization of data is utilized to 
qualify teacher collaboration. Currently, there are different approaches to use data in supporting 
teacher work such as databased best-practice, as Hattie’s visible learning project is an example of and 
using data to inform local development in improving professional judgment which Qvortrup’s project 
about professional judgment is an example of. I aim to involve teachers even more in the handling of 
data. In facilitating such a process, I take my point of departure in Participatory Data Design, which 
involves stakeholders in the development and structuring of data that are used to describe, valuate, 
guide and develop the stakeholders’ own work (Jensen et al., 2017). 

 
Practitioner participation in data handling; E = only Experts, P = Practitioners involved 

Handling of data in research projects can be described to work in five iterative phases. 1) A 
provisioning of data which entails in, figuring out what data is possible to obtain and cleaning the 
data for the intended use 2) Selecting the appropriate data for the concrete research purpose. 3) 
Visualization of the data to be able to see patterns. 4) Interpreting the data and visualizations at hand. 
5) Implementing the decisions from the interpretations into practice. I propose a model to depict 
practitioner participation in data handling, where I have placed the three different approaches. 

The ongoing PhD project will thus involve practitioners in as many phases as possible in data 
handling. And thus, provides a frame for investigating their declared intentions and practices in a way 
that both support data from their own classrooms as well as more generic data. This data will be 
interpreted and visualized in workshops with teachers, researchers and data-visualization experts 
collaborating. In this collaboration they will investigate the problem of digital tools in small groups 
and propose answers to why teachers would choose to use or not-use digital technology. These 
answers will inform the mapping of declared intentions and practices of teachers using technology. 
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This day and age, the focus in education is for the most part on how we can use technology to make it 
easier for children to learn. While there is a lot of amazing technology that aims at this, we want to 
make the case that we should not throw away all the tools that are not part of the new wave. This poster 
focuses on the use of mini white-boards to engage students in their learning of mathematics. There 
might be things to learn from this forgotten technology when designing and implementing new 
technology into mathematics. This project arose from observations of an exceptionally talented 
teacher. The observation focused primarily on discourse, structure, and tools used. We were intrigued 
by the way this relatively young teacher utilized an old tool in the lessons to a seemingly great effect. 

The structured use of mini white-boards  
Gathering the students 
The teacher gathered the students around the Smartboard at the beginning of the class. Here, the 
students sit tightly together on benches without desks, where they spend most of a typical lesson. The 
teacher uses a PowerPoint presentation on the Smartboard, where definitions, assignments, videos, and 
students answer to homework assignments are presented for discussion. A main tool in these gatherings 
was the mini white-board, where they solved tasks and shared methods and thoughts. Hiebert & 
Grouws (2007) writes that the way a teacher chooses to organize their students, and in what way time 
is prioritized, plays a role in the students’ opportunity to learn. By gathering the students around the 
Smartboard, the teacher signals that conversation is a priority. According to Lee (2006), such 
organizing will make the students more included in the conversation and increases the probability of 
conversation. By using a substantial part of the lesson for a gathering, the teacher priorities 
conversation and sharing of methods.  

The mini white-boards  
This mini white-board was a simple A4 sized white-board, which the students were handed at the 
beginning of the lesson. The students were given one to three minutes to solve the different tasks the 
teacher presented on the Smartboard. For example, the students could be asked to find the volume of 
different figures shown on the Smartboard, where the solution method was the teacher’s primary goal. 
The teacher made it clear to the students that they had to write down their answers and how they came 
by them. They could also be asked to write their own definition of mathematical terms or more open 
tasks such as drawing three-dimensional shapes. Whichever task the students were given, the white-

Thematic Working Group 15

Proceedings of CERME11 2699



 

 

boards gave them the opportunity to work by themselves for a short time, which in turn gave them the 
time to consider the given task. This method is henceforth called individual work time. The typical 
tasks were to do calculations, write definitions and draw explanations.  

In one instance, the teacher told the students to write the answer right after the task was given, for then 
to show their answer to the rest of the group immediately. This direct approach makes the students 
give an answer fast, without time to think and without checking it against other students’ answers. 
Making this approach is what Wiliam (2007) calls an all-student response system, as opposed to a 
single student response system, which gives the teacher an overview over which of the students got it 
right and which did not. This method is henceforth called direct use and might be used to fast check 
fluency and understanding of concepts. 

After individual time and direct use, the white-boards were used in three different ways, which all 
started with the students showing their solutions or explanations. One way was to ask a student to 
explain their own method. A second way was to ask a student to explain another student’s method. A 
third way was that the teacher selected a solution and explained the method. All this means that the 
teacher orchestrated the conversation by selecting student work and then constantly probing and 
pressing for information. The result is a practice with a strong focus on sharing and understanding 
student thinking. 

 Table 1: The use of mini white-boards 

The way forward 
This work is part of a project (SUM) which purpose is to look at how inquiry-based learning can 
contribute to coherence in the students' motivation for and learning of mathematics at the transitions 
in the system of mathematics education. By utilizing these mini white-boards together with tasks where 
there is more time for inquiry, maybe we can involve the students more fully in the tasks given in the 
lessons in SUM. The findings in this poster will be used together with teachers to take a closer look at 
how this forgotten technology can help improve learning and understanding in mathematics. In 
addition, we have a long-term goal of using the insights from this forgotten technology to make our 
mathematics teaching with ICT more productive.  
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The task of eliciting student talk in mathematics teaching can be daunting for teachers. An 
approach to this is using student work actively in teaching. In this paper, the teacher moves in a 
lower secondary full class discussion regarding similar triangles is investigated. The results show 
that the teacher utilised different teacher moves to steer the discussion towards both didactical and 
mathematical goals.  

Keywords: Student-produced videos, inquiry-based teaching, mathematical discussions 

Introduction 

The DIM-project (Digital Interactive Mathematics Teaching) is a developmental research project 
exploring the use of digital tools in three lower secondary mathematics classrooms in Norway. One 
such innovation is the use of student-produced videos (later termed SPVs) as a medium for 
presenting strategies related to inquiry-based tasks. This idea emerged from the teachers as they 
wanted to explore different uses of videos in teaching, both teacher- and student-produced. The 
three-part lesson sequence used in the analysed lesson was developed by both teachers and 
researchers in a workshop. The aim for both teachers and researchers was to develop an approach 
for eliciting student talk in full-class mathematics discussions.  

The transcripts originated from a follow-up discussion related to similar triangles and the use of this 
idea to measure the heights of objects, the task and lesson sequence is presented in detail in the 
methodology section. While planning the discussion, the teacher viewed SPVs to identify aspects of 
interest in the students’ work. The teacher also used videos while enacting the discussion. As such, 
the paper addresses the topic of using student thinking in mathematics teaching. The paper aims to 
characterise how the teacher used the SPVs in teaching to promote students’ active engagement in a 
full-class discussion. Our analysis is based solely on video recordings of the teaching, as the authors 
sought to investigate how looking through the lens of teacher moves can inform how the teacher is 
positioning the students in the discussion.  

Key concepts (Scherrer, 2013) 

Research has demonstrated that effective instructional practices demand students’ mathematical talk 
(Walshaw & Anthony, 2008). To achieve this, teachers need approaches to elicit students’ thinking 
and promote mathematical discussion. An area of interest for the teachers and researchers in the 
DIM-project is to foster what Goos defines as a community of inquiry; a classroom “…where 
students learn to talk and work mathematically by participating in mathematical discussions and 
solving new or unfamiliar problems” (Goos, 2004, p. 259). This moves beyond being 
mathematically correct as the students are “…expected to propose and defend mathematical ideas 
and conjectures and to respond thoughtfully to the mathematical arguments of their peers” (Goos, 
2004, p. 259). An approach to studying such discussions is analysing the moves used by the teacher 

Thematic Working Group 15

Proceedings of CERME11 2701



to facilitate students’ active engagement. Krussel, Edwards and Springer define a teacher move as 
“a deliberate action taken by a teacher to participate in or influence the discourse in the mathematics 
classroom” (Krussel, Edwards, & Springer, 2004, p. 309). In the following paragraphs, we 
introduce frameworks of teacher moves and actions used as guidance for the research presented in 
this paper. 

Scherrer (2013) classifies twelve types of moves to investigate teaching practices in relation to 
theoretical notions of effective teaching. Scoring guidelines are used to code and evaluate the 
effectiveness of teachers’ discussions, where each move is scored according to the surrounding 
moves. In this framework, the teacher moves that are prompted by student thinking generaly receive 
positive scores. Scherrer refers to five such teacher moves, categorised as rejoinders, used to elicit 
and use student thinking rather than evaluate it. The moves categorised as rejoinders are uptake, 
collect, connect, lot and repeat. Uptake is an open-ended question that invites student thinking while 
using a student response to extend, clarify, or elaborate the discussion. Collect is a move aiming to 
provide different student responses to the same question. Connect is a question related to different 
responses and how they may be connected. Lot are occurrences where the teacher acknowledges a 
student’s response and indicates that the topic will be revisited in the future. Repeat is a move 
related to echoing a student’s response.  

Mueller, Yankelewitz, and Maher (2014) perceive teacher interventions as crucial to introduce the 
students to the mathematical discourse. The authors state that “[t]houghtful interventions, 
implemented according to students’ developing ideas, allow students to take ownership of their 
learning and solutions” (Mueller et al., 2014, p. 2). In order to investigate teacher moves, they 
present three categories which encompass student thinking; making ideas public, eliciting student 
ideas, and encouraging justification and explanations. In this paper, we use these categories as an 
initial coding scheme for the interactions. We expand the categories to incorporate the elements 
needed to investigate the use of SPVs to promote a community of mathematical inquiry.  

We view the investigated episodes to involve a didactical performance in accordance with how the 
term is outlined in the framework of instrumental orchestration (Drijvers, Doorman, Boon, Reed, & 
Gravemeijer, 2010). This performance is the ad-hoc decisions made by the teacher within the 
orchestration. Teacher moves can be planned, but they also involve some aspect of improvisation 
from the teacher, as the teacher must manage the feedback provided by the students. The teacher’s 
moves are related to specific didactical intentions. Such intentions are typically implicit rather than 
explicit. As such, the didactical intentions referenced in this paper are deduced by the authors based 
on observed patterns in the data. The teacher moves are integral in this process as they are used by 
the teacher to benefit the didactical intentions. In the transcripts analysed for this paper, the teacher 
is asking the students to explain why a solution “makes sense”. Thus, the perceived didactical 
intention is “a discussion using a SPV to validate a strategy for solving similar triangles problems”.  
Methodology 

The lesson analysed for this paper was number two of in all four lessons the teacher enacted using 
SPVs in plenary discussions over a six-month period. Four lessons were video recorded from three 
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different teachers’ classrooms totalling twelve lessons of about 45 minutes. All these lessons 
utilised a fixed three-part sequence. Part one is a group investigation of an inquiry-based task in 
school (see an example of such a task below). Part two is to present the work of the group in a 
video, this serves as homework, and every student produces one video and sends it to the teacher. 
Part three is a full class discussion related to the topic investigated in part one and two. The 
discussion is based on the presentations in the SPVs, and the teacher watches all the videos while 
planning the full class discussion. The transcripts used in this paper is from one such discussion. 
One of the aims of this paper is to pilot an analytical approach to investigate the discourse in these 
discussions. As such, one lesson was selected at random and analysed for this paper. The process of 
selecting a lesson was done by double-clicking a random folder. 

23 tenth grade students and one teacher attended the 43-minute lesson analysed for this paper. The 
mathematical topic was similar triangles, and the lesson was a follow-up discussion at the end of 
this topic. One of the teachers in the DIM-project designed the task below after a brainstorming 
session at a workshop where both teachers and researchers attended. 

The task investigated and solved in the SPVs was (the authors’ translation from Norwegian): 

Look at the drawing (Figure 1). There is a mark on the wall (green dot). Nils has placed a mirror in 
front of him and placed himself so that he sees the mark in the mirror. 

He can measure the following lengths; from the ground to his eyes, from himself to the mirror, and 
from the mirror to the wall. Can he, by using these measurements, find the final measure (from the 
ground to the green dot)? 

Figure 1: Drawing provided to the students (“Kan måles” translates to “Can be measured”) 

Record a video where you show your measurements and explain how you can find the height of the 
building. Also, show generally how you can find the sides of similar figures if you know 
measurements of some of the sides. Maximum 5 minutes. 

Data was collected using a video camera. The SPVs and the google presentation used in the lesson 
were shared with the first author before the lesson. The data was transcribed and translated by the 
first author. 

The data was analysed using the approach presented in Powell, Francisco, and Maher (2003, p. 
413). The authors perceive the process of analysis in seven non-linear phases (comments related to 
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our process in brackets); Viewing attentively the video data, describing the video data (data 
reduction), identifying critical events (identifying instructional episodes where student thinking is 
central), transcribing (selected episodes of interest for the topic of this paper), coding (using the 
codes presented in this paper and constructing new codes if needed), constructing storyline (looking 
at the context of the code), and composing a narrative. 

The transcripts presented in this paper are from one specific episode within the lesson. The notion 
of an episode is to be understood as a sequence within a lesson related to a specific goal, with a 
specific didactical intent. There were six episodes in the lesson. The time-span of the episodes were 
from three to ten minutes. The episodes with titles indicating the content were: 

1. Discussion related to misconceptions and issues identified in the SPVs
2. Introduction to figures often used in similar triangle problems
3. Discussion related to validating a strategy for solving similar triangles problems
4. Discussion related to validating a similar strategy for solving similar triangles problems
5. Discussion related to a different strategy for solving similar triangles
6. Discussion related to solving similar triangle problems using GeoGebra

The third episode was selected to be analysed for this paper based on; a SPV being shown in the 
episode, the narrative being constructed by both teacher and students, and being an episode of 
length fitting for the page constraints of this paper. The episode is mainly a conversation between 
the teacher and one student (Harald). The transcript also presents the narrative from the video (SPV) 
as it is central to the dialogue which emerges. Additional information is in square brackets. (..) is 
used to indicate a short pause in the narrative. 

Results and analysis 

At the start of the lesson, the teacher elaborated on two issues emerging from the videos. The first 
issue was the definition of similar triangles, as some students stressed that all the angles and the 
shape had to be the same, not recognising that they are the same criteria. The second issue was a 
lack of explanation of why the two triangles used to solve the task were similar. This issue can be 
identified in the transcript below, from Svein’s video.  

SPV (Svein): Okay, if we have (..) for example (..) two triangles and all the angles are the same, 
and they have the same shape. They do not necessarily need to have the same size, 
but. (..) We can see that all the angles are the same in both figures. Therefore, 
these are similar. Okay, we measured from the feet to the eyes. 

Teacher: And the measurements are here [pointing to the measurements on the screen]. 

SPV (Svein): It was 165 cm, and from the feet to the mirror, which is from here to here [points 
with the mouse on the video], it was 178 cm. And (..) we want to find the ratio 
between these, so we divide (..) 165 by 178 and get 0,926966 and so on. And then 
we measure from the mirror, which was here (..) to the church [points with the 
mouse on the video], because we wanted to find the height of the church. Eh (..) 
and we got 1448 cm. Eh (..) then we calculated 1448 times 0,9269 and so on. And 
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we got 1342,247 cm. And that is 13,42 m. So, from the church (..) up to here 
[points to the top of the church in their figure] it is about 13,42 m. 

Teacher: And we will stop Svein there. Eh (..) we will look further later with. That is good. 
If you look at the drawing here, (..) the height of Svein or Harald, I do not know 
who is measuring, it is 165 from the ground to the eyes. And from the ground to 
the mirror it is 178 cm, and 1448 from the mirror to the church. And then he 
calculates that the church wall is 1342 cm or 13,42 m. My question to you; does 
this make sense? 

The transcript above illustrates how the teacher guides the students towards his didactical intent. It 
appears as if the purpose for showing the video was an introduction to the task and one approach to 
solve it. The teacher interacts with the video to highlight the measurements used in the calculation, 
adding emphasis to the presentation in the video. We consider this a parallel to a pushback rejoinder 
move, to add emphasis to important aspects of the presentation through intervention. Pushback is 
usually done through a question, as in “could you point to the measurement?”. However, as the 
presentation is through a pre-produced video, the teacher elects to point to the measurements 
himself. It appears as if the objective is to make students reflect on how to validate that the strategy 
works; if this calculation makes sense. This is to be explored through a discussion, hence the 
didactical intent appears to be a discussion using a SPV to validate a strategy for solving similar 
triangles problems.   

The teacher sets the scene to further the student’s presentation, all the while emphasising that this is 
the student’s work. Furthermore, it is not clear from the context of the question what kind of 
validation the teacher wants, as such; the request is an open-ended Uptake. As the question is also 
directly related to student thinking (presented in the video), the teacher is requesting the students to 
make their ideas public. In the following transcript, the teacher further establishes what such a 
validation entail.  

Student: Yes. 

Teacher: Why does it make sense? 

Student: Because the church is about 13 meters. 

Teacher: You know that, but I did not know that. But why does it make sense? It could be 
about 14 m. Why does it make sense? [awaits response]. If they had done it like 
this, divided 178 by 165, and found another solution. They chose to do 165 
divided by 178, but if they had changed these numbers they would have gotten 
1,079. And if they had taken the length to the church [14,48] and multiplied by 
1,079 the answer would be (..) eh (..) they would have [looks in his notes]. I have 
not calculated it, but they would have about 1500. That is another answer. Why is 
one of them correct? You need to know the height [of the church] to say that it is 
13 m. Harald, why does what you did make sense? 
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In this section, the teacher’s idea of a validation becomes clearer. It would appear as if, in his 
view, the validation should result from the information at hand, not from prior knowledge. This 
might explain the decision to repeat the measurements from the students’ work in the prior 
section, and not to go into detail about the calculations they used. Such negotiation of what the 
argumentation should entail is important in understanding what mathematical discourse is 
(Cazden, 2001). The teacher’s statements exemplify the complex relationship between the 
planned teacher moves and the didactical performance of the teacher, used to bring the 
discussion towards a validation. At first, there is a rebuttal; the student knows that the church is 
about 13 meters, but this is not the kind of validation the teacher expects. This move must be ad-
hoc as the teacher did not know the student’s validation strategy before the question was asked. 
As the reinitiation of the original uptake is left unanswered, the teacher provides a starting point 
towards a validation, by changing the ratio and finding an alternative solution. The level of 
planning in this “thinking aloud” move is unclear, but one would assume that this is a pre-
planned move being enacted. In this process, the teacher is limiting the cognitive demands from 
the initial “find a strategy to validate this calculation” to “find a strategy to determine which 
calculation is correct”. The initial request to make ideas public is limited to following through 
with the specific strategy initiated by the teacher, by encouraging an explanation from one of the 
students with ownership of the work. The following extract shows the reply from Harald and the 
teacher’s response.  

Harald: Because, if you divide 165 by 178 you get 0,9 and so on, (..) and if you multiply 
that by 178 you get the height of the person. But if you had divided the opposite 
way, and multiplied 178 by 1,078, you would have 180 and so on. That is not the 
height we measured. So, we have the ratio between the bottom and the height. 
Then we can multiply with the other height to find the height [of the church]. 

Teacher: I will repeat what I perceive he said. He divided this by this [points to the ratio 
calculation] and got 0,9. And then he is saying that if you use that number, the 
bottom [178], and multiply by 0,9 you get 1,65. And then I understand you said 
that if you then take the other bottom and multiply by 0,9 you get this [points to 
the church height]. Did I understand you correctly? 

Harald: Yes. 

In this exchange, the teacher obtains what appears to be a satisfactory validation in his view and 
confirms this through his comments. The teacher’s moves are interesting, as the aim of the initial and 
follow-up moves was to get the validation. However, the rephrasing from the teacher does not stress 
the validation presented by the student. The student explained that the ratio calculated by the teacher 
would provide the wrong height for the person. As such, the ratio used by the group must be the right 
calculation in this situation, as it provides the correct height of the person. The teacher’s rephrasing 
is mostly related to the overall strategy used and does not highlight the validation, why it provides the 
correct solution. This may be regarded as a missed opportunity to zoom out of the computational 
perspective and connect the task to the general proportional relationship, which underpins similar 
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triangles problems. While the teacher does acknowledge the backwards calculation to get the height 
of the person, it is not clear from the extract that this is the student’s validation of the strategy.  

Teacher: So, we must think about which numbers to multiply. Not just choose freely. But, 
there is also something logically correct with these numbers. Can you look at the 
numbers, why is it logically correct? You can keep going Harald. 

Harald: Because the height is less than the bottom. 

Teacher: Yes, do you see that the height is a bit smaller than the bottom here? [points to the 
smaller triangle]. Then it makes sense that this [points to the church’s height] is a 
bit smaller than here (..) to the church [from the mirror to the church]. So it makes 
sense. Okey, now there is some red text [in the teacher’s notes]. You get two 
minutes to write. What was Svein and Harald’s strategy? 

The student’s affirmation regarding the teachers rephrasing is followed by two statements, or 
“words of warning”, to conclude Harald’s validation. The statement “…think about which numbers 
to multiply” is the key to the deduced goal of the episode, to validate why the initial strategy 
worked. The student’s idea of backwards calculation showed this, but as the teacher did not 
highlight this during his rephrasing, it might get lost on the students. Rather than generalising or 
expanding the idea, the teacher moves on to another strategy, by relating the question directly 
towards the measurements and visual information. It appears as if this is what the teacher was 
working towards the entire episode. Evidence of this is the emphasis on measurements at the start of 
the episode, and the need to introduce two approaches to validate the strategy provided in the SPV.  

Concluding remarks 

To encourage students’ active engagement in mathematical discourse is instrumental in establishing 
a community of mathematical inquiry. In the transcripts provided, the process of negotiating what a 
validation entail is directly related to student work. By addressing the students and narrowing the 
initial uptake to steer the discussion towards the goal, the teacher appears to get a satisfactory 
validation. Still, the analysis illustrates the need to dig deeper than codes, exemplified by the 
teacher’s rephrasing of Harald’s idea of backwards calculation. The teacher validates the student’s 
response. However, he de-emphasises what we perceive to be an important contribution to the 
discussion. Furthermore, the teacher keeps a computational perspective throughout the episode, not 
zooming out to connect the discussion (and initial task) to the concept of similar triangles in 
general. To account for such instances, we emphasise the need to analyse transcripts qualitatively as 
oppose to quantitatively to understand the potential of the moves throughout the discussion fully.  

The three-part sequence presented in this paper might unlock possibilities for more active 
engagement from the students. More work is needed to understand the potential of this model.  In 
future work, we aim to incorporate the teacher’s perspective and to investigate the design process of 
the individual teachers in the main study. We made a conscious decision to only use the video 
recordings as data for the analysis in this paper as one of the aims was to investigate the potential of 
using the lens of teacher moves to analyse mathematical discussions. The analysis showed that the 
teacher utilised teacher moves to steer the discussion towards the didactical intent, and the goal of 
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the episode. In the future, we hope to contribute to the understanding of both the intention and 
impact of teacher moves in a classroom discussion.  

In the context of the Norwegian school system, digital tools are on the rise. Such tools are integral 
in the framework presented in this paper. Throughout the discussion, the teacher utilised the 
interactive blackboard in varying ways. To play videos, pause at desirable moments and show 
actual student work are integral elements in the design of the lesson. These elements enable the 
teacher to use students’ own voices extensively throughout. However, the implementation of such 
ideas does require a lot from the teacher. In the analysis presented, we realise the importance of 
both being alert and open towards student ideas and being conscious about the goals of the 
episodes. The episode investigated is illustrative of this dialectic relationship. Although it would 
appear as if the teacher had a specific validation strategy in mind when the episode starts, he does 
not avert from Harald's strategy of backwards calculation. Not only does he confirm that the 
student’s idea is usable to validate the strategy, he also repeats the idea while acknowledging that 
this is the student’s work and not his own.     
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Introduction 
This poster presents the development process of assigning silent video tasks and the criteria a video 
must fulfill to be eligible to be used as a silent video task. Some preliminary results regarding the 
use of silent video tasks in four different Icelandic upper secondary school mathematics classrooms 
were presented at PME42 in Umeå, Sweden and at the 5th ERME topic conference MEDA in 
Copenhagen, Denmark in 2018. These presentations were focused on teachers’ role in assigning 
tasks and using technology in mathematics classrooms; teachers’ expectations and experiences with 
using the silent video task in their classes (Kristinsdóttir et al., 2018). During the discussion at these 
conferences, it became clear that a more precise definition of the silent videos and the silent video 
tasks was needed. This poster presents results of further work towards such definitions. 

Using silent video tasks in the classroom 
The process of assigning a silent video task involves selecting a silent video; showing this video to 
the whole class; giving students the link to the video to watch as often as they want; dividing them 
into groups of two; and asking each group to prepare and record their voice-over for the video. The 
teacher acts as a facilitator, encouraging students e.g. by asking them to bear in mind that their solu-
tion might help their peers to gain access to the mathematics shown in the video. In order not to re-
strict this open task in any way, no list of concepts for students to address should be handed out. In 
case students find it hard to start recording, a suggestion for them to draft a script might be helpful.   

By only assigning the task something might be gained, but to reach the full potential of the task, 
discussing the solutions in a follow-up lesson is key. By listening to the students’ solutions, the 
teacher prepares a whole-group discussion for the follow-up lesson. Usually the range of solutions 
shows how differently students think about what is presented in the video. Either the teacher selects 
some solutions to show in the follow-up lesson (e.g. if there is a sequence of solutions ranging from 
everyday language to a more formal mathematical language) or asks students to volunteer for pre-
senting some example solutions. The preparation involves listening for topics to address in the 
follow-up lesson discussions, e.g. different levels of conceptual understanding and precision in 
language use. After the whole group discussion, students can be asked to write about their 
experiences. 

The goal is, on the one hand, to encourage students to engage in discussion about the mathematics 
shown in the video. On the other hand, the goal is to make misunderstandings and imprecise word 
use accessible to the teacher so that they can be discussed. In this process, students might get aware 
of that explaining mathematics to others can bring them to understanding it better themselves. 

Potentials of the silent video tasks as a tool for formative assessment. 
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Improving students’ learning should be at the forefront of assessment practices (Suurtamm et al., 
2016). In silent video tasks, students get the opportunity to explain to others and to receive explana-
tions from their classmates. Students’ discourse is encouraged both in the process of preparing stu-
dents’ solutions and in a whole class discussion in the follow-up lesson (Kristinsdóttir et al., 2018). 

Even in mathematics classrooms where discussion was seldom or never practiced, silent video tasks 
showed to be easily implemented, and students put their thoughts into words as they explained the 
mathematics shown in the video. In the process, they may become aware of aspects of the mathe-
matics that they have not yet fully understood. Also, misunderstandings and imprecise word use can 
be addressed explicitly by the teacher with reference to the student solutions in the follow-up 
lesson. 

After the follow up lesson, decisions about the next steps in instruction are likely to be better found-
ed and the process could fulfil Wiliam’s definition (2011, p. 43) of formative assessment. Wright et 
al. (2018) list six potentials that technology-based formative assessment strategies have to support 
learning: providing immediate feedback, encouraging discussion, providing a meaningful way to 
represent problems and misunderstandings, giving opportunities to use preferred strategies in new 
ways, help raising issues that were previously not transparent for teachers, and providing different 
outcomes feedback (Wright et al., 2018, p. 219) and the silent video supports all but the first one. 

Requirements for videos used in silent video tasks 
To be used in a silent video task, a video should be short (less than 2-3 minutes in total), with no 
text or sound, and show mathematics dynamically. The theme should be as clear and focused as 
possible (not try to squeeze in too many things) and the video should offer different descriptions, 
aiming at exposing the students’ different levels of conceptual understanding. Some proofs without 
words (e.g. https://ggbm.at/jFFERBdd) might serve as an example but the video themes are not only 
restricted to proof. They can also include definitions such as the general definition of the sine and 
cosine functions using a unit circle (e.g. https://ggbm.at/BfRqGSKq) or rules like how the area of a 
triangle can be calculated (e.g. https://youtu.be/xnPworcoGcM). These ideas will be presented in 
the poster with additional details. 
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Introduction  
Understanding three-dimensional representations on a two-dimensional representation system can 
be challenging. It mainly means to be able to understand around a virtual dimension additionally to 
the representation of two dimensions. With the advent of production technologies that can quickly 
generate three-dimensional objects, being able to construct in three dimensions is becoming a key 
skill. Especially, since 3D printers have become widely available due to declining costs. Being 
affordable by schools, a 3D printer can help teachers to explore mathematical concepts with their 
students by printing their own materials. Knill and Slavkovsky (2013) claim that while models in 
the real world do not help much to prove mathematics, they do very much help in understanding the 
results of mathematics. In this poster, we intend to share with the Mathematics Education 
community how teachers can use 3D printing examples to trigger students’ internal needs to 
develop mathematical proofs. In other words, through the manipulation of models students could 
feel the necessity to prove their observations or conjectures from their interaction with 3D printing. 
We feel that often students are “forced” to prove theorems that they don’t have internal connections, 
but in this case, if students ask themselves whether or not it is sufficient to use a particular case to 
generalize cases they could be motivated for proving. 

These daily life demands can also trigger fruitful discussions to mathematical ideas, particularly in 
3D environment. Due to that, we consider the importance of sharing new approaches among 
teachers and exchange perspectives in how these initiatives with upcoming technologies can 
contribute for mathematics teaching. 

3D printer at schools 
The use of manipulatives in the classroom has been advocated for a long time. In his work, Post 
(1981) brings perspectives from Lesh, Piaget, and Dienes, who emphasize the importance in 
applying concrete materials with students, especially the young ones. The increasing application of 
3D printing in different areas led us to discuss possibilities for using it in education settings, as 
creating, adapting and printing such manipulatives. Lieban et al. (2018) discuss ideas, and describe 
activities that make use of 3D printing in the school context. Some of the objects explored were 
logical games. They were developed in GeoGebra and Tinkercad, and then printed in a 3D printer. 
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These two resources were chosen due to their intuitive interface for educational purposes, and 
friendly connections with 3D printers.  

Besides enhancing modeling competencies, these approaches with 3D printing can be a good 
opportunity to promote a student-centered learning environment. Students increase their motivation 
when working on activities that they create themselves (Nussbaum, 2013). In addition, moving from 
playing to making games, teachers and students develop skills that go beyond mathematics, like 
communication, creativity, collaboration and critical-thinking, the 4C’s for 21st century demands.  

Figure 1: Game that already exists were adapted and explored by students and teachers 

Perspectives in using 3D printing 

The feedback from both experiences we had using 3D printing, which includes a school in Canada 
and a teacher-training program in Israel, opened our minds and booster our desire to explore further 
this powerful tool. We are now focusing in manipulatives that foster mathematical explorations, 
either to facilitate spatial reasoning or to open questions and discussions from them. Our first step in 
that direction is to evaluate a range of materials that are already available online in collaborative 
platforms (e.g. Thingiverse, GeoGebra, Tinkercad, …), and from which users can easily download a 
printable file. We are collecting, adapting, and testing many of these materials and evaluating their 
perspectives for using them in different levels of education.  

Proposal 
The digital poster will present some perspectives in using 3D printing for mathematics teaching in 
different educational levels as well as how can these physical manipulatives be integrated with other 
digital tools. Some examples will be shown and explained, even as printouts in 3D. 
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In this paper, we investigate mathematics teachers’ conception of the relationship between 
mathematics and programming. The context of the investigation is a recent curriculum reform in 
Sweden that makes programming a compulsory element of the national mathematics standards. 
Following up on an in-service training initiative, we conducted a pilot survey (N = 133) exploring – 
among other things – the teachers’ conception of the relationship between mathematics and 
programming. The results suggest that the teachers, on average, feel that there is a strong, but not 
very strong, relationship between the two subjects. Furthermore, the results suggest that 
mathematics teachers are interested in working with programming but that they do not feel well 
prepared for taking on that task. These results are used to discuss the mathematical potential of the 
different ways in which compulsory programming can be introduced in schools.  

Keywords: Programming, mathematics, computational thinking, curricular changes. 

Introduction: Programming as a new element in compulsory school 
Programming, computing, computational thinking (Wing, 2006), technology as a subject, and 
similar topic formulations are currently being included in the curriculum of compulsory schools in 
many countries. The purpose of these changes is ostensibly to support students in becoming 
technologically literate and able to participate in the society of the future, as well as to promote 
STEM careers.  Different countries are taking different routes to implement this change. In Great 
Britain, the main idea has been to develop a computer science curriculum as a new topic, whereas 
other countries such as France, programming is included in the mathematics curriculum. European 
approaches to computing in schools differs (Vahrenhold et al., 2017) but most countries have 
technological skills and literacy as increasingly important objectives of K–12 teaching students, and 
they share the challenge of building the necessary teacher capacity (Wilson et al., 2010).  

The specific relationship between mathematics and programming have been explored by scholars 
such as Papert (1980) and Dubinsky and Harel (1992) and we know that the potential for learning 
mathematics through programming depends on a number of other contextual factors (Misfeldt & 
Ejsing-Dunn, 2015). Investigations of the relation between programming and mathematics, have 
typically taken aim at the potential of using programming as a vehicle for developing mathematical 
competence. The current situation is almost the converse; programming is included in the national 
curricula and standards and mathematics, is in some cases used as a vehicle to meet that goal.  

In Sweden programming became a compulsory part of mathematics (and science) in autumn 2018. 
Therefore, several in-service activities have been developed and were already started in spring 2018 
and all three authors of this paper have been involved in the development. As part of this work, we 
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decided to conduct a survey of how Swedish mathematics teachers have experienced the 
introduction of programming as a topic in their teaching. This paper is our first report on the data 
from this survey1, and we will continue by describing the Swedish situation and then go on to the 
theoretical understanding that underpins our work, as well as our method. In the last part of the 
paper, we present descriptive statistics on the teacher’s conception of the relationship between 
mathematics and programming in his/her class. We end the paper by discussing how to implement 
programming in relation to mathematics in light of the presented results. 

An in-service professional development program in Sweden 
The structure of the Swedish national curricula of both primary and secondary mathematics (grades 
1–9) as well as upper secondary school builds on certain special “central content,” such as algebra, 
numbers, statistics, and geometry as well as five to seven competencies (e.g. problem solving, 
reasoning and communication). The grading criteria mostly relate to these competencies. 
Programming has been included in school mathematics through the revision of the curricula, in 
which it is referred to in connection with the specified central content. 

The Swedish National Agency of Education is responsible for the implementation of programming 
in grades 1–12, while Swedish schools are governed by municipalities, companies, or nonprofit 
organizations. The National Agency has arranged courses in programming for teachers. These 
courses are not related to mathematics teaching but are simply oriented towards developing the 
teachers’ own programming competency. To attend to the didactical question of how to include 
programming in mathematics teaching, the National Agency also decided that specific professional 
development (PD) modules should be designed2.  

The context for the creation of these modules is that Sweden has recently carried out a large-scale 
PD program involving all teachers of mathematics in grades 1–9 and in upper secondary school. 
Boesen, Helenius and Johansson (2015), describes the program and effect and Lindvall, Helenius 
and Wiberg (2018) describes the program theory that was used in the initial design. Briefly, the 
program consists of several different PD modules that teachers may choose among. These modules 
were designed by researchers and teacher educators. Each part of the module follows a cycle in 
which teachers first study the PD material individually (60 minutes per part), then meet in groups 
and discuss the PD material and plan lessons together (90 minutes), after which they carry out those 
lessons with their regular classes (one lesson), and then again discuss the material and the lessons 
(60 minutes). Schools are monetarily compensated for teachers to attend two such modules, but the 
modules are free to use for teachers or schools that want to do more PD. As support for the 
implementation of programming in school mathematics, the National Agency decided that a special 
programming module should be designed. The first and third author of this paper were part of the 

                                                 
1Since the data collection is ongoing, this paper can be regarded as a pilot study. More results and insights will be 
explored further in the continuing work. 

2The digital material supporting the professional development program can be found here: 
https://larportalen.skolverket.se/#/moduler/0-digitalisering/alla/alla  
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design team. We describe the conceptual framework underlying this module below, but one 
interesting difficulty was that the level of programming competency among teachers was unknown. 
From reviewing teacher education, based simply on our background knowledge of Swedish 
teachers, we knew that their programming knowledge and experience were probably rather basic 
and probably lower the earlier in the school system that the teachers taught. However, at the time, 
the time frame available for the design of the module did not allow more research into this question. 
The future effects of such a large-scale programming reform will be interesting to follow up, and as 
an aid to better understand such effects, we carried out a survey among 133 teachers. The intent of 
this survey was to establish a knowledge base for understanding the situation among teachers now 
and to form a basis for further longitudinal investigations. The present paper describes the design of 
this survey by relating it to some of the ideas we developed when constructing the PD module and 
presents some preliminary survey results. 

Conceptual framework and ideas about the relationship between programming 
and mathematics  
When designing the PD module, a view of mathematics that we found helpful was the Piagetian-
based work by Vergnaud, in particular his work on representations (1998). Briefly, mathematical 
ideas (concepts, theorems, etc.) are, on one hand, related to situations where some particular 
mathematics makes sense and, on the other hand, related to representations, such as language or 
other semiotic systems used to signify mathematical matters. Vergnaud’s reasoning can be extended 
to programming, but here, situational phenomena are instead represented in terms of programming 
code. A real-world situation hence can be modelled either by programming code or by 
mathematical concepts. Moreover, for understanding, analyzing, or improving the code, it may 
often make sense to use mathematics, and conversely, if a mathematical model of a situation 
already exists, that can often be translated into code. This creates an interesting and quite complex 
dynamic among real-world situations, the world of code and the world of mathematics.  

This prompted us to consider two different programming situations in relation to mathematics. Type 
1 is where the programming concerns some concrete phenomenon – to take a classic example, a 
model of a turtle moving in some particular pattern. For type 1, mathematics is not necessarily a 
part of the modelling of, for example, the turtle’s movements. This modelling can be done purely in 
programming code. Therefore, for mathematics lessons based on type 1 programming, the teacher 
must assume the responsibility of extracting or inserting mathematics into the lesson. Using the 
work of Misfeldt and Ejsing-Dunn (2015) on programming and mathematics, we described three 
intersecting points or potentials: (1) viewing students as producers of code; (2) supporting abstract 
thinking; and (3) developing algorithmic thinking. Awareness of such potentials could, we 
hypothesized, assist teachers when helping students to mathematize their work in type 1 situations.  

The type 2 situation, is when the programming part concerns something that is already 
mathematical, as in using programming to build a mathematical tool, solve a mathematical problem, 
or to explore mathematical phenomena. In type 2 situations, the mathematics is already relatively 
fixed, but an important responsibility of the teacher, particularly when working with pupils who are 
programming novices, is to make sure that the pupils are properly introduced to elements of 
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programing that can be useful in approaching the mathematical problem at hand (Guin & Trouche, 
2002). 

In order to investigate the teachers’ ideas about the relation between mathematics and programming 
empirically, we have chosen to focus on how the teachers conceptualize this relation. We use the 
notion of conceptions to signify what the teachers think are important aspects of the relation 
between the two areas of knowledge. Our construct of conception is built upon the same 
constructivist post Piagetian approaches as our mathematics education approaches (Papert, 1980; 
Vergnaud, 1998), and as a consequence, active articulation and representation of the relation 
between the mathematics and programming plays a critical role in shaping individual conceptions. 
We explore the conceptions through questions focusing on importance of the relation, preparedness 
of the teachers to teach programming and the qualities of the relations between the two topics, 
based in the three intersection points from Misfeldt and Ejsing-Dunn (2015).  

Methods and instruments 
To understand how the change in curriculum and the work in the PD modules are experienced by 
Swedish mathematics teachers, we designed a survey addressing various aspects of these issues.  

Participants 

The participants were teachers from school years 1–12 in municipal schools in Stockholm. Some 
months before the study, the participants attended seminars organized by the Education 
Administration that aimed to facilitate the introduction of programming into school mathematics. 
Prior to these seminars, the participants – as well as the vast majority of Swedish mathematics 
teachers – had no formal education in and very little experience in programming. When attending 
the seminars, teachers submitted their email addresses, and these addresses were subsequently used 
to contact them about the survey. Answering the survey was optional, and the teachers were 
guaranteed anonymity. After the responses were gathered, the teachers who responded received the 
opportunity to participate in the present study. They were informed that their answers and personal 
data would be stored according to the current GDPR regulations. Currently, 133 teachers have 
chosen to participate in the study, 77% (102 teachers) from primary school and 23% (31 teachers) 
from upper secondary school – however, not all teachers answered every question of the survey. 

The survey 

The survey was developed by the authors of this paper; the included statements are based on the 
revision of the Swedish curricula with regard to programming in mathematics, on feedback from 
teachers at seminars about introducing programming, and on authors’ experience of designing PD 
programs for mathematics teachers. The statements deal with 17 topics, representing the categories: 
a) teachers’ prior experiences of teaching mathematics and programming; b) teachers’ conceptions
of how programming should be implemented in mathematics; c) teachers’ conceptions of how
programming could develop pupils’ understanding of mathematical concepts and procedures, and
pupils’ problem-solving competency. In order to achieve an appropriate level of reliability and
validity of the responses (expected to be above 100) – in concordance with studies about survey
scales in social sciences, that point out that the “optimum number of alternatives is between four
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and seven” (Lozano, Garcia-Cueto, & Muniz, 2008) – we decided to use a four-alternative Likert 
scale. By using an even scale, i.e., a scale without a neutral middle category – and by taking into 
consideration that the participants had little or no previous experience of programming – we aimed 
to discern participants’ responses in more distinct ways. Thus, participants were asked to answer to 
every statement on a scale of 1 (meaning “not at all”) to 4 (meaning “to a great extent”). 

The survey underwent a substantial a priori testing with a group of teachers with similar levels of 
experience in programming in mathematics as the participants, thereby confirming that included 
statements were compatible with the aims of this study. In this paper, we are focusing teachers’ 
answers to 12 statements – displayed at the next section – related to mathematical thinking and 
mathematics as a topic and a set of learning objectives on one side, and programming activities and 
objectives on the other. The first eight statements focus on teachers and pupils’ mathematical 
knowledge and potential related to programming, and on their understanding of mathematical 
concepts, procedures and algorithms in the context of programming. The last four statements deal 
with teachers’ enthusiasm and preparations related to programming, their views on programming 
and mathematics as different subjects and on learning programing by tinkering. 

Results  
We performed a simple descriptive analysis in this paper, thus, the paper does not present or 
confirm any hypotheses. Rather, we generated an overview of the replies and present our questions 
and their relationship to the framework. 

In the survey, we gathered data about a number of things as described above. We asked the eight 
questions shown in Table 1, and the distributions of the answers were more or less the same.  

Question  

Not 
at 
all 2 3 

To a 
great 
extent  

I benefit from my mathematical knowledge when I am 
programming. 8 32 59 32 
My pupils benefit from their mathematical knowledge when 
they are programming. 7 36 57 28 
I can do more things related to mathematics when using 
programming. 12 34 60 22 
My pupils can do more things related to mathematics when 
using programming. 11 39 62 15 
I can obtain a better understanding of mathematical concepts by 
using programming. 20 43 48 14 
My pupils can obtain a better understanding of mathematical 
concepts by using programming. 19 33 57 16 
I can obtain a better understanding of mathematical procedures 
and algorithms by using programming. 15 33 54 27 
My pupils can obtain a better understanding of mathematical 
procedures and algorithms by using programming. 9 26 64 29 

Table 1: The distribution of the number of answers to respective questions about the relationship 
between programming and mathematics. 
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As seen in Table 1, the most typical answer was category 3. The answers to every question have 
more or less the same distribution; almost half of the teachers answered 3 and less than one fifth of 
them answered 4 (“to a great extent”). The rest of the teachers, less than one third of them, were 
divided between 1 (“not at all”) and 2 (that might be interpreted as “to a small extent”).   

Do you feel enthusiastic about teaching programming in 
mathematics? 23 29 55 23 
Do you feel well prepared to teach programming in mathematics? 40 42 43 6 
Programming and mathematics are two different disciplines that 
should not be taught within the same subject. 52 38 24 18 
It is important that students learn to modify and adapt given 
programs according to certain criteria (tinkering). 12 29 64 20 

Table 2: The distribution of the number of answers associated to respective statements about teachers’ 
motivation for and self-esteem regarding teaching programming in their mathematics classes. 

According to Table 2, the answers associated to the teachers’ levels of preparation to teach 
programming in mathematics respectively to their opinion about the relationship between 
programming and mathematics as disciplines, are distributed towards less affirmative categories. 
All together, we take the results shown in Table 1 and Table 2 as signs of two issues that both need 
further statistical inquiry in order to be considered stable results: (1) Swedish mathematics teachers 
do see a clear relationship between mathematics and programming – however, this does not mean, 
that the teachers view these topics as coinciding; (2) despite admitting the benefits of programming, 
Swedish mathematics teachers are not well prepared for teaching programming in mathematics. 
Rather, the teachers express that they and their students can use their mathematical competencies 
while programing and feel that it is a good idea to do this. Yet, simultaneously, they do not 
currently feel well prepared to take on the task of teaching programming. In the following section, 
we will discuss these results. 

Discussion: approaches to including programming in compulsory schools  
Many countries, municipalities, and schools are currently struggling with how to introduce 
programming as a body of knowledge in the school system. Mathematics tends to play an important 
role in a number of these attempts. There are many ways in which this can be done in terms of 
curriculum structure. Programming can be included in mathematics and science curricula, as in the 
case we have explored here. Of course, this can also be done in different ways, and different 
teachers will have different competencies in this regard. Another approach is to develop 
programming as a topic in its own right. However, such a topic can have different “flavors” and foci 
and different relationships to the more traditional school topics. The Swedish case is an example of 
a country addressing this problem by imbedding programming into mathematics (and science), and 
the data from our case suggest that there are a number of synergies and potentials with such an 
approach. In general, the teachers who answered our survey do see a relationship between 
programming and mathematics, and they do want to build on that relationship in their teaching. This 
tells us that the route of integrating programming into mathematics seems feasible in Sweden. 
However, we should be aware of the fact that both the sample size and current sampling strategy 
challenge the generalizability of the results. Accordingly, these results say nothing about whether 
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combining mathematics and programming is the best way to address the integration of 
programming in Swedish schools or even if this integration is a good idea in the first place. Yet, the 
relationship between the topics and the motivation for taking on the task seems to be there, even 
though the capacity for teaching programming is not yet in place. We are not free from the problem 
of training teachers to take on this specific task. 

The introduction of programming in the mathematics curriculum poses an interesting 
implementation problem. What are the critical choices and concerns that we need to consider in this 
respect? In this paper, we have addressed mathematics teachers’ conception of the relationship 
between mathematics and programming, but this is not the only relevant concern. Stakeholders such 
as end users (pupils and teachers), implementation plans, the potential for diffusion, etc., are 
important concerns. We also believe that the discussion of whether to teach programming in 
relation to other topics or as a topic in its own right could benefit from a broader “implementation 
framework,” such as the one discussed by Century and Cassata (2016). To mention just one 
concern, it is critical to have sound implementation of programming in relation to mathematics 
education, and that could benefit from being viewed through the lens of implementation research; 
we can look at teacher’s resistance to programming as part of mathematics. This resistance is rare 
but might exist, as seen in Table 2. If programming is included as a part of mathematics at all levels, 
no mathematics teachers can avoid teaching it. Accordingly, programming – that is, not a priori 
natural tool for mathematics education – might also be viewed in the light of instrumental distance 
and double professional geneses from the part of the teachers (Haskepian, 2014). In that sense, this 
structure is more fragile for the minority with negative views, whereas the development of an 
entirely new topic might make it easier for teachers to choose whether they want to engage in the 
teaching of programming. 

Conclusion  
In this paper, we have presented an initial descriptive analysis of Swedish mathematics teachers’ 
experience regarding the relationship between mathematics and programming. The data collection 
is still ongoing, and the sample size is expected to increase. Furthermore, we are not yet in a 
situation where we can conduct a strong statistical analysis of the data, so the stability and 
generalizability of the results are currently limited. However, the results that we do have point in the 
direction of a meaningful relationship between mathematics and programming that can be used to 
support the teaching of programming within the subject. Yet, they also suggest that this will not be 
easy and that Swedish teachers – despite a positive attitude towards working with programming in 
mathematics – do not feel that they are prepared to take on this task. This result indicates that it 
might be a good idea to build the capacity for teaching programming from within the topic of 
mathematics. However, the capacity problem seems to persist in the sense that it is indicated that 
teachers need to be prepared and trained to teach programming. Furthermore, it might be the case 
that some teachers do not at all see the relationship between mathematics and programming, nor the 
relevance of teaching programming in their mathematics classes, and such teachers might also 
experience the task as very challenging. However, we assume that further data collection and 
statistical analysis will allow us to better understand the detailed clustering of teachers’ attitudes on 
the subject of programming. 
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Programming has a long history within mathematics education. From the introduction of 
programming languages such as LOGOS, Basic and Pascal in the 1970s, to the more recent use of 
computer algebra systems (CAS). More recently, programming has received an increased focus from 
both the academic community and society. The combination of mathematical knowledge and the 
knowledge of programming is considered a valuable skill set in the future work marked (Gravemeijer, 
Stephan, Julie, Lin, & Ohtani, 2017). In response to this, programming is to be included in the 
mathematics classroom in Norway from autumn 2020.  

This poster presents a part of a larger project involving students electing science mathematics in upper 
secondary school (16-18 y.o.). In this project, the students receive extra lessons at the beginning of 
the school year, where they learn a set of basic programming commands (such as print, input, 
mathematical operations, if-statements, for-loops, and while-loops). They are then given 
mathematical problems, which facilitates for deep learning through discussions, problem solving and 
programming. This project follows the students for two consecutive years, and periodically presents 
them with problems from different areas of mathematics. The project investigates how the use of 
programming can facilitate for the learning of mathematics in the classroom and this poster illustrates 
the creation of problems that facilitates for learning mathematics with programming. 

The project is design-based. Design-based research (DBR) has many focal areas, and this poster 
presents parts of DBR where the focus is the creation and development of mathematical problems 
through iterations. The problems are vital as they create ways to learn and discuss mathematics not 
easily achieved or not possible without programming.  

The design process combines Rabardels instrumental approach (Rabardel, 1995) with Vygotsky’s 
activity theory (Vygotsky, 1980). The instrumental approach is used to create problems that facilitate 
for the development of utilization schemes, and activity theory is used to create problems that 
facilitate for students discussions. Discussions are vital for learning mathematics. In activity theory, 
the mediating artefact that helps the students learn mathematics is here the programming language. 
The learning is mediated through social interactions between groups of students and between students 
and their teacher. In instrumental approach the instrument is defined as a two-part entity consisting 
of both the artefact and the utilization schemes (Rabardel & Samurçay, 2001). The utilization schemes 
will start as basic usage schemes, where the students will learn a set of commands and their 
affordances. As their abilities and network of commands increases, they will develop instrumented 
action schemes. The action schemes will enable the students to create programs to solve mathematical 
problems (Drijvers & Trouche, 2008).  

To illustrate the iteration process, the poster will show the overarching structure of the project, give 
an example of a mathematical problem, and present responses from students through logs and 
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interviews. The structure will show how problems develop over time, and the responses will show 
how student input affects the development of problems. To embody a problem, an example from the 
mathematical area of quadratic equations is used. Articles targeting quadratic equations suggest that 
students struggle with them (Zakaria, 2010). This includes solving quadratic equations 
instrumentally, validating solutions, and understanding the relationship between different forms of 
visualisation such as function, graph, and zero-points.  

The mathematical problem of quadratic equations 
The students were asked to create a program that would solve any quadratic equation. The problem 
was set up as a building block scheme, where they started solving quadratic equations with one or 
two solutions. Afterwards they were asked to solve a quadratic equation with no solution, and then 
problem solve how they could circumvent the error they received. As the problem progressed, they 
were given further questions and/or hints of what to discover. This included intersection with the 
axes, an expression for the derivative, factorising the equation, and so on. The students were given 
freedom to program what information the user would receive when they input a quadratic equation.  

A couple of weeks after the quadratic equation problem, ten of the students were interviewed. 
Amongst their responses, they compared programming to the ready-to-use CAS in programs such as 
GeoGebra and reported that with CAS they merely typed in equations and pressed solve, but in 
programming they had to understand the process deeper to create the code that solved the equation.  

The mathematical problems given to the students’ have changed considerably from the initial iteration 
to the present iteration. The initial design of the problem focused on using programming to solve a 
general quadratic equation. As the work progressed, the design changed to increasingly include 
problems and formulations that forced the students to discuss and critically review their program to 
progress. The problems have now a design that helps the students should they feel frustrated about 
the programming. The problems have also focused on using programming as a tool to facilitate 
mathematical discussions and the creation of mathematical ideas. The next iteration will run in 
autumn 2018, and the poster will include the examples and results from this study as well. 
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In this paper, we present the way in which the math teacher proceeds to select an applet, and 
especially its main considerations when preparing for the lesson or preparing the study unit. In 
addition, this study examines what the teacher's meta-data should be in order to make a 
knowledgeable select of applets and integrate them into the teaching sequence. This study aims to 
help the teachers cope with the heavy load of the Open Educational Resources (OER) and help them 
in their day-to-day management of the study units. Therefore, qualitative research was carried out to 
examine the teachers' choices and considerations regarding their goals and sequence of teaching.  
The present study offers a way to deal with this difficulty by means of a Map that will link the teacher's 
pedagogical-content considerations. This map may be used by the teacher as a tool for intelligent 
choice of applets. 
Keywords: Mathematical applets, Map, Meta-data, teaching sequence. 

Introduction 
A well-informed integration of technology in teaching and learning at school positively affects 
students regarding cognitive features and effective ones (emotional and motivational), as well as 
features connected with the teachers’ choices in the classroom and outside of it. Using technological 
tools for the purpose of teaching is very common nowadays (Stehr, He, & Nguyen, 2018). These tools 
are often used for the sake of innovation, and for introducing a fresh aspect to increase students’ 
motivation (Horzum, 2015; Smith, Shin, & Kim, 2017). This occasionally leads to the development 
of new technological tools that are not always best fitted to the students, and do not attach importance 
to mathematical content. Thus, if mathematical content is not taken into account, the choice of using 
certain technology for the purposes of teaching and studying does not grant any educational benefits, 
and may indeed miss the actual goal (Dȩbowska et al., 2013). 

The recent development of various educational resources containing digital learning materials for the 
use of teachers is especially relevant to this study (Cohen, Kalimi, & Nachmias, 2013). These 
educational resources - most of which are free for use (such as the Israeli Ministry of Education’s 
“Educational Catalogue”) - offer various activities and material and in varying formats, from short 
texts, videos, and applets up to full lesson plans. Hence, teachers are given a chance to make use of 
existing learning materials in order to optimize and improve their work. Among these educational 
resources there is specifically a major supply of game-based applets, interactive web utilities (Pejuan, 
Bohigas, & Jaén, 2016), aimed at various subjects in Mathematics and for a broad age-range. It is a 
well-known fact that using these applets has a positive impact on students (Hershkowitz, Tabach, & 
Dreyfus, 2017), and that using the applets through a guided model can provide better outcomes in the 
acquisition of language and of mathematical terminology (Dijanić & Trupčević, 2017).  
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Despite the potential for teaching and learning encompassed within existing learning materials, and 
their many benefits, studies suggest that their usage, as well as their combinations to match the 
specific user’s needs, are relatively low (Hilton, Lutz, & Wiley, 2012; Pirkkalainen, Jokinen, 
Pawlowski, & Richter, 2014; Bernstein, 2015). One argument is that many educators are not aware 
of these growing educational resources, or that they are not entirely convinced of their effectiveness 
(Cannell, Macintyre, & Hewitt, 2015). Furthermore, there is a concern that the abundance of 
displayed information might lead to confusion, discrepancies and wasting time when searching for 
information - due to the lack of a single unified system which would license and catalogue learning 
material (Nash, 2005). It could also lead to difficulties in evaluating the quality and reliability of 
information and its management (Clements, Pawlowski, & Manouselis, 2015; Gurung, 2017). 

There are two significant challenges facing those teachers who are interested in using mathematical 
applets and making informed usage of them. The first is related to the stage of searching and selecting 
the materials that will best suit the goals of their specific teaching subject; and the second is regards 
to the optimum usage of those materials within the teaching process in class during a lesson, or during 
a few consecutive lessons.  

Main research goals and questions 
Three main goals for this research (1) Understanding what data is needed for teachers to integrate 
applets within their teaching sequence; (2) Identifying specific features within applets that will enable 
an informed integration within the teaching sequence; (3) Creating a Map based on meta-data fields 
that teachers can choose an appropriate applet and integrate it within the classroom’s teaching 
sequence. In order to achieve these goals two questions were asked: (1) What are the main 
considerations that teachers operate in order to integrate applets into teaching sequence? (2) What is 
the meta-data that can help teachers to make decisions about using those applets? Meta-data in 
educational aspects (pedagogic - content) and, Meta-data in technological aspects. 

Methodology 
The research was conducted in three main stages. The first stage included a review of various meta-
data models connected to the world of studies and education. A theoretical framework was built based 
on these models (e.g Dublin Core and LOM) including the meta-data of existing mathematical 
applets. The meta-data was divided into educational dimensions and technical-technological 
dimensions. The educational dimension contains the teachers’ pedagogical requirements and 
contents, and the technological dimension describes the applets (Figure 1).  

 

Figure 1: The theoretical framework 
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The meta-data fields which describe the Mathematical applet in each dimension are grouped into 
different categories of metadata. The branching of these metadata categories shows a comprehensive 
view of all the characteristics that can be considered when examining applets. 

The second stage included semi-structured interviews with 12 mathematics teachers who use applets 
in elementary schools. The interviews aimed to establish the theoretical framework, and to examine 
the teachers’ perception of integrating applets within their teaching sequence in accordance with their 
teaching goals. The interviews were divided into four stages in accordance with the stages the teacher 
faced when implementing the applets: applet searching, locating, using, and feedback. The interviews 
were conducted as one-off sessions with each teacher. This qualitative stage draws its data from the 
natural system, in which the researcher and the interviewees are on the same communication level, 
and the research output is created from opportunities in their interaction.  

The third stage dealt with analyzing the findings, and developing a tool in the form of a Map for 
applets integration. This stage of analysis and tool-building placed emphasis on the teachers’ answers 
concerning their ways of choosing applets and integrating them into their math class teaching 
sequence. This research was based on Grounded Theory, in which data collection was carried out 
before the study is fully understood (Shkedi, 2003).  

Preliminary findings 
The findings’ analysis was divided into two levels: addressing the teachers’ considerations regarding 
the integration of applets within their teaching sequence, and addressing the meta-data they would 
find useful for their decision making process. Based on these, a comprehensive Map was constructed. 

Teachers’ considerations 

A number of considerations arose regarding the teachers’ select of an applet and planning of their 
teaching sequence - mainly pedagogical and technological considerations. From the teachers' point 
of view, the main considerations were pedagogical considerations which included mainly the teaching 
goals, the pedagogy, the mathematical content, the location and time frame. Moreover, it was found 
to be important to consider their teaching experience and professional knowledge, their teaching style 
and even their personality. The technological considerations include mainly authorizations, 
certification (Figure 2).   

 

Figure 2: The teacher's considerations for integrating applets 
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Meta-data 

Beyond the considerations that the teachers must use when choosing an applet, there is also the matter 
of the specific data that is required from the applet or database they are examining. The teachers 
defined the meta-data from pedagogical aspects as well as technological ones. Pedagogical aspects 
included mainly the teaching sequence in relation to the objective of use, the way of studying, 
acquired skills, students’ profiles in relation to difficulty levels, timeline, mediation levels, the student 
experience evoked by motivational factors and configuration. In accordance with the findings’ 
analysis, a set of Metadata fields was created for the purpose of assisting the teachers in an optimal 
search for the applet most suitable for their teaching sequence. Figure 3. presents the main meta-data 
fields that can assist the teachers in their decision-making process while constructing their teaching 
sequence with the use of applets (Figure 3).  

 
Figure 3: Pedagogical and technological metadata fields 

A map for applets integration in teaching sequence  

The pedagogical and technological considerations as well as the set of metadata are presented by 
process map. This map shows the teacher's way of thinking in making the choice in four stages: the 
search stage, the detection stage, the use stage, and the feedback stage. At each stage the teachers 
referred to a number of different categories. In the search phase, the teachers referred mainly to the 
availability of information, pedagogical considerations and a structural model. At the point of 
identification, the teachers referred mainly to the data they had in the applet and to the superlative 
information that still did not exist, when they referred mainly to the information they knew and their 
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experience. At the point of use, the teachers referred to their meta-goals, motivational factors, and 
time and place of use of the applet. In the fourth and final stage, the teachers referred to the 
effectiveness of feedback, the type of feedback required, feedback interactivity, and feedback as a 
learning too.  

According to the map (Figure 4), the teacher can filter out the considerations that lead her to decide 
whether to select an applet. The integration applet Map is presented in four main steps: filters, 
properties, receipt of products and choice of characteristics and in the end decision-making, from the 
search stage to reaching the desired applet. The filter stage includes all the pre-requisite knowledge 
the teacher needs when choosing an applet that includes her professional knowledge, her personality, 
her mathematical goal, and more. At this stage, the teacher also defines her target audience, the 
method of instruction and the timing of her teaching sequence. The properties stage includes the 
different characteristics of the applet and its target audience. The third stage, which is defined as the 
receipt of the products and the examination of characteristics, is from a stage in which all the 
knowledge that the teacher has is integrated into this stage and it examines the continuation of the 
process in order to select the applet. In the fourth and final stage, the teachers arrive at a crossroads 
where they have to make a choice: Should they choose the current applet, or should they go back to 
the second and third stages, and re-examine other applets.  

 

Figure 4:  A map for applets integration in teaching sequence 

In conclusion, this research looked at the considerations and the metadata which would influence 
teachers when choosing applets and integrating them into the teaching sequence. The interviews 
indicated great significance attached to the teacher’s personality, needs and authority. Another issue 
that emerged through the interviews was the students’ needs - the teacher’s understanding of what 
the student needs to get; how the students will connect to the applet; and how we get the students to 
understand mathematics by using the right applet. Another issue which is just as important as the 
teacher and student’s needs, is the teachers’ learning process during their search for the desired applet. 
During the interviews, the teachers explained how they approached searching and choosing the applet, 
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as well as how they integrated it within their teaching sequence, and these led to conclusions regarding 
their method of learning.  

Discussion and conclusions 

In this research, the pedagogical consideration was the main one for choosing applets. According to 
the pedagogical consideration, teachers choose the applet most suited to their teaching sequence. 
Since the mathematical content is highly significant in building up the students’ mathematical 
knowledge (Kimeswenger, 2017), the teachers will first search for an applet appropriate for that 
content. Most of the teachers interviewed stated that without that element of information they would 
not be able to begin the search, hence - this is a primary filter when choosing a database or applet. 
Similarly, Namukasa, Gadanidis, Sarina, Scucuglia, and Aryee in their research (2016) found that 
among the most important considerations were the pedagogy and content that the teachers wanted to 
teach in their mathematics lessons. They also stated that mathematical terms or “mathematical 
thinking” would be the most critical when choosing a digital object. This issue was addressed as well 
by Kotsopoulos et al. (2017), who explained the importance of the students’ computational 
mathematical thinking, which should take precedence. 

The study found that technical components such as installation instructions and necessary hardware 
and software programs were not essential elements when choosing an applet. Most teachers, when 
asked about the technical aspect of choosing an applet, answered that they do not attribute much 
importance to those aspects when choosing to use an applet. The teachers stated that the only factor 
impacting on their choice would be the hardware or program’s digital license - as defined by Green 
(2017) during his OER license research, where he examined how they influence studying. The 
teachers stated they are already used to the “wonders of technology” and that they know how to 
handle anything that comes their way. Much to our surprise, the technical aspect that we had 
emphasized at the beginning of the research did not end up being a hindrance or even a consideration 
when choosing an applet. This surprised us a great deal, since some populations find study-suitability 
very difficult during times of technological advancements (Göthe, Oberauer, & Kliegl, 2007).  

During this research, we mapped out the considerations and information the teachers would need 
when choosing an applet or mathematical resources. Then, similar to Kimeswenger (2017) we 
recognized the need for developing a tool, which will help teachers to navigate in the heavy load of 
resources and to assess learning materials. Thus, we built a Map for integrating applets in teaching 
sequence. The Map consists of the knowledge the teachers will need for choosing the applet and for 
integrating it into the teaching sequence. We believe that the Map we have created may assist in 
developing a technological tool with which teachers may integrate all the elements necessary for their 
teaching. Beyond the teacher’s familiarization with the educational resources and applets, it is 
necessary to develop a tool in the form of Google, consisting of mathematical educational resources 
and applets, with the added option of feeding it criteria that would make it possible to obtain the 
desired product, and which could assist the teachers’ choice of an applet, and shorten search duration. 

Since this research did not deal with the construction of lesson units by teachers, it is vital for future 
research to deal with that subject in greater depth and regarding the following influencing factors: 
How long it takes the teachers to learn the usage of applets; how long it takes to build a lesson plan - 
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whilst relating to pedagogical components as well as to the teacher’s teaching goals; the chronology 
of lesson building; and how the applets assist the teachers. 

In an age of rapid and frequent changes, we must pay attention to the fact that teachers are required 
to implement new technologies on a daily basis as part of their lesson structure. Hence, the main 
importance of this research is in assisting teachers integrate mathematical applets within their 
teaching sequence in the classroom. Teachers nowadays are laden with a huge amount of applets and 
resources (Peralta, Alarcon, Pichara, Cano & Bozo, 2017) which is why we developed the presented 
Map. Teachers are expected to have an extremely high level of literacy due to current usage of many 
technological tools. Therefore, it is important for future research to address the way in which the 
teachers learn how to use technological tools, and to actually implement them in the classroom.  
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The impact of technology on the teachers’ use of different 
representations  
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The potential of using different representations is widely recognized, but not much is known about 
how teachers use them nor about the impact of the technology on such use. The goal of this study is 
to characterize the teachers’ representational fluency when teaching functions at high school level, 
discussing, at the same time, the impact in the use of representations resulting from the use of 
technology. Adopting a qualitative approach, I analyze one teacher’s practice. The results suggest 
that algebraic and graphical representations are seen as more important, that tabular 
representation is assumed as irrelevant and that the access to technology impacts the 
representations used and how they are used. 

Keywords: Technology, different representations, functions. 

Introduction 
Work with different representations is recognized by several authors as an important experience to 
promote the development of links and strengthen the understanding of mathematical concepts 
(Dreher, Kuntze, & Lerman, 2016). And the technology is pointed as having the potential to easily 
allow the students to alternate among representations (Cavanagh & Mitchelmore, 2003). Although 
the potential of using different representations is widely recognized, only a few authors paid 
attention to how they are used (Dreher et al., 2016; Molenje & Doerr, 2006). And even those who 
do it, do not focus on the impact of the technology on the teachers’ choices in what concerns the use 
of the different representations. This is the new aspect addressed in this article. The goal is to 
characterize the teachers’ representational fluency when teaching functions at high school level in a 
context where technology is available, discussing, at the same time, the impact in the use of 
representations resulting from the availability of technology. With this focus, I specifically intend to 
answer the following research questions: How does the teacher balance the use of the different 
representations of functions? How does the teacher articulate the multiple ways of representing a 
function within and among representations? What is the impact of technology on the teachers’ 
balance and articulation of the different representations? 

Representational fluency 
Zbiek, Heid, Blume and Dick (2007) characterize the representational fluency as the ability to move 
from one representation to another, transferring the knowledge from one representation to another 
and combining it with the new knowledge available on the new representation. And this includes 
the transition between representations of different kinds but also transitions between different 
representations of the same type of representation, as emphasized by Moore et al. (2013) and Even 
(1998). This means that it is important to consider a transition, for instance, from an algebraic 
representation of a function to a graphical representation, but that it is also important to consider a 
transition from a graphical representation of a function to another graphical representation of that 
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same function (for example, when we are using technology and we need to look for a suitable 
viewing window for the graph). 

Kendal and Stacey (2001) use the expression privileging (used originally by Wertsch in 1990) to 
refer to the teachers’ specific way of teaching. And the authors think of it as a reflection of the 
teachers’ beliefs and professional knowledge that characterizes their practice. Privileging includes 
the teachers’ options about what they teach and how they teach it. In what is relevant to this study, 
privileging includes the teachers’ decisions about what representations are (intentionally or 
unintentionally) used and about how they are used. And how the teachers privilege a specific 
approach and devalue others can tell us much about their professional knowledge (Dreher et al., 
2016; Rocha, 2016). When studying the teacher’s representational fluency it is important to know if 
some representations are preferred over others. I use the word balance to refer to how the teachers 
privilege specifically the use of some representations over others. 

Although several authors recognized the relevance of using different representations based on the 
contribution it can bring to the development of mathematical understanding (Duval, 2006; Zbiek et 
al., 2007), the way how the teachers balance the representations has not received much attention. 
Molenje and Doerr (2006) conducted one of the few studies with this focus. Their conclusions 
suggest that the teachers express some concern about how they balance the different 
representations. Nevertheless, the use of algebraic and graphical representations is dominant in 
relation to the numerical representation. And this study also achieved another interesting 
conclusion: when the teachers actually use the different representations, it is possible to identify a 
pattern in the way how they do it. According to the authors, some teachers tend to start by an 
algebraic representation, move to a graphical representation and then to a numeric representation. 
Other teachers tend to move from the algebraic representation to a numerical representation and 
only then to a graphical representation. In a previous study conducted by myself on the teachers’ 
use of different representations (Rocha, 2016), I found more diversity on the articulation of 
representations than the one found by Molenje and Doerr (2006), but I also found some preference 
for the use of some specific sequences of representations. These options will promote a limited use 
of representations by the students (because they tend to reproduce their teachers), with 
consequences for the students’ learning and for their flexibility with different representations and 
with functions in general (Rocha, 2016). As Dreher et al. (2016) emphasize, the use of different 
representations is not enough to promote learning, it is essential to pay attention to how they are 
being used. And these findings suggest that besides studying how the teachers balance the different 
representations, it is also important to understand how the teachers articulate them. I use the word 
articulate to refer to how the teachers privilege a specific pattern when going from one 
representation to another. The way how the teacher balances and articulates the different 
representations is assumed as central on the characterization of the teacher’s representational 
fluency. As so, these are the concepts used to analyze the teacher’s representational fluency. 

Methodology and study context 
Given the nature of the problem under study and in line with the ideas advocated by Yin (2003), the 
study adopts a qualitative and interpretative methodological approach, undertaking one teacher case 
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study (in the part of the study presented here). Data were collected by semi-structured interviews, 
class observation, and documental data gathering. The teacher’s lessons with one of her classes 
were followed while she taught functions. It was performed an interview after each lesson, with the 
purpose of knowing the analysis that the teacher did of the events. A test, with questions about 
changing between representations, was applied to the students by the researcher at the end of the 
study. The results of this test and some selected answers given by the students were used on a final 
interview to the teacher as a starting point to discuss her use of representations in her lessons. It was 
only at this point that the teacher became aware of the specific focus of the study on the use of 
representations. During the study, 12 lessons of 90 minutes at 10th grade (age 16) were observed. 
All interviews and observed lessons were audio-recorded and later transcribed. Data analysis was 
mainly descriptive and interpretative in nature, and guided by the goals of the study. The tasks 
proposed by the teacher were assumed as the unit of analysis. For each task the representations 
adopted by the teacher and the articulation between them were identified. Each type of articulation 
identified was then analyzed with the intention of characterizing it and understand the balance 
ascribed by the teacher to each representation. The representations taken into account were the ones 
usually available on the technologies and used on the study of functions: algebraic, graphical, 
numerical and tabular. Due to the goals of the study, when analyzing a task what was taken into 
account was the teacher’s point of view, ie, the representations she chooses to use or suggests to the 
students. 

The teacher participating in the study has a professional experience of about 20 years and a positive 
attitude towards the use of technology to teach mathematics. She likes to use computers on her 
practice, but when teaching functions she prefers to use graphing calculators and avoid the trouble 
of moving to a different classroom. As so, the graphing calculator was the only technology she used 
during this study, and this is why this is the only technology mentioned in this article. All the 25 
students in this class had their own graphing calculator, which they could use at all times. 

Results and discussion 
An analysis of the tasks proposed by the teacher allowed the identification of nine different types of 
articulation between representations. Table 1 presents the sequences of representations used, a brief 
description of the strategy used to solve the task and an example of a possible task (please take into 
account that the examples presented were simplified due to space constrains). The sequence 
algebraic ® graphical ® numerical was used often on tasks with a real context and asking 
something about it (for instance, corresponding to the zeros or maximum of the function, or to the 
values for which the function is increasing or assumes positive values). It was also used on strictly 
mathematical questions, namely to solve inequalities. The sequence algebraic ® graphical was used 
when the goal was the graph of the function. And when the standard window did not offer a good 
viewing of the graph, the sequence became algebraic ® graphical ® graphical, including a change 
among graphical representations, ie, using different representations of the same type of 
representation. The sequence algebraic « graphical was used on exploratory tasks where the 
teacher intended the students to relate these two representations, expanding their mathematical 
knowledge, or to use previous knowledge to guide their successive attempts to solve the task. All 
these four sequences required the use of technology. And in all the other five sequences the 
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technology was not used. However, some of these sequences were not as used as others. That is the 
case of the sequence graphical ® algebraic that was only used once, and of the sequence graphical 
® numerical that was only used on an introductory lesson to the theme. Besides that, it is possible 
to notice that certain sequences were never used and that the tabular representation was never used 
as well. 

Representation Teacher’s approach Example of task 

algebraic ® graphical Insert the function on the 
calculator and press graph 

Draw the graph of 
f(x) = -x2 + 3x + 5 

algebraic ® graphical ® 
graphical 

Insert the function on the 
calculator and press graph 
Use zoom / change the window 

Draw the graph of  
f(x) = -x2 + 100 

algebraic ® graphical ® 
numerical 

Insert the function on the 
calculator and press graph. Use 
menu calc 
In some cases (see 2nd example) 

it is possible an approach 
without using the calculator  

Knowing that the height of a 
remote controlled airplane is 
given by f(x)=-x2+4x find the 
maximum height reached by the 
airplane. 

Solve the inequality: x2+4x+3>0 

graphical ® algebraic 

Use paper and pencil and 
visually get information from the 
graph (calculator used at most to 

check) 

Look at the graph of the function 
and find its algebraic expression 

algebraic « graphical 

Insert one (or more) function on 
the calculator, see the graph, 
change the function and move 
back and forward between the 
representations trying to come to 
a conclusion 

Study the family of functions 
y=ax2, aÎÂ\{0} 

Slalom: Find a polynomial 
function to represent the course 
of a skier when he goes through 
both doors without touching the 
flags at (1, 4), (2, 4), (5, 4), (6, 4) 

algebraic ® numerical Use paper and pencil 
Find the zeros of f(x)=2x2-8x+6 

Solve the inequality: 
2x2+12x+10<0 

algebraic ® algebraic Use paper and pencil Write the polynomial function 
f(x)= x3-x as a product of factors 

numerical ® algebraic Use paper and pencil 

Write the expression of the 2nd 
degree polynomial function with 
a zero for x=1 and x=-2 and 
going through the point (0, 4) 

graphical ® numerical Direct reading of the graph (use 
paper and pencil) 

What is the maximum value 
reached by the function on the 
graph? 

Table 1: Sequence of representations used by the teacher 

Thematic Working Group 15

Proceedings of CERME11 2734



 

 

The teacher recognizes the importance of using different representations to promote a deeper 
understanding of the concepts and emphasizes in particular the contributions of graphic 
representation to the understanding of algebraic representation: 

T: I think that using graphs and algebraic expressions is very important. Some students have 
some difficulty in working analytically. They get lost and at a certain point they no longer 
understand what they are doing. For instance, they don’t know why they equal the expression 
to zero when they are looking for the zeros of the function... and why they can’t just replace 
the x by 0. Having the graph helps to understand... we want the value of x when y is 0. (...) I 
think the graphical representation is easier for them and if you work with it and with the 
algebraic representation you are helping them. 

And she assumes that the technology allows the students to quickly access a wide variety of graphs 
and that it turns the work around functions much easier. It becomes possible to link different aspects 
about functions in a way that was not possible before: 

T: Technology changes everything! The technology allows us to move instantly from the 
algebraic expression to the graph. And that turns possible to develop deeper relations among 
these representations. We can see on the graph the impact of changing a parameter on the 
function. This is not possible without technology. 

The results achieved by the students on the test on representations suggest that they are effectively 
familiar with the relationship between algebraic and graphical representations. Nevertheless, the 
results also show that the students have difficulties in getting information from a table. 48% of the 
students failed to identify, based on a table including the relevant information of a function f, an 
interval for x where the values of f were increasing; but 80% managed to answer the same question 
based on a graph. 88% of the students were unable to find the expression of a function using the 
information on a table of values; but all recognized the quadratic function when the information was 
provided by a graph and 92% were able to find the algebraic expression. When confronted with 
these results, the teacher recognizes she does not use the tabular representation, assuming that the 
students’ lack of familiarity with the representation might be the source for the difficulties of some 
students. But somehow she seems surprised and expresses her belief about the similarity between 
the numerical and tabular representation. A similarity that is actually recognized by several authors, 
such as Goos and Benninson (2008). In the teacher’s own words: 

T: I have to admit that nowadays I don’t use tables so much. When I was a student we didn’t 
have technology and we use a table to register some values of the function and then mark 
them on a graph or whatever… With technology we don’t need that and… I know the 
calculator provides a table but we can get everything from the graph using the menu calc, so 
there is no need… for the table. It’s the same. But maybe not for them. I think they get 
confused and didn’t know in what column they should read the values. Maybe I should use 
the table. I don’t know… I thought it was the same. 

About privileging paper and pencil or technology when moving from one representation to another, 
the teacher says that she tries to balance the two options: 
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T: I try to do everything with and without technology because our syllabus requires that. (…) 
There are some exercises that they don’t know how to do without the technology. For 
instance, find the maximum of a function. And there are also others that they cannot do on the 
calculator. For instance, factor a polynomial function… But we solve inequalities with and 
without technology. I think we achieve a deeper understanding when we can do something in 
two different ways. 

Nevertheless, some sequences are always done using (or not) technology (see Figure 1). In some 
cases there is no surprise on that. For instance, the change from one graphical representation to 
another is usually due to an unsuitable choice of the viewing window. So it is to expect that it 
happens always when the technology is being used. But there is no reason to never use the 
technology when moving from a graphical representation to an algebraic one (and this is the option 
of this teacher). This suggests that the teacher is not fully aware of her options in what concerns the 
use of the different representations. 

Figure 1: Representations used by the teacher and their sequence of use 
(pp - paper and pencil, t - technology) 

Conclusion 
Algebraic and graphical representations seem to be assumed as more important than other 
representations. A conclusion in line with the results achieved by Molenje and Doerr (2006), who 
also concluded that these representations are used more often than others, meaning that 
representations are not equally balanced by the teacher. This can be related to the characteristics of 
the representations. As stated by Friedlander and Tabach (2001), algebraic representation is concise, 
comprehensive and effective, being also the most valued representation in Mathematics. But 
students tend to find it difficult (Quesada & Dunlap, 2008). The graphical representation provides a 
visual representation and an intuitive approach to the concepts, turning learning more intuitive 
(Friedlander & Tabach, 2001). It is thus understandable that these two representations are the most 
used. After all, the graphical representation helps the students understand the most valued 
representation: the algebraic one. And this is the central point. The representations beyond the 
algebraic one are mainly used to promote understanding over the most important representation and 
not so much to promote a global understanding of functions, as advocated by Dreher et al. (2016) 
and several other authors. The numerical representation, whose relevance is assumed to be minor 
due to its focus in particular cases (Friedlander & Tabach, 2001), is also used, although not so often. 
However, that is not the case of the tabular representation that is never used. The reason for the lack 
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of use of this representation has to do with the fact that numerical and tabular representations 
provide similar information and, as a consequence, tend to be assumed as identical, a result also 
identified by Rocha (2016).  

Although the teacher enrolled in this study articulates the different representations in a flexible way, 
it is possible to identify a preference for certain sequences and to the use (or not) of technology in 
each one. It is also possible to notice that the algebraic and the graphical representation are the ones 
who are articulated in a more diversified way, a circumstance that is certainly related to the fact that 
these two representations are the ones used more often. These are also the two representations that 
seem to suffer a deeper impact from the use of technology. The ease of access increases the 
moments where the graphical representation is used and consequently impacts the balance and the 
articulation the teacher does of the representations. Simultaneously, the ease of access to numeric 
values straight from the graphic (when technology is being used), relegates the tabular 
representation for a situation where its value is no longer recognized. The technology changes the 
teacher’s use of the tabular representation. At the same time, it prevents the teacher from realizing, 
that from a mathematical point of view, there is a difference between this representation and the 
numerical one. A difference that somehow is emphasized (or even created) by the technology where 
is often possible to get a numerical representation based on some automatic process (eg., using 
technology someone asking for a zero can get an answer even if he has no idea about what that is). 

The presence of technology impacts the way how the teacher articulates and balances 
representations, turning the work around some representations more usual than around others and 
allowing some different sequences on the use of representations, this implies that technology 
modifies the teacher’s representational fluency. And this fluency is known to be closely related to 
the teachers’ professional knowledge (Dreher et al., 2016; Rocha, 2013). As so, an analysis of the 
teachers’ representational fluency could give important information about their knowledge. And it 
would be interesting to analyze if different types of representational fluency are related to different 
levels of teachers’ knowledge and, of course, practices. 
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Introduction  
Gamification is widely present in our daily lives and it is becoming increasingly important in 21st 
century education to enhance students’ motivation for learning. Students live in highly technological 
environment and recently efforts are made to adapt for this in education. Therefore, in this research 
we consider technology to assist in gamifying learning and to create a gamification editor or platform 
that offers teachers opportunities to develop or customize their own gamified environment based on 
their needs. We believe it is important, because currently gamification appears in various educational 
technology platforms, but designed by their developers and these environments do not always cater 
for the specific needs of teachers, students or courses. Such gamified environments will be also 
valuable for mathematics teachers as they can integrate gamification elements with other mathematics 
related technologies and resources. 

What is gamification? 
Gamification is defined as “the use of game design elements in non-game contexts” (Deterding, 
Dixon, Khaled, & Nacke, 2011, p.10). It is present in our daily lives, for instance, we receive points 
for different activities or rewards in order to increase our motivation. These gamification tools proved 
to be successful in business, marketing, personal development and there are already some attends to 
use gamification in education.  

Gamification elements 

Werbach and Hunter (2012) classify the elements in three categories: dynamics, mechanics and 
components. Dynamics are no visible game elements, but they impact in the player such as emotions 
and progression. Mechanics are processes that drive the player through the game, these can be 
challenges, feedback, or rewards. Finally, dynamics and mechanics happen in the game through 
components and they are the most visible elements in the game, for instance, achievements, badges, 
levels, points and leaderboards. Game elements can be integrated since one or more work in order to 
achieve the others.  

Although gamified environments had been created as an integrated system, the selection of each 
elements is very important in order to motivate and engage all player types. In general, players can 
be interested in different elements of a game. According to Bartel (1996) it is possible to identify four 
general kinds of players according to their preferences of the game, achiever, explorer, socializer and 
killer.  
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Gamification and motivation  
According to some motivational approaches such as the self-determination theory (SDT) (Ryan & 
Deci, 2000) or Flow theory (Csikszentmihalyi, 2014) a person will experiment motivation if the 
environment satisfies three external needs: competence, relatedness, and autonomy and if the person 
finds challenges, clear goals, immediate feedback, and balance between skills and challenges in the 
task. To design a gamified environment to raise the students’ motivation, we need to add games 
elements and to choose activities that drive students through the autonomy, competence and 
relatedness feelings at the same they experience flow.  

Currently, there are some educative platforms with gamification features, which can be used by both 
teachers and students. Some of them let teachers to create materials or environments with some 
gamification features, or others offer their materials for a gamified environment. However, these 
platforms are quite limited and a more general editor to create gamification environment would be 
desired. 

Proposal 
The digital poster will introduce a description of the most used gamification elements as well as the 
connection between them in order to achieve students’ motivation. As a part of this research, several 
educational platforms with gamification features have been reviewed, which will be presented it in 
the poster through a brief description and a summary of their features. In addition, some 
recommendations will be offered to help developing a new kind of gamification editor platform; 
especially focusing on how mathematics teachers can utilize such platforms and how they can 
combine mathematical software and mathematics resources with gamification elements.   
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The aim of this paper is to present preliminary findings of a large-scale project for designing a 
web-based portal to contribute to the professional development of mathematics teachers for 
teaching algebra in lower secondary education. Eleven teachers volunteered to participate in this 
research that aimed to design hypothetical learning trajectories (HLTs) for sixth-grade algebra 
context over a three-week period. The teachers designed their own HLTs through a web portal by 
receiving feedback from mathematics teacher educators online. Their processes of designing and 
applying lesson plans during the first and third week were analysed according to the components of 
HLT and the theoretical perspective of the quartet of subject matter knowledge. Data analysis 
revealed that the teachers managed to define more coherent learning goals and hypothesis for their 
students’ learning as well as making connections between the concepts. 

Keywords: Mathematics teacher, Professional development, Hypothetical learning trajectories. 

Introduction 
In Turkey, as in many countries, studies on the mathematics teacher knowledge received particular 
attention from researchers (Gökkurt & Soylu, 2016; Türnüklü, Akkaş & Gündoğdu Alaylı, 2015). 
Research on in-service teachers commonly indicates that a number of issues exist regarding 
teachers’ subject matter knowledge of mathematics. Researchers have addressed major problems in 
the Turkish context: (i) a lack of certain professional development programs and their sustainability; 
and (ii) a gap between research and practice, which, in particular, means a lack of communication 
between mathematics teacher educators and in-service mathematics teachers (Yıldırım, 2013). The 
latter is of crucial importance since professional development activities are generally organised 
independently by each public school whereby teachers prepare termly plans without any 
collaboration with mathematics teacher educators. This research study elaborates the design and use 
of a web-based portal to contribute to the professional development of mathematics teachers, in 
which they design their own teaching-learning algebra activities within a perspective of 
hypothetical learning trajectories (HLT) (Simon, 1995) through close interaction with mathematics 
teacher educators. 

We focus on the algebra context of Turkish (lower) secondary school curriculum and design a 
large-scale research project adopting a number of theoretical and conceptual elements, such as 
mathematics teaching cycle and HLT (Simon, 1995) and the mathematics subject matter knowledge 
quartet, as described by Rowland, Huckstep and Thwaites (2005). 
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Theoretical Framework and Description of the Project 
The notion of a learning trajectory corresponds to possible (anticipated) learning paths that students 
could follow in a proposed content designed under certain objectives. Since learning, in itself, is a 
complex process and depends on phenomenological experiences, Simon (1995) adds the word 
hypothetical to learning trajectory to emphasise a teacher’s prediction about students learning and 
elaborates the notion of HLT under three components; ‘the learning goal that defines the direction, 
the learning activities, and the hypothetical learning process’ (p. 136). In fact, Simon (1995) 
considers the HLTs as a part of mathematics teaching cycle, which includes certain key components 
such as a teacher’s knowledge and an assessment of student knowledge (Figure 1). 

Figure 1: Mathematics Teaching Cycle (adapted from Simon, 1995, p. 136) 

In Figure 1, particular emphasis is given to the teacher’s knowledge as a starting point. Therefore, 
in this research, we consider and refer to a quartet of subject matter knowledge of mathematics 
(Rowland et al., 2005) that has four dimensions; foundation, transformation, connection, and 
contingency. The first component, foundation refers to a repertoire of the teacher’s academic 
knowledge for teaching-learning mathematics including his/her beliefs regarding why mathematics 
is important and why it should be taught. Here, transformation refers to the transformation of 
theoretical knowledge into practice by designing and planning pedagogical tasks in terms of 
choosing appropriate examples and activities for the construction of mathematical meanings. The 
notion of connection refers to the coherence of designed parts of a lesson or series of lessons 
through deliberatively chosen activities and domain-specific tasks. Such pedagogical task sequences 
enable students to make a connection between different concepts as well as to the interplay between 
different representations. The final component contingency refers to ‘classroom events that are 
almost impossible to plan for’ (Rowland et al., 2005, p. 263). 

Related literature confirms that Simon’s (1995) mathematics teaching cycle within HLTs could be a 
heuristic tool for teachers’ professional development (e.g. Wilson, Mojika, & Confrey, 2013). 
Consequently, we exploit mathematics teaching cycles as twofold: as a perspective for designing 
interfaces of the web portal (which will be explained in the next subsection); and as an analysis tool 
to explore teachers’ progress as a part of their professional development. In order to elaborate 
development of teachers’ knowledge in depth, we also refer to the subject matter knowledge quartet 
as an additional analysis tool while looking deep into the teachers’ lesson plans. 

The Project and Research Question 

Since the Internet is now widely used in different platforms as well as in educational contexts, we 
designed a sustainable and specific web portal to ensure mathematics teachers’ professional 
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development regarding algebra content of the (lower) secondary school mathematics curriculum. 
We specifically focused on algebra content as the researchers in the project team have background 
knowledge in epistemological issues and misconceptions regarding learning algebra. In order to 
create such a portal, at first, a domain http://megedep.anadolu.edu.tr was taken, where ‘megedep’ 
referred to a shortcut of the project’s title in Turkish. Figure 2 displays the (homepage) interface of 
the website. 

 
Figure 2: Megedep’s (Web portal) interface 

The interface includes some practical information in addition to theoretical foundations that are 
necessary for participating teachers in the project. More precisely, the interface includes a video 
describing the aim of the project, a manual for using the website, an introductory description for 
constructivism and the notion of HLT, as well as exemplary lesson designs under the notion of 
HLT. After registering to the website, the teachers could connect to a user interface including the 
components of the mathematics teaching cycle, which is sketched in Figure 3a. 

               

(a)                                                                                  (b) 

Figure 3: a. The user interface (translated), b. The user interface to enter components of HLT 

When a teacher selects ‘Process’, Figure 3b is shown, where the teacher enters the class level, the 
topic and the related learning objectives determined by the Turkish Ministry of National Education 
(MoNE, 2018) of Turkey. In the portal, we followed Khan (2005) for designing an e-learning 
platform where there exists an effective feedback system. When teachers enter the learning goal, 
possible activities and their hypotheses for students learning, the mathematics (teacher) educators 
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(MTEs) (in this paper, the authors) of the project receive alerts by email. Through entering their 
own interface, MTEs review the teachers’ input and give feedback to the teachers to improve the 
anticipated teaching and learning processes. Thereafter, the teachers make revisions, and if they 
complete necessary improvements, then they could proceed to design a more fine-grain teaching 
plan. After that, the MTEs again review their plans and provide feedback. The progress continues in 
a cycle like this. However, it ends when the teachers record their own teaching episode and upload 
videos to the web portal after having written their responses to some reflective questions (described 
in the methods section) regarding the process. Thereafter, the MTEs watch the teaching episodes 
and review the teachers’ responses to reflective questions by taking notes and then communicate 
their ideas to the teachers through the portal for the teachers to prepare and develop the next 
episodes.   

In this paper we provide a brief analysis of the teachers’ initial lesson designs and the final (third) 
lesson designs created within the web portal to explore their professional development progress. We 
address the research question: How does mathematics teachers’ professional development progress 
when they use megedep portal to design HLTs and lesson plans for teaching algebra? 

Methods 
Theoretical insights of the mathematics teaching cycle (Simon, 1995) and quartet of subject matter 
knowledge (Rowland et al., 2005) refer to a qualitative paradigm. In this paper, in order to explore 
progress of teachers’ professional development in depth, we consider the same perspective and 
adopt a case study design (Bogdan & Biklen, 1998). Eleven (all six grade teachers) secondary 
school mathematics teachers (T1–T11) with different teaching experiences (ranging 1–15 years) 
volunteered to participate in the project. All of the participants work in the same city located in 
central Turkey and have experience of the objectives (algebra) of the national curriculum, having all 
graduated from faculties of education from different universities. In addition, while T1, T5, T6, T8 
and T10 have only a bachelor degree, T7 is studying for a master’s degree and also T2, T3, T4 and 
T11 are studying for doctorates. One participant, T9, already holds a master’s degree. All of the 
participants learnt of the notion of HLT for the first time as they become involved in the project. 
During the first project meeting (lasting around three hours), all of the participants were introduced 
to the philosophy behind constructivism, the use of the megedep web portal, and the notion HLT 
with a number of exemplary cases.  

The Data and Analysis 

The data comes from two sources:  the first is based on the MTEs’ evaluations of the teachers’ 
designs of HLTs. In other words, the teachers designed their initial HLTs and MTEs wrote feedback 
to improve each part. After the teachers’ improvements on the HLTs, the designs were reviewed 
once more. The first part of the data comes from the MTE final reviews of the HLTs. The second 
part of the data comes from the teachers’ responses to reflective questions that were proposed after 
they completed teaching episodes. Three reflective questions were asked before the teachers applied 
their HLTs whereas four questions being proposed after they applied their lesson plans.  

Table 1 shows the reflective questions that were proposed to the teachers through the megedep 
interface. 
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Before application of the lesson plans After application of the lesson plans 
-What were the key elements in your 
lesson plan? 
-How and why did you determine the 
activities in your plan? 
-How did you determine your 
hypotheses for students learning? 

-Which learning goals were obtained and which were not? 
Explain in detail. 
-Which parts of your plan worked well, or which did not? 
Explain in detail. 
-Which hypotheses of student learning appeared in the 
classroom? Did all? Were there any contingency cases? If 
so, what did you do? 
-In the teaching process, which concepts were 
conceptualised and which were not? Explain in detail. 

Table 1: Reflective questions proposed to the teachers through the megedep interface 

The teachers prepared three teaching episodes corresponding to three weeks. In other words, they 
prepared an HLT for each week considering the objectives of the curriculum. MTEs evaluated the 
first and third week’s HLTs, in order to explore the teachers’ progression. Similarly, the MTEs also 
collected all of the responses given to the reflective questions. A thematic analysis (Miles & 
Huberman, 1994) was employed to elaborate emerging main themes within a perspective of 
components of HLT and the quartet of subject matter knowledge. 

Findings 
Since our focus is on designing HLTs and lesson plans as components of professional development, 
we will present our findings in two subsections; an analysis of the teachers’ designs of HLTs and an 
analysis of the teachers’ designs and applications of lesson plans. 

Analysis of the Teachers’ Design of HLTs 

The analysis of the teachers’ first HLT designs revealed: four themes appeared for determining 
learning goals; three themes for determining activities; and four themes for determining the 
hypotheses for students learning. Table 2 describes these themes and their respective frequencies. 

Determining Learning Goals Determining Activities Determining Hypotheses  
-Defining learning goals 
coherent with curriculum 
objectives (T1) 
-Not sequencing learning goals 
(T2, T3, T4, T5, T6, T7, T8) 
-Referring to objectives as 
learning goals (T9, T10, T11) 
-Defining learning goals, not in 
relation to objectives (T8, T7, 
T6, T2) 

-Determination of coherent 
activities (T7, T8, T6, T11, T9, 
T3, T2) 
-Activities not based on the 
curriculum objectives (T8, T6, 
T7, T10) 
-Writing only the title of 
activities (not based on any 
objective) (T5, T1, T4) 

-Writing hypotheses based on 
activities (T2, T3, T11) 
-Formulating a partial 
hypothesis not focusing on 
entire student learning (T4, 
T9, T1, T5, T10, T8) 
-Hypotheses not based on the 
activities (T7) 
-Not a clear formulation (T6) 

Table 2: Themes regarding the teachers’ design of the first HLT 

Table 1 reveals that only one teacher defined learning goals according to the objectives of the 
curriculum, whereas seven teachers could not define sequencing learning goals, i.e. they were not 
able to express learning goals in order. Three teachers directly referred to the curriculum objectives 
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as learning goals, while four of them defined the learning goals independent of the curriculum 
objectives. With respect to a determination of the activities, seven teachers managed to define 
coherent activities, i.e. activities that are coherent with curriculum objectives and also with the 
learning goals that they defined. Four teachers expressed activities not based on the objectives and 
three teachers only wrote the title of activities without giving any details. Three teachers expressed 
their hypotheses that are coherent with the learning objectives and activities that had been written 
before. However, it should be noted that these three teachers thought that students would follow the 
same learning trajectory. Six teachers formulated their hypotheses partially, without focusing on the 
students’ entire learning of the proposed concepts, while one teacher proposed a hypothesis 
independent of the activities and learning goals. Moreover, one teacher expressed his possible 
teaching steps, including no trace of the hypotheses of students learning. 

After all the teachers had used the megedep portal for three weeks, we analysed their resulting 
HLTs. Tables 3 shows that there were two emerging themes for determination of the learning goals; 
one theme for the determination of the activities and two themes for the determination of the 
hypotheses. 

Determination of Learning Goals Determining Activities Determining Hypotheses  
-Defining learning goals based on 
the curriculum objectives (T6, T1, 
T3, T4, T7, T11, T5, T2) 
-Defining learning goals part by 
part, not based on all curriculum 
objectives (T10, T8, T9) 

- Determination of 
coherent activities (T6, 
T1, T3, T10, T4, T7, 
T11, T5, T2, T8, T9) 
 

- Writing hypotheses based on 
activities (T3, T11, T5, T2) 
- Formulating a partial 
hypothesis not focusing on entire 
student learning (T6, T1, T10, 
T4, T7, T8, T9) 

Table 3: Themes regarding the teachers’ design of the third HLT 

Eight teachers managed to define learning goals based on the curriculum objectives. However, there 
were still three teachers who defined learning goals part-by-part, not based on the curriculum 
objectives. All of the teachers were able to define activities coherent with the learning goals and 
curriculum objectives and also explained them in detail. With respect to a determination of the 
hypothesis, four teachers expressed the hypotheses of students’ learning that were coherent with the 
learning goals and activities, while seven teachers formulated hypotheses part-by-part, not focusing 
on the conceptual learning. 

Analysis of the Teachers’ Designs and Applications of the Lesson Plans 

The teachers’ responses to the reflective questions posed after the first and the third weeks’ lesson 
plans were analysed according to the quartet of subject matter knowledge. When the authors 
compared the personal analyses on the reflective questions, it was agreed to consider the same 
themes for the first and the third week’s results. As a result, four themes emerged for the foundation 
component, three themes emerged for transformation component, five themes emerged for 
connection component, and three themes emerged for the contingency component. Table 4 
summarises the emerging themes with the arrows indicating some themes that have specific 
meanings. For instance, a→b means that a is the number of teachers in the first week, while b is the 
number of teachers in the third week. 
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Foundation Transformation Connection Contingency 

-Recognition of students’ 
misconceptions (7→11) 
-Proposing affective 
questions (3→5) 
-Focusing on 
computational 
applications (7→2) 
-Referring to multiple 
ways assessing student 
knowledge (3→8) 

-Using multiple 
representations 
(11→11) 
-Selecting and/or 
preparing carefully-
designed problems 
(2→9) 
-Explaining 
mathematical concepts 
in several ways 
(3→11) 

-The interplay 
between 
mathematical 
concepts and 
notions (3→11) 
-The interplay 
between 
mathematical 
problem-solving 
techniques 
(4→11) 

-Thinking all the goals 
were achieved by 
students: no contingency 
action (2→0) 
-Explaining which parts 
of the plans worked and 
why (6→11) 
-Explaining how and 
why certain activities 
did not work (2→11) 

Table 4: Overview of the teachers’ design and application of the lesson plans 

Table 4 indicates that there is an increase in the number of the teachers, who recognised students’ 
misconceptions, proposed effective questions and referred to multiple ways of assessing student 
knowledge by the end of the third week’s application. In parallel with this finding, the teachers’ 
focus on computational applications decreased. No change occurred in the use of multiple 
representations while selecting and/or preparing carefully-designed tasks, and the teachers’ 
emphasis on explaining mathematical concepts increased. Similarly, at the end of the third week, 
the teachers’ interplay between mathematical concepts and interplay between mathematical 
problem-solving techniques increased. With regard to the contingency component, after the first 
week’s application, two of the teachers believed that all of the goals had been achieved by the 
students. However, at the end of the third week, there is an indication that most of the teachers’ 
beliefs were changed. Moreover, at the end of the third week, the teachers managed to explain how 
and why certain parts of the plans and proposed activities did not work. 

Conclusions and Further Steps 
In this paper, we present preliminary findings of an on-going large-scale project aiming to 
contribute to the professional development of mathematics teachers through a web-based portal. 
The findings of the study suggested that at the end of three weeks’ usage of the megedep portal, the 
participant teachers managed to define more coherent learning goals, classroom activities and 
hypotheses for students learning regarding (lower) secondary school algebra. Most progress is 
observed in the teachers’ interplay between the mathematical concepts by referring to different 
mathematical problem-solving techniques. These conclusions were possible for the teachers’ own 
readings of the existing literature on learning algebra and the MTEs feedback that was given at each 
step for designing HLTs through the megedep portal. However, expressing hypotheses for students 
learning as well as determining learning goals based on curriculum objectives are not trivial tasks 
for the teachers. We aim to acknowledge this fact by showing or preparing more examples from the 
literature (e.g. Simon, 1995; Simon & Tzur, 2004) in order to provide teachers with a detailed 
understanding to write hypotheses for their own classroom context. In summary, the main 
contribution of this paper is to show how a web-based portal could mediate the professional 
development of mathematics teachers, where the key component in such progress is peers’ review 
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and feedback in lower algebra context provided by the megedep portal. The use of acknowledged 
digital technologies here constructs a link between a collaborative design for teaching-learning 
algebra and classroom practice, which can be considered as novel progress for their professional 
development. The main ease here is the collaboration, which is independent of time and place. 

The next steps of the project can be summarised by conducting the same process with seventh grade 
teachers, but over seven weeks and this time focusing on the students learning and the use of pre-
test and post-test tasks. The results of these steps will be the focus of future research papers. 
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Despite the potential of digital technology to enhance the learning of mathematics the use of 
graphing tools with or without computer algebra systems (CAS) remains low. For this reason, there 
is a need to identify and understand factors that lead to greater technology uptake. In this 
quantitative study with 198 upper secondary in-service teachers from Germany the relation between 
self-efficacy beliefs and frequency of technology use in the mathematics classroom is examined. 
Results show that higher self-efficacy beliefs are strongly associated with a more frequent use of 
technology. Based on the results, recommendations for teacher education are given. 

Keywords: Self-efficacy, technology, teacher-education, graphing calculators, professional 
development. 

Introduction 
Research in the last decades has shown that digital technology like function plotters or computer 
algebra systems can facilitate the learning of mathematics in many different ways (Drijvers et al., 
2016). For this reason, there is an ubiquitous call for the integration of these technologies into 
mathematics teaching. However current use of technology in the mathematics classroom still 
remains low:  

“Nowadays there exist countless ideas, classroom suggestions, lesson plans and research reports 
for the use of new technologies in mathematics classrooms. But the situation concerning the real 
use of DT [digital technology] in mathematics classrooms has not succeeded in the way many 
had expected in the last decades.” (Weigand, 2014, p. 5; see also Heid, Thomas, & Zbiek, 2013, 
p. 599) 

This indicates that the implementation of technology into the mathematics classroom is not a 
straightforward task and draws attention to the need to understand the factors influencing 
technology uptake. This is particularly important for the design of professional development (PD) 
programs which aim at supporting teachers’ when integrating digital technology. Research shows 
that beliefs and knowledge as well as external factors like school culture and resources play an 
important role (Heid, Thomas, & Zbiek, 2013, p. 630). However, less attention has been given to 
self-efficacy beliefs which capture a persons’ perceived ability to organize and execute courses of 
action (Bandura, 1997, p. 3). Therefore, this paper explores to what extend self-efficacy beliefs in 
the domain of teaching mathematics with technology influence the uptake of technology. 

Theoretical background 
Digital technology in the mathematics classroom comprises a plethora of different technologies. 
These range from general technology that can be used across different subjects (e.g. word 
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processing software like MS-Word) to subject-specific technology like digital learning 
environments, function plotters, geometry packages and computer algebra systems (CAS) that are 
specifically used in mathematics education. In this paper, unless stated otherwise, the terms 
“technology” is used to refer to these specific tools, that are also known under the term 
“Mathematics Analysis Software” (MAS; Pierce & Ball, 2009). In the last 30 years, a great number 
of research projects has shown that MAS can support student learning in many different ways. For 
example, these tools can facilitate constructivist teaching approaches like discovery learning by 
giving pupils the opportunity to explore mathematical links on their own. In addition, digital tools 
can enhance conceptual understanding of mathematics by providing easy access to multiple and 
linked representations (Drijvers et al., 2016). For this reason, the use of technology in the 
mathematics classrooms is advocated for by researchers as well as teachers. 

Despite this call for a deep integration of technology into mathematics teaching there is a “widely 
perceived quantitative gap and qualitative gap between the reality of teachers’ use of ICT and the 
potential for ICT suggested by research and policy“ (Bretscher, 2014, p. 43). Reasons for this are 
multifaceted and many different factors have been proposed in the last decade which can affect the 
uptake of technology. These factors include external factors like time constraints and resources 
(Thomas & Palmer, 2014, p. 72; Heid, Thomas, & Zbiek, 2013, p. 630). However, research 
indicates that the most important factor is the teacher who is ultimately responsible for how and 
when technology is used: “Clearly, schools can go only so far to encourage ICT use; actual take-up 
depends largely on teachers’ personal feelings, skills and attitudes to IT in general” (Mumtaz, 2000, 
p. 337).  Therefore, internal factors like teacher knowledge and teacher beliefs have become the 
focus of attention. For example, the concept of TPACK (Mishra & Koehler, 2006) acknowledges, 
that a special type of knowledge is needed by teachers to teach mathematics with technology. Also, 
pedagogical beliefs, for example about constructivist or traditional philosophies of teaching 
mathematics, and beliefs referring to the teaching and learning mathematics with technology have 
been studied, showing that these beliefs can play an important role. 

However, it seems that research has given little attention to teacher self-efficacy-beliefs when 
teaching mathematics with technology. Self-efficacy beliefs are defined as “a judgement of one’s 
ability to organize and execute the courses of action required to produce given attainments“ 
(Bandura, 1997, p. 3). This means, self-efficacy beliefs don’t capture the actual ability of a person 
but rather describe how someone perceives it. Research about the integration of general technology 
like word processing or presentation software across different subjects has found that self-efficacy 
beliefs play a crucial role for the uptake of these technologies (Ertmer & Ottenbreit-Leftwich, 2010; 
Wang, Ertmer, & Newby, 2004). As Ertmer & Ottenbreit-Leftwich note: “Although knowledge of 
technology is necessary, it is not enough if teachers do not also feel confident1 using that knowledge 
to facilitate student learning” (Ertmer & Ottenbreit-Leftwich, 2010, p. 261). Therefore, it is 

                                                 
1 The term “confidence” is often used interchangeably with the terms “self-efficacy” or “self-efficacy beliefs”. However 
Bandura notes that „Confidence is a catchword in sports rather than a construct embedded in a theoretical system“ 
(Bandura, 1997, p. 382). Therefore, we will use the term “self-efficacy beliefs” throughout this paper. 

Thematic Working Group 15

Proceedings of CERME11 2750



 

 

particular surprising that self-efficacy beliefs have not been studied in much detail in the context of 
teaching with MAS. Apart from the works of Cavanagh & Mitchelmore (2003, p. 16), Doerr & 
Zangor (2000, p.159) and Hong & Thomas (2006) where the role of self-efficacy beliefs becomes 
apparent subliminally at some points, we could only identify the work of Thomas & Palmer (2014) 
explicitly taking self-efficacy beliefs into account. They show that 42% of the surveyed teachers do 
mention lack of self-efficacy as an obstacle preventing teachers to use calculators more in their 
teaching. In addition, teachers with higher self-efficacy beliefs showed a more positive attitude to 
technology and to the use of technology in the learning of mathematics. Hence, they include 
confidence as a key factor in their model for technology integration. In summary, there seems to be 
some indication that teacher self-efficacy beliefs play an important role for the integration of 
technology into the mathematics classroom, but empirical evidence that teachers’ self-efficacy 
beliefs about teaching with MAS is indeed linked to the classroom usage of technology is lacking.  

Research question & methodology 
The study aims to explore the link between self-efficacy and use of MAS. To achieve this goal, it is 
necessary to measure teachers’ self-efficacy beliefs as well as teachers’ technology use. Since the 
frequency of technology use can be more validly be self-reported by teachers compared to the 
quality of their teaching (Mayer, 1999) we focus on self-reported frequency of technology use and 
addresses the following questions: Do teachers with higher self-efficacy beliefs use MAS more 
often than teachers with lower self-efficacy beliefs? Which areas of technology use show particular 
strong links to self-efficacy beliefs?  

To capture the frequency of technology use we used a likert-scale questionnaire (Thurm, 2018) 
assessing the use of technology in the following areas: (f1) use of technology for discovery 
learning, (f2) use of technology for linking multiple representations, (f3) use of technology when 
practicing, (f4) use of technology to support individual learning. In addition, a category capturing 
how often the use of technology was subject to critical reflection was included. Items in this 
category asked for example how often limitations of technology were discussed or how often there 
was a critical reflection about when to use pen & paper skills and when to use technology to solve a 
given task. 

To measure teachers’ self-efficacy beliefs, we developed a questionnaire that assessed self-efficacy 
in two domains (see below). For each of these domains a set of items was generated and refined 
until validity of the items was agreed on by teachers and experts. Response category was chosen 
according to Banduras “Guide for constructing self-efficacy scales” (Bandura, 1997) which 
recommends that teachers rate the strength of their belief in their ability on a scale from 0-100. In 
the following we give a brief description of each domain: 

(s1) Self-efficacy related to task design & task selection when teaching with technology (4 Items)  

The design of tasks is one of the most important factors when teaching with technology: „The 
inclusion of technology requires an understanding of the kinds of tasks that may utilize the 
resources provided by the technology to support students’ high-level thinking“ (Sherman, 2014, p. 
225; see also Drijvers, 2015). If teachers don’t feel able to select and design appropriate tasks they 
are most likely to use their old tasks that are usually not tuned to the use of technology. Two sample 
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items of the scale were: I can design task for the use with MAS. I can distinguish between good and 
bad tasks for the use with MAS.  

(s2) Self- efficacy related to lesson design & lesson implementation (4 Items) 

These tasks however will not unfold their potential on their own. They need to be embedded in 
carefully designed lessons. Hence teachers must feel able to design and carry out appropriate 
lessons:  

“[...] the teacher has to orchestrate learning, for example by synthesizing the results of 
technology-rich activities, highlighting fruitful tool techniques, and relating the experiences 
within the technological environment to paper-and-pencil skills or to other mathematic 
activities.” (Drijvers, 2015, p.148) 

Two sample items of the scale were: I can design and implement lessons that support discovery 
learning using MAS. I am able to design lessons that make versatile use of MAS.  

Both scales were administered in 2014 to 198 upper secondary school teachers within a larger 
research study (Thurm, Klinger, & Barzel, 2015) in North Rhine-Westphalia, Germany. In this state 
the use of MAS is compulsory in the final examination in upper secondary since the schoolyear 
2014/2015. The average age of the teachers was 43 years, which is comparable to the average age 
of 45 years for all teachers in North Rhine-Westphalia. Teaching experience with mathematics was 
distributed as follows: 0-5 years (27%), 6-11 years (19%), 12-17 (16 %), 18-23 (11%), more than 
23 years (25%). Due to the fact that MAS had been made compulsory only shortly before the study 
took place, there was a large number of teachers without any previous experience in teaching with 
MAS. In total, 52% had no previous experience teaching mathematics with technology and only 
12% had more than 5 years’ experience in teaching mathematics with technology.  

Results 
In a first step we used a confirmatory factor analysis to scrutinize the quality of the questionnaires 
on an empirical base. The goodness of fit was judged using the chi-square-fit index, the root mean 
square error of approximation (RMSEA), the standardized root mean square residual (SRMR) and 
the comparative fit index (CFI). The result for the self-efficacy questionnaire showed a good model 
fit with RMSEA = 0.041 SRMR = 0.022, CFI = 0.994, and χ2 /df = 1.327. The scales (s1) and (s2) 
also showed a good reliability with Cronbach’ s alpha equal to 0.92 and 0.9 respectively. The 
goodness of fit and the reliability of the questionnaire assessing frequency of technology use were 
also high (see Thurm, 2018).  

In first step we checked to what extend experience in teaching mathematics and teaching with MAS 
correlated with self-efficacy and frequency of technology use. As can be seen (Table 1) there is a 
small correlation between self-efficacy and the number of years teachers previously used 
technology in their classroom. Subsequently, we calculated the correlation between all scales on a 
latent level (Table 1). It is obvious that there are significant correlations between all subscales 
indicating that higher self-efficacy beliefs correspond to more frequent use of technology. Self-
efficacy in the area of task design (s1) is most strongly linked to discovery learning (f1) and 
practice (f3), self-efficacy in the area of lesson design and implementation (s2) is most strongly 
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linked to discovery learning (f1) and individual learning (f4). In addition, it is remarkably that the 
scale (s2) consistently shows higher association with frequency of technology use than the scale 
(s1). Lowest correlation between self-efficacy and frequency of technology use is observed for the 
areas of multiple representation (f2) and reflection (f5).  

  Self-efficacy   

   
   

  F
re

qu
en

cy
 o

f u
se

 

 (s1) 
Designing 
tasks 

(s2) 
Designing & 
implementing 
lessons 

TE 
mathematics 
(years) 

TE 
technology 
(years) 

(f1) Discovery learning 0.427*** 0.564*** -0.03 0.14 

(f2) Multiple representations 0.230* 0.317** 0.06 0.07 

(f3) Practice 0.435*** 0.445*** 0.13 0.13 

(f4) Individual learning 0.391*** 0.516*** -0.06 0.11 

(f5) Reflection 0.289** 0.293** -0.15 0.03 

 TE mathematics (years) -0.08 -0.12  1 0.13 

 TE technology (years) 0.27** 0.33** 0.13 1 

Table 1: Result of the correlation analysis (* p<0.1, ** p<0.01, *** p<0.001, TE=Teaching experience) 

Discussion 
The study aimed to provide empirical evidence for the link between self-efficacy and using MAS. 
The results clearly indicate a strong relationship showing that higher self-efficacy beliefs are 
associated with more frequent use of technology. In addition, self-efficacy correlates only to a 
limited extend with teaching experience with technology, which indicates that teachers need 
additional support for developing their self-efficacy beliefs. In total, the results support the model of 
Thomas & Palmer (2014) who include self-efficacy as a key variable in their model of technology 
integration. Furthermore, the importance of self-efficacy becomes even more pronounced when 
noticing that the size of the correlation between self-efficacy and frequency of technology use is 
higher compared to the correlation of technology-related beliefs and frequency of technology use 
found in Thurm (2018). This indicates that self-efficacy beliefs might be even more influential for 
technology uptake than beliefs about the value of technology in the learning of mathematics.  

But why do self-efficacy beliefs seem to play such an important role? One explanation might be, 
that teaching with technology poses a plethora of new challenges because it requires many changes 
in the teaching routines and attitudes. For example, traditional task that requires routine pen & 
paper skills easily become obsolete in the presence of a CAS. In addition, teaching with MAS can 
lead to more individualized learning, with greater uncertainty for the teacher who cannot longer 
simply follow a strict teaching plan. For example, Dunham & Dick (1994, p. 443) stress, that 
teachers teaching with technology need to be much more used to deal with unplanned situations, 
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show more flexibility and may experience a perceived loss of control. Especially for teachers that 
are used to a traditional style of teaching this can pose a major challenge:  

“[...] the use of technology often means more individualized, student-centered classrooms in 
which teachers are no longer the sole source and authority of knowledge. This could be very 
disturbing to many teachers who are used to lecturing and other teacher-centered approaches 
because it require them to abandon their routines and learn new ways of teaching.“ (Zhao & 
Cziko, 2001, S.18) 

From the results several recommendations for teacher education and professional development can 
be inferred. Firstly, programs must place a stronger focus on developing teacher’s self-efficacy 
beliefs. Currently, knowledge, pedagogical beliefs and beliefs regarding the teaching of learning 
with technology seem to be the focus of most technology related professional development 
programs (e.g. Chamblee et al. 2008). Even though these factors might also increase self-efficacy, 
the most effective way of increasing self-efficacy is to enable successful mastery experiences for 
teachers. For example, Tschannen-Moran & McMaster (2009) compared different approaches for 
fostering self-efficacy beliefs in PD-programs and concluded that authentic mastery experience 
embedded in the teachers regular teaching context was the most powerful way to foster self-efficacy 
beliefs. In particular, they stress the role of individual support for teachers: “Without coaching to 
assist teachers in the implementation of the new skill, a significant proportion of teachers were left 
feeling more inadequate than they had before“ (Tschannen-Moran & McMaster, 2009, p. 241). 
However, programs that individually assist teachers to put theory into practice in this way appear to 
be quite rare in the context of teaching with technology (Grugeon et al., 2009, p.343). This might be 
due to the fact that individual coaching is quite resource intensive and hard to scale up.  

For this reason, it might be fruitful to develop strategies for increasing self-efficacy even when 
individual coaching is not possible due to a lack of resources. For example, teachers might prepare a 
class for their fellow PD-participants and carry out part of the class during the PD-meetings.  With 
this respect, approaches like micro-teaching or approximations-of practice (Grossmann, 
Hammermess & McDonald, 2009) could be a fruitful approach. Another way to increase self-
efficacy could be the use of vicarious experiences which refers to hearing about or observing other 
teacher’s successful technology integration (Wang, Ertmer & Newby, 2004). 

Finally, the results from this study also give some indication about content selection for PD-
programs. The result that self-efficacy beliefs are stronger correlated with frequency of technology 
use for supporting discovery learning than with frequency of technology use to support multiple 
representation might reflect that discovery learning requires much stronger self-efficacy beliefs due 
to its complexity. In contrast, the use of multiple representations is perceived as less complex and 
less challenging. PD-programs could therefore choose the support of multiple representations as 
starting point for novice teachers and advance to discovery learning in later stages.  

In summary, this study shows that teachers’ self-efficacy beliefs are an important factor when 
teaching mathematics with technology. PD-programs must provide means to strengthen teacher’s 
self-efficacy beliefs if we want to take teachers needs seriously and change the degree of 
technology integration. Otherwise the outcome of PD-programs might be limited to knowledgeable 
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teachers that are convinced about the benefits of technology, but lack the self-efficacy to put their 
knowledge and beliefs into practice. We should not miss the final step that might be self-efficacy 
beliefs.  
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How to distinguish simulations? Development of a classification 
scheme for digital simulations for teaching and learning mathematics 
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Computer simulations are used to teach and learn mathematics, and didactic research also uses the 
term. However, there are sometimes very different meanings of the term ‘simulation’. As a possible 
result didactic research on the use of simulations can only be compared to a limited extent. The 
present article therefore clarifies the concept of simulation. Based on this, a scheme for the 
classification of digital simulations, independent of the concrete content, is designed, which allows 
to distinguish simulations a priori and objectively according to theoretically derived didactic criteria 
and thus to order the wide field of “simulations”. Finally, it is briefly outlined how the scheme can 
help teachers to select suitable simulation implementations for teaching and learning purposes. 

Keywords: Simulation, mathematical models, educational experiments, representations 

Introduction 
There is a multitude of computer programs, apps and files for learning and teaching mathematics, 
which are called “simulations” by their authors. These are, for example, Excel data sheets for the 
replication of cube throwing (Böer, 2012) or algorithms in computer algebra systems for calculating 
hiking trails within the framework of mathematical modelling (Bracke, Götze, & Siller, 2015). In the 
online portal GeoGebra Materials (www.geogebra.org/materials), on which authors can publish 
GeoGebra files, over 1000 hits are listed under the search term simulation for the year 2017. It can 
be assumed that at least some of these documents were designed for teaching-learning contexts and 
are actually used for learning mathematics. MathEduc (www.zentralblatt-math.org/matheduc/), a 
database for publications with a mathematics didactic background, currently lists over 2000 
publications that contain the term simulation.  

These are just a few examples of “simulations”. However, their consideration already suggests the 
interpretation that research, theory and practice for learning and teaching mathematics are currently 
concerned with simulations: simulations are used to teach mathematical content or procedures at 
present. The above examples also show how differently the term simulation is used: the examples 
refer to a broad variety of mathematical contents, use different representations, are based on different 
types of mathematical models, allow partly very extensive manipulations and partly none, are used 
to pursue different objectives or to fulfill different functions. This leads us to the thesis that the term 
simulation is used in connection with the teaching of mathematics, but that its meaning remains in 
general individual and vague. 

If, however, didactic research aims to collect empirical research data on the use of computer 
simulations for teaching and learning mathematics and if these data and results are to be comparable, 
then a common conceptual basis for simulations is indispensable.  

This article presents ideas for the design of such a basis by theoretically deriving a multidimensional 
classification scheme for digital simulations. For this purpose, essential characteristics of simulations 
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are first deduced, which then depending on their traits are combined into a system to distinguish 
between simulations. The article therefore investigates the following research questions: 

(Q1) Which central characteristics and features do digital simulations for learning mathematics have? 
Which traits of these characteristics can be derived? 

(Q2) How can these characteristics and traits be used to assign computer simulations a priori and 
objectively into classes and to distinguish them from each other? 

Methodological approach 
In order to clarify research question Q1, a hermeneutical approach is pursued: it derives essential 
characteristics of simulations from existing theories (e.g. systems theory) and application sciences by 
means of a literature research and thus searches for the theoretical meaning of the term simulation. 
The focus will be on those aspects that are important from a didactic point of view. The approach is 
alternately confronted with a comparison with such properties of programs, apps and files which exist 
in reality (on the Internet, in textbooks, as learning apps or the like) and which are called "simulations" 
by their authors. They show concrete characteristics of the properties. In this way, the question is 
examined in the alternation of deduction from theory and induction from teaching-learning practice 
and thus does not lose its relation to the practice of teaching mathematics.  

Theoretical foundations 
When it comes to simulations, a distinction was usually made between physical simulation with 
concrete models and simulation with abstract or mathematical models (Krüger, 1974). In the latter 
case, simulation is a calculation carried out on a computer, which Krüger (1974, p. 27) calls 
“calculation experiment” and which Hockney and Eastwood (1988, p. xix) call “computer 
experiment”. On the one hand, this distinction is very rough. On the other hand, the two categories 
become blurred as soon as physical experiments are virtually mapped on the computer, as explained 
in detail in Wörler (2018). Therefore, they are not useful for classification. 

For this reason, we assume a more general approach: we interpret simulation — in close agreement 
with Krüger (1974), Kobayashi (1981) and Greefrath and Weigand (2012) — as the conduct of 
experiments with models of systems. It is therefore necessary to clarify the terms experiment and 
model in order to understand the concept of simulation. 

Models 

According to Henn (2011, p. 419), “models are simplifying presentations, which consider only 
certain, somehow objectifiable parts of reality”. This characterization corresponds well with the 
examples of simulations mentioned above, because they refer to a real situation or a real object, which 
is reproduced virtually on the computer. In addition, simulations are also conceivable that take up 
intra-mathematical phenomena: experimental work with geometric figures or with integral and 
derivative can serve as examples for simulations that have no explicit reference to reality. 
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Figure 1: Components of a simulation 

Therefore, the term model has to be understood more broadly with regard to simulations. For example, 
Velten (2009, p. 3) states: models are “simplified descriptions of a system”. A system in turn “is an 
object or a collection of objects whose properties we want to study” (Velten, 2009, p. 8). It consists, 
according to Bossel (1992), of individual elements connected by relations. A model therefore contains 
a mapping of the relevant elements and relations of the system. This is illustrated in Figure 1. 

Experiments and variations 

Experiments are particularly widespread in the social and natural sciences, where they are a central 
method of gaining scientific knowledge. They can be used to create or to test hypotheses and usually 
they use the observation of the effects of targeted manipulations of a system. For physics education, 
for example, Kircher, Girwidz and Häußler (2009, p. 244) describe how to proceed in experiments: 
“Under fixed and controllable framework conditions, observations and measurements are carried out 
on physical processes and objects; variables are systematically changed and data are collected”. 
Accordingly, the systematic variation of independent variables within defined framework conditions 
is the central component of conducting experiments — and thus also of simulations. 

The important role of systematic variation in the learning and teaching of mathematics has already 
been emphasized: Schoenfeld (1985) sees variation as a heuristic principle in problem solving. 
Schupp (2002) adds that variation as a student activity can help to convey an authentic picture of 
mathematics and enable a deeper understanding.  

Philipp (2013) interprets intra-mathematical experimentation — in the sense of hypothesis formation 
and hypothesis testing — as explorative problem solving. She considers this type of problem solving 
to be a process characteristic of mathematics, but also sees it as a fundamental competence with four 
partial competences: generating examples, structuring, formulating hypotheses, checking hypotheses.  

These activities are addressed in the same way when experimenting with models of objects or systems 
in simulations. To vary allows the creation of different system states (called “data” by Kircher et. al., 
2009, p. 244, and called “examples” by Philipp, 2013, p. 156) that can be analysed to learn something 
about the given system or to understand it. This applies to students as well as to scientists, which is 
why experimentation is also a central activity inquiry-based approaches (e.g. Artigue & Blomhøj, 
2013). Therefore, in the following we will distinguish simulations according to what types of 
variation they allow.  

Types of variation 

According to the above considerations, models can be traced back to their elements and relations. 
Furthermore, experiments are characterized by variation within controlled framework conditions. 
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Under these assumptions, six different types of variations in simulations can be derived theoretically 
(Wörler, 2018). Only the following three should be mentioned here, because the other three have 
mainly theoretical-epistemological value: these types are the possibility of variation of ... 

1) the number of model elements, 
2) the properties of the model elements, 
3) the relations between model elements, 

They are hereinafter referred to as Possibilities of Interaction between the experimenter (e.g. the 
learner) and the underlying (mathematical) simulation model. Their existence can be checked 
objectively and a priori for each concrete implementation of a simulation. In this way, simulations 
can be distinguished according to the type and the number of implemented Possibilities of Interaction. 
We use this approach to clarify the research question Q2 below. 

Specifics of digital simulations 

With regard to the research question Q1 we conclude: Experiments involve the activity of varying. 
They also require the observation of the effects of the manipulation on the modelled system and its 
behavior. If experiments are transferred to the computer as digital experiments, these two aspects 
have to be translated, too.  

This means that at least some of the Possibilities of Interaction (see above) have to be technically 
implemented and offered to the experimenter. Some control elements like checkboxes, sliders, input 
fields or selection menus must be available in every digital simulation to set and change parameters; 
Moreno and Mayer (2007) call this type of interaction “manipulating” (p. 311). They distinguish 
manipulating from “controlling” (p. 311), which includes control elements for the speed or sequence 
of content (such as pause/play key) but does not influence properties of the modelled system. It occurs 
especially with moving images or animations. It is, however, consequent also to consider controlling 
in the classification scheme for simulations: On the one hand, both types of interaction occur in 
simulations side by side, although only manipulating allows experiments. On the other hand, the 
connection to preliminary work on the potential of moving images for learning mathematics 
(Kautschitsch, 1985; Samson, & Schäfer, 2012) succeeds.  

Digital experimentation also requires the possibility to observe and evaluate the modelled system and 
its states. Therefore, a computer output device is indispensable. This can be a conventional PC or 
smartphone screen. Alternatives could also be virtual reality glasses or simply a PC printer. On such 
output devices the result of a digital simulation (as final state after a manipulation) or the respective 
simulation model itself (with intermediate states during manipulation) has to be represented, for 
example as table, graph or diagram, but also as dynamic visualization of processes or experimental 
environments. Each digital simulation is therefore necessarily connected with an external 
representation of these model states. 

Based on Bruner's modes of representation (enactive, iconic, symbolic) from 1964, Ladel (2009) 
proposes a scheme for the analysis of mathematical learning software on the basis of the forms of 
external representation used. She derives eight computer-based forms of external representation and 

Thematic Working Group 15

Proceedings of CERME11 2760



 

 

specifically distinguishes between static and dynamic representations. Ladel (2009) also shows that 
how computer programs can be classified with regard to these forms.  

Result: classification scheme 
In order to answer the research question Q2, the above explanations were combined into a two-
dimensional classification scheme: The first dimension is formed by the Level of Manipulation 
(LoM). This number indicates how many Possibilities of Interaction are implemented in a concrete 
digital simulation, i.e. whether and to what extent a concrete digital simulation allows variations by 
the experimenter.  

For clarification, imagine a dice throwing simulation with two sliders: One controls the number of 
the dice, one the number of the throws. There are then two ways to interact with the underlying 
simulation model, which gives the simulation a LoM of 2 (labeled as: LoM 2). 

In the broadest sense, the LoM indicates the degrees of freedom that the implementation gives the 
experimenter for interaction with the underlying simulation model (in the sense of manipulating, 
according to Moreno & Mayer, 2007). In this way, different implementations of a simulation can be 
analyzed with regard to their LoM and arranged on an ordinal scale.  

If we accept LoM 0 (zero) on this scale, animations (generally: moving images) can also be located 
in the range between LoM 0 (no controlling or manipulation implemented) and LoM 1 (manipulation 
implemented). We thus take into account the type of interaction in the model that Moreno and Mayer 
(2007) call “controlling” (p. 311). The distinction between animation and simulation, which is not 
clear to outsiders in many cases, is transferred into the concrete specification of LoMs: If any 
controlling option is implemented, the LoM is increased by 0.5. 

The second dimension of the classification scheme presented here can be defined according to the 
scheme of Ladel (2009): The eight types of external representations she proposes can be aggregated 
into the disjoint categories isolated static representation (ISR), isolated dynamic rep. (IDR), multiple 
static rep. (MSR) and multiple dynamic rep. (MDR). Every concrete implementation of a simulation 
can be analyzed in terms of how the changes in the model states triggered by the variation are 
represented on the output device.  

 
Figure 2: Two-dimensional classification scheme for digital simulations 

The result is a 5 × n-classification scheme with the dimensions external representation (with the four 
traits ISR, IDR, MSR, MDR) and plurality of variations (indicated in LoM), see Figure 2. 

Each digital simulation can be assigned to the scheme: Let’s assume that the dice throwing simulation 
from above represents only the final results of the experiment as bar chart. That would be an isolated 
static representation (ISR). The simulation would therefore be classified in the cell ISR × LoM 2 of 
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the schema. If, in contrast, the dice throws are represented sequentially so that the result of the 
experiment is assembled step by step and the bars in the chart “grow”, the representation is dynamic 
(IDR), so that the classification IDR × LOM 2 results. And if, in addition, a further controller is 
integrated which allows the speed of the process to be regulated, the LoM would be increased by 0.5 
(classification: IDR × LoM 2.5); in this case, the position between two cells indicates that a dynamic 
sequence can be controlled that does not affect the final result. 

Discussion and outlook 
The classification scheme currently presented indicates the possibilities of experimentation in the 
form of LoM. With this construct, simulations can be ordered locally, i.e. two implementations of the 
same phenomenon or mathematical model can be compared with regard to their cognitive 
requirements: The higher the LoM is, the higher the cognitive requirements are. 

Limitations of the scheme 

Global ordering is currently not possible with the scheme, however, as the following example shows: 
A simulation is given in which one unbound variable b can be manipulated (LoM 1) and which 
displays the function graph (IDR). While the effect of the manipulation is easy to interpret for the 
graph of the function f(x) = x + b, it is much more difficult for f(x) = x2 + b⋅x or even f(x) = xb+ 2.  

Thus, the scheme currently lacks an analysis of the complexity or difficulty of the content, which is 
reflected in the complexity of the underlying mathematical model. It should take into account the 
prior knowledge of the experimenter (or learner). Therefore, it is planned to extend the scheme by a 
didactic analysis of the concrete simulation that examines the mathematical requirements for each 
possibility of interaction. In this way, the model could also enable global ordering of simulations.  

Learning and teaching mathematics 

Since extra-mathematical references are often taken up in simulations in order to learn mathematics, 
content references to related sciences are indispensable in mathematical simulations. Therefore, the 
scheme is not limited to learning and teaching mathematics. It can be useful whenever mathematical 
representations are used to experiment with models as a learner activity. That is the case, for example, 
in teaching and learning of modelling or problem solving in mathematics, but also in biology, physics 
or technology. This makes the classification scheme useful for Science, Technology, Engineering and 
Mathematics (STEM) education, too. Here, mathematical competences (e.g. Process Standard 
“Representation”, National Council of Teachers of Mathematics, 2000, pp. 67–71) are also addressed 
via subject-specific content (physics, biology and so on).  

Implications 

A first explorative application of the category system to randomly selected “simulations” from 
GeoGebra Materials provides that in most cases the user can vary one to four aspects of the 
application (LoM 1–4; hardly LoM > 5). Often dynamic representations occur and also different 
forms of representation are combined to multiple dynamic representations (MDR).  

One of the aims of the research work on the scheme is also to use the scheme to assess whether a 
concrete simulation is good or less suitable for a (concrete) learner. According to this, there should 
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be good and less suitable classes in the scheme, depending on the individual prerequisites and goals. 
First cautious pointers to such classes are: for a pure visualization of dynamic processes, an 
implementation with 0 < LoM < 1 is sufficient; this includes video clips as well as animations. If 
simulations are to be used for explorative work in the context of teaching and learning, they have to 
allow some variations. Thus, only implementations with LoM ≥ 1 are suitable. With them, the 
modeled system can be understood by linking variation and effect, which can serve in problem 
solving, mathematical modelling or generating and testing hypotheses. It can be assumed that 
simulations with a high LoM generate a high cognitive load (according to Chandler & Sweller, 1991) 
for the experimenters (i.e. learners). The performance of the users would thus determine how high 
the LoM should be at most when selecting a simulation. The respective external representations 
offered in a simulation, although they bring benefits for the learning process, can also create further 
obstacles in the learning process (e.g. Ainsworth, Bibby, & Wood, 1998; Ainsworth, 2006; Duval, 
2006). Building on this, at least one implication is conceivable: in order to keep the simulations 
understandable, rather small LoMs should be used for MDR, whereas higher LoMs would be suitable 
for ISR and IDR (as indicated in Figure 2). By means of such considerations, the presented scheme 
can help teachers to find suitable simulations for a certain group of learners. 

A detailed analysis of the classification scheme as well as the empirical and theoretical validation of 
the conclusions is still pending. 
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While it is obvious that teachers need to have mathematical knowledge under different domains, few 
studies put forward teaching practices associating them with teacher moves in the background of 
the mathematical knowledge used in teaching in a technology enhanced classroom environment. 
Moreover, characterizing those practices can show a practical understanding of the knowledge for 
its usefulness in teaching in which tools and dynamic technologies are deemed necessary. In this 
study, we examined the characteristics of teachers’ mathematical practices in a classroom teaching 
where the students engaged in a sequence of GeoGebra-integrated tasks designed to support 
students’ conceptualizations of slope of an object. The results suggest teacher moves for the 
GeoGebra-integrated tasks for conceptualization and suggestions for teaching practices from 
pedagogical perspectives. 

Keywords: Middle school mathematics teachers, GeoGebra, mathematical practices, slope.  

Introduction  
We all accepted that there are prominent frameworks on mathematics teaching. However, while 
these frameworks provide tremendous contributions, how teachers’ knowledge is used and 
developed in classroom teaching practice for specific learning areas need to progress when it comes 
to combining theory and practice (Doerr, 2004; Wasserman, 2015). Specifically, investigating 
teachers’ mathematical practices in slope teaching in school algebra requires having a distinctive 
spectacle. Although slope is one of the big ideas in curricula, we do not know teachers’ 
mathematical practices in slope teaching during the implementation of an instructional sequence 
(Cheng, Star, & Chapin, 2013). In this regard, research on knowledge of algebra teaching 
(McCrory, Floden, Ferrini-Mundy, Reckase, & Senk, 2012) can enlighten this process which 
includes mathematical practices in connection with the content knowledge. Therefore, the 
mathematical practices dimension can be used and developed for investigating particular 
mathematical practices of teachers as their didactical performance.  

Dynamic mathematics software (e.g. GeoGebra) is seen as the indispensable part of mathematics 
teaching technology in 21st century. However, although there are research studies that integrate 
curricula including new approaches and technology into algebra teaching in the classroom (Bozkurt 
& Ruthven, 2017; Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010), studying the practice of 
slope teaching within the technological environments need further elaborations to reveal 
mathematical practices of teachers. Thus, interpreting mathematical practices of teachers in slope 
teaching from the perspective of algebra teaching can provide in depth insight about the 
mathematical practices in the work of mathematics teaching in technology enhanced classroom 
environment.  
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Framework of the Study 

The mathematical practices are moves or actions which are seen as the ways for using content 
knowledge in teaching (McCrory et al., 2012; Wasserman, 2015). That is, they involve teacher’s 
actions with specific goals and perspectives on particular mathematical ideas that are centralized 
through the interactions with students in classroom teaching. In terms of algebra strand, McCrory et 
al. (2012) characterize Knowledge of Algebra Teaching (KAT) framework that is developed for 
assessing teachers’ mathematical knowledge on algebra teaching. In the framework, considering 
three domains of knowledge (i.e. knowledge of school algebra, knowledge of advanced 
mathematics, and mathematics-for-teaching knowledge), teachers’ mathematical work as 
mathematical practices is emphasized under three categories: bridging, trimming, and 
decompressing. By means of bridging, McCrory et al. (2012) emphasize ways of making 
connections across topics, concepts, representations, and domains. In the framework, trimming 
practices are described as ways of removing complexity of mathematical ideas while holding 
mathematical integrity (McCrory et al., 2012). Introducing slope in linear functions graphs in 
consideration with the future mathematics (instantaneous rate of change in calculus and analysis) 
can be given as an example for trimming practice (McCrory et al., 2012). However, making an 
unfortunate explanation of “multiplying makes bigger” in teaching multiplication of whole number 
is an example of ‘over’ trimming when considered the multiplication of fractions and rational 
numbers (McCrory et al., 2012; Wasserman, 2015). At last, decompressing is described as making 
explicit complexity of mathematical ideas in ways that make them comprehensible for students 
(McCrory et al., 2012). McCrory et al. (2012) gave examples of unpacking the algorithm for 
solving equations and meaning of identities. 

In this current study, the KAT framework was used for the analysis of teachers’ mathematical 
practices in classroom teaching. In this regard, bridging refers to teachers’ mathematical practices 
of connecting topics, concepts, representations, domains, and activities in teaching slope of an 
object (i.e. the slope concept in physical situations) in a technology enhanced classroom 
environment in which GeoGebra materials and concrete objects were used. Beyond, we 
characterized the mathematical work of bridging with an agglutination of using tools and 
technology by putting terms of concrete object and GeoGebra material. In detail, this category 
involves mathematical situations (e.g. position of a ladder as a physical situation), mathematical 
concepts (e.g. horizontal length, line segment, ratio, etc.), concrete objects as mathematical objects, 
and GeoGebra material for representing a mathematical idea. Since teachers can use various kinds 
of tools and technologies in classroom teaching, we cannot ignore the use of concrete objects and 
dynamic technology in such kind of mathematical work. Similar characterization of the 
mathematical work is also considered both for the practices of trimming and decompressing. 
Trimming refers to teachers’ mathematical practices of removing the complexity of slope of an 
object while holding the mathematical integrity (e.g. by omitting/adding details, modifying level of 
rigor) in both eighth-grade mathematics curriculum and advanced mathematics in the technology 
enhanced classroom environment. In other words, we looked for the ways of mathematical work 
that teachers considered the complexity of slope in the context of physical situation, while 
maintaining the integrity of slope concept anticipating further slope conceptualizations. Therefore, 
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this kind of practice corresponds to trimming up or down of the mathematical idea for the essential 
content anticipating further mathematical ideas related with slope. Moreover, decompressing refers 
to unpacking the complexity of slope of an object in ways that make them comprehensible to eight-
grade students in the technology enhanced classroom environment (e.g. looking for the ways of 
mathematical work that teachers unpack the computational algorithm of slope as the rate of change 
of vertical distance relative to horizontal distance of that object/feature).  

This paper introduce teachers’ actions in their mathematical work in specific to using GeoGebra 
materials and concrete objects while enacting an instructional sequence in the technology enhanced 
classroom environment that was designed for eight graders based on the national curriculum. In this 
regard, characterizing such actions in teaching with the teacher’s rationales for them and 
interrelations among them is the focus of this study. Therefore, the aim of this paper was to answer 
the following research questions: What are the characteristics of the teachers’ mathematical 
practices while teaching the slope concept in technology enhanced classroom environment? How do 
those practices emerge and interrelated with each other in the moment of teaching? 

Method  
This study was a part of a long term study and used design research method to understand teachers’ 
knowledge base and expertise within the complexity of classroom teaching (Zawojewski, 
Chamberlin, Hjalmarson, & Lewis, 2008). In the light of Lesh and Kelly’s (2000) multi-tier design 
experiment method, this study involved four tiers. While the tier of students developed 
mathematical ideas and computational algorithm on slope, the tier of teachers developed and 
implemented activity sheets involving GeoGebra-integrated tasks through an instructional sequence 
while examining students’ mathematical understanding with the support of the first author. In 
addition, the tier of facilitator (the first author) developed sessions for teachers and the tier of 
researchers (two authors and a doctoral student) produced interpretations of teachers’ and students’ 
experiences. The whole process of this study involved a prototype study with a teacher and a main 
study with another teacher after the preliminary research was done and tentative design principles 
for sessions with teachers and products for data collection were determined. In this paper, we 
presented findings of the tier of the teacher from the main study which involved the topics of 
teaching slope, linear equations and their graphs. 

Context and Participants  

The sequence of activities involving GeoGebra integrated tasks formed the basis for a two-week 
course for students in two eighth grade classes. The teacher had eights year of experience of 
teaching middle school students. There were 20 students in 8A class (12 girls, 8 boys) and 23 
students in 8B class (12 girls, 11 boys). Throughout their work on the tasks, the teacher set the class 
seating plan considering group work (heterogeneous, 6-7 students) in collaboration. The teacher 
allowed the students to study and discuss within the group and between the groups. The groups 
completed the tasks using laptop computers for the groups, and the teacher’s computer with a 
Bluetooth mouse in addition to the related activity materials. The teacher engaged in whole-class 
discussions that involved the students discussing their slope computation algorithm and how that 
slope changes when the attributes of the objects changed.  
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In this regard, the students were asked (1) to notice and describe slope as a measurement of 
steepness of a physical object, (2) to describe slope of an object being independent of the length of 
an object, (3) Relate vertical and horizontal distances to the slope of an object, (4) to structure the 
computation of slope of a given physical object, and (5) evaluate the effects of horizontal and 
vertical distances on the computation of the slope of a physical object as a ratio given in GeoGebra 
materials integrated activities. The teacher also wanted to have students use concrete objects for 
experiencing the slope of an object practically. In the beginning of the course, the students were 
given concrete objects (i.e. fixed length battens), tape measures, and Positions of Battens (PoB) 
activity sheet. In the activity, the students were expected to measure the horizontal/vertical lengths 
of the objects, to describe the slope as a measurement of steepness and being independent of the 
length of the object, and to collect data for relating the horizontal and vertical lengths to the slope of 
the object. The GeoGebra material of the activity was used to have students relate the 
horizontal/vertical lengths to the slope of the object in the dynamic environment. Then, the students 
were given Fire Truck (FT) activity sheet and the GeoGebra material. In this activity, the students 
were expected to compute the slope of a fire truck ladder in different positions with a constant 
horizontal length and to evaluate the change of the slope as the vertical length changed using 
GeoGebra. At last, the students were given Tent (Tt) activity sheet and the GeoGebra material. The 
students were expected to compute the slope of a tent rope in different positions with a constant 
vertical length and to evaluate the change of the slope as the horizontal length changed using 
GeoGebra (See materials on https://ggbm.at/sbffsxrt). The lesson was structured as PoB for the first 
hour and FT and Tt for the second hour. 

Data Sources and Analysis 

The data sources of this study included videotapes of all classroom sessions, written field notes and 
memos, students’ activity sheets, students’ computers screen records. Following the classroom 
teaching, there was an analyzing instruction session involving audio recorded semi-structured 
interview. In this process, the teacher reflected, commented, and made decisions on her practices 
and students’ learning in the lesson and reflected on the further changes for the lessons in the 
instructional sequence, while watching the episodes of video recording of the classes. In this paper, 
the data constituted 180 minutes lessons for two classes (90+90) and 90 minutes analyzing 
instruction session. The data was collaboratively analyzed considering the iterative approach of 
design research and the comparative analysis method of grounded theory (Glaser & Strauss, 2006). 
In the analysis, primarily, the researchers met to develop and evaluate the instructional sequence, 
the progress of the students in classes, and the observations/comments about students’ thinking 
about slope of an object and their use of GeoGebra materials and other representations. The 
researchers wrote the analytic memos documenting their emergent understandings of the teacher’s 
mathematical practices and observations about students’ learning. Secondarily, the researchers 
started with the microanalysis of the transcripts of the videotapes through line-by-line analysis. 
While doing systematic coding in the analysis, the teachers’ acts, events and activities were 
conceptualized and classified when the actions of the teacher occurred in a pattern during the 
classroom teaching. Moreover, theoretical comparisons were made to identify the derived properties 
and dimensions of the concepts from the incidents in the literature. Additional evidences were used 
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from the interviews with the teacher to confirm and disconfirm the actions and the teacher’s 
reasoning about those actions. In this paper, we present two results of the analysis of the teacher’s 
mathematical practices that involves interrelations among each other: trimming slope computation 
and its relation to a bridging practice and decompressing components of slope and its relation to 
trimming slope computation. 

Findings 
Trimming slope computation and its relation to a bridging practice  

In the PoB activity, as a trimming practice, the teacher trimmed the computation of slope of the 
batten using the GeoGebra material by showing/checking change in the slope. In detail, this practice 
involved actions of showing and checking the correctness of the computations of slopes of the 
battens through the use of slope checkbox (that opens dynamic slope computation text) with slider 
(that changes horizontal length of the batten), and horizontal and vertical lengths checkboxes (that 
shows their images and values). As evidence, for example, after the groups of students made 
measurements on their battens and the teacher showed/checked the horizontal and vertical lengths 
of their battens using GeoGebra material, in the conversation with students the teacher said: 

Yes. You take the vertical length of the batten as 57 cm (The teacher checks the value of the 
vertical length on the computation after moved slider to make students’ vertical length of the 
batten). Let’s look. Is the value of your slope like this? (The teacher shows the value of the slope 
on the slope computation text in the GeoGebra graphics view). 

That is, the teacher moved the slider to create the students’ battens and then showed and checked 
those values on the GeoGebra material. Thus, she both constrained the slope computation as ratio of 
vertical length to horizontal length and provided various slope computations with different values.  

In addition, that trimming practice took place in the background of bridging practice of connecting 
mathematical situation/concept and GeoGebra material. That is, as a bridging practice, the teacher 
used the slider tool in connection with the line segment (i.e. the batten) in the GeoGebra graphics 
view while posing the questions about the position of batten. Therefore, when relating such 
trimming and bridging practices, the teacher put forward her intention of using the line segment to 
create a model of a batten at the beginning of the students’ learning process and then a model for 
reasoning about the slope as steepness at the end of their learning experience. 

Decompressing components of slope and its relation to trimming slope computation 

In all activities, as a decompressing practice, the teacher interpreted the components of the slope of 
an object using GeoGebra materials in the following of the practice of trimming computation of 
slope using GeoGebra materials. In detail, in the PoB activity, the teacher interpreted the factors of 
slope (i.e. attributes that affect/do not affect the slope of the line segment representing the object of 
batten) using the GeoGebra material (i.e. using the slider tool and the graphics view) and interpreted 
logic in computation of slope using GeoGebra material after she trimmed the slope computation. 
That is, after the teacher showed/checked horizontal and vertical lengths of the batten (i.e. line 
segment object in the GeoGebra graphics view) using the slider of the horizontal length and 
checkboxes of the lengths and showed/checked the slope of the batten using the slope checkbox 
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(that opens dynamic slope computation text) with the slider and the checkboxes of the lengths, the 
teacher and students discussed on how the slope changes in accordance with the changes of the 
horizontal and vertical lengths while representing slopes of various positions of the batten with their 
horizontal and vertical lengths values. In the continuum of the discussion, she also used ‘trace’ tool 
on the line segment (i.e. batten) that shows the trace of the line segment as the slider of horizontal 
length moves from 1 to 60 with the dynamic slope computation. As evidence, the following 
conversation occurred: 

Teacher: Ok then, I want you to see how the slope value changes when I change the 
[position of] batten. Even I clicked trace on command in GeoGebra. Look at both 
the batten [line segment] and the slope. The value of the computation of the slope! 
What happens to the slope? (The teacher moves the slider to the lower part, which 
increases the horizontal length of the batten, and eventually that moves the 
batten)  

Student: Decrease! 
Teacher: It decreases, doesn’t it? Look it is 1.17 and then 1.12. What happens gradually? 
Students: Lessens. Becomes smaller. 
Teacher: The slope decreases more and more. What happens when it moves to the other 

part? (The teacher moves the slider.) 
Students: Increases! 
… (The students discuss it in their groups) 
Student Our batten has the longest vertical length and the least horizontal length with the 

biggest slope. 
As seen from the conversation, the teacher paid attention to the complexity of change of the slope 
that depends on the change in the horizontal length and the vertical length. Therefore, as evidence 
of decompressing, she unpacked the idea of slope in the physical situations context that involves 
proportional approaches.  

As another example of interpreting logic in computation of slope using GeoGebra material, in the 
FT activity, the teacher had students interpreted the change in computation of the slopes of fire 
truck ladder (that stops away 5-unit constant distance from a burning building) using vertical length 
slider tool after clicked the slope checkbox (that shows dynamic slope computation text) in 
GeoGebra graphics view and interpreted the change of slopes of the ladder when the horizontal 
length of the ladder was constant using the slider tool. For instance, while students using the 
GeoGebra material of the activity in a similar conversation given in below, she said “We have two 
variables. One is the vertical and the other is the horizontal length (The teacher shows them on the 
GeoGebra graphics view). In this question, which one is constant?” After the students explicitly 
mentioned the horizontal length was constant in that situation. The teacher added, “… Thus, we can 
see how the vertical [length] affects the slope. Could we see clearly the effect of one variable on the 
slope when the other one is constant?”. Therefore, the teacher again paid attention to the 
complexity of change of slope that depends on the vertical length when the horizontal length is 
constant. In this regard, she unpacked the idea of the slope that involves direct relationship with the 
vertical length when the horizontal length does not change in a physical situation. Similar 
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decompressing practice emerged in the Tt activity that the teacher unpacked the idea of slope 
involving indirect relationship with the horizontal length when the vertical length is constant.  

Discussion and Conclusions 
This study began with the development of an instructional sequence involving GeoGebra integrated 
tasks and activity sheets to develop students’ conceptualizations of the slope and interpret the slope 
computation in physical situations. The design of that sequence provided opportunities for students 
to experience slope with concrete objects and GeoGebra materials, to decide the factors that have an 
effect and do not effect on the slope of an object, to give meanings to various representations from 
concrete objects to dynamic visuals and mathematical notations, and to reason about the slope 
concept.  

In accordance with the findings about teachers’ mathematical practices, when teachers are engaged 
in such GeoGebra integrated activities after students experience the slope with the concrete objects, 
they need to have understanding of what is the meaning of the mathematical idea of the slope as a 
concept of steepness and as a process of measurement and computation in physical situations, and 
how this meaning of slope is in connection with measurement, ratio, rate, and division. Therefore, 
during the decompressing practices in those activities, teachers are likely to enhance students’ 
proportional reasoning underlying the slope computation for an object (i.e. the slope and the vertical 
length directly proportional when the horizontal length is constant, slope and horizontal length 
indirectly proportional when the vertical length is constant). Current studies also emphasized this 
understanding of slope as steepness through its relationship with proportional reasoning (Cheng et 
al., 2013; Lobato & Thanheiser, 2002). In this regard, such kind of mathematical practices require 
teachers to have the understanding of the relationship between the concrete and visual (i.e. as 
having knowledge of the goals and subgoals of steps in using intertwined multiple representations 
for the computation and the environment in which the computation is used) and the way of giving 
the aforementioned relationship considering the students’ experiences and reasoning. In addition, 
teachers need to have a mathematical understanding of how to give visual representations in a 
connected way not also for translating the selected concrete examples but also for generating all 
possible situations with the concrete object using the dynamic properties of the software (i.e. the 
constitution of relationship between deep knowledge of computational skill and knowledge of the 
dynamic representations of mathematical ideas) since this understanding is likely to enhance the 
background of removing the complexity of slope computation (i.e. trimming). In this regard, while 
using dynamic software to represent such situations, teachers’ knowledge of content and technology 
come to the forefront. Therefore, while the KAT framework (McCrory et al., 2012) and other 
studies (Wasserman, 2015) did not mentioned a knowledge dimension related with the technology, 
it is considered that teachers knowledge of teaching mathematics with technology should be 
considered as a source for fostering the bridging and trimming practices in classroom teaching. In 
sum, interrelations among those practices are likely to vary depending on the mathematical idea, 
teachers’ understanding of this mathematical content and their knowledge of students’ 
understanding in this content. As Clark-Wilson (2013) suggested, this paper elaborated the situated 
nature of use of mathematical knowledge in technology-enhanced classrooms. In this regard, that 
elaboration illustrate content-specific mathematical practices in teaching with technology that could 
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be involved in various kinds of activity formats as Bozkurt and Ruthven (2017) exemplified and 
explored through Drijvers et al.’s (2010) orchestrations. In further research, such kind of 
mathematical practices could be investigated in teachers’ various ways of orchestrations for 
elaborating their mathematical work as didactical performance.   
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Scope and focus of the Working Group 
The scope of this working group is to address opportunities and possibilities, as well as chal-
lenges and limitations, of information and communication technology (ICT) and other re-
sources for student learning (see Trgalová, Clark-Wilson & Weigand  2017). ICTs include soft-
ware programs, various kinds of hand-held devices, online and classroom activities, and sen-
sors. In addition, ICTs are considered in relation to more traditional non-digital resources such 
as textbooks, worksheets and various types of tools and physical manipulatives. We want to 
establish an overview of the current state of the art research in technology use in mathematics 
education, including practice-oriented experiences, research-based evidence, and theoretically 
enriched perspectives, as seen from an international perspective and with a focus on student 
learning. We also aim to suggest important trends for technology-rich mathematics education 
in the future, including a research agenda. Even though TWG 15 is closely related to this theme, 
it focuses more specifically on the role and practices of the teacher.  

In TWG 16, we had 28 presented papers and 14 posters. To promote more indepth discussions, 
we split up for some sessions into TWG16a and TWG16b.  

Relevant topics  
In TWG 16, we might roughly classify the presented topics as follows:  

· Content-related topics: rational numbers, variables, stochastics, multiplicative reasoning, 
equation transformation, functions;  

· Assessment: assessment with Dynamic Software Systems (DGS), digital tests (possibili-
ties and limitations), self-assessment, feedback, especially also with ITS;  

· Modelling: understanding the process of modelling, giving special examples like the 
“Math City Trail – a mathematical journey through a city”, long-term effects of modelling;  

· Specific tools: APPs, dynamic geometry, graphic calculators, virtual and augmented real-
ity; 

· Activity structures: gamification, online courses, flipped classroom, collaborative work. 
· Theoretical perspectives: activity theory, embodied cognition (esp. gestures). 
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Some Comments on the result of the TWG 16 

Assessment 

Assessment is an important part of the teaching and learning of mathematics. On the one side, 
it is associated with the evaluation of student knowledge and learning at the end of a course or 
teaching unit (summative assessment). On the other side, assessment should provide constant 
feedback to students during the learning process (formative assessment). Digital technology 
can be used in or can enhance both summative and formative assessment in many different 
ways. Three examples from this TWG: Irene van Stiphout & Madelon Groenheiden reflect on 
the construction of a digital diagnostic test for middle school in the Netherlands. They focused 
on the constant struggle between testing higher order skills, concrete description of curriculum 
goals on the one hand, and the limited possibilities of the digital test environment on the other 
hand. Yael Luz describes a pilot experiment in adaptive assessment. A system that automatically 
analyzes answers and generates immediate feedback is developed. Finally, Sietske Tacoma, 
Bastiaan Heeren, Johan Jeuring and Paul Drijvers investigate how providing automated feed-
back in an Intelligent Tutoring System can help students in an introductory university statistics 
course. Over all, assessment will remain a very relevant topic in the years to come. 
The big variety of digital tools 

It is very difficult to give an overview of present forms of digital technologies. On the one hand, 
there are still the classical software programmes used like computer algebra systems, dynamic 
geometry software, and spreadsheets. Markku Hannula & Mika Toivanen use Geogebra for 
problem solving activities and give a critical view to the use of computers, Edith Lindenbauer 
shows how Geogebra can be used to develop functional thinking. Myrto Karavakou & Chronis 
Kynigos create connections among different aspects of trigonometric functions in a program-
ming environment. Some new features have been added to this traditional software, especially 
3-D-geometry. On the other hand, mobile technology like tablets and smartphones with a big 
variety of apps are becoming more and more embedded in students’ lives, which leads us to 
consider their wider use as an educational resource. For example, Chorney, Gunes & Sinclair 
presented the multi-touch App TouchTimes, which is designed to support multiplicative think-
ing. At TWG 16, there was also a first glance of the use of virtual and augmented reality for the 
learning and teaching process. This will be a very relevant topic for the future, too. 
Elementary School 

Learning how to use digital technologies starts in Kindergarten and Elementary School. There-
fore, it is very important to discuss and evaluate chances and possibilities, but also restrictions 
and difficulties of the use of software in Elementary School as done within the TWG 16. For 
example, Ana Donevska-Todorova & Katja Eilerts develop criteria for reviewing the quality, 
potentials and limitations of tablet apps for elementary geometry. Eitan Ben-Haim, Anat Cohen 
& Michal Tabach discuss the suitability of the character of the graphic design on the students’ 
achievements while engaging with mathematical applets. Melanie Platz creates a learning en-
vironment applying digital learning tools to support argumentation skills in primary school. 
Axel Schulz & Daniel Walter create the tablet-app ‘Stellenwerte üben’ (Practicing place value)1 

                                                           
1 The German version of the tablet-app is provided on Google Play. An English version is in progress. 
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for practicing the place value concept. They show that previous experience with concrete phys-
ical material overlaps and influences the intended use of the implemented virtual features. Fi-
nally, an exploratory study by Sean Chorney, Canan Gunes & Nathalie Sinclair with 
TouchTimes focuses on how students interact with a new model of multiplication inspired by 
Davydov’s unitising approach, and, in particular, how they develop particular two-handed ges-
turing practices that involve coordinating two quantities—multiplier and multiplicand—in an 
embodied way. They argue that this approach provides an alternative to the model of repeated 
addition, which is frequently over-used in students’ initial encounters with multiplication.  
Online courses  

Nowadays, there is a variety of online courses. They are used mainly at the university level as 
a substitute for face-to-face lectures. There are “blended learning” approaches in which the 
online course is used an additional resource to face-to-face courses, or as an optional resource 
for special topics, which are not in the mainstream of traditionally taught topics, or as remedial 
courses (especially for first-year students) that cover basic school mathematics topics. Online 
courses pose many didactically interesting questions, e.g. how to present the topics, the effect 
of online in comparison to face-to-face courses, and the behaviour of the students while working 
online. Eirini Geraniou & Cosette Crisan created an asynchronous course on the use of digital 
technologies in mathematics education where students are not interacting with the lecturer or 
their peers in real time. They evaluated how the tutors’ design considerations and their online 
pedagogic strategies have influenced students’ learning experiences and their engagement with 
its resources, such as content, peers and tutors. The results show on the one hand students liked 
the flexible mode of study, but on the other hand, they show the effect of the missing conver-
sations among the students and the necessity of an orchestration of the timing of online contri-
butions. 

Games and gamification 

Gamification is a topic of much discussion in relation to learning, teaching and motivation. 
Gamification means the transfer of game principles, game design and game strategies to exter-
nal fields, like the learning and teaching of mathematics. Carlotta Soldano & Cristina Sabena 
developed game-based activities within a dynamic geometry environment–e.g. one player drags 
a vertex of a dynamic geometric configuration and the other player must respond in a way that 
maintains or breaks a constraint–for primary school to foster the development of students’ 
mathematical understanding and their argumentation competencies. Georgios Thoma examines 
problem-solving techniques in the context video games and illustrates the game’s potentiality 
as a problem-solving environment. 
The growing variety of theories 

The vast and diverse amount of theories related to technology implementation in mathematics 
education, as already reported in previous CERME research (e.g. Donevska-Todorova & Trg-
alová, 2017) brings the challenge of their applicability and relatedness with appropriate research 
methods. There are some well-known theories from other scientific disciplines as the theory of 
instrumental genesis, the theory of semiotic mediation and activity theory. There is also a grow-
ing interest in theories of embodied cognition, particularly in relation to the use of technologies 
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that offer new ways for students and teachers to express themselves mathematics, through ges-
tures and other body movements, as in the work by Chorney, Gunes and Sinclair. Given the 
plenary lecture by Paul Drijvers, who also promoted the incorporation of theories of embodi-
ment into existing theories (such as instrumental genesis), and the growing number of non-
dualistic theories of learning (of body and mind), we anticipate that this will become an area of 
fertile growth and change in the upcoming years.  

Some thoughts about upcoming topics 

A guideline of TWG 16 is to envisage upcoming trends and topics in relation to digital technol-
ogies. Online-courses, assessment and gamification are present topics which should be of great 
interest to mathematics educators and educational researchers in the coming years. There are 
other topics, which are also represented in the papers of TWG 15. One is space geometry. Xa-
vier Nicolas & Jana Trgalova created a virtual environment dedicated to spatial geometry to 
support the development of vision in space. Another topic is the use of digital technologies in 
out-door mathematics. Joerg Zender & Matthias Ludwig created the mobile app MathCityMap, 
which poses questions and provides help for questions posed while students do a math trail in 
the city. Osama Swidan & Eleonora Faggiano see modelling under a semiotic lens. While 
modelling activities are introduced by dynamic digital artefacts, they want to understand the 
ways students’ transit between the simulation of real phenomenon and the mathematical repre-
sentation. Interesting and challenging is for sure the relation of school mathematics and social 
media, or digital culture and school culture. Giulia Bini & Ornella Robutti use “Internet 
Memes” combined with augmented reality (AR) technology, to “cultivate classroom discourse 
and maximize linguistic and cognitive meta-awareness in high school students” (Abstract of 
the paper). Florian Schacht & Osama Swidan address pre-calculus concepts using augmented 
reality-technology. They use technology design-principles to create an AR-environment, to ad-
dress technological constraints experienced in experimental situations and discuss alternative 
ways. And finally, flipped classroom situations (see the paper of Stefanie Schallert & Robert 
Weinhandl) have to be investigated in more detail concerning the learning outcome.  

Finally, as technology moves from being an epiphenomenal part of our lives, and of classroom 
practice, we anticipate that in future CERMEs, many of the content-specific contributions will 
migrate to other TWGs, as might contributions focused on themes such as assessment. This 
may be a healthy shift in mathematics education research.  
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Focus and rationale of the poster 
The focus of the poster is the presentation of the project about interleaved practice based on e-
learning with the focus on geometry. The poster is intended to provide an overview of the 
theoretical constructs, the indication of the content, the study design and possible implications. 

Indication of the theoretical framework of the study reported 
The theoretical framework of the study refers to the theory of desirable difficulties, which is a new 
approach from empirical research of learning according to the idea: “To make things hard, but in a 
good way” (Bjork & Bjork, 2011, p. 55). The learning is made difficult in the short term, but in the 
long term the learning development improves. Research shows (Rohrer, Dedrick & Stershic, 2014; 
Bjork, 1994) that desirable difficulties lead to a more sustainable learning success.  

The poster focusses on the ”interleaved learning“, which represents a desirable difficulty. 
Interleaved practice is defined as an alternating and arrangement of several different learning 
contents, e.g., A, B, C (Lipowsky et al., 2015, see Figure 1).  

 

 

Figure 1: Interleaved Practice with the learning contents A, B, C 

The positive effect of interleaved practice is explained by the cognitive theories of learning 
psychology, because the sustainable learning results from a higher cognitive demand and a better 
memory performance (Bjork & Bjork, 2011; Sweller, Ayres & Kalyuga, 2011). 

In contrast to the interleaving is the ”blocked learning”, which represents one kind of the traditional 
learning in mathematics lessons. Blocked learning, in turn, facilitates learning by teaching one 
learning content at a time before moving on to another, e.g., A, B, C (see Figure 2).  

 

 

Figure 2: Blocked Practice with the learning contents A, B, C 

The possible consequence of blocked practice is that the learners can not remember the first topics 
after the learning the last learning contents (Bjork & Bjork, 2011). 
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Indication of and justification for the content  
The described project aims at investigating, whether the learning achievements of interleaved 
learning students differ from blocked learning students by the use of e-learning. Digital media are 
an important part of today's society and also used in school education for information, 
communication and networking processes. In the change of society, traditionally structured teaching 
must also be adapted (Bönsch, 2015). Using e-learning enables an innovative and current method 
for school education and promotes self-regulated learning (Blaschitz, Brandhofer, Nosko & 
Schwed, 2012). 

Implications for existing research in the area 
Possible practical implications for the existing research in e-learning seems to be the development 
of an e-tutorial for educational settings at school.  

One goal of the empirical research in didactics of mathematics should be the promotion of 
sustainable learning in mathematics school lessons. If interleaved learning proves to be a successful 
new teaching concept in geometry, the few studies on interleaved practice based on e-learning (e.g., 
Ziegler & Stern, 2014) have to be expanded in various learning contents of mathematics to explore 
the effects of interleaved practice further. 
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The research goal was to test the suitability of the character of the graphic design on the student's 
achievements while engaging with mathematical applets for elementary grades. This quantitative 
research compares two pairs of mathematical applets, which differ only by the type of graphic design; 
in the extent of detail and the amount of distraction, while the mathematical problems are identical. 
The first applet has animated graphics based on designs by Matific, a repository of mathematical 
applets. The second applet was designed specifically for this research in a schematic and visually 
simple version of the same activities. Students in the schematic graphics group made fewer mistakes 
and needed less time to complete the activity than students in the animated graphics group. In 
addition, students with lower mathematic ability succeeded better in the schematic group. No 
differences between the two groups were observed regarding the level of students’ enjoyment. 

Keywords: Educational design, graphic design, schematic graphics, cognitive load, mathematical 
applets. 

Introduction 
Gamification is an effective learning strategy in mathematics education at the elementary level. 
Moreover, a clever integration of educational computer games during the learning process contributes 
to the student's learning, and provides positive experiences (Wouters & Van Oostendorp, 2013). 
During integration of mathematical computer games both cognitive processes and motivational 
implications on the learning are taken into account.  

The cognitive load theory and the dual-coding theory (Kalyuga, Chandler, & Sweller, 2000) depicts 
the learning process as two independent learning channels, a visual and a textual channel. The 
decoding of each channel is processed separately in our minds, and only then can be processed 
together to create a unified meaning alongside prior knowledge. The decoding and processing 
procedures strain the working memory, which has a limited load capability (Cook, 2006). The split 
between the two channels can ease the learning process if the two channels are supplementary. 
However, an ineffective split may cause additional load on the working memory and therefore 
decrease learning efficiency. Learners who face difficulty with the learning material, and those who 
have less prior knowledge, are more likely to be "sensitive" to the dual channel split. Prior studies 
have shown that such learners are less capable of utilizing visual content that accompanies textual 
content (Tsai et al., 2016; Mason, Tornatora, & Pluchino, 2013). 

Aside from the cognitive aspect, another perspective on the effectiveness of learning by computer 
games, is through the motivational influence it may have on the learner. Enjoying the learning activity 
may lead the learner to identify with the learning goals and values (de Lope et al., 2017; Chang, 
Evans, Kim, Norton, & Samur, 2015; Sedighian & Sedighian, 1996). Graphic design which is 
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consistent with the learner's interests can help the learner relate to the game. Relatedness, as used by 
Ryan & Deci (2000), is crucial for achieving intrinsic motivation.  

Many studies compare computer games to traditional teaching and identify three advantages of digital 
technologies: increase entertainment, enhancing motivation of the students, and augmenting their 
ability to feel involved and active in a learning environment that is individually fitted to their needs 
(Wouters & Van Oostendorp, 2013; Giannakos, 2013; Chang et al., 2015; de Lope et al., 2017). 
However, there is a lack of research comparing learning from different computer games. A gap exists 
between developers, who are not familiar with the design domain, and designers who are not 
proficient in the educational and pedagogic area of expertise. This gap causes the challenge of creating 
digital educational materials consistent with theoretical knowledge in the field (de Lope et al., 2017). 
Learning applets can be compared with many different parameters. This research focuses on one 
issue: how to design the interface. Specifically, should one use schematic or animated graphics. This 
research provides a partial and specific response to the lack of empirical work in this area. 

The study 
The present research stems from a broader study which examines possibilities of better utilizing web-
based games in the mathematics classroom, given the practical need for a framework for teachers' 
choice of mathematical applets, and their integration within the sequence of lessons. Informed by the 
cognitive load theory and the dual-coding theory, the goal of the presented research is to test the 
suitability of the character of the graphic design on the student's achievements, in mathematical 
applets for elementary grades. Three research questions have been studied: (a) How does the learning 
process differ in learning from animated graphics versus schematic graphics? (b) In what ways are 
these differences affected by students' proficiency in mathematics? (c) What are the differences in 
students' enjoyment between graphic designs? Due to space limitation, in this paper we present only 
the findings relating to the working time and the level of accuracy of the answers (for more details 
See Ben-Haim, 2018). 

Methodology 

This research defined two types of graphics: "animated graphics" and "schematic graphics", which 
differ in the extent of detail and the amount of distraction (Figure 1). This quantitative research 
compares two mathematical applets. The two applets differ only by the type of graphic design, while 
the mathematical problems are identical. The first applet has animated graphics based on designs by 
Matific, a collection of educational math applets which is in use by many schools in Israel. The second 
applet was designed specifically for this research in a schematic and visually simple version of the 
same activities.  
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Figure 1: Screenshots of two applets from the two types of graphics 

(translated into English - originally in Hebrew) 

287 fifth and sixth grade students (50.9% males, 49.1% females) from three elementary state schools 
in the center of Israel participated in the activity to collect data for this research. All the children were 
randomly divided into two equal groups: animated graphics group vs. schematic graphics group. The 
schematic group employed simple and abstract graphics, based on geometric shapes and solid colors 
(with no shading or hues). In contrast, the animated group employed more complex and colorful 
graphics, including simple animation. In the animated graphics there is the appearance of depth and 
space. The elements are figurative and include expressive characters creating an accompanying 
narrative. 

This research monitored students’ activity during their play, which enabled the identification of 
different levels of success between the two groups, differences in working times, and comparison of 
the students' reports of their degree of enjoyment from the activity. We examined the differences in 
the learning processes in the two groups. In addition, the students from both groups were divided into 
two levels based on their proficiency in mathematics. The differences between the groups in 
performance throughout the activity were compared using statistical tests (t-tests, ANOVA and chi-
square) to identify statistically significant differences. Privacy of the children was protected in this 
research. The schools' names were replaced by numbers, and students' names were not mentioned. 

Findings 
Differences in the learning process between the two groups  

The research results show evidence that students in the schematic graphics group made fewer 
mistakes than students in the animated graphics group. Figure 2 shows the percentage of students 
who answered correctly on the first, second or third attempt (light blue and light orange refer to the 
percentage of students that answered correctly on the first attempt). As can be seen, for all three 
questions included in the applet, the schematic group (blue) answered with fewer attempts (meaning 
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fewer mistakes) than the animated group (orange). The differences between the groups are greater in 
the first and third questions, which were more difficult than the second. Further results show that the 
schematic group needed less time to complete the activity. Notably, these differences between the 
groups were observed on the first game of the applet, but not the second.  

 
Figure 2: Percentage of students according to success in answering during the applet 

Differences between the two groups and the students’ proficiency in mathematics  

The difference between the two graphic groups is even greater among the students with weaker math 
achievements (Figure 3). Students with lower mathematic ability succeeded better in the schematic 
than in the animated graphic group.  

 
Figure 3: Percentage of attempts to answer during the first applet, comparison of groups  

and of students' proficiency 

Further results arise from two measures by which the students are classified as having low- or high-
scores in mathematics: according to the student's school's performance, or according to the student's 
answer to a final question which was identical in the two groups. Some differences were found, 
though not always consistently, in distinguishing between low- and high-performing students. In 
some cases, the animated group was more challenging to low-performing students than to high-
performing students. Also, low-performing students in the animated group, required significantly 
more time than other students.   

Differences in students' enjoyment between graphic designs  

Contrary to expectations, no differences were observed regarding the level of enjoyment that students 
reported at the end of the activity with the applet. Students from both graphic groups, and from both 
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performance levels reported similarly on how much they liked the applets. These findings show no 
advantage for the animated graphics design with regards to satisfaction.  

Discussion 
The findings of this research show differences between the two graphic groups. Students in the 
schematic graphics group made fewer mistakes and needed less time to complete the activity than 
students in the animated graphic group. In addition, students with lower mathematic ability succeeded 
better in the schematic group. These findings consistent with the literature on cognitive load theory 
and on the dual-coding theory (Kalyuga, Chandler & Sweller, 2000). In some cases, the animated 
group was more challenging to low-performing students than to high-performing students. Also, low-
performing students in the animated group, required significantly more time than other students. 
These results are consistent with professional literature claiming that low-performing students and 
students with lower prior knowledge, encounter difficulties integrating visual and verbal inputs 
(Cook, 2006; Mason, Tornatora, & Pluchino, 2013). This means that graphic design of mathematical 
applets must be adapted to the mathematical knowledge of the learners. Students may find the activity 
harder when the graphic design is complex, if the activity generates significant cognitive load on the 
working memory. These findings lead to the conclusion that complex graphics may cause inhibitive 
cognitive load depending on the learning situation and on the student’s performance. Notably, no 
differences between the two groups were observed regarding the level of students’ enjoyment. 

The advantage of gamification in the learning process is in its ability to hide the real necessity to learn 
mathematics (that is remote to the child), and present a goal that the learner can understand and relate 
to, which also leads the learner to achieve the real goal of learning mathematics (Sedighian & 
Sedighian, 1996). Gamification may lead to learning via inner motivation, out of interest and curiosity 
with a clear goal in mind. The design of learning materials should speak in a familiar tone and be 
relevant to the learner’s world (Hui, 2009). 

The common misconception regarding digital learning is to think of technology as if it were 
"chocolate covered broccoli" (Bruckman, 1999, p.75). The advantage of digital gamification is not 
simply as a means of up grading conventional learning through external motivation (Habgood & 
Ainsworth, 2011). In order to truly leverage digital integration, the applet must be embedded in the 
learning process, and must stimulate an active intellectual activity (Sedig, 2008). The visual graphics 
of mathematical applets must act as the starting point for understanding the problem in a given 
exercise, leading the learner to insight and solutions (Van Garderen & Montague, 2003). To do this, 
the graphics must integrate between the game-play of the applet, its plot and the learning content 
(Wouters & Van Oostendorp, 2013). 

The philosopher Marshall McLuhan saw the medium as the source of change in society and coined 
the phrase "the medium is the message" (McLuhan & Fiore, 1967). In his view, it is not the content 
transmitted through the medium, rather than the medium itself that comprises the meaning, it is the 
medium itself that significantly influences the society. In our opinion, this insight echoes in the 
context of integrating applet-games into the classroom. Applets excite the learner simply by the use 
of the screen, rather than by the displayed content. It is our belief that as educators, we must not "take 
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a step back" when the computer enters the classroom. Rather, we must insist on taking an active role 
directing and navigating the digitally enhanced learning process. 

This research was performed with the attempt to maintain objectivity as much as possible, in the 
collection and analysis of the data. However, there are some limitations in this research. From 
practical considerations, the studied population was limited, and comparison between the groups was 
based on only two applets among a large pool of applets. Hence the studied population is not 
representative of Israeli students, and the activities are not representative of general mathematical 
learning games, nor of Matific applets in particular. It should be noted that, from among the three 
schools, only students from school 1 were not familiar with Matific before data was collected. While 
this research advances the understanding of development and design of digital learning interfaces in 
math education, further research is needed to extend these preliminary insights, to enhance the 
benefits of digital learning, and to sharpen teachers’ guidelines for implementation. 

Conclusion  
The results of this research assist us in formulating indicators for teachers, that will enable them to 
address both personal/experiential aspects of the learner, as well as cognitive aspects. In light of this 
research, three guidelines have been deduced which could assist developers, designers and teachers 
to reach a more effective integration of mathematical applets in the elementary school environment: 
(1) Different graphic designs are suitable for different audiences and for different learning situations. 
Complex and animated design can cause difficulties if the learning situation is challenging; (2) A 
schematic graphic design, with few unnecessary details, is more appropriate for applets that tend to 
have a high cognitive load on the learner; (3) The design must consist of a narrative that connects 
between the interests of the learner and the content of the learning material. Figure 4 presents the 
conceptual chart flow that enables practical application of the research findings. 

 
Figure 4: A conceptual chart for selecting graphics according to the characteristics of the students 

As shown in figure 4, the teacher must first identify the characteristics of the existing graphics in the 
applet in question. Two parameters need to be taken into account: (1) complexity of the graphics, and 
(2) to what extent the graphics serve a pedagogical role. Graphic complexity is rich in detail, contains 
animations, describes facial expressions and may contain a third dimension, similar to the animated 
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group in this study. In contrast, schematic graphics portray minimal detail often represented 
abstractly. The role of graphics covers a spectrum from pedagogical to motivational. Pedagogical 
graphics are integrated with the learning content and complete that content by visualizing it. 
Motivational graphics merely motivate and do not clarify the learning material.  

In the second step, the teacher may examine the applets suitability to the target audience. Figure 4 
depicts the questions that can be asked in the process and portrays two possible scenarios, each 
leading to a different outcome with respect to a different type of graphic design. Applets identified as 
having "overwhelming" graphics should lead to closer attention to the following indicator in overall 
decision making. The three scroll bars at the bottom of figure 4 express different aspects for the given 
audience. The right-hand side (blue) indicates difficulties that the learners encounter. The left-hand 
side (orange) indicates less challenging learning situations. The two scenarios depict clear-cut cases, 
where the three markers clearly lead to one side or the other. To conclude, schematic graphics is 
preferable when encountering challenging learning situations. 

The research conclusions can assist developers and designers of instructional materials in decision 
making regarding graphics in relation to learning content. Applets built on a linear continuous 
sequence of activity can design a gradual increase of the graphic load, so that the learner in the early 
stages of the applet will gradually adapt to the new interface. As the learner progresses throughout 
the activities, the graphics may unfold into a more complex environment, without having a negative 
effect on the learner due to the familiarity with the interface. Another rule of thumb regards applets 
addressing the learning stages of instruction in which the graphics may maintain simplicity and a 
schematic abstract approach, as opposed to the stages of practice, assessment, evaluation, or recall in 
which the graphics may consist of a more complex design. This implies that the design team and the 
pedagogic team must work together in planning educational applets. 

While the animated group presents a more attractive design than the schematic group, the former does 
not incorporate the learning content within the visual design. This is a common major disadvantage 
among applets. Developers and designers must manage the split between the applet plot and the 
learning material in order to truly utilize the advantages of digital gamification. This study provides 
rules of thumb on considerations regarding future development and design of mathematical applets. 
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Levering on the influence and use of social media in students' perception of learning mathematics, 
this project has a twofold purpose: the research aim is to contribute in breaking away from the idea 
that digital culture can be considered as opposed to school culture, investigating the epistemic and 
didactical affordances of mathematical Internet memes, combined with Augmented Reality 
technology. The coupled educational aim is to cultivate classroom discourse and maximize linguistic 
and cognitive meta-awareness in high school students. The project is a work in progress of which this 
paper presents the theoretical background used to frame the study, the results of a first exploratory 

teaching experiment - conducted with a group of 24 students attending the 12th grade of Liceo 
Scientifico in Milan - and the methodology and the next steps of the study. 

Keywords: digital culture, meme, augmented reality, boundary object, discourse 

INTRODUCTION 
Internet memes have become a viral form of Web 2.0 communication, with an ever-increasing 
number of occurrences on social platforms as Instagram (from 37 million in March 2018 to 76 million 
in March 2019). Nevertheless, Knobel & Lankshear claim that “understanding successful online 
memes can contribute much to identifying the limitations of narrow conceptions of literacies and new 
technologies in classrooms” (2007, p.221) still remains almost unanswered. In fact, up to today, the 
possible didactic relevance of Internet memes is nearly unexplored by academic research and their 
meaning and use in mathematics education is an unmapped territory. Even if popular culture is 
playing an increasingly important role in the lives and learning opportunities of young people, Peter 
Applebaum’s regret that “little work, if any, has been done by math educators to probe the efficacy 
of mass culture criticism for education in math” (1995, p. 24) strikes for its up-to-dateness. 

Levering on the influence and use of social media in students' perception of learning mathematics, 
this project has a twofold purpose: the research aim is to contribute in breaking away from the idea 
that digital culture can be considered as opposed to school culture, investigating the epistemic and 
didactical affordances of mathematical Internet memes, combined with Augmented Reality 
technology. The coupled educational aim is to cultivate classroom discourse and maximize linguistic 
and cognitive meta-awareness in high school students. The project is a work in progress of which this 
paper presents the theoretical background used to frame the study and the results of a first exploratory 
teaching experiment - conducted with a group of 24 students attending the 12th grade of Liceo 
Scientifico in Milan - together with the methodology and the next steps of the study. 

FROM MEMES TO INTERNET MEMES 

In 1976, well before the digital era, evolutionary biologist Richard Dawkins coined the term meme as 
“a unit of cultural transmission”, examples of which are “tunes, ideas, catch-phrases, clothes fashions, 
ways of making pots or of building arches” that “propagate themselves in the meme pool by leaping 
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from brain to brain via a process which, in the broad sense, can be called imitation.” (Dawkins, 1976, 
p.249). Web culture (https://en.wikipedia.org/wiki/Internet_meme) gives credit to Mike Godwin for 
revamping the concept of memes in 1993, identifying Internet memes as a subset of memes and 
describing them as an activity, concept, or piece of media that spreads through social channels, 
evolving in the hands of the digital users and reaching a large audience. 

Internet memes can be in the form of viral images, videos o files: in this work, we will focus on those 
made of “verbal and pictorial parts, which unfold their meaning through collective semiosis” 
(Osterroth, 2018, p.6); as they integrate different modes of communication, we think they can fall 
into the category of multimodal artefacts. They usually have a humorous or satirical intent and are 
widely shared by young people through social platforms (Facebook or Instagram), since they connect 
the participatory potential of the Internet with the quest for user-generated content that - through 
shares and likes - provides a form of social validation. 

They are deeply rooted in visual media culture and catch users’ attention with their puzzling vibe that 
calls for the active contribution of the viewer to unlock the meaning and thus adds a gratifying flavour. 
Internet memes are created by users according to collectively established and shared rules that govern 
the so-called memesphere: these rules dictate the conventional meaning of the pictorial parts and the 
position, font, syntax and narrative structure of the text, they “cannot be enforced by a specific person, 
but the community sanctions wrong uses by downvoting, not liking or simply not spreading the 
misused meme” (Osterroth, 2018, p.7). These same rules shape meme generators websites as 
https://imgflip.com/memetemplates or https://makeameme.org/: there are several accepted structures, 
two of the most common being those in Figure 1.  

   
Figure 1: Two prototypical meme structures  

Pictorial parts, usually identified with names, might have local or global recognisability: in Figure 2, 
a blank template of the Success Kid meme - globally used to boast of something good - is shown, 
followed by a general example of the meme propagation by imitation and an example of its psycho-
pedagogical adaptation, to end with its mathematical variation. 

     
Figure 2: Template and propagation of the Success Kid meme (source Google search, Sept 18) 
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The last example is representative of a rare situation in which mathematics spontaneously leaves the 
school context and is used to identify the belonging to a group and to set the author’s position in the 
group. This kind of memes, in fact, are usually shared within specialized Internet groups, where 
products are scrutinized by skilled peers and acceptance grants the author the cited social validation. 

MATHEMATICAL INTERNET MEMES AS KNOWLEDGE CARRIERS 
To focus more on the concept of mathematical Internet memes and illustrate their epistemic 
potentiality, we shall analyse two examples of the Drowning kid in the pool meme (Figure 3), used 
to describe a situation where something is typically forgotten. On the left a correct version posted in 
May 2018 within a Reddit thread, where was identified as “the quintessential math joke”, on the right 
its wrong variation, posted in another Reddit thread in June 2018. 

         
Figure 3: Drowning kid in the pool correct (left) and wrong (right) memes 

Taking a look at the exchange triggered by the wrong one (some excerpts are listed below), we see 
how memes can act as knowledge carriers and starters of meaningful mathematical discussions: 

bike0121 This is not really correct. The function sqrt(x) is always greater or equal to zero. 
The inverse of x2 is indeed ±sqrt(x), but sqrt(4) is always +2, not -2. 

Dat_J3w Yea it's positive by convention; the square root of four is still plus/minus two 
functor7 Absolutely not. Sqrt(4) is 100% only the value 2. The solutions to the equation x2=4 

are ±2. Sqrt(x) is a function, which means it only has one value. Sqrt(x) is a number, 
not a collection of numbers. 

Dozens of Reddit and Facebook mathematically-themed groups (some with evocative names like 
“Complex Analysis Memes For Holomorphic Teens” and “The Name Of This Group Is Left As An 
Exercise For Its Members”) with thousands of users showing off their mathematical knowledge, 
discussing, posting and sharing mathematical Internet memes on a daily basis, suggest  that the 
meaning of a meme can be looked for in a “sphere of practice (SP), […] defined as the ‘community’ 
adhering to a common set of rules, within which mathematical meanings are constructed” and could 
be a suitable setting to address the issue of “communicating, transforming and negotiating the social 
meaning of school mathematics” (Kilpatrick et al., 2005, p.10). 

PARTIAL AND FULL MEANINGS OF A MEME  
As a first step of the study on mathematical memes, we tried to figure out how memes act as carriers 
of meanings and we identified a triple-s construct of the three partial meanings that contribute in 
building up the full meaning of a mathematical Internet meme. 
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· The first meaning of a meme lies in its being a meme, namely to have a specific and shared 
structure and graphics (font, colour and text position). It can be considered at a structural level 
(Figure 1). 

· The second meaning of a meme is conveyed by the shared conventions connected to viral images, 
compositional setups and accepted syntaxes. It is at a social level (Figure 2, first image). 

· The third meaning of a meme is borne by images, symbols or text referring to a specific topic 
(mathematical, but also political, physical or other). This is at a specialised level (Figure 2, last 
image, textual part). 

The first two meanings ground in the popular culture rules that govern the memesphere, acting as 
Kilpatrick’s sphere of practice, while the third calls some mathematical skills into action. The 
interplay of all three partial meanings unlocks what we call the full meaning of the meme, that triggers 
the surprise/membership effect. There are people who can only access the first meaning, merely 
recognising the artefact as a meme (and not a cartoon, for example). Others will stop at the second 
level, identifying the viral elements only. On the other hand, those who understand the specialized 
mathematical signs in the meme, but are not aware of the other meanings, will equally miss the full 
meaning. But those who succeed in appreciating all three meanings will crack the full meaning of the 
meme: they will laugh and feel part of a community. In fact, “meaning mobilizes feeling, and 
emotions only translate if we process images and captions in the same way” (Benoit, 2018, p.41). 

To sum up, we think that it would be fruitful to investigate whether mathematical Internet memes can 
contribute to the construction of mathematical meanings and explore the possible epistemic 
affordances implied by their multiple referents (one of many being their visual component that can 
cater to different intelligences and learning styles). To pursue this research path we imagined that, 
having mathematics spontaneously already crossed the boundary between formal and informal 
learning, it could be worth exploring how to facilitate the crossing in the opposite direction and test 
mathematical Internet memes in a standard school context. 

THEORETICAL FRAMEWORK 
It is beyond the scope of this study to evaluate why Internet memes in general, and mathematical 
Internet memes in particular, have this success in the social arena, although that “aha” moment we 
all experience when we finally grasp the joke resonates with what Mason (2014, p.1) describes as a 
“disturbance, experienced as surprise, as puzzlement or perplexity” that somehow “provoke[s] 
learners into taking initiative” and “call[s] upon learners to make use of their undoubted powers of 
making sense.” Zooming in, we will focus our attention on the learning dynamics connected to the 
use of mathematical memes within the classroom: in this optics we will try to read our data through 
the lenses of the Boundary Objects framework as introduced by Star & Griesemer (1989) and further 
developed by Akkerman & Bakker (2011) and of Anna Sfard’s (2001, 2008) theory about discourse 
and communicational approach to cognition in a Vygotskian sociocultural perspective. 

According to Star & Griesemer, (1989, p.393) “boundary objects are objects which are both plastic 
enough to adapt to local needs and the constraints of the several parties employing them, yet robust 
enough to maintain a common identity across sites. […] They have different meanings in different 
social worlds, but their structure is common enough to more than one world to make them 
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recognizable, a means of translation.” Our point is that mathematical Internet memes can be looked 
at as boundary objects between social media and mathematics, two separate worlds with separate 
rules and languages, whose “intersections of cultural practices open up third spaces that allow 
negotiation of meaning and hybridity—that is, the production of new cultural forms of dialogue” 
(Akkerman & Bakker, 2011, p.135), and therefore they can be fruitfully trialled in boundary-crossing 
activities. In a complementary way we argue that memes, together with the inner discourse brought 
into being to make sense of them and the collective discussion they trigger in the class group, are 
aligned with Sfard’s statement that “the term discourse will be used to denote any specific instance 
of communicating, whether diachronic or synchronic, whether with others or with oneself, whether 
predominantly verbal or with the help of any other symbolic system […] learning mathematics may 
now be defined as an initiation to mathematical discourse, that is, initiation to a special form of 
communication known as mathematical.” (Sfard, 2001, p.28). 

The research questions we are searching answers to are the ones below, they are big and complex 
ones and we are aware that this study just put a small dent into them, but we think they deserve to be 
stated because they outline the bigger picture we strongly believe is worth looking for: 
RQ1: What are the epistemic affordances, if any, of mathematical Internet memes? 
RQ2: Does creating and/or interacting with these memes implies/determines learning? 
RQ3: Which characterizations identify a boundary object in this context? Which interactions among 
the communities of students, teachers and researchers are triggered by these boundary objects? 
RQ4: Can memes, students’ explanations vehiculated through the narrative virtual content and 
classroom discussion be identified as parts of a mathematical discourse? 

METHODOLOGY: THE BUILDING OF THE TEACHING EXPERIMENT 
The beginning of this project dates back to a few years ago when one high school student (of the first 
author) provokingly said that he had finally grasped a math concept only when coming across a 
mathematical Internet meme on the same subject in a social platform. Moving forward from this first 
naïve appearance of memes in the school environment and trying to figure out how to build a 
significant task to test our assumptions in an almost unexplored territory is, of course, a challenge 
that can be tackled only by small steps. We started observing students’ reaction to mathematical 
Internet memes found in the web (examples in Figure 4) and used by the teacher to catch and hold 
attention, to stress specific aspects of already taught topics and to trigger classroom discussion. 

   
Figure 4: Examples of web-found mathematical Internet memes  

The quality of the mathematical discourse enthused by these mathematical Internet memes convinced 
us that interacting with them calls mathematical competencies into play but, to dig deeper into the 
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epistemic of memes, we realised that students had to create the memes themselves and shoot videos 
to keep track of the explanations of the mathematical meanings. 

This is when Augmented Reality (AR) comes into action: vision-based AR technology refers to the 
triggering of a superimposed computer-generated layer (usually a video) when pointing a smartphone 
or other GPS-enabled device to a precise spot; it allows the connection of the meme to the 
corresponding explanatory video, that can be then viewed scanning the meme into the phone. 
Hopefully, the bonded couple meme+video will thus give origin to a multimodal and multimedia 
learning object, providing opportunities for the single student to maximize his linguistic and cognitive 
meta-awareness and systematize knowledge, for the class group to connect and revise knowledge and 
for the teacher to assess students’ comprehension of previously studied concepts, to single out 
possible misunderstandings and misconceptions and give a formative assessment. Last but not least, 
it could cross the threshold of the school environment, be shared on the web and become part of the 
global network heritage as a viral meme. 

Having students create memes and videos themselves matches different goals: it allows taking 
advantage of the aforesaid participatory thrust of the digital world, it leverages on the notion of 
identity as “a perfect candidate for the role of “the missing link” in the researchers’ story of the 
complex dialectic between learning and its sociocultural context” (Sfard and Prusak, 2005, p.I-43) 
and finally it will hopefully facilitate the emergence of the students’ linguistic and cognitive meta-
awareness, which are the declared educational aims. This last expectation grounds in the concepts of 
“active response” and “meaningfulness” advocated by Burbules in his description of the virtual, that 
“should not be understood as a simulated reality exposed to us, which we passively observe, but a 
context where our own active response and involvement are part of what gives the experience its 
veracity and meaningfulness” (2006, p.38). 

A FIRST TEACHING EXPERIMENT 
At the end of May 2018, a first exploratory teaching experiment was conducted with a group of 12th-
grade students, aiming at testing the potential educational effectiveness of memes. The assigned task, 
to be done individually at home, was to create a meme on one of the year's math course topics 
(optionally using one of the said meme generator websites) and shoot a video with the smartphone 
explaining the mathematical concept recalled by the meme. Students then were asked to bond meme 
and video through HP reveal (a free augmented reality web app) and post the meme in the collective 
space, using the free web app Padlet, set up for the occasion to mimic the social media environment, 
allowing the sought-after tribal reward reactions.  

Connecting students’ memes to our triple-s analysis, we can see that all productions comply with the 
structural meaning and that they all call for the viewer’s engagement mobilizing an emotional reaction 
due to a misalignment between different parts of text or between text and image. Looking at the social 
meaning, that seems the element that crosses the boundary “maintaining the common identity” (Star 
& Griesemer, 1989, p.393), we have identified three main categories (examples in Figure 5). 

Finally, examining the memes’ specialized meaning, further clarified in the coupled videos, we 
completed the possible analysis in Table 1 (videos – in Italian - can be seen downloading the HP 
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Reveal app to a smartphone, following lifeonmath and then scanning the images in Figure 5 – due to 
monitor light reflections, it works better with printed images). 

   
Figure 5: Example 1 (left), Example 2 (centre), Example 3 (right) 

CATEGORIES  SOCIAL LEVEL SPECIALIZED LEVEL 
Figure 5 

Example 1 
meme caption starting with a 
“when you/they” statement  

mathematical terms in the meme caption. 

Figure 5 
Example 2 

meme describing the effect of 
an action or operation 

image connected to the mathematical 
action, mathematical symbols used to label 
elements in the image 

Figure 5 
Example 3 

meme creating a pun based on 
a bivalency of meanings  

meme caption with terms that have a 
mathematical and a common use meaning  

Table 1: Analysis of the produced memes and videos 

Considering these data, a first observation is that technology seems to intervene with different roles: 
it acts both as an instrument for students to create the learning objects and as an environment with 
rules that informs designers and users. From the educational point of view, their creations seem to 
confirm that students knowingly selected a topic in which they felt comfortable (cognitive meta-
awareness) and made an effort to explain it clearly using appropriate lexis (linguistic awareness). 
Looking this preliminary analysis through the lenses of our framework theories, we ventured that the 
boundary object could be looked for in the social level that “maintain[s] a common identity across 
sites” (Star & Griesemer, cited), while the couple meme+video appears effective in triggering a 
special form of mathematical communication in which meta-cognition and language accuracy play a 
relevant role. This is, of course, a first rough attempt that has to be refined, breaking it down and 
trying to identify the steps of the boundary crossing (identification, coordination, reflection and 
transformation) and the commognitive constructs (word use, visual mediators, narratives, and 
routines), once the observation of the cognitive processes will be implemented. 

NEXT MOVES 
Although the results of this first exploratory teaching experiment seem encouraging, there are still 
many shadows hanging over this project, one among others being its replicability. In order to dispel 
at least this first doubt, in the upcoming months, we are planning to set up a focus group observing 
2/3 students, coming from a different school environment, during the process of creating memes and 
videos on a fixed topic. In the light of the data collected, we will hopefully structure a larger study in 
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a class group, giving space also to class discussions, teacher’s feedbacks and possible students’ 
revisions of the products, together with the assessment of the learning after a few months. 

As we recalled in the opening paragraph, this work is still in progress, with no assessed conclusions 
and many unanswered questions, but we strongly believe it is worth to keep venturing in this almost 
unmapped territory because this is something more than a traditional technological learning 
experience, as memes produced by students can leave the school environment and spread virally in 
the web. It is a unique situation in which the virtual world comes into contact with the school world, 
expectantly enabling us to learn something new about the impact of the digital revolution and new 
communication technologies on epistemological pathways and learning practices. 
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This paper focuses on the process of university mathematics students engaging in a sequence of 
programming-based mathematical project tasks as part of a course. Data of this naturalistic research 
was collected mainly through four student projects and semi-structured individual interviews. The 
analysis led to narratives of students’ development process (instrumental genesis) in which enacted 
strategies (instrumented actions) are highlighted. In this paper we discuss a participant’s 
development process. Results suggest that the student, after 1 course, has appropriated programming 
as instrument for creating a tool for pragmatic purposes; however, not yet as instrument for 
mathematics investigations and applications, i.e., as an object-to-think-with (Papert, 1980). 

Keywords: Programming, Instrumental Genesis, Strategies, University Mathematics Education.  

Introduction 
There is a resurgence of interest in integrating computer programming—more broadly, computational 
thinking (CT)—in education (e.g. in UK; Benton et al., 2017). This interest reflects how scientific 
fields, including mathematics, have developed computational counterparts (Weintrop et al., 2016), as 
well as the rise and need for proficiency in computational practices as 21st century skills. We see a 
crucial need to understand how students can be empowered to participate in such computational 
thinking, now an integral part of the mathematics and broader community. 

In our work, we want to better understand how students come to appropriate programming as an 
instrument for mathematics investigations and applications “as mathematicians do”. This 
appropriation involves students developing fluency (e.g. enacting strategies to progress forward) as 
they are (in the process of) engaging in this kind of mathematical work. This includes, not only 
becoming skilled at programming, but also designing and interpreting the mathematical work 
facilitated, or made possible, by programming. In this proposal, we discuss the case of a student’s 
fluency development, analysed from the first-year data that was collected as part of a five-year study 
that examines how postsecondary mathematics students learn to use programming as a CT instrument 
for mathematics. It is a naturalistic (i.e., not design-based) research that takes place in a sequence of 
three project-based mathematics courses (called ‘MICA’) implemented in the mathematics 
department at Brock University (Canada) since 2001, where undergraduate mathematics majors and 
future mathematics teachers learn to design, program (e.g. in VB.net), and use interactive computer 
environments to investigate mathematics conjectures, concepts, theorems, or real-world applications 
(Buteau, Muller, & Ralph, 2015; Muller, Buteau, Ralph, & Mgombelo, 2009).  

Conceptual Framework 
Our work is framed by various interrelated concepts reflected in the literature on CT, CT in 
mathematics, and in mathematics education (Buteau, Muller, Mgombelo, & Sacristán, 2018). Wing 
(2014) defines CT as “the thought processes involved in formulating a problem and expressing its 
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solution(s) in such a way that a computer—human or machine—can effectively carry out” (p. 5), 
while Hoyles and Noss (2015) consider CT as abstraction, algorithmic thinking, decomposition, and 
pattern recognition. CT is an underlying process to computer programming described e.g. by 
Weintrop et al. (2016) as understanding, modifying, and writing codes (e.g., in Python or C++). 
Brennan and Resnick (2012) identify key dimensions for developing CT, namely computational 
concepts (e.g. iteration), computational practices (e.g. debugging projects or remixing others’ work), 
and computational perspectives (e.g. a designer’s evolving views about what could be programed). 

CT has changed the nature of contemporary research in mathematics; for example, we now see 
computer-based proofs and new domains of research related to mathematics and computation such as 
bioinformatics. The European Mathematical Society (2011) recognizes this emerging way of 
engaging in mathematical research: “Together with theory and experimentation, a third pillar of 
scientific inquiry of complex systems has emerged in the form of a combination of modelling, 
simulation, optimization and visualization” (p. 2). 

Based on their literature review and interviews with experts who use CT, Weintrop et al. (2016) 
outline what they believe to be the integral CT practices for mathematics and science, in particular 
encompassing this third pillar (Broley, Buteau, & Muller, 2017), across four main categories 
throughout which programming is an underlying practice: data practices, modelling and simulation 
practices, systems thinking practices, and computational problem-solving practices. E.g., the latter 
practice involves interpreting and preparing problems for mathematical modeling, assessing different 
approaches, developing modular solutions, and creating computational abstractions. 

In the field of mathematics education, CT is not new; indeed, it has a 45-year legacy that started with 
the LOGO programming language (Papert, 1980) and extended into the theory of constructionism. 
Studies of constructionism in undergraduate-level mathematics education show how programming 
supports students’ understanding of mathematical concepts and contributes to the development of 
critical thinking skills (e.g., Wilensky, 1995). As for students’ processes when engaging in using 
programming for mathematical investigations and applications, we proposed a model based on 
insightful reflections on MICA student experiences (Buteau & Muller, 2010) which was later refined 
through a literature review (Marshall & Buteau, 2014); see Figure 1. 

 
Figure 1. Development process model of a student engaging in programming for a mathematical 

investigation or application (Marshall & Buteau, 2014) 

We use Lave and Wenger’s (1991) concept of “legitimate peripheral participation,” which describes 
how learners enter into a community of practice and gradually take up its practices, to understand 
how undergraduate students learn mathematics through CT activities. Based on this idea, mathematics 
is not knowledge to be acquired but rather is a process of participation through which the student 
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gradually gains membership to a community (of mathematicians). We thus focus on how students 
create and use computer tools to engage in opportunities to participate peripherally in practices 
considered to be integral to the mathematical community as outlined by Weintrop et al. (2016), i.e., 
in the four CT practice categories. Thus, our work is focussed on how students (newcomers) engage 
in computational thinking for mathematics as mathematicians (elders) do. In fact, the proposed 
development process of a student engaging in programming for mathematical work as summarized 
in Figure 1 (removed of its numbering) seems to align with the process by which pure mathematicians 
use programming in their research work (Broley, Caron & St-Aubin, 2018).  

In this proposal, we focus on this process and the strategies that students enact when engaging in CT-
based mathematics work. In the instrumental approach framework (Rabardel, 1995/2002), the process 
is related to a student’s instrumental genesis (Artigue, 2002): the process by which the student 
transforms an artifact into an instrument through schemes of usage and action. The instrumental 
genesis is a twofold process: instrumentalization –directed towards the artefact–, and instrumentation 
–directed towards the user–concerning “the development and appropriation of schemes of 
instrumented action which progressively take shape as techniques that permit an effective response 
to given tasks” (Artigue, 2002, p. 250). These schemes of instrumented action consist of technical 
and conceptual components. According to Drijvers, Godino, Font, and Trouche (2013), techniques 
may be considered “as the observable part of the students’ work on solving a given type of tasks (i.e., 
a set of organized gestures)” (p.27), e.g., strategies used by a student at a certain step/cycle (see Figure 
1) when engaging in a given programming-based mathematical task; and the schemes “as the 
cognitive foundations of these techniques that are not directly observable, but can be inferred from 
the regularities and patterns in students’ activities”(p. 27). As Bozkurt et al. (2018) summarize:  

An artefact is initially not meaningful to the user until he or she develops associated schemes 
of instrumented action to use the artefact for achieving a task, and effectively turning the 
artefact into a useful mathematical instrument. (p.44) 

E.g., turning (VB.net) programming into an instrument for mathematics investigation or application 
as mathematicians do, which we call ‘a CT-instrument for mathematics’. In this proposal we discuss 
first results commencing to address our research question: How do post-secondary students come to 
appropriate programming as a CT-instrument for mathematics?  

Methodology 
Our research uses iterative design methods whereby some parts (participant recruitment and data 
collection) were designed in a way that would be least intrusive to (or constrained by) the natural 
learning environment. The study follows students’ development over the course of (and beyond) their 
MICA I-II-III courses as they engage in 14 exploratory object (EO) mathematics project tasks, each 
resulting in an interactive environment and a report of mathematical findings (Muller et al., 2009). 
This paper focusses on a first analysis of data collected from the first year of our research. It thus 
draws from MICA I students where six (among 46) participants were recruited (voluntarily). In the 
MICA I course, there are 4 EO project tasks (which count for 71 % of students’ final grades): 3 
assigned individual ones, and a fourth one where students select the topic and can work in pairs or 
individually. Two-hour weekly labs progressively integrate through guided exercises the learning of 
computational concepts (variables, loops, etc.) in a mathematical context, whereas two-weekly hour 

Thematic Working Group 16

Proceedings of CERME11 2798



 
 
lectures introduce the math background needed for engaging in the EO tasks (Buteau et al., 2015).  

Data from the participants included each participant’s 4 project assignments (EO and report) and 
individual semi-structured interviews after completion of each of these EO tasks. The design of the 
interview guiding questions was informed largely by the students’ development process model 
(Figure 1). In addition, data collected included weekly post-laboratory session online reflections 
(answering guiding questions) and an initial baseline online questionnaire before the beginning of 
MICA I course. Lab session and EO assignment guidelines were also collected and were 
complemented by an informal understanding of the MICA I course from the research team members’ 
experiences in different capacity (researcher, instructor, course approver, former student). 

All of the collected student data were analysed through thematic analysis techniques. Codes were 
developed based on categories informed by the conceptual framework (and associated literature). 
Each participant’s interview and lab reflection data was coded individually by two coders, followed 
by a thematic analysis done jointly by the two coders. Themes were consolidated among the six 
participants’ analyses, and led to sixteen themes regrouped in five main meta-themes, one of which 
concerned strategies. Narratives were composed, following the model steps from Figure 1, of each 
participant’s process of engaging in their four EO projects, highlighting their enacted strategies, and 
overall summary. We now present preliminary findings by illustrating one of the six participants’ 
development process with a focus on her use and development of instrumented techniques, i.e., 
enacted strategies (in italic, below), as a way to gain insights into her instrumental genesis towards 
appropriating VB.net programming into a CT instrument for mathematics. 

Findings: the case of Hannah 
Hannah (pseudonym) is a mathematics and computer science co-major, and thus had programming 
experience (in Java) prior to her MICA I course. In her first assigned EO project –exploring a 
conjecture of their choice about prime numbers or hailstone sequences–, Hannah struggled with the 
initial step of conjecturing (steps 1-2 in Figure 1); once she was passed this, she incrementally 
designed and programmed (steps 2-3) with ease her interactive environment (EO). When the time 
came to interpret the mathematics output of her program (steps 5-7), Hannah struggled and provided 
only data examples without mathematical explanation. In the EO 2 project on a RSA encryption 
application, Hannah reported feeling more satisfied and confident, finding it overall easier, in 
particular since she could start right away with designing and programming (i.e., step 1 was provided 
by the assignment guidelines). However again, her focus on the mathematics (step 5-7) seems to have 
been limited. We elaborate next on Hannah’s engagement in her third EO task. 

Hannah’s development process and enacted strategies in her third assigned EO project task 

Students are then asked to design, program, and use an interactive environment to explore, graphically 
and numerically, the behavior of a dynamical system based on a two-parameter cubic (Buteau et al., 
2015). It follows an introduction of discrete dynamical systems in lectures, guided computer lab 
activities to program an EO to explore the logistic function system (quadratic, 1 parameter), including 
an instructor guided exploration of the system as the parameter is changed. At this time, students have 
been introduced to all basic computational concepts for mathematical work: variables, interface 
design, loops, conditionals, events, sequencing, and graphing. This assignment has a significant 
component on mathematical investigation. For Hannah, it is a critical learning opportunity since she 
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struggled with the mathematical components of the previous two EO projects.  

Similarly to EO 2, the assignment guidelines provided the focus of the EO project (step 1 in Figure 1). 
Hannah voices that she did not research the related mathematics (step 2) when beginning the 
assignment because the lectures and labs were sufficient; however, in reflection, she believes she 
would have needed more time spent on the math concept to grasp it. In fact, Hannah missed some 
lectures due to illness and felt unable to catch up with the mathematical concepts. As in the past 
assignments, Hannah understands the programming concepts and is able to start designing and 
programming her project (step 3) in lab time by remixing from the two previous labs on the logistic 
function dynamical system. She used the computational practice of incremental steps with testing to 
complete the programming (programming cycle) – see Figure 2 for a screenshot of her EO: 

Hannah: the first step was setting up everything. … we have to setup the graph... regardless 
of … ‘a’ and ‘b’… we’re converting it to pixels instead of x and y’s… So, we had 
to make sure that was working first before you could plug in anything. 

 
Figure 2. Screenshot of Hannah’s third EO project about the 2-parameter cubic dynamical system  

Hannah tested the mathematics output of her program against other students’ work and known 
examples from class (step 4); e.g., Hannah says: 

Hannah:  I used the, um, same values that, um, [the instructor] put in the labs. And, um, 
I checked, I compared the sequence and saw the math was working and then 
the graph and how it looks. 

However, she had difficulty in investigating the given math topic or understand its meaning (steps 5 
& 6), although she did investigate the cubic function by systematically varying its parameters: 

Hannah: I left ‘b’ fixed at zero and I increased ‘a’ a little bit and little bit and I see how 
it affected the curve….So, yeah, I played around with [a and b] until, um, until 
I got the fixed points. 

but struggled with understanding the cobweb: 
Hannah: one of the challenges was, um, the, um, trying to figure out if it actually does 

converge. Because, um, the way we visualize it is, um, for each of the points. 
So, if you have 10 points, uh, 10 sequence numbers that you have, you draw 
lines between them. But, because we don’t have like, sort of like, the starting 
point of the line and the ending point, you don’t know if it is going that 
direction, which direction are going.  

In the final part of the assignment, the report, Hannah’s lack of understanding becomes clearer. 
Although her program works, her report does not reflect understanding; in particular, she uses the 
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program to generate an example, rather than elaborating calculations and drawing it by hand as asked 
(similar to how she completed her EO 2). Her report is lacking in explanations or conclusions to 
communicate her mathematical knowledge (step 7) and the discussion portion of the report is missing. 
This EO project could have been a great positive learning experience for Hannah to use programming 
for mathematics (learning) as this assignment was heavier on the mathematics investigation than 
previous ones. However, Hannah missed the opportunity partly due to external factors (illness). 

Hannah’s overall trend over the 4 EOs 

Throughout the course, Hannah’s focus seems to remain on programming rather than moving on to 
programming for mathematics, as revealed through her general approach to the 4 EO assignments. 
Hannah finds difficulty in identifying on her own, a mathematics topic relevant to a programming-
based approach (step 1). She prefers to be given a conjecture (as in EO 2) and avoids creating her 
own when possible (as in EO 4). Once the mathematics problem or conjecture is sorted out, Hannah 
becomes much more comfortable. Most of the time, she researches thoroughly and uses resources to 
be well prepared for a solution before starting to program. She wants to understand the mathematics 
a priori and then program it, rather than using programming to understand (her general approach to 
‘interpreting and preparing problems for mathematical modeling’ practice). This method causes 
difficulty in EO3 as programming for investigation is an intended way for students to understand. 

 

Figure 3. Hannah’s summarized enacted strategies during the development of her 4 EO projects 

Hannah uses her previous programming experience to help her complete the design and programming 
(step 3) with ease and little help from others: she works incrementally and uses functions and modules 
to structure her program (her approach to ‘developing modular solutions’ practice). Hannah 
developed multiple methods of checking her mathematical work including using online resources, 
calculating by hand, and comparing known examples. Because of her heavy preparation (in step 2) 
and strong programming skills (in step 3) there are not often many bugs to solve (step 4). When 
attempting to use the program to investigate the math problem (step 5) beyond the creation of the 
project, Hannah seems to lack confidence. She often isn’t sure how or what to conclude from the 
program output. She doesn’t seem to know how to use the program for investigation and wants to 
understand first, then “explore” later to confirm what she knows rather than to discover new ideas. 
Her limited investigations make it hard to integrate the results with her math knowledge (step 6). She 
finds some results noteworthy, but not necessarily what is intended as part of the investigation and 
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her insights, rather than mathematical, are more often related to programming. Lastly, when 
communicating her results in her written report (step 7), her descriptions are often short and not 
thorough in explanations. She provides examples that are either too simple to demonstrate knowledge 
or uses her program to generate an answer without further explanation of the process. Figure 3 
summarizes Hannah’s enacted strategies over the course of her 4 EO tasks. 

Overall, Hannah seems to treat the course as a programming class for designing mathematics 
calculators rather than a mathematics class using programming as a tool for understanding and 
investigation, i.e. as an “object-to-think-with” (Papert, 1980). This perspective seems to limit her 
ability to dive in and explore new mathematical concepts deeply. In the final interview, Hannah said 
she intends and is looking forward to take the MICA II course. It will be interesting to see how (and 
if) she adapts her approach, enacting new strategies, in this more mathematically demanding course. 

Conclusion 
We have described Hannah’s development process (including her strategies) as she engages with 
designing, programming, and using mathematics EOs. We observed that Hannah seems to appropriate 
programming as instrument for creating a tool for pragmatic purposes –i.e.  as a calculator– however, 
not yet as instrument for mathematics investigations and applications –i.e., as an object-to-think-with 
(Papert, 1980). The findings provide insights on Hannah’s development of fluency and instrumental 
genesis –i.e. how far she has come, through MICA I course, to appropriate (VB.net) programming as 
a CT instrument for mathematics investigations and applications. The transition from an instructionist 
to a constructionist approach to learning mathematics seems to have remained a challenge for Hannah, 
even with her previous programming background. In the near future and with the current trend, it is 
expected that students will arrive in mathematics department with programming skills. The case of 
Hannah can thus be considered as of a typical ‘student’ of the near future, and as such, provides 
insights of how these typical students’ instrumental genesis may develop. 

The first year student data analysis led to refine further the development process model (see step 2 
and step 3* in Figure 3) to better capture the different strategies enacted by students. By highlighting 
how Hannah’s strategies are enacted in the development process model, our study provides a 
beginning of how we can explore the role of strategies, as techniques, in students’ instrumental 
genesis, leading next to study the related instrumented action schemes. The next steps, in our 5-year 
research, are also to bring together all of the thematic analysis findings and the development 
narratives for a deeper insight into students’, including Hannah’s, instrumental genesis, and to 
continue follow our participants into their upper-year MICA courses. It will also include the 
examination of instructors’ adoption of learning environment (i.e., instrumental orchestration).  
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The intention of this poster is to present several big events held in Portugal, in the cities of Porto and 
Matosinhos, and in France, in the city of Lyon. We consider mathematics learning outside of the 
school building and we use day-to-day materials (monuments, buildings, traffic, gardens, etc.) as 
support materials. It is important to bring learning to life and learning outside the classroom (DfES, 
2006). One way of experiencing outdoor mathematics is to walk a math trail. We used the Shoaf, 
Pollak, & Schneider (2004, pp. 4) statement do guide our work and to advise our implementation of 
math trails. The math trails can be created using the traditional way – paper sheets with tasks on them. 
But, nowadays, they can be created using smartphones, combining the concept of math trails with 
advanced technology in a modern learning environment. The MathCityMap-application (MCM-app 
- www.mathcitymap.eu) provides a new approach to an already well-known idea - experience 
mathematics in outdoor activities and using smartphones (Jesberg & Ludwig, 2012; Cahyono, 
Ludwig & Marée, 2015; Cahyono & Ludwig, 2016; Zender & Ludwig, 2016).  Through the 
MCM_app, students went on an outdoor walk along a route and solved mathematic problems that 
were contextualized with the surrounding environment. The students passed through special places 
in these cities, where mathematic can be experienced in everyday situations. For example: buildings 
for logic problems, statues for numbers and counting, lakes and fountains for geometry, a swing to 
calculate angles measures, lake bridge to calculate areas, garden benches to apply combinatorial 
calculus, functions to model the proportions of colors along a corridor, or using the GPS tasks to 
pinpoint the foci of a very large ellipse. A task which was really appreciated was an introduction to 
the Dewey classification system with decimal numbers, because a new theme can always emerge, 
since there are always a decimal between two different decimals, there is always room for 
improvement in this system. And the task was to find the decimal number associated with a given 
book from the library. Finding the number of pages of mangas in there was as well a hit but the GPS 
tasks where one had to finish a square or place oneself at the middle between two inaccessible points 
were unexpected by the students. We have streamlined math trails held around Porto, Matosinhos 
(Portugal) and Lyon (France), based on the MCM_app: “Matemática vai à Baixa” – Mathematics 
goes to downtown (competition), June 8, 2016, Porto. Participants - exactly 297 students (age range 
9 to 18 years) and 40 teachers; “Matemática vai ao Jardim” – Mathematics goes to the Garden 
(competition), March 23, 2018, Matosinhos. Participants - exactly 170 students (age range 9 to 18 
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years) and 23 teachers; Math.en.Jeans Congress, March 22nd-24th, 2018, Lyon, France. Participants 
- around 700 (students - age range 9 to 25 years, teachers and researchers); the national gathering of 
the Collège commission, June 21st-23rd, 2018, Lyon, France. Participants – exactly 130 (lower 
secondary teachers in France).It is very gratifying to note that in all events, teachers and students 
participated in mass. Stands out the great enthusiasm from the students and mathematic teachers, they 
participate in general with energy and are willing to repeat the experience. All students and teachers 
can take advantage of a new context to transmit knowledge, contributing to greater motivation for 
learning mathematics. Students were amazed to participate in the math rails, but to cross a math trail 
using mobile devices and GPS functions to find the tasks location were fantastic. These activities 
generally increased the students’ engagement to learn mathematics. The teachers were interested not 
only to play but as well to understand the different types of questions that could be addressed.  These 
actions were fairly disseminated by the media. Usually mathematics appears in the news surrounded 
by a negative scenario, but with our events, mathematics came to the house of families in a positive, 
constructive and dynamic way. In the poster, we would present examples of tasks of the routes from 
the math trails, highlighted the details to consider them like starting points to promote the modelling 
process in the learning. To evaluate the degree of satisfaction of teachers and students were conducted 
surveys in different events, which show the high degree of satisfaction and evaluate the impact on 
learning (see, for example, Caldeira, Faria, Figueiredo & Viamonte, 2016). 
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This exploratory study focuses on two-handed gestures when using an innovative iPad application 
called TouchTimes. We suggest that the use of the two hands is relevant to multiplicative reasoning 
as it provides a way of expressing multiplication as a coordination of two quantities, rather than 
simply as repeated addition. We report on the use of TouchTimes by two third-grade girls; we first 
exemplify the designed two-handed gestures the girls used and then identify some emergent gestures 
that we see as being relevant to multiplicative thinking, particularly in terms of the relation between 
the multiplicand and the multiplier in a multiplication expression.  

Keywords: Two-handed gestures, multiplicative thinking, touchscreen technology. 

Introduction 
In this paper we report on an exploratory study involving a pair of grade three students working on 
an iPad application called TouchTimes (TT, Jackiw & Sinclair, 2018) that was designed to offer an 
accessible model of multiplication that does not rely on repeated addition. TT uses the multi-touch 
affordance of the iPad to express the relationship between multiplicand, multiplier and product 
through the use of specifically designed two-handed gestures. It is an extension of TouchCounts, also 
designed by Jackiw and Sinclair (2014), which enables gesture-based actions for counting, adding 
and subtracting and has been shown to improve subitizing, the ability to differentiate between 
cardinality and ordinality (Sinclair & Pimm, 2015) as well as basic number sense (Sedaghatjou & 
Campbell, 2017; Sinclair, Chorney & Gillings, 2016). TT builds on this TouchCounts research by 
extending the gesture-based arithmetic. In this research study, we are interested in the way two handed 
gestures can support young students’ multiplicative thinking. 

Research on learning multiplication 
Multiplication is difficult for many students, yet very important for subsequent higher-grade topics 
such as proportion and algebra (Siegler et al., 2012). One of the difficulties with multiplication results 
from students’ excessive exposure to multiplication as repeated addition (Askew, 2018). It is 
important to develop students’ understanding of multiplication in terms of relations, particularly the 
relationship between the multiplicand and the multiplier. Designed to develop the bi-directional 
functionality of multiplicand and multiplier, TT allows for both the multiplicand and the multiplier to 
be changed either during and after a multiplication computation. We hypothesise that this offers not 
only an empirical environment for experimentation, but also the possibility of noticing the 
relationship the multiplicand and the multiplier have on the product. 

In the work of Clark and Kamii (1996), multiplication has two levels of abstraction. The shift from 
the many-to-one and an inclusion relation between multiplicand and multiplier. Multiplication is 
relational and functional in that both multiplier and multiplicands are abstractions that affect each 
other. For example, in the case of 3 × 4, if 3 is the multiplicand and 4 the multiplier, 3 to 1 is the 
abstraction of three becoming one (the unit) and the ‘inclusion relation involves a transfer of units in 
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that the multiplicand “3” counts the number of items while the multiplier “4” counts the number of 
triples of these’ (Boulet, 1998, p. 14). In TT the physical use of two hands is meant to enact this dual 
abstraction. We are thus interested in studying the extent to which students’ gestural interactions with 
TT supports their multiplicative thinking. 

Brief description of TouchTimes 
The initial screen of TT starts blank, except for a vertical line (Figure 1a). A user can create two kinds 
of mathematical objects: pips and pods. The first finger(s) down on the screen produces pips, which 
are coloured discs that appear under each finger. For example, if the user places three fingers on the 
left side (LS) of the screen, three differently coloured pips appear (Figure 1b). If the user then places 
four fingers on the right side (RS) while holding the three pips, four ‘pods’ of three pips appear 
(Figure 1c). Each pod is a bounded object containing a smaller version of the number, colour and 
configuration of the LS pips. If a finger is lifted on the LS, then there will be two pips there and each 
of the four pods will contain two pips. More pips can also be created by placing more fingers on the 
LS; this will affect the RS pods accordingly). If all the pip-making fingers are lifted, the pods 
disappear too (multiplication by 0), and the screen goes blank. Additional pods can be created on the 
RS; once created they remain on the screen even when fingers are lifted (this enables multiplication 
of numbers bigger than 𝑛𝑛 × 𝑚𝑚, where 𝑛𝑛 + 𝑚𝑚 = 11, which is the maximum number of simultaneous 
touches allowed). The situation can be completely reversed: if the first touch is on the RS, then pips 
are produced there and touches on the LS produce pods. 

   
Figure 1: (a) Initial screen of TT; (b) Creating 3 pips; (c) Creating 4 pods 

As soon as there are both pips and pods on the screen, a multiplication expression appears on the top 
of the screen. For the above situation, the mathematical expression is 3 × 4 = 12 (Figure 1c). Once 
created, pods can be dragged anywhere on the screen and can also be trashed. Pips can also be moved, 
as long as the fingers are not lifted. In the reversed situation, the multiplication expression is 12 = 4 
×  3. The two hands have different functions, and in this way, multiplication is experienced 
relationally, rather than in terms of repeated addition.  

Theoretical framing 
Research into iPads is still relatively new and there have been various frameworks proposed to study 
how the iPad interrelates with mathematical thinking. Embodied theories have been common since 
the iPad offers unique kinaesthetic experiences with number, particularly in terms of the gestures 
required to create and manipulate mathematical objects. Bairral and Arzarello (2015) use the idea of 
embodiment to suggest that the action of the body in any type of activity acts as a grounding for 
cognition. However, we align with researchers based in a nondualist paradigm (challenging the 
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separation of mind and body), and see embodied action not as a reflection of thought, nor as a 
grounding of thought, but rather as an aspect of mathematical thinking (de Freitas & Sinclair, 2014). 

We employ an embodied framework that sees both the tool (the iPad and application) and the children 
as a cohesive unit, as an assemblage (de Freitas & Sinclair, 2014). By seeing TT not as a separate 
entity from the students but as ‘entwined’ (Nemirovsky et al. 2013; Arzarello et al., 2002) we can 
theorize a formation of bodily-based mathematical activity. This form of embodiment shifts from the 
tool-student duality, suggesting instead that the mathematical thinking is action-with-tools. 

Given the design of TT, we are particularly interested in how gestures are indicative of students’ 
mathematical thinking. We follow Sinclair and Pimm (2014) in seeing gesture on the iPad as 
epistemic and communicative. Bairral and Arzarello (2015) claim that there are “six basic finger 
actions for input on a touchscreen: tap, double tap, long tap (hold), drag, flick, and multi-touch 
(rotate)” (p. 2). For TT, we suggest that the last type of gesture, multi-touch, can be expanded and 
elaborated, particularly in relation to the use of two-handed gestures, on which little research has been 
conducted in mathematics education. An exception is Duijzer et al. (2017), who study the 
coordination of action and perception in terms of proportional reasoning in an environment where 
children move their two hands in the same direction, but at different rates. Bairral and Arzarello 
(2015) address two kinds of two-handed gestures: (1) when one hand is holding and the other is 
dragging; (2) when both hands are doing the same gesture (as in when two fingers are dragging away 
or towards each other to expand or reduce an image). In TT each hand performs different movements 
and different functionalities. One hand acts as the multiplier; the other as the multiplicand. Our 
research questions therefore are: What are the different types of two-handed gestures used by novice, 
young learners? How do the two coordinating hands express multiplicative thinking? 

Methods 
In this study, we examined two students’ first contact with TT. We worked with two grade three 
students in an elementary school in a downtown part of British Columbia. We will call them Jessica 
and Ava in this paper. This pair of students was chosen by the classroom teacher who thought that 
they would work well together and to provide Jessica, who often ignores instructions, with a different 
kind of mathematical experience. We video recorded their interaction with the application. The 
session lasted for 27 minutes. For the initial seven minutes, the students interacted with the tablet 
without being given a specific task by the interviewer (third author). After the seventh minute, the 
interviewer occasionally proposed a mathematical task. We transcribed the video, paying attention to 
when the girls made two-handed gestures, as well as to their awareness of multiplication. For 
example, if the girls moved their fingers in such a way that the multiplicand reduced by one, we 
identified their awareness of changes based on what they said. We distinguished situations in which 
each girl used a hand, which we call a two-person bi-handed gesture, from situations in which one 
girl used two hands, which we call a solo bi-handed gesture. We see the former as being highly 
relevant to exploring the social aspect of joint coordination (see Sebanz & Knoblich, 2009).  

Analysis 
We present our analysis in two parts. First, we use an a priori analysis of the “designed” gestures, 
that is, the gestures that TT was designed to allow, and describe which ones were observed in the 
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video. We then present two of the “emergent” gestures found, that is, gestures that were not explicitly 
designed, but that were identified as being relative to the girls’ thinking about multiplication. 

A priori analysis of designed gestures 

Each gesture identified in Table 1 is done with a single hand. The two-handed gesture comes into 
existence when any two of these gestures (including identical gestures) are done on different sides of 
the screen and with different hands (though it is technically possible to use one hand to touch both 
sides of the screen). The number of two-handed gestures then grows to include all the combinations 
of any two of the gestures in Table 1.  

Single tap (T): Tapping the screen with one or many fingers. 

Hold (H): Pressing a screen object continuously without lifting the finger/s. 

Drag (D): Moving an object with finger/s on the screen continuously without lifting 

Hold and tap (H&T): While some fingers are holding, other finger/s are tapping 

Hold and drag (H&D): While some fingers are holding, other finger/s are dragging 

Hold and lift (H&L): While some fingers are holding, other finger/s are lifting 

Table 1: Designed gestures in TT 

In Figure 2, we depict three of the more frequent gestures: T, T; T, H; H&T, H. Below, we provide a 
brief description of each as it occurred in the video.  

   
Figure 2: (a) T, T; (b) H, T; (c) H&L, H  

From the students’ perspective, in Figure 2a the middle finger of the first hand taps the RS of the 
screen and the index finger of the second hand taps the LS of the screen. This two-handed gesture 
was mostly observed at the beginning of the video as the girls were first exploring TT. They stopped 
using this gesture after a while, either because they realized that this did not create more than one 
object at a time, or that a holding gesture was necessary to create a pod. In Figure 2b, the first hand 
holds five fingers on the LS all-at-once, the second hand taps the index finger on the RS. This gesture 
produces one pod, which is a unit of five pips. In Figure 2c, there are three fingers of one hand on the 
LS, while lifting the pinky and thumb, while the index finger of the second hand was held on the RS. 
This gesture was very common and changed the number of pips within each of the pods.  

A posteriori analysis of the emergent gestures 

We will present two episodes, each of which involved the use of an emergent gesture, which we will 
refer to as a three-handed gesture and a dancing gesture, respectively.  
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At the beginning of the first episode chosen, Jessica holds five fingers of her right hand on the RS 
and Ava holds two pods on the LS (H, H). There were 15 pods on the screen showing 75 = 15 × 5. 
Jessica then used her left hand to make another pip, thereby making six pips in total (Figure 3a), 
changing the equation to 15 × 6 = 90, and changing all the pods to include six pips.  

Jessica:  What the 
Ava  Wooow (drags index finger, producing 7 pips, as in Figure 3b) 
Jessica di di di di didi di di di di oh wait I can change the shape  

When she put her sixth finger down, Jessica brought her second hand into play so that the girls were 
making a three-handed gesture of hold pips, drag pip and hold pods (Figure 3a). When she said “What 
the” she seemed to be surprised at the effect of the sixth pip, which changed the configuration of each 
of the 15 pods, as well as the multiplication statement. Ava then let go of the pods she was holding 
with her left hand and used her index finger on the RS to create another pip, which she dragged on 
the screen, saying “wooow”. There were now seven pips in each pod and a new equation 105 =
15 × 7. This new three-handed gesture now included a hold, a drag and a drag (Figure 3b). As Jessica 
dragged her sixth finger, the shape of each pod changed to mimic the configuration of her six fingers, 
which she seemed to realise when she says “I can change the shape”.  

  
Figure 3: (a) Adding a 6th pip; (b) Adding a 7th pip  

In this episode the girls make two different three-handed gestures. In the first instance, Ava had been 
busy making pods and it was only when Jessica brought her third hand into play that she seemed to 
notice that the additional pip created an important change on the screen, prompting her to say “What 
the”. Then when Ava sees what Jessica is doing, she changes from a holding pods gesture to a 
dragging pips gesture. In the first three-handed gesture, Ava does not need to be holding the pods, so 
the gesture might feel extraneous to the activity. However, it is perhaps because of the fact that she 
is holding pods that she noticed the interesting effect produced by Jessica’s added pip (the pods would 
have changed size and configuration right under her fingertips, so to speak). In the second case, Ava 
and Jessica are both doing drag-pip gestures, and so replicating the same gesture that could have been 
done by just one hand. However, it is in wanting to mimic Jessica that Ava starts dragging a pip, and 
so we see how the third hand enables both girls to do the same thing at the same time, together 
producing a change in the shape of the pods that is more than what each of them could have produced 
on their own.  

In the second episode, Ava was holding five fingers on the left screen (which she held for the complete 
episode; see Figures 4a, 4b) and Jessica had just finished creating pods and dragging them around the 
screen. There were 31 pods on the screen and the multiplication sentence at this point was 5 × 31 =
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155. Jessica touched one finger on the LS under Ava’s hand (H, T) and then lifted it up again (H, L). 
Once more she tapped in the same spot, down and up. The multiplication sentence changed from 
5 × 31 = 105 to 6 × 31 = 186, back and forth. She repeated this a third time and said, “They’re 
dancing again” and both girls giggled. She continued to tap this way for a total of eight repetitions. 
Jessica, still maintaining one finger on the screen, then adds a second finger, causing each pod to 
increase to seven pips (Figure 4b). She then began to touch up and down repeatedly with two fingers; 
the multiplication sentence changing from 5 × 31 = 105 to 7 × 31 = 217, back and forth (Figure 
4a, 4b). This time, however, Jessica added a secondary rhythm. She sang ‘di di didi di di’ while 
tapping; on each ‘di’ she tapped once’ on the ‘didi’ she tapped quickly, and in between phrases, she 
did not tap. She continued to tap with two fingers like this through four phases of ‘di di didi di di’. 

  
Figure 4: (a) Jessica about to tap; (b) Jessica tapping two 

We see this ‘dancing gesture’ as an emergent one that actually combines a repetitive set of (H, T) 
gestures. It becomes a single gesture for the girls that enables them to make the pods “dance”. Aside 
from the evident visual appeal of this dancing gesture, it also embodies the girls’ functional awareness 
of the relation between the pips and the pods, showing as it does how the number of pips affects the 
shape and colour of each of the pods. With it, the girls can change the multiplicand very quickly, 
seeing the effect on both the visual dynamics of the screen, as well as on the multiplication sentence.  

Discussion 
Our first research question asked, what were the different types of two-handed gestures used by 
novice, young learners? In our a priori table we identified the designed, that is, the basic gestures 
supported in TT, which were the gestures that we expected the children to make. The most 
frequently-used gesture was the (H, T) in which one girl would hold pips (usually Ava), and the 
other would create pods one finger at a time. The girls rather quickly began to use hold gestures 
when they realised that lifting their fingers off the pips would clear the screen. They can often be 
seen holding both pips and pods, especially at the beginning. Dragging was used both to move pips 
on the screen, as discussed in the first episode above, and also to drag pods to the trash. The use of 
the gestures in Table 1 provided a starting point for their developing fluency with the tool. 

We also identified emergent gestures that seemed to play more important roles in the girls’ 
understanding of how the pips and pods related to each other. In the first episode, we describe two 
different three-handed gestures made by the girls that helped both to draw their attention to the 
relation between the number and position of pips on the screen, and to the shape of the pods. The 
second three-handed gesture seemed to also have an important social component in allowing both 
girls to do the same gesture at the same time. As with these three-handed gestures, the emergent 
dancing gesture combined two or more of the gestures from Table 1. The dancing gesture can thus 
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be seen as a bundling of several, sequentially produced (H&T, H) and (H&L, H) gestures. Over the 
course of the experiment, this gesture occurred multiple times with different numbers of pips and 
pods. The girls’ continued return to this gesture, as well as the identification of its presence by such 
utterances as, ‘they’re dancing again’, highlight their awareness of the multiplicative relation 
between multiplicand and multiplier.  

Our second research question asked: How do the two coordinating hands express multiplicative 
thinking? It was in the use of the two emergent gestures that the girls seemed to express and notice 
the relation between pips and pods. In making the number of pips change, the girls noticed that the 
number of pips determined the shape and size of the pod, thus observing the effect of the size of the 
unit on the pods. The fact that the relation between the pips and the pods took some time to notice 
and control suggests that this is not a simple relation to understand, both in terms of physically 
coordinating two hands (or more) across two people, and in terms of tracking the bi-directional 
relation between multiplicand and multiplier. This embodied approach to multiplication seemed to 
initiate gestures through which the girls could explore/express this multiplicative relation.  

Conclusion 
In this exploratory study, which looks at how gestures were used in the TT app, we identified 6x6 
different “designed” gestures and exemplified three of the most commonly-used ones. We then 
described two additional emergent gestures that were used several times by the girls and seemed 
important to their growing fluency with the app and their awareness of the multiplicative relation 
between the pips and pods (multiplicand and multiplier). We propose that the gesture-based 
multiplicative actions of the girls offered them novel ways to explore and express multiplicative 
relationships. In the repeated addition approach, the relation privileges a focus on the multiplier 
(3+3+3+3+…). In TT, however, both operands can be manipulated with immediate feedback, both in 
terms of the visual presentation of the pods, and symbolically through the equation. If repeated 
addition tends to be algorithmic, linear, sequential and unidirectional, TT seems to offer a more 
interactive, bi-directional and simultaneous instantiation of multiplication. 

This research provides insight into the link between action and mathematical reasoning, and has 
implications for supporting students’ multiplicative thinking. In future work, a closer examination of 
how learners coordinate the gestural expression with symbolic expressions (the equations shown on 
the screen) should be examined more closely. Also, the collaborative interactions of learners working 
together, as expressed through the three-handed gestures described here, deserves further attention.  
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Purpose of the study.  
The aim of this study is to investigate how a virtual classroom can foster the physical classroom 
activities in order to create a new learning environment that enhances peer education. The 
introduction of a virtual space, in addition to the physical one, offers new forms of social interaction 
that could allow students to overcome their difficulties.  This space is available beyond the school 
time shared in the physical classroom and gives students the opportunity to design it according to 
their needs, cognitive styles and social practices. Analyzing two episodes, we propose a tentative 
framework to design an effective implementation of a virtual classroom in the physical classroom. 

Introduction. 
In a secondary school of Bologna (Italy) where several teachers of different subjects used the G Suite 
for Education, some mathematics teachers started using Google Classroom (GC). The following two 
episodes involved two classes with different mathematics teachers. All the students were acquainted 
with the basic functions of GC. The first episode happened in a 10th grade class where the teacher 
proposed GC as a daily tool used by the students to share their questions and doubts with the teacher 
and the rest of the class. This episode regards the spontaneous behavior of a student who supports her 
classmates in the solution of an exercise. She shared on the GC Stream a photo of her notebook (with 
the solution in pen and some additional comments in pencil) supported by the comment “I was able 
to get the right answer. If you want, you can have a look. I added in pencil the passages that I skipped 
so that you can better understand them”. This spontaneous behavior of the student inspired a further 
study for a deeper analysis of the potentiality of virtual classrooms in addition to the physical one.  

The second episode regards an experiment carried out with a mathematics teacher available to 
introduce, for our research, GC in a 12th grade class for a limited period. The teacher proposed GC 
as a social environment where the students could share their ideas and support each other to overcome 
their difficulties.  An item of a multiple-choice test carried out in the physical classroom highlighted 
students’ difficulties in dealing with the domain of logarithmic functions. The teacher decided to 
trigger the students’ social interaction in the GC to find the correct answer. Therefore, the teacher 
assigned the same multiple-choice exercise asking the students to answer and compare the results on 
the Stream. Students posted in the GC Stream only the letter (A, B, C or D) of their answer without 
discussing the inconsistencies of their results. The students, in the next lesson, admitted that they 
actually had a debate but on their WhatsApp group avoiding the use of the GC. After this episode, 
the teacher decided to use GC only to assign homework and to communicate with the students. 
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Theoretical framework, research questions and methodology. 
This study suggests that the introduction of a virtual classroom requires a didactical design that takes 
into account the relation between the vertices of Chevallard’s Triangle (Chevallard & Joshua, 1982): 
teacher, pupil, and knowledge. From the two episodes, it emerges that the characteristics of the side 
pupil-teacher determines the students’ interaction with the virtual classroom. In the first episode, the 
students did not perceive any imposition on the part of the teacher. They felt free to use the virtual 
space spontaneously. Instead, in the second episode the teacher explicitly invited the students to work 
on a specific task. We believe that an appropriate theoretical framework for an effective introduction 
of a virtual classroom is Brousseau’s (1997) Theory of Didactical Situations. In fact, the first episode 
can be interpreted as a non-didactical situation where there is not a specific teaching design. Although 
the students used the GC as a peer education environment, there was no evolution after the episode 
we described. The second episode can be interpreted as a didactical situation that constrained the 
students in the clauses and effects of the didactical contract (D’Amore, Fandiño Pinilla, Marazzani, 
& Sarrazy, 2018). The teacher had an explicit objective that she declared to her students and the 
potential of the virtual classroom seemed to be absorbed by the dynamics of Brousseau’s Didactical 
Contract.  The students, in the GC Stream, strictly attended the teacher’s requests. The inconsistencies 
of the students’ answers emerged on the GC Stream and triggered the expected social interaction but 
the discussion among students took place on the WhatsApp students’ group. This kind of virtual group 
cannot be considered a true virtual classroom because it discards the teacher from Chevallard's 
triangle. The introduction of a virtual environment requires the presence of all the actors of 
Chevallard's triangle. The teaching design should realize an a-didactical situation that fosters personal 
implication on the part of the students and the breach of the didactical contract. Within this 
framework, the research questions that inform further studies are: how can we design an a-didactical 
situation in an enlarged learning environment that includes a virtual classroom entangled with the 
physical one? How do we manage this new variable, the virtual classroom, when designing an a-
didactical situation? Within an effective interaction between the physical classroom and the virtual 
classroom, what artifacts and Semiotic Means of Objectification could emerge (Radford, 2008)? 
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Current state of research and theoretical framework  
In contrary to the high speed of technological expansion, the research on didactical quality of 
technology-supported materials for school mathematics seems to have been less rapid in the last two 
decades. The current approaches for its evaluation are various but not extensive enough which 
grounds an intensive ongoing debate in the TWG 16 of the upcoming ERME congress. On the one 
hand, a conventional approach is the usage of criteria catalogues or checklist. On the other hand, 
researchers argue against their usage due to different reasons, e.g., their inconsideration of socio-
constructivist view of learning (Squires & Preece, 1999) or their tangible usage which is exposed to 
many factors that cannot be controlled (Krawehl, 2010), e.g., the dynamic feature of the online market 
changing on a daily basis. Moreover, the usefulness and effectiveness of technological tools may 
depend on the settings, context and instructional goals, what make it difficult to follow a straight-on 
checking list for their quality estimation. An undertaken analysis of geometry apps regarding 
pedagogical, mathematical and cognitive fidelity has shown that the majority of them had limited 
potential to support students in developing geometrical conceptual understanding (Larkin, 2016). It 
has emphasized the importance of further reviews and this is relevant not only in Australian context 
but in other contexts such as the German one. Another study has shown that the majority of existing 
apps are created for pre- and elementary schoolchildren but are not aligned to the content standards 
of the targeted audience (Powell, 2014). Therefore, this study focuses on a comprehensive approach 
for identifying essential potentials and limitations of apps along with analogue media that considers 
multimedia learning (Mayer, Borges, & Simske, 2018) in addition to educational standards and 
curricula for mathematics (e.g. in Berlin-Brandenburg schools) referring to content-related- and 
process-oriented competences as coherent, rather than distant proficiencies.  

Research question and methodology 
How can the quality of technology-enhanced resources for supporting the development of students’ 
competences regarding “Space and shape” be analysed through a comprehensive approach, is the 
question to be tackled in the study.  

The poster shows a multi-dimensional evaluation instrument (EI) that is a specific part of a 
comprehensive multidisciplinary and dynamic evaluation model, developed through a research-based 
design involving qualitative approaches. The EI includes mathematics, didactics and media facets in 
an appropriate incorporation. A systematical peers- and experts review about its objectiveness, 
validation, and importance of its criteria items has taken place. Collected feedback was used for 
adaptation and re-design of the EI, and pilot trials as different phases of the design cycle. 
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Results and their implications in practice and research 
The review criteria in the created EI are grounded on a national framework about excellence of 
learning environments. Hence, the development of the EI resulted with review criteria structured in 
six dimensions: (1) mathematical and didactical significance, (2) articulation, communication and 
social organization, (3) differentiation, (4) logistic and technical support, (5) assessment and (6) 
networking of resources similarly as the key characteristics of learning environments (Wollring, 
2009) and recommendations about implementation of digital media by Krauthausen (2012).  

The outcomes of the design-research process would be implemented in a teachers’ professional 
development program about elementary geometry. The aim of the designed instrument is to offer 
teachers a possibility to systemize the overwhelming amount of apps and actively engage themselves 
in reviewing processes and sharing best-practice instances, which would enable them to think about 
the benefits and limitations of a meaningful usage of technology in their classrooms.  

Other beneficiaries may also be designers who could consider potentials of technology in future re-
designs and novel designs. Finally, the study may contribute in further research in mathematics- and 
media education towards development of a sustainable evaluation model that may have a potential 
for both national and international scaling up.  

Formal presentation of the research work on the poster 

Besides information about the theoretical framing, the poster (A0 size) illustrates the research design 
in a form of a diagram. Exemplary excerpts of the created on-line EI are presented as tables. Previews 
of selected apps for elementary geometry available in the German language also appear on the poster. 
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Abstract The ubiquity of mobile devices together with the potential to bridge classroom 
learning to real-world has added a new angle to contextualising mathematics learning. The 
goal of this research was to evaluate student engagement in a series of mobile learning 
activities. The study uses critical incident analysis to evaluate the breakdowns and 
breakthroughs of mobile learning. Twenty-four Primary 7 students participated in the study. 
The mobile learning activities were found to have facilitated visualisation, encouraged 
reflection and promoted active learning. However, some issues regarding mobile use affected 
student engagement with the activity. The challenges identified highlighted the role teachers 
play in designing and carrying out novel technology use.  

Keywords: Mobile learning, Mathematics education, Technology enhanced learning, Student 
engagement, Issues of mobile learning 

Introduction 
The challenge to connect mathematics learning to real-world is not new, but the mobility and 
connectivity afforded by mobile technologies has renewed interest on this challenge. Potential 
benefits of using mobile technologies include facilitating learning across context and personalised 
learning (Cochrane, 2010). Previous mobile learning studies have shown various approaches to bridge 
the gap between school mathematics and the real-world. For example, Spikol and Eliasson (2010) 
utilised the built-in sensors of mobile devices to facilitate distance measurement while Crompton 
(2015) used the mobile camera and an interactive geometry application to facilitate investigation of 
angle properties. These examples illustrate how mobile technologies seem to be a good fit for 
contextualising school mathematics. 

Sawaya and Putnam (2015) proposed an integrated framework to help teachers design mobile 
learning activities for maths. The framework consisted of three issues to consider when designing 
learning tasks: (a) learning goals, (b) activity types and lastly (c) affordances of the technology in 
reference to what mobile devices offer to support mathematics learning. These technology 
affordances are not unique to mobile devices but it is the combination of these affordances in a single 
device that highlights the potential of mobile technologies in supporting various learning activities. 
A representation of the framework is shown in Figure 1. 

Systematic reviews of mobile learning in mathematics have shown an increasing interest in the use 
of tablet devices in schools (Crompton & Burke, 2016; Fabian, Topping, & Barron, 2016). These 
studies reported that the majority of mobile learning studies found positive results, typically in the 
form of evaluation surveys or through an experimental pre-test post-test evaluation of student 
achievement. A meta-analysis of studies that looked into student achievement have found that using 
mobile devices for mathematics had a medium effect (Fabian et al., 2016). However, while these 
results evidence the learning that occurred, these numbers do not communicate the sort of engagement 
that happens in the classroom.  
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Figure 1: Framework for the design of mlearning activities for mathematics (Sawaya & Putnam, 2015) 

Other positive outcomes reported in systematic reviews refer to positive student attitudes towards the 
use of mobile devices in maths, typically measured using a Likert-type survey (ie Did you find the 
activity fun?). Studies that focus on how the mobile technologies have engaged students are few and 
mostly short-term evaluations (Baya’a & Daher, 2010; Shih, Kuo & Liu, 2012). In response to this 
gap, the current study focuses on the evaluation of student engagement in mobile learning activities, 
drawing a focus on the breakdowns and breakthroughs of using mobile devices for learning 
mathematics.  

The field of mobile learning is relatively new and its potentials and issues related to school use are 
still being mapped out. Sharples (2009) argued that “there is a need to understand what distinguishes 
mobile learning from classroom learning or learning with desktop computers (p.18).” Some examples 
of the distinctive aspects of mobile learning include mobility, portability and its capacity to support 
both formal and informal learning environments. Adopting new technologies in the classroom 
provides an array of possibilities but the practice of introducing new technology in the classroom is 
not without challenge. It was the goal of this study to identify issues in using mobile technologies for 
maths learning as well as identify advantages afforded by mobile technology use.  

Methodology 
Twenty-four Primary 7 students participated in mobile-supported constructivist learning activities 
that covered topics on geometry and information handling. Participation was voluntary. The teacher 
participant for this study is a female teacher with five years of teaching experience. The student 
participants (12 boys, 12girls), aged between 10-11 years old were the Primary 7 students assigned 
to the teacher participant of this study.  

The programme consisted of eight mobile learning sessions conducted over a period of 3 months. 
The activities included topics on geometry and information handling and were all conducted in paired 
or group settings. Table 1 provides an indication of the mobile learning activities carried out. The 
activities were recorded and later analysed using critical incident analysis to identify the breakdowns 
and breakthroughs of the learning activities. Breakthroughs refer to the “observable critical incidents 
which appear to be initiating productive new forms of learning or important conceptual change” and 
breakdowns are “observable critical incidents where a learner is struggling with the technology, is 
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asking for help, or appears to be labouring under a clear misunderstanding (Vavoula & Sharples, 
2009, p. 56).” 

Table 1: Activities carried out  

Session Mobile Learning Activity Activity Type 

Session 1 - 
Symmetry 
(Phase 1) 

Students took pictures of symmetrical objects and 
annotated it with its line of symmetry. Using an 
application, they also created symmetrical pictures of 
non-symmetrical objects in their environment. 

Practicing math skills; 
Investigating;  

Creating content 

Session 2 - 
Area and 
Perimeter 
(Phase 1) 

Students investigated area and perimeter of surrounding 
environment using an application. They also 
investigated properties of area and perimeter of objects 
using a manipulative. 

Practicing math skills; 
Investigating;  
Applying mathematical 
problems  

Session 3 - 
Information 
Handling 
(Phase 1) 

Students administered surveys on the mobile device. 
After which they interpreted the data collected and 
shared these findings with the class.  

Investigating;  
Applying mathematical 
problems;  
Creating content 

Session 4 - 
Angles 
(Phase 1) 

Tasks were encoded in QR codes. Students took pictures 
of objects that corresponds to certain types of angles. 
They annotated the pictures to show the angle and its’ 
estimated angle measurement. 

Practicing math skills; 
Investigating;  
Applying mathematical 
problems;  
Creating content 

Session 5 - 
Angles 
(Phase 2) 

Using a scavenger hunt theme, students took picture of 
objects which were man-made and natural angles.   

Practicing math skills; 
Investigating;  
Applying mathematical 
problems;  
Creating content 

Session 6 - 
Symmetry 
(Phase 2) 

Following a scavenger hunt theme, students looked for 
specific symmetrical objects from their environment.   

Practicing math skills; 
Investigating;  
Creating content 

Session 7 - 
Area and 
Perimeter 
(Phase 2) 

Students took pictures of objects and annotated them 
with their area and perimeter. They then tagged the 
actual object with this information to create augmented 
realities. 

Practicing math skills; 
Investigating; 
Applying mathematical 
problems  

Session 8 - 
Information 
Handling  
(Phase 2) 

Students used the phone sensors to gather data from their 
environment. Data were encoded and analysed 
collectively.  

Investigating; 
Applying mathematical 
problems  
Creating content 

 

Results 
Using critical incident analysis, a total of eight breakthroughs (23 occurrences) and 21 different 
breakdowns (53 occurrences) were identified. Admittedly, there were fewer breakthroughs identified 
because the focus of the incident analysis was to identify issues within this pilot study. In addition, 
the wearable camera was worn by the researcher who was also providing the technical support and 
as such, capturing more of the technical issues that happened as opposed to capturing how the rest of 
the class was engaging with the activities.  
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Breakdowns of mobile learning 

The breakdowns were categorised into three headings: technical, social and activity design issues. 
Technical issues refer to problems with the use of the tablet like application stability, responsiveness 
and network connectivity.  Activity design issues refer to problems caused by the learning activity 
(for example, students not being clear about what to do next or students not having a good grasp of 
the topic covered). Social issues relate to problems that are related to the social layer of the activity 
(like collaboration and participation in the activity). There were 10 distinct technical issues, nine 
activity design issues and two social issues identified. For a list of the breakdowns identified, refer to 
Table 2.  

Table 2: List of breakdowns 

Breakdowns No. of 
Occurrences  Category 

Tablets were not charged 3 Technical  
It was not possible to check on students’ work remotely 1 Technical  
Stability of the applications being used 5 Technical  
Access to applications 3 Technical  
Difficulty in handling the tablets with the cases 1 Technical  
Network connectivity issues 3 Technical  
Visibility of the screen in outdoor conditions 2 Technical  
The measurement given by the tablet was not accurate 2 Technical  
There was no way to verify the app measurement 1 Technical  
In a collaborative worksheet, it was not possible to track student input 1 Technical  
Too many handouts confuse the students 1 Activity design  
Students were not clear about what to do 7 Activity design  
Students were not clear about the meaning of some words used and the 
symbols used in the application 2 Activity design  

Some students did not have a good grasp of the topic.  5 Activity design  
Students were not sure how to use the application 3 Activity design  
Students used the tablets for non-activity related tasks 1 Activity design  
Weather conditions were not suitable for the activity 3 Activity design  
Students did not finish on time 2 Activity design  
Students get tired of repetitively switching between applications 1 Activity design  
Students did not participate in the activity. 3 Social  
Students did not collaborate.  3 Social  

There were far more technical issues identified in the first activity than in the succeeding activities 
which shows that although students were already familiar with the use of the tablets, the transition to 
using these devices for learning activities still required some training.  It is also possible that fewer 
issues were identified in the succeeding sessions because students have learned to troubleshoot the 
issues themselves, as was seen in some footages where more tech-savvy students helped other 
students encountering technical problems. This observation was also noted by the teacher in the 
interview---that students were initially worried about all the technical glitches but have adapted over 
time.    

The most common technical issue is the stability of applications being used and this problem has 
impacted students work. When the tablets or the application malfunctions, students work were not 
always recovered and would require students to re-do the work. As one student phrased it:   
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“If it doesn't work then all that you’ve done is gone unlike when you're working with paper. 
If you've got sheets there will always be spares but with tablets, you don’t… so you do it 
again, then you get bored of it.” 

This issue is problematic particularly for activities that require data gathering as the instability of the 
tablet could make students lose a significant amount of work. For activities that are chunked into 
several steps, while this is still an issue, its effect is not as much as that only require going back a few 
steps.  

The most common activity design issue is that students were not clear what to do next (n=7). There 
were several instances where the students started working on the tablet but end up not being clear 
about the task and this required an intervention from the teacher to get the class’s attention and pause 
for a while so that the teacher could walk them through the task that they needed to do. This problem 
typically occurred when students used several applications in one session. For example, in session 1, 
there were two activities and two different applications used. Students were given an orientation on 
what they needed to do at the start of the session. They went on to do the first task with one application 
but got confused with what they had to do next because it required a different application.  

Another common issue refers to students’ grasp of the topic (n=5). In some instances, students 
appeared to lack the foundation to be able to work on the activity. For example, in the symmetry 
activity, although the concepts were covered before the activity, some students were not clear what 
symmetry was. Although this is a breakdown, because the teacher could observe what the students 
were doing, this breakdown was resolved by a brief explanation from the teacher, clarifying what is 
symmetrical and what isn’t.   

In the outdoor setup, the weather was a contributing factor in the implementation of the activity (n=3). 
For example, during the area and perimeter session outdoors (Session 7), the weather condition started 
satisfactory but towards the middle of the lesson, it started to drizzle and thus affected the screen 
sensitivity of the tablet. This illustrated the need for contingency plans should the weather not be 
permitting.     

There were two issues in the social layer:  students not participating in the activity and students not 
collaborating.  Both categories related to student disengagement. In the first issue, students were not 
participating because of difficulties they encountered in the activity. For example, one student did not 
complete the activity because the technical difficulty she encountered required that she had to do the 
activity again. In the second issue, there were cases where students were observed not to be 
collaborating probably because they were not the ones operating the tablet. Both categories can be 
argued to be a result of failings of the technology and a shortcoming in the design of the activity. 

Breakthroughs of mobile learning 

Several breakthroughs were also observed throughout the mobile learning activities. One of the 
observed advantages of using mobile technologies is that they facilitate contextual learning. For 
example, in Session 3, the students designed a survey using an application which they later 
administered in class. Afterwards, they analysed the results using the generated bar graphs from the 
survey.  The process of data collection can be said to add depth to the usual textbook exercise of 
analysing presented bar graphs. In this exercise, they were not just presented with the data but as they 
administered the survey, they were also seeing how the survey was being populated. 
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Another advantage is that it facilitates visualisation of abstract math concepts, thus facilitating the 
link between abstract math concepts and its concrete representation in the environment. For example, 
in the angles learning activity, students adjusted the object in their environment to fit the properties 
that they needed.  

The activities were set up as paired or group activities and this allowed students the chance to work 
collaboratively using the tablets. Collaboration is not limited to the learning activity but also evident 
in students working together to overcome a technical difficulty. Some students have acted as technical 
helpers and helped other groups without being asked to do so.  

Another advantage of these activities is their capacities to promote active learning environments. The 
activities provided in the session are all hands-on activities which have been mostly received 
positively, technical breakdowns aside. The breakthroughs discussed in this section match the 
potential benefits of mobile learning. The mobile learning activities facilitated active networked 
learning, but also facilitated visualisation of math concepts as students matched the abstract math 
concepts with their concrete representations.  

Discussion 
A critical incident analysis identified technical, social and activity design issues in the mobile learning 
activities. The technical difficulties of the mobile learning sessions included issues with the battery, 
stability of the application, accuracy of the measures given by application, and network connectivity. 
The activity design issues included problems with the content and student background knowledge.  
The social issues included problems with collaboration and students’ adaptability. These problems 
are not new and has been covered by previous math and mobile learning literature (Kalloo & Mohan, 
2011; Wijers, Jonker, & Drijvers, 2010). 

The effects of the technical problems in the activity varied. When only a portion of the activity was 
lost due to the unresponsiveness of the application, students quickly recovered from the problem. 
When it happened towards the end, with the majority of work being lost, this left some students 
frustrated.  Students tolerated the technical issues up to a point. Students who had encountered several 
technical issues had mixed views about the use of mobile technologies and these views consequently 
affected their behavioural engagement. Some students persisted while there were those who became 
disengaged from the activity. This links back to the technology acceptance model that suggests that 
there should be a balance of usability and utility (Davis, 1989). 

The non-technical issues related to the activity were more difficult to troubleshoot because these were 
mostly issues related to students’ skills and the design of the activities. For example, when students 
did not have a good grasp of the topic, this meant that the teacher had to quickly go over the maths 
lesson with the whole class. In this case, it occupied some of the time for the activity. The other option 
was for the teacher to support the struggling student, and in that case, the teacher became temporarily 
unavailable to support the rest of the class. Both situations called for a re-think of the design of the 
learning activity.  

The problem was partly caused by bringing in the technology without fully considering the learners 
and partly by not having fully considered the different scenarios that could go wrong in the classroom. 
The lesson plans were linear, restrictive and time-bound and did not allow much flexibility in terms 
of carrying out the lesson. Other mobile learning studies, particularly those carried out outside the 
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classroom environment identified the need for careful planning of scenarios and flow of activities 
(Spikol & Eliasson, 2010).  This then leads to the concept of classroom orchestration, “the methods 
and strategies empowered by a technology equipped classroom that an educator may adopt carefully 
to engage students in activities conducive to learning” (Chan, 2013, p. 515). This highlights the 
important role of the teacher, their flexibility and adaptability to carry out novel use of technology.  

One of the advantages of using mobile devices is the range of activities they are able to support in a 
single device. While the activities could have been delivered in the same way without a mobile device, 
the mobile device in these instances allowed students to create artefacts which they shared with the 
rest of the class at the end of the activity. The artefacts also served as records of how abstract maths 
was situated in the environment. In addition, the mobile devices facilitated the activities as students 
moved in and out of the different learning spaces, from gathering artefacts “in the wild” and creating 
new content as they annotated the artefacts they had gathered, to sharing these new artefacts with 
other members of the class.  

These observed breakthroughs tally with the students’ perceived advantages of mobile learning for 
math: facilitate visualisation of abstract math concepts as well as engagement in fun and active 
learning activities that use technology. There was also the benefit of allowing personalisation, 
ownership of learning and improved student engagement, as the teacher suggested. These tangible 
benefits map well into Cochrane’s (2010) potential benefits of mobile learning: facilitating learning 
across contexts, facilitating contextual learning, and providing personalisation in both personal and 
collaborative environments.  

The mobility offered by the technology facilitated learning as students moved in and out of different 
learning spaces, investigating math properties within their environment. The process of finding 
concrete representations of abstract math within the environment facilitated a personal learning 
environment as the students worked on their own devices.  

Conclusion 
This study evaluated the breakdowns and breakthroughs of using mobile devices for learning 
mathematics in learning activities that transitioned between the indoor and outdoor environment. It 
has identified technical, activity design and social issues involved in implementing tablet use in a 
primary school setting. Some of the issues identified could have been avoided through a more careful 
orchestration of the learning activity. This points back to the important role that teachers play in 
designing and carrying out novel technology use. In the activities carried out, there was a shift in the 
teacher’s role and responsibility, from the person guiding and stimulating discussion to that of a 
“curator—a collector, organiser and guarantor of educational opportunities (Crompton & Traxler, 
2015, p. 230)”.  As such, it would be worthwhile addressing how teachers are being trained to target 
issues surrounding orchestration in addition to training on the use of new technologies..  
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Introduction and research questions   
In our case study, in which we attempt to understand the reasons why collaborative behavior arises, 
we turned to eye tracking during a live lesson involving a mathematics problem solving session in a 
classroom, and measured shared attention via gaze synchrony. Gaze synchrony is a measure of how 
much the locus of gaze of the different participants in the study overlaps. Together with a qualitative 
analysis of the episode, we tried to determine what produces gaze synchrony and why. Our data 
collection took place in a classroom and not in a lab, making our results ecologically valid. Our 
resulting picture, an annotated graph, is worth a thousand words when supplemented with specific 
knowledge about the key events it identifies. With the graph we are able to locate moments when 
(gaze) focused communication and interaction takes place, and identify what brings about that 
communication and interaction.  

Background 
Collaboration is a process whereby two or more people work together towards achieving a particular 
goal. Intellectual work has become increasingly collaborative. There is remarkable consensus among 
educational policy makers, that the future labor market needs primarily non-routine analytic and non-
routine interpersonal skills, including problem solving, interpersonal communication, and self-
management (OECD, 2013). Although the nature and learning of such 21st century skills (see Binkley 
et al. 2010) has been studied both in psychological and educational research there are some areas that 
have received little attention, if any. In our study we address the question of what brings about 
collaborative behavior during non-routine mathematics problem solving in class.  

Methodology 
In order to study patterns of collaboration during mathematics problem solving sessions in the 
classroom, student teachers at the University of Helsinki were asked to solve a non-routine problem 
during a lesson while wearing mobile eye-tracking devices. The problem consists of finding the 
optimal way to connect four cities located at the vertices of a square with cable, using the shortest 
amount of it (the optimal solution is given in Figure 1b). Several kinds of data were collected in 
addition to the eye-tracking data, such as notebook scribble, screen content when laptops or tablets 
were used, video, voice, and a stimulated recall interview with the subject wearing the eye-tracking 
devices during which they could see the eye-tracking recording as a form of stimulus. The students 
work first alone, then in pairs, and then in groups of four. The role of the teacher is to encourage 
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students to find the best solution possible without providing information about it. Four students were 
wearing the gaze tracking glasses. The gaze tracking data was processed to measure gaze synchrony 
and produce the graph in Figure 1a. The red line represents a statistically generated mean of the 
measure of gaze synchrony. The blue line represents the amount of overlap as given by the gaze 
tracking data relative to this statistically derived mean, in standard deviation units. The green lines 
are three standard deviations away from the red mean curve. 

           
Figure 1: (a) 3-way gaze synchrony graph        (b) the optimal solution to the problem 

Results and discussion 
The graph above and the careful analysis of other audio and video data allow us to construct a 
storyline that describes the problem-solving episode and which highlights collaborative behavior.  
Gaze synchrony occurs at the peaks. Leading to these moments is the need of one or more of the 
students to verify their belief that they have identified a plausible solution (something we call goal 
proximity). When this belief wanes, students return to work on their own in hope of finding a better 
solution and gaze synchrony is lost, as indicated by the troughs in the figure. For example, in the 
picture, towards the right, there is a long trough followed by a high plateau. During the trough, the 
students are working alone, but then, one of the students thinks he has found the best solution and 
asks everyone to look at the board to verify this, and the verification process ensues. The graph helped 
us identify this pattern of collaboration in which discovery and verification alternate, with discovery 
taking place while students work on their own, and verification signaled by increased gaze synchrony, 
occurring while the group works together and the visual attention of the group members is more 
focused on the same targets. We believe that with this tool we might be able to identify, with more 
data, other collaboration patterns occurring in problem solving sessions in the mathematics classroom 
and provide teachers with valuable insight informing her interventions. 
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Promoting students’ active and meaningful engagement in online learning environments, and 
especially in asynchronous courses where students are not interacting with the lecturer or their peers 
in real time, can be challenging. This paper presents the initial results from an exploratory study on 
how the tutors’ design considerations of a ten-week online asynchronous master’s course, together 
with their online pedagogic strategies have impacted on students’ learning experiences and their 
engagement with its resources, such as content, peers and tutors. The data we focus on consists of 
students’ online contributions and one-to-one interviews. Our research aims to gain an insight into 
students’ views on how their engagement impacted on their online learning for this course, leading 
thus to identifying opportunities and barriers to take into account when designing for active learning 
in an online course. 

Keywords: Online learning, asynchronous communication, student engagement, digital technologies, 
mathematical learning. 

Introduction 
Active learning has a reputation of being effective in supporting students’ retention of knowledge, 
addressing potential misconceptions, promoting engagement and encouraging positive attitudes 
towards learning (Michael, 2006). Considering these arguments, educators should be encouraging 
active learning in every mode of study, such as face-to-face traditional teaching, online synchronous, 
asynchronous or blended learning. Even though active learning strategies, such as Think-Pair-Share, 
Role Playing, Group Discussion, etc., are widely used and have been shown to be successful in face-
to-face, as well as virtual yet synchronous teaching situations, achieving active learning in an online 
asynchronous learning environment presents a number of ‘new’ (as is not widely researched and 
addressed) challenges (Riggs & Linder, 2016). For example, some authors (e.g. Picciano, 2002) claim 
that online discussions and learning could distance students from convergent thinking, instructor 
directed inquiry and scientific thinking compared to face-to-face discussion. Others (e.g. Jiang & 
Ting, 2000; Dixson, 2010) found that students’ online learning very much depends on the quantity 
and quality of their peers’ postings in online discussions, which is certainly an unpredictable factor. 
Haythornthwaite (2002) and Rovai (2002) found that the greater variability in the online social 
interactions between students in terms of regular presence, participation, etc. and their sense of 
belonging in a community and trusting their peers in their mutual learning journey can take longer 
than face-to-face learning in a classroom environment. And just as importantly, practical issues such 
as easy access to the online platform and the course resources and student support when technical 
difficulties arise, need to be offered (e.g. Hewitt, 2003). 
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There are great benefits of learning in an asynchronous environment. Students have more time to 
reflect on the resources, the tasks, their tutors’ and peers’ contributions, but they also have more time 
to invest in offering more thoughtful and insightful contributions (Collison et al., 2000), than perhaps 
in a face-to-face interaction. Riggs and Linder (2016) found that more students choose online 
asynchronous courses due to the flexible mode of study, i.e. managing their time to work on the given 
tasks as and when their own schedules permit, but also spending as much time as they want per task. 
For more introvert students and those who are not given the opportunity to share their thoughts in 
face-to-face learning environments due to time constraints in sessions, the authors concluded that 
online asynchronous courses can give them more time to compose their thoughts and contribute.  

To address the above-mentioned challenges, educators have striven to design asynchronous online 
courses that promote active learning and meaningful engagement from students and offer support by 
adapting their own pedagogical strategies accordingly (Riggs & Linder, 2016) and developing new 
such pedagogical strategies. Considering our own experiences as tutors in teaching such a course for 
the past four years, we recognized our role shifting from that of a subject matter expert, a course 
developer and a tutor to that of: (i) a technology trainee, to ensure we were familiar ourselves with 
various digital tools, (ii) a trainer, to support our students in their interactions with these digital tools 
and (iii) a facilitator or moderator, to manage our students’ online contributions and interactions with 
their peers in online discussion forums. In particular, our role in promoting students’ active and 
meaningful engagement in online discussion forums has been one of our greatest challenges. To 
identify strategies that support and maintain such engagement throughout the duration of the course, 
while at the same time evaluating and revisiting the design of our course, we carried out an 
exploratory study.  

In this paper, we present our online asynchronous master’s course on digital technologies for 
mathematical learning, followed by a description of the methodology of our exploratory study that 
investigated the extent to which and how the asynchronous online experiences impacted on our taught 
postgraduate students’ learning in this course. The initial analysis from this exploratory study data 
follows. Some conclusions are then drawn, while the key findings of our study are put forward as key 
recommendations for nurturing active learning opportunities in any online asynchronous course. 

Our online asynchronous course 
In 2014, we designed a brand new course Digital Technologies for mathematical learning, the first 
and only online course of the University College London (UCL)’s MA in Mathematics Education 
master programme, which uses the UCL Moodle platform for its delivery. There are two e-learning 
aspects of this course: (1) its online delivery and (2) the focus on digital technologies of the course 
itself, consisting of (i) familiarisation of the students with a wide range of digital tools and resources 
(graph plotters, dynamic geometry environments, statistical software, fully interactive online 
packages) and (ii) critical reflection on the implications of using such tools in the learning and 
teaching of mathematics mainly at secondary school level (11-18 years old students).  

The main aim of this 10-week course is to encourage students to reflect critically on the potential and 
limitations of digital technologies for the learning and teaching of mathematics by providing 
opportunities for students to apply knowledge of relevant research and theory in practice. Besides 
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getting familiarised with digital tools and reflecting upon their use as ‘learners’ and ‘users’ 
themselves, students are also encouraged to design activities to use with at least three different digital 
tools and then evaluate them by trialling them with learners. In this process they carry out mini-
research studies and reflect upon the use of digital technologies for mathematical learning. The course 
is delivered in 10 weeks and each week the tutors upload on the UCL Moodle platform: (1) the 
learning objectives and a description of the week’s content, (2) the key readings: one essential and 
two indicative ones and (3) the offline and online weekly tasks, which are tightly structured towards 
the course aims and the learning objectives. Instead of direct teaching, learning is designed to take 
place as the result of doing short, manageable offline and online tasks. The offline tasks include (1) 
familiarising with a piece of software and going through scaffolded activities using specific software, 
and (2) designing and trialling mathematics activities involving the specific software that bridge 
learners’ interactions with digital media and the mathematical concepts. The online tasks include: (1) 
engaging with the ideas in the key readings and writing a response about the points they agreed or 
disagreed with or by contributing to online discussion forums with written observations on views and 
perspectives of fellow students; (2) reflecting on the application of the ideas encountered in the key 
readings in specific learning contexts such as the offline tasks they designed and trialled. Every week, 
the students are required to carry out the reading and the weekly tasks, then post their reflections 
online, and respond to their peers’ posts. There are three themes covered in our course: (a) 
Visualising, (b) Generalising and Expressing and (c) Modelling. In these three themes, the students 
interact with many digital tools (DT), such as Excel, GeoGebra, Autograph, the eXpresser 
microworld, Logo, Scratch and a variety of modelling applications and online digital platforms. 
Research (e.g., Dixson, 2010) indicated that it can be helpful for instructors of online asynchronous 
courses to create an architecture for their own engagement, too. As tutors, we made sure that we had 
social presence demonstrated on a weekly basis through: uploading materials, posting messages, 
guiding student learning, providing feedback according to set times, sending reminders, contributing 
to some online discussions. 

Methodology 
For the four years we have run this course, we have conducted end of theme, as well as end of course 
evaluations and while the vast majority of our students showed ‘online’ presence by posting their 
work and occasionally posting questions to tutors regarding practical issues about the work, we have 
recognised that they were not engaging in online collaborations with their peers as much as we wanted 
them to, for a full learning experience. In our efforts to encourage our students’ active and meaningful 
engagement in online collaborations, informed by findings of research (e.g. Dixson, 2010), we trialled 
some actions, which included: tasks that formed the basis of an online group discussion; collaborative 
tasks with tutor-nominated groups; pick-a-paper tasks, i.e. ‘choose one paper and its commentary 
from a member of your small group and post your comparative remarks and reflections’. While these 
strategies worked in terms of increasing the likely hood of students contributing online, we also 
became interested in why some students were more engaged than others, why they displayed a higher 
degree of learner autonomy, evidenced in their inquiring further, seeking assistance and generating 
new threads of discussion, than others. As such, we became interested in enquiring into our students’ 
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perceptions of the extent and the way their asynchronous experiences contributed to their active and 
meaningful engagement on this course. 

To address this research question, we decided to carry out an exploratory study focusing on data 
collected from our latest cohort of students. This data comprises 20-min interviews with a sample of 
10 of the 17 students enrolled on this course and their online contributions throughout the delivery of 
the course (January-March 2018). Of the 10 students who volunteered for the interviews, three were 
English native speakers, while seven were international students, for whom English was an additional 
language. The interview questions focused on students’ mode of study and students’ experiences of 
online asynchronous learning, in particular their experiences of participating in online discussion 
forums. Our intention is to use the outcomes of this exploratory study to inform our thinking and 
identify issues to research further, but also rethink our practices in terms of communicating with our 
students and providing effective instructional strategies for improved student communication and 
collaboration. This will lead to the re-design of our course in its next presentation, focusing on 
encouraging active learning and engagement with the online course resources. 

The interview data was analysed in conjunction with the students’ online contributions and written 
assignments, following the grounded theory approach (Strauss and Corbin, 1990) and using NVIVO 
to organize, manage and analyse this data. Our students’ social processes regarding their mode of 
study and online contributions were analysed by going through the interview transcripts and coding 
their comments using labels (i.e. short phrases or sentences) that described what they said. This 
process was repeated a number of times until there were no more issues identified in the data, no 
improvements to the current codes were needed and no more codes were produced. At the end of this 
iterative process, these labels had become analytical representations of the data and turned to the 
identified categories we share later in the Results section. By doing a constant comparative analysis 
of the emerging categories, we were able to identify two emerging themes and finalised the categories. 
Next, we present the emerged themes and categories in the way we linked and integrated them aiming 
at capturing all the variations in our data and allowing a theory to emerge, that of students’ motivation 
and challenges they faced regarding online contributions in an online asynchronous course. 

Results 
The two main emerging themes grounded in students’ responses are: Motivation to contribute in 
online asynchronous learning encouraged and sustained through Learning from others; Peer 
Assistance; Peer students’ online study patterns; Interest in and enjoyment of topics, and Challenges 
to contribute in online asynchronous learning such as Non-participation; Visibility of learning; 
Style and Etiquette of communication; Feeling at ease with your peers. For each of these two 
emergent themes, students had commented upon the tutors’ influence in their learning. 

Motivation to contribute in online asynchronous learning: Learning from others Those students 
who engaged with the online activity felt that they benefitted as a result. One international student, 
Jennie, who enrolled on this course following her undergraduate studies, admitted feeling comfortable 
to participate in the online discussion forum as she learned a lot from reading the contributions of 
what she thought of as ‘her more experienced and older than her’ peers. She admitted looking 
specifically for their contributions and trusting their views.  
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Yvette felt that reading research papers, reading other students’ work and having to give feedback 
and comment on others’ contributions helped her with her own learning: gaining a deeper insight into 
the key readings, thus learning about how to engage with research and how to use it to reflect on 
mathematical learning when digital technologies were used. Similarly, John reckoned he learned from 
his peers: “I felt like you were in a classroom with other students in a way. Obviously with it being 
asynchronous it’s a lot slower than that, but you kind of need it to be asynchronous so you can actually 
go and read what people have written. And then it was easy to find again what you’ve written and 
how other people have responded”, while Jack said that seeing other students’ contributions triggered 
him to respond, hence explicitly engaging with the knowledge base of this course.   

Mary and Anne mentioned the opportunities to learn from others, which were facilitated by the tutors’ 
collated feedback on all students’ contributions per theme; they would revisit this feedback often, 
which helped them be more aware of the expectations of this course and improve their future work.  

Motivation to contribute in online asynchronous learning: Peer assistance All 10 students 
commented on how useful the UCL Moodle Discussion Forum was for sharing ideas, for reading 
other students’ contributions and reflecting upon their own thinking and understanding of the course 
material, tasks and resources. “Sometimes if I had no idea how to start my work and I saw how my 
classmates did it, then I had some directions” (Janet). Having an online record of the peers’ 
contributions enabled the students to revisit aspects of the course at any point throughout the course. 
One student, Frances, extended this argument by comparing the online contributions to those of a 
face-to-face learning environment, where “you can only hear a few people’s ideas” and mentioned 
how useful it was to have the time to read and reflect upon them before responding and/or asking 
questions, which wouldn’t have been the case in a time constrained face-to-face interaction: “You 
have all these online resources to access and explore, and you can ask directly the creators”.  

Even though there was some peer support offered in Discussion Forums, many students told us that 
they needed “immediate feedback”. For example, Mary argued for the importance of having a tutor 
‘close by’ when learning about and interacting with a new DT. She felt that she needed to ask 
questions that needed immediate answers in order for her to make progress. Similarly, Patricia and 
Helen argued about their preference for face-to-face sessions when familiarizing themselves with a 
new DT, as in that scenario the help was immediate and support was always there (we offered two 
optional face-to-face sessions as part of this course).  

Motivation to contribute in online asynchronous learning: Peer students’ online study patterns 
The variance in the students’ online presence depended on many factors, such as their interest in the 
topic, their other commitments (work, studying, deadlines to assignments, etc.), but also their 
preferred style of studying. All the 10 students agreed they liked the flexible mode of study this course 
offered, as most of them found it very convenient to choose their own time to study.  

Six of the 10 students (Janet, Anne, Patricia, Jack, Frances, Mary) admitted that time management 
was a challenge in this course. In some cases, it was as result of their own struggle at times to self-
manage their work and not because of the structure of the course. But in other cases, it was due to 
‘wait-time’ for others to contribute online to Discussion Forums. Anne agreed that timing is very 
important even if the course is asynchronous and flexible in that sense. She would never read any 
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postings that were uploaded too late in the week, as she would have already finished her work by 
then. Similarly, Patricia argued: “I can’t be bothered to respond to that now, because I’m on to the 
next one. It’s not fresh in my mind anymore”. Frances, too mentioned how important it was for peers 
to post on time otherwise “You are delaying your partner’s work too”.  

Motivation to contribute in online asynchronous learning: Interest in and enjoyment of topics & 
tasks Looking at the patterns of all students’ online participation on a weekly basis throughout the 
course, we noticed that there were weeks when their online presence was much higher than in others. 
The 10 students we interviewed argued that this was due to their own interests in certain topics 
covered during certain weeks. For example, Janet said that being interested in a topic encouraged her 
to work on the task earlier in the week than when she didn’t like the topic or she was not very familiar 
with it, e.g. programming, and she would engage with others’ online contributions too. 

All 10 students valued the task which required them to design and trial an activity with learners, then 
reflect on the mathematical learning. John and Jack argued how great it was to reflect on pedagogical 
issues regarding students’ learning mathematics with DT. They all commented about learning not 
only new DT, but also learning how to utilize them in the classroom and use them effectively with 
learners. Jennie felt that this course was indeed a great preparation for her future career as a 
mathematics teacher. She felt she got more time to think about the relationship between the DT and 
mathematics and how it could be used in her own way in mathematics classrooms. 

Challenges to contribute in online asynchronous learning: Peer students’ non-participation Lack 
of sustained participation from students seemed to be a key factor for disengagement from online 
discussion forums. As the course progressed, Jack noticed that not many of his peers participated nor 
did they respond to his comments. He felt de-motivated and as a result lost his keenness for ongoing 
online participation. Similarly, due to the lack of peer participation, Anne found it difficult to 
contribute online, as there were no contributions from others that she could comment on. Even if there 
were contributions, if too few, there were only so many opportunities to comment on them. 

Challenges to contribute in online asynchronous learning: Visibility of learning Amongst the 
reasons mentioned by our students as holding them from contributing online included being afraid of 
showing their insecurity and lack of confidence in their own expertise with DT or subject matter of 
the course. Mary confessed: “I know they won’t say are you stupid, how can’t you not know this? 
But I still feel people get the impression that you don't know anything and they would hesitate 
comparing or checking your contributions”. 

Visibility of online contributions was even more of a challenge for the non-native English students, 
who were also worried about the clarity of expressing their thinking in written format. Six out of 
seven of our international students admitted that they were reluctant to submit comments online. Mary 
admitted that she would probably hesitate to make a contribution in a face-to-face session for that 
same reason, but online her contributions remain visible to others for the duration of the course. This 
was also a concern for Vicky, who commented that she preferred the online mode of communication 
to the verbal one as it gave her time to think through what she wanted to say, with the advantage that 
she would ‘correct her English and grammar before posting anything’.  
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Challenges to contribute in online asynchronous learning: Style and Etiquette of communication 
Helen mentioned the challenge of communicating in the Discussion Forums; when asking a question, 
she would need to spend time thinking and articulating the question accurately and in a concise 
format, whereas a face-to-face scenario is more like having a chat and the question might be formed 
by itself. The formality of the Moodle discussion forum was mentioned by Anne too. She was put off 
by the formality of such communications and the fact that tutors would see such contributions and 
that their posts would also be assessed. Her perception of the role of online contributions led to her 
being reluctant to upload anything that she hadn’t thought through very carefully. Being a native 
English speaker did not make it easy to adhere to the more formal style of communication; Patricia 
too admitted feeling occasionally reluctant to post any comments as she had to make them formal.  

However, all 10 students admitted that this formality required in all of their online contributions did 
lead to clarity and coherency of arguments that they were trying to put forward. Having tried to set 
up a group chat on Facebook Messenger (the seven international students) Jennie found the 
communications were very informal, with far too many details which she didn’t need to read, and 
with ideas that lacked clarity, although she, like all the others liked the instant feedback. 

Challenges to contribute in online asynchronous learning: Feeling at ease with your peers 
Another reason for being disengaged from the Moodle Discussion Forum was the lack of familiarity 
with their peers, having not met them in person before the start of the course, which led to a lack of 
a sense of being part of a community. For example, for Helen it was difficult to post on the forum 
discussion and comment on work from students she never met face-to-face. Anne thought that her 
peers who she was not acquainted to were too ‘polite’ in their comments to her work, so as not to hurt 
her feelings. This familiarity and friendship with the people on Messenger allowed them to share 
comments freely, not thinking that they would be upset or offended. Another disadvantage of posting 
feedback to a peer in a forum is that the way the feedback is articulated might be considered bad 
criticism and upset their peer, whereas in a face-to-face situation, they could see that the feedback is 
expressed in a positive manner and their peers can recognize that a student is trying to help and give 
constructive feedback. For example, in Messenger you can put a smiley face too, and so no matter 
how the feedback was articulated (as a criticism, for example) the receiver would not see this as a 
negative comment.  

Some conclusions and our key findings  
Some of our findings are similar to the ones by authors we referred to earlier in the introduction. All 
students were very appreciative of the flexible mode of study of our online asynchronous course and 
the time given to reflect upon peers’ contributions, which are similar results to Riggs and Linder’s 
(2016) work. Our students’ learning did depend on the quantity and quality of peers’ postings 
(Dixson, 2010) and the tutors’ feedback and their trust in their peers (Haythornthwaite, 2002).  

However, our study brought to the fore two important aspects not mentioned in the literature we 
reviewed. We learned from our data analysis that online communication was perceived by our 
students as a double-edge sword; on one ‘edge’ they all liked the flexible mode of study, managing 
their own time, taking time to think through their responses or others’ contributions, but the formality 
of their contributions deterred them from engaging in conversations with peers more fully.  We also 
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learned that we needed to orchestrate better the timing of online contributions in an asynchronous 
course: while having the flexibility to contribute at their own convenient times, deadlines are even 
more important to be set and met, in order to ensure an active and meaningful engagement and 
exchange of views.  We thus conclude this paper by putting forward these two key findings as 
recommendations to designers and tutors of online asynchronous courses, with the aim of nurturing 
active learning opportunities. 
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Background 
The technology has gotten faster over the last years; students became more proficient in the use of 
smartphones etc. But is the power of speed with a quick visualisation when dragging a slider bar or 
grabbing a graph really beneficial while learning and understanding the concept of parameters? The 
study presented here uses a guided discovery approach (adapted from Mosston, 1972) to investigate 
different visualisations to conceptualize parameters of quadratic functions as it is the first non-linear 
function taught and can serve as a prototype for the conceptualization of parameters of higher 
polynomial functions. To specify the intended learning process in the study, the core elements for a 
conceptual understanding are presented: For this study in the frame of quadratic functions the two 
mathematical objects variables and functions and their “Grundvorstellungen” (as defined in vom Hofe 
& Blum, 2016) are important for the conceptualization. For functions it is important to develop the 
ideas of a function as mapping, covariation and object (vom Hofe & Blum, 2016). All these three 
aspects are crucial, when learning how a graph is changing when one of the parameter changes. 
Parameters can be classified as a specific type of variables. While many authors distinguish the 
Grundvorstellungen of variables as unknown, generalized number and changing variable (e.g. Malle, 
1993), Drijvers (2003) applies these specifications on parameters. The role of parameter is not fixed 
to one aspect, but can be placeholder, unknown, changing quantity or generalizer. All roles are crucial 
to understanding the concept and the conceptualization can be supported through technology. Another 
important aspect to understand the concept of a function is to be aware and to be able to change 
between different representations of functions (algebraic-symbolical, numeric-tabular, graphic-
visual, situative-linguistical, e.g. Duval, 2006). Duval (2006) describes it as the critical threshold for 
learning. This can be supported by technological tools (Drijvers et al., 2016). It is still an open 
question whether the conceptualization differs when different visualisations are used when learning. 
These points lead to our research questions: How can technology-assisted guided discovery support 
the conceptualization of parameters in the field of quadratic functions? 

Methodology 
In a control-group design intervention study with one control- and three experimental groups a total 
of 14 Year 9 classes worked on a series of tasks designed using a guided discovery approach, which 
was implemented through hints on the tasksheet how to investigate the influence (for information on 
the tasks see Göbel, Barzel, & Ball, 2017). The different control- and experimental groups differed 
only in the kind of visualisation used. The control group had no technological visualisation while the 
three experimental groups used different types of digital environments (standard function plotter tool, 
pre-programmed file with the possibility to drag the graph, pre-programmed file with sliders for the 
parameters) to investigate the influence of parameters in the vertex form of quadratic functions 
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𝑓𝑓(𝑥𝑥) = 𝑎𝑎 ⋅ (𝑥𝑥 − 𝑏𝑏)2 + 𝑐𝑐. Students designed a summary sheet of their findings during the 
intervention, which was collected. For an overview on the intervention and the differences between 
the four groups see Göbel et al. (2017). A paper-pencil test was given to all students to collect baseline 
data for the comparison between classes.  As well as the summary sheets collected a focus group in 
13 classes was filmed. The summary sheets were analysed using a coding manual developed by 
qualitative content analysis. The videos transcripts were analysed with regards to the role of 
parameters, as well as using technology to explore and validate students’ own hypotheses.  

Results 
Overall it can be said that the dynamic visualisations seem to support the students learning better than 
the static visualisations. Dynamic groups design significantly more overall appropriate summary 
sheets.  Students in the dynamic visualisations groups, so students using sliders (SL) or drag mode 
(DM), found out more details about the influence of the parameters than students in the control group 
or students using a standard function plotter (FP). While in the control group 70,4% of students 
identified the influence of parameter c adequately (FP 46,3%, DM 76,5%, SL 73,8%), this number 
drops to 52,1% while identifying the influence of parameter b (FP 40,3%, DM 68,2%, SL 72,3%). 
Analysis of the summary sheets show that students in the dynamic groups seem to view parameter 
more as a changing quantity compared to students in the static groups who view parameter as 
placeholder. The video analysis shows that students use the technology to explore on their own, 
explain something to each other or to check their hypotheses even though they worked on their own 
in a guided discovery. Technology-assisted guided discovery can support the learning, but the pre-
structuring and dynamic manipulation of the visualisation is crucial for benefiting the learning. 
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The effect of digital tools on visual attention during problem solving: 
Variance of gaze fixations when working with GeoGebra or on paper  
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Research on reading indicates that visual attention is different when using digital media or print. 
This study aims to explore whether the choice between paper and GeoGebra influences visual 
attention during collaborative geometry problem solving. We measured eight students’ fixation 
durations during different lesson phases: teacher instruction, individual work, pair work, group work, 
students presenting on the board, and whole class discussion. During all phases except teacher 
instruction we observed a difference in the fixation distributions as indicated by Kolmogorov-Smirnov 
tests. The use of GeoGebra is related to a slight shift from median length fixations to short fixations, 
suggesting lower cognitive load when students work with computers. 

Keywords: Attention, computers, cooperative learning, eye movements. 

Introduction 
Paper and pen is a different medium than computer and screen and dynamic geometry environment 
(DGE) is very different from paper when solving a geometry problem. It is well documented that 
technology in general (Chauhan, 2017) and DGE in specific (Chan & Leung, 2014) have positive 
effects on mathematics achievement. There is much research on the specific affordances of DGE in 
learning and problem solving. For example, Christou, Mousoulides, Pittalis, and Pitta-Pantazi (2005) 
argue that DGE as a mediation tool encourages students to use modeling, conjecturing, 
experimenting, and generalizing in problem solving. Healy & Hoyles (2002) claim that DGE can 
scaffold the solution process and help students move from argumentation to logical deduction, while 
for less successful students the DGE may prevent them from expressing their mathematical ideas. 

One way to examine how the learners’ experiences are different in DGE and paper is eye-tracking. 
Human gaze consists of approximately three to four fixations (maintaining of the visual gaze on a 
single location) in a second (Rayner, 1998). Hartmann and Fischer (2016) compare eye-tracking 
information to mind-reading: the target of a fixation usually tells what we think about and the fixation 
duration corresponds with processing time. Fixation duration is an established indicator for perceptual 
or cognitive processing difficulty, also in the context of mathematics (Rayner, 1998). Glöckner and 
Herbold (2011) summarize research evidence to suggest that gazes related to more automatic 
processes would have shorter fixations (below 250 ms) and more elaborated information processing 
generally requires long fixations of more than 500 milliseconds. 

Visual attention has been studied mostly in the context of reading and research on mathematics is 
much less frequent (Hartmann & Fischer, 2016; Rayner, 1998). In a systematic review on reading on 
paper and digitally, Singer and Alexander (2017) found out that reading comprehension is influenced 
by the text presentation. However, in the context of mathematics, we did not find any comparative 
eye-tracking studies between digital and non-digital learning environments.  
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Existing eye-tracking research on mathematics shows that the method is relevant. Andrá, Lindström, 
Arzarello, Holmqvist, Robutti, & Sabena, (2015) investigated how students read mathematical texts. 
In their study, fixation durations were typically in the range from 190 to 250 milliseconds. Fixations 
were longer for formulas than for graphs or text, but graphs attracted more fixations, leading to longer 
time spent looking at the graphs. In Lin and Lin (2014) study students were solving problems on 
tablets, and they suggest fixation counts, time on target, and run counts as relevant measures, because 
these differentiate successful from unsuccessful solvers and correlate with perceived difficulty. 

We find the dominant methodologies for eye-tracking problematic. So far, most studies have been 
conducted in laboratory situations. We believe that problem solving needs to be studied in 
ecologically more valid contexts. We are interested in problem solving in contexts, where multiple 
modalities are present (Arzarello, Paola, Robutti & Sabena 2009) and multiple goals need to be 
addressed (Hannula, 2006). Most importantly, we are interested in problem solving in collaborative 
situations. Our earlier studies show that mobile eye tracking provides interesting data on attentional 
behavior in real classroom situations (e.g. Garcia Moreno-Esteva & Hannula, 2015; Haataja, Garcia 
Moreno-Esteva, Toivanen, & Hannula, 2018).  

While we have not found studies examining the visual attention in digital and non-digital mathematics 
learning environments, it seems likely that a digital tool would have an effect on visual attention even 
in the context involving collaboration. We formulate our research question as follows: Does the 
choice of learning environment (paper vs. GeoGebra) have an overall effect on student attentional 
processes as indicated by fixation durations when students are solving a geometry problem. 

Method 
Participants 

We examined fixation durations for one teacher and her eight students. The teacher taught the same 
problem solving session twice in two different Finnish grade nine classrooms. The first lesson was 
recorded in May 2017 and then the students solved the task using paper and pencil. We call this Paper 
lesson, even if at the end of the lesson the students continued examining the same problem using 
computers. The second lesson was recorded in May 2018 and then the students solved the task using 
GeoGebra software. This lesson we call the GeoGebra lesson, even if the students used also pen and 
paper to some extent. The ethics review has approved our research procedures. 

The mathematics teacher Joanne was an experienced teacher. The students were four girls (using 
paper) and three girls and one boy (using GeoGebra). The students were selected among volunteers. 
Data from the first lesson has previously been analyzed from the perspective of student and teacher 
eye-contact (Haataja, Garcia Moreno-Esteva, Toivanen, & Hannula, 2018; Haataja, Salonen, Laine, 
Toivanen, & Hannula, forthcoming). The focus in this paper is to examine whether use of computers 
has an influence on students’ fixation durations as an indication of an effect on their visual attention. 

In both of the lessons, the teacher first introduced the lesson structure and when students got their 
respective tools (i.e. paper and rulers or laptop and GeoGebra) ready, the teacher posed the geometry 
problem to the class. Students first worked individually, then with a pair, then four together, and 
finally the students’ solutions were collected on the board and discussed. During the first lesson, the 
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teacher also posed an extension problem and during both lessons they continued to examine the 
problem with a GeoGebra application after discussion. However, that end part of both lessons is 
beyond the current paper’s analysis. The relevant lesson phases are summarized in Table 1. 

Lesson phase Paper and pen (s) GeoGebra (s) 

Teacher gives instructions regarding the lesson structure (1) 44 38 

Students fetch papers and rulers 139  

Teacher gives  instructions for GeoGebra  92 

Teacher poses the problem (1) 273 111 

Individual work (2) 373 387 

Teacher gives instructions for pair work (1) 45 22 

Pair work (3) 205 513 

Teacher gives  instructions for group work (1) 30 40 

Group work (four) (4) 1210 570 

Teacher poses task extension 362  

Students come to the board (5) 190 130 

Whole class discussion (6) 106 244 

Table 1: Lesson phases and their durations. The numbered phases were analyzed in this study 

The teacher was instructed to provide encouragement and to ask questions that require students to 
explicate their thinking but to not provide hints for how to solve the problem. When students were 
working individually, in pairs, or in groups of four, the teacher’s activity consisted of roaming in the 
classroom and stopping for scaffolding one group at a time. 

For the analysis, we included only those lesson phases that took place during both lessons. Moreover, 
we grouped together four separate instances when the teacher was giving instructions to the class or 
posing the problem. This way, we have identified six lesson phases that captured altogether 41 
minutes and 16 seconds of the paper lesson and 34 minutes and 15 seconds of the GeoGebra lesson. 
Our analysis will focus on these parts of the lesson.  

Apparatus 

We recorded the actions and conversations of the problem-solving session using audio recording and 
three stationary video cameras in the classroom. In this paper, we analyze data form five gaze-tracking 
glasses that recorded eye movements of the teacher and the target students. The gaze-tracking device 
consisted of two eye cameras, a scene camera, and simple electronics attached to 3D-printed frames 
(Figure 1). The devices and software were self made (see, Toivanen, Lukander, & Puolamäki, 2017). 
The camera frame rate depended on lightning conditions, and maximum rate in optimal conditions 
was 30 frames/second. Data was recorded on laptop computers that were carried in backpacks 
allowing subjects to move freely in the classroom. 
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Figure 1: The gaze-tracking equipment. 

Procedure 

The recorded data was first analyzed to identify all fixations for all subjects. The fixation durations 
were estimated from the eye image difference between consecutive cropped eye image frames and 
setting a threshold for the average pixel-wise difference. This results in more accurate measure, 
compared to using gaze coordinates which might fluctuate due to algorithmic miscomputations. The 
information of fixation onsets and durations was then combined with information about timing of 
lesson phases from a video following teacher actions in the class. After this preliminary organization 
of data in Excel, the data was imported to SPSS 24 for statistical analyses. 

First we analyzed the descriptive statistics of fixation durations. As the distributions were non-normal, 
we used non-parametric tests in our consequent analyses. When comparing fixation durations of two 
samples, we decided to use the Kolmogorov-Smirnov Z-test rather than Mann-Whitney’s U-test, 
because it has more power to detect changes in the shape of the distributions. We analyzed the 
variation of gaze durations across the different lesson phases separately for students and the teacher 
for both the paper lesson and the GeoGebra lesson.  

We predicted that the gaze behavior might be different across different lesson phases and, therefore, 
we analyzed the data separately for different lesson phases. Our expectation was that the fixation 
durations would on average be similar across those lesson phases where the use of tool would not be 
central (i.e. teacher instruction, students to the board, and discussion) while the possible effect of 
computer as a tool could be seen during individual work, pair work, and group work.  

To check for sufficient similarity of visual behavior of compared individuals in the two conditions, 
we made pairwise Kolmogorov-Smirnov Z-tests for fixation distributions between individuals. For 
this analysis we selected the lesson phases where we expected the effect of computers to be minimal, 
i.e. teacher instruction, students to the board, and discussion. We used the information of pairwise 
differences to identify individuals whose fixation distribution was not comparable with other 
subjects’ distribution. We then removed from future analysis those students whose fixation 
distribution deviated from other students the most. Finally, we made a comparison between student 
and teacher fixation distributions for the two lessons (paper and GeoGebra) for the different lesson 
phases using Kolmogorov-Smirnov Z-test. 
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Results 
The total number of fixations during the analyzed lesson phases for all participants was 41,119. The 
shortest possible fixation to observe was 80 ms (two frames). The observed fixation durations varied 
from 80 ms to 15066 ms (Mdn = 234 ms, M = 430 ms, SD = 654.00). The durations were non-normally 
distributed, with skewness of 6.52 (SE = 0.012) and kurtosis of 69.62 (SE = 0.024). 

We then analyzed the similarity of fixation durations for both sessions for the teacher and all students 
for the lesson phases that were less tool dependent (i.e. teacher instructions, students at the board, and 
discussion). The Kolmogorov-Smirnov Z-tests showed that the teacher fixations over both sessions 
were similar across the two sessions and different from all but one students’ fixations. All but one 
compared student pairs had statistically significant differences for at least one of the lesson phases. 
However, it was possible to identify two students, who stood out more strongly from the group as 
having a different distribution of fixation durations. We removed these students from the analysis. 
After this removal, we had three female students from the paper lesson and two female and one male 
students from the computer lesson. 

We then made Kolmogorov-Smirnov tests for each lesson phase to compare fixation durations 
between the two conditions (working with paper or working with GeoGebra) (Table 2). The results 
show that during pair work and group work the distributions differ statistically very significantly. The 
medians indicate that students using GeoGebra had shorter fixations during pair work than students 
using pen and paper, while the difference was small and opposite during group work. Differences for 
the other lesson phases were statistically significant (p < .01) for pair work and group work. 

Lesson phase Tool n Mdn (ms) Z p 

Teacher instruction 
Paper 933 269 

.75 .627 
GeoGebra 1826 269 

Individual work 
Paper 1775 269 

1.38 .045 
GeoGebra 1918 267 

Pair work 
Paper 2692 264 

3.10 .000 
GeoGebra 1151 204 

Group work 
Paper 2880 240 

2.17 .000 
GeoGebra 5611 250 

Students at the board 
Paper 786 233 

1.57 .015 
GeoGebra 923 240 

Discussion 
Paper 1177 268 

1.59 .013 
GeoGebra 464 233 

Table 2: Kolmogorov-Smirnov Z-test results for tool effect on fixation durations. 
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To further explore the difference between paper and GeoGebra for visual attention, we looked at the 
distributions of different fixation lengths. We used the whole session for these students to identify the 
cut points for deciles. These cut points were then used to divide the distribution of fixation durations 
for the two lesson phases for paper and GeoGebra condition. We see that the GeoGebra condition had 
more deviation from the expected distribution of ten percent in each category. For pair work (Figure 
2), the students using GeoGebra had more fixations in the time range 100 ms to 200 ms and fewer 
fixations of longer duration in comparison to paper condition. For group work (Figure 3), students 
using GeoGebra had fewer gazes in the time range 200 ms to 300 ms and more very long fixations. 
While the two distributions in the GeoGebra condition are somewhat different, there seems to be a 
trend for somewhat more short fixations at the cost of average duration fixations. 

 
Figure 2: The distribution of fixation durations (ms) for the selected students for pair work 

 
Figure 3: The distribution of fixation durations (ms) for the selected students for group work 
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Discussion 
The results show an effect in student fixation durations for the choice between computer and paper 
as a media to solve a geometry problem. Use of GeoGebra is related with slight shift in fixation 
durations towards short fixations during collaborative phases of the problem solving. During this 
phase, students are comparing their individual solutions and discussing for alternative options. With 
respect to visual attention, this phase should include attention to other students and their drawings.  

Shorter fixations usually indicate lower cognitive load. In this context, it might mean that students 
who worked interactively with GeoGebra, executed more often simple search tasks, such as searching 
for cursor on screen, which have a low cognitive demand. Alternatively, it might be related to easier 
extraction of information from neat GeoGebra drawings in comparison to peers’ hand written 
solutions. Thirdly, the computer screen has a lot of visual attracters (e.g. menus) that may lead to 
short fixations on distracting elements. We provide one more possible explanation. In our earlier 
studies we have noticed that during interpersonal interaction in class, short fixations at the other 
person’s face are frequent. It may be that the students working with GeoGebra have more short 
fixations on peers’ faces, either because they have longer discussions or as it is more difficult to share 
screens than notebooks, they have less time for looking at solutions. These possible explanations can’t 
be answered before we have analyzed student behavior during these events and annotated the targets 
of the fixations. 

These results need to be taken with caution. There is significant variation in fixation durations 
between individuals and even within an individual across time. Although we tried to control for this 
variation and removed students with obviously deviating fixation duration distributions, the 
remaining students are by no means identical in their gaze behavior. Future studies should address 
lager variation of individual and situational differences. A larger sample of students would allow us 
to identify clusters of students whose visual attention follows a similar pattern and then compare these 
groups with different attentional profiles across digital and non-digital contexts. There is also need to 
examine qualitatively the nature of visual attention where a difference has been found. For example, 
what are the targets of longest fixations when solving the problem with GeoGebra and not? We also 
need additional data with different types of tasks. Perhaps some of the differences identified here are 
specific to the task used? Overall, this is just a beginning of a long journey. 
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Introduction 
The Irish Mathematics Curriculum, Project Maths, which was introduced into all post-primary 
schools on a phased basis from 2010, aligns with the core principles that underpin the Programme for 
International Student Assessment (PISA) mathematical framework (Merriman, Shiel, Perkins, & 
Cosgrove, 2014). However, there is evidence to suggest that teachers have been slow to move to the 
more constructivist teaching and assessment style required by the new curriculum (Jeffes et al., 2013; 
Merriman et al., 2014). In particular, in comparison to other participating countries, students in 
Ireland performed relatively poorly on the transformation geometry items in the PISA tests in 2003 
and 2012.  

One approach that has been proposed to address this issue is the use of Bray’s Heuristics (Bray, 2016); 
a set of guidelines for designing technology-mediated, cross-curricular, collaborative and contextual 
mathematics learning activities. The theoretical framework that underpins Bray’s Design Heuristics 
combines Realistic Mathematics Education (RME) and a particular constructivist model of 21st 
Century teaching and learning – Bridge21 (www.bridge21.ie). Participation in activities of this kind 
have been shown to have a positive effect on students’ conceptual understanding and engagement 
with mathematics (Bray, 2016; Tangney, Boran, Knox, & Bray, 2018). The research presented in this 
paper extends previous work by focusing on student attainment in exam-type questions, asking: How 
might participation in a transformational geometry activity created using Bray’s Design Heuristics, 
help participants to achieve higher levels of attainment in the topic? 

The Activity 
Following a number of classroom-based, technology-mediated, exploratory activities designed to 
provide students with a foundation in basic transformational geometry concepts, participants were 
presented with a laminated orienteering map of the school campus overlaid with a square grid. An 
orienteering circuit with 5 bases, each labelled as a set of coordinates from A to E, was set up on the 
school grounds, with QR codes fixed at each base. Scanning each QR code generated the geometrical 
transformation required to locate the next base.  

The class group was divided into five teams of 4/5 students. Each team was given a card with the 
coordinates of their team’s starting point (e.g. A (-3,5)). Teams were timed from the moment they 
began to discuss the location of their starting base on the map. The teams dispersed in different 
directions to locate their first QR code. In order to scan the codes and receive the geometrical 
transformation, students used a built-in feature of the Snapchat app, which they had on their mobile 
phones. The geometrical calculations, needed to navigate to the next location, involved Axial 
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Symmetry, Central Symmetry and Translations and were carried out by the students using white board 
markers on the laminated maps of their school grounds. 

Methodology 
The results presented in this paper focus on the quantitative aspect of the overarching exploratory 
study, exploring changes in attainment in written exams pre- and post-intervention. Participants in 
this research were 63 students, aged 14-15. The treatment group consisted of one class (n = 22) of 
students and the control group was made up of two classes (n = 41) graded at the same level of 
mathematical ability. The first author was mathematics teacher to the students in the treatment group, 
and the control group classes were taught by two other mathematics teachers within the school. The 
transformation geometry module was presented as outlined above to the treatment group while the 
control group were taught in a traditional, classroom-based fashion. The module took place in 10 x 
40-minute single class periods over two weeks, within the normal school timetable. In an attempt to 
ascertain the impact of the learning experience on the students’ ability to apply their knowledge of 
transformation geometry, the treatment and control cohorts sat the same written exam at the end of 
the module. This exam consisted of five exam questions, focused on transformation geometry, drawn 
from past papers of the state examination that Irish students sit at the end of grade 10.  

Results 
Average scores of the treatment group were 3% lower than the control groups in a pre-intervention, 
mid-year exam whereas in the post-intervention exam their results were 9% higher than those of the 
control group (Treatment: M = 71%, SD = 18; Control: M = 62%, SD = 15). Results of a one-tailed 
independent samples t-test indicated a statistically significant difference in performance between the 
participants in the treatment group and the control group (t(61) = 2.021, p = .029, one-tailed). 

Conclusion 
This paper provides a small sample of the results of a more significant exploratory study into the 
possible effects of participation in collaborative, technology-mediated, active learning experiences. 
The quantitative results described here are limited but have furthered the development of the 
hypothesis that this approach to activity design has the potential to positively impact on student 
learning in mathematics in general, and in transformation geometry in particular. 
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Introduction 
In my ongoing PhD project, I investigate first year engineering students’ use of resources to learn 
mathematics. The project focuses on resource use from a student-centered perspective. Rather than 
focusing on any particular resources, I look at the use of resources as whole. In my data collection, I 
aimed to uncover all the resources the students used to learn mathematics, some of their strategies for 
how to use them, how the strategies evolved over time and what factors influenced which resources 
they used and how at any given time. I later added students’ decision making to my focus based on 
its prevalence in the collected data. For the poster, I restrict myself one of the themes I uncovered in 
my thematic analysis of interview data, which I have named didactical resource purposes (DRPs). 

Based on a literature review of leading journals in mathematics education, going back to 2010, there 
are very few studies about resources at university level, with a broad focus and a student-centered 
perspective. The few that exist (i.e. Gueudet & Pepin, 2016), still cover different aspects of the 
resource use than I do. Hence, my data is more relevant to didactical resource purposes. 

Theoretical framework 
I use the documentational approach to didactics (DAD) by Gueudet and Trouche (2009) as my 
theoretical framework. It is focused on how teachers use resources, both for teaching and professional 
development. Trouche and Pepin (2014) argue that the documentational approach may also be used 
to look at students’ learning and suggest university mathematics as a good place to experiment with 
the approach. I hope my research can help expand upon the documentational approach to include 
perspectives on how students use resources to learn mathematics. I use an inductive approach with a 
deductive component. After identifying themes, I consider whether it can be related to an aspect of 
the documentational approach. I derived the term ‘didactical resource purpose’, from DAD’s view 
that a resource has a material component, a mathematical component and a didactical component. 
The didactical component of a resource is tied to the organization of activity. DRPs can be considered 
phases of learning that structure students’ use of resources. 

Methodology 
The study involves nine students from introductory mathematics courses for engineers at three 
different universities in Norway (here called Alpha, Beta and Charlie). The universities were chosen 
on the basis of courses that I considered having a different focus (Alpha on material resources, Beta 
on digital resources and Charlie on social resources). Beyond that, I used convenience sampling. All 
volunteers from each course were accepted (4 from Alpha, 2 from Beta and 3 from Charlie). They 

Thematic Working Group 16

Proceedings of CERME11 2848



 

 

were interviewed three times, near the beginning middle and end of the semester. The interviews were 
semi-structured, starting with open questions (i.e. “can you say a bit about how you use resources to 
learn mathematics”) and moving on to more specific questions (i.e. how many do you usually study 
with when you study with fellow students). I analyzed the interviews using a thematic analysis 
approach (Braun & Clarke, 2006), including open coding; test of intercoder reliability; creating 
themes; reviewing themes; and then naming and defining them. While codes were numerous and 
often quite specific, themes were fewer and more general. When identifying themes, I took care to 
count the number of statements from each student that related to the theme and keep track of the 
extent to which these statements were in response to open or narrow questions. I also compiled a list 
of related quotes. Both numbers and quotes related to each DRP feature in the poster. 

Results 
The didactical resource purposes I identified in my analysis can be considered phases of the students’ 
learning process. Each DRP related to statements from at least seven out of the nine students: 

· Introduction. Some resources were commonly used for students’ first encounter with 
mathematical topics, including lectures, textbook and lecture videos. 

· Practice. After introduction, students work mathematically, mostly using resources 
emphasized in the courses. The textbooks and learning platforms were used to find exercises 
and calculator, pencil and paper and fellow students were employed to solve them. At 
University Beta, the program MyMathLabs was used to find and solve exercises. 

· Evaluation. Students often checked whether their answers were correct or their work processes 
were constructive. Resources included answers in the textbook, Wolfram Alpha, GeoGebra, 
and discussion with fellow students, the lecturer or a parent. 

· Explanation. After introduction, during practice or after evaluation, students would look for 
elaborations on the topic at hand to solidify their understanding or ‘fill gaps’. This process 
involved a more active search for information than introduction did. Resources for this 
included textbook, fellow students, student assistants, lecturer, parent, Google, lecture videos, 
YouTube, Khan Academy, course pages and worked examples in MyMathLabs.  
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Identifying guidelines for fruitful teaching with technology in mathematics education is an important 
research objective. However, technology, such as dynamic geometry environments (DGE), can be 
used for different purposes. Therefore, to make sense of guidelines for teaching with DGE, it is 
necessary to clarify the mathematical aim of the teaching. To this end, the notion of mathematical 
competencies (Niss & Jensen, 2011), which includes the reasoning competency (RC), can be used. 
Research on DGE affordances has found potentials regarding development of students’ mathematical 
reasoning (e.g. Leung, 2015), which is promising, because students’ inadequate abilities in reasoning 
is well documented (e.g. Hoyles & Healy, 2007). However, students’ accessibility to DGE, does not 
guarantee greater learning outcome. The manner in which the DGE is used is essential (Jones, 2005). 
Therefore, to support the utilization of the potentials of DGE regarding RC, it is important to 
investigate: which research-based guidelines may be formulated for using DGE to support students’ 
development of RC? 

An extensive review was conducted using the hermeneutic circle approach (Boell & Cecez-
Kecmanovic, 2014), to map out potentials of DGE described in the literature. Initial searches were 
made with search words such as "dynamic geometry", "geometry software", "geometry technology", 
“interactive geometry” and “proof”, “reasoning”, “conjecture” in MathEduc and ERIC databases, as 
well as reading CERME technology TWG proceedings. After reading literature acquired from the 
primary search, interesting references were followed and if suitable, added to review. In addition, 
after reading and gaining some insight into the area of interest, adjusted search words were used in 
new searches. 136 publications were included. The definition of the RC played a decisive role in the 
review process. It influenced the choice of search words and was the optic used to decide which DGE 
potentials described in the literature were deemed relevant for this study. 

In synthesizing the review findings, three categories of guidelines were identified: students’ 
cognition, task design and teaching practices. The guidelines emerge from the utilization of four types 
of DGE affordances: feedback, dragging, measuring and trace. Theoretical constructs from two 
predominant theoretical frameworks, the instrumental approach (Artigue, 2002) and the Theory of 
Semiotic Mediation (Bartolini-Bussi & Mariotti, 2008), were found to be suitable in the design of 
guidelines. Specifically, the notion of semiotic potential is useful in the consideration of what 
dimensions guidelines might entail. Furthermore, a description can be made of the instrumented 
techniques to be appropriated along with the utilization schemes needed. The role of the teacher can 
be described in supporting the mediated signs of the students towards mathematical meanings in order 
to support their development of RC. The guidelines are considered a priori in an ongoing project, in 
which the next step is to implement them in practice and refine them through a design-based research 
approach. To illustrate, table 1 below shows a segment from the a priori guidelines. 
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Instrumented 
techniques 

Utilization 
schemes 

Tasks Teacher´s role  
 

Reasoning 
competency 

Constructing 
direct 
invariants, 
which induce 
indirect 
invariants 
because of 
Euclidean 
theory.  

Understanding 
the difference 
between direct 
and indirect 
invariants, and 
the connection 
between them. 

Construction tasks 
with direct 
invariants, where 
dragging free 
points in the 
construction 
unveils 
(surprising) 
indirect invariants. 

Instruction, discussion and 
feedback: focus on 
mathematical meanings - 
Address that direct 
invariants can induce 
indirect invariants because 
of Euclidian geometry 
governing the 
environment.  

Prerequisite 
for working 
on 
conjecturing 
tasks. 

Some initial 
conjecturing 
tasks. 

Table 1: Example from a priori guidelines 
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In this paper, we present and utilize theories about interface design and didactical models to evaluate 
how existing manipulatives models for linear equations represent terms involving subtraction. We 
then outline a redesign of subtraction zones for algebra tiles that can be implemented on a screen. 
The presented work is intended to serve as an example case for theory-guided design of digital or 
digitally enhanced didactical models, anticipating the all-important learning activities with the 
resulting models. 
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Introduction: Manipulatives environments for linear equations 
To help students understand equations and how to solve them, different tangible models are in use. 
Each consists of material objects or manipulatives (standing for numbers and variables) and an 
environment that specifies the relationship between the variables and numbers represented by the 
manipulatives placed in the environment. Probably the best-known model is the balance scale, where 
known and unknown weights on both sides of a scale are supposed to be kept in balance. Another 
model uses two sets of objects, some hidden in containers. The two sets are stated to have equal 
numbers of objects and the equation is framed as a puzzle, to find the number of hidden objects. 
Affolter et al. (2003) have used matches in matchboxes, Radford and Grenier (1996, p. 184) cards in 
envelopes. In this model the equality, which had a physical parallel in the balance model, is an abstract 
social convention. A further abstraction is made when algebra tiles (or blocks) are used. Known 
quantities are represented by squares (or cubes) and unknowns by oblong rectangles (cuboids). They 
are placed on a mat divided into two sides and students are informed that the amount represented by 
the tiles on the left side is the same as that on the right side. This model was developed because it is 
applicable to manipulating quadratic expressions, but has since also been used for linear equations.  

We are involved in a research project with the goal of developing an “intelligent” system of algebra 
tiles with the ability to give feedback to its users (Reinschlüssel et al., 2018). The algebra tiles model 
was chosen because it can be used as the concepts of algebra are developed further; avoiding the need 
to introduce a new model for manipulating quadratic expressions, etc. Furthermore, the model allows 
the representation of terms involving subtraction (such as “x – 3”) differently from additive terms 
involving negative values (“x + (-3)”). In the design process, however, shortcomings in the 
representation of subtraction in the algebra tiles environment became apparent, offering a chance to 
reconsider its design. The considerations guiding this redesign, specifically describing how a concrete 
model can sensibly represent equations involving subtraction, are the focus of this theoretical paper.  

Theories on (educational) interface design as well as experiences from early design cycles are used 
to answer the following research questions: 

Thematic Working Group 16

Proceedings of CERME11 2852



 

 

· What are the specific disadvantages of the ways different models represent subtraction? 
· How can subtraction be represented in a way that preserves advantages of existing designs 

but avoids the identified problems? 

Line of argumentation 
This paper aims to advance the understanding of the design of technology for teaching and learning 
mathematics. For a theoretically informed discussion of the two questions, approaches from human-
computer interaction studies and mathematics education are introduced and set into relation with each 
other. The subsequent section probes existing models’ representation of subtraction. We argue that 
there are advantages in representing subtraction as in the algebra tiles model but that there are certain 
specific shortcomings. We show how these shortcomings can be addressed in a screen-based redesign 
of the algebra tiles model. The discussion will be used to highlight the relevance of the presented 
work for the design of digital or digitally enhanced didactical models and to point out possibilities 
how activities can be designed around the layout that we claim solves the identified problems. 

State of the art and existing theoretical approaches 
There has been little rigorous research regarding the representation of subtraction in manipulative 
models for equations (see Vlassis, 2002). Thus, it is all the more advisable to take notice of the rich 
theory around (educational) interface design in general. 

Goguen (1999) builds his theory for user interface design on the claim that “user interfaces are 
representations, that their quality is determined by what they preserve, and that this can be an effective 
basis for design” (p. 243). To investigate the quality of user interfaces, Goguen defines and 
investigates mappings between sign systems, indicating the possibility for mathematics educators to 
do so for the representation of a given mathematical sign system (such as linear equations) through a 
certain manipulative environment (such as algebra tiles).  

The focus on mappings has been elaborated with regard to teaching models in mathematics education 
by English and Halford (1995), who name four principles of learning by analogy that can help to 
analyze (and to design) didactical models (pp. 100–102): 

· Learners need to be able to understand the structural properties of the model. 
· The mapping between model and concept to be learnt shall be unambiguous to the learners. 
· The attributes of objects of the model that are relevant to the concept to be learnt form a 

cohesive conceptual structure—other attributes shall be designed to not disturb this structure. 
· A model shall be applicable to a range of instances. 

Taking up the language of mappings, Vlassis (2002), with regard to the balance scale model, goes so 
far as to claim that “the isomorphism between the object itself and the mathematical notions implied 
allows students to form a mental image of the operations that they have to apply” (p. 355). However, 
investigating and optimizing the characteristics of a model will not suffice, and claims that ascribe 
the success of material models to their alleged relationship to the mathematics to be learnt may be 
premature. English and Halford (1995) are very clear that a model “will fail miserably if the 
accompanying explanation is unclear” (p. 99). Gravemeijer (2011) criticizes denoting models as 
transparent on the grounds that it may suggest transparency to be a feature of the model, not taking 
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into account that instruction may nevertheless fail to offer students a help in seeing mathematical 
meaning beyond the mathematics they have already learnt. Meira (1998) argues that transparency 
should not be seen as an inherent feature of objects used in a model but as a process “mediated by 
unfolding activities and users’ participation in ongoing sociocultural practices” (p. 121). A model that 
properly illustrates the mathematics to be taught is nothing but a necessary first step.  

These considerations let us return to Goguen’s work. With its reliance on semiotics it avoids the 
epistemological problem of what form of existence is ascribed a) to the representation and b) to the 
mathematics to be represented. Regarding the former, he writes: “what ‘really exists’ (in the sense of 
physics) are the photons coming off the screen; the structure that we see is our own construction” 
(Goguen, 1999, p. 271). Therefore, the models created “are definitely not adequate in certain respects, 
some known and some unknown” (p. 271). What is then needed in order to learn with such necessarily 
imperfect models is illuminated by a range of approaches in mathematics education that take learning 
processes with technology to be thought of—and therefore designed—as processes of semiotic 
mediation (Mariotti, 2002; cf. Meira, 2008; Duval, 2017). 

In the subsequent discussion of existing models, we will follow Goguen’s view on interface design, 
focusing on the mappings between the interface and the mathematics to be represented, which both 
are taken as sign systems. This view makes our approach compatible with semiotic theories of 
learning that may later be helpful regarding learning processes around the designed model. Where 
appropriate, we enrich this approach by referring to the principles devised by English and Halford.  

Discussion of existing manipulatives models representing subtraction 
We are particularly interested here in the mapping between negative integers and the operation of 
subtraction in algebra, and negative tiles and various representations of subtraction in the algebra tile 
model. In algebra, numbers are distinct from operations, it is possible to subtract from an unknown 
quantity, it is possible to subtract negative integers, and it is possible to divide a term involving 
subtraction (i.e., 3x – 9). Here we discuss ways in which these aspects of the sign system of algebra 
map onto aspects of the sign system of algebra tiles.  

Representing subtraction only by action  

The basic implementations of the balance scale and container models do not allow for terms involving 
subtraction as part of an equation. The only way students experience subtraction with these models 
is as an action carried out on one representation to produce an equivalent representation. One cannot 
represent x – 3 = 6, but one can represent x + 3 = 6, and then subtract three on both sides (i.e., x + 3 
– 3 = 6 – 3). The subtraction on each side would not be represented by material objects, but by actions 
of taking away. Only the result of the subtraction, i.e. x = 3, is materially represented. Thus, the 
distinction between an operation (represented as an action) and a number (represented by objects) is 
preserved, but at the cost of not being able to represent subtraction from an unknown quantity.  When 
progressing to equations that cannot be represented in this way, students are expected to accept that 
the rules that applied to positive numbers and variables connected by addition and multiplication 
similarly apply to terms including negative numbers and fractions, subtraction and division. Some 
students, however, may find this difficult. Vlassis (2002) found that students instructed with the 
balance scale model had problems as soon as subtraction and negative integers were present in 
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symbolic equations to be solved. She reasoned that “the negatives place the equation [...] on an 
abstract level. It is no longer possible to refer back to a concrete model or to arithmetic“ (p. 350). 

Representing subtraction with objects that stand for negative integers 

An alternative is to introduce objects that stand for negative integers and to define subtraction of 
positive integers as addition of negative integers. In some virtual implementations, the balance model 
is amended with “negative weights”, e.g. represented by helium balloons. Unbound by problems of 
physics, the algebra tiles model allows the introduction of opposite tiles for both the unit tiles and the 
variable tiles. However, what is then represented are negative numbers and variables with an opposite 
sign. All terms in the equations are still added. Subtraction from an unknown quantity like x – 3 = 6 
can be represented (e.g., Balka & Boswell, 2006) but the distinction between operations and numbers 
is blurred. However, subtraction of negative integers is not possible in such a model, except by 
accepting a priori that this would mean addition. Hence it is clear that these models, as sign systems, 
do not involve elements that directly represent terms involving subtraction in linear equations. 

Representing subtraction with a fixed subtraction zone above or below an addition zone 

Many algebra tiles models introduce a “subtraction zone” to allow terms involving a subtraction (such 
as “x – 3”) to be distinguished from additive terms involving negative values (“x + (-3)”). Tiles 
representing subtracted terms are placed in the subtraction zone. In all models that we are aware of, 
the subtraction zone is placed below or above the addition zone (see examples in Fig. 1). 

 
Figure 1: Layout of subtraction zones in different algebra tiles environments, clockwise from top left 
(disregard the texts): textbook Algebra Connections (Dietiker & Baldinger, 2006, p. 69), implemented 

in an applet under https://technology.cpm.org/general/tiles/; applet developed at the Freudenthal 
Institute (https://app.dwo.nl/dwo/apps/player.html#202852, step 8); Algeblocks® mat with an iconic 

scale; textbook Algebra by Wah & Picciotto (1994, p. 212) with so-called minus areas above. 
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The use of subtraction zones has the potential to provoke fruitful thoughts and discussions. For 
example, they can help illuminate the relationship between subtraction and negative integers: by 
placing representations of a – b on both sides (i.e., a tiles in the addition zone and b tiles the 
subtraction zone), students can add b negative tiles to both zones on one side to make sense of the 
identity a – b = a + (-b). The spatial juxtaposition of a zone for addition and one for subtraction 
highlights the basic concept of subtraction as comparison and may already be familiar to students 
from arithmetic (e.g., English & Halford, 1995, p. 157–159). According to Stacey, Helme, Archer, 
and Condon (2001), such familiarity with an idea from earlier studies can promote engagement with 
a model. However, there are still some shortcomings that shall be discussed in the following 
paragraphs. 

First, subtracting a term that itself involves subtraction (e.g. 3 – (4 – x)) and therefore discussing the 
rules of dealing with bracketed terms is not possible. 

Second, the traditional design of the subtraction zone may lead to misunderstandings about division 
as an equivalent transformation. Dividing the expression on each side by the same number can be 
represented with algebra tiles in the last step by evenly assigning the number of unit tiles to the 
remaining unknown tiles (see Fig. 2). This suggests that as long as some tiles are in the subtraction 
zones, division is not possible. Unlike in the algebra sign system, it is not possible to divide a term 
like 2x – 6 involving subtraction. As Goguen points out, not all aspects of the original sign system 
can and should always be represented in the sign system of the model. However, the limitation that 
an equation like 2x – 6 = 0 can only be divided by 2 after it has been transformed into 2x = 6 seems 
arbitrary—and can be avoided, as we will show later. 

  
Figure 2: The equivalent transformation of division as even assignment of unit tiles to unknown tiles 

(Wah & Piciotto, 1994, p. 212). 

Third, the primary distinction between left and right can become submerged. The designs of the 
environments shown in Figure 1 all visually distinguish between the vertical boundary (between the 
left and right side of the equation) and the horizontal boundary (between the addition zone and the 
subtraction zone on each side). However, an analysis of how well the first principle of English and 
Halford—clarity of the model—is met, shows some differences: In two of the models the vertical 
boundary is more marked (top left: double solid line vs. single dashed line, bottom right: gap vs. no 
gap, balance scale as framing image), corresponding to the primacy of separation of the sides of the 
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equation: However we parse the expressions on each side, it is their relation to each other as a whole 
that is most important (see Fig. 3). The bottom left model in Figure 1 highlights this by having only 
one real boundary that suggests two sides; the boundary of the subtraction zones seem to lie within 
their respective side. Only in the top right model some observers may find the continuously colored 
fields to suggest a stronger connection between the zones on both sides than within each side.  

    
Figure 3: Structure tree for linear equations highlighting that any operation on each side of the 

equation should be less prominent than the distinction between the two sides 

Addressing the shortcomings of existing models 
In the design of Wah and Piciotto (1994, see Fig. 1, bottom left), the subtraction zone can be 
interpreted as lying within the addition zone on each side. When the environment is shown on a 
screen, one can start with the addition zone only and allow students to draw the subtraction zone 
whenever they need it, and to change its size and position as circumstances require. Furthermore, 
nested subtraction zones are possible, representing nested expressions (see Fig. 4, left). This can be 
helpful in modelling realistic situations without referring to learnt rules for subtracting negative 
integers at the outset. So for example, an equation like 3x – (3 – x) = 3 can be modelled without using 
negative integers, which is desirable if the equation models a situation where all quantities are 
positive. The subtracted terms are eliminated by adding their equivalents to both sides, reinforcing 
the concept that subtraction and addition are inverse operations.  

The possibility of drawing the subtraction zone anywhere also solves the problem of division. It is 
now possible by drawing the subtraction zone(s) in a way that allows setting up groups horizontally 
across addition and subtraction zones (see Fig. 4, right). 

     
Figure 4: A flexible subtraction zone allows representing nested expressions (see left) and to arrange 

tiles so that the result of a division becomes perceptible (x – 1 = 1 is equivalent to 3x – 3 = 3, see right). 

Discussion and outlook 
Quite regularly, instructional designs have such a long use history that it is hard to find their origins, 
let alone the thinking behind them. Their popularity and success may well be a result of the intuition 
of experienced teachers. However, as this paper shows, even models used in textbooks may have 
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significant shortcomings. The redesign of familiar models for new technologies offers a chance to 
reconsider their foundations: Are the models the best way to represent the mathematics we want 
students to become aware of? This paper presents a set of theoretical ideas that have helped us to 
identify problems with how subtraction is modelled in different manipulative environments. 
Moreover, we do not only highlight shortcomings; the theories presented here positively offer a 
methodology to think of better designs. This theoretical analysis complements the experience and 
intuition that have guided the development of models hitherto. We understand mathematical 
knowledge to be learnt, and models to be designed, as sign systems that need to be linked by a 
mapping with certain qualities that preserve important aspects of the mathematics. Considering these 
qualities gives us a way to argue why a certain design should be preferred over a traditional approach. 

A well-designed model is nothing but a necessary first step. As noted above, no model is transparent; 
like any sign system it must be interpreted. Moreover, as Goguen notes, the mapping from one sign 
system to another cannot be one-to-one, something must be lost. Both the learning of the model and 
learning from the model must be facilitated. We diagram this situation in Fig. 5. 

 
Figure 5: The mathematical sign system (here: linear equations) is mapped to the model sign system 

(here: the algebra tiles model) in an incomplete manner, necessitating additional support. 

To support learning with a model sensible instructional approaches need also to be designed. The 
focus of this paper does not allow us to go beyond some suggestions: The algebra tiles model can and 
should first be used without negative tiles or subtraction zones to introduce the initial equivalent 
transformations (subtracting and dividing). In this way, confusion about the meaning of subtraction 
zones is avoided as long as they are not needed (see third principle of learning by analogy quoted 
above). The need to represent equations including terms involving subtraction may then come from 
a problem situation that is modelled, in which something must be taken away from an unknown 
quantity. Representing the not-yet-possible subtraction as a set of tiles in a subtraction zone can make 
a link between the well-established concept of subtraction as taking away and the concept of 
subtraction as comparison. As can be seen from these suggestions for teaching practice, the 
application of theories in this paper has the potential to be followed upon by research that explores 
“how technology mediates knowledge and the consequences of mediation on the knowledge itself” 
(Trgalová, Clark-Wilson, & Weigand, 2018, p. 152). 
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Trigonometry consists of a multifaceted mathematical field whose fundamental concepts, sine and 
cosine, have many different representations, some of them approached throughout secondary 
education. Unfortunately, many of its aspects are taught individually, leading students to make 
isolated, unconnected meanings on them. This empirical study discusses an alternative view 
towards trigonometry, in an attempt to create connections among the different aspects, under the 
scope of one meaningful context; that of periodicity. The use of digital media enables the 
application of this unconventional proposal, through a set of specially designed activities. In this 
paper we present a brief description of the main study-in-progress, as well as the results gained by 
its first implementation to 9th- Grade students, in terms of their meaning making on trigonometric 
concepts.  

Keywords: learning trigonometry, periodicity, digital tools, meaning making  

Periodicity for meaning making in Trigonometry 
Research on teaching and learning trigonometry has been given surprisingly little attention in 
relation to, say, algebra or calculus. Studies regarding this field show that students develop weak 
and narrow understandings on the fundamental concepts of sine and cosine. They also develop a 
fragmented, disconnected view of the various related representations, such as the triangle model, the 
unit circle model and Cartesian graphs (Weber, 2008; Gür, 2009; Moore, 2010; Demir & Heck, 
2013). The problem is not unrelated to epistemological debate on the nature and functionality of 
trigonometry in mathematics. Newson and Randolph (1946) argue that the problem has its origins 
in the predominant definition of sine and cosine in terms of angles, something which they perceived 
as related to a narrow application of trigonometry. They compare this to the attempt to define 
arithmetic as the “science of money”, as it is based on one of its limited applications. They instead 
proposed defining trigonometry as the mathematical science concerned with the trigonometric 
functions, whose arguments may denote time, or any other magnitude, or just a real number without 
any connotation. Hirsch, Winhold and Nichols (1991) characterize traditional trigonometry 
instruction as “memorization of isolated facts and procedures” that is unable to support a robust 
understanding of the subject. They also suggest a shift in emphasis towards trigonometric functions 
themselves and their applications at modeling periodic phenomena. Weber (2008) stresses two 
additional important obstacles that students deal with when learning trigonometric functions: they 
are initially familiar to sine and cosine as algorithms of ratios within the right-triangle context rather 
than as procedures regarding any given angle. The right-triangle model consists of a restriction on 
perceiving any other representation of trigonometric functions, as no links are ever made to this 
initial approach. Further, trigonometric functions are typically among the first functions that 
students cannot evaluate directly by performing arithmetic operations; that makes them even more 
complicate in order to be deeply understood. The literature focus is thus two-fold. Firstly, on posing 

Thematic Working Group 16

Proceedings of CERME11 2860



 

 

the problems that reside in learning trigonometry as currently portrayed from an epistemology 
perspective mainly emphasizing the right-triangle sine and cosine constructs (Blackett & Tall, 1991; 
Breidenbach et al., 1992). Secondly on fostering one representation of trigonometric functions as 
more important over another, while proposing a certain type of exercises (Kendal and Stacey, 1997; 
Weber, 2008). A fresh alternative look towards this field is presented by Demir and Heck (2013) 
and focuses on promoting integrated understanding of trigonometric functions by connecting their 
three representations within a dynamic geometry environment. In this paper we address 
trigonometry as a field for generating meanings around periodic covariation placing it at the centre 
of pedagogical focus, in line with with Demir and Heck’ s idea and Newson and Randolph’s 
epistemological arguments. We follow on from prior research on the use of digital resources for 
students to develop understandings of periodicity through trigonometric functions (Gavrilis and 
Kynigos, 2006), but expand the idea of periodicity beyond the right-triangle context. 

Design considerations 
In our Lab, we have a history of employing two constructs which for us have been fundamental to 
the generation of new ideas to exploit various affordances of expressive digital media for 
mathematical meaning making (Kynigos, 2015). The first is that of 'restructuration' coined by 
Willensky and Papert in 2010, where the designer questions the existing structure and emphasis of a 
mathematics curriculum allowing for a fresh look for meaning making opportunities in new 
structures and perspectives of mathematical ideas, given the new expressivity affordances of digital 
media. The second is that of 'conceptual field' (Vergnaud, 2009), where these new structures are 
perceived as an integral part of re-configuring sets of closely related concepts, using a diverse but 
connected set of meaningful representations for these and creating a set of problem situations where 
these play a central role for their resolution. So, for us, periodicity was a central characteristic of a 
special kind of mathematical function such as sine-cosine and tangent connected to diverse 
representations and part of physical phenomena such as tide. Adopting this perspective, we 
perceived the design of the tasks we prepared for students under the scope of the conceptual field of 
periodicity. Into this field, notions of trigonometry, geometry, algebra and physics are linked 
together so as to strengthen their embedded meanings. Trigonometric functions can be approached 
through different situations within the meaningful context of periodic phenomena, where students 
have the opportunity to derive their properties and their actual value. Our assumption is that in that 
way, we enhance the meaning-making process on these concepts and their various representations 
within meaningful situations (Noss and Hoyles, 1996) and provide flexible connections between 
them, as they all share the feature of periodic nature. We saw our perspective and design principle 
as uniquely enabled by special digital simulations and microworlds which we developed for 
students to use as media for expressing mathematical ideas. Firstly, we used an available Dynamic 
Geometry System, Geogebra, to create a simulation of the periodic phenomenon of tide connected 
to the representation of both the graph of the trigonometric functions and the one of the unit circle 
that model the phenomenon. Then, we developed a programmable microworld with the MaLT2 
tool, which integrates programming and dynamic manipulation of variable values (Kynigos and 
Zantzos, 2017), to provide opportunities for students to make connections between periodicity and 
trigonometry of angles through a code-editing task. Our aim was to shed light on what meanings of 
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the trigonometric field can be produced by students, who engage with the designed tasks around 
periodicity. 

Research setting and tasks 
The tasks designed for this study reflected the ideas described above. They were separated into two 
phases, each of which corresponded to different but complementary intentions by the designers. Τhe 
first phase was related to the phenomenon of tide (in a non-realistic yet close to students’ perception 
way) simulated in the dynamic environment of Geogebra in order to be modeled in any way 
possible by students. The second one was dealing with the periodic change of the vertical lines of a 
right triangle in the programmable media of MalT2, requiring correlation of periodic functions with 
the trigonometric ones and leading to formalization.  

Modeling Periodic Phenomenon 

We designed a model in Geogebra that visualizes the periodic rise and fall of sea levels according to 
the sinusoidal function f(t)=sint, where the variable t stands for the time passing in hours (Figure 
1a). This phenomenon was simulated so that the sea would cover and uncover periodically the 
surface of an island. It could be observed by moving the cursor of the variable t till it reached the 
value of 30 hours and then it would start over. The initial task students would be challenged with 
was to make a schedule for future most suitable time for visits to the island; ones that would last the 
longest in order to collect its valuable shells. The final task was the construction of a math formula 
that would receive a value of any future time and export the exact height of the sea levels. The 
available digital tools were split into two representations which were given to students during the 
first phase along with a worksheet directing the above exploration process. The first one involved 
the “trace-leaving” point M(t,y) available for dragging into a Cartesian system (Figure 1b). By 
following the height that corresponded to every time value, starting from 0 and moving forwards, 
the trace would form the sinusoidal graph. The second representation was that of the unit circle. 
Adopting the “wrapping function” model (Podbelsek, 1972), we made a cursor that enables the 
wrapping around the unit circle of a segment whose starting point is the (1,0) and has the length of 
the exact same value as the time paused (Figure 1c). When the segment was fully wrapped, the 
stopping point’s coordinates revealed the sine and cosine of that value as well as a corresponding 
arc/angle. The tasks required the specification of the relationship between time and the height of sea 
levels in order to find a convenient way to predict the island’s uncovered surface at any future time. 
The particularity of this phase is the fact that the words sine or trigonometry were not mentioned 
anywhere so as for students to proceed to formalization. 

Formalization of the Trigonometric Functions 

The second phase interfered in order to “fill” the gaps that the first phase left uncovered; those are 
the formalization that the functions responsible for the periodic change are the trigonometric ones 
and their possible reference to angles or any other magnitude. For this matter, we designed an 
artefact in the programmable environment of MalT2. The code that produced the turtle’s trace for 
this artefact was hidden from the students, whose task was to discover it and reproduce it. The only 
accessible source was the product of the code: the artefact that represented a right triangle (Figure 
2) and the periodic changes of its shape while manipulating the value of its unique variable through 
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the uni-dimensional variation tool. An additional output that students had access to was the values 
of the length of every triangle’s side. The relations that needed to be “unmasked” were the 
sinusoidal and cosinusoidal covariation between the visible variable t -that corresponded to a 
triangle’s angle- and a triangle’s vertical side. 

Findings  
The study described above was an educational intervention designed according to the methodology 
of “design experiments” (Collins et al., 2004). The focus was both on the meaning-making process 
by students and their interaction with the digital tools. Three small groups of 9th Grade students 
from a public Experimental School in Athens participated in a first implementation of this study. It 
took place in the pc-lab of the school during after-class mathematics courses for totally six teaching 
hours within two weeks.  

Phase 1 

All three groups engaged with the tasks described above generated rich meanings on the embedded 
concepts. We analyze below some representative dialogues that help us perceive aspects of this 
meaning making process. 

 

 
Figure 1: The phenomenon of tide and its two representations at Geogebra 

At first, students studied the phenomenon of tide and the way it was affecting the represented 
island. While studying the simulation and the questions of the worksheet, they all followed a similar 
thinking flow, presented in this discussion: 

Student 1: Well, we could say that the sea levels are going up and down in a steady rhythm. 
There is a highest and a lowest point the levels reach within a standard period of 
time; almost 6 hours? In order to predict it, we need to know the relation between 
time and height, but we don’t know the function formula. 

Student 2: The best time for visiting the island is when the height is at level 0 and goes 
downwards. This level is reached many times, maybe even infinite ones. But I 
can’t say their exact value after the 30th hour. But I am sure there is a way to find 
out because there is a standard pattern. It’s like a circle repeated endlessly. 
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In our understanding, these lines indicate a first approach of the trigonometric functions based on 
their periodic nature. Dragging the point M helped them express the relation between time and 
height until the 30th hour. That way they constructed the sinusoidal graph, which inspired them with 
ideas for predicting accurately the future evolving of the phenomenon: 

S1: The most suitable moments for visiting are at 3.14, 9.42 and 15.7 hours.  

S2: These numbers are odd multiples of 3.14. Therefore we can determine the most 
suitable for a visit future moments by computing as many multiples as we can. 
But I can’t think of a way to determine the exact height level at any future time. 

The graph provided them with the conception that the phenomenon follows a specific pattern 
defined by its period. What concerned them is the fact that they were unable to find a way to predict 
the exact correspondence between sea levels and any future time. This enlightenment came during 
their interaction with the second representation; that of the unit circle. By wrapping the segment -
that equals with the time value- around the circle, students realized that the stopping point reveals 
the height of the sea levels by its ordinate. This procedure improved the way they perceived the 
periodic nature and led them to discover a convenient way for predicting the phenomenon at future 
time. They counted the times the segment was wrapped to a full circle and determined the height 
according to the wrapping of the remaining segment. A possible interpretation of this achievement 
is the fact that the circle model reminded them of a familiar concept; that of division. 

S4: We must find how many times this whole segment will be wrapping a whole 
circle. Let’s divide it with 6.28.1 The remainder gives the length of the segment 
that will determine the height. 

S5: Yeah, all we have to do is wrap the remainder value segment and see the ordinate 
of K where it stops. The remainder is always lower than 6.28. We can use that as a 
formula to predict the exact height of sea levels at any future time. 

This realization came when they were asked to predict the height of the sea levels at the 300th hour 
since the beginning of the observation. That led them to the modeling of the phenomenon and the 
conquest of the wider challenge of the study. A strong link was thus established between the 
trigonometric function and the notions of periodicity and predictability. However the study is 
incomplete; no student made the connection between the trigonometric representations and 
trigonometry itself. As a result, the meanings they produced were rich in trigonometric features but, 
not surprisingly, they did not correspond to formal trigonometric labels.  

Phase 2 

As mentioned above, this phase aimed to establish links between periodic covariation and 
formalized trigonometry. Students started their exploration by manipulating the cursor and 
observing the changes happening to the triangle. The following parts of their conversation represent 
their initial thoughts and their completion: 

                                                 
1 They had already pointed out that an exact circle is fully wrapped when t=6.28; thus its perimeter equals to 6.28. 
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S1: The things here that remain stable are a right angle and the length of the 
hypotenuse, which is always 100, no matter what value the (variable) t takes. 

S2: Yes, except from 0. Oh, and 90. And 180, too. Bet it’s 0 at every multiple of 90. 

Students S1 and S2 were seeking for regularities in order to find the “unaffected” from the cursor’s 
movement magnitudes and start the code writing from these constants. Then, while trying to figure 
out the nature of the observing variation and decode it, many trigonometrically interesting things 
emerged: 

S3: It’s weird because while one vertical side grows, the other one shortens. I think 
they grow with a steady rhythm. (…) It repeats itself after a period of time.  Just 
like the sea levels did. 

 
Figure 2: Manipulating the value of the variable t causes changes to the artefact 

S1: In order to make a right triangle that remains right, we know that this angle is 90 
degrees, so the other two must sum up to 180. Now, can we find the vertical sides 
based on these constant elements? 

S2: Guys! What if we use the variable t as angle and not as length? That way we can 
find that side by the relation “sine t equals the ratio of the opposite side to the 
hypotenuse”. That way we find the opposite side! 

S1: YEAH! Genius! We can do the same thing with the last side, but using cosine 
instead. 

 
Figure 3: The code producing the artefact made by the students 

These students followed the right conceptual path in order to conceive the idea that led them to the 
interpretation of the artefact. Being familiar with the right triangle model, they easily discovered the 
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trigonometric relation by thinking of the variable t as an angle. Based on that realization, they 
managed to correspond each unknown element of the triangle to a functional relation with the 
known ones. Thus, considering sine and cosine as functions, they got to the discovery of the right 
code. (Figure 3) 

Student S3 made a crucial comment on the completion of the meaning-making process; he realized 
the resemblance to the phenomenon of tide examined at the previous phase. After the discovery of 
the functional code, he completed his thought with an even more remarkable comment: 

S3: Therefore sine and cosine are responsible for the growing and shortening of the 
segments. It depends on the angle; when an angle grows the one side, it shortens 
the other one with the same period. I think it’s the first time I realize that. 

He expressed the connection between trigonometry and periodicity, building a strong conceptual 
link between them. We found it quite interesting that he intuitively he connected variability in sine 
and cosine with segment length rather than angle. This signified the mental abstraction that 
trigonometric functions can be used in order to express periodic change of the value of a segment. 
As a result, the completion of this phase came along with the awareness that the value of 
trigonometric functions goes far beyond the right triangle model.  

Conclusion 
The students seemed to find periodicity as a familiar concept and to be able to think about 
functional relations and trigonometric functions to gradually see the mathematical underpinning of 
periodicity. The tasks allowed them to observe and to express trigonometric functions as elements 
representing periodicity. They first produced meanings on various trigonometric notions and 
afterwards they established links between them. They approached sine and cosine as functions and 
not as just numbers and they listed many of their properties based on their periodic nature. They 
finally realized that trigonometry is strongly connected with periodicity and thus it can be exploited 
for modeling periodic phenomena which are of great scientific importance. The role of the digital 
media was integral during the students’ meaning making progress. They managed to interpret 
periodicity using trigonometric terms, thanks to their exploration with these digital tools. They 
provided an alternative dynamic and constructionist way to visualize, model and manipulate 
dynamically periodic situations. It is very difficult to represent periodicity in an alternative way 
open to exploration. So, this study indicates that it might be interesting to further research the 
potential of using digital representations of trigonometry so that some constituent elements can be 
understood through the fertile conceptual field of periodicity rather than the curriculum based focus 
on angles within a triangle. Maybe this could provide a solution to the constant problem of 
connectivity among trigonometric concepts and representations and, as a consequence, a promising 
proposal for learning trigonometry.  
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 Moving fingers and the density of rational numbers: An inclusive 
materialist approach to digital technology in the classroom 

Doyen Kim1 and Oh Nam Kwon1 
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This study aims to examine the relationship between the body and the meaning-making process in 
mathematics classroom with digital technologies. We investigate a mathematical activity in which 
students explore the meaning of the concept ‘density’ of rational numbers with a multi-touch dynamic 
digital apparatus. A case of elementary school students is studied from the inclusive materialist 
perspective through microethnographic analysis. The result indicates that students’ finger 
movements toward the digital apparatus played a critical role in developing the meaning of density 
throughout the activity. 

Keywords: Touchpad, GeoGebra, Density, Body, Inclusive materialism. 

Introduction 
Contemporary digital technologies have become more 'body-friendly' (Sinclair, 2014) with the 
widespread adoption of haptic input devices. In a haptic technological environment - such as that with 
touchpad or touchscreen - users interact with technologies through more direct body movements 
compared to the keyboard-and-mouse environment, and hence a more powerful status is granted to 
the user’s body. This change in the interaction asks the studies concerning the technologies in 
mathematics classrooms to include our body as one of the central interests (Ferrara, Faggiano, & 
Montone, 2017). 

On this basis, this paper aims to examine the dynamic relationship between the body and the meaning-
making process in mathematics classroom with digital technologies. We study a small group of grade 
5 students exploring the meaning of density of rational numbers using multi-touch dynamic digital 
apparatus. We take the inclusive materialist perspective (de Freitas & Sinclair, 2014) to focus on the 
body movement in mathematical activity with digital technologies. Through a microethnographic 
analysis, we pay attention to the bodily movement toward the given technology and the development 
of meaning during the activity. 

Our specific research question in this paper is as follows: In a multi-touch dynamic digital technology 
environment, how does the meaning of the density of rational numbers evolve in relation to the 
students' body movements toward the technology? 

Theoretical framework: Inclusive materialism 
Existing theoretical approaches   

When theorizing the relation between the meaning-making process and technological environment in 
the mathematics classroom, two theoretical perspectives have been dominant in recent studies, 
namely the instrumental approach and the semiotic perspective (Drijvers, Kieran, & Mariotti, 2010). 
These two perspectives together seize the material, social and psychological nature of mathematical 
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activity with tools. Nevertheless, they do not leave much theoretical room to embrace the role which 
the body plays. The inclusive materialism, based on the new materialist ontology in which the 
physical and the mathematical reside on the same ontological realm, reexamine the role the material 
elements - including the body -  play in mathematical activity. In recent years, the studies concerning 
the multi-touch digital technologies started to adopt this approach to investigate the relationship 
between the hand movement on touchscreen and mathematical thinking (e.g., de Freitas & Sinclair, 
2017). 

Inclusive materialism  

Breaking with anthropo-centric views, the inclusive materialism argues that all human and non-
human elements partake varying degrees of agency and power during a mathematical activity. 
Therefore, de Freitas and Sinclair (2014) redefine body so that the theory fuses the physical and 
psycho-social dimensions of the bodily interaction in mathematical activity. They expand the concept 
of the body and propose the body be "an assemblage of human and non-human components, always 
in the process of becoming " (p. 25). Here, the boundaries are flexible and porous, and agencies are 
distributed across the environment of the mathematical activity. By proposing such a comprehensive 
definition of the body, they suggest that we pay delicate attention to the matters and their material 
configuration - the physical bodies, utterance, artifacts, signs, representations, and their dynamic 
relationship - in mathematical activity. 

What does the material configuration have to do with the meaning of a mathematical concept? The 
inclusive materialism takes an ontological turn by which mathematical meanings are not abstract or 
disembodied, but rather material and concrete. That is, the meaning of a concept is ontologically 
entangled with specific physical arrangements. In a mathematical activity constructing a circle with 
a compass, for instance, it is not the case that the compass is a disposable medium for some 
transcendental, determinate and a priori meaning of the concept 'circle'; instead the meaning of a 
circle is performed through the process where the circle and the compass are assembled. In other 
words, meanings emerge through mathematical activity and entail all the material specificity 
implicated in the activity. 

In terms of research, the practical goal of the inclusive materialism lies in capturing the emergent and 
creative aspect of the meaning-making process. Drawing on the insights from the history of 
mathematical inventions, de Freitas and Sinclair (2014) deem mobility to be critical for such 
inventiveness. Moving mathematical objects or attending to how they are determined in terms of 
movement–rather than logically–configure the material elements in new ways. In short, movement 
actualizes the potential mobility of mathematical objects, creates a new material assemblage, and 
hence a new meaning as well. In that respect, the design of a mathematical activity should encourage 
learners to attend to the mobility of material elements and hence new senses that were previously 
imperceptible, instead of passively following the procedures which already seem possible or logical. 

Figure 1: The initial setup of the activity 
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Research context and method 
Participants and the activity  

Participants involve a group of grade 5 students (age 10-11) in elementary schools at Seoul, South 
Korea. Through preliminary oral interview of a class (N=20), we selected four students in each school 
who had exhibited mid-level achievements in mathematics from the previous semester and, at the 
same time, displayed low-level understandings of the density in their responses to a questionnaire 
based on Vamvakoussi and Vosniadou (2007). This paper reports an episode of students A, B, C, D 
from one of the schools. 

The activity is a game called 'point-and-name.' It was a part of a teaching experiment that the authors 
designed for students to explore the number line for the density of rational numbers using GeoGebra 
and spanned three lessons. In the beginning, on the screen was a horizontal line with three points on 
it, each named 0, 0.5, 1 respectively. On the background lied grid lines: In between two adjacent thick 
grid lines, four equidistant thin lines were placed and divided the space into five parts [Figure 1]. 
Students sat facing each other and were given touchpad keyboards that were connected 
simultaneously to a single GeoGebra environment on a shared monitor screen. Split into two teams 
(AB vs. CD) and taking turns, each team was asked to place a point anywhere on the line in between 
the two Xs on left and right; name it with a rational number in reference to the previously placed 
points and their names. To achieve the goal, students could move the points on the line horizontally, 
and zoom in and out. Once students zoom in, the gaps between the grid lines widen, and new grid 
lines appear filling the gap. The game ends when a team fails to place a point or give an appropriate 
name to their points. One of the researchers took the teacher's role only offering technical help. 

Data collection and analysis  

All three lessons were video recorded and transcribed. We conduct a microethnographic analysis 
(Streeck & Mehus, 2005) which is effective for the in-depth examination of the interplay among 
speech, gesture and artifacts in a mathematical activity (e.g., Nemirovsky, Kelton, & Rhodehamel, 
2013). 

Thereby, we pay particular attention to the following elements to understand the interaction between 
the learners' physical body and the digital apparatus: (a)the hand motion on touchpads, (b)the cursor 
movement on the screen, (c)the movement of screen itself (e.g. zooming in/out, panning), (d)the 
speech of students, (e)the hand gesture in the air. We must watch the hand motions on the touchpad 
since they are the primary means of manipulating the apparatus for students. The cursor and screen 
movements are also important for they embody the learner's attention and its shift. Furthermore, in a 
multi-touch digital technology environment, the gestures in the air are specifically important not only 
because they communicate meanings coupled with the speech but also they are part of a gestural 
continuum together with the gestures toward the haptic input device, preserving senses from one to 
the other (de Freitas & Sinclair, 2017). 

On the cognitive side, Vamvakoussi and Vosniadou (2007) had identified various aspects of 
understanding of the density of rational numbers. Their result suggests that a critical cognitive action 
in developing the meaning of density is to find a smaller unit than the least common unit of numbers 
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in an interval in order to conceive a number with the smaller unit which would locate in somewhere 
'in-between' the existing numbers (e.g., ¾ in the interval (1/2, 1)). Understanding that this action could 
be implemented in any interval of two rational numbers is considered as indicating a sophisticated 
development of the meaning of density. 

Result and discussion 
Our major findings are drawn from three notable sequences of the episode. As students carried out 
the activity through these sequences, the meaning of density had become more and more 
sophisticated. Each sequence is thematized by a significant development of the meaning of density 
that had come to the surface. We present each sequence through transcription or a brief depiction that 
highlights key events, then follow up by discussion. 

Sequence 1: “You must follow the rules.” 

Shortly after the beginning, students started to establish collectively a set of implicit rules of 
engagement (First-rules) and eventually all began to abide by them to play the game:  First-rule 1. 
A new point must be 0.5-away from an existing point and named accordingly; First-rule 2. A new 
point must be placed on a thick grid line. The highlight of the first sequence is presented below. 

1 C:  (C drags his index finger to the left and then gently taps.) [C’s cursor moves 
to the left side of '0', and a point appears on the left side of the line.] [Figure 
2 (a)] 

2 D: Why are you putting it there? 
3 C: You don’t like it? 
4 D: No. You can’t just do this in whatever way you want. 
5 C:  Then, how? 
6 D: You must follow the rules. See, it goes from 0 to 0.5, then to 1. What do you 

think will come next? 
7 C: 1.5, it is. Let me throw this away.  (C right-clicks with his middle finger) [C 

opens the menu on the point and deletes it.] 
8 D:  (D spread her index and middle fingers away on the touchpad, then double-

taps the pad, and drags with her index finger to the right.) [The screen zooms 
in. The point appears on the line and is dragged right to the place where a 
thick grid line adjacent to '1' meets the line.] [Figure 2 (b)] 

9 C: Now you name the point. 
10 D:   (D tabs and then types ‘1.5’) [The name ‘1.5’ appears above the point.] 

[Figure 2 (c)] 

Figure 2: The establishment of First-rules 
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After Team CD pointed ‘1.5’, A began to led Team AB’ turn. A zoomed in, and ‘0.5’ and ‘1.5’ got 
off the thick grid line because of that. A started counting the number of thick grid lines - including 
newly appeared ones - between '1' and '1.5' with his cursor. After expressing confusion about how far 
they should zoom in, A zoomed out, coming back to the scale at which they were.  Then A placed '2' 
on a thick grid line as far away as the distance between '1' and '1.5'. From then on, every new point 
ended up on a thick grid line, 0.5-away from the point either at far-right or far-left, subsequently 
producing '2.5', '3', '3.5' and so on [Figure 3]. 

Figure 3: The screen capture at the end of Sequence 1 

Although the students did not articulate the rules explicitly, we could infer the First-rules from their 
discourse and actions in this sequence. Line 6 and Line 10 are good examples where they defined the 
way the game should be played and complied. These rules suggest that 0.5, the least common unit of 
numbers given in the initial setup, remained indivisible to students and they did not conceive any 
smaller unit by which they could play the game. The multiples of 0.5 (e.g., 0, 0.5, 1.5) are treated as 
if they were successive. 

We must note that these rules are neither given by the teacher nor randomly established by the 
students. Rather, they resulted from the structure consisted of the salient perceptional features of the 
initial technological terrain: the three points on the line with names '0', '0.5', '1'; evenly distanced from 
each other; all aligned with the thick grid lines [Figure 1]. This regulation was not included in the 
instructions from the teacher. Students could have laid their point anywhere in between the Xs and 
claim its legitimacy by naming it with a proper rational-number. Instead, their attention was 
captivated by the given structure and, as a result, their subsequent practice began to adapt to it. 
Although Team AB had zoomed in and thus had a better chance to place their point in between the 
existing points, they were only looking closely at the line to measure the distance between 1 and 1.5. 
Instead, having their attention fixed only at the thick grid lines, they failed to obtain the measure they 
wanted since 1.5 was not on one of the thick grid lines. Eventually, they zoomed out so that they 
could place '2' one thick-grid-line away to the right. 

Sequence 2: “We can’t go beyond X.” 

In the following sequence, to resolve the problem on hand, students devised new rules (Second-rules): 
Second-rule 1. A new point must be 0.1-away from an existing point and named accordingly; Second-
rule 2. A new point must be placed on a grid line, either thick or thin. The highlights of this sequence 
are described below. 

Once Team CD placed '4', the last point in Figure 3, students encountered an issue: There is no 
available place for new points. According to the First-rules, they were only supposed to point on the 
thick grid lines between the two Xs. Zooming in at the interval (3.5, 4), frustrated, A commented, 
"We can't go beyond X." Instead of giving up, however, Team AB then decided to seek a new place 
for '0.1'. B zoomed in and started counting thick grid lines between '0' and '0.5', of which she counted 
eight [Figure 4 (a)].  
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However, students therein encountered the second issue: No thick grid line corresponded to the proper 
location of '0.1'. While B was having a hard time finding a thick grid line corresponding to '0.1', A 
started to notice the use of thin grid lines and suggested B to make use of them. Not long after, B 
agreed on A. There, they began to count, finding out the interval (0, 0.5) comprised 20 thin grid lines 
and thus 0.1 corresponded to four of them. At last, a new point appeared near 0 and got dragged 
slowly to the fourth thin grid line and so did the name '0.1', shortly [Figure 4 (b)]. From then on, 
students unanimously followed Team AB's method with little verbal exchange, counting four thin 
grid lines to the right and pointed '0.2', then '0.3' [Figure 4 (c)].  The activity had to stop there since 
the lesson time was over. 

Figure 4: The establishment of Second-rules 

After Team AB had devised a solution to place '0.1' in violation of the First-rules, Team CD simply 
followed their solution for '0.2' with no dispute at all, and Team AB repeated the action for '0.3' in 
the same way. Even though we were not able to observe further after '0.3', it is reasonable to assume 
they would have continued to play in the same manner judging based on their previous performance. 

This new set of rules suggests the students became able to conceive a smaller unit (e.g., 0.1). 
Moreover, it shows that they could come up with the numbers which can be placed in between two 
once-seemingly-successive numbers. At this point, 0.5 was not the indivisible least common unit, and 
the multiples of 0.5 were not successive for students any longer. 

Throughout this sequence, the body movements were at the center. Especially, the act of zooming in 
and out, rendered by spreading and pinching fingers on the touchpad, eventually evoked the change 
in students' perceptual habit and made them recognize the potential of thin grid lines – which was 
imperceptible earlier. 

Another noteworthy thing is that the same perceptual change did not occur in the first sequence even 
though they zoomed in/out in precisely the same manner. The fundamental difference here lies in the 
degree of X’s agency-in-play in the two situations. Once the students reached the barricades, unlike 
the first sequence, X became a major player in this student-technology-concept assemblage, which 
dismissed the students' propensity to go further outward according to the First-rules. Instead, it turned 
their attention to the intervals in between the points. It was not until the formation of this particular 
configuration that spreading fingers catalyzed such a dramatic shift in practice. Only then, students 
were stretching the number line and space rather than merely looking closely at them. 

Sequence 3: "We keep stretching." 

After the activity was over, the teacher conducted an ill-structured group interview with students on-
site. Through students’ discourse and gestures, it became apparent that the meaning of density had 
evolved further, and it was indeed inseparable from the technological environment of the activity.  

11 T: Let’s say we already have placed like, so many points and, say, y'all are really 
smart people. Then, can we place another point at this time? 
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12 All: Yes. 
13 B:  By stretching more and more (palm facing forward and all fingers open, B 

spreads her thumb and index and close them in repeatedly) [Figure 5 (a)]. 
14 T: Then, until when? 
15 A, B: Forever. 
16 B:  We do zero point zero, zero, zero, zero, zero, zero, one [0.0000001] 
17 A: Zero point zero, zero, zero, zero, zero, zero, … zero, one [0.00000001]1 

(…) 
18 C: The further you stretch (palm facing downward and only index and middle 

finger open, C spreads them away and close in quickly and repeatedly) 
[Figure 5 (b)], the more lines you will have (palm facing forward, C repeats 
to spread and squeeze all of his fingers swiftly) [Figure 5 (c)]. 

19 T:  Then, let's say, I would place my points at all the empty place on the line 
there, and now we don't see any empty place. Can we still lay another point? 

20 A: We can. 
21 B: Yes. We keep stretching (palm facing downward, B spreads her index and 

middle finger away and bring them in repeatedly) [Figure 5 (d)]. 

Figure 5: The students’ hand gestures in the air 

The students realized that no matter how many points are on the line and how dense they appear to 
be, they could always find a place for another point in between them. B was enumerating zeros in 
0.0000001 out loud (Line 16) to imply that the game could go on by finding a number with a 
sufficiently small unit in response to the teacher's question (Line 11). Moreover, while enumerating 
zeros out loud simultaneously with B, A noticed that he could find an even tinier unit if he continued 
to add zeros before finishing with one. This made A take a brief halt when B finished and then quickly 
added one more zero and one (Line 17). Also, Line 13, 18 and 21 indicate that students became able 
to conceive a room to put such numbers by virtually stretching the line and space. 

As we have observed from the episode, the body movement is a crucial factor in the invention of new 
meanings. Students’ hand gestures on and off the touchpads demonstrate the catalyzing role of the 
mobility in the meaning-making process or, in other words, becoming the assemblage of fingers-
touchpads-number line-space-'density’. No one possessed the emerged meaning from the beginning. 
No one was able to produce it by only repeating what seemed possible. The meaning did not exist 
until the finger movements actualized the latent material configurations and allowed the new senses 

                                                 
1 This bolded and underlined part in the transcript indicates the moment when speeches of A and B were overlapping. 
Note that B deliberately continued to add a zero even after A stopped. 
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in unanticipated ways. It is this emergent nature what makes the meaning genuinely new and 
inventive. 

Concluding remarks 
We have scrutinized a case of mathematical activity to examine the relationship between the body 
movement and the meaning development in a multi-touch digital technology environment. Through 
the inclusive materialist lens, we could observe how the finger movements toward the digital 
apparatus played a crucial role in developing the meaning of the density of rational numbers. As 
Sinclair and de Freitas  (2014) note, movements of the hand bring about new material reconfigurations 
and hence new hand gestures, which participate in the process of communication as well as the 
invention of meaning.  We hope this study will contribute both to the embodied cognition theory and 
the studies on the integration of digital technologies in mathematics education by encouraging to 
incorporate the body and the material as central foci of investigation. 
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This paper reports on a qualitative case study about the use of dynamic worksheets addressing typical 
difficulties and misconceptions concerning functional thinking. The dynamic worksheets designed in 
this project visualize the transfer between iconic situational and graphical representations and were 
utilized during an intervention with students in a 7th grade Austrian middle school class. In addition 
to observational data, diagnostic tests and interviews regarding students’ conceptions in the field of 
functional thinking were conducted. The case study particularly pays attention to the intuitive 
conceptions of students, the influence of the dynamic worksheets on these conceptions, and whether 
or not these materials are able to support students in developing appropriate mathematical 
conceptions. In this paper, an overview of the study and the part of the results related to students’ 
use of dynamic worksheets are presented. 

Keywords: Functional thinking, technology, representational transfer, lower secondary school. 

Introduction 
Functional thinking is an important concept in mathematics education and various students’ problems 
and (mis-)conceptions have been widely researched in this context. The development of technology 
and technology-based resources now offers new opportunities with regard to multiple, dynamically 
linked representations. The question arose, whether such materials are able to support students in an 
early stage of learning functions as well as whether and in what ways they may influence students’ 
conceptions. Based on these considerations, I developed several dynamic worksheets that visualize 
the representational transfer between iconic situational and graphical representations and integrated 
them into a qualitative case study to investigate this question. 

Theoretical background 
Literature review reveals various problems and misconceptions in the field of functional thinking; for 
example, illusion of linearity (De Bock, Van Dooren, Janssens, & Verschaffel, 2002), problems 
related to representations of functions such as graph-as-picture errors and slope-height confusions 
(e.g., Clement, 1989), and difficulties related to aspects of functional thinking whereby particularly 
the dynamic co-variational aspect is difficult for students to comprehend (Goldenberg, Lewis, & 
O’Keefe, 1992). These problems can cause misinterpretations of functions and particularly of 
function graphs. In this study, I follow Vollrath’s (1989) description of functional thinking mainly 
including relational and co-variational aspects, because it best fits for the purpose of my study. 

Dynamic Mathematics Software (DMS) allows to examine multiple, dynamically linked 
representations because changing one representation immediately affects the other(s). Therefore, it 
may support students’ development of functional thinking because it is suitable to emphasize 
relational as well as co-variational functional aspects, the latter providing a dynamic perspective on 
functional dependencies (Falcade, Laborde, & Mariotti, 2007). So far, quantitative studies in the field 
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of technology reveal at best moderate effects on students’ achievement, but research related to 
dynamic representations appears to be more promising (Drijvers et al., 2016; Hoyles, Noss, Vahey, 
& Roschelle, 2013). 

At present, Cartesian coordinates seem to be dominant for representing function graphs in 
mathematics learning and teaching. Another way to represent functional dependencies is based on a 
software called DynaGraph providing two parallel lines instead of perpendicular axes (Goldenberg et 
al., 1992). According to Goldenberg et al. (1992), dynagraphs are powerful tools to examine 
characteristic properties of functions, to analyze functions qualitatively and therefore to support the 
understanding of functions. For instance, it is not possible to perceive graphical representations as 
static “images”, which could lead to graph-as-picture misinterpretations. Dynagraphs are able to 
complement static representations by adding dynamic perspectives, thus enriching the conceptual 
development of students. However, we need to examine in more detail the influence of dynamic 
materials (utilizing Cartesian as well as parallel coordinates) on students’ conceptions. 

Several researchers (e.g., Vosniadou & Vamvakoussi, 2006) suggest introducing mathematical 
concepts at an earlier stage in mathematics education in order to help students building a diverse 
concept image and to avoid that intuitive conceptions develop to misconceptions. This led to my 
research interest in students in an early phase of learning functions. In Austria, this group is 
represented by students in grade 7 and in the beginning grade 8 (age 12 to 13), because they have 
already learned how to interpret Cartesian coordinates. Therefore, they are able to study graphical 
representations, but they are not accustomed to the concept of the function and have only little 
experience with different functional relationships. 

Dynamic materials 
For creating dynamic worksheets, I decided to use the DMS GeoGebra, because it provides the 
possibility of dynamically linked, multiple representations, it is widely used in Austrian schools, and 
it is an open-source and free software. Moreover, I focused on the representational transfer between 
iconic situational and graphical representation due to the age and prior knowledge of the participating 
students, and additionally because it is particularly problematic (Bossé, Adu-Gyamfi, & Cheetham, 
2011). An English version of the worksheets can be retrieved here: https://ggbm.at/ftqpETqJ. 

 
Figure 1: Dynamic worksheet “Billiard”, https://ggbm.at/Dyf9Pwxj 
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Figure 1 is based on a task by Schlöglhofer (2000) and illustrates a typical example of the dynamic 
materials designed for this project. Each dynamic worksheet concentrates on problems concerning 
functional thinking described in literature and consists of an interactive GeoGebra applet, which 
presents an iconic situational model and a graphical representation of a specific example (Cartesian 
coordinates or dynagraphs). Dynamically linked and interactive representations should address 
aspects of functional thinking.  

Research design 
The literature review drew my attention to several research questions (Lindenbauer & Lavicza, 2017). 
In this paper, I discuss a part of the results related to the following aspect: What kinds of influences 
of dynamic materials exist on lower secondary students’ conceptions concerning functional thinking? 

Two 7th grade classes of a middle school in Austria including 28 students with a broad range of 
different achievement levels participated in the study. I chose a qualitative inductive approach, more 
exactly Eisenhardt’s (1989) approach that integrates features of Grounded Theory in a case study 
design in which the students represent different cases. Several types of data were collected in this 
study by diagnostic tests, diagnostic interviews, students’ worksheets on paper, and observations 
during the intervention. These methods were arranged to a research design including five data 
collection stages: (1) diagnostic test 1, (2) diagnostic interviews, (3) intervention, (4) diagnostic 
test 2, and (5) diagnostic interviews (Lindenbauer & Lavicza, 2017). During the three-lesson-
intervention, students worked in pairs with the designed dynamic worksheets without teacher 
guidance, because first I wanted to examine the influence of these interactive materials. Ten students 
were audio- and videotaped when working and the screens of their laptops were recorded, and I 
supervised these students in my role as researcher. The other students were working in another 
school’s computer lab supervised by their mathematics teachers. Both teachers were instructed before 
the intervention process in order to guarantee that the participants were not influenced in their learning 
processes by the teachers’ help.  

Results concerning dynamic materials 
For analyzing data, I followed coding procedures related to Grounded Theory (initial, focused, and 
theoretical coding). Various categories emerged from the common analysis of data from the second 
diagnostic tests and interviews as well as observation data. For this paper, I chose to outline results 
concerning students’ use of dynamic materials and representations. Further results will be presented 
in upcoming papers. 

As can be seen in Figure 2, when students worked with dynamic materials, they observed what 
happened within the dynamically linked representations, either more actively when manipulating 
dynamic representations (e.g., by moving sliders) or more passively by observing an animation. The 
variety and number of codes assigned to data imply an influence of students’ achievement level on 
how different students utilized dynamic worksheets; in essence, higher achieving learners appear to 
use dynamic materials in more diverse ways. For instance, only Harald1 and Wolfgang, the highest 

                                                 
1 All student names are pseudonyms to preserve anonymity. 
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achieving students who I grouped together during the intervention, utilized the trace mode to mark 
extrema of the functional dependency within a dynagraph representation (“Billiard dynagraph”, see 
https://ggbm.at/hSP3H9wv) and to compare with other function values. Lower achieving students 
Konstantin and Mario, however, mainly worked with the same dynamic worksheet passively by 
watching the animation. Possibly, such students’ behavior could be related to the use of visual 
representations in problem-solving processes. Stylianou and Silver (2004) compared experts and 
novices and found out that the former utilize visual representations in more diverse ways.   

 
Figure 2: Dynamic materials and related issues 

The way of utilizing dynamic worksheets influenced what students observed and consequently what 
they perceived. Perception, which in this context means that students consciously observe a feature 
and further consider or interpret it, evolved as main category when analyzing data related to the 
research question (see Figure 2). In brief, data analysis indicates an intention-reality discrepancy 
between the mathematical content the dynamic materials are intended to visualize and what students 
really perceive, especially when students focus on visual features of dynamic worksheets 
(Lindenbauer, 2018). Due to space limitations this issue will not be outlined further in this paper. 

As the dynamic materials designed for this project address the transfer between iconic situational and 
graphical representations and visualize functional dependencies, these topics also emerged during 
the data analysis (see Figure 2). They mainly contain several students’ activities such as manipulating 
and observing dynamic representations, describing variables or functional dependencies, relating 
variables and representations, and interpreting graphical representations. Results suggest that for 
solving tasks, students tend to rely on the more familiar representation – the situational model – if 
possible. Particularly higher achieving students utilized representations more flexibly while lower 
achieving learners seemed to focus on one representation. Research results about connections 
between a flexible use of representations and students’ achievement levels and experience support 
these observations (Acevedo Nistal, Van Dooren, & Verschaffel, 2014; Stylianou & Silver, 2004).  

Potentials and difficulties of working with dynagraphs 

During the intervention, students discussed two dynamic worksheets that first utilized Cartesian 
coordinates and within a second version dynagraph representations instead (“Billiard dynagraph”, see 
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https://ggbm.at/hSP3H9wv, and “Triangle dynagraph”, see Figure 3). At this time, they were not used 
to dynagraphs, and included paper worksheets only provided a brief explanation.  

Intervention data reveals that dynagraphs are intuitive 
for students to work with when solving tasks addressing 
relational as well as co-variational aspects of presented 
functional dependencies (e.g., to describe co-
variational behavior of functional dependencies, to read 
off function values) and, thus, provide easy access to 
graphical representations. For example, during an 
interview Hannah applied the dynagraph representation 
within worksheet “Triangle dynagraph” (see Figure 3) 
correctly for answering questions addressing relational 
aspects (e.g., minimum of the function) while she had 
difficulties in answering similar questions by 
interpreting Cartesian coordinates (Lindenbauer, 2018).  

Furthermore, dynagraph representations appear to 
emphasize co-variational aspects of the presented 
functional dependency probably because the function 
value y “moves” along the upper axis when the x value 
changes. Participants repeatedly described the 
dependency of function values from arguments in terms of speed and similarly observed the speed of 
the points representing x and y values relative to each other. Additionally, data implies that this 
representation also stresses rates of change, which can be experienced directly from changing speed 
of these moving points. One example provided by Pia, a student between average and low achieving 
level with lack of understanding of Cartesian coordinates, who rather described the functional 
dependency in dynamic worksheet “Billiard dynagraph” focusing on co-variational aspects than she 
did when interpreting Cartesian coordinates. However, students’ focus on speed could also lead to a 
confusion of variables, especially the x variable with time. In sum, dynagraph representations actually 
appear to provide a more dynamic perspective on functional dependencies than Cartesian coordinates 
and enable a more profound examination of the co-variational aspect of functional dependences as 
already outlined by Goldenberg et al. (1992). In addition, dynagraphs emphasize specific properties 
of functions including inflection or fixed points. Several students implicitly recognized such points 
without being asked. When asked to describe how the function value changes when x is increased 
within dynamic worksheet “Triangle dynagraph” (see Figure 3), Franziska, for instance, implicitly 
observed the inflection point of the presented functional dependency. She replied: 

56  Franziska:  Here it [area] is increasing faster (she moves the x value from x = 0 to x = 1) 
. . . and then slower again. 

57  Interviewer:  Do you have any idea from where it slows down? 
58  Franziska:  So, from here on (She moves dashed line to vertex C).  

As the dialogue reveals, Franziska identified the inflection point from which on the change of rate 
decreases. Apparently, the “speed” of the point representing the function value relatively to those 

 
Figure 3: Dynamic worksheet “Triangle 
dynagraph”, https://ggbm.at/wrVPlwHE  

Thematic Working Group 16

Proceedings of CERME11 2880



 

 

representing the argument x can be easily perceived. For these reasons, characteristic features of 
dynagraphs could be utilized in mathematics teaching to support students in accessing graphical 
representations, possibly in scaffolding the representational transfer to Cartesian coordinates. 

Although students had no difficulties in recognizing dynamic properties of dynagraphs, they did not 
always interpret them correctly. Konstantin, a lower achieving student, recognized the inflection point 
as position where the increase of speed changes similar to Franziska (see previous paragraph). 
However, he related this change of speed to the decreasing non-colored area within the triangle (see 
Figure 3) when dragging the dashed line from vertex C to the right. In addition, students tried to 
interpret visual features, such as the denseness of points created by trace mode on the y-axis, similar 
as they did when working with Cartesian coordinates. 

A further student problem, which I call a “projecting error”, appeared when reading off function 
values. Following solution from Tina when working with dynamic worksheet “Billiard dynagraph” 
exemplifies this error. Tina described when trying to answer the question about the distance of the 
ball at 𝑡𝑡 = 1 second: 

Tina: At one second it [the distance] is about 0.2.  

 
Figure 4: Screenshot of students’ work with dynamic worksheet “Billiard dynagraph” 

Figure 4 illustrates that Tina correctly adjusted the value for time on the lower axis to 𝑡𝑡 = 1. However, 
she did not identify the correct function value of about less than 0.1 m (possibly due to the distracting 
influence of the trace). Instead, as the yellow shaded cursor indicates, she replied the function value 
exactly above 𝑡𝑡 = 1, which would actually be about 0.2 meters.  

Dynamic materials 

Data related to dynamic worksheets was additionally analyzed separately from other intervention data 
to provide further insight. On the one hand, in essence the structure of categories manipulating, 
observing, and interpreting perceived features also evolved from this data analysis and thus 
triangulates the results. On the other hand, data revealed further typical students’ activities when 
solving tasks and purposes of dynamic worksheets (see Figure 2). As these results are not specific for 
this research project but typical activities when working with computer-based materials or technology 
in general (e.g., Artigue, 2002), I will not provide further details. 

Potentials and problems of dynamic materials 

This issue summarizes further potentials and problems of working with these dynamic materials. 
First, they can be supportive within the first steps students have to conduct when translating from 
iconic situational to graphical representations, namely for understanding and visualizing a situation 
as well as for identifying and describing the dependent variable. Second, results related to another 
research question in this project revealed a comprehension gap as obstacle for students to overcome 
during this transfer. Data analyses indicate that if students are basically not able to understand and 
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interpret graphical representations in Cartesian coordinates, without teacher guidance students could 
rather not manage to overcome this comprehension gap by working with the dynamic worksheets 
alone. Apparently, they would profit from teachers’ assistance to help them reflect and reconsider 
their perceptions and interpretations. 

Third, for students who are basically able to make representational transfers, dynamic materials seem 
to be helpful, because they appear to induce adaptations of students’ 
conceptions. When first confronted with the dynamic worksheet 
“Triangle” (for situational model see Figure 3), Wolfgang and his 
colleague represented the functional dependency by a piece-wise linear 
function (see Figure 5). After the second test, in which both students 
solved a corresponding task correctly, Wolfgang resumed:  

76 Wolfgang:  . . . because at first, I thought that it [the area] 
regularly becomes larger, but then I found out that it grows increasingly.  

Apparently, this dynamic worksheet supported Wolfgang in adjusting his conception from regular to 
irregular increase of the function value and, consequently, from a linear to a curved graph. 

Conclusions 
The data analyses reveal perception as main category of working with dynamic worksheets. In 
particular, students appear to focus on visual or structural features of iconic situational and graphical 
representation. Perception seems to depend, among others, on students’ achievement levels and their 
prior knowledge. Therefore, the problem remains how to draw students’ attention to those features 
that are relevant for mathematical learning. 

Dynagraphs provide an intuitive access to graphical representations and seem to be easy for students 
to interpret. Minor difficulties have to be considered when introducing dynagraphs in school, mainly 
concerning reading off function values. Finally, these results could be influenced by the order of 
dynamic worksheets utilized during the intervention. Possibly letting students first work with 
dynagraph representation and then with Cartesian coordinates would provide further insight. 

Depending on students’ prior conceptions and their understanding of Cartesian coordinates, the 
dynamic materials utilized in this project have an adaptational influence on students’ conceptions. In 
other words, they appear to support students in improving descriptions of functional dependencies 
(e.g., leading to qualitative correct ideas about changing slopes of function graphs). However, these 
materials could also generate new misconceptions, especially when only superficially perceived. 
Lower achieving students in particular would profit from teachers’ assistance to reflect their 
perceptions and interpretations.  

Additional questions arose from this project, for example, how to improve these materials and how 
to utilize them in regular teaching to support students. Design experiments and instrumental approach 
respectively could be suitable frameworks to investigate these questions further in other studies. 
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We report about an experiment carried out in a school context of teaching spatial geometry with a 
dynamic geometry environment, based on gesture-based interface for use with immersive, room-
scale virtual reality. The work reported in this paper is the first iteration of a research cycle 
involving teachers, researchers and developers to help high school students better “see” in space 
and propose principles for the design and use of such environments in a school context. Our study 
focuses on the impact of "dimensional construction" techniques on the way students perceive a 
geometric figure represented in a cavalier perspective. Our first results show a significant 
improvement of students' performance, demonstrating the appropriation and transfer of these 
dimensional construction techniques to 2D supports as well as the transition from an iconic to a 
non-iconic vision of figures, which is an essential condition for geometric activity. 

Keywords: Mathematics, learning, geometry, visualization, technology 

Introduction 
Teaching geometry in space is considered difficult because it is necessary to "see in space," objects 
or situations most often represented by drawings in cavalier perspective. In geometry, dynamic 
geometry environments (DGE) have revolutionized not only the way geometric objects are created 
and manipulated, but also allowed new didactic situations and modified our very relationship to 
geometric objects (Laborde, 2003). However, DGE are constrained by a 2D representation mode 
(screen), which poses perception and usability problems (Dimmel & Bock, 2017). In the domain of 
technology in education, unlike the professional world, virtual reality (VR) has made a timid entry. 
A DGE in VR could be relevant to better see in space or at least avoid the problem, but what will 
happen once the HMD (Head Mounted Display) is removed and the students are back on their 
tables? An interesting aspect of virtual worlds that can be exploited is their modes of interaction and 
assistance that are impossible in the physical world as a way of approaching learning differently 
(Burkhardt, Lourdeaux, & Mellet-d’Huart, 2006). VR can revel and make tangible concepts or 
information normally outside the field of human perception (Winn, 2003). This leads us to question 
whether concrete and intelligible manipulation of geometric objects performed by students in a VR 
environment can change the way they later see them in cavalier perspective drawings? In this paper, 
we present a research aiming to evaluate the potential of VR environment in geometry in space, but 
also to set some benchmarks for academic learning. 

Theoretical framework  
Seeing in space in geometry 

In the context of geometry, the act of seeing involves complex perceptive and cognitive processes. 
For Duval (2005), a major cognitive problem is how to move from discriminative recognition of 
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shapes to the identification of objects to be seen. This transition can take two paths: an iconic and a 
non-iconic path. The iconic path is based on the similarity of the shapes with the object and is not 
specific to geometry. Seeing in space in an iconic way can also be considered from the perspective 
of spatial skills as "the ability to generate, preserve, recover and transform well-structured visual 
images" (Lohman, 1996, p. 98). The non-iconic way relies on considering a representation of 
figural units linked by relations as a whole. Most of spatial geometry tasks imply this flexibility of 
vision. The dimensional deconstruction (Duval, 2005), i.e., considering the figural units of smaller 
dimensions in a geometric object, is the central point for the geometric processing of 
representations. Following Duval, we start from the premise that getting students to mobilize 
dimensional deconstruction on a 3D object represented in 2Dcan help them better "see in space". 

According to Chaachoua (1997), to be efficient in geometry, the representations must fulfill three 
functions: illustration, supporting assumptions and allowing the heuristic change of point of view 
like the dimensional deconstruction. In spatial geometry, the drawings in cavalier perspective are 
the most commonly used representations. Mithalal (2014) notes that drawings in perspective 
struggle to fulfill these functions, and that dynamic geometry environments (DGE) allow them to be 
partially restored.  

In order to tackle our initial question, we need to identify different ways of seeing in space students 
mobilize in a geometric activity. This involves modelling the ability to "see in space" in an 
ecological approach, which leads us to choose the anthropological theory of didactics. 

The anthropological theory of didactics  

The anthropological theory of didactics (ATD, Chevallard, 2012) provides an epistemological 
framework aiming at the understanding of the ecology of mathematical knowledge. In ATD, any 
human activity is modelled through the notion of praxeology represented by so called “4T-models 
(T,τ,θ,Θ)”. A type of task (T) and the relevant techniques (τ) for solving tasks t of the type T 
constitute a practical block or praxis (know-how). The technologico-theoretical block or logos 
(know why) covers a technology (θ) explaining and justifying the technique and a theory (Θ) 
justifying the underlying technology. In the case where the type of tasks T relates to the field of 
mathematics, we use the term of mathematical organization (MO) rather than praxeology. For 
Duval, "the way of seeing a figure depends on the activity in which it is mobilized" (Duval, 2005, p. 
8). From the ATD perspective, we consider the different ways of seeing as intrinsic elementary 
praxis (EP) because, on the one hand, they only exist through their mobilization within techniques 
of prescriptible types of tasks and, on the other hand, they are present at a level of granularity that 
the didactics of mathematics can no longer exceed. We propose the following elementary praxis to 
describe the possible transitions from a figure to a geometric object. EP1 and EP2 follow the iconic 
way (Chaachoua, 1997), EP3 the non-iconic way (Duval, 2005). 

· EP1: Associate the recognized shapes with the appearance of a physical object seen from a 
certain point of view (identification by natural observation and resemblance). 

· EP2: Associate the recognized shapes with a prototypical image of the object available in a 
mental catalogue (identification by prototypical shapes). 
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· EP3: Identify figural units and their relationships (identification by processes supported by 
dimensional deconstruction). 

The relationship to knowledge 

In ATD, the notion of relationship to knowledge (Chevallard, 1992) leads to considering the 
didactics from the anthropological perspective. An individual's relationship to particular (piece of) 
knowledge may be different from the relationship that the educational institution has with that 
knowledge. In the case of the ability to see in space, the student develops his/her personal 
relationship within and outside the school walls. The analysis of student productions, and in 
particular of their mistakes with regard to the different EPs mobilized in the techniques used to 
solve a geometric task, can provide us with information on the student’s  personal relationship  with 
the notion of seeing in space. At the secondary level, in geometry, as well as more broadly in 
mathematics, the curriculum clearly aims to develop a deductive approach. From the point of view 
of the institutional relationship to "seeing in space", EP1 and EP2 are non-compliant and error-
prone relationships. It is the EP3 that is targeted by the teaching of geometry in space.  

The concept of ostensive/non-ostensive 

The implementation of a technique involves manipulation of ostensives, i.e., tangible and 
manipulable objects, regulated by non-ostensives, i.e., theoretical objects as concepts, notions, ideas 
(Bosch & Chevallard, 1999). Ostensives can belong to different registers: graphic, gestural, 
discursive and scriptural. The performance of an ostensive can be evaluated according to two 
criteria: its instrumental valence, which is its ability to act, to work and its semiotic valence, which 
is its ability to see, to appreciate in a sensitive way the work done or to plan the work to be done.  

According to Chevallard (1994, p 8), "one of the factors of progress in mathematics is the creation 
of ostensives that are effective from both an instrumental and a semiotic point of view." (our 
translation).  

We have seen in the introduction that drawings in perspective are ostensives whose instrumental 
and semiotic valences are not sufficient to develop a non-iconic way of seeing in space.  

Analysis of Handwaver, a DGE in virtual reality 
The Handwaver application is developed by a research team at the University of Maine to exploit 
the modes of representation and interaction available in virtual environments to create experiences 
where learners use pseudo natural gestures to observe, create and manipulate mathematical objects 
(Dimmel & Bock, 2017). In Handwaver, the "stretch" and the "extrude" operators allow to generate 
geometric objects of n dimensions from an object of n-1 dimension (Figure 1). 

 
Figure 1. Different cases of the “stretch” operator: a point is stretched into a line segment, the segment 

is stretched into a polygon, and the polygon is stretched into a prism (Dimmel & Bock, 2017) 
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As we focus on 3D objects, we consider the generation of a polyhedron from a polygon as a type of 
task T, made up of several punctual mathematical organizations (PMO), i.e., relating to a single 
subtask of T. We describe these praxeologies and the involved ostensives in Table 1. 

Type of task T Construct a polyhedron from a polygon 

Punctual Mathematic 
Organization 

Dimensional construction of prisms 
PMOdim_prism 

Dimensional construction of pyramids 
PMOdim_pyramid 

Subtype of task T Construct a prism from a polygon Construct a pyramid from a polygon 

Technique 

Make a translation of a polygon and join 
corresponding vertices of the two 
polygons by segments generating faces of 
the prism 

Extract an apex from the polygon, pull it 
out of the plane and join it with all 
vertices of the polygon generating faces of 
the pyramid 

Technology 

Definition of a prism: a polyhedron with 
two polygonal faces lying in parallel 
planes and with the other faces 
parallelograms   

Definition of a pyramid: a polyhedron 
with a polygonal base and three or more 
triangular faces that meet at a point, called 
apex 

Theory Euclidean geometry Euclidean geometry 

Ostensives The stretch operator The extrude operator 

Graphical register 
Virtual model of the prism reacting in real 
time to the manipulation of polygonal 
bases 

Virtual model of the pyramid reacting in 
real time to the manipulation of the apex 
and the polygonal base 

Gestural register 
Grasp and stretch (with hands apart) the 
polygon 

Touch the polygon with the extrude tool 
and move away the apex created (with 
hands apart) 

Discursive register 

(later introduced by the 
teachers of our experiment) 

“I stretch the polygon” “I pinch the polygon” 

Table 1: Two examples of Punctual Mathematical Organizations related to the type of task T 

The a priori analysis of the stretch and extrude ostensives leads us to make the following 
observations: 

· From the point of view of their instrumental valence, the mobilization of pseudo natural 
gestures makes the techniques easy to apply and retain.  

· From the point of view of their semiotic valence, the environment provides immediate 
feedback on the manipulation of objects in the form of visualization of the polyhedron being 
generated. This enables the student to control the process of generating polyhedrons, and 
thus makes the techniques, and more generally the continuity of the process leading from the 
polygon to the polyhedron, readable and intelligible.  

With regard to these two considerations, we hypothesize that these techniques have a strong 
reversibility potential, i.e., they allow a dimensional deconstruction of the polyhedrons enabling to 
identify the starting polygon. This leads us to reformulate our initial questioning:  

To what extent the use of Handwaver to solve tasks involving dimensional construction techniques 
help students to move from an iconic (EP1 & EP2) to a non-iconic (EP3) way of seeing drawings in 
a cavalier perspective?  
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Methodology 
Our methodology relies on a teaching experiment involving two grade 6 classes and their 
mathematics teachers. Our aim was to design and test activities with HandWaver involving the 
above mentioned techniques. The methodology comprises several phases outlined below. 

Phase 1: Identification of errors related with seeing in space 

We interviewed six secondary school mathematics teachers through two focus groups in two 
schools to determine types of tasks where seeing in space is problematic for students. We present 
here two errors that are widespread according to the teachers at the beginning of secondary school 
and that persist throughout compulsory schooling: 

· Error 1 (E1): The student does not consider cubes or rectangular cuboïds as prisms. 
· Error 2 (E2): The student does not identify properly the base of a prism or a pyramid in a 

non-prototypical position. 

From the point of view of our theoretical framework, E1 and E2 are characteristic of a relationship 
of knowledge that does not conform to the one expected by the institution. EP1 leads for example to 
difficulties with perceiving geometric properties shared by different solids as this requires 
identifying components or figurative units and their relationships, which EP1 does not allow. EP2 
comes from observation of real objects and leads for example to always identify the base of a solid 
as a face on which the solid sits on. E1 and E2 errors prove the non-mobilization of EP3. 

Phase 2: Diagnostic assessment 

To investigate these statements, we analyzed the outcomes of a diagnostic assessment administered 
to 40 grade 6 students (11-12 years old, two classes) who have not had yet teaching of geometry in 
space. The test consisted of two exercises: classify given solids by family and identify a base for 
each of the given solids. The solids are represented by drawings in cavalier perspective. E1 and E2 
errors were present in all students, confirming the statements collected from the focus group 
teachers. We note that only EP1 and EP2 are present in students' personal praxeology for these 
types of tasks. We assume that we can evaluate changes in ways of seeing in space with respect to 
the presence of these errors in students' productions. We can therefore test the following hypothesis: 

The dimensional construction technique makes it possible to develop the EP3 praxis in the students' 
personal praxeology. 

Phase 3: Design and implementation of tasks in Handwaver environment 

With the two teachers, we have designed a scenario to allow students to implement the dimensional 
construction PMOdim_prism and PMOdim_pyramid (Table 1). The scenario outlined below was 
implemented by each of the two teachers in their 6th grade class of 20 students who passed the 
diagnostic assessment and whose results are reported above. It should be noted that this was the first 
session where the notions of prisms and pyramids were introduced at this level of class. 
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Figure 2. The classroom setting and the generation of a prism using the stretch operator 

The implementation went through the following phases in the classroom setting shown in Figure 2 
(left): 

· Introduction of the activity and demonstration of the environment by the teacher 
· Generation of solids in the environment by students with the stretch or the extrude operator - 

one student manipulated at a time, the others observed the screen (Figure 2, right) 
· Classification, by each student, of the solids generated on the basis of the techniques used by 

the group (mental re-mobilization and reversibility of techniques) 
· Discussion, argumentation, validation of the students’ classifications (development of a 

discourse on techniques) - whole class 
· Institutionalization by the teacher of prisms and pyramids in relation to the techniques used 
· Mental reinvestment of the techniques considering a disc (to generate either a cylinder or a 

cone) - whole-class discussion 

Phase 4: Post-test 

A post-test was administered to the students 10 days after the session. As the students were on a 
school trip during these 10 days, they did not have any mathematics lessons during this period.  

 
Figure 3. The set of solids from the post-test 

The post-test includes the following two exercises: 

· Classify the solids in the families of prisms, pyramids, or other. 
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· Color a base of the solid on each figure (if possible). 

In terms of MO, the type of task underpinning the first exercise is “Identify prisms and pyramids in 
a set of solids in cavalier perspective“(T1) and the type of task underpinning the second one is 
“Identify the base of solids in cavalier perspective” (T2). The test includes 12 solids represented in 
cavalier perspective whose visible faces are colored to avoid perceptual aberrations. Among the 
solids are 5 prisms including a cube and a rectangular cuboid, 4 pyramids, 1 cone, 1 cylinder of 
revolution, and 1 sphere (Figure 3). A particular attention was paid to draw some of the solids in a 
non-prototypical position. 

Findings and discussion 
In the analysis of the post-test results, we focus on those that are relevant to the types of tasks T1 
and T2. We obtain the following success rates: 

· 79% of students correctly solved T1 (68% for prism and 93% for pyramids). 
· 75% of students correctly solved T2 

If we consider only the object in the post test who can generate the errors E1 and E2: 

· Error 1 (E1) 70% of students correctly solved T1 (Fig:1, 2) 
· Error 2 (E2): 59% of student correctly solved T2 (Fig: 3, 4, 7, 9, 10, 12). 

Even if we have not submitted a real pre-test, only a diagnostic assessment, the very significant 
decrease in the presence of E1 and E2 in student production seems indicate the non-mobilization of 
EP1 or EP2. The new technique used by student is more relevant, that could indicate the 
mobilization of EP3 and could be link to the PMOs used in the VR environment. This seems to 
confirm our hypothesis and the a priori analysis of stretch and extrude ostensives in terms of their 
instrumental and semiotic valence. However the solids generation by extrusion is not new, it is 
often used in an imaginative way by teachers or in CAD software used by students in technology 
teaching. Yet mistakes persists. The novelty in VR lies in the use of a behavioral interface that 
affects the graphical and gestural registers of the ostensive. We must consider how cognition 
operates within constraints imposed by our physiology. First about the graphical register, artificial 
environments can use computer technology to create metaphorical representations in order to bring 
to students concepts and principles that normally lie outside the reach of direct experience. (Winn, 
2003). Secondly about the gestural register, in the embodied cognition approach, the mathematical 
concept of dimensional construction that we mobilized in our experiment, could be considered as a 
conceptual metaphor (Nunez, 2009), grounded in bodily-based mechanisms : the stretch gesture like 
stretching gum from a ball to a thread (from a 0D to 1D object), or pulling a blind down (from a 1D 
to 2D object). So we can suppose in our case that students can easily accept that stretching a 
polygon makes a 3D object so they can mobilize spontaneously this technique later. 

Conclusion 
The VR activity implemented seems to have helped students develop a heuristic understanding of 
drawings in cavalier perspective, based on the identification of figurative units of smaller 
dimensions, and thus helping to better see in space. In a VR environment we call presence the belief 
that you are “in” the artificial environment, not in the laboratory or classroom interacting with a 
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computer. The coupling effect leads to a permeability at the cognitive level between the real world 
and the artificial world. An environment considered as real by users but where we program the 
interactions and rules, open a field of great opportunities for learning.  
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Students’ perceptions in a situation regarding eigenvalues and 
eigenvectors 
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In this study we investigate conceptualization processes among university students in solving a 
problem involving concepts of eigenvalues and eigenvectors in a linear algebra course for 
engineering. In the pilot phase of the study, we examined a case study of two first-year linear 
algebra students and analyzed the data through the theory of instrumental genesis in a dynamic 
geometry paper-and-pencil environment. 

Keywords: Linear algebra, Eigenvalue, Eigenvector, Scheme, Instrumental genesis. 

Introduction 
Linear algebra is one of the first abstract mathematics courses engineering students take in their 
early years in college. According to Robert and Robinet (1989), when first encountering linear 
algebra, students express concern about the use of formalism, the overwhelming number of new 
definitions and the lack of connection between this new field and their existing knowledge of 
mathematics. Dorier and Sierpinska (2001) distinguish two inseparable sources of difficulty for 
students in learning processes: the nature of linear algebra itself (conceptual difficulties) and the 
kind of thinking necessary for the understanding of linear algebra (cognitive difficulties). 

After the Linear Algebra Curriculum Study Group (LACSG) recommended the use of technology in 
early linear algebra courses (Carlson, Johnson, Lay, & Porter, 1993), some teachers began to 
incorporate Computer Algebra Systems (CAS) into their classrooms. At the same time, several 
researchers studied the reflexive use of technological tools in classroom teaching/learning processes 
(involving both the tool and the mathematical content), which gave rise to the instrumental 
approach to didactics as a central theoretical framework (Artigue, 2002; Guin, Ruthven, & 
Trouche, 2005; Trgalová, Clark-Wilson, & Weigand, 2018). 

Eigenvalues and eigenvectors are important concepts in the study of linear algebra (Gol Tabaghi, 
2014; Meel & Hern, 2005), and they require an understanding of other concepts such as vector 
spaces, linear transformation, bases and dimension, among others. In this paper, we present the 
preliminary results of our doctoral research, whose objective is to orchestrate a teaching situation 
appropriate for introducing the concepts of eigenvalues and eigenvectors in a traditional course on 
linear algebra. For this part of our research, we pose the following question: what utilization 
schemes does the student experience / develop when faced with a geometry task involving the 
concepts of eigenvalues and eigenvectors? 

Theoretical framework 
The French mathematics education community (Artigue, 2002; Guin et al., 2005) has extended the 
instrumental approach (Rabardel, 2002) to the learning of mathematics through the reflexive use of 
technological tools. Rabardel thus defines an instrument as a “mixed entity made up of an artifact 
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and a scheme” (p. 37), retaining Vergnaud’s notion of scheme, as “the invariant organization of 
behavior for a certain class of situations” (Vergnaud, 1998, p. 167). To understand the function and 
dynamic of a scheme, we must take into account its components. These include one or several 
goals, each with its sub-goals and anticipations; rules to generate action, information seeking and 
control; its operational invariants (concepts-in-action and theorems-in-action); and the possibilities 
of inferences within the situation. Artifacts are associated with two kinds of utilization schemes: 
usage schemes and instrument-mediated action schemes. Two different users can approach the same 
artifact differently, develop different utilization schemes, and create two different activities and 
instruments (Alqahtani & Powell, 2017, p. 14). For a subject, the artifact becomes an instrument 
through a process, called instrumental genesis, “involving the construction of personal schemes or, 
more generally, the appropriation of social pre-existing schemes” (Artigue, 2002, p. 250). 
According to Trouche (2004), instrumental genesis is a complex process that requires time, and is 
related to artifact’s characteristics and the subject’s activity. In instrumental genesis, two processes 
coexist: instrumentalization and instrumentation. “The instrumentation process is the tracer of the 
artifact on the subject’s activity, while the instrumentalization process is the tracer of the subjects’ 
activity on the artifact” (Trouche, 2014, p. 311). In a technological environment, interactions 
between student and artifact must be organized with specific didactic intentions. The crucial role of 
teachers in this process was soon recognized. To characterize the teacher’s role in guiding students’ 
mastery of tools and their learning processes, Trouche (2004) introduced the notion of instrumental 
orchestration. An instrumental orchestration consists of two main elements: didactical 
configuration and exploitation modes. 

Methodology 
In this paper we present the results of a single task, part of a larger study whose objective is to 
design an orchestration of a situation to introduce the concepts of eigenvalues and eigenvectors in a 
first course on linear algebra for engineering students. The task was designed by the teacher, in 
conjunction with the researcher. The study was carried out in the spring of 2018 and included a case 
study. The research involved eight volunteer students averaging nineteen years old, all enrolled in a 
"Fondamentaux des Mathématiques II" class at a public university in France. The session lasted 120 
minutes. The students had experience in matrix calculation, vector spaces, and linear 
transformations, but they had not yet addressed eigenvalues and eigenvectors. They also mentioned 
having some previous experience with the Dynamic Geometry Environment (DGE), in this case 
GeoGebra. The students were told that we would be studying the way they solved the problem, or 
the techniques used, and that they would not be graded. Each student was given the paper 
assignment and each group (of 2 or 3) was provided with a laptop with GeoGebra and Internet 
access. The data was collected from observation and field notes by a researcher external to the 
experiment, and lasted about 120 minutes. For our analysis, we selected two students: Cécile and 
Henry. 

Mathematical context and task design. 

An eigenvector of an 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴 is a nonzero vector �⃗�𝑥 such that 𝐴𝐴�⃗�𝑥 = 𝜆𝜆�⃗�𝑥 for some scalar 𝜆𝜆. A 
scalar 𝜆𝜆 is called an eigenvalue of A if there is a nontrivial solution �⃗�𝑥 of 𝐴𝐴�⃗�𝑥 = 𝜆𝜆�⃗�𝑥; such an �⃗�𝑥 is 
called an eigenvector corresponding to 𝜆𝜆 (Lay, Lay, & McDonald, 2016). Here we consider 𝑛𝑛 = 2, 
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by the availability of a DGE (GeoGebra), considering the potentiality of the dragging tool 
“wandering dragging” (Arzarello, Olivero, Paola, & Robutti, 2002). 

The task (see figure 1) was not designed to evaluate the student’s progress in the course. Rather, it 
was restricted to having the students to work on ℝ2 in order to study their conceptualization of 
eigenvalues (real) and eigenvectors of 2x2 matrices, specifically in solving the first two points in a 
single class period of 30-50 minutes. 

Given the following two rectangles. 

 
1. Find a process to build a linear application 𝑓𝑓 that sends the rectangle OABC to the 

rectangle ODEF. 
2. Apply this process when the points have the following canonical 

coordinates:   𝐴𝐴 �− 1
2

, 1�  ;  𝐵𝐵 �3
2

, 2�  ;𝐶𝐶(2,1) ;𝐷𝐷 �− 3
4

, 3
2
�  ;𝐸𝐸 �13

4
, 7
2
�  ;𝐹𝐹(4,2) 

And build the matrix 𝑀𝑀 of 𝑓𝑓 in this basis 
3. In GeoGebra, we code a matrix with the braces 𝑀𝑀 = �{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐,𝑑𝑑}�. We can create a 𝑢𝑢 =

𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉𝑉𝑉�(1,1)� then move its end and apply the matrix 𝑀𝑀 by 𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀 ∗ 𝑢𝑢). Model the 
previous situation and check the values. 

4. Can we find a vector 𝑣𝑣 ∈ ℝ2 such that 𝑓𝑓(𝑣𝑣) = 𝜆𝜆𝑣𝑣 for a certain real 𝜆𝜆 ∈ ℝ? What are the 
possible values of 𝜆𝜆? What are the possible vectors for a given 𝜆𝜆? 

5. Let 𝑣𝑣1 = 𝑂𝑂𝐶𝐶�����⃗  and 𝑣𝑣2 = 𝑂𝑂𝐴𝐴�����⃗ . Give the matrix of the linear application 𝑓𝑓 in this database. 

Figure 1. The task discussed in this document 

The students are invited to develop intuitive notions of eigenvalues and eigenvectors associated 
with the matrix M, in the environment of GeoGebra, by means of a draggable vector �⃗�𝑣 and its 
vector image 𝑀𝑀�⃗�𝑣, as the vector �⃗�𝑣 is dragged around the screen, the vector 𝑀𝑀�⃗�𝑣 moves accordingly. 
To find an eigenvalue of the matrix M geometrically, the student will have to drag a position where 
�⃗�𝑣 and 𝑀𝑀�⃗�𝑣 are collinear, in order to explore the relationship involved in the equation 𝐴𝐴�⃗�𝑥 = 𝜆𝜆�⃗�𝑥, and 
to recognize that there is an infinite number of eigenvectors associated with each eigenvalue. 

Instrumental orchestration of the class 

The main objective of the orchestration is to introduce and use the concepts of values and 
eigenvectors in a first course on linear algebra. The secondary objective is to analyze a geometric 
problem in a paper-pencil environment and in a DGE to explore the problem and validate the 
solutions proposed by the students. It is defined by a didactical configuration (students organized in 
heterogeneous working groups, with access to GeoGebra) and exploitation modes (each group 
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analyzes the problem and proposes solutions using a combination of paper-and-pencil work and 
GeoGebra; the group is free to ask questions of the teacher and each participant’s role is identified). 

Data Analysis 
The students followed the steps given in the task. Question # 1 can be identified as the phase of data 
selection, solution strategies and operation to be performed to solve the task: 

· A transformation (matrix) that stretches the rectangle horizontally and another transformation 
(matrix) that stretches it vertically, then a composition of transformations; 

· Display a matrix 𝑀𝑀 of 2 × 2 that 𝑀𝑀𝑂𝑂𝐶𝐶�����⃗ = 𝑂𝑂𝐹𝐹�����⃗  and 𝑀𝑀𝑂𝑂𝐴𝐴�����⃗ = 𝑂𝑂𝐷𝐷������⃗  (matrix-vector); 
· Display a matrix 𝑀𝑀 of 2 × 2 that 𝑀𝑀𝑂𝑂𝐶𝐶�����⃗ = 2𝑂𝑂𝐶𝐶�����⃗  and 𝑀𝑀𝑂𝑂𝐴𝐴�����⃗ = 3

2
𝑂𝑂𝐴𝐴�����⃗  (matrix-vector-scale), 

· Discover the matrix 𝑀𝑀 by trial and error with the help of GeoGebra (trial-and-error). 

First Case: Cécile. 

The components of Cécile’s “matrix-vector” scheme were:  
Goal: find a linear 
transformation, such 
that 
T(OABC)=ODEF 
 

Sub goals:  
-Identify the possible relations of parallelism and collinearity 
-Recognize the proportionality constant k (𝑘𝑘 ∈ ℝ), such that 𝑂𝑂𝐹𝐹�����⃗ = 𝑘𝑘1𝑂𝑂𝐶𝐶�����⃗  and 𝑂𝑂𝐷𝐷������⃗ =
𝑘𝑘2𝑂𝑂𝐴𝐴�����⃗  
-Check that the result fulfills the conditions of the problem. 

Anticipations Know that you have more than one way to solve the problem--either DGE or paper-
and-pencil. 

Rules of action -If I find a matrix that when multiplied by 𝑂𝑂𝐶𝐶�����⃗ , gives 𝑂𝑂𝐹𝐹�����⃗ , then that same matrix must 
when multiplied by 𝑂𝑂𝐴𝐴�����⃗ , give 𝑂𝑂𝐷𝐷������⃗ . 
-If I find a matrix and enter it into GeoGebra, I can test the solution. 

Operational 
invariants  

Concepts-in-action 
- Two vectors are collinear if they can be placed one on top of the other or they are 
on the same straight line 
Theorems-in-action 
- TA1 If when moving the vector 𝑢𝑢�⃗  both clockwise and counterclockwise, the 
opening (angle) between the vector 𝑢𝑢�⃗  and the vector �⃗�𝑣 decreases so that the vector 𝑢𝑢�⃗  
superimposes the vector �⃗�𝑣, then the matrix M has an eigenvector 
- TA2 If the opening (angle) between the vector 𝑢𝑢�⃗  and the vector �⃗�𝑣 does not decrease 
when the vector 𝑢𝑢�⃗  moves both clockwise and counterclockwise, then the matrix M 
does not have an eigenvector. 

Possibilities of 
inference 

-If I find a matrix M that when multiplied by 𝑂𝑂𝐴𝐴�����⃗  gives 𝑂𝑂𝐷𝐷������⃗ , there is a 3/2 relation. 

Table 1: Elements of Cécile’s utilization scheme 

Cécile began by using the paper-and-pencil technique. From the rectangle OABC, she identified 𝑂𝑂𝐴𝐴���� 
and 𝑂𝑂𝐶𝐶���� as the vectors: 𝑂𝑂𝐴𝐴�����⃗  and 𝑂𝑂𝐶𝐶�����⃗ . In the rectangle ODEF, she also identified 𝑂𝑂𝐷𝐷���� y 𝑂𝑂𝐹𝐹���� as the 
vectors: 𝑂𝑂𝐷𝐷������⃗  y 𝑂𝑂𝐹𝐹�����⃗ . She defined a 2x2 matrix which multiplied by the vector 𝑂𝑂𝐴𝐴�����⃗  must give the 
vector 𝑂𝑂𝐷𝐷������⃗ , and which multiplied by 𝑂𝑂𝐶𝐶�����⃗  must give the vector 𝑂𝑂𝐹𝐹�����⃗  (see figure 2). From the two 
systems of linear equations obtained, Cécile grouped the equations with the same unknowns into 

two 2x2 systems and, after solving the two systems, built the matrix 𝑀𝑀 = �−19 10⁄ 39 5⁄
1 5⁄ 8 5⁄ �. 
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Figure 2. Cécile’s working to find the matrix M 

Cécile said she had rarely used GeoGebra in her previous courses, so she requested support from a 
partner to be able to input the matrix. Afterwards, she input the operations M*C, M*B and M*A, 
creating points G, H and I (names automatically assigned by GeoGebra). When entering the 
operations, she observed that the points obtained did not coincide with the points D, E and F. In 
fact, she observed that two of the three points did not coincide. She first checked her notes to see if 
she had made some arithmetic error but was still unable identify the problem, so she turned to the 
teacher for support. The teacher reviewed Cécile’s worksheet and pointed out an arithmetic-
algebraic error. Cécile then corrected the solutions to the equation system, obtaining the matrix 

𝑀𝑀 = �19 10⁄ 1 5⁄
1 5⁄ 8 5⁄ �. Cécile entered this matrix in GeoGebra and performed the operations D'= 

M*A; E'=M*B and F'=M*C. This time the points coincided, so the matrix M obtained was 
considered acceptable. 

Proceeding on to question 3, Cécile focused her attention on the edges of the rectangles, mentioning 
that "while I drag the vector 𝑢𝑢�⃗  towards the base of the rectangle, the vector 𝑢𝑢�⃗  follows the vector �⃗�𝑣 
and reaches it at the base" and "while I drag the vector 𝑢𝑢�⃗  towards the height of the rectangle, the 
vector �⃗�𝑣 pursues the vector 𝑢𝑢�⃗  and reaches it exactly at the top." She continued, “when the vector 𝑢𝑢�⃗  
is exactly the same as the base OC, the vector �⃗�𝑣 is twice 𝑢𝑢�⃗ , i.e. if 𝑢𝑢�⃗ = (2,1) then �⃗�𝑣 = (4,2), but 
when 𝑢𝑢�⃗  is approximately the base OC, there is a difference of hundredths, between �⃗�𝑣 and twice 𝑢𝑢�⃗ , 
i.e. if 𝑢𝑢�⃗ = (1.13,0.57) then �⃗�𝑣 = (2.27,1.13) (indicated in the Algebraic View). Cécile is able to 
observe that �⃗�𝑣 = 2𝑢𝑢�⃗  when 𝑢𝑢�⃗ = (2,1), and that only then is �⃗�𝑣 = 2𝑢𝑢�⃗ ; with other values, she notes, 𝑢𝑢�⃗  
fails to reach twice  𝑢𝑢�⃗ , due to decimals. Cécile fails to calculate the other eigenvalue and fails to 
intuit the concepts of eigenvalue and eigenvector. 

At this point, we observe that in Cécile's instrumentation process, the tool guides her attention and 
the instrumentalization process is recognized by the “wandering dragging” functionality. Gol 
Tabaghi called this dragging modality “intentional dragging--which involves dragging a point with 
the intention of producing a certain configuration" (p. 234). 

Second Case: Henry. 

The components of Henry’s scheme are: 
Goal: find a linear 
transformation, such 
that T(A)=D, 
T(B)=E, T(C)=F. 

Sub goals:  
-Identify the possible relations of parallelism and collinearity 
-Verify that the result fulfills the conditions of the problem. 

Anticipations Know that you have more than one way to solve the problem--either DGE or paper-
and-pencil. 
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Rules of action - If you succeed in matching point E' with point E, you will have found the matrix M. 
Operational 
invariants  

Concepts-in-action 
- Two vectors are collinear if they can be placed one on top of the other or they are 
on the same straight line 
Theorems-in-action 
- If the vectors �⃗�𝑣 and 𝑀𝑀�⃗�𝑣 are linearly independent, then the matrix M does not have 
an eigenvector 
- If the vectors �⃗�𝑣 and 𝑀𝑀�⃗�𝑣 re linearly dependent, then the matrix M has an 
eigenvector. 

Possibilities of 
inference 

- If the vectors �⃗�𝑣 and 𝑀𝑀�⃗�𝑣 are dependent, then 𝜆𝜆 = ‖𝑀𝑀�⃗�𝑣‖ ‖�⃗�𝑣‖⁄ . 

Table 2: Elements of Henry’s utilization scheme 

Henry used a trial-and-error scheme with DGE. Since Henry had experience with GeoGebra, he 
created four sliders--x1, x2, x3 and x4--and then, with the sliders, he created a 2x2 matrix M: 𝑀𝑀 =
�{𝑥𝑥1, 𝑥𝑥2}, {𝑥𝑥3, 𝑥𝑥4}�. The interval that he defined for the four sliders was -5 to 5, increments of 0.1; 
finally he introduced the three points E', D' and F' (see figure 3). 

Henry commented that if he could match point E' with point E, the other points (D' and F') would be 
superimposed as well. On his first attempt, Henry managed to match point E' with point E (see 
figure 3), but contrary to what the thought, the other two points (D' and F') did not overlap. 
Subsequently, through trial and error, by moving the sliders, he managed to obtain the matrix M. 
Henry mentions that the elements of the matrix are decimals, which could cause the points to 
"overlap, but they are not equal." At this point we believe that Henry saw points E and E’ 
overlapping, and noted that their values were the same in Algebraic View (3.25, 3.25), but the E 
and E’ do not overlap exactly, i.e., they show a slight offset. Henry then turned to the GeoGebra 
Relation1 tool to verify that they were in fact the same. He did not use paper-and-pencil. 

To resolve question 3, since Henry had already entered the matrix M in GeoGebra, he entered only 
the vector 𝑢𝑢 = 𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉𝑉𝑉�(1,1)� and 𝑣𝑣 = 𝑉𝑉𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀 ∗ 𝑢𝑢). Then he began to drag 𝑢𝑢�⃗  clockwise. Henry 
used the “Algebraic View” in GeoGebra to observe the numerical values and relied on the Relation 
tool to explore the relationships between 𝑢𝑢�⃗  and �⃗�𝑣. As the vector 𝑢𝑢�⃗  was brought closer to the 𝑂𝑂𝐶𝐶 
segment, he used the Zoom tool to make sure that they were able to overlap, and continued until the 
two vectors 𝑢𝑢�⃗  and �⃗�𝑣 lay one on top of the other. Henry said: "of course, 𝑂𝑂𝐶𝐶�����⃗  and 𝑂𝑂𝐹𝐹�����⃗  are collinear," 
and to avoid further approximation he modified the vector 𝑢𝑢 = (2,1). “When 𝑢𝑢�⃗  is (2,1),” Henry 
continued, “the vector �⃗�𝑣 is twice 𝑢𝑢�⃗ .” He then wrote 𝑀𝑀𝑢𝑢�⃗ = 2𝑢𝑢�⃗ , stating that 2 is 𝜆𝜆. With this same 
analysis he once again modified the value of 𝑢𝑢 = (−0.5,1) and said: "uff, they’re decimals, I think 
the value is....I’d better check it..." Henry then used the Distance or Length tool to calculate the 
norm of 𝑢𝑢�⃗  and �⃗�𝑣. And after calculating the rules he said that in fact 𝜆𝜆 = 1.5. 

                                                 
1 This command shows, in a message box, the relationship between two objects. It allows you to verify whether two 
lines are perpendicular/parallel, two (or more) objects are equal, or three points are collinear, among others. 
(https://wiki.geogebra.org/en/Relation_Command) 
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Figure 3. Henry’s technique for finding the matrix M  

Once finished, Henry began working with the "matrix-vector-scalar" scheme using paper-and-
pencil. In obtaining the linear equation systems, Henry represented the systems as lines in the plane 
and obtained the values through their intersections, concluding satisfactorily with the matrix M. We 
conclude that Henry displays a good level of instrumentation and instrumentalization of the DGE. 

Preliminary conclusion 
Using the above tasks, we were able to observe the schemes that students develop, and the 
difficulties they may encounter, when using the concepts of eigenvalue and eigenvector before 
formally addressing them in class and when the problems arise outside the context in which they 
have been taught (given a matrix, obtain its eigenvalues and eigenvectors). The conceptualization of 
eigenvalues and eigenvectors is a long and continuous process, in which the teacher plays an 
important role by carefully choosing situations that allow the mathematical knowledge to be 
meaningful. We believe that the success of Henry’s scheme was possible because the elements of 
the matrix M are exact, and they lay within the interval that he had defined from the beginning (-5 
to 5). When dragging 𝑢𝑢�⃗  and observing the change in �⃗�𝑣, the participants were prompted to look for 
relationships between these two objects and relate them to the matrix obtained. The use of 
GeoGebra helped Henry with his conceptual difficulties, while Cécile showed a better conceptual 
knowledge, relying on geometrical thinking. In this experience we were unable to determine 
whether the students recognized the existence of an infinity of eigenvectors associated with each 
eigenvalue. Our future research will study two questions: What orchestrations can help the teacher 
foster the students’ development of conceptual knowledge? And, how can students be helped to 
recognize how many different eigenvectors are associated with a given eigenvalue? 
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Why digital tools may (not) help by learning about graphs in 
dynamics events? 

Sonia Palha 

Amsterdam University of Applied Sciences, Centre for Applied Research on Education (CARE), 
Amsterdam, The Netherlands; s.abrantes.garcez.palha@hva.nl 

Understanding graphs representing dynamic events is a challenge for many students at all levels. 
And technological tools can provide support in overcoming some of these difficulties. In our 
research we developed a digital tool that enables students to create, modify and improve graphs 
from dynamic events using interactive animations and intrinsic feedback. In order to get insight 
about why the tool helped (or not), the students we conducted a qualitative study in which we 
interviewed nine students who used the tool. The results offer insight in students’ learning and 
thinking about dynamic graphs and how digital feedback can afford that. These results are useful 
for researchers, developers and teachers. 

Keywords: visualization, intrinsic feedback, graphs, interactive tool, learning with technology. 

Introduction 
Dynamic graphs remain an essential subject at all levels of High School in mathematics, but it 
remains a challenging topic for students and even for teachers (Carlson, Larsen, & Lesh, 2003; 
Moore & Carlson, 2012). Reasons behind students’ difficulties frequently involves problems in 
visualizing change and variation, limited understanding of functions and co-variational reasoning. 
Moreover the construction of a global graph from a realistic situation and stretch is similar to 
mathematical problems solving and requires mathematical thinking (Moore & Carlson, 2012; 
Thompson, 2011). Digital tools can support students to deal with these difficulties in several ways. 
Dynamic software as Geogebra and applets can support students in visualizing relations through 
enabling them to draw, move and modify graphs within different representations. And interactive 
applications that connects animations and graphs can be used to explore relationships between 
phenomena, and it's graphical representation. The learning potential of dynamic tools can be highly 
improved by including possibilities for students interaction with the tool like students’ own 
productions and incorporated feedback-features (Laurillard, 2013). However, this also put more 
demands on the tools’ design especially when they build upon students free-hand productions. More 
knowledge and research on students learning with this type of tools are needed to inform tool-
developers and teachers. 

Interactive Virtual Math (IVM) is an example of such a tool. It generates and builds upon students 
free-hand graphs, and it has incorporated feedback. The tool was developed through developmental 
research (Palha & Koopman, 2016) with the aim to improve students’ learning about graphs by 
dynamic events. The tool creates opportunities for students to experience the thinking and reasoning 
that is needed to generate, revise and modulate a graph from themselves. When entering the tool 
they get tasks that encourages them to imagine two variables changing simultaneously. The tool 
requests the students to produce the graphical representation and the verbal explanation for this 
relation, which requires students to represent their concept image graphically and verbally. With the 
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help of the incorporated feedback, the student is challenged to think, reason and act upon his own 
construction. This is an innovative pedagogical feature of the tool that requires deep knowledge to 
be developed properly. The tool also includes the use of Virtual Reality (sound, movement, 
interaction), which is however very limited, but it is expected to improve the experience of the 
graphic situation. 

Previous research (Palha, 2017) about IVM shows that students (age 13-17) find the tool useful 
because it assists them to improve graphs and/or to gain a more thorough understanding of the 
subject. The study was a teaching experiment involving three classes at secondary and one class at 
tertiary education in The Netherlands that used IVM during one lesson (45-50 minutes). Seventy-
nine students reported through questionnaires about their experience with the tool and what 
supported them the most. However, this data didn’t provide us much in depth knowledge about the 
way students improved their graphs and why. During the experiment we also interviewed nine 
students, and we collected their backlog files in the tool. This data has been analyzed recently, and 
it provides us with new insights on learning with the tool. 

In this paper we report the results of these qualitative analyses. We use the framework for 
covariational reasoning of Carlson, Oehrtman, & Engelke (2010) and the notion of intrinsic 
feedback (Laurillard, 2013) to interpret and evaluate the way students utilized the tool. The guiding 
research question is: how does the tool enable students to improve their graphical representation 
and/or understanding about dynamic events? 

Theoretical background 
Learning about dynamic graphs 

An example of a dynamic event is the following situation: imagine a bottle filling with water. 
Sketch a graph of the water’s height in the bottle (Carlson et al., 2010). To solve the bottle-task, the 
students will need considering how the dependent variable (height) changes while imagining 
changes in the independent variable (volume). The coordination of such changes requires the ability 
to represent and discern relevant features in the shape of the graph. These mental actions are in the 
core of covariational reasoning and are clearly defined in the framework of Carlson et al., (2010). 
The authors define covariational reasoning as entailing five mental actions: (M1) coordinating the 
value of one quantity with changes in the other; (M2) coordinating the direction of the change; (M3) 
coordinating the amount of change of one quantity while imagining successive changes in the other 
quantity; (M4) coordinating the average rate of change of the function with uniform increments of 
change in the input variable; (M5) coordinating the instantaneous rate of change of the function 
with continuous changes in the independent variable for the entire domain of the function.  

Several researches (Thompson, 2011; Saldanha & Thompson, 1998; Castillo-Garsow, Johnson, & 
Moore, 2013) reported students’ difficulties in engaging with the mental activities M4-M5. These 
students also have difficulty explaining why a curve is smooth and what is conveyed by an 
inflection point on a graph. According to Carlson et al., (2010). Students should have opportunities 
to experience the covariational nature of functions by dynamic events. Thompson (2011) too states 
it is critical that students first engage in the mental activity to visualize a situation and construct 
relevant quantitative relationships prior to determining formulas or graphs. Ellis (2007) suggests 
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that learners should be helped to focus on quantities and generalizations about relationships, 
connections between situations and dynamic phenomena. 

Intrinsic feedback  

Technological tools can be designed to help to create a learning environment that fits the 
characteristics mentioned in the previous section. The learning environment that we have in mind 
involves learning from experience and by reflection on ones’ own productions. These are 
underlying ideas in theories that account learning as an active and social process. With the use of 
specific type of tasks, students can translate their concepts into practice. They can compare and 
evaluate how well they achieve some learning goal. And employ this to improve their initial 
concept and practice and develop knowledge (Laurillard, 2013). 

Digital tools with capability to provide intrinsic feedback can assist students with learning because 
they: (i) enable the students to modulate their concept image and generate actions that brings them 
nearby a goal and; (ii) use the feedback of the tool to modulate their practice and revise their 
actions. According to the framework of Laurillard learning occurs when students engage in a 
successive cycle involving these actions. Actions and feedback drive the internal modulate-generate 
cycle that links the students’ conception to their repertoire of actions as practice. Through reflective 
observation students can modulate the abstract concept in the light of concrete experience and 
generate new actions as active experimentation (p.168). 

The prototypical tool IVM aims at creating a practice environment for the learning about graphs by 
dynamic events, in which student engage in the internal successive cycles described above. 
Moreover, the tool incorporates features designed to engage students in modulate-generate-revise 
actions that foster the development of covariational reasoning Carlson et al. (2010). With the tool 
there is a sequence of trials, mostly with a cyclic character that need to occur and be repeated to 
assure learning (see table 1 with the description of the tool). 

Self-construction -task 

Task 
Learner 

 the tool sets a task to construct a graph from a non-trivial dynamic event 
 the learner draws a graph by the dynamic event and explains his/her thoughts 

Compare -task 

Task 
 
Learner 
Task 

The tool displays a second task with a dynamic event that corresponds to the more common mistake 
made by learners with regard to this type of task 
The learner uses the comparison to draw (if needed) an improved graph and/or adapt the explanation 
The tool offers a menu in which students can choose between seeing help or to submit their graph 

Help 3D-animation (optional) 

Learner 
Task 
 
Learner 

The learner chooses help 3D-animation  
The tool displays an animated version of the dynamical event  in which the same amount of water is 
added each time student presses a button 
The learner notices that the height of the water increases in the jar and that, for the same amount of 
added water, the incremented heights are different and depending on the form of the jar; the learner 
reflects on these relations and becomes aware that the increment of the height is smaller when the jar is 
broader -in the middle and larger in the extremities. The learner uses the visualization to draw (if 
needed) an improved graph and/or adapts the explanation 

Help interactive animation (optional) 
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Learner 
Task 
 
 
Learner 

The learner choose help interactive animation  
The tool displays an animation of the dynamical event and an empty cartesian graph in which the 
learner can move given dots to the estimated height every time the same amount of water is added; both 
actions, adding the water by pressing a button and moving the dot are performed by the learner.  
The learner moves vertically the first dot to the position he/she thinks that the height of the water will 
reach and then press the button. The water fills in the jar at a certain height. The learner compares the 
estimated and the reached height and uses the comparison to move the dot to a more precise location. 

Feeback at the end- reward feature 

Learner 
Task 
Learner 

The learner submits his/her solution 
 The tool displays the figure of the jar corresponding to the learner drawings  
The learner compares the form of the jar with the initial form and reflects on the differences and 
similarities and on the relation between the graph and the shape of the jar. The learner can go again 
through the tool and use the visualization to draw an improved graph and/or adapt the explanation 

Table 1: description of the tool Interactive Virtual Math (IVM) 

Method 
We interviewed nine students from 10th and 11th grade who utilized the tool in the classroom: two 
boys (Niels and Abel) and two girls (Miriam and Jenny) from school A, 11th grade, 16-17 years-
old; two girls (Olivia and Anne) from school B, 10th grade, 15-16 years-old and two boys (Gerry 
and Arion) and one girl (Manon) from school C, 10th grade 16 years old. In schools A and B 
students utilized a computer and construct the graph with the mouse. In the school C school 
students used a Iphone and draw with the finger. The interviews were semi-structured and focus on 
the way students used the tool and the reasons to modify or not the original graph. The interviews 
were performed by the author of this paper or by the teacher. They took about 5-10 minutes per 
student and were recorded in audio. Additional data included the results of a survey conducted 
during the lesson and the students productions registered in the tool self (backlog of the tool). The 
data analysis was qualitative and based on the covariational framework van Carlson et al. (2010) 
and the notion van learning cycles from Laurillard (2013). 

Findings 

Students transformed an incorrect graph into a correct graph with the tool (n=5) 

To draw a correct graph students need to coordinate the average rate of change of the height as 
function of the volume and imagining it changing instantaneously with continuous changes in the 
independent variable (levels MA4 and M5 of the covariation framework). Analysis of the backlog 
of the tool showed that five from the nine students generated a correct graph, but only after a second 
or third trial. In their first trial these students sometimes draw straight lines instead of curves or 
draw a concave up-down graph instead of a concave down-up or an inaccurate global shape. This 
suggests that the students could reason at the levels MA2 or MA3 of the covariation framework at 
the start of the assignment. In the interview students were asked to explain how they transformed 
their graph and why they transformed it. Table 2 provides an overview of the way students engaged 
in the learning cycle and generated, modulated and revised their initial graph with the tool.  
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Students How and why the graph was transformed and which tool-features enabled this 

Jenny Jenny modulated her concept image and generated a better-shape graph after two trials. The student used 
the feedback from the reward-feature to revise and modulate the steepness of the curves. 

Niek Niek modulated his concept image in two trials. The student used the feedback from the reward-feature to 
revise and modulate  a concave up followed by a concave down graph into a correct graph. 

Abel Abel modulated his concept in two trials. The student used the feedback from the reward-feature to 
transform part of the graph (an increasing straight line) into a concave down curve. 

Gerry Gerry modulated his concept in three trials. The student used feedback from the reward-feature and help 
3D-animation to revise and modulate three increasing straight lines into a concave down followed by a 
concave up curve and to improve the shape of the graph.  

Manon Self-construction of the graphs (with no formula) enabled Manon to reflect before drawing the graph and 
therefore modulate her concept image; feedback from the reward-feature enabled her to generate and 
revise actions as she improved her graph. Both help-features were consulted but not used.  

Table 2: the tool enables students to produce a correct graph with the tool (n=5) 

All five students realized that their graph was not correct because of the feedback from the reward-
feature. One student, Niels explained:  

"when I saw the feedback at the end (....) you can work towards a nice graph and you know 
how it really should look like, because you know that at a certain point will be slower than 
elsewhere (...) " when your vase is inside you know that then you have to go to the other 
side (...) so first slowly and then faster instead of first faster and then slower " 

Manon found the tool very instructive especially because the self-construction- task that challenged 
her to generate an action from her practice repertoire and reflect on it: 

“'I was already ready to put something in the Graphic Calculator or to do something like 
that. But this was not possible in this case and I really had to think: ok, what is happening 
here? what happens in the middle? what happens there ... and that I found very instructive" 

Also Gerry, mentioned the self-construction task as a useful feature to visualize the graph. 

"You start without having an idea of what looks like; you try to imagine yourself and then 
when you see the film you realize that it is very different from what you had thought up” 

Gerry felt also helped by help 3D-animation and he explained why:   

"you saw in the animation (3D) the round shape of the bowl and you saw better how the 
water was distributed. In the beginning that a lot more space had been taken and in the 
middle there is much wider and because of that the graphs were very different " 

Further, all the students with exception of Abel considered that because of the tool they understand 
the subject better; Abel considered that he already understood the subject.  

Students realized they had an incorrect graph and did not succeed in transforming their 
graph into a correct one with the tool (n=3) 

Three of the nine students (Olivia, Anne and Arion) have done two, sometimes three trials with the 
tool but were unsuccessful to generate a correct graph. Analysis of the backlog of the tool showed 
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that the students initially generated a graph with one or more straight lines, which corresponds to 
M2 in the covariational framework. Interviews with the students provided us with more insight 
about how students revised and modulated their graphs (Table 2). 

Students How the graph was transformed and which tool-features enabled this 

Olivia The first trial is an increasing straight line, the second trial is a concave down line and third trial is a concave 
up. The comparison-task and the feedback from the reward-feature enabled student to modulate her concept 
in the sense that the lines should not be straight. Olivia generates and revise actions when she produces new 
graphs with curves. She revised and modulate her graph but she could not generate a correct graph 

Anne In the first and second trial the graph is an increasing straight line and the slope of the second trial is smaller. 
The feedback from the reward-feature and help-3D animation enabled Anne to (partially) modulate her 
concept as she realized that the lines should not be straight. She revised and modulate her graph but she 
could not generate a correct graph. 

Arion In the first and second trials the graph has three increasing straight lines. The feedback from the reward-
feature enabled student to modulate his concept: that the graph should not have straight lines. However, for 
technical reasons the student could not work with the tool and use the feedback to improve his graph. 

Table 3: the tool enables students to realize their mistake but not to improve it (n=3) 

Olivia considered that the tool helped her to improve the graph and she explained why: 

“it really helped that in the end I converted my drawing into that shape, as a sphere because 
I saw a bit connection” (…)  "If there is no straight line then there must be a concave up line 
or a concave down line – I will try both. 

Olivia didn’t used the help-features because she doesn’t think that it would be useful to achieve her 
goal of drawing a correct graph. The visualization of the context is not the problem according to the 
student but the fact that she can’t draw the graphical representation: 

“'I went very often trying the tool because I was curious (….) with the movies I do not know 
much what I had to show” 

The other two students did not consider that the tool helped them to improve the graph. Anne 
because the straight line remained a straight line and Arion because the tool didn’t work well and he 
could not keep trying (there were in some smartphone technical problems). For these students the 
intrinsic feedback provided by the tool enabled them to engage in the modulate-generate cycle and 
modulate their initial concept image towards a more sophisticated one (although not yet correct).  

Students realized they had an incorrect graph but did not do nothing about it (n=1) 

Miriam was the only student who produces an incorrect graph and did not invest effort to improve it 
with the tool. In her initial trial she constructs an incorrect graph with three straight increasing lines, 
which corresponds to the mental action M3 in the framework covariational reasoning. She didn’t 
consult the help-features. In a second trial Miriam worked with a peer-student who produced a 
similar graph to her but with curves instead of straight lines. Noticing the difference enabled the 
student to revise and modulate her concept image. Additionally, her graph was discussed by the 
teacher in the classroom. This student only engaged in the learning cycle when the intrinsic 
feedback of the tool was combined with extrinsic feedback of a peer student and from the teacher.   
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Conclusions and discussion  

Learning dynamic graphs at secondary school represent a challenge for many students. In this study 
we investigate how and why the IVM-tool enabled students to improve (or not) their graphical 
representation of a dynamic event. We have seen that all nine students failed to produce a correct 
graph in a first trial with the tool. Five of these students could improve their initial graph and 
produced a correct graph in their subsequent trial. The features of the tool that supported them the 
most were to see the bottle-form correspondent to their graph at the end (reward-feature) and the 
opportunity to self-construct the graph, because it challenged them to think and try to imagine how 
the graph it would be. One student referred also to the animation 3D, which have encouraged him to 
imagine better “how the water was distributed” in the bottle and with relation to the graph. Three 
other students have tried improving their initial graph with the tool and although they could not 
produce a correct graph the tool seemed to have helped them to improve their thinking, as they 
became aware that the graph should not be linear or contain linear parts. They conclude this because 
of the reward-feature and in combination with other features (comparison-task or with the 
animation help-3D). One student only improved her graph when this was combined with extrinsic 
feedback from peer-student and the teacher.  

Reflecting upon these results, we realize that even though the tool showed potential to engage 
students in thinking about mathematical graphs this was insufficient for all the students to generate 
an appropriate representation. These students realized with the help of the tool what they have done 
wrong and the feedback maintained them on the task. But the students did not successfully use these 
and other features of the tool to move forwards. Why did the tool not help the students? Analysis 
with the covariational framework suggests the three students possessed a limited understanding of 
covariational reasoning. What can seem to be a reason for students ’difficulty in imagining the 
change of the height varying as function of the volume and (Thompson, 2011; Carlson et al., 2010). 
The tool contains two animations that were explicitly designed for students to engage in 
covariational thinking: the animation 3D and the interactive animation. But as our results showed 
none of the students consulted it or they only did it superficially. We cannot therefore comprehend 
how these features could have supported the students. Another feature of the tool that we had 
expected to help the students was the reward-feature and, in a certain way it did. The feedback 
assisted students to realize they were not constructing the correct graph but did not provide other 
directions or explanations that help them forwards. This is an aspect that requires further thought 
and investigation. In addition, expanding the tool with more tasks and different contexts is needed 
in order to offer students enough opportunities for exploring and practice covariational thinking and 
reasoning.  

This study extends previous research about learning dynamic graphs and covariational reasoning. It 
adds knowledge about students thinking in contexts of change and their difficulties in constructing 
graphs from themselves. The results provide directions to improve the instructional environment of 
IVM that can be useful for teachers and researchers interested in using the tool. Further research is 
needed to gain more insight in the help-features and to improve the intrinsic feedback.  We also 
need to investigate the learning with the tool in larger settings: with more students, teachers and 
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whole classrooms. The prototypical version of the tool presented at CERME 11 is available at 
https://app.dwo.nl/dwo/apps/player.html#570660.  
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Based on a cooperative project between the Europe University Flensburg, the University of Koblenz-
Landau and the University of Siegen (Germany) on the development of an open source electronic 
mathematical proof system (cf e-proof.weebly.com), a new project has evolved with a focus on 
primary education. The aim of this project is to support argumentation skills through the iconic and 
enactive visualization of reasoning processes. The focus is on supporting classical teaching and 
learning processes in primary education with digital learning environments. Grounded in the 
philosophy of pragmatism, Design Science research is performed for creating learning environments 
applying digital learning tools to support argumentation skills in primary school as artifacts. In this 
paper the first developed learning environment is presented and insights into the results of an 
empirical pilot study investigating the learning environment are given. 

Keywords: Educational media, primary schools, argumentation. 

Introduction 
The demand of the Standing Conference of the Ministers of Education and Cultural Affairs of the 
Länder in the Federal Republic of Germany (KMK) is supposed to be addressed in this research 
project, that in dealing with the digitization of education the “primacy of the pedagogical” (KMK, 
2016, p. 51) has to be followed and must be incorporated into educational concepts in which learning 
is in the foreground (KMK, 2016). Consequently, the potential of digital media for teaching can only 
unfold, if it is used in a meaningful and an educational reflected way. In this sense, a project on the 
development of learning environments applying digital learning tools to support argumentation skills 
in primary school is performed. The scope of this project is to identify opportunities and possibilities, 
as well as challenges and limitations of learning environments including digital media to support 
argumentation skills through the iconic and enactive visualization of reasoning processes and their 
influence on student learning. “In mathematics education, the teaching of reasoning skills plays a 
major role. These skills form the basis for proofs of mathematical statements and contexts dealt with 
in higher school-grades in different contexts. It is especially logical reasoning that supports the 
formation of understanding.” (Platz et al., 2017, p. 2). Wuttke (2005) performed a study, comparing 
different forms of educational communication in relation to their influence on the generation of 
knowledge and understanding among the pupils. This study has shown that it is in particular the 
argumentation in that a variety of connection possibilities to the students’ prior knowledge is provided 
through the exchange of different and well-founded perspectives, which therefore contributes 
particularly to understanding (cf. Budke & Meyer, 2015). In the present paper, a first draft version of 
a learning environment including an applet to be run on a hand-held device with internet-connection 
and touch-screen, e.g. a tablet PC, is presented. Design Science is performed for learning environment 
creation. The TPACK-Framework (cf. Koehler & Mishra, 2009) is applied to analyze the developed 
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learning environment and first insights into the results of an empirical pilot study investigating the 
learning environment are given. 

Objectives 
The aim of the overall project is to create learning environments to support argumentation skills 
through the iconic and enactive visualization of reasoning processes. A central media aspect is to 
make the handling with teaching and learning material computer-detectable and thus, to infer 
optimized learning environments. The focus is on supporting classical teaching and learning 
processes in primary education with both digital and non-digital learning environments. 

The objectives of this paper are to 

1. employ the TPACK-Framework (cf Koehler & Mishra, 2009) to analyze the developed first 
draft of a learning environment applying digital learning tools to support argumentation skills 
in primary school. 

2. give an insight into the results of an empirical pilot study investigating the first draft learning 
environment. 

Research Method 
In order to optimize the learning environment, Design Science is applied. Design Science is grounded 
in the philosophy of pragmatism and creates artifacts which is something created by humans usually 
for a practical purpose. The learning environment applying digital learning tools to support 
argumentation skills in primary school is a method (artifact) (cf. March & Smith, 1995) to support 
pupils in gaining argumentation skills. Within the meaning of the Design Science Research 
Methodology Process according to Peffers et al. (2006), a problem was identified and an objective 
for a proposed solution was formulated (see sections “Introduction” and “Objectives”) for the first 
run of the process. Furthermore, an initial prototype was generated (see section “The developed 
Prototype and the TPACK-Framework”). For demonstration, the prototype (learning environment 
applying digital learning tools to support argumentation skills in primary school) was tested in an 
empirical pilot study (see section “The Empirical Pilot Study”) and first evaluation results are 
presented. The results are communicated among others through this paper. Through the first iteration 
of the process the prototype will be optimized. 

The developed Prototype and the TPACK-Framework 
Koehler and Mishra (2009) describe the TPACK (Technology, Pedagogy, And Content Knowledge) 
framework as a complex interaction between three sets of knowledge: content, pedagogy, and 
technology. The interaction of these sets of knowledge, both theoretically and in practice, generates 
the kind of flexible knowledge needed to successfully integrate technology into the classroom 
(Koehler & Mishra, 2009). In contrast to the original purpose the TPACK framework was designed 
for, i.e. to be used as an analytical framework for a teacher’s different types of knowledge, it is used 
in a broader way as a framework that refers to knowledge in general. Taking a closer look at the 
developed first draft of a learning environment applying digital learning tools to support 
argumentation skills in primary school, an interaction of technology, pedagogy and content 
knowledge becomes visible. In the following sections, the learning environment is analyzed 
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concerning the Pedagogical Content Knowledge (PCK), the Technological Content Knowledge 
(TCK) and the Technological Pedagogical Knowledge (TPK).  

Pedagogical Content Knowledge (PCK): Mathematical Proofs in Primary School 
The main task the pupils are concerned with in the empirical pilot study is the following1: 

Task: If you add two odd numbers together, you always get an even number. 

  Is that correct? Give reasons!2 
With respect to the argumentation chain developed by Bezold (2009) by formulating the task in this 
way, the pupils have to question the special attributes and find reasons or respectively reasoning ideas 
to solve the task. Krummheuer and Fetzer (2005) hold the opinion that proofing in the strictly 
deductive sense is not yet possible in primary school, but substantial mathematical argumentation (cf 
Toulmin, 1958, p. 116) can be implemented. Due to Kothe (1979), primary school children have fun 
on problem solving with appropriate instructions. Here, proof need is: “I want to show the teacher or 
classmates that my approach is right” (Kothe, 1979, p. 276). The awakening of a need for proof in 
primary education requires long-term didactic planning to seek opportunities for local sensitization 
to mathematical thinking, (Kothe, 1979). Semadeni (1984), describes an action proof as “a simplified 
version of a recommended way in which children can convince themselves of the validity of a 
statement; in practice, an action proof will require some preliminary or additional exploration”, 
(Semadeni, 1984, p. 32). In this study, the preformal proof according to Blum and Kirsch (1991) is 
focused with the aim to find a way to include proofs in primary education: In accordance with the 
concept of action proofs (cf Semadeni, 1984), a preformal proof can be defined as a chain of formally 
represented conclusions which refer to valid, not formally represented conclusions which refer to 
valid, non-formal premises. In contrast to the definition of an action proof, inductive arguments 
(“etc.”) and indirect arguments (“imagine that ...” or “what would happen if ...”) should not be 
excluded in this context. The conclusions must be capable of being generalized directly from the 
concrete case. If formalized, they have to correspond to correct formal-mathematical arguments. To 
accept a preformal proof it is, however, not necessary for such a formalization to be actually effected 
or even recognizable. Occasionally, the consensus within the mathematical scientific community is 
quite sufficient. Preformal proofs have to be valid, rigorous proofs, (Blum & Kirsch, 1991). The 
concept of a preformal proof is comparable to the concept of the operative or “intuitional” (or 
“inhaltlich-anschaulich”) proof (“see-proof”), (cf. a.o. Wittmann, 2014, p. 226). To describe the 
differences and relationships between proof and argument, Pedemonte (2007) refers to Peirce and 
Polya:  

                                                 
1The worksheet can be found at the following link: http://www.melanie-platz.com/ES_1/Task_even-and-odd.pdf. In 
contrast to e.g. Wittmann & Müller (2013a), the formulation of the task is meant to be more open to enable more variety 
in the solution methods, as the structure of double rows is not unconditionally necessary, when operating with pairs of 
tiles. 

2An example on how a preformal proof for the Task above could look like is made available at the following link: 
http://www.melanie-platz.com/ES_1/Preformal-Proof_even-and-odd.png  
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the logical connection between statements in an argumentation differs from the logical connection 
in a proof. Each step of a proof can be described as a deductive step. But argumentation structure 
is unlikely to be a deductive structure; it can be composed of steps of different nature, such as 
abductive steps or inductive steps. (Pedemonte, 2007, p. 29) 

Pedemonte (2007) derives, that a structural change is required for the construction of a deductive 
proof, that is from abductive or inductive steps to deductive steps. To enable a support of 
argumentation skills, the pupils worked together in groups of two, to foster communication between 
the pupils. Communication is important to gain argumentation competences, as one aspect pupils 
should learn is to respond appropriately to reasoning in interaction with others (Budke & Meyer, 
2015). 

Technological Content Knowledge (TCK): reversible tiles as representation 

The reversible tile applet is a prototype of a freely available JavaScript-applet developed by the author 
of this paper, which allows the virtual laying of (reversible) tiles. The applet is available at 
http://www.melanie-platz.com/WPA/. Tiles are a fundamental means of representation in primary 
education (cf. Wittmann, 2014). Based on the categorization of Krauthausen (2018), the tiles are used 
in the function of working material and illustrations as argumentation and proving tool. Wittmann 
(2014), states that this material is from its origin not didactic, but of epistemological nature. The 
preformal proof stimulated by the Task mentioned above is not grafted from the outside, but deeply 
connected with the nature of numbers. Around 600 BC, Pythagoras and his students discovered and 
proved universal number-theoretic patterns when laying stones (Wittmann, 2014; Wittmann & 
Müller, 2013b). “It can be said without exaggeration that stones (tiles) form the cradle of number 
theory” (Wittmann & Müller, 2013b, p. 142).   

Technological Pedagogical Knowledge (TPK): The reversible tile applet 

The developed applet is especially suitable for digital devices with touchscreen display (e.g. tablet 
PCs), which allow a control through touch gestures with the fingers. The tiles in the app are created 
similar to the analogue tiles. Because of the two-dimensionality of the screen, the tiles are also two-
dimensional and cannot be lifted up, as it is the case with the analogue tiles. In the case of the present 
study, the tool is used in the sense of activist learning as an illustrative tool and to be given to the 
learners as tool of their own mathematical activity (cf. Krauthausen, 2018). In order to ensure a certain 
openness of the use of the applet, no structuring aids are given. The applet can thus be used in the 
function as a medium of argumentation and proof. Referring to the SAMR-Model (Puentedura, 2010), 
the first step of enhancement can be covered with the developed applet in the learning environment, 
which is substitution of the analogue material. The second step of enhancement, augmentation 
(technology acts as a direct tool substitute, with functional improvement), can be rudimentary 
covered. One advantage of the reversible tile app is that the organizational handling is more suitable 
for everyday use (to be quickly provided or put away in an orderly manner) than with analogue tiles, 
as single tiles cannot disappear within the app. 
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The Empirical Pilot Study 
In the framework of a school visit in May 2018 at the Maths Lab “MatheWerkstatt” at the University 
of Siegen (Germany), a fourth-grade school class of a local regular school containing 23 pupils took 
part in the empirical pilot study. The school class was separated into groups of six or respectively five 
pupils who worked at different learning stations during their two hours stay at the university. For the 
learning station three tablets were made available where pupils worked in groups of two using one 
tablet per group and discussing their ideas and results. In each of the four cases, one group of two 
pupils of the three groups of pupils was videographed and the tablet screen was screencasted, both 
with audio recording. This possibility of the screencast is an advantage of the technology use, because 
the touch-gestures performed by the pupils coming with their oral argumentation can be captured. 
Each group worked for 20 minutes at the learning station. The recorded material was transcribed and 
sections were extracted, where information on the argumentation process and on the User Experience 
(UX) could be discerned. From these sections, video vignettes were extracted and the argumentation 
process was represented in a model as it is described below (see Figure 1). 

To investigate and understand preformal proof and argumentation processes, a diagrammatic 
representation is developed and evaluated. This is in line with van Gelder (2005) who represents the 
opinion, that a diagrammatic representation of complex argumentation was developed, because 

everyone knows that complex structure is generally more easily understood and conveyed in visual 
or diagrammatic form […]. Interested in argument but dissatisfied with the tools offered by the 
logical tradition, Toulmin developed a simple diagrammatic template intended to help clarify the 
nature of everyday reasoning. (van Gelder, 2005, p. 4) 

Nevertheless, Toulmin himself applied his layout to mathematics: as an example, Theaetetus’s proof 
that there are exactly five platonic solids is visualized in Toulmin et al. (1979). Aberdein (2005) 
concerns with the application of Toulmin’s layout to multi-step proofs. Pedemonte (2007) uses 
Toulmin’s model as a methodological tool to compare proof and argument. “This model can be used 
to detect and analyse the structure of an argumentation supporting a conjecture (abduction, induction, 

 

Figure 1: Exemplary representation of an argumentation process in the pilot study; the diagram can 
be read like a timeline from left to right; the dashed lines mark refutation trials of the assertion; 

screenshots with markings visualize the action of the pupils while speaking 
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etc.) and the structure of its proof” (Pedemonte, 2007, p. 23). Reid et al. (2011) investigate the 
potentials of the refutation of arguments visualized in an adapted model of Toulmin’s layout. The 
ideas of Reid et al. (2011) are similar to the representation of arguments of Miller (1986). Miller 
(1986) works with structure trees in order to analytically grasp argumentation processes. A 
combination of these models is applied to represent the argumentation processes in the pilot study, 
see Figure 1. Furthermore, in orientation to a framework developed by Barendregt and Bekker (2003), 
the User Experience of the children while working within the learning environment, was investigated. 

Results 
With regard to the User Experience, the applet itself seems to be intuitive and the pupils did not have 
problems in using the applet. No introduction on how to control the applet was needed. One pupil of 
the test group did not like to work with tiles, as this was found “childish being already in grade four”. 
The argument of the pupil was, that they had already learned to calculate until one million and tiles 
were only needed to calculate in grade one. From the conversation with the pupils, it seems likely, 
that the task was not really understood, i.e. no real need for proof (Kothe, 1979) was awakened. In 
the example visualized in Figure 1, it seems like the pupils did not understand the reason for making 
pairs of the tiles. This can be inferred from the interpretation of the pupils’ actions visualized in the 
screenshot of the third backing, when the pupils added new red tiles to build pairs instead of making 
pairs of the red tiles representing the number 5 which they already got out. As the need for proof did 
not seem to be awakened, it is not possible to reconstruct a structural change for the construction of 
a deductive proof (Pedemonte, 2007) from the conversation of the pupils. 

Discussion 
The prototype (learning environment applying digital learning tools to support argumentation skills 
in primary school) was analyzed via the TPACK-Framework and tested in an empirical pilot study 
and needs to be optimized through the first iteration of the Design Science Process. Due to Kothe 
(1979), the awakening of a need for proof in primary education requires long-term didactic planning 
to seek opportunities for local sensitization to mathematical thinking. This is supposed to be reached 
with an optimized prototype of the learning environment. One important issue for an optimization is 
to give the pupils more time and instruction, to initiate an understanding of why a proof is needed. 
Due to Kothe (1979), primary school children have fun problem solving with appropriate instructions. 
Here, proof need is: “I want to show the teacher or classmates that my approach is right”, (Kothe, 
1979, p. 276). To support this creation of proof need, a new prototype should incorporate the theory 
of discovery learning (cf. Winter, 1989). Discovery learning is based on the idea that knowledge 
acquisition and progress and the ability to work in problem solving skills happens “by own active 
action and recourse to the already existing cognitive structure, but usually stimulated and thus made 
possible by external impulses” (Winter, 1989, p. 3). Furthermore, a central media aspect shall be to 
make the handling with teaching and learning material computer-detectable and thus, to derive 
optimized learning environments. One research field is the investigation of “gestures” made by the 
pupils on a touch screen with relation to semiotics (cf. Peirce, 1931-1935). Huth (2013) states that 
gestures in particular, can at least temporarily take over the function of possibly unavailable or not 
possible inscriptions. Such “gestures” can be made detectable with the help of digital media, and 
automated evaluation and help selection are supposed to be provided. With implementation of these 
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functionalities, the first step of transformation according to the SAMR-Model (Puentedura, 2010) can 
be reached, which is modification, i.e. the technology allows for significant task redesign and enables 
other possibilities to handle heterogeneity in a school class. 
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Developing functional thinking is a central objective in mathematics education. Students especially 
need to internalize three aspects of functions: mapping, covariation, and object besides learning to 
translate flexibly between various representations. However, many learners struggle to recognize 
and interpret functional relationships. To help these students, a formative self-assessment approach 
with digital media offers new possibilities. Technology can support understanding not only due to the 
use of multiple, dynamic, interactive, or linked representations, but offer a constraint-support 
structure to guide students’ actions. We present two case studies in form of task-based interviews 
from the third cycle of a design-based research study that aims at the development and evaluation of 
the “self-assessment for functional thinking electronic” (SAFE) tool. The cases show how certain 
technological features of the SAFE tool support learners’ self-assessment and functional thinking. 
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Why support functional thinking? 
Many real-world phenomena, such as measuring the temperature at a weather station over a period 
of time, can be comprehended functionally. Because of this variety of applications and its importance 
to grasp further mathematical concepts, the discussion of functional relationships is central in many 
mathematics curricula. For example, it is one of five key content domains in lower as well as upper 
secondary mathematics education in Germany. Although the function concept is fundamental in the 
learning of mathematics, many students have difficulties in its comprehension. Thus, they need 
support to acquire ‘functional thinking’. For this reason, we use a formative student self-assessment 
approach as it has proven to enhance student learning (Stacey & Wiliam, 2013). 

Theoretical Background 
Formative self-assessment and metacognitive activities 

According to Wiliam and Thompson (2008), formative assessment (FA) can be conceptualized in 
five key strategies. These regard mainly the teacher to be responsible for FA. Especially in computer-
based assessment, features such as automatic feedback, a limitation of students’ responses by e.g. 
multiple choice formats, or a focus on measuring achievements (Stacey & Wiliam, 2013), leave little 
room for students to recognize, reflect upon and react to their work. This is why, the FA framework 
by Wiliam and Thompson was refined in the EU-project FaSMEd to allow formative self-assessment 
to be understood as a process performed, observed and reflected on by students. It is conceptualized 
in these five key strategies (KS): 1) understanding learning intentions and criteria for success, 2) 
eliciting evidence of understanding, 3) providing self-feedback, 4) activating peers as instructional 
resources for one’s learning, and 5) regulating one’s learning process. However, strategy four is only 
relevant when observing formative self-assessment in classroom situations (Ruchniewicz, 2017). For 
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all these strategies, but especially for the fifth, learners need to use metacognitive activities. They 
describe the procedural component of one’s metacognition. This means all actions of regulation of 
one’s cognitive activities in learning processes. They include: 1) planning problem-solving steps with 
appropriate mathematical tools, 2) monitoring in form of controlling tool-use and comparing what is 
achieved to set goals, and 3) reflection on given problems or understanding of mathematical concepts 
(Cohors-Fresenborg, Kramer, Pundsack, Sjuts, & Sommer, 2010). To enable students to self-assess 
their functional thinking abilities, this mathematical content needs careful consideration. 

Functional thinking 

Functional thinking is a didactical concept, that describes all mental images learners need to build 
and use when dealing with functions, their representations, and their applications in modelling and 
problem solving to gain a comprehensive understanding of the function concept. “Functional thinking 
is a way of thinking, that is typical for working with functions” (translated from Vollrath, 1989, p. 6). 
Three aspects, noticed in German didactics today as Grundvorstellungen (GVs), characterize this 
“typical” and allow for various views on functions (Vollrath, 1989): 1) Mapping: a function assigns 
exactly one value of a dependent quantity to the value of an independent one. As such a unique 
mapping, it is viewed in a local and static way. 2) Covaritation: in a dynamic view, a function 
describes how two quantities change in relation to one another. While the independent quantity runs 
through a set of values from a domain, it causes the values of the dependent quantity to change 
accordingly. 3) Object: a function viewed globally is a mathematical object, that has its own specific 
properties (e.g. characteristic graph, symmetry) and can be operated upon. 

Although the three GVs of functions apply for all forms of semiotic representation, they can appear 
variously according to a function’s visualization. Usually, students interact with functions represented 
verbally, numerically, symbolically, or graphically. The mapping aspect, for instance, is highlighted 
when calculating a y-value by inserting the x-value into an equation. By contrast, the covariation 
aspect is of interest when looking at the change of a graph’s values for an interval of x-values. Each 
representation emphasizes different properties of the function (Duval, 2006). Thus, it is central for 
functional thinking that students learn to work with and translate between various representations. 
This leads them to a comprehensive understanding of the function concept (Duval, 2006). 

Due to the concept’s complexity, such a comprehension and, thus, the acquiring of functional thinking 
is challenging. Numerous misconceptions are described in regards to learners struggling to 
conceptualize functions. For example, Clement (1985) states that many students falsely treat graphs 
as literal pictures of the underlying situations (graph-as-a-picture mistake). Others overgeneralize 
function types or properties, such as using linear functions in inappropriate situations (illusion of 
linearity). Further, students might swap the x- and y-coordinates or disregard the uniqueness of a 
function (e.g. Hadjidemetriou & Williams, 2002; Leinhardt, Zaslavsky, & Stein, 1990). To react to 
such misconceptions and support students’ self-assessment, digital media offer new opportunities. 

Digital media 

Digital media have the potential to enhance formative self-assessment by altering the assessment 
process due to changes in, e.g. the nature of tasks, types of feedback, or even assessed skills. What is 
more, they present new chances for learning by e.g. providing dynamic or interactive representations 
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of mathematical objects (Drijvers et al., 2016). Various studies examine if the use of technology 
improves achievements. In an ICME survey concerning lower secondary learners, Drijvers et al. 
(2016, p. 5) summarize: “[t]he overall image is that the use of technology in mathematics education 
can have a significant positive effect, but with small effect size.” The authors conclude that existing 
studies give hints for whether achievements can improve, but do not explain why (Drijvers et al., 
2016). To answer why digital media can support functional thinking, it is necessary to consider their 
potential and appraise it against possible risks. Following, we list some of the most important 
arguments for teaching, learning and assessing functional thinking with digital media: 

1) Fast availability of representations: Quickly available visualizations of functions leave time for 
examining functional relationships, generating examples, or checking one’s hypotheses. Yet, the 
large amount of representations and speed of their availability might lead to a complexity that hinders 
students to reflect on their actions (Barzel, Hußmann, & Leuders, 2005). Cavanagh and Mitchelmore 
(2000, p. 118), for instance, identified the tendency “to accept whatever was displayed in the initial 
window without question” as one of three typical mistakes of 10th and 11th graders asked to interpret 
linear and quadratic graphs on graphic calculator screens. Students did not reflect upon the visual 
image on screen or relate it to an inserted algebraic equation (Cavanagh & Mitchelmore, 2000). 

2) Multiple representations: The aspect of fast availability plays a key role when it comes to screening 
various representations of the same function at once. Each one stresses different aspects of a function 
(Duval, 2006). Simultaneous visualizations can support the construction of mappings between those 
aspects and the translation between representations, which helps learners to solve problems quicker 
and conceptualize functions (van Someren, Boshuizen, de Jong, & Reinmann, 1998). 

3) Dynamic representations: In static media, variations of a mathematical object need to be observed, 
interpreted, and projected upon its representation by the user. Dynamic representations let students 
experience these changes directly (Kaput, 1992). Especially the covariation GV of functional thinking 
can, thus, be supported by digital media as the investigation of changes in function values is easier. 

4) Interactivity and linked representations: Digital media permit „not simply to display 
representations but especially to allow for actions on those representations“ (Ferrara, Pratt, & Robutti, 
2006, p. 242). Moreover, it is possible to link representations so that the variation of one is 
automatically reflected in another. Such links enable learners to investigate functional relationships 
as they provide immediate feedback and encourage them to change between representations. 
Although interactive and linked representations offer great potential to support functional thinking, 
the technological speed entails the risk of students being overwhelmed by quick changes in 
visualizations and driven to act upon them without reflection (Zbiek, Heid, Blume, & Dick, 2007). 

5) Effecting student actions: Student actions are effected by a digital tool’s design. If learners are 
asked to draw a function graph, the technology might supply them with a suitable coordinate system. 
Kaput (1992, p. 526) refers to a tool’s “constraint-support structure” stating that “whether a feature 
is regarded as one or the other does not depend inherently on the material itself, but on the relation 
between the user’s intentions and those of the designer of the material and the contexts for its use.” 

In our study, these arguments for using digital media to support functional thinking guide the design 
of a digital self-assessment tool and offer hypotheses for the analysis of students’ learning processes. 
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Methodology 
We use design-based research that aims at developing and evaluating the SAFE tool (Ruchniewicz, 
2017; Ruchniewicz & Barzel, in print). Several versions of the tool are designed, investigated, and 
re-designed. This cyclic process is guided by the following research question: How do certain 
technological features of the SAFE tool support students’ self-assessment and functional thinking? 

Design of the SAFE tool 

The SAFE tool’s aim is for students to be self-assessors and, thus, no direct feedback is generated. 
For all tasks, users compare their answer to a sample solution and evaluate on their own whether it is 
correct or which steps to take next in their learning. The design means to create a balance of providing 
enough information and autonomy for learners. Therefore, the SAFE tool intends to assess and repeat 
basic competencies after they have been taught. The learning conjecture is the ability to sketch graphs 
based on given situations as this reflects a key aspect of functional thinking. The SAFE tool runs as 
an iPad application and consists of five parts: Test, Check, Info, Practice, and Expand. These are 
joined in a hyperlink structure and labelled with various symbols for easy user orientation (fig. 1). 

 
Figure 1: Hyperlink structure of the SAFE tool 

Students start by solving the Test task, which presents the story of a bike ride and asks them to draw 
a time-speed graph. They can label the axes using drop-down menus and sketch the graph directly on 
the screen using their fingers. Afterwards, they move to the task’s sample solution. It consists of a 
simulation of the situation that is linked to one possible solution graph. The simulation can be started 
and stopped by the user and a qualitative speedometer can be viewed as well (fig. 3a). The learner 
moves to the Check, that provides five statements regarding important aspects about the graph in 
question alongside common mistakes that could arise. For each statement, the student decides whether 
it is true or false for his/her own solution. For this diagnostic step, the Check includes a pictorial 
visualization of the situation together with a static representation of the sample graph and the learner’s 
own solution in the same coordinate system (fig. 3b). If an error is identified, the student can choose 
to read an Info, which entails a general explanation to repeat basic ideas about the function concept 
and specifies them in the time-speed context of the Test task, or work on a specified Practice task. If 
the initial graph is correct or a student checks all statements, he/she is presented with two more 
Practice tasks as well as an Expand task with a more complex context. 

Data collection and analysis 

We use case studies in form of task-based interviews with individual students. The interviews are 
videotaped, transcribed, and analyzed qualitatively. Three subject groups are included: grade 7–9 
students (aged 12–15) as they are novices regarding the function concept; grade 10 students (aged 
15–16) as they have to repeat curricula contents of years 5–10 for a state-wide assessment; and 2nd 
semester university students in their bachelor in mathematics education (aged 19–22) as they are 
experienced, but often need to repeat basic competencies in the transition from school to university. 
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This paper presents two cases from the third design cycle, which give a first glance of the latest SAFE 
tool’s potential as data collection is not completed. So far 3 interviews with year 9 and 5 with 
university students are recorded. One university student solves the Test and self-assessment without 
difficulties. One younger student shows poor knowledge of the content and does not recognize graphs 
as representations of functions. She is unable to identify her mistake on her own. Six learners show 
similar self-assessment processes. As the diagnostic step of assessing their solution to the Test occurs 
when viewing either the Test solution or Check, two of the (university) students were chosen as cases 
to represent both of these ways of self-assessment. As our focus is assessment, the learner’s work 
with other tool parts (Info, Practice, Expand) is not included, as it portrays their next steps of learning. 

For data analysis, we use qualitative content analysis with deductive categories. Additional inductive 
categories will be developed once data collection is completed (Mayring, 2000). In relation to our 
theoretical basis, three main categories with different subcategories were identified to guide analysis: 

Student self-assessment Functional thinking Technological features (TF) 

Key strategies (KS) 

Metacognitive activities 
(MA) 

GVs 

Change of representations (CR) 

Misconceptions (M) 

Linked simulation & graph (TF1) 

Multiple representations (TF2) 

Constraint-support structure (TF3) 

Table1: Categories guiding the case studies’ qualitative content analysis  

Results 
The Test task, that students use for the diagnostic step of their self-assessment, asks them to draw a 
time-speed graph for this situation: “Niklas gets on his bike and starts a ride from his home. Then he 
rides along the street with constant speed before it carves up a hill. On top of the hill, he pauses for a 
few minutes to enjoy the view. After that he rides down and stops at the bottom of the hill.” Paul and 
Ayse solve the task and describe their reasoning in the interviews (fig. 2). Thus, they elicit evidence 
of their own understanding (KS2). Afterwards, they both move to the sample solution (fig. 3a). 

 
Figure 2: a) Paul’s and b) Ayse’s Test solution and reasoning 

Paul starts the simulation, stops it when the bike starts to ride uphill and says: “The first thing I saw 
was that it is assumed that not - (points at the origin in the sample graph) so that he does not start 
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directly with constant speed (points along the first increasing graph segment) but that starting from 
home is also its own time period. That means that you also have to consider that he has to start first 
and that he is not at any speed at first.” Thus, the linked simulation encourages him to reflect his 
own solution. He identifies a mistake in his answer by realizing that he previously did not model the 
first part of the situation, namely starting the bike ride from home. Afterwards, he resumes the 
simulation and stops it again when the bike stops on top of the hill: “Okay, and then he becomes 
again, when he rides up the hill, that he does not reach the speed with which he rides uphill at once, 
but that the speed decreases in shifts.” Here, Paul reflects part of his answer (riding uphill) by 
comparing it to the sample graph. He recognizes that the speed and, thus, the graph cannot decrease 
suddenly, but that it slows down with time. Even if Paul does not realize that his graph disregards the 
uniqueness of the underlying functional relationship (vertical lines in his solution, fig. 2a), the 
simulation does inspire him to observe the covariation of the quantities time and speed more closely.  

Ayse watches the entire simulation at once and directly moves on to the Check. Her screen shows the 
checklist and a multiple visualization of the bike’s path together with her own and the sample 
solution’s graph in one coordinate system (fig. 3b). Ayse reads checkpoint 2: “I realized correctly 
when the graph is increasing, decreasing, or remaining constant.” Relating to this, she assesses her 
solution: “Basically yes, but the duration! So with the variable with the time, so I should have much 
longer (points to the part of her graph that models the bike stopping on top of the hill) along zero – 
should have gone along the x-axis when he stops for a few minutes.” Thus, she denies the statement 
of the checkpoint for her answer and crosses it off (fig. 3b). The checkpoint together with the multiple 
representation of the functional relationship prompt Ayse to reflect on her solution and discover an 
error regarding her graph’s slope: while she depicted the bike stopping on top of the hill only as one 
point of her graph reaching the x-axis, the tool reveals that it should be a constant graph segment with 
the value of zero. Her reflection shows that Ayse did regard the variation and value of the dependent 
quantity (speed) while drawing her graph, but she missed to consider the change of the independent 
quantity (time) as well. The SAFE tool helps her to focus more on the covariation of both quantities. 

  
Figure 3: a) Linked simulation and graph as the Test’s sample solution, b) Ayse’s Check screen 
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Conclusion 
The two cases of Paul and Ayse show that the SAFE tool can support students’ self-assessment and 
functional thinking. This becomes apparent when considering how the analysis’ categories of self-
assessment, functional thinking, and technological features interact with each other in the interviews. 

Paul’s case reveals that an interactive representation of a simulation linked to a graph (TF1) stimulates 
him to use the metacognitive activity of reflection (MA3). Further, he starts and stops the simulation 
several times in order to evaluate different aspects of the graph, which shows that his reflection is 
supported by this tool functionality (TF3). He evaluates his own graph by comparing it to the sample 
solution and identifies his own mistakes while regulating this process (KS5). Paul realizes that he 
missed to model part of the situation (start of bike ride) and translate it into its graphical representation 
(CR). For another part of the situation (riding uphill), he focusses on the covariation of both quantities. 
While he initially assumes a more prototypical graph with many constant segments (fig. 2a, M), he 
addresses a non-linear decrease of the graph’s slope to model the bike slowing down when looking 
at the simulation (GV2). In his reflection, he shows an understanding of criteria for success, namely 
translating all parts of the situation and correctly sketching the graph’s slope (KS1). Additionally, he 
describes how to change his initial work to correct it, thus, giving himself feedback (KS3). 

Likewise, Ayse’s case shows that the SAFE tool encourages a reflection of her solution (MA3) and 
points her attention towards the covariation of both variables (GV2). Her reflection is initiated by the 
Check’s multiple representation of the situation together with her and a sample graph (TF2) as well 
as a provided checkpoint (TF3). Ayse grasps that change in both variables needs consideration when 
sketching graphs (KS1). Finally, she formulates a self-feedback (KS3) and regulates her assessment 
process by reflecting her work, identifying a mistake and crossing off the checkpoint (KS5). 

Both students use four key strategies of formative self-assessment and the metacognitive activity of 
reflection when working on technological features, such as multiple, interactive, and linked 
visualizations. This enhances their functional thinking by shifting the learners’ focus towards the 
Grundvorstellung of covariation, paying attention to the graph’s slope, and translating the entire 
situation into a graphical representation of the underlying functional relationship. Future 
investigations of students’ work with the SAFE tool will reveal whether these findings can be 
generalized to inform the design of other digital media to support learners’ conceptions of functions. 
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This paper reports on the development of a learning design addressing pre-calculus concepts using 
augmented reality-technology. In a first step, both task- and technology design-principles are derived 
from the research literature and both elements – tasks and technology – will be described and 
discussed. Within a first design-research cycle, the paper reports on experimental difficulties with 
the technology used for the first version of the AR-tool and the needs for the development of a second 
version. By doing so, the paper addresses technological constraints experienced in experimental 
situations and discusses alternative ways.  

Keywords: augmented reality technology, pre-calculus concepts, design research   

Introduction 
This paper describes a first cycle within a design-based-research project, which aims at a better 
understanding of pre-calculus concepts by using augmented reality tools. Specifically, we emphasize 
the capability of AR to merge dynamic features of a real phenomenon (e.g. a moving object along 
inclined plane) with those of its mathematical representations, which can be displayed graphically 
and numerically (e.g. plotting points of graph, ordered pairs in a table of values), as well as the 
learners' own perspectives with respect to the phenomenon. Within the DBR approach (Gravemeijer, 
1994; Prediger et al., 2015) we distinguish between two different layers of design-principles, namely 
the task and the technology design principles. Hence, this paper aims to discuss the design principles 
of the tasks and the technological tools of such an environment.   

Exploring pre-calculus concepts  
One of the main goals of teaching pre-calculus concepts is to initiate experiences with functional 
relations. In calculus, students use quantifiable methods to explore certain characteristics of functions. 
It is essential to allow pre-calculus explorations though, in which such characteristics are not yet 
experienced as being standardized, formalized and quantified. That means that students need 
activities, in which they explore pre-calculus concepts in qualitative learning settings. A detailed 
exactification by introducing the concepts of rate of change, accumulation or derivative is part of a 
later stage within the learning process. 

One way to design such learning activities is the use of real experiments. Inquiry-based enactment of 
scientific exploration shows how students can be engaged in learning activities, in which they conduct 
real experiments and - by doing so - develop the mathematical concepts. One key feature of inquiry-
based learning approaches is the shift from deductive ways of teaching to more inquiry-based 
approaches in order to increase the students’ interest in mathematics (Rocard et al., 2007, p. 2; Artigue 
& Blomhøj, 2013). Within such inquiry-based situations students formulate conjectures based on 
experimental experiences and ask for reasons and try to prove them (Lakatos (1976) speaks of the 
quasi-empirical nature of mathematics). Furthermore, the role of physical action and of bodily 
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experiences is highly important for the genesis of mathematical concepts (e.g., Edwards et al., 2009; 
Radford, 2014; Roth, 2009). For the context of functional reasoning Duval (2006) points out that 
different representation modes (like graph, table, symbolic expression) are necessary in order to grasp 
mathematical concepts in general and especially the concept of function.  

On the basis of this very dense discussion we formulate the following content-specific design-
principles:  

- P1: Enable students to conduct their own experiences. 
- P2: Use different representations to foster the mathematization. 
- P3: Ensure enough room to verbalize the individual conjectures and to interact with other 

students in order to prove them.  

The role of augmented reality  
In a mathematical representation of real phenomena, the correspondence between the original 
phenomenon and the mathematical representation is usually not acquired directly as an effect of a 
natural similarity (as in analogies and often in diagrams). For example, considering the function that 
models the fall of a ball, the graph that represents the relation between time and space does not provide 
a direct, sensory similarity between the actual position of the ball and the shape of the graph; rather, 
the analogy is between the numerical expression of the respective phenomenon and its graphic 
representation, which is spatial.  

Within the design-research project described in this paper, we use an augmented reality technology 
to experience and explore the pre-calculus concepts described above. AR technology uses a wide 
spectrum of techniques for projecting computer-generated materials, such as text, images, and video, 
onto users’ ordinary unaided perceptions of the real world (Kaufmann et al., 2005). Johnson et al. 
(2011) observe that AR can be especially used in order to support inquiry-based learning. Despite 
some educational suggestions, Wu et al. (2013) point out that the use of AR in educational settings 
still remains in its infancy. AR is commonly used by science educators to help students visualize 
scientific processes, such as chemical reactions, which cannot be observed easily in the real world 
(e.g. Wu et al., 2013). Importantly, Cheng and Tsai (2013) conclude that while research on the use of 
AR in educational settings has examined issues such as development, usability, and initial 
implementation (Blake et al., 2009; Sayed et al. 2011), students' inquiry skills and the learning 
processes within AR environments have largely been ignored in the scientific literature. 

For mathematics education, Sommerauer and Müller (2014) found that most studies on mathematics 
education using AR examined the effect of this technology on learning spatial abilities (e.g., 
Kaufmann et al., 2005); this finding is not surprising, as 3D is one of the key affordances of AR. For 
example, Kaufmann and Schmalstieg (2003) developed a learning environment that allows students 
to act on and interact with geometrical objects in space. Similarly, Oronzco and colleagues (Orozco 
et al., 2006) developed an AR-rich learning environment to assist students in visualizing multivariable 
function curves and reported that it helped develop spatial reasoning and visualizability of 3D 
mathematical objects.  

Within the research project, we will examine the way how a learning environment based on AR, given 
its ability to combine real-world experiments, real-time data regarding these experiences, and 
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symbolic systems that model them, may help to create the conditions whereby inquiry-based learning 
will be set into motion in a natural and productive way. This paper reports on the first design-cycle 
in developing an AR-tool and a learning environment. On the basis of the discussion of the 
technological aspects of using augmented reality and with reference to the design-principles P1-P3 
we formulate the following technology-specific design principles:  

- P1*: The digital tool is used within a real experiment conducted by the students.  
- P2*: The digital tool augments the students experiments with different representations.  
- P3*: The provided data allows students to formulate conjectures and make qualitative 

experiences with pre-calculus concepts.  

The Method of Variation inquiry  
This study is guided by the method of the Varied Inquiry (MVI) approach, which is a combination of 
two theoretical perspectives: the logic of inquiry (Hintikka, 1999) and the variation theory (Marton 
et al., 2004).  

The main idea behind the logic of inquiry involves seeking rational knowledge by questioning 
(Hintikka, 1999). Hintikka (1999) conceived the process of seeking new knowledge as an 
interrogative process between two players. The first player (the inquirer) has the role of asking 
questions, and the second player has the role of answering and is called the verifier (or oracle). The 
former is the seeker of knowledge who tries to prove a conclusion to be reached from prior 
experiences or even from theoretical premises. The latter is considered the source of knowledge.  

In order to design educational situations that may promote inquiry processes, Arzarello (2016) refers 
to the variation theory. The variation theory (Marton et al., 2004) defines learning as a change in the 
way something is discerned, i.e., seen, experienced or understood. According to this theory, meaning 
emerges as the learner focuses his awareness on the object of learning. In this case, some aspects of 
the object appear at the forefront of his attention. Yet, not all aspects are discerned at the same time 
or in the same way. In order to understand an object of learning in a certain way, various specific 
critical aspects must be discerned by the learner. To facilitate the discerned object of learning, Marton 
et al. (2004) proposed four interrelated functions (or patterns) of variation to be taken into account 
when designing educational tasks: (a) contrast: “…in order to experience something, a person must 
experience something else to compare it with”; (b) generalization: “…in order to fully understand 
what ‘three’ is, we must also experience varying appearances of ‘three’…”; (c) separation: “In order 
to experience a certain aspect of something, and in order to separate this aspect from other aspects, it 
must vary while other aspects remain invariant”; and (d) fusion: “If there are several critical aspects 
that the learner has to take into consideration at the same time, they must all be experienced 
simultaneously” (Marton et al. 2004, p. 16). 

In the MVI approach, Arzarello (2016) proposes that drawing students’ attention to critical aspects, 
asking to vary them, and observing their effects on the phenomena may foster students’ inquiry 
processes. The main idea of the MVI is creating challenging situations by varying some aspects of 
the phenomena (real-world or mathematical) while keeping the others invariant. Exploring various 
aspects of the same phenomena may lead the students to grasp the intended object of learning. 
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Design and Tasks 
This paper reports on a first design-cycle of a learning environment and a digital tool using augmented 
reality in order to develop a learning design for pre-calculus concepts. Such iterative design-cycles 
are essential within design-based-research approaches (van den Akker et al., 2006; Gravemeijer, 
1994; Gravemeijer & Cobb, 2006; Prediger et al., 2015). Within this research paradigm, research and 
development are strongly connected (Bakker, 2018). A mathematical design consists of learning 
activities embedded in certain tasks. Hence, the role of the design-principles concerning the tasks is 
crucial and they should contain “several representations, several kinds of sensory engagement, and 
several question types” (Watson et al., 2013, p. 10). 

Galileo Experiment 

Task 1 

Release the cube from the upper side of the inclined 
plane. Observe the movement of the cube and 
answer the following questions. What drew your 
attention when you observe the cube? Write as many 
observations as you can. Make a conjecture, which 
one of the observations will change if the plane 
inclination changes! Make a conjecture what will 
change if the time is reduced and give reasons?  

 

Task 2 

Your task is to explore how the change of the plane’s 
inclination may affect the movement of the cube.  

A. How will the change of the inclination affect the 
movement of the cube?  

B. Change the plane inclination in order to verify or 
refute the conjectures you raised in (A). Do your 
conjectures change? If yes, why? If not, prove 
your conjecture.  

C. Can you find an equation that describes the 
movement of the cube movement? Why or why 
not? Justify your answer.  

Task 3 

Your task is to vary the plane inclination in order to explore the motion of the cube. You are requested to 
explain and justify your answers using the graphic and numeric representations.  

A. Explain the shape of the curve when the plane inclination changes?   

B. How do the differences between the y-values of the points on the graphs change when varying the plane 
inclination?  

C. Compute the differences of the distance differences. What can you observe? Why? Is your conjecture 
always true? Can you prove it?   

Figure 1: Learning environment to explore the Galileo experiment with Augmented Reality 

Based on the formulation of the design-principles above we have developed both elements (task and 
tool) in a first version. The design principles of the tasks were motivated by the MVI approach. Each 
task contains a real-world phenomenon and mathematical representations of the dynamic aspects of 
the phenomenon. The main idea of the design is to create different situations by varying some aspects 
of the phenomenon while keeping the others invariant (see table 1). For example, the first task may 
request students to explore the mathematical model of a ball rolling on inclined plane (as in the well-
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known Galileo experiment). In this situation, the time elapsed and the spaces travers of the ball vary, 
and the inclination plane angle is invariant. Hence, the crucial aspect of this task is the time-distance 
relationship. The second task requests students to explore the same situation as in task 1, but this time 
the angle of the plane is varied, and the students explore how this new situation affects the 
mathematical model. In this case, the students explore quadratic functions based on their graphs and 
numeric values. Exploring various aspects of the same phenomenon may lead the students to grasp 
the intended object of learning, namely, quadratic function and its properties. 

Task Mathematics Crucial aspects 

1 Non-propositional relationship Time-distance relationship 

2 Quadratic functions based on their graphs Parabola, time-distance relationship 

3 Quadratic function based on the second 
differences 

Second differences of the space travers, 
parabola, time-distance relationship 

Table 1: Mathematical ideas, the crucial aspects of the phenomenon 

First design-cycle: prototype and discussion 
This section describes the development of two different prototypes. Based on experiments with the 
first version of the developed AR-tool we identified various disadvantages of the technology in use. 
The discussion below highlights some of the features of both versions and discusses the reasons for 
the technological changes within the developmental process.  

         
Figure 2: (left side figure, version 1) coded color method for recognizing dynamic object;  
(right side figure, version 2) Cube movement augmented with graph and table of values 

First Prototype: We used MATLAB software in our first attempt to design the AR prototype. 
MATLAB has the ability to identify the dynamicity of an object and to present it graphically or 
numerically. To activate this option, the use of a video camera with high resolution is required and 
the dynamic objects should be color coded. In this way, the specific color given to the dynamic objects 
is traced and the dynamicity of the physical object is recognized. For example, a mass hanging on a 
spring was wrapped by yellow coloured paper as well as the beginning and the end of the spring are 
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coded by another colour (figure 2, left side). In this case, a camera followed the coded-colour papers. 
To recognize the coded colour paper, the users must calibrate and define the color to be traced in each 
new experiment. For recognizing the color properly–as a result to collect the data of the dynamic 
object correctly–a uniform distribution of light in the room is required. In fact, small changes in the 
light conditions changed the results significantly so that the values and graphs in the different 
augmented representations showed different results depending on the light conditions of the specific 
point of view. 

Second Prototype: The several constrains that are required for the AR prototype to function properly, 
which are very difficult to ensure, obliged us to look for a new tool to design the AR prototype. We 
especially looked for tools that are insensitive to light and friendly for users. Therefore, in the second 
round of the designing, we decided not to use MATLAB in favour of using ARtoolKit library. 
ARtoolKit is an open-source computer tracking library for creating augmented reality applications 
that overlay virtual imagery on the real world. The developer’s mission was to write an AR code to 
detect a moving cubic over an inclined plane. The cubic detection is done by using fiducial values or 
markers. The ARtoolKit provides several methods for tracking and detecting objects in the real world. 
The most primitive one is the marker-based tracking and detection. We used a specific marker from 
the markers-collection called “Hiro”. The marker is treated as a pre-defined input. The program 
extracts features from the input marker. Additionally, the program detects these features of the marker 
in each frame. The markers are attached to the cube in our experiment (figure 2, right side version), 
so that it allows the detection of the cube movement in real-time (presenting the distance vs. time 
function) while using a camera. The data is then displayed on the eyeglasses (see figure 2, right side). 
The type of eyeglass used is HTC VIVE Pro (https://www.vive.com/eu/product/vive-pro/). The data 
of the dynamic object is displayed graphically and numerically. Hence, one sees the real experiment 
augmented with the data. The data itself is displayed in different representations. Within the evolving 
graph, one can see a distance-time function graph. The graph itself can be displayed a set of discrete 
points, or as a continuous function graph. The table shows three columns: time, distance and the 
difference between two consecutive distances. Both the graph and the table of values are displayed, 
so that the students can relate and reflect on the relation of the different representation modes.  

Conclusion and Outlook 
Based on both task- and technological design-principles we discussed a first cycle of the development 
of a learning design addressing pre-calculus concepts using AR technology. We have reported on the 
features of an AR-tool with disadvantages in the experimental situations and a second version, which 
is much more stable in the experimental situations. The outcome of the described iteration is an AR 
prototype that can be used in order to explore a dynamic real-life situation with mathematical concepts 
in the field of pre-calculus. The user wears eyeglasses and the data is displayed in different 
representation modes simultaneously.  

The next step will be to conduct empirical experiments with students in order to study their conceptual 
developments when using the technology and to empirically evaluate the chosen design-principles. 
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Although teaching according to a flipped classroom approach is being increasingly used in schools, 
it is still the case that this type of education is often teacher-driven, and that teachers play a dominant 
role in terms of determining learning objectives and materials. Recently, the definition of flipped 
classrooms is being changed, accordingly the approach is becoming more student-driven and 
teachers mostly start to play supportive roles. Thus, this new approach is currently referred to as the 
flipped learning approach. The aim of our research is to identify central elements for students when 
learning mathematics in flipped learning environments. Therefore, teaching scenarios were 
developed, applied at a higher secondary level and written feedback from pupils were obtained. The 
grounded theory based analysis of feedback suggests that it is crucial for students to work together, 
jointly generate knowledge, become active in determining learning paths and selecting materials. 

Keywords: Flipped classroom, Flipped learning, Mathematics education, Student centred learning. 

Introduction 
Flipped Classroom Approaches (FCA) have been gaining popularity in education and in most cases, 
digital technologies are used to facilitate creating a flipped environment. Digital technologies include 
mathematics specific software products such as GeoGebra as well as communication and 
collaboration platforms such as Moodle or Mahara. In general, modern technologies have been 
becoming increasingly important in mathematics education. Nevertheless, using technologies should 
always improve students’ learning process, and not simply appease them (Klein, 2002). Even though 
many scientists and practitioners describe education according to an FCA as progressive, there is 
already a development of this approach – the flipped learning approach (FLA). However, the terms 
Flipped Classroom and Flipped Learning are used synonymously in some scientific articles (e.g. 
González-Gómez et al., 2016; J. Lee, Lim, & Kim, 2017). But the approaches differ regarding their 
definitions and characteristics. The fact that the two approaches are still used synonymously may 
indicate that education according to an FLA has not been fully integrated into research and teaching. 
This can also be observed in the STEM education field, since recent publications use the approaches 
interchangeably and without differentiation (e.g. Gnaur & Hüttel, 2014; Ponikwer & Patel, 2018). 

The first section will discuss the differences between an FCA and an FLA. Here, a special focus is 
placed on students learning mathematics and how these approaches are linked to social 
constructivism. Then, we will focus on our actual research question: Which components of an FLA 
are crucial for both students’ well-being in such environments and students’ motivation to participate 
in mathematics education? In order to achieve the research aim, data were collected and evaluated 
according to a grounded theory approach and action research. Finally, the thesis will discuss the 
results of the research and, from this, draw conclusions.  
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Theoretical Background 
This section defines the singularities and differences between FCA and FLA. Additionally, relations 
of these approaches to mathematics education and to the theory of social constructivism are described.  

Defining flipped classroom approaches 

Even though FCA has been dealt with often at an academic level in recent years this form of education 
can be found in many classrooms, there is still no uniform definition of this educational approach 
(Enfield, 2016; Wasserman et al., 2015). But most FCA descriptions have common elements. The 
fact that direct instructions and passive learning activities take place outside classrooms characterizes 
many definitions of an FCA. The classroom time is then used for student-centred and active learning 
activities. This means that in pre-class phases of an FCA, mainly simple learning objectives are 
pursued and in in-class phases learners and a teacher try to achieve higher learning objectives 
(Wasserman et al., 2015). 

In mathematics education it is quite common utilizing videos in pre-class phases and lessons are used 
for active, group-based or problem-solving activities. Recently, more and more research projects (e.g. 
Esperanza, Fabian & Toto, 2016) demonstrate that flipped classroom education can improve students’ 
achievement in learning mathematics. 

Defining flipped learning approaches 

Many assume that flipped classroom and flipped learning are similar terms used to describe more or 
less the same approach. To counter misconceptions, the Flipped Learning Network (FLN) (2014) 
composed a formal definition of the term “flipped learning”, as follows: “Flipped Learning is a 
pedagogical approach in which direct instruction moves from the group learning space to the 
individual learning space, and the resulting group space is transformed into a dynamic, interactive 
learning environment where the educator guides students as they apply concepts and engage 
creatively in the subject matter” (FLN, 2014). According to the FLN, an FCA does not necessarily 
lead to flipped learning. However, FLA can be considered as a development of FCA. 

Implementing FLA into mathematics education should lead to flexible learning environments in 
which students could achieve higher cognitive goals, for instance by tackling real-world problems. 
Moreover, for the construction of different mathematical meanings, learners can be given the 
opportunity to make their own experiences and feel the need for an introduction of concepts or terms. 

Although many studies have already explored implementing an FCA in mathematics teaching, there 
is a lack of research investigating flipped learning in mathematics education. In a few mathematics 
education research studies some elements of an FLA can be found (e.g. Weidlich & Spannagel, 2014). 
However, these learning environments are often not described according to an FLA.  

Social constructivism’s influence on flipped learning environments 

Social constructivism (SC) (Vygotsky, 1978) is a student-centred learning theory that emphasises 
importance of the social environments in which learners generate their knowledge themselves. 
According to SC, students are becoming more active to determine their learn path and teachers’ role 
change from knowledge providers to supporters of the learning environments. FLA has already 
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incorporated SC in its initial development as in flipped learning environments learning is self-directed 
and seen as an active process. Moreover, students are also encouraged to learn through social 
interactions within their groups (Green, 2015). 

Research design 
This section outlines the participants, the mathematical content and the procedures of our flipped 
learning experiments. 

Framework of our flipped learning educational experiment 

The educational experiment was conducted with four classes (students aged from 14 to 16 years) at 
two different schools in Vienna – an urban college of business administration and a humanistic high 
school with a focus on classical languages. All four classes were already taught in a traditional flipped 
classroom setting. The educational experiment lasted between 6 to 7 teaching units and more than 
110 students took part in it in total. The centre of education was formed by square functions and their 
applications. Since students from different types of schools were involved, the experiment was carried 
out according to the respective curricula of the 9th and 10th grade. 

Proceedings of our flipped learning educational experiment 

At the beginning of the learning sequences, all students were informed about the tasks to be 
performed, the goals to be achieved and the deadline. In the college of business administration, 
students had to solve different tasks, which were made available via an online learning platform. 
There were also short interactive videos with integrated questions provided to check students’ 
comprehension. Therefore, watching a video became an active process. In the high school, students 
had to research Leonardo bridges, build such a bridge themselves, and finally mathematically 
examine this self-built bridge. Students were able to use tablets (college of business administration), 
their own notebooks (high school) and other learning materials according to their preferences. 

In all settings it was essential that learners were given tasks and objectives. However, the availability 
of time and technological tools enabled the students to self-determine the learning path. This 
availability should make it easier for learners to individualise learning processes themselves. The 
provision of modern technologies, as well as databases and communities on these technologies, 
should enable students to tackle higher mathematics. 

Since experimental conditions in education in general, and in a flipped setting in particular, are 
difficult to produce  (Reinmann, 2005) and our research interest focuses on exploring crucial aspects 
for students when learning mathematics in flipped learning scenarios, we decided on qualitative 
oriented research methods. Thus, approaches and methods of action research and grounded theory 
were used to collect and evaluate data. 

Research aim and research methods 
Exploring which components are significant for students when learning mathematics according to an 
FLA is the aim of our research. In order to develop these new hypotheses and theories concerning 
FLA mathematics education, our research is designed according to qualitative research approaches. 
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The education sequences described above were planned and carried out by us, the authors. We had to 
assume both the role of a teacher and the role of a researcher. This should help to ensure that both 
practical and academic knowledge could be gained through the research process. For the action 
research McKernan’s iterative model (McKernan, 1991) was chosen. This model is based on Lewin’s 
four original action research phases: plan, act, observe and reflect (Lewin, 1946). 

Additionally, a grounded theory approach (GTA) was applied to develop an FLA mathematics 
education theory. This theory is based on teaching records and on student feedback forms. Both data 
collection and evaluation follow GTA principles according to Strauss and Corbin (1990, 1997). Since 
both perspectives of researchers and the educational environment are of central importance, many 
elements of a constructive GTA according to Charmaz (2006) can also be found in the present 
research design. After the last lesson of this sequence, learners were asked to provide open written 
feedback on the FLA mathematics education experiment. The learners were asked to evaluate the 
positive and negative experiences and aspects. The feedback guidance was formulated openly and 
broadly, as on the one hand new hypotheses and theories were to be developed based on feedback 
forms. On the other hand, precise guiding questions were omitted in order to reduce the risk of 
students answering as they think teachers would like them to. We were able to achieve a complete 
survey of all students, which provided 110 feedback forms. First, feedback forms were fully 
transcribed and openly coded. This led to 30 codes. The comparison of the codes and corresponding 
transcript passages led to four new codes with an added level of abstraction. The new codes were then 
mutually examined, axially coded and a synthesis of findings was produced. This led to two central 
concepts described below according to our research interests. 

Results 
In the following paragraphs, the two central concepts mentioned above are explained in more detail. 
The inserted quotations of the learners were translated by us, the authors.  

Working together and in groups 

The feedback from students shows that they found it positive when learning products were created 
together and when different tasks could be solved as a group. Learners also appreciated that 
mathematical knowledge was created collaboratively and that they could support each other in this 
creative process. Here, certain students also took on the role of coaches, which reduced the time taken 
to receive help, and was emphasized positively by the learners. 

Student: I found it a very good and useful opportunity to teach and support other students. It was 
all positive. When there was a question, immediate help was given. 

Student: It was good to work on topics together and to discuss and debate these topics together. 

It was also noted that working with friends was always fun and enjoyable. Moreover, this had a 
positive effect on the motivation of the learners and led to the mathematics class turning into a more 
positive place compared to teacher-centred lessons. 

Student: By creating the mind map [on the blackboard, concerning a catenary] together, the lesson 
became funnier and the math was treated in more detail. 

Thematic Working Group 16

Proceedings of CERME11 2936



 

 

In this context, it was important for the students to be involved in the formation process of the groups 
and to be able to decide which students would form a group. Furthermore, the learners emphasized 
that it is just as important to be able to work individually (temporarily) in such a setting. 

Student: I liked it because we could also work alone. 

Active and self-directed learning process 

Feedback from learners demonstrates that it was positively received that students themselves could 
choose the approach and how to tackle a problem. They highlighted that it was exciting to be able to 
work out a problem and that the answer is not immediately given. 

Student: I think it was a good exercise, because you learn to work independently and try to find a 
solution on your own. 

Furthermore, data from the feedback forms show that students liked the speed and intensity of 
learning as well as the focus of the learning process being chosen by the students themselves. This 
also means that the learners liked that some of the places of learning could be chosen by them and 
that the lessons could therefore be better adapted to their needs. 

Student: […] that we actually built the bridge was great and that we had lessons in roof rooms was 
also great. 

Student: […] I liked it [flipped learning], because everyone could work at their own pace. 

In their feedback on the teaching sequence the learners commented that it was perceived as helpful 
that they themselves could switch between the real world with real problems and mathematical 
concepts. In line with student feedback, this made it possible to improve the idea of mathematical 
concepts and to make the significance of mathematics easier to grasp. 

Student: It wasn’t just numbers, we built the bridge ourselves and the real meaning behind the 
calculations was better understood this way. 

Discussion and further considerations 
This section will discuss the findings and contributions and attempt to establish a connection to 
current literature as well as to school practice. According to sub-codes, further considerations are 
made in the conclusion, not only regarding isolated and/or non-cumulative feedbacks from learners, 
but also missing feedback on certain topics. 

Working and learning in groups 

Since an FLA is characterised by students working in groups and thus exploring the subject matter, 
it is not surprising that this classroom mode was preferred by students. But it is still rare that 
mathematics lessons are taught in groups. This applies both to academic discourse and to everyday 
school practice. Only a few authors (e.g. Bell & Pape,2012 or Lee & Johnston-Wilder,2013) have 
dealt with group work in mathematics lessons. Future research on mathematics education, especially 
on linking mathematics education and an FLA, should also look at how group work can be integrated 
into this synthesis and which framework is important here. In this context, on the one hand, it would 
be important to investigate how mathematics can be learned in a flipped scenario, and, on the other 

Thematic Working Group 16

Proceedings of CERME11 2937



 

 

hand, how learning outcomes achieved in FLA mathematics education can be both secured by 
students and assessed by teachers. This is because it could be shown that learning actions which are 
not graded are considered meaningless by pupils and their parents (Häcker, 2011). 

Nevertheless, some feedback from learners and literature (e.g. Harkness & Stallworth, 2013) 
demonstrates that there are students who (also) prefer to work on their own. When group work is 
integrated into flipped mathematics, it is of paramount importance that these learners are not 
forgotten. Hence, it would be necessary to expand the students’ learning space and options. 

Active and self-directed learning process 

The feedback data show that students perceived it positively that active learning was possible and 
that a learning path could be co-determined by them. Already Leonard et al. (2014) demonstrated in 
this context that different learners have different interests. If the interests of pupils are at the centre 
of the learning process, it increases the probability can be increased that active and sustainable 
learning takes place and that the pupils strive to plan their own learning path. For the purpose of 
creating a learning environment in which the interests of the students dominate and are therefore often 
self-directed, some basic conditions must be provided. One possibility is that the teacher offers a wide 
range of tasks from which students themselves can choose. Another possibility would be for tasks to 
be designed in such a way that they can be modified by learners. The fact that these tasks are present 
in a self-directed learning process is therefore important, since only then can one count on the fact 
that learners seriously attempt to solve a problem. This puzzling is necessary to achieve sustainable 
learning and consequently a better understanding of mathematics among students. 

In contrast, the feedback data also revealed that there are students who struggle with taking control 
of their learning process. With regard to this, the learners mentioned that they missed structure in the 
teaching units and that a lack of structure hindered their learning process. As a result, a balance 
between freely selectable tasks as well as a given structure will have to be struck so that the majority 
of students can benefit from a pupil-active and self-directed learning environment. 

Further considerations and conspicuous features 

Although modern technologies were of central importance in our teaching experiments and learners 
made intensive use of them, working with technologies was rarely addressed in the feedback forms. 
On the one hand, this could be a consequence of the fact that it is not new for students that 
technologies are used in the learning process. On the other hand, it is very probable that modern 
technologies are an integral part of the everyday lives of young people in the 21st century and it is 
therefore not worth mentioning to learners that these technologies are also used in school contexts. 

With relations to the desire for a possibility of individual work, some students also addressed 
discipline and collegiality in the teaching experiment. For this purpose, future research should identify 
relationships between freedom and discipline that is conducive to the well-being of most learners. 

For some students, time management in the teaching experiment was as challenging as its structure. 
It can be concluded that some students have a high need for such meta-competencies. Future research 
will also need to examine how learners can be supported in a flipped learning setting so that these 
skills can be acquired. 
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Conclusions and further research 
The research data indicate that for students it is more important how mathematics is learned according 
to an FLA than which tools are used and how complex the learning content is in such a setting. From 
this we conclude that it might be most critical for students to be able to determine their learning paths 
as well as goals, and to set their own priorities in education. It was surprising to us that neither 
technology-enhanced learning environments nor tackled content, which was sometimes challenging 
for students, were stressed. This is particularly true of the content, because certain mathematical 
concepts are not covered in the curriculum until later (limiting value and complex numbers) or are 
not included in the secondary curriculum (catenary and hyperbolic cosine). 

For learning mathematics according to an FLA, our research has drawn that the amount of direct 
instruction could be reduced in the individual learning space. Instructions could either be offered just 
in time, or students could acquire new learning content in a constructivist way. Here, it could be 
significant, both in an individual and in a group learning space, that a teacher is available to pupils as 
a guide if pupils learn mathematics in a self-determined way according to an FLA. 

Since the research corpus for learning mathematics following an FLA is still weak and 
undifferentiated from an FCA, this paper could help to initiate further research in this direction. Here, 
it would be important that characteristics of an FLA (FLN, 2014) are taken into account and that 
further mathematics education FLA research is clearly distinguished from respective FCA research. 
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The tablet-app ‘Stellenwerte üben’ (Practicing place value)1 was developed to provide a software for 
practicing place value concept. There are two goals associated with this project: 1) Developing the 
app and 2) Investigating how children interpret the given non-symbolic representations and how they 
use the implemented features. This article presents the underlying theoretical background, a short 
description of selected features, and a sketch of initial empirical findings on the interpretation and 
use by primary school children in their second and third school years. First findings suggest that 
previous experience with concrete physical material overlaps and influences the intended use of the 
implemented virtual features.  

Keywords: Place value, digital media, representational change, primary mathematics education 

Place value understanding  
The development of the understanding of place value and therefore of the composition of multi-digit 
numbers is one of the most important goals in mathematics education in primary school (Wittmann, 
1994). In addition to that, lack of understanding of the concept of place value is a main indicator for 
learning difficulties in arithmetic (Scherer et al., 2016, p. 636). Understanding of place value can be 
assumed when someone 1) knows that the place value system is based on continually grouping by 
tens (powers of ten), 2) knows about the meaning of place value: The quantity of the value is 
determined by its position represented by the digits – the values of the positions increase in powers 
of ten from right to left, 3) knows about the meaning of face value: The digits have to be multiplied 
by the power of ten assigned to its position, 4) knows that the quantity of the whole numeral is the 
sum of the values represented by the individual digits and 5) knows the rules and structure of number 
word formation corresponding to the written number (e. g. Fuson et al., 1997). 

In the literature, we can find numerous appropriate activities to foster the development of students’ 
place value understanding and to strengthen it in practice phases. Some of these activities are the 
following: Bundle and unbundle unstructured sets of objects according to the power ten (van de 
Walle, 2004; Hiebert & Wearne, 1992), arrange the bundles according to the place value to introduce 
and practice the place value system and name the bundles to compile and practice the rules of number 
word formation (van de Walle, 2004; Gaidoschik, 2003). In addition to these activities there are 
several manipulatives and representations that seem to be appropriate to work with: Unstructured 
objects such as linking cubes and tiles, pre-structured objects, for example base-ten blocks (Dienes-
Blocks), ‘place value mats’ for sorting or trading base-ten material (e. g. van de Walle 2004, pp. 165–

                                                 
1 The German version of the tablet-app is provided on Google Play. An English version is in progress. 
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169, Gerster & Walter, 1973) and place value charts with tiles or digits for a standardized and 
conventional representation. 

(Virtual) representations and their potentials 
Theoretical analyses and empirical findings suggest that there are several features of virtual 
representations that have the potential to support mathematical learning processes. Some examples 
for these features are the following: Multitouch-Technology (e.g. Sinclair & Heyd-Metzuyanim, 
2014), support in structuring an unsorted set of objects (Walter, 2018), reducing an extraneous 
cognitive load by the means of computational offloading (Rogers, 2012) and informative feedback 
(e.g. Harrass, 2007). For the present study, we focus on the following two features (see below): Fitting 
between virtual representations and mathematical ideas (e.g. Peltenburg, van den Heuvel-Panhuizen 
& Doig, 2009) and synchronously linked representations (e.g. Ainsworth, 2006). However, it must 
be pointed out that the existence of the features mentioned above does not automatically lead to an 
intended use (e. g. Walter, 2018). 

Fitting between representations and mathematical ideas 

Mathematical objects can not be empirically observed (like for example astronomical or biological 
objects) and therefore mathematical knowledge can not be developed through this observation. “The 
only way to have access to […] [mathematical objects] and deal with them is using signs and […] 
representations” (Duval, 2006, p. 107). These representations can be symbolic (e.g. written or spoken 
numbers “30”, “three tens”) or non-symbolic such as iconic or concrete representations (e.g. three 
ten-rods of the base-ten blocks; thirty apples in a picture), or something in between (e.g. three tiles in 
the tens place in a place value chart). In addition to that, these representations can be 
‘material/external’ or ‘mental’ – for example three dots in a place value chart or thinking of three dots 
in a place value chart (Duval, 2006, p. 105). In this context, there are (among other things) two aspects 
that have to be taken into account: 1) The intended way from external representations to mathematical 
ideas ‘is not straight, easy or clear’ (Söbbeke, 2015, p. 1499) and these representations are not self-
explanatory (Dreher & Kuntze, 2015, p. 91). 2) Mathematical ideas are abstract concepts and the 
representations must not be confused with the mathematical idea or object (Duval, 2006, p. 107).  

Nevertheless, the structure of a given non-symbolic representation (no matter if these are concrete, 
virtual or mental) should ‘fit’ with the structure of a given mathematical idea (e.g. Sarama & 
Clements, 2016). On the one hand this fitting should be provided by an ‘intended structure’ built in 
by the manufacturer (Söbbeke, 2005, p. 135; Sarama & Clements, 2016, p. 82), on the other hand this 
fitting is the result of an epistemological process (Steinbring, 2015, p. 288). These aspects and 
conditions are taken into account through developing the tablet-app and analyzing its interpretation 
and use (see section “Design research and study design” below). 

Synchronously linked representations 

“Comprehension in mathematics assumes the coordination of at least two registers of […] 
representations” (Duval, 2006, p. 115). On the one hand this coordination is a learning goal in 
mathematics education. On the other hand, it is a challenge because representations can be 
misinterpreted and the representations of different registers do not have to be congruent and, 
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therefore, a translation between registers is not simple, obvious or self-evident (Duval, 2006, pp. 115–
120). An appropriate method to foster the ability to coordinate and translate between different 
registers and to realize what is mathematically relevant is to analyze representation variations in at 
least two registers (Duval, 2006, p. 125). In contrast to non-virtual representations, virtual 
representations can automatically be linked so that changes to one representative have a direct effect 
on another representation. This feature has the potential to support children in overcoming difficulties 
in switching between different representations (e.g. Ainsworth, 1999; Goodwin & Highfield, 2013). 

Design research and study design 
There are two goals associated with the presented project: 1) Developing the app considering the 
described theoretical background and 2) Investigating how children interpret the given non-symbolic 
representations and how they use the implemented features. To give an insight into the process of this 
design research project, we give a short description of the implemented features, a short description 
of the study design and in the next section a sketch of initial empirical findings on the interpretation 
and use by primary school children. 

Implemented features 

There are numerous apps focusing on place value (e. g. Burris, 2013; Ladel & Kortenkamp, 2016; 
Utah State University, n. d.). Though, none of these focus on the practicing phase of the learning, 
which provide self-generating tasks and informative feedback after entering a result. In addition to 
that, the implemented features of the app ‘Stellenwerte üben’ as described below can also be found 
in these apps. However, there is no app that combines all of these features. 

Bundle and unbundle: The module ‘Bundle’ requests the 
bundling of exactly ten objects (ten ones or ten tens) to create 
a bundle of the next higher value (ten ones à one ten; ten tens 
à one hundred). To this end, one has to ‘activate’ exactly ten 
objects (e.g. by using the lasso-function) and to push the 
bundle-button. Then the ten objects assemble automatically 
into the next higher bundle and this slides to the respective 
column of the place value sorting map (see Fig. 1). An 
essential aspect of this assembling is the transparent value 
preserving: Even after bundling ten objects, these objects are 
still apparent (a ten is made of ten ones, a hundred is made of 
ten tens). In reverse, unbundling is possible, for example, by sliding one hundred in the tens (or ones) 
column. After doing this the hundreds automatically split into ten tens (or hundred ones). This feature 
is implemented in all modules with virtual representation of the base-ten material. Sarama and 
Clements point out that these virtual bundling activities are “more in line with the mental actions that 
we want students to learn” (Sarama & Clements, 2016, p. 85, emphasis in original) than activities 
with concrete-physical base-ten blocks. 

Sorting bundles: The module ‘Sort’ requests the sorting of an unorganized set of ones, tens and 
hundreds in the place value sorting map. By sliding the objects in the respective columns, the students 
practice the assignment of a given bundle to the appropriate place value column. In this context, the 

Figure 1: Bundling ten ten-rods 
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sorting is aligned to the visible quantity of a given bundle. This visual assignment is supposed to 
strengthen the integration of the ‘quantity’ value aspect and the ‘column’ value aspect of place value 
understanding (Sayers & Barber, 2014, pp. 24–25).  

It has to be taken into account, that these practicing activities 
(virtual bundling and sorting) do not only by themselves lead to 
a sustainable place value understanding, but there have to be 
several prior activities and accompanying instruction (e. g. van 
de Walle, 2004). In addition to this, it has to be taken into 
account that the described activities are based on 
representations that are visually clearly distinguishable by their 
quantity. These activities can be interpreted as didactic stages 
on the way to an abstract understanding of place value. A rigid 
adherence to these stages and an unreflected use of this representation could lead to common errors 
(as described by Ladel & Kortenkamp, 2016, p. 297).  

The research interests arising from these considerations are the following: 

· Research question 1 (RQ1): In which ways do students interpret and use the intended fitting 
between representations and mathematical ideas? 

· Research question 2 (RQ2): How do students interpret the non-symbolic representation 
particularly with regard to the hundred-squares, ten-rods and unit-squares in the place value 
sorting mat? 

Synchronized linked representations: Changes in the iconic register (e.g. unbundle a ten rod) lead 
to changes in the nonverbal-symbolic register at the bottom of the surface (0+10+2 changes into 
0+0+12, see Fig. 3). 

 
Figure 3: Synchronously linked representations in ‘Stellenwerte üben’ 

· This leads to research question 3 (RQ3): Do children notice the synchronously linked 
representations and in what ways do they use this feature? 

Study design 

One focus of our research is to analyze students’ methods of usage and interpretation while working 
with the tablet-app ‘Stellenwerte üben’ (see the research questions developed above). To this aim 
individual clinical interviews with n=29 German second and third graders have been conducted. All 
children knew the physical base-ten material from classroom. Main tasks have been, among other 

Figure 2: Sorting objects 
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things: 1) the creation of non-symbolic representations: “Please show me the number two-hundred-
fourty-five using the tablet-app.” (RQ1), 2) the explanation of a created non-symbolic representation: 
“How do you know this is the number you are looking for?” (RQ1 and 3), 3) an interpretation of 
2 ten-rods in the tens place: “Another child has told me this is a representation of twenty tens. What 
do you think?” (RQ2), and 4) taking away two tens from two bundled hundred-squares “Can you 
please remove two tens.” (RQ1). All interviews have been transcribed (obtaining both speech and 
actions) and analyzed using a qualitative content analysis (Mayring, 2015).  

Initial empirical findings 
It was examined whether and how children make use of digital media’s features implemented in the 
developed tablet-app. Furthermore, we wanted to evaluate how children interpret the given non-
symbolic representation. These findings might lead to implications for further development, research 
and for lessons using the described app. 

Using the fitting between representations and mathematical ideas 

As expected, we found different types of usage. On the one hand, there are children who use the 
implemented features (here bundling and unbundling by sliding and lassoing) independently and are 
aware of what they are doing (for an example see the following transcript).  

Interviewer: What would you have to do to remove twenty?  

Student: I know, I know. Like this. (Unbundles a hundreds-square by sliding it to the tens-
column. Swipes away two ten-rods.) 

Interviewer:  Ok, and what is your result? 

Student:  Hundred-and-eighty. 

On the other hand, there are children who imitate the action with concrete base-ten blocks (namely 
trading). These children erase a given hundred-square, create ten ten-rods instead and take away two 
of these ten-rods. This finding suggests that previous experience with concrete physical material 
overlaps and influences the intended use of the implemented feature. This assumed interdependence 
between virtual and concrete actions is worth a closer lock in further investigation. 

Interpretation of the non-symbolic representation 

The non-symbolic representation of the tablet-app was developed to integrate both the quantity value 
aspect and the column value aspect of place value understanding (Sayers & Barber, 2014, pp. 24–25). 
To examine children’s interpretation of this representation (two ten-rods in the tens-column) we asked 
explicitly for this interpretation (“Another child told us… What do you think?”, see above). By doing 
this we found two different types of explanation: 1) Children who are aware of the fact that there are 
exactly two tens. Some of these children referred explicitly to the intended integration of quantity 
value and column value. 2) Children who mix up the naming of the given representation (“There are 
twenty tens”). Through further analyses and interviews we want to find out if these answers have 
their roots in an inaccurate use of mathematical vocabulary or if they are indicators for a conceptual 
misinterpretation of the intended structure.  
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Using the synchronously linked representations 

As expected, our findings indicate that not all children consider the linked representations 
independently in their methods of use. Most children only focus on and refer to the non-symbolic 
representation. There are at least two possible explanations for this finding: 1) in the surface’s 
graphical proportioning there is much more room for the non-symbolic representation than for the 
symbolic representation and 2) the main tasks requested actions with the non-symbolic representation. 
Nonetheless, it can be stated that there are both low- and high-achieving students who do 
independently use the linked representations, and all students use this feature when asked for an 
explanation. In these cases, the linked representations are used to support children’s argumentation 
and as self-monitoring. 

Interviewer: Please show me the number two-hundred-fourty-five. 

Student: (Creates two hundreds in the hundreds-column, four tens in the tens-column, five 
ones in the ones-column.) 

Interviewer:  Ok, and how did you know, how many hundreds, how many tens and how many 
ones you needed? 

Student:  One square is hundred ones (points at the hundred-square) and there are two, thus, 
two-hundred. You can read this here, too (points at the symbolic representation). 

Conclusion 
The described study investigates children’s usage and individual interpretation concerning a virtual 
practicing material. The tablet-app was developed to foster and strengthen children’s place value 
understanding and it provides several features which are supposed to support mathematical learning 
processes. The implemented features are based on mathematical didactic theories and findings. In the 
following, we summarize the main results and draw some conclusions for teaching and further 
research. 

The described findings validate the previous assumptions (Walter, 2018) that the existence of the 
described mathematical didactic features of virtual representations does not automatically lead to an 
intended use. Especially instead of using the synchronously linked representations children mainly 
focused on the non-symbolic representation, which is quite explainable. Nevertheless, we found that 
some children (both low- and high-achieving) used the linked representations independently and 
others used them for argumentation when asked for an explanation. This knowledge gives teachers 
the opportunity to discuss the connection between the different representations in the context of ‘math 
conferences’ with all students. In these settings students may become aware of the possibility to 
change between and use different representations, which they do not yet do independently. Another 
feature which was not used as intended by some children is the fitting between the virtual actions and 
the intended mental actions (Sarama & Clements, 2016, p. 85). Some students traded a hundred for 
ten tens and vice versa, instead of bundling or unbundling. These different types of usage (trading vs 
bundling and unbundling) could be used for constructive discussions in class: Do these different 
actions lead to the same results? What aspects of these actions are the same, what are different? This 
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discussion about actions, representations and the underlying mathematical ideas might lead to a better 
understanding of some basic aspects of the place value concept. 

As mentioned above, some of the reported findings lead to further research interests like the 
investigation of an interdependence between using concrete and virtual representations. Also of 
interest is the question if the different interpretations of the non-symbolic representation ground 
merely on inaccurate use of mathematical vocabulary or if they are indicators for a conceptual 
misinterpretation of the intended structure. Since the tablet-app was developed for practice, further 
investigations also might focus more on autonomous usage (without an interviewer) and ways of 
practicing. 
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Inquiring-game activities are inspired to Hintikka’s semantical games and are designed within a 
Dynamic Geometric Environment (DGE). In this report, we focus on inquiring-game activities on the 
equivalence of quadrilaterals areas, which were proposed to primary school students in Italy. The 
goal of these activities is to exploit the dynamicity of semantical games and of DGEs to foster 
students’ geometrical thinking. Through a design-based approach and a case-study, we highlight how 
the double dynamicity of the didactical design allows the students to i) explore non-prototypical 
configurations and ii) reinvest their geometrical knowledge to make sense of the observed 
relationships between the figural and the numerical register. 

Keywords: Non-prototypical figures, inquiring-games, area equivalence, primary school, DGEs. 

Introduction and theoretical framework 
In primary school the concept of area and its measurement are among the main goals of learning in 
all countries. Area measurement is usually the first case in which students encounter numerical 
computation in geometry (Smith & Barrett, 2017): first by counting units, and then by multiplicative 
computations. Comparing areas of different regions can be perceptively difficult when the shapes are 
different or they are not prototypical. Usually, students learn to establish the equivalence of figures 
both by using measurements and by decomposing them into congruent polygons, by cutting and 
pasting figures, folding papers, and drawing in paper and pencil environment. In this context, 
algebraic formulas are also introduced. However, research and international tests show that formulas 
often remain obscure or even ‘black boxes’ to many students (ibid.). Furthermore, students show 
difficulties in distinguishing between area and perimeter (D’Amore & Fandiño Pinilla, 2006).   

In our study, we explore how inquiring-game activities within Dynamic Geometric Environments 
(DGEs) may foster students’ geometrical reasoning, in particular on area and area equivalence. The 
study is part of a larger research project in which theorems of elementary geometry are transposed 
into inquiring-game activities inspired to semantical games (Soldano & Arzarello, 2018). These 
games are connected with a new form of logic, called ‘logic of inquiry’, developed by the Finnish 
logician J. Hintikka (Hintikka, 1999). In this logic, Hintikka made use of games of 
verification/falsification, known as semantical games (Hintikka, 1998), through which he reversed 
the recursive definition of truth given by Tarski. 

 For reason of space, we will refer only to the semantical games associated to statements expressed 
in the form "𝑥𝑥 $𝑦𝑦 𝑆𝑆(𝑥𝑥,𝑦𝑦), since we took inspiration from them to design our games. To this end, we 
can imagine a situation in which a verifier (V) has the goal of showing the truth of the statement while 
a falsifier (F) has the opposite goal of showing that it is false. F controls variable 𝑥𝑥 and V controls 
variable 𝑦𝑦. F starts the game by choosing a value 𝑥𝑥0 for the variable 𝑥𝑥 and then the turn moves to V, 
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who should find a value 𝑦𝑦0 for 𝑦𝑦 such that 𝑆𝑆(𝑥𝑥0,𝑦𝑦0) is true. In this game, F tries to create difficulties 
to V by choosing non-typical cases (such as extreme cases). According to Hintikka, the choice of 
the 𝑦𝑦0 by V is a reliable test of truth if the 𝑥𝑥0 chosen by F forces V to play in the worst-case scenarios. 
This game between V and F hence creates a dynamic interplay between them, paralleled by a 
dynamism at the cognitive level. Such dynamism is assumed to trigger students’ inquiring process 
and foster their understanding of the mathematical situation.  

Within DGEs, variables 𝑥𝑥 and 𝑦𝑦 are thought as base-points of geometric constructions. Since dragging 
preserves the critical attributes of robust constructions (Healy, 2000), by moving the base-points new 
configurations of the same robust shape can be explored. As it is well known from the literature, 
students tend to identify shapes with the prototypical examples representing the category (Rosch, 
1973), e.g they easily recognize figures when one of their sides is horizontal. Goldenberg and Mason 
(2008) underline the importance for students of dealing with many and different examples, since they 
are “a major means for ‘making contact’ with abstract ideas and a major means of mathematical 
communication” (p.184) and “the variation in examples can help learners distinguish essential from 
incidental features” (ibid.). Variation can also produce the enlargement of students’ personal example 
space (Watson & Mason, 2005), namely the “set of mathematical objects and construction techniques 
that a learner has access to as examples of a concept while working on a given task” (Sinclair, Watson, 
Zazkis & Mason, 2011, p.1). DGEs may facilitate students’ accessibility to non-prototypical 
examples, thanks to the dynamic exploration of the figures. Non-examples serve to clarify “the 
boundaries or necessary condition of a concept” and can play the role of counterexample if they are 
used to “show that a conjecture is false” (Watson & Mason, 2005, p. 65). If a geometric property is 
not robustly constructed, namely the construction does not retain the critical attributes of the 
properties, DGE offers the possibility to produce both examples and non-examples of the considered 
property.  

Generally, DGEs provide tools for computing an approximate value of the area of the constructed 
figures. If this value is made visible in the environment, dragging the base-points of a figure produces 
a double change: one within the figural register of representation and the other within the numerical 
one. Duval (2006) highlights two different operations with registers of representation, which he calls 
treatment and conversion. Both are fundamental for the understanding of mathematical concepts: 
treatments deal with transformations within the same register of representation, while conversions 
consider more than one register and the relationships between them. Revisiting Duval theory within 
DGEs, dragging of a robust figure can be interpreted as a treatment made within the figural register, 
while the coexistence of figural and numerical registers of representation may engage students to 
inquire their links by making conversions. 

Methodology 
Following a design-based perspective (DBRC, 2003), we carried out a teaching-experiment in two 
Italian 5th grade classrooms with the collaboration of their school teachers and of a master’s degree 
student. We designed a sequence of five DGE inquiring-game activities centered on area equivalence 
and on the area/perimeter relationship of quadrilaterals. In each activity, pairs of students are invited 
to play a game in DGE, and to answer to specific questions that guide the inquiry of the geometric 
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concepts. After all students write their answers to the questions, a classroom discussion is developed 
under the teacher’s guidance. Usually, two hours are dedicated for each inquiring-game activity 
(including discussion), for an amount of 10 hours. 

In this contribution we present a case study from the first activity, focusing on the area equivalence 
between rectangles and parallelograms. The inquiring game and the worksheets for students are 
presented below. In previous lessons, students have explored the area and perimeter of quadrilaterals 
using paper models (cutting and pasting) and in paper&pencil environment. The collected data consist 
of the audio and screen capture of one pair of students (that we will call Rose and Lily) during the 
DGE inquiring-game activity, the completed worksheets from all the pairs of students and the video-
recording of the classroom discussion. The collected data are analysed according to a semiotic 
multimodal approach to mathematics (Arzarello, Paola, Robutti & Sabena, 2009), which focuses on 
students’ speech, gestures, drawings and actions within the DGE. Through the produced signs it is 
possible to grasp how students discover and make sense of the geometric property on which the game 
is based. More precisely our interest is to explore the potentials and limits of the didactic design based 
on the double dynamicity provided by the game and by the DGE affordances, with respect to students’ 
geometrical reasoning in non-prototypical configurations. 

The inquiring-game activity on parallelogram-rectangle area equivalence  

The activity focuses on the relationship between the area of a rectangle and a parallelogram that share 
one side (named AB): the corresponding game starts from the configuration shown in Figure 1.  

 
Figure 1: The initial configuration of the parallelogram-rectangle game 

Both the parallelogram and the rectangle figures are robust constructions; by moving the free point 
A, it is possible to change the length of AB and rotate it around the fixed-point B (see Fig. 2a). This 
move changes also the values of the area of the figures, which are displayed on the screen. By moving 
point C, it is possible to drag the parallelogram and vary its area while the side AB remains fixed (see 
Fig. 2b). By dragging point E it is possible to vary the length of EB and the area of the rectangle 
ABEF. Since the figures share the same side AB, if the heights relative to AB are of the same measure 
the two figures are equivalent. A key-feature of the design is that this property is not constructed in a 
robust way, so to allow students to produce examples and non-examples of the property, through the 
verifier and falsifier’s moves. The dotted straight line (the extension of the side AB) is inserted to 
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help students to visualize the correct position of the height relative to AB of the parallelogram. All 
draggable points can be moved in either half-plane identified by the line.  

a) b) c) 

Figure 2: The effects of dragging point A, C and E 
The following table contains the English translation of the rules of the game:    

Within your pair, choose a verifier and a falsifier. 

- The falsifier can move point A or C, 
- The verifier moves point E. 

Each match is made of two moves and the first one is always made by the falsifier.  

GOALS: 

The goal of the verifier is to make Area EBEF equal to Area ABCD, while the goal of the falsifier is 
to prevent the verifier from reaching the goal. 

The player who reaches her/his goal at the end of the verifier’s move wins the match. 

Table 1: Rules of the parallelogram-rectangle game 

According to the rules of the game, the verifier and the falsifier play a semantical game on the 
following statement: ‘For all positions of point A and C there exists a position of point E such that 
Area ABEF is equal to Area ABCD’. The verifier can always win, by transforming any non-example 
of equivalent figure (i.e. rectangle non-equivalent to parallelogram, as in Figure 1) into an example 
of equivalent one (as shown in Figure 3). In agreement with the teacher we decided to round the area 
measure to the first decimal place.  

           
Figure 3: Examples of game configurations showing equivalent areas 
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The players’ moves produce a double simultaneous treatment: one in the figural register, since each 
figure is transformed into another one of the same category, and one in the numerical register since 
also area values change. The following inquiring questions are proposed to students: 

Answer these questions trying to use geometrical language: 
1. Consider the case in which the verifier is winning. Write here your observations. 
2. Explain why each time the verifier reaches the goal area ABEF is equal to area ABCD. 
3. While playing, have you ever found a situation in which the two areas are zero? If not, play a new 

match to get it and describe what happened to the figures. If you like, make a drawing. 

Table 2: Questions proposed to students 
The guiding questions are meant to shift students’ attention from the game to the geometric properties 
on which the game is based. Through the first one we collect students’ observations, without giving 
them any hint. The second question focuses on area equivalence, that is the geometric property on 
which the game is based. It is meant to know whether students are able to convert the results observed 
in the figural and in the numerical registers using the known geometric properties. More precisely, 
students can provide two mathematically correct explanations: the first relies on the geometric 
interpretation of the area formula, the second one is made by showing that the two figures are made 
by the same congruent polygons (decomposition). Primary students are not expected to completely 
justify the congruence of the figures in a rigorous way, but chunks of arguments are expected to 
emerge. Finally, the last question requires students to produce a degenerate configuration and is meant 
both to investigate their conceptions of these cases, and to foster geometrical reasoning in non-
prototypical configurations. 

Data analysis 
We report about Rose and Lily’s inquiry in the game and in answering the worksheet questions. 
According to the teacher, they are medium-level students; Rose is reflective and her mathematical 
knowledge is a little bit higher then Lily, who is less reflective and is smarter in more practical 
activities. They play the game for about 40 minutes and then they turn to answer the worksheet 
questions. During the game it happens that Lily wins all the matches both when she plays the verifier’s 
role and when she plays the falsifier’s. While playing as falsifier, Lily produces non-prototypical 
configurations (very big and stretched or very small, see as examples matches 3 and 4 reported in Fig. 
4) in which it is very difficult for the verifier reaching the goal (sometimes it is impossible for 
approximation reasons).  

Figure 4: Falsifier ‘winning’ configuration (3rd and 4th matches in Rose and Lily’s game) 

3rd match 4th match 

    
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0,5 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 14,1 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0,5 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0,1 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 62,4 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0,1 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 62,4 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 54,4 
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While playing the verifier’s role, Rose notices that her defeats depend on technical aspects of the 
DGE, namely on the fact that after zooming out many times area measures are expressed by quite big 
number, even if the figures look as big as usual (see Fig. 4). In this condition, a little dragging 
produces a huge variation in the numerical values and it is very difficult for the verifier to win. 
Students’ first observations relate to tool affordances rather than geometric properties. They do not 
even call the figures with their names until the researcher (who is videotaping them, first author) asks 
them to do it. In doing so, Rose immediately answers correctly, but Lily needs to drag the 
configuration and to produce prototypical examples of rectangle and parallelogram. From this 
moment on, Lily and Rose focus on geometrical features. We report an excerpt in which students are 
discussing the configuration contained in Fig. 5a: 

1. Lily: This (pointing to the parallelogram in Fig. 5a) is bigger than this (pointing to the 
rectangle in Fig. 5a) but they have the same area 

2. Rose: You mean that it has a bigger shape? 

3. Lily: Yes, but they have the same area, they are equivalent with different measures. 

4. Rose: With different sizes. And why do you believe it happens? 

5. Lily: I have no idea… Or maybe here it’s called area, but it means the perimeter… no 
it’s impossible… 

6. Rose: But Lily, if you look at this side here, the one overlapped (pointing to AB), it is 
equal to this side here (pointing to CD), but this is slopped. This one (pointing to 
EF) is equal to this one (AB) and this one (CD). Do you think that this height (with 
her finger on the screen, she is tracing the height relative to AB of the 
parallelogram, from C to the dotted line) is equal to this one (pointing to AF)? 

 a)  

 b)  

Figure 5: Configurations discussed by Lily and Rose 

Lily and Rose highlight a perceptual problem that creates a contradiction: the parallelogram looks 
bigger than the rectangle and this perceptual observation collides with the fact that they have 
equivalent areas (lines 1-3). Namely, Lily and Rose observe a contradiction between the figural and 
the numerical registers (Duval, 2006) due to a visualization problem. In order to solve the 
contradiction, Rose relies on the algebraic formulas of the areas, which she interprets geometrically 
on the figures (see her words and gestures in line 6, Fig. 5). 

Being the figures in opposite half-planes, it is difficult to visually compare their heights relative to 
AB (see Rose’s last question, line 6). Hence, the researcher suggests considering configurations in 
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which both figures are in the same half-plane. Following the researcher’s suggestion, the students 
make a treatment in the figural register and discuss the configuration shown in Fig. 5b: 

7. Rose: What does it happen? This one (pointing to the rectangle), the rectangle… 

8. Lily: Is the half of the other [the parallelogram] 

9. Rose: How is it possible? If we put this triangle (pointing to BCE) here (pointing to 
ADF), we make the whole rectangle. Instead here we have only a piece of 
parallelogram (moving her finger on BE). This triangle which lies outside 
(pointing to ADF) is this triangle (pointing to BCE)! Do you understand, Lily? 

When looking at Fig. 5b, Rose does not continue in discussing the heights relative to AB, rather she 
observes that areas are equivalent since they may be obtained by the same congruent polygons (line 
9). The imagined treatment in the figural register, based on decomposing and rearranging the figures, 
allows Rose solving the previous contradiction between the numerical and the figural register. In this 
way, she avoids referring to the parallelogram height relative to AB, which is not drawn and is not 
perceptually easy to seize (because the figure is slanted) nor to compare with the rectangle height. 
Having shown the equivalence of the figures, Rose moves back to the previous height observation 
and concludes that “if the area is the same then heights should be equal”. 

Conclusion 
As highlighted in the analysis, it took time for the videotaped students to start a geometric discussion 
of the game and the researcher had to prompt it through some questions. Anyway, the provided chunk 
of argumentations revealed that the design worked well: the students made sense of the equivalence 
between parallelogram and rectangle with arguments that exploited both the areas’ formulas and the 
decomposition of the figures into congruent polygons. 

While playing, students produced non-prototypical examples of parallelograms and rectangles. The 
non-prototypicalities can be related to different aspects: the figures orientation (the produced 
configurations do not have the base in a horizontal position); the figures size (the explored area values 
are very big or very small non-integers); the figures proportions (the produced configurations are 
stretched and the ratio between their sides is unusual). Moreover, a second order of non-
prototypicalities should be considered. It refers to configurations of parallelogram-rectangle 
equivalence in which the figures belong to opposite half-plane (with respect to line AB) or in which 
the height of the parallelogram referred to side AB lies on the extension of AB. In these cases, it is 
more difficult or even impossible for students to imagine the decomposition and rearrangement of the 
showed figures into each other.  

Some non-prototypicalities were not considered in the design and they actually did not help students 
in linking the game situation and the mathematical property at stake. Rose and Lily do not perceive 
that the parallelogram is equivalent to the rectangle in a case of second order non-prototypicality: the 
parallelogram, which was not overlapped by the rectangle, looks bigger than the rectangle (lines 1-
3). On a design-based perspective, this result will be considered in the second cycle of 
experimentation.  
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The exploration of non-prototypical configurations is the effect of the double dynamicity 
characterizing the inquiring-game activity, namely the one provided by the verifier/falsifier game and 
the one given by the DGE affordances. Implications of this double dynamicity seem promising with 
respect of developing students’ critical thinking and argumentation competences.  
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Introduction 
According to some authors, the graphing calculator facilitates the students' ability to reflect and 
generalize, when involved in performing exploratory tasks, leading them to the construction of 
mathematical knowledge (Doorman, Drijvers, Dekker, Heuvel-Panhuizen, Lange e Wijers, 2007). 
We present the resolution of the task: "My hand", with the graphing calculator, whose purpose was 
to consolidate the concept of function and to understand when a cartesian graph corresponds to the 
representation of a function. On the other hand, looking at the artifact, the graphing calculator, as a 
instrument of semiotic mediation, we intend to analyze how the transition from personal meanings to 
mathematical meanings (Mariotti, 2018) was developed, in the resolution of the task. 

Theoretical Framework 
The use of an artifact in solving a mathematical task can provide the emergence of pre-existing student 
knowledge, which relates to the mathematical knowledge essential to the teaching-learning activity. 
The teacher can intentionally exploit the semiotic potential of an artifact that translates into the facility 
that the artifact possesses in associating mathematical meanings evoked by its use, culturally 
determined, with personal meanings that each subject develops in its use (instrumented activity) in 
the completion of specific tasks. In this way, the process of semiotic mediation is developed around 
the notion of the semiotic potential of an artifact and a didactic cycle (Mariotti, 2012, 2018). 

Methodology 
This study is framed in a broader qualitative research, following an interpretative approach. The 
experiment was conducted in the school year of 2016/17, in a class of the 7th grade, with 29 students. 
In this poster we present the performance of two students, Berta and Maria. The techniques used to 
collect the data were based on students’ written reports, direct observation of the researcher, images 
of the graphic representations of the graphing calculator screens and logbook (Creswell, 2012). 
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The task presented to the students: "My hand" 
The task consisted in drawing the outline of a hand using paper and pencil, in a cartesian referential 
and placing points at choise. The first point had to be equal to the last point, for the line to be closed. 
Subsequently, each student represented in the graphing calculator, the polygonal line that had as 
vertices the coordinates of the chosen points. The students had to justify whether the visualized 
representation was a function and to conclude under what conditions a cartesian graph represents a 
function. Previously, the students had learned the concept of function and the representation of a 
function through diagram of arrows and tables. The students individually performed the task with the 
artifact, the graphing calculator. Afterwards, the individual productions were analyzed, and the 
collective discussion, managed by the teacher, was developed, promoting the evolution of students' 
personal meanings towards mathematical meanings (Mariotti, 2018). 

Analysis of Results 
The graphing calculator, allowed them to visualize another form of representing a function, its 
graphical representation. The semiotic potential of the graphing calculator, inherent in the 
visualization capacity and dragging technique (Mariotti, 2012), as well as the collective discussion, 
fostered the emergence of personal meanings related to mathematical meanings. The student Maria 
showed evidence that she had mobilized mathematical knowledge learned previously. The personal 
meanings that arose were related to mathematical meanings learned earlier. 

The student Berta showed a certain difficulty in distinguishing the difference between object and 
image, as well as formally constructing the concept of function. However, these aspects "seem to us" 
to have been filled with the collective discussion and the insistent orchestration of the teacher. In the 
poster, the results will be presented in detail. 

Conclusion 
When learning takes place in the social environment of the classroom, in which individual 
productions are promoted, resulting from the accomplishment of tasks, using the graphic calculator 
and later collective discussion, orchestrated by the teacher, it can generate a greater ease in the 
transition from personal meanings to mathematical meanings. 
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Research overview 
The focus of this work is to build a learning environment, making it possible to learn about paths 
and homotopies without the use of formalism. Here, learning environment means a microworld 
given through a software in the sense of Papert (Papert, 1987). To help achieve this goal I have 
developed Ariadne, a software tool for the visualization of and interaction with paths. These paths 
can be constructed on a wide variety of surfaces, from the plane to manifolds of arbitrary genus, and 
punctured versions thereof. A more detailed account of Ariadne‘s capabilities is given in 
(Sümmermann, 2019). 

Figure 1: The Pochhammer Contour, a non-nullhomotopic green path starting and ending at the 
magenta dot with winding number zero around both black punctures, constructed in Ariadne. 

Topology in general is not present in the school curriculum, which limits the extent of research in 
the field of topology education. It is, however, a very important part of modern mathematics, so 
there have been some attempts to visualize topology, either without (Strohecker, 1996; Sugarman, 
2014) or with software (Culler, Dunfield, Goerner, & Weeks, n.d.; Scharein, 1998). There has been 
no attempt to implement interactive continuous deformations as represented by homotopies, which 
is the focus of Ariadne. It also follows a different approach didactically, as its purpose is not only to 
visualize concepts already known to the user, but to teach the user these concepts by letting him 
interact with the visualization. The theoretical framework behind the design of Ariadne is based on 
the design principles of Devlin, 2013 and the Artefact Centric Activity Theory from (Ladel & 
Kortenkamp, 2013). 
Ariadne is split into a two- and a three-dimensional mode. Both are usable on any touchscreen 
device, such as tablet-PCs or smartphones. In 2D, the user can construct points, paths and 
homotopies of paths on the plane with an arbitrary number of punctures, as well as compute the 
winding number around these punctures. This allows the user to tackle questions on the existence 
and equivalence of paths, and thus the treatment of the fundamental group. The same can be done 
for closed orientable surfaces of genus g in three-dimensional mode. 
For the 3D-mode, a mixed reality environment is implemented. This mode facilitates the interaction 
with two-dimensional surfaces in three-dimensional space, such as the sphere or the torus, and thus 
alleviates handling issues inherent to the two-dimensional touchscreen. The three-dimensional 
mode also allows the construction of paths on the universal cover of the chosen surface, which is for 
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most surfaces the hyperbolic plane. Ariadne is being evaluated through individual interviews with 
students from all age groups, in which they are being posed questions to assess their understanding 
of the used concepts. Further research directions are a didactical analysis of the topological notions 
involved in Ariadne to ensure that the answer quality is representative for the understanding of the 
content, planned to be implemented as a qualitative empirical study with mathematicians. The 
questions can then be refined based on this analysis.  

Poster contents 
The poster contains a short summary of the mathematical objects involved using some formulas and 
pictures, so it is clear what mathematics are conveyed with Ariadne. This is by no means 
exhaustive, but intends to sensitize the audience to the subtleties of the concepts involved. In the 
center of the poster is a tablet-PC, which the conference participants can use to test Ariadne for 
themselves. Another part of the poster is a list of sample questions which can be answered with the 
help of Ariadne, as a demonstration of Ariadne’s capabilities. The last part is a short overview on 
the technicalities of the program for those interested in the mechanisms of action behind Ariadne. 
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In this paper, we report on a research study that aims to understand the ways students transit between 
the simulation of real phenomenon and the mathematical representation, as the modelling activities 
are introduced by dynamic digital artefacts. The study took place in a high school in Turin, in which 
9th grade students were introduced to the quadratic function through a task to be accomplished with 
the use of a dynamic digital simulation of a rolling ball on an inclined plane - the Galileo experiment. 
The semiotic mediation approach guided this study to carefully analyze the modelling activity, 
enhanced by the use of the digital artefact, in terms of meanings that evolve. Our results identify the 
signs which refer to the simulation of the real phenomenon and those which refer to the mathematical 
representation and bring to the fore the evolution from the artefact signs to the mathematical signs.   
Keywords: Modelling activity, digital artefacts, semiotic mediation, signs, quadratic function.   

Introduction 
Mathematical modelling (the process of translating between the real world and mathematics in both 
directions) is one of the topics in mathematics education that has been discussed and propagated most 
intensely during the last few decades (Kaiser, 2014). Mathematical modelling is now a compulsory 
part of the mathematics curriculum in many countries worldwide and one of the main skills within 
international educational standards. Over the last two decades, a considerable variety of models 
(Borromeo Ferri, 2006) that explain the interplay between the real phenomena and the mathematical 
representations have emerged and processed (e.g. Blomhøj & Jensen, 2003; Blum & Leiß, 2007; 
Voskoglou, 2007). Despite the differences between the variety of models, the transition from the real 
phenomenon to the mathematical world is considered to be a common point among them. For 
example, to model this transition, Blum and Leiß (2007) distinguished between the mathematical 
world and the rest of the world. The transition from the real model to the mathematical model happens 
through a mathematising process, while the transition from the mathematical world to the real results 
happens through an interpreting process (Figure 1, taken from Blum & Leiß, 2007). These two 
processes are complex and require careful analysis in order to avoid useless oversimplification (Blum, 
2011). This complexity is also valid when the real phenomenon is simulated by digital artefacts which 
connect the real phenomenon with mathematical representation. Digital artefacts are widely used to 
design and develop modelling activities, especially, to simulate complex real phenomena. Digital 
artefacts, indeed, allow linking multiple representations simultaneously. With their use, data 
concerning the real phenomena can be precisely displayed and mathematically interpreted. In the 
context of using digital artefacts, modelling activities are designed by using several kind of signs that 
are embedded in the artefact. Some of these signs are iconic (they have a great similarity with the real 
object), others are symbolic (they have a meaning in a specific culture). Bridging the gap between the 
iconic and symbolic signs is a serious challenge and should be taken into account (Arzarello & 
Sabena, 2011). Therefore, in addition to the traditional complexities of the transition between the real 
phenomenon and the mathematical one, the affordances and constraints of the digital artefacts, and 
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the design principles of the tasks, should be taken into account when analyzing the learning processes 
of modelling activities (Naftaliev, 2017). 

Herein, we assume that the construction of mathematical meanings throughout a modelling activity 
can be achieved through the mediation of dynamic digital artefacts. Moreover, we believe that the 
semiotic mediation approach could provide a suitable framework to carefully analyze the transition 
between the real world and the mathematical representations, identifying the evolution of personal 
meanings, emerging through the modelling activity, towards mathematical meanings, which are the 
objectives of the teaching intervention. In this paper, we will report on a research study that aims to 
understand the ways students transit between the simulation of real phenomenon and the 
mathematical representation, as the modelling activity is introduced by a dynamic digital artefact. We 
exemplify our approach by analyzing a teaching experiment concerning the quadratic function. For 
this purpose, we describe a designed and implemented modelling activity, which is based on the 
simulation of a rolling ball over an inclined plane – Galileo experiment – through the use of a dynamic 
digital artefact. We have chosen the Galileo experiment because the mathematical model of the spaces 
traversed by the ball is quadratic. We have chosen to simulate the real phenomenon using a dynamic 
digital artefact because it has the potentiality to precisely display the mathematical representation of 
the model and the real phenomenon using multiple-linked representations. The teaching experiment 
has been analyzed with the aim of revealing how the use of the digital artefact contributes to the 
construction of mathematical meanings, and to show how the semiotic mediation approach may help 
us to shed some light on the students’ twofold transition between the real world and the mathematical 
world. 
           
  

Figure 1: The Blum’s modelling model (Blum & 
Leiß, 2007) 

Figure 2: The semiotic mediation approach 

Theoretical Framework - Semiotic Mediation Approach 

In the context of using artefacts, Bartolini Bussi and Mariotti (2008) have modelled learning process 
by taking advantage of the potential of artefacts. The model aims to describe how meanings related 
to the use of a certain artefact can evolve into meanings recognizable as mathematical. The semiotic 
mediation approach assumes that social interaction and semiotic processes play a key role in learning, 
particularly in situation in which learners are encouraged to use the artefact in order to solve a given 
task. This approach considers learning to be an alignment between the personal meanings arising 
from the use of a certain artefact for the accomplishment of a task and the mathematical meanings 
that are deployed in the artefact. The relationship that the artefact has with the personal meanings 
emerging from its use and the mathematical meanings that might be evoked by such use is described 
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as a double semiotic relationship and defines the semiotic potential of the artefact. On one hand, we 
concentrate on the use of the artefact to accomplish a task, recognizing the construction of knowledge 
within the solution of the task. On the other hand, we analyze the use of the artefact, distinguishing 
between the construction of the personal meanings arising in individuals from their use of the artefact 
in accomplishing the task (top part of Figure 2) and the mathematical meanings; meanings that an 
expert recognizes as mathematical (bottom part of Figure 2) when observing the students’ use of the 
artefact in order to complete the task (left triangle in Figure 2). Personal meanings emerging from the 
activities carried out with an artefact may evolve into mathematical meanings, objectives of the 
teaching intervention.  This evolution can occur in the peer interaction during the accomplishment of 
the task and in the collective discussions conducted by the teacher. In this long and complex 
construction process of shared mathematical meanings, it is possible to identify evolution paths 
(called semiotic chains) which are described by the appearance and enchainment of different types of 
signs: artefact signs, mathematical signs and pivot signs. The artefact signs refer to the artefact and 
its use, are produced through the social use of the artefact (upper right vertex in Figure 2) and may 
evolve into signs (called mathematical sign) that refer to the mathematics context. The mathematical 
signs are related to the mathematical meanings shared in the institution to which the classroom 
belongs (right side of Figure 2). Through a complex process of evolution of the artefact sign into a 
mathematical sign, other types of signs, which Bartolini Bussi and Mariotti called pivot signs, play a 
crucial role. The authors suggest that the characteristic of these signs is their shared polysemy: the 
pivot signs with their hybrid nature, both referring to the use of the artefact and to the mathematical 
domain, are characterized by their function in the evolution process, fostering the move from artefact 
to mathematical signs with their intrinsic ambiguity. An a-priori analysis of the semiotic potential of 
the artefact with respect to the given task has a double role: it can help the teacher in her important 
role to foster the evolution of signs during the class discussion; it can also be the basis on which 
researchers can identify students’ construction of meanings through the evolution of signs. 

Method 
Setting and procedure of the teaching experiment 

The study took place in a high school in Turin (Italy), in which a senior teacher introduces the Galileo 
experiment with her eighteen 9th grade students. A short introduction to the activity and its design 
principles were previously given to the teacher. The teacher was followed by the researchers as she 
taught one lesson of 1.5 hour. In order to introduce the students to the chosen topic, a short video clip 
(Inclined plane experiment) concerning the Galileo experiment about a ball rolling on an inclined 
plane is provided, and students were asked, before the lesson, to watch the video at their home, to 
observe and make conjectures concerning what they have observed. The students were initially 
required to work in small (triads or four students) groups, sharing a worksheet containing the task and 
a computer for the simulation of the Galileo experiment. The teacher walked around and interacted 
with the students, when she believed it was needed. As soon as the students accomplished the task in 
the small groups, the teacher conducted a general discussion with the whole class.  
Task given to the students and a-priori analysis of the semiotic potential  

The design principles of the tasks are motivated by mathematical modelling approach and by the 
choice to exploit the potential of digital artefacts. The task presents a simulation of the real world 
phenomenon and, through the use of a dynamic digital artefact, offers mathematical representations 
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of the dynamic aspects of the phenomenon to be analyzed. The main idea of the design is to create 
different situations by varying some aspects of the phenomenon while keeping the others invariant. 
Figure 3 shows the written modelling task given to the students. It blends the simulation of the rolling 
ball on the inclined plane with the numerical representation. At the beginning of the lesson the task 
was given to the students requesting them to explore the mathematical model through the dynamic 
digital artefact (Figure 3). In the default situation of the simulation, the inclination plane angle is 
invariant, while the spaces traversed by the ball, when the “Start” button is clicked, vary as the time 
elapsed. Then, according to the task, students are asked to conjecture and then verify how the plane 
inclination affects the ball movement and the mathematical model. This can be done, in particular, 
focusing on the differences of the distance and looking for the equation that describes the movement. 
These insights may lead the students to grasp the intended object of learning, namely, the quadratic 
function and its properties.  

 
Figure 3: The Galileo experiment task 

An a-priory analysis of the semiotic potential of the artefact with respect to the given task (Tab. 1) is 
fundamental in order to identify the appearance and evolution of signs during the teaching-learning 
activity, as it describes what is expected to emerge in the classroom. 

Table 1: The semiotic potential of the artefact with respect to the task 

Mathematical meanings Semiotic potential 

- The table represents a 
correlation between two sets of 
values (time vs distance).  
- The third column represents the 
differences between the distances. 
- The differences between two 
consecutive differences in the 
third column are constant.   
- The model of spaces traversed 
by the ball is a quadratic function 
of the form s(t) = at2. 

- When clicking on the start button, the ball rolls down on the plane 
and the table is filled: this may evoke the idea that there is a 
correlation between the time and the spaces traversed by the ball 
and that there is also a constant correlation between two 
consecutive differences in the third column. 

- When changing the angle, the values in the second column (except 
for the last), the last value in the first column, and the values in the 
third column change as well, but the differences between two 
consecutive values always remain constant: this may evoke the idea 
that the inclination affects the ball’s movement and that the model 
of the spaces traversed by the ball is a quadratic function. 
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Data collection and method of analysis 

To collect the data, the learning experiment was entirely video recorded. The students and their 
actions on the computers were captured. The collective discussion conducted by the teacher, after the 
students completed the task, was video recorded as well. Segments of the recorded clips of the 
students’ transition between the real-world phenomena and the mathematical representation were 
identified and analyzed at a macro level according to the Blum’s model. Thereafter, to have an in-
depth insight into the learning processes, a micro level analysis was done using the semiotic mediation 
approach. At this level, the artefact signs and pivot signs used in the transition processes were 
identified and their evolution toward mathematical meanings were also considered and analyzed. In 
particular, the analysis was developed with the aim to identify semiotic chains in order to reveal the 
unfolding of the semiotic potential of the artefact throughout the modelling activity and the collective 
discussion. 

Results and discussion 
Herein we present results coming from the students’ interactions in one of the small working groups 
and from the subsequent whole class discussion conducted by the teacher. 

As students were asked to see the Galileo experiment clip at home, when the first lesson starts they 
already have their own personal conjectures on the phenomenon. According to the task, they are asked 
to explore if and how the change of the plane inclination may affect the ball movement, to share their 
hypotheses and verify them. According to the observations done at home, they agree on the hypothesis 
that the more the plane is inclined the faster the ball moves. In order to verify their conjecture, they 
use the provided digital artefact and take notes of the values of the spaces traversed as the time 
elapses. That was obtained when they started the simulation with the given (24°) inclination plane 
angle. They realize that the difference between two consecutive numbers in the third column is always 
4. Then, they change the angle to 40° and realize that the numbers in the third column are the 
differences between the corresponding two consecutive numbers in the second column. They take 
note of the values and change the angle to 45°. At this point, they are watching the first value in the 
second column and, while the others are comparing it with the one obtained before, one of the 
students, A., observes that: 

00.26.27     A.: Yes, true, look, I told you that in one second it [the ball] always makes more 
distance.  

But it seems that this observation is not useful for them to look for the relation among the variables - 
time and distance - so A. focuses on the last row and then a pressure of speeches and gestures follows: 

00.26.51     A.: Here [pointing to the last number in the first column], if you see, instead of 
being 5.8, it’s 5.5… changes… it is faster. 

00.27.07     B.: Yes, true, because… 
00.27.08     C.: The more it is inclined [she moves her hands in the collective space in front 

of the screen: the left hand, raised with the palm facing up, would represent 
the final point they are focusing on and the right hand, waved up and down, 
would represent the increasing of the plane inclination], the faster it [the ball] 
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is... than this here [pointing on the screen and on the paper on which they 
have copied the data before]. 

 00.27.12     B.: The distances increase but this last datum [pointing on the last difference on 
screen] is not useful for us because it [the ball] arrives down before… let’s 
try 50°. 

Finally, when the angle is 50°, as the last number they find in the first column is smaller, they are 
convinced they have verified their hypothesis and then start writing their shared conclusion: 
“increasing the plane inclination and keeping the same time, distances increase and the ball moves 
faster if the plane is more inclined; the example shows that to reach the same final distance, 108, if 
the plane  inclination is 40° it takes 5.8 seconds, if the plane  inclination is 45° it takes 5.5 seconds”. 
In the students’ interaction described above it is clear how they are trying to interpret the artefact 
signs, obtained when accomplishing the task with the digital artefact, in order to give meanings to 
them in terms of the situation under study. In the following part of the lesson they attempt to find the 
way to mathematically express the relationship which describes the ball movement. They recognize 
that the graph of the distances, as times elapsed, cannot be modelled by a straight line. The work at 
this point is stopped by the teacher who decides to start the whole class discussion. 

At a macro level, it is worth noting how in this initial phase of the activity students’ discourses move 
from the real world to the mathematical world. As a matter of fact, the teacher then needs only four 
minutes to summarize the situation. And when she asks if there is something that changes when 
passing from the video clip to the digital artefact the students immediately, and with judgment, answer 
negatively. The students’ answer reveals that the students consider the artefact as a mean for verifying 
the conjecture raised when they watched the clip. At this point, it is not clear what is the added value 
of the digital artefact in constructing meanings. However, the micro level analysis, as we will present 
below, highlights the specific contribution of the artefact in the process of the construction of 
meanings. 

A micro level semiotic analysis, indeed, reveals how through the use of the digital artefact during the 
transition phase of the modelling activity, the signs emerge and evolve. The word “faster” referring 
to the ball when the inclination is increased, for instance, is a pivot sign which evokes, on the one 
hand the increasing of the numbers in the second column, on the other hand the decreasing of the last 
number in the first column, which represents the time needed to traverse the distance until the arrival, 
“to reach the same final distance”. 

Hereinafter, the teacher (T.) conducts the class discussion with the aim of focusing on identifying the 
variables to be used to describe the situation: 

01.00.20     A.: If when you incline the plan you increase the time… you take less time… the 
ball takes less time to traverse that distance… 

01.00.34     T.: the ball takes less time to traverse that distance...  
01.00.36     A.: the same distance, but as the plane is more inclined, the ball is faster. 
01.00.42     T.: ok, so, to the same distance… [she use her hands making an iconic gesture to 

represent a given quantity for the distance]. 
01.00.48     A.: but time is smaller. 
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01.00.49     T.: Time is smaller [she moves on her right as to represent a shifting on 
something else, namely what changes in the time] And the same time?  

01.00.52     A.: the distance… the distance is bigger.  
01.00.58     T.: the distance is bigger... 
01.02.20     T.: How can we read the table? 
01.02.25     D.: when the time is 1 the space is 2.13, when the time is 2 the space is 8.51 and 

so in a given time the ball traverses a given space.  
01.02.58     T.: and this space always increases more… as it happens in the video… and so 

how can I write a relation between this space and the time? Is it a line? 
01.03.25     E.: No. Because otherwise it would have had all the same differences.  
01.03.26     T.: and here?  
01.03.27     E.: And here the differences are not the same.  

From the modelling point of view, it is evident here that A. is trying to figure out what he has observed 
varying the inclination of the plane using the digital artefact in terms of movement of the ball. He is 
in the transition phase from the mathematical world to the real world. However, A. and his classmates 
still need to understand how to mathematically express the movement of the ball. The request to 
interpret the table, and to express the relationship between the time and the distances, allows them to 
focus on the third column, namely on the differences between the distances. 

A semiotic analysis of the episode reveals some more details of the learning processes. Worthy of 
note is, for instance the semiotic chain in Figure 4 (identified in the transcript above) which highlights 
the unfolding of the semiotic potential of the digital artefact, through the emergence and enchainment 
of signs, and will bring to the quadratic function.  

 

The ball takes less time → The ball is faster → The time is smaller ↓ 

The differences are 
not the same 

← The space always 
increase more 

← The distance is bigger ← 

Figure 4: An identified semiotic chain  

While students face the real world situation accomplishing the task through the mediation of the 
digital artefact, indeed, the signs they use are evolving. The focus on the difference of the distances 
would allow them later on to conjecture that the spaces traversed are proportional to the squares of 
the times according to a factor which depends on the inclination of the plane. 

Final remarks  
Literature about modelling mainly focuses on the transition between the real world and the 
mathematical world. However, in our view, the way students move throughout the transition is not 
sufficiently addressed. This study attempts to deeply focus on the transition processes between the 
real and the mathematical worlds. Although these transitions are crucial in order to understand the 
overall modelling process, we believe that they are challenging and need a detailed analysis. Our 
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results suggest that a macro level analysis, based on the Blum’s model, is not sufficient to reveal the 
contribution of technology in modelling activities. However, a semiotic micro level analysis can bring 
to the fore the role of the digital artefact in the complex students’ transition processes. The semiotic 
mediation approach, indeed, helped us to highlight the complexity of the evolution from the artefact 
signs to the mathematical signs. In this evolution process the students used a variety of signs, some 
of them refer to the real phenomena while the others refer to the mathematical representation. Through 
this process the students also produce pivot signs which have a polysemy of meanings, namely they 
may refer both to the real situation and at the same time to the mathematical representation. Revealing 
the evolution of signs has not only a theoretical importance but also a practical one: the semiotic chain 
which bridges the gap between the real situation and the mathematical representation, indeed, can 
help teachers in their mediating process of the students’ learning. This happened, for instance, in the 
episode we analyzed when the teacher fostered A.’s thought and signs to emerge and to be shared. In 
this way she guided the class to move from considering the final “real” effect - the ball is faster - to 
focusing on the distances (traversed) and the “mathematical” information given by their differences.  
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Understanding the structure of the hypothesis testing procedure is challenging for many first-year 
university students. In this paper we investigate how providing automated feedback in an Intelligent 
Tutoring System can help students in an introductory university statistics course. Students in an 
experimental group (N=154) received elaborate feedback on errors in the structure of hypothesis 
tests in six homework tasks, while students in a control group (N=145) received verification feedback 
only. Effects of feedback type on student behavior were measured by comparing the number of tasks 
tried, the number of tasks solved and the number of errors in the structure of hypothesis tests between 
groups. Results show that the elaborate feedback did stimulate students to solve more tasks and make 
fewer errors than verification feedback only. This suggests that the elaborate feedback contributes to 
students’ understanding of the structure of the hypothesis testing procedure.  

Keywords: Intelligent tutoring systems, domain reasoner, hypothesis testing, statistics education. 

Introduction 
Hypothesis testing is widely used in scientific research and is therefore covered in most introductory 
statistics courses in higher education (Carver et al., 2016). This topic is challenging for many students, 
due to the large number of complex concepts involved (Castro Sotos, Vanhoof, Van den Noortgate, 
& Onghena, 2007). Students struggle to understand the logic of hypothesis testing and the role and 
interdependence of the concepts in the testing procedure (Vallecillos, 1999). Appropriate feedback 
might support students in comprehending this structure and understanding the line of argumentation 
in hypothesis tests (Garfield et al., 2008). Since group sizes in introductory statistics courses are often 
large, automated feedback in an online system seems a promising direction.  

Carrying out a hypothesis test requires several steps, which have to be performed in a particular order. 
To address the structure of hypothesis tests, feedback should address all aspects of a solution: not 
only the content of individual steps, but also the relations between steps. An Intelligent Tutoring 
System (ITS) can provide such sophisticated feedback on the level of steps and can provide detailed 
diagnostics of student errors (Nwana, 1990). Such feedback on the step level is generally more 
effective than feedback on the level of complete solutions (VanLehn, 2011).  

Although ITSs vary considerably in design, they generally contain the following four components: 
an expert knowledge module, a student model module, a tutoring module, and a user interface module 
(Nwana, 1990). Of these four, the expert knowledge module is the most domain-dependent. It 
contains information about exercises that students can solve in the ITS and about domain knowledge 
required to solve these exercises (Heeren & Jeuring, 2014), and is therefore also referred to as domain 
reasoner. Two important paradigms for constructing domain reasoners are model-tracing, in which 
the ITS checks that a student follows the rules of a model solution, and constraint-based modeling, in 
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which the ITS checks whether a student violates constraints. There exist ITSs that support hypothesis 
testing based on either of these approaches (Kodaganallur, Weitz, & Rosenthal, 2005). We combined 
the two paradigms in a single ITS supporting hypothesis tests, and in this paper we evaluate the 
feedback by this ITS. The research question guiding this evaluation is: does the feedback provided 
by the ITS contribute to student proficiency in producing well-structured hypothesis tests? Before 
describing the design of the ITS and the study design, we briefly discuss the two paradigms; for a 
more extensive overview, see the work of Kodaganallur and colleagues (2005).  

Model-tracing 

The model-tracing paradigm concentrates on the solution process. The domain reasoner contains a 
set of expert rules: rules that an expert would apply to construct solutions to exercises in the domain. 
It can also contain buggy rules: incorrect rules that arise from incorrect domain knowledge. Finally, 
the domain reasoner contains a model tracer that can identify which expert and buggy rules a student 
has applied to arrive at a (partial) solution. After this identification, several actions can take place. If 
a buggy rule is recognized, a diagnosis of the student’s error can be given. Otherwise, a hint for a 
next step can be provided, or just feedback that the current solution path is correct.  

Constraint-based modeling 

Constraint-based modeling concentrates on partial solutions, rather than on the solution process. The 
underlying idea is that incorrect knowledge emerges as inconsistencies in students’ partial solutions 
(Mitrovic, Mayo, Suraweera, & Martin, 2001). Domain knowledge is represented as a set of 
constraints, consisting of a relevance condition and a satisfaction condition. For instance, in the 
domain of hypothesis testing a relevance condition might be that the partial solution contains an 
alternative hypothesis and a rejection region, and the corresponding satisfaction condition that the 
position of the rejection region (left side, right side or two sides) matches with the sign of the 
alternative hypothesis. Errors in student solutions emerge as violated constraints, that is, as constraints 
for which the relevance condition is satisfied, but the satisfaction condition is not. If a student’s 
solution does not violate any constraint, it is diagnosed as a correct (partial) solution.  

Methods 
Design of the domain reasoner 

The technical design of the domain reasoner evaluated in this study is based on the Ideas framework 
(Heeren & Jeuring, 2014), which uses a model-tracing approach to calculate feedback. However, for 
the domain of hypothesis testing the constraint-based modeling approach was also considered useful, 
because of its capability to identify inconsistencies in solution structures. Addressing these 
inconsistencies might contribute to student understanding of the relations between steps, and hence 
of the structure of hypothesis tests. Therefore, the domain reasoner designed in this study combines 
elements of the two paradigms. It contains 36 expert rules, 16 buggy rules, and 49 constraints. Every 
time a student adds a step to a hypothesis testing procedure, for example defines an alternative 
hypothesis or calculates the value of the test statistic, the domain reasoner checks the student’s 
solution so far. First, all constraints are checked, and if one is violated, the domain reasoner 
determines whether a buggy rule was applied. If so, a specific feedback message corresponding to 
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this buggy rule is displayed to the student, and otherwise a general message for the violated constraint 
is reported. For example, a student solution that does not contain an alternative hypothesis, but does 
contain a rejection region, violates the constraint with relevance condition “the solution contains a 
rejection region” and satisfaction condition “the solution contains an alternative hypothesis”. The 
corresponding feedback message addresses the role of the hypotheses: “To which hypotheses does 
this rejection region correspond? First state hypotheses”. 

If no constraints are violated, the domain reasoner tries to identify the rule the student applied to 
arrive at the current partial solution. A feedback message corresponding to the identified rule is shown 
to the student, for example: “Your rejection region is correct”. If no rule is identified, the student’s 
partial solution is marked correct (“This is a correct step”), since no constraints are violated. Besides 
checking partial solutions, the domain reasoner can also provide hints on what next step to take.  

The design of expert rules, buggy rules and constraints was informed by discussions with three 
teachers of introductory statistics courses in various disciplines about the structure of hypothesis tests 
and common errors by students. Furthermore, textbooks were consulted. Based on this input, we 
decided to support two methods for structuring hypothesis tests: the conclusion about the hypotheses 
can be drawn based on comparison of the test statistic with a critical value, or based on comparison 
of a p-value with a significance level. In each method, a complete solution should contain four 
essential steps: (1) state hypotheses, (2) calculate a test statistic, (3) either find a critical value or find 
a p-value, and (4) draw a conclusion about the hypotheses. Although crucial for the logic of 
hypothesis testing, stating a significance level was not regarded as an essential step, since it was 
always specified in the task description. Besides these four essential steps, students could include 
several other steps in their hypothesis tests, such as a summary of sample statistics and an explicit 
specification of whether the test was left sided, right sided or two sided.  

Participants and study design 

The domain reasoner was used in a compulsory Methods and Statistics course for first-year 
psychology students at Utrecht University. In five weeks of this ten-week course, students received 
online homework sets consisting of 7 to 13 tasks that were selected by the teachers of the course. 
These homework sets were designed in the Freudenthal Institute’s Digital Mathematics Environment 
(DME; see (Drijvers, Boon, Doorman, Bokhove, & Tacoma, 2013), which supports various 
interaction types, such as formula input and multiple choice tasks. To enable intelligent feedback on 
hypothesis tests, a connection was set up between the DME and the domain reasoner.  

The third, fourth and fifth homework set concerned hypothesis testing. Each of these three homework 
sets contained two tasks that specifically challenged the students’ proficiency in carrying out 
hypothesis tests, by asking the students to select steps from a drop-down menu and to complete these 
steps. An example is shown in Figure 1: after selecting a step from the drop-down menu called 
“Action”, it appears as next step in the step construction area. Next, the student can complete the step 
by filling in the answer boxes and use the check button to check the hypothesis test procedure so far. 
After finishing the construction of the hypothesis test, the student should state the overall conclusion 
in the final conclusion area, below the drop-down menu with steps.  
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To evaluate the effects of the domain reasoner feedback, students in the course were randomly divided 
into an experimental and a control group. This allowed for a comparison of student work between 
both groups, and differences in student behavior and learning effects could be ascribed to the only 
difference between both groups, the domain reasoner feedback (Cohen, Manion, & Morrison, 2011). 
From the 310 students in the experimental group 226 students worked on the hypothesis testing tasks, 
of which 154 gave consent for the use of their work in this study. From the 309 students in the control 
group 216 students worked on the tasks, of which 145 gave consent. The participants were on average 
19.3 years old (SD = 1.7 years) and 77% were female. To reduce the Hawthorne effect, i.e. the effect 
that students might behave differently because they were part of an experiment (Cohen et al., 2011), 
students were not told about the different conditions and whether they were in the experimental or in 
the control condition.  

 
Figure 1: Digital Mathematics Environment displaying one of the hypothesis testing tasks (translated) 

The homework sets were equal in both groups, except for the six tasks in which students constructed 
complete hypothesis tests by selecting and filling in steps. Students in the experimental group 
received feedback from the domain reasoner, whereas students in the control group only received 
verification feedback. Hence students in the experimental group received elaborate feedback on errors 
in the structure of their hypothesis tests, while students in the control group only received feedback 
on the correctness of their current step, irrespective of previous steps. As a consequence, for solving 
a task completely, students in the experimental group needed to include all four essential steps, since 
otherwise one or more constraints would be violated. For students in the control group, tasks were 
already marked as solved once they contained a correct conclusion about the null hypothesis. A final 
difference between the two groups was the hint functionality of the domain reasoner, but in this study 
we did not take the students’ use of hints into account.  
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Data and data analysis 

Data for this study consisted of the students’ work on the six hypothesis testing tasks in the DME, 
that is, all their attempts at constructing steps and drawing final conclusions in these tasks. After 
exporting log files with the students’ attempts from the DME, work from students who did not give 
consent was deleted and all other attempts were anonymized.  

Two measures served as indicators for feedback effectiveness: skipping vs. trying behavior and 
solving vs. failing behavior (Narciss et al., 2014). Skipping vs. trying concerned the number of 
students who skipped constructing steps and only filled in a final conclusion versus the number of 
students who tried constructing steps. This can be regarded as a measure of feedback effectiveness, 
since students who filled in a final answer without constructing steps apparently did not perceive the 
feedback on the steps as helpful. Solving vs. failing concerned the number of students who produced 
complete hypothesis tests versus the number of students who failed to produce complete tests. Since 
feedback was more elaborate in the experimental group than in the control group, we expected the 
proportion of solving students to be higher in the experimental group.  

To find the number of students who tried constructing steps, for each task the number of students who 
made at least one step using the drop-down menu was counted. The total number of trying students 
over all tasks was calculated as the sum of these counts. Next, the total number of all trying and 
skipping students was found by summing the number of students who used the final answer boxes 
over all tasks. For both groups the proportion of trying students was found by dividing the number of 
trying students by the number of trying and skipping students. For solving vs. failing, we considered 
a task solved if a student had correctly included all four essential steps in the solution. The number 
of solving students was calculated over all tasks, and divided by the total number of trying students, 
to find the proportion of solving students. Chi-squared tests were used to evaluate whether the two 
proportions (trying as proportion of all students and solving as proportion of trying students) were 
significantly larger in the experimental group than in the control group.  

The second part of data analysis concerned errors in the structure of hypothesis tests. Structure errors 
could be missing information, such as stating a rejection region before stating hypotheses, or 
inconsistent information, such as a rejection region that did not match with the alternative hypothesis. 
For the first few tasks, we expected an equal number of structure errors in both groups, since students 
had not received feedback on their errors yet. In later tasks we expected fewer structure errors in the 
experimental group than in the control group, and we especially expected that fewer students would 
make the same structure error in multiple tasks in the experimental group. For each task, the 
proportion of students who made at least one structure error was calculated and the proportions were 
compared using Chi-squared tests. Next, for each structure error that the domain reasoner could 
diagnose, the number of students who made it in only one task and the number of students who made 
it in multiple tasks were counted and these counts were summed. Again, a Chi-squared test was used 
to compare the proportions between groups.  

Results 
Table 1 contains the proportion of students who tried using the stepwise structure in the experimental 
and the control group, and the proportion of students who completely solved the tasks, as proportion 
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of all students who tried the task. As can be seen in the table, students in both groups tried to construct 
steps almost 80% of the times, and there is no significant difference between these proportions in 
both groups: c2(1, N = 1558) = 0.09, p = .759. This implies that the domain reasoner feedback did not 
impact the students’ decision to try or skip using the stepwise structure to solve tasks. 

 Experimental 
group 

Control 
group  

c2 df p-value Effect 
size 

Total number of final solutions in six tasks 802 756     

Proportion of students who tried (vs. skipped)  0.77 0.78 0.09 1 .759  

Proportion of students who solved (vs. failed) 0.52 0.40 19.18 1 < .001 0.13 

Table 1: Proportions of students who tried vs. skipped, and who solved vs. failed, in experimental and 
control group, over all six tasks 

The proportion of students who included all essential steps in their solutions does differ significantly 
between the groups: in the experimental group, this proportion was 0.52 and in the control group it 
was 0.40 (c2(1, N = 1208) = 19.18, p < .001). The effect is regarded small (φ = 0.13). This result 
suggests that the feedback from the domain reasoner did support students in producing more complete 
hypothesis tests. Although positive, this result is not very surprising, since the domain reasoner 
feedback explicitly notified students of missing steps. To find out how much the domain reasoner 
really contributed to the students’ proficiency in producing well-structured hypothesis tests, we also 
considered the errors students made in the structure of their hypothesis tests.  

 
Figure 2: Proportion of students with errors in 

solution structure in both groups 

Task N c2 df p-value φ 

3.4 297 0.345 1 .557 - 

3.6 216 0.501 1 .479 - 

4.7 207 5.086 1 .024 0.16 

4.8 194 6.665 1 .010 0.19 

5.3 158 4.936 1 .026 0.18 

5.6 136 7.663 1 .006 0.24 

Table 2: Errors in solution structure in both 
groups for each of the six tasks 

Figure 2 shows the proportion of students with errors in their solution structure for both groups, 
compared to the number of students who attempted the tasks. The total number of students who 
attempted each task is given in Table 2. The graph in Figure 2 shows that for the first two tasks, 3.4 
and 3.6, the proportion of students who made structure errors were quite similar in both groups, and 
above 0.70. This similarity between groups was to be expected, since students just started working 
with the feedback. For the latter tasks, however, the proportion of students who made structure errors 
decreased strongly in the experimental group, and remained higher in the control group. Table 2 
displays the results of a series of Chi-squared tests which confirmed this finding: in the first two tasks, 
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the number of students who made structure errors did not differ significantly between groups, whereas 
in the latter four tasks, in the experimental group significantly fewer students made errors in solution 
structure than in the control group. This suggests that the feedback contributed to the students’ 
proficiency in producing hypothesis tests without making structure errors. Considering the numbers 
of students who made the various structure errors just once and the number of students who repeated 
the same structure error in multiple tasks corroborates this finding: a Chi-squared test on these 
numbers yielded c2(1, N = 1053) = 38.29, p < .001, φ = 0.19, indicating that students in the 
experimental group repeated the same structure error in multiple tasks significantly less often than 
students in the control group. This confirms that the domain reasoner feedback was effective in 
reducing students’ mistakes with respect to the structure of hypothesis tests.  

Conclusion and discussion 
In this paper we have evaluated the influence of feedback from an Intelligent Tutoring System that 
supports hypothesis testing on student behavior in six hypothesis testing tasks. Our aim was to 
evaluate whether this feedback contributes to student proficiency in producing well-structured 
hypothesis tests.  

Students who received domain reasoner feedback did not use the stepwise structure for producing 
hypothesis tests in more tasks than students who received verification feedback alone, but they did 
produce more solutions that included all four essential steps in hypothesis testing. Hence, as a 
consequence of the domain reasoner feedback, students in the experimental group had more 
opportunities for valuable practice on these essential steps (Narciss et al., 2014). Students in the 
control group tended to use the steps more as “isolated checkers”, rather than as building blocks for 
producing complete hypothesis tests. By only selecting the steps they wanted to check and omitting 
the other steps from their solutions, these students missed out on opportunities to practice with the 
line of argumentation that is important for understanding hypothesis testing (Garfield et al., 2008).  

Not only did the domain reasoner feedback encourage students to produce more complete hypothesis 
tests, it also supported students in doing this more independently. In the first two tasks the number of 
errors in solution structure was similar between groups, and hence students in both groups relied 
equally on the feedback to help them correct their errors. In the final four tasks, however, students 
who received domain reasoner feedback made significantly fewer structure errors than students in the 
control group. This indicates that domain reasoner feedback did more effectively support students in 
resolving their misunderstandings than verification feedback alone, which is in line with earlier 
findings that elaborate feedback is more effective than verification feedback (van der Kleij, Feskens, 
& Eggen, 2015).  

In this paper, we just examined direct effects of the domain reasoner feedback on student behavior; 
we have only considered tasks in which domain reasoner feedback was provided and no subsequent 
work. Future work will focus on longer term learning effects of the domain reasoner feedback; do we 
see the same effects for other hypothesis testing tasks in which students do not receive feedback on 
their solution structure? Results from the study discussed in this paper are promising; students 
demonstrate proficiency in structuring their hypothesis tests and hence seem to have gained 
understanding of the roles of the different steps in this complex procedure.   
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This paper aims to highlight the problem-solving nature of video games by examining problem-
solving techniques in the context of the educational game Zoombinis. Using screen-capturing 
software, the gameplay of an 8-year-old participant was recorded and analysed in relation to his 
strategies towards solving the implicit Mudwall problem in the game, from a global-local perspective. 
Findings indicate the development of techniques —‘stepping-stone’ and ‘probable-exclusion’— that 
through Polya’s problem-solving steps, the game’s design and participant’s experimentation, can be 
used to solve the Mudwall puzzle, illustrating such game’s potentiality as a problem-solving 
environment. 

Keywords: Problem-solving, video games, techniques, global-local problem.  

Introduction 
Compared to other media, video games offer interactivity to the player. As this unique attribute is 
constantly explored and worked upon by game designers, educational researchers examine the role 
video games can play to learning. Playing video games, for example, can create highly motivational 
and engaging environments for players (Van Eck, 2015). Devlin (2011) and Monaghan (2016) view 
video games as ideal means of presenting and learning mathematics, which, through their design, can 
potentially represent mathematics by overcoming the symbolisms used in paper. Literature has 
focused on ways video games could influence mathematical learning, either be played during 
students’ spare time (Lowrie, 2005) or be included in traditional classrooms (Moore-Russo et al., 
2015) or other classroom settings (Calder & Campbell, 2016). However, even when researchers are 
optimistic about the future, they are still reserved on what has been realized so far by video games 
(Ke, 2008). Video games have been studied in many mathematics education research studies mainly 
as motivational and engaging educational environments (Kebritchi et al., 2010; Chang et al., 2015). 
Nevertheless, few studies focus on how mathematical content is presented in these games. The study 
(Thoma, 2017), part of which is presented in this paper, examined the educational game Zoombinis 
as a mathematical problem-solving environment for young children. Zoombinis has been viewed as 
engaging, challenging and motivational by previous studies (Yelland, 2002; Moss, 2004). The aim of 
this study was to examine how the problems are presented in Zoombinis, how young players interact 
with the game, and how they form techniques to deal with said problems. In this paper, we focus on 
the techniques developed by one participant in a specific puzzle of the game, called Mudball Wall 
(Mudwall thereafter). After presenting the theoretical framework of the study, a description of the 
game—and then the Mudwall puzzle—will be offered showcasing the key features that make it a 
problem-solving environment. Next, the analysis is presented using excerpts of the participant’s 
playthrough highlighting his techniques, followed by a discussion with concluding remarks. 
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Theoretical framework 
Downs and Mamona-Downs (2007) propose two perspectives on mathematical problem: the local 
and global. The authors argue that every problem’s structure implies a global system of principles 
and assumptions that are related to this and other similar problems. However, the structure of a certain 
problem remains highly local and specific. Problem-solving approaches and arguments can develop 
at a local level, that in turn might be generalised from a global perspective, namely a meta-level of 
similar problems. According to Downs & Mamona-Downs (2007) the “switch” (p.2271) between the 
two perspectives might happen in two ways: by viewing problem-solving as an amalgamation of both 
global and local perspectives, or by examining strategies emerging from a local perspective, that 
become important in the global. One construction that could emerge through the interrelationship of 
the local-global could be a technique. In this paper, the term technique is used based on the definition 
offered in Mamona-Downs and Downs (2004): 

A technique, as does a method, conveys a mathematical argument that can be extended over a 
variety of tasks. Our convention is that a technique splits the argument into pre-determined stages, 
each of which addresses a specifically formulated aim. For a method such explicit structuring is 
not stressed. (p. 236)  

While techniques can be linked with a specific mathematical theory, some techniques can be formed 
as “products of problem-solving activities” and “successfully completed solutions” (p. 237). After 
formed, techniques can be used as problem-solving tools. This way one technique could deal with 
many problems, as well as objects, that share similar attributes, very often without the problem-solver 
being aware of this technique. Additionally, Mamona-Downs and Downs (2004) view each solution 
as a construction, which can guide a problem-solver towards understanding the technique as a 
response to past problem-solving experiences. Finally, techniques could be viewed as existing 
between heuristics and algorithms (Mamona-Downs & Papadopoulos, 2017).  

Video games as problem solving environments 

Video games generally have an overarching theme, story or goal that create a setting for the player-
problem solver. This is what we consider as the global perspective of the problem (global problem 
thereafter). The global problem is not always explicit, but rather it is experienced through solving 
problems from a local perspective that players face at each puzzle (local problem thereafter).  Most 
of these local problems in games hint or build towards a solution of a global problem, either explicitly, 
shared with the players, or hidden from them until they make the connection themselves. We see 
video game problem-solving endeavour, having similarities to Polya’s basic steps of problem solving 
(1973, pp. xvi-xvii): trying to understand the problem; making connections between available data to 
devise a plan; carrying out said plan; and reflecting on actions. Since video games are interactive 
media and usually offer real-time feedback the player may be guided by the game’s design towards 
the steps mentioned. Additionally, variations of the same problem can guide the development of 
certain techniques. However, for the above to happen a player must have experience and a clear 
understanding of the games rules. Thus, the understanding for this paper is that techniques can be 
formed only once an initial exploration phase has past, when the player has some awareness of the 
actions they are allowed to perform and has formed an idea or expectations on what results said 
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actions might yield. Therefore, experimentation is important in these early stages and is usually the 
first step of a developing technique. In its mathematical essence regardless the problem, 
experimentation has the following elements: 

“Locate the variables, the key-elements of the problem. Keep all except one constant, and start 
experimenting with this one to understand its role towards the solution of/solving the problem. 
Afterwards, keep this one constant and experiment using another one. Do the same for each 
element of the problem until you can understand the role each one plays towards solving the 
problem.” (translated from Greek, Mamona-Downs and Papadopoulos, 2017, p. 81) 

Based on the above, a game can be defined as a collection of global problems, that through 
experimentation and consecutive playthroughs of local problems, can lead players into reflecting on 
their actions, and developing techniques that lead them to a solution. 

The participant and data collected 
The participants of the study were four children aged 6 to 8 years old. A requirement for the study 
was participants had never played the game before. This way, the exploration and the formation of 
problem-solving techniques could be captured from their first stage of development. Data were 
collected by the first author through video captured from participants’ gameplay, recording their on-
screen actions, exclamations, inquiries, ideas as well as conversations between them and the 
researcher who is the first author of the paper. To enrich audio data, participants were advised to 
express their thoughts and actions verbally as has been done in similar studies (Ke, 2008). 
Additionally, suggestive and encouraging prompts were used by the researcher in an effort to produce 
more data, while creating a comfortable and game-friendly environment for the participants. The 8-
year-old participant presented in this paper, with pseudonym Damian, played the game in four hourly 
sessions, in different days in a week. 

For each participant, the screen recordings were categorized to short segments of playthroughs, 
namely successful or unsuccessful attempts of the same game puzzle. Then, the data were analysed 
according to participants’ actions to go through the puzzle (experimentation); approaches to 
understand what works or not (local problem); being able to see the underpinning rules (global 
problem); being able to transfer what they have learned in one playthrough to the next one (shift from 
the local to the global); development of techniques. The total amount of time allocated in each stage 
and the gameplay session were also taken into account.  

Zoombinis1: the game and the global-local problems 
Zoombinis are creatures that try to find a new home. Guided by the player in groups of 16, they visit 
and must go through a total of 12 puzzles before reaching their goal. Each Zoombini has four 
attributes: hair, eyes, nose and feet, and these are often the variables used in each game puzzles (three 
Zoombinis can be seen in Figure 2). Each puzzle has a penalty system that stops Zoombinis from 
progressing, thus forcing the player to backtrack, collect any Zoombinis left behind, and try the puzzle 
again. This way, players are encouraged to work towards more efficient and effective solutions, 
                                                 
1 https://external-wiki.terc.edu/display/ZOOM/The+Game  
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improving them through continuous playthroughs of local problems. Based on the above, we define 
local problems of a puzzle the individual attempts of this puzzle. The puzzle has an underpinning rule 
that is controlled by variables that are not known to the player, which we call global problem. 
However, in each of player’s attempts the values of these variables change randomly as we explain 
in the context of Mudwall in the next section. That means the player begins a new attempt with new 
values of the variables, which justify a new local problem. However, the global problem remains the 
same and the solver has to unpack it, often working unknowingly towards its solution. While a local 
problem might be solved by chance, this solution will not work the next time the player visits the 
puzzle, due to the randomization mentioned before. In order to be effective problem solvers, players 
need to find techniques for the global problem that corresponds to this puzzle that will allow them to 
solve every local problem they will encounter at this puzzle. Considering the specific penalty of each 
puzzle, the global problem is the search for an optimal solution with minimum and ideally zero 
Zoombinis left behind after the problem is solved.  

The Mudwall puzzle 
In the Mudwall puzzle, the Zoombinis are faced with a tiled wall that obstruct their journey. The 
player tries to get the Zoombinis to go over the wall using a mudball launcher machine. This machine 
fires mudballs onto the 5 × 5 tiled wall and the player needs to hit the marked tiles that have dots in 
them (a double-dotted marked tile can be seen in Figure 2). The number of dots on each marked tile 
corresponds to how many Zoombinis will go over the wall successfully. The machine has buttons of 
five colours (blue, red, yellow, purple and green) and five shapes (square, triangle, star, circle and 
rhombus). In each playthrough the 5 × 5 matrix (named A for the purposes of this paper) is a 
permutation of five shapes on one axis, and a permutation of five colours on the other axis, which is 
not known to the player. Each cell of this matrix corresponds to a unique combination of shape and 
colour. Additionally, there is a hidden permutation of the two axes as well, as the colours or the shapes 
can either be on the horizontal axis or the vertical one. These random permutations allow for: 
5! × 5! × 2! = 28800 possible different 5 × 5 matrices. Furthermore, on each such matrix, marked 
tiles are distributed randomly. The number of marked tiles can be from one to eight, based on the 
number of Zoombinis the participant has at the beginning of this puzzle. We consider the local 
problem of the Mudwall as: “Are you able to find the coordinates (i.e. shape and colour combination) 
of all the marked tiles, on this specific wall?”. The player does not have an unlimited amount of mud 
due to the penalty system of the game. Essentially, the player’s aim is to use the least possible amount 
of mudballs to the player to locate the coordinates of the marked tiles. We consider the underpinning 
global problem: “Can you find the coordinates of the marked tiles, in each possible wall (out of the 
28800 that might appear), by firing the least amount of mudballs every time?”. In the following 
section, we describe Damian’s playthroughs of the Mudwall puzzle and illustrate the development of 
his problem-solving techniques. 

Analysis of Damian’s Mudwall puzzle playthroughs 
Damian visited the Mudwall puzzle six times, spending 2 to 4 minutes in each playthrough, for a total 
of 15 minutes. It is important to highlight that due to the linear progression of the game described 
above, Damian was engaged with other puzzles in Zoombinis between playthroughs of the Mudwall. 
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Thus, a considerable amount of time has passed between each of the events described below, ranging 
from ten-minute gaps up to days. In his playthroughs he was mostly quiet and engaged, and only 
spoke about any of his strategies when he was sure of their results. In the following pages, matrices 
(Figures 1 and 3) created by the first author as part of the analysis demonstrate Damian’s sequence 
of actions. Additionally, a screenshot (Figure 2) of the overall playthrough is offered where a step-
by-step summary is not necessary. 

At his first encounter with the Mudwall puzzle Damian is mostly exploring and experimenting, trying 
to understand how to interact with the puzzle. He located and used the available buttons of shapes 
and colours but he was not able to identify the goal of the problem and subsequently solve it. This 
experimentation phase was expected, as the Zoombinis video game constantly enforces an 
exploratory attitude through gameplay and narration, where players have to identify the variables, the 
goal and finally the solution of the problems they come across. Before ending his first playthrough, 
without having successfully launched any of the Zoombinis over the wall, he noticed that he run out 
of mud, which marks his first realisation of the penalty system of this puzzle.  

 

Figure 1: Damian’s second playthrough, where he hit his first marked tile #9, the yellow-rhombus 
marked with a ‘+’ sign in its center 

On his second playthrough, Damian shot four times consecutively the same yellow-star mudball 
(Figure 1, #1 to #4). During his shots, his cursor movements indicated how he was trying to hit 
adjacent tiles to yellow-star, by point-and-clicking on the tiles themselves, then firing the mudball. 
After his fourth shot, he stops trying to direct his mudballs this way, and explores different 
combinations of shape and colour. In his last two shots (Figure 1, #10) a pattern can be seen, the 
process of keeping one variable unchanged. This will be explored by Damian on his next playthrough. 
Finally, he managed to hit one marked tile A4,3 (Figure 1, #9). After conversing with the researcher, 
he became aware that this is his aim on the Mudwall puzzle, to aim for the marked tiles.  

In the third playthrough (Figure 2), Damian focused on keeping the colour constant and changing the 
shape. Once the column with the yellow shapes was completed, he tried to complete the blue column 
until his mud finished. During this playthrough, Damian identified the relationship of colour and 
shape to columns and rows of the tilled wall. 

Thematic Working Group 16

Proceedings of CERME11 2981



 

 

 

Figure 2: Damian’s third playthrough, one Zoombini has made it over the wall successfully 

In his fourth playthrough (Figure 3) Damian found the coordinates of all the marked tiles, getting all 
his Zoombinis over the wall. This is his first totally successful playthrough, and from this point 
onwards he was able to develop techniques which he then uses on his last recorded playthroughs. We 
present this playthrough in detail, aiming to illustrate the techniques Damian developed. His first shot 
(#1) is a yellow-circle and the second (#2) a red-square (Figure 3). He changed both variables keeping 
neither colour nor shape constant. The current information does not allow him to relate the shapes 
and colours to the rows and columns of the matrix. With his third shot (#3) of a red-triangle, Damian 
keeps one variable constant (colour) and changes the second (shape). This creates a connection 
between the two mudballs: both share one variable, in this case the red colour (Figure 3, #2 and #3). 
These two mudballs now reveal that the matrix has colours in the columns and therefore shapes in 
the rows as illustrated below (Figure 3, #3-known data). We can see the approach of keeping one 
variable unchanged as systematic experimentation, which we name the stepping-stone technique.  

Our interpretation is that Damian used the stepping-stone technique with the aim of landing on a 
marked tile. However, as the colours are in the columns he did not manage to land on the marked tile 
A5,1 and lands instead on tile A2,3. By observing that the colours are arrayed on the columns, he can 
deduce that shapes are on rows. With the new information gained, Damian now focuses to hit either 
the tile A3,1 or A4,5 which are marked. He knows that the first row will be circles, the second triangles 
and the fifth squares. Thus, he eliminates all shapes except rhombus and star, as well as the colours 
red and yellow, as they belong on the third and fourth column respectively (Figure 3, #3-known data). 
Finally, he chooses the colour blue, and the shape of a rhombus, both choices for which he has no 
information yet. His fourth mudball is blue-rhombus that lands on A4,5 with success. We see this 

 

Figure 3: Damian’s fourth playthrough and his first fully successful one 
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elimination of available options as another type of systematic experimentation, which we call 
probable-exclusion technique. 

For his fifth (#5) mudball, Damian uses again the probable-exclusion technique and fires a pink-star 
(Figure 3). This time his shot lands on A3,2. He finally finds both tiles A3,1 and A5,1 using both the 
probable-exclusion and stepping-stone techniques.  

On his fifth and sixth playthroughs Damian employs the strategies shown in his fourth playthrough. 
He begins by keeping one of the two variables constant in his first two mudballs. From that point he 
uses interchangeably the stepping-stone and the probable-exclusion techniques, aiming for marked 
tiles whenever he gains some new information. Both his last playthroughs were successful as he 
managed to get all his Zoombinis through with mud to spare. 

Discussion and conclusion 
The aim of this paper was to examine the development of problem solving techniques in the context 
of the educational video game Zoombinis. We analysed Damian’s experimentation approaches in 
relation to solving the local and global problem of the Mudwall puzzle, a problem he had no 
experience with. During his first local problem, he explored Mudwall by locating the variables, both 
colour and shape; as well as the penalty system of the mud decreasing after each shot. In his second 
local problem, he explored the machine’s controls showing awareness of its function and managed to 
hit a marked tile thus experiencing a successful result, indicating his global problem goal. On his third 
local problem, he worked with only two colours, minimizing the variety of his choices, but 
establishing the connection between colour-shape to row-column. Finally, in his fourth playthrough 
he used the two techniques of stepping-stone and probable-exclusion, that combined lead him to his 
first successful solution in terms of the game. It is at this stage that Damian can be considered as 
having simultaneously solved the global problem of finding all the marked tiles without his mud 
running out. Thus, we identified strategies that go beyond random trial and improvement.  

However, not every participant of the original study was as successful as Damian with the Mudwall 
puzzle. For the limited time of less than five hours of gameplay, all participants showed examples of 
experimentation, formed techniques and adapted them, some successfully reaching a global solution 
in the various in-game problems. It was also interesting how similar patterns emerged from the 
different participants’ data, leading to the suggestion that due to carefully crafted game’s design, 
players can be smoothly guided to a specific form of problem solving approaches.  

This paper examined the video game Zoombinis as an environment used to learn problem-solving 
techniques. In their study Mamona-Downs and Downs (2004) highlight some issues regarding 
teaching techniques, such as students not wanting to use a technique after they had been taught it, and 
the difficulty to identify the underlying technique through the mathematical tasks which were 
provided for that reason. In my view, in the context of the video game, the first issue potentially could 
be resolved as students are the ones discovering and adapting the technique themselves. Problem-
solvers implicitly guided by a global problem, they have the agency to interact and experiment in a 
story-driven and challenging environment and thus find the need for a more efficient solution. Along 
the way, techniques and other constructions formed from this process, would be something players 
developed on their own and something that is efficient at providing a solution. 
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Drawing statistical inferences (SI) is essential in a society where data are of increasing importance. 
Understanding the relation between data and chance, necessary to understand statistical inference, 
is however challenging for students. Technological innovations – such as the Sampler in TinkerPlots 
(TP) – enable students to investigate this relationship by modeling a population and simulating 
repeated samples. Along this line, the research reported here presents the results of a pilot with 
fourteen 9th-grade students, inexperienced with sampling, in a Learning Lab. The pilot focuses on 
how students use TP as a digital environment for exploring data and chance – i.e. what strengths and 
constraints they encounter – and how they subsequently use this information for SI. The results 
suggest that the participating students encountered difficulties in modeling the population, however, 
they were able to simulate, explore and reason inferentially through repeated sampling in TP. 

Keywords: TinkerPlots, repeated sampling, (informal) statistical inference, modeling, statistics 
education 

Drawing statistical inferences (SI) is essential in a society where data play an increasingly important 
role. However, the handling of variation and uncertainty involved in drawing inferences based on 
sample data, is challenging for students (Castro Sotos, Vanhoof, Van den Noortgate, & Onghena, 
2007; Konold & Pollatsek, 2002). New technological innovations – such as the Sampler-option in 
TinkerPlots – enable students to model and investigate the interaction between data and chance in 
order to gain insight into variation and uncertainty (Biehler, Frischemeier, & Podworny, 2017; 
Pfannkuch, Ben-Zvi, & Budgett, 2018). Following this approach, Van Dijke-Droogers, Drijvers, and 
Bakker (2018) suggested an approach of repeated sampling with a black box filled with colored balls 
to introduce students, inexperienced with sampling, to the key statistical concepts of sample, 
frequency distribution from repeated samples and the simulated sampling distribution. This approach 
with a black box seemed promising to invite students to investigate the intertwined relationship 
between data and chance. As a follow-up to this study, the research reported here investigates how 
activities in the digital environment of TinkerPlots can strengthen the statistical insights of students, 
i.e. the interrelation between data and chance.  

Theoretical background 
Statistical inference 

Statistical inference includes making statements about an unknown population based on observed 
sample results. In contrast to descriptive statistics, which concerns describing the data under 
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investigation, inferential reasoning includes the handling of sampling variation and interpreting the 
role of  chance.   

Digital environments for statistical modeling 

Recent digital environments that use dynamic visualizations and offer opportunities to create 
statistical models, enable students to investigate the intertwined relationship between data and chance. 
Tools such as TinkerPlots that have both data analysis and sampling capabilities, support young 
students to think about the modeling process. Creating statistical models to simulate data from 
repeated sampling can be helpful to develop key statistical ideas of distribution and sampling 
variation (Konold, Harradine, & Kazak, 2007). In an instant of time, a model of the population can 
be built in a digital environment and then be used to generate a large number of (repeated) sample 
results. In this way, student can explore sampling variation due to chance, especially when they 
visualize the results of repeated sampling in a sampling distribution. In this way, students engage in 
modeling, dealing with variation and thinking about the context (Pfannkuch et al., 2018). The work 
by Garfield, delMas and Zieffler (2012) shows that students can learn to think and reason statistically 
– or as the authors call it “really cook” – by using statistical modeling in digital environments.  

Repeated sampling in the black box activity 

This learning—or cooking—effect is reflected in the work by Van Dijke-Droogers et al. (2018) on 
repeated sampling from a black box filled with small colored balls (“balletjes” in Dutch). The results 
of that study suggest that repeated sampling from a black box is a promising approach to introduce 
students to the concepts of sample, frequency distribution on repeated sampling (resampling) and the 
simulated sampling distribution, and, therefore, invites reasoning about variation and uncertainty 
involved in SI. An important characteristic of this 3-step learning approach seems the strong 
connection between a physical black box experiment in step 1, the visualization of expected sample 
results from resampling with a black box in a frequency distribution in step 2, and the simulated 
sampling distribution on resampling in the digital environment of TinkerPlots in step 3. An overview 
of the learning steps in the black box activity is displayed in Table 1.  

1. Repeated sampling with the physical black box 

2. Visualization of expected sample results from repeated sampling with 
the black box in a frequency distribution, by manually drawing a sketch 

3. Simulation of a large number of samples from repeated sampling with 
the black box and visualization of results in the sampling distribution, by 
using the Sampler-option in TinkerPlots 

4. Using the digital environment of step 3 in a new context 

Table 1: Overview of learning steps in the black box activity 

Van Dijke-Droogers et al. (2018) focused on step 2 and showed that students could, based on their 
experience in step 1, imagine and sketch a frequency distribution from repeated samples with most 
sample results close to the population proportion and in which strong deviations hardly occur. As a 
next step, the aim of the research presented here, is to gain insight into how statistical modeling with 
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the Sampler-option in TinkerPlots can strengthen the statistical insights of students concerning 
sampling variation due to chance. Therefore, we added a fourth step to the black box activity to 
investigate how students use TinkerPlots to explore data and chance in new situations and how they 
use this information for SI. 

Methods  

To investigate how students explore and reason with TinkerPlots, we conducted a pilot study in the 
Teaching and Learning Lab of Utrecht University. 

We have chosen to run the pilot in a lab setting. The advantage of this lab setting, over a classroom 
environment, was that detailed recordings could be made of the actions and conversations of several 
teams of students working on the same assignment at the same time. During a five-hour session, seven 
9th-grade students worked in teams of 2 
or 3, on tasks addressing steps 1 to 4 of 
the learning trajectory. This pilot was 
repeated in a similar five-hour session, 
with seven other students. The teams 
worked on a laptop, the screen of which 
was displayed on an interactive 
whiteboard. Camera recordings of their 
actions on the screen were made, and 
student conversations were recorded. 
Students noted their findings as a team 
on a student worksheet. We worked 
with students from pre-university level, 
the 15% best performing students in our 
educational system. Figure 1 shows the 
setup in the Learning Lab. 

During the pilot, students went through learning steps 1–4 of the black box activity. Special focus 
was on how students applied their digital experiences from step 3 to investigate the role of variability 
and chance in the new context of step 4. In step 3, students used the sampler option in TinkerPlots to 
simulate repeated samples from the context of the black box. While doing so, they used an instruction 
sheet with the necessary technical actions in TinkerPlots. In this step, students investigated possible 
sample results by modeling a black box filled with 750 yellow and 250 orange balls at different 
sample sizes and different number of repetitions. During a group session in step 3, students discussed 
the boundaries of common sample results and decided that the middle 80% of the results can be 
regarded as “most common sample results”. They indicated the 10% highest sample results as 
“exceptionally high” and the 10% lowest sample results as “exceptionally low”. It was expected that 
the students would apply their experiences from step 3 in the new context of step 4, as detailed in 
Table 2. This table shows an overview of components A to G with statistical insights, TinkerPlots 
activities in step 3 and expected students’ activities in step 4. 

Figure 1: An impression of the setup in the Learning Lab 
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Components of statistical insights  TinkerPlots activity in step 3 with the black box Expected students’ activity in TinkerPlots at step 4 
A Sample results vary due to 

chance 
Context: A black box is filled with 750 yellow and 250 orange balls. For 
each sample, the number of yellow balls is counted. Examine the sample 
results you can expect.  

Context: At the beginning of the school year 210 out of the 300 students 
on a specific primary school were used to having breakfast daily..   
Task 1: To investigate whether this is still the situation at the end of the 
school year, a sample of 30 students will be taken. Examine which sample 
results you can expect if the breakfast habits of students are unchanged. 

B A model of the population can 
be entered and examined in a 
digital environment  

Model the population in TinkerPlots by using the Sampler-option. The 
model can be entered as a pie chart, bar graph, histogram, dot plot or 
curve. 
 

Students enter a model of the population in 
the same way as described in the cell on 
the left (TP activity B)  

C Sample size effects sampling 
variation due to chance 

Enter the sample size you want to examine.  Students enter the sample size they want to examine. In this example, the 
sample size is 30. 

D 
 

Sample data can be listed in a 
table 
A visualization of sample data 
in a plot provides a clear 
overview  

Simulate one sample, the results are automatically displayed in a table. 
To make a plot of the sample data, explore the data and choose a 
visualization that provides a clear overview. 

Students simulate one sample of which 
the data are automatically listed in a 
table. They use the Plot-options to 
explore and clearly visualize their data. 
 

E Repeated sampling in a digital 
environment can produce a 
large number of sample results.  
These results can be listed in a 
table by choosing one specific 
characteristic.  

Use the history button to have repeated samples memorized. To do this, 
choose a specific characteristic—for example the number of yellow 
balls—that you want to record from each sample. 
 

Students use the history button to record the number of “students who had 
breakfast” from each sample. 

F A visualization of multiple 
sample results in a plot can be 
used to estimate possible 
sample results 

Visualize the sample results in a sampling distribution. Use dividers to 
examine possible sample results, i.e. most common sample results, 
exceptionally high or low 

Students vizualise the sampling distribution 
and use dividers to examine possible sample 
results 

G A larger sample size reduces 
the variation in the 
corresponding estimates of the 
population and hence, leads to a 
better outcome. 

Estimate most common sample results and extrapolate these to the 
population. Then, try different sample sizes later for comparison. Draw a 
conclusion about the effect of larger sample sizes to the estimate of the 
population 

Students estimate most common sample results and exceptionally high or 
low results to draw their inferences corresponding to the task (other 
sample sizes were addressed in tasks 2–4) 

Table 2: An overview of statistical insights, TinkerPlots activities in step 3 and expected students’ activities in step 4 
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For Task 1 in step 4, students could use a table on their worksheet, as displayed in Table 3. Students 
used TinkerPlots to determine most commons sample results. For Tasks 2 to 5, more in-depth 
questions that mainly focused on the role of sample size were asked within the same context, as shown 
in Table 4. Students were free to choose their own working method within TinkerPlots. 

Results  
The analysis of the video-recordings shows that the expected students’ activities in components A 
and C to G did occur. However, the students encountered difficulties with component B. Students 
started with discussing the breakfast context in component A. Students seemed to be involved in this 
real-life context as they exchanged and discussed all kinds of possibilities and expectations based on 
their personal experiences and intuition, for example “Only 70% of these students have breakfast, 
that’s way too low for a healthy school. Here, we have a lot more students who have breakfast.” After 
sharing their thoughts, they started working in TinkerPlots. Here, in component B, making a model 
of the population in TinkerPlots, the difficulties began as 3 out of 6 teams used the sample information 
for their model. As such, they modeled the population by entering 21 for breakfast and 9 for no 
breakfast. When simulating samples from this population they got confused and asked the teacher for 
help. Referring to the black box activity in step 3, made them aware of the difference between 
population and sample. Another difficulty with the modeling was that 2 teams used a pie chart with 
percentages. These students entered 70% for breakfast and 30% for no breakfast. Although they used 
similar proportion as the given population, working with percentages refers to an endless population 

Sample size 30 Expected number of students having breakfast daily  
(interval notation) 

Most common sample results  

Exceptionally high results  

Exceptionally low results  

Table 3: Table on student worksheet 

 
Task 2: In the past year a lot of attention has been paid to a 'healthy' breakfast at the school. At which sample 
result, sample size 30, is it likely that the breakfast habits of students have improved? Support your answer 
with data. 

Task 3: At the end of the school year, a sample of 30 students was not feasible. Therefore, a sample will be 
taken of only 10 students.  With which sample result can you now assume that the breakfast habits of 
students have probably improved? 

Task 4: On closer inspection, the school board decides to postpone the sample to the next school year and 
to draw a sample of 100 students at that time. For which sample result is it likely that the breakfast habits 
of students have improved? 

Task 5: Compare the sample results and corresponding estimates of the population at different sample sizes. 
What can you conclude about the population estimates from a larger sample size? 

Table 4 Tasks 2-5 on Student Worksheet 
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and in this case the population size is given with 300. So, a finite population of 300 is a better model. 
After struggling at component B, the other components were performed as expected, although 
students occasionally needed guidance from the teacher, which mainly consisted of linking the new 
context in step 4 to the known context of the black box activity in step 3. 

The activities in TinkerPlots (re)strengthened the statistical insights of students. As a first strength, 
each new component offered opportunities for students to discuss and reason about their actions in 
the digital environment and the implication of their actions. For example, at component A, a student 
stated “Well, they should take a larger sample to get a better picture of the school” and “Probably 21 
students of the sample will have breakfast, or at least about 21 students. 22 or 23 is possible too. Even 
30 is possible, but I don’t think that will happen”. Statistical concepts such as the effect of sample 
size and possible sample results that were addressed in steps 1–3 of the black box activity, were again 
considered and discussed by students in a new context.  

As a second strength, students referred to terms from steps 1–3 of the black box activity, as they were 
using terms like “yellow and orange balls” and “content” of the black box. The lay-out and set-up of 
the digital environment offered opportunities to easily relate both contexts. The following fragment 
shows an example of students’ reasoning while modeling the population in task 1 of learning step 4, 
where terms related to repeated sampling with the black box are underlined: 

Student 1:  Okay, we have a sample of 30. If nothing has changed, then probably 21 
students will have breakfast.  

Student 2:  I think so… 

Student 1:  But it could be 22 or 23 students. I think that 27 or more cannot happen. What 
do you think? 

Student 2:  Of course, it is possible, but....  

Student 1:  What should we enter here (pointing at the empty startup window of the 
Sampler)? This is actually the total content, right?  So, all students of the 
school? 

Student 2:  Why not the 30 students… we are supposed to check on 30 students 

Student 1:  I think, we should take the 300, because that are all students, like all the balls 
in the box and the 30 is just a sample, the visible ones… don’t you think?  

Student 2: Okay, so then we must enter 210 with breakfast and 90 no breakfast. 

A third strength concerned the easy and rich way in which students could explore the data. They could 
easily create and compare different graphs, like pie charts, dot plots, etc. On the other hand, these 
explorations took a lot of time and it seemed like students based their decisions, for example about 
the format of the graph, on personal ideas and less on clarity. Moreover, choosing the right colors and 
shapes for the balls, was time consuming. 

A fourth strength was that every component required action in TinkerPlots. Students could not 
thoughtlessly enter their values, but they had to be alert and aware of their actions. 
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In step 4, students were asked to carry out five investigative tasks and to note their answers on student 
worksheet. An outline of the results on students’ worksheet are displayed in Table 5.  

Task Results Frequency in 
teams of students 

Example of students’ reasoning 

1. Correctly 
filled in Table 

6 out of 6 - 

2
. 

Correct 
conclusion 

6 out of 6 More than 25 students is exceptionally high, so 
…… probably the breakfast habits of students 
is improved. 

24 students is the boundary of most common 
sample results. So, with 26 students or more, it 
can be assumed that the breakfast habits have 
improved. 

3. Correctly 
filled in Table 

6 out of 6 - 

Correct 
conclusion 

6 out of 6 With a sample result of 9 or 10 students (out of 
10) that have a daily breakfast, we can assume 
that the breakfast habits are improved, because 
this is an exceptionally high number. 

4.  Correctly 
filled in Table 

6 out of 6 - 

Correct 
conclusion 

5 out of 6 
(one team empty) 
 

When more than 80 students (out of 100) are 
having a daily breakfast, this is extremely high, 
and therefore it is assumable that more 
students are having a daily breakfast. 

5.  Correct 
conclusion 

 A larger sample size gives a more precise 
estimate of the population 

The larger the sample size, the less variation in 
the corresponding estimate and the bigger the 
chance of a good estimate 

Table 5: Overview of results on students’ worksheet 

Conclusion and Discussion  
The research reported here focused on how activities in the digital environment of TinkerPlots can 
strengthen students’ statistical insights, i.e. the interrelation between data and chance. The main 
difficulty of students was creating a correct model of the population and, more particularly, 
distinguishing sample and population characteristics from a given context. However, entering the 
characteristics into the tool, TinkerPlots, did not cause any problems. The awareness of the difference 
between sample and population can be improved by spending more time and instruction to modeling 
a population in a variety of contexts.  

A first strength of the activity in the digital environment of TinkerPlots was that students exchanged 
and discussed statistical information which may lead to a deeper notion of the concepts addressed. A 
second strength was that the lay-out in the digital environment could easily be related to the black 
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box activity (balls, sample size). Students explanations contained black box terms several times. A 
third strength concerned the convenient and rich way in which students explored the data. However, 
choosing appropriate representations was also time consuming and mainly based on personal 
preference over clarity. A fourth strength was that every thinking component required action in 
TinkerPlots, which increased their awareness of the statistical concepts involved.  

Although the results seemed promising, a few critical points must be considered. The fact that the 
students went through the learning steps quite easily may have been caused by the short time frame 
in which the activities logically followed each other. Although the students were given quite open 
tasks in step 4, their approach was strongly influenced by their previous activities in step 1 – 3. In 
addition, the students occasionally needed help from the teacher, which consisted of linking the new 
context to the black box activity in step 1 – 3.  

The results show that this activity with repeated sampling in the digital environment of TinkerPlots 
is a promising way of how the interaction between data and chance can be taught in a brief session. 
Researcher who would like to repeat this activity should consider that this research highlights the 
results of a small-scale pilot in a laboratory setting with high performing students.  

References  
Biehler, R., Frischemeier, & D., Podworny, S. (2017). Editorial: Reasoning about models and modeling in 

the context of informal statistical inference. Statistics Education Research Journal, 16(2), 8–12.  

Castro Sotos, A. E., Vanhoof, S., Noortgate, W. van den, Onghena, P. (2007). Students’ misconceptions of 
statistical inference: A review of the empirical evidence from research on statistics education. 
Educational Research Review, 1(2), 90–112. 

Garfield, J., Ben-Zvi, D., Le, L., & Zieffler, A. (2015). Developing students' reasoning about samples and 
sampling variability as a path to expert statistical thinking. Educational Studies in Mathematics, 88(3), 
327–342.  

Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics 
Education, 2(1). Article 1. Retrieved from http://escholarship.org/uc/item/38p7c94r 

Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for 
Research in Mathematics Education, 33(4), 259–289.  

Pfannkuch, M., Ben-Zvi, D., & Budgett, S. (2018). Innovations in statistical modeling to connect data, chance 
and context. ZDM Mathematics Education, 50 (online). 

Van Dijke-Droogers, M.J.S. van, Drijvers, P.H.M., & Bakker, A. (2018). Repeated Sampling as a step 
towards Informal Statistical Inference. In M. A. Sorto, A. White, & L. Guyot (Eds.), Looking back, 
looking forward.   Proceedings of the Tenth International Conference on Teaching Statistics 
(ICOTS10, July, 2018), Kyoto, Japan. Voorburg, The Netherlands:  International Statistical 
Institute.  

 

Thematic Working Group 16

Proceedings of CERME11 2992



 

 

Reflections on item characteristics of non-routine items in diagnostic 
digital assessment 

Irene van Stiphout and Madelon Groenheiden 

National Institute for Test Development Cito, The Netherlands; irene.vanstiphout@cito.nl and 
madelon.groenheiden@cito.nl 

This article reflects on the construction of a digital diagnostic test for middle school in the 
Netherlands. During construction there was a constant struggle between testing higher order skills, 
concrete description of curriculum goals on the one hand, and the limited possibilities of the digital 
test environment on the other hand. Four item characteristics emerged that helped constructing 
non-routine items while managing with this challenge. 

Keywords: Diagnostic tests, digital assessment, non-routine items. 

Introduction 
Task design plays an important role in mathematics education (e.g. Kieran, Doorman & Otani, 
2015). In digital assessment, task design is complicated because task design requires time and 
keeping up with the newest developments (Venturini & Sinclair, 2016) while digital tools are 
constantly changing and being developed. Although there are strong arguments in favor of digital 
assessment (Stacey & Wiliam, 2013), significant challenges remain such as scoring higher order 
thinking skills and partial credit scoring (e.g., Sangwin, Cazes, Lee & Wong, 2010).  

This article aims to contribute to the exemplification of how non-routine tasks can be constructed in 
a digital environment by reflecting on the construction of a national diagnostic test for middle 
school. Note that being non-routine depends on students’ prior knowledge and proficiency. The 
diagnostic test aims to address key mathematical ideas that are important in the curriculum. The 
detailed goals and the automatic scoring of the test resulted in struggles between specific curriculum 
goals, the key mathematical ideas and the (limited) possibilities of a digital environment. During the 
construction process, four item characteristics emerged to overcome these challenges. The central 
question that is addressed in this article is how to design non-routine items in a digital test 
environment. Although the problems we met were neither new nor original, in our view, the context 
in which they took place was, because the test was meant for all students in Dutch education, had to 
serve diagnostic purpose and should enable automatic scoring. During the development of the test, 
the construction process evolved from a fuzzy and rather undirected process to a much more goal 
oriented and efficient process of creating non-routine items. Our reflection therefore aims to provide 
insight into how to construct non-routine items in a digital environment.  

Dutch educational test  
The Diagnostic Educational Test (DET) was an initiative of the Dutch ministry of Education. It was 
administered at the end of middle school: grade 8 in vocational education and grade 9 in senior 
general higher education and pre university education. Its aim was to provide insight to students, 
parents, teachers and schools into how well prepared students are for upper secondary education. 
The national assessment authority (NAA) formulated several requirements for the DET. The test  
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Figure 1: Formula window with editor palette above in the DET 

was to be taken on a computer. Technology should enable students to do mathematics interactively. 
Students were to use a digital test player environment and the scoring was to be automatic. This 
implies that the DET is an assessment with technology as well as through technology (Stacey & 
Wiliam, 2013).  

For the construction of the items the digital environment Questify developed by the National 
Institute for Test Development (Cito) was used. Questify has several item templates such as 
numerical answers, drag and drop, and multiple choice. During the construction of test items, a 
template using GeoGebra and the Digital Mathematics Environment (Drijvers, Doorman, Boon, 
Reed & Gravemeijer, 2010) was added to these standard templates, in order to enable students to 
draw lines and figures. In school, students use a digital test player, developed by the NAA, that 
enables students to enter mathematical symbols such as square roots, powers, fractions, and 
formulas. See Figure 1. Each digital environment puts a demand on students’ digital skills. In order 
to minimize the effects of this demand, we limited the number of buttons in the formula window 
and in Geogebra to a minimum. The automatic scoring uses an intelligent open source computer 
algebra system Maxima, that is able to recognize equivalent expressions and can deal with 
dependency in answers. The digital environment also makes it possible to add adaptivity to the test. 
In this way, students are presented with items that fit their level of expertise. 

The test had to be based on curriculum goals described by the Dutch Institute for Curriculum 
Development. These goals encompass a domain on reasoning and reflecting as well as the 
mathematical domains numbers and variables, ratio, measurement and geometry, relations, and 
information management and statistics. For practical reasons, the examples below are restricted to 
one domain: geometry. However, our findings hold for the other four domains as well. The 
diagnostic framework consisted of a matrix combining the mathematical domains with didactic 
competences: seeing mathematical structure, having a proceptual view, seeing intertwinement. 
Since this framework was not confirmed by psychometrical analysis, we will not discuss it in depth 
in this paper.  

Within these conditions, Cito developed the DET. Items were constructed by groups of mathematics 
teachers, the so called construction groups. They based their items on the diagnostic framework, the 
curriculum goals and the test advise commission. The items were then discussed with Cito test 
experts and screened by fellow test experts. During the next step, the test experts discussed the 
items with an expert panel of the national assessment authority. Approved items were then included 
in a pretest among students (age 14-15 years). The results of items in the pretest were interpreted by 
the test experts and again discussed with the NAA. This eventually led to a final version of the item.  
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Figure 2: Overview of the construction process of items in DET 

Figure 2 provides an overview of this chain. The discussions in the construction groups, among test 
experts and in the expert panel, combined with psychometrical information on the pretest led, 
through a repetitive process of continuous reflection, adaptation and revision, to a feasible 
approach.   

During the construction we were confronted with several conflicting interests. Below, we discuss 
the challenges we felt between higher order goals, the detailed specified curriculum goals, and the 
limited possibilities of the digital test environment.  

Challenges in the construction of non-routine problems 
The first challenge was the ambition to focus on key conceptual ideas, while relating each test item 
to detailed specified curriculum goals. The focus on conceptual ideas was complicated because 
students had to have an overview of mathematical topics taught in several years in the test without 
preparing themselves specifically for the test. An additional purpose of the test was to provide 
insight in how well prepared students were for upper secondary education. These considerations led 
to the requirement to focus on key mathematical ideas and activities that are important in the 
ongoing curriculum (CvTE, 2014) without losing the connection to common educational practice. 
This focus put the construction under pressure: on the one hand, the focus is on key conceptual 
understandings students should master before going to upper secondary school, while on the other 
hand, each item in the test had to relate to detailed specified curriculum goals.  

Another challenge between conceptual activities such as reasoning, and the limitations of the 
automatic scoring module to evaluate students’ answers became apparent. Mathematics education in 
The Netherlands is influenced by the theory of Realistic Mathematics Education and Freudenthal’s 
view on mathematics as a ‘human activity’ (e.g. Freudenthal, 1968, 1973; Gravemeijer, 1994). 
Recently, the cTWO (Dutch Committee for the future of mathematics education) stressed the 
importance of so-called ‘mathematical thinking activities’ such as reasoning, interpreting, 
organizing, structuring, manipulating (cTWO, 2007). The challenge was to construct items in a 
digital environment that focuses on conceptual goals and at the same time do justice to the idea of 
mathematics as a human activity. The prerequisite for automatic scoring is at odds with activities 
such as proving, reasoning and explaining because automatically evaluating these kinds of answers 
is technologically complicated (Drijvers, Ball, Barzel, Heid, Cao, & Maschietto, 2016). However, 
the focus on conceptual goals stresses the importance of including these kinds of activities. 
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In the following section we will discuss two examples to illustrate the way we managed these 
challenges. For practical reasons, these examples are restricted to the domain geometry.   

Examples of geometry items of DET 
One of the curriculum goals is that students are able to calculate the area and circumference of a 
triangle (SLO, 2012). An item that fits this specific goal on a procedural level of understanding is to 
calculate the area of a triangle given its base and height. Students have to recall the formula ‘area of 
a triangle = 1/2 × base × height’ and substitute the base and height to find the answer. However, this 
kind of question does not meet the idea of key conceptual understanding we were looking for. 
Students should be able to understand the formula from a conceptual point of view. A way to show 
this understanding is to draw a rectangle around the triangle. The rectangle clearly shows that the 
area of the triangle is half the area of the rectangle.  

In our view, to understand the formula in terms of variables and the relations between them is of an 
even higher conceptual level. For example, triangles with the same base and height have the same 
area. Or triangles that have equal products of base and height, have the same area. In the ongoing 
curriculum, this is the level that indicates understanding of the formula for the area of a triangle. 
The item in Figure 3 illustrates this way of thinking. Two triangles are given with an equal base. 
The heights of the triangles is equal, but not specified. The question is to compare the areas of both 
triangles and to conclude whether the area of triangle I is greater than, equal to or smaller than the 
area of triangle II, or that the information is not sufficient to compare both areas. To answer this 
question, students should understand that the areas of both triangles are equal given equal base and 
equal, but unknown, height. 

In our view, this item addresses both aspects of the first challenge: a detailed specified curriculum 
goal (compute the area of a triangle) and a key mathematical concept (reason about the formula). 
With respect to the second struggle between reasoning and the digital possibilities, we had to 
compromise. Clearly, the multiple-choice template leaves no room for creativity or for multiple 
correct answers. There is room, however, for multiple strategies because students can for example 
estimate the height and calculate the area in the way they are used to.  

 

 

 

 

 

 

 

Figure 3: Multiple-choice item from the DET in the domain of geometry for vocational education 
students grade 9 
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 Figure 4: GeoGebra item from the DET in the domain of geometry for vocational education students 

grade 9 

The second example is also about calculating area. Figure 4 shows an item for senior general 
education and pre-university students in grade 9. A curriculum goal for these students is to be able 
to calculate the perimeter and the area of triangles, squares, rectangles and circles, and from simple 
figures that are built of these figures (SLO, 2012). The item in Figure 4 asks students to construct a 
kite with given area. In the GeoGebra figure in the test player environment, the points A and C are 
fixed, so students are not able to drag these points. Neither can the dashed line segment AC be 
moved. The points B and D can be grabbed and moved along the grid. The line segments AB, BC, 
CD and AD move along while dragging points B and D. The purpose is to move points B and D in 
such a way that the quadrangle becomes a kite with area 12. In the automatic scoring module, a 
Boolean variable was defined for the position of points B and D. This Boolean combined three 
conditions for the position of B and D. First, the distance between those points has to be 4. Second, 
BD has to be perpendicular to AC because in a kite the diagonals are perpendicular. Third, the 
middle of BD has to be on the horizontal line through A and C, or B and D lie on the perpendicular 
bisector of AC. The latter two cases are due to whether AC or BD is the axis of symmetry. The only 
button students have at their disposal is the button with the arrow in the upper left corner. As a 
consequence, the only thing students can do is grab point B or D and drag it.  

The struggle between the detailed goal and key mathematical understanding in this item is 
addressed by leaving room for different approaches and different correct answers. Students do not 
have to start from scratch and do not have to create anything new. Instead, they start with a given 
situation that has to be changed. In this way, they adjust the situation within the scope of the 
GeoGebra environment. Usually, in routine textbook items, the figure is given and the question is to 
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calculate the area. In this item, one diagonal is given and the question is to construct a quadrilateral 
with given properties. Because of the many different correct answers, students have to show a 
certain amount of boldness in making choices and to consider which characteristics contribute in 
which way to the area.  

In our view, with respect to the struggle between reasoning and the digital opportunities, the item in 
Figure 4 is a fine example of finding a balance between the use of digital opportunities and the 
ability to construct and to create. 

Item characteristics  
The examples above illustrate how the DET managed the challenges we mentioned. We want to 
emphasize that good functioning items have to meet other requirements as well as managing the 
challenges. The diagnostic character of the test should provide insight in where the learner is right 
now (Black & Wiliam, 2009) and perhaps give suggestions on how to improve. From a 
psychometrical point of view, features of items such as validity, reliability, duration, etc. are of 
importance. Constructing a high quality test requires both psychometrical and didactical expertise. 
In this article we will not elaborate on diagnostic or psychometrical properties, but focus on the 
content in relation to the digital test environment. During the five-year period of item construction 
(2012-2017) the following four item characteristics emerged as helpful in constructing non-routine 
problems.  

Key mathematical concept 

The detailed specified curriculum goals can be interpreted in a conceptual way. The curriculum of 
grade 7 to grade 9 contains many procedures students have to learn. Examples are expanding 
brackets, solving linear and quadratic equations. To come to grips on key mathematical concepts, 
we used Sfard’s (1991) notion of operational and structural conceptions and shifted the focus from 
procedures to the math behind these procedures. In the first example the focus shifts from 
calculating the area of a triangle with given base and height to reasoning about the formula of the 
area of a triangle. 

Creativity 

The next step was to look for activities in the digital environment that match the key mathematical 
concept. The limited item templates and the limited possibilities of the automatic scoring module 
asked for creativity in the construction. We wanted students to construct, to invent, to draw, to 
create, instead of just following a standard procedure so that we could do justice to the idea of 
mathematics as a human activity (cTWO, 2007).   

In the beginning, we only had regular item templates such as short answer, multiple choice and drag 
and drop. One strategy we used to create non-routine problems was for example instead of asking to 
calculate, ask how to calculate by showing different calculations. Another strategy was to present 
different steps in order to work out a solution to a problem and ask students to put these steps in the 
right order. We admit that the multiple-choice item in the first example above leaves no room for 
creativity. However, in the second example of the kite with area 12, students have to create their 
own kite and have to show a certain amount of boldness to use the construction space. 
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Multiple strategies 

In the ongoing curriculum, the ability to solve problems is valued higher than solving problems in 
specific ways. Therefore, we wanted items that allow for multiple strategies. In the first example 
students can reason or pick a number for the height to calculate the area, depending on their level of 
expertise. In the second example, students can make it easier or harder depending on where they 
drag and drop the points. The freedom to choose their own strategy matches the ideas of the 
aforementioned characteristics. 

Multiple correct answers 

In our view, the best items were items that allowed for multiple (or even infinite) correct answers, 
because obviously, calculating is not the most important part of these items. The first example 
above is multiple choice, so it has only one correct answer. In the second example however, many 
different answers yield a kite with area 12. To have this characteristic, items should challenge 
students to make a choice. Clearly, the possibility to regard different answers as correct puts heavy 
demands on the digital environment.   

Summarizing, based on these item characteristics, we developed the following approach to 
efficiently construct non-routine items. Start with a detailed specified curriculum goal (e.g. ‘the 
student can calculate the area of a triangle’). Unravel this specific goal into the key underlying 
mathematical concept (e.g. understand the formula 1/2 × base × height in terms of variables and the 
relations between them). Determine activities in the digital environment that address this key 
mathematical concept (e.g. arranging, categorizing, dragging and dropping, etc.). Quite often, it 
turned out that items constructed this way allowed for multiple strategies and multiple correct 
answers. 

Concluding remarks 
Digital assessment has many opportunities. For example, Drijvers et al. (2016) argue that the 
benefit of digital testing is that it can challenge teaching practices that mainly focus on procedures 
and promote incorporating mathematical understanding. The diagnostic test developed by Cito in 
The Netherlands focused on non-routine tasks that appealed to key mathematical concepts. Based 
on our experiences in the DET with the construction of non-routine items, we extracted four item 
characteristics that helped us to come to grips on challenges with the limited possibilities of the 
digital environment the goals of the test. These four characteristics are: focus on key mathematical 
concepts, ask for creativity, allow for multiple strategies, and allow for multiple correct answers.  

Although the examples in this article are only from the domain of geometry, our experience is that 
these item characteristics worked in the domains of numbers and variables, ratio, relations and 
information management and statistics as well. Furthermore, the characteristics are applicable not 
only for middle school. We believe that anyone who wants to construct non routine items in a 
digital test will face the challenge with the technological limitations and as a consequence might 
benefit from the heuristics described above.  

Design principles often are tailored to specific topics or to specific activities (e.g. Kieran et al., 
2015). Our characteristics cover five domains and all kind of activities and emanate from practical 
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experience on national level. This generalization over topics and activities is valuable, but asks for 
more theoretical underpinning. The problems we described illustrate that digital diagnostic 
assessment is still in an early stage. Fortunately, technological resources for mathematics education 
and assessment are growing rapidly, so hopefully these problems will be resolved in the near future. 
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Introduction to the research question 
The poster focuses on teaching and learning mathematics in three secondary classrooms in Paris, 
through the use of digital technology in the form of tablets.  We are interested in the interactivity of 
teacher and students and the roles played by the tablets in engaging students with the mathematics in 
focus. We see tablets as tools used to satisfy the goals of both the students and the teacher in relation 
to their actions in the classroom. Here we use the language of Activity Theory which we take as a 
theoretical basis for our analysis of classroom activity. Indeed, taking the tablets as a focus, 
understanding their role in the teaching and learning of mathematics cannot be investigated without 
consideration of all the Activity in which they are used. Our broad research question about the use 
and role of the tablets for this study can be reformulated as follows: in what ways are the tablets 
engaged in the Activity (or Activity systems) which take place in the mathematics classroom? 

Methodology 
We observed three lessons in which tablets are involved. We adopted a methodology which fits with 
Activity Theory as well as some French developments in the field of didactics of mathematics 
(Vandebrouck. 2018). For instance we include an a priori mathematical analysis in which we outline 
the mathematical knowledge or concepts to be addressed by students, the way these concepts are 
addressed by curriculum, epistemology, mathematics, and the difficult ideas which are evident to us 
from our didactical experience (the mathematical relief of the concepts according to Robert cited in 
Vandebrouck, 2018). We use didactical tools to analyze students’ tasks (Horoks and Robert, 2007) 
as a way to understand both some of the teachers’ motives (in relation with teaching mathematics) 
and the student’s actions (in relation with these tasks). Videos showing classroom actions and 
interactions provide some evidence of the students’ and teachers’ actions and what students achieved 
in relation to the goals to be reached. 

Following Engestrom et al. (1999), the units of analysis are then the Activity Systems that are 
collective, tools (or artefact) mediated and object oriented: actions are understandable when 
interpreted against the background of entire activity systems. Analysing teachers and (some) students’ 
actions/interactions, we identify Activity Systems in the classroom (in reference to different teachers’ 
motivations or students’ motive/goals). Analysing the Activity Systems permits us to understand the 
effective use of tablet-based tasks by students and the role of these tasks as teacher’ tools to which 
the outcome of the activity is a response. We highlight the way these systems evolve during the 
teaching process with tensions and perturbations (Abboud, Clark-Wilson, Jones, Rogalski, 2018). In 
particular we highlight those systems where the tablet plays a role, in order to address ways in which 
the tablets contribute to the teaching and to the students’ mathematical learning. 
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Results: tablets between the individual and the collective dimension of activity 
In the first lesson, the tablets are tools to support a task with GeoGebra. They permit organization of 
the session in a traditional classroom (rather than in a computer laboratory) and are expected to favour 
communication between students in small groups. However, each student has his or her own tablet 
and the mathematical task is given in the tablet environment. So there is not really a need for 
communication between students. Moreover, the configuration of the classroom (small groups of four 
students) does not permit a whole class discussion and an organization of the Activity System in order 
to overcome this absence of communication between students. It seems that the tablets act as barriers 
for the collective dimension of activity which was one motive of the activity.  In the second lesson, 
the situation is quite similar. However, the discussions occur among pair of students since there is 
only one tablet for each pair. Nevertheless, a tension appears between the pairs of students who 
succeed in the given task and the pairs of students who do not. So, the teacher organizes a new activity 
system with a reduced objective and a reorganisation of tools. The new motive is the success and 
understanding of all students in the task. The teacher gives his own tablet to a pair of students. This 
tablet is projected onto the board so that all the students can watch and follow the steps of the 
construction under the teachers’ whole class instruction/discussion. The collective discussion is 
possible because of the classical organization of the classroom (not in small groups).  

In the third lesson, students are supposed to investigate their previous knowledge in a relatively 
autonomous way in small groups as in the first lesson. The tablets are tools to provide several 
exercises (using Wi-Fi) and the tasks are solved on paper with pencils. Then students work together. 
The tablets are also present to provide a new kind of task for students: making collective videos for 
explaining their procedures and results on some exercises. This is also a way for the teacher to draw 
attention to some tensions between students. Indeed, tablets and videos allow the teacher to project 
solutions of some tasks onto the board and they foster class discussions. As in the second lesson, the 
tablet is then a fundamental tool in the teacher’s activity system, compensating for the original 
organization with small groups and individual aspects of the session.   

From our analyses of data from the three classrooms we see ways in which the tablets take a central 
role in the Activity Systems involved.  These will be shown briefly within the poster. 
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At the Goethe University Frankfurt am Main a study amongst 9th graders was conducted. It was 
about the effects of a mobile app supported mathematics trail on the performance concerning tasks 
on cylinders. It was supported by the MathCityMap app. In the first test after the treatment, the 
treatment group performed significantly better than the control group. After half a year, the same 
test was written as a follow-up. Now the treatment group has nearly the same results than the first 
time, but the control group performed significantly worse. This leads to the assumption, that the 
treatment may have an influence on the long-term memory. This is supported by theories such as 
outdoor education, integrated thematic instruction, enactive learning or self-determination. 

Keywords: Mathematics activity, handheld devices, mathematics trail, outdoor education. 

Introduction 
A mathematics trail (or maths trail) is a walk at which mathematical problems can be discovered 
and/or solved along the way (Shoaf, Pollak, & Schneider, 2004). To find these problems, a maths 
trail guide is needed, whether as a person or a printed/electronic version. Mathematics trails have 
been around at least since the early eighties (Lumb, 1980). The first publications mentioned the 
importance to make the mathematics in the environment visible for children (Blair, Dimbleby, 
Loughran, Taylor, & Vallance, 1983). Therefore, mathematics trails have been introduced 
internationally on the IMU conference on the popularisation of Mathematics (Blane, 1989). 
Although maths trails have been in use for quite some time now, surprisingly few studies have been 
conducted about them. So far, there has been no systematic approach to research the learning 
outcome and the long-term effects of mathematics trails in school. 

Another way to use maths trails in school can be found by Toliver (1993), who let the pupils find 
mathematical tasks in the surrounding of the school. The focus is not to solve problems but to find 
some and therefore discover the mathematics around us. It took quite some time, since Traylor 
(2005) asked if maths trails have the potential to not only make mathematics visible but also 
improve the learning outcome of the pupils. She left this question without an answer but could show 
that a general treatment in problem posing does not increase the problem-solving skills of pupils.  

Various authors have been stating the positive motivational aspects of maths trails (Shoaf et al., 
2004), and newer quantitative studies have revealed this positive effect (Cahyono & Ludwig, 2017). 
Since we know about the influence of motivation towards performance in mathematics (Chiu & 
Xihua, 2008), there seems to be a clue, that running a maths trail is not only affecting the motivation 
but could also help to increase the performance of the pupils. On the one hand, Ryan and Deci 
(2000) have written on the three needs of motivation: autonomy, competence, and relatedness. 
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Sending pupils in small autonomous groups on a maths trail can support these needs. For sure the 
autonomy is given, but also the relatedness if the pupils work together.  

On the other hand, maths trails are strongly supported by learning theories of Bruner (1971). Bruner 
stated that it is important for learning that it is represented on three levels, the symbolic, the iconic 
and the enactive level. Going on a maths trail directs to the enactive level, while the school lessons 
normally address strongly the symbolic level and illustrations on the blackboard and in textbooks 
supports the iconic level. If pupils go out and measure, they can see the real objects and discuss to 
choose the right model for the task. In addition to the iconic and symbolic level they have 
experienced in the classroom, they can get their hands-on mathematics in an enactive way. Running 
a maths trail is one way to enrich the school lesson by an enactive element. This idea of learning 
with all senses is also supported by the integrated thematic instruction model (Kovalik & Olsen, 
1994). Kovalik and Olsen stated that learning with all senses, making real experiences instead of 
just reading of them, will be remembered longer by the children than any other form of lesson.  

Furthermore, we know that outdoor education can have positive effects if it is carefully planned and 
conducted as well as being integrated into the school curriculum (Dillon et al., 2006). This should 
not be underestimated and taken care of when setting up a mathematics trail. And finally, yet 
importantly, walking a maths trail is a moderate physical activity, which we have clue for its 
positive effect on mental performance (Westman, Olsson, Gärling, & Friman, 2017). 

MathCityMap 

In addition to these approaches, the MathCityMap project was established at the Goethe University 
of Frankfurt (Jesberg & Ludwig, 2012). It provides users with a web portal as a GUI for a database 
of maths trail tasks and routes as well as with an application for smartphones (iOS and Android) to 
compile this data into a mobile trail guide (see figure 1). The app gives feedback on solutions 
(wrong/right) and the users can take hints from the app. Following the ideas of Aebli (1983) it is 
important to give direct feedback, so no wrong solution is without comment. 

       

Figure 1: MathCityMap webportal (left) and smartphone application (right) 
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Research question 

With all these clues, the question remains, what effects can we expect for pupils going on a math 
trail? Especially what effect does it have on the long-term memory? To answer these questions, we 
have conducted a study in 2017 in Frankfurt. 

Method 
In 2017, we collected 23 classes in the area of Frankfurt am Main and surrounding with a total of 
629 pupils from 9th grade to conduct a study concerning the effects of mobile-supported 
mathematics trails with the MathCityMap app. All these classes wrote an entrance exam based on 
the German VERA8 test to measure the general mathematical performance of the pupils. Since 
some pupils missed the day of the exam, only 578 have participated. After this was done, the classes 
were separated in treatment and control group, to control the variable of mathematical performance. 
Also, from every participating school, at least one class was picked for control and one for treatment 
group, to control the variable of being on a certain school. Other variables that could influence the 
results, like the quality of the teacher, have been randomized by the number of pupils participating. 
A total of 323 pupils have taken part in the treatment. Both groups wrote another exam to compare 
their performance, only 529 participated in that exam. In the end, there were 273 pupils of the 
treatment and 182 of the control group we have full data from. For the follow-up test half a year 
after the treatment, we have full data for only 42 pupils from the treatment and 37 from the control 
group.  

The treatment itself contained walking two maths trails for 90 minutes each in a group of three. The 
trails include ten tasks from which five (every second) was a task related to the topic of cylinders. 
After an analysis for German textbooks for ninth graders (see figure 2), we found only four different 
type of textbook word problems for cylinders of a certain amount (see table 1). Asking for  

- the volume (V),  

- the surface (S),  

- the lateral surface (L) or  

- the height (h), if volume and diameter or radius (r) is given. 

 

Figure 2: Part of a German textbook page with tasks on cylinders 
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Table 1: Analysis of German textbooks 

Given Asked Book 1 Book 2 Book 3 Book 4 Book 5 Book 6 Total In % 

r, h V 13 7 9 2 15 11 57 50,9 

r, h S 1 3 3 2 5  14 12,5 

r, h L 5 3 2 2 4 1 17 15,2 

V, r h 6  3  5 3 17 15,2 

V, h r 2 1 1    4 3,6 

S, r h     2  2 1,8 

S, h r           0 0,0 

L, r h            0 0,0 

L, h r 1         1 0,9 

L, S r           0 0,0 

L, S h           0 0,0 

L, S V           0 0,0 

Total  28 14 18 6 31 15 112 100 

 

For all these four kinds of tasks, an outdoor task has been created in both trails (see figure 3). In 
case of the advertising pillar (see figure 2), a real advertising pillar was used. Being outdoors, we 
tried to create authentic tasks in the sense of Vos (2011). The pupils used the MathCityMap app on 
smartphones provides by the Goethe University. On these phones, all progress has been logged, so 
that we have full data of the tasks solved by the pupils, the results they have given, the feedback 
they received, the time they needed and so on. 

 

Figure 3: Sample tasks from the study about the weight of a cylindric plate 
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Results 
For the first test after the treatment, the treatment group has performed significantly better than the 
control group (t-test, p < 0.01), but the effect size was small (d = 0.398). Divided into grammar 
school and secondary school, the effect was limited to the grammar schools (Zender & Ludwig, 
2018). By dividing the grammar school pupils (N = 256) into three performance groups of the same 
size due to the results of the entrance exam, it was revealed that the low performer and the middle 
group had both shown significant differences between the treatment and the control group (p < 0.01 
for both) with middle effects (low performer: d = 0.631, middle performer: d = 0.699). Only for the 
high performer, no effect could be found.  

The Follow-Up test also shows some interesting results. Unfortunately, only two schools with two 
classes each have participated (N = 79). Both are secondary schools. Compared to the first test, the 
treatment group scored nearly with the same mean and there is no significant difference between the 
first test and follow up. On the other hand, the control group has had a significant difference, they 
got worse in the follow up (see table 2). 

Table 2: Differences between the first test and the follow up test 

Group N M SD P D 

Control 37 -1.838 1.860 0.000 -1.150 

Treatment 42 0.071 1.538 0.384 0.034 

 

Can the effect of the single maths trail tasks be estimated? The pupils have used smartphones from 
the Goethe University and their efforts have been logged on these phones. Therefore, we know 
precisely which tasks the pupils have solved, so that we can observe the learning outcome of 
different groups on specific tasks. One example is the type of task where the volume and the radius 
or diameter is given, and the height is asked. This was a task in the test after the treatment. We have 
the control group (N = 196) with no specific treatment and treatment group can be divided into three 
groups. Those who have not solved a corresponding maths trail task (N = 118), those who have 
solved one corresponding task (N = 122) and finally those who have solved both corresponding 
tasks (N = 73). The difference between having at least one task solved to none task solved is 
significant (Χ², p < 0.01) with a small effect (V = 0.19), see table 3. 

Table 3: Effects on solving maths trail tasks to solving textbook task 

  Related tasks in the Treatment 

 Control None solved One solved Both solved 

Textbook solved 10% 7% 23% 33% 

Textbook not solved 90% 93% 77% 67% 
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About the benefit of using mobile technology to support the math trail, we also have data. As 
mentioned, the smartphones logged the progress of the pupils. From the existing log data, we know 
that 78% of the groups, who tried to solve a task, were successful. Only 37% of them were 
successful in the first try. This leads to the assumption that in a setting without technology, 63% of 
the groups would have written down wrong answers and would have been aware of their fault only 
later in the classroom.  

Discussion 
In his study in Indonesia, Cahyono (2017) could show the significant but small effect on the 
mathematical performance of pupils when taken part in a maths trail. These findings are similar to 
the one we have in Germany, also a significant and mostly small effect on the short run. What is 
new is the follow-up test, which gives us the hint that the results of the test are stable for the 
treatment group and getting significantly worse for the control group. Although the sample size is 
small, and we must be careful with clues, the results are supported by the theories of Bruner (1971) 
and Kovalik and Olsen (1994) according to the importance of enactive learning. It is also interesting 
that the treatment group we have tested in the follow-up did not perform significantly better in the 
first test, but their adopted knowledge seems to be more stable than that of the control group. 

One possible assumption is that the mobile supported maths trails (which can be created and 
conducted with MathCityMap) have the potential to influence the mathematical performance of 
pupils not only for the moment of the treatment but also for the long-term memory. The technology 
is in two ways important for the maths trail activity. First, the teacher can use the technology to 
create a trail, monitor the pupils while being outside and collect their results. So, the teacher can 
open up the classroom to go outside but is still in control of the learning environment without being 
physically present around the pupils.  

On the other hand, we have also benefits for the pupils. As mentioned above, they get direct 
feedback on their solutions. For sure, they validate their results amongst each other in the group of 
three, but the app allows getting a validation from the teacher, while the pupils are still at the object 
of the task. The feedback in combination of the available hints makes it possible that they can revise 
their solution, get new measurements, find another model and so on. With the support of the log 
data of the smartphones, it could be shown, that only about 37% of the pupils are able to solve a 
task properly on the first try. 63% of the pupils would have noticed their fault later in the classroom. 
Too late to revise the task and perhaps not being interested to solve it anymore. By the high number 
of right solutions after feedback, we can estimate the motivational potential the app has for the 
pupils. The use of technology is the main reason the pupils finish the task properly. The app is the 
main reason that a successful maths trail could be set up by the teacher without accompanying the 
pupils. This leads to the possibility to be on the maths trail as an autonomous group of three for the 
pupils. From Deci and Ryan (2000) we know about the importance of autonomy for intrinsic 
motivation, and Hattie (2014) could show the positive effects of working in small groups. These 
positive effects are results of the maths trail, but the technology allows the teacher to set up such a 
powerful learning environment. 
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Further research is needed to give better clue if this assumption holds true. Moreover, if it does hold 
true, we have to research deeper on the reasons for success. This is very important, not only to give 
the advice that maths trails are good for schools but also to point out what it is to take care about 
when running a trail at school to make it a success. What we do know so far is that going out on a 
maths trail should be done more frequently. A single event is not half as strong as two related events 
(Zender & Ludwig, 2018). 

What we also now have a clue about is that the maths trail tasks have an influence on the learning 
outcome. It is not “just” movement and fresh air since we can see that the performance of the 
control group and the group without solving corresponding tasks are very similar. Because the 
treatment group had some of their lessons replaced by the maths trail activity, it could explain, why 
they are a bit worse, if they have not solved a corresponding task. There is maybe a lack of practice, 
and this is something a teacher should care about when designing a maths trail activity. On the other 
hand, we can see the significant increase of success on the test task when solving one or even both 
corresponding tasks of the maths trail. So, we know now that there is an effect, but little do we 
know about criteria of good tasks. What makes a maths trail task successful? Also, on this 
interesting topic, further research is needed. 

At last, we have clues about the benefits of using technology, the direct feedback for example. We 
can conclude from the data that most of the pupils would have written down wrong answers without 
the technology. But we have no control group walking a maths trail only pen and paper to determine 
the effect size on the learning outcome. Again, further is research is needed. We are just at the 
beginning to understand maths trails and technology. 
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In this paper we present results of a study aiming to investigate 7th grade students’ construction of 
meanings for algebraic generalization. The students worked in groups using a specially designed 
microworld to explore tasks aiming to link figural patterns to realistic situations. Our focus is on the 
role of specific contextual elements (i.e. realistic task, digital tools, means of symbolization) on 
students’ meaning making. The combined use of Abstraction in Context and microgenetic analysis 
indicates the critical role of the available software structures in mediating students’ generalizations 
from the real context of the task to the algebraic context of school mathematics. 
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Introduction 
 

In this study we investigate 7th grade students’ construction of meanings for algebraic generalization. 
The students collaborated in groups of three using the exploratory microworld eXpresser (Noss et al., 
2009) to create figural patterns by expressing their structure through repeated building blocks of 
square tiles and developing the rules underpinning the calculation of the number of tiles in the 
patterns. The microworld allows students to use (iconic) variables to reproduce their constructions 
for different number of repetitions, to express generalization and to check their correctness through 
appropriate feedback. In this paper, we focus on the role of specific elements of context (i.e. realistic 
task context, digital tools, various means of symbolization inside and outside the digital environment) 
on students’ meaning making for algebraic generalization. 

Theoretical framework 
 

Α way to introduce students to algebra is to be aware of a pattern or regularity and then try to express 
it through a relationship (Mason, Graham, & Johnston-Wilder, 2005). There is something inherently 
arithmetic in algebra and something inherently algebraic in arithmetic, and pattern activity brings 
these two aspects together (Radford, 2014). Algebraic thinking is characterized by its analytical 
nature and it is related to the semiotic system used by students to work with symbolic expressions 
and relations including not necessarily alphanumeric symbolism but also non-symbolic and embodied 
forms of expression (ibid). Radford (2010) developed the theory of objectification with which he 
describes the semiotic transition of students from the distinction of a similarity in its expression as a 
generalization in more mathematical ways through the use of signs (gestures, words, symbols). In 
order to investigate the process of generalization by students as an algebraic activity, Radford (2014) 
suggested three features of algebraic thinking: (1) indeterminacy: the existence of unknown quantities 
(e.g., variables, parameters), (2) denotation: the need to name and symbolize these indeterminate 
quantities in different ways (not only with algebraic symbolism, but also with alphanumeric signs, 
natural language, gestures, or a mixture of these); (3) analyticity: the manipulation of indeterminate 
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quantities (through operations such as addition, multiplication) as if they were known. According to 
the theory of objectification, knowledge moves through specific problem-solving/posing activities 
from an abstract indeterminate form of possibilities (what students can potentially do and think and 
in what ways) to a concretized form of reasoning and action (“bringing-forth” something to the realm 
of attention and understanding). Recognizing the centrality of the abstract-concrete duality in the 
process of objectification, in this study we consider objectification as an abstraction process taking 
also into account the link between knowledge construction and context (Cole, 1996). Context includes 
dynamic factors such as student interactions with peers, teachers, tools, realistic scenarios and 
algebraic expressions, that may affect an abstraction process (e.g., for algebraic generalization). The 
role of context is crucial to learning processes and the complexity of learning processes is due, at least 
in part, to the context’s influences on the student’s constructions of knowledge (Dreyfus, 2010). 

 

We combine Abstraction in Context (AiC) (Hershkowitz, Schwarz, & Dreyfus, 2001) and 
microgenetic analysis (Siegler, 2006) in order to address the role of specific contextual elements on 
the development of students’ algebraic thinking. AiC offers a way to describe at the micro-level how 
meanings are constructed by shedding light on their connections to the existing mathematical 
knowledge through three epistemic actions: recognizing (R), building-with (B) and constructing (C). 
Recognizing an already known mathematical concept, process or idea occurs when a student 
recognizes it as inherent in a given mathematical situation. Building-with involves combining existing 
knowledge elements (i.e. recognized constructs) to achieve a goal, such as solving a problem or 
justifying a solution. Constructing is carried out by assembling or integrating previous knowledge 
elements by vertical mathematization to produce a new structure. The microgenetic analysis, 
originated in the Vygotskian psychology, provides tools and techniques to analyze discourse data and 
take a deeper look at the genesis of knowledge construction and the role of contextual factors 
including the social interactions and the use of tools in the learning environment. In this study, we 
investigate 7th grade students’ objectification of algebraic generalization. AiC offers a framework to 
describe and analyze objectification as an abstraction process while microgenetic analysis allows us 
to take a deeper look at how the realistic task context, the available tools and the various means of 
symbolization inside and outside the digital environment influence students’ construction of 
meanings. We aim to contribute in the research literature that explores the role of contextual factors 
in the development of students’ algebraic thinking by taking a deeper look at the genesis of knowledge 
construction at the micro-level. 

The microworld 
 

EXpresser is a mathematical microworld designed to support 11-14 year-old students in their 
reasoning and problem-solving of generalization tasks (Noss et al., 2009). It supports students to 
perceive structure and find ways to express structural relationships, to identify variants and invariants 
in patterns and to recognize and articulate generalizations. In Figure 1 there is a model of a snake 
where the body combined by red tiles while the head and tail by blue. Students are asked to construct 
a model that works for any number of red tiles according to how old is the snake and find a rule for 
the total number of tiles that compose snake in any month of its life. EXpresser consists of two main 
areas: (a) My Model (a work area, Figure 1 on the right of the screen); and (b) Computer's Model 
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(Figure 1 on the left). In My Model, students can use building blocks of square tiles to make patterns 
that can be combined to models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Pattern on eXpresser 

EXpresser allows students to 
work with (icon) variables so as to 
reproduce dynamically   (i.e.  to 
‘animate’) their patterns for 
different numbers of repetitions, 
to express generality through 
semi-algebraic relations and to 
test the validity of these relations 
for random values of repetition 
through appropriate feedback. By 
default, all numbers in eXpresser 
are constants and it is possible to 

change its value by “unlocking” them to become variables that can be handled by a slider (Figure 1). 
From the "cogwheel" icon (next to the slider) students can configure the variable's "domain" and 
specify its interval of values and the step of the variation (Figure 2). Students can convert a constant 
number to a variable in My Model while in Computer’s Model the variables take random values. 

Students can construct a model rule for the total number 
of tiles and only if it is correct pattern will be coloured 

 
Figure 2: Properties of slider (Figure  1).  Otherwise, as  an  indication  of  error,  the 

pattern appears colorless. Finally, when students find the 
general rule in Model Rule the face icon on the central toolbox becomes green and smiling (Figure 
1). As variables take random values, they provide a rational for generality (Mavrikis et al., 2013). 
Thus, the environment incorporates an ‘algebra’ and a language aiming to make generalization more 
concrete for the students by facilitating expression of structure. 

Methodology 
 

Our research approach is informed by the influential idea of “design” in learning (Cobb et al., 2003) 
aiming to explore the role of alternative representations and means of expression on students’ 
meaning making for algebraic generalization. The study took place in a lower secondary experimental 
school in Athens with one class of 7th grade (13-year-old) with 18 students and one experimenting 
teacher. The students worked in groups of three for 12 teaching hours (6 two-hour sessions, one 
session per week) over two months. In the end of the implementation, 1-hour interviews with each 
group of students were conducted intended to capture details about students’ thinking and approaches 
over the whole implementation. At the beginning of the study we knew that students had not worked 
with patterns before (patterns are not included in the Greek mathematics curriculum) and they had 
minimum use of algebraic symbols. Thus, we expected to see if and how their interaction with the 
available tools and resources would influence the meanings that they would create for algebraic 
generalization. 
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Task design aimed to link patterns to problems associated with realistic workplace contexts, thus the 
need for algebraic generalization was expected to arise as part of problem solving. The activity 
sequence was divided in three phases and for each one of them we designed a series of tasks. In the 
first phase students assumed the role of a herpetologist by studying the development of snakes through 
a simple linear pattern (Snakes). The second phase referred to the organization of a wedding party by 
professionals (Table Arranging). Initially students investigated the problem for 38 guests with 
concrete manipulatives and, next, a demanding version of the problem (132 guests) leading to a more 
complex linear pattern of unified tables was explored through eXpresser. In the third phase, students 
acted as pool designers to explore high complexity second degree patterns (Pool designer). In this 
paper, we analyze data from the first phase. Snakes engaged students in exploring the growth rate of 
a snake (i.e. grows by 2 cm every month, lives 25 years, its length reaches 6 meters) in order to 
identify the appropriate size of its cage. Assuming that one square tile in eXpresser corresponds to 1 
cm, students were asked to construct a simple linear pattern that would grow by 2 squares tiles each 
time and thus would depict the snake in any month of its life. The questions involved in the worksheet 
were: “1. How many squares will the pattern have when the snake is 5 months old? (Respectively for 
10, 25,100). 2. Describe with words how the pattern works. 3. Describe with an algebraic formula 
how many red square tiles appear for each month”. Our general goal was to engage students in 
investigating the relationship between the age of the snake and the total square tiles of the pattern. 

 

The collected data consists of video and audio recordings (four groups). The data were fully 
transcribed for the analysis. The unit of analysis was the thematic episode defined as an extract of 
actions and interactions around students’ conceptualization and expression of generalizations. The 
analysis was carried out in two levels. First, the episodes were analyzed through AiC to highlight the 
evolution of students’ epistemic actions while constructing generalizations. Next, the same episodes 
were analyzed through microgenetic analysis (Siegler, 2006) that involved: (a) coding of students’ 
and teacher’s utterances in relation to contextual elements (i.e. task, tools, symbolization) that 
appeared to be crucial in students’ conceptualization and expression of generalizations, namely 
context snake, context snake in eXpresser, context algebra in eXpresser and context algebra; (b) 
categorizing the utterances in clusters of meanings emerging through constant comparison. In this 
paper we analyze an episode from the interview of one group of three students (Group 1). 

Results 
 

In this episode, students had already constructed the snake pattern in eXpresser and they had 
responded to question 1 through a numerical generalization. As they wrote on the worksheet: “each 
month the snake grows 2 cm, so for 5 months the number of square tiles would be 2x5, for 10 months 
2x10, for 25 months 2x25, and for 100 months 2x100”. They explained that for providing the answer 
for 5 months they counted one by one the red square tiles on the screen, they did not do the same for 
the rest of the numbers. In question 2 the students answered that “the pattern is increased by 2” and 
in question 3 they provided the algebraic formula: “x+2”. This answer, that appears to be wrong (the 
correct one is 2x+2), challenged the researcher to engage students in a discussion in order to justify 
their choice of symbols in relation to their designed pattern (Figure 3, 4). We note that the designed 
pattern appeared to work correctly in eXpresser. The students had unlocked a number called “fidi” 
(snake in Greek) to become a variable and used the corresponding slider to choose values for the 

Thematic Working Group 16

Proceedings of CERME11 3014



 

variable (in Figure 3 the value ‘2’ is chosen). The students recognized that the pattern consisted of 2 
constant blue square tiles (for the snake’s head and tail) and one building block of 2 red square tiles 
that had to be repeated for designing the body. In order to create the variable the students pulled a red 
square tile to My Model and unlocked it (Figure 4). Then, they opened the cogwheel in the 
corresponding slider (Figure 2) and set the domain of the variable, by changing the minimum value 
from 1 to 2, the maximum from 1 to 300 and the increment from 1 to 2. As they explained, they put 
2 to the minimum because the snake at birth is 2cm, they put 300 to maximum because it grows for 
25 years until reaching 6 meters and they put 2 in the increment because it increases 2cm each month. 

 

   

 

 
Figure 3:Pattern 

Group 1 
Figure 4: Pattern 

properties Group 1 
Figure 5: Pattern 

Group 2 
Figure 6: Pattern 

properties Group 2 

For correct coloring the red squares, the students used the variable to complete the Model Rule (Figure 
3) by adding to “fidi” the constant number 2 representing the constant (blue) squares tiles. This way 
the values of the variable in the slider represent the length of the snake in cm. These values actually 
result by a ‘hidden’ multiplication of the number of months by 2. For instance, value 6 in the slider 
means 6cm length indicating that 3 months are multiplied by 2. By exploiting the structures provided 
by the software, the students achieved to construct a pattern working correctly and thus they 
concluded that the required symbolic generalization was “x+2”. However, this formula cannot be 
used for calculating the total length of the snake in relation to its month of life. We note that students 
had already answered questions 1 and 2 by multiplying specific number of months by 2. In the 
following excerpt, the researcher discusses with group 1 students about their pattern and formula. She 
attempts to understand their formula and brings to the fore the fact that although the pattern works in 
eXpresser the formula cannot be used for answering the questions. 

 

11 Researcher: What does x+2 means to you? 
12 Student 2: We put x for the body and 2 for the head and tail. So 2 would be constant 

independently of the length of the snake. (Recognizing) 
13 Researcher: So x refers to red squares and 2 to the blue ones. 
14 Student 1: Yes for the tail and the head. (Recognizing) 
15 Researcher: Can this formula help us answer the question 1? What about the 5 months? 
16 Student 1: 5 times 2. 
17 Researcher: But here you write plus 2. 
18 Student 2: [She seems to be confused] Is it the squares? ... 7 [adding 2 to 5] times 2 gives 

14? ... (Recognizing) 
 Student 1: Our x here [showing the icon of “fidi”] will not help us because it shows how 

many red tiles appear in the pattern. If we don’t know the number of red tiles 
we can’t find it very easily [refers to number of months]. (Recognizing) 

19 Researcher: So what does your x show? 
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20 Student 1: Our x is for the red tiles. It basically expresses what is already on the screen. 
21 Researcher: What do you mean exactly? Can you change something to help us more? 
22 Student 2: For the months…? 
 Student 1: Probably… Yes, 2 times the months. Actually x should have to express the 

number of months. (Building-with) 
23 Researcher: In your pattern x doesn’t refer to months. It refers only to even numbers, 2 

months, 4, or 6. For 5 months, what would you do? 
24 Student 1: Our x refers to the whole body of snake…it refers to something different… 

In the above dialogue the students recognized that the variation of months is embedded implicitly in 
their formula in eXpresser without being symbolized in some way. In the next part of the episode, the 
researcher aims to challenge students’ views on symbolization by presenting them a pattern created 
by another group (Group 2) in a different way (Figure 6). In particular, group 2 constructed a pattern 
based on the formula ‘2x+2’ where x takes all natural numbers as values in the slider. The researcher 
invites the students to reflect on the two formulas. 

 

25 Researcher: In your pattern, x does not refer to months. In order to find out how old the 
snake is you told me that you have to multiply the variable by 2… Here is a 
pattern of another group. [The Researcher shows the pattern of Figure 5] 

26 Student 1: Yes actually it [the slider] gives values expressing months ... These students 
(Group 2) multiplied by 2 (Figure 5) so as to refer to the whole month 
otherwise this [she showing the iconic variable in properties, Figure 5] would 
refer only to a half month. Therefore “fidi” [iconic variable] refers to the half 
body of snake, so they multiplied by 2 in order to find the whole. 
(Recognizing, Building-with) 

27 Researcher: So when the slider shows 2, we see how long the snake would be in 2 months. 
Which is the formula of this pattern. (Group 2)? 

28 Student 2: [calculates total number of tiles for value 2 in the slider] 2 times 2 add 2, its 
6. (Building-with) 

29 Researcher: Can you express it by symbols? 
30 Student 1: 2 times x add 2, because x here refers to something different from our x. Here 

it refers to months. (Construction) 
The above episode represents an instance of objectification since the students appeared to 
conceptualize in more sophisticated ways different symbolic forms. In terms of AiC, the episode 
represents a construction process leading to students’ construction of meanings for their own formula 
as well as the formula ‘2x+2’. The main challenge faced by the students was to conceptualize the role 
of iconic variables and linking them both to the construction of different patterns and to the realistic 
context of the task. We observe that initially the students recognized that the environment’s iconic 
structures are associated directly by their previous mathematical constructs and they linked the 
variable x to eXpresser’s unlocked variable (line 12). Then they recognized that the x of their formula 
doesn’t work for answering to questions 1 and 2 in the worksheet (line 18) since it refers implicitly 
to numbers of months (line 22). Thus, they were able to build with it an explanation of their own 
strategy. In line 26, the students recognized that the value of x in the new pattern represents number 
of months and the graphical outcome “refers to the half body of snake”. Building-with these two 
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recognizing actions they provided a justification for group’s 2 solution: the multiplication with 2 is 
necessary in order to calculate the total length of the snake (line 26). This is a sophisticated 
justification since the students conceptualized the variation of months inside the variation of snake’s 
length. Next, the students constructed the new formula initially by the use of specific numbers (line 
28) and subsequently with the use of variables (line 30) following an analytic algebraic approach. At
the same time they developed a new meaning for the variable by objectificating x as a sign
representing number of months.

Figure 7: Microgenetic analysis: Gray is for Researcher, Orange for Student 1 and Blue for 
Student 2 

The microgenetic analysis of the above episode shows a rich meaning generation where each symbol 
is conceptualized in different ways in relation to the different elements of context and utterances 
cannot be confined to a single context (Figure 7). The analysis revealed four clusters of meanings 
corresponding to specific contextual elements: real world snake (context snake); snake represented 
in eXpresser (context snake in software); quasi-algebraic symbolic expression in eXpresser (context 
algebra in software); algebraic symbolism (context algebra). In the beginning of the episode we see 
that students refer to symbols in relation to the real context or in relation to school mathematics. In 
the progression of the episode we note that students’ utterances belong to different levels 
simultaneously. For example, when students use x they refer to snake body while with number 2 on 
head and queue respectively (line 12). Then the same x in the software is a set of red squares. Indeed, 
when the researcher asks whether “x+2” can help us to calculate the red squares in relation to the 
snake's life (line 15), the students realize that the x of their formula doesn’t work for answering to 
questions referring to the snake’s length in different months (line 18). Looking at Figure 7, the 
students’ answer is based on the properties of iconic variable in eXpresser as well as on the 
representation of the snake in the environment for different values in the slider. This way student’s 
utterance is placed at the intersection of two contextual elements: context snake in software and 
context algebra in software. Finally, while observing the pattern created by another group, the 
students identify that symbol x refers at the same time to red squares and months of snake’s life. This 
is why the constructed meaning is placed again at the intersection of two contextual elements (Figure 
7, line 26). Taking a global view of the microgenetic diagram, we see that students’ interaction that 
leads to the construction of algebraic generalization in the algebraic context (line 30) takes place 
mainly within the two contextual elements in the middle. This finding highlights the critical role of 
the software structures in mediating students’ generalization from the real context of the task to the 
algebraic context of school mathematics. 
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Conclusion 
 

The analysis revealed an objectification process accompanied by meaning generation for algebraic 
generalization. In terms of AiC, the students conceptualized different symbolic forms of expression 
related to different patterns. This was carried out through a sequence of epistemic actions including: 
linking previous mathematical constructs to eXpresser’s variable (unlocked numbers); recognizing 
the role of variable in the constructed patterns; relating variable values to the graphical outcome of 
patterns; conceptualizing covariation of different variables for the construction of patterns (e.g., 
months and snake’s length); and constructing formulas for patterns not through a trial-and-error 
arithmetic method but in algebraic analytic way. The microgenetic interpretive analysis allowed us 
to identify, analyze and discuss the role of the different contextual elements to students' construction 
of meanings. Four clusters of meanings appeared interrelated to the context of real snake, the 
representation of snake in eXpresser, the quasi-algebraic context of eXpresser and the context of 
school algebra. As regards the role of contextual elements in students’ construction of algebraic 
generalizations, the analysis revealed the critical role of software representations/structures in 
mediating the making of links between realistic tasks and algebra. 
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1 Theory as a fundamental part of mathematical education research 
The discussion about what a theory is, why theory is needed, and how theory is used is a necessary 
and ongoing debate in the community of mathematics education as a scientific discipline. Although 
there is no clear agreement in the field (Assude, Boero, Herbst, Lerman, & Radford, 2008; Niss, 
2018), we can gather some of the essential elements of theories from this debate. Theories can be 
taken as tools or objects (Assude et al., 2008); as lenses to “see,” “observe,” and “understand” phe-
nomena of teaching and learning mathematics. Researchers can draw on theory to improve coher-
ence and consistency of scientific argumentation, but researchers also need to guard against becom-
ing blind to aspects that a theory does not capture. While theories provide a language, a more or less 
structured and coherent system of concepts, theorizing is a way of sense making (Mason & Way-
wood, 1996). Background theories encompass a philosophical stance to “understand what are taken 
to be the things that can be questioned and what counts as an answer to that questioning” (Mason & 
Waywood, 1996, p. 1056), while foreground theories are about particular research objects address-
ing a foreground aim such as “what does and can happen within and without educational institu-
tions?” (p. 1056). Some of these foreground theories may developed into an epistemological tool for 
investigating a specific phenomenon, for example, the epistemic action model of Abstraction in 
Context (Tabach, Rasmussen, Dreyfus, & Hershkowitz, 2017). Theories are integral to the research 
process because “[t]heory is the essential product of the research activities, and theorizing, there-
fore, its essential goal” (Bishop, 1992, p. 711). 

2 An overview about the previous work of the CERME theory groups 
Kidron, Bosch, Monaghan and Palmér (2018) have offered a comprehensive overview about the 
theory working groups of CERME over the years, and we would like to highlight some aspects of 
the groups in view of the Theoretical Perspectives Thematic Working Group (TWG) of CERME11. 
We aim to provide insights as to why continuing work on theory is necessary for an ongoing estab-
lishing and re-establishing of mathematics education as a scientific discipline. The founding of this 

Thematic Working Group 17

Proceedings of CERME11 3020



working group can be taken as a reaction to the increasing diversity of theoretical approaches to-
wards the end of the millennium which provided varied perspectives, such as cognitive, sociologi-
cal, institutional, or activity theory-based views, to name a few. This diversity of theoretical ap-
proaches raised the question of how coherence can be maintained in the field since in these ap-
proaches, similar words may be used for different things or different words for similar phenomena, 
thus causing problems when communicating research results (Bikner-Ahsbahs, 2009). From the 
discussion on the diversity of theories at CERME4, the notion of networking of theories emerged 
(Artigue, Bartolini Bussi, Dreyfus, Gray, & Prediger, 2006). This notion takes the diversity of theo-
ries as a rich feature of the field, thus, respects the identity of different theory cultures, and does not 
aim at achieving a unifying theoretical understanding in the field (Bikner-Ahsbahs, 2009). Im-
portant steps to understand how the networking of theories can maintain coherence in the field of 
mathematics education research include the use of networking strategies in research involving mul-
tiple theories (Prediger, Bikner-Ahsbahs, & Arzarello, 2008) and the development of networking 
methodologies for the investigation of theory use in research. When networking theories, the aim is 
not to create a uniform theory, but rather to embrace complexities and re-new our theoretical under-
standing arising from examining networking practices.  

Differences in background theoretical views also create differences in the notion of what theories 
are. For this reason, the networking of theories faces difficulties not only through incommensurable 
and incompatible assumptions of theories but also because the notions of theory used by researchers 
may not be the same (cf., Niss, 2018). In many sessions over the years, participants generally 
agreed upon using the concept of theory developed by Radford (2008; 2012), whereby a theory 
[(P,M,Q)R] is a way of producing understanding based on a set of relatively stable principles (P),  
methodologies (M) related to the principles, paradigmatic questions (Q), and its use in research pro-
duces results (R) that contributes to its further developing. Monaghan (2011) proposed to consider 
“theoretical genesis” as similar to “instrumental genesis”: A theory is an artifact addressing and 
developing a specific research practice, which in turn may allow researchers to use the theory more 
creatively in a new way. Thus, theories or theoretical approaches frame research practices as well as 
develop further through the act of research.  

3 Main issues raised at the Thematic Working Group 17 at CERME11 
The thematic working group on Theoretical Perspectives and Approaches in Mathematics Educa-
tion Research of CERME11 has taken up the tradition of addressing multi-theoretic approaches but 
put more emphasis on the interplay between theory and methodology, and how this interplay may 
advance research practice. Key issues addressed included epistemological and philosophical con-
siderations, ontology of concepts, and contributions on design research involving new directions 
such as embodied design and the use of technology. To advance our knowledge on the triad of theo-
ry-methodology-research, one specific objective was to identify argumentative grammars for design 
research, and (re-)new theory strands such as embodiment.  

Nineteen papers and two posters were presented at the conference as part of the TWG. In the pro-
ceedings, these contributions are grouped according to five topics. In what follows, we present vari-

Thematic Working Group 17

Proceedings of CERME11 3021



ous interconnections between theory and methodology in a diagram and describe – based on the 
diagram – key points raised by the papers to emphasize their contributions to the aims of the TWG.  

4 Essential contributions to the interplay of theory and methodology 
Building from Radford’s (2008) theory triplets (P, M, Q), we propose a graphic organizer (Fig. 1) 
illustrating the interplay among researchers’ work with theories, their elaboration of methodology, 
and enactment of research. 

Sensitivity

Mathematics

Grain Size
Epistemology 
in Research

Research 
Object

Theory 
Ecology

Problems 
Phenomena 

Purposes

Design Research
Generativity

    Theoretical Research
Generality

 Empirical Research
Generalizability

Theoretical framework
Methods-related decisions 
(e.g. on research data and 

procedural steps)

Methodology-related 
decisions (on methods 

and techniques)

Mutual affordance

Working with 
Theories
[(P,M,Q)R]

Elaborating 
Methodologies

Enacting 
Research

Figure 1: A graphic organizer outlining the interplay among researchers’ theoretical working, elabo-
rating methodology, and enactment of research. 

We place Working with Theories in the top layer, because researchers’ methodology-related deci-
sions are driven by their tacit or explicit sensitivities to theoretical assumptions. When working with 
theories, researchers are expected to make explicit their sensitivities to research epistemologies, 
grain sizes of theories, kinds of mathematical knowledge, objects of research, ecologies of theories, 
and research problems, phenomena, or purposes. While we show each of these elements as discrete 
ovals in the graphic organizer, we view these sensitivities to be overlapping. For example, research-
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ers may choose to network theories of different grain sizes to investigate phenomena of students’ 
ways of coming to know mathematics as research objects. Yet, networking of theories is not an aim 
in itself but was developed to solve problems. Further, decisions in networking are never neutral, 
because scholars developed theories with particular perspectives, for example, based on specific 
research results and within particular ecological paradigms. Researchers’ methodological decisions 
relate to their research problem, phenomenon, and purpose. We view this relationship as reflexive—
researchers’ theorizing informs their research problems, which in turn inform their methodologies, 
and their methodologies in turn inform their research problems.  

There are three overarching kinds of research which inform researchers’ methodological decisions: 
design research, empirical research, and theoretical research. For these three kinds of research we 
distinguish three quality criteria: generativity, generalizability, and generality. To illustrate what we 
mean by generativity, generalizability, and generality, we draw on research presented in the Theo-
retical Perspectives TWG of CERME11. The design research carried out by two different groups—
Bakker, Shvarts, and Abrahamson, as well as Alberto, Bakker, Walker-van Aalst, Boon, and 
Drijvers—resulted in new tasks generating a design genre. The theoretical research conducted by de 
Freitas, Ferrara, and Ferrari addressed affectivity as a general concept of the body’s responsivity, 
illustrating it through an empirical example. Liljekvist, van Bommel, Randahl, and Olin-Scheilier 
addressed a particular research problem, engaging in empirical research to develop generalizable 
knowledge. The base layer of the diagram focuses on the enactment of research. Researchers’ theo-
retical frameworks afford and constrain their methodology-driven and methods-driven decisions, 
when collecting and analyzing research data, and vice versa. 

4.1 Reciprocity of theory and methodology: mutual affordances 

The first topic, reciprocity of theory and methodology for research and design, sets the scene: The 
topic emphasizes the epistemological nature of research, highlights and describes the reciprocity of 
theory and methodology in research, and how such reciprocity may impact on design and research.    

Kidron compared the procedures of a priori analyses and their epistemological roles in the applica-
tion of two theories, suggesting that differences in the a priori analyses reflected different analytical 
focus priorities based on the theories and, hence, illustrated the reciprocity of theory and methodol-
ogy. Chan and Clarke conceptualized and explained this reciprocity between theory and methodol-
ogy in terms of mutual affordance, where affordance refers to “the investigative options made pos-
sible (and also constrained) by the choice of theory or methodology”. In the case of design research, 
Hanke and Bikner-Ahsbahs encapsulated the mutual affordances between theory and methodology 
into a design principle “boundary crossing by design(ing),” linking the theoretical construct of 
boundary crossing with a course design for pre-service mathematics teacher training. 

4.2 Philosophical considerations: interplay of epistemology and ontology 

The second topic addresses philosophical, epistemological, and ontological considerations. The 
papers provide examples of the interplay of theory and methodology and this interplay’s epistemo-
logical and ontological implications on the level of generality. The papers address analytical ways 
of arguing, thus generality, but also illustrating the generality by concrete examples.  

Thematic Working Group 17

Proceedings of CERME11 3023



Lensing argued that concepts and discourse form an ontological source of building mathematical 
objects. Radford illustrated the epistemological power of joint labor on tasks and material as onto-
logical source in the classroom. Kuzniak and Vivier transformed the notion of the work mathemati-
cians do as the epistemological source of concepts to the mathematical work in the classrooms. 
They conceptualized this work as the dialectic between the cognitive and the epistemological levels 
when learners build mathematical objects or concepts. Zarianakos developed a phenomenological 
research methodology to understand epistemic processes and highlighted the usefulness of a phe-
nomenological attitude to investigating such processes. Finally, Flores advocated for the legitimiza-
tion of a visuality’s perspective for mathematical visualization. Using art laboratories as a case ex-
ample, her poster challenged mathematics education researchers to rethink what mathematics and 
mathematics education are. 

4.3 Embodied design: generativity and theory-methodology-design bundle as key ideas 

The third topic focuses on embodied design with coordination as a key aspect, yet the nature of co-
ordination presented in the papers varies. The papers reported on theoretical coordination, coordina-
tion of scientific criteria of design research, epistemological coordination, and coordination of indi-
vidual affect and individual movement by a trans-individual activity and of disciplines.  

Alberto et al. coordinated embodied design and instrumental genesis into the concept of embodied 
instrumentation; in this kind of networking, the researchers regarded the body as part of an instru-
mental genesis with an artifact. Their example illustrated a specific design genre where the move-
ments of both hands must be coordinated to explore a problem of the sine graph. Referring to the 
same design genre, Bakker, Shvarts and Abrahmason made a plea for attending to generativity in 
addition to generalizability in education research. Such double attention generates the need for sci-
entific coordination of generalizability and generativity—two criteria resonating with the two parts 
of design research, the design(ing) and the theorizing based empirical data. Based on a cultural-
historical approach, Shvarts’ poster abstract added an example of embodied action-based design. 
She showed that in her research, three kinds of couplings could be epistemologically coordinated 
through the whole bundle theory-methodology-design: theory-methodology, theory-design and 
method-design, where the theory-methodology-design bundle serves as the comprehensive lens for 
the perception-action system distributed between the tutor and student during the teaching-learning 
process.  

The fourth contribution on embodiment by de Freitas, Ferrara and Ferrari provided a theoretical 
idea which was based on affectivity as the responsive nature of the human body. This kind of affec-
tivity was substantiated by examining the coordination of students’ movements while they collec-
tively performed a task involving body movements to produce and express a circle.  

4.4 Research on teaching and learning paths: the need to go beyond existing solutions 

The fourth topic continues discussions about design research, addressing the need to go beyond a 
single theoretical framework or existing frameworks. Johnson, McClintock, and Gardner coordinat-
ed Variation Theory as a pedagogical theory of learning with the theory of Quantitative Reasoning, 
as a subject-specific theory for design. This kind of networking was possible because the research 
linked two different but compatible theory grain sizes. Tasks, shaping a design genre already, were 
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reconsidered for the new design step of transfer. This step required an additional theoretical model 
that was sensitive to transfer, thus allowing the generativity of the design genre be expanded. Simi-
larly, Fonger, Ellis, and Dogan coordinated radical constructivist theory with Harel’s Duality, Ne-
cessity, Repeated Reasoning principle for instructional design of a learning trajectory for quadratic 
growth. While exploring the design of the trajectory, the authors identified shifts of understanding 
among mathematics students, which demanded the inclusion of an instructional theory into the theo-
rized trajectory, thus expanding the concept of the learning trajectory towards a teaching and learn-
ing trajectory.  

While the first two contributions within the fourth topic addressed designing and investigating the 
(designed) learning path empirically, Gosztonyi’s contribution turned this focus around. She de-
scribed reverse engineering as a reverse design process of already designed series of mathematical 
problems: The aim is to reconstruct the rationale behind these series so that teachers can design new 
series of (selected) problems. Gosztonyi’s research is an example of coordination between historical 
and empirical research methods.  

Finally, Bampatsikou et al. took a unique approach to analyze students’ learning paths applying 
Peirce’s complete classification of sign relations. According to Bampatsikou et al., the take-up of 
these classes of signs may “mark those characteristics of the tasks that turn students’ conceptualiza-
tions to higher level signs” in their semiosis, thus, resonating with the results of Fonger et al. 

4.5 Theorizing the new: advancing research in terms of theory and methodology 

The final topic aimed at showing how new requirements in educations (e.g., new mathematical 
problems, programming, social media), coming from outside or inside a theory culture, have be-
come driving forces for new ways of theorizing and, hence, advancing research.  

Connecting mathematics and programming, Lagrange and Laval explained how a framework of 
connected working spaces may account for students’ work across domains; hence, contributing to 
the generativity of designs for cross-domain research. Liljekvist et al. illustrated how they combined 
theoretical frameworks for investigating professional development through the social media as a 
new way of interacting. Lagrange and Laval as well as Liljekvist et al. provided new dimensions to 
the work of research, suggesting new complexities that may emerge.  

Makar and Fielding-Well observed that socio-mathematical norms have not been investigated in 
recent developments of inquiry-based learning even though such norms can strongly impact on 
teaching. Similarly, Itsios and Barzel observed that the fundamental concept of Grundvorstellungen 
has not yet been applied to students’ difficulties in understanding exponential expressions. The two 
papers provide examples of ways to strengthen theoretical approaches that had emerged in different 
ecologies by expanding their scope and carefully consider the ontological status of the concepts 
involved. The lack of a theory’s applicability can also lead to a theoretical expansion. Exactly this 
was presented by Otaki, Asami-Johansson and Bahn showing an extension of the Anthropological 
Theory of the Didactics to embrace and investigate the para-didactic system of the Japanese lesson 
study.  
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5 Lessons learned and moving forward 
As in previous ERME conferences, this group agreed upon the dynamic, evolving nature of theories 
in research. From this perspective, scholars should neither demand that theories be used with abso-
lute rigor nor allow arbitrarily applications of theory. To form coherent research frameworks, schol-
ars engage in reconsidering, reinterpreting and reusing theories to investigate new phenomena, 
solve new problems and serve new purposes. Thus, theories develop and evolve through research. 
Working on coherence and consistency is an ongoing research task, particularly necessary for the 
Networking of Theories, in which reconsidering the compatibility of the theories or theoretical ap-
proaches is an additional epistemological necessity. Achieving generativity, generalizability, and 
generality affords the potential of the research results to be useful for answering new questions.  

Bridging theory and methods to advance research is methodological work. To do so in a coherent 
and consistent manner, researchers need sensitivity, which is both, brought in by scholars in the 
field and required from the field. Our graphic organizer (Fig. 1) shows the different sensitivities that 
were considered during our group’s discussions. The presentations on embodied design challenged 
the group to discuss what counts as mathematics (4.3). Theory ecology was an implicit topic in sev-
eral contributions (4.5, 4.2). In the presentations focused on philosophical contributions, the group 
more explicitly addressed sensitivities to the ontology of concepts (4.2). In the presentations on 
teaching and learning paths, the group examined links between the grain size of the research focus 
and what researchers took up as research objects, whether the focus was on a micro-step while solv-
ing a task, a whole learning path, series of problems or on transfer of knowledge (4.4).  

The different sensitivities intertwine, following the epistemology of research in mathematics educa-
tion—what counts as new knowledge, how that knowledge is achieved and substantiated in the 
field. New knowledge was gained in terms of epistemological criteria (affordance, generativity, 
generalizability, generality, phenomenological methodology), extending the scope of theoretical 
constructs (Grundvorstellungen, socio-mathematical norms, para-didactic system, and interdiscipli-
nary research), the nature of design research (on transfer, on teaching learning trajectories, on em-
bodied design), strengthening theoretical constructions analytically (mathematical work, Theory of 
Objectification, formation of objects), or in terms of advancing the networking of theories strand by 
adding networking cases. 

With our graphic organizer (Fig. 1), we offer a space for the interplay among researchers’ theoreti-
cal working, elaborating of methodology, and enactment of research. Notably, we are not trying to 
find a homogenous, one size fits all epistemological path. Rather, we are working to navigate in the 
field in order to advance our research in different directions, for example, in the directions of meth-
odology, methods, theory, scope, design, epistemology and ontology. Looking ahead, as topics on 
epistemology and ontology were addressed and the problem of discerning different argumentation 
grammars is not yet solved, both should be included in future calls of the TWG on Theoretical Per-
spectives and Approaches in Mathematics Education Research of ERME. 
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The present research study is a theoretical reflection on the notion of a priori analysis in two different 
theories: the Theory of Didactical Situations (TDS) and the theory of Abstraction in Context (AiC). 
For both theories the epistemological perspective is of importance. The a priori analyses offered by 
the two theories are different. This difference reflects the different priorities of focus of analysis of 
both theories. The study demonstrates that, in their effort of networking theories, researchers of both 
theories will benefit of comparing their a priori analyses. 

Keywords: A priori analysis, a posteriori analysis, Abstraction in Context (AiC), networking theories, 
Theory of Didactical Situations (TDS). 

Introduction 
The most recent Working Group on theory discussed the importance of developing networking with 
regard to the design dimension. As we will see in the following, the notion of a priori analysis is 
closely related to the phase of design. The present paper offers a theoretical reflection on the notion 
of a priori analysis in two different theories. It investigates the differences in the a priori analyses of 
the two theories and the influence of the different a priori analyses on the networking of theories. 
Dealing with a priori analyses, the focus of the paper is on methodology. 

The theories discussed in this paper are the Theory of Didactical Situations (TDS) and the theory of 
Abstraction in Context (AiC). There are two main reasons for the choice of these theories. The first 
one is that this paper is based on my networking experience with these theories (Kidron, Lenfant, 
Bikner-Ahsbahs, Artigue, & Dreyfus, 2008; Kidron, Artigue, Bosch, Dreyfus, & Haspekian, 2014). 
The second reason is that the a priori analyses take into account the mathematical epistemology of 
the given domain and for both theories the epistemological perspective is of importance. The two 
theories consider the epistemological dimension in different ways. TDS combines epistemological, 
cognitive, and didactical perspectives. TDS focuses on the epistemological potential of didactical 
situations. AiC analysis is essentially cognitive and focuses on the students’ reasoning; mathematical 
meaning resides in the verticality of the knowledge constructing process and the added depth of the 
resulting constructs. An epistemological stance is underlying this idea of vertical reorganization (this 
term will be explained in more details in a next section). For both theories the epistemological 
dimension has an important role. In the literature, the important role of epistemology is discussed in 
details in Artigue (1990, 1995). Kidron (2016) analyses the connection between epistemology and 
networking of theories. 

In the next two sections, I will present shortly each theory and deal with the question what is an a 
priori analysis for each theory. Then, I will deal with the differences of the a priori analyses and 
demonstrate that, in their effort of networking theories, researchers of both theories benefit of 
comparing their a priori analyses. 
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TDS a priori analysis 
A short introduction to TDS is offered by Artigue, Haspekian and Corblin-Lenfant (2014). This well-
established theory belongs to the French school. It began to develop in the 1960s in France, initiated 
by Guy Brousseau (1997). Artigue et al. (2014, p. 48) wrote; 

… we focus on three characteristics that create the specific lens through which TDS considers the 
teaching and learning of mathematics: the systemic nature of teaching and learning; the 
epistemology of mathematical knowledge; and the vision of learning as a combination of 
adaptation and acculturation. These characteristics determine the questions that TDS raises and 
tries to answer, as well as the methodologies it privileges. 

The first characteristic, the systemic perspective of TDS is expressed by the central object of the 
theory, the idea of situation, which is itself a system. A special attention is given to the second 
characteristic, the epistemology of mathematical knowledge, while discussing TDS a priori analyses. 
The third characteristic relates to the cognitive dimension. 

The theory is structured around the notions of a-didactical situation (in a-didactical situation there is 
no didactical intentions and the teacher refrains from interfering) and didactical situations, and 
includes concepts relevant for teaching and learning in mathematics classrooms. The social dimension 
also has an important role in TDS. In essence, the central object of the theory, the situation, 
incorporates the idea of social interaction. 

The systemic view led to the concept of didactical engineering (Artigue, 1989, 2013) which is 
explained in Artigue et al. (2014, p. 50): 

It is a methodology which is structured around a phase of preliminary analysis combining 
epistemological, cognitive, and didactical perspectives, and aiming at the understanding of the 
conditions and constraints to which the didactical system considered is submitted, a phase of 
design and a priori analysis of situations reflecting its optimization ambition; and, after the 
implementation, a phase of a posteriori analysis and validation. 

The notion of “milieu” is an important construct in TDS. The a-didactic milieu was initially defined 
by Brousseau as the system with which the student interacts in the a-didactic game. In the design of 
learning situations, there is a special attention to the constituents of the milieu organized for the 
learner. 

In her chapter “Perspectives on design research: the case of didactical engineering”, Artigue (2015) 
presents the evolution of Didactical Engineering (DE) in the last three decades and explains its links 
with TDS. She also presents its characteristics as a research methodology. In this chapter we read that 
design has always played a fundamental role in the French school. We also read how design is 
connected to the a priori analysis. 

In Artigue et al. (2014, pp. 54–60), we have a detailed example that explains the components of the 
TDS a priori analysis and the requests of the a priori analysis for developing the systemic analysis 
typical for TDS. For example, the need for information of the mathematical knowledge of the 
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students, of the particular situation at stake, of the teacher’s expectations regarding this situation.  The 
methodology for analysis is described in the following sentence: 

We developed thus our analysis using the usual techniques of TDS, that is to say, preparing an a 
priori analysis focusing on the determination of the cognitive potential of an a-didactic interaction 
with the milieu, for a generic and epistemic student, that is, a student accepting the a-didactical 
game and able to invest in it the mathematical and instrumental knowledge supposed by the 
teacher. (Artigue et al., 2014, p. 63) 

In TDS a priori analysis, the researchers make assumptions about the supposed mathematical 
knowledge of the students which is necessary for a productive interaction with the “milieu”. The a 
priori analysis must then play its role of reference as well as its role of revealing the didactic 
phenomena. Then the a posteriori analysis is compared to the a priori analysis and sometimes the 
hypotheses which were done in the a priori analysis are not in accord with the a posteriori analysis of 
the collected data. This comparison of the a priori analysis and the a posteriori analysis is important 
for the TDS researchers in order to deeply understand the functioning of the “situation”. 

AiC a priori analysis 
Dreyfus & Kidron (2014) offers a short introduction to AiC. The theory is explained in more details 
in (Schwarz et al., 2009). AiC has been developed over the past 18 years with the purpose of providing 
a theoretical and methodological approach for researching, at the micro-level, learning processes in 
which learners construct deep structural mathematical knowledge. Methodologically (and this is the 
focus of the present study), the AiC researchers are offered tools that allow them to observe and 
analyze students’ thinking processes. A detailed treatment of the methodology is offered by Dreyfus, 
Hershkowitz and Schwarz (2015). AiC view of abstraction is grounded in the works of Davydov 
(1990) and Freudenthal (1991). In the introduction part, I wrote that AiC focuses on the students’ 
reasoning and that mathematical meaning resides in the verticality of the knowledge constructing 
process and the added depth of the resulting constructs. Freudenthal ideas led his collaborators to the 
idea of “vertical mathematization”. This idea is explained by Dreyfus et al. (2015, p. 186–187): 

Vertical mathematization points to a process that typically consists of the reorganization of 
previous mathematical constructs within mathematics and by mathematical means by which 
students construct a new abstract construct. As researchers in mathematics education, we preferred 
the expression “vertical reorganization” to the expression “Vertical mathematization” to discern 
between what is intended by the teacher - the mathematization, and what often happens - a 
reorganization….In vertical reorganization, previous constructs serve as building blocks in the 
process of constructing. 

Thus, AiC defines abstraction as a process of vertically reorganizing some of the learner’s previous 
mathematical constructs within mathematics and by mathematical means in order to lead to a new 
construct (for the learner). For the convenience of the readers I will report some more details about 
AiC written in Kidron (2016, p. 154). The process of abstraction has three stages: the need for a new 
construct, the emergence of the new construct and the consolidation of this new construct. The second 
stage, the emergence of the new construct. is analyzed by means of three observable epistemic 
actions: Recognizing, Building-With and Constructing. Recognizing takes place when the learner 
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recognizes that a specific knowledge construct is relevant to the problem she or he is dealing with. 
Building-with is an action comprising the combination of recognized knowledge elements, in order 
to achieve a localized goal, such as the actualization of a strategy, or a justification, or the solution of 
a problem. Constructing consists of integrating previous constructs by vertical mathematization to 
produce a new construct.  

In view of AiC essential cognitive perspective, the focus is on the students’ processes of construction 
of knowledge. In the AiC approach, contextual aspects are considered to be integral factors of the 
learning process. Context is regarded in a wide sense, comprising historical, physical and social 
context. Historical context includes students’ prior learning history, physical context includes 
artefacts such as computers and software, and social context refers to interaction with peers, teachers 
and others. 

The importance of design is considerable in AiC. This is in accord with the epistemological stance 
which is underlying the idea of vertical reorganization. The design is accompanied by its 
epistemological aspects. As a part of the AiC methodology, an effort is made to foresee students’ 
expected processes of construction of knowledge and an a priori analysis of the activities is carried 
out.  

The AiC a priori analysis consists first on assumptions about the previous mathematical knowledge 
of the students, in particular, previous constructs which have been constructed in the past and that 
may be helpful in the present task. Then, the AiC a priori analysis consists of intended constructs that 
are required in the given task. For each intended construct, the AiC researchers give an operational 
definition. The operational definition will help the researchers in their decision if the student did 
express the intended construct. It will offer a criterium for evidence if the intended construct has been 
constructed. Different researchers in the team conduct separately their a priori analyses. Then the a 
priori analyses are compared and discussed until there is agreement between the researchers.  

Comparing the a priori analysis and the a posteriori analysis, the AiC researchers note that sometimes 
the students achieve new constructs which were not expected in the AiC a priori analyses. This fact 
is an important and interesting stage in the research. Sometimes, students only achieve constructs that 
partially match a corresponding intended construct in the a priori analysis (Ron, Dreyfus, & 
Hershkowitz, 2010)  

The AiC a priori analysis is not only a list of intended constructs. It is more a structure of intended 
constructs with some interactions between the different constructs. Some constructs are contained in 
others. Some intended constructs might be a prerequisite for others. Sometimes, possible paths of 
thinking are taken into account. This is relevant, for example, for a priori analyses of justification 
tasks. Justification is a specific case of construction of knowledge. Each itinerary of thinking towards 
the justification might be in itself a kind of construction of knowledge and different itineraries of 
thinking, each with a structure of intended constructs will appear in the a priori analysis. 

Comparing the a priori analyses and the benefit for networking 
For both theories, TDS and AiC, the epistemological perspective is of importance but their a priori 
analyses have a different focus. In AiC the focus of the a priori analysis is on the learner’s construction 
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of knowledge. The a priori analysis reveals hypotheses about constructs that might be observed during 
the construction process. For AiC, processes of abstraction are inseparable from the context in which 
they occur. The notion of context is very wide in AiC. The context has many components. For 
example, the task, the computer, the teacher, the social interaction between students are considered 
as part of the context. The AiC a priori analysis with its focus on the learner‘s processes of 
construction of knowledge cannot take explicitly into account all the contextual factors. In a later 
phase, the researchers will analyze the influence of the context on the construction processes that 
were observed in the analysis of data. For example, Kidron & Dreyfus (2010) analyzed the influence 
of the computer on the construction processes observed in the analysis of data. They describe how 
instrumentation led to cognitive constructions and how the roles of the learner and the CAS 
intertwine. But there is an essential difference if you analyze your data taking into account in advance 
the contextual factors or if you first analyze the data and the processes of construction of knowledge 
and only then you analyze the influence of the contextual factors on the construction processes.  

 For TDS, the situation is different. The focus is on didactical systems. TDS observes the entire 
situation and not only the student and the mathematical activity. For example, TDS is interested in 
relations between systems and the teacher is an element of the system. As a consequence, TDS 
considers already in the a priori analysis the role of the teacher and how he/she may extend the results 
of the a-didactical situation. As a consequence of the different foci between TDS and AiC, context is 
not theorized and treated in the same way in the different theories. This fact has an important 
consequence on the differences of the a priori analyses. 

AiC a posteriori analysis might be influenced by the fact that some contextual factors are not taken 
explicitly into account in the a priori analysis. As a consequence, some excerpts which might add 
direct knowledge in the analysis of the cognitive processes might be missed if one focuses first on 
the cognitive processes and only then analyzes the influence of other parts of the context.  

Kidron et al. (2014) refer to a networking case that links three theories. The issue of context is 
compared and contrasted in the three theories. The analyses from the different perspectives refer to a 
set of data from a video recording that show a session from the group-work of two students, during a 
teaching experiment on the exponential function in secondary school. 

In Kidron et al. (2014, p. 175), the authors noted that 

An interesting, and also revealing, point is the fact that, in the analysis, AiC researchers focus on 
the autonomous work of the students, while TDS researchers pay more attention to the episode 
where the students interact with the teacher… 

The a posteriori analyses of the two theories are influenced by the differences in the a priori analyses 
and their different priorities in their focus of analysis. Different units of analysis are taken into account 
and as a consequence of the focus of analysis, as demonstrated in the a priori analysis, each theory 
shapes the kind of data that is appropriate to this focus. As pointed by Radford (2008): 

… it is through a methodological design that data is first produced; then the methodology helps 
the researcher to ‘‘select’’ some data among the data that was produced but also helps the 
researcher to ‘‘forget’’ or to leave some other data unattended. (p. 321) 
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As a consequence, the different a posteriori analyses conducted within the two theories complement 
each other. Each analysis highlights a specific view which reflects the focus of research of the given 
theory. AiC analysis, with its specific tools, offers a fine grained analysis of the students constructing 
processes. TDS, with its different focus, analyses the entire situation and, in particular, the interaction 
between the teacher and students. For example, in Kidron et al. (2014, p. 172) we read how TDS 
analyses the role of the teacher: 

TDS complements the AiC analysis in analyzing how the teacher extends the outcomes of the a-
didactical interaction. The TDS analysis seems to start where the AiC analysis stops. 

The different a priori analyses result from the different priorities of the theories with regard to the 
focus of analysis. Investigating these differences in the a priori analyses might lead to a better 
understanding of the different a posteriori analyses and to the insights offered by one theory to the 
other one in the networking process. 

Concluding remarks 
Reflecting on the role of a priori analysis in both theories, TDS and AiC, we realize its importance 
and why it is necessary towards a better understanding of the a posteriori analysis of the collected 
data. For both theories, the a priori analysis plays a role of reference while comparing the a priori and 
a posteriori analyses. For TDS, it plays the role of revealing the didactic phenomena and helps to 
deeply understand the functioning of the “situation”. For AiC, it offers a structure of intended 
constructs that are required in a given task as well as possible paths of thinking. We also realize the 
importance that each theory keeps the specific characteristics of its a priori analysis. I wrote in a 
previous section that there is an essential difference if you analyze your data taking into account in 
advance the contextual factors or if you first analyze the data and the processes of construction of 
knowledge, and only then you analyze the influence of the contextual factors on the construction 
processes. This essential difference is tightly connected to the specific characteristics of the different 
a priori analyses for AiC and TDS. In Kidron et al. (2008, p. 262), we read that:  

In networking, we want to retain the specificity of each theoretical framework with its basic 
assumptions, and at the same time profit from combining the different theoretical lenses. What we 
aim at is to develop meta-theoretical tools able to support the communication between different 
theoretical languages, which enable researchers to benefit from their complementarities. 

Comparing a priori analyses might enable to support the communication between theories:  

Realizing some common points in the a priori analyses enables the beginning of a dialogue between 
the theories. In the case of networking between TDS and AiC, for example, the common points in the 
epistemological dimension help towards the beginning of the dialogue (as demonstrated in Kidron, 
Artigue, Bosch, Dreyfus, & Haspekian, 2014). This idea could be used for other theories and other 
cases of networking: Some other common points in the a priori analyses, for example on the social 
dimension, might help towards the beginning of the dialogue. 

Realizing the differences in the a priori analyses, we better understand the choices of data (as well as 
the “data which was left unattended”) that researchers of each theory select for their a posteriori 
analyses. Sometimes, the data which was left unattended by one theory might add direct knowledge 
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in the analysis of this theory and, as a consequence, some cognitive processes, for example, might be 
missed. The complementary insights which are missing might be offered by means of networking 
theories. This situation might happen in different cases of networking theories. 

This paper offers a reflection on a priori analyses, epistemology and networking. It contributes to the 
TWG discussion on the reciprocity of theory and methodology for research and design. The notion 
of a priori analysis is closely related to the phase of design. It allows making epistemological 
assumptions explicit. The TWG discussions addressed importance to the notions of mathematical 
epistemology and design. The common points in the epistemological dimension which enable the 
beginning of the networking between AiC and TDS contributed to these discussions.  
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Theory and methodology are key considerations in research design. Different ways of 
conceptualising their connection can characterise differences in research practice. This paper 
examines connections between theory and methodology and the concomitant implications for 
ontology and epistemology associated with conducting research in a laboratory classroom applying 
a multi-theoretic research design. Using the Social Unit of Learning project as a case example, we 
argue that the relationship between theory and methodology is not one of “prescription” in either 
direction, but rather of mutual “affordance,” both regarding the analyses afforded by the complex 
data set and the extent to which each theory affords analytical consideration of specific constructs 
of relevance to the setting and the interactions recorded there. These constructs shape the way in 
which the multimodal material is reconstructed as data amenable to particular forms of analysis. 

Keywords: Classroom research, research design, research methodology, social interaction. 

Connection between theory and methodology 
Pick up any textbooks on educational research, and you will usually find the words theory and 
methodology. The fundamental issues of whether theory or methodology should take priority in the 
process of research design, or how theory and methodology should be connected in the research 
process, can polarise researchers, with the views on the issues being used to characterise different 
research paradigms or approaches (see Guba & Lincoln, 1989; Strauss & Corbin, 1990). In this 
paper, we address connections between theory and methodology and the concomitant implications 
for ontology and epistemology associated with conducting research in a laboratory classroom when 
employing a multi-theoretic research design. We argue that in our research design, and in 
educational research in general, the relationship between theory and methodology need not be one 
of “prescription” in either direction, but rather of mutual “affordance,”1 both regarding the 
theoretical analyses afforded by the complex data set (i.e., generated by the methodology) and the 
extent to which each theory affords consideration of specific constructs of relevance to the setting 
and the interactions recorded there (via the methodology). We first consider a few different possible 
relationships between theory and methodology. 

                                                 
1 The word affordance was coined by Gibson (1986) in ecological psychology to describe the possibilities that the 
environment offers to an animal as the animal inhabits and interacts with the environment. We use the term to refer to 
the investigative options made possible (and also constrained) by the choice of theory or methodology. 
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Theory can be thought of as “a coherent system of logically consistent and interconnected ideas 
used to condense and organise knowledge” (Neuman, 2014, p. 9), while methodology can be seen as 
“concerned with the logic of scientific inquiry” and in particular, consideration of “the potentialities 
and limitations of particular techniques or procedures” (Grix, 2002, p. 179). Blumer (1954), for 
example, believed that some social theories exist independent of research methodology, and one 
does not prescribe the other. Another way to think about the connection between theory and 
methodology in the research process is as a sequence of critical decisions beginning with the choice 
of research methods (i.e., research techniques or procedures), which is framed or shaped by the 
methodology, which, in turn, is governed by the theoretical perspective, which reflects 
epistemological assumptions (i.e., a theory of knowledge) (see Crotty, 1998). 

Crotty (1998) used the connection between objectivism (epistemology), positivism (theoretical 
perspective), survey research (methodology), and statistical analysis (methods) as an example of 
such a connective chain of research process. Crotty’s conceptualisation of the research process is 
shared by Grix (2002), who argued that “it is our ontological and epistemological positions that 
shape the very questions we may ask in the first place, how we pose them and how we set about 
answering them” (p. 179). In particular, Grix asserts that “we should guard against ‘method-led’ 
research, that is, allowing ourselves to be led by a particular research method rather than ‘question-
led’ research, whereby research questions point to the most appropriate research method” (p. 179). 
Grix therefore suggests that theoretical considerations should lead or govern methodology and, 
thereby, methods in the research process. 

Also emphasising the importance of theory in the research process, Neuman (2014) presented 
alternative sets of research procedure for quantitative and qualitative research processes. In his 
schematic depiction, the qualitative research process starts with acknowledging the social self and 
ends with informing others, with each step guided or informed by theory (see Figure 1).  

The quantitative research process according to Neuman (2014) takes on the same structure as Figure 
1, beginning with topic selection (Step 1) and ends with reporting (Step 7), with each step guided, 
shaped or informed by theory. Different from Grix (2002) who believed that “methods themselves 
should be seen as free from ontological and epistemological assumptions” (p. 179), Neuman’s 
depiction of the research process is less linear than Crotty’s, and has theory identified as influencing 
every step in what is conceived to be a cyclic research process. However, as can be seen in Figure 1, 
the relationship between theory and the individual research steps represented by Neuman is 
unidirectional where theory “radiates” outwards to influence each research step. None of the 
research steps appears to influence theory. 

In conducting the Social Unit of Learning project, we found the connection between theory and 
methodology differs from the research process characterised by Crotty (1998) or Neuman (2014). 
The combined use of the laboratory classroom and the employment of a multi-theoretic research 
design (Clarke et al., 2012) in the Social Unit of Learning project offer a unique opportunity to 
reflect on the connections between theory and methodology and the concomitant implications for 
ontology and epistemology in the study. Further description of the project is provided below. 
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Figure 2: Steps in the qualitative research process depicted by Neuman (2014, p. 21) 

The Social Unit of Learning project 
The University of Melbourne has set up a laboratory classroom, the Science of Learning Research 
Classroom (SLRC), to study classroom teaching and learning. The facility has the capability to 
capture classroom social interactions with a rich amount of detail using advanced video technology. 
With 10 built-in video cameras and up to 32 audio inputs, the comprehensive and detailed recording 
of every participant in the classroom offers the possibility for systematic examination of the link 
between the processes and products of learning activities within the classroom setting. The facility 
has made possible research designs that combine a good approximation to natural social settings 
with the retention of some degree of researcher control over the research setting, task 
characteristics, and possible forms of social interaction afforded or encouraged. Such designs allow 
conclusions to be drawn with greater confidence about connections between interactive patterns of 
social negotiation and associated knowledge products (learning). 

Using the SLRC, the Social Unit of Learning Project aimed to investigate the social aspects of 
learning and, particularly, those for which “the social” represents a fundamental and useful level of 
explanation, modelling and instructional intervention (Chan & Clarke, 2017). The project design 
can be seen as more akin to design experiments (Cobb, Confrey, diSessa, Lehrer, & Schauble, 
2003) which involve “both ‘engineering’ particular forms of learning and systematically studying 
those forms of learning within the context defined by the means of supporting them” (p. 9). The 
project was designed to specifically serve the purpose of theory generation and testing through the 
application of a multi-theoretic research design (Clarke et al., 2012), taking advantage of the rich 
data that can be generated by the laboratory classroom facility. 

The multi-theoretic research design adopted by the project involved the construction of a complex 
data set composed of video records and other supplementary data. The design allows an analytical 
team to juxtapose different interpretive accounts arising from different theoretically-grounded 
analyses in order to compare and contrast the capacity of different theories to characterise different 
aspects of the research setting. The theory generated from the research is intended to be a direct 

THEORY 

6. Interpret data 

5. Analyse data 4. Collect data 

3. Design study 

2. Adopt 
perspective 7. Inform others 

1. Acknowledge 
social self 
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reflection of an attempt to provide explanatory accounts in relation to a specific data set, so in its 
first instantiation would be most similar to what might be called a “local theory”. However, an 
accumulation of several such analyses of different situations might reveal similarities in the 
emergent local theories that suggested sufficient generalisability and commonality for more general 
theory, which would be less specifically tied to the data of any particular project.  

Data generation 

Intact Year 7 classes from a secondary school in metropolitan Melbourne were recruited with their 
usual teacher in order to exploit established student-student and teacher-student interactive norms. 
By intact, we are referring to the existing social relationships between students, and between the 
teacher and students, which are left intact and not interrupted by a selective process introduced by 
the researcher. Eleven classes of Year 7 students (12 to 13 years old; 264 students in total) 
participated in the project. The students in each of the classes completed problem solving tasks 
individually, in pairs, and in small groups (four to six students) within a 60-minute session in the 
laboratory classroom. The problem solving tasks used in the project were drawn from previous 
research (e.g., Sullivan & Clarke, 1991) and were purposefully chosen to make the thinking and/or 
social processes of the problem solving activity more visible. The tasks have the characteristics of 
allowing students to express their thinking through multiple modes (e.g., verbal, graphical, textual, 
etc.) and approach the task using different strategies or prioritise different forms of knowledge or 
experience. For example, two classes of students were given the following three tasks: 

Task 1 (individual task) provided students with a graph with no labels with the following 
instructions: “What might this be a graph of? Label your graph appropriately. What information 
is contained in your graph? Write a paragraph to describe your graph”. 

Task 2 (pair task) was specified as follows: “The average age of five people living in a house is 
25. One of the five people is a Year 7 student. What are the ages of the other four people and
how are the five people in the house related? Write a paragraph explaining your answer.”

Task 3 (small group task) stated that “Fred’s apartment has five rooms. The total area is 60 m2. 
Draw a plan of Fred’s apartment. Label each room, and show the dimensions (length and width) 
of all rooms”. 

The resulting data collected in the project included: all written material produced by the students; 
instructional material used by the teacher; video footage of all of the students during the session; 
video footage of the teacher tracked throughout the session; transcripts of teacher and student 
speech; and pre- and post-session teacher interviews. 

Investigating the social aspects of learning 

A multi-theoretic research design (Clarke et al., 2012) was employed to examine the complex data 
set from the project from multiple perspectives by multiple researchers, as well as interrogate the 
different theoretical perspectives through answering research questions such as the following: 

1. What commonalities and differences in process and product are evident during problem
solving activities undertaken by learners as members of different social units (individual,
pairs, small groups, and whole class groupings)?
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2. Which existing theories best accommodate (that is, provide a coherent and plausible 
explanation for) the documented similarities and differences in process and product and in 
what ways do the accounts generated by parallel analyses predicated on different theories 
lead to differences in instructional advocacy? 

An international multi-disciplinary research team (combining education, cognitive and emotive 
psychology, learning analytics, and neuroscience perspectives) was recruited to develop analytical 
frames for coding the data. 

Ontological and epistemological positioning 
A major consideration regarding the validity of research findings and research evidence in 
educational research is the issue of ontology, which is “an area of philosophy that deals with the 
nature of being, or what exists” (Neuman, 2014, p. 94). The issue is distinguished from 
epistemology, which is “concerned with the theory of knowledge, especially in regard to its 
methods, validation and ‘the possible ways of gaining knowledge of social reality, whatever it is 
understood to be’ (Blaikie, 2000, p. 8)” (Grix, 2002, p. 177). In the Social Unit of Learning project, 
we recognise the active role that the researchers play in constructing the research setting to make 
the social aspects of learning visible as well as in data selection and interpretation (Chan & Clarke, 
2019). Ontological considerations place limits on the authority of any claims the research team 
might make regarding the generalisable characteristics of classroom learning. Any such claims must 
acknowledge the researchers’ role in shaping the research setting to optimally simulate the common 
features of institutionalised classroom settings. Of course, it is the researchers’ intention that such 
generalisability of findings be afforded by the optimised setting. We consider regularities in the 
multiple student interactions (e.g., across many pairs of students or across different social units) to 
suggest generalisable characteristics of the social aspects of learning. 

With regard to the epistemological position of this project, we construct knowledge by considering 
both the regularities and differences in the interpretive accounts generated by the research team (cf. 
complementary accounts, Clarke, Emanuelsson, Jablonka, & Mok, 2006), and reconstructing these 
regularities as propositions. In this project, knowledge about classroom learning is generated 
inductively through the aggregation of these propositions to create new theory. 

Mutual affordances of theory and methodology 
Different from the research process depicted by Crotty (1998) and Neuman (2014), the relationship 
between theory and methodology we are positing for the Social Unit of Learning project resembles 
a symbiotic one. In as much as the chosen theory highlights particular constructs, analytical 
consideration of these constructs is afforded by the data set generated through the research design 
(methodology) which has anticipated the need for such data (see Figure 2). 

We characterise this symbiotic relationship as one of mutual and reciprocal affordance, since the 
chosen theory frames and affords the consideration of the constructs (such as engagement) that are 
the focus of the research and these in turn place anticipatory constraints on the forms of data 
required from the methodology. This mutual affordance can be illustrated by the consideration of 
questions such as: 
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· What (theoretically-grounded) analyses are afforded by the data produced by the 
researcher’s methodology? 

· What constructs are foregrounded or prioritised by the chosen theory? 
· How do we connect the constructs to the data? 

 

 

 

Figure 2: Mutual affordances of theory and methodology as illustrated by the reciprocal relationship 
between constructs and data in the Social Unit of Learning project 

The investigation of the social aspects of learning does not necessarily prescribe a particular 
methodology. However, when the research is conceptualised through a particular theory with its 
sets of interrelated constructs, researchers need to draw selectively from existing research traditions 
and established methodologies with their tenets for appropriate and rigorous investigative methods. 

To provide further examples, multimodal learning analytics (Ochoa, 2017) was used in the project 
to extract features in the video and audio data to characterise behavioural student engagement. 
Learning analytics is “the measurement, collection, analysis and reporting of data about learners 
and their contexts, for purposes of understanding and optimising learning and the environments in 
which it occurs” (Conole, Gašević, Long, & Siemens, 2011, p. 3). While learning analytics 
generally involves analysing log-file data captured by online systems (e.g., Learning Management 
System), multimodal learning analytics also includes the coding of more natural activities such as 
gestures, gaze, speech, or writing (Ochoa, 2017). Applying advanced techniques, Ochoa and his 
research team were able to automate the coding of student gaze direction, student posture, teacher 
position, student talk, and teacher talk to create indicators of student engagement, student attention, 
and teacher attention during various task conditions (individual, pair, and small group) (Chan, 
Ochoa, & Clarke, in press). 

Another analytical thread applied in the project was interactivity analysis. The analysis of student 
interactivity was drawn from the theory of Commognition developed by Sfard (2015). 
Commognition theory resolves the thinking-communication divide by equating communication 
with thinking. The theory is particularly powerful for conceptualising how learning occurs and has 
led to the development of particular analytical tools for investigating learning, specifically in the 
classroom context. Interactivity analysis involves fine-grained analysis of student utterances to 
identify patterns of interaction between the students, such as instances where one person 
consistently ignores or responds (reacts) to the other person’s utterances or frequently initiates new 
topics (Sfard & Kieran, 2001). The interactive patterns can be seen as indicators of student 
engagement (both social and cognitive) in terms of the level of interpersonal correspondence 
between two people in their dialogue. 

The investigation of a superordinate construct such as “engagement” can stimulate the use of a set 
of related mediating constructs (e.g., shared attention, participation, etc.) in psychology (Shernoff, 
2013) in the case of the multimodal learning analytics work, while also stimulating the use of 
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another set of constructs (e.g., communication, discursive interactions, etc.) within a specific 
sociocognitive theory (Sfard & Kieran, 2001) in the interactivity analysis. These constructs shape 
the way in which the multimodal material is reconstructed as data amenable to particular forms of 
analysis. The specific analyses carried out were afforded by the complex data set available to the 
project, subject to the theory affording the consideration of specific constructs of relevance to the 
setting and the interactions recorded. 

Implications 
The recognition of the reciprocality between theory and methodology has significant implications 
for the detailed design of any research project, since it cannot be assumed that by making the 
decision on one (theory or methodology or methods), the consequent decisions are thereby 
prescribed. The relationship must be seen as progressing in both directions taking us not only from 
theory to methodology and then to methods but also from methods back through methodology to 
theory. A researcher engaged in planning the minutiae of any one of these critical decision points is 
reminded in our paper to take into account those decisions in both directions throughout the 
research process because of the mutually affording nature of all connections. 

Conclusion 
It is the combination of unusually rich data that can be generated by the laboratory classroom 
facility and a multi-theoretic research design that has highlighted for us the necessity of considering 
the affordances offered by each of the selected theories, the chosen methodology, the resultant data 
set, and the dynamic mutuality of these affordances. As argued in this paper, the research process is 
not simply algorithmic with each step prescribing the form to be taken in any subsequent step. The 
reflective researcher must instead engage in a continually recursive reflection in the nature of the 
connection between any key decision and those adjacent to it in their research process in either 
direction. 
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Preservice teachers experience a fragmentation in their study program between two academic areas, 
university mathematics and mathematics education. To reduce this problem, we conduct a design 
study linking mathematics and mathematics education on two levels: First, the “dovetailing” of 
mathematics (here the course on complex analysis) and mathematics education, and second, students’ 
“interlinking” of content and pedagogical content knowledge in the development of learning 
materials for talented pupils. This paper contributes to the topic on theory and methodology by 
introducing the design principle “boundary crossing by design(ing)” in “nested design cycles”. 

Keywords: Boundary crossing, boundary object, complex analysis, reflection, teacher education. 

Introduction 
Many preservice teachers in mathematics experience two types of discontinuities in mathematics 
teacher training. First, in their views, much of the mathematics they learned in school does not seem 
very helpful for the rigorous proof-oriented style in university mathematics courses. Second, 
preservice teachers may not see how the mathematics in their university courses is related to their 
practice as a teacher (Hefendehl-Hebeker, 2013; Prediger, 2013). Several attempts to minimize the 
perceived gap between university and school mathematics have been developed, for example with 
special exercises, or through capstone courses (e.g., Bauer & Partheil, 2009; Winsløw & Grønbӕk, 
2014). Furthermore, empirical studies show that the combination of mathematical knowledge and 
pedagogical content knowledge for teaching and learning mathematics (i.e. in the sense or similar to 
that of Ball, Thames, and Phelps (2008)) is important for evaluating situations in the classroom (e.g., 
Blömeke et al., 2014). Mehlmann and Bikner-Ahsbahs (2018) give an overview of recent trends in 
German mathematics preservice teacher education around the “double discontinuity” and the general 
criticism of preservice teachers towards their study programs which they experience as fragmented. 
Because there is barely any explicit research on how preservice teachers may link the scientific 
disciplines of mathematics and mathematics education1 concerned with school mathematics, we ask 
how this fragmentation between the mathematical discipline at university and mathematics education 
in preservice teacher training can be overcome at least partially by making changes in the curriculum, 
and how preservice teachers establish interlinkages of the two areas. At the University of Bremen, 
we conduct the design study “Spotlight-Y” on these issues. Two out of three design cycles have been 
completed so far, and as a theoretical result from our first design cycles, we will establish the design 

                                                 
1 We understand mathematics education as the scientific discipline about the teaching and learning of mathematics. In 
German preservice teacher training, mathematics education is mainly concerned with school mathematics. 
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principle boundary crossing by design(ing) in a nested design cycle to initiate the overcoming of the 
fragmentation in preservice teacher training. We will show how this design principle is interwoven 
with the methodology and theory of our study. At the end, examples of empirical findings round off 
the paper.  

Linking mathematics and mathematics education in a two-fold way 
Linking mathematics and mathematics education can be viewed as a two-fold phenomenon in higher 
education: On the institutional level it is a matter of curriculum and we call the linkage of the domains 
on this level dovetailing (German: Verzahnen). On the students’ level we call the linkage of the 
domains in students’ thinking and acting interlinking (German: Vernetzen). This distinction 
corresponds to a distinction between “curriculum to be taught” and “learned curriculum”. Our design 
study is devoted to an empirically grounded description of these two notions and their connections. 
Thus, with this terminology our general research questions in the project can be rephrased as: How 
can dovetailing be realized to initiate interlinking? Which circumstances foster or hinder students’ 
interlinking and which interlinking strategies can be identified? To interlink the two scientific areas, 
our students have to cross the boundaries between them. 

Theoretical background: Boundary crossing 
The idea of boundary crossing has origins and applications in the fields of general education and 
social theory (Akkerman & Bakker, 2011). Boundaries can be described as “sociocultural differences 
that give rise to discontinuities in interaction and action” (Akkerman & Bakker, 2011, p. 139) and 
boundary crossing as the “efforts by individuals or groups at boundaries to establish or restore 
continuity in action or interaction across practices” (Bakker & Akkerman, 2014, p. 225). Means to 
achieve this are boundary objects which “are artifacts that articulate meaning and address multiple 
perspectives” (Akkerman & Bakker, 2011, p. 140), e.g., a concrete task or solution. Aside from this 
initial understanding of a boundary object, it can also be conceptualized as a “shared problem space” 
(Akkerman & Bakker, 2011, p. 147) where motives of different domains act together and “materiality 
derives from action, not from […] ‘thing’-ness” (Star, 2010, p. 603). 

It is the interpretation of the members of the communities that give objects their meaning as boundary 
objects in social contexts (Star, 2010). Consequently, even if teachers or researchers intend to 
implement objects as boundary objects in their teaching or research, it may not be the case that the 
people who work with the objects understand them as such. However, because the aim is “to integrate 
different types of knowledge typically developed in different practices” (Bakker & Akkerman, 2014, 
pp. 224–225), boundary objects “may provide learning opportunities” (Akkerman & Bakker, 2011, 
p. 141), and students working with boundary objects may carry out interlinking actions or even 
practices, probably implicitly. Interesting for our purpose are three out of four mechanisms for the 
process of boundary crossing identified by Akkerman and Bakker (2011) when considering learning 
in terms of boundary crossing in the broadest sense. Identification is about finding out particularities 
of the social practices and seeing the relevance of different practices which meet at a certain border. 
Coordination means to mediate between social worlds. Reflection differs from identification in the 
sense that particularities of one community’s practice are made explicit for another community 
(perspective making) or are regarded from the viewpoint of the other community (perspective taking). 
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In Spotlight-Y the notion of reflection is much broader than the boundary crossing mechanism of 
reflection (see section “Boundary crossing by design(ing) through a nested design approach”), but 
perspective making and taking can be part of it. 

Methodology 
Curricular linkage: Dovetailing in the lecture on complex analysis 

The project “Spotlight-Y” consists of three cycles of developing the course on complex analysis with 
the aim to overcome fragmentation (see Hanke & Schäfer 2018a, 2018b; Mehlmann & Bikner-
Ahsbahs, 2018, for details). Each cycle takes a year with a lecture in complex analysis being split into 
a branch for future teachers and future mathematicians after around nine weeks of the lecture. While 
the future mathematicians continue with more advanced complex analysis, the preservice teachers 
prepare learning materials (exercise sheets and means to explore and visualize with GeoGebra) for 
talented secondary school pupils about a mathematical topic they identified in the lecture (e.g., power 
series expansion, spherical geometry, or differentiation as dilation-rotation) and implement this on a 
day for experimental mathematics for classes of school students visiting university (XMaSII). In 
parallel with the complex analysis lecture, the preservice teachers participated in a seminar in 
mathematics education which also covered the design of tasks. Our assumption is that through 
boundary crossing in preparing and implementing of this practical teaching, the preservice teachers 
will overcome fragmentation by showing interlinkage between the knowledge from both areas. So 
far, 35 students participated in the teacher branch in complex analysis during the last two years. 

Approach for designing the lecture 

To develop the teaching of complex analysis as described above we conduct a design study 
(Gravemeijer & Cobb, 2006). It aims at achieving a design as well as local theoretical knowledge 
about how the design works, clarifying circumstances under which the fragmentation in teacher 
training can be alleviated, and helping to identify obstructions. Each design cycle consists of four 
elements (Prediger et al., 2012; see Figure 1, left): First, a learning object or phenomenon has to be 
restructured. This leads to the development of a (local) design2 based on a specific aim. Then, the 
design is executed in a design experiment. Insights from these steps are used to theorize the 
phenomenon, and these insights allow for a better description of the learning object or phenomenon, 
changes in the curricular implementation, design of the lecture, and execution. The cycle can then 
start over again. The core idea of our methodological frame is the nature of the design experiment. It 
contains an embedded cycle of the same structure that initiates “boundary crossing” in students’ work 
(Figure 1, right). 

Boundary crossing by design(ing) through nested design cycles 

In our design study, two cycles are nested (Figure 1). The outer cycle (grey, left) is the methodical 
frame for research and teaching: The learning object for us as researchers is dovetailing and 
                                                 
2 The word local is used here to distinguish the overall design in the design study “Spotlight-Y” from the designs 
developed in it: In the outer research cycle it is the course design of complex analysis including teaching strategies, and 
in the inner cycle it stands for the designs the students develop for their learning arrangement (see Figure 2). 
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interlinking university mathematics and mathematics education in preservice teacher education. The 
general design of the lecture was described in the section “Curricular linkage: Dovetailing in the 
lecture on complex analysis” and the design experiment is the course work in the branch for preservice 
teachers in the lecture on complex analysis. The inner circle (red, right) frames the development and 
implementation of the learning materials by our students. Here, the learning objects (for students and 
pupils) are the mathematical phenomena the students choose from the lecture. 

 
Figure 1: Nested design cycles in Spotlight-Y 

The process is accompanied with three types of written reflective activities. We understand reflection 
as anticipatory as well as retrospective (re-)consideration of own work, including experiences of 
various kinds, thoughts about personal relationships to the two disciplines (mathematics and 
mathematics education), the own role as a future teacher, and possibilities for the improvement of 
local designs of learning arrangements. In a preflection, the preservice teachers describe the 
mathematical phenomenon and anticipate difficulties at the beginning of their planning, in ad-hoc-
notes, they reflect on observations right after the execution of XMaSII, and in a final portfolio3 they 
reflect on the full process and their professional development, each with guiding stimuli (Hanke & 
Schäfer, 2018a, 2018b). This is in accordance with the notion of reflection-on-action as proposed by 
Schön (1983) and reflection-pre-action by Bikner-Ahsbahs (2017). 

Instances of interlinking mathematics and mathematics education can be identified in students’ 
reflections from which we extract interlinking strategies (see results section). Such a strategy may be 
a certain local mechanism a student implemented, or a personal insight. Since the reflections are 
written after a teaching episode with classes of school students (the design experiment), we might 
also reconstruct interlinking strategies which have not appeared in action, but which have been 
thought about by the students. The reflections have two functions: First, they serve to reconstruct and 
typify the interlinkages between university mathematics and mathematics education, and second, 
students experience reflection as a means to learn from own practical experience (planning, executing, 
assessing) and be aware of interlinking activities (Mehlmann & Bikner-Ahsbahs, 2018). 

In the inner cycle, in the branch for the preservice teachers, the boundary of the scientific lecture and 
mathematics education is crossed by referring to each other. The initial boundary object is the student 
task to create the XMaSII-day learning arrangement. This task can be interpreted from the 

                                                 
3 A portfolio is a collection of all written work, this includes the exercise sheets, written planning and description as well 
as answers to final reflective questions (see Hanke & Schäfer, 2018a, 2018b, for details). 
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mathematical as well as the mathematics education side. The specificities of the implementations and 
reflections indicate how the students interlink both areas. The work of the students leads to a design 
process which initiates boundary crossing. All data, in the form of exercise sheets, computer 
arrangements and different kinds of written reflections shape a dynamic boundary object which is 
assembled by the students’ work at the boundary of mathematics and mathematics education and 
which, at the same time, is subject to change. We call this design principle (van den Akker, 1999) 
boundary crossing by design(ing). “By design” refers to the curricular implementation, and “by 
designing” refers to the processes the students engage in. The boundary crossing or interlinking 
mechanisms we observe stand for the interlinking practices of students and can be further used for 
the next cycle of the branch for preservice teachers in the lecture on complex analysis. In that sense, 
the design principle boundary crossing by design(ing) serves as our epistemic means to describe to 
which results acting at the boundary of mathematics and mathematics education may lead. In other 
words, dovetailing is the attempt to initiate boundary crossing and the students’ boundary crossing 
may lead to thinking and acting between mathematics and mathematics education, i.e. interlinking. 
Thus, boundary crossing is regarded as a mediator between dovetailing and interlinking. 

The novelty of boundary crossing by design(ing) is not the fact that mathematics and mathematics 
education are asked to be combined—this is expected practice of any (future) teacher. It is that the 
linkage we try to establish is between the two scientific domains, mathematics at university and 
mathematics education for preservice students’ teaching (cf. Introduction). 

Exemplary results of the first two cycles 
Having developed the methodology and the design principle, we conjecture that implementing the 
design principle into the third cycle will initiate students’ interlinking between complex analysis and 
mathematics education, and we ask whether we will find the same or new interlinking strategies of 
the students. But how do these interlinkings show up and what conditions foster or hinder them? Until 
now, this is answered by analyzing the data of the first two cycles, and here, we give some examples. 

Results indicate that interlinking is an additional demand (concerning mathematical expertise and/or 
time) which is often not accomplished by our preservice teachers, and happens in microscopic ways. 
Besides others, the students were asked to describe which elements of the course on complex analysis 
changed their views on the scientific discipline of mathematics and mathematics as a school subject. 
This question aimed at a retrospection on the course as a whole. One of the students wrote (we note 
that the learning arrangement of this student did not deal with extension of number sets but with 
differentiation): 

The extension of number sets with the set of complex numbers is very demanding at first. Pupils 
who encounter negative numbers for the first time might feel similarly. The experiences I made in 
this course can help me to empathize with pupils and understand why the extension of numbers 
with the set of irrational numbers can be difficult for them and why they may not consider the 
number π as a number.  

In addition, the experience of the lacking imagination of the graphical representation of complex 
functions can help to understand the difficulties pupils have with the visualization of graphs of 
functions. (translated from German) 
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This description expresses the sensitization for pupils’ difficulties by analogy. The example in the 
quote shows an experience-based perspective on problems with extensions of number sets and 
diagrams which can be regarded as a coordination mechanism with the potential for a transformation 
mechanism (see: Akkerman & Bakker, 2011). For example, a transformation could occur if the 
student presented a suggestion for how to deal with these issues in class. We may conclude that in 
this case the student’s own experience with subject matter sensitizes for learning processes of pupils. 
What is not important is that the content in the student’s learning process is beyond school but that 
what is learnt, in each case, is new for the respective learner (student and pupil). 

To the stimulus “What did you learn personally? Do you feel assured in your role as a teacher? How 
and why (not)?” another student expressed (his learning arrangement was about power series), 

So I find the problem to prepare a very complex and alien (German: fremd) topic for pupils very 
interesting and instructive because I, myself, had to cope with this topic intensively once again. 

Unfortunately, I had to realize that exactly in this transformation very much time and work had to 
be invested which lacked for example for the precise planning and execution. At any time, the 
subject specific understanding (German: das fachliche Verständnis) was the most important aspect 
of the planning. (translated from German) 

This utterance shows that the creation of a learning arrangement about a demanding mathematical 
topic requires resources in order to engage deeply with the subject matter. Here, the need for these 
resources sidelined the planning actions for the actual planning and implementation. 

Discussion and reflection 
Reflecting on the two design cycles at the university level we went through, the steps of how the 
design principle developed becomes clear. Due to the fragmentation in preservice teacher education, 
our first design principle was to link university mathematics and mathematics education through 
providing practical experience for our students in one mathematics lecture. The method seemed 
clear; the students identify a mathematical phenomenon from the lecture, plan and implement learning 
materials for talented pupils, and thus, overcome fragmentation. But this did not happen with most of 
the students. Therefore, after the completion of the first design cycle, we clarified the relationship 
between this method and our research design. That is, our students were actually performing a design 
cycle similar to ours on the research level. Thus we obtained a more precise methodology, the nested 
design approach. Since we were not able to rely on previous research, we had to bridge the distinction 
between dovetailing and interlinking theoretically. The theory of boundary crossing serves this 
purpose. The concise link between theory and methodology was achieved after the second cycle and 
on this basis we obtained the current design principle. Boundary crossing by design(ing) condenses 
the theoretical approach of boundary crossing and links it to the task of creating and implementing 
learning materials while taking into account two scientific domains. This design principle addresses 
two different kinds of design: design research at the university level for course development in which 
the students design learning arrangements. These threads together can lead to insights into the 
reduction of the fragmentation in teacher training we strive for. Ultimately, our project exemplifies 
that a suitable design principle does not necessarily stand at the beginning of a design study but can 
be achieved through development and confluence of methodology and theory. 
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Our students valued the practical experience in the project. Even when they did not manage to produce 
explicit interlinkages of the two domains, in some cases of interlinking the two domains we observed 
a kind of coordinating, a mechanism of boundary crossing. Hence, we should ask what kind of 
conditions hindered the preservice teachers to experience interlinking mathematics and mathematics 
education (of school mathematics). We next aim at developing a scaffolding procedure. For example, 
cognitive overload might be avoided by a concrete example of how a phenomenon of complex 
analysis could be transposed into a learning arrangement for talented pupils or by a more detailed 
structure for the task to create a learning arrangement that assists preservice teachers in their boundary 
crossing. 

Last, we highlight an important epistemic obstruction resulting from our methodological approach. 
The contents and depths in the students’ reflections limit the depths of our insights. Also, reflections 
mainly on a descriptive level are at most an indicator for students’ weak interlinking. This means we 
also have to reconsider the stimuli which we ask our students to consider. 
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Mathematical discourse begins where the concrete ends. Despite the intangibility of 
mathematical objects, we still speak about them in a way that is quite similar to the way in 
which we speak about material objects. We speak of numbers, classes, and functions as if we 
were talking about self-sustained entities. But with what right? On the example of the use of 
number-words in early numerical discourse, I shed some light on the mechanisms by means of 
which mathematical objects obtain their peculiar ontological status. It turns out that any 
mathematical object refers back to a concept from which it originates. To better understand the 
process of objectification, I am thus asking: how do concepts turn into objects? By juxtaposing 
Piaget’s notion of reflecting abstraction with Peirce’s notion of hypostatic abstraction, I then 
propose an explanatory model of the transition from concepts to objects.  

Keywords: Objectification, reflecting abstraction, Piaget, hypostatic abstraction, Peirce  

I. Introduction 
1 MH: How many is two and one more? 
2 Patrick: Four. 
3 MH: Well, how many is two lollipops and one more?  
4 Patrick: Three. 
5 MH: How many is two elephants and one more? 
6 Patrick: Three. 
7 MH: How many is two giraffes and one more? 
8 Patrick: Three. 
9 MH: So how many is two and one more? 
10 Patrick: Six.1 

Although Patrick (4 years and 1 months) seems to have no problem in recognizing the 
number-words in the posed questions, he is for some reason unable to cope with them in the 
first and last question. How can it be that he does not see the pattern common to both questions? 
What seems unfamiliar to him are not the number-words themselves, but it is the way in which 
these words are used. In general, we can distinguish between two different uses of number-
words (cf. Dummet, 2002, pp. 99–100): Number-words can either occur as adjectives, as in 
ascriptions of number such as ‘There are two giraffes’, or as nouns, as in most arithmetic 
propositions such as ‘Three is a prime number’. In their adjectival use, number-words function 
as predicates. They cannot stand for themselves, but they characterize something else. In that 
use, a number-word specifies how many there are of a certain kind and thus it must occur as the 
number of something, or more precisely as the number of a concept (‘three lollipops’, ‘three 
giraffes’, ‘three elephants’). In contrast, number-words that occur as nouns stand for something 
that can be investigated in its own right. In this substantival use, numbers are regarded as 
                                                 
1 ‘MH’ stands for Martin Hughes. The transcript is taken from Hughes (1986, pp. 47–48). 
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self-sustained entities without any intrinsic reference to the concepts which they are possibly 
ascribed to. Armed with this distinction, we are now able to formulate Patrick’s difficulties in 
a more concise way: While Patrick seems to be familiar with the adjectival use of number-
words (see lines 3–9), the substantival one appears foreign to him (see lines 1–2 and 9–10). 
Consequently, he does not see addition as an operation between numbers as abstract objects, 
but only as an operation performed on two concepts. To him, adding up means to join two 
collections of objects. Taking this into consideration, it becomes understandable why he shows 
difficulties grasping the first question. From an adjectival standpoint, it is of no importance 
which kinds of objects are conjoined (lollipops, giraffes, elephants, etc.) as long as there are 
some. An addition cannot be performed in vacuo. The question ‘How many is two and one 
more?’ is thus incomplete for Patrick, he feels that there is something missing, namely a pair of 
concepts with which the operation is executed. These observations gain in importance as soon 
as it is added that they are by no means a personal exception but rather are typical of many 
preschool children aged 3 to 4 years (cf. Hughes, 1986, p. 46; Sfard, 2010, p. 47). It is the result 
of an intricate process of successive steps of objectification that numerals and number-words 
can be treated as referring to the self-sustained entities we call numbers (cf. Sfard, 2010, p. 
136). Within this process, the adjectival use of number-words precedes the substantival use, or 
bluntly put: numbers are first concepts, and only become objects in a second step.  

This developmental sequence, however, is not restricted to the genesis of numbers. Rather, it 
repeats itself at all levels of mathematical sophistication. For example, Bakker (2007) observed 
in a teaching experiment on the concept of distribution in an 8th grade in the Netherlands that 
the students’ discourse about the concept of spread took a similar turn:  

[M]any used the noun ‘spread,’ […], whereas students earlier used only predicates such as
‘spread out.’ […] Statistically, however, it makes a difference whether we say, ‘the dots are
spread out’ or ‘the spread is large.’ In the latter case, spread is an object-like entity that can
have particular aggregate characteristics that can be measured (for instance by the range or
the standard deviation) (Bakker, 2007, p. 24)

Or, to provide a historical example: It took several centuries to move from the study of specific 
examples of functions to the study of functions as such, that is, to the investigation of functions 
as objects for which certain general characteristics such as continuity or differentiability can be 
formulated (cf. Kleiner, 1989; Sfard, 1991, pp. 14–16). The departure point of this article is the 
conviction that what we have observed in the case of number can be generalized: At any level 
of mathematical sophistication, mathematical objects are products, i.e., they are produced in 
processes of objectification, and at any level of mathematical sophistication, the mathematical 
objects in question refer to concepts from which they originate. 

In this paper, I take early numerical discourse as an example to investigate the transition from 
concepts to objects as a key element of the process of objectification (in the sense of: Sfard, 
2010). I attempt to provide a model of the mechanisms which underlie this last step in process 
of objectification. The rationale of the paper is thus a theoretical one and it is precisely here 
where the novelty of this contribution lies: There are plenty of works in mathematics education 
(cf. Bakker, 2007; Sfard, 1991) in which it is described that this transition happens, but I do not 
know a single one that provides an explanatory model of how it could actually work. In order 
to provide such a model, I pursue the following plan: At first, I clarify the use of the words 
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‘object’ and ‘concept’ in order to formulate the theoretical reference-problem as clearly as 
possible (II.); in the next two sections, I then successively explore the adjectival (III.) and the 
substantival use of number-words in more detail (IV.); this leads to an explanatory model of 
the transition from concepts to objects which is developed in the fifth section by juxtaposing 
Piaget's notion of reflecting abstraction with Peirce's notion of hypostatic abstraction (V.).   

II. On the distinction between concept and object  
When speaking about material objects, we either use terms that tell us which individual is being 
talked about, or we use terms that characterize something as an instance of a certain kind. 
‘Socrates’, ‘Berlin’, and ‘Donau’ are examples for the former kind of terms, while ‘human 
being’, ‘city’, and ‘river’ are examples for the latter. To adopt a usual phraseology, we will call 
these two kinds of terms singular and general terms. A singular term “purports to name one 
and only one object” (Quine, 1966, p. 205), while a general term does not name the individual 
object to which it refers at all but, instead, is said to be true of each of many objects of a certain 
kind (ibid.). The general term ‘human being’, for example, is true of the object Socrates, but it 
is not true of the object Berlin. Singular and general terms thus differ in their way of reference: 
While a singular term refers to one object and one object only, a general term divides its 
reference. It can always be applied to a multiplicity of objects. What a general term names is 
thus not any particular object, but at best its own rule of application, i.e., the operation used to 
decide whether or not the term is true of an object. We want to call these operations concepts: 
A concept is any operation that is associated with a general term and that allows to decide 
whether or not the term is true of a particular object.  

Therefore, concepts are not to be found in the realm of being but belong to the realm of doing. 
We operate upon objects (as they are singled out for our investigation), while we operate 
through concepts (as it is the conceptual operation by means of which the general term is 
applied to a particular entity). In contrast to everyday language, objects to which mathematical 
terms refer are never components of our stream of direct experience. Mathematical discourse 
begins where the concrete ends. We cannot point at or see mathematical objects such as 
numbers, classes, or functions. Despite their intangibility, however, we still adopt a jargon that 
is quite similar to the way in which we speak about material objects. On the one hand, there are 
singular terms such as ‘1 + 4’, ‘√2’, or ‘π’, which purport to name one and only one object, on 
the other hand, there are general terms such as ‘prime number’, ‘continuous’, or ‘equilateral’, 
which characterize the objects in question as instances or non-instances of a certain concept. In 
mathematical discourse, the distinction between singular and general terms thus remains intact 
(see already Peano, 1891/1973, p. 156). The difference between mathematical terms and 
everyday terms is not the way of reference, but the kinds of objects referred to.2 In the case of 
everyday language, the terms are mostly concrete in the sense that the objects referred to can 
be investigated as parts of our sensory material, while, in the case of mathematical discourse, 
they are not components of our direct experience and are thus abstract. Besides the division into 
the singular and the general, there is thus another division that must be taken into consideration, 
the one into the concrete and the abstract. On the expression layer, we then distinguish between 
                                                 
2 For a more detailed discussion of what it is that makes a concept a mathematical concept, see also: De Freitas, 
Sinclair & Coles (2017). 
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singular and general terms on the one hand, and between concrete and abstract terms on the 
other hand, while, on the content layer, all singular terms name objects and all general terms 
stand for concepts.  

Note that the two divisions cross each other: There are concrete and abstract singular terms such 
as ‘Socrates’ and ‘π’, and concrete and abstract general terms such as ‘human being’ and ‘prime 
number’ (cf. Quine, 1966, p. 204). An investigation of the relations between these different 
kinds of terms unveils that we can find correspondences. The abstract singular term ‘redness’ 
corresponds to the general term ‘red thing’; ‘sweetness’ is the abstract singular term to the 
general term ‘sweet’, and the general term ‘round’ can be matched to the abstract singular term 
‘roundness’. This series of correspondences is a systematic feature of our language (cf. Quine, 
1966, pp. 204–205): For every general term, be it concrete or abstract, we can come up with a 
corresponding abstract singular term which names the (abstract) attribute that is ‘shared’ by all 
the objects which fall under the concept in question (or, respectively of which the associated 
general term is true). The term ‘roundness’, for example, names the attribute that all round 
things have in common. It names the particular form or gestalt that we recognize in our sensory 
experience from case to case when encountering a round thing. That also leads us to a 
hypothesis as to why general terms precede their corresponding abstract singular terms in 
cognitive development: If the corresponding abstract singular term is what all of the objects 
that fall under a particular concept have in common, it is hardly possible to recognize this 
common attribute if the concept in question has not yet been learned.     

III. Numbers as concepts  
Equipped with this terminology, it is worth returning to the introductory example, which made 
obvious that number-words can either function as general or singular terms, meaning they can 
stand for concepts or objects. Let us take a closer look at the adjectival use of number-words 
first since it precedes the substantival use in the developmental sequence. As a reminder, our 
introductory thesis was: numbers are first concepts, and only become objects in a second step. 
Since we have clarified at this point what is meant when speaking of a concept, we can now 
ask for the operation or rule of application which is associated with a number-word when it 
functions as a general term. However, before we can do that, there is one more thing that needs 
to be clarified in advance: the relation of number-words to the sensuous world. It is important 
not to conceive number-words, not even in their adjectival use, as referring to certain complexes 
of our direct stream of experience. One and the same sensory impression can always give rise 
to a majority of equitable ascriptions of number:  

While looking at one the same external phenomenon, I can say with equal truth both ‘It is a 
group of trees’ and ‘It is five trees’, or both ‘Here are four companies’ and ‘Here are 500 
men’. Now what changes here from one judgement to the other is neither any individual 
object, nor the whole, the agglomeration of them, but rather my terminology. But that is 
itself only a sign that one concept has been substituted for another. This suggests [...] that 
the content of a statement of number is an assertation about a concept (Frege, 1970, §46) 

Whether a certain sensory impression gives rise to one application of a number-word or another, 
hence solely depends on the way in which we conceptually organize or structure this 
experience. If a number-word is used as a general term, what falls under the associated concept 
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are again also concepts. What the number-word ‘four’ stands for is then a second order concept 
(cf. Frege, 1970, §53), a concept that comprises all of those concepts with exactly four objects. 
Such a concept does not collect the counted objects or certain aggregates of them, but only the 
concepts structuring that material. In their adjectival use, number-words are, therefore, abstract 
general terms. Since a general term cannot stand on its own but is always predicated of 
something else, in this case of other concepts, it becomes clear why Patrick cannot make sense 
of the questions without any reference to other concepts. His behavior indicates that he treats 
the number-words as standing for second order concepts. In this use, there must some concepts 
upon which the addition is executed. Now we can come back to the question of what the 
operation or rule of application might look like that is associated with the term ‘four’.  

In the case of the number-word ‘four’, this operation might be depicted as following: We 
coordinate one after the other all the objects that fall under the concept in question with all 
terms of the number-word sequence starting from ‘one’ until we come by the word ‘four’. If 
the counting procedure stops at ‘four’, that is, if all objects were counted up to this point, we 
say that the given concept falls under the concept four (or, respectively that the term ‘four’ is 
true of the particular concept). If the procedure already stops before or if we exceed ‘four’ 
without having finished the counting procedure, we will say that the given concept does not fall 
under the concept four (or, respectively that the term ‘four’ is not true of the particular concept). 
Here it is important to emphasize that there is no need at all to suppose an entity such as an 
attribute that is common to all the concepts comprising exactly four objects. Without a doubt, 
we can learn and apply the operation described above without supposing the number-words to 
refer to a separate abstract object of any kind. This observation holds true quite generally: the 
“use of the general term does not of itself commit us to the admission of a corresponding 
abstract entity into our ontology” (Quine, 1950, p. 630). Therefore, we should consider the final 
step of objectification, leading to the treatment of numbers-words as singular terms, as an 
additional step that requires the use of number-words as general terms already been learned. 
So, how, we must ask, do numbers become objects? 

IV. Numbers as objects 
Let us assume we have a box in front of us which contains eleven marbles and we are supposed 
to determine how many marbles there are in the box. Wanting to communicate our counting 
result, we have at least two options: (1) ‘There are eleven marbles in the box’; (2) ‘The number 
of marbles in the box is eleven’. These two options correspond to our two forms of 
number-word use: in (1) ‘eleven’ functions as general term that is predicated of the concept 
marbles in the box, while in (2) ‘eleven’ can be said to stand for the same abstract entity as ‘the 
number of marbles in the box’, indicating that it functions as an abstract singular term. We 
argued above that, for a given general term, the corresponding abstract singular term can name 
the attribute that is shared by all the things which fall under the concept in question. However, 
for number-words functioning as general terms the situation is somewhat different. It appears 
to be quite difficult to come up with a feature or attribute that all of the concepts have in 
common to which a number word such as ‘eleven’ can be successfully applied. What is the 
distance in meters between the penalty spot and the goal? How many corner points does the 
maple leaf on the Canadian flag have? How many criminals are there in Danny Ocean’s gang? 
How many academy awards did the film Titanic win? And, last but not least, what do these 
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things have to do with our marbles? At the level of content, all these different manifestations 
of the number eleven obviously have nothing in common. So, what exactly is it that repeats 
itself from one manifestation to the other?  

No matter if we count our marbles, the vertices of the maple leaf of the Canadian flag, or the 
meters from the penalty spot to the goal, in each of the cases we perform a counting procedure. 
The sameness does not lie at the level of the concepts upon which the counting procedure is 
executed, but it lies at the level of the procedure itself, that is, at the level of our operations with 
these concepts. What repeats itself from one counting act to the other is the fact that all of them 
end up with the number-word ‘eleven’. But this is itself only a sign that one and the same 
concept is applied: the second order concept associated with the number-word ‘eleven’. To go 
one step further in the process of objectification, a child capable of the adjectival use must thus 
recognize all the successive counting acts ending up with the same number-word as applications 
of the same concept. This requires a minimal reflexive loop: In order to sense this kind of 
‘operational’ sameness, the child must make her own operations the object of her own 
operations. She must relate several successive applications of a number-word to each other and 
analyze them into sameness and difference of the counting results. However, in order to be able 
to identify several counting acts that end up with the same number word, a series of factual (the 
acts might be executed on very different concepts), temporal (the acts are most likely executed 
one after the other) and social (the acts might be executed by different people) differences 
between the individual acts must be left out simultaneously.3  

V. Piaget versus Peirce: What is abstraction?
What we are facing here is a two-sided process in which something is retained and at the same 
time something else is left out. Traditionally, this two-sided process is referred to as abstraction 
(cf. Locke, 1836, book 2, chapter 11, §9). In any process of abstraction there is a certain kind 
of material or substance upon which the abstraction is carried out. We cannot simply abstract 
something but rather we always abstract from something. Now, what is unusual in our case is 
this very substance of abstraction. The substance upon which the abstraction is carried out does 
not consist of objects of a certain kind but of our own operations. To take account of this 
reflexivity, Piaget has introduced the notion of reflecting abstraction (cf. Piaget, 2014, pp. 317–
323; Glasersfeld, 2003, pp. 103–105). In contrast to what Piaget calls empirical abstraction, a 
reflecting abstraction is an operation that runs on operations: 

[W]hen we are acting upon an object, we can also take into account the action itself, or
operation if you will, since the transformation can be carried out mentally. In this hypothesis
the abstraction is drawn not from the object that is acted upon, but from the action itself
(Piaget, 1971, p. 16)

We can now see that the process of relating several counting acts and analyzing them into the 
sameness and difference of the counting results can be reconstructed as a reflecting abstraction. 
It runs upon several applications of the second-order concept associated with the number-word 

3 This distinction between three meaning dimensions – a factual, a temporal, and a social –, in which we can seek 
for commonalities and differences, stems from the German sociologist Niklas Luhmann (cf. Luhmann, 1995, pp. 
59–102). 
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‘eleven’. The child must retain what all of the counting acts have in common while 
simultaneously leaving out all the features in which these successive acts differ from each other. 
But what is the outcome of this process? Have we already arrived at the substantival use of 
number-words? To cut it short: yes and no. 

In general, we can say that the ‘minimal’ attribute shared by all things that fall under a certain 
concept is this purely formal feature, the fact that the things fall under that very concept. What 
all concepts that fall under the second order concept eleven have in common, is that they bear 
the same relation to this concept. They fall under it because in each case the counting procedure 
ends with the word ‘eleven’. And to identify this formal sameness, we must perform a reflecting 
abstraction. In this way, the notion of reflecting abstraction allows extending the notion of a 
common property or a shared attribute far beyond the immediate, sensuous world. At best, we 
might then say that in the process of reflecting abstraction the successive mental or 
communicative acts are ‘condensed’ into an object-like entity, an attribute, which is the 
common feature of all these different acts. But, in the end, that is mere speculation. How, one 
might ask, is this mysterious object-like entity anchored if we obviously cannot perceive it?  

In order to provide an answer to this question, we have to move away from the content layer, 
the series of operations on operations, onto the expression layer, the layer of the use of signs to 
fix these volatile operations (cf. Sfard, 1991, p. 21). It is precisely here where the notion of 
reflecting abstraction comes into trouble. It can explain how we get to sense the operational 
sameness described above, however, what it cannot explain is how this sameness is objectified. 
We therefore want to complement Piaget’s account on abstraction with Peirce’s considerations 
on the very same topic. Peirce has introduced the notion of hypostatic abstraction to describe 
the exact process we are interested in, the transition from a general term to an abstract singular 
term or in Peirce’s own words: 

That wonderful operation of hypostatic abstraction by which we seem to create entia rationis 
that are, nevertheless, sometimes real, furnish us the means of turning predicates from being 
signs that we think or think through, into being subjects thought of. We thus think of the 
thought-sign itself, making it the object of another thought-sign. (CP 4.549) 

It is noticeable that Peirce gives a beautiful account on the reflexive loop we have already 
described above: Whenever we apply a general term or a predicate we think through the sign 
or the concept associated with it in precisely that sense that we always predicate it of something 
else, while in any attempt to transform it into an object, we must reflect on this very use and 
make it the subject of another thought. That is to say, we must think of the sign through which 
we have thought before. So far nothing new, but in the second part of the quotation Peirce goes 
beyond what we have already described before. We “think”, Peirce writes, “of the thought-sign 
itself, making it the object of another thought-sign” (ibid.). As noticed before, what stays the 
same from application to application of number words in their adjectival use is nothing but the 
purely formal feature that the number-words are true of all the concepts to which they are 
successfully applied. We can now add that, what the corresponding abstract singular term 
names, is ultimately nothing other than the sign thought through before. Number-words 
functioning as singular terms name the sign, i.e., the relation between the general term and the 
particular counting procedure associated with it. This way, the conceptual operation becomes 
crystallized or frozen. When a number-word is used as a singular term, the operation must not 
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be performed anymore but is rather only implied or pointed at. We say that we ‘know’ what the 
numeral ‘1,098,7877’ stands for because it “points to the last element in a familiar counting 
procedure” (Glasersfeld, 1995, p. 100), a procedure that no longer needs to be executed.  

Concluding, I want to generalize this thesis. We do not need to posit some sort of ontological 
realm to answer the question of how we can speak about numbers, classes, and functions as 
self-sustained entities. What a singular term in mathematical discourse stands for is ultimately 
no more than another sign, it is the relation between the general term (from which the singular 
term in question originates) and the associated conceptual operation.  
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In this paper I discuss some concepts that are part of the epistemology dimension of the Theory of 
Objectification—a Vygotskian theory of teaching and learning whose philosophical background 
comes from dialectical materialism. The epistemological concepts are presented in the first part of 
the paper. In the second part, they are illustrated through a classroom example. 

Keywords: Knowledge, knowing, processes of objectification, learning, concept. 

Introduction 
This article seeks to contribute to the research field of theoretical perspectives in mathematics 
education. Its goal is to offer a short account of the manner in which a central, yet controversial, 
concept in mathematics education—the concept of learning—is conceived of in the Theory of 
Objectification (TO). To do so, this article describes the epistemological dimension of the TO as a 
dynamic whole system driven by dialectical relationships between knowledge, knowing, and 
learning. Drawing on a previous paper (Radford, 2013), I revisit a classroom example to illustrate 
the ideas presented in the article and to add a new epistemological element—the concept of concept. 
The example also provides insights about the interplay between the theoretical principles of a theory 
and its methodology and shows how the TO addresses a specific sensitivity of mathematical 
epistemology: one in which mathematical knowledge is considered as a cultural-historical entity in 
motion, an entity that is incessantly renewed and expanded and continuously brought to life by 
sensuous, practical, and material human activity. 

Knowledge  
In the Theory of Objectification, knowledge is understood as a general entity that, ontologically 
speaking, is already in the culture when we are born. Knowledge includes historical archetypes and 
culturally constituted processes of thinking, reflection, and action. Let us imagine a rural 
community that, in the course of time, has produced ways of thinking, reflecting, and doing 
things—for example, how to sow the earth, how to think about space, quantity, time, etc. These 
ways of thinking, reflecting upon, and doing things are general archetypes that constitute the 
knowledge of the culture. Let us now imagine a baby born at this moment in that culture. For this 
baby, those ways of thinking about the world, space, quantity, time, etc., appear as possibilities—
possibilities of action and reflection. Another culture (e.g., a culture based on capitalist ways of 
commercial production in a contemporary European or North American country) will offer 
individuals born at this moment other possibilities; that is to say, other knowledge. These 
possibilities are potential actions/reflections, or capacities to do something. It is in this sense that 
knowledge can be considered as potentiality. 

According to Aristotle, potentiality (δύναμις) is synonymous with power or disposition. Living 
beings and mechanisms have potentiality. A musical instrument, for example, has the ability to 
produce sounds. A fish has the ability to move in the water. Actuality (ένέργεια, energía), by 
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contrast, is the concrete happening of that which, before being put in motion, before being 
actualized, was potentiality. Potentiality is something undefined, without form, like a sound before 
it is produced or like the capacity of the fish before it travels in the water; something purely 
potential that, through movement, becomes materialized or actualized (act-ualized: transformed by 
an act-ion). However, the potentiality that living beings and mechanisms enjoy can be natural or 
acquired. The fish is biologically equipped to move in the water. Other potentialities or capacities 
are acquired, as Aristotle indicated (1998) in Metaphysics (1048a). This is the case of knowledge. 
Knowledge is this: generative capacity, potentiality. Algebraic knowledge, for example, is 
potentiality embedded in the culture: capacities that are offered to individuals in order to think, 
reflect, pose, and solve problems in a specific way. 

Knowledge as the generative capacity of action and thinking changes from one culture to another 
and from one historical period to another. It would be a mistake, though, to think that the idea of 
knowledge I am outlining here stands in a Platonic line. The fact that when each one of us was born 
and was confronted with a series of scientific, ethical, aesthetic, legal and other forms of 
knowledge/thinking already established historically and culturally, does not mean that those forms 
of knowledge are Platonic forms, universal and timeless, independent of human labour. On the 
contrary, knowledge in each culture is produced by concrete people through their own labour—
through their own actions, their own reflections, their joys, their suffering, and their hopes. To be 
more precise, I suggest that knowledge is a system of embodied, sensible and material processes of 
action and reflection, constituted historically and culturally. The adjectives embodied, sensible, and 
material mentioned in the previous definition signify that the processes of action and thinking are 
not mental cogitations occurring inside the head, but actions of real individuals who work and live 
in a social and cultural world. These actions are carried out through the body, the human senses, and 
through the use of physical objects and cultural artefacts. 

Knowing 
Knowledge is related to each one of its concrete instances or actualizations, but is, at the same time, 
different from each one of them. In its materialization or actualization, each of these concrete 
actualizations keeps in a sublated manner the generality of the ideal form that engenders it, but it 
does not coincide with the ideal form. In the TO, the actualization of knowledge has a specific 
name: knowing. Knowing is the concrete conceptual content through which knowledge is embodied 
and materialized or actualized. Although knowledge and knowing belong to two different 
ontological spheres—the former is general, the latter singular—they are interrelated in a dialectical 
manner and are part of a dynamic whole system. Knowing as the actualization of knowledge evokes 
indeed this temporal dimension of a whole in continuous movement. And what produces the 
movement is activity: knowledge and knowing are related through activity. Indeed, knowing can 
appear only through activity. This activity actualizes knowledge, brings it to life—like the activity 
of playing a violin brings musical notes to life, or the classroom activity of solving an algebraic 
equation brings algebraic knowledge to life. We can now state in a more precise way the 
relationship between knowledge and knowing: knowing is a sensible developed form of 
knowledge—much like the bud’s example that Hegel offers in his Phenomenology of the Spirit: the 
blossom originates from the bud; it is the materialization or actualization of the bud, yet it does not 
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coincide with the bud. The blossom is a sensible developed form of the bud: although different, 
“their fluid nature makes [the bud and the blossom] moments of an organic unity . . . in which each 
is as necessary as the other; and this mutual necessity alone constitutes the life of the whole” 
(Hegel, 1977 p. 2). The dialectical moment is precisely the moment in which one becomes the 
other, the moment in which algebraic knowledge as general becomes transformed into something 
sensible, singular—that is, an object of consciousness. “It is of the highest importance,” Hegel 
notes, “to interpret the dialectical [moment] properly, and to [re]cognise it. It is in general the 
principle of all motion, of all life” (Hegel, 1991, p. 128). Up to here I have dwelled on concepts that 
have to do with aspects of the general theoretical stance of the TO. Now we enter into the 
educational-epistemological realm and deal with the concept of learning. 

Learning 
In student-centred pedagogies the student is considered to construct his/her own knowledge. No one 
can construct it for him/her. To construct a concept is equated to learning such a concept. In this 
conception, knowledge (K) appears as an extension of the subject (S). Since knowledge is not 
something different from the subject, but the subject’s own construction; in other words, since there 
is an identity between the thinking self and the products of its cogitations (Ilyenkov, 1977), this 
conception can be summarized through the equation: S = K. The intention behind the TO is to move 
beyond this individualistic stance.  

To theorize learning, sociocultural theories have resorted to a series of concepts, such as 
enculturation (mainly formulated in anthropological research) and internalization (borrowed from 
Vygotsky’s work). I have argued elsewhere (Radford, 2018) that both concepts are insufficient to 
come up with an operational definition of learning from an educational perspective. To put it in a 
nutshell, the concept of enculturation adopts as its explanatory principle the idea of social practice, 
but leaves it uncritically analyzed. In enculturation approaches a social practice often amounts to 
what people do. Furthermore, in enculturation approaches the agentic dimension of individuals 
remains usually at the periphery. In Rogoff’s (1990) account, the individuals are certainly 
considered as active participants. But learning is conceptualized as apprenticeship; that is, 
something occurring through “the guidance and challenge of other people” (Rogoff, 1990, p. 19). In 
the end, learning is a process whose goal is to adapt oneself to existing social practices. Education 
is reduced to reproduction. There is little room to investigate education as transformation of people 
and the world. Likewise, there is little room to investigate the individuals as agentic entities, such as 
the manners in which the individuals come to position themselves and be positioned in social 
practices. There is little room to investigate the tensions that arise from the normative dimension of 
cultures (what Bakhtin, 1981, called a centripetal force) and the agentive movements of the 
individuals (the centrifugal force in Bakhtin’s terminology). A similar critique may hold for 
Vygotsky’s concept of internalization; that is, the “transition of a [psychological] function from 
outside inward” (Vygotsky, 1998, p. 170; emphasis in the original). It might be worth noticing that 
the content of Vygotsky’s concept of internalization (Вращивание – vraschivanie) is not learning, 
but the higher psychological functions (such as memory and perception). The problem that 
internalization seeks to explain is not how the child learns but how the higher psychological 
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functions arise from social relations, and how these functions evolve. How, then, is learning 
theorized in the TO? In the rest of this article I sketch the answer to this question.  

Processes of objectification 
As suggested earlier, in the TO, knowledge is considered as a culturally and historically constituted 
system of thinking and action. When each one of us was born, these systems (always in motion, 
always changing) were already there, existing in our culture in the form of knowing how to plant 
corn seeds, knowing how to calculate mortgages, etc. In other words, at birth, to each one of us, 
knowledge appeared as a cultural-historical generative, latent capacity. Our encounter with 
culturally and historically constituted systems of thought (e.g., mathematical, scientific, aesthetic, 
legal, etc.) is what in the TO is called objectification. 

To understand the meaning of this encounter, let us bear in mind that the noun “objectification” 
tries to convey the idea that, before our encounter with knowledge, knowledge presents to us as 
something different from us: something that in its alterity, its own presence objects us; that is, 
resists or opposes us. The equation is: S ≠ K. Before our encounter with knowledge, knowledge is 
the sign of a difference. Object-ification is the attempt to erase that difference. But because 
knowledge is an ideal (general) form always changing (constantly being recreated, refined, and 
expanded), the difference that the encounter tries to erase is not something that can happen totally. 
There is always a residue, a surplus that remains beyond our always local, situated, and concrete 
encounters with knowledge. As a result, objectification is always partial, a Sisyphean attempt at 
embracing knowledge—at becoming conscious or aware of it. “Object” in objectification does not 
refer to the verb “to objectify,” but to the verb “to object” (as when something, a desk, a chair, 
objects us). This is why, in the TO, in providing accounts of learning, instead of saying that students 
objectified knowledge, we talk about students engaged in processes of objectification. More 
precisely, processes of objectification are those social, collective processes of becoming 
progressively conscious of a culturally and historically constituted system of thought and action—a 
system that we gradually and partially notice and at the same time endow with meaning. Processes 
of objectification are those processes of attempting to notice something culturally significant, 
something that is revealed to the consciousness not passively but by means of the corporeal, 
sensible, affective, emotional, artefactual, semiotic, and creative activity of the individuals. In this 
context, learning is defined as the outcome of processes of objectification. And since systems of 
thought (mathematical, etc.) are always revealed partially, these processes are always endless —and 
hence, so is learning. 

Processes of subjectification 
Learning includes emotions and affect, not as merely concomitant phenomena of learning, but as 
constitutive parts of it. The educational implication is that instead of being a purely mental 
endeavour, learning mathematics involves emotions and affect in manners that touch and shape us 
profoundly. This is why classrooms do not produce knowledge only; they produce subjectivities 
(i.e., unique human beings) as well. In the TO, the investigation of the production of subjectivities 
in the classroom is carried out through the construct of processes of subjectification: the processes 
where, co-producing themselves against the backdrop of culture and history, teachers and students 
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come into presence. To come into presence refers to the idea of the student as someone who, 
through classroom activity, comes to occupy a space in the social world and to be a perspective in 
it. To come into presence is a dialectical movement between culture and the individual. The 
dialectical nature of this movement brings us to conceive of the individuals as entities in flux—
entities who are continuously co-producing themselves and find in their culture the raw material of 
their own existence. Both the individual and culture are coterminous entities in perpetual change, 
one continuously becoming the other and the other the one. In this dialectical movement, students 
as well as teachers are considered as subjectivities in the making, openness towards the world. 
Teachers and students are conceptualized as unfinished and continuously evolving projects of life, 
in search of themselves, engaged together in the same endeavour where they suffer, struggle, and 
find enjoyment and fulfillment together. 

Joint labour 
In the TO, what makes learning possible is human activity. Processes of objectification and 
subjectification are embedded in activity. Now, the activity where learning occurs can be alienating. 
This is what happens in the classroom activity of both the traditional teaching and its pedagogy of 
knowledge transmission and the constructivist student-centred pedagogy of knowledge 
construction. In the first case, the students do not have room to express themselves. As a result, the 
activity alienates them from their own product—the knowledge that was produced in the classroom. 
In the second case, the student is involved in doing things and expresses herself. However, that 
expression remains confined to the subjective sphere of the self. Since knowledge is understood as 
that which is produced by the action of the student, the student is not in conversation with the 
world. There is a mere monological conversation of the subject with the subject itself. The student 
is alienated from the historical-cultural world and is confined to live in a “taken-as-shared” 
universe. The TO resorts to a different, non-alienating concept of learning activity. First, the teacher 
does not appear as a possessor of knowledge who is delivering or transmitting knowledge to the 
students or as someone scaffolding strategies to the students. Nor do the students appear as passive 
subjects receiving knowledge or as the authors of their own knowledge. Second, teaching and 
learning are not considered as two separate activities, one carried out by the teacher (the teacher’s 
activity) and the other carried out by the student (the student’s activity). In the TO, teaching and 
learning are conceptualized as a single and same activity: the same teachers-and-students’ activity. 
This concept of activity does not reduce activity to a series of actions that individuals perform, 
perhaps in coordination with each other, in the attainment of their respective goals. This line of 
thinking reduces activity to a functional and technical conception. In the TO, following Marx and 
Leont’ev, activity is a form of life, a kind of energy formed by the individuals in their pursuit of 
something common, an energy that is sensible and sensual, material and ideational, discursive and 
gestural. To avoid confusion with other meanings, in the Theory of Objectification, activity in the 
latter sense is termed joint labour. Joint labour is the chief ontological category of the TO and its 
unit of analysis. Sensuous, material joint labour is considered the ultimate field of aesthetic 
experience, subjectivity, and cognition. It asserts the fundamental ontological and epistemological 
role of matter, body, movement, action, rhythm, passion, and sensation in what it is to be human. 
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An example 
I would like to refer to an example that comes from a Grade 4 class (9-10-year-old students) where 
the students were dealing with a sequence generalization problem based on the following story: 
“For his birthday, Marc receives a piggy bank with one dollar. He saves two dollars each week. At 
the end of the first week he has three dollars, at the end of the second week he has five dollars, and 
so on.” The teacher provided the students with bingo chips of two colours (blue and red) and 
numbered plastic goblets intended to represent Week 1, Week 2, etc., and invited the students to 
work in small groups to model the saving process until Week 5. Then, drawing on the model, the 
teacher invited the students to find the amount of money saved at the end of Weeks 10, 15, and 25. 
After some discussion, the students came up with an arithmetic strategy, the “doubling strategy”: 
they found the number of bingo chips in Week 5, doubled this amount and removed one bingo chip. 
The teacher came to see the students’ work and engaged in the conversation: 

1 Teacher: (Trying to make noticeable to the students the co-variational structure) What do 
you remark about Week 5 (She shows the goblet corresponding to Week 5) 
and (Pointing to the red bingo chips) the number of bingo chips? (Making 
the same actions) The fourth week and the number of bingo chips? 

2 Albert: (Hesitantly and at the same time interested) It’s always twice . . . 
3 Teacher: (Repeating) It’s always twice. 

This teaching-learning activity was the first one of a sequence of activities dealing with algebra. 
Algebraic knowledge already exists in the students’ culture. It is part of the school curriculum. 
However, until that morning, for the students, algebraic knowledge existed as a pure generative 
capacity of actions and thinking. Learning requires making algebraic knowledge something 
noticeable, an object of consciousness. The classroom activity was organized by the teacher so that, 
working collaboratively with the students, algebraic knowledge could be materialized or 
instantiated and so progressively it could manifest itself through one of its developed forms—i.e., as 
knowing. The three lines of the excerpt above show this progressive transformation of knowledge 
into knowing. Indeed, the mathematical variables started being noticed. They started becoming 
objects of consciousness. However, their co-variational algebraic nature remained unnoticed. Joint 
labour reaches here a tension that derives from the contradictory ways in which the terms of the 
sequence have been so far perceived (an arithmetical one, based on doubling, and an algebraic one, 
based on a co-variational approach to the problem). This contradiction is not a flaw of a didactical 
design: it is the very motor that keeps the activity unfolding. To encounter algebraic thinking as 
featured in the teacher’s didactical project, the teacher and the students have to keep working 
together to try to make the algebraic approach appear in the classroom and become an object of the 
students’ consciousness. Its appearance is a bit like the appearance of Beethoven’s 7th symphony: 
for it to become an object of consciousness it has to aurally appear through the activity of the 
orchestra. Since mathematics is simultaneously visual, tactile, aural, material, artefactual, gestural, 
and kinesthetic, it can only come into life here through the sensuous and artefactual joint labour of 
the teachers and the students. 

After some discussion and failed attempts at making noticeable the algebraic structure of the bingo 
chips’ visual arrangement (see Figure 1, Pic 1), the teacher came back to an analysis of Week 5: 
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4 Teacher: (Taking with her hand again the goblet of Week 5; see Pic 1) What did you do 
here? 

5 Albert: (Takes a long breath while the teacher holds the goblet of Week 5; see Pic 2) OK. 
6 Teacher: (Still holding the goblet, speaks softly) 5 . . . 
7 Albert: (In sync with the teacher’s gesture that points next to the red chips; see Pic 3) 

Times 2 . . . 
8 Krysta: (Who has followed the discussion) Times 2 equal . . . 
9 Teacher: (Pointing at the blue bingo chip; see Pic 4) Plus 1. 
10 Albert: (Almost at the same time) Plus 1. 
11 Teacher: (Now pointing to an empty space where Week 10 would be) 10? 
12 Albert: (The teacher points silently at the place where the red bingo chips should be; see 

Pic 5) Times 2. 
13 Krysta: (At the same time) Times 2. 
14 Teacher: (Points silently at the place where the blue bingo chip should be; see Pic 6) 
15 Krysta: Plus 1. 
16 Albert: (Looking at the teacher) Minus 1?, times 2, minus 1?, plus 1? 

Pic1 Pic2 Pic3 

Pic4 Pic5 Pic6 

Figure 1: Joint labour and the appearance of an algebraic approach to solve the problem 

The example illustrates three things. First, what joint labour is: a spatial-temporal dynamic system 
that is created by the students and the teacher. It is made up of the energy that the teacher and the 
students spend in trying to solve the problem and whose fabric includes language, gestures, 
perception, body position, and artefacts. It is a fluid carrier of half-expressed and half-understood 
intentions and motives. Second, the example shows some of the intricacies of the transformation of 
knowledge into knowing. Knowing is this specific manner in which algebraic knowledge is being 
instantiated from a particular problem and through joint labour (distinguishing the variables and 
their relational-functional nature, expressing it through language, gestures, etc.). Third, the example 
let us have a glimpse of how learning occurs. Indeed, the example shows how, wrapped in this 
energy of which joint labour is made up, the teacher moves her hand silently to indicate with an 
indexical gesture the imaginary position of the blue chip (see Pic 6). She is very tense, as the 
outcome of the joint labour is still uncertain. She awaits Albert’s answer with a tension that is 
reflected in her body and language intonation. Her question is an invitation to Albert to come to 
position himself in a mathematical practice. The question is already a positioning. But still Albert 
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has to accept. He could have just given up. But he does not. Albert, who is also very tense, accepts 
the teacher’s question/invitation and says “Minus 1? Times 2 Minus 1? More 1?” The answer attests 
to the fact that Albert is positioning himself and being positioned in a social practice where things 
are thought of in a certain manner. But the answer attests also to the fact that the co-variational 
algebraic manner by which to see the variables is progressively becoming intelligible to Albert’s 
consciousness. More generally, in the joint labour we see the unfolding of a social process that is at 
the same time a process of subjectification and objectification. Albert is living an encounter with 
key aspects of algebraic knowledge. The difference between S and K in the equation S ≠ K is being 
reduced. Since knowledge is a general, the difference will never vanish. Even though, there is still 
room for Albert to perceive better the nuances of the algebraic variables and how they relate to each 
other. It did not take long. During the general discussion, which started right after the end of the 
previous excerpt, the teacher invited Albert to explain how to find out the number of bingo chips in 
Week 4. He said: “4 times 2 . . . plus 1, 4 times 2 plus 1 equals . . . 9.” 

Concept 
As knowledge is put into motion through joint labour, it becomes materialized into something 
sensible; that is, knowing. In the course of its materialization, knowledge is refracted in the 
students’ consciousness. This refraction is always different: it changes from student to student. A 
concept is precisely the subjective refraction of knowledge in consciousness through the mediation 
of knowing. A concept enables us to do things and to think about them in certain ways. While 
knowledge and knowing are historical-cultural entities, a concept is of a subjective order: the 
subjective and partial version of cultural knowledge. In the example discussed above, algebraic 
knowledge is refracted in Albert’s consciousness—as the concept of algebraic generalization of 
(linear) sequences. Although still fragile, this concept, originated in activity, becomes an “organ” of 
Albert’s body. It is something that allows and empowers him to perceive sequences and to think of 
them in a new way. No less important, the concept connects Albert with culture and history and 
transforms him at the same time into a cultural-historical subject.  
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The theory of Mathematical Working Spaces (ThMWS) is a young theory that appeared in the field 
of didactics of mathematics a decade ago with the objective of describing and constructing the 
mathematical work of students in a school context. To this end, the theoretical framework aims to 
link and closely combine epistemological and cognitive approaches. In this article, we deepen the 
very notion of mathematical work by focusing first on an epistemological approach that specifies 
the nature of work in mathematics and then on a philosophical approach that connects work and 
communication in a dialectical relation. These two approaches highlight the more or less implicit 
ideological assumptions that guide our research in didactics. 

Keywords: Mathematical work, work and communication, semiotics genesis, paradigms. 

Introduction 
Developed for more than a decade as a methodological and theoretical tool, the Mathematical 
Working Space model has recently been presented as a theory by eminent researchers in the field of 
mathematics education. In particular, Radford (2017) uses the theory of MWS together with 
Brousseau's Theory of Didactic Situations (1997) to exemplify theories in mathematics education 
which reflect on mathematical knowledge and know-how that the much of the mainstream research 
in the domain seems to neglect: 

However, I think that focusing on knowledge is what educational approaches such as the French 
didactic theories excel at – for example, the theory of didactic situations or its young sibling 
theory “the mathematical working space”. (Radford, 2017, p. 503)  

This focus on content is essential in the theory of MWS and is reflected in the central place given to 
"mathematical work". Moreover, one of the specificities of the theory is that it was conceived to 
interact with a diversity of constructs and perspectives in the field. This plasticity poses the 
challenging question of the real nature of its relationships with other theoretical approaches, which 
may be grounded on very different epistemological and methodological principles. The 
epistemological stances from a given theoretical model shape the nature of the objects and problems 
being studied, but according to our view they also influence the capacity of integration of, and 
exchanges with, other theoretical frameworks. This capacity refers to Kidron’s epistemological 
sensitivity (2016), which is likely to foster the possible networking between different approaches. 

In this contribution we would like to focus on this epistemological question which relates to a point 
highlighted in the call for contributions for this topics group, namely the epistemological dimension 
of theories for example in terms of argumentative grammars or background philosophy. This 
contribution complements the one presented at CERME10 (Kuzniak & Nechache, 2017) where we 
showed the interactions between methodological development and the evolution of the MWS 
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theory. To characterize its epistemological sensitivity, we propose to question the epistemological 
and ideological assumptions underlying our theoretical approach and stemming from the fact that 
we are interested in the nature of "mathematical work". We will also highlight the specificity of the 
theory and its originality in the field of didactics of mathematics. 

The French environment of didactics of mathematics 
We think it is useful to start by presenting the particular French context in which the ThMWS is 
embedded and developed. Despite some theological quarrels linked to the personality of the various 
researchers involved in its growth, it must be recognized, that the didactics of mathematics in 
France is based on a community of theoretical and methodological principles that contribute to 
establishing a real cultural homogeneity. In a fairly simple way, we can say that the didactics of 
mathematics in France is supported on three essential pillars associated to symbolic figureheads 
enjoying strong international recognition (at least at symbolic level through the award of scientific 
prizes and medals). 

· The Theory of Didactic Situations, the foundations of which were laid by Brousseau (1997), 
where it is essential to link theoretical and empirical research in close connection with the 
classroom. Its aim is to develop an experimental didactics that goes beyond the classical 
didactics as described in Comenius' Magna Didactica, which Brousseau regularly cites in his 
presentations and where all guidelines and ideas have been given a priori and are not 
validated by field studies.  

· The Anthropological Theory of Didactics, initiated by Chevallard (1992), is based on an 
anthropological and holistic vision of learning and teaching acts. This holistic framework, 
based on the study of praxeologies, aims at a theoretical autonomy of didactics which is 
independent of other scientific fields such as mathematics, sociology or psychology. 

· The Theory of Conceptual Fields developed by Vergnaud (1991) is less well known but 
brings a psychological and cognitive dimension, based on Piaget's learning theory, to these 
two theories strongly influenced by mathematical epistemology.  

As underlined above, these theories benefit from a kind of international visibility and recognition 
with the award of the Klein Medal to Brousseau, the Freudenthal Medal to Chevallard and the fact 
that Vergnaud was one of the founders of PME. The following theoretical contributions are less 
widely known but very present and influent in the French context: 

· Duval’s contribution (2006) on semiotics with the development of semiotics registers. In 
this approach, signs and semiosis are essential because they mediate mathematical objects 
that are only accessible through their different semiotic representations.  

· The ergonomic approach combines Piaget's and Vygotsky's contributions and led to “French 
Activity Theory" as it is presented in a recent special issue of Annales de Didactique (2018). 
It is also based on a reflection on instruments and tasks and includes the developmental 
dimension of activity.  

It is within this context that the theory of MWS (Kuzniak, Tanguay, & Elia 2016, Gómez-Chacón, 
Kuzniak, & Vivier 2016) has been developed by seeking to link and preserve very closely the 
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epistemological and cognitive viewpoints. The epistemological point of view is very focused on 
mathematical content with a reflection on its organization. While the cognitive viewpoint follows 
Duval's approach in geometry and focuses on the visible and tangible aspects of the subject's 
activity. The interaction of the two perspectives was achieved by placing mathematical work at the 
centre of the reflection. The specific study of the mathematical work is based on three dimensions 
and geneses: semiotic, instrumental and discursive. 

A short presentation of the theoretical framework: The model with its diagrams 
The purpose of the theory of Mathematical Working Space is to provide a tool for the specific study 
of the mathematical work in which students and teachers are effectively engaged during 
mathematics sessions. The abstract space thus conceived refers to a structure organised in a way 
that allows the mathematical activity of individuals who are facing mathematical problems.  

 
 

Figure 1: The MWS diagram Figure 2: The three vertical planes in the MWS 

To grasp the specific activity of students solving problems in mathematics, the two epistemological 
and cognitive facets of mathematics are present and articulated in the model into two planes: one of 
an epistemological nature in close relation to the mathematical content in the field being studied; 
the other of a cognitive nature, related to the visible action of the individual solving problems 
(Figure 1). Three components in interaction are characterised for the purpose of describing the work 
in its epistemological dimension, organised according to purely mathematical criteria: a set of 
concrete and tangible objects (representamen); a set of artefacts such as drawing instruments or 
software; a theoretical system of reference based on definitions, properties and theorems. The 
second level of the MWS model is centred on the subject, considered as a cognitive subject. Three 
cognitive components are introduced as follows: visualisation related to deciphering and 
interpreting signs; construction depending on the used artefacts and the associated techniques; 
proving conveyed through actions producing validations, and based on the theoretical frame of 
reference. Therefore, analysing mathematical work through the lens of MWSs allows tracking down 
the process of bridging the epistemological plane and the cognitive plane, in accordance with three 
different dimensions: An instrumental dimension (Ins) related to the experimental and empirical 
part of work, a discursive dimension (Dis) related to the strategic and theoretical part, and finally a 
semiotic dimension (Sem) that expresses the importance of signs as an intuitive source and support 
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for mathematical work. The shaping of work involves different but intertwined genetic 
developments, each identified as a genesis linked to a specific dimension of the model: semiotic, 
instrumental and discursive geneses.  

In order to understand this complex process, the interactions that are specific to the execution of 
given mathematical tasks will be associated to the three vertical planes, naturally occurring in the 
MWS diagram: the [Sem-Dis] plane, conjoining the semiotic genesis and the discursive genesis of 
proof, the [Ins-Dis] plane, conjoining the instrumental genesis and the discursive genesis of proof, 
the [Sem-Ins] plane, conjoining the semiotic genesis and the instrumental genesis (Figure 2).  

The exact definition and precise description of the nature and dynamics between these planes during 
the solving of a series of mathematical problems remains a central concern for a deeper 
understanding of mathematical work. To achieve this description, studies performed within the 
framework of MWS theory closely examine the design and implementation of classroom teaching 
situations according to a specific methodology supported on MWS diagrams (Kuzniak & Nechache, 
2017). 

The necessary clarification of what is “le travail mathématique” in schooling 
In the following, our study focuses on the real scope and meaning of “le travail mathématique”, in 
particular we wish examine the theoretical construction developed in the context of the didactics of 
mathematics and see its solidity when the same notion is considered from other perspectives, 
epistemological and philosophical, that a priori do not belong to the world of education. First, we 
kept the expression “travail mathématique” in French, because one of the first difficulties we 
encounter in this study is the translation into English of the term "le travail mathématique". We 
have opted for "mathematical work" which is not its exact equivalent as we will see later. This 
difficulty in translating the meaning of the term "mathematical work" is found again in the choice of 
translating, after long discussions, "Espace de Travail Mathématique" into “Mathematical Working 
Space” to insist on "working" more than on "the workplace".  

To achieve this study, we begin by following the easiest and least controversial path, that of 
epistemology, which makes it possible to question the term "mathematical work" by emphasizing 
the "mathematical" aspect in order to identify precisely the meaning of mathematics when it is 
considered through the idea of work. A second, steeper and more controversial path, because it may 
be political, will make us question ourselves on “work”, the first term of the pair, from a 
philosophical point of view.  

An epistemological perspective on mathematical work: Thurston and Granger 
Mathematical work as a recursive and progressive process 

The notion of “mathematical work” must be taken as a syntactic whole which combines closely 
work and mathematics. In order to define the idea of work within our framework, we use the dual 
approach of Habermas (1969), which stresses both instrumental action and rational choice as 
constitutive of work. 

By « work » or purposive-rational action I understand either instrumental action or rational 
choice or their conjunction. Instrumental action is governed by technical rules based on 

Thematic Working Group 17

Proceedings of CERME11 3073



 

 

empirical knowledge (...). The conduct of rational choice is governed by strategies based on 
analytic knowledge. (...) Purposive-rational action realizes defined goals under given conditions. 
(Habermas, 1969, p. 92-93). 

But what exactly is this specific action that allows mathematical work to be identified? According 
to Thurston (1994), the difficulty in defining mathematics stems from the essentially recursive 
nature of the mathematical activity. So, he characterizes mathematics as the field that contains as a 
central core the study of numbers and space geometry, and then he defines this field in extension as 
what is being produced by the work of mathematicians, “those humans who advance human 
understanding of mathematics” (Thurston, 1994, p. 162). In this view, mathematics ‘scientificity’ 
comes from the critical and repeated revision of the research and results generated by mathematics 
and by those who produce it along processes always open to reassessment and questioning.  

These processes are necessarily in the long run, and we may thus evaluate that having access to full 
mathematical work is not possible without being engaged in such a progressive and recursive 
process. This idea of mathematical work in constant evolution and construction, even in the school 
context, is a central point of our vision on mathematics learning and teaching. 

The mathematical work and its style 

Defining mathematics from the point of view of mathematicians' activity implies to look at the 
results of this work in order to better understand the nature and contents of mathematics. To achieve 
this, it will be necessary to study the resulting work, fruit of the work elaborated by mathematicians. 
This work is a formalisation of abstract concepts that requires a codification of the discourse. 
Granger (1963) calls style the particular way of presenting rational knowledge by submitting it to 
codified norms that give objects a specific meaning. These standards help to set the direction of 
work on problem solving. They make it possible to exclude certain practices by limiting the 
possibilities of interpretation and therefore exploration of the reader or student. In that sense, the 
notion relates to the idea of paradigm introduced by Kuhn (1966). For us, a paradigm will stand for 
a combination of beliefs, convictions, techniques, methods and values that are shared by a scientific 
group. Gaining access to a mathematical paradigm will involve meeting the mathematicians’ work 
and going through the solutions and solving processes of distinctive problems that qualify as 
exemplars according to Kuhn. In studies conducted within the framework of the theory of MWS, 
the exact definition of paradigms is important because it allows revealing and understanding the 
expectations of teachers and educational institutions and also to explore the real distance between 
this expected work and the work actually carried out by the students. 

A philosophical and critical perspective on mathematical work: Work and 
communication 
In this section, we examine the second part of the formulation "mathematical work", and deal with 
the question of work. To move forward in this direction, we will rely mainly on the philosopher 
Fuchs (2016) who published a critical and social essay on work and communication in the age of 
the digital economy. As we will see his approach joins and sharpens our own conceptions and 
research on mathematical work developed now in a rich technological and digital environment 
which has deeply changed the traditional way of working in mathematics especially at school. 
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On the difficulty to translate the word “travail” in “le travail mathématique” 

Fuchs revisits the question of terminology and sense of the word “travail” in different languages by 
pointing out the distinction between work and labour. He stresses on the fact that whereas the 
etymological root of terms such as work or werk (German) is creating, acting, doing, the 
etymological root of words such as labour and Arbeit (German) is toil, slavery and hardship (Fuchs, 
2016, p. 17). This etymological distinction is also found in French—on the one hand ouvrer (work) 
and on the other hand travailler (labour). But at the same time the origin of the word "travail" in 
French is controversial and does not refer to the same roots. The word "travail" seems to have a 
broader meaning than work and the word "labeur" (labour) is rarely used in French. Thus, for 
example, the equivalent of Labour Day is la “fête du travail”. 

In the context of our study, we will consider three large dimensions of work close to the French idea 
of “travail”: work as a long-term process with a certain permanence; the result of work which can 
be named a work; the goals and stakes of work which will be precisely here of mathematical nature.  

On the relationship between work and communication 

As we have seen above, the communication of the work of proof is part of the mathematical work, it 
makes visible the rationality of the arguments presented. But what is the exact nature of this 
relationship? Fuchs studies four modes of relationship between work and communication. The first 
two assume a pre-eminence of one over the other, the third proposes their independence and finally 
the last one proposes a dialectical link between the two. For Fuchs, Habermas, whom we mentioned 
above, is the main defender of the dualist position. Habermas’ theory of communicative action 
makes a sharp distinction between on the one hand purposive (instrumental, strategic) action 
(including work) that is orientated on success and on the other hand communicative action that is 
orientated on reaching understanding. According to Fuchs, Habermas' vision is a little naive insofar 
as it assumes that communication is always part of a positive and rational dynamic.  

In addition to this dualist vision of the relationship between communication and work, Fuchs 
emphasizes authors who favour a dialectical approach to work and communication. Curiously and 
unexpectedly by us, he underlines the singular contribution of Lev Vygotsky and his Activity 
Theory and stresses on the fact that Lev Vygotsky (1896–1934) was a Marxist psychologist from 
Belarus who developed a theory of activity, whose basic point is that human cognition and language 
are grounded in human activity. As we have pointed out above, this theory is particularly important 
and natural in France where Vygotsky is considered for his research in psychology which is used in 
combination with Piaget's studies. Moreover, the reference to Marx is common among the main 
French philosophers (from Althusser to Comte-Sponville via Badiou) and is not considered as 
sulphurous and diabolical as it is the case in some national traditions with an anti-communist or 
liberal influence. Perhaps, this specific relationship between Activity Theory and Marxism helps to 
understand the different ways this theory is received depending on countries because of the close 
relation existing between Marxism and communism.   

To come back to the scientific content of Vygotsky's writings, it should be retained that Vygotsky 
(1978) argues that. ‘The sign acts as an instrument of psychological activity in a manner analogous 
to the role of a tool in labor’ (Vygotsky 1978, 82). Tools as means of work and signs as means of 
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communication have for Vygotsky in common that they are both forms of mediated activity. The 
difference is for him that the tool is externally oriented on changing nature and the sign is internally 
oriented: The sign is a means of internal activity aimed at mastering oneself.  

Again close to our approach which insists on semiotic aspects, Fuchs also points out a much less 
well-known Italian author, Rossi-Landi, who favours the semiotic approach as a support for this 
dialectic between work and communication and introduces semiotic production processes: 

Rossi-Landi’s semiotic theory (…) helps to clarify the dialectic of work and communication: 
language-use and communication are work that produce words, sentences, interconnected 
sentences, arguments, speeches, essays, lectures, books, codes, artworks, literature, science, 
groups, civilisation and the linguistic world as totality (Fuchs, p. 191).  

Thus, this reflection on the dialectics of work and communication is in line with our way of 
considering mathematical work as the result of different processes: a semiotic process that relates to 
the treatment of signs; an instrumental process that promotes the link with material or digital tools; 
finally, a discursive process that relates to rational proof. The singular importance we attach to the 
discourses of proof reveals more particularly the very nature of the work associated with 
mathematics where proof, particularly in its demonstration form, is crucial in the realization and 
coherence of mathematical work. 

Conclusion 
The Theory of Mathematical Working Spaces aims to describe the forms of mathematical work 
carried out by students in the school environment. As its name suggests, it places mathematical 
work at the centre of reflection on teaching and learning. In this context, the primary purpose of 
educational institutions and teachers is to develop an environment that enables students to solve 
mathematical problems in an appropriate way. The organization of MWSs into two levels, 
epistemological and cognitive, allows the description of the work of students confronted with a set 
of tasks with a mathematical purpose.  

In our framework, mathematical work results from the interactions between signs, tools and 
properties through the interweaving of the three semiotic, instrumental and discursive geneses. We 
were also able to verify that that our vision of mathematical work based on circulation in the MWS 
diagram (Figures 1 and 2) has many justifications in the field of didactics of mathematics. The 
reflexive detour that we have made by relying on contemporary epistemological and philosophical 
approaches, has also shown us that our issue has encountered some strong questions in these fields 
such as the relationship between forms of work and communication. Our way of seeing resonates 
with certain current problems of critical philosophy confronted with the evolution of the world of 
work in an increasingly technological environment and subject to new rules of production and 
alienation.  

Even if the confrontation of our theory with this political and social approach does not radically 
transform our way of thinking, it does contribute to better positioning our research in a broader 
current of thought and above all it helps to reveal the ideology that often underlies some work 
carried out in our research field in an unconscious or implicit way. In particular, it can explain some 
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misunderstandings or difficulties in receiving our research: one of the most visible being the 
understanding and use of the term “mathematical work” which seems doubly provocative in today's 
world of mathematics education. The use of this term implies for the subject acting to go beyond the 
only laborious and technical part of work and thus that work focused on mathematics contributes to 
the intellectual emancipation of students and professors that is still in the making-phase. 
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The paper introduces a phenomenological methodology based on Husserl’s work and on Merleau-
Ponty’s radical extension of Husserl’s work. The phenomenological reduction and bracketing 
(epochè) are introduced as the critical methodological instruments in exploring the emergence of 
mathematical understanding, by casting phenomenological light on the learner’s intentional 
cognitive constitutions, from the passive to the active stage of her or his lived experience. An 
empirical example is used in order to showcase the impact of the researcher’s methodological 
shifting, from the natural to the phenomenological attitude (the reduction and the epochè), and the 
methods and techniques that are used, in allowing the methodology to produce results. A summarising 
diagram and some notes for the usefulness of the methodology application for mathematics education 
research are included. 

Keywords: Phenomenological methodology, Husserl, intentionality, reduction, bracketing, epochè, 
phenomenological attitude. 

Introduction 
The aim of this paper is to introduce a phenomenological methodology as a valuable frame for 
mathematics education research (MER). Examples of my use of this methodology have been 
published in Educational Studies in Mathematics (2015) and other international journals, as well as 
presented at CERME9, PME (2014, 2015) and BSRLM (2012, 2013) conferences. Critical 
distinctions emerge, between my use of phenomenology and that of other phenomenological or 
phenomenologically informed researchers in MER (e.g., Radford, Roth, Nemirovsky). The 
distinctions are concerned with the principal use of Husserl’s work in my research—which is either 
taken for granted, critically disputed or scarce in the influential work of these scholars. Most 
importantly, the central difference in my work is the thematisation and application of Husserlian 
methodological concepts, such as the phenomenological reduction and the epochè. These concepts 
are used precisely for the purpose introduced by Husserl (i.e., phenomenology as methodology), and 
they are missing in the aforementioned researchers’ phenomenological contributions. In my work, 
these concepts have been used in order to put in motion Husserl’s mature work on the life-world 
(Lebenswelt) and the living present of learners. My conviction is that the same methodology could 
be applied to research with teachers, mathematical classrooms, curricula etc., each time providing 
critical distinctions. In this sense, the application of the phenomenological methodology presented 
here and as applied to learners suggests the viability of its application to other phenomena in 
mathematics education research. 

The key concept of intentionality as a starting point for the application of the methodology 

This paper follows Husserl’s (1970, p. 168) conceptualisation of the central role of intentionality for 
the study of mathematical cognitive situations. The intentional aspect of conscious acts is concerned 
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with the fact that every conscious act is about something; I fear something, I hope something, I judge 
something (as true or false), I love someone, I hate something, and so on. Also, everything perceived 
is always perceived in a certain manner, with fear, hope, in shaping a judgement, with love, hate, etc. 
In the same respect the key feature of conscious acts, and in particular the cognitively motivated acts, 
are about something, present or absent, real or supposed as real, valid or not, but in any case, present 
for these acts. Husserl (1983) adopted Brentano’s conception of intentionality as being the main 
feature of conscious acts and extended it critically. Mature Husserl (e.g. 1970, p. 168) thematised 
further the “uncover[ing] and the “clarification of what is accomplished” in the “intentional origins” 
region of lived experience. What does this mean in terms of the mathematics education research 
perspective? It means that by focusing on the region of intentional origins we could uncover and 
clarify what is accomplished in them, since, as he explains “every sort of intentional unity becomes 
a ‘transcendental clue’ to guide constitutional ‘analyses’…[which are] uncoverings of intentional 
implications” (Husserl, 1969, p. 245, italics in the original), particularly related to an operative, 
embodied sense on which abstract knowledge is grounded. 

In order to explore the intentional aspect of the mathematical cognitive experience, the 
phenomenological reduction and the epochè (see the following sections) must be applied, as the two 
basic methodological instruments. The aim of the methodology is to open up the “currently 
constituted intentional unity” (1969, p. 245) of the learners’ understandings, and thus to understand 
better how they arrive at their understandings, in their engagement with mathematical tasks and 
questions.  

Epochè (bracketing) and phenomenological reduction—A first introduction 

The methodology is supported by a phenomenological perspective that presents an intentional view 
of the cognitive life-world. This perspective approaches the mathematical lived experience as being 
intentionally supported; the researcher tries to study it without pre-conceptions on what it ought to 
be, but merely focuses on the intentionally emerging appearances, as they appear for the learner. The 
suspension of preconceptions is one of two basic methodological instruments. This suspension 
amounts to a two-fold task:  

· To spot and put aside actions that are not relevant to the student’s experience;
· To suspend the researcher’s own intentions, and prevent him or her from interfering with the

intentions running through the phenomenon of cognition under study.

In this sense all objectivity is suspended, as was introduced by Husserl (1983, p. 60), who used the 
term epochè for this process. Husserl employed epochè in order to combine it methodologically with 
his phenomenological reduction. This is the second basic methodological instrument. It is tantamount 
to the “leading back” from the natural targets of our concern, to “what seems to be a more restricted 
viewpoint, one that simply targets the intentionalities themselves” (ibid.). 

So a combination of epochè (suspension or bracketing), and phenomenological reduction, shapes the 
core of the methodology. What are revealed through this combination are not the objects as such, but 
as they are intended (imaginatively, through remembering, judging, etc.), focusing on the manners 
or modalities in which such objects are ‘given’. In other words, we look at what people normally look 
through (ibid.).  
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The application of the phenomenological methodological lens in a designed experiment 

Here I present an experiment that is phenomenologically analysed, and organised in accordance with 
phenomenological investigations. It was an experiment in which the teacher allowed all possible 
interactions between the students, usually working in groups, but he did not provide any guidance to 
his students, concerning the open tasks that he introduced. I present the case of Mary (pseudonym), 
one of 13 students, i.e. prospective teachers of mathematics for secondary education, in a course 
entitled The nature of mathematics (NoM). As the teacher’s part in the collective or individual thought 
processes of the students’ treatments of the tasks was bracketed (epochè, in Husserl’s terms) the 
thinking strategies themselves came to the fore; the research field was enriched by the various 
approaches to the tasks, by different or by the same students. Reflective and pre-reflective intentional 
layers were thus traced as such (see the following section), as they were grounding the students’ 
constitution of the mathematical objects.  

As soon as the intentional layers1 of the students’ engagement in the task are exclusively targeted the 
researcher enters the phenomenological attitude, which guides her or him to further analytical 
reflections, followed by new findings (cf. the unit of phenomenological knowledge production 
component of the diagram in Figure1). With the use of the phenomenological reduction and the 
bracketing—considered as a single methodological instrument by the mature Husserl—we are 
entering the study of the natural attitude, which is “our straightforward involvement with things and 
the world” (Audi, 1999, p. 405), by describing it with the phenomenological attitude. The 
phenomenological attitude is “the reflective point of view from which we carry out philosophical 
analysis of the intentions exercised in the natural attitude and the objective correlates of these 
intentions”. Further, “the process by which we move to the phenomenological attitude is called the 
phenomenological reduction, a ‘leading back’ from natural beliefs to the reflective consideration of 
intentions and their objects” (ibid.).  

The application of the phenomenological methodology in this case had the effect that, what were 
before brilliant ideas that suddenly possessed the students, or desperate efforts to ‘survive’ by 
acquiring some sense of the task, now became telling appearances of the operative affordances that 
each student brought and was able to release actively, either in the team in which the student was 
working, or individually, during and/or after the sessions.  

The transformation of the working field of research was the result of (a) the focusing on the intentional 
acts that brought the learners’ objects to the surface, in a regressive analysis that starts from the ‘final’ 
objects and goes back to their genetic appearances, and (b) the neutralising/bracketing (epochè) of 
factors that played no part in the perception of the objects that were chosen to be activated by the 
students. From this analysis it occurred that it is the double application of the phenomenological 
reduction (a) and the epochè (b) that allows the transformation of the cognitive event into a 
phenomenon—in the Husserlian sense that this methodology suggests.  

                                                 
1 The intentional layers are the layers of intentions of the learner, as he or she is devising an object for a mathematical 
enquiry. 
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Methodological affordances and results 

The transformation of the data sources’ natural appearances into a phenomenon affords us, as 
researchers, with the following: (a) the ability to discern structures that the students’ strategies follow, 
which could be helpful in teaching design (Zagorianakos, 2016; Zagorianakos & Shvarts, 2015); (b) 
better understanding of the students’ learning horizons, which may also entail further 
phenomenological analysis, e.g., of a student’s change of attitude (Zagorianakos, in press). 

Description of the illustrative example—The use of the methodology 
The bird’s-eye view empirical intuition, as triggering a series of abstract intuitions. 

Mary (pseudonym) was a prospective teacher of mathematics in English secondary education. During 
the NoM course (see previous section) a task was introduced that was required to be solved in teams 
of three or four students by involving bodily experience. One of each team actualised a fixed point, 
10 meters or steps away from a wall, while the rest of her or his team were trying to embody the track 
of the sought line, in which each point was supposed to have the same distance from the fixed point 
and from the wall. The room where the task took place had very wide walls, enough for the four teams 
of three or four students to explore the task. What will be sampled here from that study is how the 
methodology allowed the phenomenological detection of the crucial influence of the embodied 
intuitive stock of Mary. The embodied grounding of Mary’s mathematical achievements was revealed 
methodologically by the reduction to (focusing on) her intentional cognitive treatment of the 
mathematical task, and by bracketing (neutralising) what did not affect Mary’s experience.  

Figure 1: Methodology diagram 
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By tracking how Mary intentionally handled her drawing of the wall and the Cartesian plane, I noticed 
how she transformed her drawing into a different view of the classroom, where she was confusedly 
trying to embody the solution of the task. Mary’s view was an intuition,2 drawing back to the 
Scholastics’ perception of a ‘new vision’, which allowed her a breakthrough that followed her up to 
the end of her treatment of the task. It was in an actively embodied rather than in a metaphorical 
sense that Mary used her perception of a “bird’s-eye view”. It was this initial embodied intuition that 
was operating, as a sensory-motor environment to all her understandings, up to the end (see following 
paragraphs). This phenomenon was lit by full bracketing of non-significant issues to her constitutive 
moments, of the objects that helped her unlock the task. By mentioning non-significant components, 
I mean all the actions that did not interfere with the student’s (constitutive) building process, such as 
the teacher’s non-guidance protocol. Therefore, bracketing is not arbitrary, and it could be responsible 
for further analyses, as soon as the reduction’s furthest application is done (Zagorianakos, in press). 
Mary’s example is not fully analysed here: it has been drawn to showcase the applicability of the 
methodology, realised by the methods and the techniques, which are introduced in the following 
section. 

Methods and Techniques of the methodology—The student’s progress with the task 

The methods included participant observation, gathering of documents that included the learners’ 
reflections on their learning processes, and interviews (email or in person). The methods concerned 
semi-structured live interviews, where the technique was to trigger the flowing of the students’ 
reflections on the actions that brought objects to the surface. Another interview technique was to drive 
the discussion without force towards the intentional acts that led the learners to their constitutive 
moments of objects. How did they feel about them? What was special, for them, about these objects? 
The methods were used so that the intentions that led to the mathematical objects would be revealed; 
and the techniques were aiming at keeping the researcher in low profile, while bringing the student’s 
narrative vividly to the foreground. Due to such methods and techniques I took advantage of the 
teacher’s self-bracketing in order to study how the students’ mathematical experiences were 
structured.  

Let’s see how the student’s development with the task happened: 

After the investigation in the classroom, when the student was in utter confusion about what the 
sought line was supposed to look like, Mary went home. There she drew on grid paper the wall as a 
straight line, and a Cartesian plane with the y-axis perpendicular to the ‘wall’, and the two axes 
intersecting ten grids away from the line (wall). The student’s first intuition appeared, as she grasped 
her drawing on the grid paper as a bird’s-eye-view over her very recent, embodied but unsuccessful 
classroom activity. 

Not metaphorically, but in a very actual sense the student realised due to her bird’s-eye-view 
perception of her diagram how wrong her perception of the task had been in the classroom: she 

                                                 
2 From late Latin intuitio(n-), from Latin intuit-, intueri ‘contemplate’, from in- ‘upon’ + tueri ‘to look’. [Concise Oxford 
English Dictionary (Eleventh Edition)]. Intuitive in the sense of a special, immediate regard on what is given, as intended. 
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actually observed that the sought line could not be a straight line parallel to the wall (as she had 
initially supposed), at half way distance from the fixed point and the wall, while being constantly 
equidistant from the wall and the fixed point. It is evident that her bird’s-eye-view perception had 
equipped her with a movable vision over the classroom, through the diagram, and a trace of this was 
that her perceptions were time-related: the straight line was equidistant from the wall and the fixed 
point at some point, but not in the following of the process of a “movable point”, in which the student 
started perceiving the curve. So then she started with three points and she started looking for more 
points belonging to the sought line, by using a ruler parallel to the line (wall) and between that line 
and the x-axis, thinking of the sought line as being continuous and therefore aiming at finding the 
points where her ruler intersected with the sought curve. While being in this operational mode Mary 
employed the Pythagorean Theorem (PT) as an objectification instrument, to track points belonging 
to the sought curve and thus unlock its shape. The student’s intentional roots were traced; they 
revealed that the student’s recollection of the Pythagorean theorem was in the service of her intention 
to find more points belonging to the curve, while operatively using her bird’s-eye-view perception of 
her diagram. This insight adds an operatively intentional layer, a clearly embodied layer right at the 
appearance of the PT as a points’ determining instrument.  

After finding five points symmetrically located around the y-axis (two of them by using the PT) she 
had the intuition that the line must have a “bell-shape”, from where she thought of the x-square 
functions. The student’s idea of x-square functions was the second intuitive step, described by Husserl 
as an abstract intuitive step, based on the empirical (“bell-shape”) intuition. 

Her exploration culminated in a critical abstract intuition which, through the “synthesis of 
coincidence” (Husserl, 1973, p. 74) brought to the surface the general rule, the general formula for 
all curves, with any given distance from a ‘wall’. And even then, the embodied sense of her 
understanding of the algebraic solution remained vivid in her recollection: She perceived the curve 
as an empirically driven “moveable point”, since “you could stand on anywhere on he line 
𝑦𝑦 = 𝑎𝑎

2
− 𝑥𝑥2

2𝑎𝑎
 and you would be equidistant from the wall and a fixed point” (interview extract). 

The view that the phenomenological methodological components offered to the study  

So, the phenomenological reduction and bracketing (epochè), as distinguished from methodic doubt, 
and being a suspension compatible with certainty, led me to the phenomenological attitude. This 
attitude is equivalent to focusing exclusively on the intentions and their correlated objects in the 
natural attitude, without “excluding of a living conviction, which remains alive” (Husserl, 1983, p. 
60). Bracketing enhances focusing and focusing is indicating what needs to be bracketed or seriously 
studied, phenomenologically or otherwise. 

The study of the student’s intentional apparatus became my Ariadne’s thread in unlocking Mary’s 
lived experience. I finally managed to understand how she imaginatively (with imaginative intention) 
flew on the wings of her bird’s-eye view intuition, over the diagram that she drew at home, on grid 
paper—i.e., using the mathematical diagram as a re-presentation of the classroom where the 
embodied treatment of the task took place—and finally, how she developed her bird’s-eye view 
intuition in order to accomplish all her subsequent intuitions. 
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The cultural artefacts (grid paper, Cartesian plane etc.) were imperative for Mary’s accomplishments, 
but it was through (and due to) the researcher’s phenomenological reduction and bracketing that the 
focusing on the intentional apparatus of the learner’s lived experience finally disclosed the following 
aspects: (a) how the first, empirical bird’s-eye view intuition (not ‘just’ as a metaphor but as an actual, 
embodied perception) was essential in unlocking the task (Zagorianakos & Shvarts, 2015, pp. 152–
154); and (b) how her embodied and mental intentionalities were intertwining as she moved further, 
in activating a general formula for all parabolas (ibid.). The shifting from the natural to the 
phenomenological attitude (the reduction and the epochè) is a critically innovative methodological 
move, which can unlock the lived experience of the learner by transforming it into a phenomenon, in 
its original (Husserlian) sense, for the researcher. So the methodology is concerned with the study of 
focusing on the learner’s object constitution—objects that become mathematical objects as they fulfill 
the demands of a mathematical task or a question brought in a mathematical context. The focusing is 
on the objects as they appear for the learner and therefore, as they are intended by the learner. This 
focusing allows for the tracing of the intentional paths that bring the learner into contact with a 
particular object, due to the learner’s pairing of the object with a certain strategy, while solving a 
problem:  

Through ‘something reminds me of something’ a pairing of two given things in consciousness 
first arises. Through reflection we see that association is not a blind mechanism, because I can 
recreate and understand through which connecting point(s) a pairing originally arose in 
consciousness. (Held, 2003, p. 43) 

As an example of the analytical potential that the methodology has made accessible, Mary’s intuition 
on the shape of the curve—as being an x-squared curve, after her empirical intuition of the shape of 
the 5 points as a bell shape—is phenomenologically perceived as an association generated by a 
pairing. The empirical image of the bell was paired with the x-squared curves’ graph, due to the 
student’s intention to explore a possibility for embodying mathematically the empirical image. This 
intentional trail from operative (embodied) to active mathematical knowledge production 
(culminating in Mary’s formulas) is a viewpoint on Mary’s mathematical lived experience that was 
developed due to the methodology of intentional focusing (reduction), and teacher bracketing 
(epochè), in this phenomenological experiment. Practicing this methodology may make the 
researcher realise the radical view the methodology may offer in the study of cognitive events, 
particularly when enriched by a phenomenological theoretical viewpoint.  

The methods encompass regressive and repetitive reflections on the data, without taking anything for 
granted, as far as the appearances of the objects for the learners are concerned. The key is to focus 
exclusively on the acts, and on the intentions that are expressed through them, as they are directed 
towards objects, as they surface and as they are intended by the learners. Then the focus moves on to 
objects that triggered the acts and on the acts that brought the latter objects to conscious exploration, 
within the learner’s lived experience. In this sense, this methodology, by using the phenomenological 
attitude has the effect of a phenomenological mill unit. This is what the unit of phenomenological 
knowledge production element of the methodology diagram (Figure 1) depicts, as the vertical arrow 
is moving: The vertical arrow in the diagram is making one full route from the top to the bottom of 
the rectangle, synchronously to the inner round circle arrow completing one round. Then the whole 
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process is repeated in a more informed manner, phenomenologically, thus producing sounder and 
more evident ‘images’ (adumbrations), and according findings of the phenomenon under 
examination. A top-bottom vertical arrow on the left side of the methodology diagram (Figure 1), 
which is moving through the unit of phenomenological knowledge production rectangle, is concerned 
with the researcher’s own shifting of attitude, from the natural to the phenomenological one. The 
cognitive phenomenon, as it is unfolding for the researcher, is an orchestration of expressions in the 
conscious reflective and in the subconscious pre-reflective areas of knowledge production. The 
methodology shows the switching from a natural attitude to the phenomenological attitude. This is 
done by specifically thematising the intentional layers that are concealed (taken for granted) in the 
‘natural’ reading of the phenomenon (which is the study field), and can take place by applying the 
epochè, the neutralising of natural intentions that must occur when we contemplate the intentions that 
we are studying. The researcher’s own change of attitude and the transformative effects on her/his 
previous (‘natural’) viewpoint are thus enabled to be at the centre of analytical attention. 
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This Poster reports on an empirical study that aimed to legitimize the visuality´s perspective for 
mathematical visualization (Flores, 2012), as a frame for research on visualization in mathematics 
education. The study was initially presented at ICME 12, 2012. As I have argued, discourse 
analyses and social practices of learning should be first linked in order to establish such perspective. 
Then, by means of a historical-critical attitude in the work of philosophy and critical educational 
research, art laboratory settings have been created and developed with elementary school children, 
in order to critically analyze both mathematical visuality practices and also mathematics research 
under a philosophical perspective. For the former, I have been investigating how arts have regulated 
ways of looking and thinking within a regime of mathematical thinking. From this, I found ways to 
carry out abstraction, special distribution, among others, as an exercise of thought. My works 
invites mathematics education researchers to open spaces of reflection on research of visualization 
in mathematics education, particularly in relation to the mathematical thinking, but also suggests 
that bodily experience of mathematics may be fundamental for learning 

A laboratory can be conceptualized: “as an experimental system that should allow for (new) things 
to happen, to appear as such, […], emphasizing the practice of making as trying to call into 
presence” (Masschelein, 2012, p. 367). “It is about registering, seeing, illuminating, bringing into 
play, penetrating, inviting, inspiring, experimenting; it is about exposing oneself and trying the 
words and verbs again.” (Masschelein, 2012, p. 368). This means that educational research is not 
necessarily about revealing something or offering knowledge, but foremost “an exercise of 
thought.”  

In addition, the basis of this theoretical perspective is aligned with Foucault’s idea that “we must try 
to proceed with the analysis of ourselves as beings who are historically determined”, opening up a 
realm of historical inquiry and putting itself to the test of reality.  

The critical ontology of ourselves […] has to be conceived as an attitude, an ethos, a 
philosophical life in which the critique of what we are is at one and the same time the historical 
analysis of the limits that are imposed on us and an experiment with the possibility of going 
beyond them. (Foucault, 1984, p. 47). 

Experiencing mathematics with Cubist art 
In the case of organizing, developing and analyzing workshops, laboratory means being involved in 
a protocol that offers a certain chance for something to appear and communicate. This can force 
researchers to think not only about the practice of producing and analyzing data, but also about 
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practices of receiving (of looking/listening), which means being attentive and allowing us to re-
invent practices of doing research. As an example, let me consider one work carried out by our 
Research Group in Contemporary Studies and Mathematics Education - GECEM, Federal 
University of Santa Catarina.  

Francisco (2017), inspired by Cubist art, has carried out a workshop with children of the fifth year 
of Elementary School, at Colégio de Aplicação, at the Federal University of Santa Catarina, Brazil. 
The workshop was formed by both the photographs of the children and the cubist painting of 
portraits. The experience itself was constituted by putting clippings of photographs that were taken 
from each of the children inside yellow and blue boxes. Each one received their own little box 
containing pieces of their photos. The pieces were cut by the researchers in various shapes, which 
could be regular but also irregular. The children were challenged: How might the children 
reconstruct their self-portraits when the images were not complete images of themselves nor plain 
geometric figures? Their solution was to make a portrait similar to cubist portraits. By doing that, 
children experienced an inventive process of assembling, disassembling and reconstructing their 
own image. Thus, such performances, which expand mathematics education's habitual use of doing 
research, contribute not only for a contingency of knowledge, but also for an exercise of thought, 
which means an exercise of transformation.  

Final words 
Art laboratories are a place for exposing and registering, while gathering students, teachers and 
researchers around the questions of our present time (how mathematical thinking organizes the way 
we represent and look at the world). The role of philosophy, then, is to make us think about what we 
see, to expose our thinking to what is happening, i.e. what mathematics is, what mathematics 
education is. The contribution of this research is to rethink the role of mathematical thinking not 
only in the creation of arts but also in our relationship with them, and consequently, to transform it. 
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There is increasing attention for the embodied and extended nature of mathematical cognition but 
the bodies of literature on embodied and on extended cognition have developed mostly separately. 
We propose a new step in the tradition of networking theories: design research from two theoretical 
perspectives to promote integration. Embodied design and instrumental genesis inspired us to elicit 
embodied instrumentation: learning via techno-physical interaction with digital artifacts. A case 
study illustrates a design and subsequent problem solving by a student (aged 16), who uses her 
body and the designed artifact to solve trigonometric equations. We reflect on the benefits of not 
only analyzing but also designing from different theories to network these theories.  

Keywords Mathematics curriculum, schemata (cognition), sensory experience, learning theory, 
networking theories 

Introduction 
With the recently foregrounded E-perspectives (embodied, extended, embedded, enactive, 
enculturated, etc.) on cognition, there is increasing attention for the embodied and extended nature 
of mathematical learning. So far, however, embodied and extended cognition have their own bodies 
of literature in mathematics education, for example embodied design (Abrahamson, 2014) and the 
instrumentation approach to tool use (Artigue, 2002). Both theoretical frameworks shift from a 
traditional view on cognition to allowing other players, such as tools and physical interaction to be 
part of, or at least heavily shape, emerging mathematical cognition. Consequently, educational 
designers carefully design learning experiences with (digital) materials to stimulate schemes that are 
relevant for the targeted mathematical knowledge: being either sensorimotor dynamics or 
instrumented techniques (Drijvers, 2019). 

In this paper, we propose that using both theoretical lenses can enhance mathematical learning and 
its study. However, as observed by Bikner-Ahsbahs and Prediger (2014), the synthesis and 
integration of theories is rare and challenging. Until now the networking of theories in mathematics 
education has primarily involved two groups analyzing the same dataset collected by one of the 
research groups using their “home” theory. To promote integration, which we consider fruitful in 
the case of embodied and extended cognition, we take a possible new step in the tradition of 
networking theories: conducting design research in which the design is informed by two different 
theories. To explore the value of integrative design research, we elicited, by means of a newly 
designed digital tool, a phenomenon for which it made sense to analyze it by the integration of 
embodied design and the instrumentation approach to tool use: embodied instrumentation as 
learning via techno-physical interaction with digital tools (cf. Drijvers, 2019). Joining forces within 
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design research seems promising, because it requires cycles of joint theorization, designing, 
implementation, and analysis (Bakker, 2018).  

We aim here to explore how design research can facilitate integration of theoretical views that hold 
promise to be combined, in our case embodied and extended cognition. To guide this exploration, 
we circle around the question, What could embodied instrumentation look like? We applied this 
question to the domain of trigonometry. A major Achilles heel for students seen throughout 
mathematics education is that graphic, algebraic, or numerical representations are treated as isolated 
conceptions instead of as different symbol systems that jointly make up the conception of functions 
(Drijvers & Gravemeijer, 2005).  

In this paper we elaborate the idea of embodied instrumentation, then describe a digital tool based 
on embodied instrumentation for trigonometry, and provide an empirical illustration of how a case-
study student was using her body (sensorimotor) and the tool’s elements (techniques) to solve 
trigonometric equations in the form of sin(𝜃𝜃) = 𝑐𝑐. Through this, we hope to shed light on the added 
value of integrating embodied and extended views for mathematical learning and integrative design 
research in general. 

Embodied instrumentation: techno-physical mathematical learning 
Under the foregrounded E-perspectives, cognition does not just reside inside the learner, but 
distributes across their interactions in the physical and social (cultural and linguistic) world (Smith 
& Gasser, 2005). These embodied and extended views on cognition shift away from the traditional 
idea of internal representation and computation that is fed by external environmental sense-
information, though the latter is not seen as part of cognition (Wilson & Golonka, 2013). Cognition 
emerges from embodied multimodal experiences; when people act and perceive in the world, their 
sensorimotor schemas self-organize, which leads to increased functional acting in and 
understanding of their environment (Smith & Gasser, 2005). Put more radically, the range and kind 
of embodied experiences determine the emerging cognition.  

Much of multimodal interaction is mediated through tools, extending the scope and kind of actions 
people can carry out. A useful lens on the interaction of user and digital tools is the instrumentation 
approach (e.g., Artigue, 2002). The instrumentation approach considers the careful designing of 
educational tools to enhance mathematical learning. Under this flag, the bare tool is considered an 
artifact. Central in learning is the process of instrumental genesis: The user applies and thereby 
develops instrumentation schemes appropriating the use of the artifact to solve a specific class of 
tasks (Artigue, 2002; Drijvers & Gravemeijer, 2005; Vérillon & Rabardel, 1995). What students 
actually do (using instrumented techniques) depends on the opportunities and constraints of the 
artifact and their knowledge. At the same time, the doing itself contributes to their understanding. 
Artigue (2002) highlights this pragmatic and epistemic value of instrumentation schemes which co-
emerge dependently. However, in most applications of instrumentation approach in mathematics 
education the embodied nature of these instrumentation schemes is rarely studied. The body seemed 
to have disappeared from sight when the tools became more complex and calculations more hidden 
from the user. Yet going back to original sources of the ideas (Vérillon & Rabardel, 1995), there is 
ample potential to revive the attention for the embodied origin of instrumental genesis.  
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A neighboring framework to fill this gap is embodied design for mathematics. With the increased 
availability of technologies, embodied learning for mathematics now includes multimodal learning 
experiences with various sensors and motion trackers. An emerging embodied design genre in 
mathematics education is the Mathematics Imagery Trainer (MIT) (Abrahamson, 2014). Within this 
pedagogical framework, mathematical cognition is promoted through relevant embodied 
experiences. As such, mathematical cognition is re-defined as grounded in sensorimotor schemes 
for material interaction. In the activities students learn about co-variation (proportions, functions) 
by discovering their own bimanual motion patterns (Abrahamson & Bakker, 2016). For example, in 
the original task, designed to foster reasoning about proportional equivalence such as 1:2 = 2:4 (the 
MIT-P for proportion), students project two cursors on a screen by manipulating two Wii remotes. 
When the ratio is set to say 1:2, the screen turns green only when the right hand remote is twice as 
high as the left hand remote; otherwise it is red. Multimodal learning analytics, including hand- and 
eye-tracking methods, revealed that while students develop effective ways of moving in or enacting 
proportional equivalence, their gaze converged to specific locations (where no object is visually 
present per se). These are shown to have value both pragmatically (improved coordination) and 
epistemologically (understanding). These gaze points are attentional anchors (AAs), a phenomenon 
known to occur in a variety of physical activities (juggling, swimming), and other MIT versions 
designed to promote the learning of multiplicative reasoning (Duijzer, Shayan, Bakker, Van der 
Schaaf, & Abrahamson, 2017) and parabola functions (Shvarts & Abrahamson, 2019).  

Designing an embodied instrumentation tool for trigonometry 
We set ourselves the goal to design activities based on embodied instrumentation via techno-
physical interaction, which promote learning, understanding and solving of trigonometric equations 
in the form of sin(𝜃𝜃) = 𝑐𝑐. The first and second authors have a background in embodiment theory 
and the last author in instrumentation approach. Each initially designed a task to meet the learning 
goal from their theoretical perspectives, which were then discussed. The differences between the 
two initial artifacts were mainly on a practical level: the embodied design perspective being more 
informal in the domain of geometry and the instrumentation approach being more algebraic and 
formal, including a constant and symbolic language. A key realization was that this could be used to 
integrate the artifacts in a progressively formalizing sequence. These activities were developed in 
the Digital Mathematics Environment, piloted with four students, and adjusted where needed. We 
report here on the designs of the second design cycle.  

Figures 1 and 2 show elaborations on the tasks, the digital tools and the intended learning schemes. 
In the initial tool, users drag two points; their left hand moves along a unit circle and their right 
along a sine graph as illustrated in Figure 1a. The rotation (angles in radians) along the arc of the 
unit circle and the x-axis of the sine graph were both marked in blue to make salient the equivalence 
of the angle in both representations. Users are instructed to move two points so that a frame turns 
green. Consistent green is only achieved when the angles (or the length of the blue marking) are 
equivalent in the unit circle and the sine graph (as in Figure 1a), otherwise the frame is red (as 
shown in Figure 1b). The intended relevant sensorimotor solution to this problem was to keep the 
hands at the same height, representing a grounded scheme of the sine of an angle, and equivalence 
across the unit circle and the sine graph. 
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Solving the task is done first without, and then with, a segment connecting the points on the unit 
circle and sine graph (two examples shown in Figures 1b and c). The idea is that the segment would 
work as a shortcut for action and perception coordination, as a conspicuous measure of 
horizontality. This highlights the height of both points, enabling more successful and continuous 
interaction. Visually, the segment intersects both graphs when orange is achieved, and as such it 
might prime the relevance of intersections in equation solving (Figure 1c). 

The second task involves solving trigonometric equations of the form sin(𝜃𝜃) = 𝑐𝑐, solving for both 
the angle (in radians) and the sine value. Values of the angle θ are shown in both the unit circle and 
the sine graph. An additional element has been added, a constant that users can move up and down 
with a touchpoint (Figure 2a). The idea is that the values and constant would invoke a quantification 
process, and would link the positions of the points to elements and values in the equation. Solving 
the equation of sin(𝜃𝜃) = 0.86 would involve moving the constant up to the y-value of 0.86 (the 
vertical distance), and then moving the point on either the unit circle or sine graph to intersect this 
and read the value of the angle rotation (solution is shown in Figure 2b). The constant-line would 
further make salient that there are multiple solutions for the same sine value. 

(a) 

 

(b) 

Figure 2: Example of the artifact with constant and values with (a) moving the constant up and down 
to manipulate the sine value (emphasis added) and (b) the solution to 𝐬𝐬𝐬𝐬𝐬𝐬(𝜽𝜽) = -0.48 

A case study 
As part of the design research cycle, we asked a case-study student, Spring (pseudonym), to interact 
with the artifact and solve the two tasks in a clinical interview. Spring (aged 16 years and left 

 (a) 

(b) 

(c) 

Figure 1: Example of the artifact when (a) enacting equivalence of angle and sine (green color 
feedback), (b) incorrectly enacting equivalence (red color feedback) with a (slanted) segment, and (c) 

enacting equivalence of sine for complementary angles (orange color feedback) with the segment 
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handed) had just completed grade 11 at a US high school. She encountered trigonometry in a Pre-
Calculus course (Grade 11) and prior to that in an Algebra 2 with Trigonometry course (Grade 10). 
Spring is a top student with a grade point average of 4.2 (US system). We conducted a short pre-
interview to assess her prior knowledge. In some instances the option of sketching and 
(unrecognized) writing was made available. Spring remembered the main terms from trigonometry 
(arc length, sine, cosine, radian) fairly well, and remembered several formulas. She was able to 
identify the sine of an angle in a triangle, and relate certain angles in degrees to radians. We 
repeated the four pre-interview questions after the session and recorded a debrief session with the 
student and researchers. During the entire clinical interview we used audio, video and eye-tracking 
(Tobii X2-60) to monitor closely how Spring was using her body (actions, perceptions, and 
verbalizations). We present here the findings on how she came to use the newly developed tool in 
the context of new discoveries and relationships in a clinical interview with two interviewers 
(second and third author).  

Finding and keeping green 

Spring easily found places that were green. However, maintaining the green while moving was a 
more difficult task, and Spring looked back and forth between her two fingers (horizontal gaze 
direction) while trying to achieve this. Her initial description of her strategy was to keep the speed 
of both fingers the same. She explains: 

Spring: If I move my hands at the same speed I will go the same distance, for each … So I 
get the same distance in the same time. So, I get to the same points at the same 
time, with both my hands. 

Interviewer: You mean distance on the graph or the blue line? 

Spring: Distance on the graph. So, I am following the black, and the gray.  

This initial strategy is commonly seen when students begin to interact with MIT artifacts: Keeping 
the hands at the same speed and looking between them (in a horizontal direction) resonates with 
familiar intrinsic dynamical tendencies (Duijzer et al., 2017). In doing so in this trigonometric 
context, the student reasoned that the arc length in the unit circle corresponded with the curve 
length instead of x value (angle in radians) in the sine graph. 

Using the segment 

When the segment (Figures 1b–c) was added (after 22 minutes), Spring almost immediately shifted 
her strategy, and verbalized that she had to keep the segment horizontal. While keeping the segment 
level, she gazed at the middle of the segment, most likely attending to the vertical displacement.  

Spring: When the helper line [segment] is horizontal you know you are at the correct … y 
value. You are at the correct units for both of them...because...it’s the same thing 
graphed over, in different formats. 

Spring: This is definitely easier, its …it feels more like I am using it as a singular thing 
rather than a…you know like…two dots, and trying to keep them alike. […] So, 
like it feels more, like the two graphs feel more connected, so it’s a more 
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obvious… like it’s easier for me to focus on how to keep them green, how to keep 
them both showing the same thing. 

Adding the segment changed the interaction both pragmatically and epistemically. Prime indicators 
of effective scheme development here seemed to be: (1) a convergence of gaze to the middle of the 
segment, (2) more successful enactments, (3) reasoning about the vertical distance (sine) of both 
points, and (4) a sense of coherence between the two representations. These results coincide with 
previous research in which attentional anchors emerge as a means to improve coordination and 
understanding (Abrahamson, 2014; Abrahamson & Bakker, 2016; Duijzer et al., 2017). 

Using the constant and values to solve trigonometric equations  

In the second task, the constant was added with the values for θ and sine (after 30 minutes; Figure 
2). Although we did not anticipate this, the position Spring gazed at in the middle of the segment 
coincided with the positioning of the touchpoint that would move the constant in a vertical 
direction. Spring was quick to use this constant as intended and elaborated on her previous 
explanations: 

Spring: So, it’s, mmm, it’s measuring the same sine value in both the first and second 
quadrant I think. So this keeps it level, so there is, we can’t switch it, it’s always 
going to be attached to the graph. […] So, the yellow is that it’s the same sine 
value, but not the same distance, or radians, or… So, it’s dealing with the different 
quadrants, or something? 

Spring used a well-organized sensorimotor instrumentation scheme to solve each of the equations. 
For example, she solved sin(𝜃𝜃) = 0.86 by moving the constant up 0.86, and then moving the point 
on the unit circle so that it intersects with the constant. She spontaneously showed two solutions, by 
moving the point first to the intersection with the same angle rotation, and then to the 
complementary angle. For the second type of equations, she used a similar scheme, but the action 
sequence was reversed. For example, sin(2) = 𝑎𝑎 was solved by moving the point on the unit circle 
to 2, followed by moving the constant to a height that intersected the point to find its sine value. To 
solve the equation sin(2.5𝜋𝜋) = 𝑎𝑎, students are required to rotate beyond one rotation of 2π. As the 
tool is limited to one rotation, this equation is solved without the tool providing the correct angle 
markings and values. Spring solved this successfully by moving the point on the unit circle over a 
full round, while saying, ½ π, π, 2π and then kept moving to “add another half.” This might show 
how the epistemic value of the instrumented sensorimotor schemes can assist to overcome practical 
constraints of the tool.  

Conclusion and Discussion 
In this paper, we aimed to contribute to the tradition of networking theories by exploring a possible 
new approach: design research from two theoretical perspectives to promote integration between 
these perspectives. Embodied design and instrumentation approach inspired us to elicit embodied 
instrumentation or learning via techno-physical interaction with digital artifacts. This approach 
assumes that bodily and instrumental experiences of mathematics are fundamental for learning. 
Design research requires cycles of joint theorization, designing, implementation, and analysis 
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(Bakker, 2018), and as a methodological approach provided a structured way to integrate embodied 
and extended perspectives on each of these components in the research cycle. As such, the 
frameworks inspired both the design and the analysis.  

Bringing back the embodied nature of instrumentation schemes through embodied instrumentation, 
can, we believe, enhance both students’ mathematical learning and our ability to study it. Insights 
from both embodied design and the instrumentation approach facilitated careful alignment of 
embodied and instrumental experiences to promote trigonometric problem solving. Multimodal 
learning analytics allowed us to assess how a student was using her body and the digital tool to 
solve trigonometric equations, and provided empirical insight into the phenomenon of embodied 
instrumentation in trigonometry. Spring’s repeated and flexible use of a well-organized 
sensorimotor instrumentation scheme might be indicative of embodied instrumental genesis, though 
ideally one would like to study longer-term processes to make such claims.  

The difficulty of linking symbols to previous and current actions and perceptions requires a more 
in-depth analysis of our tasks and digital tool. For some of our previous pilot students the gap 
between enacting and solving trigonometric equations was too large, and they were unable to link 
the symbols of the equation to their sensorimotor experiences. Coinciding with previous research 
we found converging gaze patterns that served as an attentional anchor (Abrahamson, 2014; 
Abrahamson & Bakker, 2016; Duijzer et al., 2017) by improving both coordination and 
understanding in trigonometry as well as creating a sense of coherence between the two 
representations. Adding epistemic value from physical interaction (making movements relevant) 
into current digital tools in mathematics may increase the educational potential of these tools.  

Integration is a step in the networking of theories that is driven by the question of what each 
approach can learn from each other. Theory cultures and their boundaries are dynamically 
(re)produced and developed by their members’ ways of understandings and acting based on a set of 
principles, related methodologies and paradigmatic questions. The activity of networking theories is 
a way of renewing theory cultures, and could be sparked by solving a problem that all members 
share (Bikner-Ahsbahs et al., 2010). Integrative design research can provide a structure to elicit a 
phenomenon that is interesting for different parties to be involved in. Its cycles of joint design, 
implementation, and analysis seem to provide a structure for sensible theoretical integration by 
making explicit the theoretical influence on design choices, measurement tools, and interpretations. 
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Educational research is often of limited use to designers, as it typically offers descriptions of or 
explanations for how education was or currently is. In this paper we argue that generalizability is 
not enough; what deserves more attention is generativity. Designers and educators need actionable 
knowledge on how education could be. To substantiate the criterion of generativity, we here develop 
the construct of a design genre—a theory-driven class of designs targeting a particular form of 
learning. As an example we discuss the evolution of an action-based genre of embodied design 
through iterative theory-design clarifications. Initially instantiated in the form of activities for 
promoting the understanding of proportional reasoning, the genre has been elaborated through the 
process of applying it to additional notions such as parabolas and trigonometry. We argue that this 
genre was generative for design, theory development, and methodological innovation. 

Keywords: Mathematics curriculum, generalization, sensory experience, instructional design, 
learning theory. 

Generativity 
Educational research mostly investigates practice “as it was” or “as it is.” Generating new desirable 
types of education—“as it could be”—has largely been left to practitioners and designers. With its 
focus on generalizability, educational theories typically provide little help to designers or educators 
in making design decisions, for example on how to use new tools, develop a new teaching approach, 
or achieve new learning goals (Klaassen & Kortland, 2013). It has been argued that educational 
research is a linking science (Dewey, 1900) or a design science (Glaser, 1976), more similar to 
engineering, medicine, and management than to physics, biology, or psychology. What linking or 
design sciences are looking for is “actionable knowledge” (Argyris, 1996). Design research originates 
in the wish to produce such actionable, advisory knowledge (Bakker, 2018). 

Discussing the role of theory in design research, diSessa and Cobb (2004) distinguished several kinds 
of theory such as grand theories, orienting frameworks, frameworks for action, and domain-specific 
theories. The authors observe that the more general such theories are, the less informative these 
typically are to the designer or educator. In their view, “theory must do real design work in generating, 
selecting, and validating design alternatives at the level at which they are consequential for learning” 
(p. 77). An example of what they consider good innovation is the general construct of socio 
mathematical norms, yet they admit this notion is not very prescriptive for design. 

In line with the aforementioned need to produce actionable knowledge, we propose that educational 
researchers should not just care about generalizability (deriving general ideas from empirical 
specificities) but also about generativity (deriving ideas for specific design solutions from general 
principles). The aim of this paper is to argue that so-called design genres (Abrahamson, 2014), as 
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theory-driven types of designs targeting a particular form of learning, offer useful knowledge to 
educational researchers, design researchers, and designers alike. We also submit that design genres 
may fulfill the criteria of generalizability and generativity in the sense if they are research-based and 
productive in generating new actionable knowledge, but also provide concrete advice on how to 
design tasks in this particular genre (cf. Watson & Othani, 2015). Thus they would fulfill the role 
theories should play in design research according to diSessa and Cobb (2004).  

To illustrate the notion of generativity, we explore how the formulation of such a genre facilitated the 
process of creating similar designs outside of the source laboratory. We reflect on the evolution of an 
action-based genre of embodied design (see Figures 1 and 2). This design genre originated in 
Abrahamson’s Embodied Design Research Laboratory (Berkeley), and was extended by Shvarts in 
Moscow and Bakker, Alberto, and colleagues in Utrecht to other mathematical domains. In terms of 
design, we reflect on a set of general and generative principles that slowly developed through iterative 
cycles of collaborative design research.  

 

Figure 1: Solving a movement riddle in the Mathematics Imagery Trainer, a child learns to move 
physically in a new way that is then articulated formally as governed by a proportional function 

 
        a.   b.      c.     d.    e. 

Figure 2: Five versions of the MIT-proportion applications: (a) parallel bars; (b) parallel with full 
screen feedback; (c) orthogonal bars; (d) orthogonal with full screen feedback; (e) rectangle feedback 

A prototypical action-based design for proportion 
Our design research is inspired by a range of philosophical positions and cognitive-science research 
arguing for the embodied origin and nature of cognition (Dreyfus & Dreyfus, 1999)—none of which 
yielded specific ideas for design. Accordingly, we sought to develop and evaluate action-based 
learning activities that could potentially support students’ sensorimotor grounding of mathematical 
content. As part of our research program, we deliberately focus on mathematical domains beyond 
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simple arithmetic to explore whether theories of embodiment hold promise for more advanced topics 
too. 

Figure 2 presents a set of schematic screen images featuring computer-based materials we have been 
exploring (there are also versions with lines or grids, and with numbers). These activities build on, 
yet extend, earlier research by Abrahamson and colleagues on the Mathematics Imagery Trainer for 
Proportion (MIT-proportion). Clinical research on the MIT-proportion has demonstrated the 
emergence of students’ sensorimotor schemes, as they attempt to satisfy the task specifications: First, 
manipulate two virtual objects on the screen so that the bars (2a) or entire screen (2b) becomes green; 
and then move both objects simultaneously keeping the green feedback. Unknown to the students, 
the favorable feedback of green appears only if the objects they manipulate make for a particular 
proportion between key magnitudes relative to a spatial frame of reference, for example a 1:2 ratio 
between the heights of the two bars in Figure 2a or between the y- and x-axis, linear extensions in 
Figure 2c.  

We found patterns in students’ solution process on these tasks that could be summarized well in 
Piagetian terms of reflective abstraction (Abrahamson, Shayan, Bakker, & Van der Schaaf, 2016). 
Eye-tracking technology allowed us to study the emergence of sensorimotor action schemes in more 
detail than hitherto possible. For example, the gaze data showed that students focus their attention at 
particular locations on the screen so as to coordinate their bimanual movement. We came to 
understand these sensory behaviors as evidence that students were developing attentional anchors, 
spontaneous perceptual constructions that facilitate the enactment of challenging movements by 
focalizing the coordination of motor actions. That is, we were witnessing the emergence of new goal-
oriented sensorimotor schemes. For example, Figure 3a shows a typical scan path when students keep 
the bars green (see Duijzer, Shayan, Bakker, Van der Schaaf, & Abrahamson, 2017, for an automated 
analysis of patterns in how students looked in particular areas of interest). Students look halfway up 
along the tall bar before they express the insight that it is twice as tall as the shorter bar. Arriving at 
this insight took between 10 seconds and 9 minutes. 

 
Figure 3: (a) typical scan path when trying to keep the bars green while moving them up. (b–e) 
attentional anchors when keeping green in the orthogonal task with full screen color feedback 

Expanding a genre of action-based embodied designs  
Intending to expand this genre of educational designs, we varied on the initial interactive activity 
along several dimensions, such as mathematical domain, the form of interactive feedback, or 
characteristics of input movements (bimanual/unimanual, in the air in front of the screen / on a 
touchscreen or a tablet / via touchpad). These new designs were somewhat intuitive, unstructured, or 
loosely meditated. While we were aiming to keep the core of the design, stating just what that core 
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might be was still work in progress. We found ourselves in a situation not unlike a child participating 
in a cognitive developmental psychology experiment investigating the emergence of categorical 
reasoning (Vygotsky, 1962): Tasked to select from a pool of colored geometrical shapes a set of some 
yet-to-be-defined class, the child groups a red and a yellow triangle, since they both are triangles, but 
then adds a yellow circle, since it too is yellow, and then, perhaps, a trapezoid, since it is similar in 
another way. In this process of iteratively varying on different aspects of the design, we came to 
recognize a need to articulate the limits of variation that would keep intact some constant qualities of 
this genre’s essential features, whatever these would turn out to be. 

Orthogonal design for proportional reasoning 

Urged by a request from a high school mathematics teacher, Lee, Hung, Negrete and Abrahamson 
(2013) envisioned a first variant on the original MIT-proportion activity, in which the hands would 
move not in parallel but orthogonally. This variant, which expands the original activity from 1D to 
2D, was implemented at Utrecht University (Figures 2c–e; 3b). The new task demanded of students 
to solve the challenging movement problem of coordinating simultaneous motor action along 
orthogonal axes. Figures 3b–e include a student’s eye fixations (the orange blobs overlain on 
screenshots from the video-recording). The student told us he is imagining a diagonal line connecting 
his left- and right-hand index fingertips and that he is moving this diagonal line sideways to the right, 
keeping constant the line’s angular orientation to the base line. As such, the diagonal line constituted 
an attentional anchor for this student and others who arrived at similar solutions. We speculate that 
this sensorimotor scheme—a bimanual coordination oriented on a perceptual construction—could 
serve as the foundation for further developing various mathematical concepts, such as function, 
covariation, or slope. This task elicited rich geometrical language as students explained their strategy, 
including reference to angles, lines, rectangles, triangles et cetera. 

Conic sections 

It has been shown that visualization of the parabola as a vase-like curve on a surface may lead to a 
wrong conceptualization (Aspinwall, Shaw, & Presmeg, 1996). As an alternative Shvarts designed 
opportunities for individual students to experience a parabola as a locus of equidistant points (MIT-
parabola, see Figure 4a–b). The solution is to move Vertex C on the screen such that it is equidistant 
from a straight horizontal line (Vertex B directly below Vertex C, running along the parabola’s 
directrix) and a separate point (Vertex A, fixed on the parabola’s focus). Consistent with the 
embodied-design principle that semiotic symbols should be absent in the initial activity (Abrahamson, 
2014), only a triangle is featured on the screen during the first stage of the task (the dashed lines in 
Figure 4 are for illustration only and are never shown to the students). Once students had 
accomplished the embodied task and were ready to mathematize their solution in the form of the 
canonical parabola formula, the axes were introduced. Dual eye-tracking of this activity (i.e., of both 
the tutor and the student) revealed the traces of attentional anchors along the triangle’s median. These 
traces appeared in the eye movements both of the students and the tutors (Shvarts & Abrahamson, 
2018). 
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  a.            b.        c.          d. 

Figure 4: (a, b) MIT-parabola; and (c–d) MIT-area. The dashed lines were not shown to the students  

Yet another task (MIT-area, see Figures 4c–d) implies another conic section, the hyperbole: The top 
left vertex of a rectangle on the screen was fixed, while a participant was moving the opposite vertex 
to change the size and form of the rectangle. The rectangle turned green if it had a particular area. 
The eye-movement data (blue) demonstrate a simple attentional anchor of fixating in the center of 
the rectangle (Figures 4c-d) while grasping the area by extrafoveal vision. 

Trigonometry 

Alberto, Bakker, Van Aalst, Boon and Drijvers (submitted) designed a new task in the same genre, 
now for trigonometry (MIT-trig). The student slides the left-hand fingertip on the perimeter of a unit 
circle and the right-hand fingertip on a sine graph (Figure 5). Whenever the radian value on the circle 
corresponds to the x-value in the sine graph, the frame around these two objects becomes green. The 
student needs to keep the frame green while moving both hands. Analysis of a case-study participant 
indicates that she used an attentional anchor on a segment connecting the two fingers, which seemed 
to help her keep the two fingers at the same height. Mathematized, this came to mean that the left- 
and right- fingertip positions are equally “high” or “low” on the grid, thus sharing the same y-value, 
sin(x). This awareness appeared to support her bimanual coordination process of keeping green while 
moving. 

 

 
Figure 5: The frame is green if the radian (unit circle, left) and x-value (sine graph, right) correspond 

A reflection on theoretically driven and empirically grounded principles 
We have referred to the set of embodied tasks discussed above as exemplars of a design genre, an 
action-based genre of embodied design (Abrahamson, 2014). In so doing, we conceptualize a design 
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genre as capturing both the “why” and “how” of generating learning activities in the form of a set of 
principles that instantiate the theoretical presumptions concerning the process of learning (the “why”) 
and that guide a designer through the design process (the “how”). The embodied design framework 
builds on enactivist and dynamic systems theory to stipulate the creation of a goal-oriented task that 
calls for a sensorimotor investigation of the problem field. The design core objective is that students’ 
new knowledge will emerge in a form of sensorimotor coordination constituted as a solution for a 
motor problem (Bernstein, 1967), when they encounter unexpected constraints in the course of 
attempting to accomplish the activity task. The student’s solution to the enactment problem is a new 
sensorimotor coordination applied to a spontaneous construction of an attentional anchor in the 
perceptual field; this new perceptuomotor scheme constitutes an embodied form of mathematical 
knowledge underlying the task design. The motor coordination undergoes automation that frees space 
for mathematical reflection and cultural referencing.   

As design genres evolve, theoretically driven design objectives settle as definitive and essential 
principles guide the process of designing new activities. At the same time, the introduction of new 
activities as plausible exemplars of the genre may challenge both conscious and unconscious 
assumptions, causing a team to rethink the principles that had been taken as definitive and essential. 
Wherever a resolution cannot be reached, new research questions may emerge. For example, the 
design dimension of feedback, which had not been on the fore of our agenda, drew our interest only 
once we realized the variable effect of feedback on attention: An abrupt change of color or contour 
within the visual field may attract overt attention and thus disrupt the vulnerable construction of new 
eye-movement patterns governing manual control. The solution in MIT-trig was to introduce a 
rectangular frame around the central interactive arena (Figure 5). This rectangle creates a uniform 
stimulus amenable to peripheral vision, thus enabling the student to retain foveal vision on the virtual 
manipulatives. That said, we recognize that there is much more for us and our colleagues to learn and 
experiment so as to optimize for design decisions along the dimension of feedback.  

Another design dimension in need of further research is that of uni- vs. bimanuality. Is bimanuality 
an essential attribute of the genre? Our current designs entail both bi- and unimanual tasks. A 
simplistic assumption would be that two hands are necessary to provoke the need for new 
coordination. Moreover, much of mathematics is relational in nature. However it could be that 
coordinations are formed between manual and visual tracking of object on the screen. We are 
currently devising a study to investigate this problem. Thus the theory–design dialectics determining 
the research team’s iterative efforts contributes to the theoretical rather than empirical generalization 
of the activities into a design genre (Davydov, 1990). 

Conclusions 
In this paper we proposed that design genres do not only allow for generalizability but also 
generativity. We have argued that the emerging design genre illustrated here was generative: It helped 
in making concrete design decisions and thus in speeding up the design process outside of the source 
laboratory. Note that this was also possible due to our attempts to generalize while designing: By 
framing any design decision as a case of a more general theoretical idea (cf. Abrahamson, 2018), we 
were able to identify features of the design that were important in achieving particular goals (e.g., 
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development of sensorimotor action schemes that were relevant grounding for mathematical 
reasoning). Based on these features, new designs were developed for promoting reasoning about other 
mathematical topics.  

As a bonus we can also highlight the notion of generativity in a more research-oriented sense: The 
innovative designs led to phenomena of learning that could hitherto not be studied, and thus led to 
many new research questions. Given the multimodal nature of students’ observed sensorimotor 
behaviors, we were urged to draw on multidisciplinary bodies of literature, including sports and 
kinesiology, such as the construct of an attentional anchor developed by Hutto and Sánchez–García 
(2015). Throughout, we have debated what counts as mathematical activity. If students coordinate 
two hands in a way that we consider mathematically relevant, in what sense does this capacity 
constitute a precursor to conceptual understanding? Would the sensorimotor experience enable them 
to evoke the meaning of particular mathematical signs and reason through relevant problems? What 
design features help to promote reflection and argumentation? Is there any evidence that students re-
use the sensorimotor schemes that have proved useful in earlier tasks?  

The design-research approach to develop theory by design has generated methodological 
contributions, too, for example dual eye-tracking, by which we can now investigate student–student 
or student–tutor joint attention. Such research settings, where people collaboratively develop new 
sensorimotor action schemes, open up new areas of multidisciplinary research that accounts for 
intersubjective multimodal coordination processes (Shvarts & Abrahamson, 2018). Contemporary 
educational theory appears to lack powerful conceptual and methodological frameworks for studying 
these processes. It is hence also at this level of motivating and developing new research programs 
that, we believe, design genres can be generative. 

Aforementioned types of generativity may also impact educational practice. We speculate that the 
learning of many mathematical topics across the curriculum (function, covariation, etc.) can be 
supported by activities in the same design genre. When students recognize a new task as related to a 
previous task, the instrumentation phase could be more efficient. Finally, we expect that evidence of 
design genre’s generativity for design, theory, and methods will make design research more appealing 
to researchers, educators, and policymakers. 
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While the importance of reflection on methodological dimension for the networking theories was 
already stated (e.g. Bikner-Ahsbahs & Prediger 2014), here we claim that educational design is 
another essential dimension in distinguishing a phenomenon that might be unattainable as far as it 
has not been lit by a particular theory-methodology-design bundle. In this poster, we explore a 
bundle of a culture-historical approach, dual eye-tracking (DUET) method, and action-based 
interactive design; we argue that these three aspects being taken together form a lens that manifests 
in the teaching/learning process a perception-action system that is distributed between the tutor and 
student. The argument is based on multimodal data from student-tutor collaboration on interactive 
activity, where a student was required to discover a parabola in an embodied way as a set of points 
equidistant from the focus and directrix (Shvarts & Abrahamson, 2018). 

Theory-methodology coupling. A culture-historical approach provides us both with the theory and 
methodology for investigating the psyche’s development, and yet they are interconnected. Vygotsky 
proposes an “experimental-genetic method” that aims to restore the development process and to 
expose the higher psychic functions in the form of moving, “flowing flood” (Vygotsky, 1978). This 
method involves the active participation of a researcher in interaction with a pupil that, unlikely to 
natural science, do not distort the data, but on the contrary allow the genesis of mathematical 
functions to emerge. A theoretical presumption here is the social nature of psychological functions 
that emerge in intersubjective interactions. In our study, an experimenter interacts with the student 
as a tutor, and later interaction is reproduced between the just-instructed participant and a new 
pupil. DUET appears to be a perfect way to investigate this collaboration: while often eye-
movements are interpreted with the presumption of the eye-mind hypothesis, the data from DUET 
might be perceived as evidence of a psychic function as distributed between a student and a tutor. 
Then joint attention is not a result of initiation or response by single participants, but a functional 
end that emerges from “the multiple pathways” (Yu & Smith, 2016, p. 18) within their system. 

Theory-design coupling. Traditionally from Vygotsky’s point of view, communication between a 
student and a teacher is considered as mediated by some cultural artifacts, signs. However, Roth 
argues that in his late writing Vygotsky departures from the mediation as a primary mechanism that 
serves communication (Roth, 2018). This embodied character of collaboration is particularly 
accessible in an activity which is deliberately designed so that introduction of mathematical 
notations is postponed to the moment when a student has experienced mathematical concepts in an 
embodied way (Abrahamson, Shayan, Bakker, & van der Schaaf, 2015). The involvement of a 
student and a tutor in a motor problem that required formation of a new sensory-motor coordination 
allowed us to trace this function as socially distributed. 
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Method-design coupling. As eye-tracking let us observe oculomotor spatially articulated activity, 
we shall involve the participants in the design that benefits from an eye-tracking observation. The 
embodied action-based design is particularly suitable as it provides an opportunity for the learner to 
elaborate mathematical knowledge at first in the form of sensory-motor coordination. It is through 
eye-tracking we may gather empirical evidence of attentional anchors — the perceptual aspects of 
sensory-motor coordination that serves the efficiency of movement (Abrahamson et al., 2015). 

Theory-methodology-design bundle. A combination of all three couplings let some phenomena 
surface; we present the one phenomenon that seems to be of great importance for educational 
science. While the students’ eye-movements manifested emerging attentional anchors, the same 
was found in the tutors’ oculomotor behavior, whether they were a researcher or an instructed 
participant. Thus, we obtained evidence of embodied coupling between the student and tutor: The 
tutor's perception is as if it regulates the student’s action. While de facto it is the student who 
conducts the movements, the tutor enacts these movements in their imagination thus anticipating 
student’s progress in learning and sensing her micro-zone of proximal development. This 
coordination between student’s action and tutor’s perception allows us introducing intersubjectively 
distributed perception-action system that evolves in the teaching/learning process. 

Shall this be a local phenomenon of particular activity under the particular lens? We argue that this 
theory-methodology-design bundle does not limit generalization of the findings: The phenomenon 
of an intersubjectively distributed perception-action system is made spatially articulated due to the 
design settings, visible through dual eye-tracking methodology and understood under the light of 
Vygotsky’s theory of irreducibly collaborative teaching/learning. Finally, it becomes influential far 
beyond particular experimental settings just like the phenomenon of diffraction of light and its dual 
wave-particle nature goes far beyond the settings in which it was spotted.  
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This paper explores new developments in affect theory for studying the circulation of affect across 
mathematics classrooms. We use Maxine Sheets-Johnstone’s term “affectivity” to characterize the 
responsive nature of bodies and the potential scaling-up through sympathy and coordinated 
movement. We examine cooperative classroom tasks that entail sympathetic coordinated 
movements, including diverse kinds of often imperceptible body movement (gesture, face, eye, foot, 
etc.). We discuss how mathematical concepts are assembled through the affective bonds that form 
when students participate in these tasks. Our methodology is notable for how it bridges three 
scales: (1) the micro-phenomenological scale of the pre-individual affect, (2) the individual scale of 
human movement, and (3) the transindividual scale of collective endeavour (the making of a 
concept). 

Keywords: Affect, sympathy, collaborative tasks, movement, materiality. 

Introduction 
Research into the various ways that the human body factors in mathematics education has recently 
expanded, as new theoretical developments and innovative experimental methods have introduced 
significant insights about the material dimensions of teaching and learning. Some have criticized 
this work for how it downplays the role of the environment more broadly, while others have 
expressed concerns that, even as it attends more carefully to the role of the body in teaching and 
learning, it seems to support a mind/body split, with continued emphasis on individual cognition 
rather than collective and distributed learning experiences. These concerns are linked to the 
methodological use of design experiments that are all too often narrowly focused on individual 
experience. This narrow focus on the individual is particularly pronounced when we turn to 
research on the role of affect in mathematics education, which has typically focused on the 
relationship between beliefs, attitudes and emotions within individual bodies (Mcleod & Adams, 
1989; Zan et al., 2006).  

The socio-cultural turn tried to correct this narrow focus and looked to emotions as socially 
organised phenomena that are constituted in discourse and shaped by relations of power, but this 
approach tends to lose sight of the specific practices entailed in mathematical behaviour. Moreover, 
most socio-cultural studies of the emotional dimension of mathematics continue to assign particular 
emotions to particular students, who show frustration or anxiety or joy, as they encounter the socio-
cultural rituals of school mathematics (Radford, 2015). Such an approach remains focused on the 
individual, rather than the affective ecology, and tends to black-box the mathematics. More recent 
attempts to move from beliefs to “affective systems” show promise in their attempt to study 
ensembles of emotions, feelings, attitudes, beliefs, and conceptions (Philippou & Christou, 2002), 
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and in their recognition that affect is dynamic and variable in intensity (Pepin & Roesken-Winter, 
2015). And yet we find the research therein continues to methodologically emphasize expressions 
of belief and value, through reliance on conventional research methods, such as interviews and self-
reporting, without actually operationalizing key ideas from systems theory (Varela & Depraz, 2005) 
and without tapping the extensive work outside of psychology on affective networks (Massumi, 
2015). Moreover, attending to the dynamics of emotional or motivational states in a classroom or 
other learning community are still rare (Hannula, 2012).  

In this paper we pursue a theory of affect that better helps us follow the movement of affect across 
learning events with multiple and diverse participants, in such a way that the mathematics itself is 
imbricated within the process. This involves delving deeper into the affective nature of 
mathematical practices which are lived in and through material practices. For that purpose, we turn 
to recent work on affect in the humanities. Since the 2000s, scholars across the humanities have 
pursued what is known as the affective turn (Clough & Haley, 2007; Gregg & Seigworth, 2010). 
Shifting away from psychological approaches that focus on affect as individual judgements of value 
(like, dislike, happy, unhappy), this new approach aims to study the collectively dispersed nature of 
affect across a material ecology (Gregg & Seigworth, 2010). In particular, we follow Massumi 
(2015) and Sheets-Johnstone (2009, 2011) in studying affect and emotion less as that which is 
produced and possessed by a psychological subject, and more as an impersonal intensive flow 
across relational and provisional learning assemblages. We use the term ‘learning assemblage’ to 
designate the way learning is achieved through affective resonances and the assembling of diverse 
agencies. The challenge is then to develop research methods that lend themselves to the study of 
complex ecologies of material-mathematical practices.  

Our approach is significant for how it moves away from the individualistic theories of cognitive 
psychology towards a renewed interest in (1) the somatic and embodied expressions of affect, as 
bodily organic forces rather than ideational enactments of interior states and (2) the transindividual 
collective nature of circulating affect. The flow of affect contracts and expands across an event, 
recruiting our bodies and participation to varying degrees, where affect is itself a kind of pre-
conscious micro-movement. The notion of “degree” is crucial here, as it underscores how affect can 
be contracted in one body and not another with varying intensity. This approach studies classrooms 
as dynamic affective ecologies and tracks the way that learning rests fundamentally on somatic and 
unconscious ways of moving together. Concepts emerge and settle in such an environment as a 
function of sympathy (de Freitas, 2018). We believe that sympathy is the seed of learning because it 
affords opportunities for collaborative inventive practices. We emphasize this point, because it 
helps open up discussion of how achievements in classrooms are truly collective insofar as they are 
done through us (and not by us). This directs attention to the collective nature of learning.  

In this paper we discuss briefly a teaching experiment to show how mathematical concepts can be 
coordinated through affect and sympathetic relations. In particular, we focus on the coordinated 
movements of two girls in a grade nine classroom, Barbara and Lucrezia, while they are working on 
a specific task. We track the way that the task brought forth opportunities for these two girls to 
develop new forms of relationality in their shared achievement, and that their coordinated 
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movements are directly linked to the complex set of differentials and gradients that comprise the 
circle concept under study. The methodology involved a teaching experiment that primed the 
classroom so that the circle concept could only be achieved through a coordination of different 
kinds of movement. In other words, the mathematical task demanded a sympathetic coordination 
between students. Our initial video analysis focused on the verbal and the gestural. A second 
analysis focused on micro-movements (head orientation, facial expression, rhythm and speed of 
coordination) which involved new coding methods that were then combined with field notes from 
classroom observation. Although not adequate space here to present our methods in detail, we 
discuss briefly how the data can be analysed in terms of affective ecologies (for more see de Freitas, 
Ferrara, & Ferrari, 2018).   

Theoretical framework for multi-scale analysis 
The words emotion and affect are commonly used together, not always with too much care for their 
different meanings. Here, we draw on the work of Maxine Sheets-Johnstone (2009, 2011), to help 
distinguish these terms, and to build a theory of affectivity that lends itself to an analysis of pre-
individual and trans-individual activity. Sheets-Johnstone is at pains to show how emotions are not 
only “coping mechanisms” that evaluate or appraise or cope with the sudden break-down of rational 
discernment. She describes affectivity as the fundamental “responsivity” of life, drawing on a long 
line of phenomenology. Affectivity characterizes the way bodily activity is implicated in collective 
feelings (common sensibility) but also in pre-conscious sensibility. Affectivity thus characterizes 
the responsive pre-conscious nature of bodies, how they turn away or lean in, and at the same time 
how they join with other bodies in coordinated movements. For Sheets-Johnstone, there is a 
congruency between affect and bodily motion, precisely because affect is lived through bodily 
movement. In other words, the dynamics of feelings (of comfort, agony, excitement, …) coincide 
with micro-facial expression, minute changes in bodily posture, foot-tapping rhythms, changes in 
heart rate, etc. She posits that “the affective and the kinetic are clearly dynamically congruent; 
emotion and movement coincide” (Sheets-Johnstone, 2009, p. 377). For Sheets-Johnstone, emotions 
are not enacted, but emerge in movement. She critiques the term ‘enaction’ because it continues to 
posit an interior state that is then enacted.  

And yet we note that delight, grief, remorse, etc, all move different bodies in different ways, and 
that one needs to reckon with that essential heterogeneity in the emotional landscape. We therefore 
need to extend her work to better address this heterogeneity in experience. Our theoretical approach 
aims to attend to the important tensions and indeed corporeal incongruencies sustained in collective 
endeavours. We turn to the concept of sympathy to better understand how distinctive and disparate 
movements inform the affective dimensions of learning. The word sympathy comes from ancient 
Greek (sumpátheia) and refers to the state of feeling together, derived from a composite of fellow 
and feeling (Schliesser, 2015). Sympathy is a complex concept with a complex history. Over the 
centuries, the notion of sympathy has been used to describe all sorts of activity—everything from 
contagious yawn catching to cosmological harmony (Brouwer, 2015). In the 19th century, work in 
physiology defined sympathy as the “action of sensation, the coordination of organs in the body, 
and the ‘social principle’ that allows ‘fellow-feeling’ to emerge in a society.” (Forget, 2003, pp. 
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291–292). Sympathy involves an association achieved through imagination and reason (body-
mind), as well as an ethical or perhaps normative action to modify one’s own actions so as to feel 
with the other. Importantly, there is no uni-directional sympathy—there is always at least two 
different agencies engaged. Sympathy is a kind of agreement between bodies, when they are 
mutually affected by each other and sustain a tension. We caution that such agreement is not erasure 
of otherness, as is often the case with appeals to empathy (Schliesser, 2015). Sympathy is 
“something to be reckoned with, a bodily struggle”; not a matter of identification or ‘putting oneself 
in the other’s shoes’ but a matter of modulating related movements—a process of becoming other 
that does not erase the other (Deleuze & Parnet, 2007, p. 53). A sympathetic coordination is not a 
bland alignment, nor an identification amongst parts, nor the creation of a unified homogeneous 
assemblage, but rather describes the assembling of heterogeneous agencies and powers. For the 
purposes of this paper, we suggest that sympathy involves (1) a contagion of feeling, (2) a common 
sense or shared sensibility, and (3) a compassion for the other. Below we discuss how affectivity 
and sympathy can help us theorize the ways that mathematical concepts are lived through embodied 
encounters. Our theoretical approach is meant to bring many scales together – the pre-individual 
affect, the individual body, the transindividual collaboration of the two girls, and finally the fanning 
out of affect across the whole class.  

Participants and video data 
The teaching experiment involved WiiGraph technology, an interactive software application that 
uses Wii remotes’ multiple features to detect and graphically display the location of two users (a,b) 
as they move along life-size number lines (Nemirovsky, Bryant, & Meloney, 2012). The experiment 
took place in a secondary school in Northern Italy, as part of a wider study carried out during 
regular mathematics lessons. The study involved a class of 30 grade 9 students (aged 15-16) in 
activities aimed at introducing the concept of function through a graphical approach using digital 
technology. In this excerpt, the students (Lucrezia and Barbara) move the Wii remotes in order to 
create a circle graph on a screen. WiiGraph assembles the girls’ collective movement as the partial 
derivatives of the circle. In other words, as they move their bodies, the graph captures their 
instantaneous speeds db/dt and da/dt. The girls’ speeds must be different but coordinated for the 
combined effect to compose a circle. The two Wii remotes must be moved with a rhythmic pattern, 
and indeed at related rates of changing speed, in order to achieve the effect. The movement is thus 
directly linked to the mathematical relationships. We focus here on how affect circulates across 
minute movements as the two girls coordinate their activity to explore the circle concept. There is 
ample evidence of disagreement (shrugging shoulders and shaking heads) as they discuss their 
strategy, and indeed these tensions are the important friction that sustains a sympathetic 
coordination. We see that the learning assemblage evolves through these tensions, when sympathy 
becomes a bodily struggle. A relationship of response-ability emerges through sympathetic 
coordinated movement. In the transcript below, R is the researcher (second author), while L and B 
indicate the two girls. 
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L:  More or less like this  

B:  We get a thing of this kind, maybe (B tilts her head, raises 
her eyebrow as she raises her hand, twists her torso and 
smiles) (1) 

L and B both look at the screen 

L:  For me, no… (L giggles) 

B:  Let’s try 

L:  … cuz, when you were here, I was here (by crossing arms, 
points to the two extremes) (2) (L emphasizes their 
difference, then slouches and shrugs a little) 

 

 

 
1 2 

 

B:  Hm hm, a little more. You’ve to be here, like this, pock (B 
questions L’s account, and further models for L, now 
using her two separate hands to mimic both her and L’s 
movements. “Pock” marks the point when the second 
hand reaches the maximum distance) (3-4) 

L:  But if you go fast (L raises pitch, as though sceptical, but 
with humour. Then shakes her head, and offers mocking 
smile) 

B:  Well, fast, it’s up to us (B shrugs a little, slows slightly, 
but continues to move both hands to-fro) (5-6) 

 
3 4 

 
5 6 

 

R:  Can you tell me (the two girls both turn towards R), excuse me, please, tell us what you’ve 
decided to do, what you’re deciding to do 

B:  We’re thinking that, because she’s in front of me, we stand 
like this, kind of, if I start here, she starts (B points with 
the other hand to a middle position. She uses confident 
voice and L nods approvingly) (7, 8), I start here, she 
starts like this, when I will arrive here, she will follow me 
(performs again a back and forth movement with L) (9), a 
little, she will be there when I will be here (10) 

L:  While she goes backward (L interjects, and nods, looking 
at R) 

 
7 8 

 
9 10 

 

R:  Will the speed at which you move matter? 

L:  Yes, yes (L confidently nods repeatedly) 
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B:  We have to move at the same distance, at the same speed, and at a constant speed  

L begins nodding in agreement, but interjects as though to correct B 

L:  With the same rhythm, but she starts before, and I follow her (L reaches her hand out and 
flaps the air between the two girls as she speaks) 

B:  We decide the speed, but we have to move at the same speed and at a constant speed 
between us (B is incorrect in this claim). L begins by nodding, then shakes her head a 
little, indicating some mixture of dis/agreement, but says nothing 

Table 1: B and L’s discussion about how to make a circle 

Data analysis and discussion 
In the beginning of the project, Barbara was reluctant to take part in group work: she expressed 
herself in long meandering statements that often confused her class mates. In the process of the 
teaching experiment, we noticed a serious change in Barbara’s position and relationality within the 
class, although some students continued to dismiss her contributions. Lucrezia, in contrast, was 
initially silent and timid in class. She also experienced a change in her way of engaging in collective 
discussions, becoming more willing to intervene and express her opinion, as the experiment 
unfolded. The two girls came forward to join the collaborative effort of creating a circle, despite 
their very different ways of being in the class. We can see the way that the productive intensity of 
the task comes from the various contrasts or tensions that are entailed—there are two girls, each 
with their own life history; two orthogonal directions to be performed; two very different 
movements to produce the one graph. Sympathy is the coming together of these contrasts, not so 
one obliterates the other, but instead as an onto-creative act in which new joint learning comes 
forth.  

The graph of the circle (eventually achieved) is a truly collaborative effect, a doing done through 
the individuals (rather than by the individuals). The circle is made through Lucrezia and Barbara, 
an achievement that emerges between the cooperating agencies. This is a task that demands all three 
components of a sympathetic relation: (1) there is a circulation of feeling as minute facial 
expressions and changes in bodily posture occur, the two girls leaning in and out, attending to the 
micro-scale corporeal signals that circulate beneath consciousness; (2) there is a common sense or 
shared sensibility in the shared obligation to follow each other and work with a shared objective 
(the circle concept); (3) there is the compassion for the other, and the care of ensuring that others 
are coming along, moderating the tensions that sustain any learning assemblage. Barbara and 
Lucrezia are both individually eager to achieve the circle, but all too aware that this achievement 
depends entirely on coordinating with the independent movements of the other.  

The two girls are together determined to make a circle, and there is a shared intensity while the 
power to lead shifts back and forth. And yet such moving-together and power-switching is 
successful precisely because the two girls are coordinating at the pre-individual scale of micro 
gestures and petites perceptions. The task itself has created an opportunity for shared affect and 
transindividual sympathy. The flow of affect recruits other student bodies by varying degrees, when 
the class “oohs” and “aahs” and someone says “beautiful” as the periodic functions are shown 
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alongside the circles. We hear the affective tone of these responses, and can track the rippling effect 
across the class, as the emotion fans out. Other student bodies shift in their seats, lean in and squint, 
as evidence of a sympathetic investment in the collective endeavour. As Massumi (2015) claims, 
sympathy “can reverberate across a relational field, faster than the field of conscious calculation.” 
(p. 84). For him, this is how the micro ethnographic scale reverberates out to other scales: “it is a 
defining characteristic of complex environments that the extremes of scale are sensitive to each 
other, attuned to each other’s modulations. This is what makes them oscillatory. They can perturb 
each other” (p. 10). Affectivity can “channel” through the individual body, reverberating out to the 
larger scales. The pre-individual scale of affect can be studied for how it fuels an enveloping social-
emotional space in the classroom. 

Conclusion 
We stress here that the dynamic movement buried in the mathematical concept is significant. This 
teaching experiment helps the students grasp the many different ways in which related movements 
are at work in the apparently fixed and familiar figure of the circle, deepening their understanding 
of the geometric concept. Thus, the task itself reveals how the affective bonds of coordinated 
movement are inherent to the circle concept. The task itself demands that the students form 
assemblages in ways that are productive of collaboratively and responsibly learning together. In this 
case, the bodily agreement or coordination produces rich mathematical thinking—an assembling of 
gradients and directions that speaks directly to the circle concept and the associated periodic 
functions. As the students act, they also perceive these graphs on the screen. This expanded 
sensitivity points to the complex entanglement of affect and concept, demonstrating how innovative 
technologies add to our understanding of fundamental aspects of mathematics learning. The 
amorphous concept of circle is implicated in mathematical activity in different ways, distinctively 
inflected by the flow of affect between Barbara and Lucrezia. Similarly, other mathematical 
concepts, if considered as dynamic and variable, are embodied in different material practices (de 
Freitas & Ferrara, 2015; de Freitas & Sinclair, 2017). Rather than reduce all experiences of 
mathematics to the same emotional note, our approach attends to the nuanced or tonal differences 
between one experience and another. Our aim is to attend to the specific and dynamic configuration 
of affect that is mathematics in all its multiplicity.  
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To theorize the study of students’ transfer of mathematical reasoning, we integrate Lobato’s theory 
of actor-oriented transfer, Thompson’s theory of quantitative reasoning, and Marton’s variation 
theory. Linking theory and method, we argue for an expansion of design possibilities for researchers’ 
investigations of students’ transfer of reasoning. To bolster our argument, we provide empirical data 
of a secondary student’s transfer of a particular form of reasoning—covariational reasoning. Our 
research has implications for researchers’ development of new theoretical and methodological 
approaches to investigate complex phenomena, such as students’ mathematical reasoning. 

Keywords: Transfer of learning, reasoning, learning theories, instructional design,  

Investigating students’ transfer of mathematical reasoning is a complex, multifaceted endeavor. We 
identify three key elements of this endeavor. The first two elements focus on students’ perspectives: 
students’ engagement in mathematical reasoning and students’ transfer of their mathematical 
reasoning. The third element focuses on researchers’ design of mathematical task sequences to 
engender students’ mathematical reasoning. We view these elements to be interconnected, and in our 
theorizing of these elements, we work to address this interconnectedness. 

Networking theories can take a variety of forms, depending on the degree of connections between 
and among theories, as well as researchers’ goals with connecting theories (Bikner-Ahsbahs & 
Prediger, 2010). We are working to locally integrate theories (Bikner-Ahsbahs & Prediger, 2010), in 
which we extend beyond combining or coordinating theories to explain empirical phenomena, to 
building new theories. Specifically, we integrate Lobato’s (2003) theory of actor-oriented transfer, 
Thompson’s (2011) theory of quantitative reasoning, and Marton’s (2015) variation theory to theorize 
our study of students’ transfer of a particular form of reasoning—covariational reasoning.  

We aim to extend possibilities for researchers to investigate students’ transfer. We argue that 
researchers can investigate students’ transfer of mathematical reasoning by research designs other 
than pre- and post-tasks. To provide backing for our argument, we share empirical data of a secondary 
student’s transfer of a particular form of reasoning—covariational reasoning (Thompson & Carlson, 
2017). We address implications for researchers’ development of new theoretical and methodological 
approaches to investigate complex phenomena, such as students’ mathematical reasoning. 

Integrating theories to investigate students’ transfer of covariational reasoning 
Task designers, teachers, and researchers share a goal of promoting students’ mathematical reasoning. 
While mathematical reasoning comprises students’ mental activity, in our view, it is impossible to 
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separate students’ mental activity from their embodied experiences (English, 2013). Interacting with 
mathematical tasks can provide students opportunities to engage in mathematical reasoning. By 
mathematical task, we mean something more than a problem statement. From our perspective, tasks 
encompass the intentions of a task designer, the implementation of a task by a teacher/researcher, 
students’ interaction with the task, and physical materials associated with the task (Johnson, Coles, 
& Clarke, 2017). Ideally, when students develop a form of mathematical reasoning, they could engage 
in that form of reasoning on subsequent tasks and in different situations.  

We aim to infer students’ reasoning based on their observable behavior. In our view, students are 
experts in their own mathematical reasoning, and our role is to elicit and explain that reasoning. Our 
stance on students’ reasoning influences our assumptions about the viability of their reasoning. First, 
we do not assume that students working on a task will share our goals for the task (e.g., Johnson, 
Coles, & Clarke, 2017). Second, we acknowledge that students may engage in mathematical 
reasoning that is different from the reasoning we intend. Third, we assume students’ different forms 
of reasoning to be viable and productive. Hence, we do not seek to “fix” students’ reasoning. Rather, 
we seek to understand and engender students’ mathematical reasoning, in its myriad forms. 

Employing a transfer lens, researchers can investigate how students might engage in different forms 
of mathematical reasoning across a range of tasks and situations. Yet, researchers’ perspectives on 
transfer impact what researchers may construe as evidence of students’ transfer of reasoning (Lobato, 
2003; 2014; Marton, 2006). To address the problem of investigating transfer of students’ reasoning, 
we employ an actor-oriented transfer perspective (Lobato, 2003; 2014), because it affords researchers 
the opportunity to gather evidence of transfer of reasoning beyond forms of reasoning that a 
researcher may intend. 

From an actor-oriented transfer perspective, transfer is generalization, rather than application 
(Lobato, 2003; 2014). Meaning, students who generalize some form of reasoning from one task to 
another would engage in transfer, even if they do not apply a particular solution method. Hence, an 
actor-oriented transfer perspective broadens the scope of what is possible for students to transfer. 
Furthermore, a researcher’s theoretical perspective on transfer impacts methods used to gather 
evidence of students’ transfer. Researchers employing an actor-oriented transfer perspective examine 
students’ constructions of similarities across tasks, rather than students’ task performance (Lobato, 
2003; 2014). Because students’ mathematical reasoning is not the same as task performance, an actor- 
oriented transfer perspective is a productive theoretical lens to use to investigate students’ reasoning. 

We focus on students’ engagement in and transfer of a particular form of reasoning—covariational 
reasoning—which is critical for students’ development of a conception of function (Thompson and 
Carlson, 2017). We draw on Thompson’s theory of quantitative reasoning (Thompson, 2011; 
Thompson & Carlson, 2017) to explain our perspective on covariational reasoning. When students 
engage in covariational reasoning, they form and interpret relationships between attributes they 
conceive of as capable of varying and possible to measure. For example, consider a situation 
involving a toy car moving around a track. A student engaging in covariational reasoning could form 
and interpret relationships between different attributes, such as the toy car’s distance traveled around 
the track and its distance from some stationary object. Because an actor-oriented transfer perspective 
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focuses on students’ generalization rather than performance, it is a useful theoretical lens to explain 
invariance in students’ engagement in quantitative (and covariational) reasoning across tasks and 
situations (Thompson, 2011). 

Researchers employing a variation theory perspective (Kullberg, Kempe, & Marton, 2017; Marton, 
2006; 2015) consider critical aspects of objects of learning (intended objects of learning), 
problematize ways in which to provide students opportunities to experience those critical aspects 
(enacted objects of learning), and acknowledge the viability of learning that students actually 
demonstrate (lived objects of learning). Although we focus on a particular form of reasoning—
covariational reasoning—we acknowledge that students may engage in or transfer forms of reasoning 
other than what we intend. From a variation theory perspective, students discern the similar (and 
generalize) because they discern difference, and consequently, designers should design opportunities 
for students to experience difference. Simply put, variation (in terms of difference) is a necessary 
condition for students to experience discernment.  

Networking theories is useful for addressing complexities inherent in investigations of students’ 
mathematical reasoning. For example, our investigation of students’ transfer of covariational 
reasoning is intertwined with students’ creation and interpretation of dynamic graphs in a Cartesian 
coordinate system. Drawing on Variation Theory, we considered critical aspects to include the types 
of attributes that students would encounter (e.g., length measures), the motion of objects in physical 
space (e.g., up/down, left/right, curving paths), and the representation of those attributes in a Cartesian 
coordinate system. Accordingly, we varied those critical aspects to provide opportunities for students 
to engage in covariational reasoning.  

Networking (coordinating) Thompson’s theory of quantitative reasoning and Marton’s variation 
theory of learning, Johnson, McClintock, Hornbein, Gardner, and Grieser (2017) explained how 
researchers could design learning experiences to engender students’ discernment of critical aspects 
of covariation. We extend this research in two ways. First, we connect the investigation of students’ 
transfer of reasoning, employing an actor-oriented transfer perspective on transfer. Second, we build 
from coordinating theories to locally integrating theories, to contribute to theory development.  

Extending design possibilities for actor-oriented transfer 
Lobato (2014) identified four criteria on which researchers should base claims of actor-oriented 
transfer. We summarize these claims, centering students’ mathematical reasoning, which is our focus. 
First, students should demonstrate a change in reasoning on transfer tasks, from a pre-interview to a 
post-interview. Second, students should demonstrate the new reasoning during interview tasks 
occurring between the pre- and post-interviews. Third, researchers should provide evidence that 
students’ reasoning during the interview tasks influenced their reasoning on the post-interview tasks. 
Fourth, researchers should provide evidence that changes in students’ reasoning in a post-interview 
occurred as a result of their work on the interview tasks, and was not just a spontaneous occurrence. 

We posit an extension of design possibilities for researchers employing an actor-oriented transfer 
perspective. From our perspective, inherent in Lobato’s (2014) design criteria is an assumption that 
researchers design transfer tasks that are separate from interview tasks. We argue that by leveraging 
Variation Theory in task design, researchers can investigate students’ transfer by analyzing students’ 
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reasoning on subsequent tasks across a set of interviews. In making this argument, we follow Cobb’s 
(2007) recommendation for theory expansion rather than replacement. In particular, we aim to expand 
design possibilities, rather than to replace one design type with another design type. 

An empirical example: A task sequence and a student’s work 
To illustrate how we locally integrated theories, we provide an example from the work of a 9th grade 
student, Aisha, during three individual, task-based interviews, conducted by Johnson. Task sequences 
in each interview had a different background (first a Ferris Wheel, second a Cannon Man, and finally 
a Toy Car), given by a computer animation. Aisha worked on a tablet (an iPad), with pencil and paper 
available. In each task sequence, Aisha sketched and/or interpreted different Cartesian graphs to 
represent a relationship between attributes in a situation given in an animation.  

The Cannon Man and Toy Car task sequences were more involved than the Ferris Wheel task 
sequence. For the Ferris Wheel, Aisha needed to sketch only one graph. For the Cannon Man and 
Toy Car, Aisha explored change in individual attributes, manipulating dynamic segments located on 
the horizontal and vertical axes. Next, Aisha sketched a graph representing a relationship between 
both attributes. Then, Aisha repeated the process for a second graph with attributes represented on 
different axes. After sketching each graph, Aisha viewed a computer-generated graph. Transcripts 
that follow are from each interview. Figure 1 shows graphs that Aisha drew in each interview. The 
Cannon Man and Toy Car graphs shown in Figure 1 (middle, right) are the second Cartesian graph 
that Aisha drew during each interview. 

Figure 1: Aisha’s Ferris Wheel, Cannon Man, and Toy Car graphs, respectively 

Ferris Wheel 

Johnson asked Aisha to sketch a graph relating a Ferris wheel cart’s height from the ground and total 
distance traveled, around one revolution of the Ferris wheel. While sketching the graph shown in 
Figure 1, left, Aisha explained why she drew the graph the way that she did. 

Aisha: I feel like the height would be more like the line (sketches a line, Figure 1, left). 
Distance would be more like the rise and run of the situation (sketches small 
segments, Figure 1, left). Cause you’re using the rise and run to find the line, and 
you need to use the distance to find the height. 

Cannon Man 

Johnson asked Aisha to sketch a graph relating a Cannon Man’s height from the ground and total 
distance traveled, with the height on the horizontal axis and the distance on the vertical axis. After 

Thematic Working Group 17

Proceedings of CERME11 3117



 

 

Aisha sketched the graph shown in Figure 1, middle, Johnson asked her to explain how her graph 
showed Cannon Man’s height and distance. 

Johnson: Can you show me how you see the height increasing and decreasing in this purple 
graph? (Points to the curved graph Aisha drew, Figure 1, middle) 

Aisha:  It’s (the height’s) increasing here, since it’s (the graph’s) backwards in my opinion 
(Sketches green dots, beginning on bottom left near the vertical axis, then moving 
outward, Figure 1, middle). Decreasing here. (Continues to sketch green dots, until 
getting close to the vertical axis, adding arrows after sketching dots, Figure 1, 
middle) 

Johnson: How is the distance changing? 

Aisha: (Turns iPad so that vertical axis is horizontal. Draws arrow parallel to vertical axis, 
Figure 1, middle.) That way. Continues to get bigger. 

Toy Car 

Prior to sketching the graph shown in Figure 1, right, Aisha stated, without prompting from Johnson, 
that distance traveled was the “same as the Cannon Man.” Johnson asked Aisha to clarify. 

Johnson: So, you said the total distance traveled is like the Cannon Man. Why is that like the 
Cannon Man again? Cause Cannon Man goes up and down, and this one moves 
around. How are those things the same?  

Aisha:  Just because Cannon Man is coming back down, doesn’t mean his distance is going 
down. His distance is still rising. 

To explore change in each of the individual attributes, Aisha manipulated dynamic segments located 
on the horizontal and vertical axes. For the total distance, Aisha began at the origin, continually 
moving the segment up, along the vertical axis. She explained: “I moved it up. It continuously went 
up, because the distance doesn’t decrease. The total distance traveled doesn’t decrease.” For the 
distance from the shrub, Aisha began to the right of the origin, initially moving the segment to the 
left, and then to the right. She explained: “I moved it (the segment) to the left, because it (the Toy 
Car) was getting closer to the shrub. Then, when it (the Toy Car) started to turn, I started to moved it 
(the segment) back up to the right, because it (the Toy Car) was getting closer to the shrub.” Next, 
Aisha sketched the graph shown in Figure 1, right. After viewing the computer-generated graph, 
Aisha explained what she thought the curved graph represented. Aisha stated: “This (moving her 
finger from left to right along the horizontal axis) is tracking the distance from the shrub, and this 
(moving her finger along the curved graph, beginning near the horizontal axis) is also tracking the 
distance.” 

Employing individual theories as analytic lenses 
We explain how we draw on individual theories to analyze Aisha’s transfer of covariational 
reasoning. While we present the accounts separately, we conceive of these accounts as something 
more than complementary. In our view, each theoretical lens is like one of the intertwined strands of 
a braid or cord.  
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Thompson’s theory of quantitative reasoning 

In our task design, we made strategic choices about the kinds of attributes that students would 
represent in graphs. In particular, we selected length attributes (e.g., height, distance) because we 
anticipated it would be less difficult for students to conceive of measuring length attributes than for 
other kinds of attributes, such as area or volume. During clinical interviews, Johnson asked students 
to represent ways in which individual attributes were varying (e.g., increasing and/or decreasing), and 
to explain how graphs they sketched represented different attributes. 

For the Cannon Man and Toy Car, Aisha provided evidence of engaging in an early form of 
covariational reasoning. In contrast, for the Ferris wheel, Aisha attempted to show how one might 
obtain one value given another value. For the Cannon Man and Toy Car, Aisha conceived of both 
attributes as possible to measure and capable of varying. Her graphs (Figure 1, middle, right) 
represented both attributes, one varying in a single direction (increasing), and another varying in 
different directions (increasing and decreasing).  

Marton’s Variation Theory 

For the Cannon Man and Toy Car task sequences, we incorporated patterns of variation and 
invariance to provide opportunities for Aisha to discern critical aspects of covariation (intended object 
of learning). First, Aisha could vary each attribute individually, then both attributes together. Second, 
Aisha repeated the process for a new Cartesian graph with the same attributes represented on different 
axes. We designed each of the first two elements against a background of invariance (e.g., the Cannon 
Man). Next, we repeated the first two elements against a new background (e.g., the Toy Car). When 
creating a new background, we varied different elements while keeping other elements the same. In 
particular, we varied the motion of the object (e.g., the Toy Car moved in a curved line; Cannon Man 
moved up and down), while keeping the kinds of attributes (length measures) invariant. 

When Aisha interacted with the Cannon Man task sequence, she discerned differences between the 
motion of the Cannon Man (up/down) and the total distance traveled (enacted object of learning). 
After interacting with both the Cannon Man and Toy Car task sequences, Aisha discerned that the 
differences in the motion of the Cannon Man and the Toy Car did not impact the total distance 
traveled, which still increased in both situations (lived object of learning). We argue that the 
opportunity to experience difference in the motion of objects for the Cannon Man and Toy Car 
contributed, in part, to Aisha’s transfer of covariational reasoning. 

Lobato’s theory of actor-oriented transfer 

We adapted Lobato’s (2014) criteria to align with Aisha’s work during the task sequence we reported. 
We analyzed for evidence of the following: (1) Aisha’s change in reasoning from the first interview 
(Ferris Wheel) to the third interview (Toy Car); (2) Aisha’s engagement in covariational reasoning 
during the second interview; (3) Influence of Aisha’s reasoning during the second interview on her 
reasoning during the third interview; and (4) Attribution of Aisha’s changed reasoning to the 
interview tasks, rather than to a spontaneous occurrence. 

For the Ferris Wheel, Aisha provided evidence that she was doing something other than engaging in 
covariational reasoning (1). We interpret that Aisha was conceiving of how she might use a formula 
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or rule to determine one amount (height), given another amount (distance). For the Cannon Man, 
Aisha demonstrated evidence of engaging in covariational reasoning (2). Rather than attempting to 
show how one might obtain one value given another value, she conceived of both attributes as 
possible to measure and capable of varying. Aisha’s explanations provide evidence of how she 
construed similarities in an attribute (total distance), common to the Toy Car and the Cannon Man 
(3). We interpret Aisha’s reasoning for the Toy Car to be influenced by her reasoning for the Cannon 
Man (4). First, Aisha identified a common attribute across both the Toy Car and the Cannon Man 
(total distance). Second, Aisha related the toy car’s total distance traveled and its distance from the 
shrub. Third, Aisha’s substantial change from the Ferris Wheel to the Toy Car strongly suggests that 
her reasoning for the Cannon Man influenced her reasoning for the Toy Car. 

Locally integrating theories to theorize the “tension of intentions” in task design 
In integrating these theories, we aim to theorize the “tension of intentions” when researching task 
design to account for the student perspective. We aim to position students’ perspectives as being just 
as viable as the perspectives of designers, teachers, and researchers. Accordingly, we aim not to place 
one theory as hierarchically superior to another, but rather to weave together the theories into a new 
form. In so doing, we bring together different assumptions: Students’ reasoning depends on their 
conceptions of attributes as being possible to measure and capable of varying (Thompson’s theory of 
quantitative reasoning), students discern difference, rather than sameness (Marton’s Variation 
Theory); and transfer depends on the student perspective (Lobato’s theory of actor-oriented transfer). 

To claim that we can integrate theories, we need to address their epistemological roots (Bikner-
Ahsbahs & Prediger, 2010). Lobato’s and Thompson’s theories have roots in students’ conceptions, 
which makes integrating those theories more straightforward. In contrast, Marton’s theory has roots 
in students’ experience. We argue that both students’ conceptions and experiences are central to their 
learning opportunities. For example, in our research, students’ experiences with Cartesian graphs and 
students’ conceptions of attributes were both central to their covariational reasoning. Through 
centering the student perspective, we integrate these different theories. 

Conclusion: Rethinking design possibilities for transfer studies 
We view a reflexive relationship between theoretical perspectives and research methods. Employing 
alternative transfer perspectives, such as an actor-oriented transfer perspective, can result in 
innovations in methods to investigate transfer. A variation theory lens afforded us novel opportunities 
to design for and investigate students’ transfer of covariational reasoning. Rather than designing a set 
of pre- and post-tasks, that in our view were structurally similar, we designed task sequences that 
incorporated difference within and across backgrounds of invariance. Analyzing across students’ 
work on the task sequences, we gathered evidence of students’ transfer of reasoning from an actor-
oriented transfer perspective. Overall, we acknowledge that the perspectives of designers, teachers, 
and researchers can impact students’ opportunities to engage in mathematical reasoning. In our 
theorizing, we aim to address this tension of intention, by centering the student perspective. 
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This paper argues for creating learning trajectories of children’s mathematics by integrating 
evidence of shifts in the mathematics of students, theory of goal-directed instructional design, and 
evidence of instructional supports. We networked two theories in support of this stance: a radical 
constructivist theory of learning, and Duality, Necessity, Repeated Reasoning (DNR)-based 
instruction. We exemplify how our networking of theories guided methodological choices by 
drawing on a program of research aimed at understanding and supporting students’ ways of 
understanding quadratic growth as a representation of a constantly changing rate of change. We 
close by discussing challenges for creating and sharing learning trajectories. 

Keywords: Learning trajectory, constructivism, cognition, learning theories, epistemology. 

Learning trajectories in mathematics education 
Attention to learning trajectories and progressions remains a prominent strand of research in 
mathematics education (e.g., Clements & Sarama, 2004). The influence of this domain of research 
is evident in the development of mathematics standards (e.g., National Governor’s Association 
Center for Best Practices, 2010; UK Department of Education, 2009), funding priorities, topics 
conferences (e.g., the Third International Realistic Mathematics Education Conference), and special 
reports (e.g., Daro, Mosher, & Corcoran, 2011). Given the relatively wide-spread promulgation of 
trajectories and progressions in our discourse in research and practice, there is a need to articulate 
theoretical and methodological foundations of learning and teaching (Simon, 2013). This paper 
argues for the importance of creating learning trajectories as research-based models of teaching and 
learning that take seriously a commitment to understanding and supporting students’ mathematics. 

The notion of a learning trajectory has different meanings among mathematics education 
researchers. Simon’s (1995) original discussion offered a description of a hypothetical learning 
trajectory (HLT) consisting of “the learning goal, the learning activities, and the thinking and 
learning in which students might engage” (p. 133). An HLT constitutes a starting point for task 
design, and is then modified into a learning trajectory based on empirical data, often in the form of a 
teaching experiment. Clements and Sarama (2004) described a learning trajectory as an elaboration 
of children’s thinking and learning in a specific mathematical domain, connected to a conjectured 
route through a set of tasks. These definitions emphasize the construct as a tool for hypothesizing 
what students might understand about a particular mathematical topic and how that understanding 
may change over time in interaction with carefully designed tasks and teaching actions.  

Building on this body of work, we argue that the main purpose of a learning trajectory is to 
effectively convey the relationships between teaching, task-design, and shifts in student 
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conceptions. We advocate for a stance that articulates an integrated system of ways of bringing 
about conceptual change in the mathematics of students in relation to theory-driven instructional 
support. Thus, in order to create learning trajectories, we need mutually informing theories of 
learning and teaching. This paper elaborates two such theories, the radical constructivist theory of 
learning and Duality, Necessity, and Repeated Reasoning-based instruction, and identifies how 
these two related theories influence our methodological approach to building learning trajectories. 
We provide an example situated in a rate of change approach to quadratic function. 

Theoretical and epistemological framing 
A theory of learning mathematics 

In discussing the theory that guides our approach to crafting learning trajectories, we address three 
major issues: (a) distinguishing students’ mathematics from the mathematics of students, (b) 
leveraging the epistemic student, and (c) leveraging a model of learning. Theory of instructional 
design is treated in the next section. 

Learning trajectories articulate students’ evolving conceptions within a particular instructional 
context. In order to do this, we distinguish from our own mathematics as researchers and teachers, 
our students’ mathematics, and the models we create of our students’ mathematics. The need to 
distinguish our own mathematics from students’ mathematics is borne out of our epistemological 
stance. We consider mathematical knowledge to develop as part of a process in which children 
gradually construct and then experience a reality as external to themselves (von Glasersfeld, 1995; 
Piaget, 2001). From this perspective, knowledge is considered viable if it stands up to experience, 
enables one to make predictions, and allows for the enactment of desired objectives.  

The term students’ mathematics refers to the models students construct to organize, comprehend, 
and control their experiences – i.e., students’ knowledge. The mathematics of students is the set of 
models we construct of our students’ knowledge (Steffe & Olive, 2010). Often there is little 
distinction between these two notions in curricula or in standards documents. We believe, however, 
that the mathematical knowledge we attribute to students in the creation of a learning trajectory 
must be viewed as different from our own knowledge. Our goal is to determine how to engender 
and explain students’ productive thinking. By distinguishing our mathematics from the students’ 
mathematics, we recognize that students bring significant knowledge to bear when engaging in 
school mathematics, and we position students as logical, coherent thinkers and doers of 
mathematics. The job of establishing a learning trajectory then becomes one of explaining students’ 
thinking in a way that portrays it as coherent and internally consistent (Steffe, 2004). 

Individual students differ in their personal backgrounds, knowledge, and dispositions. A learning 
trajectory should depict not one particular student or group of students, but rather the epistemic 
student. An epistemic student is an organization of schemes that researchers build to explain 
students’ characteristic mathematical activity and how that activity changes in the context of 
teaching (Steffe & Norton, 2014). Researchers construct epistemic students through teaching 
interactions with specific students, but epistemic students are not specific to those particular 
interactions. Instead we conceive them to be useful models of students’ schemes that one can 
leverage to describe, explain, and predict the mathematical actions of similar students who may be 
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operating at the same level. 

Formulating an explanation of changes in students’ concepts and operations is not merely an 
empirical matter. We also bring to bear a set of conceptual tools in order to interpret students’ 
activity and problem solving. These tools have their origins in the radical constructivist (RC) model 
of knowing (von Glasersfeld, 1995; Piaget, 2001). For the purposes of learning trajectory 
construction, we rely particularly on the constructs of mental operation, scheme, assimilation and 
accommodation, and abstraction. A mental operation is an internalized, reversible mental action 
that is an element of a larger structure, such as a scheme, constituted by the coordination of 
operations. A scheme is an organization of actions or operations which enables anticipation of 
results without having to engage in mental activity. As an example, Piaget (2001) described the 
mental operation of combining objects (such as addition). Several successive additions are the 
equivalent of a single addition (so one can compose additions), and they can be inverted into the 
operation of taking away, or subtraction. 

Treating new material as something already known is an act of assimilation. When assimilating, one 
encounters an experience and incorporates it into a scheme. When the enactment of a scheme results 
in an unexpected outcome, a learner may experience perturbation or disequilibrium. One response 
can be a change in the learner’s recognition, in effect spurring a reorganization of one’s scheme. 
This reorganization is accommodation, which many consider to be the source of conceptual change.  

DNR-based instructional design 

The theory of DNR-based instruction (Duality, Necessity, and Repeated Reasoning; Harel, 2008a; 
2008b) informs our instructional design principles. Drawing on the RC theory of knowing, Harel 
(2008b) noted that “any observations humans claim to have made is due to what their mental 
structure attributes to their environment” (p. 894). He emphasized that researchers’ observations are 
merely models of students’ conceptions; using our language, these are models of the mathematics of 
students (Harel, 2013). Drawing on the mechanisms of assimilation and accommodation, Harel 
(2013) characterized knowing as a developmental process that proceeds through a back-and-forth 
between the two in order to reach equilibrium.  

The duality principle addresses two forms of knowledge, Ways of Understanding (WoU) and Ways 
of Thinking (WoT). WoU can be thought of as subject matter, consisting of students’ definitions, 
theorems, proofs, problems, and their solutions (Harel, 2008a). WoT are students’ conceptual tools, 
such as deductive reasoning, heuristics, and beliefs about mathematics (Harel, 2013). The Duality 
Principle states that students develop WoT through the production of WoU, and, conversely, the 
WoU they produce are afforded and constrained by their WoT (Harel, 2008a). We contend that the 
mathematical content of a learning trajectory must be formulated in terms of both WoU and WoT.  

The necessity principle states that in order for students to learn the mathematics we intend to teach 
them, they must have an intellectual need for it (Harel, 2008b). We can engender intellectual need 
through problematic situations that necessitate the creation of new knowledge in order to be 
resolved. Finally, the repeated reasoning principle addresses the need for teachers to ensure that 
their students internalize, retain, and organize knowledge (Harel, 2008a). Repeated reasoning 
should not be confused with drill and practice of routine problems. Rather, it is an instructional 

Thematic Working Group 17

Proceedings of CERME11 3124



 

 

principle that advocates providing students with sequences of problems that require thinking 
through puzzling situations and solutions; the problems must respond to students’ intellectual need.  

Methodological approach and rationale 
Our methodological approach to establishing learning trajectories is a direct consequence of our 
theoretical and epistemological framing. We elaborate how our networked theories (RC, DNR-
based instruction) informed our methodologies. We describe three aspects: (a) leveraging theory to 
create an HLT, (b) ongoing refinement of an HLT into an LT through enacting a teaching 
experiment, and (c) finalization of an LT through retrospective analysis. 

Creation of an HLT 

We enact a form of design-based research to simultaneously engender and study innovative forms 
of learning (Cobb & Gravemeijer, 2008). The planning phase involves creating an HLT (Simon, 
1995) informed by the networking of the RC theory of learning and the theory of DNR-based 
instruction. Our HLT was a tentative progression of student concepts and associated tasks that we 
hypothesized would necessitate a WoU that quadratic functions represent a constantly-changing rate 
of change between two covarying quantities. Simultaneously, our aim was to support a WoT that 
functions can be representations of covariation and can be explored and understood through a 
covariational lens (Thompson & Carlson, 2017). Consequently, we devised a dynamic 
representation of proportionally-growing rectangles in which students could investigate situations 
that, to us, entailed the three continuously covarying quantities, height, length, and area (Figure 1).  

The relationship between height, h, and area, A, can be expressed as A = ah2 where a is the ratio of 
length to height. We wanted the students to develop the following specific WoUs: (a) the rate of 
change of a rectangle’s area grows at a constantly-changing rate for each same-unit increase in 
height (or length); (b) the rate of the rate of change of the rectangle’s area is constant for same-unit 
height (or length) increases; (c) given a height h, the rectangle’s area could be determined by ah2; 
and (d) the rate of the rate of change of area is dependent on the change in height. In order to 
engender these WoUs, we devised tasks in which students had to predict the nature of growth, 
determine areas for specific height values and vice versa, and decide whether given tables of values 
represented rectangles that grew in proportion to one another or not. See Ellis (2011) for an 
elaboration of the mathematics. 

 
Figure 1: A growing rectangle and associated table of height-area values 

Teaching experiment: Ongoing refinement of an HLT into a tentative LT 

Drawing from the theories we networked, we engaged in an in-depth, 15-day teaching experiment 
following the method of Steffe and Thompson (2000). We taught 15 lessons to a group of 6 middle-

Thematic Working Group 17

Proceedings of CERME11 3125



 

 

grades students (ages 13-14) who were enrolled in pre-algebra (3 students), algebra (2 students), 
and geometry (1 student). The second author was the teacher-researcher (TR). One purpose of a 
teaching experiment is to gain direct experience with students’ mathematical reasoning, which 
affords the creation and testing of hypotheses about the mathematics of students in real time. This 
means that our mathematical tasks were not wholly predetermined, but instead were created and 
revised on a daily basis in response to hypothesized models of students’ mathematics. Because our 
problem context relied on area models, it was important to first identify the students’ existing 
schemes and operations for area. After conducting pre-interviews and developing an initial model of 
the mathematics of students, we created new tasks to necessitate more robust constructions of area 
as not dependent on whole-unit iterations. During and between each session, we engaged in an 
iterative cycle of (a) teaching actions, (b) assessment and model building of students’ thinking, and 
(c) task revision and creation on an ongoing basis. In this manner, during each session, we 
continually revised our HLT into a tentative, empirically based LT. 

Retrospective analyses: Finalizing an LT 

In addition to our ongoing analysis, we relied on retrospective analysis to inform the development 
of a learning trajectory as a model of the mathematics of students (Steffe & Thompson, 2000). One 
purpose of retrospective analysis is to build a model of the epistemic student and to characterize 
students’ changing WoU and WoT throughout the course of the teaching experiment. A secondary 
purpose, for us, was to contextualize and explain changes in students’ schemes and operations with 
respect to the tasks and teaching actions they encountered. We aimed to elaborate features of tasks, 
teacher moves, questioning, and socio-mathematical norms that supported the students’ scheme 
accommodation. Our inclusion of instructional supports into a learning trajectory relied both on our 
analyses of empirical data and on our understandings of the local instructional theories grounding 
our design and enactment of the teaching experiment. Figure 2 identifies the goals, tools and 
constructs we leveraged in order to create a learning trajectory. Notice how the primary and 
secondary aims are linked to a coordination of RC and DNR-based instructional design theories.  

 
Figure 2: Analytic aims, goals, tools, and constructs for creating a learning trajectory 

An excerpt of a learning trajectory for quadratic function 
In our previous work, we identified WoT and WoU in students’ learning of quadratic function from 
a rates of change perspective (Fonger, Dogan, & Ellis, 2017). Below, we provide an example of a 
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link between goal-directed instructional supports and a shift in student thinking (i.e., an excerpt of a 
LT). We focus on one shift from a student’s WoU that (a) the rate of the rate of change of the 
rectangle’s area is constant with ∆x implicit, to (b) the rate of the rate of change of area is dependent 
on ∆x, which is explicit. In the excerpt, the students had already created well-ordered tables for the 
growing rectangles (Figure 3). They had also attended to the constantly changing rate of change of 
area as determined by finding area increases for same-unit increases in, but there was a lack of 
coordination of change in area with change in height. Prompted to explain the growth in area of a 
2 cm by 3 cm rectangle (Task A), one student said, “It goes 4.5 and then 7.5 and then 10.5 and 
then…just keeps going.” In this manner, the students attended to the area’s growth, but did not 
coordinate it with growth in height or length. In response, the TR prompted the students to draw 
diagrams of the growing area, predicting that the act of drawing would necessitate a coordination of 
height and area. The students’ drawing activity did necessitate a coordination, but many students 
kept the change in height implicit, as evidenced by their language “every time.” For instance, Jim 
drew a picture of a growing 2 cm by 3 cm rectangle and explained the rate of change of area as 
“how many new squares it’s gaining every time it grows.”   

In an attempt to further encourage an explicit coordination of the rate of area with a quantified 
change in height, the TR asked the students to create a table for a 2 cm x 5 cm growing rectangle 
(Task B), anticipating that the students would make tables with different height increments. This did 
occur: For instance, Jim created a table in which ∆x was 1 cm, and Daeshim created a table with ∆x 
as 2 cm (Figure 3). The different tables resulted in a conflict about whether the constantly-changing 
rate of change of area should be 5 cm2 or 20 cm2 until one student, Jim, realized that the rate 
depended on ∆x: “I’m going up by1’s and they’re going up by evens.” After a class discussion in 
which the students agreed that the rate could legitimately be either 5 cm2 or 20 cm2, depending on 
∆x, Jim exclaimed, “Your rate of growth can change no matter what!” In subsequent days the TR 
encouraged the students to think about other proportionally-growing rectangles, and, ultimately, to 
draw diagrams relating changes in area to the rectangles’ dimensions. These diagrams further 
emphasized explicit attention to all three quantities, height, length, and area, and enabled the 
students to explicitly link the change in area to the change in height. For instance, Daeshim 
determined that the rate of the rate of change of area would be twice the area of the original 
rectangle; Jim found that it would be equivalent to twice the length for any 1 cm by L cm rectangle. 

Figure 3: Jim and Deashim’s well-ordered tables for a 2x5 growing rectangle 

We propose that a learning trajectory should include not only an articulation of particular WoUs 
and the shifts between them, but also a hypothesized connection between these shifts and specific 
instructional supports. Although space constraints limit an in-depth discussion of all of the 
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instructional supports in play, we see that the instructional move to prompt diagram drawing 
necessitated a functional accommodation: students began to attend to and then coordinate increases 
in height and length, not just area. In addition, the open structure of the task to determine rates of 
change of area for a 2 cm by 5 cm rectangle further encouraged explicit attention to ∆x. 

Discussion 
In the domain of research on learning trajectories, attention to a theory of instructional design is 
lacking. Moreover, methodological approaches to creating learning trajectories as a retrospective 
practice are scant in the literature. In this research we networked RC and DNR-based theories to 
inform our methods of task development, pedagogical actions, and retrospective analyses. This 
approach and the resulting product (i.e., an empirical LT for quadratic growth) are novel and not 
elaborated in the literature thus far.  

This paper contributes to an understanding of how a networking of theoretical assumptions can 
guide methodological choices in establishing learning trajectories. Specifically, we argue for 
learning trajectories research to be guided by theoretical lenses on the mathematics of students as 
well as on a theory of instructional design. In this domain of research, there is a need for researchers 
to move beyond a focus on creating hypothetical learning trajectories, attending to their methods of 
creating learning trajectories. 

This paper makes explicit the theoretical perspectives undergirding our approach to learning 
trajectories research. One challenge we see is leveraging learning trajectories as a way to not only 
frame a study (e.g., in creating hypothetical learning trajectories), but to also retrospectively create 
and share learning trajectories in ways that are consistent with the theories undergirding their 
creation. This research illustrates one approach for addressing the challenge of creating learning 
trajectories as empirically based models of an interweaving of shifts in students’ mathematical 
understandings and goal-directed, theoretically grounded instructional practices.  
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Conceiving teaching trajectories in the form of series of problems: a 
step for the theoretical reconstruction of the Hungarian Guided 
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In this article I introduce the term “series of problems” to give an account on a phenomenon 
existing in Hungarian mathematics education, the conception of long teaching trajectories based on 
problems. I will present a long research process aiming to reveal a “theory in act” hidden behind 
this phenomenon, and discuss the methodological tools developed in order to access to these hidden 
theoretical bases. The first part of the paper presents the historical-epistemological-didactical 
analysis of the origins of the Hungarian approach in question; the second part discusses the 
analysis of teachers’ work, and introduces the idea of reverse engineering aiming to reveal the 
implicit principles to the teachers’ design practice. 

Keywords: Series of problems, Guided Discovery approach, Reverse engineering, Teaching 
trajectories, Hungarian mathematics education 

Introduction 
In Hungary, there exists a tradition of mathematics education through problem solving and 
mathematical inquiry called “felfedeztető matematikaoktatás” that I translate as “Guided 
Discovery” (GD) approach. This approach was originally developed and practiced for the education 
of gifted students, but the reform movement of T. Varga, realized in the 1960s and ‘70s, 
transformed it into a basis of general mathematics education and a guiding principle of the official 
curriculum for primary and lower secondary school (Halmos & Varga, 1978). The approach is still 
recognized by Hungarian specialists of mathematics education as relevant and coherent with 
modern educational trends. At the same time, it is practiced in ordinary classes only by a narrow 
circle of teachers, and its dissemination poses problems. Furthermore, the approach exists only “in 
act;” its theoretical description has never been developed. Although Varga actively participated in 
the international discourse on mathematics education in the ‘60s and ‘70s, and developed his 
conception at the same time as Brousseau or Freudenthal1, his publications were mostly focused on 
experimentation and curriculum development, and less on the theoretical description of the 
underlying conception. 

This article treats a step of a longer research project aiming to reconstitute the underlying theory of 
Varga’s approach. I consider this reconstruction necessary for several reasons. On the one hand, it is 
an inevitable first step for its large-scale implementation, for the development of more adapted 
resources and teacher education programs. On the other hand, it is necessary to introduce Varga’s 
work to the current international discussion on Inquiry Based Mathematics Education: to enrich 

                                                 
1 Varga and Freudenthal met quite late when both of their conceptions were already well developed, but they mutually 
recognized each other’s work and perceived conceptual proximities (Varga, 1975).  
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both the international discourse by the specificities of Varga’s approach and the Hungarian 
mathematics education by the dialogue with other approaches. 

In this paper, I focus on one important aspect of the Hungarian approach: the long and complex 
teaching trajectories shaped by series of problems. The concept of Series of Problems appears to be 
crucial in this approach, both for curriculum and resource-developers and for teachers (Gosztonyi, 
2015a). However, a theoretical understanding of this phenomenon is missing. Originally, the term 
“series of problems” was introduced in the frame of an interdisciplinary history of science project as 
a more or less undetermined methodological tool to analyze the structure of historical texts 
(Bernard, 2015). In this specific Hungarian context, by “series of problems” (SoP) I mean a list of 
problems with a conscious ordering which is relevant for an (or several) educational purpose(s). In 
what follows I will discuss the relevance of this notion for the Hungarian context, the difficulties to 
develop theoretical frames and methodological tools for the analysis of SoP, and the research 
process of this development. 

In the first part of the article, I briefly summarize how a combined, historical-epistemological-
didactical analysis of Varga’s reform contributed to reveal the main principles of the GD approach. 
In the second part, I present an ongoing analysis of nowadays teachers’ work, developed in the 
frame of a larger research project focused on Varga’s legacy (MTA-ELTE project)2. I suggest to 
describe the methodology of this analysis as reverse engineering3: a progressive elucidation of the 
hidden principles of this “theory in act”, starting from teacher’s actual designs. 

Back to history 
The first step for the reconstruction of the GD approach was to go back to its origins, in the frame 
of a comparative study between Varga’s reform and the contemporary French “Mathématiques 
modernes” reform, carrying out their combined, historical, epistemological and didactical analysis, 
based on written sources (Gosztonyi, 2015b). The analysis of the historical context of the reforms 
pointed out, among other things, the crucial role of mathematicians in defining the epistemological 
foundations of mathematics and its teaching: a “bourbakist” epistemology in the French case, and a 
“heuristic” one in the Hungarian case. The didactical analysis of different sources (curricula, 
textbooks, teachers’ handbooks) showed the epistemology be one of the main driving forces for 
realizing the reforms. 

One of the theoretical frameworks used for the didactical analysis was Brousseau’s Theory of 
Didactical Situations (1998). This theory proved to be powerful to reveal important characteristics 
of each reform – but also insufficient to explain some specificities of Varga’s one. One of the most 
important aspects is the long teaching trajectories shaped by SoP. 

 Brousseau developed his theory from the 1970s, in the French context of the debates following the 
“Mathématiques modernes.” Thus, the emergence of the theory goes back to the historical context I 
                                                 
2 MTA-ELTE Complex Mathematics Education Research Group, working in the frame of the Content Pedagogy 
Research Program of the Hungarian Academy of Sciences (ID number: 471028). 

3 I am grateful to Arthur Bakker for suggesting this term during the conference. See also (Calderon, 2010). 
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studied. The comparison of an early experimentation of Brousseau with Varga’s works contributed 
to understand their conceptual differences.  

Characteristics of the Hungarian Guided Discovery approach and the importance of SoP 

The analyses described above helped to identify some main characteristics of the GD approach. In 
the background of Varga’s reform project, a quite coherent “heuristic” epistemology of 
mathematics and of mathematics education can be outlined in the 20th century’s Hungarian 
mathematical culture (Gosztonyi, 2016), represented by mathematicians living in Hungary as well 
as by Pólya and Lakatos. These thinkers considered mathematics to be a continuously progressing 
and changing human creation, and as a social, dialogic activity. The development of mathematics 
appeared as a collective process based on a diversity of experience, driven by problems, attempts of 
solutions, and new questions emerging from these attempts. They posited that mathematical 
knowledge only could be attained through the experience of mathematical creation, and thus 
students should be guided through similar discovery processes. 

The idea of organizing problems into ordered series appears often in the writings of these authors. 
For example, R. Péter’s book popularizing mathematics, Playing with infinity (Peter, 1961) is 
written as an interesting inquiry story where one question invites the other. Pólya’s work, especially 
later books like Induction and analogy (1954), also present inquiry processes shaped by series of 
problems, and analyses their structure. 

This epistemology deeply influenced Varga’s “Complex Mathematics Education Reform” 
conception (Gosztonyi, 2015b). The coherence of his curriculum is assured by a parallel treatment 
of different mathematical themes. Elements of mathematical knowledge are introduced through 
long, progressive processes (taking often several years), based on numerous small, concrete 
problem situations. Problems crossing different themes contribute to the variety of experiences. In 
the treatment of these problem situations, collective discussions led by the teacher play a crucial 
role. The use of various manipulative tools and representations, playfulness, students’ autonomy 
and creativity are also in the focus of the reform project.  

In the teacher’s handbooks related to Varga’s reform, researchers can find numerous commentaries 
on the importance of organizing problems into series. Primary school teachers’ handbooks describe 
a number of activities with ideas for their repetitions, variations, and ordering. However, the 
principles of the organization are dispersed in the books and rarely generalized. The handbooks 
insist on the importance of teachers’ autonomous work on conceiving of long teaching processes on 
their own. In middle-school textbooks, new knowledge is often introduced by fictive dialogues of 
students around short series of problems. 

Analysis of published examples 

Although SoP play a central role in Varga’s conception, they are seldom theorized. Problem 
collections used to be presented without commentaries about tasks’ connections and their possible 
roles in a teaching process. Furthermore, mostly fragments of SoP are published; long-term series 
are rarely presented. Some specific historical documents, however, present more detailed examples 
and furnish enough commentary to understand the logic and the purpose of their construction. 
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One example is the above mentioned book of R. Péter, describing in one of the chapters a classroom 
situation driven by a dialectic of problems, attempts of solutions and new problems motivated by 
these attempts. The text is written in a literary style; thus, its structuration by problems is not 
obvious at the first glance, but the rich meta-discourse makes possible to identify the problems and 
to understand the rationale behind the structuring of the text (Gosztonyi, 2015a). 

In the documentation of Varga’s reform, one of the most transparent examples is the introduction of 
combinatorics in primary school. Here, a double structuration of the series can be identified. On one 
hand, a sub-series is related to a given material, varying several variables and progressively 
introducing restrictions (e.g., building colored towers, building colored towers with a given height, 
finding all towers with a given height, varying the number of colors and levels, using a color only 
once, using the same color several times but not for neighbor levels, and so on). On the other hand, 
same or similar tasks are repeated with different materials (e.g., building towers with Cuisenaire 
rods, coloring flags or drawing houses, creating words with given letters, writing melodies with 
musical notes, and so on). The ordering is not strict here, but a progression in the abstraction should 
be respected by teachers. The observation of the analogies between these tasks serves as a basis for 
generalization and abstraction.  

The comparison of this example with Brousseau’s above mentioned teaching progression revealed 
important differences between the two authors’ conceptions, and contributed to understanding the 
role of SoP in the Hungarian case. For Brousseau, the progression is based on one “fundamental 
problem situation,” and a decontextualization (through phases of institutionalization) is necessary 
for the passage to other situations. For Varga, the progression is based on a diversity of problems 
and their convenient ordering to favor progressive generalization through the recognition of links 
between the problems. (Gosztonyi, 2017).  

In summary, the analysis of written documents representing the heritage of the Hungarian GD 
approach, confirms the importance of SoP in the planning of teaching by GD, identifies some key 
principles concerning the role and the structuration of SoP, and highlights tools to analyze and 
represent SoP (e.g.,  by graph representations or the structuration by main and sub-series).  

Analysis of teachers’ work designing Series of Problems 
Subsequent research steps involve analyzing the GD approach of expert teachers, drawing on the 
key principles and analytic tools described above. Several of these teachers reacted vividly when I 
proposed the term “Series of Problems” to them. It resonated with the kind of planning they 
considered crucial. However, they rarely make these practices explicit. 

The documents created by these expert teachers typically contained a list of problems, with or 
without solutions. But the documents are only a skeleton of their planned teaching process. 
Essential elements remain implicit: the main teaching goals, the organization of classroom work, 
the planned discussions, and choices and adaptations they consider to make ‘on the spot’, depending 
on the students’ reactions (e.g., change of order, omission of some problems or introduction of new 
ones). Furthermore, these projects are conceived as long-term developments, even for several years, 
and only parts of them appear in written documents. Expert teachers confirm having a complex 

Thematic Working Group 17

Proceedings of CERME11 3133



 

 

network of problems in mind that they can mobilize in order to create problem series and to adapt 
them to their aims and to the students’ needs or interest–during preparation or in the classroom. 

Gaining access to these complex implicit networks is necessary but quite challenging. Its 
reconstruction is an iterative process, combining two approaches: (1) an a priori analysis on the 
principles revealed by the analysis of historical documents, and (2) a study of the expert teachers’ 
documentational processes (in the sense of  Gueudet & Trouche, 2010). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

For the MTA-ELTE project, a mixed group of researchers, teacher trainers and expert teachers of 
the GD approach was created in order to fulfill a double aim: analyzing the expert teachers’ 
practices (with a special focus on SoP), and fostering dissemination of the approach by developing 
resources and teacher education programs. However, complex negotiations were necessary to meet 
the interest and expectations of each participant. While I felt necessary to focus first on the analysis 
of teachers’ practices, this was not motivating and relevant enough for the participating teachers. 
Thus, we decided to develop a collection of commented examples of SoP. The purpose of this 
collection under preparation was not to offer ready-made resources for teaching, but generic 
examples, which introduce the reader into the practice of using and preparing SoP. In addition, 
preparing commented examples also served the project’s research aim: for teachers to explicate 
their teaching purposes and principles of structuration of SoP. I call this procedure reverse 
engineering. Starting from teachers’ existing designs of SoP, researchers reconstruct tacit principles 
driving teachers’ choices during the design of these trajectories.  
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Figure 1: Analysis of Series of Problems 
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In the first step, teachers were asked to provide examples from their own practice of what they 
consider SoP. The received examples were of quite different nature: SoP of short and long-term 
sequences; SoP to introduce new mathematical notions, SoP to explore heuristic strategies, and SoP 
to serve diagnostic purposes. Confronting the new and previously analyzed examples led to 
discussion on various questions: classification of purposes, different structuration principles, and 
forms of representation. These discussions evoked new examples. For example, most SoP consisted 
of short sequences at the beginning, because this was easier to document for teachers; but during the 
discussions, they all agreed about the importance of long-term planning, leading to the description 
of long trajectories built by SoP. 

In the next step, teachers were asked to write commentaries to their SoP, addressing colleagues 
unfamiliar with the GD approach, focusing on the didactical aims of their trajectories and on 
explaining the SoP-structure. The group is currently comparing these first writings in order to 
define the main elements to be included in each commentary. 

In the further phases of the project, the MTA-ELTE project team will conduct experiments; giving 
commented examples to non-expert teachers, and asking them to use the examples as inspiration to 
develop their own teaching trajectories, and offer them consultation with expert teachers of the 
group. This part of the project will give evidence of how well the created resources may mediate the 
GD-approach and provoke further exploring of the expert teachers’ practices. 

Eszter’s case 

Eszter is an expert teacher of our group, a high school teacher for 20 years. As a long-term example, 
she proposed an example taken from geometry4, built around the concepts of incidence and distance 
in the Euclidean plane/space, equidistant sets (loci) of points, and especially a “core” problem: 
finding the equidistant points from three different lines in the plane. This 
series covers a very long period: It starts at the first year of high school, 
and some parts of it concern the last year’s curriculum. Although some 
notable theorems of higher level mathematics appear in the series (in a 
problematized form), the aim of the SoP, according to Eszter, is not to 
learn these theorems, but to familiarize students with the above mentioned 
concepts, related mathematical techniques and problem solving skills 
through the exploration of interesting geometrical questions. 

The first version consisted of a “core” series of four problems with 
increasing complexity about the loci of points (red dots in Figure 2). In this 
“core sub-series”, the order of the problems is strict. This order is intended 
to make the latter, more difficult problems progressively available for 
students. Several other sub-series are conceived, based on this core, 
exploring different mathematical themes (blue dots), including space 

                                                 
4 The complete collection of problems can be found here: 
https://drive.google.com/open?id=1Nhe5DbX3Wgs29l75GhTlrGN8_5rs1-yl  

Figure 2: Eszter’s graph 

(Simplified version) 
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analogies, angles and similarities, and the boundaries of geometry and combinatorics. Eszter 
immediately proposed a graph to represent the structure of the SoP. Her arrows showed complex 
mathematical or didactical interdependences between the problems, but also illustrated the 
flexibility of the structure which is not visible in the simple numerated list of problems. Some 
problems or sub-series are sequential, while for other problems, the order can be freely chosen. The 
representation of this structure helps the reader to understand which problems could be deleted 
without impacting a longer trajectory, or where new problems could be inserted. 

After a first discussion, we agreed that it would be useful to complete this SoP with a preparatory 
part which treated the lower secondary school level prerequisites. Thus, Eszter added a new part to 
her graph (green dots in Figure 2). As she explained, the problems of this part serve for diagnostic 
purposes in her high school work. They also fill possible gaps in students’ knowledge. The 
problems presented illustrate different types of tasks which have to be explored in order to prepare 
students for the “core.” More tasks can be inserted, depending on the students’ needs. In order to 
make this “typology” more accessible, Eszter added a coding system to the graph (e.g. D stands for 
distance, L for loci of points, S for space analogies). Some subgroups of problems are related to 
some of these codes, but many problems have multiple codes. The network of problems is less 
hierarchic here than in other parts leaving more flexibility to the teacher. However, the discussion 
also revealed some further hidden interdependences of the ordering. This suggests that Eszter’s 
didactical choices are even more complex than what was in her current version of the graph. 
Another iterative process of discussions and the preparation of representations is necessary to reveal 
implicit choices.5 

The discussions with Eszter led to a progressive exploration of her design and its guiding choices, 
while the graph representation plays the role of a mediator. Her case also shows individual 
specificities beyond the common principles shared with the colleagues (e.g. Eszter accords even 
more importance to the flexibility in her SoP than most of her colleagues). 

Conclusion 
This paper presented a research process aiming to make explicit a “theory in act” existing in the 
Hungarian context of mathematics education and to develop theoretical bases and methodological 
tools to analyze the work of the teachers who follow this approach. The first phase of this process 
consisted in the analysis of the historical sources of the approach with complex research tools from 
history, epistemology and didactics, while the current second phase is focused on teachers work. 
The process is essentially iterative; the analysis of the epistemological background offered some 
first steps to reveal main principles of the hidden theory. The use of existing didactical theories in 
the analysis of Varga’s reform documents helped not only to reveal its characteristics but also to 
point out the limits of the use of those theories, specificities of the GD approach which needs new 
theoretical development to be analyzed. These studies helped to choose the aspects to focus on 
while analyzing teachers’ work—the structuration of teaching trajectories by SoP being one of 
them. The principles revealed by these analyses and the tools developed by case studies of 
                                                 
5 A more detailed version of the graph was presented in form of a poster at CERME 11. 
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representative written examples contribute to interpret the teachers’ designs but also to provoke 
teachers to make their guiding principles explicit. Collective discussion and interpretation of the 
teachers’ designs led to further elucidation of the fundamental principles of the approach and to the 
development of tools to investigate their design process. The term “reverse engineering” is used to 
describe the iterative process of exploring teachers’ designs and describing their guiding design 
principles. Through reverse engineering, “theories in act” about SoP will be gained, so they may 
contribute to the discourse on Inquiry Based Mathematics Education (Artigue & Blomhøj, 2013).   
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In this paper we use Peirce’s theory of signs to analyze the conceptions of four twelve-year-old 
students on ratio and proportion while solving geometric problems of the stretchers/shrinkers type. 
The students participated in a series of interdisciplinary activities based on the principle of the 
camera obscura. We will present the learning paths of these students as chains of signification 
described in terms of Peircean semiosis. We will emphasize the challenges that they encountered 
during the reconstruction of their initial ideas and we will classify their conceptualizations in terms 
of Peirce’s classification of Signs. 

Keywords: Peirce, Semiotics, Classes of Signs, Ratio and Proportion, Elementary School. 

Introduction 
Ιn the 1990s semiotics has started to gain momentum as an analytical tool among researchers in the 
field of mathematics education (Presmeg, Radford, Roth & Kadunz, 2018; Sáenz-Ludlow & 
Kadunz, 2016). By and large semiotics is the study of how signs come to signify, a theory of “sign-
ification” (Presmeg, Radford, Roth, & Kadunz, 2016, p. 1). Mathematics, as a highly symbolic 
practice, calls for a study of the nature of sign systems in order to understand the processes of its 
teaching and learning (Sáenz-Ludlow, 2006). In the same decade, mathematics education research 
was marked by the development of theoretical constructs that acknowledged the social origins of 
knowledge and consciousness. In these paradigms, knowledge and consciousness are seen as 
products of communication embedded in experiences that take place in historically-, culturally- and 
geographically-inscribed contexts (Lerman, 2000). Knowledge and experience, then, are co-
constructed, as the one partakes in shaping the other. As this process is replete with signs, semiotics 
may elucidate the production of mathematical meaning by learners, as well the shaping of contexts 
that support learners’ conduct with mathematical content and practices. 

In our paper, we will use Peircean semiotic theory to analyze instances of the development of four 
twelve-year-old students’ ideas concerning ratio and proportion, as they participated in a series of 
interdisciplinary tasks based on the principle of camera obscura. Charles Sanders Peirce (1839–
1914) was an American philosopher, logician, mathematician, scientist, and semiotician. Contrary 
to other semioticians’ claim for an essentialist dyadic structure between a ‘signifier’ and a 
‘signified’, Peirce suggested that a Sign signifies only when it is interpreted in one’s mind. He 
argued for a triadic structure for the process of semiosis among the Sign or Representamen 
(signifier), the Object (signified), and the Interpretant. The Interpretant, the most innovative and 
distinctive feature in Peirce's account on semiosis, refers to the interpretation and nature of the Sign 
and Object relation. The Interpretant, as we will have the chance to see later on, has the potential to 
generate a new Sign, thus moving the signification process towards a higher level of interpretation 
and generalization (Sáenz-Ludlow & Kadunz, 2016).  
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By analyzing students’ participation in these activities, we will explore how their learning paths 
constitute chains of signification described in terms of Peircean semiosis (Sáenz-Ludlow, 2003), as 
Signs transform to more mature thoughts that become a kind of new knowledge. We suggest that 
Peirce’s ten classes of Signs may constitute an analytical ‘tool’ that can be used by researchers and 
teachers alike for deconstructing and classifying students’ conceptualizations, not only in ratio and 
proportion tasks, but in other instructional situations as well. We present this analytical tool in the 
section that follows, along with an outline of Peirce’s semiotics emphasizing the process of 
semiosis.  

Theoretical considerations 
Even though he provided various definitions, Peirce defined “a Sign as anything which is so 
determined by something else, called its Object, and so determines an effect upon a person, which 
effect I call its Interpretant, that the latter is thereby mediately determined by the former” (Peirce, 
1998, pp. 478). The Interpretant, coming as the most groundbreaking and distinguishing 
characteristic of Peirce's account on semiosis, refers to the understanding that we have of the 
Representamen and Object relation. According to Peirce signification is not a dyadic relation, as a 
Sign signifies only when it is interpreted in one’s mind. The Interpretant does not refer to the user 
but to the interpretation, the meaning that is generated for a user (Atkin, 2013).  

The importance of Interpretant is clearly visible in the process 
of semiosis, in which Signs transform to other thoughts that 
are more mature and become a kind of knowledge. When the 
relation of an Object(1), a Representamen(1) and an 
Interpretant(1) is established, the Interpretant(1) is potentially 
converted to a Representamen(2) for a new Object(2) and 
determines a new and more advanced Interpretant(2), and so 
on. The conceptual process of semiosis is theoretically 
unlimited, as the chain of meaning-making continues to new 
Signs interpreting a prior Sign or set of Signs (Figure 1). 
However, in practice this process becomes limited by force of habit (Parker, 1998). 

Peirce suggested that each of the three interrelated components of a Sign, namely Representamen, 
Object, and Interpretant, can be separated into a trichotomy. Representamens signify their Objects 
not through all their features, but in virtue of qualities, existential facts, or conventions and laws. In 
the first trichotomy, Signs then can be classified as Qualisigns, Sinsigns, and Legisigns respectively. 
The Representamen is the form in which the Sign appears, the spoken or written form of a word for 
instance, whereas the Sign is the whole meaningful ensemble. Peirce also believed that the nature of 
the Object constrains the nature of the Sign in terms of what is required for a successful 
signification. He thought about three categories of Objects, then, which were qualitative, existential 
or physical, and conventional or law-like in nature, constituting the second trichotomy. Thus, when 
a Sign reflects qualitative features of an Object, then the Sign is an Icon. When there is physical 
connection to its Object, then the sign is called an Index, and when there is a rule or law between it 
and its Object, then the sign is called a Symbol. The icon is an intuitively familiar trichotomy, as 
portraits, paintings, or diagrams fall under the Icons category. Indices may include fingers pointing 
to something or somewhere and proper names, while Symbols comprise broad speech acts like 

Figure 1: The infinite process of 
semiosis 

. . .
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assertion and judgment. Last, but not least, Peirce thought that Signs could be classified in terms of 
their relation with their Interpretant. In this third trichotomy, he suggested three categories by 
identifying qualities, existential facts, or conventional features as the basis for classifying the Sign 
in terms of its Interpretant. If the Sign determines an Interpretant by focusing our understanding of 
the Sign upon the qualitative features it employs in signifying its Object, then the Sign is classified 
as a Rheme. If a Sign determines an Interpretant by focusing our understanding of the sign upon the 
existential features that it employs in signifying an Object, then the Sign is a Dicent. Finally, if a 
Sign determines an Interpretant by focusing our understanding on some conventional or law-like 
features employed in signifying the Object, then the Sign is a Delome, or as Peirce frequently—but 
confusingly—called it, an Argument  (Atkin, 2013; Colapietro, 1989; Freadman, 1996). 

These three previous trichotomies produce combinations that are 
called ‘classes’. In order to categorize a Sign in these classes, we 
have to ask three questions: 1) What is the relation of the Sign with 
itself? (1st trichotomy), 2) What is the relation between the Sign 
and its Object? (2nd trichotomy), and 3) What is the relation 
between the Sign and its Object for its Interpretant? (3rd 
trichotomy). The kind of relation that answers the first question 
qualifies the second, which in turn qualifies the third. Once though 
we characterize a Representamen as, for example, a Qualisign, 
which is at the first level of the first trichotomy, the relation of the 
Sign to its Object and its Interpretant in the second and third 
trichotomy has to be at the first level as well, as the Sign cannot be 
related to an Object and an Interpretant from a higher level. 
According to these restrictions, then, the classes of Signs are ten 
(see Table 1). Even though the classes are hierarchically related, 
every link in the chain of signification does not necessarily 
constitute a more mature conceptual construct than those in the 
preceding links of the chain. Thus, in the highest level of Representamen, the Interpretant may be a 
Rheme (classes V, VI and VIIΙ). Signs of this kind appear often in the mathematics classroom, as 
students may be familiar with representations of mathematical ideas but their interpretations about 
them may still be vague or confined to these representations. The chain of signification as outlined 
in the beginning of this section, along with Pierce’s taxonomy of Signs, may allow us to analyze the 
continuum of students’ conceptualization (i.e. learning path) of ‘complex’ concepts like ratio and 
proportion (Sáenz-Ludlow, 2003). 

An experimentation on ratio and proportion 
We implemented the analytical tool that we outlined in the previous section in a data set produced 
from a research study that aimed to highlight students' ideas about ratio and proportion in geometry. 
Students’ ideas about these concepts were produced through their participation in a series of tasks 
that were part of an interdisciplinary experimentation. In particular, we wanted to address the two 
following questions: a) what are the conceptualizations of twelve-year-old students about ratio and 
proportion related to geometrical shapes; and b) how these conceptualizations could be modified 
through their participation in a series of interdisciplinary tasks. According to Lamon (1993), the 

 S = R, O, I 

I Qualisign, Icon, Rheme 

II Sinsign, Icon, Rheme 
III Sinsign, Index, Rheme 
IV Sinsign, Index, Dicent 

V Legisign, Icon, Rheme 
VI Legisign, Index, Rheme 
VII Legisign, Index, Dicent 
VIII Legisign, Symbol, Rheme 
IX Legisign, Symbol, Dicent 
X Legisign, Symbol, Delome 

Table 1: Peirce’s classes of Signs 
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stretchers/shrinkers type of ratio and proportion problems, which have reference to geometry, pose 
difficulty for students in terms of recognizing their multiplicative structure. The students’ strategies 
for solving ratio and proportion problems in a geometric context are the nonconstructive strategies 
of ‘avoiding’, ‘visual or additive’, and ‘pattern-building’; the ‘preproportional, ‘qualitative 
proportional, and ‘quantitative proportional’ types of reasoning, which are considered as 
constructive strategies. The common ineffective strategy that students use in order to solve similar 
problems is the 'visual or additive strategy', which stresses the aforementioned students' difficulty 
with the multiplicative structure (Lamon, 1993). 

Students worked in pairs for a total of seven 90-minute sessions over a period of 3 weeks. In this 
paper we will discuss the learning paths of four out of the eight students who participated in the 
study, those of George, Helen, Bill, and Peter. The tasks that comprised our research were based on 
an experimental construct that followed the principle of the rectilinear propagation of light in the 
camera obscura. We used this device in order to depict proportional geometrical shapes. In most 
tasks students had to investigate the similarity of rectangles formed by tiny led light sources placed 
on their vertices and their image on a screen placed behind the pinhole on a plane parallel to that of 
the rectangle. The use of this model gave us the opportunity to negotiate in a non-typical way the 
concepts of multiplicative relationships, internal and external ratios and also connect fractions with 
ratio and proportion. According to the Science and Mathematics programs of study, the students 
were familiar with the concepts at hand. Research data was comprised of the teacher-researcher’s 
fieldnotes (first author), the fieldnotes of a ‘non-participant’ observer, the transcripts of the 
recordings in each pair, as well as the students written work.  

In the tasks of the initial diagnostic assessment, which was silent and individual, we asked students 
to draw the parents of a little boy fish, whose body and tail were isosceles right-angled triangles of 
different size (students were familiar with this fish as it is the main character in a widely-read series 
of children’s books in Greek). The only direction we gave to the students was that the parents 
needed to be similar to the boy but larger. In the second session of the experimentation we asked 
students to find the relation between two rectangles that were similar. Students were only aware that 
one of the rectangles was bigger in size than the other. In the third session, in one of the tasks, we 
gave students a number of rectangles of various sizes and we asked them to find which of these 
were similar. In the fourth session of the experimentation, we gave students a rectangle (7 × 3 cm) 
and we asked them to draw a similar one knowing only the length of one of its sides (11.2 cm). In a 
summative assessment during the final session, which was silent and individual as the initial 
diagnostic assessment, we asked students to investigate regular hexagons in terms of their 
similarity.  

Students’ chains of signification  
In the task of the diagnostic assessment, the four students spontaneously measured the length of the 
sides of the triangles that comprised the little boy fish. They concluded that the triangles were 
isosceles, making no reference though to the measure of the angles in the two triangles. While 
drawing the parents, five of the students followed an additive strategy, without paying attention to 
the proportion between the size of the triangles of the body and tail of the boy fish and those of his 
parents. Helen and Bill tried to ensure that the triangles were isosceles to begin with, and that the 
measure of the interior angles matched roughly the ones in the boy’s body and tail. So they drew the 
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two equal sides of the body and the tail of the parents by increasing their length by the same 
amount. For example, in drawing the father, one student increased the two sides from 5 to 8cm for 
the body and from 2.5 to 4.7cm for the tail. While drawing the third side of the triangles, though, 
the students realized that they could not enlarge this third side in same the manner that they had 
enlarged the other two. So, they increased the length of the third side as much as was needed in 
order to complete the triangles in their drawing. George designed one parent by doubling the sides 
of both triangles, thus paying attention to the interior angle in their drawings, but used an additive 
strategy for the other parent since they thought that they could multiply with a whole number 
(Qualisign, Icon, Rheme; in this case, the Sign constructed by the student is interpreted by the 
student as being of the same nature and quality with the given fish boy with O1: the multiplicative 
structure in the stretchers/shrinkers problems, R1: the students’ drawings, and I1a: the use of 
multiplication and addition interchangeably and that ratio needs to be a whole number). Peter used 
multiplication for both parents, choosing the numbers 3 and 2 as operators for the father and the 
mother respectively (Sinsign, Icon, Rheme; the Sign is interpreted by the student as possibly 
standing for its Object with O1: the multiplicative structure in the stretchers/shrinkers problems, 
R1: the drawings and I1b: that multiplication as probably related to ratio and proportion). 

In the second session, the four students spontaneously measured the lengths of their sides and Helen 
and Bill suggested that they should “find the difference between their lengths” (Qualisign, Icon, 
Rheme; the Sign is interpreted by the student as being of the same nature and quality with the given 
Representamen, with O2: the multiplicative structure of stretchers/shrinkers problems, R2: oral 
sentence, I2a: the relation between the two similar rectangles can be expressed by subtraction of 
their lengths). George, who had used a multiplicative strategy in drawing one parent and an additive 
in the other in the diagnostic assessment, disagreed by saying that “we need to divide to find out 
how many they are” (Sinsign, Index, Rheme; the Sign is interpreted by the student as possibly 
standing for another event-index, with O2: the multiplicative structure of stretchers/shrinkers 
problems, R2: oral sentence, I2b: division is related to ratio and proportion). At this point, Peter, 
who had used a multiplicative strategy in drawing both parents, disagreed, by saying “since we say 
twice or three times, we have multiplication” (Legisign, Icon, Rheme; is a type/law, a ‘regularity of 
the indefinite future’ that is interpreted by the student as possibly standing for its Object, with O2: 
the multiplicative structure of stretchers/shrinkers problems, R2: oral sentence, I2c: multiplication is 
related to ratio and proportion). Taking advantage of these statements, the researcher suggested that 
they should try both ideas, subtraction and division. In their first attempt, having completed the 
subtractions, they did not reach to a conclusion concerning the relation between the two rectangles. 
In their second attempt, instead of multiplication, which is directly related to the multiplicative 
strategy, the students decided to use division by dividing the larger by the smaller number. Having 
observed that the two quotients were equal when rounded to one decimal point, the four students 
concluded that we could ascertain whether two rectangles are similar by using division. 

In the third session, the four students measured the sides of the rectangles and circled the similar 
ones on their sheet showing preproportional reasoning. Only George chose to express the relation 
between the similar rectangles by making a clear reference to the operator that constituted them as 
similar, showing qualitative proportional reasoning (Legisign, Index, Rheme; is a type interpreted 
by the student as possibly standing for its Object - another event, with O3: the multiplicative 
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structure of stretchers/shrinkers problems, R3: written expression, I3: division is related to ratio and 
proportion and the concept of unit plays a role to the result). 

At the first part of the fourth session, the four students used the internal ratio (length 1 ÷ length 2 = 
breath 1 ÷ breadth 2) in their calculations, and after they had drawn the desired rectangle they used 
the external ratio (length 1 ÷ breadth 1 = length 2 ÷ breadth 2) simply to check their answer without 
realizing that both ratios could be used interchangeably in order to express the desired relation 
between the rectangles (Legisign, Icon, Rheme; is a type/law, a ‘regularity of the indefinite future’ 
interpreted by the student as possibly standing for its Object, with O4: the internal and external ratio 
of similar shapes, R4: arithmetic operations, I4: the relation of similarity can be found with 
operations between lengths and widths, widths and lengths, and widths-widths and lengths-lengths 
and also ratios are pure numbers, without measurement). In the second part of this session, in an 
attempt to enhance the qualitative proportional reasoning through the use of mathematical 
terminology in the ‘stretchers/shrinkers’ tasks, we asked the students to express division in an 
alternative way. So expressions of the kind “seven divided by two” transformed to “seven over 
two,” especially from George and Peter, implicating thus a fractional terminology in the discussion 
(Legisign, Symbol, Rheme; is a type interpreted by the student as possibly standing for its Object-
law, with O5: fractions are directly related to ratios, R5: oral sentences, I5: division can be 
alternatively expressed with a fraction and their terminology). All of the students though tended to 
always select the largest number as the numerator, as it was more convenient in the subsequent 
calculations. So we gave them a similar rectangle on the screen that was reduced in size and asked 
them to express the reduction with a fraction. All of them claimed that the answer for the reduction 
was “3.5 over 1.5, because in this way we begin from what it was (i.e. the length of the rectangle 
formed by the led light sources) and then we have the ‘reduced’ one” (i.e. the length of the 
rectangle on the screen).” The researcher then made a reference to maps their relation to the size of 
the actual land that they represent, and the four students immediately recognized that the ratio in the 
legend can be as small as 1 over 50000 (Legisign, Symbol, Delome/Argument; is a type interpreted 
by the student as semiotically standing for its Object-law, with O6: the role of numerators and 
denominators in ratios, R6: oral sentences, I6: flashback to maps and the various ratios in order to 
express the reduction may follow the same principles as in this situation). After this discussion, Bill, 
George, Helen, and Peter concluded that “the numerator expresses the representation on the map 
and the denominator the physical representation,” and therefore the fraction that expresses the 
relation between the rectangles can be larger or smaller than 1 when it represents a stretch or a 
shrink (Legisign, Symbol, Rheme; is a type interpreted by the student as possibly standing for its 
Object-law, with O7: the role of numerators and denominators in fractions, R7: oral sentences, I7: 
there is a fixed way to express the enlargement or zooming out and numerators and denominators 
determine the result). 

In the tasks of the summative assessment, Bill, George, Helen, and Peter were able to transfer 
successfully the understanding that they had built in relation to similar rectangles in the sessions of 
the experimentation(Legisign, Symbol, Dicent; is a type interpreted by the student as physically 
standing for its Object-law, with O8: the multiplicative structure of stretchers/shrinkers problems 
and the role of numerators and denominators in ratios, R8: written sentences and written 
expressions, I8: the appropriate way to express ratios for enlargement or reduction, without 
measurements). 
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As we can see, the four students started the sessions (diagnostic assessment) with vague ideas about 
ratio and proportion in geometrical shapes. Only Peter used multiplicative strategy in all tasks while 
the other students used the additive strategy. In the instructional sessions that followed, it became 
evident that students produced arguments in order to support their statements. As a result of this 
effort some of the students constructed conceptualizations that fall in the upper levels in Peirce’s list 
of Sign classes. In the summative session they managed to transfer their knowledge to a new 
context. The development of the four twelve-year-old students’ conceptualizations concerning ratio 
and proportion while working on tasks that required the stretching and shrinking of rectangles and 
regular hexagons, were the Signs that the students constructed. Following Pierce’s classification of 
Signs and the strategies students used while working on these tasks, the criteria used to classify the 
students’ Signs can be summarized as below (Table 2): 

Sessions of Experimentation Students’ Signs according to ten classes of Peirce 

1st: diagnostic assessment with 
individual tasks 

Qualisign, Icon, Rheme  (I)  
Sinsign, Icon, Rheme  (II)  

Bill, George, Helen 
Peter 

2nd: conservation of properties in 
stretcher/shrinker problems 

Qualisign, Icon, Rheme (I)  
Sinsign, Index, Rheme, (III) 
Legisign, Icon, Rheme  (V) 

Bill, Helen 
George 
Peter 

3rd: stress of the multiplicative 
strategy 

Legisign, Icon, Rheme  (V)  
Legisign, Index, Rheme (VI) 

Bill, George, Helen 
Peter 

4th: enhancement of multiplicative 
strategy by similar rectangles and 
ratios of lengths and widths  
 
division related to fraction, 
terminology, role of numerator and 
denominator, legend of maps 

Legisign, Symbol, Rheme 
(VIII)  
 
 
Legisign, Symbol, Delome (X)  
Legisign, Symbol, Rheme 
(VIII) 

Bill, George, Helen, Peter in plenary 
session 
 
 
George, Peter 
Bill, George, Helen, Peter in plenary 
session 

5th: summative assessment with 
individual tasks 

Legisign, Symbol, Dicent (IX) Bill, George, Helen, Peter 

 Closing Remarks 
The learning process is affected by many factors, such as students’ ideas, the interaction between 
them, the context, the tasks, the representations involved, etc. This means that the learning process 
is neither rectilinear nor individual; it is ‘fluid’ and infinite, and includes a number of 
conceptualizations. Following Peirce’s suggestions on how to make our ideas clear, the meaning of 
a concept or a sign consists in the habit to which it gives rise in the interpreter, be it either a habit of 
action or a habit of thought. This habit guides future actions, and is forever on trial in the light of 
upcoming experiences (Triandafillidis, 2002). We see students’ chains of signification side by side 
to their activity sequences while they engage with tasks in an elaborated Hypothetical (Teaching) 
Learning Trajectory that a teacher/researcher has designed. By using Peirce’s classes of Signs then, 
we expand the work of other researchers who have used Peirce’s theory of Signs to analyze the 
learning process based on the triadic nature of a Sign’s three components. Our work may also assist 
a teacher/researcher to concretize students’ produced Signs, the ideas that are involved, to what 
extent students become familiar with the concepts, and also mark those characteristics of the tasks 
that turn students’ conceptualizations to higher level Signs, i.e. habits of action or thought that 

   Table 2: Signs constructed by the students 
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would endure future trials. In other words, it may help a teacher/researcher to apprehend turning 
points in students’ activity sequences and the distance of a student’s Sign from the mathematical 
goal(s) that she has set, as well as to take appropriate instructional actions in order to support the 
construction of Signs that are more mature and more relevant to the mathematical ideas at hand. 
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In current approaches of mathematics education at the upper secondary level, activities proposed to 
students involve several domains in interaction. After studying activities about modelling or 
functions, we question here the development in many mathematical curricula around the world of 
activities involving computer programming, sometimes labelled “coding” or “algorithmics”. The 
motivation of this paper is that a suitable theoretical framework is required to make sense of 
students’ work in activities involving various domains, taking into account the semiotic dimension 
as well as the use of instruments, and the contents and reasoning specific to each domain. 

Keywords: Connected Working Spaces, computer programming, modelling, functions, mathematics 
and other domains. 

Introduction 
We are concerned with teaching/learning situations associating mathematical domains and other 
domains, and problems arising in these situations. Here are three examples. First, with regard to co-
variation and functions, many researchers stress the need to offer students domains of sensual 
experience of co-variation for instance by way of dynamic geometry before or in parallel with 
formal approaches of functions. Modelling is another activity associating domains of everyday 
experience or scientific or professional domains in order that students make sense of mathematical 
notions and processes. Finally, there is now a big emphasis in many curricula on the introduction of 
programming (or algorithmics, or coding) into mathematical activities. Our concern, looking at real 
classroom situations or even experimental situations, is the lack of connection between the 
experience in the other domains and the mathematical formalism, techniques, etc. There is also a 
lack of connection between the processes of solving and reasoning in other domains on one side and 
in mathematics on the other side. In this paper, we consider especially the case of computer 
programming in mathematics education. Few research studies have been done in this area 
(Lagrange, 2014) and then this paper is based upon a recent doctoral research study carried out by 
the second author (Laval, 2018). We have two aims: to discuss how current theoretical frameworks 
analyze various aspects of activities involving mathematics and other domains, and to propose a 
framework, taking into account comprehensively these aspects.  

Theoretical developments and question 
Classically, activities involving mathematics and other domains are analysed by considering that 
entities involved in the task appear under different semiotic representations, each pertaining to a 
field. This is the “multi–representation” view. Among the many theoretical approaches of multi–
representations, we start from Duval’s (2006) consideration of the plurality of representations for a 
given object. For Duval there is no other ways of gaining access to the mathematical objects but to 
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produce some semiotic representations and he stresses that representations are organized in semiotic 
systems. In a semiotic system, some representations are called “registers” and there is a need for a 
specific focus on processes of work inside and between the registers. In this multi–representational 
approach, activities for students in different fields are considered helpful because of the 
opportunities they offer for working on different semiotic representations and coordinating these. In 
spite of the usefulness of frameworks like Duval’s, the “multi–representation” view is for us too 
reductively semiotic and cannot alone really make sense of activities involving several fields in 
interaction, and of their potentialities. In some curricula, much emphasis has been put on the work 
on representations and students can be fluent in the processes of conversion and treatments, but this 
does not necessarily imply a deep understanding of notions at stake. For instance, even when 
students are proficient in dealing with the four classical representations of functions (verbal, 
symbolic, graphic, and tabular), fundamental aspects of functions (correspondence, co–variation, 
mapping, etc.) and their coordination remain problematic. 

Another framework for making sense of activities of coordinating different domains (especially 
mathematical domains) is by Douady (1986). For Douady, a setting is constituted of objects from a 
branch of mathematics, of relationship between these objects, their various expressions and the 
mental images associated with these objects. When students solve a problem, they can consider this 
problem in different settings. Switching from one setting to another is important in order that 
students progress and that their conceptions evolve. According to authors like Perrin–Glorian 
(2004), it is sometimes difficult to distinguish the representational and the settings approaches, 
especially when a phase of work can be thought of both as a switch between settings and as a 
conversion of representations. Actually, rather than contradicting, the two approaches complement: 
beyond its mathematical contents, each setting offers specific semiotic systems, and coordinating 
the settings also implies coordinating the semiotic systems.  

Another concern is how instruments are taken into account in the students’ mathematical activity. 
Twenty years ago, sophisticated calculators became available for students’ work and a framework 
was developed: the instrumental approach of the use of digital technologies to teach and learn 
mathematics. This approach has been inspired by research work in cognitive ergonomics but 
researchers like Lagrange (1999) insisted on the intertwined development of knowledge related to 
the instrument and of knowledge about mathematics in an instrumental genesis. This is important 
because otherwise an instrumental approach would be only a psychological framework with little 
insight for mathematics education. Authors like Bartolini Bussi & Mariotti (2008) also noted that 
the use of instruments and the associated reflection involve a lot of signs that, for a student, may 
have not immediately a mathematical meaning, and they propose the idea of “semiotic mediation” 
to refer to the classroom activity necessary in order to ensure the productivity of the work with 
instruments at a semiotic level.  

Each framework, multi–representation, coordination of mathematical settings and instrumental 
approach, puts a focus on a specific dimension: the semiotic processes or on the contents and 
reasoning, or on the use of instruments (Figure 1). We present the framework of connected working 
spaces, taking into account comprehensively these three dimensions in order to address work in 
mathematical domains as well as in non–mathematical domains where mathematical notions can 
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take sense. This framework was proposed by Minh & Lagrange (2016) and by Lagrange (2018) for 
activities related respectively to functions and to modelling and we question here its utility for 
addressing the new challenge brought about by activities involving computer programming in 
mathematics education. 

 
Figure 1: Four frameworks, three dimensions. 

Connected Working Spaces 
The framework of the Mathematical Working Spaces (MWS) allows characterizing the way the 
concepts make sense in a given work context. According to Kuzniak & Richard (2013) a MWS is 
an abstract space organized to ensure the mathematical work in an educational setting. Work in a 
MWS is organized around three dimensions: 
· Semiotic: use of symbols, graphics, concrete objects understood as signs. 
· Instrumental: construction using artefacts (geometric figure, graphs, program...) 
· Discursive: justification and proof using a theoretical frame of reference. 

Activities considered in this paper involve several domains, and for each of these domains, a 
working space. The framework of “Connected Working Spaces” has been introduced in order to 
give account of how connections between Working Spaces bring meaning to the concepts involved. 
This extended MWS framework takes into account the semiotic and instrumental dimensions as 
well as the contents and mode of reasoning, in different domains of activity and their interaction in 
a mathematical activity. Then it is not contradictory with the theoretical developments outlined 
above (Figure 1), but it rather aims to organize them in a comprehensive structure. What we expect 
from this framework is to help building and analysing situations on a given topic involving a 
mathematical and another domain, identifying the three dimensions in the corresponding Working 
Spaces, contrasting these and looking for possibilities of connection. 

Connecting Algorithmic and Mathematical Working Spaces: The Intermediate 
Value Theorem (IVT) 
Activities involving computer programming in mathematics education connect two distinct 
Working Spaces: an Algorithmic Working Space (AWS) and a Mathematical Working Space 

Multirepresentation: Working on 
different representations of a 

math. entity. 

Interplay between settings: 
Changes of settings make pupils 
progress and conceptions evolve. 

Semiotic mediation: Activities with 
artefacts, production of signs 

(individual, collective) 

Instrumental approach to math  
tools: Interplay between knowledge 

about the artefact and maths. 

Discursive dimension Semiotic dimension 
Instrumental dimension 
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(MWS). In the continuation of this paper we will focus on a particular topic that can be considered 
both from a computer science and a mathematical point of view: the solution of an equation f(x)=0 
for a given function f defined on a closed interval [a ; b]. We will consider this topic relatively to 
how it can be a subject for secondary students’ work, that is to say how it implies connecting the 
two Working Spaces. From a computer programming point of view, specific algorithms allow 
approaching solutions as close as possible. We consider algorithms able to find, for an arbitrary 
precision e, an interval [u ; v] with the property P(e): |u – v| < e and f(u)×f(v)≤0. The simplest 
algorithm scans iteratively the sub intervals of length e, until finding a suitable one (Figure 2, left). 
A more efficient algorithm is based on dichotomy (Figure 2, right). In the corresponding AWS, the 
semiotic dimension is characterized by specific marker of iterative (While…) and alternative (If…) 
treatments and by variables, whose value, as a difference with mathematical variables, change along 
the treatment by way of the specific operation of assignment (sign ← in Figure 1). Mathematical 
expressions are also involved. The associated semiotic system can be at stake for students not fluent 
in algebra, especially the notation f(…). There is a strong instrumental dimension, since algorithms 
are intended to be executed by an automatic device and it is expected that execution will help 
students to make sense of the formalism. The discursive dimension is characterized by questions 
like the termination of an algorithm (does it terminate in a finite number of steps?), its effectivity 
(does it return an appropriate solution?) and its efficiency (how many steps are necessary for a 
given set of data?).  

A scan algorithm A dichotomy algorithm 
 

 
While f(u)×f(v)>0 
   
   
End While 
Return  

 
  
 While  

    
   If f(u)×f(m)>0 then 
     

   Else 
     
   Endif 
 End While 
 Return  

Figure 2: Algorithms approximating a solution of an equation f(x)=0. 

From a mathematical point of view, the Intermediate Value Theorem (IVT) guarantees the existence 
of a solution on the interval [a ; b] under the sufficient conditions: f is continuous and f(a)×f(b)<0. 
The corresponding MWS has a strong discursive dimension: it includes properties of functions like 
continuity and monotonicity; it is focused on a mathematical solution, rather than on a process of 
approximation. A classical proof is based on two adjacent sequences. In addition to the usual 
mathematical formalism, the semiotic dimension is then characterized by the formalism of infinite 
sequences, different from the iterative variables of the algorithms, although both are defined by way 
of the dichotomy method. Students are introduced progressively into these notions and formalism 
from 10th to 12th grade. The instruments here are paper and pencil calculations, and graphical 
display of functions. Figure 3 summarizes the dimensions in the two Working Spaces. 

Organizing the Working Spaces: A classroom experiment 
The outcome of the above analysis is that the algorithms and the theorem have different targets: 
while the IVT is about solutions, the algorithms aims at obtaining an interval with the property P(e).  
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Mathematical Working Space 

• Discursive dimension:  
– Focus on a mathematical solution, 
– Properties of functions.  

• Semiotic dimension:  
– Usual mathematical formalism,  
– Formalism of infinite sequence. 
– Graphs (iconic). 

• Instrumental dimension:  
– Paper and pencil calculations, Graphs.  

Algorithmic Working Space 
• Discursive dimension: 

– Focus on process of approximation: 
termination, effectivity, efficiency. 

• Semiotic dimension:  
– Specific markers of treatments.  
– Variables. 
– Mathematical expressions.  

• Instrumental dimension:  
– Execution by automatic device.  

Figure 3: The Working Spaces 

However, there are clear links. First, the IVT ensures that, with the sufficient condition of 
continuity, an interval with the property P(e) actually contains one or more solutions, and the 
corollary that, with the additional sufficient condition of monotonicity, it contains the unique 
solution. Second, the algorithms, especially the dichotomy algorithm provides a mode of generation 
of sequences that play a crucial role in a proof of the IVT. From these links, different organisations 
of the MWS and the AWS can be envisioned. In a first organization, after being taught about the 
IVT, students can work on the algorithms with a function verifying the sufficient conditions in order 
to get an approximation of the solution. We name this organisation “application”: computer 
programming is considered as an application of “pure” mathematics. This is the most common 
scheme that we found when looking at textbooks in France. As for us, we envision other 
organisations making the Working Spaces interact more closely. It is because, as we wrote above, 
knowledge is at stake in both Working Spaces, and interaction can help understanding. Working on 
an algorithm, and after proving that the returned interval has the property P(e), students can 
experiment on diverse functions, in order to infer sufficient conditions for the IVT. They can then 
work on a proof by conceiving recurrent sequences from the iterative variables in the algorithm. 

Classroom situations 

We designed classroom situations in order to test the hypothesis that, transitioning from 
“application” to other organisations, students make connections between Working Spaces in the 
various dimensions. The situations were implemented in three French classes at 10th, 11th and 12th 
grade in order to get evidence about the work of students with different mathematical attainments. 
Each class had around 30 students and had nothing particular with regard to the work expected. The 
duration of each situation was between one-half and one hour. The students had worked before on 
the dichotomy method for discrete numbers (Laval, 2016) and this work was mainly in the AWS. 
Otherwise they had no previous experience in the domain, except that, for the 12th graders, the IVT 
had been introduced and not proved. A first situation was “application”: a continuous monotonic 
function was given and the dichotomy method was exposed by way of a flow chart. The students 
had to give some evidence of the existence of a unique solution, and to implement the method for 
this function in a textual programming environment allowing execution. The situation was intended 
to make students work in the AWS and MWS and coordinate these especially in the semiotic and 
discursive dimensions. Then, in a second situation, with the same function and the same 
programming environment, students had to complete a scan algorithm where the condition of 
continuation (following While) was missing. While this situation clearly involves the AWS in the 
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three dimensions, the MWS is in the background, both with regard to the formalism and to the 
properties of the function.  

We analyse here particularly two subsequent situations. A situation was intended to make students 
aware of sufficient conditions for the IVT, by encountering functions for which the dichotomy 
algorithm does not return a suitable interval. They were requested to implement and execute a 
dichotomy algorithm for “hidden” functions, i.e., functions that students could use in the algorithm 
and display graphs, but whose formula was not given.  Students had to answer the question “does 
the interval returned by the algorithm actually contain the unique solution?” See an example in 
Figure 4. The task is reflective, both in the AWS and the MWS: evaluating the effectivity of the 
algorithm at a mathematical level. The students were expected to be influenced toward an 
affirmative answer by the “application” situation where mathematical effectivity was not discussed. 
Students at 12th grade knew the IVT, but were expected not to focus on sufficient conditions, 
because all examples treated before were continuous monotonic functions. However, the students 
were expected to double check by graphing the functions, or computing values. This connection 
between the AWS and the MWS involves the instrumental and the discursive dimensions.  

Figure 4: A situation to make students aware of sufficient conditions for the existence of a solution. 

The last situation was implemented only for 12th grade students. Students were invited to build a 
proof of the IVT, using adjacent sequences and the dichotomy method. The semiotic dimensions of 
the MWS and the AWS are at stake in this task, with a process of conversion, from the iteration on 
variables in the AWS, to sequences in the MWS. In the discursive dimensions the convergence of 
the sequences had to be inferred from the fact that P(e) holds for arbitrary e. However, the 
convergence does not prove that the limit is a solution, and students were expected to use explicitly 
a theorem on continuous functions and sequences, and another about the compatibility of limit and 
order. This work is specific to the MWS and had been prepared by the focus on sufficient 
conditions in the third situation. 

Observation and evaluation 

In the situation with the “hidden” functions (Figure 4), the students considered that the very small 
interval returned by the algorithm was an evidence of the existence of a single solution. Most 
students reconsidered this finding after graphing and recognizing the unusual shape of the graph. 
They calculated the values of the function at the boundaries of the intervals returned by the 
algorithm for decreasing values of the threshold e and found values of the function decreasing at the 
left boundary and increasing at the right boundary. They deduced that these intervals approach a 

Task: enter and execute the algorithm for the 
function f and for various values of the threshold e.  
Does the interval returned by the algorithm actually 
contain a solution?  
Look at the graph of the function and discuss. 

Thematic Working Group 17

Proceedings of CERME11 3151



 

 

pole rather than a solution. The outcome of this third situation is that, except for a few 10th graders, 
the students made a clear distinction between the effectivity of the algorithm in the AWS and its 
effectivity to approach a solution in the MWS. 11th and 12th graders had a notion of sequences and 
convergence that helped them to consider more closely the phenomenon. 

As mentioned before, the situation on the proof of the IVT was implemented only at 12th grade. At 
the beginning, the students were confused, not connecting sequences and the IVT, which they 
thought related to functions. Then some of them proposed to look at the values of the boundaries of 
the intervals along the execution of the dichotomy algorithm for a particular function. This is a 
typical answer: 

The sequences (un) and (vn) are adjacent because (un) is increasing, (vn) is decreasing and (vn–un) 
becomes closer to zero when n becomes bigger and bigger. Then these two sequences converge 
towards a common limit c. Because f is continuous, f(un) and f(vn) converge towards f(c) which 
is zero. The theorem is proved by way of the computer for a particular function. 

This “proof” is a mix of observation (behaviour of the sequences, value of f(c)) and deduction 
(convergence of the sequences) and, for the students it is valid only for one function. Within the 
duration of this situation students could not go much beyond. Only one observed that a proof of the 
behaviour of the sequences could be made by induction. For us, the students adequately took 
advantage of the work in the AWS but in some way stayed halfway between the AWS that produces 
evidence on an example, and the MWS in which a formal proof for a generic function was 
expected. Students had no difficulty to operate the semiotic conversion from computer variables to 
sequences. In contrast, their answer witnesses a notion of proof still confusing instrumental 
evidence and mathematical reasoning. 

  

Figure 5: Connections by students in the situation of Figure 4 (left) and in the proof of the IVT (right). 

Conclusion 
This paper investigates the usefulness of the Connected Working Spaces framework for addressing 
activities for students involving distinctive domains and especially computer programming and 
mathematics. We used this framework for designing a classroom experiment to test a hypothesis: 
for a particular topic involving computer programming and mathematics, it is possible to 
characterize an AWS and a MWS, and to create situations in order that students make fruitful 
connections between these Working Spaces in the three dimensions, semiotic, instrumental and 
discursive. We observed a variety of connections validating this hypothesis (Figure 5). In the 
situation of Figure 4, students operated the delicate coordination of the discursive dimensions in the 
AWS and the MWS by combining work in the instrumental dimensions. In the proof of the IVT, the 
students took advantage of the work in the instrumental and discursive dimensions of the AWS for 
their discursive work in the MWS, although they were only partially successful. Previous studies 

AWS (iterative variables)’ 

Instrumental-Discursive 
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(partial proof of IVT) 
 
 

AWS (observation of 
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about functions and modelling already gave insight into a potential of the Connected Working 
Spaces framework and this paper extends the analysis to computer programming and mathematics 
education. It also witnesses of a framework that do not contradict with other approaches like multi–
representation, settings and instruments but rather connects these in a comprehensive analysis of 
students’ work. 
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Abstract: Teachers worldwide are using social media as a professional development resource. In 
studying social media as ‘a place’ for teachers’ professional development, we investigated large 
Facebook groups with themes connected to teaching and learning in compulsory schools. The 
interaction in these groups was analysed within the framework of systemic functional grammar. In 
order to reveal knowledge known and shared by teachers as a community, we have also used 
Shulman’s (1987) framework. Most posts received responses and this response is in line with the 
expected response pattern. The speech functions ‘Questions’ and ‘Offers’ were most common. 
Further, most posts addressed subject specific knowledge. The multi-theoretical approach used when 
researching mathematics teachers’ professional development in self-organized online groups showed 
that these large Facebook groups facilitated professional learning. 

Keywords: Functional grammar, mathematics teachers, PCK, professional development, social 
media. 

Introduction 
Studies have shown that Swedish mathematics teachers, to a large extent, participate in self-organized 
online groups both while working as well as during their free time (e.g., van Bommel & Liljekvist, 
2015; van Bommel & Liljekvist, 2016). Moreover, participation in online communities is a global 
phenomenon: teachers worldwide are using social media as a professional development resource (e.g., 
Bissessar, 2014; Patahuddin & Logan, 2015; Tour, 2017). Hence, in studying social media as ‘a place’ 
for teachers’ professional development, we investigated large Facebook groups with themes 
connected to teaching and learning in compulsory schools. It is well known that the subject being 
taught is in the centre of teachers’ work (e.g., Kansanen & Meri, 1999; Shulman, 1987). Subject-
specific Facebook groups (e.g., mathematics education) in an online teacher community may 
therefore imply a higher potential for professional development, and the subject-specific theme (e.g., 
mathematics for primary school) of some of the teacher self-organized online groups make these 
groups particularly interesting to study. 

If we want to understand the conditions for informal professional learning in online communities 
better, we have to acknowledge the change of the setting and develop theories that take such change 
into account (Liljekvist, 2017; Liljekvist, van Bommel, & Olin-Scheller, 2018). Our study investigate 
these online communities at three levels: descriptive level (van Bommel & Liljekvist, 2016), 
interaction level (Randahl, Olin-Scheller, van Bommel, & Liljekvist, 2017), and the motivational 
level. These three levels give us an opportunity to answer the questions: how and what do teachers 
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discuss in the groups. However, this paper goes beyond such a question and addresses the theoretical 
frameworks we used to capture a variety of aspects of this practice, in order to identify signs of a 
professional approach (Talbert, 2010) in these communities. Further, the paper addresses the need to 
go beyond a specific theory when researching this phenomenon and a brief description is given of 
how the analytical framework was adapted to the context and empirical findings.  

According to Little (2002), locating professional development in teachers’ communities of practice 
directs attention to three considerations: (I) the representations of practice (e.g., how school practices 
become known and shared); (II) the practice orientation (e.g., whether or not the teacher community 
improves teaching, and how this interaction advances or impedes teacher learning); (III) the 
interaction norms (e.g., how participation and interaction are organized, and how this organization 
supports teacher learning and practice reform). 

Hence, to understand how these practices become known and shared, the interaction in these groups 
was analysed within the framework of systemic functional grammar (Halliday & Matthiessen, 2013). 
Due to Facebook’s construction with posts and comments, language (in a broad sense) is used to 
initiate exchanges in all conversations, for giving and demanding information, goods, and services. 
In addition, when analysing the practices represented and to reveal knowledge known and shared by 
teachers as a community (Little, 2002), we have used Shulman’s (1987) framework. These two 
frameworks allowed us to categorize teachers’ professional communities both in a general way and 
in relation to subject-specific education. Combining the two frameworks gives us more than two 
single descriptions: it provides us with a possibility to deepen the analysis of our data and reveals 
other aspects of mathematics teaching. 

Analytical framework 
Speech functions as enacting interpersonal relations 

People use language to interact with others or to express their view about the world and how they 
interpret it. Within the framework of Systemic Functional Linguistics (SFL), this is described as the 
meta functions of the language (Halliday & Matthiessen, 2013). Halliday and Matthiessen distinguish 
between three meta functions of language, that is, its ideational, interpersonal, and textual functions. 
The ideational function is a matter of expressing how one sees the world and how one interprets this 
experience. The interpersonal function concerns how the text creates a relationship between speaker 
and listener. Finally, the textual function concerns aspects that make language relevant, which is 
sometimes looked upon as a “help-function” to organize and mediate. 

Dealing with relation-making processes in online groups, we concentrate on the interpersonal 
function. In a conversation, the speaker not only plays an initiating role in exchanging information, 
but also requires something of the listener. “Typically, therefore”, Halliday & Matthiessen (2013, p. 
135) conclude, “an ‘act’ of speaking is something that might more appropriately be called an interact:
it is an exchange, in which giving implies receiving and demanding implies giving a response” (bold
in original). In the semantic system of speech function, anyone can initiate either a giving or a
demanding exchange in the conversation. That is, we can give or ask for information and we can offer
someone something or ask someone to do something. These four primary speech functions: statement,
question, offer, and command (see, e.g., Halliday & Matthiessen, 2013) were mapped on the posts in
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a group. It is therefore possible to analyse what the teacher wanted to accomplish when posting in the 
group by asking what speech function was used. 

Further, the response given can be analysed as either expected or discretionary responses (Holmberg 
& Karlsson, 2006). For instance, the desired response to a question is an answer and the discretionary 
response is to neglect to answer. Hence, it is possible to uncover interactional patterns in online 
groups. For example, when making a statement, a member of a group can acknowledge as well as 
contradict a particular matter, indicating that statements may initiate discussions. Another example: 
if posts mainly evoke the desired responses, this could indicate a community of trust. Finally, when 
posting a question, a teacher expects someone in the group to have the answer as well as being willing 
to give it. In this way, questions can reveal the knowledge base of the group. 

Disclosing the shared professional knowledge 

In the knowledge base framework, Shulman (1987) outlines seven categories that he suggests 
constitute the teacher’s understanding needed to promote comprehensive student learning. His 
framework incorporates teacher awareness of various educational aspects, such as content, pedagogy, 
and organization: content knowledge (CK); general pedagogical knowledge (PK); curriculum 
knowledge (CuK); pedagogical content knowledge (PCK); knowledge of learners (KoL); knowledge 
of educational context (KEC); and, knowledge of educational ends (KEE). 

Together these categories serve as a way to visualize the shared professional knowledge in these 
Facebook groups, organized by and for teachers. However, we learnt from our empirical material that 
three of the categories (i.e., CK; PCK; and KoL) were difficult to differentiate from each other (van 
Bommel & Liljekvist, 2016; Randahl et al., 2017). These categories appeared simultaneously in many 
posts, hence, we decided to use an overarching category (PCK+) in further analysis, as we did not 
need a finer-grained analysis in this part of the study. By doing so, we adopt the framework to the 
Scandinavian/German educational tradition where the relation between the teaching, studying and 
learning activities in the classroom “the didactic relation” (e.g., Kansanen & Meri, 1999) is 
considered the professional knowledge base. 

Method 
The data were collected from large Facebook groups. The groups are formed and maintained by 
teachers, that is, self-organized and not initiated by schools, the Ministry of Education, researchers, 
etc. It is plausible that every member in the group has a connection to the education field, since the 
administrator of the group checks a member’s affiliation to a school when entering the group. 
Through membership, one can post and comment. At the time of data collection, the groups were 
open for the general public to read. In this paper, we include the results from the analysis of three 
strategically selected Swedish Facebook groups with a theme connected to mathematics education, 
each with, at time of data collection, between 2000 and 15 000 members. The groups are labelled 
MA1–3. 

By scrutinizing the activity pattern in the groups, a stratified random sample of posts could be 
conducted based on time of the school year (for a detailed description see van Bommel, Liljekvist, & 
Olin-Scheller [2018]). This method makes it possible to draw conclusions of the interaction on the 
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groups as a whole. Eighty-four to ninety-eight initial posts were collected per group with a total of 
1762 responses to these initial posts. The average amount of responses per initial post differed from 
3.1 in MA3 to 10.1 in MA2. The interaction sometimes contained images (77 in total), documents 
(13 instances) or links to other sites (229 instances). 

The posts were categorized using the analytical framework developed from speech functions 
(Halliday & Matthiessen, 2013) and the knowledge-base framework (Shulman, 1987). Coding 
reproducibility was ensured via a multi-step process, where both inter and intra coder reliability was 
examined. All four authors where involved in the coding process, and all data was coded by at least 
two persons. Furthermore, the responses on the posts were analysed to confirm the coding of speech 
functions, as the response validates the speech function (e.g., Holmberg, 2011). Finally, the internal 
consistency of the categories was controlled for by scrutinizing all posts in each category, to ensure 
that all posts coded in each category were consistently coded. The procedure described, in which we 
recorded every step in the sampling, coding, and categorization, made it possible to backtrack, retrace, 
and correct errors made in the coding process. 

Data 
Below, four examples from our data are given (translated into English for this paper), including one 
or two of the responses to give some insight in the direction of the conversation. The examples will 
be referred to in the section results and the categorizations for each framework are stated in brackets, 
along with the number of responses. 

Example 1: (Question, PCK+, 23 responses, 2 likes)  

Initial post: Hi, I would need some tips for a thematic theme on length. The students are in grade 
2 and have not previously reviewed cm, dm, m or how to measure. Anyone who 
has some good / cool lesson tip / tasks I could use. Thanks in advance!  

Response: Estimate how long things are, then measure… 

Response:  We take one-meter-robes and dm-robes out to the forest and try to find objects of 
such length.  

Example 2: (Question, CK, 13 responses, 4 likes) 

Initial post:  We discussed the definition of a circle in our team – What would you say, does a 
circle have one side or no side at all?  

Response:  No sides, closed curve 

Example 3: (Offer, PCK+, 6 responses, 163 likes) 

Initial post:  We measure outdoors! An elephant of 3.5m, a whale of 15m and a crocodile of 6m 
👍👍 [Several images of outdoor work included]  

Response:  👍👍👍👍Fun! What a cute crocodile! 

Example 4: (Statement, PCK+, 0 responses, 7 likes) 

Initial post:  Problem solving increases student performance in mathematics. [link to blog]  
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Results 
Interactional patterns exposed by speech functions 

Each post was analysed with a focus on the interpersonal function, which concerns the relationship-
making process (Table 1). The four speech functions, that is, statement, question, offer, and 
command, convey what the teacher wants to accomplish when posting in the group. The speech 
functions ‘Questions’ and ‘Offers’ dominated as shown in Table 1. 

Table 1: The distribution of speech functions in each group 

 Statement Question Offer Command Total 

MA1 (n=90) 5 48 34 3 90 

MA2 (n=84) 9 44 25 6 84 

MA3 (n=84) 8 12 56 8 84 

Total (N=258) 22 104 115 17 258 

To examine the interactional patterns and exchanges of the teachers posting in these groups, the 
responses to each post were analysed. The results show that 85.3% of all posts get responses. Most 
responses (80 %) are in line with the expected response pattern, that is, what the teachers wanted to 
accomplish when posting in the groups. In the examples above, we see that the questions received 
numerous responses (Example 1 and 2) whereas the statement (Example 4) did not receive any 
responses at all.  

Knowledge addressed  

To indicate the practice known and shared (Little, 2002), Shulman’s (1987) framework was used for 
the analysis. Using Shulman’s categories, the content of the initial posts could be analysed giving a 
descriptive overview of the content addressed by the teachers in these communities. These descriptive 
results were then combined with the previously described results regarding the interaction patterns in 
each group. As Questions and Offers dominated, we focus on these two speech functions (Table 2). 

The analysis showed that most Questions deal with PCK+, that is, issues regarding subject-specific 
teaching and learning. Example 1 illustrates such posts. This overall pattern is similar in all groups 
(see Table 2). However, few questions were raised in MA3 so the pattern is not as distinct as in the 
other groups.  

Further, the results regarding the Offers in the posts show that, similar to the category Questions, 
mainly subject specific knowledge (PCK+) were shared (Table 2) as illustrated by Example 3. In 
MA3, a few more posts offered content knowledge (CK), similar to Example 2. MA3 also 
distinguished itself from the other groups in the number of posts unrelated to Shulman’s framework 
(38.2%). Many of these posts contained mathematical jokes or humorous video clips related to 
mathematics. 
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Summary 

The interaction that is the foundation of the Facebook groups is centered on asking for and sharing 
subject-specific knowledge (PCK+). Most posts received responses, and the responses were of the 
expected kind. The online groups were therefore mainly used as forums for making subject-specific 
education known and shared, but, broadly speaking, not as forums for discussion. Having used a 
stratified random sample, conclusions can be drawn regarding typical interaction patterns in large 
self-organized groups. 

Table 2: Knowledge addressed in Questions and Offers  

 Questions Offers 

Knowledge base MA1 MA2 MA3 Total MA1 MA2 MA3 Total 

PCK+ 33 23 6 62 22 12 16 50 

CK 2 6 4 12 0 2 11 13 

PK 2 8 0 10 4 2 2 8 

KEC 4 5 2 11 1 0 1 2 

KEE 3 2 3 8 3 3 4 10 

Total 44 44 15 103 30 19 34 83 

Unrelated 7 5 0  3 5 21  

Discussion 
In this paper, we have shown how two different frameworks enlighten different aspects of our data. 
When combining these frameworks, a new dimension of the data becomes discernible in terms of the 
way in which the mathematics teachers use self-organized online groups to advance their professional 
collaboration and professional development. More specifically, we were able to analyse what teachers 
wanted to accomplish when engaging in such groups. Further, we could see which parts of the 
teaching practice became visible. This is an important result, as it is an empirical question of whether 
the characteristics of groups of teachers working together are those of a community where 
professional development may occur. Since teachers’ professional community is extended to social 
media (Liljekvist et al., 2018; Macià & García, 2016; Tour, 2017), we aimed at empirically 
investigating teachers’ interaction in self-organized groups, addressing subject-specific knowledge, 
in order to understand how the groups are used as resources for professional development. The multi-
theoretical approach used shows that these large Facebook groups display the characteristics of 
groups of teachers that merits professional development. 

The teachers’ online interaction is oriented towards practice to enhance students’ learning; therefore, 
as Little (2002) illustrates in her studies of within-school teacher communities, the issues raised are 
closely tied to the teachers’ everyday professional lives. The subject-specific themes of the groups 
seem to structure the interaction towards the PCK+, which could be described as the centre of 
teachers’ knowledge base, or more specifically, the “didactic relation” between the teaching-
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studying-learning activities (Kansanen & Meri, 1999). The teaching practice that becomes known 
and shared (Little, 2002) in the three Facebook groups is characterized by a focus on pedagogical 
content knowledge, learners, and the material and methods used in the classroom. In forthcoming 
studies, it is now possible to go further and inquire into posts and comments to reveal the individual 
themes within the PCK+ category, for instance, what kind of subject is at play, and if and how teachers 
learn in these communities. 

The representations of practice in the groups display the same pattern in what teachers want to 
accomplish when posting; they request knowledge from and offer knowledge to colleagues, and 
illustrate and share practices. This is in line with our understanding regarding professional learning 
communities in schools (cf. Little, 2002). By combining systemic functional grammar and the 
knowledge-base framework, we can go beyond the context of social media interaction and explain 
how teachers use the resources in self-organized groups to develop their collective knowledge on 
pedagogical and subject-specific issues related to their everyday practice. Furthermore, these three 
Facebook groups are used in only a limited way as an arena for debating and discussing school policy 
matters. This is indicated by the small proportion of statements (22 of the 258 relevant posts), by the 
fact that most statements get responses that merely confirm the content in question, and by the 
educational aspects focused on in the posts. Here, a focus on educational context and educational 
ends would have indicated an interest in such matters. Discussions around such issues might occur in 
other Facebook groups with such themes. We want to conclude that the willingness to respond and 
to share knowledge and teaching methods in the self-organized groups facilitates rather than impedes 
professional development.  
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The aim of this paper is to extend and adapt Yackel and Cobb’s (JRME, 1996) identification of 
sociomathematical norms in mathematical inquiry to problems that are ill-structured. The 
background theory influenced the design and local theory development of the research. This paper 
uses excerpts from an upper primary classroom to address the ill-structured mathematical inquiry 
question, Which bubble gum is the best? Two norms are illustrated: (1) mathematising the ambiguity 
in an inquiry question, and (2) using the inquiry question to check progress towards a solution. 
Children demonstrated productive social norms and emergence of the sociomathematical inquiry 
norm of mathematising, but using the inquiry question was less prevalent. In both cases, children 
found it challenging to productively coordinate their everyday (relevant) and mathematical 
knowledge.  

Keywords: Sociomathematical norms; mathematical inquiry; mathematising; knowledge building 

Problem statement and literature 
Yackel and Cobb (1996; Yackel, Cobb, & Wood, 1991) explicate social and sociomathematical 
norms as central to learning mathematics in a classroom that practices inquiry. Social norms consist 
of expectations within the learning community, such as actively listening to peers and explaining and 
justifying one’s solution (Makar, Bakker, & Ben-Zvi, 2015). Sociomathematical norms are distinct 
from social norms to highlight an epistemic focus unique to mathematical activity (Kazemi & Stipek, 
2001). Sociomathematical norms overlap with but do not coincide with Brousseau’s didactic contract 
(Laborde & Perrin-Glorian, 2005). For example, social and sociomathematical norms tend to place 
more emphasis on the social environment than a didactic contract (Allan, 2017).  

Yackel and Cobb (1996) illustrated sociomathematical norms through examples in a second-grade 
classroom in which a teacher and his students discussed possible solutions and solution methods of 
mathematical problems. Yackel and Cobb emphasised an inquiry approach (distinct from a traditional 
approach), which allowed and encouraged students to contribute their ideas to create a collective 
learning environment. In their paper, Yackel and Cobb point out a taken-as-shared perspective of 
mathematical difference (including novelty and efficiency) and what constituted an acceptable 
mathematical explanation (justification, argument). The examples in their paper were closed-ended 
and well-structured in that the questions were clearly stated and had a single correct answer.  

Although much of school mathematics is focused on closed-ended problems, there is a further set of 
problems utilised in inquiry-based learning. These are open-ended in nature and/or contain 
ambiguities in the problem statement or method of solution (ill-structured). In ill-structured problems, 
the problem statement, purpose, or method of solution contains ambiguities that must be 
(re)negotiated (Reitman, 1965). Well-structured problems contain complete information, limit the 
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solution process to a set of known and organised principles and procedures, and knowable solutions, 
whereas ill-structured problems often require integration of knowledge (integrated, domain-specific 
and contextual), may require information beyond the problem, have multiple or no solutions or 
solution pathways, hold uncertainty around success criteria (determining if the problem has been 
solved), and require personal judgement and interpersonal negotiations (Jonassen, 2010). The 
importance of ill-structured problems has been highlighted in the literature as indicative of problems 
encountered outside of school, in everyday life and the professions (Jonassen, 2010; Yeo, 2017). For 
example, the question “How long does it take to get to the airport?” can be solved mathematically (as 
well as by experience or authority), but the answer may be dependent on the purpose (flying out or 
picking someone up, weighing the implications of being early or late, level of precision needed) and 
context (traffic, method of transport). In many applied problems, the initial question requires the 
solver to reformulate it into one that can be solved using a mathematical investigation (e.g., by 
clarifying ambiguities, being explicit about measures and assumptions, etc.). Research on ill-
structured problems can be complex and highly context contingent. Tasks and solution pathways are 
less explicit, problem contexts and purposes often contain uncertainties or emergent constraints that 
may require responsive action, and success criteria can be implicit, subjective or absent.  

This paper explores how Yackel and Cobb’s (1996) sociomathematical norms could be extended to 
the solution of ill-structured problems in which the ambiguities of the problem are negotiated and the 
solution depends on an argument based on mathematical evidence (Makar et al., 2015). The research 
question under investigation is, What sociomathematical norms were evident in an inquiry-based 
classroom addressing an ill-structured mathematical problem? To address our research question, the 
paper analysed a lesson to identify sociomathematical norms specifically related to mathematical 
inquiry of an ill-structured problem driven by the inquiry question, Which bubble gum is the best? 

The authors’ interests are to develop research with close proximity to classroom practice in order to 
better understand and facilitate teaching and learning at the level of the classroom (Cobb & Yackel, 
1996). We see theory as contributing to coherence across the diversity of mathematics education 
research by developing common languages and lenses to better share, build on, critique, improve and 
adapt research findings to practice. In this light, the contribution of this paper to TWG17 is three-
fold: (1) re-emphasise the utility of Yackel and Cobb’s (1996) foundational theory on 
sociomathematical norms by re-working and extending the theory to broader and more contemporary 
notions of mathematical inquiry, thus facilitating its application to practice; (2) re-imagine 
sociomathematical norms to theoretically unite the diversity of research on mathematical inquiry; that 
is, the paper invites mathematics education researchers to build on Yackel and Cobb’s work to 
elaborate the practical and theoretical application of sociomathematical norms across a diverse set of 
contexts for learning mathematics; and (3) acknowledge and value the influence of researchers’ 
background theory on epistemological and methodological decisions and insights from research. 
Elaborating and unifying the concepts and language of sociomathematical norms can provide more 
coherent body of research in mathematics education to improve its application to classroom practice. 
Better alignment and explicit discussion of researchers’ epistemological lenses in relation to 
methodological decisions is essential to interpret, adapt and translate research findings across 
contexts.     
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Methodological approach 
The study took knowledge building (Scardamalia & Bereiter, 2006) as its background theory, valuing 
how knowledge develops collectively through active discourse, the goal is idea improvement rather 
than “truth”, and understanding is emergent. The methodological focus therefore did not isolate 
actions of the teacher or individual students, but analysed collective activities in context.    

Setting and data 

The data come from a multi-age classroom (children aged 10-12 years) of about 25 students in a low 
socioeconomic community in semi-rural Australia. We drew on video data from a class that 
conducted a mathematical inquiry around the question, Which bubble gum is the best? Students 
identified valued and measurable characteristics of bubble gum, developed appropriate measures, 
collected data on 3-4 brands of bubble gum and used their data to determine the best bubble gum.  

Classroom videos were retrospectively analysed using an approach adapted from Powell, Francisco 
and Maher (2003). To respond to the research question, sections of video logs from the lessons were 
highlighted that provided insights into sociomathematical norms specifically related to ill-structured 
problems. Videos of these sections were reviewed again to be more selective in relation to the 
purpose. For example, highlighting was removed if episodes illustrated only social norms. Remaining 
highlighted episodes were transcribed and annotated to elaborate potential sociomathematical norms. 
From these episodes, a storyline was constructed to make sense of annotations by seeking connections 
between the inquiry problem, interpretations of students and teacher’s actions, mathematical ideas 
that emerged and potential evidence of sociomathematical norms. This was a non-linear process 
supported by the background theory that often required returning to observe video, refine or rework 
interpretations, or enlarge or reduce contexts around episodes. Narrative was drafted to draw out local 
theory and further reflect on insights unique to each episode. In the process of writing, the selection 
of excerpts was narrowed to maximise insights and coherence in relation to the research question.     

Classroom context         

The teacher was experienced in teaching mathematics through inquiry after participating in research 
and professional development on mathematical inquiry by the first author for a number of years. The 
students were accustomed to working collaboratively, which was evident from the ease with which 
they worked with peers (freely generating and critiquing ideas, seeking approval from group before 
recording on a common page, keeping one another on task). Their collaborative social norms could 
be considered routine (Yackel et al., 1991), however their experience in solving ill-structured 
problems was limited. Therefore, the teacher was more explicit in co-constructing expectations with 
the class about acceptable activity when working in mathematical inquiry. 

As argued in Yackel and Cobb (1996), an expectation within mathematical inquiry is for students to 
work towards autonomy. The teacher demonstrated this expectation in whole class discussions to 
have students generate ideas, with her explicitly privileging those that she wanted students to adopt 
as valued. Students worked collaboratively to devise and carry out a solution as the teacher rotated 
between groups to check and support their progress. She also paused the class regularly when she 
saw common issues to discuss as a whole class.  
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Illustrating norms of mathematical inquiry with ill-structured problems 
We identified two sociomathematical inquiry norms in the lesson that specifically aimed to build 
student autonomy in solving ill-structured problems in mathematical inquiry. First, we illustrate the 
norm of mathematising the ambiguity in the inquiry question (Which bubble gum is the best?) so it 
could be investigated mathematically. Mathematising involves “translating a realistic problem into 
the symbolic mathematical world, and vice versa” (Jupri & Drijvers, 2015, p. 2483). Second, we 
illustrate the norm of using the inquiry question to drive and self-check progress. This second norm 
is different than mathematising. The use of the inquiry question during the solution process required 
students to shuttle back and forth between the real and the mathematical worlds, re-checking if their 
mathematical processes and evidence were still progressing the real world problem.  

Mathematising 

The teacher first oriented students towards mathematising the inquiry question. Her actions indicated 
that she was co-constructing the norm of mathematising as an expected activity in solving ill-
structured inquiry problems, making explicit their obligations towards working autonomously. After 
introducing the inquiry question, the teacher led a whole class discussion to generate ideas to compare 
the brands of bubble gum. Students’ early suggestions were general, so the teacher pressed students 
to extend their ideas as a step towards productively mathematising by considering possible measures.  

Oliver: Um, you could chew the bubble gum and then see which one is the best. 

Teacher: So what would I be measuring, Oliver? [Oliver: Um, the taste, the texture.] Ok, so 
hang on a minute, there’s some good ideas! So I could measure the taste, texture. 
What do you mean by texture, Oliver? 

Oliver: Uh, how it feels. 

Teacher: Yes, ok. … What else would I be measuring for bubble gum to be the best? Imagine 
you are a supermarket and you decide I can only stock one bubble gum. Which one 
will I stock? How will I know it’s the best? 

The teacher set a possible purpose for students to come up with relevant criteria that could be 
investigated mathematically. Not all ideas were relevant, which may be an artefact that school 
mathematics often does not often trigger sense-making (Schoenfeld, 1991). For example, students 
suggested examining which gum was healthiest, comparing smell, packaging, size, market, weight, 
dimensions (length, width, height), ingredients. The teacher recorded their ideas, emphasising ideas 
that were relevant and measurable in her intonation (“Yeah! The smell!”) and queried, but did not 
discount others (“Market? What do you mean by market?”). Yackel and Cobb (1996) point to this as 
a way that teachers signify productive ideas without explicitly labelling ideas as “good” or “bad”.  

After recording students’ ideas, the teacher supported them to mathematise the problem by coming 
up with ways of measuring valued qualities. Students had no experience with non-conventional 
measures, so their suggestions (size, graphs, columns, packets) reflected familiar mathematics or 
personal knowledge, but not coordination of relevant and mathematical. The teacher was patient and 
continued to ask for ways they might compare taste (relevance) until she found an idea that she could 
build on to mathematise comparison of taste. 
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Adele: Vote out of 10? 

Teacher: Ah, so you’d do a survey? Oh, thank you! And you said a vote out of 10, so in actual 
fact that’s giving them a rating. … If I want to measure taste, I can’t measure it with 
a ruler. … (Draws a number line labeled 0 to 5) Where you would place the bubble 
gum if this [one] is the best and this [other one] is the worst? What number would 
you give it (the best one)? 

Oliver: I would give it a 4 ½.  

Teacher: 4 ½? So how would you show that on there, Oliver (points to the number line)? 
(Oliver gets up and points to the space between 4 and 5.) 

The teacher used the opportunity to explicitly teach students about rating scales as a tool to 
mathematise the problem. She left the students’ ideas on the board (both productive and less so) and 
reiterated the task to start them off in their collaborative groups. Allowing students to wrestle initially 
demonstrated that the teacher expected them to generate and develop ideas to mathematise the 
problem. She didn’t leave them unsupported, however, and used skilled questioning to press their 
ideas to be relevant and produce mathematical evidence. A group wanting to weigh the bubble gum 
were asked, “Does it have to be the heaviest to be the best bubble gum? … Which of those [ideas] is 
the most important, do you think?”. She left them to decide whether to include weight. In other 
groups, she probed how they would record their measures and responded “Ooo! High five!” when a 
student suggested a table. She further probed, “Talk about what that table is going to look like, Jack. 
What it’s going to have in it?” The guidance was moderated according to the progress of the group, 
but the expectation to work autonomously was consistent. For groups who struggled, the teacher spent 
more time pressing their thinking to deepen or refocus their ideas to make progress, then moved on.  

Teacher: What are we measuring? 

Charlotte: Taste. 

Teacher: Rightio, what else? 

Students: The smell. The width 

Amelia: If you can smell it, you can see how strong it is. 

Teacher: Ok, so you’re going to smell how strong it is. … How would you show me you are 
measuring smell? So how will I know out of your 4 pieces of bubble gum, which 
one smells the best? …  

Amelia: Well, we’ll smell it first and then we’ll write it down. [Teacher: What will you write 
down?] How, what we think, what, how strong it is in our opinion. … 

William: We’ll put 1, 2, 3, 4, 5 on it.  

Teacher: … Draw it for me, William. … What does 1, 2, 3, 4, 5 stand for? 

In this example, the teacher pressed students to be specific so that they could operationalise their ideas 
through mathematising the problem. Later, the teacher was giving instructions to a teacher aide and 
was overheard by a student.  
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Teacher: [Are] they up to tasting? 

Teacher Aide: Yeah. … They’ve done a scale for smell. … 

Teacher: [Ask] what else can they do with it? They can blow bubbles and stuff like that and 
try and see if they can measure and how they would go about doing that as well. 

Noah: You know you just gave us the answers! We can blow bubbles! 

Noah’s comment indicated that the teacher violated a classroom norm, that in mathematising the 
problem, students should generate their own criteria and measures for what makes bubble gum “best”. 
Because norms are not visible, they are often only detected when a member of the community breaks 
the norm (Yackel & Cobb, 1996). Noah’s comment assisted us to identify mathematising as an 
emergent norm of mathematical inquiry with ill-structured problems.  

Focus on the inquiry question 

Students’ ideas were often too vague or not relevant to the question. Therefore, another norm the 
teacher worked to instil was the value of the inquiry question to help students locate relevant measures 
and keep them on track towards a solution. In the example below, she noted that students were falling 
into patterns of mathematical activity that neglected sense-making. She modelled using the inquiry 
question as a way for them to self-check sense-making as they worked.  

Teacher: Ok, just stop for a moment. Eyes up here. … (Talks about one group drawing a 
graph.) But if you are drawing a graph, you really need to think, “Well, what am I 
showing on the graph?” … You have to come back to the question Which bubble 
gum is the best? With all of your results, at the end of the day, you have to come 
back to that question. … You have to be able to tell me which one is the best and 
justify why our bubble gum is the best. … By saying it’s the best is not proving 
anything. Your results have to prove it. … Jack’s group is looking at a table of 
results and they’re doing some graphing, other people are looking at scale ratings, 
fantastic idea! … If you need scales, how many will you need? How many lines 
will you draw? How many tables will I need? You need to look at what you are 
measuring, how I will record that information?  

The teacher maintained an expectation of autonomy in using the inquiry question to check progress. 
She often stopped at groups, checked one element and moved on, indicating an expectation that 
students work autonomously. One group was weighing bubble gum when the teacher arrived.  

Teacher: Ok, so if you are going to tell me that that bubble gum is the heaviest, does that 
mean it’s the best? 

Sam: No, I think that Hubba Bubba (brand of bubble gum), because it— 

Teacher: So what is the point of telling me that that bubble gum is the heaviest if it doesn’t 
tell me which one is the best? Because my question is Which bubble gum is the 
best? 

Sam: Well, it’s more popular— 
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Teacher: … I’m understanding what you’re saying, but I’m just concerned that the testing 
you’re doing is not going to show me anything. At the end of the day, your testing 
has to show me which bubble gum is the best.  

Delia: Hubba Bubba because it’s got the strongest smell, it’s more popular and more 
people would buy it.  

Teacher: So was there any point in weighing it? … Do we need to know which one is heavier 
when we want to know which one is the best?  

The teacher continued to press students on connecting their activity to sense-making (Kazemi & 
Stipek, 2001) through the inquiry question. Sam and Delia’s additional contributions (Hubba Bubba 
is more popular) connected their everyday knowledge to the inquiry question, but not to evidence the 
group had collected (weight). Using the inquiry question to guide their investigation was more 
abstract than mathematising in that students needed to step back and reflect on a larger purpose of the 
activity. We did not see evidence of students self-monitoring their progress with the inquiry question 
in this lesson and suspect it would take much more time to develop into a norm than mathematising. 

Discussion 
In this paper, we addressed the research question, What sociomathematical norms were evident in an 
inquiry-based classroom addressing an ill-structured mathematical problem? We considered 
mathematical inquiry in solving ill-structured problems using mathematical evidence (Makar et al., 
2015). Two sociomathematical inquiry norms were illustrated during a lesson in which students 
addressed the mathematical inquiry question, Which bubble gum is the best?  

· Ill-structured inquiry questions need to be mathematised through relevant and mathematical 
measures in order to be solved. 

· The inquiry question is used to guide and check progress and mathematical evidence towards 
a solution. 

These two were considered sociomathematical inquiry norms because they are central to 
mathematical inquiry in that (1) the question contains ambiguities that require negotiation in order to 
mathematise it into an operational investigation, and (2) a mathematical inquiry is driven by an 
inquiry question and its solution and evidence must respond to the inquiry question. Acknowledging 
these as useful norms to develop in an inquiry classroom can assist teachers in initiating, maintaining 
and extending student autonomy when addressing ill-structured inquiry problems in mathematics.  

Theory adds coherence to a field by developing common language and lenses through which to gain 
insights and improve practice while acknowledging that researchers’ background theory affects what 
is researched and how. Yackel and Cobb’s (1996) research on sociomathematical norms has had a 
significant effect in progressing the mathematical reform agenda. Their work identified 
sociomathematical norms to ensure that teaching both improved social practices and focused on 
mathematics (Kazemi & Stipek, 2001). Given the nature of distinctive types of mathematical tasks 
(Yeo, 2017) and efforts to extend students’ mathematical experiences to more open-ended problems, 
it would be useful for the field to extend the types of sociomathematical norms that would be useful 
in different forms of mathematical activity. We hope this paper makes some progress on this mission. 
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The topic of powers and exponents is generally considered one major obstacle for learners in 
schools and universities. Our main goal is to answer the question: How can we bridge the gap 
between individual conceptions in students` minds and the relevant mental models 
(Grundvorstellungen) to conceptualize powers? With reference to this learning object, two tasks 
from our test instrument and initial results are presented, which are part of our diagnostic tool to 
enable the uncovering of students´ individual images and misconceptions in the area of powers, by 
means of comparing the prescriptive with the descriptive level of relevant mental models. 

Keywords: Grundvorstellung, conceptual change, understanding, mental models, powers. 

Introduction 
Even though the subject of power expressions and its modern exponential notation has been dealt 
with for a long time (Euler, 1770), it seems that students of all ages still face difficulties when 
confronted with them, as well as with exponentiation in general. That has been documented over the 
years, mainly in school settings (e.g. Confrey & Smith, 1994; Pitta-Pantazi et al., 2007; Avcu, 
2010). The key issue seems to be the lack of understanding of basic rules and algorithms used to 
manipulate powers. To guard against such occurrences, there is a need for a conceptual change in 
students´ minds (vom Hofe & Blum, 2016, p. 237), in order to gain a deeper understanding on the 
conceptual level. Hahn and Prediger (2008) have proposed that opportunities for conceptual change 
should even precede the introduction of rules on the procedural level, or as Sfard (1995) puts it: 
“Operational thinking must be replaced by structural”1. This proposition considers the distinction of 
knowledge into conceptual and procedural knowledge (Hiebert & Lefevre, 1986). Taking the above 
into consideration, we pose a twofold question: Which mental models (Grundvorstellungen, vom 
Hofe & Blum, 2016) should students form for a confident and flexible manipulation of power 
expressions, and which individual models do they have? To answer this, we first concern ourselves 
with the identification of adequate mental models through a subject matter analysis and an expert 
survey. On the basis thereof, we carry out a design research study, where we go from a first pilot 
study to developing test items, over to a number of three cycles, to aid us in achieving a final 
version of our diagnosis instrument. Our goal is to find out what students’ individual mental models 
are and whether they are consistent with the desirable normative models. In the present article, after 
setting the theoretical background, we will provide some insights into our methodology and 
evaluate the potential explanatory power on a small item sample of the test instrument.  

                                                 
1 An extended discussion of this can be found in Long (2005, pp. 62f). 
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Theoretical Background 
In this section we will present the theoretical approaches used in the study to operationalize 
understanding. First, an outline of the construct of mental models or Grundvorstellungen (vom Hofe 
& Blum, 2016) together with related terminology used in international literature will be given. 
Furthermore, the various transformations between representations will be displayed, since they play 
an essential role for successfully dealing with mathematical concepts. This sets the basis for the 
generation of the items used in the test instrument. 

The concept of Grundvorstellungen (GVs) 

Particularly when modeling with the help of mathematics, one needs to activate the suitable GV(s) 
to translate between the “real word” and the “world of mathematics”, which in turn–when 
successfully performed–means, that the topic has been understood (Bossé, Adu-Gyamfi, & 
Cheetham, 2011, p. 117). The concept of Grundvorstellungen, or mental models, has a long 
tradition in German subject-matter didactics. It is used to describe the connection between 
mathematics and reality on a conceptual level (vom Hofe & Blum, 2016). Three aspects of GVs can 
be distinguished. The normative aspect constitutes the basic idea of the concept; it is to be 
understood prescriptively as the desired status to be reached when understanding a concept. The 
descriptive aspect characterizes the individual perceptions and notions of learners; it is, therefore, a 
representation of the students’ conceptualization. Finally, the constructive aspect compares the 
normative and the descriptive aspect to provide some insight concerning students’ difficulties of 
understanding, as well as offer solutions for overcoming misconceptions (Hefendehl-Hebeker et al., 
2019). 

Considering that the concept has also been referred to as a theory, our view is the one offered by 
Radford, who mentions: “… Mogens Niss (1999) contends that a theory in math education has two 
goals. First, it entails a descriptive purpose, aimed at increasing understanding of the phenomena 
studied. Second, it has a normative purpose, aimed at developing instructional design.” (Radford, 
2012, p. 4). Moreover, Hefendehl-Hebeker et al. (2019) add: “… the approach of the GV concept 
combines normative and descriptive methods with a constructive aim. In this sense, analyses of 
students’ work based on the GV concept typically do not remain at the descriptive level but lead to 
indications of a constructive ‘repairing’ of the analyzed problems.” (p. 35). 

To differentiate and clarify the concept from internationally used terms we should mention the 
theoretical proximity of GVs to concept image and concept definition (Tall & Vinner, 1981). 
Although both approaches refer to understanding of mathematics using Piaget’s cognitive 
psychology (vom Hofe 1998) and constructivism (Hahn & Prediger 2008) as background theories, 
GVs are mostly understood in their normative level, as a didactic category for teachers to make 
explicit which mental models are appropriate for understanding the specific mathematical concept 
or operation. To differ clearly between the normative mental models according to the mathematical 
concept and the descriptive mental models in students` minds, some authors replace the descriptive 
aspect with the term individual mental models (e.g. Prediger 2008). Vom Hofe (1998) uses the term 
basic model as a prescriptive notion and individual image as a descriptive notion, explaining his 
integrative view as a “holistic view of mathematical thinking and doing,” offering “methodical and 
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theoretical possibilities for combining normative didactic conceptions with descriptive and 
interpretive working methods” (p. 326). 

Furthermore, Soto-Andrade and Reyes-Santander (2011) compare Grundvorstellungen with Lakoff 
& Nunez’s (2000) conceptual metaphors. The similarity of both is constituted by a similar 
mechanism of transmission: Real experience is the source domain allowing for concept formation, 
the goal is to provide abstract concepts with meaning. However, they differ in the aspect of their 
implementation in practice and in that through GVs, preexisting mathematical concepts are 
represented, rather than constructed. In this paper we will use the terms normative and descriptive 
aspect of GVs to mean mental models for the former and individual models for the latter, as used in 
Prediger (2008), according to Fischbein’s definition of a mental model as a “meaningful 
interpretation of a phenomenon or a concept” (Fischbein, 1989, p. 12). Following the conceptual 
change theory, we will refer to the descriptive aspect in a competence-oriented meaning, rather than 
adhere to a deficit-oriented analysis. The formation of GVs is the key element of concept formation, 
thus, also entails conceptual change (Kleine, Jordan, & Harvey, 2005).  

Grundvorstellungen of Powers 

From the normative point of view, there are four aspects that can be extracted and considered as 
mental models for powers with natural numbers as both the base and the exponent. Following a 
literature review2, a subject matter analysis and an expert survey our preliminary results were 
presented in a first draft (Itsios & Barzel, 2018). After further expert talks, the identified mental 
models were redrafted and rephrased. These are: 

(GV1) Repeated Multiplication (RM): this mental model can appear in two different ways–a more 
dynamic one (RM-d), describing a temporal-successive process where new objects emerge, 
e.g. the repeated doubling of a number of bacteria per hour, and a more static one (RM-s), 
focusing on the end result of a repeated action, as a whole or an object, describing the end 
result of a repeated action, e.g. a binary tree. 

(GV2) Combinatory Conception (CC): this refers to the number of possible permutations with 
repetition (number of n-tuples), e.g. there are 105 possible combinations for a lock with five 
cylinders, each using a digit from 0 to 9. 

(GV3) Stretching by the same factor (SF): this represents a magnification without the emergence of 
new objects, e.g. 52 can mean zooming into an image twice with a five-fold magnification. 

Transformations among Different Representations 

When learning a mathematical concept, students should engage in three actions as proposed by 
Lesh, Post and Behr (1987): recognition of the concept in multiple representations, flexible 
manipulation within these representations and translation between different representations. A 

                                                 
2 Although we do not adopt the theoretical framework of combining embodied mathematics with conceptual metaphors, 
we acknowledge the work done in Mowat (2010), as this offers a database of mathematics teachers’ concept images on 
exponentiation. 
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stable use of multiple representational systems can be a guarantee for an easier development of 
concepts in mathematics and demonstrating mathematical understanding can mean being competent 
in the manipulation of these systems. These systems can vary from equations, graphs and tables to 
diagrams, charts or even verbal and written forms (Goldin, 2002, p. 197; Pape & Tchoshanov, 2001, 
p. 120). There is even a stipulation in the specific content of powers, that conceptual connections 
between representations is a prerequisite for deeper understanding of concepts (Nataraj & Thomas, 
2012, p. 557). These transformations among representations set the basis for the design of our test 
instrument, which will be introduced in the next section. 

Design and Methodology 
A first draft of the test instrument was designed using 20 items in total, including three open-ended 
questions and 17 calculation tasks. For the construction of the items, the aforementioned GVs, as 
well as most appropriate transformations among representations were taken into consideration, to 
make the test as comprehensive as possible. This was then tested with a sample of 117 subjects (87 
civil and mechanical engineering and 30 university mathematics students) and after a first 
assessment all responses were categorized according to the frequency of their occurrence. Then, 
together with the right answer, the three most frequent wrong answers were used as possible choices 
for each item. The final version comprises the initial three open-ended questions, one calculation 
task and 16 single-choice items. Following a baseline diagnosis, a total of 176 Grade 10 students 
from two different schools3 were tested in the main study, with the purpose of determining 
individual conceptions as well as to detect which GVs can be activated. For the purposes of this 
article we will present two items regarding the transformations from symbolic to graphical, as well 
as from symbolic to verbal. 

Item Sample 

Figure 1 shows two of the three open-ended questions (items A2 and A3), in which the diagnostic 
potential of individual mental models becomes evident. With them, we can explore the ideas that 
are prevalent in learners’ minds about their conceptual understanding of power expressions and 
their connection to everyday life situations.  

 
Figure 1: Test items A2 and A3 

Item A2 requires the translation from symbolic to graphical and we expect that mainly 
Grundvorstellung RM-s will be activated. By requiring a brief explanation, we add a second 
transformation that students must perform, namely graphical to verbal. Since practically none of the 
test subjects’ answers includes an explanation, we will consider item A2 to address only the 
transformation symbolic to graphical. Item A3 requires the translation from symbolic to verbal and 

                                                 
3 One comprehensive school (Gesamtschule) and one secondary school (Realschule). 
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the Grundvorstellungen RM-d, CC and SF are expected to be activated. In case RM-s is activated, 
the translation should still be considered to be under symbolic to verbal, not symbolic to graphical, 
since the task requires a verbalization of the situation, regardless of the fact that the given situation 
could describe a spatial arrangement. 

Some results 
Our assumption concerning the results is the following: if an appropriate GV is activated, then there 
will be a plausible answer given. We make no claims to the opposite, namely, if no reasonable 
answer is given, as to whether the corresponding GV is present in the student’s mind or not. We 
analyzed the data by categorizing each response to a corresponding pattern, within a small expert 
group to ensure interrater agreement. In Table 1, the results to item A2 are presented together with 
the respective response frequencies and in each case an example is given, followed by the relevant 
GV that most likely could be supported due to the proximity to an individual model. Only a total of 
51 Grade 10 students answered this question, including isolated cases with answers that are not 
hereby listed, because we could not diagnose the structure of those responses. In these drawings we 
often encountered indications of repeated multiplication (RM), with correct answers as well as 
misconceptions. 16 answers corresponded to a more static view (RM-s, 1st row), where 23 is 
misunderstood as multiplication, presented in a spatial-simultaneous arrangement. We also saw 
substantial dynamic versions, for example a sequence (2nd row), which we see either as figured 
numbers or just as cardinality of the relevant numbers. We also attributed RM-d, when the variables 
were given as symbols, where we can say that the calculation is perceived correctly, but without any 
hints as to whether the meaning can be properly elaborated (3rd row).  

Response pattern N Example GV 

Type of calculation misconception 
(multiplication)  

16 
 

RM-s 

Cardinal numbers as symbolic 
sequence 

7 
 
RM-d 

Repeated multiplication with 
symbolic variables 

7 
 

RM-d 

Table 1: Results and response frequencies to test item A2 

What can be extracted from these results is that learners have not yet adequately shown that they 
can activate and use the necessary GVs to deal with the given task. However, their individual 
models, albeit not wrong, remain confined within the world of mathematics and symbols, rather 
than extending to real-life applications. Table 2 shows the answers given to test item A3, with a 
total of 46 Grade 10 students answering this question. Some isolated cases have not been listed 
under the response patterns, showing–again–no structure or diagnostic value. The last column 
shows, as previously in Table 1, the GV that in our opinion has to be activated, in order for the 
initial presented idea to make sense in the context of the given power expression. 
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Here we encountered cases where 32 is misunderstood as multiplication, presented in a temporal-
successive way (1st row). The most common given response that can be considered feasible is 
shown in the 2nd row, where the power expression is viewed as a 3-by-3 spatial-simultaneous 
arrangement. Very few students (3) tried to present a situation, such that the Combinatory 
Conception could be identified, but failed to present it accurately (3rd row). 

Response pattern N Example GV 

Type of calculation 
misconception  
(multiplication) 

17 I am ill. I have to take pills. Two in the morning, two at 
noon and two in the evening.  

RM-d 

 

Area 7 I want to find out the area of a square-shaped room to lay a 
new carpet. Each side of the room has a length of 3m. I 
calculate 32 = 9, then I know that I need a 9m2 carpet. 

RM-s 

Combinatorics 3 I own 3 dresses, 3 handbags and 3 pairs of shoes that I can 
combine. 

CC 

Table 2: Results and response frequencies to test item A3 

Looking at the first row of Table 2, we can identify a misconception that could be used as an 
opportunity for supporting learning. Further support, e.g. interviews, could be structured in a way 
that students are asked to compare the result of 32 with their own result (six), leading to a cognitive 
dissonance. This, in turn, could be the starting point of a conceptual change within their individual 
images to fit into the normatively set mental models. 

Discussion 
In all presented cases, we can observe that multiplicative thinking is predominant, with more than 
50% of given answers showing that the two variables in question are combined in a multiplicative 
fashion, mostly assuming commutativity4. That can be seen in the first example of Table 2, where 
the numbers 2 and 3 of the expression are combined in a way that results in a multiplication context. 
After categorizing the response patterns for items A2 and A3 we identify the main problem to be a 
fixation on previous arithmetic operations of a lower level (multiplication). This problem 
encompasses depicting a number raised to the third power (see Table 1, first example given) as an 
array or a two-dimensional area, rather than a three-dimensional object, for example a cube. 

Looking at the results of items A2 and A3 we can assume, that the main problem overall is a 
misconception of the mathematical object of exponents and powers. Confusing multiplication with 
exponentiation seems to be a principal reason for the demonstrated findings. A possible explanation 
for these findings is the lack of context variety offered to students when introducing the concept, 

                                                 
4 Responses to item A3 included both cases, where 2 and 3 were the multiplier and the multiplicand, respectively, and 
vice versa.  
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leading to a false notion of what exponentiation is and when it can be applied, even if plain 
calculation tasks can be performed faultlessly.  

Regarding this TWG, our contribution is twofold. First, by expanding the range of 
Grundvorstellungen to include the normative GVs for powers, as mentioned above. Second, with 
our example we have shown how the concept of GVs can help to bridge the gap between individual 
models in students` minds and the relevant mental models which are necessary for the specific 
conceptualization. The method of connecting and comparing preexisting ideas and misconceptions 
with the normative level of GVs shows promising prospects to adequately describe our results, 
potentially leading to an accurate diagnosis and treatment of these misconceptions.  
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This paper aims to propose a methodological tool for comprehensively studying variables on 
teachers’ design and analysis of their own lessons. Our theoretical base is the anthropological theory 
of the didactic, especially the notion of para-didactic system and the scale of levels of didactic 
co-determinacy. Fusing these constructs, we create a new ecological scale of factors on teachers’ 
didactic activities outside didactic situations, which makes us more sensitive to the ecology and 
economy of teachers’ working. The functionality of the model is put to the test by an ecological 
analysis of data from an international lesson study situation where an archetypal phenomenon 
appears—teachers’ excessive concern with either microscopic mathematical topics or general 
teaching methods. Our analysis of conditions on this phenomenon with the new tool identifies two 
constraints on lesson study in relation to teachers’ professional terminology and authority. 

Keywords: ATD, ecological analysis, noosphere, profession, para-didactic system 

Introduction 
The Japanese lesson study as an approach for improving the quality of lessons has attracted great 
interest as a promising opportunity for developing of the scholarship for the teaching. There are many 
challenges for transplanting lesson study worldwide outside Japan. Winsløw, Bahn & Rasmussen 
(2018) categorised two different directions of the research about lesson study: descriptive and 
intervention. The descriptive research investigates lesson study itself as a research object and the 
intervention research use it as a method for the professional development. Our approach in this paper 
is located in the descriptive direction. Lesson study is a complex and contingent entity, since it is 
originated from teachers’ spontaneous effort, which deeply affected by the Japanese society and its 
schooling culture. Consequently, the development of theoretical and methodological tools for 
describing lesson study has been challenged within the research community. Our aim in this paper is 
to provide an additional contribution to this endeavour. 

In this study, we try to expand the analytic range of lesson study research within the ATD, i.e. the 
anthropological theory of the didactic (cf. Chevallard, 2019), which was created and developed by 
Yves Chevallard and his colleagues over the last 40 years (if we count from the birthyear of the 
didactic transposition theory, which is the origin of ATD). ATD is well established in both French 
and Spanish speaking communities and is still actively developing around the world. A feature of 
ATD is the ecological way of problematising didactic reality, that is, the habit of questioning 
conditions and constraints of all kinds and origins. This reality is related to any didactic fact of all 
types regarding the diffusion of knowledge, e.g., explaining a proof of the Pythagorean theorem in a 
classroom, writing a mathematics textbook for elementary school students, and so on and so forth. 
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The ecological questioning in didactics is crucial for both the understanding of the didactic world and 
the intervening to it. It is because any specific teaching activity is definitely determined not only by 
student, teacher, and content at stake, but also by institutional, cultural, and historical variables. 
However, in our view, the ecological approach has not fully percolated through a relatively new 
research field of ATD: the paradidactic field. The adjective paradidactic was introduced into 
didactics by Winsløw (2011)—with a special focus on lesson study—for studying teachers’ didactic 
activities outside didactic situations: the planning and reflecting upon their lessons. In the 
paradidactic field, the ecological analysis is usually conducted by the notion of paradidactic 
infrastructure (ibid.), which is an application of the notion of didactic infrastructure. Within ATD, 
the noun infrastructure means the fundamental construction to make a certain human activity 
function—their nature, size, and materiality do not matter—e.g., the infrastructure of camping 
activity consists of a tent, cooking equipment, firewood, a camping car, a camping site, etc. 
Regarding teachers’ activities, lesson study is based on a paradidactic infrastructure, that is, a 
structured set of basic conditions for paradidactic activities, e.g., the open lesson—which is an 
opportunity for many teachers to observe a same lesson and discuss it—conditioned by a time table, 
an equipment of the school where the event is held, a theme of the conference, organisers and advisers 
in the discussion, the lesson itself, and so on (cf. Miyakawa & Winsløw, 2013). Indeed, the notion of 
paradidactic infrastructure allows us to study the ecology of paradidactic activities. However, this 
notion does not amply enlarge and indicate our scope of ecological analysis in the paradidactic field. 
In other words, following kinds of methodological questions cannot be answered clearly: what kinds 
of conditions have to be investigated in the analysis for understanding and explaining paradidactic 
phenomena? To what extent do we need to look for paradidactic conditions? Which conditions are 
uncontrollable for teachers? Which connections are there between different paradidactic conditions? 
In this paper, we will propose a new methodological tool for the ecological approach, adapting a 
well-known hierarchical model of types of conditions—the scale of levels of didactic 
co-determinacy—to the paradidactic field. 

 A methodological tool for questioning the ecology of the paradidactic 
In this section, we would develop a methodological tool for analysing the ecology of lesson study. 
However, at first, let us tell beforehand for readability that our analysis consists of two phases. The 
first one is the economic (or classically didactic) phase which means the analysis of the dynamics of 
target systems, e.g., a lesson. In the economic phase, we will clarify some properties of teachers’ foci 
or interests in the lesson study, by using the original scale of levels of didactic co-determinacy (Fig. 
1). Next, at the second phase—called the ecological—we will identify some constraints on the lesson 
study, by using our new model—the scale of levels of paradidactic determinacy (Fig. 2). 

 The scale of levels of didactic co-determinancy: an economic tool for paradidactic research 

One of the main purposes of didactics is to investigate the ecology of didactic systems. Any didactic 
system is made of a group of students, one or more teachers, and a didactic stake, i.e., something to be 
learnt by the students. In didactic systems of mathematics, student’s mathematical activities are 
affected by the teacher’s didactic activities, and vice versa. Such dynamics of didactic systems are 
called the didactic co-determination, which works under conditions of different kinds and origins.  
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 The scale of levels of didactic co-determinacy is a model of hierarchy of 
genres of such conditions on the functioning of the didactic system (Fig. 
1). The level of didactic system is divided into five sub-levels depending 
on degrees of taxonomical generality of didactic stakes—discipline, 
domain, sector, theme, and subject. The level of pedagogy includes every 
condition about teaching methods, ideas, and approaches which are 
independent of the nature of each disciplinary field. Subsequently, a 
didactic system with a pedagogy functions within a school system, which 
in turn depends on a set of characteristics of a given society, civilisation, 
and ultimately humankind. 

In any didactic system, the role of teachers is to make students study a certain didactic stake. This is a 
fundamental type of works of the teacher. However, there exists another important sort of activities of 
teachers outside didactic systems. It is to design, observe, and reflect upon didactic systems 
themselves. The role of such kinds is played in “institutional systems about didactic systems” which 
is called paradidactic systems. In the studying of such systems, we can use the didactic scale (Fig. 1) 
in the economic way—e.g., the assorting of teachers’ foci—rather than the ecological way. In other 
words, it cannot work well as a tool for investigating conditions on paradidactic systems. Then, we 
need some new model for the paradidactic ecological analysis. 

 The scale of levels of paradidactic determinacy: an ecological tool for paradidactic research 

Let us describe here any paradidactic system by a nested system—an 
institutional system containing its participants and a didactic system as its 
object of study which we call a paradidactic stake. Then, similar to the case 
of didactic systems, we can think of a determinative mechanism inherent in 
paradidactic systems. Since the didactic system and the paradidactic system 
live in different types of institutional environments, let us propose a new 
hierarchical model of levels of conditions and constraints for studying the 
ecology of paradidactic systems (Fig. 2). 

The paradidactic determination acts on different groups of conditions starting from the first level of 
paradidactic system. Principal conditions at this level mean properties of each item of the 
paradidactic system. In addition, as portions of conditions at the paradidactic system level, let us 
indicate the set of local clauses of paradidactic systems as what we name the paradidactic 
contract—implicit rules, e.g., avoiding negative comments about students’ abilities or attributing 
every failure in the lesson to the teacher’s didactic acts—applying the notion of didactic contract in 
the theory of didactic situations led by Guy Brousseau. The second level is the paradidactic 
profession—about the notion of profession, see also Chevallard (1992a)—professions more or less 
acting paradidactic activities. In this paper, we would focus on the profession of teacher, but there 
exist other kinds of professions which could be involved in different paradidactic systems: 
governmental official, teacher educator, mathematician, and so on. The third level is the didactic 
noosphere. Roughly speaking, the noosphere is the institution related to designing and evaluating 
school systems in some way (cf. Chevallard, 1992a, b). Noospheres are usually fuzzy and 

 
Figure 1: 

Didactic ecological scale 

 
Figure 2: Paradidactic 

ecological scale  
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heterogeneous institutions which consist of professionals within professions of different kinds. 
Simply illustrating, a meeting responsible for developing a national mathematics curriculum could be 
an epitome or miniature of the noosphere. In any noosphere, an institutional worldview consisting of 
visions of different types—e.g., transformative, pedagogical, ethical—implicitly integrates 
professionals of different kinds—politician, teacher, mathematician, and so on—into a noosphere. 
Higher levels than the society are similar to the original didactic scale. 

An economic analysis: The case study of an international lesson study 
Context of the open lesson 

The demonstration lesson and the post lesson reflection—of which the open lesson consists—under 
investigation in this article was part of a one-day conference at an ordinary public school, situated to 
the North of Copenhagen, Denmark. The content of the conference included two open lessons and a 
number of 30 minutes workshops on the function and usage of specific teaching materials. 
Conducting open lessons is not an ordinary practice in Denmark, but in the image of Japanese lesson 
study conferences (jugyō kenkyū kai), teachers and school leaders from several primary and 
secondary schools in and outside the municipality, municipality officials, teacher educators, 
researchers etc. observed and discussed the teaching of ordinary classes. While the classes were 
ordinary, the situation was extraordinary for the participants, though the class being taught in the 
open lesson under scrutiny here had tried a similar situation once before: one year earlier, Hiroshi 
Tanaka of the Attached School of the University of Tsukuba taught that same class in the first open 
lesson. A large number of the participating observers had joined the (single) open lesson of the first 
Danish jugyō kenkyū kai. The open lesson includes three different languages (Japanese, Danish and 
English) with several types of translations. During the demonstration lesson, the Japanese teacher 
used mainly Japanese and the third author mediated between the teacher and the Danish students. The 
post lesson reflection session was conducted in both English and Japanese, where the second and 
third authors interpreted every Japanese comment and question into English and vise versa.  

The paradidatic bipolarisation in the post lesson discussion 

The teachers at the Attached School of the University of Tsukuba play a leading role in the 
community of Japanese mathematics teachers at elementary level by publishing a number of 
educational books and performing lectures about teaching practice. Seiyama, who designed and 
implemented the demonstration lesson, is an experienced mathematics teacher in elementary school 
and has demonstrated several lessons in foreign countries. The participants were given his lesson plan 
beforehand. In this Seiyama describes the goal and the intended lesson process. The demonstration 
lesson is about considering how the total number of a fold lines on a paper changes when one repeats 
folding it in half. This was followed by a post lesson reflection session, where teachers from different 
schools in the region participated. Also, teacher educators from different universities in Copenhagen, 
as well as, a professor of the University of Copenhagen who specialises in didactics of mathematics 
were invited to give the participants some feedback regarding the observed lesson. The number of 
participants was approximately 180. 

The discussion was organised in three phases: the Japanese teachers’, the first group’s and the second 
group’s. The division of the Danish participants depended on their experience of post lesson 
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reflection: the first group consisted of the teachers and researchers who had experienced some post 
lesson reflections before, and the members of the second group did not have such experiences at all. 
Below, we describe a representative phenomenon, from the paradidactic situations described above, 
that we call the paradidactic bipolarisation, i.e., the shortage of didactic viewpoints in teachers’ 
interests. This phenomenon is observed as the thematic confinement (cf. Barbé, Bosch, Espinoza, & 
Gascón, 2005) and the pedagogical generalism (cf. Florensa, Bosch, Cuadros, & Gascón, 2018)—it 
has two opposite poles. Teachers could usually focus on the level of specific topics (at the pole of 
thematic confinement) or the level of generic educational matters (at the pole of pedagogical 
generalism) without questioning interlevel intermediates between the both levels, e.g., the entire 
design of a course in a school discipline (for example, a geometry course in secondary school 
mathematics). Let us illustrate each of the two poles with data from the international open lesson. 

Thematic confinement: teachers’ exclusive concern on specific matters in the demonstration lesson 

Generally speaking, teachers’ discussion of the teaching tends to focus on the piece of knowledge 
taught in the lesson itself under the predetermined body of knowledge-to-be-taught. As a result, 
teachers usually talk about not the domain of the subject matter, but its topic, e.g., not treating 
Euclidian geometry but considering the Pythagorean theorem. Let us note that the analysis has the 
neutral nature, that is to say, we are not evaluating in any way. As we discuss in the next section, this 
focus of the teachers is systemically produced. The discussion of the first group including several 
Japanese teachers was not an exception (Hereafter, “DP” and “JP” means a Danish participant and 
Japanese participant respectively; these comments are not from a dialogue.): 

DP 1: (…) regarding the girl who answered 5. She could reason 1 + 2 + 2 using preceding 
numbers. It could express the richness of the task? What is your idea of (helping the 
students) finding out the next number by adding some of the preceding numbers of 
the folds (when you constructed this task)? 

JP 1: Seiyama should have let the pupils observe the figure more consciously. If I were 
him, I would use the paper more effectively when I let the pupils guess the answer. 
There were so many different conjectures by 3 folds, so, before I let them to fold 
paper I would let them look at the paper (individually) and let them guess again. 
Therefore, if they guess the number of lines at the same time they fold the paper, 
they could have understood the relation between the rule of the increasing of the 
lines and the figure much better. Thus, he should have used the figure more not only 
they control the answer but even when they guessed. 

From the scale of levels of didactic co-determinacy, these comments are exclusively related to the 
levels of theme and subject—a specific issue of school (early) algebra. The absence of the concerns 
on broader organisations of mathematics—discipline, domain and sector—indicates that it is difficult 
for teachers to deal with lessons beyond the thematic level: the thematic confinement. 

Pedagogical generalism: teachers’ exclusive concern on generic matters in the demonstration lesson 

Indeed, didactic facts beyond the thematic level usually disappear from teachers’ eyes, but it does not 
mean that teachers always ignore all other levels higher than the theme. Factors at the pedagogical 
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level—out of the levels within a certain discipline—may become visible for teachers as is the case of 
the thematic confinement. In our case, such tendency is distinct in the second group: 

DP 4: How do you instruct the students who think fast and find the answer quickly? How 
do you give them more difficult task so that they do not get bored? I think this is the 
weakness of this kind of lesson that very talented students get bored if they found 
the pattern very fast. 

DP 6: There are other students who do not see the pattern. (…) If you implement this kind 
of teaching method, can you see even those weak students can find those patterns 
easily? Can you actually train their ability to see the pattern? 

The issue they are problematizing exclusively concerns about generic teaching methods, which are 
not related to any specific contents: the pedagogical generalism. 

An ecological analysis: constraints on post lesson discussion in lesson study 
In the previous section, we have analysed data coming from the participants’ comments in a 
paradidactic system regarding a didactic system. This analysis conducted by the original didactic 
scale (Fig. 1) has been a clarification of a law regulating teachers’ activities—the paradidactic 
bipolarisation—at the paradidactic system level within the new paradidactic scale (Fig. 2). In this 
section, we will discuss some constraints, which bring about the law, using our new model. 

The lack of didactic notions: a constraint at the levels of society and noosphere 

The history of didactics is relatively young. The motion initiated by some pioneers, e.g., Guy 
Brousseau, emphasized the existence of didactic phenomena, which are irreducible to as cognitive, 
semiotic, pedagogical and so forth (Bosch & Gascón, 2006). Since then, didacticians have been 
producing a number of theoretical constructs, didactic contract, praxeology, etc. However, these 
notions have not permeated into the community of teachers. Florensa et al. (2018) reported the result 
from interviews of university teachers, where they were asked about questions or difficulties in the 
beginning of their educational courses for preparing teaching at universities. The study showed that 
the participants’ concerns are fulfilled with general issues and detached from the target content, i.e. 
the didactic stake: the pole of pedagogical generalism. Through reflecting upon the teachers’ 
responses, the authors indicate the problem of the lack of didactic notions within the university 
teacher education, which could be identified as a condition at the society and noosphere levels. 
Commonly, the teachers do not have words to talk about how to connect between the target content 
and the way of teaching it. Thus, even if they can think about the didactic stake, their foci are limited 
at very specific ecological levels: the pole of thematic confinement. As a consequence, it becomes 
difficult for them to recognise and overcome the paradidactic bipolarisation phenomenon. 

Generally, one cannot inquire the target content fully without using didactic notions. It is because 
“knowledge” tends to be regarded as an unchanging reality. This commonsensical belief is based on a 
prospering epistemology which is possibly set at the civilisation and society levels: the 
epistemological absolutism. This absolutism often gives a privileged authority to scholarly 
knowledge, regarding knowledge at school as some deficient form of it. In other words, absolutists 
consider that scholarly knowledge has universality. They cannot accept the principle of institutional 
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relativity of knowledge—as the historian emphasizes the importance of the historical analysis from 
not current perspective but from the analysed period’s, the ATD-didactician insists that school 
mathematics exists in its own right. Then, knowledge-to-be-taught easily becomes unquestionable for 
teachers (see also Chevallard, 2007). Consequently, the pedagogical generalism as one pole of the 
paradidactic bipolarisation—focusing on wide-ranging teaching methods and purposes—flourishes 
in many paradidactic systems including the one in our case. At the same time, controllable conditions 
among the didactic levels from the discipline to the subject are limited for teachers, i.e. the thematic 
confinement as the other pole of the paradidactic bipolarisation. In both cases, there exists passivity 
towards bodies or organisations of knowledge. 

The teachers’ developmental byplay: A constraint at the levels of noosphere and profession 

So far, we have used the word teacher with twofold meaning, that is, as a professional 
institution—i.e. profession—in our societies, and as a general position of players in all kinds of 
didactic systems. However, let us focus here on the teacher as a profession by the notion of 
schoolteacher. The relatively restricted nature of the profession of schoolteacher is a frequently 
observed social fact, which is a main topic of ATD. For example, the schoolteacher has often been 
regarded as an occupation with limited autonomy in decision-making on its working process, 
compared with e.g., doctor and lawyer. This semiprofessional feature is typically visible in the work 
arranging knowledge-to-be-taught at school. In many countries, the national curriculum is more or 
less made by some kind of governmental paradidactic system. In the case of modern Japan, the 
committee organised by the ministry of education decides school disciplines, their domains and their 
sectors. In short, the type of tasks of curriculum development is generally not a main role of 
schoolteachers but of governmental curriculum-makers. 

The supporting role of the schoolteacher in the process of development of curriculum—we call it the 
schoolteachers’ developmental byplay, at the noosphere and profession levels—affects the different 
poles of the paradidactic bipolarisation phenomenon. Schoolteachers cannot freely decide sectors, 
domains, and disciplines, because the arrangement of knowledge-to-be-taught at these three levels is 
not their prerogative. This distribution of responsibility between schoolteachers and curriculum 
developers could percolate spontaneously through to most schoolteachers as a natural part of their 
professional common sense. For example, in the Japanese case, this tendency clearly appears as a 
paradidactic methodology of lesson study, which could be a condition at the profession and 
paradidactic system levels. Lesson study is usually conducted around a subject and a theme, applying 
some general pedagogy, e.g., competency-based education. As a consequence, the schoolteachers’ 
developmental byplay tends to produce an implicit rule “the schoolteacher should focus on the 
thematic level when they talk about the target knowledge—not about the general matter”. It is a 
clause in the paradidactic contract at the profession and paradidactic system levels. 

Final remarks 
We think that our new scale has dual value in didactic research. As the first, it allows us to study the 
ecology of the paradidactic. The second and rather indirect function is to invoke sensitivity to the 
boundary between the purely didactic and the para-didactic realities, since such a demarcation is 
difficult to recognise for most educators and researchers. In further research, we need to examine the 
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functionality of our tool by explaining more various cases of lesson study, since our data was one 
specific and rather unique case. We consider that such examination of the tool should not limit its 
scope within lesson study. In addition, there are possibilities of application to teacher education 
research, research of curriculum and/or textbook development, and meta-research of didactics. It is 
because such domains have objects of study with the nested structure similar to the teachers’ 
paradidactic system. We believe that the scale can cast new light on the various objects of didactics. 
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International perspectives on mathematics teacher professional 
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Stefan Zehetmeier (Austria), João Pedro da Ponte (Portugal), Laurinda Brown (United 

Kingdom), Àngela Buforn (Spain), Janne Fauskanger (Norway), Marita Friesen (Germany), 

Maria Mellone (Italy), Libuse Samkova (Czech Republic) 

Rationale  

The study of mathematics teacher education and professional development has been a central 

focus of research over recent decades. Also, during previous ERME conferences, various 

research activities regarding this topic have been presented and discussed. Within CERME 11 

TWG 18, we focus on mathematics teacher education (pre-service and in-service), professional 

development and teachers’ professional growth, teachers’ professional development practices, 

models and programmes of professional development (contents, methods and impacts) and the 

professional development of teacher educators and academic researchers. TWG 18 offers a 

communicative, collegial and critical forum for the discussion of these and other related issues, 

which allows diverse perspectives and theoretical approaches and which contributes to the 

development of our knowledge and understanding as researchers, educators and practitioners. 

Participants 

53 papers were originally submitted to TWG18 and underwent a peer review process. All papers 

were revised by authors, according to reviewers’ remarks. 43 papers were accepted as paper 

presentations, 10 were re-submitted for a poster presentation. Two of the accepted papers were 

withdrawn and one was re-assigned from another TWG. Finally, 42 papers were to be presented 

during the TWG sessions.  

This led to the decision (according to ERME rules) to split the TWG into two sub-groups: 

TWG18a (with a particular focus on teachers and teacher educators) and TWG18b (with a 

particular focus on professional development settings).  

10 posters were originally submitted and underwent a peer review process in TWG18: all 

authors revised their posters, according to the reviewers’ remarks and all posters were accepted. 

Together with the re-submitted posters (see above), and 7 withdrawals, finally, 13 posters were 

presented during the conference poster session. 

Organisation 

TWG sessions 18a and 18b comprised both plenary and sub-group working phases. During the 

plenary phases, two (or three) papers were presented for a maximum of five minutes each, in 

which the authors provided their paper’s central message(s) and challenging questions for 

discussion. These plenaries were followed by parallel sub-groups, which were each managed 

by one of the presenting authors. Participants were free to choose and join one sub-group, where 

they discussed the paper for 30-40 minutes. Afterwards, the TWG’s participants met in plenary 

to listen to and to discuss reports of each sub-groups’ central topics and to summarise emerging 

issues. In addition, in 18b, the five-minute presentation of papers was followed by a brief 

commentary to the set of papers by one of the TWG leaders. 
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Topics 

The presentations in TWG18a and TWG18b were categorised into 13 main topics:  

• Beliefs 

• Educators 

• Knowledge 

• Noticing 

• Particular Mathematics Topics 

• Tools 

• Curriculum Innovation and Professional Practices in Professional Development 

• Evaluation of Professional Development Programs 

• Collaboration and Communities in Teacher Professional Development 

• Lesson Study  

• Use of Video for Professional Development 

• Use of ICT for Professional Development 

• Initial Teacher Education  

Open questions and emerging issues 

This section provides several key questions and issues, which emerged during the sessions of 

TWG18a and TWG18b: 

Beliefs 

Open questions: What gets pre-service teachers into teacher education? How do we change pre-

service teachers who do not want to be changed? How to support pre-service teachers to be 

exploratory in their teaching? What motivates mathematicians to be involved in projects with 

mathematics teacher educators? 

Emerging issues: The potential of investigating the effect of ‘Missions’ on pre-service teachers’ 

thinking (e.g., getting into the habit of looking at their own experiences to make sense of the 

theoretical input of the course) and practices (in school placement or in their practice after 

graduation). 

Educators 

Open questions: How do educators’ theoretical perspectives change over time? Parallels 

between mathematics teacher educators and mathematics teachers – what makes teachers 

confident teaching mathematics and what makes students in classrooms confident doing 

mathematics? 

Emerging issues: Questioning our own assumptions of what we take for granted about how 

mathematics could be taught and shifting those assumptions by working across boundaries of 

contexts and countries. 

Knowledge 

Open questions: What is our knowledge of the rationale that pre-service teachers have for what 

they do? How do we support pre-service teachers in developing through video analysis 

experiences?  
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Emerging issues: We need to have a national comparison of teachers’ knowledge. Validity of 

simulations for measuring teaching practice. 

Noticing 

Open questions: How to change beliefs so that students’ errors can be analysed more 

productively? Changing beliefs from when pre-service teachers were students themselves? Do 

different types of critical events influence the way the pre-service teacher interprets? 

Emerging issues: Different uses of critical events and reflections across the different countries. 

Safe place inside the university where pre-service teachers can make errors and reflect on them. 

Particular Mathematical Topics 

Open questions: What about combining things that are shared between different subjects such 

as problem solving, e.g., mathematics and science modelling? Is it important that pre-service 

teachers struggle in terms of mathematical content and also struggle in the classroom?  

Emerging issues: Differences in our countries producing generalist teachers (5 taught subjects) 

or specialist teachers (2 taught subjects). 

Tools 

Open questions: Action research: takes too much time for pre-service teachers to do? In 

different situations, do the pre-service teachers move between different roles, such as teacher 

and researcher?  

Emerging issues: The school community as a community of practice that pre-service teachers 

have to enter. Action research – different experiences across countries – pre-service and in-

service teachers have different experiences. Being systematic from the very beginning, thinking 

about quality. 

Curriculum Innovation and Professional Practices in Professional Development 

Open questions: How to use curriculum innovation and aim of improving student achieve-ment 

for professional development? In large-scale professional development programmes, how can 

results similar to those that arise in small-scale programmes be achieved? 

Emerging issues: Potential and limitations of practice-based professional development 

programs. 

Evaluation of Professional Development Programs 

Open questions: How to research and how to measure the impact of professional development? 

Emerging issues: Relating teachers’ learning to quality of instruction and students’ 

achievement. 

Collaboration and Communities in Teacher Professional Development 

Open questions: What settings are successful in combining collective and collegial work with 

space for individual growth? 

Emerging issues: The crucial role of the teacher educator/mediator/facilitator and how he/she 

may be trained. 
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Lesson Study 

Open questions: Teachers’ dispositions regarding personal investment in professional 

development are a crucial factor for the success of lesson study. What steps may be taken to 

improve them? 

Emerging issues: Need to have a theoretical orientation regarding pre-service and in-service 

teachers’ learning. The crucial role of the Lesson Study (LS) facilitator and how he/she may be 

trained. LS is complex, in particular if it is not part of the culture. There is a need for future 

research on how to build collaborative trust among participants. 

Use of Video for Professional Development 

Open questions: In observing videos, how to identify a “productive” discussion and how to 

measure the extent of the “productivity”? 

Emerging issues: The key role of theories regarding teacher learning and of practical questions 

regarding working contexts in research in the use of videos in professional development. 

Use of ICT for Professional Development 

Open questions: How can ICT elements be used to enhance and inform teacher education and 

professional development? How can the implementation of ICT elements be facilitated? 

Emerging issues: Role of specific facilitation and monitoring, importance of collaboration with 

colleagues and need for quality control / standards. 

Initial Teacher Education 

Open questions: What are appropriate learning and identity development aims for pre-service 

teachers (both primary and secondary) in different national contexts? 

Emerging issues: Combining attention to didactical, cognitive, affective and social issues in 

Initial Teacher Education. 

Summary  

There is a common agreement in TWG18 on the principles leading to more effective 

professional development of teachers that emerged across the 13 topics: bringing new elements 

to the teachers’ work while keeping connected to the teachers’ reality; clarifying these new 

elements in relation to existing frameworks and practices; combining collective and collegial 

work with space for individual growth; and supporting teachers in introducing new elements in 

their practice and reflecting on their consequences and possible constraints.     
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Working with example sets: A productive focus in Lesson Study 

Jill Adler1and Jehad Alshwaikh2  
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The Wits Maths Connect Secondary Project, a research linked professional development project, 

included Lesson Study with teachers in school clusters. Planning and reflection is carried out using 

a Mathematics Teaching Framework, a key aspect of which is exemplification. We illustrate that and 

how working on example sets in a lesson has been productive in our (LS) work. Through this we build 

a case for a focus on exemplification when studying and working on mathematics teaching, and for 

support at a more general level for theoretically informed Lesson Study. 

Keywords: Lesson study, mathematics, secondary, exemplification, South Africa  

Introduction 

The Wits Maths Connect Secondary Project (WMCS) is a research linked professional development 

(PD) project that has included Lesson Study (LS). Based on a view of professional learning as a 

collaborative practice, and thus with some similarities to the Japanese model, the LS model developed 

in the WMCS project has two distinct features. It is framed by a theoretically driven and empirically 

elaborated framework for mathematics teaching that includes an emphasis on exemplification; it has 

been shaped by conditions of learning and teaching in the WMCS project schools, and thus by 

constraints typical of low-income schooling contexts (Adler, 2017).   

Lesson study has become widely used in PD globally and differently interpreted across contexts (e.g. 

Quaresma et al., 2018). Adaptations of Japanese LS have taken root in the US, the UK, and Australia 

(Wood, 2018; Huang et al., 2017), and spread across countries in Asia and Africa. Fujii (2014) 

reported on a project where LS was promoted in countries such as Malawi and Uganda and argued 

that cultural practices in Japanese schools were not ‘transferred’ together with doing LS. In South 

Africa, while there is recognition of the benefits of LS, Jita et al. (2008) state many challenges, in 

particular time for running the training and enacting the process and more critically the role of 

knowledgeable others which was undermined through a cascade model of expanding the reach of LS. 

The difference with practices in Japan is apparent, particularly in relation to LS in Japan being an in-

school practice, where experienced and knowledgeable others are part of the systemic culture.  

It is precisely these conditions that inspired the WMCS to (re)design lesson study in ways that both 

supported the goals of the wider project (see below), and the conditions of teachers’ work in South 

Africa. Hence the key design features of the WMCS model mentioned earlier – it takes constraints 

on time into account, and it focuses on current teaching practices like exemplification. 

Exemplification and variation 

There is an extensive literature on the significance of exemplification in mathematics teaching (e.g. 

Antonini et al. 2011; Watson & Mason 2006). Bills & Watson (2008) and Sinclair et al. (2011) argued 

the need not only for deliberate and careful selection and sequencing of examples, but that teaching 

needs to bring learners’ attention to connections between selected examples, and to the underlying 
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patterns of variance amidst invariance that enable generalisation and/or appreciation of structure. This 

linked work on examples and variation in and for mathematics teaching has inspired and influenced 

our attention to exemplification in our research and PD work.  

Zaslavsky’s research has focused on teachers’ awareness of their example use in their teaching and 

students’ use of examples in their thinking (Ellis et al., 2017). Teachers’ were not necessarily aware 

of how they were using examples. Teachers’ thus can be supported in this work. For Kullberg et al. 

(2017), the application of variation theory in teaching enables critical features of the object of learning 

to come into focus. They argued further that multiple examples are not simply cumulative. Their 

ordering, simultaneous presentation, and the teacher drawing attention to similarities and differences 

are critical. We agree and have thus worked with teachers on their use of examples. In order to bring 

the object of learning into focus and enable learners to generalise through the use of examples, we 

have highlighted two necessary aspects for a sequence of examples, and the accumulating example 

set in a lesson. There needs to be similarity from one example to the next - where a feature is kept 

invariant while other features vary. In addition, there need to be contrasting examples that can draw 

attention to difference between key features. With a focus on variance amidst invariance, and contrast, 

it is possible to build generality and create possibilities for appreciating the critical features and 

structure of particular mathematical objects.   

Of course, examples are always embedded in a task. While examples are selected as particular 

instances of the general case, tasks are designed to bring particular capabilities to the fore (Marton & 

Tsui 2004). In our LS work, constructing an example set across a lesson includes attention to tasks, 

and as we will show this was the collective work of the LS group – teachers and researchers. 

The WMCS, framework of mathematics teaching and model of Lesson Study 

WMCS has aimed at improving mathematics teaching in disadvantaged schools in one province in 

South Africa. With a sociocultural orientation to learning as mediated, and to mathematics as a 

network of scientific, connected and hierarchic concepts (Vygotsky, 1978), we zoomed in on 

exemplification and explanatory talk in the lesson, viewing these as key mediational means in 

instruction. We developed an analytic framework, detailed in Adler & Ronda (2015), for describing 

and interpreting shifts in mathematics made available in teaching. It focuses on four key elements of 

a mathematics lesson: First is the object of learning, the ‘what’ of learning or lesson goal, and what 

students are expected to know and be able to do at the end of a lesson. This leads to exemplification 

- to the sequence of examples, with their associated tasks and representations, that can be used to 

bring the object of learning into focus with learners. As reflected in our discussion on exemplification, 

attention is on how to work with variance amidst invariance, to build generality and illuminate 

structure. We also focus on Explanatory communication, and Learner participation but these are not 

in focus in this paper.  

Between 2013 and 2016 we explored a model of LS in the project. We worked in a school after school 

hours in small collaborating groups of teachers from clusters of schools. We used the framework 

above as structuring device to guide lesson planning and reflection, adapting it into a teaching 

framework referred to in the project as a Mathematical Teaching Framework – MTF, and illustrated 

in Figure 1 below. The MTF includes all the components of the analytic framework mentioned above 
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and is intended to assist teachers in planning and then as an observation/reflection tool on the ‘quality’ 

of mathematics offered in their teaching in LS. In this paper we focus on exemplification in the MTF 

framework in our LS work.   

Lesson goal 

Exemplification 

Examples, tasks 

and 

representations 

 Learner 

Participation 

Doing maths and 

talking maths 

Explanatory 

communication 

Word use and 

justifications 

Coherence and connections to the lesson goal 

Figure 1 WMCS Mathematics Teaching Framework 

Our Lesson Study model 

While our cycle follows mainstream practice of LS, differences, particularly in relation to time and 

place, are a function of resource constraints. Our LS cycle takes place one afternoon a week after 

school hours for three consecutive weeks, and involves teachers from a cluster of neighbouring 

schools. In week 1, the LS group plan a one hour lesson on a topic agreed by the teachers. In week 2, 

one teacher teaches the lesson to a class of learners who agree to remain after school for the lesson. 

After the learners leave, the LS group spends the following hour reflecting on the enacted lesson and 

planning the second lesson which is taught in the third week, to a different class, but the same grade. 

A Lesson Study cycle thus involves six hours of face to face collaboration, an evolving lesson plan, 

and reflection on both taught lessons. In our model, a LS cycle takes place over a relatively short 

time, outside of normal class teaching.  

The study:  data and method 

While we carried out LS in three clusters of schools, in 2016 we undertook a systematic study of our 

most participative and sustained LS cluster. A specific question in the study was on the evolution of 

the example set and in particular:  

• What changes occur in the example set across the lesson plans over a cycle? 

• How do these changes evolve? 

We focus on one LS cycle where four teachers (Thembi, Lerato, Thabi and Sipho) from three different 

schools in the cluster, and four researchers (Frank, Linda, Jehad and Jill) from the project met in May 

to plan the first teaching. The teachers chose to work on “simplifying algebraic expressions with 

brackets in different positions” in Grade 10 because of persistent errors they observed with their 

learners’ manipulation of algebraic expressions when these included brackets in various positions. In 

order to systematically research our co-learning, we collected all relevant information: written lesson 

plans; audio and/or video-recordings of all LS sessions. We draw particularly from the lesson plans, 

post lesson reflective discussions and teacher reflections to engage with our research questions. 

Our analysis proceeded with a description of the exemplification in the first lesson plan in terms of 

the MTF framework, and so our interpretation of variance amidst invariance, and similarity and 
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contrast in the accumulating example set. We identified examples that were removed/added, where 

this occurred, and how this linked with changing representations and tasks in Plans 2 and 3. Our 

analysis of the reflective discussions after each lesson included the identification of “example change 

moments” – moments in the reflective discussion where there was specific attention to 

exemplification, and the discussion led to some change. We described by whom and how the 

discussion was initiated, and how it evolved.  

The lesson plans and evolving example sets  

In Table 1 below, we present the example sets for the Introductory and Activity 3 in each lesson plan 

produced: the initial plan (P1), the revised plan (P2), and then a re-revised plan (P3). The substantial 

changes are highlighted, and we now use these to illustrate the collective work of the LS group.  

P1 P2 P3 

Introduction: Calculate the 

following: 

a) 4 + 3(4 + 5)= 

b) (4 + 3)4 + 5 = 

c) (4 + 3)(4 + 5) 

 

Introduction: simplify the  

following expressions: 

a) 4 + 3(4 + 5)= 

b) (4 + 3)4 + 5 = 

c) (4 + 3)(4 + 5)= 

Introduction: simplify the following 

expressions: 

a) 4 + 3(4 + 5) = 

 b) (4 + 3)4 + 5 = 

c) (4 + 3)(4 + 5) = 

d)   (4 + 3) − (4 + 5) = 

Insert brackets in the left side to  

result in the given sum 

e) 4 − 3 + 5 = −4 

f) 4 + 3 − 5 =  −35 
 

Activity 3: Simplify 

a) (𝑥 − 3𝑥) + 5 = 

b) (𝑥 − 3)𝑥 + 5 = 

c) 𝑥(−3𝑥 + 5) = 

d) 𝑥 − (3𝑥 + 5) 

 

Activity 3: insert bracket(s) in the expressions 

on the left side so that  

the two sides are equal 

a) 𝑥 − 3𝑥 + 5 = −3𝑥2 + 5𝑥 

b) 𝑥 − 3𝑥 + 5 = −2𝑥 − 5 

c) 𝑥 − 3𝑥 + 5 = 𝑥2 − 3𝑥 + 5 

 

Activity 3: insert bracket(s) in the 

expressions on the left side so that the two 

sides are equal 

1. 𝑥 − 3𝑥 + 5 = −3𝑥2 + 5𝑥 

2. 𝑥 − 3𝑥 + 5 = −2𝑥 − 5 

3. 𝑥 − 3𝑥 + 5 = 𝑥2 − 3𝑥 + 5 

 

Table 1 Examples in the introductory activity and activity 3 across the three plans  

With respect to the examples, the LS group agreed to introduce the lesson with numerical expressions. 

This representation of expressions with brackets would have meaning for learners and provide a 

semantic basis for moving on to algebraic expressions, and so more abstract symbolic forms. The 

numbers 4, 3, 4 and 5 and the + operation in each expression were invariant. Only the position of the 

brackets changed from one example to the next. The task was to calculate the value of these 

expressions. Communication with learners was to focus on ‘what was the same and what was 

different’ across the examples, thus bringing into focus the impact of the changing position of the 

brackets. The examples of algebraic expressions that followed in Activity 1 and 2 were similarly 

structured with 𝑥, 3, 𝑥 and 5 and the + operation invariant while the position of the brackets changed 

with each subsequent example. Activity 3 included the operation of subtraction/negative terms and if 

time there was a 4th activity prepared. The accumulating example set reflects the group’s 

interpretation of variation for this lesson where similarity first within each activity example set and 

then across these could build generality in relation to the application of the distributive law and the 

more visible form of the changing position of brackets the expression. Contrast was introduced in 
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Activity 2 where two binomials were now added, and thus potentially bringing attention to the 

operation between brackets.  

The changes made to the examples in P2 and P3 

Changes from P1 to P2 can be seen in Activity 3. There are now equations, with the expressions on 

the left retaining the same numbers and variables as in P1. Brackets now need to be inserted to 

produce an identity. The task for learners thus changed. Further changes appear from P2 to P3. There 

are additional examples of numerical expressions in the Introduction. It appears that the change in 

Activity 3 in P2 led to a change in the Introduction in P3. Across the three plans the accumulating 

example sets expanded. This was accompanied by a movement between the numerical and algebraic 

representations of expressions and changes in task demand. How then, did these changes in 

exemplification come about? What reflective processes provoked and produced these?  

How did the change in plans evolve? 

We identified key ‘example change moments’ in the reflective discussion where there was specific 

attention to exemplification, and the ensuing discussion led to a change in the lesson plan. The 

vignette below, from the reflection after Lesson 1, takes us into the discussion, allowing us to see 

when the selected change moment occurred, who initiated it, how it was taken up by others and then 

evolved into a change in the example set.  

Vignette - when the exemplification is “not enough” 

Thembi taught Lesson 1, and closely followed the joint plan (P1). The hour long reflective discussion 

began, as was the practice in the WMCS LS, with the teacher herself reflecting on the lesson. After 

twenty minutes of general reflection, Frank asked the group to reflect on the example sets. It was at 

this point that Thembi voiced a key concern with her learners’ responses to Activity 3. 

Thembi: Remember … activity three … they all answered “yes it will make a difference” … 

already they picked up from activity one and two that … if the bracket is put in a different 

place it changes the solution. … But for me … that was not enough … 

It was not immediately apparent to others what Thembi meant by “not enough”. Some thought she 

felt that Activity 3 was “too easy”. Following further discussion on how to ‘change’ activity 3, Linda 

made a suggestion that caught Thembi’s attention (“that’s brilliant”), and resulted in a change to the 

example set: 

Linda: I had another suggestion … what if you … gave them the answer and then said: where 

must I put the brackets to get this answer?  

Thembi: …where you give them 𝓍 minus three 𝓍 plus five but then give them the solution and 

ask them where should we put the brackets? That will be, yes I think that’s brilliant. ….  

Attention moved to collectively generating the example set that appears in Activity 3, P2 above. 

Staying with the expressions in b, c, and d in P1, the task now was to “insert brackets on the left 

expression “so that the two sides are equal”. Thabi expressed concern that this would be too much of 

a “jump” for learners. All agreed that as he was to teach the next lesson, he could give more time to 

the activity, and then perhaps not complete all of the other activities in the lesson.  
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This vignette evidences that the moment of explicit attention to examples was initiated by Frank 

(WMCS), and thus by the project interest supporting teachers to use the MTF to frame and steer 

reflection. Significantly, it was Thembi (teacher) who responded to this initiative with a 

teaching/learning concern in her enactment that unsettled her. In this way, Activity 3 came into focus. 

It took some time for the group to understand Thembi’s concern and to offer productive suggestions. 

Finally, the suggestion from Linda (WMCS) satisfied Thembi, and despite Thabi’s concerns, it was 

accepted, and the example set changed. Interestingly, there were difficulties in Lesson 2, and 

reflection that again co-produced the changes to the introductory activity highlighted in Table 1. We 

do not include more detail here due to space limitations. Briefly, discussion focused on how to 

scaffold the more demanding task, resulting in the suggestion that numerical examples be done first1. 

Discussion 

The vignette shows how changes were initiated through “example change moments”. Here, as in other 

instances, the initiation was by a project member/researcher, reflecting the structuring of the reflection 

by the elements of the MTF framework, in particular by attention to exemplification. However, it was 

the teachers’ engagement with these initiations that directed the discussion in relation to their learners 

and their teaching/learning concerns. It was possible to trace the substance of these discussions, as 

we elaborate below. Together this leads us to posit two main themes that emerge from vignette and 

that illustrate exemplification as an explicit focus in our LS and as powerful for teachers. 

Theme 1: Changes are a collective accomplishment 

The vignette above illustrates how the initiation and evolution of change to the example set across 

the lesson, and particularly in the Introduction and Activity 3, was a collective accomplishment of 

both the teachers and the WMCS teacher educators/researchers. While a researcher initiated an 

explicit focus on the example set, the change was evidently a function of the driving concern of the 

teacher and the suggestions and additional instructional resources offered by teachers and particularly 

researchers together. Our evidence here reinforces the emphasis on the role of “knowledgeable 

others” in other models of LS (cf Takahashi & McDougal, 2014). We suggest that this role is crucial 

and has significant implications for any attempt to “cascade” the implementation of LS in contexts 

where experience with professional collaboration on the one hand, and focused lesson engagement 

on the other, are new. Cascading down, inevitably dilutes such roles. The important implication for 

the practice of LS in ‘less resourced’ contexts is that the human resources of knowledgeable others 

should not be side-stepped nor undervalued. This is a learned role. It is not a role that officials in a 

system can necessarily carry out without being inducted into LS activity over time (cf. Jita et al., 

2008). 

Theme 2: Changes are a function of the MTF framework and so theoretically informed 

The vignette also shows how discussion was shaped by attention being drawn to the MTF framework, 

and particularly the example set. The example set was initially informed and shaped by principles of 

 

1 A detailed and in-depth report on this research can be found in “A case of Lesson Study in South Africa”, Adler & 

Alshwaikh (in press). 
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variation, as were the changes. The additional examples in the example set kept the numbers and/or 

terms in all the examples invariant while the signs were changed, or the task was shifted from 

expansion to insertion of brackets. Here we see the deep inter-relation between theory and practice 

constituted in LS reflection. It was the teachers’ practice-based concerns that influenced the ultimate 

joint decisions. As in Kullberg’s (2017) learning study, the role of variation was a theoretical resource 

in the LS work.  

Concluding remarks 

In this paper we have illustrated part of a LS cycle on “simplifying algebraic expressions with brackets 

in different positions” with Grade 10 learners in the context of a professional development project in 

South Africa. Structured by a framework developed in the project to support lesson planning and 

reflection, we described a key change moment in the reflection following the first enactment of the 

plan where Thembi expressed her concern with the example set in Activity 3; and how this shaped 

the subsequent lesson plan, its enactment and the reflection following. Through this we have made a 

case for explicit focus on exemplification and example sets in LS. Examples are critical for 

mathematics teaching and learning. Deliberate attention to how they are selected and sequenced and 

embedded in appropriate tasks is important in professional activity like LS. We zoomed in on one LS 

cycle with one LS cluster, indeed our most sustained and participative cluster. This was to illustrate 

the possible, which of course then could have broader purchase.  

A related concern here could be that our focus on example sets and what they offer for teacher learning 

might be relevant to SA but not extend to lessons that are more problem based. We suggest (following 

Wood (2018)) that different solutions or strategies to a set of problems are themselves examples. How 

and what is variant and invariant in these would shape what is possible to learn. Attention in LS 

reflection to the different examples of possible solutions would hold similar possibilities and 

particularly if framed by principles of variation.  

Furthermore, changes to the example set, and so exemplification – the additions, deletions, changing 

representations, and changing task demands – evolved as a function of the collective enterprise of the 

LS group -  teachers and teachers educators or knowledgeable others. The implications for this in LS 

across contexts are serious. There are cost implications if knowledgeable others are to be included in 

any expanded form. Without this, however, LS will not function optimally, whatever the context. 

Finally, we have pointed to the impact and the value of structured and theoretically informed 

observation and reflection. Planning, teaching and reflection were structured and shaped by the 

WMCS theoretical approach, the MTF tool used with teachers in our LS. Our work thus adds impetus 

to arguments for theoretically informed LS, and can hopefully stimulate further research along these 

lines. 
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Focus of the study presented in this poster 

The term ‘research-and-development projects’ reflects multiple goals of a certain type of design 

research project in mathematics, which includes teaching experiments like by Cobb (1999). Such 

goals are: i) Students’ learning, and change of their beliefs ii) Change of norms, roles and relations 

between students and the teacher iii) Teachers’ professional development iv) Researchers’ 

experiences from actual classrooms v) Theoretical knowledge about i), ii) and iii). This study aims to 

contribute with theoretical knowledge about teachers’ professional development.  

Theoretical foundation for the study 

Main heuristics are from a) an interpretative framework for analyzing individual and collective 

activity in classrooms (Yackel & Rasmussen 2002), and b) A research based theoretical foundation 

for the study of educational development projects (Sowder 2007). The study reflected upon a 

research-and-development project involving eight upper secondary mathematics teachers who 

designed and completed teaching experiments in their own classrooms, focusing on students’ 

strategies for inquiry and problem solving and based on discussions of problem-solving behavior by 

Schoenfeld (2011), and Pólya (1985). The participants shared a wish to find ways to support and 

stimulate students’ creativity and students’ ability to think mathematically in an intellectually 

independent way. The study’s reflections were centered on the question: How can teachers’ ideas 

and visions about a change towards more inquiry and intellectual independence in problem solving 

be realized by the means of a research project? 

The research project 

The hypothesis underlying the research project’s setup was a need for coherence between the norms 

and values realized by the teacher and those requested of the students. Therefore, the teachers had to 

develop and share their ideas about, and materials for, the teaching experiment with the peer group, 

based on their own experiences and visions, supported by the project activities and taking an inquiry 

approach. The research project is described in Andresen (2015). 

Data 

Data for this study was in the form of: i) Notes and video recordings of students’ work and classroom 

activities in all eight classes ii) Notes and materials from meetings in the project group iii) Two group 

interviews with all the teachers in October 2013 and in May 2014. 

 

1 This poster is a short version of the author’s paper: A research project seen as a means for teachers’ professional 

development which was accepted but never presented at CERME 9, TWG18. 
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Results 

The research project has served as a means for the teachers to get experiences with teaching according 

to their own, shared, desire with respect to students’ inquiry and intellectual independence in problem 

solving. All the teachers were engaged with the project and all of them wanted to continue the project. 

They had tried out experiments that could realize their ideas and visions. All the teachers had a high 

degree of ownership of the teaching experiments. Nevertheless, elements of disappointment were 

revealed in the teachers’ reports. Some teachers reported a lack of clear results of the experiments, 

which was explained mainly with reference to i) the period of time spent on the experiments, ii) the 

students’ differing expectations and iii) students’ earlier experiences with mathematics. The teachers 

expressed a common wish to continue the experiments. 

Conclusion 

This study has shown that a research project can be suitable to frame teachers’ development by 

enactment of their visions and beliefs about mathematics teaching. There is no guarantee, though, 

that the desired goals and learning outcomes for the students will be reached. One possibility for 

improvement would be a prolongation in time of the project. As the main conclusion, this study points 

to stressing the importance of the teachers’ visions about desirable teaching. This is in accordance 

with the study’s theoretical foundation, and even goes further: It is well known (Sowder 2007) that a 

research-and-development project can succeed only if the teachers’ beliefs are in line with its overall 

goals. Partly based on this study, a framework was outlined by Andresen (2018) for analysis of the 

role of the teachers’ visions about desirable teaching for successful professional development, and 

for analysis of the impact of taking the visions into account already in the initial design phase. A large 

potential for professional development may, seemingly, be realized in projects which include the 

teachers’ visions about desirable teaching in their starting point.  
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Theoretical framework 

Inclusion is one of the current challenges in the education system. Because of its complexity, 

inclusion in secondary education increases the need for subject-specific teaching development and 

corresponding measures for teacher professionalization, e.g. in form of teacher professional 

development (PD) programs. The knowledge about individual learning processes of teachers 

participating in a PD program is fundamental to organize a professional learning development 

systematically and effectively (Prediger, Leuders, & Rösken-Winter, 2017). Therefore, we are 

interested in what and how teachers learn when participating in a PD program on inclusive 

mathematics classes.  

How to make teachers’ learning processes visible within a PD program? 

In general, only a few studies focused on the processes of teachers’ learning (Goldsmith, Doerr, & 

Lewis, 2014). First of all, the question “How to make learning processes visible?” aroused our 

interest. Schunk (2012) specifies different methods of investigating learning, for example with the 

help of a self-report. Portfolios can be used as one method of documenting and structuring self-

reports. Learners can use portfolios to observe, document and reflect their learning progresses as well 

as to plan further learning steps (Gläser-Zikuda, Fendler, Noack, & Ziegelbauer, 2011).  

In this study we based our considerations on the extended process-model of self-regulation (Schmitz 

& Schmidt, 2007). This model uses the basic assumption that self-regulation “refers to self-generated 

thoughts, feelings and actions that are planned and cyclically adapted to personal goals” (Zimmerman, 

2000, p. 16 as cited in Schmitz & Schmidt, 2007, p. 11). One important element of this idea is the 

pursuit of goals during three learning phases: pre-actional, actional and post-actional (see Figure 1).  

 

Figure 1: Extended process model of self-regulated learning 

During the pre-actional phase the learner compares his situation with the desired goal and defines 

steps for achieving the goal (Gläser-Zikuda et al., 2011; Schmitz & Schmidt, 2007). In the actional 
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phase the learner tracks his goals and in the post-actional phase he reflects his learning process and 

evaluates it by comparing the actualized status with his expectations at the beginning (ibid.).  

Method 

In order to uncover teachers’ learning processes within a PD program, we understand self-regulated 

learning as a tool for developing reflection tasks as a basis for the work with portfolios. The creation 

of the reflection tasks is based on the PD program content and refer to the cyclic interplay of pre-

actional and post-actional phase as explained above. At the moment we can rely our research on three 

portfolios, which were filled out at distance of six to eight weeks each. In the first portfolio (PF1), 

teachers wrote down a personal learning goal, which they want to achieve through the whole PD 

program, and formulated planning steps for achieving it (pre-actional). Within the second portfolio 

(PF2) they wrote down, which steps they made and how they evaluate their learning process (post-

actional). In this context the teachers also looked back to what experiences they made in their 

inclusive mathematics classes (post-actional). Afterwards, they planned further steps for getting 

closer to their desired goal (pre-actional). In portfolio three (PF3) the teachers were asked to formulate 

their personal learning goal again, with or without a modification based on their previous experiences 

(post-actional). Finally, they planned again how to pursuit their learning goal (pre-actional). 

Results 

With the help of case examples, typical teachers’ answers are going to be introduced aiming at the 

discussion of further development and reflection of our portfolios as a research method. For example 

one teacher formulates the personal learning goal that she wants to prepare lessons at different levels 

of learning. She plans to reach her goal within the topic of percentage calculation (PF1, pre-actional). 

Later on she writes that she had used different methods with her pupils and she describes her learning 

process as being in flow (PF2, post-actional). She still wants to prepare a lesson in cooperation with 

a colleague (PF2, pre-actional). At last, she describes which aspects of lesson preparation she wants 

to improve (PF3, post-actional) and in which aspects she wants to work on collaboratively (PF3, pre-

actional). All in all, we would like to discuss our portfolios, based on the self-regulated learning 

model, used as a possibility for making teachers’ learning processes within a PD program visible.  
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Two major concerns in mathematics teacher education research are the role of subject matter 

knowledge and the development of self-efficacy in teaching mathematics (SETM) in pre-service 

teachers (PSTs). These two bodies of research are normally not brought together, but I do so 

by investigating PSTs’ SETM using an instrument developed with Skemp’s two ways of 

understanding mathematics as the point of departure, and by exploring the sources of SETM 

through longitudinally conducted semi-structured interviews over a period of nearly two years. 

A focus on how one PST, Maia, drew on different sources of SETM, contributing to a new 

understanding of the agency of those PSTs that are recognised as “weak” because “they don’t 

know any maths”.   

Keywords: Pre-service teachers, mathematics teacher education, self-efficacy, subject matter 

knowledge  

Introduction 

There is an ever-growing body of research investigating what teachers need to know in order 

to teach (Adler & Sfard, 2016). Unlike most research on subject matter knowledge (SMK) in 

the context of teaching mathematics, rather than investigating what knowledge is needed, this 

paper gives one particular pre-service teacher (PST) a voice in the matter, allowing an 

exploration of how she perceives the role of, and the need for, SMK as she develops her ideas 

about the teacher she not only wants to be, but can be. The importance of such a perspective is 

supported by Kagan (1992), who noted that PSTs’ perceptions lie at the heart of teaching, and 

Pajares’(1992) comparison of 16 studies, concluding that PSTs’ perceptions play a pivotal role 

in the way they acquire knowledge during pedagogical training. 

One way of studying PSTs’ perceptions of their own SMK and its role in teaching, is by paying 

attention to their self-efficacy in teaching mathematics (SETM). Teacher efficacy is considered 

one of the key motivation beliefs influencing teachers’ professional behaviours and pupil 

learning (Klassen, Tze, Betts, & Gordon, 2011). Because of the situatedness of teacher efficacy, 

there is a need for more attention to domain-specific explorations (Klassen et al., 2011). 

Mathematics is an especially interesting context, since PSTs often express doubt about their 

own self-efficacy in mathematics (Gresham, 2007). Moreover, research indicating that teacher 

efficacy develops mainly during teacher education (Hoy & Spero, 2005) underlines the 

importance of investigating how and to what extent SETM develops in PSTs. In this paper, this 

is done in two ways, by a quantification of SETM through instrumentation, and through 

interviews focusing on one PST’s perception of her own SMK and the need for such.  

Theory 

Bandura’s social-cognitive construct of self-efficacy is concerned with judgements of personal 

capability (Bandura, 1997). Self-efficacy is defined as a person’s judgement of his or her 

abilities to execute successfully a course of action (Bandura, 1997), a future-oriented belief 

about the level of competence one expects to show in a specific situation. It has two 
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components: a personal belief about one’s own ability to cope with a task, a personal self-

efficacy, and judgments about the outcomes that are likely to flow from such performances, an 

outcome expectancy  (Bandura, 2006, p. 309). In this paper, teacher efficacy is understood as a 

measure of “the extent to which teachers believe their efforts will have a positive effect on 

student achievement” (Ross, 1994, p. 4), the ‘personal self-efficacy’ component of Bandura’s 

theory.  Moreover, SETM is understood to be the component of teacher efficacy corresponding 

to Bandura’s concept of personal self-efficacy, seen in the subject-specific situation of teaching 

mathematics.  

Bandura (1997) describes four sources of information that may contribute to the formation of 

efficacy beliefs: mastery experiences, vicarious experiences, verbal persuasion, and 

physiological responses. Mastery experiences are constituted by previous perceived success in 

performing a particular task, such as actual classroom teaching, and are seen by Bandura as the 

most powerful source of efficacy information (Bandura, 1997). Because teaching lacks absolute 

measures of adequacy, teachers can appraise their capabilities in relation to the performance of 

others (Bandura, 1997). Vicarious experiences are situations in which one watches another 

person successfully perform or the behaviour one is contemplating (Bandura, 1997). Verbal 

persuasion involves verbal input from others with the intention of enhancing a person’s belief 

that they have the capability to perform a given task at a certain level. It “is likely to be effective 

when it is received from a highly competent individual who is perceived as an expert in the 

field” (Palmer, 2011, p. 580), such as a PST’s mentor in school placement. Verbal persuasion 

alone may be limited in its power to create an enduring increase in teacher efficacy, but may 

work together with other sources to provide teachers with encouragement to strengthen their 

teaching skills (Tschannen‐Moran & McMaster, 2009). Bandura (1997) viewed verbal 

persuasion as a comparatively weak source. Physiological responses can be a source of efficacy 

information, providing indirect information about capability to deal with challenging situations 

(Palmer, 2011). Bandura (1997) viewed this source as the least effective source as they were 

not reliably diagnostic of one’s capability.  

Following his review of teacher efficacy research, Wyatt (2014) argued that poor 

conceptualisations of the role of knowledge have obscured understandings of how teachers’ 

self-efficacy beliefs develop. Moreover, Morris, Usher, and Chen (2017), add that it is clear 

that teachers’ knowledge, and their beliefs about that knowledge, can play an important role in 

their development of self-efficacy. There is a need to better understand the role of knowledge 

in the development of teacher efficacy (Klassen et al., 2011). I follow Bandura (1997) and 

Wyatt (2014), who noted that knowledge is not a source of self-efficacy in itself.  

In discussing SMK, Shulman (1986) emphasises that a teacher should not only understand that 

something is so, but also understand why it is so. This distinction is related to Skemp’s (1976) 

instrumental understanding - ‘rules without reasoning’, and relational understanding, requiring 

“knowing both what to do and why” (Skemp, 1976, p. 20). Even though Skemp (1976) 

underlines that to have strong knowledge of mathematics does not guarantee ‘success’ as a 

mathematics teacher, he adds that teachers who do not possess such knowledge are likely to be 

limited in their ability to help students develop relational understanding, which is the goal in 

mathematics teaching, and therefor in mathematics teacher education, where theoretical 
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perspectives are often related to reform teaching (Grossman et al., 2009) focusing on relational 

understanding. 

In my work, the emphasis is on how PSTs perceive the role of SMK, how they perceive the 

need for such knowledge and how such knowledge (or lack of it) influences them and colours 

their interpretation of their experiences as they progress through teacher education. SMK is 

central both in the instrument used on cohort-level (reported in Bjerke and Eriksen (2016)), and 

in the way in which the sources that PSTs draw upon in order to develop SETM are closely 

related to their perceptions of their own SMK and its role in teaching.  

Methodology 

This paper reports on data collected for a larger research project within a generalist primary 

teacher education programme for grades 1 – 7 (ages 6 – 13). Data were collected from a cohort 

of 191 PSTs admitted to a University College (UC) in Norway. At this UC, PSTs must take a 

minimum of 30 ECTS in mathematics, where the compulsory course spans the first two of a 

four-year programme, with 3 – 5 weeks school placement in each semester.  

The instrument 

SETM was investigated on cohort level through instrumentation. The instrument consists of 20 

items, given to the cohort of PSTs at the beginning (pre-test) and the end (post-test) of their 

compulsory mathematics methods course (at the end of their second year). Each item asks of 

the respondent how confident they are helping a child to solve a mathematics task, 10 strictly 

algorithmic tasks focusing on rules and procedures in mathematics as in knowing that (i.e. 

“Calculate -17 + 5”), and 10 focusing on reasoning  as in knowing why (i.e. “Explain why 

division doesn’t always make a number smaller”). In this way, the instrument asks of the 

respondents to consider their own SMK (see Bjerke and Eriksen (2016) for a description of the 

instrument’s content and validation).  

Through Rasch analysis, items and persons are measured on the same interval scale, in logits, 

that allows us to avoid using non-equal interval values in parametric analyses that assume 

linearity (Boone & Scantlebury, 2006). The higher the person estimate, the more self-

efficacious a person feels (Boone & Scantlebury, 2006). Selected findings from Rasch analysis 

of the data from the instrument implementation in Bjerke and Eriksen (2016) and Bjerke 

(2017a)  are reported in this paper in order to place Maia amongst her peers.  

Semi-structured interviews 

The sources of SETM were identified through analysis of interviews with 10 PSTs in the current 

cohort. The semi-structured interviews were conducted over a period of nearly two academic 

years. Interviews 1, 3 and 5 are conducted before three consecutive periods of school placement, 

while interviews 2, 4 and 6 are conducted after the same periods of placement, resulting in six 

individual interviews with 10 PSTs who volunteered to participate (by indicating this on their 

instrument response). The overall aim was for PSTs to tell their story, from their very first 

thoughts as novices, through two years of experience of repeated placements and the role of the 

UC in their preparation for teaching mathematics, up to the point where they had considerable 
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placement experience and were ready to look ahead and reflect on the mathematics teacher they 

can be. The semi-structured interviews were informed by their answers on the instrument.  

To analyse the data, references to the role of SMK in UC and school placement contexts were 

identified, noting connections to experiences of success and failure as applied to accounts of 

being and becoming a mathematics teacher. In analysing accounts of success and failure, 

particular attention was given to Bandura’s (1997) four sources of self-efficacy. A later, more 

contextually bounded, holistic case study approach, enabled me to note common trends across 

the group. More importantly for this paper, it enabled me to identify and explore one PST, Maia, 

who acted as a foil to the presentation of the data from the other nine participants (Bjerke, 

2017a), and was for that reason selected as a case study. This paper gives Maia’s story.  

Findings 

As expected, there is a spread in novice PSTs’ SETM (Bjerke & Eriksen, 2016), with Maia 

among those with lowest SETM within her cohort (with a measure of -.69 logits in a cohort 

with mean 0.55 and SD = 1.16 (Bjerke & Eriksen, 2016)). On cohort level, PSTs report being 

more confident helping a child to solve mathematics tasks focusing on rules and procedures in 

mathematics than tasks focusing on reasoning. Maia is representative of this trend, and a closer 

look reveals that Maia is ‘Not confident’ or ‘Somewhat confident’ on 15 of the 20 tasks in the 

instrument. She reports being ‘Very confident’ on one rules-task; she is very confident that she 

can help a child “Calculate 342 – 238”. This stands in stark contrast to the thematically related 

reasoning-task, “Explain why, when subtracting, you can sometimes borrow from the place to 

the left”, where she reports being ‘Not confident’ (Bjerke, 2017a). Holding Maia’s responses 

to these two tasks up against each other highlights the impression the analysis gives of Maia: 

she is more confident when mathematics is limited to calculations following algorithmic 

procedures without questioning why these procedures work.   

It is not first and foremost her placement amongst her peers that makes Maia an interesting case, 

but rather how she, during interviews, elaborates and explains her low SETM. A dominant 

theme in Maia’s story is her own experience of mathematics, which she says she was ‘OK at’ 

in upper secondary school, where indeed she gained above average marks. In the first interview, 

Maia states that she likes mathematics when she is able to do it, but when she does not ‘get it’, 

she does not like it. This and related statements highlight the role of emotion in her novice story, 

looking back as well as looking forward: she does not know if she likes the thought of becoming 

a mathematics teacher, and she has few ideas and thoughts on what to expect from teacher 

education; she simply hopes that it ‘fits’ her way of doing mathematics. As it turned out, it did 

not ‘fit’ and Maia found it challenging at UC, because of the focus on a relational understanding. 

Following her first school placement in her first semester, whereas other PSTs began to see the 

possibility that UC could support them in developing the kind of knowledge they need for 

teaching, Maia was hazy about what she might learn from the UC way of doing mathematics. 

Consistent with her response on the instrument, she expressed awareness of, and concern about, 

her inability to explain mathematics, but she did not see UC as a potential source of support. 

Instead, she relied heavily on her mastery experiences in placement learning: 
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Learning by doing … it’s totally different in school placement, it can’t be compared to what 

is presented to us at UC (interview 2) 

An issue of ‘fit’ between her way of learning mathematics (instrumental focus) and the teaching 

at UC (relational focus) persisted in her second semester, in interview 3. In the period 

immediately before the third interview, UC teaching had focused on ‘The Family of 

Quadrilaterals’. The PSTs had investigated how the different classes of quadrilaterals connect 

to each other, and the fact that, for instance, a square meets all the requirements of a rectangle, 

and hence can be described as a rectangle. Maia expressed confusion about this inclusive 

definition, and was critical of the UC mathematics curriculum: 

I’m getting more and more confused ... It’s a bit uncomfortable to know that I have to teach 

things I didn’t learn myself when I went to school ... It’s hard to learn something that doesn’t 

make sense. I don’t want to talk about a square as a rectangle (interview 3) 

While at the novice stage other PSTs took a generally positive emotional stance focusing on 

building their sense of development as mathematics teachers on the recognition that a different 

and more relational kind of SMK, focusing on knowing why,  might be required and possible 

(Bjerke, 2017a), Maia’s account of the teacher she would like to be reflected her new negativity 

about mathematics. The sense of building relational understanding based on underlying 

principles was strikingly absent in Maia’s sources of SETM. This appeared to contribute to her 

insecurity in general: She simply hoped to be able to make her pupils understand that 

…it [mathematics] might be alright, there are worse subjects (interview 3) 

After the second school placement, in interview 4, Maia’s story was noticeably more positive: 

her narrative was far more grounded in her mastery experience in school placement, with major 

emphasis on the benefits in terms of feeling like a teacher:  

I’ve learned so much that it’s hard to put it into words. It’s another world ... I felt we [the 

PSTs in her group] were one of the teachers (interview 4) 

She described how she felt at home in school placement. She relied on verbal persuasion in the 

form of praise in order to gain a sense of SETM. Success in placement was crucial:  

It was nice to get feedback after lessons, because [the mentor] pointed out positive things … 

I need to show that I’m meant to be here ... (interview 4) 

In her third semester, in the run-up to her third placement, she still doubted her ability to be a 

mathematics teacher:  

A part of me wants to be [a mathematics teacher] … but I don’t know if I’m capable of 

teaching this subject ... I struggle so much myself (interview 5) 

After the third placement, in interview 6, she felt more confident due to guidance from her 

mentor as a source of vicarious experience: 

My mentor taught me how to show to children how to calculate and why [the mentor] did it 

this way (interview 6)  

She gave several examples of what she meant by this: “when to say ‘digit’, when to say 

‘number’, when to say ‘decimal’ rather than ‘decimal number’”. Instead of dealing with these 
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issues in the UC-context, she relied on copying her mentor, trying to remember ‘when to say 

what’, as a vicarious source of self-efficacy.  In this way, Maia’s account of how she learned to 

be a mathematics teacher remained heavily dependent on her learning in school placement, 

copying her mentor, building on vicarious experiences against a background of insecurity in 

her mathematics knowledge:  

That’s where I learn everything; that’s where I learn to become a teacher (interview 6) 

However, the decontextualized nature of this source of self-efficacy and the role of SMK in it, 

meant that Maia had to employ a particular strategy in order to manage her mathematics 

teaching, involving preparing which calculations to do on the blackboard, doing them herself 

before the lesson and thinking through how to explain every step in a way that pupils would 

understand. She worried about the demands of this strategy: 

I’m afraid it will be too tough, that I’ll fall badly behind and almost drown (…) I’ll try to 

survive the last years in teacher education and get through it (interview 6) 

While both pre- and post-test analysis on cohort-level places Maia amongst those with lowest 

SETM, it is important to notice that, despite the negative outlook of her developmental story, 

Maia is closer to the mean by the end of her 2nd year than she was as a novice (Bjerke, 2017a), 

revealing that her SETM has developed more during these two years compared to the average 

PST. During the mathematics method course, spanning the two first years of teacher education, 

Maia’s responses on the pre- and post-test show that she has gained confidence in all items in 

the instrument that are comparable (five are not comparable due to how they are interpreted 

differently by the students as novices and as 2nd year PSTs (Bjerke, 2017b)). She is no longer 

‘Not confident’ on any tasks, and on all comparable tasks, she has ticked one confidence-level 

higher on the post-test compared to what she did on the pre-test. From this we can read that the 

difference in confidence-level between rules- and reasoning-items is still an issue towards the 

end of the course.    

Discussion and concluding remarks 

The analysis reveals that SMK is indeed an issue in Maia’s developmental story: she finds 

mathematics challenging at UC, much due to the focus on relational understanding. She looks 

upon teacher education as something to be ‘survived’. While her perception of her own SMK 

and the role of such is indeed an issue, her reflection of this situation, and how she dealt with 

it, is equally important. She expresses awareness of, and concern about, her inability to explain 

mathematics, but she does not see UC as a potential source of support. The role of SMK in 

sources of SETM in the sense of understanding connections and underlying principles is 

strikingly absent, and it appears to contribute to her insecurity in general. But still, we see that 

her strategy of over-preparing in exhaustive and rigid details in order to manage her 

mathematics teaching. Drawing on her placement as a strong source of mastery has resulted in 

positive development in her SETM.  

In line with Bandura’s (1997) understanding that mastery experience generally has the strongest 

effect, Maia’s story of her development as a mathematics teacher is dominated by a strong 

emphasis on mastery. She deals with the demands of teaching by focusing her learning in school 

placement, drawing on vicarious experiences when trying to copy her mentor. A longitudinal 
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reading of her interviews reveals a repeated negativity in her story after periods of lectures at 

UC (in interviews 1, 3 and 5), and a positivity after each period of school placement (in 

interviews 2, 4 and 6). In the interviews where she talks about UC-teaching, there are not many 

signs of sources of SETM. She focuses on experiences of failure and what she finds hard, and 

the fact that UC teaching in mathematics does not seem to “fit” her way of doing mathematics. 

Meanwhile, in the interviews taking place after periods of school placements, she points to both 

mastery experience, verbal persuasion and vicarious experiences as sources of her SETM. She 

notices the role of her own SMK in these sources, tending to avoid the difficulties arising due 

to the UC’s focus on relational understanding and instead focusing on praise from her mentor, 

strategies of copying her mentor, and over-preparation with an overall instrumental focus. She 

appears to find a strong source of SETM in her placement relaying heavily on praise, which in 

turn might prevent her from further development, given that verbal persuasion is found to be a 

comparatively weak source (Bandura, 1997) and on its own may be limited in its power to 

create an enduring increase in teacher efficacy (Tschannen‐Moran & McMaster, 2009).  

Bringing together research on SMK and on teacher efficacy enabled me to explain in more 

detail the complex role of SMK in Maia’s story.  Bandura (1997) argues that self-efficacy is 

central to the exercise of human agency. My investigation of this construct, in PSTs from novice 

to more experienced, offers a new way of recognising the agency of “weak” PSTs. The story of 

Maia is an example of someone with low SETM, who seems unwilling to reflect on the role of 

SMK, and unwilling to engage in the ‘new dimension’ of mathematics - the focus on relational 

understanding and the ability to explain mathematics - and who sees teacher education as 

something to survive; she is easy to describe as a “lost cause”.   

Based on my own experience as a teacher educator, I suspect that there are many PSTs like 

Maia in different teacher education programmes, struggling with the focus. Maia wants 

mathematics to be like it was in upper secondary school, which she saw as a set of rules to learn 

and use, requiring a purely instrumental understanding. Teacher education demands that she 

engage in knowing why, being able to explain why it makes sense to use rules, not only how to 

use them. My findings suggest that such “hopeless cases” are not solely “those who cannot do 

any maths”, but rather, might be someone who has a hesitation to engage with SMK in a new 

way.  

Applying these insights, building on the recognition of Maia’s positivity after each school 

placement where she finds strong sources of SETM, I suggest there is a need to bring in new 

pedagogies of practice in teacher education that focuses on mastery of reform teaching where 

relational understanding is considered a key to success. Building on Grossman et al.’s (2009) 

suggestions, teacher education should seek to offer PSTs opportunities to experience alternative 

ways of teaching through representations of practice (e.g. by participating in reform teaching 

led by the course instructor), decompositions of practice (e.g. by using videos and analysing 

those based on theoretical frameworks such as Skemp (1976) on relational understanding), or 

through opportunities where PSTs are enacting teaching practices, rather than contemplating 

them as in approximations of practice (lesson planning, rehearsals, co-teaching with 

experienced teachers where SMK is focused).   
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Research suggests that mathematical knowledge is likely to influence how mathematics is taught. In 

turn, how mathematics is taught impacts students’ opportunities to learn mathematics. We report on 

a study examining the connection between preservice teachers’ mathematical knowledge and the 

nature of their eliciting and interpreting of student thinking. Our findings suggest that preservice 

teachers elicit and interpret student thinking with more emphasis on student understanding in 

situations in which they have strong mathematical knowledge of an algorithm used by the student 

compared to situations in which they have weaker mathematical knowledge about the algorithm used.  

Keywords: Teacher education-preservice, instructional activities and practices. 

Mathematical knowledge, dispositions, and pedagogical skill 

Mathematical knowledge and pedagogical skill are crucial to effective teaching. Studies show 

teachers with substantial mathematical knowledge (Hill, Rowan, & Ball, 2005) and command of core 

teaching practices like formative assessment (Black, & Wiliam, 1998) have a greater impact on 

student learning of content. In the United States (US), mathematical knowledge and pedagogical skill 

are assets delineated in standards used to appraise both accomplished teachers (NBPTS, 2012) and 

beginning teachers (CCSSO, 2013). That mathematical knowledge and pedagogical skill are 

important in mathematics teaching is seldom questioned, but this does not mean that the field has 

determined the nature of the relationship between them. Mathematics teaching is a complex 

professional activity involving teachers in interaction with students, content, and context (Cohen, 

Raudenbush, & Ball, 2003). It is easy to imagine a multitude of ways in which mathematical 

knowledge and pedagogical skill are mutually influencing, if not mutually defining. For example, 

mathematical knowledge impacts the content and characteristics of questions that teachers ask during 

a lesson. Oriented in the other direction, pedagogical skill impacts the extent to which a teacher has 

access to student thinking that can be a substantial driver of a teachers’ own mathematical 

development. This paper focuses on understanding the interrelations between mathematical 

knowledge and pedagogical skill empirically with respect to preservice teachers who are enrolled in 

a teacher preparation program. 

Prior studies on teacher effectiveness connect teachers’ mathematical knowledge with the 

achievement of their students. Often these studies examine the number and type of professional 

development experiences (Blank, & Atlas, 2009) or teachers’ performance on mathematics content 

tests. When mathematics content tests are used, they tend to focus on general mathematical 

knowledge or mathematical knowledge identified as central to mathematics teaching (Hill, Rowan, 

& Ball, 2005). Such studies provide a connection between the mathematics that teachers know and 

the achievement of their students. What these studies do not explain is the way in which teaching is 

shaped by mathematical knowledge in ways that generate enhanced achievement for students. In a 

comparative study of Chinese and US mathematics teachers, Ma (1999) advanced the notion that the 
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way that teachers hold mathematical knowledge (e.g. the depth of understanding of foundational ideas 

interwoven with knowledge of how those ideas are shown across the breadth of mathematical topics) 

supports their engagement in teaching. Some examples of engagement in teaching are the questions 

teachers are able to ask students, the examples they create, and their analyses of student work. Among 

other mathematical foci, Ma explored differences in teachers’ understanding of subtraction 

algorithms. Her findings illustrate the potential impact of the teachers’ understanding and the ways 

in which different types of understanding might provide the basis for teaching that would support 

students’ learning about subtraction. Needed are studies that can show connections between teachers’ 

knowledge and the ways in which they engage in teaching practices. This would especially support 

teacher preparation, where resources are most plentiful, to scaffold improvement. 

Since mathematical knowledge is likely to impact/influence mathematics teaching, it is important to 

understand how those resources impact teaching.  To enhance the utility of what is learned, it will be 

important to focus studies on practices of teaching that are routine and crucial to students’ learning 

of mathematics. Two such practices are eliciting student thinking and interpreting student thinking. 

Teachers use these practices to encourage students to share their thinking about specific academic 

content in order to evaluate student understanding, guide instructional decisions, and surface ideas 

that will benefit other students (TeachingWorks, 2016). Research on learning supports the use of 

teaching practices that enable teachers to know about and build on students’ ideas. It also shows that 

teachers who know about their students’ thinking and use that knowledge to influence their instruction 

have a significantly greater impact on student achievement (Black, & Wiliam, 1998). Hence, 

understanding the connection between mathematical knowledge and preservice teachers’ engagement 

in the teaching practices of eliciting and interpreting student thinking is likely to be use to the wider 

field. 

In this context, this paper reports on research driven by a desire to better understand the ways in which 

mathematical knowledge influences preservice teachers’ engagement in eliciting and interpreting 

student thinking. We studied these teaching practices of preservice teachers within a mathematical 

content strand that dominates the primary grades – number and operation – zooming in on the 

operation of subtraction. Within subtraction, we focus on the use and understanding of different 

algorithms to solve problems, an area in which preservice teachers experience difficulty connecting 

their knowledge of traditional algorithms to alternative approaches (Son, 2016). Our research was 

guided by the question: What is the relationship between preservice teachers’ mathematical 

knowledge of particular mathematical algorithms and the ways in which they approach eliciting and 

interpreting student thinking about those algorithms? 

Using simulations to learn about preservice teachers’ engagement in eliciting and 

interpreting student thinking 

A practical problem that arises is how to study the ways in which preservice teachers’ mathematical 

knowledge of particular mathematical algorithms impact their eliciting and interpreting of student 

thinking. We chose to design and use simulations in which preservice teachers engage in eliciting and 

interpreting a student’s thinking about the use of a particular subtraction algorithm. Simulations are 

approximations of teaching that place authentic, practice-based demands on a participant while 

purposefully suspending or standardizing some elements of a teaching situation (Shaughnessy & 
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Boerst, 2018). For each simulation, we developed a piece of student work and then designed an 

elaborate protocol detailing how a student would: complete the process shown in the work; reason 

about the process used; talk and act when questioned about the process. Those taking on the role of 

the student (teacher educators) were trained so that they could use information from the protocol as 

the basis for engaging in the situation and so that they could respond in ways that aligned with the 

profile of student thinking and acting.  

Our decision to use simulations was driven by four factors. First, simulations of practice have proven 

to be usable in many professions to gauge clinical knowledge and skills (e.g. Boulet et al., 2009). 

Second, simulations provide reliable access to teaching situations that other methods, such as 

interviewing real children or interviewing in school contexts, could not. Third, simulations allow for 

the standardization of the assessment context (Shaughnessy, Boerst, & Farmer, 2018). Fourth, our 

goal required a design that would purposefully put preservice teachers in situations where their 

mathematical knowledge was low. The use of simulations allowed us to accomplish this while  

preserving our own ethical commitments to educating children and consistently positioning 

preservice teachers to work productively with children. 

Methods 

We collected information about the mathematical knowledge of preservice teachers and used that 

information to assign them to three teaching simulations that each strategically positioned preservice 

teachers to elicit a student’s thinking about a particular algorithm that had been used to compute an 

answer to a subtraction problem. Specifically, the simulations were designed to present opportunities 

to elicit a student’s thinking about algorithms about which the preservice teachers had different 

degrees (known to the researchers) of mathematical knowledge. Twenty-four elementary preservice 

teachers from one teacher preparation program participated. Because our goal was not to bound our 

analysis to any point in time during a teacher education program, we purposefully recruited preservice 

teachers who were at different points in the program. Specifically, two were at the beginning of the 

teacher education program, eight were at the midpoint of the teacher education program, and 14 were 

at the end of the program. Next, we describe the pre-assessment, the assignment of preservice teachers 

to specific simulations, and the administration of the teaching simulations. 

Pre-assessment of mathematical knowledge 

We designed an assessment of mathematical knowledge inclusive of four subtraction algorithms that 

could be encountered in a subsequent teaching simulation. These algorithms, shown in Figure 1, 

include: A) the US traditional algorithm for subtraction; B) adding up subtraction; C) subtracting 

from the base; and D) expand and trade subtraction. Largely, these algorithms represent processes 

that are either directly taught through common US mathematics curriculum materials or are likely to 

surface in some form during mathematics work in US classrooms. One was deliberately picked to 

represent an algorithm that would likely be unknown to preservice teachers.  

Thematic Working Group 18

Proceedings of CERME11 3213



 

 

 

Figure 1. Pre-assessment subtraction algorithm examples 

Preservice teachers were shown two examples of students’ use of each of the subtraction algorithms, 

resulting in eight total examples to analyze. Half of the examples showed how the algorithms could 

result in correct answers and the other half of the examples showed how the algorithms could result 

in incorrect answers. This was done because of the potential for inaccuracy to influence preservice 

teachers’ understanding of the different algorithms. For each example, preservice teachers were asked 

to determine accuracy of the answer, describe the steps that the student likely used to arrive at the 

answer, provide an explanation about the mathematical validity of the student’s method, and apply 

the student’s approach to another problem. The intent was to capture information that would allow us 

to categorize each preservice teacher’s mathematical knowledge of each algorithm as “strong”, 

“moderate”, or “weak” relative to the mathematical knowledge shown across the algorithms. For each 

preservice teacher, the subtraction algorithm about which they demonstrated the most understanding 

was designated as “strong” and the subtraction algorithm about which they demonstrated the least 

understanding was designated as “weak. Those algorithms that were neither strong nor weak were 

designated as “moderate.” 

Assignment of preservice teachers to particular simulations 

We used information from these pre-assessments to assign preservice teachers to three simulations. 

One simulation involved a “student” using an algorithm for which the preservice teacher was 

characterized as having strong mathematical knowledge (relative to the other algorithms). Another 

simulation involved a “student” using an algorithm for which the preservice teacher was characterized 

as having weak mathematical knowledge (relative to the other algorithms). An additional simulation 

involved a “student” using an algorithm for which the preservice teacher was characterized as having 

moderate mathematical knowledge (relative to the other algorithms). 

Administration of the teaching simulations 

All simulations were facilitated through the same sequence of stages. First, the preservice teacher 

prepared for an interaction with one simulated student (i.e., a teacher educator taking on the role of 

the student) by reviewing a specific piece of student work and considering what would be relevant to 

ask the student. For each simulation, they had 10 minutes for this preparation work. Second, the 

preservice teacher elicited and probed the simulated student’s thinking to understand the steps she 

took, why she performed particular steps, and her understanding of the key mathematical ideas 

involved. Preservice teachers had five minutes to interact with the student. All preservice teachers 

finished their interactions within this time frame. All simulations were video recorded to support 
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scoring and research purposes. Third, following the simulation, the preservice teacher responded to 

questions about their interpretation of the student’s process and understanding and their prediction 

about the student’s performance on a similar problem. Interviewers followed up on the preservice 

teachers’ responses as needed. 

Methods of analysis 

We analyzed the simulation performances in which the preservice teachers elicited student thinking 

and the follow up interview in which the preservice teachers interpreted student thinking. Because 

the simulations made use of highly specified protocols for the student’s processes, understandings, 

and ways of being, we were able to use checklists to track on the absence or presence of particular 

moves (Shaughnessy, & Boerst, 2018). Our checklists for the eliciting portion of the teaching 

simulations are based on an articulation of “high-quality” eliciting of student thinking.  For example, 

high-quality eliciting student of thinking includes: eliciting the process/steps involved in using the 

algorithm and probing understanding of the algorithm and ideas underlying the algorithm. The 

checklist includes specific things that the preservice teacher might do in the context of each teaching 

simulation (e.g., probes why borrowing works) and specific responses that the student provides based 

on their preparation and training (e.g., “When you borrow, you’re not changing the problem. You’re 

just moving the same amount to a different place) when prompted by the preservice teacher. The 

practice of interpreting student thinking includes describing the components of the algorithm used by 

the student, making claims about the student’s understanding of the algorithm, and substantiating 

claims by drawing on evidence from a larger body of data gathered from the eliciting. The checklist 

includes specific things that the preservice teacher might do in the context of each teaching simulation 

(e.g., describes the student’s understanding of why borrowing works). For interpreting, we also cross-

check any evidence that a preservice teacher cited with the information gathered during the interaction 

with the student to ensure that they had the evidence that they cited. For each situation, we further 

specified crucial “core” components of the process and understandings that were at the heart of the 

student’s algorithm, ones that would be particularly important to attend to in the interpretation.  

Each performance was appraised by two members of the research team. Disagreements were resolved 

through review of the data and remediating differences of interpretation by developing and refining 

a codebook. 

Findings: Connecting the preservice teachers’ eliciting with their mathematical 

knowledge and disposition  

As noted previously, we analyzed the quality of each preservice teacher’s eliciting performance in a 

context in which the preservice had “strong mathematical knowledge” of the subtraction algorithm 

versus their performance in which they had “weak mathematical knowledge of the subtraction 

algorithm. We next turn to findings related to their eliciting and interpreting of student thinking. 

Eliciting practice 

For each teacher, we compared their eliciting performances in the strong mathematical knowledge 

simulation context (SM) and the weak mathematical knowledge simulation contexts (WM). There 

were no differences across the two conditions with respect to the preservice teachers’ eliciting of the 

student’s procedural steps to solve the problem. However, preservice teachers probed for the students’ 

understanding of the process more frequently in the SM simulation (M = .792, SD = .2518) than in 
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the WM simulation (M = .313, SD = .3848), t(23) = 5.468, p < .001. In other words, when preservice 

teachers had stronger understanding of mathematics of the student’s algorithm (relative to the second 

algorithm), they more frequently elicited the student’s understanding about core ideas.  

Interpreting practice 

For each preservice teacher, we compared their interpreting performances in the SM simulation 

context and the LM simulation context. Preservice teachers did not differ in their skills in interpreting 

the procedural steps of the algorithm used by the student in the two contexts. Almost all of the 

preservice teachers named all of the student’s steps in both contexts. However, the quality of their 

interpretation of the student’s understanding of the process that was used was significantly higher in 

the SM simulation (M = .500, SD = .3612) than in the WM simulation (M = .188, SD = .3234), t(23) 

= 3.498, p < .002. In other words, preservice teachers were better at interpreting the students’ 

understanding in situations in which they had strong mathematical knowledge of the algorithm 

compared to a situation in which their mathematical knowledge was comparatively weaker. 

Implications and next steps 

Preservice teachers demonstrated different eliciting and interpreting skills across two situations – one 

in which they had relatively high mathematical knowledge of a particular subtraction algorithm being 

used by a “student” and one in which they had relatively weak mathematical knowledge of a different 

subtraction algorithm. Preservice teachers focused their eliciting and interpreting practices more on 

student understanding when they had relatively strong mathematical knowledge. In some ways this 

finding is not surprising. Strong mathematical knowledge of an algorithm may enable preservice 

teachers to know what to ask about in terms of understanding. Further, in interpreting student 

thinking, mathematical knowledge of an algorithm may impact preservice teachers’ abilities to 

identify the mathematical understanding that are worth naming. To be clear, in our work with 

preservice teachers we have seen cases where preservice teachers with strong mathematical 

knowledge of a situation did not elicit much thinking from the student, but instead made assumptions 

about the process and the students’ understanding based on a combination of the student’s written 

work and their own understanding of the algorithm. A contribution of the study was gain a better 

sense of the degree to which such engagement was common (or not) in our context. While this study 

does not provide insight into the reason(s) behind the differences in the practices, this outcome is 

useful because it shows concretely that differences in practice predicted by researchers like Ma (1999) 

who had theorized that greater mathematical knowledge would enable engagement in teaching 

practices that support student understanding of mathematics.  

Some elements of the preservice teachers’ eliciting and interpreting were not significantly different 

across the two situations. Notably, there were not marked differences in the extent to which preservice 

teachers elicited procedural aspects of the student’s algorithm. Likewise, there were not marked 

differences in preservice teachers’ interpretations of procedural aspects across the different 

algorithms. When coupled with the previous analysis, this indicates a nuanced relationship between 

knowledge and teaching practice. The degree to which mathematical knowledge impacts the focus of 

teaching practices with respect to some facets of mathematics (understanding) more than others 

(procedural) is interesting. It is plausible that differences were not seen due to the fact that eliciting 

information about steps in a mathematical process, like an algorithm, may be more straight forward 

than eliciting information about understanding and thereby are not as heavily impacted by the degree 
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of mathematical knowledge one has about an algorithm. The similarity of eliciting and interpreting 

with respect to the steps in an algorithm is notable for the questions it suggests. What enables 

preservice teachers to elicit and interpret student thinking about the procedural aspects of an algorithm 

irrespective of the depth of their mathematical knowledge about the algorithm? What compels 

preservice teachers to elicit student thinking about the procedural aspect of an algorithm and to attend 

enough to the procedural aspects to be able later to produce accurate evidence-based interpretations? 

A clear limitation of the study findings presented here is consideration of other factors that might be 

contributing to the differences in eliciting and interpreting practices. For instance, a teacher’s 

mathematical dispositions may shape teaching practices in ways that impact students’ opportunities 

to learn mathematics (Thompson, 1992; Philipp, 2007). As an example, in our own work with 

preservice teachers, we frequently hear differing, and often strongly expressed, dispositions toward 

particular computational algorithms. These dispositions influence and give structure to how teachers 

perceive students’ engagement in mathematics. Studies have illustrated ways in which dispositions 

can impact the classroom practices of teachers (e.g., Fennema et al., 1996). Some of the connections 

between teaching practice and content knowledge that we have shared in this paper could be explained 

by the influence of mathematical disposition. For instance, it is just as plausible that a positive 

mathematical disposition may result in preservice teachers believing that it is worth asking questions 

about understanding because they personally know that the algorithm can be understood as it is that 

strong mathematical knowledge is the resource driving that approach to the practice. Given the 

potential for mathematical knowledge and mathematical dispositions to be mutually influencing (e.g. 

the more robust the mathematical knowledge of the teacher about an algorithm the more favorable 

the disposition to engage in and with the algorithm), in current work, we are teasing apart their 

influences with respect to engagement in teaching practices.  
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The project Liceo Matematico and the issue of teacher training  

In this work, we deal with a challenging research question: what teacher training activities are 

effective to train mathematics high school teachers to teach properly interdisciplinary modules 

involving Mathematics? The context of the research is an Italian national project for high schools, 

named Liceo Matematico (Capone et al., 2016), that aims at turning Mathematics, hard subject to 

learn, into a tool to connect disciplines and deal with current social challenges. To make this 

possible, it is necessary first to deepen into the epistemology of disciplines and to look for fruitful 

connections between them, then to design suitable modules for high school students. Operationally, 

the project consists in additional activities for high school students (40 hours per year), carried out 

by voluntary mathematics high school teachers, trained by university teachers. University teachers 

identify topics, epistemological issues and interdisciplinary connections (Frodeman, Thompson 

Klein and Mitcham, 2010) relevant in order to pursue the general goal of the project, and then 

propose possible classroom activities. Each module is proposed in 2 steps: in the first the contents 

are presented with a frontal lesson, while in the second step the didactical activities are before 

proposed to the teachers and then discussed with them in terms of potential students’ difficulties 

and connections with the curriculum. After the course, the high school teachers have to choose 

some modules and adapt them for their students, consistently with the school institutional 

constraints and goals. We focus our attention on the teachers’ choices and adaptations of the 

modules proposed in the training course.  

Research framework: Mathematics Teachers Specialized Knowledge  

To describe the aspects of teachers’ knowledge considered in the training course, we chose to use the 

Mathematics Teacher’s Specialized Knowledge (MTSK) model elaborated by Carrillo-Yañez, 

Climent, Montes, Contreras, Flores-Medrano, Escudero-Ávila, Vasco, Rojas, Flores, Aguilar-

González, Ribeiro and Muñoz-Catalán (2018). Such model is focused on “the specialized components 

of mathematics teachers’ knowledge, that is, their knowledge of mathematics as the object of teaching 

and learning” (ibid. 2018, p. 14). It includes three sub-domains of Mathematical Knowledge: 

mathematics content itself (Knowledge of Topics, KoT); the interlinking systems which bind the 

subject (Knowledge of the Structure of Mathematics, KSM); how one proceeds in mathematics 

(Knowledge of Practices in Mathematics, KPM). For what concern the pedagogical content 

knowledge (PCK), two sub-domains concerned teaching and learning (Ball et al., 2008), Knowledge 

of Mathematics Teaching (KMT) and Knowledge of Features of Learning Mathematics (KFLM), 

while the last sub-domain of PCK is Knowledge of Mathematics Learning Standards (KMLS). 
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Methodology of the research 

We carried out a preliminary study after the first year of teacher training to investigate whether and 

how the course had provided teachers with the suitable knowledge that could allow them to adapt 

the trainers’ proposals without transforming them so much to lose their most important aspects. We 

analyzed the modules proposed by university teachers using the model MTSK and then we used the 

same model to analyze the teachers’ choices and adapted modules. Finally, we analyzed the 

teachers’ adaptations in terms of differences and similarities with the original proposals, identifying 

the sub-domains of MSKT that were more considered by the teachers to adapt the modules. 

Data analyses 

For the first year the modules proposed by university teachers were: theorems with Origami; 

programming languages; congruence and divisibility; the language of Physics; From frescoes to 

videogames. The modules addressed merely the following domains: KoT (5/5), KSM and KPM 

(3/5); the only modules including interdisciplinary aspects explicitly were Languages of Physics 

and Art & Science. Looking at patterns in teachers’ choices and adaptations, it emerged that the 

interdisciplinary modules were the less considered and, in these cases, the teachers felt the necessity 

to modify them a lot, separating and juxtaposing Mathematics and the other disciplines, using 

merey the epistemological perspective of Mathematics and using the other disciplines just to engage 

students and act on motivation, without really integrating the two as it was proposed in the modules. 

Discussion and conclusions 

One of the main aspects of the Liceo Matematico project is interdisciplinarity. This preliminary 

analysis showed that the interdisciplinary activities were the most problematic to adapt for the 

teachers and the less chosen, so we realized that another kind of specialized knowledge is necessary 

for the teachers to carry out meaningful interdisciplinary activities, that we name Mathematics 

Interdisciplinary Knowledge (MIK), i.e. the awareness of the different epistemological status of the 

disciplines, fruitful connections and critical issues emerging when mathematics is integrated with 

other disciplines, both sciences and humanities. Without a specific meta-reflection on these aspects 

the teachers fail in identifying the crucial points of interdisciplinary activities. In the second year we 

are interacting with the teachers addressing explicitly this point and looking for activities in the course 

that potentiate the MIK domain. As a general aim, we will try to characterize explicitly this domain 

providing examples and clarifying its specificity, according to our a priori analysis and results.  
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As a mathematics teacher educator, researching classroom environments and practices has 

supported me in linking theory and practice so that awarenesses developed support the prospective 

teachers with whom I work. The research has built a belief that there is not one way to teach 

mathematics. How do experienced mathematics teachers create the environment in which they teach? 

What do they consistently do from their first lessons with a group? This paper reports on interviews 

with effective teachers of mathematics in the UK where they stay with the detail of what happened in 

recent first lessons with a group new to them to illuminate their decision-making processes as they 

establish the culture of their classrooms. Energetic statements arising out of the detail, such as “I 

like to give things a story” can be used to support novice prospective teachers, like with Alf Coles, to 

find the teacher they can be when faced with not knowing what to do when teaching their first lessons. 

Keywords: Mathematics teacher educator research, classroom environment, interviewing. 

Background 

Over my career as a mathematics teacher educator (MTE), I have interviewed many experienced 

teachers of mathematics. As I accepted the post of lecturer in mathematics education, in 1990, I left 

the classroom and my then role as a curriculum developer. I became fascinated by the mathematics 

teaching of others that seemed so different from my own. This paper explores stories from 

experienced mathematics teachers related to the detail, elicited using an interview, of their first 

lessons with a new group of students, investigating the questions: How do experienced mathematics 

teachers create the environment in which they teach? and What do they consistently do from their 

first lessons with a group? The first set of interviews explored the first lessons of experienced teachers 

because my prospective teachers did not have access to these and did not know what to do in their 

own first lessons. They may have had ideals of what they wanted to be as a teacher, with a view of 

what a classroom in which learning mathematics takes place might be like, but they did not have the 

experience to have honed the skills that would allow this vision to exist. 

I have continued to interview practising teachers as part of my research to extend my awarenesses of 

possible practices, rather than come to some fixed view of what mathematics teaching looks like. 

Over time, my interviewing practices have changed and these interviewing practices have also 

influenced my practice as an MTE. In what follows, I will first discuss my interviewing practices and 

how these link to my practices as an MTE and will then move on to discuss cases of interviews. 

On interviewing 

The original “first lesson” interviews were designed using Bruner’s (1990) ideas of a “culturally 

sensitive psychology”: 
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[which] is and must be based not only upon what people actually do but what they say they do […] 

how curious that there are so few studies that [ask]: how does what one does reveal what one thinks 

and believes. (pp. 16–17) 

I will be reporting on what the teachers actually do and what they each say they do in their 

mathematics teaching to illuminate their decision making in the next section. It was the access to the 

decision making that was supportive of the developing prospective teachers because I had a range of 

anecdotes available in group and individual discussions in those early days. However, as my 

interviewing skills developed, especially through Claire Petitmengin’s writing and protocol, the 

process of interviewing became part of the structures of the course.  

First lesson interviews 

First lessons with a new group of students were important to teachers in establishing their ways of 

working, but were often times where observers of the lessons were not so welcome. This included 

having a video-recorder in the classroom because it might cause a distraction in an important lesson 

or sequence of lessons. As a new mathematics teacher educator, I was fascinated by observing 

different mathematics teachers and their students interacting. The nearest I could come to observing 

first lessons was to interview teachers as soon after the lesson as possible.  

At the time, I designed an interview protocol where each teacher interviewed was invited to tell me 

in detail about a first lesson or sequence of lessons with a group of students who had not been taught 

by them before. I wanted to focus on what happened in some detail as the teacher established their 

ways of working with the class. In looking at the transcripts again, I was struck by how similar my 

current interviewing protocol is and was moved to listen again to the tape-recordings (having found 

a player!) listening this time for when each teacher’s voice was more energetic. This energetic voice 

was heard at times when they were talking about the detail, seeming to discover meaning in what 

they had been doing. The first-lesson interviews were an important critical incident in my own 

development as a mathematics teacher educator. I started to listen for energetic comments from my 

prospective teachers, as evidence of their learning, articulations of what previously had been implicit. 

Claire Petitmengin’s interview protocol 

The protocol for interviewing I currently use is adapted from the work of Petitmengin (2006) and has 

strong similarities with those early interviews. Petitmengin designed the protocol for her doctoral 

study, related to supporting epileptics to identify internal changes prior to having a fit. The design of 

the study linked the third-person neuroscience that had shown the changes in mappings of the brain, 

with a phenomenological first-person protocol redesigned as a second-person interview. The 

behaviours for the interviewer were the focus of Petitmengin’s protocol and are as follows: 

Stabilising attention. A regular reformulation by the interviewer of what the subject has said, 

asking for a recheck of accuracy (often in response to a digression or judgement). Asking a 

question that brings the attention back to the experience, such as, "How did you do that?"  

Turning attention from “what” to “how” (never “why”).  

Moving from a general representation to a singular experience, a re-enactment, reliving the past 

as if it were present. Talking out of their experience, not from their beliefs or judgements of what 

Thematic Working Group 18

Proceedings of CERME11 3222



 

 

happened, often involves a move to the present tense. Staying with the detail is important, a 

maximal exhaustivity of description that allows access to the implicit. (adapted from pp. 239–240) 

One of the changes in my own behaviour as an interviewer over the years has been to let go of “why” 

questions, whilst still supporting interviewees “talking out of their experience, not from their beliefs 

or judgements” (Petitmengin) to focus on “what people actually do [and] say they do” (Bruner). The 

changes in my behaviour as interviewer also led to changes in my behaviour as MTE. There was a 

realisation that the actions in the protocol were useful for supporting any learning, which could be 

described as “access to the implicit”. So, using these strategies could support the prospective teachers 

in supporting the learning of the students in their classrooms, getting them to talk through what they 

were doing when stuck on a problem say, and asking for evidence or examples when faced with an 

assertion. I developed an activity under the label of “diagnostic questioning” for prospective teachers 

to listen in pairs to each other solve a mathematical problem whilst the “interviewer” used strategies 

to draw out the other rather then get involved in the mathematics themselves. Over time, Alf Coles 

and I, who were colleagues teaching the prospective teachers together, extended the protocol for what 

we call narrative interviewing to a fourth point:  

Getting to new category labels. After dwelling in the detail, telling stories and exploring without 

judgement or digressions, invite statements of what is being worked on. In this way, new category 

labels might be identified […] that will link to learning new actions. (adapted from Brown & Coles, 

2018, p. 178) 

The prospective teachers need to act in the classroom even when they have no experience to draw on. 

In a small group, led by one of the MTEs acting as facilitator, the prospective teachers are asked to 

think of a story when they were feeling uncomfortable in their recent classroom experience. One 

person tells their story, without judgements or digressions, minimally and this is followed by others 

in the group telling stories that seem similar to them in some way (see The Mathematical Association, 

1991, working group chaired by Barbara Jaworski). At some point, a discussion about what is similar 

about the stories happens and these statements might be different for different students. This 

discussion might give a range of “new category labels”, for example, “How do I know what they 

know?”; “How do I know that they know?” that can be worked on by those prospective students who 

find them meaningful by trying out a range of actions in their classrooms that can be used flexibly to 

support the classroom environment. In this way, developing my skills as an interviewer impinged 

directly on my practice as an MTE. 

Cases from the original first-lesson interviews 

The teachers (10 in all from which I will illustrate two) were chosen by the three local advisory 

mathematics teachers who had observed them in their classrooms as being particularly effective 

(deliberately not defined because I wanted a range). The teachers were encouraged to stay with the 

detail of their first lesson with a new group of students and, in so doing, they also commented about 

the detail, without being prompted to by me. This might mean comments about their images of 

teaching and learning mathematics or about what mathematics was to them. These comments were 

said energetically, often quickly and explosively. In Petitmengin’s terms, I would now read these 

Thematic Working Group 18

Proceedings of CERME11 3223



 

 

comments as giving “access to the implicit”. In listening back to the original tape-recordings, for 

analysis, I paid attention to these energetic comments. 

Case 1: “I like to give things a story”  

One teacher in his first lesson with a new group described using the following problem: 

I had a dream last night and, in that dream, this is what I heard. You must build a tower and from 

the top of the tower, sort of like a plus sign from the side, it should look like two staircases meeting. 

We haven’t decided yet how big the tower should be but when we decide, you must be able to 

build it and organise the building of it. 

After telling the problem, the following exchange occurred where there was a shift in the teacher’s 

comments to be about what he had described, giving access to his thinking and beliefs: 

Teacher: I like to give things a story because I like to give the children a natural language as a 

parallel to the mathematical language.   

Laurinda: So, a story for you would apply basic language, not mathematical language.  Any other 

things that you would say in the story? 

Teacher: I think it allows enabling people to enter the world of maths you are talking about then if 

you have got a story if it’s amusing or catchy in any way they might get interested 

in the first place, but it does provide short simple language with which they can 

converse with one another.  So, it allows for group work which is something else I 

think. 

In this extract, my contribution is stabilising attention, repeating back what I have heard said and 

returning the focus to the story, to the detail of what happened. This comment is followed by the 

teacher saying more about the thinking behind his decisions, giving insight into his vision of how the 

lesson will develop, what will be done over a sequence of lessons before returning to the detail of 

what happened: 

By the end of two days’ work we were going to have posters of this and I wanted the posters to be 

different and I wanted people to have things to look at which would be new for them and 

interesting, and I wanted different people to have different problems that they would be solving 

[...] just to show that a huge range of possibilities can come out of story anyway.  There is not one 

right answer, there are lots of answers […] I then asked them in groups again, individually, to write 

down the task and everything and the story and then in groups giving them five minutes to do that, 

in their groups to decide what kind of questions or concerns or worries the architect has. 

Thoughts on Case 1 

The word “story” is part of a rich set of interconnected images for this teacher. There are reasons such 

as using natural language alongside the mathematical language and also criteria for choosing a story, 

given that the children will do different things so that the children can see a “huge range of 

possibilities” emerging. Story is also linked to metacomments, where the students are asked to review 

each other’s design and come up with questions for the architect. The element of role play makes the 

learning student-centred, in that they have to make decisions. The teacher sets up the environment of 
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the classroom and comments on the students’ actions, whilst the students themselves are given the 

responsibility of doing the mathematics. Mathematics teaching and learning being about story is 

closely linked to this teachers’ and their students’ behaviours. 

Case 2: “Mathematics is a study of pattern” 

The teacher begins the mathematical part of his first lesson with: 

So, on the board I write mathematics is a study of pattern. Basically, in a sentence I would say it 

is and then I draw little arrows and say there are two basic big areas of maths, one is numbers and 

the other is shape. I give them all this philosophical stuff. Today we are going to do an activity 

that is going to combine between these two things. 

Quite soon after the description of what happened above, the teacher energetically, talking about what 

he does, revealing his passion, says: 

What I find with children is they all think that maths is just numbers […] I always try to emphasise 

how the two areas really do link because I think apart from anything else, anybody using the 

creative side of their brain, geometry can help a lot in understanding power in the numbers […] 

bad experience with number work seems to block their whole mathematical enjoyment and I try 

to emphasise that maths is lots of things and not just knowing your times tables. 

The teacher is clear what he wants students to be doing sitting them in groups to work together: 

Well I’m looking for the children to be confident enough to be able to take an original idea and 

then move it on themselves into different areas. 

Thoughts on Case 2 

The teacher in Case 2 sees mathematics as pattern, linking to a passion for overcoming students’ 

previous bad experience with number. All his interactions with students supported this. The problem, 

given to students first, is one that he has used before, many times and has confidence in. Initially, the 

teacher reports that, when asked what mathematics is at the start of the lesson, no-one responds, 

whereas, twenty minutes in to exploring a problem, that links number and shape, students are 

describing patterns and asking questions. The teacher is able to comment, about their work, to 

students that they are doing mathematics. 

What follows is a report of using the interview protocol over four years, with the same teacher, Alf 

Coles, initially new to the profession, showing how the interviews change over time.  

Alf Coles’s first-lesson interviews 

I first started working with Alf Coles in 1995. In the early days of working with him, he was a new 

teacher and I interviewed him at the beginning of his second year of teaching. I will use the first-

lesson interview of 1995 to give some background to where the fourth protocol item developed and 

discuss differences with the interviews with experienced teachers.  

Getting to new category labels 

When I first met Alf, he was in his first year of teaching and did not have the experience to link his 

teaching practice with his beliefs. The protocol of asking for details of his first lessons gave us an 
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opportunity to see what underpinned his practice. There seemed, however, to be no energetic 

comments about his teaching occurring within the interview linked to what he does as a teacher. The 

following interchange from 1995 shows how Alf is finding some actions that support his ideal image 

of teaching mathematics as opposed to actually being able to achieve that ideal in his practice: 

AC: With my year 9 class who I had in year 8 one of the things that I said to them at the beginning 

is that one of my aims this year is to try to make you independent thinkers, although 

who knows what independent means. That felt quite nice because I could come 

back to that. 

LB: That was in a first lesson? 

AC: Yes. That gave some power to when they said, “Can you tell us how to do this?” that I could 

say, “I’m wanting you to do this independently.” 

Compared to how the teachers in the original first-lesson interviews talk about their teaching, in the 

1995 interview, when reliving the first lessons with a new year 7 (11–12 years old) group, there were 

no comments from Alf about the details of his teaching and no energetic comments. It was in our 

conversation after the interview, when I reported back to him about this, that the comment above 

about the year 9 (13–14 years old) group emerged. This was an energised statement and evidence, to 

me, that he had begun his journey to be able to act in a way consonant with his beliefs. The interview 

was at the start of our work together and also developed into a conversation about what we might 

work on and what it was I was interested in. Some of my comments were linked to what he was 

saying. My comment, out of my experience of other first lesson interviews, was a response to Alf 

talking about his vision of teaching mathematics: 

AC: A sense of what it’s like to create a space for students to work on their own images. A sense 

of how that could be maintained. Picking up from what students have said at the 

beginning of class […] by some people giving their method or explaining what 

they’re doing it’s not that you’re taking away the journey from the others it’s 

helping them along. 

LB: [A] description of you at the moment is that you have no metacommenting. Some teachers 

when they are teaching are metacommenting. Some people think of this as patter - 

[...] “remember to reflect on what you’re doing as well as do it.” […] I don’t think 

I’ve spotted any. [I]t’s not good or bad. I think what happens to [experienced] 

teachers is that they become very clear about what they’re trying to do, so all those 

metacomments become completely standardised and in a sense they become close 

to their behaviours - it’s a sort of autopilot. Right down to a [child] comes up and 

says, “I’ve got a problem with this” gets a reply, “OK, you tell me.” It’s a 

metacomment because it’s saying, “I’m not going to engage with this until you tell 

me.” 

As we continued to work together, each year I did another first-lesson interview at the start of a new 

academic year until, by 1999, a pattern had become established and the interviews were similar, with 

similar comments about what was happening. At this point, we wrote up our research in a book 
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(Brown & Coles, 2008). The 1999 interview illustrates the way in which the interview shows what 

Alf did and what he said he did. Alf states, near the start of the lesson,  

AC: And I said welcome to mathematics at secondary school. [A]s well as all the skills and 

techniques like adding or multiplying or taking away that they will have learnt and 

they will continue to learn it’s also about learning to become a mathematician […] 

and learning to think mathematically […] [I]f you’re thinking mathematically then 

it’s about noticing things about what’s around you and it’s about writing things 

down about what you notice […] a question about something […] maybe they’ve 

seen a pattern and a question that mathematicians often ask is “Why?” Make a 

prediction maybe based on that pattern. Say why they think that pattern will 

continue.  

This purpose of the year “about learning to become a mathematician”, was linked to behaviours for 

the students like asking questions and making predictions. There were also metacomments about the 

students’ ways of working that Alf made, such as, “That’s a really nice example of how working 

together mathematically as a group that in talking about how you’re doing something you can 

recognise where you’ve gone wrong.” These comments are not pre-planned. In the complex decision-

making, moment-by-moment in his classroom, Alf’s comments about what his teaching is about are 

underpinned by metacomments close to his and his students’ behaviours in doing mathematics. 

In working with Alf for the last twenty years, we have come to see staying with the detail, dwelling 

in it, as a mechanism for finding the images of teaching, new category labels, that can be linked 

closely to actions as teaching strategies emerge that support students. This is particularly important 

for working with prospective teachers of mathematics, who are in the position that Alf was in in 1995. 

Ideals, such as independence or autonomy, of what they want to be as a teacher, are not linked with 

a view of what a classroom in which learning mathematics like that might take place, nor to teaching 

strategies. They simply do not have the experience to have honed the skills that would allow this 

vision to exist. 

Novice and expert teachers can learn in the same way, staying with the detail of what happens and 

dwelling in it, what Varela (1999) calls “deliberate analysis”, 

Indeed, even the beginner can use this sort of deliberate analysis to acquire sufficient intelligent 

awareness to […] become an expert. (p. 32) 

For an expert teacher, this could be creating a new label linked to a behaviour to solve an issue arising 

in their classroom. Intelligent awareness “allows experts to unpick, if necessary, the reasons an action 

was taken, and hence open themselves up to alternative possibilities in the future” (Brown & Coles, 

2011, p. 862). This again, for us, is Petitmengin’s “access to the implicit”, bringing to conscious 

attention the behaviours that support the ideal images of teaching to be put into practice. 

The first-lesson interviews with experienced teachers were not designed to change what the teachers 

were doing. These teachers were experienced and effective according to local mathematics advisory 

teachers. I was interested in how they did what they did.  

Thematic Working Group 18

Proceedings of CERME11 3227



 

 

Conclusions 

So, how do experienced mathematics teachers create the environment in which they teach? From their 

first lessons, they are able to comment to students about their behaviours, for example, “you're doing 

mathematics” (Case 2) and give them activities related to their beliefs about what mathematics is, 

such as the story problem (Case 1). In cases 1 and 2, the teachers use problems they have confidence 

in to achieve their clear images of what their classrooms can look like with their students, “describing 

patterns and asking questions” (Case 2) or “different people having different problems they would be 

solving” (Case 1). What do they consistently do from their first lessons with a group? What does 

seem to be the case is that for all these teachers their beliefs are closely linked to their and their 

students’ actions in their mathematics classrooms. Their different beliefs lead to different actions but, 

through the teachers metacommenting about actions they see as fitting their image of their 

mathematics classroom, the students know how to do mathematics in this teacher’s classroom. Even 

though the practices vary with the images of mathematics and mathematics teaching and learning of 

the students, what seems important is the students knowing what to do. Prospective teachers, similarly 

to Alf Coles, can use this same process of staying with the detail to raise new possibilities for action. 

Paying attention to the variety of practices that could lead to effective mathematics teaching and 

learning supported my own development as an MTE, in that I came to see my role as not replicating 

my own classroom practices. As an MTE I gained conviction in there not being one way to teach or 

learn mathematics. 
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Focus and rationale 

Many teacher education programs require practical activities, like internships in schools or teaching 

experiments. Our task as teacher educators is to evaluate these activities and to assess performance-

related achievements, either for certification reasons or for program development. However, the 

assessment of the development of teaching competence of pre-service teachers in practical teaching 

activities is methodically challenging. In our study, we wanted to overcome current challenges with 

this issue by using an innovative methodological approach. In our evaluation study on mathematics 

pre-service teachers’ opportunities to learn (Buchholtz et al., 2018), a mixed-assessment was applied, 

consisting of a summative assessment (SA) of pre-service teachers’ perceived study content and a 

formative assessment (FA) on situation-specific learning opportunities during internships in schools.  

Theoretical background 

In their review of research on the assessment of competencies in higher education, Blömeke, 

Gustafsson, and Shavelson (2015) model competence as a continuum that comprises dispositions, 

situation-specific skills, and performance. They also point to the challenges of an appropriate 

assessment: Pure cognitive-analytical approaches (like knowledge tests) lack sufficient validity 

because relevant parts, like the situational or contextual facets, can be underrepresented, and pure 

performance-based assessments might neglect the contribution of dispositional resources. Assuming 

that “the whole is greater than its parts” (p. 9), Kaiser et al. (2017) recommend working with a broader 

range of combined and situated assessment formats that are able to cover processes mediating the 

transformation of dispositions into performance. Other authors such as Carr and Claxton (2002) also 

understand learning as a situated activity; these authors point to the situatedness of what they call 

learning dispositions. Accordingly, they favour formative assessment (FA) approaches such as 

interviews and self-reports like those that appear in portfolios when it comes to the assessment of 

performance-related competence. However, unlike in summative assessment (SA) forms, FA forms 

presuppose that we have to give up the idea of comparing the achievements of pre-service teachers 

in a standardised way.  

Methodology and corresponding research design 

Against this background, two basic ideas of the mixed methods methodology can be transferred to 

the level of assessment (Kelle & Buchholtz, 2015). Using a combination of SA and FA can extend 

the scope of the assessment, i.e., both widen and deepen the assessment by gathering as much 
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information as possible on multiple components of the assessed phenomenon or different, but closely 

related phenomena. The basic idea of an integration of SA and FA is to assess one phenomenon with 

different assessment forms, for example by using SA in a formative way for giving feedback, or 

integrating FA as a part of an overall SA (Buchholtz, Krosanke, Orschulik et al., 2018). 

Respectively, in our study, a panel-survey measuring the professional knowledge and learning 

opportunities of 187 pre-service teachers was combined with the analysis of 30 individual e-portfolios 

from internships in order to holistically address both dispositional and situation-specific aspects of 

learning opportunities to develop teaching competence. In particular, the FA during the internship 

was composed of 18 predetermined tasks affording situation-specific skills. The pre-service teachers 

had to address the tasks during their observations of other teachers or their own teaching in school, 

and to work on them as a written contribution to their personal e-portfolio. In favour of an increased 

interpretability of assessment results, a mutual complementation of the collective findings from the 

panel study with the findings from individual FA was sought (e.g. when identifying evidence for 

learning opportunities in FA). This approach might also partly overcome the challenge posed by the 

inability to standardize FA in teacher education.  

Results 

With SA data, we were able to determine comparatively that the analysed pre-service teachers had 

significantly higher perceptions of the number of learning opportunities regarding heterogeneity and 

research in mathematics education. Additionally, we used the data from the FA to identify pre-service 

teachers’ situation-specific skills and to link the individual learning opportunities of the pre-service 

teachers with specific situational aspects of the school internships. With this combination, we were 

able to make detailed statements about the types of learning opportunities the pre-service teachers 

had, for example when dealing with errors in the classroom or differentiating instruction. 
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This study examined mathematical knowledge for teaching of a prospective teacher having a PIP, 

Alin, and it revealed the relationship between PIP and mathematical knowledge for teaching. The 

case study design was used and the participant was selected by criterion sampling. Data were 

gathered from Alin’s lesson plans, transcripts of her practicum-teachings, interviews done before and 

after her teachings, and self-reflections on her teaching. Results showed that Alin having a PIP 

demonstrated all the codes in the Knowledge Quartet. Results also showed that knowing the 

perspective a prospective teacher has allows to draw on the basis of her mathematical knowledge for 

teaching. This indicates that the perspective a prospective teacher has might induce her mathematical 

knowledge for teaching. We suggest ways to promote the development of a PIP on the part of 

prospective teachers during methods courses. 

Keywords: Progressive incorporation perspective, Knowledge quartet, Prospective teachers. 

Introduction  

The perspectives prospective mathematics teachers have on mathematics, mathematics learning and 

mathematics teaching have affordances and limitations on their teaching (Jin & Tzur, 2011). 

Mathematics teacher education is not an easy task because of the traditional views prospective 

mathematics teachers hold (Ball & Cohen, 1999; Lloyd & Wilson, 1998). Therefore, researchers 

suggested that to develop mathematical knowledge for teaching on the part of prospective teachers, 

their learning to teach should be highlighted instead of giving them certain skills during methods and 

practice-teaching courses (Ebby, 2000; Hiebert, Glad, & Morris, 2003; Shulman, 1986; Simon, 1995).  

Based on a series of research with in-service teachers, some researchers have come to the conclusion 

that (prospective) mathematics teachers might have a continuum between traditional perspective, 

perception-based perspective (PBP) and conception-based perspective (CBP) on mathematics, 

mathematics learning and mathematics teaching (Simon, Tzur, Heinz, & Kinzel, 2000; Heinz, Kinzel, 

Simon, & Tzur , 2000; Tzur, Simon, Heinz, & Kinzel, 2001). Jin and Tzur (2011), in their work with 

a group of mathematics teachers in China, have placed an intermediate category in this continuum 

between the perception-based perspective and the conception-based perspective: the Progressive 

Incorporation Perspective (PIP) (see Table 1).  
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Perspectives View of knowing View of learning View of teaching 

Traditional 

Perspective (TP) 

Independent of the knower, 

out there 

Learning is passive reception Transmission, lecturing 

instructor 

Perception-Based 

Perspective (PB) 

Independent of the knower, 

out there 

Learning is discovery via 

active perception 

Teachers as explainer (points 

out) 

PIP (PIP) Dialectically independent 

and dependent on the knower 

Learning is active (mentally); 

focus on the known required 

as start, new is incorporated 

in to known 

Teacher as guide and 

engineer of learning 

conducive conditions 

Conception-based 

Perspective (CBP) 

Dynamic; depends on the 

knower’s assimilatory 

schemes 

Active construction of the 

new as transformation in the 

known (via reflection) 

Engaging students in 

problem solving; Orienting 

reflection; facilitator 

Table 1: Placing PIP within teacher perspectives (Jin & Tzur, 2011, p. 20) 

They used the term “perspectives” to refer to both the knowledge and beliefs teachers might hold 

regarding the nature of mathematics, mathematics learning and mathematics teaching and also the 

practices they might engage in based on such acknowledgment. Tzur and his colleagues proposed 

that teachers holding CBP would act accordingly with the views of radical constructivist 

epistemology. They proposed that PIP would be a more realistic target for the teacher education since 

“a PIP-rooted teacher’s practice can engender students’ learning processes envisioned by CBP 

without requiring the teacher’s explicit awareness of such view…”. They argued that providing ways 

for prospective teachers to develop a PIP during methods and practice teaching courses will contribute 

greatly to the field of mathematics education. In this respect, in the larger study, during the methods 

and the practice-teaching courses, our purpose was to examine prospective secondary mathematics 

teachers’ development of PIP to teach mathematics effectively. In this paper, we report on the 

“mathematical knowledge for teaching (MKT)” of a prospective mathematics teacher who has been 

educated through these courses and has a PIP. Therefore, for this part of the study, investigating 

prospective teachers’ MKT once they have a PIP, we prepared a chart showing the list of 

characteristics a teacher would show in practice before, during and after the teaching. Also, when 

investigating MKT, we used the Knowledge Quartet (KQ) framework (see Table 2) (Rowland, 

Huckstep, & Thwaites, 2005).  

 
Dimension Contributory Codes 

Foundation  (a) theoretical underpinning of pedagogy, (b) awareness of purpose, (c) identifying pupil errors, (d) overt 

display of subject knowledge, (e) use of mathematical terminology, (f) adherence to textbook, (g) 

concentration on procedures 

Transformation  (a) teacher demonstration, (b) use of instructional materials (c) choice of representations, (d) choice of 

examples 

Connection  (a) making connections between procedures, (b) making connections between concepts, (c) anticipation 

of complexity, (d) decisions about sequencing, (e) recognition of conceptual appropriateness 

Contingency  (a) responding to students' ideas, (b) deviation from lesson agenda, (c) teacher insight, (d) responding to 

the (un)availability of tools and resources 

Table 2: The Knowledge Quartet: dimensions and contributory codes (Thwaites, Jared & Rowland, 

2010, p. 86) 

The reasons we chose to use KQ in juxtaposition with the teacher perspectives framework was the 

following: First, we hypothesized that the framework corresponds to the three dimensions, nature of 

mathematics, mathematics learning and mathematics teaching, expressed in the perspectives. This is 

because as well the theoretical knowledge and beliefs related to mathematics and mathematics 
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education are handled in KQ, the theoretical knowledge possessed by teachers is transformed into 

teaching through connections and the existence of contingency moments revealing students' thoughts, 

mistakes and difficulties. Thus, student knowledge is also an important component of MKT. 

Secondly, we hypothesized that prospective teachers holding different perspectives regarding the 

nature of mathematics, mathematics learning and mathematics teaching might depict different MKT 

(Karagoz Akar, 2016). By the same token, even if prospective teachers depict the same MKT they 

might do so with having different reasons. For instance, prospective teachers with a PBP might not 

be able to anticipate students’ difficulties and respond to their ideas in spite of the fact that they might 

specifically know the ‘why’ behind the concepts since they are not able to think from their students’ 

point of view (e.g., Tzur et al., 2001). On the other hand, prospective teachers with a PIP might 

anticipate students’ difficulty and deviate from the agenda because they purposefully take every 

opportunity to expose and discuss students’ mistakes (Jin & Tzur, 2011). In this regard, scrutinizing 

the coherency between teacher perspectives and the domains in the Knowledge Quartet might help to 

uncover the reasoning behind (prospective) teachers’ MKT. In other words, we conjectured that once 

prospective teachers had the PIP perspective, their MKT would reveal itself during their teaching. 

We chose the Knowledge Quartet framework for evaluating MKT of prospective teachers since it 

allows to depict the MKT of teachers’ during their teaching qualitatively.  Therefore with this study, 

we planned to make three main contributions to the field. First, how the practices of a prospective 

mathematics teacher with PIP before, during, and after teaching will be examined. Secondly, how 

such practices comprehensively revealing the relation between the characteristics of the PIP and the 

codes of KQ through empirical data, including before-during-after teachings and interviews, will be 

depicted. Third, and most importantly, how this correspondence presents evidences that a prospective 

teacher with a PIP is able to perform effective mathematics teaching will be explored. Diagnosing the 

reasons might provide teacher educators with particular steps to follow towards establishing more 

sophisticated perspectives and a full grasp of mathematical knowledge for teaching on part of 

prospective teachers. It is in this respect that the purpose of this study was to examine the MKT of a 

prospective mathematics teacher (Alin) who has a PIP and to reveal the relation between PIP and 

MKT. In light of our goal, the research questions were: “What are the indicators that Alin has the 

PIP?”; “How is Alin's MKT while examining the codes of KQ?”; “How is Alin's perspective reflected 

in MKT? 

Methodology 

Participants  

In the larger study, the participants were seven prospective secondary mathematics teachers who were 

in their fifth year of study at one of the universities, in which the medium of language is English, in 

Turkey. For the report in this paper, we chose one prospective teacher, Alin, having the highest GPA 

(Grand Point Average) (3,44). Based on the first week of the classes during the methods course, we 

observed her as a verbal individual. Also, she volunteered to participate in the continuing set of 

interviews and the teaching sessions till the end of the study. We used the data from her because the 

data were representative providing context that allowed us to examine the relationship between PIP 

and MKT.  
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Data Collection  

For this study, Alin’s practice teachings were videotaped and transcribed. Also, we conducted 

interviews with Alin to talk about her lesson plans prior to the teachings, observed her teachings and 

conducted interviews upon completion of the teachings within the same week. In this regard, we used 

a modification of account of practice methodology (Simon & Tzur, 1999). Therefore, we conducted 

an interview prior to and after the practice teachings and we also observed the lessons. In addition, 

Alin wrote self-reflection papers after watching her videotaped lessons based on reflection tasks 

(Öner & Adadan, 2011). For instance, in the interviews, we asked the rationale behind Alin’s choice 

of the learning goal(s), the tasks and how she thought that the tasks she has chosen would allow 

students to learn meaningfully. We also asked what evidences of learning and difficulties of students 

she observed during teaching. In this paper, we report on one of Alin’s practice teaching. She taught 

an 80 minute lesson to the 10th grade students in a private high school. 

Data Analysis 

First, each researcher analyzed Alin’s perspective on mathematics, mathematics learning, and 

mathematics teaching and then analyzed her MKT through the Knowledge Quartet framework. We 

used coded analysis (Clement, 2000) for both frameworks. We analyzed the data to support 

theoretical hypotheses generated by the two frameworks and provided empirical data to show the 

coherence between these two frameworks that might yield to hypothesis generation, in the following 

way: First, each researcher read the lesson plans and transcripts from the practice teachings line by 

line, looking for Alin’s explanations regarding her perspective. Using the characteristics of teacher 

perspectives taking into consideration of previous research, we looked for her existing meanings. 

Once we spotted a line of explanation regarding her meanings in any of the data sources, we also 

checked her reflection papers that could possibly provide further evidence of such meaning. Based 

on the conjectures, we continued to examine the rest of the data. Then, we came together to have a 

consensus on the data set and our analyses and went back to the whole data set to challenge our 

conjectures. After determining Alin’s teaching perspective on mathematics, mathematics learning and 

mathematics teaching, secondly, using the codes from the Knowledge Quartet (see Table 2), we 

examined both this same data set and read further each of the data sources line by line to determine 

Alin’s MKT. Then we came together to have a consensus on the whole data set to challenge our 

conjectures. Finally, we wrote the narrative regarding the relationship between Alin’s perspective and 

her MKT.  

Results 

In this section, we share data showing Alin’s perspective on mathematics, mathematics learning, and 

mathematics teaching and her MKT in relation to her perspective. Alin modified a task for her 

students to make sense of the function 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and the meaning of the coefficients a, 

b, and c on the graph of the function. During the pre-teaching interview, Alin stated that students 

could construct mathematical meanings by performing the mental operations required for the concept. 

Moreover, she said that her lesson plan would promote such learning.  

Researcher:  What do you want the students to learn as a concept? 
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Alin:  ... we need to observe the change of “𝑎” one by one, and keep “𝑏” and “𝑐” constant 

so that we can only be aware of the change in “𝑎” ... Let me say the amount of 

change in y in terms of x, rather than amount of increase, because “𝑎” can be 

negative too. It is necessary for students to observe how the amount of change in y 

is changing. When “𝑎” changed and x changed as one unit, they can compare the 

amount of change corresponding to y, so that they can have an idea about the shape 

of the graph, I mean the arms (referring to the parts of the parabola)… Actually, 

what I am learning is to compare the amount of change in y with respect to change 

in x as one unit for different “𝑎” values.  

Researcher:  Why do you think this [lesson] plan will promote your students’ learning? 

Alin:  ...I'm starting with the amount of change in 𝑦 = 𝑥2; therefore, students need to 

recognize the arms of the graph gets open and there is a decrease, I mean, there is a 

change in slope... Starting always with 𝑦 =  𝑥2, how this change is formed and how 

this change affects the graph, so thinking this point… I mean, my activity provides 

quantitative operations by playing with something existing in their mind that they 

know.  

Researcher:  You said playing with something they know, what do they know? Like could you 

explain one more time what is quantitative operations?  

Alin:  They know what 𝑦 =  𝑥2 is, what its roots are, how the change occurs in 𝑦 =  𝑥2, I 

mean, how the slope is changing and how it looks in the graph. However, they don’t 

have any idea about what happens to the graph when “𝑎” changes, because they 

don’t observe 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for changing “𝑎” values. Therefore, the quantitative 

operations formed in their mind when they changed “𝑎”, I mean the thing they know 

in their mind, is like how the slope in 𝑦 =  𝑥2 is, how the amount of increase is, and 

drawing the graph.  

Alin expressed that students need to compare the amount of change and examine how the change in 

the dependent variable occurs when the independent variable changes one unit, in order to construct 

the meaning of the coefficient “𝑎” for a quadratic function. For Alin, students might create an idea 

about the graph and its structure by only performing these mental operations—comparing the amount 

of change. This suggests that for Alin mathematics is constructed depending on the learner's mind. 

Also, Alin planned her lesson hypothetically depending on her students’ mental operations and 

actions. We propose that this could be considered as an additional characteristic for the PIP. When 

we consider the MKT, data showed that Alin had awareness of the purpose for her teaching, and 

concentrated on the ways to reach that purpose. She effectively analyzed which mental operations 

students need to perform to make sense of the meaning of “𝑎”. Her analyses revealed that she has a 

strong subject knowledge and theoretical background about coefficient “𝑎” for quadratic functions. 

Moreover, her expressions about mathematical structure of the concept and her use of mathematical 

terminology supported that she has a strong subject knowledge. Also, she anticipated the complexity 

of the concept: She planned her lesson in such a way that by keeping “𝑏” and “𝑐” constant, students’ 

examining the change of “𝑎” would be more efficient. Moreover, she gave priority to students’ mental 

processes and planned her lesson depending on students’ ideas rather than adhering the textbook or 

planning randomly. Her consideration of graphical demonstrations while students were examining 

the coefficient “𝑎” showed that Alin has knowledge about different representations and she could 

integrate these representations into her lesson with relations to each other, too. Alin also stated that 

she planned to focus on students’ mental processes throughout the teaching so that students could 
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create concepts and structures of quadratic functions relating with their prior knowledge. She leaned 

on her choice of examples to this.  

Researcher:  You said you are starting with 𝑦 =  𝑥2. Why do you start with this? 

Alin:  Because 𝑦 =  𝑥2 is easy for students to understand and play on it, I mean they can 

use it to examine others... They know it very well, also they won’t work away to 

find roots, but they will examine the change in “𝑎” directly.  

Data indicated that Alin chose 𝑦 =  𝑥2 as an example because students already knew this function. 

This suggested that she wanted to re-activated their prior knowledge: Alin believed that students learn 

new mathematical concepts by forming relationships between the new and old knowledge in the 

process. While planning her lesson, Alin’s consideration of possible students thoughts’ on examining 

the amount of change in the 𝑦 =  𝑥2 revealed that Alin took teaching process into consideration 

before she executed teaching. All these approaches Alin has taken in the process of before teaching 

displayed the first three dimensions of the knowledge quartet. In addition, data showed that Alin is 

aware that there might be unexpected events in the class:  

Researcher:  … What is the purpose of your questions? I mean why did you plan to ask these 

questions?  

Alin:  I will ask (questions) so that they can make relations. Some students could go faster 

but some could not. I can change my questions in a way to make them more 

understandable by the students. I can ask questions to fix their misunderstandings. 

I mean I will react regarding to students’ thinking.  

She explained that she prepared questions in her lesson plan to enable students to form connections 

and she is willing to make differences in classroom context depending on students’ approaches 

because students could make connections in different ways. She also thinks that her plan could 

undergo some changes depending on the teaching process. Therefore, it can be interpreted that the 

contingency dimension is present in Alin’s actions even prior to teaching.  

This was also evident in her teaching: During teaching, she realized that students faced some 

difficulties. So, she deviated from her plan by presenting an example that was not in her lesson plan.  

Alin: ….how does y values change when 𝑦 =  𝑥2 as x increases one by one, so when you 

consider the change of 𝑥… When you consider the change of it from 0 to 1, how 

does my y values change? From 1 to 2, how does y values change? (Waiting for 

several seconds)…  

 
Okay, let’s consider linear functions; like 𝑦 =  2𝑥. (Drawing on the board) In the 

linear function like this, when x goes through 1 to 2. When x is 1; y is 2. and x is 2 

which value of y do you get?  

When the students faced some difficulties to make sense of the change in y corresponding the one 

unit change in x, Alin tried to overcome such difficulty by providing an example not given in her 

lesson plan. She gave a linear function example of 𝑦 = 2𝑥 and wanted students to examine the amount 

of change in y given x. This approach revealed the codes of responding to students’ ideas, deviation 

from agenda, and teacher insight during instruction presented in the contingency unit of the 

Knowledge Quartet. With this example and her questioning, Alin further allowed the students to 

overcome the difficulty and examine the amounts of change in the quadratic function. This showed 

that Alin provided opportunities for her students to reflect on their prior knowledge and connect it to 
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the new knowledge. Alin’s approach also showed that she possessed the PIP’s characteristic features: 

mathematics is both independent and dependent of the learner. That is, for her both linear and 

quadratic functions had qualities –the amount of change in the dependent variable given the change 

in the independent variable—out of the learner. Yet, the learners needed to make sense of such 

relationship on their own. She further explained her reasons about her choice of this example during 

the interview after teaching:  

Alin:  ….I did not give 𝑦 = 𝑥 as an example because it goes as one to one, so I gave 2𝑥 

as an example…. We talked on the board to look at 𝑥2. When we look at it, after 

the things between x values, when we draw the y values with arrows, students said 

that y values are increasing… In terms of their answers; whether they learned by 

heart or understood the rate of change. (I asked) Are you sure? Why? Re-express 

what your friend said… I was like pushing them like that... 

Alin explained that she chose the example, 𝑦 = 2𝑥 rather than 𝑦 = 𝑥 since the function 𝑦 = 2𝑥 could 

have triggered them to focus on the amount of change. Her insight during her instruction was strong 

enough that she realized her students’ difficulties. She aimed at triggering their mental processes to 

form the concept by using the common features of linear and quadratic functions.  

Discussion and Implementation 

This study investigated mathematical knowledge for teaching of a prospective teacher having a PIP 

and revealed the relationship between PIP and mathematical knowledge for teaching. Results showed 

that the teaching of a prospective teacher having a PIP was effective because she planned her lesson 

with a view on mathematics as depending on learners’ minds and revised her hypothetical plan for 

her teaching by considering both the learners’ actions and reasoning. We might link the revisions of 

a hypothetical plan with contingency situations presented in the KQ, too. For instance, Alin 

considered her students’ thoughts and deviated from her plan when she determined that her students 

had some difficulties during teaching. This is important because hypothetically determining the 

teaching process envisioning students’ reasoning prior to the teaching is suggested to be an important 

part of MKT (Silverman & Thompson, 2008). This is also important in terms of noticing skills 

prospective teachers need to acquire (Jacobs, Lamb, & Philipp, 2010). Results of the study also 

suggest that if prospective teachers are trained to have a PIP, the strong MKT arises by itself. 

Particularly, the effects of Alin’s perspective are seen precisely in the deep examination of data done 

with respect to the KQ framework before, during and after teaching. For example, Alin was aware of 

her students’ having a different mathematics than hers. That is, she did not adhere to the textbooks, 

rather she focused on her students’ mental actions and prior knowledge while she was deciding and 

arranging the lesson activities. Also, she always took into consideration her students’ prior 

knowledge, even during teaching, and reactivated their prior knowledge to connect it to the newly 

established knowledge. So these were related with the connection, transformation and foundation 

dimensions in the KQ as well as her perspective on teaching. Based on these results, we suggest 

examining which codes of the KQ are activated before, during and after teaching and examining MKT 

of prospective teachers having different perspectives. Finally, we suggest to promote the development 

of a PIP on the part of prospective teachers during methods courses. 
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We aim to understand how primary teachers who participated in a lesson study developed their 

collaboration relationships. The research is qualitative and interpretive with a case study design. 

The results show that the involvement in moments of planning and analysis of the students’ work, 

where teachers reflected on practice and for practice helped them to develop collaborative 

relationships, moving from storytelling and scanning to joint work. The teachers were encouraged 

to express their voices regarding their participation in the lesson study and this led to an increasing 

involvement in the group, favoring the development of their reflection and knowledge of 

mathematics teaching. 

Keywords: Lesson study, collaboration, reflection, professional development 

Introduction 

Lesson study is a professional development process widely practiced in many countries around the 

world. Teachers work in a collaborative way on a curriculum topic or issue related to students’ 

learning, study curriculum documents and teaching materials, and plan and teach a research lesson 

which is then object of reflection (Fujii, 2016; Lewis, 2016; Takahashi & McDougal, 2018). During 

the lesson, taught by one of the teachers, the participants observe the events and afterwards analyze 

students’ learning, emerging difficulties, and possible alternatives to consider. In lesson study, the 

discussions held by the group elicit, challenge and question the conceptions and practices of 

teachers (Cajkler, Wood, Norton, Pedder & Xu, 2014; Fujii, 2016). This collaboration provides 

teachers opportunities to run risks in their practice and to try new ideas in a structured and 

supported way, with focus on students’ learning (Fujii, 2016). 

Collaboration is central in discussions about teachers’ professional development. According to 

Fullan and Hargreaves (1992), for change to occur in the classroom, teachers must be encouraged to 

collaborate with their colleagues in a learning community. Ponte (2012) suggests that teachers learn 

through their activity and the reflection that they make on that activity and such learning depends 

both on their personal commitment and collective support. However, a recent survey on 

collaboration made for ICME 13 (Robutti et al., 2016), showed that very little is known about the 

dynamics that take place in collaborative processes. Therefore, the aim of this paper is to 

understand how collaborative relationships among teachers may develop in a lesson study. 

Collaboration 

In collaboration, teachers work together aiming to achieve a common goal, negotiating working 

processes and making decisions together (Boavida & Ponte, 2002; Menezes & Ponte, 2009; Robutti 

et al., 2016). Research on teachers’ professional development has pointed out the benefits of joining 

teachers and researchers in collaborative processes (Boavida & Ponte, 2002; Hollingsworth & 
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Clarke, 2017). The role of participants may be distinct, as the important point is that they work in 

horizontal relationships so that there is mutual support to achieve the common goals of the group 

(Boavida & Ponte, 2002). When involved in collaborative processes focused on their own practices, 

teachers work with more experienced colleagues and with researchers, they may develop new 

knowledge, which is in their zone of proximal development (Blanton, Westbrook & Carter, 2005).  

Little (1990) distinguishes four kind of professional relationships among teachers, with different 

nature and potential: (i) storytelling and scanning for ideas; (ii) aid and assistance; (iii) sharing; and 

(iv) joint work. Storytelling and scanning for ideas corresponds to interactions among teachers that 

are occasional and stand on opportunity, where teachers seek to obtain specific ideas, solutions, or 

confirmations in brief exchanges of experiences in informal settings. In aid and assistance, teachers 

expect to get support from their colleagues in solving problematic situations. This relation is 

unidirectional and unequal and keeps the individual teacher as the sole decision maker. Sharing 

takes place by the exchange of resources, methods, ideas and opinions, and necessarily involves 

some level of exposition of the teacher regarding his/her colleagues. Finally, joint work occurs 

“among teachers that rest on shared responsibility for the work of teaching (interdependence), 

collective conceptions of autonomy, support for teachers’ initiatives and leadership with regard to 

professional practice, and group affiliation grounded in professional work” (Little, 1990, p. 519). This 

form of collaboration requires much responsibility, commitment, and time from the participants but 

has stronger potential for solving problems and developing knowledge in a group that seeks to 

improve teaching practice. The work developed in the lesson study is intended to be collaborative 

and, in this way, in this research we analyze the interaction of the group according to the four kinds of 

relationships stated by Little (1990). 

Methodology 

This research is qualitative and interpretative (Erickson, 1986), based on a group of teachers who 

participated in a lesson study in 2013-14, in a school in Lisbon. This lesson study originated in a request 

from the school principal to support a project to improve students’ results in mathematics. Seven 

teachers were appointed by the principal but, after five sessions, only three (Irina, Manuela, Antónia, 

fictitious names) remained in the group. Several teachers gave up indicating little interest in the activity 

or other personal reasons. The three participating teachers had between 10 and 15 years of experience 

and all had initial teacher education as primary teachers. However, Irina had a specialization in teaching 

Mathematics and Science and Manuela in teaching Portuguese and French. Our team included the two 

authors, another reasearcher and an assistant for data collection. We directed all sessions, leading the 

planing and assuming the role of experts in the post-lesson reflection. We sought, essentially, to center 

the work of the group in the exploratory approach (Ponte & Quaresma, 2016), with special attention to 

the tasks to propose to students, students’ reasoning, and classroom communication processes. 

The lesson study had twelve sessions. Session 1 included the introduction of participants, the 

establishment of the general work program and the definition of the topic to address. Sessions 2 to 4 

were dedicated to study the topic and the exploratory approach and sessions 5 and 6 to the planning of 

the research lesson. Session 8 was the research lesson and session 9 the post-lesson reflection. In 

sessions 10, 11 and 12, which we called “follow-up”, the teachers planned, carried out and reflected on 
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two lessons that they made, as a way to deepen the work undertook before. After the post-lesson 

reflection, we made an individual semi-structured interview to each teacher and in the last session we 

made a focus group interview, asking the teachers to reflect on the lesson study and the work developed, 

on the various aspects of the exploratory approach and on the work of students. Two main adaptations 

from the usual Japanese model were made in this process: (i) setting up a collaborative environment, 

including teachers and researchers, from the beginning to the end of the lesson study; and (ii) follow-up 

sessions, that allowed teachers plan new lessons together, addressing new topics, putting into practice 

what they learnt in previous sessions, and reflecting on the results. Data where gathered by participant 

observation through the undertaking of a research journal (elaborated by a researcher and completed by 

the others), audio recording of working sessions (designated as Sx), with transcriptions, and video 

recording of the research lesson, and individual interviews to participant teachers (E). Data were 

analyzed in an inductive way, taking into account the four teachers’ forms of interaction indicated by Little 

(1990): (i) storytelling and scanning for ideas; (ii) aid and assistance; (iii) sharing; and (iv) joint work. 

First part of the lesson study 

Study of the topic and of the exploratory approach 

In session 1, taking into account students’ difficulties, it was decided that the topic to study would 

be addition and subtraction of fractions by juxtaposing of line segments. Sessions 2 to 5 addressed 

mathematical and didactical issues relevant to teaching and learning this topic. Therefore, in session 

2, the group solved tasks and identified students’ difficulties. In session 3, there was a discussion 

about students’ current knowledge and a diagnostic worksheet for the teachers to carry out in their 

classes was elaborated. In session 4, the responses of the students were analyzed, taking into 

account the nature of tasks, seeking to identify generalizations and justifications and surprising 

features in students’ responses. In session 5, possible generalizations in addition and subtraction of 

rational numbers were identified. The main ideas related to the exploratory approach were discussed 

in depth: using challenging tasks, supporting students’ reasoning, figuring out strategies to solve 

problems and making generalization and justifications, and promoting students’ communication of 

their ideas with particular attention to whole class discussions. During these sessions, Irina had a 

very active participation working jointly with the researchers but Manuela and Antónia participated 

very little, interacting in aid an assistance way with the group. One perturbing factor of the group 

dynamic in this phase of the work was the reluctance of all teachers to assume the role of teaching 

the research lesson. This situation was finally overcome in session 5, when it was decided that Irina 

would take that role. She made de initial draft of the lesson plan that was discussed in session 6. 

Post-lesson reflection and interviews 

The post lesson reflection was carried out in session 9 as a reflection on practice. The group agreed 

that Irina prepared well the research lesson and its enactment corresponded very well to the 

planning. Some video excerpts from the lesson, representing students’ strategies and difficulties, 

were analyzed. We made several challenges to the teachers, but only Irina sought to respond to 

them. When questioned, Antónia and Manuela, only described the events to support the judgments 

made by other participants. In a quite reserved stance, they narrated observations that they made 

during the lesson and supported the group in forming a general idea about the lesson participating in 
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an aid and assistance way and storytelling and scanning for ideas. In contrast, Irina shared with the 

group her ideas and opinions (joint work). However, during this analysis of students’ difficulties, 

she seemed to feel unease, assuming that her work was being criticized. 

After this post-lesson reflection we made individual interviews to the teachers. Surprisingly, these 

interviews turned out to be quite deep reflections about the work previously carried out in the lesson 

study. Irina made a deep reflection of the activity carried out in the former sessions, including the 

research lesson. Manuela and Antónia, indicated the reasons why they were not much involved in 

the sessions: Manuela felt difficulty in understanding much of the mathematical discussions that 

went on and felt insecure in participating and Antónia found the analysis of students’ strategies and 

difficulties too detailed. The expression of feelings and difficulties by the teachers, in a relationship 

of great confidence with the researchers, created a completely new working environment. 

Follow up 

Planning 

In session 10, we asked teachers to plan a lesson that they would be teaching, taking into account 

the work carried out before. Manuela suggested that they could plan a lesson together and that she 

and Antónia could teach it, instead of Irina that had made much work previously. 

And why we do not the following: we give Irina a break, we plan [together with Marisa], I and 

Antónia [make the tasks in our classes] and present them [in the next session]? And you [Irina] 

may use them later in your class. (S10). 

In this way, Manuela recognized that she and Antónia were not much active in their participation in 

the previous phase of the lesson study. Now, she was willing to assume an active role. This shows 

that she felt more confident with what she learnt in the previous sessions. It was then decided that 

both teachers would use the tasks in their classes and Irina would support them in reflecting about 

the results to present and discuss in the next session. In this way, the three teachers prepared a 

lesson about the relationship between fractions and decimals in a setting of shared responsibility of 

planning a lesson in joint work. 

However, Antónia and Manuela begun their planning quite insecure. They opened the textbook and 

began to scan different pages. It was noticeable that they were uncomfortable with the perspective 

of picking tasks from the textbook, perhaps as they thought that we would not find that much 

appropriate. Taking into account the struggle of the teachers, Marisa suggested that, instead of 

selecting a task, they could adapt it. Manuela agreed: “I think so, increasing the difficulty, isn’t it? 

Because that one is very basic. But I think yes, mixing up tenths, hundredths and thousandths, with 

different denominators” (S10). At that point, Antónia and Irina also began giving suggestions and 

registering more ideas to elaborate the task: 

Antónia:  Or A, B and C, in order to have two equivalent and one different. 

Irina:  Ah, yes. 

Antónia:  For example, to have two equivalent fractions. They understand that . . . Are 

equivalent fractions, albeit having different denominators.  
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Manuela:  Why we do not give a hypothesis here… That is, why do not give equivalent fractions?  

Marisa:  Ah, one of these being as a fraction. Yes, instead of all being as decimals . . . 

Manuela:  For example, here are four as decimals, isn’t? And one in words. Why we do not 

take out that is in decimal and put it in fraction? 

Irina:  Exact. 

Marisa:  May be. 

Irina:  And then, during the discussion, we can ask them to write this also as a fraction. (S10) 

So, in joint work, the teachers constructed the first question of the task (Figure 1): 

1. In the squared paper, paint 0.4 in green; 40/100 in blue and “four hundredths” in yellow.  

 

Figure 1: Task elaborated by the teachers in session 10 

Irina went on providing suggestions, Manuela was much more participative and engaged than usual, 

and Antónia, albeit less participative than the colleagues, was also involved, contrarily to what 

happened in former sessions. This session witnessed two important aspects. The first is the change 

in attitude of Manuela and Antónia that began to assume strong participation in the common 

activity. This change seemed to result from the confidence that was established in the group after 

the interviews. The second aspect is the difficulty of the teachers in assuming an authorship role and 

a critical stance regarding tasks. This difficulty, however, was overcome with our suggestion of 

adapting tasks. It seems that the work carried out in the lesson study brought the teachers towards a 

point in which they were ready to assume this way of working, only with minimal support of a more 

experienced partner. 

Reflection 

In session 11, the three teachers reflected on their classroom experience in carrying out the task 

prepared in session 10. Antónia reported that her students had many difficulties in solving the first 

question: 

Mine, I only had one that was able to make everything right. A group. Then, I had three more 

that could make one part right and another wrong, they made well the four tenths, but then the 

forty hundredths, which corresponded to the same thing, they did not. And that is it. I think that 

they had here several squared that confused them. (S11)  

Antónia tried to understand the difficulty of the students and suggested that they could got confused 

by having squared paper to represent the numbers indicated. She suggested that may have led the 

students to “not understand what the unit was” (S11). She showed surprise and frustration with the 

difficulties of her students: “they already know this well . . . They know how to transform decimals 

in fractions and fractions in decimals” (S11). The other teachers tried to find an explanation for the 

difficulty of her colleague: “I think that the fact that this looks visually different, it is only enough 
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that one is as a decimal and the other as a fraction, this is enough to prevent them of seeing 

something that is equivalent” (S11). Seeking to find reasons for the students’ difficulties, still in a 

superficial way, Antónia referred that they forgot what they knew, whereas Manuela focused in the 

differences between fraction and decimal representations.  

In the sequence, Manuela also presented her analysis of the work of her class. All students had the 

question on the painting of 0.4 correct but failed the next questions. In response, Antónia pointed 

out some similarity in the results of the two classes: “Here, there is something more or less similar. 

My [students] that got some [questions] right, the green [0,4], which was first. After that…” (S11) 

Irina also tried to find a reason for the difficulties of the students, referring that “from the moment 

in which we begun to work with decimals, fractions become in trouble” (S11). She considered that 

the work with decimals led the students to forget about fractions. Up to this point, the teachers were 

still scratching the superficial features of the issue. 

Taking into account that most students failed in representing the hundredth part of the unit, Manuela 

suggested that this mistake was related to visualizing the hundredth part of the picture that they 

were shown, in contrast with the visualization of tenths: “Here they visualize very well the tenth 

parts” (S11). Irina agreed, saying: “the hundredth is not easy for them to see. It is not intuitive” 

(S11). That is, Manuela began to base her analysis of the strategies of the students noting an 

important constrain related to the material that they received, which is a quite interesting reflection. 

As the difficulty of the students was identified, Irina reflected on her own practice, notably on the 

work that she usually does concerning the representation of decimals: 

When we speak of the tenth, usually we use a bar divided in ten. Then, suddenly, we start speaking 

of the hundredth, and the unit instead of being the bar with ten, becomes a square with one 

hundredth. And, suddenly, we begin to speak of the thousandth, and we get this. Therefore, the unit 

that is always one, change its form. And that messes up the students in an extraordinary way. (S11) 

Irina identified a problem of her practice as she considers that the way she presents the submultiples 

of the unit to the students does not facilitate their understanding of the unit and of that relationship 

with the submultiples. All participants agreed with Irina, that decided to take the discussion one step 

further, challenging the group to think in a solution for the problem: “But, and now? This is a 

reflection. What do we do?” (S11). She went on, pointing that the representation requires that 

students really understand the decimal number system and what the unit is. 

In the sequence of the discussion, Antónia suggested to her colleagues that they could do the same 

way she did in the discussion of the task, cutting the rectangle in 10, 100, and 1000 parts and Irina 

agreed. In addition, Manuela referred the need of the students to have flexibility to interpret other 

representations. Irina concurred but underlined the importance of changing their practice making an 

initial work consistent with the rectangle representation, as a basis to later understand more simplified 

representations of the unit. This discussion was mediated by Marisa, who raised questions. But the 

teachers themselves developed a deep reflection about her own teaching practice, questioned the 

solutions and difficulties of the students and tried to find explanations for what happened, analyzing 

with much detail the origin of the difficulties. The teachers did not limit themselves to trying to 
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understand the problem, they sought to overcome it in a reflection for practice. Irina continued to 

show a strong inclination to carry out the reflection further, proposing well-grounded solutions, and 

Manuela and Antónia had a strong participation, with a great engagement in analyzing students’ 

learning in relation to their practice. The change in attitude of Antónia and Manuela led the group to a 

join work mode, in which all participants were involved in a common activity. 

Discussion 

During the lesson study, we challenged the teachers in different ways. Irina, who taught the research 

lesson and was very confident in mathematics teaching, was always much involved in all activities. 

From very early, she worked jointly with us in constructing an exploratory task for the research 

lesson, in order to favor students’ learning and understanding. The post-lesson reflection was carried 

out in a frame of joint work between Irina and the researchers. However, Manuela and Antónia were 

little involved in the activities remaining in the mode of storytelling and scanning for ideas.  

In the follow-up sessions, all teachers were called to plan, teach and reflect about two lessons. 

Manuela and Antónia become very active and participating. They were going now to teach their 

classes with their own students and no observers. However, the main reason for this active 

participation was the reflection that they made in the interviews, in which they assumed a very 

personal voice regarding their development trajectories. This key importance of teachers’ voice in 

collaborative processes is also underlined in Robutti et al. (2016). With the support from Irina, they 

felt confident to adapt tasks from the textbook and make them more challenging for their students. In 

the lesson study, they appeared to have developed new knowledge, which was in their zone of 

proximal development (Blanton, Westbrook & Carter, 2005). Therefore, from this point on, all group 

(teachers and researchers) begun to work jointly, sharing a common responsibility for the work.  

Conclusion 

This lesson study, favored the development of joint work among the participants and that led them to 

get involved in reflecting about their own practice and the way students learn. Such reflections are 

important levers for professional development. During the follow-up, the work carried out favored the 

creation of an environment of integration of knowledge (Lewis, 2016), in which teachers constructed 

actively their knowledge by designing tasks and collecting data from their students, establishing 

connections among different data sources. This has largely resulted from the possibility that the 

teachers had to express their voice and individuality and the challenges and responsibilities that they 

progressively assumed, namely the responsibility for the decisions of the group, for the materials 

produced, in particular for the selection and elaboration of challenging tasks and the preparation of the 

lesson plans that all teach. With this, they identified problems in their practice and created solutions 

with strong rationales. This evolution only occurred when the teachers felt confident to question their 

conceptions and practices and to try out new ideas (Cajkler et al., 2016; Fujii, 2016; Ponte, 2012). The 

follow-up sessions were much important to bring together the members of the group. The fact that all 

teachers taught and reflected on two lessons at this phase led them to get more involved and with 

more responsibility in the development of the work, suggesting the value of all participants teach a 

lesson and share that experience with the group. Other modifications in the format of a lesson study, 

such as teaching and reflecting on a pilot lesson during the planning, may contribute to similar results. 
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This and other adaptations are to be experimented in order to take the most out of this professional 

development process, taking into account the local culture of the participating teachers. 
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In this pilot study we investigate if and how two different frameworks can be used to visualize 

classroom norms through classroom social interaction. 

Background 

Between 2013-2016 the Swedish National Agency for Education launched a curriculum-based 

professional development project, the so-called Mathematics Boost (Swedish: Matematiklyftet) 

(Skolverket, 2016). The aim was to develop and improve mathematical classroom teaching with a 

focus on four different didactical dimensions: formative assessment, teachers’ knowledge about 

competencies, social interaction and socio-mathematical norms (Skolverket, 2016).  

Parts of the Mathematics Boost and the national evaluation afterwards is based on Cobb and Yackel’s 

framework of classroom norms (Skolverket, 2016). Cobb and Yackel divide classroom norms into 

social norms (SN), socio-mathematical norms (SMN) and mathematical praxis (MP). According to 

Cobb and Yackel (1996), these classroom norms are reflexively connected. Our approach in this 

project is that for classroom norms to change or develop all three aspects above needs to be 

challenged, in this case, through the Mathematics Boost. 

The national evaluation of the Mathematics Boost (Skolverket, 2016) showed development in some 

aspects of social interaction. A reasonable interpretation, based both on the national evaluation and 

on the writings of Cobb and Yackel, is that the SN hence is challenged and developed. According to 

the evaluation, it is impossible to state anything about SMN in regard to change or development but 

it is also stated the SMN will probably change over time (Skolverket, 2016). 

Following the idea that classroom norms are reflexive and needs to be challenged simultaneously as 

mentioned above, another explanation for the lack of development could be that the SMN has not 

been challenged enough through the Mathematics Boost. As a complement to the national evaluation 

in 2016 we therefore pose the question for a coming study: Which classroom norms were challenged 

through the Mathematics Boost? But first we need to investigate how to visualize classroom norms 

through classroom social interaction. 

Pilot study 

In order to do this, we put two different frameworks into a test, one developed by Kilhamn and 

Skodras (2018) and one suggested by the Swedish Institute for Educational Research (Fredriksson, 

Envall, Bergman, Fundell, Norén & Samuelsson 2017), originally a framework by Hufferd-Ackles, 

Thematic Working Group 18

Proceedings of CERME11 3247

mailto:jonas.dahl@mau.se
mailto:christina.svensson@malmo.se
mailto:rickard.wester@lund.se


 

 

Fuson and Sherin (2004). Both frameworks are hence in a Swedish context and they both focus on 

social interaction but in different ways. The former framework is created in order to analyze the 

analyze level of teacher questions with a focus on responses from students (Kilhamn & Skodras, 

2018). The latter is focused on how discourse is moved from a teacher centered to a student centered 

discourse when it comes to who poses questions, the type of questions/answers, sources of 

mathematical ideas and responsibility for learning (Hufferd-Ackles, Fuson & Sherin, 2004). Neither 

of the frameworks are created for the purpose that we have in our project but we have connected 

different parts of the frameworks to SN and SMN respectively. Hence, in this poster presentation, we 

put these frameworks into a test in order to investigate if and how these connections is possible to 

make in order to help us visualize classroom norms through classroom social interaction.  

Method and initial results 

Out of a total of 60 video-recorded classroom situations during the Mathematics Boost we have, in 

this pilot study, analyzed six classroom situations via transcriptions of what the teacher and students 

express. Our initial results using the two different frameworks show that they can help us visualize 

the level of social interaction. Our initial results also indicate that we can connect these different 

levels to SN and SMN. The first framework shows the potential for if and when SMN are challenged 

through social interaction. The second framework show if and when teachers and students are on the 

same level of social interaction, that is, if and when they agree on SN.  

The poster 

On the poster we present the frameworks and how we connect SN and SMN to these. We also present 

our initial results that indicate that despite the potential relatively high level of social interaction, that 

is SN, the social learning stays on a low level. That is we show that the SMN are not challenged 

enough. In the long run this means, due to the reflexivity in the model, that there are limited chances 

for MP to develop. 
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beyond mathematics teacher education 
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The empirical material in this paper is from a multiple case study exploring the role, if any, that 

social practices related to teacher education and beyond teacher education play in primary student 

teachers’ tales of themselves as teachers-to-be. The case of Lisa is used as an example to illustrates 

how different past and present social practices influence how she talks about competitive teaching 

during different phases of her teacher education. Of particular influence is her past school-related 

experiences as they in turn influence how she interprets other social practices. Thus, the case of Lisa 

illustrates the importance of widening our research interest beyond teacher education if we want to 

understand the process of becoming mathematics teachers. 

Keywords: Professional development, teacher education, social practices. 

Introduction 

Student teachers’ professional development is by many researchers considered as a rather complex 

process (Skott, Mosvold & Sakonidis, 2018). One concern is how student teachers’ school-related 

experiences influence how they perceive teacher education and how they view their future profession. 

According to Forgasz and Leder (2008) prior experience impact student teachers becoming as 

teachers more than undergoing teacher education. To this, Scott (2005) concludes that student 

teachers are less sceptical to advise from others, “outside” teacher education, than from teacher 

educators in mathematics. Student teachers use educated teachers at the internship or from other 

settings or family and friends instead of teacher educators to conclude their vision of future teaching. 

For example, internship, which is often part of teacher education, is said to frame how student teachers 

perceive the content in mathematics education courses. Thus, the teaching of the internship supervisor 

during internship becomes important in student teachers’ professional development (Mosvold & 

Bjuland, 2016). 

To widen the perspective of the “outside” this paper reports parts of a multiple case study with the 

aim of contributing with insights about how experience from teacher education and other past and 

present social practices play for generalist student teachers’ tales of themselves as primary 

mathematics teachers-to-be. This is in line with Morgan (2012) and Skott (2018) that mentions that 

we need to look outside the immediate social practice [teacher education in this case] if we want to 

view what the [student] teachers bring into the situation. To be interested in any data “that point to 

any practice […] that appear to orient the [student] teachers’ action or meaning making as they relate 

to the profession (Skott, 2018, p. 615)”. 

Thus, this paper aims to illustrate how different past and present social practices play for a primary 

generalist student teacher, tales as primary mathematics teacher-to-be. The empirical material used 

relate to how a student teacher, whom I will refer to as Lisa, talks about competitive teaching during 

different phases of her teacher education.  
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The process of becoming a mathematics teacher 

To enter teacher education and become a teacher is in this paper regarded as an emerging learning 

process. To follow the process of developing into a teacher is partly to follow how student teachers 

negotiate and re-negotiate their mathematical and pedagogical knowledge. In this process Hodges 

and Hodge (2017) recognise student teachers bringing together different perspectives on teaching and 

learning mathematics, often conflicting while creating their idea of teaching mathematics. While 

bringing different perspectives together student teachers can, for example, position themselves in 

relation to future pupils, relate their participation to different educational models, expand educational 

models through new experience and develop a critical positioning to either the teaching at internship 

or the pedagogy taught and used at teacher education (Bjuland, Cestari, & Borgersen, 2012).  

Jong (2016), as an example, illustrate that teacher education in different ways impact student teachers’ 

professional development. However, attention is on to the characteristics of their participation that 

draw on ideas from past teaching experience and their cultural, socioeconomically and linguistically 

background. Jong concludes that becoming a teacher starts the day when children enter school for the 

first time and meet different educational models. These models influence the idea of teaching that 

student teachers have. The main result in Jong's study is that any social practices related to teaching 

and learning mathematics might be critical in professional development, this because social practices, 

past and present, are used to negotiate and re-negotiate the meaning of teaching mathematics.  

The conceptual framework Patterns of Participation 

The overall study and this paper start with an interest in professional development, a construct that 

elaborates within the conceptual framework of Patterns of Participation (PoP). Professional 

development can be viewed as "a process of flexibility, autonomy, and adaptation to the teaching 

context” (Hošpesová, Carrillo & Santos, 2018, p. 181). Learning and thus becoming a teacher is 

therefore considered from a situated perspective. Thus a perspective, that considers learning as 

participation in social practices take social, cultural and historical systems as well as prior experiences 

and present participation into consideration when studying professional development. A social 

practice as a collective way of being with a common endeavour where entities interact and reconcile/ 

mould together. 

PoP “seeks to understand how a [student] teacher’s interpretations of and contributions to immediate 

social interaction relate dynamically to her prior engagement in a range of other social practices” 

(Skott, 2013, p. 549). Skott makes an important move, according to Lerman (2013), when focusing 

on the emergence of the situation, the process. "This dynamic process is studied through eliciting the 

teacher's interpretation of what she does in classrooms and how that relates to her prior engagement 

in other social practices (p. 625)”. The intention with PoP is to disentangle shifts of participation in 

different social practices, and by doing so shed light on the role of the student teacher in the practices 

that emerge. 

Through the conceptual framework Patterns of Participation, Skott tries to accomplish three things. 

First, he tries to reduce the emphasis on objectification in research about student teachers and 

teachers. Secondly, he tries to re-centre the student teacher and teacher in research. Finally, he tries 

to re-conceptualise what is known as beliefs, knowledge, and identity in participatory terms. In this 

Thematic Working Group 18

Proceedings of CERME11 3250



 

 

quest Skott (2018) point out that the conceptual framework PoP focuses on the pre-reified processes 

that precede, give rise to, what others term beliefs, knowledge, and identity.  

Patterns of Participation draw on two main theoretical sources, symbolic interactionism and social 

practice theory. Symbolic interactionism views humans as actors and reactors in situations, and 

position meaning as something that one engages in when experiencing things in the situation, on the 

spot. Humans respond to the situation by interacting with others and with the self, and by taking 

[interpreting] the role of others (Skott, 2018). Social practice theory views social practices as ordered 

across time and space. They are linked historically to other social practices (Wenger, 1998). Social 

practices are stratified. Most important is that social practice theory stress that it is through the 

engagement with different or using different social practices within communication that individuals 

understand the world around them when they, for example, emerge into the teaching profession.  

By considering that social practices are ordered, stratified, in time and space allow researching 

complex patterns in multiple social practices. To make visible and describe this plurality of relations 

lies in the core of PoP but also to make visible how these pluralities of relations change over time.  

The overall study 

The overall study adopts a multi-sited ethnographic approach. Two primary student teachers were 

followed for two and a half years as cases during their teacher education with a focus on their 

education in mathematics. Often student teachers at primary school level are generalists with no 

specialisation or interest to the teaching of mathematics. However, that was not the case in this study. 

The student teachers in this study related strongly to the teaching of mathematics in the interview 

before entering teacher education and they were selected as critical cases (Flyvbjerg 2006) based on 

their commitment, their mathematical knowledge and interest. The choice of critical cases was based 

on the indicated research gap related to the lack of research related to primary student teachers that 

are interested in mathematics, mathematics teaching, mathematics learning and regard themselves as 

knowledgeable/proficient in mathematics.   

In Sweden, the combined course in mathematics and mathematics education for primary school 

student teachers is a 30 ECTS point course in the four-year teacher education programme (240 

ECTS). ECTS means European Credit Transfer System, where one year of studies is 60 ECTS (40 

weeks). Student teachers have four internship periods, five weeks each, during their teacher 

education. Teacher education in Sweden does not have any pre-requisite of university studies before 

entering the education.  

In this paper, only one of the student teachers is used as an example, Lisa. Lisa, who is in her early 

20s, started teacher education directly after high school. Lisa’s positive experiences of participating 

in a competitive mathematics classroom are expressed as her primary reason for entering teacher 

education. Lisa perceived herself as "good" at mathematics and had the highest possible grade in 

upper secondary school. It is also worth noticing and most important concerning this paper that Lisa 

described herself as extremely competitive both as a private person and as an athlete, playing soccer 

at a high national level.  
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The role of social practices in different phases 

The empirical material in this paper is interview transcripts, five in total, and field-notes from 

observations made during the internship and the mathematics education course. During the 

mathematics education course, I attended 31 lectures, seminars, examinations or study-group 

sessions. Based on the multi-sited ethnographic approach, considering social practices as ordered in 

time and space and considering the “outside”, persons related to Lisa were also interviewed, in this 

paper the internship supervisor whom I will refer to as Mr Higgins.   

Lisa’s professional development is described, in this paper, in three different main phases related to 

how she re-negotiates the use of competitions in teaching mathematics. Each phase will start with 

excerpts in time spread over the actual phase. Then there will be a summary accentuating the role of 

social practices within the phase. This section set out to offer the reader a “virtual reality” to explore 

(Flyvbjerg, 2006), to provide the reader with situated aspects (Bjurland et al., 2012). 

Phase one – The internship experience strengthens her experience of learning mathematics 

In phase one, Lisa re-engages in her prior school-related experience, the social practice of her upper 

secondary mathematics classroom. This experience is later in this phase re-negotiated with the social 

practice where her internship supervisor Mr Higgins is a part.    

In the first interview, conducted before entering teacher education, Lisa talks a lot about how she, 

from an early age, developed a passion for mathematics as a subject. She credits this passion to the 

fact that she found mathematics easy and she recalls positive memories with the subject itself. During 

primary school, Lisa perceives herself as extremely good in mathematics. "Secondary school was 

okay, it became harder, but it was not hard […] I chose a direction with as much mathematics as 

possible, so I thought it was fun." Lisa especially remembers two teachers. "Both were extremely 

interested… they taught playfully…" Lisa describes these teachers as knowledgeable and dedicated 

to their commitment as teachers. She also describes how they frequently used "competitive teaching" 

which increased Lisa's motivation: "this to get it a little more challenging and you got interested."   

The first internship is conducted approximately eight months after Lisa enters teacher education. 

Lisa’s supervisor Mr Higgins "admits" in an interview two months before that he uses competitions 

when teaching mathematics, all the time. However, he emphasises that the main idea is for students 

to compete with themselves, but that there might be some competition among the pupils as well. One 

example is how the class "do multiplication every third week […] we do it both on Mondays and on 

Fridays… on time… it might seem a little stressful and inconvenient, but they like it very much."  

At the internship, Lisa is stunned after her initial participation in Higgins classroom.  

I think he explains in a way that is very close to pupils thoughts… it is very close to pupils, and it 

is… it is at their level of understanding ... and it is very playful all the time […] they [pupils] are 

involved in everything he does... then they have tests in mathematics where the competitive 

instinct comes into play... when he says something it becomes fascinating… 

Lisa accentuates her admiration for the teaching that she participates in and relate the teaching to the 

use of competitions, "he has it all the time." Lisa concludes that "I am very impressed with him as a 

teacher and would I… I would be like him." 
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Two relevant social practices are visible in Lisa’s tales. Lisa re-engages in the past social practice, 

upper secondary mathematics classroom, as a hugely successful pupil. The success was related to the 

competitive structure which increased her motivation. The common endeavour of participating in 

competitive teaching practices that she shared with some others is central in her positive experience 

of mathematics education. It is also central to her view of teaching. Lisa do not question her first 

internship. Her prior participation in the upper secondary mathematics classroom is instead reinforced 

as valid in the present school-related social practice.  

These two social practices are closely related, there are many similarities. Lisa brings two different 

social practices together, her past and present participation moulds together while re-negotiating the 

role of competitions. By participating in a present educational model, the role of competitions is 

actualised from past participation to present experience.     

Phase two – Questioning competitive teaching when teaching 

The second phase links to the 30 ECTS course in mathematics education and the common endeavours 

of the teacher educators. This paper stresses two different ways of participating, ways of being, within 

the mathematics education course. There are also other social practices of importance, for example, 

the study group containing three other student teachers.  

During the mathematics education course, it became apparent, to Lisa, that most students did not 

enjoy mathematics at school and competitive teaching is filled with anxiety. She immediately starts 

to question her experience in mathematics classrooms and begins to align with the teaching in 

mathematics education. To understand this shift in her participation, the re-negotiation of her past 

participation, we need to enter lecture halls and seminar sessions that the mathematics education 

course provided during the first week.  

Several different teacher educators indicate that the student teachers’ bad experience of mathematics 

teaching might relate to competitive teaching. During the first week, it becomes clear to Lisa that her 

positive experience of competitive teaching is uncommon and she starts to question her past 

participation in mathematics classrooms. “Everyone is more or less competitive, and it is a huge 

strong feeling in all of us… or in me… it is […] it suits them who are good and not those who have 

difficulties ... so I do not know how much one will use it ... you will have to think about the pros and 

cons... and then usually… well, the disadvantages take over ..." There are positive things with 

competitive teaching "everyone concentrates more and makes every effort to get ahead [of others] or 

to win… there will be more ... a bit more fight and quality ... sort of ..." However, the negative side 

takes over "it ruins the confidence and quality deteriorates because it usually goes on time and that it 

should go as quickly as possible ... instead of as good as possible. I think it is important that they 

compete against themselves, but I think it is difficult for students to grasp that ..." 

However, when engaging in informal discussions in other social practices, she talks differently. For 

example, in her study-group, she several times during this course highlight that “competitions are 

excellent” and "to get ahead in the textbook is a great feeling."  
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During the course in mathematics education, Lisa starts to contrast her prior experience with the 

mathematics education course developing a critical stance against the kind of teaching that is 

promoted by the teachers. ”You do not agree with everything they say.” 

At the beginning of the mathematics course, Lisa makes a shift concerning competitive teaching. By 

participating in the social practice set up by mathematics education, she tries to balance her past 

participation while re-negotiating the role of competitive teaching. The manifestation of the conflict, 

Lisa participates in, can be viewed between the prior experience of competitive teaching and the 

present experience of mathematics teacher education. Also relevant is the experience of the “other”, 

those with negative experience from the past. The point is that Lisa re-engages and engage in two 

distinctly different themes that relate to different social practices, that do not relate to each other, 

trying to balance the role of competitive teaching during the mathematics education course. The 

teacher education course in mathematics education has a significant role in the shift describes, how 

Lisa use past and present experience. While trying to bring these different perspectives together, Lisa 

starts to develop a critical positioning to the promoted teaching presented at the mathematics 

education course.  

Phase three – Competitions is positive for all learners 

The last phase starts before the end of the mathematics education course. She engages in an imagined, 

present or future, social practice and relates that social practice against the content promoted at the 

teacher education course. 

Even though Lisa think that this has been the best course, so far in her teacher education experience, 

she does not align with the general promoted teaching of the teacher educators. Lisa concludes that 

she is still positive to competitions even though it is described as an insufficient teaching strategy by 

the teacher educators. She admits that she may “sound mean” but "everyone is competitive more or 

less… everyone wants to win, and no one likes to lose”. 

I do believe that competitions engage pupils… then one might not do it so outspoken that the one 

who wins gets a candy box … but competitions are there… not that anyone gets knocked down 

because they never win… however, still there... something that engages them and makes them 

want to make an effort... and that…well… in that way, I do even believe that one can involve them 

who have it easy and those who find mathematics hard … that they can applaud and encourage 

each other in this way… but then I do not know if competitions are the perfect teaching way, but 

I do think that it can be of importance to put it into teaching… and mathematics feels like a subject 

where it can be easily done. 

Lisa also conducts her second internship with Mr Higgins as a supervisor. He still works in the same 

way, and Lisa is very comfortable in that classroom. She highlights that Higgins still uses 

competitions as a teaching strategy and in the final interview, two years and five months after the first 

one Lisa concludes that "Higgins is an excellent role-model at the moment… he is in my thoughts a 

splendid teacher… he is like the teachers I liked when I was young”. 

There is an apparent shift in Lisa's PoP. She is no longer obliged to participate in the collective way 

of being and share the common endeavour set by the teacher educators. She need not consider the 
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role of the mathematics education course and the way of participating in this social practice. While 

bringing different perspectives together Lisa positions herself concerning future pupils, expand her 

educational model related to competitive teaching and develop a critical positioning to the teaching 

promoted by teacher education.  

Discussion 

This paper aimed to illustrate how different past and present social practices play for Lisa’s, a 

generalist student teacher, tales of herself as primary mathematics teacher-to-be. In the result section, 

it has been illustrated what experiences from teacher education and other relevant social practices that 

are visible. PoP has offered a way to follow the re-negotiation of the meaning of teaching 

mathematics, how Lisa is using different social practices within communication to understand the 

world around her when emerging into the teaching profession. 

Lisa’s pathway through teacher education is viewed as “a process of flexibility, autonomy, and 

adaptation to the teaching context" (Hošpesová, Carrillo & Santos, 2018, p. 181). In her professional 

development, she has for example negotiated and re-negotiated her experience of competitions, upper 

secondary, internship, teacher education, and study-group work. She has first of all re-engaged 

positively in prior experience and in teachers teaching rather than teacher educators promoted 

teaching. The teaching of the teacher educators has been used as a discursive counterpart. Most 

important has been her own experience of being a pupil at school and how she re-negotiated that 

experience with Mr Higgins teaching practice. It can also be interpreted that her background as an 

athlete has contributed to her professional development.      

Lisa draws on competitive classroom when entering teacher education and she still draws on 

competitive classrooms at the end of this study. In this sense, there is no shift in her participation. 

However, the third phase is no regression to the first phase, as Lisa brings in different perspectives 

and social practices in the different phases. Lisa uses other information in her argumentation and 

justification during different parts of her teacher education. Also notable is that teacher education 

promotes another teaching than the one Lisa draw on, and this evolves into the fact that Lisa questions 

some of her assumptions during her education. In this way, the mathematics education course has 

played a role, but in the end, not the role the teacher education community expects or wants.   

The different phases in this paper are critical because we can interpret how social practices play a 

role in her tales of herself as teacher-to-be. We can interpret how past and present social practices 

influence how Lisa talks about competitive teaching during different parts in her teacher education. 

The point is, by looking closer to the process one can understand how and what students change or 

not. Many things happen during an education, both inside and "outside". While most others, for 

example, Hodges and Hodge (2017) focuses on social practices related to teacher education I suggest 

that there are other social practices of importance when student teachers become educated teachers. 

There is a need to be interested in any social practice when trying to understand student teachers as 

teachers-to-be. 
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Many preservice teachers (PSTs) experience a tension between theoretical input from university and 

from school placement. What to do about this theory-practice divide is an ongoing debate. In this 

paper, when investigating the potential of a type of assignment, ‘Missions’, to reduce this divide in 

mathematics teacher education, we give PSTs a voice in the matter. Their statements connect specific 

features of the assignments to theory on mathematics pedagogy and to professional practice. Two 

factors emerge as central to ‘Missions’ bridging theory and practice: PSTs’ lack of familiarity with 

mathematical investigations and the synergies between several pedagogies of practice – both prior 

to and during the work on the assignments.   

Keywords: Pedagogies of practice, missions, maths preservice teachers, theory-practice divide. 

Introduction and background 

Preservice teachers (PSTs) often experience a disconnect and tension between theoretical input from 

university and practice in school placement (Nolan, 2012). When in conflict, PSTs reject theoretical 

perspectives from university, which highlights that, in their eyes, practice is a highly valued 

component of teacher education, more important than the university input  for their future as 

mathematics teachers (Solomon, Eriksen, Smestad, Rodal, & Bjerke, 2017).  

Nolan (2012) notes that, in mathematics, tension between practice in schools and university’s 

theorisation of that practice mirrors the conflict between inquiry-based focus at university and 

instrumentalism in schools, where the PSTs’ habitus plays a pivotal role. Habitus is strongly rooted 

in experiences from early schooling, and is, for that reason, hard to change (Nolan, 2012). PSTs’ 

ideas of what mathematics teaching is and ought to be, is influenced by memories from their own 

years as students (Arvold, 2005). For alternative views to stand a chance, it is important to offer PSTs 

opportunities to reflect critically over their own experience as students, at the same time as they are 

offered support in experimenting with less familiar approaches to teaching mathematics (Leavy, & 

Hourigan, 2016). 

As a response to this disconnect between theory and practice, in Norway, the practice component of 

teacher education is expanded. Researchers within the field are sceptical of such quantitative solutions 

for qualitative problems (McDonald et al., 2014): it is hard to see that such an expansion on its own 

can bridge the theory-practice divide, but what the alternative is, is an ongoing debate.  

In this paper, we explore the potential of ‘Missions’, a type of assignment developed at our university, 

to be part of such a solution in mathematics teacher education. We do this through a two-pronged 

approach: first we analyse the text of the Missions in order to identify how they address theory and 

practice, and second, giving PSTs a voice in the matter, we investigate how they experience these 

assignments as part of their teacher education programme, which includes 100 days of school 

placement.   
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In the Missions, working in groups of 3 – 5 PSTs, the idea is for the PSTs either to observe and 

interpret students’ strategies and methods within a topic, or plan and conduct an activity with students 

and holding a specific focus (mathematical or methodological). The chosen activity shall provide 

opportunities for investigative work (Skovsmose, 1999). In preparation, the PSTs must think through 

what kind of suggestions, solutions and prior conceptions the students might bring up - and how to 

meet their contributions. During implementation, the focus shall be on student thinking, 

communication of ideas, and how the PSTs manage to challenge the students and provide support. 

After implementation, the process shall result in a written report where, on the basis of theory, PSTs 

shall analyse and discuss their observations and the work produced by the students. Critical reflection 

on the process and their own role as mathematics teachers is a crucial part of the report. 

Theory 

As teacher education is ultimately preparing PSTs for their professional practice, in recent years 

educational researchers have become increasingly preoccupied with how this is reflected in the design 

of the programmes. In mathematics teacher education, the inclusion of actual records of teaching, 

such as samples of student work and transcripts of classroom episodes, have  become widespread, as 

they are seen as “extremely powerful sites for learning” (Boaler, & Humphreys, 2005, p. 4). 

One particularly useful tool for analysing the design of teacher education programmes, in this respect, 

comes from Grossman et al. (2009), who have developed a framework for pedagogies of practice, 

pedagogies used in the education of professionals in order to connect to their future practice. They 

have identified three types of pedagogies: representations, decompositions and approximations of 

practice. 

Representations of practice are activities that illustrate facets of practice that allow novices to develop 

images of professional practice and ways of participating in it, such as portrayals of decontextualized 

classroom dilemmas that teachers pursue in their ongoing work. Decompositions of practice are 

activities in which teaching is parsed into components that are named and explicated, such as when 

analysing videos of lessons by using a certain framework. Finally, approximations of practice are 

activities in which PSTs engage in experiences akin to real practice that reproduce some of the 

complexity of teaching.  

In mathematics teacher education, theoretical perspectives are often related to reform teaching. The 

relative difficulty of reform teaching can cause the teacher to fall back on more traditional, teacher-

centred approaches. One way of addressing this during university courses, is through opportunities to 

experience alternative ways of teaching through representations of practice (e.g., by participating in 

student-centred teaching led by the course instructor), decomposition of practices (e.g., by using 

videos and analysing those based on specific theoretical frameworks), or approximations of practice 

(lesson planning, rehearsals, co-teaching with experienced teachers).  In approximations of practice, 

the PSTs are enacting teaching practices, rather than contemplating them (Grossman et al., 2009).  

The idea behind the Missions is closely connected to an understanding of teacher competence as 

something dynamic and action-oriented that needs be developed in close interaction with the field of 

practice (Kværne, & Solem, 2012). If the goal is to educate mathematics teachers with such 

competence, we need to understand what this requires of the components we choose to incorporate 
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in programme designs, such as the Missions. Schoenfeld and Kilpatrick (2008) have developed a 

theoretical framework for proficiency in teaching mathematics that considers both knowledge of 

theoretical perspectives and competence in enacting teaching practices. The seven categories are: 

knowing school mathematics in depth and breadth; knowing students as thinkers; knowing students 

as learners; crafting and managing learning environments; developing classroom norms and 

supporting classroom discourse as part of “teaching for understanding”; building relationships that 

support learning; and reflecting on one’s practice. The names of the categories are relatively self-

explanatory and, for lack of space, we refer the reader to the original source for details. 

Methods 

This paper reports on a study with a generalist primary teacher education programme for grades 1 – 

7 (ages 6 – 13) at a University in Norway. The participants are in their third year of a four-year 

programme, undertaking a specialization mathematics course that builds on the compulsory 30 ECTS 

in mathematics methods from the first two years. During each academic year, PSTs spend 30 days in 

school placement, leaving them with a minimum of 60 days in schools before their first Mission. All 

PSTs undertaking the course were invited to participate in the study, and ten volunteered.  

The ten PSTs were interviewed in pairs. The questions raised in the semi-structured interviews 

focused on their ideas on two Missions’ purpose and function, PSTs’ perception of the use of theory, 

and their experiences with these two Missions. Considering their development as future mathematics 

teachers, we encouraged the pairs to discuss the role played by the Missions and by teaching 

mathematics in school placement.  

The analysis of the two Missions is organised through a comparative perspective. Our analysis of the 

text of the two Missions is conducted in order to identify references to theory (operationalised through 

the syllabus of the course) and teaching practice (operationalised through tasks of teaching). Once 

these two Missions are identified as pedagogies of practice, we proceed to characterize them by means 

of the framework of Grossman et al. (2009), including an overview of constraints that are a means of 

reducing complexity.  

In order to capture PSTs’ experiences with these two Missions as pedagogies of practice, for our 

analysis of the interview data, we developed coding categories close to Schoenfeld and Kilpatrick’s 

(2008) theoretical framework. This framework was chosen because it considers both theory and 

practice, and the seven aforementioned categories were operationalised in a way that enables PSTs’ 

statements to be immediately linked to one of the categories, or associated to a category due to the 

literature in the course syllabus. The authors conducted the coding individually, and coding categories 

were discussed until agreement was reached. 

Findings 

To identify the two Missions’ traits as pedagogies of practice, we begin with an analysis of the text 

of the assignments, before proceeding with an analysis on how PSTs perceive these two Missions and 

the university instructors’ intentions in employing pedagogies of practice that  both resemble normal 

teaching practice and reduce complexity.  
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The two Missions 

Both Missions are reform-oriented, mathematical investigations (Skovsmose, 1999) as presented in 

the course syllabus – and requiring  PSTs in groups to bring to the classroom activities where the 

students are challenged to explore, explain and justify mathematical ideas. In both cases a written 

report was required, a decomposition of practice addressing the planning stage, the implementation 

and the reflection following the lesson. Table 1 displays a comparison of the two Missions.  

 
Mission 1 Mission 2 

Lesson type Investigation Investigation 

Topic and 

activity 

Algebra - The Border Problem 

(Boaler & Humphreys, 2005) 

Not set 

Grade, class size, 

timeframe 

Not set Not set 

Methodical 

considerations 

Follow closely the model in Boaler & 

Humphreys (2005) or make different 

choices as long as the investigative 

nature is preserved 

Lead the lesson so that the 

investigative nature of the task is 

preserved 

Collect 

documentation 

Proof of the students’ inquiry 

processes.  

Focus: The emergence of important 

algebraic ideas, students’ use of 

representations as theorised in Boaler 

& Humphreys (2005)  

Proof of the lesson being a true 

investigation as defined in 

Skovsmose (1999).  

Focus:  The nature of teacher-student 

and student-student communication 

as theorised in the course literature 

(i.e., Solem and Ulleberg (2013))  

Table 1: Comparison between the two Missions 

In both cases, work on the Missions was preceded by teaching sessions at the university. In addition 

to introducing theoretical input, these sessions included a sequence of a representation of practice 

and a decomposition of practice directly relevant for each of the two Missions. Specifically, the course 

instructor opened each session by conducting an investigation with the PSTs (“The Border Problem” 

prior to Mission 1, and a selection of different investigative activities prior to Mission 2), collecting 

artefacts – representations of practice. Next, the course instructor introduced a theoretical perspective 

and then presented the PSTs with opportunities to participate in a decomposition of practice, using 

theoretical perspectives in analysing artefacts from their own work, as well as from examples of 

implementations in primary and middle school classrooms. For Mission 1 an additional opportunity 

for the PSTs to engage with representations and decompositions of practice was provided. Boaler 

and Humphreys (2005) is compulsory reading and includes a video recording of a classroom 

implementation of The Border Problem, as well as an in-depth discussion of that session. In Mission 

2, the PSTs were free to choose the activity; although they could choose one where representations 
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and decompositions of practice were available (e.g., the activities used by the course instructor), 

overall, support is reduced compared to Mission 1, and so the complexity is higher. 

We argue that the two Missions ensure that the PSTs engage in approximations of practice. The 

assignments, as set by the course instructors, require planning and enacting a lesson, and are therefore 

proximal to the practice of teaching. At the same time, the complexity of the teaching situation is 

reduced by narrowing the scope to the specific traits of investigations, to the concept of variable 

introduced by translating between representations and to communication in the mathematics 

classroom, respectively. Additionally, complexity is reduced as the PSTs are only required to select 

some pivotal moments for discussion, and may simply ignore others. Rather than being evaluated 

based on how ‘successful’ the lesson has been in terms of learning goals for the students, the written 

report – a decomposition of practice – will be evaluated based on the manner in which PSTs connect 

observations from the classroom with the theoretical input from their course, as well as their 

reflections on the implementation. This gives room to experiment in a safe environment - reflections 

on ‘failures’ such as reducing a student’s opportunity for productive struggle, or on misinterpreting a 

student idea are welcome in the report, and will be regarded by the instructor as a positive learning 

experience for the PSTs. Finally, as the PSTs are required to work in groups, this provides them with 

a type of support unusual for the practice of teachers - at least in Norway. 

PSTs’ reflections on the two Missions  

The rationale of using pedagogies of practice is that they are simultaneously proximal to actual 

practice, and have reduced complexity. In the eyes of the PSTs, the main reason why the course 

instructor has chosen to give these two Missions is because enactment makes theory meaningful: “...a 

very good opportunity to understand what is expected of us as teachers, the contrast  [between theory 

and practice] is not so great when I can try out what I’d learn about” (PST1). 

Specifically, the contrast between the analytical stance of a decomposition of practice in isolation and 

the combination of approximation and decomposition of practice emerges as the PSTs reflect on how 

the two Missions supported their understanding of the concept of mathematical investigations:  

One could for sure just say: “Be careful, don’t deprive [the pupils] of this opportunity [to figure 

things out themselves]”, but this was something else entirely. It gave me a completely different 

awareness, by allowing me to experience it (PST2) 

In both statements, the presence of the course instructor is noticeable - “what is expected”, “one could 

[..] say”, indicating they perceive the two Missions to be part of teacher education, pedagogies of 

practice rather than pure professional practice. 

In other statements, however, the perspective of professional practice emerges, with its demand on 

the PSTs’ knowledge of the depth and the breath of mathematics: “you go deeper [in the mathematical 

ideas], and learn more about why it is like it is” (PST5). 

Making sense of mathematics is an experience included even in representations of practice, such as 

the investigations led by the course instructor during the session at the university; however, planning 

for an actual lesson (i.e., an approximation of practice) is significantly different, forcing PSTs to 

consider not only themselves, but also the students: 

Thematic Working Group 18

Proceedings of CERME11 3261



 

 

It takes a lot - preparing for all possible answers that might come, and all possible questions. You 

end up pondering imaginable scenarios and preparing how you could explain it from there (PST8) 

The theme of knowing students as thinkers, their possible ways of approaching the tasks, and their 

possible questions, as well as the theme of knowing students as learners, what might be a helpful way 

of meeting their contributions, recur again and again as central to the assignment:  

Normally, if the students had given the wrong answer you would just think “OK, that’s wrong”. 

But as it is [in Missions], you have to think what might be the thought behind the answer (PST5)   

PST7 relates her first-hand experience with the difference between knowing students as learners, and 

actually successfully crafting and managing a learning environment that aligns with that knowledge:  

You had gone through [The Border Problem] quite thoroughly, you knew there were six ways [of 

thinking] and possible misconceptions and so on, you had seen quite a lot of examples [...] so you 

got started on Mission 1 from a position of strength. [... But] how we prepared [for the lesson in 

Mission 1] and how we put it across to the students did not help them as we thought it would. 

When we left the classroom we were thinking “Damn, we should have done a lot better!” We knew 

what to do – we had been through it all [at uni] – but we haven’t dug deep enough (PST7) 

As investigative work is at the heart of these assignments, the learning environment was often 

discussed in terms of characteristics of this approach: 

I still remember the maths classes where you practiced algorithms and if you asked why it worked, 

the teacher said “It’s just the way it is”. I can see it’s tempting to say that…  The Missions give us 

a chance - no, force us - outside the “It’s just how it is”- box, since they are made so that the tasks 

don’t work unless you actually understand. It’s probably [their] the most valuable quality (PST4) 

The comparative freedom in Mission 2, got mixed receptions:  

On the first assignment, you got very clear constraints on what to do. On the second one, my group 

chose to do several tasks, and then we didn’t get the depth we needed, we sailed more on the 

surface of what an investigation should be (PST4) 

My group designed the activity [for Mission 2], and we found it gave us more ownership of the 

lesson. It was ours, and it was easier to learn from it. [Working with a given task in] Mission 1 

was necessary to show us how to [investigate] (PST3) 

Regardless of the risk of failure, the PSTs regard the two Missions as opportunities to think deeply 

about what happens in the interaction with the students: 

When you plan a lesson, teach it and then write about it, you become more aware of how you react 

to what the students say - it’s not just that you ask them something, they say something in return 

and you don’t think too much about the answer. You actually reflect on the conversation!  (PST10) 

The classroom discourse in mathematics appears often in PSTs’ reflection. This could be in part due 

to the explicit focus on communication in Mission 2 (Table 1), that retrospectively spills over in what 

they remember from Mission 1, but could also be in part a direct consequence of having 

communicated with children, and being required to document it. Establishing classroom norms are 
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mentioned in connection with these assignments as well: “The assignments contributed [towards the 

awareness that] it’s not just what you teach, but how you teach it, too!” (PST1). However, this code 

appears less frequently, perhaps given that PSTs spent a short time with students during Missions.  

In comparing the approximations of practice in Missions 1 and 2 with those of mentored teaching in 

school placement, some PSTs expressed the value they placed on school placement because it offered 

something unique: the teacher mentors’ insight in building relationships that support learning - “[the 

mentors] know the children, and know how they need to be taught” (PST9). One mentor made a 

lasting impression on PST1 because of her awareness of mathematics teaching as more than a 

collection of isolated moments: “My mentor wanted us to reflect on our role, what makes us teachers 

… She wanted us to take a long term perspective, more than just the weeks we were there, or the 

year” (PST1). Except for this relational aspect, and the opportunity to develop norms over time, the 

value of teaching in school placement did not connect to mathematics specifically:  

[In school placement] we were two in charge of a class - lots of teaching! There wasn’t much time 

for either seeking advice or getting feedback (...) So [teaching in school placement] is something 

else [than the Missions] entirely but now I feel much better prepared for lesson planning - at least 

in maths, after having done the Missions. You start thinking in another way than before (PST2) 

Time creates a constraint on reflection in school placement. By contrast, as we have seen, PSTs valued 

the opportunities that Missions 1 and 2 give them to reflect on their own practice by requiring them 

to plan as a group, and to hand in decompositions of practice: 

You get an opportunity to think things through - what shall we do? And why should we do that? 

And what do we want to achieve in the end? (PST2) 

We could just as well had had three Missions and no school placement, if you are thinking in terms 

of mathematics. School placement is good practice, but you don’t get much of the subject-specific 

reflection, more about the organisational aspects…The subject specific ends up neglected (PST3) 

Discussion and concluding remarks 

PSTs see the two Missions as approximations and decompositions of practice - close to teaching 

practice, enacting and analysing a practice of reduced complexity.  As indicated in the introduction, 

the divide between theory and practice is an issue of great concern for researchers and teacher 

educators (Nolan, 2012); bringing theory into practice has proven difficult (Solomon et al., 2017).  

In this study, we explored the potential of the two Missions to bring together theoretical perspectives 

with teaching practice. The framework used for the analysis (Schoenfeld, & Kilpatrick, 2008), with 

its double orientation towards theory and practice, allowed us to examine the two Missions’ 

contribution to these two elements of mathematics teacher education in the PSTs’ retrospective 

reflections. PSTs consider the two Missions as contributing to both dimensions, and, furthermore, 

they complement the contribution of teaching in school placement. Both the two Missions and school 

placement are approximations of practice. While the two Missions provide the mathematics-specific 

focus lacking from the school placement, the long-term aspects, such as building relationships with 

the students, are mostly lacking from the two Missions, – although they provide at least an opportunity 

to appreciate that certain classroom norms are worth attempting to establish. 
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The PSTs’ reflections highlight the synergies between several pedagogies of practice. The interaction 

with real children (approximation of practice) and a focus that - by their own account - forces PSTs 

outside their comfort zone mathematically, as well as in terms of teaching methods. PSTs value the 

requirement of group work, and of submitting a decomposition of practice, a written report including 

a reflection drawing on theory. The progression from Missions 1 to 2 gives an opportunity to develop 

further. Everyone appreciated the role of Mission 1: it allowed PSTs to enact an investigative lesson 

by ‘imitating’ Humphreys’ video (Boaler, & Humphreys, 2005). The two Missions form a ‘chain’ of 

approximations of practice with an increasing degree of complexity from periods of mentored school 

placement, via a Mission 1, to a more open Mission 2. While some PSTs willingly took off the training 

wheels in Mission 2 and experimented with self-chosen activities, others stuck with the familiar 

examples from the class at the university (representations of practice). Habitus is strongly rooted and 

hard to change (Nolan, 2012), and these approaches to teaching mathematics are unfamiliar to many 

PSTs. However, if new approaches should stand a chance, these opportunities to try out less familiar 

investigative activities are of great importance (Leavy, & Hourigan, 2016).   
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Abstract  
This study examines rehearsals embedded in cycles of enactment and investigation, and more 

specifically, the discussions the participants engage in when instruction is paused – Teacher Time-

Outs (TTOs). The paper studies the ambitious teaching practices that are revealed in the discussions, 

as well as the aspects of these practices that the participants have the opportunity to learn. 

Approximately 60% of the rehearsal time was spent on teaching and 40% on TTOs. The use of 

representations was a key aspect in 28% of these discussions. It is particularly interesting that the 

discussions in the rehearsals make it possible for the participants to learn how to represent students’ 

mathematical ideas in writing on the board while at the same time paying close attention to 

connections between student talk and mathematical correctness. Implications from these findings are 

also discussed. 
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Introduction 
The aim of professional development (research) is to support in-service teachers (ISTs) in developing 

ambitious teaching practices (e.g. Lampert, Beasley, Ghousseini, Kazemi, & Franke, 2010; 

McDonald, Kazemi, & Kavanagh, 2013). Ambitious teaching entails mathematical meaning making, 

identity building and creating equitable access to learning experiences for all students. It requires that 

teachers know their students as learners and engage deeply with their thinking. Ambitious teaching 

practices enhance student learning of complex ideas and performances (Lampert et al., 2013, 

Ghousseini et al., 2015). Examples of ambitious practices are aiming toward goals, eliciting and 

responding to students’ mathematical ideas and using representations (Lampert et al., 2010) (see more 

examples in Table 1). 

Recently, teacher education and professional development (PD) have had more focus on teaching 

practices and pedagogies of enactment (cf. Grossman et al., 2009; Lambert et al., 2013; Gibbons, 

Kazemi, & Lewis, 2017). The focus of this paper is on rehearsals. These researchers emerging 

research indicates that the use of rehearsals contributes positively to the development of ISTs’ 

ambitious teaching practices (Gibbons, Kazemi, Hintz, & Hartmann, 2017; Kazemi, Ghousseini, 

Cunard, & Turrou, 2016; Lampert et al., 2013; Valenta & Wæge, 2017), as well as to the development 

of mathematical knowledge for teaching (Ghousseini, 2017). Previous research highlights the need 

for more research on rehearsals (Kazemi et al., 2016; Lampert et al., 2013).  
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We report on findings from the PD project Mastering ambitious mathematics teaching (MAM). In 

the MAM project, ISTs are invited to collaborate in learning cycles of enactment and investigation 

where the overarching aim is to learn to enact the practices that constitute ambitious mathematics 

teaching. Rehearsals are an important element of these cycles, and we especially examine the use of 

teacher time-outs (TTOs) during them. The ISTs work on instructional activities (IAs) in the 

rehearsals. IAs are developed to highlight and support ISTs’ learning of specific ambitious teaching 

practices and to focus on specific mathematical ideas. The IAs in the MAM project include choral 

counting, quick images, number strings, problem solving and games (cf. Lampert et al., 2010). The 

ISTs learn to teach IAs through cycles of enactment and investigation. 

Lampert et al. (2013) explore what teacher educators and novice teachers do together during 

rehearsals so they can “learn to enact the principles, practices, and knowledge entailed in ambitious 

teaching” (Lampert et al., 2013, p. 226). They suggest that rehearsals provide room for novice 

teachers to open up their instructional decisions to one another. Kazemi et al. (2016, p. 16) suggest 

that rehearsals, as nested in learning cycles, provide repeated opportunities for novice teachers “to 

investigate, reflect on, and enact teaching through coached feedback”. Furthermore, rehearsals bring 

the student teachers “into interaction with one another around instructional decision making that is 

responsive to students’ contributions”, enabling them to “come in close contact with how their 

colleagues make sense of and take up the practices that are being learned” (Kazemi et al., 2016, p. 

28). In the context of PD, Valenta and Wæge (2017) found that the interactions between the ISTs and 

the teacher educator during rehearsals were mainly discussions on using mathematical 

representations, using a mathematical goal, paying attention to student thinking and eliciting and 

responding to students’ mathematical ideas – all important principles and practices of ambitions 

mathematics teaching. They suggest that rehearsals offer ISTs “the environment and opportunity to 

work simultaneously on a variety of aspects of practice” (Valenta & Wæge, 2017, p. 3387). 

The organisational TTO procedure has been highlighted as a promising way for ISTs to learn together 

in and through practice (Gibbons, Kazemi, Hintz et al., 2017). The participants can pause the 

instruction to think out loud together and share decision-making with one another before continuing 

with the enactment. For example, Fauskanger and Bjuland’s (in press) analyses suggest that TTOs 

enable ISTs to develop a better understanding of how to elicit students’ mathematical ideas by, for 

example, practising questions to ask. Research indicates that TTOs provide opportunities for ISTs to 

make changes and to shift the focus in the interactions “from one of judgment and evaluation to one 

of collective consideration and opportunistic experimentation in the midst of teaching mathematics” 

(Gibbons, Kazemi, Hintz et al., 2017, p. 29). Gibbons, Kazemi, Hintz et al. (2017, p. 48) hypothesize 

that TTOs support the ISTs’ “ability to be adept at moment-to-moment decision-making to engage 

students in rich discussions” and “to cultivate learning environments where everyone [is] positioned 

as capable of doing substantive mathematics” at the same time as ISTs become good at “at drawing 

on students’ multiple knowledge bases.” These researchers point out, for instance, that future research 

should attempt to understand more about how TTOs might support ISTs in developing their 

instructional practices. In this paper, we address the following research questions: (a) Which (if any) 

of the practices entailed in ambitious mathematics teaching are the focus of attention in the TTOs 

taken during rehearsals? and (b) Bearing the TTOs in mind, which aspects of the practice of using 
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representations do the ISTs have opportunities to learn to enact? The second research question is the 

main focus of this paper.  

Methodology 
Design, data material and participants 
The ISTs learn to teach instructional activities (IAs) through cycles of enactment and investigation. 

Each cycle involves the following six steps: 

1. The ISTs read an article and watch a video of a teacher’s enactment of a particular IA.  

2. The supervisor leads a discussion/analysis of the article and the observed video. 

3. Groups of ISTs prepare to teach the IA to a group of students, guided by the supervisor.  

4. One IST (the rehearsing IST) enacts the IA in a rehearsal, where the supervisor and the other 

ISTs act as students. During this rehearsal, all participants can ask for TTOs. 

5. The IST enacts the activity with a group of students. All participants can ask for TTOs. 

6. Each group of ISTs analyse the enactment, guided by the supervisor. This is followed by a 

guided analysis of the enactment with all the ISTs. 

Thirty ISTs from 10 elementary schools participated in the project. The ISTs were divided into four 

groups. One group consisted of those teachers who did not want to take part in the research, whereas 

two out of the three remaining groups (groups 2 and 3) were randomly chosen to be part of the 

research reported on in this paper. The ISTs’ teaching experience varies from one to 30 years. The 

ISTs participated in 12 sessions, which included nine cycles of enactment and investigation, over the 

course of two years. All the sessions were videotaped where one researcher observed each group and 

took notes. The data material from groups 2 and 3 consists of video recordings of the rehearsals (step 

4 above) from the nine cycles of enactment, resulting in 18 recorded rehearsals.  

Analytical approach 
A sociocultural view of ISTs’ learning frames this research as the ISTs work together and learn 

ambitious teaching practices in a community of practice. We analysed the video recordings of the 

rehearsals, looking specifically for opportunities for ISTs’ learning. First, all the TTOs in the 

rehearsals were identified according to the following definition of a TTO: The instances where the 

rehearsal is explicitly paused (often with a TTO hand signal) so the participants can better understand 

and/or act in relation to their colleagues’ thinking, pedagogical choices and/or mathematical content 

(cf. Gibbons, Kazemi, Hintz et al., 2017). Second, we undertook a conventional content analysis 

(Hsieh & Shannon, 2005) of each of the TTO episodes, i.e. we used an inductive coding process with 

the aim of identifying aspects of ambitious teaching practices in the TTOs and which of these the 

ISTs have opportunities to discuss.  

Findings 
In a previous study, we found that approximately 60% of the rehearsal time was spent on ISTs 

teaching the IAs and 40% on TTOs, showing the back-and-forth pattern between facilitating 

deliberate practice and posing questions (Wæge & Fauskanger, submitted). Moreover, we identified 

175 TTOs and found five common dimensions of ambitious teaching practice that were addressed 

during them (Wæge & Fauskanger, submitted). An overview of these practices is given in Table 1. 
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Note that many of the TTOs involved simultaneous work on multiple aspects of practice, thus many 

of the TTOs involved more than one category.  

Ambitious teaching practice Example Number 

of TTOs 

Setting up a task, i.e. the TTOs consisted of 

questions and discussions on the practice of 

launching a problem. 

The rehearsing IST has just posed a problem when one 

of the observing ISTs asks for a TTO: “There’s 

something I’m wondering about. Justification. Should 

she [the rehearsing IST] say something about that 

[invite the students to justify while presenting the 

task]?” (session eight, problem solving, group 3) 

42 

Using a goal to work towards, i.e. discussions on 

the practice of directing students’ attention on a 

learning goal for the lesson. 

The rehearsing IST has just written the student solution 

“three times ten minus one” on the board: 3 × 10 - 1. 

The supervisor intervenes by saying: “Now, the 

question about [the use of] parentheses becomes 

interesting [referring to the expression 3 × 10 - 1].” 

(session three, quick image, group 2) 

35 

Supporting mathematical discussions, e.g. using 

talk moves (cf. Kazemi & Hintz, 2014). 
The rehearsing IST gives the ISTs (acting as students) 

some time to think about the problem 400 - 379, and 

then asks them to share their solutions when one of the 

observing ISTs asks: “Should we ask them [the 

students] to turn to each other and talk or should we let 

them think individually first?” (session six, strings, 

group 2) 

23 

Using representations, i.e. representing students´ 

mathematical ideas in writing (on the board), 

making connections between student talk and 

representations, and making connections 

between different kinds of representations 

(Lambert et al., 2010, Lambert et al., 2013). 

The rehearsing IST, representing a student strategy on 

the board, pauses and asks: “Do I write in between 

(points on the number line)?” (session five, strings, 

group 3) 

49 

Organising the board, i.e. organisation on the 

smartboard and utilising space. 
The rehearsing IST is representing a student solution 

on the open number line when the supervisor 

intervenes by saying: “I’m thinking of another thing 

right now and that is where to put the number line and 

the tasks.” (session six, strings, group 2) 

27 

Table 1: An overview of the content of the 175 analysed TTOs (Wæge & Fauskanger, submitted) 

With Wæge and Fauskanger’s (in review) study as our point of departure, in this paper we focus on 

one dimension, namely the “use of representations”. Table 1 shows that this dimension is an important 

feature in many of the TTOs (shaded in Table 1).  

Use of representations 
Using representations (Lampert et al., 2010) is one of the key practices in ambitious teaching. 

Representing students’ mathematical ideas in writing on the board, making connections between 

student talk and written representations, and making connections between different kinds of 

representations, such as the open number line, arrays and tables are important features in 28% of the 

TTOs. In many of these TTOs the participants discussed how to write student ideas or strategies on 

the board so they could represent the students’ thinking and at the same time keep mathematical 
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correctness in focus. For instance, they discussed the use of parentheses when representing students’ 

ideas, the use of arrows instead of the equal sign and the degree to which they should focus on the 

convention related to the order of factors (in Norway, i.e. 3 × 4 normally represents three groups of 

four). The importance of recording exactly what the students said was emphasised in several of these 

TTOs, however, this sometimes led to mathematical incorrectness and thus TTOs were requested.  

To illustrate the TTOs in which the participants discussed how to represent the students’ ideas or 

written representations, we provide an example from a rehearsal of a game where number sentences1 

presented by the students were written on the board. In this game, the students worked on finding 

number sentences using given numbers. Just prior to the coded exchange, the rehearsing teacher 

represented what one student said by writing the following two number sentences (all supposed to 

equal the given number 8): 5 + 3 = 8 and 9 - 5 = 4 × 3 = 12 : 6 = 2 × 4 = 8. We join the rehearsal as 

one of the observing teachers intervenes: 

1 OT12: Then the question is/ (interrupted by OT2) 

2 OT2: Then the question about [correct] notation is relevant.  

3 S: Yes, and it can’t be [written] like that (pointing to 9 - 5 = 4 × 3 = 12 : 6 = 2 

× 4 = 8) 

4 RT: Ok, it can’t be written like this? (…)3 (session nine, game, group 3) 

The use of the equal sign in the number sentence is not mathematically correct, and the observing 

ISTs suggested taking a closer look at the use of notation in the number sentences (Lines 1, 2). The 

supervisor supported their suggestions, pointing out that they needed to find another way to write the 

number sentences (Line 3).  The use of arrows was introduced in the MAM project, but these ISTs 

do not appear to be used to writing an arrow instead of the equal sign when recording students’ 

thinking. As the discussion continued, some of the ISTs suggested that the number sentence could be 

written the way it was because that was the way the student presented it. However, at the end of this 

TTO the participants concluded that they would replace the equal sign with arrows so the number 

sentences would be mathematically correct: 9 - 5 → 4 × 3 → 12 : 6 → 2 × 4 = 8.  

A second representative example is taken from another group rehearsing the same IA, but now all the 

number sentences were to equal 6. The following was written on the board: 5 + 1, 8 - 5 + 2 + 1, 10 - 

8 + 2 + 5 + 1 when one of the observing ISTs asked for a TTO (referring to 10 - 8 + 2 + 5 + 1): 

1 OT1:  Should we ask them [the students] what they are thinking as they do this? 

2 RT:  Yes. 

3 OT1:  Ask them to explain their thinking. (session nine, game, group 2) 

In what followed, the participants discussed what to do when they wrote exactly what the students 

were saying and it turned out to be mathematically incorrect. After arguing back and forth whether to 

write exactly what the students were saying or to represent their ideas in a mathematically correct 

way, they agreed to use “circles” (e.g. 10 - 8 + 2 + 5 + 1). The rehearsal continued, but similar 

 

1 In their planning, the ISTs used the term equations. When analysing the rehearsals, however, we find that sometimes 

the “equations” are written as equality strings or false equations (e.g. 9 - 5 = 4 × 3 = 12 : 6 = 2 × 4 = 8) or without an 

equal sign (e.g. 9 - 5). For this reason we use the term “number sentence” (cf. Ghousseini, 2017). 
2 In the transcripts, OT represents one of the observing ISTs, RT is the rehearsing teacher and S is the supervisor.  
3 (…) indicates that the TTO continues. 
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examples were presented by ISTs acting as students (e.g. 20 - 8 = 12 + 3 = 15) when the supervisor 

requested a TTO to ask the ISTs what they would do if these examples were presented by students in 

the enactment phase. In the ensuing discussion, some of the ISTs pointed out the importance of 

writing exactly what the students were saying, whereas others pointed to the importance of writing 

what was mathematically correct. This group did not reach a conclusion on this matter before 

continuing the rehearsal. 

The next example, taken from a rehearsal of a string, shows a discussion on how to represent students’ 

ideas in writing. The first problem in the string was to focus on a run where four students were going 

to run equally long where the total distance was one hundred metres. One of the observing ISTs 

(acting as student) said that he knew that “they have to run 25 metres each” because “four times 25 

equals one hundred”. When representing this on an open number line on the board, the rehearsing 

IST started by dividing a line segment into two and then by dividing each of these parts into two again 

thus representing (100 : 2) : 2 instead of 4 × 25. The supervisor asked for a TTO: 

1 Supervisor:  What is interesting here is that you have thought, you have explained that 

you were thinking four times 25 (referring to the observing IST who 

presented this idea). You just knew that, right. But, when you (referring to 

the rehearsing IST) were making the number line now, what did she do, do 

you recognise that [what she did represent] (looking at all the observing 

ISTs)? 

2 OT1:  She divided into two and then divided into two again. 

3 S: Yes, you halved and then halved again.  

4 RT:  Ok.  

5 S: It’s important that we are aware of this [that this represents (100 : 2) : 2 and 

not 4 × 25]. (…) (session six, strings, group 2) 

The supervisor wanted the rehearsing IST to represent exactly what the student was saying (4 × 25, 

Lines 1, 5) and she invited the observing ISTs to recognise this (Line 1). One of the observing ISTs 

recognised that the rehearsing IST had represented (100 : 2) : 2 instead of 4 × 25 (Line 2). As the 

discussion continued, the rehearsing IST asked if she should present the strategy (100 : 2) : 2. This 

was followed by a short discussion on the pros and cons relating to ISTs presenting their own ideas. 

The supervisor advised the rehearsing IST to represent 4 × 25 on the number line as “25 and 25 and 

25 and 25” (showing the four “jumps” by pointing to the number line). They agreed that the rehearsing 

IST in the enactment should illustrate 4 × 25 as four jumps of the length 25 and in addition writing 

25 above each arch as illustrated in Figure 1. 

 

Figure 1: 4 × 25 represented on a number line 

These three examples illustrate that the TTOs in the rehearsals could support the ISTs’ learning of 

the practice of representing students’ ideas or strategies and their paying close attention to 

connections between student talk and written representations. The ISTs could also learn more about 
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the balance between representing students’ mathematical ideas or strategies as presented by the 

students and representing these ideas or strategies in a way that is mathematically correct. 

Concluding discussion 
In this study we have identified and analysed ambitious teaching practices that are revealed in TTOs 

in rehearsals, exploring which practices the ISTs have opportunities to learn to enact during the TTOs. 

The findings show that ISTs have opportunities to work on and learn to enact the practices of setting 

up a task, using goals to work towards, supporting mathematical discussions, organising the board 

and using representations. Opportunities for learning these practices have also been found in previous 

studies (cf. Kazemi et al., 2016; Lampert et al., 2013; Valenta & Wæge, 2017), which have also found 

opportunities in TTOs in the enactment phase of cycles of enactment and investigation (cf. 

Fauskanger, 2019; Gibbons, Kazemi, Hintz et al., 2017). In this paper, we have focused on the 

practice of using representations. The findings show that TTOs especially have the potential to create 

opportunities for ISTs to learn how to present students’ mathematical ideas in writing and also show 

the importance of representing student ideas as accurately as possible while also focusing on the 

mathematical correctness of the representation. Balancing the dilemma between student talk and 

mathematical correctness has not previously been found in research on TTOs in rehearsals and is thus 

a unique finding from this study. Our findings also indicate that the ISTs might need more 

mathematical knowledge for teaching (MKT) and that the TTOs can be a point of departure for 

strengthening ISTs’ MKT (cf. Ghousseini, 2017). 

Previous research on TTOs in enactment (Gibbons, Kazemi, Hintz et al., 2017), as well as in 

rehearsals (Lampert et al., 2013), challenges future research to elaborate on how TTOs as a procedure 

in PD can be sustained and developed. By using the data material from the MAM project, it is possible 

to study the development of TTOs in each group for a two-year period. Further analyses of the data 

material will also make it possible to learn more about whether and how the supervisors develop their 

TTO expertise (cf. Gibbons, Kazemi, Hintz et al., 2017). Similar projects in new contexts are also 

welcome in order to study the potential of using TTOs in new contexts. In the Norwegian context the 

new guidelines for initial teacher education highlight ambitious teaching practices (cf. Mosvold, 

Fauskanger, & Wæge, 2018) and the number of days in field practice in schools has been extended. 

Based on the promising opportunities for ISTs to learn ambitious teaching practices through TTOs in 

the enactment of teaching (Fauskanger, 2019), studying TTOs in student teachers’ field practice will 

be an important context for future TTO research.  
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We conducted a university course with pre-service teachers specifically focused on learning to 

analyse the use of multiple representations in classroom situations. We were particularly interested 

in the professional vocabulary pre-service teachers used when they analysed these classroom 

situations. Before and after the course, we collected 136 written analyses from 17 pre-service 

teachers who were asked to evaluate the use of multiple representations in four classroom situations. 

Our findings indicate that the pre-service teachers’ professional vocabulary improved with respect 

to breadth and specificity. They also used more terms related to essential aspects of theory on multiple 

representations. As teachers’ increased and appropriate use of professional vocabulary appears to 

play a role with regard to their competence in analysing classroom situations, further research into 

this topic is encouraged and might give insight into corresponding competence development.  

Keywords: Teacher education, analysing classroom situtations, professional vocabulary. 

Introduction 

Being able to analyse classroom situations, that is to identify and interpret events which are relevant 

for students’ learning, is an important prerequisite for providing students with adequate learning 

opportunities and learning support (e.g., Sherin, Jacobs & Philipps, 2011). Since the use of multiple 

representations and the ability to flexibly change between them plays an essential role for the learning 

of mathematics (Duval, 2006; Acevedo Nistal et al., 2009), teachers’ ability to analyse classroom 

situations regarding the use of representations can be described as an important aspect of 

mathematics teachers’ professional competence (Friesen & Kuntze, 2016; Friesen, 2017). The 

question of how such a competence can be developed and how competence development in that field 

can be assessed and described consequently merits special attention in mathematics teacher education.  

The study presented in this paper connects our prior research of pre-service teachers’ growth in 

analysing classroom videos (Friesen, Dreher & Kuntze, 2015) with teachers’ use of professional 

vocabulary when analysing classroom situations regarding the use of representations (Friesen, Mesiti 

& Kuntze, 2018). Since the International Classroom Lexicon Project (e.g., Mesiti & Clarke, 2017) 

has drawn attention to the professional vocabulary teachers use when describing classroom 

phenomena, it has been assumed that what teachers identify and interpret when observing classroom 

situations might not only be channelled by their knowledge but also by what they can name. Taking 

also into consideration that learning the language of a discipline can be regarded as part of learning 

the discipline itself (e.g., Schleppegrell, 2007), we assumed that documenting pre-service teachers’ 

use of professional vocabulary might provide insight into their development when they learn to 
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analyse classroom situations. In this next phase of our research, we turn our attention to change in 

pre-service teachers’ professional language when they learn to analyse classroom situations regarding 

the use of multiple representations.  

Below we outline our study’s theoretical background, starting with multiple representations and their 

role for the teaching and learning of mathematics. After presenting the state of research into teachers’ 

competence of analysing and teachers’ use of professional vocabulary, we follow with a description 

of the university course from which we obtained out data.  

The use of multiple representations in the mathematics classroom 

The use of multiple representations plays a crucial role for the teaching and learning of mathematics. 

As mathematical objects are abstract in nature, they can only be accessed by using representations 

such as: formulae, graphs, diagrams, tables, written and spoken language (e.g., Goldin & Shteingold, 

2001). Bruner (1966) coined three stages of representation in which any idea or body of knowledge 

can be presented to a learner: by action (enactive representation), by images or graphics (iconic 

representation) or by symbolic propositions (symbolic representation). According to Duval (2006), 

representations of mathematical objects can be organised in a more fine-grained manner in so-called 

representation registers. Each register (e.g., oral or written language, symbols, shapes, drawings, 

sketches, diagrams, graphs, etc.) contains some information about the mathematical object it stands 

for or emphasises certain aspects of the mathematical object. Since many tasks involve several 

representation registers and some registers are more efficient for solving problems than others, the 

use of multiple registers of representations can be regarded as indispensable for the teaching and 

learning of mathematics. Teachers and students generate and use multiple representation registers for 

introducing new topics, for explaining, for solving problems and for sharing ideas in the classroom 

(Duval, 2006; Acevedo Nistal et al., 2009).  

Numerous studies show, however, that using multiple representations of a mathematical object and 

changing between them involves high cognitive demands for the learners (Ainsworth, 2006; Duval, 

2006): The changes between multiple representation registers, so-called conversions, require the 

learners of mathematics to identify and coordinate the relevant constituents from different 

representation registers. It can consequently lead to serious problems in understanding when students 

fail to see that different registers (e.g., verbal explanation, written symbols and drawing) represent 

the same mathematical object (Duval, 2006).  

For this reason, mathematics teachers have to be able to analyse classroom situations regarding the 

use of multiple representations in order to support their students in connecting different representation 

registers when conversions occur (Friesen & Kuntze, 2016). We define such competence of analysing 

as a teacher’s ability “to link relevant observations in a classroom situation to corresponding criterion 

knowledge so that unconnected changes of representations can be identified and interpreted with 

respect to their role as potential learning obstacle” (Friesen, 2017, p. 39). Being able to analyse 

classroom situations as described above can be regarded as highly relevant for students’ learning with 

multiple representations and thus for the instructional quality in the mathematics classroom.  
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The role of professional vocabulary for analysing classroom situations 

Representations of practice in the form of video clips, narratives, student-teacher dialogues or 

cartoons play an important role when pre-service and in-service teachers learn to analyse classroom 

situations (e.g., Sherin, Jacobs & Philipps, 2011). Breaking down practice into its constituent parts 

requires, however, a specific language for describing and naming these parts (Grossman et al., 2009). 

It is also assumed that learning the language of a discipline is a part of learning the discipline itself 

(Schleppegrell, 2007). There is hence a consensus that having a specific language for describing 

teaching practice is essential in pre-service teacher education as well as for the discussion of in-

service teachers’ practice and its development within the teaching community (Grossman et al., 

2009). At the same time, the teaching community has been characterised as suffering from a lack of 

professional language (Grossmann et al., 2009) whereas different communities, speaking different 

languages, have been found to employ different naming systems (e.g., Mesiti, Clarke, Dobie, White 

& Sherin, 2017).  

In this context, the International Classroom Lexicon Project (e.g., Mesiti et al., 2017) seeks to 

document the professional vocabulary, or lexicon, mathematics teachers use when describing 

classroom phenomena. Research teams in ten countries (Australia, Chile, China, the Czech Republic, 

Finland, France, Germany, Japan, Korea and the USA) are currently identifying and comparing the 

lexicon of their middle school teachers (e.g., Mesiti & Clarke, 2017). Mesiti et al. (2017) argue that 

teachers’ interactions with classroom settings are mediated by their capacity to name what they see 

and experience. The concept of teacher noticing (e.g., Sherin, Jacobs & Philipps, 2011) plays an 

important role in this context; it is assumed that what teachers identify and interpret in a classroom 

situation is not only constrained by their knowledge and experience but also by what they can name 

(Mesiti et al., 2017). We therefore concluded, that the professional vocabulary teachers use also 

provides potential for research into teachers’ competence of analysing the use of representations. In 

a corresponding study, we took an initial step and documented the professional vocabulary used by 

in-service teachers in their written analysis of classroom situations regarding the use of 

representations (Friesen, Mesiti & Kuntze, 2018). The results encouraged us to use a similar method 

for the documentation of pre-service teachers’ professional vocabulary before and after a university 

course with the objective to gain insight into the participants’ development when they learn to analyse 

classroom situations. In the following paragraphs we will describe the university course, our research 

questions and our method for documenting the pre-service teachers’ professional vocabulary. 

Learning to analyse: a university course  

The objective of this single semester course is to develop pre-service teachers’ competence when 

analysing the use of multiple representations. It is offered on a regular basis at Ludwigsburg 

University of Education (e.g., Friesen, Dreher & Kuntze, 2015). At the beginning of the course, key 

elements of theory related to the use of multiple representations in the mathematics classroom are 

introduced. Accordingly, criteria are developed which are used during the course for the analysis of 

videotaped classroom situations and textbook learning material. The core of the course work is the 

collaborative and criteria-based analysis and reflection of how multiple representations are used and 

dealt with in learning material and classroom situations. Emphasis is put on the pre-service teachers’ 
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ability to distinguish different registers of representation and to identify unconnected conversions and 

interpret them with respect to their role as potential learning obstacles. In this context, the participants 

become acquainted with specific terms from theory on using multiple representations in the 

mathematics classroom, such as register, conversion, change of representations, connection of 

representation registers, etc. (cf. Duval, 2006). The course sessions also provide the opportunity to 

further develop and improve learning material and classroom situations according to the theory-based 

criteria. The pre-service teachers are, for example, encouraged to create alternatives for the teachers’ 

reactions in videotaped classroom situations with the aim to support students in using multiple 

representations and making connections between different representation registers.  

Research interest and research questions 

What teachers see in classroom situations might be channeled by what they can name and it might 

consequently be assumed that teachers’ professional vocabulary plays a role with respect to their 

degree of competence and sophistication in analyzing classroom situations. We are consequently 

interested in how professional vocabulary develops and how the professional vocabulary used by pre-

service teachers changes during a single semester university course. Building on our prior research 

(Friesen, Mesiti & Kuntze, 2018), we are particularly interested in identifying changes in the 

professional vocabulary of pre-service teachers after having learned to analyse classroom situations 

regarding the use of multiple representations. This leads to the following research questions: 

• What professional vocabulary do the pre-service teachers use for analysing classroom 

situations before and after a course focusing on the use of representations? 

• In what way does the professional vocabulary change? 

Sample, methods and data analysis 

The data analysed in this study was collected from 17 mathematics pre-service teachers who studied 

the university course described above. All but one of the pre-service teachers were female, between 

21 and 27 years old (Mage=23.2; SDage=1.5) and in their sixth or seventh semester. 

In order to address the research questions, we asked the pre-service teachers at the beginning and end 

of the university course to evaluate other teachers’ teaching in four different classroom situations 

(learning of fractions, grade six). The classroom situations were presented in a paper-and-pencil test 

in the two formats text (student-teacher-dialogues complemented with pictures of the teacher-

generated and student-generated representations) and comic (cf. Friesen, 2017). Each classroom 

situation was followed by an open-ended question: How appropriate is the teacher’s response in 

helping the students to solve the task? Please evaluate the use of representations and give reasons 

for your answer. The narratives of the four classroom situations were designed in a similar way: A 

group of students struggle with solving a task, they show the teacher their workings with a certain 

representation register (e.g., calculation, written symbols) and ask the teacher for help. Initially, the 

teacher tries to support the students with a verbal explanation. As they still do not understand, the 

teacher changes the representation register (e.g., by making a sketch or drawing). However, the 

teacher does little to connect the student-generated and the teacher-generated representations and 

there is no support for the students to see that the different representations belong to the same 
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mathematical object. Based on the theory of learning with multiple representations as outlined above, 

such unconnected conversions are very likely to cause further problems in the students’ 

understanding. The teacher’s response can therefore be evaluated as not appropriate for helping the 

students in all of the four classroom situations.  

As the 17 pre-service teachers were asked to analyse four classroom situations before and after the 

university course, 136 written answers could be examined for this study. In order to extract the 

professional vocabulary from the pre-service teachers’ answers, we adopted a method previously 

developed with similar research involving in-service teachers (Friesen, Mesiti & Kuntze, 2018). We 

were interested in identifying change with respect to the professional vocabulary in use by pre-service 

teachers before and after the course, hence, the answers from the pre-test and the post-test were 

analysed separately. As a first step, lexical items (nouns, verbs, adjectives, adverbs carrying the 

meaning of the sentence) were extracted from the pre-service teachers’ written answers. As classroom 

phenomena were also described using terms which were non-lexicalised (i.e. not expressed as a single 

word), we included such terms in a second step of analysis. In the next step, we grouped the extracted 

terms in lexical categories which we had derived in our prior study (Friesen, Mesiti & Kuntze, 2018): 

(1) terms related to general pedagogical practices which are not specific to the mathematics 

classroom, (2) terms related to mathematical content and to practice specific to the mathematics 

classroom and (3) terms related to representations and their use in the mathematics classroom 

including stages of representations, representation registers, changes of representations and the 

connection of registers. Figure 1 shows these steps of analysis for a pre-service teacher’s answers 

from the pre-test and the post-test (same classroom situation).  

 

 

 

I think that the explanation with the number line is not 

really appropriate because it is also a formal explanation. 

I find the first explanation (2/3 go more often in 6 than in 

1) is easier to understand. This could be represented 

iconically in order to give an illustrative explanation. 

(pre-test, written analysis for classroom situation 1) 

 

 

 

It is good that the teacher uses other representations 

instead of trying to explain only the calculation. I think it 

is not good that the teacher uses two different 

representations (verbal: how often 2/3 go in 6, on the 

number line: arithmetic operations). She doesn’t connect 

these representations to each other. It would be better to 

choose just one representation and explain this one in 

more detail (e.g., represent 2/3 in 6 iconically). 

(post-test, written analysis for classroom situation 1) 

Figure 1: Sample answers from pre-test and post-test; extracted terms are shaded 
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Results 

The analysis of the pre-service teachers’ written responses for professional vocabulary resulted in the 

extraction of 422 terms (pre-test) and 359 terms (post-test). Figure 2 indicates that the share of terms 

related to representations and their use in the mathematics classroom has increased from pre-test to 

post-test (from 38% to 52%).  

        

Figure 2: Extracted terms organised in lexical categories, pre-test and post-test 

A closer examination of the terms that were most frequently used to describe phenomena of the 

presented classroom situations reveals that there was little change between pre-test and post-test 

concerning the lexical categories (1) general pedagogical practices and (2) mathematical 

content/practices. The terms that were most frequently used to describe general pedagogical practices 

were (to) explain/explanation and (to) understand/understanding both in the pre-test and the post-

test. The terms that were most frequently used to describe content and practices specific to the 

mathematics classroom were fraction, (to) divide, (to) multiply and result both in the pre-test and the 

post-test. This is very similar to the terms most frequently used by in-service teachers when analysing 

the same classroom situations (see Friesen, Mesiti & Kuntze, 2018 for a list of terms). The change in 

the pre-service teachers’ professional vocabulary from pre-test to post-test became visible in the 

lexical category grouping terms related to representations and their use in the mathematics classroom. 

First, we compared the shares of subcategories, as can be seen in Figure 3. About half of the terms 

related to representations were used to describe different representation registers. The share of terms 

used to describe stages of representations decreased from pre-test to post-test, whereas, in the post-

test, more terms were used to describe classroom phenomena related to changes of representations 

and the connection of registers; both essential aspects for learning with representations.  

           

Figure 3: Terms related to representations, change in subcategories between pre-test and post-test 
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The terms changed, however, not only regarding their number but also regarding quality. In the case 

of terms used for describing registers of representations, we found for the pre-test that besides the 

specific terms number line, diagram, drawing and pizza, the general term representation was used 

45 times to describe very different kinds of registers in the four classroom situations. In the post-test, 

the pre-service teachers used the general term representation only 15 times. Instead, terms with 

register appeared 15 times to describe the same phenomena (e.g., diagram register, drawing register, 

verbal register etc.) or the pre-service teachers extended the word representation by adding a more 

specific description, e.g., representation with pizzas, iconic representation, verbal representation, 

etc. In the case of terms for describing changes of representations, the pre-service teachers used terms 

such as choose or use another representation in the pre-test. The most frequent terms for describing 

changes of representation were constructions with illustrate, such as illustrate the problem with pizza 

slices (2 and 8 times, respectively). In the post-test, more specific terms such as change of 

representations and conversion could be found in the answers (6 and 12 times, respectively). 

Discussion  

Whereas the language used by students and teachers in the mathematics classroom plays an essential 

role in mathematics teacher education and corresponding research, the professional language teachers 

use for analysing classroom situations and describing classroom phenomena has so far garnered less 

attention. The argument that teachers are not likely to identify and interpret classroom phenomena 

that they cannot name underlines, however, the importance of supporting the development of a 

professional lexicon as part of teacher education programmes. The aim of this study was to document 

pre-service teachers’ professional lexicon with a focus on representations and to examine if pre-

service teachers’ use of professional vocabulary changes when they learn to analyse classroom 

situations in a university course. Although this study is limited to a small sample and to analysing the 

use of representations, its findings encourage further research into this topic and further development 

of the applied methods. The documentation of the pre-service teachers’ professional vocabulary 

before and after the course revealed a change concerning several aspects: First, the pre-service 

teachers’ lexicon concerning multiple representations and their use appears to have grown and has 

become more specific at the same time; additionally, the professional vocabulary used in the post-

test is, for example, characterised by a wider range of terms for aspects that play a central role for 

learning with multiple representations (changes of representations, connection of registers) and also 

indicates a greater level of specificity regarding terms related to registers of representation. It might 

be concluded that having a name for certain registers can help to identify them whereas identifying 

different registers of representation can be seen as necessary prerequisite to identify conversions and 

to interpret them as potential learning obstacles. The relation between teachers’ professional 

vocabulary and their corresponding competence of analysing should consequently be investigated in 

more depth. A next step is to bring together the documentation of teachers’ professional vocabulary 

and their competence scores when analysing classroom situations regarding specific criteria. 
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In this work, we focus on the meaning prospective mathematics teachers assign to a set of students’ 

productions and the feedback provided to these students. Based on these findings, we discuss 

prospective teachers’ interpretative knowledge required for providing a fruitful feedback to students, 

having their reasoning as the starting point. Data collection (written responses) for this investigation 

took place at a workshop involving 19 prospective teachers from a Chilean university. Thematic 

analysis of their responses revealed two distinct types of feedback, namely that grounded in the nature 

and focus of the interpretation provided, and that focusing on the content of prospective teachers’ 

knowledge.  

Keywords: Mathematics teachers’ interpretative knowledge, error analyses, teachers’ feedback. 

Introduction 

Teachers’ knowledge is one of the core factors considered when developing highly demanding 

mathematical practices (Ball, Thames, & Phelps, 2008). Thus, in that sense, it is essential to focus on 

the content of such knowledge and, in particular, on the dimensions that would allow teachers to 

develop such mathematical practices, having the students’ own reasoning and understanding as a 

starting point for the mathematical discussions, as well as for determining the feedback to be provided 

to these students. By better understanding the provided feedback, the aim is to enrich (prospective) 

teachers’ knowledge and experience related to teaching practice. The knowledge grounding such type 

of practice is perceived as specialised. 

In order to deepen and broaden our understanding on the content of teachers’ interpretative 

knowledge and promote its development, we have been developing tasks for teacher education with 

a specific focus of developing teachers’ knowledge (e.g., Jakobsen, Ribeiro, & Mellone, 2014; 

Policastro, Mellone, Ribeiro, & Fiorentini 2018, submitted). We have been using tasks that probe into 

teachers’ interpretative knowledge in different teacher education contexts (initial, continuous, and 

complemental) as a prompt to orchestrate mathematical discussions (Bussi, 1996). The aim is to 

develop the solvers’ awareness (Mason, 2001) and specialised knowledge—in this case, the 

Mathematics Teachers’ Specialized Knowledge (Carrillo et al., 2018). Such specialised knowledge 

would permit teachers to give meaning to non-standard student reasoning (Mellone, Jakobsen, & 

Ribeiro, 2015), as well as to better understand the causes of students’ errors (Tulis, 2013), thus 

treating them as real learning opportunities in Borasi’s (1994) sense.  

In the scope of a broader project, the aim of the present study is discussing secondary prospective 

teachers’ Interpretative Knowledge (IK) based on the feedback they provide to students when 

analysing and commenting on productions students provided to a specific mathematical problem. 

Theoretical Framework 

Shulman (1986) emphasised the need for integration of pedagogical and disciplinary knowledge in 

teacher education. Other researchers contributed to the mathematics teacher development, proposing 
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to move away from a segregated and advanced training in “pure” mathematics to focus on the 

development of specialised knowledge that allows the teacher to teach mathematics. Amongst several 

teachers’ knowledge conceptualisations that have emerged, in the scope of the work we have been 

developing, we assume the specialised nature and content of teachers’ knowledge in the sense of the 

Mathematics Teachers Specialized Knowledge (MTSK) conceptualisation (Carrillo et al., 2018). 

Teachers’ specialised knowledge grounds teachers’ interpretations of the students’ comments and 

productions (e.g., Di Martino, Mellone, Minichini, & Ribeiro, 2016). 

Interpretative Knowledge is perceived as the knowledge that allows teachers to give sense to pupils’ 

answers, in particular to those that contain errors, or to “non-standard” solutions, i.e., adequate 

answers that differ from those teachers would give or expect (Jakobsen et al., 2014). It sustains the 

teachers’ ability to support the development of pupils’ mathematical knowledge, starting from their 

own reasoning, even if students’ ideas are incomplete and/or non-standard. Moreover, IK is 

associated with the notion of discipline of observation and, in particular, with the idea of teachers 

working “on becoming more sensitive to notice opportunities in the moment, to be methodical without 

being mechanical” (Mason, 2001, p. 61). Such knowledge thus allows teachers to consider errors and 

non-standard reasoning as learning opportunities (Borasi, 1994; Mellone et al., 2015). 

One way to enrich prospective teachers’ interpretive knowledge is to offer opportunities to face 

student productions and to provide and discuss feedback, as part of their teaching practice. The term 

feedback is defined as “information provided by an agent (e.g., teacher, peer, book, parent, self, 

experience) regarding aspects of one’s performance or understanding” (Hattie & Timperly, 2007, p. 

81). The feedback can be constructive, i.e., one that includes hints, corrections, examples or 

explanations. Kulhavy and Stock (1989) termed this type of feedback as elaborative and defined it as 

any method that goes beyond indicating only the answer is correct or incorrect. Still, there is no 

consensus that providing elaborative feedback benefits learning more than simply indicating whether 

the answer is correct (Shute, 2008). Some authors even argue that complex and detailed information 

can counteract the effectiveness of feedback. Santos and Pinto (2010) studied the evolution of written 

feedback provided by a middle school mathematics teacher, reporting that her feedback evolved, 

developing plasticity, adjusting to the specific students or to the tasks, creating reflection moments 

by delivering elaborate clues, and encouraging the correction of the situation. 

In the present study, we examined prospective mathematics teachers’ interpretative knowledge by 

analysing the feedback they provided to students. The quality of the feedback has been the greatest 

influence on student performance (Black & Wiliam, 1998), thus opportunities for interpreting 

students’ productions are perceived as chances for improving feedback and students’ learning. 

Methods 

In the present study, we focus on the answers given by 19 prospective mathematics teachers (PTs), 

who worked in small groups on interpreting students’ productions related to a math problem adopted 

from Cañadas, Castro, and Castro (2008). Most participating PTs were in the seventh semester of a 

10-semester course and had already completed courses in mathematics, pedagogy, and mathematics 

education, and had some school practice experience. 

The tasks were conceptualised following a particular design (e.g., Ribeiro, 2016; Ribeiro, Mellone, 

& Jakobsen, 2013), whereby the first part focused on accessing and developing PTs’ MTSK, while 
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the Interpretative Knowledge – Interpretative Task – and the provided feedback was examined in the 

second part. Here, we focus on this last part of the task, as the goal is to examine PTs’ IK when 

interpreting students’ productions and the feedback provided. In the first step of the task 

implementation, PTs were required to solve a problem that would later be explored with their students 

(Figure 1).  

Complementarily, PTs were asked to refer to and reflect upon their own difficulties when solving the 

problem. In the next phase of the task, PTs were provided with three student productions, and were 

required to give meaning to each one of these productions, as well as provide what they consider to 

be a fruitful feedback to each student. The productions included in the task either contained errors, 

were incomplete, or involved a non-standard approach to problem-solving. Here, we discuss some 

productions included in the task, as shown in Figure 2(a)−2(c). 

 

 

 

 

 

 

Figure 1: Tiles problem (Cañadas et al., 2008) 

 

 

 

 

 

 

 

Figure 2(a): Camilo’s productions 

 

 

 

 

 

 

 

Figure 2(b): Aracelli’s productions 

 

Imagine you have white and grey square tiles of the same size. We make a row with the 

white tiles and then surround the white tiles with grey tiles, as the drawing shows: 

 
1. How many grey tiles would you need if you had 1320 white tiles and wanted to 

surround them in the way you did in the drawing? 

 
2. How many grey tiles are necessary for any number of white tiles? 

 

Through the proportions, you can determine 

the number of grey tiles needed: 

 
5    white → 16 grey

1320 white → x grey
 

x =
1320 ∙16

5
;  x = 264 ∙ 16, x = 4224 grey 

tiles. 

5  → 16
1320 → x

 x =
1320 ∙16

5
 

  x =
21120

5
 

 

(1) Grey tiles x = 4224 

(2) According to the relationship that occurs in 

the rule of three (5 is to 16, as x is to y). 
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Figure 2(c): Javiera’s productions 

The data utilised in the analyses included PTs’ productions when solving the Interpretative Task, 

focusing on PTs’ perception of the problem difficulty and the feedback given to three students based 

on the solutions offered. The written feedback that the prospective teachers provided to the students’ 

answer was analysed categorizing the emergent feedback. 

Analyses and discussions 

Data was analysed in two phases. As noted earlier, all participating PTs were first asked to solve the 

problem in small groups and discuss any difficulties they encountered. In the next phase, feedback 

the PTs provided to Camilo and Aracelli based on their productions was discussed (these students 

utilised a similar strategy for solving the problem). 

Difficulties in solving the problem 

Eight of the nine groups of PTs solved the problem 

correctly, while the remaining group adopted the “rule 

of three” which yielded incorrect answer (Figure 3). 

When this group examined the solutions provided by 

other PTs, they were able to identify their mistake 

(pertaining to task interpretation) and subsequently 

provided a correct answer.  

Concerning the PTs’ difficulties, four out of nine groups stated that they had difficulty understanding 

how to represent the figure when the number of tiles increased (e.g., “We doubt how the white tiles 

were placed.”; “Yes, because we did not know in what way the tiles would be grouped.”). These 

results confirm that PTs had difficulties in understanding the statement of the problem, even though 

the manner in which the tiles should be grouped was explained explicitly in the problem statement 

“we make a row of white tiles” (see Figure 1). 

Categorising the feedback 

Most of the PT groups pointed out that both Camilo and Aracelli (Figure 2(a) and (b)) solved the 

problem by incorrectly applying the “rule of three” without giving further explanation of how they 

should have proceeded, while some groups provided indication on the way the problem should be 

addressed. When analysing the feedback provided to these two students based on their productions, 

four categories emerged in relation to Camilo’s and Aracelli’s solutions:  

(i) Feedback on how to solve the problem: Guide on how the students should proceed to solve 

the problem, particularly stating that they should think inductively. 

 
Figure 3: Mistake in understanding the 

problem 

1320*2 = 2640 

2640 + 6 = 2646 grey tiles 

if x = white tiles, the grey tiles will be: 2x+6 

because: 

2x to cover above and below the white (tiles), 

+6 to expand on each side, so that it protrudes 1 on 

each side and to fill the sides. 

 

Thematic Working Group 18

Proceedings of CERME11 3284



(ii) Confusing feedback: When the feedback seems to be correct, but it can be confusing for the 

student. 

(iii) Counterexample as feedback: An example is used to refute the error exposed. 

(iv) Superficial feedback: The content of such feedback was insufficient (too broad or 

inconsistent) to allow the solver to understand its meaning. 

(i) Feedback on how to solve the problem 

Two PT groups focused their feedback on explaining to the student how he/she should proceed in 

order to solve the problem. They specifically indicated that the problem should be approached 

inductively, suggesting that the student should think what happens if there is one white tile before 

considering, what happens if there are two, three white tiles and so on. How many grey tiles would 

there be in each case? Then, they prompted the student to think about what happens in general terms. 

We observed that these PTs could correctly interpret the students’ mistakes, and thus indicate the 

correct approach to solving the problem.  

(ii) Confusing feedback 

One of the groups focused on explaining why the number of grey tiles is not proportional to that of 

the white tiles. They stated that “proportional thinking should not be used, since the number of grey 

tiles does not increase by the same amount as white tiles; thus, they are not proportional” (see Figure 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Confusing feedback 

Perform the activity by 

proportion, that is, for every 

group of 5 white tiles, there are 

16 grey tiles. 

5

16
=

1320

x
, x = 4.229.  

The way to approach the 

problem is erroneous, since 

proportional thinking should not 

be used, because the number of 

grey tiles does not increase by 

the same amount as the white 

tiles. Therefore, they are not 

proportional. So, yes, we can 

say that the tiles that are above 

and below the white tiles are in 

a 1:2 ratio, not counting the 

edges. 

Then ask what happens with the number of tiles at the edges when the white tiles increases or 

decreases? Lead the student to make the connection between the number of upper and lower tiles plus 

the tiles at the edges before prompting him/her to generalise for any number of white tiles. 
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We posit that the last expression can lead the student to incorrectly conclude that, if the number of 

grey tiles increases/decreases by the same amount as that of the white tiles, those variables are 

proportional. Instead, feedback should focus on the fact that the number of tiles does not 

increase/decrease “by the same proportion.”  

Second, they stated, “we can affirm that the tiles that are above and below the white tiles are in 

proportion 1:2, without counting the edges.” Thus, they explained when the figure would be 

proportional. Although this reasoning is true, it could be confusing to the student, because the problem 

is not one of proportionality. As a result, this was termed as confusing feedback. In sum, although the 

PTs in this group could interpret the students’ mistakes, when providing an elaborated feedback, they 

opted for a rather complex solution, which can confuse the students. 

(iii) Counterexample as feedback 

Two groups used a counterexample to respond to the student (Figure 5). In this excerpt, a group 

provided feedback suggesting that the student should draw a figure for the case of 6 white tiles with 

their 18 grey tiles (if proportional), while also applying the “rule of three” that would yield 19.2 grey 

tiles. The group interpreted this as a contradiction, along with the impossibility of having 0.2 tiles. 

However, it would have been more informative to argue that there is no multiplicative relation 

between white and grey tiles. 

This group used a counterexample in their feedback to confirm that the number of grey tiles is not 

proportional to that of the white tiles. The use of a counterexample requires that the teachers have a 

comprehension of the mathematics knowledge involved in the problem (KoT), as this would allow 

them to provide an explanation for student’s errors. From the MTSK perspective, teachers are 

required to have the mathematics knowledge of the theme that allows approaching the problem in the 

correct way, but also ability to explain why other ways do not work. Explaining why something is 

incorrect requires interpreting the students’ reasoning and building feedback on these mistakes. 

 

 

 

 

 

 

 

 

 

Figure 5: Counterexample as feedback 

(iv) Superficial feedback 

Some of the feedback on Camilo’s and Aracelli’s productions was superficial, that is, too vague for 

a clear understanding by the student. For example, PTs stated: “I would ask what is proportion, so 

(S)he used “simple rule of 

three” because (s)he assumed a 

direct proportion between the 

number of white and grey tiles. 

I would tell him/her to try a case 

where you can draw a diagram. 

For example, we can assume 

that there are 6 white tiles. So, 

BB = 6, BN = 18 and try the 

simple rule of three to see if it 

works. 

5 → 16
6 → x 

,   
6∙16

5
=

96

5
= 19.2. 

Clearly, it does not make sense 

to have 0.2 tiles. 

Thematic Working Group 18

Proceedings of CERME11 3286



that [students] can argue if it can actually be used in the exercise,” or “I would ask if the rule of three 

is used for all cases. . . . Analyse if there is a proportion to apply the rule of three.” The nature of such 

feedback would neither allow students to understand their mistakes nor to envisage how to proceed 

in order to solve the problem correctly. 

Some final comments 

Some prospective mathematics teachers experienced difficulties in understanding and interpreting the 

posed problem, which is in the space of problems (and content) they will need to work on with their 

students in the near future. This finding highlights the need for enhanced preparation that would 

ensure that prospective mathematics teachers can solve the problem independently in order to, at 

least, be able to perceive a correct typical answer (Ribeiro et al., 2013). 

Data analysis further revealed two dimensions of feedback study participants provided to students: 

the nature and focus of the interpretation provided, and the content of prospective teachers’ 

knowledge. In the feedback on how to solve the problem, the groups focused on explaining how 

students should proceed in order to obtain the correct solution, disregarding explaining why the 

original answer was incorrect. Feedback that was classified as confusing feedback and 

counterexample as feedback focused on explaining why there is a mistake. Such feedback is 

particularly linked with the elements of PTs’ space of solutions, usually referred to as having a single 

approach to guide to students (Jakobsen et al., 2014). Further, when the PTs attempted to provide 

elaborate feedback, they supported their explanations with erroneous arguments, or worded it in a 

way that can be confusing for the students. These feedback categories reveal some critical points that 

need to be addressed in teacher education in order to enrich and expand the superficial or confusing 

feedback, empowering a meaningfully interpretation that should have students’ reasoning, 

knowledge, and understanding as a starting point for the mathematical discussions to be developed.  
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Using participant generated influence maps to gain insights into the 

influences on early career primary teachers’ teaching of mathematics 

Alison Godfrey 

University of Leicester, United Kingdom; ag384@le.ac.uk 

Set within a study looking to understand influences on early career primary teachers’ teaching of 

mathematics through analysis of the personal perspectives of eight participants, this paper discusses 

the use of a ‘visual data’ approach. Participants were asked at the end of the two-year research 

period to create maps showing the relative and overlapping influences on their development over the 

previous two years as teachers of mathematics, describing their thinking to the interviewer as they 

did so.  Deeper and broader responses have resulted, giving richer data than using verbal data alone, 

whilst this approach has proved to be a very interesting and motivating experience for the 

participants.  New insights have emerged as to how early career teachers see the influences on their 

development as teachers of mathematics. 

Keywords: Teacher characteristics, professional development, elementary school mathematics, 

research tools. 

Introduction 

This paper outlines how a participant generated visual technique contributed to a study that seeks to 

gain insights into the influences on early career primary teachers’ teaching of mathematics.  

Whilst there is a minimum required mathematical qualification for all those entering the teaching 

profession in England, early career teachers have varied mathematical backgrounds, attitudes and 

beliefs about the subject. They enter a complex and changeable educational landscape where schools 

have considerable freedom in the organisation of their mathematics teaching and offer varied 

opportunities for professional development (Advisory Committee on Mathematics Education, 2013). 

The study followed eight primary school teachers through their first two years of teaching and sought 

to answer the research question: How do factors related to the teacher themselves and factors related 

to the school context combine to influence the development of early career primary teachers’ teaching 

of mathematics? The participants entered the teaching profession with a range of mathematical 

backgrounds and all studied for their teaching qualification at the University of Leicester.  

The aim of the tool outlined in this paper was to support participants to articulate their views on the 

influences on them as early career teachers of mathematics, and the connections between these 

influences. Participant-generated visual data had been successfully used in previous interviews and 

similarly this new tool was developed to achieve greater depth and breadth in interview responses 

than from purely verbal techniques, enabling participants to have more control over their responses 

whilst providing some structure. In addition, the tool was designed to be interesting and motivating, 

both as an ethical end in itself and to encourage participants to give the fullest responses possible.   

Theoretical background – influences on teacher development 

The literature identifies a number of potential influences on teachers as they develop their teaching 

of mathematics, relating both to the teachers themselves and their school context. These include a 
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teacher’s beliefs, their background, including the interrelated aspects of subject knowledge, attitudes 

to mathematics and emotions, and their proactivity in response to reflection on their practice within 

their school community. 

A teacher’s beliefs about what makes a good mathematician can influence their practice (Ernest, 

1989). Ernest considers, for example, that those who believe mathematics to be about accumulating 

skills and rules see themselves as “instructors, aiming to develop skills mastery in their pupils, while 

those who see mathematics as a unified body of knowledge to be understood, see themselves as 

“explainers”, aiming to develop conceptual understanding of this knowledge in their pupils. Recent 

discussions in the UK about a mastery approach in the teaching of mathematics are in line with the 

relational understanding described by Skemp (1976) and have focused on securing “a deep, long-

term, secure and adaptable understanding of the subject” (NCETM, 2015), but it cannot be assumed 

that all teachers seek to teach for this type of understanding.  

Building on Shulman’s seminal papers (1986, 1987), researchers have acknowledged that a teacher’s 

subject knowledge in various forms influences their practice. Askew et al. (1997) found that the 

connectedness of teachers’ subject knowledge “in terms of the depth and multi-faceted nature” of the 

meanings and uses of concepts in mathematics (p. 69) is particularly influential. Ball, Thames, & 

Phelps (2008), for example, emphasise the importance of  Specialised Content Knowledge (SCK), 

knowledge that is specific to teachers of mathematics, enabling them to explain procedures, analyse 

errors and consider appropriate examples. Additional background elements that teachers bring to their 

classroom practice are their own emotional disposition towards mathematics and perceived 

competence in the subject (Di Martino & Zan, 2010).    

A teacher’s practice can change over time, influenced by their personal reflection on practice and 

proactivity to make changes within the context of their teaching community (Turner, 2008). Although 

the influence of their school context is likely to have a significant impact on an individual teachers’ 

professional development opportunities, the community within the school might have a range of 

different foci and agendas (Levine, 2010) and the current provision for Continuing Professional 

Development (CPD) for teachers in England is fragmented and inconsistent between schools (ACME, 

2013).  

My study seeks to extend the existing literature, particularly exploring the relative importance and 

interconnected nature of these factors through highlighting teachers’ own perspectives. 

Visual Data 

There is agreement in the literature that participant-generated visual data, i.e., that “generated through 

the data collection process” (Wall, Higgins, Hall, & Woolner, 2013, p. 3), can provide additional and 

complementary data to verbally answered interview questions (e.g., Prosser, 2007; O’Kane, 2000). It 

can add breadth and depth, facilitate deeper thinking and assist participants to reveal additional 

information, views and emotions that may not have been revealed though verbal questioning alone. 

It is also empowering, giving participants a greater voice in the research process and allowing them 

more control over the content of the discussions (O’Kane, 2000), and it can be motivating and fun for 

the participants (Wall et al., 2013).  
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A range of tool designs have been used in educational research to support visual data collection. Q-

sorting involves the sorting of statements into a defined template alongside or in addition to a verbal 

interview. Data can be analysed quantitatively and thus statistical comparisons can be made between 

participants, offering an in-depth and systematic approach to analysing subjectivity (Thomas & 

Watson, 2002). Diamond ranking, similarly, is a technique that can be used within interviews to 

explore the participant’s perceptions or ideas, as they rank images or statements within a nine-section 

diamond-shaped structure (Wall et al., 2013). Usually, the activity of ranking these is accompanied 

by the participant talking through their rationale for how they placed the items within the diamond 

structure and the sorting exercise acts as a stimulus for discussion.  

Although the literature reviewed suggests visual techniques can be valuable to the researcher, the 

quality of data is dependent on the quality of the facilitation and how the data relates to other data 

being collected (Wall et al., 2013). A full rationale is therefore needed for the use of my approach 

and how verbal questioning was used alongside the visual strategy. 

Methodology 

An initial interview at the end of their one year postgraduate teaching course focused on each of the 

eight participants’ relationship with, and attitude to, mathematics and their progress in teaching the 

subject as a student teacher. Twice yearly interviews over the following two years, including 

discussion of documentation related to their progress as early career teachers, provided evidence on 

their ongoing development as teachers of mathematics. Interview questions were designed to probe 

the participants’ beliefs, attitudes and subject knowledge for teaching mathematics, what they 

perceived to be the characteristics of effective teachers of mathematics and their perspectives on their 

development as teachers of the subject. Within each interview they also talked about two particular 

lessons: their chosen best and most challenging lessons since the previous interview. Participant- 

generated visual data was a particular feature of the interviews, which combined verbal questioning 

with a range of visual tools, including participants graphing their relationship with mathematics 

(Godfrey, 2017), visually organising statements about subject knowledge and discussing points about 

secure learning in mathematics from concept cartoons (Samková & Hošpesová, 2015). Through these 

means evidence was collected of factors influencing their development as teachers of mathematics.  

For the final interviews of the project, I developed a new visual tool to assist participants in talking 

in greater depth and breadth about the influences on them as a teacher of mathematics and in particular 

to discuss the relative importance of these factors and the way the factors combined. Given the 

longitudinal nature of the study, a secondary purpose was to ensure that the interview was interesting 

and motivational since visual techniques could provide variety and interest (Wall et al., 2013). 

Rather than using an open question such as, “What has influenced you as a teacher of mathematics?”, 

I decided to provide some prompts to ensure that participants discussed the likely influences the 

literature suggested would have an impact on their trajectory as teachers of mathematics, even if only 

to discount these, thus ensuring breadth in responses. Four prompts were provided: “My own 

background as a learner of mathematics and my feelings about the subject” (labelled background on 

the photographs below and aimed at participants considering their own subject knowledge, attitude 

to mathematics and emotions); “My beliefs about what makes a good mathematician” (labelled 
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beliefs); “My school context and changes within the school context – i.e. the influences that I have 

had from being here in this particular school” (labelled school); “My own self-imposed 

changes/actions through my proactivity and reflection on practice” (labelled reflection).  

In order to ensure that the participants considered the relative influence of these labels, and where 

they overlapped, circles of translucent plastic in different sizes and colours were provided. Each 

participant was asked to match the largest influence to the largest circle, the second largest influence 

to the second largest circle, and so on. They were then asked to arrange the circles to match the impact 

of these influences and the relationship between them, overlapping them if appropriate, and to 

verbalise their thinking as they did so (see Figure 1). Thus, an interactive approach was used, with 

some structure given for their thinking, but without the constraints of diamond ranking or q-sorting. 

Participants were free to create and adapt their mapping to fit their way of thinking.  

 

Figure 1: Rama’s influence map 

Various follow-up questions were planned that could be used to further probe about the impact of 

these influences, for example: “How do you think having a strong maths background has impacted 

on your teaching of the subject? Has your attitude to teaching mathematics changed? What are your 

beliefs about what makes a good mathematician? Have you felt well supported by your school in 

these first two years of teaching? How do you feel about changes imposed by your school? What 

motivates you to develop your own practice?” 

The design of the tool facilitated detailed narratives from individuals, gave them some control over 

the content of the discussion and allowed comparison between participants. 

Findings 

In considering the relative influences of the factors and how these overlapped, participants reflected 

on how, why and to what extent these influences were connected, thus giving a depth of response that 

might not have been communicated purely verbally. Rama, for example, explained: 

The most important […] is my proactivity and reflection on my practice. […] I always like to 

reflect on my lessons and try to make it better.  I always try and think, was it right for my children, 

was it not, let’s change it a little bit.  […] This [reflection] goes with this [beliefs] because I have 

really strong thoughts of what makes a good mathematician and how it should be taught in a lesson 

and what I want to get out of the children […] that’s helped me to reflect, if that makes sense. 
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Participants varied the extent to which they overlapped circles to show the significance of 

connections. This can be seen on Rama’s map (figure 1) where there is a larger overlap between 

reflection and beliefs than between school and beliefs. This second overlap was created as she 

discussed working alongside a colleague with similar beliefs: “We actually want the same thing – 

we’ve both thought let’s change it and not try to use the workbooks”.  

The structure of the influences map seemed to be effective in supporting participants’ articulation of 

ideas, which they might not otherwise have discussed, thus giving additional breadth to the data 

collection. The use of the cards meant that participants had to mention aspects that for them had little 

or no influence – data which would probably not have been obtained from a straight verbal question. 

Gina commented:   

My own self-imposed changes are probably the least because there’s been so many other things 

that have to be put in place that I’ve had to just go by the wayside with those. 

Without prompting, Gina may not have mentioned this; her comments support the overwhelming 

influence of her school context (figure 2). 

 

 

Figure 2: Gina’s influence map 

For some participants, the influence map prompted their thinking beyond the structure I had proposed. 

Penny, for example, used the four cards as a starting point to consider additional elements in her 

personal situation. She was keen to stress that the impact of her school context was very small, other 

than being sent on courses, one specific course in particular. She described the impact that this one 

hour mathematics course had on her practice due to gaining both new ideas, which she implemented 

from the following day, and renewed enthusiasm for implementing changes in her teaching of 

mathematics: “The course was brilliant – just gave you that impetus to carry on, gave you ideas to 

do, spot on”. We improvised to create a further map label for courses and also for research, referring 

to my project, which she considered of particular significance because it caused her to reflect, look 

back at her practice and consider changes she could make. Summing up how my previous interview 

had caused her to reflect and change her practice, she said, “I relooked at everything after your last 

visit.” 
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Penny’s final map is shown in figure 3. Again, the overlapping here is interesting, with other 

influences strongly linking with the learning she gained from the course and a strong connection 

shown between the influence of being involved in my research and her reflection.  

 

Figure 3: Penny’s influence map 

The control that Penny and others took over the use of the map to express their opinions demonstrates 

that a benefit of using the tool was the ready engagement of participants who had already been 

interviewed several times. This aspect was further evidenced by specific comments made by Rahim, 

who clearly found the process stimulating: 

That was a really good opportunity for me to reflect on what different things have influenced me 

and how I feel like I’ve progressed based on different elements, so that was a really helpful 

exercise. 

As illustrated above, the analysis of the data from the influences tool is enhanced with the addition 

of the verbal data given alongside the visual. From this starting point, further analysis is being 

undertaken to explore other evidence of these influences from earlier interviews. Interview data has 

been summarized using a mind mapping technique to facilitate this process. Individual narratives are 

being developed and some comparisons made between cases, including those with different 

qualifications and interest in mathematics.  

A brief example of how the visual and verbal data from the creation of the maps is being integrated 

with other data comes from one element of Gina, Penny and Rama’s maps (Figure 4). These maps 

show a very contrasting picture of what they feel has influenced their development as teachers of 

primary mathematics, but for all the influence of their background as a learner of mathematics and 

their feelings about the subject (‘BACKGROUND’) was considered a relatively small influence. 

Gina, who has the weakest mathematical background of the three, overlapped the circles relating to 

her beliefs and background, giving the following commentary as she created her map: 

I think my own background always sticks in my mind because I know there were things that I feel 

like I didn’t learn well enough that really impacted me later on, so I’m very hyper aware that when 

children don’t get something that we can’t just leave them there. 
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Figure 4: Contrasting influence maps: Gina, Penny and Rama 

Penny has her own mathematical background, which, in her case, includes a Master’s degree in 

mathematics, as a separate and smaller influence than the other influences on her because, although 

she “loves maths”, her teaching of the subject would “just happen regardless”. Rama similarly stated 

that although her mathematical background was important, she “had grown as a person” since her 

days as a learner of mathematics. However, other evidence from across their series of interviews 

highlighted that both were keen to pass on their love of mathematics to children and that their strong 

subject knowledge was a foundation on which they proactively sought to develop their practice.  

Conclusion 

Initial analysis across all the participants in the study indicates the different perceptions early career 

primary teachers hold of the influences on them as teachers of mathematics.  Supported by the use of 

the influence-mapping tool, participants were explicit about the relative impact of each of the 

suggested influences on their development and how these influences were inter-connected. The map 

supported depth and breadth of responses, whilst giving the participants some control over the content 

of their discussions and the motivational aspect of the tool was appreciated by the participants. 

Whilst not directly comparable because of participants’ different interpretations of the headings used, 

useful insights can be drawn from the range of influence maps. The influences of the school context 

and self-imposed changes through proactivity and reflection on practice were strong influences for 

most of the eight participants. Only two placed the four influences in the same order. Even then, their 

maps visually contrast with differences in the way the circles were overlapped, and this is reflected 

in contrasting verbal narratives. Further analysis of the broad data set is being undertaken to explore 

how factors related to the teacher themselves and factors related to the school context combine to 

influence the development of early career primary teachers’ teaching of mathematics. 

References 

Advisory Committee on Mathematics Education. (2013). Empowering teachers: Success for learners. 

London: ACME. Retrieved from http://www.acme-uk.org/media/14054/acmepdreport2013.pdf 

Askew, M., Brown, M., Rhodes, V., Johnson, D., & Wiliam, D. (1997). Effective teachers of 

numeracy: Report of a study carried out for the Teacher Training Agency 1995-96, by the School 

of Education, King’s College London. London: King’s College London. 

Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching what makes it special? 

Journal of Teacher Education, 59(5), 389-407. doi:10.1177/0022487108324554 

Thematic Working Group 18

Proceedings of CERME11 3295



 

 

 

Di Martino, P., & Zan, R. (2010). ‘Me and maths’: Towards a definition of attitude grounded on 

students’ narratives. Journal of Mathematics Teacher Education, 13(1), 27-48. 

doi:10.1007/s10857-009-9134-z 

Ernest, P. (1989). Mathematics teaching. New York, NY: Falmer. 

Godfrey, A. (2017). Factors influencing the developing effectiveness of early career teachers’ 

mathematics teaching – initial findings. Proceedings of the Tenth Congress of the European 

Society for Research in Mathematics Education (pp. 2868-2875). Dublin, Ireland: DCU Institute 

of Education and ERME. 

Levine, T. (2010). Tools for the study and design of collaborative teacher learning: The affordances 

of different conceptions of teacher community and activity theory. Teacher Education Quarterly, 

37(1), 109-130. Retrieved from http://www.jstor.org/stable/23479301 

National Centre for Excellence in the Teaching of Mathematics (2018). Mastery explained. Retrieved 

from https://www.ncetm.org.uk/resources/49450 

O’Kane, C. (2000). In P. Christensen, & A. James (Eds.), Research with children: Perspectives and 

practices (1st ed.). London: Routledge. 

Prosser, J. (2007). Visual methods and the visual culture of schools. Visual Studies, 22(1), 13-30. doi: 

10.1080/14725860601167143 

Samková, L. & Hošpesová, H. (2015). Using concept cartoons to investigate future teachers’ 

knowledge. Proceedings of the 9th Congress of the European Society for Research in Mathematics 

Education (pp. 3241-3247). Prague, Czech Republic: Charles University in Prague, Faculty of 

Education and ERME. 

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 

15(2), 4-14. Retrieved from http://journals.sagepub.com/home/edr 

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational 

Review, 57(1), 1-22. Retrieved from http://hepg.org/her-home/home 

Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 

77, 20-26. 

Thomas, D., & Watson, R. (2002). Q-sorting and MIS research: A primer. Communications of the 

Association for Information Systems, 8, 141-156.  

Turner, F. (2008). Growth in teacher knowledge; individual reflection and community participation. 

Proceedings of the British Society for Research into Learning Mathematics, 28(2), 109-114. 

Southampton, England: University of Southampton. 

Wall, K., Higgins, S., Hall, E., & Woolner, P. (2013). ‘That’s not quite the way we see it’: The 

epistemological challenge of visual data. International Journal of Research & Method in 

Education, 36(1), 3-22. doi:10.1080/1743727X.2012.730278 

Thematic Working Group 18

Proceedings of CERME11 3296



 

 

A zone theory analysis of identity formation  

in mathematics teacher educators 

Merrilyn Goos1 and Anne Bennison2 

1University of Limerick, Ireland; merrilyn.goos@ul.ie  

2University of the Sunshine Coast, Australia; abenniso@usc.edu.au  

Researchers in mathematics teacher education are beginning to investigate the nature and 

development of mathematics teacher educator (MTE) expertise. Consistent with our sociocultural 

perspective on learning, we conceptualise mathematics teacher educator learning as participation in 

social practices that develop professional identities. In this study we used Valsiner’s zone theory to 

investigate identity formation in a pair of mathematics teacher educators – one a mathematician and 

the other a mathematics educator – who collaborated to develop new approaches to teacher 

education that integrate content and pedagogy. Analysis of interviews with the MTEs traced their 

identity trajectories from past to present to possible futures, highlighting their capacity for individual 

agency in changing their environment or seeking out professional learning opportunities.  

Keywords: Mathematics teacher educators, identity, Valsiner’s zone theory. 

Introduction 

Researchers in the field of mathematics teacher education are becoming interested in how 

mathematics teacher educators (MTEs) themselves learn and develop (e.g., Beswick, Chapman, 

Goos, & Zaslasky, 2015; Chapman, 2008). The nature of MTE expertise has most often been 

conceptualised in terms of content and pedagogical knowledge and their interaction (e.g., Chick & 

Beswick, 2018; Zazkis & Zazkis, 2011), while the process of MTE development has been explained 

through reflective self-studies tracing growth through practice (e.g., Tzur, 2001). Our research takes 

a different approach, drawing on sociocultural theories of mathematics teacher development (Lerman, 

2001) to propose that MTE learning is better understood in the context of social and cultural 

experiences that develop their professional identities. We view identity as a performative process of 

becoming that addresses social interactions and institutional contexts, while acknowledging that an 

individual’s knowledge, beliefs, and attitudes can influence their identity enactment. Our study 

contributes to the field by extending our previous investigations of mathematics teacher identity 

(Bennison, 2015; Goos, 2013) to examine identity formation in mathematics teacher educators – both 

mathematicians and mathematics educators who teach in initial teacher education programs. 

In Australia, as in many other countries, secondary initial teacher education programs are structured 

so that future teachers of mathematics learn the content they will teach by taking courses taught by 

mathematicians in the university’s mathematics department, and then quite separately they learn how 

to teach this content by taking content-specific pedagogy courses within the university’s education 

department. Such arrangements offer few opportunities to interweave content and pedagogy in order 

to develop mathematical knowledge for teaching (see Cooper & Zaslavsky, 2017, for an example of 

co-teaching). Integration of content and pedagogy was the aim of the study we report on here – the 

Inspiring Mathematics and Science in Teacher Education (IMSITE) project – which deliberately 
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fostered collaboration between mathematicians and mathematics educators in teacher education 

programs. The research question that gives focus to this paper is: How does interdisciplinary 

collaboration between mathematicians and mathematics educators shape their identities as MTEs? 

Theoretical framework 

Our previous research on mathematics teacher identity adapted Valsiner’s (1997) zone theory of child 

development to study interactions between teachers and their professional environments. In this paper 

we elaborate on Goos’s (2014) mathematics teacher zone theory framework and draw on other 

research on MTE development to consider influences on MTEs as learners. 

Valsiner (1997) extended Vygotsky’s concept of the zone of proximal development (ZPD) to 

incorporate the social setting and the goals and actions of human participants. Valsiner redefined the 

ZPD as a set of emerging possibilities for development that arise when individuals negotiate their 

relationships with the learning environment and the people in this environment. Thus for MTEs, the 

ZPD represents possibilities for development of new kinds of knowledge, beliefs, and practices 

related to preparing future teachers (Chick & Beswick, 2018; Cooper & Zaslavsky, 2017). 

Valsiner (1997) introduced two additional zones to explain human development. The first is the zone 

of free movement (ZFM), representing environmental constraints that may either hinder or enable 

access to particular areas or resources or ways of acting with resources. For MTEs, constraints might 

include their perceptions of the knowledge and motivation of teacher education students; the structure 

of teacher education programs (e.g., extent of connection between courses on mathematics, general 

pedagogy, mathematics teaching methods); and university organisational structures and cultures that 

influence timetabling, allocation of resources, and norms of what counts as “good teaching”. The 

second new zone is the zone of promoted action (ZPA), representing the means by which an 

individual’s actions are promoted. For MTEs, the ZPA could represent teacher education approaches 

promoted via reflection on their practice, their research with teachers, participation in formal 

professional development or informal interaction with colleagues (Chapman, 2008; Tzur, 2001). 

The ZFM and ZPA are dynamic and inter-related and form a ZFM/ZPA complex that directs 

development along a set of possible pathways. However, individuals still have a degree of agency in 

changing the environment and their relationships with people in order to achieve their emerging goals. 

Thus identity is shaped, but not fully determined, by participation in social practices. The possibility 

of exercising agency within a structured social system is key to understanding identity in terms of 

developmental trajectories that link past, present, and future (Wenger, 1998). 

Research design and methods 

The IMSITE project was undertaken over three years in six Australian universities and involved a 

team of 23 university academics who were either education specialists (mathematics and science 

educators) or discipline specialists (mathematicians and scientists). Its purpose was to improve the 

quality of teacher education by encouraging collaboration between Faculties and Schools of science, 

mathematics and education on course design and delivery. Within each university, these 

interdisciplinary teams developed and implemented approaches targeting recruitment and retention 

strategies that promote teaching careers to undergraduate mathematics and science students, 

Thematic Working Group 18

Proceedings of CERME11 3298



 

 

innovative curriculum arrangements that combine content and pedagogy, and continuing professional 

learning that builds long-term relationships with teacher education graduates. 

This paper is concerned with the collaboration between a mathematician (Leonard) and a mathematics 

educator (Joanne) at one of the participating universities. We selected this pair as the focus for the 

paper because a zone theory analysis of their interdisciplinary collaboration reveals interesting 

insights into the productive tensions that shape MTE identities. 

Leonard and Joanne were interviewed together by the first author at the end of the first year of the 

IMSITE project, and separately by the second author midway through the project’s third year. They 

were asked to describe their prior history of collaboration, the extent of collaboration between 

mathematicians and mathematics educators in their university, barriers to and enablers of such 

collaborations, and activities that they considered to be successful in bringing together 

mathematicians and mathematics educators. Interviews lasted for 20 to 40 minutes and were 

transcribed in full. 

To analyse the interview transcripts we used the approach developed in our previous research with 

teachers to trace identity trajectories from past to present to possible future (Goos, 2013), which 

allowed us to capture the temporal character of identity as a process of becoming (Wenger, 1998). 

We began by annotating interview transcripts to identify responses that provided information about 

the MTEs’ past, present, and future ZPDs, ZFMs, and ZPAs, which we interpreted in terms of the 

theoretical framework outlined above. We then constructed a table for each interview with columns 

for the ZPD, ZFM, and ZPA and rows for past, present, and future influences. The annotated interview 

excerpts linking the MTEs’ responses to both zonal and temporal dimensions were then electronically 

copied and pasted into relevant table cells, and a single summary table was produced. We inspected 

the table horizontally, across columns, to identify alignments and misalignments between the zones 

within a given time period. We inspected the table vertically, across rows, to identify events that 

triggered a change in alignment between ZPD and ZFM/ZPA from past to present or that could 

anticipate a change from present to future. This analysis aims to reveal productive tensions arising 

from a misalignment within the zone system that led MTEs to change their environment or seek new 

learning opportunities. The findings are discussed in the next section and summarized in Table 1. 

Interview excerpts are labelled with the relevant analytical category (ZPD, ZFM, ZPA) to illustrate 

the relationship between data and theory. 

Findings 

The analysis begins in the temporal dimension of the past, and looks across the zonal dimensions of 

the ZPD, ZFM, and ZPA. Because the two academics had not yet begun to collaborate their identity 

trajectories are analysed separately here. Leonard was an applied mathematician working in the 

School of Mathematics and Statistics. He held a PhD in physics and also a Diploma in Education (an 

initial teacher education qualification for secondary school teachers) that he completed several years 

ago to better understand how teachers were prepared. Joanne was an experienced teacher of secondary 

school mathematics with a PhD in mathematics education, who worked in the School of Education 

in a different Faculty from Leonard. Leonard taught large undergraduate mathematics classes with 

students from different degree programs, while Joanne taught mathematics pedagogy subjects to 
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future secondary school teachers: thus both MTEs had well-developed mathematics content 

knowledge and pedagogical knowledge appropriate to their teaching assignments. Before the IMSITE 

project started they had met each other in various professional contexts. For example, Joanne had 

been President of the national mathematics teacher association and Leonard was involved in a 

mathematical enrichment program for secondary school students. Their past ZPDs, before joining the 

IMSITE project, therefore offered possibilities for development of shared knowledge and 

collaborative teacher education practices. 

However, both MTEs reported barriers to collaboration in the form of institutional structures and 

cultures that defined their zones of free movement. The structure of the initial teacher education 

programs at this university created disciplinary “silos” that separated content from pedagogy: there 

was no coordination between the School of Education and the School of Mathematics and Statistics 

when it came to preparing future teachers. Leonard also claimed that the mathematics department was 

not interested in educational research. 

Leonard: Educational research is always viewed as a kind of second tier research activity 

compared to discipline research, and compared to, say, industrial linkage research. 

(Interview 2; ZFM) 

At the same time, Joanne found it difficult to raise the visibility of mathematics education in the 

university, and even within her own School and Faculty. 

With respect to the zones of promoted action experienced in the past, Leonard reported having been 

positively influenced by two mathematician colleagues whose research had been in mathematics 

pedagogy. Because pedagogical research was not considered a mainstream activity in his discipline, 

“meeting the right human beings at the right points in time” (Interview 2; ZPA) was important for his 

development. He was encouraged by these colleagues to attend mathematics education conferences, 

where he was able to spend more time with Joanne, a regular participant. For Joanne, conferences, 

research with teachers and reflection on her own teacher education practice were key elements of her 

ZPA as a MTE. 

Summarising past zone configurations: Leonard’s and Joanne’s MTE identities developed along 

mostly separate trajectories. Leonard’s past ZFM did not allow or value his development as a MTE 

because of established cultural norms in his department. However, he did not see this as a serious 

barrier. 

Leonard: Given that I actually love the educational side of things, it wasn’t a problem for me. 

(Interview 2; ZPD) 

Leonard’s past zone configuration was characterised by productive tension between his desired 

direction for development (part of his ZPD) and the university’s ZFM/ZPA complex, which did not 

seem to allow, and did not promote, a trajectory towards pedagogical research. He had attempted to 

resolve this tension by seeking out an external ZPA in the form of mathematics education 

conferences. No such tensions were evident within Joanne’s past zone configuration. 

We move now to the temporal dimension of the present, encompassing the IMSITE project and the 

collaboration between Joanne and Leonard. Thus the unit of analysis is now the pair of academics. 
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At the time the IMSITE project began, Leonard said that his position as a relatively senior academic 

made it possible for him to pursue educational research collaborations that might pose a career risk 

for younger mathematics academics. Yet he admitted not fully understanding the disciplinary norms 

of educational research. 

Leonard: I don’t really know how it works inside an education department – each kind of 

discipline is like a different country with its own rules and social norms. (Interview 

2; ZFM) 

 ZPD ZFM ZPA 

 

Past 

Joanne: 

• Experienced secondary 
school mathematics 

teacher 

• PhD in mathematics 
education 

 

• Teacher education 

programs separate 
content (taught in School 

of Mathematics and 
Statistics) from pedagogy 

(taught in School of 
Education) 

 

Joanne: 

• Research with teachers 

• Reflection on MTE 
practice 

• Conferences 
 

Leonard: 

• Applied mathematician 

with secondary 
mathematics teaching 

qualifications 

• Interested in teacher 
education 

 
 

 
 

 
 

Leonard: 

• University 

mathematicians who 
conducted pedagogical 

research 
 

 
 

Leonard seeks external 
ZPA: 

• Attended mathematics 
education research 
conferences 

• School of Mathematics 
and Statistics indifferent 

to educational research  
 

• School/Faculty of 
Education indifferent to 

mathematics education 

 

Present 
(IMSITE 

project) 

• Both academics have 
credibility in 

mathematics and 
education communities 

 

 

 

• Perceptions of students 
(risk of attrition) 

 
 

 
 

 
Change the ZFM: 

• Social networking 

• Tutorial timetabling 

• Alumni conference 

 

IMSITE project:  

• Promotes 
interdisciplinary 

collaboration 

• Provides funding, time, 

resources 

 
 

 

 
Future 

 

 
 

 

  

 

TENSION: Maintaining MTE identity 

trajectory after project funding ends 

TENSION: Interest in education 

discouraged by institutional structures 
and cultures. 

Leonard 

TENSION: Interest in collaboration 

discouraged by institutional structures 
and cultures. 

 

Table 1: Zone theory analysis of Leonard’s and Joanne’s MTE identity trajectory 

Joanne described a parallel experience where she worked hard to establish her academic credibility 

with the mathematicians she encountered in her role as President of the national mathematics teacher 

association. Thus at the start of the IMSITE project Leonard and Joanne were developing the kinds 
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of knowledge, beliefs, and goals that would be encouraged by the project – that is, their emerging 

present ZPDs were conducive to interdisciplinary collaboration. 

Nevertheless, neither Leonard nor Joanne believed that institutional factors involving, for example, 

teacher education program structures, academic workloads and budgets, could be overcome, even 

though IMSITE participants in other universities had managed to do so. 

Joanne: I dismissed that idea fairly early on, even though I heard them [other IMSITE 

participants] talking about it. I couldn’t see how it would work in my context. 

(Interview 2; ZFM) 

Despite these difficulties, another element of Leonard’s and Joanne’s zone of free movement, related 

to their joint perception of the students they taught, gave rise to a further productive tension between 

their interest in collaborating and the barriers that stood in their way. Leonard taught mathematics 

courses and Joanne mathematics pedagogy courses in a 5-year Bachelor of Science/Bachelor of 

Education degree. In this program students took mathematics content subjects in the first two years, 

and did not experience mathematics pedagogy subjects until the third year, by which time many had 

dropped out of the program. This was a common program structure in Australian universities, with 

mathematics and mathematics education academics based in different Schools and teaching into the 

program but seldom interacting with, or even knowing, each other. Joanne recounted a crucial 

development that occurred when the IMSITE project brought her into closer contact with Leonard 

and they realised they were teaching the same students. 

Joanne: I said to you, you know what? You teach the students maths and I teach them 

education. We should at least be sharing what we know about the students; starting 

to compare, contrast, talk about issues, like retention. We started talking about the 

fact that we would lose some of them. (Interview 1; ZFM) 

Accepting what they could not alter about their institutional context (ZFM), Leonard and Joanne set 

about making small changes to build a sense of community and collective identity as future 

mathematics teachers amongst their students. To do so they developed three initiatives. The first 

involved social networking events that brought together beginning students who were studying 

mathematics, but not yet any education subjects, in the first year of their degree, and later years 

students who were studying mathematics pedagogy and had been on school placements. Leonard led 

the second initiative, which rearranged tutorials in his large first year mathematics subject so that they 

were timetabled and streamed to allocate all future teachers to the same tutorial class, thus helping 

them to identify with peers who were aspiring to a teaching career. The final initiative, organised by 

Joanne, was an annual mathematics education alumni conference that connected her current students 

with recent graduates, experienced secondary school mathematics teachers, mathematicians, and 

mathematics educators. 

Each of these initiatives required some modification of the institutional ZFM (e.g., altering the tutorial 

timetable and allocation of tutors and rooms; finding times and university venues for social 

networking events) to bring the institutional environment into alignment with the MTEs’ trajectory 

of identity development. The initiatives were made possible by the IMSITE project, which offered a 

ZPA that promoted collaboration and provided the necessary resources (e.g., funding for a project 
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officer). The project supported the growing academic credibility of mathematicians who were 

developing a non-traditional identity in educational research. 

Leonard: The impact of the project is measured in a more tangible way than just counting up 

the number of publications and citations. So I’m very happy that I’m part of a 

project that’s got visible positive tangible impacts. (Interview 2; ZPD) 

Summarising present zone configurations: the IMSITE project appears to have created a modified 

ZFM/ZPA complex for Leonard and Joanne that offered possibilities for these MTEs to develop new 

knowledge and practices for teacher education, thereby expanding their ZPDs. To the extent to which 

this occurred, we could say that the project developed their identities as MTEs, which now seem to 

be on interconnected trajectories. 

Anticipating the future zone configurations of these MTEs raises the question of sustainability once 

IMSITE project funding ended. While both Leonard and Joanne were comfortable with being 

recognised as “champions” of a collaborative approach between their disciplines, they wished to share 

their experience with other mathematics educators and mathematicians, both within and outside their 

own university, so that their ideas could be taken up and adapted to different contexts. There was a 

sense, then, that their future identity trajectories would be oriented towards seeking further 

opportunities for collaboration. 

Discussion 

In this paper we have begun to explore how interdisciplinary collaboration between mathematicians 

and mathematics educators can shape their identities as MTEs. Using the theoretical lens provided by 

Valsiner’s (1997) zone theory, we have shown how individuals can exercise agency by changing their 

professional environment or at least their interpretation of the constraints it imposes (zone of free 

movement), as well as seeking out opportunities for professional learning outside their immediate 

environment (zone of promoted action). In addition, incorporating the idea of productive tensions 

into zone theory creates a theory of goal-directed change that can be used to understand MTEs’ 

identity development. For example, Leonard’s and Joanne’s new goal of cohort building in the teacher 

education program motivated them to work around institutional constraints to connect mathematics 

content with mathematics pedagogy. We would also highlight that individuals can experience 

multiple and fluid identities because of their membership of different communities: Leonard and 

Joanne saw themselves as mathematics teacher educators who were crossing boundaries between 

their respective disciplines. The ways in which MTEs negotiate multiple identities, and the extent to 

which they can inspire others to cross disciplinary boundaries while preparing future teachers, 

deserves further investigation to enhance our understanding of their professional learning and 

development. Boundary crossing and identity formation of MTEs also needs to be studied in other 

cultural contexts that present different, or fewer, challenges to interdisciplinary collaboration. 
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This paper presents a first step in a larger study in the context of professional learning communities 

following a five-day professional development course in stochastics at upper secondary level. Its 

focus is the analysis of one teacher’s attitude towards learning and teaching mathematics in 

connection with his first teaching sequence on inference statistics after taking part in a professional 

learning community. The aim is to explore his views in reference to learning as transmission of 

knowledge actuated by the instructor or as a constructive activity by the learner. This is realized on 

the basis of the account the teacher gives on his teaching, on his observations in class, and on his 

reasons for the decisions involved. Additionally, a Q-sorting with statements for transmissive and 

constructivist views on learning was employed. Together, our investigations of the data reveal a 

nuanced picture of the teacher’s attitudes and notions, of the diverse learning support he offered, and 

of perspectives of his further professional development. 

Keywords: Teacher professional development, professional learning community, constructivism. 

Introduction 

In the course of their active careers, teachers need to regularly adapt their work due to shifts such as 

changes in curriculum guidelines, an altered structure of their classes, or technological development. 

In Germany, various innovations constitute challenges, e.g. competence-orientation, digitalization, 

and inclusive settings. The increased emphasis on statistics and probability theory is particularly 

relevant for teachers at upper secondary level. It has created a high demand for mathematics teacher 

professional development (PD), and a majority of teachers report that they would like to have more 

PD than they receive (OECD, 2009, Figure 3.5). However, after decades of neglecting stochastics, 

“the more challenging a reform is to teachers’ existing beliefs and practices, […] the more it may 

need […] ongoing professional development to achieve depth” (Coburn, 2003, p. 9). Theoretically 

corroborated PD courses, designed e.g. by researchers and teacher educators in the German Center 

for Mathematics Teacher Education (Deutsches Zentrum für Lehrerbildung Mathematik, DZLM) aim 

to fulfil the demand for sustainable PD that impacts not only at the surface but effects a real change 

towards learning based on understanding. Professional learning communities (PLCs) which allow 

teachers to reflect and discuss their teaching stand the chance to contribute substantially to this goal. 

Nevertheless, mid- or long-term professional growth fostered by the activities connected with a PD 

course remains under-researched. 

In order to describe individual PD appropriately, it is advisable to first classify the underlying 

attitudes towards the learning and teaching of mathematics (as in Grigutsch, Raatz, & Törner, 1998) 

because “the affective cannot be separated from the cognitive” (Brown & Coles, 2011, p. 864): “A 

teacher’s belief about how students engage in mathematical activity and learn are critical factors in 

the ability and tendency to design and carry out inquiry-based instruction” (Lloyd, 2002, p. 150). To 
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be particular, mathematics educators and academic researchers tend to take the view that 

mathematical knowledge needs to be (re)constructed by the learner in order to be understood properly, 

and teachers often feel constrained by the necessity to also adequately prepare their students for tests 

and examinations presumed to stress routines and algorithms – even if the majority of teachers report 

constructivist views on learning (OECD, 2009, Figure 4.2). Thus, there is the possibility, if and when 

these two positions clash, that the potential benefit of a PD course suffers. Thus it is a meaningful 

first step in the evaluation of the impact of a PD course and the PLCs that emerged in its wake to a) 

investigate the attitude towards the learning and teaching of mathematics held by the participants of 

the course. Later steps include exploring b) what the participating teachers relate and reflect about 

their lessons, c) what tasks and tests they use, d) the correlations between their attitudes, their 

reflections, and their tasks, and finally e) theorizing about possible reasons for the connections. 

Theoretical background 

There are numerous epistemological theories on the evolvement of mathematical knowledge (e.g. 

APOS by Dubinsky, cf. Arnon, Cottrill, Dubinsky, Oktac, Roas Fuentes, Trigueros, & Weller, 2014; 

Abstraction in Context, cf. Dreyfus, 2012; or the theory on advanced mathematical thinking found in 

Tall, 1997), and many share the basic belief that learners need to actively (re)construct mathematical 

knowledge in order to comprehend it. The corresponding view on how mathematics should be taught 

is described as relativistic, meaning an instructional style “based on […] student understanding” 

(Wilson & Cooney, 2002, p. 132). These attitudes can be summarized under the label constructivism, 

viewing mathematics as a process, seeing learning as an independent and discursive activity pursued 

by the learner, and trusting in students’ eagerness and ability to learn.  

However, particularly concerning beliefs on how mathematics should be taught, another, transmissive 

(or dualistic, according to Wilson and Cooney, 2002), view gains importance: of mathematics as a 

toolbox containing recipes and algorithms that solve tasks, of definite solutions, of learning by 

following examples and instructions.  

There is consensus that epistemological beliefs on how mathematical knowledge is constructed and 

beliefs on how mathematics should be taught are not perfectly congruent: Studies (Chan & Elliot, 

2004) found correlations, though mostly both traits are found in individuals. Moreover, it remains an 

open question if transmissive and constructionist views are the extremes of one dimension or two 

separate dimensions (Voss, Kleickmann, Kunter, & Hachfeldt, 2011). It is to be expected that an 

individual teacher may exhibit attitudes for both transmissive and constructivist positions, e.g. that 

he or she may seem convinced that acquiring knowledge is an active process demanding discussion 

and exchange of ideas, but at the same time prefer teaching methods that rely on guided step-by-step 

instructions or an instructor demonstrating the only correct way to solve a task very early on. This 

ostensible contradiction may allow deeper understanding of teacher practices in combination with 

their convictions and therefore an important gain of insight for research in mathematics teacher PD.  

What is more, studies have identified mathematics as the subject that is most often taught in a pre-

structured way (OECD, 2009, Figure 4.5), so this may be particularly true for the subject we are 

interested in. Previous research has shown that, not only for mathematics, “short-term professional 

development initiatives often remain at the surface and do not effect the desired change” (Roesken, 

Thematic Working Group 18

Proceedings of CERME11 3306



 

 

Pepin, & Toerner, 2011), which is ascribed to the fact that the underlying beliefs are not easily 

changed and the beliefs on how mathematical knowledge is built sustainably influence the way 

teachers teach mathematics. PLCs present a chance to address these beliefs and allow access to 

participant teachers’ views and maybe even classrooms. 

The relevance of teachers’ transmissive or constructionist views towards teaching and learning is 

most often seen in connection with students’ progression and performance in tests. This is not our 

main focus here; we intend to understand teachers’ attitudes towards learning and teaching first, with 

a later perspective on exploring their individual PD. Our research questions for this paper are: 

(RQ1) What attitude towards learning and teaching mathematics does a teacher show in connection 

 with having taught stochastics after partaking in professional development on this topic? 

(RQ2) In how far can this attitude be categorized as transmissive or as constructivist?  

Circumstances of the study 

The data collected for this study must be seen in connection with an approved five-day PD course on 

stochastics at upper secondary level conceptualized by DZLM mathematics educators and researchers 

(Oesterhaus & Biehler, 2014). The course stretched out over several months and covered a broad 

range of stochastic content, strictly following the principle of promoting understanding. Some 

participants of this course came forward to partake in subsequent work in a professional learning 

community (PLC) with other teachers from their respective schools. For this, selected contents of the 

PD course were presented, discussed, and adapted. This allowed a unique insight into teaching 

practice in connection with a radically constructivist PD approach. Changes in the curriculum had 

involved teaching in-depth stochastics, which traditionally is often avoided. Consequently, the PD 

course was well-frequented, and participants were motivated. 

Methodology  

Interviews with individual teachers were conducted after he or she had taught a sequence on 

stochastics, usually covering probability, tree diagrams, conditional probability, binomial 

distributions, and in advanced courses also hypothesis testing. The interviews were conceptualized to 

serve the overall research purposes and thus followed a guideline touching on the teaching sequence 

(underpinned by the course register, worksheets etc.) with specifics about didactic decisions, students’ 

reactions, PLC meetings and the individual’s benefit for professional growth connected to them, and 

cooperation among teachers. For the research focus presented here, interviewees’ utterances were 

examined for passages revealing indications for the respective teacher’s attitude towards learning and 

teaching, and wherever possible, these passages were categorized as referring to a transmissive or a 

constructivist view. In the examples given below, Vic1 recounts a classroom situation typical of a 

constructivist teaching attitude, and Joe reports that his students opposed his approach to establish 

understanding and demanded a more transmissive method. 

 

1 All names given are aliases. Teachers’ statements were translated from German by the author. 
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Vic: I ventured to say, frequently: I’m lost here, I have to think about this again. Or: You 

are right, as far as I can see at the moment. And the next time, I could say: I thought 

about this, and it occurred to me that … (Vic_1, 01:05:25) 

Joe: Subsequently, they [the students] reproached me: Why did we start with a task that 

is not one-to-one relevant for the exams? (Joe_1, 00:02:55) 

In this case study, we concentrate on Vic, who is an experienced teacher with hardly any history of 

teaching stochastics himself, but who addressed teaching this content in an advanced course. 

 

   address tasks 

that can be 

solved in 

different ways 

   

  discuss their 

ideas with 

others 

(re-)invent 

mathematical 

contents 

apply 

established 

rules, formulae, 

procedure 

  

 follow the well-

structured 

explanations of 

the teacher 

address 

imperfect ideas 

in class 

allow individual 

strategies, even 

if wrong 

secure insights 

individually 

work in a self-

regulated way 

 

quote exact 

definitions and 

mathematical 

terms 

learn many 

rules and terms 

by heart 

develop 

routines by drill 

and repeated 

practice 

to use technical 

terms correctly 

understand the 

meaning behind 

mathematical 

ideas  

master 

mathematical 

procedures 

accurately 

think strictly 

logically and 

precisely 

1 2 3 4 5 6 7 

Figure 1: Q-method score sheet by Vic, statements (abbreviated here) placed in given fields,  

from “1: less important” to “7: superimportant” 

The Q-method (Fluckinger & Brodke, 2013) is a popular tool for assessing personality. Subjects (in 

our case, teachers participating in a PLC at their school, after one of them had attended the five-day 

PD course) are asked not to rate statements (like in Likert-scale surveys) but to rank them by placing 

them on a score sheet of a given shape (see Figure 1, where statements are condensed to keywords). 

This way, the common case is avoided that the vast majority of statements are rated as equally “very 

important”. In a Q-survey the number of fields on the “important” right side of the score sheet is 

limited. The Q-sorting can take place with statements printed on cards to be physically placed on the 

score sheet, or with digital alternatives (e.g. FlashQ by Christian Hackert, 

http://www.hackert.biz/flashq) that can be sent via e-mail; we use both. 

   +    

  + + -   

 - + + + +  

- - - - + - - 

-1 -4 +3 +8 +5 +0 -7 

Figure 2: Calculation of Q-index -1-4+3+8+5+0-7=+4, transmissive statements with negative,  

constructivist statements with positive algebraic sign, absolute values by position 

The 16 statements used for our investigation of attitude towards the learning of mathematics, the so-

called Q-sample, are taken from Jaschke (2017). Eight statements each represent the transmissive or 
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the constructivist view. For example, Learners are to develop routines by drill and repeated practice 

(bottom statement in column 3 in Figure 1) stands for a transmissive perception of learning, and 

Learners are to work on mathematical problems in an autonomous and self-regulated way (top 

statement in column 6 in Figure 1) describes a constructivist notion. The completed score sheet allows 

the calculation of an index: Transmissive statements are equipped with a negative algebraic sign to 

their respective position; constructivist statements retain their respective position with a positive 

algebraic sign; the index is calculated by adding up all values (Figure 2 shows an example). In our 

survey, this results in index values between -20 (clearly transmissive) and +20 (clearly constructivist). 

Results 

Vic’s utterances in the interview reveal his differentiated perspective on the learning and teaching of 

mathematics, containing elements both of transmissive and of constructivist attitude.  

Interview utterances categorized as transmissive 

Vic reports that at the beginning of the teaching unit, he opted for a guided approach (“I set that [the 

null hypothesis in the introductory example], […] and then I defined the errors of the first and second 

kind”, Vic_1, 00:19:58) with clear-cut step-by-step tasks for the students (“Then I kept to the 

worksheets from [name of publisher]: […] very well preprocessed, for filling in, for working with”, 

Vic_1, 00:21:33). He continues to secure the essence of the lessons and calculations by scanning and 

printing important summaries from his preferred publisher’s material in color on his home printer 

(Vic_1, 00:21:55), thus choosing scripted synopses over students’ individual résumés.  

Interview utterances categorized as constructivist 

On the other hand, Vic sees the narrow solutions provided for the marking of central exams critically 

(Vic_1, 00:31:59). He relates that his students “had to try out [their approaches at calculating the 

probability of an error]” (Vic_1, 00:20:36), which is typical of a constructivist view. He very much 

appreciates the fact that his students liked to take part in discussions, and acknowledges that both 

himself and the students profited from these interactions (Vic_1, 00:58:25). Vic appreciates the 

creative strategies some of his students use (e.g. when attempting to solve a third degree polynomial 

equation by trying systematically, Vic_1, 00:35:56), although he is aware that in exams, such 

strategies can result in an inconvenient loss of credits (Vic_1, 00:36:31). His concerns about his 

students’ performance also become clear when he talks about the case of a student who did not abide 

to “what is to be done at school, [he] always reinvented the wheel” (Vic_1, 00:38:48) and thus was 

graded lower than his presumed potential – until in the final exams, when he came out with full 

credits. This experience boils down to the fact that a constructivist approach to learning bears the 

danger of demerits. Still, Vic likes to offer a choice (Vic_1, 00:28:04) of different topics or 

complexities. He also appreciates it when understanding is promoted (like in double tree diagrams, 

where a higher base rate results in a higher number of false-positive diagnoses, Vic_1, 00:25:59, 

00:26:14, or in a responsive spreadsheet that enables the observation that with a higher sample size, 

the standard deviation of a random variable decreases, but the mean stays the same, Vic_1, 00:53:37). 

Interview utterances referring to affective aspects 

Vic also keeps an eye on students’ motivation (“And they found that interesting, I think”, when 

referring to the latter of the above examples, Vic_1, 00:53:55), particularly as he has learned that 
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many students in this course possess a pronounced dislike against probability and stochastics (“the 

term stochastics brought horror to some students’ – about a third of the course – faces at first”, Vic_1, 

00:56:12). He does not lose hope of imparting some of the fascination he feels to his students and 

underpins this with anecdotic evidence of a student who was rather successful, in spite of her initial 

strict dislike (Vic_1, 00:57:25). He is particularly aware of offering alternative procedures to weaker 

students (e.g. using absolute numbers when calculating conditional probabilities, Vic_1, 00:26:35) 

and values their potential (“when I was able to reconstruct it, I gave full credits”, Vic_1, 00:26:51). 

Vic mentions more than one incident of perceiving distinct learning difficulties, e.g. when he recounts 

that some students were at a loss when having to transfer routines to new contexts (Vic_1, 00:33:33). 

Vic’s vision of ideal teaching 

As a prospect, when considering how to teach the content next time, Vic’s ideal of constructivist 

instruction based on solid content knowledge becomes clear; he phrases his goals as “feeling more at 

home” (Vic_1, 00:47:00) in inference statistics, as “enhancing my collection of tasks” (Vic_1, 

00:47:59). His vision of the teaching he would like to conduct in the future encompasses extended 

phases of reflection (Vic_1, 00:50:00), which he substantiates with the observation that what students 

find out themselves stays in their minds, even if it is wrong (Vic_1, 00:50:00), thus displaying his 

awareness of the pitfalls of self-guided learning and his own responsibility for his students’ learning 

goals and their examination performance. 

The Q-sorting 

Vic’s Q-sorting produces the Q-index +4, a moderately constructivist view. We found that 

particularly his positioning of the transmissive statements are worthwhile interpreting. One of the 

transmissive statements considered most important reveals Vic’s concern with his students’ learning 

outcome: Learners are to master mathematical terms and procedures reliably and accurately 

(column 6). The other one describes what you could call a general goal for mathematics lessons: 

Learners are to think strictly logically and precisely (column 7). The transmissive statements rated 

least important by Vic also tell a story (see columns 1 and 2 in Figure 1): They refer to rote-learning 

without considering if the content is understood. The overall picture presented by this Q-sorting can 

be summarized as rejecting mindless routines, emphasizing autonomous exploring, but 

simultaneously keeping an eye on learning goals.  

Discussion 

Vic’s data indicates his constructivist belief of sustainable learning as an active process that needs 

time to explore, to discuss, and to reflect in order to be effective, based on his personal experience. 

Nevertheless, his responsibility to promote all students’ learning success makes him avoid very open 

approaches to new content that might throw some students off track, and he makes sure that learning 

outcomes are clearly communicated and accessible for everyone. This illustrates one of Clarke’s 

(1994) important principles of PD, that “changes in teachers’ beliefs about teaching and learning are 

derived largely from classroom practice” (p. 38). Vic’s teaching decisions are also influenced by the 

specific students in his course. There are some students keen to debate and discuss, some rattled by 

the prospect of having to come to grips with the unpopular content, and others with limited 

mathematical abilities. As a consequence, Vic does not follow only one approach in his teaching, but 
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switches between more guided and more open activities. The reasons he gives do not stem from 

general scientific results but from current observations of this specific group of learners and previous 

experiences that form his treasure trove and enable him to draw on his collection of reactions, 

explanations, examples, and tasks that can support a variety of learners to overcome their unique 

learning obstacles. His aim of augmenting this trove with more tasks in order to further improve his 

teaching metaphorically sums up this perspective. Vic’s attitude towards the learning and teaching of 

mathematics cannot be seen as one place on a line with the poles transmissive and constructivist view, 

although the Q-index +4 gives an orientation and acts as a first classification. Vic’s reports on his 

teaching as flexible with respect to individual learners and variable teaching aims (such as introducing 

a topic, or corroborating a procedure in preparation of a centralized exam). When analyzing his 

teaching decisions in more detail, e.g. his choice of task or method later in our ensuing studies, we 

need to consider these variables, too. 

Further research perspectives 

As indicated above, this paper presents a first step in a larger study aimed at investigating the impact 

of a PD course and its subsequent PLCs on the professional growth of the members of these PLCs. 

The next steps could be as follows: 

• Broaden the investigation of attitude towards the learning and teaching of mathematics to 

more members of the PLCs.  

• Analyze PLC members’ reflections in interviews in terms of evidence for professional growth.  

• Explore PLC members’ tasks and tests used when teaching selected content. 

• Look for correlations between teachers’ attitudes, evidence for professional growth, and their 

tasks and test, and search for qualitative and theoretical corroboration that (some of) these 

correlations are causal.  

In discussions at CERME, other lines of research were suggested for consideration, such as taking a 

closer look at the interactions among the PLC, or concentrating on affective aspects, e.g. specificities 

of the content, or teachers’ expectations of what they should be able to achieve. 

Altogether, these lines of research raise the hope of generating interesting results. 
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During CERME10 in Dublin, a collaboration between the University of Turin and the University of 

Frankfurt has been initiated. The outcome was a module of a Massive Open Online Course (MOOC) 

for in-service teachers to improve mathematics teaching by creating outdoor math trail tasks for their 

students with the help of MathCityMap (MCM). MCM is a digital tool to create, manage and run 

math trails with mobile devices. Teachers had to create math trail tasks that were in line with 

previously defined task design guidelines to complete the MOOC module. An expert review system 

was used to improve and ensure material quality. The involvement of the teachers, the efforts of the 

reviewers and, in general, this collaboration have given satisfactory results that will be presented in 

this paper. 

Keywords: MOOC, MathCityMap, teacher education, expert review system, material quality.   

Introduction 

Since October 2015, the Department of Mathematics “G. Peano” at University of Turin, Italy, has 

been engaged in an innovative initiative: the Math MOOC UniTo project (cf. Taranto et al., 2017). 

The project provides MOOCs (Massive Open Online Courses) for Italian in-service mathematics 

teacher education, with the use of the platform DI.FI.MA. (http://difima.i-learn.unito.it), a Moodle 

platform, managed by the mentioned department, where more than 2,500 Italian teachers of all school 

types are enrolled. The aims of these online courses are to cover the main topics in the official Italian 

programs for secondary school (Arithmetic and Algebra, Geometry, Relations and Functions, 

Uncertainty and Data) from a mathematical, didactical, and methodological point of view, and to give 

teachers an opportunity for professional development at the national level. So far, three MOOCs have 

been delivered: MOOC Geometria (based on geometry contents, from October 2015 to January 

2016); MOOC Numeri (based on arithmetic and algebra contents, from November 2016 to February 

2017) and MOOC Relazioni e Funzioni (based on relations and functions contents, from January 2018 

to April 2018). In the following, we concentrate on the last one, which we will indicate as MOOC 

Rel&Fun in the following.   

During CERME10 in Dublin, some team members of the MOOC Rel&Fun became acquainted with 

the MathCityMap project (MCM). This project has been developed by the Goethe University of 

Frankfurt, Germany, and enables teachers to implement smartphone supported mathematical trails in 

mathematics classes. One key feature is the MCM web portal. It allows teachers to easily create tasks 

in their local surroundings and therefore fits well into a MOOC for teacher education, since the 

MOOC-teachers learn necessary skills online and can directly apply them by creating tasks in their 

environment. A collaboration between these two projects was established with the intention to 

Thematic Working Group 18

Proceedings of CERME11 3313

mailto:gurjanow@math.uni-frankfurt.de
mailto:ludwig@math.uni-frankfurt.de
mailto:eugenia.taranto@unito.it
mailto:virginia@gmail.com


 

 

provide an innovative approach to teach the mathematical contents of relations and functions in the 

real world with the support of technology on the one hand. On the other hand, the MCM project 

(including the math trail idea) is an expanding project and it was worth introducing and disseminating 

it in Italy. This paper aims to report outcomes and examples of mathematical tasks created by MOOC-

teachers according to MCM task design guidelines, as well as to explore potentials of an expert review 

system as one way to ensure task quality in a MOOC environment. 

Theoretical framework 

Mathematics trails 

Blane and Clarke (1984) were among the first ones to present the mathematics trail idea to a broader 

scientific audience. According to Shoaf, Pollak and Schneider (2004, p. 11), math trails are 

accompanied by a trail guide booklet showing mathematically interesting places and tasks, usually 

including a map, for the user to follow. A meta-analysis on outdoor learning indicates that students 

do not only remember fieldwork and outdoor visits for many years, but also the experience of outdoor 

learning is considered “more effective for developing cognitive skills than classroom-based learning” 

(Dillon et al., 2006, p. 107). Students need to understand the problem, find an appropriate 

mathematical model, collect data, work mathematically and validate and discuss their answer. These 

activities come close to the modelling cycle as described by Blum and Leiß (2005) and help to 

promote modelling. 

The mathematical contents depend on the tasks that a math trail offers. Problems in the field of 

geometry and measurement are obvious, since many geometrical forms shape our environment. 

Nevertheless, it is possible to find many tasks in the other content fields of mathematics. In contrast 

to original trails, math trails at school are not voluntary; they are mostly prepared by teachers for their 

students with a focus on a certain topic and are subject to organizational obstacles. Since the available 

time is usually set by lessons of a certain period (e.g., 45 or 90 minutes) and the learning group 

consists of about 20 to 30 individuals, it is necessary for the teacher to structure the math trail activity 

well to be a success. There are many aspects a trailblazer has to consider while creating a math trail. 

For this reason, task design guidelines, which are presented in a following paragraph, have been 

formulated to help authors generate material with high quality.  

The MathCityMap project 

The MathCityMap project combines the idea of math trails with the possibilities of web technologies 

and mobile devices (cf. Gurjanow, Ludwig & Zender, 2017). With the help of the MCM web portal 

(https://mathcitymap.eu), teachers can digitally create and manage tasks and trails. Furthermore, the 

web portal offers task templates, many public tasks, and the possibility to automatically generate a 

PDF math trail guide. The purpose of the MCM web portal is to make the challenge of creating a 

math trail more convenient. It is available in eleven languages (Italian included, thanks to the 

collaboration born with Math MOOC UniTo). The MCM application for smartphones is a digital 

math trail booklet that uses GPS to display the tasks position on map and presents the task to the 

users. Additionally, users benefit from a stepped aid system, in case they get stuck and an automatic 

feedback system that evaluates entered answers. The app is meant for persons (e.g., students) who 

would like to walk a math trail.  
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MCM content quality assurance 

“Carefully designed classroom tasks can be a powerful tool for enhancing the quality of math and 

science teaching, influencing the classroom culture and fostering students’ learning” (Maaß et al., 

2014, p. 8). This is also the case for math trail tasks, since they constitute the core of the math trail 

activity. Web communities (e.g., Wikipedia or GeoGebraTube) that allow users to create content in 

general face the issue of maintaining quality standards. Peer or expert reviews are a common way to 

ensure quality in academic papers and material produced by different authors (Price & Flach, 2017). 

MathCityMap implements an expert review system to maintain a high quality of published tasks and 

trails. Experts are selected for each participating country. They are often experienced teachers or 

academics from the field of mathematics education who are well informed about specific 

circumstances of mathematics teaching in their respective country. The experts may decide if the task 

or trail meets the quality criteria and accept the publication or, if revision is needed, they decline the 

publication with a message, indicating necessary changes (cf. Jablonski, Ludwig & Zender, 2018). 

Published content can be viewed and accessed by all visitors or app users.  

Task design guidelines have been formulated to help new authors and to ensure a good user 

experience. These guidelines are the basis of the MCM review system. The first set of aspects is 

derived from popular published math trails like “A mathematics trail around the city of Melbourne” 

(Blane & Clarke, 1984), “Maths Trailing in Dorset” (Ashworth, Cobden & Johns, 1991, p. 7) and 

from a more general description on how to create math trails by Shoaf et al. (2004, p. 10) and the 

British Association of Teachers of Mathematics (1991). The first collection of task design guidelines 

that come from the intersection of all of these sources, deals with the challenge of creating outdoor 

tasks. 

1. Uniqueness. Every task should provide a picture that helps to precisely identify the situation, the 

object of the task and what the task is mainly about. 

2. Attendance. To solve a task, the user should have to be present, therefore the task data can only be 

obtained locally. This also means that a picture and description of a task should never be enough 

to expose the solution. 

3. Activity. The one who solves the task must be active in some way (e.g., measure, count or sketch). 

4. Multiple solutions. The task should be solvable in various ways. 

5. Reference to reality. “Problems that arise naturally from the situation are best” (Shoaf et al., 2004). 

The task should not appear too artificially. 

6. Tools. The tools that are required to solve the task should be noted on the trail guide. In general, 

you should not expect people to bring extraordinary tools. 

The second set of aspects deals with challenges of mathematics trails as a teaching method. After 

preparing the math trail the teacher steps back in a passive role, while students actively discover the 

trail in small groups. To support the groups in case they cannot find an approach to solve the problem, 

the MCM app provides a stepped hint system. 

7. Stepped hints. Every task should provide at least two hints. 
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8. Sample solution. Authors should provide an elaborated sample solution including measured data. 

Research Question 

In the MOOC Rel&Fun, as regard the use of MCM, MOOC-teachers were invited to generate math 

trail tasks connected to the topic of relations and functions. In order to improve material quality, Maaß 

et al. (2014) recommend that teachers should experience and reflect new tasks themselves prior to 

develop own material. However, for their nature, the math trails are bound to particular surroundings. 

It leads to the fact that MOOC-teachers were not able to experience MCM math trail tasks before 

designing their one, since the existing Italian tasks were - at that time - few and only located in Turin 

(where the MOOC team worked). Nevertheless, it was a main concern of the module to produce tasks 

that are in line with the task guidelines. This leads us to our research question: What are advantages 

and disadvantages of an expert review system to ensure material quality? 

Methodology 

MOOC Rel&Fun, like those who preceded it, is open, free, and available online for teachers on the 

DI.FI.MA platform. It consists of modules with a duration ranging from one to two weeks. Each 

module requires the performance of a task. Once the task is executed, the platform releases a badge1. 

The users have time to perform the task from the beginning of the module in which it is inserted, until 

the closing date of the MOOC. The MCM module started in the fourth week of the MOOC Rel&Fun 

and lasted 2 weeks (since MOOC Rel&Fun lasted 11 week in total, the MOOC-teachers had 7 weeks 

to be able to accomplish the task provided by the module). As already mentioned above, the aim of 

the module was to learn how to use a new technology (MCM web portal and app) to create a math 

trail task on the subject of relations and functions. In the following, we explain in detail the integration 

of MCM into the MOOC Rel&Fun. In particular, we refer to German team meaning the MCM 

members, while with Italian team we mean the MOOC Rel&Fun members. 

The MCM module begins by sharing the theoretical and technical aspects of MCM with the 

participants. The German team made a video in which they illustrated the spirit of the MCM project 

to the MOOC-teachers. The voice output was in English. The Italian team added Italian subtitles. 

Subsequently, it was necessary to make the MOOC-teachers autonomous to work with MCM, 

namely, allow them (i) creating new tasks; (ii) compiling a new trail; (iii) using the MCM app to walk 

a trail. Therefore, for each of these points a video tutorial was necessary. Both the teams agreed that 

for these videos the voice should be in Italian. So, the German team prepared English transcriptions 

and the Italian team added the voice to the mute tutorial videos made by the German team. Having 

clarified the technical details, it was time to show some examples to the MOOC-teachers. In the web 

portal, there were already some tasks, but they were mostly in German or English. A few months 

before the start of the MOOC, in October 2017, the German team visited Turin to explore the city 

with the Italian team. They together created and implemented some Italian tasks in the web portal. 

 

1 Digital badges are a validated indicator of accomplishment, skill, quality or interest that can be earned in various learning 

environments (Carey, 2012). In the case of our MOOC, they are created by a course administrator and then they can be 

issued automatically by the platform each time the user accomplish the tasks required within the module. 
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Subsequently, the Italian team prepared some Sways2, where the methodological and mathematical 

details of each task were explained. In addition, a card with the criteria for designing a good task (task 

design guidelines), formulated by the German team, has been loaded onto the platform available to 

the participants. In this way, the teachers had high quality examples to take inspiration from and all 

the information needed to perform the module task. This one consisted of (i) creating a math trail task 

on the web portal on the topic of relations and functions; (ii) requesting publication of the task through 

the review process; (iii) sharing the link of their public task on a specific repository created in the 

MOOC module. Only three members of the Italian team were responsible for reviewing the MOOC-

teachers’ math trail tasks. They could directly approve the task for publication if it complied with the 

task design guidelines. Otherwise, they declined the publication by sending an e-mail to the MOOC-

teacher through the MCM review system explaining the reasons for the refusal. The data on the review 

effort was gathered from the MCM review database. It stores each review that was performed by each 

Italian reviewer and links it to a particular task. The module ends with a questionnaire that intends to 

investigate the MOOC-teachers’ satisfaction level on MCM and their intention to use it again with 

their students.  

Data analysis  

There were 358 enrolled teachers in MOOC Rel&Fun. As far as the MCM module is concerned, 287 

tasks were created by the MOOC-teachers. 257 of them were added to the review system. Among 

these, at the closing of the MOOC, 231 tasks (90%) were considered to meet the task design 

guidelines and therefore got published. The Italian team performed 396 review processes (multiple 

reviews until publication of a task are possible) to ensure content quality. The MCM review database 

shows that among the 257 tasks that were submitted to get published, 119 (46%) tasks matched the 

MCM task design guidelines on their first review, 138 (54%) tasks did not. The MOOC-teachers 

revised 112 out of the 138 (81%) declined tasks according to reviewers’ feedback and were later on 

published. In reality, the situation has been a little more complex. The tasks that were directly 

accepted were not always in line with the design criteria, so there were less than 119 tasks that 

matched task design guidelines on the first review. The Italian team has indeed noticed this: when 

they immediately declined the tasks, the MOOC-teachers not always revised and submitted their tasks 

again for review. Instead, when reviewers sent feedback with a request of revision without declining 

the task3, the MOOC-teachers made the changes and the reviewers could approve their task like if 

these revised tasks were their first submission. However, unfortunately, we are not able to exactly 

quantify this data.  

In the following, we indicate the common errors identified by the Italian team for declining the 

MOOC-teachers’ tasks.  

 

Most common errors Less frequent errors 

 

2 Sway (https://sway.office.com/): Microsoft tool that allows users to combine text and media to sustain the showing of 

online content. 
3 Sending personal emails, like the MOOC team used to do for other commitments in the MOOC (i.e. soliciting the 

MOOC-teachers to get the badge of the modules, …). 
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Instruction of the task unclear or ambiguous, namely 

in the same task there was more than one question 

picture related to the task unclear and not 

always shared according to the 

indications 

No indication of the unit of measure in the task 

instruction 
incorrect geolocation4  

Solution provided without the data collected or without 

the calculations made5 
inserting the entire solution in the hints 

If the solution was expressed by a range of possible 

values, this range was not always indicated in a 

plausible manner 

inserting more than one hints in the space 

that is generally dedicated to a single hint 

Solution difficult to read because the text editor was 

not used6 
create the task inside the school premises7 

Table 1: MOOC-teachers’ common errors designing a math trail task with MCM 

We now show an example of activity that has been published. The task in Figure 1 was created by a 

teacher from Lecco (a city in Northern Italy) for students of grade 11. 

 

 

 

Figure 1:  Pendulum equation as a 

function of time  

Figure 2: Solution as a multiple choice 

This is her delivery: “Starting from a position that forms an angle of about 44 degrees with the 

vertical, determine the equation that describes the displacement by the swing, as a function of time, 

while it oscillates. The units of measurement to be used are the meters and the seconds”. The teacher 

chose to represent the solution as a multiple choice (Figure 2) and inserted three hints: (i) a YouTube 

video (https://goo.gl/dqJuMH); (ii) an image (Figure 3); (iii) a sentence: “Calculate the amplitude of 

the movement (maximum displacement) and the time of complete oscillation”. She indicates that the 

tools needed to solve this task are the folding ruler and the calculator. She also clearly describes the 

procedure she followed for the resolution.  

“I moved the swing to form an angle of about 44 degrees with the vertical (Figure 4). I measured 

the length of the wire and I got 1.36 m. Taking advantage of the stopwatch of the phone I measured 

 

4 someone had put the Mole, a typical monument of Turin, in Switzerland 
5 someone was looking for the monuments data on the internet, so he did not actually go there in person to find the data 
6 i.e. m2 instead of m2 to indicate the square meters 
7 if on the one hand this was done for security reasons related to the responsibilities that teachers have on their students 

when they propose activities outside of the school; on the other hand, in this way, the possibility of making the task 

accessible and usable by anyone is lost. 
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the time it took the swing to make one full oscillation. I repeated the same operation three times 

and I calculated the average time. So, I got that to make a complete oscillation it takes 2.33 sec. I 

calculated the maximum displacement A = 1.36 ⋅ sin (44°) = 0.94. Finally, I wrote the pendulum 

equation as a function of time: s(t) = 0.94 ⋅ cos (360° ∙ t / 2.33) with t in seconds”. 

  

Figure 3: Second hint Figure 4: Explanation of the solution 

Discussion and Conclusion 

The collaboration between Math MOOC UniTo and MathCityMap was a success. MOOC-teachers 

were very engaged and created almost 300 math trail tasks all over Italy. 142 MOOC-teachers 

completed the questionnaire inserted in the MCM module and the 76% of them were satisfied with 

the module contents and would recommend MCM to colleagues. Although the MCM module 

provided tutorial videos, as well as best practice examples and explicitly formulated task design 

guidelines, not all and not immediately were able to meet the task of the module. The review phase 

was indeed challenging and demanding. In fact, if we consider the data of the MCM review database, 

only 46% of the created tasks met the task design criteria. The expert review system helped to improve 

a total of (at least) 112 tasks (44 %). At the end of the module, 90% of the tasks were considered good 

quality and allowed their respective authors to obtain the desired module badge. The quota of revised 

tasks (112 out of 138, 81%) is remarkably high and shows that teachers accepted and appreciated the 

expert feedback. In general, teacher education that aims to improve mathematics classes through high 

quality material, especially those that want their participants to create own material adapted for their 

students, need to take care of material quality (Maaß et al., 2014). In the case of a MOOC for teacher 

education, the expert review system turned out to be a suitable method to achieve this goal. In total 

396 review processes were necessary to implement the review system during the MOOC MCM 

module. On the one hand, we recognize that a disadvantage of the review system is that of having to 

manually write reviews. This implies that reviewers must be highly motivated to accomplish this task 

and to assure high-quality materials. On the other hand, the possibility of giving highly adapted 

feedback that considers not only the mathematics but also the cultural background and the educational 

landscape of mathematics classes in Italy, could be identified as a major advantage of the review 

system. However, the success of the review system relies on the willingness of the participating 

teachers to accept the review and to revise the task. Since we did not explicitly examine factors that 

lead to a revision of a task, the willingness can be traced back to a mixture of a high-quality feedback 
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combined with the desire to obtain the module badge and the satisfaction with the module contents. 

Finally, we can certainly state that the engagement of MOOC-teachers in creating the math trail tasks 

and the efforts made by the reviewers have constituted a heritage, not only for the MOOC community 

but also for all MCM users. 
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Initial conditions and requirements 

Subject-specific content knowledge is an essential component of professional teacher knowledge (for 

the concept of professional knowledge see for example Schwarz, 2013). It forms a basis for the ability 

to judge a specific topic’s significance for an entire subject and thus forms an important requisite for 

didactical reflections (Dreher et al., 2018). Considering this, mathematics teachers’ content 

knowledge must comprise not only advanced insight into specific topics but also a netlike overview 

of mathematics as one, consisting of notions and relations between them as well as methods and basic 

principles. A survey in a second-year lecture on arithmetic showed that the students were not able to 

connect what they heard about equivalence relations, functions or groups to corresponding contents 

they had learned in previous lectures (e. g. congruence and the group of congruence mappings in 

geometry, isomorphisms and linear functions in linear algebra).  

To achieve that students are able to see these parallels, a university curriculum for future teachers 

demands cross-links between the single courses. Basic notions (such as sets, functions, algorithms, 

relations…) that are found in diverse mathematical subdomains seem suitable for serving as cross-

links between scientific lectures, both, in a horizontal and a vertical way. This would transfer Bruner’s 

(1969) concept of fundamental ideas and a spiral curriculum onto teacher education, also suggested 

in Dreher et al. (2018, pp. 330 f.).   

Basic ideas and fundamental notions can be found when one looks into the history of a subject as they 

should appear throughout time (Schweiger, 1982), though maybe in different disguises. Apart from 

that aspect, including the history of mathematics into teacher education has been suggested long-

since, presumably bearing a whole lot of further benefits (Schubring, 2000; Katz, 2000; Jankvist et. 

al., 2016), for example experiencing mathematics as a process conducted by human beings rather than 

as a mere product and thus influencing future teachers’ beliefs. In addition, through history of 

mathematics one learns about the synthesis of notions and terms. This is of special importance for 

future teachers as it surely facilitates due decompression of scientific content into school content, 

which requires thorough analysis. (Dreher et al., 2018, 331) 

Generation, clarification and precision of mathematical concepts and notions require the use of 

language (e.g. Morgan et al., 2014). Without language, definitions and propositions could not be 

worded and not be taught either, so language forms another essential part of content as well as 

pedagogic content knowledge. Due to increasing heterogeneity in pupils’ language abilities, it is 

necessary that future teachers learn to illustrate subject matters on differing language levels and that 

they become able to vary by those levels. 
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The Hildesheim concept of “Learning along Keynotes” (LaK) 

We suggest that integrating the three keynotes – basic notions, history and language of mathematics 

– into a teachers’ curriculum and thus cross-linking the courses supports the construction of a 

professional teacher content knowledge as required. Therefore, the keynotes should become a 

constitutional part of all scientific lectures throughout studies. Our poster presents a concept of how 

the three keynotes might constitute a scaffolding for a spiral curriculum, where historical and 

language elements serve as enrichment as well as embedding of basic contentual and methodical 

concepts. We also present an exemplary concretization for the basic notion “algorithm”. 

LaK started 2018 in a first-year (linear algebra) and a second-year (arithmetic) lecture at the university 

of Hildesheim. Historical and linguistic tasks that are mostly integrated into exercises associated to 

the lectures comprise transferring formulas into common language or working on original historical 

texts. 

To emphasize the netlike structure students are encouraged to design concept maps for a selection of 

basic notions (see poster for complete list) and augment them in the course of their studies, starting 

from first year and going on through all lectures. The next step will be to design appropriate tasks for 

all scientific lectures as well as a research frame for evaluating the concept in the form of a long term 

study.  
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This study explored student teachers’ ability to develop their own teaching identity whilst teaching 

collaboratively as a trio in a “University School Model” of initial teacher education. The paper 

considers this from a psychoanalytical viewpoint in which the student teachers’ emotions and desires 

are explored in relation to how they experience their work with their peers. The main focus is on how 

they negotiated the tensions around differing individual pedagogies within the group whilst 

maintaining the delicate balance between compliance and integrity. The paper concludes that it was 

through the process of navigating these tensions that they challenged their own pedagogy and in the 

course of working collaboratively, modified their developing teacher identity.  

Keywords: Collaboration, identity, emotion, psychoanalysis. 

Introduction 

Although ‘a considerable amount of current research on teaching and teacher education focuses on 

teacher collaboration’ (Meirink et al., 2007, p.145), previous research tends to focus on qualified 

teachers supporting each other, or qualified teachers’ collaboration with student teachers. Taking a 

different approach, this paper is concerned with student teachers collaborating with their peers. The 

paper describes the thinking behind the “University School Model” (USM) and the way in which the 

author worked with student teachers over the course of a year. Employing Britzman (1998, 2003, 

2010) and Bibby’s (2011) psychoanalytical approaches to teacher education, it acknowledges there 

are emotional tensions in developing a teacher identity but that learning to teach is a social process 

requiring negotiation. Although there is a resistance to changing their perception of teaching, the 

USM incurs differing pedagogies and argues that this is central in supporting student teachers’ 

development and their autonomy. It considers the university tutor’s role and implications for initial 

teacher education (ITE). 

Literature review: Collaborative teaching and multiple placements 

A significant amount of research has focused on the role of collaborative practice (Cajkler et al., 

2014; Eraut, 2007; Meirink et al., 2007) and the effect this has in supporting the developing 

professional. Cajkler et al. (2014, p.521) found that planning lessons collaboratively led teachers to 

be ‘more courageous and give greater responsibility to students to manage their own learning’. Their 

study also suggests that collaboration led to a greater willingness for pedagogical risk-taking and 

‘opportunities for participants to develop individual expertise leading to greater confidence to make 

changes… and address learning challenges with creative and engaging approaches’ (Cajkler et al., 

2014, p.526). They conclude that working collaboratively allows for a deeper study of pedagogy.  

Teachers in their developing years take on a challenging role within the first weeks on teaching 

placement, and can struggle to survive in extremely crowded and demanding environments (Eraut, 

2007). Their survival depends on being able to reduce their cognitive load by prioritisation and 

routinisation, and therefore they may not focus on the pedagogical issues within their teaching (Eraut, 
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2007). However, collaborative teaching contexts enable sharing of responsibilities within the 

classroom and therefore more space for reflection, allowing for routinisation to be less of a necessity 

in the first few weeks, but developed reflectively with evaluation over time.  

Collaborative practice in a 'traditional' model of teacher education takes the form of the student 

teacher working as an 'apprentice' with the class teacher or a subject mentor. Student teachers in this 

situation may feel obliged to incorporate advice and ideas from ‘expert’ teachers and mentors in their 

school placements into their own teaching, therefore becoming merely compliant with the ideas that 

have been shared rather than being co-constructors of them. A related issue is that established teachers 

may find it difficult to articulate their practice to student teachers on placement, since what started as 

explicit routines in their early experiences have become tacit routines over time (Eraut, 2007). In 

contrast, teaching with student teacher peers means that routines which are not yet instinctive can 

therefore be evaluated and re-assessed together, becoming established in unison. This shift from 

working alongside more experienced teachers towards working and collaborating with peers is the 

context for this research. 

The University School Model of teacher education 

During my necessarily infrequent visits to observe student teachers during their school placements as 

part of traditional ITE programmes, I was often dismayed to see students who had previously been 

creative and innovative in their teaching revert to procedural didactic methods. One reason for this 

commonly observed gap between the theory learnt at the university and the practice seen in school 

(Allen, 2009) is that the student teacher in placement is isolated from the support and advice of the 

university tutor. Too often, the once inventive and imaginative practice enthused over at the university 

is sacrificed to ensure compliance with the reductionist process-driven teaching dominant in many 

school placements (Cockerham & Timlin 2014).  

To address this issue, Manchester Metropolitan University developed a collaborative teacher 

education programme, namely the ‘University School Model’ (USM) in 2010. The USM involves 

placing six student teachers in a school, where they teach collaboratively in two groups of three, as 

well as individually. The unique attribute of this model is that the university tutor works in the 

placement school alongside teachers and student teachers, visiting weekly for a whole day. This 

provides an opportunity to observe and work regularly with student teachers, supporting the 

integration of practice based on theory and promoting teacher autonomy and professionalism in a 

more cohesive manner. 

Collaborative teaching during these placements is paramount in developing innovative lessons as well 

as encouraging student teachers to become more reflective practitioners. “Learning about teaching is 

a collaborative activity” (Northfied and Gunstone, 1997, p.49) and the USM works on the assumption 

that it is most productive when conducted in groups where ideas and experiences can be discussed. 

Although working in a group with differing pedagogies and priorities can lead to tensions and 

emotions that student teachers find hard to navigate, differences of opinion are crucial in fostering 

discussion and debate about their perceptions of what makes a “good” mathematics teacher, enabling 

them to identify and articulate their beliefs about teaching (Meirink et al., 2007). The research 
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questions which frame this paper are: What opportunities for student teacher’s development arise 

from the USM of collaborative teaching? What emotional support and tensions are evident whilst 

working collaboratively in the USM? 

Theoretical framework 

The field of psychoanalysis has many influential perspectives, however this paper focuses on the 

approaches of Britzman (1998, 2003, 2010) and Bibby (2011) due to their specific insights into 

mathematics education. Britzman (2010) asserts that psychoanalysis is the best way to turn education 

‘inside out’ in order to start to understand something of its emotional situation and its inhibitions, 

symptoms and anxieties. She claims that it is ‘one of the few practices and theories in the human 

professions that begins with and is affected by the relation between our object world and our sense of 

relationships with self, others and knowledge’ (Britzman, 2010, p.86). Student teachers are placed in 

a situation of negotiating the balance of being a student themselves whilst trying to teach others, and 

what characterises the relationship between student teachers and their ‘others’ is the dependency and 

desire to be seen as already knowledgeable without having to learn (Britzman, 2003). Britzman 

(2003) also discusses the overfamiliarity of the teacher profession as a significant contribution 

affecting those learning to teach: student teachers draw on their subjective experiences of teaching 

from their previous experience of education, as a pupil. We all know what a teacher is and does from 

our years of observation in our own school system growing up, leading to the scenario that ‘many 

students leave compulsory education believing that “anyone can teach”’ (Britzman, 2003, p.27). For 

Anna Freud (cited in Britzman, 2010) this denial of needing to learn how to teach is the ego’s defence 

against its own vulnerable certainty. Consequently, teachers rarely disclose ‘the more private aspects 

of pedagogy: coping with competing definitions of success and failure, and one’s own sense of 

vulnerability and credibility’ (Britzman, 2003, p.28). Britzman (1998) argues that learning to teach 

demands a change in the learner, in that they must reconsider their previous speculations. Education 

depends on persuading the student teacher to transcend conflict in order to learn, and psychoanalysis 

insists that the conflict is purely internal. Therefore, the problem of learning to be a teacher becomes 

‘how the social and the individual can come to tolerate ethically the demands of the self and the 

demands of the social’ (Britzman, 1998, p.8) 

However, the beliefs we have about teaching are formed not only from our conscious perceptions of 

good teaching, but also our unconscious self. Earlier experiences we have relating to vulnerability, 

that of being educated, create resonances in the unconscious, and these unconscious phantasies are 

projected onto our current situations, that of being a teacher, affecting our beliefs and values and 

structuring our actions (Bibby, 2011). Thus, unconscious processes profoundly influence and are 

intertwined with more conscious processes (Britzman, 1998). The unconscious part affects the way 

we view the self, the self we project to others and the decisions we make. 

The sense we make of ourselves, our identity, our ego, is made up of a layering of identifications that 

we have either found or been presented with ‘out there’ (Bibby, 2011), and is therefore dependent on 

other people’s responses to us. This is in contrast to the popular image student teachers bring to their 

teaching practice, that of ‘teaching as an individual activity, privatised by the walls between 

classrooms’ (Britzman, 2003, p.63). In order for the student teachers to reflectively question their 
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teaching identity, it is crucial that they experience images provided by others; this system of 

judgements frames how we come to be seen and known in terms of being located in the others’ field 

(Bibby, 2011). You can only know yourself through interactions with others, learning to teach 

therefore is a social process of negotiation (Britzman 2003). Lacan (cited in Bibby 2011:34) states 

that there is a gap between the ‘me’ the trainee teacher is experiencing themselves, including what 

they see mirrored by other people, and the ‘me’ they would like to experience; desire is the urge to 

close the gap between these two versions of ‘me’. This can be the cause of significant anxiety for the 

student teachers. There exists a tension between anxiety and desire, there cannot be one without the 

other and there can be no learning without them (Britzman, 1998), therefore this is an emotional 

conflict that they must negotiate in order to learn how to teach. 

Methodology 

This research was carried out at Manchester Metropolitan University (MMU) with twelve student 

teachers on a Post Graduate Certificate of Education course (PGCE). The participants were members 

of my personal tutor group, who were placed in two ‘University Schools’, chosen on the basis of their 

previous experience of working as a placement school and their established expert practice. All twelve 

students agreed to take part in the study, and were assured of their anonymity and given the option to 

withdraw at any time. I discussed the ethical implications of the situation at length with them, and 

assured them that it would not affect the support or grading that they received throughout the year. In 

the USM, students teach two out of their three classes in the first placement as a trio and only one out 

of the three classes in the second placement. Other lessons are taught individually. Every week the 

university tutor visits for a full day throughout both placements, working alongside the students to 

help with planning, observe lessons, give feedback and advice, and provide pastoral support 

throughout the year.  

There are four key sources of data in this research. I used a reflective journal to capture an 

autobiographical perspective on my practice, as the visiting university tutor. The student teachers 

reflect weekly on their progress on their placements as part of the PGCE course, and these were used 

to provide insights into their developing teacher identity. I held four focus groups during the 

placements to discuss various issues, including on one occasion my delivery of a lesson which had 

been planned by six of the student teachers, and observed by the students and the class teacher. At 

the end of the lesson the students gave me feedback, along with the class teacher. The lesson was also 

video recorded, and played to the focus group. At the end of the PGCE course, once the students’ 

grades and final forms were completed, they participated in individual semi-structured interviews, 

focusing on their experiences of working in the USM, their ability to work collaboratively and the 

tensions surrounding this, and reflecting on the teacher they became as a result of their experiences. 

Both focus groups and interviews were audio recorded. This paper focuses on the interviews, analysed 

with a particular emphasis on considering the emotional aspect of teaching collaboratively and the 

effect this had on their developing identities as teachers. The data was operationalised by the 

theoretical framework and a thematic analysis was conducted. Two of the themes are discussed in 

this paper with respect to the research questions.  
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Findings 

Teaching collaboratively 

One of the main issues facing the student teachers in the USM is the idea of teaching collaboratively. 

They come to the course thinking that they simply require some practice in the classroom and that 

will be sufficient in making them a ‘good teacher’. The idea of having to work alongside other student 

teachers who may not be as strong as them, may not agree with them, may hold them back in their 

teaching or may be seen as needing support, was difficult: 

Edward: When we all found about the trios, we were all definitely concerned. 

Sarah: When we heard about it initially we were a bit like, oh, I don’t want to do that. I 

want to go in by myself. 

Jennifer: I was a bit apprehensive about the trio at first, cos I just thought I don’t want to do 

it, I don’t want to be held back or whatever by someone else.  

A common perception was that ‘learning’ from a peer is not effective for teacher education; they 

wanted to be in the classroom alone. There was an intrinsic denial that being influenced by their peers 

would support their own development as a teacher; they felt that learning can only take place from an 

experienced ‘teacher’. The prevalent idea was that education is the knowledge given by the expert 

and received by the novice. 

Carol:  I thought “well, you are just a trainee like me”. I found it easier to draw on people 

who had more experience than my own, than the people that I was working with. 

The university tutor has a delicate role to play in this situation. The dichotomy of being influential in 

the student teachers’ developing pedagogies, whilst also have a role in ensuring the collaborative 

nature of the placement is effective:  

Carol: I think, especially because when you are working in a three, the people are very 

different, they come from very different walks of life with very different ideas and 

opinions. And to have that visit every week [from the university tutor] it lubricates 

the situation and helps everyone to have a common idea and stops one personality 

maybe dominating others. 

In spite of their misgivings and the tensions of the situation, the students reported that the support 

they receive from collaborating with peers in their lessons and in planning, means that they can try 

innovative teaching strategies with reduced fear of failure: 

Sarah: But I think you have the opportunity to try different things…[you can] try it. 

Because there are three of you it can’t go drastically wrong. 

Developing the individual within the collaborative 

There is a subtle balance to strike when teaching as a trio, between gaining credibility and recognition 

for your individuality in the classroom and successfully working together and collaborating with your 

peers. The need to ensure that you are being assessed individually is often a contentious issue: 
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Carol: because people come into this and they are like this is my training I think that is the 

heart of it. This is my training and I need to push myself forward even though we 

are collaborating. Unless people are willing to give that idea up…you end up getting 

caught up in a situation where you’re like oh alright this is all about me too. 

Whilst teaching collaboratively there are multiple ‘others’ constructing the student teacher’s view of 

themselves. The students needed to orchestrate the experience of working with their peers and 

negotiate how their potentially conflicting pedagogical beliefs would inform their teaching. They also 

needed to work with the class teachers and subject mentor in whose classroom they were a guest, and 

therefore expectations to comply. In addition, they needed to work with the university tutor who 

comes with their own views about effective teaching, and also to manage their own internal beliefs 

based on their prior experience of education of the teacher they want to be. The latter is the most 

difficult to modify, since how students see themselves in the role of the teacher is the “phantasy” that 

has led them to undertake this journey. There is a strong desire to become this teacher and therefore 

the inclination to teach as they were taught is hard to challenge, but is a crucial element in learning 

to teach. The importance of these personal histories is the independence of individual journeys: the 

experience that one person had of education, and which has shaped their desire to be a teacher, is 

different to anyone else’s experience:  

Justin: I kinda remember things, of ways I was taught ….and I think if that’s the way that 

I learnt it and I thought it was good then, maybe students now will think it’s a good 

way to learn as well. 

Edward: Yeah, because obviously I had my feelings of what I wanted to be as a teacher. 

Shafia obviously had her idea, which was definitely a lot closer to Claire’s [the class 

teachers] than mine.  

The notion of “teaching practice” is thus about the individual finding a path between these fluctuating 

versions of themselves. In Edward’s case, his strong sense of the teacher he wanted to be was brought 

into question by the class teacher and his collaborative partner. Edward was adamant that he was not 

willing to change his teaching style. However, by the end of the placement he reflected back to say: 

Edward: I think it has changed me slightly on where I was going to be, or where I thought I 

would be, but I think that was more for the better. 

Emotional support and tensions 

Inevitably, the student teachers are all vying for their persona and their pedagogy to be dominant. 

When working as a group, if lesson planning and making decisions regarding how to teach a topic 

lead to differing views, this tension brings with it a strong emotional element. There is a sense of 

anxiety amongst the student teachers about which methods to teach, how to deal with behaviour, and 

how to manage the learning. The desire to teach the best lesson possible and be a successful teacher 

leads to further anxiety. This emotional tension can be difficult to navigate if the lesson is not being 

planned and delivered in a manner which reflects the teacher they are striving to become. However, 

the presence of anxiety and therefore desire is needed in order to progress; to close the gap between 

the image they see of themselves and the image which is projected to others.  
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However, there is also an opportunity for a student’s ego to protect itself from the judgement of others 

by not contributing ideas and hiding behind the work of others. If the lesson does not go as well as 

planned there is an opportunity to remove yourself from the emotional disturbance of the feedback 

because you can convince yourself that this was not your lesson: 

Edward: Because I don’t like conflict too much so I just like “ok we will do it that way”. I 

think that’s probably bad in terms of teaching…going into a lesson and not being 

fully committed to the lesson…because it’s not the way I wanted to do it.  

The student teachers’ anxiety at the start of the placement about not wanting to collaborate and the 

desire to teach on their own was alleviated in all of the participants in this research; this was mainly 

explained in terms of the emotional support they gave each other. This outweighed the emotional 

conflicts of teaching as a trio, with the anxieties and tensions this incurred: 

Jennifer: If you go into it big headed, that you’re the best teacher ever and you don’t need it 

[the support from your peers] you’ll fail because you need the people around you, 

you need that safety blanket. 

Edward:  It’s nice having people around you that are in the same boat…obviously, you have 

two other people who are kind of your back bone in that sense and are supporting 

you 

Overall the concern about them developing into the teacher they envisioned at the start of their 

placement was diminished throughout the year and the USM facilitated their ability to explore their 

autonomy and their agency in developing their teacher identity.  

Jess:  I think it has been easy to develop, there has been lots of support. This model has 

been really good for that. And I’ve not been one for asking for help but the help 

was always there.  

Alison:  You are obviously not always going to get on with your trio, it is inevitable that you 

are going to have differences, but you’ll become the teacher you want to be in the 

end anyway. 

Conclusion 

The ‘University School Model’ of ITE aims to foster collaborative learning which supports student 

teachers in developing as teachers informed by the university and protected to some degree from mere 

compliance with placement school practices. What this research has found is at first there is a 

resistance to working collaboratively in a classroom, due to a host of emotional reasons: their ego, 

their preconceived perceptions of their teacher identity, fear of being held back. However, throughout 

the placement, students’ ideals about teaching are challenged through working with peers, and 

although they may resist the change, the situation allows them to develop their pedagogy in a ‘safe’ 

environment. Collaboration with their peers allows them to shift their version of themselves, and 

experience differing pedagogies without the possibility of failure resting solely on their shoulders. 

The pressure of compliance from their supporting teachers and the university tutor are still 

perceptible, but the collaborative nature supports them in the negotiation and articulation of their 
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teacher identity. It allows creative and innovative lessons to be explored due to the support of the 

other student teachers in the room, with a shared responsibility, yet with an emphasis on their personal 

development. The students’ final overall conclusion was that they all individually achieved their 

desire of becoming the teacher they wanted to be, despite their original notions of this being 

challenged. This research highlights the nature and role of emotion in the development of student 

teachers’ teacher identities. It is interesting to consider how ‘the teacher they wanted to be’ at the start 

of the PGCE evolves as a result of experiences in the USM and the effect the individual personalities 

in their trios had on their development. It also highlights the role of the university tutor as a facilitator 

in this development. These are areas to be explored further. 
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This study maps key features of effective Teacher Professional Development (TPD) and the 

framework of Communities of Inquiry (CoI), in an effort to gain an understanding of how these 

features contribute to teachers’ collegial learning. Activity system, as described by Engeström 

(1987)/(1999), is used as a theoretical lens which allows for the visualization of TPD as a 

complex system. The result indicates that, apart from differences in the level of detail in the 

description of various features, there are differences in the demands the two models place on 

teachers. Establishing norms that promote collegial learning, in which critical inquiry is 

expected, emerged as a critical issue. This highlights the importance of viewing any variant of 

TPD as a process, in which the functions of features shift. Awareness of this process may prove 

important in designing and implementing future TPD initiatives.  

Keywords: Activity Systems, Collegial learning, Communities of Inquiry, Teacher Professional 

Development 

Introduction 

In recent years, there have been calls for raised achievement in mathematics in a number of 

European countries, of which Sweden is one. In an effort to respond to these calls, the Swedish 

National Agency for Education (SNAE) launched several teacher professional development 

(TPD) initiatives, which build on the idea of collegial learning. SNAE describes collegial 

learning as activities in which teachers collectively and systematically analyse their teaching, 

in an effort to develop their practice and improve student achievement. Several studies have 

identified a shift in TPD where a traditional culture of viewing TPD as single occasions of ”new 

knowledge being handed to teachers”, is replaced by a new culture (e.g.Villegas-Reimers, 

2003). Evaluations of the largest of these Swedish initiatives, Matematiklyftet [the Mathematics 

Lift], show that teachers, who have participated, have developed their ability to plan, carry out, 

and reflect on their teaching. What is left to investigate is in what way the various features of 

the initiative have contributed to this development (Österholm, Bergqvist, Liljekvist, & van 

Bommel, 2016). The question of what it is that makes TPD, and in particular, the kind of TPD 

which is based on ideas of collegial learning, effective, acts as a starting point for our study. 

We aim to explore this question through an inquiry into previous research on what makes TPD, 

in general, effective, but also by turning to a specific theory for collegial learning, Communities 

of Inquiry (CoI). In order to tackle the complexity of TPD as an endeavour we have turned to 

Cultural-Historical Activity Theory (CHAT). By using Engeström’s model of activity systems 

(1999) we believe we can create a model of TPD and collegial learning that accounts for 

multiple dimensions, thus offering an opportunity to understand possible tensions between the 

two models of which the latter is part of the former. 
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Purpose and guiding research questions 

By viewing TPD as an activity system, and categorize findings from previous research as parts 

of this system, we believe we can gain a comprehensive understanding of different aspects of 

collegial professional development. We hope that such insights will contain a problematization 

of prerequisites for TPD, which may prove helpful in future TPD initiatives. First, we 

investigate the question: What characterizes effective professional development of teachers? 

When we have mapped aspects of TPD, we look for differences between these and the 

corresponding aspects of the particular form of TPD known as Communities of Inquiry. The 

latter is expressed in the question: What are the possible similarities and differences between 

general models for effective teacher professional development and Communities of Inquiry? 

Theory 

Cultural-Historical Activity Theory (CHAT) is a theory that offers both an analytical and 

conceptual framework to understand human practices. The theory takes a social perspective on 

human actions and learning, meaning that human activities are understood in relation to their 

history, culture and context (Engeström, 1987). Within CHAT, Engeström (1987) has 

developed a model for analysis, which he calls activity system. An activity system is “the 

smallest and most simple unit that still preserves the essential unity and integral quality behind 

any human action” (p. 81). Activity systems have been used increasingly as a research 

framework in educational research in recent years (Gedera & Williams, 2016).  

 

Figure 1: Activity system, as illustrated by Engeström (1999) 

The activity system consists of six nodes as shown above. The object is the underlying “true” 

motive for the activity. Subject(s) are the participants who share the object of activity, for 

example teachers in a TPD-community. Mediating artefacts are the tools, with which the object 

is achieved. A tool can be a material object but also a procedure. Rules describe the rules and 

norms, both explicit and implicit, which are shared by the participants in the activity. 

Community refers to the context to which the subjects belong. This context may also include 

others, for example those who, in different ways, contribute to a shared object. Division of 

labour describes both the expressed roles of the subjects and the implicit hierarchical structures. 

To every activity system there is also an outcome, which can be defined as the change and/or 

result of an activity. A central aspect of CHAT is the analysis of tension within and between 

the nodes of the activity system. It is imperative to development and learning, to identify such 

tensions. (Definitions are a synthesis of Engeström, 1987; Engeström, 1999). 
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Engeström (1987) stresses that an activity system can have any size, it may consist of one single 

person or an entire society. All those who share the object of an activity are part of the activity 

system. In educational research, the activity system has been commonly used as an analytical 

tool to interpret data, foremost for its usefulness in making the context of educational processes 

visible (e.g. Jaworski, 2009; Walshaw & Anthony, 2008). In this article, TPD is seen as one 

activity system. 

Method 

In our aim to investigate what research says about effective collegial TPD, we turned to 

literature in two different ways. 1) In order to identify key features TPD in general, we turned 

to studies, which implemented a meta-analysis of previous research. Meta-studies offer 

opportunities, not only for quick and easy access to numerous studies in a specific field, but 

also to take advantage of a synthesis aimed at highlighting, comparing or critiquing, the most 

prominent aspects of a particular phenomenon. It is, however, important to consider that meta-

studies often lack the nuances and depth, which systematic reviews of existing literature, 

provide. To partly counter such drawbacks we chose meta-studies conducted by researchers, 

which we through extensive reading, perceived as prominent researchers in the field of TPD: 

Borko (2004), Desimone (2009) and Darling-Hammond, Hyler, and Gardner (2017). 2) The 

concept of TPD encompasses a number of different models for professional development. 

Collegial learning is a specific model for professional learning that has gained popularity in 

recent years. In Sweden, the model is the preferred model in national development initiatives. 

In order to compare the key features of TPD with research on collegial learning as a specific 

model for TPD, we chose to focus on the framework of Communities of Inquiry (CoI), as 

described by Garrison (2016), since this can be understood as a particular framework for 

collegial learning. To further anchor, the general framework of Garrison, in the context of 

mathematics education we also chose to include Jaworski’s article on CoI in mathematics 

teaching development (Jaworski, 2008). Teacher learning and professional development are 

complex endeavours, which are difficult to grasp. In order to deal with this complexity we 

turned to Engeström’s description of an activity system, consisting of six nodes. Viewing TPD 

as an activity system, allowed for the mapping of, not only the various concepts involved, but 

also the relations between these concepts. The activity triangle thus offered a visual, as well as 

analytical tool, with which we could manage the inherent complexity. 

Viewing collegial TPD as one single activity system, which then constituted our unit of 

analysis, allowed us to explore the literature through the questions; what does research say 

about the object, the subjects, the division of labor, the mediating artefacts, etc. Salient features 

were noted in table 1. After having created an image of collegial TPD as a complete activity 

system, we explored each node looking for similarities, differences and possible gaps in our 

collective knowledge. Our aim is to provide insights into PD that will prove helpful in future 

initiatives. 
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Key features of an activity system for effective teacher professional 

development  

In this section, key features of effective TPD as well as aspects of CoI are organized in relation 

to the nodes of the activity system. Similarities and differences found in each node are compiled 

in Table 1, and further presented in more detail under each of the headlines.  

Node Effective TPD Communities of Inquiry 

Subject Teachers, facilitator Teachers, facilitator 

Object and 

outcome 

Teacher learning, changes in 

practice 

Better understanding of what is being 

questioned, developed thinking/reflection, 

inquiry is a way of being, connecting 

ideas/experiences and applying new ideas in 

practice. All the above lead to changes in 

practice 

Mediating 

artefacts 

Long term activities built on 

active learning, content focus 

related to subject matter 

knowledge, task with 

relevance for classroom 

practice 

Questioning of practice or problems in 

practice as a starting point for critical 

discussions, sharing, comparing and 

developing experiences and ideas through 

critical discussions, exploratory working 

methods, inquiry as a tool, inquiry cycle 

Rules Collective support, trust, 

challenging/critical 

discussions, active learning 

Critical review of experiences, ideas and 

results of teaching, exchange of experiences is 

not enough, inquiry as a way of being, open 

communication 

Community Teachers’ beliefs and prior 

knowledge, school reforms 

Social context; for example, educational 

content and communication medium 

Division of 

labor 

Facilitator foster norms of 

critical discussions, teachers 

act as active learners 

Facilitator designs and organizes the meetings 

(structure and content), proposes tasks, keeps 

discussions focused, problematizes 

discussions, gives feedback and guides the 

teachers, teachers are inquirers who explore 

and analyse their teaching practice 

Table 1: Similarities and differences between effective TPD and CoI 

Subject 

In all the three meta-studies, TPD initiatives are described as including more than one 

participant. This can be seen as a reflection of a focus on collective participation. Borko (2004) 

mentions teachers and facilitators as subjects, while Desimone (2009) and Darling-Hammond 

et al. (2017) mention only teachers as subjects in TPD. The teachers, together with a facilitator, 

are all participants in the framework of CoI (Garrison, 2016). Facilitators seem to have a more 

pronounced and central role in CoI than in research on effective TPD.  
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Object and outcome 

Borko (2004) has investigated the impact of TPD on teacher learning whereas Desimone (2009) 

makes is clear that TPD should increase teacher learning and change practice to be seen as 

effective. It may be seen as unproblematic to view teacher learning as the object of the TPD 

activity system. Desimone’s reference to a change in practice, however, highlights an 

uncertainty regarding what teacher learning entails. When it comes to CoI, Garrison (2016) 

argues that learning is manifested in teachers’ different ways of thinking, reflecting and acting, 

which is the result of activities where the focus is on connecting different experiences and ideas, 

rather than just sharing them. Jaworski (2008) pinpoints this difference by arguing that the 

teachers, not only change their thinking regarding certain phenomena, but that they develop 

inquiry as a way of being, they are “taking the role of an inquirer; becoming a person who 

questions, explores, investigates and researches within everyday, normal practice” (Jaworski, 

2008, p. 312). This indicates that the process of inquiry instead of being a means, turns into the 

object. Teachers who collectively act as inquirers, into their own teaching, have opportunities 

to tackle didactical and pedagogical challenges in a systematic and effective way. 

Mediating artefacts 

The mediating artefacts described in research of effective TPD can be categorized into three 

overall categories; 1) long term activities built on active learning (Darling-Hammond et al., 

2017; Desimone, 2009), 2) content focus related to subject matter knowledge (Borko, 2004; 

Desimone, 2009) and 3) tasks with relevance for classroom practice (Darling-Hammond et al., 

2017). The content focus limits the scope of the TPD, and acts as a guard against diversions 

and irrelevant questions, and it can therefore be seen as a mediating artefact. Darling-Hammond 

et al. (2017) argue for the importance of feedback and opportunities for reflection, while Borko 

(2004) is more explicit regarding the implementations when she proposes that classroom-

material such as video recordings, student work and lesson plans, could be the starting point of 

professional development for teachers. In CoI there are more specific examples of mediating 

artefacts. For example Jaworski (2008) proposes that the long term activity should be designed 

as inquiry cycles where teachers plan lessons, act & observe, reflect & analyse and finally get 

or give feedback on the lessons. This cyclic process, where the questioning of practice is a 

starting point, can carry on for longer or shorter periods. Such a model offers a concrete tool to 

use in the TPD. In relation to the second category, Garrison (2016) proposes that the content 

should be focused on sharing, comparing and developing experiences and new ideas through 

critical discussions. To the third category, Garrison adds that the tasks should be exploratory in 

character. Jaworski uses the expression “inquiry as a tool” (p. 310) with which she argues that 

teachers need to use, for example, questions and exploratory methods to practice and develop 

inquiry as a way of being. What Jaworski (2008) and Garrison (2016) propose can be 

understood as a refinement of the more general categories found in research of effective TPD. 

Rules 

Norms concerning collegiality seem to be important in effective TPD (Borko, 2004; Darling-

Hammond et al., 2017). Borko (2004) stresses the importance of trust, which enables 

challenging discussions on teaching, and she argues that this is one of the most important 
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features of TPD. Desimone (2009) and Darling-Hammond et al. (2017), stress that teachers are 

expected to be active learners. In CoI, the importance of a critical review of experiences, ideas 

and results of the teaching, is stressed. This is something that goes beyond the mere exchange 

of experiences (Garrison, 2016; Jaworski, 2008). Garrison (2016) argues that norms of inquiry 

require open and risk free communication, where all participants can share ideas and 

experiences, without the risk of being ridiculed or attacked. Before such norms, of active 

learning, critical reviews and inquiry, are established however, they can be considered artefacts 

mediating learning, rather than part of a set of ingrained expectations. The rules and norms are 

quite similar between effective TPD and CoI. There is, however, in the case of TPD as well as 

CoI, a lack of description of how, and by whom, these rules and norms should be implemented 

and established.  

Community 

The participants in a TPD are also participants in other contexts where teacher learning and 

improvement of practice is the motive. Consequently, for TPD to be effective it must be in 

consonance with teachers’ contexts, for example prior beliefs and knowledge (Desimone, 

2009). Desimone also mentions the importance of coherence between the content of TPD and 

for example school reforms. In the same vein Garrison (2016) argues that individuals are 

inseparable from their context. Examples of elements of the social context, mentioned by 

Garrison, are educational content and communication medium. Aspects concerning community 

seem quite peripheral in research of both effective TPD and CoI, which indicates that the 

concept may not be well defined. 

Division of labor 

Desimone (2009) and Darling-Hammond (2017), which only mention teachers as subjects, 

argue that teachers need to be active learners, which could be understood as taking on a role. 

Borko (2004) describes the role of the facilitator, whose most important task is to foster trust 

and norms, which enable discussions. All three studies describe several key features such as 

time, active learning, norms of collegiality etc., but it is not clear, who is responsible for their 

implementation, or for upholding them, once they are established. According to CoI, the 

facilitator has a leading role. Garrison (2016) argues that the facilitator’s task is to design and 

organize the activities, as well as to keep the conversations focused and exploratory in order to 

create rich and meaningful discussions. This could entail posing challenging questions, giving 

feedback or guiding teachers. The teachers are described as inquirers who participate actively 

in discussions, as well as explore and analyse their teaching practice. Garrison stresses that the 

teachers should be increasingly independent in the learning process. Although division of labor 

is described in more detail in CoI, concerning the role of the facilitator, little is said about how 

the facilitators should work to achieve this trusting, but also challenging, work environment. 

This points to an area where more research is needed. 

Discussion 

By using Engeström’s (1987) activity system, we have tried to visually represent what research 

says about effective TPD and CoI.  
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Figure 2: Activity system for effective collegial teacher professional development 

Aspects of effective TPD and CoI, which have proved complex, are mainly those that can be 

sorted under the nodes: object, rules and, mediating artefacts. Some key features were sorted 

under more than one node in our categorization. Inquiry is positioned under each of these three 

nodes. This demonstrates the complexity of teacher learning, but also the flexibility of this 

framework. As the activity evolves the content of the nodes shifts, and creates a dynamic 

system. The activity system as an analytical framework thus has potential to identify different 

phases of the learning process. The inquiry process is an example of a process, which initially 

can be seen as a tool to foster changes in the way teachers approach a certain issue. When the 

tool however has become a part of teachers’ natural approach, its function shifts and it can be 

seen as part of the rules and norms that govern the teachers’ interaction. Jaworski (2008) argues 

that inquiry may be seen as a way of being and therefor can be seen as the object of TPD. CHAT 

as an analytic lens allowed us to view inquiry as a process, which can be found under the three 

nodes, object, rules or mediating artefacts, depending on what stage of a TPD initiative we are 

analysing. Theoretically, there is a considerable difference between viewing a process as a 

means or as a goal, which could generate what Engeström (1987) calls tensions in the activity. 

Empirically, however, it is natural that you can adopt a process by using it, by living through 

its different steps. 

If the process of inquiry is viewed as a mediating artefact, something that can be used to achieve 

the goal of learning, then this is the aspect in which we find the greatest difference in detail, 

between previous research on TPD in general, and CoI. Inquiry, exploration and challenging of 

experiences are examples of concepts from CoI that refines some of the key features of effective 

TPD. Jaworski (2008) and Garrison (2016) stress that simply talking or sharing experiences, is 

not enough for a collegial activity to result in learning. Collective, critical and systematic 

reviews and analysis of experiences and practice are crucial to building new collective 

knowledge and collegial learning. We believe this constitutes a tension, between a new collegial 

culture and a previous, more individually oriented culture. A culture, which no longer equates, 
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passively acknowledging other’s accounts of their teaching, with learning that informs and 

changes one’s own practice, requires engagement from the teacher community. It places 

demands on the analytical and social skills of the participating teachers, on the pedagogical 

skills of the facilitator, and on the organization, that supports collegial work. In order for the 

teacher community to meet such demands, teachers as well as school administration need an 

awareness of the prerequisites for collegial learning that are highlighted in this article. In order 

for collegial learning to be successful, several important norms, such as trust and risk-free, open 

communication, must be implemented. Collectively asking questions about, investigate, or 

critically review, one’s own practice requires a social environment, in which trust is 

considerable. Few examples are given on how the teachers and/or a facilitator should foster 

such norms. This is characteristic for many of the key features presented in figure 2. Research 

offers pointers on what and who, but very little is said about how the processes can be achieved. 

The processes leading to collegial learning is an area in need of more research.  
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This paper deals with a study that relates to the understanding of the concepts that constitute part of 

symbolic thinking. The goal of the study was to understand how pre-service teachers (PST) and 

preschool teachers (PT) understand and use the mathematical symbols <, >, and = when comparing   

numbers, figures and shapes of different sizes and thicknesses. Using both quantitative and qualitative 

methods, we examined a study population of 71 PST attending a course for teaching mathematics to 

pre-schoolers and 149 PT. Our results show that the majority of participants did not answer the 

questions correctly, with a significant difference between how the two groups validated their answers, 

indicating that the participants do not correctly understand that mathematical symbols should only 

be used in the mathematical context.  

Keywords: Preschool teachers, pre-service teachers, mathematics education, early childhood, 

mathematical symbol. 

Introduction and theoretical framework 

Mathematical language in Early Childhood is a language of symbols, concepts, definitions, and 

theorems. It does not develop naturally like a child’s natural language, but needs to be taught (Ilany, 

& Margolin, 2010). In essence, children are engaged in mathematics in daily life from birth, and 

today’s global trend is to introduce “formal” mathematics at a young age. Preschool math practice 

aims to develop mathematical awareness and cultivate mathematical thinking from an early age, thus 

shaping the child’s future mathematical thinking, general thinking, and cognitive abilities. Studies 

have shown that the volume and quality of preschool math practice predict a child’s success in math 

in elementary school (Clements, & Sarama, 2006, 2015). 

The first skills include being able to use the concepts of “bigger”, “smaller,” and “equal to” to 

recognize differences between objects. Some PT introduce the mathematical symbols =, <, and > 

already in preschool and, unfortunately, ask the children to use these mathematical relational symbols 

to compare non-mathematical objects. This leads children to believe that these symbols are not 

restricted to mathematical values and, moreover, even when comparing numbers, to use them 

incorrectly. For example, a child in grade one may write “6 < 4” because the four looks bigger and 

thicker than the six, indicating that he is looking at the numbers as graphical entities and not 

mathematical ones. Such instances have led to the study of how PST and PT themselves use these 

mathematical symbols  (Hassidov, & Ilany, 2017). Different quantities are compared through relations 

of order using various strategies based on the properties of these relations. According to Cantor’s  

(1971) sorting principles, the set of real numbers has an intrinsic linear order. In other words, between 

any two quantities, one and only one of three following options holds true: (i) the two values are equal 

to each other; (ii) the first is greater than the second; (iii) the first is smaller than the second. If we 
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plot real numbers on a number line, two numbers, a and b, are equal only if the points that represent 

them coincide. If b is greater than a, the point representing b will be to the right of a. Here, we can 

also say that a is less than b. It is useful to present the ways that a relationship between two quantities 

can be described by using three pairs of relations, where each proposition of the pair is the negation 

of the other: a = b   a ≠ b ;  a > b     a ≤ b ;   a < b   a ≥ b.  Recall that the strategies used to compare 

two quantities are based on the general properties of comparison relations. The relation of equality is 

an equivalence and maintains the three properties of any equivalence relation: reflexivity, a = b (each 

value is equal to itself); symmetry, ; and transitivity,  (two values 

equal to a third are also equal to each other). 

Symbolic reasoning means the ability to grasp the meaning of a symbol representing an object or 

idea, without having an expression in the symbol itself (Bialystok, 1992). It is an evolving ability and 

one of the developing expressions of thought (Thomas, Jolley, Robinson, & Champion, 1999). Its 

development is characterized by changes that occur in the form of the mental representation of an 

object. Young children believe that the symbolic representation reflects the nature of the object it 

represents (Bialystok, 1992), For example, children may write the names of large objects using large 

letters (Thomas et al., 1999). Nemirovsky and Monk (2000) noted that young children do not 

distinguish between the symbol and the object that the symbol represents. The early development of 

symbolic reasoning in children should allow them to properly use mathematical symbols later in 

formal math. Teaching mathematics to pre-schoolers today requires professional knowledge on the 

part of the PT (Charalambous, Panaoura, & Philippou, 2009). Unfortunately, studies conducted in 

recent years indicate that PT assigned with teaching preschool mathematics do not have adequate 

knowledge. This may stem from negative personal experiences or a lack of appropriate training in 

college (Hassidov, & Ilany, 2014, 2015). They often use the knowledge and experience they bring 

from daily life, meaning that they might not always give the correct mathematical importance to the 

symbol. If PT incorrectly understand the use of mathematical symbols, it is reasonable to assume that 

they will subsequently pass this misinformation on to the children, leading to incorrect use in the 

future. It is thus crucial to teach the proper mathematical use of symbols from the preschool level 

(Hassidov, & Ilany, 2017).  PT often use the knowledge and experience they bring from daily life, 

meaning that they might not always give the correct mathematical importance to the symbol. If the 

teachers incorrectly understand the use of the symbol, they will subsequently pass this on to the 

children, leading to their incorrect use in the future. Although young children can identify symbols 

and write them, this does not necessarily reflect an understanding of the symbol’s mathematical 

meaning or their relationship to numbers. The concept of equality is an especially difficult concept to 

comprehend for children, since this term can be used both relationally and mathematically. Using the 

“=” symbol incorrectly with children makes it even harder for them to properly understand its 

concept.  

Many studies have examined how children of various ages comprehend the “equal” sign. They show 

that children aged 5–12 tend to perceive the equal sign as an operational symbol and not as a sign of 

comparison. PST translate the symbols as a command to perform a mathematical operation. It is 

important to grasp that the meaning of a symbol cannot be changed by non-mathematical factors 

(such as a change in size or other physical factor). In a study dealing with the knowledge of PST and 

PT regarding their understanding of the significance and use of mathematical symbols between 

numbers, Hassidov and Ilany (2017) found that PST and PT do not fully understand that mathematical 

a b b a=  = a b & b c a c= =  =
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symbols should relate only to the mathematical nature of the object. If one number was written in a 

larger, smaller, or thicker format than another, they often regarded the physical qualities and not the 

mathematical (i.e., the values of the numbers). Furthermore, even when they used the symbol 

correctly, the reasoning behind its use was often flawed.  

Research Questions 

This study examines how PST and veteran PT understand the concepts of >, <, and =. Its objectives 

were twofold: 

1) How do PST and PT comprehend and use the relational symbols (>, <, and =) in perspective of 

"Numbers" and “Quantity”? 

 2) Is there any difference between how the two groups comprehend and use these symbols? 

Method 

The study population comprised 71 second- or third-year PST participating in a year-long course 

dedicated to the teaching and learning of mathematics in early childhood and 149 veteran PT.  Data 

were collected via semi-structured interviews and a 25-item questionnaire designed by the authors. 

Of the 25 questions in the questionnaire, eight (questions 1, 2, 3, 17 and 7, 9, 10, 16) addressed the 

use of mathematical symbols between shapes and numbers that had some graphical difference (size, 

thickness, placement) (Table 1). Respondents were asked to either place a relational symbol between 

two figures or indicate “X” if they believed there was no appropriate answer, and then justify their 

answers. Analysis was both qualitative and quantitative.  

Questionnaires were filled out by the PST before any formal study of the subject. The researchers 

interviewed a random sampling of 30 PST.  This was followed by a class discussion on the use and 

meaning of mathematical symbols, and the subject’s place in the preschool curriculum. 

Questionnaires were filled out by the PT and then individual interviews were conducted to ascertain 

the PT reasoning for their answers. Relevant background information was collected (e.g., professional 

experience).  

Results 

Overall, not one of the participants gave the correct answer and justification for questions 1, 2, 3, and 

17. Even the very few who gave the correct answer (“X”) gave flawed justifications, the correct one 

being that these symbols cannot be used for graphical objects and only for numerical entities. A 

significant difference was found between the two groups: a large number of PT did not supply any 

justification for their reasoning (58.4% for question 1, and 57.7%, 60.4%, and 66.4% for questions 2, 

3, and 17, respectively) compared to the number of PST who did not (19.8%, 14.1%, 16.9%, 28.2%, 

respectively).  

Questions for example: 2; 17 (Quantitative) asked which mathematical symbol, if any, should be 

placed between the shapes of different sizes and thickness.  

Question 2: contained three smileys. The results were similar to question 1: most did not answer “X,” 

and those who did, justified it incorrectly. Similarly, there was a significant difference (p<0.001) 

between the groups (see Table 2). The vast majority of both PST and PT answered “=”, indicating that 

they focused on the number of smileys (numerical properties). However, one preschool teacher said: 
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“There are the same number of smileys, but the area is different.” That is, her answer was based on 

quantity, but her justification also considered the shape. Another wrote “I counted the smileys.” One 

wrote: “Based on my experience, I would teach that the second is larger. But there can be different 

levels,” indicating that she feels that different criteria can be used under different circumstances. One 

PST teacher wrote: “I looked at the number of smileys. There is no importance to the length of the 

rectangle, only the number.” One PST teacher indicated “=” but wrote “The same quantity in each 

rectangle, although the left rectangle has a greater area.” Those who indicated “<” justified their 

answer by indicating either the size or thickness of the rectangles. One preschool teacher answered, 

“They look to me to be the same, except that one rectangle is longer.” A PST teacher who marked “<” 

wrote “the rectangle on the right is thicker and coloured.” Again, although 4% of the PT gave the 

correct answer (“X”) their justifications were incorrect. For example: “They cannot be compared 

because the shapes are not the same.” 

Table 1: Quantitative (questions 1, 2, 3, and 17) and Numerical (questions 7, 9, 10, and 16) - Analysis 

of the responses of PST and PT (all values represent percentages, *correct answer)  

Differences between correct answers: Question 7 p*=0.001, distribution p=0.006; 

Question 10 p*=0.01, distribution p=0.01; Question 16 p*=0.003, distribution p=0.032. 

 

 Question 

Possible Answers 

> < = X  

PT PST PT PST PT PST PT PST 

1 
 

 
98 100 0 0 0 0 2 0 

2 
 

5 0 16 6 74 94 4 0 

3 
 

 

 
 

       

 

95.4 96 1.3 1 1.3 3 3 0 

17 

  

+ 

 

   

1.3 0 2.7 4 92 90 4 6 

7              1/2   □ 1/4 14.1 0 *80.5 *97.2 0.7 0 4.7 2.8 

9        5 □ 5 0 0 26.2 14.1 *70.5 *77.5 3.3 8.4 

10 

 
6    □  4   

   
 

 
 

 

 

 

17.4 2.8 *77.9 *91.6 0 0 4.7 5.6 

16 

 

2 × 3   □  6  1.3 0 6 0 *86 *98.6 6.7 1.4 

☺   ☺  
 ☺  ☺  ☺   

 ☺ ☺ ☺ ☺ ☺  ☺ 
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Table 2: Quantitative analysis (value and percent) of the justifications given by PST and PT to questions:  

1;  2;  3:  17       * p<0.001 

Question 17: Each side had two triangles, one being “upside down.” On the left, they were in a single 

row with a plus sign (“+”) between them. On the right, they were one on top of the other. Once again, 

the vast majority (94% of PST and 96% of PT) answered incorrectly and there was a significant 

difference (p<0.001) between the justifications they gave (Table 2). One preschool teacher who 

indicated “>” said: “There are two triangles and the addition operation, so that side is larger than the 

right side.” One who indicated “=” wrote, “We haven’t learned this yet.” Another gave an answer 

that seemed confused, “They are equal from two standpoints. One is that on each side one triangle 

goes up, and one goes down. So, they make the shape of an equilateral diamond.” A teacher who 

indicated “=” said, “The placement of the triangles is not important. What is important is their 

quantity.” One PST who answered “X” justified it with “There is no answer because I didn’t know 

which symbol to use. There are two triangles on each side, but they are not arranged the same.” Some 

PT answered “X” because they did not know which of the others to use. 

Questions for example: 9; 10; 16 (Numerical) asked which mathematical symbol, if any, should be 

placed between numbers of different sizes and thickness.  

Justification for question 1  
Graphic 

properties* 

Numerical 

properties* 

Both size and 

quantity* 

No 

answer* 

Number who gave 

correct justification 

PST N 1 56 0 14 0 

N=71 % 1.4 78.8 0 19.8 0 

PT N 6 53 3 87 0 

N=149 % 4 35.6 2 58.4 0 

Justification for question 2       

PST N 2 52 7 10 0 

N=71 % 2.8 73.2 9.9 14.1 0 

PT N 18 41 4 86 0 

N=149 % 12.1 27.5 2.7 57.7 0 

Justification for question 3       

PST N 1 57 1 12 0 

N=71 % 1.4 80.3 1.4 16.9 0 

PT N 3 54 2 90 0 

N=149 % 2.1 36.2 1.3 60.4 0 

Justification for question 17 
     

Another 

answer X 
 

PST N 10 36 4 20 1 0 

N=71 % 14.1 50.7 5.6 28.2 1.4 0 

PT N 4 44 1 99 1 0 

N=149 % 2.7 29.5 0.7 66.4 0.7 0 
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Table 3: Numerical - analysis (value and percent) of the justifications given by PST and PT to questions: 

7;  9;  10 and 16  

Question 9: Table 1 shows that 77.5% of the PST and 70.5% of the teachers answered correctly, but 

as can be seen in Table 3, only 45.1% of the PST and 16.1% of the teachers who answered correctly 

 PST N=71 PT N=149 

Justification for question 7:   1/2   □  1/4 
%                N %           N 

Correctly answered PST           68 PT        120 

None given.   19.7              14 49.7          74 

The sequence of numbers.   18.3              13 2.7              4 

A quarter plus a quarter equals half.   11.3               8 2.0              3 

Because half is greater than a quarter.   32.4             23 12.8           19 

Based on number of items.    14.1             10 13.4          20 

Incorrectly answered     PST              3 PT          29 

None given.      0                   0 14.1          21 

The ¼ is larger according to the picture but ½ is larger 

according to quantity. 
     4.2                  3 0            0 

Based on graphic property.       0                    0 0.7            1 

We never learned fractions.       0                    0 4.7           7 

Justification for question 9: 5  □  5  
% 

 

N 

 

% N 

Correctly answered PST           55 PT              105 

None given. 16.9 12 36.2 54 

The sequence of numbers. 45.1 32 16.1 24 

Incorrect reason (based on graphic property). 2.8 2 13.4 20 

Based on number of items. 12.7 9 4.7 7 

Incorrectly answered PST                       16 PT                    44 

None given 2.8 2 16.8 25 

Both have the same value but differ in size and thickness. 8.5 6 1.3 2 

The left number is larger than that the right one. 11.3 8 11.4 17 

Justification for question 10: 6 □ 4      %                         N   %                N 

Correctly answered        PST                 65 PT        116 

None given.       19.7                14 47                 70 

The sequence of numbers.        63.4                45 24.8              37 

Incorrect justification.            0                    0 0.7                1 

Based on number of items.        8.5                  6 5.4                8 

Incorrectly answered         PST                   6   PT        33 

None given          0                     0 14.1             21 

There is no answer because 4 is graphically larger but 6 is 

numerically larger.       5.6                    4 0.7               1 

The 4 is larger because of the size.       2.8                    2 7.4              11 

Justification for question 16: 2×3 □ 6 %  
N % 

N 

Correctly answered        PST                   70 PT         128 

None given.          22.5  16 55.7 83  

The sequence of numbers.           53.5  38 28.9  43 

Based on quantity.           22.5  16 1.3  2 

Incorrectly answered        PST                      1    PT                    21 

None given             0 0 8.1  12  

We didn’t learn this subject         1.4  1 2 3 

Because of the size of the numeral.          0 0 4 6  
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gave the correct explanation. Of those who gave an incorrect explanation, 2.8% of the PST and 13.4% 

of the teachers gave the reason to be the graphic form of the numbers, and 12.7% of PST and 4.7% of 

the teachers referred to the quantity of items (one numeral) on each side. One reason given by a 

teacher indicated her deliberation between the graphic or numerical quality of the numbers: “It 

depends on how one looks at the question: according to shape, one is larger than the other; according 

to numerical value, they are equal.”  Of those who answered incorrectly, 8.5% of the PST and 1.3% 

of the teachers argued that no symbol could be put between the digits because there can be multiple 

answers based on how one looked at the question (“Both numbers have the same value but not the 

same size and thickness”). 11.3% of the PST and 11.4% of the PT argued the number on the left is 

larger. One PST wrote: “Looking at the numbers, they are equal in terms of quantity or value, but the 

type is bigger and it’s confusing.” 

Question 10: Table 1 shows that 91.6% of the PT answered correctly compared with 77.9% of PT 

(Table 3). This question deals with getting to know the first ten numbers. From table 1 it could be 

seen that there is a significant difference in the scattering distribution between kindergarten PST to PT 

(ᵡ(2)
2  = [9.271, p=0.01]). It can also be seen that 91.6% of the PT answered correctly, compared to 

77.9% of the kindergarten PT ( ᵡ(1)
2  = [6.19, p=0.01]). In Table 3 we see that 63.4% of the PST and 

24.8% of the PT correctly explained that it was due to the sequence of numbers. Some participants 

(8.5% of PST, 5.4% of PT) incorrectly based their answer on the number of items on each side and not 

their numerical value. Of the incorrect answers, 17.4% of the PT, but only 2.8% of the PST answered 

that “four” was larger than “six” based on the numbers’ graphic properties.  

Question 16: Table 1 shows that 98.6% of the PST answered correctly compared with 86% of PT 

(p<0.01). Of the 21 (14.1%) of PT who answered incorrectly, 10 answered “X,” claiming that a 

number of answers were possible, and 9 (6%) claimed that 3X2 was greater than 6 due to the graphic 

properties of the numerals (Tables 1 and 3). 

Additional findings. Interviews and discussions with the PST and PT revealed that most of them 

thought it was possible to use more than one mathematical symbol, between numbers, as an answer.  

Discussion and conclusions  

This study found that most of the participants failed to answer the questions correctly. The 

justifications given to the questions show a significant difference between the PST and PT with respect 

to how many justified their answers, yet it is clear that all participants did not appreciate the 

significance of the mathematical symbols and how to use them, specifically, that mathematical 

symbols should be used only for mathematical symbols. This was clear since even when the answer 

given was correct (“X”), the justification was generally incorrect (Hassidov & Ilany, 2017; Ilany & 

Hassidov, 2018). The results of this study show that PT feel that mathematical symbols may be used 

in different ways, depending on context: sometimes with respect to the quantity and sometimes to the 

shape or size of graphical images and they did not restrict them only to their mathematical 

significance.  The conclusion is that the participants do not properly understand the significance of 

the symbols =, <, and > nor how to use them. This will, in all probability, mean that they will not 

teach the concepts properly to preschoolers.  Indeed, studies have shown that PT believe the signs can 

be used in many ways. Using the same words in everyday life and in mathematics leads to 

misconceptions regarding the meaning of the mathematical signs. PT thus do not see any problem if 
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a child writes “5 > 5,” and have stated that they teach the child to use the symbol “>” between two 

objects, as “in this case the size is important; in another case the length may be important. It depends 

on the context.”  PT may even believe it is correct to use two different signs at the same time; however, 

they must understand the cognitive conflict that this gives children and must understand that it is 

never possible to use two different signs between two numbers at the same time.  PT must be made 

aware that the signs “<, >, and =” must be used only in the mathematical sense. PT who incorrectly 

see quantity as a graphical concept and do not see the mathematical significance will, most likely, 

pass on this misconception to the children. This might lead the children to think that the size of the 

number or graphical object is what determines the relationship and which symbol to use.  
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Introduction 

Problem solving strategies play one of the major roles in mathematics education research in the last 

decades (Schoenfeld, 1992). Its importance naturally arose from teaching practice in which teachers 

work with solving strategies intuitively, on the basis of their own experience, without any particular 

theoretical framework. One of the authors made an interesting observation in his teaching: there are 

problems with no simple algorithmic solution and more than one solution in which both 

mathematically less experienced solvers and more experienced solvers find the first solution in 

comparable time, but the more experienced solvers are more successful and faster when finding all 

the solutions of the problem. Therefore, measuring of reaction time when solving such problems 

might capture the difference between the above groups of respondents. If it is the case, this connection 

could be used as a further source of information about particular heuristic strategies with implications 

for teaching practice and teacher preparation. 

Theoretical background 

Since Polya (1957) introduced the modern conception of heuristics in mathematics education, a lot 

of research effort has been put into the exploration and description of possible connections between 

the level of mathematical knowledge and the ability to solve non-procedural problems. Problem 

solving process, and especially differences between more and less experienced solvers, have been 

examined by many authors. Lester (1994) summarized main findings in this domain when 

characterizing a good problem solver by five basic characteristics. We follow these findings when 

formulating our research questions: 

1. What relationship is there between the time of finding the first solution and the time of finding 

all the solutions for different groups of solvers? 

2. What relationship is there between parameters of the solutions such as the number of 

solutions, their order and multiplicity of submission, and the solver’s knowledge? 

Methodology 

The learning environment called exhibition grounds is in accordance with our motivation as it 

provides problems to solve with several solving strategies and more than one solution. The task is to 

go through all the rooms of the exhibition center. A solver records his/her way by filling numbers 

into the squares (see Figure 1). Each room can be passed only once. Some rooms are filled by numbers 

from the start which means that these rooms must be visited in a prescribed order. The start and end 

rooms must be on the border of the grid and one can go only left, right, up or down from one room to 

another. It is forbidden to jump rooms, go diagonally, go through the same room twice or leave empty 

rooms behind. The solution is correct when each square is numbered with different numbers from 1 
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to 𝑚 × 𝑛 for an exhibition ground with 𝑚 rows and 𝑛 columns. The exhibition ground used in the 

study and all correct solutions are shown in Figure 1. 

 

Figure 1: Exhibition ground used in the study with all the correct solutions 

The research sample consists of two groups of respondents, 49 students of general high school of age 

16–17 and 28 future mathematics teachers in 1st–3rd year of their study. The sample is an opportunity 

one as our study was exploratory. The exhibition ground from Figure 1 was used in the study. There 

was no time constraint and students received no information that their reaction time is measured due 

to our previous findings that this kind of information can significantly influence a solver’s behavior 

(Pilous & Janda 2017). In total, 77 respondents submitted 305 correct solutions. 

Results and conclusions 

Each respondent found at least one solution, only 15 respondents in total found all five solutions, 12 

from the high school and 3 from the university. Due to the small number of solvers who found all the 

solutions, direct comparison as described in RQ 1 (first solution vs. all solutions) is not significant 

here. However, several relationships between the time of finding the first solution and the time of 

finding all the solutions for both groups of solvers was found. The university respondents found the 

first solution as well as all solutions approximately twice as fast in average as the high school 

respondents, but they spent less time overall on the task and found less unique solutions in average. 

Both groups shared a dominant order of submitted solutions, especially for the first two. We also 

observed similarity between series of average solving times of both groups. The significance and 

interpretation of this observations will be subject of a forthcoming study. 
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Formulating our formulations: the emergence of conviction as 

becoming mathematics teacher educators 
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This paper is an expression of how the authors are collectively becoming mathematics teacher 

educators, as they write and speak into one another’s lives through the process of 

co/autoethnography. Extracts are presented from extended conversations between the authors, 

illustrating their process of formulating through reflecting on, and consciously appreciating, their 

unformulated actions as mathematics teacher educators. In their expression of the process of 

becoming, the authors begin to formulate the notion of conviction. From their enactivist perspective, 

they see their convictions emerging through the process of becoming mathematics teacher educators 

and their process of becoming mathematics teacher educators as the emergence of their convictions.  

Keywords: Becoming, mathematics teacher educators, co/autoethnography, conviction. 

The development of the mathematics teacher educator 

There is a separation articulated in literature within the domain of mathematics teacher education, 

between what is termed as a ‘mathematics teacher educator’ and what is termed a ‘didactician’. Even 

(2014) characterises didacticians as a subset of mathematics teacher educators, specifically, 

didacticians are mathematics teacher educators who “work in the field of teaching development with 

practicing [sic] teachers, including university faculty as well as practice-based mathematics 

educators” (p. 329). The particular feature here of the didactician is the focus on the development of 

practising teachers. Didacticians are not necessarily based at a university and include, for example, 

professional development providers and teacher-leaders. For us, we use mathematics teacher educator 

(MTE) in reference to ourselves. This is not to say that we do not work with practising teachers, but 

it is important to note that we are both based in a university where we work primarily with prospective 

teachers of mathematics on a one-year course, where prospective teachers work towards a 

Postgraduate Certificate in Education (PGCE), that includes qualified teacher status. We each have 

over ten years of experience teaching mathematics in secondary classrooms having both completed 

our PGCEs at the same university in which we now work, on the same course that we now teach. 

Tracy completed her PGCE in 2003 and has worked as an MTE for two and a half years. Julian 

completed his PGCE in 2006 and has worked as an MTE for one year. 

As a community of teacher educators who value teaching practices that incorporate teachers 

researching their own teaching, there is a discernible argument that, as teacher educators, we too 

should participate in such inquiry into our own teaching and development. The development of 

mathematics teacher educators (MTEs) is a growing area of research within mathematics education. 

One useful distinction that has been made within this research domain is between what is termed “the 

education of mathematics teacher educators” and “the mathematics teacher educator as learner” 

(Krainer, Chapman, & Zaslavsky, 2014, p. 431). Research on the education of MTEs reports on 

studies of the preparation and professional development of MTEs through formal courses and 

programs designed specifically to prepare educators to educate teachers. Research on the MTE as 
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learner, however, places its emphasis on the “teacher educators’ autonomous efforts to learn, in 

particular, through reflection and research on their practice” (p. 432). MTEs are in a powerful position 

to research their own lived experience as insiders, rather than outsiders looking in, both as 

practitioners and researchers, researching their own practice.  However, it is still being acknowledged 

(see e.g., Lin & Rowland, 2014) that only a few full studies exist where the prime focus is on the 

learning of the MTE (see e.g., Nicol, 1997; Tzur, 2001), rather than the learning of the MTE being 

reported on as a derivative of the research conducted by those MTEs.  

One such full study on the learning of the MTE from Tzur (2001) is one in which he tells the story of 

his own development as a mathematics teacher educator through self-reflective analysis. This work 

from Tzur demonstrates how powerful self-reflection can be and how it can form the basis of rich 

data about what it might mean to learn as an MTE. Another significant piece of research is found in 

Nicol’s (1997) thesis; Learning to teach prospective teachers to teach mathematics, which is a study 

that investigates the problems, tensions, and dilemmas that she experienced as a beginner teacher 

educator learning to teach prospective elementary teachers. Her study reports her efforts in designing 

and investigating a pedagogy of mathematics teacher education, which makes attempts to place 

inquiry at the focus of teaching and learning. 

What and how mathematics teacher educators learn 

In 2008, a series of International handbooks of mathematics teacher education were published, in four 

volumes (with new editions currently underway). Volume 4: The mathematics teacher educator as a 

developing professional (Jaworski & Wood, (Eds.), 2008), described as focusing on the knowledge 

and roles of teacher educators working with teachers in teacher education processes and practices, is 

divided into three sections: Challenges to and theory in mathematics teacher education; Reflection on 

developing as a mathematics teacher educator; and Working with prospective and practising teachers; 

what we learn; what we come to know. A distinction being made here, which is also made by Lin and 

Rowland (2014) in their critical overview of research on teacher knowledge and professional 

development from a decade of PME (Psychology of Mathematics Education) conference proceedings, 

is between what and how mathematics teacher educators learn. For Lin and Rowland, studies on what 

MTEs learn are “classified as aiming to reveal or characterise mathematics educator’s learning 

outcomes”, whereas studies of how MTEs learn aim to “explore or comment on mathematics 

educators’ learning processes” (p. 509). According to Lin and Rowland, MTE learning had not been 

frequently reported on and studies that investigate how-oriented-questions were the least frequent of 

all (they identified three research reports over the decade of proceedings). This paper is one response 

to the gap in the how of MTE learning, but in reporting our research, we also accept the inevitability 

of the what; in reporting any research, including research into process, there is an immediate 

objectification. 

Becoming mathematics teacher educators 

In his 1962 essay, Rogers offers a vision of an individual who is in the process of becoming a fully 

functioning person. The individual that Rogers describes is becoming “all of one piece”, where the 

“distinctions between ‘role self’ and ‘real self’, between defensive façade and real feelings, between 
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conscious and unconscious, are all growing less” (p. 29). Here, we begin to comprehend the process 

of becoming as a unification of ourselves at the surface level with ourselves at the level of depth. 

If we consider becoming from the perspective of learning, Hager and Hodkinson (2009) adopt a 

metaphor of learning as becoming in that “people become through learning and learn through 

becoming whether they wish to do so or not, and whether they are aware of the process or not” (p. 

633). This view of learning as an inevitable process, rather than as a fixed state of having become (as 

with, for example, an acquisition model of learning (see Sfard, 1998)), signifies a change in the learner 

themselves as well as a change in the activity the learner is engaging with.   

From an enactivist perspective, we see knowing as doing through being in and bringing forth a world 

in which we participate. The process of coming to know is thus a process of becoming through which 

both knower and known are transformed. Within enactivism, knowing is embodied, yet extends from 

the body of the individual in that the individual is not seen as distinct from the world but embedded 

in “a series of increasingly complex systems” (Sumara & Davis, 1997, p. 416) such as classrooms or 

universities. Unlike constructivism, where the focus is on cognitive knowing, enactivism considers 

alternative ways of knowing, including non-cognitive ways. In terms of epistemology, a useful 

categorisation of types of human action is made by Davis (1996, p. 193) that is, the “formulated” 

(cognitive) and the “unformulated” (non-cognitive) and with enactivism, the emphasis is on the 

unformulated. Davis goes on to propose that “formulations continually emerge from our unformulated 

actions” (pp. 193–194) and it is through this constant emergence that we develop our habits as MTEs, 

our “know-how” (Varela, 1999, p. 19). In contrast to know-how, we “know-what” through a process 

involving “reflection and conscious appreciation” (Varela, 1999, p. 19) and therefore becoming 

MTEs can be viewed as a process of continual emergence of our formulations (know-what) through 

jointly reflecting on, and consciously appreciating, our unformulated actions (know-how), and so it 

goes on. 

Becoming mathematics teacher educators through co/autoethnography 

Julian:  I think when we spoke before, you made use of that [word] when you talked about 

what happened in a maths class, in your classroom. 

Tracy:  But I used that without really thinking about what it meant. I mean, I don’t think 

I’ve ever thought about what it meant quite like I am now. 

Our conversations are not bounded by a working day and move beyond strict boundaries of a 

workplace agenda to touch on concerns of our wider lives. We seek to make explicit use of extended 

conversations with one another to support our becoming through continual emergence of our 

formulations. Having captured two such extended conversations, we draw on co/autoethnographic 

(Coia & Taylor, 2005) methods, moving us beyond our accounts of our unformulated actions, as we 

write and speak into one another’s lives. As enactivists, we reject the strict separation of self/other 

that appears in existing co/autoethnographic literature (e.g. Coia & Taylor, 2005) and instead look to 

the co-emergence of shared meaning through being connected (Begg, 2001) in becoming MTEs 

together. For us, the process of co/autoethnography does not enable our becoming, rather our 

combining in the process is itself the becoming. In what follows, we present three extracts from two 

of our extended conversations, illustrating our process of formulating through reflecting on and 
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consciously appreciating our unformulated actions as MTEs. We see these extracts as expressions of 

our becoming.  

Extract 1: Modelling being in a classroom 

Tracy: I just didn’t feel like I could do it. I didn’t feel like I could just go and tell this 25-

year-old man to stop rocking on his chair, whereas if he was a 16-year-old boy, I 

wouldn’t have any issue doing it. 

Julian: So, you saw this as an issue with teaching adults? 

Tracy: I didn’t know what else it could be, I mean, they’re adults and they’re children, 

that’s the difference right, but it’s not that, it just didn’t make sense at the time. 

Julian: And now? 

Tracy: And now I’d quite happily tell someone not to rock on their chair in the PGCE 

group, and I think the difference is how I see myself, in that role, not as authoritarian 

or something, but that I’m modelling being in a classroom, and suddenly then it’s 

okay. So, I’m doing it for a different reason. I’m not trying to teach him not to hurt 

himself. I mean he might do, he might well hurt himself, but, it’s then not about me 

and my issue that they’re adults. That’s not the issue anymore. The issue is that I 

want that room to feel like I want their classrooms to feel; safe and respectful.  

Julian: Modelling being in a classroom feels like another one of those tenets. 

Tracy: Yes, it is! and suddenly, I’ve got this conviction and now I can go and tell people 

to stop rocking back on their chairs. 

Extract 2: Your relationship is with the mentor 

Julian: I’ve felt really positive about the opportunities that have come up to work on 

mathematics with the school-based mentors when I’ve gone into schools for joint 

lesson observations. 

Tracy: During the lessons? 

Julian: Yes, but also afterwards. There have been one or two cases that I guess have stayed 

with me, of the three of us talking after the lesson and carrying on working on the 

mathematics, like moving from area of compound shapes to think about conversion 

between units of measurement in area, and then in volume. The sharing of different 

images to illustrate those felt really powerful between the three of us. 

Tracy: Say more… 

Julian: So, part of it was me exploring the wisdom of the course that in the debrief 

conversations we as university tutors are really working with the mentors. I suppose 

at this point, it has been partly me trying to inhabit the convictions that were spoken 

in the context of the course. But now I can see that it also really connects with 

something that emerged for me strongly when I moved from the PGCE course to 
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start in my first school, which was about working on mathematics together as 

teachers. 

Tracy: So, you were carrying this on from your role as a teacher, with other teachers? 

Julian: Well, yes. But really, that move to my first teaching job was a sense of loss, of no 

longer having those spaces to work together on the mathematics. And it’s something 

I’ve tried to grow again ever since. So, working with the mentor feels like modelling 

as well as working on the mathematics, creating a space together to unpack what’s 

going on. It has developed another layer of significance for me. I feel a conviction 

about the value of creating those spaces with the mentor, who might then expand 

the spaces throughout their work with our prospective teacher. 

Extract 3: Working at the meta level 

Tracy: We talked before about an algebra session where I used a visualisation. I hadn’t 

spent long enough working through what I was going to say in setting up the 

visualisation, so it wasn’t a surprise that there were a few different versions of what 

people were seeing.  

Julian: What people were seeing as the image? 

Tracy: Yes, their mental images. Having said that, if I had somehow set it up so perfectly 

that everybody saw the same thing, then we wouldn’t have spent that period of time 

testing out one another’s images, I had to work quite hard to make sure that 

happened and that was a good discipline for them to experience I think. 

Julian: I think you said that you’d commented along those lines during the session, 

something about it being important to spend time making sure everybody was 

seeing the same thing.   

Tracy: Yes, that’s working at the meta level right? I think I might have said something 

similar doing this in a mathematics classroom though so that’s not something new.  

Julian: So, what is new, what is different now? 

Tracy: Someone from the group asked a question while I was setting up the visualisation 

and I refused to answer it, I think maybe I gestured something to communicate that 

when it happened, and then much later on, I returned to it and addressed my not 

answering someone’s question explicitly. Then I think I said something like, 

“something you need in the classroom, if you’re going to do visualisation, is to 

establish the rules, and I don’t think I established the rules clearly”. I don’t think I 

would have said that in my classroom at school. Again, that is about being meta, 

being explicit about my decision making. 

Julian: For me there is also something there about when to step in and step out of the 

mathematics. 

Thematic Working Group 18

Proceedings of CERME11 3353



 

 

Tracy: Yes, a splitting of my attention in that moment, I knew it had to be dealt with, but 

not at that time, it got logged as something that had to be returned to. It’s not that 

they must do visualisation, but that if they choose to, there are some rules, rules that 

I had conviction about as a teacher. I guess my conviction now, as a mathematics 

teacher educator, comes from these experiences in the classroom. 

Our emerging formulations: formulating the formulating 

The extracts above serve to express snapshots of our process of becoming MTEs, each one offering 

a sense of us formulating our unformulated actions as MTEs. This next section serves to express our 

emerging formulations from having brought these extracts together, formulations that have arisen for 

us through a process of reflecting on and consciously appreciating within and across these three 

snapshots. The title of this section is our attempt at emphasising the continual emergence of new 

formulations, through formulating (expressed in this section) the formulating (expressed in our 

extracts). One way of us consciously appreciating the formulating expressed within these three 

extracts is by looking for patterns both within each extract and across all three extracts. 

Each extract is richly veined with marks of the formulations articulated about the university course 

with which we work. The tenets we hear in these extracts, “I’m modelling being in a classroom”; “as 

university tutors we are really working with the mentors”; “that’s working at the meta level right?”, 

were previously heard in conversations with Laurinda Brown, who was PGCE tutor to each of us, 

and Alf Coles, who has worked on the course with Laurinda and whom we joined as PGCE tutors. 

We have articulated to one another the “trying on” of these tenets at the level of unformulated actions. 

Through the process of becoming MTEs we have begun to make sense of these tenets in ways that 

we find meaningful. Acting on these tenets and developing a sense of owning them can also be seen 

as formulating our formulating.  

There is a sameness which has become apparent to us as we search for patterns across the extracts, 

that reflects something of the structure of each one in relation to how we view the process of becoming 

as the continual co-emergence of our formulations from our unformulated actions.  In extract 1, an 

unformulated action for Tracy was not moving to stop one of the PGCE students rocking on his chair. 

In extract 2, an unformulated action for Julian was his carrying on working on the mathematics. In 

extract 3, an unformulated action for Tracy was refusing to answer a question. From these 

unformulated actions, we try out different formulations on one another as they co-emerge. From the 

extracts we see these formulations are then followed by a sequence of further re-formulations, marked 

by, for example, “but it’s not that”; “yes, but also”; “well, yes. But really”; “having said that”. 

An element of what guided our choice of extracts to present is the emerging theme of conviction. So 

strong has this theme become for us in our conversations, we are no longer able to separate what 

appears from these extracts to be changing or emerging convictions from how we are becoming 

MTEs. What follows is a further formulating, the focus this time on becoming MTEs as the 

emergence of convictions.  
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Becoming mathematics teacher educators as the emergence of convictions 

In the extracts above, we draw repeatedly on language of conviction as we work on our formulations. 

In formulating conviction, we look first to Descartes (1991), who adopted conviction to describe a 

state of belief “when there remains some reason which might lead us to doubt” (p. 147), and 

knowledge as “conviction based on a reason so strong that it can never be shaken by any stronger 

reason” (p. 147). If conviction is to be characterised as belief, strongly held, then it carries with it 

some particular quality that sets it apart from other states of believing. 

For us, however, the sense-making process that informs statements, which might be labelled as 

beliefs, is inherently a product of the emergent interactions of the (changing and changed) individual 

with the (changing and changed) world, for which we adopt the enactivist term “structural coupling” 

(Reid et al. 2000; Maturana, 2002, p. 15). We are interested in how our own sense of conviction 

emerges and becomes something that can be articulated as we are becoming MTEs. We see changes 

in conviction as a manifestation of changes in our structural coupling, strengthened (or weakened) 

through the process of formulating our unformulated actions. Gallagher and Zahavi (2008) identify 

conviction as fundamentally intertwined with changes in ourselves, 

I remain the same as long as I adhere to my convictions; when they change, I change. Ideals and 

convictions are identity-defining; acting against one’s ideals or convictions can mean the 

disintegration (in the sense of a dis-integrity) of one’s wholeness as a person. (p. 206)  

Thus, as our convictions change (or emerge) then we change, through a process of becoming. It is 

our convictions that define us as MTEs (our “identity”) and to act against our convictions, for 

example, if Tracy were to not model a classroom with the PGCE group or if Julian were to not model 

being a mentor, would “mean the disintegration (in the sense of dis-integrity)” of ourselves as MTEs. 

We recognise in ourselves the sense of integrity that comes from being able to identify the alignment 

of our actions and our convictions. Within the Cartesian epistemology mentioned above, conviction 

might be seen as a deficient form of knowing, a position held when there is still doubt. The identity-

defining property of conviction, however, makes conviction, for us, more than a label. From our 

enactivist perspective, we see the emergence of our convictions as coming to know. We view our 

convictions emerging through the process of becoming MTEs, and our process of becoming MTEs 

as the emergence of our convictions. 

It was our intent to present in this paper the process of our becoming, the process of our formulating. 

We acknowledge that in the creation of this paper there exists a paradox. The value for us continues 

to be in the formulating (the how) but we accept that what gets presented here is inevitably a 

formulation (the what) at a point in time.  
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The central purpose of this research is to design a series of prompts that arise based on classroom 

events that emerge when using technology to solve problems. We analyze several teaching situations 

that occur when solving problems using GeoGebra and study a case involving two mathematics 

majors who are taking a course called “Mathematics for Teaching”. These prompts offer a resource 

for training future secondary school mathematics teachers, through the development of their 

Mathematical Understanding for Secondary Teaching [MUST] (Heid, Wilson, & Blume, 2015). 

Keywords: Problem solving, Teacher education, Technology, GeoGebra. 

Introduction 

When training mathematics teachers, it is agreed that the knowledge of the discipline that teachers 

require is substantially different from that needed by other professionals who also use mathematics 

(Ball, Thames, & Phelps, 2008). This knowledge includes knowing what and how, which Kilpatrick, 

et al. (2015) incorporate to expand the construct Mathematical Knowledge for Teaching into 

Mathematical Understanding for Teaching (p. 13). This mathematical knowledge and its use in the 

classroom are described in detail within the MUST framework (Heid, Wilson, & Blume, 2015) and 

will be used in this research. One of our reasons for using this framework is that it relies on analyzing 

the experiences of secondary school mathematics teachers. These experiences generate prompts based 

on a series of events that arise during the teaching and learning process, and that are used to build 

resources for training teachers. 

The experiences that arise in teaching and learning contexts where technology is involved exhibit 

specific characteristics that have to be identified and analyzed. What specific events appear when 

using technology? Are there differences from those that arise when using paper and pencil? Can 

prompts be developed based on these technological events? 

The goal of our research is to identify those events that take place during a problem-solving scenario 

that relies on technology, and to generate prompts based on these events. We believe that these 

prompts would be much more difficult to generate in a problem-solving context that relies solely on 

the use of pencil and paper. To this end, we analyze the case of two students solving a problem using 

Dynamic Geometry Systems (DGS). 

Conceptual framework 

When selecting a framework for our research, it is important to consider the nature of teachers’ 

knowledge. In this regard, Heid, Wilson, & Blume (2015) note that  
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Any such Framework needs to capture the dynamic nature of teachers’ use of mathematics in their 

teaching rather than simply to list knowledge, skills, and proficiencies for teaching mathematics. 

(p. 41) 

This is why we opted to select the MUST reference framework to define the prompts that arise when 

using technology while solving problems. As defined by Kilpatrick, et al. (2015), a prompt is:  

an episode that has occurred in the context of teaching mathematics (usually in a mathematics 

classroom) and raises issues that illuminate the mathematics understanding that would be 

beneficial for secondary teachers. (p. 3) 

The mathematics understanding referred to in the above paragraph may be viewed from three 

perspectives, Mathematical Proficiency, Mathematical Activity and Mathematical Context of 

Teaching, each with different strands (see chapter 2 from Heid, et al., 2015, for more details). 

Mathematical Proficiency refers to the mathematical knowledge and skills that a teacher needs in 

order to teach the subject in secondary education, which includes not only the mathematics associated 

with this educational level, but also that in previous and subsequent levels. When we speak of 

Mathematical Activity, we refer to the set of specific mathematical actions that a teacher has to do as 

part of the profession, such as linking concepts, justifying arguments and generalizing mathematical 

facts. Lastly, Mathematical Context of Teaching includes aspects of mathematical understanding that 

come into play exclusively in the teaching profession, such as, for example, understanding how 

students think mathematically, recognizing the mathematical nature of their questions and mistakes 

or recognizing when a mathematical argument or solution provided by a student is incomplete or 

satisfies the conditions of a problem. 

To define these prompts, we first identify events that occur in various problem-solving episodes. 

Santos-Trigo and Camacho-Machín (2013), taking into account Polya’s work, analyze different paths 

taken by a solver when faced with the task of solving a problem using technology. Based on this 

analysis, they identify five episodes: Comprehension Episode, Problem Exploration Episode, The 

Searching for Multiple Approaches Episode, Extension Episode and The Integration Episode (for 

more details, see Santos-Trigo & Camacho-Machín, 2013). 

In this paper, the analysis will focus on the first three episodes: Comprehension Episode, Problem 

Exploration Episode and The Searching for Multiple Approaches Episode. These episodes are 

detailed later in this paper. 

In the context of DGS, the Searching for Multiple Approaches Episode is particularly relevant, as this 

episode requires, not following the same steps, but rather attempting to use different concepts in each 

path in order to enhance the problem-solving process and the learning of mathematics. 

Methodology 

Participants 

Data were collected from a Problem-Solving Workshop implemented during nine two-hour sessions 

of the course Mathematics for Teaching, where students solve the tasks in pairs, using GeoGebra. 

The workshop was taught in the computer laboratory to seventh-semester mathematics majors who, 

in a short time (two years), will be qualified to be secondary school teachers. There were eighteen 
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students enrolled in this course which main goal was to introduce university mathematics students to 

the knowledge for teaching secondary school mathematics. 

Task 

In the workshop, the students solved a total of four problems that had previously been analyzed by 

the research team. In this paper, we analyze only one of the  problems we call Equal chords. 

Equal chords: There are two circles with centers at A and C. Two lines are drawn from each center 

that are tangent to the other circle. The points where these tangents intersect with the circles define 

two chords, IJ and KL (see Figure 1). Prove that the lengths of these two chords are the same, IJ=KL. 

 

Figure 1: The equal chords task 

The main characteristic of this task is that the statement includes a figure that the students must 

construct in order to solve the problem. The construction of the figure gives the problem a series of 

affordances that are important to mathematical understanding for secondary teaching. Santos-Trigo 

(2019) notes that  

With the use of GeoGebra, these questions become relevant not only to identify and explore needed 

to draw the figure, but also provide an opportunity for learners to connect the problem goal with a 

series of mathematical ideas and resources to solve and extend the initial statement. (p. 73) 

Data 

Three types of data were gathered for the analysis: the GeoGebra files, the handwritten notes and the 

recordings of the student pair work sessions, which were made using the OBS Studio software. 

In this research report we use a case study methodology to present an analysis of the work done by a 

pair of students, Evan and Sophie, while solving the problem Equal chords. Both the students and the 

activity were chosen due to the quality and variety of their discussions. 

Data Analysis and Results 

Comprehension Episode 

The students began by reproducing the figure shown in the problem statement. Both agreed in the 

way in which the circumferences, the intersection points and the chords were drawn, but they 

disagreed when representing the tangent lines, which entailed a combination of mathematical and 

technical aspects involving the use of the DGS.  
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The GeoGebra graph shown the two circles 

Sophie: What are you doing? 

Evan:  Are the points...? [referring to 

the tangent points] 

Sophie: Yes? 

Evan: Yes, E,F,G,H [draws them on 

the circle] and now from here. 

Sophie: Wouldn’t that be later? With 

the construction of the 

intersection point between the 

tangent and the … 

Evan: No, leave from there. We have 

to calculate now. Click on that 

[indicating to Sophie the 

perpendicular line tool to 

expand the menu], tangents 

and points  

 

With the “Tangents” tool selected, they click on one of the centers and the points drawn on the 

circumference. Nothing happens. 

Sophie: Yes, right  

They repeat the process several times. At one point, they click on the circumference and the 

tangents appear.  

Evan: What did you do? 

Sophie: I clicked on the circumference, 

not on the points [referring to 

the points they had drawn 

earlier] 

 

It is important to realize that the concept of a straight tangent to a circle from an outside point involves 

three objects: the outside point, the circle and the straight tangent. These objects are related with one 

another and with other objects, like the tangent point and the radius (which is perpendicular to the 

tangent). The “Tangent” tool is a programmed function whose inputs are a point and a conic section 

or curve. This means that when the students try to represent the straight tangent by selecting two 

points, GeoGebra helps them realize that the tangent point cannot be placed by “eyeballing” it, as one 

would do with pencil and paper; rather, a relationship must be established between the outside point 
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and the circle. Moreover, this way of building tangent lines is robust, as it allows preserving the 

tangency when any of the objects is dragged. This first event yields the following:  

Prompt 1 

Two students want to represent the tangent lines to a circle from an outside point. To do so, they 

represent a point that is on the circumference and then use the “Tangents” tool by selecting that 

point and the outside point. The software does not generate the tangent line. In fact, the software 

does not show anything. Why is this? What important properties relate the radii of the 

circumference and the straight lines tangent to it?  

Table 1: Prompt that arose during the Comprehension Episode  

Problem exploration episode 

The students finished building the figure and verified that the chords indeed have the same length. 

Then, by dragging the centers of the circles or the points that define their radii, they verified that the 

property holds in a variety of individual cases. They considered how to demonstrate their equality. 

During this episode, the students did several online searches and measured angles, segments and the 

arcs of the circumferences. (Figure 2) 

 

Figure 2: Construction with auxiliary objects  

They drew other lines, like AC, which passes through both centers, and another connecting the points 

where the tangents intersect, M and N, looking for relationships that would let them show the equality 

of the chords. They considered different possibilities: (i) The lengths of the minor arcs IJ and KL are 

the same; (ii) the line perpendicular to chord KL that passes through C also passes through A; (iii) 

the trigonometric ratios of angles MOA and MOC are related by the common side MO of the right 

angles MOA and MOC; (iv) triangles API and MOA are similar and equal to KQC and MOC. This 

episode yielded conversations like the following: 

Evan: Now we have to see what the relationship is between the two circles and the tangent 

lines. 

Sophie: The length of the arc is not the same, is it? 

Evan: Well… 
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Sophie: No, because the line is the same but this one has more of an arc and this one less 

[pointing first to chord IK and then KL], so that has nothing to do with it, you see? 

Evan: But their lengths are the same [moves his hand in an effort to explain]. Do you have 

a string?  

The discussion was mathematical in nature. Can two arcs be traced on the same segment that have 

the same length? The students’ intuitions differed, with Sophie thinking that different arcs have 

different lengths, and Evan thinking the opposite, stating that if the two ends of a piece of string are 

fixed, they can be arranged to create different curves. They tried to settle their differences by 

calculating the lengths of the arcs using GeoGebra. This yields the second prompt. 

Prompt 2 

Using GeoGebra, a student traces out different arcs of a circle atop the same segment and measures 

their length, concluding that they are all the same. How might this relationship be justified? 

Table 2: Prompt that arose during the Problem Exploration Episode 

Searching for Multiple Approaches Episode 

At the end of the first session, a group discussion was held in which the various properties observed 

by all the pairings were presented, some of which had not been previously identified by Evan and 

Sophie, such as, for example: (i) line AC bisects angles GAH and ECF formed by the tangent lines 

(Figure 2); (ii) the radii of the circles at the tangent points are perpendicular to the tangent lines. The 

students considered proving that the chords are equal by approaching the problem in three different 

ways: (i) by writing the general equations for the tangent lines and attempting to find the equations 

for the circles to solve the systems; (ii) by using the fact that line AC bisects the angles that form the 

straight lines and studying the trigonometric ratios of the right angles API, MOA, KQC and MOC; 

(iii) by finding similarity relationships between triangles API and AGC, along with triangles KQC 

and EAC. Being unsuccessful with the first two approaches, they focused on the third. 

Sophie: Why did you draw that? 

[referring to triangle AGC]  

Evan: Because this new triangle is 

similar to these two [referring 

to triangles API and MOA] 

Sophie: The big one? 

Evan: Yes 

Sophie: …but, why is it similar? 

Evan: Because the angles are the 

same 

Sophie: I know that, but are you sure 

that this one here... If the big 

one were similar, shouldn’t 
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this be a right angle? 

[referring to angle ACG] 

Evan: No, similar doesn’t mean they 

are superimposed, it means 

they are equal to one another 

This event, arising from two similar triangles not in the Thales position, yields the following: 

Prompt 3 

In a Problem Solving class to solve problems 

with help from GeoGebra, a student measures 

the angles in two triangles, as shown in the 

figure, and concludes they are similar. When 

this is pointed out to a classmate, the latter is 

surprised because the sides are not parallel. 

Should a pair sides not be parallel? 

 

Table 3: Prompt that arose during the Searching for Multiple Approaches Episode 

Conclusions 

By using technology, students can devote time to look for mathematical properties, discuss them and 

explore different approaches to verify them. We have seen how these types of discussions give rise 

to interesting events for developing prompts that would not easily arise in a context with no 

technology. The questions that students ask themselves by making use of technology would not arise 

if using paper and pencil. For example, Evan and Sophie, when representing the tangent lines from 

an outside point, consider the objects that define them and how they can be drawn so as to preserve 

their property of being tangent to the circle. 

In this research report we identify three events that resulted in three prompts of a different nature, 

depending on how the episodes in which technology is used to solve problems are framed: 

Comprehension Episode, Problem Exploration Episode, The Searching for Multiple Approaches 

Episode (Santos-Trigo & Camacho-Machín, 2013). We also saw that when technology is used to 

solve problems, situations arise that cast doubt and arouse interest in the participants, the prospective 

mathematics teachers. We have also shown that by analyzing these moments, the opportunity is 

created to propose activities to train mathematics teachers. The mathematical endeavor that is 

revealed when the time comes to solve mathematics problems that are properly selected, when 

technology is present, has been shown to be an important element for improving the mathematical 

understanding of properties and results that have often been forgotten. We believe that this type of 

activity must be part of the initial training of mathematics teachers. 

These prompts serve as resources for promoting the development of Mathematical Understanding for 

Secondary Teaching, offering opportunities to reflect on the mathematics related to them. What are 

the underlying mathematical concepts? What mathematical structures are involved? 
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Heid et al. (2015) argue that in the context of training future teachers, developing situations provides 

an opportunity to think about the content of secondary education curricula, to develop activities that 

are based on events related to the use of GeoGebra, activities that generate opportunities to think 

concurrently about the contents of the curriculum and the mathematical ideas that can be explored 

with DGS, and to connect them both.  
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We examine the productiveness of discussions in a professional development (PD) towards 

explorative mathematics instruction (EMI). The artifacts used in the PD session under examination 

were a video-clip of a classroom discussion, together with the Quadrants coding scheme, a scheme 

originally developed for research purposes. We define productive discussions by relying on the 

linguistic tool of lexical chains that point to lexical cohesion. The analysis shows that the use of the 

coding scheme as an artifact, together with a video clip, offered increased opportunities for surfacing 

misalignments between the teachers' framing of learning and instruction and the PD leader's framing 

of it. These misaligned frames, which draw on the Acquisition Pedagogical Discourse, vs. 

Explorations Pedagogical Discourse, are usually difficult to surface.  

Keywords: explorative mathematics instruction, productive pedagogical discussions, professional 

development, lexical cohesion   

Introduction and theoretical background 

For the past three decades, calls for more reform, student-centered, instruction, are voiced in 

mathematics education (Gregg, 1995). We adopt the Commognitive framework, and define such 

instruction as explorative mathematics instruction (EMI), teaching that provides students 

opportunities for explorative participation (Heyd-Metzuyanim, Tabach, & Nachlieli, 2016). Efforts 

to help teachers adopt explorative teaching practices are widespread, mainly through professional 

development (PD) (Sztajn, Borko, & Smith, 2017), yet the processes of learning these practices have 

not yet been sufficiently explicated and theorized. 

Whereas teachers who teach in a teacher-centered approach rely on an Acquisition Discourse, those 

who promote student-centered instruction rely on an Explorations Discourse. Our use of Discourse 

(with a capital D) here comes to signify the historical, social and institutionalized nature of these 

pedagogical Discourses, which are not just a matter of how teachers and teacher-educators talk, they 

exist in documents, regulations and curricula. One of the best examples of the Explorations Discourse 

can be found in "reform" documents such as the NCTM (2000). The Acquisition Discourse does not 

have such institutional documents as exemplary instantiations, yet it is the common Discourse that is 

often seen in classrooms worldwide (Nachlieli & Tabach, 2018). In documents, it can often be found 

as the anti-thesis of actions valued by the Explorations Discourse (for example, by stating that 

teachers should not be using their time in the classroom for 'drill and practice' or that students' ideas 

are those that need to be heard, not teachers') (Heyd-Metzuyanim & Shabtay, 2019). Pedagogical 

discourse (with a small d) – that discourse which includes teachers' talk (inter or intra-personal) about 

how, what and whom to teach, draws upon the pedagogical Discourses, often in a multi-voiced 

combination of Explorations and Acquisition Discourses. There is never a teacher (or teacher 
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educator) that talks "purely" in one of these Discourses, but PD leaders or teacher educators that try 

to move teachers towards more explorative instruction often draw more on the Explorations 

Discourse, whereas teachers who are initial participants in such PDs often draw more on the 

Acquisition Discourse.  

Acquisition Discourse rests on the assumptions that learning mathematics entails acquiring a certain 

set of facts and skills, where the role of the teacher is to "dispense" this knowledge, and the role of 

the student is to "acquire" it. Accordingly, teachers relying on an Acquisition Discourse value the 

demonstration (by the teacher) and the execution (by the student) of precise procedures. Different 

realizations of mathematical objects (Sfard, 2008), as well as different procedures for solving similar 

problems are less valued since they are not necessarily efficient and since they can be a source of 

"confusion" for the students. In contrast, Exploration Discourse frames learning as a form of 

participation in a community, where mathematical objects are explored and narratives about them are 

authored by students, facilitated by the more experienced participant, namely the teacher. Teachers 

relying on the Explorations Discourse value the presentation of different realizations of mathematical 

objects, and the authoring of narratives by students, even if those are not yet articulated precisely 

according to the rules of the mathematical community (Heyd-Metzuyanim & Shabtay, 2019). 

Previous studies have shown that shifting from Acquisition towards Explorations pedagogical 

Discourse is a difficult and complex process (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2018b). It 

has also been shown that this process involves misaligned frames (Heyd-Metzuyanim, Munter, & 

Greeno, 2018a). Frames are those parts of the pedagogical discourse that relate to interpretations. 

They are usually tacit, and take form in what people notice, accentuate and foreground. In relations 

to these frames of classroom instruction, Heyd-Metzuyanim et al. (2018a) differentiated between the 

subjectifying aspects of frames, namely, those interpretations relating to who speaks in the classroom, 

and the mathematizing aspects of frames: what mathematical objects and routines are talked about. 

In their study of a US teacher participating in a PD intended to promote EMI, Heyd-Metzuyanim et 

al. (2018a) noticed that the teacher was well aligned with her PD coach in relation to the subjectifying 

aspects of framing the envisioned lesson that they were planning together: they both valued students' 

discussion, group work and agency. Yet with relation to the mathematizing aspects of the frame, they 

differed. While the PD coach aimed to expose students to different realizations of the mathematical 

object at the focus of the lesson, the teacher was focused only on the execution of specific procedures. 

This misalignment went unnoticed during the coaching session, yet led to the failure of the lesson 

planned together by the two parties. This case highlighted the need to study what factors can 

contribute to more productive discussions in a PD setting, which can surface misalignments and 

provide opportunities for teachers to engage with more implicit aspects of the Exploration 

pedagogical discourse. 

Productive discussions in PD settings have been the focus of increasing numbers of studies (e.g. 

Borko, Jacobs, Eiteljorg, & Pittman, 2008). Many have pointed to the usefulness of video to increase 

the productiveness of teachers' conversations as well as the utility of observation-assisting artifacts 

such as protocols and scoring rubrics to fix teachers' attention on important aspects of instruction 

(Borko et al., 2008; Schoenfeld, 2017). Yet studies examining the usefulness of video and 

observational artifacts rarely explicate what "productive discussions" actually means. In our specific 
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context of promoting EMI, our assumption is that teachers in the PD setting start out by mostly 

drawing on Acquisition Discourse whereas the PD leader draws mostly on the Explorations 

Discourse. This may lead to tacit differing interpretations (frames) that go unnoticed since the 

participants (teacher and leader) assume they are talking about the same thing while in fact they are 

framing teaching-learning interactions differently, in accordance with the differing Discourses on 

which these frames draw. Thus, a productive discussion, in the context of these sessions, would be a 

discussion that surfaces misalignment between Acquisition frames of teachers vs. Exploration frames 

of the PD leader.  

We turn to the notions of lexical cohesion (Halliday & Hasan, 1976) and lexical chains (Morris and 

Hirst, 1991) to conceptualize productiveness of discussion for our purpose. Cohesion is a semantic 

term that refers to the meanings that exist within the text (Halliday & Hasan, 1976). Cohesion occurs 

where the interpretation of some element in the text is dependent on that of another. As argued by 

Morris and Hirst (1991), lexical chains help determine coherence and discourse structure, and hence 

the larger meaning of the text. We adopt the idea here to study the cohesion of the text that was 

produced by the teachers and instructors during the discussions in the PD and thus to learn about the 

productivity of the pedagogical discourse by visually showing the topics discussed and followed and 

the specific words chosen by different participants. Our research goal is thus to characterize 

productive discourse processes that promote pedagogical discourse of explorations by examining 

discourse cohesion and its relation to the surfacing of misaligned frames.  

Method 

The study took place in the context of the TEAMS PD program (Teaching Exploratively for All 

Mathematics Students), a program that included 16 4-hours sessions over two years (2016-2017). The 

PD introduces teachers to the 5 Practices for Orchestrating Mathematics Discussions (Smith & Stein, 

2011) as well as to Accountable Talk™ tools (Heyd-Metzuyanim et al., 2018b). Teachers 

participating in this program were relatively experienced (ranging from 15-31 years of teaching). 14 

of the teachers taught in middle-school and 2 taught in elementary school. 9 teachers continued from 

the 1st to the 2nd year. At the end of the first year, we analyzed the first year data using the Quadrants 

coding scheme (QCS) (Stein et al., 2017). The analyzed data included 3-4 video-recorded lessons of 

each of the participating teachers. Our analysis revealed that teachers were adopting explorative 

instructional practices to varying extents. In particular, our findings showed that teachers had trouble 

to maintain Explicit Attention to Concepts (EAC) whenever they raised Students Opportunities to 

Struggle (SOS). Through the process of analyzing teachers' videos according to the QCS, we came 

to the realization that such a process may be beneficial for the teachers as well. Therefore, we chose 

to open the second year of the PD with introducing the QCS and the findings of our analysis.  

For the current study, we watched and partially transcribed all 16 PD sessions. Partial transcriptions 

were intended to capture the activities of the session, as well as important conversations and themes. 

Based on these partial transcriptions, we focused on the first session of the 2nd year since it was a 

pivotal session in several aspects. First, it was where we made our first use of the QCS (Stein et al., 

2017) together with video, in attempt to assist teachers to better grasp our vision of EMI. We thus 

chose to present two rubrics (EAC and SOS) to the teachers, together with a de-identified video of 
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one lesson which we thought was particularly rich in opportunities for EMI. The rubrics each include 

4 or 5 levels with 1 being lowest. Presentation of the full rubrics is beyond the scope of this report 

but the relevant parts for the reported discussion will be detailed in the findings section. Viewing this 

session at the end of the year, after all sessions were observed and partially transcribed, revealed that 

this indeed was a session where intense pedagogical reasoning occurred, yet only in specific episodes. 

To better understand these occurrences and the discursive processes underlying them, we fully 

transcribed the session, after which we chose two clips from the discussion. These clips were similar 

in that they both referred to the QCS (in particular, to the EAC rubric) as well as included some 

“example” of instruction to talk about, yet different in that one of them was before the video was 

shown and the other after it. This offered us an opportunity to examine more closely the role of the 

video, together with the QCS, in the rising level of productiveness of the talk.  

Findings 

The session that we chose to focus on began with Talli (2nd author and leader of the PD) presenting 

to the teachers the results of the 1st year video analysis, in order to launch the main focus of the 2nd 

year PD plan: to work with teachers on how to preserve conceptual depth while letting students author 

mathematical narratives and struggle with problems on their own. Talli then presented the teachers 

two rubrics from the QCS: the EAC and SOS rubrics. Teachers were asked to read the rubrics in 

groups, discuss them, and were then called for a whole-group discussion. She opened by stating that 

there are no simple criteria for determining if the EAC level is 4, 3, 2 or 1 and that there could be 

“significant arguments” around them, but that those arguments are important because “they help us 

notice nuances”.  

The discussion started in rather unproductive ways. One teacher, Rony, was asked, based on her 

former experience with coding videos according to the Quadrants scheme, to give an example of a 

"level 4" of EAC. She tried doing so, yet other teachers related more to the specificities of her example 

and her choice of concept words, than to levels of the EAC rubric. The lexical chain analysis 

performed on this episode revealed that the EAC lexical chain died off right after Rony's description 

of her envisioned lesson and was not picked up by other teachers. Talli cut off this discussion quite 

promptly, as she was sensing the teachers were not relating to the subject that she considered to be 

the goal of the discussion. Einat (1st author) tried giving examples of lessons that were coded as '4' 

vs. lessons that were coded as '3', yet these were not very productive in eliciting lexical chains focused 

on elements from the EAC rubric either. 

Following that, Talli announced that they will be seeing a 16-minute video-clip of an 8th grade 

classroom discussion around a ratio problem. She first gave out the task so that teachers got an 

opportunity to solve and discuss it shortly before viewing the video. The task read as follows:  

Dafna prepared a necklace of blue and red beads. Two fifths of Dafna's necklace were blue and the 

rest were red. Draw four different possible necklaces.  

Following the viewing of the clip, Talli opened the discussion: 

2.1 Talli Let's start with the attention to concepts 
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2.2 Valerie I did not see here much attention to concepts, by the way… attention to 

concepts… there wasn't much. I hardly wrote any concepts here (on her 

"scoring" worksheet). 

2.3 Talli Which concepts? 

2.4 Lena But attention to concepts needs to be at the beginning of the lesson? Already? 

They just started… 

2.5 Veronica But we didn't watch the end of the lesson, when the teacher summarizes all 

the things that appear on the board. …She called to the board all sorts of 

student groups so that they show what they-…. And she wanted actually, on 

the board, to show all sorts of ways, all sorts of different answers, so that other 

kids from the different groups see what others were thinking. I think that what 

we are not seeing is the end (made by) the teacher, that should be at the end 

of the lesson, after all the answers are shown on the board.  

We see the discourse in this excerpt as productive, since all speakers repeatedly relate to the same 

lexical chain, that of EAC (underlined). We also see all teachers relating repeatedly to the video-clip 

(in wavy underline), referring to actions observed in it. This shows us the productiveness of the video 

as a tool for supporting the cohesion of the talk, as well as for focusing the teachers on EAC. The 

lexical chain of EAC remained active for 17 turns. Within it, some teachers objected to Valerie's 

assertion that there was not much attention to concepts. For example: 

3.1 Yafit I think that actually there is attention to concepts because, as someone says 

the answer, she repeats things, and then she asks them "do you agree? 

Disagree?" It's a type of, it's also a type of explication of a concept. Or 

clarification. Attention to concept does not have to be writing the concept on 

the board. Also, along the way they said, someone there said the word ratio, 

(quoting the teacher) "oh, you talked about ratio, what did you mean?" And 

then he, like, so I think it's also a type of attention to concepts. 

As the discussion continued, some ideas for concepts that would have justified a higher scoring of 

the EAC rubric started being voiced by the teachers. These included "ratio", "expansion", "part whole 

relationship" and "correspondence". Talli revoiced and summarized these ideas, and then she tried 

eliciting other ideas. She asked 

3.2 Talli What else do you have to say about the… what we saw here? What other 

concepts she-, what did the teacher do with these concepts? 

Talli's intention here was to stir the conversation to several mathematical ideas that she thought were 

prominent in the clip, yet none of the teachers seemed to notice them. In particular, she was frustrated 

by the teachers' lack of appreciation of the students' ideas, and most importantly one idea which 

related to the routine of dividing the blue beads to two, finding out the basic unit, then multiplying it 

by 3. The teachers only noticed the routine (employed by the first two students in the clip) of 

expansion: multiplying both sides of the ratio by a constant number. Despite her questions, the 

teachers only repeated the concept names (expansion, part-whole) raised before. As Talli was ready 

to give up and stir the conversation to the issue of scoring the clip, Valerie said: 

3.3 Valerie The fifth, also  

3.4 Talli The fifth, what? 

3.5 Valerie I don't know, the fifth disturbs me here 

3.6 Talli In what way does it disturb you? 

3.7 Valerie Because a fifth of what? Of the blues? The reds? Which fifth (is it) here? 
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3.8 Naomi The fifth of the group (Yafit: The fifth as a part, a part) 

3.9 Valerie But it's a split group. The group is split. Which fifth are (they) talking (about)? 

The 1 out of 5 blues? Of the reds? 

Now, a lively discussion revolved with multiple lexical chain entries, focused on the "fifth". Veronica 

stated it was "once two fifth, once three fifths", adding that "it's dividing by two or dividing by three. 

It depends what they want the fifth (for)".  

One teacher, Lena, got confused by all this discussion of finding "fifths". She said 

4.1 Lena But we already know how many reds and how many blue there are. 

For Talli, this was a good opportunity to highlight one of the student routines she saw as most 

significant in the video clip: 

4.2 Talli No, but, one student came and said another idea. She said, listen, "you want 

to create more necklaces? If you tell me how many blue (beads) there are, I 

will already tell you how many reds there are … I will take the blues, I'll 

divide them by two because … all the blues are two fifth, I will find this one 

part. The other part I will multiply by three, to find the red (ones)". That's the 

fifth. That's the idea of the fifth 

4.3 Lena Oh, OK. So that's a different division. 

Lena's short exclamation is an important indicator of the productiveness of this exchange, where the 

lexical chain around the "fifth" was prominent, along with the lexical chain reporting on students' 

speech in the video. Although there are good reasons to believe most of the teachers did not see the 

importance of the students' routines of division in search of a "unit", Lena's exclamations showed it 

most clearly. Her first request for clarification [4.1] made use of the "how many" quantification word. 

It is therefore highly probable that she was only seeing the routine of multiplying the two sides of the 

ratio (as this routine relates to natural numbers, 2 and 3, multiplied by a coefficient of expansion). In 

addition, her use of "we" in 4.1 for objecting on what "we already know", indicates she was not 

making any differentiation between her own mathematical reasoning and the students' mathematical 

reasoning. In contrast, when she used the word "division" after Talli's explanation [4.3], Lena was 

probably already seeing the routine of dividing into fifth and using the fifth as a unit (since only with 

relation to this routine, the word "division" makes sense). Also, Lena's use of "that" indicates that she 

was now differentiating between her own mathematical reasoning and that of the revoiced student. 

This change may have resulted from Talli's repeated reference to the voice of the student (seen in the 

I pronouns of the video actions lexical chain). 

Misalignment of frames 

The productiveness of talk, which rose considerably once the video and coding scheme were 

introduced to the discussion, made certain misalignments between Talli and the teachers more 

apparent. Interestingly, Talli was able to pick up in real time only on the mathematical aspects. The 

subjectifying aspects remained hidden until the analysis was performed. 

The misalignment of the mathematical aspects of frames was most noticeable in the discussion of the 

"fifth" and in what the teachers saw as important mathematical narratives versus what Talli saw as 

important. Talli interpreted the video clip as containing rich stems for discussion of the ratio object, 

including visual realizations of 2 different "necklaces", the fractions 2/5 and 3/5, the signifiers 2:3 
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and some verbal statements describing routines for calculating the ratio. She therefore thought the 

clip should be scored as a 3, where, according to the EAC rubric 

One or more concepts are discussed and/or defined in some detail. This entails explicit noting of 

the concept in a whole-class setting. Explanation and/or elaboration of critical features of the 

concept may be incomplete, and connections to the larger web of mathematical ideas … are 

notably present, but weak (EAC rubric level 3, the Quadrants coding scheme).  

In contrast, the teachers hardly saw any "concepts" in the clip. It seems that for them, "concepts" 

meant keywords on the board, together with explicit explanations made by the teacher. They were 

not searching for stems of different realizations of the ratio object. Talli therefore insisted on eliciting 

more ideas about "concepts", until finally the "fifth" was raised by Veronica [3.3]. 

The misalignment of frames in the subjectifying aspect was more nuanced. It appears only when one 

looks closely at the pronouns relating to the performer of actions (bolded) in the lexical chains 

referring to the video (wavy-underlined). While Talli talked about routines that surfaced in the 

discussion, focusing mainly on those narratives authored by the students, the teachers almost solely 

focused on the teacher. Veronica [2.5] as well as Yafit [3.1], even while "defending" the lesson as 

containing more attention to concepts than Valerie claimed, still based their justifications on the 

actions of the teacher ("She wanted to show", "she repeats (what the students has said)", "she asked"). 

This focus on the teachers' actions, both for evaluating what did happen and what did not happen in 

the lesson in terms of EAC, was prevalent in most of the teachers' talk.  

Discussion and Conclusions 

This paper's goal was to characterize productive discussions in PD settings that promote EMI, by 

surfacing misalignments between frames of the PD leader, who was drawing on the Explorations 

Discourse and frames of the teachers, who were relying on the Acquisition Discourse. Our analysis 

of the PD pedagogical discussions included identifying lexical chains, both those relating to the rubric 

of EAC and those relating to the video-clip. This analysis showed that by using a video-clip of a 

classroom discussion and the Quadrants rubrics, misalignment between the teachers and the PD leader 

surfaced, and could therefore be referred to and further discussed. The misalignment in 

mathematizing aspects of the explorative frame, which are often difficult to notice (Heyd-

Metzuyanim et al., 2018a), surfaced in this discussion well. However, subjectifying aspects of 

misalignment that related to whose contribution is valued (students or teacher), remained hidden 

during the discussion, perhaps because they were not attended to in advance by the PD leader. Our 

findings strengthen earlier studies regarding the usefulness of using video together with rubric scores 

in a PD setting (e.g. Schoenfeld, 2017). The contribution of this study is also methodological, in 

introducing and exemplifying the use of linguistic tools to analyze the productiveness of PD 

discussions.  
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Introduction 

The poster is about an ongoing study on the efficiency of a two year long in-service program for 25 

mathematics teachers at the University of Iceland. 

In 2014 a report was published by the ministry of Education in Iceland on the teaching of mathematics 

in upper secondary school in Iceland (Jónsdóttir et al. 2014). The report states that among other issues 

there are relatively many out of field teachers teaching mathematics, there is very little use of tasks 

that promote creative reasoning and use of ICT in the teaching of mathematics in upper secondary 

school is not very common. There is a shortage of educated mathematics teachers in the country and 

the Icelandic mathematics curriculum is rather vague on the use of ICT in mathematics so teachers in 

general do not feel required to use it. Many of the teachers interviewed expressed the need for more 

professional development which they felt was inadequate in Iceland. 

After the report was published the University of Iceland started a two year long in-service program 

in the fall of 2015 for 25 mathematics teachers at the University of Iceland. The number of upper-

secondary mathematics teachers in Iceland is about 150 so this was about one sixth of the total number 

of teachers. The aim of the program was to educate out-of-field teachers on various aspects of 

mathematics and mathematics education as well as to increase their use of ICT in the teaching of 

mathematics. The first course in the program was an intensive ICT course covering GeoGebra, 

LaTeX, software for screencasts etc. The teachers were taught basic use of the software and given 

assignments to do in their own teaching. This was followed by courses in combinatorics, statistics, 

mathematics education, calculus, number theory, geometry and mathematical modelling.   

Surveys 

During the 2 years the participants filled in 3 surveys where they were asked about: their expectations, 

organization of the program, usefulness of individual courses, the program as a whole and if and how 

it had affected their teaching and more. 

Use of ICT 

At the end of the first course (September 2015) the teachers filled out a survey (partially based on 

Goos & Bennison, 2008) on their knowledge and views on several types of software as well as the 

likelihood of using them in their future teaching. Their view was generally positive, they had learned 

a lot, they viewed ICT as something that could be used to help students understand mathematics and 

had plans to use ICT in their teaching. At the end of the program (June 2017) the actual use of ICT 

had been a little less than they had planned. 
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Expectations and reasons for participating in the program 

The main reason the participants stated was that they wanted to learn more mathematics and they 

were interested in the content of the program in general. They expressed (in answers to open 

questions) that they wanted to be better at teaching and believed that learning more mathematics 

would make them more secure in their teaching. The next most popular reason was learning to use 

ICT. The possibility to meet other teachers and collaborate with them was not rated very highly as a 

reason to join but turned out to be a valuable experience.  

Program as a whole 

When asked to evaluate the program as a whole (in June 2017) the answers were generally positive 

but some disappointment was expressed such as “there should have been more practical didactics 

teaching us how to teach certain material”. 

Long term usefulness of the program 

Teachers decide in general to participate in a PD program because they have some expectations about 

a positive outcome. Sometimes these expectations are unrealistic and sometimes there is a clash 

between these expectations and the plans of the PD organizers and teachers (see e.g. Nipper et. al. 

2011 and Liljedahl 2014). It is important that PD organizers are aware of this and try to address this 

in their work.  In the organization of the PD program mentioned above the ambition was to improve 

mathematics teaching in upper secondary schools in Iceland so it is therefore of great interest to 

examine further the long-term usefulness of the program. In an ongoing investigation selected 

participant are being interviewed about their overall view about the program, how they handled the 

differences between expectations and reality and if and how the program has resulted in changes in 

their teaching. It is also of interest to see what obstacles they have come across when they wanted to 

make a change in their teaching. 
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In Germany out-of-field elementary school teachers are a frequent phenomenon but not regarded as 

unproblematic. In order to foster the pupils’ algebraic thinking, teachers themselves need to be aware 

of the structures. Additionally, tasks which foster process-related competences too can only be set 

when the teacher knows which discoveries can be made by using a specific task. In this article 

theoretical background is given to process-related competences, teacher training and out-of-field 

teaching at German primary schools. A teacher training course is presented and first insights into 

the algebraic solutions of the participating teachers are given.  

Keywords: Professional development, teacher training, out-of-field teaching, algebraic thinking.  

Introduction 

In Germany, out-of-field teaching, which is to be understood as trained primary school teachers who 

have been trained in different subjects than mathematics, exists fairly frequently in primary schools 

due to terms and structures of the first and second phases of teacher education. As a result, a national 

study points out that nearly one third of all interviewed primary school teachers, according to their 

own statements, teach mathematics outside their area of expertise (Richter, Kuhl, Reimers, & Pant, 

2012). Hence, teacher training courses are needed to support teachers in teaching their daily 

mathematics courses. Therefore, this paper presents a teacher training course for out-of-field primary 

school teachers with the focus on usage of task formats to foster process-related competences.  

Firstly, process-related competences are described and why out-of-field teaching cannot be regarded 

as problem-free. In a second step, the design of the study is described. Thirdly, the teacher training 

design is presented to lead to the fourth part of giving insights into how out-of-field mathematics 

teachers themselves solve arithmetic tasks. 

Theoretical background  

There are several widespread theoretical topics relevant to fully acknowledge the key findings of the 

study which are briefly described in what follows below.  

Process-related competences  

In the German framework, agreements for elementary schools, math competences are divided into 

two different but intertwining kinds. On the one hand, there are content-focused competences, 

including numbers and operations; space and shape; data; frequency and probability; and sizes and 

measuring. On the other hand, there are so called process-related competences. They include 

problem-solving, arguing, communicating, presenting and modelling (KMK, 2004). By now, the 

latter are found in almost every curriculum in all German federal states. They are considered to be 

indispensable for a successful usage, acquisition and implementation of mathematics (KMK, 2005). 

The following example explains that in more depth:  
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Number-chains follow the rules of the Fibonacci sequences. The two first numbers are start numbers, 

which can be chosen freely from all natural numbers 

including 0 (they can also be identical or different). This 

task is one of those which “have the potential to address 

algebraic thinking” (Steinweg, Akinwunmi, & Lenz, 

2018, p. 283). Not only (early) algebra can be fostered 

with number-chains but process-related processes as well. 

The children need to get adequate assignments and support. An assignment which fosters the 

competence of arguing is, for example, one which asks the students to (1) guess what happens when 

the first start number is increased by one, (2) calculate four examples and test their guess, (3) derive 

a rule from that and (4) give justification for the rule. It is important to describe and generalize the 

finding so that the children acquire knowledge about connections and relationships between numbers.  

Eichholz (2018) showed in her study on out-of-field teachers in German elementary school that some 

of the participating teachers show little knowledge about these process-related competences. This 

indicates that there is a necessity to have a closer look at how teachers can be supported in learning 

and teaching general mathematics competences.  

Out-of-field teaching in German primary schools  

Due to the federal education system in Germany, study regulations vary widely in the 16 federal 

states. Although non-obligatory framework agreements state that studies at university to become a 

teacher comprise content knowledge and pedagogical content knowledge in both German and 

mathematics and an additional third subject (KMK, 2013), this is not the case in all states. For an 

overview on whether the education in the first and second phase of teacher education brings forth 

more generalists or specialist see Porsch, 2017. The principle of class teacher (Porsch, 2016) is 

dominant in German elementary school so that out-of-field teaching occurs frequently. However, 

there are enormous variations in percentages of teachers who teach mathematics without being fully 

educated from about 1.5% to almost 45 % in the different federal states (Richter et al., 2012).  

Nevertheless, it is widely known that the competences of a teacher have considerable impact on the 

competences of their pupils. COACTIV, a German wide additional study to PISA, for example, 

showed that both content knowledge and pedagogical content knowledge of a teacher have an impact 

on students’ performances (Baumert & Kunter, 2011). There is not only a high correlation between 

content knowledge and pedagogical content knowledge, content knowledge also proved to be 

mandatory for pedagogical content knowledge (Krauss et al. 2008). Moreover, “[m]ore traditional 

beliefs were associated with more traditional practices” (Stipek, Givvin, Salmon, & Mac Gyvers, 

2001, p. 221), such as emphasis on performance or speed, which contradicts the contemporary views 

on how a good mathematics class should look like. As Porsch (2015) pointed out, out-of-field teachers 

agree less often with constructivist views and therefore, according to self-disclosure, realize them less 

often.  

These results imply that there is a need to focus research on out-of-field teaching in German primary 

schools and its consequences. However, there are quite contradictory results in German research. 

While a nationwide investigation showed that elementary school students have poorer scores when 

Figure 1: Number-chains 
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being taught by an out-of-field teacher, which is especially true for the weakest 5% (Richter et al., 

2012), reanalysis of the same data indicates opposing results. Ziegler and Richter (2017) state that 

other reasons are responsible for the comparably weak performances of these pupils. The fact that 

children with weaker cognitive skills and migrant background experience more out-of-field teaching 

could be an explanation for the first result. Nevertheless, it needs to be investigated why there are 

such differences in out-of-field teaching concerning that group of elementary school pupils.  

(Pre-)Algebra in German primary schools  

“Generalizations are the life-blood of mathematics” (Mason, Burton, & Stacey, 2010, p. 8). However, 

“German primary curricula and standards mention studies on algebra in a very limited way, if at all” 

(Steinweg, Akinwunmi, & Lenz, 2018, p. 284). Nonetheless, problems like little conceptual 

knowledge of variables are as present in Germany as they are in other countries (ibid.). This does not 

mean that there are no opportunities in German elementary school to foster algebraic thinking – but 

it stays implicit: “The objective is to encourage teachers to integrate algebraic thinking into their 

classroom. Moreover, the aim is to enable teachers to become aware of their already addressing 

algebraic thinking” (ibid., p. 286). The presented part of the study focuses on the algebraic thinking 

of teachers based on the assumption that teachers cannot set adequate tasks to foster algebraic thinking 

if they have not completely understood the mathematical structures themselves. This knowledge 

provides them with the opportunity to concentrate the pupils’ focus on interesting patterns and 

structures. 

Teacher training  

“Professional teachers require professional development” (Wilson, & Berne, 1999, p. 173). That there 

is a need for teacher training is commonly known, so various research results can be used to develop 

and legitimate the presented teacher training course. There are five core features which can be 

identified in most research literature: (1) duration, (2) content-focus, (3) active learning, (4) collective 

participation and (5) coherence (i.e., Desimone, 2009; Garet, Porter, Desimone, Biram, & Yoon, 

2001). Derived from these core features of teacher training, the German National Center for 

Mathematics Teacher Training (Deutsches Zentrum für Lehrerbildung Mathematik, DZLM) has 

developed six design principles: participant orientation, competence orientation, diversity of teaching 

and learning, case study, stimulating cooperation and stimulating reflection (Barzel, & Selter, 2015). 

The following project is affiliated to the DZLM, however, elaborating on the six DZLM design 

principles is not possible in the scope of this paper (see Barzel, & Selter, 2015).  

Design of the study 

“Practice, at least in education, requires a cyclic alteration of research and development” 

(Freudenthal, 1991, p. 159). That is why this study was performed cyclically and was constantly 

revised. Prediger’s working group has developed a Design Research Cycle that is specifically adapted 

“for teachers with a focus on content-specific professionalization processes” (Prediger, Schnell, & 

Rösike, 2016, p. 97). The cycle is divided into four working areas which are “(a) specifying and 

structuring PD goals and contents in hypothetical intended professionalization trajectories, (b) 

developing the specific PD design, (c) conducting and analyzing design experiments in PD settings, 
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and (d) developing contributions to local theories on professionalization processes” (ibid., p. 98). The 

examined course was performed three times, with results from the first two courses being presented.  

To gain insights into the level of knowledge and the beliefs of the participating teachers – about 25 

in the first two circles – before and after the course, several research tools were used. At the beginning 

of the first lesson and in the last there were two different questionnaires. The first examines beliefs 

of how mathematics is learned, how it must be taught, the teachers’ self-concept regarding the 

process-related competences and other related features. These items are all from tested questionnaires 

which fulfil common quality criteria. The second questionnaire, which was designed by the author, 

is about how the participants themselves solve two different elementary school tasks. An operative 

change must be described in a first step. In a second step, the changes must be explained at elementary 

school level and, thirdly, the participants are asked to give an algebraic explanation. Each participant 

generates his or her personal code, so that the questionnaires stay anonymous but can be matched. 

Data evaluation is made mainly qualitatively by comparing pre- and posttest results and (possible) 

changes in beliefs. However, categories have been created, to allow statements about trends. 

Additionally, semi-standardized interviews with volunteers were conducted. The focus is on the 

questionnaire about the elementary school tasks to gain answers to the research question: How far do 

the algebraic solutions of out-of-field teachers primary school teachers, who participate in a training 

course with a focus on tasks (formats) to foster the process-related competences, change?  

Design of the teacher training course 

Based on the core features of teacher training and the DZLM design principles, the constructed course 

is presented briefly, before one exemplary period is described in more detail.  

There are five appointments which last three hours. For each meeting one typical elementary school 

task format is combined with one process-related competence (except modelling), so that the 

participants gain knowledge in two different ways. On the one hand they are supposed to completely 

understand the task on a deeper mathematical level. On the other hand, they should be able to use 

their (newly gained) knowledge to set assignments which foster the process-related competences as 

well as the content-related ones (with help from Primakom, a platform for out-of-field teachers on 

which they can undertake training – regardless of point or period of time or place).   

 Topic of the appointment Primakom pages  

1 Fostering process-related competences – documentation 

with the example of discovery calculation packs 

• Mathematics – more than 

calculation  

2 Recognizing and explaining patterns and structures, op-

erative changes with the example of Fibonacci sequences  

• Fibonacci sequence 

• Arguing  

3 Discovering and communicative math classes – math 

conferences with the example of number pyramids 

• Number pyramids  

• Communicating  

4 Combinatorics – problem solving strategies of pupils with 

the example of “building colorful towers”  

• Building colorful towers 

• Problem solving  
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5 Good geometric tasks – building up concepts of symmetry 

and space with the example of fold-and-cut tasks 

• Fold-and-cut-tasks 

• Presenting  

Table 1: Topics of the Appointment  

Between two appointments there are always approximately four school weeks, distance phase, so that 

the participating teachers have the opportunity to try out what they have acquired in the presence 

phase beforehand. Reflecting on one’s own lessons can be enabled only when following this concept 

of duration, which is essential, according to Hippel (2001), when wanting to take the step from 

professional knowledge to professional action. In order to provide support during the distance phases, 

each topic is supplemented with one or two pages of an internet site (https://primakom.dzlm.de). The 

content focus is realized through the concentration on task formats and process-related competences. 

This covers the point of coherence, since these tasks can be found in almost every elementary school 

mathematics textbook allocated to different grades and are adaptable for all grades so that every 

participating teacher can use what is learned during the presence phases in their own class in the 

distance phases. To satisfy active learning, the participating teachers solve assignments with the focus 

on algebraic structures of the task. Additionally, they are asked to illustrate their findings using 

elementary school appropriate material, for example sachets, and variables. 

First results  

In the questionnaire about the teachers’ solutions of elementary school tasks, in this example number-

chains, the teachers are asked to describe operative changes 

in number-chains, to give an explanation where these 

changes derive from what they could use in their elementary 

school classes and to give an algebraic explanation. It 

becomes clear that the participating teachers differ widely in 

their explaining and algebraic competences at the beginning 

of the course. Two examples, in each case of the same 

participants, of the pre- and post-tests for the following 

tasks are presented in what follows below: “Give an algebraic explanation (with variables) for the 

changes of the last number. Also give a reason for your algebraic explanation”. As shown in table 1, 

number-chains have been discussed during the course. 

In contrast, the other task in the questionnaire has not 

been talked about during the course. The first example 

of the pre-test illustrates that some conventions are 

known, for example, that variables are represented by 

small letters and often start with a. The explanation is, 

“When I add to a two numbers b + c, I get the final 

number d. If I increase both numbers by 1, the final 

number increases by two”. But the formation rules do 

not become clearer by the variables because they do not show the connections between the two 

starting numbers and the final number. That is why it cannot be counted as an explanation for the 

increase of the final number. But it has been recognized that the second starting number has increased 

by one, the third number as well and the final number by two. Nonetheless, the causal relation to the 

Figure 2: Operative changes in number-

chains 

Figure 3: Pretest teacher A 
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formation rules is not established.  In the post-test, it can be seen that some other mathematical 

conventions have not been noted, such as that the notation of 

two variables without an operation sign stands for 

multiplication instead of addition. In the teacher’s 

explanation, however, it becomes clear that she knows it is 

addition: “In the addition of two variables b is taken twice, 

so that the result is increased by two times b”. This could be 

because, during the course, the elementary-school- 

appropriate representation to support the pupils’ generalizing competences are little sachets and no 

operation sign is needed in this case.  

Teacher B tries to illustrate the formation rules similar to teacher A. She describes: “The first number-

chain consists of (in the little chart) a: starting number, 

b: 2nd number, c: 3rd number, d: final number. The 

other numbers need to change”. This, again, is no 

illustration of the formation rules of the number-chains. 

But the changes are marked by the numbers in the 

circles, although this is not highlighting why these 

changes occur. In contrast to the pre-test, the post-test 

shows a different result for teacher B as well. She highlights the 2b by circling and underlining and 

explains “When b is increased by one, the final 

number is increased by two because b is two times in 

the final number”. The formation rule gets evident 

through the used variables, but she does not use 

numbers to illustrate the changes. Nonetheless, she 

explains that because of two b in the final number, by 

whichever number b is increased, it is doubled in the 

final number. This is, in contrast to the pre-test, a very good algebraic explanation.  

Both examples show that there is a growth in algebraic competences for these two teachers. While in 

the beginning the formation rules cannot be expressed algebraically, the post-test shows that they can 

illustrate the changes and the reason for this case after the course. Their explanations change from 

being descriptive to being explanatory. This tendency emerges in a first analysis for the elementary 

school appropriate explanation as well as for the algebraic explanation. Before the course, the changes 

were described, but the answers of the participating teachers were not fully coherent and explanatory. 

This is only true for some teachers. A few participants were able to express the reasons for the 

operative changes in the pre-test as well. However, there is a very rare, in this case only one, 

questionnaire which is categorized as being fully explanatory in both questions (elementary school 

Figure 5: Pre-test teacher B 

Figure 6: Post-test teacher B 

Figure 4: Post-test teacher A 
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appropriate and algebraic). Whether the teachers were not able to see where the changes derive from 

or whether they could not express it properly, either with words or variables, cannot be answered.  

Conclusion and outlook  

This shows that there is a need for teacher training courses that foster the teachers’ algebraic 

competences. They are often able to name the changes and to describe them, but they are not able so 

explain why these changes occur and where these changes derive from. In order to foster students’ 

algebraic thinking and use the (full) potential of a task to foster content-focused and process-related 

competences at the same time, teachers need to be aware of the mathematical patterns and structures 

of such a task. Teachers need to be able to decide whether a student’s explanation is sufficient; 

teachers themselves need to know what is important to explain and not only to describe a process. In 

a next step, the other task of the questionnaire, which has not been discussed during the course, will 

be analyzed further. This may give insights into how far the participating teachers are able to transfer 

what is learned to other tasks. The solutions for both task formats will be categorized so that more 

than trends can be named. Additionally, the interviews will be considered to underline detailed 

analysis of some participants. Further investigations on design principles for teacher training courses 

and possibilities to support teachers need to be done.  
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Mathematics teacher educators’ critical colleagueship 
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In this paper, we apply the ideas of Lord (1994) about critical colleagueship to understand how 

mathematics teacher educators (MTEs) can work together to become more critical in their teaching 

practices. There is relatively little research on MTEs’ learning and development from a critical 

perspective. Our study examines a group of MTEs working together to develop novel teaching and 

do research about initiating critical discussions. During two meetings, the MTEs discussed their 

different perspectives after using indices such as the Body Mass Index (BMI) in teaching. Identified 

examples of Lord’s elements were a willingness to seek and try out promising ideas, and being open 

to share perspectives and ask for arguments. Such collaboration supports reflections for developing 

teaching and research. 

Keywords: Critical colleagueship, mathematics teacher educators, reflections. 

Introduction and previous research 

There are several studies concerning mathematics teachers’ knowledge for teaching (e.g. Ball, 

Thames, & Phelps, 2008; Rowland, Hucksteps, & Thwait, 2005), as well as mathematics education 

courses designed for mathematics teachers’ professional development. Zaslavsky and Leikin (2004) 

pointed to the lack of research on becoming a MTE and lack of formal training programs. “Mostly, 

teacher-educators are ‘self-made’” (Zaslavsky, 2008, p. 94). Some studies about MTEs focus on the 

mathematical knowledge for teaching mathematics teachers (Zopf, 2010), and MTEs’ practices in 

providing professional development (Kuzle & Biehler, 2015). In a historical overview, Jaworski 

(2008), in line with Zaslavsky & Leikin (2004), found that a very small number of studies reflect on 

the MTE’s learning “from engaging in teacher education, through reflecting on their own practice, or 

through research into the programs they design and lead” (p. 3). Our study is a contribution to narrow 

this gap by focusing on how MTEs can collaborate to become more critical about their teaching 

practices. 

According to Zaslavsky and Leikin’s (2004) model of MTEs’ professional development, MTEs learn 

through learning (facilitated by an experienced MTE) and through teaching (to mathematics teachers), 

while collaborating with other colleagues of similar or differing expertise. The need for MTEs to 

reflect, individually and collectively, on different aspects of their own practice and development is 

pinpointed as important for their learning (e.g. Tzur, 2001; Jaworski, 2008; Zaslavsky & Leikin, 2004; 

Garcia, Sanchez, & Escudero, 2007). Individual reflections upon the different stages of becoming an 

MTE include reflections on learning mathematics, learning to teach it, learning to educate 

mathematics teachers, and learning to mentor educators (Tzur, 2001). In collective reflections 

between colleagues when preparing and teaching different courses, practices such as sharing 

experiences, reading and conducting research, and continuous efforts to improve courses (Roth 

McDuffie, Drake, & Herbel-Eisenmann, 2008), as well as MTEs adopting theoretical perspectives to 

examine their teaching practices (Garcia et al., 2007), can influence MTEs’ development. 
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Zaslavsky (2008) argued that one of the identified practices, from which MTEs can learn, is the choice 

and design of tasks and resources by which students can learn specific content or ways of teaching. 

In our research group, we collaborate on identifying and implementing new teaching ideas that can 

promote critical mathematical discussions (in line with Skovsmose, 1994) amongst pre-service and 

in-service teachers. We collectively reflect upon the implementation of these ideas in our own 

teaching. One idea we aim to investigate in our project is the use of indices as mathematical models 

for in-service teachers to experience initiating and developing critical discussions about the role of 

mathematics in society. Indices, such as the BMI, have proved to be fruitful entry points to such 

discussions (see Kacerja et al., 2017). Reflecting collectively as MTEs upon our own practice can 

help us learn more about being teacher educators (Roth McDuffie et al., 2008; Zaslavsky & Leikin, 

2004). 

In the data presented in this paper, we reflect as a group upon our experiences with critical discussions 

after two colleagues had tried out a task about the BMI with in-service teachers. We investigate how 

we communicate in the group and how we invite and present ideas and perspectives from a critical 

colleagueship perspective (Lord, 1994). Critical colleagueship is a particular type of collegiality and 

is elaborated on in the next section. The question we pose in this paper is: What aspects of critical 

colleagueship can mathematics teacher educators’ collaboration bring about? By focusing on the 

critical colleagueship aspects by Lord (1994), we explore how such a collaboration can support our 

work as MTEs. 

Critical colleagueship among mathematics teacher educators 

Lord (1994) emphasised professional development of teachers and discussed critical colleagueship 

as one kind of colleagueship to support teachers’ reflections. Colleagues sharing interests and 

experiences, being open and respectful, willing to try out new ideas and to be critical, are crucial 

conditions for such a colleagueship. The main difference between critical colleagueship and other 

kinds of collective reflections is the support of a “critical stance toward teaching” (p. 192). The critical 

stance in our study means we do not only share our ideas with colleagues, but we also ask for, and 

articulate, the assumptions behind these ideas. 

Lord (1994, pp. 192–193) identified six characteristics of critical colleagueship: 

1. Creating and sustaining productive disequilibrium through self-reflection, collegial dialogue, 

and on-going critique; 2. Embracing fundamental intellectual virtues (e.g. openness to new ideas, 

willingness to reject weak practices or flimsy reasoning, accepting responsibility for acquiring and 

using relevant information, willingness to seek out the best ideas, greater reliance on organized 

and deliberate investigations, assuming collective responsibility for creating a professional record 

of teachers’ research and experimentation); 3. Increasing the capacity for empathetic 

understanding; 4. Developing and honing the skills and attributes associated with negotiation, 

improved communication, and the resolution of competing interests; 5. Increasing teachers’ 

comfort with high levels of ambiguity and uncertainty; and 6. Achieving collective generativity. 

The characteristics for which a colleagueship can be considered critical, according to Lord, have to 

do with a sense of responsibility for seeking improvement and accepting that the best solution is not 

yet achieved. It requires participants to be comfortable with uncertainty and to make efforts to develop 
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and accept new ideas by self-reflection and on-going critique. Differences are seen as driving forces 

that can facilitate a productive disequilibrium. Our joint interest as MTEs is to learn more about ways 

of fostering critical discussions in teacher education about the role of mathematics in society. The 

ideas within critical colleagueship support such group reflections.This is the reason why critical 

colleagueship is chosen as a framework for analysing the discussions. 

While Lord (1994) defined critical colleagueship for groups of teachers reflecting together, Males, 

Otten, and Herbel-Eisenmann (2010) used Lord’s framework to study the collegiality of a group of 

mathematics teachers and researchers. They identified challenging interactions in which participants 

asked questions to push for in-depth reflections, and located elements of Lord’s intellectual virtues in 

those interactions. In our paper, we apply critical colleagueship within a group of MTEs. We extend 

critical colleagueship as one way of thinking about professional development of MTEs, by reflecting 

upon our own discussions. In line with Males et al., we focus on the discussions when different 

perspectives about practice come into play. It is in these situations that it becomes more likely for 

MTEs to argue for their ideas and invite the colleagues to share their perspectives. 

The study, participants, and data analysis 

The study focuses on a group of seven teacher educators, including the two authors, collaborating on 

developing teaching and research. In this paper, we use data from two meetings in which teaching 

about indices and critical discussions was focused upon. All seven of us took part in the first meeting 

shortly after TE11 and MTE2 had collaborated on a 3-hour workshop on indices for in-service 

teachers. This was part of a course in Numeracy across the curriculum. The in-service teachers 

discussed the BMI task for 60 minutes in two groups of six persons. They examined the BMI’s 

mathematical components and formula, its use in society, and the appropriateness of using indices in 

school teaching. In the next semester, we had a second meeting and continued to discuss ideas for 

developing our teaching about indices as part of our project. In addition, we discussed a research 

paper we had written about stimulating critical discussions in mathematics where data from in-service 

teachers’ discussions were analysed (see Kacerja et al., 2017). 

The two meetings were audiotaped and transcribed. In line with Lord (1994), we, the authors, 

investigate discussions when different perspectives in teaching and research come into the fore as 

driving forces. An example of this is when one MTE argued that we should teach a kind of scheme 

for dissecting indices, while one of the others thought it was important for in-service teachers to be 

free to investigate. The first author identified such interactions from both meetings, and both authors 

examined them from a critical colleagueship perspective. We also looked for the use of words such 

as “yes”, “maybe, “but” etc., in order to identify the different characteristics of the critical 

colleagueship. The examples presented in the following are representative for the situations where 

different perspectives occurred. 

 

1 TE1 is a teacher educator within social science, while the six others are within mathematics education, thus MTE. 

Thematic Working Group 18

Proceedings of CERME11 3386



 

 

Different perspectives 

As previously argued, we identified discussions showing different perspectives on two related topics 

– the ways to teach critical skills, and the mathematical level in the discussions. We now analyse 

aspects of critical colleagueship in the chosen utterances. 

Different perspectives on how to teach critical skills 

The first meeting begins with TE1 describing the teaching and his experiences from the workshop. 

The goal of the lesson was to create an awareness about the importance of being critical to the use 

and misuse of numbers in society. While TE1 and MTE2 agree upon the goal, differences came to 

the fore about how to achieve that goal. TE1 then said, “It was actually too little time and too much 

material” in the teaching session before the group discussions, and continued by saying: 

TE1: I wish I had more time, and maybe do something more, dissect an index to really 

give them a useful example, a template in principle, a recipe, how one can approach 

an index. How one can take the pieces apart and see what those mean, what the 

different numbers mean, the different variables in an index. 

TE1 explains what he would do differently next time to improve his teaching. He is critical to his 

planning of “too much material” and shows by this self-reflection a characteristic of critical 

colleagueship. For him, a way to achieve the goal could be to show the teachers an example of how 

one could criticise an index, by dissecting it and working with its different components to get a sense 

of the numbers. The use of “maybe” indicates an openness in his reflection. This is strengthened by 

the wording “I wish”, a choice of words that makes it possible to characterize the whole utterance as 

a “what if …?” approach, a focus towards what can be possible to do. A few utterances later, MTE2 

presents a different opinion: 

MTE2: Yes, and as you said TE1, one can look at this from two sides; how much material 

should they be presented with beforehand for a discussion like this, and how much 

should they not [be presented with] … 

MTE2 starts with a “yes” and acknowledges TE1’s point of view. However, she also wants to bring 

into attention another point of view. There is a dilemma about how much guidance the in-service 

teachers should get before they start exploring the problem themselves. MTE2 does not comment 

upon the goal of the lesson, she is only trying to look at an alternative way for achieving it – she 

creates some disequilibrium. From Lord´s (1994) perspective, disequilibrium provides participants 

with opportunities to reflect upon other´s ideas and bring their own arguments into the discussion. 

MTE2 elaborates afterwards on her argument with a “because” and exemplifies with an episode from 

the in-service teachers’ group discussions in which one teacher was fascinated about how much she 

had learned. For MTE2, this is an argument that supports the idea of giving teachers the opportunity 

to explore the use of mathematics, without necessarily having ready-made schemas, as TE1 

suggested. MTE2 argues that the dialogue the in-service teachers had is important for learning to 

explore, while a recipe “can limit the dialogue and they [the in-service teachers] can become 

preoccupied with doing it the same way [as the MTE]”. The argument concerns potential negative 

effects from presenting a recipe; it could hinder the teachers’ explorations and make them adhere too 
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strictly to the TE’s schema. MTE2 provides arguments to support her idea of giving the teachers some 

space to explore the problem themselves, emphasizing dialogue, wondering and exploration. She 

presents ideas and counter-arguments, thinks aloud and refers to examples. MTE2 sets some standards 

for the level of reasoning required for the group discussions to be fruitful, in line with Lord’s (1994) 

emphasis on negotiation and improved communication. 

In all of the utterances presented above, as in other cases of disequilibrium in our data, the participants 

start their utterance by acknowledging the colleague’s point of view using phrases like “yes”, and 

“agree”, and then introduce an alternative view starting by “because” and supported by examples. 

Acknowledging colleagues’ ideas and arguments relates to Lord’s focus on “the capacity for 

empathetic understanding” (1994, p. 192). By using phrases such as “maybe” and “you can look at it 

from two sides”, TE1 and MTE2 apply some fundamental intellectual virtues in their discussions by 

opening up for other opinions. They acknowledge the others’ views and seek the best ideas by looking 

at the topic from different points of view. TE1 and MTE2 use classroom examples to support their 

arguments by using relevant information. This is typical for the participants in both meetings, and in 

line with previous research (Males et al., 2010). The MTEs explore together how to initiate critical 

discussions in their teaching without having the answers available. They are, as Lord (1994) put it, 

coping with uncertainties and ambiguities that TE1 and MTE2 reflect upon. 

Different perspectives on the mathematical level in the discussions 

Exploring the mathematics of the BMI, and the in-service teachers’ mathematical competence to do 

that, also generated different perspectives. In the first meeting, MTE4 stated that the teachers did not 

explore in depth the mathematics behind the chosen index. Similarly, TE1 pointed to the lack of 

mathematical competence as a barrier that hindered the teachers in doing so. He supported his 

argument by referring to what the teachers expressed during the discussions. This fits with his earlier 

reflections about how he would organize the teaching differently next time to help teachers overcome 

this barrier, showing again signs of self-reflection for improving his teaching. 

Another disequilibrium occurs in the second meeting, when discussing an article in which we all 

looked at the competence showed by in-service teachers when working with the BMI task. Similarly 

to TE1 and MTE4, MTE5 thinks there were “relatively little mathematical discussions”. MTE6 asks 

MTE5 what mathematical discussions are in her opinion. MTE5 answers that she is thinking about 

discussing mathematical concepts. MTE6 then adds, “Yes … but there is also a broader understanding 

of mathematics, of mathematical discussions, to discuss mathematics in use and its role in society”. 

As MTE2 also did earlier, MTE6 accepts MTE5’s perspective about what she regards as mathematical 

discussions with a “yes”, but he also introduces his perspective by saying “but there is also”. MTE6 

presents his view by arguing, in line with a critical mathematics education approach (Skovsmose, 

1994), that mathematical competence includes being able to use mathematics and evaluate its use in 

different contexts. Mathematics goes beyond discussing mathematical concepts; it also involves a 

broader perspective of its use in society. This is reflected in the goal of the lesson formulated by TE1. 

MTE6 supports his argument by focusing on competences the teachers showed in their discussions 

from this extended perspective on mathematics by saying: “They showed many good reflections 

connected to challenges about indices, and about indices in a school context.” 
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It is possible to identify several fundamental intellectual virtues in this discussion. The MTEs are 

invited to share ideas and arguments, problems are investigated from different viewpoints, and 

viewpoints are elaborated upon with several arguments before deciding the next step. In the two 

meetings, the MTEs clarify their expectations about in-service teachers showing mathematical 

competence, but also the competence to evaluate and criticize how mathematics is used in society. 

They search for better ideas to improve the teaching about critical discussions, as Lord (1994) 

emphasized, as they continue to reflect about the tasks. At the end of the second meeting, when MTE4 

wonders if she should ask more targeted mathematics questions in the next teaching session in order 

to guide the teachers to thoroughly explore mathematics, MTE2 argues: 

MTE2: One thing is to go more in depth into the mathematics [of the index], if they are able 

to do that. But we would also like them to stay there and understand that there is 

something here that could be necessary for them to understand. They see its 

meaning … 

MTE2 acknowledges again the other colleagues’ idea of more in-depth exploring of the mathematics. 

She then continues in line with her earlier ideas about giving the teachers the time and possibility to 

discover things by themselves, to get the feeling that they need to learn something. She connects this 

to the meaning the teachers themselves would give to an index, and to the mathematics of the index. 

So far, the MTEs have shared their ideas, been open-minded for other arguments and ways of doing, 

argued for their views, and presented alternative points of view. One could then ask what effect this 

exchange of ideas has on the MTEs and their collaboration. By the end of the meeting, MTE2 

continues with a proposal for further developing the task about critical mathematics and BMI: 

MTE2: As you [MTE4] mentioned with proportionality … Is it possible to design a 

teaching session where one first goes through the main mathematical ideas of the 

index? But not specify the index. Then talk [teach] about inverse proportionality 

without saying that it is the BMI we are talking about … 

MTE2 starts with taking into account MTE4’s earlier idea of proportionality. By raising a question, 

“is it possible to design …?”, MTE2 tries to negotiate with MTE4 and the others to find a teaching 

approach that takes into consideration many of the colleagues’ comments. She proposes one way to 

organize the session by starting with some teaching about the mathematical concepts of BMI, such 

as inverse proportionality, but without giving any scheme for how to do it. By so doing, the in-service 

teachers would be given some mathematical foundation when exploring the mathematics of the 

formula, as MTE5, TE1, and MTE4 called for. At the same time, MTE2 takes care of her own idea 

of giving the teachers the freedom to explore by adding “then they [the in-service teachers] could get 

the BMI formula and see if they connect it [to inverse proportionality]. We haven’t tried that”. MTE5 

agrees with MTE2 by saying “I thought the same … teaching about proportionality independently of 

the index”. MTE6 also supports MTE2’s idea by saying, “start the teaching with some mathematics”. 

Everyone agrees that it is a good idea to try out MTE2’s proposal. The negotiation highlights the 

importance of giving the in-service teachers more support to develop and show mathematical 

competence, while at the same time giving them freedom to show their competence on reflecting 

upon the mathematics’ use in society. The MTEs have together come to an idea while trying to avoid 
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the pitfalls expressed earlier by the colleagues, a kind of “collective generativity” (Lord, 1994). The 

best agreed upon solution in this round of discussions is to teach some mathematics and see if this 

will help the teachers in their discussion of the index. 

Conclusions 

In this paper, we have focused on identifying aspects of critical colleagueship in mathematics teacher 

educators’ collaboration on developing teaching about critical discussions. We singled out utterances 

when colleagues had different perspectives because it is when we disagree that we ask each other for 

more arguments. This is a vital element of the critical colleagueship perspective as it creates 

conditions for the participants to dig into the assumptions behind their ideas, and thus adopt a critical 

stance in terms of Lord’s framework. We, MTEs, are also in a position to reflect better upon our own 

views when challenged to argue and exemplify the teaching, and modify it for better results. In this 

aspect, our results fit with findings from Males et al. (2010). 

During the collaboration to develop our teaching, there were particularly two aspects that generated 

different perspectives. One aspect is about the way of organizing such teaching and the amount of 

guidance to give teachers, and the other concerns expectations about the level of mathematics in the 

teachers’ discussions. We, MTEs, discuss different perspectives and consider them, showing several 

elements of Lord’s framework, especially fundamental intellectual virtues such as openness to new 

ideas, respect, and seeking better solutions. We support our points of view with arguments from 

classroom examples, as MTE2 and TE1 did, and from theoretical ideas influenced by critical 

mathematics education (see Skovsmose, 1994), as MTE2 and MTE6 did. Examining our practice 

with theoretical lenses, as with the critical perspective lenses, is a way for us to develop as MTEs 

(Garcia et al., 2007). 

At the end, the agreed solution covers some of the challenges discussed in the two meetings. The 

engagement brings about some collective generativity. The solution indicates that we, MTEs, value 

the development of teachers’ mathematical competency, but also the importance of the freedom to 

develop their critical competence by not giving them too much guidance. In this way, we move 

forward in developing our understanding of what critical mathematical discussions are and how to 

support them in our teaching. As Roth McDuffie et al. (2008) pointed out, sharing experiences, 

looking for improvement in our practice, and doing research together, facilitate such development. It 

can be concluded that we, MTEs, enrich our own views by listening to our colleagues’ arguments and 

by trying to make sense of their reasoning, when we collectively reflect upon and analyse our work. 

Given the very few possibilities for MTEs to develop their knowledge and skills, and given that 

collaboration of MTEs about teaching and research is a common practice, it is important to study 

what and how such collaborations can support the MTEs’ work, as we have done in our study. Lord 

(1994) discussed critical colleagueship as a way to support teachers’ reflections. In this study, the 

concepts in Lord’s elements of critical colleagueship helped us identify and discuss the potential such 

collaboration has in supporting MTEs’ reflections. 
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To investigate the development of the progressive incorporation perspective for effective mathematics 

teaching, a multi-case study with seven out of twenty-six prospective secondary mathematics teachers 

was conducted for fourteen weeks during a methods course. The course was built on four-core ideas: 

quantitative reasoning, task-analysis, conceptual analysis and interviewing. In this paper, we report 

on the change in prospective teachers’ conceptions of mathematics and mathematics learning upon 

completion of working on quantitative reasoning. Results showed that quantitative reasoning might 

bring about change on prospective teachers’ awareness on practices such as attending to students’ 

thinking and distinguishing their mathematics from their students’ mathematics. Results suggest the 

inclusion of quantitative reasoning in methods courses in mathematics teacher education.  

Keywords: quantitative reasoning, teacher education, prospective teachers 

Introduction 

Education of prospective teachers is an ongoing challenge (Chapman, 2016; Grossman & McDonald, 

2008). Although there has been considering effort on the change of prospective teachers’ practices in 

methods courses, there is still need for focusing on significant change in prospective teachers’ 

thinking about mathematics teaching and learning (Chapman, 2016). In fact, researchers argued that 

the possible reasons for the difficulty of change might be due to the lack of pedagogical principles 

prospective teachers need to hold (Jin & Tzur, 2011; Simon, 2006b). Such principles involve 

developing i) a view of mathematical understanding consistent with the problem-solving view, ii) a 

view of mathematics learning (Simon, 2006b) and (iii) the teachers’ distinction between their 

mathematics and their students’ mathematics (Silverman &Thompson, 2008; Simon, 2006b). 

Silverman and Thompson (2008) also suggested that prospective teachers need to have an image of 

(e.g., hypothesize) how their students might come to think of mathematical understandings they 

envision. In this paper, we embrace these as core practices.  

Previous research depicted evidence of these proposed difficulties. Particularly, Yeh and Santagata 

(2015) study showed that prospective teachers regarded students’ procedural fluency as evidence of 

conceptual understanding. Results also showed that prospective teachers detected student actions as 

evidence of student learning rather than attending to their thinking. Similarly, Simpson and 

Haltiwanger (2016) study showed that prospective secondary mathematics teachers had difficulty in 

interpreting student mathematical thinking in written work. They suggested studying the ways to 

develop prospective teachers’ abilities to make sense of students’ thinking. It is in this respect that, 

in this study we investigated the possible affordances quantitative reasoning (Thompson, 1994) might 
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provide prospective teachers in terms of the pedagogical principles they need to hold regarding the 

nature of mathematics, mathematics learning and mathematics teaching. We investigated the 

following research question: What changes in the prospective teachers’ awareness on the practices of 

effective mathematics teaching might develop focusing on quantitative reasoning during methods 

courses? Results showed a change in prospective teachers’ views on the nature of mathematics. They 

were also able to characterize procedures and concepts in relation to quantitative reasoning. In 

addition, they realized the need to distinguish their thinking from students’ thinking as well as 

developing a sense of what mathematics learning means. With this report, we propose that in methods 

courses prospective mathematics teachers need be given opportunities to engage in tasks focusing 

their attention on quantitative reasoning. We make suggestions on how to include such tasks pointing 

to our experience as teacher educators. In the next section we provide our reasons as to why we 

considered quantitative reasoning as part of the methods course we developed. We explain our 

reasons with connections to the teacher perspectives framework (Jin &Tzur, 2011) based on which 

the larger study was conducted. 

Theoretical Framework 

In the larger study of which this study was part, our purpose was to examine the prospective secondary 

mathematics teachers’ development of the progressive incorporation perspective to teach 

mathematics effectively during methods course. Jin and Tzur(2011) postulated the teacher 

perspectives framework following on the work of (Heinz, Kinzel, Simon, & Tzur, 2000; Simon, Tzur, 

Heinz & Kinzel, 2000; Tzur, Simon, Heinz, & Kinzel, 2001). They used the term “perspectives” to 

refer to both the knowledge and beliefs teachers might hold regarding the nature of mathematics, 

mathematics learning and mathematics teaching and also the practices they might engage in based on 

such acknowledgment. Tzur and his colleagues proposed that teachers holding CBP (conception 

based perspective) would act accordingly with the views of radical constructivist epistemology. 

Therefore, they suggested that PIP would be a more realistic target for the teacher education since “ 

a PIP-rooted teacher’s practice can engender students’ learning processes envisioned by CBP without 

requiring the teacher’s explicit awareness of such view…”.  

Therefore, for the first part of the methods course, we used quantitative reasoning framework 

(Thompson, 1994). Thompson (1994) defined quantitative reasoning as an individual’s analysis of a 

situation into a quantitative structure. So, quantities live in an individual’s conception of situations 

such that in order for an individual to comprehend a quantity, the individual must have a mental image 

of an object and attributes of this object that can be measured (Thompson, 1994). For instance, a 

rectangular shape could be thought as an object with the attribute, area, that could be measured. Then, 

a fraction could be thought as a quantity as the measure of a particular size of the total area of the 

rectangular shape. For the construction of quantities, Thompson differentiated numerical operations 

from quantitative operations. Quantitative operations are the non-numerical operations an individual 

mentally act. For instance, equi-partitioning the total area of a rectangle in purpose of determining a 

particular size would be an example of quantitative operations. Numerical operations are the result of 

the evaluation of quantitative operations. So, an individual imagining the fraction such as ½ as a 

quantity, can engage in equi-partitioning of the shaded area of a rectangular shape showing ½ into 

more equal pieces (e.g., equi-partitioning into five more equal pieces). This numerically results in the 
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fraction 5/10. Thompson stated that over emphasis on the numerical operations prevent students to 

learn mathematics meaningfully. Therefore, he proposed that prospective teachers need to pay 

attention to the mental processes (i.e., quantitative operations) required of an individual for the 

development of mathematical understandings (Silverman & Thompson, 2008). They stated, 

“the prospective teacher must put herself in the place of a student and attempt to examine the 

operations that a student would need and the constraints the student would have to operate 

under in order to (logically) behave as the prospective teacher wishes a student to do.” (p. 19). 

So, we hypothesized that if we engage prospective teachers’ in tasks focusing their attention on the 

distinctions between quantitative and numerical operations, their awareness on the students’ 

mathematical reasoning might develop. This also might have allowed them to pay attention to the 

nature of mathematics. That is, in this framework mathematics is built through an individuals’ mental 

actions and the results of these actions. This view of mathematics aligns with the problem-solving 

view in which “…mathematics is built from human activity: counting, folding, comparing, etc.” 

(Confrey, 1990, p. 109). A teacher with progressive incorporation perspective or conception based 

perspective is also expected to hold  this view of mathematics (Jin & Tzur, 2011) 

Method  

Participants  

Seven prospective secondary mathematics teachers participated in the study. They were at their 

fifth-year of study at one of the universities, in which the medium of language is English, in Turkey. 

We chose these prospective teachers for the following reasons: First, their GPA’s (Grand Point 

Average) ranged between 3,44 and 2,76 out of 4,00. This provided a spectrum of GPA’s of all 

prospective teachers taking the methods course; two in the top, three in middle and two in the lower 

range. Second, based on the first week of the classes and the written-pre assessment we gathered 

prior to teaching sessions, we observed them as verbal individuals. That is, they were talkative, and, 

volunteered to participate in the continuing five-set of interviews till the end of the study.  

Data Collection  

Data were collected for a total of five weeks during the methods course the first author taught. The 

methods course was four hours per week. For this multi-case study (Yin, 1984), we conducted 

classroom teaching experiments for the teaching sessions(Cobb, 2000) (see Figure 1).  

 

Figure 1: The data collection period during the methods course 

In this method, the teaching sessions are planned in advance. However, for each teaching session, we 

revised the (sub) learning goals depending on our hypotheses about prospective teachers’ 
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development. Prior to the teaching sessions, we gave a written pre-assessment to prospective teachers 

to collect their thoughts on mathematics learning and teaching. Then, each of the teaching sessions 

was videotaped and transcribed afterwards. Prospective teachers also kept weekly journals 

concerning both in-class and out-of-class discussions, due online of the night after each class. The 

classes were Tuesdays and Thursdays, so that we could watch the videotapes and read the journals in 

between the teaching sessions. In the journals, we purposefully asked prospective teachers to reflect 

back and forth on the relationships among the constructs discussed. In this way, each teaching session 

was revised and re-planned based on the ongoing assessment. Then, we conducted an interview upon 

completion of working on quantitative reasoning. Data sources included prospective teachers’ written 

responses to pre- assessment and the journals; transcripts of the videotapes of i) whole-class 

discussions and iii) the interviews. These data seemed central to understanding the shifts in the 

practices contributing to advances on the part of prospective teachers.   

The Procedure  

The first set of classes in the methods course included mostly concrete examples to focus on the 

nature of mathematics. First, we included tasks in terms of the distinction between prospective 

teachers’ thinking on quotitive and partitive division types based on measuring and equal sharing 

(quantitative operations). For this, we asked prospective teachers to come up with a word-problem 

for which the solution was given as 10/5=2. Then, we asked them to sort different division problems 

they came up with into two categories by paying attention to the similarities and differences. They 

worked in groups to sort the word-problems. Following they shared their ideas during the class 

discussion.  With this task, we wanted to direct their attention to both their classmates’ and their own 

mental actions (i.e., measuring and equal sharing) and the numerical operations, such as division, 

they used. Then, we asked them to think about the two examples in chapter 1 from Van de Walle 

(2007). In these examples, Marlena and Darrell, two students’ work on division problems are shared. 

We wanted to observe and assess if they could focus on these students’ mental actions—measuring 

and equal sharing. After that, we had a classroom discussion on chapter 1 from Van de Walle (2007). 

The next week, we asked prospective teachers to work in groups to come up with a way to teach 

improper fractions to 5th grade students. For this, we also asked them to explain their thinking for 

instance what 11/6 means to their group members. We wanted to take their attention to again to their 

classmates’ mental operations as well as theirs.  Following, we provided them with the first author’s 

articulation of the understanding of improper fractions (Tzur, 1999) from the point of view of 

quantitative operations. Also, for the out-of-class activity, prospective teachers considered the first 

author’s articulation of between-state ratio (Karagoz Akar, 2007) based on a task from a reform 

curriculum (Everyday Mathematics) and had a discussion on it during the next class hours. Then, in 

the third week, we taught the geometric meaning of differentiation using a task we modified from the 

national reform-based curriculum. Following week, we used a task sequence to teach the algebraic 

and geometric meaning of the binomial form of complex numbers (Saraç & Karagoz Akar, 2017). 

We also had a discussion on Thompson(1994). For the out-of-class activity, for both of the teaching 

sessions on differentiation and complex numbers, prospective teachers were asked to articulate on 

reasoning processes they have engaged in.  

Analysis 
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We analyzed the data using the constant comparative method (Strauss ve Corbin, 1990). In this 

method,  the researcher constantly reads and analyzses data both during and at the end of the data 

collection. Also, s/he reads the data and compares and contrast his/her hypotheses (conjectures) both 

within all data from one participant and among participants. Therefore, we read the transcripts of the 

teaching sessions, the journal entries and the transcripts of the interviews line by line. Our goal was 

to determine what core-practices these seven prospective teachers’ recognized and developed during 

these five weeks. Reading the transcripts of the teaching sessions and the journal entries from the first 

week together with the written-pre assessment, and the transcripts of the data from the interviews at 

the end of the five weeks, we all coded the data indiviually. Then, comparing the list of codes on the 

data from each partcipant, we came up with a set of codes representing the whole data. Following, 

we came together to discuss and have a consensus on the codes. We then finalized the list of the codes 

depicting prospective teachers’ awareness of the core-practices. In the following section, for 

illustrative purposes, with reference to the data from one prospective teacher, Mina, in the middle 

range of seven prospective teachers, we share the results. Focusing on data just from one prospective 

teacher, we hope to maximise the possiblity of the reader’s achieving some familarity with the context 

for the analysis. 

Results 

Beginning of the study 

As stated earlier, in the second week of the study, we had asked prospective teachers to discuss in 

groups how to teach improper fractions to 5th grade students.  Then, all the groups choosing a 

representative shared their ideas in the class discussion. Mina spoke  on behalf of his group 

members and other prospective teachers agreed upon the idea: They first started with proper 

fractions and used it to work towards improper fractions.  

Mina:  First, we thought that they (referring to students) need to know proper fractions. 

Like, they need to know that they are between 0 and 1. Like this could be shown by 

shading some part of shape, like rectangle. Like for instance dividing the shape into 

6 pieces and shading 5 pieces and counting 5 pieces. But then this should be shown 

on the number line dividing the interval between 0 and 1.  Then, in the same way 

we can divide the interval between 1 and 2 into six pieces. Now, we divided the 

interval between 0 and 1 into six pieces and divided the interval between 1 and 2, 

then when we count like 1,2,3,4,5 until 11, the number 11/6 will be in between 1 

and 2. Then what 11/6 means because because we divided each piece into 6, they 

will know that the denominator is 6 and since we counted until 11, they will know 

that that point will correspond to 11/6. Like they will see that 11/6 is there. 

     S1:      Super idea 

     S2:       I think it is very meaningful showing it with the number line. 

As the excerpt showed,  prospective teachers viewed mathematics as obviously apperant to their 

students as it seemed to them. Such knowledge existed in the drawings they shared with their students. 

That is, their view of mathematics corresponded to a Platonist view of knowledge. They also agreed 

on using the number line to depict the connections to their students supposedly acquired previous 

knowledge such as proper fractions. This suggested that they considered that their students would 

think the same way as they think. 
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End of the five weeks period 

Data from the interviews at the end of the five weeks period showed a change in prospective teachers’ 

awareness on the nature of mathematics and their students’ thinking.  

Questions asked during 

the interview 

Mina’s answers The codes depicting data from the 

interwiews on seven prospective teachers 

Why do you think that we 

have focused on the 

quantitative reasoning 

framework? 

Like I thought while working on them 

like mathematics includes two 

proceesses  like it has procedures and 

the meanings behind those 

procedures... For instance ½ like was 

thinking numerically earlier. For 

instance when I say ½ is equivalent to 

5/10, like I say now that multiplying 

with 5 has a meaning  when I divide the 

shape into two equal pieces and then 

shade one part. That multiplying with 5 

means for me now dividing the shape , 

½, into 5 more equal pieces. Like those 

numbers have meaning....So like we 

work on quantitative and numerical 

operations so that like we will know the 

reasons behind like formulas...  

Mathematics is made up of both numerical 

and quantitative operations—a human 

activity 

 

 

 

 

Awareness of the need for key mathematical 

ideas 

 

 

Remember we asked you 

to articulate on your 

engagement in the tasks 

focusing on differentiation 

and complex numbers. 

How do you think that this 

experience might benefit 

you a prospective teacher? 

Like yes as I said earlier like we should 

know the mental proccesses of our 

students like how they think... I saw my 

process now I can focus on theirs... 

Like to imagine how they might think 

so that they could learn like construct 

them connecting them...  

Awarerness of the need to focus on students’ 

thinking  

 

 

 

Awareness  of their students thinking 

differently from theirs  

How do connections in 

conceptual understanding 

ocur? 

Eeee like linking them ...like it is like to 

me mathematical understanding, what 

is the reason behind this. Like  I said 

earlier not numerical, quantitative... 

Awareness of the nature of mathematics 

learning with understanding  

Table 1: Codes depiciting prospective teachers’ awereness of the core practices.  

As the-codes-depicted, there was a change in prospective teachers’ awareness of the views on the 

nature of mathematics. Data-showed-that, for instance, Mina regarded mathematics knowledge as 

human activity, aligned with the problem solving view. Also, he was aware of the need to understand 

mathematics meaningfully so that he could anticipate his students’ thinking to help them construct 
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those ideas on their own. In addition, he was aware that his thinking would be by nature different 

from his students’ thinking.  

Discussion 

In this study, we investigated the change in prospective teachers’ awareness on the practices involved 

in effective mathematics teaching once they engaged in tasks focusing on quantitative reasoning 

during methods courses. Results showed that their views on the nature of mathematics has changed. 

Contrary to the data from the beginning, after engaging in tasks requiring them to analyze both their 

and their classmates’ thinking in terms of quantitative and numerical operations for almost one and a 

half-moth period, they started viewing mathematics as a human activity. Regarding the teacher 

perspectives framework (Jin and Tzur, 2011), this change is the first stage for the development of 

progressive incorporation perspective. Though, research on beliefs suggest that establishing change 

is not easy (e.g., Wilson and Cooney, 2002). Still, we argue that asking prospective teachers to reflect 

on and write about specifically their own thinking might have brought about the change in their views 

on the nature of mathematics. So, we propose to the field such task as a core practice for teacher 

educators to use in methods courses. Yet, with caution, we argue that there is need to examine the 

effect of engagement in tasks focusing on quantitative reasoning on both prospective and inservice 

teachers’ beliefs on mathematics. Results also showed that prospective teachers’ awareness on the 

need for focusing on their students’ thinking developed. In addition, they recognized that their 

thinking processes would by nature differ from their students’ thinking processes. Previous research 

emphasized the need to study the ways to develop prospective teachers’ abilities to make sense of 

their students’ thinking since they had difficulty in interpreting thinking (Simpson & Haltiwanger, 

2016). In addition, research has shown that prospective teachers confused students’ procedural 

fluency with conceptual understanding (Yeh & Santagata, 2015). To the contrary, results of this study 

indicated prospective teachers’ awareness of the nature of concepts and procedures. Therefore, we 

suggest focusing on quantitative reasoning during methods courses as a possible way to provide 

prospective teachers for paying attention to their students’ thinking differentiating their procedural 

fluency from their concepts. We also recommend the use of tasks focusing on quantitative reasoning 

in professional development workshops for inservice mathematics teachers. As a final note, 

considering the core-practices as conglomerate components of effective mathematics teaching, we 

suggest that the effect of quantitative reasoning on both prospective and inservice teachers’ 

mathematical knowledge for teaching might be investigated. 
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From judgmental evaluations to productive conversations: 

Mathematics teachers’ shifts in communication within a video club   
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The study reported here explored how secondary mathematics teachers, participating in a school-

based video club, communicated with each other and with the facilitator along the different sessions 

of the club. Specifically, their evaluative comments were analyzed, with respect to the non-judgmental 

norms that this club aimed to nurture. Three types of evaluative comments were identified, reflecting 

varying degrees of teachers’ capability to interpret and discuss observed teaching moves while 

attributing possible rationalizations to the filmed teacher’s decisions. It was found that the amount 

of highly judgmental comments decreased as the club proceeded, allowing for a more productive 

communication.     

Keywords: Video club, school-based professional development, peer-discussions.  

Introduction 

Video club is a form of professional development that has become known since the early 1990’s 

(Sherin, 2004; Sherin & van Es, 2009). In a video club, a group of teachers meet on a regular basis, 

usually under the guidance of a facilitator, to watch and discuss classroom video selected according 

to a certain aim. Different video clubs vary in their goals, agendas and the frameworks employed to 

direct teachers’ conversations. For example, a video club can be established around the aim of 

enhancing teachers' proficiency to notice and analyze students' mathematical thinking (Sherin, 

Jacobs, & Philipp, 2011; van Es & Sherin, 2008). Another case is a club focusing on a certain teaching 

proficiency, such as running class discussions (Coles, 2010). Video clubs can be school-based, or 

alternatively region or university-based, but in general groups are meant to be small enough (usually 

5-15 participants) to allow for genuine peer-conversations and sharing of ideas and insights. 

One of the core issues associated with conducting video clubs is establishing norms of discussion. 

Apart from the basic intent to ensure a climate of trust, where teachers feel safe to raise ideas, norms 

also “orient individuals to one another, as well as to how information is communicated, what 

constitutes an idea worthy of investigation, and how to make sense of one’s practice” (van Es, 2009, 

p. 104). Different video clubs may embrace different norms, according to their focus, goals and 

agenda. However, there is an apparent consensus in the literature that teachers’ comments slipping 

into evaluations, judgments or negative reactions, lead to discussions with little value (Coles, 2010; 

Jaworski, 1990; van Es & Sherin, 2008).   

In this paper we report on a study conducted within one video club, in which we explored the types 

of evaluative comments made by teachers and followed their frequency along a sequence of sessions. 

In the following, we describe the context of this club and the emergent research question, present a 

brief account of the data collection and analysis means, and demonstrate central findings.  
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Context, rationale and research question 

The video club studied was conducted as part of a professional development project named VIDEO-

LM (Viewing, Investigating and Discussing Environments of Learning Mathematics), developed at 

the Weizmann Institute of Science in Israel. The project is aimed at promoting secondary mathematics 

teachers’ reflective skills, as well as their mathematical knowledge for teaching. A large collection 

of videotaped lessons serve as learning objects and sources for discussions with groups of teachers 

within video clubs. The videos are taken, in a sense, as “vicarious experiences” which allow for 

indirect exploration of one’s own perceptions on the practice of mathematics teaching, through the 

observation of unknown peers in action (Arcavi & Schoenfeld, 2008; Karsenty, 2018). Peer-

conversations are guided by the use of an analytic framework, comprised of six viewing lenses 

through which the lesson may be discussed: (1) mathematical and meta-mathematical ideas around 

the lesson’s topic; (2) explicit and implicit goals that may be ascribed to the teacher; (3) the tasks 

selected by the teacher and their enactment in class; (4) the nature of the teacher-student interactions; 

(5) teacher dilemmas and decision-making processes; and (6) beliefs about mathematics, its learning 

and its teaching as inferable from the teacher’s actions (for further details on the framework and its 

utilization, see Karsenty & Arcavi, 2017; Karsenty 2018).  

VIDEO-LM clubs maintain an agenda based on the working assumption that the filmed teacher is 

acting in the best interest of his/her students. Thus, observers are required to "step into the shoes" of 

the filmed teacher in an attempt to understand his/her goals, decisions and beliefs. This 'exercise' of 

attributing reason to another teacher’s moves is meant to encourage reflective thinking about the span 

of possible actions and decisions available within teaching situations. VIDEO-LM facilitators attempt 

to establish nonjudgmental norms of discussion, through the redirection of highly evaluative 

comments into “issues to think about”; instead of judgmental comments about the filmed teacher's 

decisions, participants are asked to consider alternative paths and their ensuing tradeoffs. 

To date, more than 70 VIDEO-LM clubs were conducted across Israel. The specific club at the focus 

of this study was a school-based club, held during 2017 in an urban high school in the center of Israel. 

The school’s population is characterized by a high proportion of low achievers, and most students 

study mathematics towards the basic level of Matriculation1. The mathematics department includes 7 

teachers, 5 of them with a teaching experience of over 30 years, and 2 with under 10 years of 

experience. Only 2 teachers in this team teach the higher Matriculation mathematics tracks 

exclusively, whereas the other 5 teach mainly in the basic track. The facilitator of this VIDEO-LM 

club (the second author of this paper) is a member of this department. Although being the youngest 

teacher in the team, he is the only one who has taken a VIDEO-LM facilitator course and had become 

a qualified facilitator, and his colleagues all agreed to participate in the club under his lead.    

Setting  

The club met 8 times during the year (about once a month), with each session lasting around 2 hours. 

In a preliminary discussion with the head of department, it was decided that the club will focus on 

 

1 In Israel, the mathematics Matriculation exam is obligatory for receiving a Matriculation certificate, and can be taken in 

one of three levels: basic, intermediate or high.   
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videotaped lessons filmed in low-track Matriculation classrooms, due to the characteristics of the 

school mentioned above. In the first 6 sessions, the facilitator (henceforth: YP) selected videos of 

teachers unknown to the team, from the VIDEO-LM collection. In the 7th session, YP showed a video 

of his own teaching, and in the last session the group watched a lesson taught by one of the other 

teachers, who volunteered to be videotaped for this purpose.  

Rationale and research question 

This video club enabled investigation of a situation that is less explored in the literature on video 

clubs for mathematics teachers; unlike most cases, where the facilitator is external to the group, here 

the facilitator was a fellow-teacher from the same team. This situation potentially allows for intimacy 

among participants, who are familiar and comfortable with one another, with no outsiders present. 

This was an interesting opportunity for us to study what teachers talk about, and how they 

communicate. The emerging research question was thus the following: What characterizes the peer-

conversation taking place in a school-based VIDEO-LM club, facilitated by a member of the group? 

Data collection and analysis  

Data was collected mainly through video recordings of 7 out of the 8 sessions (one session was 

audiotaped). The recordings were supplemented by a researcher journal where YP documented his 

insights. The content analysis performed on the collected data included the following steps:  

1. Preforming a coarse transcription of all the recorded data from sessions, and identifying recurring 

themes/issues of interest. 

2. Selecting sessions for in-depth analysis. Of the six sessions in which videos of unknown teachers 

were discussed, we decided to select the first two and the last two (# 1,2,5,6) to enable a perspective 

on shifts over time. In addition, the two sessions in which videos of team members were discussed 

(# 7,8), were also selected for analysis. These six sessions were then fully transcribed.  

3. Segmenting transcripts into units of analysis. The basic unit was defined to be an idea unit, i.e., a 

transcript section in which one idea appears, whether in a single turn or along a number of turns.  

4. Classifying each idea unit into one of the themes detected in step 1, using the Atlas.ti software. 

5. Identifying categories within each theme (e.g., within the theme of evaluative comments, levels of 

evaluations were identified). 

6. Systematically categorizing all turns of talk according to the identified categories. This 

classification was validated by two researchers.  

Findings 

One of the interesting themes identified in step 1 of the analysis, was teachers’ evaluative comments. 

About 18% of the idea units were classified within this theme. As described earlier, VIDEO-LM clubs 

attempt to establish nonjudgmental norms of discussion. Thus, it was interesting for us to categorize 

types of evaluative comments and examine whether there were any shifts in the teachers’ adherence 

to the expected norms. In this report, we focus solely on this issue.  

We identified three categories of evaluative comments. These categories are stated and illustrated 

below. Due to space limitations we limit the illustrations to examples from 2 sessions.  
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Category (a): Decisive negative judgment towards teaching moves observed in the video.  

This category was characterized by keywords such as ‘you cannot do this’; ‘unacceptable’; ‘it’s 

disturbing'; ‘I would never do that’; ‘it hurts to see this’, etc.   

Example (a)1.  

In Session 1, teachers watched a lesson on the topic of exponential growth and decay, given in a low-

track 11th grade. When asked to relate to the teacher’s decisions that they have noticed, the following 

conversation evolved between the facilitator and one of the teachers:   

94 Sapir: Another decision of the teacher that’s disturbing, to me personally it’s 

extremely disturbing, the children are passive, there’s no textbook to read 

from, he writes the question and answer on the board for them… which is 

pretty organized, okay, but […] I wouldn’t have written the question, only the 

answer. But the children see the question in front of their eyes in the textbook. 

That is, to me it was very disturbing that the children sit like that [crosses her 

arms] like…  

95 YP: So let’s ask the same question again. The teacher arrived in class, apparently 

in the beginning of the year, and said “you have no textbook” […] He arrives 

and decides to write the exercises on the board, one by one. We’ll see it also 

later, each exercise he writes on the board, the question and sub questions…  

96 Sapir: What’s the advantage in this? I don’t…  

97 YP: I’m asking you.  

98 Sapir: I don’t see an advantage. 

In this communication, Sapir not only harshly criticizes the teacher’s decision not to use a textbook, 

but also rejects any attempt to find a possible reason for it. Her use of words such as "extremely 

disturbing", "very disturbing" and her refusal to respond to YP's requests to take the teacher's 

viewpoint, are all signals of a high level of negative judgmental talk. 

Example (a)2.  

In Session 2, teachers watched a lesson in analytic geometry in a low-track 12th grade, introducing 

the concept of a canonical circle. At a certain stage the teacher, together with the students, arrived at 

the equation x2+y2=132, by applying the Pythagorean theorem to a triangle drawn in the first quadrant 

(with one side on the x-axis, another side parallel to the y-axis, the point (x,y) as the edge of the 

hypotenuse, and R=13). Then, he asked what if y=0, wrote on the board x2=132 and under this, 

following a student’s answer, wrote x=13. He then showed the point (13,0) on the graph.  Following 

the video, Olga criticized the fact that the teacher did not state the negative solution, -13:  

507 Olga: You can’t write that and not say a word.  

508 Iris: You can.  

509 Olga: You can’t. 

510 Iris: You can.  

511 Olga: No.  

512 Iris: In a weak class you can.  

513 Olga: No.  
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This communication between Olga and Iris is an example of an unproductive argument. It starts with 

a back and forth "you can, you can't" exchanges, devoid of any justifications. Then, after three such 

exchanges, Iris brings in a justification based on the circumstances of this being ‘a weak class’, to 

which Olga simply answers 'no', without relating to the content of Iris' claim. Later in the session, 

when the facilitator brings forward the issue of the teacher’s beliefs, Olga returns to her objection:       

601 YP: What, in your view, are the teacher’s beliefs about the students’ role in the 

lesson, about the teacher’s role in the lesson?  

602 Olga: Okay, I relate this to what we talked about, let’s say… If I would have heard 

such a thing like x2=132 and the answer… I would have said to the students, 

[I would have] stopped and said to the students, do you agree with what I 

wrote? I give them the floor and I want to hear their response. 

603 YP: Okay, and what did he [the teacher] do?  

604 Olga: He didn’t do such a thing, at all.  

605 YP: So what is his belief, derived from that?   

606 Olga: So maybe like Iris says, that he didn’t want to cut the flow and he continues, 

but I think it’s unacceptable. 

[…] 

631 YP: Did you perceive any belief that he might have regarding low achievers? Let 

go of yourself for a moment, detach yourself. […] did you see anything that 

you can say “I think that his credo about low achievers is XYZ”, did you see 

something like that?   

632 Olga: There are several things here that, let’s say, bother me  

633 YP: Not what bothers you…   

634 Olga: No, when I begin, let’s say, with these students, I would start differently.  

In the above episode, we see Olga solely focusing on what she sees as undesirable teaching moves 

[602, 632, 634], despite the recurring request of the facilitator’s to “detach herself” and to state the 

teachers' beliefs [605, 631, 633]. Although, in line 606 she feebly cites Iris’s reasoning in response to 

this request, she immediately goes on to state that it is "unacceptable".  

Category (b): Disagreement with moves observed in the video, and proposing an improvement.  

This type of disagreement often came in the form of suggestions, sometimes as if the filmed teacher 

was present in the room, and avoided decisive negative judgments. Keywords are ‘you need to’; ‘you 

should’; ‘it’s worthwhile’; ‘I’m used to’; “I’m not sure about this’, etc.   

Example (b)1. 

In session 1, Uri relates to the teacher’s choice to introduce exponential growth and decay as a case, 

or continuation, of geometric series:   

142 Uri: [the teacher says that] exponential growth and decay is like a geometric series 

and that’s it. It’s a little different, you need to explain, from daily life. I even 

would have given an example of materials that decay, even just an example 

of a person loosing 3 percent of his weight, like, what is decay?  

Example (b)2. 

Thematic Working Group 18

Proceedings of CERME11 3404



 

 

In the video screened in session 2, the students phrase a definition of a circle which is incorrect: “a 

circle is a central point with all points at the same distance from it”. The teacher writes it on the board, 

and gradually refines it by erasing and replacing several words, until the written definition is “a circle 

is all the points that are at the same distance from a certain point”. Olga comments:  

380 Olga: Also it’s worthwhile to explain what was not good.  

381 YP: Ah, you think this is something that’s missing? 

382 Olga: I think it’s missing. 

383 YP: But could it be that it would harm the students had he explained what was not 

good?    

384 Olga: I think it’s important to explain, to make an emphasis on it. 

Clearly, Olga’s words “it’s important to explain”, as well as Uri’s words “you need to explain”, 

signify a more tolerant and less negative critique than the ones raised by Sapir and Olga, as 

demonstrated above. Such moderate disagreements are more likely to open up inquiries shared by the 

group, rather than a direct clash as seen earlier in Example (a)2.   

Category (c): Inspecting possible reasons for observed teaching moves, even if the speaker disagrees 

with them or testifies that s/he would not have performed such moves in his/her class.    

This category is less characterized by specific keywords, and more by whole sentences that convey a 

complex view on the subject at hand, as demonstrated in the next example.  

Example (c): 

This example goes back to the issue of writing “x2=132; x=13”. In contrast to Olga, Iris expresses a 

much more elaborated stance towards the choice not to write x=-13 on the board:  

490 Iris: Perhaps it’s a flaw… I would not leave on the board x2=132 and then x=13, I 

would not leave this on the board.     

491 YP: Yes, I saw that it bothered you in the middle [of watching the video]. 

492 Iris: Yes, you saw that I flinched. So I would have written x2=-13, I would show 

that these are exactly these symmetrical points that we talked about, but I 

think he gained more than he lost by not paying attention to it, I think it’s…  

493 YP: It bothered you, but…  

494 Iris: It’s to his credit that he didn’t correct this.  

495 YP: Why do you think, why didn’t he correct it? Obviously he knows that it’s 

plus-minus. 

496 Iris: […] he didn’t want to linger, he wanted to continue in the same line… I think 

it’s nice, I’m not sure I could have done this.  

Category C, as exemplified in Iris' stance, demonstrates the ability to view a certain practice from the 

perspective of another person. 

In addition to these three categories of evaluative comments, we identified a fourth category 

associated with evaluation, which we termed “adhering to non-evaluative norms”. This category 

included all turns in which an explanation to the observed teaching actions was offered, without 

personal reservations, or turns in which the speaker objected to judgmental comments of peers.  
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The frequency of all four categories across the six analyzed sessions appear in Table 1.  

Category  Session 1 Session 2 Session 5 Session 6 Session 7 Session 8 

(a) Decisive negative 

judgment 
26.67% 21.74% 20.75% 67.74% 0.00% 0.00% 

(b) Disagreement, proposing 

improvement   
34.67% 33.70% 0.00% 22.58% 20.00% 47.06% 

(c) Justifying a different 

perspective   
8.00% 32.61% 18.87% 9.68% 50.00% 17.65% 

(d) adhering to non-

evaluative norms 
30.67% 11.96% 60.38% 0.00% 30.00% 35.29% 

Table 1: Frequency of turns classified to categories a-d, out of all turns classified as evaluative  

As can be seen, the amount of decisive negative judgmental comments decreased over the sessions, 

with the exception of session 6. We note that YP was displeased with his facilitation of session 6, and 

that this session merits a closer analysis, not carried out yet, in order to better understand its 

occurrences. We also note that the lack of judgmental comments in the last two sessions may be partly 

attributed to the fact that the videos were of lessons taught by team members, present in the 

discussions. We conjecture that gradual adaptation to the VIDEO-LM norms, combined with 

sensitivity to colleagues, has brought up this absence of decisive negative judgments.   

Regarding the other types of evaluative comments, that are more productive in nature, no patterns 

were discerned in the analyzed data.  

    Table 2: Frequency of idea units classified to the theme of evaluation, out of all classified idea units  

Inspecting the frequency of idea units classified to the theme of evaluation (see Table 2), clearly 

shows that teachers allocated less and less of their attention to the act of evaluation (again, with the 

exception of session 6), hence more attention was given to other foci of discussion (e.g., pedagogy 

oriented towards low achievers). We see this shift as a positive one; if the video is used more as an 

artifact around which to raise issues of practice, and less as a source for criticism, it is more likely 

that reflective thinking will take place. 

Discussion and Conclusions 

Our goal in this study was to examine the characteristics of peer-conversations taking place in a 

school-based VIDEO-LM club, facilitated by a fellow teacher who was an integral part of the group. 

We focused on one of the most important norms of VIDEO-LM sessions: avoiding judgmental talk. 

We constructed a categorization system that helps to distinguish between different types of evaluative 

comments. This is, to the best of our knowledge, a novel endeavor. The types of evaluative comments 

found in our analysis differ in their degree of potential productiveness: while type A is clearly 

unproductive (and this coheres with conclusions of previous studies), in type B teachers are able to 

move slightly beyond criticism and offer suggestions for improvements of teaching moves. However, 

Theme  Session 1 Session 2 Session 5 Session 6 Session 7 Session 8 

Evaluation  31.58% 17.78% 10.53% 16.67% 9.09% 8.33% 

Thematic Working Group 18

Proceedings of CERME11 3406



 

 

they still can only see the situation from their own perspective, thus their “span of possibilities”, or 

teaching repertoire, does not seem to expand. In type C evaluations, teachers move beyond their own 

perspective and provide a rationale for a teaching decision that they themselves would probably not 

have taken. This is a form that seems to be at least partially productive as it offers revisiting one’s 

habitual practices. Finally, type D comments can be seen as productive as they may result in reflecting 

upon and perhaps modifying one’s own practice. 

Our findings show a decrease in evaluative discourse over the course of the year, at least in type A 

comments. This is an encouraging finding, as it points to shifting towards more productive forms of 

discussions. For facilitators, the awareness of the process by which such a decrease can occur is of 

practical importance. For researchers, this methodology can provide a fruitful path towards a better 

understanding of how and under which circumstances evaluative talk can be decreased.              
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This paper investigates how teachers portray their teaching role in a professional-development 

community. By analyzing data from five groups, the goal of the study is to understand how teachers 

navigate between several discourses advocating different classroom practices and how the role is 

portrayed within these practices. In the majority of interactions, teachers position themselves 

within a traditional teacher discourse, an official Swedish discourse, or a reform-oriented 

discourse. The analysis provides examples of different teacher roles both within and between 

groups. Teachers who advocate a reform-oriented teacher role indicate that, in this type of role, 

they face challenges, and they stress that they need more specialized content knowledge. 

Keywords: teacher role, pedagogical reform, traditional pedagogy, professional development. 

 

Introduction 

In initiatives to reform teaching and learning of mathematics, professional development of teachers 

is typically an essential part. A central component in such professional-development programs is 

often teachers’ collegial discussions (Cobb & Jackson, 2012). Within professional-development 

programs, collegial discussions may be seen as a means to facilitate teacher development, which, 

in turn, is conceptualized as a means to improve and change classroom practices (Desimone, 2009). 

The opportunities created in collegial discussions for teacher development, however, are related 

to the characteristics of these discussions. In this paper, we examine one characteristic of collegial 

discussions: how the role of teachers is discussed and constructed. In particular, we are interested 

in understanding how teachers navigate between several discourses of advocated classroom 

practices and how the teacher role is portrayed within these practices. For this purpose, we 

conjecture that Sweden provides a productive case study. The argument for such a conjecture is 

that in the early years of the OECD, Sweden was one of the leading countries in educational policy. 

But with medium results on PISA tests and a shift toward students’ learning outcomes, the mode 

of governance changed. Sweden has now become a country that needs advice in order to raise its 

educational performance (Pettersson, Prøitz & Forsberg, 2017). In the last decades, education 

systems have been radically and extensively transformed (Pettersson et al., 2017) and conflicting 

discourses about mathematics teaching and classroom practices are currently being exchanged in 

Sweden (Ryve, Hemmi, & Kornhall, 2016). In the traditional discourse, the instructive role of 

teachers is emphasized, whereas another official discourse emphasizes the role of the teacher as a 

motivator who should not disturb the students’ development. Finally, a reform-oriented discourse 

stresses that teaching should be student centered and teacher led (see Ryve et al., 2016; Hemmi & 

Ryve, 2015). In this context, we pose the following research question: 
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How do teachers navigate in collegial discussions between discourses that advocate different 

classroom practices and the role of teachers within these practices? 

We examine this question by analyzing five groups of mathematics teachers engaged in collegial 

discussions as part of a national large-scale professional-development program in Sweden. 

Perspectives on the role of teachers 

There seems to be a consensus within mathematics education research on how students learn 

mathematics, as exemplified in the publication by the National Council of Teachers of 

Mathematics (2000). This document contains recommendations for teachers whereby students 

should develop procedural knowledge and conceptual understanding, be able to reason 

mathematically, and be able to communicate mathematical ideas. To achieve such aims, teachers 

have to work differently than the “traditional” way of teaching. In traditional classrooms, students 

work with procedural tasks and have few opportunities to reason and draw the connection between 

key mathematical concepts. To achieve high-quality teaching, new forms of teaching are required, 

which are based on the thinking of students (Franke, Kazemi, & Battey, 2007). 

Teacher role 

Two decades ago, Fennema et al. (1996) asserted that the role of a teacher had evolved from 

demonstrating procedures to helping students build their mathematical thinking. They described 

two types of teachers: reform-oriented and traditional. Reform-oriented teachers think that students 

learn best by doing and learning mathematics on their own and that the teacher’s responsibility is 

to facilitate learning, and traditional teachers think that the teacher’s responsibility is to direct and 

control all classroom activities and that the students are responsible for absorbing and processing 

the given information. Even today, scholars and researchers use these labels to describe the role of 

the teacher (Louie, 2016). Although this is not a definite observation, in reform-oriented 

classrooms, teachers are responsible for facilitating discussions of the students’ approaches to 

mathematical tasks so that all students are actively involved in the discussion. The teacher role 

includes carefully inserting questions and explanations to ensure that the mathematical strategies 

and ideas of the students are clear to all learners (Franke et al., 2007). 

The role of the teacher is important to describe a productive mathematical classroom and effective 

mathematics teaching. White (2003) emphasized the importance of the teacher role to include and 

influence the mathematical thinking of all their students. The teacher must value student ideas, 

explore student answers, incorporate students’ background knowledge, and encourage student-to-

student communication. These two first themes are quite similar to Fraivillig, Murphy, and Fuson 

(1999) who describe successful teaching as eliciting student solution methods, supporting the 

students’ conceptual understanding, and extending the students’ thinking. Hahn & Eichler (2017) 

investigated the impact of a professional-development course on teacher’s beliefs toward teaching 

and learning mathematics. Three teachers were interviewed after the course; their responses with 

reference to teaching and learning of mathematics changed from a transmission-oriented view to 

a more constructivist-oriented view. Cai, Wang, Wang, and Garber (2009) summarized studies 
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from more than ten countries on what teachers emphasized as the characteristics of effective 

teaching and identified the following common themes for strong mathematical knowledge: All 

teachers highlighted that an effective teacher should have a strong background in mathematics. 

They should have a personality that conveys enthusiasm about teaching and students. Teachers 

should stimulate students’ thinking and be good listeners to interact with their students more 

effectively. Lastly, the ability to manage a classroom was an important characteristic of an 

effective teacher. 

As previously mentioned, a shift has occurred from teacher-centered teaching to student-centered 

teaching. Teachers who value student-centered teaching often use various strategies and tools to 

engage students in learning and tend to believe that students construct their own knowledge 

through active investigation and meaningful exploration (Kutaka et al., 2018). According to the 

standards of the National Council of Teachers of Mathematics (2000), which influence the 

Swedish national curricula, the student’s role in the classroom is to engage in solving challenging, 

nonroutine tasks. Students should explain and justify their reasoning, make connections between 

solutions and key mathematical ideas, and share mathematical authority with the teacher in 

assessing what is a mathematically acceptable solution and on what grounds. To build on these 

standards, teachers should develop and build on the students’ thinking in the classroom. 

Method 

Context 

Between 2013 and 2016, the Swedish National Agency for Education launched a 649 million kr 

(approximately 65 million euro) curriculum-based professional-development (PD) project. Called 

“Boost for Mathematics” (Skolverket, 2018), this project aims to improve the teaching of 

mathematics. The most central components are 24 modules, eight per grade level (1–3, 4–6, and 

7–9), developed to support teachers working in teams to plan, establish, and reflect on pedagogical 

practices in the mathematics classroom. The curriculum is distributed digitally from a website 

(http://www.skolverket.se/kompetens-och-fortbildning/larare/matematiklyftet) and includes 

articles, instructions, images, and video films. Each module is designed to support groups of 

teachers (during one semester) in engaging in eight iterations containing individual preparation, 

collective planning with colleagues, individual classroom teaching, and collective reflections on 

classroom instruction. In the PD program, teachers complete two modules, taking one module per 

semester. The PD sessions are held at each school with the support of a trained coach. This study 

is part of a larger study that was carried out in a Swedish municipality, wherein all public 

elementary schools (n ≈ 40) participated in the PD program. This paper focuses on five randomly 

selected schools. The number of participants in these groups, including the coach, ranged from 6 

to 12 persons for a total of 39 teachers. The data were collected by videotaping two meetings of 

each group, where the first meeting was based on collective planning with colleagues and the 

second meeting was based on collective reflections on classroom instruction. This study analyzes 

a total of 10 sessions, which were held quite early in the second module during the spring semester, 

ranging from 33 to 90 min (two sessions for five groups), with the average being 63 min. 
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Analysis 

To understand how teachers navigate between different discourses when they engage in collegial 

discussions, we have chosen, as described in the context, to look deeper into collective planning 

and reflections on classroom instruction of five groups of teachers. The groups had been working 

together with “The Boost for Mathematics” for about six months and had established norms of 

participation that could affect teacher participation. 

As part of data reduction, we began by identifying and transcribing all discussion episodes that 

related to the teacher role. In part of the analysis, we defined an episode of pedagogical reasoning 

as a coding unit: 

Units of teacher-to-teacher talk allow teachers to exhibit their understanding of an issue in their 

practice. Specifically, episodes of pedagogical reasoning are moments within teachers’ 

interactions in which they describe issues in, or raise questions about, teaching practices that 

are accompanied by some elaboration of reasons, explanations, or justifications (Horn, 2007, p. 

46). 

Episodes of pedagogical reasoning in which teachers explicitly discuss their roles were analyzed. 

On the basis of the literature on the teacher roles and the Swedish context, we portray three 

different teacher roles that may appear in the discussion among the teachers in this project. 

The traditional role: teachers emphasize themselves as instructors who offer clear explanations and 

present the content clearly. There is, therefore, no need for much knowledge about the students’ 

mathematical thinking. Furthermore, the teacher stresses classroom management. 

The reform-oriented role: teachers emphasize the anticipation of and building on the students’ 

knowledge. Furthermore, the teachers design, initiate, and follow-up learning opportunities. 

Moreover, they challenge the students to think and interact. The teachers summarize and show 

connections, as well as discuss different solutions, mathematical ideas, and misconceptions with 

their students. 

The official Swedish teacher role: teachers emphasize the motivation of students to make 

connections among different subjects. The teacher’s role is to be a coach and help make learning 

fun. Mathematical knowledge on the part of the teacher is not necessary, but social skills are 

essential. The teacher should be reactive, rather than proactive, to the student’s needs. This role 

could be compared to “discovery-learning” which, as proposed by Alfieri, Brooks, Aldrich, and 

Tenenbaum (2011), emphasizes students’ motivation, discovery of facts and relationships by 

students themselves, and that the teacher must provide guidance only on the students’ request. 

Results 

The general overview of the episodes of pedagogical reasoning shows that all the three discourses 

were present in the teachers’ collegial discussions. We identified 13 episodes in which the teachers 

emphasized the traditional role, 16 episodes that represented the official role and 14 episodes that 

represented a reform-oriented role. Even though the total number of these three discourses were 
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quite similar, we found differences among the groups. In one group, we identified seven episodes 

representing the traditional role and one episode representing each of the other two groups. In 

another group, there were five episodes representing a reform-oriented role and two episodes 

representing the official role. Depending on different situations, teachers also navigate between 

roles. For instance, the teachers’ role is portrayed differently when they discuss the introduction 

of a lesson, often portrayed as a traditional teacher role to introduce and show students procedures. 

In the middle of the lessons, students mainly worked in pairs, and a more apparent official teacher 

role appeared to motivate the students such that all students took part in the discussion. The 

episodes also revealed differences in how the teachers regarded their own roles. For example, when 

the teachers discussed the reform-oriented role, they expressed, to a great extent, the challenges of 

such a role. In the remainder of this chapter, we present some examples of episodes representing 

the different roles. In addition, the episodes illustrate the affordances and constraints related by the 

teachers to the different roles. All transcribed materials were translated from Swedish and all the 

names are pseudonyms. 

This excerpt illustrates a traditional teacher role. In this group, each teacher presented and 

discussed their reflections on their own classroom instruction. In this episode, one of the teachers, 

Louise, emphasized her own role as an instructor who offered explanations of the content. She 

talked more about what she did as a teacher (I wrote, I took) than about the students’ roles. 

Louise: First, we had that thought-board (Swedish: Tanketavla) in common and I wrote 

this on the board because when I had done this and copied up I wrote everyday 

language and mathematical language so they could see which one. Then I gave 

them a very easy task, I took seven plus ten, and started in the middle. I had not 

even thought that we could start other places. Then we made it in common and I 

used an example, and I noticed that there were some who wrote exactly the same 

words that I had written. They wrote it and drew exactly the same. 

Further on in the same discussion, there are several instances of these types of descriptions of the 

teacher’s role, such as “First, I explained what is a thought-board and made a presentation in 

PowerPoint. After that, I tried to explain what everyday language is and what mathematical 

language is as well.” The teachers speak of the role of the teacher as that of a transmitter of 

knowledge who explains to students what to do and models the tasks for the students. The students 

are, in a way, invisible in these discussions because, when the teachers talked about the lessons, 

they base the discussion on the task, as opposed to how the students worked with these tasks. 

In the next excerpt, Mike reflects on his last lesson. His plan was to spend time discussing the 

tasks. Realizing that this plan would not work, he let his students finish their work. He assumed 

the role of a motivator who guided and supported his students but would not disturb them when 

they were working. His role was more that of a coach. 

Mike: They worked with a problem attached to which I thought would be the fraction 

and percentage we have worked with from 32 rich mathematical problems. This 
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related to going to the theatre with different prices. What amazed me was that it 

was so astoundingly slow at the beginning when the students were going to work 

with the problem. I do not know if it was, I am not sure, because of the 

interruption or if their brains had an overturn or whatever it was. Because I feel 

that I did not intend to spend so much time, because I thought that these two first 

tasks they will blow away so I really could spend time on showing and discussing 

in whole class and so on. No, this turned out to be a lot of pilotage and support 

and everything we talked about earlier. 

In episodes identified as the official role, the teachers are in the background motivating their 

students, and encounter a rather passive teacher role. They often reflect on their lessons regardless 

of whether their students had a fun time. Furthermore, in such episodes the teacher does not intend 

to discuss the mathematical content with their students other than to prepare the students for the 

mathematical content. In the next example, Amy describes the teacher role as one of asking 

questions to move the students forward. She supports the students’ thinking by letting them present 

their thoughts. Amy wants to build upon their thinking using examples from them that are different 

but correct. In addition, she wants to challenge their thinking. She describes her role as proactive 

rather than reactive. We can find several representatives of a reform-oriented teacher role in how 

Amy reflects on her own role as a teacher. 

Amy:  When you (teacher) ask better questions, or better questions, but questions that 

make their reasoning go forward. But at this point I am in the start phase. It is 

great and I have written them on a piece of paper so that I can have a little note 

to watch and remember and get going. Ehh. Yes and then even more, I do it 

today, but even more show in different ways to think that the children can come 

up and show themselves, or like today, when we should make the diagnosis, and 

introduced to the children that we used different examples that they could see 

that aha, I thought in this way, and even that might be right and so. 

Several episodes in which the teachers related to the reform-oriented role reveal the challenges of 

such a role. Sarah expresses her limitation about the mathematical concept of “relationship.” She 

finds it difficult to understand. She notices that, in her student-centered teaching, she has problems 

with teacher-led questions to guide the students further because of her weak understanding of the 

concept of “relationship.” Even if she supports the reform-oriented teacher perspective, she faces 

difficulties in implementing it: 

Sarah: I am very inexperienced in talking about relationships to lead him in a good way. 

I have another group that is also on their way but they write in a different way. 

Here, I feel that I need to develop because they have written what they see as a 

pattern, and already at an early stage, they say we have seen the pattern. I feel 

when I explain this, my question is— what is a relationship, what is it? 
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Discussion and conclusion 

The preceding excerpts are presented to show how teachers navigate between several discourses 

of advocated classroom practices and how the teacher role is portrayed within these practices. We 

found three different teacher roles: a traditional-oriented teacher, a reform-oriented teacher, and 

an official discourse-oriented teacher. The portraying of the teacher role varies both within a group 

of teachers and between groups. Within a reform-oriented perspective, the findings reveal a 

particular discourse describing how teachers portray their role. Teachers find this type of role quite 

hard to fill in their classroom. They especially emphasize the challenge of acquiring the requisite 

specialized content knowledge (Ball, Thames, & Phelps, 2008). In a way, teachers have remained 

in the previously dominant discourse in Sweden of encouraging and discussing mathematics, and 

they do not highlight other parts of the reform discourse that relate to the role of the teacher in 

setting goals, challenging, conducting discussions, etc. The findings also show that teachers who 

portray their role as official often blame students when they reflect about their own role in the 

classroom and their lessons. A reform-oriented teacher with a student-centered and teacher-led 

lesson does not blame student difficulties on inherent traits. This can be helpful in understanding 

how teachers use students’ ideas as a support in teaching (Jackson, Gibbons, & Sharpe, 2017). 

How teachers talk about their own role can be helpful in understanding their potential for learning 

in collaborative meetings to improve and change classroom practices (Desimone, 2009). The 

findings reveal conflicting discourses about the teacher role and classroom practices (Ryve et al., 

2016). Such conflicting discourses may affect the potential for teacher learning as they are not 

made explicit and resolved. 

This paper has focused on how teachers portray the teacher role. Further developments and studies 

will compare this evolution between different groups of teachers and explore the connections 

between the teacher and student roles. 
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This paper discusses the type of research lesson planned by mathematics teacher educators 

participating in a lesson study cycle. An earlier study found that mathematics teacher educators’ 

research questions were not clearly formulated and as a reason, their initial lesson plans for research 

lessons did not make student teachers’ learning visible. This follow up study analysed the lesson plans 

further before and after comments from knowledgeable others and looked into the type of lesson 

planned to be conducted, with the hypothesis that the type of lesson would determine the type of 

student teacher learning made visible. Data in form of lesson plans were collected from five teacher 

education colleges. Theory driven content analyses was used and Skemp’s (1976) categories of 

instrumental and relational teaching were the point of departure. The findings include that the initial 

lesson plans were mostly presenting instrumental type of lessons, but after comments from the 

knowledgeable others, the revised lesson plans were presenting a more relational type of lessons with 

student teachers’ learning more visible.  

Keywords: Malawi, mathematics teacher education, lesson study, type of research lesson. 

Introduction and background 

Lesson study is a new concept in Malawi teacher education and it is also relatively new in Malawi 

education as a whole. Lesson study was introduced to mathematics teacher educators in all public 

primary teacher education colleges as a form professional development and as part of a five year 

project which aims at improving the quality of mathematics teacher education in Malawi (Kazima & 

Jakobsen, 2018). The project is wide and professional development of mathematics teacher educators 

is one out of five components. In the project, we decided on using lesson study as a model for 

professional development because lesson study offers the opportunity for the teacher educators to 

work together and to study and learn from their own teaching. Since it was the first experience of 

lesson study in Malawi teacher education, we developed a research project, alongside the professional 

development, to study the teacher educators’ understanding of lesson study. The research was 

informed by previous studies of lesson study outside Japan as discussed below. The findings from 

our first study (Fauskanger, Jakobsen & Kazima, 2018) prompted us to do this follow up study where 

we ask the following research question: Which type of research lesson do Malawi teacher educators 

plan in their first experience with lesson study? Details are discussed in the following sections. First, 
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we situate our study by discussing relevant previous research on the use of lesson study in new 

contexts outside Japan. 

Lesson study originated from Japan where it has been practiced for more than a hundred years. It is 

so much part of the teaching profession that it is like air to teachers in Japan (Fujii, 2014). Studying 

own teaching and learning from students’ learning is key to lesson study in Japan, thus having a clear 

research question and carefully planning a research lesson that reveals students’ learning are 

important aspects of Japanese lesson study (Takahashi, 2013).  Due to its success in Japan, lesson 

study has been introduced to many other contexts outside Japan and many report on benefits that are 

experienced by teachers or student teachers that participated in the lesson studies (da Ponte, 2017). 

However, many also report on challenges that participants experience when implementing lesson 

study for the first time. There are at least four related challenges that inexperienced participants face. 

First, they do not always see the importance of a research question as a starting point for planning 

their research lessons (Bjuland & Mosvold, 2015; Fujii, 2016). Second, they often overlook the 

importance of predicting students’ responses (Lewis, Perry, & Murata, 2006). Third, they do not 

emphasise on planning focused observation of students’ learning (Bjuland & Mosvold, 2015, Fujii, 

2016). Fourth, they do not plan for teaching activities in order to make students’ learning visible 

(Bjuland & Mosvold, 2015).  

Lesson study in Africa has been reported used in a few countries including Malawi, Uganda and 

Zambia (Fujii, 2016, Ono & Ferreira, 2009). In these three countries, the reported lesson study was 

initiated by some Japan related initiatives supported by the Japan International Consultative Agency 

as part of aid towards the education sector. Fujii (2014) studied the lesson study in Malawi and 

Uganda schools and revealed a number of misconceptions among the teachers implementing the 

lesson study. Some of the misconceptions were that the teachers did not distinguish lesson study from 

workshop. The after teaching discussion often focused on the teacher and how the teacher can 

improve and not necessarily on students’ learning. He also found that re-teaching of the research 

lesson was taken as necessary regardless of the outcomes of the first teaching. These misconceptions 

illustrate further the challenges of introducing lesson study to new context outside Japan.  

In more recent years, there has been growing use of lesson study in teacher education. Larssen et al. 

(2018) report from a review of lesson study in teacher education where they found that there were 

variations in the way lesson study was adapted to new contexts, for instance, how observations were 

conducted. This emphasizes the challenges of lesson study when introduced to inexperienced 

participants in new contexts. 

Methodology 

Data were collected within the professional development that was designed for the Malawi 

mathematics teacher educators by the wider project. For the purpose of this paper, the lesson plans 

analysed are produced by all mathematics teacher educators at five teacher education colleges. Two 

teacher education colleges participated in the first year, and three participated in the second year. The 

professional development started with a three day workshop that introduced the teacher educators to 

lesson study. The teacher educators were also introduced to concept study of multiplication and 

fractions, the two concepts which the teacher educators suggested they find most difficult to teach 
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and would like to research on. During the three days, the teacher educators also worked in groups and 

started designing their research lesson. The three authors of this paper facilitated the workshop and 

acted as knowledgeable others in discussing the planned lesson study. After the workshop teacher 

educators from each teacher college continued working together drafting their initial lesson plan, 

before it was sent to the knowledgeable others for comments. The knowledge others provided 

comments and encouraged the teacher educators to revise and improve their lesson plans. The process 

from the introductory workshop to final lesson plan took at least about four months (May-September). 

In this study, we collected all initial draft lesson plans and final lesson plans after revisions.  

The lesson plans were analysed using theory driven content analysis (Hsieh & Shannon, 2005). The 

first study drew from literature and focused on three aspects of research question, prediction and 

observation (Fauskanger, Jakobsen & Kazima, 2018). In this follow up study, we draw on Skemp 

(1976) and use the two categories of teaching mathematics (i) instrumental and (ii) relational as the 

point of departure. Skemp (1976) divided teachers’ mathematical understanding into two divergent 

categories: (i) Instrumental understanding—a lower version of understanding—for example rote 

memorization of algorithms and (ii) Relational understanding, which encompasses a deep, conceptual 

understanding. When relating his framework to teaching, Skemp (1976) suggests that a teacher who 

teaches from an instrumental paradigm cannot produce students who learn mathematics relationally. 

More recent studies confirm that conceptual and connected mathematical knowledge is a premise for 

conceptual teaching (Tchoshanov, 2011). This highlights the importance of studying whether Malawi 

teacher educators’ research lessons tend to be of ‘the type’ instrumental or ‘the type’ relational. 

Results and discussion of findings 

Teacher College A 

The research lesson plan from Teacher College A focused on multiplication of two-digit numbers 

using different strategies. In their initial lesson plan draft, the teacher educators planned that student 

teachers would be asked to use as many strategies for multiplying two-digit numbers as possible, and 

then later share their strategies with the rest of the class. Then student teachers would work in groups 

to critique the different strategies that were presented. The research lesson was planned to be an 

instrumental understanding type of lesson (Skemp, 1976) because the emphasis was on the strategies 

or algorithms and on how to perform the algorithms. There was no explicit emphasis on understanding 

why the strategies would work, thus the research lesson focused on what to do and not the reasoning 

behind the strategies. In Skemp’s (1976) words, the lesson seemed to be about ‘rules without reason’. 

However, there were opportunities for relational understanding (Skemp, 1976) where the lesson plan 

suggested that student teachers should present their work on the chalkboard. The interaction that could 

go on between the student teachers presenting their work and the rest of the class could include 

explaining how as well as why their strategies work. Another opportunity was where the student 

teachers were going to be asked to critique the different strategies presented for multiplying two-digit 

numbers. This could include discussions of the mathematical reasoning behind each strategy. The 

lesson plan was silent on this and therefore in the enactment of the plan the teacher educators could 

easily miss the opportunity. 
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Comments from the knowledgeable others were explicit in pointing out that explanations of reasons 

why the strategies work should be included in the plan. For example they commented: 

(...) one important point is not only to ask them [student teachers] to demonstrate how to solve [the 

tasks] using their own strategy, but to explain WHY their strategy/algorithm work – this is 

important. For example, many of the algorithms use the [distributive] property that 67 × 28 = (60 

+ 7) × (20 + 8) and then different ways of multiplying the parenthesis is behind the algorithm. (...) 

So we propose to ask them [student teachers] to demonstrate and explain why the algorithm work. 

After revision, Teacher College A’s lesson plan included suggestions from the knowledgeable others 

in that it was explicit that student teachers will be required to give reasons for why their strategies 

would work. As an example, the teacher educators added to the goals of the lesson the statement: 

“student [teachers] will explain why different strategies work.” The lesson structure also changed 

from focusing on student teachers practicing different strategies of multiplying two-digit numbers to 

student teachers’ understanding of, and reasoning behind, the different strategies of multiplying two-

digit numbers. The teacher educators wrote in the revised plan that they “want students to understand 

and appreciate that there are a variety of strategies when multiplying numbers and reasons why these 

algorithms work.” In relation to evaluation, the teacher educators wrote “[a]re student [teacher]s able 

to justify their strategies” as one of their criteria for evaluating their research lesson. This indicates 

that the revised lesson plan was not only focusing on the ‘what’ to do when multiplying two-digit 

numbers, but also on the ‘why’, thus a movement towards a relational understanding (Skemp, 1976) 

type of lesson.  

Teacher College B 

The first research lesson plan from Teacher College B, started with a demonstration by the teacher 

educator on how to represent multiplication of mixed numbers using paper as a resource. This was 

followed by the teacher educator asking the student teachers to work in groups and come up with 

other resources they can use for modelling the same multiplication and finally for the groups to 

demonstrate their representations to the rest of class. The lesson had the potential to be relational if 

the groups’ demonstrations and discussions of their representations included justifying why their 

representations would work. However, the lesson plan did not indicate that such discussions would 

take place. Without the justification and mathematical explanations of why the representations work, 

then the lesson would be only for instrumental understanding with student teachers copying what the 

teacher educator did without much understanding. Comments on this first draft of the lesson plan 

from the knowledgeable others were explicit in suggesting that the teacher educator should not 

demonstrate and let student teachers copy their procedure, but rather should ask student teachers to 

do the task as a problem solving activity. The knowledgeable others wrote: 

… before demonstrating, you are recommended to invite the students to solve the problem. Only 

if you invite them to find solutions by themselves, you will be able to learn about their strategies. 

It would also be interesting if you started the lesson with a more open problem for the students to 

solve. Problem solving makes it easier for you to observe students’ strategies and their learning.  

This change in focus has the opportunity to make the research lesson become a relational 

understanding type of lesson (Skemp, 1976). The knowledgeable others also commented that the 
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lesson should not only focus on modelling and how to do the different representations using various 

resources but should also emphasise why each of the representations works. The teacher educators at 

College B revised their research lesson plan and implemented the suggestions from the 

knowledgeable others. The revised lesson plan started with the teacher educators presenting a mixed 

number multiplication problem and asking the student teachers to work in groups and to investigate 

possible resources they can use to model the mixed number multiplication. This change from 

demonstrating for the student teachers to asking them to investigate in a problem solving manner, 

made the lesson shift from the instrumental lesson it was at first to a relational type of lesson. The 

rest of lesson plan, however, was still not explicit on soliciting justifications and mathematical 

explanations for the resources and modelling presented by the student teachers. Thus, the research 

lesson could still miss opportunities for more relational understanding by student teachers.  

Teacher College C 

The initial draft lesson plan from Teacher College C was for a research lesson that started by asking 

student teachers to model addition of two fractions with the same denominator. According to the 

lesson plan, this was something that the student teachers had done in the previous lessons. The lesson 

proceeded to group activity of modelling of addition of fractions with different denominators with 

step by step instructions from the teacher educator. The lesson was an instrumental understanding 

(Skemp, 1976) type of lesson because the student teachers could have easily completed all the tasks 

by following the instructions without understating the mathematical reasoning behind the procedures. 

Comments from the knowledgeable others suggested changes that could lead to a more relational type 

of lesson, but were not explicit on this. For example, where teacher educators wrote that they intended 

to invite the student teachers “to model addition of 2
3

5
 + 1

1

2
  using papers ... [using] the following 

procedure – model whole’s i.e. 2 and 1 by ensuring that the size [of the whole] is the same.” The 

knowledgeable others commented that: “you can let the student teachers reflect on this and not tell 

them immediately that the size (area) has to be the same - so this can also be a point of observation. 

Do the student teachers understand that the size has to be the same?”  

Although not explicit, the knowledgeable others suggested that student teachers should not be told 

immediately what to do but should be left to first think for themselves and find their own strategies 

of solving the problems presented. This was important because it could shift the instrumental lesson 

to a relational lesson, and it could also offer opportunities for teacher educator to observe student 

teachers’ learning. 

The revised research lesson plan by Teacher College C took the advice of the knowledgeable others. 

The revised lesson plan was a relational type of lesson because the teacher educator posed the 

questions to the student teachers and allowed them to find solutions without giving the step by step 

instructions. The lesson plan also included prompts for asking the student teachers to explain their 

solutions. For example, the teacher educators wrote that they would ask the student teachers to 

“explain their solution strategies to the class” and to “facilitate student [teacher]s’ discussion on their 

solutions in order to understand ideas behind the solutions.” These changes have the potential to bring 

out student teachers’ reasoning and justifications for their solutions into the lesson, and might result 

in a relational understanding type of lesson (Skemp, 1976).  
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Teacher College D 

Teacher College D’s research lesson plan was on division of fractions. Their initial lesson plan started 

with a demonstration by the teacher educator modelling division of two fractions using the number 

line. This was followed by an activity for student teachers to do in groups. The activity was another 

example of division of two fractions and student teachers were to model using number line in the 

same way as demonstrated by the teacher educator. Finally, there were more exercises for the student 

teachers to practice. The student teachers could do these activities by copying the teacher educator’s 

example without much understanding. This was a typical instrumental type of lesson where the 

teacher educator demonstrates an example and the student teachers observe and later imitate and copy 

the process on other examples. Comments from the knowledgeable others suggested that the teacher 

educators should not demonstrate how to model the division of fractions on the number line, instead 

should just pose the question to the student teachers and let them think and come up with their own 

ways of modelling the division; “This might be a nice way to start the lesson  … if you start with a 

more open approach, it is easier to observe students’ thinking”. The teacher educators were also 

challenged to think more carefully about the pairs of fractions they use as examples or tasks in the 

division of fractions lesson because some pairs of division are easier to model than others. For 

example the knowledgeable others wrote:  “This [referring to 1
1

5
 ÷ 1

1

6
 ] is really difficult to model. 

Why have you chosen these fractions for the students to model on the number line? You are 

recommended to think carefully about which fractions to use and in what order”. 

In reaction to these comments, the teacher educators revised the research lesson plan to a more 

relational type of lesson. The revised lesson plan started with easier fractions to model and posed the 

question to student teachers to work in groups and find ways of modelling the division of given 

fractions. The group activity was followed by individual work where student teachers were asked to 

model more division of fractions tasks. This lesson had the opportunity to be a relational type of 

lesson because the student teachers would not be told what to do and copy, instead they would be 

invited to think, discuss and to find ways of solving the problems. However, the lesson plan did not 

emphasise on student teachers justifying their solutions or explaining their reasons, therefore these 

could be missed and that would make the lesson less relational than it could be.  

Teacher College E 

The research lesson by Teacher College E was on modelling multiplication of mixed numbers. The 

initial draft lesson plan was the only one of the five initial lesson plans that presented a relational 

understanding type of lesson. The lesson plan started by posing a problem; to model of 3 × 
1

2
, for 

student teachers to do without giving them steps of procedure to follow. The lesson plan also included 

asking questions that would seek student teachers’ understanding of mathematical reasoning behind 

the tasks. For example, they wrote: “Ask student [teacher]s to explain the meaning of 3 × 
1

2
”  and 

“Encourage student [teacher]s to demonstrate and explain their solutions.” The whole research lesson 

was structured in four parts as follows: (i) introduction, (ii) posing the problem, (iii) individual 

problem solving and (iv) discussing student teachers’ solutions. This might result in relational 

understanding lesson because students would be made to ‘problem solve’ and discuss their solutions, 

thus they would understand the strategies as well as the mathematical reasoning behind the strategies. 
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Comments from the knowledgeable others further encouraged the relational understanding type of 

lesson although not explicitly. For example in response to the lesson plan’s point of evaluation that 

stated “Do students understand the meaning of 3 × 
1

2
”, the knowledgeable others wrote: “How will 

the observers observe if the students understand? Through listening to discussions? Through 

analysing their written work?” This was suggesting that the teacher educators should be more specific 

in the activities that would display student teachers’ relational understanding. However, there was no 

revised lesson plan from Teacher College E. 

Summary and conclusion 

Table 1 summarises the type of lessons from the five teacher education colleges. 

Initial draft plan Final plan 

4 (out of 5) research lesson plans mostly 

instrumental types of lessons and following 

the common general format: 

- Teacher educator demonstrating example 

- Similar activity for student teachers 

- Class discussion 

- Conclusion  

All 4 lesson plans more relational types of 

lessons more focused on student teachers and 

their learning. General format changed towards: 

- Teacher educator posing problem 

- Student teachers use their own methods to 

solve problems 

- Teacher educator observing student teachers 

- Student teachers discussing their solutions 

to problems 

One lesson plan of relational type of lesson: 

- Problem solving approach 

Lesson plan not revised 

Table 1: Summary of type of lessons by the 5 teacher colleges 

Looking at all five teacher colleges, our analysis indicates that four of the five colleges initially had 

instrumental type of research lesson in their plans for the research lesson while only one college had 

a research lesson plan indicating a relational type of lesson. After comments and encouragement from 

the knowledgeable others to think about student teachers’ learning and about how to make this 

learning visible in the research lesson, all the four lesson plans improved and became more relational 

type of lessons. This suggests that focusing on how to make student teachers’ learning visible when 

planning research lessons can shift a lesson plan from an instrumental type to more relational type of 

research lesson. A relational type of lesson, which allows problem solving by the student teachers, 

enables student teachers’ learning to be visible and therefore more appropriate for observation of 

student teachers’ learning in lesson study. To plan such a lesson is however, challenging (Bjuland & 

Mosvold, 2015). The finding that the type of research lesson improved to make student teachers’ 

learning visible suggests that lesson study has the potential to be a useful model for teacher educators’ 

professional development in Malawi. . The study informs further work and other researchers in the 

field of lesson study the important role of knowledgeable others (Takahashi, 2013) for newcomers to 

lesson study and one important implication for future research would be to learn more about this role.  
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Introduction 

In Hungary, there is a tradition of mathematics education focusing on problems and on mathematical 

discovery that we call Guided Discovery approach. This method was elaborated in the 20st century, 

first of all for the education of gifted students. Later the reform movement led by Tamás Varga in the 

1960s and 70s developed a coherent general educational program for primary and lower secondary 

schools based on this approach (Pálfalvy, 2000). Although Hungarian specialists of mathematics 

education consider the approach actual and relevant until today, only a narrow circle of teachers 

follow it, and its large-scale dissemination remains problematic. 

In my PhD research project, launched in September 2018, I would like to contribute to the elaboration 

of a more successful dissemination processes. In my analyses, I want to focus on one significant 

aspect of teaching by Guided Discovery: on the interactions between teacher and pupils, and amongst 

students. I plan to realize experimentations with teachers are willing to this approach and who want 

to discover it to improve their teaching practice. My purpose is to give an aid to teachers which could 

improve the number of “rich interactions” in their classroom. 

Experiments 

I plan to follow two directions. The first one is based on my previous project held during my master 

studies, when I have tried to develop teaching projects based on group work. The second direction 

will be realized in collaboration with the members of the MTA-ELTE Complex Mathematics 

Education Research Group. A subgroup of this research project focuses on one of the specificities of 

Varga’s Guided Discovery approach: the planning of teaching trajectories in form of series of 

problems (Gosztonyi 2018). They examine the work with series of problems of expert teachers 

following the guided discovery approach, and they elaborate a commented collection of examples of 

series of problems to initiate other teachers into the approach.  

In my experimentations first, I will analyze some lessons focusing on the interactions in both cases. 

Then I will try to help to the teacher to use one of the methods mentioned above and check the 

following lessons in the view of how the selected method could improve the quality of the teaching. 

Especially I want to answer the following question: Does the number of ‘rich interactions’ rise as an 

influence of the new way of teaching? If the answer will be ‘yes, it does’, I believe the quality of the 

teaching will rise also. 
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The project above has five parts. The first and most important element is the definition of ‘rich 

interactions’. If the number of ‘rich interactions’ and its ratio with all interaction is rising, it shows at 

least three things: students become more active and thinking more intensively about the mathematical 

content, realize more effectively what they have not understand yet and become braver about asking 

from the teacher or from another student. 

Secondly, I will try to help the teacher to familiarize with the ‘new’ method. This will be different in 

the two threads of the project. In the first one, the teacher will get a complete plan for a period of 

teaching which will take about five to ten lessons. During this time group learning will dominate on 

the lessons which is unusual in Hungarian practice so the teacher will get a short, practical summary 

about how he or she should organize and control work. 

In the second project the teacher will get a commented series of problems issued from the above-

mentioned collection of the MTA-ELTE project. It is not necessarily connected with the following 

topic of the lesson, it is just an example. Then he or she will get time to measure it. The purpose is to 

help the teacher be able to create his or her own series of problems for his or her own class for the 

next period. During this he or she will have the opportunity to consult with one of the expert teachers 

mentioned above. 

The third part will be the classroom realization. I will film the lessons and let the teacher work alone 

with the class. 

After this, in the fourth part I will take an interview with the educator about how useful or efficient 

the experiment was in his or her opinion and I would be also interested in what he or she sees the 

most critical points of the lessons. 

The last part will be the analysis of the data collected. The whole experiment will be repeated for 

three times in case of both versions. We hope this experiment will help us to support enthusiastic 

teachers to improve their method. 

The poster 

The presented poster is available through the following link:  

https://drive.google.com/file/d/10ZRMvcth-snOqwTvG7e8dGqsyWOnhOqK/view?usp=sharing 
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Understanding students’ thinking and learning processes is one of the main challenges teachers are 

faced to during teaching. This occurs in a process that includes perceiving relevant information, 

interpreting it and finally making pedagogical decisions. In particular, mathematical errors 

constitute a rich source of information about students’ reasoning. In this paper, the diagnostic 

competence of future primary teachers in error situations is analyzed, focusing specifically in the 

process of interpreting the perceived information by hypothesizing about causes of students’ errors. 

Results suggest that this competence can be fostered in teacher education and show that not only 

mathematical content knowledge but also practical experiences and beliefs are relevant for its 

development. 

Keywords: Diagnostic competence, future primary teachers, errors analysis, mathematics teachers’ 

competence.  

Introduction 

Effective teaching of mathematics in primary classrooms under a student-centered paradigm entails 

several challenges for teachers. In order to design and carry out effective teaching sequences that 

provide adequate opportunities for each student to learn, teachers need to enact several professional 

competencies that have been described and researched in the field (Shulman, 1986; Ball, Thames, & 

Phelps, 2008; Kaiser, Blömeke, König, Busse, Döhrmann, & Hoth, 2017). In particular, teachers’ 

diagnostic competence has been regarded as a crucial component as students’ thinking and 

understanding should be taken as the starting point for building further mathematical knowledge. 

Thus, teachers need to be able to understand students’ thinking and adapt teaching strategies 

accordingly to promote learning.  

Mathematical errors are unavoidable in the learning process and their educational potential has been 

widely acknowledged (Keith, & Frese, 2008) as they constitute an opportunity for teachers to look 

into students’ mathematical thinking. Therefore, future teachers ought to learn about errors, their 

relevance and their underlying reasons, and start developing their diagnostic competence during 

teacher education programs.  

This article focuses on future primary school teachers’ diagnostic competence in error situations, 

particularly on the features related to their ability to hypothesize about causes of students’ errors. On 

the one hand, aspects that may have an influence on future primary teachers’ level of this competence 

are explored. On the other hand, the influence of an intervention in the frame of an university course 

on the development of this competence is investigated.  
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Theoretical Background 

Teachers’ professional competences 

According to Weinert (2001), competences are composed by cognitive facets and affect-motivational 

facets. In teacher education, the cognitive facets can be associated with Shulman’s (1986) 

categorization of teaching knowledge into subject-matter knowledge, in this context Mathematics 

Content Knowledge (MCK), General Pedagogical Knowledge (GPK) and Pedagogical Content 

Knowledge (MPCK). The affect-motivational facets usually include teachers’ professional 

motivation and beliefs. Relevant studies such as the Teacher Education and Development Study in 

Mathematics (TEDS-M) and Cognitive Activation in the Classroom (COACTIV) have included these 

facets in their conceptualizations of professional competence (Döhrmann, Kaiser, & Blömeke, 2014; 

Baumert, & Kunter, 2011). Both specific cognitive abilities and affect motivation components are 

considered the main aspects of teacher professional competence.  

Blömeke, Gustafsson and Shavelson (2015) suggest a situated model to assess teachers’ professional 

competences that includes not only these cognitive and affect-motivational facets as disposition traits 

but also situation-specific skills, such as perception, interpretation and decision-making. These skills 

are key in the competence continuum that puts disposition traits in action in a particular classroom 

situation and therefore gives place to teachers’ observable performance. In this model, the focus is 

neither on particular knowledge nor on the performance itself, but on the steps of the process in which 

resources activated and mediated by perception, interpretation and decision-making skills lead to 

performance as observable behavior in real-life situations. 

Diagnostic competence in error situations 

Teachers’ diagnostic competence is a relevant component in promoting learning mathematics in a 

learner-centered paradigm. Student-centered teaching requires teachers who are able to, during class, 

identify and comprehend each student’s current level of understanding, make ongoing analyses of 

students’ learning and make instructional decisions oriented towards building further skills and 

knowledge. In heterogeneous classrooms, teachers are faced to the challenge of identifying and 

understanding a wide variety of students’ mathematical thinking that children may also communicate 

unclearly or incompletely  (Radatz, 1979; Barmby, Harries, Higgins, & Suggate, 2007). In other 

words, teachers need to continuously ‘diagnose students’ achievements and learning processes during 

class’ (Hoth, 2017, p. 2901). 

In accordance with situated approaches, Prediger (2010) suggests that diagnostic competence has 

both a cognitive and an affective component. The cognitive element comprises the theoretical 

knowledge about mathematics concepts and mathematics learning required to analyze and understand 

students’ thinking. The affective component includes teachers’ beliefs, interest and curiosity about 

students’ thinking, and an interpretative attitude that allows them to understand the underlying 

reasoning of students’ thinking. Additionally, situation-specific skills, namely perception, 

interpretation and decision making skills, also affected by the cognitive and affective disposition 

traits, influence teachers’ observable behavior.  This suggests that diagnostic competence is a 

complex construct that cannot be assigned to a single component of Shulman’s (1986) categorization 
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of teachers professional knowledge, but implies an integrated and situated understanding of teachers’ 

competence. 

This study focuses on diagnostic competence in particular class situations, where students’ 

mathematical errors arise. It uses the definition of diagnostic competence in error situations by 

Heinrichs and Kaiser (2018) as  

the competence that is necessary to come to implicit judgements based on formative assessment 

in teaching situations by using informal or semi-formal methods. The goal of this process is to 

adapt behavior in the teaching situation by reacting to the student’s error in order to help the student 

to overcome his/her misconception. (p. 81) 

The relevance of mathematical errors found in students’ work or during teacher-student or student-

student interaction in class relies on their potential as a source of information for teachers about 

students’ erroneous conceptualizations or misconceptions (McGuire, 2013). Thorough 

comprehension of a student’s understanding or misunderstanding and of where their knowledge and 

skills need further support is necessary for discerning what pedagogical resources should be provided 

to support students learning (Brodie, 2014; Radatz, 1979). 

Students’ errors that are not amenable to carelessness or a simple slip, are usually persistent and 

systematic and can be explained as the outcome of cognitive structures erroneously built, frequently 

connected to previous (correct) knowledge and experiences or by the overgeneralization of concepts 

or principles from other domains. Because there is an underlying reasoning explaining the erroneous 

ideas, they make sense for the student (Brodie, 2014). The eradication of this type of errors is difficult 

because involves complex cognitive restructuring. This represents a challenge for teachers, who need 

to design pedagogical strategies that support students in recognizing that their thinking is not correct 

and in reorganizing their knowledge. This also explains the relevance of teachers’ diagnostic 

competence, as students’ errors need to be considered and addressed during teaching (Smith, diSessa, 

& Roschelle, 1993; Brodie, 2014) not only because teachers need to understand student thinking in 

order to design and deliver appropriate learning experiences, but also because doing so is more 

effective than avoiding or ignoring them in the classroom (Keith, & Frese, 2008). 

Considering different models describing teachers’ diagnostic competence and error analysis 

knowledge, Heinrichs and Kaiser (2018) developed a model for future teachers’ diagnostic 

competence in error situations, which is also used in this study. It consists of three phases. First, 

teachers attend to students’ work and perceive the error, which is essential for the error to be dealt 

with. In the second phase, teachers interpret the error and hypothesize possible causes for that error 

in that specific situation. Finally, considering this hypothesis and aspects of students’ knowledge that 

need further improvement, teachers design a strategy to deal with the error so misunderstandings can 

be overcome. 

The study presented in this article focuses primarily on the second phase of this model and therefore, 

the following hypotheses are stated: 

1. It is possible to foster the development of future primary teachers’ competence to hypothesize 

about the causes of students’ mathematical errors within a university course.  
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2. Future primary teachers’ competence to hypothesize about the causes of students’ 

mathematical errors is related to other features of their background, knowledge and beliefs. 

Methodological Approach 

The aim of the main study in which this article is based is to investigate how future primary teachers’ 

diagnostic competence in error situations can be assessed and fostered within a university course. 

Therefore, a university course and an online pre- and post-test assessment were designed. Future 

teachers in their third or fourth year of studies from 11 Chilean universities participated in the course 

and 131 answered both pre- and post-test questionnaires. 

The course’s goal was to foster the development of future primary teachers’ diagnostic competence 

as used in error situations and it was designed on the basis of the model by Heinrichs and Kaiser 

(2018) described above. It consisted of four sessions in which prospective teachers made individual 

analyses and engaged in group discussions about primary students’ mathematical errors.  

During the sessions, videos and samples of students’ written work were used to present the error 

situations, as has been argued for in similar studies (Hofmann & Roth, 2017). The usefulness of 

students’ written work and videos of students working in class has been argued for as they constitute 

a good opportunity to generate discussions and analyses of students’ thinking (Arcavi, 2016).  

A set of questionnaires was applied to measure the impact of the course. In the first part, future 

teachers provided background information. In the second part, in order to collect data about their 

beliefs about the nature of mathematics and about mathematics teaching and learning, questionnaires 

from the Teaching Education and Development Study in Mathematics (TEDS-M) (Tatto, Schwille, 

Senk, Ingvarson, Peck, & Rowley, 2008) were used. Additionally, future teachers answered a 

multiple-choice Mathematical Knowledge for Teaching questionnaire from the MKT framework 

(Hill, Ball & Schilling, 2008) adapted and validated for Chile in the Refip project (Martínez, 

Martínez, Ramírez, & Varas, 2014). 

Finally, in order to measure future teachers’ diagnostic competence in error situations, a computer-

based assessment was developed covering all three phases of the model by Heinrichs and Kaiser 

(2018) described above. Four different errors related to numeracy and arithmetic in primary school 

were chosen and assigned randomly, so that each participant worked through two errors before the 

course and other two errors after it. Students’ errors were presented using video-vignettes together 

with information about the context, the students and the learning goals for the lesson. Future teachers 

were allowed to watch and pause the video multiple times but it was not possible to go back to the 

video once they started answering the items.  

In particular, to assess the competence to hypothesize about possible causes of students’ errors, which 

is the focus of this article, future teachers were asked to answer a set of close items based on the 

videos. In order to find the real cause for an error, teachers need to first think on a wide variety of 

reasons that may be leading to the error and then be able to discriminate between those that are 

possible in that particular situation and those that are not because of certain aspects of the 

circumstances. To evaluate this, future teachers were presented with eight statements with causes of 

the error in question and they had to decide, for each statement, whether it was a possible cause or 
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not. The plausibility of each of the causes was rated using experts’ diagnoses. Mathematics teachers 

and academics working in the field of didactics of mathematics participated as experts. These 

dichotomous items were evaluated using methods of Item Response Theory (IRT). In particular, a 

one-parameter Rasch model (Wu & Adams, 2007) was used to determine the difficulties of the test 

items and the estimates for the latent abilities of every participant. The scaling showed an adequate 

fit (EAP Reliability = 0.65). 

Results 

Future teachers’ competence to hypothesize about the causes of students’ errors showed a mean of 

50 with a standard deviation of 10 in the pre-test. This competence was significantly improved at the 

second testing-time, when future teachers exhibited a mean of 52.6 (SD =10). A paired samples t-test 

was conducted and a significant difference between these means was found (t (130) =-2,649, p =.009), 

with a small effect size (Cohen’s d =.231). 

In order to test the second hypothesis, future teachers’ competence to conjecture about the causes of 

error situations was related to their beliefs, knowledge and background prior to starting the course. In 

the beliefs questionnaires, they agreed with statements viewing mathematics as an inquiry process 

and the learning of mathematics as an active one. In other words, they revealed a tendency towards 

constructivist beliefs about the nature of mathematics and about the learning of mathematics. These 

constructivist beliefs showed a significant correlation of a medium-size effect with their competence 

to hypothesize about causes of students’ errors (r =.378, p =.000 and r =.384, p =.000, respectively). 

It was also of interest to test the association between professional knowledge and the hypothesizing 

about errors’ causes competence. Analyses indicated that better results in the Mathematical 

Knowledge for Teaching test are significantly correlated to a higher competence level for 

hypothesizing causes for students’ errors (r =.307, p =.000). Similarly, a significant correlation was 

found between this competence and the number of mathematics or mathematics education courses 

that future teachers have finished within their university programs (r =.144, p (one-tailed) =.050). 

Additionally, the link between future teachers’ practical experiences and their competence to 

hypothesize about the causes of students’ errors was explored. A significant, albeit small, correlation 

was found with the number of school practices future teachers have done within their university 

program (r =.164, p (one-tailed) =.031). Relatedly, the differences in the means on the competence 

level of future teachers who have no teaching experience in primary classrooms and those who taught 

primary students sometimes or frequently proved to be significant with a medium effect size (t (124) 

=-3,023, p (one-tailed) =.001, d =.543). Moreover, when focusing on their experience teaching 

specifically mathematics in primary classrooms, a similar difference is showed between the groups 

with and without such experiences (t (129) =-2,297, p (one-tailed) =.011, d =.404). Yet another kind 

of teaching experience was explored, namely private tutoring, as it is assumed to intensively expose 

future teachers to interpreting students’ thinking and analyzing students’ errors. Although no 

significant differences in the competence to hypothesize about the causes of students’ errors of future 

teachers with and without tutoring experience for children of any age group was found (t (129)  

=-1,367, p (one-tailed) =.087), a significant difference was revealed in favor of future teachers who 
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have tutoring experience particularly with primary students (t (129) =-1,630, p (one-tailed) =.052, d 

=.284). 

Other aspects of future teachers’ revealed no link with their competence to hypothesize about the 

causes of students’ errors. For instance, no significant difference was found between participants 

enrolled in different types of teacher education programs (F (3,127) =1.637, p =.184). Also, the 

semester of studies they were attending did not correlate significantly with this competence (r =.121, 

p (one-tailed) =.084).  

Finally, multiple regression analyses were conducted including all variables with significant effects 

on the competence of hypothesizing about the causes of students’ errors. The model that better 

predicts this competence (F (2,128) =15.641, p =.000) includes only both beliefs variables , i.e. beliefs 

about the nature of mathematics as an inquiry process (β =.202, p =.045) and about the learning of 

mathematics as an active process (β =.291, p =.004). Together, both beliefs scales explain a 19,6% 

(𝑹2 =.196) of the variance in the competence of hypothesizing about the causes of students’ errors. 

Summary and Discussion 

Teaching mathematics for understanding in heterogeneous classrooms requires teachers being able to 

provide individualized and differentiated learning opportunities to build further knowledge and skills. 

In order to do this, teachers need to understand individual student’s thinking. Students’ mathematical 

errors have been recognized as a rich source of information about their reasoning and, therefore, 

teachers’ diagnostic competence in error situations has been regarded as pivotal for effective teaching. 

When faced to an error situation, teachers are expected to work through a three-step model that 

includes perceiving the mathematical error, developing hypotheses about causes for that error in that 

particular situation and making a decision about how the error should be dealt with (Heinrichs, & 

Kaiser, 2018). This article focused particularly on the second phase of this model, i.e. on future 

primary teachers competence to hypothesize about the causes of students’ errors. Factors influencing 

the level of this competence in future primary teachers, considering various aspects of their 

background, including specialized knowledge for mathematics teaching, beliefs and experiences were 

studied. Moreover, the possibility of fostering the development of this competence with an 

intervention within a university course was investigated. 

The findings of the study reveal that constructivist beliefs about the nature of mathematics and about 

teaching and learning mathematics are related to higher levels of the hypothesizing competence. This 

means that, within this sample of future primary teachers, those who view mathematics as an inquiry 

process in which trying and discovering take place, and the teaching and learning of mathematics as 

an active and student-centered process, tend to have a higher ability to discriminate between plausible 

and not plausible causes for students’ errors. These findings are in line to what has been found by 

Heinrichs (2015) in her study with prospective secondary teachers. 

In addition, specialized knowledge for teaching primary mathematics was also found to be related to 

higher levels of the competence of hypothesizing about students’ errors. Both a higher number of 

finished mathematics or mathematics education university courses and better achievements in the 

Mathematical Knowledge for Teaching questionnaire were related to higher competence levels on 
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hypothesizing causes for errors. This supports the view that dispositions traits such as knowledge and 

beliefs are relevant for professional competence. 

Besides professional knowledge and constructivist beliefs, practical knowledge was also found to 

correlate with future primary teachers’ competence of hypothesizing. It can be argued that targeted 

experiences displayed higher effects than general experiences. For instance, the number of school 

practices future teachers have participated in, revealed a significant but small effect correlation 

whereas teaching in primary classrooms exhibited a medium-size effect. Similarly, no significant 

difference was found between the groups with and without private tutoring experiences to children 

of any age but such a difference was found between groups with and without private tutoring 

experience particularly to primary-school students. This suggests that practical experiences make a 

significant difference when they are targeted to the same age group they will be teaching.  

Concerning the impact of the university course, findings show that future primary teachers’ 

competence of hypothesizing about students’ errors can, in fact, be fostered within teacher education. 

However, as the intervention was quite time-limited and rather short its effects on the participating 

future teachers was apparently restricted. Taking these results together, an encouraging challenge is 

posed to teacher educators, as complex opportunities to learn need to be provided, in which practical 

experiences, beliefs and specialized knowledge are considered and interrelated. 
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This paper focuses on the use of video to think about Mathematics classroom culture. The study 

follows a design-based research focused on professional development. We discuss here this use in a 

first design cycle with three design principles that sought to create conditions for teachers to (i) 

share authentic situations in their classroom, (ii) collaboratively discuss classroom episodes with 

other teachers and (iii) acquire progressive confidence and predisposition for their learning. Data 

was collected through training team diaries, teachers’ reports and their individual and anonymous 

assessment questionnaires. We present opportunities and constraints that allow us to face the 

organization of a second design cycle, maintaining the use of video as an accessing medium to real 

classroom situations of teachers in a training situation. 

Keywords: Mathematics, video, classroom, teacher development. 

Introduction 

This work is integrated in a teachers’ training project, named SAM Culture Project1, that seeks to 

articulate the study of classroom culture in Mathematics with the professional development of 

teachers, in a perspective of interdependence between theory and practice. 

We stand out three key aspects of this project: a) classroom culture considered as the system of 

relations and knowledge built in each learning community through the actions of both teacher and 

students (Goos, Galbraith, & Renshaw, 1999); b) learning from experience faced as a parallel 

between student learning and teacher development (Mason, 2010), facing the practice of teaching as 

a field of learning for the teacher himself (Doerr & Lerman, 2010; Leikin & Zazkis, 2010; Mason, 

 

1 The SAM Culture Project team consists of 2 mathematical educators and 9 teachers, all of them project trainers of the 

project and facilitators of the professional development sessions. 
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2010), and c) looking for ways to bring to training sessions teachers’ classroom episodes using 

video as a means to access the classroom (van Es & Sherin, 2006; Cyrille & Sébastien, 2015).  

Research conducted over the past decade suggests that video can be a powerful tool for facilitating 

teacher learning, allowing access to real classrooms situations and capturing teaching in all of its 

complexity while, at the same time, affording space and time for reflection (Tekkumru-Kisa & 

Stein, 2017). In the particular case of using videos made by teachers themselves, its role is 

recognized in the development of evaluation processes carried out in collaborative working 

modalities, highlighting the discussions about the videos of the participants' classes (Borko, Jacobs, 

Eiteljorg, & Pittman, 2008) and choosing the objectives of video viewing based on the learning 

goals (Cyrille & Sébastien, 2015). Videos produced by teachers own will, intended to be shared 

with peers and focusing a particular moment of the lesson, selected by the teacher himself, which 

we define as spontaneous videos can be the touchstone to discuss Mathematics classroom culture. 

Thus, this paper aims to discuss the role, contributions and limitations, of using video to reflect on 

Mathematics classroom culture, in a context of teacher training. 

Theoretical considerations  

To think classroom culture in Mathematics in terms of classroom norms and practices led us to 

reflect on the social space of learning. This reflection focuses on various axes that characterize this 

culture, namely, the rules that establish it, the roles assumed by the various actors, the resources and 

mathematical tasks used, as well as the evaluation that regulates learning. Classroom culture 

constitutes a dynamic system, in permanent construction, which is why we intend to analyze these 

axes in interrelation (Cobb & Yackel, 1996). Some aspects of the complex relationship between 

these axes can be captured using mobile devices, which, for their simplicity, enable to save at any 

time a significant classroom episode to promote reflection on practice. 

The use of authentic classroom videos in professional development sessions has been widely 

scrutinized and analyzed by international research (Cyrille & Sébastien, 2015; Tekkumru-Kisa & 

Stein, 2017). The videos need to be carefully selected, associated with reflection instruments, and 

used in ways to help teachers to notice and reason about important aspects of instruction and 

learning that occur in the video (Tekkumru-Kisa & Stein, 2017). 

There are several reasons to use classroom videos of teachers participating in a professional 

development program (Borko, 2011; Borko et al., 2017). Teachers find videos from their own 

classrooms and the classrooms of colleagues to be more motivating and better support their learning 

than videos from classrooms of teachers they do not know. Using video from teachers’ own 
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classrooms reduces the possibility of teachers dismissing what they see because “those kids are not 

the same as ours”. Using videos from classrooms where the teachers know each other requires a 

moderate amount of trust to view the student clips and a high degree of trust to watch the teacher 

clips. “To share their videos, teachers must feel that they are part of a safe and supportive 

professional community” (Borko et al., 2017, p. 5). This must be accounted for in the design of 

professional development sessions. 

Combining the use of video from experienced teachers with the use of videos from the classrooms 

of teachers participating in a professional development program has been followed in many 

professional development programs. Roth et al (2017) followed this orientation in a long training 

program where professional development leaders model how to productively analyze these videos 

and they coach teachers in their analytical efforts at the same time they access to expertise models. 

In addition to the cognitive aspects, research has also sought to know the motivational and 

emotional aspects present in the analysis of teachers’ classrooms videos in collaborative work 

environments (Kleinknecht & Schneider, 2013). These authors highlight the complexity of the 

network of cognitive, motivational and emotional dimensions involved in the analysis of videos of 

authentic situations, linking this analysis to the ways in which occurs and the role of professional 

development leaders. They demonstrate “the benefits of comparing teachers’ analysis of their own 

and others’ videos” and point out that” the individual analysis of one’s own and others’ videos 

results in differential effects on cognition, motivation, and emotion may not always be intuitive or 

easily observable in individual and group settings” (Kleinknecht & Schneider, 2013, p. 22). 

One of the key aspects is leaders’ catalyst role to help teachers to notice and reason about important 

aspects of instruction and learning that occur in the videos (van Es & Sherin, 2006; 2017). Leaders 

use their experience to plan and facilitate productive discussions around carefully selected video 

clips to support teachers’ learning (Borko et al., 2017). One idea is to build tools to scaffold and 

streamline different video situations, supporting visualization and reflection in an interconnected 

way. The aspects to be observed, as well as the issues to be reflected during a small group 

discussion episode, are not the same as in a collective discussion episode. Different class moments 

require reflection scripts with specific characteristics. According to Borko, Koellner, Jacobs, and 

Seago (2011), a careful and intentional planning for video viewing and discussion can help ensure a 

critical, evidence-based, and meaningful analysis, performed with a proper language. 

Jacobs, Seago and Koellner (2017) use a strategy for using the videos where teachers work on and 

discuss the same problem they will see later students working on during the video clip, in a way that 

teachers might make predictions about how students will solve the problem or what mistakes they 
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might make. 

In summary, we can affirm that the potential of this learning resource for teacher learning is 

significant, but its use is complex, involving diverse risks and requiring multiple care. 

Methodology 

This study follows a design-based research focused on professional development (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003; Cobb, Jackson, & Dunlap, 2016). 

The option for this modality is justified by the interdependence between theory and practice that 

characterizes this professional development project. It allows to articulate two dimensions in which 

researchers and teachers collaborate: reflecting on the Mathematics classroom culture, through the 

analysis of their learning environment, and seeking to promote changes in the teaching practices. 

The intervention includes a training workshop, entitled "Classroom Culture - Contributions for the 

learning of mathematics" with 26 hours. The first cycle was comprised with three editions of this 

workshop. We intend to construct and improve frameworks, theoretical based, to promote joint 

reflection on classroom culture and the consequent improvement of practices through the 

implementation of future cycles of intervention. The workshops involved 45 teachers from 

elementary school (grade 1 to 6), in Lisbon. Teachers enrolled voluntarily without knowing that the 

use of video would be privileged. The trainers of these workshops were researchers from the SAM 

Culture project. 

Data were collected using the training team diaries (TD), trainers’ reports (TR), and individual and 

anonymous assessment questionnaires, which were given to teachers at the end of each workshop 

(AQ). 

Considering the potential of using video to reflect on Mathematics classroom culture, the training 

team organized an initial task involving a video and its discussion. It was a video of a moment from 

a collective discussion during a math task, recorded by an ordinary teacher, without previous 

preparation or editing. The training task intended to focus on aspects related to the axis of social and 

sociomathematical norms and to promote confidence on sharing spontaneous videos produced by 

teachers themselves to discuss classroom episodes. Throughout the three training workshops, the 

same anchor video and discussion script were used. It was intended that this video, used as an 

anchor video (Borko et al., 2008), would be an example, not a model to be followed, to motivate the 

production of spontaneous videos and their sharing in the context of the teacher training.  

Thus, the access to the teachers' classrooms was planned through the use of spontaneous videos. 

This use had underlying design principles that sought to create conditions for teachers to (i) share 
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authentic situations in their classroom, (ii) collaboratively discuss classroom events with other 

teachers and (iii) acquire progressive confidence and predisposition for their learning. 

The preliminary analysis allowed the training team to make changes between workshops. At the end 

of the process, the retrospective analysis was carried out to revisit the data in order to identify 

opportunities and constraints of using videos to think about the culture of the classroom in 

Mathematics. 

The use of video in a first design cycle 

In the first workshop, the use of the anchor video associated with the training task allowed, 

according to the trainer, to think about social and socio mathematical norms, emphasizing that 

"clearly it was something that they never had thought" [TD]. The awareness of aspects related to 

norms seems to have happened through the visualization of the video, as referred by a teacher "I 

became aware that sometimes we are not careful with this [norms] and other times we already do it 

and we do not know it" [TD]. However, the anchor video did not trigger the production of videos by 

teachers, as the trainer says "I realized that videos will not appear, despite my attempt to motivate" 

[TD]. The first video only appeared at the session before the last workshop session “breaking the 

ice" [TD] and leading to the production and sharing of two videos in the following session. 

The reflection on the intention of sharing videos produced by teachers led to the re-thinking of the 

structure of the following workshops. In addition to performing the task that involved the use of 

anchor video, these workshops contemplated the creation of a moment of video sharing at the 

beginning of each session. This decision made teachers feel involved, from the first sessions, in the 

production and sharing of videos, as the trainers describe "teachers are truly committed to (...) 

collecting data from their experiences" [TD]. 

Having created the necessary confidence in teachers to share their classroom moments, the 

production and sharing of videos in all sessions became routine, as one of the trainers says, stating 

that "the initial fear was dissipating as the first trainees ventured, creating themselves at ease "[TR]. 

The difficulty in involving the trainees in the discussion of the videos triggered in the training team 

the need to create instruments to focus their analysis. One of these tools was an observation guide 

for shared videos structured according to the different stages of the development of a task in the 

classroom. Subsequently, another structured script was created in order to focus attention on the 

axes of the classroom culture (Figure 1). 
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Figure 1: Scripts to support video sharing 

 

Regarding the data from the evaluation questionnaires of the three editions of the training 

workshop, all the teachers who answered (29 out of 45 participants) considered that the use of 

videos is appropriate to discuss aspects of classroom culture in Mathematics. In addition, all 

teachers also considered that the use of video is a way to bring the classroom itself to the discussion 

with a view to its improvement. 

Although with little expression, constraints are identified with difficulties of producing videos 

during the class as "to record at the same time that I was exploring the task with the students" [AQ], 

referred by one of the teachers. Issues of student anonymity, such as "not being able to use student 

images", [AQ] are also cause for concern. However they do not constitute an obstacle to the 

production of spontaneous videos. 

Opportunities offered by that use of videos are recognized by most teachers, particularly at the 

"Actor Roles" axis. Some teachers point out that video allows the "reflection and discussion of the 

role of the teacher as a mediator in learning" [AQ], contributing to "modify their methods of action 

[by observing their attitudes]" [AQ]. Regarding the role of students, teachers report that "the use of 

video made it possible to observe the reactions, behaviours, difficulties or facilities in explaining 

reasoning and how we can 'influence / direct' learning [AQ]. In addition, it is viewed as an 

important tool for "sharing student mathematical resolutions" [AQ]. The use of video is thus 

understood as an opportunity to revisit the classroom by "observing more than once" [AQ] moments 

of solving a task, allowing one to look at and discuss with others, in a "joint analysis of what 

happened in the classroom context "[AQ]. 
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Final remarks 

Considering the use of videos to reflect on Mathematics classroom culture, teachers valued the use 

of spontaneous videos to discuss and reflect about teachers and students’ role during whole class 

mathematical discussions. They recognized that the constraints associated with its production, 

namely the authorization to capture images and the dual role of teacher and video maker, do not 

constitute an obstacle to the production of spontaneous videos. From the motivational point of view, 

teachers were predisposed to the production and sharing of video episodes of their classrooms. 

We highlight this way of producing videos, focused on the motivational and emotional dimensions 

(Kleinkrecht & Schneider, 2013), as a way to bring the classroom to the training process as was 

valued by teachers. Intentionally, the videos were analysed in a less directive way to promote the 

gain of confidence. However, this aspect reinforces the concern to create instruments to focus the 

visualization and discussion of the videos (Tekkumru-Kisa & Stein, 2017) in the axes of the 

Mathematics classroom culture.  

The three editions of this workshop allowed us to identify the need to increase the design principles 

enunciated for the use of spontaneous videos. Thus, we add a new principle to create conditions for 

teachers to develop productive discussions supported by instruments of reflection constructed with 

them on a theoretical basis. From a perspective of continuity, the refined design principles will 

guide the next cycle of intervention. 

In summary, the balance between promoting the emergence of spontaneous videos and their critical 

reflection, supported by guiding instruments, is an important aspect of teachers’ professional 

development in order to think about Mathematics classroom culture. The search for this balance 

reflects the complexity of the relationships between the cognitive, motivational and emotional 

dimensions in the use of videos (Kleinkrecht & Schneider, 2013) for teachers' learning. 
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Introduction 

We describe three PhD proposals that support the project Learning about Teaching Argumentation 

for Critical Mathematics Education (LATACME). The studies intend to explore how preservice 

teachers (PTs) include argumentation processes during their teaching practice in grades 1-7 within 

multilingual classrooms (MC). Argumentation for critical mathematics education (CME) in this case, 

is understood as a social production with multiple representations, such as oral and written 

expressions, gestures, and diagrams. In this production, contrasting, evaluating, and confronting the 

use of mathematical tools to understand social issues are essential for critical argumentation to take 

place.  

Intervention for multimodal argumentation with PTs in multilingual classrooms 

The first study focuses on how multimodal argumentation processes are supported in multilingual 

mathematics classrooms. Multimodal argumentation in this case is seen in a translanguaging 

perspective (García, 2009) and, thus, will be investigated as a pedagogical context within which PTs 

can give equal opportunities for all students to participate in multimodal argumentation. For this 

reason, groups of PTs will be involved in interventions during the implementation of teacher 

education courses with a focus on modelling and Information and Communication Technology (ICT). 

The goal of the interventions is to consolidate with PTs and students an inclusive approach in 

language diverse classrooms that enables multimodality and CME. Thus, this study is connected to 

the following ones, through the multimodal and critical aspects of teaching and learning 

argumentation in both primary and teacher education level. After the data collection, a multimodal 

analysis of video-recorded classroom observations with the PTs will further look at how school 

students deploy and expand aspects of their communicative repertoires when they engage in critical 

argumentation processes. Finally, the study seeks to provide insights on how classroom members’ 

diverse social, cultural and linguistic resources in the Norwegian school context empower them 

during the co-construction of meanings in multilingual-multimodal interactions.  

A case study of PTs’ use of mathematical modelling to support students learning 

The second project aims to explore how PTs support students to develop argumentation skills in 

mathematics and critical competence through mathematical modelling. The focus on how to expand 

students’ argumentation skills connects to the previous project, but this one is centered on the context 

of modelling. This is explored by looking at how PTs argue for their didactical choices in the process 

of defining criteria for creating and implementing a mathematical modelling activity with the goal of 

promoting students’ argumentation skills and critical competence in mathematics, as well as looking 

at how PTs support these goals in the classroom. The data will be gathered by following the process 

of one or two groups of PTs in relation to their work with a mandatory assignment in one of their 

Thematic Working Group 18

Proceedings of CERME11 3443

mailto:1came@hvl.no
mailto:2dppm@hvl.no
mailto:geka@hvl.no


 

 

teacher education courses. The data will be analyzed with the use of the PTs’ own definition on what 

they view as important aspects to include in modelling activities. Further, the ways by which PTs 

strengthen students’ argumentation skills in mathematics will be analyzed by using Conner, 

Singletary, Smith, Wagner and Francisco’s (2014) framework for teachers support of students’ 

argumentation skills. This study expects to develop both theoretical and practical knowledge in 

relation to PTs knowledge and argumentation in relation to how to expand students’ argumentation 

skills and critical competence in mathematics. 

Possibilities for teacher education in CME 

The third project will identify elements that can be done in teacher education to let PTs explore 

activities of argumentation as open dialogues to do critical mathematics in multilingual school 

communities. The possibilities for teacher education in CME will be built in negotiation with different 

educational stakeholders (one PT, their colleagues, teacher educators, and school supervisors) in an 

effort of expanding the classroom practice towards a socio-political network of practices in 

mathematics education (Valero & Skovsmose, 2012). While some elements will be identified from a 

literature review in three teacher education dimensions for CME: modelling; ICT; and MC (which 

connects to both previous projects), others will arise from the educational stakeholders’ 

considerations, the results of class observations, and collaborative problem-solving interviews with 

all the stakeholders. The data will be collected systematically when all stakeholders work together, 

which happens before, during, and after the PTs’ practicum. This research will contribute to deep 

theoretical and practical knowledge by understanding the perceptions of diverse educational 

stakeholders about what “critical” argumentation in mathematics education can be as intended to 

students and teachers’ practices. It will also analyze how PTs use argumentation as a characteristic 

of being critical teachers (Sánchez, et al., 2012) in the sense that it permeates not only their attitudes 

and reflections about the students work but also their own teaching practice. Finally, it will support 

ideas of teacher education in CME by developing connections between theory and practice.  

Final note 

The poster was presented at the Eleventh Congress of the European Society for Research in 

Mathematics Education in Utrecht, the Netherlands. The digital version of the poster can be found at: 

https://www.researchgate.net/figure/Poster_fig1_329338224. 
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Recent changes in German national standards and curricula have made statistics including digital 

tools an inherent part of the final examination at upper secondary schools. In previous years, many 

teachers focused only on mandatory content like algebra or analysis and almost completely avoided 

optional stochastic content. Thus they are now facing the challenge to create and implement lessons 

for a topic in which they are inexperienced and feel insecure. The professional development course 

presented in this study has the aim to increase teachers’ knowledge and competence in statistics, 

including the use of digital tools like graphic calculators and GeoGebra. A newly developed 

questionnaire was used to assess teachers’ development during the course and led to preliminary 

findings concerning the knowledge and competence for advanced topics of inference statistics and 

the expertise of using digital tools in this field.  

Keywords: Professional Development, retrospective competence self-assessment, probability and 

statistics, digital tools. 

Design of the professional development course  

There is a high demand for professional development courses on teaching statistics and the use of 

digital tools (like GeoGebra and graphic calculators) in Germany. Due to a recent change in the 

national standards (KMK, 2012), a new state curriculum was implemented in the German federal 

state of North Rhine-Westphalia (NRW) which made statistics including digital tools mandatory for 

the final exams (Abitur) in upper secondary schools. This obligation forced teachers to negotiate new 

and difficult challenges in their teaching practice. Many of them had not come into contact with 

statistics during their university education and they managed to also completely avoid this topic in 

their previous teaching practice. Therefore, content knowledge for teaching statistics or using digital 

tools in class is often missing (Batanero, Burrill & Reading, 2011). Teachers consequently feel 

insecure when teaching this topic. To meet the steadily increasing need for support, a professional 

development (PD) course was developed at Paderborn University. A team consisting of experienced 

facilitators, teacher educators, and practitioners revised an already existing course concept (Biehler, 

2016) in the sense of Design Research (McKenney & Reeves, 2012). The improvements for the 

course were based on two foundations: on the one hand research on teacher education and proven 

ideas for designing teaching lessons (Biehler & Prömmel, 2010; Prömmel, 2013), and on the other 

hand concepts for PD course construction and research like the design principles of the German 

Center for Mathematics Teacher Education (DZLM) (Barzel & Biehler 2017) or the three-tetrahedron 

model for content-related PD research (Prediger, Leuders & Rösken-Winter, submitted, 2018).  

The new state curriculum of NRW demands a wide variety of statistical topics to be covered in school 

lessons. It was possible to concentrate the essence of the curriculum in five PD attendance days (see  

Table 1 for the content of each day) distributed over half a year with opportunities for teachers to try 
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out the newly learned concepts in their lessons. In addition to that, the PD course also offers self-

learning material so that teachers can deepen their knowledge on various topics like simulations with 

graphic calculators (GC), combinatorics, or the normal distribution. 

Day Topic Content (examples) 

1 

Getting started in statistics and probability at 

upper secondary level, using GCs and 

simulation – in heterogeneous classrooms 

Far-reaching and apposite examples for the law 

of large numbers and the  
1

√𝑛
-law, introduction to digital tools (GeoGebra, 

GC) and simulations 

2 

Conditional probability, statistics 

independence, and expectation as basic 

concepts in stochastic modeling 

Natural (absolute) frequencies in tree diagrams, 

complementing contingency tables with double 

tree diagrams 

3 

Modeling with probability distributions, 

particularly with the binomial distribution: 

suggestions for teaching in a content-related 

and process-oriented way 

The binomial distribution dynamically 

visualized with digital tools, interconnecting 

insights from previous day by using the same 

examples, strengthen modelling critique 

4/5 

Teaching inference statistics (hypothesis 

testing) with the goal of understanding, with 

authentic examples for the binomial distribution 

Hypothesis testing via p-values to predefined 

significance level, errors of the first and second 

kind, power function, choice of the null 

hypothesis 

Table 1: Topics covered in the five-day PD course 

The aim of our study is to implement and analyze a PD course with an emphasis on increasing 

participants’ knowledge and competence in teaching statistics with digital tools. This excerpt of our 

larger study focuses day five which covers the field of teaching more advanced topics of inference 

statistics testing like: 

• Interpretation of hypothesis testing results (with focus on didactics and language) 

• Type I and type II errors 

• Choice of null hypothesis 

• Operation characteristics and power function 

More information on the PD design, PD aims and the course content can be found in Biehler, Griese 

& Nieszporek (to be submitted). 

Theoretical framework 

The TPACK framework created by Mishra and Koehler (2006) expands the mathematical knowledge 

for teaching framework (MKT) by Hill, Ball, and Schilling (2008). In addition to content knowledge 

(CK) and pedagogical knowledge (PK), Mishra and Koehler enriched the model with elements of 

technology knowledge (TK). However, those knowledge facets and their intersections like 

pedagogical content knowledge (PCK) or technology pedagogical content knowledge (TPACK) are 

not sufficient as the only input for a PD course.  It is essential for teachers and for their daily practice 

to acquire additional skills beside pure knowledge on the topic, as they are confronted with different 

classes or situations and have to constantly undergo planning activities. Planning activities can be 

performed with fictional classes where problems and difficulties have to be anticipated and adequate 

reactions must be found. Therefore, they can be implemented in PD courses rather easily to strengthen 
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the skills of the participants. In contrast to knowledge dimensions these skills were grouped as 

competences in regard to Weinert (2001). Table 2 illustrates some of the knowledge and competence 

dimension addressed in our PD course.  

K
n

o
w

le
d

g
e 

Content I have content knowledge relating to the topic. 

Background of the content 
I know the didactical and curricular background and the learning 

goals of the topic 

Ideas for implementation I know ideas for the implementation of the topic in lessons. 

Approaches for digital tools 
I know approaches for using digital tools / GCs in the context of the 

topic. 

C
o

m
p

et
en

ce
s 

Handling misconceptions 
I am capable of recognizing and reacting appropriately towards 

misunderstandings (…). 

Planning I can create a lesson plan incorporating the goals of the topic. 

Teaching the content I can teach the topic in a goal-oriented way. 

Integrating digital tools 

I am capable of implementing the approaches for the use of digital 

tools / GCs (…) in school lessons in a didactically advantageous 

way. 

Table 2: Knowledge and competences addressed in the PD course, via statements to be rated 

Teachers’ heterogeneous knowledge and teaching experiences  

For a long time, statistics and especially inference statistics have not been compulsory for upper 

secondary level, and were often neglected in university courses for teachers. This resulted in deficits 

regarding statistics knowledge of current in-service teachers, and some teachers might have mixed or 

mistaken content and horizon knowledge in some fields (Wassong & Biehler, 2010; Ball, Thames & 

Phelps, 2008). They are hardly able to simplify the content matter for class, which should also be 

taught in a PD course on statistics (Godino, Batanero & Font, 2007). 

In addition to this deficiency, knowledge and competences towards digital tools are also demanded 

by new curriculum in NRW. GCs (or computer algebra systems, CAS) have also become mandatory 

in the final examination. Therefore, it is necessary to have at least a basic knowledge in programming, 

simulating or visualizing and interpreting distributions to fulfil the new demands.  Due to the 

mismatch of teacher training and curriculum, this lack of experience must be addressed by a PD 

course, too.   

Research questions 

We will address the following research questions: 

1. General assessment of course success from participants’ perspective. To what extent (from 

before until after the PD course) do participants report to have acquired knowledge and 

competence in reference to conducting lessons in advanced topics of inference statistics 

testing? 

2. Suitability of PD course in respect to the heterogeneity of teachers’ previous experiences. 

What differences concerning the self-reported development of knowledge and competence 

facets (from before until after the PD course) can be observed in different groups of teachers 

with comparable previous experience in teaching statistics and/or using graphic calculators? 
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Results for PD day 4 including a detailed description of the underlying theory, competence models 

and methodology can be found in Nieszporek, Griese & Biehler (to be submitted). The procedures 

used in this article form the foundation for this paper and the analysis of the course success. Due to 

space limitations it is only possible to give a brief overview of the results for PD day 5 in this article.  

The ReCoS questionnaire 

With reconsideration of the course concept and the corresponding theoretical background, the ReCoS 

questionnaire (see Figure 1) was developed to fulfill our needs. ReCoS is an abbreviation for 

retrospective competence self-reports which describes the questionnaire quite well. It combines the 

knowledge and competence dimensions presented earlier (Table 2) with the specific content facets of 

each day. The PD course participants rate their before and after level of the facets subsequent to each 

PD day.  The self-reports were made via German school grades (1=excellent, 2=good, 3=satisfactory, 

4=pass, 5=poor, 6=fail). 

 Figure 1: ReCoS questionnaire matrix, see Table 2 for the content of the columns 

Pre/post or knowledge test designs were not feasible measurement tools for our project. Reasons 

range from organizational difficulties (lack of time for a detailed knowledge test due to a tight PD 

course schedule) to ethical concerns or motivation on behalf of the teachers. There are also good 

reasons for a retrospective test instrument like ReCoS. On the one hand different effects like response 

shift or practice effects were prevented. On the other hand, there was no sensitization towards a 

specific aspect or topic of the PD (Willson & Putman 1982). 

Data collection and sample size 

The ReCoS questionnaire matrix was adjusted to the topic of each PD day and distributed at the end 

of the respective day. A different questionnaire measuring individual experience levels via a six-point 

Likert scale (from inexperienced and highly experienced) was filled in by the participants at the 

beginning of the whole course. Individual anonymous codes were used to match the two 

questionnaires. 32 out of a total of 60 participants filled in both questionnaire types completely and 

thus only their data was used for further analysis.  

Either SPSS 25 or R were used for statistical analysis like test for normal distribution (Kolmogorov-

Smirnov), significance of competence increase (Wilcoxon signed-rank test) or building of scales of 

items and participants’ groups.  
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Results 

The general success of the PD course is illustrated in Figure 2. The ReCoS matrix shows the mean 

increase for each item. First of all, every change between the before and after competence self-

assessment is positive. The changes were significant (p<0.001, Wilcoxon signed-rank test) and were 

around 1 which is equal to an increase of one school grade.  

Figure 2: Mean differences between the before and after scores of each item, a difference of one 

positive point describes an increase by one school grade, sample sizes between 29 and 32 

Overall, the differences for each item do not vary much. Item II (I know the didactical and curricular 

backgrounds and the learning goals of the topic) is an exception. For almost every content facet the 

self-assessment increases less than 1 grade, which stands in contrast to the confidence in creating 

lesson plans (item VI) or teaching the topic (item VII). This might be a hint that teachers have insecure 

knowledge of the curriculum (a discussion of the curriculum was not part of the PD) or have 

difficulties understanding this specific item. Nevertheless, some scales within the questionnaire can 

be identified.  

Content-specific facet 
Knowledge Competences Technology 

α α α 

Before scores    

Interpretation of hypothesis testing results  0.910 0.982 0.897 

Type I and type II errors 0.924 0.948 0.909 

Choice of null hypothesis 0.933 0.979 0.927 

Operation characteristics and power function 0.942 0.969 0.910 

After scores    

Interpretation of hypothesis testing results  0.913 0.965 0.848 

Type I and type II errors 0.906 0.947 0.930 

Choice of null hypothesis 0.901 0.968 0.951 

Operation characteristics and power function 0.925 0.965 0.898 

Table 3: Cronbach’s α for the different scales, separately for the before and after items, sample sizes 

between 29 and 32 

The theoretical framework of the course suggests a separation of the items into two scales knowledge 

(Item I – III) and competences (Item V – VII) for each content facet. Item IV and VIII form a separate 
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scale called Technology, because technology plays a big role in the PD course and the abilities for 

using digital tools in school differ from the content components combined within knowledge and 

competence.  The theoretical considerations are supported by empirical results. As is presented in 

Table 3, the identified scales within ReCoS show good to excellent Cronbach’s α. In the following 

passages we will focus on the content facet type I and type II errors. 

Table 4 shows the heterogeneity of experience among the teachers. The expertise reported in the field 

of teaching statistics and using the GC is not very high overall. It is striking that the participants were 

more unexperienced in handling digital tools (n=21), even when tools like GeoGebra or GC are 

commonly used for topics like algebra or analysis. This lack of experience for statistics appears to be 

a singularity.   

Experience in teaching statistics 

Experience in using GCs in statistics  

Low  Medium  High  

Low n = 15 (L) – – 

Medium n = 5   (V) n = 9 (M) – 

High n = 1 n = 1 n = 1 

Table 4: Distribution of participants in terms of self-reported experience in the use of GCs in statistics 

and in teaching inference statistics 

For obvious reasons, we will disregard the groups consisting of only one person here, and instead 

focus on the participants who had low experience in teaching statistics and using GCs (group L), 

those who had varied experienced in both fields (group V) and those who reported medium experience 

(group M). This selection reduced the sample size to 29 for further analysis.  

 Figure 3: Jitterplots and boxplots of the three scale pairs knowledge (K), competences (C) and 

technology (T) for the content type I and type II errors (Type I/II error), group L: blue (n=15), group V: 

orange (n=5), group M: green (n=9), scale range from 6=fail to 1=excellent, made with R 

The increase of the mean differences (Figure 2) can be rediscovered in the boxplots in Figure 3. This 

figure visualizes the development of the three groups (L, V and M) for the content facet type I and 

type II errors. The before scores of each group fit their previous experience on teaching statistics. 
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This means that the lowest experienced group (L) has the lowest before scores compared to the other 

two more experienced groups. Only group V, who also rated their experience in using digital tools 

low, shows equally low before scores in the technology scale. The after scores illustrate the huge 

increase of knowledge, competence and capability for technology reported earlier for the mean (Table 

2). Even the most experienced group M rated themselves higher in all three scales after the PD course.  

It is striking that there is a larger spread in the before scores of each group, which is remarkably 

reduced in the after scores of all three scales. Especially the participants of groups V and M rate their 

skills uniformly high. Only the lowest experienced group L shows a reduced but still high spread in 

the knowledge scale.  There might be a ceiling effect at grade 2 (good) because only very few 

participants rated their skills higher with grade 1 (excellent). The rating system based on school 

grades might be the reason for that. 

Discussion and remarks 

Overall, the PD course increased the knowledge and competences of the participants by a significantly 

high amount (Figure 2) and was a success. But at the same time there are some hints as to where the 

PD course can be improved in a future design research cycle. We expected that the participants would 

rate their knowledge higher than their competence level after the PD course, because they supposedly 

would need to test the new material and ideas for teaching in their classes. There is a small difference 

between the score levels, but the competence after scores were almost as high as the corresponding 

knowledge scores. The different opportunities in the PD course to test and discuss the new input (for 

more details see Biehler et al., 2018) seem sufficient to encourage the participants to cover type I and 

II errors appropriately in class. Participants also feel more capable of using digital tools not only for 

calculating purposes but also for its didactical opportunities in the learning process.   

The distribution of the before scores of each group (Figure 3) supports our division of the participants 

via their pre experience level. For example, the group of varied experience (V) shows medium high 

pre scores in knowledge and competences but has low scores in technology.  The three different groups 

vary significantly from each other in the pre scores. This difference is still apparent in the after scores 

but relatively smaller since the after scores of groups L and V are almost on the same high level as 

group M. Also, the heterogeneity within each group is reduced on all scales.  

It is important to have in mind that ReCoS only provides self-reported data and also that the sample 

size of 29 is not a large one. Therefore, we plan to contrast our results with data from other PD days 

and to use data from different other sources (questionnaires, audio transcript) to validate our findings. 

The comparison of the results from day 4 and 5 seems to be satisfying.  
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Introduction 

This presentation is grounded in self-study research by two mathematics teacher educators’ (MTEs) 

as we taught courses in culturally relevant pedagogy (CRP) in mathematics and engaged in research 

conversations to discuss our learnings from students and from each other. The research is situated in 

the nexus between prospective and practicing teachers’ (PTs) expectations for classroom ‘tips & 

techniques’ and MTEs’ desires to disrupt dominant discourses in mathematics. We collected data 

from PTs through their projects and reflections on course content during offerings of CRP courses in 

our two institutions. We analyzed that data through a themes-based approach focused on MTE 

learning which was fostered by tensions and dilemmas stemming from students’ responses to the 

disruption of dominant discourses. In this presentation, we describe our research contexts and the 

learning stimulated from listening to our PTs’ thinking. 

Research overview 

Dominant discourses of mathematics have been well-established through a history of being 

“culturally defined as objective, value-free, logical, consistent and powerful knowledge-based 

discipline” (Burton, 1994, p. 207). Efforts to disrupt these dominant technical-rational traditions in 

mathematics classrooms are evident in research on power, privilege and oppression. For instance, 

Willey and Drake (2013) indicate that subtle signs of power and privilege are manifested in, for 

example, “neglecting students’ cultural and intuitive mathematics knowledge” (p. 62). They urge us, 

as MTEs, “to sharpen our sociopolitical lenses in order to notice and disrupt manifestations of 

privilege and oppression in mathematics education” (p. 68). 

We draw on the work of Ladson-Billings (1995), who defines culturally relevant pedagogy as “a 

pedagogy of opposition... not unlike critical pedagogy but specifically committed to collective, not 

merely individual, empowerment” (p. 160). In mathematics education, Aguirre & Zavala (2013) state 

that culturally responsive mathematics teaching “involves a set of specific pedagogical knowledge, 

dispositions, and practices that privilege mathematical thinking, cultural and linguistic funds of 

knowledge, and issues of power and social justice in mathematics education” (p. 167).  

In general, MTE research on their instruction has focused on what PTs learn from their instructional 

approaches, rather than on their own learning as they conduct research (Chapman, 2008). Chapman 

(2008) offers that MTEs should study their teaching by reflecting on the thinking of their 

students/PTs, examining the conflicts between intent, thinking, and behaviors, and using them to 

inform MTE instructional approaches. In line with Chapman’s advice, this research taught us to listen 

to our students and their thinking about CRP in mathematics classrooms; to understand and work 
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through students’ questioning and resistance that emerges when dominant discourses of mathematics 

are disrupted in teacher education courses. Our research situates our learning and development as we 

struggle, in designing and teaching CRP courses, with questions of who and what is considered 

‘relevant,’ and as we analyze how students respond to CRP in mathematics. 

Discussion and results 

Three themes emerged from our data that capture our learning as MTEs. The first is our need to clarify 

our own ideas about CRP. We found ourselves repeatedly questioning how to define and teach CRP, 

underscoring our belief that “[c]ultural responsiveness is not a practice; it's what informs our practice 

so we can make better teaching choices for eliciting, engaging, motivating, supporting, and expanding 

the intellectual capacity of ALL our students” (Hammond, 2015, p. vii).  

A second learning theme is the need to negotiate understandings of CRP with PTs. We take seriously 

the warning of Aronson and Laughter (2016) to not turn CRP into “a buzzword or checklist of steps” 

(p. 198), that CRP must “be embraced more fully as a guiding ethos for every aspect of the classroom” 

(p. 198). As MTEs, we learned to be careful that we do not teach CRP courses which will merely 

make the dominant (technical-rational) mathematics more accessible, but that our courses are 

disruptive enough to make mathematics different in an enduring manner. 

Finally, a third learning theme is the value of learning from others - from tensions created in our work 

with PTs, but also from each other, as MTE colleagues. This additional layer of collaboration fosters 

our growth and development as MTEs. Without the opportunity to discuss the tensions and dilemmas 

emerging in our practices, we would have remained isolated in our own individual contexts, 

struggling on our own with similar tensions and questions about CRP in mathematics. 
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This study used qualitative meta-analysis to analyze the professional development of 38 pre-service 

student-teachers who conducted a qualitative study in mathematics education as part of their learning 

requirements. The analysis of the teacher-researchers’ (TRs) studies used qualitative meta-analysis 

and focused on learning through activity (LTA) (Simon, 2018). Analysis was based on a meta-model 

that was constructed to characterize the development of the TRs according to the following 

parameters: skill of mathematics instruction, pedagogical perceptions, pedagogical knowledge, and 

problem-solving methods. In this paper, I present and discuss the meta-model study of only the last 

parameter (problem solving).  

Keywords: Professional development, teacher researchers, qualitative meta-analysis, learning 

through activity (LTA), problem solving.  

 

Introduction 

Professional development programs for pre- or in-service mathematics teachers or teacher educators 

generally include practice in conducting research, based on the perception that the short- and long-

term goals of post-secondary and graduate teacher-education programs are to develop expert teachers, 

and that conducting original research is one way of obtaining expertise. Most teachers in college or 

university programs claim that they have developed professionally, and this study examines various 

aspects of their professional development as a result of research that they carried out in their practical 

teaching environments.  

Aspects examined included the structure of their research tools, task design, data analysis, 

interpretation of results and data, and so forth. A meta-model was developed to incorporate all these 

elements and more. The model describes the main categories found in the studies: problem solving, 

theory, beliefs and attitude, assessment, and environment and setting. In addition, the model describes 

the catalysts for the TRs’ professional development for each category examined, describes the study 

tracks, and illustrates whether the TRs followed a partial or complete pathway to their goal. The 

elements highlighted in the model are the LTA components identified as part of the TRs’ research 

process.  
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Theoretical background 

The teacher as researcher 

Requiring pre- or in-service teachers to engage in research as part of their practical instruction moves 

their education away from the educator-centered model (were the educator “communicates” 

information toward the student) towards a more student-centered approach, thus shifting pre-service 

teachers from receivers of pedagogical knowledge from “higher” authorities (i.e., the educator) into 

creators of such knowledge (Cochran-Smith & Lytle, 2009). Allowing pre-service teachers to conduct 

their own original research offers not only an instructional tool for teacher educators to engage in 

student-centered, problem-posing pedagogy (Souto-Manning, 2012), but also offers a tool for the pre- 

and in-service teachers themselves to investigate any worries or problems of practice they may have 

in their classrooms and schools in the future (Baumann & Duffy, 2001). Knowing how to conduct 

proper research will become a tool that extends beyond the teacher-education classroom, allowing in-

service teachers to continue their professional development after completing their formal coursework 

and providing them opportunities to improve teaching and learning (Lysaker & Thompson, 2013), 

explore questions of influence and social justice (Fecho & Allen, 2011), change their understanding 

of their own students’ understanding of the various concepts (Parkison, 2009), improve their skill in 

intervention (Christenson et al., 2002), improve and change their beliefs, and take action appropriate 

to their findings. Snow-Gerono (2005) found that teacher-researchers (TRs) changed not only their 

classroom practices, but also their attitude towards teaching. Even small-scale research projects allow 

TRs to improve their understanding of the research process (Gray, 2013), their selected topic(s) of 

study (Goodnough, 2010), and even about themselves (Reis-Jorge, 2007).  

Previous studies have found that conducting research leads teachers to professionally develop their 

teaching skills and to better understand their beliefs and attitudes toward themselves as teachers and 

toward their students/pupils as learners. In this study, I focus on teachers in the field of mathematics 

education. The goal was not only to examine the extent of professional development that the research 

project effected, but also to focus on the catalysts for development that emerged in the TRs’ research 

process. 

Learning through activity: theoretical framework 

As the facilitator of the in-service teachers’ research projects, I utilized the learning through activity 

(LTA) theory as a strategy to investigate my students’ professional development. The LTA theory 

aims to integrate conceptual learning and instructional design. With respect to mathematics, LTA 

research is based on the questions: How do humans learn mathematical concepts? and How can 

instruction be designed to enlist these learning processes? Guided by these questions, LTA 

researchers have examined the design of mathematical concept study units and have developed a 

theory that simultaneously guides the work and derives from it (Simon, Kara, Placa , & Avitzur, 2018).  

As defined by some of the studies on LTA, a “mathematical concept” is a researcher’s assumption 

used to characterize student knowledge. It does not represent what a student might actually say about 

her understanding but rather provides focus with respect to the learners’ actions and allows the 

researcher to recognize specific, higher-level actions that result when lower-level (current) actions 

are coordinated with the actions of the learning activity. This coordination of actions, along with 

Thematic Working Group 18

Proceedings of CERME11 3456



 

 

explanations to understand the concepts involved and reflective abstraction, becomes the source of a 

newer, more advanced concept (Simon et al., 2018). Based on this definition, theory designers also 

have defined specific “instructional” actions and procedures that promote conceptual learning. These 

may include hypothetical learning trajectory (HLT), guided reinvention, specific design steps, and 

use of computer applications, all of which can lead to a coherent process of building mathematical 

concepts.  

Method 

Research goals 

The research goals were two-fold: 1) identify and characterize dimensions and aspects related to the 

professional development of teachers in the role of researcher in mathematics education, and 2) 

identify the catalysts that lead to this professional development. 

 To this purpose, the research questions were as follows: 

1. What characterizes the professional development of TRs in the wake of the process of 

research on mathematics education? 

2. Under what aspects does professional development takes place? What are the catalysts for 

professional development? 

I narrowed focus onto two specific themes: “perceptions of concepts” and “conducting instruction.”  

Population 

No direct population. The qualitative analysis was conducted by examining the research study 

projects carried out by undergraduate students. (These projects were presented as their theses). Fifty-

six student studies were initially examined, but only 38 that met the three criteria – the research 

involved mathematics education, the findings were qualitative, and the TR’s or mentor’s journal were 

available – were chosen for the meta-analysis (8 teacher educators, 18 elementary school teachers, 12 

high school teachers). 

Meta-analysis 

Meta-analysis studies act as a guide for prospective research by qualitatively analyzing studies in a 

specific field to comparatively identify similarities and differences between them (Çalık & Sözbilir, 

2014). This present meta-analytical study is aimed at systematically analyzing in-service teacher 

research on a variety of subjects in mathematics education so as to identify any professional 

development that occurred thereby and to determine any deficiencies and gaps therein.  

Data analysis  

The research process involved hermeneutic and dialectic aspects: hermeneutic to do justice to the 

original primary findings and dialectic to compare and contrast them with each other.  

The first stage consisted of an initial reading of all the papers to familiarize myself with the subjects, 

methods, data analyses, findings, and results of each study. Next, at the second stage I formulated 

sub-questions that I attempted to answer during rereading. They were: What characterizes the topics 

that teachers choose to study? What do teachers ask in studies about student learning? What do teacher 

educators ask about their associate teachers? What do teachers ask about themselves? What 
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characterizes the process by which teachers build the research structure? What do teachers learn from 

the definition of intervention principles? How do teachers analyze data as researchers? Where and for 

what reason do teachers note in their work or journals the difference between being teachers and 

being researchers? Do teachers eventually indicate changes in their perceptions or beliefs?  

In the third stage, I constructed a number of meta-models based on the answers to the above questions. 

These included meta-models pertaining to research subjects and populations, classification of 

research questions and research methods, application of theories, and the TR’s skills and perception 

of mathematics instruction.  

In the fourth stage, the meta-model was expanded based on LTA theory so as to recognize which TR 

actions complied with the theoretical predictions. The categories that evolved were “problem 

solving,” “theory,” “beliefs & attitudes,” “assessment,” and “surroundings”. At this stage, I built the 

framework of the expanded model. I chose random events from the studies and examined them based 

on the categories in the extended model and, as a result, was able to refine the model.  

Triangulation 

I supplemented the qualitative meta-analysis with three types of data: the final versions of the papers 

the TRs submitted, the journals they submitted to me, and the notes that I, as facilitator, wrote 

throughout the procedure. 

Findings 

The meta-models constructed revealed five main categories that fell under “mathematics instruction, 

skills perceptions, and knowledge” and that involved project mechanisms unique to teachers’ work 

in the research milieu. I then narrowed it down to the “sub-meta-model” of “problem solving” (see 

Figure 1 as part of an entire model) to provide a detailed analysis of the professional development of 

the TRs as it occurred during the research process. 

Meta-model research: mathematics instruction, skills perception, and knowledge  

As mentioned above, all the studies chosen for analysis included some form of “conceptual learning” 

and “instruction” and could be described through meta-model analysis. All the categories and 

subcategories in the meta-model can be divided into actions, thoughts, perceptions, or catalysts, and 

the four categories that pertain to the LTA instructional design framework. In constructing the meta-

model, I analyzed events and attempted to identify these four components (shaded elements, Figure 

1). Thus, it was possible to identify in which cases the process of teaching and intervention promoted 

perception of mathematical concepts and those that did not.  

Professional development in problem solving 

In the meta-model, “problem-solving” includes any new action, skill, or perception of problem-

solving instruction that occurred during the TRs’ research. The TRs did not use standard problems 

from textbooks or online per se, but selected exercises or problems suitable for the topic at hand. In 

addition, where changes in perception were observed, they redesigned tasks and imagined the solution 

their population might hypothetically give. Their design of their study tools evolved and changed if 

they recognized that their hypothetical path did not suit their population, as for example, they had 
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fifth-grade material but were teaching a third-grade class (for which no appropriate problem sets were 

available).  

Identification of catalysts 

Using LTA theory helped me define and recognize the intervention processes constructed by the 

TRs. If I recognized them as one (or more) of the four components of instruction that promote 

development of a mathematical concept, I examined the events to pinpoint the elements (i.e., 

catalysts) that led to this development. Catalysts included the following: assessing and analyzing 

solutions according to personal or theoretical interpretation, research questions that focus on 

identifying the development of concepts or actions, research questions that focus on changing the 

learning environment, and teaching and intervention.  

 

Figure 1: The “problem solving” component of the meta-model research 

Below are three cases that illustrate the professional development of the TR with a focus on the catalysts.  

Example 1: Designing tasks and problems to promote graphic representation 

Rachel, a 12th-grade teacher, wanted to help her students solve calculus problems through graphic 

drawings. She found a problem online and adapted it to the non-computer environment. After 

analyzing the students’ solutions, she realized that her students did not yet have sufficient knowledge 

to solve the problem. She then chose problems from the textbook, redesigning them to encourage a 

graphic representation of the solution. However, she discovered that most students solved the problem 

algebraically; only a few applied graphic representations. She therefore proceeded to design two 

tasks: drawing the derivative of a given logarithmic function, and graphing the original function of a 

derivative presented as a denominator. She specifically chose functions where the students would 

have to consider many aspects of the “derivative” concept. At this point, she wrote some hypothetical 

(correct and incorrect) solutions, and made a hypothetical list of aspects of perception related to the 
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understanding of the original function and its derivative. In her journal, Rachel reflected how 

preparing the list of hypothetical solutions in advance helped her understand how her students might 

perceive the two concepts. From this stage on, Rachel worked as follows: 1) She chose a set of 

problems which, combined, developed understanding of the mathematical concept in the context of 

graphic representation and offered a multiplicity of examples and graphical solutions to problem. 2) 

She redesigned textbook problems to fit her research goal (fostering understanding of graphic 

representations of functions and shifting from one graphic representation to another). At each stage, 

she prepared a list of hypothetical solutions and implemented “guided "reinvention". She also posed 

questions to enhance her understanding of the solution process based on her analysis of each lesson.  

Rachel is an example of a formative teacher who posed problems in accordance with the goal: 

developing a perception of graphs in calculus. LTA follow-up (HLT, guided reinvention, design steps, 

and computer application) enabled analysis of the stages of development and their identification. The 

catalyst was her investigation of the students’ solutions whereby she concluded that the original 

problem did not invite a graphic solution, leading her to design her own problems that focused on her 

research goal. By posing problems, she learned new mathematics content knowledge.  

Example 2: Designing tasks and problems to promote transfer of learning 

Betty, a grade-2 teacher, wanted to promote her pupils’ perception of the multiplication operation by 

solving problems involving tessellations. Her research goal was to promote transfer of learning from 

tessellation problems to multiplication problems and vice versa. Her research paper and journal 

indicated that she focused on the problem-solving aspect as follows: First, she found problems in the 

textbooks and redesigned them into a set appropriate for second graders. After analyzing her pupils’ 

solutions, she concluded that they understood the three basic properties of tessellation. Next, she 

posed tessellation problems using the categories she had created and introduced multiplication 

questions. At each stage, Betty wrote hypothetical solutions in advance and then analyzed the actual 

results to ascertain how her pupils perceived multiplication and tessellation. Also, at each stage, she 

focused on the dual purpose of posing problems whose solution reflects a perception of multiplication 

expressed through tessellations, and vice versa, which was supposed to reinforce each.  

Betty’s professional development in problem solving was two-fold: 1) while posing the problems she 

refreshed the multiplication concept by creating different tessellations not necessarily with 

geometrical polygons; and 2) she considered the generic process of designing and posing problems: 

setting a learning goal, formulating steps to achieve it via specific concepts, posing appropriate 

problems, writing hypothetical solutions, analyzing the problem, and posing new problems 

accordingly. The catalyst was her unique study linking these two concepts and the fact that she had 

to design assessment rubrics to identify the development of the concepts.  

Example 3: Designing tasks and problems to identify teachers’ perception of division by 

fractions  

Sofie is a teacher facilitator. Her research focused on teachers’ perception of division by fraction, a 

concept that is sometimes confusing even to in-service teachers. She had previously experimented 

with the concept of the addition and subtraction of fractions, but she strongly suspected that teachers 

had difficulty posing problems that clearly taught the nature of division by fraction. She composed a 
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set of division exercises illustrating different aspects of division by fractions. Her plan was to 

interview teachers and ask them to pose a word problem for each exercise. She believed that how the 

problems were formulated would reveal the teachers’ perceptions. Sofie first formulated and solved 

a set of hypothetical problems herself to determine if her chosen exercises were suitable and if they 

encompassed all aspects of division by fraction. Sofie’s professional development was expressed in 

two ways: 1) Based on theories she had learned and papers she read, she composed and recomposed 

the set of exercises five times until she deemed them satisfactory. (She thus showed that she had 

learned to compose exercises as a series so as to develop various aspects of fractional division.) 2) 

Sofie learned how to convert the exercise into “realistic problems” so that the concepts of dividing 

by fractions were reflected in the formulation of the problem. Thus, her own concept of division by 

fractions developed and deepened. In addition, her research led her to construct a path for teaching 

the subject so that her students would develop a broad, coherent perception of the action. Sofie’s 

catalyst was her exceptional interview structure that obliged her to overhaul exercises to solve the 

appropriate problem. An additional catalyst was reading studies and theories regarding the 

understanding of division by fractions. She tried to examine the perception of teachers against the 

perception of students.  

Discussion and implications 

In this brief article, I have presented a general model of the main and sub-categories that indicate the 

professional development of in-service teachers who conducted research. I then elaborated on the 

“problem-solving” category. This present article augments previous papers that discuss similar 

aspects (Baumann & Duffy, 2001; Cochran-Smith & Lytle, 2009; Goodnough, 2011; Fecho & Allen, 

2011; Friedrich & McKinney, 2010; Labaree, 2003; Lysaker & Thompson, 2013; Moran, 2007; 

Souto-Manning, 2012; Vetter, 2012).  

Three major findings emerge from the analysis of these studies in which TRs were required to deal, 

on their own and perhaps for the first time, with formative assessment at every stage of their research, 

using intermittent results to (re)build and improve their research tools and intervention actions. First, 

it is clear that such assignments support the coherent perception of mathematical concepts and 

processes and support the TRs’ own skills in constructing a lesson to promote the development of 

their own coherent perceptions. This finding is consistent with the LTA theory (Simon at el, 2018). 

Second, it supports the general model of the skills and actions of the TR, which illustrates the catalysts 

in the sub-categories. (For example, what and when do teachers learn from theory?) Identifying 

catalysts and understanding their role in each category may help facilitators design studies with a 

higher potential for enabling the professional development of the TRs. Third, enhancement of the 

TRs’ mathematical content was a central goal (and outcome) of this study. At the outset of their 

projects, the TRs considered themselves quite knowledgeable about the subject that they had decided 

to study, but, while building their research tools, they realized that there was a need for them to deepen 

their content knowledge.  

Because this study was conducted using qualitative meta-analysis research, it presents a summary of 

findings from all the TR studies. This method is effective because it generates a comprehensive result 

that includes many aspects of the phenomenon (McShane, & Böckenholt, 2017). Thus, the “problem-

solving” meta-model can be used to create a pathway that describes each of the studies individually. 
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If a particular path lacks some necessary component(s), e.g., “step design” or HLT, this indicates that 

the TR progressed less than one who did employ all the components.  

Finally, the complete model can assist the facilitator in guiding TRs in designing research structure, 

making sure that they include activities with the potential to develop and promote mathematical 

“knowledge.” A paper regarding the use of the complete model is currently in preparation.  
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We report on the impact of a mathematics professional development course on teachers’ 

mathematical knowledge for teaching and their learners’ attainment. Teachers’ scores on a 

mathematics test improved significantly. Using a quasi-experimental design we examined the 

learning gains of Grade 9 learners (N=991) from nine secondary schools taught by teachers who had 

attended the course. We compared these results with those of learners (N=988) in the same schools 

taught by teachers who had not participated in the course. The intervention group learners made 

larger gains but these were not statistically significant. The teachers who had done the course had 

far fewer years of teaching mathematics at senior secondary level than their colleagues. This 

highlights the importance of a matched comparison teacher sample in impact studies.  

Key words: Learning gains, mathematics teacher knowledge, impact of professional development. 

Introduction 

There are attempts across the world to improve teachers’ mathematical knowledge in order to raise 

learner attainment. In South Africa, despite a wide variety of programmes costing many millions of 

Rand, there is little evidence that these interventions have had much impact on learners’ performance 

in mathematics. The impact problem is frequently attributed to teachers’ poor mathematical 

knowledge (Carnoy et al., 2011; Taylor & Taylor, 2013). 

In 2010 the Wits Maths Connect Secondary project (WMCS) set out to develop models of 

professional development for secondary mathematics teachers that would improve learner attainment 

in Mathematics. In 2012 the Transition Maths 1 (TM1) course was offered for the first time to a small 

group of teachers in one district in the broader Johannesburg area. In 2013 the Learning Gains I 

impact study showed that learners taught by teachers who had attended the course out-performed 

learners in the same schools taught by teachers who had not attended the course. The results were 

treated as “evidence of promise” since the sample was small, the gains were small and the variation 

within the treatment and comparison groups was large (Pournara, Hodgen, Adler, & Pillay, 2015). 

The notion of learning gains was employed as a measure of learner attainment where the gain is the 

change in test-score from pre- to post-test over one academic year. It is a useful notion in the context 

of impact studies because it enables us, to some extent, to attribute learning gains to the teaching 

received from a particular teacher in a given year. We are well aware of a range of interventions that 

are taking place in secondary schools and so we make all claims with caution, knowing that no 

individual intervention at the level of the teacher can account entirely for improvements in learner 

attainment.  

The TM1 course has been revised and refined annually since 2014, and has now been offered to four 

more cohorts of teachers across the Gauteng province of South Africa, totaling approximately 150 

teachers. A follow-on impact study, Learning Gains II, commenced in 2016 to extend the Learning 

Gains I study with a more robust instrument and a larger sample of teachers, learners and schools. 
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The key question the study seeks to answer is, “What is the effect of teachers’ participation in the 

TM1 course on their learners’ attainment in Mathematics?”  

We begin with a brief review of the literature on teacher knowledge, mathematics professional 

development and the impact of these on learner attainment. Thereafter we provide a description of 

the TM1 course, giving the reader some insight into the mathematics and teaching components of the 

course by means of specific examples of tasks.  

Teacher knowledge and learner attainment  

Shulman’s (1986, 1987) distinctions between subject matter knowledge (SMK) and pedagogical 

content knowledge (PCK) have provided much impetus for a great deal of research on teacher 

knowledge. While it is widely agreed that the knowledge teachers need for teaching mathematics is 

more than sound content knowledge of mathematics itself, the elaboration of the detail takes different 

forms. Some refer to the additional knowledge as PCK (e.g., Krauss, Baumert, & Blum, 2008) while 

others (e.g., Ball, Thames, & Phelps, 2008) distinguish sub-categories of SMK as common, 

specialised and horizon content knowledge, and further sub-categories of PCK such as knowledge of 

content and students, curriculum and teaching. While we find the SMK-PCK distinction useful, the 

boundaries between them are too blurred to be useful as analytical constructs. We therefore choose 

to speak of “mathematics-for-teaching” (MfT) (Adler, 2005; Adler & Davis, 2006) as an amalgam of 

mathematical and teaching knowledge. MfT includes both subject content knowledge and 

mathematics-specific pedagogical knowledge.  

Elsewhere (Pournara et al., 2015) we have argued that in contexts where teachers’ mathematical 

knowledge bases are poor, proxy measures such as state certification, number of post-school 

maths/maths education courses taken and years of teaching experience may be relevant predictors of 

learner attainment in secondary mathematics. However, these proxy measures alone are insufficient 

as measures of teachers’ mathematical knowledge.  

Attempts to measure teachers’ mathematical knowledge have taken various forms across the world. 

In some instances, teachers have been given the same/similar test items to the learners they teach. 

Harbison and Hanushek (1992) and Mullens, Murnane, and Willett (1996) found that primary 

teachers’ scores on such tests were good predictors of learner performance. In South Africa, Taylor 

and Taylor (2013) reported the poor performance of Grade 6 teachers and learners on items in the 

SACMEQ III study, thus implying a link between (poor) teacher knowledge and (poor) learner 

performance. More sophisticated measures have been developed in Germany and the United States 

(Baumert et al., 2010; Hill, Ball, & Schilling, 2008; Krauss et al., 2008). These studies have both 

found associations between teacher knowledge and learner attainment.  

While teacher knowledge is key in all contexts, it is particularly crucial in contexts of poverty and 

low achievement. Nye, Konstantopoulos, and Hedges (2004) and Krauss et al. (2008) have shown 

that variances in learning gains attributable to teaching are higher in low socio-economic status (SES) 

schooling contexts.  

Professional development and learner attainment 

The impact of professional development is a concern across the world. Based on a literature survey 

in English publications, Adler, Ball, Krainer, Lin, and Novotna (2005) reported a predominance of 

small-scale qualitative studies. The review of studies of professional development relating to school 

mathematics by Gersten, Taylor, Keys, Rolfhus, and Newman-Gonchar (2014) showed that very few 
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of the initiatives which met acceptable standards of rigour also led to positive effects on learner 

attainment. Sample-McMeeking, Orsi, and Cobb (2012) reported the effects of a middle school 

intervention in the US where teachers took university summer courses in mathematics lasting two to 

three weeks. They reported an effect size of 0.20 (Hedge’s 𝑔) on learner attainment for teachers who 

had attended two courses but there was no discernible effect size for those who had attended only one 

course. Further work is clearly required to carry out rigorous studies on the impact of teacher 

professional development on learner attainment in mathematics, and this study makes a contribution 

in this regard.   

The Transition Maths 1 course  

The TM1 course is underpinned by the assumption that focusing on teachers’ MfT will lead to better 

teaching which will in turn translate into improved learner attainment. It is targeted at teachers 

currently teaching in Grades 8 and 9 (first two years of secondary school in South Africa), and aims 

to address the transition from mathematics in the Senior Phase (Grades 7–9) to mathematics in the 

Further Education and Training (FET) phase (Grades 10–12). Teachers are typically nominated by 

their school or district to attend the course. They are then required to write a selection test before 

being accepted. The course was offered free of charge to teachers. While it is an officially recognized 

Short Course of the University, it does not carry accreditation towards a qualification but does carry 

Continuing Professional Development (CPD) points.  

The course consists of eight two-day contact sessions over a ten-month period and focuses on 

mathematics content (75%) and aspects of mathematics teaching (25%) – a similar ratio to the course 

described in Sample-McMeeking et al. (2012) mentioned above. The mathematical content of the 

course includes algebra, number, functions, Euclidean geometry and trigonometry. Teachers submit 

seven assignments and write two tests which include mathematics content and tasks related to 

teaching.  

We approach the learning of MfT through revisiting known mathematics (Pournara, 2013) and 

learning new mathematics. When working with familiar mathematics, a revisiting approach 

frequently draws on extreme cases and problematizes taken-for-granted aspects to deepen teachers’ 

knowledge rather than merely redoing known mathematics to improve procedural fluency (Kilpatrick, 

Swafford, & Findell, 2001). For example, in working with linear functions we provide teachers with 

five representations (verbal, table, function machine, equation and graph) of the same function, say 

𝑦 = 2𝑥 + 1. We then invite them to consider questions about each representation, including some 

that are likely to be new and unusual, for example: “Where is double in the graph?”; “Where is double 

in the table?”; and “When the input is −1, the output is also −1. Is there another output-value that is 

the same as the input-value?”   

We extend teachers’ knowledge beyond the mathematics they currently teach so that they can teach 

Grade 10 (and possibly beyond) in the future. We therefore deal with Grade 11 curriculum content in 

algebra, functions and trigonometry, paying attention to common procedures in the senior secondary 

years such as completing the square, which we approach algebraically and geometrically. We 

reinforce connections between representations and between procedures by asking teachers to solve 

quadratic equations using three methods (factorizing, quadratic formula and completing the square) 

for typical examples such as 3𝑥2 − 5𝑥 − 2 = 0 and unusual cases such as 𝑘2 = 5. 

The focus on mathematics teaching is built around the notion of teachers’ mathematical discourse in 

instruction (Adler & Venkat, 2014) which is operationalised through what is known as the 
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Mathematics Teaching Framework (MTF).  Here we focus on key elements common to all teaching 

practices: identifying and articulating a lesson goal; designing and selecting example sets; selecting 

representations; selecting and designing tasks; producing explanations and justifications; and, 

building opportunities for meaningful learner participation in lessons. Each of these aspects is 

sufficiently close to teachers’ current practice and hence possible to implement and then to work on 

so as to become more skillful at each one.  We illustrate the teaching focus though an example from 

a session on explanations where we deal with the pervasive error of conjoining in algebraic 

simplification. Teachers are asked to produce an explanation that will convince Grade 8 learners that 

4𝑝 + 5 ≠ 9𝑝. This typically leads to a range of responses from teachers such as those illustrated in 

figure 1.   

 

1) Numerical approach using a single case: The letter stands for an unknown number. So, 

let’s try 𝑝 = 2.  If  𝑝 = 2, then what is 5𝑝 + 4? Is it the same as 9𝑝?   

2) Appealing to everyday life using letter as object: We can think of  5𝑝 as 5 pencils, but 4 is 

just a number. When we add, we won’t get 9 pencils.  

3) Appealing to everyday life using letter as specific unknown: We can think of 𝑝 as a box 

with a number of sweets, but we don’t know how many sweets are in the box. Is  5 ☐+

4   the same as  9☐?   i.e., Is 5 boxes of sweets plus 4 more sweets the same as 9 boxes of 

sweets? 

4)   Comparing different algebraic expressions using principles of variation: Let’s compare 

different algebraic expressions. What is the same/different about the following 

expressions:     a)    5𝑝 + 4𝑝            b)    5𝑝 + 4𝑚          c)       5𝑝 + 4   

Figure 1: Four possible responses to explain 𝟒𝒑 + 𝟓 ≠ 𝟗𝒑 

We then ask teachers to study these responses and to evaluate each explanation in the light of its 

mathematical correctness, its generalizability and the extent to which it is appropriate for Grade 8 

learners. While we have not yet researched teachers’ responses to this kind of task, anecdotally we 

have noticed that they are not aware of the limitations of the letter as object (Küchemann, 1981) 

explanation. We therefore highlight the important yet subtle distinctions between explanations (2) 

and (3), showing why (3) is more productive for making sense of algebraic symbols later in algebra. 

We recognize that explanation (4) shows evidence of teachers’ take-up of ideas of variation (Marton 

& Tsui, 2004; Watson & Mason, 2006), which we explicitly teach in the teaching sessions.  

Research design and methods 

We adopted a quasi-experimental design to assess the effect of the TM1 intervention on the 

participating teachers and on the attainment of their learners. We describe the sample of teachers 

taking part in the TM1 course in 2016 and the methods used to analyse their gains in MfT during the 

course. We then examine a sample of Grade 9 learners during the 2017 school year to assess the 

impact of the TM1 course in the first year after teachers’ participation in the TM1 course.  

Forty teachers completed the TM1 course in 2016. The gains in their MfT were assessed by means 

of tests, administered at the start and the end of the course. The test at the end of the course was more 

cognitively demanding than the test at the start and covered more topics. Both tests were developed 

by the project team.  
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Eleven teachers, in 9 schools, were invited to participate in the study because they were teaching 

Grade 9 Mathematics in 2017 and 15 of their colleagues, also teaching Grade 9 Mathematics, agreed 

to be part of the comparison group. In terms of analysis, a repeated measures t-test analysis was used 

to compare the mean test scores at the start and the end of the course. This was carried out only for 

the 11 teachers in the study.   

At the same time, we tracked 991 Grade 9 learners taught by TM1 teachers over the 2017 school year. 

We refer to these as the TM1 learners. We also tracked 988 Grade 9 learners from the same schools 

but taught by teachers who had never participated in the TM1 course. These learners are referred to 

as the comparison group. A test was administered to both groups in February and September 2017.   

The learner test, designed by the project team, tested key aspects of number, algebra and functions. 

Most items were typical curriculum items at Grade 8 and 9 levels. The test was designed to contain a 

spread of items across difficulty levels. It was piloted in 2016 with Grade 9 and 10 learners in schools 

similar to those participating in the study. A Rasch analysis showed that the test was fit for the purpose 

of testing learning gains at Grade 9 level although there were a few too many items that were difficult 

for many learners.  

Each test response was marked as correct, wrong or missing with only 1 mark being allocated for a 

correct response. Therefore a learner’s test mark simply indicated how many items s/he had answered 

correctly. There was no consideration of partially correct responses.  

A repeated measures ANOVA analysis was carried out to see whether the interaction between 

pre/post gains in the learner assessment and the learners’ group (control vs TM1 group) was 

statistically significant.    

Results 

We first present the quantitative results and analysis from the TM1 tests for teachers, and then the 

results of the learner test. 

Looking firstly at the TM1 maths tests, the mean test scores for the teachers before and after the TM1 

course were compared. The mean pre-course test mark was 57.3% and the mean final test mark was 

72.1%. A repeated sample t-test analysis showed that this increase was statistically significant at the 

5% level (t = 3.67, df = 10, p < 0.05). We therefore concluded that the course had a significant impact 

on the teachers’ MfT. Given that the final test was more cognitively demanding and covered more 

topics, the statistics may under-report the impact of the course on teachers’ MfT.  

The results of the Grade 9 Learning Gains test scores were as follows: for the TM1 group the mean 

score increased from 13.2% to 19.5% from pre- to post-test. By contrast the comparison group’s mean 

scores increased from 13.9% to 19.7%. The TM1 learners made greater gains, closing the gap between 

the two groups. However, using a repeated measures ANOVA analysis, the interaction between 

pre/post-test and learner group was not found to be significant (Wilks’ Lambda = 1, F(1, 1975) = 

0.91, p = 0.34). We therefore concluded that there was no statistically significant difference in the 

gains in the learner test scores pre to post between the comparison group and the TM1 group.   

The teachers’ levels of teaching experience provide a possible explanation for the apparent lack of 

impact of the intervention. We compared the TM1 teachers and the comparison group teachers on 

their number of years of teaching Mathematics (in general) and on their number of years teaching 

Mathematics in each of Grades 8 to 12  (Table 1). We report on all 11 TM1 teachers but only on 12 

comparison teachers because the biographical data for the remaining 3 teachers was incomplete.   
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N Years of Maths 

Teaching 
Grade  

8 
Grade  

9 
Grade 

10 
Grade 

11 
Grade 

12 

TM1 teachers  11 14.6 7.0 9.6 3.6 1.9 1.1 

Comparison teachers  12 13.3 4.5 5.8 4.1 4.3 4.0 

Table 1: Teachers’ average years of experience of Mathematics teaching per grade 

The data shows that both groups had, on average, been teaching mathematics for a similar number of 

years although within each group there was a wide range of years of experience. While on average 

the TM1 group had more experience teaching at Grade 8 and 9 levels, the comparison group had 

considerably more experience teaching in Grades 11 and 12. This suggests that participation in the 

TM1 course does not make up for years of teaching experience at senior secondary level, particularly 

beyond Grade 10. However, based on the learner results, it could be argued that participation in TM1 

enabled the teachers to do “as good a job” in teaching Grade 9 Mathematics as their colleagues who 

have more experience in teaching higher grades.    

Given that the teachers in the comparison group are the “more senior” teachers with respect to 

mathematics, it is not surprising that the TM1 learners did not significantly outperform the 

comparison learners. If it can be assumed that teachers teaching higher grades have stronger 

mathematical knowledge for teaching, then the overall findings of this study fit with the underlying 

assumptions behind TM1 – that paying attention to teachers’ mathematical knowledge for teaching 

is a necessary condition for improving teaching.  

Discussion and implications 

As noted above, proxy measures of teachers’ knowledge may have some predictive power in contexts 

where teachers’ mathematical knowledge is generally poor. Based on the data presented, the proxy 

measure “number of years of mathematics teaching” needs to take into account the levels at which 

teachers are teaching within the secondary school. Secondly, as Clarke (1994) has argued, the impact 

of professional development programmes on teachers’ practice is delayed. Therefore, attempts to 

measure the impact of teachers’ participation in TM1 on their learners should not be undertaken in 

the first year after completing the course.   

Impact studies, irrespective of whether or not they report statistically significant results, do not 

provide insights into the mechanisms which enable or constrain the desired change. Based on the data 

reported here, little can be said about why the gains were small for both the TM1 learners and the 

comparison group. Further research is necessary to unearth possible reasons for the continued low 

performance of learners in Grade 9 Mathematics. A related qualitative study is underway to 

investigate the nature of learners’ errors and the extent to which these errors may change between 

pre- and post-test. Such changes in the nature of learners’ errors cannot be picked up by a coding 

system that does not make allowance for partially correct responses. This points to the need for mixed 

methods impact studies where quantitative impact analyses are complemented by qualitative studies 

such as those that attend to learner error.  

In terms of research design, particularly in the context of secondary mathematics in South Africa, the 

above finding on teacher background and learner attainment shows the importance of matched 

sampling in the teacher group. This will likely expand the size, cost and complexity of the study since 

it is seldom possible to find comparison teachers, within the same schools, who have similar years of 

experience in Grades 8 and 9 but have not participated in TM1. Inevitably this means the inclusion 
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of new comparison schools, which potentially strengthens the findings of the study. However, 

experience has shown that schools such as those participating in this study are not in a position to 

confirm which teachers are teaching in each grade until early-to-mid February by which stage data 

collection for a study such as this has already commenced. Consequently the matching of teachers is 

likely only possible after the pre-test learner data has been collected. This leaves some of the matching 

of teachers up to chance as the researchers have little control over these matters.   
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Theoretical framework 

Currently, there is a wide agreement concerning the idea that students' understanding of mathematics, 

their ability and confidence to use it to solve problems, and the development of a fruitful disposition 

toward mathematics, are shaped by the teaching they encounter in the classroom (NCTM, 2000; 

Smith, & Stein, 2011). Besides, researchers agree that “within mathematics classrooms, the nature 

and character of the discourse that students and teachers engage in has a profound impact on students’ 

opportunities to learn mathematics, and it shapes their identities as mathematical knowers and doers” 

(Cirillo et al., 2014, p. 141).  

If we intend to support and foster students’ “mathematical proficiency” (Kilpatrick, Swafford, & 

Findell, 2001, p. 5), it is essential that the mathematical discourse that occurs in the classroom takes 

as a starting point the students' exploration of cognitively challenging tasks; it is also crucial that they 

actively engage in whole-class discussions of the strategies they used to solve these tasks. In fact, 

research has shown that whole-class discussions with these characteristics and in which the teacher, 

relying on what the students say and do, moves them towards a more powerful, efficient, and accurate 

mathematical thinking, are a resourceful context for learning mathematical ideas and processes 

(Lampert, 2001). 

Even though these collective discussions rooted in students’ thinking and work and about relevant 

mathematical tasks can provide important opportunities to learn mathematics, to orchestrate “a 

productive mathematical discussion (…) turns out to be an extremely demanding and intricate task. 

The role of discussion coordinator is particularly difficult” (Sfard, 2003, p. 375). Even experienced 

teachers face difficulties and challenges that would not exist if the control of the classroom discourse 

was mainly in their hands. These challenges, well documented in the literature (for example, Boavida, 

2005; Lampert, 2001; Smith, & Stein, 2011), increase when the teachers who try to conceive and 

implement mathematical teaching practices which emphasise productive whole-class discussions 

based on problem solving, are prospective teachers. 

The research: aim and results 

This presentation relies on two studies developed by two prospective elementary mathematics 

teachers (Prata, 2017; Silvestre, 2017). Both of the studies aims to understand how they could develop 

teaching practices focused on the orchestration of mathematical collective discussions and to analyse 

the challenges that these practices pose to a future teacher. From a methodological point of view, the 
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studies fit into an interpretative paradigm. During the last year of their teaching training programme, 

the two prospective teachers conceived and carried out, in primary schools and over about five weeks, 

pedagogical interventions in which several problems related to selected mathematical concepts were 

proposed. Over this period they acted both as researchers and teachers. The empirical data were 

collected mainly by participant observation and documental analysis. 

The results of the studies illustrate that the five-practices model proposed by Smith and Stein (2011) 

has helped the prospective teachers to manage better the orchestration of collective discussions 

around problem solving strategies generated by the students. Besides, they highlight the importance 

of selecting challenging tasks that foster the emergence of several solution strategies and which 

context is close to the students’ experience. The main challenges experienced by the prospective 

teachers are related to help the students to understand that errors are valuable “ways of thinking” 

preventing, at the same time, that those who have failed feel themselves in a vulnerable position; to 

support their reasoning without telling “what to do” to get the right answer; to change the pattern of 

interaction from “funneling” to “focusing”; and to honor students thinking while assuring that the 

mathematical ideas that are in the heart of the teaching agenda remain prominent.  
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Pre-service mathematics teachers interpret observed teachers’ 

responses to students’ statements 
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In this paper, we will present and exemplify a three-level category scheme used for categorizing the 

depth of interpretations pre-service mathematics teachers offer for teachers’ responses to students’ 

mathematical thinking in observed critical events. The category scheme is a result of top-down 

literature analysis and bottom-up analysis of 38 critical event reports submitted during one academic 

year within a clinical preparation context. This category scheme may help teacher educators to gain 

a better understanding of PTs’ interpretations of teachers’ responses, and therefore to plan field-

based training programs that help PTs to broaden their theory-practice connection.  

Keywords: pre-service mathematics teachers, critical events, noticing, reflection. 

Introduction 

Reflection has had a growing role in teacher education over the past four decades (e.g., Zeichner, 

1981) and is considered to lie at the heart of teachers’ professional practice (Clarke, 2000). Teacher 

educators argued for the integration of reflection with field-based preparation, in order to help pre-

service mathematics teachers (PTs) learn how actions connect to particular purposes in context and 

to support PTs’ ability to link theory with practice (e.g., Ball & Forazani, 2009; Zeichner, 1981). In 

this research we follow Karsenty and Arcavi’s (2017) definition of reflection, which is “analytical 

and careful observation of ‘what was done’ in order to attempt to understand intentions, plans, actions 

and utterances” (p. 435).  A common use of reflection in teacher education (in-service and pre-

service) is asking teachers to analyze classroom situations (e.g., van Es et al., 2017). However, 

research indicates that when PTs are merely asked to reflect on situations that they observed, their 

reflection may focus on aspects of teaching that are irrelevant to building further mathematical 

instruction (e.g., Santagta & Guirno, 2011). This suggests that a structured framework for reflection 

is needed. Recent research indicates that professional noticing framework is an appropriate 

framework for structured reflection (Jacobs et al., 2010). In this research we built on Jacobs et al. 

framing of professional noticing framework, which requires PTs to: (1) identify a critical event (2) 

interpret the mathematical thinking of the student/s in the critical event, and (3) offer an alternative 

response as if they were the teacher responding to the critical event. This framework is used here to 

analyze authentic mathematics classroom situations that PTs observed in their clinical preparation 

program. We refer to these situations as critical events. In this study we built on Stockero and Van 

Zoest (2013) and Goodell (2006) definitions and define critical events as moments in the classroom 

that if pursued by the teacher may enhance students’ mathematical learning, and therefore provide 

the teacher with an opportunity to reflect and thus to learn about teaching. 

In most studies PTs are asked to focus on the student's mathematical thinking as it is expressed in 

student-teacher interactions (e.g., Jacobs et al., 2010; Simpson & Haltiwanger, 2017). This study 

takes a slightly different approach, and seeks to focus not only on the student but on the teacher as 

well. The premise is that an analysis of teacher responses is an inseparable part of the critical event 
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analysis and that focusing on the relationships between the student's statements and the teacher's 

responses in the given event will contribute to reflection. In addition, research shows that PTs struggle 

when it comes to offering an alternative response as if they were the teacher in critical event (e.g., 

Jacobs et al., 2010). Although not in the scope of this paper, we began looking for ways to support 

PTs to base their alternatives for teaching on the students’ mathematical thinking as expressed in the 

event. A possible approach for achieving this aim is to direct the PTs to focus their attention to the 

teacher's response. The current paper takes a first step in building a characterization for the PTs’ 

interpretations for the teachers' statements in the observed events.  

This paper presents an analysis of PTs’ written interpretations for a teachers’ responses in critical 

events which were submitted during a clinical training program. We analyzed 38 reports submitted 

by the PTs. The reports contain PTs’ analysis of the critical event according to the three elements of 

the professional noticing framework (Jacob et al., 2010) plus analysis of an observed teacher’s 

response to the student. Our analysis of the reports was conducted bottom-up together with 

adaptations of some existing frameworks to construct a three-level rubric to assess the depth of PTs’ 

interpretations of a teachers’ response in observed critical events. This rubric may help teacher 

educators to gain a better understanding of their PTs’ interpretations of an observed teacher’s 

response, and therefore, may help to plan field-based training programs for teachers.  

Literature review 

In correspondence with the importance specified above of offering interpretation to the teachers’ 

responses in critical events, we built mainly on three bodies of research: (a) reflection, which we ask 

PTs to perform in the context of their clinical training; (b) critical events as a construct for reflection; 

and (c) teachers’ professional noticing which is the basis of our structured reflection framework.  

Reflection, as in analytical articulation of instructions and teaching actions in order to understand 

consideration that led those actions (Karsenty & Arcavi, 2017) is, according to Clarke (2000), “not 

just an option pursued by good teachers; rather, to teach is to reflect.” (p. 201). Karsenty and Arcavi 

(2017) offered a bottom-up characterization for different aspects that in-service teachers attended 

while reflecting on observed mathematics lessons. Potari and Jaworski (2002) looked at teachers’ 

reflection using the teaching triad framework, which perceives teaching practice as an integration of 

management of the lesson, being sensitive – cognitively and affectively – to the students and 

managing the mathematical challenge of the lesson. Teachers’ reflection has been found to be a 

productive tool to link practice with mathematics teaching theories (e.g., Jacobs et al., 2010). 

Additionally, recent research suggests that teachers’ involvement in deep reflection and analysis of 

teaching strategies and intentions may hold opportunities to learn from such examination new ways 

of instruction, insights and horizons (Karsenty & Arcavi, 2017). In this research we ask PTs to reflect 

on critical events they observed during their clinical training classroom observations. The theoretical 

base for critical events is cases which are descriptions of events that represent a broad pedagogical 

phenomenon or a dilemma with theoretical aspects (Shulamn, 1986) and which exhibit unexpected 

moments that are valuable in regard to students’ learning (e.g., Stockero & Van Zoest, 2013). In the 

research literature critical events also appear as ordinary teaching-learning situations that make 

teachers question their practice and, through reflection, provide a gateway for the teacher to improve 
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his/her teaching (Goodell, 2006). As our use here of critical events is meant to promote PTs’ learning 

about teaching mathematics, we define critical event as moments in the classroom that if pursued by 

the teacher may enhance students’ mathematical learning, and therefore provide the teacher with an 

opportunity to reflect and thus to learn about teaching.  

But just asking PTs to reflect on observed critical events is not enough; there is a need to teach PTs 

how to reflect on teaching in disciplined and structured ways (e.g., Santagta & Gurino, 2011). 

Therefore, the third body of research that informed this study is the teachers’ professional noticing 

framework (Jacob et al., 2010) which is defined as: (1) attending to student thinking within student-

teacher interactions; (2) interpreting student understanding based on these interactions; and (3) 

offering a response based on this analysis. For example, deciding when to ask students for more 

clarification or to follow up on a student’s statements requires the teacher first to attend to the 

student’s statement, then to interpret its mathematical meaning and then to formulate an immediate 

response. Therefore, these skills are considered core elements of teaching practice that should be 

practiced in teacher training programs (Ball & Forzani, 2009). Research focusing on cultivating these 

skills among PTs indicates that PTs struggle when asked to offer alternative responses for the teaching 

reflected in a critical event (e.g., Jacobs et al., 2010). For example, Rotem and Ayalon (2018) found 

that even when PTs offered a rich interpretation for the students’ statements in the critical event, 

interpretations for the teacher's response and the suggested teaching alternatives were general in their 

nature and detached from the interpretation they offered for the students' statements. To date, most 

researchers have focused on assessing the interpretation teachers ascribe to students’ statements in 

the event (e.g., Simpson & Haltiwanger, 2017). Interpretations for the teachers' statements were 

seldom in the focus of research. An exception for this is van Es et al.'s (2017) study, which 

investigated the development of PTs’ noticing of ambitious mathematics pedagogy in the context of 

a video-based course designed to foster PTs’ skills of interpreting classroom interactions. They used 

the term 'making thinking visible' to capture the extent to which the PTs attended to the teacher's role 

in making student thinking visible. Van Es et al. (2017) identified three levels of skill: (a) not paying 

much attention to the teacher’s strategies making student thinking visible, but rather to management 

and arrangement of the students and class; (b) identifying the teaching strategies and judging their 

effectiveness; and (c) inferring the ways the teacher made student thinking visible, and how they 

influenced on student thinking and learning. For the study presented in this paper, we built on van Es 

et al.'s three levels of skill to develop a three-level category scheme for categorizing the depth of 

interpretations PTs offer for teachers’ responses to students’ mathematical thinking in observed 

critical events. Consequently, our research question is: What are the main characteristics for the 

levels of interpretations PTs offer to a teacher’s response in a critical event, which they identified?  

 

Research context: ACLIM-5 clinical training program  

The study took place in the context of ACLIM-5 (a Hebrew acronym meaning “clinical training for 

unique 5-unit (high track) mathematics teaching”). ACLIM-5 is a large university’s three-year 

training program designed to support the development of high track mathematics pre-service teachers. 

Due to the limited space of this paper we will not elaborate regarding the program. We will note, 

however, that this study focused on the first year of the program, in which PTs study for their teaching 
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certificate. PTs participated in a course on critical events in which they were required to submit a 

critical event reports based on lesson observations. The reports consisted of four main parts: (a) 

prompts for describing the critical event that was identified during classroom observation, the 

mathematical context, and the student-teacher interaction. (b) prompts for interpreting the students’ 

statements. (c) prompts for interpreting the teacher’s response, E.g. “offer interpretations for the 

teacher’s actions. What was going through his mind? What was it based on?” and (d) a request for 

alternative ways of responding, other than the teacher’s response. Sections (a), (b) and (d) of the 

report resonance Jacobs et al. (2010) framing of professional noticing. Here, PTs’ answers for (c), 

served as the data source for this study.  

Data collection 

The data for this paper was taken from the critical event reports submitted in the first year of the first 

ACLIM- 5 course. In the course participated one male and 12 female. Five studied toward a dual 

degree in Mathematics and Education, and eight graduated with a B.Sc. from the university’s 

department of Mathematics. The data consist of 38 critical events reports describing real-life 

classroom events from PTs’ observations, submitted during the academic year.  

Data analysis 

Data analysis was conducted in three phases. First, we used bottom-up characterization for PTs’ 

answers within (c) section. Then we searched for compatibilities between the bottom-up 

characterization and research literature that was mentioned above (e.g., Potari & Jaworski, 2002; van 

Es et al., 2017). Finally, we built the coding scheme, using both the bottom-up and literature-based 

characterization. 

Findings 

Our analysis of 38 critical reports resulted in a three-level scheme for categorizing the depth of 

interpretations that were assigned by PTs to the teacher’s response in critical events. Van Es et al. 

(2017) three-level framework for analyzing PTs' attention to the teacher's making student thinking 

visible, served us as a base ground for developing the scheme, while using a bottom-up approach to 

allow other characteristics for each level of interpretation to emerge. Eventually, we have received a 

refined coding scheme for level of interpretation, as presented in Table 1.  
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Table 1: Coding scheme for level of interpretation 

Levels of interpretation 

of teacher’s response 

Characteristics of level of interpretation 

Descriptive/affective  Participant describes the teacher’s response in general terms while attending to 

affective aspects of the students or to the management and arrangement of the 

students and class;  

Semi interpretation  Participant points out the teaching strategies that the teacher used when responding 

to the students’ statements; and/or judges the effectiveness of the strategies. 

Full interpretation  Participant details the teaching strategies that the teacher used when responding to 

the students’ statements and proposes considerations that may have led to the 

teacher’s response and judges the effectiveness of the strategies. 

 

Low level of interpretation to teacher’s response- descriptive/affective interpretation 

The results of the bottom-up analysis indicated that when asked to interpret teachers’ statements, PTs 

tended to describe teachers’ statements while attending to the management and arrangement of the 

students and class without offering an explanation for the considerations behind the teacher’s 

statements. This echoes van Es et al. (2017) low level of interpretation - attending mainly to 

management and arrangement of students and class. Some PTs interpreted the teacher’s actions or 

statements as aiming to motivate the students by addressing their affective needs. For example, in a 

critical event which was described by Faith and in which the teacher asked a student to share with the 

class an original way of drawing the graph of 𝑓(𝑥) = sin(2𝑥 −
𝜋

3
) within the segment [0, 𝜋] without 

analyzing the function, but through transforming the basic 𝑠𝑖𝑛 function, Faith interpreted the teacher’s 

response as: 

1 He [the teacher] gave the student a positive feeling  

2 and she [the student] felt that she had deep and beautiful thinking […]  

3 and this provided an opportunity for other students to think differently. 

Faith started by attending to the teacher’s intentions (line 1) and then she offered her interpretation 

of the student’s feeling as result of the teacher’s response (line 2). Together, lines 1-2 could imply 

that Faith sees the teacher’s response as an expression of his attention to the student’s affective 

aspects. Line 3 could imply either that Faith considered the teacher’s response to be a way to motivate 

other students in the class or a way of promoting students’ awareness to the different ways to solve 

the problem. However, Faith’s interpretation is very general in the sense that it can be assigned to 

various lessons (not just mathematics) and it is disconnected from the specific critical event that was 

observed. Her general interpretation can be characterized by attending to teacher’s affective 

sensitivity to students (Potari and Jaworski, 2002)  

Medium level of interpretation to teacher’s response- Semi interpretation 

The bottom-up analysis indicated that at this level PTs tended to point out at the teacher’s teaching 

strategy and sometime judged its effectiveness but still without regarding considerations behind the 

teacher’s statements. This echoes van Es et al. (2017) medium level of interpretation - “identifies 

teaching strategies and choices the teacher makes in the lesson to make thinking visible; and/or judges 

the effectiveness of strategies.”.  
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Vanessa observed and reported on the same critical event as Faith. Vanessa’s interpretation was as 

follows: 

1 The teacher enjoyed the student’s response,  

2 and shared it with the rest of the students 

3 to see whether she was correct or not, and asked them to apply it.  

4 When he shares the response with the class, and discusses it  

5 it means she is going in the right direction […]  

6 It encourages the student to think more deeply while answering other questions.  

7 The teacher wants to encourage students to think analogously while analyzing functions  

8 and not just to rely on rules, so he shares the student's response with the class to discuss. 

Here, in lines 2-4 Vanessa point out the teacher’s strategy in the critical event - the teacher made the 

student’s solution a focus for a whole classroom discussion. From line 3 it may follow that Vanessa 

sees the teacher’s strategy as aiming to evaluate the student statement “to see whether she was correct 

or not”. The effectiveness that Vanessa sees in this strategy may be seen as: (I) a way to acknowledge 

the student’s solution (line 5); (II) a way to encourage the student to “think deeper” when approaching 

other questions (line 6); and (III) a way to motivate the class to adopt a different kind of approach to 

function analysis, one that is based on function transformation (line 7-8).  

High level of interpretation to teacher’s response- Full interpretation 

The characteristics of this category - Participant details the teaching strategies that the teacher used 

when responding to the students’ statements and proposes considerations that may have led to the 

teacher’s response; and judges the effectiveness of the strategies - are similar to those of the medium 

level of interpretation, with two modifications. First – the participant details the teaching strategies - 

and second - they propose considerations that may have led to the teacher’s response. This 

characterization is meant to keep the overall language of the levels of interpretation while also 

echoing our purpose in interpreting teachers’ responses, which is to attempt to understand the 

intentions, actions, statements and considerations that led to the response. This level differs from van 

Es et al. (2017) high level of interpretation as in this category the emphasis is on the consideration 

that PTs ascribe the teacher’s response. An example of high-level interpretation of a teacher’s 

response can be found in Adel’s critical event interpretation. In the critical event two students, one 

after the other, asked the teacher whether E is the orthocenter of the triangle (the mathematical task 

that was at the center of the critical event is presented in figure 1). 

In the isosceles triangle ABC (AB=AC), E is the bisectors intersection point.  

When the line AE is extended, it intersects the base of the triangle at point D (see 

the figure).  

Given that: ∢ABC = 𝛼, AE=m. 

(a) using m and 𝛼 express the length segment ED.  

(b) using m and 𝛼 express the radius of the circumscribed circle to triangle ABC. 

 

Figure 1: The mathematical task that was presented in Adel’s critical event. 

The teacher answered the first student privately and then, when the second student asked the same 

question, he facilitated a discussion with the whole class. Adel’s interpretation of the teacher’s 

response was as follows: 
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1 When the first student gave a wrong answer,  

2 the teacher explained to him privately why what he said was wrong.  

3 The teacher explained to the student that E is not the orthocenter of the triangle,  

4 but rather the bisectors meeting point.  

5  After a second student gave the same answer,  

6 the teacher thought that there was something wrong with his [the teacher’s] explanation,  

7 and perhaps the rest of the students had also misunderstood.  

8 So, the [teacher] asked the class: was what the student just said correct? […] 

9 The discussion was an effective way to understand the mistake  

10 and for the teacher to understand why they [the students] think their answer is correct. 

In the beginning of her interpretation Adel repeats the course of events (line 1-5). Then Adel offers 

her idea regarding what led to the teacher’s response: because more than one student had this 

confusion the teacher might have thought that his instruction was not clear enough (line 6-7). In line 

8 Adel goes back to the critical event and articulates the teacher’s strategy: making the students’ 

statements public within a whole class discussion. Adel reflects about the effectiveness of the 

response. She sees this strategy as a way that might help the teacher to understand his students’ 

thinking (line 10).   

Applying this three-level analytic framework to the 38 critical event reports, we found that 58% of 

PTs’ critical event interpretations for teachers’ responses were low-level, 26% of PTs’ critical events 

interpretations were of medium level and 16% were high-level. These findings raised several thoughts 

regarding ACLIM-5 clinical training programs as well as theoretical insights which are elaborated in 

the next section. 

Discussion 

Our bottom-up analysis of critical event reports together with inspiration drawn from van Es et al. 

(2017) rubric allowed us to categorize coding scheme for depth of levels of interpretation to an 

observed teacher in a critical event, which does not appear in the literature so far. The first level has 

a descriptive/affective nature, the second level indicates that the PT tries to interpret the teacher by 

pointing out the teaching strategy the teacher used and its effectiveness. In the third level, the PT offer 

considerations that may have led to the teacher’s response in the critical event. 

From a practical standpoint this scheme will guide our further research regarding the ACLIM-5 

clinical preparation program, to investigate whether there is a change in the level of interpretation as 

PTs become in-service teachers. Furthermore, to investigate whether there is a connection between 

in-depth interpretation of a teacher’s response in a critical event and offering a teaching alternative to 

that is based on the students’ mathematical thinking as it is interpreted by the PT in the critical event.  

From a theoretical standpoint, a connection between in- depth interpretation for a teacher response in 

a critical event and suggested teaching alternatives, could serve as a basis for further 

conceptualization of the professional noticing framework by adding a subprocess - interpreting the 

teacher response in the student-teacher interaction - in the gap between student interpretation and 

suggested alternative (e.g., Jacobs rt al., 2010).  
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The contribution focuses on an educational tool called Concept Cartoons from the perspective of 

problem posing activities of future primary school teachers within the framework of the open 

approach to mathematics. It introduces Concept Cartoons, the open approach to mathematics, and a 

small qualitative empirical study conducted with future primary school teachers. The aim of the 

presented study is to observe how open might be problems posed by future primary school teachers 

in the Concept Cartoon form. The results of the study confirm that Concept Cartoons can be 

successfully employed in problem posing activities and that they have a potential from the perspective 

of the open approach to mathematics.  

Keywords: Concept Cartoons; elementary school teachers; mathematics education; open approach 

to mathematics; preservice teacher education. 

Introduction 

The study presented here reports about an educational tool called Concept Cartoons, and about the 

way how the tool can be employed in future primary school teacher training. In particular, it will 

focus on the possibility to use Concept Cartoons during problem posing activities and observe the 

posed Concept Cartoons from the perspective of the open approach to mathematics. The study follows 

up the contributions of me and my colleagues from previous CERME and ERME conferences, as it 

discusses mathematics problems of a given structure and their employment in future teacher training 

(Tichá & Hošpesová, 2015), problem posing of future teachers (Tichá & Hošpesová, 2010), and 

future teachers facing or composing potential pupils’ misconceptions in the Concept Cartoon form 

(Samková & Hošpesová, 2015; Samková, 2017; Hošpesová & Tichá, 2017). The issues of teachers 

posing problems and teachers facing potential pupils’ misconceptions are the topics that have been 

broadly discussed at CERME and ERME conferences in TWGs related to teacher professional 

development, e.g. by Malaspina, Mallart and Font (2015), Milinković (2017), Kuntze and Friesen 

(2017). The topic of Concept Cartoons is close to the concept of polyvalent math tasks presented at 

CERME by Hellmig (2010). 

In the following text, I will introduce the idea of Concept Cartoons and my experience with them, 

and the open approach to mathematics. Then I will describe an empirical qualitative study addressing 

the following research question: “How open are problems posed by future primary school teachers 

in the Concept Cartoon form?” 

Theoretical background 

Concept Cartoons 

An educational tool called Concept Cartoons appeared in Great Britain more than 20 years ago 

(Keogh & Naylor, 1993), in order to support discussion and involvement of primary school pupils 

during science lessons. Later the tool also expanded to other school subjects and school levels.  
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Concept Cartoon is a picture showing a situation familiar to pupils from school or everyday reality, 

and several children discussing the situation in a bubble-dialog. Each bubble presents an alternative 

viewpoint on the pictured situation. The alternatives might be correct as well as incorrect; the 

correctness also might be unclear or conditioned by circumstances not mentioned in the picture. 

Sometimes the picture includes a blank bubble with just a question mark, to indicate that there might 

be other alternatives not presented in the picture yet. For a sample see Fig. 1. 

 

Figure 1: An original Concept Cartoon with three correct bubbles, one incorrect bubble, and a blank 

bubble; taken from (Dabell, Keogh, & Naylor, 2008: 4.11)  

When working with Concept Cartoons in the classroom, pupils are asked to decide which children in 

the picture are right and which are wrong, and justify the decision. In that setting, it turned up that the 

lack of agreement amongst the pictured children encourages the pupils to join the discourse and 

defend their opinions (Naylor, Keogh, & Downing, 2007). 

Besides the original classroom use, we started to consider each Concept Cartoon as an educational 

model of a contingent situation (Samková & Hošpesová, 2015), and more widely as a representation 

of practice oriented on diagnostic purposes (Samková, 2018b). In that sense, Concept Cartoons do 

not cover all aspects of school practice but might be regarded as a result of a decomposition of practice 

according to Grossman et al. (2009). Following this line, I created my own set of Concept Cartoons 

and accompanied them by a list of indicative questions focusing more deeply on conceptions and 

misconceptions probably hidden behind individual bubbles (Samková, 2018b). We included these 

Concept Cartoons as a diagnostic tool in future primary school teacher training, and conducted several 

studies: on aspects of pedagogical content knowledge (Samková & Hošpesová, 2015; Samková, 

2018b), reasoning on selected topics (Samková & Tichá, 2017), or comparison between information 

on mathematics content knowledge that can be obtained through Concept Cartoons and through word 

problems in standard written tests (Samková, 2018a). In this paper, I will focus on Concept Cartoons 

within the framework of open approach to mathematics. 
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Open approach to mathematics 

Open approach to mathematics is a method of mathematics teaching that employs problems called 

open. These problems have multiple levels of grasping (i.e. their starting situation is open), multiple 

correct ways of solving (i.e. their process is open), multiple correct answers (i.e. their end products 

are open) and/or multiple ways to transform the problem into a new one (i.e. ways to develop are 

open) (Nohda, 2000; Pehkonen, 1997). Such problems allow us to perceive mathematics in all its 

diversity. For samples see Table 1. Also Concept Cartoons themselves may be considered as open 

problems, since they present various alternatives (of grasping, solving, solutions) in their bubbles. 

There are 4 beds of seedlings 

in a forest nursery, each of 

them having 5 rows with 240 

seedlings. How many 

seedlings are there?  

starting situation is open (it is not clear whether 240 is the 

amount for each of the rows, or altogether for all 5 rows);  

process is open (for the first case above: we may count the 

number of rows in all beds and multiply it by 240, or count the 

number of seedlings in one bed and multiply it by 4); 

90-minute tickets in Prague 

cost 32 crowns; 24-hour 

tickets cost 110 crowns. How 

much will Ivan pay for the 

tickets on a weekend trip? 

starting situation is open (we do not know how much or how 

often will Ivan travel around the city, how long the trip will last: 

less than 24 hours? more than 48 hours? how much more? ...); 

end products are open (there are 13 different solutions, from 

minimal pay of 0 crowns, to maximal pay of 330 crowns). 

Table 1: Samples of open problems (left), with their open-approach characteristics (right) 

Open problems that have multiple solutions of different levels of difficulty while every pupil is 

probably able to find a solution appropriate with his/her actual knowledge are called polyvalent 

(Hellmig, 2010). The Concept Cartoon from Fig. 1 might be considered as polyvalent, since it has 

three different correct bubbles, and each of the them requires a different level of knowledge to justify 

its correctness: the easiest is the bottom left bubble where the discounts are in the same order as in 

reality in the shop; the top right bubble deserves an additional knowledge that changing order of 

discounts does not change the final price; the bottom middle bubble is the most difficult, it is the only 

one with some other calculations behind. The incorrect bubble (top left) deserves another type of 

knowledge – that a combination of discounts cannot be solved by their addition. 

Design of the study 

Participants 

Participants of the research were 29 future primary school teachers – full time students of the 5-year 

teacher training program at our university. They had already finished all mathematics content courses 

of the program, and in the time of the study they were attending the course on didactics of 

mathematics. During the mathematics content courses the participants had several times worked with 

Concept Cartoons, discussing them in the classroom or responding in written form to various sets of 

questions related to them, i.e. they got familiar with the format of Concept Cartoons.  
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Course of the study 

In the data collection stage, the participants were asked to create their own Concept Cartoon that 

could be assigned to primary school pupils during a mathematics lesson. They worked on the task 

individually, in the form of a compulsory written homework where they introduced the Concept 

Cartoon, and gave a short explanation of the task and the bubbles. 

During data analysis I searched for answers to the research question “How open are problems posed 

by future primary school teachers in the Concept Cartoon form?”. I processed collected data 

qualitatively, using open coding and constant comparison (Miles & Huberman, 1994). During open 

coding I focused on the composition of the Concept Cartoon, on its mathematical correctness, and on 

displays of openness in relation to Nohda’s definition of open problems (2000). For better 

arrangement, some of the codes were denoted by plus or minus sign to distinguish between positive 

and negative aspects (correct or incorrect format, open or non-open parameters of the task, etc). 

The following code categories appeared as relevant for my study:  

A. the format of the Concept Cartoon (this category included codes proper format, improper 

format, no bubbles, no alternatives, each bubble solves a slightly different task, independent 

bubbles, conditional bubbles, etc.); 

B. grasping of the task in the picture and its levels (codes unique, multiple, unclear, too open to 

be comprehensible, various parameters, diverse interpretations of the assignment, etc.); 

C. ways of solving the task in the picture (codes unique, multiple, diverse procedures offered in 

bubbles, etc.); 

D. number of solutions and their interpretations (codes unique solution, multiple solutions, 

unique interpretation, multiple interpretations of unique solution, etc.);  

E. difficulty and smartness of the posing process (codes detailed preparation needed, smart pre-

calculations made, etc.). 

Subsequently, I analysed the codes and categories in order to divide the participants into groups 

according to the level of openness provided in their Concept Cartoons. Since each Concept Cartoon 

that is properly formatted might be considered as an open task, the participants who were not able to 

pose their Concept Cartoon in a proper format were assigned to the lowest level group named LL. 

The other participants were assigned to groups named L#, where # stands for a number from 1 to 4 

denoting in how many code categories of B to E did the individual participant cause positive codes. 

Findings 

Improper vs proper format of the Concept Cartoon (category A) 

Three of the participants composed their Concept Cartoon in an improper format; they form the LL 

group. These participants offered either a picture without bubbles or a picture with bubbles that 

discussed diverse situations not much related to the picture.  

Thirteen of the participants composed the Concept Cartoon in a proper format but with no other 

openness: they prepared a task with a unique solution, grasped it unambiguously, and did not 

considered multiple correct ways of solving (see Fig. 2a). These participants form the L0 group.  
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Figure 2: The Concept Cartoon posed by Beata, translated from Czech (left); numbers of participants 

displaying particular open aspects in their Concept Cartoon (right)  

Openness of the Concept Cartoon with proper format (categories B to E) 

The other participants composed a properly formatted Concept Cartoon that can be considered as 

open: seven of them caused positive codes in one of the categories B to E (they form the L1 group), 

six of them caused positive codes in two of the categories B to E (they form the L2 group). The 

distribution of the participants among the code categories with positive codes is shown in Fig. 2b, 

a detailed description of particular open aspects is given in the following text. 

Multiple levels of grasping the task in the picture (category B) 

Eight of the participants presented in their bubbles various ways how the pictured task might be 

grasped. For instance, Francis prepared a task about clocks (Fig. 3), and contrasted various possible 

ways of grasping the term "most hours". Her Concept Cartoon provokes many questions: "What does 

it mean most hours?", "Shall we take the biggest number in the notation, or the latest hour?", "Is 10 

in the morning the same as 10 in the evening?". Annie prepared a task about 30 candies in a bag, and 

contrasted relative and absolute meanings of numbers (see Fig. 10 in Samková & Tichá, 2017). Morris 

prepared a practically based task about part-time job offers, and contrasted three different ways to 

make money (weekly wage, monthly wage, and daily task wage; see Fig. 8 in Samková & Tichá, 

2016).  

 

Figure 3: The Concept Cartoon posed by Francis, translated from Czech 
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Multiple correct ways of solving the task (category C) 

Four of the participants posed tasks that allow multiple correct ways of solving; e.g. Viola offered in 

her bubbles two diverse ways of solving a task about Easter eggs (see Fig. 4). 

 

Figure 4: The Concept Cartoon posed by Viola, translated from Czech, graphically adjusted  

Multiple correct answers to the task (category D) 

Only two of the participants posed tasks with multiple solutions. Tammy prepared a wordless Concept 

Cartoon based on a geometric task with two different solutions (see Fig. 7 in Samková & Tichá, 

2016), Diana prepared a task with eight different solutions (see Fig. 6 in Samková & Tichá, 2016). In 

each of these Concept Cartoons, the particular solutions of the task are of the same difficulty, based 

on a common idea, i.e. these Concept Cartoons cannot be considered as polyvalent. 

One of the participants (Helen) posed a task with a unique solution but interpreted the solution in 

multiple ways. In her bubbles she described various properties of the solution.  

Difficulty and smartness of the posing process (category E) 

Four of the participants presented Concept Cartoons that required detailed preparation of the content 

of bubbles and smart pre-calculations; all of them belong to L2 group. For instance, Morris in his 

Concept Cartoon about part-time jobs prepared five bubbles based on diverse wage conceptions but 

the diverse calculations hidden behind particular bubbles lead to numbers that are almost the same. 

Since the aim of his task is to compare the jobs and find the most suitable one, such an arrangement 

makes the task open for wide discussions. Ruth in her task about who is the fastest runner assigned 

that Rex ran 10 rounds in 3 min 20 sec, Punťa ran 7 rounds in 2 min 27 sec, and Max ran 5 rounds in 

1 min 50 sec. One of the misconceptions in her Concept Cartoon originated in an erroneous 

conversion of the times into decimal notation (e.g. 3 min 20 sec converted to 3.20 min). She prepared 

the numbers in the assignment so smartly that with that erroneous conversion the order of the runners 

differs from the order in the correct solution.  

Conclusions 

The presented study hopefully enriched the puzzle on “How can we meaningfully employ Concept 

Cartoons in future teacher education” by another piece of knowledge, by studying the tool during 

problem posing activities within the framework of the open approach to mathematics and by looking 

for answers to the research question “How open are problems posed by future primary school 

teachers in the Concept Cartoon form?”. 
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The results confirmed that Concept Cartoons can be successfully employed during problem posing 

activities, and that they have a potential also from the perspective of the open approach to 

mathematics. Although for the participated future primary school teachers it was the very first 

opportunity to create their own Concept Cartoons, almost all of them were able to compose a properly 

formatted Concept Cartoon, and almost half of them were able to compose a Concept Cartoon that 

positively displayed openness in one or two of the following aspects: multiple levels of grasping the 

pictured task, multiple correct ways of solving the task, multiple number of solutions and their 

interpretations. Some of the participants also proved their ability to thoroughly think about the task 

they pose, and presented Concept Cartoons that required detailed preparation and smart pre-

calculations. 

The described results of problem posing activities of future primary school teachers also illustrate 

how Concept Cartoons may help to elaborate a wide range of pedagogical content knowledge: authors 

of the Concept Cartoons had to pose an appropriate mathematical problem, present at least one of its 

correct solutions and several possible pupil misconceptions, and combine them into one complex 

bubble-dialog task.  

Such results are in accordance with the recent research showing the importance of implementation of 

mathematical problem posing activities into future teacher education (Singer, Ellerton, & Cai, 2015).  
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As part of the PRONET project of the University of Kassel1, the further development of teacher 

training through the "implementation of a coherent professionalisation concept" is being 

investigated. The aim of the subproject is to combine mathematical-didactic knowledge with 

pedagogically relevant and cognitive-psychologically anchored concepts, including the "desirable 

difficulties". The generation effect is one of the four best-known "desirable difficulties" and aims to 

ensure that knowledge is not merely predetermined but is generated to a certain extent from one's 

own knowledge. In order to achieve this, we have developed for the first time generation tasks on 

mathematical-didactic topics of a basic lecture for mathematics teachers at their study beginning. 

The generation tasks and first results are part of this paper and are complemented by the basic 

theory of "desirable complications". 

Generation effect, mathematics didactics, desirable difficulties, mathematical-didactic knowledge, 

teacher education 

Theoretical Background 

The focus of this contribution lies on the generation and is reflected approach by the university 

students. For this reason Generation and generation tasks in mathematics didactics training of future 

teachers are illustrated more detailed. 

Desirable difficulties of learning  

One possible encouragement of sustainable knowledge building is the concept of 'desirable 

difficulties' (Bjork, 1994, 2011; Lipowsky et al., 2015). The term “desirable difficulties” is a 

cognitive psychological concept and a didactic procedure that makes learning more difficult in the 

short term, but sustainable with the goal to a better retention of the learning content (ibid.). 

Desirable difficulties include such popular techniques as the testing effect, the distributed learning, 

the generating effect, and the interleaving practice (Bjork & Bjork, 2011). 

Generation effect  

The generating effect appears, when the information is generated from own knowledge (e.g. 

Salmecka & Graf, 1978). The focus of our research is on the generation effect. This effect has been 

recognized, reproduced and characterized as extremely stable within controlled learning 

environments and with simple learning content (e.g. word pairs) (Slamecka & Graf, 1978; Bertsch 

 

1  The project is financed as part of the PRONET project from the "Quality Initiative for Teacher Education" 

programme of the Federal Ministry of Education and Research in Germany. 
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et al., 2007). Chen et al. (2015) have shown that the generation effect is more distinctive if very less 

is dictated by the task itself or by solution examples and teacher interference. They also found that 

this increase and stabilisation of the generation effect depends on the type of task. While learners 

benefited more from the generation in simple tasks, the learning outcomes in complex tasks through 

guided learning were higher (ibid.). In the field of mathematics, the generation effect is only within 

the framework of multiplication tasks (cf. McNamara & Healy, 2000) but is not researched with 

reference to mathematical-didactic knowledge. It becomes clear from the previous studies that 

generation tasks can extend beyond word pair formation, but that the complexity should not be 

increased immeasurably, otherwise there is a danger that there will be no more lasting learning 

effect.  

Generation and generation tasks in mathematics didactics training of future teachers 

Generation in mathematical didactics means therefore to stimulate the cognitive thought processes 

of the students and to have new information generated from themselves by means of suitable 

generation tasks. The self-dependent generation of knowledge takes place within the framework of 

mathematics didactic generation, for example by linking to previous experiences, for example by 

generating examples. Another possibility is the creation of individual memory aids in which 

students use their personal thinking structure to memorize new knowledge. In particular, it should 

be noted that the generation tasks developed include the basic, recurring contents of mathematics 

didactics on the one hand and are not too complex in terms of the task and the focus of content on 

the other. In addition, it must be taken into account that the prospective teachers can build on their 

own knowledge, although the "new knowledge" cannot be presented to them in advance, otherwise 

there is no generation effect. Therefore, the above-mentioned lecture contents were chosen which 

are simple enough to dispense with illustrated examples and complex enough to serve as a basis for 

further study and structural (mathematical-didactic) expertise (Borromeo Ferri & Schäfer, 2017). 

Research questions 

On the basis of the theoretical background to the generation effect, it was shown that the specific 

generation can be regarded as a research gap in mathematics didactics. It is to be examined whether 

and how the generation effect is shown by the use of generation tasks with a mathematical-didactic 

focus and how effectively the knowledge thus acquired is consolidated among the students. An all-

encompassing answer to this main question is not yet possible at this point in time, as the statistical 

data could not yet be fully evaluated. Therefore, in this paper we limit ourselves to demonstrating 

what marked generation tasks and highlight the following two research questions: 

 

1. Are there any differences between the generation and reproduction cohort regarding the 

perception of the learning process? 

2. Are there any differences between the generation and reproduction cohort regarding the 

perception of the tasks? 
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Methodology 

The study is conceived as a prospective and hypothesis-generating comparison of two cohorts 

attending the mathematics didactic basic lecture at the University of Kassel, Germany. The cohort 

of the winter semester 2016/2017 represents the experimental group and works on the generation 

tasks. The control group is represented by the cohort of the winter semester 2017/2018 and works 

on the reproduction tasks. The teacher training students attend the lecture for the first time and are 

on average in the 1st to 3rd semester. The semester differences are due to the fact that the lecture is 

attended by various teacher training courses (secondary school, grammar school and vocational 

school). In order to ensure the comparability of the two cohorts, both the lecture contents and their 

sequence are held identically by the same professor in both years. Likewise, all questionnaires, 

feedback forms, the subject areas of the tasks used and the survey times are identical. The study 

design is graphically illustrated below (Fig. 1). 

 Figure 1: study design 

 

 

Due to the fact that this paper has put the emphasis on generation tasks, an insight into what 

generation tasks are will now be given. The aim of these tasks, as explained above, is to move 

students of teaching professions to generate their own knowledge out of themselves in a 

mathematics didactic basic lecture. What does it mean to generate knowledge and how should this 

be done? Producing knowledge out of them means nothing other than that the teacher training 

students open up new fields of mathematics didactics for them with little input. For example, the 

general mathematical competences will be addressed within the framework of the lecture. This is 

followed by a generation task, which calls for a memory aid to be considered in order to memorize 

these six competencies. The desirable difficulty for the teacher training students now consists in 

using a useful memory aid for them without knowing the deeper theoretical contents of the 

competences. The theoretical contents of the mathematical competences are discussed after the 
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generation task. In this approach, the main difference to reproduction tasks also becomes clear, 

since these are always carried out after a theoretical input and usually allow this to be summarised. 

An exemplary comparison of generation and reproduction tasks in the field of general mathematical 

competences is given in Table 1. A total of six grading tasks have been developed and applied for 

use in the mathematics didactic basic lecture. These deal with basic mathematical-didactic content 

on the topics (1) mathematical educational standards, (2) general mathematical competences, (3) 

mathematical competence: mathematical modelling and the modelling cycle, (4) mathematical 

competences: solving problems mathematically, (5) mathematical thinking styles and (6) 

psychology of mathematics.  

Table 1: Example Generation and Reproduction Task2 

generation task 

 

The general mathematical competences of the lower secondary level are: 

• argue mathematically 

• solve problems mathematically 

• mathematical modelling 

• use mathematical representations 

• to deal with mathematics symbolically/formally/technically 

• communicate mathematically 

Create a personal memory aid to memorize general mathematical skills. 

Explain (briefly) your procedure and briefly justify your choice of memory aid. 

 

reproduction task 

 

Julia, Stefan, Sarah, Carsten and Nadine take the school bus to school every morning. 

Since they get on at the first stop, they always manage to sit in the five seats of the last 

row. One day Julia remarks: "The school year takes about 210 days. Is it possible that we 

five always sit in the last row in different ways?" 

What is the guiding idea behind the task? Which mathematical competence(s) are 

relevant to answer the question? 

 

In order to answer the research questions underlying this paper, we have developed, used and 

evaluated a feedback questionnaire that students of teaching professions can use with regard to their 

perception of the learning process and their perception of the tasks questioned. The perception of 

 

2 Translation of the German original by the authors. 
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the learning process questions whether there has been in-depth information processing or whether 

students have perceived it as in-depth information. This scale comprises four items, an item 

example is here: "I have succeeded in developing my own thoughts and ideas on this subject". The 

perception of the tasks questions to what extent the students come to the conclusion that the 

respective task was meaningful, helpful, stimulating or similar. This scale comprises five items, an 

item example for this is "The task used in the pre-presentation illustrates the benefit of the learning 

content". The two perceptions were recorded using a 6-stage, end-point-based scale. The scale 

ranges from the negative endpoint "Does not apply at all", which is rated one in the evaluation, to 

the positive endpoint "Fully applies", which is rated six. In order to analyse the differences, a 

grouping variable was first created that distinguishes between the cohorts and their tasks in 

generation tasks and non-generation tasks (reproduction tasks). Subsequently, a scale was 

introduced for each perception and each task, so that in the end 12 scales were created. Six scales 

for the perception of the learning process and six scales for the perception of the tasks. These 12 

scales were checked for their one-dimensionality by means of a main component analysis (PCA), 

which turned out to be given for all of them. The scales for the perception of learning process show 

a reliability of 0.85 ≤ 𝛼 ≤ 0.90. The scales for the perception of the tasks show a reliability of 

0.76 ≤ 𝛼 ≤ 0.87. All items can be described as selective in their respective scales. Due to the 

sample size of N = 117 student teachers, the verification of the normal distribution has been 

recorded. For this reason, a T-test for independent samples is performed to investigate the 

differences and Cohan’s 𝛿 is calculated manually to determine the effect strength3. 

Results 

1. Are there any differences between the generation and reproduction cohort regarding the 

perception of the learning process? 

 

When the mean values and the standard deviation are considered for the first time, the first 

differences can be seen purely descriptively on all task scales with the exception of the scale for the 

fourth task. These descriptive mean differences are checked by means of a T-test for independent 

samples. It turned out that two of the six task scales for the perception of the learning are a 

significant difference in the mean value in favor of the cohort that worked with the generation tasks. 

This significant mean difference is reflected in the tasks three and five. Task three is the generation 

task that deals with the mathematical competence of mathematical modeling and the modeling 

cycle. This is a medium effect (𝛿 = 0.63). Task five contains the three levels of representation 

according to Bruner (enactive, iconic, symbolic) (Brunner et al., 1971). This is an almost medium 

effect (𝛿 = 0.48). 

Table 2 below gives an overview of all mean values, standard deviations, sample distribution, 

significance level and effect strength for the respective task scales one to six.  

 

 

3 Cohan's d is calculated using the online calculation tool: https://www.psychometrica.de/effektstaerke.html and to the 

rehearsal again with http://www.soerenwallrodt.de/index.php . 
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Table 2: table of results for the perception of the learning process 

  
perception of the learning  

level of  

significance 

Effect strength  

Cohan's 𝛿 

task 

number  N MW SD   

1 
GA 73 4,03 0,86 

p=0.204  
NGA 35 4,25 0,81  

2 
GA 65 4,19 0,86 

p=0.720  
NGA 35 4,25 0,72  

3 
GA 73 4,63 0,68 

p=0.003 0.63 
NGA 35 4,16 0,90 

4 
GA 65 4,06 1,05 

p=0.961  
NGA 35 4,07 0,82  

5 
GA 65 4,40 0,75 

p=0.023 0.48 
NGA 35 3,99 0,98 

6 
GA 66 4,10 0,76 

p=0.086  
NGA 35 3,81 0,82  

GA = generation tasks and NGA = non-generation tasks 

 

 

2. Are there any differences between the generation and reproduction cohort regarding the 

perception of the tasks? 

 

The second question dealt with the question of whether differences in the perception of the tasks of 

the two cohorts were recognizable. Here, too, the first mean value differences could be seen purely 

descriptively on all six scales. A T-test for independent groups was also performed to test the 

significance of the differences. It was found that the performance of the cohorts in two tasks 

differed significantly. These significant differences were seen in the scales for tasks three and four. 

Task four dealt thematically with the graduated aid according to Zech (1996). It is striking that the 

significant effect was only in the case of task three in favor of the cohort that worked with the 

generation tasks. This is a medium effect (𝛿 = 0.52). In the case of task four, the effect in favor of 

the not yet generation group is significantly positive, although this is only weak (𝛿 = 0.38).  

 

Table 3 below gives an overview of all mean values, standard deviations, sample distribution, 

significance level and effect strength for the respective task scales one to six. 
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Table 3: table of results for the perception of the tasks 

  perception of the tasks 

level of  

significance 

Effect strength  

Cohan's 𝛿 

task  

number  N MW SD   

1 
GA 73 3,92 1,08 

p=0.078  
NGA 35 4,29 0,77 

2 
GA 65 3,91 1,10 

p=0.071  
NGA 35 4,31 0,94 

3 
GA 73 4,67 0,80 

p=0.014 0.52 
NGA 35 4,25 0,92 

4 
GA 65 3,89 1,21 

p=0.045 0.38 
NGA 35 4,30 0,82 

5 
GA 65 4,43 0,99 

p=0.106  
NGA 35 4,11 0,76 

6 
GA 66 3,86 1,06 

p=0.103  
NGA 35 3,52 0,86 

GA = generation tasks and NGA = non-generation tasks    

Conclusion 

The differences determined in the course of the T-test provide initial indications of a possible effect 

of the generation tasks, as these are assessed by the students as being much more meaningful. They 

acknowledge the in-depth information processing and the value of the transfer and assess it 

positively.  As part of a further study, we also analyse the extent to which students have gone 

through a "generational process". In order to be able to work this out, the generation tasks and 

interviews are evaluated with regard to the solution process and reflection. The first interview and 

task analyses showed that the experimental cohorts were able to reproduce the contents of the 

generation tasks better than the control cohorts were able to reproduce the contents of the 

reproduction tasks. Furthermore, an initial analysis has shown that no appreciable proportion of 

self-reflection is discernible in the context of reproductive tasks. In contrast, there are different 

approaches to reflection in the solutions of the generational tasks. On the one hand, individual 

solution steps are reflected and corrected if necessary. On the other hand, the individual participants 

reflect the entire solution process. In particular, the reflexion-in-the-action (Korthagen et al., 2002) 

is very pronounced in the generation tasks. One possible reason may be that the generation tasks 

address deeper cognitive structures, similar to problem-solving tasks, and thus their contents are 

anchored more sustainably in the memory. So far, however, the results are purely indicative, as only 

a few interviews and task solutions of the teacher training students have been evaluated so far. For 

this reason, it is necessary to deepen the analyses in the upcoming research process. For this 

purpose it is planned to develop a detailed coding manual for the analysis of the generation tasks 

and interviews on the one hand and to evaluate the questionnaire and the knowledge tests on the 

other hand. Further evaluations then compare the cohorts and include other factors such as choice of 
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subjects, motivation (MOLAMA), learning strategies, mathematical thinking, study satisfaction or 

mathematical convictions. 
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Interweaving Mathematical-News-Snapshots as a facilitator for the 

development of Mathematical Knowledge for Teaching 
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The study described in this paper accompanies a three-year R&D project that is currently in its final 

year. Participants are 25 high school mathematics teachers, of whom 14 have started their 2nd year 

and 11 are currently in their 3rd year of integrating Mathematical-News-Snapshots in their classes. 

This study examines the effect of integrating these snapshots in the ordinary high school curriculum 

on the development of several components of Mathematical Knowledge for Teaching. The findings 

indicate that teachers perceive the integration of Snapshots of contemporary mathematics as 

contributing to the development of their Specialized Content Knowledge, Knowledge of Content and 

Students, and Horizon Content Knowledge. 

Keywords: Specialized Content Knowledge, Knowledge of Content and Students, Horizon Content 

Knowledge, Mathematical News Snapshots (MNSs).  

Theoretical background  

Knowledge of mathematics teachers  

Over the past few decades, the mathematics education research community has become interested in 

characterizing the required knowledge for mathematics teaching. Shulman (1986) recognized that the 

required teacher’s knowledge is unique and suggested two main types of knowledge teachers 

required, not necessarily in mathematics: Subject Matter Knowledge (SMK) – a deep understanding 

of the subject matter, and Pedagogical Content Knowledge (PCK) – a repertoire of representations, 

analogies, models, explanations, and demonstrations.  

Relying on Shulman’s work, Ball & Bass (2003) attempted to distill the knowledge required from 

mathematics teachers. They defined the term “Mathematical Knowledge for Teaching" (MKT) as 

knowledge that crosses areas and levels of school mathematics, knowledge that supports connected 

ideas of the mathematics teacher, and emphasizes the ability to plan, evaluate, integrate and manage 

appropriate mathematical content for teaching. Following this work, Ball, Thames & Phelps (2008), 

presented six different components of mathematical knowledge for teaching. Three of them are 

particularly relevant to this study:  

• Specialized Content Knowledge (SCK). This component includes the mathematical knowledge 

and skills unique to teaching that is not typically needed for purposes other than teaching, such as 

searching for student errors, intelligent integration of examples during instruction;  

• Knowledge of Content and Students (KCS). This component combines knowing about students 

and knowing about mathematics, namely, knowing how students think, what may confuse them, 

what kind of mathematical task may be easy or difficult for them, and more. This kind of 

knowledge requires an interaction between specific mathematical understanding and familiarity 

with students and their mathematical thinking;  
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• Horizon Content Knowledge (HCK). “Horizon knowledge is an awareness of how mathematical 

topics are related over the span of mathematics included in the curriculum” (ibid p. 403).  

Ball & Bass (2009) suggested a more detailed definition of HCK:  

“knowledge as an awareness – more as an experienced and appreciative tourist than as a 

tour guide – of the large mathematical landscape in which the present experience and 

instruction is situated. It engages those aspects of the mathematics that, while perhaps 

not contained in the curriculum, are nonetheless useful to pupils’ present learning, that 

illuminate and confer a comprehensible sense of the larger significance of what may be 

only partially revealed in the mathematics of the moment.” (Ibid ,2009, p. 5). 

They present four components of HCK: A sense of the mathematical environment surrounding the 

current “location” in instruction; major disciplinary ideas and structures; key mathematical 

practices; core mathematical values and sensibilities. 

There is a strong connection between MKT components and mathematical quality of instruction (Hill 

et al., 2008; Ma, 1999). Teachers with a strong MKT can present their students with rich mathematical 

links, representations and examples beyond what is given in most textbooks. These teachers are 

familiar with the curriculum and with ways to relate students to various subjects. In contrast, teachers 

with a poor MKT have a limited arsenal of examples to cater to diverse student needs. 

The Mathematical News Snapshots project 

Mathematics is a dynamic field that is developing constantly. The current number of publications in 

the mathematical reviews database is presently over three million, and over 80,000 additional 

reviewed papers are added to the database each year (American Mathematical Society, 2018). 

However, school mathematics curricula generally do not reflect this dynamic nature nor the constant 

struggle of mathematicians to discover new results. As a result, high school graduates often graduate 

while erroneously perceiving mathematics as a field in which all questions and answers are known in 

advance, and there is little space for further research (Amit & Movshovitz-Hadar, 2011). In some 

countries, this situation has led to a decline in enrollment to mathematically intensive academic 

studies, and even developed into an economic, social, and national concern (Noyes & Adkins, 2017). 

The Mathematical News Snapshots (MNSs) project, in which the current study is situated, was set up 

to provide a better perspective of the nature of contemporary mathematics by introducing high-school 

students to current frontiers in the rapidly growing area of mathematics (Movshovitz-Hadar, 2008). 

The chosen method was to prepare high school teachers to interweave snapshots of mathematical 

news in their teaching on a regular basis. Each MNS is developed in the form of a PowerPoint 

presentation, with three main characteristics (Amit & Movshovitz-Hadar, 2011): (i) A new 

mathematical result published in the professional literature in the past few decades; (ii) Exposition of 

about 25 minutes focusing on the new result, elaborating on its history, the main underlying ideas, 

and the people involved in the field; and (iii) Taking into account students’ limited background, 

preferably linking it to some topics in the mandatory curriculum, without harming the progress in 

their teaching. 

The current study focuses on one question – how do high-school mathematics teachers perceive the 

contribution of integrating MNSs (in their mathematics lessons) to the development of their 
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Mathematical Knowledge for Teaching? This study is part of a larger research program that examines 

the experiences of teachers as well as of students participating in the MNS project. 

Method 

Setting: Mathematics teachers participating in the MNS project attend a dedicated three-year 

professional development program. This program involves both face-to-face meetings and online 

meetings in which teachers are getting acquainted with seven MNSs each school year (Grades 10-12) 

and hold discussions about the mathematical, historical, and innovative contents of the MNSs. 

Following the implementation of each MNS in their classes, teachers are required to document their 

experiences (e.g., their own reflections and their students’ responses) into an online database via a 

dedicated proprietary software called “Ramzor” (lit. Traffic Light). These reports often entail 

information regarding students’ comments and classroom atmosphere, as well as suggested 

accompanying activities, recommended videos, and questions regarding possible mistakes in the 

presentation. The project staff provides ongoing one-on-one support for each participating teacher. 

To date, we have completed two and a half (out of three) years of our longitudinal study. 

Sample: The participants are 25 high school mathematics teachers who volunteered to participate in 

the MNS project: 14 teachers have integrated MNSs for one year (“beginning teachers” – Group A), 

and 11 teachers have integrated MNSs for two consecutive years with the same students ("continuing 

teachers" – Group B). (They are continuing this year, but the data s restricted to the 2nd year). 

Research instruments: Three data collection instruments are used in this study: Teacher 

questionnaires, teacher interviews, and field notes. 

Teacher questionnaires. At the beginning of the first year (prior to the students’ first introduction to 

the MNSs) and at the end of each school year, each participating teacher is asked to complete a 

questionnaire. The questions involve three types of items: 5-level Likert-type scale items, multiple-

choice items, and open-ended items. The intention was to trace the development of teachers’ MKT 

following the integration of MNSs in their lessons. The questionnaires were constructed with, and 

validated by, a team of mathematics education experts. 

Participants’ interviews. We conducted an informal semi-structured interview with each teacher at 

the end of each school year, in the form of a friendly conversation conducted online via video chat. 

The interviews dealt with the considerations that guided the teacher in integrating the MNSs. 

Field notes – Analysis included all (and only) comments made by teachers on the proprietary software 

and during conversations with the project staff.  

Data analysis: We utilized a qualitative research paradigm, implementing a process of open and axial 

coding, to identify the main categories and sub-categories (Corbin & Strauss, 2008). At the first stage, 

the teachers' responses to the questionnaires were analysed, to generate preliminary categories. In the 

second stage, the data analysed from the observations and interviews in order to identify and map the 

initial categories. We identified a correlation between the reports received from the final evaluation 

questionnaire and the knowledge obtained from the interviews that supports the findings (Miles & 

Huberman, 1994). In the third phase of the analysis, while reviewing the findings of the first and 

second stages, we focused on the data related to the development of key components of MKT. 
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Findings 

The integration of the MNSs introduced teachers to diverse and innovative mathematics contents, in 

a systematic and structured manner. The teachers' experience in integrating the MNSs led to the 

development of various teachers’ knowledge components, as they perceived it. Some of which are 

presented below.  

Teachers’ perceptions about Integrating MNSs as a lever for the development of their 

mathematical knowledge 

In each end-of-year questionnaire the teachers were asked to relate to the contribution of the 

integration of the MNSs to their mathematical knowledge, both in the context of school curriculum 

and beyond the curriculum. Table 1 presents the distribution of teachers' degree of agreement with 

the statement: To what extent did the integration of MNSs in your mathematics lessons contribute to 

the expansion of your mathematical knowledge? 

 

  Degree of Agreement 

Teachers  
Very Large Large Medium Little Not at all 

Group A (N=14) 
Curricular context 14.29 14.29 7.14 57.14 7.14 

Extracurricular 28.57 28.57 28.57 7.14 7.14 

Group B (N=11) 
Curricular context 9.09 0 36.36 45.46 9.09 

Extracurricular 18.18 27.27 36.37 18.18  

Table 1: Teachers' grading of their mathematical knowledge development,  

according to groups and type of knowledge (in percentage) 

Here are a few quotes (translated from Hebrew to English) from group A teachers’ testimonials about  

the expansion of their mathematical knowledge: "The MNSs helped me understand, and present in 

class the distinction between proofs and refutation"; "I realized that there are proofs of 

impossibilities, such as the impossibility to trisect an angle"; "I learned about the existence of notions 

such as Mersenne number". As can be seen from Table1, both groups perceived the contribution of 

integrating the MNSs to their mathematical knowledge beyond the curriculum was greater than its 

contribution to knowledge related to the curriculum itself. Group A teachers maintained that: "I was 

exposed to mathematics theorems such as Fermat's last theorem and Kepler's theorem"; "I became 

familiar with interesting mathematical subjects that I did not know, like the connection between 

guarding an art gallery and mathematics". Similar to Group A, Group B teachers reported that: "My 

mathematical knowledge was expanded, through integrating MNSs for example I learned from the 

MNS about Efron cubes that the transitive rule does not always holds"; "Through integrating MNSs, 

I learned with my students a lot about contemporary mathematics "; "There are many mathematical 

contents I was not familiar with. For example, the frequency of the digit 1 as a leading digit”. The 

findings from the interviews with the teachers reinforced the findings from the questionnaires. They 

indicated that all the interviewed teachers (Seven out of seven) perceived an expansion and deepening 
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of their mathematical knowledge. "It was new to me that nowadays mathematicians employ 

technology not only for proving theorems but also for validating proofs". In addition, the teachers 

were exposed to the protracted work of proving mathematical theorem: "I did not know that to prove 

the Fermat Last Theorem it took 300 years"; "I am happy to learn new things in mathematics, as the 

MNSs power point presentation there are many references, to mathematical background materials 

and applets”. 

Teachers' perceptions about integrating MNSs as an attribute for their recognition of the 

importance of exposing students to contemporary mathematical subjects beyond the 

curriculum 

Table 2 presents the distribution of teachers' degree of agreement with the statements: To what extent 

integrating the MNSs contribute to your recognition of the importance of exposing students to 

contemporary mathematical subjects beyond curriculum?  

 Degree of Agreement 

Teachers Very Large Large Medium Little Not at all 

Group A (N=14) 21.43 50 21.43 7.14  

Group B (N=11) 18.18 63.64 18.18   

Table 2: Teachers' grading of their recognition about the importance of exposing students to 

contemporary mathematical subjects beyond curriculum (in percentage)  

The teachers in Group A reported that their recognition about the importance of exposing the students 

to the content of the MNSs motivated them to join the project to start with, and to carry on their 

participation in it. In addition, teachers in Group A, reported about their desire to change the students' 

image about mathematics as a dynamic, and constantly evolving field: "The exposure of the students 

is very significant to their image of mathematics"; "It's important for me that my students really 

recognized that mathematics is an ever-growing field". The teachers in Group B added: "It is 

important that students recognize the world of mathematics beyond matriculation exam". The 

teachers' awareness of the importance of exposing students to MNSs also related to an opportunity to 

deal with the fears of students from math: "One of my goals in integrating MNSs in my class is to try 

to remove fear of mathematics and try to develop a love for mathematics". In addition, integrating 

MNSs helped teachers emphasize the use and the connection of mathematics to daily life: "It was 

very important to me at every MNSs presentation to note the fact that mathematics connects to 

science, which has many uses and is constantly evolving". The teachers' interviews strengthened the 

findings from the questionnaire. Five out of seven interviewed teachers reported that they chose to 

participate in the project to expose themselves and their students to mathematics as a field of constant 

development: "Mathematics is perceived by students, as frozen and unchanging”. Integrating MNSs 

enabled teachers to present mathematics in an orderly, interesting and exciting way: “the integration 

of MNSs gave me an opportunity as a teacher to present a story after story of things that can ignite 

students’ imagination". With integrating the MNSs "I can open to my students horizons for what is 
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happening in mathematics. I did not have the ability to connect things together without participating 

in this project"  

Teachers' perceptions about integrating MNSs as a way to deepen teachers' knowledge about 

the relationships between mathematics, and its applications to science and society. 

Table 3 shows the distribution of teachers' degree of agreement with the statement: To what extent 

integrating the MNSs contribute to your knowledge about the relationships between mathematics and its 

applications to science and society? 

 Degree of Agreement (in percentage) 

Teachers Very Large Large Medium Little Not at all 

Group A (N=14) 14.29 35.71 42.86 7.14 0 

Group B (N=11) 18.18 36.37 27.27 18.18 0 

Table 3: Teachers' grading of their recognition of the relationships between  

mathematics and its applications to science and society 

The teachers in Group A, reported on important knowledge from integrating MNSs in their lessons, 

which links mathematics to its uses: "It is Important as a teacher to have the knowledge beyond the 

curriculum that connect mathematics to other fields such as: agriculture, the connection to taxes, 

music, world maps”. Group B teachers also reported a rich expanse of examples illustrating the 

relationship between mathematics and science through integrating MNSs: "I was amazed to discover 

the connection between origami folds and the development of science and medicine". All the 

interviewed teachers reported about the contribution of the MNSs to their knowledge of the 

relationship between mathematics, sciences and society. The integration of the MNSs has given 

teachers the exposure, and understanding, the relationship between mathematics and scientific 

phenomena around them: "for example, soap bubbles were very interesting. Why the bubble is round, 

and it has to do with both science and mathematics, I knew that the Hungarian cube knew has math 

around it, but now I did deepen my knowledge about it. The MNSs enriched my knowledge, opened 

my horizons, and the integration of the MNSs in students instruction forced me to understand it more 

deeply". In addition, all the interviewed teachers reported the contribution of integrating MNSs, to 

their knowledge about the relationship between mathematics and computer science. An example of 

teachers report: "The fact that the computer becomes a significant player in the stages of proof is very 

impressive, such as the color of the map”. The teachers reported a deepening of the relationship 

between mathematics and phenomena occurring in nature: "For example, in the Fibonacci series, I 

was very excited by the physical explanation of the series' shows in the flowering mechanism. MNSs 

help me to understand why, and the explanation took me a few steps forward".  

Discussion 

The present study focused on high-school mathematics teacher`s perceptions of the contribution of 

integrating MNSs to various component of their MKT during the first two years. The findings as 

appeared above n Tables 1, 2, 3 indicate that teachers perceive the interweaving of MNSs in their 

mathematics lessons, as a catalyzer for the development of at least three components of their MKT. 
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This goes hand in hand with the claim by Shulman (1986) and Ball et al (2008) that this is the unique 

mathematical knowledge required for teaching mathematics. 

Teachers also expressed their perceptions that by integrating MNSs in their mathematics lessons, they 

developed their SCK as well as their KCS. By intelligent integration of MNSs during instruction 

teachers perceived that they deepened their knowledge about the connection between mathematics 

and other field, about different ways for proof theorems, hence they have expanded their SCK. By 

introducing various ways in which students' curiosity can be stimulated, and identified topics in which 

students were interested in the curriculum and beyond, teachers have expanded their KCS.  

Another component that the findings illuminate is the HCK as defined by Ball et al. (2008). The 

findings indicate that teacher`s perceptions the significant contribution of integrating MNSs on their 

MKT component, related to HCK (Ball et al. 2008). By exposed to the MNSs, they strength and 

deepen their awareness of the dynamic, lively and ongoing mathematics development. The teachers 

found out about the connections between the development of mathematics and the development of 

science and society. According to HCK, defined by Ball & Bass (2009), by integrating MNSs in their 

mathematics lessons, the teachers reflected in the various HCK components: They developed a sense 

of the mathematical environment surrounding the current “location” in instruction, by identified links 

between topics taught in the mathematical curriculum to topics outside the curriculum. They were 

exposed to major disciplinary ideas and structures such as various possibilities of mathematical 

theorem, to the logical structure of mathematical content. Finally, the teachers stated they appreciated 

being exposed to core mathematical values such as, collaborative work and persistence, as expressed 

in the MNSs, with the description of mathematicians work with their colleagues in other fields. 

In conclusion, this study will continue in examining more components as the third year of this study 

unfolds. 
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Examining pedagogical and classroom discourse through the lens of 

figured worlds: The case of an elementary school teacher  
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The problem solving approach to teaching and learning mathematics has for some time been the 

focus of professional development (PD) programs. This paper discusses a case study of an elementary 

school teacher who participated in such a program. We apply the lens of figured worlds when 

analyzing her pedagogical and classroom discourses to reveal which aspects of explorative figured 

worlds penetrate her discourse. Findings indicated that the teacher adopted some aspects of 

explorative figured worlds but resisted others. The lens of figured worlds can help us, as teacher 

educators, to plan continued PD.      

Keywords: Figured worlds, explorative instruction, professional development.  

Introduction 

Although there is a consensus among researchers and teacher educators regarding the benefits of what 

may be called explorative instruction (i.e., inquiry-based, student-centered, and cognitively 

demanding instruction) (Schoenfeld, 2014), studies have shown that teacher-centered, ritual 

instruction is still very prominent in many classes (e.g., Resnick, 2015). Resistance to explorative 

instruction may even be found amongst teachers who have taken part in professional development 

specifically promoting this type of instruction (Heyd-Metzuyanim,  Munter, & Greeno, 2018). One 

way to explain this phenomena is by viewing it through the lens of ‘figured worlds’ (Holland, 

Lachicotte, Skinner, & Cain, 1998). Figured worlds are based on one’s interpretation of situations 

and may be revealed through discourse. 

This paper presents a case study of one teacher, Yifat (a pseudonym), and analyzes her pedagogical 

and classroom discourses after participating in a professional development (PD) program centered on 

problem solving and explorative instruction. Through the lens of figured worlds, we analyze her 

discourses and examine which aspects of explorative instruction she adopted and which were missing.  

Theoretical background 

This section begins by offering some background on the notion of figured worlds and how it relates 

to mathematics education. It continues by describing the problem solving approach to teaching 

mathematics. Finally, as this paper analyzes the teacher’s pedagogical and classroom discourses, the 

section ends by presenting how discourse is understood in the commognitive approach.   

A figured world is defined by Holland and her colleagues (Holland, et al., 1998) as “a socially and 

culturally constructed realm of interpretation in which particular characters and actors are recognized, 

significance is assigned to certain acts, and particular outcomes are valued over others” (p. 52). People 

‘figure’ out who they are through the activities of their world, in relation to the social types that 

populate these figured worlds, and in social relationships with the people who perform in these 
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worlds. In addition, artefacts and signs are attributed meaning that might differ from how those 

outside of the figured world interpret them. To sum up, the people within the figured world take on 

roles that come along with responsibilities, and in addition, certain actions, outcomes, and objects are 

valued more than others. 

Relating figured worlds to mathematics education, Boaler and Greeno (2000) pointed out that the 

difference between ritual and explorative instruction may not just be a matter of certain teaching 

techniques or forms of classroom organization, but a matter of widely different figured worlds. They 

defined the problem-solving, group-work mathematics instruction found in some secondary schools 

as a “connected knowledge” figured world. In contrast, the more common teacher-centered 

instruction was conceptualized as a figured world based on “received knowledge”. Ma and Singer-

Gabella (2011) showed that it was difficult for prospective teachers to move from the “traditional” 

figured world (in which they supposedly studied at school) to the “reform” figured world of 

mathematics instruction, supported and enacted in their training program. 

Over the years, evidence has shown that the “connected knowledge” figured world is fruitful for 

mathematics learning (Schoenfeld, 2014). In particular, Hiebert and Grouws (2007) highlighted two 

significant aspects of such teaching: Explicit Attention to Concepts (EAC), and Students’ 

Opportunity to Struggle (SOS). These two aspects are part of the problem-solving approach to 

teaching mathematics (Hino, 2015). This approach emphasizes meticulous planning of detailed 

mathematics lessons that include implementing rich problems in such a way that students are active 

participants who explore mathematics. The teacher’s role is to create learning opportunities that 

support students' conceptual understanding through problem solving, as well as supporting student 

agency and authority (Schoenfeld, 2014). Relating to all of the above, Shabtay and Hed-Metzuyanim 

(2018) described the figured world of exploration as one where students are free to struggle, 

mathematics is at the center, and the teacher and students share responsibility for the learning process. 

Learning, including learning mathematics, may be seen as the process of becoming a full participant 

in a certain discourse (Sfard, 2008). Such participation may be characterized as lying on an axis 

between ritual and explorative participation (Viirman, 2015). In Sfard’s commognitive framework 

(Sfard, 2008), a basic assumption is that doing mathematics means engaging in mathematical 

discourse. Discourses, according to Sfard, are different types of communication “set apart by their 

objects, the kinds of mediators used, and the rules followed by participants, and thus defining different 

communities of communicating actors” (p.93). While these discourses are not stable or distinct, but 

rather overlapping and constantly developing, it still makes sense, within a given context, to see them 

as “distinct enough to justify talking about discourses [. . .] as reasonably well-delineated wholes” (p. 

91). Regarding the classroom as a community, Tabach & Nachlieli, (2016) defined a pedagogue, as 

a person who assumes the role of the leading participant in the discourse. Thus, pedagogical discourse 

is a discourse about teaching and learning (Shabtay & Heyd-Metzuyanim, 2017). Similar to any other 

discourse, it is made up of certain key words, narratives, and meta-rules that dictate what to teach 

students, how to teach them, and who can learn (or not learn). This view is based on Sfard’s (2008) 

view of mathematizing as participating in a discourse about mathematical objects. The pedagogical 

(the how and for whom) is closely intertwined with the what (Shabtay & Heyd-Metzuyanim, 2017). 
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Through the lens of figured worlds, this study examines which explorative narratives may be found 

in a teacher’s classroom discourse and in her pedagogical discourse, after participating in a PD 

program focused on the problem solving approach to teaching mathematics.  

Methodology 

Yifat is an elementary school teacher with a B.Ed. degree and a  specialization in mathematics. At 

the time of the study, Yifat had 11 years of experience teaching mathematics to fourth and fifth 

graders (10-11 years old), and was the mathematics coordinator in her school. This case was chosen 

because it illustrates the gap between a teacher’s classroom and pedagogical discourses. In addition, 

Yifat consented to be part of the study, and agreed that her lesson and interview be recorded.  

Yifat participated in a PD program for mathematics teachers centered on designing and implementing 

lesson plans according to the problem-solving approach (Hino, 2015).  During the program, teachers 

engaged in cognitively demanding tasks, viewed videoed lessons demonstrating the problem solving 

approach, discussed the pedagogical gains and mathematical ideas that emerged from those lessons, 

and designed lesson plans modeled on the problem-solving approach. The PD program took place 

over a period of eight months, and included 10 sessions. In addition, each teacher met with the PD 

educator three times on an individual basis, receiving personalized instruction and advice for planning 

and implementing mathematics lessons using the problem-solving approach in their specific classes. 

Relevant to the present study, the seventh meeting of the program dealt with the construction of prime 

and composite numbers. During that meeting, teachers, including Yifat, engaged with a cognitively 

demanding task that involved representing different prime number with different signs, and composite 

numbers with an appropriate combination of prime number signs. For example, a card representing 

the number 2 had a circle on it, the card for 3 had a triangle, and the card for six had both a circle and 

a triangle (see Figure 1 for the symbols which represented the numbers from one to ten). During the 

session, teachers also viewed a Japanese lesson, demonstrating how this activity may be implemented 

as part of a problem-solving teaching approach to learning these new concepts. At the end of this 

session, Yifat invited the teacher educator to come to her fourth grade class and observe her teaching 

this exact lesson. Yifat expressed her belief that she “finally understood the problem-solving 

approach,” and that she felt students would enjoy the lesson and experience meaningful learning. 

 

 

 Figure 1: Cards with symbols representing the numbers from 1-10 

Data collection and analysis 

Yifat was interviewed both before and after the observed lesson. The first interview dealt mainly with 

the goals of the lesson, the main mathematical ideas, and the planned pedagogical processes. The 

post-teaching interview revolved around achievement of goals, class-driven processes, and the 

mathematical ideas that emerged from students and the teacher during the discussions. Each interview 

was audio-taped and transcribed. The lesson was video-taped and transcribed.  

Thematic Working Group 18

Proceedings of CERME11 3507



 

 

 

 

Relating back to the theory of figured worlds described previously, a qualitative analysis was carried 

out on all transcriptions searching for four dimensions of figured worlds: characters, valued actions, 

outcomes, and artifacts. The characters, in this case the teacher and students, play roles that involve 

responsibilities. Thus, when analyzing characters, we analyze the roles Yifat plays and those she refers 

to during her interviews. Noting the value that Yifat places (or does not place) on these four 

dimensions, we describe Yifat’s figured world and compare it to an explorative figured world. 

Findings 

In the transcripts below actions are underscored with one line, outcomes with a double line, and roles 

and responsibility are indicated with a broken line. Artifacts are in bold. 

The first interview took place in the teacher’s classroom, during the recess prior to the mathematics 

lesson. Yifat was anxious, and yet proud, to show the teacher educator what she had prepared. 

Interviewer What's new? 

Yifat Hi. (Yifat is preoccupied with a bag of flashcards). 

Interviewer Do you need help? 

Yif'at Look. I made these symbols. These (she places the flashcards on the table). 

Interviewer Okay. 

Yif'at You'll see. I will arrange it for them after they sort them like this. (She arranges the 

cards as in Figure 1. She has more cards that have not been arranged yet.) Then we 

will discuss the topic. That's okay, isn't it? 

Interviewer What are you going to try to achieve today? How would you describe your 

objective? 

Yifat Uh …That they know what a prime number is, and what a composite number is. 

Interviewer Hmmm…and how did you plan the lesson? 

Yif'at You'll see. I planned it just like the teacher in the clip. Don't worry (she is busy with 

the flashcards, putting them back into the bags)…I need the sticky stuff so that I 

can stick them on the board (gets up to get the glue). 

From the lines above, we see Yifat’s preoccupation with the flashcards, signifying their value in her 

eyes. Yifat also states her intent to emulate the teacher in the film. Emulation is an action that might 

indicate her tendency towards being a ritualistic learner, i.e., she watched a documented lesson during 

a professional development meeting, and would like to replicate the lesson. Thus far, it seems that 

Yifat has chosen an appropriate problem, and has brought along appropriate props (cards) that will 

help her achieve the goal of students “knowing” (Yifat’s term) what prime and composite numbers 

are. Note that she does not relate to explorations and discussions as objectives, or valued outcomes. 

The observed lesson was 47 minutes long. The teacher began by randomly sticking the cards on the 

board and telling the children to decide how the cards could be sorted. Yifat proceeded to spend 30 

minutes listening to various suggestions of how to sort the cards, calling on different students to 
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demonstrate their method on the board. Finally, she arranged the cards on the board in ascending 

numerical order as represented by the symbols, in accordance with her lesson plan (see Figure 1).  

For the next 12 minutes, she again led a whole-class discussion, this time relating to the arrangement 

of the cards on the board. Yifat tried to steer the discussion towards explaining the arrangement of 

the cards, as depicted below. 

Yifat Let’s make things clear. You (meaning the class) said skip by twos, and Noa just 

said even numbers (referring to the cards with circles on them). Let's check 

everything. Imagine that I have more and more cards. And there's always a shape. 

There’s a circle, and another shape, and a circle and something else, and a circle 

and something else. (Pause) And what’s here?  

Student A (something unintelligible) 

Yifat Here is another circle. And something. I am skipping on purpose. What do you say? 

Yoav, do you agree with what she said?  

Yoav Yes. 

Yifat Daniel, do you agree? 

Daniel Yes. 

Yifat So wait a second. Let’s make some sense out of this so we can understand what’s 

going on. Michal said (referring to the circles) that 2 and 2 and 2 and other items 

were added. And Roni says … (referring to the triangles) it skips by 3. 

In the above segment of classroom discourse, Yifat takes the lead, saying “Let’s make things clear.” 

Although she takes the lead in the discourse, her use of the word “let’s” hints at her inclusion of the 

students in the process of making sense of the symbols. She also turns to different students and asks 

them if they agree, sharing with them the responsibility for learning. Yet, Yifat’s questions are closed 

yes or no questions. She does not ask those students to expound on their thoughts. Finally, her valued 

outcome is that we will “understand what’s going on.” During the last five minutes of the lesson, 

Yifat wrote down the numbers from 1-10 under each of the symbols and introduced the notions of 

prime and composite numbers. It was only during those five minutes, that mathematics was at the 

center of the discourse.  

In the interview following the lesson, Yifat talked about the differences between this particular lesson 

and her regular lessons: 

“Look, this was a really different type of lesson. They haven't learned composite or prime numbers 

at all. So, it's the first level of acquisition. And also, it's…the first time that I…gave a lesson like 

this, when the whole lesson is…um…only the one problem. It's different from what we usually 

do. They always have a lot of practice, exercises… Here (pointing to the cards) … they are just 

symbols that you have to categorize…and understand.” 

The actions mentioned by Yifat are student actions. In the past, they practiced; in the present, they 

categorized. Most interesting are the outcomes she values. The outcome of her lesson plan is the 
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“different” type of lesson she perceives as having enacted. The outcome for her students is that they 

will “acquire” the first level of understanding. The terminology Yifat uses gives us a mixed message 

regarding her figured world. On the one hand, she consciously attempts to break with her former 

lesson style. She chooses to implement a cognitively demanding  task. Yet, she resorts back to words 

such as “acquisition,” and “giving a lesson,” that remind us of a traditional figured world.  

Asked if she has achieved her goals for this lesson, the following exchange ensues:  

Interviewer Okay. So, in your opinion…did you achieve your goal? 

Yifat Of course. Look, it's only the beginning, and [so] I had to explain…so…yes.  

Interviewer Um…what was your objective? 

Yifat That they would know what a prime number is and what a composite number is. 

That they would know how to differentiate between the two.  

Interviewer Okay. How do you know that they have, in fact, made that distinction? 

Yifat Because, look. I told them. They also said that there are cards with one symbol 

and there are cards with a number of symbols. …I'm sure that most of them 

understood. And whoever didn't, I will sit with them in a small group and explain 

it again. You know, it's only the beginning. Look. They can't arrive at it by 

themselves. My job is…I have to explain it to them and that's how they'll know. 

They would never get to it by themselves. 

Interviewer Why? 

Yifat Because it's too complex. Later, when things are clarified, I'll be able to let them 

come up with symbols for 13 or 17, and construct 12 or 18.  

The actions Yifat values for herself (e.g., explaining, telling), go hand-in-hand with how she describes 

her “job”, or role, as an “explainer”. Although during the classroom discourse Yifat did ask students 

to share their ways of sorting the symbols, during the interview she ascribes a passive role for her 

students, claiming unequivocally that they would not be able to arrive at the mathematical conclusions 

on their own. This interview offers evidence that Yifat’s figured world is mostly traditional. 

Referring to the main characteristics of the problem-solving approach, Table 1 summarizes the 

similarities and differences between Yifat’s figured world and the explorative figured world. Yifat 

does choose to present a cognitively demanding in her class. She perceives this lesson as being quite 

different from those she usually teaches. Additionally, Yifat led a discussion concerning the task she 

presented to her pupils. These are all part of the explorative figured world. However, Yifat did not 

offer enough of an opportunity for her students to struggle with the problem. Recall that after she 

randomly stuck the symbols on the board, she immediately began to call on students to share their 

ways of sorting, without giving them time to think about it. When she finally arranged the cards in 

order, she still had difficulty shedding her central role as the teacher who explains, and where the 

students are attentive. These are elements of a more traditional figured world. In other words, Yifat 

is struggling between two worlds. 
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 Explorative figured 

world 

Yifat’s figured 

world 

Teachers select cognitively  demanding tasks + + 

Students present their own ideas + + 

Collaborative group discussions + +/- 

Shared mathematical authority + +/- 

Students are offered opportunities to struggle + - 

Explicit attention to concepts + - 

Table 1: A comparison between Yifa’s figured world and an explorative figured world 

Discussion 

The aim of this study was to investigate what explorative narratives enter into a teacher’s classroom 

and pedagogical discourses after attending PD focusing on a problem-solving approach to teaching. 

From the first, we get mixed messages. Yifat is very enthusiastic about the task, yet is preoccupied 

with the artifacts (the cards). Though not entirely insignificant, the cards are actually mere props, to 

be used in the ultimate aim of having students engage with the concept of prime and composite 

numbers. Yet, during the lesson, more time is spent discussing the artifacts than on the mathematical 

concepts they were supposed to elicit; not enough time is allowed for exploring the possible 

significance of the symbols and how they might be related to mathematics (Hiebert & Grouws, 2007). 

This is also reminiscent of Henningsen and Stein (1997), who argued that a teacher must not only 

select and appropriately set up worthwhile mathematical tasks, but must proactively and consistently 

support students’ cognitive activity. In addition, although her classroom discourse shows her attempts 

at sharing authority, her second interview contradicts this view. These findings are in line with Sfard’s 

approach (2008), that discourses are not stable, but rather overlapping and constantly developing.  

While acknowledging that discourses may be overlapping, as teacher educators, we attempt to move 

teachers toward a more explorative discourse. Sfard (2016) suggested that for teachers to be 

explorative in their teaching, they must have experienced explorative mathematics learning for 

themselves. Yifat had limited experience with this type of learning, most of which stemmed from the 

PD program. Indeed, Yifat explicitly states that her aim is to imitate the teacher in the filmed lesson. 

She does not say that her aim is to offer the students the same type of experience she has recently had 

in the program. From paying attention to her discourse, we might infer that additional time must be 

given for teachers to experience for themselves explorative learning.  

By focusing on characters, actions, outcomes, and artifacts, we can see what parts of a figured world 

a teacher adopts, and which seem to be restricted. As teacher educators, we can utilize this lens to 

listen to teachers’ discourses and identify aspects that perhaps need more attention. Yifat is ready to 

adopt appropriate tasks, and willing to listen to her students. At this point, we would say that more 

attention could be paid to authority, while at the same time placing the mathematics at the center. 

Insight into a teacher’s figured world, can help teacher educators plan appropriate professional development.  
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We report on a study of preservice teachers’ eliciting performances in a scenario in which a student 

has made a mistake and, if sufficiently probed, is able to recognize the mistake and revise their work. 

Our findings reveal the skills and capabilities of one group of preservice teachers at the start of a 

teacher education program. 

Keywords: Teacher education-preservice. 

Student responses in teaching  

Mr. Chinn, an experienced sixth grade teacher, is circulating in his sixth-grade mathematics class as 

students work independently on a set of problems involving operations with fractions, including 

mixed numbers. He pauses by Chloe and notices that she has arrived at an answer for a subtraction 

problem with “mixed numbers” that looks wrong. By mixed numbers, we mean numbers that combine 

integers and proper fractions. Chloe’s work, shown in Figure 1, has resulted in an incorrect answer.  

 

Figure 1: Student work, the student makes a mistake 

Mr. Chinn decides that he does not want to assume what Chloe was doing and so he asks her some 

questions about her work: “Chloe, what did you notice when you started to work on this problem?” 

Chloe responds, “I was trying to take three-fifths away from two-fifths but I didn’t have enough so I 

needed to borrow.” Mr. Chinn nods and follows up, “Where did you borrow from?” Cloe responds, 

“I borrowed from the 3 and then the two-fifths become twelve-fifths.” Mr. Chinn wonders whether 

Chloe is overgeneralizing “borrowing” from work with subtracting multi-digit numbers or if she has 

made a bookkeeping error. He asks some more questions and presses Chloe to explain the value of 

the “little one” in fraction notation and Chloe pauses, and then says softly, “I think I made a mistake.” 

Mr. Chinn asks her what she thinks is a mistake and to articulate why she thought she did it. Through 

this interaction, he learns that Chloe believes she was just “working too quickly” and that she forgot 

that she was borrowing “five-fifths.” Then, Mr. Chinn asks Chloe to solve the problem again. When 
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Chloe changes the “two-fifths” to “seven-fifths,” Mr. Chinn asks Chloe how she knew to write seven-

fifths and why the mixed number can be re-written as “three and seven-fifths.” 

In this episode, Mr. Chinn encounters a regular problem of practice in mathematics teaching. A 

student is doing something when solving a mathematics problem that misaligns with the lesson’s 

mathematics goal of accurately computing the difference. The processes of teaching and learning 

often involve such mismatches between goals and the current status of students’ performances. For 

example, students might use an approach that is not familiar to a teacher. Or a student may make what 

Bass (personal communication) terms a “bookkeeping” error. Radatz (1980) refers to such an error 

as a mistake, an isolated and unrepresentative mis-executions of an algorithm (a careless move) as 

opposed a systematic and persistent mis-execution that reflect a conceptual or procedural 

misunderstanding. Chloe’s response reflects a book-keeping error. Another possibility is that 

student’s work might reflect a misunderstanding that results in an incorrect answer. Of course, other 

sorts of mismatches happen in teaching that are crucial, such as when teachers favors/expects a 

particular approach or route of reasoning and a student treads an alternative path. In a broader sense 

these mismatches illustrate a broader categorization of students’ actions/productions that are “not 

what the teacher is looking for.” This is not about anticipation as teachers may very well anticipate 

that students might produce some of these responses. This is more about the need for teachers to have 

generative responses when there is a mismatch between what the teacher prefers/hopes to see and the 

variability in what students produce in the course of learning mathematics.  

Interactions around student responses that are not what the teacher is looking for can be powerful 

sites of learning for both teachers and students (Borasi, 1994; Hiebert et al., 1997). When the answer 

is incorrect, the joint sense-making required to interpret student thinking goes beyond the 

identification and correction of mistakes/errors into the conceptual analysis of why the mistake/error 

was made (Borasi, 1994; Kazemi, & Stipek, 2001). The information that teachers can uncover by 

eliciting students’ thinking can then guide their pedagogical response. This is not to say that all 

student responses that are different from the responses that teachers are looking for have the same 

potential for being a site for learning. For example, one could argue that a bookkeeping error has less 

potential to support learning for the teacher and the student compared to an instance in which a 

student’s work reflects a misunderstanding that results in an incorrect answer. While the importance 

of interacting with students around incorrect answers is well-documented, research suggests that 

practicing teachers vary greatly in their attention to and treatment of errors and mistakes in classroom 

discussion (Bray, 2011; Santagata, 2005; Silver, Ghousseini, Gosen, Charalambous, & Strawhun, 

2005). Less is known about the ways in which preservice teachers (PSTs) elicit student thinking when 

they see answers that are not the answers that they want students to produce. This matters for several 

reasons. For one, when students do something that the teacher is not looking for, this indicates a place 

where the teacher could learn something about the student and/or about mathematics. Both of which 

merit being able to leverage the opportunity. For another, when students make what seem to be 

mistakes, asking questions may reveals understandings that are not evident from their written work.  

In this study, we examine PSTs’ skills around asking questions to learn about student thinking 

(eliciting student thinking) when a student has an incorrect answer. We explored a case in which the 

student makes a bookkeeping error, a mistake, in their arithmetic process and will recognize the 

Thematic Working Group 18

Proceedings of CERME11 3514



 

 

mistake if asked specific questions about their reasoning. The context is challenging for many PSTs. 

It has significant implications for students because teachers’ understanding the basis of student’s 

mistakes is necessary for responsive instruction. In other words, teachers need to know the degree to 

which a mistake reflects underlying understandings in order to ascertain how to move a student’s 

understanding forward. Specifically, we sought to analyze the extent to which PSTs’ (a) elicited the 

full process used; (b) elicited the student’s understanding of the process, and (c) elicited the student’s 

mistake, including the reason for the mistake and their revised process. We illustrate how knowledge 

of this kind of skill can be gathered through the use of a simulation in which a PST interacts with a 

teacher educator who is taking on the role of a student, what such findings reveal about PSTs in one 

teacher education program, and the implications of these findings.  

Focusing on PSTs’ skills at the beginning of teacher preparation 

There has been increasing focus on preparing PSTs for the work of teaching by focusing on specific 

instructional practices (e.g., Ball, & Forzani, 2009; Ball, Sleep, Boerst, & Bass, 2009; McDonald, 

Kazemi, & Kavanagh, 2013). In “practice-based teacher education,” learning goals for PSTs are tied 

to developing skills in carrying out specific teaching tasks. To help PSTs develop skill, it would be 

useful to know what they bring with them to teacher education, so as to be able to design the program 

in ways that capitalizes to their prior ways of acting and interacting. Prior research provides 

knowledge of some of the orientations and assumptions that PSTs bring to teacher preparation and 

their knowledge of subject-matter content. Research on particular teaching practices often focuses on 

the utility of the approach, composite parts of the teaching practice, and/or challenges in learning to 

enact particular teaching practices. Such knowledge is useful for the design of teacher education; 

however, it is insufficient. Needed is knowledge of the skill with which PSTs can enact particular 

teaching practices upon entry to a teacher education program.  

We build on a prior study which examined the skills with eliciting student thinking at the start of a 

teacher education program (Shaughnessy, & Boerst, 2018a). PSTs elicited the thinking of a student 

who arrived at a correct answer to a multi-digit addition problem using a method that was likely to 

be unfamiliar to PSTs. That study revealed skills with eliciting student thinking that could be built on 

(e.g., eliciting the student’s process), needed to be learned (e.g., eliciting the student’s understanding), 

and needed to be unlearned (e.g., directing the student to use a different process). However, the case 

of eliciting when a student has made a mistake is different. We wondered whether PSTs would learn 

that the student had made a mistake and what understandings underlie the mistake.  

The practice of eliciting student thinking 

In teaching, “teachers pose questions or tasks that provoke or allow students to share their thinking 

about specific academic content in order to evaluate student understanding, guide instructional 

decisions, and surface ideas that will benefit other students” (TeachingWorks, 2011). Eliciting student 

thinking makes the nature of students’ current knowledge available to the teacher. Such information 

is essential for engaging students’ preconceptions and building on their existing knowledge 

(Bransford, Brown, & Cocking, 2000). In actual practice, eliciting student thinking is often done in 

conjunction with interpreting student thinking and responding to student thinking in ways that support 

students in building on their current understandings (Jacobs, Lamb, & Philipp, 2010). 
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Because of the crucial nature of the practice and the need to teach PSTs to do this work, it is necessary 

to specify the work involved in eliciting student thinking. We conceive of the work of eliciting student 

thinking in the context of a mathematics problem as asking questions to bring out the student’s 

process and the student’s understanding of key ideas underlying the process (Shaughnessy, & Boerst, 

2018b). Students are at the center of this work. It is their thinking which is sought and intended to be 

understand, and the work is situated in mathematical context that focus dialog, shape interaction, and 

influence follow-up questions. Throughout this paper, we use “skill with eliciting student thinking” 

to refer to the degree to which PSTs are able to engage in this work. 

Studying skill with eliciting student thinking 

Since 2011, we have used teaching simulations to study PSTs’ skill with eliciting student thinking. A 

simulation serves as an “approximation of practice” (Grossman, Hammerness, & McDonald, 2009). 

Simulations have been used in many professional fields such as medicine and more recently in the 

preparation of teachers (Self, 2016). In these simulations, a PST interacts with a “standardized 

student” (a teacher educator taking on the role of a student using a well-defined set of rules for 

responding) around a specific piece of written work. This form of assessment has advantages over 

field-based interviews to assess skill with eliciting student thinking (Shaughnessy, Boerst, & Farmer, 

2018). Field-based interviews leave the particular student thinking being elicited to chance and can 

be highly variable. The teaching simulation uses highly specified protocols that enable us to control 

key aspects of the student’s process, understanding, and demeanor. This leads to comparable eliciting 

contexts for all of our PSTs and facilitates fair and more nuanced assessment of PSTs’ eliciting skill.  

We design teaching simulations to have a consistent three-part format (Shaughnessy, & Boerst, 

2018b). First, PSTs are provided with student work on a problem and given 10 minutes to prepare for 

an interaction. Second, PSTs have five minutes to interact with the standardized student, eliciting the 

student’s thinking to understand the steps they took, why they performed particular steps, and their 

understanding of the key mathematical ideas involved. Third, PSTs are interviewed about their 

interpretations of the student’s thinking. In total, the assessment takes approximately 25 minutes. 

We designed this simulation to be one in which the student uses non-standard process (meaning a 

process other than the standard US algorithm) for solving multi-digit subtraction problems and makes 

a mistake. The process we selected is sometimes referred to as “Expand and Trade” (see the student 

work in Figure 2). The process involves writing the value of the minuend and subtrahend in expanded 

form and making any necessary trades. When used correctly, the user would then subtract the numbers 

place-by-place in expanded form. This student correctly applies the expanding and trading process, 

but mistakenly adds values by place instead of subtracting. This student has conceptual understanding 

of expanded form, the meanings of addition and subtraction, and when, how, and why to make trades. 

In this instance, however, the student loses sight of the fact that they are solving a subtraction problem 

due to the addition symbols in the expanded form. This is a bookkeeping error. During the interaction, 

the student will change their mind when pressed to: make and evaluate an estimate for the original 

problem, represent their process with a picture, talk about the meaning of the operation, explain why 

trades were made, solve another multi-digit subtraction problem, or re-solve the original problem. 

The student is trained to only reveal the mistake if pressed by the PST on one of these specific points. 
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Figure 2: Student work, the student makes a mistake 

Methods 

Thirty PSTs enrolled in a university-based teacher education program in the United States participated 

during the first week of the teacher education program. The simulations were video-recorded. In this 

paper, we focus our analysis on: (a) eliciting the student’s original process, (b) eliciting the student’s 

understanding of the process, (c) eliciting the student’s mistake, including the reason for the mistake 

and the revised process and solution. For each of these components, we identified specific “moves” 

and tracked their presence or absence in each performance. We used the software package 

Studiocode© to parse the video into talk turns. Then, we identified “instances,” which contain a 

question posed by a PST and the student’s response to that question. Two independent coders applied 

all of the relevant codes to each instance. Disagreements were resolved through discussion and by 

referencing a code book. 

Findings 

Eliciting the student’s original process 

The student’s process had five steps: expanding both the minuend and subtrahend, comparing the 

numbers in each place, trading, adding (rather than subtracting) numbers by place, and adding the 

partial sums to arrive at the answer. The highest rates of eliciting occurred around the expansion 

(70%), the comparison of the numbers in each place (90%), and the trading steps (80%). In fact, 65% 

of PSTs elicited all three of these steps and 90% of the PSTs elicited two or more. However, only 

53% of the PSTs elicited that the student added numbers by place in the expanded for after trading. 

This was surprising given that it was the point where the mistake occurred. The smallest percentage 

of eliciting occurred around the adding of the partial sums (10%). This was not surprising given that 

(a) it occurred after the point where the student made the mistake and may have not been relevant if 

the PST had asked questions that resulted in the student revealing that they had made a mistake, and 

(b) it could be easily inferred from the written work. Given that these PSTs elicited some, but not all, 

of the student’s steps, we concluded that they brought skills relevant to eliciting a student’s process 

that may be leveraged and built upon in the teacher education program; however, there was also a 

need for these PSTs to work on identifying and actively asking about steps that are particularly 

important to understand in the context of the problem. 

Eliciting the student’s understanding of the original process 

We coded whether PSTs elicited the student’s understanding of six mathematical ideas underlying 

the process. The highest percentages of eliciting of understanding occurred around the operation in 

the problem (27%), why the student expanded (37%), and why the student traded (27%). The lowest 

percentages occurred around the equivalence of expanded form and the “original” number (7%), the 
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reasonableness of the answer (7%) and what trading means (0%). This suggests that limited eliciting 

of understanding of mathematical ideas occurred. However, when we looked across the set of ideas, 

we found that 67% of PSTs elicited the student’s understanding of one or more idea. Thus, we 

concluded that this 67% of PSTs brought skills relevant to eliciting the student’s understanding in 

this scenario, but note that their eliciting does not show discernment of which understandings are 

more important to focus on and/or more relevant to subsequent instruction.  

Eliciting the student’s mistake, including the reason for the mistake and the revised process  

We coded the extent to which the PSTs elicited the student’s mistake, including their understanding 

of why they made the mistake. We found three foci in PSTs’ performances: eliciting the student’s 

realization that a mistake had been made (47% of PSTs), pointing out the mistake and getting the 

student to admit a mistake without first eliciting the mistake from the student (20% of PSTs), and 

only asking questions that were not focused on the mistake (33% of PSTs). In other words, 67% of 

the PSTs uncovered the mistake either by eliciting it or asking the student to confirm that they made 

a mistake; 33% percent did not learn about the mistake through questioning.  

We now turn to the 47% of the PSTs who elicited the student’s realization that a mistake had been 

made. These 14 PSTs elicited the mistake in different ways. The most common way, used by 11 

PSTs, was to ask about the operation involved in the problem and to press on how the operation in 

the problem (subtraction) differed from the operation that the student had used (addition). Another 

two PSTs posed another problem for the student to solve or asked the student to redo the original 

problem. The student profile specifies that the student should correctly apply the Expand and Trade 

method if prompted to solve another problem. A third approach to eliciting the mistake was to ask 

about why the student had made the trades. One PST leveraged this to ask why the student had added. 

We next turn briefly to the 20% of the PSTs uncovered the student’s mistake by pointing it out 

themselves and getting the student to admit the mistake. Often, PSTs made statements about what it 

appeared the student had done based on the written work. For example, one PST stated her impression 

that that expansion and trades were executed correctly and that the student had added instead of 

subtracting. This exchange took place after the PST had elicited the steps of the student’s original 

process through the trading step. In the exchange, the idea that the student mistakenly added instead 

of subtracted is introduced by the PST, not elicited from the student. The student merely confirms 

what the PST has stated. We see this approach to uncovering the mistake as qualitatively distinct from 

eliciting the mistake through asking questions. 

To explore what PSTs did after learning the student had made a mistake, we considered the 20 cases 

in which PSTs uncovered the student’s mistake either by eliciting the student’s realization that a 

mistake had been made or pointing out the mistake. Twelve of the 20 PSTs did not ask any further 

questions about the mistake. These PSTs need to learn to ask additional questions once a student 

recognizes a mistake. Of the 8 PSTs who followed up about the mistake, 5 made statements based on 

their own inferences about how and/or why the student made the mistake and got the student to agree. 

The remaining 3 PSTs asked questions to learn about how and/or why the mistake was made. These 

findings suggest that these 8 PSTs bring skills relevant for eliciting a student’s mistake, but may need 

to learn reasons and strategies for eliciting how and why a mistake was made. 
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Discussion 

Understanding the skills with teaching practices that PSTs bring to teacher education is key to 

designing experiences that are responsive to the needs of PSTs (Shaughnessy, & Boerst, 2018a). This 

study examined the ways in which PSTs at the beginning of a teacher preparation program elicited 

the thinking of a student who made a mistake when solving a subtraction problem. Learning about 

the reason for a mistake is important for teachers to accurately assess and respond to student thinking. 

For example, a student who has made a mistake due to misunderstanding about ideas underlying the 

process would need different instruction than a student who has made a bookkeeping error when 

carrying out a well-understood process. However, at the start of their teacher education program, 

these PSTs focused more on eliciting the revised method and/or solution than asking about why the 

mistake was made. We hypothesize that there might be multiple reasons that this pattern occurred. 

Some PSTs might refrain from directly asking the student why they made the mistake because they 

are fearful of embarrassing the student by asking them to talk about it. For other PSTs, limitations in 

their content knowledge for teaching might impede being able to identify important mathematical 

ideas related to the process. Still other PSTs might not have been able to formulate a question that 

could be used to elicit evidence of the student’s understanding.  

The data suggest several directions for continuing research. First, these PSTs were in their first week 

of a teacher education program. In what ways do their skills with eliciting student thinking develop 

over time? Second, what course activities might effectively cultivate an inclination to elicit how and 

why students make mistakes? Third, the assessment itself involved a mistake where the student was 

using a “non-standard” approach to solve the problem. Anecdotally, we have reason to think that 

some PSTs were discounting the student’s reasoning because they believed that the student should be 

using a different method to solve the subtraction problem. A future study could compare skills in 

eliciting around a mistake with a “standard” and an “alternative” algorithm. 
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Introduction 

Since 2016/17, a new bachelor teacher training program has been implemented in a cluster of four 

tertiary education institutions in the North East of Austria to provide a common secondary level 

teacher training program. The education of future maths teachers in mathematics as a science is 

separated from the program for other maths students. The first compulsory lecture for future maths 

teachers is an introduction to university mathematics. It offers mathematical terminology, parts of 

the mathematical toolbox and methods of proving. Thus the students’ beliefs, which are already 

developed due to their school experience, are faced with mathematics at university level.         

Contextualising our study in the field of belief research 

In the field of mathematical belief research, the pivotal work of Grigutsch, Raatz, and Törner (1998) 

is well known. It deals with maths teachers’ beliefs and shows that the beliefs of mathematics 

teachers represent four main dimensions: scheme, formalism, process and application. Rach, 

Heinze, and Ufer (2014) also follow that conception, but they focus on specific expectations of 

students in terms of relevant learning opportunities. They found that students’ expectations are 

mostly realistic and have a small influence on the students’ success. In our approach, we 

incorporate both the beliefs and expectations of future math teachers. We define the following 

research questions:  

1. Which beliefs and expectations do student teachers hold at the beginning of their maths study?  

2. Which significant changes can be observed between the beginning and the end of the first term?  

The inquiry instrument and a description of the setting 

We developed a questionnaire similar to Grigutsch et al. (1998) and “Mathematics teaching in the 

21st Century (MT21)” (Schmidt, 2006, Part C). It is divided into two parts: the first 41 statements 

deal with the personal view of mathematics; the second part consists of 19 statements to investigate 

subjective expectations. In both sections, different four-point Likert scales are used to measure the 

level of agreement with the given statements. The first one spans from strongly agree (1) to 

strongly disagree (4), the second one from fully (1) to not at all (4). An example of the first part is: 

If one doesn’t know the correct procedure to solve mathematical tasks, then one is lost. And from 

the second part: My mathematical education qualifies me to learn prospective and unknown content 

of the subject curricula on my own. We surveyed students before and after attending their first 

mathematical course in 2017/18 (winter term) using the same questionnaire. 374 students 

participated in the pretest, 186 in the posttest. The paired sample has a size of 150 participants.  
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Evaluation process 

An exploratory factor analysis was carried out to get an insight into the beliefs of the young student 

teachers. The data from the paired sample were tested by the Wilcoxon test for significant 

differences (caused by the attended lecture) between the data of the pretest and posttest. Finally, 

frequency distributions were generated for each factor regarding the pre- and the posttest in order to 

explain the detected differences. Data analyses were conducted using SPSS. 

Results  

From three relevant factors, two should be mentioned here. The first one contains 16 items 

(Cronbach alpha 0.869, explained variance 11.990 %). This factor contains items like: My 

mathematical education empowers me to follow mathematical in-service trainings. It can be 

interpreted as, “Autonomy concerning the subject teaching design”. This shows that future maths 

teachers have specific expectations concerning their mathematical training at the beginning of their 

study. It seems that the conviction of becoming experts in mathematics made a considerable shift (p 

= 0.027): from fully expect (69.51 % to 55.67 %) to expect partially (29.27 % to 41.24 %). 

Although the relative frequency of hardly expect is small, it increases by a factor of more than 2.5.  

The other factor refers to mathematics without practical utility (two items, Cronbach alpha 0.817, 

explained variance 3.697 %). One statement with negative loading is given for illustration of this 

belief: Many aspects of mathematics have practical relevance.  

Discussion 

Regarding the first factor, the results indicate that the first maths lecture, “Introduction to 

mathematics”, cannot fully answer the students’ expectations. The originally strongly anticipated 

expectations of getting more mathematical autonomy had decreased. In the light of Shulman’s 

(1987) conceptualisation of content knowledge, the described changes are hardly conducive. 

References 

Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei 

Mathematiklehrern. [Attitudes of mathematics teachers towards mathematics.] Journal for 

Didactics of Mathematics, 19(1), 3−45.   

Rach, S., Heinze, A., & Ufer, S. (2014). Welche mathematischen Anforderungen erwarten 

Studierende im ersten Semester des Mathematikstudiums? [Which mathematical demands do 

students expect in the first semester of their study?] Journal for Didactics of Mathematics, 35(2), 

205−228. doi: https://doi-org.uaccess.univie.ac.at/10.1007/s13138-014-0064-7 

Schmidt, W. (2006). Mathematics teaching in the 21st century. Ann Arbor, MI: Inter-university 

Consortium for Political and Social Research [distributor]. Retrieved from 

https://doi.org/10.3886/ICPSR34430.v1  

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 

Educational Review, 57(1), 1−23. 

URL for the digital poster: www.lernzukunft.at/beliefs_expectations_math_cerme11.pdf  

Thematic Working Group 18

Proceedings of CERME11 3522

http://www.lernzukunft.at/beliefs_expectations_math_cerme11.pdf


 

 

Preservice teachers’ geometrical discourses when leading classroom 

discussions about defining and classifying quadrilaterals 

Gry Anette Tuset 

Western Norway University of Applied Sciences, Norway; gry.tuset@hvl.no 

In this paper I use Sfard’s commognitive framework to investigate four geometrical discourses, as 

they appeared when preservice teachers (PSTs) were leading classroom discussions about defining 

and classifying quadrilaterals in authentic lower secondary school classrooms. Their tryouts are 

part of a broader learning teaching project in a practice-based teacher education course in 

Norway. The focus is on mathematical problems PSTs address in learning-teaching situations, with 

students and geometrical discourses, in their efforts to promote hierarchical relations between 

quadrilaterals using pre-constructed dynamic figures in Geogebra. The analysis shows that PSTs 

create opportunities to talk about hierarchical relations. However, they struggle to move between 

static and dynamic ways of talking about geometrical objects when needed and it seems challenging 

to build appropriately on students’ prototypical and partitional contributions. 

Keywords: Commognitive framework, Defining and classifying quadrilaterals, Preservice teachers 

Introduction 

The most challenging work preservice teachers (PSTs) face in enacting current reforms is to 

orchestrate classroom discussions that use students’ responses in such ways that they advance the 

mathematical learning of the whole class (Lampert, Beasley, Ghousseini, Kazemi, & Franke, 2010). 

The PST is expected to execute skilled ways to support and challenge students when they are 

presenting their ideas, and build upon them by contrasting, comparing and connecting their ideas to 

accepted disciplinary ideas (Stein, Engle, Smith, & Hughes, 2008). For students, age 13-15, it could 

mean helping them move from using visual recognition or informal properties check when 

identifying and comparing geometrical shapes, to using definitions and state logical arguments to 

justify claims about these shapes (Sfard, 2008; Moss & Sinclair, 2012).  

Defining and classifying quadrilaterals contribute to the development of geometrical thinking and 

mathematical argumentation and proof (Fujita & Jones, 2007). Research reports, however, that 

PSTs and students find it difficult to understand and accept hierarchical relations of geometrical 

shapes (e.g., Fujita & Jones, 2007; Millsaps, 2013). A significant reason is their reliance on 

prototypical images. Hershkowitz (1990) describes prototype examples as the subset of examples 

that have all the necessary properties and, in addition, other specific (none-necessary) properties 

that have strong visual characteristics. Prototype images often lead to what de Villiers (1994) calls 

partitional definitions, which exclude, for instance, rectangles from being parallelograms. In 

mathematics, hierarchical definitions, which includes rectangles as parallelograms, are preferred 

because they are more economical and useful. Consequently, defining and classifying quadrilaterals 

are highly interrelated activities (de Villiers, 1994).  

Leading classrooms discussions is a complex and situated activity (Stein et al., 2008). One way of 

looking at this complexity is to see teaching as an activity of problem solving and problem posing 

(Lampert et al., 2010). These problems arise in establishing and maintaining relationships between 

the teacher, students and the mathematics because of the constraints and possibilities the 
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participants generate during instruction (Lampert et al., 2010). For instance, the way the teacher 

creates and exploits opportunities for mathematics learning can constrain or promote the kind of 

mathematics students can engage in (Sfard, 2017). Similarly, students and the mathematics can both 

constrain and open up what the teacher can do to teach. To solve these problems of practice, the 

teacher needs to deal with a wide range of issues across social, temporal, and intellectual domains. 

This paper focus on mathematical problems PSTs address in situations, with students and 

mathematics, in their efforts to promote hierarchical relations between quadrilaterals using shape 

makers (i.e. pre-constructed dynamic figures in Geogebra). For this purpose, I use Sfard’s (2008) 

commognitive approach to examine the geometrical discourses that developed in four whole-

classroom discussions led by PSTs in authentic classrooms. The framework enables me to make 

claims about PSTs’ geometrical discourses in terms of how they communicate when teaching 

(Sfard, 2017). In the following, I will first briefly outline key concepts from the commognitive 

framework related to characteristics of geometrical discourses. Then I will introduce the context of 

the study and illustrate identified mathematical problems with excerpts from the discussions.  

Theoretical background 

The movement towards a geometrical discourse that includes hierarchical definitions are, by Sfard 

(2008, p. 256) called meta-level development, because the rules that governs the participation 

change and words are used differently than colloquial discourses. Taking a participationist view, 

these changes must be mediated by an experienced participant in the desired discourse (Sfard, 2008, 

p. 254). I therefore argue, as Sfard (2017, p. 55), that being able to capture mathematical problems 

PSTs address in their attempts it is necessary to go into the finest details of the geometrical 

discourse offered. From a commognitive perspective (Sfard, 2008, p. 93), this means the use of 

words (e.g., parallelograms) and visual mediators (e.g., shape makers created for the sake of 

communication) to surface how geometrical objects are perceived and the construction and 

substantiation of geometrical narratives (stories about geometrical objects) to characterize the 

routines (e.g., how to identify shapes) employed in the classroom. 

Sfard (2008, p. 228) describes orders of geometrical discourses, where each subsequent discourse is 

a meta-discourse of the former and geometrical objects typically arise as a result of saming lower 

order objects. Drawing on Sfard’s work, Sinclair and Moss (2012, p. 31) present three orders of 

geometrical discourses relevant for school. In first and second discourse, identification routines rely 

on a continuous transformation of a figure into a prototype and some informal properties check of 

necessary and specific properties. The words are mainly used as proper names of concrete objects or 

as family names of exclusive classes of concrete objects. In the third geometrical discourse, 

transformability is no longer the official identification routine. Here, recognition needs to be 

followed by a discursively mediated procedure, such as, checking if the conditions described in a 

definition holds or not. The set of properties listed in a definition are seen as necessary and 

sufficient conditions for determining membership in a category. This means that the new routine 

opens up for the possibility to call a figure by several names (Sinclair & Moss, 2012).  

Studies (e.g., Millsaps, 2013; Sinclair & Moss, 2012) report that dynamic environments are helpful 

to move towards more sophisticated geometrical discourses. It is especially the actual witness of 

Thematic Working Group 18

Proceedings of CERME11 3524



 

 

continuous transformations of shapes when dragging a figure that is promising because students 

flex their prototypical range of shapes they are ready to call the same (Sinclair & Moss, 2012). 

However, according to Sinclair and Yurita (2008), the transitions between dynamic and static media 

are challenging, because the transitions influence the talk about geometrical objects. For instance, in 

dynamic geometry, identification routines become time-dependent and human-based operations that 

invite students to act on the figure. In addition, Millsaps (2013) found that PSTs struggle to move 

between the two discourses when they explore shape makers that embody hierarchical definitions.  

Methods 

The PSTs in this study are undertaking a one-year mathematics course as part of a four-year 

Norwegian teacher education program for lower secondary school teachers. They were provided 

opportunities to move back and forth between campus and practicum to collaboratively prepare for, 

enact and reflect on their teaching. In their preparation, the PSTs investigated seven shape makers. 

See Figure 1. Each maker generates a category of shapes with all necessary properties of specific 

quadrilaterals. The PST rehearsed discussions about these makers where they all acted, in turns, as 

teachers and students. Afterwards, four practicum groups planned a lesson using Stein et al.’s 

(2008) framework to prepare for classroom discussions in authentic classrooms. One PST taught the 

lesson. Others video recorded the activity. 

 

Figure 1: Four of the seven Shape Makers of specific quadrilaterals 

The videos and transcripts of the enactments and the rehearsals are data in this paper, as well as 

PSTs’ portfolios about the tryouts. The focus is the geometrical discourses that surfaced in four 

classroom discussions with students. In addition, the rehearsals and the portfolios provide a window 

to PSTs’ geometrical discourses before and after the enactments in the classroom.  

The transcriptions of the classroom discussions were first organized into mathematical episodes that 

encompass the whole discussion around a claim about the shape makers. 55 episodes were 

identified and categorized in three groups; 1)17 episodes about necessary and specific properties; 

2)18 episodes about the naming process; 3) 10 episodes addressed hierarchical relations. Since 

classification is closely related to definitions (de Villiers, 1994), I analyzed all episodes focusing on 

the use of words and routines related to orders of geometrical discourses (Sinclair & Moss, 2012). I 

looked especially for instances in the talk that seemed to constrain or promote the geometrical 

discourse in order to capture mathematical problems the PSTs address in these complex settings.  

Findings and analysis 

The analysis shows that the four PSTs, called by pseudonyms Andy, Fay, Joy and Lisa, manage to 

create opportunities to talk about hierarchical relations in their discussions. However, PSTs struggle 

to address the problems that arise in the learning-teaching situations.  
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The problem of moving between dynamic and static ways of talking about geometrical objects 

This problem arises in almost all of the hierarchical episodes, which resonates with what Sinclair 

and Yurita (2008) and Millsaps (2013) report in their studies. For instance, in Lisa’s, Joy’s and 

Fay’s first hierarchical episode they ask students if the diagonal angles are perpendicular in Figure 

B (the rectangle maker). The students answer “no.” In contrast to squares, perpendicular diagonals 

is a specific property in rectangles. The PSTs exploit the opportunity offered and similar problems 

arise. However, they address them differently as illustrated by excerpts from Joy’s and Lisa’s 

discussion.  

In Joy’s discussion, another student disagrees and says; “yes, you can make the diagonals 

perpendicular. If you make it into a square. Just take it in”[19]. The student uses the terms “make it”  

and “take it in” to describe the dynamic movement involved in dragging the rectangle maker until it 

looks like a square. Joy acknowledges the suggestion and demonstrates the transformation-based 

routine on the smartboard. 

Joy: Then it is not a rectangle anymore, it is a square. But a square is also the same as a  

rectangle. (3s) It can be a rectangle, but a rectangle cannot be a square. (2s). [20] 

Joy reinforces the dynamic, exclusive way of talking about a rectangle becoming another shape, a 

square, in the first sentence (Millsaps, 2013). Then she contradicts this statement using an inclusive 

way of talking. Finally, she concludes with a dynamic and incorrect way of talking about the 

asymmetric relation between a square and rectangle. In the rehearsals, Joy’s group addressed the 

same problem using the words “can be” and “cannot be” to express these asymmetric relations as 

well. In contrast, they used “can be” appropriately (“A rectangle can be a square, but a square 

cannot be a rectangle”). This shows that Joy struggles to articulate hierarchical relations when she 

moves between dynamic and static ways of talking about figures. Joy does not address these 

contradictory statements and she avoids hierarchical episodes in the rest of the discussion.  

Lisa was in the same rehearsal group as Joy. In her discussion with students, she manages to use the 

term “can be” appropriately when she explains why diagonals “can be” made perpendicular in 

Figure B. She states the following inclusive narrative: “This is because a rectangle also can be a 

square”[43]. However, Lisa does not address the opposite asymmetric relationship, as Joy did. Nor 

does she verify the claim by using the hierarchical definitions she introduced to the students in the 

beginning of the lesson. In the other hierarchical episodes, Lisa repeats the same narrative, 

replacing “rectangle” with “rhombus” and “parallelogram.” To conclude, the way the PSTs’ address 

the problem of moving between dynamic and static ways of talking about geometrical objects seems 

to constrain the kind of mathematics students can engage in during the discussions. 

The problem of building on students’ prototypical and partitional contributions 

In Fay’s and Andy’s discussions, another problem surfaced. Namely, the problem of building on 

students’ prototypical and partitional contributions. I use excerpts from Fay’s talk about 

parallelograms (Figure D) to illustrate how students’ contributions and the mathematical discourse 

seem to constrain and open up what PSTs can choose of possible solutions during the discussion.  
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Diagonals “can be” perpendicular: Fay’s first hierarchical episode surfaced in the discussion about 

perpendicular diagonals being a specific property in rectangles. Fay drags the rectangle maker to 

show that it is possible to make the diagonals perpendicular. When Fay asks if it can be named 

anything else than rectangles [50], a student suggests that it can “if we take it in”[51]. Fay 

reinforces the dynamic, exclusive way of talking about shapes when she uses the terms “become” 

and “could it” in her following questions; “what had it become then?”[52] and “could it be a 

square?”[54]. A student confirms and Fay concludes by saying “But, then the sides are of equal 

length, right?”[58].  

Diagonals “are not” of equal length: After the discussion about squares and rectangles, Fay asks a 

student about the diagonals in Figure D (the parallelogram maker). “Are they not of equal 

length?”[61], a student replies. Fay asks if “they look equal?”[62]. The student revises his answer 

(“no, no, just kidding”[63]). Fay replies “OK” and concludes with a prototypical claim that 

diagonals ”are not equal”[64]. Equal and perpendicular diagonals are specific properties to 

parallelograms and necessary properties to rectangles and rhombs, respectively. There are therefore 

many possible solutions and Fay has to make a decision which one to pursue. In this situation, Fay 

does not use dragging to explore these “can be” possibilities as she did in the discussion about 

rectangles “becoming” a square. She chooses to follow the path of “not equal diagonals.”  

Figure D is a parallelogram because it is “slanted:” Fay reinforces the idea that Figure D is 

different from Figure A and B because the lengths of the diagonals are not equal (“OK, but we have 

just had two shapes where they (diagonals) were equal, so this must be something else then?”[66]). 

A student suggests that it is a parallelogram [69]. Fay prompts for an explanation why.  

77  Student:  No, eh well. It is slanted. 

78  Fay:  It is slanted. (2s) What do you think? Do you think it has something to do 

with the angles maybe? (Points at figure D shown on the smartboard) 

79  Student:  Yes 

80  Fay:  Yes. In a parallelogram. Will this be 90 degrees? (Points at an angle) 

81 Student: Heh? 

82 Fay:  Will this be 90 degrees? (Points at another angle) 

83  Student:  No 

84  Fay:  No. Will this be? (Discovers that she can use her finger to drag the figure) 

85  Student:  You can pull it together. 

86  Fay:  Yes. If I do this? (She drags and figure D looks like a slanted rhombus.) 

87 Student:  No 

In this situation, the student contributes with a prototypical and partitional claim about 

parallelograms (Hershkowitz, 1990). Fay repeats the student’s narrative and draws attention 

towards the angles in the vertices [78]. The phrasing of the questions has changed from the dynamic 

“could this be” to a static “will this be” 90 degrees. However, the student’s suggestion in [85] 

provides Fay with an opportunity to search for counter examples where the angles “can be” 90 

degrees and therefore flex the student’s prototypical claim (Sinclair & Moss, 2012). She follows the 

student’s suggestion but drags the figure so that the diagonals become perpendicular, not the 
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vertices [86]. The potential opportunity provided by the student therefore becomes a confirming 

example, which is not sufficient to substantiate that the vertices “will not be” 90 degrees nor to 

convince the student that not all parallelograms are slanted. Fay does not address this problem in the 

discussion, but uses the dragging experience to verify that figure D cannot be a square, at least [93]. 

In parallelograms, the diagonals are not equal, the vertices are not 90 degrees, and the diagonals 

are not perpendicular: Fay drags the parallelogram maker back to a prototypical parallelogram. 

95  Fay:  Okay, we say that the diagonals are not of equal length, and the vertices are 

not 90 degrees. Are these 90 degrees? The angles inside here? (Points at the 

diagonal angles).  

96 Student: No 

97 Fay: Not 90 degrees? Yes, maybe this is a recipe for a parallelogram?(2s) Maybe. 

98 Student: Maybe 

99 Fay:  Yes, because this is the only one we have seen until now that have different 

lengths on the diagonals. (Points to the diagonals) 

During the discussion, Fay has shifted from talking about necessary properties used as conditions 

for determining membership in a category of specific quadrilaterals, such as squares and rectangles, 

to talking about conditions that exclude membership in a category of parallelograms. Fays 

advocates a “recipe”[97] where excluding conditions, such as “diagonals are not equal” and 

“vertices are not 90 degrees,” are sufficient conditions for naming a figure a parallelogram, because 

parallelograms “is the only one” they have seen that have different length of diagonals [99]. 

Furthermore, she claims that diagonal angles are not 90 degrees in parallelograms, despite the fact 

that she recently presented a counter example (the slanted rhombus). Thus, the dynamic perspective 

is absent when Fay talks about the properties of parallelograms, which I believe happened when she 

decided to follow the path of “not equal diagonals”[64] instead of the dynamic “can be” talk she 

promoted earlier. The other critical learning-teaching situation was when Fay decided to build on 

the prototypical claim about parallelograms being slanted [77]. I have tried to show how these 

decisions changed the inclusive talk that started in the first hierarchical episode where rectangles 

could become squares, and ended as a static and exclusive talk where rectangles and squares are 

excluded as parallelograms. These problems, I believe, affected the conflicting geometrical 

discourses that surfaced in the final hierarchical episode in Fay’s discussion.  

Parallelograms cannot be a rectangle, but a rectangle is a parallelogram: In her final hierarchical 

episode, Fay recalls a peer PST’s teaching some weeks ago to sum up and end the discussion.  

109 Fay:  He talked about a rectangle that could be a parallelogram and the opposite. 

(.) Or, can parallelograms be a rectangle? (7s) Can it? (2s) Can this be a 

rectangle? (3s) (Points at the parallelogram maker) If I say to make this a 

rectangle, it must be 90 degrees at the angles here. (Points at the vertices) 

Can it? 

110 Students: No 

111 Fay: No, but can this (Points at the rectangle maker) be a parallelogram?  

112 Student: Yes 

113 Fay: Yes. Why? 
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114 Students: Because the opposite sides are parallel. 

115 Fay: Yes, they are parallel and they are parallel. Right, this and this. (Points to 

the pair sides in the rectangle) They just go upwards and will never 

intersect each other. Yes. (2s) Figure B, it is in fact a parallelogram as well, 

but it can also be a rectangle. 

In this episode, Fay asks students to compare rectangles and parallelograms. First, she asks if 

parallelograms can be a rectangle [109]. She waits for 7 seconds and there is no response. Fay 

simplifies the question by drawing attention to the vertices in the slanted parallelogram in Figure D 

and recalling that in rectangles they must be 90 degrees [109]. Several students reply no, which is 

correct according to visual recognition and the offered partitional definition that excludes rectangles 

from being parallelograms. Then Fay prompts for the opposite relation between rectangles and 

parallelograms asking if a rectangle “can be” a parallelogram [111]. The student claims yes, and she 

uses the lengths of the opposite sides as a necessary and sufficient property to determine 

membership in parallelograms [114]. The student uses the definition of parallelograms that most 

students in lower secondary school know. Fay acknowledges the contribution and she demonstrates 

what sides are parallel [115]. Fay ends up with two conflicting narratives, which are both endorsed 

using “accepted” definitions of parallelograms by the class community. The first uses the vertices 

not being 90 degrees to exclude rectangles from being parallelograms [109]. The second uses the 

opposite parallel sides to include rectangles as parallelograms [115]. Both suggestions are based on 

student’s contributions and Fay’s attempt to build on them. Fay does not identify the problem, 

which resonates with Millsaps’ (2013, p. 38) study that reports on PSTs being capable of holding 

two conflicting claims about hierarchical relations when they are moving between dynamic and 

static geometry. 

Concluding remarks 

Several studies have used interviews or questionnaires to examine PSTs’ hierarchical reasoning and 

they report that PSTs struggle even though they have taken geometry courses as part of their teacher 

education program (e.g., Fujiti & Jones, 2007; Millsaps, 2013). It is therefore no surprise that PSTs 

in this study meet similar challenges when they are trying to lead classroom discussions about 

defining and classifying quadrilaterals in authentic classrooms with students. However, what 

challenges and how they tackle them in this setting has not been sufficiently investigated.  

The analysis show that the PSTs are in their early process of individualizing hierarchical relations 

between quadrilaterals. They manage to create opportunities for students to engage in hierarchical 

relations. However, none of the PSTs use hierarchical definitions in their reasoning about the 

shapes. This resonates with Fujita and Jones (2007) reporting that PSTs prefer to rely on specific 

examples when identifying shapes, even though they know definitions. When PSTs need to step in 

and out of dynamic and static discourses, they struggle to connect and articulate hierarchical 

relations as illustrated in Lisa’s and Joy’s discussions. Millsaps (2013, p. 38) reports on similar 

challenges where experiences with shape makers actually can reinforce some aspects of existing 

partitional definitions. She therefore highlights discussions about the use of classification narratives 

to support the transformation from partitional to hierarchical definitions (Millsaps, 2013, p. 40). 

Trying to interpret and build on incomplete contributions from students is challenging for PSTs 
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(Lampert et al., 2010). I believe Fay’s discussion illustrates how difficult it is for PSTs to balance 

between honoring students’ participation and promoting mathematical discourse in classrooms. 

Especially when the discussion requires a sensitivity to step in and out of geometrical discourses when 

needed and provide opportunities for students to engage meta-level development (Sfard, 2008).   
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Uruguay is a country with an extensive government policy providing all teachers and students laptops 

and connectivity. In order to carry out new professional development programmes for teachers of 

mathematics to use digital technologies in classrooms, we developed a qualitative study, collected 

data, and analysed teachers’ concerns and needs for classroom-based technology use, identifying a 

set of guidelines to assist teachers. The programme was designed to offer teachers key experiences 

that can help them to achieve their didactical goals. As traditional courses and assessment did not 

address the detected needs, game components were incorporated into the teacher training 

programme. Gamification contributed to the solution of several problems such as formal assessment, 

certification, passing grades, adaptive content and self-evaluation. This paper reports and links two 

studies about identifying teachers’ needs and the impact of a gamified professional development 

programme developed in Uruguay. 

Keywords: Teacher education, professional development, gamification, technology uses in education. 

Introduction 

Uruguayan schools were transformed in the past decade, because of the utilisation of digital 

technologies for educational purposes. Plan Ceibal, a government policy that has provided a laptop 

to each student and teacher in public schools for more than a decade now, as well as connectivity all 

over the country, significantly changed classrooms in Uruguay (Plan Ceibal, 2017). 

The new presence of digital technologies was challenging for teachers, who had to face these changes 

on their own, or supported by special, but often ineffective, professional development programmes. 

Such transition for teachers was not easy, especially because of some characteristics of Uruguayan 

teachers of mathematics: most of them have multiple jobs (60% teach in at least two schools), there 

is an important deficiency in their training (only 1 out of 3 of those who are teaching mathematics at 

middle schools finished their basic teacher’s training) and they do not have enough time for attending 

professional development activities (paid hours are only for teaching) (INEEd, 2017; González, 

González, & Macari, 2013). 

Consequently, professional development was required by teachers and strongly encouraged by 

authorities and supervisors. Nevertheless, as Assude, Buteau, and Forgasz (2010) state and our 

research confirmed, these activities did not significantly impact teachers’ everyday lessons. The 

problems of identifying professional development programmes’ long-term impact and promoting 

their sustainability have been analysed in several contexts (Loucks-Horsley, Stiles, & Hewson, 1996; 

Zehetmeier & Krainer, 2011; Zehetmeier, 2017).  

Teachers and their supervisors agree about the minimal impact of existent professional development 

programmes on technology transition. Thus, we carried out a first qualitative study to identify the key 
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aspects that should be addressed in these programmes to assist mathematics teachers to utilise 

didactical advantages of digital technologies on a regular basis. 

This paper summarizes results of the first phase of this study and reports on subsequent research: 

after designing and implementing a professional development programme according to the key 

aspects we found, we analysed its impact based on teachers’ perceptions. The unexpected appearance 

of gamification elements when designing the programme resulted in an interesting and challenging 

contribution. 

How to assist teachers of mathematics to improve their technology-based lessons? 

The first part of this study suggested two key aspects of professional development, as follows. 

Research design and methods 

The major research question of this phase was: What key aspects should be addressed in a 

professional development programme for mathematics teachers in Uruguay to assist them to utilise 

didactical advantages of digital technologies on a regular basis? 

Experts who were interviewed suggested that this question had been discussed by national supervisors 

and trainers, but they provided unclear answers. We wanted to investigate teachers’ concerns and 

difficulties, but letting other relevant key elements emerge as well. Thus, we decided to design a 

qualitative study based on a Grounded Theory approach (Glaser, & Strauss, 2009). Experts, teachers 

and their supervisors participated in (13) semi-structured interviews. Participants were asked about 

their and trainees’ concerns; the obstacles teachers encounter while trying to use technologies in their 

classrooms; and also about their personal experiences of learning/teaching with technologies.  

Data were processed using TAMS Analyzer (Weinstein, 2015), identifying emerging concepts 

through coding and recoding the interview transcriptions. This process let us also detect topics 

participants addressed spontaneously, which were not directly asked by the researchers. We can 

assume that if certain subjects show up regularly, even with no explicit questions, they might be 

closely related with our study aims (Cohen, Manion, & Morrison, 2015). 

In order to offer more comprehensive answers to the research question, scientific literature was 

reviewed and integrated (e.g., Assude, Buteau, & Forgasz, 2010; Fullan, 2016; Loucks-Horsley, 

Stiles, & Hewson, 1996; Zehetmeier & Krainer, 2011). 

Findings, first set: Obstacles and concerns 

Interviewees were asked about the obstacles teachers encounter while they try to use digital 

technologies in their teaching. We detected four main obstacles: (a) a lack of resources: teachers say 

that devices do not work as expected, there are technical issues, connectivity fails, and it is not true 

that every student has a functioning computer because they are often broken; (b) a lack of time: 

teachers point out that it is very difficult to plan different lessons, as they do not have enough time to 

do so; (c) a lack of feedback: teachers say that they need to be encouraged by principals and 

supervisors to change their ways of teaching, otherwise they feel that they might not be working as 

they should; and (d) a lack of confidence: teachers are taken out of their comfort zones, so they might 

need assistance and encouragement to believe in their own teaching skills in technology-assisted 

environments. 
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We also investigated teachers’ interests and concerns regarding training topics. The data showed that 

teachers’ concerns evolve gradually. Inexperienced and untrained teachers usually belong to the first 

step, and experienced trainers are placed in the top one (Figure 1). Each teacher recognizes other 

steps; nevertheless, they point out that the most concerning one is their own. Those who are at the top 

of the stairs declare that they have been in the previous stages before, but thanks to experience and 

training their concerns evolved. Steps are represented in Figure 1 and explained below. 

Figure 1: Teachers’ concerns 

 

Usage: teachers think that they need to be skillful at using software to be able to use it in their 

classrooms. 

Potential: teachers understand that knowing what is possible to do with computers is more important 

than knowing how to do it. 

Pedagogy: teachers are concerned with how technologies could help students to understand 

mathematical concepts. 

Adoption: using technologies in classrooms on a regular basis is even more important, because 

otherwise learning is not as meaningful as it could be. 

Benefit: teachers are focused on students and their learning outcomes, and they think that if everything 

else does not help you achieving the main goal then that is not important. 

Teachers usually recognize the steps that they already went through, but they do not clearly visualize 

themselves in the higher stages. According to supervisors and experts, teachers should be assisted to 

be raised to higher steps as quickly as possible, because that means important improvement in their 

skills. 

These findings are also consistent with previous research in the same topic (Biehler & Nieszporek, 

2017; Liu & Huang, 2005; Loucks & Hall, 1979). 

Findings, second set: Collaboration and leadership 

One of the unexpected results of this phase was the importance of collaboration among teachers. Even 

when teachers were not asked about it, they expressed that being part of a team and being able to 

discuss pedagogies was a condition to improve their skills and learn how to use technologies in their 

lessons. Every interview suggests that it is not possible to evolve without teamwork. 

Schools’ leadership style also arose unexpectedly as a key aspect. Flexible rules, less bureaucracy 

and principals’ good will are necessary conditions for teachers to improve their technology-assisted 

teaching skills. 
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Findings, third set: Innovation and motivation 

In addition to the findings from the gathered data, we should also pay attention to the scientific 

literature on pedagogical innovations. Teachers adopting technologies on a regular basis arose as an 

important educational change in several aspects (Berman, 1981; Fullan, 2016). In order to assist 

teachers in this process, the complexity of every innovation should be carefully monitored. 

Using multiple resources to keep and raise teachers’ motivation at a high level is also essential, 

because the Uruguayan educational system does not offer them significant rewards for attending 

professional development programmes. 

Preliminary conclusion: A set of guidelines, a set of experiences 

We can summarise the previous findings in the following set of guidelines, which describe the key 

aspects of a professional development programme that should facilitate teachers’ development with 

technology: 

(1) Assist teachers to face the typical obstacles by teaching them particular solution strategies; (2) 

offer them various topics during courses according to each step of concerns (Figure 1) and try to 

guide them to be raised to the subsequent step, this should be done individually considering teachers’ 

specific needs; (3) encourage them to collaborate, we discovered that it is a crucial aspect for their 

development; (4) guarantee schools’ support to teachers (principal and supervisors should agree with 

the courses, computers must be available, etc.); (5) remember that the patterns of every innovation 

apply; and (6) keep motivation level as high as possible through various strategies (discussed in 

previous papers in detail). 

It is important to point out that, according to interviewees, teachers’ learning is associated with certain 

vital experiences in their teaching careers, but maybe not to traditional courses. If a traditional course 

makes a change in participants, it means the course promotes these key experiences (i.e., it includes 

collaborative planning, observing lessons, being observed, discussing pedagogies and results, etc.). 

As Loucks-Horsley, Stiles, & Hewson (1996) state, it is necessary to provide teachers with 

opportunities to develop knowledge and skills, but it seems that courses with a traditional format are 

not sufficient. 

A pilot programme from a new perspective 

The first part of this study highlighted that professional development activities for Uruguayan 

mathematics teachers do not fully satisfy their needs; thus, they are not completely sufficient for their 

development. Experts, teachers and their supervisors expressed that courses are interesting and you 

can learn because of them, but they only slightly affect their pedagogies. 

Through the comparison of courses and guidelines, we can detect that numerous training conditions 

were satisfied, such as supporting innovations’ characteristics and helping teachers to tackle common 

obstacles. Missing points are detected: course syllabi are rigid and therefore they do not care about 

individual concerns, and the formal structure of a course does not guarantee the crucial experiences 

like collaboration, team planning, lesson observation and discussions, etc. Even when collaboration 

was encouraged in best-rated courses, assessment was based on traditional methods, such as tests, 

examinations, writing or presenting. As Zehetmeier & Krainer (2011) recommend, “Considering and 

facilitating these fostering factors (and at the same time avoiding the hindering factors) when 
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designing and implementing professional development projects is one important step on the journey 

to sustainable in-service teacher professional development”. 

One of the main challenges for professional development programmes seems to be reassuring 

teachers that they will experience what is needed for them to learn, and also taking those experiences 

as valuable components of the certification process. We designed a pilot professional development 

programme, which implemented every guideline and we tried it in different courses. We outline here 

the main characteristics of that programme. 

In order to increase teachers’ motivation and help them to overcome the common obstacles, 

agreements with schools and training institutes were signed. Schools would guarantee adequate 

conditions for teachers (fully working devices, availability of computer laboratory, flexibility with 

teacher to observe colleagues’ lessons) and the training institute would issue certificates. 

The basic structure was a traditional online course (because teachers do not have time for face-to-

face workshops), four months long. 16 participants began the course and 4 of them finished, which 

is a more than acceptable ratio for an online free course. Through detecting teachers’ interests (by 

questionnaires and analysis of forum posts), the moderator assigned special materials and tasks to 

each participant, addressing personal concerns and expectations. 

Assessment was designed to oblige teachers to go through the key experiences, so it was mandatory 

to work together, observing lessons, welcoming someone else into his/her classroom, giving 

feedback, etc. A multi-dimensional credits system was designed to establish the passing point, thus 

key experiences were not avoidable. From the very beginning, teachers knew how many credits of 

each kind they needed to be able to pass the course. Nevertheless, there was also a minimum total 

amount of credits they had to collect; getting the minimum of each type would not be enough, they 

had to go deeper and obtain more credits in any aspect they preferred. 

This assessment and certification system led us to a complex set of rubrics; it was accurate and let us 

achieve our goals, but it could be confusing for teachers, hindering motivation and transparency. This 

led to the emergence of gamification components in the study.  

We represented the credits with colourful stars (one colour for each dimension), so the goal was to 

collect as many stars as possible. We designed a personal dashboard (Figure 2) for each participant, 

in which you could see how many stars you have, which colours are missing and how to obtain them.  

In this case, game elements are not changing the essence of the design, but they only make it nicer. 

As Stott & Neustaedter (2013) explain, most of what gamification, in the sense of Deterding et al. 

(2011), implies is already recognized and utilized in school, although under different designations. 

 

 

 

 

 

 

Thematic Working Group 18

Proceedings of CERME11 3535



 

 

Figure 2: Personal dashboard and definition of credits 

Research design and methods 

The second part of this study intends to answer the following questions: To what extent can this 

course design address teachers’ needs and expectations? What is the contribution of game elements 

in this professional development programme? 

A case study was designed to understand participants’ evolution during the course (Yin, 2003; Cohen, 

Manion, & Morrison, 2015). 

An online platform (learning management system) was used, and forum posts and interactions were 

analysed. Questionnaires (to identify main participants’ concerns regularly and detect evolution), 

several interviews and lesson observation were carried out before, after and during the course. All 

data was transcribed and processed with qualitative data analysis software (Weinstein; 2015). Most 

of these data were used during the course to adapt contents to participants’ concerns. 

Preliminary findings 

The analysis showed that teachers were pleased with the flexibility of the programme; they enjoyed 

that content was adapted to their concerns and they actually tried out in their classrooms what they 

learnt. All teachers expressed that this experience changed the way they think about teaching; 

suggesting that an important modification in their perceptions happened, that can be associated to a 

progress in the concerns model. They found the opportunity in this programme to develop their skills 

and knowledge (Loucks & Hall, 1979). They also expressed that assessment was a bit overwhelming 

at the beginning, but afterwards the funny stars and the dashboard made it easier, motivating them 

and eventually they were not worried about certification. Game elements helped them in terms of 

self-assessment and motivation. 
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Discussion 

We began thinking about the contribution of gamification in teacher training as a necessity to motivate 

teachers and change the environment of the teacher-training course. Understanding gamification as 

the utilisation of game components in non-game contexts (Deterding et al., 2011), using game 

elements like collection of stars and personal dashboards helped us to deal with the complexity of the 

course’s design. We cannot assume that the presence of gamification elements is the reason for the 

course to be successful (Dicheva et al., 2015), we need further measurement of changes (Stott, & 

Neustaedter, 2013). There are also drawbacks in the integration of gamification in education (Hanus 

& Fox, 2015), but based on our experiences and this study there are good prospects for further 

developments. 

This study confirmed that it is possible to design a professional development programme for teachers, 

which has serious assessment and certification, but is based in key personal experiences, adapted to 

different concerns and expectations (Loucks & Hall, 1979). Traditional methodologies should be 

modified to achieve this goal, but it can be done as demonstrated above. 

Gamification arose as an unexpected ally, simplifying assessment, enhancing motivation and offering 

new opportunities for adaptive content. Thus, we believe that teacher training courses with 

gamification elements should be designed and further researched.  
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Action research as a potent methodology for improving teaching and 

learning in mathematics  

Eda Vula 

University of Prishtina, Faculty of Education, Kosovo; eda.vula@uni-pr.edu 

 

This paper represents an effort of the author to better understand teachers’ perceptions of their 

experiences during their engagement in the action research process. In completing their action 

research projects, teachers not only learned how to conduct research themselves but, also, they 

shared some of their experiences. The course structure has had the effect of encouraging teachers to 

try new methods in their teaching, to use new resources and to improve the communication outside 

class in order to improve their teaching and their students’ performance in mathematics. Further, it 

was discussed about the possibility of involving teachers, both, pre-service and in-service, in the 

action research studies and the possibility of support for them from the university and the government 

as an initiative for the successful implementation of education reforms. 

Keywords: Action research, teachers, perceptions, improvement, teaching. 

Introduction 

During the last two decades, the system of education in Kosovo underwent several reforms in order 

to respond to social, cultural and political developments in the country and broader societal 

aspirations for integration in European and global processes. Along with ongoing reforms, special 

attention was paid to the development of education programs for quality teacher training in line with 

common European principles for teacher competencies and qualifications. Unfortunately, the results 

from the Programme for International Student Assessment (PISA), conducted in 2015 and in which 

Kosovo participated for the first time, were quite discouraging. (OECD, 2016). Until recently, the 

teachers’ qualification programs for subject teaching, as well for mathematics were mainly based on 

subject knowledge, being developed in the academic unit of the University of Pristina. Because the 

relationship between “academic” and “professional” courses was mostly “bloodless” and teacher 

training in Kosovo was mainly academic and heavily subject-based (Vula, Saqipi, Karaj, & Mita, 

2012, p. 38), the Ministry of Education and Technology in Kosovo made the decision in 2012 to 

reform the study programs for subject teachers’ qualification according to the consecutive model. 

Thus, all teachers should complete 3 years of academic studies for the respective subject in the 

relevant academic programs at Bachelor level and 2 years at Masters level at the Faculty of Education, 

where they have specific training in subject pedagogy and practice teaching. These programs have 

started to be implemented for the first time in the 2016/2017 academic year. Students enrolled in 

these programs are those who have no experience in teaching (prospective teachers), but also those 

who are already mathematics teachers in grades 6-12 and want to advance their qualification at 

Masters level. Last academic year, the action research course was offered as an elective course, and 

all of the enrolled students were already teachers. As a course instructor (author), my objective was 

not only to review the action research projects conducted by teachers but also to better understand the 

teachers’ perceptions in terms of their benefits, experiences as a researcher and their students’ benefits 

during the action research process.   
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Literature review 

Action research is a method used for improving educational practice (Koshy, 2010). Considered as a 

powerful tool for change and improvement at the local level (Cohen, Manion, & Morrison, 2007), it 

is any systematic intentional inquiry conducted by teacher-researchers to improve their practice and 

students’ outcomes (Mills, 2013; Cohran-Smith & Lytle, 1993). It is a study process of a real situation 

in a classroom which assists in teacher education through linking theory and practice (Stenhouse, 

1975). According to Elliott (1991), the theoretical understanding of education, knowledge, learning, 

and teaching are derived from curriculum practices and teachers. Thus, two of the most essential 

purposes for doing action research are the improvement of the quality of activities or teaching practice 

and the development and testing of the practical theories that guide one’s own practice (Feldman, 

Altrichter, Posch & Somekh, 2018). According to Koshy (2010), action research is “a constructive 

inquiry in which the researcher constructs his/her knowledge on specific issues through planning, 

action, evaluation, refining and learning from experience” (p. 9). It is one of the most essential 

motives for teachers to improve the quality of their actions and a potent methodology for educational 

reform (Somekh & Zeichner, 2009). Action research is intended to support teachers with the 

challenges and problems of practice and carrying through innovations. Somekh and Zeichner (2009) 

focused on the remodelling of action research theories and practices in response to local cultures. 

They presented five variations of action research: in times of political upheaval and transition; as a 

state-sponsored means of reforming schooling; co-option of action research by Western governments 

and school systems to control teachers; as a university-led reform movement; and as locally-

sponsored systemic reform sustained over time. According to Somekh and Zeichner’s analyses, a 

common feature in these variations of action research is the importance each demonstrates of working 

towards a resolution of the impetus for action with the reflective process of inquiry and knowledge 

generation, to generate new practices (2009). Improving teaching practice and generating new ones 

is very important for teachers’ everyday work, but action research has impact also on increasing 

teachers’ self-confidence for their role as researchers and fostering collaboration amongst peers in 

their school environment (Vula & Saqipi, 2015). Action research should be part of both preservice 

and in-service teachers’ professional development programs. Examining the curriculum of action 

research for teachers’ education requires a critical appraisal of the ways in which preservice teachers 

think critically and creatively about their practical experience to know and understand research and 

teaching, as well as how they craft their own pedagogies (Capobianco & Ní Ríordáin, 2015). On the 

other hand, action research curriculums used by in-service teachers are focused on the teachers’ own 

situations, training to validate their own teaching practice. Krainer & Zehetmeier (2013) present an 

example of a national initiative for fostering mathematics and science education. They have 

introduced the “lessons learned” from a project that promoted teachers’ investigation into their own 

work. In that project, teachers were key stakeholders in innovation and research. The authors provide 

exemplary research results for the teachers’ critical stance towards innovation and inquiry as an 

important basis for disseminating inquiry-based learning.  The individual and the social dimensions, 

as well as actions and reflections, should be part of the professional development programs 

(Zehetmeier, Andreitz, Erlacher, & Rauch, 2015). In addition to the individual engagement of the 

teacher researchers, it has been shown that teachers are successful and can achieve tremendous results 

when they co-operate with their colleagues and are supported by the university teachers (Altrichter, 

Posch & Somekh, 1993). Other researchers have shown that teachers’ perceptions on action research 
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are related with an opportunity for them to deepen their knowledge of the content they provide, to 

strengthen the pedagogical aspect of the classroom, increase sensitivity to the affective concerns of 

students and place themselves as creators of knowledge and researchers (Sardo-Brown, 1995; 

Goodnouugh, 2011; Vula & Saqipi, 2015). Bonner (2006), in her study of professional development 

of two teachers, has shown that throughout action research projects, both teachers acquired “richer 

knowledge” of how to teach mathematics, and “new ways of thinking” about learning about their 

students, and about themselves (p. 40). 

This study aimed to reveal the perceptions of mathematics teachers on the impact of the action 

research projects on their teaching and students’ learning, as well as the benefits of the process itself.  

Method  

Eleven teachers attended the action research course offered in the spring semester of the 2017/18 

academic year. The course was offered to the master degree program for mathematics teaching at the 

Faculty of Education, University of Prishtina. The course participants (teachers) attended 15 weeks 

of action research course instructions, applications, and action research methodology. During the 

course, the teachers were expected to think about a problem or issue they encounter in their 

classrooms. As part of the course assignment, each teacher was asked to conduct his/her own action 

research project based on his/her individual classroom students’ needs. First, the teachers worked on 

their research problem, purpose, methodology and literature review. Then, during class discussions, 

the instructor and the teachers were “critical friends” in regards to the teacher project ideas, the 

development and implementation of the systematic plan, serving as a validation group for action 

research projects. They established trusting relationships, which became the grounds for giving and 

receiving feedback on the validity of the evidence (McNiff & Whitehead, 2009). Later, the teachers 

conducted their research in their classrooms, where they collected the data, analyzed and further 

discussed their findings as a final report paper, part of their assignments.  

After completing the course, a questionnaire with three open-ended questions was sent to them via 

email. The questions were related to teachers and students benefits on conducting the action research 

project, as well as their experiences as a researcher-practitioner. In this paper, only four teachers who 

responded fully to the open-ended questions have been reviewed and discussed. The participants are 

mathematics teachers with diverse teaching experiences:  Egzon has three years of teaching 

experience in a non-public middle school; Isuf has ten years of teaching experience in a rural middle 

school; Qendresa and Besmir have five years of teaching experience in a secondary school.  

As a lecturer for the action research course, I played the role of a facilitator helping the teachers carry 

out their own action research. The teachers’ action research reports, my notes during class lectures, 

discussions, and the written responses to the open-ended questions used to conduct the research are 

presented in this paper. A qualitative content analysis research methodology (Cohen, Manion and 

Morrison, 2007) was used to identify major themes related to the three questions on the impact of the 

action research process: What are you and your students’ benefits of doing an action research study? 

What are some of your key experiences as a researcher? What advice would you give to colleagues 

about action research study? 
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Findings 

All teachers inquired into different aspects of their teaching by defining research questions of 

relevance to their everyday situations, by collecting data, interpreting, drawing conclusions and 

writing down their findings in the research reports. The summaries of the action research projects, 

which are described below, are taken from the four teachers’ reports.  

The descriptions of teachers’ action research reports   

In his action research project, Egzon explains the reason why he was concerned with students’ poor 

engagement in doing their homework in mathematics. As a mathematics teacher in a middle school, 

he had reviewed numerous sources about the importance and effect of performing homework, but he 

was more concerned about managing this process. In other words, he wanted to see if using the online 

platform would efficiently link the relationship between performing homework and observing or 

controlling their performance by students. Thus, in order to conduct his project on the online platform 

he involved the parents, strengthening the communication between parents, students and himself. 

Since the school where Egzon works is non-public and learning is conducted in English, he has been 

able to use the internet and other resources needed for the project. The engagement of Egzon in an 

action research project influenced not only an increase in the level of performance of the homework 

and the improvement of communication between parent, student and teacher but also the 

enhancement of quality in understanding the mathematics concepts and time management efficiency 

in carrying out the homework.  

Isufi is another middle school mathematics teacher who works in a rural school. His concern was 

related to students’ difficulties understanding fractions. Even though fractions are taught in primary 

education, according to the curriculum, in the sixth-grade students expand their understanding of 

fractions and continue learning fraction operations. As a mathematics teacher, Isufi was concerned 

with his student’s preconceptions of fractions. Most students were confused about the concept of 

fractions, so he decided to explore more on teaching methods that could facilitate students’ learning. 

He decided to use not only physical manipulatives but also virtual manipulatives. Similar to many 

schools in Kosovo, the school where Isufi works deals with a lack of labs and not all teachers know 

English. However, he planned to use ten computers that the school had so that each student would 

have the opportunity to use them. Isuf expressed that using new methods in the class was a challenge 

for him, especially when resources are not in the native language. But it is worth trying when such an 

action raises the students’ interest and improves their learning. 

Isufi had hypothesised that teaching his students how to use manipulatives, both physical and virtual, 

would improve their understanding of the fractions concept. Thus, after he collected data from several 

action research projects, he found that nearly all of his students improved their knowledge of 

fractions. 

How to motivate and encourage students to learn mathematics? was one of the questions that 

Qëndresa, a mathematics teacher in the secondary school, often asks herself. She was concerned that 

her students spent most of their time using smart phones on social networks, so she thought of 

exploring if their phones could be of use to learn mathematics. Thus, she decided to engage students 

with IXL’s interactive mathematics platform and to systematically evaluate if the students can 

improve their results in solving quadratic inequalities. She engaged her 32 students to use the 
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interactive platform for the period of a month. The students were enthusiastic and curious to use the 

platform, she observed. Although it was challenging, Qëndresa noted a change in students’ behaviors. 

After completing her research, Qëndresa concluded that:  

Practising online tasks specifically of the IXL Math platform, makes all students active, more 

responsible problem solvers and more focused on tasks to cover the gaps and understand 

concepts by having fun and testing themselves.  

Another action research study has been done by Besmir in secondary school. Unlike the previous 

action research studies, he put his effort into attempts to arrive at conceptual understandings of 

probability, which be considered problematic when students are asked to connect with everyday 

problems. Previously, Besmir reviewed the different studies in the field of probability teaching and 

was inspired by the findings of Zhonghe Wu’s study Using the MSA model to assess Chinese sixth 

graders’ mathematics proficiency. He adapted the MSA Model for his teaching of probability. His 

action research was based on quantitative data. He used a quasi-experimental design in order to assess 

the impact of the MSA model. For the intervention, he has developed learning plans based on the 

MSA model. This model shows the conceptual understanding, presenting a strategy that demonstrates 

the procedural steps for problem-solving and application or creating a similar word problem in a 

realistic situation. For implementing his study, he has separated all students into two groups, 

experimental and control group. In the experimental group, the teaching was based on the MSA 

model, whereas in the control group it was with traditional methods. A t-test analysis of scores from 

pre- and post-tests indicated that the experimental group performed significantly better than the 

control group.  

The teacher’s perceptions on the action research process 

All of the teachers have shown that the benefits of an action research study were numerous. Some 

benefits mentioned by the teachers were related to the innovations in their teaching and their 

commitment to using various resources to improve the performance of their students. Below, are 

some of the thoughts shared by the participants: 

The action research conducted in my classroom was a new experience for me, it was quite 

challenging. First, I had to analyze many research studies that have treated the same problem. 

I had to examine not only the theory that we have learned in other courses but also the different 

practices of teachers which helped me to improve the pedagogical aspect of my teaching and 

also to strengthen the academic components. (Besmir) 

Teachers had observed that the carrying out of their action research projects in their classes increased 

the engagement of the students as well. The use of class activities that were not used earlier in the 

classrooms was one of the factors that stimulated students to be more active in mathematics class. 

Self-confidence, passion for math, dealing with success and failure, accepting similarities and 

differences in problem-solving methods, giving and receiving help in group work were some 

of their characteristics that I didn’t notice before. (Qëndresa) 

My experience with action research had two effects. First, it has changed my habits and the 

second, I have changed my expectations for my students. I see action research as a stimulus 
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not only for changing my teaching but also as a stimulus for students’ engagement in the 

learning process. (Egzon) 

Action research is a methodology that also helps us as teachers to turn the attention to 

ourselves, to understand our teaching methods, to find out what would be the best way to 

present different mathematical concepts to students, to measure our knowledge and 

supplement them if needed. (Besmir) 

As a result of doing action research, teachers also shared some key experiences. The problems that 

arise in classrooms are often overlooked. For them, action research has increased their responsibility 

to deal more in detail with students’ needs. Through action research, the teachers gained a lot of 

information during their literature reviews. The literature review has helped them find models and 

examples, which were later used in their teaching, practicing the new pedagogical methods. However, 

because there is limited research in mathematics education in the Albanian language, for some of 

them using the resources in English was a bit challenging. Thus, an important impact of the action 

research studies was not only to supplement gaps in the teachers’ pedagogical knowledge and subject 

knowledge but, also to practice and improve their English.  

Action research can be considered as a tool to make changes in our classrooms. Each step we 

make towards a change by adapting to today’s time and student preferences can be successful. 

Therefore, I recommend all math teachers to consider action research as the method that gives 

them the answer every time they have a dilemma to reach out to their goals. (Isuf) 

In addition to the benefits, the teachers have also presented some of the difficulties during the action 

research process. Difficulties in access to relevant documents, the understanding of the English 

language during the literature review, the data analysis and the limited time to complete the research 

by the end of the semester.  

As I found it harder during the research process, I had a look at the literature. Lack of access 

to academic sites, or the cost of access to documents or relevant literature has been the most 

difficult part of the research. (Egzon) 

However, due to the many benefits, they proposed that action research studies be a compulsory course 

for all preservice teachers, as well as a professional development program for all in-service teachers.  

Discussion and conclusion  

This paper aimed to explore how teachers formulate their own research problems and conduct their 

action research projects. Also, this paper examined the teacher’s perceptions of their experience when 

they carry out action research as novice researchers. From the action research reports and the teacher’s 

perceptions, it has been shown that there were different topics to which teachers oriented their 

research, but all of them were concerned about the effectiveness of their ‘new teaching activities’ and 

their impact on students’ outcomes. The teachers’ reports on the impact of their action research show 

that these are consistent with other studies on how action research contributes positively to their 

development and professional autonomy by improving their teaching and increasing the students 

learning (Cohran-Smith & Lytle, 1993; Krainer & Zehetmeier, 2013). 

The cases presented by teachers in this paper confirmed the finding from Capobianco and Ní Ríordáin 

(2015) that although their efficacy as mathematics teachers is sometimes difficult, through action 
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research, difficulties can be recognized, accepted, and addressed in a positive and productive manner. 

The case of Egzon indicates that action research helped him to look for new ways of collaboration 

with parents and students in order to improve students’ engagement in doing homework. Isuf and 

Qëndresa indicate that action research encourages teachers to use technology in their class even when 

it is challenging for them. On the other hand, the case of Besmir shows that action research encourages 

him to analyze different sources, to examine the literature related to his field of interest and stimulates 

him to experience new methods in his classrooms that for others have been successful.  

Teachers’ experience with action research has shown that they are able to do research in their 

classrooms successfully and that they can achieve remarkable results when the opportunities are 

given, especially if they are supported by the university teachers. Action research provides more 

opportunities for them to be responsible for improving their basic content knowledge, as well as for 

gaining knowledge and skills in research methods and applications (Altrichter et al., 1993; Loucks-

Horsley et al., 2012). Thus, including action research in the study programs for teacher training for 

both preservice and in-service teachers will help them to create trust as an important conducive factor 

for generating new ways for learning (Krainer & Zehetmeier, 2013). 

Action research in Kosovo can be approached as a potent methodology for educational reform. Action 

research engages teachers to investigate and teach through analyzing deeply the content and 

pedagogical issues needed for their teaching. Furthermore, action research challenges teachers to 

carry out changes, which are necessary for the implementation of mathematics curricula for pre-

university education and to align them with international standards. Thus, universities need to 

consider including action research as a core unit in all teacher preparation degree programs (Hine, 

2013) and stimulate collaboration with their students, in-service teachers, and schools, in order to 

conduct action research studies in mathematics classes as well as in all other subjects.  

We started as a small-scale effort involving a few teachers to conduct research in their classrooms 

aiming to grow into an important part of school-based professional development. The effort for a 

university-led reform movement (Somekh & Zeichner, 2009), supported by the government as a 

national initiative, could be a possibility for fostering mathematics education. Ultimately, as cited by 

Krainer and Zehetmeier (2013), teachers should be key stakeholders in innovation and research, as 

well as in all educational reforms. This paper suggests that such an effort to prepare teachers to take 

the role of teacher-researchers is one of the possibilities to answer their concerns about teaching and 

learning in mathematics. 
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Since its birth in the aftermath of CERME10, discussions in TWG19 concentrated on identifying its 
research territory and on creating opportunities for collaboration among the participants beyond the 
conference sessions. These discussions led to shifting the focus of the group on mathematics teaching 
and teacher practice (s) and to an initiative of working on shared data that fueled fruitful explorations 
related to conceptualizations and theorization of mathematics teaching. The participants’ 
contributions and the work carried out during CERME11 sessions challenged further the core ideas 
of how mathematics teaching can be defined and studied while an emerging distinction between 
teaching as an activity and teaching as work stimulated further the group’s discussions. 

Introduction 
Thematic Working Group 19 (TWG19) emerged as a result of the splitting of a TWG called “From a 
study of teaching practices to issues in teacher education” into three sub-groups after CERME8. One 
of the new groups targeted teacher education and professional development (TWG18), another 
focused on teacher knowledge, beliefs and identity (TWG20), and TWG19 targeted “Mathematics 
teacher and classroom practices”. Since its conception, TWG19 has been in a process of developing 
its identity. In discussions, core concepts have been taken for granted, without explicit or shared 
definitions. This became apparent at CERME10, where participants called for a development of 
common grounds — or at least for efforts to increase awareness about differences in 
conceptualizations, theories and methods, and of the implications of these differences. After 
CERME10, two changes have been made to move forward TWG19’s work: 1) the name of the 
working group has been adjusted, and 2) an initiative of offering sets of shared data for analysis and 
use in the working group has been initiated.  

This introductory paper discusses the ongoing development of TWG19’s identity and where the 
continued development appears to be heading. Due to a large number of submitted papers, the group 
split into two (TWG19a and TWG19b) for CERME11, but we tried to maintain a sense of community 
by having three common sessions, and by discussing the same overarching questions in split sessions. 
In the final session, team leaders shared reports to the whole group and facilitated a concerted 
discussion around these questions. This joint introduction to TWG19a and TWG19b testifies to these 
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efforts. There are three main sections in this introduction. The first section discusses emerging issues 
and critical considerations as reflected in the section name. The second section reports from the joint 
activity around the initiative of analyzing and using shared data, and the third section discusses 
patterns and trends in the individual papers that were presented. The introductory paper concludes 
with a discussion of the collective efforts made to deal with the emerging issues and some reflections 
on the way ahead.  

Emerging issues to pursue: some critical considerations 
After CERME10, the name of TWG19 changed from “Mathematics teacher and classroom practices” 
to “Mathematics teaching and teacher practice(s)”. The change of wording is intentional and deserves 
elaboration. First, the change from teacher to teaching signals that the group targets teaching rather 
than teachers and their characteristics; teacher knowledge, beliefs and identity are the focus of 
TWG20. This shift reflects a development that Skott, Mosvold and Sakonidis (2018) described and 
reflected upon in their recollection of research on classroom practice, knowledge, beliefs and identity 
over ten biannual CERME conferences and corresponds with a general shift of focus in research on 
teaching. Although the shift from teachers to teaching has emerged over several decades, 
conceptualizations of teaching appear to be underdeveloped in our field. While discussing the 
problem of theorizing teaching, Jaworski (2006, p. 188) suggests that “the big theories do not seem 
to offer clear insights to teaching and ways in which teaching addresses the promotion of mathematics 
learning”. Furthermore, Jaworski suggests that one of the problems lies in how learning and teaching 
are connected with practice, and this relates to a second change in the name of TWG19. 

The shift from classroom practices to teacher practice(s) signals that the primary focus of the research 
in TWG19 is on practices of teachers and teaching rather than on any practices in classrooms. Use of 
the term practice has changed over the years. Jaworski (2006) discussed “teaching as learning in 
practice”, whereas Schön and DeSanctis (2011) consider teaching to be a reflective practice. The 
former suggests conceiving teaching as a social practice in which teachers are practitioners, whereas 
the latter offers a view of how teachers “act in the classroom as informed, concerned professionals 
and about how they continue to learn” (Lerman, 1998, p. 33). The discussions by these authors imply 
some of the different meanings that might be attached to the term practice. Lampert (2010) 
distinguishes between four different meanings of the word practice, and three of those are relevant 
for TWG19. First, practice might refer to what teachers do in contrast to theory. Second, the word is 
used to describe a collection of practices, some of which might be more core or high-leverage than 
others. A third use is to consider teaching as a professional practice, like the practice of law or 
medicine. The word practice in the new name of TWG19 might encompass all three meanings. 

The first joint session of TWG19a and TWG19b at CERME11 was devoted to discussing some of 
these foundational issues, and attempts were made to contribute to the discussion of the 
underdeveloped conceptualizations and theorization of mathematics teaching. To introduce the 
discussion, two of the presented papers drew on different theoretical foundations. In the first 
presentation, Watson drew on developments in cognitive psychology, neuroscience and ontology to 
provide a theoretical account of teacher decision making and how this influences practice. He argued 
that the momentary decisions influence the character of the lesson and proceeds to focusing on 
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algorithmic reasoning, a conscious process making use of heuristics and pre-established routines and 
processes to reduce the demand on working memory. In mathematics teaching, in-the-moment 
decisions have to be immediate and thus well-practiced. The algorithmic mind quickly accesses 
routines and procedures that are learnt through participation and provide well-rehearsed and 
culturally-embedded approaches to respond to situations in the classroom. Watson concluded that it 
is important to further study teachers’ decision making, to better understand the affective dimensions, 
the culturally embedded routines and strategies acquired through participation in the professional 
community. In the second paper, Sakonidis argued that mathematics teaching tends to be seen today 
as a professional practice shaped by the expectations and norms of the learning settings where is 
exercised. Sociocultural theories provide useful lenses for the relevant research and three of them 
appear to readily lend themselves to this direction: the theory of learning participating in a community 
of practice, Cultural-historical activity theory, and Skott’s (2013) patterns of participation theory. 
Sakonidis concluded by highlighting the need for dynamic perspectives to disentangle and understand 
the ever-evolving outcome of individual and communal acts of meaning-making (by both teachers 
and students) characterizing the practice of mathematics teaching. 

Following the presentation of these two papers, Hoover and Mosvold presented their reflections on 
the developments in the field of research on mathematics teaching. They started by reflecting on the 
different meanings of teaching, and how the field has proposed dichotomies like pedagogic versus 
didactic, art versus science, ambitious versus conventional, and profession versus occupation. Based 
on these initial reflections, they proposed a distinction between teaching as activity and teaching as 
work. The first interprets teaching as activities done by teachers, whereas the second considers 
teaching to be work to be done. Each of these understandings has different implications for studying 
teaching. Studies of teaching as activity tend to seek empirical descriptions of what teachers are doing, 
and they study methods of expert teachers in order to improve teaching. On the other hand, studies of 
teaching as work tend to investigate the demands of instruction by applying conceptual analysis, and 
they conceptualize professional practice for teacher education as a means to improve teaching. This 
distinction was taken up by participants in the group and stimulated productive discussions.  

In search of answers to the emerging issues in a joint research activity 
As another effort to move the group forward, TWG19 decided to prepare sets of shared data for 
CERME11. These shared data sets were made available for analysis and use in participants’ papers, 
and they were also available for use in presentations and as a common reference point for discussions 
in the group. Four sets of data were prepared and uploaded to a secure server that all participants in 
TWG19 were given access to. Three of the data sets contained videos of mathematics teaching, 
whereas one data set contained transcripts only. Each data set was accompanied by a document that 
laid out policies for sharing and reuse, and a document with information about the person or institution 
that shared the data as well as with permissions and limitations for usage.  

Videos are extensively used in research on teaching. In a presentation to the group about sharing data, 
Mosvold, Hoover and Suzuka suggested that study of a complex phenomenon like teaching requires 
good data, and that video data provides access to nuances in communication and interaction. Videos 
also provide more detail about context. While adding value, video data also introduce some 

Thematic Working Group 19

Proceedings of CERME11 3550



 

 

challenges — including practical as well as ethical concerns. Sharing and reusing video data provide 
benefits like better utilization of data, access to high-quality data, saved costs, as well as increased 
quality and scope of analysis. However, successful sharing and reuse of video data demand careful 
considerations around issues of usability and reuse of data. Many find the challenges entailed in 
sharing and reusing data so severe that they are reluctant to get involved. Engaging in this initiative 
has provided us with useful experiences that we hope might help us as a field move forward towards 
overcoming the anticipated difficulties.  

Having multiple eyes look at the same data opens up for richer and more nuanced interpretations. For 
instance, five papers analyzed a Norwegian video where a teacher facilitates a group of students’ 
presentations of their solutions to a problem of figuring out when the king of Norway was born, given 
that he celebrated his 80th birthday on that particular day. Some participants focused on how the 
teacher was moderating the dialogue, how he elicited students’ mathematical thinking (Drageset), 
and how he positioned students as mathematical authorities whose thinking were put on public display 
and collectively analyzed (Bass & Mosvold). Others emphasized how the teacher’s use of revoicing 
might interrupt and even prevent further development of the discourse (Kleve, Solem, & Aanestad), 
and Nic Mhuiri followed up by observing that student interactions were always funneled through the 
teacher and never developed into discussions in whole class. Whereas most papers applied particular 
frameworks or theories in their analysis of this video, Hoover and Goffney used conceptual analysis 
to identify aspects of mathematics teaching that might disrupt patterns of inequity.  

Another frequently analyzed video displays Deborah Ball teaching fractions on the number line. From 
his analysis of turns in the conversation, Drageset noticed how the teacher often requested students 
to ask questions instead of entering a traditional pattern of initiation-response-evaluation. He also 
discussed how the teacher moderated the discourse while simultaneously guiding students’ 
participation and attending to norms. Mosvold and Bjuland also mentioned attending to norms of 
participation in their use of the data set to unpack the role of positioning in the work of teaching 
mathematics. A couple of papers also observed how assigning students with agency and authority 
becomes visible in this instance of mathematics teaching (Bass & Mosvold; Nic Mhuiri). Again, the 
nuances provided by the sum of the analyses exceeds the contributions of each individual paper.  

Engaging in analysis of shared data prompts some new questions: Why do we see different things 
when analyzing the same data? Can we reach agreement of some kind in our analyses? Is agreement 
even a goal? After all, our efforts to analyze and discuss these shared data sets did not lead to a shared 
understanding of mathematics teaching, but they stimulated productive discussions about different 
conceptualizations of teaching.  

In search of answers to the emerging issues in individual participants’ research 
The papers reporting on studies of mathematics teaching and teacher practices that did not use the 
shared data sets can be placed in three groups: 1) teachers’ practices, actions and resources before or 
during daily instruction; 2) teachers’ implementation of teaching practices and actions developed in 
the context or in the aftermath of a particular purposeful professional development (PD) activity; 3) 
developing tools or practices of monitoring classroom instructional activity. Emerging issues from 
these groups of papers are discussed below.  
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Papers reporting on issues related to daily teaching practices, actions and resources apply established 
theoretical or conceptual frameworks to examine their functionality and effectiveness. For instance, 
Pericleous used cultural-historical activity theory to investigate how the activity of proving was 
constituted in a primary classroom. She analyzed tensions that arose for the teacher and identified 
points of contradiction between the classroom micro-system and elements of the macro-system, such 
as curriculum context. In a series of focus group interviews, Grundén used critical discourse analysis 
to interrogate teachers’ planning practice(s) in mathematics. The results described how teachers 
construct their own discourse of mathematics teaching in resistance to the official discourse of the 
National Agency of Education. Grundén contended that critical discourse analysis is useful for 
attending to the complexity of mathematics teaching. Rudsberg, Sundhäll and Nilsson inquired into 
teachers’ monitoring of students’ meaning making. To this purpose, they adopted a framework of 
epistemological move analysis and a pragmatic perspective on learning to analyze lesson transcripts. 
The results suggested that epistemological move analysis might enhance our understanding of the 
relationship between students’ meaning-making and the related actions of teachers. 

Stouraitis and Potari studied a prospective secondary school teacher’s first field experiences. Using 
activity theory, the authors focused on emerging contradictions considering prospective teachers’ 
planning and enactment of a lesson plan, as well as what led to such contradictions and how 
contradictions could potentially influence prospective teacher learning. Calor et al. examined 
teachers’ use of a model based on small-group work, drawing on socio-cultural notions such as 
collaborative learning and scaffolding as well as on cognitive ideas like Janvier’s approach to 
representation systems. The analysis of a pre- and post-test on mathematical level raising shows that 
more mathematical level raising occurred in the small-group than in the control condition. Olsson and 
Teledahl described an investigation into how principles of feedback might be used by a mathematics 
teacher to encourage students’ creative reasoning. Their analysis illustrates the challenges that this 
presents for teachers and highlights associated issues such as the existing classroom norms for 
interaction, as well as teachers’ beliefs about the object of teaching. 

Andrews explored what happens mathematically when teachers and learners engage in between-desk-
teaching across different mathematics topics. From a multiple case study, he focused on the case of 
one teacher who used between-desk-teaching practice with a strategic purpose that could potentially 
support student understanding. Taylan and Esmer used the instructional actions framework to 
examine a novice teacher’s instructional actions in response to unexpected classroom moments. 
Analyzing lesson planning meetings and observations as well as teacher interviews, they found out 
that responses to unexpected moments include both supporting and extending actions. Kayali and 
Biza studied a teacher’s use of the available resources in relation to their teaching aim. Based on the 
‘Knowledge Quartet’ (Rowland, 2010), their analysis highlights different aspects of a teacher’s 
classroom work and leads to suggesting replacing code ‘instructional materials’ to ‘resources’ and 
expanding the Knowledge Quartet by adding a code named ‘connection among resources’. 

The submissions related to teachers’ implementation of instructional practices and tools developed in 
professional development contexts aim at providing rich mathematical classroom activity for all 
students. In particular, Büscher focused on teachers’ designed tasks during a professional 
development course to reconstruct their categories of differentiation for percentage problems. The 
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results show that teachers tended to differentiate in ways that exclude low-achieving students from 
conceptually rich learning opportunities due to their partitioning of their envisioned ideal-typical 
solution paths. Psycharis, Potari, Triantafillou and Zachariades investigated how secondary school 
teachers attempted to balance mathematical challenge and differentiation in whole class settings in 
the context of a professional development program which aimed to support teachers in engaging all 
learners while teaching challenging tasks. 

Klothou, Sakonidis and Arsenidou used a multiple case study approach to investigate the use of 
learning trajectories in teaching fractions by three primary teachers participating in a PD project. The 
analysis shows that all teachers tended to view learning trajectories primarily as a way of organizing 
mathematical content more than as an elaboration of the possible development of student thinking. 
The study by Medová, Bulková, and Čeretková was conducted in the context of a professional 
development program focusing on inquiry-based learning in upper secondary mathematics. Results 
indicate that students’ independent learning was observable more often in the inquiry-based lessons 
than in regular lessons, whereas teachers played a more dominant role in the regular lessons. 
Maugesten explored Norwegian lower primary teachers’ views about good mathematics teaching by 
using a focus group interview with teachers after a two-year school-based professional development. 
The results reveal that teachers focused on communication in classroom and use of representations, 
student thinking in and about the subject of mathematics, and resources, textbooks, and tasks that are 
related to everyday mathematics. 

Finally, the papers related to developing tools or practices of monitoring classroom instructional 
activity concentrated on cognitive as well as social determinants of this activity. Thus, Nowińska 
reported on the development of a rating system for analyzing metacognitive activities: Metacognitive-
discourse instructional quality. This is illustrated with examples of how one can identify different 
parts of metacognition related to planning, monitoring, and reflection. She emphasized that such a 
rating system needs to identify patterns that are stable across lessons and practice. Arnesen and 
Grimeland also presented an investigation of teachers’ planning. They asked teachers to identify the 
mathematical ideas they would focus on and use Bloom’s Taxonomy to classify the learning goals 
teachers had identified for lessons. Findings indicate that higher-order cognitive process categories 
were poorly represented in the learning goals and teachers’ descriptions of mathematical ideas were 
vague or absent. 

The study by Mellroth and Boesen provides a proposal for teachers to help them notice 
mathematically highly able students by illuminating aspects of students’ problem-solving processes. 
The paper of Ableitinger, Anger and Dorner is unique in its efforts to attend to student voice. Student 
feedback was collected in post-lesson interviews and quantitative and qualitative methods were used 
to compare students’ and researchers’ choice of significant events in mathematics lessons. The 
analysis indicates differences between students’ and researchers’ choices of significant events. Even 
when both groups identified the same event as significant, different reasons were given for this choice. 

Summarizing, all papers presented above highlight challenges of accessing interesting data in 
consistent ways within or across instructional settings. The adopted theoretical frameworks view 
teachers as professionals coordinating the instructional activity aiming at rich learning environments 
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and maximum participation. These frameworks offer analytical tools and sometimes provide — 
combined or coordinated — new theoretical lenses allowing useful insights into various aspects of 
mathematics teaching and teacher practice(s). The accompanying methodologies are mostly 
qualitative. Although these methodologies vary, they tend to concentrate on examining instructional 
routines, actions, tools and practice(s) by analyzing teachers’ designs, classroom implementations or 
classroom excerpts and so on. 

Towards a collective effort to deal with the emerging issues 
Discussions in TWG19 at CERME11 often revolved around the core questions of what we mean by 
teaching and how we study it, and the distinction between teaching as activity and teaching as work 
was discussed frequently. The majority of participants in TWG19 tend to consider teaching as what 
teachers do, but there is considerable variation in this view of teaching as activity and how it is 
studied. Some consider teaching as what teachers do, but they also include teachers’ thinking and 
emotions (e.g., Watson). Others focus more squarely on teacher actions and study patterns of such 
actions (e.g., Sakonidis). Yet others emphasize that teaching is a communicational activity (e.g., 
Nachlieli et al.). Among the papers viewing teaching as activity, many were concerned with the 
connection between teaching and learning (e.g., Ayan; Grundén, Serrazina et al.). Some consider the 
teacher as an agent who shapes new classroom practices (Nic Mhuiri). Others consider the teacher as 
a facilitator or an orchestrator (Baldry), who provides students with opportunities to explore (e.g., 
Pericleous). Yet others consider the teacher as a transmitter of knowledge (Ableitinger et al.). 
Teachers’ use of feedback is supposed to influence student learning, and Olsson and Teledahl 
investigated development of productive feedback practices.  

Other papers lean towards a conceptualization of teaching as work to be done. A couple of papers are 
explicitly directed towards such a conceptualization of mathematics teaching (e.g., Hoover & 
Goffney; Mosvold & Bjuland), whereas others point in this direction implicitly. For instance, 
Nachlieli et al. studied tasks that teachers are faced with, and Santos et al. investigated demands of 
teaching mathematics. It is also worth noticing that some papers appear to study what teachers do, 
but they still make claims about the work to be done (e.g., Baldry).  

Having the distinction between teaching as activity or work out there seemed to fuel the discussions. 
People started engaging with questions about the purpose of distinguishing between teaching as 
activity and teaching as work, and how the conceptualization of one might be independent of the 
other. The discussion of papers often targeted foundational questions about implications of our views 
on teaching, of applying different theoretical frameworks to analyze teaching, and about how different 
methods and types of data might or might not inform us about teaching and the demands of teaching. 
The effort of introducing and using shared data was another initiative that seemed to stimulate 
productive discussions in the group. Some reflected on how seeing different things in the same data 
must prompt careful reflection about use of different theoretical frameworks, whereas others 
suggested that seeing different things might be fruitful and provide a broader and more complete 
image of teaching.  
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Conclusion 
TWG19 is still developing its identity, but the group is taking some important steps forward. The 
name change stimulated some important foundational discussions about conceptualizations of 
teaching and methods of studying teaching. The distinction between teaching as activity and teaching 
as work was useful, but further conceptual work is needed. The participants’ contributions, despite 
the polyphony identified in their attempts to conceptualize mathematics teaching as well as in the 
theoretical lenses and the methodologies employed to study its classroom manifestations, somehow 
highlight the issues to consider and the questions to pursue in the way ahead.  

The initiative of sharing data was also interesting, and several participants were interested in 
contributing to and using such data sets in upcoming conferences. Sharing and reusing data provide 
opportunities for richer analysis, but it also appears to be a productive space for developing shared 
understandings and possibly also better consensus about the object of study. However, further efforts 
are needed to investigate what kinds of (video) data are most suitable for joint analysis of mathematics 
teaching, how to organize an even more productive space for such joint analysis, and how such 
analysis might be scaled up. It is also imperative to investigate ways of organizing analysis of shared 
data in order for it to be more than an interesting exercise in data analysis.   
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Considering the learners’ perspectives on classroom teaching is central in our project ‘AmadEUs’, 
in which we work together with 79 students of four school classes in Austria and 23 pre-service 
teachers. In a first stage, we interviewed these students about significant events in math lessons they 
had just attended. In this paper, we analysed what kinds of events our students have mentioned and 
chosen and compared them with our (researchers’) choice of significant events. While different 
groups of students tended to choose similar events, we observed differences between students’ and 
researchers’ choices of significant events. In a qualitative analysis, we tried to identify the characters 
of most commonly selected events by students in contrast to the teachers’ and the researchers’ 
selections.  

Keywords: student voice, teaching practices, significant events, learners’ perspective, secondary 
school mathematics 

Introduction 
Mathematics education is a complex network with several players involved, such as students, 
teachers, researchers and teacher educators, who prioritize different aspects of quality and therefore 
attach importance to different events during math lessons. Hence, one can understand and optimize 
teaching practice only through research that takes into account various perspectives, and particularly 
those of the learners as an essential part (see Clarke, Keitel, & Shimizu, 2006). Through giving 
students the opportunity to articulate their opinions, thoughts and feelings, valuable insights into their 
attitudes towards mathematics can be gained. Hence, listening to their voices has the potential to 
influence educators and policy makers (Mok, Kaur, Zhu, & Yau, 2013). This so-called Student Voice 
approach and some related studies will be further discussed in the theoretical framework. 

One aim of our study is to explore which events of math lessons students consider as significant. The 
results do not only inform us about what kinds of events students consider as important for their 
learning, we might also get a clue about which events actually stay in their mind and in which events 
they might pay more attention to. This knowledge has the potential to influence and improve teaching 
practices (Huang & Barlow, 2013; Lee & Johnston-Wilder, 2013).  

By comparing the choice of students to our own (researchers’) choice of significant events (by that 
we mean short sequences of approximately 2-5 minutes) of the math lessons, we want to detect blind 
spots of typical researcher’s views on mathematics education on the one hand. Through contrasting 
the two perspectives, we expect to maintain student-specific choices of concrete situations in the 
learning process, which can help teachers in their prospective lesson planning (McIntyre, Pedder, & 
Rudduck, 2005). On the other hand, it is also interesting to discover events that are significant to 

Thematic Working Group 19

Proceedings of CERME11 3556



 

 

researchers but not to students (and vice versa). For this, our study may give hints, where and in which 
way crucial points of lessons need to be made explicit to students, in case they do not attach 
importance to these points sufficiently by themselves.  

Theoretical framework 
Our study takes the perspectives of students into account. Such “Student voice” approaches have been 
of growing interest in the past two decades. Early work that has been conducted on the voice of 
students (e.g. McCallum, Hargreaves, & Gipps, 2000; Pollard & Triggs, 2000; Fielding, 2001) 
revealed the potential of listening to students in order to understand teaching and learning and making 
it more effective. In the course of this development, Robinson and Taylor (2007) aimed at theorizing 
student voice, carving out core values of student voice work. Flutter and Rudduck (2004) analysed 
different student voice initiatives and derived potential benefits to students, teachers and schools, 
including the potential to improve learning (as the participation of students might have a positive 
impact on their meta-cognitive development) as well as teaching (as teachers and researchers are 
provided with valuable insights).  

As Allen (2003) pointed out, it took some time until students have been consulted to articulate their 
views about mathematics teaching and learning, but meanwhile several studies have been conducted 
in this field (e.g. Taylor, Hawera, & Young-Loveridge, 2005; Sullivan, Tobias, & McDonough, 2006; 
Lee & Johnston-Wilder, 2013; McDonough & Sullivan, 2014). While some studies concentrate on 
what students attach importance to in math lessons in general (e.g. Wilkie & Sullivan, 2018), only 
few studies deal with significant events of certain experienced math lessons. Of interest is the 
Learner’s Perspective Study (LPS), which has been designed to analyse and compare practices of 
mathematics classrooms around the world (Clarke, Keitel, & Shimizu, 2006). Within LPS, Huang 
and Barlow (2013) compared important events selected by students and teachers. They examined 15 
videotaped consecutive mathematics lessons of one teacher, the corresponding lesson plans, teacher 
interviews and 30 student interviews. During the teacher interview, he described his intentions in the 
lesson, the important events from his point of view as well as his actions, thoughts and feelings during 
the important events. The two researchers analysed the data set in order to verify whether the 
important events identified by students coincided with the teachers’ intended important events within 
the lessons. 

Using a slightly different research design than LPS, we seek answers to the following research 
questions: 

What kinds of events of math lessons are significant for students and/or researchers? 

By what criteria do students and researchers select these events and in what way do these criteria 
differ from each other? 

Method 
Teaching units: Four school classes (79 students) who visited our University were taught by pre-
service teachers in the following topics: Percentage calculation (6th grade), introduction to probability 
theory (10th grade), combinatorics (11th grade), application of the differential calculus (11th grade). 
Each class was divided into two groups. These 8 lesson sequences have been videotaped. 
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Identifying significant events of the math lessons: Right after each lesson, interviews were conducted 
and recorded among all students (groups of 2-4) to ascertain events that seemed significant to them 
(we used the German word “wichtig”). We do not predetermine the term “wichtig” as a survey 
construct, because we do not aspire to infer causal relationships to other constructs. In fact, we seek 
to learn more about what is important to students when reflecting on their attended math lessons. We 
thus chose the word “wichtig” out of a group of words with a similar meaning (such as “wesentlich”, 
“markant” or “maßgeblich”, which all translate to significant or important, respectively) for its easy 
comprehensibility and its openness for all kinds of aspects that could be meaningful to the students. 
“Wichtig” expresses that some aspect is of essential relevance (Duden, 2016). 

We decided to use semi-structured interviews (Galletta, 2013) to reveal significant events from the 
students’ point of view. Our interview protocol consists of three segments: For the opening segment, 
we formulated two open-ended questions that stimulate students to talk about the math lesson they 
just experienced. The middle segment consists of more specific and structured questions directly 
related to our research that should jog the students’ memories as well as help them to reflect on 
different aspects of the lesson. These questions cover the scope of our intended meaning of 
important/significant events. In the concluding segment, students have to come to an agreement about 
the five most important/significant events.  

In addition, we (as researchers) watched the complete video material (because we did not attend the 
lessons) and took notes of significant events. At the end of this process, each of us had to choose the 
five most significant events from his/her own point of view. 

In order to conduct an analysis, assistants fragmented each lesson sequence into short scenes due to 
certain criteria (e.g. change of teaching method, change of subject, presenting or discussing a new 
example, etc.). Altogether, this procedure led to 221 scenes (for all lesson sequences). After our own 
selection of events (the researchers’ choice) had been completed, we evaluated the audio material of 
the student interviews in order to mark their significant events. Each scene was then labelled 
according to the number of selected events that coincide with that scene (at least partially). For 
example, the scene label 2R1S means that two (out of three) researchers and one of the three groups 
of students selected significant events that occured during this scene (see Figure 1 for a short extract 
of one lesson sequence). At this stage, we were able to analyse the data quantitatively and qualitatively 
respectively.  

 
Figure 1: Scene labels according to selected significant events 
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Results 
Differences in significance between students and researchers 

In order to measure the disparity between researchers’ and students’ selection, we determined the 
difference of the number of researchers’ and students’ marks for each scene. While the difference is 
at most 1 in 75% of all scenes (n=221), we observed 15 scenes (7%) which have been found 
significant by either all researchers and no group of students, or vice versa. These scenes are of great 
interest. 85 scenes (38%) are marked solely by either students or researchers. We must mention that 
42 of these 85 scenes are labelled as significant by only one group of students or one researcher, 
respectively. 

In more detail, 23% of all scenes are significant for at least one group of students, but not for any 
researcher. The majority of these scenes belong to student-centred learning phases. Furthermore, 
students but not researchers highlighted many events assigned to group work phases and games (due 
to their active participation) as well as summaries. Students have predominantly chosen events in 
which they had fun, events that suited them as well as events in which they could easily follow, 
irrespective of the professional or didactical quality. 

On the other hand, 15% of all scenes are significant for at least one researcher, but not for any group 
of students. Such scenes often contain mathematical errors of the teachers or didactical mistakes (e.g. 
confusing explanations, explanations that might lead to misconceptions, etc.) and have been 
commonly chosen by us due to the revealed lack of (pedagogical) content knowledge of the acting 
teacher. A small part deals with interesting procedures of the teachers that have been either considered 
as appropriate or inappropriate by us. 

Qualitative analysis of a particular scene 

For the following scene (which all researchers and students marked as significant), we go more in-
depth into the corresponding justifications stated by students and researchers.  

Combinatorics (11th grade), minute 63–68 

Description of the scene: The teachers use this scene to sum up the content of the lesson. The graphic 
shown in Figure 2 is drawn on the blackboard to help students identify combinatorial problems as 
either a variation, permutation or combination and to repeat the associated formulas which have been 
taught in this lesson. During that scene, one teacher confuses variation with combination and gets 
corrected by his colleague. 

 
Figure 2: Decision tree 
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Perspective of students: All groups of students appreciated the summary as a ‘helpful overview’ and 
identified that scene as a key point. They described the provided graphic as ‘very good’, ‘well-
structured’ and ‘easy to follow’. It also helped them to solve problems they had to work on after that 
scene. Furthermore, they liked that the teachers helped and corrected each other and got the feeling 
that errors are permitted.  

Perspective of researchers: We observed several inaccuracies and errors. The teachers define the 
permutation solely by choosing all elements of a certain set. They do not mention whether order 
matters or repetition is allowed and even indicate once that the order does not matter: 

Teacher: If I cannot deduce from the task that the order matters or that a 
subset is chosen, then it is always a permutation. 

In their graphic, combination and variation only differ in the matter of the order. It is neither 
mentioned that combinations are without repetition nor that repetitions are allowed in variations. By 
saying, “We choose k out of n elements”, the teacher indicates that k cannot be greater than n in 
variations. A correct and thoroughly overview must include those two aspects (order and repetition) 
for each counting problem.  

Further, the scene indicates a highly syntactical approach: 

Teacher: No selection occurs; I just take all elements. I’ve only got an ‘n’. 

Student: I see. This is a permutation. 

Teacher: Yes, this is a permutation, because we do not have a ‘k’ [...] because I simply need 
one number. 

Without being able to verify the criteria of a permutation, students give the correct answer, knowing 
that the formula of permutations (out of the three presented formulas n!, n choose k and nk) is the 
only one that consists of one parameter. 

Comparison and discussion: While all groups of students looked upon that scene favourably, we 
chose that scene due to the syntactical approach and inaccuracies/errors showing a lack of 
(pedagogical) content knowledge. As students do not know any other counting problem apart from 
those three presented in that lesson, the given overview is sufficient to distinguish between them, 
although misconceptions might result (e.g. that k cannot be larger than n in a variation). As the whole 
topic is new to them, they trust in the expertise of the teachers and are not able to identify errors. 
Thus, they focus on the use of the summary (e.g. repeating the formulas), whereas we focus on the 
content quality. We agree that a summary of counting problems is a good idea, but the poor 
implementation has been decisive for our selection.  

Discussion and conclusions 
The results have demonstrated that the difference of the number of researchers’ and students’ marks 
for each scene is at most 1 in 75% of the cases, however, the reasons for choosing certain scenes are 
quite different, as we have shown in the above mentioned example. 
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While we focused on events that deploy the didactic strategies of the teachers or revealed existing or 
missing (pedagogical) content knowledge, the students concentrated on student-centred learning 
phases, summaries, quizzes and games. This emphasis on student-centred learning phases is in line 
with the findings of Huang and Barlow (2013) and Mok et al. (2013). Their interviewed students 
attached importance to seatwork and group work. Wilkie and Sullivan (2018) illustrated that students 
wish among others more such phases in their math lessons. In the present study, students described 
teacher-centred phases as ‘conventional instruction’, which could be a reason for choosing student-
centred events. Being active is more meaningful and therefore more memorable to them. The findings 
of Lee and Johnston-Wilder (2013) confirm the importance of quizzes and games for students. In 
their study, students explicitly demand more interactivity, games and creative tasks. The significance 
of such events might issue from feelings of success (discover connections, find solutions to certain 
problems and so on) or emotional involvement. According to Huang and Barlow (2013) and Mok et 
al. (2013), students valued review and feedback parts as important. Those findings are also in line 
with our study: Students have chosen summaries as significant and valuable events (as has been 
shown in the qualitative analysis). However, our data reveals that the researchers did not mention 
summaries unless they included mistakes or highlights. 

Contrary to our expectations and to the results of Mok et al. (2013), students barely talked about 
teacher explanations. This even holds true for some appalling explanations by the teachers that were 
not even mentioned by the students during the interviews, although some questions focused on teacher 
explanations. We conclude that the students did either not remember those scenes or did not attach 
any importance to them. In a certain way, their focus on methodical aspects of math lessons is 
understandable, due to students’ less developed meta-cognitive skills and the fact that highlights 
during classes are kept in mind more strongly. These findings are in line with the study of Waldis, 
Grob, Pauli and Reusser (2010), who compared student ratings with class observer ratings of math 
classes and found differences between these two groups when rating cognitively activating 
instructions and the structure of math classes. 

In cases where students and researchers selected the same events, different reasons were decisive. 
This is similar to the result of Huang and Barlow (2013), who obtained differences in students’ and 
teachers’ interpretations in such match cases. We presented an example, where students described the 
visualisation and the associated explanation as well-structured while we as researchers valued it as 
confusing and identified several content-related mistakes. This may be due to a certain inability of 
students to detect mistakes or to think about alternative approaches to particular concepts (Lee & 
Johnston-Wilder, 2013) while still being involved in the learning processes and not being able to 
oversee the topic as a whole. Some statements expressed by students during the interviews 
hypothesise that they tend to evaluate the quality of explanations according to how easily they are 
able to solve corresponding tasks. This implies that their self-assessment relating to their 
mathematical understanding depends on (amongst other aspects) the tasks they need to solve.  

For mathematics teaching practice, we can deduce that students obviously and understandably depend 
on the teachers’ knowledge and the way content is dealt with in class. We have seen that they did not 
mention several inconsistencies or misleading actions of the teachers, which were obvious to us as 
researchers and teacher trainers, respectively. Hence, teachers cannot fully rely on students’ feedback 
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concerning content-related or didactical inappropriateness, they should – beside asking students for 
regular feedback – see to get feedback from experienced mathematics teachers or teacher educators 
(e.g. through job shadowing) in order to gradually improve their teaching practice. 

It is essential for the learning process that students are aware of essential content points of the lesson 
(e.g. phases where concept formation and the development of basic mathematical ideas are in the 
centre of interest), but our study reveals that they hardly mentioned them nor valued many of them 
as important. According to Huang and Barlow (2013), the agreement on the importance of such events 
between students and teachers is necessary for effective learning. We deduce from our results that 
teachers have to emphasise these essential content points on a meta-level to be sure that the students 
value these events appropriately. Teacher training has to do its duty at this point by calling the 
teachers’ attention to this problem.  

What we can learn from the students’ choices of events and the associated justifications is that 
teachers indeed should make an effort to include more student-centred and methodically varied 
learning phases into their math lessons (as they do have the potential to motivate students and to 
enhance their activity as well as their attention). However, it is crucial that there has to be a strong 
focus on the quality of the content promoted in these phases. As we have seen in our data, games and 
quizzes are popular among students, but it is difficult to get any content-related feedback to these 
events from them on the spot, even in cases where we have chosen the same scene out of misleading 
or confusing aspects. Hence, entertaining elements have the potential to inspire students and to stay 
in mind. However, they must not cover the content and the learning goals of the lesson. 

Teachers can gain useful insights into their students’ learning by knowing what classroom events they 
perceive as important, as they are then able to adjust their teaching practice in order to catch their 
attention and draw it to essential content points. In addition, a lot can be learned from students’ 
justifications of their selected events as this has the potential to reveal – through further analysis – 
certain predispositions students have towards math lessons in general. 
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Between-desk-teaching as a deliberate act of making content 
available: The case of Bernie teaching ratio 
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Between-desks-teaching is recognised as a feature of mathematics classrooms across the world. 
Previous studies have sought to describe the range of purposes of this lesson event within a lesson 
and have been concerned with the orchestration of the classroom. Yet there has been little attention 
given to the role of between-desks-teaching beyond a single lesson, such as its contribution to how 
mathematical content is made available to learners over time. The current study explores what is 
happening mathematically when teachers and learners engage in between-desks-teaching across a 
topic. There is a particular focus on one case in which this lesson event features extensively. This 
case reveals how between-desks-teaching can have a strategic purpose and has potential to be used 
deliberately when teaching a topic. 

Keywords: Mathematics instruction, Instructional design, Student centred learning, Research 
methodology, Teacher education. 

Introduction 
In this paper I focus on between-desk-teaching and how it can be distinctive in terms of its purpose 
when teaching a topic over a series of lessons. To do so, I draw on data from a wider exploratory 
study of four cases of classroom practice over a series of lessons. I then focus on one particular case 
in order to understand better the distinctive contribution of between-desks-teaching to how subject 
matter is transformed and connected over time in this context. This study therefore, in common with 
previous CERME papers (Skott, Mosvold, & Sakonidis, 2018), brings to the surface a specific act 
within mathematics teaching and discusses how it provides opportunities for learning.  

Between-desk-teaching has been identified as a feature or “lesson event” of mathematics classrooms 
across the world (O’Keefe, Xu, & Clarke, 2006, p.73). It is a distinct event from ‘classwork’, which 
might include teacher exposition and whole-class discussion, but is a sub-set of ‘seatwork’, which is 
when “students work individually or in small groups on assigned tasks” and “talk is mostly private 
— teacher-student or student-student” (Stigler & Hiebert, 1999, p.67). It is this mostly private 
teacher-student talk, while students work on assigned tasks, which defines between-desk-teaching, 
although O’Keefe et al. (2006) also point to instances where this talk becomes more public. Inoue, 
Asada, Maeda, and Nakamura (2019) describe how between-desk-teaching offers learners individual 
support when problem solving, while Jakonen (2018) states that teacher actions during this lesson 
event are ‘occasioned’ in that they are sensitive to the learner’s present situation. Yet between-desk-
teaching is often ‘repetitive’ in that the teacher addresses the same issue both with multiple learners 
and also potentially multiple times with the same learner (Jakonen, 2018). 

O’Keefe et al. (2006) discuss both the monitoring and guiding functions of between-desk-teaching. 
Providing feedback, including references to learning goals (Svanes & Klette, 2018), or observing 
learners working serve a monitoring function. The guiding function can be associated with either 
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‘extending’ or ‘enabling’ teacher prompts (Roche & Clarke, 2015). Extending prompts are typically 
discussed in the literature with reference to challenge and questioning (e.g. Svanes & Klette, 2018), 
while enabling prompts may involve telling, modelling or offering hints (Svanes & Klette, 2018), or 
referring to prior learning or suggesting alternative approaches (Inoue et al., 2019). 

While between-desk-teaching can be analysed as a distinct lesson event, or as an event within a lesson 
(Inoue et al., 2019), O’Keefe et al.’s (2006) study emphasises that in order to understand its purpose 
consideration needs to be given to the events that surround it and whether these events are classwork 
or seatwork. In terms of how content is made available to learners, between-desk-teaching can be 
seen as a bridge between independent-of-the-teacher seatwork and classwork, or vice versa. When 
the flow is from seatwork to classwork, the purpose of between-desk-teaching is more likely to be 
‘monitoring student activity’ (O’Keefe et al., 2006) in order to inform the precise nature and focus of 
the classwork to follow, whereas when the flow is from classwork to seatwork the purpose is more 
likely to be ‘guiding student activity’ and making connections between the assigned task and the 
whole-class teaching the preceded it (Inoue et al., 2019). This emphasises how these lesson events 
mutually influence each other, but that there is a pedagogical choice regarding their sequencing. 

The previous studies of between-desks-teaching discussed above focus particularly on the nature of 
teacher-learner participation during this lesson event rather than how the subject matter is being 
transformed and connected through these interactions. My own work however has focused on how 
subject matter is made available to learners over the course of teaching a topic (Andrews, 2017), 
through the actions of the teacher. I use the term ‘manifestation’ of a mathematical concept to refer 
to the form of content I observe the teacher offering learners at any moment in time, and a 
manifestation may be categorised as visual, technical, functional, or a combination of these. Visual 
manifestations often include diagrams or forms of imagery, technical manifestations often relate to 
methods or symbolic manipulation, and functional manifestations include worded problems and 
applications of methods. 

In order to connect the sequencing of manifestations with opportunities for learning, I draw on a 
theory of growth in mathematical understanding (Pirie & Kieren, 1989; Pirie & Kieren, 1994). This 
constructivist theory proposes a progression of levels, each of which represents a reorganisation of 
knowledge structures, from ‘primitive knowing’, through ‘image having’ and ‘formalising’, to 
‘structuring’ and beyond (Pirie & Kieren, 1989). I associate visual, technical and functional 
manifestations with opportunities to focus learners’ attention on image having, formalising and 
structuring respectively. I associate visual-functional, visual-technical and functional-technical 
manifestations with opportunities to shift the focus of learners’ attention, captured by Pirie & Kieren’s 
(1989) terms ‘image forming’, ‘property noticing’ and ‘observing’ respectively. 

In a recent paper I highlight mathematical differences between what is addressed during classwork 
and seatwork in each of the four cases studied (Andrews, 2018). One pattern in practice revealed in 
this paper is a flow from classwork to seatwork within lessons and also across lesson series, with 
greater foregrounding of visual manifestations during classwork and functional manifestations during 
seatwork. This analysis suggests a degree of alignment in these cases between how content is made 
available to learners over time and the underlying progression proposed in Pirie & Kieren’s theory. 
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The current study builds on this recent paper and explores ways in which between-desk-teaching 
might support this progression. 

From the range of purposes of between-desk-teaching identified above, I focus particularly in this 
paper on the guiding function and references back to prior learning (Inoue et al., 2019). Pirie and 
Kieren describe growth as “levelled but non-linear” (Pirie & Kieren, 1994, p.166) and use the term 
‘folding back’ to describe returning to a previous level “in order to extend one’s current, inadequate 
understanding” (Pirie & Kieren, 1994, p.173). I associate teacher references during between-desk-
teaching to prior learning with offering explicit opportunities for learners to ‘fold back’ to a previous 
level of understanding in order to come to understand the assigned task at hand. In such a situation 
the between-desk-teaching will not, in terms of manifestation, align to the assigned task but rather 
more closely to what has been offered previously (for example through classwork). The current study 
explores therefore whether during seatwork between-desk-teaching aligns with the assigned task, or 
is more associated with opportunities for folding back. Addressing this question over a series of 
lessons on a given topic rather than an individual lesson affords exploring patterns in practice, which 
in turn reveals if between-desk-teaching is being deployed as a strategic act for transforming and 
connecting the subject matter of a topic. 

Methodology 
A summary of the approach taken to address the current research question will be offered here. A 
methodological paper detailing the range of approaches taken in the wider study is being worked on 
separately, and this will in due course provide fuller details and justifications of methods employed. 
The approach is an analysis of the text of what the teacher is seen to offer learners over the course of 
a series of lessons on a single mathematical topic. By text here I mean the literal text of teacher-talk 
during lessons, whether that be public or privately to individual learners, and also the tasks, video 
clips, simulations, physical resources and other teaching media that the teacher makes available.  

A quantitative approach is taken in order to detect differences in manifestation over periods of time 
through applying what I call a tri-polar analysis. The relative stressing of the three elements of the 
triad {visual, functional, technical} in the ratio v : f : t and satisfying the condition that v + f + t = 1 
can be succinctly represented by the Barycentric co-ordinate (v, f, t). 

How the teacher makes content available to learners is conceptualised as having two elements: 
teacher-talk and given-tasks. Teacher-talk may be public (for example, during periods of classwork) 
or private (during seatwork). Given-tasks are only present during seatwork and are the prompts that 
initiate subsequent activity in a lesson rather than that activity itself. The combination of teacher-talk 
and given-task during an individual between-desk-teaching event may serve to alter what is offered 
to learners when compared to what would have been available through the given-task alone. Therefore 
the effect of between-desk-teaching is revealed in any differences between what is offered during 
seatwork through considering both teacher-talk and given-task in unison to what would have been 
offered over the same time period through the given-task alone. 

For the current study, the text of each lesson series is parsed into 30-second intervals, each of which 
is then qualitatively coded for manifestation. Each manifestation category is associated with a 
Barycentric co-ordinate. The quantitative code for teacher-talk for the interval is the mean of the 
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Barycentric co-ordinates of all of the manifestation categories present in the teacher-talk in that 
interval (or (0, 0, 0) if there is no teacher-talk), and the quantitative code for given-task for the interval 
is determined similarly. The overall quantitative code for the interval (referred to as the interval 
centre) is either the co-ordinate for teacher-talk if there is no given task, the co-ordinate for given-
task if there is no teacher-talk, or the mean of the teacher-talk and given-task co-ordinates. Each 30-
second interval is also coded as either seatwork or classwork. The seatwork centre for the lesson 
series is then the mean of the Barycentric co-ordinates of all the intervals coded as seatwork, and the 
classwork centre is similarly defined. The given-task centre is the mean of the quantitative codes for 
given-task of all the intervals coded as seatwork. A statistical analysis of the visual co-ordinates for 
each interval using the Wilcoxon rank-sum test (Wilcoxon, 1945) allows the stressing of visual 
manifestation between classwork and seatwork, and between seatwork and given-task to be compared 
quantitatively (reported here using an effect size), and a similar analysis is conducted on the 
functional and then the technical co-ordinates. The extent of differences is represented by the effect 
size, and an effect size greater than .3 is treated as a material difference. By this I mean that the 
difference is large enough to infer systematic differences in how content is made available associated 
with strategic differences in teacher action. 

The current paper initially reports on four lesson series taught in local secondary schools in England 
with students aged between 13 and 16. One of the teachers, Ashley taught a series of five lessons on 
geometrical constructions. Bernie was at the same school as Ashley and taught a series of four lessons 
on ratio with one class and three lessons on linear equations with another. Courtney was at a different 
school and taught a series of four lessons on linear equations. In each case, the teacher determined 
the topic and the teaching approach. The four cases are used to address the question of whether there 
are mathematical differences in what the teacher makes available through between-desk-teaching 
when compared to the underlying given-task alone. A closer analysis is then conducted of Bernie 
teaching ratio in order to understand better between-desk-teaching in this case. 

Cross-case findings 
Table 1 sets out the seatwork and given-task centres for the four lesson series studied. For each case 
the statistical significance of any differences between seatwork and given-task are given. The number 
(n) of 30-second intervals given over to seatwork is also given in each case. 

The seatwork and given-task centres are descriptive statistics, and so comparisons between them only 
indicate where there are differences. It is the statistical analysis that quantifies these differences. The 
Barycentric co-ordinates highlight differences in each case between the seatwork and given-task 
centres, which indicate that during between-desk-teaching teacher-talk did not always align 
mathematically with the given-task. Instead this form of teacher-learner participation changed the 
mathematical nature of the activity. The greatest misalignment between seatwork and given-task was 
in the case of Bernie teaching ratio, and as this is an extreme case it has been selected for further 
analysis below. As this difference was material, the inference is that between-desk-teaching was being 
deployed as a strategic act for transforming and connecting the subject matter of a topic in this case. 

Table 1: The seatwork and given-task centres of the four lesson series 
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Case  Seatwork Given-task 

Ashley teaching 
geometric constructions 

n 410 
Centre (0.24, 0.27, 0.49) (0.24, 0.32, 0.44) 

   

Difference **  

Bernie teaching ratio 

n 301 
Centre (0.06, 0.29, 0.65) (0.00, 0.39, 0.61) 

   

Difference MAT  

Bernie teaching linear 
equations 

n 208 
Centre (0.20, 0.02, 0.78) (0.18, 0.02, 0.80) 

   

Difference NS  

Courtney teaching linear 
equations 

N 270 
Centre (0.17, 0.09, 0.74) (0.15, 0.12, 0.73) 

   

Difference NS  
N.B. Difference indicators show whether differences between the centres were material (MAT), 
statistically significant at the 1% level (**), or not statistically significant at the 1% level (NS) 

The particular case of Bernie teaching ratio 
The lesson series was concerned with translating part-to-part relationships into part-to-whole 
relationships, such as dividing quantities in a given ratio. Inspection of the statistical analysis of 
differences between the classwork, seatwork and given-task centres (see table 2) indicate that the 
visual and technical components of manifestation were stressed more during classwork. This 
underlying pattern in practice is triangulated by the narrative account of the lessons that follows. 

Table 2: The classwork, seatwork and given-task centres for Bernie’s lesson series on ratio 

Case  Classwork Seatwork Given-task 

Bernie teaching 
ratio 

n 82 301 301 
Centre (0.14, 0.11, 0.75) (0.06, 0.29, 0.65) (0.00, 0.39, 0.61) 

    

Difference MAT MAT  

N.B. Difference indicators show whether differences between the centres were material (MAT), statistically 
significant at the 1% level (**), or not statistically significant at the 1% level (NS) 

In the classwork event of Lesson 1 Bernie displayed the problem “share £20 in the ratio 2 to 3” on 
the interactive whiteboard and learners were tasked with solving it individually. The problem was 
presented along with twenty circles representing the twenty £1 coins that were to be shared between 
the two people. After allowing a brief period for individual consideration, Bernie led a whole-class 
sharing of ways to solve this problem. As part of this, Bernie demonstrated how the 20 coins might 
be shared in the ratio two to three by counting them out two, then three, then two, then three, and so 
on. This classwork phase of the lesson was categorised as featuring visual and technical 
manifestations as Bernie offered a visual representation of an enactive method of sharing the money 
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in the given ratio. Building on Lesson 1, Bernie provided an opportunity for the whole class to recap 
methods for sharing quantities in a given ratio at the start of Lesson 2. The first example offered was: 
“share £140 in the ratio 3 to 4.” Three methods were suggested by learners, the third of which was a 
simple integer ‘scaling up’ method: 4 : 3  ≡  40 : 30  ≡  80 : 60  and 80+60=140. The limitations of 
this method were revealed by the second example: “share £45 in the ratio 2 : 3 : 7.” Following this, 
Bernie endorsed a single method, the first step of which was dividing the quantity by the total of the 
parts. Thus there was an emphasis placed on formal methods in this introductory classwork phase to 
the lesson, with technical manifestation foregrounded. 

Technical and particularly functional manifestations were emphasised in the given-tasks assigned to 
learners during seatwork. For example, in Lesson 1 learners were provided with the opportunity to 
practise sharing quantities of money in given ratios, for example: “divide £20 in the ratio 4 : 1”, and 
“divide £10 in the ratio 3 : 2.” The given-task here was categorised as technical. In each of the 
following lessons students were set problems that required sharing in a given ratio, but increasingly 
these became worded, contextual problems. Thus functional manifestation was more emphasised over 
time. 

The effect of between-desk-teaching was that overall seatwork was materially different to the 
assigned given-task, with visual manifestation emphasised more and functional less. This can be 
largely attributed to Bernie drawing on the image of ‘moneybags’ when between-desk-teaching in 
order to represent a unitary share, such as in Lesson 1: 

In effect you've got 3 bags of money and 2 bags of money, which altogether is 5 bags of money. 
If you share your £10 equally into those 5 bags you'll have £2 in each bag won't you? That person 
gets 3 bags [and] that person gets 2 bags, yes? (Bernie, Ratio Lesson 1) 

Between-desk-teaching in Lesson 2 also referenced moneybags and included four separate 
conversations with different students over a period of 10 minutes in which Bernie offered essentially 
the same explanation of the solution to the same problem. It is interesting to note that while Bernie 
used a particular visual method for dividing in a given ratio during classwork in Lesson 1, the visual 
method offered when between-desk-teaching was equivalent but not identical. Lesson 3 continued to 
include between-desk-teaching in which Bernie made reference to moneybags, but not Lesson 4. This 
suggests a progression from Lesson 3 to Lesson 4, as in Lesson 4 there was less recourse to the 
imagery of moneybags in Bernie’s between-desk-teaching. 

My reading of the between-desk-teaching actions across Lessons 2 and 3 was as a return to more 
familiar-to-the-learner manifestations of ratio, which I associated with offering learners explicit 
opportunity to ‘fold back’ (Pirie and Kieren, 1989) to a secure level of understanding. In Lessons 2 
and 3, this secure level of understanding was inferred to be a visual method for sharing quantities in 
a given ratio. Whereas in Lesson 4 Bernie was heard to return to more technical manifestations of 
ratio when between-desk-teaching, which I associated with offering learners explicit opportunity to 
fold back from an inadequate contextual understanding to a more secure understanding of a method 
for sharing in a given ratio. 

Thematic Working Group 19

Proceedings of CERME11 3569



 

 

Discussion 
There are indications in this lesson series that between-desk-teaching was a lesson event foregrounded 
by Bernie in the context of teaching ratio to this class. Firstly, in total 52% of lesson time across the 
series was given over to between-desk-teaching compared to 27% to independent-of-the-teacher 
seatwork and 21% to classwork. Secondly, I have offered examples of Bernie repeating the same 
explanation on multiple occasions through between-desk-teaching when an alternative choice could 
have been to explain once to the whole class. This was an instance of the repetition effect noted by 
Jakonen (2018). 

Furthermore I infer from the statistical analysis that between-desk-teaching was being deployed 
strategically as a way of making content available to learners. Non-linear opportunities were offered 
for growth in understanding (Pirie & Kieren, 1994) that were sensitive to the needs of individual 
learners (Jakonen, 2018). Teacher explanation at the start of the lesson series emphasised visual 
methods for solving ratio problems, while technical and increasingly functional components of 
manifestation were emphasised in the given-task that were subsequently assigned. While the methods 
of problem solving offered through between-desks-teaching in Lessons 2 and 3 were not identical to 
the methods seen at the start of Lesson 1, there was a clear intention to offer visual representations of 
problems in order to facilitate their solution, and for these to remain available throughout the lesson 
series. By Lesson 4 it can be inferred that visual representations were no longer needed, but symbolic 
representations of contextual problems were being offered through between-desks-teaching by this 
stage. In summary, whether through conscious deliberation or out of habit Bernie’s actions aligned 
in this context with choosing to use between-desks-teaching in order to offer learners explicit 
opportunities to fold back to a secure level of understanding from earlier in the lesson series. 

Conclusion 
Previous studies have considered between-desks-teaching as an isolated event or as an event within 
a lesson (e.g. Inoue et al., 2019), but the current study has taken the lesson series as the unit of 
analysis. There is stronger evidence of Bernie’s between-desks-teaching being a deliberate act 
because this phenomenon was explored across a series of lessons. A further affordance of this 
research design is that through the analysis of teacher-talk and given-task it supports making sense of 
the contribution of between-desk-teaching to the way content is made available to learners over time. 
The lesson series is a unit of time over which teachers typically plan, and while the role of between-
desks-teaching at this grain size may not be an issue they (and researchers) currently attend to, it 
could be. The two case studies involving Bernie reported in this paper offer an ideal example of when 
it might be appropriate for a teacher’s attention to be drawn to this. In the case of Bernie teaching 
ratio, as we have seen, between-desk-teaching was used extensively and strategically. Yet in the case 
of teaching linear equations it was not used in this strategic way at all. Such contrasts in the practice 
provide in my experience powerful prompts for teacher reflection. 
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Teachers’ learning goals for a mathematics lesson 
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Due to current policy, including a curriculum that is managed by objectives, it is common that 
Norwegian mathematics teachers specify a learning goal for each lesson they teach. This study aims 
to identify characteristics of such goals. To this end, we analysed 50 learning goals with the revised 
Bloom’s Taxonomy. A main finding is that there is an emphasis on students’ understanding; however, 
the cognitive process categories Analyse, Evaluate, and Create were poorly represented in our data. 
Moreover, we asked the teachers to identify mathematical ideas (related to the learning goal) they 
would focus on in the lesson. In our data, the stated mathematical ideas were vague, and many 
teachers did not state any mathematical ideas at all. We discuss possible reasons for this. 

Keywords: Learning goals, identifying mathematical ideas, revised Bloom’s Taxonomy 

Introduction 
To plan lessons with the intended learning outcome (in this paper called a “(learning) goal”) as the 
point of departure is an old tradition. Tyler’s influential model for planning (Tyler, 1949) is described 
by John (2006) as linear, meaning that you start with identifying a goal for the lesson, and then choose 
activities, assessment, and other elements that fit the goal. More dynamic models (see e.g. John 
(2006)) also include specifying goals. In one framework for learning how to teach (Hiebert, Morris, 
Berk, & Jansen, 2007), specifying the learning goals for an instructional episode is listed as the first 
item of the framework. Moreover, learning goals are closely linked with theory on assessment for 
learning, where one principle is that students should understand the learning intentions, including an 
understanding of what would count as success criteria (Hodgen & Wiliam, 2006). Thus, goals are 
typically not only a part of a teacher’s planning process, but also present in the classroom. For 
instance, it is common in Norwegian schools that pupils get a goal for the week/day/lesson in every 
subject (Vikan & Buland, 2014). Another influence on the use of learning goals in Norway is that the 
education system is managed by objectives. The practice of using learning goals in teaching is 
probably similar to what is found in other countries where the education system is managed by 
objectives, e.g. Denmark (see Hansen, 2016). In Denmark, a study has shown that visible learning 
goals implicitly lead to a focus on skills and performance instead of mathematical competence 
(Hansen, 2016). A Norwegian Master’s thesis investigating the mathematical competences present in 
five 8th grade teachers’ learning goals (as they appeared in teaching) found that most of the goals had 
a short-time horizon and mostly focused on procedures, rather than on understanding (Selling, 2017). 

In mathematics teaching, deciding upon a goal is closely connected with identifying a particular 
mathematical topic to discuss (Superfine, 2008). This identifying process can be linked with Askew’s 
term “precision” (Askew, 2008). Being precise, including about the mathematical knowledge at stake, 
is one of the key elements in his framework for mathematics subject knowledge for teaching. It is 
suggested in a study by Sullivan, Clarke, Clarke, Farrell, and Gerrard (2012) that teachers tend to 
concentrate on activities and general aspects of pedagogy rather than on content objectives when 
planning mathematics lessons. In the study, Australian teachers were asked “what is the most 
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important idea that you will focus on for [the next mathematical topic you plan to teach]?”. Only half 
of the teachers in the study could describe the important ideas with a level of precision “likely to 
assist them in their planning” (Sullivan et al., 2012, p.478). In the conclusion to the study, the authors 
write that “it seems that teachers may need support in articulating the ‘important ideas’ on which they 
will focus and the sequencing and interrelationship of these ideas” (Sullivan et al., 2012, p. 478). Our 
study is based on the assumption that identifying mathematical ideas, or relationships between them, 
is intrinsic to producing adequate learning goals. It is therefore of interest to gain more knowledge 
about teachers’ identification of ideas underpinning the goals. To this end, our research questions are: 

What characterises teachers’ mathematical learning goals for mathematics lessons? 

What characterises teachers’ identified mathematical ideas behind the learning goals? 

With the above stated assumption in mind, there is a hypothetical outcome where the two research 
questions gain similar results (a mathematical learning goal may be referring to a mathematical idea). 
However, for the first question, we aimed to analyse the learning goals given explicitly to students, 
and there could be pedagogical reasons not to give the mathematical idea to students in advance. 
Thus, the second research question will give more insight into the teachers’ practices regarding 
learning goals. In order to answer the research questions, we designed a questionnaire, which was 
answered anonymously by 51 teachers from primary and lower secondary school. In the subsequent 
analysis, we used two frameworks: The revised Bloom’s Taxonomy (Krathwohl & Anderson, 2001) 
and a framework from the already mentioned paper by Sullivan et al. (2012). 

As the study is set in Norway, we provide the reader with some contextual background. In Norway, 
the non-linear “didactic relation model” for lesson planning (Bjørndal & Lieberg, 1978) has become 
part of the Norwegian “pedagogical canon”, as it is used in a number of textbooks in teacher education 
(Engelsen, 2006). In this model, six (originally five) elements are shown as mutually interplaying, 
with “goal” being one of them (Bjørndal & Lieberg, 1978). However, although goals are not the 
typical starting point for lesson planning in Norway, they are an important part of teachers’ practices. 
More precisely, “[g]oals are visible in a variety of ways; in the weekly plans, when teachers write 
goals on the blackboard and when they discuss goals orally in class” (Vikan & Buland, 2014, p. 17). 
The current curriculum, implemented in 2006 (Ministry of Education and Research, 2016), is written 
in terms of goals. For all school subjects, there is a subject curriculum, which consists of a list (ordered 
by year) of so-called competence aims, and the students are assessed by whether they have achieved 
these competence aims.1 As an example, the curriculum for mathematics lists that after year 4 (aged 
9–10), a student should be able to “make estimates of and find numbers by means of counting in one’s 
head, using counting aids and written notes, making estimates by calculating with simple numbers, 
and assessing answers” (Ministry of Education and Research, 2010). The competence aims are further 
decomposed, ultimately by the teacher(s) when planning a lesson.  

                                                 
1 Regulations of the Education Act, 2006, §3-3. Available at https://lovdata.no/dokument/SF/forskrift/ 2006-06-23-
724?q=forskrift%20til%20opplæringslova 
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Theoretical frameworks 
One of the most well-known models for analysing goals is Bloom’s Taxonomy (Bloom et al., 1956). 
We build our analysis of the learning goals on the revised Bloom’s Taxonomy (Anderson & 
Krathwohl, 2001), in which the original taxonomy has become a two-dimensional model, with one 
dimension focusing on the cognitive aspect of the goal, the other on the knowledge at stake. Unlike 
the original taxonomy, the revised version does not stress a rigid hierarchical structure – that is, a 
goal in a given category in either dimension is not necessarily “better” or “more demanding” than a 
goal in the previous category in that dimension. On the other hand, the revised taxonomy is meant as 
a tool to, among other things, “help educators consider the panorama of possibilities in education” 
(Anderson & Kratwohl, 2001, p. 35). As such, it is most common among educators, but it is also used 
in research (see e.g. Hansen, Herheim, & Lilland, 2017). We chose the revised Bloom’s Taxonomy 
because it would give an overview of the learning goals, suggesting some characteristic features and 
some features that do not appear among the goals. 

We explain here how we have interpreted the categories of the revised Bloom’s Taxonomy. The four 
categories of the knowledge dimension are interpreted as follows: Factual knowledge means 
terminology and conventions. Conceptual knowledge consists of mathematical concepts, ideas, and 
models. Procedural knowledge includes everything related to doing something (Anderson & 
Krathwohl, 2001): computing, algorithms, strategies. Metacognitive knowledge is knowledge about 
cognition, including meta-knowledge of strategies. Moreover, the six categories of the cognitive 
process dimension are interpreted as follows: Remember is about memorising things (like definitions, 
terminology, or the steps of an algorithm). The Understand category is for goals including verbs like 
“learn”, “know”, “explain” and others listed by Anderson and Krathwohl (2001) (in our data, it is 
hard to identify the category in other ways). The Apply category is for doing something of a non-
algorithmic nature. Note that this differs slightly from Anderson and Krathwohl’s description, as we 
would classify performing a given algorithm to a standard problem as Remember procedural 
knowledge rather than Apply procedural knowledge. Analysing means breaking something down to 
look at relationships, while Evaluate is to test or detect something based on given criteria. Finally, 
Create means to produce something new, like a hypothesis or an argument.  

To analyse the teachers’ stated mathematical ideas, we use a framework introduced by Sullivan et al. 
(2012). The framework consists of five categories, which we have interpreted as follows: For A 
mathematical idea within the topic, the mathematical idea/relationship is clearly specified. For the 
second category, An element of a hypothetical learning trajectory, the mathematical idea/relationship 
is underlying the response, but not explicitly stated – instead, the focus is on the students’ discoveries 
or activities. The third category, A sub-topic of the larger mathematical topic, is characterised by 
keyword-style answers. The two final categories have self-explanatory titles: A statement which could 
apply to most other topics and not specifically an important idea tied to the particular topic and A 
statement which describes aspects of pedagogy and does not particularly address content. We did 
not intend to connect the two frameworks. Instead, it was our aim to treat the two research questions 
separately, and then use the second to shed light on the first, as the goals are our main topic of interest. 
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Method 
The research questions require data in the form of teachers’ mathematical learning goals, together 
with information on what the teachers regard as the mathematical idea underpinning the learning 
goals. To obtain this, we designed an anonymous questionnaire for teachers, introduced by the request 
“base your answers on the next mathematics lesson you give”. The questionnaire and the quoted 
responses are translated from Norwegian by the authors. The questions relevant for the research 
questions treated in this paper are Q2: “What is the content-related learning goal of the lesson?”; Q4: 
“Is there a particular mathematical relationship or idea within the learning goal you want to especially 
focus on in the lesson? If yes, what?”; Q6: “Do you as the teacher have any other content-related or 
pedagogical goals for the lesson, that are not made known to the students? If yes, what?” Additionally, 
we asked about the overall topic of the lesson, the age of the students, and whether the goal would be 
made explicitly known to the class. 

We piloted a first version of the questionnaire among a group of in-service teachers taking a course 
given by the first author. In the discussion with the pilot respondents, we were made aware that the 
terms “mathematical relationship/idea” could be hard to distinguish from “content-related goal”. As 
suggested by the pilot respondents, we changed the order of some questions, intending to make this 
distinction clearer. Yet, we chose to keep the terms used, as this would be in line with the terms used 
in the theoretical frameworks of the study. Nevertheless, this suggested confusion could indicate that 
the validity of the study is not optimal, as we will comment further upon in the discussion. 

In-service teachers supervising school placement of student teachers were chosen as the cohort 
because we had easy access to them via the university’s digital learning management system (LMS). 
In general, supervisors have not taken more mathematics courses than other teachers have. The 
respondents are called “teachers” throughout this paper. We posted information of the study in the 
digital LMS, and additionally issued individual messages to all teachers, with a link to the digital 
questionnaire. Later we sent two reminders to all the teachers. In this period, we obtained 29 digital 
answers. To get more data, the second author visited a meeting for supervisors hosted by the 
university the following term, distributing paper copies of the questionnaire (as well as link to the 
digital version). At the meeting, 22 completed questionnaire sheets were handed in. Thus, the data in 
this study consists of 51 questionnaire answers (29 digital and 22 on paper). It makes sense to assume 
that most teachers answering in the first round had access to their actual planning notes, while most 
teachers answering in the second round did not. Yet, we have treated the answers from both rounds 
as one data set, because the teachers at the meeting had the option of answering digitally later, which 
they chose not to do (so we can assume they considered that they remembered the details sufficiently). 
Some teachers might have answered the questionnaire twice (once in each round); this has not been 
taken into consideration during analysis, as we cannot identify them in the data material. The teachers 
work in primary or lower secondary school, and the majority (37 teachers) teach grades 4-7. One 
teacher in the cohort did not state a goal when answering Q2; thus, 50 goals were analysed. 

After collecting all the data, the first author coded the replies to Q2 and Q4 with the revised Bloom’s 
Taxonomy and Sullivan’s framework for mathematical ideas, respectively. Then the coding was 
discussed with the second author. We used the revised Bloom’s Taxonomy as follows: First, we coded 
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by the knowledge dimension, subsequently by the cognitive process dimension. Not all goals were 
easy to reliably classify by the framework. For instance, it is sometimes unclear whether a goal 
belongs to the Remember or the Understand category, in particular for goals in the Procedural 
knowledge category. In these situations, we used the replies to additional questions (in particular Q4) 
to look for indicators on how to classify the goal. We also intended to use Sullivan’s framework to 
analyse goals given as replies to Q6, but here the replies were (with very few exceptions) either blank, 
or belonging to the last of the five categories (general aspects of pedagogy). Thus, we concluded that 
this question did not shed light on the research question, and we include no analysis of the replies. 

Because of the methodological weaknesses in the study, we need to be careful when addressing the 
data. Nevertheless, we can view the results as preliminary results, initiating discussions and indicating 
directions of future research. 

Results 
The complete results of the analysis are presented in Table 1 (Q2) and Table 2 (Q4). From the analysis 
of Q2 (the goals), the most prominent findings are a focus on understanding and a lack of higher-
level goals. Regarding Q4 (the mathematical ideas), the analysis reveals a vague/missing description 
of mathematical ideas. All teachers except two state that they would present the goals to their students 
before the class. 

 The cognitive process dimension 

The knowledge dimension 1. Remember 2. Understand 3. Apply 4. Analyse 5. Evaluate 6. Create 

A. Factual knowledge 2      

B. Conceptual knowledge 1 10 2    

C. Procedural knowledge 6 13 6    

D. Metacognitive knowledge  4     

Other 6 

Table 1: Revised Bloom’s Taxonomy table. Number of goals in each intersected category 

A focus on understanding 

Of the 50 goals that were analysed, 27 goals – more than half of the goals – were found to belong to 
the Understand category. Examples include “understand fractions as a part of a set” (Understanding 
conceptual knowledge; the knowledge at stake can be identified as the set model for fractions) and 
“The students should learn addition with regrouping” (Understanding procedural knowledge; the 
respondent states in reply to Q6 that no algorithm will be given, but that the work builds a fundament 
for a later understanding of the standard algorithm). In contrast, there are few goals identified in the 
Remember category. 

A lack of higher-level goals 

By “higher-level”, we mean the three upper categories in the cognitive dimension; Analyse, Evaluate 
and Create. No goals were found to fit within these categories. The “highest” category we found 
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examples of in our analysis were C3, Applying conceptual knowledge. In this category, any method 
mentioned for the given procedure is subject to the students’ exploration, or there is no method given 
at all. One example, with a given method, is “that the students should get experience with using 
strategy with ‘friendly numbers’ in computing”. With a particular idea highlighted in the reply to Q4, 
this goal could belong to category C4, but no such idea is stated. 

Category Number of replies 

1. A mathematical idea within the topic 8 

2. An element of a hypothetical learning trajectory 8 

3. A sub-topic of the larger mathematical topic 7 

4. A statement which could apply to most other topics and not specifically an important idea 
tied to the particular topic 

12 

5. A statement which describes aspects of pedagogy and does not particularly address content 3 

Missing 11 

Uncategorised 1 

Table 2: Sullivan et al.’s framework. Number of replies in each category 

Vague/missing description of mathematical ideas 

As Table 2 shows, only 16 of the 50 analysed replies fall into the two top categories in Sullivan et 
al.’s framework. Eleven of the teachers do not state a mathematical idea at all. Examples of category 
1 and 2 include “the relationship between division and multiplication” and “understanding that 
decimal numbers consist of parts that are less than one whole” (category 1); “strategy thinking – how 
to find fourths and eights – focus on halving” and “converting to correct unit of measurement before 
computing” (category 2). Examples from category 3 are “friendly numbers” and “the decimal number 
system”. In category 4, we find “focus on exactness and using a sketch figure”, in category 5 “more 
than one way leading to the target”. The uncategorised reply is “show a way to do it [‘it’ is division 
by one digit numbers]”, where we do not know whether the “show” regards the teacher or the students. 

Discussion 
We can assume from the preliminary findings that many teachers intend to teach for understanding, 
judging by their use of verbs like “understand”, “learn”, “see” and so on (the verbs attributed to the 
Understand category in Bloom’s Taxonomy). This is in contrast to Selling’s findings, where the goals 
were dominated by a focus on procedures and not understanding (Selling, 2017). One reason for this 
difference can be that we have analysed learning goals from the teachers’ lesson planning, while 
Selling analysed goals that appeared – explicitly or implicitly – during lessons. Nevertheless, the 
teachers’ focus on students’ understanding is an uplifting finding. As terms like “understand” and 
“learn” are ambiguously used in pedagogics and mathematics education research, more information 
is needed in order to get a more detailed picture of the teachers’ use of such words. Yet, it is tempting 
– from the researchers’ point of view – to connect the idea of “understanding” to a focus on the 
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mathematical ideas underpinning what is to be understood. Here, we note an intriguing discrepancy 
between the emphasis on understanding in the learning goals and the vague/missing description of 
mathematical ideas. 

When discussing the teachers’ seemingly disappointing reports on mathematical ideas, it is necessary 
to return to the methodological problem we encountered when wording Q4 in the questionnaire. 
Because we wanted to elicit information about the teachers’ view on mathematical ideas, we ended 
up using a term – mathematical idea – that seemed unfamiliar and confusing to the pilot respondents. 
As mathematicians, we may have assumed that the meaning of the term is evident. However, a brief 
search in literature reveals that very few papers using the term (or similar terms, like “big idea”) 
actually define it. An exception is the in the German-speaking tradition, where mathematics educators 
use “fundamental ideas” to guide their mathematics teaching (see Vohns, 2016), but this is – from 
our experience – not familiar to the Norwegian mathematics education community. Interestingly, we 
find traces of a similar problem in Sullivan et al.’s paper (2012). In their study, they asked the teachers 
“what is the most important idea that you will focus on for that topic”, assuming that the teachers 
would interpret “idea” as “mathematical idea”. When the responses showed that this was not always 
the case, the authors conclude that “[t]he fact that the important idea in the teaching of a forthcoming 
mathematical topic in the mind of a teacher might not be mathematical is revealing in itself” (Sullivan 
et al., 2012, p. 468).  

Following this discussion, we infer that we cannot conclude whether we have found a problem with 
the teachers’ level of precision (cf. Askew, 2008), with the teachers’ own mathematical competence, 
or with the use of a term that is understood differently by the researchers and by the teachers. To 
ensure the validity of further studies, such terms should be avoided. Other approaches (like 
interviews) can help to distinguish the teachers’ mathematical focus when writing learning goals.  

When it comes to the third finding, the lack of higher-level goals, there is also a potential explanation 
due to the same issue. The teachers’ replies to Q2 were partly analysed based on their reply to Q4. 
Thus, it is possible that some goals were misjudged due to our use of the term “mathematical idea”. 
At the same time, many goals were easy to analyse without the need to consider Q4. Based on this, 
the preliminary findings indicate the same trend that has been found in Denmark, i.e. that the focus 
on visible learning goals can lead to more focus on skills and less on competences (Hansen, 2016). 
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The purpose of this study is to explore how a mathematics teacher contributed to a classroom design 
research and how this contribution promoted student learning and the establishment of students’ 
mathematical practices of linking composite units and iterating linked composites, which is the basis 
for proportional reasoning. In this classroom design research study, a classroom learning trajectory 
and related instructional sequence were formulated based on the theory of Realistic Mathematics 
Education and implemented by the teacher. Findings showed that the teacher contributed to the 
design research in each phase, and her contributions promoted students’ mathematical practices 
regarding linking composite units and iterating composite units. 

Keywords: Realistic mathematics education, proportional reasoning, classroom design research.     

Introduction 
Proportional reasoning lies at the heart of many mathematical structures, especially those included in 
the primary and middle school mathematics curricula (Lesh, Post, & Behr, 1988). However, several 
studies reported students’ difficulties and misconceptions in proportional reasoning. These 
difficulties are said to have stemmed from the fact that proportional reasoning instruction is 
superficial and limited since it is conventionally referred to as solving missing-value problems with 
procedural algorithms, such as cross multiplication (Lesh et al., 1988). Thus, it is clear that there is a 
need for improved instruction for proportional reasoning.  

Simon (1995) was a pioneer in proposing the development and use of Hypothetical Learning 
Trajectories (HLT) for improving instruction in such a way that lessons are designed in line with 
related research findings on student thinking and learning. Stephan (2015) introduced the construct 
of a classroom learning trajectory, which is referred to as anticipated classroom mathematical 
practices that might evolve over the course of an instructional sequence. Using Stephan’s approach, 
we conducted a classroom design research project, in which we formulated a. classroom learning 
trajectory and related instructional sequence for ratio and proportion for seventh grade based on the 
theory of Realistic Mathematics Education (RME) since working in realistic contexts can be an 
instructional aid for meaningful learning and reinventing mathematical ideas (Gravemeijer, 1994). 
While the larger study concentrates on these issues, we particularly focus on the teacher’s role in 
classroom design research for the big ideas of linking composite units and iterating linked composites 
in this paper. The research questions addressed are: 

1. How does a seventh-grade math teacher participate in the preparation/design phase of a classroom 
design research study? How does this contribution promote the emerging and establishment of 
mathematical practices regarding linking composite units and iterating linked composites? 
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2. How does a seventh-grade math teacher support the emerging and establishment of mathematical 
practices regarding linking composite units and iterating linked composites through the 
implementation of the instructional sequence? 

Methods 
Design research studies have gained importance in the last two decades and have been conducted for 
various goals in educational research area from designing and examining innovations, such as 
activities, institutions, interventions, or curricula (Design-Based Research Collective, 2003). This 
study is a classroom design research in which an instructional sequence is formulated, tested, and 
revised by a research team including teachers and university members (Stephan, 2015). A classroom 
design research cycle entails three phases as design, implementation, and analysis (Stephan, 2015).  

This classroom design research study was conducted in a seventh-grade classroom in a public school 
located in a rural area in the capital city of Turkey. Hence, most of the students had low 
socioeconomic statuses. The students had been instructed on calculating the ratio of two quantities 
and finding different values of the quantities that are directly proportional in sixth grade. They had 
not been instructed on ratio and proportion in seventh grade prior to the study. The teacher was female 
with 10 years of experience in teaching in seventh grade. She was selected since she adopted student-
centered teaching practices and was willing to cooperate with the researchers in every part of the 
study. Even though she had not been trained specifically before the study, she was informed about 
the purposes of the study and the literature on proportional reasoning, RME, and HLT.  

Instructional Sequence 

The approach that undergirds the design of the proportional reasoning instructional sequence is RME. 
The roots of RME are based on the idea of mathematics as a human activity. Freudenthal (1968) 
stated that people need to see mathematics not “as a closed system, but rather as an activity, the 
process of mathematizing reality and if possible even that of mathematizing mathematics” (p. 7). 
Within the context of RME studies, students are guided to reinvent mathematical ideas through 
organizing realistic contexts that are didactically rich (Gravemeijer, 1994). In addition, students are 
encouraged to create and reason with models and mental imagery associated with the physical tools, 
inscriptions, and tasks they employ.  

In the instructional sequence, which was developed for the students in the USA, the instruction begins 
with a story about a bad dream in which aliens were chasing the teacher and a bar of food was enough 
to satisfy three aliens. In this way, students were encouraged to link together one food bar with three 
aliens and knew that if this relationship was broken, there would be an alien attack. As students solve 
problems, they are encouraged to organize their pictures or numbers, and eventually a ratio table is 
introduced as an efficient way to keep track of how the two quantities may scale up or down. For the 
purposes of this paper, we will not describe the remainder of the instructional sequence because we 
focus our analysis only on the first part, linking composite units and iterating linked composites. For 
more information of the sequence and the materials themselves, see https://cstem.uncc.edu/sites/ 
cstem.uncc.edu/files/media/Ratio%20T%20Manual.pdf 
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A small part of the HLT that is related to this study can be seen in Table 1 below. The Big Idea 
column describes the learning goal for that portion of the instruction, and the Tools/Imagery column 
outlines the specific inscriptions and/or notations that are intended to support the corresponding 
learning goal. The third column, Possible Topics of Discourse, is meant to guide teachers in the types 
of questions or mathematical conversations that are important for that section of the sequence. The 
HLT for the entire proportional reasoning sequence can be reached via the same link.  

Big idea Tools/Imagery Possible Topics of Discourse 

Linking 
composite units 

Connecting pictures of aliens to 
food bars   

If the rule is 1 food bar feeds 3 aliens, the rule 
can’t be broken if we add more food bars  

Iterating linked 
composites 

Informal symbolizing (e.g., tables, 
two columns of numbers, pictures of 
aliens and food bars)  

How students keep track of two quantities 
while making them bigger  

Table 1: A small part of the HLT related to linking and iterating  

Data collection 

Cobb, Confrey, Lehrer, and Schauble (2003) stress that the units of analysis in a design research are 
the key elements of a learning environment and these are:  

the tasks or problems that students are asked to solve, the kinds of discourses that are 
encouraged, the norms of participation that are established, the tools and related means 
provided, and the practical means by which classroom teachers can orchestrate relations 
among these elements. (p. 9) 

Therefore, in this study, it is crucial to analyze the teacher’s contribution to each phase of the study 
and how her contribution had an impact on the emerging and establishment of students’ mathematical 
practices of linking and iterating. The related data were collected through the videotapes of class 
sessions, audiotapes of teacher interviews and research team meetings, and analysis of student work. 

Data analysis 

The teacher’s contribution to the design research was documented by an analysis of the written 
transcripts of her interviews and of the design team meetings. These qualitative data were analyzed 
by an interpretative framework and a related analytic approach that focuses on the “meanings made 
both by the social actors and by the researcher” (Miles & Huberman, 1994, p. 8). Students’ 
mathematical practices were analyzed using Stephan and Rasmussen’s (2002) adaptation of the 
Toulmin’s (1969) argumentation model. After classroom argumentation process was coded as claim, 
data, or warrant, the ideas that emerged were noted. The criteria by Stephan and Rasmussen were 
used in order to see what mathematical ideas became taken-as-shared (or established) by the 
classroom community. For the last part of the analysis, these taken-as-shared ideas were organized 
around common mathematical activities, which were later named as classroom mathematical 
practices. Seven mathematical practices were obtained in the larger study; however, we focus only 
on the first mathematical practice in this study.  
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Findings 

Findings are presented by describing the teacher’s contribution to each phase of the study with 
specific examples. In addition, the first classroom mathematical practice regarding linking composite 
units and iterating linked composites is explained with details in order to reveal how the teacher’s 
contribution to the design phase was realized in the classroom and had an impact on the establishment 
of students’ mathematical practice of linking composite units and iterating composite units.    

Teacher’s contribution in the preparation/design phase  

The initial phase of the classroom design research is mostly about reviewing literature, finding a 
realistic and engaging context, and hypothesizing a classroom learning trajectory. Literature review 
was conducted by the design team on teaching and learning of ratio, proportion, and related concepts 
and instructional activities and tools. In addition, the teacher was interviewed regarding her 
experiences on the learning and teaching of related topics and curriculum. Even though an already 
developed and tested trajectory was available, a number of adaptations and modifications were 
needed for Turkish students. For instance, the context was changed from alien-food bars to fish-food 
bars in order to make it more experientially real for Turkish students. Moreover, pictures were added 
to some of the questions, and quantities in some of the problems were changed in order to improve 
the sequence and the HLT. While deciding on these changes, the design team was engaged in 
anticipatory thought experiments in which they tried to imagine possible classroom mathematical 
discourse, which were helpful in shaping the design and coming up with conjectures about the 
teaching and learning of the topic. Even though the teacher had an active role in all of this process, 
we represent below a number of substantial teacher suggestions in order to reveal the unique value of 
her contribution to this phase. To begin with, the teacher suggested that pictures of food bars and/or 
fish were included for some problems in order to visually support students’ processes of linking units 
and iterating composite units. In addition, she suggested that some values in the questions should 
altered in a way that it was possible to make connections between questions. For instance, the question 
“how many fish can be fed with 5 food bars?” was followed by “how many fish can be fed with 9 
food bars?” and “how many fish can be fed with 10 food bars?” in order to support the use of build-
up strategies.  

Teacher’s contribution to the implementation phase  

The teacher launched the trajectory with the adapted version of the bad dream story in which her fish 
were making noise and attacking her since they were hungry. The teacher, then, asked students if they 
had pets and how they fed their pets. Students suggested that pets had to be fed with a certain amount 
of food each day: if they were underfed they would be hungry and if they were overfed they would 
get sick or even die from overfeeding. This was an on-action (unplanned) instructional move that laid 
the ground for students to make sense of why the rule could not be broken.  

In the first problem in the sequence, seven fish and four food bars were given, and the rule was one 
food bar for three fish. The question asked whether or not there were enough food bars for those fish. 
The sequence started with simple whole number ratio situation with pictures of both food bars and 
fish in order to help students link the composites concretely. Even though those questions were easy 
for the students, starting with those questions made it possible for the teacher to capitalize on taking 
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three fish as a unit and linking this unit with one food bar. This was also helpful for students to group 
the three fish and link them with a food bar with arrows as given in Figure 1 below.   

 

 

 

 

 

Figure 1: Linking units by with arrows 

In the later problems, pictures of either food bars or fish were provided as suggested by the teacher. 
Whereas some students drew the pictures as in Figure 2a, some of them just wrote the corresponding 
number of fish numerically as in Figure 2b. Therefore, it was inferred that the teacher’s suggestion 
was helpful for students to make pictorial, numerical, and mental linking and iteration.  

 

After a few problems through which this link was established, scaling up problems were posed (e.g. 
How many fish can be fed with 5 food bars? with 10 food bars?). Pictures were not included in the 
problems in order to help students create mental images of composite units and the link. In their 
solutions, a number of students drew pictures of food bars and/or fish, and some used numerical build 
up strategies as illustrated in the figures 3a, 3b, and 3c below. This gave us evidence that the students 
reasoned with models and mental imagery, and associated those with the physical situation. 

 

 

 

After finding the answer for the number of fish that can be fed with nine food bars as 27, a student 
answered the following question that asked the number of food bars for feeding 10 fish immediately 
as 30 by building up on nine and 27. He explained his reasoning as “We found that nine food bars 
could feed 27 fish in the previous question. So, I added three to 27 and found that 10 food bars can 
feed 30 fish since the number of fish goes up by three…since one food bar can feed three fish.” 
Therefore, the teacher’s suggestion regarding changing numerical values helped students make 
connections and improve their understanding of the link between the number of food bars and fish.  

 

Figure 2a: Linking units by grouping  

 

  Figure 2b: Linking units with numerical values 

Figure 3a: Drawing pictures and 
linking with numbers 

Figure 3b: Drawing pictures 
and linking with numbers 

 

Figure 3c: Numerical build-up 
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Later on, after all the students explained their answers with pictorial and numerical strategies, the 
teacher took the opportunity to introduce a long ratio table in order to keep track of students’ 
iterations, organize information, and make calculations more easily. By using long ratio tables, 
students were able to make such interpretations as “When the number of food bars goes up (or down) 
by one, the number of fish goes up (or down) by three”. In the following instances, students started 
to use abbreviated build-up strategies where they did not add values one by one; instead, they made 
interpretations of the type “when the number of food bars is doubled (or tripled, quadrupled etc.) the 
number of fish is also doubled (tripled, quadrupled etc.)” as in Figure 4 below.  

 

 

 

Figure 4: Representation with abbreviated build up strategies 

After the one-to-three relationship was established among the classroom community, the instructional 
sequence was continued with different rules (e.g. 2-4, 2-3). When the rule was two food bars for four 
fish, a couple students used the given rule, whereas most of the students discovered that they could 
change the rule to one food bar for two fish. Below is a conversation in which students discussed 
about changing the rule when the question asked the number of food bars needed for feeding 12 fish:  

Student 1:  Six food bars are needed for 12 fish [claim] because I divided 12 by two. [data]  

Teacher:  Why did you divide 12 by two? [challenge] 

Student 1:  Because four fish can be fed with two food bars. [warrant] 

Student 2:  Then you have to divide by four, right? [challenge] 

Teacher: Why do you think you have to divide by four? [challenge] 

Student 2:  (Draws 12 circles to represent 12 fish and groups each four fish by a bigger circle) 
I grouped [the fish] by fours and obtained three groups [of four fish]. I know that I 
need two food bars for each group. So, I multiplied three by two [data] and obtained 
six. [claim] 

Student 3:  We changed the rule. If two food bars feed four fish, then one food bar feeds two 
fish. [warrant] So we divided each value by two. [data]  

Teacher: What does everyone think about this?  

Student 4: It is easily seen with the pictures (Linking one food bar with two fish as in Figure 
5). It is easily seen that one food bar feeds two fish. It is easier to use this rule. We 
can group fish by twos after we change the rule. [warrant]  

 

 

Figure 5: Changing the rule while preserving the link between the number of food bars and fish 
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As deduced from the figure and the dialogue, students changed the rule while preserving the link and 
the invariant relationship between the number of food bars and fish, which was an evidence of the 
strength of the link between food bars and fish. On the other hand, even though she did not use the 
term, Student 4 also referred to the concept of unit rate and how using unit rate makes calculations 
easier. Therefore, it could be deduced that including the pictures of fish and food bars as suggested 
by the teacher helped students to make sense of the ideas of equivalent ratios and unit rate.  

Following the above activities, problems with a non-integer ratio (i.e. two food bars for three fish) 
were included in order to strengthen students’ linking and iterating processes. At some point in the 
instruction, the teacher needed to communicate with the first researcher (participant observer in the 
classroom). While the students were filling in the table using the rule two food bars for three fish, a 
student asked if she had to fill in the table by building up by ones or by twos and threes. The teacher 
communicated with the researcher, and they decided that the tables had to be filled by building up by 
twos and threes. The teacher asked the student which way made more sense for her. The student 
replied that filling in the tables by twos and threes was meaningful since there would be decimal 
values while building up by ones and decimal values for the number of fish would not make sense.   

Teacher’s contribution to the analysis/revision phase  

Design research includes ongoing and retrospective analysis. As part of the ongoing analysis process, 
the teacher participated in the daily/weekly design team meetings that focused on how students were 
engaged with the tasks and the required revisions, which helped the teacher see whether or not the 
intended learning goals and practices emerged. The retrospective part of the analysis was conducted 
by the university members since they were trained in this area.  

Discussion and Conclusion 
The power of design research is that it blends theory, research, and practice. It is reported that teachers 
can benefit from classroom design research in such a way that they would be up-to-date research-
wise and experienced in developing/adapting tasks that would help students learn meaningfully 
(Stephan, 2015). The findings of our study have further shown that the teacher could contribute to 
classroom design research aiming at developing an instructional sequence and classroom learning 
trajectory for linking composites and iterating linked composites.  

The teacher contributed to the study and the establishment of students’ mathematical practices 
regarding linking units and iterating composite units by implementing the activities and the HLT in 
the pre-planned ways. The findings obtained by Toulmin analysis related to students’ participation 
behaviors of claiming and providing data/warrants for their claims and the documentation of 
mathematical practices showed that she contributed to the establishment of the mathematical practice 
of linking units and iterating linked composites. What is more, the teacher made a few on-action 
instructional decisions and communicated with the researcher in the implementation phase. Apart 
from implementing the instruction, the teacher contributed to the design research in the 
design/development phase by making suggestions on the necessary adaptations to the tasks and the 
HLT. However, it might not be obvious how substantially the teacher contributed to the design phase 
in this study. It should be noted that the analysis included the teacher’s contribution only in the first 
part of the HLT and the instructional sequence, which were the anchor that laid the ground for the 
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rest of the activities. Since it was the anchor activity it was well developed, and the teacher did not 
need to make big modifications. It is anticipated that the teacher’s contribution to the design phase 
would be more substantial in the rest of the activities. Still, we claim that teachers can be valuable 
sources in designing instruction since teaching plans should be informed by students’ mathematics 
(Steffe, 1991) and teachers are supposed to know their students. Lastly, the teacher contributed to the 
analysis phase by participating in the daily/weekly design team meetings that focused on enhancing 
student learning and required revisions. Engaging teachers more in classroom design research that 
focuses on a variety of mathematical topics could give more information about the contributions of 
the teachers to each phase of the studies.  
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teacher-initiated and student-initiated interactions 
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This paper explores teachers’ treatment of errors as they occur both within and outside of Initiate-
Response-Evaluate (e.g., Cazden, 1988) interactions. Data are drawn from a classroom-based 
video study in England, involving three participating secondary mathematics teachers and six 
classes. This paper focusses on one of those teachers, whose lessons contained the widest range of 
treatment of errors. This included facilitating extended peer-to-peer turn-taking and bald negative 
evaluation of student contributions; the later appeared to be atypical, both in relation to the other 
teachers in this study and the wider literature. Analysis showed, for this teacher, indirect evaluation 
of errors was associated with teacher-initiated interactions, whereas bald negative evaluation was 
associated with student-led exchanges. Here, consideration is given to the interactional patterns 
related to the treatment of errors, and the potential impact on learning opportunities for students.  

Keywords: Classroom norms, errors, mathematics education, misconceptions. 

Introduction 
Patterns of classroom talk vary, but Lefstein and Snell (2011), amongst other, report that in Anglo-
American schools whole-class talk is typically controlled by the teacher. Moreover, a large 
proportion of interactions are in Initiate-Response-Evaluate (IRE) format, that is to say these are 
initiated by the teacher asking a question, which is followed by a student response and concluded 
with another teacher-turn, in which the mathematical validity of the student contribution is 
evaluated (Cazden, 1988). The role and treatment of mathematical errors has been reported in 
previous studies (e.g., Steuer, Rosentritt-Brunn, & Dresel, 2013), but the ubiquitous nature of IRE 
interactional patterns means that many of these discussions draw on evidence from this type of turn-
taking exchange. Other types of interaction patterns, such as talk initiated or led by students, are 
less common in many classrooms (Edwards-Groves, Anstey, & Bull, 2014), but a move away from 
univocal teacher talk has been associated with enhancing learning opportunities (Alexander, 2004; 
Edwards-Groves et al., 2014). This paper focusses on one secondary school teacher in England and 
the shifts in turn-taking patterns that are seen when he teaches two classes. In particular, this study 
analyses the treatment of errors as they arise in IRE exchanges and student-initiated turns, with the 
aim to explore the leverage of errors to develop productive talk in different types of interaction.  

Theoretical Framework 
The use of ‘error’ varies between studies; some use the term to indicate anything treated as such by 
the teacher (e.g., Ingram, Pitt, & Baldry, 2015), whereas others use ‘error’ when they identify an 
issue with a mathematical contribution (e.g., Heemsoth & Heinze, 2016), although it is supposed 
there is considerable overlap between these two conditions. Whilst research has highlighted the role 
errors can play in providing learning opportunities (Bray, 2011), there is evidence a productive use 
of errors is not a routine part of many teachers’ pedagogical practice (Ding, Li, Piccolo, & Kulm, 
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2007). The potential conflict between errors being seen as learning opportunities and the notion that 
errors should be avoided has been discussed. For instance, Swan (2001) argues some teachers avoid 
errors because they believe students might be confused by the discussion and erroneously remember 
the error rather than the correct solution. The notion that errors are embarrassing has been used to 
justify the avoidance of errors and to explain why both teacher and students take mitigating actions 
when they do occur (Pekrun, 2009). However, work by Steuer et al. (2013) has shown that the 
classroom climate and students own goal orientations have a significant effect on the affective 
reaction of students to errors.     

Questions permeate most aspects of whole-class talk and hence are often the precursor to 
mathematical errors. In many classrooms, IRE sequences dominate whole-class interactions, being 
described as the ‘default’ setting for many teachers (Resnick, Michaels, & O’Connor, 2010). Whilst 
questions can play a variety of roles, from developing student understanding through to a tool for 
drawing attention to mathematically important features (Mason, 2000), within IRE interactional 
sequences the questions asked are often more limited in scope (Edwards-Groves et al., 2014). 
Teachers frequently ask questions that have a single expected response, with a shared understanding 
that the teacher knows the answer and that they will evaluate the accuracy of the student’s response 
in the third turn. Within this type of turn-taking, correct solutions are usually acknowledged 
immediately by the teacher, whereas errors are rarely directly acknowledged as such (Ingram et al., 
2015). When errors do occur in student responses, the negative evaluation in the third turn is often 
communicated indirectly, through teachers’ pedagogical actions, such as redirecting the question to 
another student, asking follow-up questions or other actions to draw attention to the nature of the 
problem. Indeed, the pedagogical moves taken to avoiding direct evaluation are often directed 
towards allowing students to undertake additional mathematical work in subsequent turns, including 
self or peer correction of the error (Ingram et al., 2015). However, whilst there are examples of 
learning opportunities being created after an error has been identified in an IRE sequence, there is 
also evidence that teachers tend to reduce the mathematical load in subsequent turns and may 
‘funnel’ students towards particular solutions (Jones & Tanner, 2002), thereby limiting the learning 
opportunities made available. From a conversation analysis perspective, the avoidance of direct 
negative evaluation would imply that errors are embarrassing and should be avoided (Seedhouse, 
1997), but Steuer et al. (2013) argue that the lesson context is more complex, with students’ 
engagement shaped by their reading of  the error climate of the classroom. 

This study seeks to contribute to the understanding of the treatment of errors through the 
exploration of their occurrence in different patterns of whole-class interactions.  

Methodology  
This paper draws on data from a classroom-based video study in England. As part of a qualitative 
case study in the interpretative tradition, eighteen secondary mathematics lessons have been 
observed and recorded by this author. Three teachers participated and for each teacher two classes 
with different attainment profiles were observed. Lessons were recorded with two static video 
cameras and lesson artifacts, such as students’ work, were collected. Semi-structured interviews 
were conducted with the teachers before and after each lesson and lesson planning documents were 
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obtained. Audio data from each lesson was transcribed and collated with copies of mathematics 
written or projected in the shared space of the class whiteboards. The initial coding of the 
transcripts classified activities as either mathematically relevant or not, with episodes in the former 
category being subject to further scrutiny. As part of the wider study, the Orchestration of 
Mathematics Framework (OMF) has been developed to capture teachers’ pedagogical moves and 
the potential impact this has on the mathematics made available to learners (Baldry, 2017). The 
further analysis of the mathematically relevant episodes involved an iterative process of coding 
interactions against this conceptual framework and cross-referencing with other data sources, such 
as teacher interviews and student work.  

A key element of the analysis was the nature of interaction patterns in class-level talk, including the 
treatment of errors, although it is acknowledged that the interpretation of interactions is predicated 
on understanding the classroom culture (Larsson, 2015). The notion of classroom norms (Cobb, 
Stephan, McClain, & Gravemeijer, 2001) has been drawn on to establish whether interactions are 
typical or atypical, and thereby allow inferences beyond the particular occurrence, but this is limited 
to what is discernible at a whole-class level. This paper focusses on one teacher, Sam, and four 
lessons from two classes, selected when the analysis highlighted distinct patterns of interaction in 
relation to errors. These have been chosen because they do appear to be atypical, both in relation to 
the other two teachers in the study and the wider literature. Here, ‘errors’ are taken to be students’ 
contributions that include a mathematically incorrect statement, but these occurrences were also all 
treated as errors by Sam. The practices of one teacher cannot be generalized to others, and indeed it 
could be argued that the analysis of a limited number of lessons in a study of this size may not 
provide a sufficiently representative picture to allow comparisons (Staub, 2007). However, I believe 
that a consideration of these more atypical behaviours has the potential to contribute to our wider 
understanding of the relationships between interactional patterns of whole-class talk, the treatment 
of errors and the learning opportunities for students.   

Findings  
Across all lessons, whole class-level talk represented about one third of the lesson time, and IRE 
interactional patterns accounted for at least two thirds of this talk. Most questions asked by Sam had 
a limited range of appropriate mathematical responses and about 20 percent were ‘simple’, that is to 
say students should have been able recall the answer immediately and without effort. About 75 
percent of IRE exchanges were positively evaluated, a rate that was relatively stable across the 
lessons. The majority of the remaining exchanges were coded as containing negatively evaluations, 
although there were a few ambiguous cases. The interactional patterns in IRE exchanges across 
both classes were very similar. For example, when discussing the rules of indices, the following 
IRE interactions occurred, but similar exchanges were regular occurrences in all lessons:   

30 Sam: What does two to the power four mean 
31 Student 1: Sixteen 
32 Sam: What does it mean 
33 Student 1:  Oh it means two times two times two times two 
34 Sam: Excellent (.) good  
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⁞ 
53 Sam: So two the power five times two to the power four (.) what’s that 
54 Student 2: Two to the power nine  
55 Sam: Two to the power nine (.) OK (.) what is (.) three to the power four times 

two to the power three (…) 
56 Student 3: Is it six to the power seven 
57 Sam:  (..) what we can’t do (.) really easily (..) we just can’t add those powers this 

time (..) Tom  

Extract 1: Positive and negative evaluation in IRE sequences 

Most questions asked by Sam had a limited range of appropriate mathematical responses (e.g., line 
53) and when the questions were more ambiguous his reaction in the third turn indicated a particular 
response was sought (e.g., line 32 and 34). Acceptable answers were indicated in two main ways. 
First, they were often explicitly acknowledged, with expressions such as “yep”, or by the inclusion 
of a positive indication of quality, such as “excellent” (e.g., line 34). Second, Sam regularly 
repeated a student’s response (e.g. line 55), and the analysis indicated there was a taken-as-shared 
understanding that this also indicated an acceptable response. Negative evaluations occurred when 
students’ responses contained mathematical errors (e.g., line 56), and when there was no error per 
se but the response was deficient in some way (e.g., line 31). For example, in line 33, the student 
recognises where his response does not meet Sam’s requirements and self-corrects. In line 56, a 
student offers a mathematically incorrect response; Sam paused before offering some indication as 
to location of the error and then nominated another student who had their hand up to answer.  

One notable shift away from IRE sequences was when there were sequential student turns. Whilst 
Sam sometimes nominated students to answer questions, it was also common practice for students 
self-nominate by calling out. In both classes, there were instances where different solutions were 
given before Sam responded. There did, however, appear to be differences in how the interactions 
were controlled by Sam when both errors and a correct solution were present. In particular, in the 
higher attaining class there were eight occasions where there were extended peer-to-peer exchanges. 
For example, when Sam asked for the value of 𝑎𝑎 in 𝑘𝑘7 ÷ 𝑘𝑘7 = 𝑎𝑎 the following occurred:  

244 Students: 𝑘𝑘 
245 Student 1: Yes its 𝑘𝑘 isn’t it 
246 Student 2: One 
247 Student 3: ‘Cause seven divided by seven is one  
248 Student 4: Seven minus seven is zero 
249 Student 3: No isn’t it zero 
250 Student 5: 𝑘𝑘 divided by 𝑘𝑘 is 𝑘𝑘  
251 Student 2: One  
252 Student 6: I think it’s zero 
253 Student 2: No it isn’t its one guys ok its one 
254 Sam:  Er vote then (.) vote for zero 

Extract 2: Class A multiple student contributions 
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There were no discernable responses from Sam after a number of students had offered “𝑘𝑘” (lines 
244 & 245) or the correct reply of “one” (line 246). The students continued to self-nominate by 
calling out, although the students were not necessarily responding to the immediately preceding turn 
(e.g., line 249). After Sam called for a vote for zero or one, started in line 254, he reverted to IRE 
sequences, where he focused the interactions on the mathematically correct answer by asking about 
situations related to 𝑎𝑎 𝑎𝑎⁄ , where 𝑎𝑎 was a range of natural numbers; some of these questions would 
have been simple for students to answer, such as “four divided by four”.  

In the lower attaining class, there were twelve occasions when two or three students self-nominated 
and called out answers that included an error before Sam replied. For example:  

308 Sam: What is eight to the power one 
309 Student 1: One 
310  Student 2: Eight 
311 Sam: Eight (.) well done folks 

Extract 3: Class B multiple student contributions  

In these cases, all the students appeared to be responding to Sam’s original question. In the nine 
occasions where responses include both an error and a correct response (e.g., lines 309 & 310), Sam 
positively evaluated the correct response and offered no discernable reaction to the error. The 
remaining three occurrences only contained errors and were followed up by further IRE exchanges.  

The other notable variation was the explicit negative evaluation of errors. In whole-class 
discussions, there were twelve occurrences of Sam using a bald “no” in class B, the lower attaining 
class, with one in the higher attaining class. In all bar one case an element of correction was 
included in the turn containing negative evaluation and the student did not take the subsequent turn. 
Three quarters of occurrences arose outside of IRE interactions, including the one case from class A 
when students were offering prepared explanations. Towards the end of the discussion about 
22 × 34  the following exchange occurred in class B: 

168 Sam: If I tried to do (..) two squared plus three to the power of four that’ll (.) sorry 
times three to the power four (.) is two times two times (.) three times three 
times three times three (..) I can physically work it out (.) I can work out 
what the number is but I can’t simplify it like we do in these ones (..) 
because they’re different numbers   

  [writing: 22 + 34 = 2 × 2 × 3 × 3 × 3 × 3, pointing at common bases in earlier 
examples]    

169 Student: Sir can’t you do five to the something like three add two equals five and you 
do five to the power whatever 

170 Sam:  No because look we can’t do to the power five or the power six because 
we’ve got these threes and these twos and they’re different numbers and you 
can’t combine them (..) 

Extract 4: Bald negative evaluation 

In line 168, Sam concluded his turn with a statement rather than a clearly defined question, so the 
comment made in line 169 was coded as student-initiated. Sam took the following turn (line 170); 
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he immediately gave a bald “no” and proceeded to offer an explanation that appeared to be directed 
at correcting the student’s comment. The student did not take the subsequent turn.  

Discussion 
In common with many other studies (e.g., Resnick et al., 2010), the IRE sequence was the dominant 
form of whole-class interaction for both classes. Moreover, within these IRE exchanges, Sam’s 
treatment of errors typically conformed to the well-reported approach of indirect negative 
evaluation in the third turn (e.g., Ingram et al., 2013). These structures allowed Sam to shape the 
focus of the interactions and provided opportunities for students to undertake further mathematical 
work to correct errors. The focus on the correct solution and the use of simpler questions after errors 
could be seen as reducing or removing the mathematical learning opportunities; alternatively, 
considered as a whole, they could be seen as serving to highlight the underlying mathematical 
structure. In these situations, the responsibility to correct errors lies at least partially with the 
students, but the arbiter of mathematical correctness resides with Sam.   

When other types of whole-class talk were considered, different interactional patterns emerged, 
including differences between classes. In both classes there were instances where contradictory 
solutions were called out by students in response to a question from Sam. In class A, a regular 
occurrence was for peer-to-peer exchanges to continue beyond multiple replies to Sam’s original 
question and extended sequences of peer-to-peer turns were formed. The established norm was that 
if Sam did not respond verbally when the evaluative third turn would have otherwise of occurred, 
then peer-to-peer turns were allowed. Whilst some later students turns appeared to be responding to 
Sam’s original question, and many were simply making statements of their own position, students 
also offered justifications or engaged with other students’ comments. For example, in Extract 2, line 
247, the third student added a justification for “one”, even though in this case the reasoning was 
faulty. Sam eventually took a turn and control of the interactions (e.g. extract 2, line 254); these 
peer-to-peer exchanges were all followed by IRE sequences, which focused the interactions on the 
correct solution; errors made in the peer-to-peer exchanges were rarely mentioned or interrogated. 
For instance, after the vote that followed extract 2, Sam constructed an IRE sequence around  𝑎𝑎 𝑎𝑎⁄  , 
where 𝑎𝑎 was a range of natural numbers, but the potential origins of zero were not discussed, such 
as attending to the exponents of 𝑘𝑘7 ÷ 𝑘𝑘7 = 𝑘𝑘𝑎𝑎 or thinking 𝑘𝑘𝑎𝑎 = 0. In these student-led exchanges, 
students had the opportunity to consider alternative solutions and some took the opportunity to 
articulate their reasoning, argue for their position or to challenge others; a shift in accountability, 
albeit briefly. However, the resolution of the debate was conducted through the more typical IRE 
exchanges with the final arbitration residing with Sam.  

When class B is considered, there did appear to be similar potential starting points that had led to 
the peer-to-peer turns in class A. For example, extract 3 was one of nine occasions where both 
incorrect and correct responses were offered in response to Sam’s question, but none of these 
extended to further peer-to-peer turn taking. Instead, Sam took control of the exchanges at an earlier 
stage and drew immediate attention to the correct answer through positive evaluation.  

The explicit negative evaluations of students’ contributions were predominantly associated with 
class B and student-initiated comments. As in extract 4, they occurred during whole-class talk when 

Thematic Working Group 19

Proceedings of CERME11 3593



 

 

the students self-nominated to take the next turn and without a direct question being asked by Sam. 
In a previous study, Ingram et al. (2015) found explicit negative evaluations by the teacher, and the 
associated corrections, occurred when there was an issue with communication of ideas rather than 
with the substance of the answer, although these appeared to relate to IRE sequences. In contrast, in 
this study explicit negative evaluation were associated with key conceptual issues, and occurred 
outside of IRE exchanges. For instance, in extract 4, the bald “no” followed on from a student 
misapplying a rule of indices by attempting to combine powers with different bases. The corrections 
associated with the “no” allowed Sam to redirect the focus of the interactions back to his chosen 
approach within one turn, but removed the opportunity for students to correct their own or their 
peer’s error. One possible explanation for the correlation between bald negative evaluations and 
student-initiated comments is that these, by their nature, have not been planned for in the same 
manner as responses to questions within IRE sequences As such, they were not an integral part of 
Sam’s pedagogical goals; the bald evaluations and corrections allowed a swifter realignment with 
those goals. From a conversation analysis perspective, a bald evaluation would carry the message 
that making an error is not embarrassing. However, the benefit of this potential acceptance of errors 
would have to be considered alongside the management of the pedagogical trajectory away from 
student-initiated comments, which could be read by students as devaluing their contributions. 

Conclusion  
This paper seeks to complement existing research on the treatment of errors, in particular in relation 
to errors that occur outside of IRE sequences associated with more student-led talk. Here, within the 
extended peer-to-peer exchanges, students had the opportunity to consider and challenge alternative 
solutions. However, for this teacher at least, the resolution of those questions relied on the more 
common IRE exchanges, thereby revalidating the teacher as the arbiter of correctness. The potential 
tensions between the interactional message that errors are to be avoided and the positive role they 
can take in learning have been discussed in previous studies. Here, Sam’s use of bald negative 
evaluations has raised an alternative question; the possibility of a positive interactional message that 
errors are a natural part of talk, set against the potential loss of learning opportunities and 
diminishment of the value of student contributions. It is hoped that by raising awareness of these 
interactional structures, teachers could make informed choices about the different routes available 
to their treatment of errors and the potential impact on student learning. 
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This paper uses analysis of shared video data to discuss teacher responses to public student apparent 
error. Drawing upon conceptions of student thinking and theories of agency, authority, and 
mathematical identities, we argue that certain ways of responding to public student apparent error 
have the potential to elevate student thinking and empower students with mathematical agency, 
authority, and standing. We also suggest that such teaching practices may be a high-leverage site to 
develop equitable mathematics teaching. 

Keywords: Mathematical knowledge for teaching, teaching practices, positioning, agency, authority. 

Introduction 
Maria’s 7th grade class is beginning to learn arithmetic with integers. She is called to the board to 
show her solution to the subtraction problem, 38 – 52. Maria writes and says the following:  

  3 8  “8 take away 2 is 6”  

–5 2 “3 take away 5 is –2”  

–2 6  

Is Maria right? What is there to understand here about place value, with negative numbers? How 
might the teacher respond to Maria? And what effect will this have on her? 

These questions, about this and about countless other similar scenarios, are the object of our study. 
We are concerned here with the interactions of the mathematics, the student’s thinking and standing, 
and the impact of the teacher response on all three. We are not proposing that there is a “right” teacher 
response, but we do argue that the response is consequential for the individual student’s learning and 
standing, as well as for that of the collective. Moreover, much knowledge and insight goes into 
understanding the range of possible responses and their consequences. In particular, what 
mathematical knowledge for teaching, what knowledge of student thinking, and what cultural and 
psychological sensitivities might be involved?  So, our research question is: 

What kinds of teacher responses to public student apparent error can help cultivate students’ 
mathematical agency, authority, and standing? 

Student mathematical productions are rarely flawless. Overt error may distract teacher attention from 
otherwise robust reasoning. A student’s lack of technical vocabulary may cloud insightful conceptual 
expression. Such apparent flaws happen with all students, but they are understandably common 
among students who are educationally disadvantaged, because of race, ethnicity, poverty, language, 
etc. For this reason, we feel that our research question matters for equitable instruction. 
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The title refers to a core task of teaching. Three terms there – “public,” “apparent error,” and 
“equitable” – deserve comment. “Public” indicates that this is about collective learning and norm 
setting, more than bilateral teacher-student transactions. The student work and teacher response 
communicate to the whole class, not just to Maria. “Apparent error” draws attention to the teacher’s 
perception without evaluating the student’s thinking. Rougée (2017) has studied teacher responses to 
“apparent student error,” but her study explored the teacher stress and anxiety this can precipitate. As 
indicated above, we believe that our focus is a high leverage site for “equitable teaching practices.” 
The latter are often described in terms of inclusive classroom culture and participation structures. Our 
interest focuses further on how equitable practices intersect with content.  

Our method is to first examine records of practice (video and other artifacts), to generate hypotheses 
about teacher responses to public student apparent error that can either cultivate or degrade students’ 
mathematical agency, authority, and standing. Robust conclusions of this kind will ultimately require 
more longitudinal data. 

We will here explore the above task of teaching in two cases, one involving 4th graders identifying 
fractions on the number line, the other showing another group of 4th graders figuring out a difficult 
subtraction problem before having learned a general subtraction algorithm. These examples will help 
to open the analytical space behind our question.  

Conceptual frameworks 
Teacher responses to public student apparent error, the focal phenomenon of our study, is a site of 
confluence of three research traditions – 1) mathematical knowledge for teaching, 2) student 
mathematical thinking, and 3) agency, authority, and identity – each with its own theoretical frame 
and perspective. It is our task to coordinate, if not integrate, these traditions for our work. To 
understand the “work of teaching” we use the “Instructional Triangle” (IΔ) of Cohen, Raudenbush, 
and Ball (2003), as later elaborated by Ball (2018). 

  
Figure 1. Revised instructional triangle (Ball, 2018) 

The “stuff” in our case is “mathematics.” The inner circle represents instruction, where mathematical 
knowledge for teaching primarily resides. Student mathematical thinking spills into the environment. 
Agency, authority, and standing constitute an arena in which the instruction may attempt to disrupt 
inequitable environmental influences. Much mathematics education research is situated at a vertex, 
or along an edge of the IΔ. Our question spreads across the entire diagram. 
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Mathematical knowledge for teaching 

For decades, a core problem in research on mathematics teaching has been what knowledge is needed 
to teach well. Researchers have approached this problem in different ways. Some have produced lists 
of what teachers should know. Others have investigated what knowledge teachers have, and yet others 
have studied knowledge teachers use. Ball (2017) suggested flipping the question by focusing instead 
on what mathematics the work of teaching entails (see also Ball et al., 2008). This shift was not new. 
Already two decades ago, it was elaborated in several publications (e.g., Ball, 1999; Ball & Bass, 
2000; Ball, Lubienski, & Mewborn, 2001). The present paper follows this line of research and targets 
the challenges that are embedded in a particular mathematical task of teaching. Eliciting, interpreting, 
and responding productively to student thinking, all entail deep and flexible mathematical knowledge. 

(Interpreting and responding to) student thinking 

As we indicated above, mathematical thinking, by experts as well as students, is rarely flawless. It is 
typically a mix of ideas, some intuitive or sketchy, some more formalized, some of it sound, some of 
it not yet fully formed, some of it incorrect.  Simply calling this complex package “error” is to ignore 
the substantial mathematical value there to be discerned. The phrase “apparent error” is our way of 
keeping open this broader range of possibilities. 

When a child publicly presents a problem solution, or a mathematical explanation or comment, what 
tasks of teaching does this present? One is to understand the child’s thinking. This may draw on 
several knowledge resources: Of the mathematical terrain and the diverse ways it can be represented; 
of typical student (mis)conceptions and representations of the ideas; and of the child’s identity and 
background, and the culturally diverse forms of children’s communication (language, gesture, etc.). 
Once the child’s thinking is understood, what can the teacher do to help make this understanding 
shared by the other children? And if the teacher does not at first understand, what can she do to probe 
the child’s thinking to gain such understanding? The above are all challenging tasks of teaching. 

Once the teacher possesses an adequate understanding of the child’s thinking, what is the next move? 
In some common practice, the teacher will first notice (perhaps even before fully understanding the 
child’s thinking) the mathematical flaws, and either announce them, or simply pass on, without 
comment, to another student in search of a more “acceptable” response. This can be characterized as 
a deficit teacher response. The opposite kind of response, sometimes called assigning competence 
(e.g., Cohen & Lotan, 1995), or asset oriented response, is to offer some detailed public appreciation 
of the positive mathematical qualities of the child’s thinking, without prematurely announcing that 
the mathematical work is done. Sometimes the teacher might even invite other students to comment 
on “what was good” about the child’s contribution. Again, enactment of this kind of move calls upon 
a fine-tuned understanding of the mathematics as well as of the student thinking. 

Agency, authority, identity 

Teaching is relational work, challenging in its complexity. We highlight three aspects of this 
complexity: agency, authority and identity. 

Agency is the capacity, freedom and autonomy of an actor to act in a given environment. The 
environment of concern here is the mathematics classroom. Agency may either be encouraged and 
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supported, or constrained and suppressed, for example through the influence of such factors as race, 
social class, religion, gender, ethnicity, perceived ability, customs, etc. 

Authority is characterized by Benne (1970, p. 393) as a social relationship between the bearer (of the 
authority, a person or group), the subject(s) (of the authority), and the field (context). The bearer 
receives willing obedience from the subjects while helping provide for their need of advice, 
leadership, guidance, or direction in the field. This is an example of “reasoned power,” but distinct 
from more general forms of power, which may be based on domination and coercion. Benne 
distinguishes three kinds of authority: Expert (as in the doctor-patient relation); Rule-based (as in say 
the playing of baseball); and “Anthropogogical” authority (partly exemplified by the doctor-medical 
student relationship, an apprenticeship into practice). In rule-based authority, the rules that govern 
behavior represent an implicit consensual authority of the community of players, who are thus 
individually subjects, and collectively bearers. 

Authority in a mathematics classroom has at least two aspects. One, common to all classrooms, is 
about behavioral norms, based on socio-cultural norms. Another, more pertinent here, is about 
disciplinary authority, about how to certify the authenticity of a piece of mathematical knowledge. 
Education reforms over the past half-century have moved in the direction of giving students more 
disciplinary agency and authority. How can that be interpreted in the above framework? For Benne, 
the ‘bearer’ of authority is a human agent, a person or group of persons; so how can we speak of “the 
authority of the discipline?” Amit and Fried (2005) suggest that mathematics, with its “fixed set of 
rules,” supports a kind of rule-based authority. We think instead of the discipline as a growing 
(inanimate) body of knowledge and methods, but that it is the cumulative product of (centuries of) 
human effort. How do new concepts or methods gain entry into (the current form of) this corpus? 
There are disciplinary norms for such membership, but human judgment (peer review) is needed to 
decide if these norms have been adequately met. Thus, in our view, disciplinary authority is mediated 
through those (human) agents empowered to certify proposed disciplinary claims. 

So conceived, it now makes sense to speak of the distribution of disciplinary agency and authority in 
a mathematics classroom. In the traditional transmission model of instruction, the teacher alone bears 
expert authority to which the student subjects are expected to conform. In contrast, distributing 
agency among students means that they can participate in the construction of new knowledge and 
methods, finding new solution strategies, noticing patterns, speculating, conjecturing, proposing 
evidence. Distributing authority means that students themselves will judge the adequacy of claims of 
their peers, and find ways of resolving disagreement. This is somewhat captured in the third 
mathematical practice standard of the Common Core (2010): Construct viable arguments (agency) 
and critique the reasoning of others (authority). 

This broad distribution of mathematical agency and authority among students, as co-producers (with 
the teacher) of knowledge, resembles what Benne (1970) calls anthropogogical authority. 

(Mathematical) identity refers to how students consider themselves as mathematical doers, thinkers, 
and learners. Aguirre, Mayfield-Ingram, and Martin (2013) define mathematical identity as “the 
dispositions and deeply held beliefs that students develop about their ability to participate and perform 
effectively in mathematical contexts and to use mathematics in powerful ways across the contexts of 
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their lives” (p. 14). Positive mathematical identity involves willingness to take risks to engage in 
discourse and to see one’s self as capable and worthy of being heard (Berry, 2018). This is related to 
productive disposition, the habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy (NRC, 2001). A premise of 
our work is that positive mathematical identity can be cultivated and supported by equitable teaching. 

Case 1: Fractions on the number line 
This diverse class of 9 to 10-year old children has learned how to name what fraction of (the area of) 
a rectangle is shaded. The method is to first assure that the (whole) rectangle is divided into a number 
(d) of equal size parts, to then count the number (n) of those equal parts that are shaded, and finally 
to name the fraction as n/d. The lesson segment in the video shows the start of their learning how 
fractions correspond to points on the number line. This is based on linear measure, in contrast with 
the area measure of shaded rectangles; on the number line one is counting lengths of intervals, and 
the unit of measure (the whole) is taken to be the interval from 0 to 1. We see the students presented 
with the following task (Figure 2).  

  
Figure 2. Naming fractions on the number line. 

The correct answer is 1/3, but the student notebooks show a variety of answers. The teacher asks who 
would like to come up and show their work; she calls on Aniyah. The teacher reminds the class that 
they should “listen closely and see what you think about her reasoning and her answer.” Aniyah puts 
“1/7” next to the orange arrow (an “evident error”), at which point Toni asks, in surprise, “Did she 
say one-seventh?!” Aniyah responds, “Yeah, because there are seven equal parts, . . .” as she counts, 
with her spread thumb and index finger, the seven intervals (not hash marks) visible on the displayed 
(portion of the) number line. Here we see the “public student apparent error” to which the teacher 
responds, not to Aniyah, but to the class: “Before you agree or disagree, I want you to ask questions 
if there’s something you don’t understand about what she did.” Toni asks, “Why did you pick one-
seventh?!” The teacher, affirming “That’s a very good question,” also says, “Let’s listen to her 
answer.” Aniyah says, “. . . because there’s seven equal parts.” Lakeya asks, “If you start at the zero, 
how did you get one-seventh?” She may have been thinking about counting hashmarks instead of 
intervals. Dante then struggles to formulate a more speculative, but difficult to understand question, 
perhaps to the effect that, “If you moved the orange arrow to where the one is, would you still know 
it was one-seventh to put it where the orange line is now?” 

Several things are noteworthy about the teacher response to Aniyah’s “apparent error.” Though 
Aniyah’s “one-seventh” is wrong, it is so far not challenged or corrected either by the teacher or the 
students, though, at the teacher’s invitation, the children pose questions to understand Aniyah’s 
thinking, which is made central to the instruction. The mathematical issue is resolved by the end of 
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the lesson (beyond the video segment), but we here see the teacher publicly sheltering Aniyah’s 
standing, as author of well articulated mathematical reasoning, which is flawed only in not using the 
standard unit (interval) as the whole. Further the teacher confers on Aniyah’s peers the authority to 
question, and eventually evaluate, Aniyah’s solution, free of teacher judgment. In these ways, the 
students are given/assigned remarkable collective agency and authority to develop the mathematics. 

Case 2: Subtracting before you know how 
In this case, the teacher presents a group of five 4th graders with the following problem: “The king 
celebrates his 80th birthday today” (this was in 2017). “In what year was he born?” This amounts to 
calculating 2017 – 80. The teacher has not yet taught these students how to subtract large numbers 
by using a standard algorithm, though some may know this already. The students show four different 
approaches. One starts by taking away 17 from 80 to get 63, and then subtracts 63 from 2000 by using 
a standard algorithm. Another student uses the standard algorithm directly to subtract 80 from 2017. 
In both these cases, the teacher explains their thinking to the other students, and provides a lot of 
praise. Two other students come up with more unexpected approaches to solving the problem. Below, 
we take a closer look at one of these student’s method.  

When Brian (pseudonym) is called to the board to present his solution, the teacher comments that he 
noticed how Brian finished the problem quickly. He continues, “So I’m very excited to hear what you 
were thinking!” Brian explains that he just got rid of the 17, so that you only have 2000. He writes 
down 2000 – 80.  Brian then states, “So, then we have 1920, which is pretty easy!” When Brian has 
written down this partial answer, the teacher interrupts, “So, now I would just like to repeat what you 
did. I just want to repeat what you did, so that I understand your thinking.” The teacher asks Brian to 
move a little bit to the side, before he continues, “I understood from what you were saying, Brian, 
what you did that I understood, was that, to begin with, you didn’t want to deal with the 17. You just 
jumped back to (points to 2000), and thought: What if we are in 2000 now? And then, when we go 
80 years back, we get to 1920. And, now I’m eager to know, what did you do next?” Brian jumps up 
to continue his explanation, “And then I just added 17, which is pretty easy, simply 20 plus 17.” The 
teacher proclaims that this is “simply fantastic,” before Brian moves on to write down the answer on 
the board. When Brian has finished explaining, the teacher asks, “Did anyone understand this clever 
way?” Anna responds that she understood it, and that she thought it looked like a good way of thinking 
about the problem. The teacher then continues to rephrase what Brian did when he decided to “jump 
back 17” and start on 2000, and how “he already then knew that he had jumped back 17 years too 
long (…) So, when he got to 1920, he had to jump 17 years forward again, to correct it.”   

One of the students early displayed an incorrect answer and seemed otherwise distracted at times.  He 
was the only student not called to present his work. His was the only appearance of apparent error. 
For each of the others, at issue was the uncertainty of their solution strategies, for which they were 
each praised in varying degrees.   

Concluding discussion 
The choices made by the teachers in these two cases differ in several respects. We will here highlight 
and discuss two particular differences in the teachers’ responses. The first relates to how the teachers 
assign competence to students. In case 1, we notice only one instance of explicit teacher affirmation 
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or praise, whereas the teacher in the second case offers a lot of praise to the students. We argue that 
both teacher responses can be described as asset oriented, and we posit that assigning competence 
does not have to include direct praise or public teacher statements. The teacher in case 1 assigned 
competence to Aniyah by inviting her to be the teacher. She positioned Aniyah as a recognized 
contributor, with standing, in the mathematical discussion, and she conferred on Aniyah’s peers the 
authority to analyze and critique Aniyah’s work. In the case 2, the teacher assigned competence to 
Brian by re-voicing his thinking and praising his contribution. This leads to the second highlighted 
difference, relating to the distribution of mathematical agency and authority, which we next discuss.  

The work of mathematics teaching demands a mathematical knowledge that exceeds ability to solve 
a problem by using the standard algorithm. The teacher in case 2 chose not to confine attention to the 
two solutions using variants of the standard algorithm, thus disrupting the rule-based authority that is 
common in many mathematics classrooms. Instead the teacher highlights an unexpected student 
solution strategy, which he has to interpret and evaluate on the fly and assure that all of the students 
understand. By bringing Brian to the board, and expressing excitement and eagerness to understand 
Brian’s thinking, the teacher publicly affirms Brian’s agency and standing. It is interesting to notice 
how the teacher, in the middle of Brian’s explanation, decides to interrupt to repeat what Brian did 
and make sure he understands Brian’s thinking. It is likely that the teacher in fact understood well 
what Brian had done, but, by saying “so that I understand your thinking,” the teacher was nominally 
putting himself on the same level as the other students, thus modeling the kind of inquiry needed to 
understand another student’s thinking. In case 1 above, the teacher assigns this work to the students, 
whereas the teacher in case 2 does not do so. He himself is modeling, by example, how such inquiry 
is done. This effort is further reinforced when, after Brian has finished his explanation, the teacher 
again decides to re-voice Brian’s explanation, to emphasize the crux of his thinking. Throughout this 
episode, the teacher demonstrates, and so models, attentive listening, and a pressing need to 
understand Brian’s mathematical thinking. Brian is positioned as a mathematical authority, but one 
whose thinking needs to be publicly analyzed and sanctioned by the teacher, so that Brian’s 
knowledge is not only validated and praised, but becomes collective, thus hoping to support all of the 
students’ understanding. In case 1, Aniyah also gains mathematical authority, but only after public 
resolution of the integrity of her thinking by her peers, who are assigned this responsibility.  

We have presented two examples of teacher responses to “public student apparent errors.” We 
described, in each case, teacher moves that might have potential to cultivate the mathematical agency 
and authority of the students. In both cases, student agency is well supported, but in case 2, more of 
the mathematical authority appears to still reside with the teacher 
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Conceptual learning opportunities in teachers’ differentiated task 
designs for inclusive mathematics education 
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Inclusive mathematics education creates new challenges to teachers, requiring additional knowledge 
and possibly changed classroom practices. One teaching job gaining importance is differentiating 
through task design, as teachers need to provide conceptually rich learning opportunities even to 
students with mathematical learning disabilities. However, more insight is needed into how teachers 
engage in this job. This study analyses teachers’ designed tasks during a professional development 
course to reconstruct their categories of differentiation for percentage problems. The observed 
teachers tend to differentiate in a way that excludes low-achieving students from conceptually rich 
learning opportunities on percentages. This can be explained by the differentiation strategy of 
splitting and partitioning teachers’ envisioned ideal-typical solution paths to percentage problems. 

Keywords: Teacher practices, inclusive education, percentages, differentiation, professional 
development. 

Introduction 
In recent years, a shift can be observed in research on teacher expertise from a focus on general 
dispositions or concrete performance towards a focus on situation-specific skills (Blömeke, 
Gustafsson, & Shavelson, 2015). This places an emphasis on the wide array of necessary tasks or jobs 
demanded of teachers in their classroom work, from small jobs such as choosing and illustrating 
examples (e.g. Fauskanger & Mosvold, 2017) to large jobs such as adapting textbooks for their own 
course (e.g. Priolet & Mounier, 2017). 

Such a focus calls for careful attention given to the concrete situations of teachers’ classroom work, 
as every situation imposes different situational demands. Recently, a new class of situations is gaining 
increased attention in mathematics education research: the situations of inclusive mathematics 
education. In Germany and probably many other countries, large parts of mathematics teachers feel 
unprepared for dealing with these new situational demands. Research is needed into how teachers can 
face these situational demands of their teaching jobs in order to develop professional development 
(PD) courses to support teachers of inclusive mathematics classrooms. 

This paper investigates the ways teachers engage with one central job of inclusive mathematics 
classrooms, namely the job of differentiating through task design in the context of percentage 
problems. First, this paper introduces a theoretical framing of the construct of teaching jobs, as well 
as a short overview on situational demands in inclusive mathematics education. The empirical part 
then illustrates how teachers use ideal-typical solution paths for differentiating through task design, 
involuntarily limiting conceptual learning opportunities for already low-achieving students. 

Teaching jobs as a focus for research 
For conceptualizing teachers’ competences and practices, there exist a variety of conceptualizations 
and specification for these skills, such as ‘core tasks and problems of teaching’ (Bass & Ball, 2004) 
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or ‘core practices’ (Forzani, 2014). Empirical research shows how each of these skills, such as 
choosing and illustrating examples, poses a complex interplay of situational demands to teachers 
(Fauskanger & Mosvold, 2017). What teachers need to know in order to master these tasks, however, 
so far remains underspecified.  

Already over 25 years ago, Bromme (1992) identified this as a task for empirical research. Instead of 
providing a list of knowledge or dispositions, Bromme (1992) places specific situational demands 
(tasks of teaching) into the heart of teacher expertise. Each situational demand requires specific 
knowledge attained by teachers. This knowledge takes the form of categories – personal units of 
meaning that can structure cognition – that “enable experts to discern a specific order within 
problematic situations or to construct it (e.g. by arranging instruction)” (ibid., p. 151, translated). 
Examples for categories for the situational demand of inclusive mathematics education might include 
‘learning for all’ or knowledge of specific learning disabilities. It follows that PD programs need to 
support teachers in coping with their situational demands in teaching by supporting their development 
of categories. 

This study follows the approach outlined by Prediger (in press) to conceptualize teachers’ situational 
demands as teaching jobs (in line with Bass & Ball, 2004) that are organized through teachers’ 
personal categories in order to draw attention to teacher practices instead of knowledge. The 
empirical task remains to identify the jobs required of teachers by inclusive education and to 
empirically reconstruct their categories activated for mastering these jobs. 

Conceptual learning in inclusive mathematics education 
Since the ratification of the UN Convention on the Rights of Persons with Disabilities in 2008 (UN, 
2006), inclusive education has seen an increased interest in educational systems across many 
countries and in mathematics education research. In Germany, ratification of the convention has 
resulted in a shift from an educational system in which students diagnosed with various disabilities 
were segregated from ‘regular’ students towards an inclusive system in which (most) students visit 
the same schools, with or without disabilities. This posed increased challenges to the majority of 
teachers who had little to none previous experiences with students with disabilities, creating a great 
demand for professional development (PD) of teachers for inclusive education. 

Concerning mathematics education, the largest new group of students for teachers is the risk group 
of under-achieving students in mathematics, here referred to as students with MLD (mathematical 
learning disabilities/difficulties, for an overview on terminology see Scherer et al., 2016). MLD is a 
construct without a clear consensual definition, hindering making distinctions between biological, 
cognitive, and non-cognitive contributing factors (Lewis & Fisher, 2016). However, research in 
mathematics education indicates that students with MLD do not fundamentally differ in their learning 
from students without MLD: under constructivist perspectives on learning, both groups require 
conceptually rich learning situations in which they can draw on their own experiences in order to 
develop mathematical concepts (Scherer et al., 2016). 

Thematic Working Group 19

Proceedings of CERME11 3605



 

 

The teaching job of differentiating through task design 
The increased heterogeneity of inclusive classrooms faces teachers with increased demands of 
differentiated instruction (Tomlinson & Moon, 2013). This heterogeneity can refer to a variety of 
aspects, including their learning resources (working memory, interest, language proficiency) and 
mathematical knowledge (informal experiences, conceptions, formal knowledge). Every learner 
needs instruction that recognizes his or her individual needs. Thus, one teaching job that is of 
increased importance for inclusive education is the job of differentiating through task design. 

Differentiated task design can take several forms (see Tomlinson & Moon, 2013). This paper focuses 
on two forms in particular (for the third form of open-ended differentiation see Buró & Prediger, 
2019): students with MLD might need conceptually rich tasks for content different from other 
students (i.e. differentiated in content). They also need tasks that pose demands that they are able to 
fulfill (i.e. differentiated in access). In turn, such differentiating tasks might also pose dangers, as they 
might alienate students with MLD by providing learning content different from that of the ‘regular’ 
students. 

These categories for task design thus provide a first list of possible categories for teachers to draw 
upon in their job of differentiating through task design. However, reconstructing such categories 
remains an empirical task (Bromme, 1992), as teachers’ personal categories might be richer than the 
mentioned ones. More insights are needed into how teachers enact this job of differentiating through 
task design, and how they ensure the conceptually rich learning opportunities required especially by 
students with MLD. This job here is treated as requiring topic-specific investigation, as differentiating 
in content requires topic-specific content knowledge. Because a majority of studies about MLD focus 
on elementary arithmetic (see Lewis & Fisher, 2016), this study instead opts to focus on a topic from 
secondary school, namely percentages. Thus, two research questions emerge for this paper: 

(RQ1) What categories do teachers draw on when engaging in the job of differentiating through task 
design for percentage tasks? 

(RQ2) How do these categories influence the learning opportunities for students with MLD in 
differentiated percentage tasks? 

Methodology 
Research was carried out during a PD course on inclusive education for the content of percentages, 
situated in the methodological approach of Design Research for teachers with a focus on content-
specific professionalization processes (Prediger et al., 2016). Data were collected in this PD course, 
which is briefly introduced in this section. 

Design of a PD course for inclusive mathematics education for percentages 

The PD course aimed at in-service mathematics and special education teachers consisted of three 
distinct phases. In the first phase, the 25 participants received information on didactic concepts and 
models as well as on concepts and models of special education. Each of the participants had some 
own experiences with teaching inclusive classrooms and students with MLD, but most mathematics 
teachers lacked formal education about special needs, and most special education teachers lacked 
formal education about mathematics education. This phase consisted of three sessions (15 hours total) 
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with the research team and participants. Topics included use of representations, fostering 
understanding for all, language-responsive teaching, working memory and learning, and 
automatization of routines. During this phase, the teachers were encouraged to discuss these concepts 
and to relate them to their own experiences. The second and third phases consisted of practice and 
reflection phases and are not part of this study. 

Course-integrated instruments for eliciting teachers’ categories 

Investigation into teachers’ categories was carried out through course-integrated instruments. These 
were instruments designed to collect written products by the teachers. However, they were not 
collected in a classical pre-post design, but rather were employed at various points throughout the PD 
sessions. These instruments served a dual role: on the one hand, they provided the data needed for 
research, so that they were used as instruments for professional development. On the other hand, they 
activated the participants’ prior experiences and, after having been filled out, provided the basis for 
discussions, so that they could be used as means for professional development. 

These instruments were designed to actualize the situational demands teachers face in inclusive 
classrooms in small situations, i.e. to elicit teaching jobs. Figure 1 shows the course-integrated 
instrument used to elicit the job of differentiating through task design for percentages. 

 
Figure 1: The course-integrated instrument (translated from German) 

This instrument was given in the third session of the first phase of the PD course. It uses parts of a 
task on percentages already known to the teachers from the PD course. They also already were 
familiar with the basic ideas of the percentage bar, which was new to most of the teachers prior to the 
PD course (see Buró & Prediger, 2019).  

Data collection and data analysis 

The instrument was given to the teachers who had 15 minutes to create the differentiated tasks. This 
short time-frame was chosen to cut down the time for possible group work, so that results would 
reflect the personal categories more closely. Afterwards, a discussion took place and the written 
products were collected and digitized. Of the 17 products filled out by teachers, 1 was dropped for 
being too short for analysis. Data analysis then consisted in reconstructing three types of categories 
of differentiation: the types of differentiating tasks created by teachers, the perceived groups of 
students for which teachers create differentiation, and the mathematical learning opportunities 
provided to these groups through differentiation. The types of tasks were deductively reconstructed 
as belonging either to tasks differentiated in content or in access. For the perceived groups and 
mathematical learning opportunities, categories were generated inductively by comparing and 
contrasting all teacher products. Categories were then refined and condensed, and then used in a 
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deductive analysis in order to enable a comparison of the different written teacher products. As the 
categories thus also are an empirical result, they will be illustrated below. 

Teachers’ categories for differentiating through task design 
Two teachers’ products are printed in Figure 2. They can illustrate some common elements of the 
teachers’ differentiations through task design which were reconstructed in the analysis. The first 
teacher, ‘Anna’ (left side), differentiates between four different levels (L-M-S-gS, interpreted as the 
initials of the German words for easy-medium-hard-very hard). This structuring is reconstructed as a 
differentiation into levels of ‘low-middle-high’ by combining the levels of ‘S’ and ‘gS’. Her tasks, 
however, do not differ in complexity, but in content. Students who are assigned to the low level (‘L’) 
are tasked with simply reading the given values and with calculating a difference without any 
reference to percentages. Such instances are coded as description (reading, simple description of the 
involved numbers without explanation) and subtraction. Students in the middle level (‘M’) are 
assigned with a task that superficially does relate to percentages, but ultimately results again in a 
simple calculation of a difference. This again is a task of subtraction. Students in the high level (‘S’, 
‘gS’) are tasked with filling out the missing steps in the percentage bar. This is a type of task that was 
discussed during the PD course as a task that can elicit proportional reasoning, often signified by 
‘simultaneously counting up’ percentages and percent values until reaching the desired values. 
Finally, they are also tasked with a different percentage problem. 

 

 
Figure 2: Two teacher differentiations through task design (translated from German) 

The second teacher, ‘Beatrice’, chooses other categories for her differentiation. Whereas Anna does 
not make explicit if students are open to change levels as they see fit, Beatrice creates tasks in a 
progression in which students are expected to follow as far as they are able to, reconstructed as ‘for 
all-middle-high’. She begins with a ‘for all’ category, which includes the task of proportional 
reasoning (counting up through labelled arrows) that Anna assigned to a much higher level. Her other 
two tasks a) and b) consist of description and subtraction. Students in the middle level are then given 
a different percentages problem, as are students in the high level (although a different, probably 
harder problem). 
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Comparing these two teachers reveals some interesting differences. In the differentiation of Anna, 
students with MLD would probably be assigned to the low level, and thus would receive learning 
opportunities for describing and subtraction, but not for percentages. Even if they would reach the 
next level, they still would be given learning opportunities for subtraction only. Such learning 
opportunities are also provided through the differentiation employed by Beatrice. However, through 
the category ‘for all’ she also includes a learning opportunity for proportional reasoning that students 
with MLD have access to – an important conceptual foundation for the learning content of 
percentages, which they could then utilize should they be able to reach the next level. This trend of 
lacking learning opportunity for percentages can also be observed throughout the differentiations of 
all teachers. Table 1 gives an overview on the learning content that teachers assign to their levels of 
differentiation. 

 For all Low Middle High 

Description 6 10 3 1 

Subtraction 1 3 3 1 

Proportional 1 2 4 1 

Explaining 0 1 4 6 

Percentages 0 0 4 5 

Table 1: Number of occurring learning contents for levels of differentiation (n=16) 

The learning opportunities for students with MLD are reflected through the combination of the levels 
for all and low (the two grey columns). The learning contents that are conceptually relevant for 
percentages are represented through the categories proportional, explaining, i.e. the task of explaining 
the algorithm or procedure to find a percentage value, and percentages (the three grey rows). This 
shows a lack of conceptual learning opportunities for students with MLD (the dark grey intersection). 
Students with MLD are most commonly given tasks involving the rather passive description of the 
given situation or reading of values (16 occurrences). Of the remaining 8 occurrences, half consist of 
tasks involving simple subtraction. Only in 4 occurrences, these students have access to learning 
opportunities that involve conceptual understanding of percentages (proportional reasoning as 
foundation for percentages and explaining strategies for calculating percentage values). 

The categories of Ideal-typical solution paths, partitioning, and conceptual foundations 

For the aim of teacher PD, this result of missing conceptual learning opportunities requires further 
explanation, i.e. an identification of the categories underlying the job of differentiating through task 
design. Anna’s tasks can serve as an example representative of most of the teachers’ products. Her 
differentiation follows an observable structure: in order to fully understand the situation, students first 
need to read the relevant information (low level), then acknowledge and quantify the changing values 
(middle level), and finally use concepts of proportion and percentage to interpret the situation (high 
level). Breaking down this ideal-typical solution path results to her in five small subtasks. Her 
strategy now is to partition this ideal-typical solution path and to assign different tasks to different 
students. Unfortunately, this results in conceptually poor learning opportunities for students on the 
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lower levels, as the conceptual heart of the percentage problem is placed at the end of the ideal-typical 
solution path, and thus only accessible for students assigned to the high level.  

Beatrice follows a similar overall structure, but with different emphasis. Her ideal-typical solution 
path places proportional reasoning as the first part of the solution. This is an important conceptual 
foundation of percentage problems. Because her solution path is not neatly partitioned, but includes 
a level for all students, students with MLD also gain access to conceptual learning opportunities in 
this way. 

Conclusions 
Like all students, students with MLD require conceptually rich learning opportunities to develop 
understanding of key mathematical concepts such as percentages. For teachers new to this group of 
students, this increases the complexity of the teaching job of differentiating through task design. This 
study shows the ways teachers can enact this job, and how this can influence the learning 
opportunities students have access to. The empirical analysis shows how partitioning ideal-typical 
solution paths can result in students with MLD being denied access to conceptual learning 
opportunities on percentages, instead providing access to subtraction. A more useful approach is to 
provide access to conceptual foundations by including tasks that focus on proportional reasoning, to 
be approached by all students. Teachers that used this approach drew on their context knowledge of 
percentages to present students with MLD with valuable conceptual learning opportunities. However, 
such an approach was chosen by only a very small fraction of teachers. 

This study has followed the approach outlined by Bass & Ball (2004) to focus on teachers’ tasks, 
namely the job of differentiating through task design. However, this study also illustrates that insights 
are needed into how teachers fulfill these tasks.  The approach of identifying teachers’ categories 
outlined by Bromme (1992) proved useful as a framework for describing how teachers fulfill their 
jobs. The approach allowed this study to focus on the situational demands of one very specific job. 
In classroom practice, however, teachers have to face several such jobs simultaneously. More insights 
are needed into how this added complexity can be mastered. 

So far, the categories of ideal-typical solution paths, partitioning, and conceptual foundations have 
been reconstructed from one course-integrated instrument during one PD course session. More 
insights are still needed to empirically ground and to refine these categories. Also, the missing 
conceptual learning opportunities need to be interpreted carefully: it might justifiably be the case that 
giving students with MLD access to learning subtraction is a necessary and reasonable decision, e.g. 
for students that still struggle with subtraction. 
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Effects of a Scaffolding Model for small groups in mathematics 
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We investigated whether teachers’ use of the Small-Group Scaffolding model (SGS model), when 
supporting heterogeneous student-groups in a collaborative setting in math lessons, raised students’ 
mathematical level more than teacher support without use of the model. Participants were eight 
teachers and 266 students of two schools working collaboratively in 73 small heterogeneous student-
groups on the topic of Early Algebra. The five teachers in the experimental condition were taught to 
scaffold the groups in their classes according to the SGS model (give support adapted to student-
groups’ needs). The three teachers in the control condition were not given prior instruction of how 
to support the students. Analysis of a pre- and post-test on mathematical level raising showed that 
more mathematical level raising occurred in the Scaffolding condition than in the control condition. 
We concluded that using the SGS model can lead to more mathematical level raising.  

Keywords: scaffolding, mathematics, collaborative learning, mathematical level raising, teacher-
student interaction. 

Background 
According to Freudenthal (1991) and Van Hiele (1986), the learning of mathematics occurs in discrete 
steps, implying the existence of levels of mathematical thinking. Van Hiele (1986) described four 
levels: 1) Visual level: the forms of mathematical objects are the object of study, 2) Descriptive level: 
the properties of mathematical objects are the object of study, 3) Theoretical level: relations between 
the properties of mathematical objects are the object of study, and 4) Formal logical level: relations 
between theorems are the object of study. Freudenthal (1991) built upon this theory and stated that 
the levels are more relative than discrete, meaning that level raising occurs every time a mathematical 
activity (performed at a lower level) consciously becomes the object of reflection (at a higher level). 
Freudenthal (1971) defines a mathematical activity as an activity of organizing subject matter, which 
can be matter from reality or mathematical matter, according to mathematical patterns or new ideas. 
For example, at a lower level, patterns of the number of tables and chairs in a table setting can be 
studied. At a higher level, these patterns themselves become the object of reflection when one tries 
to create a formula with which the number of chairs in a particular table setting can be calculated 
when the number of corresponding tables is given.  

According to Freudenthal (1978), when students collaborate in a heterogeneous small group (a small 
group of students of mixed ability) on one task, there will often be at least one student who 
experiences an “Aha moment” (jumping to a higher level) when understanding the subject matter. A 
typical higher-level activity will follow for that student, such as reflecting on how he/she mastered 
the subject matter and explaining to other students in the group what he/she just learned. In other 
words, discussions between students in a heterogeneous group while performing mathematical 
activities (mathematical discussions) enhance mathematical level raising. 
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A reoccurring problem with attaining mathematical level raising when learning Early Algebra in 
secondary education is that students find it difficult to make a shift from studying patterns at a lower 
level to understanding formulae at a higher level (Kieran, 1992; Sfard & Linchevski, 1994; Van 
Stiphout, Drijvers, & Gravemeijer, 2011). Janvier (1987) addressed this problem by defining Algebra 
representations, situation, graph, table and formulae as four ways to describe the relation between 
two variables in a formula. He calls the ability to switch between the representations a translation 
skill. According to Janvier (1987), translation skills are best learned when they are taught in a pair-
wise manner. For example, the translation skill modeling is learned best when students first learn how 
to construct a situation from a formula, followed by learning how to construct a formula given a 
situation, or vice versa. In this study, all translation skills involving the representation formulae are 
considered to contribute to mathematical level raising. These translation skills are: Parameter 
recognition (formulae to situation), Computing (formulae to table), Sketching (formulae to graph), 
Modeling (situation to formulae), Fitting (table to formulae) and Curve fitting (graph to formulae). 

Collaborative learning is considered an important means to improve students’ learning of 
mathematics (Webb, 1982). Several studies have shown that mathematical discussions in small 
heterogeneous student-groups contribute significantly to mathematical reasoning and level raising 
(Freudenthal, 1991; Dekker & Elshout Mohr, 1998, 2004). Dekker and Elshout Mohr, (1998) 
developed a ‘Process model’ (PM), which promotes and operationalizes mathematical discussions. 
This model distinguishes three types of learning activities: key activities, which help mathematical 
level raising; regulating activities, which regulate key activities and mental activities that occur in 
students’ minds. They found that stimulating mathematical discussions by the teacher resulted in 
more mathematical level raising compared to providing content support (Dekker & Elshout Mohr, 
2004). However, teachers find it difficult to support mathematical discussions in small-group learning 
(Webb, 2009). 

Content support adapted to the level of the student’s understanding (contingency) is considered one 
of the key features of scaffolding (Van de Pol, Volman, & Beishuizen, 2010). The other two key 
features of scaffolding are diminishing content support over time (phasing out) and returning 
responsibility for learning processes to the learner. Scaffolding in the context of group work seems 
to enhance learning outcomes in general (Van de Pol, Volman & Beishuizen, 2010; Webb, 2009). 
Van de Pol, Volman and Beishuizen (2012) developed a model to describe scaffolding interactions, 
the Contingent Teaching Model (CTM), in which teacher support is adapted to the level of individual 
students. It consists of four steps: applying diagnostic strategies, checking the diagnosis, applying 
intervention strategies, and checking students’ learning. In the CTM individual students are 
scaffolded in a small-group setting. 

In the context of collaborative learning teachers often scaffold individual students within small 
groups. How teachers can scaffold small groups at group level and what the effect is on students’ 
mathematical learning, has not yet been investigated. A combination of stimulating discussions and 
providing contingent content support adapted to the level of the group might result in more 
mathematical level raising. To help teachers support small heterogeneous student-groups we 
integrated the CTM (Van de Pol, et al., 2012) and the PM (Dekker & Elshout Mohr, 2004) into a 
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scaffolding model for small student groups (Calor, Dekker, Van Drie, & Volman, 2019). We call this 
model the Small-Group Scaffolding model (SGS model).  

In Figure 1 a flowchart representation of the SGS model is shown. The model consists of six teaching 
steps: evaluating if the question is a question of the whole group, applying diagnostic strategies, 
checking the diagnosis, giving contingent content support, checking students’ learning, and giving 
process support (stimulating mathematical discussions).  

   
Figure 1: A Flowchart of the Small-Group Scaffolding model (Calor et al., 2019) 

 Following the Small-Group Scaffolding model, teachers should first determine if the question is a 
question of an individual in the group or if it is a question of the whole group. In case the question is 
a question of the whole group, the teachers should diagnose the group’s current level of understanding 
in the second step, by for example asking students what they have done so far and asking the students 
to show or tell their work to the teacher. It is possible that one or more students come up with an 
answer to the question during this step. In that case, the teacher should encourage the students to 
explain the answer to each other. If none of the students come up with an answer during step two, 
teachers can check if their diagnosis is correct in the third step. In the fourth step, the teachers should 
give contingent support to the group (increase support when the students show poor understanding 
and decrease support when students show high understanding) until one or more students understands 
the question. In step 5, the teacher should check if at least one of the students understood the content 
support. If this is the case, teachers should stop giving content support (phasing out, the second key 
feature of scaffolding) and return responsibility for learning back to the group (third key feature of 
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scaffolding) (Van de Pol et al., 2010). Returning responsibility for learning to the group can be done 
by encouraging students to explain and show their work to each other and to criticize each other’s 
work, i.e. give process support, in the last step. In case the outcome of the determination of the 
question in the first step was that the question was not a question from the whole group, but rather a 
question of one or more individuals in the group, teachers should return responsibility for learning 
back to the group by giving process support.  

In this study, we combined Fruedenthal’s, Janvier’s, and sociocultural perspectives as theoretical 
lenses to study mathematical lessons. 

Research question 

Does the use of the Small-Group Scaffolding model raise seventh grade students’ mathematical level 
in Early Algebra? 

Hypothesis 

We hypothesize that the mathematical level of students will be raised more in the Scaffolding 
condition than in the control condition. 

Method 
In a quasi-experimental design, we compared the mathematical level raising of students who were 
taught by teachers who were trained to give help to students according to the SGS model with those 
of students who were taught by teachers who gave help without prior instruction. In both conditions 
students worked on an Early Algebra unit that was especially designed to invoke mathematical 
discussions and raise the level of mathematical knowledge (Calor, Dekker, Van Drie, Zijlstra, & 
Volman, 2018). 

Participants were eight teachers (7 males,1 female) and their 266 seventh grade students of two 
schools in Amsterdam, the Netherlands (5 teachers and 169 students of two schools in the Scaffolding 
condition and 3 teachers and 97 students of one school in the control condition).  Two of the eight 
teachers (one in the Scaffolding condition and one in the control condition) worked with an Early 
Algebra unit in a collaborative setting in a previous study (Calor et al., 2018). Other than that, the 
teachers had no experience with collaborative learning. Teachers were matched into pairs according 
to age and teaching experience. Of every pair one teacher was randomly assigned to a condition. 
Every teacher taught their own seventh grade class. Teachers in the Scaffolding-condition were 
trained on the job so that they could be engaged in inquiry into the SGS model and reflection on its 
use and to provide an opportunity for them to make connections between their learning and classroom 
practice (Borko, Jacobs, & Koellner, 2010). Prior to the lesson series, teachers in the Scaffolding 
condition were trained in a two-hour training to give help to students according to the SGS model. In 
addition, before and after every lesson the use of the model was discussed individually with the 
teachers and questions were answered. The aim of the research was only known to the teachers in the 
Scaffolding condition. The teachers in the control condition were instructed to let the students work 
together on the assignments and give their usual support. All students worked in small heterogeneous 
groups (46 Scaffolding and 27 control condition). Small student-groups consisted of students of 
mixed ability according to track advice related to the students by their primary school administration. 
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Ideally groups consisted of four students, but due to class size restrictions 24 groups of three students 
(13 Scaffolding and 11 control condition) and one group of two students were formed (Scaffolding 
condition). Students’ age varied between 12 and 15 years. Groups in the Scaffolding condition were 
instructed by the teacher to explain and show/tell their work to each other, ask each other for 
explanations, and to criticize each other’s work. Teachers in both conditions implemented the lessons 
as intended (teachers in the Scaffolding condition used the SGS model to support students, whereas 
teachers in the control condition gave support as they normally would). Implementation check was 
performed by the first author during and after lessons (check with teacher and watch videotape of 
lessons).  

In both conditions, students worked on a lesson series of 12 lessons of 60 minutes on the topic of 
Early Algebra for five weeks. We replaced five of these lessons, with lessons that explicitly aim to 
invoke mathematical discussions and raise the level of mathematical knowledge (Calor et al., 2018). 
During these five lessons, students worked collaboratively on the same assignment. Every lesson 
started with 10 minutes introduction by the teacher, followed by students working collaboratively for 
50 minutes. During the remaining lessons students sat together in the same small heterogeneous 
groups and worked on regular assignments from the textbook.  

Students’ mathematical levels in Early Algebra were measured by means of a test. A pre-test was 
administered in the lesson prior to the intervention, and the same test was administered as a post-test 
in the lesson after the intervention. The test aims to measure the mathematical levels of students based 
on the translation skills from Janvier (1987). The highest level implies being able to translate from 
representation formulae to representations situation, tables and graphs and vice versa. The lowest 
level implies not being able to translate from and to the representation formulae at all. 

The test consists of six questions and 17 sub-questions, of which 10 were used to measure 
mathematical levels. They consist of questions involving all translation skills of the representation 
formulae (Janvier, 1987). The other seven questions were discarded (not included in the scores) 
during determination of level raising. They consist of basic primary school arithmetic questions so 
that students would be able to answer at least some of the questions when the test was administered 
as a pre-test. Scores of 0, 1 and 2 were assigned; 0 meaning low mathematical level, 1 meaning 
medium mathematical level, and 2 meaning high mathematical level. The sub-questions of the test 
corresponded to the switches between the Janvier representations involving formulae (Janvier, 1987). 
The first sub-question only involved a less abstract representation of a formula; therefore, the score 
for this question was limited to 1 (medium mathematical level). The sum of the scores amounts to a 
maximal number of 19 points in total that students could score for the test. The levels that were 
assigned to the sub-questions were discussed with a second coder (the second author of this article). 
Students worked individually on the test for 60 minutes. An example of a basic primary school 
arithmetic question is: “Out of one package pancake mix you can bake six pancakes. How many 
pancakes can you bake with 12 packages of pancake mix?” An example of a question that measures 
mathematical level is: “Shane wants to get in shape, therefore he goes swimming. With the following 
(word) formula you can calculate Shane’s costs. Number of times swimming ×3+30= costs. (Here, 3 
stands for €3, the cost for swimming once at a swimming pool for a member and 30 stands for €30, 
the cost of a yearly membership to a swimming pool.) Draw a graph for this formula.” A score of 2 
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(high mathematical level) was assigned when the graph was drawn correctly (linear relationship in 
the graph was depicted correctly); a score of 1 (medium mathematical level) was assigned when small 
errors occurred in the graph (e.g. graph starts at (0,0) rather than (0,30)); a score of 0 (low 
mathematical level) was assigned when the graph made no sense (e.g. when only names of axes were 
written down). Another example of a question that measures mathematical level raising is: “Eric saves 
money to buy a smartphone. Every month he saves €27,-. He has currently no money in his savings 
account. Give the formula with which the amount of money on Eric’s savings account can be 
calculated”. A score of 2 (high mathematical level) was assigned when the formula was correct; a 
score of 1 (medium mathematical level) was assigned when the formula contained small errors or 
when the linear relationship was explained in words; a score of 0 (low mathematical level) was 
assigned when the formula made no sense (e.g. when only 27 was written down).  

Interrater reliability for the pre- and post-test between two coders, determined in a prior study, was 
excellent (ICC 0.95) (Calor et al., 2018). 

A multilevel model for repeated observations on fixed occasions with an unrestricted covariance 
matrix (Snijders & Bosker, 2012) was used to test for differential growth between the Scaffolding 
condition and the control condition. The fixed occasions are the measurements (pre- and post-test) 
nested in individual students. The measurements (pre- and post-test) are the first level, the individual 
students are the second level, the small groups are the third level, and the classes are the fourth level. 
This multilevel model (Snijder & Bosker, 2012) enables us to test the growth in the Scaffolding 
condition against the growth in the control condition.  

Results 
We present the means of the pre- and post-test on mathematical level for the Scaffolding condition 
and control condition in Table 1. 

 Scaffolding condition  Control condition 

M (SD) M (SD) 

Pre-test 2.04 (3.32) 1.43 (2.66) 

Post-test 11.93 (5.88) 9.22 (6.44) 

Table 1: Means and Standard Deviations Pre- and Post-test on Mathematical Level, Scaffolding 
condition (N=169) and Control condition (N=97), Maximum Score of 19 

Table 1 shows that the students’ mathematical level improved a fair amount in both conditions. For 
the Scaffolding condition (SC), the mean score increased from 2.04 to 11.93, and for the Control 
condition (CC), it increased from 1.43 to 9.22.  

A multilevel model for repeated observations on fixed occasions with an unrestricted covariance 
matrix (Snijders & Bosker, 2012) was used to test for differential growth between the SC and the CC. 

We report on the model for three levels (with measurements (pre-test post-test) nested in individual 
students and classes) since there was no significant improvement in model fit for four levels 
(measurements, individuals, groups, classes).  
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The expected outcome for the CC was pre-test = 1.40 and post-test = 1.40 + 9.20. For the SC the 
expected outcome was pre-test = 1.40 + 0.692 and post-test = 1.40 + 0.692 + 9.20 + 2.116. Thus, 
compared to CC the growth in the SPC is 2.116 larger. This differential growth is significant (𝑝𝑝 =
0.003). 

Discussion/conclusion 
In this study, we investigated whether the mathematical level of students who were taught by teachers 
who were trained to give help according to the Small-Group Scaffolding model was raised more than 
the mathematical level of students in a control condition.   

With respect to our hypothesis, multilevel analyses showed that the mathematical level of students in 
the Scaffolding condition was raised significantly more than the mathematical level of students in the 
control condition.  

This study was conducted at two schools, which limits the generalizability of our findings. In addition, 
the conditions were observed at different schools. Consequently, results might be affected by 
qualitative differences between the schools. For example, the average pre-test score for the 
Scaffolding condition was higher than that of the control condition. This could be indicative of a 
higher aptitude, which in turn might be favorable for the growth in the Scaffolding condition. 
However, this is not very likely since there are no large descriptive differences between secondary 
schools in the Dutch education system (e.g. track advice given in primary schools determines the 
track students follow in seventh grade). 

In a follow-up study, we will report elaborately on the scaffolding behavior of the teachers in both 
conditions. We will also focus on the quality of mathematical discussions in the groups, since 
reflection during mathematical discussions may have a positive effect on mathematical level raising 
(Freudenthal, 1978). 

We conclude that the Small-Group Scaffolding model is a useful extension of the Contingent 
Teaching Model (Van de Pol et al., 2012). In addition, we conclude that using the SGS model for 
Early Algebra can raise the mathematical level of students (ability to switch back and forth between 
representation formulae and other algebra representations (Janvier, 1987)). The SGS model can 
therefore be useful to help teachers support small heterogeneous student-groups.  

Future research should focus on the investigation of what kind of help the teachers in the conditions 
gave to the students and whether or not the quality of the mathematical discussions mediates 
mathematical level raising. In addition, this study should be replicated on a larger scale to find more 
robust findings.  
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Introduction 
In this poster we will present a learning study conducted by three Swedish teacher educators. The aim 
of the learning study was to identify critical features concerning the teaching and learning of 
Mathematical knowledge for teaching (MKT). Two classes of teacher students and 30 lesson plans 
were analysed using the theory of variation.  

Teacher student’s theoretical knowledge of learning and teaching mathematic is crucial for their 
teaching practice. In previous courses we have discerned how teacher students on one hand can 
describe different strategies for solving a problem and on the other hand describe common 
misconceptions pupils have in elementary mathematics. Nevertheless, they do not comprehend the 
relationship between them. To address the problem, we have conducted a learning study focusing on 
the theoretical framework Mathematical Knowledge for Education (MKT), prepared by Ball, Thames 
and Phelps (2008), to describe the knowledge required to teach mathematics (Figure 1). The work 
was also guided by prior research (Bommel, 2012). 

 

 
Figure 1: Domains of Mathematical Knowledge for Teaching 

Method 
Learning study offers a potential platform for teachers to collaboratively explore their own practice 
in order to generate and share knowledge about teaching and students learning. The first learning 
study was carried out in Hong Kong in 1999. By now over 300 learning studies have been developed 
in Hong Kong and it has been developed in other parts of the world, including Sweden. Lo and Marton 
(2012) stress that, 
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learning study has been found to improve students learning, reduce the gap between the high and 
low achievers and contributed to teachers’ professional development and the learning of 
researchers (p. 9). 

A learning study is an iterative process where a small group of teachers handle a particular 
pedagogical content. The students’ way of making sense of the pedagogical content, initially and after 
a lesson is systematically scrutinized and revised once or twice and carried out in a different class. 
The whole process is well documented. The variation theory (Marton & Lo, 2012) is used as a 
theoretical tool for planning the lessons as well as analysing the lesson and the teacher students’ 
lesson plans. 

Data collection 
The data collected consists of lesson plans (written test) and two video recordings of iterative 
seminars given in the teacher education course. The mathematical topic covered was probability. 
Prior to, and after each seminar, the teacher students handed in a lesson plan.  

Preliminary results 
The analysis of the lesson plans revealed how and what the student teachers understood or not and 
thus what critical features the seminar should focus on. We could see in the lesson plan that the 
students wrote an aim with the lesson, a didactic plan for the lesson an also how they would evaluate 
the pupils learning. What was missing was the connection between the three (critical aspect). In the 
seminar we let student teachers look at a lesson plan conducted by someone else than the students as 
well as questions about the alignment between aim, lesson and evaluation in order for them to discern 
the critical aspects. The result showed that the students had not discerned the critical aspects and one 
reason could be the lack of contrast between different lesson plans since we only addressed one lesson 
plan in the seminar. For the second seminar we discussed one lesson plan in whole class and addressed 
questions about what was missing in the lesson plan between the linking in the alignment. In order 
for the teacher students to discern the critical aspects they got a lesson plan to compare and contrast 
with the first one discussed. One critical aspect we overlooked was the student’s ability to make the 
lesson plan concrete enough to work in a classroom. A second learning study will be conducted taking 
into account the need to variate concrete lesson plans.  
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How teachers use interactions to craft different types of student 
participation during whole-class mathematical work 
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This article investigates how different types of teacher interactions craft different types of student 
participation. The article is based on shared data within Thematic working group 19: Mathematics 
Teaching and Teacher Practice(s) for CERME 11. Using conversation analysis, each turn was 
characterized. The findings illustrate the main teacher and student interactions for each classroom, 
and how some types of teacher interactions typically lead to specific types of student interactions in 
the following turn. This is a contribution to increase our understanding of how teacher interactions 
can be used deliberately to activate students’ participation in different ways.  

Keywords: Interaction, discourse, student participation, moderating, whole-class mathematical 
work. 

Theory 
When describing classroom discourse, the IRE pattern (Cazden, 1988; Mehan, 1979) might be the 
most widely referenced concept. It describes a pattern where the teacher initiates a task or discussion, 
the student(s) responds, and the teacher evaluates, and is often seen as the default pattern of classroom 
discourse. According to Franke, Kazemi, and Battey (2007), the IRE pattern describes a procedure-
bound pattern with little emphasis on students’ thinking and explanations. Often IRE is described as 
a rather teacher-dominated pattern, where the students only answer when given permission and where 
the teacher maintains a position of authority given by role rather than by mathematical arguments. 
However, it is not only who asks the question or who evaluates that decides the quality, but also the 
quality of the questions and evaluations. Mercer and Littleton (2007) argue that instead of looking at 
the number of questions (initiatives) a teacher asks, one should look at the function of these questions. 
It is also necessary to study the function as part of the dialogue, studying how different initiatives 
nurture specific responses and how these are typically evaluated. This must be done within both IRE 
patterns and other patterns, leaving the focus on characterizing a discourse as inside or outside IRE 
behind us and instead look for details that inform about different qualities. 

Several authors have described discourse frameworks and concepts that go into more detail. One such 
example is Fraivillig, Murphy, and Fuson (1999) who, based on a study of one skillful teacher, 
describe the ACT (Advancing Children’s Mathematics) framework, consisting of three components: 
eliciting children’s solution methods, supporting children’s conceptual understanding, and extending 
children’s mathematical thinking. These components describe three main ways the teacher acts to 
advance students’ mathematical thinking in detail. Another example is the eight communicative 
features suggested by Alrø and Skovsmose (2002): getting in contact, locating, identifying, 
advocating, thinking aloud, reformulating, challenging, and evaluating. These do not separate 
between teacher and student interactions, but instead describe fundamental types of communication 
in mathematics independent of who says what. A third example is the redirecting, progressing, and 
focusing framework (Drageset, 2014) describing thirteen actions teachers use to orchestrate the 
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classroom discourse. Redirecting actions typically occur when the teacher wants the student(s) to 
change their approach. This is done either by putting aside the student’s suggestion, by advising a 
new strategy, or by asking a question in such a way that it includes a correction. Progressing actions 
are about moving the progress forward. This is done by demonstrating the entire solution process, by 
simplifying through hints and suggestions, by asking closed and often basic questions to move along 
one step at a time while the teacher controls the process, or by asking open questions and leaving it 
to the student(s) to choose how to progress. Focusing actions are about stopping the progress to look 
deeper into some important detail and consist of two main types. One type is to ask students either to 
elaborate in detail how they solved a problem or thought to arrive at the answer, to justify why their 
answer or method was mathematically correct, to apply the method to a similar problem, or to assess. 
The other type is the teacher pointing out important ideas or rules either during the solution process 
(notice) or after the solution has been found or agreed upon (recap). In a further development of the 
framework, a third type of focusing actions called moderating is added (Drageset & Allern, 2018). 
This describes how teachers moderate the discourse in three different ways: choosing whom to speak, 
requesting student questions, and requesting alternative methods. In general, moderating interactions 
describe how a teacher can develop and control the discourse while the content of the discourse is the 
students thinking, questions, and explanations.  

In addition to the framework describing different teacher interactions, Drageset (2015) developed five 
categories of student comment: explanations, initiatives, teacher-led responses, unexplained answers, 
and partial answers. These add to the categories describing teacher actions, together providing a set 
of concepts able to describe all mathematically-related comments in these five practices. Together, 
Alrø and Skovsmose (2002), Drageset (2014), and Fraivillig et al. (1999) illustrate three different 
approaches to investigate classroom discourse in detail. While Fraivillig et al. (1999) concentrated 
their effort on describing the main actions performed by the teacher to help students advance their 
mathematical understanding, Alrø and Skovsmose (2002) described all turns without separating 
teacher and students, and Drageset (2014, 2015) chose to describe teachers’ and students’ 
participation separately before looking at connections. Common to the latter two is the 
characterization of single comments in order to develop categories.  

However, looking at single comments, or turns, yields a very limited scope. According to Sacks, 
Schegloff, and Jefferson (1974), turns are the most fundamental feature of conversation. Even though 
people take turns in speaking, sequentially and one at a time, it is not possible to characterize a 
conversation as a series of individual actions. Instead, conversations are social practices where each 
turn is thoroughly dependent on previous turns, and individual turns cannot be understood in isolation 
from each other (Linell, 1998). This means that characterizing different types of single turns are 
insufficient if one wants to study the discourse. Instead, one needs to study how different types of 
turns affect one another. It is also important to know that some responses are more relevant or 
preferred than others (Linell, 1998). Often, a student knows what type of answer is relevant. Such 
relevance can be related to social norms and socio-mathematical norms (Yackel & Cobb, 1996). 
Arguably, when a student knows how what is a relevant or preferred answer, then norms are 
established. And these norms, or relevant answers, do not emerge out of definition or information 
from a teacher, but gradually through an appropriation process as described by Newman (1990).  
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Method 
This article reports from a study of shared data within Thematic Working Group 19 for the CERME 
11 conference. Three short videos from different classrooms and a transcript from a fourth were 
shared by different participants of the TWG 19. The idea is that participants in TWG 19 can get a 
greater insight into the analyses and frameworks of each other when they also have access to the data. 

Based on the knowledge that each turn in a conversation is thoroughly dependent on previous turns 
(Linell, 1998), this article aims to investigate this question: How do teachers use of different types of 
interactions craft different types of student participation during whole-class mathematical work? To 
achieve this, the transcripts were analyzed turn by turn, categorizing each turn using the redirecting, 
progressing and focusing framework developed by Drageset (2014, 2015) and Drageset and Allern 
(2018). Then the most frequent types of teacher interactions were identified to search for patterns on 
how students responded to these types. And the student interactions describe the ways the students 
participate during the whole-class mathematical work. 

While the data from each classroom is too limited to say much about the classrooms, this type of data 
is valuable for its variety. This variety illustrates very different ways of crafting student participation, 
which is also useful for further development of the frameworks and concepts.   

Findings 
In the following, findings related to each classroom will be described. All concepts in italic are 
concepts from the redirecting, progressing and focusing framework by Drageset (2014, 2015) and 
Drageset and Allern (2018). 

Kleve’s classroom 

This lesson is studied based on the transcript alone. It comes from a fourth-grade class with 24 
students in Norway. The teacher is educated as a pre-school teacher and thus not formally qualified 
for teaching in school. In this lesson, five students have solved one task each on the blackboard. Then 
the discourse started, and the teacher talked with each student and the entire class about each task. 

For each task, the discourse starts with a task that is solved, but the process and thinking behind the 
task is not visible. The first question the teacher asked for each task are these: 

- Let’s see. What is the place value system about, Herman?

- When we are going to find the product of something. What do we have to think about then?
Hamid?

- And half of something, Marte, what do we have to think about then?

- Finding x, then we are going to find the missing number. What do we have to do then Oskar?

- Greater than and less than, Tobias. That became [i.e. You got…?]?

The first four are similar as they all ask students for an explanation. Herman is asked to explain a 
concept (place value). Hamid, Marte, and Oskar are all asked to explain a process, either what one 
needs to think about or what one needs to do. All these questions are about enlightening details, to 
make the thinking behind an answer visible. All these resulted in student explanations.  
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The last question to Tobias is about getting an answer, not requesting an explanation. Instead, this is 
an open progress initiative which resulted in an answer with no explanation (unexplained answer). 

Further on, the task discourses vary, but also tend to look like this towards the end: 

Teacher:  And seventy-three and thirty-seven? 

Students: Greater than.  

Teacher:  And twenty-six minus two is? 

Students: 12 

Teacher:  And twelve plus twelve is?  

Students: Equal.  

All the teacher interactions are questions that have only one correct answer and demands no process 
to answer (as the answers are already on the blackboard). This means that the teacher interactions are 
closed progress details while the student interactions are teacher-led responses. This pattern is found 
towards the end of four out of five task discourses.  

Overall, the discourse pattern seemed to be that the teacher requested details of students thinking first 
(enlighten detail), the student explained, and towards the end the teacher went through all remaining 
answers using closed progress details, receiving teacher-led responses. 

Sakonidis’s classroom 

This classroom consists of 22 students at grade five in Greece. The teacher is a mathematician with 
an interest in advancing children’s mathematical thinking. The video shows the teacher at the 
blackboard with fraction circles, talking with the entire class. This is an excerpt from the discourse:  

Student: Eight 

Teacher: Eight. How many pieces do I need for a whole pizza here? (Pointing out a circle 
that is divided into two six pieces, one in light green and the rest in dark green) 

Student:  Six 

Teacher:  Six. And here, how many do I need for a whole pizza? (Pointing out a circle that is 
divided into two four pieces, one in light green and the rest in dark green) 

Student: Four 

In the above excerpt, both teacher interactions start with a confirmation, then moves on to the next 
question (next figure). The questions have only one correct answer, and as the figures are drawn on 
the blackboard it is not difficult to answer (count) correctly. Such questions are closed progress 
details because there is only one correct answer. The student’s answers are teacher-led responses as 
the answer are given by the figure. 

In this lesson, the dominating type of teacher interactions is closed progress details, each followed 
by a teacher-led response. This leads to a typical IRE pattern where the teacher asks all the questions, 
evaluates all answers, and talk much more than the students. 
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Hoover’s classroom 

This video is from a summer mathematics program with approximately 30 fifth graders in the USA. 
The teacher has more than 30 years of experience and is also a researcher. The video shows a student 
suggesting a solution on the blackboard and the subsequent dialogue. Quite often the teacher 
interacted in a particular way, as illustrated by these examples: 

- Okay, would some- You’d like to ask another question, Dante?

- Okay, Toni, what’s your question for her?

- Okay, any more questions for Aniyah?

These teacher interactions are similar as they are all about getting students to ask Aniyah about her 
thinking. It was typical for this lesson that the teacher requested student questions.  

Another type of interaction observed repeatedly looked like this: 

- Before you agree or disagree, I want you to ask questions if there’s something you don’t
understand about what she did. No agreeing and disagreeing. Just- All you can do right now is
ask Aniyah questions.

Here the teacher tells the student how to participate in the discourse. The teacher is moderating the 
discourse by guiding participation and norms. 

The pattern of this classroom seems clear. The teacher sets up the situation by letting a student answer 
and controls the interaction through the use of guiding participation and norms and requesting student 
questions. Then the students’ participation follows as requested, with one student asking questions 
and the one by the blackboard subsequently explaining. It is also interesting to notice that the teacher 
does not talk every second time and that the student interactions are rarely short and sometimes long. 

Drageset’s classroom 

This classroom shows a lesson with five students in grade four and their teacher in Norway. The 
lesson is part of a large government project where the effect of more teachers at the first grades will 
be explored. The teacher has about 20 years of experience. The lesson shows these students solving 
one task (the King is 80 years in 2017, when was he born?) and sharing their strategies. This teacher 
uses several types of interactions, such as these: 

- But remember, you remember what we’ve been saying. It’s not the answer that’s going to
impress me. What’s going to impress me the most is the way you got the answer.

- A good tip right now is not to trust that one sitting beside you.

- You can only trust yourself here. Think for yourself and trust yourself.

Here the teacher informs the students about how to work, which is guiding participation and norms. 
In addition, the teacher regularly asked such questions as these: 

- Are there anyone else that wants to show their way of thinking?

- Now it’s your turn to explain if you want.
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- But you were also, I noticed, quite quick to finish. (…) It looked like you did it in your head
for a bit, then [snaps] wrote your answer down. So, I’m eager to know how you did it.

All these are examples of the teacher requesting alternative methods. It was the main feature of this 
lesson that the students presented a variety of solution methods of finding the King’s birth year. Both 
guiding participation and norms and requesting alternative methods are examples where the teacher 
controls the dialogue through moderating, while the main content of the discourse is the students’ 
explanations. However, bringing alternative methods forward did not result in a discussion.  

Another type of teacher interaction was such as this one: 

- I just want to repeat what you did so the others will understand what you meant. If you can
move aside for a bit. What I understood is that you didn’t bother about the 17 at first. You just
went straight back and thought that: “What if we’re in the year 2000 now?” If we then move
80 years back, we land in 1920. But now I’m eager to know, what did you do next?

Here the teacher stops the student explanation to tell the other students what is done so far and 
subsequently asking the student to continue the explanation. Such pointing out was frequently used 
by the teacher, and almost all long teacher interactions were about pointing out. While the teacher let 
the student explain, he used pointing out to make the explanation clearer and more complete. In this 
way, the student explanation was complemented and clarified.  

The students participated in three main ways; offer to answer, needing clarification, and explaining. 
The two first were observed in the first part of the lesson, while the students worked on the task 
individually. The student explanations were observed during the last part of the lesson when they 
shared strategies on the blackboard. Of these explanations, almost all were explanations of action.  

This lesson had two clear parts. In the first part, when the students worked individually, the teacher 
mainly contributed by guiding participation and norms while the students offered to answer when 
they were ready and needed clarification. In the second part, the teacher requested (alternative) 
methods. As a consequence, the students shared their strategy one at a time (student explanation) and 
the teacher pointed out during or after their explanations. The use of pointing out did not lead to any 
student interaction, either the student continued explaining, or the pointing out ended the explanation. 

Discussion and conclusion 
This article has analyzed transcripts and videos from four classrooms to find out how different types 
of teacher interactions leads to specific types of student interactions. Based on which type of student 
interaction that follows each type of teacher interaction, there are some clear patterns. 

Most frequent teacher interactions Most frequent student interactions 

Kleve’s 
classroom 

· Closed progress details
· Enlighten detail

· Teacher-led responses
· Student explanation

Sakonidis’ 
classroom · Closed progress details · Teacher-led responses
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Hoover’s 
classroom 

· Moderating
o Guiding participation and

norms
o Requesting student questions

· Student explanation
· Student questions

Drageset’s 
classroom 

· Pointing out
· Moderating

o Guiding participation and
norms

o Requesting alternative methods

· Student explanation
· Offer to answer
· Needing clarification

Table 1: Summary of the most frequently used interactions in each classroom, based on concepts from 
Drageset (2014), Drageset (2015), and Drageset and Allern (2018) 

Perhaps the clearest pattern found is that when a teacher asks for closed progress details the student 
responds with a teacher-led response. In these sequences, the teacher asks very easy questions and 
the students answers shortly. A focus on answer and repetition seems to be a feature of this pattern. 

Another pattern is that when the teachers requested the students to enlighten details about their 
thinking or solution process, the student responded with an explanation of the actions or thoughts. 
This might seem insignificant, but according to Franke et al. (2007), one of the most powerful moves 
a teacher can take is to make such details about thinking visible for all. Similarly, requesting 
alternative methods resulted in student explanations. This also creates opportunities for discussing 
different methods or strategies, but this was not observed here. 

The teacher interaction of requesting student questions was of particular interest. This naturally leads 
to the students asking questions, but also lead to student explanations in a dialogue between students. 

The interaction pointing out did not lead to any particular student interactions. Typically, the student 
either continued the explanation afterward or did not say more when the pointing out came as a 
conclusion. The use of pointing out illustrated how this is a tool for clearing up students’ explanations. 

While both requesting student questions and pointing out focused on displaying student thinking, it 
is worth noticing a clear difference. While the teacher in the third classroom (shared by Hoover) was 
emphasizing that students should ask to find out what the student was thinking, the teacher in the 
fourth classroom (shared by Drageset) instead pointed out what seemed to be necessary for the other 
students to understand, and effectively removed the need for student questions. 

The interactions that were guiding participation and norms seemed to lead to the requested behavior, 
but this was not possible to see clearly in the turn-by-turn analysis. In general, these interactions are 
examples of how a teacher can work deliberately to establish norms of how to respond and of what 
is expected from an answer. This means that guiding participation and norms illustrates how these 
teachers seem to work to establish what Linell (1998) calls preferred responses. When preferred 
responses are related to the content of mathematics, such as what counts as an explanation, the 
preferred responses are the same that Yackel and Cobb (1996) calls socio-mathematical norms. 

This article has illustrated how the types of teacher interactions rather consistently decide which type 
of student response comes in the next turn. And responses that are consistent arguably describe how 
the students participate. Further research is needed in order to understand how teacher turns can be 
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used deliberately to activate students’ participation in different ways, and the sharing of data from 
different classrooms and cultures is ideal for such a work. The findings also illustrate that the 
framework used apply cross-nationally and yield coherent characterizations of instructional 
interactions during whole-class mathematical work. 
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Beyond the immediate – illuminating the complexity of planning in 
mathematics teaching  

Helena Grundén 
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In mathematics education, there is a growing interest in research on social aspects such as how 
mathematics teaching in classrooms is informed by society. Consequently, new sets of theoretical 
frameworks and methods have to be taken into account. In a focus group study, Critical Discourse 
Analysis (CDA) was used as a theoretical framework, which enabled the researcher to see how 
mathematics teachers resist and construct a discourse of mathematics teaching apart from the official 
discourse. Also shown in the study is that power relations are circulating and thereby influencing 
teachers in the process of planning in mathematics. In this paper, results from the study are used to 
emphasize CDA as useful for mathematics education researchers seeking to grasp the complex, 
dynamic, and emerging nature of mathematics teaching.  

Keywords: Critical Discourse Analysis, mathematics teaching, power.  

Introduction 
Prior studies within the TWG19 have in different ways underlined “the dynamics of the research 
activity aiming at ‘unpacking’ teaching practice”, mainly by focusing “the micro-level of classroom 
practice, on the resources teachers draw on as they engage in it, and their (intentional or unintentional) 
professional activity” (Sakonidis, Drageset, Mosvold, Skott, & Taylan, 2017, p. 3039). However, 
mathematics teaching is framed by “contextual, epistemological, and social issues” (Potari, Figueiras, 
Mosvold, Sakonidis, & Skott, 2015, p. 2972), which means that ‘unpacking’ teaching practice and 
exploring the complexity of mathematics teaching requires research moving beyond immediate 
classroom situations.  

Teachers’ planning is one aspect of mathematics teaching practice(s) that often is done outside 
classrooms. One aspect of understanding development of this specific part of teaching practice(s) is 
to explore influence of various factors such as “how micro-level interactions (classroom and school) 
are informed by macro-level structures (society, culture and the politics)” (Sakonidis et al., 2017, p. 
3033). Theoretical frameworks and methods traditionally used for classroom studies might not be 
enough to grasp what Sakonidis et al. (2017) refer to as the macro-level structures, i.e., society, 
culture, and politics. Hence, a framework acknowledging “the significance of the multiple micro- and 
macro factors that may influence how learning and lives in classrooms unfold” (Skott, Mosvold, & 
Sakonidis, 2018, p.171) is needed.  

An ongoing focus group study focuses on planning in mathematics teaching. The study aims to 
explore in what ways power is visible in mathematics teachers’ talk about planning and the research 
questions guiding the study are: “What practices are visible when teachers talk about planning in 
mathematics?”, and “In what ways do teachers refer to these practices?”. In this paper, theoretical 
assumptions underlying the design of the study and preliminary results from the study are presented 
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through an empirical example, discuss Critical Discourse Analysis (CDA) as an option for studies 
aiming at going beyond the immediate and observable classroom events.  

Theoretical framing  
In the following section, CDA and relevant theoretical constructs of practice, power, and discourse 
are presented in relation to previous mathematics education research. CDA is emphasized as a useful 
approach when wanting to explore relations between educational practices and social contexts 
(Mullet, 2018). In CDA the research interest is social practices, which include both communicative 
interaction (between actors) and the structural conditions framing the communication (Chouliaraki & 
Fairclough, 1999). Hence, a CDA perspective will embrace both structures and actors acknowledging 
that discourses shape humans as much as humans shape discourses (Fairclough as cited in Lund & 
Sundberg, 2004, p. 25). There is a dialectic relation between on the one hand to preserve and 
reproduce structures, and on the other hand, actors transforming and diversifying discourses (Lund & 
Sundberg, 2004). Adopting this perspective in relation to planning in mathematics would imply 
seeing the teacher as an actor within the structure of mathematics, the structure of mathematics 
education, and the structure of school.  

Within CDA there is no disjunction between micro-, macro-, and meso level. Instead of analyzing 
different levels, different aspects of practice are analyzed through phases of text, discursive practice, 
and social practice. Texts expressed discursively are produced within a social practice (Chouliaraki 
& Fairclough, 1999). CDA has been used and discussed in mathematics education, mainly with a 
focus on texts and linguistics (e.g., Le Roux, 2008; Morgan, 2014). However, staying close to the text 
is not the only possibility. In CDA, focus on three levels is possible: “the communicative interaction 
itself; the discursive resources used in the interaction and the orders of discourse from which they are 
drawn; the social structures and socio-cultural practices within which the interaction is situated” 
(Chouliaraki & Fairclough, 1999 as cited in Morgan, 2014, p.6). In Le Roux (2008) Fairclough’s 
three-dimensional model is used “as a framework for studying the relationship between the written 
text of a mathematics problem, the associated discursive practices (the processes of text production, 
distribution and consumption of the text) and the wider social practice of which the discursive 
practices form part” (La Roux, 2008, p. 313). The three-dimensional model can also be used to 
describe a teacher talking about planning. The teacher produces a text (the talk) within a discursive 
practice (i.e., the college of mathematics teachers in the school) that is embedded within a social 
practice.   

Practices 

Within the CDA perspective, as well as in prior mathematics education research, the term ‘practice’ 
is common. However, there is not a mutual understanding of the term. In mathematics education 
research, the term has evolved from a cognitive, individual perspective focusing on actions and 
behaviors and underlying beliefs, intentions and knowledge, to a sociocultural perspective within 
which ‘practice’ is a social phenomenon and includes teachers’ and students’ recurrent activities and 
norms (Skott et al., 2018). The meaning of the term ‘practice’ has in some studies also expanded to 
include parts of teachers work that happens outside the mathematics classroom (Skott et al., 2018). 
This latter understanding of the term is in line with meaning of practice in the CDA perspective where 
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‘practice’ grasps both individuals’ actions and the more habitual, common ways of acting 
(Chouliaraki & Fairclough, 1999). Hence, thinking of planning for mathematics teaching as a practice 
would enable to see teachers’ actions both as individual and shared by other mathematics teachers. It 
would also enable to get hold of the relationship between abstract structures and peoples acting, or 
how social structures govern people’s possibilities to act.  

In the CDA perspective, using the term practice implies that there are internal power relations and a 
struggle between different actors. In the practice of planning, there are actors such as colleagues, 
students, and school leaders who may not share the same ideas about mathematics teaching. These 
different ideas lead to tensions and influence teachers’ planning (Grundén, 2019), which can be seen 
as a struggle between actors. This struggle reproduces and transforms structural conditions. However, 
the internal power relations of a practice are also influenced by its relation to other practices (Lund 
& Sundberg, 2004). Teachers’ planning in mathematics teaching is thus framed by structural 
conditions produced in past and present educational systems but is also framed by structural 
conditions produced by mathematics community, and mathematics education community. Hence, 
there is an on-going struggle where structural conditions are negotiated.  

Power 

In mathematics education research, different notions of power are used (Gutiérrez, 2013; Valero, 
2008). In this paper, power is used from a CDA perspective, i.e., always present in and between 
practices, and seen as situated, relational, and in constant transformation. Transformation occurs 
when people participate and act in the construction of discourses (Valero, 2004). Hence, power in 
relation to planning for mathematics teaching is in constant circulation and transformation. Power is 
not seen as only operating from ‘above,’ from for example government and school leaders. On the 
contrary, all actors within a practice, such as teachers, students, and parents as well as government 
and school leaders might have power.  
Discourse 
Another construct important within the CDA perspective is discourse. The term is used in a variety 
of ways in mathematics education research and the conceptual clarity in many discourse studies is 
weak. In a literature review on mathematics education, articles were found to focus on three topics: 
discourse as social interaction; minds, selves, and sense-making; and cultural and social relations 
(Ryve, 2011). In this paper, the focus is on social structures and meaning is seen as situated and co-
constructed which would place the research within the topic area of cultural and social relations. In 
Ryve’s categorization, this implies an interest in “macro processes of social and institutional actions” 
(p. 172). Many studies within this topic area draw on work of Foucault, with the consequence that 
discourses are analyzed as language games maintained by power relations and little agency is ascribed 
to individuals (Ryve, 2011). This perspective is often criticized since there are few possibilities to 
transcend the binding discourse order (Lund & Sundberg, 2004).  

On the other hand, within the CDA perspective there is a dialectic relationship between humans and 
discourses (Lund & Sundberg, 2004) and discourse is seen as “use of language seen as a form of 
social practice, and discourse analysis is analysis of how texts work within sociocultural practice” 
(Fairclough, 1995, p.7). Within a discursive practice such as a college of mathematics teachers 
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planning for teaching, texts are produced, distributed, and consumed in specific ways and in line with 
the social context in which it is embedded. What is analytically interesting is not to “discover” and 
construct “new” discourses but how the individual teachers through acting represent, produce, and 
legitimate discourses on specific grounds. Discourses are studied based on their effects on different 
levels; situational, institutional, and societal (Lund & Sundberg, 2004, p. 26) 

Empirical example – Focus group  
Results from a previous study (Grundén, 2017) in which teachers were interviewed with a focus on 
meaning in relation to planning in mathematics show that teachers refer to aspects beyond the 
immediate planning in their talk, they refer to practices other than the practice of planning in 
mathematics. In an ongoing study, focus group interviews are used to explore how these practices are 
visible and how power operates within and between them. The researcher met with six different 
groups at four different schools. The number of participants in the groups was between 2 and 5. The 
interviews lasted between 65 and 90 minutes. After an introduction consisting of a presentation, a 
reminder of informed consent, and a short presentation of the previous study the researcher started 
the discussion by placing pieces of paper in the middle of the table. On some of the pieces, there were 
words written; some of them were empty. The words that were written were six common influencing 
aspects identified in the previous interview study: Students, School management, National tests, 
Templates/forms, Parents, and Textbook. Participants were asked to look at the words and think about 
if any of them had any relation to their process of planning in mathematics. The words were seen as 
stimuli for the discussion. Participants were also told that they could add aspects they thought were 
missing and remove aspects that they did not think were related to planning. During the discussion, 
the role of the researcher was to ask follow up questions and challenging questions and to make room 
for all participants and invite them in the conversation, and through small words and gestures confirm 
that she was listening.   

Since the aim of the study was about the practice of planning rather than individual teachers’ planning 
the discussions were transcribed without marking different voices. Instead, all statements were seen 
as examples from the practice of planning in mathematics teaching. For this paper, preliminary results 
from one of the focus groups are presented. The reason for presenting results from this group was a 
telling example of when a social practice influenced planning in mathematics teaching. The group 
consists of four teachers working in school year 1 at the same school, a small school with pre-school 
class, first class, and second class. The teachers had scheduled time together every week and were 
used to working together. At the beginning of the discussion, the group wanted to add an aspect, 
‘National support for assessment,’ that for them was related to planning. A transcript of the discussion 
that followed was analyzed as described in the following section.  

Acknowledging meaning as situated and power as an issue in social practices (e.g. Valero, 2004) 
implies that power is present also in the interview situation. In this study, efforts were made to 
diminish influence of researcher by letting participants choose and talk freely about issues related to 
planning introduced with no further explanation. However, there is always a possibility that 
researchers influence arguments in texts produced by participants which have to be taken into 
considerations when valuing results.   
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Analysis and results 

There is no particular method for analysis in CDA studies. However, there are common features in 
the analysis made within the perspective where the analysis “oscillates between a focus on structure 
and a focus on action” (Fairclough, 2001 as cited in Mullet, 2018, p. 118). Mullet (2018) describes a 
general analytical framework for CDA in which several CDA approaches are condensed into seven 
stages of analysis. The first three stages are preparatory and include selecting the discourse under 
investigation, select data sources and prepare them, and examine the background of text and 
producers of text. The fourth stage when analyzing a text is to identify overarching themes for 
example by using thematic analysis. (Mullet, 2018). After that analysis of external (stage 5) and 
internal relations (stage 6) in the text takes place. When analyzing external relations, interdiscursivity, 
social practices’ influence on arguments in the text as well as the text’s influence on social practices 
are examined. The analysis of internal relations is focused on “patterns, words, and linguistic devices 
that represent power relations, social context (e.g., events, actors, or locations), or speakers’ 
positionalities.” (p. 124). In stage 7 meanings of major themes and internal and external relations 
identified in stage 4, 5, and 6 are interpreted.   

In the following section, results of the external and the internal analysis of the focus group study are 
presented. The theme of the first example is assessment material on number sense from the National 
Agency of Education that is mandatory to conduct with all year 1 students. One of the groups wanted 
to add ‘National assessment support’ to the words in the middle of the table. The following discussion 
took place1: 

1 Teacher:  It is extremely time-consuming. It takes too much time from teaching 
2 Teacher:  …teaching has to come first, before Skolverket’s [National Agency of 

Education] assessment support … 
3  Teacher:  We have also said that the assessment support and national tests have never 

shown us something we didn´t already know. 
4  Teacher:  And the municipality requires documentation from us, and they have chosen 

another type of documentation than Skolverket wants, which leads to 
additional workload”. 

In this section, we can see that there are social practices influencing arguments in the text (stage 5). 
Teachers talk about Skolverket [National Agency for Education] (line 2 and 4) and municipality (line 
4) which both can be seen as actors within an official practice. Other elements of the official practice 
are visible when teachers talk about the assessment support (line 1, 2, and 3) and national tests (line 
3).  

By focusing on patterns, words, and linguistic devices, i.e., the internal relations (step 6) in the text 
we can see how teachers have to relate to the assessment support when planning. In the first utterance, 
a teacher implicitly expresses that they have less time for ‘teaching,’ thereby also implicitly saying 
that doing the assessment tasks with students is not part of ‘teaching.’ By the choices of words 
                                                 
1 My translation from Swedish 
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‘extremely” and ‘too’ the teacher reinforces the impression that the assessment support is something 
that is not considered valuable. This view is also visible in the second utterance, where the teacher 
emphasizes that teaching is something else, more valuable than the assessment support. By seeing 
Skolverket as the owner of the material, the teacher distances herself and gives the impression that 
the assessment support intrudes teaching.  

In the third statement, the participant sees herself as part of a practice by referring to ‘we.’ Within the 
practice, information obtained by assessment support and national tests is unnecessary because it 
already has emerged through teaching. In the last statement “the municipality requires” another type 
of documentation than “Skolverket wants” indicates that the documentation for Skolverket seems 
more reasonable than the documentation for the municipality. This is strengthened by the claim that 
the requirements from the municipality lead to “additional workload.” 

The counterpart in the above example is Skolverket, which on their webpage describes the assessment 
support as follows:  

In the subject of mathematics there is a national assessment support in number sense for school 
year 1–3. It is mandatory for head of school2 to use assessment support in school year 1. It is 
Skolverket’s assessment support in number sense, published in 2018, that should be used […]. The 
assessment support aims to make it easier for you as a teacher to follow up on students’ knowledge 
in school year 1–3. With help from assessment support students that already have, or are in the 
risk of having, difficulties in number sense in mathematics can be early identified. You can also 
see when a student has come further in her knowledge development and need further stimulation 
(Skolverket, 20183) .  

Here, the words ‘support’ and ‘mandatory’ are of interest. Making support mandatory assumes that 
users, in this case, the teachers, are in need of support and that they do not seek the support they need. 
Since the assessment support is “mandatory for the head of school” an alternative interpretation could 
be that Skolverket by saying that it is mandatory wants to clarify that the head of school has to create 
conditions for teachers to make the assessments. However, there are wordings such as ‘for you as a 
teacher’ indicating that teachers are the actual receivers, and teachers are also the ones who conduct 
the assessments in the material.  

Through the analysis of the four utterances and the quotation from Skolverket, it is possible to see 
that power is circulating around and within the practice of planning. Through the way the teachers 
speak, it becomes clear that the assessment material is seen as worthless and something that stands in 
the way for teaching. On the contrary, Skolverket emphasizes the assessment support as helpful in 
teachers’ possibilities to individualize teaching. The teachers can either choose to resist given 
instructions and not let their students do the assessments or choose to follow them and thereby 
renounce what they count as teaching. In this case, the teachers choose to conduct the assessments, 
which in line with the analysis have the consequence that students have less mathematics teaching.  

                                                 
2 In Sweden, ’head of school’ means the authority responsible for a school or several schools. It can be a municipality, the state, or a private actor.  

3 My translation from Swedish 
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Discussion and conclusion 
By analyzing what the teachers said with regard to external relations (Mullet, 2018) Skolverket’s 
influence on arguments in the text was made visible. It was also visible how decisions made by 
Skolverket influenced decisions that the teachers made regarding their teaching. By focusing on 
internal relations (Mullet, 2018), the resistance of the teachers was apparent. In their meta-reflection 
on planning the teachers emphasize explicit power relations and perceive Skolverket and the 
municipality as disturbing power factors. When expressing dissatisfaction, they resist the official 
practice and make room for an alternative discourse of mathematics teaching where the actors of the 
official discourse are not invited. Hence, teachers enter as actors in a discursive struggle for power 
where they, on the one hand, perceive instructions and requirements from Skolverket and the 
municipality as “something else” than their own pedagogical discourse and on the other hand realize 
that they have to follow instructions and requirements given by them. 

Relating the power relations and the struggle between actors visible in the above examples to what is 
happening in the mathematics classroom is two-folded. On the one hand, it contributes to explanations 
of what is happening in the teaching situation when the students do the assessment tasks, but also 
bring clarity to aspects of teaching that never are visible in classrooms. Teachers in the example 
abandon what they consider to be teaching to comply with the directives of Skolverket. Insights like 
this might be important for example in discussions about implementing research results. Often it 
seems to be assumed that teachers do not teach desirable ways because they do not know how to do. 
Consequently, implementing research seems to be about telling teachers how to do. Findings indicate 
that an awareness that teachers make decisions in a practice influenced by others and sometimes not 
teach the way they want is crucial in implementation work.  

So, is CDA useful in mathematics education research? Results presented above indicate that 
theoretical constructs from CDA such as practice (e.g., Chouliaraki & Fairclough, 1999) and power 
(e.g., Valero, 2004) help to make visible what Sakonidis et al. (2017) describe as how classroom and 
schools are informed by society, culture and politics. Hence, CDA might be a possible answer to the 
call for a framework that acknowledges “the significance of the multiple micro- and macro factors 
that may influence how learning and lives in classrooms unfold” (Skott et al., 2018, p.171), and 
studies using CDA might contribute to research in mathematics teaching with insights beyond the 
immediate.   
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Leading a discussion of student solutions 
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Mathematics teaching produces and reproduces social injustice. It also has the potential to disrupt 
patterns of inequity and advance just communities of practice. Drawing from literature on equitable 
mathematics teaching, we analyze the work of leading a discussion of student solutions in ways that 
nurture healthy identities, relationships and societies. From a conceptual analysis of a Norwegian 
mathematics lesson, we first identify dynamics of race and gender at play, then identify three key 
aspects of mathematics teaching that can serve to disrupt these dynamics while creating 
opportunities for alternative identities, relationships and futures: (i) having regard for property and 
its use; (ii) taking up student thinking as participatory citizenship; and (iii) orchestrating collective 
mathematical work. We discuss nuances of this work and implications for research on teaching. 

Keywords: Research on teaching, equity, work of teaching, mathematics teaching.  

Inequities that play out in classrooms are well documented and a growing body of literature has 
proposed ways of teaching attentive to social differences (e.g., Ladson-Billings, 2014; NCTM 
Research Committee, 2018). Nevertheless, conceptualizations of equitable teaching are nascent. We 
need specifications that can undergird professional practice in a coherent educational system. At the 
same time, specific dynamics of oppression are intimately contextual. We need to more fully 
understand the dynamics of marginalization and privilege as they play out in classrooms and the 
work involved in altering those dynamics. In this study, we analyze a discussion of students’ 
mathematical solutions to conceptualize further the work of equitable mathematics teaching. Video 
and transcript of this discussion was part of a collection of data shared with TWG19 participants at 
CERME11. Accordingly, descriptions given in this paper are abbreviated.  

Conceptual and contextual background 
We view teaching as responsible design and management of instructional interactions. We draw on 
features visible across developing theories of teaching — the didactical/instructional triangle, 
emphasis on interaction and joint action, and regard for milieu and broader environments 
(Brousseau, 1997; Cohen, Raudenbush, & Ball, 2003; Jaworski, 1994; Wickman 2012). We see 
teaching as professional practice identified through logical analysis in professionally useful 
domains and decomposable into constituent tasks for the purpose of examining, learning, and 
reconstituting new knowledge and skill into practice (Ball & Forzani, 2009; Grossman & 
McDonald, 2008; Hoover, Mosvold, & Fauskanger, 2014).  

In this work, we focus on specifying teaching in ways that disrupt patterns of inequity and advance 
healthy communities of practice. We understand equity to mean being equal, fair, and even-handed, 
with “reasonableness and moderation in the exercise of one's rights, and the disposition to avoid 
insisting on them too rigorously” and with “recourse to general principles of justice (the naturalis 
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æquitas of Roman jurists) to correct or supplement the provisions of the law” (Equity, 2018). While 
recognizing no definitive authority for deciding what is equitable, we understand regard for equity 
as integral to teaching. In order to decide questions of equity, we draw on our sense of humanity 
and invite readers to do the same. Further, we want to be explicit that we understand education to be 
both a matter of development of the child and an invitation to children to reimagine the world. 
Equitable teaching is more than just not being inequitable. We understand teaching to be about 
engagement in and creation of a healthy learning community — one that both enriches without 
oppressing and is open and responsive to individuals, their experiences, and their spirit.  

Design of the study 
To understand the work of leading of a discussion of students’ mathematical solutions, we analyzed 
a session from a national study in Norway. Intervention schools were provided an additional 
mathematics teacher, with the goal of evaluating whether increased teacher-student ratios, with 
increased small-group instruction, will increase student learning. For the session we analyzed, the 
additional teacher is experienced and locally recognized as skilled. At this school, rotating groups of 
4-6 students leave their regular mathematics class to work in a small group with this teacher. The 
session is 21.5 minutes, with 5 year-four students, two boys (B1 and B2) and three girls (G1, G2, 
and G3). It occurred in 2017 on the 80th birthday of the King of Norway. The teacher asked students 
to determine the year in which the king was born. Sitting around a large table, students work on 
their own for about 6 minutes, at which time the teacher has students share solutions.  

Our analysis is empirical yet focused on concept formation (Gerring, 2001). It is conceptual-
analytic research in line with Sleep (2012). Drawing on our experiences, literature, and records of 
teaching practice (such as video, transcript, lesson plans, student work, and interviews), we generate 
and test ideas about recurrent tasks of teaching. We build, revise, and discard ideas based on logical 
coherence with purpose, enactment, and learning of teaching and on coordination of different 
perspectives, in particular of the discipline of mathematics and of pedagogy (Thames, 2009). In this 
study of entailments of equitable teaching, we first examined potential patterns of structural 
oppression and marginalization. Then we analyzed opportunities for disrupting these patterns.  

Potential patterns of structural oppression and marginalization 
First we examine interactions in the classroom that might be indicative of the reproduction of 
societal patterns of marginalization and oppression. The teacher begins by encouraging students to 
cooperate, yet during the first six minutes of the video, G1 and B2 dominate the verbal bandwidth, 
primarily talking to themselves, or no one in particular, with occasional, mostly ignored responses. 
As the task is launched, B2 announces that the problem is “child’s play” and that the answer is 
1933, which he then amends to 1923. G1 says, “21st of January,” to which G3, the one identified 
black student, says, “It’s not the 21st of January, he has his birthday on the 21st of February.” G3’s 
comment is participatory in the sense that she has listened to G1 and is responding substantively to 
her, yet G1 dismisses her concern, adjusts her thinking, and covers her statement with, “But, I’m 
writing when he was born, so the 21st of February…January….” Perhaps her response is sincere and 
responsive, but its forceful expression seems to shut down and end the exchange. Sexism and 
racism are well-documented societal issues. Might they bear on these classroom interactions? 
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A similar dynamic plays out again two minutes later when G3 announces, “I know! It’s 1937!” to 
which G1 puts up a hand to stop her and shouts, “You can’t say it out loud! We’re trying here….” 
The teacher also counters G3, “But remember, you remember what we’ve been saying. It’s not the 
answer that’s going to impress me. What’s going to impress me the most is the way you got the 
answer.” After a brief flurry then of students all wanting to explain and the teacher saying to wait, 
G3 reflects further, quietly stating, “It has to be 1937. I’m certain.” This time, B2, sitting next to her 
says, “No, it isn’t.” This sequence is striking in several ways. G1 objects to G3 for announcing her 
answer, when B2 has announced his several times without objection. Likewise, each of the boys 
indicated that he has an answer, but the teacher did not counter them. G3, a black girl, is shut down 
by a white girl, white teacher, and white boy in succession. Given the documented marginalization 
of people of color internationally, this exchange warrants consideration. Might it be a case of the 
reproduction of patterns of marginalization and oppression that occur in the larger society? Whether 
it is or not, noticing it matters for teaching and can inform the development of disruptive practice.  

Turning to the teacher’s engagement with student solutions, several other observations can be made. 
Following the explanation of G1’s approach (reducing 80 by 17, then subtracting 63 from 2000), 
the teacher praises her ability to figure out the calculation, when “you haven’t really learned this.” 
He again repeats that he is “extremely impressed” and “should almost write an article” about her 
solution. Then, following B1’s explanation (removing 17 from 2017, subtracting 80, then adding 17 
back in), the teacher characterizes it as a “clever way”. In contrast, following G2’s explanation 
(conventionally subtracting 80 from 2017), he acknowledges that she did it “elegantly and nice”, 
but then makes the point that B1’s approach is easier and “really smart”. Given the lavish praise 
given to G1, the teacher’s qualified praise for G2’s work seems inconsistent, as G2 performed the 
“difficult calculation” and did so flawlessly. G2 began the session expressively, but with the 
dominance of the talk of G1 and B2, her voice remains muted for the remainder of the lesson.  

The last student to present was G3. She says, “What I did was first: Nineteen… [Writes 1900.] And 
then I did... Plus... 20 since the King is 80 years old. Then I added 17.  [Writes 1937.]” On the 
board, she now has, “1900 + 20 = 1920 + 1937”. The teacher says she started with the year 1900, 
“But now you’re challenging me, I’m actually not entirely sure how you thought. Why did you start 
at 1900 and why did you add 20?” The teacher has an exchange with G3 and ends by saying he sees 
and that it is pretty clever, but a full explanation is not elicited, and the teacher does not offer a 
recapitulation to the other students as he does with each of the approaches.  

These exchanges suggest societal dynamics of power and privilege that might be forming and 
playing out. Both boys in the class speak with authority and a sense of entitlement, without 
hesitancy and with an expectation that others care and will listen. One talks extensively, with 
limited regard for others around him and little apparent understanding of the problem or its solution. 
The other works independent of the group, quickly generating a correct answer and presenting his 
solution with conviction and little attention to audience. These ways of being are consistent with 
what McIntosh (1988) identifies as white male privilege — where privilege is unearned benefits 
resulting from societal patterns of discrimination and oppression. Dynamics of privilege are central 
to sexism and racism (Collins, 2018; Keith, 2017; Lipsitz, 1998) and deserve thoughtful 
consideration in teaching and learning.  
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Turning to the girls, the first also talks extensively, forcefully inserting herself into exchanges about 
the problem, in contrast to the second girl, who seems to retreat after a few early comments. These 
two ways of being in the classroom are suggestive of the overbearing woman and the deferential 
woman sub-stereotypes respectively (Kite, Deaux, & Haines, 2008). They exist in relation to one 
another within two core dimensions of gender stereotypes: agentic being more male (active, 
confident, competent, and independent) and communal being more female (emotional, expressive, 
understanding, and concerned with the welfare of others) and remain relatively consistent across 
age and nationality (see Kite, Deaux, and Haines, 2008 for a review). How might these dynamics of 
privilege and enacted stereotypes be symptomatic of larger societal patterns? How might they be 
creating such patterns? How do they shape these students’ identities and what sort of patterns do 
they establish for relationships these students have with others in the future?  

Also noteworthy are patterns related to racial discrimination. In the wake of the WWII, reference to 
race became taboo in European politics and academia (Wodak & Reisigl, 1999). Rising 
immigration, though, has resurfaced its visibility and prompted policies aimed at monitoring racism 
and advancing integration and cultural diversity. As Maeso and Araújo (2017, p. 29) argue, though, 
these anxieties and policies “fail to address its [racism’s] embeddedness in political culture, and 
therefore in institutional structures and practices.” Or, as De Genova (2018, p. 1765) contends, the 
“migrant crisis” is an “unresolved racial crisis that derives fundamentally from the postcolonial 
condition of ‘Europe’ as a whole.” Norway is implicated in this history. In their analysis of the 2011 
attack in Oslo, Mulinari and Neergaard (2012, p. 15) point out that Norway has parliamentary 
representation for culturally racist parties and that mainstream discourses, policies, and practices 
make this permissible, again implying that racism is alive and well in Norway and in its institutions.  

Might dynamics of sexism and racism be playing out in these classroom interactions? The boys act 
with entitlement and are treated in kind. The girls navigate in relation to the boys. G3 is negatively 
critiqued and her approach devalued. It is unclear whether her solution has been understood. It is 
not sufficiently supported to be useful to others. How is this experience likely to shape her sense of 
self? What does it suggest about how these children are likely to engage across gender and race in 
the future? Blacks are often seen as less capable; Black women as invisible. The enactment of 
privilege, stereotypes, and discrimination is hard to dismiss in this session.  

Opportunities for equitable teaching 
Next we examine teaching’s possibilities for disrupting patterns of inequity and advancing healthy 
communities of practice. Teaching is a powerful force. It shapes learning and lives. The children’s 
experiences shape their sense of themselves as doers of mathematics, as capable or not. It shapes 
their sense of their relations to others, with regard to both connection and power. How do they work 
together? How do they contribute their ideas, take up the ideas of others, and develop new thinking? 
In many ways, participation in this class is practice for participation in the world. How might 
teaching shape that practice and the future world? We start by observing that the potential power of 
teaching in this session is extensive in large part because of the choice of the problem for these 
students, the orchestration of the session as problem solving, and the focus on explanation. These 
could be used to create rich opportunities for forming identities, relationships, and ways of working 
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together in the world. Within teaching, though, are discretionary spaces, often filled with habitual 
talk and actions, unconsciously accumulated from being in the world as it is (Ball, 2018).  

Teaching is a complex space, with much to consider. Our focus on disrupting patterns of inequity 
and advancing healthy communities led us to identify three key aspects of teaching as it plays out in 
this session: (i) having regard for property and its use; (ii) taking up student thinking as 
participatory citizenship; and (iii) orchestrating collective mathematical work. These are related in 
significant ways, but we distinguish them as offering different lenses on the dynamics of the work 
of teaching related to this session.  

First is an issue of property. Who has say over what? At the start of the session, the teacher tells 
students to “close the book for now.” G1s book is open and she is looking between her book and a 
worksheet. While talking, the teacher nonchalantly reaches down, closes her book, and slides both it 
and the worksheet away from her and into table space in front of him. Whose property is this? 
Respect for personal space and personal property are important, as are agency and skills of self-
monitoring, transition, and collaboration. What message does this action send? This may seem like 
a small matter, but it continues throughout the lesson. For instance, to whom does the whiteboard 
belong? The teacher? Or is it the class’ whiteboard and a resource for collective work? Extending 
this to intellectual property, who has authority when it comes to student explanations? The teacher 
maintains extensive control over G1’s explanation. He stands at the whiteboard, creates a 
representation for her approach, and makes claims about her thinking. It is as if he uses her work as 
a medium for presenting his own thinking, in a way that might be experienced and seen as co-opting 
her thinking for his purposes. Who owns ideas and how do we know? 

We do not mean to imply that any one of these actions is good or bad. Our point is that issues of 
property in classrooms are important sites of power and that without thoughtful consideration will 
likely be places where patterns of marginalization play out. On the flip side, they are sites for 
disruption. Providing a sense of property in a classroom, where respect for property is accorded, can 
give students, who may otherwise feel marginalized, a sense of belonging, of being valued, of 
having a legitimate place at the table of knowledge. While implicit and explicit messages tell girls 
and children of color they do not belong in mathematics, being a property owner in a mathematics 
classroom can create a strong counter narrative. Teaching can help this happen. Equitable 
mathematics teaching reflects on the multiple forms of property that exist in a mathematics 
classroom, ways property might be distributed, with what effect, and how to ensure respect for it.  

This leads us to a second important aspect of teaching: taking up student thinking. Whether student 
thinking is taken up, and how it is taken up, matter. As already mentioned, the teacher dominates 
the presentation of G1’s work. It is then striking to watch B1 stride to the whiteboard, take the pen 
from the teacher’s hand, and explain his approach. With white male privilege, B1 claims the space 
and his ideas. He begins, “I thought like this. We remove 17 so there’s only 2000 left.” Then, 
midway in B1’s presentation, the teacher steps in to “repeat” what B1 said for the benefit of others. 
The teacher says, B1 “didn’t bother about the 17 at first,” but thought, “What if it we're in the year 
2000 now?” This differs from what B1 actually said and is likely confusing for other students. B1 
began by “bothering” about the 17. He began by removing 17 to simplify the subtraction, with the 
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idea of compensating later. This is left implicit in B1’s explanation but is consistent with what he 
said. Greater focus on B1’s thinking, perhaps with questions to ask why he removed 17, or at least 
checking in with him about an interpretation, might push back on the low demand placed on his 
explanations as a privileged white male. It might also create for other students, more equitable 
access to his thinking. In contrast, for a marginalized student, focus on their thinking might serve to 
include them more fully and communicate value for their thinking. Either way, the work of hearing 
students and interpreting and treating their thinking with integrity is crucial to equitable teaching 
and opportunities for disrupting patterns of privilege and marginalization. Our point here is that 
everyone suffers from oppression, in different ways and to different extents. If teaching acquiesces 
to white male privilege and skips over marginalized students, it may routinely fail to provide 
learning opportunities — prematurely accepting explanations of white males and dismissing the 
explanations of others. 

For the first three students who explain their approach, the teacher steps in to explain the student’s 
thinking, often couched as necessary for other students’ understanding. We suspect that this is a 
pedagogical impulse that many teachers feel. Teachers often feel responsible for students’ 
understanding and know they are, as the teacher, the one who is supposed to know the content. As 
they struggle to understand unconventional, emergent thinking, they may feel compelled to explain 
each student’s thinking to the other students. Unfortunately, the demands of knowing intimately 
what others think are great and such a teaching practice often serves to reenact dynamics of 
privilege for some and marginalization for others. It runs a risk of causing students to feel unheard, 
silenced, and invisible. And it can undermine students’ opportunities to learn from and with their 
peers. It is also a missed opportunity in the sense that a focus on student thinking can be used to 
counter patterns of oppression. Honoring each student’s thinking as offered, with support for its 
expression and its respectful, authentic reception by other students, can nurture the healthy 
communities of practice that can rebuild our world.  

This relates to the third key aspect of teaching implicated: the nature of the collective mathematical 
work. Collective work is an obvious avenue for addressing identities, relationships, and future 
worlds. This session again suggests challenges and opportunities. The teacher starts by 
characterizing the task as challenging and encouraging students to “cooperate”. What, though, does 
it mean to cooperate on this problem? What might students need to be taught about how to 
cooperate for this work?  A minute later, as a way to encourage students to focus on thinking about 
the problem and not jumping quickly to an answer, the teacher says, “A good tip right now is not to 
trust that one sitting beside you … only trust yourself … think for yourself.” At this point, students 
are working relatively independently, and this comment reinforces independent work.  

As the class shifts from problem solving to presenting their approaches, the nature of the collective 
work changes, as does the work of teaching. To prepare productive citizens, schools need to provide 
students with skills and experience crucial to public engagement, even in mathematics classes. 
Students need to learn how to present their mathematical ideas to an audience, be aware of who has 
and has not had airtime, and respond substantively to other’s mathematical ideas. Mathematical 
work has a specific form and function. Students need to learn what counts as a mathematical 
explanation and how mathematical claims are decided, but many of its features extend broadly to 
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public discourse — clear communication, attention to audience, space for others to express 
themselves, thoughtful listening, respect for differences, and so forth. Equitable mathematics 
teaching creates opportunities for collective mathematical work and accountable discourse. In 
addition, it supports students’ contributions, making sure students are ready to contribute, 
instructing them on how to present, teaching others how to listen, and supporting productive 
response. The teaching in this session creates opportunities for collective work and public 
discourse, but it provides inadequate student support (e.g., not teaching students how they might 
cooperate), inserts itself in ways that close off opportunities (e.g., explaining students’ thinking for 
them), and truncates exchanges in ways that undermine authentic public discourse (e.g., providing a 
teacher summation in lieu of responses from others and collective resolution).  

Our analysis of leading a discussion of student solutions in this brief session reveals three key 
aspects of teaching that can serve to disrupt inequitable dynamics. Each involves nuanced work, 
operating in big and small ways in classrooms. Together, they provide an image of sensibilities and 
skills that would serve teachers well. They also suggest the depth that would be required to disrupt 
patterns of privilege and marginalization and avoid reproducing them.  
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Introduction 
Teachers are not only learning professionally during their university training; their learning continues 
and shifts to professional development programs and their own classroom practice. Understanding 
the teacher learning process should therefore help improve teacher knowledge and development at all 
levels (Chan, Clarke, Clarke, Roche, Cao & Peter-Koop, 2018). “Learning from Lessons”, a project 
about studying the structure and construction of mathematics teacher knowledge, aims to “understand 
teacher in situ learning” (ibid, p. 91) by generating and analyzing data on the teacher’s adaptation of 
a pre-designed lesson, planning a follow-up lesson and comparing the collected data from three 
different countries. In this poster the theoretical background of the study, the research questions and 
the extensive international data collection will be presented and first results from the German case 
studies will be introduced and discussed. 

Theoretical background and following research questions 
The theoretical background is based on the non-linear “interconnected model of teacher professional 
growth” initially developed by Clarke and Peter (1993) and elaborated on by Clarke and 
Hollingsworth (2002). In this model (see Fig. 1), teacher learning is determined throughout the 
enactment between several domains and reflection as essential mechanisms for occurrence of teacher 
learning.  

 
Figure 1: The interconnected model of teacher growth (Chan et al., 2018, 93) 

The main research questions of the international collaborative project are: 

To what classroom objects, actions and events do teachers attend and with what consequence for their 
learning? 
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How is teacher selective attention influenced by 

· existing teacher knowledge and beliefs? 
· the lesson’s content and structure? 
· contextual characteristics of school and classroom? 

Do teachers in different countries/cultures attend to different classroom events and consequently 
derive different learning benefits from teaching a lesson? 

Data collection and analysis 
The international data collection involves both qualitative (video and audio material from lessons and 
interviews) as well as quantitative data (questionnaires). A codebook that allows for the consistent 
coding of the qualitative data from all three countries is currently being developed by the international 
research team. Two sub-studies are being carried out in order to address the research questions 
guiding the project: 

Case studies with Grade 5, 6 and 7 teachers from Australia, China and Germany observing two 
teachers per Grade level and focusing on the interaction between the teacher and the lesson in 
sufficient detail seek to reveal the mechanisms connecting teacher attention to teacher learning. 
observing two teachers per grade level. 

Online surveys in all three countries aim at recruiting at least 40 teachers per Grade level in each 
country seek to collect data about patterns in teacher attention and consequent learning in order to 
generate and test hypotheses.  

Participating teachers in both sub-studies will teach lessons according to their modifications of 
lessons plans provided for specific topics and develop and teach a follow-up lesson as well as respond 
to questionnaires about their beliefs, their pedagogical and mathematical content knowledge drawn 
from the TEDS-M study. 
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This paper draws on the Knowledge Quartet (Rowland, Huckstep, & Thwaites, 2005) to analyse an 
introductory to the Iterative Numerical Method Year 13 lesson of a secondary mathematics teacher 
who uses a range of paper based and electronic resources including Autograph, a mathematics-
education software. Data were collected during one lesson observation and a follow up interview 
with the teacher. Analysis identifies the different aspects of the Knowledge Quartet dimensions: 
foundation, transformation, connection and contingency, in relation to the introduction to the 
Iterative method and to the teaching of Year 13 students. Findings demonstrate how the teacher used 
students’ contributions as resource for his teaching; how he balanced his use of resources; and how 
he created connections between these resources while he remained attentive to exam requirements.  

Keywords: Knowledge Quartet, foundation, transformation, connection, contingency, resource. 

Introduction 
For some decades, it was thought that access to more teaching resources (e.g. textbooks, mathematics-
education software) meant better teaching practice (Cohen, Raudenbush, & Ball, 2003). However, 
“more resources do not necessarily lead to better practice” (Adler, 2000, p. 206), and priority should 
be given to how such resources are used (Adler, 2000; Cohen et al., 2003). This is especially important 
when digital resources are used as these are thought to add to the complexity of teaching (Clark-
Wilson & Noss, 2015), also due to the overwhelming number of resources available online nowadays. 
Teachers interact with these resources, choose from them and manage them; and “these interactions 
play a central role in the teacher’s professional activity” (Gueudet, Buteau, Mesa, & Misfeldt, 2014, 
p. 141) and have great impact on students’ learning (Carrillo, 2011). Resources influence and are 
influenced by teachers’ professional knowledge, and a close look at the interactions between the two 
help identify opportunities to develop both (Rowland, 2013). The study presented here explores 
secondary mathematics teachers’ ways of managing and balancing the different resources that 
influence their work, especially when they use a range of resources including mathematics-education 
software (Kayali & Biza, 2017). We are interested in how teachers use the available resources in 
relation to their teaching aims and how they materialise and manage their lessons in the light of the 
available resources. To reflect on such complex teaching situations, we draw on the Knowledge 
Quartet (Rowland et al., 2005) to analyse lesson observations and post observation interviews. Here, 
we present analysis of an introductory to the Iterative Numerical Method Year 13 lesson observation 
and a follow-up interview from one participant. With this analysis, we aim to investigate the resources 
used by this participant and the characteristics of his work with these resources by using the 
Knowledge Quartet. In the following two sections we offer an overview of what we consider as 
resource in this paper, and of the Knowledge Quartet. Then, we present a detailed analysis of selected 
parts of the lesson and teacher’s reflections. We conclude the paper with a discussion on our findings. 
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Resources 
Resources include artefacts, teaching materials, as well as social and cultural interactions that can be 
used or affect a teacher’s teaching and teaching preparation work (Gueudet & Trouche, 2009). An 
artefact is an object that is designed and used for a specific purpose (Gueudet & Trouche, 2009). It 
could be a mathematical technique for solving a specific problem, a mathematics-education software 
or a tool like a pen. Teaching materials are textbooks, calculators, and any other materials designed 
for teaching mathematics (Adler, 2000). Social and cultural interactions are the interactions with the 
environment, students and colleagues, for example a student’s feedback on an activity (Gueudet & 
Trouche, 2009). The term “resource” can also be “the verb re-source, to source again or differently” 
(Adler, 2000, p. 207). This implies that teachers interact with resources, manage them and reuse them 
to achieve their teaching aims (Gueudet, 2017). And “the effectiveness of resources for mathematical 
learning lies in their use, that is, in the classroom teaching and learning context” (Adler, 2000, p. 
205). In this paper, we closely examine one teacher’s use and interaction with resources, in the wider 
range defined above, using the Knowledge Quartet lens. 

Knowledge Quartet 
The Knowledge Quartet (Rowland, Huckstep, & Thwaites, 2005) was developed as a tool for 
analysing teachers’ knowledge and beliefs. It can be used to trigger teachers’, teacher educators’ and 
researchers’ reflections towards the development of mathematics teaching (Rowland, 2013). It is 
defined by four dimensions: foundation, transformation, connection and contingency (Rowland et al., 
2005). The first dimension, foundation, represents teachers’ knowledge and beliefs. This includes 
their knowledge about mathematics as well as about the teaching and learning of mathematics, and 
their beliefs about mathematics and its teaching and learning (Rowland, 2005). The codes listed under 
this dimension look at teachers’: adherence to textbook; awareness of purpose; concentration on 
procedures; identification of errors; overt subject knowledge; use of theoretical underpinning; and 
use of terminology. The transformation dimension “concerns the ways that teachers make what they 
know accessible to learners and focuses in particular on their choice and use of representations and 
examples” (Thwaites, Jared, & Rowland, 2011, p. 227). Its codes cover aspects such as choice of 
examples; choice of representation; demonstration; and use of instructional materials. The 
connection dimension looks at teacher’s choices in terms of their lesson plans, sequence of activities, 
and their connections between procedures and concepts where possible. Its codes concern teachers’ 
anticipation of complexity; decisions about sequencing; making connections between procedures; 
making connections between concepts; and recognition of conceptual appropriateness. Finally, the 
contingency dimension examines how teachers respond to “unanticipated and unplanned events” 
(ibid, p. 227). This involves their responses to unexpected student contributions; deviation from 
agenda; use of opportunities; and responses to the (un)availability of tools and resources (ibid). The 
four dimensions of the quartet afford a focused look at the details of teachers’ work in class which 
has great impact on students learning and achieving learning outcomes (Carrillo, 2011). In this paper 
we use these dimensions to investigate the characteristics of one teacher’s use of resources.  
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Methodology  
The study is conducted in East Anglia region of the UK and looks at upper secondary mathematics 
teachers’ work when they employ mathematics-education software along with other resources. It 
provides qualitative findings established on an interpretative research methodology that values the 
participant’s views and reflections and looks for meanings within the participant’s environment 
(Merriam & Tisdell, 2016; Stake, 2010). Here, we discuss one video-recorded lesson observation (50-
minute long) and the audio-recorded follow-up interview of one participant, George, with 15 years 
of teaching experience mostly in upper secondary education. George was teaching a mixed gender 
group of Year 13 students (17-18 years old), who were preparing for their school leaving examination. 
The lesson was on Numerical Methods. George started the lesson by introducing the chapter 
“Numerical Methods” from Wiseman and Searle (2005, pp. 118-135) including four methods: 
Change of Sign method, Iterative method, Mid-ordinate rule, and Simpson’s rule by justifying why 
teaching this chapter is important. Then, he briefly introduced the four methods, and started 
explaining the Iterative method in detail using Autograph (a dynamic environment with visualising 
graphs affordances, see http://www.autograph-maths.com). George then showed his students some 
past exam questions about the Iterative method and went over their mark schemes. Finally, he asked 
his students to solve some textbook questions of his choice in the remaining time of the lesson. Later, 
George was interviewed (by the first author), and he reflected on his teaching of Iterative method and 
especially on points the first analysis had identified, such as his choices of resources and actions in 
the lesson (e.g. his aims, justification of his choices). An analysis of George’s actions during the 
lesson and his responses in the interview was performed using the Knowledge Quartet. In the next 
section, we offer a detailed account of selected parts of the lesson observation, where his work with 
resources in the class was more visible through his communication with students, and relevant parts 
from the interview. These parts regard the introduction to Numerical methods and the demonstration 
of the Iterative method to the students also with the use of Autograph.  

Introducing the Iterative method- A look through the Knowledge Quartet lens 
Introducing “Numerical methods” 

In his introduction to the chapter of “Numerical Methods” and its four methods: Change of Sign 
method, Iterative method, Mid-ordinate rule, and Simpson’s rule; George justified its importance: 

The whole chapter is about things that you can’t solve by doing the algebra to them, or just by 
integrating them, okay. And, it turns out that there are way more functions and things that you 
can’t solve algebraically than there are ones that you can, ok. There are loads of horrible things to 
integrate that are too difficult to integrate, that it’s just easier to do a numerical thing and kind of 
approximately, a bit like a trapezium rule 

George reminded the students that they saw trapezium rule and Simpson’s rule in a previous lesson. 
He explained that Simpson’s rule and the mid-ordinate rule were about finding the area and extension 
of the trapezium rule, while the change of sign method and the Iterative method were about solving 
equations. Then, he briefly introduced the four methods, and mentioned that he was going to focus 
on the “Iterative method” and when this lesson’s methods are good to use. This introduction reflected 
George’s awareness of purpose and how he was addressing connections (e.g. numerical methods and 
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trapezium rule). He tried to connect concepts/procedures, for example, to connect Simpson’s rule and 
integration used in previous lessons to the methods he was planning to teach in this lesson.  

Rearranging an equation – Why 𝒙𝒙𝟐𝟐 + 𝟒𝟒𝒙𝒙 + 𝟏𝟏 = 𝟎𝟎? 

After the introduction to the chapter, George started explaining the method, he mentioned that he 
needed to use an equation that cannot be factorised but can be solved using the quadratic formula. He 
spontaneously chose the quadratic equation 𝑥𝑥2 + 4𝑥𝑥 + 1 = 0, and asked his students to suggest 
rearrangements of the equation to the form 𝑥𝑥 =⋯ (e.g. 𝑥𝑥 = −𝑥𝑥2

4
− 1

4
). After that, he asked them to find 

the equation roots using what they previously learned on how to solve quadratic equations or using 
calculators. Students used calculators and gave the approximate answers “−0.267” & “−3.732”. 
George was spontaneous in his choice of example. He chose a quadratic equation with the aim that 
students would be able to solve it with the formula but not with factorisation; which would show them 
that the Iterative method worked. His choice was based on awareness of purpose which is to show 
the students that the Iterative method gives them a good approximation of the solutions. George also 
tried to connect procedures when he asked his students to create different rearrangements of the 
equation. Later, after finding the different rearrangements, George again tried to create a connection 
between the equation’s solutions students found on their calculators and the Iterative method would 
“zoom in on the answers”. He was always responding to students’ ideas, commenting on when two 
rearrangements were the same and just written differently and on when a student completed the square 
instead of rearranging the equation. George was demonstrating about iteration to students while at 
the same time inviting them to contribute. These contributions were essential parts in the flow of his 
lesson, for example, when students suggested the rearrangements and calculated the quadratic 
solutions. We consider these students’ contributions as a resource (Adler, 2000; Gueudet, 2017) that 
George triggered and used during the lesson, along with other resources. 

The use of Autograph 

After working with the students on finding the equation’s different rearrangements and solutions, 
George’s next step was to use Autograph (instructional material) in order to further explain about the 
Iterative method and show how the different rearrangements would work. He used Autograph to 
graph the functions 𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = the other side of the rearrangement (e.g. for 𝑥𝑥 = −𝑥𝑥2

4
− 1

4
   he 

graphed 𝑦𝑦 = 𝑥𝑥  and 𝑦𝑦 = −𝑥𝑥2

4
− 1

4
 ). The first rearrangement he graphed on Autograph (Figure 1) was 

𝑥𝑥 = √−4𝑥𝑥 − 1 and it did not “work” as George said while pointing at the graphs on Autograph: 

Now, I can see that the blue one [𝑥𝑥 = √−4𝑥𝑥 − 1 ] does not quite, I think it almost touches, but not 
quite touches the red one [𝑦𝑦 = 𝑥𝑥], okay. So, they in fact don’t cross. So, for that particular 
rearrangement sadly it’s not going to work out. So, let’s not do that one, let’s pick a different one. 
Which one do you want? 

We noticed here one contingency incident (use of opportunity: (un)anticipated outcome on the 
software) that happened when George entered the equations from one rearrangement on Autograph 
and noticed that the graphs of these equations did not cross, in this case he commented that some 
rearrangements did not work and asked the students to pick a different one. Again, a student’s 
contribution here is a resource that George used to demonstrate ideas. In this case, one student picked 
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𝑥𝑥 = −1
𝑥𝑥+4

. George graphed 𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = −1
𝑥𝑥+4

 on Autograph (Figure 2 left) and commented that the 
two graphs crossed this time at two points. Having noted that the two points are close to 𝑥𝑥 = −0.2 
and 𝑥𝑥 = −3, George explained that the Iterative method is based on replacing the 𝑥𝑥 in the 
denominator of this rearrangement by 𝑥𝑥𝑛𝑛 and replacing the isolated 𝑥𝑥 by 𝑥𝑥𝑛𝑛+1. Thus, he suggested 
the formula 𝑥𝑥𝑛𝑛+1 = −1

𝑥𝑥𝑛𝑛+4
 to be used to complete a table with a starting value 𝑥𝑥0 = 1. This shows how 

George used different representations such as tables and graphs; and tried to create connections 
between procedures and also between different resources (student’s contribution + Autograph).  

 
Figure 1: 𝒚𝒚 = 𝒙𝒙 and 𝒚𝒚 = √−4𝑥𝑥 − 1 on Autograph  

       

Figure 2: George’s work on the rearrangement 𝒚𝒚 = 𝒙𝒙 and 𝒚𝒚 = −𝟏𝟏
𝒙𝒙+𝟒𝟒

 on Autograph  

After showing the Iterative method procedure on the board, George decided to show how the Iterative 
method works on the graph by using Autograph (Figure 2 right): 

Look at this you started with number 1, okay. The number 1 went, which way did it go? It’s gone 
down to the curve, across to the line and that was our 0.2 [sic]. And then, here look at that down 
to the curve across the line, down to the curve if I zoom in further oh missed it. Down to the curve 
and across to the line. Zooming in further, look at that! And we could keep on going down to the 
curve, across to the line zoom in zoom in zoom in there. It is, look at that, and the thing if I zoom 
out again looks like a staircase kind of. So, this is staircase diagram.  

This use of Autograph showed teacher’s knowledge about the software affordances and its use. It also 
showed an attempt to connect different representations (staircase diagram + formula). George then 
used 𝑥𝑥𝑛𝑛+1 = −1

𝑥𝑥𝑛𝑛+4
 with different starting points for 𝑥𝑥𝑛𝑛 on Autograph. When he used 𝑥𝑥0 = 10 as a 

starting point, the software returned “overflow”, namely no convergence, and he changed the point 
to 𝑥𝑥0 = −10 without commenting on the outcome. He did not use this opportunity to explain what 
that meant during the lesson. One student asked what would happen if 𝑥𝑥𝑛𝑛 + 4 = 0 in 𝑥𝑥𝑛𝑛+1 = −1

𝑥𝑥𝑛𝑛+4
. 

At that point George used the graph on Autograph to show that this would not work, as he commented: 

You know like when you know your tan graph at 90 degrees, that 90 degrees on a tan graph is 
effectively saying we’ve got an infinitely tall triangle which wouldn’t be a triangle at all, because 
it would be at 90 degrees. You’re talking two parallel lines that’s why tan of 90 doesn’t work. 
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This is a contingency moment (responding to students’ ideas) where George used Autograph as 
instructional material and connected concepts students had met previously (dividing by zero, tan of 
90 degrees, parallel lines, asymptotes of the graph of the tangent line) to respond to student questions.  

How to zoom on to a specific root? 

Afterwards, George worked on different formula rearrangements and different starting points to show 
how some rearrangements “work” (when the two functions cross at two points) and some do not 
(when the two functions do not cross). He also wanted to show how a rearrangement that “works” 
can lead to one root or to different roots of the equation, when different starting values (𝑥𝑥0) are used. 
But, until this point, his work on different rearrangements with different starting points was leading 
to the same root. This made the students question how they could zoom to a specific root and how 
they could tell if they were going to zoom in on a certain root in the exam. George said “I don’t know 
the answer to this” but he promised to comment on this question later during the lesson (not deviating 
from the lesson’s agenda). He returned to this point later when he invited students to practice on past-
exam questions by saying that exam questions would provide both rearrangement and initial point. 
His response reflected his attention to exam requirements and their importance to his teaching. After 
that conversation about how to zoom to specific roots, a student suggested the use of calculators to 
do the Iterative method. The teacher approved the student’s use and method of use of calculators by 
commenting that it was a “really quick way”. This is an example of him responding to the availability 
of resources (student’s contribution + calculator). The use of calculators facilitated the zooming in 
on the other root, as this way was quicker students tried different starting points and found out that 
x=3 would lead to the second root (-3.732). George used x=3 on Autograph and showed the students 
how this number worked for the purpose of zooming in on to the other root. This is an example of 
connections between resources (student contribution +calculator +Autograph+ staircase diagram).  

George’s reflections 

In the interview, George was invited to reflect on three aspects. First, about his spontaneous choice 
of equation, he said he preferred working “live” in the class over showing the students “a specific and 
special example”. He added that he was happy to work slowly with different examples to show that 
not all examples work. George’s spontaneous choice of equation reflected his confidence to deviate 
from his agenda which could create more contingent moments during the lesson. His purpose was to 
“show” the students that not all rearrangements “work out”. Second, about what the “overflow” 
means on Autograph, he said it indicated that the Iterative method “instead of converging, it will 
diverge” at that point. During the lesson, George did not use the opportunity to explain the meaning 
of this outcome to the students. His focus was on getting a number and comparing this number to one 
of the equation roots students had found. Third, he was asked about the use of calculators. He said: 

That’s what they need to do in the exam. So, the Autograph is just to explain, show, demonstrate 
it in a lesson. When they then move onto the calculators, that’s them saying yeah they are happy 
with it, they understand it, and this is what they then need to do. This is how they do it in the exam.  

George’s comment on the use of calculators reflected again his considerations of exam requirements 
while at the same time his attention to connections between resources. 
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Discussion and conclusion 
In this study we are interested in how teachers, in our case George, use the available resources in 
relation to their teaching aims and how they materialise and manage their lessons in the light of the 
available resources and we used the Knowledge Quartet lens to analyse teacher actions and 
justification of these actions. In our analysis, we noticed aspects of George’s foundation knowledge 
including his awareness of purpose, use of terminology, identifying errors, concentration on 
procedures, his subject knowledge as well as his knowledge about the mathematics-education 
software (Autograph here) and exam requirements. When a student asked him a question he could 
not answer, he responded that students were not required to know the answer for the exam, so he 
could not answer the question because it was “beyond exam requirement”. This indicates how 
important the exam requirements are in his teaching priorities. In his transformation of ideas, he was 
spontaneous in his choice of “live” examples and representations, and he seemed confident in these 
spontaneous choices. His use of instructional materials included the use of Autograph, textbook, past-
exam papers and calculators. He used the textbook as source of exercises for classroom practice. He 
also asked for students’ contributions and used these contributions as an essential resource in the flow 
of his teaching also in connection to other resources and instructional materials including Autograph. 
For him, students’ contributions were predictable, as they were within a range of possible answers 
(like choosing one rearrangement of equation). He made decisions about sequencing the different 
parts of the lesson and frequently connected concepts and procedures. He was responding to students’ 
ideas and sometimes using these as opportunities to create connections between concepts. In terms of 
contingency, George was responding to students’ ideas and to the availability of tools and resources, 
and sometimes deviated slightly from his lesson’s agenda without losing his overall aim. We 
distinguish the students’ ideas under the contingency dimension from the students’ contributions 
under the transformation dimension, as these are unpredictable students’ ideas that George did not 
directly invite. While students’ contributions are a deliberate result of George questioning students 
and engaging them in his demonstration of mathematical ideas, thus, we see them as a characteristic 
part of his teaching. As we consider students’ contributions as resources used frequently by George, 
we suggest an extension of the code “use of instructional materials” that includes the use of resources. 
We recommend the code to be rephrased to “use of resources” to involve both instructional materials 
and students’ contributions under the transformation dimension. We also saw George connecting 
between different resources he used (e.g. Autograph, textbook and student contributions). We 
recommend the code “connection between resources” to be added to the connections dimension. 
These suggestions are established on the episode included in this paper as well as other episodes with 
George. Overall, our standpoint is that the use of resources is intertwined with teachers’ aims and 
actions (Gueudet & Trouche, 2009). The analysis of George’s lessons, as well as of other lessons in 
this study, indicate that this use is a ‘balancing’ act on resources that become ‘live’ in their lessons. 
These resources go beyond textbooks or other digital (or not) materials and include students’ 
contributions as well, which teachers use, balance and connect in their work.  
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The King’s birthday, potentials for developing mathematics teaching  
Bodil Kleve1, Ida Heiberg Solem1 and Gerd Ånestad1 

1OsloMet – Oslo Metropolitan University, Norway; bodil.kleve@oslomet.no 

In this paper, we have analysed a video in which a small group of students were asked to find out 
when the Norwegian King was born given his 80 years of age today on his birthday Feb 21st 2017. 
We have identified potentials for initiating shifts in discourse in which children’s ways of solving a 
problem could become an explicit object of reflection. We suggest that revoicing as a talk move to 
encourage collective reflection, did not work as suggested in the research literature. Additionally, 
working on a number line could have been a joint activity of making what was previously done in 
action, to an object of reflection.  

Keywords: Reflective discourse, collective reflection, empty number line, revoicing.  

Background and context 
The lesson, from which this episode is taken, is part of a Norwegian national project, which 
investigates if decreased student/teacher ratio is beneficial for students’ learning. In the project, one 
dedicated teacher takes a group of students, typically 4–6 into a separate classroom to teach specific 
subjects and methods. The teacher is by the researchers in this project, acknowledged as a “skilled 
teacher” with more than twenty years teaching experience. According to the research team, the 
episode investigated here, is a typical example of this teacher’s teaching practice.  

Five year-four children (two boys and three girls) were seated around a table, and the teacher was 
standing up front by the flip over. The episode lasted for about twenty minutes. The teacher presented 
a task (problem) that the children were asked to solve: 

I am going to give you a task now, [ ]. You will get a sheet on which you may draw. Just close 
your books for now. The task is to find out when the [Norwegian] King was born. He is 80 years 
today, so you shall try to find out in what year he was born. [ ] The year is 2017, and 80 years 
backwards.   

After having presented the problem, the teacher said they were allowed to collaborate. He emphasized 
that the task “is quite challenging” and that he would give them some time to solve the problem. One 
of the children, a girl, here called Tove, addressed the teacher and the other children several times 
throughout the whole episode. As a response to her, the teacher said: “I will give you a tip, not to trust 
anybody else, but only to think for yourself and trust yourself”.  

When having started working on the task, the children both aloud and inaudible, suggested solutions. 
However, the teacher interfered after about 2 minutes saying: “remember what we have been saying, 
it is not the answer that is going to impress me. It is the way you have got the answer, that will impress 
me the most”. He thus emphasized the process rather than the product.  The children continuously 
volunteered to come up with an answer. However, the teacher told them to wait yet another minute.   

We watched the video clip several times. Focusing on the rehearsal of students’ proposed solutions 
of the problem, we noticed that the teacher frequently revoiced students’ explanations and made 
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claims about their thinking: “So you have been thinking like this,…”, was a repetitive comment from 
the teacher on students’ proposed solutions.  

Against this backdrop, we address the role of classroom discourse in examining potentials for 
supporting mathematical sense making within a group of children. We draw on the concepts of 
reflective discourse and collective reflection (Cobb, Boufi, McClain, & Whitenack, 1997) in 
searching for potentials for development of possibilities for mathematical learning in this episode 
(Cobb, Stephan, McClain, & Gravemeijer, 2011) .  

Theoretical and methodological perspectives 
Reflective discourse and collective reflection 

Cobb et al. (1997) focused on classroom discourse, which appeared to support the development of 
students’ conceptual activity. In this work, they considered students’ conceptual activity as a source 
of mathematical ways of knowing, and meaningful mathematical activity as creation and 
manipulation of mathematical objects. They introduced the term “reflective discourse which is 
characterized by repeated shifts such that what the students and teacher do in action subsequently 
becomes an explicit object of discussion” (Cobb et al., 1997,  p.1). They emphasized the teacher’s 
role, because the teacher is in the position to judge the significance of the children’s mathematical 
activity, and thus initiate shifts in discourse. One such shift may occur in further probing children for 
more ways of solving a task. Another shift occurs when the children’s different solutions of a 
mathematical problem may emerge as an explicit object of discourse. This activity involves 
comparing different solutions and a discussion of how they may relate to each other together with a 
corresponding reflection. This reflection does not occur simultaneously for all children since all 
participate in a common discourse, but it occurs as a collective reflection. Pragmatically, analysis of 
“reflective discourse” can clarify how teachers may support students’ mathematical development and 
potentials for such, and the term “collective reflection” refers to the joint activity of establishing what 
was previously done in action, as an object of reflection. Students’ participation in the discourse 
“collective reflection” may constitute conditions for possibilities of learning (Cobb et al., 1997; Cobb 
et al., 2011). The role of students is crucial in these activities. If no child is able to respond to the 
teacher’s initiation of shift in discourse, no shift will occur. The individual child’s reflective activity 
may contribute to developing a discourse with potential for mathematical sense making.   

Cobb et al. (1997) argue that the teacher must initiate shifts in discourse so what the children have 
done in action, becomes an explicit object of reflection. In our data, the activity was solving a problem 
and proposing solutions. Our research problem was to investigate how students’ access to 
mathematics was supported, and to identify potentials for initiating shifts in discourse where 
children’s ways of solving the problem could become an explicit object of reflection and a collective 
reflection could take place.  
The issue of revoicing 

Chapin, O`Connor, & Anderson (2013) presented four suggestions for using whole-class discussions 
in problem solving: to understand the problem; to explain one solution method, to extend students’ 
knowledge and to compare solution methods. We consider the latter crucial with regard to collective 
reflection in our study. In order to encourage whole-class discussions, Chapin et al. (2013) suggested 
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talk moves which may help individual students clarify and share their thoughts: wait time; turn and 
talk; stop and jot; will you share that with the class and revoicing (so you are saying….). They 
suggested revoicing as a talk move if it seemed as if what the student was trying to say made things 
more confusing if the student carried on. As a goal for the teacher is to improve all students’ 
mathematical thinking, the teacher cannot give up on an unclear explanation from one student. 
Revoicing was also suggested if a student says something insightful, which might move the class or 
group forward. Revoicing what a student is saying, will give that student a chance to clarify and the 
other students a chance to hear it again, may be in a clearer version. We wanted to further investigate 
revoicing as a talk move, and we discuss how a group discussion on comparing solution methods 
could become a discourse of collective reflection.   
Kazemi and Hintz (2014) build on the talk moves of Chapin et al. (2013) and emphasise revoicing as 
“repeat some or all of what the student has said, then ask the student to respond and verify whether 
or not the revoicing is correct. Revoicing can be used to clarify, amplify, or highlight an idea” (p. 21).   

Since the mathematical activity involved multidigit subtraction, using both standard algorithm and 
mental strategies, we have also drawn on Plunkett (1979) as well as on theories about the use of empty 
number line (Beishuizen, 2003; Gravemeijer, Bruin-Muurling, Kraemer, & Van Stiphout, 2016).  

In addressing our research problem, we posed the following research questions: (i) What potentials 
for facilitating productive mathematical discussions did we see? (ii) How did revoicing as a talk move 
influence the group’s discourse in supporting students’ access to mathematics? 

Presentation of the episode and analysis  
The purpose of our analysis was to identify potentials for development of reflective discourse and 
collective reflection. We discuss four students’ presentations in light of the frameworks presented 
above. The teacher frequently revoiced students’ explanations and thoughts. In the literature (Chapin 
et al., 2013; Kazemi & Hintz, 2014), revoicing is suggested as a talk move to encourage whole-class 
discussions in order to extend students’ knowledge and to compare solution methods. We have 
analysed the part of the episode in which the students presented their solutions.  

Tove was the first student (after eagerly volunteering) who was asked by the teacher: “Can you tell 
us about the way to figure out the answer?”  

Tove: I started with seventeen minus eighty. I removed seventeen from eighty so I could 
figure out what to remove from 2000  

Teacher: What answer did you get when you removed 17 from 80? 

Tove:  I got 63 

Teacher: What do you want with 63? What are you going to do with these 63? 

Tove: I will remove 63 from 2000 to find the answer. 

At this point, the teacher intervened Tove’s explanation, while he was drawing on the board: 
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Figure 1: Teacher’s drawing to illustrate Tove’s thinking 

Teacher:  Right. Look at this. Tove, look at this. We are here in 2017, and now we are 
traveling 80 years back in time. She started by thinking... First, she wanted to go to 
the year 2000, and then go from 2000 to the year the King was born. Right? 
Therefore, you started with 80 minus 17, and got 63. She removed 17 from 80. Then 
you got 63. Then she wanted to find what 2000, from here, and jumping 63 years 
backwards from year 2000. That is how she thought. You tried to do 2000 minus 
63, but this is a really difficult equation. Because... You have not really learned this, 
with such large numbers. Did you manage to finish it, too? 

Alternating between addressing Tove directly and as a third person, the teacher made claims about 
her thinking in saying “She started by thinking…,” and “That’s how she thought”. He revoiced her 
explanation, probably in order to clarify for the group. He underpinned and highlighted with an 
illustration (figure 1). The empty number line which he drew, indicated a linear or sequential way of 
thinking (Beishuizen, 2003). However, studying the continuation of Tove’s explanation, there was a 
move away from a linear thinking towards the use of the standard algorithm, as the teacher also did:  

Teacher: So you tried to do 2000 minus 63, but this is a really difficult equation 

Tove: Yeah. I removed a thousand and exchanged it for 10 hundreds, and then I exchanged 
a hundred for tens, and a ten for ones. (Removed 3 from 7.  3 from 10. Yeah, 3 from 
10. Then I had 7 left, so I removed... Umm... 9... Umm, 6…[ ] 9 minus 6. Then I 
had 3. But I still didn’t have any to be removed here, and I didn't have 10 here, since 
I removed one. So I have 9 here. Then I removed one thousand, so I have one left. 

While sitting, Tove explained orally how she had subtracted 63 from 2000 through the use of standard 
algorithm for subtraction. She was not only referring to digits, but to “ones”, “tens”, “hundreds” and 
“thousands”. Again, the teacher intervened: 

Teacher:  I must say that I am extremely impressed. You managed to figure out by yourself 
without having learned it before. I still want to show her way first, then you can 
explain afterwards. I just want to show her way of thought.  

At this point, the teacher had left his earlier sequential thinking and use of empty number line. He re-
voiced what Tove had explained (orally), claimed her thoughts (I just want to show her way of 
thought) and used the flip over to explain and show the standard algorithm in detail.  

The teacher monitored the conversation, and there was no communication between the students. The 
other four students in the group were not invited to participate. Instead of asking if there were 
questions or comments to Tove’s explanation, he “wanted to show her way of thought”, without 
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knowing if there was a need for that. As an alternative initiation of the whole-class discussion, (Kleve 
& Solem, 2014), the other students could have been invited to ask clarifying questions (Chapin, et 
al., 2013). Although having emphasized that it was not the answer as such, that was going to impress 
him, he neither challenged Tove’s thinking, nor encouraged students to ask clarifying questions.  

After having spent some time on Tove’s way of solving the problem, three more students were invited 
to present their strategies. Lars, Vera and Kari. The teacher had obviously noticed that Lars had 
written down the right answer without any written calculations very quickly. Inviting Lars to explain 
he said: “I am eager to know how you have been thinking to get the answer, how did you think?” This 
initiated a shift discussed by Cobb et al. (1997). Lars responded to the invitation and walked up front. 

Lars: I thought like this. We remove 17 so there’s only 2000 left (writing 2000 on the flip 
over).  

T:  Yeah. 

Lars:  Then do minus 80 (writing 80 underneath). 

T:  Ah, you thought like that! 

Lars:  Afterwards we get 1920. That is simple…  

Teacher: Can you write 1920, so we have it written down? I just want to repeat what you did 
so the others will understand what you meant. If you can move aside for a bit. What 
I understood is that you did not bother about the 17 at first. You just went straight 
back, and thought that: “What if we are in the year 2000 now?” If we then move 80 
years backwards, we will land on 1920. Now I am eager to know, what did you do 
next? 

Lars:  I added 17, which is simple. Just 20 plus 17. 

Teacher:  Fantastic! 

Lars:  And that is... Nineteen...  

Teacher:  1920 plus 17. Then you got? Nineteen? 

Lars:  Thirty…Thirty-seven. 

Teacher:  Did anyone understand this clever way? 

As an answer to the teacher’s question, a fifth student, said:  

Per:  Yeah. When he wrote 1920, I thought it looked like... I thought it looked good, in a 
way. Seemed like a good way to think. 

Per’s comment indicated an individual reflective activity, which was not followed up.  
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Figure 2: Lars’ presentation and our illustration of it with an empty number line 

Again, the teacher’s use of revoicing and making claims about a student’s thinking became evident. 
In this case, the teacher intervened, saying, “I just want to repeat what you did so the others will 
understand what you meant”. A reason for revoicing might have been that the teacher found Lars’ 
presentation being “clever”. According to Chapin et al. (2013), revoicing is recommended when a 
student says something insightful, because there may be a potential then to move the class forward. 

At this point we see another possibility for moving the class forward through a potential shift in 
discourse. Comparing Tove’s and Lars’ solutions and making that into an object of reflection could 
have created conditions for possibilities of learning (Cobb et al., 1997). What were the similarities 
between the two ways of solving the problem? How did Tove’s solution differ from that of Lars’?  

Following and contrasting this, Vera now volunteered to present saying: “I actually did not really do 
it that complicated”. Hence, a comparison of methods was initiated by a student, and a potential shift 
in discourse was identified. Vera went to the board and subtracted 80 from 2017, using the standard 
algorithm.  The teacher praised Vera’s method and compared it to that of Lars:  

You actually chose to use the algorithm in subtracting from 2017. It demands good knowledge to 
set that up. You worked it out elegantly and nicely and got the correct answer. However, his [Lars’] 
way of doing it was a method that is easy to use in mental calculation. [To Lars]: Really smart, 
that is why you spent so little time.  

Here the teacher emphasized why a mental strategy may be smart compared to the use of the standard 
algorithm (Plunkett, 1979). The teacher elaborated the shift in discourse, initiated by Vera, further. 
He referred to mental calculation and speed, and a potential occurred to move the class forward. 
However, a discussion, which could have involved a collective reflection on the differences, did not 
take place. In figure 2, we have illustrated Lars’ mental strategy, his sequential way of thinking, on a 
number line. Such an illustration could have been useful in comparing the two methods (Beishuizen, 
2003; Gravemeijer et al., 2016).  

The last student to present was Kari. She was invited to present her solution on the flip over: 

Kari: First I did: Nineteen… [Writes 1900]. And then I did... Plus... 20 since the King is 
80 years old. Then I added 17.  [Writes 1937] 

Figure 3: Kari’s presentation and our illustration of it with an empty number line 
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Teacher:  Right. You started with the year 1900. Now you are challenging me, I am actually 
not entirely sure how you have been thinking. Why did you start at 1900 and why 
did you add 20? 

Kari:  It is since the King became 80 years old,… 

Student:  [Whispers] 8 and 2 are “ten-buddies” 

Kari:  and 8 and 2 are “ten-buddies” so then I added 20. 

Teacher:  Ah, I see, because you knew that there are 80 years between 1920 and 2000? 

Kari:  Yeah 

Teacher:  I see! So you started here and tried to come up to the year where you had 80 years 
from there, up to the year in which we are now? I have to say, that is pretty smart. 

The teacher seemed to have a different approach to Kari’s presentation than to the others. Kari had 
used a mental strategy, which for the teacher seemed “difficult to catch” (Plunkett, 1979, p. 3). In 
response, he asked clarifying questions rather than revoicing Kari’s presentation. Although a student 
“rescued” Kari in answering why she added 20 (“ten-buddies”), the teacher neither utilized it as a 
potential to involve the other students in further discussion nor to ask clarifying questions.  

Discussion 
Potentials for facilitating productive mathematical discussions 

In the episode there were shifts in discourse, for example when the teacher was further probing for 
more ways of solving the task. However, these shifts were not followed up by a collective reflection. 
Potentials for other shifts in the discourse, which could lead to collective reflection, have been 
identified. We pointed out a possible shift in discourse in suggesting to compare Tove’s and  Lars’ 
solutions and make that an object of reflection. Per’s comment on Lars’ way of solving the problem 
indicated an individual reflective activity, which was a potential for collective reflection. In her 
presentation, Vera initiated a shift in discourse. The teacher followed this up in comparing Vera’s use 
of the standard algorithm with Lars’ informal strategy, which he valued. Here the students could have 
been invited to participate in a collective reflection on the methods, which would have created 
possibilities for learning. With regard to Kari’s use of informal strategies, the teacher was challenged, 
and did not utilize the other students’ help (“ten-buddies”) for a further discussion.   

Tove and Vera used standard algorithm for subtraction while Lars and Kari displayed a sequential 
way of thinking. Although the teacher started by representing Tove’s explanation with an empty 
number line, sequential thinking, he left it, preferring Tove’s use of the standard algorithm. He never 
went back to the number line when Lars and Kari both demonstrated a sequential way of thinking. 
We have illustrated Lars’ and Kari’s ways of thinking on empty number lines, figure 2 and figure 3.   

Mental strategies, as Lars and Kari used, are difficult to explain (Plunkett, 1979). Representations are 
useful in making mathematics accessible for students, for sharing different strategies and ideas, hence 
facilitating productive mathematical discussions (Duval, 2006). Working on a number line (see figure 
2 and figure 3) could have been a joint activity of making what was previously done in action to an 
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object of reflection and thus create conditions for possibilities of learning (Cobb et al., 1997).  This 
could serve as a tool for Vera, who found Lars’ method complicated, to see connections (similarities 
and differences) between the different strategies.    

“Revoicing” or revoicing: A pitfall or potential for developing productive mathematical 
discussions? 

In the analysis above, we have pointed out instances where the teacher revoiced students’ 
contributions, but in a way that students were not encouraged to respond or contribute and take part 
in a discussion. Rather, the revoicing discussed in our analysis served as an interruption. When Per 
commented on Lars’ method, he was not encouraged to explain further. Contrary to what is 
recommended in the research literature, revoicing as a talk move was neither used to clarify or amplify 
ideas, nor to extend students’ knowledge and compare strategies. Our findings suggest that, instead 
of being a mean for shift into a reflective discourse, “revoicing” became a pitfall for developing a 
productive mathematical discussion.   
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A learning trajectory constitutes a hypothesis and a description of students’ thinking related to 
learning a mathematical notion. The study reported here, employing a multiple case study 
approach, investigates the use of learning trajectories in the teaching of fractions by three 5th grade 
Greek primary school teachers. Particularly, the research problem pursued concerns the teachers’ 
meaning making and use of the concept of learning trajectories introduced by a recent Mathematics 
Curriculum reform. The results of analyzing the teachers’ answers to two semi-structured 
interviews and the transcripts of a non-participant observation of their lessons show that learning 
trajectories were understood as means of planning teaching and used as ‘maps’ of navigating 
classroom instruction, predominately successful when students’ previous knowledge and thinking, 
and not just their difficulties, are taken into consideration. 

Keywords: Learning trajectories, fractions, mathematics education, teaching mathematics. 

Learning trajectories in mathematics education 
Learning trajectories consist of three parts: the goal, the developmental path and a sequence of 
appropriate tasks that correspond to each level of thought and help the child proceed to the next 
level. There is also a relationship between developmental progress and the activities selected 
(Clements & Sarama, 2009). The “big ideas” of mathematics, i.e., sets of ideas and skills that are 
coherent and are central to mathematics, are the objectives (Kuntze et al., 2011). Developmental 
paths refer to the levels of thinking, each of which is more sophisticated than the previous one and 
leads to the achievement of the mathematical objective (Clements & Sarama, 2009). 
Notwithstanding the distinct levels, it is not to be assumed that the track is linear or specified. 
Various factors, such as differences between formal and informal learning, affect the development 
of a learning trajectory (IEP, 2014). Finally, the sequence of the tasks is a set of work corresponding 
to each level of thinking, supporting the learning of mathematical ideas and skills belonging to each 
stage and including solving, investigating, experimenting and communicating in the context of the 
student’s activity. 

Learning trajectories are promising tools that can help in curriculum development, mathematics 
teaching and assessment. A substantial use of learning trajectories can bring about several reversals 
in the expected developmental paths of students and in the expected research findings as it opens 
new routes in learning. Moreover, it seems to give new possibilities both for the design and the 
implementation of the curriculum as well as for teaching due to the detailed theoretical basis it can 
offer (Clements & Sarama, 2009). There are two studies worth mentioning that make use of the 
notion of learning trajectory. The first is part of a wider research program emphasizing the 
development of formative assessment tools for the trajectory of fractions (Confrey & Maloney, 
2010). The results of the study reveal that a coherent trajectory leads to its redesigning, 
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distinguishing between the levels of thought on the one hand and the parameters of the tasks on the 
other, clarifying the non-linearity of the procedure. The second study concerns the work of Steffe 
(2004), who has been extensively involved with students’ learning and knowledge of fractional 
numbers. According to the findings of this study, a trajectory allows teachers to understand how 
students construct mathematical concepts in order to influence the evolution of notions and 
processes so that, through productive teaching, productive learning is supported. 

The study aims to explore the understanding and the use of the notion of learning trajectories by 
three primary teachers teaching fractions in the 5th grade, where this mathematical notion holds a 
central position in the respective curriculum, concluding their ‘fractional’ thinking at the threshold 
to secondary education and to being introduced to the set of rational numbers in a mainly formal 
way. 

Fractions in school mathematics: Students’ difficulties 

Understanding fractions is crucial for pupils’ mathematical thinking because of its significance in 
becoming numerate citizens; also for its relation to learning related fundamental mathematical 
notions like proportion and percentage or developing powerful mathematical modes of thinking like 
algebra. In the current discussion in mathematics education the focus is on educating pupils as 
numerate future citizens, i.e., citizens who can operate successfully in the modern society by 
understanding and handling quantitative data that they encounter in everyday life. Being competent 
in dealing with the notion of rational numbers constitutes a basic prerequisite. During schooling, 
many hours are devoted to teaching fractions, but the difficulties and misconceptions of students 
identified as early as in the 1970’s persist, fueling substantial research activity on children’s 
understanding of fractions and on developing new teaching tools and approaches to the subject 
matter. The numerous studies on fractions tended to initially focus their interest on the way students 
learn but also on the difficulties they meet. Subsequently, research interest shifted to teaching 
fractions with emphasis on the conceptual or the procedural mode of the relevant knowledge 
pursued and on how students responded to these two modes of knowing and thinking. Finally, 
attention was drawn to the teachers’ role and teaching practices (Van Dooren, Lehtinen & 
Verschaffel, 2015). 

The main students’ difficulties identified in the relevant studies arise from the different nature of 
fractions compared to natural numbers. Rational numbers indicate the relation between two 
quantities, whereas natural numbers refer to one quantity. Also, rational numbers are dense because 
of continuity and infiniteness, while natural numbers are distinct. Unlike natural numbers, where 
each number is represented in a unique way, rational numbers can be denoted by fractions, decimals 
and percentages or even by a set of equivalent fractions. Furthermore, operations may differ in the 
two sets of numbers. For example, the result of division and multiplication of fractions is not less or 
bigger than the original number respectively, when the divisor or the multiplier is less than 1, as 
happens with natural numbers.  

Apart from students’ difficulties arising from the close connection of rational numbers and thus of 
fractions with natural numbers, difficulties with fractions have been found to also be related to the 
abstract nature of the processes involved in operating with fractions as well as to the erroneous 
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application of the related rules. Finally, teachers’ inadequate knowledge of fractions and poor 
teaching practices as well as cultural issues have been identified to contribute to students’ learning 
of this important mathematical notion.   

The study 
The reported study focuses on: (a) teachers’ meaning making of the learning trajectories in general; 
(b) teachers’ understanding and use of the notion of learning trajectories in teaching highly 
demanding mathematical learning contexts: fractions in the 5th grade. The method adopted is a 
‘multiple case study’ of three female teachers working in an experimental primary school in an 
urban area of northern Greece.  

The three teachers have had almost the same years of teaching experience but different scientific 
and professional profiles. Teacher A is a graduate of both a primary education and a mathematics 
department, with 17 years of teaching experience; teacher B, a graduate of a primary education 
department, holds a postgraduate diploma and a PhD and has 14 years of teaching experience. 
Finally, teacher C is a graduate of a two-year course with 16 years of teaching experience. Teachers 
A and C participated actively in the piloting of a new mathematics curriculum which promoted 
active learning and approaches like ‘learning trajectories’ that support this type of learning, while 
teacher B did not. The research tools employed were a semi-structured interview (one initial and 
one at the end of the study) and a series of non-participant observations of their mathematics 
instruction. The non-participant observation was used to provide information for the final interview 
and to offer a further source of data thus enhancing the credibility of the study.  

The first semi-structured interview, consisting of two parts, served the first research question. The 
questions in the first part explored teachers’ understandings of conceptual aspects of the 
construction of learning trajectory in mathematics and how its use influences the choice of the 
mathematical content. The questions in the second part were related to the teaching and learning 
benefits of exploiting learning trajectories in the mathematics classroom (in the context of the new 
mathematics curriculum).  

For the second research question, a second semi-structured interview was conducted, which also 
consisted of two parts. The questions in the first part were common to all three teachers: on 
planning, implementing and reflecting on teaching fractions based on the notion of learning 
trajectory. In the second part of the interview, based on extracts from each teacher’s instruction 
identified in the observations, the teachers were asked to comment on how they used the learning 
trajectory approach. For each participating teacher, two double teaching sessions on fractions were 
observed (non-participant observation). Field notes were kept, with the emphasis being on teachers’ 
communication with students, on tasks used and generally on teachers’ actions and discourse. The 
aim was to identify ways in which the trajectory of fractions was used and adapted to the students’ 
needs. Where necessary, a brief discussion with the teachers was carried out to clarify and explain 
choices. 

A combination of Grounded Theory and Content Analysis techniques was used for analyzing the 
data. More specifically, a three-stage analysis was followed for the interview data: (a) careful 
reading of the data and detection of relevant extracts (b) coding of the extracts and grouping them in 

Thematic Working Group 19

Proceedings of CERME11 3666



sub-groups of similar meaning and (c) repetition of stage (b) within each of the emerging sub-
groups for the formation of third level categories. For reliability reasons, the whole process was 
realized simultaneously by the three researchers. The non-participant observation data collected for 
the second research question were used for completing and refining categories emerging from the 
interview data analysis, but also for providing critical teaching incidents used in the final interview 
for the teachers to comment on. 

Results 
Due to the limited space, only the results of the 1st and 2nd semi-structured interviews will be 
presented. As far as the first research question is concerned, the meanings attached to the notion of 
a Learning Trajectory (LT) developed by the three teachers converge only to some respect to the 
relevant literature.  

In particular, teacher A considers that the trajectories are organized into thematic areas (algebra, 
geometry, etc.). She recognizes a similarity between LT and mathematics as a discipline. This 
similarity concerns both the way mathematical knowledge is organized and the historical progress 
of human thinking in mathematics.  

The trajectory matches with mathematics in my view, how they are structured…in this way the 
approach of knowledge suits with the construction of knowledge and of human’s thought 
because it seems that the notion of number has progressed developmentally in a similar way. 
And this helps a lot… (teacher A) 

Teachers B and C seem to be more influenced by learning theories and interpret the organization of 
knowledge through LTs in a similar way. 

In the trajectory you are interested in student’s understanding, you want to activate his thought 
rather than to help him practice his memory and to simply remember the terms... (teacher B) 

Teacher B, recognizing constructivist elements in the idea of LTs, considers them as providing a 
specifically arranged infrastructure for the construction of the mathematical knowledge, where the 
pre-existing knowledge serves to shape the new. 

In the trajectory, I think that somehow a gradual construction of knowledge must be carried 
out…that is, starting with the natural numbers, we will go to the fractions... (teacher B)  

Teacher C, on the other hand, indicates various and somewhat contradictory views on how 
knowledge is organized in learning paths through LT notion (e.g., constructivism as well as 
behaviorism). 

We start to break the notion into parts and after each one is completed, we say that we have 
completed the particular part... (teacher C) 

It appears that the three teachers’ understandings of LTs are not identical but are overall compatible 
to the relevant literature with respect to the way in which a LT organizes and represents the 
progress of knowledge. But what they certainly do not distinguish is that a LT is not a simple 
organization of cognitive objectives but an empirically formulated proposal on how a student learns 
a mathematical concept. In addition, organizing knowledge along a LT suggests a learning approach 
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with specific characteristics derived from the constructivist perspective. These basic characteristics 
are conceptual understanding (teacher B) and engagement in active learning (teacher C). 

Now, I do not know what exactly they learn. But I see that they start to investigate, they ask 
questions, I like that. In traditional contexts they wouldn’t do that because they do not work this 
way…. But now they pose questions, they ask, “Why do we do that in this way? (teacher B) 

We felt that our experience was positive, and we saw that children responded very well, they 
liked this approach. Through an informally provided feedback, we see that their high school 
mathematics teachers are very pleased with these students… (teacher C) 

This line of thinking is compatible with the concept of LT, since the first use of the term was made 
by Simon (1995), who proposed it as a teaching tool for the “constructivist” teacher.  

On the other hand, teacher A considers LT to be independent from learning and teaching issues, 
limiting its use to the level of organizing mathematical content, which can be then framed by a 
variety of teaching approaches chosen by the teacher. This is a position also adopted by teacher C. 
However, teacher B argues that LT use in teaching improved her own knowledge of mathematical 
concepts resulting in her understanding better students’ thinking. Finally, all three teachers report 
that LTs, combined with various teaching practices, contributed both to the learning process 
(teacher B) and to the learning outcomes (all teachers) in a variety of ways, such as, by facilitating 
logical connections and strengthening exploratory learning. 

But if you can use the model or remember the wall of fractions, you can reach the equivalence 
much more easily... Or let’s say the addition 1/4 + 1/2, if the student depicts it and puts 1/4 and 
1/2 close, he ends up much more easily to rules of addition than if you dictate the rule to him. 
(teacher B) 

Teacher A also reports that she has too identified improvement in students’ attitudes towards the 
lesson, but this is not the case for teacher C, who believes that the improvement noticed can be 
attributed to various factors. This finding is in line with that of Clements and Sarama’s (2009) about 
LTs and the reinforcement of mathematical knowledge.  

As far as the second research question is concerned, that is, how teachers claim to use LTs, the 
analysis of the relevant data reveals that LTs provided a general framework for organizing teaching, 
within which each teacher worked in her own way. Thus, the intermediate stages of the trajectory of 
fractions appeared to have provided successive intermediate learning targets for the instruction. 
Thus, teacher A attempted to incorporate LTs from different areas of the curriculum to 
simultaneously meet different objectives. This choice is of interest since the relevant research refers 
to the contribution of interacting LTs to pupils’ learning. For achieving these objectives, tasks were 
organized, which not only corresponded to the objectives but also incorporated socio-cultural 
features, such as the history of mathematics and issues of everyday life, according to teacher A. 
Thus, in terms of lesson planning, LTs were used by teachers as a ‘curriculum’ that organizes the 
learning objectives. However, it is noteworthy that during the implementation of the lesson plan, 
LTs tended to be adapted by the teachers accordingly to the students’ emerging needs.  
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All three teachers attempted to obtain relevant information about students through informal 
assessment processes during the instruction. This was mainly done through students’ answers to the 
tasks, with the emphasis being on the explanations and the justification provided. At the same time, 
feedback was provided through students’ work (teacher A) and by the way the students used the 
manipulatives and the models of fractions while dealing with the tasks (teachers B and C). 

Also, the difference is that with LT I also use manipulatives. I do not just use the textbook or 
representations only, I use materials that students use, test them, change, see them differently... 
(teacher C) 

Teacher Α provided additional comments for each student individually about the progress and the 
difficulties in relation to the basic learning objectives included in the trajectory of fractions. Thus, 
she could have a “picture” of the whole class with regard to the points of the trajectory that students 
found more difficult. In one way or another, therefore, the teachers collected information about their 
students’ learning. Likewise, the three participating teachers interpreted the information collected in 
their own way and proceeded to make decisions about their instruction. Their interpretations 
influenced their teaching choices. It seems, however, that LT supported a more focused 
interpretation taking into account students’ past knowledge and thinking in order to guide the 
learner to the desired objective through a developmental path. 

Maybe the knowledge they are building using the trajectories is more solid…When you tell them 
about the multiplication or the division, if they have learnt only the procedures without 
understanding them, they cannot go on…but with the trajectories it is so easy for them to 
perceive 3/6, 4/8, 5/10 and they say “this is a half” without any stress. (teacher C) 

The LT of fractions seems to have played an active role in teaching, whereas the developmental 
path that it offered made it easier for the teachers to link the pupils’ previous knowledge to the new 
one. Thus, there were several occasions where, in order to understand some issues and to deal with 
the difficulties of fractions, teachers used students’ knowledge coming from other trajectories (i.e., 
natural numbers). This approach is consistent with the literature claiming that teachers should adjust 
LTs on the basis of children’s pre-existing knowledge and preferences. It also presents similarities 
with the use of learning trajectories by the Dutch TAL project, where the aims of a trajectory were 
linked to each other in ways that could be achieved through this association (Simon & Tzur, 2004).  

When dealing with students’ difficulties, however, the choices for the development of the 
instruction did not always include the active use of the trajectory of fractions. For example, an 
occasion in which the trajectory did not seem to have played an important role was the extended 
stay on a target, backing it up with extra tasks and supporting material (often digital). 

We had difficulties in finding ½ of 3/4. We had difficulties in these things, but again, the models 
and various digital applications in the internet showed the way…How one can use ½ of ¾ … and 
we also used manipulatives where the students, in groups, were experimenting…how I can find 
1/3 of 3/6, let’s say. (teacher A) 

Another option was to use LT to simplify activities to suit the potential of students. This may 
indicate a case in which, as the relevant literature suggests, the teacher adapted the trajectory to 
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students and chose activities appropriate to their level (Clements & Sarama, 2009). Thus, on the one 
hand, the objectives were not always at the ideal level, but on the other, students were given the 
opportunity to follow a course compatible with their level and needs. 

In addition, teachers tended to allow each student to go at their own pace and go along with their 
own progress on a “micro-scale”. This personal progress often began from the intuitive and ended 
up to the formal level or started from a simple and reached to a more complex stage (teacher A). 
This appears to be very close to the proposal of the new Mathematics Curriculum (2014) according 
to which the sense of number is cultivated progressively and at successive levels of abstraction and 
generalization. Furthermore, there were many occasions where different solutions to problems 
corresponding to different levels of understanding would appear (teacher B) indicating that a LT 
allows students to expose individual differences in learning (IEP, 2014). It therefore follows that, in 
general, the notion of LT has been used in the class by teachers in various ways as a general 
framework and as a useful tool, not just as a list of cognitive objectives and corresponding tasks. 

You can go ahead and see that something has not been understood…don’t you come back to 
negotiate it again? You have to. So, you can come back and deal with the notion again (teacher 
B) 

In general, however, LT’s incorporation into teaching was proven to be more substantial when 
using the knowledge held by the students. In other words, a learning trajectory may be more useful 
and effective in teaching when the teacher takes into account the basic principles of constructivism, 
such as the developmental progress of learning and the importance of pre-existing knowledge. This 
goes back to its original purpose, when the term was first mentioned by Simon (1995), considering 
it as a tool for designing teaching according to constructivist principles. 

Discussion and concluding remarks 
The participating teachers interpret the concept of LT in ways that present similarities and 
deviations from the official literature. They tend to recognize that there is a certain sequence in 
teaching and to identify constructivist elements such as building on pre-existing knowledge and 
active engagement of the learner in the learning process. However, they view LT as a way of 
organizing mathematical content rather than as assumptions about the development of students’ 
thinking when learning a mathematical notion, and so it seems that they perceive it yet as another 
local curriculum. As to the meaning attributions related to the application of LTs, overall, the 
contribution of LT to teaching is found either in organizing the content or in improving teachers’ 
knowledge of mathematical notions and consequently in improving teaching. Thus, the participating 
teachers treated LTs just as means of organizing the mathematical content. At the same time, the 
use of the notion of LT did had a positive effect both on the learning process and the learning 
outcomes, as it encouraged exploratory learning procedures, exploited learning through connections 
between the notions and led to a solid and structured formulation of knowledge. 

Learning trajectories appear to have provided the teachers with a general framework for organizing 
their teaching in ways that shared common features but also varied. These ways were not limited 
just to organizing the content. At the first phase, the use of LTs was related to lesson planning, 
including the development of individual objectives for a mathematical notion and the corresponding 
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tasks. However, during the instruction and on several occasions, the teachers modified the originally 
planned instruction under the light of emerging issues and students’ thought. Thus, in order to teach 
the new mathematical content, the pre-existing knowledge that was part of the trajectory of 
fractions or of a different trajectory was used. Also, LT was adapted to the capabilities and the level 
of students’ thinking through simplification of objectives and varied problem solving processes. 
Furthermore, a personal route of the students from the intuitive to the formal and from the simple to 
the complex was realized, for example, in the comparison of fractions. In contrast to the above, the 
LT of fractions was not particularly effective in cases where difficulties were simply identified 
without further interpretation of students’ thinking. Teachers tended to stay for a long time in a 
learning objective without actually taking into account students’ background so as to combine it 
with the trajectory at hand. 

References 

Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories 
approach. New York, NY: Routledge.  

Confrey, J., & Maloney, A. (2010). The construction, refinement, and early validation of the 
equipartitioning learning trajectory. In K. Gomez, L. Lyons & J. Radinsky (Eds.), Proceedings of 
the 9th International Conference of the Learning Sciences (Vol.1, pp. 968–975). Chicago, IL: 
International Society of the Learning Sciences. 

Ιnstitute of Educational Policy (IEP) (2014). Mathematics in Primary Education. Curriculum 
“Tools of Teaching Approaches”. Athens: IEP/ ESPA 2007-13. 

Kuntze, S., Lerman, S., Murphy, B., Kurz-Milcke, E., Siller, H. S., & Winbourne, P. (2011). 
Professional knowledge related to big ideas in mathematics – an empirical study with preservice 
teachers. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress 
of the European Society for Research in Mathematics Education (pp. 2727–2726). Rzeszów, 
Poland: University of Rzeszów and ERME 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. 
Journal for Research in Mathematics Education, 26(2), 114–145. 

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: 
An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 
6(2), 91–104. 

Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of 
commensurate fractions. Mathematical Thinking and Learning, 6(2), 129–162.  

Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and 
rational numbers. Learning and Instruction, 37, 1–4. 

Thematic Working Group 19

Proceedings of CERME11 3671



 

 

 

 

Good mathematics teaching at lower primary school level  
Marianne Maugesten 

 Østfold University College, Norway; marianne.maugesten@hiof.no 

This paper explores Norwegian lower primary teachers’ views about good mathematics 
teaching as revealed in a focus group interview at the end of a two-year school-based 
professional development program. Analyses of the empirical data indicate three main 
categories of findings: the teachers’ facilitation of learning, the students’ thinking in and about 
mathematics and the use of teaching aids in teaching. The results are discussed in relation to 
other Nordic studies and possible implications are also provided. 

Keywords: Mathematics teachers' discussion, lower primary school, good mathematics 
teaching. 

Introduction and theoretical background 
This study investigates teacher views about good mathematics teaching. Several studies attempt 
to identify the components of good mathematics teaching without finding a clear answer (Cai, 
Kaiser, Perry, & Wong, 2009; Franke, Kazemi, & Battey, 2007; Hiebert & Grouws, 2007; 
Kilpatrick, Swafford & Findell, 2001). A challenge is that cultural as well as political 
differences influence mathematics teaching. Views about the role of the teacher, about the 
subject in school and society, and about learning differ across cultures (Cai et al., 2009). In the 
Chinese context, for instance, mathematics teaching is teacher-oriented and exam-oriented, and 
teachers are more focused on the students and their learning than on themselves and their 
teaching (Li, 2011). In the Nordic context, Fauskanger, Mosvold, Valenta and Bjuland (2018) 
conducted a study in which upper primary school teachers’ views on good mathematics 
teaching were revealed through group interviews at the start of a major professional 
development project. The teachers referred to their role as teaching facilitators by having good 
structure, classroom management, and the possibility to differentiate using different types of 
assignments, which both motivates the students and invites more and diverse solutions. 
According to Fauskanger et al. (2018), good teaching was also about motivated, engaged, 
creative and curious students. In another study, Fauskanger (2016) investigated views on the 
ingredients of good mathematics teaching among lower and upper primary school mathematics 
teachers who participated in a professional development program. These teachers felt that 
student response was the most decisive factor for high quality teaching. They emphasized 
teacher qualities such as enthusiasm and attitude towards the subject rather than the teachers’ 
own knowledge. Hemmi and Ryve (2015) studied Swedish and Finnish teacher educators’ 
views of good mathematics teaching through focus group interviews and individual interviews. 
There were many apparent similarities between Sweden and Finland, but the Finnish teacher 
educators emphasized clear presentation of mathematics for the whole class, routines for mental 
arithmetic and homework, and clear learning goals for each class, while the Swedish teacher 
educators referred to the relationship with each individual child, building on the students’ 
capabilities and finding mathematics in everyday situations. In three studies carried out among 
Finnish student teachers (at lower primary school level), Kaasila and Pehkonen (2009) looked 
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at students teachers’ views of good mathematics teaching. They believed that teachers needed 
to be goal-oriented, listen to the students’ thinking and show flexibility when unexpected 
episodes arise. The student teachers pointed out that teachers should have knowledge of varied 
work methods, base their teaching on the students’ day-to-day experiences and have a particular 
focus on problem solving. Continuous assessment and development of socio-mathematical 
norms were considered important elements of good mathematics teaching. 

Teaching mathematics is complex and researchers have attempted to distinguish the different 
aspects to identify main practices. These are referred to as core practices (McDonald et al., 
2013) or high-leverage practices (Forzani, 2014). This study focusses on the Nordic context, 
therefore core practices are not discussed further. 

The study in this paper is based on a group of Norwegian teachers at lower primary school level 
who, together with a teacher educator in a focus group interview, reflected on their own 
mathematics teaching at the end of a two-year school-based mathematics professional 
development program. The content in this development program were decided by the 
headmaster in cooperation with representatives of the mathematics teachers at the school. 
Among the themes were numeracy, different approaches to the four arithmetical operations and 
how to lead productive mathematical discussions. This study does not measure the effect of the 
program, but it can be assumed that the teachers’ descriptions of good mathematics teaching 
has been influenced by them trying out exercises and activities in their own classes and by 
improved research-based knowledge of mathematics didactics throughout the two-year period. 
To my knowledge of research in the field, few studies have examined Norwegian lower primary 
school teachers’ descriptions of good mathematics teaching. On this basis, the study seeks to 
answer the following research question: What might Norwegian lower primary school teachers’ 
views about good mathematics teaching look like? Teaching refers to the interaction between 
teachers and students relating to subject matter. Cohen, Raudenbush and Ball (2003) describe 
this interaction as the instructional triangle. 

Methodological approach 
The empirical data used in this study is from a focus group interview with seven lower primary 
school teachers at a school that has completed a two-year professional development program 
for mathematics teachers. The interview included two teachers from each of the years one to 
year three and one from year four. Two were men and five were women. Two of these were 
experienced preschool teachers who have worked at lower primary level for about 15 years. 
The others were primary and lower secondary teachers with between 15 to 30 ECTS credits in 
mathematics and between four and 20 years of experience from primary and lower secondary 
school. The school has three teachers on each of the four years of lower primary school.  

The participants were informed of the topic of the focus group interview in advance. They were 
asked to discuss and reflect on their own mathematics teaching on the basis of their experiences 
from competence raising and what they had tried out, and their definition of good mathematics 
teaching. The interview lasted one hour and was recorded and transcribed in full.  
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Transcripts from the focus group interviews were analyzed using conventional content analysis 
(Fauskanger & Mosvold, 2015; Hsieh & Shannon, 2005) used in studies that attempt to describe 
a phenomenon in order to better understand it. The phenomenon described in this study is 
mathematics teaching. In conventional content analysis, inductive codes are linked to suitable 
categories, as shown in a table in Figure 1. The interview subjects are referred to as R1 to R7. 
The transcribed interviews were placed in a table with rows containing individual statements, 
such as R3 in Figure 1, key words from these, inductive codes and categories. The material was 
analyzed twice with a two-month interval to prevent categories being overlooked. One of the 
challenges of conventional content analysis is not obtaining a complete understanding of the 
context because of categories being left out (Hsieh & Shannon, 2005).  

Category Inductive code Examples of individual comments 

 

 

The teachers’ 
facilitation of 
learning 

Communication in the 
classroom 

R3: ‘Some years ago, if I spent much too much time 
on a conservation, it felt like “when are we going 
to do the maths?”’ 

Representation – 
particularly transitions 
between representations 

R4: ‘because we’ve used manipulatives before 
too... And the transition from using manipulatives 
to actually drawing up maths problems [...]’ 

 

The students’ 
thinking in and 
about the subject 
of mathematics 

The students’ thinking in 
the subject of 
mathematics 

R5: ‘show them that there is more than one way of 
working it out, several strategies.’  

The students’ thinking 
about the subject of 
mathematics 

R3:‘The challenge is that there are a few students 
in the class that you don’t manage to engage in the 
conversation, that only really become involved 
when they are given the maths problem in the 
book’. 

 

Subject 
resources in the 
facilitation 

 

Textbook R6: ‘And then I suppose it’s very safe. You 
probably very much trust that those who have 
written the textbooks know what we need to get 
through and...it’s also related to time pressure 
sometimes, that it’s easy.’ 

Type of task: open, 
explorative, tasks related 
to daily activities 

R2: ‘...to see the maths in everything around us. 
Grasp the everyday situations.’ 

Table 1: Codes and categories 

Results  
The analysis of the empirical data led to three main categories of findings: teachers’ facilitation 
of learning, students’ thinking in and about mathematics and use of teaching aids in teaching. 
These three main categories are sometimes related. For example, the students’ thinking in and 
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about a mathematics exercise might be connected with the teacher’s facilitation of learning 
through communication in the classroom. This is in line with the description of teaching in the 
instruction triangle as an interaction between subject matter, the students and the teacher (Cohen 
et al., 2003). Through the focus group interview, the teachers emphasized increased awareness 
of several areas at the same time as they still had challenges in a number of these areas. When 
the results are presented, both challenges and increased awareness are shown in each category.  

Teachers’ facilitation of learning 

The teachers seemed to use more whole class conversations and dialogue in mathematics 
teaching after participating in the professional development. They also said that it was 
challenging to engage the students in subject-related talks. The teachers viewed the dialogues 
with the students and between students as an aid to developing the students’ thinking: ‘Kind of 
building a bridge between the terminology they have and... sort of new knowledge’ (R3). This 
remark may indicate a view of learning in which the students develop new knowledge from 
already established terms. The same teacher had started using learning pairs and felt that the 
students gave each other ideas that were useful to the subsequent conversation with the whole 
class. The teachers did not feel that the class failed if they spent time on discussion and deviated 
from the class plan (R1). R6 reported that they often used to think ‘Oh no, now I have to get 
the other part done,’ where the other part referred to solving exercises in the textbook. This can 
mean that the teacher thought more about quality and what led to learning than quantity, as in 
solving lots of math problems in the mathematics teaching. R3 described the use of dialogues 
in teaching as a quantum leap in relation to before the professional development program. In 
communication with the students, the teachers expressed that they had become more precise in 
their use of terms, as described by R1: ‘addition and subtraction, and not plus and minus.’  

R4 specified what was meant by more dialogue in the following example. Previously, the date 
and day were written on the board in the morning assembly, while the content was now more 
mathematical: ‘Who’s birthday is next? How many days are there until...? How long ago was 
Christmas?’ The teachers developed math problems from the information that emerged, and the 
students were encouraged to develop their own problems.  

Several teachers found dialogues to be challenging for both students and teachers in 
mathematics classes. Students needed to practice talking and explaining their thoughts. Some 
students asked (R2): ‘Can’t we just do a task?’ The teachers stated that they needed to learn 
what questions to ask in order to elicit student thinking. To address some of the challenges 
described by the teachers in my study, it will be necessary to develop classroom norms and 
relations that are in line with several of the high-leverage practices (Forzani, 2014). 
The teachers in the study taught at lower primary level and found it important to use various 
representations, such as concrete manipulatives and semi-concrete manipulatives, drawings, 
verbal representations and written representations in the form of math problems and numbers 
intended to help more students to understand more. They expressed great awareness of the use 
of new representations such as sketches of blank number lines: “Blank number line. Open 
number line. I think it’s almost been revolutionary. I use it in nearly every possible context, 
very positive to use,” (R6). The transition from concrete representation to abstract ideas was 
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challenging for the students, according to several of the teachers. R4 gave an example where 
she lined the students up at the front of the class to show doubles and halves. For the students 
to understand what numbers represented half and double, the teachers felt that they had 
improved their knowledge as to what questions to ask in order for the students to see the 
connection between the practical and the written parts. The teachers believed that this transition 
was important (R3). This indicated that they found it important to facilitate students’ learning 
and how their current abilities could be related to what they were going to learn. 

The students’ thinking in and about the subject of mathematics 

This category was also concerned with communication in mathematics teaching. When students 
explain their thoughts, it takes place in a communication situation. The teachers felt that the 
students must be given time to think and ask questions and that they, as teachers, should not 
feel that the students should rather be solving written math problems. By letting the students 
show their thoughts when solving problems, the teachers could emphasize that mistakes can be 
positive in that they can help the teachers and students to understand. “And understanding kind 
of how they think, and going into it and understanding a bit more why things are wrong and 
why it is hard, I think is very important” (R4). This showed that knowing about common student 
mistakes and ways of thinking was important for the teacher. According to the teachers, the 
students also became aware of there being more than one way of reaching the solution. They 
believed that the students acquired a better understanding by explaining their thoughts since 
this formed a ‘bridge’ between the terminology the students already had and new knowledge. 

The teachers gave examples of their students’ remarks when thinking about the subject of 
mathematics: “Oh yes, now I understand it.” This expressed a sense of mastery. However, the 
teachers also described the challenges relating to students’ different understandings of the 
mathematics subject. As mentioned earlier, it can be a challenge to get the students to talk in 
mathematics classes precisely because they are of the impression that mathematics means 
solving lots of math problems. R3 explained it in the following way: “The challenge is that 
there are a few students in the class that you don’t manage to engage in the dialogue, that only 
really become involved when they are given the math problem in the book.” She also believed 
that this particularly applied to students who were quick at calculations and those who were not 
particularly motivated in the subject of mathematics. This may indicate a view that mathematics 
is about quickly solving lots of math problems. 

Subject matter/resources 

When the teachers described the content of their own teaching, the main topics of discussion 
were the textbook and different types of tasks (often aside from the book). They expressed an 
increased awareness in relation to both.  

In relation to the types of tasks, R4 explained that she no longer made booklets containing extra 
tasks, but used open-ended and problem-solving tasks that the students could work on over 
time. She also stated that, “I hope they have become better at thinking at least, to sort of, solve 
problems.” This may imply that the teachers felt that investigation and problem solving were 
key elements of students’ understanding, and thereby of good mathematics teaching. The 
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teachers also told that they discussed mathematics teaching with colleagues more than earlier, 
because the tasks were challenging. At lower primary level, the teachers gave the students 
notebooks where they could draw and write problems and solutions themselves. An open 
exercise for year one students was the hundred-day party where the mathematical topics the 
teachers covered were even numbers, odd numbers, ten friends, bridging through ten, counting, 
subtraction and addition. The teachers in my study explained that they had become more alert 
to the mathematics in everything around them, which could be linked to the types of exercises. 
R2 commented: “Grasp the everyday situations. And get them into what’s related to 
mathematics in the class.” When the teachers in my study seem to have increased awareness of 
using mathematics in all subjects, this might relate to the fact that the basic skill of calculation 
in all subjects had been a theme in the professional development program. R7 summed up what 
she thought good mathematics teaching was in the following way: “When the students 
understand when and how they can use their knowledge of mathematics in everyday life.”  

When the textbook was raised as a topic, there was some disagreement among the teachers. R7 
told that she has become “critical to the textbooks, and I don’t completely trust that the 
textbooks necessarily meet all the learning goals.” R2 has become more aware of being freer in 
relation to the textbook, while R6 finds the textbook safe. This shows that teachers can disagree 
about the textbook’s role in mathematics teaching.  

According to the research question, the teachers’ views about good mathematics teaching was 
described in the three main categories of findings in this section. Some of them were related to 
results in other Nordic studies, as discussed in the next session, but also to the content of the 
two-year professional program. This paper does not assess the effect of the program, but the 
teachers’ views about good mathematics teaching can be influenced by this content and 
improved research-based knowledge. The teachers emphasized the use of open-ended and 
problem solving tasks and acceptance of communication and dialogues to facilitate learning.  

Discussion 
There were both similarities and differences between how good mathematics teaching was 
described by the teachers in this study as compared with other Nordic studies (Fauskanger, 
2016; Fauskanger et al., 2018; Hemmi & Ryve, 2015; Kaasila & Pehkonen, 2009) that have 
examined good mathematics teaching.  

The Norwegian teachers’ descriptions of dialogs in lower primary school teaching were similar 
to those of other studies. Fauskanger et al. (2018) pointed out that facilitating conversation and 
discussion in mathematics teaching was a key aspect of students’ learning at the same time as 
such conversation could inform the teacher about the students’ thinking. International research 
highlights classroom discussion in mathematics teaching (e.g., Franke et al., 2007). 
Based on the empirical data, students’ thinking appeared to influence the planning of 
mathematics teaching for the participating teachers. Similar to the Finnish study the findings of 
this study documented that the teacher needs to listen to the students in order to understand their 
way of thinking (Kaasila & Pehkonen, 2009). The student teachers in Hemmi and Ryve’s (2015) 
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study believed that Swedish teachers build on an extreme expression of constructivism and 
were therefore more student-focused, while the Finnish referred to whole class discussion.  

Selecting open tasks and investigative activities that are motivating and give the students 
opportunities to show several solutions was emphasized by both Fauskanger et al. (2018) and 
Hemmi and Ryve (2015). Connecting mathematics with everyday life seemed to be important 
both in the Swedish and Finnish education studies (Hemmi & Ryve, 2015; Kaasila & Pehkonen, 
2009) which are in line with the findings of my study.   

In this concluding discussion, I will highlight one characteristic of good teaching that the 
teachers focused on and one characteristic that previous research has highlighted, but that was 
not mentioned in my focus group interview.  

During the focus group interview, the teachers believed that using several different 
representations and working on the transition between these both contributed to good teaching 
and entailed a challenge. Using different representations has not been included in the 
characteristics of good mathematics teaching in other Nordic studies. This could of course mean 
that the use of representations and the transition between representations were included in some 
of the other categories in these studies. However, it may also be explained by the fact that the 
teachers in my study were teachers at lower primary school level and here, the need to use 
different representations was greater, and the transition from concrete to abstract thinking was 
more difficult than for older students. Work on expressing math problems or amounts in 
numbers after using manipulatives were considered particularly difficult for this age group.  

A characteristic of good mathematics teaching mentioned in both Fauskanger et al. (2018) and 
Kaasila and Pehkonen’s (2009) studies, is the structure of classes, with clear learning goals and 
classroom management. This was not mentioned, nor asked about, in the lower primary school 
teachers’ focus group interview. This does not mean that it is not important to the lower primary 
school teachers in this study; it is perhaps more important here than in other years. However, 
the teachers might see classroom management and clear learning goals as such obvious factors 
that they did not mention them explicitly when they described mathematics teaching.  

At the end of the professional development program the teachers felt that they had not only 
become more aware of dialogues with the students, but they also had more conversations and 
reflections among themselves. They feel that such discussion and reflection provide support 
and inspiration for their teaching. Knowledge sharing among the teachers may therefore 
contribute to long-term competence raising and deserve further research. Effect studies of 
professional development also need to be researched further. 
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Analysis of differences between teachers’ activity  
during their regular and constructivist lessons  
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Different aspects involved in the constructivist teaching mode were assessed in the eight 
observed mathematics lessons conducted by four upper-secondary in-service teachers. Four 
among these lessons were identified as ‘regular’ by the teachers themselves, the other four 
lessons followed the same constructivist lesson plan designed by the respected educational 
expert. The main differences were found in the way how the students were working and achieved 
their independent learning capabilities. The lessons following the constructivist lesson plan 
were clustered together by the means of hierarchical cluster analysis. The regular lessons were 
more influenced by the teachers’ personalities then the constructivist lessons.  

Keywords: Teacher behaviour, teaching styles, professional development.  

Introduction 
The traditional transmissive “chalk-and-talk” methods have already been criticized continually, 
while concurrently the student-centred pedagogies have frequently and gradually been 
approved for several decades (Steffe & Kieren, 1994). Teachers face a lot of issues and 
challenges when implementing awaited constructivist approaches (Appleton & Asoko, 1996).  
Teachers lacking any experience in the constructivist classroom often struggle with the setting 
up such a learning environment that is demanded for the constructivist perspective (Windschitl, 
2002).  

According to Schoenfeld (2010) the teachers’ decisions during the lesson are influenced by 
their resources (i.e., knowledge, material just being available), goals (e.g., such aims which they 
are trying to achieve) and orientations (e.g., their beliefs, values, biases). Teachers’ professional 
knowledge can be seen as an outcome of their overall different experiences they have been 
involved in, including both formal and initial training, as well as professional development and 
informal forms of learning through their own practice or media. The overall teachers’ 
knowledge has been constructed and developed gradually. Such process has been always 
influenced by their prior beliefs, pre-knowledge or originating knowledge and experiences of 
the knowers (Smith, 1993). As such, different people experiencing the same intervention will 
achieve and develop their own and usually quite different constructions of that experience 
(Lachance & Confrey, 2003). 

Theoretical framework 
Beerenwinkel and von Arx (2017) describe the constructivist-oriented teacher as a person who 
activates the overall students’ pre-knowledge and provides them with some suitable issues and 
problems, often related to their everyday context. During the problem-solving activity of 
students, the teacher creates a space for independent learning, encourages rethinking and seeks 
to demonstrate certain scientific approach to generating such knowledge. 
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According to Widodo & Duit (2004), there are four categories comprising the significant 
indicators for the constructivist teaching: (a) construction of knowledge (CK); (b) personal 
relevance (PR); (c) social interaction (SI), and (d) independent learning (IL). Beerenwinkel and 
von Arx (2017) defined evident facets for each of the listed indicators that are suitable for 
quantification. Construction of knowledge can be assessed according to status in the learning 
process, activation of pre-knowledge, providing problems, evolutionary development of 
knowledge, revolutionary development of knowledge, thinking aloud and demonstration of the 
scientific approach to knowledge generation. Personal relevance is based on exploring the 
interest, accounting for needs, everyday-life context and transfer to other subjects. Social 
interaction can be quantified according to extent of student-student interaction, student-teacher 
interaction with the whole classroom and student-teacher interaction while individual work or 
group work. Independent learning is manifested in space for independent learning, encouraging 
the rethinking, fostering the metacognition, benefit from independent learning and 
metacognitive abilities.  

In our study we focused on the differences between the regular lessons of Slovak mathematics 
teachers and the lessons conducted by the same teachers based on the lesson-plan prepared by 
the relevant expert in constructivist teaching and learning. We stated the following research 
questions: (i) In what facets of constructivist teaching does the regular lesson differ from the 
lesson based on the lesson-plan prepared by the relevant expert? (ii) What are the relations 
between the episodes from regular and constructivist lessons of investigated teachers? (iii) What 
are the (implicative) relations between the facets of constructivist teaching observable in the 
lessons of investigated teachers? 

Materials and methods 
Within the project PRIMAS supported by the European Union FP7 the course aimed at the 
professional development (CPD) of mathematics teachers was implemented at the authors’ 
university. The CPD focused on the implementation of inquiry-based learning and thus also 
constructivist teaching in upper-secondary schools. Several authors (e.g. Jaworski, 2006) see 
inquiry as fitting with the constructivist view of knowledge and learning. 

The structure of the course followed the spiral model of teachers’ professional development, 
consisting of the following three repeating steps: Reflection - Analysis - Implementation. The 
course was aimed at the transformative learning of the participating teachers as mentioned by 
Thompson and Zeuli (1999). Firstly, the teachers reflect on the lesson they labelled as ‘regular’. 
Later in the course, the teachers went through this cycle for three more times. They did specific 
changes in their practice, videotaped their lesson, reflected on it and came with specific 
conclusions that might influence their further practice. The first change was in the way of 
questioning. The second lesson should follow expert-prepared lesson plan. Detailed lesson 
plans including typical student questions and suggested answers were chosen with the aim to 
offer teachers tools that they were not familiar with prior to the study. Any and every positive 
experience in implementing constructivist approach is very good motivation for their further 
practice.  The third lesson was planned by teachers themselves according their experience from 
previous cycles. 
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In order to answer the research questions we analysed eight videotaped lessons taught by the 
four participants of CPD that implemented the same lesson plan named Counting trees 
(Mathematics Assessment Resource Service, 2015). Two lessons for each participating teacher 
were analysed. The first of the lessons were recorded after the first 90-minute session of the 
CPD. The teachers were required to record their regular mathematics lesson following the 
national curricula. The second analysed lesson was the one following the Counting trees lesson 
plan. The teachers did not get any special support to this particular resource. On the other hand, 
the constructivist lesson was carried out after completing the 52 out of the 60 group contact 
lessons of the CPD. The subsequent sessions reflecting on the lessons were conducted in 
researcher-teacher pairs.  

The lessons were divided into smaller episodes according to the activity during the lesson (i.e., 
teacher lecturing, group-work, etc.). The time for each episode was recorded. Each episode was 
labelled by pseudonym of the given teacher, number of lesson (1 - regular, 2 - constructivist) 
and phase of lesson. The defined facets were assessed for each episode. The levels were defined 
from 0 (the facet was not manifested in the observed lesson) to 3 (the facet regularly occurs in 
the observed lesson). The facets describing the personal relevance got almost for each 
observation the zero value, so we decided to omit this indicator from the further analysis.  

The weighted arithmetic mean for each facet was calculated and the mean value of the lessons 
was compared by the means of paired t-test (De Winter, 2013) performed in R environment 
(RCoreTeam, 2018). The hierarchical cluster analysis was performed using the Euclidean 
distances and UPGMA clustering method. The cophenetic correlation coefficient was used to 
determine the most accurate clustering method. The statistical implicative analysis (SIA) (Gras 
et al., 1996) using package rchic (Coutrier, Pazmiño Maji, Conde González, & García-Peñalvo, 
2015) was applied to explore the implicative relations between the facets of constructivist 
teaching.  

Results 
Four of the observed facets significantly differed between the regular and constructivist lesson. 
The means, t statistics and p values are summarized in Table 1. The evolutionary development 
of knowledge (CK4) and teachers’ thinking aloud (CK6) were more prevalent in the course of 
the regular lessons. Surprisingly, the revolutionary development of knowledge (CK5), typical 
for the constructivist classroom was not significantly higher in the lesson based on the 
constructivist lesson plan.  

The student-student interactions occurred more often in the constructivist lessons as there was 
actually a large space devoted to the group-work during the lesson. The level of student-teacher 
interactions did not differ significantly, neither for the individual, nor for the group 
communication. Fostering metacognition features (IL3) and benefits from the independent 
learning (IL4) were the two characteristics of individual learning that did differ significantly 
between the two lesson types.  

Facet Description of facet Lesson 1 Lesson 2 t p 
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M SD M SD 
CK1 Status in the learning process 0.82 0.47 0.03 0.01 2.00 0.092 
CK2 Activation of pre-knowledge 0.99 0.55 0.36 0.68 0.43 0.354 
CK3 Providing problems 0.40 0.03 0.18 0.17 0.30 0.395 

CK4 Evolutionary development 
of knowledge 0.75 0.27 0.06 0.07 2.95 0.049 

CK5 Revolutionary development 
of knowledge 0.36 0.07 0.36 0.22 -0.01 0.496

CK6 Thinking aloud 2.15 0.87 1.19 0.56 4.12 0.027 

CK7 Demonstration of the scientific 
approach to knowledge generation 0.25 0.14 0.00 0.00 1.50 0.137 

SI1 Student-student interaction 0.18 0.02 2.05 0.19 -6.17 0.013

SI2 Student-teacher interaction 
(classroom) 1.67 0.23 0.85 0.42 1.98 0.093 

SI3 Student-teacher interaction 
(individual work or group work) 0.84 0.82 1.62 0.07 -2.22 0.079

IL1 Space for independent learning 0.51 0.25 2.03 0.07 1.53 0.133 
IL2 Encourage rethinking 0.64 0.14 0.68 0.58 0.20 0.432 
IL3 Foster metacognition 0.38 0.02 1.62 0.01 -11.34 0.004
IL4 Benefit from independent learning 0.22 0.04 1.39 0.27 -2.85 0.052
IL5 Metacognitive abilities 0.62 0.15 1.00 0.28 -0.49 0.337

M = mean, SD = standard deviation, Lesson 1= the regular lesson, Lesson 2 = the Counting trees lesson 

Table 1: Mean values of the levels for the facets describing indicators of constructivist teaching 

Name of the teacher|Episode of the lesson|Number of lesson; BB means solving a task on the blackboard; 
L1 regular lesson, L2 Counting tree lesson. 

Figure 1:  Dendrogram grouping the episodes from the observed lessons 

The observed variables from our analysis of the observed lessons were grouped into two clusters 
(Figure 1). The first one contained the variables representing episodes of constructivist lessons: 
the students work in groups (Eva, Greta, Matej, Silvia|Group-work|L2) with students’ 
individual work (Eva|Individual work|L2) and whole-class discussion (Eva|Whole-class 
discussion|L2). The second cluster comprised of several smaller subclusters grouped by the 
same type of an episode of lesson and by the style of teaching conducted by the observed 
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teacher. For example, one subcluster contained almost all episodes of the observed lesson 
Matej1 (see Fig. 2 in green square). Some of teachers connected discussion in groups with the 
work on the project. In the first cluster, also one variable for individual work (Eva|Individual 
work|L2) is grouped. We assume that the teacher encouraged students also during their 
individual work.  

The fifteen facets of constructivist teaching were grouped into the three clusters (Figure 2). In 
the first cluster, only two didactical variables were grouped: CK6 (thinking aloud), and SI2 
(student-teacher interaction in the classroom). The second cluster contained the following five 
grouped variables: SI1 (student-student interaction), IL3 (fostering metacognition), IL4 (benefit 
from the independent learning), IL1 (space for the independent learning), and SI3 (student-
teacher interaction during the individual or group work). The third cluster comprised of the 
following three didactical variables: CK1 (status in the learning process), CK4 (evolutionary 
development of knowledge), CK3 (providing problems), CK7 (demonstration of the scientific 
approach to knowledge generation).  

 
Figure 2:  Dendrogram of different facets of constructivist teaching 

The statistical implicative analysis produced the three R-rules (Figure 3). The first connected 
subgraph IL2→CK6←SI2←CK2 represents the aspects influencing the teachers’ thinking 
aloud.  

 
Figure 3:  R-rules of the different facets concerning to constructivist teaching 

Based on the results of the t-test we can conclude that since the lessons varied in their structure, 
the actual and real difference was mainly in the way how the students had been working. The 
teachers did not engage in “think aloud” too much and more time was devoted to the individual 
work of students. Student-student communications were observed more frequently which 
implied greater benefits for students as a result of independent thinking during constructivist 
lessons. 
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The variables grouped in the first cluster imply that the discussion in classroom about the given 
problem or topic is encouraged by teacher’s thoughts aimed at revising or expanding 
a knowledge structure or framework. Students had real opportunities to reflect on their 
observations (or perceptions) related to the discussed issue (e.g., creating a definition, possible 
strategies, or solutions). Teachers’ thinking aloud about the topic influenced the intensity of the 
interaction in the classroom between the teacher and students.  

The variables in the cluster 2 represent the aspects of group-work in the classroom. The teacher 
supporting interactions between the students in groups, helps students share their opinions about 
the given topic and strategies in the solving process. The independent work gives some space 
to the students for managing time, tools, and strategies to achieve their assignment. Especially 
as far as the group work, the mutual discussion can bring several diverse ideas as far as the 
methods, form of collaboration, or managing of timing, and developing their soft or 
mathematical skills. The teacher enters into a conversation or group work only as a facilitator. 

Based on the cluster 3, any knowledge, that is new for the students, can be easier integrated by 
linking it or by the reinterpretation and reinforcing of an existing previous knowledge. The 
scientific approach in the learning process may keep and support the quality of any new 
information for its integration into the knowledge structure. The grouped variable CK5 
(revolutionary development of knowledge) confirms the teacher’s role as a facilitator in the 
learning process, where the teacher gives comments, stimulating cognitive conflicts. In this 
sense, the variables IL2 (encourage rethinking), CK2 (activation of pre-knowledge) and IL5 
(metacognitive abilities) represent such a new knowledge, that is activated through the 
discussion process, where the students can explain their arguments and thinking and the teacher 
encourages them to do so.  

Results of the SIA indicate that the pre-knowledge covering a topic is activated in the discussion 
process headed by the teacher. Such discussion factually does represent an interaction between 
the teacher and the students in the classroom. Encouragement of rethinking is clearly an 
influential aspect to thinking aloud. The second rule (SI1→IL3)→IL1 contains the strongest 
implication: SI1→IL1, meaning, the mutual interaction between the students is conditionally a 
factor for their independent learning. Especially, while they are involved in group work in the 
classroom, students have a space to discuss their opinions independently from the teachers’ 
leading. The teacher is only a guide who can help with some ideas in small groups (SI1→SI3). 
We concluded that for the independent work it is necessary to create a space for discussions 
between the students focused on developing the relevant questions, ideas or solutions. 
Discussion is interrupted by the teacher only with some comments enhancing the discourse. 
Finally, the rule CK5→IL5 represents how cognitive conflicts offered by the teacher can help 
the students to explicate their thinking, learning or problem solving.  

Discussion 
The study builds on the characteristics of constructivist teaching described by Widodo and Duit 
(2004) and further elaborated by Beerenwinkel and von Arx (2017) for science education. The 
framework was implemented and used as a base for our quantitative analysis of eight 
mathematics lessons. Four lessons were usual for the teachers, and four were based on 

Thematic Working Group 19

Proceedings of CERME11 3685



 

 

constructivist lesson plan designed by an expert. Students’ activity was changed and the teacher 
had to adopt the new role of a mentor and facilitator of students’ discussion.  

Teachers in Slovakia frequently engage in lecturing practices. On the other hand, this style of 
teaching-lecturing is not seen too frequently in countries such as Island or Japan where 
independent work of students connected with between-desk-teaching is usual. It also differs 
from the situation in Finland where the whole-class discussion is the usual teaching approach 
(Gunnarsdóttir & Pálsdottir, 2015). The second lesson provided students with more 
opportunities for independent learning. Taylan (2015) recognised independent learning in both, 
individual and group work if the mathematical discussion was carefully prepared. It was the 
case also in Counting trees lesson plan that suggested teachers’ questions to start and support 
students to discuss. The teachers’ thinking aloud apparently decreased in the constructivist 
lessons. Despite Ayalon and Hershkowitz’s (2015) claim that different teachers can see the 
same task differently, the proposed lesson plan seemed to have similar effects in participating 
teachers’ classes. It may indicate similar experience with setting up the constructivist learning 
environment.The participating teachers were involved in the CPD aiming at the constructivist 
teaching style. We can assume teachers’ willingness to teach in the constructivist mode as they 
had chosen this kind of course.  

Conclusions 
The outcomes and results of the study confirmed actual differences between the usual lesson 
and a lesson based on constructivist lesson plan. The episodes of the constructivist lessons when 
students worked independently were clustered together. Clustering the episodes of the regular 
lessons depended more on teachers’ personality than on the phases of the lessons. Teachers 
during their regular lessons appeared to hold the main authority in the classroom. Based on our 
observations, teachers’ thinking aloud or interaction between the student(s) and the teacher 
were more prevalent in the regular lessons. On the other hand, when the teacher was following 
the constructivist lesson plan, a higher level of independent learning was observed. The 
carefully prepared lesson plan enables the teacher to implement lesson in a constructivist 
approach. Further research is needed to evaluate impacts of the actual experience with 
constructivist lessons on teachers’ regular practice.  
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It has been shown to be problematic for teachers to use Krutetskii´s definition of mathematical 
abilities to recognize mathematically highly able pupils (MHAPs). Aiming to concretize what 
teachers can notice in pupils’ problem-solving processes, we connect a 10-year-old boy’s problem-
solving process to some of the abilities defined by Krutetskii. The results give clear descriptions of 
what teachers can observe in pupils’ mathematical activities to notice their mathematical potential. 
We concretize, for example, how a pupil’s abilities to grasp a problem’s formal structure and to 
generalize can be observed. To be able to notice MHAPs, teachers need research-based support on 
how and what to observe in their pupils. Our proposed guide needs to be tested and validated to 
explore if it will help teachers to notice MHAPs s and subsequently support their learning. 

Keywords: Mathematical ability, highly able pupils, teachers. 

Background 
Schnell and Prediger (2017) have shown that teachers need the capacity to notice pupils’ 
mathematical potential in order to support all pupils in their development. Mellroth, van Bommel, 
and Liljekvist (2019) have shown that this is a challenging task for teachers when it concerns highly 
able pupils. It is therefore important to give teachers research-based guidance on how to discover 
pupils who need more challenges than others, for example MHAPs. If a teacher does not notice these 
pupils and provide greater challenges for those who, for example, improve their skills quickly, the 
pupils “may slip into a stage of boredom” (Liljedahl, 2017, p. 1147).  

Krutetskii’s (1976) work on the mathematical abilities is, for many, still the seminal work on the 
nature of mathematical ability. However, using his ideas to notice pupils’ mathematical potential 
poses significant difficulties for many teachers. This is shown by Mellroth, et al. (2019) in a study 
where teachers working in groups analysed pupils’ potential to show, in their problem-solving 
processes, the abilities defined by Krutetskii. The following transcript of a discussion among three 
teachers (A, B, and C), shows some of the teachers’ frustration: 

1 B: So, we are supposed to use those and apply them to a problem we choose. 

2 A: The words are pretty difficult.  

3 C: This is harder, oh! 

Teacher A reads aloud the Swedish translation of one of the abilities from Krutetskii’s work. 

4 B: Oh my God! 
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Primary teachers are the ones who first meet children in formal learning situations, and they should 
therefore be given the best support to notice pupils’ mathematical potential. It is also these teachers’ 
responsibility and duty to support and challenge all children. Teachers in primary school do not 
usually have deep knowledge in mathematics. It is, however, reasonable to argue that all teachers of 
young children want the best for their pupils and want to give them the challenges necessary for 
learning. To do this for pupils with high ability in mathematics, teachers need to be able to notice 
them (Shayshon, Gal, Tesler, & Ko, 2014). 

The aim of this paper is to propose a structure to help primary teachers notice their pupils’ 
mathematical potential. More precisely, through richer descriptions and commented examples from 
a pupil’s problem-solving process, we concretize what teachers can notice as characteristic of 
mathematical high ability. In this paper we will present and describe the development of such an 
emerging structure, based on the seminal work of Krutetskii (1976). How well the structure works to 
improve teachers’ observational skills remains for further studies to explore.  

Krutetskii’s way of describing mathematical ability 
There are newer frameworks than Krutetskii’s (1976) describing mathematical ability, such as those 
used by Schnell and Prediger (2017). It is, however, easy to ascertain that these frameworks are 
descendants of Krutetskii’s (1976), so we have chosen to use the original framework, since it is 
unquestionably the most used in the research field of education for MHAPs.  

Several researchers suggest that pupils should be active in problem-solving activities that are 
meaningful for them, in order for their teachers to be able to notice their mathematical potential 
(Krutetskii, 1976; Schnell & Prediger, 2017; Singer, Pelczer, & Voica, 2015). In particular, so-called 
rich problems fulfil many criteria known to be important for supporting and stimulating MHAPs by, 
for example, demanding higher order thinking (Sheffield, 2003). Therefore, when MHAPs work with 
rich problems, it can be assumed that they are participating in an activity that is meaningful for them. 

In his work, Krutetskii (1976) describes mathematical abilities and categorises them into four groups. 
His four groups divide the components of mathematical ability in the following way (pp. 350-351): 
1. Obtaining mathematical information; 2. Processing mathematical information; 3. Retaining 
mathematical information; and 4. General synthetic component. The first three groups proceed from 
basic stages in problem solving. The fourth, specified as a mathematical cast of mind, is a more 
general component that Krutetskii identified during his experiments. To fulfil the aim of this article, 
we here present and explain some of the mathematical abilities described by Krutetskii. Due to space 
limitations, we have chosen to focus on the abilities for which we can show clear evidence in one 
empirical case. This paper focuses on primary teachers. As the third component has been shown to 
be easier to observe in older students (Szabo & Andrews, 2017), we exclude it from this paper. The 
fourth component requires observation over a longer period of time (Krutetskii, 1976), so we also 
exclude also it. We describe here how the abilities chosen are interpreted in this paper. 

1. Obtaining mathematical information 

“1a. The ability for formalized perception of mathematical material, for grasping the formal structure 
of a problem” (Krutetskii, 1976, p. 350) 
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This is the ability to grasp the formal mathematical structure. Children with this ability want to 
understand the mathematical structure of the problem. They are not only interested in individual 
variables, but also in the relationships between different variables. Children with this ability have a 
need or desire to understand the mathematical structure of the problem and to discover relationships 
available to connect these relationships. Children who lack this ability often work unsystematically. 
They mainly utilize the mathematical connections they already know, even if the connection to the 
actual problem may be weak. 

2. Processing mathematical information 

The second group contains six subdomains, a-f; of these, a, b, d and f are accounted for below. 

“2a. The ability for logical thought in the sphere of quantitative and spatial relationships, number and 
letter symbols; the ability to think in mathematical symbols” (Krutetskii, 1976, p. 350) 

This is the ability to think logically and to understand mathematical symbols. Children with this 
ability think logically—for example, they easily identify a common principle in a series of numbers 
or pictures (Vilkomir & O’Donoghue, 2009)—and they have no problem understanding and working 
with mathematical symbols. 

“2b. The ability for rapid and broad generalization of mathematical objects, relations, and operations” 
(Krutetskii, 1976, p 350) 

The ability to generalize mathematically materials can be viewed in two ways: 1. The pupil can apply 
a known general concept to a specific case, that is, based on a known general concept, the pupil can 
propose a concrete case that applies in the given situation; 2. Based on a concrete case, the pupil can 
rapidly extrapolate to a general formula. Krutetskii makes a distinction between the pupil using an 
already-known generalization and deducing a new generalization. When using the term rapid, he is 
not primarily referring to time, but rather to the number of concrete examples a pupil needs before he 
or she can deduce or apply a general relationship (Krutetskii, 1976). 

“2d. Flexibility of mental process in mathematical activity” (Krutetskii, 1976, p. 350) 

The is the ability to have a flexible mind-set. Children with this ability are not limited by only using 
known methods. They do not necessarily try to apply a known method to the problem. The important 
thing for these children is the search for solutions, and they easily change strategies. 

“2f. The ability for rapid and free reconstruction of the direction of a mental process, switching from 
a direct to a reverse train of thought (reversibility of the mental process in mathematical reasoning)” 
(Krutetskii, 1976, p. 350) 

The is the ability to recognize and work with reverse problems. Children with this ability easily solve 
a reverse problem without any special instructions. They quickly identify it as the opposite of what 
they had just solved, and it is not difficult for them to switch between a direct and a reverse way of 
thinking. Given the equation 12/3=4, an example of a reverse problem would be 4×3 = 12. 
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Method 
For this paper, we use empirical data from a previous study (Mellroth, 2009). Data consists of audio 
recordings, field notes, and the pupil’s written solutions from six 50-minute-long problem-solving 
sessions. During these meetings, the pupil worked with nine tasks, five of which were rich problems 
(Sheffield, 2003). Field notes and audio recordings were taken by one of the authors over a period of 
one semester. The pupil was a 10-year-old boy, “Marcus”, in his fourth year at a public primary 
school. The sessions were carried out during school hours, at the school. Each session comprised 
either one or two tasks. Sessions were led by one of the authors, and only the pupil and the researcher 
were present during the sessions. The sessions had the following format: The task was introduced 
both orally and on paper, and the pupil was instructed to think aloud. In general, no specific feedback 
was given to the pupil during the sessions, but in some instances feedback of the following nature 
was given: “This isn’t completely correct, can you try to explain it in a different way?” Sometimes 
encouraging statements, such as “you can continue in this way”, were made. The pupil was chosen 
because his teacher had identified him as potentially highly able in mathematics. In addition, 
Marcus’s problem-solving process clearly fulfils the criteria of MHAPs given by Krutetskii (1976), 
demonstrated below. Therefore, the case of Marcus is a good example that concretizes how teachers 
can notice mathematical potential. In advance of his participation, Marcus and his parents were 
informed about the study, the aim, and the methods, and the pseudonym Marcus was chosen by the 
boy. The study was performed following ethical recommendations for research. 

Here we show results of the analysis for one problem, the flowerbed. Analysis was carried out in the 
following way: A) a holistic overview of the whole solution process was written down, B) each of 
Krutetskii’s components (1, 2a-f, 3, and 4) was analysed separately, meaning that we sought examples 
of evidence for that specific component in the whole solution. This was repeated and discussed 
between the authors until we reached agreement. We first present the task, then Marcus’s solution 
process, and finally how we interpret the abilities to be concretized in Marcus’s solution process. 

The Flowerbed 

Dilan has a flowerbed. He wants to put paving stones around it. The flowerbed has four sides of the 
same length, each paving stone is the same size as the flowerbed (see left picture in Figure 1). 

1) How many paving stones does Dilan need to be able to encircle the whole flowerbed?

2) Dilan decides that he want to have two flowerbeds next to each other and put paving stones around
them in the same way (see right picture on in Figure 1).

How many paving stones are needed if he wants to have the following number of flowerbeds: 

3) 10? 4) 30? 5) 90?

6) If Dilan has 50 paving stones, how many flowerbeds can they be used to encircle?

7) If he has 79 paving stones, how many flowerbeds can they be used to encircle?

Figure 1: The flowerbed with surrounding paving stones 
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In this problem, hands-on material can be used, but eventually it will become impossible, or very time 
consuming, to build or draw a solution. To be able to completely solve the problem, the pupil must 
work in a structured way and find a connection between the number of paving stones and flowerbeds. 

Marcus’s problem-solving process 
Marcus very quickly grasped the structure of the flowerbed. After introduction of the problem, he 
immediately started to work on the solution; it was a rare quiet moment. However, he seldom did any 
writing, but he was thinking aloud and was encouraged to do so. His way of approaching the problems 
was similar in all the problem-solving sessions. The flowerbed consists of subtasks 1–7, and as soon 
as Marcus had finished one subtask, he was eager to continue with the next. 

Holistic description of the solution process 

When working with the problem, Marcus quickly gave correct answers on the first three subtasks. 
After answering the third subtask, he was asked to explain his thinking. 

5 Marcus: Well, it is 10 flowerbeds, and 2 on each side, that equals 12, times 2, equals 24. 
Then there are also 2 on the edges, so 26. 

The researcher continued to give Marcus subtasks 4 and 5, and he answered correctly and quickly, 
without making notes. Thereafter, subtask 6 was given. Marcus thought a little bit more, but less than 
three minutes. His answer, 24 flowerbeds, was incorrect. The researcher asked him to explain his 
thinking. At this point, there was an illustrating picture on the table (see left image in Figure 2). 

 
Figure 2: Illustration of the problem, produced during the solution process 

6 Marcus: First I took away those 2 [he points to the 2 dark grey side pieces in the middle 
image of Figure 2], then it is 48, then divide by 2, equals 24. So, 24 flowerbeds. 

The correct answer is 22 flowerbeds. The researcher drew the image on the right in Figure 2 to show 
her thought process. 

7 Researcher: It is possible to count backwards to check if the calculation is correct. Let’s try. 

The researcher explained her thought process to explore if Marcus was able to change his thinking. 
Marcus was convinced his solution was correct, but he followed willingly and without difficulty. 

8 Researcher: I am thinking: Double the number of paving stones going out from the number of 
flowerbeds, then add 6, since it will always be 6 on the sides. Then we can check. 
If we have 24 flowerbeds, how many paving stones are needed? First we will have 
2 rows of paving stones… 

Marcus interrupts the researcher. 

9 Marcus: It must be 22 flowerbeds. 

The researcher and Marcus together checked the answer, based on his way of thinking, as shown in 
the middle image in Figure 2. The length of the rows with paving stones equals 22 plus 2, and two of 
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these is 2∙24=48. Finally, add the 2 paving stones on the sides to get 50 in total. Correct. The allotted 
time for the problem-solving session was running out; only 5 minutes remained, and Marcus looked 
tired, so the researcher suggested ending the session. But Marcus noticed that one more subtask 
remained, number 7, and he wanted to also do it before he joined his regular class, which was on 
break. The researcher told him that only 5 minutes remained; Marcus replied, 

10 Marcus: I can do it! 

11 Marcus: 36 flowerbeds and 1 paving stone is left over. 

12 Researcher: How did you get that? 

13 Marcus: First I searched for something that was reasonable. 

Marcus gave his answer after thinking for 2 minutes. In the discussion, he explained that he tried 31 
and 34 flowerbeds and then concluded that it must be 36 flowerbeds and that one paving stone would 
be left over. 

Interpretations of how the abilities are concretized 
With the goal of concretizing for teachers how MHAPs may show some of the abilities defined by 
Krutetskii (1976), we here describe the process and criteria we used to tie Marcus’s problem-solving 
process to specific abilities, as describes in the section about Krutetskii’s abilities. 

1a. The ability for formalized perception of mathematical … 

Marcus seemed to quickly grasp the problem statement, as is shown by his rapid and correct responses 
to the first three subtasks, where he did not explain how he came to the correct answer. However, 
when he explained his thinking—“ Well, it is 10 flowerbeds, and 2 on each side, that equals 12, times 
2, equals 24. Then there are also 2 on the edges, so 26” — he showed that he had grasped the 
mathematical structure of the problem.  

What further strengthens the conclusion that he has an ability to see the mathematical structure is that 
he showed no signs of unsystematically searching for solutions, that is, he did not randomly guess. 

2a. The ability for logical thought … 

In his solution there is no evidence of the use of mathematical symbols other than numbers and the 
word addition. What evidence for logical thought can be seen? We claim that his rapid answers in 
subtasks 1–3, together with the explanation in subtask 3, transcript row 5, shows evidence of logical 
deduction, as he identified a common principle from the two given figures. In addition, when the 
problem was turned around in subtask 6, where the number of paving stones is given instead of the 
number of flowerbeds, he had no difficulty understanding the problem. Furthermore, he also deduced, 
without hesitation, that there is a paving stone left over in subtask 7 (see transcript row 11). 

2b. The ability for rapid and broad generalization … 

Marcus showed proof of this ability when he explained his thinking on subtask 3 (transcript row 5). 
On his own, he deduced a general way to solve the problem. Thereafter, through his work on subtasks 
6 and 7, it can be deduced that he used the general solution proposed by the researcher (transcript row 
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8), that is, after a single case, he adapted the given generalisation to new cases (transcript rows 9, 11, 
and 13). 

2d. Flexibility of mental process in mathematical activity 

When Marcus rapidly adopted the alternative strategy the researcher suggested for arriving at the 
solution (transcript rows 8 and 9), he showed that he can easily change strategies. 

2f. The ability for rapid and free reconstruction … 

Subtask 6 reverses the problem. First Marcus gave the wrong answer. However, when he described 
his thinking (transcript row 6), it became clear that he did understand the question and that he had a 
strategy to solve it. Therefore, we claim that he quickly identified the reverse problem. 

Discussion and implications 
We strongly believe that teachers can notice pupils’ mathematical potential when they are supported 
by clear explanations in conjunction with examples of how MHAPs can show their mathematical 
abilities. We also argue that this is a matter of schools´ responsibilities since MHAPs are present in 
most classes, pupils from homes with high socio-economic statuses will manage well, but MHAPs 
can origin from all homes, and hence it´s important that the school as organization have knowledge 
on how to support these pupils. Using previous research as a basis, we have proposed rich descriptions 
and provided and commented on examples of a MHAP’s problem-solving process.”. We have thereby 
concretized what teachers can pay attention to in their pupils’ problem-solving processes in order to 
identify those who may be highly able in mathematics.  

To continue the work begun in this paper, the next step is to conduct a study to explore if our 
descriptions—or ones similar to them—give teachers support in noticing MHAPs. We have designed 
and piloted a workshop with this aim.  In it, teachers are asked to evaluate pupils’ oral and/or written 
solutions, to note if they find indicators of a certain ability (based on those proposed by Krutetskii), 
and if they do find them, to rate how strong the indicators are. In addition, they are asked to grade, 
on a scale of 0 to 2, how easy it is to detect the ability based on the pupils’ solutions. However, to 
show its value the workshop must be validated with a larger number of teachers. 

To be able to notice MHAPs, teachers need support based on research. This support can be 
orchestrated, for example, through professional development programmes (Shayshon et al., 2014). 
Observing mathematical abilities by using Krutetskii’s (1976) framework is likely not the only way 
teachers can notice MHAPs. For example, as Singer et al. (2015) wrote, allowing pupils to work with 
problem modification is also a suitable way to notice MHAPs, who generally work in a structured 
manner, changing one variable at a time to control how changes may affect the problem. The results 
reported by Singer et al. (2015) also provide important knowledge for teachers to use in their 
endeavours to notice MHAPs. 

Naturally, the support teachers give to pupils after they have noticed their mathematical potential is 
important, for example to prevent boredom, which can be a result of too little challenge (Liljedahl, 
2017). Of special importance is teachers’ ability to notice and support mathematical potential in 
underprivileged pupils, for example those from disadvantaged socioeconomic backgrounds (Schnell 
& Prediger, 2017). One way for teachers to support the learning of all pupils, including MHAPs, is 
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to use rich problems (Nolte & Pamperien, 2017; Sheffield, 2003). Pupils have different learning 
needs; some require more help to understand a concept or problem, while others need complex tasks 
to develop their learning (Sheffield, 2003). It is therefore important that research is conducted with 
the aim of giving teachers support on how to differentiate teaching in the regular classroom. To 
develop pupils’ learning according to their potential is, of course, the main goal of teaching. To do 
this for MHAPs, however, the first step is to help teachers notice them (Shayshon et al., 2014). 
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Whereas other studies have applied positioning theory to analyses of teaching and learning 
mathematics, this paper takes a practice-based approach to unpack what positioning in mathematics 
teaching might entail. From analysis of a shared video where a teacher leads a mathematical 
discussion of the naming of a fraction on the number line, we unpack the work of continually 
balancing attention to the mathematical content with positioning of students in their relation to each 
other, to the teacher, and to the mathematical content.  

Keywords: Mathematics teaching, work of teaching, positioning, intentionality. 

Introduction 
There is agreement in the field of mathematics education that a special knowledge of mathematics is 
required to teach well. Numerous studies have investigated the nature and composition of this 
knowledge, how it can be developed and improved, and whether and how it influences student 
learning and the quality of teaching (Hoover, Mosvold, Ball, & Lai, 2016). Studies have investigated 
how much and what mathematical knowledge teachers need to know, what teachers should know, or 
what knowledge mathematics teachers use in teaching. Ball (2017) suggests that our field should shift 
attention from the mathematics teachers need to know towards the entailments of the special 
mathematical work of teaching. She thereby calls for more attention to the knowing and doing that is 
embedded in teaching. To illustrate what this might look like, she analyzes a record of practice where 
the teacher (Ball) calls on an African American girl to name a fraction on the number line and then 
facilitates a mathematical discussion around this. From her analysis, Ball (2017) identifies, names, 
and unpacks the special mathematical work of teaching. One aspect of this work is attending to 
positioning of students and their mathematical identities. In the present paper, we analyze the same 
data to further unpack what positioning might entail in mathematics teaching. 

Conceptual background 
The idea of positioning is not new. To position someone is to place them in a certain location or 
disposition, or to make a certain location or disposition available. Positioning can refer to placement 
of objects, but it can also refer to the relation, rank or standing of one person relative to another 
(Oxford English Dictionary). The latter is in focus here. Positioning theory has developed from social 
psychology and linguistics; social psychology contributes with theories of roles and subjectivity, 
whereas the idea of a discursive production of selves comes from linguistics (Davies & Harré, 1990). 
Positioning theory has been applied in mathematics education for some years, but the importation of 
the theory from one field to another is not void of challenges (Herbel-Eisenmann, Wagner, Johnson, 
Suh, & Figueras, 2015). We will examine some of these challenges in our concluding discussion. 

Thematic Working Group 19

Proceedings of CERME11 3696



In this paper, we have deliberately decided to start with analysis of practice rather than with theory, 
because we do not take it for granted that a theory developed to describe interpersonal relations in 
social psychology is relevant to studies of mathematics teaching. Our practice-based approach targets 
positioning in teaching, and three important assumptions underlie this approach. First, we consider 
teaching to be a professional practice. Describing a practice as professional implies some kind of 
consensus among professionals in terms of specifying the given practice. Currently, no such 
consensus exists, but we base our work on plausible conceptions of practice that practitioners might 
realistically agree about (Hoover, Mosvold, & Fauskanger, 2014). To this end, engaging in analysis 
of shared data of mathematics teaching is particularly promising. Second, we follow Ball (2017) when 
we describe teaching as “work”. This implies an emphasis on the effortful and dynamic nature of 
teaching. It also implies a shift in focus from characterizing teaching as actions of teachers to 
exploring the work that is to be done in teaching, and the entailments of this work. Third, we consider 
teaching to be instructional interactions between teacher and students around a particular content, 
within an environment (Cohen, Raudenbush, & Ball, 2003).  

Data material and analytic approach 
To explore positioning in mathematics teaching, we analyze one of the shared datasets that has been 
prepared for use in TWG19. This dataset shows a group of students (age 9–11), who have worked 
individually with a problem of naming fractions on a number line. Ball (2017) explains that the class 
has just shifted from naming fractions with area models to identifying fractions on the number line. 
The students have written their answers in their notebooks, and the teacher has been walking around, 
noticing the students’ range of ideas and explanations. 

Based on our conception of teaching, our analysis is grounded in three basic questions: How does the 
teacher position particular students? How does the teacher position herself? How does the teacher 
position the mathematical content? When approaching these questions, we carefully consider 
instances of the teacher’s verbal as well as non-verbal communication that constitute evidence of 
positioning. We also ask about possible intentions behind making the identified positions available. 

Analysis 
As a first step in our analysis, we divided the video into thematic sequences. We identified six 
thematic sequences, and our analysis below is organized around these.  

Sequence 1: Positioning Aniyah in the role of teacher 

Teacher:      (standing near the back of the room) Who would like to try to explain what you 
think the answer is? And show us your reasoning by coming up to the board? Who’d 
like to come up to the board and try to tell– And you know, it might not be right. 
That’s okay because we’re learning something new. I’d like someone to come up 
and sort of be the teacher and explain how you are thinking about it. Who’d like to 
try that this morning? (Several children raise their hands to volunteer.) Okay, 
Aniyah? (Aniyah, a Black girl, gets up from her seat and walks to the whiteboard 
at the front of the classroom.) 
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Before selecting Aniyah to come up, the teacher provides some important signals to the class. First, 
she signals that she is more interested in their explanations and reasoning than in their answer. To 
emphasize this characterization of the available position, she states that “it might not be right,” and 
that this is okay. Furthermore, she explains that the reason why it is okay to present an incorrect 
answer is that they are now in the process of learning something new, and they are therefore not 
expected to know this already. She thereby indicates that students can successfully participate in the 
discussion without having the correct answer. Second, she describes the available role as one in which 
a student is going to “be the teacher.” When a student is invited to take the role of teacher, this implies 
that the teacher will temporarily step out of this role herself.  

Several students volunteer to present on the board, but the teacher decides to call on Aniyah. We 
assume that this is an intentional act. The teacher might have decided that Aniyah’s solution is 
mathematically useful for the learning trajectory of the class. Another possibility is that the teacher 
keeps an eye out for students who rarely present at the board. Another possibility is that the choice is 
related to Aniyah’s racial identity. Aniyah is one of 22 African American students in class, and the 
teacher might attempt to disrupt systemic patterns of racism and inequity by calling on her — as 
indicated by Ball (2017). The first possible reason for calling on Aniyah refers to the mathematical 
quality of her reasoning, the second refers to her identity and role in the class, whereas the third relates 
to pressing issues in the environment outside the class. Balancing consideration for all three aspects 
is a challenge that is embedded in the mathematical work of teaching.  

Sequence 2: Positioning students in relation to social norms of presenting mathematical ideas 

Teacher: When someone’s presenting at the board, what should you be doing? 

Students: Looking at them. 

Teacher: Looking at that person—uh-huh. 

Aniyah: (to the teacher) You want me to write it? 

Teacher: (to Aniyah) You’re trying to mark what you think this number is and explain how 
you figured it out. (to class) Listen closely and see what you think about her 
reasoning and her answer. (Teacher moves to back of the classroom; Aniyah is in 
front at the whiteboard. Aniyah writes 1/7 by the orange line). 

In this second sequence, the teacher provides two additional signals about the norms of participation 
when someone is presenting at the board. The teacher first emphasizes that the students should always 
look at whoever is presenting. Understanding what others say in a discussion is necessary to 
productively contribute, and the other students have to pay careful attention to Aniyah’s presentation 
in order to understand her thinking. Paying attention without looking is hard. The students seem to 
know how to behave when someone presents, but the teacher’s question emphasizes this norm of 
participation. After telling Aniyah what to do, the teacher asks the class to listen and see what they 
think about Aniyah’s reasoning and answer. This explicit emphasis on the norms of participation 
signals a certain position that the students should take while interacting with each other, but it also 
signals a positioning of the students in relation to the mathematical content. The students in class are 
directed to take a position of someone who listens carefully to make sure they understand Aniyah’s 
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reasoning, and they are asked to critically consider what they think about the reasoning as well as the 
answer. This position is different from a more traditional pattern in recitation, where the students 
answer the teacher’s question and then receive feedback.  

Sequence 3: Positioning Toni by praising her question 

Aniyah: I put one-seventh because there’s– 

Toni:  Did she say one-seventh? (An African American girl, sitting close to where Aniyah 
is standing, asks quietly, almost to herself) 

Aniyah: Yeah (Hearing her question, Aniyah turns toward her and nods). Because there’s 
seven equal parts, like one, two, three, four, five, six, and then seven (Demonstrates 
using her fingers spread to measure the intervals to count the parts on the number 
line). 

Teacher:  (still standing at the back, addresses the class) Before you agree or disagree, I want 
you to ask questions if there’s something you don’t understand about what she did. 
No agreeing and disagreeing. Just—all you can do right now is ask Aniyah 
questions. Who has a question for her? Okay, Toni, what’s your question for her? 

Toni: Why did — (looks across at children opposite her and laughs, twisting her braid on 
top of her head) 

Teacher: (to Toni) Go ahead, it’s your turn. 

Toni: (to Aniyah) Why did you pick one-seventh? (Toni giggles, twisting her braid.) 

Dante: (laughing across the room at Toni) You did not! 

Teacher: Let’s listen to her answer now. (to Toni) That was a very good question. (to Aniyah) 
Can you show us again how you figured that– why you decided one-seventh? 

Aniyah: First, I thought it might be seven because there’s seven equal parts. 

Teacher: Did you write one-seventh? I can’t see very well from here. 

Aniyah: Uh-huh. Yes. 

This is the crux of the episode, and there are at least three decisive moments that require careful 
balancing of considerations for the interactions between students and with the mathematical content. 

First, there is the moment when Toni interrupts with her first question. With a low voice, she asks: 
“Did she say one-seventh?” The teacher could have decided to tell Toni to be quiet when someone 
else is presenting. Instead, she decides to wait. By doing that, the teacher gives Aniyah the necessary 
space to stay in the role of a teacher and respond to Toni’s question. We notice how Toni’s question 
triggers Aniyah to continue her reasoning and show how the unit interval must be partitioned in equal 
parts by using her fingers spread to measure the intervals to count the parts on the number line.  

Second, we notice how and when the teacher decides to interact. After Aniyah has given her 
explanation in response to Toni’s first question, the teacher remains in the back of the classroom. 
This highlights her intention to remain in the role of facilitator, and thereby maintains the positioning 
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of Aniyah as the teacher. The teacher positions the children to participate in the discussion, 
establishing an open atmosphere by guiding the children to pose clarifying questions and not agree 
or disagree in this initial phase of the discussion. She also limits the space of acceptable interactions 
to maintain the positioning of students in relation to the mathematical content that we described 
above. After having reminded the children about the social norms and rules, the teacher encourages 
Toni to pose her question to Aniyah. By allowing Toni to pose her question instead of rebuking her 
for interrupting Aniyah, the teacher allows Toni to take the role of a productive contributor in the 
mathematical discussion that is unfolding.  

Third, it is interesting to notice how the teacher reacts to Toni’s question. She could have commented 
on Toni’s laughter and pointing, and thereby positioned her as disrupting the discussion. Instead, the 
teacher praises her question. This decision influences the ongoing positioning of Toni. Her question 
is seen as an important mathematical question, and the teacher’s move emphasizes the importance of 
asking questions in mathematics, which represents an indirect positioning of the mathematics. By 
repeating and rephrasing it to Aniyah, the teacher also puts Aniyah in a position to further develop 
her explanation. The teacher’s question — “Can you show us again?” — indicates that she wants 
Aniyah to relate her answer to the figure on the board. Aniyah repeats that there are seven equal parts, 
illustrating the distance from zero for a given point on the number line.  

Sequence 4: Positioning of Lakeya and repositioning of Aniyah 

Teacher: (The teacher nods affirmatively, and turns to the class) Okay, any more questions 
for Aniyah? In a moment, we’re going to talk about what you think about her 
answer, but first, are there any more questions where you’re not sure what she said, 
or you’d like to hear it again or something like that? Lakeya? 

Lakeya: (looks back at the teacher at the back of the room) If you start at the— 

Teacher: (gestures toward Aniyah) Talk to her, please. 

Lakeya: Oh! (turns toward Aniyah) If you start at the zero, how did you get one seventh? 

Aniyah: Well, I wasn’t sure it was one-seventh, but first, I thought that the seven equal parts. 

The teacher then refrains from evaluating Aniyah’s explanation and thereby enables Aniyah to stay 
in the role of teacher. The teacher clarifies that they will soon discuss Aniyah’s answer, but 
encourages more children to participate by posing clarifying questions. This comment indicates that 
understanding an argument is crucial in mathematics, and it thereby positions the mathematics in the 
discussion. This gives Lakeya an opportunity to ask a question and contribute to the discussion. We 
notice how the positioning of Lakeya also constitutes a repositioning of Aniyah. By asking Lakeya 
to address Aniyah and not herself, the teacher affirms Aniyah’s position as teacher in this context. 
The teacher gives Aniyah the responsibility and agency, and Aniyah gets the opportunity to explain 
her thinking again.  

In this sequence, the teacher could have commented that Toni has just asked a similar question, or 
that Aniyah has already explained this. Instead, the teacher appears to notice a difference in the 
questions of Toni and Lakeya. Toni asked why Aniyah picked “one SEVENTH”, which indicates an 
emphasis on the whole. Lakeya asked how she got “ONE seventh”, indicating a focus on the parts. 
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By deciding to let Aniyah respond, the teacher enables Lakeya to remain in the position of a 
productive contributor to the discussion, and she allows Aniyah to stay in the role as a teacher. Again, 
we see how the positioning of one student constitutes a repositioning of another, and we see how the 
teacher is challenged to balance attention to the positioning of students with attention to the content.  

Sequence 5: Balancing positioning of Dante and Aniyah 

Teacher: Okay, would some– You’d like to ask another question, Dante? 

Dante: Yeah. 

Teacher: Yes, what? 

Dante: So, if it’s at the zero, how did you know that if like if I took it and put it at the– 
Hold on. Which line is– What if it didn’t like– What if the orange line wasn’t there, 
and you had to put it where the one is? What if the orange line wasn’t there? And 
how would you still know it was one-seventh to put it where the orange line is now? 

Aniyah: (pauses) I don’t know. 

Teacher: (pauses) Okay. Does everyone understand how Aniyah was thinking? 

Students: Yes. 

Following Aniyah’s response to Lakeya, Dante is given the opportunity to contribute. We observe 
that Dante relates Aniyah’s answer to the orange line in the figure. His three repeated “What if”-
statements indicate that Dante not only asks questions, but he also attempts to make sense of Aniyah’s 
answer and extend their mathematical thinking about the mathematical content. Aniyah does not 
know how to answer Dante’s questions. The teacher could have decided to praise Dante’s 
contribution, but this might have been interpreted as a repositioning of Aniyah. When she decides not 
to comment, she gives both Dante and Aniyah the opportunity to remain in their positions as 
contributors to the discussion. When the teacher asks if they now understand Aniyah’s thinking, this 
again represents positioning of the mathematics by emphasizing understanding of an argument, and 
by indicating that mathematics is the collective thinking of people. The supportive response from the 
class might be interpreted to indicate that Dante has made his classmates aware of the connection 
between Aniyah’s answer one-seventh and the position on the number line. The response from the 
class might thus serve as an implicit positioning of Dante. The positioning of Dante could also involve 
a repositioning of Aniyah, indicating that her idea and explanation could be a starting point for a more 
focused discussion that follows.    

Sequence 6: Positioning of Aniyah by allowing her to stay or going out of the role as teacher 

Teacher: Yes? Okay. (to Aniyah) You can sit down now. We’re going to try to get people to 
comment. Do you want to take comments up there? Would you like to stand there 
and take the comments, or do you want to sit down and listen to the discussion? 
What would you prefer? 

Aniyah: Sit down. 

Teacher: Sit– You’d like to sit down? Okay. 
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In this last sequence, the teacher decides to not simply ask Aniyah to sit down. Instead, she gives 
Aniyah the choice to stay in her role as a teacher and take comments from the board, or to sit down 
and listen to the discussion. This choice might be seen as an implicit positioning of Aniyah. 

Concluding discussion 
Earlier in our paper, we mentioned how it might be challenging to import positioning theory for use 
in mathematics education (Herbel-Eisenmann et al., 2015), and how we deliberately decided to avoid 
using this theory and take a practice-based approach instead. We will now make two points that 
elaborate on some of these challenges and point to some potential contributions of our analysis. The 
first point relates to how positioning in mathematics teaching involves a careful balancing of multiple 
considerations regarding the interaction between students and teacher around a particular content. 
The second relates to the challenges of identifying positionings in analysis of teaching.  

Whereas studies that use positioning theory in mathematics education tend to investigate how 
positionings might influence the development of students’ mathematical identities (Herbel-
Eisenmann et al., 2015), our analysis has identified various challenges that might be involved in the 
work of positioning students and the mathematical content. Our analysis indicates that positioning is 
tightly integrated with teaching. Teaching can be seen as interactions between teacher and students 
around a particular content with an ever-present influence with the environment (Cohen et al., 2003), 
and positioning in teaching is tightly connected with these instructional interactions. The challenges 
of positioning in mathematics teaching is thus rarely about singular and easily identifiable 
positionings. Positioning of one student tends to imply repositioning of another. The teacher is often 
challenged to make quick decisions that influence positioning of students, while simultaneously 
balancing this with careful attention to the mathematical content. In positioning the students — both 
in relation to each other, to the teacher, and to the mathematical content — the teacher has to balance 
multiple considerations. We suggest that the complexity of this balancing is at the heart of the work 
of teaching; this balancing defines the work that has to be done by the teacher. When the teacher 
invited Aniyah to present her thinking at the board, she had to navigate concerns for Aniyah and her 
developing mathematical identity, the development of other students, and to the class as a whole. At 
the same time, the teacher had to make decisions about her own position and how to lead the 
mathematical discussion without removing Aniyah from her position, and without placing any of the 
students in a negative position. The teacher also had to balance the positioning of the students and 
herself in relation to the students while paying careful attention to the mathematical content being 
discussed, and she had to make decisions about how to position the students and herself in relation to 
the mathematical content. We observe how establishing and maintaining norms of participation 
played an important role here, and we suggest that establishing and maintaining norms is also a 
deliberate and challenging work that is tightly related to positioning in teaching.  

In their discussion of how positioning theory has been used in mathematics education, Herbel-
Eisenmann et al. (2015) also notice how positionings tend to be identified in a singular way. Although 
the focus of our study was not on identifying positionings, but rather to unpack some of the challenges 
of positioning in mathematics teaching, our analysis indicates that the identification of positionings 
in mathematics teaching is complex. As observers, we rarely know for sure how a teacher intended 
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to position students in a particular moment of interaction, and we rarely know how students 
experienced being positioned. For instance, Aniyah might have experienced being positioned by the 
teacher in a way that differs from what the teacher’s intentions were, and Dante, Lakeya, and Toni 
might have yet other interpretations of how Aniyah was positioned. In addition, the students are 
positioned (or experienced being positioned) in relation to the teacher, to each other, and to the 
mathematical content.  

In her discussion of the special mathematical work of teaching, Ball (2017) identified positioning as 
an integral part of this work. In the present paper, we have further unpacked entailments of positioning 
in mathematics teaching, with a particular emphasis on the challenges of balancing positioning of 
students while at the same time retaining careful attention to the mathematical content. Although we 
have only analyzed one example of a slice of the mathematical work of teaching, we suggest that this 
balancing of positioning students in relation to the mathematical content is at the core of mathematics 
teaching. However, further studies are needed to investigate what this balancing might entail in 
different parts of the work of teaching, with different content, and at different grade levels. Further 
efforts are also needed to investigate ways of studying the intentionality and interpretation that is 
involved in this work.     
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This paper presents initial findings from the project PRAQTAL: PRActices for Quality Teaching. 
Our project focuses on conceptualizing and identifying teaching practices for quality teaching of 
secondary school mathematics and physics. This work is driven by the understanding that to 
document, conceptualize, analyze and promote quality teaching, we need to constitute a discourse 
which articulates the diverse practices of teachers, in their multiple resolutions, and link them to 
educational theories on one hand and specific instruments on the other. For this purpose, we 
adopted Commognition as a conceptual framework. Here, we present our working definition of a 
teaching practice and our criteria for quality teaching practices. We discuss the procedures for 
identifying and documenting practices and their representation and illustrate our arguments with 
an example from the project’s emerging database. 

Keywords: Teaching practices, quality teaching, routines, secondary school mathematics. 

Introduction 
This paper presents initial findings from project PRAQTAL: PRActices for Quality Teaching. 
PRAQTAL focuses on conceptualizing and identifying practices for quality teaching of secondary 
school mathematics and physics. Why focus on teaching practices? Our team arrived at the need to 
explicate practice from two seemingly distinct paths: the first coming from an attempt to improve a 
teacher-education program from more “reflective” and “principles” based towards “practice” based. 
We noticed that the task of shifting the preservice teachers’ traditional-teacher-centered approach 
towards more reform-student-centered approach (Gregg, 1995) calls for explicit discussion and 
explication of practices. The second path originated in a series of projects aimed at promoting 
innovative and effective use of technologies in mathematics education. One of the core observations 
of these projects was the gap between theories of teaching and learning, and the actions 
practitioners took in the classroom. Following the traditions of educational design research (Mor & 
Winters, 2007) and learning design (Mor, Craft & Hernández-Leo, 2013), these projects identified 
this gap with a need for articulating and sharing design knowledge: the knowledge of solving 
practical challenges, or affecting change, by translating abstract theory into action, and explaining 
action by reference to theory. The initial account of practitioner experience was expressed in the 
form of design narratives. The derived design knowledge was captured in design patterns 
(Warburton & Mor, 2015): statements of the form “in context X, you are likely to encounter the 
challenge Y, and can address it using method Z”. The aim of the pedagogical design patterns 
community is to use this structure to articulate and share valuable elements of educational practice.  
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Teaching practices  
The need to explicate practice, specifically for promoting teaching programs, resulted in the 
flourishing of many projects that aim at identifying and teaching teaching-practices (Grossman, 
2018). Some projects were content specific, some focus on specific grade levels, others are general, 
but most grew from the needs of training programs for preparing teachers to practice. A prime 
example is the University of Michigan Teaching Works project (http://www.teachingworks.org/) 
that identified a set of high-leverage instructional practices to prepare beginning teachers “who are 
skillful at connecting with and helping their students develop.” Several additional projects are 
discussed in Grossman’s book Teaching core practices in teacher education (2018). McDonald et 
al. (2013) identify a major shift in teacher training: from a focus on the knowledge required for 
teaching to a greater attention to the core practices of teaching. This move towards core practices, 
argue McDonald et al, reflects an attempt to connect the development of knowledge of teaching 
with the capacity to enact this knowledge in the classroom. McDonald et al. review the shifts in 
pedagogical approaches in teacher training over the last half century, corresponding to the change in 
dominant perspective on teaching and learning. From an “acquisition” model of learning, to 
“participationist” model of learning. However, Grossman and McDonald (2008) warn us that the 
field of research on teaching lacks a structured method and vocabulary for describing, analysing, 
evaluating and improving practices of teaching. 

Various definitions are offered for teaching-practices. One such definition is offered by Windschitl 
(2016), who defines teaching practices as the recurring professional work devoted to planning, 
enacting and reflecting on instruction. This definition emphasizes the role of teaching practices 
prior, during and after instruction in class. According to Windschitl, the purpose of teaching 
practices is to overcome the divide between teacher instruction and student learning. The CPC 
group (Core Practices Consortium) whose aim is to develop shared understanding and common 
language regarding what it takes to prepare teachers for practice, to improve learning opportunities 
available to all students. They have identified characteristics that most sets of core-practices adhere 
to: (1) high frequency in teaching; (2) practices that teachers can enact in classroom across different 
curricula  or instructional approach; (3) practices that allow teachers to learn more about students 
and about teaching; (4) practices that preserve the integrity and complexity of teaching; and (5) 
practices that are research-based and have the potential to improve student achievement (Grossman, 
Hammerness and McDonald, 2009).    

Lampert (2010) addresses the difference between teaching practices and the practice of teaching. 
The practice of teaching involves adopting the identity of a teacher, doing what teachers do and 
believing what teachers believe in. This raises the question whether a practice can be learned in 
isolation or whether it requires participation in collective activity. 

For the purpose of our project we need a working definition of teaching-practice and quality 
teaching-practice. To this end, we adopt the socio-cultural commognitive conceptual framework 
that conceptualizes mathematics (and any other discipline) as a special type of communication or 
discourse, including unique ways of saying and doing (Sfard, 2008), and learning mathematics as 
changes in the learner’s mathematics discourse. Adopting the commognitive conceptual framework, 
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we identify teaching-practice with a teaching-routine. Let us explain: according to our initial 
understanding, teaching practice is a recognizable pattern of actions used by teachers in a given 
context to achieve specified aims. This definition includes three constituents: pattern of action, 
context and aims. By the term “pattern of actions” we refer to actions that are repeated in situations 
that the performer would consider as similar. The assignment of a practice to a given context is 
crucial. Practices are inherently situated in material, social and intentional environments, and only 
make sense within these environments. Finally, practices are not arbitrary, they serve a goal. 
Identifying practices with routines will address those three requirements. Following Lavie, Steiner 
and Sfard (2019), we define a teaching-practice similar to their definition of routines: the task the 
teacher saw herself performing together with the procedure she executed to perform the task (p. 161). 
Such task could be having to address a student's idea that she had not thought of earlier, or eliciting 
students’ thinking.  

Thus, our goals in project PRAQTAL are to identify typical, interesting or challenging tasks that the 
teachers set themselves before, during and after a lesson, and possible related teaching-practices. 
That is, for each task we identify the various procedures that teachers chose to execute to perform 
the task. The plurality is used here to denote that our point of departure is that for each task, 
different teachers may consider different procedures to perform.  

The advantage of this definition is that a task and therefore also a routine are recursive structures: a 
task could be parted to sub-tasks and a routine to sub-routines. This recursive structure is apparent 
in Table 1. This conceptualization of teaching-practices allows us to view teaching from different 
“zoom-ins” or different granularities: the highest level (left-most column in Table 1) provides us 
with the rational for everything that takes place in class. This is apparent with the highest meta-level 
of "providing students opportunity to become explorative participants in the mathematics 
discourse". At the other end, the procedure and empirical example (two right-most columns of 
Table 1), provide us detailed steps to follow and perform, with different levels of sub-tasks in 
between. This relates to one of the issues with which we were concerned early on - the question of 
the “granularity” of practices: is “pausing for 5 seconds after asking a question” a teaching practice? 
Is “leading a classroom discussion” one? The first seems too miniscule, the second too expansive. 
The answer we found is that practices are networked in a fractal manner (as alluded to in the project 
name): they are spread across a continuous space with granularity on one axis and generality on the 
other. Complex practices are composed of other smaller-size practices. This granularity is apparent 
by Table 1. So “pausing for 5 seconds…” could be written in the procedure column of Table 1 as a 
part of procedure for performing a “larger size” task, such as “eliciting students’ thinking”.  

Quality teaching and quality teaching-practices 
Now we are left with the task of defining what counts as a quality teaching-practice (QTP). 
Defining mathematics as a specific type of discourse with unique ways of saying and doing, and 
learning mathematics as becoming more central participants in the mathematics discourse (Sfard, 
2008), makes itself evident that QTP will be those that are most likely to prompt and support 
learners in participating in this discourse. Specifically, in the lessons we observed in our study and 
in literature, we identified three meta-tasks (or principles) that seem to underlay today's thinking 
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about mathematics teaching and seem to be shared by all mathematics teachers: (1) Provide students 
opportunities to become central participants in mathematics discourse; (2) Help students to develop 
a positive identity as mathematics learners; and (3) Encourage students to participate in equitable, 
egalitarian mathematical discourse. Therefore, our definition for quality-teaching-practice is a 
teaching-practice that a teacher would perform that is aligned with the above three meta-tasks. By 
the words “aligned with” we mean that the QTP supports at least two of those tasks, and does not 
violate any of those tasks. 

Sourcing, Documenting and Representing Practices 
Having considered the definition of a QTP, we set out to identify and articulate such objects. In this 
section we explain how we identify teaching-practices. Our identification of a teaching-practice 
includes identifying typical, challenging or interesting tasks that the teacher saw herself as having to 
perform, and then identifying various procedures that could be enacted to perform the task. Our two 
primary sources of data are video recordings of secondary-school mathematics lessons taught by 
expert-teachers, and literature. Each video-taped lesson is fully transcribed, and subtitles are added 
to the video. We also have video-taped discussions with the teachers about the lesson before and 
after the lesson, written documents about the lesson (such as the teacher’s lesson plan) and access to 
the teacher for any questions that we have during our analysis of the lesson. This is highly required 
as our analysis, which is based on identifying the tasks that the teacher considered herself facing 
when choosing to perform certain actions, is interpretative in nature. Having the teachers react to 
our findings allow us to learn more about teaching practices that often remain implicit.  

For each video-taped lesson, we focus on the teaching-actions performed by the teacher and ask:  
what is the task that the teacher may achieve by those actions? We return to the teachers and 
discuss our suggestions with them. We then ask whether the teaching-practice, that is, the task and 
the related procedure, supports at least two of the three meta-tasks defined earlier and does not 
violate any of them. If we find that the teaching-practice is repeated, either in a specific lesson or 
across different lessons, or if we find similar teaching-actions reported upon in the literature, we 
designate it as a candidate for quality-teaching-practice. We use Table 1 as our primary working-
tool. In Table 1, the leftmost “meta-task” column is fixed, and includes the three meat-tasks 
described earlier (in Table 1 we only present the first of the three meta-tasks in the sake of brevity). 
The other columns become more and more fixed as we continue with our analysis. Rubrics in the 
two right-most columns keep adding as we analyze lessons. We document the performed action(s) 
found in the analyzed lessons in the “empirical example” column of Table 1 and list the various 
tasks and sub-tasks that a teacher performing these actions could be facing.    

To clarify our methodology, an example from a 90-minute lesson on complex-numbers is 
demonstrated next. The lesson was taught in an advanced 12th grade mathematics classroom in an 
Israeli high-school. This lesson was the first on this topic. Before focusing on the specific example, 
we describe the lesson’s thematic structure: In this lesson the teacher faced the challenge of 
teaching a new mathematical object, a set of numbers that the students are not yet familiar with – 
the complex numbers. Her choice was to follow the idea that ontogenetic processes often follow 
phylogenetic ones, and walk her students through the historical development of those numbers, in 
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four steps: (1) realize that as long as you only have real numbers, there is a no such thing as square 
root from negative number, (2) conclude that a 3rd power polynomial has at least one root. (3) 
introduce the students to the suggestion of Girolamo Cardano which led to mathematics results 
including square roots of negative numbers, and then Rafael Bombeli’s suggestion of determining 
such entities as mathematics objects – numbers. (4) Show that the new entity “complex number” is 
a number by showing that it has similar attributes as the corresponding operations on rational and 
real numbers. Our example focuses solely on this fourth section, during which the following 
discussion took place [timestamp 57:50]: 

Teacher … so I see that this addition has different characteristics that are… the existence 
of a neutral element in addition 

Student but why do we need this? 

Teacher To know the structure. I want to convince you that this structure of the complex-
numbers justifies the name “numbers”. Ok, why do I call these numbers? In what 
sense are those numbers? I want to convince you that this behaves similarly to real 
numbers regarding operations.  

In this short excerpt, we find a student’s interesting question “why do we need this?” This question 
is interesting as it seemed from the video that the student was not having a difficulty with the 
mathematics procedures that the students and teacher were performing neither was she trying to say 
that “she is not interested”, or that “she does not want to study”. It seemed that she was trying to 
make sense of the reasons for which the teacher was showing that the set of complex numbers have 
different specific characteristics (thus – proving that it is a field). The teacher’s answer addresses 
the three meta-tasks: (1) Provide students opportunities to become participants in mathematics 
discourse: in mathematical discourse, when an object is introduced by expanding a familiar class 
(category), it is imperative to check its properties against the definition of the class to which it is 
supposed to belong, or by considering its characteristics (the object of number is not well defined in 
mathematics). More generally, when a new object is introduced or when an object is identified, this 
identification should adhere to the conditions of a mathematical definition. As was found in various 
studies, this is not a simple endeavor, and therefore requires explicit teaching:  

The discursive activity of defining seems to be pushed aside by our strong tendency to use words 
in a direct, unmediated manner, without accounting for this use and without monitoring its 
appropriateness. This inclination for unmediated, spontaneous use of words is the basic 
characteristic of human communication. ….  In schools, one’s spontaneous uses of words are 
supposed to be translated into scientific. For this modification to happen, the students will have 
to learn to suspend their spontaneous discursive decisions for the sake of reflective, meta-
discursively mediated choices of words. This, as was already observed, is a difficult thing to 
learn (Nachlieli & Sfard, 2003. pp. 3-355–3-356). 

(2) Enable students to develop a positive identity as mathematics learners: the teacher’s answer 
explicates her encouragement of students’ questions, of seeing the students as capable of 
participating in a challenging mathematics discussion.   
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(3) Encourage students to participate in egalitarian mathematical discourse: In the classroom,
when a teacher introduces an object, students often accept it as belonging to that class/category. It is
as if they accept the teacher as the primary authority. In this example the teacher encourages her
students to break away from the ritual participation of accepting a “truth” because it was stated by
the teacher, and leads them to an empowered, explorative participation, where they identify objects
by reference to a definition. This is apparent through the words “I want to convince you” – the
teacher stresses that she needs to do the work of convincing the students, that she does not expect
them to just accept whatever she tells them. She does not place herself as the primary authority.

The QTP that we elicited from this excerpt, based also on literature (e.g. Sfard & Nachlieli, 2003), 
includes the following task and practice: 

Task. When the teacher faces the task of introducing new objects, or of expanding a familiar class 
(category), the new object needs to be identified by checking its properties against the definition of 
the class, or by considering its characteristics.  

Procedure. 
1. The teacher raises the question, or invites the students to raise the question, or addresses the

question if arises: is this object compliant with the definition of the base class?

2. The teacher guides the students in independent verification of the new object against the
conditions of the definition.

3. The teacher ascertains that the students continue to work with the object as compliant with
the definition.

Meta-task Task Sub-task Procedure Empirical example 

1. The task
of providing
students
opportunity
to become
explorative
participants
in the
mathematics
discourse

1.1 modeling 
explorative 
mathematics 
discourse  
1.2 inviting 
students to 
participate in 
explorative 
math 
discourse  

1.1.1 
modeling 
objectified 
mathematics 
discourse  

When introducing a 
new object that 
belongs to a familiar 
class, the teacher 
explicates the need to 
check whether this 
object compliant with 
the definition of the 
base class, see steps 1-
3 in the procedure as 
described above.  

"I want to convince 
you that this structure 
of the complex-
numbers justifies the 
name "numbers"."  

Following, the teacher 
and students prove 
that the set of complex 
numbers are a field.  

Table 1: Recursive structure of a teaching-practice 

The design of a practice 
The mission of the PRAQTAL project is not just to identify and document quality teaching 
practices, but also to make those available to pre- and in-service teachers. For this purpose, we 
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develop an accessible presentation of practices which is communicative and appealing to 
practitioners. 

On our website, we present practices as tri-partite structure, described in Diagram 1.  

 

 

 

  

 

 

 

 

Diagram 1: The tri-partite structure of a teaching practice 

Discussion  
In this paper we presented the initial work of project PRAQTAL. We began this account with our 
personal paths into the domain of teaching practices, and noted how these resonated with a general 
trend in educational research and teacher training. Most of the work in the field focuses on deriving 
practice recommendations from theoretical frameworks and developing teacher training programs 
based on these. Our approach was to first move beyond the intuitive treatment of the core concepts, 
and systematically define the constructs of teaching-practice and quality-teaching-practice, based 
on the commognitive conceptual framework. We adopt commognition for three main purposes: (1) 
for the conceptualization of our basic terms, such as: “practice” and “quality teaching practice”, (2) 
to develop a methodology for discourse analysis of transcripts of mathematics lessons that helps us 
identify teaching practices, and (3) findings from commognitive studies serve as main literature 
from which we identify possible teaching practices that we then look for empirically (an example is 
teaching practices that promote meta-level learning, a commognitive idea that we continue to 
develop in the field of teaching practices. This is beyond the scope of this paper). On these 
foundations, we proceeded to formulate a methodology for sourcing, articulating and 
communicating practices. Our methodology blends discourse analysis and design based traditions in 
mathematics education research, and the standard of quality stems from a commognitive 
framework. We illustrate this methodology through an example. At this stage, we have the building 
blocks for a combined scientific and pragmatic inquiry into the teaching practices of mathematics. 
The next steps are to build an extensive language of practices, validated empirically and 
theoretically, and map the connections between them. In parallel, we will develop our framework 
for practices-oriented teacher training. True to our constructivism roots, we reject the urge to 
“deliver knowledge of practices” to teachers and teachers in training, and instead aim to base our 
offering on co-construction and critical discussion of representations of practices. We invite the 
community to join us in these endeavours. 

(1) A short 30 second 
video that explains the 
task that the teaching-
practice focuses on, 

elaborating briefly on 
a conceptual question 

relating to a math 
related topic and 
teaching/learning 

challenges 

(2) A structured text listing the aims, 
context and pattern of actions, and 

video examples. These are followed 
by an “in depth” section, offering 

theoretical justifications, limitations 
and risks, and links to other related 
practices. To formulate this part, we 

use a "practice template" (see 
template and example) 

(3) Short clip of a real 
classroom video that 

demonstrates and 
exemplifies the 

teaching practice 
discussed. The video 
is taken from a real 

secondary class after 
acquiring all ethics 

approval. 
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A lens on two classrooms: Implications for research on teaching  
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This paper uses the Teaching for Robust Understanding framework (Schoenfeld, 2013) as an 
analytic lens on episodes of mathematics teaching from two different countries. This lens highlights 
differences in teaching approaches across the two settings and draws attention to the need for 
further interrogation of how culture, curriculum and values inform teaching practices. It also has 
implications for research practices as it shows that the theoretical frameworks and methodological 
tools that are used in research are not value free or culturally neutral.  

Keywords: Research frameworks, culture, international, mathematics teaching.    

Introduction  
My motivation in writing this paper is to address some of the questions that were raised in TWG19 
at CERME10. I hope to contribute to discussions on methods used to conduct research on 
mathematics teaching. I have a particular interest in how research frameworks are used by different 
communities. At CERME10, I presented a view of research frameworks as theoretical frameworks 
or methodological tools which ‘frame’ or structure a coherent set of understandings about a theme 
(Nic Mhuirí, 2017). In this paper, I use the Teaching for Robust Understanding (TRU) framework 
(Schoenfeld, 2013) to analyze segments of mathematics lessons. I raise questions about how 
culture, curriculum and values inform teaching practices and how research frameworks reflect this 
(or not).  I conclude by considering the implications for research practice more generally.  

Theoretical Framework 
I situate my work in the sociocultural perspective where learning is conceived as transformation of 
participation in social practices (e.g., Lerman, 2001). From this perspective, a classroom community 
can be understood as a community of practice (CoP) (Wenger, 1999). The CoP theory developed 
from research on apprenticeship contexts. Critics argue that it does not offer a theoretical base for 
formal teaching where teachers are accountable for learning outcomes (e.g., Goos & Bennison, 
2008). Attention to teacher as agent for educational and social change (Cochran-Smith & Lytle, 
2009) is necessary to envisage how new practices might come to be established within the 
community. Notwithstanding student agency and the influence of the wider sociocultural context, 
the teacher is assumed to have agency, and generally some authority, in choosing actions which 
shape the practices of classrooms, i.e., “the repeated actions in which students and teachers engage 
as they learn” (Boaler, 2002, p. 113). However, teaching is more than simply a collection of 
practices. Following Biesta and Stengel (2016), I recognize teaching as relational, intentional and 
purposeful. Firstly, teaching implies a relationship between the person teaching and the one being 
taught. The teacher also has a role to play in ‘relationally bridging’ student and subject 
(Grootenboer & Zevenbergen, 2008). While learning may occur, in the absence of teaching, 
teaching is considered to be intentional as teachers deliberately aim to teach their students. 
Furthermore, education is a “teleological practice where the question of what education is for can 
never be evaded” (Biesta & Stengel, 2016, p. 33, original emphasis).  
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Biesta and Stengel contrast ‘purpose’ with the more concrete ‘aims’ which a teacher might 
endeavor to achieve. They describe the purpose of education as concerned with justification for 
engaging in teaching and consider ‘purpose’ to be normative and indicative of what is 
‘educationally desirable’ (2016, p. 31). They identify three important domains of educational 
purpose: qualification; socialization; and subjectification. Qualification is understood as connected 
with “the transmission and acquisition of knowledge and skills” and socialization is understood as 
“the way in which through education we become part of existing cultures and traditions and form 
our identity” (Biesta & Stengel, 2016, p. 26). Subjectification is “an educational orientation 
concerned with the ways in which human beings can be subjects in their own right, rather than 
objects of the actions and activities of others (2016, p. 21). It is difficult to argue with Mosvold and 
Hoover’s (2017) contention that “while there are other important aims of education, teaching is 
centrally about supporting the learning of subject matter” (p. 3111). However, Biesta and Stengel 
maintain that such aims should be articulated in relation to the domains of educational purpose.  

The view of education proposed by Biesta and Stengel centralizes teacher agency as it highlights 
the role of teacher judgment. In every activity, teachers make (tacit) judgments about the balance 
between the three domains of educational purpose. This has connections with Schoenfeld’s (2015) 
theory of teachers’ decision-making. He maintains that for a well-practiced activity like teaching, 
decision making is a function of teachers’ knowledge, resources, goals, beliefs and orientations. His 
model of in-the-moment decision making offers a fine-grained lens on teacher judgments. By 
situating such judgments in the broader field of the three domains of educational purpose, Biesta 
and Stengel’s philosophy facilitates consideration of the bigger picture. It raises questions about 
how society, culture and curriculum shape teachers’ orientations and how beliefs about educational 
purpose influence everyday decision-making.    

Methodology 
The data was collected by international researchers for different purposes. It was shared amongst 
TWG19 members who had expressed an interest in engaging in the analysis of common data at 
CERME10. Four pieces of data were shared, three of which contained video clips. I focused only on 
the video data which consisted of episodes from an American, a Greek, and a Norwegian classroom. 

I will use the TRU Framework (Schoenfeld, 2013) for analysis. This framework consists of five 
dimensions: the mathematics; cognitive demand; access to content; agency, authority and identity; 
uses of assessment. The mathematics involves the disciplinary concepts and practices made 
available for learning. Cognitive demand aims to capture the extent to which students have 
opportunities to engage in ‘productive struggle’. Access to content addresses the extent to which 
activity structures support the active engagement of all students. Agency, authority and identity 
refers to the extent to which students have opportunities to instigate and contribute to discussions in 
ways that contribute to their agency, mathematical authority and to the development of positive 
identities. Uses of assessment relates to how classroom activities elicit student thinking and 
subsequent interactions respond to those ideas. Schoenfeld (2013) describes his goals in the creation 
of the framework as being concerned with identifying a relatively small but ‘complete’ number of 
categories of classroom activities for observation, i.e., no other categories or dimensions are thought 
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to be necessary for analysis. This claim of ‘completeness’ was the main reason for choosing to use 
the framework as a methodological tool. The TRU framework can be used for evaluation purposes 
but I aim only to highlight important issues and to interrogate the process of analysis itself. 

The TRU approach to classroom observations separates or parses lesson by the nature of the activity 
structure that occurs: Whole class activities (including topic launch, teacher exposition, and whole 
class discussion); small group work; student presentations; and individual student work. Each 
episode should be relatively short but ‘phenomenologically coherent’ (2013, p. 617). The TRU 
framework contains detailed rubrics for all five dimensions across each of these activity structures. 
It might be considered that these activity structures are relatively unambiguous and should be easily 
recognized across international classrooms, e.g., individual work or small group work. However, 
issues of curriculum and culture should not be ignored (Andrews, 2011). For example, the activity 
structure ‘topic launch’ would seem to have strong connections to the ‘Launch-Explore-Summarize 
Teaching Model’ used in the US based Connected Mathematics Project Curriculum 
(https://connectedmath.msu.edu/). The extent to which this model of instruction is recommended 
by, or embedded in, other jurisdictions internationally is questionable. It is also possible that other 
important activity structures exist locally that are not captured in the TRU framework (c.f., Clarke 
et al., 2007). Despite these concerns, it was possible to categorize the data using the TRU activity 
structures so it was decided that it was appropriate to proceed with analysis.  

To some extent the data was ‘pre-parsed’ as only selected elements of the lessons were shared. 
There were a variety of activity structures in evidence across the different classroom. The activities 
in the Greek classroom were conducted in a whole class setting with some elements of teacher 
exposition and whole class discussion. The activity structures in the Norwegian classroom involved 
a whole class topic launch, small group work/individual work and a series of student presentations. 
The activity in the US classroom centered on a single student presentation. Given the constraints of 
this paper, I decided to focus on the student presentations across the US and the Norwegian data. 
An overview of the data is shown in table 1.   

US Data Norwegian Data 

Summer program for 5th graders.  

Majority low SES participants.  

Experienced teacher recognized as expert 
(Professor Deborah Ball, University of Michigan)   

Video clip (c. 3 minutes) and contextual 
information.  

Small group (5 students) primary teaching.  

Experienced teacher recognized locally as 
expert 

Video clip (c. 21 minutes) with English 
subtitles and transcription.  

 

Table 1: Overview of data 

Overview of video content 

In the US video, a student presents a solution to a task concerning what fraction is marked on a 
number line. She gives the incorrect answer of 1/7. Her justification is that there are seven equal 
parts shown on the number line. The teacher invites students to question her reasoning.  
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In the Norwegian example, the teacher gives the students the task of figuring out what year the King 
was born. In effect, students have to compute 2017 – 80. After about 5 minutes, the teacher asks 
students to present their solution methods. These are summarized below.  

· Presentation 1: 80 – 17 = 63, 2000 – 63 = 1937. The calculations were carried out using the 
standard algorithm even though the procedure has not yet been taught for higher number 
ranges. The teacher models the students’ thinking on an empty number line and also models 
the algorithm.  

· Presentation 2: 2000 – 80 = 1920; 1920 + 17 = 1937. The calculations were done mentally 
but recorded in vertical format at the board.  

· Presentation 3: 2017 – 80 = 1937 using standard algorithm.  
· Presentation 4: 1900 + 20 = 1920; 1920 + 17 = 1937. Teacher questioning appears to aim to 

expose reasoning.  
· Presentation 5: The first student complains that she did not have a chance to write her 

method (standard algorithm) on the board. Teacher invites her to do this.     

Results 
Due to space limitations the full TRU framework rubric for student presentations is not presented 
here. Instead, under each heading, I give a brief overview of all levels with a full description of the 
most relevant levels (in italics). I then present an analysis of relevant classroom events.   

The Mathematics 

Level 1 (answers without reasons) and Level 2 (procedural mathematics with no expectation of 
reasoning) do not apply in either case. Level 3 is described as follows: The Mathematics presented 
is relatively clear and correct AND either includes justifications and explanations OR the teacher 
encourages students to focus on central mathematical ideas and explaining and justifying them. 

In the US classroom, explanations were given by the presenter Aniyah but the mathematics was 
incorrect. The teacher encouraged other students to ask questions but not to evaluate (i.e., agree or 
disagree with) her solution. Toni questioned why she chose one-seventh. Lakeya questioned her 
choice of 1 for the numerator. Dante’s question is unclear but may also be targeting the numerator. 
The focus on justification and key mathematical ideas would place this at level 3 of the rubric.  

In the Norwegian classroom, the mathematical reasoning was correct and the explanations were 
generally clear (level 3). Where this was not clear (e.g., presentation 4), the teacher asked clarifying 
questions. In presentation 5, the student inverted the numbers when writing the standard subtraction 
algorithm. She appeared to recognize her own error and the teacher said he understood her thinking. 
He appeared to value reasoning above procedures.  All presentations can be described by level 3.  

Cognitive Demand 

Level 1 (familiar facts and procedures) does not apply to either case. Level 2: Presentation offers 
possibilities of conceptual richness or problem solving challenge, but teaching interactions tend to 
‘scaffold away’ these possibilities, resulting in a straightforward or familiar focus on facts and 
procedures. Level 3: The teacher’s hints or scaffolds support presenters and/or class in ‘productive 
struggle’ in building understanding and engaging in mathematical practices.   
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In the US classroom, the mathematics was cognitively demanding for the presenter Aniyah and 
perhaps for others, e.g., Dante. Other students were invited to ask questions and in this way possibly 
provide support for Aniyah. The extent to which these interactions were ‘productive’ for her and/or 
other students is not obvious on completion of the clip. Level 3 most closely describes this extract 
but it was the classroom community, rather than the teacher, that was providing the scaffolding.   

The task in the Norwegian classroom was of appropriate challenge. One student solved it quickly 
but others needed more time and one student did not come to a correct solution. In presentation 1, 
the student was clear in her ideas but this transitioned quickly to teacher explanation. The second 
student presented a mental method. Again, the teacher took responsibility for explaining this. No 
scaffolding occurred in presentation 3. It might be considered that a more challenging example of 
the standard algorithm had been addressed in presentation 1. This might explain why the teacher did 
not dwell on this example. The teacher’s questions in presentation 4 appeared to attempt to scaffold 
the presenter and clarify her ideas. Across all presentations, the focus remained on student thinking 
rather than procedures. However, the teacher’s actions are closer to level 2 than to level 3. While 
presenters did not often need the teacher’s support, his input may have the effect of ‘scaffolding 
away’ the opportunities for students to build their own understanding of each other’s ideas. 

Access to Mathematical Content 

The descriptions for this dimension refer to teacher-presenter conversations (C) and whole class 
discussions (W). Level 1 (no support (C) or significant disengagement (W)) and level 2 (ineffective 
scaffolding (C) or uneven participation without teacher action (W) do not apply. Level 3: Teacher 
supports presenters if needed (C) or the presentation evolves into whole class activity in which the 
teacher actively supports broad participation and/or what appear to be established participation 
structures result in such participation (W). 

The US classroom was very much orientated to the whole class situation (W). Not all students 
contributed to this discussion but the teacher deliberately orchestrated whole-class consideration of 
Aniyah’s idea. This is indicative of level 3 of the framework.  

In the Norwegian classroom, the interaction was between the teacher and each presenter in turn (C). 
The teacher asked clarifying questions. Some questions might be considered to be dual-purpose in 
that the other students might have benefitted from them. However, the discussion never ‘evolves 
into whole class activity’ (W) and the students were not explicitly asked to comment on each 
other’s ideas or to make connections across suggestions. It is hard to match this with TRU 
framework descriptions as for teacher-presenter conversations (C) level 3 still refers to active 
supporting of presenters (which was only necessary in presentation 4).  

Agency, authority and identity 

Level 1 (presentation constrained by teacher questions) does not apply. Level 2: Presenters have 
the opportunity to demonstrate individual proficiency but the discussions do not build on student’s 
ideas. Level 3: Student presentations result in further discussions of relevant mathematics or 
students make meaningful reference to other students’ ideas in their presentations. (To qualify as an 
idea what is referred to must extend beyond the tasks, diagrams etc. that is referred to)  
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In the US classroom, Aniyah’s presentation appeared to launch some classroom discussion of 
meaningful mathematics. This would place it at level 3 of the framework. It can be argued that 
students such as Toni take on an evaluative role. She acts as a mathematical authority and 
demonstrates agency. Such activities are envisaged to contribute to positive mathematical identity. 
The nature of Aniyah’s experience is less clear and at the end she chooses to sit down rather than 
continue presenting/defending her idea. It is necessary to track participation over a longer period 
before one can make any claims about identity or agency (Nic Mhuirí, 2014).  

The Norwegian classroom can technically be considered at a level 3 but while students are the 
source of ideas, they are not the source of discussion. Talk is teacher-led at all times. Student 
contributions are reformulated and explained by the teacher presumably for the purposes of 
ensuring others understand. Consequently the teacher retains mathematical authority. He also ‘rates’ 
the solution strategies of two students. After presentation 3, he first praises the girl who used the 
standard algorithm. Then he compares it to the previous presentation, saying “But his way to do it, 
I’d say, uses a method that’s easy to calculate in your head. Really smart.”  By implication, the 
solution using the standard algorithm in a number range students have not officially been taught yet, 
is positioned as not as ‘smart.’ This hierarchical positioning of solutions, and by implication 
students, does not occur anywhere else but it does speak to issues of identity and authority.   

Use of Assessment 

Level 1 (reasoning not pursued) and level 2 (specific student ideas not utilized) do not apply. Level 
3: In presentation and discussion, the teacher solicits student thinking and responds to student 
ideas by building on productive beginnings or addressing emerging misunderstandings. 

The US classroom episode is aligned with the level 3 description and might be considered formative 
assessment in action. The teacher is activating the other students to respond to Aniyah’s 
misunderstanding. It would be necessary to see how this plays out to judge whether the strategy is 
effective for Aniyah and other students.  

In the Norwegian classroom, the teacher emphasizes student thinking. In presentation 1, the teacher 
uses the student’s ideas as a launch to model her solution on an empty-number line and to model the 
standard subtraction algorithm. This episode might be considered to ‘build on productive 
beginnings’ (level 3). Levels of understanding were not generally made explicit in the classroom 
dialogue. The teacher posed a question which explicitly sought to assess students’ understanding 
just once. It is possible that in this small group the teacher could closely observe indications of 
student (mis)understanding. Late in the episode, (c. 18 minutes) a student explained that he had 
attempted to solve the task using the standard algorithm but had gotten an incorrect answer. It 
remains unclear whether he learned how to complete this correctly from the class dialogue.  

Discussion  
On an evaluative level, the short US video scored higher on the dimensions of the TRU framework 
than the Norwegian example. The analysis showed differences in the extent to which agency was 
devolved to students. This devolution was carefully orchestrated by the teacher in the US 
classroom. Student presentations never evolved into whole-class discussion in the Norwegian 
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setting. All interactions were funneled through the teacher and it was never explicitly stated that the 
students should attempt to understand each other’s reasoning though this may have been an implicit 
teacher expectation. Such norms were possibly well established in comparison to the US summer 
school where the teacher was working to establish norms. Indeed, when the Norwegian students 
were working on developing solutions, they displayed some annoyance that one of the participants 
indicated the answer before all had completed working. In one of his only explicit directions, the 
teacher gave the following instruction: “A good tip right now is not to trust that one sitting beside 
you […] you can only trust yourself. Think for yourself and trust yourself.” This appears to 
emphasize individual effort and indicates an expectation that all students should be able to devise a 
solution independently. Individual thinking, including errors, was valued in the US classroom but 
the teacher also seemed to be trying to set an expectation that the community should support the 
individual in making sense of mathematics. It might be argued that particular forms of socialization 
and subjectification (Biesta & Stengel, 2016) were being actively pursued by the US teacher.    

The extent to which certain forms of socialization and subjectification are interwoven into the TRU 
framework warrants further attention. The framework presents a leveled or hierarchical positioning 
of various teacher practices that is not value-free. For example, in the Access to Mathematical 
Content dimension, two different participation structures are recognized: teacher-presenter 
conversations and whole-class involvement. In the Norwegian classroom, it appears that teacher-
presenter conversations occur for the benefit, but without the involvement, of the whole-class. This 
participation structure is not recognized by the TRU framework but has some similarities to 
Andrew’s (2011) discussion of the ‘implicit didactics’ of Finnish classrooms where teachers’ 
extended conversations with a competent child in a whole-class setting appeared to be a common 
feature. These embedded, but unspoken, expectations raise particular challenges for researchers. 

Any research lens is informed by the values of the researcher and the research tradition from which 
the lens is drawn. Often what is valued by a lens remains implicit and unexplored. In this case, the 
disconnection between the TRU framework and the Norwegian classroom highlights something 
about the lens itself. This disconnection also raises questions about culture, and whether it is 
suitable to use a framework developed in one environment to analyze teaching in a different context 
where conceptions of expert practice may be quite different (Clarke et al., 2007). The aim of this 
paper however was not to compare teachers (or contexts) but to explore some of the challenges of 
conducting research in mathematics education. Limitations to this research include the length of the 
US video and the outsider-status of the researcher in relation to both contexts. The analysis of the 
Norwegian data was conducted with an English transcript and it is likely that particular nuances of 
language and meaning have been lost in translation. However, this brief analysis does draw 
attention to the need for further interrogation of how culture and values inform teaching practices 
and research frameworks. 
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Assessing how teachers promote students’ metacognition when 
teaching mathematical concepts and methods 
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An important aspect of teaching mathematics is designing learning environments and guiding 
students’ learning activities in such a way that learners can develop or improve their mathematical 
competencies. Promoting students’ metacognition in teaching mathematics is regarded as having an 
important role in achieving this goal. Unfortunately, rarely anything is known about how 
metacognition can be effectively fostered in regular mathematics classes. The paper presents an 
analysis and an assessment of metacognitive activities practiced in a regular mathematics lesson. It 
also describes the rating system used for this assessment, and exemplifies how this tool can be used 
to analyze the extent to which teacher’s practices are conducive to foster students’ metacognition, as 
well as to describe the need for a further improvement of these activities. 

Keywords: Metacognition, instructional quality, classroom discourse. 

About the role of metacognition in teaching and learning mathematics 
In mathematics education, metacognition is usually understood as knowledge about cognition and 
regulation of cognition (Veenman, Van Hout-Wolters, & Afflerbach, 2006; Willson and Clarke, 
2004). Most definitions of metacognition differentiate between metacognitive knowledge (e.g. the 
person’s knowledge about cognitive tasks in mathematics, about strategies to cope with these tasks, 
and about one’s own competencies related to these tasks and strategies), metacognitive skills (e.g. the 
person’s procedural knowledge for regulating one’s own problem solving and learning activities) and 
the execution of such skills in form of metacognitive activities (for an overview see Veenman at al., 
2006). Such differentiation is important for theoretical considerations concerning the meaning of 
metacognition, whereas in concrete situations it is hardly possible to distinguish between these 
different components. 

Metacognition has been ascribed an essential role in regulating students’ cognitive processes in 
problem solving, but also in the learning of mathematics in general, in particular when constructing 
and organizing knowledge (cf. Schraw & Moshman, 1995; Wilson & Clarke, 2004), as well as in a 
self-regulated use of mathematics in different contexts in order to achieve some goals (Boaekaerts, 
1999). Thus, from a teachers’ perspective, promoting students’ metacognition can be considered as a 
mean for effective teaching – for engaging students in cognitive processes needed to understand the 
mathematical concepts and methods to be learned. But it must be also considered as a goal of teaching 
– as an essential aspect of students’ mathematical competencies to be improved through teaching. 

Much research has been done on modelling, analyzing and promoting metacognition in solving 
mathematical problems. Many paradigms adopted to this context in the past research were based on 
the assumption that the way students learn to solve problems is “to first acquire the mathematical 
knowledge needed, then acquire the problem-solving strategies that will help them to decide which 
already known procedure to deploy, then acquire the metacognitive strategies that will trigger the 
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appropriate use of problem-solving strategies (…).” (Lesh & Zwojewski, 2007, p. 793). Such 
paradigms not only separate problem solving from concept development. They also separate 
metacognition from teaching mathematical concepts and reduce promotion of metacognition to 
teaching a list of simple rules (e.g., make a plan, draw a picture, mark important words, control your 
solution, evaluate the result). I consider this separations as one possible reason for the unimpressive 
results (ibid.) from this kind of research, because it seems hardly possible to acquire adequate 
metacognitive knowledge for solving problems without being engaged in metacognitive processes 
when constructing substantial meta-mathematical knowledge, meaning knowledge about relevant 
mathematical concepts, methods, and reasoning strategies (cf. Veenman et al., 2006). And therefore 
I see the need for shifting the focus of research on metacognition from teaching problem solving to 
regular teaching situations in which the learners have to learn mathematical concepts and methods. 

An operationalization of metacognition in teaching and learning mathematics 
Since rarely anything is known about how metacognition can be effectively fostered in class when 
teaching and learning new concepts and methods (cf. Wilson & Clarke, 2004), a deep analysis of 
metacognitive practices in regular classes can be the first step for research aiming at enhancing 
students’ metacognition. For this, an operationalization of the construct “metacognition” for the 
context of teaching and learning mathematics is needed. This has been done by the research group 
Cognitive Mathematics at the University of Osnabrueck. Its result is a category system1 decomposing 
metacognition in planning, monitoring and reflection. Planning means organizing cognitive activities 
in order to achieve some goals as well as specifying cognitive challenges to be overcome (e.g., 
planning the use of mathematical methods and concepts to write a proof or planning the use of a 
particular strategy or representation to solve an equation). Monitoring means controlling cognitive 
activities and their results (e.g., controlling the validity of logical statements of arguments and the 
consistency of an argumentation or the validity and adequacy of tools and methods used in 
mathematical modelling or the correctness of meaning extracted from a mathematical text). 
Reflection means thinking about different aspects of cognitive activities involved in learning and 
understanding mathematics (e.g., analyzing relations between concepts, conceptions, misconceptions 
and external representations of mathematical concepts, analyzing the process of developing new 
mathematical concepts, analyzing mathematical concepts, methods and strategies with regard to the 
kind of problems and contexts for/in which they can be applied). 

On the role of discourse in promoting metacognition 
Promoting metacognition in mathematics class does not mean teaching only one individual student 
how to organize, control and evaluate her/his cognition when learning and applying mathematical 
concepts and methods. It rather means organizing the teaching in such a way that as many as possible 
students are engaged in metacognitive activities. This can be achieved by establishing a discursive 
discussion culture with rules that force the students to control and regulate their own cognition and 
comprehension when other students or the teacher explain their ideas, solutions, conceptions or 
difficulties in understanding the discussed mathematical ideas. Such discursive culture implies that 
                                                 
1 www.mathematik.uni-osnabrueck.de/fileadmin/didaktik/Projekte_KM/Kategoriensystem_EN.pdf 
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the teacher and the students precisely control what the classmates say, reflect on differences between 
various conceptions and reasoning strategies mentioned in the class, and use this reflection to regulate 
their own understanding. However, this can be practiced in an effective and beneficial way, only if 
the teacher and the students use class discussions to precisely explain their cognition and if they aim 
for a coherent discussion. Such discursive aspects of class discussion seem to be inevitable for 
promotion of metacognition in regular mathematics classes. 

To analyze such kind of discursive practices in regular mathematics classes, the category system 
decomposing metacognition in planning, monitoring, and reflection (see footnote 1) also includes two 
categories for analyzing and coding the precision and coherence of class discussions: discursivity and 
negative discursivity (both are not in the focus of this paper; for details see Nowińska, 2016b). 

Research question 
To deepen our understanding on how metacognition is practiced in regular mathematics lessons, 24 
lessons videotaped in six classes have been analyzed and assesses with the rating system described in 
the next section. One research question in this explorative study was: Which implications can be 
drawn from these assessments to improve the instructional quality with regard to metacognitive 
activities? This paper presents some results from this research. It reveals and explores an alarming 
fact concerning metacognitive practices in a regular mathematical instruction, and explains the need 
for a further improvement of the metacognitive-discursive quality. In doing so, it contributes to the 
discussion about how metacognition can be effectively implemented into mathematical instructions.  

In the following, to begin with, the tool used for analyzing and assessing metacognitive activities is 
presented. Afterwards, metacognitive activities in one class are analyzed with this tool in order to 
make the alarming aspect more “visible”. 

The rating system for assessing metacognitive-discursive instructional quality 
To assess the extent to which metacognitive activities are used to elaborate mathematical concepts, 
methods, and students’ cognition related to them, one needs a reliable evaluation method which also 
takes into consideration the discursive aspects of the class discussion. Such a method has been 
developed at the University of Osnabrueck, and evaluated in cooperation with the German Institute 
for International Educational Research (DIPF) in Frankfurt. It is based on the application of two tools 
explained in detail in Nowińska (2016a). The first tool is the afore-mentioned category system for 
coding metacognitive and discursive activities of teachers and students in their utterances in public 
class discussions (PCD). The second is a rating system for an evaluation of metacognitive-discursive 
instructional quality (MDQ). This tool was presented at the Third ERME Topic Conference 
(Nowińska, 2016b), and the evaluation results concerning the reliability of the ratings at CERME10 
(Nowińska & Praetorius, 2017). The wording “metacognitive-discursive” has been chosen to stress 
that metacognitive activities are analyzed together with discursive aspects of class discussion. 

The rating system is a set of seven rating scales for assessing different aspects of the instructional 
quality of these activities. In the two-step rating procedure, the rater first watches the video and reads 
the transcript; thereby she/he interprets each verbal student’s and teacher’s utterance and codes 
metacognitive and discursive activities using the category system. In the second step, the rater 
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assesses the quality of these activities with regard to seven rating dimensions (quality aspects). 
Thereby she/he uses the video and the transcript with all codes for metacognitive and discursive 
activities set by her/him in the first step. Each rating dimension is given by an item called guiding 
question (GQ) and by a nominal rating scale consisting of several answering categories2. The 
answering categories describe in detail how the relevant quality aspects are reflected in the class 
discussion. Different answering categories describe qualitatively different situations. Their order on 
the rating scale is based on the increasing quality of the class discussion with regard to the particular 
quality aspects. The rater has to choose the answering category that best describes the situation given 
in a class. For reasons of space, in the following, only three of seven guiding questions are explained. 

The first GQ regards the extent to which learners practice metacognition in PCD in an autonomous 
and elaborated way, and focus it on the mathematical content (e.g. concepts, conceptions, methods) 
to be learned. There are four answering categories to it. The first category says that metacognitive 
activities are carried out solely by the teacher, and/or no effort is made to foster students’ 
metacognitive activities in order to elaborate the mathematical content and students’ understanding 
of it. The fourth category says that the learners are autonomous in practicing metacognition and 
thereby they make efforts to elaborate and understand the mathematical content. 

The second GQ focuses on justifications combined with metacognitive activities, and on the extent 
to which they are used to elaborate on the mathematical content and on students’ understanding of it. 
It asks for the extent to which students combine their metacognitive activities with elaborated 
justifications in an autonomous way, and also for the extent to which such justifications and coherent 
global argumentations of the whole class seem to be important in the culture established in the class 
(and consequently fragmentary justifications have to be corrected). There are four answering 
categories graduated in an analogue way as these to the first GQ.  

The third GQ puts the focus on a hypothesized learning effectiveness of metacognitive and discursive 
activities of students and the teacher. The rater has to assess the extent to which the metacognition 
she/he observed in the videotaped PCD contributes to construct or deepen students’ meta-
mathematical knowledge or to foster their meta-mathematical skills related to the mathematical 
content of the lesson (tasks, questions, tools, methods, reasoning, concepts, conceptions). The first 
answering category describes a PCD without any constructive use of metacognitive and discursive 
activities; the second says that only very few learners make efforts to deepen their meta-mathematical 
knowledge or to reflect on their meta-mathematical skills, but their metacognitive activities are not 
elaborated by the classmates or the teacher. The third and last answering category says that 
metacognitive aspects of the mathematical content are discussed in a constructive and elaborated way. 

Analyzing and assessing metacognition in mathematical instruction 
The lesson analyzed in this paper was videotaped in one class in grade 7 in a German secondary 
school (Gymnasium) during the introduction to linear equations. Four lessons in this class were 
videotaped and analyzed with the rating system, and all of them feature the alarming aspect described 

                                                 
2 https://www.mathematik-cms.uni-osnabrueck.de/fileadmin/didaktik/Projekte_KM/GuidingQuestions.pdf   
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in this paper. The term ‘alarming aspect’ is used here to emphasize some striking characteristic of the 
instructional quality of metacognitive and discursive activities of the teacher and of the students in 
lessons planned for an introduction of new mathematical concepts and methods. Due to the small 
number of lessons, the case of the lesson analyzed in this paper has to be used with caution. But since 
similar aspects were also observed in other classes, there seems to be a tendency for some similar 
teaching practices also in the case of other teachers/classes. 

The instructional context of the introduction of a new mathematical concept 

To motivate the introduction of the term ‘equation’, the teacher uses two mathematical problems. One 
of them is: “The three major oceans (Pacific, Atlantic, and Indian Ocean) together have a water 
surface of 320 million square kilometers. The Pacific Ocean is twice as large as the Atlantic, and the 
Indian Ocean is 10 million square kilometers smaller than the Atlantic Ocean. The surface x (in 
million square kilometers) of the Atlantic is unknown.” The teacher makes no comments on the 
concept of equation to be learned in this lesson.  

Solving this problem requires the use of metacognitive activities of planning a solution, controlling 
the solution steps and the result, and reflecting on the text and the solution process. Since solving the 
problem should motivate the introduction of equation and of a method for solving equations, students’ 
reflection about the formal representation of an equation and about the regulation of their own 
cognitive activities needed to write and solve an equation would be required to construct 
metacognitive mathematical knowledge about the new mathematical content. 

Most of the learners solved the problem at home. In the class, Sabrina presents her solution (Figure 
1): 

 
Figure 1: Problem solution 

The transition from the equation in line 3 to this in line 4 raises many questions. A few students try 
to find out why one is allowed to change the equation in line 3 to the equation in line 4 (for reasons 
of space, the utterances are presented here in a shortened and more precise version): 

Johana: I do not understand how you get from line three to line four. 

Sabrina: Here, I did not know what to do, and then I asked my mother and she simply said, 
if you have to subtract something from x or from the variables, then you add that 
here to the result of it to be able then to continue the calculation.  

Jonas: (…) 4·x-10 million that is equal to 320 million. And then four times x without minus 
10 million, it is clear that there are then 10 million more, because then you do not 
make the subtraction. That's why it's 330 million. (…) 

Anna: (…) we want to have x on the left side alone. (...) and then you can only get the 
minus 10 million…, if you want to get rid of it, you just have to put 10 million on 
both sides. So on the left you have then 4x minus 10 million plus 10 million. One 
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can then… yes you can take this away. Then there is only 4x, and on the other side 
320 million plus 10 million. (…) 

An analysis and assessment of metacognitive activities 

Johana reflects (R6b) on her understanding of the solution, whereas Jonas and Anna reflect (R4) why 
one is allowed to change the equation in line 3 to the equation in line 4. (The meaning of codes R6b 
and R4 is explained in the category system linked in footnote 1.). Jonas analyzes the effect of the 
subtraction by 10 million on the value of 4x and describes a relation between 4x-10 and 4x. He uses 
this relation to find the value of 4x if it is known that 4x-10 equals 320 million. Anna describes a 
clear goal of changing the equation (“we want to have x on the left side alone”) and suggests an 
arithmetic operation to change the term on the left side, but she does not explain why the terms on 
both sides of the equation have to be changed and can be changed as suggested by her.  

The teacher arranges the class discussion in such a way that the students discuss their solutions 
without his guidance. This situation encourages the learners to take the responsibility for solving the 
task and to regulate their own cognition, thus to practice metacognitive activities such as planning, 
controlling and reflection. The students make use of this opportunity. They seem to be willing to plan, 
control and reflect their mathematical activities. In the sense of the first guiding question, this scene 
shows a high quality of metacognitive activities (answering category 4). High quality means that 
many metacognitive activities can be observed in students’ utterances and that these activities indicate 
students’ efforts to understand the solution. 

The class discussion is led by a small group of students, who practice their metacognitive activities 
in an elaborated way by giving justifications related to mathematics and to their own understanding. 
They elaborated on the solution steps presented by Sabrina and on their own understanding of these 
steps. In the sense of the second guiding question, the lesson seems to indicate a high quality of 
metacognitive activities with justifications (answering category 4 to guiding question 2), meaning 
that giving elaborate metacognitive comments on the mathematical activities seems to be a desired, 
well established rule of the classroom culture in the class. But on the other hand, following this rule 
does not mean that the global class argumentation is coherent and focused on a precise elaboration of 
students’ understanding of the mathematical content. Consequently, this indicates a low quality of 
metacognitive activities with justifications (answering category 2 instead of 4 must be chosen).  

Can this kind of metacognitive activities support students’ understanding of the new mathematical 
concept? Can it help to construct or deepen students’ meta-mathematical knowledge or to foster their 
meta-mathematical skills related to the mathematical content of the lesson? The three solution ideas 
as described by Sabrina, Jonas and Anna in the transcript differ significantly from each other. 
Unfortunately, the teacher makes no effort to elaborate on these approaches and to initiate co-
constructive processes with regard to the meaning and adequacy of the new formal representation and 
of transforming it to find a solution. In the whole class discussion there are no activities indicating 
that the students reflect on each other ideas in order to understand how they differ from their own 
ideas, and whether all of them are correct and based on a valid mathematical argumentation. Only 
very few students try to explain the meaning of the equation and seem to have an idea of how to justify 
the transformations of the equation (answer 2 to guiding question 3). But since their ideas are not 
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elaborated and related to each other, the process of solving the equation is not effectively used to co-
construct metacognitive mathematical knowledge about equations, and to make this knowledge well 
comprehensible for all students. Thus, despite lots of students’ metacognitive activities, there are no 
visible effects concerning the construction and acquisition of metacognitive mathematical knowledge 
or fostering mathematical skills at the level of the whole class discussion. In the sense of the third 
guiding question, the metacognitiv-discursive quality of this lesson must be assessed as low 
(answering category 1 to guiding question 3), meaning that the extent to which metacognitive 
activities are used to foster students’ understanding is not satisfying. 

Discussion 
Training programs for fostering students’ metacognition in learning mathematics concentrate on 
problem solving. But it seems hardly possible to acquire adequate metacognitive knowledge for 
solving problems – or even more general speaking, for a self-regulated use of mathematics in order 
to achieve a particular goal – without being engaged in metacognitive processes when constructing 
substantial mathematics-specific knowledge, such as knowledge about relevant concepts, methods, 
and strategies for thinking and reasoning (cf. Veenman et al., 2006). The lesson described in this 
paper shows that engaging students (in this particular class) in such metacognitive processes is not in 
the teacher’s focus when solving a mathematical problem designed to introduce a new mathematical 
concept (equation). The teacher supports students’ metacognition in the sense that he encourages 
them to plan, control and evaluate the solution among themselves. But he neither supports students’ 
reflection on the new mathematical concept used in this process nor tries to explain or relate to each 
other the different conceptions described by the students to explain one step in solving an equation.  

This is an alarming feature of the instructional quality of mathematics lessons. Mathematics teachers 
are expected to foster students’ metacognition in order to deepen their understanding of mathematics 
and to enhance their skills in regulating their own cognition when using mathematics in different 
contexts. This alarming feature shows how promotion of metacognition in regular mathematics 
lessons is reduced to engaging the students in self-regulated processes of solving mathematical 
problems and tasks without taking care on the discursive quality of their mathematical discussion, 
and on their efforts in elaborating mathematical concepts and methods.  

The rating system used to analyze the lesson can also be used to describe the need for a further 
improvement of instructional quality with regard to fostering students’ metacognition. The high 
assessments given to the lesson with regard to the first and second guiding questions indicate that the 
students are able to execute metacognitive activities and willing to justify their answers and 
conceptions related to solving a linear equation. Unfortunately, the teacher does not use this potential 
to change the class discussion to a discourse about the new mathematical concept. In different words, 
the teacher does not make any efforts to shift the focus of the discussion from discussing the local 
steps of solving the given problem to a coherent discussion about the new mathematical 
representation (a formal representation of an equation) worked out in the process of solving this 
problem. This is, regrettably, the case in all four lessons videotaped in this class. This observation let 
us assume that improving the instructional quality with regard to students’ metacognition requires 
changes in the discursive quality of the class discussion.  
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But this means more than just changing some social rules of discussion or increasing the number of 
students involved in the discussion. It rather means that the teacher and the students have to precisely 
control what the classmates say, explain differences between various conceptions and reasoning 
strategies mentioned in the class, and use this reflection to regulate their own understanding. It seems 
hardly possible to achieve this change without a close cooperation between teachers and researchers, 
and without engaging teachers in reflection on their practice.  

The one lesson described in this paper does not allow us to generalize our assessment to all lessons 
of the particular teacher in this particular class. But, since the assessments given to all four lessons 
videotaped in this class are quite stable between lessons, it can be assumed that the problem described 
here is a general problem in this class. A transcript from the lesson following this one discussed in 
this paper is published in Nowińska (2016b). It shows that the students reflect on the sense of applying 
equivalence transformations to solve linear equations, and on their own difficulties in understanding 
the solution process. The teacher does not use these metacognitive activities to elaborate on the 
mathematical content and on students’ understanding of it. He even seems to ignore students’ 
reflections and justifications concerning their difficulties in understanding the mathematical content.  

References 

Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of 
Educational Research, 31, 445–457. 

Lesh, R., & Zwojewski, J. (2007). Problem solving and modeling. In: F. Lester (Ed.), Second 
Handbook of Research on Mathematics Teaching and Learning. A Project of the National Council 
of Teachers of Mathematics (763–804). Charlotte, NC: Information Age Publishing.  

Nowińska, E. (2016a). Leitfragen zur Beurteilung metakognitiv-diskursiver Unterrichtsqualität. 
Osnabrück: FMD. 

Nowińska, E. (2016b). The design of a high inference rating system for an evaluation of metacognitiv-
discursive teaching and learning quality. In S. Zehetmeier et al. (Eds.), ERME Topic Conference 
on Mathematics Teaching, Resources and Teacher Professional Development (46–55). 
(https://hal.archives-ouvertes.fr/ETC3/) 

Nowińska, E., & Praetorius, A.-K. (2017). Evaluation of a rating system for the assessment of 
metacognitive-discursive instructional quality. In T. Dooley. & G. Gueudet (Eds.), Proceedings of 
the Tenth Congress of the European Society for Research in Mathematics Education (3121–3128). 
Dublin, Ireland: DCU Institute of Education & ERME. (https://keynote.conference-
services.net/resources/444/5118/pdf/CERME10_0379.pdf) 

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 
351–371. 

Veenman, M., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning. 
Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3–14. 

Wilson, J. & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics 
Education Research Journal, 16(2), 25–48. 

Thematic Working Group 19

Proceedings of CERME11 3727



 

 

Teachers’ probing questions in mathematical classrooms connected to 
their practice of encouraging students to explain their thinking 

Anna Östman 

Mälardalen University, School of Education, Culture and Communication, Västerås, Sweden; 
anna.ostman@mdh.se 

Keywords: probing questions, teachers’ practice, talk moves, elementary school. 

Introduction 
Asking questions is a common used teaching activity in mathematical classrooms and by arguing that 
there is a relationship between teaching and learning (Smith & Stein, 2011), the conclusion is that 
questions play an important role in teachers’ practice in the mathematical classroom (Boaler & 
Brodie, 2004). Boaler and Brodie (2004) studied teachers’ questions to find the nuances and 
differences of teachers’ questions in mathematical classrooms. They found nine different types of 
questions (e.g. recall questions, questions supporting students in developing mathematical 
knowledge, questions which explore meanings and relationships, probing questions to get students to 
explain their thinking and questions generating discussions). The probing questions are considered 
critical in encouraging students to explain, clarify and reason. Connected to the probing questions, 
talk moves are considered useful for teachers in having a fruitful discussion with students (Smith & 
Stein, 2011; Kazemi & Hintz, 2014). The talk moves that can be seen in mathematical classrooms are 
for example revoicing, repeating and wait time (Kazemi & Hintz, 2014). Asking questions seems to 
be a teaching activity that teachers do not plan ahead of the lesson even though teachers make explicit 
that questions are important in the teaching (Boaler & Brodie, 2004). Asking probing questions also 
make students aware of their own responses and make students answer in the way they think the 
teacher expects an answer (Smith & Stein, 2011). Therefore, in this study I have chosen to focus on 
the specific questions where teachers are probing students to make their thinking explicit, e.g. “How 
did you think?”, “How did you get your answer?”  

The aim of the study is to categorize the different types of responses teachers give to students when 
students have answered teachers’ probing questions. The prospective results will be analysed with 
the attempt to present different types of interaction patterns emerging from data, which are connected 
to teachers’ responses and teachers’ talk moves when students have made their thinking available and 
explicit through oral explanations. The results will be presented both qualitatively and quantitatively. 

Theoretical framework and methodology  
The data in this study consists of videotaped mathematics lessons from 16 teachers, one lesson from 
each teacher, with six to nine years old students. In the data analysis, all episodes where teachers ask 
probing questions (Boaler & Brodie, 2004) were first identified together with the lesson phase in 
which each probing question appeared. In these episodes teachers’ talk moves (Kazemi & Hintz, 
2014) were used to find categories of different interaction patterns among teachers’ responses. The 
interaction patterns are grown from the data and the patterns are used to explore the different ways 
teachers follow up students’ answers after the probing question.  
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Findings 
Preliminary findings from the 16 teachers indicate that probing questions are used in all phases of the 
mathematical lessons and that students’ responses to the probing questions vary between different 
teachers. The probing questions are most common during the lesson phase whole class discussion and 
student work. In the preliminary results, I have found that teachers use revoicing in 50% of the 
interactions following probing questions. Revoicing seems to help students extend their thinking and 
the results show that when a student’s first answer is short without an explicit thought and teachers 
follow up with revoicing, students often express a developed thought (see Example 1). In contrast, 
when a student first answers with an explicitly developed thought and the teacher uses the talk move 
revoicing the next answer from the student is often short (see Example 2).  

Example 1: Short student answer and teacher revoicing – students express a developed thought 

Teacher: Tell me, how do you think? 

Student:  I counted 

Teacher: You counted 

Student: I counted; first, I counted those [showing cards with number 6, 1] and then those 
[showing cards with numbers 3, 4, 2]  

Example 2: Developed student answer and teacher revoicing - students stop deepening their answer 

Teacher: Please, explain your pattern, how do you think? 

Student: The pattern starts over here [pointing to the pearls] and we were thinking small 
large small large 

Teacher: You did think small large small large 

Student: Yes 

The preliminary results also show that teachers who regularly use the talk move wait time have 
students answering the probing question with developed thoughts. However, the talk move wait time 
is not commonly used by the teachers in this study.  
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In this paper, I present and discuss findings from a research study the aim of which is to investigate 
the activity of proving as constituted in a Cypriot classroom for 12 year old students. Through 
Cultural-Historical Activity Theory (CHAT), the influence of research literature, curriculum 
prescriptions, the students and critically the teacher are documented. The evolution of objects, in 
particular the aims of the teacher, and other components in the activity systems are traced. Perceiving 
the mathematics classroom as a nested activity within educational context levels, this paper considers 
the role of the broader social context in which this classroom is situated.  

Keywords: CHAT, contradictions, proving, mathematics 

Theoretical framework 
It is now acknowledged that proof and proving should become part of students’ experiences 
throughout their schooling (Hanna, 2000; Stylianides, 2007; Yackel & Hanna, 2003). It is also argued 
that argumentation, explanation and justification provide a foundation for further work on developing 
deductive reasoning and the transition to a more formal mathematical study in which proof and 
proving are central (Yackel & Hanna, 2003). But what is meant by proof and proving? Mathematical 
argumentation is a discursive activity based on reasoning that supports or disproves an assertion and 
includes the exploration process, the formulation of hypotheses and conjectures, explaining and 
justifying the steps towards the outcome and the proof of the statement. Thus, proof is at the core of 
mathematical argumentation, as a justification, an explanation and a valid argument. Research has 
responded to the need to conceptualize proof and proving in such a way that it can be applied not only 
to older students but also to those in elementary school (Stylianides, 2007). The challenge remains 
however to understand how proof and proving is shaped by the practices in the mathematics 
classroom. This is in accordance with Herbst and Balacheff (2009), who argue that the focus should 
not only be on proof as the culminating stage of mathematical activity, but also on the proving process 
and how this is shaped by the classroom environment. Thus, in understanding how proving is 
constituted in the classroom, a wider network of ideas is required as these ideas no doubt have an 
impact on how proof in the narrow sense is constituted.  

To address this issue, I refer to pre-proving, that aspect of mathematical reasoning that might nurture 
proving. What are the roots of proving? The purpose of this study is to investigate proof and proving 
in the naturalistic setting of the classroom and the way the structuring resources of the classroom’s 
setting shape this process. Instances of students proving statements have been identified in this 
classroom community but instances where the argument was not in the conceptual reach of the 
classroom have also been identified. However, this study also points to those aspects of reasoning 
that appear to have the qualities of proving, even though they may not be proving in themselves. That 
is, analyses of video-recorded whole class discussions show how processes of explaining and 
exploring are key sub-systems within the central activity of proving as they provide a key pathway, 
which often includes defining. Thus, pre-proving refers to those elements that direct mathematical 
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reasoning towards the ultimate goal of formal proving, namely exploring, explaining, justifying and 
defining. This study considers mathematical explanation an act of communication, the purpose of 
which is to clarify aspects of one’s mathematical thinking that might not be apparent to others (Yackel 
& Cobb, 1996). Justification is “the discourse of an individual who aims to establish for somebody 
else the validity of a statement” (Balacheff, 1988, p. 2). There is insufficient scope in this short paper 
to consider in detail these various levels and so this specific study focuses on the way the activity of 
the mathematics classroom (micro context) is influenced and dependent upon wider educational 
context (macro context). This is in accordance with Balacheff (2009) who argues that among the 
important pieces in trying to understand the nature and role of proof in a mathematics class is 
describing the general usage of the word proof in these contexts and the demands this usage imposes 
in the classroom.          

CHAT based underpinnings 
As this study is exploring the various forces that impact on the activity of proving, Cultural Historical 
Activity Theory (CHAT) is being employed as a descriptive and analytical tool alongside 
collaborative task design (a means of gaining access to the teacher’s objectives), to capture the 
interaction of different levels, such as the actions of teachers, students and the wider field as evidenced 
in curricula and research documentation. The analysis and discussion in this paper draws upon the 
following CHAT perspectives: (i) the object of the activity and (ii) the notion of contradictions. 
Initially, the unit of analysis in CHAT is an activity, a “coherent, stable, relatively long-term endeavor 
directed to an articulated or identifiable goal or object” (Rochelle, 1998, p. 84). Engeström (1987) 
introduced the activity system, a general model of human activity that embodies the idea that both 
individual and social levels interlink at the same time. Jaworski and Potari (2009) argue that the 
activity system is a micro context within broader macro context levels. Thus, the activity of a 
mathematics classroom is influenced and dependent upon the structure and organization of the school 
and the Ministry of Education as wider educational contexts. The object of a collective activity is 
something that is constantly in transition and under construction. It has both a material entity and is 
socially constructed and its formation and transformation depends on the motivation and actions of 
the subject indicating that it proves challenging to define it.  

Among the basic principles of CHAT is the notion of contradictions. Contradictions are imbalances, 
ruptures and problems that occur within and between components of the activity system, between 
different developmental phases of a single activity, or between different activities. These systemic 
tensions lead to four levels of contradictions (Engeström, 1987). Contradictions are important because 
they may lead to transformations and expansions of the system and thus become tools for supporting 
motivation and learning. That is, contradictions do not serve as points of failure or problems that need 
to be fixed. “Rather than ending points, contradictions are starting places” (Foot, 2014, p.337). This 
paper focuses on tertiary contradictions that appear between the object and the culturally advanced 
form of the central activity, a clash between the micro and macro level. Compared with other studies 
investigating tertiary contradictions, this study takes a rather different approach in discussing the 
tertiary contradiction that has emerged within this particular activity system. That is, the collaborative 
task approach assisted in exposing the teacher’s object. Even though introducing a new mediational 
tool resulted in new actions being brought into the activity, this did not affect the object of proving 
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as a cultural historical activity system. Thus, when elaborating on tertiary contradictions, this 
discussion focuses on a possible clash between the micro and macro level of this activity system, due 
to a differentiated object. 

Data collection and analysis 
This study was conducted in a Year 6 classroom in a public primary school in Cyprus. This 
mainstream school is considered to be a dynamic school; it actively encourages teachers and students 
in engaging at a deeper level with the educational experience. Apart from the researcher, the 
participants were the teacher, a Deputy Principal at the school who endorses the integration of 
technology in teaching mathematics, and voluntarily agreed to take part in the research, and 22 
students (11–12 years old) of mixed abilities. Even though using computers was part of the 
classroom’s routine, the students were not familiar with Dynamic Geometry Environments (DGEs). 
The data collection process was undertaken in three phases. Phase I aimed at identifying the system 
level and the teacher level, by employing documentary analysis and semi-structured interview. The 
system level, which remained the same throughout the study, in the broader sense, refers to the policy 
statements, curriculum, textbooks, research about proof and proving. The official documentation was 
analyzed so as to collect information concerning the role of proving in primary education, the 
objectives for teaching and learning geometry, the geometrical tasks illustrated as important for 
developing geometric thinking and understanding, the approaches the ICT offers in facilitating the 
teaching and learning of school geometry. The teacher level refers to the teacher’s attitudes and 
perceptions concerning the role of proof in the curriculum and in the mathematics classroom, 
compared with what the teacher actually does in the everyday mathematics classroom.  The interview 
with the teacher aimed at exploring the teacher’s beliefs and views regarding the nature of 
mathematics, the nature of teaching mathematics and the nature of learning mathematics. The main 
research focus of Phase II was to map the current situation of the classroom. The data collection 
process included video data from the classroom observations and field notes from the informal 
discussions with the teacher. My involvement in the classroom could be described as moderate 
participation. In Phase III, the researcher collaborated with the teacher to design DGE-based tasks as 
a means to gain access to the teacher’s objectives. The tasks were the research vehicle, the window 
for generating data rather than any kind of curriculum intervention. The research instruments were 
classroom observation, informal discussions with the teacher and the DGE-based tasks. In Phase III, 
I had an active role in the classroom. My involvement was related with answering questions related 
with the tools the DGE provided, which the students had to use in order to explore the tasks, and 
asking probes. Each phase of data collection was distinct as it corresponded to specific purposes. At 
the same time, themes of interest, emerging from the ongoing analysis of each phase, also informed 
the design, implementation and analysis of the subsequent phases. The content of the curriculum 
covered during the classroom observations was the area of triangles, and the circumference and the 
area of circle.  

The overall process of analysis of the collected data was one of progressive focusing. According to 
Stake (1981, p.1), progressive focusing is “accomplished in multiple stages: first observation of the 
site, then further inquiry, beginning to focus on relevant issues, and then seeking to explain”. The 
systematization of the classroom data led to the evolution of two broad activities: (i) the activity of 

Thematic Working Group 19

Proceedings of CERME11 3732



 

 

exploration including the exploration of mathematical situations, exploration for supporting 
mathematical connections (between the content of mathematics, with which the students are engaged, 
with parts of mathematics that they would be taught in secondary school or that were taught either 
recently or in the past, as well as between classes of problems) and exploration of the DGE and (ii) 
the activity of explanation which focuses on clarifying aspects of one’s mathematical thinking to 
others, and sometimes justifying for them the validity of a statement. These activities were then 
interpreted through the lens of CHAT, by generating the activity systems of both exploration and 
explanation. Analysis of the classroom data revealed that the activity of explanation unfolded and 
expanded around mathematical definitions and defining as activity. What is the connection between 
definitions and explanation? Definitions are conventions that require no explanation. However, the 
teacher wanted reference to the attributes that involved properties. That is, the move from a definition 
involving only perception to a definition that involved properties needed explaining. The situation of 
the classroom regarding proving activity was further scrutinized by contrasting the outcome of the 
activity with the social context in which it emerged.  Instances of both congruence and diversion 
existed between the micro and macro level. 

What is the object of developing proving in the classroom? 
It has been illustrated that pre-proving activity is closely connected with exploration and explanation. 
Correspondingly, the object of developing proving in the classroom is related with these notions. The 
object has multiple manifestations for the participants engaged in the activity. Exploration is related 
with the pre-proving activity when information is revealed through the immediate feedback students 
get from the manipulation of objects. For instance, on a blank DGE window, the teacher asked the 
students to find the area of triangles. The students had the opportunity to explore this mathematical 
situation on a DGE and decide for themselves which tools should be utilized that would assist them 
in finding the area of the triangles.  

Additionally, explanation entails a process where mathematical definitions are being formulated. The 
students cannot rely only on perception as a definition in this particular classroom is considered more 
what a concept really is rather than a description of how a concept is used. For instance, the question 
“What is the altitude in a triangle?” directed the classroom towards formulating the definition of the 
altitude in a triangle.  Explanation also entails a process where the sociomathematical norms are being 
negotiated. For instance, the first lesson where the students were introduced to the area of 
mathematics related with circle, was initiated by a question. 

Teacher: What is circle? 

Student: It is a shape that does not have sides or angles. 

Teacher: I draw a circle according to this definition. (The teacher draws a non-regular shape 
with curved lines.) 

Student: This is not a circle. 

Teacher: We said that in mathematics our definitions must be accurate.  

Students are expected to use precise mathematical language when communicating their ideas as well 
as when writing coherent geometrical explanations, clarifying aspects of their mathematical thinking 
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to others, as well as justifying for them the validity of a statement. For instance, following the 
classroom discussion on defining circle, the teacher asked students to determine whether several 
shapes illustrated on the whiteboard were circles. 

Teacher: Is this a circle? 

Student: No.  

Teacher: I do not accept your answer. Why? 

Student: There … on the right ... the other shapes are not circles because their center does 
not have the same distance from their circumference. 

As proofs begin with an accepted set of definitions and axioms, it can be argued that ultimately all 
proofs depend on the underlying definitions and the earlier results derived from these definitions. 
Thus, understanding and explaining these definitions is a prerequisite when approaching a proof. For 
instance, after the class reached a conclusion regarding the mathematical formula for the 
circumference of circle and made hypotheses concerning the mathematical formula for the area of 
circle, the teacher gave each pair a circle divided in either 8 or 10 pizza pieces, commenting that they 
could use the pizza slices to explore the area of circle.  

Student: We finished. Can we tell you? Radius times half the circumference. It’s a rectangle 
thus the length is the radius and the width is half the circumference because it’s 
half.  

In addition, making forward connections provides more information and knowledge about the 
axiomatic system in which the classroom community is working. Forward connections also 
strengthen the formulated definitions. For instance, after the class explored the number of altitudes in 
a triangle, the teacher made the following comment: 

Teacher: This is what I was trying to achieve. All the altitudes pass … this is not part of our 
curriculum but part of the mathematics curriculum of secondary school, but it’s 
good for you to know because it helps you. A triangle has three altitudes. Form each 
vertex I can construct an altitude to the opposite side. 

Consideration of the aforementioned manifestations of the object leads to the conclusion that the 
object of the central system of pre-proving activity is related with exploration that leads to explaining 
and justifying for a specific part of the mathematics curriculum. Nevertheless, the object is 
simultaneously hindered due to the dichotomies, tensions and conflicts. At a first glance, this object 
seems to be clear and distinct. However, this object is multifaceted. The teacher on one hand 
understands the importance of providing enjoyable exploring opportunities that keep students’ 
motivation and interest to engage with the problem. As a result, the teacher provides opportunities 
that can be approached by the students in their own way. On the other hand, students, through the 
exploration of these opportunities are expected to reach those conclusions regarding triangles and 
circles as pre-determined by the teacher. The two poles of the object lead to a constant struggle in the 
teacher’s everyday practice. The teacher, due to this multifaceted object, is faced with the play 
paradox (Hoyles & Noss, 1992) as well as the planning paradox (Ainley, Pratt, & Hansen; 2006). As 
a result, teacher would at times decide to close down an exploration opportunity. For instance, after 
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exploring the circumference and area of circle, the teacher, asked the students to find a relationship 
that related the circumference and the area of the circle. Soon after that she asked them to prove 
mathematically that the ratio area/circumference of a circle is r/2.  In a similar way, the object of the 
activity of explaining as part of pre-proving is multifaceted. The object for the teacher is twofold: 
explaining mathematical procedures and explaining related with ‘proving’. On one hand, the teacher’s 
object is related with engaging students in formulating definitions (of concepts and formulas) in the 
same way that mathematicians do. In order for these definitions to become operable for the students, 
they need to focus on the properties required. Thus, this process includes a continuous interplay 
between the concept image and the concept definition, promoting the characteristics of definitions 
and making the distinction between ‘ordinary’ and mathematical definitions. Even though the above 
facilitate the justification of statements, a tension within the object arises. That is, ensuring that the 
classroom engages in the construction of stipulated definitions and that these definitions are not just 
descriptive for the students seems to be competing with moving to justification based on these 
definitions. Furthermore, even though the teacher is embracing this object, she is simultaneously 
faced with the play and planning paradoxes, influencing the way she intervenes while this process of 
explaining and justifying develops in the classroom. If the students’ argumentation leads to a 
discussion that diverts from the teacher’s object, the teacher may decide not to take advantage the 
opportunity that arises, for further engaging students in explaining and justifying.   

Identifying points of contradiction 
Tertiary contradictions appear between the object of activity in a central activity and the ‘culturally 
more advanced’ activities. Analysis of the micro activity system as a classroom which is nested within 
the system level such as the institutional level in which the school is part of, as well as the cultural-
historical level which is involved with the available research literature results into identification of a 
tertiary contradiction due to a differentiated object. The two poles of the object of the central activity 
of the classroom related with pre-proving activity will unavoidably clash with the object of pre-
proving activity as identified in the system level. Initially, a contradiction between the classroom 
level and the institutional level resides in the fact that there is no clear identification of an object 
related to proving. That is, analysis of the official documentation indicates a general object of 
mathematical activity that is not necessarily in accordance with the object of the teacher related to 
pre-proving activity. To be more precise, the information collected from the official documentation 
points to low level of expectation with regards to exploration and investigation in problem solving in 
Year 6. Analysis of the report of the official documentation shows that proof and proving is not being 
acknowledged as a key criterion, nor mentioned in the mathematics curriculum. Furthermore, 
explaining and justifying points to an explanation being given by providing the mathematical 
operations used to find the answer and the justification being provided by using the definition. Adding 
to the above, there is no formal requirement regarding definitions. Definitions as approached by the 
official documentation are descriptive and extracted. This is not in accordance with the teacher’s 
practice where definitions play a vital role. One may argue that a consideration of the educational 
objectives, as pre-determined by the mathematics curriculum, leads to the conclusion that the outcome 
of the teacher’s practice is the one intended by these objectives. However, in order for this to be 
achieved, the pre-proving activity is narrowed down. Thus, for instance, providing answers based on 
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definitions and properties of shapes clashes with providing explanations based on the conceptual 
aspects of the definitions and the shapes. In a similar way, this tertiary contradiction concerns the 
cultural-historical level as well. Even though at a first glance the teacher’s objects seem to be in line 
with the established research literature related with proving, the dilemmas the teacher needs to 
confront, as well as the ambiguity of the notion of proving existing at the institutional level, clash 
with the cultural-historical level.  

Discussion and conclusions 
A consideration of the above rationally points to the inference that the advanced form of the central 
activity object is not yet the dominant form of the activity. Thus, it can be argued that a first step 
towards a unification of these activities should be the resolution of the tension that exists within the 
macro system. Would providing a mathematics curriculum, which defines its object concerning 
proving and defining activity by incorporating crucial elements from the research literature, lead to a 
desired outcome?   

The discussion regarding tertiary contradictions reveals the value of this concept in understanding 
systems of activity. By identifying the manifestation of contradictions through the materialized 
tensions, a holistic view of the phenomenon under investigation emerges. It is accepted that not all 
emergent contradictions can be resolved simultaneously. While a resolution exists for some 
contradictions, others are suppressed. That is, the contradiction on the teacher’s object is continually 
present, surfaces in the teacher’s everyday practice in various forms and is foundational to the other 
levels of contradiction. However, since this contradiction remains, the discussion should be centered 
on the means that the teacher can turn to for a possible and fruitful resolution of the contradictions 
that emerge in the other levels. Elaboration of the emergent tertiary contradictions leads to asking 
whether a possible balance between the macro level would be an aid in the resolution of the tensions 
manifested as contradictions in the micro level. Due to the way the aforementioned forces impact on 
the classroom activity, providing a straightforward answer is not an easy task. Undoubtedly, as it has 
been exemplified, proof and proving might be encouraged in all school levels. This indicates that 
exemplification of the role of proof, explanation, exploration and definitions might be included in the 
mathematics curriculum and the relevant curriculum material.  Perhaps, a clear connection between 
the aforementioned would relieve, to an extent, the teacher from paradoxes. That is, knowing that the 
above aspects of mathematical reasoning might not be necessarily competing with each other and 
may be the way for a resolution of the play and planning paradoxes, as the purpose and utility 
underlining the task design would not clash with the object of the central activity system (Ainley et 
al., 2006).  

Adding to the above, the fact that the official documentation is implemented in the classroom by the 
teacher points once again to the crucial role of the teacher. Specifically, the above findings further 
highlight the role of the teacher’s knowledge about proof in mathematics teaching. Keeping in mind 
the findings of this study related with definition construction as part of pre-proving activity, it is 
important to consider essentially that the types, the characteristics and functions of mathematical 
definitions should be taken into account when understanding and describing the mathematical 
knowledge for teaching when engaging students in proving activity. Would this element of 
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knowledge enable mathematics teaching to support desirable student learning outcomes in the domain 
of proof and in mathematics more broadly?  
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In this paper we investigate how a group of six mathematics teachers in Greece deals with the need 
to balance work on mathematically demanding tasks and differentiation in lesson planning and 
enactment. Videotaped lessons and pre and post reflection interviews were analysed with a specific 
focus on whole class discussion. The findings show certain teaching practices that appear to promote 
both mathematical challenge and differentiation and emerging patterns of actions that make the 
challenge accessible to students. 

Keywords: Mathematically challenging tasks, whole class discussion, differentiation. 

Introduction 
Research on challenging tasks and differentiation has contributed to deepen our understanding of 
teaching. The former explored ways to engage students in rich mathematical activity through tasks 
advancing their thinking and reasoning (Stein, Smith, Henningsen, & Silver, 2000). The latter pertains 
to research in differentiating teaching so as to engage all the students in mathematically productive 
learning experiences (Sullivan, Mousley, & Zevenbergen, 2006). Bridging challenging tasks and 
differentiation constitutes an area that is not explored at the research level. However, it seems to be 
at the core of everyday teaching since working with rich mathematical tasks requires taking into 
account explicitly how all students could be engaged with them both at the level of lesson planning 
and enactment. Whole class discussion can be seen as a terrain providing fertile opportunities to study 
in what ways teachers might work at the intersection of mathematical challenge and differentiation. 
During whole class sessions a teacher faces the need to preserve a mathematically productive 
discussion and at the same time to respond to diverse students’ abilities, learning styles and paces 
(Sullivan, Mousley & Zevenbergen, 2004). The present study aims to address this issue by focusing 
on mathematics teachers’ attempts to work at the intersection of mathematical challenge and 
differentiation while designing tasks and orchestrating whole class discussions in their classrooms. 
The research question is: “How do teachers attempt to balance mathematical challenge and 
differentiation in whole class settings?” 

Theoretical framework  
Challenging tasks are those that require students to: process multiple pieces of information with an 
expectation that they make connections between those pieces and see concepts in new ways; explain 
their strategies and justify their thinking to the teacher and other students; engage with important 
mathematical ideas; and extend their knowledge and thinking in new ways (Stein et al., 2000). 
Working with challenging tasks seems to be rather demanding for the teachers at the level of design 
and enactment. Lesson planning involves design of tasks that support a learning trajectory and extend 
students’ thinking (Sullivan et al., 2006). Handling the enactment of challenging tasks during whole 
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class sessions requires specific actions by the teacher to support students’ mathematical discourse. 
These involve talk moves such as revoicing, repeating, reasoning and adding on (Chapin, O’Connor, 
& Anderson, 2009) as well as key practices such as anticipating, monitoring, selecting, sequencing, 
and making connections between student responses (Stein et al., 2008). Stein et al.  (2000) proposed 
three paths to describe how teachers handle the demands of challenging tasks in their lessons: 
lowering, maintaining, or increasing the challenge. 

Differentiation is a process of aligning learning targets, tasks, activities, resources to individual 
learners’ needs, styles and paces (Beltramo, 2017). In supporting teachers in dealing with 
differentiation issues at the level of lesson planning existing literature suggests focusing on content, 
process, and product (Tomlinson, 2014) or providing enabling prompts to support students 
experiencing difficulty and posing extension tasks for students who finish the tasks quickly (Sullivan 
et al., 2006). Researchers suggest that the goal of addressing differences between students in lesson 
enactment can be effectively carried out by building of “a sense of communal experience” (ibid, p. 
118) where all students benefit from participation on common discussions.

Whole class discussion constitutes a phase of the lesson enactment where mathematical challenge 
and differentiation can be at interplay providing opportunities for further study. According to Dooley 
(2009), whole class discussion is both emergent because the outcome cannot be predicted in advance 
and collaborative because it is the outcome of the collective activity between the teacher and the 
students. Focusing on the tensions involved in teachers’ attempts to build on students’ ideas for 
mathematically productive class discussion, Sherin (2002) highlights the need to maintain the student-
centered process of mathematical discourse and to direct the content of the mathematical outcomes. 
In the present study our focus is on teachers’ actions to balance mathematical challenge and 
differentiation in this rather complex part of the lesson.  

Methodology 
EDUCATE is a professional development (PD) European project aiming to support teachers to 
engage all their students in challenging tasks. To achieve this goal, four partners/university teams 
from different countries collaborate to develop teacher education activities and materials. The current 
study took place in the introductory phase of the project where the partners’ aim was to explore 
teachers’ needs and challenges in relation to working with challenging mathematical tasks and 
differentiation without being engaged in any teacher education/PD activity. In this paper, we use the 
data collected in Greece and it involves the teaching of six practicing secondary school mathematics 
teachers (Adonis, Eugenia, Markos, Gianna, Kosmas, Takis, all pseudonyms) who participated in the 
study in a volunteering base. All of them were experienced, qualified teachers but without any PD 
professional development experience related to address together mathematical challenge and 
differentiation. Their years of experience ranged from 10–25 years at the time of the study. Three of 
them worked in experimental schools and the rest of them in typical public schools. Also, three of 
them were teaching in lower secondary and the rest in upper secondary school classes. One of them 
had a doctoral degree in mathematics education (Kosmas), three held a master’s degree in 
mathematics education (Adonis, Markos, Gianna) and one held a master’s degree in pure mathematics 
(Takis). All teachers had collaboration with the university team either during their studies or through 
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their participation in other research projects. Participants were informed about the project 
rationale/aims and they were asked to design challenging tasks and enact them as part of their 
everyday teaching with the goal to engage all their students. They were also informed that we were 
interested in the challenges and difficulties encountered by them when implementing these tasks 
without further details on how to proceed with this goal.  

Data collection included: video-recording of two lessons for each teacher (12 video-recordings in 
total); pre- and post-lesson reflections/interviews (12 in total); teachers’ designs for their lessons (e.g., 
worksheets, digital resources) and students’ work. The recorded lessons lasted one teaching hour (45-
50 minutes) and were carried out between December 2017 and January 2018. Under a grounded 
theory approach (Charmaz, 2006), we analysed lesson planning and enactment with a particular focus 
on whole class sessions considering the setting up of the task and the discussion of students’ solutions. 
Balance of mathematical challenge and differentiation in teachers’ designs was addressed by 
triangulating the analysis of teachers’ lesson plans, teaching materials and pre-lesson reflections 
focusing on (a) the designed tasks, (b) the used resources and (c) the decisions related to classroom 
implementation (i.e. group work, role of teacher, classroom norms). In the videotaped lessons, we 
identified episodes indicating a balance between mathematical challenge and differentiation. 
Mathematical challenge was originated either by the task itself, a student’s query or the teacher’s 
extending prompt or question. Differentiation was expressed by the teacher’s attempts to make the 
challenge accessible to all students. Shifts in the students’ engagement with the challenge in the 
episodes were identified (by us) mainly by interpreting students’ progressive participation in the 
mathematical discourse.  

Results 
In the first part of this section we analyse teachers’ designs. In the second part we present selected 
episodes from classroom observations indicating a balance between mathematical challenge and 
differentiation. Our focus is on the teaching actions and their interplay that indicate a process of 
making the challenge accessible to all students and not on cases where this was not evident. 

How mathematical challenge and differentiation were balanced in lesson planning 

Εach lesson was based on a sequence of tasks and activities to be undertaken by students so as to 
support each teacher’s learning goals. Most tasks (21 out of 25) can be characterized as challenging 
offering opportunities to students to: model an everyday situation through arithmetic, algebraic and 
geometrical relations (Markos – 7th grade, Adonis – 7th grade, Gianna – 10th grade, Eugenia – 8th 
grade); link algebraic and geometrical representations (Kosmas, 10th grade); or conjecture and prove 
a geometrical property (Kosmas – 10th grade, Takis – 10th grade).  

Analysis of teachers’ pre-lesson interviews allowed us to identify their goals and actions for 
proactively planning the level of mathematical challenge and support provided to meet different 
students’ needs. As regards the mathematical challenge, the teachers attempted to integrate it in their 
didactical designs and make it accessible to all students through the following planning actions: (a) 
Designing tasks with multiple solutions and different entry points. For example, Kosmas asked 
students to use both algebraic and geometrical ways to solve equations with absolute values. The 
teacher knew that there were students (e.g., Maria) who could easily handle the geometrical way 
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while they had difficulties in the algebraic. The teacher considered the use of the geometrical way as 
challenging as it required a deeper understanding of the meaning of absolute value. Offering different 
entries for the students was related to the process of exploration often in the context of open and/or 
modelling problems. For example, Eugenia designed a modelling task on estimating the height of the 
classroom as an application of the tangent trigonometric notion. (b) Using different kinds of resources 
(e.g., manipulatives, digital applets, diagrams, typical and non-typical measuring instruments) to 
facilitate the making of connections between different representations. Markos, for instance, used 
digital tools (Algebra Arrows applet) to facilitate students’ focus on the structure of arithmetic and 
algebraic expressions. Eugenia offered a hand-made protractor (a measuring instrument originated in 
the ancient Greek mathematics) and she commented about the critical role of this tool in mediating 
the conceptualization of the notion of tangent ratio. (c) Creating an inclusive and mathematically 
challenging learning environment by encouraging students to share their work in groups and in whole 
class discussions and avoiding evaluative comments. These actions were included in different ways 
in all teachers’ didactical agendas. For example, Eugenia attributed emphasis to the roles and 
responsibilities she assigned to the students in each mixed ability group according to their 
mathematical backgrounds and interests.  

How mathematical challenge and differentiation were balanced in lesson enactment 

The episodes that follow are chosen to indicate illustrative ways by which the teachers stimulated the 
mathematical challenge and attempted to balance it with differentiation in different phases of the 
lesson. Episode 1 is selected from the setting up of the task and the challenge is based on the teacher’s 
strategy. Episodes 2 and 3 are taken from the discussion of students’ solutions and the starting point 
was students’ difficulties or unexpected responses. In parentheses (italics) we characterize teachers’ 
actions and at the end of each episode we summarize the teachers’ actions. 

Episode 1: Stimulating the key mathematical idea by exploring the validity of students’ responses 

This episode took place in one of Kosma’s lessons in Geometry (10th grade). The task given to the 
students was the following: “How many degrees is the sum of the three angles of a triangle? How can 
we be sure about the answer?” (In the worksheet, there is an oblique triangle drawn and a triangle 
with an obtuse angle). In this task the challenge concerned the students’ engagement in appreciating 
the need for proof. In the episode, we see how Kosmas promotes the challenge and at the same time 
the way that he formulates the task to allow the engagement of all students.  

The teacher asks the students: “Are we sure that the sum of the angles of a triangle is 180 degrees?” 
(stimulating the challenge). Although most of the students reply that they know it from previous 
grades, Alexis, one of the students having usually limited participation in the lesson, suggests to prove 
it by measuring. The teacher asks him “If you measure the angles do you think that you will find 180 
degrees?” and he asks all students to draw triangles and measure their angles by the use of a protractor 
(valuing students’ ideas by addressing them to the whole class; encouraging empirical solutions). 
Alexis finds 179 degrees and other students 178, 179, 180, 181. The teacher writes these responses 
on the board (recording and discussing all students’ answers) and asks students: “How can we be 
sure? It seems that we cannot be sure by measuring” (refuting the empirical solutions). Through these 
actions the teacher seems to point out the key mathematical idea to the students by building on Alexis’ 
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suggestion for an empirical measurement. He intentionally accepts Alexis’ suggestion and invites all 
students to perform measurements in different triangles. Next, he records all students’ answers on the 
board as a way to question the validity of the approach. In his pre- and post-lesson reflection the 
teacher mentioned that he targeted the empirical justification to be discussed: “The discussion was 
what I wanted as the responses varied. It also went well since most students were involved, also by 
working in groups felt less exposed to evaluation” (Kosmas’ post-lesson reflection). In this episode, 
the teacher stimulates the mathematical challenge of the task, encourages students to explore an 
inappropriate idea coming from a student, summarizes their responses, provokes the refutation and 
reinforces the challenge. 

Episode 2: Using digital resources to address mathematical challenge and students’ difficulties 

This episode took place in one of Markos’ lessons (7th grade) about the structure and equivalence of 
arithmetic and algebraic expressions through their connection to a realistic situation. The task and the 
corresponding questions revolved around the idea of describing an everyday situation (Maria’s 
account balance after shopping) with different ways through simple arithmetic expressions (initially) 
and algebraic ones with the use of one and more than one variables (subsequently). The problem 
situation is described as follows: “Maria has 500€ in her bank account. She bought meat that cost 
10€. She also bought fish that cost 20€. She used her debit card and received a message from her bank 
on her mobile, informing her that her account balance is 470€”. The challenging dimensions of the 
task were related to the use of a realistic situation as a context of reference in conjunction with a 
multi-representational applet (Algebra Arrows) to identify the structure of arithmetic and algebraic 
expressions. We note that the construction of expressions in the environment is concretized by 
connecting Input/Output fields (including numbers or variables) to operation fields through the use 
of arrows. The environment provides the final result of the calculation as well as its structure (that is 
represented through arrows and symbolically). The students – who were familiar with the use of the 
applet - were given a worksheet involving the questions and a printed representation of the work area 
of Algebra Arrows. They worked in groups for about 5 minutes on a specific question with paper and 
pencil on the worksheet. After each group work session, the teacher used the Algebra Arrows 
representations (provided through a projector) to discuss students’ solutions/reflections in a whole 
class discussion. 

The episode took place after students describing the account balance and their relation [the 
expressions were: 500–10–20 and 500-(10+20)]. The class discussion concerned the students’ 
solution to the questions: “If it is not known the initial amount of Maria’s money in her account, 
construct through the use of Algebra Arrows two different expressions to describe the amount of 
money left in the account. What is the relation between the two expressions?” During the preceding 
group work session the teacher knew that the group 1 students (4 girls) had written correctly two 
expressions using variable for describing the situation – i.e. x-(10+20) and x-10-20 – but they faced 
difficulty to consider them as equal. The teacher invites the students to discuss about the solutions in 
a whole class session. Before constructing the two expressions with the applet, he asks the students 
what are these expressions (stimulating all students to provide the solution). One student answers: 
“x-(10+20) and x-10-20”. Then Markos constructs the two expressions with the applet and asks 
students to provide the answer before this is projected (using multiple and interconnected digital 
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representations to justify an answer). Next, he comes back to the group 1’s concern posing the 
question they discussed during autonomous work to the whole class showing the two fields in the 
applet: “Girls, I remember that earlier you were concerned if it is the same ‘x’ that appears here [in 
the expression x-(10+20)] and the ‘x’ that appears there [in the expression x-10-20)]. This is a 
question for the whole class. I ask: Does this ‘x’ express the same thing?” (posing an individual 
student difficulty to the whole class; stimulating all students to reflect on the provided 
representations). One student (Nick) replies: “They are the same as they are connected with the same 
field – entitled Maria’s Money: x - in the applet”. The teacher indicates that both expressions are built 
by using the same field symbolized as ‘x’ (revoicing the correct answer): “Look the arrows starting 
from the cell containing Maria’s initial amount of money. We speak about Maria’s money in both 
expressions (linking the digital representations to the realistic context). In this episode, the teacher 
brings an individual student’s difficulty in the whole class through the use of digital representations, 
stimulates all students to reflect on the provided representations, revoices a student’s correct answer, 
strengthens the challenge by providing links to the realistic context. 

Episode 3: Building on students’ unexpected responses to extend the challenge for all students 

This episode took place in one of Adonis’ lessons (7th grade) about the exploration of the binary 
number system in the context of a real problem with three questions. The task context is a flour mill 
in the 19th century. The owner (the miller) has only one weight of 1kg, one of 2kg, one of 4kg, one 
of 8kg and one of 16kg. He claims that he can weigh sacks of flour until 31kg using these weights. 
In the first two questions, the students are asked how the miller weighs (1) a sack of 18kg and (2) 
sacks of 1, 2, 3, … 31 kg (table is given to be filled in). The third question is how many kilos were 
contained in a sack where the miller has written on it the number 1011. Before the episode, the teacher 
had explained how weigh scales were used in the 19th century. The students completed the first and 
the second question rather easily. The mathematical demand increased in the third question when the 
students had to identify how the binary system ‘works’. The teacher draws a sack on the blackboard 
and besides he writes the number 1011 and asks: “What does the number 1011 mean?” (stimulating 
the challenge). Fenia provides the following answer: “The number 1011 means that the miller used 1 
weight of 16kg, none of 8kg, 1 of 4 kg and 1 of 2kg”. The teacher asks students if they agree with 
Fenia (valuing students’ ideas by addressing them to the whole class). Students provide different 
wrong responses (e.g., “It means 1kg and 11gr”, “It means the price, 10Euros and 11cents”). In the 
realm of the rich discussion where different opinions were expressed, Ian suggests: “Perhaps we have 
to start from the right. One weight of 1kg, 1 weigh of 2kg, none weight of 4kg and 1 weight of 8kg”. 
This idea created uncertainty among the students, and it was also unexpected for the teacher (“I 
couldn’t decide immediately how to handle it. I let the discussion to continue and I think that finally 
we reached a consensus”, Adonis’ post-lesson reflection). The teacher writes Fenia’s and Ian’s 
responses on the board to make them accessible to all students (recording students’ responses on the 
board). Then he invites all students to compare these two solutions focusing on the place value of the 
digits (stimulating the key mathematical idea). He proposes to look at the tables they had filled on the 
distribution of weights from 1Kg to 31Kg in the previous question and asks students to find the place 
value of each digit (linking the key mathematical idea to a previously answered question). The teacher 
writes on the board upon each digit the values that the students provide (1, 2, 4, 8 from left to right). 
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The disagreement is still evident in the discussion and it is made explicit by one student who says: 
“We do not know if the miller represented the weights by writing the digits from left to right or vice 
versa”. Most of the students seem to consider it as a dilemma. The teacher invites – for first time - a 
high achiever (Tom) who raised his hand in all questions. Tom says: “The value of each digit depends 
on its place and the number system that the miller uses”. The teacher revoices Tom’s opinion 
emphasizing that the value of each digit depends on its place. There are students still providing wrong 
answers about the place value of the digits. The teacher writes on the board an integer (i.e. 1357) in 
the decimal number system and asks the students to find the place value of each digit (simplifying the 
initial challenge through a familiar case). A lot of students provide correct responses ,but the teacher 
brings back the challenge: “Why do I have to accept it? How do we know what is the value of each 
digit?” (bringing back the challenge). The teacher addresses students who are reluctant to respond 
(giving voice to silent students). One of these students says: “We know it as a rule” and another one 
adds: “We have defined it. We have agreed to use it this way”. The discussion continues this way and 
more students participate. The teacher continues to bring as examples integers from the decimal 
number system (simplifying the initial challenge) and invites students to compare the two systems 
(extending the challenge). In this episode, the teacher brings a challenging issue by an individual 
student in the whole class, stimulates all students’ reflection, gives voice to silent students, makes 
links to familiar representations and extends the challenge by inviting students to make comparisons.  

Conclusions  
In this study we focused on teachers’ attempts to balance mathematical challenge and differentiation. 
Mathematical challenge was targeted by all teachers through the design of mathematically demanding 
tasks and the use of different resources (e.g., realistic contexts, diagrams, concrete materials, digital 
representations) to engage students in exploring, connecting and reflecting. During lesson enactment 
the teachers’ approaches to stimulate the challenge involved building on students’ ideas (revoicing, 
rephrasing, reformulating) as well as scaffolding by simplifying (e.g., bringing a familiar 
case/situation) and extending in a dynamic way (e.g., comparing different 
approaches/solutions/representations). Valuing students’ contributions and addressing them to all 
students appears at the core of teachers’ orchestration of the whole class discussion. The teachers 
appear to use students’ ideas (e.g., difficulties, indications of high-level reasoning) as a basis for 
communal reflection through the following actions: making the challenge accessible to students; 
recording all students’ answers; inviting students to connect different solutions; questioning proposed 
ideas; and favoring the development of an inclusive learning environment (e.g., encouraging silent 
students to participate). As regards the existence of some patterns in teachers’ approaches to balance 
mathematical challenge and differentiation, our analysis reveals a dynamic interplay of actions 
moving back and forth between providing challenging questions and prompts. Far from being 
characterized as linear, this process indicates underlying ‘zig-zag’ patterns related to the complexity 
of teaching practice when the teacher aims to keep the challenge and at the same time to maximize 
learning opportunities for all students. This is an interesting finding that needs further exploration 
taking into account that in existing literature teachers’ attempts to enact highly demanding tasks have 
been characterized with an emphasis on the part of mathematical challenge at a global level 
(upgrading/downgrading, lowering/maintaining/increasing, Stein et al., 2000). Our analysis indicates 
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the need to take a more detailed look on teachers’ actions and on the spot decisions while working at 
the intersection of mathematically demanding tasks and differentiation. 
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In this paper we present and illustrate a framework for analyzing the relation between teachers’ 
actions and students’ meaning making in mathematics. We adopt a pragmatic perspective on 
learning, and a methodological approach using already analyzed material, to see whether and how 
the framework of epistemological move analysis can contribute when analyzing the relation between 
teachers’ actions and students’ meaning making. The results suggest that epistemological move 
analysis can be used to identify teachers’ purpose in students meaning making in mathematics, by 
analyzing students’ responses. Further, it makes it possible to identify what earlier knowledge 
students use, and how they use it, to re-actualize mathematical objects, relations and concepts.  

Keywords: Mathematics teaching, meaning making, pragmatism, epistemological move analysis. 

Introduction 
The teacher plays a major role in making classroom talk the arena for learning mathematics and 
teachers’ interactive strategies are central to how students become engaged in math-talks in a 
classroom practice (Walshaw & Anthony, 2008). To succeed in eliciting and extending students’ 
mathematics, a teacher should encourage the mathematical activities of analyzing, making 
connections, and generalizing (Fraivillig, Murphy, & Fuson, 1999). It has been proven important that 
a teacher stimulates students to struggle with important mathematics by challenging them with non-
routine tasks and trying to find out more efficient solution methods (Hiebert & Grouws, 2007). 
However, providing successful math-talks in practice can be challenging. Teachers tend to funneling 
(Bauersfeld, 1998) students’ responses towards the answer they want, blocking them from being fully 
engaged in math-talk (Brodie, 2011). Also, rather than addressing problems in terms of the underlying 
concepts, students address problems mainly in terms of what they think that the teacher is expecting 
(Millar, Leach, & Osborne, 2001).  

Talk-based teaching of mathematics is a complex teaching practice, calling for the need of theoretical 
constructs that take serious the social and interactive nature of teaching and learning (Lerman, 2000). 
However, concerns have been raised that a focus on social and interactive issues in mathematics 
teaching may steer away learning from content (Lerman, 2006). For instance, analyses of practices 
or activity systems common in sociocultural traditions tend to focus on what is done in a general 
objective (Bakker, Ben-Zvi, & Makar, 2017), which leaves little room for fine-grained analysis of 
how students make sense of mathematical content.  

In the present paper we use a pragmatic perspective on learning (Dewey, 1929/1958) as a starting 
point, where meaning making is considered to emerge “in the process of doing and undergoing the 

Thematic Working Group 19

Proceedings of CERME11 3746



 

 

consequences of action” (Rudsberg, Öhman & Östman, 2013, p. 600). Based on this perspective the 
aim of this paper is to present and illustrate a framework that enables detailed investigations of 
teachers’ role in directing students’ meaning making processes of mathematics in talk-based 
teaching. The methodological approach in this paper is to use already analyzed material to see 
whether and how the framework can contribute when analyzing the relation between teachers’ actions 
and students’ meaning making. We aim to clarify and investigate both social and individual aspects 
of the meaning making process in mathematics, in a descriptive manner.   

Theoretical background  
A pragmatic perspective on meaning making: The first question to be addressed is how to 
understand learning and meaning making in classroom practice. Often the visibility of such processes 
is seen as a central problem (Östman & Öhman, 2010), for example the problem of not knowing what 
the students have in mind. The problem of visibility is often connected to a view of learning as 
something mental, something that takes place in the student’s head hidden from the observer 
(Rudsberg & Öhman, 2013). However, here we take Dewey´s theory of action (Dewey, 1929/1958)1 
as a starting point in which meaning making and learning are understood in terms of people’s actions; 
something they do, in relation to the environment and the specific situation at hand. This can be seen 
as a way to dissolve dualisms, such as, for example, between the concepts of inner mind and reality 
(Garrison, 2001). Dewey (1929/1958) describes life as a process of constant change that contains an 
active phase, doing, and a passive phase, undergoing the consequences of action. Accordingly, 
meanings are seen as the way that humans respond to the environment and they are practical in the 
sense that “we use them as means to consequences” (Garrison, 2001, p. 284). Dewey (1929/1958) 
states that meaning “is not indeed a psychic existence; it is primarily a property of behaviour” (p. 
179). Communication is seen as a coordinating activity in which the participants make something in 
common (Garrison, 2001). In this way, “meaning making emerges in the process of doing and 
undergoing the consequences of action” (Rudsberg et al., 2013, p 600) and in this process experiences 
continually changes. Continuity can be seen as the process where students re-actualise earlier 
knowledge in order to make meaning in a new situation. In the process of re-actualization earlier 
knowledge also transforms i.e., earlier knowledge is not perceived as fixed entities. Meaning making 
can thus be understood as a practical social process (Garrison 1995). Hence, in this pragmatic 
perspective meaning making and learning is possible to observe in students’ coordinating activities. 
Learning takes place when students develop a new or more developed and specific repertoire of 
coordinating activities (Semetsky, 2008).    

Epistemological move analysis: Epistemological move analysis (EMA) is based on a pragmatic 
understanding of epistemology, where it is seen as both a part and a result of human practices 
(Wickman & Östman, 2002). This means that what counts as relevant knowledge is different in 
different practices and the knowledge that is considered to be true and valid is a discursive 
construction (ibid.). EMA focuses on the relation between the epistemological moves that the teachers 
make and the students’ meaning making (Lidar, Lundqvist & Östman, 2006). An epistemological 

                                                 
1 For a more thorough elaboration of Dewey’ theory of action and its use, see, for example, Östman and Öhman (2010). 
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move can be defined as the way a teacher’s utterance affects a student’s meaning making in an 
educational situation, that is, the way a teacher’s actions facilitate a certain meaning making. In other 
words, how a teacher’s answer to, and/or evaluation of, a student’s utterance affects the student’s 
meaning making. EMA has been used in educational practices of, for example, science education 
(Lidar et al., 2006). From previous research, we can delineate at least five different types of 
epistemological moves: confirming, re-constructing, instructional, generative, re-orienting (ibid.)2.  

As described above EMA enables investigations of the relation between the teacher’s actions and 
students’ meaning making in mathematics. In order to investigate students’ meaning making EMA 
includes Practical Epistemology Analysis (PEA) (Lidar, Lundqcist & Östman, 2006). That is, EMA 
can be seen as a development of PEA with a specific focus on the role of teachers’ actions. EMA 
aims at giving account of both the content and the processes of students’ meaning making in relation 
to the teacher’s moves. In the analysis of students’ meaning making four central components are used; 
encounter, gap, stand fast and relation (Wickman & Östman, 2002). Teaching takes place in 
situations where students encounter their environment and interact with, for example, other students 
and the teacher. The interaction is made in relation to the purpose of the activity. That is, the first step 
of the analysis is to clarify what the student encounter and the purpose of the activity. In education, 
students sometimes do not immediately know how to proceed, i.e., the students cannot proceed by 
habit and a gap occurs. In teaching situations, a gap becomes visible when for example the teacher 
asks a question or when the students hesitate. In order for the interaction to proceed the gap needs to 
be filled, by, for example, responding to a question. This is done in the process of re-actualization. In 
the process of re-actualization the students bridges the gap by creating relations between their earlier 
knowledge, what stands fast, and the problem at hand. That is, the students’ earlier knowledge 
becomes actualized in a new situation. The earlier knowledge becomes visible in the educational 
practise as the students use knowledge without hesitation and no explanations are needed. The 
relations created by the students constitute the content of the individual’s meaning making.  

In our analysis we focus on the relation between the teacher’s actions and students’ meaning making. 
The teachers’ actions, for example, giving instructions, asking questions or making comments, can 
be seen as guidelines that direct the students’ meaning making in a certain way. These actions made 
by the teachers indicate both what counts as knowledge and appropriate ways of acquiring this 
knowledge in the specific educational practice. Here it is important to notice that we categorize 
teachers’ epistemological moves in terms of the function they have for the students’ meaning making. 
On this account, we have analyzed whole events in order to clarify the differences between students’ 
utterances before and after the teacher’s actions. An event consists of a sequence consisting of three 
turns, including (1) a student’s actions, (2) teachers’ actions that encourage a student’s action, and 
(3) a student’s actions after the teacher’s actions (Klaar & Öhman, 2014).  

                                                 
2 The moves identified in this study will be described in the analysis; for a description of earlier identified epistemological 

moves see, for example, Lidar et al. (2006) and Rudsberg and Öhman (2010).    
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Illustration of EMA in mathematics education 
To illustrate epistemological move analysis we use two examples from Blanton’s and Kaput’s paper 
focusing on classroom practices in algebraic reasoning (Blanton & Kaput, 2005). These examples are 
rich in mathematical content, given that the characterization is built on features of algebraic 
reasoning. Blanton and Kaput aim to “understand those types of instructional practice that indicated 
a generative and self-sustained capacity to build on students’ algebraic reasoning” (ibid, p. 416). From 
this study we have chosen examples from audio-taped classroom talks. To identify the teacher’s 
purpose of these classroom talks, the authors have studied notes by and interviews with the teacher. 
By using epistemological move analysis we can study the relationship between the purpose that the 
teacher expresses and the purpose visible in how the student responds to his/her moves. Blanton’s 
and Kaput’s paper includes several examples of principles for task-design and indications on what 
kind of question the teacher should ask to promote algebraic reasoning. However, their intention is 
“not to address how June’s practice affected student achievement; this would require a more detailed 
look at how her actions played out in the classroom and how students were involved” (ibid, p. 435). 
In this paper we aim to employ such a detailed look by analyzing how the teacher’s epistemological 
moves direct and support students’ meaning making. This way we can clarify students’ meaning 
making concerning both process and knowledge content in the actual situation. Important to notice, 
however, is that we do not investigate whether or not this change is of long term. 

Algebraic treatment of number: In reviewing homework of addition tasks, the teacher shifts focus 
to properties of even and odd numbers and, during this sequence, there is an encounter established 
between the teacher (June) and two students (Tony and Jenna). In the first part of this encounter a 
scheme of even and odd numbers is used. The teacher’s purpose is that the students should find an 
algebraic principle of parity in adding odd and even numbers. This aim becomes visible when the 
teacher uses large numbers to guide Tony to use an algebraic principle instead of computation that 
specifies even and odd numbers. The transcript (ibid.) used in this illustration is the following: “June 
challenged a student’s use of arithmetic strategy to deduce that 5+7 was even:  

1 June: How did you get that? 
2 Tony: I added 5 and 7 and then I looked over there [pointing to a visible list of even and 

odd numbers on the wall] and saw that it was even. 
3 June: What about 45678+85631? Odd or even? 
4 Jenna: Odd. 
5 June: Why? 
6 Jenna: Because 8 and 1 is even and odd, and even and odd is odd.” (p. 422). 

Teacher “spontaneously shifted the focus from computing sums to determining if the sum of two 
numbers would be even or odd. When students responded by first computing the sum to determine if 
it was even or odd, June began to use numbers that were sufficiently large so that students could not 
compute. Instead, they were forced to attend to the structure in the inscriptions themselves.” (ibid, p. 
417). The gap in this encounter is between the use of addition in order to determine if the sum is even 
or odd and the ability to use an algebraic principle in order to determine if the sum will be even or 
odd. The gap becomes visible when the teacher (line 3) uses large numbers. 
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The students are able to make arguments on the parity of sums of odd and even numbers without 
using computations. The stand fast can be regarded as computation of specific numbers and using the 
list on the wall to determine odd and even numbers. This is re-actualized into the ability to use 
numbers as placeholders, or variables, for any odd or even number. This change is made because of 
the teacher’s epistemological moves in line 3 and 5. Together these moves enabled the student to 
change the way of determining if a sum of two positive integers will be even or odd. Hence, the 
student has made new mathematical meaning about the structure of the inscription itself in terms of 
an algebraic principle of even and odd numbers. This way the teacher’s epistemological moves in line 
3 and 5 are generative move as they have the function of generate students learning of algebraic 
principles and relations. The teacher’s purpose becomes visible in line 5 since the response by the 
student in line 6 is built on an algebraic principle rather than on computation.  

Finding a mathematical formula: In working with the concept of area, the teacher introduced an 
activity in which students should determine how many two-colored counters were needed to cover a 
large purple square. In this sequence we can conclude that it is an encounter between the teacher and 
four students (June, Mari, Zolan, Stephanie, Kevin) and also one more student (unidentified in the 
audio-taped recording), who may or may not be one of the other four students. The teacher’s purpose 
is that the students reach an understanding of how to use length and width to determine the area of 
rectangular planar objects, i.e., finding a formula for the area. This purpose becomes visible in line 
23 as it generates the concepts of length and width in line 24. The transcript (ibid.) used in this 
illustration is as follows: “June had the following conversation with her students: 

13 June: Do I know how big the square is? 
14 Mari: No. 
15 June: What do you see [referring to the large square which students had covered 

with tiles]? 
16 Zolan: Four columns, four rows. 
17 June: [June then covered a desk with the large purple squares like those she had 

given students.] So, what would the area of the desk be? 
18 Stephanie: Twenty-four big squares. 
19 June: What if we found the area of this table [pointing to a large table in the room]? 

One student suggested using a ruler. Kevin proposed to examine how many purple squares are in a 
row and in a column. 

20 Zolan: Count how many [purple squares] are in the bottom row. 
21 June: One, two, three, four, … eighteen. [June counts out the number of purple 

squares in the bottom row.] And how many 18s do I need? 
22 Kevin: Seven! 
23 June: What’s the best way to find area? 
24 Kevin: You measure this way and that way [indicating length and width] and 

multiply. 
25 June: What do you call “this way” and “that way”? 
26 Student: Length and width!” (p. 428-429). 
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The purpose in this encounter is located between the use of square tiles for covering rectangular planar 
objects and finding a formula for area of such objects. In line 13 the teacher asks the students if they 
know the size of the large purple square after the students have covered it with tiles. However, the 
teacher’s first question (line 13) does not have any function in terms of meaning making, since the 
student cannot bridge the gap that the question creates. Indeed, the teacher’s question (line 13) is an 
action, but it is not an action that qualifies as an epistemological move. A gap between square tiles 
and the size of a planar object becomes visible when the teacher in line 15 asks the students to look 
at the square and explain what they see. This is an instructional move since the student’s answer is 
describing what he (Zolan) can see and not mentioning anything on area. This means that the gap 
lingers. In the third question (line 17) the teacher explicitly asks the students to find the area of the 
desk. This is a re-orienting move since the students now are focusing on the total amount of squares 
rather than numbers of columns and rows. Here it stands fast for the student how to cover a square 
object with square tiles (line 18). This earlier knowledge is re-actualized in order to make new 
meaning to view area as a grid of square tiles. Hereby the students are able to fill the gap. 

When the teacher explicitly asks the students to determine the area of another planar object (line 19), 
the gap changes. The new gap is between using columns and rows and finding the formula for area. 
Related to the change of gap the student also actualizes other earlier knowledge that becomes visible 
when the teacher asks the students to determine the area of yet a new object (line 19). Here the 
knowledge that stands fast can be regarded as knowing how to use columns and rows to cover a 
rectangular planar object. This is re-actualized when the student starts to investigate the grid in a new 
way by counting the numbers of squares in the bottom row (line 20). In this way the teacher’s action 
functions as a re-orienting move.   

Finally, the teacher makes two re-constructing moves (line 21 and 23). The first becomes visible 
when the student (line 22) shows awareness of the importance in comparing the total number of 
square tiles with the numbers of columns and rows. Thereafter the student (line 24) is able to relate 
number of columns and rows to create a formula for area. Finally, the students are able to fill the gap 
by finding a formula, in terms of length and width, for determining area of planar objects. 

Concluding remarks 
The analysis shows how teacher’s epistemological moves during math-talk is crucial for students’ 
meaning making processes, both concerning the procedure (how) and the mathematical content 
(what). For example, in the first illustration the generative move deepens the student’s mathematical 
knowledge in terms of an ability to build on algebraic principle rather than computation when 
determining even and odd numbers. We can conclude that the teacher enables the students to 
generalize (Fraivillig et al., 1999), which is done by challenging them to find a more general and 
efficient solution to the problem at hand (Hiebert & Grouws, 2007). By using EMA it was possible 
to identify how the students’ earlier knowledge in this specific situation was re-actualized into the 
ability to use numbers as placeholders for any odd or even number. More explicitly, this re-
actualization is made because of the teacher’s epistemological move (line 3), made visible by the 
student’s answer in line 6, where the latter uses numbers 1 and 8 as placeholders for odd and even 
numbers. By this re-actualization the student fills the gap that becomes visible by the teacher’s 
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question in line 3. In this way the student has made new meaning about an algebraic principle of odd 
and even numbers. Here we stress that the contribution in using EMA is to point out what actually 
takes the meaning making a step forward, rather than analyzing certain approaches in forehand 
intended to promote specific motives. The strength in EMA is in the situational, rather than long term. 
However, in combining EMA with well-known strategies promoting algebraic reasoning, such as the 
framework used by Blanton & Kaput, sustainable learning perspectives may be closely related to 
situational and contextual perspectives.  

This can be compared with our second illustration. In the first part of the transcript the teacher poses 
different questions with the purpose of enabling for the students to understand a formula for the area 
of rectangular objects. However, in the first part of the sequence the students answer the teacher’s 
questions without re-actualizing any earlier knowledge about area. Instead they answer the question 
more in terms of what they think that the teacher are expecting (Millar et al., 2001). Important to 
notice here is also that the teacher’s purpose, to understand how to determine area, isn’t visible in the 
students’ actions until later in the sequence (line 19-20). At the end of the sequence (line 24-26), after 
the re-constructing move, which also clarifies the teacher’s purpose, the students re-actualize earlier 
knowledge that enables them to establish a formula for area. By using EMA we can identify that the 
teacher’s purpose is not initially clear to the students. The students are not able to see how the general 
properties for area correlate to the teacher’s purpose. The students try to answer the question (line 13) 
but are not able to fill the gap until the teacher changes character of the questions (line 23). This 
illustration can be seen as an example of funneling (Bauersfeld, 1998), with the consequence of 
students being partly blocked from being fully engaged in the talk (Brodie, 2011).  

To summarize, using EMA, we can analyze the relation between teachers’ actions and students’ 
meaning making concerning process (how) and content (what) in mathematics. This way, EMA can 
contribute to the research on social and interactive processes in mathematics (Lerman, 2006). Further, 
EMA makes it possible to identify the role of teachers’ purpose in students’ meaning making in 
mathematics. However, it should be stressed that meaning making is seen as situational. We believe 
that the concept of re-actualization should get more attention in studying the role of teachers’ actions 
for students’ meaning making in mathematics. Re-actualization should not be misinterpreted as 
transfer or application, but rather as the process describing what stands fast in a certain encounter and 
how the students use knowledge that stands fast to create new meaning of mathematical objects, 
principles or concepts. Based on the present analysis, we claim that EMA offers analytical tools to 
enhance our understanding of the relationship between content and process in student’s meaning-making 
in mathematics and the roles teachers’ actions can have in providing directions for meaning-making.  
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Mathematics teaching and teachers’ practice: tracing shifts in 
meaning and identifying potential theoretical lenses 
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The paper reports on meaning shifts of the terms ‘teaching’ and ‘teachers’ practice’ in mathematics 
education over time and presents three theoretical frameworks arguing for their advantages in 
studying mathematics teachers’ instructional practice, an especially complex but relatively 
unexplored sociocultural activity. An exemplification is then offered through the exploitation of one 
of the theoretical lenses suggested in the case of the mathematics teaching practice of a primary 
school teacher, Antigoni. The results of the data analysis informed by the lenses employed revealed 
a dynamic and strongly contextual understanding of the teacher’s teaching practice connecting her 
current with past and present practices of hers, a feature specific to the framework used.      

Keywords: Mathematics teaching practice, mathematics teachers’ practice, meaning shifts, 
theoretical lenses. 

 

Introduction 
The identification of TWG19’s exact research interest has been of concern since its birth in 2016, not 
only because of the obvious need to avoid overlapping with neighbouring CERME Working Groups 
but mainly for reasons of conceptual clarity and coherence. This concern is evident in the writings of 
the members of the leading team in several occasions. Thus, in Sakonidis et al. (2017) we argued that 
the work reported in the first TWG19 sessions at CERME10, related predominately to teachers 
operating on critical aspects of mathematics classroom instruction or inquiring into their own teaching 
suggested a shift of research focus from teachers to teaching. In a memo circulated to potential 
participants of TWG19 in CERME11, Mosvold, one of the members of its leading team, commenting 
on the shift of the group’s research interest to mathematics teaching and teachers’ practice(s), pointed 
out ambiguities in the use of the terms ‘teaching’ and ‘practice’ evident in their weak 
conceptualizations and the poorly addressed theoretical underpinnings of the latter. The meaning 
concerns related to the two central constituents of TWG19 focus were again raised in a chapter written 
for a volume on the twenty years of CERME research (Skott, et al., 2018), suggesting a social 
approach to attributing meaning to these constructs that will allow making sense of the corresponding 
practices in relation both to the contingencies emerging as classroom processes unfold and to the 
social practices of which they are part.   

The paper is an attempt to further the above discussion. It first reports on the meaning shifts of the 
terms ‘teaching’ and ‘practice’ in mathematics education over time. It then presents some potentially 
useful theoretical frameworks for studying mathematics teaching and teachers’ practice. An attempt 
to exemplify such a study is then provided through the analysis of an extract of a mathematics lesson 
taking place in a Greek primary classroom. The paper concludes with some moving ahead thoughts 
and considerations. 
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Mathematics teaching and teachers’ practice(s):  meaning advancements 
Despite the significance of teachers’ activity for pupils’ learning but also for their own professional 
learning and development, as it is gradually acknowledged, research on teaching remains 
underdeveloped. Most of the relevant studies seek to understand or support teachers’ actions that 
highlight mathematical processes and inquiry into what it takes for teachers to engage students in 
actively learning mathematics. The actual meaning of teachers’ activity related to students’ learning 
is left unchallenged.  

The term ‘teaching’ has been used with different meanings in mathematics education, nurtured by 
different motives and purposes. Often seen as inseparable from learning, teaching tends to be related 
to teachers’ actions, like orchestrating instructional activity, managing tasks and regulating 
communication within a classroom but also beyond it. Irrespectively of its meaning, teaching signals 
a highly complex activity that unfolds under conditions of uncertainty (given then unpredictability of 
human beings). Research such as that of Hattie (2015) documents the complexity of teaching: the 
challenge of making sense of the interplay between different aspects of it, the difficulty to appreciate 
institutional realities and the complexity of accountability which systems, parents and the general 
community demands. Teaching takes place through teacher’s perception of, and interaction with its 
context which shapes his/her moment-by-moment decisions about what is important to teach, how 
students learn, how to manage student behavior and so on. This complexity of teaching is burdened 
in the case of mathematics teaching, given its highly valued learning outcomes worldwide and the 
difficulties teachers and students face in pursuing them due to intervening epistemological, cognitive 
sociocultural as well political factors.  

Research on teaching over the past several decades has evolved from an emphasis on teacher 
characteristics to a focus on teachers’ actions/behavior, to cognitive views of teachers as decision-
makers and reflective practitioners (Grossman, Hammerness, & McDonald, 2009a) and more recently 
to teachers as participants in the practice of teaching (e.g., Lerman, 2013). This later trend enables 
making sense of teaching as a human activity situated in social settings. Furthermore, drawing on 
sociocultural theories, allows incorporating both intellectual and technical activities and 
encompassing both the individual practitioner (the teacher) and the professional communities 
(teachers, stakeholders of education, educators, and so on) (Chaiklin & Lave, 1996). For Wenger 
(1998) a practice includes “all the implicit relations, tacit conventions, subtle cues, untold rules of 
thumb, recognizable intuitions, specific perceptions, well-tuned sensitivities, embodied 
understandings, underlying assumptions, and shared world views. Most of these may never be 
articulated, yet they are unmistakable signs of membership in communities of practice” (p. 47).   

Practice in complex domains like teaching, and especially mathematics teaching, involves the 
orchestration of understanding, skill, relationship and identity to carry out particular activities with 
others in specific settings. When people learn a practice, they enter a historically defined set of 
activities developed over time by others (Engeström, Miettinen, & Punamäki, 1999). As members of 
a profession, practitioners have a responsibility to their colleagues (Shulman, 1998), reinforcing the 
collective meanings of professional practice. They also use aspects of their own personalities, as well 
as their professional identities, as an intimate part of their practice (Grossman et al., 2009b). Based 
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on the above considerations, teaching is seen as teachers’ multifaceted practice aiming at promoting 
students’ mathematics learning in a variety of settings, shaped by the expectations and norms of these 
settings, learned from and shared with other practitioners and preserved by the traditions of 
educational thought and practice within which it has developed and evolved. 

Mathematics teaching and teachers’ practice: promising theoretical perspectives 
The research interest of TWG19 delimited by the meaning attributed to the terms ‘teaching’ and 
‘practice’ in the previous section is clearly served by the sociocultural tradition of teaching and 
learning mathematics. The available theoretical frameworks tend to see teaching as learning in 
practice, thus drawing mainly on the known theories of learning as well as on social theory to 
formulate their own perspective. Three among these appear to readily lend themselves to TWG19 
research focus: Wenger’s approach to learning as developing an identity through participation in a 
community of practice, Cultural-historical activity theory’s focus on the learning that emerge in the 
institutionalized contexts of practical activities culturally and historically mediated within a society 
and recently Skott’s participatory approach concentrating on patterns in individual teachers’ 
participation in different social practices. Below, a brief presentation of each of these frameworks is 
offered highlighting elements that are related to TWG19’s research interest. 

Wenger (1998) describes community as “a way of talking about the social configurations in which 
our enterprises are defined as worth pursuing and our participation is recognizable as competence” 
(p. 5). These configurations are the basis of practice which is always social, whereas communities 
and learning are always socio-historically situated in webs of social relations.  In a Community of 
Practice (CoP) members negotiate joint enterprises, ways of engaging with each and repertoires or 
languages for meaningful interactions and progress towards their goals. Belonging to a CoP, or 
developing identity within it, involves engagement, imagination and alignment. Thus, for example, 
in practices of mathematics learning and teaching, participants engage in their practice alongside their 
peers, use imagination in interpreting their own roles in the practice and align themselves with 
established norms and values. A teacher learns through a continuous process of ‘becoming’ in the 
context of the relationships in her classroom and with her colleagues within the education system and 
the society of which she is a part, as well as in relation to her own history, which is also socially 
situated. How these relationships are configured constrains and affords learning for particular teachers 
and communities of teachers.  

Human activity is ‘‘a system with its own structure, its own internal transformations, and its own 
development’’ (Leont’ev, 1979, p. 46), activated by a motive and comprising goal-directed actions 
carried out by means of operations. Within an activity system, actions are mediated by tools and signs 
but also by or through community, rules of activity and division of labor (Engeström 2001). Individual 
and group actions within the activity system are seen as independent units of analysis that become 
understandable only when interpreted against the background of entire activity systems. Engeström 
(2001) considers contradictions and tensions as sources of change and development leading to 
transformations in activity systems.  Individuals begin to question and deviate from the established 
norms, and the object and the motive of the activity are re-conceptualized to embrace a radically 
wider horizon of possibilities than in the previous mode of the activity. This, which Engeström calls 
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‘expansive learning’, gives rise to new knowledge and practices for a newly emerging activity system. 
Teaching practice is subject to extra-school influences such as policies emanating from school 
systems, teacher networks, district educational leadership and so on constituting activity systems with 
varied goals, motives, tools and rules which unavoidably shape teachers’ practice (s).  

Skott (2013) developed a ‘patterns-of-participation’ (PoP) framework that aims to identify trends and 
developments in the recurrent “and possibly routinised ways in which the teacher engages with the 
students and the contents” (p. 548). He claims that teachers engage in everyday classroom interaction 
by reinterpreting and transforming past and present practices in the process.  Hence, their contribution 
to the interaction is shaped by their participation in other significant discourses (mathematical, meta-
mathematical or related to broader issues of the social situation), depending on the meaning attributed 
to the interaction itself. Thus, in each classroom interaction “the ‘pieces’ form a fluctuating pattern 
that indicates the shifting significance of different, prior discourses and practices as well as the 
dynamic relationships between them” (p. 548). Skott argues that teachers negotiate classroom 
practices by interpreting possible contributions to the interactions symbolically. To do this, they draw 
on their own schooling practices, interactions with colleagues, parents or the school management, 
theoretical discussions in their professional development program and so on.  

I believe that the three frameworks presented above offer different but equally challenging 
perspectives to study mathematics teaching and teachers’ practice.  CoP framework allows examining 
this practice as the enterprise of a particular community (related to school), CHAT within broader 
sociopolitical systems/environments and PoP as the result of the teacher’s contingent pattern of 
participation across practices and discourses (even beyond school). In the next session I employ PoP 
to present the case of Antigoni, the teacher in the uploaded video (for CERME11’s participants to 
work on) as an illustration of how the above three frameworks can help explore mathematics teachers’ 
practice exhibited during classroom teaching.  

The use of PoP: the case of Antigoni 
Antigoni, a primary teacher of 17 years of teaching experience, graduate of a Mathematics as well as 
of a primary education Department, is very committed to her profession; critically confident with 
respect to her mathematical but also her pedagogical knowledge and skills as evidenced, for example, 
in her open class for anyone who wishes to attend her mathematics lessons; and scientifically and 
professionally active as documented by her Master’s degree in Education, a considerable list of 
publications and conference contributions, as well as her regular participation in classroom 
intervention projects and professional development courses related to Mathematics.  

Antigoni’s teaching practice has often been studied over the years of our cooperation from within 
various theoretical perspectives and in the pursue of different research questions.  The lesson that the 
uploaded extract comes from is part of the data being collected in the context of a project focusing 
on the mathematics teaching practice of five primary teachers, one of them is Antigoni, including 
interviews, (video and audio) taped meetings before and after planned lessons and field notes. The 
analysis presented below aims to identify the roles Antigoni enacts in the practice emerging in her 
mathematics teaching. 
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Antigoni always liked mathematics as well as teaching. As a university mathematics student, she 
would choose courses that would offer opportunities “to dive in issues related to educating people in 
thinking mathematically, a question still haunting me”. And she still talks fondly about a University 
teacher, “the only one”, who offered optional courses on problem solving where she felt for the first 
time confident enough “to pose my own questions, to bring in the class my own problems, collaborate 
with others to solve a problem and feel OK to fail to find the solution to a problem for days!” 
(Antigoni as a student).  

She is very enthusiastic about her being a mathematician and a primary teacher “in a territory where 
most fellow teachers fear … or are anxious when teaching mathematics … often stuck to the textbooks 
provided by the government and going by the book”. She was also worrying initially about 
mathematics teaching, but she then thought:  

Come on, you love mathematics! (laughs) … This is your chance to prove that primary 
mathematics is more important but also harder to learn … and teach because… a primary teacher 
lays the foundation of a solid mathematics learning trajectory! (Antigoni as teacher) 

Antigoni approached us in the Primary Education Department of the nearby University about twelve 
years ago asking for help “as I was feeling like trying hard but with no results!” This is where a 
fruitful collaboration started originally with few visits in her class and gradually incorporated small 
projects (e.g., putting aside the textbook, introducing investigative tasks for small groups, discussing 
specific areas of the curriculum, e.g., introducing fractions in the 3rd grade, diverting from the 
‘desirable’ sequence of  teaching the content of the mathematics curriculum, inviting fellow teachers 
to work together in her class, explaining to teachers what she was trying to do, and so on).  

I still remember how suspiciously Maria looked at me (a very close friend and fellow teacher in 
the same school) when I asked her to join me in reading the relevant literature, plan and teach 
together my class the idea of ratio, an idea used to be taught much later that year (laughs)…. Also, 
the parents of … who were furious for ‘wasting valuable time on ‘experimentations’.  I am still 
anxious when I meet parents for the first time to talk to them…And of course, Headmaster … who 
never liked me for …messing up his school! (Antigoni as a colleague) 

Nowadays, Antigoni works with a group of at least half of the teachers of the school, planning and 
implementing shared teaching sessions, runs almost every year a Students’ Mathematics’ Club, works 
with us in organizing professional development courses for the teachers of her school with a specific 
focus every year and this year plans tο invite teachers of other schools in a two-days meeting to share 
with them what they do (Antigoni as a professional).     

With respect to teaching mathematics, Antogoni believes that primary mathematics is for all students 
who should be taught in ways that would “allow them to go deep into the heart of mathematics” 
through tasks that make sense to them, boost their confidence in “acting mathematically”, support 
their conceptual understanding and “help them feel safe”. As far herself is concerned, she thinks that 
her teaching “is OK if you think in constructivist terms but still away from being able to genuinely 
promote collective learning of mathematics”. In the uploaded extract the mathematical focus is on 
the concept of fraction and especially on the idea that the whole is made up of the sum of all its 
fractional units. Antigoni addresses the whole class with the question “how many fractional units 
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make up the whole” but things get wrong when she asks for the symbolic writing of the idea (Antigoni 
as a teacher). 

Teacher:  How would I write it to make a whole pie out of these (three) pieces?  

Student: (comes to the blackboard) The whole pie? 

Teacher: Yes, the whole pie. Let’s see. 

Student:  (writes the fraction three thirds – 3/3) 

Teacher: Ah!! And how to you make up these three thirds? 

Student:  From three pieces. 

Teacher:  How do you write that down? Do write ‘equals’, how do you write that down in 
mathematics? 

Student:  (writes the equal sign to the right of 3/3) 

Teacher:  How exactly do you make three thirds for this pizza?  

Student:  In ones? 

Teacher: What do you mean? What are the ‘ones’ here? 

Student:  One piece 

Teacher:  Write down the “one piece” 

Student:  One plus one plus one. (writes 3/3=1+1+1=3) 

Teacher: Do you agree? One plus one plus one is three. Is it the same as what he’s written on 
the board? Maria? 

Maria: Three out of three pieces. 

Teacher:  Can we see that by the way you’ve written it? How can we show that it’s three out 
of the three pieces? Let’s see. 

Student: (erases 1+1+1=3) 

Teacher: Let’s help him a little. How do we write each piece of this pizza? Can someone 
help? Chryssa?  

Chryssa: One third!  

The discussion goes on for a little more, the student writes 3=1/3 but it’s obvious that he doesn’t 
really follow. Watching the episode afterwards Antigoni expressed her disappointment for the 
students’ difficulty but argues that the idea is not an easy one and insists on ‘giving space’ to students 
to communicate their thoughts.    

Summarizing, Antigoni’s narrations of herself as a committed and determined professional relate to 
the challenges offered by both mathematics and teaching in exploring and making sense of the world 
as well as communicating with others, pursued and enjoyed by her from early on. Collaboration, team 
work and issues of knowledge accessibility are at the heart of Antigoni’s professionalism, sometimes 
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constrained by factors external to her teaching practice. She acknowledges in her teaching practice 
students attempt to communicate their thinking, encourages ‘epistemologically correct mathematics’, 
thus valuing mathematics as a scientific discipline but prioritizes students’ confidence and inquiring 
approaches. Finally, her strong ties with mathematics appears to weaken any challenge to her 
professional self.  

Concluding remarks 
Despite its importance, it’s only recently that teachers’ instructional activity per se attracted the 
interest of the research community, being seen until then mostly in relation to students’ learning.  
Shifting the emphasis form teachers to teaching, which is viewed as a social practice, the relevant 
research employs predominately sociocultural and especially participatory perspectives to understand 
the emerging character of this practice “taking into consideration working contexts, meanings and 
intentions … the social structure of the context and its many layers – classroom, school, community, 
professional structure and educational and social system” (Ponte & Chapman, 2006, p. 483). These 
activities mutually structure and frame each other to constitute the teaching practice (Skott, 2013).  

The theoretical frameworks available in the literature for studying the practice of mathematics 
teaching as presented above recognize the high level of complexity associated with it. Within this 
complexity lie affordances and constraints, shaped by culture, the environment and people in it. This 
suggests that no single framework is likely to capture the complexity of the mathematics teaching 
practice across widely variable contexts. A variety of dynamic perspectives is necessary which will 
help us disentangle and understand the ever-evolving outcome of individual and communal acts of 
meaning-making (by both teachers and students) characterizing the practice of mathematics teaching. 
Antigoni’s narrations revealed the dynamic relationship between present and past teaching and other 
practices and hence discourses she participated, without allowing though for its development to be 
traced. A more careful consideration of mathematics teaching as a social practice being informed by 
teachers’ participation in (not necessarily compatible) discourses beyond classroom setting, 
predominately but not exclusively related to mathematics, might offer challenging lenses for making 
better sense of how these discourses are enacted and interact both at the micro and the macro level 
within the classroom, shaping teachers’ moment-to-moment teaching practice(s). 
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This study aims to know if pre-service secondary school mathematics teachers are able to select, 
adapt or design appropriate challenging tasks and what are the main challenges that they face 
when working with challenging tasks in the classroom. The study is qualitative, based on 
observation and interviews. The participants are two preservice teachers at the 2nd (and final) year 
of their master of teaching degree. The results show that the preservice teachers, albeit facing 
several constrains, were able to find and adapt interesting tasks. They also identified several 
challenges in this activity, in the planning phase, during students’ autonomous work and, most 
especially, during the whole class discussions. 

Keywords: Challenging tasks, preservice teachers, planning, students’ autonomous work; whole 
class discussions. 

Introduction 
What students learn in mathematics mostly depends on the mathematical experiences offered to 
them in mathematics lessons (NCTM, 2014). Particularly powerful to promote the development of 
mathematical understanding are challenging tasks that require students to establish connections 
among different aspects of mathematics, formulate their own solution strategies and explore several 
pathways to solutions (Sullivan et al., 2015). These kind of intellectual activities requires new 
pedagogies in teaching mathematics and, consequently, raises new challenges to teachers, namely 
putting demands on teachers’ knowledge (Sullivan & Mornane, 2014), on teachers’ understanding 
of tasks, particularly their potential and demands (Foster & Inglis, 2017), and on teachers’ 
classroom practice (Ponte & Quaresma, 2016). Most studies addressing this issue involve in-service 
teachers, but we want to understand which main issues arise when pre-service teachers (PTs) are 
encouraged to propose challenging tasks in the classroom. This was the general issue that prompted 
us to develop a study with two pre-service secondary school mathematics teachers, aiming to 
answer the following research questions: (i) What are the nature of the tasks selected, adapted or 
designed by the PTs? and (ii) What are the main challenges that PTs face when they propose and 
enact challenging tasks? 

Theoretical framework 
The centrality of tasks in mathematics classroom instruction has been recognized both by 
theoretical perspectives and empirical research (Shimizu et al., 2010). Several curricular documents 
around the world recommend the inclusion of “rich” or challenging tasks in mathematics teaching 
in order to promote students’ high level thinking such as problem solving and reasoning (NCTM, 
2014). However, different conceptualizations on the nature of such tasks have been proposed by 
distinct authors, and using different language, for instance “rich”, “authentic” or “complex” tasks 
(Shimizu et al., 2010). The profusion of terms, and particularly the lack of explicitness concerning 
their meaning, often does not contribute to develop a clear understanding in the educational settings 
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about the core characteristics these tasks should have. As Foster and Inglis (2017) found in their 
study with a large number of mathematics teachers in the UK, teachers express contrasting 
perspectives about the nature of the tasks, namely having one task classified both as demanding and 
non-demanding or as engaging and non-engaging by different teachers. 

One of the most well-known taxonomy for tasks is the one by Stein and colleagues which includes 
four levels of cognitive demand to characterize the mathematical tasks: two for lower-level and two 
for higher-level demands (Stein & Smith, 1998). According to the authors, the tasks that exhibit a 
lower-level of cognitive demand may be targeted at memorization or to use procedures without 
connections, that is without explicit attention to concepts and understanding; those rated as higher-
level involve complex thinking and reasoning processes and are denominated as procedures with 
connections and doing mathematics. We have adopted the definition of cognitively demanding tasks 
proposed in this framework. Tasks may assume the form of problems, exploratory or inquiry tasks. 

The practice of proposing and enacting challenging tasks that are set and maintain the intended 
level of cognitive demand has showed problematic for many teachers (Stein & Smith, 1998), and 
attention has been given to teacher education programs that might support teachers in developing 
new practices (Ponte et al., 2017). One of the main issues is the need to move to new lesson 
structure that support a student-centred approach and value classroom discourse, namely through 
the promotion of whole-class discussion as an effective enactment of challenging tasks in the 
classroom (Russo & Hopkins, 2017; Sullivan & Mornane, 2014). As the study by Crespo (2003) 
shows when they are “left to their own devices preservice teachers’ tendencies were to pose 
unproblematic problems to their pupils” (p. 264). It seems important that PTs are able to articulate 
their vision about teaching, namely the need to diversify the nature of the tasks that are usually 
proposed in the classroom, making possible for them to collaborate in the future with other teachers 
in developing new teaching practices (Towers, 2010) that may include challenging tasks.  

Two important aspects of the teaching practice with challenging tasks are the questions the teacher 
poses to the class and how he/she sequences it (Mata-Pereira & Ponte, 2017) and providing 
appropriate enabling prompts for those students who experience difficulties in the task, such as, 
“reducing the number of steps, simplifying the complexity of the numbers or varying the forms of 
representation” (Sullivan et al., 2015, p. 126). In the case of PTs who lack the experience of 
teaching, these actions may even more challenging. Teacher education programs need to provide 
PTs with opportunities to learn within a “practice-based” experience that allows them to develop 
skills targeting specific practices (Forzani, 2014) such as selecting and supporting the enactment of 
challenging tasks in the classroom. 

Context of the study and methods 
This study was carried out with two PTs on the second year of the Master of Teaching degree at 
Universidade de Lisboa. During their field experience, PTs were invited to select challenging tasks 
to propose in two lessons that they were about to teach in their school placement, that would be 
observed by their respective university supervisor (the two first authors). By then, PTs had attended 
the teacher mentor classes for about one month and had the opportunity to interact with students, 
but this was the first time they were responsible for teaching a lesson by themselves. The request for 
teaching with challenging tasks was not a surprise to PTs since, in alignment with current 
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curriculum orientations for mathematics teaching, this masters’ program provides extensive 
discussion on inquiry-based perspectives on mathematics teaching (Ponte et al., 2017). 

Five PTs were attending the course. For this study, we select as cases two PTs that we regard as 
more contrasting considering the focus of our study: Marta and Magdalena, both fictitious names. 
Marta is 22 years old and graduated in Applied Mathematics and Computation. She developed her 
teaching practice in a private school, in an urban area of Lisbon. She taught a 12th grade class (age 
17) with 13 students who are interested and motivated for studying, show good achievement in 
mathematics (only two have medium achievement, all the others have high). They are usually 
focused on the proposed mathematical work and try to help each other when working in pairs. 
Magdalena is 24 years old and graduated in Applied Mathematics. She teaches a 10th grade class 
(age 15) with 17 students in another private school near Lisbon. The students are heterogeneous 
regarding their school achievement, 35% had a negative grade in Mathematics at the end of the 1st 
school term and show many difficulties in the topics covered in previous years. Most of them show 
lack of study habits and are not very participative in class. 

Following a qualitative research approach, data collection processes included the observation of two 
lessons with video recording, pre- and post-lesson reflections audio recorded with PTs, post-lesson 
written reflections, and their lesson plans. A first reflection (R1) occurs before each observed 
lesson. Immediately after, and preceding the post-lesson reflection (R2), there was a discussion 
about the lesson with the supervisor and mentor. Content analysis was used to analyse data, with 
pre-defined categories for the nature of the tasks (Stein & Smith, 1998). In the case of the 
challenges faced by the two PTs there were no predefined categories but we had as reference the 
review of literature presented in the theoretical framework. 

The nature of tasks 
In both observed lessons, PTs proposed one task to the class. The tasks sought to introduce or create 
the need for new knowledge, in particular to relate the signal of the second derivative with the 
direction of the concavity of the graph of a function (Task 1, Marta) or they were problems (Tasks 
1a, 1b and 2, Magdalena). Task 2 by Marta was a problem of optimization, which sought to lead 
students to feel the need to know how to differentiate trigonometric functions. In both tasks, the 
students in Marta’s class used the graphic calculator. All tasks included several questions and can 
be rated as High Cognitive Demand with different level of intellectual challenge (Table 1). 

Table 1. Characterization of the tasks concerning the level of intellectual demand 

Task 2 - Marta  

Tasks 1a and 2 - Magdalena 

Procedures with 
connections 

Requires “some degree of cognitive effort. Although 
general procedures may be followed, they cannot be 
followed mindlessly”. 

Task 1 - Marta  

Task 1b -Magdalena 

Doing 
Mathematics 

Requires “students to access relevant knowledge and 
experiences and make appropriate use of them in 
working through the task” and “considerable cognitive 
effort”. 

Magdalena’s task 1a and 2 and Marta’s task 2 are characterized in the group of Procedures with 
connections, because they demand to apply previous knowledge in new situations (to calculate 
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measurements from a geometric object; to study a trigonometric function in a way similar to what 
they had done for other types of functions), requiring a transfer of knowledge. The other tasks 
present characteristics of Doing mathematics, since they require considerable cognitive effort, such 
as to apply to the second derivative of a function what they had learned about the first derivative 
(Task 1, Marta) or to establish diverse relationships between geometric objects, demanding a good 
visualization capacity, in particular, students need to use their knowledge about volumes of solids 
(cube and pyramid) (Task 1b, Magdalena).  

PTs’ perspectives about the tasks are similar to our analysis, but they do not use the same 
terminology since this taxonomy was not explored with them. The aspects they mention are that 
their students were not used to solving these kinds of tasks, they were called to develop 
mathematical ideas that had not yet been covered in class, and required processes of reasoning more 
complex than usual: 

The task is challenging for students because it addresses the second derivative and its geometric 
meaning without first introducing it “theoretically”. (Marta, pre-lesson R1) 

They are challenging tasks because they confront the students with unexpected things, that they 
are not used to, and lead them to think and reflect on how they might get there. I think (...) this 
helps them to develop their mathematical reasoning. (Magdalena, pre-lesson R1) 

For Marta, although the two tasks have in common being challenging, there are differences between 
them. While she considered task 1 as “a more oriented task” (that students have to answer a 
sequence of questions), she regards task 2 as “a problem” (Marta, post-lesson R 2). Task 1 is very 
structured, appealing mainly to calculations. Task 2 leads students to look at the proposed situation 
in a global way. For Magdalena, the proposed tasks are mainly problems, with the exception of a 
few questions from one of the tasks (task 1b) proposed in the first lesson which she considered to be 
exploration or investigation. 

Pre-service teachers’ challenges when working on challenging tasks 
Regarding planning for these lessons, the two PTs did not hesitate to say that to obtain challenging 
tasks was quite a challenge for them: “The biggest challenge before the class was to build from 
scratch task 1 and to find a second task that would be challenging, suitable and relevant to this 
class” (Marta, post-lesson reflection 2). They searched in textbooks, but found no task with the 
sought features, so they also used other resources: Marta looked at materials of the Association of 
Mathematics Teachers brought especially by the teachers of her school. Magdalena made an 
extensive search in the internet and in several textbooks. For the second lesson she felt that it was 
difficult to find a suitable situation. When finally she found a situation that seemed promising to 
design the task, she still needed some guidance from her supervisor to guarantee it could be solved 
by different processes. 

In their lesson plans, the two PTs expressed the intention to adopt an exploratory approach to 
teaching either by her own initiative in the case of Magdalena, or by the supervisor’s suggestion, in 
the case of Marta. In both cases, PTs made plans that took into account the different phases of an 
exploratory teaching approach: introduction of the task, students’ autonomous work and discussion 
with the whole class, accompanied by a synthesis of key ideas.  
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In all lessons, the introduction of the task was of short duration. Students were informed that they 
would work autonomously during a determined period of time and then there would be a whole-
class discussion. At this stage of the lesson, no questions were raised by the students. It has not been 
observed, or referred by Marta or Magdalena, any challenge during this phase of the lessons. 

During the students’ autonomous work, the PTs circulated, accompanying the students’ work, 
namely by answering some clarifying questions. Magdalena assumed that her role in these classes 
should be to support students through questioning, not telling them exactly what they should do. 
Nevertheless, she recognizes that this type of intervention sometimes has not the intended effect, in 
particular with students with greater difficulties. So, one of the challenges in these lessons is to 
know what type of intervention she should develop in line with the diversity of students in the class: 

I stand for not giving the answer and instead to guide students. But sometimes I’m 
afraid to say something that leads them to the answer and that they figure out [the 
answer]. (…) I think it’s important that they think for themselves but when I am in front 
of students with more difficulties sometimes I don’t know at which point should I just 
guide and guide... To me, that is most difficult. (Magdalena, post-lesson R2) 

Associated with this phase of students’ autonomous work, these PTs mention the challenge of time 
management in supporting different groups. Magdalena due the unexpected difficulties that came 
out in the first task, had to spend too much time with some students in order to understand what 
they were doing, to identify their errors and to think of questions or prompts that could help. 
Consequently, she has spent a lot of time with some students, limiting the possibility of supporting 
other students. Marta also mentions the challenge of “making a good management of the time I am 
spending with each group” (Marta, post-lesson R2), which she relates with the decision of when to 
leave the group and let those students work autonomously: 

Even if students in the group still remain with some doubts, I can give some guidance 
but I also need to know when to let them working and struggling by their own and come 
back to them later on (…) after supporting other groups (...) [But] to me, this decision is 
not always very easy: to give some guidance and to know when I should leave the 
group. (Marta, post-lesson R2) 

The time to devote to this stage of autonomous work on the task and, consequently, the decision of 
when it is appropriate to close this phase and move to the whole-class discussion it is also an issue 
identified by these PTs: 

[I verified] that the students were not working as I had previously planned, which is not 
necessarily negative. The time that I had set was showing to be too short. It was a 
challenge that I had to face: to decide whether I should to move for discussion or not. 
(Marta, post-lesson R1) 

The whole-class discussion presents also some problems to these PTs, such as to take advantage 
from this phase of the lesson, to explore it in a developed way. In the first lesson, Marta solved on 
the board the first questions of the task with the contributions of the students, and they did not raise 
any doubts, apart from some calculation problems. In fact, the real discussion began with question 
1.5. when Marta questioned: “Who is able to explain to the class what is demanded in 1.5.?” A 
student began to answer, but Marta said: “Use your own words to explain what is asked here. It is a 
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question that raised a lot of confusion”. Marta supported the discussion about the calculation of the 
limits, and simultaneously the graph of the given function and the tangent lines at given points were 
constructed in Geogebra. After the students’ explanation, Marta also gives her own but there is no 
effective discussion. The discussion happens, in each moment, essentially between Marta and a 
certain student; there is no discussion among the students.  

In the first moment of the discussion of task 2 (Figure 1), Marta begins by asking a group of 
students to explain what they did: 

S:  We tried to define a formula for the wire length. 

Marta: Do you begin immediately to think in getting a formula?  

S:  Initially we tried a little by eye. 

Marta: And what was your perception? 

S:  At the junction of the two triangles, if they joint at a midpoint (Marta, lesson 2) 

 

1. Four villages are located on the four corners of a 1 km side square. 
When making a new cable installation linking the four villages, the 
company responsible for the project came to the conclusion that the 
most economical solution is the one of the following figure. It is 
known that this type of installation is considered for 𝑥𝑥 ∈  �0, 𝜋𝜋

4
�. 

1.1. “As the angle x increases, the total length of cable required 
decreases”. Do you agree with this statement? Justify.  

Figure 1. First question of task 2 in Marta’s lessons 

Marta decided not to use the material that she had prepared previously to support the discussion 
with the whole class and asked the students to go to the board to explain what they have done. She 
tries that each group presents his strategy, although the decision on which should be the sequence of 
students’ work for presentation to the class was also a challenge for her:  

In the second discussion, as there were already so many groups knowing [how to solve the task] 
(…) knowing where to start [this was an issue]: [should I begin] by those who have not got there 
or [should I] give opportunity [to the others],.. I think this was also a challenge… (Marta, post-
lesson R2) 

Magdalena also had the intention to promote whole-class discussion after the students solved the 
tasks. In the first lesson, in face of students’ struggling where they had many computations to 
complete, there was no time for the majority of students to solve the second part (Figure 2), which 
was the one that had more potential for discussion. In the second lesson, the students also took 
much more time than predicted to solve the task. In the face of lack of time, only one student 
presented his solving strategy and there was no interaction with other students apart from some 
questions for some clarification. So, the capacity to have a real perception of the difficulty that the 
tasks may present to students has been for Magdalena a restriction to develop a fruitful whole class 
discussion.  
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In the figure it is represented the cube [ABCDEFGH] and the pyramid 
[ABCDE]. It is known that 𝐸𝐸𝐸𝐸���� = √12  𝑐𝑐𝑐𝑐. Determine the volume of 
the part of the cube that is not occupied by the pyramid. 

 

Figure 2. Task 1b in Magdalena’s lessons 

Conclusion 
In this study, both PTs were able to find and adapt interesting tasks. However, they faced the 
constraint of finding or designing challenging tasks aligned with the specific mathematical topic 
they had to teach during their practice. They considered the tasks challenging since they were 
different from what is usually proposed to these students and appealed to mathematical ideas that 
students had not yet covered, being a means for new learning or to promote processes of reasoning 
that are more complex than usual (NCTM, 2014). This indicates that the teacher education 
environment provided the two PTs with the intellectual resources and dispositions necessary to 
identify and adapt challenging tasks to propose in their classes, contributing to their development of 
a shared idea of the nature of these tasks.  

For an effective enactment of challenging tasks in the classroom, the two PTs adopted a new lesson 
structure (Russo & Hopkins, 2017; Sullivan & Mornane, 2014), identifying several challenges in 
this process. In planning, although always considered in the lesson plan, they see the anticipation of 
students’ difficulties in solving the task as underdeveloped due to their lack of experience in 
teaching as they do not have a deep knowledge of the students (Magdalena). During students’ 
autonomous work, the time and the support to give to students were problematic for both PTs, 
namely in order to maintain the intended level of cognitive demand, as it has been found in other 
research with in-service teachers (Stein & Smith, 1998). During the whole class discussion, Marta 
faced challenges such as selecting and sequencing the presentation of student’s strategies, knowing 
which ones to use, the most appropriate ways of doing it, namely when most groups had already 
solved the proposed questions correctly; involving all students in the discussion, even those who 
have more difficulties or are more reserved; promoting a broad discussion among the students 
which requires knowing how to break with the teacher-student-teacher circle; and going deep in the 
exploration of what students say, especially of what is mathematically important, but is difficult to 
understand for some students (Mata-Pereira & Ponte, 2017). From these results, we may say that the 
teacher education program supports teachers in developing new practices (Ponte et al., 2017) 
especially in moments of planning. During the lessons, where it is necessary to take decisions in 
action, the pre-service teachers faced diverse challenges, most of them similar to those of in-service 
teachers. 
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The main goal of this paper is to understand how teachers’ actions in classroom influence the way 
students solve a task involving quantitative additive reasoning. The study used a qualitative 
methodology and a teaching experiment was carried out. One task was proposed to two different 
classes (2nd and 3rd graders), of the same public school, with two different teachers. The results 
show that 2nd grade students solved the task with ease, but 3rd graders had difficulties. Teachers’ 
actions of guiding and challenging and how teachers developed the process of communication in 
classroom do influence students’ performance. 

Keywords: Quantitative reasoning, teacher’s actions, students and teacher interaction. 

Introduction 
This paper reports on part of the research carried out by a project focused on flexible calculation 
and quantitative reasoning developed by teachers of the Higher Education Schools of Lisboa, 
Setúbal and Portalegre in Portugal. The research question for this paper is: How do the teachers’ 
actions in whole class discussion influence the way students solve a task involving quantitative 
additive reasoning? We present the whole class discussion of a task involving quantitative 
difference in a 2nd and a 3rd grade classes and analyse how the teachers’ actions of guiding and 
challenging influence students’ quantitative additive reasoning (Thompson, 1993). 

Theoretical framework 
The communication processes that take place in the classroom, as well as the tasks proposed to 
students, are essential aspects of teachers' practices (Ponte & Quaresma, 2016; Boaler, 2003). 
Franke, Kazemi and Battey (2007) stress the importance of processes that support students’ 
language development, like resaying - saying the same idea in a different way, usually closer to 
formal mathematical language, questioning the meaning and supporting the development of 
students’ mathematical thinking. The questions posed by the teacher are a fundamental aspect of 
communication, with inquiry questions being particularly important, admitting a range of legitimate 
responses. Related to discourse, Ruthven, Hofmann, and Mercer (2011) propose a dialogic approach 
as "one that takes different points of view seriously, encouraging students to talk in an exploratory 
way that supports development of understanding” (p. 4-81). Thus, the decisions that teachers make 
are crucial, especially those that are taken during the whole class discussions, a particular form of 
classroom work used in exploratory teaching (Ponte, 2005). It is important that different points of 
view be considered and that students be encouraged to explain and justify their reasoning and 
solutions, thus developing, with the teacher's support, their understanding (Ruthven, Hofmann, & 
Mercer, 2011). In order to have a fruitful whole class discussion, Stein, Engle, Smith, and Hughes 
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(2008) stress the importance of teachers anticipating the way students may think, monitor their 
work, collect the pertinent information, select the issues to deal with during the discussion, think 
about the sequence for students’ interventions, and establish connections among different solutions 
during the discussion. This preparation is important, but a good discussion may involve many 
aspects that cannot be foreseen before and teachers need to be prepared to face them (Cengiz, Kline 
& Grant, 2011; Ponte & Quaresma, 2016). Ponte, Mata-Pereira and Quaresma (2013) present a 
framework for analysing a discussion where they distinguish four fundamental kinds of actions 
related to mathematical aspects: (i) Inviting, seeking to initiate a discussion; (ii) Supporting/Guiding 
to lead students to present information, making questions or observations; (iii) 
Informing/Suggesting, introducing information, giving suggestions, validating students’ responses; 
and (iv) Challenging to encourage students to produce new representations, interpret a statement, 
establish connections, or formulate a reasoning or an evaluation.  

Quantitative reasoning involves reasoning about relationships between quantities. It “is the analysis 
of a situation into a quantitative structure — a network of quantities and quantitative relationships” 
(Thompson, 1993, p. 165). The relationships, in this kind of reasoning, are established between 
quantities. Numbers and numeric relationships are of secondary importance. Thompson (1993) 
connects the notion of quantity to the idea of measure, clarifying that quantities when measured 
have numerical value, but the reasoning does not depend on their measures. For example, we can 
think about the heights of two persons determining who is taller than the other without having to 
know the actual values. "Quantities are attributes of objects or phenomena that are measurable" 
(Smith & Thompson, 2008, p. 101), but “what is important is relationships among quantities” 
(Thompson, 1993, p. 165). A quantitative operation is the comparison between two quantities to 
find the excess of one relative to the other and the quantitative difference is the result of the 
quantitative operation of comparing two quantities additively. According to Thompson (1993), 
numerical difference, as the result of subtracting, is not synonymous to quantitative difference, 
which is an item in a relational structure. A quantitative difference is not always evaluated by 
subtraction and subtraction can be used to compute quantities that are not quantitative differences. 
For Smith and Thompson (2008), quantitative reasoning implies “to focus on quantities and how 
they relate in situations” (p. 121). Therefore, teachers’ actions should lead to discussions of 
quantities, not numbers. “The goal is to get students to describe situations as they see them” (p. 
122). Teachers “should imagine how their students might describe the situation differently and what 
conceptual difficulties might be lodged in their descriptions” (Smith &Thompson, 2008, p. 121). In 
whole class discussion teachers should invite students to share their solutions, guide and support 
them through questions focused on situations description, and challenge them to explain their 
reasoning. Thus, the discourse used by teacher is a key aspect accounting for students' 
understanding of quantitative relationships. 

Methodology 
This study follows a qualitative approach framed in an interpretative paradigm (Bogdan & Biklen, 
1994). It is focused on the educational processes and the meanings of the study participants. The 
project adopts the modality of teaching experiment conceived with the purpose of developing in 
students the flexibility of calculation and the quantitative reasoning. 
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The data were collected from two classes in a public primary school in Lisboa, with 26 students 
each – a 2nd grade class (7-8 years old) in November 2015 and a 3rd grade class (8-9 years old) in 
October 2015. The Project team defined a sequence of tasks involving addition and subtraction 
problems. The task sequence was previously discussed and analysed with the two classroom 
teachers having been made minor adjustments. 

Both teachers are female expert teachers with a large experience of teaching. The two teachers are 
considered good teachers of mathematics and both try to develop an exploratory teaching in their 
classes. However, teachers are quite different in what concern their relationship with mathematics. 
Catarina (2nd grade teacher) likes mathematics and did a specialization in mathematics education. 
Catia (3rd grade teacher) always had trouble with mathematics that she wanted to overcome, that’s 
why she wanted to participate in this project. The two teachers are friends, work together, and they 
had been invited, at the beginning of the project, to collaborate with the project team members and 
both accepted.  

The names of students and teachers have been changed to ensure confidentiality. The data 
collection was done through participant observation, complemented with field notes and 
videotaping of the classes, including whole class discussion. The students' productions were also 
collected. In the part of the exploration of the tasks, the videotaping focused on two pairs of 
students in each class, selected by habitually verbalize their reasoning among themselves. 

The task was the sixth of a sequence. In the previous lessons and in the first part of this lesson the 
students had solved other tasks where they had to make comparisons in gains and losses problems. 
The task solved by 2nd and 3rd grade students was the same, but the magnitude of numbers was 
adapted accordingly. Figure 1 shows how the task was presented to the 2nd grade students. 

 
Figure 1: The task solved by 2nd grade students. 

For the 3rd graders the numbers were:  Monday: +50, -20, +10, +20; Tuesday: +30, -40, +60; 
Wednesday: -74, -94, +90. The students should select a smiley or a sad face circling it depending on 
their sense of whether there would be more gains or more losses at the end of the day(s). The 
students should also find the quantity representing how many marbles they won or lost at the end of 
the day, that is, the final quantitative difference. They did not work with the notation of negative 
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numbers before this task. The analysis focuses on whole class discussions and especially on 
categories of action coming from Ponte et al. (2013) and Smith and Thompson (2008) frameworks: 
the inviting action seeks to get students to share their solutions; the guiding action seeks to get 
students to describe the situation, modelling it and focusing on quantities; the challenging action 
seeks to encourage students to explain the quantitative relationships. 

Results 
2nd grade: The teacher introduced the task saying to students “This new proposal has only the gains 
and losses in different games, let's see what happens at the end of each day”. First, students solved 
the task in pairs, being videotaped the pairs Paulo and João and Luís and Lúcia. 

Paulo seemed to deal easily with the quantitative difference whether it was an excess or a deficit. 
This facility is evident in the way the task was carried out by Paulo and João pair. They did it very 
quickly, in two minutes, although João followed Paulo’s notes (he wrote "+8" after 3 days, and 
rectified later to "+1", when looking at Paulo’s sheet). As the researcher got closer, Paulo explained 
that he looked at the nulls ("nulls", for example, -2, +2), having calculated only the remaining ones. 

Luís and Lúcia approached the task using a different strategy. They gathered the gains, they joined 
the losses, and only then did the comparison. In the situation related to Wednesday, the students 
surrounded the sad face, understanding that at the end of the day, the player lost marbles. But they 
were stuck in the numerical record because it was a loss. With the researcher’s guidance, when she 
came close, they wrote "-17; +9". 

In the whole class discussion, the most presented strategy was to add, on the one hand, the gains, 
and on the other, the losses, and then determine the difference. For example, for Tuesday, the 
teacher invited the Marta and Mónica pair to go to the blackboard and record their results. They 
wrote quickly: "+9 – 6 = +3" and drew a ‘smile’. 

Mónica: We did +9 which is what won +6+3. 
Teacher: And the other 6? 
Mónica: Out of what he lost: the 4 and the 2. 
Teacher: How do you get 3? (addressing the class) 
Students: The difference between 9 and 6 is 3 to win. 

First, the teacher guided students through a question that led students to focus on losses 
(quantitative difference). Then challenged students to explain the results: “How do you get 3?”. 
Here the students seemed to dominate the situation and the teacher’s questioning led students to 
explaining their quantitative reasoning. 

But the teacher challenged the class, trying to have another explanation: 
Teacher: Is there another explanation? 
Paulo: Yes, the +6, -4 and -2 annul themselves. (The teacher records on the blackboard: 

+6-4-2=0) 
Paulo: And only +3 left over. 
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This idea of 'annulling' was used by other students in the following situations, correctly by many. 
Paulo had the opportunity to present his explanation when the teacher asked for other explanation.  

3rd grade: The teacher introduced the task saying that now they had to look just for gains and losses 
and should find what happened at the end of each day. Then, students started to explore the task in 
pairs, and showed difficulties confounding the notion of quantitative difference with the absolute 
amount of marbles, increasing these difficulties for Wednesday.  

At the whole class discussion, the teacher invited Vítor to present his solution for Monday: 

Vítor: So, he had 50 on Monday... 
Teacher: Won... 
Vítor: 50, but then he lost 20; then he won 30 and won. He was happy. (...) 
Teacher: Does everyone agree? 
Students: Yes. 
Teacher: How many marbles did he win? 
Students: 60. [And Vítor puts the sign +, +60] 

Vítor began by confusing the notion of quantitative difference with the absolute amount of marbles: 
when he says "he had 50", he seems to assume that the player began the game of marbles with 50 
marbles. But, the teacher guided him, focusing on quantitative difference when she referred to 
"won" and after Vítor took a discourse centered on the gains and the losses describing the situation. 

Concerning Tuesday, Rui explained his solution on the blackboard. 

Rui: Then, on Tuesday, he won 30 more, he had 60. Then on Tuesday he lost 40. (...) 

Teacher: In general, he won more or lost? 

Rui: He won. (...) 

Teacher: So, overall, how much did he win? 

Rui: I think he got 60. [Rui records 30-40+60=60 on the blackboard] (...) 

Student A: It's wrong! It's fifty because 30 minus 40... 

Alexandre: From 30, you cannot take out 40. 

Again, there is a conceptual confusion between the quantitative difference and the absolute amount 
of marbles: "he had 60"; "he got 60"; "From 30, you cannot take out 40". The teacher tried to focus 
on global balance “In general, he won more or lost?” and “So, overall, how much did he win?” 
[guiding action]. Rui, confronted with the reactions of his peers, corrected his solution adding the 
gains (30+60=90) and subtracting the lost marbles (90-40=50). At the end, Rui circled the result 50, 
concluding that the player won 50 marbles on Tuesday. 

Then, the teacher invited Alexandre to present his solution for Wednesday: 
Alexandre: I saw we had 94. 
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Teacher: So, let's start at the beginning ... on Wednesday, in the first game, what happened 
in the first game, Alexandre? 

Alexandre: He lost 74. 
Teacher: He lost 74, and after, in the second?" 
Alexandre: And after he lost 94. 
Teacher: And after he lost 94 ... and after he won ... 
Alexandre: He won 90. 
Teacher: 90. And then, with the data we have there what did you do? Tell us.

The dialogue began by focusing on the modelling of the situation, with the teacher guiding about 
what was going on the three games on Wednesday. Alexandre continued explaining his solution: 
"94+90=184-74=110", justifying the addition of 94 and 90 because "94 is the largest number and 90 
was the second largest number". Alexandre tried to have an explanation for the computations, not 
for the situation. Again, the teacher tried to guide him, seeking to focus his reasoning on losses: 

Teacher: But why did you take out 74 now? 
Alexandre: Because I had already spent these numbers; it was just missing 74, I went to take 

them out. 
Teacher: You were to take out that because it was missing ... but Alexandre, in fact, he lost 

74 and lost 94... (...) What does this mean? 
Alexandre: He got less than zero.  
Teacher: I can only loose what I have... 

On Wednesday, the balance between gains and losses is negative: after the three games, the player 
lost 78 marbles. The quantitative difference in this situation requires ignoring the absolute number 
of marbles and Alexandre was not able to deal with a negative point of departure ("He got less than 
zero"). Alexandre seems to consider 94 as the initial number. The teacher revealed difficulty to 
guide the student's reasoning referring to the assumed need of knowing the initial number of 
marbles ("I can only loose what I have..."). In this situation, Jaime offered himself to explain. He 
added all the numbers ("74+94+90=258") and went to the blackboard to explain why he added 74 
plus 94: 

Jaime: Because 74 and 94 were what you had before. 
Teacher: 74 and 94 were the marbles he had, because he can only loose, we can only loose 

what we have, isn’t it? I cannot loose 74 marbles if I had nothing. (...) My friends, 
the 74 and 94 what were they? 

Jaime: That's what they had. 
Teacher: They only lost because they had them. 

The students confused the quantitative differences with the initial number of marbles. Again, the 
teacher tried to guide students focusing them in the modelling of the situations. However, the 
teacher could not reorganize her discourse when the situation became more complex. Catia had 
difficulty to challenge students in a way that they could understand the quantitative relationship 
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without knowing the absolute amounts of marbles. An impasse was created, and, in the meantime, 
the class had to end, it was time to break. 

Discussion 
The results show that the two classes reacted differently to the task. 2nd graders seem to do it 
without any difficulty.  In contrast, 3rd graders had difficulties, namely the fact that they did not 
have the initial number of marbles. These difficulties increased for Wednesday where the losses are 
greater than the gains, as no student did it correctly. From the beginning of the solution, while the 
2nd grade students added the losses and gains, 3rd grade students started to operate with numbers, 
apparently not thinking about the meaning of their procedures. This was not usual in the class 
because, as stated earlier, both classes used to do exploratory work in mathematics. 

Catia, the 3rd grade teacher, started to guide students focusing on the modelling of the situation, but 
confronted with the students’ answers, her questioning could not overcome the students’ conceptual 
understanding of quantitative relationships. Although she had solved the task before, trying to 
anticipate students’ responses, she was not able to deal with it when the situation became more 
difficult (on Wednesday). She began guiding the students to the description of the situation, as 
advocated by Smith and Thompson (2008), but at the end she got lost as her students. She repeated 
a statement which did not help as it was focused on the absolute numbers involved (“we can only 
loose what we have”) and this did not help students to solve the situation because it probably 
reinforced the confusion between the relative change of losses (-74-94) and the absolute amount of 
marbles ("what you had before"). She seems to have not understand students’ difficulty and was not 
able to retelling the situation (Franke et al., 2007). On the contrary, the 2nd grade teacher, Catarina, 
was always at ease with the situation, challenging her students in different ways, much more 
focused on the quantities in presence.  

Final remarks 
As Ruthven et al. (2011) state, the questions posed by teachers are fundamental aspects of 
classroom communication. Catarina and Catia have a similar inviting action seeking to initiate the 
discussion and to get students to present and share their solutions.  However, they differed 
regarding ways of communication concerning this specific task, with Catarina’s questions being 
more focused on the quantities and how these are related to the situation (Smith & Thompson, 
2008). So, how teachers develop the process of communication in classroom has a crucial role in 
students overcoming the challenging situation related to quantitative difference. Thus, 2nd grade 
students were able to focus on quantitative difference, looking at gains and losses, and dealing, 
naturally and comprehensively with negative number notation. On the contrary, the 3rd grade 
students were not able to disconnect from arithmetic operations and the need to consider an initial 
number and they were unable to focus on quantitative reasoning. So, it could be argued that the 2nd 
grade students were able to conceive a quantitative difference independently of numerical 
information about quantities (Smith & Thompson, 2008). For us, this situation is intrinsically linked 
to teachers’ actions and more specifically to the ways teachers guided and challenged students 
through questioning so that they latter could advance in their quantitative reasoning process. This 
study allows to emphasize the important role of teacher’s actions of guiding and challenging in 
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promoting students’ ability to reason with quantitative relationships, even when the initial values 
are unknown. 
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In this paper we study the first field experiences of a prospective mathematics teacher in a secondary 
school. Using Activity Theory we focus on contradictions emerging in the process of designing and 
enacting lessons, the sources for these contradictions and the potential impact on teacher learning. 
The two prevailing tensions related to students’ engagement in doing mathematics and students’ 
unexpected difficulties can be interpreted as contradictions between the actual and intended status of 
the object and between the teacher’s goals and the mediating tools. Sources for these contradictions 
seem to be the contradictory teacher’s experiences from the teacher education context and typical 
characteristics of mathematics teaching in Greek secondary schools. We find that the teacher 
becomes more aware about these contradictions and the different possibilities to deal with them.  

Keywords: Activity theory, initial field experience, contradictions, professional learning.  

 

Introduction 
The transition from university teacher education to school reality is a complex process that involves 
challenges and tensions for the prospective teacher. Research has focused on this process, initially 
considering beliefs and knowledge (e.g. Potari & Georgiadou-Kabouridis, 2009; Skott, 2001; van 
Zoest & Bohl, 2002) while more recently teacher identity (Losano et al., 2017). Both the early and 
the more recent studies show that prospective and novice mathematics teachers’ tensions are related 
to the various constrains of the school reality that often contradict to the images of innovative teaching 
approaches that are promoted in teacher education. In the study of Solomon et al. (2017), these 
tensions are related to the fact that  teacher education programs offer an ideal way of teaching that is 
far from the school reality where emphasis is often given in achieving good results in mathematics. 
Bridging the gap between theory and practice in early school placement of prospective and novice 
teachers is necessary for facilitating smooth transition from university to school.  

Losano et al. (2017) also talk about the tensions and contradictions that first year secondary school 
teachers face in their attempts to adopt innovative teaching approaches in the complex reality of 
school and mathematics classroom. They claim that this first teaching period offers very rich learning 
opportunities for the novice teachers as they reflect on their prior experiences and they project to their 
future career. Their findings indicate that the novice teacher of their study faced contradictions that 
in some cases were overcome while in others they remained conflicts. In particular, several past and 
present voices participated in the process of developing this teacher’s professional identity. They also 
show that sometimes novice teachers align to the identities afforded by the existing mathematics 
teaching at schools while they also introduce transformations in teaching. This parallel way between 
innovative approaches and school established practices has also been reported in earlier studies 
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(Potari & Georgiadou-Kabouridis, 2009). Research has also indicated that curriculum resources that 
align with reform oriented practices and the interaction between the interns and the mentors are 
crucial factors supporting the intern’s teaching development (van Zoest & Bohl, 2002). The study of 
Nolan (2016) also shows the constraints novice teachers face to use inquiry teaching approaches when 
the school reality is different from what they wanted to do. Although they recognize the limitations 
of the existing school and classroom structures, they keep silent and they do not take actions to change 
it.  

All the above studies show that prospective and novice mathematics teachers face tensions while 
trying to enact innovative teaching approaches in their first teaching. Dealing with these tensions they 
use teaching approaches that may vary from reform oriented to rather traditional. Looking for 
interpretation of those contradictory behaviours we begin to recognize the role of context in this 
complex process.  In our paper we attempt to address this complexity by focusing on the tensions that 
a prospective secondary school teacher faces in her initial classroom teaching and the ways that she 
deals with these tensions. In particular we address the following questions: 

What are the contradictions that a prospective teacher faces in her initial teaching experiences 
and which are their sources? 

How does this prospective teacher deal with these contradictions and what does it imply for 
her professional learning?  

Theoretical background 
We adopt Activity theory and in particular the Engeström’s (2001) perspective to study the 
contradictions, their sources and the process of dealing with them. Activity is collective, tool-
mediated and it needs a motive and an object while it is realized through the actions – goals and 
operations – conditions (Leont’ev, 1978). Activity in our case is the teaching of mathematics at the 
secondary school with students’ learning as the central motive. The subject is the prospective teacher 
Karen who performs actions (both in her planning and classroom enactment) related to specific goals 
that she makes explicit in the discussion she has with the researchers about her planning. These 
actions become operationalized through the tools she employs and the conditions under which 
teaching takes place. The institutional, social and classroom contexts are conditions on which 
teaching is developed. Tensions and contradictions are the driving forces for the development of the 
activity and in our case of mathematics teaching. Contradictions are historically accumulated 
structural tensions within and between activity systems. These tensions lead to changes in the activity, 
and in particular they emerge when a new element comes. Contradictions may refer to different 
elements of the activity system such as tools and object or communities and tools (Engeström, 2001). 
In our case the new element can be the innovative approaches promoted in the teacher education 
program that the prospective teacher attempts to enact in the rather traditional mathematics teaching 
history that characterizes mathematics teaching in the Greek secondary schools. Contradictions in the 
research related to mathematics teaching concern pedagogical, professional or epistemological issues 
and they emerge in the teachers’ decision making process (Potari, 2013; Stouraitis, 2016; Stouraitis 
et al., 2017). Studying their content and their sources allow us to have access to the practices that 
Karen participates when she experiences them and tries to handle them.   
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The process of overcoming contradictions in the AT perspective is linked to the expansive cycle of 
Cole and Engeström (1993), a developmental process containing internalization and externalization 
in repeated cycles. In the internalization the subject carries out routinely the activity, while the 
emerging contradictions promote the subject’s self reflection and the search for solutions. This 
externalization can lead to adoption of a new model for the activity that is also implemented by other 
subjects. As our study is mainly exploratory and our focus is on one prospective teacher that we 
interviewed and observed her teaching for a rather short time we cannot talk about a full cycle of 
expansion. However, initial indications of externalization that can be seen as signs of professional 
learning can be identified in our case and we recognized them in our analysis through Karen’s 
attempts for innovations, her critical questioning on existing teaching practices and her projections 
on future changes that she could do into her teaching.  

Methodology 
The context of the study 

In this case study we focus on Karen, a prospective secondary school teacher towards the end of her 
undergraduate studies. Karen studies mathematics at the university where she also attends 
mathematics education courses that aim to provide theoretical knowledge but to link it to mathematics 
teaching and learning at school. At the period that the study began, Karen was doing a course on 
teaching and learning problem solving and a course related to field experience where she observed 
lessons at school and she taught herself three lessons. Two of these lessons were in the context of an 
Erasmus+ project (EDUCATE) focusing on the design and enactment of mathematically challenging 
tasks that meets all the students’ learning needs. Karen taught these two lessons in a state upper 
secondary school in December 2018 in the class of the first author. From March to May 2018, Karen 
did her internship in the same school. The first author of this study, the classroom teacher, acted as 
mentor for Karen while the second author was the teacher educator supporting Karen at the university. 
Both contexts in teacher education and school placement support reform oriented approaches.  

Karen “always wanted to do this job [mathematics teacher]”. She valued teaching from her 
experiences as a student at school, where one of her teachers was “close to us [the students]” and 
made connections between mathematics and other contexts. Also, Karen has prior teaching 
experiences as a private tutor preparing students for the class or university entrance examinations 
where a more procedural approach to mathematics is expected. 

Data collection and analysis 

Karen conducted two lessons in the context of the university course and EDUCATE, and three more 
lessons as part of her internship. She attended several lessons by the classroom teacher and her peer 
Ken. Informal discussions were taking place after each lesson. The data for this study include two 
videotaped and transcribed lessons, field notes for all five lessons, students’ worksheets, audiotaped 
and transcribed interviews before and after her lessons, online communication (emails), and two 
interviews in the beginning and the end of the internship. All these data were generated from 
December 2017 to May 2018. Analysing the data, firstly, we identified Karen’s goals and the 
undertaken actions, the emerging tensions and Karen’s attempts to overcome them. As indicators for 
the emerging tensions we used Karen’s sayings about her worries, such as her uncertainty about 
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students’ engagement, or about something that bothered her as for example a student response that 
did not expect. Tensions were grouped and interpreted as contradictions. For example, one group of 
tensions was related to time pressures and was interpreted as a contradiction between the tools used 
by Karen and the rules that regulate the school work. 

Results 
In the process of planning and enacting teaching, Karen experienced several tensions. These tensions 
related with Karen’s goals to engage all students in doing mathematics, students’ difficulties, time 
pressures, and Karen’s sensitivity towards students' emotions. Here, we focus on the first two as 
prevailing tensions in this period and because these tensions seem to trigger Karen’s learning. 

Contradiction between the actual and intended status of the object 

Classroom management and students’ engagement are sources of tensions for Karen during her first 
teaching experiences. These tensions may be explained by Karen’s no prior teaching experience, the 
big differences between students’ achievement in the specific classrooms and her ambitious goal to 
engage all students in doing mathematics. 

These tensions are expressed by Karen’s worries if the students “will finally be able to deal with the 
tasks”, if they will recognize the aim of modelling and a purpose of doing mathematics. They are also 
expressed as Karen’s desire to succeed in her choices about classroom management. A challenging 
decision was to try to engage a group of five students which “do not want to learn mathematics” and 
“they have not any relation with mathematics, neither knowledge, nor interest”. 

We can interpret these tensions as manifestations of a contradiction between the actual students’ 
mathematical engagement (the object of the activity) and students’ mathematical learning as Karen’s 
intended outcome of the teaching activity. 

Karen deals with these tensions mostly through the design of the tasks and the forms of classroom 
interaction she orchestrates. The tasks were: modelling situations like the renovation of a house as 
context for forming and solving linear equations and the investigation of a crime as framework to use 
properties and different representations of exponential and logarithmic functions; logical puzzles; and 
typical school tasks like solving quadratic equations by using the formula and translating formulas 
and ordered pairs to graphs and points and vice versa. As sources that inspired the task design about 
modelling Karen mentions the university courses she attends. For the more typical school tasks she 
refers to the internet and classroom textbook and to discussions with friends and peers. There were 
lessons where the autonomous group work of students prevailed, while others were mostly conducted 
by whole class discussion with short time spaces to work individually or in pairs. She also used 
specific strategies to promote students’ involvement, for example she asked students to write their 
answers on a piece of paper and show it in the class and she asked them to play a language game, 
complementing a phrase with letters collected for each equation they solved  As sources inspiring her 
decisions about classroom management Karen mentions her teachers and especially some strategies 
and games they used in the classroom, her involvement in collective sports and activities that “helped 
me [her] to understand the importance of group work”. Nevertheless, she says that some mathematical 
topics must be presented by the teacher, because “it cannot be done differently”, implying that she 
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does not know any other way to curry out teaching topics that include “introduction of something 
new, or understanding the steps of a proof”. After the second lesson Karen says that a pattern for 
teaching mathematics should be “teaching [teachers exposition and discussion], applying the 
procedures individually … and [later] some problem solving or modelling tasks with students work 
in groups”. 

In her last lesson Karen seems less stressful, although her goal to engage all students is still strong. 
She identifies and describes her feelings in the classroom talking about “the burden of being on the 
board”, and saying “there were times I was speaking, noticing students and thinking something else 
simultaneously. It is another level of multitasking”. In a next interview explains: “Multitasking is 
what you do all the time in the 45 minutes in the classroom”. She thinks that “your preparation and 
planning helps you improvising” because “there are too many factors in this time. Students’ 
responses, questions you don’t expect, your worksheet does not function as you expected, which word 
to use…” In her last teaching she had “too many thoughts. Thoughts connected with my actions and 
words … like cartoons, these moments I thought I had multiple personalities, all talking to me …” 
For her future as teacher, Karen thinks that she should be “always trying to find new ways of teaching, 
to develop, to inquire”. 

Karen deals with the contradiction between the actual and the intended status of the object with the 
tasks she gives to the students and with her choices about the classroom orchestration. She mostly 
draws on innovative approaches like modelling processes, group work and playing games. Most of 
them come from Karen’s participation in the teacher education program and reform oriented 
approaches she experienced as student or as intern teacher attending the teaching of practicing 
teachers. Nevertheless, there are cases where Karen follows more traditional teaching approaches 
often met in mathematics classrooms in Greek schools. In this process Karen enhances her reflection 
becoming more aware about her decisions and actions in teaching and about the importance of lesson 
planning in the enactment of her goals. We cannot talk about Karen overcoming the contradiction, 
but she becomes more aware about it and she searches for “effective” ways to deal with this. 

Contradiction between the teacher’s goals and the mediating tools 

Several tensions that Karen experienced are related with unexpected students’ difficulties. These 
emerged in the lessons and in some cases they could be explained in terms of Karen’s actions and the 
tools she used. Here we focus on students’ difficulties in relation to the tools Karen used in her 
teaching.  

These tensions are experienced by Karen as unexpected students’ queries, misunderstandings or 
difficulties to proceed in the task. For example, in the first lesson, the written description of the task 
was complicated, requiring more explanations. In the fourth lesson, investigating a crime, students 
should solve an exponential system to find k and c in the expression ( ) 0

ktT t T c e-= + ×   consuming 

time and disrupting the focus on modelling process. In a previous lesson, answering why D must not 

be negative in the expression 2
2

( )
2 4
b Dx
a a

+ =  Karen gives a rather procedural explanation that the 

amount under the square root must not be negative, although her goals are conceptually oriented.  
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We can interpret these tensions as manifestations of a contradiction between Karen's goals and the 
tools she used either as tasks or as explanations. While Karen's declared goals focus on conceptual 
understanding of mathematics, the tools she uses do not support these goals, on the contrary they 
orient students towards more procedural approaches. 

Karen experiences these tensions as students’ difficulties, not as contradictions between her goals and 
the mediating tools. Thus, she responds to them providing additional explanations and support or 
giving time. For example, she considers finding k and c as time consuming but not as disrupting from 
her modelling goals. She considers students’ difficulties with locating points on a graph rather as a 
procedural difficulty to find a point than not understanding the translation between graphical and 
algebraic concepts and relations. Responding to the perceived difficulties Karen tries to reduce time 
or to give short exercises for students to solve. In the discussions after the lessons Karen explains her 
responses involving the mathematical content and the ways this content is usually taught. For 
example, on her explanation that the amount under the square root must not be negative, she says that 
“this is the proof … this is the mathematical way to do it” adding that “a part of mathematics must be 
taught doing mathematics”. The teacher educator, the classroom teacher and her peer challenge 
Karen’s interpretations providing more conceptual explanations and approaches. Karen discusses and 
accepts these possibilities, not without resistance. For example, she says “you may need more time 
[to find k and c], but this is in fact the mathematical modelling”. After enacting the lesson in two 
different classrooms she thinks that “[to reduce the time] I could give c, so they should only find k”.  

Although Karen’s initial responses are rather procedurally oriented, in the discussions with the 
teacher educator, the classroom teacher and her peer, she appears open to other approaches and 
interpretations. In some cases an ambiguous shift has identified: Karen seems to adopt more 
conceptual approaches as potential ways to respond to the certain difficulties in the future. For 
example, ending the discussion about the task requiring the parameters k and c, she says that she 
could also think to give students k and c, and in another teaching period to come back and say “let’s 
see how this is done in reality” implying how k and c can be calculated in a real situation. 

The contradiction between goals and mediating tools seems to emerge as contradiction among the 
different Karen’s experiences and communities she participated. Her conceptually oriented goals are 
based on her participation in the teacher education program and the context of the internship. In the 
last interview she says that through these experiences she has changed the way of thinking, especially 
“to think not only the time [the time planning of the lesson] but also the way a student thinks … I 
have developed in setting my goals, considering how students think …”  Procedural approaches may 
come from her experiences as student and from her involvement in teaching as private tutor. For 
example, after the second lesson she says about her choice to spend time providing explanations on 
the blackboard: “there are some mathematical issues that you must teach this way, [students] to 
understand how we step from one to the other”. Although Karen initially does not see any 
contradiction between her goals and the tools, in the discussions seem to open some possibilities for 
her awareness and future shifts. This was often expressed as possible change to the task, like the 
aforementioned change with k and c, or changes to the given answers, like focusing to the square in 

the first part of 2
2

( )
2 4
b Dx
a a

+ =   to explain the requirement 0D ³ . In the last interview, Karen 
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mentions as negative feature in teaching “the noise … that is what you do [your actions] to impede 
your goals”. She says that it almost happened to her in some lessons, but she refers only the excessive 
use of the context without including procedural oriented tasks or responses blurring her goals about 
students’ conceptual understanding.   

Conclusions 
Like the findings of other studies (Potari & Georgiadou-Kabouridis, 2009, Losano et al., 2017) 
Karen’s first enactments in the school classroom include both innovative and more established 
practices. This finding cannot be interpreted by the differences between the school context and the 
teacher education program, since both supported reform oriented approaches. We do not disregard 
the institutional factors that may imply a more traditional way of enacting the lesson in the school 
classroom, neither the ideal way to consider teaching in a teacher education program. But the specific 
context of Karen’s early school placement was focusing on students’ conceptual understanding and 
involvement in doing mathematics. Karen’s participation in different communities may support an 
interpretation for her mixed practices. Her experiences from the classroom teaching as a student and 
later as a private tutor, her participation in communities of university students discussing issues about 
teaching are also sources for Karen. These communities are also interacting with other communities 
without an immediate relation to mathematics teaching and learning (athletics, theatre) but seem to 
have a role in Karen’s way of becoming a teacher. Karen’s approach of the motive of the activity, 
that is the students’ mathematics learning, is influenced by these past and current activities and 
communities she participates. Similar findings are also reported for in service teachers (Stouraitis, 
2017). 

The tensions Karen experiences as worries, pressures and students’ difficulties are manifestations of 
contradictions fuelled by the aforementioned different approaches to teaching practice. 
Contradictions between the actual and the intended status of the object and between the teacher’s 
goals and the mediating tools, are two main groups of the emerged contradictions. The subject (Karen) 
has a prevailing role in these contradictions through the intended status of the object, the goals and 
the use of tools. Karen tries to overcome most of the tensions she experiences, although she does not 
identify all of them as contradictions. In line with other studies, the teacher deals with some of the 
contradictions aiming their overcoming, while other remain as tensions. But in the process of 
planning, enacting, reflecting and discussing her lessons and some tensions, Karen becomes more 
aware about contradictions and the different possibilities to deal with them. In some cases, a shift 
appears, rather as a potentiality to undertake a different action than a clear change. Additionally, this 
shift is verbally expressed by Karen when she talks about her development through her first teaching 
experiences and her learning. We consider these shifts as indications of self reflection and search for 
solutions, a crucial aspect of the cycle of expansive learning (Cole & Engeström, 1993). 

The interaction between the interns and the mentors is recognized as a crucial factor related to 
teaching development (van Zoest & Bohl, 2002). In our case, discussions before and after the lessons 
with the teacher educator, the classroom teacher and Karen’s peer appear to be a supportive context 
for Karen’s reflection. These discussions were inquiry oriented, without a predefined intended 
outcome and promoted Karen’s reflection and growth of awareness. In this context Karen expressed 
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the aforementioned shifts. Karen's growing awareness and shifts and mostly the way she considers 
her future career can be interpreted as indicators for a developing professional identity. And this 
process seems to be initiated and supported by the collective context.  
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This study investigated instructional actions of a novice teacher in 6th grade mathematics 
classrooms during unexpected moments of teaching. The teacher was selected as a case due to her 
commitment to lesson planning and her interest in creating meaningful mathematical discussions. 
Unexpected moments of teaching are defined as moments when there is an interruption to the lesson 
planning. These moments are significant as how teachers notice and decide to act in these moments 
may determine the quality of instruction. The analyses of lesson planning meetings, lesson 
observations and interviews with the teacher revealed only three cases of unexpected moments as 
she taught algebra. The results indicated that unexpected moments of teaching in the form of 
student questions and responses helped the teacher reflect for future lessons. The instructional 
actions during these moments had the potential to support and extend student thinking.  

Keywords: Instructional actions, student thinking, teacher noticing, pivotal moments in teaching. 

Introduction 
Teaching practices play a significant role in shaping student learning (Franke, Kazemi, & Battey, 
2007). Research studies (Franke et al., 2007; Hiebert & Grouws, 2007) underline the importance of 
teachers choosing and implementing high-cognitive demand tasks and shaping meaningful 
mathematical discussions. Teachers are expected to support their students in achieving learning 
goals, pay attention to students’ knowledge and motivation, and adjust instruction accordingly 
(Ball, Lubienski, & Mewborn, 2001; National Research Council [NRC], 2005). This type of 
student-centered instruction demands that teachers not only teach the curriculum as given but 
change it by taking into account their students’ needs during the moment of instruction.  

In general, previous studies (Fenenma & Franke, 1992) and reform documents (National Council of 
Teachers of Mathematics [NCTM], 2000) indicate the importance of planning in order to create 
meaningful mathematical discussions in student-centered instruction. When teachers use research-
based protocols and consider students’ prior knowledge in preparing a lesson plan, they may be able 
to incorporate student thinking in better ways (Smith, Bill, & Hughes, 2008). Adjusting lesson plans 
according to student needs and building meaningful discussions are important skills generally 
attributed to more experienced and highly-accomplished teachers (Taylan, 2015).  

Although the relationship between the nature of mathematical discussions and student learning is 
complex, it is documented that some teacher instructional actions during classroom discussion may 
have more potential than others to advance or extend student thinking. In a framework developed by 
Cengiz, Kline and Grant (2011), inviting students to evaluate a claim and provide reasoning and 
probing, challenging and providing counter arguments to student claims and pushing for 
alternative ways were categorized as instructional actions that extended student thinking during 
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class discussions. Actions that supported student thinking involved repeating a student idea, 
suggesting interpretation of student thinking, introducing different representations, reminding of 
the learning goal, and recording and acknowledging student thinking (Cengiz et al., 2011). 
Complimenting or evaluating student thinking, redirecting to peers, requesting basic information 
and clarifying questions were actions that were classified as other actions which did not support or 
extend student thinking. Managing discussions by considering the influence of different actions as 
described in research-based frameworks may help teachers in supporting and extending student 
thinking in more productive ways.  

Consideration of potential student responses to tasks helps teachers in responding to their students’ 
needs in-the-moment of teaching during classroom discussions, but it may not be enough to 
advance students’ mathematical thinking. In fact, Rowland, Thwaites and Jared (2015) defined 
contingency as part of necessary teacher knowledge which helped teachers face unexpected 
moments when they had to deviate from their plans during teaching. Teachers need to pay attention 
to both development of mathematical concepts and student ideas that come up spontaneously during 
discussion (Sherin, 2002). Stockero and Van Zoest (2013) defined pivotal teaching moment (PTM) 
as moments when teachers notice and act upon those moments and change the flow of the 
instruction according to students’ thinking, i.e., students’ unexpected comments and questions, 
misconceptions, or confusions. During these unexpected circumstances teachers may choose to 
ignore the PTMs or build upon them to extend the lesson that they planned before. In this study, the 
focus of inquiry was a novice teacher’s instructional actions during unexpected moments of 
teaching by taking into account her planning and reflections on teaching. Understanding planning 
and teacher decision-making processes has a potential to contribute to both research in teacher 
professional development and actions involving student-centered teaching, as little is known about 
how to act productively in such situations.  

Method 
This is a case study (Yin, 2003) of a novice mathematics teacher. The authors explore instructional 
actions of the teacher during unexpected moments of teaching using qualitative methods.  

Participants 
The participant teacher held a master’s degree from a highly selective teaching program in Turkey. 
She had two years of teaching experience in middle school. The school where she taught was a 
private school in Istanbul, Turkey and teachers were supported and encouraged to prepare detailed 
lesson plans collaboratively. The participant teacher’s lessons and planning meetings were observed 
by one of the authors. The participating teacher was selected due to her experience in developing 
detailed lesson plans both as a teacher candidate and as a teacher.  

Research Tools 
Research tools included semi-structured interviews with the teacher, observations of mathematics 
lessons and recordings of lesson planning meetings. Planning meetings were conducted with the 
participating teacher and other mathematics teachers who taught 6th grade in the same school. 
During observations of three planning meetings, algebra lessons were planned by a group of 
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teachers teaching 6th grade in the school. All three meetings were observed and transcribed. 
Planning meeting transcriptions were useful to understand how teachers planned to create 
mathematical discussion environment and designed the lessons.   

The interviews which took place both before and after observations provided opportunities to 
understand the teacher’s perspective and her decisions about creating mathematical discussion 
environments in the class and how classroom talk could lead to student understanding. The 
interviews before classroom observations were about the teacher’s thoughts on planning and 
anticipation of teaching decisions, for instance exploring the questions that the teacher planned to 
ask. The interviews after classroom observations allowed the authors to ask the teacher to reflect on 
how the lesson went and discuss her decision-making process as well as student learning. During 
these interviews, the teacher was asked to reflect on what went well or what she would change for 
the next lesson based on the experience. The teacher also had a chance to express what caught her 
attention and whether she made a decision to change the lesson plan due to unexpected moments. 
The interviews which lasted about half an hour took place both before and right after each lesson 
observation. 

Overall, there were five lesson observations, five interviews before the observations and five 
interviews after the observations with the teacher. Additionally, there were observations of three 
lesson planning meetings and one general interview with the teacher in order to gain insights into 
her beliefs and perspectives as a mathematics teacher which helps us understand her actions in 
better ways. Beliefs are inherently related to instructional actions. Data collection took place over 
three weeks when the participating teacher taught algebra in the 6th grade. The second author 
observed both planning meetings and the mathematics lessons as a participant observer. Five 
lessons in algebra were observed. Classroom talk during each lesson was recorded and transcribed. 
Attending planning meetings, observations of the lessons and conducting pre-and post-observation 
interviews allowed researchers gain insights about the complexities involved in teacher decision 
making during the unexpected moments in teaching and details of the lesson flow.  

Data Analysis 
During the data collection and across five lesson observations three unexpected moments of 
teaching were observed. The unexpected moments were selected because they happened as a result 
of interaction with students, which were not anticipated in the planning meetings. An example of  
these moments was unanticipated student difficulty that was not discussed during the planning 
meetings. These moments were also confirmed with the teacher as unexpected during the interviews 
which took place after the lessons. To analyze the instructional actions during those unexpected 
moments, classroom talk during the unexpected moments were transcribed and teacher’s actions 
were classified according to a framework developed by Cengiz et al. (2011).  

Results 
According to the analyses of lesson planning meetings, classroom observation transcripts and 
interviews before and after observations, three unexpected teaching moments were revealed. 
Unexpected answers, comments and questions in relation to teacher and student learning are 
provided in the next sections.  
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Several episodes of teacher instructional actions and her reflections in the context of responding to 
students’ unexpected answers, comments and questions were discussed by taking into account of 
constructs of teacher noticing and pivotal teaching moments. Analysis of transcripts using the 
instructional actions framework (Cengiz et al., 2011) revealed that teacher instructional actions 
included supporting and extending actions. More specifically, recording and acknowledging student 
thinking and inviting students to evaluate a claim, challenging/providing counter arguments to 
student claims were observed as the teacher responded to changes in the lesson flow. Considering 
students’ engagement and answers in the discussion, it may be argued that teacher was able to 
create a rich discussion environment by demonstrating such instructional actions.  

Unexpected Moments of Teaching-1 
The first unexpected moment was identified in the introductory lesson to the algebra concept. The 
lesson plan associated with this topic involved “the birthday magic activity” which was a number 
guessing game. This was the first time the 6th grade students were going to hear about the topic of 
algebra. Students were expected to engage with this activity, use four operations using their 
birthdays and come up with a number. At the end of the activity, the teacher planned to guess 
students’ birthdays and explain that the use of algebra was needed in order to perform this magic. 
The teacher aimed to motivate students for learning algebra.  

During the planning meeting, the teachers decided to provide the following instructions for the 
students about the birthday magic activity: 

Start with the birthday month (if your birthday month is October, you will start with 10). Multiply 
this number by 5. Add 7 to the result. Then multiply this result by 4 and add 13. Multiply the result 
by 5 and add the birthday date (First lesson plan).  

The teacher planned to subtract 205 from the resulting student answer and guess students’ 
birthdays. The teacher anticipated that students would understand the pattern of the birthday magic 
activity after several examples.  

In the following episode, the first unexpected moment occurred when a student used a different 
strategy than what the teacher thought before lesson. Below is the transcript of student answer and 
teacher response when a student was trying to guess a peer’s birthday: 

Student: I found the answer like this. I was born on the 25th of January and the result was 
330. When my friend said 328, I went back two days, my friend must be born on
the 23rd of January.

Teacher: Well, you found like that, by using a clue. What if the number associated with 
your friend’s birthday was not close to yours? How would you find it then, if you 
did not have a clue?  

Although the teacher acknowledged the student answer in the above episode, she also challenged 
this answer and pushed the student to find alternative ways so that the answer would not be relevant 
in only specific circumstances. The instructional actions occurred during this lesson were requesting 
basic information, clarifying questions, complimenting and evaluating, challenging/providing 
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counter arguments to student claims, pushing for alternative ways, inviting students to provide 
reasoning and probing (Cengiz et al., 2011).  

In the same introductory lesson, there was another unexpected moment. Before the lesson, the 
teacher expected the resulting number she would get from students to be 4 digits. However, during 
the activity, some students provided three digit answers. The teacher had a difficulty in deciding 
which two digits of student answers were birth month or birth day. Additionally, some students 
made calculation mistakes in producing their birthday number, which resulted in inaccurate guesses. 
Here is what teacher said about how the lesson went according to plan: 

Teacher: Actually, we did not think of using calculator but if student made calculations 
incorrectly then the activity does not work. Now, our learning outcome is not 
addition or subtraction. That’s why we (the group of 6th grade teachers) decided to 
use calculator as a last-minute decision. That’s why actually my plan changed. I 
made a strategy like first subtract 200 and then 5. Later I thought I can also use 
tablet and it would be faster. During the activity, I was sure about one student’s 
birthday but the answer was wrong.  After that I was confused because while we 
were studying we always went through 4 digits. When students said 3 digits, I 
couldn’t decide what the birthday would be: the first two digits or last two digits. 
Maybe I should have practiced more on my own (Post-lesson interview after the 
first lesson).  

As observed in the above transcript, the teacher attributed the unexpected moments in teaching to 
not being well prepared and anticipating different patterns. Although the teacher was going to ask a 
few students’ birthdays in the plan, she asked all students with the unexpected confusion. As a 
result of this unexpected moment, the teacher reflected for future lessons and thought about how to 
prepare better and anticipate student answers in more productive ways.  

Unexpected Moments of Teaching- 2 
During this lesson students practiced operations with algebraic expressions. This unexpected 
teaching moment occurred when a student asked an unexpected question about writing an algebraic 
expression. In one of the questions, the students found an answer in the form of: 1+y/7. After that 
the following conversation took place between the teacher and a student: 

Student: Can we add them (1+y/7)? 

Teacher: Can we add them? Are those similar terms? 

Student: Teacher, but can’t we write 1 as whole part?  

Teacher: Hmm. Do you mean like this, “1 whole y/7” as in fractions? 

Student: Yes. 

Teacher: Yes, you can. Like this (Teacher wrote the answer on the board.) 

Student: Yes. 

Teacher: I’m thinking. You can. Nice. Are there any questions? Are you sure? 
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In this lesson, the unexpected moment didn’t change the flow of the lesson. Teacher clarified the 
meaning of what the student suggested and acknowledged the student answer. The teacher also 
recorded the answer on the board and shared it with class. The instructional actions were 
complimenting, requesting basic information, repeating student idea, claim, question, recording 
student thinking. In this specific unexpected moment, the teacher challenged the student answer in 
the beginning (“Are those similar terms?”) but later accepted what the student meant. The student 
made a connection with the concept of fractions. However, the teacher did not invite other students 
to evaluate the claim and make the discussion public. During the post lesson interview, the teacher 
said she was not expecting this connection with prior topics and she was pleasantly surprised. 
Although the teacher’s aim was to create a discussion environment, in this unexpected moment 
there was a lost opportunity to create a pivotal moment of teaching to make student thinking public, 
which could help other students make similar connections.  

Unexpected Moments of Teaching- 3 
The last unexpected moment was identified during the lesson about patterns and algebra. The 
teacher asked students to give a number pattern. The unexpected teaching moment occurred when a 
student posed a question that the teacher had not considered prior to the lesson.  

Student: Teacher, can we make it like this? (i.e. “a pattern like this?”) 

Teacher: Say it.  

Student: 1x, 2x, 3y, 1x, 2x, 3y  

Other students are giving similar examples, they discuss constructing different patterns by using 
numbers instead of x and y’s. In this moment, the whole class was involved.  

Teacher: Let’s write, x, 2x, 3y, x, 2x, 3y. Is this a pattern? (directing this question to the 
whole class, inviting other students to the discussion) 

Students were engaged and providing different answers. Some provided the right answer and 
some were not sure about the answer.  

Teacher: x, 2x, 3y is a pattern. To understand that it is a pattern we want to see that it is 
repeating. There are variables but are they repeating with a rule, that is the 
important point.  

Later during the interview, the teacher revealed that she did not expect this question. During this 
moment the teacher had a choice to ignore the student question or just acknowledge it and continue. 
Instead, she chose to make the discussion public and have other students participate in the 
discussion. The teacher changed the flow of the lesson for a few minutes based on a student 
response and spared time for discussion.  

Teacher: I like it when students ask something beyond expected, they (students) can be so 
creative and such responses make classroom discussion become richer (the last 
interview).  
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The instructional actions during this unexpected moment were found as requesting basic 
information, repeating student idea, claim, question, acknowledging student thinking, recording 
student thinking, reminding of the goal, suggesting an interpretation, inviting students to evaluate a 
claim, and challenging/providing counter arguments to student claims.  

Discussion 
Results of data analyses revealed only three unexpected moments of teaching. In general, the 
planning sessions were very detailed and planning discussions among teachers encouraged them to 
think of potential student answers, weaknesses and strengths. There were not many unexpected 
moments for the teacher probably because she participated in collaborative and detailed planning 
sessions together with experienced teachers. Considering three unexpected moments of teaching, 
not all were pivotal teaching moments for the classroom, i.e., they did not allow for extended 
understanding among all students. There may be several reasons as to why this happened. For the 
first unexpected moment, the teacher had a difficulty because it was the first time she tried to play a 
guessing game with students but there were some answers that she did not anticipate. For the 
second unexpected moment, the teacher did not ignore the unexpected student question but did not 
make the student question public or invite other students to evaluate the claim. In contrast to the 
first two unexpected moments, during the third unexpected moment the teacher made the 
unexpected question public in the classroom and initiated classroom discussion.  

The beginning teacher in this study considered how she could teach the next lesson in a better way 
with experience of unexpected moments of teaching. Experiencing unexpected moments appeared 
to have the potential to help the teacher’s professional growth and planning for richer discussions 
for the next cycle of teaching similar concepts. This phenomenon was also mentioned by Smith et 
al. (2008). Analysis of instructional actions during unexpected moments revealed that the teacher 
demonstrated similar actions in different cases. Future research may utilize different frameworks in 
analyzing teacher actions. The analysis of instructional actions did not seem to predict quality of 
discussion on its own, which may need to be supported by other frameworks in future studies. This 
was a case of a novice teacher who was motivated to build instruction by considering student 
thinking. Analysis of the interviews and observations indicated that the teacher valued different 
types of student thinking and explored student thinking by asking open-ended questions and 
initiating classroom discussions. The instructional actions included types of actions that had 
potential for supporting and extending student thinking (Cengiz et al., 2011; Taylan, 2015). These 
findings are in contrast with previous research which documented beginning teachers mostly 
focused on classroom management and on their experience as beginner teachers (Schmidt, 
Klusmann, Lüdtke, Möller, & Kunter, 2017). The teacher in this study was in a high-achieving 
school and did not have many classroom management problems, which helped her build meaningful 
classroom discussion environments. Our study revealed detailed planning and teacher collaboration 
culture and as well as individual experiences and motivation seemed to help this teacher in creating 
and managing mathematical discussions.  
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This study investigates how principles of feedback to encourage students´ creative reasoning can be 
used by a mathematics teacher. An experienced teacher was introduced to principles, developed in 
pilot studies, and was instructed to plan a lesson based on four principles for feedback. During the 
lesson the teacher’s interactions with students were recorded and the following analysis focused on 
the way feedback resonated with the principles. The result indicates that providing feedback which 
challenges students to reason creatively is difficult and complex. There are pitfalls that originate in 
established classroom norms for interaction, as well as beliefs about the object of teaching, and it 
appears that the principles, in order to become a powerful tool, require the teacher and students, to 
practice using them.  

Keywords: Instructional design, teaching methods, feedback. 

Introduction 
Students, who are encouraged to construct their own solutions and create arguments when solving 
mathematical tasks, tend to, if they are successful, learn or remember more from such activities than 
students who are being guided by templates and prepared examples (Jonsson, Norqvist, Liljekvist, 
& Lithner, 2014). Despite the disadvantages, described in numerous research reports, of teaching 
mathematics by providing solution methods to tasks, such teaching is still prevalent in many 
classrooms, in Sweden, as well as around the world (Boesen, Lithner, & Palm, 2010; Hiebert & 
Grouws, 2007). Teaching where students create and justify their own solutions (i.e., engaging in 
creative reasoning) requires different teacher-student interactions than traditional teaching. Rather 
than explaining which method to use as well as how and why it works the teacher must encourage 
students, not only to construct own solutions, but also to challenge them to justify their choice of 
method (Hmelo-Silver, Duncan, & Chinn, 2007). 

A teacher-student interaction aimed at supporting students’ construction of solutions can be 
compared to feedback aimed at supporting the students’ learning processes and thus relies on the 
active involvement of the student (Hattie & Timperley, 2007; Nicol & Macfarlane-Dick, 2006). 
Research on formative assessment and feedback often reports general guidelines on how to provide 
feedback in teaching but few studies present empirical results detailing how feedback can be 
prepared and designed in classroom situations (Hattie, 2012; Palm, Andersson, Boström, & Vingsle, 
2017). Hence there is need for a deeper understanding of how formative assessment/feedback can 
be implemented at a classroom level (Hirsch & Lindberg, 2015). As a preparation for this study a 
series of four pilot studies, involving mathematical problem solving, was conducted. The interaction 
between students and their teacher was studied with the aim of identifying what characterizes the 
kind of feedback that leads students to reason creatively. The findings can be interpreted as four 
basic principles: (1) find out how the students are thinking, demand that students are specific, (2) 
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encourage the students to formulate their thinking without interrupting or interpreting, (3) challenge 
the students to explain why their solution is working (or not working) – instead of confirming or 
disconfirming, and (4) encourage the students to find a way to test their solution. The present study 
investigates how the principles can be used by a teacher who is unfamiliar with them. Our aim is to 
refine the principles and to form guidelines for formative feedback that teachers can use to foster 
creative reasoning.   

Background 
Teaching that encourages students to construct and justify solutions to mathematical tasks entails a 
focus on reasoning. Furthermore, it is reasonable to assume that teachers’ feedback may guide the 
character of students’ reasoning. The following paragraphs will outline distinctions between 
different types of reasoning and feedback relevant for the didactic design addressed in this paper. 

Imitative and creative reasoning 

If the teacher explains a definition of a mathematical concept and then demonstrates how to solve 
tasks associated with this particular concept, it is possible for students to solve similar tasks by 
remembering the procedure without understanding the definition. Lithner (2008) found that students 
trying to apply memorized procedures often had difficulties when solving tasks for which there had 
been no recent teaching. For example, calculating 23 ´ 24 using a memorized process could mean 
mixing up whether the numbers should be added or multiplied. The reasoning associated with such 
an approach is defined as imitative (IR) (Lithner, 2008). A variant of IR is AR, algorithmic 
reasoning which is relevant for this paper. AR entails recalling a memorized, stepwise, procedure or 
following procedural instructions from a teacher or textbook, that are supposed to solve a task 
(Lithner, 2008). AR is algorithmic in the sense that it solves the associated task, but it does not 
require an understanding of the mathematics on which the procedure is based.   

An alternative approach to the example above, 23 ´ 24, may be to consider what the mathematical 
meaning behind the expression is, i.e., 23 means 2 ´ 2 ´ 2, and 24 means 2 ´ 2 ´ 2 ´ 2. After 
realizing this, the next step is to put the two together, 2 ´ 2 ´ 2 ´ 2 ´ 2 ´ 2 ´ 2, which is 27. If the 
student can express mathematical arguments for the solution she is engaged in creative 
mathematical reasoning (CMR). CMR is characterized by the construction or reconstruction of a 
solution method and the expressing of arguments for the solution method and the solution (Lithner, 
2008). 

Feedback 

It is possible for students to reach correct answers to tasks without understanding the mathematical 
concepts involved (Brousseau, 1997). If a student should fail in his or her attempts to solve a 
mathematical task, the most obvious feedback from the teacher may be an explanation regarding 
how to solve the task, not to explain the mathematics it is based on. Should the student, however, be 
responsible for the construction of the solution method, she is helped by understanding the 
mathematics required by the task. In such cases, it is appropriate for the teacher to inquire into the 
student’s thinking. Inquiring into students’ thinking can be seen as part of formative feedback at the 
process level whereas delivering or assessing a right or wrong answer is seen as task level feedback 
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(Hattie & Timperley, 2007). Research indicates that 90 % of feedback in classrooms is on task-level 
(Airasian, 1997). Feedback on process-level focuses on the underlying mathematical processes, 
which can support students’ conceptual understanding as well as their autonomy (Kazemi & Stipek, 
2001). This type of feedback creates interactions in which students have an opportunity to develop 
their ability to use mathematical ideas to formulate arguments and justifications for their choices 
(Michaels, O’Connor, & Resnick, 2008).  

Development of principles for feedback aimed at supporting creative reasoning 

The principles for feedback were developed iteratively during a year in four pilot studies in 
collaboration with a teacher (see Olsson & Teledahl, 2018). The starting point for the pilot studies 
was the design of appropriate tasks for CMR. Then possible solutions to the tasks, together with the 
potential difficulties that students will encounter, were considered. For each of these solutions and 
difficulties feedback aimed at supporting CMR was designed. The lessons were recorded and the 
interactions between the teacher and the students were analyzed with the aim of identifying the 
characteristics of the feedback that led students to reason creatively. The result of every analysis 
was used in the planning of the next lesson. After the fourth intervention, principles for feedback 
supporting CMR were formulated. These principles (see Introduction) were used in the present 
study to support the design of the intervention (to setup student activities where feedback for CMR 
is appropriate) and to prepare the teacher to formulate feedback for CMR. 

Method 
In order to test the previously developed principles for feedback a new study was set up in which a 
lesson was planned so that students would have the opportunity to engage in CMR. The principles 
were also used to prepare the teacher and help him support students’ CMR through feedback. 
During the lessons the teacher’s interactions with students were recorded. Compared to other 
possibilities (e.g., interviews) data was considered to be reasonably close to the thinking processes 
that create feedback and reasoning. Feedback is considered as both a response to students’ actions 
and guiding their continued reasoning. The chain students’ action – teacher’s feedback – students’ 
continued reasoning was the unit of analysis.  

Sample 

A teacher and students in 8th grade of a Swedish elementary school volunteered to participate. The 
teacher is experienced in teaching mathematics through problem solving and the students were used 
to problem-solving activities. The teacher did not participate in the pilot studies where the 
principles for feedback were developed. Instead, he was introduced, during a half-day seminar, to 
the idea of supporting students´ CMR through feedback according to the principles. Transcripts 
from the pilot studies were discussed and tasks suitable for the class participating in this study were 
considered. The teacher considered the class to be average in terms of achievement, and a mix of 
students with Swedish as their native or second language. With respect to feedback, in his everyday 
teaching, the teacher considered it his intention not to guide students to solutions, although he did 
not have explicit strategies for achieving this. Neither the lesson, nor the feedback, would thus be 
considered something out of the ordinary and according to the teacher, the interactions were typical 
for his style of teaching. 
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Lesson plan 

The teacher was instructed to plan a lesson containing problem solving. The role of the teacher was 
to support students in constructing solutions rather than explaining how to solve the problems. It 
was assumed that successfully constructing solutions, without knowing a solution method in 
advance, would require students to engage in CMR. The tasks were designed in line with Lithner’s 
(2017) principles: (1) creative challenge, no solution methods are available from the start and it 
must be reasonable for the students to construct the solution, (2) fair conceptual challenge to 
understand mathematical properties (e.g., representations and connections) and (3) justification 
challenge, is it reasonable for the particular student to justify the construction and implementation 
of a solution. The tasks were part of the curriculum and involved combinatorics. Task 1a asks the 
students to find all of the different ways to put three blocks of different colors in a row. The 
students were supplied with concrete materials. In task 1b another block, of yet another color, is 
added. The teacher was also instructed to prepare to give feedback according to the principles. 

Procedure 

During the lesson, the students worked in pairs. The tasks were presented in written text and the 
students were asked to present written solutions. The students were encouraged to collaborate and 
call the teacher if they did not understand the instructions, or if they got stuck. The teacher was 
wearing a recording device, which recorded his interactions with students. The recordings were 
transcribed into written text, with a focus on spoken language. 

Analysis method 

The analysis focused on the chain students’ action – teacher’s feedback – students’ reasoning in 
connection teacher’s feedback, and was performed through the following steps: 

(I). Parts of transcripts where the teacher interacts with students, and where it is considered possible 
to provide feedback according to the principles, were identified. (II). Parts of transcripts, where the 
teacher’s feedback resonates with the principles for feedback, were identified. (III). It was 
determined whether feedback, according to the principles, supported or did not support students’ 
CMR. (IV). In interactions, where the principles were not implemented consistently or only partly 
implemented, possible trajectories leading to CMR were considered and the way the principles 
could have supported CMR was analyzed. 

The analysis was a joint effort that involved the teacher. 

Results 
The lesson was conducted according to plan in the sense that students got engaged in problem 
solving where they did not have access to a solution method for the tasks. Interactions with the 
teacher could be observed when a solution to a task was reached or when students asked for help. 
We will now present two extracts from the transcripts which can be seen as examples of interaction 
where the teacher can be considered to have possibilities to provide feedback according to the 
principles.  
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In the first example, which is representative of a number of interactions during the session, the 
student had come to a solution to task 1a: 

1. Teacher: Explain the way you are thinking.... it looks like you have some system. 
2. Student:  Well.... if you start with a block.... for instance, a green one.... you can 

always change the order of the other two blocks.... and in this case, there are 
three blocks.... so, you have plus two combinations.... so, in this case it can 
be green-white-yellow and green-yellow-white.... so, if we have three 
blocks it will be three times two. 

3. Teacher:  OK.... you can go on to the next task 
The teacher asks the student to explain her thinking (line 1) which is in line with the first principle. 
While the student did not know how to solve the task in advance it is reasonable to assume that the 
answer (line 2) represents, at least partly, CMR (constructing a solution). As a whole only the first 
principle is used. The student is not articulating arguments explicitly, which could have been 
encouraged by first inviting her to express her understanding (principle 2) and then challenge her to 
explain why her method results in correct answer (principle 3). The last utterance in line 2, when 
the student suggests a way to calculate the numbers of combinations, can be used to challenge her to 
justify their solution (principle 4). The teacher’s comment on line 3 does not correct the student, 
which gives her an opportunity to find out that although the calculation is correct in connection to 
task 1a, it will not work in task 1b. This is an example of when the teacher’s decision to refrain 
from explaining, gives the student an opportunity to discover the error in her conclusion. In the next 
task (1b) the teacher has the opportunity to challenge the student’s reasoning using principles 2-4. 

The second excerpt was chosen as an example where principle 3 could have been appropriate. It 
introduces a similar situation as example 1 and indicates the importance of the formulation of 
feedback. A pair of students have come to a solution on task 1a and now call for help with task 1b.  

1. Teacher:  What did you conclude on task 1a? 
2. Student:  We conclude that for every color.... if it is situated in one place.... there are 

two combinations for where the others could be situated.... that goes for 
every color situated in each place.... but if you add one block there will be 
four blocks and there will be three combinations for each block in each 
position. 

3. Teacher:  Are you sure? 
4. Student:  No.... there will be more then. 
5. Teacher:  How many positions can this be in? 
6. Student:  Then it would be.... these ones.... ok. 
7. Teacher:  If there were three blocks they could be situated in.... 
8. Student:  If they were three they can.... yes. 
9. Teacher:  This was the prior task [1a].... wasn’t it? 
10. Student:  Then there will be six ways for these. 
11. Teacher:  Yes.... if the blue one is first.... but you don’t have to put the blue one first. 
12. Student:  No. 
13. Teacher:  So, how many could it be.... how many ways is it if the yellow is first? 
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14. Student: If the yellow is first there will be six ways. 
15. Teacher: OK, so how many is it all together? 
16. Student: Twenty four. 
17. Teacher: OK.... could it be more ways.... are there any others that could be first? 
18. Student:  No, these are the only ones you can have first. 

In the planning for feedback it was considered that the reasoning connected to 1b could be 
continued from the solution of 1a. Therefore, on line 1 the teacher focuses the feedback to the task 
1a. The question posed in line 1 may be associated to principle 1. The student´s reasoning on line 2 
includes both how the solution is constructed and arguments which are components in CMR. The 
teacher’s question on line 2 could have been in line with principle 3, but the student seems to 
perceive the question as an indication she is wrong. From here the teacher’s feedback instead of 
following the principles is mainly on task-level, i.e., its purpose is to guide the students to a 
solution, not to support CMR. The student does not fulfil the CMR from line 2, instead, the 
reasoning turns into guided AR (imitating the teacher´s reasoning). 

Summary of results 

Mathematical reasoning is considered creative (CMR) if students themselves construct or 
reconstruct a solution method to a problem and express arguments to support this. The two 
examples above indicate that students, who are encouraged to explain their thinking, express CMR. 
Through their explanations it seems clear that they have constructed solutions to problems, for 
which they did not have access to a solution method in advance. Less clear is the way students 
formulate arguments for their solution. In neither of the examples are students encouraged to justify 
or articulate arguments. The principles for feedback in this study were developed to encourage 
students to construct their own solution methods and formulate mathematical support for their 
solutions. The results indicate that it may not be an easy task, even for experienced teachers, to 
implement these principles. 

Discussion 
Creative reasoning is a powerful tool in the learning of mathematics. In mathematical problem-
solving creative reasoning, where conjecturing and justifying are viewed as important parts, leads 
students to construct their own solutions to mathematical tasks, something that previous studies 
have found beneficial for their learning (Jonsson et al., 2014; Olsson & Teledahl, 2019). How to 
design teaching, in particular feedback, which will encourage students to construct solutions and 
present support for why they are correct, is still something that we know too little about. 

Teaching where students are constructing solutions while engaging in CMR does not entail a 
passive teacher (Hmelo-Silver et al., 2007). The teacher in this study planned the activities with the 
intention of creating situations where feedback, in line with the principles, would be appropriate. In 
the first excerpt, the students have managed to solve task 1a and principle 1 is used to challenge the 
students to articulate their reasoning explicitly. After the students have explained their thinking, the 
teacher without verifying the students’ solution, encouraged them to move on to task 1b. By not 
confirming or disconfirming the solution to the first part of the task the teacher creates an 
opportunity for the students to discover that their method for solving in 1a will not work in 1b. He 

Thematic Working Group 19

Proceedings of CERME11 3799



 

 

does not challenge them to explain anything, or ask them why they think it works, but rather leaves 
them to test their solution in the next stage. He is thus creating an opportunity for the students to 
continue their CMR, and for himself to challenge the students to formulate arguments for their 
solution, at a later stage when they, hopefully, have made useful discoveries about their original 
idea. This situation leads us to realize that the teacher not only has to consider the principles for 
how to challenge students to explain and provide argument but also when to do so. In this 
interaction giving students time and space might lead them to insights that helps them to argue for 
their final solution. It might be challenging to teachers to be consistent in constantly providing 
feedback, according to the principles, but also to retain a sensitivity to when it may be a good idea 
to leave the students alone.  

Example 2 shows, what may be an even greater challenge, to avoid explaining how to solve a task 
when students ask for help. Again, principle 1 seems to work well. Students express their reasoning 
and leave space for feedback in line with principles 2, 3, and 4. Here, the teacher may have in mind 
not to explain the way to solve the task, but instead of asking the students to explain he uses 
questions that, step by step, guides the students towards a solution. On the surface, it might seem 
like he is sticking to the principles, given that he is using questions instead of statements and hints, 
but the questions can be seen as a way to implicitly provide the solution. The responsibility for the 
mathematical reasoning shifts to the teacher and the students miss an opportunity not only to 
develop their ability to provide mathematical arguments but also to retain their autonomy (Kazemi 
& Stipek, 2001; Michaels, O’Connor, & Resnick, 2008). It may be tempting for the teacher to 
explain or to guide the students to a solution, not only because it saves time when the teachers is 
stressed, but also because it produces a result, a solution. In this way the product, rather than the 
process, becomes the main object. A solution to a problem, even if it was obtained by imitating the 
teacher (AR according to Lithner, 2008) is considered more valuable than CMR, which may not 
even result in a complete solution. To focus feedback on the underlying thinking process that will 
solve the task is most likely difficult and it places high demands on both teachers and students.   

Since the collaborative teacher in the pilot studies was involved in developing the principles for 
feedback she became gradually aware of how to use them and what they would lead to. In addition, 
while she was positive to the idea of students learning through CMR, she also practiced using the 
principles between the four interventions, which were planned in collaboration with the authors. 
The teacher, who participated in the current study, was also positive to teaching according to the 
principles. The difference was that he was introduced to the concept through a few hours of 
instructions. The two examples of interaction, shown above, highlight how important it is to 
carefully formulate your questions. In every classroom there is an established pattern for teacher-
student interaction, and in order for such patterns to develop towards CMR teachers and students 
need, not only to practice using the guidelines, but also to reflect on their current patterns of 
interaction.      
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multidisciplinary approach 

Steven Watson1  
1University of Cambridge, Faculty of Education, UK; sw10014@cam.ac.uk 

The purpose of this paper is to consider the role of mathematics teachers’ thinking and decision 
making in the classroom. This has been a somewhat neglected area of research since the mid-1980s, 
but I will argue here that understanding the nature of teachers’ thinking and decision making in 
lessons is important in understanding practice and can inform approaches to initial teacher education 
and professional development. While mathematics teachers’ knowledge and beliefs are important, 
the decisions they make and the actions they implement in the lesson influence the learning 
environment, culture and interpretation of tasks and activities. I draw on my own empirical research 
along with a multidisciplinary account based on developments in cognitive psychology, neuroscience 
and ontology (e.g., posthumanism) to provide a theoretical account of teacher thinking and decision 
making and how this influences practice. 

Keywords: Teachers’ decision making, teaching practices, teaching methods, teachers’ knowledge, 
teachers’ beliefs. 

There was considerable research into teachers’ thinking and decision making during the 1970s and 
1980s, but since the mid-1980s this was rather displaced by a surge of interest in teachers’ knowledge 
(Borko, Roberts, & Shavelson, 2008). It is not entirely clear why there was a change in direction, but 
it is likely that the seminal American Educational Research Association presidential speech by Lee 
Shulman in 1986 heralded widespread interest in teachers’ pedagogic content knowledge (Shulman, 
1986). Since then researchers have been more interested in what teachers know in terms of discipline-
based pedagogical knowledge than they have been in teachers’ thinking. This is not to say, of course, 
there have been no recent contributions to the field of teacher decision making. Notably, Alan 
Schoenfeld’s book How We Think (2011) directly addresses teacher decision making and thinking in 
the classroom and builds on the earlier research. But there remains further opportunity to revisit and 
extend the existing research using recent thinking from neuroscience and psychology. My aim here 
is to argue why, while acknowledging the important contribution of research into teachers’ knowledge 
and beliefs, research into teacher thinking is necessary in order to gain a better understanding of the 
nature of classroom practice.  

The background to this is mine and colleagues’ recent research (Watson, Kimber, Major, & 
Marschall, 2018) into how teachers implement ambitious teaching approaches (Stylianides & 
Stylianides, 2014) in post-16 (A Level) mathematics classrooms. An intense idiographic inquiry led 
us to consider how teachers make decisions in the classroom and the nature of the underlying thinking 
and reasoning processes. We found we could not easily explain, like many researchers before us, why 
even in the context of supported teaching reforms, a teacher almost naturally tends to a traditional 
teacher-centred approach in the classroom. And when the teacher is encouraged and supported in 
implementing ambitious teaching and in giving mathematical authority/authorship (Povey & Burton, 
1999) to the students they seem compelled to retain authority/ authorship. This is not by any means a 
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criticism of teachers, but it is undoubtedly a phenomenon that warrants exploration and a search for 
further understanding. Our research, building on past research into teacher thinking and recent 
developments in cognitive psychology, neuroscience and ontological accounts such as 
posthumanism, suggests that in-the-moment decision making (Schoenfeld, 2011) in the classroom 
has an important role in this.   

It is first necessary to distinguish between teachers’ thinking in the lesson as they interact with 
students and the thinking and decision making that takes place in the planning of and reflecting on 
lessons. I adopt here the following categorization of teacher thinking developed by Clark and Peterson 
(1986): 

• Teacher planning (preactive and postactive thought);
• Teacher interactive thoughts and decisions;
• Teacher theories and beliefs.

There are qualitative differences between the decisions made in the moment in the lesson and the 
teacher’s thinking about the lesson before and after the lesson. Decisions in the classroom have to be 
made quickly in a complex and demanding environment. But both interactive, in-the-moment 
decisions and planning are underscored by a teacher’s theories, knowledge and beliefs. The 
knowledge and perspectives in memory provide the resources that contribute to reasoning processes. 
The turn to pedagogic content knowledge in the late 1980s tends to privilege the role of teachers’ 
theories and beliefs, I argue here (and following our empirical research) it is the momentary decisions 
that influence the character of the lesson. That is, in-the-moment decisions can lead to a lesson 
becoming more traditional and teacher-centred even though the teacher may have the knowledge of 
and hold beliefs in reform-oriented student-centred approaches (or ‘ambitious’ teaching)1.  

Traditional teacher-centred teaching typically involves teacher exposition or demonstration followed 
by student practice on routine graduated exercises and might conclude with a whole-class review. In 
contrast, student-centred2  practice involves students in collaborative dialogic problem-solving, 
inquiry-based or investigative activities in which they construct meaning and conceptual 
understanding (or ‘relational’ rather than ‘procedural’ understanding, see, Skemp, 1976) where the 
mathematical authority and authorship (Povey & Burton, 1999) is transferred to students. This has 
been given a catch-all characterization of ‘ambitious’ teaching (Stylianides & Stylianides, 2014). 

From the perspective of cognitive psychology, human reasoning and decision making are 
characterized as either unconscious and intuitive Type 1 processes or rational and conscious 
deliberative Type 2 processes (Evans & Stanovich, 2013). Intuitive unconscious reasoning is rapid 

1 The implicit assumption here is that the traditional teacher-centred teaching is a default and largely prevalent approach 
to practice – this is certainly underpinned by evidence from the Office for Standards in Education (Ofsted) in England 
(Ofsted, 2008, 2012). I contend this to be a justifiable claim for high school and secondary mathematics teaching practice 
in Europe and the US (see, for example, Cuban, 1993; Stigler & Hiebert, 1999). 

2 The characterisation of traditional teacher-centred practice and student-centred practice draws on Larry Cuban’s 
historical analysis of classrooms in the USA (Cuban, 1993). 
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and is employed in complex and demanding situations where decisions have to be made quickly 
(Johnson-Laird, 2006). Conscious reasoning uses working memory to construct mental models and 
assess possibilities prior to making a decision and taking action. Research into teacher decision 
making in the 1970s and 1980s acknowledged the distinction between unconscious (Type 1) and 
conscious (Type 2) reasoning and recognized that classroom demands require intuitive Type 1 
decisions (Clark & Peterson, 1986; Shavelson & Stern, 1981). At the same time, Clark and Peterson 
recognized deliberative aspects of teachers’ interactive decision making in the classroom. Shavelson 
and Stern (1981) suggested teachers draw on existing routines and sub-routines to simplify their 
interactive decision making.  

…teachers’ interactive teaching may be characterized as carrying out well-established routines. In 
carrying out the routine, the teacher monitors the classroom, seeking cues, such as student 
participation, for determining whether the routine is proceeding as planned. This monitoring is 
probably automatic as long as the cues are within an acceptable tolerance. However, if the teacher 
judges the cue to be outside tolerance (e.g., student out-of-seat behavior during discussion), the 
teacher has to decide if immediate action is called for. If so, the teacher has to decide if a routine 
is available for handling the problem. The teacher may take action based on a routine developed 
from previous experiences (Shavelson & Stern, 1981, p. 483). 

This implies a heuristic approach to decision making that is not entirely intuitive and involves 
conscious decisions using rehearsed actions and pedagogic routines. The nature of teacher decision 
making is somewhere between Type 1 and Type 2 reasoning. 

Recent research on human reasoning goes beyond a Type 1 and Type 2 dichotomy and offers an 
intermediate type of reasoning. Stanovich, West and Toplak (2011) propose an algorithmic system. 
This is a Type 2 conscious process but makes use of heuristics and preestablished routines and 
processes to reduce the demand on working memory. Algorithmic reasoning draws on knowledge 
which is “…tightly compiled due to overlearning and practice” (Stanovich et al., 2011, p. 107) and is 
based on social and cultural knowledge acquired through participation (Stanovich et al., 2011). 

In our research (Watson et al., 2018), most of the decision making in the classroom was based on 
algorithmic reasoning. For example, during the lesson we observed the teacher deciding to stop the 
class and explain a specific aspect of the mathematics to the whole class. He explained in a stimulated 
recall interview later that he made the decision to take this action during the lesson. He said that he 
felt that there were enough student misunderstandings to warrant some remedial action. This heuristic, 
he said, was learnt during his initial teacher education programme. He explained how he observed 
that if a teacher found that there were three or more students with a similar question, then it could be 
assumed that more students were likely to have the same difficulty, then they would stop the class 
and offer an explanation to the whole class. Based on his explanation of this vicarious learning 
process, it appeared likely that this heuristic had been supported with some justification from a mentor 
or experienced teacher. This is an example of algorithmic reasoning, it is a simplified (and almost 
intuitive) judgement of the situation and the retrieval of rules, procedures and strategies (Stanovich 
et al., 2011). 
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Mathematics teaching and teaching more generally is replete with pedagogical routines and strategies. 
Indeed, Alexander’s (2001) analysis of primary classrooms observed complex hierarchical and 
temporal systems of routines and rituals. Leinhardt characterizes teachers’ knowledge as “…highly 
proceduralized and automatic and in which a highly efficient collection of heuristics exist for the 
solution of specific problems in teaching” (Leinhardt, 1988, p. 146). 

As a secondary mathematics teacher, my own practice featured automated, proceduralized routines 
and heuristics. For example, I had a routine for teaching how to solve simultaneous equations. It was 
highly procedural, I would refer to it as a ‘recipe’. And as an experienced mathematics teacher, I did 
not have to think, in the moment, about the pedagogical process in too much detail. I had learnt it 
from other teachers and used it on many occasions. If students were having difficulty solving 
simultaneous equations I could quickly stop the class and invoke this routine. I knew that if students 
were becoming anxious (and potentially disruptive) I could quickly and authoritatively provide this 
well-rehearsed explanation and give the students some routine practice questions, and this would 
provide reassurance and calm the situation. 

It is widely acknowledged in the literature that a major preoccupation for all teachers is the 
management of the classroom and the management of student behaviour (Martin, Sass, & Schmitt, 
2012). Shavelson and Stern explain the main aim of the teacher is to “maintain the flow of activity” 
(Shavelson & Stern, 1981, p. 484) and that decisions are made when there is an indication of a 
“potential problem or unexpected event” (p. 484). At these points teachers become “aware of reality” 
and their attention focuses on student behaviour (Shavelson & Stern, 1981). Therefore, what prompts 
a teacher to make an in-the-moment or interactive decision is strongly influenced by the affective 
system, that is the senses, the autonomic system and physiology. While Schoenfeld offers a highly 
rationalistic account of goal-oriented in-the-moment decision making based on his previous research 
on mathematical problem solving, he acknowledges the importance of affect. He advocates for future 
research in decision making to work toward a “rapprochement of the physiological and 
psychological” (Schoenfeld, 2011, p. 195). 

Indeed, this rapprochement can be observed in posthuman accounts of practice and potentially 
provides a compelling interdisciplinary account of thought, experience, affect and behaviour in the 
context of classroom practice. A posthuman3 critique of teacher thinking represent a departure from 
the Cartesian mind/body duality (Strom, 2015); posthumanism emphasizes the physical, the material, 
the experiential and the embodied nature of cognition (Braidotti, 2013). The posthuman classroom is 
not populated by discrete individuals but is “…an assemblage of multiple human and non-human 
elements that are all connected and work together to jointly produce teaching and learning activity” 
(Strom, Mills, Abrams, & Dacey, 2018, p. 144). A feeling or sensitivity to the environment is 
processed by the amygdala, which is reciprocally connected with the brain cortex and the thalamus. 
The amygdala is often associated with ‘fight or flight’ responses. Effectively it helps us decide 

                                                 
3 Posthumanism is not a rejection of humanity but a counter to humanism, as an anthropocentric project and a challenge 
to Enlightenment rationality that privileges the mind as a conscious and rational system as the primary mechanism for 
solving individual and collective problems. 
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whether a response should be intuitive and reactive or conscious and deliberative. Importantly it 
draws on episodic memories which have affective and emotional signatures to quickly make sense of 
the situation (Markowitsch & Staniloiu, 2011). In contemporary liberal society human responses are 
much more nuanced than simply ‘fight or flight’: in any critical situation then the amygdala is 
involved in the following processes, do we have to react quickly or intuitively with deeply embedded 
culturally and evolutionarily compiled behaviours? Is there time to invoke socially learned and 
culturally embedded heuristics, strategies, routines and processes (the algorithmic mind)? Or is there 
time to reflect and construct and mentally evaluate alternative hypothetical courses of action and use 
logical processes? (see, for example, Janak & Tye, 2015; Markowitsch & Staniloiu, 2011; Pessoa, 
2017; Phelps, 2006). 

Much human behaviour is intuitive, we respond to the context with culturally and evolutionarily 
compiled behaviours, like, for example, the fight or flight response. Algorithmic responses are 
invoked where simple decisions and well-practised responses are required, and these have been the 
focus of the research I have referred to in this paper (Watson et al., 2018). Reflective Type 2 thinking 
might take place in the planning and evaluation of lessons, or in the work of research and scholarship, 
for example.  

While it might be argued that the goal of teachers’ decisions is to optimize student learning (see 
Schoenfeld, 2011) and this might be possible in the planning and design of lessons, tasks and 
activities, in interactive decision making, in the classroom, decisions have to be more immediate. The 
primary aim, in the moment, is to manage the social situation, as Cuban observes: 

… teachers have learned to ration their time and energy to cope with conflicting and multiple 
societal and political demands by using certain teaching practices that have proved over time to be 
simple, resilient, and efficient solutions in dealing with large numbers in a small space for extended 
periods of time (Cuban, 2009, pp. 10–11). 

The algorithmic mind quickly accesses routines and procedures that are learnt through participation 
and provide well-rehearsed and culturally-embedded approaches to respond to situations in the 
classroom. The mainstay of these established cultural scripts (Stigler & Hiebert, 1999) correspond to 
traditional teacher-centred approaches. Moments of doubt, pressure and uncertainty in a classroom 
are likely to result in an almost automatic response with teacher-centred routines, as we found in our 
research (Watson et al., 2018). This shifts the mathematical authority/ authorship back to the teacher. 
Research into mathematics teachers’ beliefs has shown that there is frequently a misalignment 
between teachers’ espoused and enacted beliefs (Thompson, 1984; Wilson & Cooney, 2002), teachers 
may profess beliefs in reform-oriented student-centred ambitious teaching, yet their teaching is 
largely traditional and teacher-centred. Cuban refers to teacher-centred progressivism (Cuban, 2009), 
where there are many surface features of reform and student-centred practice but fundamentally the 
pedagogy is teacher-centred – the mathematical authority/ authorship remains with the teacher. The 
classic illustration of this is Cohen’s case of Mrs Oublier (Cohen, 1990). The difference between 
espoused and enacted beliefs, and the manifestation of teacher-centred progressivism can be 
explained by considering the momentary interactive decisions and algorithmic reasoning that leads 
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to teachers implementing culturally established and embedded teacher-centred routines and scripts, 
as Leinhardt (1988) observes: 

[The] resistance to change on the part of the teacher should not be perceived as a form of stubborn 
ignorance or authoritarian rigidity but as a response to consistency of the total situation and a desire 
to continue to employ expert-like solutions (Leinhardt, 1988, p. 146). 

The “expert-like solutions” represent the momentary intuitive judgements that draw on the teacher’s 
established knowledge – the essence of practical reason in Aristotelian terms4. 

In this paper, I have considered the nature of teachers’ decision making in the classroom. Drawing 
on multidisciplinary approach, I have argued how important momentary interactive decisions are in 
the classroom, how they can shape the character of the lesson and influence the nature of students’ 
learning experiences. It seems as important as ever to research this decision making further, to better 
understand the affective dimensions, the culturally embedded routines and strategies that teachers 
acquire through participation in the professional community (and vicariously as a student, see, Lortie, 
2002; Stigler & Hiebert, 1999, for example). An improved understanding of mathematics teachers’ 
interactive decisions would also inform the design of reform-oriented professional development and 
initial teacher education.  

I suggest the main implication for future research is to give greater attention to teachers’ decision 
making from a multidisciplinary perspective while using techniques such as stimulated recall. What 
I have presented here prepares the way for a model of teacher thinking that integrates cognition, affect 
and the social setting. Further research could develop and test the model.  
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Rationale 
For TWG 20, 27 papers and 5 posters have been presented. Due to the high number of papers, the 
TWG20 was divided into two subgroups, A and B. Although the proposals were expected to embrace 
three intertwined domains, similarly to what occurred previously (CERME10), the focus of the 
presented papers at CERME11 was mainly on teachers’ knowledge. The topic of teachers’ beliefs 
was addressed in several papers, including studies on teachers’ conceptions and student teachers’ 
collective orientations, while only one paper focused explicitly on the topic of teachers’ identity – 
also a tendency from previous conferences. Several research by PhD students were discussed.  

Main topics 
Teacher knowledge 

When TWG 20 first started as a new TWG in CERME9 (2011), most of the discussion was evolving 
around teacher knowledge models, how they emerged, developed and how they explain teacher 
knowledge and partly around their comparison. In TWG 20 during CERME11, compared to previous 
conferences, models were given less attention. Looking back and reflecting on discussions during 
CERME11, the group has moved from discussing on teacher knowledge models to mostly using 
models for further exploration of teacher knowledge in various contexts and on different topics 
(Piñeiro, Castro-Rodríguez, & Castro; Spratte, Euhus, & Kalinowski; Aguilar-González & 
Rodríguez-Muñiz, in this volume). There has been discussion of how different stakeholders in 
mathematics education see teacher knowledge. Jacinto and Jakobsen’s paper focused on teachers’ 
perception on horizon content knowledge while examining teacher education programs in Malawi. 
Similarly, Dahlgren, Mosvold, and Hoover studied teacher educators’ understanding of mathematical 
knowledge for teaching. In this paper authors used MKT model (Ball, Thames & Phelps, 2008) 
primarily to examine teacher educators’ views and not their knowledge of teaching mathematics. 
During the discussions, conceptualizing knowledge from different perspectives gained attention: e.g. 
Crisan’s paper focused on advanced mathematics knowledge of teachers and ways to support teachers 
in that respect. Similarly, Pehlivan and Aslan-Tutak focused on preservice secondary mathematics 
teacher knowledge of mathematical representation translations without taking any teacher knowledge 
model as the theoretical framework but focusing on participants’ knowledge of mathematics. When 
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carrying out research on teacher knowledge, models of the knowledge of mathematics teachers can 
provide a structure for research. However, as there is a variety of different models, the potential 
benefits from the structuring role of teacher knowledge models can only be drawn on if the key 
question is answered why a certain teacher knowledge model is chosen/used and what can be gained 
from using this specific model. The features of the teacher knowledge models argued respond to 
specific needs of describing and explain specific phenomena: e.g. integration of beliefs in the models 
by Carrillo et al. (2018) and Kuntze (2012). The MTSK model (Carrillo et al., 2018) was used in nine 
papers focusing various perspectives of mathematics teaching such as analysis of development of 
tasks, university level teaching, secondary school level teaching and policy analysis. Another model, 
the Knowledge Quartet (KQ, Rowland, Huckstep & Thwaites, 2005), which has been present in 
several papers in past CERMEs was used by Bretscher (in this volume) to analyse interviews with 
teachers, and by Karlsson (in this volume) to analyse student teachers’ lesson plans.  

Teacher noticing 

As the notion of teacher noticing has received more and more attention as a potentially meaningful 
aspect of teacher expertise (Aytekin & Bostan; Zindel, in this volume), it has also played a role in 
this TWG, in particular as far as its interrelatedness with teacher knowledge, beliefs and identity was 
concerned (Kilic, Dogan, Arabaci, & Tun, in this volume). The TWG20 group was aware that 
different definitions and conceptualisations of teacher noticing have been developed and that covering 
the full range of aspects of noticing would extend beyond the scope of this TWG. During the 
discussions, the participants acknowledged the need to be precise about the notion of noticing used. 
There might be intersection domains between aspects of noticing with models of teacher knowledge, 
for example, the “contingency” domain in the Knowledge Quartet model may be seen as covering 
some aspects of noticing. Relationships between noticing and teacher knowledge might even imply 
that noticing gets a “meeting point” for different models of teachers’ knowledge. Also Interpretative 
Knowledge (Ribeiro, Mellone, & Jakobsen, 2016; Policastro, Ribeiro, & Almeida; Di Bernardo, 
Mellone, Minichini, & Ribeiro, in this volume) could be considered as such a “meeting point” of 
different teacher knowledge models.   

Teacher beliefs and identity 

Teachers’ knowledge and beliefs are strictly intertwined, as it has been highlighted in a theoretical 
model used by many researchers who attended CERME11: i.e Mathematics Teachers’ Specialized 
Knowledge (MTSK) model (Carrillo et al., 2018). Among the papers presented in the CERME11 
TWG20, several studies make use of the term conception, assumed to include teachers’ knowledge 
as well as their beliefs. Some of the papers presented in TWG20 dealt with teacher beliefs about 
specific topics: e.g. a study about different countries teacher’s beliefs about Inquiry-Based Learning 
(Huang, Doorman, & van Joolingen, in this volume); two ongoing studies that aim at theorizing 
models that can be used to analyse and characterize teachers’ conceptions of argumentation in 
mathematics teaching-learning processes and at arguing possible repertory grids to research teachers’ 
conceptions of argumentation (Ayalon & Naama, in this volume; Klöpping & Kuzle, in this volume); 
a study on teachers’ conceptions about learning mathematics through classroom discourse (Kooloos, 
Oolbekkink-Marchand, Kaenders, & Heckman, in this volume). Other papers showed evidence of 
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teaches’ perspective about how to promote students’ creativity (Sánchez, Font, & Breda, in this 
volume), of teachers’ beliefs about the use of experiments in mathematics classroom (Geisler & 
Beumann, in this volume), and of student teachers’ collective orientations on heterogeneity (Tewes, 
Bitterlich & Jung, in this volume). A transversal-issue discussed was the correlation between beliefs 
about mathematics and the styles of teaching in different contexts (Safrudiannur & Rott, in this 
volume). As underlined above, only one paper presented in the CERME11 TWG20 explicitly dealt 
with teacher identity (Rø, in this volume). Mathematics teacher identity has been explored from a 
range of theoretical perspectives; however, studies focusing on social practices and structures within 
which teacher identities develop seem to predominate in the research field (Rø, in this volume). 
Possible implications of focusing on teachers’ identity were discussed in the TWG20, including 
theoretical considerations made when choosing an identity perspective. Taking an identity 
perspective on mathematics teacher learning, one can get insight into the participative experiences of 
(prospective) mathematics teachers, either when entering the profession or when moving across 
mathematics practices at university and school.  

Transversal and new issues emerged 
Cultural aspects  

During TWG20 discussions the cultural issue emerged in a strong way. Although the cultural and 
context aspects were always part of research on “teacher knowledge, beliefs and identity”, they often 
remain overshadowed or were even implicit in the papers. These issues cannot be considered as 
secondary when investigating on the curricular knowledge needed in different countries, on the 
teacher education programs, on the methodologies and activities that a teacher designs and develops 
in his/her classes. Also the use of research products, as well as the impact of the research, is very 
culturally dependent: e.g., the models used to describe and analyse teacher knowledge and their use 
in teacher education programs design are under the influence of cultural factors. The work carried out 
in the TWG20 gave researchers from different countries the opportunity to compare and ask their 
colleagues for information on different contexts and thus to reflect on how certain approaches and 
choices are specific to certain realities. It is important to specify that cultural and contextual aspects 
cannot be reduced to the content of curricula or only to organizational issues (such as the school 
systems or teacher education programs), but also include the beliefs about mathematics and teaching 
mathematics, different backgrounds, the roles of teacher educators, teachers and students in teaching-
learning processes, the types of research carried out and the models applied to study them. Knowing 
and trying to understand other cultural contexts can help you better understand your own even though 
it is always very difficult to be aware and to analyse the features of the culture in which we are 
embedded. These reflections can be developed in all educational research and, in particular, in the 
research on “teacher knowledge, beliefs and identity”: in fact, culture shapes teachers, teacher 
educators, and researcher.  

Teacher education programs, teacher educators and tasks in teacher education 

In the discussion on teacher knowledge, two transversal elements received attention: tasks, and 
mathematics teacher educators. The first element was considered as a research goal itself, in research 
focusing in how tasks aiming to foster knowledge development are built, but also a methodological 
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tool to gather data about teacher knowledge. The second element regards the crucial role of the 
mathematics teacher educators (MTE) in the implementation of the tasks and the dynamics of in-
service teacher training. The discussion around tasks for developing teachers’ professional knowledge 
focused on three aspects: their design, their use to analyse teachers’ knowledge, and their 
implementation. Concerning design, teachers’ knowledge frameworks were used to guide it, using 
the frameworks’ descriptors to structure the elements emphasized. In the papers presented, the design 
was founded in both MTSK and MKT frameworks, for example focusing on patterns (Aguiar, 
Ribeiro, & Ponte, in this volume) or on polygons (Montes, Climent, Carrillo, & Contreras, in this 
volume) or on rational numbers (Policastro, Mellone, Ribeiro, & Fiorentini, in this volume). Tasks 
were also used as a methodological tool to explore teacher knowledge, in particular, about definition 
(Codes, Climent, & Oliveros, in this volume), real numbers (Delgado-Rebolledo & Zakaryan, in this 
volume), and combinatory (Semanišinová & Hubeňáková, this volume). The implementation was 
slightly discussed as a part of the methodological section in the papers addressing tasks, yet receiving 
much more attention in the group discussion by emphasizing the role of MTE as the main agent in 
the implementation of the task. In addition to discussion on MTEs during papers which were not 
focusing on them, there were also papers focusing on MTEs (Mosvold & Hoover, in this volume; 
Almeida, Ribeiro & Fiorentini, in this volume). The discussion on TWG20 brought attention on them, 
as a key agent on the development of teacher knowledge. First, the term ‘mathematics teacher 
educators’ is not understood with the same meaning in each context, neither the content taught by 
them. It generated also a deep discussion the possibility to analyse MTEs knowledge with frameworks 
focusing (primary or secondary school) teacher knowledge. Second, and specially linked to research 
design, it was discussed how do MTEs impact on research. Finally, and related to the context-
dependent meaning of some terms, teacher education programs received attention in the discussion 
and also in one paper (Estela-Caldatto & Ribeiro, in this volume), agreeing that researchers, MTEs, 
teachers and stakeholders need to link research on teacher knowledge, beliefs and identity and the 
design of teacher education programs. 
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Investigating teachers’ knowledge for teaching mathematics has been an important theme in 
mathematics teacher education. In this paper we aim to analyze which mathematical and didactical 
knowledge secondary mathematics teachers have about patterns and regularities. For this, we 
developed a teacher education process with mathematics teachers in Brazil during 15 weeks using 
professional learning tasks (PLT) specially built for this purpose. The research is qualitative-
interpretative and data were collected by audio and video recording, with gathering of written 
documents. The results show that PLT allowed to recognize what mathematical and didactical 
knowledge teachers had in the begging of the teacher education process, and how the PLT enabled 
the development of new professional teacher knowledge.  

Keywords: Professional learning task, mathematical and didactical knowledge, teaching of 
algebra. 

Introduction 
To unveil and to understand teachers’ mathematical and didactical knowledge (Ponte, 1999) 
constitutes an important field of research in teacher education and, in particular, when practice is 
considered as a starting point (Lampert, 2010) for the construction of teacher professional 
knowledge. This underscores the importance of investigating the role of professional learning tasks 
(PLT) (Ball & Cohen, 1999; Smith, 2001; Swan, 2007) as a means to foster reflection on teachers’ 
knowledge and to share their classroom experiences. 

Regarding the specific field teaching of algebra, researches document the difficulties encountered 
by teachers in their teaching practice (Doerr, 2004; Ribeiro, 2012). At the same time, researches 
also highlights the importance of working with patterns and regularities as a promising path for the 
development of algebraic thinking (Mason, 1996; Twohill, 2015; Vale & Pimentel, 2015).  

Thereby, our aim in this paper is to investigate the mathematical and didactical knowledge 
mobilized by mathematics teachers to solve individually and collectively a professional learning 
task related to teaching of algebra in basic education about patterns and regularities. To this end, we 
took a mathematics teachers’ education programme as a research setting, aiming to answer the 
following research question: In what way does a professional learning task allow (and favour) 
access to teachers’ mathematical and didactical knowledge?  

Professional learning tasks and teachers’ knowledge 
In our research, teacher professional learning is a process anchored in classroom practice (Ball & 
Cohen, 1999; Ponte & Chapman, 2008; Smith, 2001) based on collective activity. Researches by 
Ball and Cohen (1999), and White, Jaworski, Agudelo-Valderrama and Gooya, (2013) emphasize 

Thematic Working Group 20

Proceedings of CERME11 3815



the creation of opportunities for teachers to learn each other, in order to break with a type of 
isolation that is very present and usual when one considers the work of the teacher, thus increasing 
opportunities for them to start learning in a collective way. Thus, teacher professional learning, in 
this perspective, are mediated by professional learning tasks (PLT), assumed in our research as 

tasks that involve teachers in the work of teaching, can be developed in order to find a specific 
goal for teachers’ learning and takes into account the previous knowledge and experience that 
teachers bring to their teaching (Ball & Cohen, 1999, p. 27).  

PLT may support the access the professional knowledge of the teachers about patterns and 
regularities. In order to consider the different dimensions of professional teacher knowledge, which 
will be better discussed later, it must be considered in the composition of the PLT the use of records 
of practice (Ball, Ben-Peretz & Cohen, 2014), such as protocols of student solutions, parts of 
curriculum proposals and teaching plans, must be taken into account. These resources allow us to 
bring aspects of classroom practice into the context of teacher education processes as important 
components of professional learning tasks (Smith, 2001). 

In the perspective of teacher professional knowledge, we are interested in Ponte’s perspective 
(1999), which discusses a view of teacher professional knowledge strongly anchored in teaching 
practice, arguing that teacher knowledge is action-oriented. In his perspective, this knowledge 
unfolds in four domains: knowledge of teaching contents, knowledge of the curriculum, knowledge 
of students and knowledge of the teaching process. For the author, this knowledge  

is closely related to several aspects of the personal and informal teacher’s knowledge of 
everyday life as the knowledge of the context (the school, the community, the society) and the 
knowledge that he/she has of himself (Ponte, 1999, p. 3).  

Regarding the teachers’ mathematical and didactical knowledge about patterns and regularities and 
their connections with mathematics teaching, we should consider how relevant it is that teachers 
mobilize knowledge that make possible to understand the students’ algebraic thinking and to 
support the overcoming of difficulties they usually have regarding the generalisation of numerical 
and geometrical patterns (Orton & Orton, 2005). In order to be able to mobilize mathematical and 
didactical knowledge on the subject matter, it is necessary to consider, during the teacher education 
processes, professional learning tasks that contemplate mathematical situations involving different 
types of patterns in which algebraic expressions that generalise them are asked for (Zazkis & 
Liljedahl, 2002).  

In order to promote discussions and reflections in the teacher education process regarding teachers’ 
mathematical and didactical knowledge, teacher educators should stimulate the development of PLT 
using some specific practices for this purpose (Stein, Engle, Smith & Hughes, 2008).  

Stein et al., (2008) propose five practices developed in classroom, which are called: anticipating, 
monitoring, selecting, sequencing and connecting. For this purpose, the authors argue that 
anticipating is the process in which the teacher, before taking the task to his/her classroom, 
anticipates the possible resolutions of the students and their possible difficulties. In the classroom, 
monitoring is the process in which the teacher will monitor the discussions that occur in small 
groups and thus he/she will select the most interesting resolutions to share with the classroom, 
whether they are unusually resolutions like those that may present errors and difficulties of the 
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students. When the discussion is open to the whole classroom, the selected groups are presenting 
their resolutions within a sequencing, drawn up by the teacher. With this, the teacher should connect 
the student's resolutions with the mathematical knowledge proposed in the task in question. Thus, 
from these five practices, we conjecture that they can also help to foster discussions and 
mathematical and didactic reflections when used in teacher education process. 

Research methodology 

Context of the study. The teacher education process in which the data were collected had the 
general aim of developing and expanding participant teachers’ mathematical and didactical 
knowledge regarding patterns and regularities in school mathematics. It was carried out during 15 
weekly meetings of 4 hours, led by the first and second authors of this article. The meetings 
combined moments of (i) individual work, (ii) work in small groups, and (iii) plenary collective 
discussions. The participants were mathematics teachers (pre-service and in-service) and the 
activities were mostly carried out at the university, with 3 meetings held at basic education schools. 
The work sessions included moments of theoretical studies (a total of 8 hours) and hands on work, 
which were mediated by professional learning tasks developed by the leaders of the meetings.  

Participants and developing of the PLT. The participants of our study were teachers who teach 
mathematics in Brazilian secondary schools. In relation to the PLT that we explore in this paper 
(Figure 1 below), for the begging of the teacher education process we counted on the participation 
of 42 teachers, being 10 pre-service teachers and 32 in-service teachers (7 of these with no 
classroom experience). Of the 32 in-service teachers, 17 had been graduated for less than 5 years; 7 
had between 5 and 10 years of teaching practice; 8 had more than 10 years of teaching practice. For 
the implementation of PLT, the 42 participants were distributed in 9 groups (3 to 6 participants), 
organized by the facilitators so that in all groups there were (i) teachers with and without classroom 
experience, and (ii) pre-service and in-service teachers. Teachers groups were built in this manner 
in order to promote the exchange of experiences and knowledge among participants. Of the three 
facilitators present, two were teacher educators and researchers in teacher education. 

Observe the following squares and the strategy used to calculate the sum of the first odd numbers, starting 
from 1. 

 
a) Inspired by the idea, calculate the sum of the 9 first odd numbers.  
b) Generalise a formula to calculate the sum of the n first odd numbers, starting from 1. 
Based on your classroom experience and considering the mathematical task solved previously, answer the 
following questions: 
1) If your students were to resolve this mathematical task, which strategies do you think they could use? 
2) Which difficulties do you think your students can have when solving this kind of task? 
3) For which secondary school grade do you think this kind of task is appropriate? 
4) Have you ever seen tasks of this nature in the curricular materials you use in the classroom? If you have, 
what type of curricular material is that? 
5) Do you usually use this kind of mathematical tasks in your mathematics classes? If you do, in what 
secondary education grades? If you do not, please justify. 
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Figure 1: Example of Professional Learning Task1 

Thus, PLT’s main goal was to raise teachers’ prior knowledge about patterns and regularities. It was 
planned for and developed in three moments: individual, small group discussion, and plenary 
collective discussion. These moments were accompanied and encouraged by the facilitators who, to 
favour the collective discussions, using five practices presented by Stein et al., (2008). 

Data sources. Our study follows a qualitative research approach (Bogdan & Biklen, 1994), under 
the interpretive paradigm (Crotty, 1998), with the data collection taking place through video and 
audio recordings (both within each group as with the whole group) and through gathering of written 
documents resulting from the development of the PLT. The analyses considered: (i) teachers' 
individual notes; (ii) notes written by small groups of teachers; (iii) the audios of small group 
discussions; and (iv) the video of the collective discussion. The audio and video records were 
analysed in full, in articulation with the documents produced, and allowed the organisation and 
analysis of the data in order to identify the mathematical and didactical knowledge about patterns 
and regularities contemplated in PLT. 

Results  
Individual work. We begin the analysis considering teachers’ individual work. It was observed, in 
general, that teachers found it difficult to mobilise mathematical knowledge to solve the 
mathematical situations presented in the PLT, regardless of their school year. The teachers sought to 
describe the observed mathematical pattern and to present an algebraic expression that represented 
the generalisation of this pattern. Afterwards, in the part of the PLT that explored the didactical 
knowledge – in relation to the students and in relation to the teaching processes – the teachers said 
that (i) they would have difficulties to solve the mathematical task by missing the perception of a 
pattern in the sequence, therefore having trouble in writing an algebraic generalisation; (ii) 
regardless of the school year, the students would use strategies for solving mathematical tasks by 
using counting processes or constructing the other elements of the sequence presented, just as the 
teachers themselves did, as can be seen in the statement2: 

T7: [The students will have] The same difficulties I’m having. 

Still with regard to didactical knowledge, the teachers said that, in their classroom, they do not 
propose mathematical tasks similar to those they were working on because (i) they have a tight 
schedule; (ii) students have difficulty in solving tasks of this kind; (iii) they do not have the 
adequate preparation to work with this type of tasks, as stated by teacher T8:  

T8: I did not use this type of task because I am not used to let students build their own 
knowledge. So, my concern in learning how to support them build the formulas, 
and not going to the classroom with ready-made formulas. 

Group work. At a second moment, the teachers begun working in small groups, comparing their 
own responses with those of their peers and, through collective discussions, reflecting on their 
mathematical and didactical knowledge regarding patterns and regularities. During the discussions 

                                                           
1 Due to the space constraint, we present the PLT used with the teachers of grades 8-9, since the PLT structure of the 
other teachers (grades 6-7 and 10-12) was the same, changing only the mathematical situation of part 1 of the PLT.  
2 We use T for teacher-participant and TE for teacher educator/facilitator. 
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in small groups, many similarities were observed in the way they had worked individually, but, 
nevertheless, it is worth mentioning that the groups thought it difficult to find new mathematical 
strategies for solving tasks, even when working in groups. Only three groups stated that they found 
different solutions. During the small group discussions, the teachers emphasised that the students 
would be able to use counting processes or build the other elements of the sequence, but they would 
still have a hard time finding the pattern in the sequence, and even more in writing the 
generalisation in algebraic expression. In their discussions, the teachers recognised that, although 
they had difficulties in carrying out tasks similar to those in the classroom, this approach is very 
important for students to overcome their difficulties and to build their knowledge through tasks – 
and not just through “teacher's talk”.  

While teachers worked in small groups, the facilitators carried out the practices proposed by Stein et 
al., (2008) in order to prepare the next stage of the development of the PLT, namely, plenary 
collective discussions, which included three moments: (a) the first, aimed at sharing the teachers’ 
mathematical knowledge and sharing unusual answers; (b) the second, aimed at sharing teachers’ 
didactical knowledge regarding the students’ difficulties; and (c) the third, aimed at sharing whether 
teachers used mathematical tasks of this kind in their classrooms. 
Observe at the pictures and answer: 

 
 

Figure 2: Example of Professional Learning Task3 

First part of the plenary collective discussion. Throughout the first part of the plenary collective 
discussion, it was perceived that, in fact, the teachers themselves thought it difficult to explain 
different solutions to the other participants, since they always tried to rely on the mathematical 
properties of Arithmetic Progressions (AP), exploring little other possible strategies. T1’s statement 
shows us this:  

T1: The exercise was exactly the same [as that of the previous group] and then we get 
pretty much the same idea. I even got into the same situation [as the teacher who 
spoke before]. I started with an AP, I did the AP formula, I did the computation 
with the AP and I said: “hold on... The grade 6 student will not think about the 
AP”, [see Figure 2] and then we begin thinking in other ways (…) and we arrived 

                                                           
3 Due to the space constraint, we present only mathematical situation of the PLT used with the teachers of grades 6-7, 
The complete PLT structure was the same presented in Figure 1  

a) How many people can settle at the tables, if we 
arrange 3 tables as shown beside?  
b) Write an expression that gives the number of 
people accommodated at 13 tables.  
c) Complete the general conclusion: the number 
of people is _____ 
(Attention: Do not forget that the number of 
people depends on the number of tables). 
d) Write the conclusion in a formula where the 
letter p represents the number of people, and the 
letter m, the number of tables. 
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at 𝑝𝑝 = 6𝑚𝑚 + 2  [p = people and m = tables] and thinking about AP, I got the 
relation  𝑎𝑎13 = 8 +  (13 − 1)  × 6  and the result equals 80. 

It can be seen in this statement, which was recurrent in the other groups, how teachers were not 
distant from the concept of arithmetic progression and also of what their students could think and do 
(although it had been reinforced by the facilitators that at that moment the mathematical knowledge 
of the teachers themselves was being discussed). In counterpoint to this idea, teacher T4 said: 

T4: The answer [of our group] is different from that here [the answer that was already 
written on board, Sn = n2 regarding to Figure 1] (...) So it would start at zero and 
go up to n [the teacher then writes down on the board ∑    2𝑛𝑛 − 1𝑛𝑛

𝑖𝑖=0 ]. 

T5: But this [solution] is for the 9th grade? 

T4: We did not think about the student, this solution is ours. 

It is interesting to note here that this group stated that it worked with the two solutions exposed in 
the dialogue, one that would possibly be that of the students, and another, that would be theirs. With 
this, facilitator TE2 asked: 

TE2:  For you, the meaning of n is the same in the two expressions [Sn = n2 and ∑    2𝑛𝑛 − 1𝑛𝑛
𝑖𝑖=0  ]? 

T4: Yes! n indicates the natural numbers 0, 1, 2… 

Such confusion presented by teachers about the meaning of the variable does not mean necessarily 
lack of mathematical knowledge, probably a difficulty orally expressing such knowledge. 

With this, we perceive that the group of teachers present different representations about the 
generalization of patterns but they have difficulties in presenting their justifications of these 
representations. 

Second part of the plenary collective discussion. Continuing with the plenary collective 
discussion, now focusing on the dimensions of teachers’ didactical knowledge, teacher T2 pointed 
out that the students could construct a numerical table with the relation between the number of 
tables and people (Figure 2) and this would help him to realise the pattern. On the other hand, 
teachers T9, T10 and T6 had other concerns: 

T9: At least in the few years that I have been in the classroom, the biggest problem I 
encounter is the algebraic part. (…) Teaching them [the students] that they have to 
solve the exercise in a way and still look at its generic part. I believe it is very 
difficult for the 6th and 7th graders. 

T10: I think like this: If you do not insist... The student has difficulty but if the teacher 
has already been working this in the classroom, I think the student can get it. 

T6: But that is the purpose of the activity, for the teacher to know the students’ 
previous knowledge, so he can get to algebra. 

At this point, the facilitator TE1 suggested that teachers were only thinking about the difficulty of 
the symbolic representation, but if students in any school year could explain the generalisation 
without the use of symbols and, even so, they already be a way of thinking algebraically.  
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This led to the establishment of a controversy in the plenary collective discussion, as pointed out by 
teacher T3: 

T3: It may be the way we work with students. We give the contents and then the 
student finds it easy. We do not make the student an investigative being. We come 
and give him/her the formula to solve the problem. Wouldn’t the lack of learning 
be one of the great problems in the classroom? The question that we don’t go 
there and make the child investigate, search for things. Shouldn’t we invest in this 
line of child’s reasoning? 

That thought - expressed by T3 - took the proportion of a challenge to be pursued by the group of 
teachers and facilitators throughout the teacher education process, that is, that the teachers’ work 
with their students should become a more investigative exploratory approach rather than just follow 
a traditional approach to teaching.  

Discussion and Conclusion  
By developing the PLT, it was possible to realize that the teachers showed some difficulties in their 
mathematical knowledge regarding to the concept of variable what could implicate the recognition 
of patterns and regularities and the formulation of algebraic expressions to represent complex 
mathematical sequences (Zazkis & Liljedahl, 2002). In the dimension of didactical knowledge 
(Ponte, 1999), it can be noted that the teachers, possibly due to the fragility in mathematical 
knowledge, did not feel safe and comfortable to use tasks with their students such as those proposed 
in the PLT. From the point of view of teachers’ knowledge of students, their solution strategies and 
difficulties, we noted that, throughout the development of the PLT, the teachers conjectured about 
students’ algebraic thinking and how they could help them to overcome the difficulties they could 
present regarding the generalisation of numerical and geometrical patterns (Orton & Orton, 2005).  

Regarding the structure of PLTs (Ball & Cohen, 1999; Smith, 2001), we conclude that the results 
show their potential to favour the mobilisation, connection and (re)construction of mathematical 
and didactical knowledge about patterns and regularities in the teaching of mathematics and, in 
special, to establish relations with classroom practice. In particular, we highlight as potential of the 
PLT proposed in this paper, the use of the five practices to prepare and lead (plenary) collective 
discussions (Stein et al., 2008). This framework enabled the group of teachers and facilitators to 
share knowledge and experiments that made teachers, for example, (i) wonder both why they do not 
provide investigative and challenging tasks for students to explore different kinds of numerical and 
geometric sequences, and (ii) how such work may contribute to the development of algebraic 
thinking in their students. Therefore, we believe that the use of PLT in teacher education process 
can help to unveil and understand the teachers’ mathematical and didactical knowledge. 
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Mathematics specialized knowledge models for teachers have been used as a conceptual framework 
for defining how teachers’ knowledge is implemented in the classrooms, as well as for guiding the 
design of initial teacher education (ITE) programs. In this communication, besides the design of the 
ITE program, we present how the model of Mathematics Teacher’s Specialized Knowledge (MTSK) 
has been used as a metacognitive tool enhancing primary and early-childhood teachers to reflect 
about their own professional competencies, to self-assess in relation to the different subdomains in 
the model, and to start acquiring research related skills during a postgraduate ITE program. 

Keywords: initial teacher education, MTSK, research skills, specialized knowledge model. 

Introduction 
Teachers’ knowledge models emerged in the 1980s, mainly from the seminal work of Shulman 
(1986), as a theoretical framework characterizing the knowledge that teachers need to operate in order 
to carry out their teaching tasks. In addition to non-specialized models such as T-PACK (Mishra & 
Koehler, 2006), other models of specialized knowledge were developed in the field of mathematics 
teaching. Thus, the Mathematical Knowledge for Teaching (MKT) model by Ball, Thames and Phelps 
(2008) stood out. These authors were interested in the study of professional knowledge, basically 
because specific knowledge, besides mathematical knowledge, was revealed as necessary to teach 
mathematics. In other words, a teacher has to know different but not less demanding mathematics 
than other professionals.  

At CERME8, the Mathematics Teacher's Specialized Knowledge (MTSK) model was presented by 
Carrillo, Climent, Contreras, and Muñoz-Catalán (2013) as an evolution of the studies of Shulman 
(1986) and Ball et al. (2008). MTSK considers the specialized character of the teacher's knowledge 
in an integral way in every subdomain, whereas MKT included the mathematics teacher’s specialized 
knowledge into a single subdomain. 

The context for this experience is strongly dependent on the introduction of European Higher 
Education Area in Spain, that opened up the possibility that early childhood and primary education 
graduates could access to postgraduate programs (master degrees, and maybe further doctoral 
studies). Master level is not a requirement for becoming an in-service teacher in Spain, but in the 
recent years is becoming more popular among recent graduates (in part, because the master level is a 
requirement in other UE countries). In Spain there are master degrees oriented to a specific topic 
(didactics of mathematics, for example) but for early childhood and primary education graduates most 
of the master programs are devoted to provide them with general innovation and research skills (since 
early childhood and primary teacher are generalist profiles in Spain, only specialized for certain topics 
in primary as Physical Education, Foreign Language, Music and others, but not for Mathematics). In 
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this context, the current research was designed with a twofold objective. Firstly, to find out whether, 
at master level, training graduate teachers about models of specialized mathematical knowledge 
improves metacognition about their professional development and identity as mathematics teachers. 
Secondly, to find out whether this training (together with other topics) promotes basic research skills. 
Consequently, two research hypotheses were formulated: (H1) Including models of specialized 
mathematical knowledge in the syllabus of the master program for graduate teachers favors 
metacognition about their profession, and (H2) Including models of specialized mathematical 
knowledge in the syllabus of the master program for graduate teachers promotes research skills in 
educational research.  

This communication is structured as follows: first, a theoretical framework is described and 
metacognition is framed within the context; later, the methodological design is described together 
with the population and the sample, and the data collection process; finally, results are presented and, 
subsequently, the discussion together with the conclusions derived from the study. 

Theoretical Framework 
The MTSK model is fully developed in Carrillo et al. (2018), it is composed of the domains 
Mathematical Knowledge (MK) and Pedagogical Content Knowledge (PCK), which, in turn, are 
divided into 3 subdomains each. In addition, the core of the model includes the mastery of teachers' 
beliefs about mathematics, its teaching and learning, permeating the knowledge and giving meaning 
to their practice. The MK domain encompasses knowledge of the connections between concepts, 
structuring ideas, procedure reasoning, proving, and different ways of proceeding in mathematics, 
also considering the knowledge of mathematical language. Within the MK we find the following 
subdomains: Knowledge of Themes (KoT); Knowledge of the Structure of Mathematics (KSM); and 
Knowledge of Mathematical Practice (KPM). On the other side, the PCK refers to teacher's 
knowledge of mathematical content as an object of teaching and learning. The PCK domain is divided 
into three subdomains: Knowledge of the Teaching of Mathematics (KMT); Knowledge of the 
Learning Characteristics of Mathematics (KFLM); and Knowledge of the Mathematics Learning 
Standards (KMLS). 

Additionally, it is convenient to specify the scope of the discussion on metacognition and research 
skills. The majority of theoretical frameworks used in metacognition focus on two components: those 
dealing with declarative and procedural knowledge, and those dealing with the regulation of that 
knowledge when an individual performs a task (Schraw, Crippen, & Hartley, 2006). In our approach, 
we handle the latter meaning when designing the training activity for the graduate students 
(Lombaerts, Engels, & Athanasou, 2007). The proposed activity is aligned with what Zimmerman 
(1990) states as one of the key features which can be seen in most definitions of self-regulated 
learning, that is, systematic use of metacognitive motivational and/or behavioral strategies. Therefore, 
we are considering higher evidence of metacognition when the graduate students are not only aware 
of their own thinking but also use it as an instrument to regulate their own learning experience when 
doing the task. 

On the other hand, according to Spanish Higher Education Qualifications framework, the acquisition 
of research skills should start in the postgraduate training. In other words, the master degree is 
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conceived as the prior stage of the research training, which is properly developed during the PhD 
degree. Then, a master graduate should acquire a minimum level of research skills allowing him/her 
starting, under supervision, in active research teams. Literature is abundant on so-called research-
based learning, especially in the field of STEM (Science, Technology, Engineering and Mathematics) 
(see a review in Camacho, Valcke, & Chiluiza, 2017), but it is scarce about how to develop this 
competence for educational research, specifically on how to characterize it during ITE postgraduate 
programs.  

To this end, we align ourselves with the theoretical position defined in Moreno Bayardo (2005), who 
defines training for educational research in terms of the development of research skills. Specifically, 
for this experience, we are placed in the so-called “Nucleus G: Metacognitive Skills”, where the 
author argues that “the human being encounters the need to develop (and, in fact, in many cases he 
achieves it) metacognitive skills before getting involved in deformation processes for research” 
(Moreno Bayardo, p. 530). It should be pointed out that, although there are works whose explicit 
objective is fostering metacognition in the professional development of teachers (e.g., Rojas & 
Deulofeu, 2013), within the Spanish context there is only one former experience (Pascual & Montes, 
2017) using a specialized knowledge model to develop metacognition, but it was during the 
undergraduate ITE and, therefore, activity did not involve research skills, whereas, our research focus 
on how to help the graduate students to move from a teacher identity to a potential research identity. 

Methodology 
Population and sample 

The population of this study consists of graduates of Early Childhood and Primary Education who 
are enrolled in a master degree aimed at research and innovation skills. Several masters with these 
characteristics are taught in the different Spanish universities, but we have only had access to data 
from the University of Oviedo, in whose Master Degree in Research and Innovation in Early 
Childhood and Primary Education in the academic year 2017-2018 there were a total of 35 students 
enrolled. Therefore, it is an intentional non-random sampling, and the sample is formed by 32 
individuals who completed the experience and the survey (response rate of 91.42%).  

Educational context 

The master degree in Research and Innovation in Early Childhood and Primary Education at the 
University of Oviedo is oriented to graduates in both educational stages for training them as future 
researchers and professionals in the field of learning and teaching. The subject in for which the 
intervention was designed is Research and Innovation in Didactics of Mathematics (5% of credits in 
the program). We remark this is not a specific master program in mathematics education, but 
generalist, and this fact hardens deepening into mathematics educational issues. One of the five basic 
competences of this master program aims to acquire sufficient skills to identify trends in innovation 
and research in the knowledge areas involved, and discussing their compatibility with the explicit 
beliefs and theories of the teaching staff. Taking the context into account, we proposed the experience 
described below for promoting the aforementioned competence. 

Intervention planning 
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Previous lectures to the intervention had been developed, during 10 hours, for presenting the meaning 
of research and innovation in mathematics education, as well as to identify the work that in-service 
teachers can do within these fields. Among these general ideas, the notion of professional knowledge 
of the teacher was used, and more specifically, the notion of specialized knowledge in mathematics 
was implicitly involved to perform different tasks developed by the students. Also, main research 
lines in mathematics education were described by reading and discussing examples of papers. But, in 
this communication we focus on the work that was carried out during two work sessions in the 
classroom in which the activities related to the presentation on the professional knowledge of the 
teacher and the use of the MTSK model were presented and carried out. In the first session there was 
a training, led by the professors, on the research problem of models to describe specialized teachers’ 
knowledge. This session explained the different theoretical positions on teacher knowledge, the 
differences between content knowledge and pedagogical knowledge and their intersections, the 
genesis of the first models of specialized knowledge and the role of teacher beliefs and conceptions 
in their interaction with knowledge. In the second session, the MTSK and its subdomains were dealt 
with in detail. Afterwards, divided into small groups, the students carried out a work based on the 
transcription of a fragment of real class of Early Childhood Education (4 years old level) where the 
teacher worked with geometric bodies. The main objective of the activity carried out by the teacher 
is the recognition of different geometric bodies and the identification of their elements (faces, edges, 
vertices, etc.). The graduate students had to identify the subdomains and categories of knowledge of 
the MTSK present in the class transcription. Finally, they had to respond individually to an 
anonymous questionnaire, which is presented in the following section. 

Assessment instruments 

In addition to the aforementioned deliverable group task about identification of subdomains of the 
MTSK model, students had to answer a questionnaire consisting of context questions (age, sex and 
teaching experience, and whether they had been previously trained or not about the models of 
knowledge), and of 7 questions for assessing the usefulness of the model or models like it in the 
professional teaching environment (with Likert scale responses from 1 to 5). Finally, 3 open-ended 
questions were posed which are based in the nature of subdomains of MTSK. The instrument had 
been content validated through a pilot carried out in the previous year, which resulted in removing 
two of the initial open-ended questions (because of redundancy and misinterpretation). 

RESULTS 
The sample (n=32) was composed by 19 women and 13 men, with average age 26.25 years old 
(median 24). Only 6 students have had experience as formal teachers (5 at primary and 1 at early 
childhood level), that is, most of the students were recently graduated teachers without further 
experience than the internship. Also, 6 stated that they had previously heard about teacher knowledge 
models. And only 1 of the participants stated that he/she was yet aware of specialized models for 
mathematics. Table 1 shows the mean, median and standard deviation of all the Likert type questions 
(1=absolute disagreement to 5= absolute agreement with the statement).  

As for the open-ended questions, below we point out some of the most significant or frequent ones. 
To the question “Would you add anything to the subdomains MK and PCK to better describe the 

Thematic Working Group 20

Proceedings of CERME11 3826



 

 

activity of the mathematics teacher?”, the most frequent answer was like “I do not consider myself 
sufficiently qualified”. One student considered that “the affective aspects of the teacher-student 
relationship should be more pointed out”. Another one remarked that “it would incorporate the 
methodologies in a more explicit way, including the different types that exist”.  

Statement M Me DT 
1. I believe that it is positive for my training as a teacher to know a model 
that describes the knowledge of mathematics teachers. 4,03 4 0,73 

2. For my daily life as a teacher, I believe that these theoretical models do 
not improve my training. 2,44 2 1,14 

3. The work about knowledge models has allowed me to reflect on 
professional aspects that I had not thought about. 3,81 4 1,03 

4. The knowledge models have helped me to structure ideas which I had 
thought about my profession, but not in such a formal way. 3,16 3 0,92 

5. I find the work on knowledge models interesting, but of little use for my 
professional future. 2,72 3 1,12 

6. I think knowing these models is interesting as a general culture but it will 
not be something I will apply when I have to program or teach. 2,91 3 1,26 

7. I consider that these models help to criticize and reflect on my activity 
as a teacher. 4,06 4 0,86 

Table 1: Mean (M), median (Me) and standard deviation (DT) of all the Likert-type answers. 

Second open-ended question was “Has this model allowed you to reflect on any aspect of your 
professional development that you had not previously thought about? Which one?”. There were some 
self-critical answers, from the point of view of metacognition, such as: “that I have insufficient 
mathematical training” or “about my scarce mathematical and didactic training”. Other answers even 
advanced in metacognition, at a higher cognitive level. Thus, some students stated that the model has 
helped them to reflect on specific aspects such as “the importance of knowledge of resources, 
materials and ways of presenting the content” or “the importance of teacher's knowledge, not only of 
the subject itself, but also of the didactic part”; and, in some cases students established relations 
between categories: “the relationship between current and previous contents”, “beliefs about 
mathematics or its teaching/learning and the scope they may have in the teaching process”, “the need 
to spin each content of the curriculum with other elements whose relationship does not seem so direct” 
or “the need to be aware of [...] the learning standards used in other countries”. 

Finally, in response to the third open-ended question: “Has the use of this model motivated you to 
reflect on mathematics as a discipline or on your professional development?”, the most frequent 
responses referred to “considering my professional development in different facets” or equivalent. 
Answers with a greater level of deepening, were less frequent: “that research is a source of educational 
improvement”, “to overcome the myth of difficulty or fear of mathematics” or “I would like to see 
the analysis of the knowledge that is put into practice in classes of different educational levels”. We 
particularly highlight the following answer: “[this model] reminds me of the concept of metacognition 
and, in a similar way, I see its usefulness”. Finally, this answer also denotes progress in metacognitive 
processes: “[the subdomain of] the characteristics of learning mathematics in a specific subject have 
seemed very interesting to me, and I would have to take it into account when planning my classes”. 
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DISCUSSION AND CONCLUSIONS 
Results of the Likert answers are homogeneous in terms of the analyzed context variables (sex, age, 
professional experience), hence, statistical analyses have not been included. The values of the Likert 
scale show that there is a high degree of agreement with the statements expressed in positive. 
Specifically, the agreement is very high in statements 1 and 7. On the other hand, when the statements 
are posed negatively the agreement is considerably reduced (numbers 2, 5, and 6). In addition, in 
statement 3 the degree of agreement is also quite high, although the dispersion is greater due to the 
existence of more extreme values. Finally, with statement 4 a problem of interpretation arises, since 
values are grouped symmetrically around 3, which indicates that perhaps the duality of the question 
should be reformulated (this had not happened in the piloting). From these results, we can conclude 
that, overall, the activity motivated the reflection of future teachers and they considered it useful for 
their professional activity, which is something authors did not expect initially, due to the generalist 
background of the graduate students. In addition, the link between research and daily activity as a 
teacher in the classroom is recognized, albeit less clearly. The metacognitive facet is also implicitly 
recognized in the answers (statements 3 and 4). 

From the analysis of the open-ended questions, we can deduce that students found more difficult to 
formalize their opinions, since around half of the answers were very short or blank. Based on evidence 
from longer answers, regarding MTSK subdomains, for most of the students the training was 
insufficient to be able to critically judge the model; this evidences that explicit training on models 
was short. Even though, it seems interesting to us pointing out that two students felt that temporal 
programming is not sufficiently represented in the model. It is also noteworthy the answer referring 
to the insufficient representation of the affective relationship between teachers and students. This 
answer can be interpreted from two of the domains of the MTSK model: firstly, the contribution made 
by the MTSK model in the didactic domain is to link the content of the subdomains to the relevance 
of the relationship with the mathematical content, so that the affective relationship to which that 
response refers would not be included in that domain; on the other hand, it could be aimed at 
mastering the teacher's beliefs, attitudes and emotions towards mathematics and its teaching/learning 
as central elements, intimately related to professional identity, where the teaching staff give the 
students a very specific role when working in mathematics. There is a much greater reflection 
deepening in the answers to the second open-ended question. For example, self-criticism is expressed 
regarding the background in mathematics and its didactics. Other answers show a deeper 
understanding of the model, since they reveal relationships between different components of the 
subdomains (curricular organization, permeability of teachers’ beliefs and conceptions, international 
learning standards, etc.). Answers to the third open-ended question also go in depth. Especially, those 
about the use of the model as a metacognitive tool, which seems to be completely aligned with the 
objectives of this research, or other answers that, without explicitly expressing metacognition, do it 
implicitly by the establishing relations between teaching practice and the knowledge of teachers’ 
knowledge models.   

In summary, we consider that data support the veracity of hypothesis H1, about the improvement of 
metacognitive processes through this activity. This is consistent with Rojas and Deulofeu (2013), 
although they did not explicitly use a knowledge model. On the contrary, we do not have sufficient 
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evidence to maintain hypothesis H2, related to promotion of research competencies. In this case, we 
understand that graduate students’ identity is closer to a teacher identity and far from researcher one, 
which underlines the role of identity, as an important factor in the teacher’s understanding of 
professional life (Beauchamp, 2009). We also believe that we have had little impact on this facet 
during the intervention, which resulted in the knowledge model being considered more as a tool for 
self-assessment or reflection rather than as a field of research. 

We believe that, as in Pascual y Montes (2017), it is clear that by encouraging the critical and 
reflective attitude of students we obtain information that can be used in the design of training, 
especially in the reorientation of training in research skills. This reflection itself is essential in the 
professional development of mathematics teachers (Schön, 1983) but, in addition, it also provides us 
critical information from the user of the ITE program about the validity of the training proposal. In 
our case, we found that focusing on just one of the nuclei of Moreno Bayardo (2005) has not been 
enough for training research skills in mathematics education among generalist master students. One 
limitation of our work comes from the instrument, because Likert scales could miss richer students’ 
thinking about the task, therefore we plan to overcome this in the future by using semi-structured 
interviews. Obviously, the sample is also limiting but, in this case, we are constrained by the scope 
of this educational programs and by the possibility of getting access to other universities.  

We consider that this work opens a promising path for future research. Thus, we propose to go deeper 
into this working methodology for promoting metacognition and constructing recently graduate 
teachers’ identity as future educational researchers (Hong, 2010). This approach will allow us to 
obtain a greater connection among the topics of the training and, thus, achieving a better development 
of researcher identity, which we think it is our main challenge within this ITE master program. In 
addition, we will also analyze from the descriptive and reflexive points of view the productions of 
the students in the task of analyzing a transcription of a real class, that was linked to the one presented 
here. By making this, we will complete the double perspective that we want to study on 
metacognition: self-assessment (the one already approached here) and peer-assessment. Finally, we 
also propose to redesign the activity on the basis of the revised Bloom taxonomy (Anderson & 
Krathwohl, 2001), so that we can cognitively classify the levels of students’ responses. 
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Mathematics teachers’ knowledge has been studied extensively in the last decades, especially in 
research building on Lee Shulman’s work. However, the same emphasis has not been placed on 
research on the mathematics teacher educator’s (MTE) knowledge. Notwithstanding, the concern to 
characterize the knowledge of these educators has been emphasized in recent studies of mathematics 
education and models for knowledge of MTEs have appeared in literature. In this perspective, we 
present an episode which occurred in a Number Theory undergraduate classroom, where a 
mathematician, who acts in teacher preparation, demonstrates Euclid’s division algorithm theorem. 
The data, which is part of a case study, is analyzed with the objective of identifying indicators of 
knowledge of MTEs. Among the results, knowledge of MTEs emerge in relation to knowledge of 
topics, knowledge of the structure of mathematics and knowledge of practices in mathematics.  

Keywords: Mathematics teacher educator, mathematician, number theory, Euclid’s division 
algorithm theorem, Mathematics Teachers’ Specialized Knowledge. 

Introduction 
One of the roles of a Mathematics Teacher Educator (MTE) is to promote Prospective Mathematics 
Teachers (PMTs) knowledge in order to make them capable of establishing connections between 
teacher education and their practice. According to Jaworski (2008, pp. 1), MTEs "are professionals 
who work with practicing teachers and/or prospective teachers to develop and improve the teaching 
of mathematics". Considering that the knowledge of Mathematics Teachers (MT) is specialized, 
regarding the perspective of the Mathematics Teachers' Specialized Knowledge - MTSK (Carrillo-
Yañez et al., 2018), the work of the MTE is even more important. In this sense, this work intends to 
contribute to research about the knowledge of the MTE and its role in teacher education, particularly, 
in a Number Theory course for PMTs. 

Even if Number Theory has many connections with school algebra, many MTs understand this topic 
as being unrelated to their pedagogical practice (Smith, 2002). The theme divisibility, for example, 
is frequently treated by PMTs as being a trick or a procedure to be memorized, rather than a relation 
between integer numbers (Zazkis, Sinclair, & Liljedahl, 2003). 

The topic divisibility is present from the earliest years of the schooling, including division of natural 
numbers for example. The integer numbers are gradually introduced in the mathematics school 
curriculum and some divisibility criteria are presented. In this context, there is a natural underlying 
question: Why is Euclid's division algorithm valid? This question is answered in a Number Theory 
course for PMTs, where the Euclid’s Division Algorithm Theorem is presented. 

In Brazilian universities, mathematicians are mostly responsible for the mathematical preparation of 
PMTs. These professionals “act as teacher educators de facto, without explicitly identifying 
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themselves in this role” as claimed by Leikin, Zazkis and Meller (2017, pp. 2). In this scenario, our 
foci of research is the knowledge these professionals reveal in their teaching. These mathematicians, 
who are eventually in the role of preparing PMTs, have a solid knowledge in the scientific field of 
mathematics and aim to develop research in this field and, on the other hand, their pedagogical content 
knowledge arises from practice (Fiorentini, 2004). 

This paper is part of a broader research project which aims to understand and characterize, in the 
scope of Number Theory, the specialized knowledge of those who act as mathematics teacher 
educators. In this paper we address the particular research question:  What elements characterize the 
specialized knowledge of a mathematics teacher educator in relation to Euclid’s division algorithm 
theorem?  

Literature review 
The knowledge of the MTE is different than both the knowledge of the PMT and the knowledge of 
the MT (Jaworski, 2008; Zopf, 2010; Contreras et al. 2017). Jaworski (2008) called this knowledge 
Mathematics Teacher Educator Knowledge, which has particular aspects as well as common points 
with both the knowledge of the PMT and the knowledge of the MT. In the intersection, they need to 
know: mathematics, the pedagogy related to mathematics, and the curriculum which the mathematics 
teacher based their work. Furthermore, the MTE also needs to know: both the professional and the 
research literature linked to the teaching and learning of mathematics, to know teaching and learning 
theories, and to know research methodologies that investigate teaching and learning on 
schools/educational systems. 

Zopf (2010) observes that the difference between the knowledge of the MTE and the knowledge of 
the MT lies in the mathematical content. While the teacher teaches mathematics, the MTE teaches 
the knowledge to teach mathematics. The teaching purposes are also different, since the children learn 
mathematics for themselves, while the teachers learn mathematics for teaching their students. 
Therefore, Zopf (2010) proposes the Mathematical Knowledge for Teaching Teachers (MKTT) in 
order to describe the knowledge of the MTEs, which includes the knowledge necessary for teaching. 

Building on Shulman's work, Carrillo-Yañez et al. (2018) divide the knowledge of the mathematics 
teacher into two domains: Mathematical Knowledge (MK) and Pedagogical Content Knowledge 
(PCK). Thereafter, Contreras et al. (2017) state that the knowledge mobilized by MTEs and teachers 
present differences when MK and PCK are considered. The differences in MK are related with the 
fact that the knowledge of the MTE is larger in terms of reach and depth, that is, the mathematical 
knowledge of the MTE has a more coherent and solid theoretical structure, besides the MTE has more 
experience with the validation/construction of the mathematical knowledge. On the other hand, PCK 
contains knowledge about the characteristics of learning of the PMTs, knowledge about how to teach 
the content of the teacher education and knowledge of different ways to organize the content of 
teacher education. In this paper we will focus on the MK of the teacher educator participant. 

Teacher educator’s knowledge: theoretical perspective 
In Carrillo-Yañez et al. (2018), the authors discuss their Mathematics Teachers' Specialized 
Knowledge (MTSK) model. In this model, it is considered that the teacher’s knowledge to teach is 
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specialized and that the MK is subdivided into three subdomains: the Knowledge of Topics (KoT), 
the Knowledge of the Structure of Mathematics (KSM) and the Knowledge of Practices in 
Mathematics (KPM). On the other hand, the PCK is also subdivided into three subdomains: the 
Knowledge of Mathematics Teaching (KMT), the Knowledge of Features of Learning Mathematics 
(KFLM) and the Knowledge of Mathematics Learning Standards (KMLS). At the center of the model, 
are the domain of the teachers’ beliefs, which are related to all subdomains. In this paper, because we 
are interested in the knowledge of a mathematician who works in teacher education, we will focus on 
his Mathematical Knowledge. 

KoT includes knowledge of procedures, definitions and properties, representations and models, 
registers of representations and applications. The KSM subdomain includes knowledge of 
connections between mathematical items, such as connections based on simplification, connections 
based on increased complexity, auxiliary connections and transverse connections. In its turn, KPM 
includes knowledge about demonstrating, justifying, defining, making deductions and inductions, 
giving examples and understanding the role of counterexamples. In the context of Number Theory, 
particularly in the scope of the Euclid’s division algorithm theorem, the MTE knowledge includes, 
for example:  

KoT – To know definitions and results that compose the proof of the Euclid’s division algorithm 
theorem, such as the definition of absolute value and the well-ordering principle. 

KSM – To establish connections between the Euclid’s division algorithm theorem and posterior topics 
in the Number Theory course, such as linear congruence.  

KPM – To know different types of proofs, such as the proof by contradiction that justifies the fact 
that the remainder is less than the divisor, in proof of the Euclid's division algorithm theorem. 

Context and methods 
Our investigation had a qualitative approach. In particular, we adopted the instrumental case study 
(Stake, 2006) as the research method, looking for information about the subject's knowledge that can 
be included in the theory about the MTE knowledge. In order to answer the research question, we 
discuss a classroom episode of a Number Theory course for secondary PMTs, where the MTE aims 
to present Euclid’s division algorithm theorem as well as its proof. The participant Andre, a 
pseudonym, has Graduation, Master degree and PhD in Mathematics. Since the Master, his research 
interests lie in Algebra and Geometry. Andre has been teaching at the mentioned university for five 
years, where he teaches for students of different undergraduate courses, such as Mathematics, Physics 
and Chemistry. In the period which his classes were observed, Andre was teaching the Number 
Theory course to undergraduate students in mathematics for the second time in his academic career. 

The case study of Andre is part of a larger research study which aims to understand what are the 
knowledge of MTEs, in particular the ones that teach Number Theory to prospective secondary school 
mathematics teachers. The results reported in this paper are exclusively based on this participant. 

The aforesaid Number Theory course is a 15 week-long course, which is offered once in each 
semester as a common discipline for prospective teachers and bachelors of mathematics. Furthermore, 
the PMTs, are oriented to take these classes in the 6th semester of their undergraduate. The course 
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includes standard contents of a first course in Number Theory, such as divisibility, prime numbers, 
linear congruence, Diophantine equations and primitive roots. 

The data collection occurred in the period between March and July of 2018, in a Brazilian university, 
comprising class recordings and field notes from the researcher. The classes of this Number Theory 
course were observed and recorded. Starting from the transcript of the recording of the subject's 
classes, we divided each class into episodes and chose the episode in which Andre demonstrates 
Euclid’s Division Algorithm Theorem to present and discuss the knowledge revealed by the MTE in 
this episode, using the MTSK categories. 

Analysis and discussion  
The class episode and its discussion 

Andre started the topic of divisibility at the end of the previous class, when he presented the definition 
and some basic properties of divisibility. The episode that we analyze here is part of a class, which 
the teacher educator started defining prime numbers. Thereafter he proved the existence part of the 
Fundamental Theorem of Arithmetic1. In the sequence, he proved that there are infinite prime 
numbers, and he defined Greatest Common Factor2 as well as he proved some properties3. Then, in 
the episode that follows, the MTE introduces and proves Euclid’s Division Algorithm Theorem 
(EDAT): Considering 𝑎𝑎 ∈ ℤ and 𝑏𝑏 ∈ ℤ+∗ , there are unique integers r and q such that 𝑎𝑎 = 𝑏𝑏𝑏𝑏 + 𝑟𝑟, 
where 0 ≤ 𝑟𝑟 < 𝑏𝑏. 

The episode begins with Andre enunciating the EDAT (Figure 1) and drawing the attention of the 
students to the connections between this result and linear congruence, which will be introduced later 
in the course. Andre also notes that the proof of the EDAT must be done in two parts: existence and 
uniqueness. Considering the limited number of pages allowed in this paper, we approach in our 
analysis the existence proof only. His proof starts considering the set 𝑆𝑆 of all possible non-negative 
remainders of the division of 𝑎𝑎 by 𝑏𝑏 (Figure 2). Naturally, the first step is to prove that 𝑆𝑆 is not empty, 
thereunto Andre discusseswith the students to find an integer 𝑥𝑥 such that the expression 𝑎𝑎 − 𝑏𝑏𝑥𝑥 is 
non-negative. The conversation continues for some time and the students do not find this particular 
𝑥𝑥. One of the students apologizes for his incorrect answer and Andre discusses the importance of the 
students asking questions as well as the need for observing the details of the enunciation of the 
theorem. Thereafter, Andre provides the sought 𝑥𝑥 (Figure 3). Since 𝑆𝑆 is a non-empty set of non-
negative integers, thus 𝑆𝑆 has a minimal element. He denotes this minimum by 𝑟𝑟 and in the sequence 
he proves that this element satisfies the theorem conditions (Figure 4). The existence of 𝑟𝑟 implies the 
existence of 𝑏𝑏. 

Andre: Let's see the night star! The Euclid’s Division Algorithm Theorem. Then we 
consider two integers 𝑎𝑎 and 𝑏𝑏. Actually, I'm going to get 𝑏𝑏 as positive so I do not 

                                                 
1 Any integer greater than 1 can be written as a finite product of prime numbers. 
2 The Greatest Common Factor of two integer numbers is the largest positive integer number that divides each one of 
these integers. 
3 Such as “If 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏)  ⇒ 𝑔𝑔𝑔𝑔𝑑𝑑 �𝑎𝑎

𝑑𝑑
, 𝑏𝑏
𝑑𝑑
� = 1”. 
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have problems. Then there exist, and are unique, integers 𝑏𝑏 and 𝑟𝑟 such that 𝑎𝑎 is 
equal to 𝑏𝑏 times 𝑏𝑏, plus 𝑟𝑟, with 𝑟𝑟 being positive, but strictly smaller than 𝑏𝑏. Ok? 

EUCLID’S DIVISION ALGORITHM 

Let 𝑎𝑎, 𝑏𝑏 ∈  ℤ, with 𝑏𝑏 > 0, so EXIST and are UNIQUE 𝑏𝑏, 𝑟𝑟 ∈ ℤ such that 𝑎𝑎 = 𝑏𝑏. 𝑏𝑏 + 𝑟𝑟 with 
0 ≤ 𝑟𝑟 < 𝑏𝑏. 

Figure 1: Euclid’s division algorithm theorem written on the blackboard 

The choice 𝑏𝑏 > 0 in the enunciation of the EDAT means that Andre is enunciating a particular version 
of that result. In the general version, the only condition is that 𝑏𝑏 to be a non-zero integer. Probably, 
Andre regards this option to save time, since the proof considering 𝑏𝑏 ≠ 0 is divided into more cases. 
This is an observation that is not mentioned by Andre to the students. He knows how to prove the 
EDAT (KoT) and he considers 𝑏𝑏 > 0 in order to save time in this class.  

Andre: So, in a few classes, which I'm not sure exactly when it is going to be, the division 
algorithm will be a direct consequence of the congruencies when we study the 
arithmetic modulo 𝑛𝑛. But in this moment we will prove (the EDAT) with the tools 
that we have. 

In the above transcript, Andre establishes a connection between the EDAT and the linear congruence, 
which is a later topic in the course (KSM). He also establishes a simplification connection in the 
moment that he states that the EDAT can be seen as a consequence of the modular arithmetic (KSM), 
and it seems that he attempts to promote this connection in the students. 

Andre: It is saying there [pointing to the content in the Figure 1] that my proof must to be 
written in two parts. Firstly, I must to prove that they exist (𝑏𝑏 and 𝑟𝑟) and then I must 
to prove that they are unique. In this point, we should have understood that the most 
difficult part (of the proof) is the existence. Regarding the uniqueness, let us 
suppose that there exist two and we will see that they are the same. Actually, there 
is no secret about how to prove the uniqueness, but we will begin by demonstrating 
the existence. OK. 

When he states that the proof should be done in two parts (existence and uniqueness), Andre 
demonstrates knowledge about proof techniques (KPM), and about how to demonstrate the existence 
and uniqueness of 𝑏𝑏 and 𝑟𝑟 (KPM).  

Andre: First part. I will consider this set (Figure 2). I take all the sets (integers) of the form 
𝑎𝑎 − 𝑥𝑥𝑏𝑏, where 𝑎𝑎 and 𝑏𝑏 are the numbers that I gave at the beginning, 𝑥𝑥 is an integer 
and 𝑎𝑎 − 𝑥𝑥𝑏𝑏 is non-negative. OK? I am getting this subset of integers. 

Proof. Existence 
To consider 𝑆𝑆 = {𝑎𝑎 − 𝑥𝑥𝑏𝑏|𝑥𝑥 ∈ ℤ 𝑒𝑒 𝑎𝑎 − 𝑥𝑥𝑏𝑏 ≥ 0} 

Figure 2: Set S written on the blackboard 

In this part, it is possible to identify a heuristic strategy to this particular topic: the choice of an 
appropriate set 𝑆𝑆 of natural numbers to approach a property of that set (KPM), namely, the existence 
of a minimum element in the set.  
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Andre: I would like to prove that it (𝑆𝑆) is not empty. Because it is not just a subset of 
integers. It is a subset of non-negative integers. This is one of my hypothesis, that 
these integers are non-negative. We know that a non-empty subset of this ℤ≥0 
always admits a minimum. I will play with this. Firstly, I have to prove that it is not 
empty. To prove that it is not empty, it is enough to show an element in there. Am 
I right? What element will I get? 

To prove that the set 𝑆𝑆 is non-empty, Andre notes that it is a subset of non-negative integers and thus 
𝑆𝑆 admits a minimal element (KoT). Then, he remembers the fact of all set composed by non-negative 
integers has a minimum, that is, he refers to the well-ordering principle, which demonstrates that he 
knows this result (KoT). When he observes that to demonstrate 𝑆𝑆 ≠ ∅ is necessary just to exhibit one 
of its elements, Andre gives the way to verify if a set is non-empty (KoT).  

Andre: No, that is okay. Do not apologize. Do not apologize, this question allows us (to 
see) the details, that every detail that is written is important. It is not 𝑎𝑎 and it is not 
𝑥𝑥 = 0. What is the number that we know that is positive? It is 𝑏𝑏. So to get around 
this, I would put the minus in 𝑎𝑎 to obtain a positive sum. The only problem is that 
I do not know if the 𝑎𝑎 is positive or negative. […] So I get minus the absolute value 
of 𝑎𝑎. So I have no problem. Because I have the absolute value of 𝑎𝑎, I will get 𝑎𝑎 plus 
the absolute value of 𝑎𝑎 multiplied by 𝑏𝑏. The 𝑏𝑏, yes, it is strictly positive from this 
one here (initial condition of the theorem). So, this means that there are at least one. 
Then this value is greater than or equal to zero.  

𝑥𝑥 = −|𝑎𝑎|                             ⇒            𝑆𝑆 ≠ ∅                                             admits minimum 

𝑎𝑎 + |𝑎𝑎|𝑏𝑏 ≥ 0                                                                                                I call it 𝑟𝑟 ≥ 0 

Figure 3: Proof that S is non-empty written on the blackboard 

When Andre discusses the importance of the student questions, he exposes his beliefs about the need 
to perceive and to consider all the conditions of the enunciation theorem. In addition, he demonstrates 
to understand that this is an aspect to be developed together with his students. 

Andre: Then 𝑆𝑆 is not empty. If 𝑆𝑆 non-empty is a subset of it (ℤ≥0), 𝑆𝑆 admits a minimal 
element. If there is a minimal element, I must to call it of something. I call it by 𝑟𝑟. 
Then let us see if this r is exactly what I want. OK! First property. The 𝑟𝑟 which I 
already know is greater than or equal to zero. Since 𝑟𝑟 is an element of this form, the 
minimum of this set (refers to the set 𝑆𝑆), all elements that lie in that set are non-
negative, in particular 𝑟𝑟 is also non-negative. […] What is the set that I considered? 
I chose exactly all the integers on the type 𝑎𝑎 − 𝑥𝑥𝑏𝑏 equal to an integer. This means 
that I am considering all relations such that 𝑎𝑎 is equal to 𝑥𝑥 times 𝑏𝑏 plus one integer. 
Then, this set 𝑆𝑆 is chosen exactly to satisfy this relationship here. Am I right? So, I 
am defining the remainders, I am defining the smallest of the remainders and I want 
to see that the smallest of the remainders fits here [he refers to 𝑎𝑎 = 𝑏𝑏𝑏𝑏 + 𝑟𝑟, in the 
theorem].  
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After calling 𝑟𝑟 the minimal element of the set 𝑆𝑆, Andre trys to demonstrate that this 𝑟𝑟 is in the 
conditions of the theorem. Thus, after showing that if 𝑟𝑟 is an element of the set 𝑆𝑆 then 𝑟𝑟 ≥ 0 (KoT), 
Andre intends to prove the fact that the remainder is less than 𝑏𝑏, revealing his knowledge of different 
types of proofs (KPM), such as the proof by contradiction.  

I want to prove 𝑟𝑟 < 𝑏𝑏. 

By contradiction, I will assume that 𝑟𝑟 ≥ 𝑏𝑏. Then, 0 ≤ 𝑟𝑟 − 𝑏𝑏 = 𝑎𝑎 − 𝑏𝑏𝑏𝑏 − 𝑏𝑏 = 𝑎𝑎 − (𝑏𝑏 + 1)𝑏𝑏.  

I name 𝑏𝑏 = 𝑥𝑥  such that 𝑎𝑎 − 𝑏𝑏𝑏𝑏 = 𝑟𝑟   

 ⇒   𝑟𝑟 − 𝑏𝑏 ∈ 𝑆𝑆 

        𝑟𝑟 − 𝑏𝑏 < 𝑟𝑟. 
Figure 4: Proof that 𝒓𝒓 is strictly less than 𝒃𝒃 written on the blackboard 

Andre: It means that this integer here is on the type 𝑎𝑎 minus one integer times 𝑏𝑏. And the 
integers of the type 𝑎𝑎 minus another integer times 𝑏𝑏 are, from definition, the 
elements of 𝑆𝑆. Because also ... they are non-negative. This implies that 𝑟𝑟 minus 𝑏𝑏 
is an element in 𝑆𝑆, because it is an element that is exactly written in the form that 
the elements of 𝑆𝑆 were defined and it is non-negative. It satisfies both the 
conditions, then it is an element within 𝑆𝑆. Being an element of 𝑆𝑆, and being strictly 
small than r, there is a contradiction. Why? Because by definition, 𝑟𝑟 is the 
minimum. So there can not exist another element strictly small than 𝑟𝑟 within the set 
𝑆𝑆. To come in a contradiction means that the hypothesis that I started all this is 
absurd. Then, it is impossible 𝑟𝑟 to be greater than 𝑏𝑏, this implies that 𝑟𝑟 must to be 
strictly small than 𝑏𝑏. Thereat, we finish the existence proof. Why? Because I prove 
that there are those integers 𝑏𝑏 and 𝑟𝑟 that satisfy what I want. I wondered two 
numbers 𝑏𝑏 and 𝑟𝑟 such that 𝑎𝑎 is equal to 𝑏𝑏 times 𝑏𝑏, plus 𝑟𝑟. 

This kind of proof by contradiction used by Andre (KPM) is recurrent in algebra. When the thesis is 
contested, a conflict arises in relation to the minimality of an element. 

Some final comments  
In this paper, we analyzed the mathematical knowledge of a mathematician, who teaches for PMTs. 
The Mathematics Teachers' Specialized Knowledge applies to the analysis of this MTE's knowledge 
because Andre is teaching mathematics to PMTs. In order to characterize the knowledge of this MTE 
from the demonstration of Euclid's division algorithm theorem, we find evidence of knowledge of 
topics, knowledge of the structure of mathematics and knowledge of practices in mathematics. 
However, this knowledge of the MTE about Euclid’s Division Algorithm Theorem is different from 
the expected knowledge of PMTs and MTs in the same topic, considering that they will not teach this 
theorem. 

The focus is not to evaluate or to prescribe which should be the knowledge of MTEs. Our interest is 
to investigate which is the existing knowledge in MTEs who participates in our case study, 
considering the particular Brazilian teacher education context and the role of mathematicians in this 
context. In this sense, our findings can aid in the elaboration of a model for the specialized knowledge 
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of MTE, as proposed by Contreras et al. (2017), and may also contribute to the investigations into the 
knowledge of the MTEs. Furthermore, we propose to investigate indications of what are the 
fundamental knowledges of these MTEs. 
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In recent years, there has been a growing appreciation of the importance of incorporating 
argumentation into the mathematics classroom. Whereas considerable research has been done on 
argumentation, little has specifically focused on teachers’ conceptions. This paper presents an 
exploratory study as part of ongoing research into teachers’ conceptions of argumentation for 
teaching mathematics. Drawing on the literature on argumentation and empirical data, we propose 
an emergent model, presented as a 5-by-2 construct featuring five types of conceptions across two 
dimensions: structural and dialogic. This paper illustrates the emergent model at this initial stage of 
the research using an individual case study of a teacher. The overall aim of the research is to theorize 
a model that can be used to analyze and characterize teachers’ conceptions of argumentation for 
teaching mathematics. 

Keywords: argumentation; teachers' conceptions; mathematics teaching 

Introduction 
In recent years, there has been a growing appreciation of the importance of incorporating 
argumentation into the mathematics classroom. Existing research suggests that participation in 
argumentation activities that require the student to explore, confront, and evaluate alternative 
positions, voice support or objections, and justify different ideas and hypotheses, promotes 
meaningful understanding and deep thinking (Asterhan & Schwarz, 2016). This view is reflected in 
recent educational reform documents all over the world, and in Israel in particular, that underscore 
argumentation as one of the important goals for students. However, argumentation in the mathematics 
classroom is not yet commonplace (e.g., Bieda, 2010). Recently, there has been considerable research 
dedicated to argumentation; however, little of that work has specifically focused on teachers’ 
conceptions of argumentation (Ayalon & Hershkowitz, 2018; Staples, 2014). Considering the fact 
that teachers' conceptions impact the way in which this key practice is implemented in the classroom, 
there is a strong need to learn what characterizes them. This paper addresses this need. It presents an 
exploratory study as part of ongoing research into teachers’ conceptions of argumentation for teaching 
mathematics. Drawing on the literature on argumentation and empirical data, we propose an emergent 
model, presented as a 5-by-2 framework comprising five categories of conceptions of argumentation 
for teaching mathematics across two dimensions: structural and dialogic. This paper illustrates the 
emergent model at this initial stage of the research. 

Theoretical Background 
Argumentation 

There are diverse definitions of argumentation in the education literature. A commonly accepted 
definition is that of van Eemeren and Grootendorst (2004) who argue that argumentation is “a verbal, 
social, and rational activity aimed at convincing a reasonable critic of the acceptability of a standpoint 
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by putting forward a constellation of propositions justifying or refuting the proposition expressed in 
the standpoint” (p. 1). According to this definition, argumentation entails generating claims, 
providing evidence to support the claims, and evaluating the evidence to assess their validity. It posits 
argumentation in a social context and, if incorporated in classroom discourse, affords a venue for the 
articulation and critical evaluation of alternative ideas, eventually supporting collaborative 
knowledge construction (Asterhan & Schwarz, 2016). Argumentation that "balances between critical 
reasoning and collaborative knowledge construction” (Asterhan & Schwartz, 2016, p. 167) is 
considered to be productive for learning (Felton, Garcia-Mila, & Gilabert, 2009).  

Following these descriptions, the present work considered argumentation as having two important 
meanings – structural and dialogic (McNeill et al., 2016). The structural meaning of argumentation 
focuses on the aspect of discourse in which a claim, presented as an idea, conclusion, hypothesis, 
solution etc., is supported by an appropriate justification which, in our case, represents the types of 
justifications that are valued within the mathematics community. The dialogic meaning regards 
argumentation as the interactions between individuals when they attempt to generate and critique 
each other’s ideas. This meaning aligns with the common view of mathematics as a social enterprise 
whereby mathematicians are part of a community with established norms of argumentation for 
advancing mathematical knowledge.  

Teaching for argumentation  

Mathematics teaching that encourages argumentation provides students with opportunities to take an 
active part in both structural and dialogic meanings – to construct arguments, share, consider others' 
ideas and critically evaluate their validity (Ball & Bass, 2003). Such teaching requires the teacher to 
make sense of students' ideas and interactions, identify and evaluate the strengths and weaknesses, 
promote adherence to standard disciplinary criteria for determining the truth of a claim, encourage 
students to elaborate their thinking, and lead them to listen to each other, critique and question ideas 
(Nathan & Knuth, 2003). It entails the teacher's drawing on various resources, such as the 
mathematics involved, student thinking, socio-cultural background, affect, and curriculum-related 
aspects (Ayalon & Even, 2016; Ayalon & Hershkowitz, 2018; Staples, 2014). As noted above, 
argumentation in the mathematics classroom is rare (e.g., Bieda, 2010), which suggests that teaching 
for argumentation is perhaps challenging. Whereas research on argumentation is rapidly growing, 
little research specifically focuses on teachers’ conceptions in the context of argumentation. 

This study draws on existing research to propose a preliminary working definition for mathematics 
teachers' conceptions of argumentation for mathematics teaching, with the intention of further 
developing this definition as a research goal. The use of ‘conceptions’ refers to both knowledge and 
beliefs, according to Thompson (1992), who described teachers’ conceptions of the nature of 
mathematics as their combined knowledge and beliefs pertaining to the discipline of mathematics. 
Following this definition, the present study focuses on teachers’ conceptions of argumentation in 
mathematics teaching, under the assumption that in order to develop teachers' instructional practices 
for argumentation, we need to better understand their conceptions. In particular, we focus on teachers' 
conceptions as they relate to both the structural and dialogic aspects of argumentation.  
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Methodology 
The data for the overall research were collected through observations of lessons and semi-structured 
interviews which preceded and followed the lesson observations. For this paper, we focused on data 
obtained from the first part of the interviews conducted prior to the lesson observations, in which the 
teachers were asked to express their views on argumentation for teaching mathematics and to provide 
examples of argumentation, as manifested in their own teaching.    

Research participants 

Eight middle-school mathematics teachers, each having more than five years of teaching experience, 
participated in this study. The decision to focus on this particular school population stemmed from 
the emphasis placed on argumentation in the middle-school curriculum in Israel.  

Data collection 

The data used for this paper consisted of individual, semi-structured interviews with the teachers. The 
interview lasted approximately one hour. During the interviews, the teachers were presented with a 
written quote from the national mathematics curriculum that reflects the importance ascribed to 
students' involvement in argumentation activity in the mathematics classroom. According to this 
quote, one main goal of the curriculum is that students will engage in justifying their claims, 
communicate them to others, and critique their own and their peers' arguments. The teachers were 
asked: (1) What do you think about this quote? Do you agree or disagree? Why? (2) What strategies, 
if any, do you use in your classroom to achieve this goal? (3) What have you found supports or hinders 
you in achieving your goals? The teachers were urged to provide detailed responses as well as 
instances from their own classroom. The interviews were audio-recorded and subsequently 
transcribed. 

Data analysis  

We combined directed content analysis and inductive content analysis (Patton, 2002). Directed 
content analysis included a classification of teachers' statements about argumentation in mathematics 
teaching into one of the two aspects of argumentation: structural or dialogic. The structural aspect 
dimension included discourse pertaining to elements of arguments, such as claims and justifications 
and what counts as an appropriate justification in class. The dialogic aspect dimension included 
discourse associated with students' interactions when generating and critiquing arguments. We then 
used inductive content analysis for devising categories for the two dimensions. During this phase of 
analysis, we first identified initial categories based on some of the data collected for a particular 
teacher. We then refined and expanded the initial categories based on more data collected for the 
same teacher. Finally, the devised categories were refined by the analysis of data collected for all the 
participating teachers. This process resulted in five categories of teachers' conceptions of 
argumentation: (1) what is argumentation; (2) teaching strategies for argumentation; (3) mathematical 
task characteristics; (4) student characteristics; and (5) socio-cultural characteristics. We ultimately 
received a 5-by-2 framework featuring these five categories for each of the two dimensions: structural 
and dialogic. 

In this paper, we provide examples that illustrate the way in which several of the framework's different 
components were devised based on the teachers' discourse about argumentation in teaching. The 
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examples of categories are taken from an interview with one teacher named Adam (pseudonym), as 
we found his interview rife with illustrations for various categories. Note that each category was 
identified in other teachers' interviews as well. Naturally, one citation may refer to more than one 
aspect of argumentation. 

Findings 
Adam is a middle-school teacher (grades 7-9) with 25 years of experience in teaching mathematics. 
He serves as the mathematics teaching coordinator and is considered by his colleagues to be a leading 
teacher in his school. When asked for his opinion of the quote taken from the curriculum with regard 
to the importance of engaging students in argumentation, he replied:  

The things said in the quote are very important in the learning of mathematics. This 
[argumentation] helps to promote students’ understanding of the material; the teacher can 
understand, identify and emphasize the thought process of each student who raises claims in class 
and justifies his or her answer [1-1] … Also, critiquing others’ arguments helps students to develop 
their mathematical thinking [1-2]. 

This initial response from Adam implies what argumentation means to him. His response relates both 
to the structural aspects of argumentation and to its dialogic aspects. He mentions claims and 
justifications (structural, 1-1), alongside critical assessment of one another’s arguments (dialogic, 1-
2). According to Adam, this activity allows the teacher to learn about students’ thought processes, 
and helps to develop students’ mathematical understanding. When asked how he uses argumentation 
in his classes, he replied: 

In my classes, I always use argumentation activities. The students raise ideas, explain, and bring 
justifications [2-1]. Different solutions for the same problem arise, and a fruitful dialogue develops 
in which the students explain their solutions, try to convince others, and find mistakes in others’ 
solutions, and critique each other [2-2]. The students listen to each other and give criticism politely 
and respectfully [2-3]. This atmosphere encourages students to participate in math classes, so that 
the student feels like a central part of the lesson [2-4]. Also, a student who correctly justifies her/his 
solutions will feel greater self-confidence [2-5]. 

Adam’s answer informs us more of what argumentation means to him, both from a structural 
perspective (2-1) and a dialogic perspective (2-2, 2-3). This answer expands on his previous response 
by relating, also, to persuading others of the correctness of one’s views, and to assessment that is not 
only critical, but also respectful (2-3). There is mention here of class norms of respectful critical 
dialogue (2-2, 2-3). He also mentions students’ emotional characteristics – student engagement and 
the student being in the “center” – that are connected to the student’s participation in dialogue 
(dialogic, 2-4) and to self-confidence stemming from justification of a solution (structural, 2-5). When 
he was asked to give more details regarding the way in which he encourages argumentation activities 
in his class, Adam said: 

In general, I try to give the students open, multiple-solution tasks [3-1], and give students space to 
express themselves and to present their solutions and examine them together with the rest of the 
class, and reach agreements together [3-2]. For instance, tasks involving word problems, or 
problems that involve finding generalizations – there are students who manage to come up with 
various hypotheses and solutions, some correct and some not, and there are students who struggle 
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[with the challenge] [3-3]. What’s important is that when we work with these tasks in my class, it 
always turns into a mathematical discussion [3-4] which the students enjoy [3-5], and in which 
students listen to each other’s solutions and explanations and critique them, try to challenge their 
arguments and also to defend arguments [3-6]. When I give them problems to solve individually, 
my sense is that the students feel like it’s a competition, who will find a solution first and give a 
correct justification [3-7] - after all, I don’t accept answers without a clear, written explanation 
and mathematical justification [3-8] - and who will present their solution to the class [3-9] … I 
mean “competition” in a positive sense. 

In Adam’s answer, he notes the characteristics of mathematical tasks that encourage argumentation 
in class. Open, multiple-solution tasks serve Adam’s purposes when it comes to the dialogic activity 
he mentioned earlier [3-1]. Here, Adam also discusses students’ skills in coming up with hypotheses 
and various methods of solving (3-3). Two additional characteristics of the dialogic aspect of 
argumentation, which Adam did not mention earlier, come up in the context of working with these 
types of tasks: one relates to students working towards consensus (3-2); the other relates to defending 
one’s arguments (3-6). This response also makes note of the socio-cultural norms that pertain to 
argumentation activity, in Adam’s mention of mathematical dialogue: “when working with these 
tasks in my class, it always turns into a mathematical discussion” (3-4), and in the expectation in his 
class for a justification of the claims (structural, 3-9). He also mentions the norm of writing arguments 
clearly (3-8). Adam previously mentioned students’ engagement in argumentation activities; here, he 
adds a competitive but friendly, good-spirited atmosphere between the students, challenging who will 
solve the problem first and present the solution, with its justification, to the whole class (3-9). He also 
mentions enjoyment (3-5).  

Adam was then asked to give an example of a hypothetical implementation of an argumentation 
activity in his class. He chose to talk about employing the known “match train” task, which includes 
an examination of concrete cases involving small numbers (1, 2, and 3 wagons) and then the formation 
of an algebraic expression. Figure 1 presents part of a script Adam wrote down for an imaginary 
dialogue in his class focused on finding the number of matches needed for any number of squares.  

When discussing his script, Adam emphasized: "I took into account ways in which students’ thinking 
about building generalizations might be incorrect, such as employing empirical methods or using 
invalid proportional reasoning" [4-1]. He also referred to his approach of "prompting as many 
arguments as possible" [4-2] as well as "bringing students' ideas to the class for judgment" [4-3], 
while "emphasizing important ideas given by students, such as the use of counterexample" [4-4]. In 
addition, Adam said: "I would use various strategies for providing students with scaffolding in 
generating arguments [4-5]. For example, by using real matches to help students develop a sense of 
the situation [4-6], suggesting counterexamples to use in refuting students' claims [4-7] … and using 
a table of values to support students’ efforts to reach a generalization and to identify invalid claims, 
such as the one suggested by student #3" [4-8].  

Adam's concrete example of implementation of a task provides us with more ideas about the way he 
conceives argumentation: First, in terms of the structural aspect, with claims and justifications 
requested in class and distinguishing between accepted and unexpected justifications (4-1). Secondly, 
in terms of the dialogic aspect, his approach here is very similar to the one he raised with regard to 
argumentation in his earlier responses (4-2, 4-3). In this response, we can also see Adam referring to 

Thematic Working Group 20

Proceedings of CERME11 3843



 

 

student characteristics related to common ways of thinking (4-1), along with a reference to teaching 
strategies associated with promoting argumentation, such as prompting students' dialogue (4-2, 4-3), 
explicating important mathematical argumentation ideas in class (4-4), and providing students with 
scaffolding through the use of various examples (4-7), representations (4-8) and tools (4-6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A part of the script Adam wrote for an imaginary dialogue in his class 

Overall, the above statements from Adam's interview illustrate the way in which several of the 
different components of the framework were devised. Figure 2 presents the emergent framework for 
teachers' conceptions on argumentation for mathematics teaching. Several of the categories were 
identified in Adam's statements as presented in this paper, and therefore appear in the model, 
accompanied by their indexes in brackets. Other categories were not illustrated in this paper; however, 
they will be further elaborated upon in the conference presentation. 

  
Mathematics teachers' conceptions of argumentation 

Dialogic aspects Structural aspects  

· Students raising different point of view (2-
2, 3-2, 4-2) 

· Students listening critically to each other's 
arguments (1-2, 2-2, 4-3) 

· Students defending their ideas (3-6)  
· Students attempting to convince others of 

their opinion (2-2) 
· Students listening to each other 

respectfully (2-3) 
· Students working towards consensus (3-2) 

· Elements of argumentation:  
claims and justifications (1-1, 2-1, 
4-1) 

· Types of justifications valued (4-1) 
 What is 

argumentation? 
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· Encouraging students to present different 

points of view (4-2) 
· Encouraging students to respond critically 

to each other's arguments (4-3) 
· Giving value to students collaborating on, 

generating and critiquing arguments  
 

· Encouraging and scaffolding 
students' justifications (e.g., 
through questioning, using 
concrete examples and tools) (4-5, 
4-6, 4-7, 4-8) 

· Encouraging self-evaluation of 
claims 

· Providing criteria for justification 
· Explicating important 

mathematical argumentation ideas 
(4-4)  

· Requiring written justifications (3-
8) 

Teaching strategies 

· Open tasks that afford various solutions 
(3-1) 

 

· Open tasks that afford various 
solutions (3-1) 

· The types of justifications that the 
task invites 

Task 
characteristics 

· Students' skills of presenting arguments to 
the class 

· Students' skills of responding to others' 
ideas 

· Students' skills of revising their arguments 
based on the class/group discussion   

· Students' engagement (2-4) 
· Students' enjoyment (3-5) 
· Students' competition: who will present 

her/his work to class (3-9)  

· Students' ways of mathematical 
thinking (e.g., tendency to use 
empirical-based justification) (4-1) 

· Students' skills of generating 
arguments, including difficulties 
(3-3)  

· Students' self-confidence (2-5) 
 

Student 
characteristics 

· Norm of collaborating on generating and 
critiquing arguments (2-2, 3-4) 

· Norm of respectful dialogue (2-3) 
 

· Norm of providing justifications 
for claims (3-8) 

· Norm of writing arguments clearly 
(3-9)  

Socio-cultural 
characteristics 

Fig. 2 Emergent model for teachers' conceptions of argumentation in teaching mathematics 

 
Conclusion 
This paper presented an exploratory study as part of ongoing research into teachers’ conceptions of 
argumentation in the teaching of mathematics. It proposed an emergent 5-by-2 framework comprising 
five categories of conceptions of argumentation for teaching mathematics across two dimensions: 
structural and dialogic. The study opened with a presentation of the theoretical distinctions related to 
argumentation, focusing on structural and dialogic aspects as the main dimensions of argumentation 
(McNeill et al., 2016). The empirical investigation of the teachers' discourse on argumentation in their 
teaching resulted in five categories of teachers' conceptions of argumentation: (1) what is 
argumentation, (2) teaching strategies for argumentation, (3) mathematical task characteristics, (4) 
student characteristics, and (5) socio-cultural characteristics. These categories reflect the complex 
process of establishing argumentation in the mathematics classroom and the roles that teachers need 
to fill in order to facilitate argumentation (Ayalon & Even, 2016; Ayalon & Hershkowitz, 2018; 
Mueller, Yankelewitz, & Maher, 2014; Yackel, 2002), and adhere to notions of productive 
argumentation that promotes learning (Asterhan & Schwarz, 2016). 

This is the beginning of learning about mathematics teachers' conceptions of argumentation in the 
mathematics classroom. We intend to continue our research, basing the work on the categories 
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developed in this paper. First, the model will be applied to characterize each participating teacher's 
conceptions. Second, since the research literature shows that teachers' declarative conceptions can be 
different from those realized in their actual teaching (e.g., Lev-Zamir & Leikin, 2013), we intend to 
use the model for analyzing the teachers' lessons, and for ascertaining the relationships between 
teachers’ declarative conceptions and their conceptions 'in-action' with special attention devoted to 
argumentation. The analysis will also search for new categories, in order to refine the model to be 
used to analyze and characterize teachers’ conceptions of argumentation in the teaching of 
mathematics. 
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The study attempted to investigate the ways a prospective teacher, Elif, responded to contingent moments 
in her teaching practice. In addition, her perceptions regarding changes in the nature of the tasks based 
on the students’ unanticipated thinking after the teaching were examined. Elif attended to a two-hour 
class of teaching seminar in which categorizations of mathematical tasks were presented. Then, during 
her enrollment in teaching practicum course, she taught a lesson on algebra by considering the 
categorization of the tasks. The lesson plan, her video record of teaching, semi-structured pre and post 
interviews were analyzed based on contingent trigger categories and kinds of teachers’ responses to 
them and tasks during the phase of selecting, enacting and revising were analyzed based on its cognitive 
demand. Results showed that the contingent moments lead her to reanalyze the content and 
implementation of the designed tasks for further teaching.  

Keywords: Specialized Content Knowledge, Knowledge Quartet, Contingency, Pre-service teachers, 
Cognitive Demand 

Introduction 
A mathematical task (i.e. a problem or a set of problems) is “a classroom activity, the purpose of which 
is to focus students’ attention on a particular mathematical idea” (Stein, Grover, & Henningsen, 1996, p. 
460). The teacher’s pedagogical knowledge in planning lessons has a crucial role in the way 
mathematical tasks are selected and implemented (Stein, Grover & Henningsen, 1996). Thus, designing 
tasks based on students’ understanding and identifying students’ ways of thinking during task 
implementation as parts of teachers’ knowledge are important abilities for effective teaching (Fernande, 
Llinares and Valls, 2010). Hence, as Chapman (2013) stated, during practice teachings, focus be placed 
on pedagogical knowledge regarding the nature of task.  

In the context of task implementation, eliciting students’ ways of thinking has become an important skill 
for teachers during practice teachings. Rowland and Zazkis (2013) concluded that “a teacher’s responses 
to problematic contingent moments that arise in teaching mathematics are fundamentally dependent on 
their mathematical knowledge, which prompts and guides pedagogical implementation” (p. 151). It is a 
fact that due to the nature of the learning environment, which is dynamic and complex, teachers as well 
as novice teachers encounter many challenges in responding to student needs (Foster, 2014). Hence, 
teachers should be well prepared for such potential contingent situations and moments for the following 
teaching practices (Rowland, Thwaites, Jared 2015). Thus, the present study aimed to reveal the novice 
teacher’s knowledge regarding the contingencies so that mathematics teacher educators can have a better 
understanding of novice teachers’ pedagogical knowledge (Liston, 2015). Hence, the study initially 
attempted to examine how a preservice teacher responded to these contingent moments.  
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Not only declining or maintaining the cognitive demand level, but also transforming tasks with lower 
cognitive demands into high-level tasks are closely linked to students’ ways of thinking and teachers’ 
decisions at contingent moments. At a more detailed glance, teachers’ decisions regarding the nature of 
a task and sequences of tasks are shaped by students’ opinions and their ways of thinking at the moment 
that is related to active facet of contingent knowledge. Moreover, proactive aspect (Hurst, 2017) of it 
includes teachers’ planning of task design where they seek to address students’ misconceptions. Hence, 
eliciting students’ ways of thinking and unexpected responses might ensure effective task 
implementation and design. In this respect, it is believed that experiencing ‘Contingency’ instances may 
provide novice teachers with opportunities to improve their pedagogical knowledge (Rowland, Thwaites 
& Jared 2015) by transforming tasks into high-level tasks or maintain tasks’ cognitive demand. Hence, 
the second aim of the study was to explicate how these contingent moments guide teachers in thinking 
about the nature of the tasks implemented. This is important since research needs to identify how the 
opportunity of contingent moments and knowledge in features of the level of the tasks support teachers’ 
ways of altering tasks in following teaching practices. Thus, the research questions of the present study 
were stated as follows: (1) How does a novice mathematics teacher respond to contingent moments 
during her teaching of algebra? (2) How do contingent moments help the preservice teacher to reconsider 
the nature of the task for further teaching? 

Theoretical Framework- Knowledge Quartet Model (KQ) 

An empirical framework called as Knowledge Quartet developed by Rowland, Huckstep and Thwaites 
(2005) has been used to assess and develop both pre-service and in-service mathematics teachers’ 
mathematical knowledge during planning and teaching. It comprises four main units; namely, 
foundations, transformation, connection and contingency. The last component of the knowledge quartet, 
contingency, is described as ‘the “opposite” [their emphasis] of planning – to situations that are not 
planned and that have the potential to take a teacher outside of their planned route through the lesson’ 
(Rowland and Zazkis, 2013, p. 139). Contingency is concerned with a teacher’s ability to make 
convincing, meaningful responses to unanticipated student answers, questions and statements. 
“Responding moves”, similar to contingency, are regarded as key moments in organizing a lesson (Brown 
& Wragg, 1993). Based on the model, contingent moments are associated with the codes of “responding 
to students’ ideas; deviation from agenda; teacher insight; (un)availability of resources” (Rowland, 
Turner & Thwaites p. 4). Therefore, in this study, we first identified contingent moments in the video 
recording of the pre-service teacher’s instruction and then analyzed whether or not the teacher attended 
to those moments, and how she reconsidered the nature of the tasks based on those instances.  

Within the context of the mathematical tasks, the Mathematics Tasks Framework characterizes three 
phases through which tasks pass: first, as they are in the curricular materials; next, as tasks are set up by 
teachers; and last, as they are applied by students in the classroom (Stein, Grover and Henningsen, 1996). 
All these are believed to have an important impact on students’ learning process. The cognitive demand 
of mathematical tasks emphasized in the second phase of the framework refers to “the cognitive 
processes students are required to use in accomplishing [tasks]” (Doyle, 1988, p. 170). It is classified 
into four categories, which are memorization, procedure without connection, procedures with connection 
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and doing mathematics (Stein et al., 2000). Tasks with a low cognitive demand (memorization and 
procedure without connection) require students to memorize facts, rules and procedures without 
relational and conceptual understanding and do not lead students to engage in high-level mathematical 
thinking, such as problem solving, reasoning, connection and critical thinking (Stein & Lane, 1996). On 
the other hand, mathematical tasks with a high level of demand include multiple entry points rather than 
a single answer. In other words, high level tasks entail explorations of mathematical ideas by thinking 
critically and reasoning.  

Although researchers emphasized that the high-level tasks are key to acquiring mathematical ideas (Stein, 
Grover, & Henningsen, 1996), tasks themselves, even high-level ones, may not result in high level 
understanding. At that point, the role of the teacher during the preparation and implementation of 
mathematical tasks have emerged as a crucial aspect in teaching mathematics conceptually (Doyle, 
1988). Indeed, teachers should be responsible for changing the cognitive demand of tasks during 
classroom implementations (Smith, Grover &Henningsen, 1996). Hence, teacher knowledge could be 
regarded as one of the important factors impacting teachers’ way of altering task features to meet student 
needs.  

Methods  
Context and Participants 

The case study research methodology is used to respond to “how” or “why” questions in detail (Yin, 
2013). Since the main aim of the study was to analyze and reflect on complex classroom practices, the 
responses to the research questions of the study were sought by utilizing the single case study 
methodology. In a project, six novice teachers were selected based on their willingness to participate in 
the study and on their high-level of achievement in the teaching method courses. The participants were 
provided with a (two-hour) seminar on the Smith and Stein’s categorizations of mathematical tasks. The 
seminar was held to familiarize them with each level of the cognitive demand of the tasks. It was believed 
that this familiarity would enable them to critically analyze the features of the tasks with respect to how 
students think and present mathematical opinions. Subsequent to the seminar, they were expected to 
prepare a lesson plan including tasks with a low or high level of cognitive demand. Elif, a novice 
mathematics teacher, volunteered to teach a class; therefore, Elif’s lesson was selected for the present 
case study. 

The pre-service elementary mathematics teacher, Elif, was in her fourth year at a public university in 
Turkey. Thus, Elif had completed Teaching Mathematics Method courses and Practice Teaching I course 
aiming at providing an opportunity to observe teachers’ the way of teaching and student learning. In 
addition, she was experiencing the teaching for the course of Practice Teaching II (practicum). She 
planned lessons to meet the requirement of Practice Teaching II (practicum) and we focused on one of 
her lessons.  

Data Collection and Analysis  

The lesson plan, video recordings of her lesson and the audio-record of the semi-structured pre- and post-
interviews were used as data sources. The pre-interview lasted 50 to 70 minutes in a one-on-one setting 
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to determine her perceptions regarding the nature of the tasks selected for the lesson and her opinions 
regarding unexpected ways of student thinking related to the tasks. After her lesson, she was asked to 
observe the video of her teaching by using the classification features of cognitive demand tasks as a 
guide. Finally, we performed a semi-structured post-interview to gain information regarding her views 
on the way she responded to contingencies and redesigning the task. Sample questions from the post-
interview are as follows: “How would you deal with that response?” The tasks as data in the processes 
of planning, acting and revision were analyzed using the cognitive demand levels in the mathematics 
task analysis guide (Stein et al. 2000). In addition, the lesson episodes including the implementation 
phase of the first and second tasks were transcribed and then analyzed based on the contingent trigger 
categories of Rowland et al. (2015) and different kinds of teachers’ responses to them.  

Overview of Elif’s lesson 

Elif taught algebra for 7th grades. The learning outcome of the lesson required learners to be able to 
describe how two variables having linear relationship with each other vary by using table, graphic and 
equations. There were 22 students in the class, 12 boys and 10 girls. They were seated at tables in front 
of the board and Elif stood at the board and walked around the seats for some time. The lesson started 
with a task at the level of ‘memorization’. More specifically questions: “what is the meaning of linear 
relationship?”. Then Elif continued with the second task which was related to the relationship between 
two variables varying together designed at the level of ‘procedures without connection’ provided below.  

 

Figure 1: The Second Task  

Findings 
Contingent moments emerged during enactment of the first task and Elif’s responses to the moments 
provided as follow:  

Linearity: Speed, Time and Position 

After Elif presented the first task to the class, three or more students defined the linearity between two 
variables and then two of students mentioned speed and time. She accepted the responses and got students 
to think of the relations among those variables, namely time, speed and distance, as in the following 
conversation: 

Elif:                Yes, speed increases as time increases, right? Or is speed constant? 

Student 1:       Speed can change; for instance, the speed can be 61 km/h during half of the distance. 
Then, the car can go at 59 km/h during the other half of the distance.  Then, the speed 
will be 60 km/h and [hence] constant. 

Interpret the changes in volume of the beaker and time. 
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Elif:                Do you think that speed is constant as time increases, or speed increases as time 
increases. Which one? 

Student 1:       Overall, the speed did not change.  

However, some responded by saying “Constant”. 

Elif:                   Now consider that time increases, and speed is constant. Only one variable is changes. 
Yes? So, what does linear relationship mean?  

Then she drew a graph of time versus speed (speed is constant) and explained that speed had one value 
as time increased. Then she asked a question “Is this a linear relationship?” by pointing to the graph. One 
student responded by saying, “it [the value for y-axis] might be distance.” Then she drew the graph of 
time versus distance when speed is constant, and she continued to say: 

Elif:                 If we go back to the speed example, should the speed increase in time? How does speed 
change? Is it constant, increases constantly or how?  

Student 2:       It should be [increasing] at certain intervals. 60,120,180… 

Student 3:       Certain ratios  

Elif:                Yes, another example? 

Student 1:      [For instance] the pupil read 10 pages of a book on the first day, and on the second day 
the pupil read 20 pages of the book? 

Elif:              [By interrupting the student’s speech] If I said there is a linear relationship, it should be 
increased by certain ratios or number. [By pointing to the second speed versus time 
graph] Do you understand now why I cannot say that there is a linear relationship? 

This contingent moment related to confusion in the concept of constant rate of change arose based on 
students’ responses to the first question and students’ spontaneous responses during the discussion. The 
response of Students 1 led Elif to hold a discussion on the linearity of variables in the context of time 
and distance. During the post-interview based on the first task, Elif stated that she had not expected such 
an example as time and speed instead of time and distance; hence, she was confused.  

Elif channeled students towards considering the one possible correct example that as time increased, 
distance also increased in the condition when speed was constant. Thus, this might indicate that she 
acknowledged the opinion of Student 1 regarding the ‘linear relationship between the average speed 
(speaking of two constant speeds) and time’, but it was ignored, perhaps because Elif did not understand 
the student’s idea and its relationship with linearity or she was challenged in elaborating the 
misconception. During the discussion, despite Elif’s directions, some students responded to the question 
by saying that the relationship between the time and speed was linear. She did not attend to those 
responses either, and she stated in the post-interview that her focus was solely placed on receiving 
distance versus time as a correct answer from the students. In this regard, it could be inferred that Elif 
focused on receiving the same answer that was on her own mind and was not open to any other alternative 
response.  
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Linearity: Graphs  

The second contingency and Elif’s response to it was as follows: 

Student 1:     [The line in] the graph must pass through the origin. Right? 

Elif:              No, it is wrong, in our examples there can be a starting point. 

Student 1:     How? 

This unanticipated situation was related to the student’s tendency to create a graph with a line passing 
through the origin for linearity. The teacher addressed the student’s unexpected opinion by correcting it. 
However, the opinion was not discussed by using any representations. She presented the reasons for her 
action during the post-interview by saying she did not how to combine the situation with their graphs, 
and thus, judged the idea as being unworthy for discussion in the class. The changes in the first task 
recommended by Elif are presented under the next heading. 

Perceptions on Modifying the Task 

Two contingent moments and Elif’s reactions to those moments have been described above. During the 
post- interview, Elif suggested changes in the properties of the task, in its the sequence, and the time 
allocated for the task, as can be observed in the following conversation:  

     Interviewer:    If you had the chance to apply these tasks, how would you deal with that response?  

Elif:                 The task: “Consider that a bus arrives at each station at each station at exactly the same 
time duration and the distance between each station is the same. Explain the 
relationship among the variables (distance, time and speed) in this situation”. Then “If 
my speed or distance is not zero at the beginning, could we speak of similar 
relationships among the determined variables? Justify your examples by drawing 
graphs [of the quantities]”.  

As can be understood from the above conversation, the teacher had to ask follow-up questions to get 
students to consider the situation. Moreover, she had to focus on representation of the variables 
graphically.  Moreover, Elif underlined the fact that the first and the second tasks, which were at the level 
of ‘memorizations’ and ‘procedures without connection’, respectively, could be merged, and there was 
no need to have students do the second task since the concepts of time, speed and distance were great a 
opportunity for discussion. By integrating the contingent moments and the properties of tasks with a high 
cognitive demand level, the teacher wanted to redesign the task requiring a higher level of cognitive 
effort and students to use representations.  With the assistance of the guide, she critiqued her tasks based 
on whether the revised version was coherent with respect to the properties of the tasks with a high level 
of cognitive demand and different from the properties of the ones with a low level of cognitive demand. 
For instance, she believed that she expected students to become aware of the meaning of the linear 
relationship in the context by leading them to use appropriate representations instead of giving them an 
algorithm or memorized facts (the definition of linear relationship). Thus, the task was coded as one with 
a higher-level demand. 
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Discussion 

The present study yielded the emergence of two contingent moments associated with trigger type 1: 
responding to students’ ideas, proposed by Rowland et al. (2015). The moments were related to students’ 
incorrect examples for linearity that stemmed from their misinterpretation of the degree of change and 
students’ tendency to sketch graphs of variables having linear relationships with a line passing through 
the origin. During the pre-interview, Elif did not mention these students’ possible opinions since she 
believed that low level tasks required limited cognitive demand and were solved by means of utilizing 
procedures, and she expected the students to give the definition of linear relationships as the correct 
answer. As the students presented different ideas related to linearity during the implementation of the 
task, the teacher was not able to effectively monitor and reflect different student ideas.  Hence it could 
be stated that she had a perception that cognitive demand of a selected task did not change during the 
enactment of the task. 

The findings related to the teacher’s response to these unanticipated moments revealed that Elif became 
engaged in some of the students’ unexpected answers, but she directed students to think only of the time 
versus distance example. In addition, during the classroom discussion, Elif did not attend to students’ 
ideas; however, focusing on these ideas could have resulted in students’ conceptual understanding of the 
mathematical idea (linearity). Combining this finding with the claim that the nature of teaching in real 
settings is dynamic and complex, we concluded that as a novice teacher, she was incapable in handling 
these moments occurring in the classroom (Foster, Wake & Swan, 2014) and could not make use of the 
opportunity of the unanticipated instances. For this reason, it could be maintained that she might have an 
answer-oriented approach that teachers rely on short recall questions and leading questions to guide 
students to the solely correct answers (Moyer & Milewicz, 2002) although she tried to increase the 
cognitive demand of the task by drawing the graphs.  It could be claimed that her mathematics knowledge 
for teaching, a crucial factor for task implementation (Stein, et al, 2000), was weak since she could not 
give meaning to mathematical procedures (e.g. Charalambolous, 2010). 

Although Elif was not able to orchestrate the discussion and she lacked in responding to unanticipated 
moments occurring during her teaching, she emphasized a need to change the nature and structure of the 
task addressing the second research question. In other words, these moments presented an opportunity 
for her to become aware of the different ways of student thinking that is concerned with proactive facet 
of contingent knowledge. Hence, it could be deduced that Elif benefitted from her experience (Rowland, 
Thwaites, Jared 2015). Moreover, the guide for task classifications was beneficial for redesigning the 
task for further teaching. Besides, the paper particularly provided insight into the fact that contingent 
moments triggered preservice teachers towards improving their low-level tasks and reconsider the 
sequences of the tasks, and this may, in turn, enhance their knowledge of mathematical tasks. In the light 
of the study, it could be claimed that more exposure to contingency moments through video clips by 
knowing the classifications of the mathematics tasks within the scope of the teaching practice courses 
can prepare pre-service teachers to actual classroom environments. In conclusion, the study contributed 
to the literature with information regarding the impact of contingent moments on the implementation of 
low-level tasks. However, analyzing data of merely two low level tasks and basing the study on the 
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reflections of one pre-service teacher could be regarded as the limitations for the study. Hence, further 
studies are needed to portray the relationship between unanticipated student responses and the ways that 
pre-service teachers achieve high cognitively level tasks.  
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This paper reports the use of the Knowledge Quartet as a tool for analysing mathematical knowledge 
in teaching arising in interviews with four secondary mathematics teachers based around a pre-
configured GeoGebra file involving circle theorems. This research was part of larger doctoral study, 
where the Knowledge Quartet was chosen as a means of providing a fine-grained analysis focusing 
on mathematical knowledge in teaching. The sub-codes of the Knowledge Quartet were originally 
grounded in classroom observation and have been rarely exemplified through situations involving 
teachers use of technology. A tension is identified in applying the Knowledge Quartet to an interview 
situation involving technology centring around the sub-code ‘adherence to textbook’, with wider 
implications for how the framework is applied to situations involving teachers’ use of (technological) 
tools. 

Keywords: Knowledge Quartet, teacher knowledge, technology.  

Introduction 
Using digital technologies, such as the dynamic software package GeoGebra, can place significant 
demands on teachers’ mathematical knowledge (Laborde, 2001) and hence provide opportunities for 
making such knowledge visible and available for exploration. The research reported in this paper 
forms part of a larger doctoral study investigating mathematical knowledge in teaching using 
technology. The Knowledge Quartet (Rowland et al., 2005) is a widely used and influential 
framework for analysing mathematical knowledge in teaching, (see previous TWG20). The 
framework is composed of four supra-categories Foundation, Transformation, Connection and 
Contingency, generated by grouping 18 sub-codes representing prototypical classroom situations 
where mathematical knowledge for teaching is called upon, derived from analysis of classroom 
observations. The strengths of the Knowledge Quartet, in terms of this study, lie in the framework’s 
focus on mathematical knowledge for teaching and the grounding of its codes in classroom 
observation, thereby maintaining strong face and content validity. For these reasons, the Knowledge 
Quartet was chosen as a means of providing a fine-grained analysis focusing on mathematical 
knowledge in teaching, as opposed to technology-focused frameworks such as the Technology 
Pedagogy and Content Knowledge (TPACK) framework (Mishra & Koehler, 2009). In addition, 
research on the importance of variation to structure sense-making (Marton & Booth, 1997; Watson 
& Mason, 2006) suggests the code choice and use of examples (Transformation) may be advantageous 
as a tool for analysing mathematical knowledge for teaching using technology in the context of the 
semi-structured GeoGebra interviews, since dynamic variation is central to such software (Leung & 
Lee, 2013).  

The sub-codes of the Knowledge Quartet have rarely been exemplified through situations involving 
teachers use of technology. One such instance of a situation involving teachers’ use of technology 
resulted in the addition of a new sub-code responding to the (un)availability of tools and resources 
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to the Contingency category of the Knowledge Quartet (Rowland et al., 2015). Hence extending the 
use of the Knowledge Quartet to analyse situations beyond its original evidence-base may provoke 
further refinement of the framework. This paper seeks to address the following research question: 

What tensions are exposed in using the Knowledge Quartet as a tool for analysing the mathematical 
knowledge in teaching arising in interviews based on a GeoGebra file involving circle theorems? 

This paper also relates to a broader concern in TWG20 in CERME11 (e.g. Montes et al. (2019, 
February); Codes et al. (2019, February)) of investigating how tasks, in this case manipulating a 
GeoGebra file on circle theorems, can be used to explore, support and develop mathematics teachers’ 
knowledge and what the implications for teacher education may be. The next section provides the 
theoretical background underpinning the study, by first setting out an overarching perspective of 
teachers’ knowledge being distributed (Hutchins, 1995) e.g. across tools and then describing the 
Knowledge Quartet in more detail. In the following sections, analysis of interview data reveals a 
tension in applying the Knowledge Quartet, centring around the sub-code adherence to textbook, with 
wider implications for how the framework is applied to situations involving teachers’ use of 
(technological) tools. 

Background 
Hutchins (1995) argues that conceptualising cognition as distributed assumes that cognition is not 
only a property of an individual person, but also occurs through human interaction with artefacts and 
other humans. In particular, he argues that cognition partially resides in tools – taken to mean any 
artefact appropriated for use by humans - since they incorporate in their construction the results of 
past cognitive efforts. Hutchins’ (1995) view of distributed cognition provides a means of 
investigating how individual teachers’ knowledge is involved in a participatory relationship with 
technology. In this study, the terms readerly and writerly response (Bowe, Ball, & Gold, 1992, 
drawing on the work of Barthes) are introduced to indicate how and to what extent knowledge is 
distributed (Hutchins, 1995) across teacher and technology. A readerly response indicates an 
uncritical acceptance by the teacher of a (technological) tool for mathematics teaching. By contrast, 
a writerly response entails recognition that the design of such a tool is open to critique and potential 
modification. Departing from their original meaning, that writerly texts invite the reader to participate 
in meaning-making and are therefore in a sense superior to readerly texts that make no such demands, 
the use of these terms in this study takes a less normative view. Instead, a readerly/writerly response 
indicates the role of individual teachers’ knowledge in interacting with technology to produce 
mathematical knowledge made available in the classroom – or more pertinently, in the case of this 
study, in the interview. A readerly response suggests that the mathematical knowledge made available 
through this interaction is more dependent, i.e. more distributed, upon the technology, whereas a 
writerly response indicates that it is less so. 

For the purposes of this study, the Knowledge Quartet provides a means of focusing on and analysing 
individual teachers’ own knowledge in relation to using technology to teach mathematics i.e. within 
the participatory relationship with technology. The Knowledge Quartet emerged from research aimed 
at developing an empirically-based conceptual framework to guide lesson review discussions 
between teacher-mentor and student-teacher in the practicum placement of the Postgraduate 
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Certificate in Education course in the UK (Rowland et al., 2005). The purpose of developing such a 
framework was to focus these discussions on the mathematical content of the lesson under review. 
The Knowledge Quartet was initially developed from 24 lesson observations of student teachers, 
training to teach at primary level. These observations generated 18 codes relating to the student 
teachers’ classroom actions that appeared significant in the sense that they were informed by the 
trainee’s mathematical knowledge for teaching. The codes were then grouped into four super-ordinate 
categories, named Foundation, Transformation, Connection and Contingency. The foundation 
category consists of propositional knowledge of mathematical concepts and the relationships between 
them and of significant research findings regarding the teaching and learning of mathematics 
(Rowland et al., 2005). The second category of transformation refers to knowledge-in-action, 
concerning the ways that teachers make what they know accessible to learners: this category focuses 
in particular on their choice and use of representations and examples (Rowland et al., 2005). 
Connection also refers to knowledge-in-action, regarding the manner in which the teacher makes 
connections between different concepts, representations and procedures; and decisions about 
sequencing e.g. of topics. Contingency concerns the teacher’s ability to ‘think on one’s feet’, to 
provide an appropriate response to unanticipated pupil contributions, and also notable ‘in-flight’ 
teacher insights (Thwaites, Jared, & Rowland, 2011). While there are clearly no pupils to provoke 
contingencies in an interview context, technology can be a source of disruption to teachers’ 
mathematical knowledge (Laborde, 2001). Indeed, in this study, contingent moments did arise 
through teachers’ use of the GeoGebra file, however these are not the focus of this paper. The 
Knowledge Quartet has subsequently been examined in classrooms at secondary level (Thwaites et 
al., 2011) and in classrooms outside the UK, specifically in Ireland and Cyprus (Turner & Rowland, 
2011), resulting in the addition of new codes and alteration of some of the original codes. Although 
Rowland et al (2005, p. 260) make use of an acquisition metaphor, implying individualist assumptions 
about knowledge by describing their foundation category as being about “knowledge possessed”, 
Turner and Rowland (2011, footnote on p. 200) suggest that “this ‘fount’ of knowledge can also be 
envisaged and accommodated within more distributed accounts of knowledge resources”. Hence the 
framework may be compatible with an account of teachers’ knowledge as distributed e.g. across 
(technological) tools. 

Methodology 
Four teachers were selected from a group of English mathematics teachers who took part in a survey 
of secondary school mathematics teachers’ use of ICT (n=183) and who further agreed to be contacted 
as case study teachers (Bretscher, 2011; 2014). The four case study teachers, Robert, Michael, Edward 
and Anne, were chosen along two dimensions of variation likely to be associated with mathematical 
knowledge for teaching using technology, based on their responses to survey items. Firstly, the case 
study teachers were chosen to be two of the most student-centred (Robert, Anne) and two of the most 
teacher-centred (Michael, Edward) in their approach to mathematics teaching in general (not limited 
to ICT use) of those who volunteered. Secondly, two teachers were chosen to be from schools with a 
high level of support for ICT (Robert, Michael) and two with a low level of ICT support (Anne, 
Michael). In addition, the four case study teachers had described themselves as being confident with 
ICT. As technology enthusiasts, the case study teachers were likely to display mathematical 
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knowledge for teaching using technology; the variation in case selection aimed to highlight such 
knowledge – making it more ‘visible’. 

Semi-structured interviews based around a GeoGebra file on circle theorems provided a common 
situation across which the case study teachers’ use of technology for teaching mathematics could be 
contrasted. The case study teachers were prompted to show and discuss how they would use a diagram 
presented in the GeoGebra file (see Figure 1) to demonstrate the angle at the centre theorem to their 
pupils. Circle theorems were chosen since it is a topic, in the English mathematics curriculum, which 
is commonly identified with the use of dynamic geometry software (Ruthven et al., 2008). It was 
therefore reasonable to assume that the case study teachers would be familiar with technological 
resources similar to the diagrams presented in the GeoGebra file and might even have previously used 
such resources in their own teaching. Thus they would be likely to have some mathematical 
knowledge for teaching circle theorems using the GeoGebra file, even if they were unfamiliar with 
the particular software. In addition, the topic of circle theorems is at the apex of geometry in the 
compulsory English mathematics curriculum, since it is typically where proof is introduced. Hence it 
provided a potentially challenging context even for experienced teachers who were both 
mathematically and technologically confident.  

The GeoGebra file comprised three diagrams, all initially arranged in an ‘arrowhead’ configuration, 
relating to the circle theorem stating that angle at the centre of the circle, subtended by an arc, is 
double the angle at the circumference subtended by the same arc. The GeoGebra file also incorporated 
some text, setting the task of manipulating the diagrams in the pedagogical context of planning how 
to introduce pupils to this circle theorem based on a demonstration using these diagrams. In this paper, 
the analysis presented below focuses on the teachers’ discussion of the first diagram (D1) only which 
was designed to be similar to resources found on a web-search. Thus the case study teachers were 
likely to have at least some familiarity with a dynamic diagram like D1 and possibly have even used 
something similar in their own lessons. 

  
Figure 1 Diagram 1 (D1) in the GeoGebra interview file on circle theorems  

Before opening the GeoGebra file on circle theorems, the case study teachers were asked to practise 
‘thinking-aloud’ whilst manipulating a GeoGebra file contrasting two constructions of a square. The 
semi-structuring of the interview allowed the author some flexibility to respond to events during the 
interview, whilst maintaining an overall structure that would allow for and facilitate comparison. The 
GeoGebra interviews generally took place in a mathematics classroom at the case study teacher’s 
school that was not being used for teaching at that time. The author’s laptop with mouse attached was 
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arranged on a desk so that both the author and the case study teacher could comfortably see the screen 
and use the mouse to manipulate D1, enabling collaboration on the task. Both the visual and audio 
aspects of the GeoGebra interviews were recorded on the author’s laptop.  

Results and analysis 
Adhering to the starting configuration  

Robert was the only case study teacher to consider modifying the starting configuration of D1 to suit 
his own pedagogical requirements. He suggested he might alter D1 so that the initial numerical 
example displayed when opening the GeoGebra file would be an almost implausibly ‘nice’ pair of 
numbers, setting the angle at the circumference to 60 degrees and the angle at the centre to 120 
degrees as an example.  

Robert:   I’d probably I’d have it so when it [D1] came up I’d probably have it set up with I 
guess fairly nice numbers [drags D1 so angle CBD=60; CAD= 120] that they should 
be able to spot quite easily and I’d probably ask them what the relationship is. And 
then before dragging this point I’d probably you know I’d probably have it set up 
so that maybe it looks a bit well this is a kind of this is a nice symmetrical, that’s 
horizontal, they almost look vertical you know. And so I’d probably ask them well 
what happens if I move this over here? Is it going to get bigger? Is it going to get 
smaller? 

Interviewer, I: Can you show me? 

Robert:   So I probably would be, if this was an interactive whiteboard I’d be hovering over 
this and not actually touching it and saying I’m going to drag this this way. What’s 
going to happen? And I’d probably try to lead them into, I probably wouldn’t give 
them the option of it staying the same. I’d probably ask them is it going to get bigger 
or going to get smaller? To I guess when they see that it does stay the same to 
provide a bit of conflict there. And then I’d drag it and we’d drag it all the way 
around here and show that it never changes. [Rob-GGb-int, 13.6.2012] 

His intention was to set up a situation that appeared ‘too good to be true’ so that pupils would assume 
no relationship was likely to exist and would therefore sustain cognitive conflict when the angle at 
the circumference remained invariant under drag, hopefully making the result more memorable. The 
other three case study teachers uncritically accepted the starting configuration, questioning neither 
the numerical example nor the geometric configuration. For example, Edward explained how he 
would begin using the diagram, without making reference to the starting position: 

Edward:  What I’d start with is look, just move B between C and D but don’t cross it and 
move D just so it doesn’t go further round than CD being a diameter. [Ed-GGb- int, 
20.6.2012] 

The geometric nature of the starting configuration, in particular, is important since it provides an 
implicit pedagogic structuring. For example, opening the GeoGebra file so that D1 initially displays 
an ‘arrowhead’ configuration implies a choice and use of examples and a decision about sequencing 
that alternative configurations will occur as a consequence of the arrowhead configuration, potentially 
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reinforcing the impression of the arrowhead as the standard configuration of the angle at the centre 
theorem. An alternative would be to open the GeoGebra file so that D1 initially displays the convex 
quadrilateral configuration as a means of challenging this apparent orthodoxy. In addition, the starting 
configuration tends to impose decisions about sequencing, since some configurations are more 
difficult to obtain depending on whether they require dragging point B, C or D only or a combination 
of these points.  

The case study teachers’ adherence to or modification of the starting configuration appears to coincide 
with the meaning of the code adherence to textbook, in the Foundation category of the Knowledge 
Quartet, in the sense that it describes a situation involving mathematical knowledge for teaching 
where a teacher decides either to adhere to or to modify the pedagogic structuring of mathematics by 
a teaching resource. The teacher’s decision, implicit or explicit, regarding the pedagogic structure of 
the teaching resource provides an indicator of foundational knowledge. An implicit (i.e. uncritical) 
adherence to the pedagogic structure of the teaching resource implies a negative reading of the code. 
Thus Anne, Edward and Michael’s uncritical acceptance of the starting configuration suggests they 
lack foundational knowledge that the starting configuration of D1 might be (usefully or otherwise) 
critiqued in terms of the pedagogic structuring it provides. Hence they make a readerly response to 
D1 (Bowe et al., 1992). Nevertheless, a readerly response might apparently result in a positive choice 
and use of examples say, if the pedagogic structuring of the resource was sound. Thus, confusingly, 
a readerly response could also be interpreted as a positive example of the code adherence to textbook.  

A writerly response (Bowe et al., 1992) to D1 would entail a recognition that the starting configuration 
of D1 might be critiqued in terms of the pedagogic structuring it provides, resulting in an explicit 
decision either to adhere to or to modify the pedagogic structuring of the teaching resource. This 
suggests a positive reading of the code adherence to textbook. Indeed, an explicit decision to adhere 
to the pedagogic structuring of the teaching resource would be a positive example of the code 
adherence to textbook if the pedagogic structuring of the resource were sound. On the other hand, 
such a decision could also be interpreted as a negative example of the code if the pedagogic 
structuring turned out to be flawed in some way. An explicit decision to modify the pedagogic 
structuring of the teaching resource which resulted in improvement, would again indicate a positive 
example of adherence to textbook – this latter is also dealt with by the new code use of instructional 
materials under the Transformation category introduced by Petrou and Goulding (2011). However, 
Robert’s decision to modify the starting configuration could be interpreted as a deterioration in the 
pedagogic quality of the initial choice of example: it is geometrically too close to being symmetric 
and the numbers are exceptional. Thus Robert’s modification could be interpreted both as a positive 
and negative instance of the code adherence to textbook under Foundation and a negative example of 
use of instructional materials. This analysis is rather cumbersome and symptomatic of the Knowledge 
Quartet’s relative lack of focus on knowledge in relation to teaching resources in general.  

Finally, there is a slight discordancy in using this code to describe the case study teachers’ adherence 
to or modification of the starting configuration, since the code specifically refers to a textbook and 
not a digital resource such as the GeoGebra file on circle theorems. The specificity of the adherence 
to textbook code derives from the non-digital technology context in which it was grounded. The 
discordancy may be ameliorated by a minor alteration to the code, so that it refers to a more generic 

Thematic Working Group 20

Proceedings of CERME11 3860



 

 

teaching resource as in use of instructional materials (Transformation) or responding to the 
(un)availability of tools and resources (Contingency).  

Discussion 
The analysis presented in the previous section shows that the Knowledge Quartet remained a useful 
tool for focusing analysis on mathematical knowledge despite the shift away from the classroom 
context in which the framework was originally developed and grounded. This finding is not entirely 
surprising since although the classroom is a particularly important context, it is not the only context 
in which teachers are likely to employ their mathematical knowledge for teaching.  

In addition, the analysis of the GeoGebra interview data suggested some minor modifications to the 
Knowledge Quartet, in relation to technology context, that might prove useful when re-applied back 
to the original classroom setting or to other settings where teachers employ their mathematical 
knowledge for teaching. The cumbersome analysis of situations involving the code adherence to 
textbook is symptomatic of the Knowledge Quartet’s lack of focus on knowledge in relation to 
(digital) technology. The difficulty with this code is that it categorises situations involving the 
application of foundational knowledge both in perceiving the technology as something requiring a 
pedagogic critique and in terms of the quality of the critique applied to the teaching resource. The 
former relates to the teachers’ foundational knowledge in adopting a readerly or writerly approach to 
the resource (Bowe et al., 1992). The latter is also dealt with under the Transformation category, 
specifically the code use of instructional materials, which additionally reflects back onto the teachers’ 
foundational knowledge indicated by the quality of the pedagogic critique applied to transform the 
resource for the purpose of teaching. There is no easy way to ameliorate this difficulty within the 
Knowledge Quartet, however, adherence to textbook could be modified to reflect a broader range of 
teaching resources rather than privileging this paper-based technology. Furthermore, as a result of 
new codes added by a range of researchers, the codes of the Knowledge Quartet use an impromptu 
variety of terms to refer to teaching resources including textbook, instructional materials, tools and 
resources. The variety of terms is not intended to make any productive distinctions, as far as I am 
aware, thus it might simplify and improve the coherence of the Knowledge Quartet to settle on a 
particular term or group of terms to refer to teaching technologies. Finally, the analysis above 
provides an exemplification of the Knowledge Quartet in relation to digital technologies, albeit not 
in a classroom context. This exemplification might be useful in helping teachers to use the Knowledge 
Quartet as a tool for professional development in relation to their use of technology, as described in 
Turner and Rowland (2011). 
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This paper discusses the nature of the knowledge disseminated by the Brazilian public policy 
PROFMAT for training teachers on natural numbers, based on the analysis of one of the textbooks 
that outline the formative activities developed in this program. This discussion was structured and 
developed from a conceptual and analytical model of the mathematical knowledge of teachers- 
Mathematics Teacher's Specialized Knowledge (MTSK). The analyses and discussions developed 
suggest that this public policy favors only part of the knowledge taken by the literature as essential 
for the practice of the mathematics teacher in the school. 
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Introduction 
Educational policies are configured as sources pertinent to the investigative processes that seek to 
identify the specificities of the teacher's knowledge (Stylianides & Ball, 2004), since they 
demonstrate the response produced by the government bodies to an issue that permeates the 
educational discussions related with what teachers need to know in order to teach mathematics 
adequately (Ball, Lubienski, & Mewborn, 2001). 

Thus, the object of discussion of this article is a Master's Program in Mathematics (PROFMAT), 
aimed at the continuous training of mathematics teachers (lower and upper secondary), developed in 
all Brazilian states and financed by the country's government – assuming the character of Public 
Policy. According to the official documents, such a Program aims to provide in-depth and relevant 
mathematical training for teaching in Basic Education, seeking to give teachers a certified 
qualification for the mathematics teacher profession (Bsm, 2017). 

The role played by the mathematical knowledge of teachers to improve the quality of learning 
opportunities justifies, at least in part, the growing focus of research on teachers' mathematical 
knowledge (Stylianides & Stylianides, 2014). This knowledge has been widely studied and, from 
different points of view, diverse conceptualizations of teacher knowledge have emerged (e.g., 
Knowledge Quartet - Rowland & Turner, 2007, MKT - Ball, Thames & Phelps, 2008; COACTIV – 
Kleickmann et al., 2015; MfT-Stylianides & Stylianides, 2014; MTSK-Carrillo et al., 2018). In this 
text, we focus on the Mathematics Teacher's Specialized Knowledge - MTSK conceptualization 
(Carrillo et al., 2018) as the analytical model of this type of knowledge. Thus, we will support the 
MTSK to discuss teacher training developed within the scope of PROFMAT, seeking to answer the 
following question: what knowledge about Natural Numbers and their teaching are presented (and 
not presented) in the textbook that guides a part of the training developed in PROFMAT? 
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Theoretical framework 
The MTSK is an analytical model that assumes that the professional practice of the math teacher 
requires a set of specific knowledge strictly related to the teaching of mathematics. This includes the 
meanings, properties and definitions of particular topics, means that favor the construction of the 
understanding of the subject, connections between mathematical items, knowledge of mathematics 
teaching and characteristics associated with learning mathematics, among others (Carrillo et al., 
2018). In this sense, the MTSK model (Figure 1) considers three subdomains in Mathematical 
Knowledge (MK) and three in Pedagogical Content Knowledge (PCK). In this way, MK is subdivided 
into: Knowledge of Topics (KoT), Knowledge of the Structure of Mathematics (KSM) and 
Knowledge of the Practice of Mathematics (KPM), while PCK is subdivided into: Knowledge of 
Mathematics Teaching ), Knowledge of Features of Learning Mathematics (KFLM) and Knowledge 
of Mathematics Learning Standards (KMLS). 

 
Figure 1: Sub-domains of the MTSK  

(Carrillo et al., 2018) 
The KoT includes phenomenological aspects, meanings of specific concepts and examples that 
characterize specific aspects of the topic addressed, aside from contemplating the disciplinary content 
of the mathematics addressed by textbooks and other materials of a pedagogical nature. KSM refers 
to the understanding that the knowledge of teachers, besides including concepts as isolated elements, 
must integrate them into a system of connections, which allows the teacher to understand certain 
advanced concepts from an elementary perspective and develop certain concepts from an advanced 
perspective. 

KPM covers aspects related to mathematical thinking, such as knowledge of the different ways of 
defining, arguing or proving in mathematics, as well as knowledge of mathematical syntax. The 
teaching action involves the knowledge of how this teaching can and should be developed, so the 
KMT contemplates knowledge as knowing different teaching strategies that allow the teacher to foster 
the development of procedural and conceptual mathematical capacities. In the same way, this 
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subdomain predicts that the teacher needs to know examples that awaken the intuition in the student 
about some concepts, as well as resources that allow the teacher to induce his students to learn, 
through manipulation, certain mathematical concepts. Knowing how students learn mathematical 
content is knowledge that every teacher should possess. Thus, KFLM encompasses the knowledge of 
the characteristics of the process of understanding the different contents by the students, the errors, 
difficulties and obstacles associated with each concept and the language used by students in relation 
to the concept worked in the classroom. The KMLS refers especially to the teacher’s knowledge of 
the curriculum adopted by the institution in all stages / levels of education. This knowledge can be 
complemented with information present in the productions originating from research in the area of 
mathematics education, with information provided by experienced teachers about the expected 
learning in each stage (For further deepening and detailing the subdomains see Carrillo et al. 2013, 
Flores-Medrano et al., 2016 , Carrillo et al. 2017). 

The context of the study: The PROFMAT 
PROFMAT is a teacher training program promoted by the Brazilian Federal Government and 
developed in partnership with 96 higher education institutions (universities and colleges) that train 
teachers of mathematics (lower and upper secondary), organized in the format of professional 
masters. This program has a length of 2 years and is basically composed of a list of 9 subjects, each 
with a 120-hour workload. Of these, 7 of them are considered as manditory and titled "Real Numbers 
and Functions", "Discrete Mathematics", "Arithmetic", "Geometry", "Problem Solving", "Calculus 
Fundamentals" and "Analytical Geometry". The "elective" disciplines can be chosen by students from 
the following list: Topics of Mathematics History; Topics of Number Theory; Introduction to Linear 
Algebra; Differential and Integral Calculus Topics; Mathematics and Actuality I; Mathematical 
Modeling; Algebraic Polynomials and Equations; Spatial Geometry; Topics of Mathematics; 
Probability and Statistics; Educational Evaluation; Numerical Calculation; Mathematics and 
Actuality II. The final course work refers to the production, by the academic under the guidance of a 
university professor, of a product/work that can be presented in different formats (dissertation, 
literature review, article, patent, applications, teaching and instructional materials , media programs) 
and that addresses topics relevant to the Mathematics curriculum of Basic Education and promotes 
the impact on didactic practices in the classroom. 

These disciplines are based on the collection of textbooks entitled "PROFMAT Collection", whose 
elaboration is the responsibility of mathematicians, and each discipline is based on a textbook from 
the collection, which is adopted by all 96 institutions where PROFMAT is developed. 

Here we focus on analyzing and discussing one of the elements that make up the teacher training 
process developed in the scope of PROFMAT from the analytical model MTSK. However, the 
analyzes presented here are part of a project that has analyzed a multiplicity of elements of the 
PROFMAT: policy texts, textbooks that guide the training activities; class episodes; and PROFMAT 
academic productions (answers to questionnaires, works, etc.). 

In this analysis, we classify all the contents that compose the textbooks (definitions, axioms, theorems 
and demonstrations, properties, activities, exercises, explanations, etc.), from the subdomains of the 
MTSK framework, with the objective of identifying the presence and absence of knowledge related 
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to the teacher's practice in mathematics teaching, as proposed by Carrillo and contributors (Carrillo 
et al., 2013, Flores-Medrano et al., 2016, Carrillo et al., 2017, Carrillo et al., 2018).  

It is highlighted in this scenario that, through the following discussion presented, we will seek to note 
indications of the nature of the knowledge disseminated by PROFMAT, since the knowledge 
produced from a textbook depends on the manipulation that is made of this didactic material, 
particularly, the manipulation developed by the teacher who uses it. 

Due to limitations of space, we focus here on two chapters of one of the textbooks used in PROFMAT 
called "real numbers and functions" (which describes the work developed in the mandatory subject 
that has the same name). We chose to analyze this textbook because it guides the teaching activities 
of one of the four compulsory subjects developed during the course of the PROFMAT, besides 
addressing mathematical themes that permeate themes also common to the school curriculum, such 
as numerical sets and functions (NCTM, 2000). In this analysis, we will focus on "Natural Numbers" 
and for the analysis, we use MTSK as a theoretical lens as a way of discussing the nature and focus 
of such a course. With this, in the sequence, we will present some representative examples of the 
analyzes that we developed.  

Analysis and discussion 
The textbook "Real Numbers and Functions" (Lima, 2013) is structured from the following sequence 
of themes (chapters): Sets; Natural Numbers; Cardinal Numbers; Real Numbers; Related Functions; 
Quadratic Functions; Polynomial Functions; Exponential and Logarithmic Functions; Trigonometric 
Functions. This organization is justified by the author, who states "Mathematics deals primarily with 
numbers and space. Therefore, the sets most frequently found in Mathematics are numerical sets, 
geometric figures (which are sets of points) and the sets that derive from them, such as the function 
sets, those of matrices" (Lima, 2013, pp. 02). This structure presents opportunities for the 
development of MK, in particular KSM, by teachers in training, since it favors the (potential) 
development of connections between the numerical sets and functions that establish relations between 
subsets of R. 

The chapter "Natural Numbers" is initiated by the author with a description of the meaning of the 
term "numbers" as being "abstract entities, developed by man as models that allow to count and 
measure, therefore to evaluate the different quantities of a magnitude" (Lima, 2013, pp. 22). 
"Mathematical definition" is described as "a convention consisting of using a name, or a brief 
sentence, to designate an object or property, the description of which would normally require the use 
of a longer sentence" (Lima, 2013, pp. 23), axiom and primitive concept. These descriptions can be 
associated with MTSK by means of KPM, as it returns to the fundamentals associated with 
mathematical proceedings. 

The author also presents a description of the axiomatic method and in relating it to the school argues 
that "[...] it is not appropriate to present Mathematics in an axiomatic form. But it is necessary for the 
teacher to know it can be organized in the manner outlined above "(Lima, 2013, pp. 23). As this 
fragment shows, the author argues that it is necessary for the teacher to know that mathematics can 
be organized in the axiomatic form (KPM), but it does not elucidate, for example, why it is necessary 
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for the teacher to know this form of mathematical exposition (KoT), nor "how" (KMT) and "when" 
(KMLS) this method would aid in the teaching of mathematics. 

Lima (2013, pp. 26) links natural numbers to historical aspects (potential indications of KPM) by 
saying that "Slowly, to the measure that it has become civilized, mankind has taken over this abstract 
model of counting (one, two, three , four, ...) which are the natural numbers ". The author also argues 
that, currently, the set of natural numbers can be described as "concise" and "precise" by Peano's 
theory, which states that "N is a set, whose elements are called natural numbers. The essence of the 
characterization of N lies in the word "successor" (if n, n`∈ N, then n` is the successor of n means 
that n` comes soon after n, there being no other natural numbers between n and n`), which is 
considered a primitive concept because it is not explicitly defined. The author then mentions that 
"everything" about natural numbers "can be demonstrated" from Peano Axioms1. 

According to Lima (2013, pp. 27), "an ingenious process, called a decimal number system, allows us 
to represent all natural numbers with the help of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. In addition, 
the first natural numbers have names: the successor of number one is called two, the successor of two 
is called three, etc. " This presentation of decimal numbering systems can be linked to KoT (knowing 
the set) on the one hand, and on the other, to KPM (knowing the role of the successor and the 
associated mathematical structure – e.g., continuity, density). Meanwhile, the author avoided 
discussing, for example, the different aspects of the mathematical knowledge underlying the 
construction and use of the decimal system (KoT), such as the notion of grouping, the language 
involved in the reading of numbers and the idea of positional value (KoT; KPM). In this case, it is 
important to highlight the lost opportunity for elaborating some discussions on, for example, the 
resources and examples in and for teaching such topic (KMT), concerning the students' difficulties 
(KMLM) and the content of the official documents (KMLS). 

Lima (2013, pp. 27) then argues that the set N = {1, 2, 3, ...} is a "sequence of abstract objects that 
are, in principle, empty of meaning" and that "each of these objects has only one place determined in 
this sequence ". Since "Every number has a (single) successor and, with the exception of 1, it also has 
a single predecessor. Viewed in this way, we can say that natural numbers are ordinal numbers: 1 is 
the first, 2 is the second, etc. ". In this fragment, Lima presents a powerful scenario for an exploratory 
work of KoT (when discussing the definition of natural numbers); however, although the author 
recognizes that the objects of the sequence of natural numbers are abstract and are in principle empty 
of meaning, he does not discuss, for example, what the teacher's work could be in addressing this 
content in the school environment (PCK), in addition to the symbol of "..." being placed in the 
representation of the set of natural numbers, but without making any comment about the meaning of 
this symbol (KoT and KPM). Lima also does not present indicatives of "how" (KMT) and "when" 
(KMLS) Peano axioms could be addressed in math classes at school.  

                                                 
1 I) Every natural number has a single successor; II) Different natural numbers have different successors; III) There is a 
single natural number, called one and represented by the symbol 1, which is not a successor to any other; IV) X is a set 
of natural numbers (that is, X Ϲ N). If 1 ∈ X and if, in addition, the successor of every element of X still belongs to X, 
then X = N. 
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The author also defines the "fundamental" operations among natural numbers, and the addition of 
numbers n, p ∈ N corresponds with the sum "n + p" and multiplication associates the product "np" 
(Lima, 2013). It also re-elaborates them in such a way as to present the sum "n + p" as "the natural 
number that is obtained from applying n p times following the operation of taking the successor", so 
that "n + 1 is the successor of n, n + 2 is the successor of the successor of n, etc. "(Lima, 2013, pp. 
29) and presents, as an example, the addition of 2 + 2 = 4, where " 4 is the successor of the successor 
of 2". For the product and defined as n.1 = n and, when p ≠ 1, "np is the sum of p plots equal to n". 
In this context, it is argued that "until we know how to use natural numbers to make counts, there is 
no point in speaking in 'p times' and 'p plots'. Therefore, fundamental operations must be defined by 
induction" (Lima, 2013, pp. 29). In the following, Lima defines Addition and Multiplication by 
induction (KPM - from a level of knowing how to perform). However, the operations are not linked 
to the practices of mathematics teachers, which could have been done by discussing how these 
operations are approached in the school curriculum (KMLS), what kind of resources - and their 
intentionality - could be used to explore such operations with students (KMT) in order to understand 
what they do and why; and the students learning processes linked to understanding multiplication 
mainly as a solely repeated additions (KFLM). 

In addition, the author constructs the set of natural numbers and only two of their operations (addition 
and multiplication), omitting the definition of the operations of subtraction and division between 
natural numbers (KoT), which are also used by teachers in school. The author also does not link the 
definitions of addition and multiplication (and consequently of subtraction and division) to the 
algorithms commonly used by school materials (KMLS) and used in calculating these operations 
(KoT). Another relevant observation refers to the non-linking of this work with one of the main 
practices of the Mathematics teacher, to give meaning to the operations among the natural ones 
through problem situations and problem history (KMT). 

In addressing the Natural Numbers, Lima (2013) presents the order relationship between natural 
numbers in terms of addition ("Given m, n ∈ N, it is said that m is less than n, and we write m < n to 
mean that there is some p ∈ N in which n = m + p ") and presents the properties of Transitivity, 
Trichotomy, Monotonicity of Addition and Multiplication, and Good Ordination. This fragment 
highlights the potential of the work in the development of KoT and KPM. However, the author does 
not present any indication of discussions regarding PCK subdomains. 

In the thread of the work the author presents and demonstrates properties of N: Associative property 
of Addition, Commutative property of Addition, Distributive property, Commutative property of 
Multiplication, Cancellation Law for Addition, Transitive Order Relationship, Trichotomy, 
Monotonicity, Cancellation Law for Inequalities and the Principle of Good Ordination. Lima argues 
that the adoption of this approach was because it expresses "[...] some basic facts about natural 
numbers, which are used very often, most of the time without us stopping to ask how to prove them." 
He argues further that the "[...] objective is to show how such facts result from Peano  axioms. There 
is no creative reasoning or elaborate methods to prove them. In all demonstrations, the central role is 
played by the Induction Axiom"(Lima, 2013, pp. 31). 
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This approach of N properties again highlights the potential of the material in relation to the 
development of KoT and KPM. However, at no point in the work does the author present any 
discussion that may be associated with the development of PCK. For example the author does not 
discuss, whether these demonstrations are accessible to students of basic education, whether they 
need to be adapted (KMT) to become accessible to school students (KFLM) and in which years it is 
possible to use them (KMLS). 

Final comments 
The developed analyses of a textbook that guides the formative practice in a discipline of PROFMAT 
show indications of the nature of the knowledge disseminated through this public policy of continuous 
training of teachers that aims to impact the quality of the learning of Brazilian students. Thus, based 
on the MTSK, it was found that elements of MK are considerably favored, particularly those 
associated with properties and definitions (KoT) and mathematical practice (KPM), such as the forms 
of validation and demonstration and the use of formal language. On the other hand, this material 
presents very few indications of the presence of knowledge related to the PCK, such as those related 
to the characteristics of the teaching (KMT) and learning (KFLM) of Natural Numbers and how this 
content is included in the school curriculum (KMLS). 

The results presented provide us with indications that this public policy favors only part of the 
knowledge taken by the literature (Carrillo et al., 2013; Flores-Medrano et al., 2016; Carrillo et al., 
2017; Scheiner et al., 2017; Carrillo et al., 2018) as essential for the practice of the mathematics 
teacher in school. With this, it is possible to affirm that PROFMAT will not be able to fully achieve 
the objectives it proposes, which is to change the mathematical education of the country qualitatively 
and quantitatively, especially if we consider that the work developed in this program follows rigid 
evaluation standards that are guided by the textbooks (see Caldatto, 2015, Caldatto, Pavanello & 
Fiorentini, 2016). 
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This study concerns the knowledge of two prospective primary teachers about the mathematical 
practice of defining. Starting with their analysis of a video recording of a primary lesson on 
constructing a definition of a polygon, the trainees discussed what it means to define in mathematics. 
Through analysis of the content of this discussion, we identified what they considered to be the nature 
of this practice and the features they felt a good definition should embody. The findings demonstrate 
that students tend to consider demonstrations as the touchstone of mathematical practice, and that 
they do not consider the use of examples as a valid element of formal mathematics. At the same time, 
they recognize that definitions must meet the criteria of hierarchy and minimality but see no need for 
the criteria of existence and arbitrariness. 

Keywords: Teachers’ knowledge, mathematical practice, defining, student teacher. 

Introduction 
Defining is a common practice in mathematics classes at all levels but is something not always dealt 
with in all its facets: establishing the necessary and sufficient conditions of a concept, preferably the 
minimum necessary, using only previously defined concepts without utilising the word assigned to 
the concept in the definition itself (Zazkis & Leikin, 2008). 

What is more, definitions can be arbitrary, in the sense that concepts can be defined in different ways 
according to the particular aspect one wishes to foreground. This arbitrariness can disconcert students 
(Vinner, 1991), and it is the teacher's job to manage such uncomfortable facts of mathematical life 
and decide when his or her students are ready to meet them. 

Involving students in the process of defining promotes the construction of knowledge (Edwards & 
Ward, 2008; Leikin, Berman & Zaslavsky, 1998; Villiers, 1988). Regardless of whether the teacher 
decides to tackle certain aspects of defining (such as their arbitrariness) with their students at a 
particular moment, if he or she wants them to generate definitions for themselves rather than 
memorise given definitions, they will necessarily have to learn how to define in mathematics. Hence, 
achieving a certain depth of understanding regarding the meaning of the practice of defining, the 
characteristics of a good definition and the role it plays in mathematics learning enables the teacher 
to base their classroom practice on sound foundations. In this respect, Zazkis and Leikin (2008) regard 
teachers' conceptions of the notion of defining as a fundamental requirement for successful teaching. 

In this paper, we describe two prospective primary teachers’ knowledge about the notion of defining 
in mathematics, based on their discussion of a video. This understanding forms a part of their 
knowledge of practices in mathematics, as we explain in the theoretical framework below. 
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Theoretical framework 
Defining, like demonstrating or arguing, is one of the basic elements of the work of mathematics. We 
can say, then, that these elements form a part of mathematics practice, in the sense that they allow us 
to do mathematics. Knowledge of practices in mathematics supposes knowledge of the syntax of 
mathematics consistent with Schwab (1978). A teacher’s knowledge of practices in mathematics 
(henceforth KPM), together with their knowledge of topics and the structure of mathematics 
constitute the mathematical knowledge which in the Mathematics Teacher’s Specialised Knowledge 
model (MTSK) is considered necessary for teaching the subject (Carrillo-Yañez et al., 2018). In 
addition to mathematical knowledge, the model takes account of the domains of pedagogical content 
knowledge and beliefs about mathematics and mathematics teaching and learning. However, in this 
study, we deal with neither prospective teachers’ beliefs nor pedagogical content knowledge. 

Understanding the notion of defining involves recognition of the role that definitions play in 
mathematics and the characteristics they embody, or at least it is desirable for them to embody 
(Zaslavsky & Shir, 2005). Zaslavsky & Shir (2005) suggest the following features as characteristic 
of a good definition: 

… a mathematical definition must be noncontradicting (i.e., all conditions of a definition should 
coexist) and unambiguous (i.e., its meaning should be uniquely interpreted). In addition, there are 
some features of a mathematical definition that are imperative only when applicable: A 
mathematical definition must be invariant under change of representation; and it should also be 
hierarchical, that is, it should be based on basic or previously defined concepts, in a noncircular 
manner. (Zaslavsky & Shir 2005, p. 319) 

Van Dormolen and Zaslavsky (2003) offer logically necessary criteria for a good definition, among 
others, the criterion of hierarchy (it should be described as a special case of a previously determined 
more general concept). In contrast to Zaslavsky and Shir (2005), the former regard hierarchy as a 
necessary characterisic. In addition to this feature, they include the criteria of existence (there must 
be proof of the existence of at least one instance of the new concept), equivalence (where more than 
one definition exists, they must be demonstrated to be equivalent), and axiomatization (it should fit 
into a deductive system such that when one reaches the point where the criterion of hierarchy can no 
longer be applied, we can resort to axioms or postulates). 

There are other features for which there is a lack of agreement as to whether they are necessary or 
not. Foremost among these is the criterion of minimality. 

A definition is considered minimal if it is economical, with no superfluous unnecessary conditions 
or information. That is, a minimal definition should consist only of information that is strictly 
necessary for identifying the defined concept. (Zaslavsky & Shir, 2005, p. 320) 

A study by Leikin and Winicki-Landman (2000) involving secondary teachers highlights the rigour 
of a definition, although from a pedagogic point of view, other features are underlined, such as the 
definition being intuitive, being written clearly enough for the students to grasp with ease, combining 
what they already know with what they need to know, being appropriate for solving problems and 
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enabling generalisations to be made. Relaxing the rigour with which one applies the criterion of 
minimality tends to be motivated by pedagogical considerations. 

There have been various studies into teachers’ and prospective teachers’ notions of what constitutes 
a mathematical definition. These have found, among other things, that prospective teachers do not 
always know the difference between a theorem and a definition (Leikin & Zazkis, 2010) and are 
sometimes unaware of the arbitrariness of definitions in geometry (Linchevsky, Vinner & Karsenty, 
1992). 

Escudero, Gavilán and Sánchez-Matamoros (2014), in their study about prospective primary teachers, 
describes various ways in which they understand what a mathematical definition is and tracks the 
changes in this understanding. From this progression, from naming to giving a list, from naming to 
giving a list of minimal features, and from giving a list of features to equivalent definitions, the 
authors infer the assimilation of some of the criteria of mathematical definitions discussed above. In 
particular, the recognition of minimality and equivalence is indicative of a more advanced 
understanding of what constitutes a mathematical definition. Elsewhere, Sánchez and García (2014), 
again with prospective primary teachers, find potential points of conflict between criteria associated 
with mathematical definitions (understood within the study as mathematical norms) and 
sociomathematical norms. For example, minimality comes into conflict with the sociomathematical 
norm which requires students to explain themselves as fully as possible in response to a classroom 
task, or that they should make use of all the data and properties in a figure. Conflicting requirements 
such as these could account for the difficulty which students experience with some of the 
mathematical attributes. 

Data collection and analysis 
In Spain, the initial education for teachers on Primary Education corresponds to a four-year degree. 
Then they can obtain a general teaching graduate or specific on sports, music, foreign language or 
special education. At the University of Huelva, for each year, a compulsory Mathematic subject is 
planned. These subjects deal with content knowledge and pedagogical content knowledge about 
problem solving (first year), numbers and arithmetics (second year), statistics and measurements 
(third year) or geometry (fourth year). In these subjects, some concepts are reviewed in depth with 
regards to the Knowledge of Practices in Mathematics, like heuristics to solve Mathematical 
problems, proofs, types of proofs, and language and notation role. 

This study takes the form of a one-on-one teaching experiment (Cobb & Gravemeijer, 2008) in which 
three prospective primary teachers trialled activities ultimately intended for use with a group of 
primary trainees on the subject Mathematics Education: Geometry. The participants’ selection was 
intentional because of their particular disposition towards reflection on mathematics teaching and 
learning, and their sound knowledge of mathematics. We make use of only two participants’ data in 
this paper; they will be called Ismael and Ramón. At the time of the study, they both were in the third 
year of their degree, so they have not taken the subject on Geometry. The purpose behind the choice 
of these particular students was to measure the development potential of the activities in a favourable 
environment. 
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Here we focus on the first part of the teaching experiment, in which the prospective teachers 
individually watched and analysed a video recording of an actual primary lesson. After writing their 
individual impressions, which they handed in to the teacher educators, the group came together to 
discuss the lesson, with one of the educators/researchers in the role of moderator. 

The video analysed by the trainees featured a year 5 primary group (11 years old), in which their 
teacher introduced the topic of defining polygons by showing the pupils a bag with polygons and non-
polygons shaped cards. The lesson was conducted as a whole-class activity, with pupils going up to 
the board one by one to take a figure from the bag and place it in one of two groups (they could create 
two groups, without being given any previous criteria). The teacher expected the pupils to apply the 
criteria “is a polygon”. The classification task formed the basis of the follow-up activity in which the 
class constructed a definition of polygon together. This video has been chosen as it exhibits the 
mathematical practice of defining and it allows us to show teacher’s knowledge about this practice. 
One of the objectives of this activity (the analysis of the Primary education class), is that future 
teachers must do a reflection about what is a definition within a mathematical context and which 
characteristics a mathematical definition could have. 

The research question we are intending to respond to, is which knowledge about the mathematical 
practice of defining both prospective primary teachers (henceforth PPTs) show. 

Data to solve the research question come from the individual analysis document of the PPTs and the 
transcription of the oral discussion (audio recorded). The units we will show belong to the discussion 
transcription. In this discussion and also for everything concerning to knowledge about the practice 
of defining, the main objective of the researcher and moderator is, for the first instance, to make the 
PPTs to glimpse their ideas. During the individual PPTs analysis, some comments came up 
concerning to characteristics of the definition built in the Primary lesson (e.g. “they have repeated 
elements”). The most frequent questions to the PPTs (during the discussion of their individual 
analysis) focused on their interpretation of the definition practice. Consequently, the responses 
showed which characteristics the PPTs linked to a mathematical definition. 

The group discussion of the video was itself audio-recorded and subsequently transcribed. Below we 
analyse the transcript in terms of the elements discussed in the theoretical framework, essentially the 
features of a good mathematical definition. Therefore, we made a content analysis in which we 
selected those fragments in which PPTs considered the mathematical practice of defining developed 
in the Primary lesson and they related the features associated to a mathematics definition. We 
connected these fragments to the characteristics of a mathematics definition from the theoretical 
framework. This analysis is first undertaken by each researcher individually and afterwards jointly 
agreed. This process let us build our common explanation from our observation. 

Knowledge of the mathematical practice of defining  
One of the aspects which two of the prospective teachers focus on in their analysis is mathematical 
definitions, and in particular the role of examples in constructing a definition: 

Educator:  What do you think is the aim of the first task? 
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Ismael:  …what he’s looking for is the definition, what’s happening is that he’s starting from 
examples so that they see the differences between what it [a polygon] is and what 
it isn’t. 

Educator:  What do you think about the fact that he starts from examples to get there, to get 
them to construct the definition of a polygon? 

Ismael: As an item of mathematics, it is not mathematically correct to construct a definition 
from examples. […] Maybe it’s good in terms of getting the pupils to understand, 
but not in terms of mathematics. 

Ramón:  Is it more correct or less correct in mathematical terms? Yeah, starting from 
examples could be less correct, but for primary children it’s an introduction. And 
besides, in our lessons when we do demonstrations what do we do first? Try a few 
numbers to see and then afterwards do the demonstration well. 

Ismael appeals to the argument of rigour which features in the literature in contradistinction to 
pedagogical considerations (Leikin & Winicki-Landman, 2000; Zazkis & Leikin, 2008). In his view, 
the use of examples does not meet the standards of rigour demanded by mathematics, but justifies 
their use for the pedagogical advantage they afford in making a mathematical concept accessible to 
the primary pupils. Ramón concurs, criticising the use of examples to construct a definition. Both 
prospective teachers settle on demonstrations as a prototypical practice of formal mathematics, and, 
aware that in formal mathematics it is not considered valid to perform a demonstration via examples, 
they extrapolate the proscription to definitions. The use of examples is not intrinsic to formal 
mathematics. It can serve to make a mathematical object accessible, such as the rubric in 
demonstrations, but it is not a rigorous procedure. 

Both the prospective primary teachers (henceforth PPTs) seem to dispense with the criterion of 
existence for definitions, whereby examples serve as proof of the existence of at least one 
mathematical object fulfilling the definition. 

However, at another point in the debate, Ramón appraise the use of examples to define a mathematical 
concept, in reference to the examples given by the cardboard cut-out figures: 

Ramón:  If the pupils are given a figure with edges, how are they going to know what is 
inside and what is outside? 

The PPTs insist that a new mathematical concept should be generated on the basis of differentiating 
the properties of pre-existing concepts (the criterion of hierarchy), while also making a contrast with 
properties the concepts do not have. In other words, it is not sufficient to present images (examples) 
which illustrate the properties of a concept, rather it is necessary to include images which illustrate 
these very properties by their absence. In this way, a deeper understanding is achieved of the concept 
being defined. This appraisal might also be associated by the PPTs with the pedagogical advantages 
it affords more than with mathematical practice itself. 

The criterion of arbitrariness does not seem to be considered by the prospective teachers, who, it 
would seem, believe that mathematical concepts can have only one formal definition. Accordingly, 
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in the following turn, Ramón gets impressed by how the definition built in the primary school 
classroom is so exact (to which he believes is the unique right definition): 

Ramón:  […] the idea of the activity is that they do the classifying, as if polygons had never 
been classified before and they were doing it for the first time, so that they realise 
that the classification system they come up with is similar to the actual one. […] It 
surprised me how well they managed it, coming up with a definition from examples, 
that primary children can make such identical definition simply from examples. 

On the other hand, the prospective teachers do recognize the criterion of minimality as a desirable 
attribute of a mathematical definition, when they come to consider the wording of the definition the 
class finally agree on (a polygon is a flat shape, it has angles, it has vertices, it has straight sides and 
no curves; all the sides are joined at the end): 

Ramón:  It made me laugh when they put in the definition “it has straight sides and no 
curves,” it’s the same thing. 

Educator:  Would you have cut that out? 

Ramón:  At the end of the recording, one pupil says that not having any curved lines is the 
same as having all the sides straight, and it wasn’t necessary to say both things. 

Ismael:  I think that if that’s the first time they’ve done this and the children have reached 
that conclusion, then it’s fine, even if it’s redundant. I’d leave it like that, and then 
next time we did the topic I’d suggest we cut out that bit. You work on it a bit so it 
looks a bit more like the definition we have. 

Discussion and conclusions 
The prospective teachers involved in this study seem to identify formal mathematics practices with 
the practice of demonstrating. Their touchstone in this regard is mathematical rigour, which exerts its 
influence over the practice of defining. In particular, the use of examples falls short of the demands 
of rigour, and can be justified only on pedagogical grounds or as a means of making a mathematical 
object more accessible before defining it formally. They recognise that a mathematical definition 
should meet the criteria of hierarchy and minimality, whilst they do not see the need for the criteria 
of existence or arbitrariness. This lack of recognition of the criterion of arbitrariness mirrors the 
results of other studies (Linchevsky, Vinner & Karsenty, 1992). The prospective teachers also tend 
to regard the practice of defining as supplying a list of minimal features, a result consistent with the 
findings in Escudero, Gavilán and Sánchez-Matamoros (2014). 

In the course of the PPTs’ debate about the essential features of a good definition, they frequently 
consider pedagogical criteria over mathematical considerations about a good definition. This posture 
is consistent with the professional profile of primary teacher and coincides with practices observed at 
other levels of education (Leikin & Winicki-Landman, 2000; Zazkis & Leikin, 2008). 

These findings are particularly relevant to the context of developing teaching strategies for training 
prospective teachers in terms of their knowledge of practices in mathematics, specifically in this 
instance the nature of definitions. In particular, with respect to the initial training provided for 
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prospective primary teachers at the university in which the study was carried out, there is cause for 
rethinking the role given to demonstrations, as their pre-eminence on the syllabus vis-à-vis other 
practices seems to be leading students to regard it as the touchstone of mathematical practices. 

At the same time, before their initial training, the prospective teachers have little knowledge of formal 
mathematics as the mathematical knowledge they know is with regards to scholar mathematics. 
Taking the opportunity presented by their training to approach the nature of different mathematical 
practices should enable them to develop a more advanced view of what constitutes mathematics, 
building a bridge between school and advanced mathematics (issue that is also addressed in Crisan, 
2019, February). The transition, however, from knowledge based on intuitions to that based on formal 
definitions and their features is not without its challenges (Bampili, Zachariades & Sakonidis, 2017). 

In this paper, we have focused our analysis on the knowledge of two prospective primary teachers 
about the mathematical practice of defining, although data also reveal their conceptions about 
mathematics and about teaching and learning. The video recording was used as a starting point to 
reflect on the mathematical practice of defining and to validate this practice inside school 
mathematics. It might be considered the relationship between the selected video and the knowledge 
that prospective primary teachers have shown, for example, the fact that the polygon definition was 
built from polygon and non-polygon examples in the context of a primary school classroom. For 
future work, we will investigate on these issues. Also, we will consider extending this study to 
prospective kindergarten teacher and secondary teacher, in order to design task to strengthen their 
knowledge about the mathematical practice of defining. 
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Since ‘advanced mathematics knowledge’ (AMK) was first conceptualized by Zaskis and Leikin 
(2009), researchers have striven to determine whether teachers’ ability to identify explicit 
connections between AMK and the mathematics taught in school is a rare gift of only a few teachers 
or whether specific prompting is needed to develop this ability in teachers. In this paper we provide 
empirical evidence showing that those teachers who attended a CPD designed to support them to 
‘see’ and make explicit such connections, have increased their awareness of the implications for the 
teaching and learning of school mathematics topics in ways that allow for creating a solid foundation 
for development of further, more advanced ideas in the school mathematics curriculum. We thus 
propose that any mathematics teacher, irrespective of their academic background, could benefit from 
professional development opportunities where explicit guidance is provided in terms of the relevant 
AMK and how it informs school mathematics teaching and learning. 

Keywords: Advanced mathematics knowledge, mathematics knowledge for teaching, specialized 
knowledge, continuous professional development (CPD).  

 
Introduction 
There is agreement amongst researchers all over the world that teachers need to have both subject 
knowledge of mathematics per se, and mathematical knowledge for teaching in order to teach 
effectively.  There is also agreement that teachers must know in detail the school mathematics they 
are expected to teach and a bit more, beyond the level they are assigned to teach. But ‘how much 
more?’ and ‘More of what’?  

This body of more mathematics knowledge acquired through studying mathematics beyond school 
level is referred to in literature as ‘academic mathematics’ or ‘advanced mathematics’. Moreira and 
David (2008) refer to academic mathematics as that large part of the mathematics that a ‘major’ of 
mathematics is required to learn and which consists of that “scientific body of knowledge as produced 
and organized by the professional mathematicians” (p. 24). Similarly (and somehow a more 
influential terminology) is Advanced Mathematical Knowledge (AMK) put forward in 2009 by 
Zazkis and Leikin and defined as “systematic formal mathematical knowledge beyond secondary 
mathematics curriculum, likely acquired during undergraduate studies” (p.2368).  

However, what and in which ways this body of knowledge of ‘AMK’ or ‘academic mathematics’ is 
necessary or useful to functioning effectively as a teacher of mathematics at school level is still under 
much debate, as there is little agreement amongst researchers worldwide about how completing these 
courses influences future teachers’ instruction (Zaskis & Leikin, 2010) or improves their students’ 
subsequent achievement in the subject (Darling-Hammond, 2000). 
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The Research Question 
This paper thus reports on a study which was aimed at investigated if and in what ways 
(re)engagement with relevant AMK related to a school mathematics topic, functions in particular, 
empowers teachers conceptually and pedagogically. 

 

Theoretical Influences – brief overviews 
Teachers’ knowledge for teaching  

The study of teachers’ knowledge of subject matter and its relationship to the quality of classroom 
instruction has grown substantially since Lee Shulman launched a call for researching teachers’ 
different components of a professional knowledge base for teaching (Shulman, 1986). While there is 
no agreement amongst the mathematics education community about the relationship between these 
components, research flourished in an effort to conceptualize mathematics teachers’ professional 
knowledge base for teaching.  

One of such effort which builds on and refines Shulman's (1986) initial categorization of types of 
knowledge of a teacher of any subject, namely subject matter knowledge and pedagogical content 
knowledge, and which has proven to be very to be influential is the mathematics specific framework 
advanced by Ball, Thames and Phelps (2008). Their Mathematical Knowledge for Teaching (MKT) 
framework lays the foundation for a practice-based theory for mathematical knowledge for teaching. 
The authors divided Shulman's second category of Pedagogical Content Knowledge (PCK) into two 
other sub-domains, Knowledge of Content and Students (KCS) and Knowledge of Content and 
Teaching (KCT), while Shulman's third category of Curricular Knowledge (CK) was also relocated 
under PCK as Knowledge of Content and Curriculum.  

Similarly, Shulman's category of Subject Matter Knowledge was divided into three sub-domains: 
Common Content Knowledge (CCK), Specialized Content Knowledge (SCK), and Horizon Content 
Knowledge (HCK). Recently, a few other researchers (e.g., Zaskis & Leikin 2010, Even 2011) 
proposed positioning advanced mathematical knowledge (AMK) as an important aspect of MKT and 
in the following we will briefly review these categories and how they complement each other. 

Common Content Knowledge (CCK) and Specialized Content Knowledge (SCK)  

CCK is knowledge used in the work of teaching, but also used in ways that correspond with how it is 
used in settings other than teaching. SCK encompasses knowledge of mathematics needed by 
teachers, but not necessarily used by others, such as knowledge of a particular mathematical model 
or representation useful for teaching a certain concept.  

Development of such SCK usually starts in teacher education programmes. Indeed, teachers acquire 
SCK through learning about how to use number lines, hot-air balloons or any other representations 
and metaphors that would enable them to teach about operations with negative numbers. For instance, 
while an engineer knows that the product of two negative numbers is a positive number, s/he does 
not need to know or give a mathematical reason for why this rule works or be able to provide a 
conceptually-sound explanation for the ‘minus and minus make plus’ metaphor. This kind of 
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knowledge and reasoning should be an intrinsic part of a teacher’s everyday classroom teaching, 
knowledge of the mathematics underlying rules, approaches, representations. However, far too often 
the implicit assumption is that prospective teachers already know the mathematics, to include the 
what and the why. But this is not the case. Many  studies (e.g., Tirosh, Fischbein, Graeber, & Wilson, 
1999) have revealed that school teachers possess a limited knowledge of mathematics, including the 
mathematics they teach. The mathematical education they received, both as pupils in school education 
and in teacher preparation, more often than not did not provide them with appropriate or sufficient 
opportunities to learn mathematics relationally (Skemp, 1976) and as a result, teachers themselves 
may know the facts and procedures that they teach but often have little or weak understanding of the 
conceptual basis underlying those rules and procedures (Ball, 1990).  

Horizon Content Knowledge 

HCK (horizon content knowledge), the third sub-domain of subject matter knowledge in the MKT 
framework was tentatively defined by Ball and colleagues as ‘an awareness of how mathematical 
topics are related over the span of mathematics included in the curriculum’ (Ball  et al., 2008, p. 403). 
Defined, interpreted and re-interpreted, HCK means different things to different researchers (e.g., 
Ball & Bass, 2009, Jakobsen et al., 2013); what is common ground amongst these interpretations is 
that it is knowledge that goes beyond that included in school mathematics curriculum, that influences 
teaching!  

Ball et al. (2008) themselves describe HCK domain of knowledge as “a kind of mathematical 
‘peripheral vision’ needed in teaching, a view of the larger mathematical landscape that teaching 
requires” (p.1), including “the vision useful in seeing connections to much later mathematical ideas” 
(p.403).  The authors acknowledged that “we do not know how horizon knowledge can be helpfully 
acquired and developed” (ibid, 2009, p.11)   

Advanced Mathematics Knowledge 

While engaging with the MKT framework, Zaskis and Mamolo (2011) proposed to view HCK 
through the notion of viewing elementary (school) mathematics from an advanced standpoint, thus 
positioning advanced mathematical knowledge (AMK) as an important aspect of MKT. The notion 
of horizon content knowledge is given by Zazkis and Mamolo in terms of the application of the notion 
of ‘advanced mathematical knowledge’, which they define as the “knowledge of the subject matter 
acquired during undergraduate studies at colleges or universities” (Zazkis & Leikin, 2010 p. 264).  

Wasserman (2016), and later Stockon and Wasserman (2017) narrowed down the description of AMK 
to knowledge outside the typical scope of what a school mathematics teacher would likely teach, in 
that AMK is relevant, the advanced mathematical ideas are connected to the content of school 
mathematics, but also that these forms of knowledge of advanced mathematics are in some way 
productive for the teaching of school mathematics content.  

Since Zaskis and Leikin’s (2009) first conceptualisation of AMK, the authors also launched a call for 
further research to determine whether teachers’ ability to identify explicit connections between AMK 
and the mathematics taught in school is a rare gift of only a few teachers or whether specific 
prompting is needed to bring this ability to surface.  
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The study:  the England, UK context 
Rather than relying on individual teachers’ gift to identify explicit connections between AMK and 
the mathematics they are expected to teach, in this paper we propose that teachers of mathematics 
should be explicitly supported in becoming aware of these connections.  

However, unlike other countries where teacher training is undertaken alongside undergraduate 
mathematics studies, and were such opportunities could be offered to prospective teachers as part of 
their undergraduate studies (e.g., Wasserman et al., 2017), the UK context is different. The teachers 
in the UK complete their training in a one-year postgraduate course, meaning that they would have 
studied advanced mathematics as part of their undergraduate studies not related with teacher 
education. Thus, for them the study of advanced mathematics had no explicit relation to school 
mathematics content.  

Hence the study presented in this paper is a step forward in response to Zaskis and Leikin’s (2009) 
call, but suited to the UK approach to teacher training, and where such interventions are offered to 
teachers after they completed their undergraduate studies, either as part of their initial teacher training 
postgraduate course or as a professional development opportunity after they qualify as teachers. 

Methodology 
In this paper, I will be reporting on a two-hour CPD workshop designed to support the teaching of 
specific areas of the school curriculum, namely functions, and aimed at increasing teachers’ 
familiarity with a variety of representations of functions in the school mathematics and their 
awareness of how these representations interconnect. The CPD workshop was designed and taught 
by the author of this paper, and the tasks attempted were of both mathematical and pedagogical nature, 
aimed at developing a deeper conceptual and pedagogical understanding of this topic, in ways 
suggested by research findings on ways of teaching about functions at various levels of students’ 
education (e.g., Ayalon et al. 2013, Nardi, 2001). 

Each workshop was designed to start by posing a school mathematics question or a problem situation 
that teachers could do but where they may encounter some difficulties in answering it correctly and 
completely; in order to overcome the difficulties, the teachers will be guided towards 
recalling/reengaging with some relevant AMK; this will then be followed by a classroom-inspired 
scenario, of a pedagogical nature, where the teachers will be applying their new learning and become 
explicitly aware how their new learning supports their teaching. 

Data sources 

Textual data was collected through field notes that detailed some of the group interactions.  Post-
session written reflections were solicited and collected at the end of the session. The teachers were 
asked to comment on the activities in relation to their own learning, their pupils’ mathematical 
learning, and their preparedness of teaching this topic. Written notes about the teachers’ comments, 
questions, written work, were also made down by the myself throughout the workshop. 
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The participants 

The participants were  eight early career teachers of mathematics attending the two-hour CPD 
workshop.  They were practicing mathematics teachers who wanted to refresh their knowledge about 
functions,  given the high profile of this topic in the new re-vamped mathematics curriculum in 
England, UK Features of and operations with functions such as: domain, range, inverse and composite 
functions, which were traditionally studied by older learners (16 to 18 year old learners or even 
undergraduates) are now to be studied by 14 to 16 year old learners. Hence, all secondary mathematics 
teachers need to be able to teach this topic. The eight teachers gained their qualified teacher status as 
a result of studying on a one-year teacher training course. As expected, they studied some 
mathematics at undergraduate level: six teachers studied for mathematics degrees, one had an 
engineering background, while one other teacher had an economics background and introduced 
himself as a non-specialist mathematics teacher. Consent to collect any observational and written 
notes throughout and after the workshop was sought from all the eight teachers.  

 
Data Analysis and discussion  
The workshop started by posing a school mathematics question or a problem situation that teachers 
could do but where it was envisaged they may encounter some difficulties in answering it correctly 
and completely, as suggested by previous research (e.g., Nardi, 2001). The teachers were provided 
with an activity which required sketching the graph of functions that shared the same  rule (one such 
example being f(x) = x2,) but which had different domains of definition The teachers worked in pairs, 
and each pair was provided with a different domain for the function. The domains were: the whole 
set of real numbers, open and closed intervals, and discrete sets of real numbers. At the start of the 
activity, the teachers were not aware of the functions allocated to the other pairs. 

Teachers’ engagement with (partial) representations of a function: The graphs produced by each pair 
looked more or less the same; a smooth curve in the shape of a parabola, carefully drawn to look 
symmetric about the y-axis. When the graphs were shared with the whole group, the teachers became 
aware of the similarities, but also the differences in their tasks; despite all sharing functions described 
by the same rule, the domains for each function were different, and so the discussion led naturally to 
a discussion about what a function was.  

Teachers’ re-engagement with the formal definition of a function: In the discussion, some teachers 
seemed to recall having studied about the formal definition of a function in their undergraduate 
studies, while others did not seem to have such a recollection or even an awareness of ever 
encountering such a definition. In what followed, disparate suggestions from teachers were recalled 
and put forward such as domains, co-domains, ranges, one-to-one, correspondence, notation 
conventions, and with some guidance from me, they reached the formal definition of a function of 
one real variable, which some recognised as having encountered them in their undergraduate 
mathematics course. 
 
This is evidence of teachers reaching for more advanced mathematics knowledge (in this case, the  
formal definition) related to functions, in the need to complete the task successfully. The ‘starter’ 
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activity provided them with the impetus to reach for more than the school mathematics they were all 
too familiar with. Tapping into that knowledge, and once recalled (or newly learned, in the case of 
two teachers) there was evidence that it supported teachers completing the activity successfully. The 
teachers revisited the graphs they initially produced and each pair produced different graphs: either a 
smooth continuous parabola, or a pointwise graph, or a piece-wise graph, depending of the given 
domain of definition. 
Even though a few of the teachers had an awareness of the formal definition of functions and were 
able to recall some ‘bits’ of it, they commented that “it did not occur to me to relate this activity with 
the formal definition”, and “that was high level mathematics not much used after the [undergraduate] 
course”. The teachers seemed to be much more influenced by the current limited description of 
functions in the school curriculum, where domains and ranges of functions are not explicitly 
considered until the more advanced years of school level education.  

Pedagogical implications: developing an awareness of building up to the formal definition of a 
function: The ‘starter’ activity was then followed with a discussion of how the concept of function 
develops in the school mathematics curriculum. Representations of functions as they chronologically 
appear in the school curriculum were discussed: One-to-one or many-to-one mappings, Input/output 
machines, Relations between particular x-values and y-values; Expressions to calculate the y-values 
from given x-values, and Graphs. Each time, the teachers were encouraged to relate these 
representations with their recalled or newly learned AMK about functions. In doing so, the teachers 
came to realise that each of these representations explains particular aspects/features of the concept 
without being able to describe it completely! And a realization that overreliance on one 
representations or lack of connections between such representations gives way to misconceptions 
when working with functions, just as pointed out by Ayalon, Lerman and Watson (2013).  

Indeed, the teachers themselves became explicitly “aware of stages of building up to the definition of 
a function”. A teacher in particular was able to illustrate this new learning eloquently. She stated that 
she learned about: “Different representations of functions – I’ve always seen them as disconnected 
representations, but they complement each other nicely towards understanding functions” and 
exemplified with how in the lower secondary school curriculum, functions are portrayed as a 
computational process and are seen as an input-output machine that processes input values into output 
values. Such representation emphasizes the rule aspect in the definition of functions, seeing thus 
functions as an instruction to calculate one numerical set from another. This view leads to a perception 
of graphical representation of functions amongst pupils as points (usually with integer coordinates) 
plotted on the set of axes, which are then joined up with segments, with no explicit awareness that 
any other point lying on those segments could be just as good a candidate in the table of values. And 
in fact, the teacher herself realized that she never discussed or pointed this out in her teaching when  
plotting graphs.  

Pedagogical empowerment - addressing ambiguities in the treatment of school maths topics: For the 
final task of this workshop, the teachers were asked to think about how they introduce and teach 
pupils of different ages about square roots. Sharing of own experiences immediately led into disputes 
over the numerical value of the square root of a number: a positive, a negative or a ± value. Most 
teachers defended the ± value, and attempted to justify their answers in a variety of ways: “this is 
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how I was taught myself”, “this is how it is presented in textbooks”, “this is how it appears in marking 
schemes of examination board”, “This has always been the case.” I then prompted the teachers to 
think about how this school maths concepts related to their learning about functions gained in the 
session up to that point and I suggested that perhaps it could help them settle the inconsistency in 
their answers. 

The teachers were indeed able to call upon their recollection of the more advanced knowledge about 
functions (extended at this point to inverse functions and relationships between domains and ranges) 
and agreed on the positive answer only, despite feeling uncomfortable about dismantling a long-held 
belief about a piece of knowledge about square roots, they themselves inherited from their secondary 
school maths education and unfortunately still  perpetuated by current mathematics school textbooks 
(Crisan, 2014). 

 
Concluding remarks 
The teachers on this CPD course had revisited some of their AMK of functions, which provided them 
with a better understanding and an awareness of the developmental trajectory in learning about 
functions. They became aware of how representations in the school curriculum are particular 
instances of the concept itself, and how teaching towards a complete/full understanding of functions 
requires teachers to be aware of what each of these representations contribute to the complete 
understanding of the concept of functions: “Today’s session helped me understand how I could have 
addressed the [pupils’] errors and how I can clarify things in the future.”, while another teacher shared 
his learning in the session: “What I have learnt today? About advanced mathematics knowledge and 
its place in classroom and planning.”. 

On a pedagogical level, AMK of functions empowered the teachers to justify why pupils make 
mistakes, and thus increased their knowledge for teaching this topic in the future. 

The task in which the participants were involved in this workshop provided a context in which they 
recalled AMK related to functions, while in the case of some other teachers, they acquired new AMK 
(the teachers with an engineering and economics background). The teachers gained conceptually, as 
the mathematics tasks created some instability in what they knew about functions and their graphical 
representations, and in order to address the differences in their tasks, the teachers need to engage with 
more advanced mathematics knowledge of functions was brought out into the open.  

However, this study has shown that even when teachers posses the AMK, they are not necessarily 
aware of manifestations of AMK in the school mathematics curriculum, thus they need to be 
supported in develop such awareness and make it explicit. One cannot simply assume that teachers 
will make connections without some intervention. This paper proposes that, in the UK context this 
should be the remit of courses preparing teachers of mathematics (either initial teacher training and/or 
CPD). All teachers, irrespective of their academic background, should be supported to look at school 
mathematics from an advanced standpoint and to examine school mathematics topics by engaging 
with advanced mathematics knowledge, while guidance is provided in terms of what AMK is relevant 
and how it informs school mathematics. 
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Researchers conceptualize mathematical knowledge for teaching in different ways, but a coherent 
approach to the mathematical education of teachers requires teacher educators’ understanding to 
be robust and shared. At present, we know little about how teacher educators interpret and 
operationalize this important domain. Our analysis of interview data indicates two sites of 
divergence in teacher educators’ understanding. Some view this knowledge as a resource for the 
mathematical work of teaching, treating it as distant from actual practice, whereas others view it as 
a slice of the dynamic and situational work. Also, some view the mathematical work of teaching, 
and its knowledge demands, as detached from particulars of students and schooling, while others 
view this work as inseparable from student identities and the larger environments within which 
instruction occurs, thus integrating regard for equity. Implications are discussed.  

Keywords: Mathematical knowledge for teaching, Teaching, Teacher educators. 

Introduction 
Mathematics educators and researchers agree that the mathematical knowledge teachers need is not 
simply advanced mathematics — it is specialized, teaching-specific mathematical knowledge. 
Shulman’s (1986) pedagogical content knowledge continues to stimulate the field. Ma’s (1999) 
profound understanding of fundamental mathematics exposed subtle depth in the mathematical 
demands of teaching. Scholars continue to expand conceptual models (e.g., Ball, Thames, & Phelps, 
2008; Carrillo-Yañez et al., 2018; Rowland, Huckstep, & Thwaites, 2005; Thompson, 2015) and 
measures (e.g., Baumert et al., 2010; Hill, Schilling, & Ball, 2004; Saderholm, Ronau, Brown, & 
Collins, 2010). Although scholars agree such knowledge is important, different constructs have 
been proposed, with underdeveloped theoretical grounding, and measures often operationalize a 
specific construct in different ways (Hoover, Mosvold, Ball, & Lai, 2016).  

Awareness that mathematical knowledge for teaching is specialized and teaching-specific creates an 
imperative for the mathematical education of teachers. Unfortunately, shifting to teaching of 
mathematical knowledge for teaching is not a simple matter of introducing new content. 
Understanding the new content is a challenge and teaching it requires different instructional 
practices with new demands on teacher educators. A number of researchers have begun to 
investigate these demands. For example, some have used records of practice from teacher education 
courses or professional development programs to unpack the mathematical demands of such work 
(e.g., Chick & Beswick, 2018; Superfine & Li, 2014; Zopf, 2010). Others have examined teacher 
educators’ collaborative work, by either drawing from reflections on their practice (Masingila, 
Olanoff, & Kimani, 2018), or interviewing teacher educators directly (Zazkis & Zazkis, 2011). Each 
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of these efforts has focused on the connection between mathematical knowledge for teaching and 
the mathematical demands of teacher education.  

While this investment in conceptualizing an analogous specialized knowledge for mathematics 
teacher education is valuable and timely work, a more basic question is whether teacher educators 
mean the same thing when referring to mathematical knowledge for teaching. Of course, individual 
interpretations vary, but meaning needs to be sufficiently shared for communication and programs 
to be effective. Teacher educators may believe they are each working on mathematical knowledge 
for teaching in their courses but could in fact be focusing on different issues. Alignment among 
instructional materials, courses, and instructors is crucial. As Cohen (2011) argues, absent a 
sufficiently shared notion of the content and aims of education (or in this case teacher education), 
efforts to assess and improve the quality of teaching will be much more difficult, if not impossible. 
In our own work with professionals concerned with the mathematical education of teachers, we 
have found that ambiguity often leads to individuals or groups talking past one another, even as 
they allegedly invest in the same content. In addition, if teacher educators’ understandings of 
mathematical knowledge for teaching differ, then studies that seek to understand the mathematical 
demands of mathematically educating teachers could be scrutinizing arguably different aspects of 
professional practice and ignoring ambiguity that might lead to additional or different results. As 
the larger community of mathematics teacher educators (including mathematicians, teacher 
educators, and school-based personnel) learns about mathematical knowledge for teaching and 
becomes convinced of its importance, mixed understanding looms large.  

Despite these implications, we know surprisingly little about teacher educators’ conceptualizations 
of mathematical knowledge for teaching. In this study, we analyze interviews with teacher 
educators to better understand their thinking, and in so doing, we contribute to the growing 
literature on the teaching of mathematical knowledge for teaching. 

Conceptual and contextual background 
Before laying out the particulars of our study, we briefly describe the study context and the 
perspectives we bring to our analysis. Our team relies on a conception of mathematical knowledge 
for teaching that understands knowledge to be embedded in teaching and considers specialized 
content knowledge to be mathematical knowledge unique to the work of teaching (Ball, 2017; Ball 
et al., 2008). We conceptualize teaching as the management of interactions of instruction in 
environments (Brousseau, 1997; Cohen, Raudenbush, & Ball, 2003; Jaworski, 1994; Wickman, 
2012). In this, we understand attention to equity to be inherent to teaching that is educative and 
consequently to be inherent in the dynamic mathematical work of teaching. We understand equity 
in the sense of both “reasonableness and moderation in the exercise of one’s rights, and the 
disposition to avoid insisting on them too rigorously” as well as “recourse to general principles of 
justice (the naturalis æquitas of Roman jurists) to correct or supplement the provisions of the law” 
(Equity, 2018). For this study, we are interested in the many different ways that equity might be 
considered in teaching and the mathematical dimensions and demands of this work. 

As a means of building capacity among teacher educators concerning specialized content 
knowledge, our team has run a series of workshops that bring together different professional 
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communities with the purpose of collectively creating tasks for teachers that address specialized 
content knowledge. Workshops are organized around a cycle of constructing, discussing, and 
reviewing tasks. Whereas some of our previous projects have focused on developing multiple-
choice items for assessment or measurement purposes, we have adopted a more inclusive 
interpretation of task type in the present workshops with the intention of using task development as 
a tool for building understanding and instructional materials.  

In the first year of the project, four workshops were held. Each consisted of roughly 30 to 50 
participants. Some participated in more than one workshop, but over 150 professionals participated 
in at least one. They came from over 25 states of the United States, as well as Brazil, Canada, 
Norway, Turkey, and Iran. Their professional roles varied. Some were higher education faculty 
from mathematics departments and schools of education. Some were professional developers, 
teacher leaders, curriculum specialists, or other school-based personnel. Some were state leaders. 
All were involved in the mathematical education of teachers. Consistent with discussions above, our 
framing of specialized content knowledge at the workshop emphasized that the mathematical work 
of teaching requires coordination of pedagogical and mathematical entailments while 
simultaneously attending to, and acting against, patterns of marginalization and inequity.  

Our aim is to understand how those responsible for the mathematical education of teachers 
understand mathematical knowledge for teaching and the extent to which they shared a coherent 
vision of it. The design of our study is to examine differences in understanding among our 
participants. We acknowledge that our workshop participants constitute a limited sample of 
professionals engaged in the mathematical education of teachers. They have likely read some of the 
same research, self-selected to attend our workshop, and listened to our workshop framing of 
mathematical knowledge for teaching and task development. This suggests that they may hold more 
similar views than those held in the broader community. We argue that, because we are examining 
differences among participants, our sample may actually strengthen our claims, revealing patterns 
that are likely alive and well in the broader professional community.   

The study 
To investigate teacher educators’ understanding of specialized content knowledge, we interviewed 
13 teacher educators after the fourth workshop, held in July 2017. These interviewees varied in 
terms of demographics, number of workshops attended, professional affiliation, perceived fluency 
with the ideas, etc. Interviews were conducted via video conferencing and recorded. In addition to 
probing their experiences at the workshops, we asked explicitly about their views of specialized 
content knowledge, teaching, and equity. To elicit interviewees’ understanding of specialized 
content knowledge, we asked them to comment on a recording of a discussion that occurred at the 
workshop. The focus of the workshop discussion was a video of teaching where a Black girl named 
Aniyah is called to the board to show 1/3 on the number line (see Ball, 2017 for analysis). The aim 
of the workshop discussion was to use the classroom video as a seed for developing specialized 
content knowledge tasks. The aim of viewing the workshop discussion in the interview was to 
provide a context for expressing understanding of mathematical knowledge for teaching.  
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After the interviews were completed, a larger team of seven researchers processed the data, created 
collective summaries of the interviews, and decided on four cases to highlight in this paper. The 
four chosen, Paula, Alyssa, Ranesh, and Daniele (names are pseudonyms), provided a spectrum of 
different roles and of different perspectives visible in the 13 interviews (Table 1). The larger team 
also piloted preliminary frames and coding schemes and developed an approach using the 
instructional triangle to categorize components of the mathematical work of teaching evident in 
participants’ responses. The first two authors then created detailed characterizations (individually, 
then jointly reconciling differences) and identified common patterns. It should be noted that our 
goal here is not to say something about the effects of the workshop but rather to unpack how 
participants understand the construct. 

Results and discussion 
Our preliminary analysis of interview data revealed two divergences in teacher educators’ 
understanding of specialized content knowledge. The first relates to the nature of such knowledge 
and its connection to the mathematical work of teaching. The second relates to the relationship 
between such knowledge and regard for equity, in particular regard for the development of students’ 
identities and the larger environments in which instruction occurs.  

Interviewee (Role) Nature of knowledge  Regard for equity 

Paula (Math education faculty) Static, stable, prerequisite resource Not integrated 

Alyssa (K-12 school-based) Dynamic, situational slice of work Integrated 

Ranesh (Math faculty) Dynamic, situational slice of work Partly integrated 

Daniele (Math education faculty) Partly dynamic Not integrated 

Table 1: Summary of interviewees 

Nature of knowledge 

The first site of divergence lies in how teacher educators understand the nature of specialized 
content knowledge. For example, Paula often collapsed real-time decision making with particular 
students and particular settings with the kind of work that one might do outside the classroom, 
independent of those students and settings. Although she insisted that teachers need to be able to see 
what each student knows and understands, at times, her focus was squarely on knowledge that is 
required for teaching. In particular, when Paula spoke about her attempts to assess such knowledge, 
she referred to it as something teachers “need to know” in order to be an effective teacher, rather 
than speaking about specialized content knowledge as something present in (and arising from) 
particular demands in teaching. It seems as though, for Paula, having particular knowledge outside 
the classroom ensures success inside the classroom. This kind of conceptualization of the 
mathematical work of teaching is consistent with a didactical or instructional triangle that ignores 
certain bidirectional interactions between the vertices. Thus, students, environments, and content 
often did not seem to affect the kinds of mathematical work that Paula envisioned for the teacher. 
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Several other participants drew clear lines between knowledge and knowledge-in-use but viewed 
both as essential to teaching well. For example, while Alyssa contended that “teachers need broad 
knowledge of content” as well as “a really specific knowledge of mathematics” in order to “see 
what kids are doing, to see how kids are accessing problems”, she distinguished this knowledge 
from that which is embedded in the mathematical work of teaching. For her, the mathematical work 
was “what [teachers] are doing with that knowledge, and what they’re doing with the data they are 
gathering in the moment…like how they are facilitating a classroom environment with that 
understanding.” She also referred to how “content knowledge empowers [teachers] to make … 
strategic real-time decisions with the information they have.” Similarly, Ranesh also considered 
specialized content knowledge to be related to, but distinct from, the mathematical work of 
teaching. In his interview, he spoke about how the mathematical work of teaching was about 
“knowing what to do, and how you would do that in the classroom.” In his view: “SCK is the noun, 
and the mathematical work as a teacher … that would be the verb.” In their interviews, Ranesh and 
Alyssa each seemed to pay more attention to the dynamic interactions present in instruction and this 
focus seemed to help them make a distinction between knowledge and knowledge-in-use. From 
their perspective, specialized content knowledge is necessary, but not sufficient for successful 
execution of the mathematical work. 

Our analytic framing of teaching as management of interactions among teachers, students, content, 
and environments suggests that teacher educators’ views of mathematical knowledge for teaching 
differ in sophistication. In particular, Paula’s view of it as static, stable, prerequisite knowledge 
overlooks certain interactional pairings central to teaching. In contrast, Alyssa’s and Ranesh’s view 
of it as a dynamic, situational slice of work reflects their fuller understanding and skill in thinking 
about the full range of interactions central to teaching.  

Mathematical knowledge for teaching and integration of student identities and environments 

A second site of divergence is the extent of integration of equity concerns, in particular student 
identities and environmental factors, into mathematical knowledge for teaching. Alyssa, for 
example, when shown specific instances of teaching, referenced the larger environments in which 
instruction occurs and how the mathematical work in those moments is shaped by such 
considerations. For instance, when commenting on the record of practice referenced in our 
interview, Alyssa highlighted how the teacher calls upon “a student like Dante” at a particularly 
crucial moment in a class discussion about naming fractions on the number line. In the video, 
several other students had each put forward correct pieces of the final answer (one solution drew 
attention to the need for equal partitioning of the whole, while another correctly identified the whole 
as the unit interval from zero to one) but each student had a different incorrect answer on the board. 
Dante also did not have the correct answer in his notebook, but when he is called on, he attempts to 
articulate his thinking and goes on to ask a question about how the previously presented solutions 
relate to each other. Alyssa described this moment as an act of empowerment for Dante (a Black 
student in the classroom video being discussed in the workshop video) and declared that the 
teaching move allows Dante to be a “bearer of mathematical knowledge”, a position not typically 
offered to students “like him” (perhaps referencing how non-standard responses of Black boys are 
often interpreted). She also asserted that calling on Dante at this moment does more than just 
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empower a particular student, it also disrupts systemic patterns of injustice and racism. Alyssa 
explicitly connected this idea to the mathematical work of teaching, maintaining that, “part of the 
work of teaching is knowing your students and knowing how to strategically call on students at set 
times.” Even though it is apparent that Dante is “a student who understands quickly and is good at 
synthesizing other people’s thoughts”, she believes many teachers would not choose to call on him 
in that moment, especially since he does not have the correct answer. However, Alyssa contended 
that the teacher in the video intentionally “creates the situation where a student like Dante could 
then say, ‘what is the connection’?” and she saw this mathematical and pedagogical work as 
intertwined with issues of equity. Through her comments, we see concerns for each of the 
components of the instructional triangle — mathematics, teachers, students, and environments — as 
well as their interactions. Her regard for equity in relation to the mathematical work of teaching is 
coincident with her mutual consideration of the intertwined interactions of teaching.  

By contrast, in her interview, Daniele seemed to acknowledge the general possibility that student 
identity and patterns of systemic inequity can interact in ways that shape the mathematical 
trajectory of a class, but admitted that she does not think much about equity in her own work. When 
asked about the video of the workshop discussion, Daniele remained focused on mathematical 
content and failed to consider comments about how Dante’s race/ethnicity shapes the kind of 
mathematical work the teacher must do in that moment.  

Daniele never mentioned Dante’s identity as a Black boy as something that might relate to the 
mathematical work of teaching. Instead, Daniele suggested that calling on Dante was a way of 
including other students in the class discussion and gaining access to their thinking. She explained 
the teacher’s choice to call on Dante in the following way:  

We think about the students that are maybe up in front talking, but that’s not the whole class. 
That’s only two students in the class and it’s a large class. And so, what are the other students 
doing and thinking about? And we think about the behavior issue, and that stands in the 
forefront, but if we really actually listen to kids that have behavior issues potentially … then we 
can think about well what is Dante saying and how is he thinking about this task?  

Viewed in this light, the teacher might have called on any particular student at that moment rather 
than Dante specifically. For Daniele, the only things about Dante that seem to be relevant for the 
work of teaching are his particular classroom behaviors and the mathematical concerns he raises. 
Daniele’s comments are fundamentally about the content of Dante’s questions rather than Dante as 
an individual or about the environments that shape both his identity and the work of teaching. 
Daniele seemed to be articulating that issues of equity are not embedded in the work of teaching, 
but are an optional add-on — something that is not central. This conceptualization of the 
mathematical work of teaching, is consistent with an instructional triangle would have little or no 
interaction with particulars of the environment. 

Again, our analytic framing of teaching as management of interactions among teachers, students, 
content, and environments suggests that teacher educators’ integration of concerns for student 
identities and environmental factors with mathematical knowledge for teaching differ in 
sophistication. In particular, Daniele’s disregard for student identities and environmental factors in 
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her consideration of mathematical issues contrasts with Alyssa’s nuanced consideration of their 
import for the mathematics at hand.  

Conclusions  
As the instructional triangle emphasizes dynamic interactions among teachers, students, content, 
and environments, it seems natural that such a framing would draw out the absence or presence of 
dynamic interactions. But it is clear that certain interactions are more uniformly understood than 
others (at least within our data). None of the teacher educators we interviewed could be 
characterized as not attending to the dynamic interaction between teacher and mathematical content. 
This is significant given observed divergences. The two primary divergences we found thus say 
something important about the ways in which teacher educators understand mathematical 
knowledge for teaching. They suggest sites where a shared conceptualization breaks down or areas 
where there is considerable variation in understanding. These may be fundamentally different 
conceptualizations, built on different foundations, or they may be developmental issues related to 
their understanding of teaching. Regardless, we suggest that appreciating differences in these 
conceptualizations and being able to name and talk about constituents of teacher educators’ 
understandings are useful building blocks for the field.  
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Extant research on the teachers’ knowledge includes limited studies focusing on teachers at university 
level. In this work, based on the Mathematics Teacher’s Specialised Knowledge (MTSK) model and 
through an instrumental case study, knowledge of a lecturer in a real analysis course for prospective 
mathematics teachers is analyzed. We exemplified lecturer knowledge in different subdomains of the 
MTSK model. These results contribute to the understanding and characterization of the components 
of mathematics teacher’s specialised knowledge at the university level.    

Keywords: lecturer knowledge, specialised knowledge, university level, real analysis, real numbers.  

Introduction 
The mathematics education research focusing on the teachers’ knowledge has traditionally been 
conducted at the elementary and secondary level. However, the study of mathematics lecturer’s 
knowledge has recently emerged as a line of research that seeks to understand this knowledge, its 
development, and how it is reflected in university teaching practices (Biza, Giraldo, Hochmuth, 
Khakbaz, & Rasmussen, 2016). Among the scarce account of research about mathematics lecturer’s 
knowledge, the work of Breen, Meehan, O’Shea, and Rowland (2018) is a first approximation of 
teaching at the university level using Knowledge Quartet model (Rowland, Huckstep, & Thwaites, 
2005). In addition, the studies conducted by Vasco, Climent, Escudero-Avila, and Flores-Medrano 
(2015) and Vasco and Climent (2017) highlight the utility of the Mathematics Teacher’s Specialised 
Knowledge model (Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013) and its corresponding 
analytical categories for understanding mathematics lecturers’ knowledge. Other research in the same 
line, indicate that it is important to obtain empirical evidence pertaining to the components of 
specialised mathematics lecturer’s knowledge (Delgado-Rebolledo & Zakaryan, 2018) and deepening 
the understanding of these components in situations other than lecturers’ classroom practices (Vasco 
& Climent, 2018).  

Taking into account this background, we propose the following research question: Which knowledge, 
according to the Mathematics Teacher’s Specialised Knowledge model, arises in the teaching practice 
of a mathematics lecturer? Teaching practice is considered in a broad sense, including lesson 
planning, liaising with colleagues, giving lessons, and taking time to reflect on them afterwards 
(Carrillo et al., 2018). In this sense, with the aim of answering the research question, we have studied 
one mathematics lecturer teaching a real analysis course in a mathematics teachers’ training program, 
and reflecting on his performance. In this paper, we present examples of the different subdomains of 
this lecturer’s specialised knowledge. We do not consider his characteristics as a mathematics teacher 
educator. A discussion about mathematics teacher educator’s knowledge is exposed in the paper of 
Almeida, Ribeiro and Fiorentini (in this volume).  
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Theoretical Framework   

In the Mathematics Teacher’s Specialised Knowledge (MTSK) model, two domains of teacher 
knowledge are distinguished, Mathematical Knowledge (MK) and Pedagogical Content Knowledge 
(PCK). The model also considers teacher’s beliefs about mathematics and about mathematics 
teaching and learning (Carrillo et al., 2018). 

MK refers to teacher knowledge of mathematics within the educational context, considering some of 
its characteristics as a scientific discipline. MK includes the Knowledge of Topics (KoT), Knowledge 
of the Structure of Mathematics (KSM) and Knowledge of Practices in Mathematics (KPM) 
subdomains. KoT contains knowledge about definitions, properties and their foundations, procedures, 
registers of representation, phenomenology, and applications (e.g., knowledge of the field properties 
of rational numbers; knowledge of definitions of real numbers). KSM encompasses knowledge of 
connections among mathematical items: connections associated with an increase in complexity or 
with simplification, and inter-conceptual connections (e.g., knowledge of relationships between 
infinity and the Archimedean property of the real numbers). KPM comprises knowledge about 
demonstrating, justifying, defining, making deductions and inductions, giving examples, and 
understanding the role of counterexamples (e.g., knowledge of how to prove the density property of 
the rational numbers in real numbers).  

On the other hand, PCK is a specific type of knowledge of pedagogy in which the mathematical 
content determines the teaching and learning that takes place. PCK includes the Knowledge of 
Mathematics Teaching (KMT), Knowledge of Features of Learning Mathematics (KFLM), and 
Knowledge of Mathematics Learning Standards (KMLS) subdomains. KMT includes knowledge of 
theories of mathematics teaching, teaching resources, and strategies, techniques, tasks, and examples 
(e.g., knowledge of particularities of a real analysis textbook that makes it more convenient than 
others for use in a course, or use of analogy to illustrate the features of the existential quantifier). 
KFLM comprises the knowledge of theories of mathematical learning, strengths and weaknesses 
associated with learning, ways in which students interact with mathematical content, and emotional 
aspects of learning mathematics (e.g., awareness of analysis being more difficult for students than 
calculus; knowledge of difficulties students encounter when working with real numbers). Finally, 
KMLS contains the knowledge of sequencing of topics, expected learning outcomes, and the expected 
level of conceptual or procedural development (e.g., the sequencing of the completeness theorem 
topics, characterization of the greatest element, and the Archimedean property of the real numbers).  

Methodological aspects 
In this research, based on an interpretive paradigm and a qualitative methodology, an instrumental 
case study (Stake, 1995) was conducted. The case pertains to a lecturer and mathematics researcher 
that was developing a real analysis course. Real analysis is a second-year course in a mathematics 
teachers’ training program in a Chilean university. In the first two years, the students take calculus, 
algebra, and geometry courses, whereas, from the third year, the courses focus on teaching practices, 
general pedagogy, and didactics of mathematics (numerical systems, functions, geometry, and 
statistics).  
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The lecturer, who will be called Diego, has more than 20 years of teaching experience at the university 
level and this is the sixth time in recent years that he has developed the real analysis course. Diego’s 
classes are of 90-minute duration, and each was videotaped, transcribed, and organized in class 
episodes according to Diego’s tacit or explicit goals. For example, we consider a class episode the 
period since Diego begins until he finishes presenting a definition. In each episode, Diego’s 
interventions that show knowledge according to the MTSK model (a knowledge that could be 
classified in an analytical category of some subdomain of the model) are chosen as analysis units. 
The analysis units that allow us to affirm the presence of a teacher knowledge were named evidence. 
Others, where we suspected the existence of teacher knowledge, but additional information was 
needed in order to confirm or refute this suspicion, were denoted as indication. An indication provided 
a reason to investigate in more detail the lecturer’s knowledge. Hence, the differentiation between 
evidence and indication (Moriel-Junior & Carrillo, 2014) is considered with the aim to refine our 
interpretations and deepen the understanding of the subdomains of lecturer’s knowledge.  

The data obtained through video recordings was complemented with a semi-structured interview that 
was divided in two sessions for a total duration of three hours. The interview was audio-recorded and 
subsequently transcribed, reproducing Diego’s speech with the highest fidelity possible. A template 
of questions was constructed to prompt Diego to think about some of his expressions and 
performances during the classes. For example, in one of Diego’s classes, he referred to a YouTube 
video as a complementary material. Thus, in the interview, we asked Diego why he used that video 
and what was its intended objective. In addition, some questions were formulated with the intention 
to examine indications of knowledge and to explore the subdomains of specialised knowledge that 
has not been present in class episodes. Video clips of the classes were shown to stimulate Diego’s 
recollection, because the interview was conducted once the course was completed. Transcriptions of 
the interview were analyzed in a similar manner to classes, considering each response to a particular 
question as an analysis unit.  

Results   
In this section, we exemplify with evidence the subdomains of Diego’s specialised knowledge during 
a class session on real numbers. Diego starts this class by enunciating some concepts and properties 
studied in the previous class, such as the least-upper bound property and the Archimedean property 
of real numbers. Next, he uses these elements with the aim to construct, together with the students, 
the density of the rational and irrational numbers in the real numbers proof.  

Diego’s mathematical knowledge  

As a part of his KoT, Diego knows axioms for the real numbers, constructions of this numerical 
system (e.g., Cauchy sequences or Dedekind cuts), definition of real numbers as a complete ordered 
field, and properties of real numbers. For example, Diego knows the Archimedean property of the 
real numbers (KoT) because he enunciates the property (∀ 𝑥𝑥,𝑦𝑦 ∈ ℝ , 𝑥𝑥 > 0,∃𝑛𝑛 ∈ ℕ  such that 𝑛𝑛𝑥𝑥 >
𝑦𝑦) and comments on that in the following way:  

Diego: And, this property, which was not specified by Archimedes, but Euclid, is 
equivalent to saying that, for all small natural number 𝜀𝜀, there exists a natural 
number 𝑛𝑛 such that 1 𝑛𝑛� ≤ 𝜀𝜀.   
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Later, Diego writes on the blackboard the following proposition: Let 𝑎𝑎𝑛𝑛 <  𝑏𝑏𝑛𝑛, and  𝐼𝐼𝑛𝑛 = [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 ],   
if 𝐼𝐼𝑛𝑛 is a set of closed and bounded intervals, there exists 𝑥𝑥 ∈ ℝ, such that 𝑎𝑎𝑛𝑛 < 𝑥𝑥 <  𝑏𝑏𝑛𝑛, ∀ 𝑛𝑛 ≥ 1. 
Next, he makes a comment regarding this statement.   

Diego: This proposition indicates that, every time that I intercept closed and bounded 
intervals, that are nested… I forgot to say that they have to be nested, if not, it is 
not true. If the intervals are not nested, then the intersection is empty. For example, 
if you take the [0,1] interval and later the [10,12] interval, in the intersection you 
will have nothing because they are not nested. Then, to say that they are nested, I 
add to the proposition [writes on the blackboard, ∀ 𝐼𝐼𝑛𝑛 ⊃ 𝐼𝐼𝑛𝑛+1] 

Diego knows the nested intervals property (KoT), and deepening his discussion on the property, he 
emphasizes that the intervals must be nested in order to have an intersection that is not empty. Also, 
he understands how this sufficient condition gives sense to the implication expressed in the property. 
This knowledge of use of formal language as a way of communicating the mathematical idea 
expressed in the nested intervals property, belongs to the KPM subdomain.  

On the other hand, starting from an indication of Diego’s knowledge about the importance of the 
density of ℚ in ℝ property, in the interview, when we asked Diego about the meaning of this property, 
he responded as follows:   

Diego: The density is everywhere, because you cannot do anything if you do not have a 
dense and numerable set. The fact that the rational numbers are dense in the real 
numbers is very important, because you can take any real number and approximate 
it by a rational number. The real numbers have a cardinality greater than aleph 0, 
so you cannot count using them…Then, in this process of approximation, the 
rational numbers are important because, in practice, our calculations are limited to 
rational numbers.   

In this excerpt, Diego demonstrates his knowledge of a connection to items within the same topic 
(KoT) because he points out that properties of ℚ such as its density in ℝ and its numerability are 
essential to work approximation and calculation processes with real numbers. When the lecturer said, 
“in practice, our calculations are limited to rational numbers”, he referred to the processes mentioned 
above, which are also important in applications of mathematics, such as in modelling or numerically 
solving differential equations. In this sense, Diego’s knowledge of uses and applications of properties 
of ℚ is identified as a part of his KoT subdomain.  

Likewise, Diego refers to the density property of the rational and irrational numbers in real numbers. 
Given an interval [𝑎𝑎, 𝑏𝑏] ∈ ℝ, it holds ℚ ∩ [𝑎𝑎, 𝑏𝑏] ≠  ∅ and ℝ/ℚ ∩ [𝑎𝑎, 𝑏𝑏] ≠  ∅. Diego particularizes 
the proposition for the case of an interval with 𝑎𝑎 = 0 and 𝜀𝜀 = (𝑏𝑏 − 𝑎𝑎)/2. Using the Archimedean 
property, he establishes the following lemma: Given 𝜀𝜀 > 0, and 𝑛𝑛,𝑚𝑚 ∈ ℕ, the interval (0, 𝜀𝜀) contains 
a rational number 1 𝑛𝑛�  and an irrational number √2 𝑚𝑚⁄ . Hence, Diego shows his knowledge of 
establishing preliminary results to facilitate the development of the density of rational numbers in 
real numbers proof. This knowledge of a way of proceeding in mathematics is a part of Diego’s KPM. 
Moreover, Diego considers the case of a positive rational number 𝑎𝑎, extending his previous 
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arguments, and demonstrates his knowledge of process of particularization and generalization of a 
proposition about real numbers (KPM) as a way of proceeding in mathematics.  

Continuing with the development of the density of the irrational numbers in real numbers proof, the 
lecturer expresses: 

Diego: Using the previous lemma, there exists a number 𝑧𝑧, real and not rational number, 
such that 𝑧𝑧 is between 0 and 𝜀𝜀. Then, if I add 𝑎𝑎 to this inequality, I have [writes on 
the blackboard 𝑎𝑎 < 𝑎𝑎 + 𝑧𝑧 < 𝑎𝑎 + 𝜀𝜀 < 𝑏𝑏].  𝑎𝑎 is a rational number and  𝑧𝑧 is an 
irrational number, then, where is 𝑎𝑎 + 𝑧𝑧? . . .  If I can argument that 𝑎𝑎 + 𝑧𝑧 is not in 
ℚ, then I can find an irrational number in [𝑎𝑎, 𝑏𝑏]. Why is 𝑎𝑎 + 𝑧𝑧 not in ℚ? Because, 
if 𝑎𝑎 + 𝑧𝑧 was a rational number and I add another rational number, I will have to 
obtain a rational, because the rational numbers are a field. So, when I add two 
rational numbers, the answer is a rational number. Then, what can I add to 𝑎𝑎 + 𝑧𝑧, 
conveniently, to get a contradiction?  

Student:          −𝑎𝑎 

Diego:            Ok, if I add −𝑎𝑎 to the inequality, the addition −𝑎𝑎 + 𝑎𝑎 + 𝑧𝑧 is equal to 𝑧𝑧. That should 
be a rational, but I know that this is not true, so 𝑎𝑎 + 𝑧𝑧 cannot be a rational number. 
Ok, I win. 

In this episode, lecturer’s knowledge of ways of validating in mathematics is identified. Diego 
demonstrates his knowledge of how proofs by contradiction method are done (KPM). The lecturer 
understands the logic underpinning this method of proof because he exposes what should be assumed 
(𝑎𝑎 + 𝑧𝑧 is in ℚ), how a contradiction is constructed (adding -𝑎𝑎 conveniently considering properties of 
the rational numbers) and what must be concluded (𝑎𝑎 + 𝑧𝑧 is not in ℚ).   

Diego’s pedagogical content knowledge  

Regarding Diego’s PCK, in the class, Diego referred to the textbooks that he uses to develop the 
course. Later, in the interview, Diego elaborated on the reasons behind this literature selection.  

Diego:         In the real analysis course, I use the Spanish edition of a famous textbook; the original 
edition is in Portuguese, but in Spanish, it has two editions, detailed and 
summarized. I do not use the detailed version because that textbook has a lot of 
information. Instead, I use the summarized edition that provides the most essential 
parts and, if I am lacking something, then I complement it with other textbooks.  

In the exposed fragment, we observe that Diego not only knows both editions of the analysis textbook 
(detailed and summarized), he also knows the specific characteristics of each one, which allows him 
to select the textbook that makes it more convenient to develop the real analysis course. This 
knowledge of the teaching resource belongs to Diego’s KMT subdomain.  

Likewise, Diego exposes the reasons behind the use of YouTube videos as a complementary material 
to the classes.   

Diego: I like these videos because they are produced by the author of the textbook that we 
use in the course. The teacher worked in a prestigious university in Brazil and these 
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videos are from a course intended for postgraduate students. The course duration is 
two months. I present the course [the same content] in a semester, with more time 
and I share the videos with the students, although the videos are in Portuguese and 
the language could be a problem.  

Diego highlights the advantages of YouTube videos (they are created by the textbooks’ author and 
he can develop the content in more detail). However, Diego knows that this digital resource has the 
limitation of language that is unfamiliar for some students. In this sense, Diego shows his knowledge 
of the advantages and limitations associated with the videos as a digital teaching resource. This 
knowledge is included in Diego’s KMT subdomain.  

On the other hand, an indication of Diego’s knowledge was confirmed in the interview when Diego 
talked about students’ understanding of the real numbers. 

Diego: The trouble with real numbers is the least-upper bound property, a historical 
difficulty that comes from Greeks. To humanity, it took more than 2000 years to 
comprehend the continuum . . . and maybe more, because I say until Newton, but 
actually, the formulation comes from Weierstrass. Then, this difficulty, this 
epistemological obstacle, inevitably emerges when you talk about real numbers.  

Diego knows students’ weaknesses pertaining to the understanding of real numbers (KFLM). He 
explains this issue considering historically intrinsic difficulties in conceptualizing real numbers due 
to the presence of the continuum as an epistemological obstacle.  

Linked with the above, Diego comments:  

Diego: The other issue is that, in high school, real numbers are reduced to an algorithmic 
point of view only. I do not claim that this is wrong, but it should not be restricted 
to only that.  

In the previous statement, Diego shows his knowledge of how are taught real numbers in high school. 
He refers to “an algorithmic point of view” highlighting deep level regarding the approach given to 
real numbers in learning standards in some Chilean high schools. This knowledge of the expected 
level of procedural development belongs to Diego’s KMLS subdomain. 

Final remarks  
In this research, we have shown some examples of how the mathematics teacher’s specialised 
knowledge could be identified and characterized in the case of a mathematics lecturer. In the 
pedagogical content knowledge, we exemplified the three subdomains (KMT, KFLM, and KMLS) 
and in mathematical knowledge we exemplified the KoT and KPM subdomains. Evidence of KSM 
was not supported by our findings in line with the results reported by Vasco et al. (2015).  However, 
we obtained some indications of knowledge which supply several ideas to deepen in the KSM in the 
case of mathematics lecturers. Furthermore, descriptors of KPM regarding ways of communicating 
and ways of validating in mathematics are exposed in this work. Descriptors about ways of 
proceeding and ways of validating were reported by Delgado-Rebolledo and Zakaryan (2018), 
although the descriptors’ grouping into categories is still under study. Establishing categories of KPM 
is an important topic of research in the MTSK model, and descriptors obtained in this study focusing 
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on one mathematics lecturer are a good starting point for investigating components of this subdomain 
in teachers at other educational levels, given that scarce evidence of KPM has been reported in the 
research literature (Zakaryan & Sosa, 2019).  

Additionally, in some examples, we observed possible relationships among the subdomains of 
knowledge. For instance, when the lecturer exposes the nested intervals property, his KPM regarding 
use of formal language allows him to understand this property in his KoT. Also, in the lemma used 
to develop the density of the irrational numbers in the real numbers proof (KPM), the lecturer relies 
on his knowledge of the Archimedean property (KoT). In a similar manner, relationships within 
pedagogical content knowledge domain could be established. For example, the lecturer ascribes 
students’ weaknesses to the epistemological obstacle associated to real numbers, which allows him 
to understand the procedural approach to this notion in high school. Then, when the lecturer refers to 
the approach to real numbers adopted in high school (KMLS), he also demonstrates his awareness of 
students’ weaknesses when working with real numbers (KFLM).  

Thus far, relationships between disciplinary knowledge and pedagogical content knowledge have 
been reported in studies of secondary teachers (e.g., Sherin, 2002). We propose that this type of 
relationships could also be established in the knowledge of mathematics lecturer. These relationships 
are an opportunity to investigate the development of lecturer’s mathematical and pedagogical 
knowledge.  

In line with the above, the identification of the mathematics lecturer’s specialised knowledge 
contributes to understand mathematics lecturers’ knowledge and how this knowledge is reflected in 
their teaching practice (Biza et al., 2016). However, more research is necessary to deepen the 
understanding of the nature and the components of mathematics lecturer’s knowledge. In this sense, 
we propose to explore the relationships between the different subdomains of mathematics lecturer’s 
knowledge as a topic for further research. 
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In the last years, the importance of probability in the context of teaching mathematics is increasing 
together with its weight in the International Assessment Project. In particular, the presence of the 
content of “uncertainty and data” in the PISA framework has motivated the trend toward the relevance 
of this topic in the mathematics curricula all over the world. The epistemological peculiarities and the 
difficulties related to teaching and learning probability, is also related with the complexity to catch 
the differences and, at the same time, the intrinsic coherence between the three different approaches 
to be considered within such topic. This crucial aspect puts probability in a core position within the 
topics to be focused on researches in the Mathematics Education field. In particular, the subjectivist 
approach (de Finetti, 1931), hailing a subjective judgement influenced by a person’s information and 
knowledge, is hardly considered in the international panorama of the school curricula, as stressed by 
Batanero (2015): “the subjective view, that takes into account one-off decisions, which are frequent 
in everyday life, and where we cannot apply the frequentist view, is hardly considered in the 
curriculum” (p. 43). Furthermore, we can recognize in the subjectivist approach to probability a 
powerful link with the psychological and cognitive attempt to measure the degree of reliability that 
an event occurs in the form “how much I am minded to bet on it”. Following the perspective pointed 
out by Batanero (2015), the subjective view of probability could support the teachers in designing 
meaningful educational contexts in this topic. Indeed, it is well known that teachers’ knowledge has 
a great impact on pupils’ knowledge/learning and it is essential to focus on teacher education if we 
want to improve pupils’ learning. To make this possible, it is necessary to think about what kind of 
tasks in teacher education can be conceptualized and implemented in order to support teachers in 
developing knowledge about probability that includes also the subjective approach to it. Starting from 
these premises we present here a task, that is a part of a wider research project that has the goal to 
conceptualize and to implement tasks for teacher education in the context of probability. With this 
task we want to address a first research question that is: which kind of difficulties or potentialities do 
teachers show during the work with this task? 

The task was conceptualized including pupils’ productions, in order to develop the so called teacher’s 
Interpretative Knowledge (Ribeiro, Mellone, & Jakobsen, 2016). The Interpretative Knowledge 
allows teachers to give sense to pupils’ productions, even if such productions are considered as “non-
standard, adequate answers that differ from those teachers would give or expect, or answers that 
contain errors” (Mellone, Tortora, Jakobsen, & Ribeiro, 2017, p. 2949). In this frame we would like 
to address a second research question: What kind of interpretative knowledge teachers need to 
recognize crucial elements to re-design the class work according with pupils’ knowledge? 
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Figure 1: bar graph from previous research 

In particular, the task we are referring is conceptualized starting from a practice-based approach, that 
means to assume that teacher education should be in a direct relationship with practice. One of the 
ways of achieving this aim is to include pupils’ productions to be discussed in the task. In particular, 
in this case we insert some pupils’ productions came from previous research developed by the first 
and third authors in a fourth grade (Di Bernardo, 2017). During such research, one of the activities 

developed was to involve pupils in a measuring 
process of the length of a set of spaghetti out of a 
commercial box (about 1000 of spaghetti) and 
representing the outcomes by a bar graph (Figure 1). 

The subjective approach of probability was faced 
using a betting game. In fact, after the measuring 
activity, the pupils were invited to imagine a game 
in which they had to guess the length of a spaghetti 

randomly extracted from the box they were took off during the measuring activity. To do that, pupils 
were divided into two groups: i) the group of bookmakers, who had to create “quotas” for each event; 
ii) the group of players, who had to choose their preferred bookmaker and bet on the chosen event. 
We hypothesized that the pupils can use the previous representation by the bar graph evaluating in a 
qualitative way the inverse relationship between the frequency of a length with the “quotas” they are 
available to pay for a betting on this length. Starting from this educational path, we built the task for 
teacher education. In the first part of the task we asked teachers to create “quotas”, on the base of the 
bar graph in fig.1. The request was quite open in order to leave teachers free to attribute quotas for 
the precise measure or in terms of ranges of measures, and to express it in additive or multiplicative 
way. Therefore, they had to decide “how many times” to pay the player's stake both in case the player 
bets on a precise measure of the length of the spaghetto and in the case the player bets on a range of 
measure of the length of spaghetto.  
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In didactic literature there are many practical materials to use experiments in mathematics 
classroom. Even though, experiments seem to be beneficial in mathematics education, little is known 
about what teachers think concerning this method. In this explorative study we want to examine the 
teachers’ beliefs about experiments and which relations they see between experiments and 
mathematics. We asked teachers from various school types in Germany, with an open-ended 
questionnaire. Our results indicate that most teachers see experiments either as controlled and 
planful procedure or as “trial and error”. Furthermore, teachers state mainly two relations between 
experiments and mathematics. 

Keywords: Experiments, teachers’ beliefs, grounded theory 

Introduction 
Despite the fact, that teachers’ beliefs have been of increasing interest in educational research, the 
lack of a common shared definition or understanding of beliefs is obvious (Pajares, 1992; Philipp, 
2007). Most authors locate beliefs within the affective domain but attest beliefs to be more cognitive 
and stable than attitudes and emotions (McLeod, 1992; Philipp, 2007; Hannula, 2012). We refer to 
beliefs as “Psychologically held understandings, premises, or propositions about the world that are 
thought to be true” (Philipp, 2007, p. 259). It has been proven that beliefs influence teachers’ activity 
(Grigutsch, 1996). Thus, beliefs are the basis for later actions and are part of the teacher's professional 
knowledge (Kuntze & Reiss, 2005).  

However, during the last years the focus of interest has changed from rather global beliefs to domain 
specific beliefs or beliefs concerning single methods (e.g. Eichler & Schmitz, 2018). One method, 
that has not been taken into account so far, are experiments or hands-on laboratory activities. Since 
experiments play an important role in both scientific mathematics and mathematics education, we 
want to shed light on teachers’ beliefs concerning the nature of experiments and the relations between 
experiments and mathematics.  

Experiments  
Experiments play a crucial role in the epistemology of nature science. The experimental testing of 
hypotheses, which have been derived from theories, can be seen as the core of scientific work in 
subjects like physics and chemistry. It is, therefore, not surprising that experiments have an 
outstanding position in science education as well. For example, in physics lessons experiments and 
laboratory work fill about 30% of the time spent in class (Tesch & Duit, 2004). Before illustrating 
the role of experiments in mathematics we will give a brief overview of the discussion about the 
question what exactly an experiment is. 
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Characteristics of Experiments  

It is rather surprising that there is no common shared definition of experiments. Borba and Villarreal 
(2005) summarized definitions from several dictionaries concluding that “in an experiment, 
conditions or factors are manipulated and facts are observed in order to prove or disprove a given 
hypothesis” (p. 66). They added that besides the testing of hypotheses, experiments can be used to 
“discover something unknown […] or to provide examples of a known truth” (p.66). Ganter and 
Barzel (2012) stress that experiments form a cyclical process, starting with a concrete hypothesis, the 
planning of an experiment and followed by the performing of the experiment itself and analysing the 
results – which themselves can lead to a following cycle. It should not remain unmentioned that in 
every day sense – and even in some dictionaries – every hands-on activity or laboratory work is 
considered to be an experiment, even if the process is not controlled and follows rather the principles 
of “trial and error” (Borba & Villarreal, 2005). 

Experiments and (the Learning of) Mathematics 

Even if it is not often mentioned or recognized: experiments and empirical observations play an 
important role in mathematics and the learning of the same. Polya (1945) described that: 

 “mathematics has two faces; it is the rigorous science of Euclid but it is also something else. 
Mathematics presented in the Euclidean way appears as a systematic, deductive science; but 
mathematics in the making appears as an experimental, inductive science. Both aspects are as old 
as the science of mathematics itself” (p. vii).  

Experiments are part of the proving process in the sense that they help to identify structures and they 
give ideas how to proof theorems (Kortenkamp, 2014). A (young) subdomain of mathematics that 
uses (mainly) computer-supported experiments and simulations for this purpose is called 
experimental mathematics (Borwein et al., 2004). Besides the role experiments play in the proving 
process, mathematics and experiments meet each other in the experimental processes as it is 
performed in nature science, too. Quantitative experiments cannot be analyzed without mathematics 
– the data derived from an experiment undergoes a mathematical modeling process. Henning (2013) 
postulates that one of the most important functions of mathematics lies in supporting the 
understanding of our world. 

The role of experiments in the mathematics classroom is closely connected to the relations between 
experiments and mathematics in scientific settings. In the existing literature we identified three 
learning situations related to experiments in mathematics:  

· Proving processes: Regardless that proving is less present in school than in scientific 
mathematics, experimental work plays the same role in the proving process in school. 
Experiments can help to find a rule that could be proved and the ideas for the proof itself 
(Kortenkamp, 2014). “Experimental proofs” are part of the proving process of secondary 
students at school (Brunner, 2014). 

· Modeling: Modeling is a key competence in mathematics lessons (Blum & Niss, 1991). But 
since modeling activities can be performed with “real” data derived from experiments as well 
as with data found in textbooks, the question arises whether the implementation of 
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experiments can enrich the modeling process. Following Carreira and Baioa (2018; 2011), 
experiments can enhance the credibility of modeling tasks and foster students’ understanding 
of the real situation that is modeled and the involved mathematics. The use of “real” data from 
experiments can also enrich the validation of models and opens teachers’ and students’ view 
for the question what characterizes a good model and how one should act upon measurement 
errors which are inherent of experiments (Carrejo & Marshall, 2007). 

· Learning of new concepts: Furthermore, experiments can support students’ learning of new 
concepts. Ganter and Barzel (2012) showed that experiments can create a fruitful start for the 
learning of functional relations and, in particular, the manipulation of a variable during an 
experiment can help students to distinguish between dependent and independent variable. 

Furthermore, experiments can increase students’ interest in mathematics and their motivation 
(Beumann, 2016). As conclusion one might say that experiments can enrich mathematics lessons in 
various ways and learning situations. However, experiments are neither explicitly mentioned in the 
German mathematics curriculum, nor do the play a crucial role in teacher education. Thus, teachers’ 
beliefs concerning experiments and the teachers’ use of experiments in the classroom is widely 
unexplored. This contribution is a first step to investigate teachers’ beliefs concerning experiments 
and their connection to mathematics. 

Beliefs and Experiments 
Some recent studies addressed the beliefs of teachers in nature sciences concerning the role of 
experiments in the classroom and the goals obtained by using experiments. Science teachers’ reasons 
to use experiments in their teaching practice include that experiments involve hands-on-activities, 
increase students’ motivation and their conceptual and procedural understanding of nature sciences 
(Lavonen, 2012). In the special case of mathematics, teachers value the use of hands-on activities in 
classroom and believe that mathematics lessons should be student-centered (Wang & Cai, 2007) – 
experiments fall within both: hands-on activities and student-centered methods. 

However, to the best of our knowledge there is currently no study (neither in science education nor 
mathematics education) focusing on teachers’ beliefs concerning the nature of experiments and how 
experiments are connected to mathematics and mathematics learning. For a profitably use of 
experiments in class, teachers need to have appropriate beliefs about this method itself as well as 
about the relation to mathematics.  

Research Questions 
Since on the one hand experiments can be beneficial for the learning of mathematics, and on the other 
hand teachers’ beliefs affect their classroom practices (Grigutsch, 1996), we want to explore beliefs 
that teachers hold concerning experiments. This leads to the following questions: 

1) Which beliefs are held by mathematics teachers concerning the notion experiment? 
2) Which relations between experiments and mathematics do mathematics teachers see? 

Methods 
Since the answers in liker-scale surveys are not easy to interpret when dealing with beliefs (Phillips, 
2007) we decided to use open-ended questions within a paper and pencil questionnaire. The questions 
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where formulated as follows: 1) What do you understand under the notion “Experiment”? Give a brief 
explanation and typical characteristics. 2) In which way do experiments and mathematics fit together? 
Which relations between mathematics and experiments do you see? 

The questionnaire was handed to 50 in-service teachers who worked at different types of schools in 
North Rhine Westphalia, Germany (primary school, lower and upper secondary schools). All of them 
were mathematics teacher and 24 taught another STEM-subject (like chemistry or physics) as well. 
All teachers participated voluntarily. We choose that variety of participants in order to gain a more 
global (yet not necessarily generalizable) picture of the teachers’ beliefs. However, not all teachers 
answered every question in the questionnaire. 

The data analysis of this study is based on the “Grounded Theory” by Glaser and Strauss (1998). We 
constantly compared the data with each other by using open codes. Thus, we identified various beliefs 
concerning experiments. These beliefs have been discussed and grouped in categories. Given the 
limited space, we only give an overview of the main categories in this contribution. 

Results 
Category Description Example      Quantity 

Procedure (characteristics of the experimental process) 

Experiments as 
planful and 
controlled procedure 

Experiments are characterized by planful 
and controlled actions to verify a given 
hypothesis 

“An experiment is an 
action, that is conducted 
under fixed circumstances 
[…] to check a hypothesis 
or generate one.” 

17 

Experiments as “trial 
and error” 

Experiments are not planful or controlled. 
They do not need a hypothesis and are 
characterized by trying out and attempting 
different things. 

“Try things out – involves 
that sometimes it goes 
wrong.” 

22 

Experiments as 
autonomous hands-
on activity 

Every kind of hands-on activity that 
provides autonomous working is viewed 
as experiment – regardless if it is planful 
or just trying. 

“To solve a task with 
hands-on activities and 
practical solutions.” 

10 

Aim (aims connected to experiments) 

Experiments aiming 
on (better) 
understanding 

The aim of experiments is to (better) 
understand previously known things. 

“Better understand 
relations.” 

13 

Experiments aiming 
at (new) knowledge 

The aim of experiments is to provide new 
(at least from the viewpoint of the 
experimenting person) insights and 
knowledge. 

“Experiments are a 
method to gain new 
insights.” 

16 

Table 1: Beliefs concerning the nature of experiments 
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Regarding the nature of experiments, we distinguish beliefs concerning the procedure of 
experimenting and the aims which are connected to experiments. Most teachers stated that they see 
experiments as either a controlled and planful action to check a given hypothesis or as uncontrolled 
trying without guiding hypothesis and plan. However, some teachers wrote that they see every hands-
on activity as an experiment as far as it involves autonomous working. Besides these characteristics 
of the conduction of an experiment, most teachers stated that experiments aim at a certain goal: 16 
teachers believe that experiments should lead to new insights and new knowledge – at least this 
knowledge should be subjectively new for the person that obtains the experiments. Other teachers 
focus more on the aim to better understand previously gained knowledge (Table 1).  

Concerning the relation between mathematics and experiments we could identify two main beliefs 
(Table 2): 13 teachers stated that experiments are part of the process to generate new mathematical 
knowledge. Experiments are the inductive starting point of this process. 9 teachers see mathematics 
as part of the experimental process in other sciences – in this view mathematics is used to describe 
and model experiments. Two teachers stated no direct connection between mathematics and 
experiments but listed characteristics that both have in common. 3 teachers wrote that they see no 
relation between mathematics and experiments. However, despite the fact that we explicitly asked for 
a connection between experiments and mathematics, many teachers only wrote about the connection 
of experiments and classroom practices. 

Category Description Example      Quantity 
Experiments as a 
method in the 
mathematical 
process 

Experiments are used in the 
mathematical process to 
generate new hypothesis that 
can be proven later. 

“Mathematical statements are the result of 
a long process, obtained with the help of 
experiments” 

13 

Mathematics as 
toolbox in the 
experimental 
process 

Mathematics is used to 
describe and evaluate 
experiments in other sciences 
and everyday life. 

“Experiments and their results can usually 
be described with mathematics.” 

9 

Common 
characteristics of 
Mathematics and 
Experiments 

Mathematics is not part of the 
experimental process or vice 
versa but both have common 
characteristics. 

“Mathematics as well as experiments is 
based on plans to solve certain problems, 
the systematic conduction of the plan and 
the reflection upon the results.” 

2 

Table 2: Beliefs concerning the relation between mathematics and experiments 

Like beliefs concerning the nature of mathematics, beliefs about experiments are not disjoint in the 
sense that teachers can either believe that experiments are planful and controlled or trial and error. 
The different beliefs can be held in various combinations. We illustrate this fact by describing the 
beliefs of three teachers more precisely: 

Mr. A teaches mathematics and biology at an upper secondary school and wrote that he used 
experiments in his mathematics lessons before. For him a “clear mandatory setting and procedure” 
characterizes experiments. But he is aware of the fact that in every day life “experimenting” can be 
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viewed as less planful and less controlled: “Colloquial, experimenting can be aimless without 
mandatory setting and determined procedure.” He sees the connection between mathematics and 
experiments in modeling activities: “Insights from experiments can be mathematically modeled. The 
mathematical models themselves can be used for further predictions concerning the phenomenon. 
These predictions can be checked by new experiments. Mathematics and experiments can support 
each other in this sense.”  

Mr. B teaches mathematics and physics at an upper secondary school and used experiments in his 
mathematics lessons before. For him, experiments follow a very clear and determined procedure: 
“Experiments consist of the observation of results, the investigation of dependences from single 
parameter, a defined procedure, and the reflection on the objects and used methods.” In contrast to 
Mr. A he sees no direct connection between mathematics and experiments but he stresses that the 
experimental process and the process of creating new mathematical knowledge have some 
characteristics in common: “Similar to experiments, an appropriate question and the development of 
ideas, hypothesis and conceptions belong to mathematics. On this basis theories can be developed 
and later be proven.” 

Mrs. C works at an upper secondary school, too, but teaches no nature science and has not used 
experiments in her lessons so far. Mrs. C’s beliefs concerning the nature of experiments are less 
sophisticated. For her experimenting means to “try things out.” However, in her opinion experiments 
are an integral part of mathematical discoveries: “Mathematics is based on experimental work, like 
searching and finding schemas – that’s how discoveries are made!”  

The exemplary comparison of Mr. A and Mr. B reveals, that the teachers’ beliefs concerning the 
nature of experiments as well as their background (both are teaching a second STEM-subject and 
used experiments in their lessons before) do not directly determine which connections to mathematics 
they see. Both teachers stress that experiments follow a defined procedure. However, Mr. A sees a 
clear connection between experiments and mathematics, while Mr. B does not see this connection. 
This result was observed amongst many teachers in our sample. Furthermore, we found no effect of 
STEM-teaching on the teachers’ beliefs concerning the nature or experiments. 

Discussion and Outlook 
The teachers’ beliefs concerning the nature of experiments mainly reflect the discussion on a 
scientific definition of experiments (Borba & Villarreal, 2005) with the two (extreme) poles 
“experiments as trial and error” and “experiments as controlled procedure”. Given the fact, that 
modeling plays an important role in modern mathematics education, it is rather surprising that not 
more teachers saw this connection between mathematics and experiments. Especially since many 
teachers in our sample taught a nature science as well and, therefore, should be familiar with 
experiments. In our understanding, every analysis of a quantitative experiment in nature sciences 
needs mathematical modeling to some degree. However, 25% of the teachers reported that they see 
experiments as part of the process to gain new mathematical knowledge which is in line with 
Brunner’s (2014) model of proving processes in school. Furthermore, (computer-supported) 
mathematical experiments are of growing importance in scientific mathematics which should be 
reflected in mathematics education as well, according to Kortenkamp et al. (2014). 
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One limitation for our analysis is that we have no information about the teachers’ beliefs concerning 
the nature of mathematics (mathematical worldview). These beliefs might affect which connections 
teachers see between experiments and mathematics.  

With this pilot study we made a first step to understand teachers’ beliefs concerning experiments in 
mathematics. Our ongoing research will now focus on two facets: 1) The reasons that lie behind 
teachers’ beliefs concerning experiments (e.g. teachers’ background and connections between 
teachers’ beliefs concerning the nature of mathematics and their beliefs concerning experiments) and 
2) the question whether (and how) mathematics teachers implement experiments in their mathematics 
lessons. In order to gain deeper insights into the connection of the teachers’ beliefs and their use of 
experiments in mathematics lessons, semi-structured interviews as well as classroom observations 
will be used.  
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Teachers’ beliefs are expected to have impact on the implementation of inquiry-based learning (IBL) 
in mathematics education. Moreover, Chinese and Dutch teaching cultures in mathematics seem to 
be very different. This paper presents results from semi-structured interviews with 30 Chinese and 19 
Dutch mathematics teachers’ beliefs about IBL. Statements were connected to main codes and ranked 
for each country. Dutch teachers focused on students’ taking responsibility in IBL while Chinese 
teachers put extra emphasis on teacher guidance, they also talked about student discussion and 
collaboration. Chinese teachers paid attention to the benefits of IBL on mathematical thinking while 
Dutch teachers to the benefits on mastery and appliance of knowledge. In addition to the lack of time 
and suitable tasks as difficulties, Chinese teachers also mentioned students’ lack of motivation and 
performance, while Dutch teachers mentioned the demands and openness of IBL. 

Keywords: Mathematics education, inquiry-based learning, comparative study, teacher belief, lower-
secondary education. 

Introduction 
As an intentional student-centered pedagogy rooted in the Western teaching culture, inquiry-based 
learning (IBL) encourages students to take responsibilities in the learning process, to explore by 
themselves, and to construct knowledge through actively participating in cycles like questioning, 
hypothesizing, designing, investigating, analyzing and reflecting (Swan, Pead, Doorman, & 
Mooldijk, 2013). 

The understanding and implementing of IBL may be impacted by teaching cultures, while teaching 
culture of the East Asia is considered remarkably different from that of the West. These two teaching 
cultures have been identified and compared, which seemed to produce some stereotypes (Leung, 
2001). From these stereotypes, the East Asia emphasizes learning content and related skills (Correa, 
Perry, Sims, Miller, & Fang, 2008; Leung, 2001) and values in-depth knowledge (Norton & Zhang, 
2018), while the West emphasizes learning process (Leung, 2001) and values practical knowledge 
(Norton & Zhang, 2018); the East Asia conducts instruction to the whole class of students, while the 
West adopts individualized learning and group work (Leung, 2001); the East Asia considers teachers 
as the center and conducts well-organized directive instruction to deliver knowledge to students 
(Leung, 2001), while the West considers students as the center and encourages them to construct 
knowledge actively (Liu & Feng, 2015); the East Asia makes students learn by memorizing and 
practicing repetitively (Liu & Feng, 2015; Tan, 2015), while the West encourages meaningful 
learning (Leung, 2001); the East Asia motivates students by external factors such as examinations, 
while the West motivates students by internal factors such as interests (Leung, 2001). 
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These stereotypes about teaching cultures in the East Asia and the West also apply to the subject of 
mathematics. While the conceptualization of IBL in mathematics is less obvious (Artigue & Blomhøj, 
2013). A large part of existing research focused on IBL in science, including research on science 
teachers’ beliefs and practices of IBL (Wallace & Kang, 2004), a few of these research also included 
mathematics teachers (Marshall, Horton, Igo, & Switzer, 2009; Song & Looi, 2012). More attention 
needs to be paid to IBL specifically in mathematics. 

As for the concept of IBL itself, no consensus has been reached about the definition, there exist a 
variety of interpretations about the IBL way of teaching approach (Furtak, Seidel, Iverson, & Briggs, 
2012), especially about the amount of support provided to students, which makes IBL complicated to 
understand and implement for practitioners. Teachers may not have a complete understanding of IBL 
(Chin & Lin, 2013), and their beliefs about the detailed content of IBL tend to be diverse (Chan, 
2010). In addition, IBL seems not yet a common practice embedded in daily teaching (Dobber, Zwart, 
Tanis, & Van Oers, 2017). Teachers’ beliefs may shape their decisions and practice of implementing 
IBL (Saad & BouJaoude, 2012; Song & Looi, 2012; Wallace & Kang, 2004). While some studies 
also found a disconnect (Engeln, Euler, & Maass, 2013; Ramnarain & Hlatswayo, 2018) or a more 
complicated impact (Chan, 2010) between the beliefs and practice in regard to IBL. A deep 
understanding of teachers’ beliefs towards the “complicated” IBL makes sense and may provide 
potential for better understanding their practice. 

In an investigation into the beliefs and practices of IBL in mathematics, we explored from a students’ 
perspective, and took China and the Netherlands as representing countries of the two teaching cultures 
(the east Asia and the West). The results showed that Chinese students reported more experience and 
preference of IBL than Dutch students, which challenge the stereotypes about the two teaching 
cultures. In this study, a teachers’ perspective is to be explored. 

The aim of this study is to present and compare Chinese and Dutch mathematics teachers’ beliefs 
about IBL. The research questions are: What kinds of beliefs do lower-secondary mathematics 
teachers in China and the Netherlands have about inquiry-based learning (IBL)? What are the main 
similarities and differences on this issue between the two countries? 

Methods 
Participants 

We interviewed 30 teachers from 15 Chinese schools and 19 teachers from 13 Dutch schools, all of 
them were teaching lower-secondary mathematics. 28 of the Chinese teachers and 9 of the Dutch 
teachers are female. The average age was 38 for Chinese teachers and 42 for Dutch teachers. As for 
the average years of teaching, it was 15 for Chinese teachers and 11 for Dutch teachers. 

In China, generally a permission from school leaders makes it convenient to enter a school and 
conduct interviews, while teachers in the Netherlands have more freedom to accept an interview. 
Therefore in China we mainly contacted school leaders first, also a few local administrations, and 
some mathematics teachers directly, while in the Netherlands we invited individual teachers and 
included all teachers with interests. In both countries, participants were contacted mainly through an 
interpersonal network. Because of the large areas in China, we only collected data at Beijing, where 
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differences exist between urban and suburban schools, thus we ensured a balanced selection of eight 
urban schools and seven suburban schools to better represent the situation. In the Netherlands, schools 
at different areas are quite similar, we included different types of secondary schools1. 

Instruments 

Data was collected through semi-structured interviews, which provided opportunities for teachers to 
express views and suit the research questions well. Without much presume about the definition or 
model of IBL, we left it open for teachers about their understanding of IBL. 

We constructed an interview outline including general questions such as “what is your understanding 
of IBL” and two IBL example tasks as context to promote discussion. The tasks were chosen from 
materials of Primas project2 and had potential for IBL, while they were not defined as IBL tasks in 
the interview, participants were asked questions such as “can it be used in an IBL lesson/do both 
versions represent IBL”. 

The interview outline and example tasks were originally in English and translated into Chinese. The 
outline and tasks were piloted with two Dutch teachers and two Chinese teachers to make sure the 
questions and guidelines were clear enough and led to information we expected to collect. The pilot 
interviews also helped to prepare for practical issues that may happen during interviews. 

Data collection and analysis 

Dutch participants were interviewed from April to June of 2017, and Chinese participants from 
October to November in the same year. Each participant was interviewed individually for around 40 
minutes, the language was English for Dutch teachers and Chinese for Chinese teachers. The 
participant was asked if recording can be accepted. If not, the interview would not go on. Generally, 
questions from the interview outline were asked in sequence, and extensive questions related to the 
topic were also allowed. Similar introduction and guideline were given to each participant. 

All the interview recordings were turned into transcripts. The original codes were constructed mainly 
based on the questions from the interview outline, “teachers’ responsibility” and “students’ 
responsibility” were derived from literature. All transcripts were imported into Nvivo 11 and divided 
into sets of fragments. Each fragment represents a single idea. In the process of coding - including 
individual coding and discussing differences – sub codes with example quotations were developed to 
create a better understanding of the main codes. The coding scheme (shown in Table 1) was adjusted 
for several rounds to be better connected to the transcripts3.  

                                                 
1 In the Netherlands, students choose after primary school (grade 6) for one of three types of secondary education: pre-
vocational secondary education (VMBO), senior general secondary education (HAVO) or pre university education 
(VWO) (source: https://www.government.nl/topics/secondary-education). 

2 The Primas project: Promoting inquiry-based learning (IBL) in mathematics and science education across Europe. 

3 For Chinese data, we analyzed and coded the original transcripts, then we translated statements and important quotations 
from Chinese into English. 
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Table 1: Coding scheme of the study 
Main code Sub code Example 

• General views-Basic 
understanding of IBL 

 · “It is...about doing something different than just making the 
exercises from the book” 

• Attitudes-Overall tendency 
towards IBL, Whether in 
favor of IBL 

 · “I think it is very useful for the basis, but I think you cannot 
use it as the only way of teaching.” 

• Prerequisite-Factors 
considered before 
implementing IBL in 
lessons 

Task · “I think this one (Unstructured Version B) will (represent IBL), 
this one (Structured Version A) not, this is too structured.” 

Students · “I think it is a very good group, I would maybe change this a 
bit, then I would give (Unstructured) Version B. In a lower 
grade like HAVO, then I would do this (Structured Version A), 
because otherwise they will not come any further.” 

Teacher · “You need to have a repertoire of dealing with different things, 
you have to build that repertoire also” 

Context · “They have to be ready to think about something new, even if 
it's very small detail, you must make them ready to do it, and 
sometimes you do not succeed because the circumstances are 
not ideal.” 

• Activity-Things going on 
when implementing IBL in 
lessons; They are expected 
or planned to happen in the 
teacher’s lessons 

Students' responsibility · “They need some time for themselves to try and succeed or try 
and fail” 

Teachers' responsibility · “I think here you should be more encouraging, and maybe 
come and ask how things are going, and if they need help, then 
ask questions.” 

• Outcome-Results of 
implementing IBL 

Cognitive & Positive · “They learned to think, and to think deeper, and to persuade the 
other person” 

Cognitive & Negative · “And the risks, risk of if every student learns enough, it's not 
guaranteed” 

Motivational & Positive · “I think they would like mathematics more” 
Motivational & Negative · “I think some of the kids will get discouraged, less encouraged, 

demotivated from like this.” 
• Reasons For-Factors for 

teachers to implement IBL   
Lead to positive results · “I think it can really motivate students, it can really help them 

learning fast” 
• Difficulties-difficulties in 

implementing IBL 
Related to conditions · “I just don’t find the time to do it” 

Related to students · “That the kids get stuck” 
Related to teachers · “They can go really deep, and then they come into an area that 

you really don’t know the answer any more. That’s scary.” 
• Strategies-Tips for 

implementing IBL 
 · “Not to take too big steps, make sure that is the right question 

for the right age, make sure it's a statement that they really 
discover something, like this.” 

When about half of the interviews had been coded, we introduced an external researcher to the 
interview outline and the coding scheme, and asked her to randomly choose one Chinese interview 
and one Dutch interview to code. The Chinese interview was coded together, and next the Dutch 
interview was coded by herself, resulting in a 69% agreement. 

After coding, we arranged fragments with similar views together and extracted representative 
statements from those groups of fragments. For each statement, we counted how many teachers 
expressed this view during interviews. Based on the number, we ranked all the statements within each 
main code and kept the four highest-ranking statements to provide an overview of beliefs that the two 
groups of teachers have about IBL. If there existed multiple statements at the same ranking, all of 
them were kept or quitted. We counted and ranked for Chinese teachers and Dutch teachers 
respectively, then we compared the results between two countries. 
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Results 
As preliminary results of this study, Table 2 shows 30 Chinese teachers and 19 Dutch teachers’ beliefs 
on three important aspects through the four highest ranking statements within each main code. For 
example, 12 of the 30 Chinese teachers talked about “students explore and find a way to the problem”. 

Table 2: High-ranking statements of Chinese and Dutch teachers on three aspects 
Main code CN statements n NL statements n 
General 
Views 

· Students explore and find a way to the 
problem 

12 · Students explore and find a way to the 
problem by themselves 

15 

· Students discuss and collaborate with peers 12 · Teachers do not provide explanations before 
students’ exploration 

5 

· Teachers guide the IBL process 8 · The problem can be solved in different ways 4 
· Students think during the process 8 · Students think during the process 4 
· Students come to the conclusion 8 · Students do activities to solve the problem 4 

Reasons For · IBL develops mathematical thinking  17 · IBL leads to a better understanding, mastery 
and appliance of knowledge 

8 

· IBL leads to a better understanding, 
mastery and appliance of knowledge 

14 · IBL gives rise to more interests and motivates 
students 

7 

· IBL gives rise to more interests and 
motivates students 

11 · IBL is a way to develop general skills also 
necessary outside school and in future 
academic life and professional life 

6 

· IBL is a way to develop general skills also 
necessary outside school and in future 
academic life and professional life 

4 · IBL develops mathematical thinking  4 

  · To prepare for examinations 4 
Difficulties · Some students do not think or participate 

actively 
11 · Lack of time to prepare and do IBL 

sufficiently 
12 

· Lack of time to prepare and do IBL 
sufficiently 

10 · IBL asks for a lot from teachers to design and 
implement it well 

10 

· Students may not perform well in IBL tasks 9 · Lack of suitable IBL tasks at hand 8 
· Lack of suitable IBL tasks at hand 7 · Teachers don’t want the unpredictable results and 

insecurity that IBL brings 
6 

Note: “CN” is the abbreviation of China, and “NL” of the Netherlands. “n” means the number of teachers who expressed 
this view during interviews. Content in bold were the shared statements for Chinese and Dutch teachers. 

Chinese teachers’ beliefs about IBL 

As is shown in Table 2, Chinese teachers talked about students’ exploring, solving, thinking and 
getting the conclusion in IBL, they also connected IBL with student discussion and collaboration. In 
addition, emphasis was put on teacher guidance during the process. As for the reasons to implement 
IBL, Chinese teachers mainly focused on the benefits of IBL on mathematical thinking, knowledge 
and motivation, while only a few teachers paid attention to general skills developed from IBL. As for 
difficulties that teachers encountered in IBL, Chinese teachers pointed out factors related to students 
including the lack of motivation and performance in IBL, they also talked about factors related to 
conditions including lack of time and lack of suitable tasks. 

Dutch teachers’ beliefs about IBL 

As is shown in Table 2, Dutch teachers emphasized students’ taking responsibility in IBL. They paid 
attention to students’ exploring, solving, thinking and doing activities (such as drawing and 
calculating) in IBL, and they made it explicit that students explore by themselves without getting 
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explanations from teachers about the theory or problem-solving procedures. They also noticed that 
the problem used in IBL usually provided enough space for students to explore from different 
approaches. When it comes to the reasons for IBL, Dutch teachers talked about the benefits of IBL 
on knowledge, motivation, general skills and mathematical thinking, they considered IBL as 
preparation for examinations as well. As for the difficulties in IBL, Dutch teachers pointed out factors 
related to conditions including lack of time and lack of suitable tasks, they also included factors 
related to teachers, namely they were required a lot from IBL, and they expressed dislike about the 
uncertain and uncontrollable feature of IBL. 

Comparisons between Chinese and Dutch teachers’ beliefs about IBL 

As is shown by statements in bold in Table 2, Chinese and Dutch teachers shared some beliefs about 
IBL. Teachers in both countries paid attention to students’ responsibility in IBL and mentioned  
students’ exploring, solving and thinking. They both took the four benefits of IBL (on knowledge, 
mathematical thinking, motivations and general skills) as reasons to implement it. Moreover, they 
listed two common difficulties related to conditions, namely lack of time and lack of suitable tasks. 

The differences between Chinese and Dutch teachers’ beliefs about IBL are apparent in Table 2. As 
for the general views of IBL, Dutch teachers mainly emphasized students’ responsibility in IBL while 
Chinese teachers also paid attention to teacher guidance (such as promoting students by questions) 
during the process. Chinese teachers talked about student discussion and collaboration and the 
attainment of results in IBL as well. The shared four benefits of IBL rank differently as reasons for 
IBL that Chinese teachers emphasized mathematics thinking most while Dutch teachers focused on 
knowledge most. Dutch teachers talked more about general skills, they also mentioned IBL as 
preparation for examinations. As for the difficulties in IBL, Chinese teachers listed factors related to 
students about their lack of motivation and performance in IBL, while Dutch teachers mentioned 
factors related to teachers that they considered IBL as demanding, uncertain and difficult to control. 

Discussion 
Our findings are based on the samples from convenient sampling. Chinese data was only collected at 
Beijing with more advantaged educational resources, most Dutch teachers had connections with 
universities or research institutes, participants may be more active in exploring new teaching 
approaches. In addition, this study was limited to reported beliefs and lacked observations of actual 
lessons. Finally, although we tried to ensure a shared understanding of IBL by providing example 
tasks during interviews, the data might be biased if participants having different interpretations of a 
term like “inquiry” that originated from science education (Beumann & Geisler, 2019) 

Despite the limitations of the study, some findings are in line with stereotypes about teaching cultures 
in the East Asia and the West. The attention of Chinese teachers on attainment of results, student 
performance, mastery and appliance of knowledge as well as teacher guidance in IBL match the 
stereotypes that the East Asia emphasizes learning content (Correa et al., 2008; Leung, 2001) and 
teachers’ role in instruction. The attention of Dutch teachers on students’ doing activities, general 
skills, students’ taking responsibility before teacher explanation and student motivation match the 
stereotypes that the West emphasizes learning process (Leung, 2001) and practical knowledge 
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(Norton & Zhang, 2018), encourages students’ constructing knowledge (Liu & Feng, 2015) and 
meaningful learning,  and values students’ internal motivations (Leung, 2001). 

However, some findings are not in line with the stereotypes. The attention of Chinese teachers on 
students’ exploring, solving and thinking, on student discussion and collaboration as well as on 
student motivation do not match the stereotypes that the East Asia conducts teacher-centered directive 
instruction to deliver knowledge (Leung, 2001), makes students learn by memorizing and practicing 
repetitively (Liu & Feng, 2015; Tan, 2015), conducts instruction to the whole class with little group 
work (Leung, 2001) and ignores students’ internal motivations. The attention of Dutch teachers on 
knowledge and preparing students for examinations do not match the stereotypes that the West 
focuses on learning process more than learning content, and emphasizes students’ internal 
motivations more than external motivations such as examinations (Leung, 2001). 

Follow-up study will analyze other topics from the interviews such as IBL activities and IBL 
outcomes, we will also include the reported IBL practice of Chinese and Dutch teachers to see to 
what extent the reported practice match their beliefs about IBL, whether the beliefs shape the practice 
in regard to IBL or there exists a more complicated relation between them as suggested by literature.  
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In the paper, we conceptualize Mathematical Knowledge for Teaching as introduced and elaborated 
by Ball et al. (2008) for the topic of combinatorics using Lockwood (2013) model of combinatorial 
thinking. We developed test consisting of three combinatorial problems and 6 connected tasks (for 
each problem) focused on the Common Content Knowledge (CCK), Specialized Content Knowledge 
(SCK), Knowledge of Content and Students (KCS) and Knowledge of Content and Teaching (KCT) 
to answer our research question: What are the differences in the combinatorial PCK between 
preservice teachers with regard to their combinatorial CK? We analyse and discuss data collected 
from 10 preservice teachers concerning one of the combinatorial problems and its connected tasks. 

Keywords: Preservice teachers, combinatorics, pedagogical content knowledge, content knowledge. 

Introduction and background 
Combinatorial topics form an important part of the Slovak mathematics curriculum at middle and 
high school levels, as they are thought to provide a rich environment for the development of problem-
solving skills (Rosenstein et al., 1997). However, Slovak curriculum documents and textbooks lead 
students to value formulas more than the ideas. Our aim in teaching preservice teachers (PSTs) is to 
broaden their knowledge to enable them to scaffold their future students’ combinatorial thinking 
instead of the blind use of formulas. The motivation for our research is to inform our practice by both 
understanding more deeply how knowledge necessary to teach combinatorics is learnt and scaffolding 
such learning during the university studies of PSTs.   

Theoretical framework 
In this chapter, we are going to frame topic-specific (combinatorial) preservice teacher mathematical 
knowledge. We build on the theoretical framework of Mathematical Knowledge for Teaching (MKT) 
as introduced and elaborated by Ball et al. (2008). More specifically, we focused on CCK, SCK, KCS 
and KCT. We use Lockwood (2013) model of combinatorial thinking to specify combinatorial MKT. 
We are going to explain the framework using the following combinatorial task (Batanero, 1997): Four 
children: Anna, Barbara, Cyril and Daniel went to spend the night at their grandparents’ house. Their 
grandparents have two separate bedrooms for them (one downstairs and another upstairs). In how 
many different ways can the grandparents assign children to bedrooms? For example: Anna, Barbara, 
Cyril and Daniel will sleep in the room upstairs and nobody will sleep downstairs.  

The task can be solved in at least six different ways as depicted at the Figure 1 (see the next page). 
We can see two different ways how to group them. In the first way, there are three groups: S1-S2, 
C1-C2, F1-F2. We can see different types of solutions here. The first group, there are sets of outcomes 
(S), collections of the objects being counted. In the second group, counting process (C) is clearly 
elaborated. In the third group, the solution stands on the using of the formula (F). The second way for 
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grouping the solutions is the following: S1-C1-F1 and S2-C2-F2. Each of the group of the solutions 
can be characterized by the same mathematical idea and they differ by the level of abstraction. 

 
Figure 1: Six different solutions of the combinatorial problem 

Lockwood model highlights the importance of developing the relationships between sets of outcomes, 
counting processes, and formulas/expressions. “For a given counting problem, a student may work 
with one or more of these components and may explicitly or implicitly coordinate them.” (Lockwood, 
2013, p. 253).  

 
Figure 2: Model of combinatorial thinking (adapted from Lockwood, 2013) 

Now, we are ready to frame combinatorial MKT. CCK: PST can solve a combinatorial problem using 
one direction in Lockwood model, usually it is S→C or C→F and/or perceive some direction from 
the proposed correct solution, usually it is F→C and/or C→S. SCK: PST can solve a combinatorial 
problem in at least two different ways and perceives (not necessarily suggests) all directions of the 
Lockwood model. KCS: PST realizes that student solving the problem in the way S1-C1-F1 can have 
difficulties to understand the solutions S2-C2-F2 and perceives different levels of abstraction. 
Moreover, PST is familiar with possible student combinatorial misconceptions. KCT: PST’s 
response to the student’s solution is scaffolding in the sense of the Lockwood model, meaning that it 
shifts students to the proximal level of abstraction. 
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Context and research question 

The teacher education at bachelor’s level (3 year program) at our university is, concerning MKT, 
currently focused on advanced mathematics knowledge, with SCK partially addressed. At the 
master’s level (2 year program), the goals are framed mostly in terms of KCS and KCT development. 
This model is in line with the claim of Depaepe, Verschaffel and Kelchtermans (2013) from their 
literature review, which says: “Based on studies that use distinct test items to measure CK and PCK 
it is concluded that both knowledge components are positively correlated and that CK is a necessary, 
though not sufficient, condition for PCK.” (Depaepe, Verschaffel, & Kelchtermans, 2013, p. 21) 
However, none of the papers these authors reviewed concerned combinatorics. What is more, the 
profound understanding of specific mathematical content is one of the possible points of focus for the 
research in teacher knowledge suggested at CERME 9 (Ribeiro et al., 2015). Therefore, we are 
interested, in accordance with the theoretical underpinnings and the needs of the field, to find the 
answer to the research question: What are the differences in the combinatorial PCK between PSTs 
with regard to their combinatorial CK?  

Research Methodology 
Participants 

12 PSTs in the academic year 2017/2018 were finishing their master mathematics teaching 
programme, 10 of them participated in the data collection. They had already passed all mandatory 
courses, including Discrete mathematics, which aimed to develop advanced content knowledge 
concerning combinatorics, Methods of mathematics problem solving where among other things SCK 
was addressed and Didactics of mathematics. Therefore, we chose these participants to gain insight 
into our current practice of teacher education. However, their PCK could be developed outside of 
their mandatory courses. Thus, we needed to know whether the PSTs used other options to develop 
their PCK. Based on the short interviews, we found out that the university courses and mandatory 
school practices were more or less the only experience with mathematics education for 3 out of the 
10 PSTs (no additional experience), 3 of them provided regular tutoring and/or lecturing (narrow 
additional experience), 4 out of the 10 PSTs, furthermore, have written diploma thesis in mathematics 
education (broad additional experience). 

Test design and its evaluation 

We developed a research tool to capture PSTs’ CK and PCK in domain of combinatorics in 
accordance with our theoretical perspective. As explained by Depaepe, Verschaffel and Kelchtermans 
(2013), if cognitive perspective to teacher knowledge is taken in account (what is the case here), then 
test is very relevant tool to measure it. The research tool consisted of three combinatorial problems 
with six connected tasks each. The first and the third connected task to the combinatorial problem 
measured the level of CK (Lockwood, 2013). The remaining connected tasks measured PSTs’ level 
of PCK (Ball et al., 2008). All connected tasks were open-ended purposely, to let the PSTs display 
their CK and PCK without any restrictions or guidance.  

All PSTs solved one standard combinatorial problem and one of two, randomly chosen, non-standard 
combinatorial problems. In the paper, we analyse 10 PSTs’ solutions of the already introduced 
combinatorial problem (Batanero, 1997) and the following connected tasks (time allocated for the 
task is given in the brackets): 
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1. Solve the problem in several different ways (at least two). (8′) 
2. Which of your solutions is mathematically the most valuable? Explain why. (2′) 
3. There is solution 24 stated in the textbook. What set of outcomes corresponds with this solution? 
Write several elements of this set of outcomes. Explain. (5′) 
4. Imagine, this problem was solved by your students. Write down two examples of students’ 
solutions containing mistakes which are expected by you. Explain them. (10′) 
5. Imagine, you are a high school teacher and you are solving this problem during the lesson. There 
are following students’ solutions stated in their notebooks (in the Figure 3a and 3b). Explain these 
solutions and write down, how would you react. (5′) 
6. Look at the following students’ solutions (see Figure 3b, 3c and 3d). Order them according to the 
level of abstraction (1 – the most abstract solution, 3 – the least abstract solution). Explain. (5′) 

    
a) b) c) d) 

  

Figure 3: Examples of students’ solutions for the connected tasks 5 and 6 

The test was firstly verified by 6 PhD students in mathematics (5 of them had already finished their 
mathematics teaching programme) in order to prescribe the sufficient time for each individual task, 
to refine formulations, and suggest the coding. Table 1 briefly summarizes the coding. The authors 
coded PSTs solutions separately, afterwards the coding was compared and few inconsistencies were 
discussed and resolved. According to CK (see Table 2), we categorized PSTs into three groups. The 
low CK group included the PSTs who demonstrated neither CCK nor SCK. The medium CK group 
included the PSTs who demonstrated only CCK. Finally, the high CK group included the PSTs who 
demonstrated both CCK and SCK.  

PCK 
 Task Aim What PCK components were coded? 

KCS 
Task 4 

Formulation of 
misconceptions 

Is misconception typical and connected to combinatorics? 
Is explanation of the misconception focused on student’s 
thinking? 

Task 6 Level of 
abstraction 

Are solutions ordered according to level of abstraction? 
Are the reasons for ordering well explained? 

KCT Task 5 
Response on 
student’s solution 

Does PST understand student’s solution? 
Would the response which was suggested by PST 
scaffold student’s learning? 

Table 1: Evaluation of PCK 
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CK 
 CCK SCK 
Conditions Problem solved correctly and/or 

understanding of the standard correct 
solution. 

Problem solved at least in two 
different ways and 
correct mathematical argumentation. 

Combinatorial 
thinking 

One direction from Lockwood’s 
model 

All directions: S → C; C → F; C → S;       
F → C; S → F; F → S  

Table 2: Evaluation of CK  

Findings & discussion 
First, we describe the distribution of the participants into different categories. Table 3 illustrates that 
our research sample covered most of the possible categories. Only the category with low CK is not 
fully covered, however as the assigned combinatorial problem was standard, it is not surprising. Given 
the distribution into coded categories and subject numbers, we will analyse these data in qualitative 
and interpretative way.  

Additional  
Experience 

Content  
Knowledge 

None Narrow  Broad 

Low  1 0 0 
Medium 1 2 1 

High 1 1 3 

Table 3: Numbers of PSTs grouped in categories 

Second, we take a deeper look into each of the PCK components given in the Table 1. We will provide 
examples of PSTs responses to explain how they were coded. 

Formulation of possible student misconceptions1  

Example A Example B  

  
Figure 4: Examples of misconceptions 

As we can see, in the Example A (Figure 4), PST tried to formulate misconception, however it is 
artificial and not connected to combinatorial idea. On the other hand, Example B (Figure 4) is very 
common one, it is called confusing the type of object (e.g. Batanero, 1997), it is clearly connected to 
combinatorics. 

 

                                                 
1 We translated PSTs answers from Slovak language and re-wrote it to preserve the structure used by PSTs. 
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Level of abstraction 

Example C 

“Solution 3 (Figure 3d) seems the least abstract to me, because the student is writing down the set 
of outcomes from which it is clear what is happening in each of the rooms. It is obvious that he 
can imagine what is going on in there. Solution 2 (Figure 3c) is the most abstract because the 
student is grouping those people, however he probably does not really understand what he is 
doing.” 

Example D 

“In the solution 3 (Figure 3d), there is clearly written which child is in which room … students 
can immediately imagine – from the representation – how the children are split into two rooms. In 
the solution 1 (Figure 3b), there is some intermediate step from the specific solution to the abstract 
one, or an attempt to simplify, to shorten process of writing down the set of outcomes. The solution 
2 (Figure 3c) – lot of children would be probably lost in such kind of solution. It is logical, however 
quite symbolic. Unlike the other two solutions, here are rooms assigned to children not children to 
rooms.” 

In both examples, PSTs ordered the solutions in the correct way. The difference is, the PST from the 
Example C, did not notice different mathematical idea behind the solution 2 compared to solutions 1 
and 3. On the other hand, PST from the Example D explains this difference. 

Response on student´s solution (depicted in the Figure 2a) 

Example E 

“I would call 4 volunteers, and I would ask the student with this solution to arrange them in all the 
possible ways when two of them are in the same room.” 

Example F 

“I would probably give 50% for understanding and coding. I want the student to realize that the 
set of outcomes is not the most adequate solution.” 

Example G  

“I would ask the student to check the set of outcomes whether it is complete. I would praise him 
for the representation of set of outcomes he came up with.” 

Student´s solution in the Figure 2a is the set of outcomes connected with the formula 24. The activity 
suggested in the Example E is not related to this formula; therefore, it would probably not be 
scaffolding. In the Example F, PST would prompt student to use formula, which would not 
necessarily scaffold the student’s combinatorial thinking if the student is not ready to see the 
relevance of formula to the situation. In the Example G, the PST recognized that she cannot orient 
the student to the counting process or formula without the student first comprehending how the set of 
outcomes is generated, thus it was coded as scaffolding response. 

Third, we present which of the coded PCK components, were (+) or were not (-) observed in the 
particular categories of PSTs (see Table 4, the next page). In the Table 4, results of PSTs with medium 
and high CK are presented, the one PST with low CK demonstrated no PCK.  
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 None experience Narrow experience Broad experience 

No SCK SCK No SCK SCK No SCK SCK 

KCS Misconceptions + - + - + + 

Level of abstraction - - - + - + 

KCT Understanding + + + + + + 

Scaffolding response - - - - - + 

Table 4: PCK components demonstrated / missing in particular PSTs categories   

Formulation of possible student misconceptions as part of the KCS was missing only for PSTs 
with high CK without broad additional experience. These PSTs did not have an opportunity to learn 
from their own mistakes and the lack of experience was not supporting them to learn from mistakes 
of others. This could be the reason why they were not able to estimate what kind of misconceptions 
are common. 

Level of abstraction as part of the KCS was observed only when PSTs had high CK and at least 
narrow additional experience. These differences can possibly be explained by the role of SCK as we 
defined it in combinatorics. If PSTs perceive all connections between possible solutions as suggested 
in the Lockwood´s model, they are able to understand how abstract particular student´s solution is. 

Understanding of the student´s solutions was managed by all PSTs except the one with the low 
CK. Obviously, the PST with low CK could not distinguish the nature of the error correctly, also she 
had troubles to reason the correct one. While the error was quite familiar, and the solution was the 
standard one, the other PSTs were able to explain the student’s solution using only CCK, it was not 
necessary to activate SCK here.  

Concerning scaffolding response, only the group of PSTs with high PCK and broad additional 
experience was able to provide scaffolding reactions. Moreover, the scaffolding reaction was 
suggested only if the level of abstraction was perceived and explained clearly.  

Conclusions 
Let us return to the research question: What are the differences in the combinatorial PCK between 
PSTs with regard to their combinatorial CK? On the one hand, PSTs with low or medium CK 
displayed less PCK. On the other hand, when it comes to formulation of misconceptions, they 
outperformed those, who had high PCK and none or narrow additional experience. Thus, the high 
CK did not automatically meant good combinatorial PCK. It seems that the other necessary condition 
for combinatorial PCK development was broad additional experience. It supported PCK 
development especially when the PST had high level of CK. This is important, because PST who 
becomes a novice teacher is expected to learn mostly through their own teaching experience.  

Back to our first motivation for the research, the findings will feed back to our research and practice 
in the following ways: (1) we need to inquire and specify how to develop combinatorial SCK 
effectively during the bachelor’s level programme. (2) We need to identify the key factors of the 
additional experience, which scaffolded PSTs learning and subsequently design the PST education 
to promote these factors. Therefore, we need to focus on the task construction and design similarly to 
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Policastro, Mellone, Ribeiro and Fiorentini (2019) and Montes, Climent, Carrillo and Contreras 
(2019). 

Moreover, we will reframe the research with the model of Mathematics Teachers’ Specialized 
Knowledge (Carrillo, et al., 2018) which address the limitations we experienced using MKT model 
(Ball, et al., 2008). We suggest that such reframing and the subsequent comparison could bring more 
clarity into mathematical teacher knowledge needed for teaching combinatorics. 
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This paper examines how preservice primary teachers perceive mathematical horizon content 
knowledge for teaching in Malawi. Drawing on the practice-based theory of mathematical knowledge 
for teaching, the study highlights the importance of mathematical concepts and historical aspects 
needed for teaching, according to preservice primary teachers, at the beginning of their teaching 
education. Findings from the two cases revealed that despite differences in their perceptions, 
similarities also existed. This result provides a starting point for a better understanding of what 
composes mathematical horizon content knowledge and discusses implications for teacher-education 
training programs in Malawi. 
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preservice teachers’ perceptions. 

Teacher’s content knowledge for teaching 
Becoming a professional at any workplace demands skills and knowledge to perform specific tasks, 
make decisions, and attend to what the profession requires. In this sense, becoming a teacher demands 
a specific type of knowledge that enables one to create sufficient conditions to trigger the students’ 
learning (Davydov, 1999), develop their intellectual actions and mental functions (Vygotsky, 1987), 
and help them make sense of the world (Leontiev, 2007). In this context, why is this type of 
knowledge necessary to teach a subject properly? What difference does this knowledge have for the 
teaching of mathematics, and what are the implications for students learning in different contexts? 

For decades, researchers around the world have investigated practices that can contribute to shaping 
teachers’ knowledge. Shulman (1986), with his studies about teacher training in the USA, stands out 
in importance with his description of pedagogical content knowledge that extends beyond the specific 
topics of the curriculum. This type of knowledge represents a knowledge base that combines 
reflections on practical experiences and reflection on theoretical comprehension for teaching, a 
foundation that englobes the knowledge of the content, curriculum, students, contexts, and 
purposes/philosophies of teaching. Those elements, according to Shulman (1986), must be part of 
any educational program that forms primary and secondary teachers.  

Of particular interest for mathematics teaching, Ball, Thames, and Phelps (2008) extended Shulman’s 
(1986) ideas into two subcategories: pedagogical content knowledge (PCK) and subject matter 
knowledge (SMK). Whereas PCK includes the knowledge of content and students (KCS), knowledge 
of content and teaching (KCT), and the knowledge of content and curriculum (KCC), SMK comprises 
the common content knowledge (CCK), specialized content knowledge (SCK), and horizon content 
knowledge (HCK). Together, these six components offer a holistic perspective of what is useful and 
important for teaching. It also serves as a resource for addressing the mathematical demands of 
specific teaching tasks in primary classrooms (Hill, Rowan, & Ball, 2005) and a potential tool that 
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allows teachers to concentrate on what is essential for effective mathematics instruction (Ball et al., 
2008). 

Our focus is on teachers’ mathematical knowledge beyond the school curriculum, HCK. Ball and 
Bass (2009) defined HCK as “a kind of mathematical ‘peripheral vision’ needed in teaching, a view 
of the larger mathematical landscape that teaching requires” (p. 1). It provides an awareness of “how 
the content being taught is situated in and connected to the broader disciplinary territory” (Jakobsen, 
Thames, Ribeiro, & Delaney, 2012, p. 4642) and “how mathematics topics are related over the span 
of mathematics included in the curriculum” (Ball et al., 2008, p. 403). Ball and Bass (2009) still 
explain that the knowledge at the mathematical horizon “is advanced knowledge that equips teachers 
with perspective for their work; it is not knowledge of the kind which they need to understand in 
order to explain it to students” (p. 27). Different from the other components in the teacher’s MKT, 
the domain of HCK pays special attention to the processes involved in the creation and use of 
mathematical content rather than the content knowledge itself. It is a distinct knowledge that helps 
teachers engage and assist students to make sense of what is being taught from a global view of the 
subject matter. 

In this article, we will focus on only one component of teachers’ knowledge: HCK. Our aim is to 
provide a better understanding of how HCK is perceived in a different setting for teaching from which 
the theory was developed. To sustain this goal, we analyzed two cases taken from a larger research 
project that examines the preservice teachers in the context of Malawi. The main question addressed 
is: How do Malawian preservice primary teachers perceive the knowledge at the mathematical 
horizon at the beginning of their teacher education? 

The study context 
The study presented here is drawn from a larger research examining the preservice teachers’ sense-
making process of mathematical knowledge for teaching in Malawi. Twenty-three students from a 
two-years teacher-training program volunteered to participate. In this program, the mathematics 
education aims to develop preservice teachers’ critical awareness of mathematical concepts, and its 
connections and ways of being used for solving problems in a social, environmental, cultural, and 
economic context (Malawi Institute of Education, 2017). The mathematical program’s curricular 
structure and syllabus allow future teachers to interim practice and theory by integrating content and 
pedagogy during their mathematical lessons at the college. In the first two of six terms of the program, 
preservice teachers should take theoretical courses (arithmetic and algebra subjects, accounting and 
business studies, measurement and data handling, and teaching and learning theories), followed by 
monitoring visits in local schools. The two middle terms are dedicated to teaching practices. They go 
onto the field in pairs to gain practical and professional experience in teaching under the supervision 
of practicing teachers. In the last two terms, the preservice teachers go back to college. The program 
is now committed to the reflection on preservice teaching experiences, inclusion and further 
discussion about teaching methods, subject contents, educational policies, and frameworks. 

In the larger study, we adopted two approaches to generate data from the participants. The first 
approach was set up through preservice teacher notions on what types of knowledge and skills they 
thought could be most suitable for teaching mathematics in primary schools in Malawi. The main 
research instruments were a questionnaire including topics related to the participants’ teaching 
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experiences and subject preferences, and individual interviews addressing the constituents needed for 
carrying out the work of teaching in Malawi. The interview structure was designed to cover most of 
teaching scenarios from which the six domains of mathematical knowledge for teaching theory could 
emerge (Ball et al., 2008). The second approach – only applied in a subsequent phase of the study – 
focused on observations of the preservice teachers’ lessons. By selecting “teaching episodes” from 
which particular aspects of MKT domains manifest, we create reflection moments with the preservice 
teachers aimed to explore how they perceive the utility of those domains in practice. 

Once more, in this paper we explore one aspect of teachers’ knowledge: HCK. The following data 
steam from a case study (Stake, 2006) with two Malawian preservice primary teachers presenting 
distinctive ways to perceive HCK. The data collected was transcribed and condensed into a summary 
format. This format helped us establish analysis categories, with the MKT framework as a base. Those 
categories were expected to emerge from the preservice teachers’ responses during the interviews, 
and the first pieces of evidence were projected to provide information on how the participants 
perceive HCK in the Malawian school settings. The idea was also to explore the basis and influences 
that shape the preservice teachers’ perceptions before they went to the field work. 

Preliminary Findings 
Intendance of placing contextual knowledge in teachers’ HCK 

In this category, we analyzed the case of Patrick, a 20-year-old student possessing no teaching 
experience prior to entering the teacher training college. His parents are workers from the rural area 
and live in a village nearby the college. His favorite subjects in high school included biology, physics, 
and mathematics, while his interests lie in teaching mathematics and foundations studies. 

During the interview, Patrick recognized the need to distinguish the knowledge and skills needed for 
teaching mathematics in primary school in Africa. This position, followed by the passage below, were 
pieces of evidence for understanding what Patrick might perceive as an HCK. The passage occurred 
during a discussion about the knowledge needed for teaching mathematics beyond the primary school 
curriculum. 

Researcher: Ok Patrick, now… let’s talk about the knowledge that a teacher needs to know 
beyond the curricular content.  

Patrick: Sorry, I don’t understand the question. Can you repeat, please?  

Researcher: Yes… we talked about the importance for teachers to know the content, the 
curricular content in primary school, right? They also need to know the students, 
ok? But, is there anything else teachers need to know apart from those we have 
discussed? For example, numbers. If I decide to become a teacher in Malawi, what 
do I need to know to teach numbers? If I know the content, the students, and a 
couple of teaching techniques, is that enough? 

Patrick: Hum… No! I think you should know more about Malawi… the Malawian context!  

Research: Ah… Ok! You can say that! So, let’s put it this way… In terms of mathematics 
teaching, you said a teacher needs to have good knowledge of the curricular 
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mathematics. But how about the mathematics outside of curriculum? [primary 
school curriculum]  

Patrick: Yes, it is also important! Because there are other concepts that can explain some 
situations better. And also, you can apply those concepts to a situation. What is in 
the curriculum is good for planning, you know… but sometimes, the concepts in 
the curriculum are not enough. So, you can put them… you can mix them with those 
that are in the curriculum to explain something. So I think it’s very important to do 
so. 

Researcher: Can you give an example of that? 

Patrick: In mathematics, for example… in Malawi we do farming. So, when you are 
teaching maybe some examples could be about farming, they [primary school 
teachers] should go further about agriculture, so the learners can reflect on what 
they do in their families as they do farming. 

Researcher: So, is it important to give examples like this in class? 

Patrick: Yes, when you are teaching, you have to give many examples. Those examples 
should be linked to real-life situations because it will be easy for them [students] to 
reflect on what they know, so they can understand and apply it [mathematics] in 
real life. 

The forward reference shows that Patrick acknowledges not only the importance of curricular 
concepts in teaching but also the limits of teaching mathematics using only those concepts. He 
identifies that although the curriculum is essential for the teachers’ planning activities, it might restrict 
the work of teaching from a general perspective. Patrick’s perception of knowledge outside the school 
curriculum does not seem to corroborate with the suggested definition by Jakobsen et al. (2012), but 
it arises as part of a broader framework where mathematical knowledge takes place. Zazkis and 
Mamole (2011) explain that teachers’ knowledge at the mathematical horizon also includes aspects 
in both the inner and outer horizons of an object. It encompasses the “connections between different 
disciplinary strands and contexts in which the object may exist” (p. 9). Students will only benefit 
from some of those features.  

HCK as a contextual feature in teacher’s knowledge is also a subject of interest for Zhang, Zhange, 
and Wang (2017). They pointed out that although HCK is directly connected to knowledge of a pure 
mathematical content, contextual factors can be adapted to the definition provided by Ball and Bass 
(2009), a type of knowledge that embraces  

aspects of the mathematics that, while perhaps not contained in the curriculum, are nonetheless 
useful to pupils’ present learning, that illuminate and confer a comprehensible sense of the larger 
significance of what may be only partially revealed in the mathematics of the moment (p. 6). 

Therefore, in Patrick’s case, we can see that this dimension manifests in the form of cultural values 
and explicit knowledge of the ways and tools neeed in the discipline (Jakobsen et al., 2000), but it 
does not relate directly to the aspects of mathematical content contained in the curriculum. The 
example of the agricultural field provided by Patrick might not be transfered to mathematics, but it 
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represents the great world in which mathematics exists. If a teacher wants to create in students the 
need for understanding and applying the concepts, he or she needs to think beyond the school 
curriculum, explains Patrick. 

Shoemaker (1989) explains that the acknowledgment of the relevance of contents hosted outside the 
traditional curriculum helps prospective teachers increase the opportunities for students to make 
meaningful associations with other areas of study, and develop new forms of abstractions of the real 
world. As a result, school subjects become more attractive, and students can appropriate concepts that 
are inherent to the world (D’Andrade, 1981). By doing so, teachers can facilitate students’ learning 
by using concrete ideas and expanding them into abstract forms and new, concrete applications 
(Davydov, 1999). 

HCK as an awareness of students’ future needs and history of mathematics 

Our focus now is on Mario’s case, a preservice teacher six years older than Patrick. Mario used to 
live with his family in a district in the central region of Malawi. His mother and father are retired, but 
both had worked as primary school teachers. After completing high school, he worked as an assistant 
teacher in a public primary school for three years. His favorite subjects were agriculture and social 
studies. At the teacher-training program, he still demonstrated a preference for teaching in those areas, 
including English and the local Malawian language, Chichewa. 

In the interview, Mario presented two distinct ways to perceive the knowledge beyond the school 
content needed for teaching. He made emphasis not only to the importance of knowing the primary 
curricular contents but also to the knowledge needed to improve the quality of primary education by 
liking those to superior educational levels. The passage below occurred at our first interview with 
Mario, and it illustrates how he perceives the importance of having knowledge outside of the primary 
curriculum in Malawi. 

Researcher: Mario… what does a teacher need to know to teach in a primary school in Malawi? 
Does he need to know the content, right?  

Mario: Yes, because knowing the content you will be able to teach, and without the content, 
you don’t know what to tell the learners.  

Research: But he needs to know just the contents of the curriculum?  

Mario: The content in the curriculum is important, but also you can extend it to the 
curriculum of secondary level. You can go higher! So you know what the upper 
classes is particularly doing about a particular topic is good because you can make 
a link to that. For example… in mathematics, we have geometry in upper level… 
we teach them how to find the angles or areas of triangles, so you if you don’t have 
that knowledge you can not teach triangles in lower classes. So a primary teacher 
needs that knowledge! 

By analyzing Mario’s comments on what is needed for a teacher to know rather than what the 
curriculum suggests, we can see that he values the idea of establishing connections between the 
primary school curricular concepts and concepts from higher classes. In Marios’s view, the benefits 
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of knowing mathematics from higher classes appear to be relevant because it facilitates the teacher’s 
work in covering ideas that can be related to the current school mathematics content. 

The suggestion that teachers’ knowledge demands more than just knowing curricular contents is 
pertinent to understanding what Mario believe to be necessary for teaching mathematics in primary 
schools in Malawi. However, the idea of knowing how curricular mathematical topics are related to 
a more general curricular concept represents only a small portion of what constitutes HCK. Jakobsen 
et al. (2012) attempted to clarify that HCK implies not only the knowledge about curricular 
development of the contents but it also involves the knowledge about “how the content being taught 
is situated in and connected to the broader disciplinary territory” (p. 4642). It should go beyond the 
merely curricular progression where scholar concepts take place; in the case of the advanced 
mathematics, HCK emerges in understanding elementary mathematics from an advanced viewpoint, 
and vice versa (Klein, 2016). 

The next passage is a sequence of the transcription above from which Mario expressed a second idea 
about the type of knowledge needed for a teacher to know rather than just curricular demands. The 
dialogue occurred when we asked him about what type of knowledge and skills are needed for 
planning a lesson activity in mathematics. 

Researcher: When a teacher plans a lesson in Mathematics what things does he or she needs to 
know? I mean… beyond what the curriculum suggests? 

Mario: As a teacher, you have to know why is there mathematics and who discovered the 
mathematics. Because when you are teaching learners, they have so many questions 
that if you don’t know how to answer those questions you cannot help them. Some 
learners need to know why we need mathematics, who discovered this theory and 
these concepts? Who came up with this formula? And why? So he or she should be 
able to answer those questions. And for you to answer those questions, you should 
know the history behind the mathematics. 

Researcher: So do you agree that it is important for primary school teachers to know the history 
of mathematics, I mean… the processes that led people to create the concepts? 

Mario: Yes, I agree with that! 

Researcher:  But is it not too much for teachers? Generally, teachers give a task and some 
exercises.   

Mario: No, it is not too much! This is part of the work. Because I want to take the learners 
from the very deep so they can easily understand what is about… so I want to take 
them from the very deep of what is really mathematics and all about mathematics. 
So they will be able to understand whatever the teacher is saying. 

In the first part of the passage above, Mario argued in favor of the ability to think about the  
mathematical concepts critically. He suggested that knowing only the present form of concepts might 
not be enough for learners to have a complete conceptual understanding of what is being taught, so a 
teacher needs to be aware of the meaning and general principles that grip the existence of 
mathematics. Thus, the knowledge about the historical development that formed the concepts 
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reinforces teachers’ conceptual understanding by giving insights into how the concepts were 
formulated and transmitted culturally (Shulman, 1982). Such awareness, consequently, permits them 
to establish associations and generalizations among other areas (D’ Andrade, 1981). 

Knowledge about the historical development of concepts is also important for one to perceive 
mathematics as a human production (Moretti, 2007). Studies by historical-cultural theorists have 
shown that the historical development of concepts occurred from concrete situations from which 
humans felt the need to solve them. Caraças (1984) explains that a number system, for instance, 
should not be seen as a pure product of human thinking because humans did not acquire the idea of 
numbers and then began to count. Natural numbers were formed slowly due to the daily practice of 
counting, rational numbers from measurements, real numbers from the logical compatibility of 
different acquisitions (Caraças, 1984). Being aware of the logical-historical aspects of mathematics, 
teachers have an opportunity to create conditions for students to establish systematic ways to 
understand the dialectical principles of concepts (Davydov, 1982). This type of knowledge, according 
to Jankvist, Mosvold, Fauskanger, and Jakobsen (2015), is one of the main characteristics that 
comprises the mathematical horizon knowledge of teachers. 

Conclusion 
In the course of a larger research that investigates the preservice teachers’ sense-making process of 
mathematical knowledge for teaching, the present article provided analyses on the perceptions of two 
participants regarding HCK. The findings revealed that both preservice teachers possess distinct ways 
of perceiving the knowledge outside of the curriculum and that those perceptions can contribute to a 
better understanding of what primary preservice teachers believe to be needed for knowing further 
than what the mathematical curriculum suggests. 

These findings also have important implications for further research and teacher education practices. 
Knowledge about topics that might arise in learners’ future studies is important for a teacher to 
possess, but it does not necessarily cover the idea of the advanced mathematical horizon proposed by 
the literature. HCK, in the sense of advanced mathematics horizon, encounters the understanding of 
concepts teachers want to teach in its totality considering its historical and cultural processes of 
production, representation, and validation (Shulman, 1986). In the context of teacher education, these 
results vindicate for teacher training programs provide even more insights, supports, and 
opportunities for reflections on the types of knowledge that anchor the broader disciplinary territory 
where mathematics takes place.   
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Applying the Knowledge Quartet to student teachers’ lesson plans:  
An intervention 
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The Knowledge Quartet 
The Knowledge Quartet is a theoretical framework for analysing and developing mathematics 
teaching developed by Rowland, Turner, Thwaites, and Huckstep (2009) and elaborated on by 
Rowland (2014). The framework comprises four categories – Foundation, Transformation, 
Contingency, and Connection – that together constitute the mathematical knowledge needed by 
teachers. Within each of these four categories, several codes have been developed with which to 
identify and evaluate the knowledge of student teachers based on observations of classroom teaching. 
This poster presents and discusses an intervention addressing whether and how the Knowledge 
Quartet can also be used to evaluate the knowledge of student teachers based on their lesson plans. 
In teacher education, there are often few occasions to observe student teachers’ teaching, which is 
why it is of interest to explore whether some of the knowledge to be revealed (or revealed to be 
missing) by using the Knowledge Quartet can also be revealed in reflections of lesson plans.  

The intervention 
The intervention was conducted within a mathematics education course in lower primary school 
teacher education. In this course, the student teachers were to produce lesson plans for a series of 
lessons, implement one to two of these lessons, and then reflect on the series of lessons and on their 
implementation. The lesson implementation, however, was not observed by the teacher educators. 
The task was conducted in two groups of student teachers. In one group, the students were to write 
their reflections, and in the other group, the students were to record their reflections orally in video. 
For this poster, five reflections were randomly selected from each group.  

In the written reflections, Foundation and Connection were the two dominant categories that were 
evident. In Foundation, a huge variety of codes was evident, the two most common ones being 
reflections on student beliefs (code A1) and reflections on the course (code A6). Connection was the 
second-largest category, and here the most common code was the student teacher’s expectations about 
classroom complexity (code C1). In Transformation, the most common code was representations used 
in lessons (code B2). Contingency was only evident in one written reflection, in which one student 
teacher wrote about how she responded to and acted on her pupils’ answers in the lesson (code D2). 

In the oral reflections, Foundation and Connection were also the two dominant categories. In 
Foundation, several reflections addressed how assessment was to be carried out in the classroom 
(code A8), and another common code was the importance of using correct mathematical terminology 
and mathematical language even in lower primary school (code A7). Connection was the second 
largest category, and here the most common code was student teacher expectations about complexity 
in the classroom (code C1). The classroom setting was also common in the oral reflections code (code 
C6). In Transformation, the recordings of oral reflections featured how the student teachers chose 
examples and questions to be able to reveal student knowledge and understanding (code B1). 
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Contingency was the least common category in the oral reflections, though it was more common here 
than in the written reflections. The most common codes were how students could deviate from the 
lesson plan (code D3) as well as how the student teachers responded to their pupils’ questions and 
answers (code D2). Even code D1, which deals with how the student teachers handle and act with 
pupils during instructions occurred. 

New codes and sub-codes detected during analysis of the students’ lesson plans 

In Foundation, a new code was added concerning students’ thoughts about assessment. Among other 
things, the students reflected on complexity in assessment and teaching, and on the difficulty of 
finding the right teaching level and of fairly judging pupil knowledge. In Connection, two new sub-
codes of code C1 (expectations of classroom complexity) were defined. One sub-code focused on 
pupils needing special support, in which the student teachers reflected on and discussed how to teach 
mathematics so as to include all pupils. This was obvious in both the written and oral reflections. The 
second sub-code connected to C1 was self-reflections on teaching, in which the student teachers 
reflected on the lesson structure and outcome, though this sub-code was only evident in the oral 
reflections. Another common sub-code, of code C6, in both the written and oral reflections was 
classroom framing. Socio-mathematical norms as well as ability grouping versus inclusion were 
important elements of this code; how pupils’ language abilities influence their mathematics learning 
was also included as a sub-heading. 

Reflection 
The Knowledge Quartet is a theoretical framework designed to be applied to observations of student 
teachers in the classroom. In this study the framework has been applied to two different forms of 
examination in a teacher program which generated new codes and sub codes not visible in the original 
framework. These codes and sub-codes might be specific to observe students’ reflections on teaching. 
Through the new codes and sub-codes, it is visible that there is a tendency that the student teachers´ 
reflections become clearer and broader examined through the film than through the text assignment. 
Hence, based on the intervention, I would argue that the refined framework of the Knowledge Quartet 
can be used to analyse students´ reflections in lesson plans. However, the analysis of lesson plans 
differs from that of teaching as performed, as it indicates only whether the student teachers have the 
theoretical knowledge needed to teach a lesson, not whether they have the practical skills. Though, 
there are often few occasions to observe student teachers’ teaching in teacher education, which is why 
it is of interest to explore knowledge to be revealed in reflections of lesson plans. 
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The aim of this study was to investigate the effects of a faculty-school collaboration program on 
preservice mathematics teachers’ professional knowledge and skills. Seven preservice teachers 
worked with a group of students from the collaboration school such that they attempted to understand 
and support students’ mathematics through the implementation of mathematical tasks. Video tapes 
and written documents were used to detect any changes in preservice teachers’ noticing of 
mathematical opportunities emerged from students’ mathematics. A coding scheme was developed to 
understand the pattern in their noticing skills. The results revealed that preservice teachers were able 
to attend to mathematical opportunities during the implementations as well as in oral and written 
reflections took place after implementations. Furthermore, they began to enrich their interpretations 
of students’ mathematics by giving examples from students’ work and their interactions with students. 

Keywords: Noticing, preservice teachers, mathematical opportunities, faculty-school collaboration. 

Introduction 
For effective teaching, teachers should support students’ mathematical understanding by organizing 
appropriate learning environment for students and giving various learning opportunities for students 
as well as providing necessary scaffolding for their learning (Ball, Thames, & Phelps, 2008). 
Teachers’ such ability of eliciting and interpreting students’ mathematics and scaffolding their 
understanding is a sign of both their Mathematical Knowledge for Teaching (MKT) (Ball et al., 2008; 
Stockero, Rupnow, & Pascoe, 2017) and also their noticing skills (Jacobs, Lamp, & Philipp, 2010; 
Schoenfeld, 2011; van Zoest et al., 2017). Because MKT involves in knowledge of how students learn 
and understand mathematics while noticing entails attending to learning opportunities occurred 
during instruction, interpreting students’ thinking and taking an action for fostering students’ 
understanding (Jacobs et al., 2010). In other words, MKT and noticing skills of teachers are 
interrelated (Stockero et al, 2017; van Zoest et al., 2017). Indeed, in-service teachers have opportunity 
to improve such knowledge and skills in schools throughout years such that they could enrich their 
repertoire of students’ thinking styles, capabilities and needs in mathematics as well as teaching 
strategies that are appropriate for their students. However, recent studies on preservice teachers’ 
training (PSTs) revealed that intervention studies conducted under teacher education programs were 
likely to support development of PSTs’ MKT and noticing skills to some extent as well (e.g., Barnhart 
& van Es, 2015). In the light of such findings, we developed a faculty-school collaboration program 
for PSTs to investigate the nature and the development of their professional knowledge and noticing 
skills. As a requirement of the program, PSTs worked with a group of students on the mathematical 
tasks in a school setting throughout a year such that they videotaped all implementation sessions and 
then reflected on the implementations both orally and in written. 

Theoretical framework 
Noticing entails paying attention to important instances occurred in the classroom however it is 
difficult to decide what is noteworthy or not. In this study, we decided to focus on students’ 
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mathematical thinking and understanding and we used Leatham and his colleagues’ (Leatham, 
Peterson, Stockero & van Zoest, 2015) definition of Mathematically Significant Pedagogical 
Opportunity to Build on Student Thinking (MOST) as a unit of analysis to investigate PSTs’ noticing 
skills. They described MOST as a composition of three sequential components such that it should be 
emerged from student’s mathematical thinking, be mathematically significant and be a pedagogical 
opportunity (see for details Leatham et al., 2015). For instance, finding the answer of -8+5 as -13 
might be counted as a MOST if it occurs while teaching operations with integers. In this case, the 
student thinks that addition of a negative and a positive integer is utilized as addition of natural 
numbers such that the sign of the first number is omitted first but then it is attached to the result. 
Because such an answer is observed while teaching integers, it is both mathematically significant and 
also a pedagogical opportunity to be discussed at that time in the class. Leatham and his colleagues 
also noted that not only students’ misconceptions or incomplete reasoning but also their correct 
answers based on use of different strategies or approaches, mathematical contradictions or “why” 
questions might be coded as a MOST instance. 

We adopted Jacobs and her colleagues’ (Jacobs et al., 2010) definition of professional noticing of 
students’ thinking to analyze PSTs’ noticing skills. They defined noticing as having three interrelated 
components as attending to students’ strategies, interpreting their understanding and deciding how to 
respond to students’ mathematics. In this study, we analyzed PSTs’ noticing in terms of whether or 
not they attended to MOST instance, how explicitly and accurately they interpreted students’ thinking 
or student mathematics and how they responded to the MOST instance. We attempted to investigate 
PSTs’ noticing during implementations (in-the-moment) and after implementations (in oral and 
written reflections). The implementation videos provided data about attending and responding while 
written and oral reflections used for attending and interpreting components of noticing. Although we 
asked PSTs to comment on their responding actions in oral and written reflections we did not count 
them as responding component but as a sign of interpretation of student mathematics as well as an 
indicator of their MKT. 

Methodology 
Research setting and participants 

This study was conducted under a university-school collaboration program between a large university 
in Turkey and a local middle school in the neighborhood of the university. In the line of the 
collaboration, we took the responsibility of administration of an elective mathematics course offered 
for the seventh grade students in the school such that we grouped students and assigned a volunteer 
PST to work with these students on the mathematical tasks.  

Seven preservice teachers attended to the program both in fall and spring semesters. Four of them 
were sophomore (Asya, Aydan, Ayla, Aysun) and three of them were junior (Bahar, Berna, Beste) 
undergraduate students of mathematics education program.  

At the beginning of fall semester, a couple of weeks, we discussed about design and implementation 
of mathematical tasks as well as students’ common misconceptions, and effective ways of 
understanding and supporting students’ mathematical thinking. We discussed these issues via some 
sample videos and student work that we had in our repertoire from our earlier studies. Then we 
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assigned a group of four students for each PST that they would work with in the school for a year. 
Each group consisted of mixed ability students in terms of mathematics achievement. 

We followed a 4-step intervention process for PSTs: pre-implementation discussion, task 
implementation, post-implementation discussion and written reflection. During pre-discussions we 
talked about the students’ possible performance on the tasks as well as any modifications in the tasks 
before the implementation. Then, PSTs implemented the tasks in the school such that they allowed 
students worked on the tasks individually at first and then students discussed their answers as a group 
and finally PSTs began to interact with students to address mathematical opportunities occurred 
during the implementations. During post-discussions, each PST talked about how students performed 
on the tasks and how they addressed to students’ mistakes or misconceptions. Each of these discussion 
sessions and implementations were videotaped. Then we asked PSTs to write reflection reports based 
on their videos and students’ worksheets.     

As the research team, we prepared 20 tasks such that 5 of them were about numbers, 7 of them were 
algebra, 5 of them were geometry and 3 of them were data and statistics. We also asked PSTs to 
prepare at least one task for each content area for their own groups and implement them. We used 2 
lesson hours (80 min.) for each task implementation and we spent a total of 25 weeks in the school.  

Data collection and analysis 

We used discussion and task implementation videos, and PSTs’ written reflections as the main source 
for PSTs’ noticing skills. Furthermore, we used task implementation videos and students’ worksheets 
to identify MOST instances. We determined MOST instances according to Leatham and his 
colleagues’ (2015) framework. Based on Jacobs and her colleagues’ (2010) definition of noticing we 
developed a coding scheme to identify PSTs’ noticing skills in terms of attending to MOST, 
interpreting student mathematics and responding to students. While developing the coding framework 
we used similar frameworks in the literature (e.g., van Es, 2011) and also made a workshop with math 
educators to get their suggestions. The scheme that we used for coding is presented in Table 1. 
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Attending 
0 Missed the MOST 
1 Attended to the MOST 

Responding 

Answer-focused 
0 (No attempt) Only tells to the students that their answers/solutions are 

wrong; no guidance for students 
1 (Explanation) S/he or other students tells/explains the procedure or 

solution  
2 (Orientation) Attempts to make students find out the correct answer 

through short-answer, Yes/No type, prompting (directs students to correct 
answer like “…,isn’t it?), no-follow up, non-specific type of questions or 
b) asking them to re-read, re-do, re-think 

Mathematical understanding-focused 
3 (Exploration) Attempts to elicit students’ thinking by asking probing 

questions (why, how, what if, …) but either conversation is not concluded 
or in case of existence of misconceptions /misunderstandings she fails to 
address the gap in student’s mind because her guidance involves partially 
incorrect issues such as lack of terminology, inappropriate examples or 
representations 
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4 (Elaboration) Attempts to elicit students’ thinking by asking probing 
questions and guiding students through appropriate examples, 
representations, connections between concepts and representations 

O
ra

l r
ef

le
ct

io
n 

Attending 
0 Missed the MOST 
1 Attended to the MOST 

Interpreting 
0 No interpretation 
1 Non-specific about student mathematics 
2 Specifically mentioned about student mathematics 

W
ri

tt
en

 r
ef

le
ct
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n 

Attending 

0 Missed the MOST 
IR Attended to the MOST both during Interaction and in Report 
I Attended to the MOST only during Interaction 
R Attended to the MOST in Report 

Interpreting 

0 Does not provide any interpretation or states that she did not understand 
what the student did/thought about 

1 Just rephrases students’ written procedures and/or points out students’ 
mistakes  

2 Comments on the possible reasoning behind student mathematics but 
provides limited justification such as blaming student for lack of 
knowledge or her comments about student mathematics is partially correct 

3 Comments on the possible reasoning behind student mathematics by 
providing examples from students' work or vignettes from student-teacher 
interaction but do not explain the justifications explicitly 

4 Gives a detailed explanation about possible reasoning behind student 
mathematics by providing valid justifications 

Table 1: Framework for teachers’ noticing skills 

We used different identifiers and levels for interpreting component of written and oral reflections 
because during oral reflections we gave a limited time for PSTs to talk however, they had enough 
time to write about implementation and students’ performances. Furthermore, as the research team 
we discussed all MOST instances and codes for PSTs’ noticing skills together. Thus, we have 
achieved a consistency in coding of each PSTs’ noticing and MOST instances, in other words, we 
fully achieved interrater reliability.  

Findings 
In this paper, we present the data collected from seven PSTs who attended to the program in both 
semesters. A total of 354 MOST instances (approximately two MOST instances per week for each 
PST) were detected throughout the year. Although Leatham et al. (2015) discussed various sources 
of MOST instances, including students’ alternative solutions or their answers for “why” questions, in 
this study majority of MOSTs emerged from students’ misconceptions. Furthermore, because we 
mentioned about students’ possible misconceptions during pre-implementation discussions, PSTs 
were somewhat familiar to such instances before the implementations. Indeed, 45% of MOST 
instances were already mentioned in the pre-implementation discussions while 55% of them were 
new for the PSTs. The frequency distribution of how PSTs attended to those MOST instances is 
presented in Table 2.
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    Interaction   Oral Reflection   Written Report 

  Attending  Responding  Attending  Interpreting  Attending  Interpreting 

  0 1  0 1 2 3 4  0 1  0 1 2  0 I R IR  0 1 2 3 4 

Asya Fall 
3 

14% 
18 

86%  
1 

6% 
10 

56% 
6 

33% 
1 

%6 
0 

0%  
6 

29% 
15 

71% 
 6 

29% 
1 

5% 
14 

67%  
1 

5% 
5 

24% 
2 

10% 
13 

62%  
0 

0% 
6 

40% 
3 

20% 
3 

20% 
3 

20% 

Spring 
5 

17% 
24 

83%   
0 

0% 
13 

54% 
7 

29% 
2 

8% 
2 

8%   
6 

21% 
23 

79%   6 
21% 

0 
0% 

23 
79%   

2 
7% 

2 
7% 

3 
10% 

22 
76%   

0 
0% 

5 
20% 

14 
56% 

2 
8% 

4 
16% 

Aydan Fall 
8 

42% 
11 

58%   
2 

18% 
6 

55% 
3 

27% 
0 

0% 
0 

0%   
6 

32% 
13 

68%   
6 

32% 
7 

37% 
6 

32%   
4 

21% 
5 

26% 
4 

21% 
6 

32%   
0 

0% 
3 

30% 
2 

20% 
0 

0% 
5 

50% 

Spring 
3 

11% 
24 

89%   
0 

0% 
17 

71% 
5 

21% 
2 

8% 
0 

0%   
3 

11% 
24 

89%   
3 

11% 
3 

11% 
21 

78%   
0 

0% 
3 

11% 
3 

11% 
21 

78%   
0 

0% 
4 

17% 
8 

33% 
6 

25% 
6 

25% 

Ayla Fall 
2 

10% 
19 

90%  
0 

0% 
10 

53% 
9 

47% 
0 

0% 
0 

0%  
6 

29% 
15 

71%  
6 

29% 
4 

19% 
11 

52%  
0 

0% 
2 

10% 
2 

10% 
17 

81%  
0 

0% 
4 

21% 
6 

32% 
5 

26% 
4 

21% 

Spring 
3 

11% 
25 

89%   
0 

0% 
7 

28% 
12 

48% 
5 

20% 
1 

4%   
4 

14% 
24 

86%   
4 

14% 
2 

7% 
22 

79%   
0 

0% 
0 

0% 
3 

11% 
25 

89%   
0 

0% 
5 

18% 
7 

25% 
6 

21% 
10 

36% 

Aysun Fall 
3 

14% 
18 

86%  
0 

0% 
14 

78% 
4 

22% 
0 

0% 
0 

0%  
5 

24% 
16 

76%  
5 

24% 
7 

33% 
9 

43%  
1 

5% 
1 

5% 
2 

10% 
17 

81%  
0 

0% 
7 

37% 
7 

37% 
1 

5% 
4 

21% 

Spring 
4 

15% 
22 

85%   
0 

0% 
15 

68% 
7 

32% 
0 

0% 
0 

0%   
8 

31% 
18 

69%   
8 

31% 
2 

8% 
16 

62%   
0 

0% 
0 

0% 
4 

15% 
22 

85%   
0 

0% 
4 

15% 
10 

38% 
3 

12% 
9 

35% 

Bahar Fall 
0 

0% 
25 

100%  
3 

12% 
12 

48% 
8 

32% 
1 

4% 
1 

4%  
7 

28% 
18 

72%  
7 

28% 
3 

12% 
15 

60%  
0 

0% 
5 

20% 
0 

0% 
20 

80%  
0 

0% 
16 

80% 
3 

15% 
1 

5% 
0 

0% 

Spring 
3 

10% 
26 

90%   
1 

4% 
11 

42% 
10 

38% 
4 

15% 
0 

0%   
5 

17% 
24 

83%   
5 

17% 
4 

14% 
20 

69%   
3 

10% 
2 

7% 
0 

0% 
24 

83%   
0 

0% 
10 

42% 
7 

29% 
6 

25% 
1 

4% 

Berna Fall 
2 

9% 
21 

91%  
1 

5% 
11 

52% 
9 

43% 
0 

0% 
0 

0%  
8 

35% 
15 

65%  
8 

35% 
3 

13% 
12 

52%  
2 

9% 
4 

17% 
0 

0% 
17 

74%  
0 

0% 
7 

41% 
6 

35% 
2 

12% 
2 

12% 

Spring 
2 

7% 
25 

93%   
0 

0% 
18 

72% 
6 

24% 
0 

0% 
1 

4%   
6 

23% 
20 

77%   
6 

23% 
9 

35% 
11 

42%   
2 

7% 
3 

11% 
0 

0% 
22 

81%   
0 

0% 
7 

32% 
9 

41% 
4 

18% 
2 

9% 

Beste Fall 
0 

0% 
25 

100%  
5 

20% 
7 

28% 
12 

48% 
1 

4% 
0 

0%  
11 

50% 
11 

50%  
11 

50% 
3 

14% 
8 

36%  
0 

0% 
5 

20% 
0 

0% 
20 

80%  
0 

0% 
9 

45% 
7 

35% 
4 

20% 
0 

0% 

Spring 
1 

3% 
32 

97%   
2 

6% 
17 

53% 
11 

34% 
1 

3% 
1 

3%   
6 

18% 
27 

82%   
6 

18% 
3 

9% 
24 

73%   
1 

3% 
8 

24% 
0 

0% 
24 

73%   
0 

0% 
8 

33% 
12 

50% 
4 

17% 
0 

0% 

Total 
Fall 18 

12% 
137 

88%  
12 

9% 
70 

51% 
51 

37% 
3 

2% 
1 

1%  
49 

32% 
103 

68% 
 49 

32% 
28 

18% 
75 

50%  
8 

5% 
27 

17% 
10 

6% 
110 

71%  
0 

0% 
52 

43% 
34 

28% 
16 

13% 
18 

15% 

Spring 21 
11% 

178 
89%   

3 
2% 

98 
55% 

58 
33% 

14 
8% 

5 
3%   

38 
19% 

160 
81%   38 

19% 
23 

12% 
137 

69%   
8 

4% 
18 

9% 
13 

7% 
160 

80%   
0 

0% 
43 

25% 
67 

39% 
31 

18% 
32 

18% 

Table 2: Coding of preservice teachers’ noticing skills 
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When we analyzed data about noticing during implementations, we observed that the PSTs attended 
to majority of MOST instances in both fall and spring semesters (88% and 89%, respectively). In 
terms of responding to MOST instances, it was observed that PSTs attempted to guide students in 
some ways (totally 91% in Fall and 98% in Spring) but they mostly preferred answered-focused 
actions in both semesters (totally 88% for each semester). However, it was seen that in the spring 
semester they attempted to elicit students’ mathematics in the form of exploration and elaboration 
more in comparison to fall semester (totally 3% in Fall, 11% in Spring).   

In terms of written and oral reflections after implementations it was also observed that PSTs attended 
to MOST instances occurred during implementations. During post-implementation discussions the 
instructors from the research team asked about how implementation went and what PSTs observed 
about students’ mathematical performances. When discussion videos were analyzed it was observed 
that PSTs mentioned about the MOST instances occurred during the implementations (68% in Fall 
and 81% in Spring). Furthermore, they attempted to give justifications for students’ performances 
such that the percentage of such specific comments about students’ mathematics increased in spring 
semester (50% in Fall, 69% in Spring).  

The PSTs attended to some of the MOST instances that they missed during the implementations in 
their written reports such that in total they attend to 10 of the 18 missed MOSTs in fall (approx. 56%) 
and 13 of the 21 missed MOSTs in spring (approx. 62%). However, there were cases that PSTs did 
not write about the MOST instances even though they attended to them during the interactions. When 
we compared the semesters, the number of such cases decreased in spring semester from 17% to 9% 
as seen in Table 2. That is, PSTs attended to MOST instances in both during interaction with students 
and in their written reports (71% in Fall and 80% in Spring). We also analyzed how PSTs interpreted 
student mathematics in their written reports. It was observed that all PSTs attempted to interpret 
students’ mathematical thinking behind the MOST instances. Although in fall semester the percentage 
of the cases that PSTs only wrote about what students did (Level 1 in coding scheme) was high, it 
decreased in the spring semester (43% in Fall, 25% in Spring). That is, they began to comment on 
students’ mathematics by providing justifications from their interactions with students and students’ 
written work (totally 56% in Fall and 75% in Spring).   

We also analyzed how each PST’s noticing varied in fall and spring semesters. As shown in Table 3, 
we analyzed their responding actions during interactions in terms of answer-focused vs mathematical-
understanding focused. We also categorized their interpretation of students’ mathematics in terms of 
providing justifications or not. As seen Table 3, Aydan showed a progress in terms of attending to 
MOST instances in the moment of implementations. In terms of responding actions, except Aysun, 
PSTs attempted to elicit or elaborate students’ mathematical understanding during the interactions 
such that there were more instances coded as “3” or “4” in spring semester. The PSTs also attended 
to MOST instances and specifically mentioned about students’ mathematics during oral reflections. 
This fact was more evident in Asya’s, Aydan’s and Ayla’s cases as shown in Table 3. Although all 
PSTs attempted to provide justifications for their interpretations of students’ thinking in their reports, 
the change in Aysun’s and Bahar’s written reflections during spring semester was noteworthy. For 
instance, in fall semester Bahar was just writing about what students did or she blamed students 
having lack of knowledge however in spring semester she began to explain the reasoning behind 
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students’ mathematics by providing examples from student work or sample vignettes of group 
discussions. 

 

    Interaction   Oral reflection   Written reflection 
  Att.  Res.  Att.  Int.  Att.  Int. 
  1  0--2 3--4  1  0--1 2  IR  0--2 3--4 

Asya Fall 86%  95% 5%  71%  33% 67%  62%  60% 40% 
Spring 83%   83% 17%   79%   21% 79%   76%   76% 24% 

Aydan Fall 58%   100% 0%   68%   68% 32%   32%   50% 50% 
Spring 89%   92% 8%   89%   22% 78%   78%   50% 50% 

Ayla Fall 90%  100% 0%  71%  48% 52%  81%  53% 47% 
Spring 89%   76% 24%   86%   21% 79%   89%   43% 57% 

Aysun Fall 86%  100% 0%  76%  57% 43%  81%  74% 26% 
Spring 85%   100% 0%   69%   38% 62%   85%   53% 47% 

Bahar Fall 100%  92% 8%  72%  40% 60%  80%  95% 5% 
Spring 90%   85% 15%   83%   31% 69%   83%   71% 29% 

Berna Fall 91%  100% 0%  65%  48% 52%  74%  76% 24% 
Spring 93%   96% 4%   77%   58% 42%   81%   73% 27% 

Beste Fall 100%  96% 4%  50%  64% 36%  80%  80% 20% 
Spring 97%   94% 6%   82%   27% 73%   73%   83% 17% 

Note: Att.: Attending, Res.: Responding, Int.: Interpreting 

Table 3: Variations in preservice teachers’ noticing skills 

 

Discussion  
In this study, we attempted to create an opportunity for PSTs to investigate nature and development 
of their in-the-moment noticing skills as well as noticing based on analysis of their own videos. As 
aligned with the findings of intervention studies mentioned in the literature (Barnhart & van Es, 2015; 
Stockero et al., 2017) this faculty-school collaboration contributed to PSTs’ noticing. Firstly, PSTs 
were able to attended majority of MOST instances occurred during implementations. Pre and post 
implementation discussions might help PSTs to recognize the MOST instances because we talked 
about students’ possible misconceptions and difficulties as well as how to eliminate such 
misconceptions during the discussions. Furthermore, as they got to know their students they got better 
in predicting their students’ performances so that they had prepared for MOST instances which were 
likely to occur during implementations. This fact could be thought as an improvement in their MKT 
specifically in their specialized content knowledge and knowledge of students and content.  Secondly, 
we observed changes in PSTs’ responding actions throughout the year such that almost all PSTs 
achieved a transition from “No attempt” to “Elaboration” type of responding. However, such 
transition was not in progressive fashion (Barnhart & van Es, 2015) most probably because variations 
in students’ prior knowledge and the context of the tasks (Kilic, Dogan, Tun, & Arabaci, 2018). For 
further studies, PSTs might be trained more for eliciting and elaborating type of responding actions 
before implementations of the tasks with students. Thirdly, analysis of own videos supported PSTs’ 
noticing skills (Barnhart & van Es, 2015; Stockero et al., 2017) such that they were able to recognize 
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and wrote about the MOST instances that they missed during interactions in their reflections. 
Furthermore, written reflections provided an evidence for how PSTs interpreted students’ thinking 
which was implicit in implementation videos.  

Briefly, in addition to their theoretical courses, teacher educators should provide hands-on 
experiences for PSTs to promote their professional knowledge and skills. Although analysis of own 
teaching videos contributed to PSTs’ noticing skills, for in-the-moment noticing, they should be given 
opportunities to work with students or teach in a classroom for a long period of time. 
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Research on teacher knowledge and beliefs in mathematics has a long history (Philipp, 2007). 
However, research on teacher knowledge and beliefs with respect to process-related thinking is 
relatively new. Even though studies have been conducted in this area, especially regarding proof and 
proving, most did not focus on primary grade teachers’ knowledge and beliefs. Moreover, when 
researching mathematical knowledge and beliefs on process-related mathematical thinking, an 
adequate methodological tool is still an issue of concern. The goals of this paper are twofold: (1) to 
present an alternative approach to capture mathematics teacher conceptions on the basis of Kelly’s 
(1955) theory of personal constructs, and (2) to discuss a design of a repertory grid to research 
primary grade teacher conceptions of argumentation. In the end, we discuss the potential of repertory 
grids as a tool to grasp teacher conceptions on process-related thinking in general. 

Keywords: Teacher conceptions, process-related mathematical thinking, semi-structured interviews, 
repertory grid, elementary school teachers. 

Introduction 
Process-related competences, such as argumentation and problem solving are essential for learning 
mathematics. When introducing habits of mind in an educational context, Cuoco, Goldenberg, and 
Mark (1996) highlight amongst others these activities for mathematics classroom. They argue that in 
school mathematics specific results are of little importance in contrast to habits of mind as used by 
mathematicians and that teachers should help students to “learn and adopt some of the ways that 
mathematicians think about problems” (Cuoco et al., 1996, p. 376). As teachers play a vital part in 
enabling this type of learning, it is necessary to understand their practices. Consequently, examining 
teacher knowledge, beliefs, and identity is a relevant research focus. Similarly, at CERME9, the 
TWG20 on teacher knowledge, beliefs and identity underpinned this claim. Moreover, as a group 
they considered these areas “as the core of a teacher’s practices, with each area influencing and being 
influenced by others” (Ribeiro, Aslan-Tutak, Charalambous, & Meinke, 2015, p. 3178). 

As outlined in Philipp (2007), plethora of research in the area of affective domain has been conducted, 
where the focus primarily lied on mathematics as a subject or on specific content areas. When 
focusing on process-related mathematical thinking, teacher beliefs about proof and proving are 
dominant research areas, but merely consider secondary and tertiary education (e.g., Conner, 
Edenfield, Gleason, & Ersoz, 2011). Investigating more specifically teachers’ actions, the case 
analysis by Ayalon and Even (2016) showed how teachers’ understanding of mathematical 
argumentation influenced their way of teaching, pointing out how opportunities of engaging students 
in argumentative activities are made available, and shaped by the teacher. In primary education, 
researchers have shown that teachers play an important part in initiating argumentative processes and 
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determine how students participate in these processes in class (e.g., Forman, Larreamendy-Joerns, 
Stein, & Brown, 1998). Thus, it is vital to understand teacher conceptions of argumentation, as 
discussed as well by Ayalon and Naama in this TWG20 at CERME11. Extending the research from 
secondary to primary education seems appropriate and beneficial. 

In this direction, we conducted an exploratory case study guided by the question what conceptions 
primary grade teachers hold specifically with respect to mathematical argumentation (Klöpping & 
Kuzle, 2018). For that purpose, we developed a guideline for a semi-structured interview. Although 
the exploratory study already yielded some noteworthy results, such as that mathematical 
argumentation was seen by the teachers as processes of understanding or as a tool for critical analysis 
of results, the instrument needs to be revised in order to facilitate the comparison between teachers, 
and to make it feasible for larger samples. Furthermore, the connection between the teachers’ 
conceptions and their classroom practice should be emphasized in order to understand this multi-
faceted phenomenon better. 

On the foundation of our case study (Klöpping & Kuzle, 2018), we present an alternative 
methodological approach for exploring teacher conceptions of process-related mathematical thinking, 
and discuss this approach in the following. The article contributes to the demand to highlight the 
connection between “aspects of mathematics teaching and learning” and “teachers’ intertwined 
knowledge” (Ribeiro et al., 2017, p. 3221). 

A few remarks on researching teacher knowledge and beliefs 
In 1992, Thompson coined the term conception as “a general notion or mental structure encompassing 
beliefs, meanings, concepts, propositions, rules, mental images, and preferences” (Philipp, 2007, p. 
259). The distinction between knowledge and beliefs is not made very clear, therefore, the term 
conceptions arose which acknowledges the important relationship between these two mental 
structures and combines both notions (Philipp, 2007). Researching these mental structures, especially 
beliefs, Philipp (2007) found generally two methodological approaches to be present: studies 
following a case analysis approach and research using assessment instruments. The latter includes 
surveys using Likert-type scale to measure mathematical beliefs and testing theory, whereas the 
former approach used for building theory is more common (Philipp, 2007). Both approaches use a 
wide variety of research instruments exploring “beliefs about students’ mathematical thinking, about 
curriculum, and about technology” as the “three major areas” (Philipp, 2007, p. 281). 

Research on teacher beliefs about process-related mathematical thinking started in the domain of 
proof and proving (e.g., Conner et al., 2011; Knuth, 2002). When referring to other process-related 
competences, research on teacher knowledge and beliefs can be found within the teaching of 
conjecturing and argumentation (e.g., Bergquvist, 2005; Katsh-Singer, McNeill & Loper, 2016). 
Following this line of research, we explored teacher conceptions (knowledge and beliefs) regarding 
mathematical argumentation in German primary education using semi-structured interviews 
(Klöpping & Kuzle, 2018). Questions within the interview guide concerned either argumentation in 
the field of mathematics (e.g., What purpose does argumentation serve in mathematics?) or 
argumentation in the context of teaching (e.g., How do you envision the role of argumentation in your 
classroom? How important is it for you?). However, we found comparing the teachers’ conceptions 
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and connecting these conceptions with their classroom practice as unnecessarily difficult, leading to 
a search for alternative research methods. 

An alternative approach to mathematics teacher conceptions research 
In 1955, Kelly introduced the term personal constructs and thought of them as a way for individuals 
to describe their personality and their surroundings in terms of how some subjects, objects or 
situations equal one another and are yet different from other things. The constructs are labeled as 
“personal” because they vary from person to person. This mirrors Kelly’s interest in individual 
aspects of self-concepts and the social perception of individuals (Westmeyer, Weber, & Asendorpf, 
2014). On the foundation of this psychological cognitive theory, Kelly (1955) derived an instrument 
– the so-called role construct repertory test (or shorter repertory grid) – that can give insight into 
personal constructs which indicate how individuals think, act, and feel. This approach can be seen as 
a methodology for mapping cognitive structures, which includes shared and unique elements of 
persons’ cognitive systems (Kelly, 1955; Tan & Hunter, 2002). 

In praxis, a repertory grid is a technique employed within an interview. On the basis of the interview’s 
topic, elements are selected first. This selection is an essential part of a grid as it defines the underlying 
material. Grounded on Kelly’s theory of personal constructs, the nature of these elements always 
permits that a pair of elements can either be differentiated or be seen as equal when examined through 
personal constructs. A repertory grid finally establishes a link between all elements and the personal 
constructs which came up during the interview. Applying it as an instrument for research in 
mathematics education demands careful deliberation of these components. 

Elements in a repertory grid should belong to the same category to ensure that elicited or given 
constructs are applicable to all elements. This call for homogeneity does not mean that there should 
not be distinctive or contrasting pairs of elements. Quite the opposite, it should be thought of a 
representative coverage including contrasts to allow for a wide range of constructs (Easterby-Smith, 
1980). Additionally, Easterby-Smith (1980) implies that all interviewees should be “able to relate 
directly to the elements specified” (p. 4). 

Constructs are utilized to attribute characteristics to elements helping to distinguish between them 
and reveal how the elements differ according to the subjects understanding. Eliciting constructs from 
triads of elements is, according to Easterby-Smith (1980), the classical approach of generating 
constructs where the subject has to state “in what way two of the elements [in a triad] are alike and 
in what way the third element is different from the other two” (p. 6). In this process, a construct with 
two opposing poles is produced followed by a new selection of elements for the next triad.  

As far as the linking mechanism is concerned two general options are on hand: rating or ranking 
elements. Ranking forces the participants to differ between elements regarding a certain construct 
even if they see no difference. This is why rating scales are common and most often used varying 
from dichotomous scoring to five, seven or even more point scales (Tan & Hunter, 2002). Nowadays, 
technology allows for more subtle grading why a visual analog scale could as well be a viable option, 
but it has, to our knowledge, never been used in a repertory grid. 
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Philipp (2007) points out that cognitive structures, such as knowledge, beliefs and attitudes are 
intertwined. Since a repertory grid does not explore these areas separately, but in a more holistic 
manner, we see great potential to the field of knowledge and beliefs research. Upon this 
methodological consideration, a design of a repertory grid in the context of process-related 
mathematical thinking exemplified through argumentation will be elaborated in the following section. 

Design of a repertory grid on conceptions of argumentation 
As noted earlier, in our exploratory case study with three German primary grade teachers we 
employed a guideline for a semi-structured interview as a data collection tool (Klöpping & Kuzle, 
2018). Taking into consideration the discussed perspective on researching mathematics teacher 
conceptions, re-thinking the nature of the interview guide may be beneficial. To explore in this way 
teacher knowledge and beliefs from a different angle, a repertory grid will be integrated in the existing 
guideline. The integration of Kelly’s ideas should be rather thought of as a methodological synergy 
than a rejection of established approaches.  

Within the conducted exploratory case study, the interviewees were asked to evaluate fictional student 
explanations. We identified this section as a promising part to integrate a repertory grid. First, the 
participants were shown the following mathematical statement: For any positive integers a and b, if 
a + b is an odd number, then one of a or b is an odd number and the other is an even number. Then, 
fictional student arguments which underpin the mathematical statement were presented asking the 
participants to discuss these by referring to the following guiding questions: 

• What do you think of this argument? 
• Would you expect this argument from an elementary school student? 
• Do you think this argument would convince elementary school students? Why or why not? 

The teachers’ answers show significant shreds of evidence to explain what their beliefs on 
mathematical argumentation, their knowledge, and their expectations for classroom interaction and 
implementation of argumentation are. Herein, distinct functions of argumentative structures in the 
classroom were emphasized by the teachers. In the interviews, mathematical argumentation was seen 
as processes of understanding, as practical knowledge, as a tool for critical analysis of results, and as 
supportive for self-reflection among other (Klöpping & Kuzle, 2018). Nevertheless, the approach 
missed the opportunity to link and relate the teachers’ perspectives on the fictional student 
explanations to one another. Difficulties arose as well when the teachers’ evaluations of the student 
explanations were compared among each other. At this exact point, we see potential in the application 
of a repertory grid to better understand teacher conceptions of argumentation. 

The evaluative section on fictional students’ arguments can be changed into the format of a repertory 
grid. First, the teachers are shown the mentioned mathematical statement on parity and develop their 
own argument, which will be used as one element. Then they are asked to discuss the students’ 
arguments applying the method of a repertory grid. Table 1 shows exemplified components of such 
a grid where the fictional student explanations from the former guideline still exist, but are now 
supplied as elements instead. Evaluation and discussion of all arguments within a repertory grid needs 
Kelly’s personal constructs. Each construct (see Table 1 on the left) has a counterpart: a contrast (on 
the right). For example, a teacher could describe an argument as “mathematically correct” whereas 
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on the opposite side of the same scale other arguments can be seen by that teacher as “improper”. The 
exemplified linking mechanism includes a dichotomous scoring and a five-point rating scale. 
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mathematics (1) 

 

 …      …  

Table 1: Example layout of a repertory grid on argumentation with different linking mechanisms 

As elements relate directly to the topic of the interview, they should be the starting point when 
thinking about the design of a grid. Easterby-Smith (1980) recommends to use a small grid with 
clearly specified elements. Selecting elements can be done by supplying them, by providing 
descriptions of roles or situations, or by discussing the research topic with the subject and choosing 
elements jointly (Easterby-Smith, 1980). In our suggestion above, elements will mainly be supplied 
as all fictional students’ arguments are determined in advance. This supplement of elements is 
adequate as it securely allows for interpersonal comparison, which requires the elements in all grids 
to be equal or at least to be equivalent. 

Given that the elements are to be fictional students’ arguments and that all elements together should 
reach representative coverage, a theoretical foundation for the supplied elements is needed. Balacheff 
(1988) introduced a taxonomy of proofs and proving, namely naive empiricism, crucial experiment, 
generic example and thought experiment. Further elaboration of this theory showed that it helps as 
well to distinguish types of arguments (Reid & Knipping, 2010). For the elements in a repertory grid 
on conceptions of argumentation these categories can be used and we suggest that each one is covered 
at least by one element to ensure that they incorporate all important types of arguments. 

We present two fictional student explanations to give an idea of the anticipated grid’s elements (see 
Figure 1). Benjamins’s argument is a generic example (Balacheff, 1988) in which the generality of 
the statement can easily be seen. On the other hand, Clara’s argument shows a naive empiricism 
(Balacheff, 1988) with loosely connected examples. To this pool of supplied elements (in our case 
arguments) the teacher’s own argument in favor of that statement is added as another element. Such 
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procedure may allow for a more explicit connection between knowledge and beliefs of the 
interviewed teacher. Within a repertory grid, the following evaluation of these arguments is done with 
the help of personal constructs. 

 

Figure 1: Examples of elements in a repertory grid on argumentation 

While supplying constructs is a quick and easy way to begin linking them to elements, respectively 
to evaluate the arguments through them, it is difficult to assure that the supplied constructs mirror the 
conceptions of all interviewees and, furthermore, to assume that the subjects have “an adequate 
understanding of what [the constructs] mean” (Easterby-Smith, 1980, p. 6) seems delicate. The 
exemplified construct “mathematically correct” in Table 1 can be understood very differently. One 
teacher might think of it as the opposite of improper or false whereas another teacher judges the 
arguments correctness by its rigor. As teacher conceptions of mathematical argumentation in primary 
education have not been sufficiently studied, supplying constructs might end in misleading 
interpretations, and results. Hence, it seems more adequate to generate them from triads of elements, 
as it is the classical approach in a repertory grid. 

However, making use of the methodological synergy, an alternative could be to as well emerge some 
constructs during the open question part of the interview. In our exploratory case study (Klöpping & 
Kuzle, 2018), the question “What makes an argument convincing?” lead to a possible construct as 
shown in Table 1. One teacher stated that if an argument is comprehensible then it is also convincing. 
Using this statement as a construct in a repertory grid, the contrasting pole must be clear. In this case, 
the teacher meant it as the opposite of “abstract”. With this understanding all arguments, respectively 
elements, can be rated on a scale from “comprehensible” to “abstract”. This way of evaluating and 
interpreting persons, objects, or situations is the core idea of the repertory grid (Kelly, 1955). 
Moreover, this highlights how open questions from a semi-structured interview can contribute to a 
repertory grid. In return, the linking mechanism of the grid addresses quantitative evaluations. 

Following established research methods, we suggest to use a five-point rating scale as the linking 
mechanism, because this lays the basis for a comparison with research using a five-point Likert-type 
scale. Dichotomous scoring, on the other hand, can decide whether an element fulfills a characteristic 
or not, which might be helpful in some cases. The adequate linking mechanism depends strongly on 
the constructs, which signifies that no general decision can be made. 

Benjamin’s Argument 
 
I add two even numbers. The sum will be even. Here: 
 
 
 
 
I add two odd numbers and the sum will also be even. See: 

 

Clara’s Argument 
 
I add 1 and 2. The result is 3, an odd number. 
 
If I add 5 and 6 then that is also an odd number. 
 
And 7 plus 4 is 11. Which again, is an odd 
number. 
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Conclusion and final thoughts 
Following an alternative approach in researching mathematics teacher conceptions, the repertory grid 
seems to be a promising tool that meets the demands in the context of mathematics education research. 
Especially in a domain where the research objects are intertwined in many ways, the repertory grid 
might help to better understand such multi-faceted phenomena. Furthermore, the data provided by a 
repertory grid can be analyzed from different angles as both qualitative and quantitative methods can 
be applied (Tan & Hunter, 2002). This does justice to a research area which in itself has multiple 
perspectives. As we discussed the methodological approach in general, the repertory grid per se is not 
limited by cultural aspects. Nevertheless, when designing it for a certain purpose the educational 
setting and background of the teachers should not be ignored. This especially concerns the selection 
of elements in a grid as all interviewees should be able to relate to them. Additionally, the elements 
strongly define the emerging data. 

The presented methodological discussion for a repertory grid on teacher conceptions of 
argumentation should be seen as an example in the field of process-related mathematical thinking 
which can be adapted. Replacing the elements, respectively arguments and explanations, with student 
solutions to a problem-solving activity or with different mathematical models of the same real-world 
problem can open the door to a repertory grid focusing on teacher conceptions of problem solving or 
mathematical modeling. Moreover, at CERME10 it was discussed how teacher knowledge is related 
to classroom practice and students’ learning (Ribeiro et al., 2017). This demand should probably not 
be limited to teacher knowledge, but should as well take teachers’ beliefs, orientation or attitudes 
towards mathematical principles, concepts or ideas in an educational setting into account. Slightly 
adapting the presented grid design could be beneficial for exploring these relations further. Instead of 
fictional students’ arguments, real arguments from the teacher’s class could be taken. This would link 
the teacher’s knowledge and beliefs directly to classroom practices. 

Concluding the methodological discussion, we plan a qualitative interview study with German 
primary grade teachers on conceptions of mathematical argumentation. From a research perspective, 
our contribution hopefully enriches this research area which can surely take different paths. However, 
this discussion is a call for a methodology which takes strong interconnections into consideration, but 
does not lose the focus on the teacher as an individual being before exploring more general structures. 
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Developing tasks to help prospective teachers construct professional knowledge is an under-
researched area of teacher education. In this paper we focus on describing the process of generating 
tasks in a research project at the University of Huelva. Using the model Mathematics Teachers’ 
Specialized Knowledge we designed tasks to prompt the construction of specific elements of 
knowledge necessary for teaching mathematics, with the involvement of educators and prospective 
teachers selected ad hoc. As an example, we describe elements from a task focused on the notion of 
a polygon. 

Keywords: Mathematics Teacher Education, Tasks, MTSK, Polygons. 

Introduction 
Mathematics teachers’ knowledge has been the subject of discussion for over thirty years during 
which time various forms of modelling this knowledge have emerged, representing a wide variety of 
perspectives, foundations and proposals (see Montes, Ribeiro, & Carrillo, 2016). In this study we take 
on the challenge of applying insights from this body of research into professional knowledge to our 
teacher education programmes (Neubrand, 2018).  

We are currently working on a research project at the University of Huelva which aims to develop a 
series of tasks for working with students following a degree in Primary Education. In the medium 
term, our objective is to structure the course content (with respect to mathematics) around research 
findings. Here we offer a progress report on the development of tasks for the prospective primary 
teachers which focus on the construction of professional knowledge, and which are underpinned by 
the research model, Mathematics Teachers’ Specialised Knowledge (Carrillo et al., 2018). The first 
stage of development involved an experimental one-to-one teaching session (Cobb & Gravemeijer, 
2008) with a specially selected group of students working alongside a team of experienced and less 
experienced teacher educators. 

First we describe the theoretical foundations of the model of professional knowledge underpinning 
the study; then we give a detailed description of the first stage of the process for creating the tasks; 
finally, we offer some reflections on the development process, and the implications, limitations and 
potentials in taking it forward. This will contribute to give some light to our research question: how 
can a teacher's knowledge framework contribute to the design of tasks in teacher education? In 
particular, here we show the design process of a task concerning mathematical knowledge. 
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Theoretical Foundations 
There are three main aims in studying mathematics teachers’ professional knowledge: enriching our 
understanding of its nature, evaluating its quality, and studying how it relates to performance through 
the study of competencies. 

In terms of the first of these, the majority of models currently available attempt to identify the different 
components of knowledge which a mathematics teacher needs to carry out his or her work. Shulman’s 
(1986) proposal, dividing teachers’ knowledge into three broad domains (Subject Matter Knowledge, 
Pedagogical Content Knowledge, and Pedagogical Knowledge), has served as the basis for a 
multitude of subsequent conceptualizations offering more detailed subdomains, components and 
facets. Among these, the work of Ball, Thames and Phelps (2008) deserves mention for its 
identification of the kind of mathematical knowledge which distinguishes practitioners of 
mathematics education from all other professionals within the field of mathematics. 

Among studies describing teachers’ professional knowledge, particularly those focused on the extent 
to which teacher training enables teachers to construct the knowledge required for teaching the 
subject, we can highlight the TEDS-M comparative studies (Tattoo et al., 2008), which evaluate initial 
teacher training programmes, alongside the development of evaluative measures and instruments in 
studies at national scale (e.g.  LMT – Learning Mathematics for Teaching –  Hill, Ball, & Schilling, 
2008, which aims to measure the knowledge of teachers practising in the US). 

Finally, several studies have been carried out focussing on the connection between knowledge and 
action, in particular through the use of the notion of competence, understood as knowledge with the 
potential for use in different professional practices (Godino, Batanero, & Font, 2011). The aim of the 
research described here was to develop properly grounded tasks for training primary teachers 
consistent with design research centred on professional development (Cobb, Jackson, & Dunlap, 
2016). Studies such as these draw on theoretical frameworks for the interpretation of how participants 
engage in the dynamic of professional development; in our case, we use the Mathematics Teachers’ 
Specialized Knowledge (MTSK) model, developed by the team of educator-researchers who designed 
the task. 

Mathematics Teachers’ Specialized Knowledge (MTSK) 

The MTSK model derives from the aim to understand and analyse the teacher’s knowledge specific 
to the teaching and learning of mathematics, and seeks to construct a detailed analytical tool. Since 
its inception (Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013) the model has been discussed in 
various forums and we have given considerable attention to its theoretical foundations (e.g. Montes, 
Ribeiro, & Carrillo, 2016); at the same time, the model has been put to use with teachers in different 
educational contexts to analyse their work across a wide variety of mathematical content, and as a 
result, we have been able to develop a system of analytical categories within the subdomains 
constituting the model (Carrillo et al., 2018). The model itself contemplates three domains – 
mathematical knowledge, pedagogical content knowledge and beliefs and conceptions about 
mathematics and its teaching and learning, the first two of which acknowledge the legacy of Shulman 
(1986) and Ball et al., (2008), among others. Mathematical knowledge (MK) encompasses a 
thoroughgoing knowledge of mathematical content (Knowledge of Topics, KoT), its structure 
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(Knowledge of the Structure of Mathematics, KSM) and its syntax (Knowledge of Practices in 
Mathematics, KPM). Pedagogical content knowledge can be broken down into knowledge of 
mathematics teaching (KMT), knowledge of the features of learning mathematics (KFLM) and 
knowledge of mathematics learning standards (KMLS). As mentioned above, one of the features of 
the model that we would highlight is the detailed classification of categories within the subdomains, 
which enables the model to make a fine-grained analysis of the knowledge deployed by the teacher. 
Other features of note are the redefinition of mathematical knowledge and pedagogical content 
knowledge as intrinsic to mathematics; the integration of the teacher’s beliefs into the model; and the 
intention to recognise that knowledge involves an intricate pattern of connections between 
subdomains. 

Task design from an MTSK perspective 
In our view, the process of designing a task should involve representatives of all those participating, 
with different degrees of responsibility. In the case we present here, those involved were: three 
experienced primary educators with more than twenty years’ experience in training and research into 
primary education; two primary educators with from five to ten years’ experience in training primary 
and/or secondary teachers, both also researchers into mathematics education; two new entrants to 
teacher education with less than three years’ experience, and in the process of completing their 
doctoral studies in the group; one student on a master’s course who was studying the process; and 
three primary trainee teachers (PTTs), one in their final and two in their penultimate year of study. 
The educators constituted virtually the sum total of educators specialising in mathematics education 
at the University of Huelva. The PTTs were selected ad hoc, with an emphasis on those students with 
high grades in subjects related to mathematics, with a good capacity for reflection and analysis, a 
willingness and availability to meet with (part of) the team of educators, and a disposition to both 
provide and receive positive criticism regarding the training programme in which they were 
participating.  

Tasks have a form, a function, and a specific focus (Grevholm, Millman, & Clarke, 2009). The task 
we describe here pertains to a set of teacher training tasks designed to stimulate the trainees’ 
construction of professional knowledge of geometry, specifically the concept of a polygon. To 
achieve this goal, three tasks were designed around exemplification, the notion of a polygon, 
definition and classification. In acknowledgement of the potential of video as a tool for initial training 
(Schoenfeld, 2017), we decided that each set of tasks would be prefaced by a recording of pupils 
responding to some relevant mathematical content as a way of leading into the task. This obviously 
meant that any recorded material that might be used need to be carefully analysed first for its potential. 
In this instance, we used a recording of a teacher introducing her pupils to the notion of polygon by 
presenting a variety of cardboard shapes for them to group together and subsequently arrive at an 
acceptable definition of a polygon. The teacher included a number of non-standard shapes, and by 
presenting them as cardboard cut-outs, and hence non-static, she avoided the risk of standard 
positioning influencing the pupils. The video illustrated how the teacher acted as guide, largely 
leaving the pupils free to make groupings according to their own criteria, and encouraging them to 
reflect on these. 
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The process of planning the associated task followed several stages: 

1) Watching the video: the three representative PTTs watched the recording and recorded their 
impressions against a checklist of the following items: teaching strategies used by the teacher; 
pupils’ thinking strategies, intuitive ideas and difficulties; mathematical content in play and 
specific aspects of the content brought to the fore; task type; resources used – potential, 
limitations and use; appropriateness for the syllabus; examples given, representations of the 
content and resultant problems; teacher’s knowledge of the content; teachers knowledge of 
the teaching and learning of the content. The checklist, drawing on the MTSK model, was 
designed to focus trainees’ attention on relevant aspects of the excerpt while they watched, 
always with a mind to the mathematics involved. The PTTs were asked to follow up the 
viewing with an individual analysis in the form of a written report. 

2) Informal seminar: The three PTTs met with one of the educators to discuss the video and 
identify the key items which had sparked their reflection. The educator took the role of 
interviewer, drawing out from the collaborating students their impressions of what they had 
watched. The aim of this session was to explore what the educators might reasonably expect 
trainee teachers to make of the recording, and in fact the PTTs’ perception of the potential of 
the recording for use with trainees was also discussed, making them participants in the design 
process. The complete seminar was video recorded. 

3) Designing small group tasks: The team of educators agree a focus for each of the three tasks 
and establish a sub-group for each one, making sure that each contains an experienced as well 
as a novice educator. The foci derive from areas of interest arising from the students’ analysis 
(issues deemed by them to be relevant to their professional training). Keeping in mind the 
previously agreed objectives, each group selected the subdomains and categories of the MTSK 
model which they felt were most compatible with each objective, and created sub-tasks 
dealing with each objective, along with an ‘ideal’ solution to the problem specifying which 
elements of knowledge they expected to be brought into play (making reference to the MTSK 
indicators). 

4) Educators discussion group: Each sub-group presented its task to the whole group, and this 
was discussed and refined, returning to step 3 if necessary. The discussion aimed to ensure 
that (i) the task matched the agreed objectives, (ii) the MTSK indicators facilitated the 
objectives, and (iii) the sub-tasks contributed to the construction of the elements of knowledge 
reflected in the indicators. The main objective of these discussions was to improve the task, 
but at another level there was a secondary aim to aid the development of the novice educators. 
When the task was generally considered to be ready to use, it was given to the PTTs to be 
carried out individually. 

5) Small group implementation: Once the PTTs had done the problem individually, they met 
with an experienced and novice educator to talk through their solutions. The PTTs took turns 
to present their solutions, which the group then discussed, also taking the opportunity to 
consider any digressions from the task which the educator deemed interested. After the 
discussion, the PTTs were asked to reflect on (i) the potential and limitations of the task for 
use on their training programme, (ii) the likely response of their fellow trainees to the task and 
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how they would likely tackle it, and (iii) the extent to which they felt the task was appropriate 
to their training. 

6) Closing discussion: All the educators met to evaluate whether the task had enabled the 
students to reach the agreed objectives. To do this, the knowledge deployed by the three 
students was measured against the MTSK model, on the basis of which the task was further 
fine-tuned into its final version ready to be used with the whole group, and was added to the 
collection of completed tasks. The process then looped back to stages 3 and 4 until the 
remaining tasks were completed in the same way. 

One of the tasks, dealing with the definition of a polygon and focusing only on mathematical 
knowledge, is described below as an example. 

In their analysis of the recording of the primary lesson on polygons, the PTTs provided contrasting 
definitions and images of a polygon. The key features they agreed on were that a polygon was a 
closed, flat figure with straight sides, and could be considered in terms of both the interior and 
boundary. To this extent they largely agreed with the definition which was constructed in the course 
of the lesson (a polygon “is a flat shape, it has angles, it has vertices, it has straight sides and no 
curves; all the sides are joined at their extreme points”), barring the tautological “straight lines and 
no curves”. They consider this definition to “be close to the correct one” (which, it seems they believe, 
is unique). They also dismiss size as integral to the concept of a polygon, differentiating between 
mathematical qualities (which play a role in the definition) and those qualities which they denominate 
“physical” (which play no role in the mathematical concept). They consider that a polygon has to 
have the same number of sides, vertices and angles. A doubt emerges as to whether a segment of 
curved line can be called a side (for example, can we say that a circular sector has three sides?). In 
this respect, one of the PTTs considers that “a curved side is infinite sides” since, as they go on to 
explain, “the circumference is the limit of a succession of polygons in terms of the number of sides.” 
For the educators, this contribution to the discussion represented an opportunity within the task for 
studying degeneracy. For their part, the PTTs recognise as polygons rectangles, squares, triangles, 
regular and irregular polygons, and concave and convex polygons; and they reject as polygons 
circumferences, circular sectors and polyhedra. 

We saw the opportunity from the above to take the students further into the concept of polygon, its 
key features and possible definitions. With this in mind, we planned an activity which started by 
asking them to discuss different definitions of a polygon (giving examples of figures which complied 
with the definition and those which didn’t). They were also asked to compare each definition with 
the one they had previously deemed correct. Below is a selection of the definitions they were given: 

a) A polygon is a flat figure with an edge. 
b) A polygon is a continuous line with an angle between each segment. 
c) A polygon is the flat region delimited by a jagged line where I can differentiate the inside 

from the outside. 
d) A polygon is the flat region delimited by a closed polygonal line, and which has the same 

number of vertices, sides and angles. 
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e) A polygon is a region delimited by a closed polygonal line, such that given any two points on 
it, the segment joining the two is always within said region. 

The aim of this activity was to encourage the PTTs to explore the properties of polygons, the 
interconnections between these, and what can be considered essential properties. In particular, it 
sought to highlight the notions of concavity and convexity, connected components, examples and 
counterexamples of polygons (KoT – definitions, properties and foundations), the uniqueness of a 
concept’s definition and the equivalence of definitions (KPM), geometric vocabulary (KoT – registers 
of representation) and comparison of definitions (KoT – procedures). In the course of the activity, the 
PTTs become immersed in a process of coming up with examples and counter-examples, attempting 
to find what they themselves term ‘unusual polygons’. Some of the definitions, such as (a) and (b), 
struck them as very natural; in others, such as (e), they had to think back to the case of concave 
polygons. The discussion of the remaining definitions led them to consider whether two shapes 
(Figure 1) were polygons. 

 

 
Figure 1: Shapes suggested by the primary trainee teachers 

Student 1: For me, the shape that looks like a ‘set square’ [referring to the technical drawing aid] is 
very striking. I think it is a polygon, but it’s got that hole, which is ‘unusual’. 

Educator: And what would the sides be? 

[Student 1 indicates the ‘exterior’ boundary] 

Student 2: Yeah, it’s the same for me, those should be the sides, but the ones inside… What could 
they be? It’s the same with the two triangles joined at the base, is that one side or two? If 
you turn one of the triangles slightly, leaving them joined at the vertex, then they’d be two, 
but the number of vertices, sides and angles don’t add up. 

This debate led them to consider the relationship between sides, vertices and angles that a polygon 
must fulfil (KoT), or, more formally, the number of connected components that the interior of a figure 
should have in order to be a polygon (KoT). At the same time, they also recognised that in 
mathematics it is possible to look for relationships between different definitions of the same object 
so as to tell if they really define the same object (KPM). For the educator, this presented an 
opportunity to consider the limits of the degree of complexity that can be demanded from the students’ 
understanding.  

The discussion that ensued revealed it had been interesting for the PTTs to consider which of the 
figures – among those that struck them as common, or even particular to the interaction of the pupils 
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with the educational material (as in the case of the set square) – prompted a richer discussion of 
mathematics, and they recommended exploring examples such as these as a means of extending 
trainees’ knowledge beyond the standard examples of school mathematics. 

In summary, the confluence of carefully developing the task, using the MTSK indicators, and drawing 
on the experience of the educators and the impressions of the specially chosen PTTs enabled 
professionally-oriented training tasks to be devised, which tap into the specific elements of 
specialised knowledge required for teaching. Including the contributions of prospective primary 
teachers in the development process will undoubtedly help to ensure that future students engage in 
the tasks with a high degree of motivation.  

Final reflections 
One of the chief aims of primary teacher education should be the construction of the knowledge base 
which will enable newly qualified teachers to meet the challenge of their first classroom experiences 
with success. To this end, the work described here uses a model of professional knowledge to define 
suitable aims and points of focus. The model, MTSK, guides the choice of elements to include in the 
process of construction, such as the properties of polygons in the task described above (KoT), and the 
coordination of different definitions (KPM). A remaining challenge is how to evaluate the knowledge 
aimed to be developed with this task and the relationship between the elements of the task and the 
knowledge built, which will be addressed further. Likewise, we assume a second challenge, consisting 
in the necessity of scaling up from task designing for/with some PPT to design for ‘many’ of them 
(Prediger, Schnell, & Rösike, 2016).  

A good starting point to face this necessity is the design of tasks developed from one-on-one teaching 
experiments (Cobb & Gravemeijer, 2008), which can then be presented to the whole group.  The 
involvement of high profile PTTs for appraising the task in terms of its training potential provides an 
opportunity to collate suggestions on how it might be improved and implemented. Likewise, the 
dynamic of the discussion group, involving both experienced and novice educators represents a 
context for constructing trainers’ knowledge, MTSK also playing a structuring role in this training, 
as suggested by Kilpatrick and Spangler (2016). 
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Multiple representation enables students to connect different ideas and gain a deeper understanding 
of the mathematical concepts involved. The integration of mathematical model representation in 
order to model and interpret physical phenomenon and solve real world problems is one of the major 
objectives of mathematics learning in high school curriculum (NCTM, 2000). In this respect, this 
study focused on Turkish preservice teachers’ process of translation of model representation among 
four representation types. The result of this study indicate that Turkish preservice teachers lacked 
knowledge on the competencies of translation to and from model representations. Results also 
indicate Turkish preservice teachers’ tendency to use another representation type as transitional 
stage to model representations. 

Keywords: Multiple Representation, Mathematics Education, Preservice Teachers, Teacher 
Knowledge. 

 
Literature Review 
Employing multiple embodiments of the concept in the learning environment is essential in 
mathematics education not only its role in exemplifying abstractions but also creating a solid 
conceptual understanding of a single concept by illustrating interconnectedness between the 
representations. While the problems are analyzed, using different mathematical demonstrations such 
as creating table and graph or using algebraic expressions efficiently play a central role in the process 
of conceptual understanding as well as application of inquiry. In this respect, Friedlander and Tabach 
(2001) call attention to consider both advantages and disadvantages of each representation since in 
the case mathematics learning, the use of symbolic, tabular, graphical and modeling representations 
aids learners to create their mental constructions and lead the way to effective and meaningful 
learning.  

In addition to applying multiple representations, the process of model representation is other 
fundamental components of mathematical education. Jacobson (2014) described the ability to model 
as requiring students to "use their understanding of arithmetic operations to make mathematical sense 
of problem situations and to relate this sense making to functions represented by equations, tables, 
and graphs" (p. 155). NCTM Standards (2010) for school mathematics emphasized that mathematical 
model representations encourage students learn how mathematics works in the real world and sense 
about what they have done during the mathematical process. NCTM Standards (2010) for school 
mathematics emphasized that mathematical model representations encourage students learn how 
mathematics works in the real world and sense about what they have done during the mathematical 
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process. In this sense, investigating Turkish preservice teachers’ mathematical models helps 
researchers to a better understanding of how one simplifies, constructs and works mathematically on 
a problem, which are key elements of mathematical thinking. In light of this, the purpose of this study 
is to gain insight into Turkish preservice secondary school mathematics teachers’ representational 
practices of mathematical models in the context of mathematical functions. The data collection 
process was completed before preservice teachers studied multiple-representation topic in the 
secondary mathematics teaching methods course. The purpose of this selection of data collection 
timing was purposeful in order to depict what secondary school teacher candidates would know 
without addressing multiple representations in methods class.  

Methodology 
Participants and Settings 

This study is a part of a larger study that examined the Turkish preservice teachers’ translation process 
among six representation models. Twenty-four senior-year preservice teachers from a public 
university in Istanbul voluntarily participated in this study. The students of this department  had to 
took high scores from university entrance exam, in other words, these participants were successful 
high school graduates who has to score pretty high in mathematics. Furthermore, senior students of 
the department have to take various advanced level mathematics courses like group theory, analysis, 
probability and statistics from mathematics department of the university. Thus, the a common 
assumption for Turkish context is that the senior year preservice teachers from this department are 
pretty well equipped in terms of content knowledge. So, one purpose of this study was to investigate 
how mathematically high achieving preservice teachers perform in terms of translation between 
representations for functions, a central concept that they will teach.  

A questionnaire was designed to address participants’ way of representing combination of translation 
pairs among graphical, model, tabular and algebraic. The participants had to translate those modes 
univocally without the intervention of the researchers. In order to maximize return rates and ensure 
data trustworthiness and credibility, the researcher was in charge of recruiting and collecting data 
from questionnaire. In this sense, data collection process took place within one-hour research method 
course while the preservice teachers were attending the course early in the academic year under 
researcher’s supervision.  

Instruments 

The questionnaire questions were derived from manuscripts (Carlson et al. 2002; Leinhardt, 
Zaslavsky and Stein, 1990; Shell Centre for Mathematical Education (University of Nottingham) and 
adopted in Turkish by the researchers. Since this study was a part of a larger study, six questions 
particularly related to translation pairs including model representations were used in this research. 
The figure 1 below illustrates two of the examples in the questionnaire which illustrated translation 
from graphical representation to model representation and from model representation to graphical 
representation respectively. The question on the left side required participating preservice teachers to 
indicate which sport among fishing, pole vaulting, sky diving and javelin throwing. would produce a 
graph like in the given shape below. This question is related to translation from graphical 
representation to model representation. The other question on the right side asked preservice teachers 
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sketch a rough graph to demonstrate how the distance from A will vary with the distance from B and 
this question is related to translation from model representation to graphical representation. 
 

 

Figure 1. Two tasks in the questionnaire 

After collection of 24 preservice teachers’ results in the questionnaire, researchers decided to evaluate 
questionnaire data quantitatively, in which participants were scored by criterion referenced standards 
according to their translation scores. Total translation score reflects the sum of the translation score 
of participants and obtained by preservice teachers’ score in translating among tabular, graphical, 
algebraic and model representations between a minimum score of 0 (indicating limited correct 
translation activity), a score of 1 (indicating a partially correct translation activity) and maximum of 
2 (indicating correct translation activity). Limited correct translation activity included participating 
preservice teachers’ mathematically incorrect attempts to translate into specified translation type. 
Partially correct translation activities comprised preservice teachers partially correct mathematical 
procedures and calculations in the given translation pairs.  Preservice teachers who completed all 
procedures correctly were given correct translation activity score. The sample preservice teachers 
answer in the second question in Figure 1 are shown in Figure 2. The following examples in Figure 
2 illustrates between limited translation, particular translation and complete translation points for the 
translation pair of from model representation to graphical representation. 
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Figure 2. An example of correct translation activity, partial translation activity and limited 
translation activity respectively 

 

While academic experts examined the items and provided comments and reflections for content 
appropriateness, a Turkish language teacher reviewed the questionnaire’ grammar, punctuation, and 
word selection, and three experienced mathematics teachers checked the participants’ responses to 
ensure interrater reliability.  

Results 

As this study aimed to examine the Turkish preservice teachers’ ways of translating from and to the 
model representation of functions, it was expected the Turkish preservice teachers to coordinate the 
given representations and model representations. The results of Turkish preservice teachers’ 
responses concerning their translation scores in the questionnaire were summarized in Table 1. 

 
Representation types Limited Translation (0) Partial Translation (1) Correct Translation (2) 

Model → Graphical 4 (16,66%) 13(54,16%) 7 (29,16%) 

Model → Tabular 6 (25%) 15 (62,5%) 3 (12,5%) 

Model → Algebraic 16*(66,67%) 8 (33,33%) 0*(0%) 

Graphical → Model 9 (37,5%) 11(45,83%) 4 (16,66%) 

Tabular → Model 6 (25%) 16 (66,67% ) 2 (8,33%) 

Algebraic → Model  4 (16,66) 13 (54.16 %) 7(29,16) 

Table 1. Number of Turkish preservice teachers in each group 

The table showed the number of preservice teachers in three categories that formed according to 
their scores in each translation types. The translation score reflects how accurate preservice 
teacher’s translation process in which tabular, graphical and algebraic representations are mapped 
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onto model representations and vice versa. Preservice teachers were given a minimum score of 0 
(indicating limited translation activity), a score of 1 (indicating a partial translation activity) and 
maximum of 2 (indicating ability to translate among multiple representations).  

Besides, 24 Turkish preservice teachers’ mean score for each translation pairs were presented in 
Table 2. 

 Model → 
Graphical 

Model → 
Tabular 

Model → 
Algebraic 

Graphical → 
Model 

Tabular → 
Model 

Algebraic → 
Model 

Mean 
Score of 

Each 
Group 

 
1,12* 

 
0,87 

 
0,33* 

 
0,79 

 
0,83 

 
1,12* 

Table 2. Mean Score of Each Translation Pair  

According to Table 1 and Table 2, the translation pair from model representation to algebraic 
representation has the lowest rate in mean scores. The participating Turkish preservice teachers’ 
ability to establish meaningful links from model representation to algebraic representation was 
considered weak. In parallel with this, 16 Turkish preservice teachers out of 24 got zero translation 
points when translating from model representation to algebraic representation whereas no participants 
could perceive the goal of making conceptual shift between these two kinds of representations.  

However, translation pair from algebraic representation to model representation was recorded having 
the highest mean rate with 1,12. The question relating to translation from model representation to 
algebraic representation was based on cumulative quadratic functions whereas its reverse pair was 
written as an example of linear functions. When looking to participants’ responses, Turkish preservice 
teacher was unable to define dependent and independent variables in the context of model 
representations in this translation pairs. In conclusion, we can easily conclude that the score of 
participant Turkish preservice teachers were accumulated in partial translation score which points 
their limited ability to translate among several representation types. 

Discussion 
An important element of effective mathematics teaching at secondary school is using multiple 
representations and guiding students to translate between the representations (NCTM, 2000). 
Demonstrating model representation of functions is not only algorithmic process, it is also related to 
formulating problem situation, choosing appropriate variables according to given representations, 
determining the relationships between representations and verifying the model and its implication. 
Within this context, integration of model representation as mathematical practice in teaching and 
learning mathematics is targeted an area of interest in revised mathematics curriculum (MoNE, 2018). 
The department of curriculum studies of the Ministry of Education (Talim ve Terbiye Kurulu 
Başkanlığı, TTKB, 2017) identified symbolic, model, graphical and tabular representations as a way 
for developing appropriate solution strategies for real life problems. In this line, effective and fluent 
usage of model representation is an important practice associated within this goal. In that respect, this 
study is important since this research evaluated Turkish preservice teachers’ translation ability from 
one type of representation to another.  
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Yet, as functions are the concept of interest in translation items, the results also shed light on the 
underlying algebraic ideas such as variable, covariation etc. behind the translation procedure. When 
examining participating Turkish preservice teachers’ responses, they achieved to translate from 
algebraic representation to model representation, in which they were required to write a real-life 
example according to a linear equation. On the other hand, participants failed to satisfy necessary 
requirements to write a reasonable algebraic expression which is suitable for a quadratic growth. This 
evidence suggested that participating Turkish preservice teachers might have a lack of knowledge on 
functions since not only did they show difficulties to recognizing expressions in the different types 
of models, but also complications in explaining the models’ specificities of the models in the context 
of tasks given. It is also important to note that participants had difficulty when stating independent 
and dependent variables in the graphical and algebraic representation. Thus, the results of this study 
support notion of addressing content knowledge in methods courses which have main purpose of 
mathematics teaching methods.  

Furthermore, the findings collaborate with other studies reporting Turkish preservice teachers’ 
difficulty with covariational thinking of functions (Carlson, Jacobs, & Larsen, 2001; Zeytun, 
Çetinkaya & Erbas, 2010). It is pointed in the literature that well developed understanding of function 
is possible by exploiting relationships between two variables (Carraher & Schliemann, 2002). 
Participants’ limited conceptual understanding on functions cause them to struggle interpreting the 
given type of representations and finding a model representation.  
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Studies on teachers’ understanding of processes such as problem solving have focused primarily on 
their beliefs and conceptions to the detriment of features indicative of their professional knowledge. 
This study analyses the knowledge about problem solving process revealed by prospective primary 
teachers. A questionnaire specifically designed for the study was administered to 61 
undergraduates beginning and 53 ending their training. Although characterising solving as a 
dynamic process, both groups, in their description of stage characteristics and strategy 
identification, revealed that their knowledge was essentially theoretical. 

Keywords: Problem solving, Teacher knowledge, Pre-service teachers 

Researchers have engaged in the study of teachers’ knowledge in an attempt to identify the type of 
expertise required to teach mathematics effectively. Problem solving (PS) forms part of such 
expertise, as it is a fundamental process in classroom mathematics, which should cover both 
problem-solving skills and elements that help students become better problem solvers.  

To teach PS, teachers need to know what to do, when to do it and the implications of their actions 
(Lester, 2013). Unfortunately, teachers have been found to exhibit limitations in that regard 
(Andrews & Xenofontos, 2015). Research in the area has targeted their ideas and their own 
problem-solving skills (Lester, 2013), eclipsing factors indicative of their professional knowledge. 
These considerations led us to pose the following research question: what knowledge do 
prospective primary teachers have about PS process? Specifically, this study analyses and describes 
the differences in the theoretical knowledge about the PS process exhibited by prospective primary 
teachers at the beginning and end of their training with a view to helping fill that gap.  

Teachers’ knowledge of mathematical PS. 
Mathematical knowledge for the teaching is understood as a wider knowledge than the 
mathematical subject. Therefore, "the knowledge needed to effectively teach PS should be more 
than general problem-solving ability" (Chapman, 2015, p. 19). Lester (2013) pointing out that the 
teachers’ ability to solve complex, cognitively demanding problems does not suffice to guarantee 
appropriate PS instruction. In addition this author points out that it is necessary to clarify what 
aspects, other than the teacher's competence as a problem solver should be part of the knowledge of 
the mathematics teacher. However, shortcomings for determining teachers’ professional proficiency 
with previous theoretical frameworks have been identified, regarding to overlap or the need to 
broaden the theoretical approach to supplement analyses. More specifically, research on teachers’ 
ability to teach PS is not organised in the usual manner (Chapman, 2015), which leads among other 
limitations to omissions around the nature of PS (Foster, Wake, & Swan, 2014).   

Teacher knowledge models have a tendency to be more content-focused, provoking the omission on 
some aspects of the nature of the PS. PS could be part of mathematics practice (in MTSK' terms, 
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Carrillo et al. 2018), in the sense that allows us to do mathematics (Codes, Climent, & Oliveros, 
2019). Carrillo et al., (2018) establish that this sub-domain "encompasses teachers’ knowledge of 
heuristic aids to PS and of theory-building practices" (p. 245). However, for a math task to become 
a problem, it necessarily needs the solver' perspective. PS is a process with personal nature, in 
which a problem is defined according to the solver. Under this perspective, tension emerges in the 
description of a mathematical knowledge disconnected from the students. 

The knowledge for teaching PS in primary education needs to embrace more than the algorithms 
involved, how to apply them efficiently or possible mental calculation or representational strategies. 
To use the problem to its full potential teachers must also understand it as such, as well as the 
process for solving it. More specifically: a) the problem, i.e., the underlying mathematics, but also 
its type and format and the extent to which it may be a problem for students; b) solving the problem. 
The phases needed to solve: understanding what each data item means, how they are inter-related… 
But also is necessary the applicable strategies may vary, from algebraic; guess and check, or even 
tables or diagrams to visualise the relationships among quantities; c) the disposition it may generate 
in students; d) the mistakes they may make; e) the potential for developing cognitive features such 
as the various strategies, and non-cognitive features such as the belief that problems can be solved 
in different manners or that discussion of a problem is part of the learning process; f) the changes 
that can be made in the amounts of the variables or their inter-relationships to render the problem 
harder or easier; and g) classroom organisation, i.e., the approach to use or emphasise. Given that 
the characteristics of the problem accommodate the consideration of different strategies, prioritising 
teaching about PS would appear to be the most suitable approach.  

Identifying professional knowledge about PS teaching calls, firstly, for addressing teachers’ 
knowledge of processes rather than their mathematical content knowledge, the perspective adopted 
in traditional teachers’ knowledge models. Based on mathematical and PS proficiency theories, PS 
is understood here to mean the action taken by a subject who identifies a problem, proceeds to solve 
it by deploying a strategy involving a series of not necessarily linear steps and confronts the 
challenge with a favourable disposition. Based on this idea, teaching PS proficiency draws on a 
complex network of interdependent knowledge. Chapman (2015) proposes a model consisting of a) 
teacher PS proficiency; b) knowledge of problem content, solving and posing; c) pedagogical 
knowledge of students as problem solvers and of teaching practice; and d) a dimension comprising 
affective factors and beliefs that impact teaching and learning this skill.  

We have applied the Chapman’ framework to six curricular guidelines in order to identify the 
knowledge required to teach PS (Piñeiro, Castro-Rodríguez, & Castro, 2016). This analysis has led 
to modifications (Piñeiro, Castro-Rodríguez, & Castro, 2019), in which we distinguish three 
elements on teacher's knowledge, its own proficiency to solve problems, and two related to teaching 
(one referred to PS theoretical knowledge, and another to aspects of learning and teaching). Figure 
1 shows the components of our framework related to PS knowledge and PS pedagogical knowledge. 
Here we focus on teachers' PS process knowledge, distinguishes four key components: PS stages 
and their characterization, strategies, metacognition, and non-cognitive factors (Piñeiro et al, 2019). 
This study is confined with static knowledge related to PS, that is, the theoretical aspects of PS 
process (Blanco, 2004). 
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Figure 1: Teacher knowledge components for teaching problem solving 

Theoretical knowledge about PS process. 
In our approach to Teachers' PS knowledge, PS process can be broken down into four areas: solving 
stages and their characterisation, solving strategies, metacognition, and affective factors (Piñeiro et 
al, 2019).  

The first area, solving stages, adapts naturally to Pólya’s (1945) postulates on how solvers proceed: 
comprehension, planning, action and evaluation. Awareness of those stages helps teachers adapt the 
assistance needed to the circumstances. One factor common to all four is their configuration as 
personal cognitive processes, not observable directly but only through what the solver says or does 
in each stage (Mayer & Wittrock, 2006). The process is non-linear, for as Wilson, Fernandez, and 
Hadaway (1993) explained, it is flexible, accommodating both forward and backward movements. 
Teachers aware of these elements can stand by their students and mediate in their development of 
PS proficiency.  

In connection with the second area, solving strategies, Schoenfeld (1985) distinguished two types of 
decision-making. Strategic decisions include the definition of objectives and the decision to adopt a 
course of action. Tactical decisions are geared to implementing strategic decisions. Whilst together 
they constitute what is understood as strategy, singly they are of no use for a number of reasons, 
including the role of metacognition (Schoenfeld, 1985). Strategies must be taught carefully, for that 
endeavour covers all the overlapping components addressed in this section. More specifically, 
decision-making on what to do and how to do it depends on an understanding and mental 
representation of the problem. It is also affected by metacognition, for the success of the strategy is 
partly determined by its conscious use. Backtracking further reinforces this process and helps 
determine the aptness of the initial decision. The entire process is mediated by the emotions that 
may arise, the attitudes prompted and the beliefs held during PS.  

The third area is metacognition. Schoenfeld (1985) expanded research perspectives by showing the 
importance of metacognition and affect. Metacognition is described as the manner in which solvers 
self-regulate, monitor, and control; their heuristics and mathematical knowledge to solve a problem, 
enabling them to apply appropriate decisions to the task at hand. 
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The fourth and last area covers non-cognitive factors and their essential role, for they determine 
how the solver confronts problems. It is generally agreed that depending on the suitability of the 
challenge posed to students, they bring their emotions into play, which in turn mobilises their 
intellect (Mason, 2016).  

Method. 
To characterize the knowledge about PS of prospective primary teachers, we have used a 
questionnaire for the power that this type of instrument to collect information to, among others, 
describe the knowledge of the people (Fink, 2003). The questionnaire was designed and 
administered to university undergraduates beginning and ending their pre-service teacher training to 
analyse and describe the differences between them. A dual analysis was subsequently performed.  

Context and participants. 

The participants in this study were 114 undergraduates working toward a degree in primary teacher 
education at the University of Granada. They were grouped by the training received, 61 first year 
(G1) and 53 fourth year (G2) undergraduates. G1 had received no university mathematics training. 
G2 had taken three requisite subjects on mathematics teaching: classroom mathematics content; 
teaching and learning core classroom mathematics topics; and the primary education mathematics 
curriculum. In these three subjects, PS is treated as a transversal goal. Specifically, when discussing 
meanings and modes of use of mathematical concepts. The activities in which they have involved 
are mainly of two types: master classes in which are presented, guided and synthesized some of the 
courses' topics. The second type, called practical activities can have two orientations, laboratory and 
TIC. In laboratory practices, work with manipulative materials, and TIC practices will focus on the 
management of educational software and Internet resources. They had also taken an elective 
addressing (among others) PS content, in which they were introduced to strategies and heuristics, 
problem posing and strategies for teaching PS. Specifically, in activities such as: a) characterization 
and exemplification of the role of PS in the learning of mathematics and its link with mathematical 
competence, b) development and application of strategies and heuristics for PS, c) application of 
criteria for posing problems, and d) analyze appropriate teaching strategies for teaching PS. 

Instrument. 

The questionnaire was developed following phases: a) theoretical analysis on the notion of PS 
proficiency; b) study on the primary education curricular syllabus related to PR; c) research review 
about PS with primary teachers; d) construction of the pilot version of the instrument; e) review by 
expert judgment and pilot application; and f) construction of the final version of the questionnaire. 
These phases originate a specific questionnaire with two sections and 66 items. A closed binary 
design was adopted to elicit ideas that would denote the presence or absence of certain types of 
knowledge (Fink, 2003). The first section of the questionnaire (Figure 2) was sub-divided into PS 
stages and their characterisation, metacognition, and non-cognitive factors. The second sought to 
determine trainees’ ability to recognise specific strategies in students’ hypothetical answers to 
problems, in which, eight items were formulated as multiple choice questions. The options were: 
1a) building a table; 1b) work backwards; 2a) draw a diagram; 2b) guess and check; 2c) look for a 
pattern; and 2d) operating.  
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Figure 2: Items on section 1 of the questionnaire 

In the validation process, we contemplate two aspects. The first one is related to ensuring that the 
content is relevant and was made from the selection of knowledge related to PS on Primary 
Education school curricula. We have discussed this process somewhere else (Piñeiro et al., 2016). 
The second aspect corresponds to a test of the validity of the items, for which it was submitted to 
expert judgment. The experts’ judgment makes possible a qualitative evaluation of the statements. 
Five Spanish mathematics education experts conducted the process. Also, a pilot application was 
made with the main goal was to increase reliability, validity and feasibility (Cohen, Manion, & 
Morrison, 2011). Our piloting was focused on assessing aspects such as the adequacy of the total 
time, clarity and comprehension of the statements. 

Analysis and results. 
This study aims to characterize the theoretical knowledge about the PS process manifested by 
prospective primary teachers. This has motivated the use one of the forms of interpretation of 
multidimensional scaling, allowing identifying the groupings that emerge from their answers, 
describing the common feature of these and labelling the attribute present in them (Bisquerra, 
1989). Therefore, respondents’ replies were processed first with dimensional scaling multivariate 
analysis using ALSCAL (SPSS) software, in which the dimensions defined were agreement or 
disagreement with the item (from here on, these terms will be used only to refer to the dimensions 
found). A second descriptive analysis was subsequently performed, in which responses were 
reviewed in terms of inter-group differences and the ideas defended in the literature. 

PS stages and their characterisation. 

This answers elicited high levels of agreement, although the percentage of agreement was higher in 
G2. Both groups acknowledged that the process could comprise several stages. For example, on the 
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stages' identification on a hypothetical solution, agreement percentages increase in the G2. 
Specifically, in the G1 a 97% identifies the understanding phase, 82% planning, 90% on carrying 
out the plan, and 80% on revision. In G2, 94% is the lowest percentage of recognition in any 
phases. At the same time, both groups characterize the process as flexible (98% in both groups), in 
which progress is made towards the solution (G1: 97%; GF2 100%), and they also admit the 
possibility of moving backwards if necessary (G1: 79%; G2: 83%). Both groups accept several 
moments on the PS process. Particularly, G1 states that, for example, representations (93%), 
reading (97%), calculations (95%) or verifications (95%) may appear. Likewise, in the same 
questions, the G2 presents positive answers in approximately 98% of the students. However, in this 
section one of the notorious differences can be found. In G1 only 46% respond positively to the 
possibility that similar problems can be solved, and 77% to the exploration of other resolution’ 
paths. Conversely, G2 states that they can appear in 94% and 80%, respectively. On the questions 
that delve into the phases' features, there is majority agreement in both groups. For example, they 
recognize the usefulness of the representations to understand a problem (98%; 100%), and also that 
problems should not be solved without understanding them (97%; 98%). Nonetheless, in the 
questions that inquire about the value of the review phase, a difference was observed: only 49% of 
G1 state that it is advisable to pose similar problems, while 92% of the G2 states that it is necessary. 
Likewise, 67% on G1 indicates that it is appropriate to look for alternative forms of solution, as 
opposed to 91% on G2. 

Knowledge of strategies. 

The strategies that best recognize G1 were: operating (95%), draw a diagram (92%), building a 
table (90%), and look for a pattern (74%). A lower identification' degree was found on strategies 
works backwards (64%) and guess and check (46%). The strategies that best identify on G2 were: 
operating (93.6%), draw a diagram (87.2%), works backwards (83%), and look a pattern (80.9%). 
The strategies that have a lower percentage of recognition were building a table (72.3%), and guess 
and check (40.4%). Interestingly, in G1, work backwards was mistaken for operating by 31% of 
respondents, whilst 34% confounded guess and check with building a table and 15% with look for a 
pattern. Similarly, 30% of G2 confounded guess and check with look for a pattern and 21% with 
building a table. 

Knowledge of metacognition. 

Although most of the responses to the metacognitive items were agreement, a number of 
disagreements were recorded. Specifically, both indicate 92% state that the existence of monitoring 
that allows awareness of the errors committed. However, there are also some interesting answers. 
For instance, in one of the questions (11) on the reasons for operational errors in answers to 
problems, both groups identified the error. Their replies nonetheless differed about whether it 
should be attributed to a misunderstanding of the problem or to the calculation itself. In addition, 
both groups agree that the adequacy of the response was not verified. 

Knowledge around non-cognitive factors. 

Most of the items on non-cognitive factors elicited agreement. The percentage of agreement was 
slightly higher among the G2, however. However, the agreement percentages are slightly higher in 

Thematic Working Group 20

Proceedings of CERME11 3975



 

 

the G2. For example, in a question that inquires into the disposition to solve a problem, 77% of the 
G1 agrees, while the percentage rises to 91% on G2. Also, there are some doubts that need to be 
highlighted. Disagreement was expressed in a number of items. In particular, although the future 
teachers in both groups deemed motivation to be important to PS, a smaller percentage believed it 
to be instrumental to a successful outcome. For example, both groups state that it is important to be 
motivated to face an PS process (G1: 90%; G2: 96%), however, only 39% on G1 and 40% of the 
G2 believe that this can determine success in finding a solution. 

Discussion and conclusions. 
The findings showed that participants’ replies were in line with the knowledge reported in the 
literature. They nonetheless co-existed with ideas that may prevent the translation of such 
knowledge into teaching practice.  

Both groups’ replies were consistent with a dynamic, cyclical interpretation of the stages described 
by Pólya (Wilson et al., 1993). The differences between the two groups studied in connection with 
knowledge of solving stages and their characterisation had to do with the variety of elements that 
may be involved in the solving process, specifically in the review stage. However, they do not 
consider posing problem as part of the PS process, one of the key moments to understand the 
process as cyclical (Wilson et al., 1993). That characterisation may fail to have practical 
implications, however, for the stages of PS about which respondents showed least agreement were 
the exploration of different solutions and problem posing. Given that those two approaches are 
determinants in characterising the process as dynamic and cyclical (Wilson et al., 1993), 
respondents may possibly be presumed to hold contradictory belief. Simultaneously, the present 
findings also seem to imply that the university training received has a scant impact on a command 
of PS theoretical knowledge, for the replies to the items on strategies between the two groups were 
essentially similar. The strategies with which both were most familiar were operating and drawing, 
whilst neither was well acquainted with guess and check. The inference is that although their 
knowledge was compatible with an understanding of solving as a dynamic and cyclical process, 
their approach continued to be linear. That conclusion is supported by the fact that the strategy least 
recognised, guess and check, is related to authentic PS. 

In general, findings on teacher’ PS process knowledge show little differences between groups. This 
seems to indicate that the knowledge they have, does not change during their training, despite 
having specific courses. This result could be explained because it is one of the areas stressed in 
curricula and textbooks (Wilson et al., 1993). Hence, we believe it is necessary for training 
programs to be concerned about this aspect, fostering skills that make it possible a deeper 
understanding of the PS process. On the other hand, the contrast between that finding and the actual 
belief exhibited by future teachers when confronting PS activities (Andrews & Xenofontos, 2015) 
raises the question of whether the relationship between mathematical knowledge and pedagogical 
knowledge is the same when a process such as PS is involved.  
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In this paper, we discuss the process of conceptualising tasks for teacher education as a research 
methodology that may improve the understanding of the features of teachers’ knowledge, as well as 
refine the specificities of the Mathematics Teachers’ Specialized Knowledge (MTSK) 
conceptualisation. We focus our discussion on a task for teacher education conceptualised to develop 
teachers’ knowledge of connections between measurement and fractions. The discussion of the 
process of designing a task emphasises the role of using a teacher’s knowledge conceptualisation 
(MTSK) as a tool for such design, in a dialectic relation with the aim to develop a methodological 
tool to be employed in shaping teacher education and to develop teachers’ knowledge.   

Keywords: Teacher education, task design, teacher knowledge, mathematical connections. 

Introduction 
Teacher education involves a broad set of dimensions and may thus be investigated from different 
perspectives. One of the core aspects of mathematics teacher education is related to identifying the 
most problematic areas, not only in terms of the topics that present difficulties to both students and 
teachers—when learning and teaching, respectively—but also in terms of how the teachers’ 
knowledge should be considered and developed.  

It is well known that teachers’ knowledge has a great impact on pupils’ knowledge/learning 
(Grossman, 2010). In that sense, it is essential to focus teacher education on the core aspects of such 
knowledge, which demands a particular attention to both the process of conceptualising tasks and to 
how they are implemented. Moreover, it is necessary for the tasks conceptualised for teacher 
education to be in a direct relationship with practice, thus assuming a practice-based approach. One 
of the ways of achieving this aim is to include pupils’ productions (containing errors or not but, in 
particular, those considered as non-standard), whenever aiming to contribute to the development of 
what has been termed as Interpretative Knowledge (Mellone, Tortora, Jakobsen, & Ribeiro, 2017). 

Considering that the principles related to the school mathematics (NCTM, 2000) provide a set of five 
standards of mathematical process—connections, representations, problem solving, reasoning, and 
communication—teacher education must be concentrated on developing teachers’ knowledge of 
those principles. Amongst them, connections and representations are particularly relevant for the 
work we are developing, as it focuses on teachers’ knowledge. Since the representations and their use 
are directly linked to the learning process in mathematics, it is required to broaden and deepen the 
understandings about what kind of relationships can be established between various forms of 
representations, such as verbal, pictorial, numerical, symbolic, algebraic, and graphical. 
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In terms of mathematical topics in which representations play a central role, rational numbers are 
considered the most problematic, both in terms of learning and teaching, mainly because of the 
different meanings they assume across different contexts. When we consider the variety of 
interpretations of rational numbers—part-whole, measure continuous quantities, quotient, operator 
and ratio—it is not surprising that pupils experience difficulties in understanding and dealing with 
this concept. Besides that, because of the intrinsic relationship between the construct of rational 
numbers and the phenomenological process of measurement—since it is one of the meanings of the 
fraction representation for rational numbers (Charalambous & Pitta-Pantazi, 2005)—it is essential to 
focus on the connections between these two topics (rational numbers, fractions in particular, and 
measurement) in order to propose effective interventions in the context of teaching and learning, and 
specifically in the context of teacher education.   

Considering, therefore, the central role that teachers’ knowledge plays in pupils’ learning, and the 
importance of improving such knowledge, allowing teachers to help students in developing the 
understanding about connections and (between) representations, this work focuses on the question: 
which are the features required in conceptualising a task for developing the specificities of teachers’ 
knowledge?  

Theoretical Framework 
Several conceptualisations of teachers’ mathematical knowledge have been developed (e.g., Ball, 
Thames, & Phelps, 2008; Carrillo et al., 2018), most of which include, explicitly or implicitly, 
connections as a part of the dimensions of teachers’ knowledge. This inclusion can be perceived as 
an awareness of the central role that connections assume in teachers’ practice, for example, to 
establish a coherence on the work plan, that is, to the sequence of the tasks they prepare and 
implement. Another aspect related to the teachers’ practice in which connections are essential is the 
need to give sense to students’ productions (Mellone et al., 2017), treating them as a starting point to 
develop and broaden their mathematical knowledge.  

We treat connections as a dimension of teachers’ knowledge, which is related to the relationships 
teachers, consciously and deliberately, establish among different constructs within the same topic 
(intra-conceptual connections) and/or among different topics (inter-conceptual connections), in order 
to develop students’ mathematical knowledge. In that sense, we assume a teachers’ knowledge 
conceptualisation (Mathematical Teachers’ Specialised Knowledge – MTSK – Carrillo et al., 2018) 
that considers such differentiation, both in terms of the type of connections, and the intentionality 
behind establishing such connections. The MTSK conceptualisation is conceived as a theoretical and 
analytical tool to better understand teacher’s knowledge specificities, from two main dimensions, 
named Pedagogical Content Knowledge (PCK) and the Mathematical Knowledge (MK) domains. 
Each domain includes three subdomains related to: the content itself; the connections between topics 
and how one proceeds in mathematics (MK); the features of teaching and learning each topic and the 
awareness of the curriculum (PCK).  

In this work, we focus on three of the six subdomains—Knowledge of Topics (KoT) and Knowledge 
of Structures of Mathematics (KSM)—related to, respectively, intra-conceptual and inter-conceptual 
connections and Knowledge of Features of Learning Mathematics (KFLM).   
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The KoT subdomain includes the teachers’ knowledge on definitions, procedures, characteristics of 
results, foundations, properties, distinct types of representations, and phenomenology and 
applications. In the scope of rational numbers, it includes knowledge of the different meanings 
associated with the rational number (e.g., part-whole, ratio, operator, quotient, and measure –
Charalambous & Pitta-Pantazi, 2005). Another aspect included in the KoT refers to the knowledge 
of the models and representations, for example, within contexts like percentage, ratio, and proportion, 
in which rational numbers can be applied. When a teacher establishes relationships amongst the 

representations 50%, 1
2
, and , connecting them to the notion expressed by the term “a half,” 

and intentionally contextualises these representations in different situations, we would say that he/she 
reveals knowledge of intra-conceptual connections (KoT). In this context, the specialisation of the 
knowledge is related to connecting, intentionally and deliberately, the concept image (in the sense of 
Tall & Vinner, 1981) associated with a construct to its concept definition (as specific equivalence 
class), in each particular case, which is thus associated with intra-conceptual connections (KoT). 

The KSM subdomain concerns the knowledge related specifically to (inter-conceptual) connections, 
and it comprises four categories. Because of the space limitation, we will discuss only two of such 
categories: the auxiliary and transverse connections. The auxiliary connection category is related to 
teachers’ knowledge of the need to consider a notion (procedure or construct) as a support to the 
process of developing students’ understanding of a certain concept (procedure or notion). In this case, 
we can take an example of a kindergarten teacher implementing a task involving a measurement 
activity, whereby he/she evokes the procedures of measuring (iteration of the unit and assigning a 
quantity to the number of times the unit fits within the whole).   

The transverse connections pertain to the knowledge grounding the establishment of relationships 
between several topics with common features, even if those common features are not necessarily 
evident at first sight. An example of this concerns connecting the experience of measuring a 
magnitude, using different units of measurement, with the inverse proportional relationships between 
the number of units of measurement used and the correspondent values obtained for such 
measurement. In this case, considering the same whole, the smaller the unit of measurement, the 
bigger the number expressing the result of the measurement. 

In relation to the work we are developing focusing on teachers’ knowledge on connections, one other 
core aspect concerns the knowledge on students’ mathematical thinking, learning and knowledge 
development when engaging with mathematical tasks, which is part of the KFLM subdomain from 
the MTSK conceptualisation. It also includes the knowledge of the types of tasks and examples, and 
common errors or areas of difficulty, as well as misunderstandings and misconceptions when 
proceeding in mathematics. For instance, a teacher should know the students’ misunderstanding of a 
rational number as a measurement (quantity) and not only as a part-whole relationship.   

Such specialised knowledge grounds teachers’ practice, and in order to develop such practice having 
as a starting point what their students know and how they know it, it is required that the teachers 
interpret and give meaning to the students’ productions and comments. When considering teachers’ 
knowledge required to interpret students’ productions, the notion of Interpretative Knowledge (IK) 
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has been developed (Mellone et al., 2017). It is defined as “the knowledge that allows teachers to give 
sense to pupils’ answers, in particular to ‘non-standard’ ones, i.e., adequate answers that differ from 
those teachers would give or expect, or answers that contain errors”, (Mellone et al., 2017, p. 2949). 
The aim of the educational process should be to develop teachers’ IK, so that they transition from an 
evaluative perspective (traditional—associated with a teacher’s establishment of a relation between 
the students’ answer and the elements of his/her own (im)possible and mathematically (in)adequate 
set of solutions for a problem, named space of solutions) to a real interpretation for the educational 
design, that is, when a teacher “revises his/her mathematical formalization in order to ensure that it 
is coherent with students’ productions” (Mellone et al., 2017, p. 2950).  

Considering, therefore, the specificities and particularities associated with teachers’ knowledge, in 
the context of teacher education, the tasks conceptualised to develop such knowledge must also have 
a specialised nature (Ribeiro, 2016). This means that the MTSK and the IK perspectives, as tools for 
supporting the process of designing tasks conceptually, on one hand, aim at accessing and developing 
some aspects of the specialised knowledge related to the mathematical topic(s) to be taught. On the 
other hand, including students’ productions from which the mathematical reasons that sustain 
eventual errors or non-standard responses can be explored, the task conceptualisation relies on the 
notion of broadening teachers’ space of solutions and, ultimately, developing teachers’ ability to 
support the development of pupils’ mathematical knowledge, starting from their own reasoning.   

Context  
The current work is a part of broader research project which focus on the dimensions of teacher’s 
knowledge related to connections. The goals of such research project include identifying and 
describing some categorisations of connections that teachers elaborate (or should be developed) when 
discussing tasks specifically conceptualised for teacher education.  

All the tasks conceptualised are conceived to be implemented in different contexts of teachers’ 
training programs and they comprise of two parts (described in detail in the next section). The first 
part of the task discussed in this paper (denoted as “A half”) was designed to last about four hours, 
including both teachers’ reflections and the whole group discussions. The second part of the task was 
designed to last about two hours, also including teachers’ reflection and the whole group discussions.  

Analysing the conceptualisation of a task for teacher education 
The MTSK conceptualisation considers, as mentioned before, six subdomains of teacher’s 
knowledge, with several associated descriptors. When conceptualising a task for teacher education 
using the MTSK as a tool for approaching the complexity of teachers’ knowledge, those descriptors 
will serve as guiding principles for the work of accessing and developing (this last process occurring 
specifically in the context of the task implementation) teacher’s specialised knowledge. Thus, after 
identifying the mathematical subject matter to be explored in the task, the task designer must choose 
the main aspects of teacher’s knowledge he/she wants to develop, and then must associate it to the 
descriptors included within the subdomains.  

For instance, one of the questions of first part of the task (named “A half”) aimed at accessing (and 
not assessing) teachers’ knowledge of the meaning of the concept/construct of “a half”: a rational 
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number that can be understood as a quantity resulting from the phenomenological process of 
measurement; the meanings of a fraction; and/or result of a division (operation – which is a 
mathematical process). “Imagine you are on the street and someone stops you and poses a question: 
‘What is a half?’ What would your answer be? Respond to this question for yourself, using your own 
mathematical knowledge.”) - KoT. Another question included in this part of the task aimed at 
accessing teachers’ knowledge about types of representations associated with a concept (“Present 
two distinct representations for ‘a half.’ Justify why you consider these representations as distinct 
from each other.”) – KoT. Moreover, they were considered in the first part of the task the type of 
problems/different contexts the concept/construct of fraction can be applied to, and procedures 
associated with, the characteristics of the result (number sense – number as a quantity) contexts in 
(“Pose two distinct situations (or word problems) in which the term (and the concept) ‘a half’ is 
explicit.”) – KoT and KFLM.  

As the background of the aspects approached of the questions aforementioned, they were considered 
as contents of the teacher’s knowledge to be accessed the role of the whole when measuring and the 
foundations of the measuring activity (What is “to measure” something? What can be measured?) – 
KSM.  

The conceptualisation involved in the tasks we have been assuming for teacher education includes 
the perspective that any situation students would encounter must be experienced by the teachers. In 
the “A half” task, two situations for students were included, denoted as “The secret envelopes.” 
Specifically, three different envelopes containing a stick and a piece of string are distributed to 
students and each pupil is asked to measure the stick using a piece of string. In the first situation, the 
three envelopes contain sticks of the same length, but the length of the strings corresponds to 4, 2 and 
1/2 of the stick length, respectively. In the second situation, the envelopes contain both sticks and 
strings of different lengths, but the relation between the stick and string lengths in each envelope is 
always 1

2
. 

Teachers are stimulated to solve the students’ task by assuming that they are not involved in a teaching 
context. Then, they are invited to reflect on the teaching process involved in the students’ task from 
questions explicitly linked to PCK subdomains. For doing so, questions such as “What kind of 
knowledge do students need to solve the task?” and “How do you consider a 2nd grade student would 
solve the task? Try to present some examples of possible difficulties, mistakes, or misunderstandings 
a child could experience.” are posed – KFLM.  

In order to access teachers’ knowledge on: i) connections between the measurement process and the 
concept of a fraction as a number (quantity) including the different types of representations associated 
to it (KoT); and ii) connections between the inverse proportional concept and the characteristics of 
results obtained by a measurement process (KSM)a question linked to the students’ task was included 
(“What are the mathematical topics/contents (that can be) explored within these tasks? Do you 
consider those topics/contents as related to each other? Give examples.”).  
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The second part of the task is conceptualised 
according to the IK perspective (Mellone et 
al., 2017). For doing so, a transcription (Fig. 
1) of a discussion between a teacher and a 2nd 
grade for “the secret envelopes” is presented1. 
Teachers are invited to interpret the last 
student’s statement, considering the 
mathematical adequacy and correction. They 
are subsequently instructed to propose a 
continuity of the dialogue to develop the 
student’s mathematical knowledge related to 
the topic of the task. 

When interpreting the last student’s statement, teachers must evoke their MTSK related to the 
meaning of the construct “a half”, that is, as a rational number that can be represented by a quantity 
(resulting from the phenomenological process of measurement). This teacher’s specialised 
knowledge is associated to the KoT and KSM subdomains explored on the first part of the task. For 
instance, if in the first part of the task a teacher provides a representation of “a half” that is somehow 
associated with a magnitude (length, for example), he/she would be able to understand that the student 
is not comprehending the construct “a half” as a number because he/she is not considering a number 
as a magnitude (a quantity yielded by a measurement process).  

One of the principles of the measurement process is to attribute a value to the measure, that is, a 
number. Therefore, in order to develop student knowledge about the number sense related to the 
concept “a half,” teachers should be aware of the need to redesign the educational process (Mellone 
et al., 2017), establishing connections among the numeric representation 1

2
, the pictorial representation 

, and the notion of a phenomenological process of measuring. Moreover, a 
teacher should be reflecting on how the special role played in the society by the rational number 1

2
 is 

reflected in the natural language. Indeed, in many (all?) languages, we can find at least two ways to 
express it, like "a half" and "one on two", and while this second way suitably arranged works for all 
the fractions, the first is only for 1

2
, stressing its special role. 

Obviously, this (re)design of the educational process is associated with teachers’ specialised 
knowledge about the connections, both between different types of representation of a construct (in 
this case “a half”) and the meaning(s) of such construct (fraction as a measure). In that sense, it is 
important to highlight that, in order to develop the IK in teachers, it is necessary to simultaneously 
develop their MTSK.  

                                                 
1 In the context of a task conceptualisation we have been developing, students’ responses as written or oral commentaries 
are considered as “student productions.”  

 

 

Figure 1: The second part of the “A half” task 
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Final Comments and Remarks for the Future  
In this paper, we presented a process of conceptualising a task based on a methodological and 
analytical tool focusing on the teachers’ specialised knowledge (MTSK) and its relation to the process 
of intentionally developing their Interpretative Knowledge. Considering the features of the teacher’s 
knowledge—which differs from students’ knowledge and from that well-educated individuals 
possess—tasks aimed at teacher education must explore and develop the diverse dimensions and 
features of such knowledge (specialised and interpretative). The first part of the task involves a 
combination of the knowledges the students are expected to possess that is rooted in a deeper, formal, 
and rigorous understanding. The second part of the task is conceptualised by the IK perspective and 
is essential the inclusion of student’s productions, preferably those in which the mathematical aspects 
can be explored in a broaden and deepen way.  

When implementing a task conceptualised from these two perspectives about teacher’s knowledge in 
a teachers’ training context (initial or continuous), it is essential to emphasise the role of the teacher 
educator, who must be aware of the need for improving the specialised and interpretative teachers’ 
knowledge. This should be done by not only following the questions posed in the task, but also by 
scrutinising the diverse types of (possible) interactions that teachers should present with the task. This 
awareness that teachers’ educator must provide during the implementation is related to both his/her 
own mathematics specialised knowledge about teachers’ knowledge and his/her own Interpretative 
Knowledge. In the context we have been working, the teacher educator (who is also a researcher) 
uses the particularities of both teacher’s knowledge perspectives (MTSK and IK) as conceptual bases 
in the process of designing the task, implementing it in the teacher’s training programs and analysing 
the data gathered from such implementation.  

The process of conceptualising a task for teacher education 
described here is one of the several ways to perceive the 
methodology of designing tasks aiming at accessing and developing 
the specificities of teacher’s knowledge. Both MTSK and IK 
perspectives are in process of development in different contexts 
(Spain, Norway, Italy, Brazil, etc.). In that sense, it is 
understandable (and desirable) that different teacher’s knowledge 
conceptualisations are being used as tools for designing tasks for 
teacher education, from different perspectives (e.g., Montes, 
Climent, Carrillo & Contreras, 2019). In the context of the broad 
research we have been developing, we have been considering it 
extremely relevant to focus on the relationships between what we 
consider to be three pillars which sustain the process of 

conceptualising a task for teacher education: the task design process and its implementation; the task 
implementation and the analysis; and the results of the analysis and the task design process. All these 
aspects are certainly influencing and are being influenced by the MTSK and IK perspectives, since 
both perspectives are considered in a dialectic relation with the aim to develop a methodological tool 
to be employed in shaping teacher education. 

 

Figure 2: Relationships to 
be considered in teacher 

education 
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One of the core aspects of teachers’ practice grounds (at least should) on the need to interpret students’ 
productions and comments, not only for helping pupils to overcome their possible difficulties, 
misunderstandings or explore alternative approaches but also to (re)design the teaching approaches 
having such aspects as a starting point. Such knowledge required in and for interpreting students’ 
productions has been termed as Interpretative Knowledge – IK (Jakobsen, Ribeiro, & Mellone, 2014). 
The IK is perceived as the knowledge that allows teachers to “give sense to pupils’ answers, in 
particular to ‘non-standard’ ones, i.e., adequate answers that differ from those teachers would give or 
expect, or answers that contain errors” (Mellone, Tortora, Jakobsen, & Ribeiro, 2017, p. 2949).  

Such IK needs to be (and it is desirable it is) developed in the context of teacher education, since it 
does not developed merely with teaching experience (Mellone et al., 2017). Such development 
requires to explore, in the context of teacher education, tasks specifically conceptualised to such aim1. 
One of the perspectives included in the tasks conceptualised for teacher education is related to 
teachers’ anticipation of student’s responses, a process associated with accessing teacher’s space of 
solutions (Di Martino, Mellone, Minichini, & Ribeiro, 2016). Essentially, IK is related to the teacher’s 
Mathematical Knowledge (MK) evoked when analyzing a student’s production– which does not 
exclude his/her Pedagogical Content Knowledge (PCK) in this process. Moreover, anticipating 
student’s responses plays a central role on the process of developing the IK, and it is also related to 
teacher’s MK and PCK, as this capacity of anticipation depends, among other aspects, on his/her 
knowledge of different procedures associated to a concept, and students difficulties and facilities 
related to a mathematical topic. Besides, anticipating student’s responses is associated with the 
feedback teachers would provide to students, that is, the set of decisions to be taken in order to 
implement significant mathematical practices. Amongst the mathematical topics teachers need to 
cover, measurement assumes (or it should) a major role since it is a core construct of mathematical 
learning, as it serves as a “bridge between the two critical domains of geometry and numbers” 
(Clements & Sarama, 2007, p. 517) and  research shows that early cognitive foundations are not 
limited to number concepts. With such a core role in students’ understanding, measurement is one of 
the topics needed to be explored with pupils since kindergarten—in order to allow them to start 
grounding their mathematical understanding and knowledge since early age.  The content and nature 
of teachers’ knowledge shape the learning opportunities provided to pupils (Hiebert & Grouws, 
                                                 
1 For more information on such tasks conceptualisation see, for example, Policastro, Mellone, Ribeiro and Fiorentini 
(submitted).   
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2007), and researches focusing on kindergarten teachers’ knowledge on measurement and its impact 
on students’ performance (Grossman, 2010) is scarce. In that sense, we assume as one of the foci of 
attention in the research we are developing, the role of such knowledge in supporting (or inhibiting) 
the development of pupils’ mathematical knowledge. In the context of a broader research project (in 
a continuous professional development context) we have been working with five kindergarten and 
primary teachers focusing on discussing some tasks with students’ productions (aimed at improving 
their IK) in the scope of measurement. In a posterior moment the group prepare, discuss and 
implement tasks in their classrooms and afterwards a process of reflection upon the implementation 
occurs. In this poster we focus on presenting and discussing the methodological approach for the 
research. Complementary we discuss one episode emerging from the implementation of one of the 
tasks (with a group of 5-year-old pupils) focusing on one of the teachers IK when giving meaning to 
a student comment on “measuring a wale”. The results of this study enhance the role of teachers’ 
interpretative knowledge as one of the pillars that sustains the capacity to engage children in a 
mathematical discussion. The interrelationship between anticipating students’ answers and the set of 
answers teachers would provide, allow them to make informed decisions and implement significant 
mathematical practices even in contingency moments.  
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Identification and negotiability in communities of practice 
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The paper reports from analyses of one Norwegian secondary school mathematics teacher (Isaac) in 
his transition from university teacher education to employment in secondary school. The process of 
becoming a mathematics teacher is studied in terms of identity, based on the teacher’s participation 
within and at the boundaries of communities of practice at university and school. Adopting a 
longitudinal case-study design and methods from narrative analysis, the case of Isaac displays 
tensions between desires for own mathematics teaching and experiences of possibilities in practice. 
The case illustrates how the concept of identity is helpful for gaining insight into mathematics 
teachers’ ability and legitimacy to contribute to, and take responsibility for, the meanings that matter 
regarding mathematics, its teaching and learning, in their professional debut. 

Keywords: Identity, community of practice, secondary mathematics teaching, narrative analysis.  

Introduction 
Mathematics teacher identity has been explored from a range of theoretical perspectives, spanning 
from categorising aspects of teacher identity in order to describe it and better understand the possible 
influences on teachers’ practice, to viewing identity as a function of participation in different 
communities of practice (Beauchamp & Thomas, 2009; Darragh, 2016; Lutovac & Kaasila, 2017). In 
their overview, Beauchamp and Thomas (2009) find identity to be considered across the literature as 
dynamic and a constantly evolving phenomenon, being under the influence of a range of individual 
and external factors. They discuss a variety of issues that surface in the attempt of defining the concept 
of identity: the role of agency and emotion in shaping identity, the power of stories and discourse in 
understanding teachers’ identity, and the contextual factors that promote or hinder identity 
development. Similarly, Lutovac and Kaasila (2017) find studies on mathematics teacher identity to 
address multiple themes, for instance theoretical models for defining identity, affective relationships 
with mathematics and changes in teacher identity, and the link between identity and teaching 
practices. However, studies focusing on social practices and structures within which teacher identities 
develop seem to predominate in the research field. In this paper, I adopt identity as a theoretical 
concept for better understanding the participative experiences of one newly educated mathematics 
teacher, when entering a secondary mathematics classroom. The purpose of the study is to gain insight 
into the dynamics of one mathematics teacher’s learning, as he moves across different mathematics 
practices at the university and at school and unites his experience into a role as a secondary school 
mathematics teacher. According to Palmér (2013), studies on mathematics teachers often provide an 
external perspective, where the researcher observes and evaluates teaching in order to describe the 
teacher’s knowledge and/or beliefs across contexts. However, in order to understand better 
mathematics teachers’ challenges and opportunities when entering the profession, I instead search for 
in this paper the individual teacher’s own meaning-making of himself as an actor of mathematics 
teaching, and the development of this meaning-making in the professional debut. Studying teacher 
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learning within and across practices, the notion of identity becomes then a conceptual tool for 
investigating how a mathematics teacher negotiates meaning with others and how he regulates his 
participation according to reactions of others to him (Ponte & Chapman, 2008). The research reported 
is based on a larger study of three Norwegian secondary mathematics teachers’ entrance into the 
teaching profession (Rø, 2018), from which the overarching research question is: How do three 
prospective secondary school mathematics teachers identities develop in the transition from 
university teacher education to school? In the subsequent section, I present the theoretical basis for 
investigating mathematics teacher identity, in which it is considered as a dual process of identification 
and negotiability from participating in communities of practice (Wenger, 1998). Adopting a 
longitudinal case-study design and methods from narrative analysis, I further report on and discuss 
results from a series of interviews with one newly qualified mathematics teacher, Isaac, during his 
first year as an upper secondary school mathematics teacher. Thus, this paper seeks to answer the 
following sub-question: What are the participative experiences of one newly educated mathematics 
teacher, when entering a secondary mathematics classroom? 

Mathematics teacher identity in communities of practice 
Within the frames of Wenger’s (1998) social learning theory, a prospective mathematics teacher’s 
movement between university teacher education and employment in school implies various forms of 
participation in communities of practice, and the work of reconciling memberships across the 
community boundaries (Akkerman & Bakker, 2011). The concept of community of practice refers 
here to a set of relationships between people, who share some kind of competence through interaction, 
communication and negotiation of meaning (Wenger, 1998). When moving between practices, the 
prospective mathematics teacher is then negotiating ways of being a person in a community, e.g. 
being a student teacher in mathematics, being a schoolteacher, a teacher colleague, and an employee. 
Hence, the existence of a community of practice concerned with mathematics teaching and learning 
is a negotiation of related identities. On this basis, Wenger (1998) defines identity as negotiated 
experience of self when participating within and between communities of practice. Developing an 
identity as a mathematics teacher can thus be characterised as “increasing participation in the practice 
of teaching, and through this participation, (…) becoming knowledgeable in and about teaching” 
(Adler, 2000). A gradual change in participation, from the periphery towards the centre of a 
community of practice, is by Wenger (1998) described in terms of three modes of belonging: 
engagement, imagination and alignment. For instance, a prospective mathematics teacher might 
engage with ideas of inquiry based mathematics teaching through involvement in communicative 
practices with other community members (e.g. teacher educators, tutors, fellow student teachers, 
students in the classroom, teacher colleagues) during teacher education or in school. Consequently, 
he takes part in ideas of mathematics teaching through imagination, by envisioning himself as a 
teacher in a future classroom who is implementing the community’s practice. Doing what it takes to 
play part in the community, the prospective teacher also aligns with the conditions or characteristics 
of the community’s practice. This can take place through reading and sharing relevant literature with 
other actors, implementing inquiry based activities in own mathematics teaching and being involved 
in professional development projects on inquiry based mathematics teaching. Further, each of the 
three presented modes of belonging can be a source of the dual process of identification and 
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negotiability (Wenger, 1998). Identification concerns a person’s investment in various forms of 
belonging to community practices, being both participative (“identifying with”) and reificative 
(“identifying as”). In other words, identifying with a mathematics teaching practice or a group of 
actors of mathematics teaching is simultaneously a process of being identified as a special kind of 
mathematics teacher. Processes of identification with community practices thus define which 
meanings matter to the prospective teacher regarding mathematics teaching and learning. As an 
example, a mathematics teacher can identify himself with a community of inquiry based mathematics 
teaching by aligning with a joint learning objective of facilitating students’ mathematical confidence 
and social empowerment. These learning objectives are related to perspectives of the subject of 
mathematics as being a social construction: “tentative, growing by means of human creation and 
decision-making and connected with other realms of knowledge, culture and social life” (Ernest, 
1991, p. 209). Through inbound participation in the community, the teacher’s identity will then 
develop in correlation with the negotiated perspectives on the nature of the discipline. However, 
processes of identification does not determine the teacher’s ability to negotiate these meanings. 
Negotiability, then, refers to the “ability, facility, and legitimacy to contribute to, take responsibility 
for and shape the meanings that matter within a social configuration” (Wenger, 1998, p. 197). As an 
example, the meanings that a mathematics classroom community (teacher and students) produce of 
mathematics, its teaching and learning, are not only local meanings. They are also part of a broader 
economy of meaning in which different meanings are produced in different locations and compete for 
the definition of what mathematics teaching and learning is or should be. Consequently, some 
meanings of mathematics teaching and learning achieve special status. Wenger’s (1998) notion of 
ownership of meaning refers here to the teacher’s or the students’ ability to take responsibility for 
negotiating the meanings of mathematics within the classroom community. The interplay between 
the mathematics teacher’s expressed identification and his voiced negotiability displays therefore 
possible tensions between how he desires his mathematics teaching to be and what he experiences as 
possible in practice. Thus, it gives insight into the characteristics of mathematics teacher identity 
development in the beginning of a mathematics teacher career. 

A narrative approach to mathematics teacher identity 
Taking an operational approach to the concept of identity, I follow Elliott (2005) and Sfard and Prusak 
(2005), who link identity to the activity of communication. According to them, narratives provide the 
practical means by which a person can understand himself as living through time, and thus, make 
identity accessible and investigable. Through a narrative lens, a prospective teacher can make sense 
of his process of becoming a mathematics teacher by selecting elements of experience regarding 
mathematics  teaching and learning, and patterning  the chosen elements in ways that reflect stories 
available to the audience. This temporal characteristic of narratives is in line with Wenger’s (1998) 
interpretation of identity as a learning trajectory, when incorporating “the past and the future in the 
very process of negotiating the present” (p. 155). Similarly, Carter and Doyle (1996) state that a 
narrative approach to identity emphasises the negotiated nature of becoming a mathematics teacher. 
Mathematics teacher identities are not simply formed by life experience prior to, during or after 
teacher education programmes. Rather, the teachers are active participants in interpreting their 
experience, “searching for and constructing images that capture the essential features of their 
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understanding of the tasks they encounter in [mathematics] teaching” (Carter & Doyle, 1996, p. 134). 
This paper presents identifying narratives of one newly educated mathematics teacher (Isaac), based 
on three consecutive semi-structured interviews distributed across his first year as a mathematics 
teacher in upper secondary school. Inspired by Elliott (2005), each interview was introduced by an 
invitation to talk freely about experiences from undergoing subject studies in mathematics, university 
teacher education, and/or experiences from being a newly qualified mathematics teacher. To cover 
important parts of Isaac’s life as a learner and teacher of mathematics, the storytelling was followed 
by questions outlined in an interview guide. The follow-up questions concerned Isaac’s first 
mathematics teaching experience, memories of good and less good mathematics lessons, peaks and 
disappointments regarding mathematics teaching and learning, and his expectations about the future. 
Adopting methods from narrative analysis (Polkinghorne, 1995), I sought to create coherence across 
themes and plots in what was told throughout the interviews. I divided the interview transcripts into 
segments where a certain topic was discussed. Based on comparison and contrast of the segments 
within and across interviews, I developed labels due to the segments’ thematic focus. Further, I sorted 
the labels into greater categories or emergent themes of Isaac’s accounts. The emergent themes 
developed from analysis of the first interview were brought into the analysis of the second interview, 
being confronted by labels given to segments in the transcripts. If necessary, the emergent themes 
were refined or new themes were developed. The narrative analysis led to three emergent themes in 
which Isaac’s building of a mathematics teacher identity is expressed: confidence in mathematics and 
mathematics teaching, perspectives on mathematics and its role in mathematics teaching and 
feedback available within the school environment. For each emergent theme, I interpreted the 
associated accounts by means of the theoretical framework. Hence, I searched for evidence of Isaac’s 
participation in communities of practice, based on Wenger’s (1998) two components of identity: 
identification and negotiability. Making a longitudinal approach to the accounts, I further looked for 
changes in Isaac’s expressed identification and negotiability. I identified discontinuities by comparing 
labels across interviews, marking out repeated accounts of turning points and recognising changes in 
attitudes and expressed perspectives regarding mathematics practices. In the subsequent analysis, I 
focus on Isaac’s accounts belonging to the emergent theme perspectives on mathematics and its role 
in mathematics teaching. They provide evidence of identity development in terms of Isaac’s 
strengthened affiliation towards the practices of mathematics teacher education, yet, his struggles of 
realising his ambitions in own mathematics teaching. 

The case of Isaac 
In Norway, two university teacher education programmes qualify for mathematics teaching in 
secondary school (grades 8-13): a five-year Master’s programme in mathematics and natural sciences 
including teacher education (1), and a one-year, post-graduate teacher education programme (PPU) 
(2). In both (1) and (2), the students undergo longer periods of school placement in lower and upper 
secondary school, and they take courses in general pedagogy and mathematics education. Isaac comes 
from the latter programme, building on a Bachelor’s degree in chemistry and about 60 ECTS credits 
in mathematics. I approached him to be a participant in the larger study based on his responses to a 
set of questions that was given to all last-year student teachers in mathematics belonging to either the 
five-year Master’s programme or the one-year PPU programme, within one Norwegian university. In 
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addition to reporting that he planned to work as a mathematics teacher after graduation, Isaac ticked 
off “agree” on the statements “I perceive myself as a teacher” and “I perceive myself as a mathematics 
teacher”. After graduating from PPU, Isaac took a temporary position as a mathematics and science 
teacher at an upper secondary school, teaching mathematics and science within both the general 
education programme and the vocational education programme Technical and Industrial Production. 
Two weeks into his new job, he looks back at PPU and describes it as a positive experience. Isaac 
elaborates on a changed view on teacher education with terms such as becoming part of the way of 
thinking and mastering the language of a new discipline.  

Isaac:  I’ve liked that kind of studies, actually, much more than I had thought that I would 
like it because I’m used to solving problems with two underlines underneath the 
answer, and it was more fun than I thought writing papers [laughing]. (…) it has 
motivated me to think now I’m going to change the math classroom (...). And I feel 
that I have a lot of commitment, many things I would like to do, because of things 
I’ve learned in for example the math education lessons. 

Isaac: After the first semester (...), I didn’t yet get the hang of it, mastering the discipline 
and its format properly (...) didn’t get the message of what we were learning and 
doing, as well as I did in the second period. Because then I was part of the way of 
thinking, then I kind of felt I had an eye-opener about how to work with the 
discipline, how to understand the discipline. (...) I got into the literature, and 
suddenly understood what all these authors wanted to tell, I understood the 
language, the way of thinking. 

Isaac portrays teacher education as something that has turned out as more interesting and enjoyable 
than expected. He elaborates on his changed view by describing a difference between the first and 
second semester at PPU, from not “get[ting] the hang of it” and not “get[ting] the message”, to 
understanding “the language, the way of expressing (…) and thinking”. He tells about having an eye-
opener into the language and mind-set of the teacher education programme, where the lectures 
provided motivation for “chang[ing] the math classroom”. To make the change of his mathematics 
teaching possible, Isaac has signed up for an in-service course in order to try out inquiry based 
mathematics teaching in his own classroom and share his experience with the other participants.   

Isaac:  I signed up for a course (...), the topic is inquiry based teaching, I chose a math 
project, in which I will try to, to a greater extent, inquiry, landscape of investigation, 
and see how it works, and try to break the instinct of standing and chanting at the 
blackboard. (...) Then I have committed myself to it through this project (...) so it 
becomes binding.  

However, in an interview conducted three months later into his first year of teaching, Isaac accounts 
for an experience of stagnation when trying to change his mathematics teaching according to his 
ambitions. He struggles to find the resources for developing new activities, both in terms of having 
enough time to implement it and to getting the good ideas for inquiry based mathematics activities. 

Isaac:  I run dry of ideas when I’m supposed to find out how they can make the sign charts 
inquiry based. I’ve tried, but it has been a lot harder than I expected, to find these 
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activities (…). Sometimes I’ve managed it (...) but not close to the amount that I 
wished for. I’ve done enough to meet the requirements of the in-service course, but 
I’m not able to do much more than that. I wanted a lot more. I have ambitions about 
doing more. 

Instead of being a trigger for changing his teaching, the in-service course on inquiry based 
mathematics teaching has happened in parallel with Isaac’s classroom teaching. Yet, he still holds on 
to his ambition of changing his teaching practice in the future. Despite having a “way to go to get the 
right tools for it”, he imagines becoming a teacher who provides the students with a need to approach 
mathematics differently than seeking the one, correct answer on a series of tasks.  

Isaac:  I want to become the teacher who basically does two things. First of all, makes the 
students understand why, not knowing, but understanding, that’s my first ambition, 
and the second ambition is to be the one who makes you eager for knowledge. The 
one who makes you wanting to know, wanting to understand (...) and to reach that, 
I think I have to change the teaching in a way that students don’t get away with 
rattling off, or, they have to see the value in and the need of understanding. (...) I 
think I have a way to go to get the right tools for it. 

In the final interview, taking place six months into his first year of teaching, Isaac voices a similar 
limited ability for establishing a different mathematics practice in the community of secondary 
mathematics teaching. Although he endeavours to invite the students into mathematics activities with 
no one, correct answer to the problems being posed, some of the students seem to hold on to their 
previous developed learning strategies. These students find comfort in solving textbook tasks with 
clear instructions, and they simultaneously avoid solving open problems that require a more flexible 
approach to the mathematics content. Isaac thus expresses lack of progress regarding his ambitions 
of teaching mathematics for understanding.  

Isaac:  What I’ve tried to do is not giving them access to the procedures so easily, meaning, 
the algorithms. I have tried to limit it, quite simply, the possibilities to memorise, 
not giving them any choice. And then tried to give them some open tasks, meaning, 
not a, b, c, d, which leads to something, but instead give them only d. But they don’t 
succeed. I don’t succeed, even if I try. If I only give them the task d, then I get kind 
of, resigned, almost tearful looks (...). Then I have to hold their hands the whole 
way, and I can never take off the support wheels.  

The narrative analysis of Isaac’s accounts displays a story of overcoming a discontinuity regarding 
mathematics, its teaching and learning, when undergoing teacher education. Looking back at the PPU 
programme, Isaac explicates differences between university mathematics with its “two underlines 
underneath the answer” and the imperfect and corrigible knowledge of the social sciences that were 
represented in teacher education. However, he also tells a story of expanding his perspectives on the 
practices of PPU, of changing his view on teacher education, its literature and modes of reasoning. 
His motivation for changing his mathematics teaching in line with what is communicated at PPU 
indicate thus an inbound movement within the practices of the teacher education programme. Due to 
his descriptions of having the need to change his teaching in direction of inquiry based mathematics 
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practices, Isaac’s accounts further indicate inbound participation within a community of inquiry based 
mathematics teaching. He identifies with the community practices by exercising both engagement 
and imagination. The engagement involves signing up for an in-service course at his new school of 
employment, while imagination involves picturing himself as a future teacher who exercises 
mathematics teaching in line with what was communicated at PPU. However, Isaac also reports on a 
kind of conflict regarding the meaning of mathematics teaching and learning in the secondary 
mathematics classroom, which can be understood as the work of reconciling memberships across 
community boundaries (Akkerman & Bakker, 2011; Wenger, 1998). The reconciliation involves 
Isaac’s continued identification with practices in the community of inquiry based mathematics 
teaching, his and his students’ attempt of establishing a community of secondary mathematics 
teaching, as well as his students’ former memberships in communities of mathematics teaching and 
learning in previous schooling. Isaac’s attempt of establishing a meaning of mathematics teaching 
and learning in his secondary mathematics teaching is thus an issue of negotiability. Since the 
meanings that he and his students produce for mathematics are not only local and delimited by the 
classroom, different meanings compete for the definition of what mathematics teaching is or should 
be. Based on Isaac’s accounts, the meanings of mathematics teaching and learning stemming from 
the students’ previous mathematics practices seem to rule. He expresses limited ability to define what 
is appropriate regarding understanding in mathematics (understanding why, not only knowing what 
to do), with the consequence of being pulled away from his initial ambitions of exercising inquiry 
based teaching. Instead of establishing a new mathematics practice, the outcome is an ongoing 
conflict between him and the students regarding how mathematics should be taught and learned. 
Accordingly, Isaac gives descriptions of a limited ownership of meaning, in the form of undesired 
stagnation in his mathematics teaching practice.  

Discussion 
I have reported on the participative experiences of one individual mathematics teacher during his first 
year in upper secondary school. The study is based on the assumption that teacher learning is more 
than coming to know content, skills and practices. Rather, prospective mathematics teachers are 
active participants, who negotiate their experiences and create images of themselves and their 
challenging tasks and dilemmas in mathematics teaching (Carter & Doyle, 1996). Similarly, Sfard 
and Prusak (2005) claim that “human beings are active agents who play decisive roles in determining 
the dynamics of social life and in shaping individual activities” (p. 15). Developing a teacher identity 
thus brings with it “a sense of agency, of empowerment to move ideas forward, to reach goals or even 
to transform the context” (Beauchamp & Thomas, 2009, p. 183) in which mathematics teaching takes 
place. Although agency is not a term used by Wenger (1998), his theorisation of identity as 
identification and negotiability has in this study provided a conceptual tool for gaining insight into 
Isaac’s ability and legitimacy to contribute to and take responsibility for the meanings that matter 
regarding mathematics teaching and learning in a secondary mathematics classroom. The results 
display some inconsistency between, on the one hand, his increased identification with mathematics 
teaching through inquiry, and on the other hand, his sense of negotiability regarding inquiry based 
mathematics teaching in the classroom. Identification with reform-oriented practices of mathematics 
teaching and learning is an important first step towards change and development of mathematics 
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teachers’ practices. However, in order to explain further the possibilities for Isaac to develop his 
identity as a mathematics teacher in terms of changes in his practice, negotiability has appeared in 
this study as an important construct. Based on his accounts, Isaac seems to exercise imagination in a 
community of inquiry based mathematics teaching, by picturing a changed mathematics teaching 
practice. Yet, the results suggest that further participation by engagement, including active 
negotiation with other actors of a reform-oriented enterprise, is needed in order to alter the economy 
of meaning, and thus, to enable Isaac to implement the desired changes into his classroom teaching.  
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Most studies that deal with possible influences of the social context related to students’ abilities on 
the connection between beliefs and practices involve only a small number of participants (e.g., 1 – 3 
teachers). Thus, we have designed a new quantitative questionnaire (named TBTP) which is intended 
to examine these influences for a larger number of teachers (here: N = 43). Then, for a further 
qualitative investigation, we interviewed and observed lessons of three of those teachers. The results 
show that the 43 teachers distinguish their style of teaching in different contexts of students’ abilities. 
The correlation between beliefs about mathematics and the styles of teaching can be seen in the 
context of low ability students rather than in the context of high ability students. In the further 
investigation, this correlation is supported by the three teachers’ descriptions of their general 
teaching of mathematics and their real practices in classes containing many low ability students. 

Keywords: Teachers’ beliefs, teaching and learning of mathematics, students’ abilities. 

Introduction 
Some researchers have shown that there is a connection between teachers’ beliefs and practices (see 
Philipp, 2007). Other researchers, however, have reported that there may be inconsistencies between 
teachers’ beliefs and their practices (Raymond, 1997; see Philipp, 2007). Buehl and Beck (2015) 
argue that such inconsistencies should not be a reason to discount the power of beliefs, but that other 
factors like social contexts support or hinder the connection between beliefs and practice. Several 
studies (e.g., Raymond, 1997; Cross Francis, 2015) have revealed that social contexts in a classroom 
might cause teachers to act in a way that differs from the way that fits their beliefs. However, most 
of the studies revealing the influence of social contexts are case studies involving only a small number 
of teachers such as one, two, or three teachers (see Raymond, 1997; Cross Francis, 2015). 

Studying teachers’ beliefs and practices by doing intensive case studies involving interviews and 
observations may provide convincing data (Philipp, 2007), but they are too expensive for large 
samples of teachers. The use of self-report instruments is cost-effective, but their accuracy and 
validity are criticized (e.g., Di Martino & Sabena, 2010). Most self-report instruments measuring 
beliefs use closed questions, mainly Likert scale items. However, Di Martino and Sabena (2010) 
question the use of the Likert scale since it amplifies problems related to social desirability. The social 
desirability problem may arise when items being rated are viewed as inherently positive by 
respondents (McCarthy & Shrum, 1997). Thus, teachers’ responses to rating or Likert scale items 
may reflect what is socially accepted and should be done rather than what actually is done (Fang, 
1996). Furthermore, Likert scale items provide less or no contexts (Philipp, 2007), whereas, as we 
pointed out before, social contexts at school may affect teachers’ practices in a classroom.  

We offer an approach to minimize the social desirability problem and consider the social contexts at 
school in order to increase the accuracy of the prediction of teachers’ beliefs and practices. We have 
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developed a questionnaire for studying teachers’ beliefs on their practice (named TBTP). We use 
rank-then-rate (a combination of ranking and rating) items. McCarthy and Shrum (1997) show that 
using rank-then-rate items may reduce respondents’ tendency to give high ratings towards items 
viewed inherently positive socially. Moreover, we consider students’ abilities as the social context in 
a classroom since several researchers (e.g., Raymond, 1997; Beswick, 2018) have shown that 
students’ abilities may influence teachers’ beliefs and practices.  

We conduct this pilot study to evaluate whether the TBTP gives us insight into the relationship 
between beliefs and practices in different contexts of students’ abilities. Ribeiro et al. (2019) suggest 
that considering beliefs and practices in diverse contexts may contribute for a better understanding 
on the beliefs and practices in order to improve the quality of teacher education. 

Theoretical framework 
Beliefs of the nature of mathematics and its association with teaching and learning of math 

Philipp (2007, p. 259) defines “beliefs as psychologically held understandings, premises, or 
propositions about the world that are thought to be true”. Teachers may hold various beliefs about 
mathematics since they may see mathematics with different views. Ernest (1989) summarizes three 
views about the nature of mathematics: the instrumentalist view (mathematics as an accumulation of 
facts and rules to be used in the pursuance of some external end), the Platonist view (mathematics as 
a static but unified body of knowledge), and the problem-solving view (mathematics as a dynamic 
process which is continually expanding field of human creation and invention). Nonetheless, Ernest 
(1989) argues that teachers may merge elements from more than one of the three views.  

Ernest (1989) further argues that the three views about the nature of mathematics can be associated 
with the models of teaching mathematics: (1) the instrumentalist view is linked with the role as an 
instructor who demonstrates math skills correctly; (2) the Platonist view is linked with the role as an 
explainer who describes the relation of concepts; and (3) the problem-solving view is linked with the 
role as a facilitator who likes doing problem solving or posing activities. 

Students’ abilities as a social context 

Empirically, Ernest’s association between beliefs about mathematics and teaching of mathematics 
has not been demonstrated well. Ernest (1989) argues that social contexts such as students’ behaviors 
may cause inconsistencies between teachers’ beliefs and practices. Raymond (1997) has shown that 
students’ abilities, attitudes, and behaviors have strong influences on teachers’ practice. Moreover, 
Zohar, Degani, and Vaaknin (2001) found that most teachers believe that teaching with higher order 
thinking is only appropriate for high-achieving students, not for low-achieving students. Therefore, 
in this study, we consider students’ abilities as the social context which may affect teachers’ practices. 

Research questions and method 
As pointed out before, studies revealing the influence of the social context on teachers’ practices 
involved only small numbers of teachers. In this study, we will examine the influence of the social 
context related to students’ abilities for a larger number. The questions are: (1) How and why do 
teachers differentiate their style of teaching and learning of mathematics because of students’ 
abilities? And (2) how do students’ abilities influence the relationship between teachers’ beliefs about 
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mathematics and their styles of teaching? To answer the questions, we use a multi-method design by 
combining the TBTP questionnaire with interviews and classroom observations. 

The TBTP. This questionnaire has ten rank-then-rate items grouped into three themes presented in 
the Appendix (see Safrudiannur & Rott, 2018, for the evaluation of the reliability and validity of the 
TBTP). In this paper, since we focus on teaching of mathematics, we only discuss teachers’ responses 
to items of Themes 1 and 3. Each item consists of three statements. The first, second, and third 
statement are always associated with the instrumentalist, the Platonist, and the problem-solving 
views, respectively. To consider students’ abilities as the social context, the items of Theme 1 are 
posed twice: for classes dominated by high ability (HA) and by low ability (LA) students (see Figure 
1). Please note that we define the terms HA and LA by using the students’ achievements (see 
Appendix), following Zohar et al. (2001) who use the terms achievement and ability interchangeably.  

 
Figure 1: An example how Fitria responded to item 1 and item 2 (identical statements) of the TBTP 

To respond to an item, a respondent firstly orders the three statements of the item by assigning a rank 
1, 2, or 3, and then rate each of them from 1 to 7 based on his ranks (see Figure 1). Thus, there will 
be two sets of data: ranking and rating data. For data analyses, we only use rating data, because 
ranking data is included. The purpose of the ranking part is only to make respondents discriminate 
three statements of each item before rating them and to minimize the impact of the social desirability. 

We asked 43 Indonesian math teachers who accompanied their students in a math competition to 
respond to the TBTP (their background in detail, sex: 33 females, 7 males, and 3 did not state; school: 
14 from primary, 16 from lower secondary, 10 from upper secondary, and 3 did not state; teaching 
years: 7 for less than two years, 10 in between two and five years, 9 in between five and ten years, 16 
for more than ten years, and 1 did not state).  

Interviews and Observations. Three (all from lower secondary) of the 43 teachers volunteered for a 
further investigation: Elisa (female), Fitria (female), and Dony (male). Elisa and Dony were math 
teachers for two to five years, and Fitria for more than ten years. We chose them since they could 
represent lessons in HA and LA classes. The interviews aimed at finding information about their 
beliefs about mathematics and general teaching of mathematics. We identified key words/ statements 
reflecting their beliefs. We also videotaped one lesson from each teacher. We used the coding system 
from the TIMSS Video Study 1999 to interpret the lessons. We categorized the interaction (Public, 

Statements Rank Statements Rank
R1. 3 Statement R1 2
R2. 2 Statement R2 1
R3. 1 Statement R3 3

Statements Statements
Statement R1 1

②

3 4 5 6 7 Statement R1 1 2 3 4

⑤

6 7
Statement R2 1 2 3  

④

5 6 7 Statement R2 1 2 3 4 5 6

⑦

Statement R3 1 2 3 4

⑤

6 7 Statement R3 1

②

3 4 5 6 7

RATE BASED ON YOUR RANK ABOVE RATE BASED ON YOUR RANK ABOVE
Please rate the level of importance of each statement based on your rank above. Please rate the level of importance of each statement.

Rate Rate

Please order the three statements below by giving a rank 1 (the most important), 2, or 3 
(the least important).

Please order the three statements. 

You demonstrate how to use the formula correctly by giving some examples.
You explain concepts related to how to get or to prove the formula. 
You let your students discover the formulas in their own ways.

Item 1: When you teach the formula in a class dominated by HA students, what is 
important for you?

Item 2: When you teach the formula in a class 
dominated by LA students, what is important for you?

RANK RANK
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Mix, Private) and the content activity (Non-problem or Problem Segment) of the lesson (we explain 
each term directly in the description of each lesson in the result section to save space). Both authors 
of this paper and one expert from Indonesia made the interpretation of interviews and lessons. The 
lowest percentage agreement is 70 % (we did discussions [consensual validation] to solve 
disagreements). 

Results 
Responses to the TBTP questionnaire 

Tables 1 and 2 summarizes the responses of all 43 teachers to the TBTP. The results of paired t-tests 
show that teachers significantly differ their reported styles of teaching between HA and LA classes. 
Table 1 shows that teachers gave higher rates to the statements associated with the instrumentalist 
view for LA classes than to those for HA classes. In contrast, the statements associated with the 
problem-solving view for LA classes have lower rates than those for HA classes.  

No Statements of Theme 1 
(views associated with 

the statements) 

Teachers (n=43) t-values 
(df=42, 

two tailed) 

Elisa Fitria Doni 
HA class 

Mean (sd) 
LA class 

Mean (sd) 
H
A 

L
A 

H
A 

L
A 

H
A 

L
A 

1 and 2 R1 (Instrumentalist view) 4.09 (1.66) 5.65 (1.13) -6.19a 5 7 2 5 2 6 
R2 (Platonist view) 5.02 (1.39) 5.44 (1.42) -1.46 6 5 4 7 4 4 
R3 (Problem-solving view) 5.33 (1.55) 3.47 (1.24) 6.35a 4 4 5 2 6 2 

3 and 4 S1 (Instrumentalist view) 4.07 (1.49) 5.35 (1.15) -4.99a 3 5 2 5 5 6 
S2 (Platonist view) 5.86 (1.19) 5.47 (1.32) 1.57 7 7 5 7 6 3 
S3 (Problem-solving view) 5.44 (1.05) 3.79 (1.81) 5.52a 6 4 6 4 4 1 

a significant for p < 0.004 (The adjustment of alpha = 0.05 by Bonferroni’s correction for 12 multiple t-test) 

Table 1: Teachers’ responses to items of Theme 1 and the results of the paired sample t-test 

There are no differences between rates related to the statements regarding the Platonist view. This 
indicates that explanation and understanding for both HA and LA classes are essential to the teachers. 

No Statements of Theme 3 
(views associated with 

the statements) 

Teachers 
(n=43) 

Correlations with statements of Theme 1 in 
the same view 

E
lis

a 

Fi
tr

i
 D
on

i 
Mean (sd) HA class LA class 

9 P1 (Instrumentalist view) 5.37 (1.43) R1 (0.29), S1 (0.39b) R1 (0.42b), S1 (0.34a) 6 6 5 
P2 (Platonist view) 4.95 (1.19) R2 (0.30a), S2 (0.28) R2 (0.18), S2 (0.33a) 5 5 3 
P3 (Problem-solving view) 4.70 (1.39) R3 (0.28), S3 (0.26) R3 (0.25), S3 (0.20) 4 4 2 

10 Q1 (Instrumentalist view) 5.09 (1.54) R1 (0.07), S1 (0.29) R1 (0.44b), S1 (0.53b) 5 6 6 
Q2 (Platonist view) 5.14 (1.49) R2 (0.33a), S2 (0.36a) R2 (0.32a), S2 (0.39b) 3 4 3 
Q3 (Problem solving view) 4.42 (1.26) R3 (0.09), S3 (0.07) R3 (0.53b), S3 (0.54b) 4 3 5 

a significant for p < 0.05; b significant for p < 0.01 

Table 2: Teachers’ responses to items of Theme 3 and the results of the Pearson correlation 

Table 2 summarizes the responses of all 43 teachers’ to the two items of Theme 3. Most of the teachers 
gave higher rates to statements associated with the instrumentalist view (P1 and Q1). Interestingly, 
the correlation analyses indicate that the rates to the statements of Theme 3 (about the nature of 
mathematics) significantly correlate to the rates to the statements of Theme 1 (about teaching and 
learning of mathematics) for LA classes, particularly in the instrumentalist view. 
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Interviews 

All three teachers’ reports about their beliefs of the nature of mathematics seem to be in line with 
their responses to the items of Theme 3 of the TBTP presented in Table 2 (all gave higher rates to 
both statements P1 and Q1 associated with the instrumentalist view than to the other statements).  

Elisa:  I often meet people who love mathematics so much. I think, I am not like that. I am 
amazed by people who can (…) such as (…) can understand fast, and fast in solving 
problems or anything. I am not, honestly, I understand slowly. So, I think, math is 
a collection of facts, formulas, which make me confused.  

Fitria also expressed that mathematics consists of a lot of formulas and rules which are useful for 
solving problems and their truth is absolute. Doni also expressed that the truth of mathematics is 
absolute since its contents result from absolute agreements which could not be changed. He stressed 
that mathematics is useful for humans for solving problems and that it can be applied universally. 
Additionally, all three interviewees emphasized the importance of memorizing math formulas for 
their students. These expressions seem to indicate that they dominantly hold the instrumentalist view 
since they view mathematics as a toolbox consisting of utilitarian facts and rules to be used by the 
skillfully trained artisan in the pursuance of some external end (Ernest, 1989). 

All interviewees described that they usually taught mathematics by demonstrating formulas and 
giving examples (in line with their responses to items of Theme 1 for LA classes, see Table 1). They 
spent lots of time providing many examples and often repeated their explanation to ensure that 
students understood mathematics. They assessed that many of their students were LA students. They 
argued that if their classes were dominated by HA students, they would be able to apply their ideal 
teaching. They believed that only HA students could discover mathematical formulas by themselves. 

Doni:  Ideally, teaching in HA class. In my class, the abilities are heterogenous. I tend to… 
just did ordinary teaching. Giving them examples (…) cases (…) basic examples. 

Unlike Elisa and Fitria who rarely met HA students, Doni reported that he had a club whose members 
were HA students from different classes. These students were trained to follow mathematics 
competitions. In the club, he gave his HA students difficult math tasks taken from math competitions.  

Observed Lessons 

Elisa taught her students solving a geometry task in the videotaped lesson in her LA class. Before 
handing out the task, a non-problem (NP) segment (a segment containing math information but no 
tasks/problems) took place. The interaction during this NP segment was coded as Public (a public 
dialogue conducted by the teacher and other students must listen to it) since Elisa led students to 
recall some math formulas and concepts. Public interactions also dominated the interaction during 
the problem segment (PS, a segment containing math tasks/problems) since Elisa often asked her 
students questions to make them recall some math formulas which were useful to solve the task. If 
students did not recall formulas, she reminded them of the formulas. Moreover, Elisa demonstrated, 
slowly explained, and guided students on how to use the formulas in the observed lesson.  

There was no NP segment in Fitria’s lesson in her LA class. Fitria taught about the application of 
mathematical operation sets in the real world by giving four tasks. The interaction during the PS 
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segment of the first two tasks was only Public since Fitria demonstrated and explained the way to 
solve the two tasks. The interaction during the PS segment of the last two tasks was Private (students 
individually worked on the two tasks). However, during the Private interaction, Fitria reminded the 
students that they needed to refer to the way of solving the first two tasks, to be able to solve the last 
two. Moreover, when students got stuck, Fitria gave them mathematical clues to help them.  

There was also no NP segment in Doni’s lesson in his club (HA class). At the beginning of PS, Doni 
gave his HA students a sheet with 25 tasks. After that, he let students work individually (only Private 
interaction) without providing any clues to help them. After a break, Doni showed his students how 
to solve some of the tasks from the sheet, and the students checked their answers (Public interaction). 
During the show, Doni emphasized some math formulas that were important for students to memorize 
since the formulas were often used for solving tasks in mathematics competitions. 

Discussion and Conclusion 
In this study, we examine the influence of social contexts related to students’ abilities in a classroom 
on a large number of teachers (43 teachers). The results indicate that students’ abilities have an impact 
on the link between teachers’ beliefs about mathematics and the style of teaching mathematics. 

Firstly, we found that the 43 teachers report significantly different styles of teaching mathematics 
between HA and LA classes (Table 1), indicating that students’ abilities influence teachers’ beliefs 
and practices (Beswick, 1998; Raymond, 1997). The responses to items of Theme 1 for LA classes 
show that most of the participants gave high rates to both statements (R1 and S1) associated with the 
instrumentalist view. Interestingly, they gave low rates to both statements (R3 and S3) associated 
with the problem-solving view. In contrast, they rated R3 and S3 for HA classes higher than they did 
for LA classes. The three teachers in the further investigation believed that only HA students could 
discover math formulas by themselves, whereas LA students would understand mathematics slowly 
and should memorize mathematical formulas. Without memorizing, LA students could not solve math 
tasks or problems in their opinions.  

However, Table 1 also indicates that teachers do not distinguish their teaching styles related to the 
Platonist view. The average rates of R2 and S2 are high for both HA and LA classes. This indicates 
that explanation is an essential part of their teaching, and generally, teachers want their students, both 
HA and LA students, to understand what they teach (Van de Walle et al., 2013). 

Secondly, we found that 43 teachers’ rates to statements about the nature of mathematics (Theme 3) 
correlate with their rates to statements about teaching and learning of mathematics (Theme 1) for LA 
classes (see Table 2), particularly on the instrumentalist view. Our further analyses with the three 
teachers seem to support this correlation. Table 2 indicates that those three teachers’ rates about 
teaching and learning of mathematics for LA classes reflect what they believed about mathematics. 
For example, Elisa and Fitria seemed to hold the instrumentalist view dominantly. Their high rates to 
R1 and S1 of the TBTP for LA classes (see Table 1) seem to reflect their instrumentalist view of 
mathematics. Further, their descriptions of their general teaching, as well as their actual practices, 
also indicate the influences of the instrumentalist views since they played a role as an instructor who 
demonstrates skills correctly (Ernest, 1989). 
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In contrast, the three teachers’ responses to Theme 1 for HA classes (see Table 1) which seem to be 
in line with their ideal teaching may not reflect their beliefs about mathematics. Although they seemed 
to hold the instrumentalist view, they gave low rates to R1 or S1 associated with the instrumentalist 
view but high rates to R3 or S3 associated with the problem-solving view. However, we still can see 
the impact of the instrumentalist view from the responses; e.g., Doni’s high rates to S1 indicate the 
significance of memorizing formulas for HA students. In the observed lesson, he emphasized that his 
HA students should be able to memorize some formulas. This fact confirms the indication. 

There are some limitations in this study. First, all three teachers in the qualitative investigation 
dominantly hold the instrumentalist view. Second, the characteristics of tasks used in the TBTP may 
not cover the complexity of teaching mathematics. For example, the task of item 1 (or item 2) only 
provides three statements about lesson learning a formula in the geometry topic (see Appendix), 
whereas, the way how teachers give their lessons in their own classes may be more complex than 
those three statements. Therefore, since this study is our pilot study and we plan to continue this study 
with larger number of teachers, we are going to add rank-then-rate items from other math topics and 
open questions in the TBTP. Furthermore, in the qualitative investigation, we will involve teachers 
from other views of mathematics (besides the instrumentalist view) in order to have better insight 
into the influence of students’ abilities on the relationship between beliefs and practices. 
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Appendix 
General note: As a mathematics teacher, you have experience with high and low ability students in mathematics. 
Consider these definitions: 

A high ability (HA) student is a student who generally shows a good understanding in your lessons and regularly 
has high scores in your tests. 
A low ability (LA) student is a student who generally does not show a good understanding in your lessons and 
often has low scores in your tests. 

Theme 1 (teaching and learning of mathematics): You are going to teach 
a lesson learning the formula to calculate the area of a trapezoid. 
Please imagine this situation to answer the items 1 to 4. 

 
Items 1 and 2*: When you have the lesson in an HA/LA class, what do you think that is important for you? 
R1. You demonstrate how to use the formula correctly by giving some examples (the instrumentalist view). 
R2. You explain concepts related to how to get or to prove the formula (the Platonist view).  
R3. You let your students discover the formula in their own ways (the problem-solving view). 
Items 3 and 4*: When you have the lesson in an HA/LA class, what do you think that is important for students? 
S1. They memorize and use the formula correctly (the instrumentalist view). 
S2. They understand the concepts underlying the formula from your explanation (the Platonist view). 
S3. They can draw logical conclusions to deduce the formula (the problem-solving view). 
Theme 2 (teaching and learning of problem solving): items 5-8, not discussed in this study. 
Theme 3 (the nature of mathematics): Mathematics contents taught at school can be divided into several sub-domains 
such as numbers, algebra, geometry, measurements, statistics, and probability. The classifications of mathematics 
contents, in general, are more complicated, for example, classical algebra, linear algebra, number theory, differential 
geometry, calculus, statistics, probability theory, etc. 
Item 9: In general, what do you think of the contents of mathematics? 
P1. Mathematics is an accumulation of facts and skills, which are useful for human life. (the instrumentalist view) 
P2. The contents are interrelated and connected within an organizational structure (the Platonist view). 
P3. Mathematics is a dynamic process of human activities. The contents of mathematics expand and change to 
accommodate new developments (the problem-solving view). 
Item 10: What do you think of the truth of the contents of mathematics? 
Q1. The truth is absolute. The contents are free of ambiguity and conflicting interpretations (the instrumentalist view). 
Q2. Mathematical ideas are pre-existing; humans just discover the contents of mathematics. Thus, the truth-value of 
mathematics is objective, not determined by humans (Q2, the Platonist view). 
Q3. The contents are created by human and therefore, their truth-value is also established by humans (Q3, prob. sol.). 
* Items 1 = 2 and 3 =4, but with different classes (1 and 3 for HA, 2 and 4 for LA classes). See Figure 1. 
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What do preservice teachers think about creativity and the ways to promote it in their classes? In this 
study, we analyze the references to creativity that appear in the master’s degree final projects of a 
group of secondary school preservice teachers of mathematics. The projects hold the preservice 
teachers’ reflections on their own practice, but it is important to note that the master’s degree does 
not include any specific training in creativity. In our analysis, we first searched for explicit references 
to creativity in the projects and registered them. Then, we classified the comments depending on the 
elements of the teaching and learning process that are related to creativity in each case. We observe 
a good variety of comments and more than half of the preservice teachers mention creativity, although 
some of them just do it superficially. 

Keywords: Preservice teachers, creativity, master’s degree final project, didactic suitability. 

Introduction 
In recent years, creativity has become an important focus of interest of social sciences. Creativity 
could be related to the development of other abilities such as critical thinking, problem solving, 
communication and the use of new technology, current challenges in the globalized society (Pásztor, 
Molnár, & Csapó, 2015). In education, creativity has also gained importance and its development is 
a goal in modern curricula (Pásztor et al., 2015). In addition, many authors (Mann, 2006; Silver, 1997; 
Sriraman, 2005) claim that creativity should be fostered at school by inclusive activities, working 
with every student and not only with those considered gifted students. However, mathematics lessons 
at school are commonly associated with repetitive procedures and regardless of students’ creativity. 

Research on the promotion of students’ creativity by improving the teachers’ training (Hosseini & 
Watt, 2010; Panaoura & Panaoura, 2014) and research on teachers’ conceptions of creativity (Lev-
Zamir & Leikin, 2011) disregards the following question: how do the teachers consider the promotion 
of students’ creativity in their learning sequences, when they do not receive specific training in this 
subject? In order to answer this question, in this study, we focus on how preservice teachers conceive 
the promotion of students’ creativity when they analyze their own practice and propose some changes 
to improve it, in their master’s degree final projects.  

Theoretical framework 
There are several definitions and conceptualizations of creativity (Kampylis, & Valtanen, 2010; 
Kaufman, & Sternberg, 2006). Kaufman and Beghetto (2009) propose a model with different types 
of creativity: Big-C, which refers to eminent people whose creations have had an impact on a field; 
little-c, which is associated with everyday creativity which appears in daily activities; Pro-C, which 
is present in those professional activities that are generally considered specially creative; and mini-c, 
which they define as "the novel and personally meaningful interpretation of experiences, actions, and 
events" (Beghetto & Kaufman, 2007, p.73). Mini-c creativity is related to learning processes, since it 
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implies a personal interpretation of new facts based on previous experiences and knowledge. In our 
research, we consider the development of creativity at secondary school level, so we use the term in 
accordance with the definition of mini-c creativity.  

Then, a question emerges: how is creativity generated in a teaching and learning process? Regarding 
this question, the first step is assuming that creative thinking is a complex process that can be studied 
as a process that emerges from others, as Malaspina and Font (2010) explained with the intuitive 
process. These authors propose that a method to investigate complex processes is decomposing them 
into more simple processes and they use the metaphor of the vector space: the more complex process, 
creative thinking in this case, can be understood as a linear combination of the basis vectors (other 
processes). This approach to creativity as a process emergent from other more simple processes, was 
also considered in the European project A Computational Environment to Stimulate and Enhance 
Creative Designs for Mathematical Creativity (MC2) (Sala, Font, Barquero, & Giménez, 2017): 

Then, when we concluded that the way to conceptualize the creative process in mathematics 
is decomposing it into other processes, we considered, together with the MC2 team, that the 
best way to go further in its study was adopting the method proposed by the Ontosemiotic 
Approach [Malaspina & Font (2010)] …but introducing an important variant. Instead of using 
a "basis" of processes defined a priori by the theoretical framework, we would use the "basis" 
that would be the result of a brainstorm performed by the participants in the project …MC2 
when each of them explained what they understood by "creative process"…. As a 
consequence, the following aspects were revealed: a) When the members …[participants in 
the project] aim at determining the criteria of design and assessment, they do not directly refer 
to the concept of CMT [Creative Mathematical Thinking], but they consider its decomposition 
into different dimensions, or processes, of mathematical activity, whose integration, through 
task design, [participants] think that would help to develop the CMT. b) There is a shared 
assumption that "the mathematical creative thinking will emerge from the interaction and 
integration" of these different dimensions or processes (p. 4–5). 

On this line, in the master’s degree final project -a document where the preservice teachers propose 
some changes to improve their own practice-, we could expect to find: 1) comments about creativity, 
since enhancing creativity is usually regarded as positive; and 2) in these comments, creativity would 
appear as a consequence of working other aspects that improve the instructional process. 

Several studies on teachers’ training suggest the reflection on the own practice as a key strategy to 
professional development and the improvement of instruction processes. On this line, the construct 
of didactic suitability of the Ontosemiotic Approach (Breda, Pino-Fan, & Font, 2017) has been used 
as a tool to structure the teachers’ reflection in some teachers’ training programs in Spain, Chile, 
Panama, Argentina and Ecuador (Breda, Font, & Lima, 2015).  

The theory of didactic suitability originates from the need to have an instructional theory to help 
teachers to make decisions in designing, implementing and assessing their practice. Didactic 
suitability (Breda et al., 2017; Sullivan, Knott, & Yang, 2015) comprise six types of suitability. The 
epistemic suitability deals with the quality of the mathematics that are taught, and how the explained 
content is representative of the complexity of the mathematical object. The cognitive suitability is 
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about, on the one hand, the adequacy of students’ previous knowledge for learning the intended 
content and, on the other hand, the relation between what students should learn a priori and what they 
have learnt indeed after the implementation. The mediational suitability has to do with the availability 
of time and material resources necessary in the teaching and learning process. The interactional 
suitability is the effectiveness of interactions (teacher-students or between students) to identify and 
solve conflicts of meaning and improve students’ autonomy. The affective suitability refers to the 
students’ involvement in the teaching and learning process. Finally, the ecological suitability is the 
adequacy of this process to the school’s educational project, the curriculum and the social 
environment. In order to use these criteria as an assessment tool, some observable components and 
characteristics are associated with each criterion. They were used in the design of a practical rubric 
that can be found in Breda et al. (2017). As an example, we show the components and characteristics 
of epistemic suitability in Table 1. 

Components Characteristics 

Errors Practices considered mathematically incorrect are not observed. 

Ambiguities Ambiguities that could confuse students are not observed; definitions and 
procedures are clear and correctly expressed, and adapted to the target level 
of education; explanations, evidence and demonstrations are suitable for the 
target level of education, the use of metaphors is controlled, etc. 

Diversity of 
processes 

Relevant processes in mathematical activity (modelling, argumentation, 
problem solving, connections, etc.) are considered in the sequence of tasks. 

Representation The partial meanings (constituted of definitions, properties, procedures, 
etc.), are representative samples of the complexity of the mathematical 
notion chosen to be taught as part of the curriculum.  

For one or more partial meanings, a representative sample of problems is 
provided.  

The use of different modes of expression (verbal, graphic, symbolic…), 
treatments and conversations amongst students are part of one or more of the 
constituents of partial sense. 

Table 1: Components and characteristics of epistemic suitability (Breda et al., 2017, p. 1903). 

In our study, we distinguish which components of the different types of suitability preservice teachers 
relate to creativity in their comments, while they use the criteria to analyze their own practice.  

Context 
The program of the master’s degree in teaching in secondary school (specialization in Mathematics) 
includes a work placement in a secondary school divided into two periods. In the first period, that 
lasts two weeks, preservice teachers attend classes of their supervisors and know the group of students 
with which they will work later. The second period lasts six weeks, and the preservice teachers should 
implement a learning sequence that they have prepared. After the work placement, in the subject of 
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Innovation and research in Mathematics education, the didactic suitability criteria (Breda et al., 2017), 
with their components and characteristics, are introduced. Then, preservice teachers should use them 
in the analysis of the learning sequence that they implemented. The master’s degree final project 
(MFP) includes this analysis and, based on it, the preservice teacher’s proposal with some changes in 
the learning sequence that could help to improve the suitability of the teaching and learning process. 

Research questions and method 
The aim of this study is to examine preservice teachers’ ideas about promotion of students’ creativity, 
while they analyze their own practice and justify some changes of the learning sequence to improve 
it, in their MFP. Preservice teachers do not receive any specific training in how to develop students’ 
creativity during the master’s degree. Our research questions are: 1) Do preservice teachers frequently 
include comments about the promotion of creativity in their MFP? 2) Which aspects of the teaching 
and learning process are related to the promotion of creativity in the preservice teachers’ comments? 

We considered the 198 MFP from the years between 2009-2010 and 2014-2015. First, we made a 
register with some information of each MFP (name of the preservice teacher, year, title of the learning 
sequence, level). We searched for explicit references to creativity or other words of the same word 
family (creative, creation, creator, create) in the MFP and made a second register with only those 
projects that include these comments (we used a reduced list of keywords in comparison with other 
studies, such as the one of Joklitschke, Rott and Schindler [2018]). Registered data of these MFP 
include the extracts with the explicit references to creativity, as shown in Table 2.  

Then, we read the MFP with references to creativity and tried to find common patterns or 
characteristics in the comments in order to infer a classification of comments. Since the preservice 
teachers use the didactic suitability criteria to structure their analysis, we also used them to distinguish 
aspects that are associated with the promotion of creativity in the comments. It means that, in this 
first phase, we used the didactic suitability criteria as previous categorization to analyze the preservice 
teachers' discourse. Finally, in a second phase, we classified the comments into the different 
categories that we had formed inductively from the data. 

For example, in the MFP of Fontalba (2014) we found two explicit references to creativity (shown in 
Table 2). In her analysis of the implemented learning sequence, the epistemic suitability is one of the 
worst valued. When she analyzes this suitability, she remarks that the learning sequence should 
include activities that enhance creativity (first extract in Table 2). Then, in the new proposal, she adds 
an activity in which the students have to create their own problems (second extract in Table 2). We 
consider that this comment is related to the diversity of processes (a component of the epistemic 
suitability) and, in particular, to the process of posing problems.     

Title and year Geometry in space. 2013 - 2014 

Preservice teacher’s name F.D. 

Level 3rd course of Secondary School (14-15 years old) 

Branch of mathematics Geometry 

References to creativity Yes 
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Number of references 2 

Extract Diversity of processes. The mathematical quality of the 
learning sequence could be improved and one of the key 
components is the diversity of processes. The student should 
make, should learn through trial and error, manipulation, 
experimentation and exploration. There is an excess of 
algorithmic activities, to calculate and execute procedures, 
therefore activities that hold curiosity, creativity, imagination 
and discoveries should be included. (Fontalba, 2014, p. 4)   

Competence 4. Generating mathematical questions and posing 
problems. Clearly, this competence is developed since the goal 
of the contest is the creation and resolution of problems. 
(Fontalba, 2014, p. 11) 

Comments She refers to the development of creativity in the assessment of 
epistemic suitability, and she says that the diversity of 
processes should increase. Then, in the new proposal, there is a 
task in which the students have to create problems. 

Table 2: Example of the data of a MFP with some explicit references to creativity 

Results 
We found explicit references to creativity in 119 of the 198 MFP of the master’s degree in teaching 
in secondary school from years between 2009-2010 and 2014-2015: in 2009-2010, 9 of 15 MFP 
include references to creativity; in 2010-2011, there are 16 out of 21 MFP; in 2011-2012, 20 out of 
34; in 2012-2013, 14 out of 24; in 2013-2014, 25 out of 47; and in 2014-2015, 35 out of 57. In the 
MFP with references to creativity, we found different elements of the teaching and learning process 
associated with creativity. In the following lines, we describe the main categories that we 
distinguished and then we focus on one of them. The development of creativity is related to: 

a) Tasks with notable processes (epistemic suitability). In some projects, the preservice teachers 
explain activities where students have to do some hypothesis, plan a resolution method, justify or put 
in practice other processes that are especially important while learning mathematics. In this category, 
we include those comments in which creativity is related to this type of activities. These preservice 
teachers expect to develop creativity using it to solve the activities. At the same time, epistemic 
suitability improves, since so does the diversity of processes, which is one of its components. 61 MFP 
include comments in this category. 

b) The use of manipulatives and technology (mediational suitability). In this case, preservice teachers 
explain activities where students’ creativity could be fostered by the use of computers and other 
material resources. Sometimes, preservice teachers do not refer to a mathematical creativity, but a 
plastic or artistic creativity that students practice in making a certain object that would be used in a 
mathematical activity later. 13 MFP include comments in this category. 
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c) The development of other skills that are useful in the current society (ecological suitability). In 
some MFP we found comments about a responsible use of creativity. Preservice teachers relate 
creativity to critical thinking or the development of the students’ social competence. We associated 
these comments with the ecological suitability because they refer to some skills that are useful for 
living in society nowadays. 3 MFP include comments in this category. 

d) Cooperative tasks (interactional suitability). In other MFP, preservice teachers explain activities in 
which cooperation between students plays a key role. Students’ cooperation is necessary to solve the 
task and it would help to develop their creativity, while sharing their ideas in the resolution. 5 MFP 
include comments in this category. 

e) The assessment procedures of the learning sequence (cognitive, interactional and affective 
suitability). In this category, we include the references to creativity that appear in the assessment 
criteria of the learning sequence or in the objectives of a certain activity that the preservice teacher 
proposes. Usually, in the corresponding MFP there are some changes in the assessment tools. For 
example, preservice teachers design new rubrics. They often oppose the traditional understanding of 
evaluation, proposing a competency based assessment and sharing the responsibility with the students 
through auto-evaluation and co-evaluation. These changes relate to several components: the learning, 
as a component of the cognitive suitability; the autonomy and the formative evaluation, as 
components of the interactional suitability; and attitudes and emotions, as components of the affective 
suitability. 18 MFP include comments in this category. 

General comments. In some comments, we could not identify a clear connection between creativity 
and a particular element of the teaching and learning process, so we refer to them as general 
comments. In this category, there are references to the creative nature of the mathematical activity, 
references to the teachers’ creativity when designing tasks to their students, and references to the role 
of creativity in the constructivism paradigm.  

We observed that in 66 MFP there are more than one reference and, in some cases, several aspects of 
the learning sequence are related to the development of students’ creativity. Most of the comments 
that are associated with a certain suitability criterion are in the category in which creativity is related 
to the diversity of processes. Therefore, we focused on this category, distinguishing different 
characteristics of the activities that the preservice teachers propose. 

With regard to the comments in the first category, we found that in 14 MFP the development of 
students’ creativity is associated with the resolution of problems, especially open-ended problems. 
Sometimes, creativity is specific to the phase of devising a plan to solve the problem. In 12 MFP, 
preservice teachers mention creativity when they ask the students to invent problems, think on 
significant contexts or create different representations. In 12 MFP, preservice teachers consider that 
the students’ creativity can be fostered by working with real situations. 5 MFP include comments 
about developing creativity through project based learning. Five preservice teachers propose 
mathematical activities in the form of games that could enhance students’ creativity. In the same 
category, there are some references to processes that preservice teachers relate to creativity: creation 
of arguments or justification (in 6 MFP), intra and interdisciplinary connections (in 5 MFP), creation 
of formulas and hypothesis (in 6 MFP), creation of mathematical models (in 5 MFP).   
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Conclusions 
Even when the preservice teachers do not receive a specific training in how to promote students’ 
creativity during the master’s degree, more than half of the MFP include references to creativity. 
First, we conclude that a significant number of preservice teachers in our sample implicitly consider 
that creativity can be developed in the mathematics lessons. There seems to be an implicit general 
agreement on the positive effect of the development of students’ creativity on mathematics learning.  

Second, preservice teachers' comments evidence that creativity is a complex topic and there are 
different ways to understand and promote it. We observe various elements or aspects of the teaching 
and learning process that are somehow related to the development of creativity in the preservice 
teachers’ comments. Note that preservice teachers not only refer to mathematical creativity, their 
comments cover a wide view of creativity. Categories of the classification that we present here could 
change and evolve with the incorporation of new results from the analysis of the MFP of the following 
years of the master’s degree. We conclude that preservice teachers consider that creativity is 
something that emerges from the interaction and integration of other aspects (especially different 
mathematical processes). 

This study can contribute with results to other research on preservice teachers’ education, showing 
evidence of the preservice teachers’ perspective on creativity and its promotion in their learning 
sequences, when they do not receive any specific training in how to promote students’ creativity. It 
could be interesting to observe how specific training in fostering students’ creativity would affect the 
analysis that preservice teachers do in their MFP. We could also consider the possibility of using 
more keywords related to creativity to find comments in the MFP. As Joklitschke et al. (2018) explain, 
there are several conceptualizations of creativity and it is important to be aware that other words could 
be used to describe or conceptualize creativity. Then, we should consider other words that preservice 
teachers could use as synonyms of creativity. On the other hand, sometimes, the use of the word 
“creativity” does not seem to be relevant to the meaning of the whole comment or it is ambiguous 
(for instance, it is not clear whether it refers to teacher’s or students’ creativity). A possible solution 
would be revising the comments and rating their validity concerning their ambiguity.    
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The identity 0.999…=1 connects to a variety of mathematical concepts and therefore allows for an 
investigation of teachers’ school-related content knowledge (SRCK). This is a facet of their content 
knowledge (CK) that emphasizes links between school mathematics and the mathematics acquired in 
tertiary education. Some numerously reported misconceptions and potentially conflicting ideas on 
0.999...  were presented to secondary school teachers in interviews. Especially in the case of 
conflicting ideas the relation between SRCK and teachers’ reactions as part of their pedagogical 
content knowledge (PCK) was examined. The results showed that SRCK, as well as CK in general, is 
a prerequisite to successfully applying PCK. Further they lead to a discussion of the SRCK model’s 
use in qualitative research. 

Keywords: Qualitative research, Mathematics teachers, Secondary school mathematics, SRCK, 
Misconceptions 

Introduction 
Many research projects throughout the last four decades have shown that 0.999…<1 is a common 
misconception among students from secondary school and university, especially among pre-service 
mathematics teachers. Studies report that between a quarter and half of pre-service mathematics 
teachers agree that 0.999…<1 (Bauer, 2011; Buchholtz et al., 2012). Even among those who choose 
0.999…=1, only a minority is able to give appropriate reasons. Among German pre-service 
mathematics teachers, the most common argument for equality refers to a rounding process 
(Buchholtz et al., 2012). According to Bauer (2011), there seems to be no difference between high 
school students’ and pre-service teachers’ answers, and Yopp, Burroughs and Lindaman (2011) 
suggest that this robust misconception is found among primary level in-service teachers as well. 

Nevertheless, there is a need for teachers to deal with 0.999...: In the federal state of Lower Saxony 
(Germany) the local curriculum explicitly requires that high school students after grade 10 “explicate 
the equality 0.999…=1 as a result of an infinite process” (Niedersächsisches Kultusministerium 
[NK], 2015, p. 26, translated by the authors). Answering questions on 0.999… requires well-founded 
knowledge of its nature. The mathematical background links to notions of infinity, convergence of 
series and the non-uniqueness of decimal representations. The concept of school-related content 
knowledge (SRCK), recently introduced by Dreher, Lindmeier, Heinze, and Niemand (2018), 
emphasizes such links between less formal school mathematics and formal academic mathematics. 

Throughout this paper, we will focus on teachers’ SRCK regarding the identity 0.999...=1 and their 
reactions to students’ erroneous comments. In line with Yopp et al. (2011), Buchholtz et al. fear that  
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the academic knowledge in this field [0.999…, authors’ remark] is not active, and so no substan-
tial link between university and school mathematics can be made. (Buchholtz et al., 2012, p.116) 

In that case, the high potential of cognitive conflicts that is intrinsic in this identity could be left 
unused: Teachers’ deep understanding of the topic is necessary for successful teaching towards 
conceptual changes (Scott, Asoko, & Driver, 1991; Tall & Vinner, 1981). If it is missing, “teachers 
have the potential of undermining student understanding of important concepts” (Yopp et al., 2011, 
p. 313). To our knowledge, there is neither a study addressing in-service secondary school teachers’ 
understanding of 0.999… nor addressing their teaching practices regarding that topic. This paper tries 
to step into the gap by an explorative interview study with eight in-service mathematics teachers from 
secondary schools. 

Theoretical background 
Recently, Dreher et al. (2018) conceptualized problems around the old question of which knowledge 
is necessary for teachers with a new model of teacher knowledge emphasizing links between school 
mathematics and related university concepts. Their model refines Shulman’s taxonomy as sketched 
in Figure 1. Dreher et al. (2018) split content knowledge (CK) into formal academic mathematics and 
more intuitive school mathematics. 

In the German context, those two areas are linked by the secondary schools’ curriculum, in which 
“fundamental ideas” (Dreher et al., 2018, p. 326; Kuntze et al., 2011) represent the structure of 
academic mathematics in school. They organize the curriculum’s content and are revised by the 
students throughout the grades in a spiraled structure: Under the idea of “Numbers”, Number systems 
develop from natural (grade 4) to nonnegative rational (grade 6) to rational (grade 8) to real numbers 
(grade 10). “Functions” start in verbal descriptions of dependencies (grade 6) and continue over 
tabular, graphical and formal descriptions of simple functions (grade 8) to more and more 
complicated ones (NK, 2015).  

Figure 1: Model of secondary school teachers’ knowledge (inspired by Dreher et al., 2018, p. 330) 

In addition to curricular links between mathematics at school and in academics, Dreher et al. (2018) 
consider top-down relations – for example, during lesson planning, when teachers break down their 
academic knowledge to school level – and bottom-up relations that e.g. link students’ “creative 
questions and answers” (Dreher et al., 2018, p. 328) to underlying mathematical concepts. Basing the 
links in teaching situations and the curriculum, the SRCK model is strongly related to the classroom. 
The representation of academic mathematics in the curriculum leads us to understand curricular 
knowledge as part of SRCK. 
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Dreher et al. (2018) assessed SRCK using a questionnaire and showed that the concept is empirically 
separable from general CK and from PCK. Yet they left it open to identify cognitive processes of 
SRCK as well as how to identify them in qualitative ways. As we will see, the identity 0.999…=1 
inherits a broad variety of connections to academic mathematics. Therefore, analyzing the 
mathematics in teachers’ reactions to students’ responses on this topic seems a suitable way to 
observe SRCK. As students’ erroneous statements are clearly part of PCK (Chick & Baker, 2005), 
this approach needs to separate knowledge about misconceptions from knowledge about the 
mathematics behind. We think that this is possible and, even more so, that the reactions to 
misconceptions linked to big ideas of mathematics reveal both SRCK and PCK and allow insight into 
their connections (Kuntze et al., 2011). So far, it seems that on the one hand the width and depth of 
CK predetermine how teachers implement their PCK in the classroom. On the other hand, without 
PCK, CK cannot be applied at all (Baumert & Kunter, 2013). 

The identity of 0.999…=1 in academic mathematics and school mathematics 

The mathematical symbol 0.999… has a variety of meanings: It is a recurring decimal number as well 
as a sequence of finite decimals or of partial sums (in the dynamic sense of Weigand (2016)) or the 
limit of this sequence (in the static sense of Weigand (2016)) and a geometric series. These meanings 
cannot be clearly separated and may occur simultaneously (Bauer, 2011). 

In school, 0.999… is first met when working on decimal representations for fractions, which is one 
of the early experiences of infinity (Gardiner, 1985). Generalizing procedures like subtracting from 
finite decimals to their infinite counterparts at this stage happens unquestioned and is often used to 
show that 0.999…=1 (Bauer, 2011; Eisenmann, 2008). Yet Eisenmann (2008) points out that, for 
secondary school students, the decimal 0.999… is very different from 0.111… in its nature, as the 
latter one appears as a result of the (illegitimate but widely spread) written division algorithm for 1:9. 
Never may 0.999… be constructed as a result of 1:1, 2:2 etc., which might cause the doubts about 
0.999…=1, as reported in the introduction. Other reasons for the widely spread miscon-ception that 
0.999…<1 might be found in the language of limits, where terms like “approach” mislead to “but 
never reaches”, or in the understanding of decimal expansions, including the representation’s non-
uniqueness (Tall & Vinner, 1981; Weller, Arnon, Dubinsky, 2009). 

In academic mathematics, the interpretation of 0.999… as the limit of a geometric series is the most 
present one (Buchholtz et al., 2012). Thus, the question why 0.999…=1 is related to the topology of 
the real numbers and in nonstandard analysis is no longer true (Richman, 1999). In standard analysis, 
proving 0.999…=1 requires an understanding of converging sequences and series, including links to 
the big idea of “dealing with infinity” (Kuntze et al., 2011). 

Teachers’ reactions to cognitive conflicts 

Secondary school students might know from the introduction of decimal numbers in grade 6 that 
0.999…=1. This can later contrast their concept image of convergence of the series 0.999… towards 
1, as it is reported in some students’ answers in Bauer (2011): 

Mathematically it is 1, nevertheless I think there is always something remaining, even if it is 
however small. (Bauer, 2011, p. 90, translated by the authors) 
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Here, the student openly presents what Tall and Vinner (1981) call “potential conflict factors”: His 
concept image does not allow a limit to be actually reached, which leads to 0.999…<1 (Tall & Vinner, 
1981). This is closely related to a dynamic limit concept emphasizing potential and neglecting actual 
infinity (Weigand, 2016). Yet the student knows and states the mathematically correct answer. 
Though it cannot be seen from the quote whether he feels the conflict and a need to settle it, the 
potential for a cognitive conflict is evident. Despite a number of publications on how to evoke 
cognitive conflicts in the classroom, much less seems to be known on how teachers can help their 
students overcome them (Scott et al., 1991). 

Research questions and study design 
The large number of possible connections from 0.999… to academic mathematics and the lack of 
knowledge about teachers’ reactions to cognitive conflicts leads to three research questions: How do 
secondary school teachers react when students bring up misconceptions or potentially conflicting 
factors concerning the identity 0.999…=1? How do they refer to academic mathematics in their 
answers? And how do the reactions and the academic knowledge shown relate to each other? 

In this explorative study, we report on interviews with eight teachers from different secondary schools 
in Lower Saxony. According to the curriculum (NK, 2015, pp. 26 and 58), all participants were 
expected to have experience in teaching 0.999…=1. The interviews were conducted in an eased 
situation without any time pressure. First the teachers were asked about their contact with the topic 
in school. Then student’s response A (see Figure 2, responses taken from Bauer (2011)) was handed 
out in printed form. The participants were asked to comment on it and to explain how they would 
react. Then student’s response B – containing potential conflict factors as the quote above – was 
treated the same way. Finally, the teachers were asked to comment on a quote by Gardiner (1985; see 
Figure 2), especially on difficulties in putting his suggestion into practice. 

Figure 2: Material given to the teachers (translated by the authors unless originally English) 

The interviews were recorded, fully transcribed and analyzed using an inductive qualitative content 
analysis (Mayring, 2015). The transcripts were coded openly in two separate rounds: first for any 
eye-catching differences and for teachers’ reactions, second with focus on SRCK. In both rounds, the 
relevant teachers’ phrases were paraphrased in a common linguistic style. Then the paraphrases were 
shortened and rewritten more abstractly to receive possible categories. Those were unified and 
reduced to the most important categories, which were finally sorted into dimensions. In both rounds, 
coding manuals were written and given to an independent analyzer who recoded all transcripts. In 
cases of diverging ratings, consensus was reached. If necessary, examples were added to the manual 
or categories were renamed carefully. 
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Results 
Tables 1-3 show most of the categories found in the material in the left column. On the right, they 
provide the results of the rating. Dimensions are written in bold text, categories normally. 

Teachers’ SRCK on 0.999… 

From the broad range of links to academic mathematics, only a few were actually made by the 
teachers. All of them understood 0.999… as a limit process in the dynamic sense. Only two teachers 
showed understanding of a static limit concept as well. Surprisingly, no teacher referred to a 
geometric series. Probably they had in mind that series are not taught in Lower Saxony schools. 

Table 1: SRCK dimensions shown by the teachers 

One teacher denied that 0.999…=1 and one read the equality as a definition. Both of them saw no 
need in spending much time on the students’ responses. Further, two teachers referred to rounding. 
Five teachers knew a proof for 0.999…=1, four of them using 0.999…=9/9=1 or 0.999…=3/3=1 and 
one subtracting 0.999… from 1. All of them applied techniques from finite decimal representations 
to infinite ones without justification. Three teachers doubted student B’s claim that 0.999…=9/9, 
though two of them claimed that 0.999…=3/3. Teacher T8 later accepted the equality.  

Reactions to the students’ responses 

Table 2: Teachers’ reactions to both students’ answers (shortened by non occurring) 

Inductively, we found five categories of teachers’ reactions that applied to reactions on both students’ 
responses. Most of the teachers responded to student’s response A by showing an arithmetical proof 
for 0.999…=1. Only two teachers went beyond by stressing notions of infinity or the static limit 
concept. Three pointed out the importance of correcting the student so that he would not memorize 
something wrong. The fourth reaction was to ignore, which two of the teachers intended. Teacher T7 
named a broad variety of strategies depending on the students’ grade. 
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As we comment on the teachers’ reactions to student’s response B, it should be noted that not all 
teachers noticed the conflicting factors in it (see Table 3). Only two teachers clearly named them. 
Both reacted by stressing the decimal representations’ non-uniqueness; especially, they changed their 
approach compared to how they dealt with response A.  

Table 3: Further four dimensions in teachers’ responses 

Three teachers felt some conflict in the student’s text but could not make sense of it. Some claimed 
that the student B had already disproved himself. Two of them (and another teacher who did not see 
any conflict at all) indicated that stressing the proof again should convince the student that 0.999… 
=1. One wanted to use the proof to focus on a static limit concept, thus falling into both categories 
link to underlying concepts and arithmetical proof. Another link was made to the notion of infinity.  

Discussion 
Regarding to our first two research questions, we need to conclude: Even though the topic of 0.999… 
offers many possible links to academic knowledge, only the two concepts of non-unique 
representation and static limits were actually, and rarely, named by this study’s participants. Further, 
several teachers’ answers showed inconsistencies in their SRCK: One teacher claimed that 0.999… 
and 1 are two representations for the same number and nevertheless referred to the process as 
rounding. Some claimed that 0.999…=3/3 but would not equal 9/9. This strengthens our doubts about 
the teachers’ access to academic mathematical knowledge, though all successfully finished at least 
two semesters of advanced mathematics at university. It especially raises the question on how to teach 
those links between school and academic mathematics to (pre- and in-service) teachers. An example 
of model-based task design for teacher education is given in Montes, Climent, Carillo, and Contreras 
(2019) in these proceedings; adopting this approach to the SRCK-model seems fruitful for both 
evaluating the task design process and improving teacher education programs. 

In general, the teachers tend to respond to the misconception 0.999…<1 by showing an arithmetic 
proof. Some of them believed so much in the convincing power of proofs that they reacted to student 
B by restating and emphasizing the proof the student had already given. Only two participants fully 
recognized the potential conflict in student’s response B; their common way of reacting was to 
establish a link to the decimal representations’ non-uniqueness. 

Linking SRCK to the teachers’ reactions 

Except for T8, all teachers who showed at least one link to academic mathematics in their SRCK 
chose to talk about underlying concepts when confronted with the conflicting factors. This suggests 
that SRCK provides a most convenient way to react to cognitive conflicts, and thereby – as already 
known for CK in general – is a preliminary to successfully applying PCK (Baumert & Kunter, 2013). 
Yet in T3, we found a teacher who focused on the very general topic of (actual) infinity, thus 
establishing a link to one of the big ideas in mathematics (Kuntze et al., 2011) without showing much 
academic knowledge on 0.999…=1.  
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Teachers who have more contact with the topic 0.999… in school more often relate it to underlying 
concepts. Whether experience mediates between SRCK and the reactions shown (Yopp et al., 2011) 
or whether teachers with higher SRCK spend more time and effort on 0.999… and thus gain more 
experience, cannot be answered from the data. Similarly, fully noticing the cognitive conflict seems 
to be linked to an approach of relating to underlying concepts as well as linked to high SRCK.  

Using the SRCK model in qualitative research 

In our study, we used the SRCK model and qualitative content analysis to create detailed, comparable 
insight into teachers’ knowledge. Yet the identity 0.999...=1 reveals boundaries of the distinction 
between academic and school mathematics: NK (2015) requires understanding limit processes 
without ever mentioning infinity. So does understanding infinity belong mainly to school or to 
academic mathematics? In the first case, the reactions of T3 that linked to this notion could form a 
new category horizontal links within school mathematics, whereas the other links are vertical links to 
academic concepts. This distinction would also foster independence of the curricular – hence cultural 
– background of our study: All mathematical links could be recorded before splitting them into 
horizontal and vertical ones depending on the local curriculum. This opens the door to an international 
curriculum-sensitive, yet comparable approach to SRCK. 

Inductively developing dimensions brought to light some aspects of beliefs, for example, on the 
functions and nature of proofs. In subsequent studies, a multilayer model of teachers’ knowledge 
including convictions – as suggested by Kuntze et al. (2011) – should be taken into account. 
Furthermore, studies like ours may help understand which of the many possible links from the 
curricular content to underlying concepts are a substantial part of SRCK in teachers’ opinions.  

The dimensions and categories developed for teachers’ reactions allowed a clear distinction with 
broad consensus among all analyzers. In studies of a larger sample, they should be refined; especially, 
questions on their impact on students’ learning and on their adequacy throughout different school 
grades arise.  
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Collective orientations about the heterogeneity of the learners emerge on the basis of experiences 
that are unique to the individual, but in many ways structurally similar. Guided by the assumption 
that collective orientations significantly influence the practice of (student) teachers, our goal is to 
reconstruct (student) teachers’ ways of thinking in the context of heterogeneous learning groups in 
mathematics education using the documentary method. In the data of the project HeLeA1, it became 
apparent that one main focus of the group discussions was the variety of student performance. The 
differences in the achievement of the students, especially in mathematics, seem to be a great challenge 
for student teachers. Furthermore, there are discontinuities between the everyday discourse of 
student teachers and the academic discourse on the topic of heterogeneity. 

Keywords: Heterogeneity, group discussion, teacher beliefs, collective orientation, teacher 
education. 

Introduction 
Heterogeneity is a central term of current debates regarding education and school system in Germany. 
In the educational context, it is associated with various categories of difference such as language, 
culture, gender or (dis)ability, and it is perceived to express “difference as a challenge to be dealt with 
actively” (Sliwka, 2010, p. 213). In Germany, discussions on heterogeneity in classrooms have 
recently been stimulated by educational policies like the ratification of the UN Convention on the 
Rights of Persons with Disabilities and social and demographic changes, e.g. increased linguistic-
cultural differences because of a higher number of children with an immigrant background (Decristan 
et al., 2017). Due to changes in the main areas of attention – which are mostly oriented towards 
current political and social debates – different facets of heterogeneity and difference have been at the 
centre of focus (for some periods) lately. The impetus for a renewed focus on heterogeneity in 
Germany has been provided by the results of international comparison studies – in particular PISA, 
2000/2009 (Klieme et al., 2010) – which have highlighted especially the sizeable differentiation in 
student achievement, the alarmingly high number of very low-achieving pupils, and a close 
relationship between social background and academic success (Döbert et al., 2004; Trautmann & 
Wischer, 2011).  

                                                 
1 “Heterogeneity in teacher education from the start” (Heterogenität in der Lehrerbildung von Anfang an – HeLeA) is a 
sub-project of “TUD-SYLBER” which is part of the ‘“Qualitätsoffensive Lehrerbildung”, a joint initiative of the Federal 
Government and the Länder which aims to improve the quality of teacher training. The programme is funded by the 
Federal Ministry of Education and Research. The authors are responsible for the content of this publication. 
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The HeLeA project addresses this central debate about heterogeneity. The main assumptions of the 
project are that teachers’ and student teachers’ orientations, knowledge and attitudes play an 
important role in creating effective learning environments for all learners and in the development of 
an inclusive school that considers the learners’ heterogeneity as something positive and normal 
(Booth, 2011; Reynolds, 2001). The quality of education depends to a high degree on the teaching 
staff, who play a key role in preparing their learners to take their place in society (Savolainen, 2009). 
Through qualitative (group discussion) and quantitative methods (questionnaire), the project aims at 
the reconstruction of student teachers’ ways of thinking, speaking and feeling concerning the 
heterogeneity of learners in school, especially in mathematics. On the basis of the survey results, the 
project intends to design concepts for the education of student teachers in order to sensitize them to 
different facets of heterogeneity. The goal is to prepare them for encountering heterogeneity among 
their prospective pupils and to equip them with approaches for dealing with it in mathematics and 
also other school subjects. In this article, the focus is on the qualitative approach from HeLeA, as it 
provides interesting and emotional insights into the current state of teachers' opinions. Based on group 
discussions with high school mathematics students, the focus of this paper is on: “What collective 
orientations about the learners’ heterogeneity in mathematics do student teachers have?”. 

Theoretical background 
The pedagogical discourse indicates multiple unresolved problems, and there is some criticism of 
previous approaches dealing with heterogeneity in school, like the homogenisation of learning groups 
through selection and forms of external differentiation (Trautmann & Wischer, 2011). At the same 
time, however, there is no lack of existing ideas and concepts for improving these approaches. 
Didactic-methodological concepts for internal differentiation have been discussed since the 1970s 
(Sliwka, 2010; Trautmann & Wischer, 2011). Strikingly, however, for most student and practising 
teachers the question of how to deal with heterogeneity nevertheless represents an important problem 
area in planning and teaching lessons. Schönknecht and de Boer (2008) point out that in describing 
heterogeneity, student teachers often seem influenced by polarisations and dichotomisations, as well 
as a limited perspective focusing on supposed “problem children”. Many studies emphasise the 
individual and personal views of teachers and student teachers about heterogeneity (cf. Bitterlich & 
Jung, 2019). Most of these studies focus on teachers’ beliefs and stereotypes2 (Winheller, Müller, 
Hüpping, Rendtorff & Büker, 2012; Zobrist 2012). We focus on student teachers’ collectively shared 
orientations concerning the learners’ heterogeneity. In contrast to studies about teachers’ and student 
teachers’ beliefs and stereotype-threat, studies about collective orientations reconstruct those 
experiences and types of knowledge that can be considered as shared within the group of teachers. In 
this regard, collective orientations could be seen as “socially-agreed-upon knowledge base [...]. The 

                                                 
2 Following Allport (1954), stereotypes – “the pictures in our head” – simplify our thinking and produce expectations 
about what other people are like and how they are likely to behave. In this sense, based on prior information (e.g. a 
student’s test scores, social class, gender, ethnicity, race) a teacher develops expectations about the ability of the learner. 
Similar to this, beliefs are representative bits of information that a person has about an object, person or group of 
individuals based on certain facts or personal opinions (Ajzen & Fishbein, 1980).  
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key assumption behind them is that the members of the respective groups share a more or less 
common experience of enculturation into these groups” (Gellert, 2008).  

Following Mannheim (1982), teachers tend to have the same or similar experiences and opinions 
because they belong to a ‘conjunctive space of experience’ (konjunktiver Erfahrungsraum).  

Those who have biographic experience in common, have commonalities in their history of 
socialization and, thus, have a common or conjunctive experiential space, understand each other 
immediately insofar as these biographical commonalities become relevant in interaction and 
discourse. (Bohnsack, 2010, p. 105) 

Teachers as well as student teachers represent a professional group whose conjunctive experiences 
materialise, on the one hand, via practical experience and, on the other hand, via conceptual-
theoretical involvement with teaching and the didactic handling of heterogeneity (Sturm, 2012). The 
interweaving, or double structure, of their conceptual-theoretical conjunctive space of experience 
based on their own practical experiences, allows their participation in the social practice of teaching, 
and indeed creates it (Bohnsack, 2017). 

In this context, Gellert (2008) emphasises that teaching should be perceived as a cultural practice that 
takes place in communities rather than an individual and independent practice that takes place in 
isolation behind closed classroom doors. In his findings, he emphasizes that the mathematics primary 
school teachers’ collective orientations about their own professional development sometimes work 
as obstacles against development. “Mutual validation can turn experience into law. [...] Collective 
teaching experience can be blind to alternative conceptions of teaching” (Gellert, 2008). 
Schieferdecker (2016) carried out group discussions with several groups of teachers about 
heterogeneity in society. The focus of his research is on the reconstruction of collective orientation 
patterns of teachers that can contribute to a broader understanding of the perception and management 
of heterogeneity in the educational practice of teachers. In this regard, the aim is to identify structures 
(which he assumes to be collectively shared) that teachers use in order to cope with the notions of 
social heterogeneity and heterogeneity in pedagogical practice. He reconstructs a tension between the 
conception of feasibility and the experience of powerlessness. On the one hand, teachers see 
themselves as solely responsible for the learning success of their students. On the other hand, they 
fail to ‘pick up every student where he or she stands’. But the reasons for their failure are suspected 
outside school (e.g. with parents). Even experienced teachers tend to see learners’ heterogeneity as a 
problem of increasing complexity which complicates successful teaching processes. To handle 
learners’ heterogeneity, teachers – and this is something that is collectively shared – homogenise 
them and create polarisations (e.g. high- and low-achieving learners) (Schieferdecker, 2016).  

The aim of this paper is to reconstruct the collective orientations of student teachers in relation to 
mathematics. The performance heterogeneity3 of the students is of great importance in Germany, as 
the school system aims for homogenisation (Trautmann & Wischer, 2011). We therefore believe that 

                                                 
3 Helmke and Weinert (1997) point out, that in addition to subject-related and teaching aspects, the individual 
characteristics of the pupils, e.g. language, intelligence and learning strategies are of great relevance to the students’ 
performance (Helmke & Weinert, 1997). 
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the factor of performance differences in mathematics is particularly important to student teachers 
when talking about their experience in teaching math and when reflecting their own teacher education. 
We suspect that in a subject such as mathematics, the differences in performance become particularly 
clear. In this context, Thompson (1992) describes that American teachers consider mathematics as 
something static that contains a set of rules and procedures. To teach mathematics and to get a correct 
result, these have to be used, no matter if they have been understood. Since mathematics is often 
considered as a subject with ‘clear answers’, formal procedures and easily comparable results, student 
teachers might hold the (collective) orientation that especially in mathematics differences in 
achievement are more noticeable and with a higher weight than, e.g., in language-based subjects were 
different opportunities exist to express something or to write an essay.  

Methodology and procedures  
One way to access collective and action-leading orientations of prospective teachers is through group 
discussions (e.g. Przyborski & Wohlrab-Sahr, 2014). Group discussions can help to identify and 
analyse the implicit or tacit knowledge of the participants while they talk about a specific topic (e.g. 
heterogeneity). The self-dynamic of the discussion process, without any interruptions by the 
researcher, is important to discover conjunctive spaces of experience, which become visible through 
‘focusing metaphors’ in which the group adjusts itself to those specific topics that are most relevant 
in its members’ common experience (Bohnsack, 2010).  

Concerning group discussions, the immanent meaning comprises that stock of knowledge which 
is made explicit by the participants themselves. This has to be distinguished from knowledge of 
experience, which is so much taken for granted by the participants that it must not and often cannot 
be made explicit by themselves. The participants understand each other because they hold common 
knowledge without any need to explicate it for each other. (Bohnsack, 2010, p.103) 

The documentary method is a suitable method to analyse data from group discussions to identify and 
reconstruct collective experiences and common (used) ways of acting (Weller & Malheiros da Silva, 
2011). In the identification, description and reconstruction of the (future) teachers’ collective 
perceptions, we see one possible way to gain an impression of the current perspectives of teachers 
and student teachers on dealing with the learners’ heterogeneity, especially in mathematics.  

The documentary method offers […] an access to the pre-reflexive or tacit knowledge, which is 
implied in the practice of action. Asking for the documentary meaning can […] be understood as 
asking for how: how is practice produced or accomplished. (Bohnsack, 2010, p. 103) 

So far, six group discussions have been held during which teacher students spoke about the general 
question: What kind of experiences have you made concerning the difference of learners in school 
and in class? The groups were homogeneous in terms of the participants’ school type. In each 
discussion, between four and seven student teachers spoke together for around one hour about their 
experiences in dealing with heterogeneity in the school context. Each discussion was video recorded 
and transcribed. This paper focusses on statements on the performance heterogeneity of students in 
relation to mathematics. We compare transcript scenes from two different group discussions (number 
two and four), because there the student teachers are from the same school type (high school) and all 
are teaching mathematics. As we described above, the teachers, in our case mathematic high school 
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teachers, tend to have the same or similar experiences and opinions. Because of their academic 
background they belong to a ‘conjunctive space of experience’. To answer the research question 
“What collective orientations about the learners’ heterogeneity in mathematics do student teachers 
have?” the scenes are analysed with a reflective interpretation. Within the framework of the 
documentary method, the stage of reflective interpretation is particularly promising for the 
identification and reconstruction of the ‘conjunctive space of experience’ (Mannheim, 1982).  

Results 
From the very beginning of both group discussions, the focus was less on education in general than 
on mathematics, as the student teachers seem to have a ‘conjunctive space of experience’ concerning 
this topic. Differences in the learners’ achievement was a meaningful aspect of the discussion. 
Following the research question, we could identify the collective orientation that, especially in 
mathematics, performance differences are visible and challenging. We will illustrate this by showing 
short transcript extracts of group discussion number two and four, each followed by a brief analysis 
of the scene.  

Group number two 

Wiebke:  I think in school you notice the performance gap and how different it is between the 
students. I think, especially in the subject math you always have these, [laughs] that 
are bomb in math and those, who do not understand it at all. To arrange the lessons 
in a way that all can somehow follow or are not under-challenged is quite difficult. 

Natalie:  Yes. What is also always a topic are differentiated tasks, in a way, that either the 
tasks get more difficult in the end or the top-performing pupils get more tasks. And 
at the beginning the easier tasks. That is also addressed in teacher education. And 
also, that you should have extra tasks for those who are faster so they still have 
something to do or talk about. That happens all the time. 

Wiebke:  But I think it is only about these differentiated tasks and for the faster pupil new 
tasks. I had a seminar, not in math but in English, where another heterogeneity, like 
language differences, was mentioned. And this could be transferred to math. Maybe 
a child is super good at math but just does not understand what's in the task. I think, 
you don’t learn anything about this at university. 

The first reaction on the impulse of the discussion concerned the differences in the learners’ 
performance. Wiebke argues, that in mathematics there are ‘always’ pupil who are extremely high 
achieving, what she illustrates with the metaphor of a bomb (which is a common expression in 
Germany) while there is also ‘always’ a group of pupils who do not understand mathematics at all. 
Through this dichotomous distinction, she describes from personal experience that it is ‘quite 
difficult’ to arrange lessons. The metaphorical use of ‘bomb’ for something exploding and powerful 
illustrates that such ‘bomb’ students are not necessarily considered by her as something positive. 
Natalie seems to understand Wiebke and argues that in university they ‘always’ heard something 
about how to use differentiated tasks and how to make sure they work. This could be seen as 
something positive. But in contrast to Natalie, Wiebke is not satisfied with this one-sided preparation 
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with the focus on achievement and tasks. In her opinion, it is also important to ‘learn’ something 
about other facets of heterogeneity, like language differences, which she emphasizes with the 
comparison to her studies in English. She notes that it is important for students to understand the tasks 
in order to solve them because linguistic competences are often needed to show mathematics 
performance. But her claim, to learn ‘nothing’ about this in university, could also be seen as an 
exaggeration. 

Group number four 

Konrad:  Especially during internships, I have seen great differences in the performance and 
skills. When you walk around during times of individual work, you could really see 
what the student is currently thinking about the task. As trainee that is usually very 
noticeable because you do not stand in front of the class but you help students in 
the back or walk around during individual work. 

Niklas:  Yes, I also noticed that. Either in middle school or in ‘pure’ high school classes. In 
one such pure high school it was such a monotony and all students were well-
mannered and from suburban areas and tagged along even during the worst lessons. 
But even there you recognized achievement differences in mathematics like in 
middle school classes. Even in urban areas you have the same differences. 

As in group discussion two, in discussion number four the reaction on the impulse for the discussion 
is about differences in achievement. Konrads statement shows, that it seems easier to ‘see’ the 
learner’s heterogeneity when you are not the person teaching in front of the class. Konrad seems to 
protect teachers as they are not able to ‘see’ differences when they have to concentrate on the lesson 
itself. Perhaps, he himself also made the experience of not being able to perceive so many 
achievement differences and to adequately respond to them when teaching himself. Niklas enlarges 
this topic by comparing different types of school and different environments. Either in (lower-
achieving) middle school classes or in (higher-achieving) ‘pure’ high school classes, he claims that 
in mathematics the same differences in achievement exist. This also applies for urban and suburban 
areas. He points out one class of well-mannered students, which is a ‘pure’ high school class in a 
suburban area, which tolerates even the worst and most boring lessons.  

Discussion 
Especially in the group discussion with high school student teachers for mathematics, differences in 
achievement was a central point of the discussion. In both conversations we could reconstruct the 
view, that especially in mathematics differences in achievement are suspected to be ‘visible’ and that 
teachers have to react to them through (differentiated) tasks. This aspect could therefore be seen as 
the most important for student teachers when they consider the heterogeneity of their prospective 
class in mathematics. It is noticeable, that it is less discussed, how differentiation of the content or 
the social formation in the class could look like. Differences in achievement seem to be important for 
the student teachers but possibly they don’t know how to deal with this heterogeneity. The predication 
of Nathalie shows that theoretical knowledge of how to deal with heterogeneity and differentiated 
tasks has apparently been taught in the university. However, the two excerpts show that this 
knowledge cannot be applied in practice. This result also coincides with the four other group 
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discussions of the HeLeA project. Similarly to Gellert (2008) and Schieferdecker (2016), tensions 
were reconstructed which have to do with the problem of making pedagogical specialist knowledge 
(learned in university) compatible with the practice of teaching a heterogenic learning group. In all 
six group discussions, it was possible to reconstruct discontinuities between the everyday discourse 
of student teachers and the academic discourse on the subject of heterogeneity. One result of the 
HeLeA project is that the theoretical knowledge seems to be incompatible with the student teachers’ 
experiences in school practice. To ensure that future teachers are more capable to apply the theory 
they have learned in practice, we have to give them tools to reflect their own lessons and train their 
ability to interpret situations. Personal practical experiences should be constantly analyzed and 
reflected in professional life – one possibility for this is team teaching. The results collected so far 
already provide initial insights into mathematics student teachers’ collective orientations and guiding 
ideas on heterogeneity in mathematics (c.f. Bitterlich & Jung, 2019). One limitation of the used group 
discussions approach is that only collectively shared orientations can be reconstructed. What remains 
in the individual is hidden. But if we follow the assumption that teachers can be seen as a common 
group with shared experiences, collective orientations could be more important in certain 
circumstances.  
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Many studies point out teachers’ crucial role in mathematics classrooms. This role is also emphasized 
through the increasing need of language-responsive teaching due to language diversity in the class-
rooms. The paper presents a qualitative study of teachers noticing mathematically relevant language 
issues in a video on a whole class discussion on variables. The study investigates which language 
resources and language obstacles the teachers notice and how they activate didactic categories of 
their content knowledge. It seems to be crucial to not only know the categories as disposition but also 
to activate them in a content-specific way. 

Keywords: Pedagogical content knowledge, noticing, language-responsive teaching 

Introduction 
One important part of teachers’ professional competence is their pedagogical content knowledge 
(PCK) (Shulman, 1986). Depaepe, Verschaffel, and Kelchtermans (2013) show that PCK has often 
been considered under perspectives of students’ (mis)conceptions, instructional strategies, curriculum 
and others. Due to the increasing language diversity in mathematics classrooms, there is an increasing 
need of language-responsive teaching. However, only few studies deal with teachers’ resources and 
obstacles when developing language-responsive mathematics classrooms (Radford & Barwell, 2016; 
Prediger, Sahin-Gür, & Zindel, 2018; Prediger, submitted). The aim of this study is to identify which 
language issues teachers notice in a classroom discussion and to analyze how they activate didactic 
categories when noticing these language issues. The article presents (1) the theoretical background 
of PCK and its role when noticing language issues, (2) the methods of the study, and (3) empirical 
insights which (mathematically relevant) language aspects teachers notice and how they activate di-
dactic categories. 

Background of the study 
Identifying PCK in the connection from categories and practices 

An important part of teacher knowledge is the pedagogical content knowledge (PCK) (for a literature 
review concerning different conceptualizations see Depaepe et al., 2013). In this context, Ball, 
Thames, and Phelps (2008) differentiate “knowledge of content and students” and “knowledge of 
content and teaching” (Ball, Thames, & Phelps, 2008, p. 399). They assume that “a clearer sense of 
… content knowledge for teaching might inform the design of support materials for teachers as well 
as teacher education and professional development” (ibid., p. 405). This study aims at contributing to 
this clearer sense of content knowledge. Thereby, the study follows suggestions to focus not only the 
knowledge as dispositions but also on teacher practices (Depaepe et al., 2013) and the continuum 
from teachers’ dispositions to performances in a situated perspective (Bloemeke, Gustafsson, & 
Shavelson, 2015). Our overarching project (Prediger, submitted; Prediger et al., 2018) is especially 
interested in the connections between teachers’ (simulated) classroom practices and the knowledge 
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activated for these practices, following Bromme’s (2001) conceptualization. More precisely, this 
study deals with the categories teachers activate for noticing in language-responsive teaching. 

Noticing as a relevant teacher practice in language-responsive teaching 

In general, noticing is described as the process of making “sense of complex classroom environments 
in which they cannot be aware of or respond to everything that is occurring” (Jacobs, Lamb, & 
Philipp, 2010, p. 170). Noticing aspects consists of two processes: first “attending to particular events 
in an instructional setting” and second “making sense of events in an instructional setting” (Sherin et 
al., 2011, p. 5). Interpreting these events involves “relating observed events to abstract categories” 
(ibid., p. 5). Abstract didactic categories are the mental schemes that structure situations. This study 
defines these events or aspects as those utterances and actions that teachers could identify as language 
resources or language obstacles when activating abstract categories and relating them to learners’ 
specific utterances or actions (Figure 1). Hence, the aspects teachers notice depend on their back-
ground pedagogical content knowledge (Prediger & Zindel, 2017). 

 
Figure 1: Noticing as activating PCK in a content-specific way 

In the case of language-responsive mathematics teaching, noticing language has been identified as 
one of five typical situational demands (Prediger, submitted). Here, noticing language is the founda-
tion for further jobs such as supporting language or developing language. With respect to the relevant 
categories, noticing language requires attending to learners’ obstacles, but even more on learners’ 
language resources in order to take decisions for an adaptive support. Other studies also focus on 
noticing the resources. Kilic et al. (2019) for example investigate the effects of a faculty-school col-
laboration program with regard to preservice teachers’ noticing of mathematical opportunities 
emerged from students’ mathematics.  

For the case of language-responsive teaching, it is important that teachers know how the language 
issues are tied to the teaching of their subject (Bunch, 2013, p. 299). Hence, language-responsive 
teaching requires knowledge on mathematically relevant language demands and adequate teaching 
practices. In order to consider both, teachers’ knowledge and their practices, this study focuses on 
teachers’ processes in PD-integrated diagnostic activities.  

This study focuses on two (abstract) didactic categories, which several studies highlight when dealing 
with language responsive teaching: word level and discourse level (Moschkovich, 2015; Prediger, 
submitted). Studies have shown that students’ obstacles and resources differ on these levels and that 
especially the discourse level is important for mathematics learning as language and mathematics are 
strongly connected on this level (Moschkovich, 2015). 
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Focus of the investigation 

Based on these theoretical backgrounds, the aim of this study is to identify which language issues 
teachers notice in a classroom discussion and to analyze how they activate didactic categories when 
noticing these language issues. Hence, the research questions are: 

(RQ1) Which language resources and language obstacles do teachers notice when watching a video 
on a whole class discussion about the meaning of variables? 

(RQ2) How do teachers activate the categories word level and discourse level when noticing these 
language obstacles and language resources? 

Methods 
Data gathering: PD-integrated diagnostic activity 

In the overarching project, we conducted several PD-integrated diagnostic activities due to two rea-
sons. First, these activities offer insights in teachers’ knowledge and second, the facilitator can di-
rectly react and use the results in the PD. In this paper, the focus is on diagnostic activities of noticing 
language. We collected n=12 written products on the diagnostic activity translated in Figure 2. The 
sample consisted of German middle and high school mathematics teachers in their third session of a 
volunteer professional development series on language-responsive mathematics classrooms. The 
transcript teachers should analyze after watching the video scene contains many different language 
resources and language obstacles (Figure 3, Figure 4). This richness allows analyzing which of these 
aspects teachers focus on and thereby teachers’ noticing. 

 
In order to identify potential starting points for learning processes, teachers should identify mathe-
matically relevant language obstacles and mathematically relevant language resources. A coding 
scheme of content-specific language resources (R) and language obstacles (O) that teachers could 
notice in this scene (Figure 3, Figure 4) was developed by, and discussed within, our research group. 
There is no hierarchy in the list. This list is not a complete list, so the coding scheme allows for 
additional individual categories (R9 and O7). Each noticeable aspect contains an (abstract) category 
(here: the discourse level/ different discourse practices) related to the observed event (i.e. utterance 
and/or action; Figure 1). After watching the video scene of the classroom discussion in the PD, the 
teachers should analyze the transcript with regard to conceptual and language obstacles and resources. 
We collected teachers’ written products on this task and videotaped the whole PD including the group 
discussions in order to gain insights in the PD-processes. 

A grade 10 class worked on the following task and conducted a whole class discussion on the match: 
 
 
 
Activity for the teachers: Watch the video of the whole class discussion and analyze the corresponding transcript 
[here printed in Figure 4] with regard to the learners’ conceptual and language resources and obstacles. 

Classroom task: Ms. Maier buys presents for her colleagues. One bottle of wine costs 3 Euro.  
Additionally, she needs one bag for 1 Euro. Does the function equation f(x) = 3x + 1 fit to this situation? 

Figure 2: PD-integrated diagnostic activity on noticing language and identifying language issues 
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(R1) Differentiating the amount of colleagues and the amount of bottles 
(R2) Explaining the meaning of x as number of bottles/colleagues 
(R3) Explaining the meaning of the constant “3” as price of one bottle and the meaning of “1” as price of one bag 
(R4) Generalizing the number of bottles/ colleagues 
(R5) Describing a general relationship between the number of colleagues/bottles and the price by calculating values 
(R6) Generalizing the number of bags  
(R7) Describing a general relationship (between any amount of bottles/colleagues/bags/prices) 
(R8) Explaining the meaning of variables as unknowns and generalizers 
(R9) Further resource 
(O1) No identifying the meaning of “1” as price of one bag 
(O2) No generalization of the amount of colleagues/bottles 
(O3) No explanation of the meaning of f(x) as total price 
(O4) Inappropriate basis for argumentation when explaining the (non)match of the function equation 
(O5) Overstressing the relevance of “colleagues” as singular or plural (A/N: both have the same spelling in German) 
(O6) No explication of the functional relationship between the number of colleagues/bottles and the price 
(O7) Further obstacle 

Figure 3: Coding scheme for noticeable aspects (utterances and actions) in the scene 

2 David Hm, Ms. Maier buys […] presents for her colleagues. One bottle of wine costs 3 Euro. 
Additionally, she needs one bag for 1 Euro. 

  

3 Max [5s] For? O1 

5 Celina Well, I don’t think that fits, because hm I think (…) f(x) equals 3 plus 1…  O2, O4 

6 Fynn I don’t think that fits either, because it doesn’t say how many bottles she buys (…) R1 O2 

7 Alexan-
dra 

I think that fits, because the function equation has 3x plus one. And three is then (…) 
the value of the bottles, x are the colleagues. And plus 1 is what you only have to pay 
once, because the 3 are always with the colleagues (…) 

R2, R3, O3 

9 Altin Hm. I think that fits, because hm x is simply intended for the colleagues. So, if she had 
three colleagues, she would have to pay nine Euros. 

R4, R5 

10 Nils [3s] It depends on hm whether she buys more than one bottle of wine. Because, if more 
bottles were bought, you could take the amount as x and then the question fits. 

R2, R4 

11 Tatjana Well I think it doesn’t fit because the number of colleagues is unknown.  O4 

12 Ben I think, it also doesn’t fit because the text says colleagues. And these are several and our 
function equation says 3x (…) 

O4, O5 

13 Chris-
tian 

And if 3x, so the number of bottles is unknown, then you don’t know how many bags 
you need either. Then this should be x, too. You don’t know how many bags she takes.  

R6, R7, O6 

17 Fynn Well this does not fit because it is not given how many bottles the woman wants to buy.  O4 

19 Max It doesn’t fit because the number […] is not given, how many – for how many colleagues 
she needs how many bottles. Because it needs to be better […] explained or presented.  

R1, R7 

21 Nils It fits because the number of colleagues is x. It is a non-determined number. That means, 
you can choose the number, how many colleagues there are. 

R8 

22 Alexan-
dra 

Well it says that the wine costs three Euro. And three is three times x and x is the un-
known. That means that this is the number of colleagues. And it says she needs one bag. 
So she only buys one bag and therefor plus 1. 

R2, R3, O3 

24 
- 

26 

Altin The problem is, how big is the bag? Because […] if there are more colleagues, then I 
don’t think that all bottles fit into one bag and then she has to buy a second one. And 
then there would have to be plus two. 

R6, R7 

Figure 4: Transcript of the discussion and noticeable language resources (R) and obstacles (O) 
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Data analysis procedures 

This paper focuses on the results of teachers’ written analysis of the classroom discussion. These 
written products of the teachers were analyzed by collecting the noticed language aspects and com-
paring them with the aspects R1-R9 and O1-O7 (Figure 3 shows the inductively generated coding 
scheme for noticeable aspects). As teachers do not make the distinction of resource and obstacle 
explicit in their products, also utterances or aspects that could be used as a resource are coded as 
noticed resource (This reflects a resource-oriented positioning towards teachers’ products.) Following 
the conceptualization of “noticed aspects” as “abstract categories related to specific utterances or 
actions” (Figure 1), teachers’ written products were also analyzed with regard to the question how 
they activate the (abstract) categories word level and discourse level and especially whether they 
activate them in a content-specific way. 

Results 
Insights into three cases 

In a first approach, the paper presents three cases of teachers’ written products (Figure 5) in order to 
illustrate the functioning of the coding scheme (language-related aspects are highlighted in black). 

Camilla points out that David only reads aloud and does not participate in the discussion (O7). Hence, 
she activates the category discourse level in terms of participating in the classroom discourse. Be-
sides, she states that Alexandra struggles with verbalizing the functional relationship (O7). Thereby, 
she names the discourse practice of verbalizing, but she does not explicitly relates it to the observed 

Camilla Lippott 
- Meaning of f(x) and x is not clear for many learners, as well as the meaning of the 1 
- changing meaning of x à number of colleagues; number of bags 
- David: only reads aloud, does not participate in the discussion (O7) 
- Max: does not recognize the meaning of the variable 
- Alexandra seems to have understood the assignment, but has difficulties in verbalizing (O7) 
- Celina does not give reasons at all (O4) 
Selma Ludwig 
Mathematical resources & difficulties 
· Meaning of the variable x not clear  

(Fynn, Max, Celina) 
· Notion of variable not clear  
· Additional variable for bags (Altin, Christian) 

Language resources & difficulties 
· Colleagues ≠ 3x? (O7) 
· Meaning of “Does the function equation fit?” not clear (O7) 
· One bag (O1) 
· Explanation linguistically vague (Alexandra) (O7) 
· Number of colleagues ≠ Colleagues (O5) 

Peter Tremnitz 
- Max   for? unknown (by, for) (O1) 
- Celina creates a model on her own (and in a wrong way) instead of analyzing the given term 
- Fynn struggles with interpreting the x as variable 
- Alexandra has understood the problem, but she can only insufficiently verbalize the meaning of the 1 (for one bag) 
à clarifies it later (O6) 

- Tatjana does not find a concrete number of colleagues – obstacle in functional relationship 
- Ben: 3x – not interpreted variable 
- Christian: it remains unclear whether he imposes an upper limit for one bag or whether he regards the number   
  of bags as proportionally increasing. The task says that she needs only one bag. (R6, R7) 
- Altin: +1 incorrectly interpreted repeatedly 

Figure 5: Three cases of teachers' written products and their coding 
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utterance. It remains unclear which difficulties Alexandra might have and whether these are difficul-
ties in finding correct words on a lexical level or whether she has difficulties in explaining on the 
discourse level for example. A similar category could underlie her observation that Celina does not 
give any reasons at all (resp. inappropriate basis for argumentation, O4). 

In contrast to the two other teachers, Selma makes an explicit distinction between mathematical as-
pects and language aspects. She identifies five language obstacles: O1, O5 and three further obstacles 
that are summarized under O7. The further obstacles are (1) identifying the meaning of “3x” as num-
ber of colleagues, (2) no understanding of the question, and (3) explanation linguistically vague. 
Thereby, Selma activates the category “discourse level”, too. However, she describes the aspects only 
partly by only naming the abstract category (“explanation vague”) or by only naming a part of the 
situation (“one bag”). It remains unclear which categories she relates to which observed utterances. 

Peter recognizes the possible idea of generalizing the number of bags R6 as “proportionally increas-
ing” (R7). Thereby, he notices an utterance that could be used as a resource for the discursive demand 
of generalizing and describing a general relationship, even though this is not the relationship focused 
by the task. Peter activated the category “discourse level”, too, by explicitly relating the discourse 
practices to the observed utterances in most cases. 

Whereas Camilla and Selma only notice obstacles, Peter also identifies a potential resource, although 
he does not make explicit that it is a resource. Nevertheless, noticing such aspects is presumably a 
first step towards responding to those utterances in an appreciative way. 

Teachers’ noticing of language resources and language obstacles 

Figure 6 presents a summary of the coding of all twelve teachers’ products with regard to the amount 
of noticed resources and noticed obstacles, sorted by teachers (Figure 6, left) and sorted by aspects 
(Figure 6, right). 

  
Figure 6: Amount of noticed resources and noticed obstacles by teacher (left) and by aspect (right) 

It is striking that teachers notice much more obstacles than resources (Figure 6). Only four teachers 
notice resources at all, but even these four teachers notice only one or two utterances that could be 
used as resources in the whole scene (Figure 6, left).These observations raise the question, why teach-
ers notice some aspects very often, whereas other aspects are not noticed at all. In order to identify 
possible reasons for these observations, the following section investigates teachers’ underlying cate-
gories in their noticing. 
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Teachers’ activated categories in their noticing of language obstacles and resources 

As teachers focus much on the aspects O1 and O5 (Figure 3), they seem to focus on demands on a 
word level. This problem is already well known (Moschkovich, 2015; Prediger et al., 2018). Both 
aspects describe obstacles that result from wrongly understood words in the text. For noticing other 
aspects it would have been necessary to activate further categories like other discourse practices on 
the discourse level and relating them to learners’ utterances.  

In the three presented cases, all teachers activate the category discourse level, although they do this 
on different ways. Some teachers remain on the discourse level in a general way (like Camilla), others 
differentiate several discourse practices (but name only the category or only the utterance like Selma) 
and others differentiate discourse practices and relate them explicitly to the observed utterances or 
actions (like Peter). The same phenomena become visible in other cases, too. These observations are 
paralleled by the fact that some teachers differentiate single students whereas other teachers describe 
to resources and obstacles of the class as a whole. 

Summing up, teachers focus much more on language obstacles than on language resources. If they 
identify language resources, they remain on the word level. Only few teachers notice different dis-
course practices that could be built on although there are many different noticeable discourse practices 
in the scene that could be used as a resource in a further classroom discussion (Figure 3, Figure 4). If 
activated at all, the categories on the discourse level are often activated in a general way, i.e. that the 
abstract categories are not explicitly related to the observed utterances or actions. 

Discussion and outlook 
Noticing aspects consists of two processes, “attending to particular events” and “making sense of 
events” (Sherin et al., 2011, p. 5). For the case of language-responsive teaching, this paper has inves-
tigated which aspects teacher notice and how they activate the in this case important didactic catego-
ries word level and discourse level (concerning the two categories cf. Moschkovich, 2015; Prediger, 
submitted). The results show that teachers focus much more on language obstacles than on language 
resources. Such a deficit-oriented focus presumably leads to unused learning opportunities, as the 
existing resources are not identified as possible starting points for learning processes. 

Teachers’ noticing depends on teachers’ background knowledge of didactic categories (Prediger & 
Zindel, 2017). However, it seems to be not enough to know the categories as teachers remain very 
vague in their articulation of the noticing. So knowing a category seems to be only a first step in a 
category-based noticing. A further step is activating a category in a content-specific way, i.e. not only 
naming the abstract category, but also relating it to the observed mathematical issue (cf. Figure 1). It 
might be helpful if PDs dealt with possible language resources and language obstacles that could be 
expected in different math contents. Hence, PDs should support teachers in acquiring didactic cate-
gories as well as activating them in a content-specific way in order to support teachers’ noticing. 

Of course, the results gained by a sample of n=12 must be interpreted cautiously. We continue the 
data gathering in following PDs, so that this sample will be enlarged. Furthermore, we are going to 
analyze how this first noticing develops in group-discussions in the PDs. We will analyze the video 
material of the PD in order to gain deeper insights in teachers’ noticing and its development.  
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Introduction 
TWG21 met for the second time in Utrecht at CERME11 and in this conference we sought to continue 
the work started at CERME10. The aim of the previous meeting was to ascertain where the interest 
of our community is when thinking about assessment, and to maintain the focus firmly on 
mathematics. At CERME11 we discussed 14 papers and 3 posters which helped defining such 
interest. We noticed again a variety of focal points: from validation of large-scale assessment 
instruments, to the affordances and drawbacks of online assessment – especially in the university 
context - to the details of construction of individualised feedback. As in the previous meeting the 
papers also presented a variety of methodologies: from large quantitative studies to more nuanced 
qualitative investigations. Among the submissions we also received papers related to students’ 
perspectives and teachers’ perspectives on assessment. These themes were not prominent in the past 
meeting of the group and we welcomed the new perspectives they brought. Finally, we decided to 
group papers together that indicated the role that mathematics has in the assessment: this is to say 
papers that focus on the specifics of mathematics, such as assessing proof.  

Thematic clusters 
We identified 5 overarching themes that will serve to organise the papers submitted to TWG21. 
Below, we describe each of these themes in turn. 

Large scale standardised assessment: There is strong interest in our community for the use and 
validation of large-scale standardized assessment, both for benchmarking national students’ 
attainment and for mapping common misconceptions across educational stages. Garuti and 
Martignone present the introduction of the INVALSI standardised tests in Italy and then investigate 
the possibility to assess argumentation through the multiple-choice questions included in the 
INVALSI tests. By using Toulmin’s model (1958) to analyse the structure of arguments included in 
the tests the authors find that although standardised multiple-choice arguments can identify only 
certain aspects of argumentation, this is not to say that the aspects that these tests do identify have no 
educational value.  They conclude by proposing that the Toulmin’s model (1958) could be used to 
guide the construction of such tests. Klegseth, Kaspersen and Solstad use Rash Analysis to determine 
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whether non-standardised test included in Norwegian textbooks are a valid and reliable indicator of 
mathematical competence. In order to do so the authors focused on the concept of function. The items 
tested were divided into 5 competencies categories and the authors found that, with a careful selection 
of such test items, the set they identified can be a reliable and valid measure of mathematical 
competences for these students. Drüke-Noe and Siller present a newly developed test with easy tasks 
which assesses basic mathematical competencies that are essential for vocational training. The test is 
used in years 8 and 9 in Germany. From both a content-oriented and a process-oriented perspective, 
preliminary test results reveal a substantial lack of these competencies in all academic tracks, and 
differential effects were found with respect to year and class that need to be examined beyond 
curricular analyses. Finally, Lasorsa, Garuti, Desimoni, Papa, Costanzo and Ceravolo also worked 
from the database generated by the INVALSI test for mathematical proficiency in Italy and 
investigated the psychometric and qualitative-educational properties of a pool of these questions. 
They seek to find specific cognitive obstacles that the students need to overcome to reach the desired 
competence levels.  

Assessment with technology and Computer Aided Assessment (CAA): As in CERME10 we 
received papers on the use of technology for assessment, both papers at university level. Sangwin 
reports the development and evaluation of an online linear algebra examination administered using 
the system STACK (Sangwin, 2013). The aim of this study is to investigate whether common 
questions in linear algebra could be assessed automatically, which was the case for most of the 
questions tested. The implication for the assessment of mathematics are that tools need to be created 
and tested to assess explanation, justification and reasoning, and that the current questions of paper-
pencil test should be reconsidered since they often focus on mechanical processes. Barana and 
Marchisio report the implementation of automatic assessment methods both in classroom activities 
and in online homework tasks to enact formative assessment strategies. The aim of such 
implementation was to foster self-regulation in the students. Their findings illustrate how formative 
assessment strategies can be implemented into such a blended-learning setting and how students 
perceived the effectiveness of the experiment. 

Assessment of mathematics: the teachers’ perspective: We received four contributions on this 
topic, all reporting research in school settings. Horoks, Pilet, Coppé, De Simone and Grugeon-Allys 
present the design of a large-scale questionnaire aimed at analysing teachers’ assessment practices 
and how teachers use the information they gather to promote students’ learning, in the context of 
algebra. The authors discuss the design of suitable questions to gather information on the diversity of 
teachers’ assessing practices. Kaplan, Kan and Haser present a study that investigated preservice 
middle school mathematics teachers’ (PST) professional development related to formative 
assessment practices and focus on how preservice teachers’ practices changed during the teacher 
education program. The authors explored PSTs’ performance on a task where they were asked to 
analyse a lesson plan without any formative assessment opportunities built in and found PSTs did not 
always realise the lesson plan lacked any formative assessment, especially if they had not yet attended 
to measurement and assessment courses and methods of teaching courses. Moreover, PSTs were 
keener to suggest assessing strategies based on their role as teachers, and less to insert peer assessment 
into the plan. Sangari, van den Heuvel-Panhuizen, Veldhuis and Gooya report preliminary results of 
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a survey of Iranian teachers aimed at investigating to what extent teachers engaged with Descriptive 
Assessment, an approach for evaluating students’ achievement by collecting and documenting 
evidence regarding their learning and performance. The survey showed that teachers engage with 
some of the formative assessment tasks, although not as frequently as it would be desirable. Finally, 
Prendergast, Treacy and O’Meara presented a study concerning teachers’ perceptions of the Bonus 
Point Initiative (BPI) in Ireland. This initiative consists in awarding an extra 25 points in final 
examination results to those students who choose to study mathematics at higher level. The study 
adopted a mixed-method design. Findings show that, although teachers recognized the value of the 
BPI initiative in promoting the study of mathematics and recognizing the effort paid by students in 
studying maths at higher level, many of them feared that the BPI may decrease the standard of 
students attending to higher level courses.  

Assessment of mathematics: the students’ perspective: These papers focused on the impact of 
assessment on students’ experiences and attitudes both at school and university levels. 
Demosthenous, Christou and Deetra Pitta-Pantazi propose a framework for designing different types 
of assessment tasks to elicit evidence about how students respond to the mathematical ideas presented 
in learning trajectories. The authors illustrate the application of the framework by drawing on a 
learning trajectory of fraction division for sixth grade students and discuss how the enactment of the 
trajectory in classroom could be adjusted to students’ current understanding. Häsä, Rämö and Viii 
Virtanen discuss a study part of an ongoing larger project concerning student self-assessment skills 
in university courses. The authors developed a method enabling large cohorts of students to assess 
their own learning outcomes and to give their own course grades with the help of an automatic 
verification system. The paper explores whether the self-assessed grades correspond to the students’ 
actual skills, and how well the automatic system can detect issues in the self-assessment.  Based on 
an expert’s evaluation of the skills of two students, the study concludes that although for large part 
the model works as intended, there are some cases where neither the self-assessment nor the computer 
verification seem to be accurate. Bóra and Juhász discuss pair-work testing. Their pilot study 
consisted of four tests: twice students were tested in pairs and twice students were tested individually. 
The researchers recorded the marks and overall performance of the two-two sets of each type of tests. 
Online questionnaires revealed that in general students had a positive attitude towards paired testing: 
they rated positively the concept and they rated their testing experience positively. In addition, the 
overall level of paired work was high. The authors point to the need to continue the study with a larger 
number of students to learn more about how paired testing improve collaboration and mastery of 
skills.  

Aspects specific to the assessment of mathematics: Starting from the work in our previous meeting 
we wanted to emphasise the role of mathematics in the assessment, e.g. the specifics of assessing 
mathematics. We received four contribution to this topic. Bolondi, Ferretti and Santi use the 
framework of didactical situations (Duval, 1995) to investigate the persistence of certain 
mathematical misconception across educational stages (e.g. from school to university mathematics).  
By analysing the data collected in the database generated by the INVALSI test for mathematical 
proficiency in Italy the authors found that certain misconceptions concerning the operations between 
exponentials persist across the school to university transition, for low as well as medium attaining 

Thematic Working Group 21

Proceedings of CERME11 4039



 

 

students. Watkins, Lamm, Kohli and Kimani investigate the relation between characteristics, beliefs, 
background and perception of students on student attainment in the context of US Community 
Colleges, a much under-researched area. Using linear regression on a large database collected for the 
study they are able to individuate some predictors of student achievement and conclude that rich 
professional development opportunities for teachers have the potential to enhance teachers’ 
effectiveness in this context. Cusi and Telloni describe the design of individualized teaching/learning 
paths in the context of formative assessment at university level. The paths are designed to be tailored 
to the students’ responses to online test and provide tailored feedback at each stage of the test. 
Preliminary results show how students interact with the feedback received and highlight that few 
students are aware both of the difficulties they have in solving the problems and how to overcome 
them. The individualized teaching/learning paths have the potential to develop the awareness of 
strategies to overcome difficulties. Finally, Turiano, Boero and Morselli explore the emergence of a 
‘culture of theorems’ (Boero, 2007) through assessment involving narratives in a 10th grade 
classroom. After the students were taught some Euclidian geometry they were given as part of their 
assessment the task to write to a friend in another school and explain what a theorem is.  Preliminary 
analysis of the narratives shows instances of students’ meta-mathematical knowledge regarding the 
culture of theorems. 

Conclusions 
The papers that were presented in the TWG21 indicated once more the variety of interests in the 
assessment of mathematics community, both in terms of focus and of methodologies. Again we 
received papers adopting quantitative methods (such as Rash analysis) and papers focusing on small 
in depth case studies. This reflects the variety of approaches in our field and it is normal that this 
variety emerges on the work of our group. However, while in the past meeting we found that authors 
were concerned by the lack of a shared language to discuss assessment, this time we welcomed more 
agreement on basic definitions. The emphasis that we detected on students’ and teachers’ perspectives 
also indicate the need for investigating how assessment affects those participating in it, following the 
observation we made at CERME10 of a lack of studies on this topic. Again, we sought to maintain 
the focus on mathematics – e.g. we highlighted the impact of the discipline characteristics on the way 
in which we think about assessment, both summative and formative. Finally, we plan to meet again 
at CERME12 in Bolzano (Italy) to push forward the work of the group and out thinking on the 
assessment of mathematics.  
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This paper intends to contribute to the research on formative assessment in Mathematics providing 
a model of automatic assessment aimed at enhancing learning and self-regulation. The model was 
developed at the Department of Mathematics of the University of Turin (Italy). The main features of 
the model are: availability, algorithmic questions, open answers, immediate feedback, interactive 
feedback, and real-life contextualization. The effectiveness of the model to enact formative strategies 
is discussed though the results of a didactic experimentation involving 299 students of 8th grade, 
where automatically assessed assignments have been used both during Mathematics classes and as 
online homework.  
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Introduction 
It is widely acknowledged that assessment has a great influence on learning, impacting on when and 
how students work and learn. In particular, formative assessment practices help develop 
understanding and motivation, encouraging positive attitudes toward learning. Being responsive to 
the users’ actions, digital technologies can make new room for formative assessment: with their 
capabilities of computing grades and offering feedback in real time, they can return information to 
students and teachers that is relevant to support and enhance learning processes. Web-based digital 
materials with automatic assessment can be used in face-to-face, blended or online courses; according 
to the modality adopted, they can facilitate personalized approaches as well as foster peer discussion.  

This paper intends to contribute to the research on computer aided assessment in Mathematics, by 
proposing a model of automatic formative assessment and interactive feedback developed by the 
Department of Mathematics of the University of Turin (Italy). After a brief review of the literature 
on formative assessment, feedback and automatic assessment, the paper shows a model of automatic 
formative assessment using a system based on an Advanced Computing Environment, particularly 
effective for Mathematics. The model is discussed through some results of a didactic experimentation 
which involves 8th grade students.  

Theoretical framework 
Formative assessment 

The term “formative evaluation” was coined by Michael Scriven in 1966 in opposition to “summative 
evaluation”, to describe a practice aimed to collect information during a course in order to develop 
the curriculum (Scriven, 1966). Benjamin Bloom borrowed the term to indicate a strategy for mastery 
learning, namely a set of diagnostic-progress tests which should assess the achievement of the small 
units in which the program is divided (Bloom, 1968). Bloom’s studies evidenced the effectiveness of 

Thematic Working Group 21

Proceedings of CERME11 4041



 

 

this strategy to motivate students to forge ahead with the learning path. In 1989 D. Royce Sadler 
highlighted the role of feedback as a key distinction between formative and summative assessment. 
Sadler conceptualized formative assessment as the way learners use information from judgments 
about their work to improve their competence (Sadler, 1989).  

More recently, Paul Black and Dylan Wiliam contributed to the development of a theoretical 
framework for the formative assessment, with particular reference to Mathematics Education. They 
spoke about formative practice, giving the well-known definition:  

practice in a classroom is formative to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next 
steps in instruction that are likely to be better, or better founded, than the decisions they would 
have taken in the absence of the evidence that was elicited. (Black & Wiliam, 2009) 

They individuated five key strategies through which formative practices can be enacted, involving 
students, peers and teachers: clarifying and sharing learning intentions and criteria for success; 
engineering effective classroom discussions and other learning tasks that elicit evidence of student 
understanding; providing feedback that moves learners forward; activating students as instructional 
resources; and activating students as the owners of their own learning. 

Feedback 

The provision of feedback is the most distinctive feature of formative assessment. The power of 
feedback emerges in Hattie’s metanalysis where it  is considered one of the most effective strategies 
for learning (Hattie, 2009). John Hattie and Helen Timplerley expanded upon the model of good 
feedback, conceptualizing it as “information provided by an agent (e.g., teacher, peer, book, parent, 
self, experience) regarding aspects of one’s performance or understanding” (Hattie & Timperley, 
2007). Effective feedback, whose purpose is to reduce the discrepancy between current and desired 
understanding, indicates what the learning goals are, what progress is being made toward the goal 
and what activities need to be undertaken in order to make better progress.  Feedback can work at 
four levels: the task level, giving information about how well the task has been accomplished; the 
process level, showing the main process needed to perform the task; the self-regulation level, 
activating metacognitive process; the self-level, adding personal evaluations about the learner.  

Sadler emphasizes the focus on the learner’s processing of feedback, noticing that if the information 
is not elaborated by the learner to alter the gap between current and reference performance, it will not 
have any effect on learning (Sadler, 1989). In order for feedback to be effective, students have to 
possess a concept of the standard being aimed for, compare the actual level of performance with the 
standard and engage in appropriate action, which leads to some closure of the gap.  

Besides improving understanding, feedback can also be effective to enhance self-regulation, a process 
whereby learners set goals for their learning and monitor and regulate their cognition, motivation and 
behavior through internal feedback (Pintrich & Zusho, 2007). The process of generation of internal 
feedback can be facilitated by well-designed feedback which, according to Nicol  and Macfarlane‐
Dick (2006), should clarify what good performance is; facilitate the development of self-assessment; 
deliver high quality information to students about their learning; encourage teacher and peer dialogue 
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around learning; encourage positive attitudes, motivation and self-esteem; provide opportunities to 
close the gap between current and desired performance; and provide information to teachers that can 
be used to help shape the teaching.  

Automatic assessment 

Automatic assessment is one particular form of Computer Aided Assessment, characterized by the 
automated elaboration of students’ answers and provision of feedback. Multiple choice is the most 
common question format; it is supported by the majority of online platforms, even though it 
considerably limits the cognitive processes involved in answering, especially in Mathematics 
(Bennett, 2012).  To overcome this limitation, research centers and universities started to develop 
systems that are able to process open-ended answers from a mathematical point of view and to 
establish if they are equivalent to the correct solutions. Examples of similar Automatic Assessment 
Systems (AAS) are STACK, relying on the Computer Algebra System (CAS) Maxima (Sangwin, 
2015) and Maple T.A., running on the engine of the Advanced Computing Environment (ACE) Maple 
(Barana, Marchisio, & Rabellino, 2015). By exploiting programming languages or mathematical 
packages, these AASs allow to build interactive worksheets based on algorithms where answers, 
feedback and values are calculated over random parameters and can be shown in different 
representational registers. Thus, new solutions for computer-based items can be conceived, including 
dynamic explorations, animations, symbolic manipulation that offer students experiences of 
mathematical construction and conceptual understanding (Stacey & Wiliam, 2013).  

A model of formative automatic assessment for Mathematics 
The Department of Mathematics of the University of Turin has designed a model for creating 
questions conceived for the formative assessment of Mathematics, using Moebius Assessment. 
(formerly known as Maple T.A.). This AAS was chosen for its powerful grading capabilities, for the 
robust mathematical engine running behind the system and for the possibility of integration within 
the Virtual Learning Environment (VLE) Moodle (Barana & Marchisio, 2016). 

Aiming at enhancing learning and self-regulation, automatically assessed assignments should have 
the following features (Barana, Conte, Fioravera, Marchisio, & Rabellino, 2018):  

· availability: students can attempt the assignments, integrated in a VLE, at their own pace, 
without limitation in data, time and number of attempts; 

· algorithm-based questions and answers: random values, parameters or formulas make 
questions, and their answers, randomly change at every attempt.  Though variables based on 
algorithms, random parameters, mathematical formulas, graphics and even animated plots can 
be shown in questions and feedback; 

· open-ended answers: the multiple-choice modality is avoided whenever possible; open 
answers, given in different representational registers (words, numbers, symbols, tables, 
graphics) are graded through algorithms which verify if the student’s answer matches the 
correct one, independently of the form; 

· immediate feedback: results are computed in a very brief time and they are shown to the 
students while they are still focused on the task. Brief assignments are advised, in order to 
increase the immediacy of feedback; 
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· interactive feedback: just after giving an incorrect answer, the system can go through a step-
by-step guided resolution that interactively shows a possible process for solving the task, 
which recalls previous knowledge and engage students in simpler tasks. They can gradually 
acquire the background and the process that enables them to answer the initial problem. They 
earn partial credits for the correctness of their answer in the step-by-step process; 

· real-life contextualization: whenever possible, questions refer to real-world issues, which 
contributes to the creation of meanings and to a deeper understanding, as students can 
associate abstract concepts to real-life or concrete objects. 

The feedback provided through this model acts not only at the task level, giving information about 
the correctness, but also at the process level, showing the steps toward the solution. Moreover, it can 
also act at the metacognitive level, providing opportunities for self-assessment, engaging less 
motivated students in active drills and offering partial credits for correct answers. This feedback 
satisfies the conditions individuated by Nicol and Macfarlane‐Dick (2006) for the development of 
self-regulation. This model is particularly relevant in making students elaborate the feedback, as it is 
displayed interactively while they are still engaged with the task. Feedback can be effective according 
to Sadler’s model: in fact, the interactive feedback offers a concept of standard that students can 
actively possess; immediate feedback helps them compare the actual level of performance with the 
standard; when trying the assignment again, students find similar tasks with different values, so that 
they are engaged in an activity that makes them repeat the process until mastered.  

Research questions 
The focus of this paper is to show how automatic assessment, implemented in a blended modality 
through classroom activities and online work, allows the enactment of formative strategies in order 
to enhance learning and self-regulation. In particular, the paper investigates whether the interactive 
feedback can be effective according to Sadler’s model and whether the blended use of the automatic 
assessment can support formative assessment’s strategies.  

Didactic experimentation and data collection 
A set of materials designed according to the model illustrated above has been proposed to 13 8th grade 
classes of 6 different lower secondary schools in the town of Turin, for a total of 299 students, during 
the school year 2017/2018. Interactive materials with automatic assessment, organized in 10 different 
units, were created by university experts and inserted in a dedicated VLE. The tasks were mainly 
designed using items form the INVALSI surveys, the national standardized tests that take place 
annually in Italy, in collaboration with an INVALSI expert, expanded and adapted to the automatic 
assessment. Mathematics teachers, working in close connection with the researchers, could use the 
materials in two modalities:  

· in the classroom, with the support of the Interactive Whiteboard (IWB), where tasks were 
displayed. Students, in small groups of 3 or 4, were asked to solve one task. All the answers 
were collected by the teacher, one was collectively selected to be checked using the AAS. 
After verifying whether it was correct, all the groups, in turn, had to show their solving process 
to the others. The interactive worksheets displayed at the IWB supported the collective 
discussion and gave prompts for deeper reflection.  
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· for homework, using the online assessment and the interactive feedback to check 
understanding. Students could autonomously navigate within the platform and make one or 
more attempts to the assignments.  

One example of question is shown in Figure 1. It asks students to solve a problem about linear models, 
open to different approaches. Students who give the incorrect answer to the main task are engaged 
with the exploration of the situation through a table to complete and a graphic to draw interactively. 
This question has been used online with some classes and in the classroom with others. On the 
platform, students were guided through the solving process and could repeat the problem with 
different data; in classroom, only the main task was displayed initially and the different solutions 
made by the groups of students were shared and discussed, with the support of the automatic 
assessment. During the experimentation, a PhD student participated to the lessons regarding the 
module on functions and modeling, the target topic of the experimentation. Lessons were videotaped 
and all data from platform usage were extracted in order to study the use of the assignments. The 
appreciation of the activities was measured though a questionnaire distributed at the end of the school 
year.  

 
Figure 1: Example of automatically assessed question 

Results and discussion 
In order to evaluate whether the interactive feedback was effective according to Sadler’s model, the 
usage and results of online assignments were analyzed. For each student the average number of 
attempts per assignment has been computed: it ranges from 1 to 12, with an average value of 1.70, 
which expresses students’ tendency to repeat the questions. Then, the average grade each student 
earned in their first assignment attempt was compared with the average grade they earned in their last 
attempt through a pairwise Student t-test: the mean of initial grades resulted to be 51.55/100 (standard 
deviation: 19.63), while the mean of final grades was 59.02/100 (standard deviation: 19.87); the 
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increase is statistically significative (p <0.0005). These results show that students used the 
information provided in the feedback to improve their results in subsequent activities.   

Answers to the final questionnaire show students’ perceived effectiveness of the automatic 
assessment. Table 2 reports the percentage of students’ answers, given in a Likert scale from 1 
(completely disagree) to 5 (completely agree). In particular, it emerges that students appreciated the 
usefulness of the group work in the classroom, supported by the use of the platform, and the online 
tests with immediate feedback. The low percentages of negative answers show that the feedback 
obtained through automatic assessment and peer work was useful to develop conceptual knowledge, 
since students could better understand the topics; it was also effective at a process level, to understand 
how to solve the problems; and at a metacognitive level, developing awareness of one’s preparation. 

Questions 1 2 3 4 5 

Working in group was useful. 1.4% 6.3% 23.1% 38.5% 30.8% 

Class activities were useful to better understand some 
Mathematical topics. 

1.4% 4.5% 29.1% 45.9% 19.1% 

Using the platform during classroom lessons was useful. 0.5% 3.6% 32.1% 47.1% 16.7% 

I appreciated the possibility to revise the material used 
in class through the platform. 0.0% 8.2% 35.3% 36.4% 20.0% 

The online exercises were useful to better understand 
the topics. 2.5% 5.6% 20.5% 46.0% 25.5% 

The online exercises helped me make clear if I 
understood the topics. 

2.5% 14.3% 26.7% 37.3% 19.3% 

It is useful to have the correct answer displayed 
immediately after answering. 

1.2% 3.7% 13.0% 36.0% 46.0% 

The immediate assessment helped me understand how 
to answer the questions. 

1.2% 5.0% 19.9% 32.3% 41.6% 

Problems with step-by-step guided resolution helped me 
understand how to solve the exercises. 

1.2% 8.7% 26.7% 34.2% 29.7% 

Online exercises helped me to be aware of my 
preparation. 3.7% 8.1% 28.6% 40.4% 19.3% 

Table 2: Student’s answers to the final questionnaire, given in Likert scale 1 to 5 

The open answers to the questions “what did you appreciate the most?” and “what were the online 
assessments useful for?”, evidenced how the use of automatic assessment both in classroom and 
online supported the enactment of the strategies of formative assessment. Comments such as: “in my 
opinion, online exercises are useful to better understand the process to build a formula”, “the platform 
was very useful to better understand both the current topic and the resolution of problems” and “I 
think that the online tests were useful, because they showed me the many possibilities to solve one 
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problem” show how online assignments could clarify and share criteria for success. Tasks in the 
online tests were effective to elicit evidence of students’ understanding, as other students report: 
“online tests were useful because only by doing them I was able to acknowledge whether I had 
understood a topic or not”, “online tests were useful to individuate the points where I should 
improve”. Other comments prove that automatic and interactive feedback supported learning 
improvements: “I could have immediate access to the result to understand where I made a mistake 
and I had the chance to make another attempt with different data to drill”, “with the book you can do 
the assignments but you can’t acknowledge if your resolution is correct, while the platform always 
shows you both the correct answers and the solving processes”, “if you don’t understand a topic, with 
guided exercises you can gradually learn how to solve them autonomously”, “in classroom it often 
happens that I think I have understood a topic, but the next day I can’t understand it anymore, while 
with the platform I can work whenever I need to”. The assignments were also effective to activate 
students as owners of their own learning, as they themselves report: “technology encourages 
youngsters to work hard with homework, therefore they can better understand Mathematics”, “during 
classwork or homework I often felt willing and happy to solve the exercises, and they were useful to 
understand the lesson”, “I appreciated the online tests because they made me reason and work hard; 
sometimes I also had fun when doing Mathematics”. Groupwork was very appreciated and it allowed 
students to be activated as learning resources one for another, as their comments show: “classroom 
lessons were useful because, besides solving problems, we had to interact with each other and this 
allowed us to better understand the tasks”, “I appreciated reasoning together on the things that we 
were not able to do”, “I appreciated sharing ideas with classmates and helping each other”. 

Conclusions 
The results of the experimentation reported above show that the blended use of the online assessment 
made it possible to activate all the agents of the formative assessment (students, peers and teacher) 
and all the 5 key strategies individuated by Black and Wiliam: in  the classroom, students received 
feedback from discussion and sharing ideas with peers, while on the platform the interactive feedback 
offered a guided support for understanding concepts and processes. This conception of automatic 
assessment provides enhancements with respect to paper-and-pen work and traditional book 
exercises: students can individuate their mistakes and make more attempts to improve their 
understanding, they can be actively engaged in Mathematical work and even have fun, although items 
are not game based. The results of this experimentation gave prompts for the activation of other 
research projects, aimed at studying the impact of these methodologies on students of different levels 
and backgrounds, as well as for the application of this model of formative automatic assessment to 
the learning of other subjects, even outside the STEM area, thus starting interdisciplinary 
collaborations.   
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In this work we show the use of the INVALSI database as an instrument to collect organized data 
from national standardized tests in order to study students’ mathematical thinking on a large scale. 
It allows us to create appropriate correlations to single out the behavior of the students relative to a 
specific mathematical topic or a cognitive issue. In this study we have used the INVALSI database 
to study how grade 10 students work with powers in the domain of algebra. We analyze the 
quantitative data within a semiotic theoretical framework. Analyzing items taken from the INVALSI 
tests we are able to single out a general behavior that involves a population of Italian students and 
that persists in time. We interpret the results within our theoretical framework, thereby giving a 
quantitative validation to a theoretical perspective that has been proven consistent by qualitative 
investigations. 
Keywords: Standardized assessments, qualitative and quantitative methodologies, algebra, 
semiotics, powers.  

Introduction. 
It is more than 10 years that the Italian Ministry of Education (MIUR) has established national 
standardized tests (INVALSI) in mathematics. In detail, every year since 2008 INVALSI 
administers Italian and Mathematics (and since 2018, English) large-scale assessment tests to Italian 
students from Primary School to High Secondary School. The tests are devised according to a 
robust theoretical framework that has been developed according to mathematics education research. 
As we will see, a key tool that made it possible to focus our investigation was a database containing 
data about the INVALSI assessment. 
The aim of this paper is to show how the INVALSI database can be effectively used also for 
research purposes. We study how high school students deal with powers analyzing their answers to 
items that have been administered throughout several school years. The items have been collected 
using the INVALSI database GESTINV (Gestinv, 2018) in order to single out consistent data 
regarding powers.  
Our research interest focused on syntactic aspects because INVALSI tests show that Italian high 
school students have severe difficulties in handling the meaning of algebraic formalism when 
dealing with powers. This is particularly interesting if we take into account the efforts and attention 
that both students and teachers devote to algebraic calculations in the first two years of high school. 
Our study wants to shed some light on the following issues:  
What information can standardized assessments provide about student’s learning difficulties 
regarding powers? What research too ls can we use?  
What information can we acquire from standardized assessments about mathematical practices in 
Italian high schools? 
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Theoretical framework.  
Gestinv is a database which includes all the administered INVALSI tests in Italy. There are now 
13,000 users amongst in service and preservice teachers and researchers. As regards mathematics 
there are almost 1700 items available. 
Gestinv contains all the items of the INVALSI tests indexed according to the National Curricula, 
the results from the statistical point of view, the content, the key words, the percentage of correct, 
wrong and invalid answers and other characteristics. It is possible to carry out searches correlating 
these indexes. It has been used as a research tool in several researches to single out difficulties in 
specific mathematics topics or problems, for example in Ferretti and Gambini (2018), or in Ferretti, 
Giberti and Lemmo (2018). Gestinv allows both a fine grain and a coarse grain analysis of 
mathematics didactical phenomena and the data can be organized according to the basic contents 
and the indications of the Italian national curriculum. 
To create a consistent framework for our study, it is necessary to combine the potentialities of 
Gestinv with a theoretical lens that allows us to look into the complexity of the didactical 
phenomenon that we want to investigate with the database. In the case of this paper our aim is to 
use Gestinv to observe the behavior of students in algebra, in particular when working with powers.  
The learning of algebra is a key research issue in mathematics education, that involves a leap from 
procedural to relational and general cognitive functioning. Such a change in cognitive perspective is 
underpinned by the use of semiotic representations that in algebra implies the use of symbolic 
language intertwined with other semiotic systems. 
Duval’s (1995, 2008) semiotic approach highlights a specific cognitive functioning in mathematics, 
due to the special epistemological nature of its objects that do not allow ostensive references. 
Thinking and learning in mathematics is identified with the coordination of semiotic registers via 
treatment and conversion. Treatment is a semiotic transformation from a representation into another 
within the same register and conversion is a semiotic transformation from a representation in one 
register into another representation in another register.  
The inaccessible nature of mathematical objects leads the student in a cognitive paradox that obliges 
him to identify the mathematical object with its semiotic representations (Duval, 1993). The 
cognitive paradox can hinder the student’s meaning making processes since he is unable to establish 
the correct relationship between the mathematical object (the signified) and several representations 
(its signifiers). Conversion is particularly difficult to carry out because there is no syntactic rule that 
binds the first representation in one register with the second in the other register. In conversion, the 
pupil ends up with a series of unrelated representations that he is unable to refer to the same 
mathematical concept. According to Duval, conversion is the key cognitive function that guarantees 
the conceptual acquisition of mathematical objects.  
Treatments instead rest on the structure of the semiotic register that provides the pupil with the 
syntactic rules to go from one representation to the other via the semiotic transformation. Therefore, 
we expect that students are able recognize that different representations involved in treatment 
transformations refer to the same mathematical object. Within this framework our research 
questions are: Q1: What precise information, regarding powers, can we acquire from a research that 
implements Gestinv? Q2: Is it possible to collect information that is coherent with solid research 
findings? Q3: What methodological tools does Gestinv provide? 

Methodology.  
Our research methodology intertwines qualitative and quantitative methodologies according to 
Johnson and Onwuegbuzie (2004) and Iori (2018). In our research design we mixed quantitative 
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and qualitative methodologies according to the following scheme: QUAL ------> QUAN -----> 
QUAN+QUAL. From a qualitative point of view our aim was to ascertain higher school students’ 
difficulties in algebra. In particular our focus was on the students’ ability to give meaning to the 
syntactic structure of algebra. Gestinv allowed us to carry out a quantitative analysis based on the 
INVALSI grade ten mathematics items, selecting the ones with lower scores. Among these we 
noticed that the management of powers yielded the worst results, in particular the tasks involving 
treatment operations. At this point we carry out a Quan/Qual analysis that combines our semiotic 
lens (Qual) with the study of the characteristic curves and the distractor plots (Quan). 
In Figure 3 we see an example of our basic tool. On the x-axis are the students’ level of 
competence, measured on the basis of the whole test and on the y-axis are the probabilities of 
answers to the distractors in function of the level of competence. The solid line represents the curve 
predicted by the model (characteristic curve) whereas the dotted lines are the empirical results of 
the test, plotted by deciles. Characteristic curves and distractor plots are an effective quantitative 
tool to highlight correlations between the students’ answers to a specific item according to the basic 
contents and the indications of the Italian national curriculum, which informs the structure of the 
INVALSI test. 
We point out the fact that we selected items close to the kind of algebra activity usually performed 
in Italian high schools during the first two years of secondary school. Moreover the items were 
selected according to the INVALSI theoretical framework, which considers the ability to handle 
semiotic transformations as one of the basic cognitive processes. We used the functions of Gestinv 
to choose items that matched our research needs in terms of cognitive processes, mathematical 
content and learning objectives. We turned out with items that highlight students’ difficulties in 
giving sense to algebraic representations as they undergo treatment transformations.  It is important 
to keep in mind that in Italy students, when learning algebra, are mainly exposed to complicated, 
heavy, and long algebraic calculations, basically treatments. This is also true for the teaching and 
learning of powers. 

Results. 
The following task was administered in 2017 Mathematics Grade 10 INVALSI test. 
  

                                            
Figure 1: Task in Mathematics Grade 10 INVALSI Test 2017  

 
This INVALSI test was administered to 540.000 grade 10 students; the results refer to a sample of 
about 48.000 students representative of the whole population. The task requires to perform a 
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treatment operation in the algebraic register, applying a well-known identity. As we can see in the 
following figure (Figure 2), only 34% of the students gave the correct answer; the majority of 
students who did not solve the task correctly chose option C. This item disproves Duval’s claim that 
conversion is the key semiotic transformation and that treatment supports students in the 
construction of the correct meaning of mathematical concepts, in this study, powers. All the 
incorrect options reveal difficulties in the treatment operations and the mathematical meaning is 
completely lost. For example, option C formally resembles the original algebraic expression but 
there is no link to the correct mathematical meaning of powers. It is interesting how the students do 
not rely on the algebraic transformation rules to give sense to their mathematical activity. This item 
provides a quantitative confirm of qualitative researches that show how treatment transformations 
can result in a change or loss of meaning (D’Amore, 2007; Santi, 2011). Such researches show that 
meaning cannot be reduced to the structure of semiotic systems, but it is rooted in the range of 
social activity, at a personal and cultural level. In absence of a meaningful personal activity, the 
student, according to the cognitive paradox, interprets the semiotic representations as if they were 
unrelated mathematical objects, thereby losing the reference to the common mathematical object, 
even if he can rely on precise transformation rules. Rules and procedures that Italian students have 
trained over and over again in their algebra classes. 

                          
Figure 2: Results referred to the task in Mathematics Grade 10 INVALSI Test 2017  

As we can see in the following graph (Figure 3), among the various options of incorrect answers, 
option C is the most frequently chosen at all levels of competence, up to medium-high skill levels. 
It testifies that this loss of meaning roots in convictions and beliefs that affect even the most 
competent students. 
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Figure 3: Characteristic Curve referred to the task in Mathematics Grade 10 INVALSI Test 2017  

 The following task was administered in Mathematics Grade 10 INVALSI Test in the year 2015. 
  

                                               
Figure 4: Task in Mathematics Grade 10 INVALSI Test 2015  

In 2015 almost 550000 Grade 10 students performed this INVALSI test, and the national results 
referred to a sample of 48440 students. As we can see in the following graphs, only a third of Italian 
students provided the correct answer; among the incorrect options, the most chosen option is C.  In 
option C the exponents of the two powers in the text are summed. Again, this protocol shows a loss 
of meaning, due to a treatment, when the student goes from the original 𝑎𝑎43 + 𝑎𝑎44 to 𝑎𝑎87.                        
The expression 𝑎𝑎𝑛𝑛 + 𝑎𝑎𝑚𝑚 puzzles the student who is not able to frame it appropriately in the context 
of powers, thereby he resorts to the well-known identity 𝑎𝑎𝑛𝑛 ∙ 𝑎𝑎𝑚𝑚 = 𝑎𝑎(𝑛𝑛+𝑚𝑚) which leads to a loss of 
the original meaning. This result suggests that factoring out the GCF is meaningless to most 
students, despite the thorough practice in terms of treatment transformations they are exposed to. 
Meaningless in the sense that they confuse the algebraic representations (signifiers) with the 
mathematical object (signified) and they are not able to establish the correct semiotic reference to 
the mathematical object.  

                           
Figure 5: Results referred to the task in Mathematics Grade 10 INVALSI Test 2015  

The Characteristic Curve (Figure 6), shows that, among the incorrect options, Option C is the most 
chosen at all levels of competence.  
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 Figure 6: Characteristic Curve referred to the task in Mathematics Grade 10 INVALSI Test 2015  

The following question was in the Mathematics INVALSI test that was administered in Italy in 
2012 to all Grade 10 students. Almost 533.000 students performed the test and the results referred 
to a sample of almost 50.000 Grade 10 Italian students.  To answer the task correctly, it is necessary 
to manipulate the exponents of an algebraic expression with two terms. 

                                                   
Figure 7: Task in Mathematics Grade 10 INVALSI Test 2012  

As we can see in the following graphs (Figure 8), only 35% of the students answered correctly.  
More than 25% of students chose option B, in which the exponent of the power is the sum of the 
exponents of the power in the text. Also, in this situation, option B is the most chosen incorrect 
option at all levels of competences (Figure 9). If we compare this item we the former we can see 
that the behavior of the students is exactly the same both in terms of scores and of its characteristic 
curves. The combination of the last two items shows how Gestinv provides quantitative and 
qualitative information that we can compare across time to gain further insight on a teaching-
learning phenomenon   
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Figure 8: Results referred to the task in Mathematics Grade 10 INVALSI Test 2012 

               
Figure 9: Characteristic Curve referred to the task in Mathematics Grade 10 INVALSI Test 2012  

Answer to the research questions. 
A1) At a coarse-grained level, Gestinv highlights rooted difficulties in students facing treatments 
regarding powers. This is a quantitatively relevant macro phenomenon that persists with the same 
features across time. 
A2) At a fine-grained level, Gestinv provides data that are coherent with solid research findings. In 
particular, it unveils at a quantitative level the phenomenon of change/loss of meaning due to 
treatment semiotic transformations. Several studies (D’Amore, 2007; D’Amore & Fandiño Pinilla, 
2007; Santi, 2011) have shown that at all school levels, including prospective teachers, also 
treatment bewilders students who experience a loss or a change of meaning in treatment 
transformations. The loss and/or change of meaning due to treatment transformations implies that 
mathematical cognition in general and in particular the algebraic one cannot be reduced to a 
complex transformation of signs. Meaning is beyond the mere relation sign-object and it is 
necessary to take into account other basic features that characterize sense-making processes in 
mathematics. Moreover, data easily available in Gestinv show that this phenomenon also affects 
students with medium-high levels of competences. Thus teacher’s didactical awareness is not only 
aimed at helping weak students but also the so-called stronger ones, devising an effective didactical 
transposition and didactical engineering that encompass the complexity of mathematical thinking 
and learning.   
A3) Gestinv is an effective tool that entangles quantitative and qualitative research methodologies. 
As regards the quantitative approaches, they are based on a statistically significant population. It 
allows us to provide a quantitative validation of theoretical results, confirmed at a qualitative level. 
Furthermore, the characteristic curves are a powerful tool to intertwine quantitative and qualitative 
analyses.  

Conclusions. 
Gestinv implements a new research method that combines quantitative and qualitative approaches. 
In this study, it allowed us to highlight a macro didactical phenomenon that is quantitatively 
relevant. Thanks to the combination of the quantitative and qualitative approaches we were able 
both to frame the students’ behavior within an appropriate theoretical framework and provide a 
statistically based quantitative validation of such a theoretical result.  
From an educational point of view, Gestinv shows how the school mathematical practices confirm 
the research results of mathematics education. 
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Further research is required to understand if Gestinv, implemented as a research method, is able to 
single out new didactical phenomena that cannot be framed in the current perspectives and therefore 
prompts new theoretical research. 
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Introduction 
In Hungary, mathematics teachers usually teach every topic separately, one after the other. At the end 
of each topic the students write a test, these results are the main factors contributing to the final 
evaluation of a student work during the year. Other popular forms of assessments used daily are short 
oral individual assessments typically at the beginning of the class, short written tests (between 5-20 
minutes) and checking the homework problems (OECD, 2015). There are several problems with these 
traditional tests taking practices. 

First, the problem with the longer, end-of-topic tests are, that they can also contribute to the 
development of bad studying habits (e.g. last-minute studying, bad time-management), being these 
tests are often infrequent and their dates are known beforehand. 

Second, in general, writing a test is not a perfect option for assess one’s understanding of a concept 
or level of mastery. Since a worrying number of students develop text anxiety over the years, and so, 
it is hard to tell how well they mastered the given topics. In Hungary there is a surprisingly high level 
of test anxiety among children (Bodas & Ollandick, 2005). For these reasons, we started to 
experiment with routines of testing with a novel approach. We want to encourage students to perceive 
testing situations more like an interesting challenge, as a part of the learning process. With a group 
of students, we tried pair-work tests. Our reasoning behind this idea is the following: if one of them 
run out of ideas, the other can help. If none of them has an idea, they can realize the problems are 
indeed hard and they can try to develop new ideas together. If they fail to solve a problem hopefully 
they will not attribute it to their own failure, lack of skills, because they see their pairs struggling with 
it as well. Thus it helps to develop a healthy attribution theory, or mindset to mathematics, and in 
general, to learning. 

An additional factor encouraging us to experiment with this type of test is that collaborative skills are 
well sought after in the workplaces. Unsurprisingly, according to many researchers the necessary 21th 
century skills (Voogt, 2012) are: collaboration experience, critical thinking, problem-solving skills. 
Unfortunately, in Hungary the mathematical educational culture is only started to develop and 
practice more group working, cooperative techniques in a wider context (Andrews, 2003). So, we 
think it is important to develop, adopt these cooperative techniques in our local contexts as well. 

The novelty of our work is to examine collaboration in a testing scenario in Hungarian mathematics 
education. 
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Our study 
In our current pilot study there were four tests: twice students were tested in pairs and twice students 
were tested individually. We recorded the marks and overall performance of two-two sets of each 
type of tests. The tests had the same format and length, similar difficulties and recurring topics.  

The pairs were randomly selected for the pair-work tests. They did not know beforehand who their 
partner will be for the test. If the number of students was odd, then the first step was to know which 
students is willing to work alone. 

After the pair-work tests we conducted an online questionnaire. Where we asked the following five 
questions. What percentage of the test was your contribution? How do you like the concept of writing 
tests in pair? How would you rate your experience during the test? How did you like your pair before 
the test? How did you like your pair after the test? 

We made an unstructured interview with the teacher about his observations during the test, and about 
his opinion about the possible long-term impacts of the paired testings. 

What are the students’ attitudes to paired testing? We can assume from the result of the questionnaire 
that most student perceived the test as a fair one. We can also assume more confidently, that students 
have a positive attitude towards paired testing: they rated positively the concept, and they also rated 
their testing experience positively, despite, as in some cases, their initial not so positive attitude to 
their partners.  

How did students respond to paired testing? Their attitudes towards each other improved. The overall 
level of paired work was high, the style of writing had more clarity than solo work. According to the 
teacher’s interview, in general, students collaborated intensely but quietly, not disturbing each other.  

Given the small sample size and time-frame, further research is needed to determine how paired 
testing improve collaboration and mastery of skills. 
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Abstract. One of the purposes of assessment is to inform the classroom teacher about students’ 
current understanding in order to improve the teaching and learning processes. Learning trajectories 
present a developmental progression towards increasing understanding of mathematical ideas and 
are commonly found in curriculum materials to assist teachers in planning instruction. Assessing 
students’ learning along the trajectory could serve as a mediator for adjusting the pacing and the 
selection of opportunities during the classroom enactment. We propose a framework for designing 
different types of assessment tasks to elicit evidence about how students respond to the mathematical 
ideas presented in the trajectory. We illustrate the application of the framework by drawing on a 
learning trajectory of fraction division for sixth grade students and discuss how the enactment of the 
trajectory in classroom could be adjusted to students’ current understanding. 

Keywords: Classroom assessment, learning trajectories, assessment tasks. 

Introduction 
Research evidence indicates that assessment could enhance learning, double the speed of learning 
and reduce the achievement gap between low and high achievers (e.g. Black & Wiliam, 1998; Kluger 
& DeNisi, 1996). The aforementioned is commonly referred to as formative assessment or assessment 
for learning. Even though there are differences in the use of these terms (Swaffield, 2011), their focus 
is on providing feedback to the teacher and student to improve the teaching and learning. In this paper, 
we use the term “classroom assessment for learning” to highlight that the classroom is the context in 
which assessment takes place and that the purpose is to elicit evidence about students’ current 
understanding for making instructional decisions to enhance the learning processes. 

The learning trajectory can affect and enhance the classroom assessment for learning (Ebby & Petit, 
2018; Sztajn, Confrey, Wilson & Edgington, 2012). According to Clements and Sarama (2004), a 
learning trajectory includes the learning goal, the developmental progressions of thinking and 
learning, and the sequence of instructional tasks. A learning trajectory takes into account theoretical 
and empirical data to form a learning route that involves processes to develop increasing 
sophistication in understanding, which is linked with an instructional sequence (Heritage, 2008; 
Clements & Sarama, 2004). Classroom assessment could then be closely linked with these cognitive 
pre-designed learning trajectories as they inform the teacher about the desired learning goal and a 
progression towards developing understanding. Thus, they can help teachers interpret how students 
respond to these goals and how they move along the progression path by making informed decisions 
(Ebby & Petit, 2018).  

Literature review 
Assessment tasks could provide information about where students stand regarding the learning 
trajectory and students’ levels of understanding and misunderstanding (Bennett, 2011). The design 
of assessment tasks has been mainly an issue of discussion for high-stake assessments and 
standardized tests but it is time to include clear descriptions of the form and key features of classroom 
assessment in order to enrich the current research base (Kingston & Nash, 2011). 
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Different types of tasks elicit evidence about various facets of students’ understanding. Existing 
frameworks of assessment tasks rely on categorizations based on the format of tasks or the level of 
processes students are expected to engage with. Phelan, Choi, Vendlinski, Baker and Herman (2011) 
categorized tasks into basic computational tasks, partially worked examples, word problems, graphic 
problems and explanation tasks. Webb, Alt, Ely and Vesperman (2005) and deLange (1999) identified 
levels of assessment tasks. Webb et al. (2005) suggested that tasks could engage students in recall of 
information, skills and concepts, strategic thinking, and extended thinking. deLange (1999) 
categorized tasks into those of reproduction, procedures, concepts and definitions; connections and 
problem solving; mathematization, mathematical thinking, generalization and insight.  

It seems that there is consensus that assessment tasks should elicit evidence from students’ 
engagement with recall procedures to complex reasoning. However, the field lacks a systematic way 
for making connections between assessment tasks, increasing complexity and learning trajectories. 
In this paper, a framework is presented towards this aim in order to contribute to the discussion of 
learning trajectories and assessment for learning.  The framework describes types of tasks for 
classroom assessment for learning which are linked with the learning trajectories aiming (1) to elicit 
evidence about how students respond to the mathematical ideas presented in the learning trajectory 
and (2) to inform as well as adjust accordingly the enactment of the learning trajectory as it unfolds 
in classroom.  

Sztajn et al. (2012) mentioned that teachers make sense of students’ ideas and respond accordingly 
by relying on students’ reasoning when they follow a learning trajectory since they help teachers 
identify common misconceptions beforehand. Then, the levels of learning “could serve as reference 
points for assessments designed to report where students are along the way to meeting the goals of 
instruction and perhaps something about the problems they might be having in moving ahead” (Daro, 
Mosher & Corcoran, 2011, p. 29). In addition, it is critical to interpret appropriately the evidence for 
planning instructional adjustments. The majority of studies, so far, do not elaborate on the possible 
instructional adjustments based on the evidence from various assessments approaches (McMillan, 
Venable & Varier, 2013). Instructional adjustments include differentiation for remediation, 
reteaching using different strategies and changing the pacing of instruction (Hoover & Abrams, 
2013). 

Development of framework 

The framework was formulated by relying on existing categorizations of tasks (i.e., deLange, 1999; 
Webb et al., 2005), international studies (e.g. TIMSS, PISA) and online resources (e.g. 
map.mathshell.org). We identified key points of learning, critical features of tasks, ways to capture 
increasing complexity and then designed tasks for grades 4 to 6. In total, 161 tasks were piloted in 
real classroom settings during a school year. Based on the feedback from teachers’ comments and the 
coding of students’ responses, the types of tasks were refined through several cycles of revisions. In 
this paper, we present only assessment tasks for a selected learning trajectory for sixth grade. 

The framework describes different types of tasks for the purpose of classroom assessment for learning 
and presents the role of learning trajectories in designing assessment tasks and in planning 
instructional adjustments. Learning trajectories are foundational since assessment elicits evidence of 
how students’ learning develops towards the expected goal and supports teachers in deciding for their 
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next teaching actions (Heritage, 2008). A learning trajectory as presented in the curriculum could 
inform the development of assessment tasks and the evidence from the assessment tasks then shapes 
the enactment of the learning trajectory in classroom (Figure 1). The fact that teachers in the Cypriot 
educational context follow closely the learning trajectories as presented in the curriculum materials 
and particularly in textbooks facilitated the process of designing assessment tasks that were aligned 
with the learning trajectories by identifying key points in learning. However, the classroom enactment 
is not expected to be identical to the intended curriculum. Indeed, the evidence from students’ 
responses in the assessment tasks could contribute in adjusting the enactment in classroom to 
students’ ongoing needs.  

 
Figure 1: Classroom assessment tasks and learning trajectories 

We define a task for classroom assessment to consist of a single request of what students are expected 
to do and the necessary information to respond to that request. Three different types of tasks were 
formed and two task features were selected. Table 1 presents the three types of tasks with their 
respective description. The different tasks aim to elicit evidence regarding students’ progression along 
the learning trajectory and be aligned to the increasing expertise and sophistication as expected by 
the trajectory. These tasks are not intended to be seen as consecutive and linear steps of learning (e.g., 
it is not assumed that necessarily “apply and connect” tasks will be used after “recall and reproduce”). 
These tasks could be used in classroom according to how the learning trajectory unfolds and inform 
of the ways students develop increasing expertise.  

Type of Task Description of Tasks 

Recall and Reproduce Students are able to respond to these tasks because they can use taught 
procedures and technical skills. 

Apply and Connect Students are able to respond to these tasks because they can apply the 
mathematical ideas in various contexts and make connections between 
representations and mathematical ideas. 

Reflect and Generate Students are able to respond to these tasks because they can investigate 
mathematical ideas, structures and contexts, and develop their own 
mathematical products. 

Table 1: Types of classroom assessment for learning tasks 

Familiarity and complexity are two features that characterize the tasks. The familiarity of the task is 
determined by students’ previous experiences with the requests of the task and the information 
provided. The complexity of the task is determined by (a) the number of steps to complete the 
assessment task, (b) the amount and nature of information that students need to handle, and (c) the 
possible deviations that alter the complexity according to the mathematical topic (e.g. the place of the 
unknown in an equation, the choice of numbers).  
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Application of the framework 
In this paper, we discuss the application of the framework to design tasks for a learning progression 
on fraction division, which serves as the context to present examples of the three different tasks for 
assessment for learning. Fraction division was selected since on one hand it is not a difficult topic 
when students work only procedurally to invert and multiply. On the other hand, it is conceptually 
demanding since faction division could be represented using various ways and connected with other 
mathematical ideas (Li, Chen & An, 2009). 

There are different approaches in the learning trajectories in textbooks around the world (e.g., Li et 
al., 2009). Only the trajectory found in the Cypriot curriculum materials is presented since it shaped 
the design of assessment tasks. This trajectory is not presented as an exemplary one but rather as a 
medium to exemplify the types of assessment tasks, to illustrate how the increasing sophistication in 
understanding could be captured and to discuss possible instructional adjustments. The selected 
trajectory is designed to engage students first with whole numbers divided by fractions by making 
links with quotative division of whole numbers. Then, students are engaged with fractions divided by 
whole numbers by making links with partitive division of whole numbers. Afterwards, they are 
introduced to fractions divided by fractions, where again the quotative division appears and they 
engage also with division of mixed numbers. Students are expected to have the opportunity to learn 
different procedures (i.e., invert and multiply, convert to fractions of common denominator and divide 
the numerators), represent fraction division using number line and area models, interpret 
representations, and solve word problems.   

The first type of task aims to assess whether students can reproduce the procedure of fraction division. 
The procedure is expected to have been taught and practiced. Hence, students would have extensive 
familiarity. Figure 2 presents an example of “recall and reproduce” tasks. These are different 
mathematical expressions in order to identify which of these students can complete fluently and 
flexibly. The last two expressions have increased complexity due to the position of the unknown. This 
example consists of expressions with different number characteristics and it is not intended to present 
a step of the instructional sequence but a medium for capturing increasing understanding. 

 
Figure 2: Example of “Recall and Reproduce” tasks 

The second type of assessment tasks intend to assess whether students understand the underlying 
mathematical concept, in this case, the way in which fraction division could be interpreted and 
represented. It is anticipated that this type of task will bring to the surface students’ reasoning and 
misconceptions. Figure 3 shows examples of “apply and connect” tasks. Students are asked to 
represent the fraction division using an area model and a number line. In the first case, students would 
need to interpret the fraction division as “3

4
 divided by 2” and represent it (e.g., divide the rectangle 
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in 4 equal stripes, shade 3 out of the 4 and then divide the shaded area into two equal regions). In the 
second case, students would need to interpret the fraction division as “how many 1

4
’s are in 3

4
” and 

represent it (i.e., draw three jumps of 1
4
). Deviation to the complexity of the tasks could be achieved 

without providing the area model and the number line or asking students to provide more than one 
representation of the mathematical expression (e.g., verbal and pictorial). The last example is a word 
problem in which students would not only need to identify which procedure to pursue but also to 
interpret and communicate their though process.  

 

 

 

Figure 3: Examples of “Apply and Connect” tasks 

Students are expected to have worked on representing fraction division using a variety of 
representations and solving word problems. Hence, the requests of the tasks would be familiar to the 
students. However, depending on the given context of representation and word problem, students 
would need to decide how to apply the procedure of fraction division and how to interpret it.  

The third type of assessment tasks intend to assess whether students can investigate independently 
mathematical ideas, structures and contexts, and develop their own mathematical products. For 
example, students could engage in evaluating arguments, generating justifications, forming examples 
and non-examples. Students are expected to have limited familiarity with the request of the tasks in 
order to engage in generating an idea instead of recalling it. Figure 4 presents examples of “reflect 
and generate” tasks. The first task asks students to generate a word problem based on the given 
mathematical expression. Students are anticipated to have had opportunities in solving word problems 
but they are now asked to formulate their own word problem by taking into account the given numbers 
and an appropriate real life situation. The next task, which was adapted from Askew et al. (2015), 
presents a statement and students are asked to explore whether it is always true, sometimes or never. 
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Students would need to compare the quotient and the dividend in different cases of numbers (e.g., 
division of two integers, division of two fractions). 

 

 

Figure 4: Examples of “Reflect and Generate” tasks 

A less complex task could be designed by asking students to complete the description of a word 
problem based on a given mathematical expression while a more complex task could ask students to 
write a word problem for a mathematical expression consisting of two operations (e.g. 5 + (6

9
÷ 1

3
)). 

Another option is to modify the nature of the information by reducing the complexity such as “Find 
the cases for which the division of two numbers gives a quotient larger than the dividend”. In this 
way, students would need to identify cases of numbers that confirm the statement instead of exploring 
all possible cases of numbers to decide whether Marios’ argument holds true in all, some or none of 
these cases. 

Discussion 
The framework aims to contribute to the discussion about how classroom assessment could be linked 
with learning trajectories (e.g., Ebby & Petit, 2018; Heritage, 2008). Different types of tasks were 
formed based on the pre-designed trajectory in curriculum materials that aim to elicit evidence about 
students’ understanding along the increasing expertise of the learning trajectory in order to make 
informed decisions of how the enactment of the learning trajectory in classroom could be adjusted. 
Hence, we rely on students’ understanding to discuss about teachers’ instructional adjustments. 

The adjustments elaborate on differentiation, reteaching and changing the pace of instruction (Hoover 
& Abrams, 2013). Students’ responses to “recall and reproduce” tasks could inform the classroom 
teacher whether students reproduce the procedure of dividing fractions correctly. If students use the 
procedures incorrectly (e.g. invert the dividend instead of the divisor and multiply), the teacher might 
need to provide more opportunities in reteaching the procedure and in using other procedures (e.g. 
converting into like fractions) to develop understanding. If students complete incorrectly the last two 
mathematical expressions (in which the place of the unknown differs), then the teacher might make 
explicit links between division of whole numbers and division of fractions. If students seem to make 
minor arithmetical mistakes (e.g. in converting mixed numbers to improper fractions), then either 
they face difficulties with previously taught mathematical concepts or they need further practice. 
Hence, along the enactment of the learning trajectory in classroom, more time and relevant 
opportunities could be planned. The evidence elicited from “apply and connect” tasks could indicate 
whether students are facing difficulty in making sense of fraction division, in using different 
representations, in identifying fraction division in various contexts and even making connections with 
fraction multiplication. If students find difficulties with the area model and the number line, then 
either more opportunities are needed to make sense of what fraction division means or more 
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opportunities are needed with the particular representational formats (e.g. by corresponding various 
fraction division expressions with their respective representations). If students solve the problem 
incorrectly (e.g. they mention that it is possible to make 7 such pieces), then either more opportunities 
are needed to address previously taught concepts (e.g., converting into like fractions) or more 
opportunities to develop understanding of how fraction division could be interpreted. The “reflect 
and generate” tasks could inform teachers whether students could extend their understanding of 
mathematical ideas and exhibit higher-order thinking. If students find difficulties in writing a word 
problem that corresponds to the given mathematical expression, then students might need further 
opportunities to reflect on the structure of relevant word problems and opportunities to write word 
problems using for example integer numbers. Students who are not able to respond fully or complete 
at all the last task might need further opportunities that engage them in reflecting about the structure 
of numbers and to develop arguments that justify or refute a statement.  

Decisions about instructional adjustments would also be regulated by the number of students facing 
constraints and time limitations. The number of students will determine whether adjustments will 
involve the whole class, groups of students or individual students. The teachers’ role is quite 
demanding in making decisions for the pacing of instruction and for the selection and amount of 
learning opportunities. Particularly, teachers find most difficult the process of using assessment 
information to plan instructional actions (Heritage, Kim, Vendlinski & Herman, 2009) while some 
teachers may not even use the information to adapt their instruction (Zhao, Van den Heuvel-
Panhuizen & Veldhuis, 2017). 

The presentation of the framework, in this paper, is limited to its application in the design of 
assessment tasks based on a learning trajectory for fraction division. The framework could be 
validated and further refined by developing tasks for other grade levels. Further empirical evidence 
could provide insight into the potential and limitations of the framework from its application in real 
classroom settings. Further research could also explore what kind of evidence is purposeful for 
teachers to be elicited from assessment tasks and how decisions about instructional adjustments could 
be planned to move students towards increasing expertise along the learning trajectory. 
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In this paper we present a newly developed test with easy tasks which assesses basic mathematical 
competencies that are essential for vocational training. This test is used in years 8 and 9 in Germany. 
From both a content-oriented and a process-oriented perspective, preliminary test results reveal a 
substantial lack of these competencies in all academic tracks, and differential effects can be found 
with respect to year and class that need to be examined beyond curricular analyses.  

Keywords: mathematics tasks, diagnostic test, assessment, basic competencies, vocational training. 

Many professions require at least basic mathematical competencies to understand or to implement 
work processes, and such competencies are a prerequisite to successfully begin vocational training. 
Consequently, in mathematics these competencies should have been acquired beforehand by means 
of working on tasks. So far and especially in international comparative tests, the relation between 
tasks, basic mathematical needs and vocational training has hardly been examined as the few initial 
approaches to adult education primarily focus on social participation and necessary mathematical 
understanding. In this paper we present our task-based approach to testing secondary students’ basic 
mathematical competencies and raise ideas how to support these students adequately and in time.  

The role of tasks in Mathematics 
Especially in Mathematics tasks are essential and thus they are being used from various perspectives 
in both research and teaching. In any case they require engagement with a certain mathematical 
content (e.g. Christiansen & Walther, 1986), and they are understood here as orally or written set 
assignments to students to carry out a subject-oriented activity (Drüke-Noe et al., 2017).  

In research, tasks can serve as documents of mathematics instruction. This applies e.g. to the project 
COACTIV in which tasks are used not only to assess teachers’ professional knowledge but also to 
get insight into the level of cognitive activation potentially realized in teaching or assessing 
mathematics (Kunter et al., 2013). Tasks also form the linking element between curricular standards 
and the professional knowledge of teachers on the one hand and the aimed-at knowledge, skills and 
competencies of students on the other hand (Neubrand, Jordan, Krauss, Blum, & Löwen, 2013).  

Furthermore, tasks are essential in tests to assess the achievement of learning goals. For this purpose, 
oral and especially written tests are regularly set in Germany. These tests, which are either set 
internally or externally, comprise a range of tasks of a certain cognitive demand to examine 
competencies either formatively or summatively. Due to their backwash effect on teaching as well as 
their impact on the students’ further educational career, centrally set external examinations at the end 
of various stages of education are quite prominent examples of summative written tests. Interestingly 
though, in several European countries as well as in different federal states of Germany such centrally 
set exams are often of a relatively low level of cognitive demand and cover only a limited range of 
competencies (Kühn & Drüke-Noe, 2013; Drüke-Noe & Kühn, 2017). This also applies to internally 
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written mathematics tests in Germany, so called class tests (Drüke-Noe, 2014). From a normative 
perspective, however, adequate compilations of tasks in tests are crucial as they “summarize the core 
components of an instructional unit and ultimately specify the level of mathematical achievement that 
teachers require” (Neubrand et al. 2013, p. 128) and thus make social expectations transparent for 
both teachers and students.  

It can be concluded that tasks are “actively configurable content-related and didactic elements that 
serve to structure mathematics instruction” (Neubrand et al., 2013, p. 126; see also Zaslavsky, 2007, 
p. 434) that “provide the basis for students’ cognitive activities” (Neubrand et al., 2013, p. 127) and 
therefore play an essential role in teaching, learning and assessing mathematics.   

Tests and Basic Competencies  
In Germany, as a consequence from only mediocre results in international comparative studies like 
e.g. TIMSS and PISA, educational standards have been implemented in almost all subjects in the last 
fifteen years. In the course of this, the focus of attention shifted towards regular formative 
examinations of learning goals and competencies, and several centrally set formative tests were 
introduced nationwide in Germany that serve as diagnostic instruments. These tests are designed on 
the basis of the German Educational Standards and are in accordance with the standards’ conception. 
Therefore, their tasks cover all five content strands (quantity, measuring, space and shape, change 
and relationships, uncertainty and statistics), all six competencies (argumentation, problem solving, 
modeling, use of representations, working technically, communication) and all three levels of 
cognitive demand (low, medium, high). Two different kinds of tests are set: A first kind is compulsory 
comparative tests which are set in the years 3 and 8 (9-year- and 14-year-olds) which are administered 
as well as corrected within schools. The test results are to provide diagnostic information in which 
areas both teaching and learning should be improved to prepare students for a successful completion 
of compulsory education one or two years later at ISCED-level 2. A second kind of tests is centrally 
set every six years in the years 4 and 9. Its conception is standard-based, too, but this nationwide test 
is only taken by a representative sample of students and its results are only used by the education 
administration to monitor the school system with respect to the successful achievement of the 
educational standards. For both years 4 and 9 and especially for the latter one results reveal regularly 
that on average one quarter of all German students miss minimal educational standards (Pant et al., 
2013). Very similar findings come up in a German longitudinal study on Bavarian secondary students 
of different school tracks (vom Hofe & Hafner, 2009) as well as in regular international studies like 
PISA (e.g. Neubrand & Neubrand, 2004). 

To summarize, there is much empirical evidence for the mathematical achievement of year 9-students 
that firstly implies that 16-year-olds, who leave school at the end of lower secondary education and 
are about to enter a phase of vocational training, lack substantial basic skills such as a reflective use 
of knowledge and abilities. Secondly, these students presumably lack not only the basis for an 
understanding of routines beyond their mechanical application but also knowledge of problem solving 
activities. Consequently, it seems not only necessary to diagnose such basic competencies well 
beforehand but also – which is even more important – to support these low-achievers in time both on 
a class-level and individually, too. More efforts need to be taken so that in the future less students fail 
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minimal standards since a successful achievement of at least minimal standards is a precondition to 
successfully begin (and complete) a vocational training after the end of year 9 (or year 10). 

These necessities form the basis of our task-based project „Diagnostic scaffolding of basic 
mathematical competencies for vocational training“. In this project we assess basic mathematical 
competencies well before students leave school. We test entire classes and can provide teachers with 
quantitative and qualitative feedback on the test results. Teachers can use this feedback to support 
their students to better achieve basic competencies by the end of compulsory education.  

Basic Competencies and the Start of Vocational Training  
Based on the German Educational Standards we designed a test that only assesses basic mathematical 
competencies relevant for vocational training. As an adequate selection of tasks for such a test 
substantially relies on both an understanding of basic competencies as well as of what is necessary to 
successfully start a vocational training, we briefly outline essential elements of both here.  

In Germany, there are different empirical and normative approaches to defining basic competencies 
for the end of compulsory education, which is usually the end of lower secondary education 
irrespective of successfully obtaining a formal school leaving certificate. However, there is no 
consensus as to whether basic competencies characterize what is really necessary to be prepared for 
a life as a citizen, for a successful start and/ or completion of a vocational training. It is equally diverse 
who defines basic competencies; is it teachers or researchers or those who continue working with 
these students after a certain stage of education? Some other task-based approaches to defining basic 
competencies which are relevant for our one and only focus on the end of lower secondary education 
are briefly outlined in the following: One primarily normative concept by Sill and Sikora (2007) 
considers empirical results from national comparative studies and defines basic mathematical 
competencies needed for further education, everyday life and society. It comprises three so-called 
competency levels that distinguish whether certain knowledge and abilities should be immediately 
and automatically applicable or be easily re-activated or be only exemplary and episodal. A second 
concept is essential for our approach as it is explicitly based on the German Standards. It combines a 
normative with an empirical approach and defines basic mathematical competencies as those  

which all students of all educational levels must at least and permanently have at the end of 
compulsory education. These competencies are a prerequisite for sovereignly mastering everyday 
life and actively participating as politically mature citizens in social and cultural life. These 
competencies are equally a prerequisite for a successful and promising start into a vocational 
training and a pursuance of one’s profession. Those who do not have these basic competencies 
will presumably not sufficiently be able to get along in these situations without help. These 
students must timely and particularly intensively be supported (Drüke-Noe et al., 2011, p. 8).  

A third German and predominantly empirical approach is the “Model of Competency Levels for the 
Educational Standards for a qualified school leaving certificate at the end of year 9 and at the end of 
year 10” which was passed by the Standing Conference of the Ministers of Education and Cultural 
Affairs. Based on results from several large scale studies and applying probabilistic test theories 
which relate task difficulties to students’ abilities, this model is based on a competency scale which 
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distinguishes six competency levels. These levels describe students’ abilities on the basis of task 
properties. The lowest two levels, which we only focus on here, define the minimal standard as a set 
of competencies that all students must have achieved by the end of a certain educational stage. 
Students at or below this minimum standard can only comprehend or apply the most simple standard 
argumentations or problem solving activities, use simple models or well-known visualizations, apply 
one-step routines or extract single pieces of information from simple texts (Kultusministerkonferenz, 
2011, p. 29ff).  

Several other international approaches to basic mathematical competencies also relate structural 
errors to procedural processes: Brown and Burton (1978) already do so in their “Diagnostic Models 
for Procedural Bugs in Basic Mathematical Skills” and stress the close relation between basic skills, 
procedural and conceptual knowledge. In his analyses of structural errors with respect to procedural 
knowledge Wu (1999, p. 1) stresses that “in mathematics, skills and understanding are completely 
intertwined”. Ritter-Johnson, Siegler and Alibali (2001, p. 346) equally claim that “conceptual and 
procedural knowledge influence one another […] and develop iteratively, with increases in one type 
of knowledge leading to increases in the other type of knowledge”.  

Consequently, a traditionally rather content-focused perspective on teaching (and testing) ought to be 
widened to a more comprehensive one which considers both content and processes not only when 
putting curricular regulations into practice but also when teaching and testing basic competencies 
which – amongst others – are necessary to work successfully on mathematics tasks. With respect to 
vocational training, Weißeno and colleagues (2016, p. 3) additionally point out that “mathematical 
skills play an important role in developing job specific competencies in a number of occupations that 
require intermediate qualifications.” Thus, learners do not have to be experts in the field of 
mathematics, but they must be able to implement the necessary basic skills, as well as be able to 
critically reflect upon and to apply processes in the course of solving tasks to correspond with the 
concept of “Higher General Education” as developed by Fischer (2001). 

In our project, we designed a task-based test to assess students’ basic mathematical competencies 
relevant for vocational training. Due to our test conception we can derive information on these 
competencies from both a content- and a process-oriented perspective. Furthermore, this information 
and deeper test analyses allow us to deduce a specific feedback to support teachers and students.  

Test Conception and Task Features  
To both evaluate basic competencies and consider a prospective ability to take up vocational training, 
our test addresses students who aim at getting a qualified school leaving certificate at the end of year 9 
or at the end of year 10 (ISCED-level 2). To allow for sufficient time for compensation before leaving 
school, both versions of this test (see below) can be taken well before, i. e. in year 8 (14-year-olds) 
and/ or in year 9 (15-year-olds) and can be set in all school tracks.  

Since the test’s conception is based on the Educational Standards, it covers all five content strands, 
all six competencies and all three levels of cognitive demand (see Table 1). All tasks were selected 
correspondingly and thus allow analyses from a content- and a process-oriented perspective. Based 
on cognitive analyses we can describe the content addressed and the competencies needed when 
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solving a task, which we briefly outline below by means of three examples. As only basic 
competencies are to be assessed, only relevant content areas of the curriculum of the preceding years 7 
and 8 are tested. This curricular validity has been approved by experts. Almost all tasks are presumed 
to be empirically easy (i. e. at least 80 % correct answers are expected) as they were developed in 
accordance with characteristics of the two lowest levels of the competency level-model (KMK, 2011). 
However, from our perspective relevant basic competencies not only comprise the ability to apply 
certain routines and procedures to show how something works but also to use them critically and/ or 
to explain why something works: Therefore, we intentionally included some presumably empirically 
more difficult tasks in the test and only for these we anticipated less than 80 % correct answers.  

Calculate the area of the triangle.  

 

Use the illustration to explain why the area of a 
parallelogram is determined by applying the rule 
Area = Length of Base · Height. 

 

Heike’s savings book shows 
180 €. The interest rate is 
2 % per annum.  

Calculate the amount of 
interest after 4 months.  

Figure 1: The tasks “Triangle” (left), “Parallelogram” (middle) and “Savings book” (right) 

Three tasks (see Figure 1) are to illustrate our approach: The task „Triangle“ is cognitively easy and 
it tests how something works. The representation immediately leads to a procedure to calculate the 
area by means of the given lengths of the triangle’s base and height. This task ought to be empirically 
easy as calculating the area of this elementary figure requires just one step with small numbers. The 
task “Parallelogram” represents those that test why something works. The rule to determine the area 
of this quadrilateral is explicitly named. Using the representation students need to develop a strategy 
to explain why the area can be calculated by means of this rule. According to the competency level-
model (KMK, 2011) it must be assumed, though, that this is no empirically easy task as it requires an 
argumentation. In the task “Savings book” students must initially extract relevant information from a 
simple text (communication) to then design a strategy and apply a basic mathematical model to 
calculate the amount of interest (problem solving, modeling, working technically).  

 
Competence Level of cognitive 

demand 
Test  
ver-
sion 

Argumen-
tation 

Problem 
solving Modeling 

Use of 
Represen-

tations 

Working 
technically 

Communi-
cation low medium high 

B 4 2 4 11 9 7 3 11 1 
E 8 7 5 9 8 12 2 11 2 

Table 1: Numbers of tasks that require one or more of the six competencies and numbers of tasks of 
the given level of cognitive demand  

The two test versions (B: basic version, E: extended version) comprise 15 tasks each with three tasks 
per content strand that all require open answers. Eight tasks are identical in both versions and almost 
all the remaining seven ones are parallel versions of each other which differ either only as regards 
their presumed task difficulty or as regards the track-specific curriculum. The students have 
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45 minutes to work on the test, and they may only use pens, a ruler and a device to measure angles. 
Before the test was finally used, it was tried and tested beforehand and improved further. 

By means of a coding scheme and applying a dichotomous coding with double digits, different types 
of correct, partly correct or wrong answers are identified. Further analyses of the test results allow us 
to provide teachers with quantitative feedback (charts on types of answers with respect to content 
strands) and with qualitative feedback on missing basic competencies. Thus, this diagnostic test with 
its combined content- and process-oriented design and the subsequent detailed feedback may not only 
close a gap PISA leaves but also provides teachers with class-specific information on (missing) basic 
competencies of prospective school leavers. Teachers can then use this detailed information to 
develop suitable interventions to better support their students to acquire basic competencies.  

Sample and preliminary results  
The test was set to a non-representative sample of students (N=367) in 16 academic and nonacademic 
classes (see Table 2) from two German states (Baden-Wurttemberg, Rhineland-Palatinate). The test 
took place at the beginning of the second semester in the school year 2016/17.  

Test  
version Academic track Noncademic track 

B --- Baden-Wurttemberg: 2 classes in year 8 (N=52), 2 
classes in year 9 (N=45) 

E Rhineland-Palatinate: 2 classes in year 8 (N=52), 
8 classes in year 9 (N=189) Baden-Wurttemberg: 2 classes in year 9 (N=29) 

Table 2: Sample of classes and students that took the diagnostic test  

In accordance with the standard-based test conception we present preliminary findings firstly from a 
content-oriented perspective and then from a process-based one. Irrespective of track and year, 
hardly one quarter of all students (23 %) correctly solved both tasks on the area of elementary figures 
(see Figure 1), and almost equally many students (26 %) solved none of these two correctly. It is 
interesting to note that the task „Triangle“, which rather focuses on procedures (knowing how), was 
solved considerably better by students from the nonacademic track (nonacademic track: 76 %, 
academic track: 64 %). However, considering both this task’s features and the predominance of 
routines in Germany, a much higher percentage of correct answers could have been expected. Less 
surprising, far more students from the academic track were able to solve the task „Parallelogram“ 
(nonacademic track: 6 %, academic track: 42 %) which rather focusses on understanding (knowing 
why). As expected, in both tracks students of year 9 solved both tasks better than those in year 8 but 
from a content-based perspective the overall results of both tasks are rather astounding as the area of 
such basic figures is an integral part of every curriculum. Error analyses reveal that students typically 
fail when distinguishing formulae (here: area of a rectangle and that of a parallelogram) or when 
explaining a rule (see “Parallelogram”) although it is explicitly given here.  

For analyses from a process-oriented perspective we focus on modeling here. Detailed analyses of 
the students’ work rely on steps of the modeling cycle by Blum and Leiß (2005). As expected and 
irrespective of track and year, in all six modeling tasks students primarily find it difficult to 
understand the real situation and then to constitute a situation model. Furthermore, validating a result 
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proves to be another difficult step even for students of the academic track. Surprisingly, in year 9 only 
39,2 % of the students in the academic track solved “Savings book” correctly (non-academic track: 
20,7 %) and many typically failed when validating an even obviously wrong result like e. g. an annual 
amount of interest of 9000 €. Based on detailed analyses of this kind we provide teachers with both 
quantitative and qualitative feedback on their students’ basic competencies. The qualitative feedback 
is based on cognitive analyses of all tasks which serve as a basis for class-specific descriptions of the 
most frequent mistakes per task. All these descriptions help to characterize existing and lacking basic 
mathematical competencies within each class and can support teachers in their successive work. 

Summary and Implications  
The preliminary results of our test correspond with results from representative national and 
international studies. Beyond this, our test which is curricular valid and addresses basic mathematical 
competencies relevant for vocational training once more highlights a discrepancy: Though these 
competencies are broadly considered to be essential, considerably high proportions of students can 
neither use nor apply them and thus lack crucial preconditions to successfully start a vocational 
training and succeed in their later professional careers. This leaves many things to do: From both a 
scientific and a diagnostic perspective, further analyses beyond curricular ones are necessary to 
explain unexpected differential effects as regards tracks, years and classes. Secondly, far greater 
efforts are needed to turn all students into citizens of age (cf. Fischer, 2001) and to provide them with 
basic mathematical competencies. We are currently developing adaptive lesson material to be 
implemented (and evaluated) in teaching. This material specifically addresses students’ typical 
difficulties as regards acquiring and keeping basic mathematical competencies. The material aims at 
supporting students to better solve tasks on how something works as well as those on why something 
works, which means that all students should be able to write down argumentations or to validate 
results to name just a few examples. Last but not least it will be necessary to improve not only the 
tasks but also the kinds of feedback we provide the teachers with. 
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In this paper, after a brief description of Italian National Guidelines and Evaluation System, we 
present and analyze two examples of standardized items focused on argumentation. The qualitative 
analysis is carried out by using theoretical lenses coming from studies about mathematical 
argumentation: in particular, we use Toulmin’s model to identify common features in the structure 
of these standardized items. The first results of our analysis give us the elements to reflect on the 
multiple-choice items structures that could be used for identifying specific aspects about 
argumentation and for assessing students’ skills.   

Keywords: Assessment, argumentation, standardized tests. 

Introduction 
Since many years, mathematics education research has dealt with teaching and learning 
argumentation and proof (Hanna, 2007). The importance of argumentation in mathematics education 
was perceived also at the institutional level and has led to important changes in the orientation of 
different countries curricula (from primary to secondary school) all over the world.  

Also, in the frameworks of the main international surveys, as IEA TIMSS and OECD PISA, 
argumentation is an important milestone. In the Mathematics Framework of IEA TIMSS 2019 (IEA, 
2017) one of the three cognitive domains (reasoning) is described as: 

Reasoning mathematically involves logical, systematic thinking. It includes intuitive and inductive 
reasoning based on patterns and regularities […]. Reasoning involves the ability to observe and 
make conjectures. It also involves making logical deductions based on specific assumptions and 
rules, and justifying results. (TIMSS 2019 Mathematics Framework, p. 24)  

As regards OECD PISA survey, in the recent version of the mathematical framework, we read:  

Mathematical literacy therefore comprises two related aspects: mathematical reasoning and 
problem solving. Mathematical literacy plays an important role in being able to use mathematics 
to solve real-world problems. However, mathematical reasoning also goes beyond solving 
problems in the traditional sense to include making informed judgements in general about that 
important family of societal issues which can be addressed mathematically. It also includes making 
judgements about the validity of information that bombards individuals by means of considering 
their quantitative and logical implications. (PISA 2021, Mathematics Framework, First draft, p. 
10) 

In this paper we examine how Italian mathematics standardized tests try to assess specific aspects 
related to argumentation skills: we analyse two items selected from grade 5 (primary school) national 
standardized tests. We use theoretical lenses taken from research in mathematics education in order 
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to highlight the argumentation features that these two standardized items focused on. Our reflections 
are grounded in the studies on argumentation processes carried out by some Italian researchers 
(Boero, Garuti & Lemut, 2007; Boero, Douek, Morselli & Pedemonte, 2010; Arzarello & Sabena, 
2011). 

Italian National Guideline and standardized tests 
In the last ten years, new Italian National Guideline (NG) for the first cycle of instruction (i.e. pre-
primary, primary and middle school) have been proposed by the Ministry of Education (Ministero 
dell'Istruzione, Università e Ricerca, MIUR). For primary and middle school (grades 1 to 8), the NG 
were first published in 2007 with the latest version arriving in 2012 (MIUR, 2012). Italian legislation 
does not lay down a strict curriculum, but it indicates the goals for competence development at the 
end of grades 3, 5 and 8. 

Some of these goals refer explicitly to the argumentative skills that students should acquire: 

[the student] constructs reasoning by formulating hypotheses, by supporting his/her ideas and by 
dealing with others’ points of view (grade 5, end of primary school, MIUR 2012, p. 50, translation 
by the authors) 

[the student] produces arguments based on the theoretical knowledge acquired […] [the student] 
supports his/her beliefs by choosing examples and counterexamples and by using concatenations 
of claims; [the student] agrees to change his/her opinion recognizing the logical consequences of 
a correct argument” (grade 8, end of middle school, MIUR 2012, p. 51, translation by the authors). 

The Italian Ministry of Public Education has established the standardized assessment of the Italian 
educational system, and commissioned the INVALSI (www.invalsi.it) to carry out annual surveys 
nationwide to all students in the second and fifth grades of primary school, grade 8, and high school 
(grades 10 and 13). INVALSI is a research institute with the status of legal entity governed by public 
law. INVALSI carries out periodic and systematic checks on students knowledge and skills (about 
reading comprehension, grammatical knowledge and mathematical competency), and on the overall 
quality of the educational offers from schools and vocational training institutions; in particular, it runs 
the National Evaluation System (SNV). The INVALSI standardized tests were created for system 
evaluation and this is their primary purpose. The statistical representative sample comprises 
approximately 30,000 students (with tests administered under controlled conditions). Moreover, the 
tests are administered at census level and students results are provided to each school institution. The 
SNV Framework defines what type of mathematics is assessed by the SNV tests and how it is 
evaluated. It identifies two dimensions along which the items are built: the mathematical content, 
divided into four major areas (Numbers, Space and Figures, Relations and Functions, Data and 
Uncertainty), and the mathematical processes involved in solving the items (Knowing, Problem 
Solving, Arguing and Proving). These dimensions are closely and explicitly related to the goals for 
competence development of NG. The framework adopted by SNV assessment includes aspects of 
mathematical modelling as in PISA survey (Niss, 2015), and aspects of mathematics as a body of 
knowledge logically consistent and systematically structured, characterized by a strong cultural unity 
(Arzarello, Garuti, & Ricci, 2015). The INVALSI tests are designed by expert teachers, educational 
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and disciplinary researchers, statisticians and experts of the school system. (Garuti & Martignone, 
2015; Garuti, Lasorsa, & Pozio, 2017). 

Argumentation in INVALSI tests 
As stressed before, taking into account the NG suggestions, INVALSI tests aim to assess also 
argumentation skills. Therefore, our research questions are: which aspects related to argumentation 
skills can be assessed by a standardized test? And in which way? These are very general questions 
that we faced starting from a more specific investigation about which elements were taken into 
account in the construction of some INVALSI argumentative items.  

In a INVALSI booklet there are approximately 40-50 items and about 10% of these are about 
argumentation. A standardized test cannot assess all the argumentative skills quoted in the NG (e.g. 
formulating hypotheses or exploring a problem situation in order to produce conjectures), but it can 
propose tasks that ask students to support his/her statements, to show examples and counterexamples, 
and to recognize the logical consequences of a correct argument. In the SNV framework the limits of 
standardized tests in the assessment of mathematical competencies, particularly with regard to the 
argumentative skills, are well explained, but it is also clear that some aspects of this capability can be 
assessed. For example, by means of items that ask to choose the correct answer and the right 
justification of it among the options proposed, or to produce and justify the answer. In INVALSI 
tests, two item-format types are used to assess the argumentative skills: open constructed-response 
items and selected-response (multiple-choice) items. The first may ask the student to explain how the 
answer was reached or to justify the answer of a given statement; the second requires to select one 
response among a number of options.   

In this paper we analyze two multiple-choice items selected from grade 5 tests. We joined the groups 
of teachers and experts, who produced the INVALSI tests, therefore we can argue about the choices 
made during items productions. These choices are the results of discussion in which Mathematical 
Knowledge for Teaching (Ball, Thames, & Phelps, 2008), the experiences developed in the 
classrooms, and knowledge about educational research studies merged.  

Any discourse cannot be accepted as an argumentation, “[…] a reason or reasons offered for or against 
a proposition, opinion or measure” (Webster Dictionary), and may include verbal arguments, 
numerical data, drawings etc. Argumentation can indicate both the process which produces a logically 
connected discourse about a given subject and the text produced by the process (Douek, 2007).  

In order to describe the structure of mathematics argumentations, as texts produced, different studies 
use Toulmin’s model (1958). In the next paragraph we show some interpretative tools proposed by 
this model. 

 An interpretative tool for the argumentation structure 
Toulmin’s model (1958) has been used for the analysis of arguments in mathematics education 
(Pedemonte, 2007) as a tool to analyses structural features of mathematics argumentation both with 
pre-service teachers (Arzarello & Sabena, 2011) and primary students (Douek & Scali, 2000). Many 
studies report the limitations of this model in order to analyze mathematical argumentation (Nielsen 
2011), in particular to study the dialogical and dialectical elements of verbal interaction that take 

Thematic Working Group 21

Proceedings of CERME11 4077



 

 

place in the classroom. The “argumentation” is much more complex that the arguments that make it 
up, but Toulmin’s model can be used to identify the argument structure, in particular to break down 
arguments into their constituent parts. In Toulmin’s basic model an argument comprises three 
elements: the Claim (C), i.e. the statement; the Data (D), i.e. the data that justify the claim C; and the 
Warrant (W), i.e. the inference rule which allows data D to be connected to claim C. 

We use this way of breaking down arguments into their constituent parts to identify and compare 
some elements in the structure of multiple-choice options of INVALSI argumentative items. 

Research questions 

In our study we focus on written texts, in particular INVALSI multiple-choice items in which students 
have to choose among different sentences. In this frame, we refine our initial research questions: can 
we identify common structures in the different answer options in INVALSI tests? How can we carry 
out a posteriori analysis of the argumentative items by using some interpretative tools coming from 
Toulmin’s model? 

Examples of INVALSI argumentative items 
The first example (Figure 1) is a geometry item relating to equivalence between plane figures.  

 

Figure 1: Item from SNV 2016, grade 5 (indicating the percentage for each option) (translation by the 
authors) 

The student must choose the correct answer: the options are built up by two “Yes” and two “No” 
followed by arguments that have to justify correctly the answer. The stem consists of two figures and 

Thematic Working Group 21

Proceedings of CERME11 4078



 

 

a question that is common in activities about geometrical objects in primary school. This example 
shows a structure in the construction of the item that we identified as very common in the INVALSI 
argumentative items. In the different options, the student has to choose not only if the answer is Yes 
or No, but also the correct argumentation: i.e. the argumentation that is relevant and useful to answer 
correctly the question. For these reasons, all the sentences after Yes and No are true sentences, but in 
only one is there a correct argument. In particular, options A and C (together are chosen by about the 
50% of students) are both referring to the fact that the dimensions of the rectangles are different: these 
may refer to a misconception like "if the sizes are different then the area must be different" quite 
common in primary school. Option D (chosen by 7.4% of the students) is weaker and refers to 
invariance of shapes (right triangles). Using the Toulmin’s model to interpret the item structure, we 
can identify Data (D) (i.e. the representation of two equivalent rectangles made by the same triangles), 
Claim (C) (i.e. the recognition of the equivalence of the figures: “Yes, they have the same area” or 
“No, they don't have the same area”) and Warrants (W) (i.e. the inference rule which allows Data (D) 
to be connected to Claim (C) about the identification of the same area of the rectangles). Therefore, 
focusing on the structure of the four options, the students have to choose the options where they 
recognize both the right answer to the question about the equivalence of the figures area and the right 
justification of it. The second example (Figure 2) deals with a situation framed in a field of experience 
external to mathematics.  

 

Figure 2: Item from SNV 2016, grade 5 (indicating the percentage for each option) (translation by the 
authors) 
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This item requires to understand that the difference in the amount of water contained in equal pitchers 
doesn’t change if we add the same amount of water in each one of them. The students have to 
recognize the correct statement that justifies this invariance. The incorrect options highlight 
misconceptions related to the situation of invariance or difficulties in identifying a condition that is 
necessary, but not sufficient. In this example, the students can identify arguments (Warrants) linked 
also to everyday life experience, or can use forms of reasoning for general principles about adding 
quantities to different initial amounts. The statistical data show that this item has a higher percentage 
of correct answers: we can conjecture that it is because it refers to everyday life experiences. The 
option B focuses on the difference between relative and absolute increase and it was chosen by many 
students (29.1%). In fact, the other options show more general arguments about shape and content of 
the pitchers.  

Using the Toulmin’s model: data (D) is represented by the figure and the text of the question that 
describes the situation. Claim (C) is about the increase of water in the two pitchers after the addition 
of the same quantity of water. Warrant (W) is given by the arguments in support of responses (two 
for answer Yes and two for answer No). Although the mathematical content and context are very 
different from the previous example, we identify the same structure: all the arguments are true, but 
only one is adequate in order to support the correct answer.  

Summarizing, the analysis of the structure of these two items show that all the Warrants are true and 
pertinent (i.e. relating directly) to the mathematical content of the item, but only one is adequate, that 
is useful to support the Claim. 

Discussion 

In this paper we discussed some features of INVALSI items focused on argumentation: multiple-
choice items where the student has to identify the right arguments to support his/her answer 
concerning a given statement. Analyzing this tests, we demonstrate how certain aspects of 
argumentation can be assessed through the use of standardized items. In particular, the ability of the 
students to choose the correct argument to support a statement. We are aware that the analysis of 
other argumentative skills, such as the production of justifications to support a claim, requires analysis 
tools other than the Toulmin’s model, which provides us with information only on the structural 
aspects of the argumentation. By means of two examples, we show some characteristics of 
argumentative items and we use Toulmin’s model as a posteriori interpretative tool to describe and 
interpret the structure of these items. We chose Toulmin’s model as an interpretative tool because it 
allows us to analyze retrospectively the structural aspects of argumentative items focusing on the 
characteristics of the justifications (Warrant), regardless of the mathematical content involved. The 
analysis carried out in this paper wants to show how, even if we chose two items that deal with 
different topics and contexts, we can identify in the structure of the items some similar characteristics: 
i.e. structural characteristics that the use of Toulmin’s model can clearly highlight.  

In the examples presented here all the justifications (Warrants) are true and pertinent, but in INVALSI 
tests we can also find items where all the justifications (Warrants) are true but only one is pertinent 
or items where the incorrect options are false but pertinent. In the latter case, as regards the first 
example (Figure 1), the three incorrect response options could have been as follows: No, because the 
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two figures have different areas; No, because the two figures have a different number of triangles; 
Yes, because the two figures are congruent. The justifications are false, but directly relevant (i.e. 
pertinent) to the context of the question. 

It is clear that, as underlined at the very beginning of the paper, standardized items can evaluate only 
some features of argumentation, as well as the Toulmin’s model can identify only specific types of 
argumentation structures, but this doesn’t mean that a study about these elements cannot give us some 
educational information about the assessment on argumentation and helpful tips for designing other 
kinds of standardized items about argumentation.  As a matter of fact, in the further steps of our study, 
we are investigating if the Toulmin’s model can become a useful a priori tool in order to construct 
items in which the argumentations have different structures: i.e. items with the same structure of those 
presented here; items where it is explicit that the answer is No (or Yes) and the students have to 
choose the only warrant that justifies it; items in which, starting from the data and by a given warrant, 
the students have to choose which statement, among those proposed, is justified by the argument 
(from Warrant to Claim). 

Therefore, in our study the Toulmin's model is being transformed from a posteriori analysis tool that 
sheds light on the passage from Claim to Warrant (I have a Claim and I have to identify which Warrant 
is adequate to justify that Claim) to a tool for constructing argumentative items, that to say to a priori 
analysis tool. 
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This study is part of an ongoing larger project concerning student self-assessment skills in university 
courses. We have developed a method enabling large cohorts of students to assess their own learning 
outcomes and to give their own course grades with the help of an automatic verification system. This 
paper explores the question of accuracy, namely, whether the self-assessed grades correspond to the 
students’ actual skills, and how well the automatic system can pick up issues in the self-assessment.  
Based on an expert’s evaluation of the skills of two students, we conclude that although for large part 
the model works as intended, there are some cases where neither the self-assessment nor the computer 
verification seem to be accurate. 

Keywords: Self-assessment, assessment for learning, digital assessment, accuracy, large classes. 

Introduction 
The ability to judge the quality of one’s own work is one of the core skills that should be developed 
during university studies. Self-assessment has been viewed as a valuable assessment process through 
which student can learn to understand the expectations, criteria and standards used in assessment, and 
further, to be able to regulate own learning and acquire skills for lifelong learning (Falchikov & Boud, 
1989; Kearney, Perkins, & Kennedy-Clark, 2016). However, academic community seem to be 
resistant to change the prevailing assessment practices focusing on testing and grading, and practices 
such as self-assessment are scarcely implemented at course level (Boud et al., 2018; Postareff, 
Virtanen, Katajavuori, & Lindblom-Ylänne, 2012).  

In this paper, we draw attention to assessment practices in university first-year mathematics by 
examining an implementation of student self-assessment processes into large class setting. During 
this process, students frequently evaluated the quality of their learning outcomes, received feedback 
on their performance, and finally decided their own grades according to particular criteria. The 
intended learning outcomes were made transparent through a rubric including both content 
knowledge and generic skills, such as writing mathematics. The digital environment gave opportunity 
for monitoring learning process and giving real-time formative feedback in line with previous 
research on online assessment (Ćukušić, Garača, & Jadrić, 2014; Gigandi, Morrow, & Davis, 2011; 
Ibabe & Jauregizar, 2010), and further, it formed a basis of assessment of the student’s progress.  The 
emphasis of self-assessment was in developing student capability in making evaluative judgements 
(Ajjawi, Tai, Dawson, & Boud, 2018) and building their metacognition skills (Mok, Lung, Cheng, 
Cheung, & Ng, 2006), so that the students’ ability to self-regulate their learning for current and future 
learning would improve. We fill the gap in research by showing how, in the case of summative self-
assessment, the problems aroused by large class setting were resolved by using digital and automatic 
verification and real-time feedback.    
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Self-assessment as a tool for learning 

Self-assessment can be defined as a process during which student evaluate their own achievements 
and judge about their own performance (Falchikov & Boud, 1989). The judgements students make 
are based on information and evidence about their own performance collected from various sources 
(Yan & Brown, 2017). In this paper, we refer to self-assessment as a process in which the students 
evaluate their own progress and performance and give justifications for the result of their evaluation 
according to teacher-given criteria showing intended learning outcomes. 

The use of self-assessment has been shown to improve student engagement and motivation (e.g. 
Andrade & Du, 2007; Mok et. al, 2006), self-efficacy (Kissling & O’Donnell, 2015) and academic 
performance (Ibabe & Jauregizar, 2010), while the ability to self-assess is reportedly intermingled 
with ability to self-regulate own learning (Panadero, Brown, & Strijbos, 2016) and with life-long 
learning skills (Kearney et al., 2016). Consequently, the literature encourages the use of self-
assessment for formative purposes. Research shows that in large class settings digital environments 
with effective formative online assessment can foster a learner-centred focus and engagement in 
learning (Gigandi et al. 2011; Ibabe & Jauregizar, 2010). Recent results show that online self-
assessment can also improve students’ academic success (Ćukušić et al. 2014). However, the debate 
concerning students generating their own grades by self-assessing their own work is more 
complicated and constantly questioned (Boud et al., 2018; Tejeiro et al., 2010). One of the main 
challenges regarding self-assessment for grading is the question of accuracy: How can we be sure 
that students’ grades are valid and reliable? 

The question of accuracy 

Many studies have found high correlations between self- and teacher-ratings (Falchikov & Boud, 
1989; Kearney et al., 2016). The results indicate that students are able to make reasonable accurate 
judgements if they are properly provided with training and background information to the process. 
Also, students vary in their capability to evaluate their performance e.g., high achievers tend to 
underestimate their performance whereas low achievers tend to overestimate it (Boud & Falchikov, 
1989; Boud et al., 2013; Kearney et al., 2016). However, the accuracy of student self-assessments 
can be improved through using criteria and standards (Andrade & Du, 2007), while students need to 
have multiple opportunities for practising self-assessment in relation to given criteria, with feedback 
to help calibrate the judgements (Hosein and Harle, 2018; Kearney et al., 2016). On the other hand, 
Boud, Lawson and Thompson (2013) argue that increase in accurate self-assessment is not 
immediately transferable, because standards and criteria are somewhat domain-specific. Hence, we 
suggest that in order to understand the expectations, criteria, and disciplinary standards of 
mathematics, and to develop capabilities to make accurate and realistic assessments on own learning 
processes and outcomes, it is required that self-assessment processes are implemented in first-year 
university mathematics. However, in large class setting, typical to that learning context, the challenge 
how to give evidence-based feedback for improving the accuracy needs to be resolved. 

The DISA model 
This study is part of a research project centred around an assessment model called DISA (Digital 
Self-assessment). In the model, students assess their own learning outcomes throughout the course 
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by using a detailed rubric articulating the subgoals of the ultimate intended learning outcomes. 
Learning goals and criteria are clearly identified, and through self-assessment activities the students 
are actively engaged with them. Evidence of learning is elicited during the course, and students 
receive feedback for their self-assessment from an automatic digital system. 

The feedback is generated in the following way. Every course task has been linked with the learning 
objectives it is supporting. This enables the automatic system to compute, based on the student’s 
coursework, an index from 0 to 1 for each learning objective. This index estimates how well the 
student has acquired the learning objective. From these indices, the system then computes tentative 
grades in each course topic. These tentative grades are compared to the student’s self-assessed grades, 
and the student is advised either to consider a higher or a lower grade for themselves. 

In addition, self-assessment is used for summative purpose in the end of the course, as the students 
self-assess and justify how well they have achieved the intended learning outcomes, and proceed in 
deciding their own course grade based on the self-assessment. In order to prevent abuse of the self-
assessment process, the system described above is used to verify the validity of the course grades. If 
the self-assessed topic grades differ too much from the computed ones, the student’s final course 
grade is disputed. Earlier results imply that the model supports students in using deep learning 
approach, and encourages them to study for themselves, not for an exam (Nieminen, Rämö, Häsä, & 
Tuohilampi, 2017). 

Aim of the study 
This study aims at gaining a better understanding of the use of self-assessment as an integral part of 
assessment in a large first-year university mathematics course. In the course context, self-assessment 
is used to give students an opportunity to think metacognitively about their learning. We hypothesise 
that student active engagement into self-assessment processes is enhanced if these processes are 
valued in grading, but then, the question of accuracy needs to be resolved. This question is two-fold: 
firstly, we are interested in the validity of the student grades, in other words, whether they reflect true 
learning, both in content knowledge and domain-specific generic skills such as writing mathematics. 
Secondly, we need to examine the reliability of the automatic verification system: can it spot the cases 
where self-assessment is inaccurate? The research questions in this study are: 

1. How do the students’ evaluations of their own skills compare with evaluations performed by 
the automatic verification system? 

2. How does an expert judge the student’s acquired skills in cases where the automatic 
verification disagrees with student’s self-assessment? 

Method 
This study uses data collected from students taking a first year mathematics course at a major 
research-intensive university in Finland. The second author was the lecturer for the course. The course 
was a proof-based linear algebra course dealing with finite-dimensional vector spaces, and it lasted 
for seven weeks (half a term). During the course, students were given weekly problems to solve, part 
of which were assessed and given feedback on. Some of the tasks were assessed by the tutors, some 
by an automatic assessment system called Stack (Sangwin, 2013). Some tasks were also peer-
reviewed. 
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The course was not graded with a final exam, but grading was done by self-assessment using the 
DISA model. The self-assessment was based on a detailed learning objectives matrix prepared by the 
teacher. The learning objectives were divided into 10 topics: six content-specific and four generic 
skills topics, and the students were asked to give themselves a grade from 0–5 in each of these topics, 
0 meaning fail. They were also asked to write down reasons for choosing that grade. In the end of the 
course, students chose their own final grade. They were left to decide by themselves how to combine 
the grades from the different topics. The DISA system was used to verify the final self-assessment. 

It is worth noting that, in the Finnish context, although the teacher is responsible for the course grades, 
these can be awarded by any means the teacher chooses. There is little fear of distorting the grades, 
as the final grade of a first-year mathematics course carries very little weight in the final outcome of 
a student’s study programme. Also, all courses and exams can be usually retaken as many times as 
the student wishes. 

The participants of this study were 158 students who took the linear algebra course described above, 
gave themselves their own grades using the DISA model, and gave consent for using their data. Most 
of the students were majoring in either mathematics, mathematics education or some other field 
related to mathematics such as computer science, physics or chemistry. Most students were first year 
students, but the cohort included also older participants, up to post-doctoral level. 

We narrow our study to two of the ten learning objective topics of the course: (1) “Matrices” (content-
specific) and (2) “Reading and writing mathematics” (generic skill). These two topics were chosen 
since both are among the most central topics of the course and there were relatively many tasks linked 
to them. Also, we wanted to compare self-assessments on a content-specific topic with those on a 
generic skill. Henceforth, these topics are abbreviated as [M] and [RW]. Examples of learning 
objectives pertaining to these topics are given in Table 1. 

Topic Skills corresponding 
to grades 1-2 

Skills corresponding to 
grades 3-4 

Skills corresponding to 
grade 5 

Matrices 
[M] 

I can perform basic 
matrix operations and 
know what zero and 
identity matrices are 

I can check, using the 
definition of an inverse, 
whether two given matrices 
are each other’s inverses 

I can apply matrix 
multiplication and 
properties of matrices in 
modelling practical 
problems 

Reading 
and writing 
[RW] 

I use course's notation 
in my answers 

I write complete, intelligible 
sentences that are readable 
to others 

I can write proofs for claims 
that concern abstract or 
general objects 

Table 1: Part of the learning objectives matrix of the course. In total, there were 10 topics and 10–15 
learning objectives in each topic 

To answer Research question 1, we compared the grades students gave themselves on the two topics 
in the final self-assessment with the results of the automatic verification of that self-assessment. The 
computations were done with R version 3.5.0. For Research question 2, coursework and final self-
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assessment of two students whose self-assessment was poorly in line with the automatic verification 
were chosen for closer inspection. In this manuscript, we call them Student A and Student B. The two 
students’ anonymised answers to all of the written tasks as well as their Stack exercise points were 
analysed by the second author. This author was also the teacher of the course and can be regarded as 
an expert in the subject. When the expert was grading the students, she did not know how the students 
had assessed themselves. The expert read every written solution the student had submitted, and 
evaluated which learning objects in topics [M] and [RW] the student had reached.  

Every time the expert could see the student mastering a learning object, she made a note in the 
learning objectives matrix. After that, there were learning objectives for mastering of which the 
student had not provided any evidence in the written solutions. The expert then looked at the Stack 
exercises that were linked to these learning objectives to see how many points the student had received 
from them. She used the information in determining whether the student had reached the remaining 
learning objectives. When the expert had considered each learning objective, she awarded the student 
a grade in both topics by looking from the learning objectives matrix which grade the reached learning 
objectives corresponded to. In borderline cases, the expert used her expertise as a mathematician and 
teacher of the course. For the topic “Reading and writing mathematics”, the expert could only evaluate 
the student’s skills in writing as there were no tasks that were linked to reading skills. 

Results 
Research question 1: comparison of self-assessed grades with automatic verification 

The distributions of the self-assessed grades in the two topics [M] (Matrices) and [RW] (Reading and 
writing mathematics) are shown in Table 2. We see that the students gave the grades 3 and 4 more 
often for [RW] than for [M], but the top grade 5 was more common in [M] than in [RW]. 

Grade 1 2 3 4 5 

[M] 3 10 25 47 73 

[RW] 2 10 37 58 51 

Table 2: Frequencies of each grade in the two topics 

The computer verification system computed tentative grades for the two topics for each student. The 
distribution of differences between the computed grade and student self-assessed grade are reported 
in Table 3. 

Difference -5 -4 -3 -2 -1 0 1 2 

[M] 1 1 5 20 26 86 19 0 

[RW] 0 2 6 15 20 75 34 6 

Table 3: Frequencies of the differences: computed grade minus self-assessed grade in the two topics 

We see that the computer and student grades agree well. In [M], there are 86 matches, 53 cases in 
which the self-assessed grade was higher than the computed grade (negative difference), and only 19 
cases in which the self-assessed grade was lower (positive difference). In [RW], there are 75 matches, 
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43 cases in which the self-assessed grade was higher, and 40 cases in which the self-assessed grade 
was lower. In both topics, between 81-83 % of self-assessed grades lie within 1 grade point from the 
computed grade. 

Research question 2: Expert opinion in conflicted cases 

Student A’s self-assessed grades were lower than the computed ones. For both topics, the self-
assessed grade was 4 and computed grade 5. The expert’s evaluation agreed with the computed 
grades. The expert observed that Student A had done almost all tasks during the course. Even though 
not all the answers were correct, all the learning objectives in topic [M] were fulfilled. Students were 
asked to make corrections to some tasks, and student A had always resubmitted solutions written in 
good mathematical style. The student’s explanations were concise and readable, and the student was 
able to construct proofs concerning abstract mathematical objects. Based on this, the expert’s grade 
for topic [RW] was 5. 

Student B’s self-assessed grades were greater than the computed ones. For topic [M], the self-assessed 
grade was 5 and the computed grade 3. The expert’s evaluation yielded grade 4, that is, something in 
between. For [RW], the self-assessed grade was 3 and the computed grade 1. The expert’s evaluation 
agreed with the self-assessed one. The expert observed that Student B had submitted only a fraction 
of the course tasks. However, the expert was able to evaluate from the solutions that Student B 
accomplished almost all learning objectives in [M]. Some of Student B’s skills were shown in the 
intermediate steps of tasks that were not directly linked to topic [M]. For example, the student 
determined whether given vectors are linearly independent by forming a system of linear equations 
and calculating the determinant of the coefficient matrix. This showed that the student knew how 
invertibility of matrices is connected to the number of solutions of a system of linear equations even 
though the topic of the task was linear independence. Student B had not corrected any solutions when 
encouraged to. According to the expert, the student reached partially all the learning objectives in 
[RW], but did not fully master any of them, not even the ones corresponding to grade 1. For example, 
the student mixed up equivalence arrows with equality signs, wrote long, confused sentences and 
used “if–then” structures inside a proof in the place of assumptions and conclusions. However, the 
overall structures of the proofs were correct. Based on this, the expert’s interpretation was that the 
student’s grade for [RW] was 3. 

Discussion 
In this study, a new model of determining course grades via self-assessment was examined with a 
focus on the accuracy of the self-assessed grades. The students gave themselves grades in all course 
topics, and these grades were automatically verified by comparing them against the course work the 
students had done. We analysed the results of the verified self-assessment in two topics, one content-
specific topic (matrices) and one subject-related generic skill (reading and writing mathematics). 

The students’ self-assessment agreed well with the automatic verification. Most discrepancies are 
within one grade point, which can be explained by the coarseness of the grading scale: the “real” skill 
level is often between two grade points and must be forced to one or the other direction. The high 
agreement is not surprising, as previous studies have shown that explicit criteria and standards support 
self-assessment, as does frequent practice and feedback (Andrade & Du, 2007; Kearney et al., 2016). 
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It remains to be studied how great an effect the feedback that the students received for their self-
assessment exercises had on their final self-assessment. 

The students gave fairly good grades to themselves in both examined topics. For reading and writing 
mathematics, the grades were more concentrated around the second-best grade, whereas for matrices, 
the top grade was clearly the most common grade. Perhaps it was easier for the students to understand 
the learning objectives as well as recognise their achievements in the mathematical topic, and without 
clear evidence for mastery, they were hesitant to award themselves the best grade in a generic skill. 
Our results could be understood in the view of previous results (Falchikov & Boud, 1989) showing 
that in science courses, self-assessment was more accurate that in other fields.  

We examined more closely two students whose self-examined and computed grades differed. In the 
first case, self-evaluated grades were below the computed ones. The expert’s evaluation agreed with 
the computed grade. The student was a high achiever, and from previous studies we know that such 
students tend to underestimate their performance (Boud et al., 2013; Kearney et al., 2016). In the 
second case, the self-evaluated grades were above the computed ones. The expert’s evaluation was 
between the two for the mathematical topic and agreed with the self-assessed grade for the generic 
skill. In this case, the student had skipped many tasks which made it difficult for the automatic system 
to estimate the grade fairly. Also, the expert noted that the student seemed to have some skills from 
all grade categories in the learning objectives matrix, but not to have fully reached any. This kind of 
case would be very difficult for the automatic verification system to estimate correctly. 

The study used a method in which an expert evaluated students’ skills based on all the work they had 
done on the course, evaluating against the intended learning outcomes, not by grading individual 
tasks. The method suffered from some of the maladies related to teacher evaluation, such as time 
restriction and personal bias. The accuracy of teacher-grading is not an issue to be taken as obvious 
truth (Brown, 1997). One should also note that neither the expert nor the automatic system were able 
to evaluate students’ reading skills even though they were included in the self-assessed grades. 

This study opened a new way to critically examine a self-assessment model as a viable option for 
grading students. We did not find any fundamental problem with reliability. However, at least in one 
of the studied cases, the verification system did not estimate the student’s skills very well. A larger 
sample needs to be studied in order to find out whether such issues are common. Also, we need to 
study students’ written justifications for their grades in order to better understand what is involved 
when the self-assessment process does not go as intended. 
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In this paper, we present a questionnaire that we have designed to establish a picture of secondary 
school teaching assessment practices in mathematics. This research follows a request from the 
Ministry of National Education, to take into account a specific mathematical content (algebra) in the 
analysis of teachers' practices at a large scale (1200 teachers). We begin by presenting our 
theoretical and methodological tools to characterize teacher assessment practices, and then present 
the project and the methodology adopted to link teachers' practices and their students' learning. We 
then give some examples of questions that we have designed for the teachers’ survey, to be 
implemented in the fall of 2018.  

Keywords: Assessment, teachers’ practices, algebra, national surveys, teacher survey. 

General presentation of the project 
The DEPP (Directorate for Evaluation, Prospective and Performance) is responsible for the design, 
management and operation of the statistical information about the education system in France. It 
contributes to the evaluation of policies conducted by the Ministry of National Education. It has 
already developed an expertise about assessment, through national and international surveys on 
education, which focuses mainly on generic teaching conditions and practices, and not on practices 
related to a specific content.  At the same time, the DEPP periodically assesses 5th graders (last year 
of elementary school) and 9th graders (last year of middle school) in the curriculum’s disciplines by 
the CEDRE test (Cycle of Disciplinary Evaluations carried out on a Sample basis).  

The new cycle of student’s assessment which began in June 2018 is the first opportunity to establish 
a picture of teaching practices on a specific mathematical content.  In this context, the goals of the 
PRAESCO 2017-2019 programme (Enquiry on Teaching Practices based on Specific Contents) are 
to make available to policy-makers and the educational community a set of indicators on teaching 
practices in mathematics, and to research the effects of these practises on the students’ learning of 
specific mathematical contents (numbers and calculation for the 5th graders and algebra for the 9th 
graders). The role of the researchers commissioned by the DEPP is to build a questionnaire based 
upon a theoretical framework for identifying variables in mathematics teaching modalities, and to 
bring a scientific and didactic dimension to the analysis of this survey.  In this paper, we focus on the 
design of the survey about teachers’ assessment practices at the 9th grade level.Our theoretical and 
methodological frameworks  

We explain our theoretical framework for the analysis of teachers’ practices and more particularly for 
assessment practices in relation to students' learning in mathematics. We also explain our choice to 
select algebra as the specific mathematical content for the survey.  
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Teachers' practices and students’ learning in mathematics  

Our hypotheses on teaching and learning are based on the adaptation of the Activity Theory for 
didactic (Vandebrouck, 2018): it is mainly through students' mathematical activities that their 
learning takes place, activities caused, in large part, by the tasks they are given to do. The tasks 
therefore have a central place in our analyses, to anticipate possible learning for the students, but also 
to characterize teachers' practices through their choice of tasks for the students and the actual 
implementation of the work around those tasks in class.  

To have a more comprehensive view of teachers' practice, we adopt the theoretical framework of the 
Double Approach (Robert & Rogalski, 2005), taking also into account some determinants of teacher 
practices that are not only related to the targeted students’ learning. We consider the various 
constraints that influence the teaching profession, which leads us to include in our analysis of 
teachers’ practises, institutional, social and personal components of the teaching profession, in 
addition to cognitive and mediative ones. 

In this large panorama of teachers’ professional activities and context, we consider that assessing 
students plays a significant role in the teaching and learning process, as it allows the students’ actual 
mathematical activities to be taken into consideration by the teacher, to build appropriate teaching, in 
the short or long term. This is why our questionnaire includes a section about assessment practices, 
that we will describe below. 

Assessment  

In our previous work (Horoks et al., accepted; Pilet & Horoks, 2017), we have built a framework for 
analysing the assessment practices of secondary school teachers in mathematics, considering the 
specificities of the mathematical content. The various definitions of assessment, found in the literature 
and on which we rely, highlight three dimensions in the act of evaluation: taking information, 
interpreting it and using it for decision-making. We characterise assessment practices, using De 
Ketele's (2010) definition, through everything the teacher does to take information about students' 
mathematical activities (what they do, know, say, write) and how the teachers use this information, 
especially to promote students’ learning. For De Ketele (ibid.), this information must be sufficiently 
relevant, valid and reliable, leading the teacher to examine its degree of adequacy with a set of criteria, 
linked to the teacher’s goals, to make a decision. For Black & Wiliam (1998) also:  

The term ‘assessment’ refers to all those activities undertaken by teachers, and by their students in 
assessing themselves, which provide information to be used as feedback to modify the teaching 
and learning activities in which they are engaged. (Black & Wiliam, 1998, pp.7-8) 

Depending on the function given to assessment by the teacher, this collection and exploitation of 
information can be done in different ways, more or less formal and with greater or lesser effects on 
teachers' subsequent choices for their class. 

For Black & Wiliam (1998), students’ assessment is called formative when the information collected 
by the teacher is used to meet students' needs and when the students can self-evaluate through the 
realization of the tasks that they have been given. Ash & Levitt (2003) argue that formative 
assessment is a joint teacher-student activity, which remains fairly close to what the student already 
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knows how to do. The teacher collects clues about one student's activity in order to analyse this 
activity and plan the next step to help this student evolve. 

Algebra  

In this project, our approach to analyse teachers’ practice, focuses on the mathematical contents to be 
taught, which led us to choose the field of elementary algebra, by consensus among the participants 
of the project, and for several reasons. First of all, because elementary algebra represents an important 
challenge for the future of students’ studies in secondary and higher education, but also because 
teachers often express difficulties in teaching algebra (Kieran, 2007). It is also a choice that allows 
us to build on existing research results in mathematics education about the teaching of algebra. We 
have relied on the work of (Grugeon et al., 2012; Pilet, 2015; Sirejacob, 2017) who, on the basis of 
an epistemological study, have established a reference for a mathematical organization (Chevallard, 
1999) of the teaching of algebra at this school level. The latter provides the types of tasks 
representative of the algebraic domain, which makes it possible to question the coverage of this 
domain by the tasks proposed by teachers, and the pertinence of these tasks (for learning or for 
assessment). This reference also provides information on the levels of reasoning expected from the 
students, and on the properties that can be brought forward by the teacher to institutionalize 
knowledge, validate or invalidate students’ productions.   

Presentation of the methodology  
General protocol 

Our framework to analyse assessment practices has already been used for studies involving fewer 
teachers, but over a longer period (several years). The transition to a larger scale requires a specific 
methodology, that we have been designing with the DEPP during the first year of the project. The 
general protocol is presented in Table 1. This study is based on statistical and didactical analyses 
performed by the researchers.       

Period of time Protocol 
January – September 2018 Design of the questionnaire 
September - November 2018 Selection of teachers for the first version of the questionnaire 
December 2018 Experiment (teacher's first version of the questionnaire and assessment of the 

students' algebraic skills) 
January-February 2019 Analysis of the experimental data and classroom observation for a sample of 50 

teachers, improvement of the questionnaire 
April – May 2019 Selection of teachers for the final version of the questionnaire, with a sample of 

1200 secondary mathematics teachers 
June 2019 Implementation of the final version of the questionnaire 
June 2019 – February 2020 Analysis of the data 

Table 1: General protocol  

In an attempt to overcome the fact that a questionnaire can only give access to declarative practices, 
we chose to complete the analyses by observing some teachers in their classes. For that purpose, the 
first experiment, to be carried out from December 2018, involves only 50 teachers, chosen as a 
representative sample of teachers in France among the 1200 teachers (in terms of experience, teaching 
environment and geographical context) selected for the first version of the questionnaire. These 
teachers will also fill the questionnaire while their students are assessed through a mathematical test. 
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Later on, they will be observed while teaching algebra in their classroom (on the cognitive and 
mediative components of their practises, as defined by the Double Approach (Robert & Rogalski, 
2005) and also asked questions about their work outside of class. This first step is smaller by the 
number of teachers involved, but more demanding for the researchers, because of the observation 
accompanying the questionnaire. It should help us identify whether the questions of the questionnaire 
are reliable and relevant for characterising teachers’ actual practices through their answer to the 
questionnaire and improve the final version of the questionnaire that will be proposed at a larger scale 
in June 2019.  

In the same perspective, we ask the teachers, in the beginning of the questionnaire, to choose one of 
their 9th grade classes, and to answer the questions with this particular class in mind. We believe that 
the identification of a reference class and the choice of a precise mathematical content allow us to get 
as close as possible to the real practices of the teacher. In addition, an assessment of the students in 
the teachers' reference class is conducted (around 30 000 students in total), in order to investigate a 
crucial issue: the impact of practices, and more specifically teacher assessment practices, on their 
students' learning.  

Designing the questionnaire  

To design the questionnaire, we brought together a team of researchers in mathematics education and 
experienced mathematics teachers in secondary education. Regular meetings, some of which were 
held with the members of the DEPP involved in the project, allowed us to agree on the formulations 
for the questions, in order to be able to perform a valid analysis of the teachers’ answers, both from 
a statistical and didactical point of view. The questionnaire was then tested on teachers, whom we 
contacted individually, to ensure that the questions were understood and to have a better idea of the 
time required to complete the questionnaire, which final online version should not exceed 45 minutes 
for the teachers to answer.  

The questionnaire consists of 121 questions (530 sub-questions in total). For statistical analysis 
purposes, the questions are closed-questions with multiple choices, with 4 level - scales (of frequency, 
difficulty, opinion, or adequacy to content or to students). Some of the questions focus specifically 
on algebraic contents, others focus more broadly on practices when teaching mathematics in general. 
To support possible results, we sometimes question the same aspect of practices in several questions 
but with different formulations throughout the questionnaire. 

The questionnaire consists of 4 sections, with questions about: 

· the teaching context and the teacher’s background (experience, training, institutional 
constraints and possibilities, uses of technology for teaching and personal views on teaching 
and learning, especially about algebra) 

· classroom preparation (resources, selection of algebraic tasks, time allotted to specific 
contents and tasks) 

· management of classroom teaching (classroom work arrangements in the different phases of 
a mathematics session, interactions in class) 

· and student's assessment (20 questions, 106 sub-questions, including 31 sub-questions about 
algebra).  
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In this presentation of the 9th grade level survey, we are focusing on teaching practices in elementary 
algebra, and in particular the practices of the teachers to assess their students’ learning on this content. 
We make the hypothesis that assessment can play a rather important part in students’ learning, but of 
course it is not easy to separate these particular practices, and their effects on students, from the rest 
of teachers’ actions. 

Questions about the assessment practices 

In the last section of the questionnaire, we ask questions about teacher’s relationship with assessment 
as way well as the way he or she implements assessment in class. Concerning the teachers’ 
relationship to assessment, we want to characterize in particular the functions given to assessment by 
teachers, including or not a better learning for their students (grade, rank, distribute, sanction, etc. 
Merle, 2015). In terms of teachers’ assessment practices, we have applied the definition of assessment 
- taking information, interpreting it and using it for decision-making - to design this part of the 
questionnaire.  

We want to identify the moments (Chevallard, 1999), where teachers gather information on their 
students’ knowledge (before beginning to teach algebra in their reference class, or at the end of this 
chapter, and throughout the teaching of this subject), and the means used to do so, through formal or 
informal processes (Allal & Mottier-Lopez, 2007) and through which type of algebraic task), made 
more or less obvious for the students by the teachers’ discourse. 

We also try to appreciate the way teachers interpret some information about their students’ possible 
answers to given tasks, by asking them to comment on student’s productions (cf. Figure 1, with a 
question concerning also the decision making based on this interpretation). It might also give us 
access to the teachers’ relationship to algebra, and the role of error in their vision of mathematics 
teaching, as well as their consideration of the students’ procedures rather than their only results. 

Here is the text of a summative assessment task and Guillaume’s production: 

Here is a calculation program: 
Choose a number, Add 7, Multiply the result by 4, Subtract 3 to the last result 
What is the result of this program if at the beginning the chosen number is 6? 
Guillaume’s answer: 6+7=13x4=52-3=49 

When I assess Guillaume’s production, I consider that:  

 I disagree I rather 
disagree  

I rather 
agree 

I 
agree 

The result is correct, and I won’t give Guillaume any feedback on the 
calculation, as he will understand later why it is not correct 

    

The answer is correct, but I will write a comment to explain that it is not 
correctly written mathematically 

    

If a lot of students have written the calculation this way, I will take a 
moment to clarify it with the entire class 

    

The result is false, because the way it is written is not correct     

Figure 1 – Example of a question about the judgment on a student’s production in a summative test 

We also question the teachers about the exploitation they usually do, of the information about their 
students’ knowledge or know-how: if and how they adapt their teaching consequently, for some 
students or the entire class, and with which support on the mathematical contents.  

Thematic Working Group 21

Proceedings of CERME11 4095



 

 

   
 

In fact, several questions about assessment practices appear in other sections of the questionnaire. In 
the first part, about the context and personal information, we ask teachers if they feel the need for 
further training about students’ assessment, among other topics. We also ask them about the possible 
origins for their students’ difficulties in mathematics, and their students’ needs to understand what is 
at stake in algebra, which can be linked to diagnostic assessment. The choice of tasks that they make 
for their reference class, largely questioned in the third part of the questionnaire, focusing on teachers’ 
preparation of the class, can also be compared with the tasks chosen for assessment, to spot possible 
gaps between the two. 

In the questionnaire’s part about the management of the teaching in the classroom there are questions 
about the collective work on students’ productions on a given task, that we link to assessment. Some 
questions in this part also (see Figure 2) focus on students’ error management and ask the teachers to 
position themselves on the levels of mathematical discourse they generally use with their students 
(from almost never to very often). The following proposals (figure 2) participate, more or less, to a 
process of formative assessment. For example, Proposal 4 (figure) doesn’t rely on the mathematical 
properties linked to the preservation of equality, but is referring to the gestures accompanying the 
technique, which we do not believe to be rich enough to help the students understand their mistakes 
and learn from them (Sirejacob, 2017). 

In my class, when solving the equation 8x+5 = 3x+20, a student writes: 
8x-3x=20-5      so 5x=15     so x=10 
 
Here are different proposals for the teacher to address the error made by this student. Give your opinion on each of 
these proposals: 
 
1) The teacher asks the student to recognise the operation between 5 and x, and draws the student’s attention on the 

difference between addition and multiplication. 
2) The teacher asks the student to replace x by 10 to see if 10 is a solution of the equation. 
3) The teacher asks the student to look up in his or her textbook to find the mathematical property to be used here 
4) The teacher asks the student to tell how the 5 can be passed on to the other side of the equation 

Figure 2 – Example of a question about the management of a student’s error in class 

About the particular case of summative assessment, which is the kind of assessment that is the one 
most associated to the act of evaluation by teachers in France (De Ketele, 2010), the questionnaire 
asks about its frequency, duration and formats, with a particular interest for the teachers’ choice of 
tasks for that purpose. This choice reveals a potential link with the algebraic tasks chosen for this 
chapter in the reference class, in terms of domain coverage, pertinence for assessment or learning, 
and also, in terms of complexity and variety among all the possible tasks. The practices for correcting 
these summative assessments are also investigated (through the scoring, the feedback to students) as 
they allow us to better understand the function of these assessments and their potential formative 
dimension (see Figure 3). 
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After a summative test is taken in my class: 

 Almost never Sometimes  Often Very often 
I give the correction in class for every task in the test      
I give the correction in class only for some of the tasks      
I organise a moment for questions after the students have 
consulted their corrected paper 

    

I select some of the students’ answers to be discussed 
collectively in class only for some of the tasks  

    

I return the students’ corrected papers without spending any 
additional time on it  

    

I provide a version with the correct answers to the test     

Figure 3 - Example of a question about the feedback to the students after a summative test 

Analysing the questionnaire  

In order to analyse the teachers’ answers to the questionnaire, computed by the DEPP after the 
implementation of the large-scale survey, and to link them to their students’ results to the test in 
algebra, we rely on hypotheses about the possible impact of assessment practices on students’ 
learning. We suppose that some choices might better promote learning: for example, organising a 
regular feedback for the students, as part of a formal or informal assessment, comparing different 
possible students’ answers and highlighting the algebraic properties at work behind each procedure, 
to explicit and validate or invalidate the students’ work. From these hypotheses, that will be 
challenged by the confrontation of the teachers’ practices to their students’ results, we define several 
teachers’ profiles, including assessment practices in algebra, but also more widely, practices for the 
teaching of mathematics, in a given context. 

This paper is focused today mainly on the design of this survey, as it displays a very ambitious 
methodology, and because we do not have results to show about this study at the moment. But we 
should be able to present already some preliminary findings at the time of the conference, about the 
next steps of the survey. 

Conclusion 
This project presents major challenges, since it is the first requested by the DEPP in France to focus 
on the diversity of teaching practices relating to specific disciplinary content, at a large scale. The 
survey is not a protocol for assessing a teacher's individual performance but aims to appreciate the 
diversity of teaching practices. The simultaneous test addressed to the students along with the 
teachers’ questionnaire, might also allow us to link teaching practices and students’ learning at a large 
scale. 
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The study was conducted to investigate preservice middle school mathematics teachers’ professional 
development in formative assessment practices they plan to implement in classrooms. Basic 
qualitative research method was employed in this study. Incomplete and Improper Lesson Plan Task 
developed by the researchers was implemented to 47 2nd year, 37 3rd year, and 27 4th year preservice 
middle school mathematics teachers. Findings of the study indicated that participants who took 
measurement and assessment course and methods of teaching courses (3rd year and 4th year 
preservice teachers) emphasized integrating formative assessment strategies more than 2nd year 
preservice teachers. None of the participants mentioned to give opportunity to students to assess 
themselves or provide feedback to the students in order to enhance their learning. 3rd year and 4th 
year preservice teachers were also more successful in detecting the improperness of the lesson plan.  

Keywords: Preservice mathematics teachers, formative assessment, professional development. 

Introduction 
Formative assessment is used to collect evidence about students’ current level of understanding a 
concept and their learning progress. Hence, it does not serve for certifying students’ competence 
(Black & Wiliam, 1998). Formative assessment provides information to both students and teachers 
about their performance and instruction (Sadler, 1989). Any assessment is formative if this 
information is used as an evidence to make necessary changes in the teaching ways and strategies to 
meet students’ learning needs and to promote their learning (Black & Wiliam, 1998; Wiliam, 2007). 
Wiliam and Thompson (2008) suggested a formative assessment framework shown in Table 1 
considering peer-teacher-learner interactions and three instructional processes; where the learners 
are in their learning, where they are going and what needs to be done to get them there as underlined 
in Ramaprasad’s (1983) definition of feedback.  

 Where the Learner is Going Where the Learner is Right Now How to Get There 

Teacher Clarifying and sharing 
learning intentions and 
criteria for success  

Engineering effective classroom 
discussions and tasks that elicit 
evidence of learning 

Providing feedback 
that moves learners 
forward 

Peer Understanding and sharing 
learning intentions and 
criteria for success 

Activating students as instructional resources for one 
another 

Learner Understanding learning 
intentions and criteria for 
success 

Activating students as the owners of their own learning 

Table 1: Framework relating strategies of formative assessment to instructional processes (Wiliam & 
Thompson, 2008, p.63) 
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The framework consists of five key strategies and it has one big idea that evidences of students’ 
processes can be used to make adjustments in instruction in line with students’ needs (Wiliam, 2007). 
According to the five key strategies: Teachers need to clarify and share learning intention and success 
criteria with the learners in order to provide them with an understandable picture of the learning 
targets (Wiliam, 2007). In this way, learners can comprehend the meaning of the lesson objectives 
and be aware of what they are supposed to do in order to achieve learning targets. Sharing success 
criteria or rubric with the learners is also crucial with regard to formative assessment because whether 
the learners grasp the success criteria need to be ensured before expecting good performance from 
them (Moss & Brookhart, 2009). Additionally, teachers need to reveal learners’ current level of 
knowledge so that they can adjust their instruction according to students’ needs and plan further 
instructional steps (Black, Harrison, Lee, Marshall, & Wiliam, 2003). Teachers can elicit students’ 
learning by engineering effective classroom discussion through asking qualified questions and 
observing students’ learning progress (Schachte, 2009).  

Feedback has a crucial role in formative assessment especially when it is used to improve learners’ 
performance (Wiliam, 2007). Providing feedback to the students can increase their participation to 
the tasks and facilitate their learning (Black & Wiliam, 1998). Being responsible for their own 
learning improves students’ ability to judge themselves and effectiveness and quality of learning 
(Panadero, Jonsson, & Botella, 2017). Learners’ communications and interactions in the classroom 
activities and lesson content are also essential for formative assessment (Moss & Brookhart, 2009) 
because they improve learners’ motivation, make them cooperative workers (Sadler & Good, 2006) 
and increase their achievement. 

Achieving quality in evidences collected about students’ current level of understanding depends on 
carefully planned formative assessment practices. Based on Tyler’s (1950) linear-relational model of 
instructional planning, teachers are supposed to decide how to evaluate students’ learning and how 
they will make inferences from learning outcomes before instruction begins (as cited in Campbell & 
Evans, 2000). Hence, lesson planning is a significant process in the implementation of qualified 
formative assessment practices.  

Knowing how to plan and implement formative assessment is crucial for teachers and for preservice 
teachers. Hence, teacher education programs need to train preservice teachers to increase their 
awareness of the significance of formative assessment and capabilities of planning and implementing 
formative assessment in their classrooms efficiently. Therefore, how teacher education programs train 
preservice teachers on formative assessment needs to be investigated.  

The current study aimed to investigate preservice middle school mathematics teachers’ (PST) 
professional development in formative assessment they plan to implement in classrooms. More 
specifically, the research question guided to the study was “How does PSTs’ formative assessment 
practices change as they progress in middle grades mathematics teacher education program?” This 
question was sought by exploring PSTs’ performance on a task where they were expected to realize 
the lack of formative assessment practices and suggest practices to improve the task. The nature of 
the mathematical tasks was not the focus of the study. 
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Methodology 
Basic qualitative research method (Merriam, 2009) was employed in this study in order to reveal 
PSTs’ professional development in formative assessment they plan to implement in classrooms. The 
formative assessment framework given in Table 1 guided the researchers in the preparation of the 
data collection instrument and analysis of the participants’ responses. 
Participants and Context of the Study 

Participants of the study were 111 PSTs (47 2nd year, 37 3rd year, and 27 4th year PSTs) enrolled in 
four-year middle grades (grades 5-8) mathematics teacher education program at a public university 
in Turkey. The program offers mathematics and introductory education courses in first two years. 
Instructional principles and methods course is offered in the fall; measurement and assessment course 
is offered in the spring semester of the second year. PSTs take mathematics teaching courses in the 
third year while school experience and practice teaching courses are offered to them in the fourth year 
of the program.  

Instructional principles and method course focuses on how to write observable and measurable 
objectives and prepare a lesson plan which includes beginning, middle, end, and assessment sections. 
Measurement and assessment course focuses on different assessment types including formative 
assessment and the development process of assessment instruments with rubrics based on objectives. 
In methods of teaching courses, PSTs are introduced basic principles of mathematics teaching, 
teaching methods and materials. Every week, they are expected to prepare a lesson plan including 
assessment part related to that week’s topic and discuss these plans in terms of classroom activity and 
lesson flow. There is not specific emphasis on how PSTs plan to carry out assessment part of the plan 
in this course. Within the context of school experience course, PSTs are expected to observe their 
mentor teachers’ instruction. They are required to prepare lesson plans for their teaching practice for 
at least two class hours in practice teaching course and to implement at least one of these plans in the 
practice school. Data of the study were collected in the fall semester which means that 2nd year PSTs 
have not completed measurement and assessment course yet, 3rd year PSTs have only been offered 
one mathematics teaching course and 4th year PSTs have not taken practice teaching course yet. 

Instruments and Data Collection 

Data were collected through a task which consists of an incomplete and improper lesson plan and a 
case where PSTs pretended being in-service mathematics teachers implementing this lesson plan. 
Lesson plan aimed to cover three 6th grade objectives related to equivalent fractions and included a 
group work activity sheet. Fractions concept was chosen since it forms a basis for other content areas 
(Siegler et al., 2012) and PSTs had fractions tasks in all mathematics education courses. The plan was 
incomplete because any wording that imply formative assessment strategy as stated in Table 1 was 
excluded from the lesson plan. It was improper since one of the three lesson objectives was 
immeasurable and unobservable, there was not any activity or question related to one other objective, 
there were inconsistencies between objectives and questions in the assessment part, and there was no 
rubric for the questions in the assessment part. Moreover, the structure of the questions in the 
assessment part was weak since they were true-false questions which were limits gathering feedback 
about students’ learning. Task also included four questions guiding PSTs to suggest formative 
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assessment strategies to strengthen the lesson plan. Expert opinions of three in-service mathematics 
teachers who graduated from the same teacher education program, three teaching assistants who often 
gave feedback to PSTs’ lesson plans and one mathematics education researcher were obtained in 
order to ensure the content related-evidence of validity. They were asked to comment on if the 
questions were qualified to elicit PSTs’ formative assessment strategies they preferred to integrate in 
a lesson plan. Pilot study of the task was also conducted with three recent graduates of the same 
program as they completed the same courses with the targeted PSTs to finalize the data collection 
instrument. The modifications included directing phrases were added to questions related to the 
strength and weakness of the lesson plan in order to keep PSTs in focus. 

During the task implementation, PSTs were expected to realize the incompleteness and improperness 
of the lesson plan, write the strength and weakness of the plan considering the lesson design, 
mathematics content, objectives and assessment part of the lesson plan. They were also asked to 
suggest some ways to improve the plan in line with weaknesses they found. Participants gave written 
answers to the questions; they did not implement the lesson plan in a real classroom environment.  

The task was implemented in the courses taken by 2nd year, 3rd year, and 4th year PSTs. Preservice 
teachers who attended the courses were asked if they would like to participate in the study. The 
researchers explained that their interest was about how PSTs would redesign the given lesson plan 
which they would conduct in a real class setting. Participants of the study completed the task between 
40-60 minutes. Data were analyzed through content analysis. PSTs’ formative assessment practices 
were categorized based on the framework in Table 1. PST’s expressions which implied formative 
assessment were grouped under the five strategies indicated in the formative assessment framework. 
Participants’ comments related to the improperness of the lesson plan were also examined considering 
improperness criteria indicated above. Peer review strategy was utilized in order to ensure the 
categorization.  

Findings 
Incompleteness of the Lesson Plan 

Findings of the study indicated that there was an increase in the emphasis on integrating formative 
assessment strategies in the lesson plan as the students progressed in the program. However, 
participants did not address all formative assessment strategies together in any year level. For 
instance, participants did not mention using the strategy “activating students as the owners of their 
own learning” (self-assessment). Besides, “activating students as instructional resources for one 
another” strategy (peer-assessment) was integrated into the lesson plan by only two 2nd year PSTs 
from the total of 111 participants. This shows that 3rd or 4th year PSTs did not propose to integrate 
self- and peer-assessment strategies in the lesson plan. Participants also did not make any comment 
about the integration of the “providing feedback that move learners forward” strategy to the lesson 
plan.  

A total of 21 PSTs suggested asking questions for “engineering effective classroom discussions”. Six 
percent of the 2nd year (n=3), 22% of the 3rd year (n=8), and 37% of the 4th year (n=10) PSTs 
recommended to include question-answer part in the lesson plan. 2nd and 3rd year PSTs made general 
comments about the necessity to include the questions: “questions that will guide the teacher during 
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the implementation of the lesson plan and students’ possible answers to these questions need to be 
added to the lesson plan” (3rd year PST-3P16). On the other hand, most of the 4th year PSTs specified 
the part of the lesson plan where they would include the questions and explained the reasons why 
they needed to include them. Some 4th year PSTs also exemplified these questions. For instance, one 
of them, 4P27, criticized the lesson plan and improved it as follows: 

First of all, at the beginning of the lesson plan, questions such as “What is the meaning of the 
fraction?”, “What do numerator and denominator mean?” need to be asked in order to activate 
students’ previous knowledge.   

A few participants also emphasized the necessity to include classroom observation to be able to 
“engineer effective classroom discussion” in the lesson plan. Four percent of the 2nd year (n=2), 11% 
of the 3rd year (n=4), and 7% of the 4th year PSTs (n=2) suggested observing students while they were 
studying on the activity in order to elicit their learning. According to them “the teacher could observe 
each student while they were studying on the activity individually. In this way, assessment of 
students’ progress would be easier” (3P26). 

Six percent of the 2nd year (n=3), 11% of the 3rd year (n=4), and 15% of the 4th year PSTs (n=4) 
recommended to include some sentences which may imply the clarification of learning intentions in 
the lesson plan. For instance, one of the 2nd year PSTs, 2P8, suggested to “give more information to 
the students related to the lesson content at the beginning of the activity.” She thought that “giving 
information about the activity would lead to an increase in the number of students who successfully 
finished the activity” (2P8). On the other hand, not any participants gave suggestion to include success 
criteria in the lesson plan for neither the classroom activity nor the questions in the assessment part.  

Improperness of the Lesson Plan 

Findings of the study showed that participants who took measurement and assessment course and 
methods of teaching courses were more successful in detecting that there was not any activity in the 
lesson plan related to one of the lesson objectives. While only 11% of the 2nd year PSTs (n=5) noticed 
this improperness, 32% of the 3rd year (n=12) and 30% of the 4th year (n=8) PSTs underlined this 
improperness and indicated that “students cannot achieve the objective at the end of the lesson” 
(3P20) “since there were not any activity or question in the lesson plan related to it” (3P3). Although 
some PSTs realized that there was an inconsistency between the objectives and lesson content, less 
number of PSTs discerned the inconsistency between objectives and questions in the assessment part 
of the lesson plan in any year level. Six percent of the 2nd year (n=3), 22% of the 3rd year (n=8) and 
15% of the 4th year (n=4) PSTs noticed that questions in the assessment part were not sufficient and 
qualified to understand whether the students achieve the all objectives of the lesson. Another criterion 
for the improperness of the lesson plan, immeasurable and unobservable lesson objective, was 
detected more by 2nd year PSTs. While only one 4th year PST (4%) and three 3rd year PSTs (8%) 
realized this improperness, six 2nd year (13%) PSTs addressed the improperness and emphasized that 
“objectives need to be measureable. In the contrary case, how we can understand that students achieve 
the objectives?” (2P43).  

Almost all participants made comments about the weak structure of the questions in the assessment 
part in all year levels; however, they proposed different reasons. In general, participants criticized the 
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type of the questions, true-false questions, since students have 50% chance to answer the question 
correctly. They also indicated that “asking only this type of question was not sufficient to assess 
students understanding of equivalent fractions” (4P26). Almost half of the 4th year PSTs (44%, n=12) 
suggested to include questions about modeling the fractions in the assessment part of the lesson plan. 
Some PSTs also recommended to ask students explain the reasons for why they gave “true” or “false” 
answer to the questions. For instance, 4P10 explained her reasoning in suggesting these kinds of open 
ended questions in this way: 

Questions asking students draw some models could have been included in the assessment. Or, 
students could have been asked to explain why they preferred to answer the question as “true” or 
“false”. Only in this way, a teacher can elicit students’ misunderstandings or misconceptions.  

Especially 3rd year PSTs underlined the fact that the questions in the assessment part did not assess 
all lesson objectives and they suggested to include question which were designed to assess all lesson 
objectives in the assessment part of the lesson plan (22%, n=8). Only two 2nd year PSTs emphasized 
that the assessment part of the lesson plan needs to be graded. However, none of the participants 
mentioned the necessity to include the rubric for the questions in the assessment part which was one 
of the reasons for the improperness of the given lesson plan. 

Discussion and Conclusion 
Finding of the study revealed that PSTs seemed to make little or no benefit of formative assessment 
strategies which could be utilized to enhance students’ learning process. None of the participants 
preferred to integrate self-assessment strategy into lesson plan and only two 2nd year PSTs mentioned 
the necessity of peer assessment. The reason for not addressing these strategies might be the 
preservice teachers’ thoughts that students were not able to assess their peers’ and their own 
performances objectively (Wiliam, 2007). They might also perceive assessment as only their 
responsibility since they believed that only they would have expertise to assess students’ learning 
(Sadler, 1989). PSTs also did not refer to provide feedback to students. This might be due to the 
nature of the data collection instrument. Since students’ possible responses were not provided to the 
participants, they might not need to give feedback to students in order to enhance their learning.  

Questioning and observing are the most used methods for gathering information about students’ 
progress (Antoniou & James, 2014). Although more 3rd and 4th year PSTs suggested to include 
questions and observation in the lesson plan, the number of participants who took attention to these 
strategies was very limited. This little emphasis on including questions in the lesson plan might be 
due to the fact that PSTs though that they did not need to write questions in the lesson plan since they 
would keep them in their mind. However, when the questions were written before the instruction 
began, teachers could have an opportunity to explore particular strategies for increasing students’ 
attention to the key mathematical concepts (Black et al., 2003). Moreover, the reason more 3rd and 
4th year PSTs suggested to include question in the lesson plan compared to 2nd year PSTs might be 
that they had more experience on the preparation of lesson plan and conducted more discussion of 
classroom activity in the lesson plan and lesson flow. Since 4th year PSTs also had opportunity to 
observe their mentor teachers’ instruction in school assessment course, they might have specified the 
part of the lesson plan where they would include the questions and they explained the reasons why 
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they needed to include them. Moreover, PSTs did not reflect explicitly on making observation while 
students were working on the class activity. Similarly, teachers have been reported to focus mainly 
on the learning product and did not monitor students’ learning processes in their plans (Ruys, Van 
Keer, & Aelterman, 2012).  

Findings of the study also indicated that not many participants were able to detect the improperness 
criteria of the lesson plan in general. Participants who took measurement and assessment course and 
methods of teaching courses were more successful in detecting the inconsistency between both 
objectives and classroom activity, and objectives and questions in the assessment part. However, still 
the number of PSTs who detected this improperness was very low. Although ensuring the consistency 
between objectives-classroom activity and objective-plan’s assessment is one of the basic concerns 
that should be taken into account in lesson planning (Moss & Brookhart, 2009; Ruys, Van Keer, & 
Aelterman, 2012), and necessity of consistency between those has been emphasized especially in 
instructional principles and method, and measurement and assessment course, such limited number 
of participants who emphasized on this feature was unanticipated. Additionally, more 2nd year PSTs 
detected one of the other reasons for the improperness of lesson plan, immeasurable and unobservable 
lesson objective, than 3rd and 4th year PSTs. Since 2nd year PSTs recently have learnt how to write 
lesson objectives in instructional principles and method course, they might have been aware of this 
improperness. This might also show that 3rd and 4th year PSTs have not internalized why the 
objectives were supposed to be measureable and observable through their university education despite 
the strong emphasis on these characteristics. 

Majority of the PTSs (regardless of their year levels) were able to detect the improperness of the 
assessment part resulting from the structure of the questions. Participants mainly proposed that they 
could not know if the students achieved the objectives or not with true-false type questions. Especially 
4th year PSTs proposed to add different types of questions to the assessment part. The reason for 
suggesting to include question in the assessment might be due to their awareness of the requirement 
of the alignment between objectives and the questions in the assessment. Additionally, participants 
did not specify any success criteria or rubric for the assessment part of the lesson plan. The nature of 
the questions in the assessment part might be the reason for omitting the success criteria. PSTs might 
not need to include any rubric for the scoring since the questions were in true-false type. Another 
reason for not including rubric in the lesson plan might be PSTs’ thoughts about the usage of 
assessment. They might have preferred not to score students’ work and use it for formative purposes.  

Although instructional principles and method, and measurement and assessment course provided 
necessary knowledge to the PSTs about formative assessment, PSTs had difficulty in integrating 
intended formative assessment strategies in the given lesson plan. PSTs who took methods of teaching 
courses and school experience course (3rd and 4th year PSTs) were more successful than 2nd year PSTs 
in detecting incompleteness and improperness of the lesson plan. Preparing lesson plan, having 
opportunity to discuss it with their peers in methods of teaching courses and observing mentor 
teachers’ instruction in middle schools in school experience course might help PSTs to see the whole 
picture of the lesson plan in terms of the usage of formative assessment strategies. Also having these 
experiences might provide PSTs to criticize the lesson plan with different perspective. 
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Do non-standardized, publisher-provided tests for lower secondary school provide valid and reliable 
measures of mathematical competence? We analysed a sample of items pooled from tests 
accompanying three different Norwegian textbooks using Rasch analysis. The pooled sample of items 
was found to be sufficiently unidimensional for measuring function competence, with four strands of 
sub-competencies in accordance with theory. The competence associated with an increasing difficulty 
of items could be qualitatively characterised by shifts from a) identifying through constructing to 
reasoning about representations, b) using visual to using algebraic representations, and c) local to 
global interpretations of functions. While the individual tests differed substantially in the distribution 
of items across strands of mathematical competence, minor adjustments to the combined instrument 
were sufficient for providing a valid and reliable measure of mathematical competence. 

Keywords: Competence, assessment, rasch, functions.  

Introduction 
Background 

Teachers rely strongly on written tests when determining final grades for secondary school pupils 
(Brookhard, 1994). In Norway, final grades are to a large degree based on results on non-standardized 
midterm exams and shorter tests provided by textbook publishers (Prøitz & Borgen, 2010). Publisher-
provided tests are composed by experienced textbook authors without explicit reference to a 
theoretical framework for the mathematical competence the tests aim to assess. Because mathematical 
functions are central to the field of mathematics and to the Norwegian secondary school curriculum, 
and because they are typically introduced in the 10th grade, the topic constitutes a relevant and 
convenient source of information about how such tests are composed and what they measure. In this 
study we asked a) how competence in linear functions is operationalised in tests accompanying 
Norwegian mathematics textbooks, and b) to what extent these tests provide valid and reliable 
measures of mathematical competence.  

Theoretical framework for competence in mathematical functions 

As a starting point for describing mathematical competence, we took the widely used Danish KOM 
model, which distinguishes eight partially overlapping mathematical competencies (Niss & Jensen, 
2002). Briefly, these competencies are i) Mathematical thinking, ii) Mathematical problem solving 
and -posing, iii) Mathematical modelling, iv) Mathematical reasoning, v) Handling mathematical 
representations, vi) Handling mathematical symbols and formalisms, vii) Mathematical 
communication, and viii) Using aids and tools.  
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The tests we analysed were dominated by questions concerning transformations of different 
representations of functions, warranting a further characterization of this competency. 
Representations form the foundation of many theoretical frameworks for mathematical competence 
and have been central to describing competence in functions. O’Callaghan (1998) presents a model 
with four main components: 1) Modelling, the transformation from a problem situation to a 
mathematical representation using functions, 2) Interpretation, the transformation from a 
mathematical representation of a function to the description of a problem situation, 3) Translation 
between representations of functions, like symbols, tables, and graphs, 4) Reifying, the creation of a 
mental object from what was initially perceived as a process or procedure, and 5) Procedural skills 
for operating within a representation system. 

Levels of competence 

The present manuscript focuses on the role that textbook tests have in determining students’ final 
grades. These tests are typically administered after each mathematical topic has been covered in class 
and can be considered high stakes in the sense that they collectively make up part of the basis for a 
teacher’s end-of-school assessment. However, these tests often serve formative as well as summative 
purposes. While the summative aspect differentiates students according to their levels of competence, 
qualitative characterizations of each level of competence within a competency can both address issues 
of test validity and be useful in a formative perspective on assessment.  

The perceived difficulty of a question about mathematical functions has been shown to depend on the 
cognitive demand of providing a valid answer to a problem. In particular, interpreting or recognizing 
properties of a given representation or statement is easier than recalling or constructing a solution to 
a problem when a target representation is not given. Explaining why a solution is valid typically 
requires the student to explicate relations between multiple representations and is perceived as more 
difficult than identifying and constructing valid representations (Leinhardt et al., 1990; Nitsch et al., 
2015).  

Representations of functions and transitions between representations can be interpreted from a local 
or global perspective. Whereas local interpretations of a function involve accessing single values of 
the representation, global interpretations involve reasoning about how the function behaves as a 
whole or within certain intervals of the domain. Global interpretations are important for accessing 
more advanced mathematics and are associated with higher levels of mathematical competence 
(Leinhardt et al., 1990; Gagatsis & Shiakalli, 2004; Duval, 2006; Bossé et al., 2011).  

These perspectives on what characterizes different levels of competence served to aid our analysis of 
the test items from the non-standardized textbook tests.  

Methods 
Selection of test items  

Three tests accompanying 10th grade textbooks from three major Norwegian publishers were selected 
as a source of common test items in Norwegian schools. When two or more tests contained very 
similar items, only one item was selected for our instrument. Items that did not address the subject of 
linear functions were excluded from the study. One item was excluded because it could not be 
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faithfully translated into digital form. Items requiring a global interpretation of functions were 
missing from the original tests, and we added two items in order to assess this category of competence. 
After this selection process our pooled test consisted of 31 test items. 

Modification of test items 

After a pilot study, Rasch analysis identified some items as unreliable. In particular, multiple choice 
items did not provide good fits to the Rasch model and were converted into explanation items. One 
original item used specific numbers that produced ambiguous answers, and a new set of more suitable 
numbers was chosen. For a few items, we adjusted the specific numbers used in order to obtain a 
more uniform distribution of item difficulties in the instrument as a whole.  

Categorization of test items 

The test items were categorized according to the theoretical frameworks discussed in the introduction. 
While no items fell into the ‘reification’ category, several items asked about specific concepts. 
Reification was therefore substituted with a separate category for Concepts, and we used the 
following categories for the analysis: Interpretation, Translation, Modelling, Concepts, Coordinates 
and Others. The three first categories were generated directly from the theory of competence for 
functions. Concepts can be considered part of mathematical thinking in the KOM framework (Niss 
& Jensen, 2002, p. 47), and coordinates can be considered a part of “symbols and formalisms” in the 
KOM framework (Niss & Jensen, 2002, p. 58). Items in the “others” category were excluded from 
the study as they were not directly related to competence in linear functions, like items requiring 
competence in nonlinear functions, solving equations, and general competence with digital tools.  

An anticipation of item difficulty was estimated (“easy”, “medium”, or “difficult”) for each item 
based on whether the item required a) identification or interpretation of a given solution, b) 
construction of a valid solution, or c) an explanation for a mathematical statement (Nitsch et al., 2015; 
Leinhardt et al.,1990). The anticipated difficulty was adjusted according to whether the item required 
a) a local or global interpretation of the given function, and b) one or multiple transformations 
between representations of the given function. 

Participants 

A convenience sample of fourteen school classes with a total of 250 tenth grade pupils from 5 out of 
13 secondary schools in the city of Trondheim, Norway, participated in the study. All pupils had 
completed classroom instruction in linear functions between one week and two months before they 
participated in the study. Participation was voluntary, and all answers were anonymous.  

Data collection 

The test items were digitized and answers to the items were collected using a web platform developed 
at the Department of Teacher Education, NTNU. After a 5-minute presentation of the testing tool and 
informed consent, pupils had 55 minutes to complete the test. Test items were presented in 
randomized order. If no answer was given to a test item, the answer was coded as “missing data”.  

Thematic Working Group 21

Proceedings of CERME11 4109



 

 

Analysis 

As most items in the tests asked for a single correct answer, each item was scored either 0 or 1 point 
(dichotomous model). Quantitative data was analysed with the Rasch model (Rasch, 1960) using the 
Winsteps software (Linacre, 2017). In the Rasch model, the probability that person v scores 1 point 
on item 𝜾𝜾 depends on the difference between the ability of person v, 𝜷𝜷v, and the difficulty of item 𝜾𝜾, 𝜹𝜹𝜾𝜾, 
according to  

𝑷𝑷 {𝑿𝑿𝒗𝒗𝜾𝜾 = 𝟏𝟏|𝜷𝜷𝒗𝒗,𝜹𝜹𝜾𝜾} =
𝒆𝒆(𝜷𝜷𝒗𝒗 – 𝜹𝜹𝜾𝜾)

𝟏𝟏 + 𝒆𝒆(𝜷𝜷𝒗𝒗 – 𝜹𝜹𝜾𝜾) 

Winsteps implements the joint maximum likelihood estimation (JMLE) algorithm for estimating the 
parameters of this model, and principal component analysis (PCA) of normalized residuals for 
investigating the dimensionality of the dataset.  

Validity 

Assessment of the validity of the instrument was based on the framework presented in Wolfe and 
Smith (2007) which expands on Messick (1995). Here, we considered the following six aspects of 
validity: i) Content (e.g. relevance, representativeness, and technical quality), ii) substantive (e.g. 
theoretical foundation), iii) structural (e.g. evidence of unidimensionality), iv) generalizability (e.g. 
generalization across sample and context), v) consequential (e.g. fairness and possible biases), and 
vi) interpretability (e.g. the relationship between quantitative measures and qualitative meaning).  

Results 
Classification of item competence 

We collected test items from three publisher-provided tests in functions for Norwegian secondary 
school. The items were classified into five competence categories and assigned an anticipated level 
of difficulty (depending on cognitive demand, number of representational transformations, and local 
vs global perspective on functions). While the combined set of items covered a broad range of 
competence categories, individual tests differed substantially in their emphasis on each competence 
category (Table 1). In particular, tests B and C put opposite emphasis on interpretation, translation 
and concepts, while items from test A were more evenly distributed among the categories. 
 

 Table 1: Number of items in each competence category for each of the tests in the study.  

 
Measurement properties 

In general, the data fit well with the Rasch model, contributing to the instrument’s content validity 
(Wolfe & Smith, 2007). Person reliability, analogous to Cronbach’s alpha, was 0.86. Item infit mnsq 

Test Concept Interpretation Translation Modelling Coordinates Excluded 
A 4 4 5 2 1 5 
B 0 7 1 3 1 3 
C 4 1 6 4 4 5 
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was 1.01 ± 0.18 (mean ± std) and item outfit mnsq was 0.9 ± 0.34 (mean ± std), which means that the 
variance in pupils’ responses to single items generally fit well with the Rasch model (infit mnsq = 
outfit mnsq = 1). 

The item difficulties ranged from −4.9 to 3.3 logits, but the 
distribution of items was uneven with 28 out of 31 items between 
−1.7 and 2.6 logits (Figure 1, red boxplot). This contrasted with 
the distribution of pupil achievement level: only about half (52%) 
of the pupils achieved within this range of item difficulties, and 
almost 75% of pupils achieved below the mean item difficulty 
(Figure 1, blue boxplot). The low attainment might be related to 
the time of testing and the perceived distance to final exams.  

Only two items were positioned to discriminate achievement 
levels below the −1.7 logit mark where 42% of pupils were 
measured. These items might be considered at the entry level to 
competence with functions, and as a tool for summative 
assessment the instrument distinguishes well between pupils 
above that competence level. However, the large gaps between 
easy items, producing an abundance of low test scores, leaves a 
large proportion of students without feedback about their 
competence level beyond an unintended subtext of failure. From 
the view of formative assessment, the scarcity of easy items 
detracts from the instrument’s content and consequential validity 
(Wolfe & Smith, 2007). 

Item difficulty was largely invariant to the pupils’ achievement 
level, as determined by comparing the difficulty level of each 
item between the highest achieving and lowest achieving pupils. 
Pupil achievement level affected the difficulty of only 2 out of 

the 31 items (at the p = 0.0016 level; Bonferroni corrected for multiple comparisons from p = 0.05), 
contributing the instrument’s generalizability validity (Wolfe & Smith, 2007). The first of these items 
favoured high-achieving pupils and was the only item involving a function with negative slope. The 
second item favoured low-achieving students by unintentionally allowing the zooming in on a graph 
to read off the solution directly rather than reasoning about it.  

Empirical categories of competence 

The competence categories were taken from theoretical frameworks for competence with functions. 
To investigate if these categories could be identified in the empirical data, we conducted a PCA on 
standardized residuals of the data (Linacre, 2017). PCA identified two contrasts with potential 
subdimensions. The first contrast (eigenvalue = 2.4) clearly separated Interpretation items (the six 
items with the highest positive loading) from Translation items (the six items with the highest 
negative loading). In addition, all 13 items in the cluster with negative loading included symbolic 
expressions. The second contrast (eigenvalue = 1.9) separated the full set of five Concept items 

Figure 1. Competence level of 
pupils (blue boxplot) and item 
difficulty (red boxplot) on the same 
logit scale. Boxplots indicate 10th, 
25th, 50th, 75th and 90th percentiles.  
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together with the single coordinate item from the main dimension of the instrument. The Modelling 
items did not deviate from the main dimension defining competence levels for linear functions.   

While 49% of the variance in the data could be explained by the measures, the additional variance 
explained by the four clusters combined was around 7%, which can be usefully considered sub-
dimensions of the main variable. Taken together, the instrument can be considered unidimensional 
for measuring competence in linear functions, which adds to its structural validity. At the same time, 
the dimensionality analysis lends empirical support to the notion that competence in linear functions 
is composed of four strands, each dominated by one of the four main competence categories Concept, 
Interpretation, Translation, and Modelling. This correspondence between empirical clusters and 
theoretical foundation speaks to the instrument’s substantive validity.  

Empirical levels of competence 

What is the qualitative meaning of the quantitative measure along the competence scale?  

First, the distribution of item difficulty did not differ significantly between competence categories, 
either in variance (p = 0.15; Levene’s test) or mean difficulty (p = 0.13; one-way ANOVA; Figure 
2). However, the two most difficult items in the Interpretation category were added to the original 
items because a global perspective of functions was missing from the original tests. Without these 
two items, the mean difficulty of Interpretation items was significantly lower than for items in the 
other categories (p = 0.01; one-way ANOVA). 

Two items in the Interpretation category stood out as easier than other items. These items asked pupils 
to read off a value in a coordinate system and count the number of constant parts of a graph. Arguably, 
both items could be classified as prerequisite for, rather than part of, graphical representations of 
functions. At the same time, the competence of as much as 40% of the students were estimated to be 
within this prerequisite level of function competence, challenging the validity of the test as a 
formative tool. Beyond the fact that both students and teachers are deprived of the positive effects of 
feedback for learning, close-to-zero test scores counteract a fair assessment of competence and are 
potentially harmful to students’ motivation for learning (e.g. Schinske & Tanner, 2014). To fulfil its 
role as a formative tool and guide low-attaining students towards proficiency with functions, the test 
set should be supplemented with items about prerequisite competencies for functions.  

Second, the predicted item difficulty fit well with the empirically estimated item difficulties (different 
colours in Figure 2). Three exceptions were of interest. These three items were measured to be more 
difficult than anticipated from theory and shared a pattern in the kinds of mistakes pupils made in 
answering them: The second and third most difficult Concept items (see Figure 2) asked pupils to 
identify the slope of a function expression. Most pupils either a) mistook the constant term for the 
slope, or b) included the variable with the slope in their answers (𝑥𝑥

4
 and 3𝑥𝑥). These very common 

mistakes resulted in higher-than anticipated measures for these two items. The unexpectedly high 
estimate of the coordinate system item was also due to a widespread mistake. The item asked pupils 
to plot a line between two given points, and a surprisingly large proportion of pupils interpreted the 
two coordinates as four points in the coordinate system instead of two. 
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Third, 8 out of the 9 items with 
difficulty less than -1 logit did not 
concern symbolic expressions. 
The one item that did was the 
easiest Modelling item, and asked 
pupils to form an equation rather 
than a function from a written 
context. The item could be solved 
using an additive strategy without 
noticing a functional relationship 
between two variables. -1 logit 
seems to mark a threshold above 
which competence with the 
algebraic symbol system for 
functions is required. 58% of the 
pupils in this study scored below 
the level requiring competence 
with symbolic expressions for 
functions.   

The qualitative stratification of 
items along the difficulty scale 

gives the instrument interpretability validity (Wolfe & Smith, 2007). The stratification is also useful 
for formative assessment, but only for pupils that have acquired a minimum level of competence with 
functions.  

Conclusions 
We have presented an analysis of a test pooled from three publisher-provided tests of competence in 
linear functions. The analysis shows that, with minor modifications to some test items, the test set as 
a whole is a reliable and valid measurement instrument that can be considered one-dimensional for 
its intended purpose yet consists of empirically identifiable strands of competence that correspond 
closely to the theoretical framework for mathematical competence outlined in the introduction.  

The study suggests that if items are sampled in a balanced manner across both different 
subdimensions and difficulty levels according to the theoretical framework, calibrated standardized 
tests might not be necessary to obtain reliable and valid summative assessment of mathematical 
competence on small scale tests for secondary school. However, adding items on topics prerequisite 
to competence with functions would strengthen the instrument’s value as a formative tool. 

Acknowledgements 
These results were previously presented in Norwegian in the Master thesis of Morten R. Klegseth.  

Figure 2: Item difficulty plotted by competence category on x-axis 
and coloured by anticipated difficulty. Green: easy item, blue: 
intermediate item, red: difficult item. 
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Introduction 
Large scale assessment in education often aims at measuring proficiency in subject areas, thus 
considering latent variables that are not directly observable but defined through a theoretical 
framework and operationalized through standardized tests. For each subject area, a numerical test 
score (proficiency score) is typically computed in order to locate the students on the variable 
continuum (learning metrics or proficiency scale) defined by the test items, i.e. the proficiency score 
quantifies how much of the measured variable (for example mathematics ability) is present (Turner, 
2014). Reporting test results only in terms of numerical test score, however, does not provide 
substantial information on what students typically know and can do. A substantial description of the 
location along the proficiency scale is needed in order to support practitioners in interpreting test 
results and in order to convert them into effective teaching practices (van der Linden, 2017).   

In the last years a growing number of national (e.g., National Assessment of Educational Progress, 
MEETS NAEP GUIDELINES) and international (Program for International Student Assessment, 
PISA; Trends in International Mathematics and Science Study, TIMSS; Progress in International 
Reading Literacy Study, PIRLS) testing programs has been developing descriptive proficiency scales, 
in order to report test results not only as proficiency scores but also in terms of described proficiency 
levels. The goal is to illustrate what the scores represent in terms of students’ skills, understanding 
and competencies (van der Linden, 2017). This goal has been recently pursued by the Italian National 
Institute for evaluation of the education and training system (INVALSI), that yearly carries out 
standardized tests to assess students’ achievement in mathematics and reading (i.e. reading 
comprehension and grammatical knowledge), and to evaluate the overall quality of the educational 
offering of schools and vocational training institutes. 

INVALSI experience 

INVALSI returns data as descriptive proficiency levels for reading (reading comprehension and 
grammatical knowledge) and mathematics, for the first time in the school year 2017-2018. Basing on 
the INVALSI Reference Framework, and coherently with the National Guidelines for the Curriculum’ 
s goals (MIUR 2012), proficiency scales have been developed through an extensive Rasch item bank, 
administered by computer based tests (CBT) (https://invalsi-
areaprove.cineca.it/docs/2018/INVALSI_tests_according_to_INVALSI.pdf). Five proficiency levels 
have been identified considering the distribution on the same scale of both the items’ difficulty and 
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the students’ ability (Desimoni, 2018). The five levels have been described basing upon the items’ 
content. The consistency between the item ordering basing on the psychometric data and the item 
ordering predicted from theory represents a fundamental aspect for the scale validity, an issue widely 
investigated during the scale construction.  

The present contribution will investigate the psychometric and qualitative-educational properties of 
a pool of sample items (Garuti et al., 2017), from the INVALSI Item Bank, in order to better 
investigate this aspect: which are the item properties highlighted from the concurrent psychometric 
and qualitative teaching analyses? Beyond an overview of the development of the mathematics’ 
described proficiency scale, the study will focus on five items, of an increasing level of difficulty 
(scaled from 1 to 5), and referring to same content (Numbers) and to the same learning goal 
(Operation between numbers and numbers ordering), in order to identify the typical item 
characteristics determining its placement within a level. Specifically, which are the cognitive 
obstacles that students need to overcome to pass, for instance, from level 3, “link and integrate 
multiple fundamental pieces of knowledge concerned with processing, ordering between rational 
numbers and representations of mathematical objects” to level 4, “integrate and make connections 
between basic pieces of knowledge where the relationships are provided implicitly or derived from a 
representation”. 

From a practical perspective, we found interesting results, that might be supportive to the 
development of new items for the INVALSI Item Bank. Finally, we also discuss potential 
implications of our results in the teaching process. 
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Background to the Study 
In Ireland, all students sit a summative state examination known formally as the Leaving Certificate 
(LC) at the end of Senior Cycle (upper secondary level). The LC acts as a gatekeeper to tertiary level 
education with students awarded points based on their six best graded subjects. Different points are 
also awarded pending the level of which the subject was studied. For example, the majority of subjects 
have two levels. The most challenging level is Higher Level (HL - often referred to as Honours) and 
the next level down is Ordinary Level (OL - often referred to as Pass). Since 2012 mathematics has 
been assigned a special status within the Irish post-primary school curriculum with the introduction 
of a Bonus Points initiative (BPI). Students are now awarded an extra 25 points in their LC 
examination results if they achieve a passing grade at HL. The awarding of these extra points was 
introduced to encourage students to study mathematics at HL. Such incentive schemes for studying 
mathematics and improving student performance in the subject are not a new phenomenon. Similar 
schemes exist in Australia and Israel (Treacy, 2018).  

In Ireland while the numbers opting for HL mathematics have nearly doubled since the introduction 
of the BPI, anecdotally there have been many mixed reviews. Hence, while there have been calls in 
some quarters to extend this initiative to other subjects, it is important that the impact of the BPI on 
the study and assessment of mathematics is first appraised. This paper investigates the advantages 
and disadvantages associated with the BPI from the perspective of mathematics teachers (n=266) and 
aims to address the following research question: What are mathematics teachers’ perceptions of the 
Bonus Points Initiative as an incentive in state examinations? 

Methodology 
The methodology of this study involved the distribution of a questionnaire to a representative sample 
of HL mathematics teachers in Irish post-primary schools (n = 723). The instrument was designed 
specifically for this study and was developed by the authors with the assistance of an advisory group 
involving five experienced post-primary mathematics teachers. It comprised of four main sections. 
Section 4, which is the focus of this submission, inquired of teachers’ perceptions of the BPI through 
a series of multiple choice and open-ended questions. The finalized questionnaires were distributed 
(two to a stratified sample of 400 post-primary schools) in early April 2018. The response rate was 
266 second level teachers (approx. 33%). The open-ended questionnaire data was analysed 
thematically in two stages. Firstly, the first coder coded the two sets of data (perceived advantages 
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and disadvantages) himself two weeks apart, and the intra-coder agreement percentages were equally 
high (> 90%). The second coder subsequently coded around a third of each dataset and once again 
the inter-coder agreement percentages were > 90% for the perceived advantages and disadvantages, 
highlighting that the coding frameworks that we developed for this study’s analysis were reliable.  

Findings and Discussion 
Findings from both the qualitative and quantitative data in this study indicate that teachers hold many 
mixed opinions regarding the BPI. While 46% of respondents indicated that they agree with the BPI, 
the rest were either not sure or did not agree. The main advantage of the initiative was that it increased 
uptake and perseverance of mathematics at HL. However, while the numbers taking HL may have 
increased, respondents noted some concerns about the standard of students now persisting at HL. A 
greater proportion of students that would have typically attempted the OL examination, were it not 
for the BPI, were now attempting the HL examination and thus there was an increase in those 
achieving low grades (SEC 2015). There were also fears that the LC HL mathematics examination 
would be ‘dumbed down’ to cater for the surge in students now taking it. It was feared that “Students 
of a stronger mathematics ability may not be extended to the same degree”.  

However, while these concerns are real, there were also many advantages of the BPI which were 
noted by the participating teachers. The second most cited benefit was that it rewarded students for 
the time and effort required for the course. Concern has long been expressed at the workload and 
timeframe of the LC HL mathematics curriculum in Ireland (Cosgrove et al., 2013). In addition to the 
workload and timeframe, a study carried out by Smyth, Banks, and Calvert (2011) found that 
mathematics is considered to be among the top five most difficult LC subjects. Thus the BPI rewards 
students for their exertions and supports the view that mathematics is not ‘just another subject’ 
(McDonagh & Quinlan, 2012). 

However, the findings of this study indicate that while there are clear advantages to the special status 
that the BPI has given mathematics within the Irish post-primary school curriculum, there was also a 
number of interlinking disadvantages which must be considered if such incentive schemes are to be 
maintained, and indeed expanded. 
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Introduction 
Iran has a centralized education system, with national textbooks that are used for every school subject, 
including mathematics. In this education system, the assessment regulation and educational policy 
determine what type of student assessment teachers carry out. The latest version of this assessment 
regulation in primary school is called Descriptive Assessment. This is an approach for evaluating 
students’ achievement by collecting and documenting evidence regarding their learning and 
performance. Teachers can collect this evidence through different methods including observations of 
students during the classes, interviews, students’ portfolios, performance tasks, and various kinds of 
tests (Ministry of Education [MoE] & Organization for Educational Research and Planning [OERP], 
2011; Supreme Council for Education [SCE], 2009). In this poster, we investigate the research 
question: To what degree have the suggested assessment methods from the Descriptive Assessment 
regulations been implemented in the classroom practice of Iranian primary mathematics teachers? 

Method 
For this we performed a multiple case study of which we present the first results at CERME11. We 
provide data on the assessment practice of seven Grade 4 female mathematics teachers (age M=46, 
[min, max] = [38, 54]) in Tehran. These teachers were first contacted by telephone and agreed to 
participate in this research. The data we used for this case study originated from four sources:  

1. The teachers responded to an Iranian version of a questionnaire on teachers’ assessment 
practice in mathematics education (Veldhuis, Van den Heuvel-Panhuizen, Vermeulen, & 
Eggen, 2013).  
2. We interviewed the teachers individually by asking them to explain answers they provided 
in the questionnaire and to discuss their lesson plan for the lesson that would be observed.  
3. The ensuing lesson on the development of first notions of probability was observed and 
videotaped.  
4. We conducted a post-observation interview in which the teachers were asked to reflect on 
their taught lesson.  

In the analyses of these data, we focused on the teachers’ use of assessment methods and compared 
that to their prescribed use in the regulations on Descriptive Assessment. In two important documents, 
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the Teacher’s Guidance for Descriptive Assessment (MoE & OERP, 2011) and the Academic 
Assessment Regulation for Primary School (SCE, 2009), a variety of assessment methods is 
suggested such as, observing students in class, asking questions in class, administrating written test, 
having individual assessment conversation, offering performance tasks and having students working 
on project. As described in the guidelines, performance tasks are an instrument for measuring 
students’ activity and attempts in practical and observable situations. Performance tasks focus on both 
students’ knowledge and skills. Asking students to write a mathematics problem and its solution is 
an example of a performance task. 

Result and conclusion 
Currently, the data of our study have not yet been fully analyzed, therefore in this poster proposal, 
we only include a description of one assessment method (see Table 1, teachers’ use of performance 
tasks). In the table, the information from the four data sources are combined to show whether teachers 
reported or showed that they use a particular type of performance task for a particular purpose and 
with which frequency.  

Table 1: Teachers’ practices and beliefs about using performance tasks 

Performance task T.1 T.2 T.3 T.4 T.5 T.6 T.7 

Type Designing something ü  ü ü ü   

Using a tool ü ü ü   ü ü 

Giving a presentation ü ü  ü ü  ü 

Writing a text   ü ü ü ü  

Participating in a project        

Purpose To improve students’ learning skill  ü ü ü     

To motivate students  ü      ü 

To involve students in the teaching process  ü  ü    

To make teaching efficient      ü  

Frequency More frequently than monthly     ü  ü 

We expect to have finalized our analyses before CERME11. So, at the conference we can present the 
results in full detail and answer the research question.  
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In this paper I report development of an automatically marked online version of a current paper-
based examination for a university mathematics course, and the extent to which the outcomes are 
equivalent to a paper-based exam.  An online examination was implemented using the STACK online 
assessment tool which is built using computer algebra, and in which students' answers are normally 
typed expressions. The study group was 376 undergraduates taking a year 1 Introduction to Linear 
Algebra course. The results of this experiment are cautiously optimistic: a significant proportion of 
current examination questions can be automatically assessed, and the quantitative outcomes are 
moderately correlated with the paper examination. 
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Introduction 
To what extent can we produce an automatically marked version of a paper-based examination for 
methods-based university mathematics courses using contemporary technology? To what extent are 
the outcomes of this exam equivalent to the outcomes of a paper-based exam? In this paper I report a 
pilot to develop, use, and evaluate an online examination for a university linear algebra course. 

My work is based upon the epistemological position that to successfully automate a process it is 
necessary to understand it profoundly. It follows that automation of a process necessitates the 
development of a certain kind of understanding and we learn a lot about the underlying process 
through automation. Assessment provides students with challenge, interest and motivation: 
assessment is a key driver of students' activity in education. To many students mathematics is defined 
in a large part by what we expect students to do in examinations, (Burkhardt, 1987). 

The STACK online assessment tool (Sangwin, 2013) is built using computer algebra and students' 
interactions move significantly beyond multiple choice questions with their well-known difficulties 
for mathematics, see (Sangwin & Jones, 2017). In particular STACK uses the computer algebra 
system Maxima to generate random questions; interpret students' typed algebraic expressions; 
establish objective mathematical properties of students' answers; and assign outcomes such as 
feedback and marks.  Online automatic assessment has for many years been used widely in formative 
settings, see (Sangwin, 2013). Developing high-stakes final examinations is a natural extension of 
automation of formative assessment. Automation also has practical benefits, such as reducing the 
marking load, better test reliability, and potentially speeding up examination process. However, 
changing written examinations, with centuries of custom and practice, is a high-stakes and high-risk 
undertaking. When I examined school-level examinations (Sangwin & Kocher, 2016) the results were 
cautiously optimistic: a significant proportion of current questions could be automatically assessed. 
In this paper I extend this work and create online examination questions and trial their use with a 
large group of university students. 
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Methodology 
Changing examination processes is both high-stakes and high-risk.  Furthermore, there are serious 
ethical problems with running an experiment in these circumstances without serious and authentic 
trial exams.  Hence, for this study I added a mock online examination to an existing course: 
Introduction to Linear Algebra (ILA). This is a year 1, semester 1, mathematics course worth 20 
credits taken by mathematics, computer science and other undergraduate students. Students normally 
take 120 credits per year, in two semesters. The course is defined by (Poole, 2011) Chapters 1 to 
Chapter 6.2, with a selection of the applications included and selected topics omitted. ILA had over 
600 students, of whom 578 took the final written examination and had a non-zero examination mark. 

Students had requested exam practice, but it was impractical to administer and mark students' attempts 
in the short period between the end of teaching and the scheduled examination. Students would have 
expected more detailed formative feedback than provided by the genuine exam, and the genuine exam 
takes approximately 35 person-days to mark.  In context, a mock examination was likely to be taken 
seriously by a significant proportion of the student cohort as a valuable practice and learning 
opportunity. Since the mock examination did not contribute to the overall course grade there was no 
incentive for students to cheat, or to be impersonated. Introduction to Linear Algebra, has an “open 
book” examination and so possible access to materials is less of a threat to this experiment than would 
be the case for a closed-book examination. The lack of certainty over who was sitting the online tests, 
the circumstances of participation, and the potential use of internet resources is certainly a 
compromise. Such uncertainty does not affect the extent to which I could produce questions at a 
technical level, or the effectiveness of the scoring mechanism in the face of students' attempts, which 
themselves constitute important results and generate key points for discussion.  The results consist of 
a report on the extent to which current questions can be faithfully automated, and I give a report on 
students' attempts. 

Results 
The existing paper-based ILA examination takes 180 minutes and consists of Section A: compulsory 
questions worth 40 marks, and Section B: four questions each of 20 marks from which we take the 
student's best three marks. Students may use any standard scientific calculator but graphical 
calculators with matrix functions are not permitted. 

The primary teaching goal was to provide students with an online examination which was as close as 
possible to the forthcoming paper-based summative course examination. The research goals were to 
evaluate the effectiveness of this, and to provide evidence for a discussion of equivalence with the 
genuine examination.  ILA has been running for many years, with a stable (but not invariant) syllabus, 
and I had access to examinations going back to December 2011 (two per year: the main exam and an 
equivalent resit paper). I therefore decided to remove the oldest exam papers from easy access through 
the course website and base the online examination on those questions. Using as few papers as 
possible helps provide a representative online examination. Technically it is difficult to operate a 
“best 3 out of 4”' mark scheme in the STACK online system and in any case for a formative mock 
exam this makes little sense. 
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In deciding how to allocate marks I have taken a very strict interpretation. Specifically, where the 
original intention of the examiners included “with justification”, I only awarded those marks which 
could be given for the answer only online. For example, Q5 on our online exam asked the following. 

5. Is it possible for A and B to be 3*3 rank 2 matrices with AB = 0?  True/False. 

The original paper awarded 7 marks for the answer and justification, whereas only one mark was 
awarded for the correct answer.  I did ask students to provide typed free-text justifications even though 
these would not be marked and no automatic feedback was provided. Ultimately I used two papers 
(120 marks each) to create the online exam.  In this 59 marks of the online exam were from Dec-11 
and 50 marks from Aug-12. I took one question from Dec-13 to add a mark to Section A to make the 
online exam total 110 marks.  

Of the paper-based questions selected for the online exam, 44 marks are not awarded online. These 
missing marks are for justification which cannot, at this time, be automatically assessed. This resulted 
in Section A having fewer marks than would be the case with a paper based submission. Of the 240 
marks available on the Dec-11 and Aug-12 papers, 109/240 marks 45% were automated in a way 
faithful to the original examinations. I think this is a remarkably high proportion, and discuss this in 
more detail below.  However, the online versions as implemented for this study do lack some partial 
credit and do not (in this experiment) implement follow on-marking, which in some Section B 
questions is substantial. This is not a limitation of the system itself, but rather in the time available to 
implement more elaborate automatic marking schemes. 

 
Figure 1: Question 19d of the current study in STACK 

Note that STACK requires students to type in an algebraic expression as their answer, and an example 
question is shown in figure 1.  For ILA, online course work quizzes were already implemented using 
STACK. All students were expected to sit 30 online quizzes using the STACK system as part of the 
ILA course before the mock examination, and would be thoroughly familiar with how to enter 
answers into the system.  The online examination was made available to students to do in their own 
time for a period of one week in December 2017, between the end of formal teaching and the 
scheduled paper-based exam. Students could choose when to sit the online examination, but were 
given one attempt of 180 minutes to do so to simulate examination practice. All data was downloaded 
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from the online STACK system, and after ratification by the exam board, combined with overall 
achievement data.  Students were assigned a unique number to ensure anonymity, and the data loaded 
into R-studio for analysis.  

There were 395 attempts at the mock online exam in December 2017. One student who was granted 
a second attempt for technical reasons had their first attempt disregarded, giving 394 attempts. There 
were no other significant technical problems affecting the conduct of the online examination. For the 
online exam (including those who scored zero) the mean grade was 47.9% with standard deviation of 
23.2%. The coefficient of internal consistency (Cronbach Alpha) for the online exam was 0.87. There 
was a moderate positive correlation between time taken (M=132 mins, SD=48.6 mins) and the online 
exam result (M=47.9%, SD=23.2) r(392)=0.517, p<10-16, as might be expected.  Despite a small 
number of outlier questions, the mock online exam appears to have operated successfully in its own 
right as a test. 

The final mark for ILA is made up of coursework (20%) and a final paper-based exam (80%). There 
were 394 attempts at the online mock examination, and all but one of these students also sat the paper-
based examination.  Note that 17 students scored 0 for the online exam, perhaps indicating students 
who looked at the online questions but made no serious attempt at them. Technically there is a 
difference between students who never sat the online exam, and those who opened the exam and 
scored 0. For the analysis I excluded the 17 students who scored 0 in the online exam: this leaves the 
study group of N=376 students with paper and mock exam information. 

For the study group, the online exam results had (M=50.2, SD=21.3) and paper exam (M=68.0, 
SD=17.3).  For all students who sat the ILA paper exam (M=63.1, SD=21.6).  Histograms of 
achievement are shown in figure 2. The “online exam” refers to scores on the online mock.  The 
“study group paper” is the achievement of the study group on the genuine paper examination. “Paper 
examination” refers to the whole cohort of ILA in the genuine paper exam.  There is a significantly 
larger failure rate (score less than 40%) in the online examination, and a significantly lower mean. 
These differences could be explained by the level of engagement: the online exam carried no credit, 
and students may have lost motivation when tired. 

 

  

 

 

 

 

 

Figure 2: Histograms of achievement in the online mock and paper based examinations 

Thematic Working Group 21

Proceedings of CERME11 4124



 

 

A scatter plot of the online mock exam grades vs paper exam grades is shown in figure 3, together 
with a linear regression model. The blue dashed line shows the (ideal) linear relationship in which 
the online mock examination has identical outcomes with the paper-based exam. The mock exam 
grades and paper exam grades were moderately correlated, r(374)=0.593, p<10-15. Notice the online 
exam scores are clearly below those of the paper exam, supporting the hypothesis that students may 
have lost motivation when tired and not performed to their full potential in the online mock exam. 
Indeed, students scoring less than 40% in the online exam and more that 70% in the genuine exam 
are very likely not to have taken the online test seriously, perhaps confident (with good reason) about 
their ability.  

 

 

 

 

 

 

 

 

 

 

Figure 3: Online mock exam grades vs paper exam grades for the study group 

The number of non-empty free text responses to each of the “justify” questions is worthy of mention 
here. While no planned evaluation of the responses was part of this study, it is clear reading through 
the free-text responses that over 200 students took the exercise seriously, providing sensible (and 
often correct) justifications in good English. For the Section A questions included in this study there 
were 59 marks available in the paper format, whereas in the online exam only 24 marks were awarded. 
I did not expect students to make serious use of the free-text entry. The fact students entered sensible 
justification to many of these questions, and received no marks or feedback, could easily account for 
the difference in mean scores between the paper-based and online exam. There were a large number 
of empty responses (as there are on paper as well), together with some incoherent utterances, and 
some plaintive messages. I did not assess these free-text responses, or subject them to comprehensive 
analysis for the purposes of this paper. However, in a genuine online examination such responses 
could be assessed (1) manually in the traditional way on-screen, (2) using automatic assessment 
technology such as described in (Butcher & Jordan, 2010; Jordan, 2012), or (3) using comparative 
judgment for longer passages, see (Jones, Swan, & Pollitt, 2014; Pollitt, 2012). 

Discussion 
The implementation of the mock online examination for linear algebra was a modest success. There 
were no serious technical problems during the conduct, and no students complained of inaccurate or 
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unfair marking. The results of the online examination were broadly comparable with a paper-based 
exam, with the consistently lower online performance explained by a combination of (1) potential 
disengagement in a low-stakes setting, (2) lack of assessment of students' justification (which is 
typically rather generous), and (3) lack of partial credit and follow through marking. 

This research has done nothing to address serious practical problems associated with online 
examinations in general.  Problems include the need for invigilation to reduce plagiarism and 
impersonation, and security to eliminate communication during the exam (such as answer sharing) or 
access to unauthorised resources. Indeed, while technology has the potential to support examination 
processes, there is technology specifically designed to undermine traditional examinations as well. 
For example the Ruby Calculator (https://rubydevices.com.au retrieved September 2018) is designed 
to aid unauthorized communication during exams.  Either these examination conduct problems must 
be solved, or we need new models of assessing students.  But these examination conduct problems 
have nothing to do with mathematics as a subject. 

I think it is remarkable that 109/240 (45%) of the marks available on paper were automated in a way 
faithful to the original examinations. Further, by selecting existing questions from two existing past 
papers I was able to create a fully online exam, with broadly similar syllabus coverage.  However, 
this result can be interpreted as a comment on the mechanical nature of the subject, and of the 
assessments we use in the traditional examination.  If the assessment of students’ answers can be 
automated, then certainly the underlying processes can be automated by the computer algebra system.  
Why then are students still learning to perform these mechanical processes, e.g. in the context of ILA 
row reduction, and calculation of determinants and eigenvalues/vectors?  Both partial credit and 
follow through marking are technically possible in STACK, but are expensive (in staff time) to 
implement. To take this work further we need tools which automate assessment of explanation, 
justification and reasoning. In particular “proof checking” software, as applied to students' 
understanding, is necessary to move beyond assessing only a final answer to a full mathematical 
answer. In this study, only students' final answers were subject to automatic assessment which is a 
serious limitation to the award of partial credit and method marks.  However, progress is being made 
to assess working especially in the area of reasoning by equivalence as discussed briefly in (Sangwin 
& Kocher, 2016).  The work on reasoning by equivalence is essential for assessing questions in 
calculus and algebra, two other pillars of pure mathematics.  For this reason, I am confident the 
cautious optimism expressed here about linear algebra exams also extends to mathematics more 
broadly in year 1 and 2 university methods-based examinations and mathematics examinations at the 
school/university interface.   

I was surprised at the extent to which existing questions could be automatically assessed.  However, 
there is nothing sacrosanct about current examination questions. Why should the online examination 
be exactly the same as a paper-based examination? Current questions are written explicitly for the 
paper-based format, and it is sensible to seek to write questions which are tuned to, or indeed take 
advantage of, the online format as appropriate. For many true/false questions the justification requires 
appropriate examples. Computer algebra is ideally suited to assessing answers, such as counter-
examples, which expect the teacher to perform some time-consuming and potentially error-prone 
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calculation.  For this research I did not rephrase such questions to “give me examples, such that ...”, 
but this would be one option.  Specifically we could certainly have 

5. Give examples A and B of non-zero 3*3 matrices for which AB = 0.   

A computer algebra system is ideally a much better tool for assessing such answers than a human 
marker.  Hence, it would be much more sensible to design an online examination with the format in 
mind.  Indeed, often human examiners do not ask students to “give examples of”, only because of the 
work entailed in marking these by hand. That said, to establish face-validity for the online 
examination it is useful to understand the extent to which we can assess existing questions and to 
establish that the technical assessment processes are equivalent.  

The practical benefits of online automatic examinations include increased reliability, reduction in 
costs and in swifter marking times. This is very attractive to all stake holders in the process, including 
students, teachers and end-users of the results.  It is highly likely that automatic examinations will 
become the norm in the near future.  Online examinations will happen, but there is no need for them 
to be restricted to multiple choice formats.  Indeed, as a community of educators we can do much 
better than that.  However, there is a real danger that national examination boards, universities, and 
others with responsibilities for examinations will replicate traditional examinations online without a 
critical reassessment of the purpose of mathematics education.   

This analysis raises the question of whether we, as a mathematics community, believe current 
mathematics examinations are a valid test of mathematical achievement. Do current examinations 
actually represent valid mathematical practice, as undertaken by researchers, industrial 
mathematicians and for pure recreation as an intellectual pursuit? Construct validity is a central 
educational concern, but it is not relevant to the research question of whether we can actually 
automate current exams. My personal views about the nature of mathematics broadly align with those 
expressed in (Polya, 1954) and (Lakatos, 1976). That is, that setting up abstract problems and solving 
them lies at the heart of mathematics. (Polya, 1962) identified four patterns of thought to help 
structure thinking about solving mathematical problems. His “Cartesian” pattern is where a problem 
is translated into a system of equations, and solved using algebra. Note that the algebraic manipulation 
is the technical middle step in the process:  setting up the equations and interpreting the solutions are 
essential parts to complete this pattern. My previous work (Sangwin & Kocher, 2016) examined 
questions set in school-level examination papers and found that line-by-line algebraic reasoning, 
termed reasoning by equivalence, is the most important single form of reasoning in school 
mathematics. However, many examination questions do not relate to a problem at all, rather they 
instruct students to undertake a well-rehearsed set of techniques, isolated from any problem. Many 
questions in the ILA examinations also rely on predictable methods which can be well-rehearsed. 

Informal discussions with colleagues, particularly during the thematic working group 21 during 
CERME, strongly suggest that online examinations are a concern for many working in mathematics 
education.  The question of validity of all examinations, on paper and online, is central as is the 
difficult question of retaining validity if an examination format changes. Changing to online 
examinations provides some unique opportunities but it will be essential for stake-holders to retain 
confidence in any new assessment regimes, regardless of any significant merits the format brings. 
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Using sophisticated assessment tools such as STACK we can create a fully automatically marked 
examination, which is broadly equivalent to current paper-based examinations at the technical level 
and in terms of outcomes for students.  With other tools, we can create a more rounded online 
examination, perhaps incorporating some human assessment of free-text justification.  However, the 
attempt to automate assessment of students’ answers reveals much about what we really ask students 
to do in examinations.   
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In this paper we present the design of individualized online teaching/learning paths at university 
level, within a formative assessment frame. Moreover, we discuss the preliminary results of a pilot 
study aimed at investigating the students’ perception of the impact of these online paths to support 
their learning, their elaboration of the external feedback that the digital environment provides and 
their awareness about their difficulties and the strategies they could activate to overcome them. 
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The individualization of teaching/learning at university level by means of e-
learning environments 
This paper focuses on a pilot study aimed at investigating how a formative assessment (FA) frame 
could support the design of a sequence of tasks to foster individualized teaching at university level. 
Many obstacles are encountered by teachers and students at university level: the large number of 
students per teacher, the heterogeneity of students' background, the small number of hours per 
course, the impossibility of creating a close and frequent relationship between lecturer and students 
(De Guzman, Hodgson & Villani, 1998). In relation to this, Nardi (2017) stresses that there is an 
“aspiration (institutional but not only) for a more approachable, more inclusive and more engaging 
learning experience in university mathematics that is tailored to individual student needs” (p.10) 
and suggests that e-learning could give a significant answer to this aspiration. 

In the past few years, research highlighted the effectiveness of designing e-learning environments to 
support the teaching-learning processes at tertiary level (Descamps et al. 2006; Albano & Ferrari 
2008; Albano 2011; Bardelle & Di Martino 2012; Calvani 2005). In fact, these environments allow 
teachers to keep trace of students' work and mistakes, to provide an automatic or semi-automatic 
evaluation and to share feedback and comments. Moreover, they enable students to overcome the 
fear of being judged and of revealing lack of knowledge by requesting clarifications. In this way 
gaps in students’ knowledge can be reduced, even within the heterogeneity of large classes.  

These last observations make us concentrate our attention on the crucial role that e-learning could 
play in fostering individualized and personalized teaching at university level (Bardelle & Di 
Martino 2012; Albano & Ferrari 2008; Albano 2011). Bardelle and Di Martino (2012) stress that an 
e-learning environment could be an effective context through which it is possible to counteract 
students’ mathematical difficulties in the tertiary transition, since it enables to foster both the 
personalization of the learning path and the students’ collaboration during the activity. Also, Albano 
and Ferrari (2008) discuss the strong impact that these online environments could have at all levels 
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of learning (cognitive, metacognitive and affective), allowing the automatic individualization of 
learning path according to the student’s profile. 

Theoretical framework: FA as a tool to support individualized teaching/learning 
In this study, we refer to the distinction between individualization and personalization proposed by 
Baldacci (2006). According to Baldacci, individualizing means differentiating the didactical paths 
in order to enable all the students to reach common objectives, while personalizing is differentiating 
the formative goals and objectives to promote individual potentialities. 

In our research we focus on the individualization of teaching/learning paths because, in our opinion, 
the specific characteristics of university teaching, such as the large number of students per teacher 
and the impossibility of differentiating formative goals (since all students need to reach minimum 
levels to attend subsequent courses), prevent from realizing a complete personalization. Moreover, 
we think that individualization could represent a useful approach to support students in the gaps of 
knowledge due to the heterogeneity of their background.  

Jenkins (2004) suggests to looking at web technologies to promote the use of different assessment 
methods, especially in the context of higher education, stressing that this kind of technologies can 
encourage collaborative and reflective styles of learning and can also become adaptive. In tune with 
these ideas, we decided to set the design of a sequence of tasks for university students within a FA 
framework, where FA strategies are conceived as critical tools to foster the individualization of 
teaching/learning. 

We refer to the model for the use of technology to support FA developed within the European 
project FaSMEd (Cusi, Morselli & Sabena, 2017). The model extends the one introduced by 
Wiliam and Thompson (2007), which considers two main dimensions. These are the agents 
involved in FA processes (the teacher, the learner, the peers) and the key strategies for FA: (a) 
clarifying and sharing learning intentions and criteria for success; (b) engineering effective 
classroom discussions and other learning tasks that elicit evidence of students' understanding; (c) 
providing feedback that moves learners forward; (d) activating students as instructional resources 
for one another; (e) activating students as the owners of their own learning. According to Wiliam 
and Thompson, FA should be designed with the aim of enabling the teacher and the students to 
establish: where the learners are in their learning; where they are going; what needs to be done to 
get them there. Within FaSMEd, a third dimension has been added, that is the functionalities of 
technology that could support FA: sending and displaying; processing and analyzing; providing an 
interactive environment. 

Another important element for our framework is the role played by feedback in FA. Nicol and 
Macfarlane-Dick (2006) define feedback as an “information about how the student’s present state 
(of learning and performance) relates to goals and standards” (p.2). The authors propose a model 
that distinguishes between internal feedback, generated by students’ monitoring of their interactions 
with the task and the internal and external outcomes of their work, and external feedback, provided 
by the teacher, by a peer or by other means; external feedback must be interpreted, constructed and 
internalized by students to have a significant influence on subsequent learning. We refer also to 
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Hattie and Timperley’s (2007) distinction between different levels of feedback. In particular, we 
focus on feedback about (i) the task; (ii) the processing of the task; (iii) self-regulation. 

The tree of tasks: the design of individualized teaching/learning paths 
In this section, we present a sequence of online tasks that is conceived as an intertwined collection 
of individualized teaching/learning paths. The tasks are organized in a tree (the tree of tasks, TT) 
and dynamically connected, so that the learners could face them within intertwined different paths, 
depending on the answers they give and the difficulties they encounter. The TT has been designed 
with the aim of supporting undergraduate students in the learning of basic topics of elementary and 
conditional probability. It is constituted by five main tasks, implemented with Geogebra and 
submitted to the students by using the university Moodle platform.  

The diagram in figure 1 summarises the structure of the TT. All the possible intertwined paths begin 
with the same task (E1), concerning the definition of conditional probability, the probability of the 
intersection and of the complementary events. For all the tasks, students are required to give open 
(numerical) or multiple-choice answers to some questions and can choose to ask for specific hints. 
An immediate feedback about the task is provided whenever a student gives an answer and an 
overall feedback (again about the task) is given both at the end of the task and the whole path. The 
functionalities of technology that are activated to carry out this online self-assessment are 
processing and analyzing and providing an interactive environment. 

 
Figure 1: The tree of tasks 

According to the number of mistakes and the kind of hints the students ask for, they are directed to 
different tasks. For example, if students make more than three mistakes in E1, they are directed to 
the task Er. After this, if they make more than two mistakes, they are directed to a theory page and 
then again to Er, otherwise they are directed to E1. 

Because of space limitations, here we present only task E1 and the corresponding feedback and 
hints. Within this task, a brief text in natural language, introducing some events and their 
probabilities (their values are random), appears on the screen (see fig. 2). The student is required to 
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fill six input fields by inserting the probability of various events: the probability of A and its 
complementary, the probability of the intersection  and the probability of the conditional 
events ,  and . Three of the required values are given in the text, so that the students 
should carefully interpret it; the other three input fields can be filled by using the definition of 
conditional probability, the property that a conditional probability is a real probability with respect 
to the conditioned event and the generalized rule for the probability of the intersection event. If all 
the six fields are correctly filled, two other questions, about the independency and the 
incompatibility of the events A and B, appear on the screen (see fig. 2).  

When facing task E1, the students can ask for five different hints (see fig. 2): a summary of the data 
given within the text, represented through symbolic expressions (d), the Euler-Venn diagrams of the 
events (EV), a calculating machine (c), a sheet and a pen (sp) and a list of useful formulae (f). 

As summarised earlier, if a student makes more than three mistakes, he/she is directed to a 
reinforcement task (Er), which is focused on the probability of the complementary of an event and 
on the definition of conditional probability. If not, the next task depends on the specific hints that 
are required: if a student asks for the hint d, he/she is directed to a specific task about the 
understanding of the given elements in a text expressed in verbal language (task Ed); if he/she does 
not ask for the hint d, but he/she asks for the hint EV, he/she is directed to a specific activity about 
the meaning of events in terms of set operations (task EEV); if the student does not ask nor for hint 
d, neither for hint EV, he/she is directed to task E2.  

 
Figure 2: A screenshot from task E1 

All the tasks are designed by taking into account misconceptions and typical mistakes that affect the 
teaching/learning of elementary and conditional probabilities (Diaz & de la Fuente, 2002). 
Moreover, as the above description highlights, the TT is engineered in order to gather information 
not only about students’ mistakes, but also about their preferred approaches, displayed thanks to the 
hints they ask for. Students’ behaviour and choices within the interactive environment determine the 
sequence of tasks proposed to them, that is the individualized path within which each of them is 
involved. We can speak about individualized paths because students are stimulated through various 
learning channels (graphical, symbolic, verbal …), they are given the possibility to follow their own 
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aptitude and skills, and, finally, they can access to online resources when they prefer, so their 
learning rhythms are respected. 

As for FA processes, it is possible to highlight a continuous activation of FA strategy C (providing 
feedback that moves learners forward), through both the direct external feedback about the task 
given to students, and the indirect external feedback that they receive when they are directed to 
specific tasks. This kind of feedback is on the processing of the task and on self-regulation, because 
it is aimed at making students reflect on specific aspects of their knowledge, on their own 
difficulties and on the role that each hint could play. 

In order to collect evidence about students’ typical approaches and mistakes, we have designed an 
open-ended questionnaire, composed of sets of questions to which the students have to answer after 
the completion of each task (8 questions for each task) and at the end of the learning path (3 
questions). Some of the 8 questions focused on the specific mathematical contents to which each 
task refers and require students to write argumentations about the processing of the tasks they faced. 
The remaining questions focus on metacognitive aspects, such as the difficulties met by students in 
facing each task, the role of the hints they required, the ways in which each task could support their 
learning. 

The request for argumentation is aimed, on the one hand, to assess students’ capability of justifying 
their own strategies, and, on the other, together with the request for specific reflections, to guide 
them in monitoring their interactions with the tasks and in making explicit their interpretation of the 
received external feedback. In this way, students could gradually become aware of the possible 
strategies to face the task and on the reasons behind them, generating their own internal feedback. 
Two other FA strategies are therefore activated through the TT: strategy B (engineering learning 
tasks that elicit evidence of students' understanding) and strategy E (activating students as the 
owners of their own learning). 

Research focus and methodology 
In this paper, we aim to highlight the effects of students’ interaction with the activities we designed 
to foster individualized learning paths, in terms of: (1) students’ development of awareness about 
their own learning progresses and needs (that is, their awareness about “where they are” in their 
learning and “where they are going”); (2) students’ declared perception of the impact of the 
implemented online tasks on their learning (that is their ideas about the role that the tasks could play 
in making them aware of “what needs to be done” to reach the learning objectives). 

The activity presented in the previous paragraph was proposed to a group of 15 engineering Master 
degree students. In this paper we focus on their answers to the following metacognitive questions, 
which are part of the open-ended questionnaire introduced in the previous paragraph: (1) Did you 
meet some difficulties in facing the task? (2) Did you use the hints? If yes, what hints did you use? 
(3) Were the hints useful? (4) Would you have preferred to use additional or different hints? (5) Did 
the task help you clarify the concepts used from elementary and conditional probability? These 
questions are aimed at highlighting the internal feedback generated by the students’ monitoring of 
their interaction with each task. 
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We developed a qualitative analysis of the students’ answers to the metacognitive questions, 
referring to our research foci. The analysis the of questions 1-2-3-4 was aimed at detecting 
evidences of students’ awareness about: (a) their difficulties in facing the tasks (possibly connected 
to their general difficulties in mathematics), (b) the gaps in their learning and (c) the role played by 
the hints they chose (research focus 1). In particular, we looked for possible categories of students 
answers in relation to their level of awareness about these aspects (a, b, c). 

The analysis of question 5 was aimed at investigating students’ perception of the impact of the tasks 
on their learning (research focus 2). In particular, we focused on the identification of the ways in 
which the students interpret the hints and the external feedback provided by the TT as supports for 
their learning. 

Each researcher coded the students’ answers separately in relation to our research objectives. 
Afterwards, problematic codes were discussed together so that researchers came to an agreement. 

Analysis of students’ answers 
Referring to the research focus 1, we can identify at least three different categories of answers, 
depending on students’ level of awareness about their own learning progresses and needs. The 
answers belonging to the first category show that students are deeply aware of the difficulties they 
faced in the resolution process, able to explain the reasons behind them and to put them in relation 
with their typical difficulties with the mathematical topic. Often, this kind of answers is associated 
to students’ capability of recognizing their needs and asking for the suitable hints, when it is 
necessary. An example is S1 answer to question 1 after the completion of task E1: “I did not meet 
many difficulties in facing this task, but it took me some time to understand what kind of probability 
was given in the text of the problem. Since it is a kind of difficulty that I often have, especially in 
understanding the distinction between conditional probability and the probability of the intersection 
of events, I tried to be particularly careful”. This answer represents an evidence of S1’s capability 
of connecting the specific task to her general difficulties (in understanding verbal texts), and of 
reconstructing both the learning path and the reflections made in facing the activity.  

The second category of answers is characterized by the fact that students are only partially aware of 
their difficulties and show an inadequate control of the strategies to be activated to overcome them. 
An example of answer belonging to this category is the one of S2, who writes that his failure in 
facing task E1 is due to the fact that he was not able to “remember the formula for  and 

”, but he asks for hint d (the representation of data through symbolic expressions), which is 
not useful for him, and answers to question 4 only stating “I don’t know”. 

The answers belonging to the third category are those that are given by the students who do not 
recognize their difficulties at all or recognize some difficulties but do not activate adequate 
strategies to overcome them. The typical approach of these students is, for example, the one of S3, 
who declares that his usual difficulties are related to the understanding of the data within the verbal 
text of the problem, but answers to question 2 (after task E1) stating “I have not considered the 
hints at all”. The choice of not asking for hints clashes also with the fact that he completed task E1 
making more than 3 mistakes.  
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As regards research focus 2, our analysis of question 5 highlighted the students’ general 
appreciation of the TT. The most frequent reasons of this appreciation are connected to the fact that 
an interaction with a non-human tutor enables students to avoid their fear of being judged, as S4 
stresses in his answer: “Working alone on these online activities was great: not having the pressure 
of the teacher or a classmate who looks at my work and judges it allowed me to reason calmly, 
without the fear of making mistakes. It was like being a trapeze artist with the safety net”. 

Most of the students seem to not fully understand the advantages of the individualized learning path 
in which they were involved, but they recognize the TT as a learning resource useful to explore 
multiple representations and promote transformations between them. The direct external feedback 
given by the software is interpreted as useful support to students’ learning. For example, S5, 
referring to task E1, writes: “I used the rules to determine the probability of the complementary 
event and the message that appeared when I inserted the value of  reminded me that is 
not the complementary of ”. Another aspect that is particularly valued by students is the 
usefulness of the hints. Some students stress the role played by the hint EV (Euler-Venn diagrams) 
in reinforcing the meaning of the compound events by the graphical representation of events as sets. 

Finally, it is interesting to observe that none of the students refers to the aim of passing the 
examination. They in general consider the TT as a good self-assessment tool and as a way to point 
out some critical aspects in the theory of elementary and conditional probability. For example, S6 
declares: “Yes, I found this task (E1) useful because it is focused on the difference between 
incompatibility and independence of events. The task has enabled me to clarify that I can consider 
P  to investigate both the concepts, but I have to use it in different ways…”. 

Final remarks 
In this paper we presented preliminary results from a pilot study developed to investigate university 
students’ perceptions of the impact of individualized online teaching/learning paths designed within 
a FA frame. In particular, the analysis enabled us to highlight students’ elaboration of the external 
feedback received during their work on the TT, in terms of information about where students are in 
their learning and what they need to do to reach the learning objectives. The students participating 
to the pilot study showed different levels of awareness about these aspects: few of them were both 
aware of their difficulties and capable of activating the necessary strategies to overcome them. A 
common trend is that students recognize the value of the TT as an effective environment to support 
their learning, but they do not completely realize the level of individualization provided by the TT. 
For this reason, we will test a redesign of the methodology of use of TT, characterized by the fact 
that the individualized activity with the TT will be followed by a collective meta-level discussion 
during which the university teacher and the students will compare the individual interactions with 
the online tasks and will reflect on their usefulness. 

Most of the students show that they are not used to carry out the kind of reflections that the 
questionnaire forced them to develop. This suggests the need of re-designing the questionnaire as an 
integrated part of the TT and as a tool to support self-assessment. 

As a future development of this research, we will explore the use of this approach with reference to 
other knowledge domains of mathematics. Moreover, we will focus on the teachers’ perspective, 
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investigating the ways in which the information gathered through this online environment (the track 
of students’ interaction with TT, the hints they ask, the argumentations and reflections they 
produce…) could represent a useful feedback for university teachers in revealing cognitive and 
metacognitive difficulties of students and in suggesting suitable re-design of the tasks to better 
support students in overcoming these difficulties. 
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This report deals with the design of a teaching and learning pathway that encompasses an assessment 
method coherent with the educational long term goal chosen by the teacher. More specifically, it is 
aimed at contributing to promote high school learners’ culture of theorems – i.e. mastery of 
conjecturing and proving supported by meta-mathematical knowledge. The assessment method, 
which combines formative assessment all during the teaching sequence and final assessment based 
on student’s self-reflective report on her learning trajectory, has been implemented in 10th grade 
classes. A written essay, in form of letter written by the students to a fictitious schoolmate at the end 
of the pathway, is analysed in order to evaluate the potential of the implemented course.  

Keywords: Formative and summative assessment, proving, secondary school. 

Introduction 
In this contribution, we address the following issue, as outlined in the call for papers of TWG21: “The 
assessment of specific mathematics domains – such as for example algebra or geometry - or 
capabilities such as problem solving or mathematical modelling”. More specifically, we refer to the 
teaching and learning of mathematical proof and proving, conceptualized as the development of a 
specific “culture of theorems” (Boero, 2007). In our research group, we have been working for many 
years in the development of specific constructs and related experimental activities concerning proof 
and proving. In particular, we designed methods to foster students’ awareness of crucial aspects of 
proving concerning their inherent strategies, what warrants the truth of the statements, and the logic-
linguistic features of proof (Boero, Douek, Morselli & Pedemonte, 2010). Here we focus on the 
design of a whole teaching and learning pathway that encompasses also formative assessment 
strategies and final assessment of the individual competencies. From one side, we believe in the 
efficacy of formative assessment strategies in promoting the development of a culture of theorems. 
From the other side, we recognize that promoting a culture of theorems, in order to be effective in the 
institution, requires a coherent method of final assessment. For this reason, we inserted an innovative 
method of summative assessment in the project. The aim of this report is to present the teaching-
learning (and assessing) pathway as it was implemented in two 10th-grade classes, and to illustrate 
data that provide some initial evidence of its effectiveness.  

The culture of theorems 
We refer to Mariotti (2001)’s construct of theorem: the theorem is made up of the statement, together 
with its proof within a theory. For the same statement, it is possible to consider different ways of 
proving it, according to different methods of proof and different theories. In that perspective, 
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competencies in conjecturing ad proving concern, in particular, the mastery of meta-mathematical 
knowledge regarding: the shape of statements (hypothesis, thesis); different methods to validate a 
statement; the distinct role of previously proved theorems (as synthesizers of deductive chains needed 
to build up the proof) and axioms (as founding stones of a theory); the distinction between the 
construction and plausibility of a conjecture (based on different processes: induction, abduction, 
analogy, etc.) and the construction of a proof (which aims at a deductive enchaining of propositions 
within a theory). The development of a culture of theorems requires: autonomy in acting as problem 
solvers in conjecturing and proving; awareness of meta-mathematical issues (like the epistemic 
constraints and logic-linguistic features of proof – Stylianides & Ball, 2008), which play a crucial 
role both in understanding a proof produced by others, and in conjecturing and proving by themselves. 
Promoting a culture of theorems in classroom means to foster students’ awareness of these aspects 
and to make students develop a meta-mathematical knowledge (Boero et al, 2010) that supports the 
self-regulation of the process of conjecturing and proving.  

The crucial role of assessment 
We believe that assessment must be consistent with teaching’s aims and with task design. As a starting 
point, we refer to the known distinction between formative assessment and summative assessment. 
Summative assessment occurs at the end of the learning activity with the goal of estimating the 
individual student’s achievement (McIntosh, 1997), and is generally used as part of the grading 
process. Formative assessment is performed during the learning activity with the aim of improving 
learning. It is also called “assessment for learning” and may be considered a method of teaching 
where “evidence about student achievement is elicited, interpreted, and used by teachers, learners, or 
their peers, to make decisions about the next steps in instruction.” (Black & Wiliam, 2009, p.7). 
Wiliam and Thompson (2007) describe five key strategies to promote formative assessment in 
classroom, involving three agents: the teacher, the students and the peers. The five strategies are: a) 
clarifying and sharing learning intentions and criteria for success; b) engineering effective classroom 
discussions and other learning tasks that elicit evidence of student understanding; c) providing 
feedback that moves learners forward; d) activating students as instructional resources for one 
another; e) activating students as the owners of their own learning. Moreover, Nicol and Macfarlane-
Dick (2006) argue that formative assessment may promote students’ self regulated learning. 
Recognizing formative assessment as crucial for learning does not mean to deny the crucial role of 
summative assessment. At the same time, it is important to move beyond a summative assessment 
that confines itself to a mere “final test”, that hardly provides reliable information on the 
competencies that are acquired. For instance, Taras (2001) describes a research where cycles of 
summative self-assessment, tutor feedback on self-assessment and final revised self-assessment are 
carried out. The issue of summative assessment in mathematics becomes crucial when it has to be set 
up after innovation teaching and learning sequences. Assessment methods based on individual 
problem solving and answering teacher’s questions usually have a negative impact on the 
development of students’ autonomy and responsibility as learners in the classroom social context. In 
the special case of the teaching and learning of proof, traditional individual assessment tasks 
(presenting learnt proofs, adapting learnt proofs to similar situations, only seldom producing and 
validating conjectures), result in students’ focusing on the products and their features.  
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Assessment in a “culture of theorems” perspective 
In our teaching and learning pathway, we aimed at creating a formative and summative assessment 
that is coherent with the whole educational plan, aimed at promoting a culture of theorems. In the 
culture of theorems, it is important to make students active and autonomous, willing to take the 
responsibility of creating their own proofs and critically analyse the proofs produced by others. 
Accordingly, we created activities where students give constructive feedback to their mates and take 
profit from mate’s feedback, becoming at the same responsible of their own learning and resources 
for the mates; in this way, formative strategies d) and e) (Wiliam & Thompson, 2007) are promoted. 
The formative assessment activities are integrated with a summative assessment method based on the 
student’s self-reflective report on the personal learning trajectory, so as to assess whether the student 
is able to exploit the previous formative assessment activities and act as an autonomous learner. We 
hypothesize that thanks to the sequence of activities students not only are more free to take intellectual 
risks in conjecturing and proving, but may be induced to use meta-mathematical aspects of 
conjecturing and proving as key tools to regulate their productive and reflective activities – given 
their role (supported by the teacher) in analysing their fellows and their own conjecturing and proving 
performances. We also hypothesize that a final assessment method, based on their self-reflective 
reports on their learning trajectory, might offer them the opportunity to get acceptable results and at 
the same time would offer them (also thanks to the kind of work performed in the classroom) key 
tools to re-orient and improve their work. Such an assessment method might also be useful for another 
reason, related to the condition of so many students who enter high school in our country (and in 
others too) with low self-confidence and scarce willingness to take intellectual risks. Failures in 
traditional assessment tasks would confirm them in their disposition towards classroom work (Boaler 
& Greeno, 2000). We note here that such a form of summative assessment may be considered as an 
integral part of the teaching and learning pathway and, then, the boundary between formative and 
summative assessment is not strict in the project. A more detailed description of the teaching and 
learning method, as well as of the assessment strategies, is provided in the subsequent paragraph.  

An innovative teaching and learning (and assessing) project 
The context 

Our teaching method and assessment choices was implemented in one 10th-grade class of 21 students 
in the year 2016/17 and in two 10th-grade parallel classes (of 31 and 19 students) in 2017-18. The 
classes belong to the scientific-oriented high school, which in our country prepares students for all 
academic courses, especially for the studies in STEM. We focused on the geometry course, that is 
taught 2 hours each week, from October to May, in parallel with 3 hours devoted to algebra (first and 
second degree equations and systems of equations, functions, etc.) and probability, taught by the same 
teacher. The course consists of 3 modules of about 16 hours each; it concerns some content of 
Euclidean plane geometry, typically taught in our country in the first two years of high school: (first 
module) to construct a tangent circle to two intersecting straight lines; to construct the tangent circle 
inside a given triangle; (second module) to study different cases of triangles inscribed in a circle 
(rectangle, isosceles, equilateral triangles), with related necessary and sufficient conditions; to study 
the relations between peripheral angle and central angle; (third module) given a circle, to study the 
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relationships between its tangent and intersecting straight lines; and, given a circle, to deal with some 
problems concerning inscribed and circumscribed quadrilaterals. The geometry course in grade 10 
follows a grade 9 course in Euclidean plane geometry of triangles and quadrilaterals, which, in our 
case, was taught by the same teacher. All the lessons were given by the teacher (author FT); one 
researcher (the author PB) was present and acted as participant observer. 

The course: teaching and formative assessment 

In our pathway, a sequence of classroom activities (“module”) usually consists of some cycles, each 
of them starting with an individual work on a worksheet, which includes one task and some 
information and framing of it. The task is open, possibly with some general suggestions about how 
to deal with it; it involves one of the following activities: conjecturing, with the aim of getting a 
statement conforming to the requirement of Euclidean geometry; constructing a geometric figure 
(which corresponds to the “building-up” part of Euclid’s constructions); proving of produced 
conjectures, or justifying produced constructions (after they have been shared and better formulated 
under the guide of the teacher in classroom discussions); analysing mates’ productions of previous 
tasks; identifying salient meta-mathematical aspects of produced texts. We note again that peer 
review is an efficient way of carrying out formative strategies d) and e) (Wiliam & Thompson, 2007). 
Each initial individual task of the cycle may be followed by an individual (or small group) analysis 
of some representative students’ solutions to the task, chosen by the teacher; and/or by a direct 
classroom discussion of those solutions, guided by the teacher. In this way, formative assessment 
strategies b), d) and e) are activated (Wiliam & Thompson, 2007). Discussion is addressed to identify 
gaps, mistakes, points of strength, differences of produced strategies, linguistic issues and meta-
mathematical aspects. Students are particularly motivated to engage in these activities, because they 
will turn to be useful for the the preparation of the final personal report (the key material for their 
summative assessment- see below). Usually, the second phase of the cycle ends with a synthesis, 
guided by the teacher, about one (or some) different ways of solving the problem – special care being 
devoted to the organization of the proof text (in the case of tasks asking for a proof of a given 
statement) according to meta-mathematical constraints. The synthesis is a key moment for clarifying 
and sharing learning intentions and criteria for success (strategy a), Wiliam and Thompson, 2007). 
For some crucial steps of the sequence, students are then requested to write the refined, shared 
solution for the same task; or to identify hypothesis, thesis, theorems or axioms used as warrants, etc. 
in a proof text written by the teacher. Table 1 summarizes the activities that were carried out, in 
reference to the activated formative assessment strategies (as described by Wiliam & Thompson, 
2007). 

Activity Formative assessment strategy 

Class discussion on selected 
productions 

b) engineering effective classroom discussions that elicit evidence 
of student understanding; c) providing feedback that moves learners 
forward; d) activating students as instructional resources for one 
another; e) activating students as the owners of their own learning 

Peer review of selected 
productions 

d) activating students as instructional resources for one another; e) 
activating students as the owners of their own learning 
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Class discussion to 
synthetize and organize the 
final product, with a focus on 
meta-mathematical aspects 

a) clarifying and sharing learning intentions and criteria for success; 
b) engineering effective classroom discussions and other learning 
tasks that elicit evidence of student understanding 

Table 1: Activities and related formative assessment strategies 

The final assessment 

Final assessment is made up of two parts: part A is performed at home, part B is done in classroom. 
In part A students are requested to prepare (at the end of each of the three modules of the geometry 
course) a written revision of each of the worksheets produced during the module, followed by a 
synthesis paper. Students’ revision work of personal filled worksheets concerns: identification of 
gaps, mistakes, difficulties and lacking knowledge at the content and at the meta-level; remediating 
gaps and mistakes, but in strict agreement (when appropriate) with the personal line of thought. 
According to our hypothesis, students are engaged in using criteria of meta-mathematical type to 
identify their difficulties and mistakes, with an inner questioning: “Does my conjecture contain a 
hypothesis and a thesis? (...) Are there some gaps in my enchaining of propositions?”. This 
questioning at the intra-personal level would echo what should have happened at the inter-personal 
level in the classroom interactions managed by the teacher, and would contribute to enter the culture 
of theorems. The synthesis paper concerns: difficulties met during the module, and when and how 
(and if) they have been overcome; and on relevant learning progresses, and how they occurred, taking 
the collective classroom work into account. In part B, performed in classroom, students are asked to 
do the written revision of three worksheets, chosen by the teacher (one of them produced by a 
schoolfellow, the others by the student herself – thus, a second revision for them). Its purpose is to 
avoid that the student merely relies on help provided by some more competent fellow (or another 
expert person). There is no other assessment task for the geometry course. The final grade is given to 
each student taking into account the involvement during all the pathway (participation to the 
individual and groupwork and to the discussions) and the final assessment (parts A and B). Criteria 
for assessing parts A and B concern students’ability in: revising mistakes; improving written 
productions in terms of completeness, correctness and clarity; reflecting on the personal learning 
pathway. Essential features of the assessing method are similar to those implemented at the university 
level as described in (Guala & Boero, 2017). 

Evaluation of the project: preliminary results 
Our evaluation of the educational project is aimed at understanding whether the pathway was efficient 
in promoting students’ culture of theorems, with specific reference to autonomy and awareness of 
meta-mathematical issues.  For the evaluation, as we’ll detail hereunder, we rely on direct observation 
of the students’ activities and fieldnotes, as well as on the qualitative analysis of a special reflective 
task that was carried out by the students at the end of the pathway.  

From the direct observation of students’ activities and the fieldnotes of the teacher and the observer, 
we got some preliminary evidences of the fruitfulness of the adopted method. First, students’ 
relationships with their mistakes and pitfalls during the individual work on their worksheets gradually 
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evolved (at the beginning, mistakes and wrong paths to the solution were carefully erased or whitened 
in order to hide them; gradually students realized that the memory of wrong paths and mistakes is 
useful to prepare their self-reflective report, but also to better take part in discussions). Second, there 
was a growth in the attention paid by students to meta-mathematical aspects: gradually, more and 
more teacher’s (or peers’) comments on those aspects are reported in students’ notebooks. Third, 
there was an evolution on kind of students’ requests and comments concerning meta-mathematical 
aspects addressed to the teacher (or their schoolfellows) during classroom discussions.  

At the end of the three modules, the students were proposed a reflective task: they were asked to write 
a letter to a fictitious schoolmate, describing the way of working with theorems they lived during the 
year. The idea of asking students to narrate their experience to a fictitious schoolmate is coherent with 
the learning-teaching pathway, where students were encouraged to act as resources for the peers; 
moreover, the request to write a letter was aimed to promote an informal style, where each student 
could feel free to insert personal reflections on the pathway. Here is the text of the task: 

Paolo, a student of your age, will move to our school and will attend the second year course. By 
now, he did not do any specific activity on theorems (maybe he has some idea of what is a 
theorem). Since he heard that your class worked a lot on the statement and the proof of theorems, 
he would like to contact you to get a clearer idea on the theme. Write a letter to Paolo, telling 
briefly your experience; explain in particular what is the statement of a theorem and what does 
“proving it” mean. 

We analysed the written letters, looking for elements of meta-mathematical knowledge, as well as 
reflections on the way students lived the pathway. We realized a qualitative analysis of the texts 
(performed by the authors separately and after compared and discussed so as to reach an agreement), 
that we summarize in the subsequent part of the paragraph. Concerning mathematical and 
metamathematical knowledge related to theorems, most students are able to discuss the key features 
of a theorem. They point out relevant elements of the statement (hypothesis, thesis) and are able to 
discuss the issue of validity of the theorem.  

Ema: the statement is made of two parts: hypothesis and thesis. The hypothesis is often introduced 
by “IF”, and it is the sentence that you suppose to be true or it is necessary to start your proof. The 
thesis is often introduced by “THEN” and it is that sentence that you proved in your proof and 
that, thanks to your proof, is true. 

Giu: In mathematics, the THEOREM is a statement that, starting from initial assumptions that are 
taken as true, draws some conclusions, by means of a precise proof. Proving a theorem means to 
affirm its validity, following precise properties or mathematical laws. 

We note that students are also able to describe proving as a process aimed at producing a final product, 
which is a relevant metamathematical issue. 

Lor: there are different ways to think of a proof, I’ll propose you some of them. The most common 
is to see a theorem as a mathematical problem; in both cases [the theorem and the problem] there 
are starting points and final points, justified by calculations or known theorems, that is to say 
already proven. But the interpretation [of theorem] I like the most is another one: you must imagine 
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the theorem as a travel. […] Before starting the travel, but also during the travel, you must keep in 
mind the final destination (the thesis) and avoid roads that may lead you to a wrong reasoning. 
Like in a travel, there can be different roads that lead to the same destination, the thesis.  

Giu: a good proof must be organized into three parts: exploration, with the construction of the 
figure, and observation of all possible relations between the parts of the figure; search for relations 
that are useful for the proof, with the support of mathematical laws and theorems that allow to 
affirm that a given thing is true; synthesis of all the process with letters, so that it is precise, well 
formulated and synthetized. 

The letters contain also many hints on efficient ways to perform the process. This is again an evidence 
of awareness of metamathematical issues; moreover, the fact of being able to descrive the process 
and “give advices” to the fictitious mate reveals that the students became responsible of their own 
learning, real protagonists of the pathway, and also ready to act as resources for the mates.  

Giu: In general, during the proof you must observe the figure with careful and “wise” eyes, so as 
to reach a conclusion. […] I suggest you to pay attention to the text of the task and to the figure, 
to write down all your observations and, even if you think they are un-correct, because they will 
become useful for the subsequent auto-correction activity. I suggest you to carry out the activities 
with a lot of care, for me it was very useful.  

Mar: I suggest you not to focus on a single aspect of the statement, but to have a wider view and 
try to think of known theorems that could be useful. 

The letters contain a description of the learning pathway, often intertwined with personal reflections 
on the way the students lived such an experience.  

Marco: I liked very much this pathway, because it made me appreciate more geometry, that I did 
not like very much until last year. This system of activities (proving, constructing, experimenting) 
made some arguments nicer and helped me to learn them in a better way. 

Ser: before starting the pathway I felt unsecure and skeptical, but I changed my opinion. I started 
the pathway with a little knowledge (few theorems and laws), that I had to review and re-discuss. 
During the pathway I thought again to that period of time when children ask the reason for 
everything, because by means of the activities we questioned many things that we had always 
taken for granted.  […] You can’t imagine how many times I struggled with wrong ideas that did 
not lead me anywhere, or we had an idea that we could not develop.  

Some students even reveal a good awareness of the rationale of the educational pathway they 
experienced. 

Giu: for me, the activity of correcting our mates’ answers was very useful, because we had to 
understand his reasoning and possibly correct some imperfections.  

Mat: do not worry if at the beginning you can’t find the good proof or fill the worksheets, because 
this is a new method for you, as it was for us. Indeed, the teachers do not judge the mistakes but 
evaluate your ability to recognize and correct mistakes by yourself. Moreover, this pathway will 
help you to get into another mate’s reasoning and complete or correct it. 
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Discussion and further developments 
The preliminary analysis of the letters provided some evidence for the effectiveness of our pathway, 
with particular reference to the students’ development of meta-mathematical knowledge concerning 
the culture of theorems and growing assumption of responsibility as learners. The research is still 
ongoing and we are currently analysing the reflective reports provided by the students at the end of 
the three modules. Some issues need further reflection. One crucial issue is: how to grade self-
reflective reports in an objective way? Sharing with students precise criteria might better orient their 
work and make more explicit the teacher’s expectations, but it could lead students to conform their 
reflections to a model. Another aspect which needs careful consideration is the development of 
students’ awareness about their growing up as learners in the classroom context. It was put into 
evidence in a few final letters, while it is relevant for the development of competencies. 
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This paper explores the relationship between characteristics, beliefs, backgrounds and perceptions 
of students and instructors with students’ grade earned in algebra courses at two-year post-secondary 
institutions in the U.S. using multiple linear regression. We present the results of an analysis of data 
collected during the Fall 2017 semester. From this analysis we seek to highlight a few predictor 
variables with significant influence on the outcome variable of student grade in the course and 
provide interpretations of these results. 

Keywords: Algebra, grade prediction, post-secondary institutions, multiple regression analysis. 

Community colleges in the US enroll 43% of all undergraduate students enrolled in two-year post-
secondary institutions (Blair, Kirkman, & Maxwell, 2018). These institutions offer students the 
opportunity for remediation, transfer to four-year undergraduate institutions, vocational training, 
general education, continuing education, and worker retraining (Mesa, 2017) thus providing students 
of all income levels access to higher education at a minimal cost. As a result of the open access 
policies of community colleges, students bring a variety of backgrounds in terms of age, educational 
attainment, and family/work/socioeconomic status to math classrooms. To meet the needs of these 
students, the mathematics courses taught at a typical community college range from developmental 
courses (review of arithmetic and algebra courses) through courses offered during the first two years 
of an undergraduate mathematics major. Bahr (2010) noted the algebra courses at these colleges have 
failure rates ranging from 30% to 70%. Thus, there is a need to better understand factors that affect 
student success in these courses. Towards this end we investigate the relationship between the 
characteristics of instructors teaching these courses and their students’ percent grade.   

Sadler and Sonner (2018) found that high school students who master coursework preparatory to 
calculus, including algebra, geometry and precalculus, perform well in college calculus courses. 

                                                 
1 The AI@CC Research group includes: Megan Breit-Goodwin, Anoka-Ramsey Community College; Anne Cawley, 
California State University, Pomona; April Ström, Chandler-Gilbert Community College; Randy Nichols, Delta College; 
Anna Bright, Patrick Kimani, Fern Van Vliet, and Laura Watkins, Glendale Community College; Angeliki Mali, 
Groningen University; David Tannor, Indiana Wesleyan University; Jon Oaks, Macomb Community College; Nicole 
Lang, North Hennepin Community College; Carla Stroud, and Judy Sutor, Scottsdale Community College; Saba Gerami, 
and Vilma Mesa, University of Michigan; Irene Duranczyk, Dexter Lim, and Nidhi Kohli, University of Minnesota. 
Colleges and authors are listed alphabetically. 
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These courses are often considered a mathematical gateway to a career in science, technology, 
mathematics, and engineering (STEM) as well as careers in other fields. Among the topics key to 
future success are linear equations/functions, rational equations/functions and exponential 
equations/functions–topics typically taught in Intermediate Algebra (IA) and College Algebra (CA) 
courses at community colleges. These courses are designed for US students who desire to enter a 
STEM or Business-related field but have inadequate mathematical preparation. In the US, high school 
graduation requirements vary by state and a student entering a community college may not have had 
the opportunity to take a course equivalent to IA or CA in high school. In fact, the majority of high 
school of students do not take any mathematics beyond a 9th grade algebra course (Champion & Mesa, 
2018), a course preparatory to IA. Thus, a student who enrolls in IA or CA either never took the 
opportunity to complete the work in high school or may have taken one or both of these courses in 
high school but did not achieve a sufficient level of proficiency to advance. For these reasons, the IA 
and/or CA courses are unintentional gatekeeper courses for many community college students; hence, 
our desire to better understand what factors lead to student success. 

Algebra Instruction at Community Colleges: An Exploration of its Relationship with Student Success 
(AI@CC) is a National Science Foundation funded collaborative project (Watkins et al., 2016) 
investigating faculty who teach IA or CA at one of the eight participating community colleges which 
represent three different regions of the US (Southwest, Plains and Great Lakes). Although topics 
contained in an IA or a CA course may vary across the participating colleges, our analyses showed a 
significant intersection of topics within each type of course and across the colleges. Thus, our study 
focused on instruction around the topics within this intersection. 

In this observational study we attend to the following three elements: (1) the faculty (who they are, 
what they believe, what they say, and what they do for planning, enacting, and assessing instruction); 
(2) the students (who they are, what they believe, what they learn, and how they perceive the 
instruction they receive), and (3) the content (its richness, how it is organized and presented). 
Learning in the AI@CC study is operationalized as student knowledge at the conclusion of an algebra 
course, which may be measured by initial tests and final tests, letter grade in the course, and/or their 
Pass/Fail status. In this paper we share our findings about the relationships between a community 
college student’s knowledge of algebra at the conclusion of a course as measured by course grade, 
represented by the percentage earned by a student in their community college algebra course, with 
substantively meaningful student-level and instructor-level variables. 

Methods 
Drawing from knowledge generated in K-12 and four-year undergraduate institutions, the AI@CC 
study endeavored to measure variables associated with student learning and performance. Instruments 
used by the project include the Algebra Precalculus Concept Readiness–Community College (APCR-
CC) inventory (Peralta et al., under review), a student beliefs survey (Kloosterman & Stage, 1992), 
patterns of adaptive learning scales (PALS) survey (Midgely et al., 2000) and teacher behavior 
inventory (TBI, Murray, 1987; Murray & Renaud, 1995). The psychometric properties of the 
instruments and the measures resulting from them have been validated (Peralta et al., under review; 
Peralta, 2017). Additionally, demographic information about students and instructors, students’ self-
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reported current GPA, and their course grade as both a letter grade and a percentage were collected. 
We present the results of a model that uses instructor and student level characteristics as predictor 
variables for course grade (see Figure 1).  

This model posits the existence of 
predictive variables at student and 
instructor levels that help explain 
the variation in student learning and 
performance in the algebra courses. 
The student-level variables include 
personal characteristics, APCR-CC 
final score, and perceptions of self. 
Instructor level variables include 
personal characteristics, behavior, 
knowledge and attitudes towards 
innovative teaching practices, 
knowledge of algebra for teaching and beliefs about mathematics. 

Measures 
APCR-CC Initial and Final Scores.  This 25-item assessment, measuring a single construct called 
quantitative reasoning (Peralta, et. al., under review), was created to measure readiness for college-
level algebra and precalculus courses. The APCR-CC was administered to students twice in each of 
the courses observed (IA and CA). Identical versions of the test were administered at the beginning 
of the Fall 2017 semester (APCR-CC Initial Score) and at the end of the semester (APCR-CC Final 
Score). Each student’s total score was determined by the sum of correct responses (one score per task) 
for a maximum score of 25.  

Student Beliefs.  The student beliefs survey was created from a survey related to motivation and 
achievement in the context of problem-solving following work by Kloosterman and Stage (1992). 
The survey, given at the beginning of the semester, had 36 items measuring personal beliefs.  Of the 
instruments’ six beliefs: (1) I can solve time-consuming problems, (2) There are word problems that 
cannot be solved with simple, step-by-step set procedures, (3) Understanding concepts is important 
in mathematics, (4) Effort can increase mathematical ability, (5) Word problems are important in 
mathematics, and (6) Mathematics is useful in daily life, the last two constructs were excluded from 
the analysis because of their low reliability (Peralta & Kohli, 2017). The score for each construct is 
calculated as the sum of the scores on the individual items.  

Patterns of Adaptive Learning Scales.  The Patterns of Adaptive Learning Scales (PALS) survey, 
given mid-semester, has 49 items (Midgley et al., 2000) that “are used to investigate the relation 
between a learning environment and a student’s motivation, affect, and behavior” (Statistics 
Solutions, 2017). Of the instruments’ nine constructs, the predictive model explored here used the 
three constructs: Academic Self-Efficacy, Student Performance and Teacher Mastery. The score for 
each construct is calculated as the sum of the scores on the individual items. 

Figure 1: The AI@CC model for course grade 
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Instructor Level Variables.  Demographic variables at the instructor level including gender, full-time 
or part-time employment status, and years of mathematics teaching experience. Continuous variables 
describing the amount of formal math specific professional development, formal non-math specific 
professional development, and informal professional development were also included. In addition, 
we incorporated instructional practices, instructor beliefs and instructor knowledge of mathematics 
for teaching into the analyses. The Mathematical Knowledge for Teaching–Algebra developed by 
ETS and the University of Michigan as part of the Measures of Effective Teaching Project (Melinda 
Gates Foundation and Educational Testing Services, 2012) was administered to faculty participants 
prior to the start of the Fall 2017 semester to measure their knowledge for teaching. The Faculty 
Beliefs about Mathematics and Mathematics Teaching survey developed at the University of 
Maryland (Campbell, 1990) was used to gather faculty beliefs. Midway through the semester student 
perceptions of the instructional practices of their instructor were collected via the TBI (Murray, 1987; 
Murray & Renaud, 1995), a 56-item instrument that describes the instructional practices experienced 
by students in the classroom.  

Outcome Variable. Participating instructors provided the students’ final grades as a letter grade and 
as a percentage from 0 to 1. Scales used to assign letter grades vary by institution, so we chose to 
continue our analysis using students’ percentage grade as opposed to the letter grade for the outcome 
variable. 

Models 
Multiple linear regression was 
performed to study the effect of 
student-level and instructor-level 
variables on the outcome of 
percent grade. The data used in the 
model was gathered from 20 IA 
instructors with 272 students and 
24 CA instructors with 365 
students across the participating 
institutions. The main effects in 
the model, identical for IA and CA 
groups, were built using the 
demographic variables, APCR-CC 
final score, student beliefs factors, PALS, and instructor level variables (see Equation 1). Student 
demographics included are gender, age, race or ethnic group, if English is their first language, if they 
are a primary caregiver, if they are employed at least 40 hours per week, and high school GPA (coded 
dichotomously: less than 2.5 as 0 and greater than or equal to 2.5 as 1). 

Preliminary Findings 
Standardized results for both IA and CA are presented in Table 1. In both groups, APCR-CC final 
scores and PALS Academic Self Efficacy were statistically significant at a p < 0.05 level. For every 
one standard deviation increase in APCR-CC final score, on average, the predicted percent grade 

Equation 1: Regression model for IA and for CA groups 
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increases by 0.064 standard 
deviations in the CA group and 
0.089 standard deviations in the IA 
group, respectively. For every one 
standard deviation increase in PALS 
Academic Self-Efficacy, on average, 
the predicted percent grade increases 
by 0.197 standard deviations for the 
CA group and 0.182 standard 
deviations for the IA group, 
respectively. Moreover, Years of 
Teaching Experience was 
statistically significant for the IA 
group, where the predicted percent 
grade increases by 0.091 standard 
deviations, on average, for every one 
standard deviation increase in Years 
of Teaching Experience. For the CA 
group, both Math Specific Formal 
Professional Development and 
Informal Professional Development 
were statistically significant. For 
every one standard deviation 

increase in Math Specific Formal Professional Development, on average, the predicted percent grade 
increases by 0.104 standard deviations, and for every one standard deviation increase in Informal 
Professional Development, on average, the predicted percent grade increases by 0.21 standard 
deviations for the CA group. There were other variables in either of the two groups that were 
statistically significant (see Table 1).  

The analysis with CA students and with IA students both had adjusted R2 values that, while not overly 
large, are considered substantial for an observational study in education (Hill, et. al., 2008). The 
adjusted R2 values for the two groups are in the range of 20% – 30%. That is, the model predictors 
explain 20% – 30% of the variance in the outcome variable, percent grade. 

Discussion 
The preliminary results from these analyses suggest that (a) the APCR-CC final score, (b) PALS 
Academic self-efficacy score, and (c) instructors’ years of mathematics teaching experience and 
exposure to professional development opportunities are positively associated with the students’ 
outcome on course percent grade. The demographics of students taking these courses and the nature 
of the content taught in these two courses may explain the degree to which the APCR-CC can be used 
as a predictor and the extent to which these instructor factors affect the students’ opportunities to 
learn. 

Table 1: Standardized coefficients for linear regression 
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Given that the APCR-CC was designed to measure readiness for CA and pre-calculus, it is not 
surprising that APCR-CC final scores are a good predictor of students’ final grades in both courses. 
Students who were able to do well on the APCR-CC, which tested conceptual understanding, were 
more likely to do well in their course. What might be surprising are the respective effects of APCR-
CC final score increases to the grade increase for both IA and CA group of students. IA students’ 
grades seemed to respond more to APCR-CC score increases than their CA counterparts. This main 
effect was somewhat tempered in the CA courses, which command a deeper conceptual 
understanding of proportionality, linearity, covariational reasoning, exponential growth, rational 
function behavior, and an ability to leverage these ideas to create models for problem solving. 

Since the PALS Academic Self-efficacy scale measures academic related perceptions, beliefs, and 
strategies of the student, it is not surprising that students who have a higher score in the academic 
self-efficacy scale perform better in their course. Research has shown that a students’ self-efficacy 
appears to be a critical factor for student success and performance with an extensive body of research 
showing a positive association between academic self-efficacy and college grades (Barber, 2009). 
Thus, we confirm prior research regarding the role of motivation on performance, with the very 
specific population of community college students taking algebra courses (Mesa 2012). 

The students’ opportunities to deepen their understanding of concepts taught in these algebra courses 
were positively impacted by the instructors’ years of teaching experience and exposure to professional 
development (PD). We posit that duration of teaching experience had a positive impact on the IA 
course because: (i) the course is calculational in nature, and (ii) students in these courses may be 
repeating the course (after previously seeing the content in high school). These two factors make 
years of teaching experience a valuable trait for an instructor teaching this course because the 
instructor becomes efficient in teaching ways of doing (as opposed to ways of thinking), and 
instructors can also anticipate students’ common pitfalls and offer pre-remediation. On the other hand, 
exposure to PD had a positive impact on CA students’ opportunities to learn. These students are 
typically encountering the largely conceptual content taught in this course for the first time. IA 
courses tend to be more about simplifying expressions and solving equations while CA tends to be 
more about reasoning about and modelling with functions. Thus, teaching IA involves developing 
students’ fluency with algorithms while teaching CA involves developing students’ facility with 
functions, a topic that is historically elusive to students and slow to develop. The complexity of 
teaching mathematics (Potari, 2012) in ways that develop students’ conceptual understanding, 
especially on elusive challenging topics such as functions, puts extra demands on instructors to teach 
in innovative ways, that are largely different from the ways the instructors encountered mathematics 
instruction when they were students. Professional development opportunities, both formal and 
informal have the potential to positively affect instructors’ efficacy (Zambo & Zambo, 2008) by 
exposing instructors to the nature of mathematics and to effective practices in mathematics education 
that lead to developing students’ conceptual understanding. There is much we still need to learn 
through our analyses of these instructors’ teaching practices, which might shed further light into this 
issue. For example, we do not know the specific types of PD these instructors were exposed to, or 
how those PD opportunities impacted the instructors teaching practices. Based on these preliminary 
results, we recommend increasing PD opportunities for community college instructors, research into 
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the specific types of PD these instructors are receiving, along with their corresponding impact on 
teaching and students’ learning. 

Moreover, all of the instruments (e.g., PALS) and the assessment (e.g., APCR-CC) used in the study 
were rigorously evaluated to establish the appropriate psychometric properties to ensure that the data 
collected during the course of the study were both valid and reliable. This psychometric validation 
process in itself is novel in the field of post-secondary mathematics education. We looked at the 
effects of each of these instruments and assessment on the outcome variable of percent grade  in 
isolation, that is, after factoring out the variance from other variables in the model (e.g., demographic 
variables). We found significant effects of APCR-CC final scores, and the subscale - Academic self-
efficacy from PALS survey on the outcome of percent grade, along with some other demographic 
variables. Analyzing each of these instruments and assessment in relation to the others can give us 
new perspectives on the relationships, which would otherwise be unavailable to us. Viewing research 
in this integrated way can help with the analysis of important outcomes of interest in a more 
comprehensive way. These findings have the potential to impact the way we measure student learning 
and consequently, the development of any professional development for the instructors, and/or 
student learning interventions. This work strived to provide a more holistic perspective on assessment 
and may provide direction for future creation of diagnostic assessments/instruments for assessing 
students in other contexts. Considerations for creating or modifying such diagnostic 
assessments/instruments for use by the research community should include the diversity of curricula, 
impact of culture, teaching techniques, and language as well as other factors that impact students' 
learning differently in different parts of the world. 
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Introduction 

The Thematic Working Group 22 (Curriculum Resources and Task Design in Mathematics 
Education, hereafter TWG22) was launched at CERME10 in recognition of the growing area of 
research in the field of curriculum resources (Pepin & Gueudet 2018; Stylianides, 2016), their design 
and use by teachers and students, and the specific design of mathematical tasks, mostly by teachers 
acting as designers (Laurillard, 2012; Jones & Pepin, 2016) but also their place in textbooks (e.g., 
Stylianides, 2014). While this field shares approaches, methods and research topics found in other 
areas in mathematics education research (e.g. TWG15, 16), it has its own distinctiveness. It focusses 
on the design and use of curriculum materials (digital and non-digital) for various educational 
purposes, including the design of classroom-based interventions to promote important but hard-to-
teach and hard-to-learn learning goals (e.g., Komatsu, 2017; Saxe, Diakow, & Gearhart, 2013; 
Stylianides & Stylianides, 2009).  Moreover, leaning on work by Pepin, Choppin, Ruthven, and 
Sinclair (2017), we make here a clear distinction between (digital) curriculum resources and 
educational technology, as research on (digital) curriculum resources (in the area of mathematics) 
pays particular attention to 

· the aims and content of teaching and learning mathematics;
· the teacher’s role in the instructional design and task design process (i.e., how teachers select,

revise, and appropriate curriculum materials; how teachers design tasks);
· students’ interactions with (digital) curriculum resources in terms of how they navigate

learning experiences within a digital or non-digital environment;
· the impact of (digital) curriculum resources in terms of how the scope and sequence of

mathematical topics (and tasks) are navigated by teachers and students;
· the educative potential of (digital) curriculum resources in terms of how teachers develop

capacity to design pedagogic activities and tasks.  (amended from Pepin, et al. 2017, p. 647)

We acknowledge that “curriculum resources” is an elastic term: ranging from particular tasks and 
activities, over one-off worksheets or tests, to a full-blown curriculum program, and all of these 
notions were addressed in the different sessions at CERME10 and CERME11. 

The role and importance assigned to curriculum resources and task design in the last decades has led 
to an enormous variety of approaches to research in this area. At CERME10, 17 papers and 6 posters 
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were accepted, and at CERME11 the number of papers submitted to TWG22 has increased: 22 papers 
and 8 posters were accepted. In terms of organization, the paper contributions were presented (by the 
lead author) and discussed (by an ‘independent’ TWG colleague). The presentation/discussion 
sessions (see below) were followed by parallel table discussions (colleagues could choose which table 
to join), and finally a plenary, where amanuenses of each table/paper reported back on the main issues 
discussed.  

The sessions were organized under the following six themes (distributed over six sessions): 

1. International textbook studies
2. Teacher thinking and competences
3. Task design
4. Digital curriculum resources and task design
5. Particular task design and theories
6. School and workplace mathematics

Although there was considerable overlap between some of the sessions, for clarity we briefly discuss 
each theme separately below. During the first part of session 7 the eight posters were presented and 
discussed in a “poster walk”. The second part of session 7 was devoted to a discussion of the issues 
raised during the six thematic sessions.  

Within CERME, the 22 papers and 8 posters presented in TWG22 at CERME11 drew upon research 
from 25 countries across 4 continents, and offered a wide spectrum of perspectives. Outside CERME, 
we saw an increase in handbook chapters, special issues, and whole books focusing on the design and 
use of curriculum resources (e.g. Pepin, Gueudet, Yerushalmy, Trouche, & Chazan, 2016; Pepin & 
Choppin, 2017; Stylianides, 2014, 2016). At the same time, the work of TWG22 overlapped with 
research in the field of, for example, digital technology in mathematics education, or teacher 
education. New conferences have been initiated (e.g. ICMT; MEDA) with colleagues from TWG22 
involved in their set-up and as IPC members.    

Themes and paper contributions 

In session 1 international and comparative research was presented, predominantly related to textbook 
studies. In two paper presentations (Memis; Ruwisch & Huang) a particular topic area (e.g. reasoning; 
length measurement) was compared in two countries’ textbooks (Japanese & Turkish textbooks; 
German & Taiwanese textbooks). Results showed that, for example, in Taiwanese textbooks the 
emphasis was on concrete actions, whereas in the German textbooks it was on abstract and mental 
procedures; and the Japanese textbooks provided more “creative” mathematical reasoning 
opportunities (in the area of proportions) than the Turkish books. A third textbook study of Malawian 
primary textbooks (Lisnet) examined grade 1 textbooks with respect to mathematical opportunities 
(with respect to the number concept), whilst teachers’ pedagogical design capacity with respect to 
using textbooks was investigated in another (Chowdhuri). A comparison of naming systems (of 
curriculum resources) by Chinese and Mexican teachers was conducted in Wang et al.’s study, which 
highlighted the problem of conceptual equivalence in international studies (see permeating themes).  

In session 2 issues related to teachers’ use of curriculum resources, their lesson planning and related 
instruction were discussed. Whilst in the paper by Siedel examined teachers’ knowledge of their 
resource options in order to support and further their design of effective instruction, another group of 
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researchers (Allsopp, et al.) explored teachers’ use of a curriculum framework (involving 
mathematical competencies) for teaching activities. The team of Delaney and Gurhy investigated task 
characteristics and teacher practice that supported differentiated instruction and work on challenging 
tasks.      

In session 3 core issues of task design was addressed. These related to the design of tasks with 
particular characteristics (e.g. self-explanation prompts - Dyrvold & Bergvall); to task design on 
particular mathematical topic areas (e.g. slope of a curve - Bos, et al.) or with focus on particular 
challenges (e.g. conceptual and/or creative challenges - Jaeder); to task design fostering students’ 
engagement (e.g. construction of examples on a particular topic – Cusi & Olsher), and to the design 
of a task progression framework (e.g. Courtney & Glasnovic Gracin).  

In session 4 core issues of task design continued to be addressed, also in relation to digital curriculum 
resources. Whilst the study by Essonnier et al. addressed collaborative design (in an EU project) of a 
digital resource and the linked social creativity, the study by Eckert and Nilsson investigated the 
design of digitally enriched classroom talk. In her research Rafalska focused on the teaching and 
learning of ‘algorithmics’ in terms of resource design, whilst Geti and Ding examined the use of 
variation theory for problem-based task design.      

In session 5 task designs related to particular theories were examined. These theories included the 
Hypothetical Learning Theory for the learning of rules for manipulating integers (Schumacher & 
Rezat) and for the learning of Calculus (Breen, et al.), and the Theory of Conceptual Fields for the 
analysis of textbooks on the concept of function (Sureda & Rossi).    

In session 6 curriculum resource design related to school and workplace mathematics was explored. 
Studies included those that investigated the ‘building of bridges’ between school and workplace 
mathematics (Herheim & Kacerja), and the integration of inquiry-based learning and workplace 
mathematics into mathematics teaching (Kalogeria & Psycharis).  

In session 7 the eight posters were presented. The issues addressed in the posters ranged from those 
related to the design of the mathematics curriculum (e.g. Solano, et al.) and tools for such design (e.g. 
Noehr, et al.; Katona); over those linked to task characteristics (e.g. Misailidou & Keijzer; Martin); 
to teachers’ selection and use of curriculum resources (e.g. Kock & Pepin; Varga; Jukic Matic & 
Glasnovic Gracin).   

Issues raised across the six sessions 

The sessions were organized under six themes, and naturally issues related to those themes were 
discussed in those sessions. However, there were also selected permeating strands/themes that ran 
across the themed sessions. The following themes permeated all six sessions: (1) terminology; (2) 
teacher learning and student learning; (3) networking of theories; (4) particular theories: hypothetical 
and actual learning trajectories; (5) methodologies; (6) theory and practice; and (7) context.  

Terminology 

Questions such as the following were raised: 

1. What constitutes a task? - An activity in a textbook? A lesson? A learning trajectory?
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2. Where does task design finish? Should implementation be included in the design?
3. When is a task educative for students?
4. When is a task educative for teachers? E.g. in a teacher guide?

The issue of ‘terminology’ (and ‘naming’) was raised in the first session, initially because several 
comparative studies were presented (e.g. Memis; Ruwisch & Huang; Wang et al.). In the comparative 
studies the researcher/s have tried to establish ‘equivalence of concepts’, so that they could establish 
validity of concepts for the comparisons. This was linked to the translation from one language to 
another, and the meaning making of particular notions, so that the researchers could actually compare 
‘like with like’. It was also questioned what it means to design a ‘task’ (see also session 3 and 4): 
first, is a task similar, or equivalent, to an activity in a textbook, or do we mean a lesson, or even a 
whole lesson series, when we speak of a task? Second, what does ‘task design’ mean? Is it linked to 
task/lesson preparation, or is the enactment part of task design? Third, when is a task educative for 
students, and when for teachers? The issue of “educative materials” (Davis & Krajcik, 2005; Pepin, 
2018) was raised, and educative for whom. Clearly, educative curriculum materials for students (e.g. 
in textbooks) are likely to be different from those for teachers (e.g. in teacher guides that accompany 
textbooks). 

Teacher learning and student learning 

Issues and questions such as the following were raised: 

• It is often (naively) assumed that students “automatically” learn when using a particularly
designed task

– How do we investigate that?
• How does teacher learning take place when working with tasks and materials?

– If tasks are developed in a community, how does this affect teacher learning?
• What kind of teacher learning is required for choosing, designing, interpreting, and

implementing tasks?
– What is the possible role of educative curriculum materials?

The issue of ‘teacher and student learning’ links to the above-mentioned questions raised concerning 
educative curriculum materials. It was discussed in which ways teachers learn when working with 
curriculum materials (e.g. textbooks; digital curriculum materials) and mathematics tasks. How does 
one know that teachers learn when interacting with curriculum materials, and as importantly, what 
do they learn? And if they work in a collective, do they learn more, or less likely, or otherwise? 
Indeed, it seems to be necessary to establish under which conditions teachers learn best, and with 
which kinds of curriculum materials. Effective educative materials (for teachers) must have particular 
characteristics/heuristics. 

Networking of theories 

Issues and questions such as the following were raised: 

• Abundance of theories
– Activity Theory
– Variation Theory
– Theory of Conceptual Fields
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– Documental Approach to Didactics
• What are their boundaries/ domains of application/ similarities & differences/ limitations?
• Can they be combined/ networked?

– Is any combination viable?
• How can they be linked to design principles?

In session 5 particular theories were emphasized as bases for the analysis and design of tasks (e.g. 
variation theory). Moreover, it was questioned whether particular theories could be combined or 
networked (e.g. Bikner-Ahsbahs & Prediger 2014), and under which circumstances this might be 
useful. For example, the theory of Hypothetical Learning Theory (HLT, Simon 1995) was seen as a 
theory supportive of teachers to design a coherent learning trajectory for their students. However, 
this particular theory might not suffice for defining particular design principles of a learning 
trajectory; for design principles particular curriculum design tools, or task design principles, would 
be also be needed (e.g. variation theory). Furthermore, issues related to the use of a theory outside 
of the context where it was ‘born’ were discussed, and whether a theory might be differently 
interpreted in different contexts. 

Particular theories: Hypothetical and actual learning trajectories 

Issues and questions such as the following were raised: 

• What do they mean?
– Issue of singular (trajectory) vs. plural (trajectories)
– Common/joint/collaborative learning path vs. individual learning path

• What does the comparison of the two tell us?
– Implications for task design(ers)

• How do they link (or how might they be linked) to design principles?

Linked to the above, it was questioned whether the envisaged hypothetical learning theories would 
actually develop into actual student learning/study paths (e.g. Pepin & Kock – this conference; Weber, 
Walkington, & McGalliard 2015), and in which ways the comparison of the two would provide 
indications of design criteria/principles (for task/curriculum designers) or the efficacy of an 
intervention (Stylianides & Stylianides, 2009). 

Methodologies 

Issues and questions such as the following were raised: 

• Design (based) research as a methodology tailored to bridging theory and practice.
• How do theories inform methodologies for studying task design, implementation…?
• Are some methodologies better suited to study task design, implementation than others?
• How do we measure effectiveness of the task design, implementation, stability, for

example? Is comparison of HLTs and ALTs a viable way to do this?

In terms of empirical research, questions were discussed linked to the ‘measurement’ of the design 
and implementation of tasks, the design and evaluation of processes expected to help students (and 
teachers) to develop deeper understandings of the mathematics and its learning (and teaching).   
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Theory and practice 

Issues and questions such as the following were raised: 

• Role of users
– Teachers as designers

• Researchers and teachers working together
– Collaboration/cooperation?
– Role of researcher/s and teacher/s

• How can research findings inform practice and how can practice inform research?

Several studies presented in the TWG22 used a design-based research approach. This methodology 
was seen to bridge theory and practice, as theoretically underpinned designs/interventions are 
evaluated in practice, and subsequently re-designed and evaluated in iterative cycles to reach the 
desired results. One of the questions on design-based research links to the role/s of the designer and 
users: for example, when do teachers act as designers; when are they the ‘implementers’ of 
commercial designs (e.g. from textbooks), who are expected to appropriate the design/s, or even enact 
the design/s ‘with fidelity’? What does ‘teacher design’ mean, and does design include creativity and 
novel design? Or is teacher design when teachers make small amendments to mathematical tasks 
during their lessons? Perhaps more importantly, it was questioned in which ways research findings 
can help teachers in their daily practice of ‘task design’, and how teachers’ practice informs and 
stimulates research that addresses the issues relevant for teachers.        

Context 

Issues and questions such as the following were raised: 

• Researchers are often not explicit about particular contexts, and societal influences are
sometimes difficult to determine, so are particular teaching cultures (e.g. textbooks – or lack
of them – play different roles in different places).

– What might we be able to infer from a textbook analysis in terms of student learning
opportunities in the classroom?

– Affordances and limitations of textbook analysis
• Exploratory study – are the systems stable? What has changed and what stays the same,

when
– Curricula change?
– Resource systems vary?

• Technology, and the changes it brings, can render some tasks redundant or unworkable

One of the permeating strands throughout the six sessions related to the context of the design and 
enactment of curriculum resources. Mathematics teachers work under very different conditions with 
different kinds of curriculum resources, inside and outside the classroom. In some contexts, textbooks 
are crucial/mandatory resources, in others teachers prefer to ‘pick and choose’, or design their own 
materials. In some contexts, teachers can dedicate half of their time to the design of curriculum 
resources and learning trajectories, in others they are expected to ‘teach by the book’. It became clear 
that what we measure as researchers might be valid for one particular school or region, or true for a 
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particular time, but that parameters change with time and context, and hence research only provides 
glimpses of particular phenomena.        

Possible directions for future research 

Whilst there was a clear overlap of research themes (and directions) between CERME10 and 
CERME11 in TWG22 (e.g. task design, plurality of theoretical frames), at CERME11 issues related 
to international studies and international comparisons emerged as important points for discussion. 
This also related to theoretical frames, or those that were developed in one context and used in 
another. Moreover, teacher professional development practices and their work with curriculum 
resources were compared from one context to another, and this led the way to question the 
scalability of particular curricular practices and design activities.   

The following directions for future research emerged from the discussions in TWG22: 

• Understanding better the appropriation of tasks by practitioners (teachers, lecturers) and the
impact on students (and teachers) would be a valuable focus. Teacher design often includes
appropriation.

• There is additional potential to look at professional development around particular tasks.
• Students and their learning experiences should be included in considerations for task design.

They are typically included in design-based research, where selected aspects of student
response (to tasks) are often included.

• There is abundant potential to research the notion of ‘task design’, in particular when
researchers or task designers let go of designs and hand them over to practitioners/teachers
(e.g. in terms of the fidelity to the intended design of the task). Confrey and her team
(Sztajn, Confrey, Wilson, & Edgington, 2012) have developed learning trajectories for the
common core standards, which have fidelity to the common core curriculum.

• We discussed fidelity of resources that are passed on to teachers, but we have not
sufficiently discussed fidelity of design to research on tasks or to the theory used and this
may be addressed in future work.

• Scalability of processes was not a strong focus of the working group. The mathematics
education community is still more concerned about small groups of teachers implementing
tasks. However, for example, Chinese mathematics education research has moved towards
scalability of tasks/materials.
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In this paper, we explore teachers’ use of a curriculum framework involving mathematical 
competencies in planning teaching activities. We have used data from a pilot learning management 
system and Epistemic Network Analysis to plot a visualisation of a 2D space displaying a network of 
teachers’ associations of mathematical competencies to their teaching activities. We interpret this 
visualisation to create a conceptual model for how teachers understand mathematical competencies 
when planning classroom activities. 

Keywords: Epistemic network analysis, learning management systems, mathematical competencies, 
teacher planning. 

Introduction 
There is a long history of constructing theoretical conceptual models in educational research. In 
mathematics education in Denmark, there is an elaborated understanding of what characterizes 
mathematical activity. During the last 15 years, the concept of mathematical competencies has been 
developed and elaborated (Niss & Højgaard, 2011; Niss & Højgaard, 2002). In this context, these 
competencies are described as “... a well-informed readiness to act appropriately in situations 
involving a certain type of mathematical challenge” (Brooks, Greer & Gutwin, 2014).  

The Danish Ministry of Education identifies six competencies in the mathematics curriculum for 
primary and lower secondary (UVM, 2014). Problem tackling is about being able to pose and solve 
mathematical problems, where a mathematical problem is a task where it is obvious that an answer 
must exist but the method of solution is unclear and can have different outcomes. The modelling 
competency is about being able to analyse, build and utilize mathematical models about other fields. 
Reasoning is about being able to follow and assess mathematical reasoning, and being able to devise 
and carry out informal and formal arguments as well as understand what constitutes a mathematical 
proof. Furthermore, it is about being able to think mathematically, where you know what questions 
could be posed and what answers are expected in mathematical contexts. The representing 
competency, on the other hand, is about being able to utilize different representations and switch 
between them as well as being able to choose the most meaningful representation. It also includes 
being able to handle mathematical symbol-language and mathematical formalism. The 
communicating competency is about being able to communicate in, with and about mathematics - to 
be able to understand and interpret expressions and texts as well as being able to express oneself about 
mathematics to different audiences. The tools and aids competency concerns the ability to operate 
and relate to tools and aids for mathematical operation, including Information Technology. It is also 
about being able to meaningfully reflect upon the choice of which tool or aid to use.  
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Although the individual competencies can be presented separately as above, they are considered to 
relate. For example, the so-called flower model (Brooks, Greer & Gutwin, 2014; Collins, 2004) 
depicts competencies as separate petals that overlap towards the centre, or as a set of dimensions, 
which together encompass the overall mathematical competence. However, the authors of this model 
recognize it as a purely theoretical development when they claim that “quite obviously it is impossible 
to produce scientific documentation that this is theoretically and empirically the case” (Brooks, Greer 
& Gutwin, 2014). In this paper we recognise the competencies framework as a central curriculum 
resource used to inform mathematics teachers in their practice. We are interested in exploring how a 
framework like this is understood and utilized by teachers when planning their lessons. And more 
specifically if it is possible to use quantitative data to develop conceptual models of how teachers 
relate the mathematical competencies. Hopefully such models would hold the potential to support the 
critical reflections of individual teachers. 

Aims, data & methods 
This paper describes a pilot project conducted in anticipation of large amounts of data generated from 
learning management systems, which have recently been adopted in Denmark. At the time of writing, 
this data set is not available, and instead, we use an inferior data set with the goal to explore a specific 
approach to visualizing data, and using these visualisations in hypothesis and heuristic building.       

The data set used in this experiment was collected using the Goal Arrow software. The software was 
specifically designed to investigate the opportunities and challenges of digitally supporting teachers’ 
goal-setting for teaching activities. In the Goal Arrow, ca. 70 mathematics teachers associated one or 
more of the six mathematical competencies with their various teaching activities. Nothing was done 
to ensure that the teachers were representative, and the data included both empty submissions and 
repeated submissions due to a lack of user input validation. The latter was corrected manually, but 
with a total of only 182 records remaining, the data set here is not expected to support claims to the 
generality of a derived conceptual model.  

In this study, we employ Quantitative Ethnography (Shaffer, 2017) to provide a method where 
qualitative and quantitative methods blend together completely by grounding quantitative results in a 
qualitative understanding of data. It aims at theoretical saturation of statistical models and using 
quantitative results to enable thick ethnographic descriptions (Shaffer, 2017). More specifically we 
used the Epistemic Network Analysis (ENA) tool which examines connections in data and uses 
Singular Value Decomposition (SVD) to represent it as dynamic network model that maximizes the 
variance in the data using a reduced number of dimensions (Shaffer, Collier & Ruis, 2016).  

Quantitative Ethnography describes coding as assigning meaning to observable actions or elements 
of the discourse observed in one context of a specific culture. In this study, the contexts are individual 
teachers’ teaching activities and the coding is done by the teachers themselves when they assign 
relevant mathematical competencies to their individual teaching activities. In the data, each 
competency is represented in its own column where its absence or presence in each record of teaching 
activity is indicated by 0 or 1.  

We imported this data into ENA and defined an ENA set where we specified the codes (the 
competencies), the conversations (individual teaching activity records) and the units (which we do 
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not use here, but allow us to filter and group records in the visualisations). We plotted the ENA set 
using default settings to produce the visualisation of the competencies’ interrelations depicted in 
Figure 1. 

Figure 1: The space of mathematical competencies 

The plotting uses SVD, which reduces the number of dimensions while still showing the maximum 
variance of co-occurring competencies (Shaffer, Collier and Ruis, 2016). The first dimension (the x 
axis) explains the most variance, and the second dimension (the y axis) explains the second most 
variance in the data. Individual teaching activities become the red plotted points. These seem fewer 
in number than the 182 records because they often overlap and should not be confused with the nodes 
in the network. The black plotted nodes in the network represent the individual competencies (codes). 
The lines between nodes represent co-occurrence of the competencies in teaching activities. The 
strength of the connections between competencies, determined by their frequency of co-occurrences, 
is represented using the thickness and saturation of the lines between nodes.  

The positions of competencies (the nodes) in this network graph can be used to interpret the 
dimensions in the space and this can explain the positions of individual teaching activities (red 
points). This can provide a conceptual frame (Shaffer & Ruis, 2017) to interpret different 
combinations of mathematical competencies in teaching settings. It is our ability to do this 
interpretation that becomes the measure of this approach to generating empirically driven conceptual 
models. 
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Interpretation 
By looking at the visualisation generated by ENA shown in Figure 1, we identified and used two 
different approaches to characterizing the axes. 

1. For each axis, we look at the nodes with the greatest distance.

2. For each axis, we split the competencies into three groups and compare these groups.

First, we looked at the opposites on the y-axis which are problem tackling and communicating. From 
the definitions of these competencies, we understand communicating to be about being able to 
communicate in, with and about mathematics versus problem tackling which is about working in the 
nitty gritty with mathematical tasks that require the activation of more than routine skills. It is 
tempting to tentatively recognize the y-axis as being about “talking the talk” versus “doing actual 
mathematics”, or using Collins’ (2004) concepts, interactional expertise versus contributory 
expertise. But how well is this supported when we consider the other competencies that also vary on 
the y-axis?  

With regards to splitting the competencies into three groups, we overlaid the visualisation with a grid 
that segregated the competencies, as shown with the dashed lines in Figure 1, such that the following 
groups on the y-axis were identified: Y1) communicating and representing, Y2) modelling and 
reasoning and Y3) tools and aids, and problem tackling. 

By considering communicating and representing as a group (Y1) we see something different about 
the lower end of the y-axis than when we only considered communicating. Representing is not about 
saying the “right” things but more about getting the meaning across, by having something stand for 
something else. Representing is therefore concerned with getting the actual meaning across by any 
means and if necessary by multiple means, and not just to other people, but also to oneself. In other 
words, the lower end of the y-axis is not categorizable as mere interactional expertise but also requires 
contributory expertise. Combined with our understanding of communicating, the bottom end of the 
y-axis seems more precisely to be about describing and explaining mathematical issues, topics or
problems in different ways in different situations.

We revisit the other end of the y-axis in the same way as above. By considering problem tackling and 
tools and aids as a group (Y3) we do not have to change our understanding of the top end of the y-
axis, from when we only considered problem tackling. The tools and aids competency is about being 
able to utilize tools and aids in a mathematical context, and being able to choose the right tool for the 
job. Tools and aids are thus like problem tackling concerned with working on or with mathematical 
problems, tasks and so on efficiently. The top end of the y-axis seems to remain something to do with 
the actual doing of mathematics with a focus on pragmatic and efficient choices of means for 
mathematical work.  

We must still consider the two remaining competencies, reasoning and modelling, which form the 
middle group (Y2). However, the interpretation of their positioning does not disturb the understanding 
of the y-axis discussed above. The position of reasoning near the centre of the y-axis can be explained 
by the perceived need for reasoning along the entire y-axis. It is needed both for describing and 
explaining as well as working with mathematical problems. The position of modelling near the centre 
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of the y-axis can be explained slightly differently as a necessary bridge between talking about 
problems from other domains, that we want to apply mathematics to as well as being able to work on 
those problems with mathematics.  

By looking at the placement of competencies along the y-axis, firstly with a focus on the extremes 
and secondly in three groups, we understand the y-axis as representing a continuum from talking 
about, drawing, describing and explaining mathematics over modelling to actually doing 
mathematical moves, actions, and solutions with tools and aids. A continuum from describing and 
explaining to doing mathematics. 

The x-axis does not in the same way as the y-axis have a clear pair of opposites to help us interpret 
it, but we did attempt to compare the two competencies with the most extreme distance on the x-axis; 
communicating and tools and aids. It was tempting to tentatively recognize the x-axis as being about 
psychology and cognition versus interacting with something tangible or material. But how well is this 
supported when we consider the other competencies that also vary on the x-axis. We approached this 
by splitting the competencies into, and interpreting the three groups: X1) communicating and problem 
tackling, X2) representing and reasoning and X3) modelling and tools and aids.  

Considering the competencies tools and aids and modelling (X3) we first identified for each of these 
a new concept that a) seemed to relate to its respective competency and b) seemed to relate to the 
other concept. The definition of tools and aids clearly defines it to be very much about technical tools 
and not about mental tools (e.g. about straight edges and not about theorems). This gave us the concept 
“materiality”. We interpreted the definition of modelling to be an especially map-like portrayal in the 
sense that it closely resembles (although simplifies) the object being studied. Together, the concepts 
materiality and map-like suggested something being tangible or close to the world at the right end of 
the x-axis. Of course, both competencies are not physical objects in the world, they are psychological 
and cognitive in nature, but there seems to be an immediacy of attention to things outside of a purely 
mental realm; to material or non-abstract things. Loosely speaking, to things in the world. 

The above immediacy of attention to things outside of a purely mental realm seemed much less 
necessary when we considered the two competencies problem tackling and communicating (X1). Of 
course, both problem tackling and communicating may relate to something in the world beyond 
mental or linguistic gymnastics, but the necessary immediacy does not seem to be there because 
communicating and problem tackling does not to the same degree have to relate to something concrete 
but can remain in the abstract. Although all competencies are in virtue of being competencies 
psychological and cognitive in nature, the competencies on the left end of the axis can be more 
symbolic or interpretive, and less immediately connected to the world. Loosely speaking, to things in 
the mind. 

The remaining two competencies, representing and reasoning, which make up the middle group (X2) 
of the x-axis also do not (like the middle group of the y-axis) seem to disrupt our interpretation of the 
x-axis. Reasoning’s position near the middle of the x-axis can (like its position near the centre of the
y-axis) be explained in terms of it being needed across the whole axis. regardless of how directly one
engages in the world, mathematical thinking requires reasoning. Representing’s position near the
middle of the x-axis can (like modelling's position near the centre of the y-axis) be explained as a
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necessary bridge between the two ends of the x-axis. To be able to apply abstract mathematical 
thinking or communicate to the world we need to portray the world, but those portrayals need not be 
as map-like as those used in modelling. Other representations are also needed. One of these 
representations is natural language explanations, which must be considered an important part of the 
communicating competency. 

By looking at the placement of competencies along the x-axis in three groups, we understand the x-
axis as representing a perceived continuum from working in the abstract to working more directly in 
the world. We have summarized this as a continuum from “in-the-mind” to “in-the-world”. 

Together these considerations allow us to identify the dimension of greatest variance (the x-axis) as 
a continuum between “in the mind” and “in the world”, and the dimension with the second greatest 
variance (the y-axis) as a continuum between “describing and explaining” and “doing mathematics”. 

Limitations & discussion 
We have discussed earlier that the available data is inferior. The small number of teachers and 
registered teaching activities, the fact that no effort was made to ensure that the involved teachers 
were representative, and the uncertainty due to the lack of user input validation, prevent us from 
drawing confident conclusions.  

This paper and our use of Goal Arrow data is a pilot application of the method we have described. 
The emphasis in this paper is on exploring an approach, and especially the extent to which we can 
meaningfully interpret the visualisations. Our interpretation of the current data has allowed us (as a 
hypothesis or heuristics building exercise) to define a space of mathematical competences. In this 
space, we define the dimension of greatest variance (the x-axis) as a continuum between “in the mind” 
and “in the world”, and the dimension with the second greatest variance (the y-axis) as a continuum 
between “describing and explaining mathematics” and “doing mathematics”.  

What is most important is that we expect to be able to use ENA for visualizing massively more of the 
same sort of data when made available from the learning management systems currently being 
implemented in Denmark. We now have reason to believe that this data and their visualisation in 
ENA can be interpreted meaningfully. We must recognize that these interpretations are based on what 
teachers have expressed about their lessons, which may differ from what they have actually planned, 
and to a greater degree from what is actually enacted in class.  However, the process of associating 
lessons with competencies is well established in Denmark.  

Defined spaces like the one above can be thought of as adding user friendliness or simplifying an 
existing understanding of mathematical competencies; we are looking at a 2D space instead of a six-
columned table. However, there is also a sense in which the defined space is a development of an 
understanding of mathematical competencies in its own right. When the teachers relate the 
competencies in individual teaching activities, they are adding information. They are pointing at how 
mathematical competencies are likely to be engaged together. They are also negotiating between the 
formal breakdown of the competencies and their own understanding of what mathematics requires. 
Because of this, we can think of these defined spaces as new conceptual models of mathematical 
competencies developed using leaning analytics.  
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We can think of these conceptual models as a complement to the competency flower model. Most 
obviously, they gives us another way to think about the competencies. When planning lessons, a space 
such as the one presented in this paper may work as a tool to support teachers’ reflection and 
discussion on the direction of their teaching activities. Supported interactively, we can imagine 
teachers aiming their teaching activities at locations in the space, registering teaching activities by 
associating these locations to teaching activities and compare their teaching activities to those of other 
teachers’ or their own over time. Such empirically driven conceptual models could also potentially 
support research and policy. For example, they could direct the attention to challenges or differences 
in the progression of mathematics education. Specifically, it can raise flags for individual grades, that 
seem to lack certain areas or have significantly different networks.  

Conclusion 
In this paper, we consider the context in which mathematical competencies are used in Denmark, and 
use data collected in the Goal Arrow software, where teachers associate competencies to their 
teaching activities. We describe the creating of an ENA set and the plotting of a visualisation 
comprising a 2D space displaying a network based on the co-occurrence of mathematical 
competencies in teaching activities. Notwithstanding limitations on the data, we attempt a thorough 
interpretation of the visualisation which allows us to explore the approach as a way of understanding 
how teachers use the competencies framework in their lesson planning. 
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This paper discusses a task, designing a slide, to support the reinvention of the notion of slope of a 
curve in a point. The field test show that the lesson scenario allows teachers to utilize students’ 
informal models to introduce slope more formally.  

Keywords: Mathematics education, reinvention, slope.  

Introduction 
Introducing slope of a curve in a point and the derivative to students is a didactical challenge for 
teachers. It is tempting to choose for an instrumental approach swiftly progressing to differentiation 
techniques, both easier to teach and to learn. Without conceptual understanding this entails merely 
meaningless manipulation of symbols and execution of recipes. The meaning of limit, difference 
quotient and other concepts related to the slope of a curve at a point form serious obstacles for students 
(e.g. Tall, 2013; Zandieh, 2000). 

This paper discusses an attempt to deal with these obstacles inspired by design heuristics from the 
theory of Realistic Mathematics Education (RME) suggesting that a way for students to learn 
mathematics in a meaningful way is to involve them in a process of reinvention (Freudenthal, 1991). 
A common approach in RME is to introduce a new concept through a task of which the context 
provides opportunities for students to focus on reasoning and representations related to the notion 
aimed at. As Gravemeijer and Doorman (1999) state it 

The students should first experience a qualitative, global, introduction of a mathematical concept. 
This qualitative introduction then should create the need for a more formal description of the 
concepts involved. (p. 113) 

This study reports initial experiences of an attempt to support students in (re)inventing the notion of 
slope of a curve in a point and related representations (e.g. Zandieh, 2000). Students, collaborating in 
groups of three, are asked to design a slide consisting of a bended and a straight part joining without 
bumps. The desired outcomes are concrete equations describing a line and a curve that meet smoothly 
(imagine the purpose is to feed these equations into a 3D-printer to print the slide). The task aims for 
students to discuss what it means for the line and curve to meet in a not-bumpy, i.e. smooth, way. 
They should search for methods to design a slide and to decide to what extent smoothness is achieved. 
The hypothesis is that they will come up with ideas that are essential to the notion of slope of a curve 
in a point. Informal building blocks, meaningful to the student, that can be used by the teacher to 
afterwards introduce the slope of a curve in a point more formally. 
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The context of the task is a non-kinematic one. Previous research (e.g. Doorman, 2005) exploited 
kinematic contexts. Historically this approach makes sense, given the origin of the notion of 
derivative in mechanics. The presence of dimensions (like meters/second) helps to understand the 
meaning of slope and more generally to make a connection from derivative in mathematics to the 
physics curriculum. The slide-context offers opportunities that are not present in the kinematic 
approach. Students have a tactile and visual understanding of what it means for a surface (or better, 
a curve) to be smooth, as also pointed out by Tall (2013). He suggests students slide their hands along 
a curve to sense the changing slope. The slide task allows students to mathematize this tactile and 
visual experience. A main merit of the slide task is that it is formulated in a very open way: it allows 
for various approaches by students. We discern three options: the standard textbook approach through 
secants of the curve, the locally linear/linear approximation/”zooming in” approach (Tall, 2013), and 
a (more algebraic) approach based on local bounding lines. The most important advantage of the slide 
task is that it allows the teacher connect the student’s work to any or all of these approaches, 
depending on what students produce, possibly providing multiple views on the notion of slope.    

The design of the lesson plan (scenario) for the task is based on the Theory of Didactical Situations 
(TDS) (Brousseau, 2002). We investigated whether combining RME and TDS as frameworks for the 
design of an inquiry based mathematics lesson can lead to a successful scenario.  This approach of 
combining ideas from RME and TDS to task design for inquiry based mathematics teaching (IBMT) 
is pioneered in the Erasmus+ project Meria (Winsløw, 2017). 

The research question addressed in this paper is: How do RME-inspired task characteristics and a 
TDS-inspired teaching scenario support students’ invention of the notion of slope of a curve in a 
point? 

RME perspective on the slide task 
The design of the task originates from the RME-principle of a didactical phenomenology 
(Freudenthal, 1983) of the slide context:   

What a didactical phenomenology can do is … starting from those phenomena that beg to be 
organized, and from that starting point teaching the learner to manipulate these means of 
organising. (Didactical phenomenology of mathematical structures) 

The challenge of realizing a smooth connection in the slide context is a phenomenon that begs to be 
organized by the tangent line. Visually at first, but then it begs for symbolic means to decide whether 
the candidate line and curve really join in a smooth way. Some questions that arise are: how good is 
the slide at begging? Does it lead students to mathematize in direction of the learning goal, or even 
reinvent the slope of a curve at a point? What can be expected from students can be explained using 
the emergent models design heuristic (Doorman & Gravemeijer, 2009). The context-problem is 
expected to invite students to develop their own situation-specific solution methods. These methods 
will have to be discussed and compared. A (situational) model expected to emerge from the slide task 
is that of the slope of a curve at a point as the slope of a tangent line. This is a model of, produced 
after one episode of mathematizing. At best, this is a starting point for further mathematizing towards 
symbolic and computational aspects of the slope at a point and the derivative.  
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The slide task as a TDS-scenario 
How to organize the classroom for a reinvention activity? Freudenthal (1991) claims that “guiding 
means striking a delicate balance between the force of teaching and the freedom of learning” (p. 55). TDS 
might provide a suitable framework to balance the two. Central to the theory is the difference between 
didactical and adidactical situations (Brousseau, 2002). In a didactical situation the teacher acts 
intentionally to share his knowledge. In an adidactical situation the teacher purposefully withdraws, 
leaving space for students to develop their own activities. Students need this space to invoke their 
own meaningful strategies to address the slide problem.  

For Brousseau it served another purpose: to change the expectations the students and the teacher have 
of each other. He calls it finding a new didactical contract. During this adidactical situation the 
teacher cannot be expected to be involved in the mathematizing process. Instead (groups of) students 
interact with the milieu. For the slide task the milieu consists of the problem itself together with the 
artifacts that may be needed to tackle it, for example GeoGebra.  

The slide task lesson plan is set up according to phases from TDS and starts with the teacher 
explaining the problem and introducing artifacts that can be used to work on it. Then the teacher 
symbolically hands over the milieu to the students and withdraws. What follows is an adidactical 
action phase of 20 to 30 minutes. In this phase students work on the problem in groups of three. They 
may apply any approach they think is useful. The teacher, even though not interacting with the 
students, is not inactive: she registers solution strategies from the students and identifies examples 
that might be used in the following formulation phase. The teacher makes sure that for groups that 
have different strategies one student explains their approach on the blackboard. Then follows a 
validation phase. The teacher asks: “are some solutions better than others? Is there a best solution? 
How do you know?”. The classroom discussion that these questions provoke form the input for the 
last phase: the institutionalization phase. In this phase the teacher is expected to be able to organize 
the ideas and strategies presented by students into solution models of the slide problem. The teacher 
makes a start with transforming the emerging model of the situation produced by students into a model 
for mathematical reasoning.   

Method 
Context. This task was conceived during a project meeting of the Erasmus+ project Meria on inquiry 
based mathematics teaching. A working group designed a detailed scenario describing teacher and 
student activities and possible solution strategies. 

Procedure. The data for this pilot include self-reports, including students work, of pilot lessons by 
three Dutch teachers (from now on referred to as teacher A, B and C). Teacher B is involved with the 
whole Meria project as a teacher who performs pilots; the other two teachers signed up for the course 
after reading about it in a national newsletter. They were trained to give the lesson in a three hour 
course taught by the authors. In the course we had a try-out of the scenario and discussed the scenario 
in detail. The potential of the adidactical phase(s) was stressed as this is an uncommon position for 
teachers to be in. At some point in the following four weeks they taught the lesson. After the lesson 
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teachers assembled the work of the students and wrote a report including their observations and 
experiences during the lesson. In a second meeting, after those four weeks, we discussed the 
experiences of the pilot and their reports with the teachers. 

Other data is the self-report on a pilot conducted by the first author. 

Analysis.  

In an a priori analysis we discerned three hypothetical student approaches, based on three formal 
approaches to the tangent line. In the a posteriori analysis, we consider signs or traces of each 
approach as an indicator of a situational student model, which may later be vertically mathematized 
into a more formal mathematical model given by the definition.    

1. (Bounding line approach) Students choose a free line and then move (translate and rotate) it 
until there seems to be just one intersection point in the area of focus. This informal approach 
relates to a formal definition of the tangent line as a unique local bounding line (this we will 
explain more precisely in the continuation of this research project). 

2. (Secant lines approach) Students choose one point on the curve, the intended point of 
tangency. Then they choose another point on the curve, draw the line between the two points, 
and move the second point closer to the first (this works best in Geogebra or similar) to obtain 
a smoother fit. This informal approach relates, of course, to the standard school book approach 
of the tangent line and slope. 

3. (Linear approximation approach) Students choose one point on the curve, draw a line and then 
try to adjust the slope so that it fits best against the curve (perhaps by wiggling their ruler). In 
GeoGebra or similar this can be done by moving the second point needed to draw the line. 
This informal approach relates to the more formal approach of the tangent line as the best 
linear approximation at a point of the curve (this will also be explained more precisely in 
future work). 

The main distinction between the approaches is in the way the smoothness of the slide designs is 
evaluated or controlled by the students in the slider context: (1) by looking for intersection points, (2) 
by moving the point closer and closer and (3) by looking for intuitive smoothness. If students allow 
GeoGebra to compute the intersection point of the line and the curve, then approach 1 and 3 will 
resemble approach 2, since they will see the two intersection points approaching each other as they 
move closer to the desired line. In approach 1 students fix the slope and search for corresponding 
point, whereas in approach 2 they fix the point and find the corresponding slope. In approach 3 both 
options are present. 

After students have drawn some lines and curves and written corresponding equations, they will have 
to find out whether their solution is ‘smooth’ enough. In a second a priori analysis, of what might be 
discussed by the students and/or the teacher in the validation phase, we expect three possible ways 
for students to evaluate their own design (in line with Zandieh, 2000):  

I. (Visual). Some will rely on their visual evaluation of the design: if it looks goods, then it is 
good. Students may also choose to zoom in on the curve (work on a smaller scale), for example 
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using GeoGebra or similar, to check whether their fit is smooth. Zooming in the curve should 
more or less coincide with line (see the Locally Straight Approach in Tall 2013).  

II. (Algebraic). The students may compute whether their system of equation has the intended 
intersection point as a solution. Moreover, students could try and compute that there is 
precisely one solution to the system of two equations (at least locally). For example, if the 
curve is described by 𝑦𝑦 = 𝑥𝑥2 and the line is translated, so 𝑦𝑦 = 𝑥𝑥 + 𝑏𝑏. Finding the value of 𝑏𝑏 
for which the discriminant of the equation 𝑥𝑥2 = 𝑥𝑥 + 𝑏𝑏 is zero, gives the desired line. For 
general algebraic curves one could study for which value of 𝑏𝑏 the intersection point has 
multiplicity ≥ 2. 

III. (Numerical). As a continuation of the second and third approach it would seem natural to 
choose the second point very close to the first and see how the slope of the obtained line 
compares to the suggested line. For example, if 𝑦𝑦 = 𝑥𝑥2 and 𝑦𝑦 = 2𝑥𝑥 − 1, the line through 
(𝑥𝑥0,𝑦𝑦0) = (1,1) and (𝑥𝑥1,𝑦𝑦1) = (1.001, 1.0012) has a slope very close to 2. Students may 
even study a sequence of points (𝑥𝑥1,𝑦𝑦1) ever closer to (1,1), which would bring them very 
close to the definition of a derivative through the difference quotient.  

We collected the work of the students. In some cases that was individual paper work, but in most 
cases groups handed in one A4 with their notes and solutions. Furthermore, the teachers reported 
about the lessons, what they observed during the action phase, to what extent they were able to follow 
the scenario and what they saw as main results of the lesson. We analyzed the data for occurrences 
(of traces) of approaches 1, 2 and 3 during the action phase. In addition, these resources were used to 
find occurrences of the evaluation methods I, II and III during the action phase and validation phase 
(possibly the teacher introducing them during a didactical validation phase). These traces were used 
to hypothesize what informal situational mathematical models emerged from the students’ work.   

Finally these observed approaches were analyzed for their connection to what the teachers reported 
to have institutionalized in the final phase of the lessons. In particular, we tried to decide whether the 
potential in the students’ work was seen and used by the teacher.  

Results 
We discuss the work of some groups that represent various 
observed approaches. A group of grade 8 pre-university school 
students from teacher A used approach 1: in GeoGebra they 
translated the line with fixed slope until it seemed to be tangent 
to the hyperbola 𝑦𝑦 = 10

𝑥𝑥
 (see Figure 1). The suggested line has 

equation 𝑦𝑦 = −𝑥𝑥 + 6,4. This looks acceptable (evaluation 
method I), but actually the two intersection points are 
approximately 2 apart. Clearly these students have neither 
computed the intersection points (algebraic evaluation) nor 
zoomed in on the graphs (enhanced visual evaluation).  

Figure 1. Sample student work 
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The teacher reports that students mention that they are looking for the line such that there is one 
intersection point. So these students’ informal model of the situation relates to the bounding line 
definition of tangent line. The teacher writes in her report that she is disappointed that the students 
did not arrive at the notion of slope of a curve at a point. But, in this case, in the institutionalization 
phase the teacher could have used the students’ explanation of their strategy and the fact that students 
mention that they are looking for one intersection point to discuss the tangent line as a bounding line. 
Next, with the students, she could discuss evaluation method II as a step towards the target 
knowledge. This makes clear that there is a difficulty for teachers to realize the potential in the 
informal solutions students present. The challenge is to relate students’ models to the target 
knowledge. 

A group of grade 10 vocational school students from teacher B draws 
a tangent line to 𝑦𝑦 = 𝑥𝑥2 at the point (−2,4) (see Figure 2). First they 
seem to have drawn a secant line through (−1,1) and (−2,4), but 
this is then dismissed for the sequel. They somehow come up with a 
∆𝑦𝑦 = 5.7 for this candidate tangent line on the interval [−3,−1]. 
They compute the slope of the line. What follows is unfortunately 
nonsense, but nevertheless the teacher was very excited about their 
approach and let them present it at the blackboard during the 
formulation phase. Rightfully so, since these students’ informal 
solution method is precisely the model one needs to introduce the 
slope of a curve at a point. The teacher writes in her self-report: “The 
notion of … slope in a point became meaningful”.    

Another group from teacher B goes through a sequence of improved 
slide designs (see Figure 3). The first one has an asymptote; students 
write “does not have a straight bit”. The second one is 
correct, but is dismissed, because the straight bit is 
horizontal instead of going up. The third is still with 
decimal coefficients, but the next four all are clearly 
attempts at exact solution (5 and 6 the same). Their 
approach can be classified as type 3. Teacher B told the 
class that zooming in was a good idea, so all students had 
a means of evaluating their solutions (method I). What 
happens in the last attempt is a “nice number wonder”: 
by choosing nice numbers −2 and 1

2
 the students hit the 

bull’s eye. 

Teacher C did not formulate the task properly. She said: 
“Figure out in groups which functions could describe 
this curve”. As a consequence, most students did not 
work with a line and a non-linear curve and the teacher 
got stuck trying to institutionalize the target knowledge 
as aimed for in the scenario. 

Figure 2: Sample student work 

Figure 3: Sample student work 
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The first author performed a pilot study with twelve grade 9 pre-university students equally divided 
in three groups. One group made drawings of circle segments and approximate tangent lines, using 
that the radius is perpendicular to the tangent. Within a few minutes they say: "the slope of the tangent 
line is important". Then they solve the problem by choosing a circle 𝑥𝑥2  + 𝑦𝑦2  = 2 which goes 
through the point (−1,−1). For this point they infer that the slope of the tangent line is -1 (also 
visually obvious), which leads them to the equation 𝑦𝑦 = −𝑥𝑥 − 2. This group’s approach seems to be 
a case of vertical mathematization. Tangents to circles were already meaningful to them and for them 
solving the problem easily changes into symbolic work: doing some computations. After they showed 
the teacher their solution, he asked them to find a solution using a parabola. Their quick solution was 
a vertical line (𝑥𝑥 = 0) and a parabola (𝑥𝑥 = 𝑦𝑦2). Then they asked: "How can you decide the right slope 
for a different point on the parabola?". This was a very welcome question, later referred to by the 
teacher in the institutionalization phase. 

Another group quickly decided they wanted to use a tangent line with a parabola and a line design 
and surprisingly knew the algebraic way (II) to evaluate it: using the discriminant to decide whether 
the intersection point is unique. It turned out that the class made an exercise about exactly this a few 
weeks ago. Still the group took a long time to decide on a suitable line, finally settling for a correct 
one. According to the students this was obtained by guessing!  

In the institutionalization phase the teacher used the students’ solution strategies and remarks to stress 
the importance of the slope of the tangent line (both in the circle solution and parabola solution). He 
explained this was called the slope of the curve at a point. With the students they decided that for a 
circle they could compute the slope in every point, but for the parabola new techniques would be 
necessary. This would be the subject for later lessons. 

Discussion 
Did the task and scenario provide opportunities for students to “experience a qualitative, global, 
introduction” to the slope of a curve in a point, as was the goal of the task? More concretely: did 
students come up with ideas that are essential to the notion of slope of a curve in a point? Based on 
the observations above one could conclude the students did. 

Two ideas that are essential to the notion of slope did not come up naturally for students in the pilot. 
Firstly, the secant lines approach (2) did not occur in any of the pilot lessons, neither did any 
numerical evaluation of the design (III). This indicates that for the students in the pilot this approach 
does not come naturally (given the current Dutch curriculum and the task). Many students do have a 
dynamical approach, in the sense that they try to improve their initial and following attempts by 
varying parameters of the curve or the line to end up with a (visually) seemingly smoother result. But 
using two points on the curve to construct such a sequence of better and better fitting lines seems not 
a natural idea to come up with. On the positive side: the dynamical approach of “improving on your 
previous line” is a first step toward understanding the tangent line as the result of limit procedure. 
Secondly, the idea of zooming in or changing scale as an evaluation method has not occurred naturally 
to students. Once told by teacher B, students immediately grasped the idea and could use it, but they 
did not reinvent it. Students seem to prefer to stick to the scale at which they drew their first picture 
and work with reasonably nice numbers within that scale. 
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If students discover that some of their solutions have two intersection points, in the institutionalization 
phase the teacher could try and use this discovery to form a bridge to approach 2 and the difference 
quotient. As soon as you have two intersection points the idea of moving one of them to find a new 
line is a reasonable step.  

A more radical conclusion in line with RME principles would be to go with the students’ informal 
models all the way, instead of trying to facilitate a bridge towards the traditional way to introduce the 
slope. If the students’ approach suggests the bounding line definition of a tangent line is the more 
meaningful for them, then the teaching sequence should be based on it. One can design instructional 
sequences following on approach 1 and 3 (in addition to existing sequences based on approach 2). 
These questions will be topic of study during the next steps in the context of this project. 

Finally, in this project we combined principles from TDS and RME. This experience showed that the 
TDS emphasis on organizing didactic and adidactic phases by a teacher, in connection with the RME 
principle of reinvention guided by emergent models during these phases, supported the design of an 
inquiry-based scenario for students. 
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We present a hypothetical learning trajectory for a sequence of tasks designed for a calculus module. 
The purpose of the tasks was to give undergraduates opportunities to use technology to experiment 
and make conjectures while developing their understanding of the effects of translations on graphs.  
We consider data from task-based interviews with two students. The hypothetical learning trajectory 
for this sequence of tasks is compared with the actual learning trajectory of the students, and we 
conclude there was some evidence that our learning goals were achieved. 

Keywords: task design, undergraduate mathematics; conjecturing. 

Introduction  
The types of tasks that students work on can influence the reasoning and learning processes in which 
they engage (Jonsson, Norqvist, Liljekvist, & Lithner, 2014). In Ireland, recent studies have 
highlighted that the majority of tasks both in secondary school textbooks and in undergraduate 
calculus modules could be solved with imitative reasoning, that is by memorization or following a 
familiar algorithm (O’Sullivan, 2017; Mac an Bhaird, Nolan, Pfeiffer, & O’Shea, 2017). In this 
context it is important to design tasks which give students opportunities to develop higher-order 
mathematical thinking skills, such as conjecturing and generalizing, to move them away from rote-
learning.  The first and last authors (Breen & O’Shea, 2018) designed a framework of task types for 
undergraduate calculus modules with the aim of developing mathematical thinking skills such as 
those suggested by Mason & Johnston-Wilder (2004, p. 109). Subsequently, interactive versions of 
some of the tasks were developed using the dynamic geometry software GeoGebra. In this paper we 
will consider a hypothetical learning trajectory (Simon, 1994) for a set of two conjecturing tasks 
designed using Geogebra on the topic of graph transformations and present data from task-based 
interviews to explore the actual learning trajectories engendered by this sequence of tasks. 

Theoretical Framework 
Task Design 

The framework of mathematical task types used here has six task types: evaluating mathematical 
statements; generating examples; analysing reasoning; visualizing; using definitions; conjecturing 
and generalizing (Breen & O’Shea, 2018). We will focus here on the last of these; we will first review 
the literature to present a rationale for this task type and for using technology in the design.  

The acts of conjecturing and generalizing are well-known to be part of the tools of a professional 
mathematician (Bass, 2015); indeed, Bass describes the progress of most mathematical work as 
starting with exploration and discovery, then moving on to conjecture, and finally culminating in 
proof. He identifies two phases of reasoning here: reasoning of inquiry (incorporating exploring and 
conjecturing) and reasoning of justification (rooted in proof). The acts of conjecturing, generalising, 
experimenting and visualising are included in the list of processes which aid mathematical thinking 
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given by Mason and Johnston-Wilder (2004); these authors also discuss ‘natural’ powers that learners 
possess such as the ability ‘to imagine and detect patterns,..., to make conjectures, to modify these 
conjectures in order to try to convince themselves and others’ (Mason & Johnston-Wilder, 2004, p. 
34). They stress the importance of creating a ‘conjecturing atmosphere’, so that students can 
participate in inquiry and develop their mathematical thinking skills. 

Dreyfus (2002) defines generalizing as “to derive or induce from particulars, to identify 
commonalities, to expand domains of validity” (p. 35). He acknowledges the important role played 
by generalizing in the process of abstraction, in moving from a particular instance to a generality, and 
notes the difficulty that many students have with generalization. Swan (2008) explains that the 
process of identifying general properties of a concept from particular cases is one with which a student 
must be able to engage in order to come to truly understand a concept. 

Breda and Dos Santos (2016) examined how GeoGebra tools can enable students to conjecture and 
provide mathematical proof, and recommended such tools be used to support the study of complex 
functions. The use of technology has a number of advantages: for instance, information can be 
gathered and processed quickly so that teachers and students can make decisions efficiently to exploit 
learning opportunities; moreover, the burden of computation can be removed or reduced to allow 
students to explore and experiment. Borwein (2005) described specific benefits of the use of 
technology to mathematicians, including: to gain insight and intuition, to discover new patterns and 
relationships, to expose mathematical principles through graphs, to test and falsify conjectures, to 
explore a possible result to see if it merits formal proof, to do lengthy computations. All of these have 
an important role to play in responding to a conjecturing/generalizing task. 

Hypothetical Learning Trajectory Construct 

Simon (1995) introduced the notion of a hypothetical learning trajectory (HLT) as part of a model of 
mathematics teaching. The HLT is made up of three parts: learning goals (as set by the instructor); 
learning activities (designed or selected by the instructor); and the hypothetical learning process (the 
instructor’s prediction of how student thinking will develop during the learning activities). Simon 
describes the symbiotic relationship between the learning activities and the hypothetical learning 
processes – the ideas which underlie the learning activities are based on the instructor’s beliefs about 
student learning, and these in turn are influenced by what is observed during the learning activities. 
Thus theory informs practice and vice versa. 

Simon and Tzur (2004) advocate the use of HLTs in task and curriculum design (especially for 
‘problematic’ topics) as a mechanism to ensure that adequate thought is given to how student learning 
might evolve during activities, and as a means to study the success of learning activities. The HLT 
construct has been used to study teaching tasks and sequences of tasks in a variety of settings 
including undergraduate mathematics courses. Andrews-Larson, Wawro and Zandieh (2017) note 
that HLTs are useful ways of tying theory to practice, and use the notion of HLT to outline how 
certain tasks could lead to undergraduate students developing new understanding in Linear Algebra. 
Stylianides and Stylianides (2009) compared HLTs and actual learning trajectories to provide 
evidence that an instructional sequence of tasks had achieved the desired goals.  
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Our Task Sequence and Hypothetical Learning Trajectory 
We will consider the HLT for our task sequence and the actual learning progression of two students. 

Learning Goals 

Eisenberg and Dreyfus (1994) discuss the fundamental importance of developing 'function sense' with 
undergraduate students. They describe facets of this as including dependence, variation, co-variation 
and the effects of operations on functions. One of the most important components of function sense 
is the flexibility to move between multiple representations of a function. The key to solving many 
problems is to think of them visually, using a graph - including problems encompassing the main 
facets of functions mentioned above. However, Eisenberg and Dreyfus report that many students 
(even those more advanced mathematically) are reluctant to do so.  

The function operations that we focus on in this paper are graph transformations, specifically vertical 
and horizontal translations of the graph of functions from R to R. The learning goals are: 

1. observing and articulating the effects of translations on graphs: in particular, describing the 
relationship between the graphs of 𝑦𝑦 = 𝐹𝐹(𝑥𝑥) and those of 𝑦𝑦 = 𝐹𝐹𝑖𝑖(𝑥𝑥) for 𝑖𝑖 = 1,2 (where 
𝐹𝐹1(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) + 𝑎𝑎 and  𝐹𝐹2(𝑥𝑥) = 𝐹𝐹(𝑥𝑥 + 𝑎𝑎)); 

2. observing that, in general, the functions 𝐹𝐹1(𝑥𝑥) and 𝐹𝐹2(𝑥𝑥) are different when 𝑎𝑎 ≠ 0; 
3. making conjectures, in particular generalizing data from examples observed; 
4. using the technology to undertake experiments. 

Note that we have both local (1 and 2) and more global (3 and 4) learning goals for student reasoning 
and skill development arising from our task sequence. Goal 1 targets the flexibility to move between 
representations of a function. The goals of the task sequence do not include students providing proofs 
for their conjectures since our tasks deal with Bass’s (2015) reasoning of inquiry rather than 
reasoning of justification.  

The Task Sequence 

For the last number of years, we have been developing a bank of tasks using our framework. 
Originally these tasks were paper-based  and aimed to give students opportunities to explore, spot 
patterns, and make conjectures based on their observations. We noticed that some students had 
difficulties drawing the graphs of the functions mentioned and so were not able to generalize or make 
a conjecture.  In 2016, we redesigned these tasks using GeoGebra; we will refer to these as Tasks A 
and B. (Task A is shown in Figure 1 and Task B is similar except with 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 𝑎𝑎)3 etc.). The 
computational burden was thus removed from the students and we hoped that this would allow them 
more freedom to experiment and conjecture appropriately. In contrast with the paper-based tasks, the 
use of GeoGebra allowed us to enable students to quickly see graphs of the form 𝑦𝑦 = 𝐹𝐹(𝑥𝑥) + 𝑎𝑎 (Task 
A), and 𝑦𝑦 = 𝐹𝐹(𝑥𝑥 + 𝑎𝑎) (Task B), for values of a ranging over an interval. Both tasks, and others from 
this project, can be found at http://mathslr.teachingandlearning.ie/GeoGebra/. 

Hypothetical Learning Progression 

As students engage with the task sequence we expect the following activity and learning from them:  

· experimenting with the sliders;  
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· noticing how the graph of the function 𝑓𝑓 changes as 𝑎𝑎 changes, in particular noticing the
difference in behaviour for positive and negative values of 𝑎𝑎;

· remarking in the case of Task A (respectively Task B) on the vertical (respectively
horizontal) shift of the graph and expressing the relationship between 𝑓𝑓 and 𝑓𝑓1(respectively
𝑓𝑓2) mathematically;

· noticing analogous relationships in the cases of 𝑔𝑔 and ℎ to identify a pattern;
· using the data from 𝑓𝑓, 𝑔𝑔, and ℎ to make a conjecture about the effects of transformations of

the types in Task A and B on graphs;
· amalgamating the relationships observed to realise that, in general, the functions 𝑓𝑓1(𝑥𝑥) and

𝑓𝑓2(𝑥𝑥) are different when 𝑎𝑎 ≠ 0.

Figure 1: Task A 

Data collection and analysis 

In order to investigate the use and effectiveness of the tasks, the second author carried out a series of 
task-based interviews with a sample of students from a first-year calculus module in which some 
GeoGebra tasks were trialed. Four students were asked to think aloud while completing a selection 
of the tasks. Pre and post-tests, each consisting of the same four questions (where one question had 
two parts), were used at the beginning and end of the interviews in order to help determine if the 
students’ mathematical thinking had changed as a result of completing the tasks. The interviews, 
which lasted about an hour, used purpose built software to record video, audio, screen and mouse 
movements. Each student completed between four and seven GeoGebra tasks depending on how 
quickly they moved through them. The interviews were transcribed by the second author using the 
audio recording to which she added a summary of what was happening onscreen at that time. The 
transcriptions were analysed for significant incidents by two of the three authors, and their results 
were compared and agreed on.  

Task A: (GeoGebra Task) Use the slider on each graph to change the values of 𝑎𝑎 in the functions 𝑓𝑓(𝑥𝑥) =
𝑥𝑥3 + 𝑎𝑎, 𝑔𝑔 (𝑥𝑥) =  1

𝑥𝑥2
+ 𝑎𝑎, ℎ(𝑥𝑥) =  3𝑥𝑥 + 𝑎𝑎. 

i. What is the relationship between the pair of graphs 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑓𝑓1(𝑥𝑥) below?
[The graphs of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) (with 𝑎𝑎 initially set at 1) and 𝑦𝑦 = 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥3 are shown as well as a
slider which allows  𝑎𝑎 to range from -5 to 5. When the value of 𝑎𝑎 changes the graph 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)
changes accordingly.]

ii. What is the relationship between the pair of graphs 𝑦𝑦 = 𝑔𝑔(𝑥𝑥) and 𝑦𝑦 = 𝑔𝑔1(𝑥𝑥) below?
[The graphs of 𝑦𝑦 = 𝑔𝑔(𝑥𝑥) (with 𝑎𝑎 initially set at 1) and 𝑦𝑦 = 𝑔𝑔1(𝑥𝑥) = 1

𝑥𝑥2
 are shown as well as a 

slider which allows  𝑎𝑎 to range from -5 to 5.]  

iii. What is the relationship between the pair of graphs 𝑦𝑦 = ℎ(𝑥𝑥) and 𝑦𝑦 = ℎ1(𝑥𝑥) below?
[The graphs of 𝑦𝑦 = ℎ(𝑥𝑥) (with 𝑎𝑎 initially set at 1) and 𝑦𝑦 =  ℎ1(𝑥𝑥) = 3𝑥𝑥 are shown as well as a
slider which allows  𝑎𝑎 to range from -5 to 5.]

iv. Can you make a general conjecture about the relationship between the graphs of 𝑦𝑦 = 𝐹𝐹(𝑥𝑥) and
𝑦𝑦 = 𝐹𝐹(𝑥𝑥) + 𝑎𝑎 from your observations about the graphs of the pairs of functions above? What
happens when 𝑎𝑎 > 0? What happens when 𝑎𝑎 < 0? What happens when 𝑎𝑎 = 0?
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Results 
We will consider in some detail the responses of two of the three students who completed the pre-
test, then worked on Tasks A and B in the task-based interviews, and subsequently completed the 
post-test (see Table 1 below). One question which appeared on the pre-test and post-test was the 
following: 

Q4(ii) Suppose f(x) is a function defined for all real values of x. Decide if the statement is true or 
false. Explain your answer.   If a is any real number then f(x+a) = f(x)+a for all values of x. 

All three students answered Q4(ii) correctly on the post-test but two of them (given pseudonyms Áine 
and Seán) gave incorrect answers on the pre-test.  

 

Student Q4(ii) on pre-test Task A  Task B Q4(ii) on post-test 

Áine Says ‘It’s a function’ 
and writes ‘true’. Later 
she says she thought 
that the question was 
asking whether the 
expression 
f(x+a)=f(x)+a 
describes a function. 

Is able to verbalise the 
relationship between the 
graphs and is able to make 
the expected conjecture. 

Is able to 
verbalise the 
relationship 
between the 
graphs and is 
able to make the 
expected 
conjecture. 

Writes:  if a=0 but 
not for other values 
of a. Explains by 
referring to the 
GeoGebra tasks. 

Seán Writes ‘True’ and 
gives example with 
f(x)=x, a=1, x=1. Later 
when asked what he 
thought this question 
was asking: I took it as 
a set [particular] 
function rather than an 
arbitrary function. 

Notices that the y-intercepts 
of the graphs of f and h 
depend on the choice of a. 
For g, he notices that the 
horizontal asymptotes 
depend on a, (but does not 
use correct terminology). 

Is able to make the expected 
conjecture. 

Notices that the 
x-intercept 
varies according 
to choice of a. 
(He calls it the 
origin).  

Is able to make 
the expected 
conjecture. 

Says the statement 
is false and explains 
by referring to  
graph 
transformations. 

Table 1: Student responses in task-based interview 

Both Áine and Seán were able to use the sliders to obtain graphs of the different translations of the 
functions in question. Áine worked quickly on both tasks (she spent 2-3 minutes on each of them), 
she spotted the pattern and was able to verbalise it using mathematical language. For the first pair of 
functions on Task A she said:  

So as I can see here as I am taking values away from 𝑥𝑥3 the graph shifts down the y-axis and as I 
add values it shifts up the y-axis.  

She did the same for the graphs of the translations of 𝑔𝑔, predicted what would happen with ℎ, and 
was able to conjecture:  

when a >0 the graph of f moves up the y-axis and when it’s less than zero it moves down.  

Similarly on Task B, she was able to use the slider to generate vertical translations of the three 
functions, and she made a conjecture generalizing the pattern she observed. 
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Seán spent about 6 minutes working with the three graphs on Task A. He used the slider to examine 
how the functions changed for the range of values of a. He also was able to spot a pattern but focused 
on certain features of the graphs instead of the whole graph; for the translations of f and h he spoke 
about their y-intercepts (but used the term origin), and for the translations of g he noticed that the 
horizontal asymptotes depend on a (but did not use this term). For the general conjecture he scrolled 
back to the first pair of graphs, moved the slider, then looked at the other pairs of graphs:  

All the graphs shift upwards in the y direction by the value whichever value a is from the original 
position of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). When a<0 all the graphs shift down in the y direction by whatever value a 
is in the… by whatever value a is from wherever 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) happens to be. 

Seán worked through Task B in a similar manner for about 6 minutes. However, when asked to give 
a general conjecture this time Seán gave an appropriate response immediately without having to scroll 
back up through the three functions, as he did for the general conjecture in Task A.  

Discussion 
We have only presented evidence from two students who worked on a pair of 
conjecturing/generalizing tasks. However, from these case studies, we can draw some conclusions 
for these students’ learning. Our data suggests that both students achieved learning goals 1, 3 and 4 
as they were able to use the technology to experiment with the translations, they spotted patterns and 
were able to verbalise them, and they were able to make conjectures based on their experiments. The 
students’ responses to question 4(ii) on the pre- and post-tests give us cause to believe that the students 
have also achieved learning goal 2 during the task sequence. Both students gave an incorrect answer 
in the pre-test but in the post-test both revised their answers. Áine recognized that the statement is 
true for 𝑎𝑎 = 0 but not otherwise, and used her experiences on Tasks A and B to explain her  reasoning. 
In the pre-test Seán considered one numeric example in order to explain his response to question 4(ii). 
When Seán completed the post-test question 4(ii) he immediately stated that his original response 
was incorrect and referred to the vertical and horizontal translations from Tasks A and B. Finally, at 
the end of the interview, Seán was asked if he considered any of the tasks helped him respond to the 
post-test questions, and he said: 

[Tasks A and B] helped me to see and distinguish the differences in changing the values of a 
because I didn’t fully grasp what it was in the beginning.  

It is clear from the task-based interviews that GeoGebra took away the burden of computation; if we 
had asked students to draw the graphs of the three pairs of functions in Task A by hand, then it would 
probably have taken them a long time and they may have made mistakes. The use of the sliders in 
GeoGebra, allowed the students to watch how the graphs changed as the values of a changed, and 
they were then able to spot the pattern and then make a conjecture. Eisenberg and Dreyfus (1994) 
found that the students involved in their teaching experiment seemed to view function transformations 
as a sequence of two static states (the initial and final graphs) rather than as a dynamic process. They 
concluded that this may have been as a result of the graphing software available to them in which 
there was no means to see the continuous transformation developing before the students' eyes.  The 
advent of dynamic geometry software, such as GeoGebra, means that this is no longer an issue: the 
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students we interviewed for our study seemed to have developed an understanding of function 
transformation as a dynamic process. 

The use of software like GeoGebra makes visualization more immediate for students and we posit 
that this can help with engagement. We saw, probably because of the ease of visualization in Tasks 
A and B, that both students felt comfortable in making a conjecture. This corresponds with Borwein’s 
(2005) description of how mathematicians use technology in their own work, and we suggest that 
giving students the opportunity to use technology in this manner might encourage them to develop 
mathematical thinking skills (Mason & Johnston-Wilder, 2004).  

Furthermore, in the pre-test Seán seemed to see Q4(ii) as referring to a single function, but in the 
post-test he immediately recognizes that it is a general statement. We suggest that it is his experience 
of working on Tasks A and B that accounts for this change in perspective, although it may be that he 
is recalling earlier understanding rather than developing it during the task sequence. We note that the 
ability to appreciate the distinction between an instance and a generality is crucial in the development 
of mathematical thinking (Dreyfus 2002). Seán’s response could also be interpreted as a move 
towards seeing functions as objects rather than simply actions. 

Eisenberg and Dreyfus (1994) suggested that students found transformations in the horizontal 
direction (e.g.𝑓𝑓(𝑥𝑥) → 𝑓𝑓(𝑥𝑥 + 𝑎𝑎)) more difficult than those in the vertical direction (e.g.𝑓𝑓(𝑥𝑥) →
𝑓𝑓(𝑥𝑥) + 𝑎𝑎). They contended that one reason for this may simply be that more is involved in visually 
processing f(x+a) than f(x)+a. However, we found no evidence of this in the think-aloud interviews 
with our students. In fact, the students were quicker to conjecture, and more articulate in their 
description of, a general relationship between the graphs of f(x) and f(x+a) (Task B) than between 
f(x) and f(x)+a (Task A) which we supposed was due to the order in which the tasks were presented. 

It may be that our students would have had more difficulties justifying their conjecture in Task B 
rather than Task A, but such justifications were not part of our task sequence. One might criticize our 
task sequence as not being cognitively challenging, but we wanted to focus on conjecturing rather 
than proving. The tasks could easily be modified to allow students to input other functions in order 
to check their hypothesis, and could be expanded to ask for justifications or proofs. 

We agree with Simon and Tzur (2004) that the HLT construct is useful in task design as it highlights 
the importance of having clear learning goals and an informed view of how learning might take place 
at all stages of the design process. We feel that it can help when designing new versions of tasks if 
the original learning goals are not met, and furthermore provides a way of evaluating tasks by 
comparing the hypothetical learning process with actual learning.  

We have found some evidence that conjecturing tasks can encourage students to experiment and 
explore. We note that Bass (2015) sees this exploration as the first step in most mathematical work, 
and therefore it is a necessary skill that students should develop to improve their mathematical 
thinking. With this aim in mind, we hope to continue to design and evaluate tasks of this type. 

Acknowledgment 

Nairtl and The National Forum for the Enhancement of Teaching and Learning funded this study. 

 

Thematic Working Group 22

Proceedings of CERME11 4184



References 

Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for 
conceptualizing matrices as linear transformations. International Journal of Mathematical 
Education in Science and Technology, 48(6), 809-829. 

Bass, H. (2015). Mathematics and teaching. Notices of the American Mathematical Society, 62(6), 
630-636.

Borwein, J.M. (2005). The experimental mathematician: The pleasure of discovery and the role of 
proof. International Journal of Computer for Mathematical Learning, 10, 75-108. 

Breda, A.M., & Santos, J.M.D.S.D., (2016). Complex functions with GeoGebra. Teaching 
Mathematics and its Applications, 35(2), 102-110, 

Breen, S., & O’Shea, A. (in press). Designing mathematical thinking tasks. PRIMUS. 

Dreyfus, T. (2002). Advanced mathematical thinking processes. In Tall, D (eds) Advanced 
mathematical thinking (pp. 25-41). Mathematical Education Library, vol 11. Springer, Dordrecht. 

Eisenberg, T., & Dreyfus, T. (1994). On understanding how students learn to visualize function 
transformations. Research in Collegiate Mathematics Education, 1, 45-68. 

Jonsson, B., Norqvist, M., Liljekvist, Y., & Lithner, J. (2014) Learning mathematics through 
algorithmic and creative reasoning. The Journal of Mathematical Behavior, 36, 20-32. 

Mac an Bhaird, C., Nolan, B. C., O’Shea, A., & Pfeiffer, K. (2017). A study of creative reasoning 
opportunities in assessments in undergraduate calculus courses. Research in Mathematics 
Education, 19(2), 147-162. 

Mason, J., & Johnston-Wilder, S. (2004) Designing and using mathematical tasks. St Alban’s: 
Tarquin Press. 

O'Sullivan, B. (2017). An analysis of mathematical tasks used at second-level in 
Ireland (Unpublished doctoral dissertation), Dublin City University, Dublin, Ireland. 

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist 
perspective. Journal for Research in Mathematics Education, 26, 114-145. 

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: 
An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 
91-104.

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to 
proof. Journal for Research in Mathematics Education, 40(3), 314-352. 

Swan, M. (2008). Designing a multiple representation learning experience in secondary 
algebra. Educational Designer, 1(1), 1-17. 

Thematic Working Group 22

Proceedings of CERME11 4185



 

 

Developing the task progressions framework 
Scott A. Courtney1 and Dubravka Glasnović Gracin2 

1Kent State University, School of Teaching, Learning, and Curriculum Studies, USA; 
scourtn5@kent.edu 

2University of Zagreb, Faculty of Teacher Education, Zagreb, Croatia; dubravka.glasnovic@ufzg.hr 

The authors present a framework for use by: (1) teachers as they select, (re-)design, modify, or create 
mathematical tasks for a lesson, including out-of-class assignments, or a sequence of lessons; and 
(2) researchers to analyze the quality, diversity, and complexity of tasks in a lesson or sequence of 
lessons. The Task Progressions Framework integrates components of existing task analysis 
frameworks, notions of ‘rich’ tasks, task formats, differentiated instruction, and learning 
progressions to develop a guide for use in assembling or analyzing a set of tasks that help students 
develop particular mathematical ideas (concepts and procedures) and particular mathematical 
habits of mind. 

Keywords: Task analysis, lesson planning, learning progressions. 

Introduction 
Over the past two decades, there has been significant growth in the number of classification or 
categorization systems designed to characterize the complexity of tasks used by mathematics teachers 
during instruction and on assessments. Concurrent with this increase has come an expanded interest 
in the notion of ‘rich’ tasks. Not surprisingly, the meaning of ‘rich’ task employed, and the system 
utilized to classify tasks as being ‘rich’ are culturally, politically and institutionally dependent. For 
example, task-complexity classification systems utilized by teachers in the U.S are typically district- 
or school-dependent and can vary widely (e.g. Smith & Stein, 1998). Research on learning 
progressions in mathematics education has increased significantly over this same time period. 
According to Lobato and Walters, learning progressions “document students’ movement through 
benchmarks that are predetermined as a result of researchers’ rational analysis of particular content” 
(2017, p. 75). Therefore, learning progressions can “inform teachers about what to expect from their 
students . . . [and] provide an empirical basis for choices about when to teach what to whom” (Daro, 
Mosher, & Corcoran, 2011, p. 12).  

In the following sections, we present the Task Progressions Framework for use by: (1) teachers as 
they select, (re-)design, modify, or create mathematical tasks for a lesson or a sequence of lessons; 
and (2) researchers to analyze the quality, diversity, and complexity of tasks in a lesson or sequence 
of lessons. The goal of the framework is to support teachers in assembling, and researchers in 
analyzing, a sequence of tasks that helps students develop or use particular mathematical ideas and 
associated mathematical habits of mind. The framework allows teachers and researchers to ascertain 
the focus, coherence, and ‘richness’ of a sequence of tasks comprising a lesson (or lessons). As such, 
the framework integrates learning progressions and task-complexity classification systems to support 
instruction that helps students develop grade- or course-appropriate mathematical ideas and habits of 
mind. This paper seeks to concisely describe the framework, its development, and how researchers 
might utilize aspects of the framework to address the following research question: How can learning 
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progressions support analysis of the quality, diversity, and complexity of tasks in a lesson or sequence 
of lessons?   

Background 
Prior to examining the framework’s development and anticipated use, it is necessary to first clarify 
specific terminology that will be utilized throughout the discussion. Such clarification will help make 
our perspectives explicit. In addition, it will be worthwhile to describe existing criteria and 
perspectives that served to inform the development of the Task Progressions Framework.  

Mathematical Tasks and Rich Tasks 

We employ Umland’s (2011, p. 1) definition of a mathematical task as a “problem or set of problems 
that focuses students’ attention on a particular mathematical idea and/or provides an opportunity to 
develop or use a particular mathematical habit of mind . . . [where] mathematical idea includes both 
mathematical concepts and procedures”. Tasks can be further differentiated in terms of their use or 
purpose, where teaching or instructional tasks are “designed to support students’ mathematical 
learning or development and assessment tasks are designed to evaluate the development of students’ 
mathematical knowledge and/or habits of mind” (Umland, 2011, p. 1). Aligned with Umland’s (2011) 
terminology, we will call the mathematical idea and/or habit of mind that a task is intending to develop 
or assess, along with its intended use, the purpose of the task. We also drew upon a variety of ‘rich’ 
task criteria to develop the Task Progressions Framework. Grootenboer (2009, p. 697) describes key 
aspects of rich mathematical tasks to include: academic and intellectual quality; group work; catering 
for diversity through multiple entry points, multiple solution pathways; connectedness; and multi-
representational. For Swan (2005, p. 9), a rich task (a) is accessible and extendable; (b) allows for 
decision making by the learner; (c) involves testing, explaining, proving, interpreting, and reflecting; 
(d) promotes communication and discussion; (e) encourages invention and originality; (f) encourages
questions that focus on ‘what if’ and ‘what if not’; and (g) is enjoyable and provides an opportunity
for surprise.

Learning Progressions 

The National Research Council (2007, p. 214) characterize learning progressions as “descriptions of 
the successively more sophisticated ways of thinking about a topic that can follow one another as 
[students] learn about and investigate a topic over a broad span of time” (p. 214). For Daro et al. 
(2011, p. 12) “Learning progressions identify key waypoints along the path in which students’ 
knowledge and skills are likely to grow and develop in [mathematics]”. 

Framework 
We employed a networking of theories approach to coordinate and combine theoretical approaches 
into developing a framework to support teachers’ assembly, and researchers’ analysis, of tasks 
grounded on learning progressions. Textbooks have a major influence on teachers’ practices and 
students’ mathematics opportunities, because textbooks are considered to be one of the most 
important and powerful curriculum resources in mathematics education (Fan, Zhu & Miao, 2013). In 
addition, teachers often re-design or modify textbook problems to meet the mathematical needs of 
individual students or promote particular mathematical habits of mind. Such activity is a form of 
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problem-posing on the part of teachers (Rowland, Huckstep, & Thwaites, 2003). We realize that a 
teacher’s capacity to modify or create her own tasks is a function of the education system in which 
she operates, and countries with national, centralized mathematics curricula offer different 
affordances and constraints than countries with decentralized curricula. Two existing frameworks 
were foundational to the development of the Task Progressions Framework—one focusing on 
textbook tasks (Glasnović Gracin, 2018), the other on teachers’ mathematical problem posing 
(Courtney, Caniglia, & Singh, 2014). Glasnović Gracin (2018) developed a five-dimensional 
framework to examine the requirements in textbook tasks (Figure 1).  

 
Figure 1: Five-dimensional framework outline (Glasnović Gracin, 2018, p. 6) 

The five-dimensions are comprised of two distinct theoretical sources (Glasnović Gracin, 2018, p. 6): 
a three-dimensional model of mathematical competencies (Content, Mathematical Activities, 
Complexity Levels) based on the Austrian educational standards, and a two-component framework 
for analysing U.S. and Chinese textbooks involving Answer Forms and Contextual Features. 
Courtney et al. (2014) developed seven criteria to operationalize the characteristics of rich 
mathematics problems or tasks. These criteria emerged through meta-analysis of existing research 
(Table 1). The proposed Task Progressions Framework was developed by incorporating Glasnović 
Gracin’s framework and Courtney et al.’s criteria with research on learning progressions. Several 
areas of overlap occur between Glasnović Gracin’s framework (Figure 1) and Courtney et al.’s criteria 
(Table 1), including: (1) ‘Complexity levels’ and Characteristic #1 (High cognitive demand); (2) 
‘Activities’ and Characteristics #3 and #4 (Require justification or explanation; Make connection 
between two or more representations); and (3) ‘Answer form’ and Characteristic #5 (Openness). 

Rich mathematics problem / task characteristic Operational criteria 

1. High cognitive demand Problem involves creating, evaluating, and analyzing (comparing) versus 
remembering or statically using or applying procedures, facts, or skills. 

2. Significant content Problem meets one or more content standard. 

3. Require justification or explanation Problem includes a statement or question specifically asking students to 
justify or explain their answer. 

4. Make connection between two or more 
representations 

Problem incorporates two or more of the following representations: real life, 
manipulative, pictures, diagrams, or symbols. 

5. Open-ended: a) Strategy, b) Solution Problem includes more than one solution strategy; more than one solution. 

6. Allows multiple entry points Problem allows for a variety of entry points. 
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7. Allows multiple ways to show competence Problem allows for more than one way to show competence (e.g., draw, write, 
or graph answer); the emphasis is on the product. 

Table 1: Operationalized criteria of rich mathematics tasks (Courtney et al., 2014, p. 148) 

The proposed Task Progressions Framework consolidate areas of convergence. In addition, we 
attempted to allow for the framework’s use over both national (i.e. Italy’s Indicazioni, Japan’s 
Courses of Study) and decentralized curricula and various habits of mind classifications (e.g. Cuoco, 
Goldenberg, & Mark, 1996).     

Task Progressions Framework 
The proposed Task Progressions Framework is comprised of four primary categories or dimensions, 
as illustrated in Figure 2: (1) content, (2) mathematical habits of mind, (3) task format, and (4) task 
features. Each dimension plays a unique role in the framework, and each sub-category or process (e.g. 
Type of Student Engagement) is of equal importance within a given dimension (i.e. there is no 
hierarchy within a dimension). Figure 2 also provides proposed scoring information for researchers 
attempting to utilize the framework to analyze the quality, diversity, and complexity of tasks in a 
lesson or sequence of lessons. Finally, each of the four dimensions is given equal weight, regardless 
of the number of processes or sub-categories.  

Figure 2: Task Progressions Framework 

Content refers to the learning goals for what students should know and be able to do at the end of 
instruction (e.g. standards). The framework allows for a variety of content to be utilized, such as: 
Common Core State Standards for Mathematics (NGA Center & CCSSO, 2010) or the National 
Curriculum Framework Mathematics Area (Ministry of Science, Education and Sports, Republic of 
Croatia, 2010). Critical to content are the complexity of the knowledge and skills students need to 
engage productively in the task (i.e. level of complexity or rigor) and where a task’s content is situated 
in a learning progression. The Mathematical Habits of Mind involve the mathematical processes and 
proficiencies that support students in creating, inventing, conjecturing, and experimenting (Cuoco et 
al., 1996). The framework addresses habits of mind by requiring teachers to identify where and how 
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a sequence of tasks: (i) promote persistence, productive struggle, and/or self-regulation; (ii) requires 
sense making, reasoning, explanation, critiquing, and/or justification; (iii) involves solving problems 
that arise in everyday life, society, and the workplace; (iv) requires abstraction, generalizing, and/or 
seeing structure; and (v) requires making connections between two or more representations. Such 
habits of mind are not isolated and frequently interact and overlap with one another. Task Format 
identifies the manner in which students are expected to engage with the sequence of tasks (in-class 
activity, in pairs), how students are expected to illustrate their task products (e.g. presentation) and 
whether tasks are digitally enhanced or involve physical manipulatives (e.g. algebra tiles). Finally, 
Task Features involve meeting the needs of all students in the classroom (e.g. differentiated 
instruction) by requiring the sequence of tasks provide: (a) multiple entry points; (b) multiple ways 
to show competence; and (c) open-ended strategies and/or solutions. Unfortunately, limitations in 
space do not allow for a more robust elaboration of the framework and its development.  

Utilizing the Task Progressions Framework 

Next, we address the research question by providing an example for how researchers might utilize 
aspects of the framework, those connected with learning progressions, to analyze a sequence of 8th 
grade mathematics lessons (covering approximately 80 minutes of instruction) involving the 
Common Core standards (NGA Center & CCSSO, 2010)—used by 42 of 50 U.S. states. The lessons 
were created by an 8th grade math teacher to help his students develop proficiency with the content 
standard identified by the alphanumeric indicator or code ‘8.EE.8a’ (see Table 2). All tasks used 
during the lessons derive from the class textbook Big Ideas Math: Modeling Real Life, Grade 8 
(Larson & Boswell, 2018). Due to limitations in space, we focus the discussion on whether and how 
the sequence of tasks (sets of problems) address content indicated by considering learning 
progressions. Standards-based coherence map resources (e.g. Student Achievement Partners, 2013) 
utilizing learning progressions and our own reflecting on students’ development of successively more 
sophisticated ways of thinking about systems of linear equations in two variables, identified those 
content standards with the potential to be taught concurrent with and standards essential as 
prerequisite to standard 8.EE.8a (see Table 2). In addition, we determined that it was important for 
students to recall what it means for a linear equation to have a solution, no solution (e.g. 2x + 3 = 2x 
+ 5), and infinitely many solutions (e.g. 3x – 4  = 3x – 4), and to interpret the “equation y = mx + b 
as defining a linear function, whose graph is a straight line” (NGA Center & CCSSO, 2010, p. 55).  

Alphanumeric 
Indicator / Code 

Grade Level / 
Domain 

Standard Statement 

8.EE.8.a 8th Grade / 
Expressions and 
Equations (EE) 

8a - Understand that the solution to a pair of linear equations in two variables 
corresponds to the point(s) of intersection of their graphs, because the point(s) of 
intersection satisfy both equations simultaneously. 

8.EE.8.b 

(Concurrent) 

8th Grade / 
Expressions and 
Equations (EE) 

8b - Use graphs to find or estimate the solution to a pair of two simultaneous linear 
equations in two variables. Equations should include all three solution types: one 
solution, no solution, and infinitely many solutions. Solve simple cases by inspection. 

8.EE.8.c 

(Concurrent) 

8th Grade / 
Expressions and 
Equations (EE) 

8c - Solve real-world and mathematical problems leading to pairs of linear equations in 
two variables. (Limit solutions to those that can be expressed by graphing.) 
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8.EE.6

(Prerequisite) 

8th Grade / 
Expressions and 
Equations (EE) 

6 - Use similar triangles to explain why the slope m is the same between any two distinct 
points on a non-vertical line in the coordinate plane; derive the equation y = mx for a 
line through the origin and the equation y = mx + b for a line intercepting the vertical 
axis at b. 

7.EE.4.a

(Prerequisite) 

7th Grade / 
Expressions and 
Equations (EE) 

4a - Solve word problems leading to equations of the form px + q = r and p(x + q) = r, 
where p, q, and r are specific rational numbers. Solve equations of these forms fluently. 
Compare an algebraic solution to an arithmetic solution, identifying the sequence of the 
operations used in each approach. 

6.EE.5

(Prerequisite) 

6th Grade / 
Expressions and 
Equations (EE) 

5 - Understand solving an equation or inequality as a process of answering a question: 
which values from a specified set, if any, make the equation or inequality true? Use 
substitution to determine whether a given number in a specified set makes an equation 
or inequality true. 

Table 2: Content or Practice associated with standard 8.EE.8.a 

The lessons utilized several tasks or sets of problems as examples or assigned as in-class or out-or-
class practice. Regarding prior topics and standards, the teacher assigned four problems as in-class 
practice (to be worked on in student pairs) from the ‘Review & Refresh’ section of the textbook (see 
Figure 3). None of these four problems focus on any of the standards 6.EE.5, 7.EE.4a, or 8.EE.6 (see 
Table 2) identified as important prerequisite content. As such, the teacher is not able, at least through 
this set of problems, to ascertain whether students have developed necessary prerequisite 
understandings and skills.  

Figure 3: Practice problems (Larson & Boswell, 2018, p. 201, 203) 

Furthermore, although problems #1 and #3 (Figure 3) focus on ‘point-slope’ form, y – y1 = m(x – x1), 
rather than ‘slope-intercept’ form (y = mx + b) of the equation, they do provide some sense for 
interpreting the equation as defining a linear function whose graph is a straight line. Finally, problems 
#4 and #6 provide practice with linear equations having one solution, but there are no ‘Review & 
Refresh’ problems involving linear equations with no solution or infinitely many solutions. Therefore, 
regarding the portion of the framework focusing on ‘Content: Learning Progressions’ (Figure 2), the 
set of problems demonstrate little in terms of addressing prerequisite understandings and skills.  

Several practice problems request that students, “Solve the system by graphing” (Figure 3). Each of 
these practice problems has a solution, which limits the degree to which interdependent content 
standard 8.EE.8b (Table 2) is involved. Although none of the practice problems include a real world 
context, they each require that students “[s]olve … mathematical problems leading to pairs of linear 
equations in two variables … [with] solutions … that can be expressed by graphing” (NGA Center & 
CCSSO, 2010, p. 55); thus, partially incorporating content standard 8.EE.8c (Table 2). The last set of 
problems, utilized by the teacher as an in-class (students work in pairs) and out-of-class (individual 
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work) assignment, are identified by the textbook as ‘Open-Ended’, ‘Reasoning’, ‘Dig Deeper’, or 
‘Problem Solving’ in nature (Figure 4). 

 
Figure 4: System of linear equation problems (Larson & Boswell, 2018, p. 204) 

Problem #26 asks whether a system of linear equations can have multiple solutions, which intimates 
at interdependent content standard 8.EE.8b (Table 2) but to a limited degree. Problem #20 includes a 
real world context, thus incorporating content standard 8.EE.8c into the lesson. Therefore, continuing 
to focus on the ‘Content: Learning Progressions’ portion of the framework, the set of problems 
address concurrent understandings and skills to a limited degree. Considering both prerequisite and 
concurrent content standards in the ‘Learning Progression’ sub-category (Figure 2), we gave the 
sequence of tasks an overall ‘Learning Progressions’ score of 0.75/2—scoring low on addressing all 
of the pre-requisite standards (6.EE.5, 7.EE.4a, and 8.EE.6) and concurrent standard 8.EE.8b. 
Therefore, the complete sequence of tasks would receive a score of 37.5% on the ‘Content: Learning 
Progressions’ sub-category (or process). Although the remaining dimensions (Mathematical Habits 
of Mind, Task Format, and Task Features) and the ‘Content: Level of Complexity, Rigor’ sub-
category (Figure 2) would need to be addressed to determine the overall quality, diversity, and 
complexity of the tasks in these lessons, the example presented here provides some indication as to 
the impact incorporating learning progressions can have on such analysis.  

Conclusion 
In this report, we presented a framework for use by: (1) teachers to select, (re-)design, modify, or 
create mathematical tasks for a lesson or a sequence of lessons; and (2) researchers to analyze the 
quality, diversity, and complexity of tasks in a lesson or sequence of lessons. The proposed Task 
Progressions Framework integrates components of existing task analysis frameworks (e.g. Courtney 
et al., 2014; Glasnović Gracin, 2018), notions of ‘rich’ tasks, task formats, differentiated instruction, 
and learning progressions to develop a guide for teachers to assemble, and researchers to analyze, a 
sequence of tasks that help students develop or use particular mathematical ideas and particular 
mathematical habits of mind. We are currently working with in-service (or practicing) 6th-11th grade 
mathematics teachers (students ages 11-18 years) to utilize the framework in their practices with the 
intent to examine its effectiveness. We anticipate the need for modifications to the framework to make 
it more practical for teachers (as they create lessons) and researchers (as they analyze lessons).  
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Combining Differentiation and Challenge in Mathematics Instruction: 
A Case from Practice 

Seán Delaney and Ann Marie Gurhy 
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Despite the challenges of teaching mathematics to diverse learners and the importance of students 
engaging in cognitively demanding tasks, practice-based research on instruction that combines these 
priorities is relatively rare. In this paper, a primary mathematics laboratory is used as the setting for 
implementing such instruction. Records of practice – including video records of teaching, lesson 
plans, and student work – are analysed to identify task characteristics and teacher actions that 
supported differentiated instruction and work on challenging tasks. Among the themes identified are 
the teacher actively guiding the students’ learning, the establishment of classroom norms, and 
enabling all students to act as resources for one another’s learning.  

Keywords: Individualised instruction, Productive struggle, Problem sets, Difficulty level, Teaching 
methods, Classroom environment. 

Introduction. 
In many countries classrooms are increasingly diverse and teachers need to cater for students from a 
wide variety of intellectual, linguistic, cultural, social and economic backgrounds. However, 
relatively few supports are available to help teachers differentiate instruction so that all students, 
despite their differences, can meaningfully participate in mathematics lessons. Furthermore, using 
challenging tasks has the potential to improve students’ learning (e.g. Stein, Grover and Henningsen, 
1996) by engaging students in productive struggle (Warshauer, 2015). One problem is that sometimes 
in classroom practice only high-achieving students are challenged or differentiated instruction is 
intended only for some students. Until relatively recently, few studies combined a focus on 
challenging students mathematically while simultaneously differentiating instruction (e.g. Brown et 
al., 2017; Lynch et al., 2018; Sullivan et al., 2013). This paper presents a case study of one teacher 
attempting to engage students in cognitively demanding work over the course of a lesson while 
simultaneously differentiating instruction.   

The following research question is addressed: What steps taken by the teacher supported 
differentiation and maintained or modified the challenge of the task? 

Theoretical Framework. 
Two areas of research inform this study. The first is the mathematical task framework proposed by 
Stein and Smith (1998) which classifies mathematical tasks into those with lower-level demands 
(consisting of memorisation tasks and procedures without connections) and higher-level demands 
(consisting of procedures with connections and doing mathematics). This framework was necessary 
to identify times when the teacher maintained, raised or lowered the cognitive demand of the task. 
Although specific tasks may be initially classified using these categories, the classification may 
change over the course of instruction, as the teacher sets up the task for students and as the task is 
implemented in the classroom.  
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Tomlinson’s work (2000) on differentiating instruction provides the second pillar of the framework 
because the teacher’s goal is for all students to experience challenge in line with their readiness for 
it. Tomlinson identifies four elements which teachers can differentiate to meet the needs of all 
students: content, process, product, learning environment. Content of tasks can be differentiated by 
presenting information to students in multiple communication modes such as written or oral, or by 
providing supports to help them read the text. Differentiating the process allows students to complete 
a task in various ways depending on their preferences; this may involve providing materials, varying 
the time allocated, permitting individual or group effort, or breaking a task into smaller parts for some 
students. The product may be differentiated if students are allowed to present their work in multiple 
ways and to receive credit for diverse skills that are evident in the completed product. Finally, the 
learning environment may be differentiated by providing quiet space in the classroom for some 
students, being explicit about how help may be accessed if a student is stuck, and making available 
culturally familiar support materials to students as necessary.   

The twin lenses provided by combining insights from Stein and Smith (1998) and Tomlinson (2000) 
will help to identify steps taken by the teacher to address both goals of instruction: productive struggle 
and differentiation.  

Method. 
Context. 

The study is based on a mathematics laboratory that took place over four days (approximately eight 
hours) in July 2018. The classroom was convened specially to provide mathematics teaching for 
students, with a focus on differentiated instruction and challenging all students. Furthermore, the 
laboratory was a site for professional development with over 20 researchers, teachers and teacher 
educators observing the teaching and subsequently discussing it. Finally, the laboratory was a site for 
research with extensive records of practice being collected, including video recordings, student work, 
other classroom artifacts, and teacher planning notes.  

Participants. 

Twenty-four children – 10 girls and 14 boys – were in the class which lasted for two hours per day 
over four days. The children had completed fifth class in 11 different schools. Parents and guardians 
applied for places in the school for their children for multiple reasons, such as their child finding 
mathematics difficult, their child liking mathematics, or because a friend was attending. In other 
words, although parents opted to send their child to this class, a wide range of levels of mathematics 
and motivation could reasonably be expected among those participating.  

The teacher has substantial experience as a primary teacher (11 years) and a primary mathematics 
teacher educator (19 years). He works as a researcher on a project that is focused on mathematics 
instruction that is differentiated and challenging for students. For several years he has taught children 
mathematics in a laboratory format as a form of professional development for teachers but this was 
the first time that the focus was explicitly on differentiation and challenge.  
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Over the four days of the laboratory, the students worked on four mathematical tasks, each for two 
hours. One was based on volume, two on fractions, and one, the subject of this paper, on algebra (see 
Figure 1).  

Data. 

Four sources of data were used in this study. First, the task itself, which went through several 
iterations before being used. Second, the lesson plan that was used as the basis of the lesson. Third, a 
video recording of the lesson as it was enacted will be analysed. Finally, students’ work on the task 
will be presented.  

Data analysis.  

Open coding in which data are scrutinised and concepts identified (Corbin & Strauss, 2008) was 
used for analysing the four data sources. This involved closely and repeatedly reading the written 
materials and closely watching and re-watching the video data. The second author identified initial 
categories and themes, using methods outlined by Corbin and Strauss (2008). Although the coding 
was open, in that the data were decomposed and concepts were sought and named, the coding 
complemented a deductive approach to data analysis (Gale et al., 2013) which was informed by the 
frameworks of Stein & Smith (1998) and Tomlinson (2000).   

 Alex uses identical tiles to make different sized chair designs for a school art project. The pictures on the sheet 
show the first three designs created, size 2, size 3 and size 4. Alex wanted a rule that would help work out the 
number of tiles needed for a chair of any size.  

 
 

Q 1 
(a) If Alex wanted to create a size 5 chair, what would it look like? Can you draw it or use other materials to represent it? 

How many tiles would be used? 
(b) Work out the number of tiles needed for the size 6 and size 7 chairs. Explain how you did this.  
(c) Draw or make the size 1 chair. How many tiles did you need? 

Q 2 
(d) Do you notice any pattern between the chair size and the number of tiles needed each time? Discuss this pattern with 

your partner(s).  

Q 3 
(e) Alex wanted to create a size 20 chair. Talk with your partner(s) about a rule that would help Alex work out the number 

of tiles needed for this chair. 
(f) Would this rule work for the previous chair sizes? 
(g) If yes, write out this rule in words.  
(h) Discuss if it would work for a chair of any size.  

Q 4 
(i) Could you re-write this rule using symbols/letters?  

Q 5 
(j) Use the rule to calculate the number of tiles needed for a “size 50” chair? 

Figure 1: Algebra task (without enablers or extensions) 
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Findings. 
In terms of the framework/task analysis guide by Stein & Smith (1998), the chosen task is deemed to 
make “higher level demands” on learners and it has characteristics of both procedures with 
connections (e.g. use of a table for the first bullet point; writing a rule for the second; getting students 
to compare solutions for the third) and doing mathematics.  

In analysing video recordings of the two hours of teaching, three themes were identified: Teacher 
actively guiding the students, teacher establishing classroom norms that facilitated differentiation and 
work on challenging tasks, teacher facilitating students to be resources for each other’s learning. Each 
of these themes will now be elaborated on in more detail.  

Teacher actively guiding the students. 
Six ways in which the teacher actively guided the students were identified by analysing the tasks 
used, the lesson plans and the video. The first related to the choice of task and planning. Each task 
was chosen carefully so that all students had the opportunity to make some progress on it and some 
students could complete it all. For example, the basic algebra task (See Figure 1) was 
complemented by preliminary “enablers”, for students who struggled to start or make progress on 
the task and more challenging “extensions”, for students who successfully completed the basic task. 
One enabler suggested organizing data in a table and another commenced a rule pattern which could 
be continued. An extender presented for comparison three different methods used by other 
“students” to find the rule to calculate the number of squares needed for any size chair.   

During autonomous work, when two students were working on tasks, clear instructions were issued 
to students. For example, the teacher suggested that “to make things easier for yourselves, make 
sure you label the different chairs.” 

The teacher deliberately directed students’ attention to particular ideas or concepts. For example, at 
different times he found ways to introduce the idea of a row, a constant, and a variable. These 
concepts were introduced in response to comments or confusions from the students and would be 
help them in working towards a general rule. 

The teacher sought opportunities to highlight ideas he believed would support students’ work. As 
students worked on the task, the teacher asked them to pause their work and he introduced the 
following idea to support their work: 

Just one thing I want to show you. This is just a convention and it might be helpful for some 
of you. Some of you have already moved on to this step. In algebra, which is what you’re 
doing now, this is called algebra, this kind of maths. One of the things you do in algebra 
sometimes is that you use letters as well as numbers so sometimes you might use x and y. 
Sometimes you might use a and b or sometimes you might use n.” (5533 @23:32) 

In Lilly’s work (Figure 2), it appears from what she has written that she sees the pattern. However, 
although she is aware that the letters may be used, she is unable to integrate them into the general 
solution that she has identified. In contrast, Abby was able to express one general formula that 
could be used to calculate the number of tiles in a chair, where y is the size of the chair and y x 3 +5 
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gives the number of tiles (Figure 3). Note that Abby also uses the term “constant” in her written 
answer.  

The teacher questioned students for clarification. For example, using Lilly’s idea of a chair of size 
0, he asked “Can anyone explain what Lily has just said or put it into your own words?” 
(5527@8:40). On another occasion he used revoicing (O’Connor & Michaels, 2007), when he 
attempted to clarify what a student was saying, “so you’re saying the shape is always the same 
except for….” (5534@19:12).  

The teacher attempted to increase the challenge for students. For example, he asked if anyone could 
come up with a rule that works for any size chair (video clip 5527, 5:03) and on another occasion he 
set the following challenge for students: “Now I want everyone to think carefully. How does 
David’s rule compare with Tim’s rule? (Clip 3527 @ 15:55).  

Finally, the teacher’s active guiding of students involved giving them time to think. After posing a 
question, he allowed students sufficient time to think of an answer before calling on someone to 
answer.  

Teacher establishing classroom norms that facilitated differentiation and work on challenging 
tasks. 

A second theme identified relates to how the teacher established and promoted classroom norms 
that facilitated differentiation and work on challenging tasks. One such norm that was encouraged 
was that confusion is okay on the path to learning/understanding. At one point the teacher said 
“Remember it’s really important to say that you’re confused. Have you followed anything at all of 
what Tim has said?” (5527@11:05). This followed a contribution from Tim that would lead 
towards a solution to the task. 

Other norms evident in the video include the use of talking about mathematics. Students do not just 
write their solutions but they are encouraged to share their ideas with their classmates and to have 
them questioned and critiqued by their peers.  

Students are encouraged to take responsibility for their learning. The nature of learning is discussed. 
For example, students are told that like working out in the gym, learning mathematics requires 
effort. That doesn’t mean that “maths is difficult” or you are “no good at maths” but that over time, 
the effort will lead to learning.  

Manipulative materials are made available to students (e.g. square tiles) and students are 
encouraged to use what they need if using the materials will help them grasp the concept. Students 
are given autonomy in deciding to use or not use the materials.  

Finally, students are encouraged to represent their solutions in visual form. In particular, they are 
encouraged to explain ideas for their parents using representations. This differs from a more 
common approach in schools where students simply present their solutions in their own notebooks 
in numerical form.  
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Teacher facilitating students to be resources for each other’s learning. 

The third theme identified from the video data was the teacher’s encouragement of students to be 
resources for one another’s learning. At the outset of the summer school the teacher explicitly stated 
to the students that “you can learn a lot from your classmates.” The idea of students being resources 
for each other’s mathematics learning was encouraged throughout the summer school.  

Figure 2: Lilly’s work on the algebra problem 

One way the teacher did this was to ensure that students or groups of students were given 
opportunities to share their solutions. Attempts were made to sequence the sharing in a way that 
progressed from more naïve to more sophisticated solution strategies.  
Students’ sharing of solutions was complemented by several examples of the teacher asking 
students to repeat, revoice, or explain what was said. This had the potential to amplify what students 
said (by hearing them a second time), to clarify what was said (through explanations) and it 
encouraged students to listen to one another because they realise that they may be asked to respond 
to another student’s input.  

Students were required not only to listen to contributions from their classmates; the teacher 
frequently asked students to analyse and compare different solutions and ideas. This affirms 
students’ solutions but it further has the potential to help them see where some solutions might be 
more efficient than others.  

Finally, students are frequently asked to clarify their ideas or those of their peers by using words 
and representations. For example, on one occasion when students were working on the task, the 
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teacher asked a student to “Come up and show us how you laid it out in your notebook” (5527 
@9:20).  

 

 

Figure 3: Abby’s work on the algebra problem 

Discussion/Conclusion. 
We return now to the research question that we posed at the start of this paper about how the teacher 
supported differentiation and maintained or modified the challenge of the task. Modification of the 
task was planned in advance through the use of enablers and extenders. In the course of the lesson 
three themes were identified to capture ways in which the teacher implemented differentiation and 
cognitive demand. He actively guided the students to take responsibility for working on the task. He 
established and maintained classroom norms that supported these aims and he encouraged students 
to act as resources for each other’s learning.  

What these findings suggest is that through intentional and deliberate actions, a teacher can combine 
both differentiation and challenge in mathematics instruction. The need for differentiated instruction 
may be imposed on a teacher by the different rates at which students complete tasks. However, in 
order to engage students in challenging tasks, teachers must set that as a specific instructional goal 
and must have the required knowledge to implement it (Henningsen & Stein, 1997). Although the 
importance of teacher guidance and establishing appropriate norms have been identified as factors in 
supporting the use of challenging tasks independently, the additional factor of students acting as 
resources for one another was found to apply when challenge was combined with differentiated 
instruction.  
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This paper presents some results from an ongoing review on self-explanation prompts. An emphasis 
is laid on design principles based on empirical research. The review is grounded in scaffolding the-
ory, which means that the self-explanation prompts are seen as a temporary support that the student 
shall learn to manage without. Three themes identified in the review are described and discussed in 
relation to design and implementation of tasks with self-explanation prompts: prompts with different 
purposes, the necessity to adapt prompt to students’ prior knowledge, and factors of importance for 
students’ engagement in the prompts. Examples of tasks with prompts for which these design aspects 
have been taken into account are given in the paper. 

Keywords: Scaffolding, ZPD, reading, multimodal, review.  

Introduction 
In mathematics classrooms, individual and group work on mathematical tasks is a frequent activity. 
Besides the mathematical complexity of the task, different design aspects also have bearing on stu-
dents’ learning. In this paper, we focus on design aspects concerning self-explanation prompts (here-
after SEPs), and how they can be used in tasks or instructions to scaffold students’ learning.  

The use of SEPs has been investigated in previous studies, often with pre- and post-tests, and some 
design aspects regarding SEPs have proven to be more effective than others when it comes to students 
learning (e.g., Berthold, Eysink & Renkl, 2009; Lin, Atkinson, Savenye & Nelson, 2016; Rau, 
Aleven, & Rummel, 2015). In this study, we utilize a qualitative perspective in order to highlight 
aspects concerning how tasks or instructions with self-explanation prompts can be successfully de-
signed and used to scaffold students’ learning in mathematics in relation to the zone of proximal 
development (ZPD). The study is based on an ongoing literature review of previous empirical studies 
on SEPs and their effectiveness. We also take a broad stance and include studies on SEPs in different 
subjects. A bottom-up perspective is used to search for prominent characteristics in the sample of 
studies on SEPs. More precisely, the following research question is answered in the current paper: 
Which important aspects are there to consider in task design in order to scaffold students’ learning 
in mathematics aided by self-explanation prompts? 

Studies on task design refer to either domain specific or domain transcendent aspects (Thanheiser, 
2017). Domain specific aspects concern for example how tasks can be designed to support conceptual 
understanding. Domain transcendent aspects on the other hand takes a more interdisciplinary stance 
on, for example, reasoning, life skills, or reading of multimodal texts. In this paper, we focus on 
domain specific aspects with a focus on pupils’ development of conceptual understanding, as well as 
on domain transcendent aspects, mainly regarding how SEPs can be used to support students’ ability 
to read multimodal mathematical texts. In this study the emphasis is laid on the resources natural 
language, images, and mathematical notation. 
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Scaffolding and self-explanation prompts 

Scaffolding is theoretically founded in a socio-cultural tradition. It is a metaphor which illustrates 
how people are assisted to reach learning goals that would not easily have been reached without 
scaffolding. In accordance with scaffolding theory, SEPs are meant to support learning in the zone of 
proximal development (ZPD) and therefore scaffolding needs to be adapted to the pupil and his or 
her needs and level of understanding. Another aspect of the scaffolding metaphor is that when the 
building is finished, that is, when the student has developed the targeted knowledge, the scaffolding 
needs to be removed. Finally, the scaffolding includes a transfer of responsibility from the teacher to 
the student (Bakker et al., 2015).  

Traditionally, scaffolding has been referred to as the interaction between teacher and student, but the 
term was expanded to also include, for example, artefacts or instruction plans (Bakker et al., 2015). 
In the present paper, we study SEPs as a particular form of scaffolding of importance for task design. 

In several previous studies, self-explanations are described as a successful means to increase students’ 
knowledge and ability to solve problems (e.g., Chi, de Leeuw, Chiu & LaVancher, 1994; Rittle-John-
son, 2006). The self-explanations are explanations of a concept, a relation, or procedure given by the 
student to him or herself. SEPs has proved especially effective in subject areas such as mathematics 
and science, which often consist of general principles with few exceptions (Rittle-Johnson & Loehr, 
2017). By explaining to oneself, it is possible to reconcile new information and to make inferences to 
prior knowledge (Chi et al., 1994; Berthold et al., 2009). What gives effect is the process to formulate 
an explanation, either to oneself or to others. Self-explanations however, are nothing that students 
usually do spontaneously and therefore prompts to self-explain have a large potential. 

Method 
The search for articles for the review has been limited to articles published after 2009. We both 
searched ERIC, with the search terms self, explain, and prompt and forward tracked selected key 
papers. Criteria for inclusion was a focus on prompts requesting students to self-explain while work-
ing on a typical written task or expository text. The collection of 41 relevant articles was analysed in 
an iterative process where categories were created and re-created based on what was revealed in the 
articles. Initially the articles were coded regarding choice of variables, method, and results, with a 
particular focus on how SEPs were defined and implemented. New categories both emerged and were 
dismissed based on what was eminent in the articles. The use of this iterative analysis resulted in a 
few final themes for which rich qualitative data could be derived from several of the analysed studies. 
Three of these themes are presented in the current paper. 

Results 
The answer to the question about which important aspects there are to consider in task design in order 
to scaffold student’s learning in mathematics aided by SEPs is presented in three themes. 

Theme 1: Using prompts for different purposes 

Among studies that reveal positive effects of self-explanations, the prompts are used for three differ-
ent purposes. Firstly, SEPs can scaffold the students in how to process the content and therefore 
enhance learning concerning domain specific aspects. The most prominent purpose is to encourage 
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inferences. Inferences are provoked by SEPs including a why question (e.g., Roelle & Berthold, 2013; 
Nokes et al., 2011) or by explicitly requesting arguments (Berthold et al., 2011). The advantage with 
SEPs that provoke inferences has also been revealed in comparisons with other SEPs (Roelle, Müller, 
Roelle, & Berthold, 2015; Neubrand & Harms, 2017). Inference prompts are superior for the acqui-
sition of conceptual knowledge. It is evident that the active construction of the self-explanation is 
intrinsic since other prompts given in combination with explanations of the inferences requested by 
the inference prompts are less beneficial (Roelle et al., 2015).  

Secondly, SEPs can be used in a domain transcendent manner to support reading, and therefore en-
hance learning. SEPs focusing on reading have shown positive effects on learning outcomes when 
the SEPs are designed to induce focused processing of the text and to avoid shallow reading. For 
example, SEPs providing reading guidance in terms of higher order questions that require the learner 
to actively generate inferences about unfamiliar content, have proven to be effective means to develop 
conceptual knowledge (Roelle & Berthold, 2013). Gap-filling prompts that support reading by 
prompting the student to make inferences and by that add coherence to the text, also lead to greater 
learning, as shown by Nokes, Hausmann, VanLehn, and Gershman (2011). Particularly effective are 
step focused prompts, supporting students in the reading by drawing attention to each step in an ex-
ample, with prompts to explain, elaborate and summarize (ibid.). Studies that evaluate the use of SEPs 
in multimodal text reveal different benefits in relation to the use of such prompts. When reading 
multimodal text, it is intrinsic to understand how the different representations relate and SEPs can 
successfully facilitate such an understanding. SEPs can scaffold the reading by prompting the reader 
to relate parts of, and explain relations within the text (Rau et al., 2015) as exemplified in Figure 1.  

Figure 1: Open-ended prompts to make inferences and to relate between modalities 

For example, the student can be prompted to self-explain which perceptual features of graphic repre-
sentations that depict corresponding concepts and complementary information (Rau et al., 2015). 

The pupils in two classes investigated how many siblings they had.  
The result of the survey is presented in the diagram below. 
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a) How many pupils in class A took part in the survey? 
b) How many pupils have three siblings?  
c) Determine the mean and the median of the number of siblings in class B.  

Before you do the task, complete the following starter prompts: 
1. One reason the two different colors of the pillars are helpful in reading the diagram is … 
2. The labels to the horizontal and the vertical axis mean that the pillars shows … 
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Such prompts to relate and translate between representations lead to better learning results compared 
to general prompts to self-explain (e.g. ‘explain your answer’) (van der Meij & de Jong, 2011). SEPs 
are particularly useful when many representations must be related to deeply understand key concepts 
(Rau et al., 2015). Figure 1 is an example of how prompts can be used to support reading of multi-
modal texts. The first prompt draws attention to how the bars in two different colours represent the 
two classes mentioned in the text. The second prompt foster attention to the meaning of the axes in 
the graphic representation and demand the reader to relate information given in natural language and 
visually. The knowledge of how to read and understand the various parts of the diagram is essential.  

Lastly, SEPs can diminish the cognitive load and therefore contribute to the fulfilment of the first two 
purposes (support reading and processing of the content). If SEPs are designed to guide the attention 
to relevant principles in a text, extraneous cognitive load can be decreased, and as a result, learning 
can be improved (Wang & Adesope, 2017). There is however a potential opposite effect; SEPs can 
increase extraneous cognitive load if they do not suit the reader, for example if the prior knowledge 
is high and the prompted inferences therefore are perceived as redundant and distracting. 

Theme 2: Adaptation of prompts to students’ prior knowledge 

The positive outcomes from the work with SEPs is dependent on the match between the student and 
the prompt. In particular, the students’ prior knowledge is crucial. For example, prompts to make 
inferences are demanding. Neubrand and Harms (2017), who categorizes inference building prompts 
as high-knowledge prompts, do however reveal that even for medium knowledge learners the most 
positive impact with regard to quality of SEPs is created by using a combination of less demanding 
prompts (paraphrasing, recourse of previously given information, searching for relevant relations be-
tween parts of the text) and high demanding prompts (anticipative, inference-building and with re-
course to prior knowledge). 

In some studies, interventions with SEPs do not lead to better learning outcomes than for the control 
group. One possible explanation for the lack of effect of SEPs is either that the knowledge level with 
abstract concepts is too high for the students (Hsu & Tsai, 2013), or that the level is too low and that 
the prompted self-explanations hinder the students in their work (Roelle & Berthold, 2013). In a so-
cio-cultural perspective, this can be understood as if the concepts are not held within the students’ 
ZPD. If the new information is at an overly high level, the students will not have the opportunity to 
make the connections between new information and previous knowledge, which are required for 
learning. The intended effect of SEPs can also be missing if the level of the concepts or procedures 
that students should develop is too low. In a study by Neubrand et al., (2016) it appeared that worked 
examples (WE) with SEPs are effective for students with medium-level of prior knowledge. For stu-
dents with good knowledge of the subject, WE with SEPs were negative for learning outcomes, no 
matter how they were designed. SEPs then presents a disadvantage for the students since the previous 
knowledge and the information given in the WE simply becomes redundant and perhaps boring or 
distracting. Figure 2 shows a task with different prompt options which can be used for students at 
different levels of knowledge.  
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a) Calculate the product of 3
4
 and 2

3
   

b) The rectangle represents the whole. Use the  
       rectangle to illustrate the product 3

4
 · 2

3
   

 
 
 
 

    
    
    

Prompt version 1 
The grey part of the rectangle represents 2

3
 .  

Try to mark 3
4
 of the whole rectangle with dots in 

such a way that 3
4
 of the grey area are dotted at 

the same time. The dotted grey area represents 3
4
 

of 2
3
 and also the product of the fractions. Why? 

Prompt version 2 
You know that 3 · 2

3
  can be interpreted as taking 2

3
  

three times. It is however difficult to imagine taking 
something 3

4
 times (as in the task). Use your illustra-

tion and explain what the multiplicator 3
4
  means and 

how your explanation relates to 3 in the product 3 · 2
3
 

Figure 2: Task with two versions of self-explanation prompts 

The first version of a prompt is intended for students with less prior knowledge. Students who are 
very unfamiliar with this type of task can also be given a worked example with a starter prompt. 
Version 1 gives more scaffolding and gives recourse to representations in the task and is therefore 
adapted to less prior knowledge. Version 2 offers less scaffolding, and encourages the student to use 
prior knowledge while making inferences and is therefore adapted to medium to high prior 
knowledge.  

Theme 3: Designing tasks and self-explanation prompts that engage students  

A crucial factor in achieving the intended outcome from the use of SEPs is student engagement in the 
explanations. In several studies (e.g., Hsu & Tsai, 2013) the students’ answers to the given SEPs were 
not sufficiently well processed and the quality was insufficient. However, the results in these studies 
also showed that students who actually produced well-developed and high-quality responses also 
showed good results in the post-test. The reasons why students did not engage in the SEPs varied. 
Pre-formulated self-explanations in a game environment for primary school children is one example 
of SEPs that was not sufficiently engaging for students to give any effect on learning (Hsu & Tsai, 
2013). Another reason for students not to engage actively in the work with SEPs was that the students 
experienced the SEPs as demanding and simply skipped them (Lin et al., 2016).  

Students’ lack of engagement in SEPs can also be explained by the extensiveness of the SEPs. In a 
study by Kapli (2010), no effect on conceptual knowledge or problem solving performance were 
found if SEPs were given together with supportive instructions. The scaffolding given by the SEPs 
was however not gradually faded out, rather the scaffolding was continuously accessible for the stu-
dents. This may have had the effect that students did not take sufficient effort to understand the con-
cepts; instead, they could use the support at any time. However, the study also showed a positive 
correlation between quality in the students’ self-explanations and the acquisition of conceptual 
knowledge.  

Figure 2 is sufficient as an example of design aspects in relation to student engagement, since there 
is a relation between prior knowledge and student engagement in a task. With prompt options a stu-
dent can choose no prompt, or prompts adjusted to more or less prior knowledge and to their willing-
ness to engage in deep learning in a particular task. In accordance with theory about scaffolding, 
students are supposed to learn to manage by themselves what the prompts scaffold and therefore one 
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optional version of a prompt is not always sufficient. In Figure 1, the student needs to take an active 
role in constructing the knowledge requested by the SEPs, which might be engaging. If the prompts 
on the other hand were formulated as multiple choice alternatives the prompts are likely to be less 
engaging (see e.g., Hsu & Tsai, 2013). 

Discussion 
The current paper contributes to previous research on SEPs with a qualitative perspective and a focus 
on design aspects. The design of tasks with SEPs is done in relation to a target group, but the useful-
ness of a particular prompt can vary between students in a class and therefore our results is applicable 
also in relation to the implementation of the prompted tasks. We argue the usefulness of SEPs is 
dependent on a match between the task, the prompt, and the student. This interrelation is relevant in 
relation to all three themes presented in the paper.  

It is also apparent that the three presented themes are related. Theme 1 about the prompt’s purpose is 
related to both the other themes since the purpose must be taken into account when prior knowledge 
and students’ engagement are considered. Theme 2 and theme 3 are also interrelated since engage-
ment is often dependent on prior knowledge. This means the adaptation to all three themes in design 
of SEPs could be highly beneficial in providing opportunities for learning, when they are combined 
and taken into account simultaneously. Figure 3 illustrates how the three themes overlap in a common 
intersection. According to the results of this study, tasks that can be described as belonging in this 
intersection, offer the best opportunities for learning. 

Figure 3: Three interrelated themes, appropriate to consider together 

In the everyday practice when using SEPs in mathematics there is several aspects to consider. Firstly, 
SEPs can scaffold different types of learning and the teacher, or task designer, must know what he or 
she intends to achieve with SEPs. Students may benefit from SEPs when new concepts are introduced 
since the SEPs support them in integrating knowledge to what they have learnt previously (e.g., Nokes 
et al., 2011) and from SEPs that support reading text with different representations of a concept (e.g., 
Rau et al., 2015).  

Secondly, the SEPs must be adapted to students’ prior knowledge that is relevant in relation to the 
content of the mathematics text. Since prior knowledge vary in a group of students we argue for a 
flexibility in the use of SEPs, both by utilizing variants of SEPs (Figure 2) and by encouraging stu-
dents to be flexible in the use of SEPs in such a way that they will only be used when needed. As the 
students develop their understanding, the SEPs need to be taken away since scaffolding shall be seen 

Theme 1

Theme 3Theme 2 
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as a temporary support when new abilities and knowledge are developed (Bakker et al., 2015). Such 
an adaptation to the students is important also since redundant SEPs may increase the cognitive load 
or distract students and accordingly the teacher needs awareness of this.  

Thirdly, SEPs are effective only if students engage thoroughly in the self-explanations. As mentioned 
previously the fit between students’ knowledge and the SEPs is crucial if the SEPs shall lead to the 
intended learning (Neubrand & Harms, 2017) and too demanding or too trivial prompts can reduce 
students’ commitment to the SEPs. SEPs to make inferences are demanding but also very efficient. 
An implication for teaching is thus that students need to be given the opportunity to practice more 
demanding self-explanation in classroom. Students may need to practice on how to formulate appro-
priate answers to these types of prompts, and to get feedback on their answers. In this way, students 
can understand what is expected and also understand that the answers are important, which can mo-
tivate students to work with their answers to make them high quality.  

Lastly, when working with SEPs it is important to bear in mind that the scaffolding has to fade out as 
students’ knowledge increase. This can be done in different ways. In teaching materials, scaffolding 
ought to be used in tasks initiating a new topic or concept and in such occasions the scaffolding fills 
a function, for example, in supporting reading of multimodal texts. As the teaching proceeds and the 
students improve their ability to read multimodal text, the scaffolding become superfluous. It is also 
possible for the teacher to take an active role in the use of scaffolding, by carefully following the 
development of the students’ knowledge in order to use SEPs only to students considered in need for 
this support. To conclude, we see a large potential in the use of SEPs but the design of prompts and 
the adjustments to the student group is a delicate task to achieve the intended learning. 
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Mathematics education is still behind in the implementation of digital technology. Digital technology 
can support classroom talk, but this potential needs to be further explored. This study reports on a 
project that develops and explores task design principles, through a series of interventions, that are 
intended to utilize digital technology to enrich mathematics lessons. The results consist of three 
design principles together with their theoretical and empirical arguments from analysis of a lesson 
series about pattern generalization. The three principles exploit opportunities provided by technology 
to make reasoning available for examination to all students, and to focus students’ attention between 
different aspects of mathematical reasoning. 

Keywords: Math-talk, design principle, digital technology. 

Digital technology has been recognized for its potential for teaching and learning mathematics. Task 
designs relying on digital technology offer students amplified opportunities to explore, re-invent and 
explain mathematical concepts using tools imbedded in technology-rich environments (Leung, 2011). 
However, Lagrange and Monaghan (2009) argue that digital technology adds to the complexity of 
teaching mathematics. It challenges traditional teaching practices by creating new classroom 
situations and possibilities (Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010). Pierce and Ball 
(2009) argue that teachers need to make it their own, and relate technology rich lessons to their usual 
practice. We propose that one way forward is to take a modest approach, to digitally enriching 
mathematics classroom talk by using material from actual teaching practices and show how to 
enhance these practices with the use of digital technology; i.e. to create designs that shift between a 
digital and an analogue environment within the mathematics classroom. However, the research on 
uses of digital technology to enrich and support classroom talk is in its infancy and needs more 
exploration (Mercer, Hennessy, & Warwick, 2017). 

Design principles are thought of as guidelines for task design (Bakker, 2018) that can inform on how 
to recreate learning opportunities in other classrooms than the intervention ones. The aim of the 
present paper is to propose task design principles for developing a digitally enriched math-talk 
learning community (Huffered-Ackles, 2004), focused on algebraic reasoning. The research question 
we attempt to answer is: what are important task design principles for a technology enriched pattern 
task to gain potential for math-talk? 

Theoretical background 
Students act upon mathematical objects on the basis of their assigned meaning of that object, and 
their interpretation of others’ actions towards those objects (Blumer, 1986). As the students and the 
teacher interact with each other, and the tasks, they negotiate the mathematical content and create a 
joint interpretation of that content. For example, in a pattern task: a student suggests an algebraic 
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expression to represent the number sequence behind the pattern, and the teacher asks for a clarification 
on the student’s reasoning in relation to the pattern. Such expressions can be created through the use 
of visual structure reasoning (Rivera, 2010). Students can reason with visual 
structure units of n in visual patterns as a tool for writing an algebraic 
expression. Figure 1 shows an example of color coding to highlight visual 
structure units. With this particular partition, red is n and blue is n+1, forming 
the expression n+(n+1)+n. Such tasks open up for student interaction to 
negotiate both how to partition a visual pattern in visual structure units, and 
how to formulate the expression, creating a math-talk learning community. 

A Math-talk learning community is “a classroom community in which the teacher and students use 
discourse to support the mathematical learning of all participants” (Hufferd-Ackles, Fuson, & Sherin, 
2004, p. 82). It is a learning community where students are encouraged to negotiate meaning and gain 
some responsibility for the mathematics forming in the classroom. The teacher should strive to shift 
the responsibility of the questioning and the source of the mathematical ideas from the teacher to the 
students (Hufferd-Ackles et al., 2004). The students are encouraged and supported to take an active 
role, focusing on mathematical thinking and reasoning rather than waiting to answer leading questions 
from the teacher, to create investigative discussions in mathematics. Digital technology has the 
potential to amplify students’ opportunities to explore, re-invent and explain mathematical concepts 
in such practice (Leung, 2011), which we believe enriches their Math-talk learning community. 

To understand the complexity of classroom practices with human/machine interaction, Trouche 
(2004) introduced the idea of instrumental orchestration. The idea is that teachers create opportunities 
for students to negotiate mathematical meaning by organizing available artefacts, i.e. didactical 
configuration (DC), and determining how to utilize these artefacts, i.e. exploitation mode, combined 
with the ad hoc decisions made by the teacher in the classroom, i.e. didactical performance (Drijvers 
et al., 2010). A DC including a projector offers the possibility to make a student’s visual structure 
reasoning public and available for all students to interpret and react upon. When the projection is 
directed at a (interactive) whiteboard it also allows the teacher to exploit the possibility to allow 
students to indicate and manipulate digitally and analogous what is projected in a collaborative effort 
to negotiate meaning and develop students’ reasoning (e.g. Taylor, Harlow, & Forret, 2010). 

Task design combines elements of the DC with ways of exploiting that configuration in line with the 
teachers intended learning goal. A task design for research interventions relies on implicit or explicit 
design principles that are intended to produce favorable classroom situations. Van den Akker (2013) 
suggests the following elements of a design principle: 

· If you want to design intervention X [for purpose/function Y in context Z]
· Then you are best advised to give that intervention the characteristics C1, C2, ..., Cm

[Substantive emphasis]
· And to do that via procedures P1, P2,...,Pn [methodological emphasis]
· Because of theoretical arguments T1, T2,...,Tp
· And empirical arguments E1, E2,...,Eq

(Van den Akker, 2013, p. 67) 

Figure 1: The pattern
task 
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It could be viewed as an expansion/formalization of the ‘didactical’ questions what?, how? and why? 
to form a design principle. The what? is connected to the characteristics of the intervention, a purpose 
of a design. The how? is connected to the procedures in the intervention, how a teacher should act, 
how a task is meant to be used, and so on. The why? is motivated by both theoretical arguments based 
on prospective analysis of prior research and teaching/learning theories, and empirical arguments 
where the design principles are fine-tuned by prior teaching experiences and experiences from the 
ongoing intervention (Van den Akker, 2013). Design principles are heuristic principles that cannot 
guarantee success, but they are intended to select and apply the most appropriate knowledge for 
specific task designs.  

The previous research and theory resulted in two hypotheses connected to a potential lesson design: 

· Didactical configurations with technology can be exploited to make students’ mathematical 
reasoning more accessible for other students to probe and develop during math-talk 

· Didactical configurations with technology can be exploited to turn students’ attention to 
different aspects of a mathematical content and reasoning 

Method 
The project this paper reports on follows a design research approach as it aims to develop a research-
based intervention, and construct re-usable design principles in an iterative manner (Bakker, 2018). 
A prototype of a lesson plan makes up a hypothetical learning trajectory (HLT) grounded in research 
(Simon, 1995), and is tested and refined several times. The HLT consists of the learning goal, the 
activity and the intended development of the students. During this iterative process, we generate data 
by video recording from three different angles, back of the class, front of the class and group work. 
Each lesson is tried and refined twice before moving on to the next lesson.   

The research team consists of two elementary mathematics teachers, working with year 7 and 8, and 
two researchers, the authors of this paper. The project is a cooperative enterprise where we perform 
prospective analysis of the tasks, develops the task design, analyze the material and make changes 
together. Each design decision is motivated through theoretical and empirical arguments. The 
recorded material is used for reflective analysis between each lesson where we discuss what, how and 
why in different situations during each lesson and retrospective analysis of the whole lesson series 
after completion. Situations are evaluated regarding how digital technology enriches teacher-student 
and student-student interaction, especially in relation to opportunities for math talk and opportunities 
for students to seize initiative in the discussions. Parts of the reflective analysis is presented in the 
results below to reveal empirical arguments for the design principles. 

Design 

Lesson 1, in its initial form, aimed to develop the students’ proficiency to reason in line with different 
types of algebraic reasoning with visual structures. Specially to challenge naïve additive reasoning 
and suggest a more advanced strategy, i.e. multiplication of units, by asking them to reason about 
different ways of identifying visual structure units in the visual pattern. The students were given 
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questions and tasks individually and in pairs through Socrative1. Figure 1 shows one of the tasks with 
color coded visual structure units, where the students were asked to identify an algebraic expression 
that fitted the coloring. The students were presented with the task through Socrative and given the 
following alternatives: a) 2n+2+2 b) n+(n+1)+n c) n+1+n+n d) 4n+1+1 e) none of the above. The 
answers were made available to both teacher and students, which was intended to make the students’ 
reasoning available and create an opportunity for whole class discussion where they could question 
each other’s’ reasoning.  

Lesson 2, in its initial form, aimed to develop the students’ proficiency to recognize visual templates 
and characteristics of patterns. In particular to recognize characteristics that make some patterns more 
difficult to generalize algebraically than others. The students were asked to create their own patterns 
in pairs and publish them on an online platform called Padlet2. Next step for the students was to try 
to write algebraic expressions for each other’s patterns. The lesson ended with a whole class 
discussion on which patterns were difficult to write expressions for, which were easy, and why? 
Padlet was intended to make each pattern accessible to each student, and easily swappable in group 
work as well as in the whole class discussion. 

Lesson 3, in its initial form, aimed to develop the students’ problem-solving proficiency and flexible 
reasoning. Particularly to transform patterns and use visual structure reasoning as a tool to generate 
algebraic expressions of more complex patterns that are not 
representations of standard arithmetic sequences. Figure 2 shows 
the initial 4 figures of the Hexagonal pattern that the students were 
asked to generalize. The students worked in pairs with tasks 
distributed through Socrative, and the main task was in a geogebra 
applet. The applet enabled the students to try ideas by moving and 
grouping the dots in each figure effortlessly, and negotiate different strategies 
with each other’s. Our goal was that the students would recognize a possible 
visual template from a quadratic pattern (n2) in the previous lesson by creating 
rectangles with n dots on one side and 2n-1 dots on the other (figure 3). The 
whole class discussion was intended to focus on different visual structures and resulting algebraic 
expressions by visualizing the pattern transformation in the applet on the projector.  

Results 
This section presents the results of the prospective analysis, and a retrospective analysis of selected 
episodes. We propose three design principles, that we present empirical and theoretical arguments for 
throughout the result section. The first principle is a development of our first hypothesis, going into 
the design process, and the second and third principles are a development of our second hypothesis:  

                                                 
1 Socrative is an online response system where teachers post questions that show up on students’ devices and allows them 
to post answers. Answers becomes instantly available for the teacher, and for the students too if the teacher wishes. 
2 Padlet is an online virtual pinboard that allows students to publish pictures and other types of contributions. 
Contributions becomes instantly available for the whole class on each device. 

Figure 2: The Hexagonal pattern 

Figure 3: The 
Hexagonal pattern 
rearranged  
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1. Exploit the possibility to project mathematical reasoning on students’ devices or on the white-
board (WB) with the classroom projector.  

2. Exploit the possibility to indicate and/or manipulate objects projected on the WB 
collaboratively 

3. Exploit the possibility to switch between individual/small group work and whole class 
discussion by focusing the students’ attention to their own devices and the WB respectively. 

Each episode presented below is from the first iteration of each lesson. The situations motivated 
changes in the task design and provides empirical arguments to refine the design principles. The first 
transcript is from Lesson 1, where the students have been engaged with task 4 “If I say ‘tell me how 
many dots are in figure n’, what do you think I mean?” with the alternatives a) That you’ve mistyped 
b) That the last figure is called n c) That you mean a figure, anyone in the sequence d) That n means 
a number, any number e) Don’t know. All, but one, chose either c) or d) or both.  

Teacher: Two of the alternatives works. That you mean a figure, anyone in the sequence, that 
it could have been figure number 9 or number 1000 or number 2000000 and so on. 
[...] We move on. 

The teacher immediately starts to summarize the results since almost everyone chose the correct 
alternatives. Our interpretation was that the task did not reveal much about the students’ 
interpretations of n, or allowed them to make indications to develop their reasoning together with the 
class, prompting the teacher’s action. We interpret the shortcomings as related to characteristics and 
procedures of the first two design principles. When the question is open, the students need to be able 
to answer more freely than with multiple choice. In relation to the second design principle, we revised 
the task on a procedural level, adding teacher prompts and offered whiteboard markers that encourage 
students to make their reasoning available both with their written answer and by approaching the 
board to indicate and explain in the picture. The result was a discussion where students got the 
opportunity to explore each other’s interpretations, since they became more explicit. 

Next example is from Lesson 2, where the students have written algebraic expressions to each other’s 
patterns while working in pairs. Figure 4-6 shows the teacher going back and forward between two 
examples with different students accounting for their reasoning. The teacher encourages the students 
to apply the same visual structure reasoning in both cases. Notice how figure 2 and 3 both have some 
sort of visual structures indicated by color-coding or circles. The figures are in chronological order. 

         
Figure 4: A student presented an algebraic 
expression for the square pattern task without 

   

Figure 5: Two students presenting their 
generalization by using visual structuresa 

Thematic Working Group 22

Proceedings of CERME11 4214



Figure 4 shows the board right after a student has presented 
her solution, written on the left (n2). Figure 5 shows how two 
students present their solution, with the aid of visual 
structures drawn in the pattern faintly with a yellow and a red 
marker. The teacher then exploits the possibility to flip back 
to the previous pattern and asks the students to use a similar 
strategy to expand on their reasoning in the quadratic pattern. 
The students focus on their own devices, and discuss in pairs 
before another round of whole class discussion. Students 
identified visual structures of n in multiple places in each figure. The negotiation results in the 
indication in square number 5, where a student has identified n both vertically and horizontally. It 
lead to the idea of multiplying base by height. The quadratic pattern was deemed harder than the other 
ones. By exploiting design principle number 3, to be able to switch students’ focus between different 
tasks, small group and whole class, the teacher managed to create circumstances where the students 
could develop each other ideas and negotiate a solution that more than one student fully understood.   

The third example is from Lesson 3, where the students were asked to write an expression for the 
hexagonal pattern shown in figure 2. The students transformed the pattern into rectangles shown in 
Figure 7 and 8. Two students present their visual structure reasoning by indicating on the board. 
Especially notice how the expressions in figure 8 corresponds with their visual structures respectively. 

Prior to figure 7, students negotiated the best transformation of the hexagonal pattern. A student 
adjusted the pattern as the discussion progressed, making his interpretation of the discussion available 
on the board. They agreed on the rectangle, compatible with the base by height reasoning from the 
square pattern, and continued working on in pairs. This shift back and forth between whole class and 
group work provided opportunities for students to prepare to assume responsibility for creating the 
mathematical content in the math-talk learning community. Figure 8 shows two different types of 
visual structure reasoning. Looking at figure 7, the student explained the “-1” by manipulating the 
figure further, drawing in a fourth row that is then subtracted. She made her reasoning available to 
interpret, question and expand upon. In figure 8 we connect the resulting expression above with her 
visual structures and the base multiplied by height reasoning from the previous lesson. Similarly, we 
connect the second student’s visual structure with his algebraic expression. However, he split his 
figure in two, identifying the square as n×n and the small rectangle as n(n-1) by circling them.  

To summarize, our first design principle is to exploit the possibility to project elements of 
mathematical reasoning directly on students’ devices or with the classroom projector. The theoretical 

Figure 6: Several students have identified 
visual structures in the square pattern task

Figure 7: A student’s use of visual structures to 
justify its reasoning 

Figure 8: Students connect visual structures to 
their formulation of an algebraic expression 
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argument is that as the teacher’s and student’s actions becomes available and interpreted by the class, 
it adds to the negotiation of mathematical properties and processes connected to the pattern task. The 
two main empirical arguments connected to this principle are 1) Tasks that does not allow room for 
individual expression of mathematical reasoning, tends to result in situations where the teacher 
assumes responsibility for the explanations. 2) When students were able to project their reasoning as 
a math-talk progressed, as in the discussion leading up to the transformation in figure 7, they reach 
consensus while assuming responsibility for the process. 

Our second design principle is to exploit the possibility to indicate and/or manipulate objects 
projected on the board collaboratively. The theoretical argument is that the teacher and students can 
exploit the technology to further explore, justify and explain their reasoning, for example their visual 
structure reasoning, when incorrect or half-way ready solutions are introduced as collaborative 
endeavors. The empirical argument is that switching seamlessly between the analogue and digital 
allowed students to expand on each other’s ideas, as seen in figures 4-6. By indicating directly on the 
board, the students used the projection and the indications together to justify their reasoning in the 
moment. Student work seen in Figure 7 adds to the argument, the student manipulates the pattern 
further by adding dots to justify elements of the algebraic expression in the ongoing math talk. 

Our third design principle is to exploit the possibility to switch between individual/small group work 
and whole class discussion by focusing the students’ attention to their own devices and the projection 
respectively. The theoretical argument is that students need time to formulate their arguments to 
become able to take more responsibility for the questioning and the source of the mathematical ideas 
in the math-talk learning community. The two main empirical arguments connected to this principle 
are 1) Switching between small group work and whole class discussion, as seen in the prior work to 
figure 4-6, students were able to prepare their mathematical reasoning with identical pictures on their 
own devise as later used in the whole class discussion. Enabling them to present advanced 
mathematical reasoning based on numerical patterns and visual structures of patterns as part of a 
whole class discussion. 2) By switching focus between the whole class and small groups, as seen in 
the work leading up to figures 7 and 8, encouraged individual work expanding on the whole class 
discussions and resulting in multiple solutions to an advanced algebraic generalization task. 

Discussion 
The aim of this paper has been to propose task design principles for developing digitally enriched 
math-talk learning communities, and add to the research discourse on technology supported whole 
class discussions (Mercer et al., 2017). We propose three design principles, developed on the basis of 
empirical and theoretical arguments (Van den Akker, 2013). The principles were shown to support 
math-talk where students collectively were active in negotiating meanings of mathematical objects, 
rather than waiting for a teacher to provide explanations, corresponding to higher level of math-talk 
(Hufferd-Ackles et al., 2004). Pierce and Ball (2009) argues that teachers need to be able to relate 
technology rich lessons to their usual practice. By formulating characteristics of the three principles 
in a way that they utilize didactical configurations found in many classrooms today, such as 
projectors, and exploiting the possibility to combine projection with traditional practices, such as 
writing on the board, we simplify the implementation of a technology enriched mathematics lessons. 
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Van den Akker (2013) suggests we view these design principles as heuristics. Design principles 
should not be seen as a guarantee for success (Van den Akker, 2013), but likely producing 
opportunities for, in this case, rich math-talk. But that is not all they do, experiences from using 
curriculum materials creates learning opportunities for teachers (Davis & Krajcik, 2005). An actual 
lesson, created by tasks based on the design principles, is an opportunity to develop ones’ capacity to 
orchestrate lessons that foster math-talk learning communities. Curricular resources are tools to 
enable teacher learning and to influence teaching practices (Cobb & Jackson, 2012; Davis & Krajcik, 
2005). We propose that our design principles could be used in teacher training and collegial learning 
to discuss how to enrich mathematics lessons with digital technology on a general level. Creating 
concrete tasks and task design principles is perhaps a step towards a modern mathematics education 
that takes advantage of what digital technology has to offer to enrich mathematics teaching.   
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Our research was carried out in the framework of the MC2 European project (http://www.mc2-
project.eu/, 2013-2016) aiming at developing a socio-technical environment for the design of digital 
resources fostering creative mathematical thinking. Through a network of theories, we conceptualise 
and study social creativity that occurs during collaborative design of a digital resource embedding 
mathematics into a story. We focus on factors that trigger, or hinder social creativity and that 
influenced a group of designers, made up of mathematics teachers, teacher educators and researchers 
with diverse expertise, broadening perspectives, supported by a socio-technical environment during 
the design process. 

Keywords: Process of collaborative design, social creativity, digital resource. 

Introduction 
Our research is motivated by promoting creativity in teachers and students, collaborative work and 
the use of digital artefacts to solve real world or interdisciplinary problems, and considering 
mathematics teachers as designers (Kynigos & Kolovou, 2018). It was carried out in the framework 
of the MC2 European project (http://www.mc2-project.eu/, 2013-2016) aiming at developing a socio-
technical environment facilitating and enhancing the design of digital resources, called c-books (c for 
creative), and fostering students’ creative mathematical thinking. The technical part of the 
environment consisted of the so called C-book technology embedding an authoring tool and a 
collaborative tool called CoICode1. Four communities of designers established in four partner 
countries, France, Greece, Spain and United Kingdom, constituted the social part of the environment. 
The French community, on which the paper focuses, brought together educational designers from 
diverse mathematical fields with manifold expertise and knowledge (researchers, teachers, software 
designers, etc.) because the process of designing purposeful mathematical activities in multi-
representational technical environment is complex. An aspect of this complexity comes from the 
interrelated processes of learning to purposefully use a new technology, of designing tasks for 
students to initiate purposeful mathematical activity, of collating the various artefacts for the activity, 
of supporting students to learn to use technology, and of articulating the teacher’s role in supporting 
the students to navigate their respective routes through the various artefacts to include interaction 
with the technology (Clark-Wilson & Timotheus, 2013, p. 48). In this paper, we aim at highlighting 
factors that foster or hinder social creativity (SC) in the collaborative design of c-books. Studying 
                                                 

1 CoICode is a communication environment part of the C-book technology, offering a workspace within which members 
of a community engaged in a c-book design can collaborate. 
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these complex design processes required several theoretical perspectives leading us to network 
theories and concepts. We start by explaining our theoretical framework and the conceptualisation of 
social creativity. We pursue by refining our research questions and by exposing our methodology 
before presenting an analysis of one case study. We conclude with some salient results. 

Theoretical framework 
Collaborative design of creative digital educational resources within a socio-technical environment 
is a complex human activity intertwining manifold interactions and elements which are difficult to 
capture without any relevant lenses.  

As a first lens, within the activity theory (AT), Engeström (1987)’s model of activity structure (Figure 
1) helps us focus on particular elements, called entities, that intervene in the design activity: subject
that is the group of designers, object that is the c-book being designed, community with which the
designers’ group interacts, mostly the designers of the C-book technology, rules that govern the
design process, division of labour that occurs among the designers, tools and signs, such as artefacts
used by the designers, mostly the C-book technology including the CoICode collaborative workspace,
and outcome that is the designed resource, as well as learning that can occur during the design process.
Engeström (1987)’s model highlights also interactions between these entities, which allows to
describe and understand the context of the design process.

Figure 1. The structure of an activity system (Engeström, 1987, p. 78) 

Engeström (2001) expands his model and sheds light and awareness on the interactions occurring 
between different individual activity systems, i. e., when the subject is a single designer. It is 
illustrated by the minimal structure of two interacting individual activity systems (ibid.) which allows 
to bring to the fore the modifications of the object. The object moves from an initial state of un-
reflected, situationally given “raw material” (object 1) to a collectively meaningful object constructed 
by the activity system (object 2), and to a potentially shared or jointly constructed object (object 3). 
However, the models do not allow us to understand the nature of the entities. In order to capture the 
nature of the subject and community entities, we draw on the concepts of community of practice (CoP) 
(Wenger, 1998) and community of interest (CoI) (Fischer, 2001). Besides, the designers belong to 
various “worlds” according to their domains of expertise. These worlds have boundaries that “can be 
seen as a socio-cultural difference leading to discontinuity in action or interaction” (Akkerman & 
Bakker, 2011, p. 133). It is therefore important, while studying collaborative resource design, to pay 
particular attention to what happens on those boundaries. The boundary crossing approach (BC) 
(ibid.) enables to enlighten the weight of boundaries in the creative design process and the arising 
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mechanisms of identification, coordination, reflection and transformation through the concepts of 
boundary object (Star & Griesemer, 1989) and broker, bound to interactions between subject – 
community – (artefact or object or outcome), or between two or more individual activity systems. 
Finally, in order to highlight the role of the teachers (subjects) involved in the design, their personal 
resources (artefacts) brought into play in the design, and the trajectory of the digital resource being 
designed, i.e. its different versions from mother resources to daughter resource (Hammoud, 2012) 
(from object to outcome), we draw on the documentational approach to didactics (DAD) (Gueudet & 
Trouche, 2009). To sum up, the AT was our main framework allowing to connect all others through 
the entities of the Engeström’s activity system model. Based on this, we have been able to 
conceptualise our understanding of social creativity. 

As a matter of fact, different types of creativity are reported in literature. We have chosen the little-c 
creativity (Craft, 2000), which is when a person realizes a new or improved way to approach an issue 
or accomplish a task. We draw also on the componential tradition of creativity assessment (Hennessey 
and Amabile 1999) to assess it and on the concept of communities of interest (CoI) for characterising 
our communities of designers. Thus, within the MC2 project, we define social creativity (SC) as the 
generation of ideas which: (a) stem from a combination of two or more individual activity systems, 
(b) result from various interactions among the CoI members, the C-book technology and tools, (c) 
are externalized in and through specific digital artefacts (including the c-books), and (d) are 
considered by the CoI members to be novel, appropriate and usable (Daskolia, 2015). Moreover, 
creativity, social or individual, can be modelled through phases of divergent (novel ideas) and 
convergent thinking (appropriate and usable ideas) (Csikszentmihalyi 1996) constituting a creativity 
cycle. Social creativity is characterised by the reification of creative ideas collectively elaborated, i.e. 
elaborated by at least two CoI members. 

Research questions 
In this paper, we address the following research questions: in the collaborative digital resource design 
activity, 

· what interactions between rules, community and division of labour promote or hinder SC?  
· what types of objects have the potential to become boundary objects, under which conditions 

and how can they stimulate SC? 
· which members have the potential to become brokers, under what conditions and what is their 

role in stimulating SC? 

Methodology 
Our methodology relies on one case study, i.e., we analyse the collaborative design of one particular 
c-book within the French CoI. The data was mostly collected via CoICode that keeps traces of 
interactions in the form of ideas posted by each designer (Figure 3), but also through minutes of 
manifold meetings, exchanged emails and the designed c-books. Although the methodology 
comprises quantitative and qualitative methods, in this paper we only focus on the qualitative analyses 
aiming at getting a deeper insight into social creativity processes. The data analysis was processed in 
two phases. First, we use the AT to describe in detail the design activity context through the activity 
system entities in order to situate and understand the collaborative design context of the group of 
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designers. Second, we use our network of theories to qualitatively analyse data and bring to the fore 
factors impacting the social creativity taking place among the designers.  

A snippet of the collaborative design of the c-book ‘Ski’ 
In this section, we analyse a few episodes of the collaborative design process of a c-book on ski 
touring. From the AT perspective, the object of the design process was to create meaningful 
mathematical activities linked to the risks of provoking an avalanche while practicing ski touring to 
foster students’ mathematical learning and creativity (purposeful activities). The group of designers 
(subject, Figure 2) was composed of seven members of the French CoI (community), all closely 
related to mathematics education with knowledge on mathematics, technology and pedagogy, and 
sharing a constructivist background. 

Figure 2: The designers of the c-book ‘ski touring’ 

Four members acted as the main designers: Nina (secondary mathematics and physics teacher and 
PhD student, with a good knowledge of the C-book technology (artefacts)) who moderated the group, 
Marie (researcher and mathematics teacher educator, expert in mathematical modelling), Fred 
(mathematics teacher educator, interested in real problems), and Jane (mathematics teacher educator, 
interested in digital technology in mathematics education) who played the role of a reviewer. The 
other three members, Marc (expert of digital technology such as dynamic geometry systems), Jean 
and Adam intervened on request or during CoI meetings (division of labour). The main designers’ 
group was constituted in a way that at least one of them was at ease with digital technologies and 
especially with the C-book technology (rules). The designed c-book (outcome) should be used by a 
teacher of an associated CoP, called MPS, which Marie belongs to (rules). This CoP reflects on the 
use of mathematics for solving interdisciplinary problems with Grade 10 students. 

In order to bring to the fore the trajectory of the c-book design process through its versions, we 
combined documentational approach to didactics, activity theory, social creativity and boundary 
crossing approach. We could identify four versions of the c-book. The initial version was constituted 
by Marie’s personal resources on the theme of avalanche and skiing (mother resources = objet 1), as 
she has already worked on this topic within the MPS CoP and experimented some activities with 
Grade 10 students. From her numerous resources, Marie selected several that she instrumentalised 
through CoICode posts (object 2) (reflection mechanism = perspective making). Then, a divergence 
phase was initiated by a brainstorming amongst the CoI members. It generated nine new directions 
on real situations and mathematical notions (reflection mechanism = perspective making) and some 
creative ideas, i.e. judged novel, appropriate and usable by the designers. The creative ideas were 
related to real situations such as the avalanche risk depending on a slope leading to considering angles, 
the measurement of the angle of a snowy slope with ski poles that requires knowledge of 
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trigonometry, the shape of snow crystals leading to working on geometric figures, transformations 
and sequences. This phase was followed by a phase of convergence (identification, coordination and 
transformation mechanisms) characterised by the collective elaboration of some of these ideas with, 
for instance, some artefacts already known within the French CoI, such as GeoGebra or Cinderella, 
in order to simulate an avalanche to encourage students to make conjectures about the risks, or 
programming an avalanche victim search device in order to make students understand the notion of 
algorithm (objects 3). The two phases constituted a creativity cycle. They led to the second version 
of the c-book pictured through a defined structure and content based on the preparation of a ski tour 
as a guideline for the story that would guarantee a unity for the c-book. In the following creativity 
cycle, the creative ideas were mainly bound to the technology and designers’ technical knowledge, 
such as suggesting guidelines how to use GeoGebra for creating snowflakes, devising relevant 
feedback for students in different ways to enrich the milieu of the c-book activities by using widgets 
that were not familiar within the French CoI, or considering the copy/paste possibilities inside the 
Chat tool to enable interactions between students or between the students and the teacher (social 
aspects). During the third creativity cycle, the main concern of the designers was the usability of the 
c-book by the teachers and students from Grade 10 to 12. The designers were also concerned by 
giving a unity between all the activities thanks to a story on ski touring and avalanche risk. Hence, 
the focus of the designers changed from one cycle to the other. In addition, we noticed that a divergent 
phase was often initiated by a review of the c-book version at stake by the reviewer or by a critical 
feedback from some CoI members, less involved in the design, during a meeting (reflection 
mechanism). Each version was the result of a creativity cycle, i.e., a divergent phase followed by a 
convergent one as modelled in Figure 3.  

 
Figure 3: Model of versioning of the c-book collaborative design process (Essonnier, 2018) 

Furthermore, we observed that the first creativity cycle generated ten creative ideas out of 14 ideas 
judged as creatives by the designers, which was more than in the other cycles. The analysis of this 
cycle highlights a positive effect of the compulsory use of CoICode (rules) during brainstorming 
amongst the designers. This was not the case in the other cycles where the designers used also other 
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media to communicate and to record their interactions, such as emails or minutes from the diverse 
meetings. Indeed, when the CoI members used CoICode, they had to read the ideas of the others and 
to react on them. Each post in CoICode obliged a designer to reflect on his/her own ideas. The latter 
had to choose if the idea was new or rather a reaction to another one, and what kind of reaction 
(opposition, contribution or alternative). Such a structured reflexion turned out to boost SC. 

Finally, in order to have a deeper understanding of SC we studied the path of a creative idea, i.e. its 
collective elaboration. The creative idea we analysed (circled with red in Figure 4) was chosen 
because of its strong collective elaboration. This idea was preceded by Marie’s suggestion to create 
an activity on algorithms bound to the search of a victim of an avalanche (mother resource). Then, 
Fred’s creative idea proposed to work on algorithm with the “GeoGebra turtle”. Fred was referring 
to explicit algorithm (reflection mechanism). This suggestion sparkled the negotiations between Marc 
and Fred who expressed different perspectives of a widget around the idea of a "turtle" to model an 
avalanche victim research device. Marc understood and proposed a widget designed by the Greek 
CoI using logo language. But Fred did not know this widget. He knew another widget using Java 
Logo language, which could enable to create explicit algorithm but he was hesitating. Thus, they 
seemed to share a common frame of reference around turtle and logo, which enabled them to 
understand each other. The word “turtle” became a boundary object between them. 

Figure 4: Extract of the CoICode workspace dedicated to the c-book ‘Ski’ 

Nevertheless, from the meetings’ minutes, Nina the moderator found that Fred was in trouble because 
he could not manage to finalize his widget with GeoGebra (creative idea) that should allow students 
to work implicitly on algorithms. Hence, Nina asked Marc to help Fred. She identified difficulties 
(identification mechanism), and to overcome them, she solicited another member of the CoI 
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(coordination mechanism). Marc, expert of GeoGebra, designed the widget, limited the time and 
added a score to foster affective aspects (transformation mechanism = hybridization, daughter 
resource). Moreover, Marc was eager to create an explicit algorithm with a widget designed within 
the Greek CoI, but he did not master the logo language required for working with the latter. He 
therefore asked the technological expert from the Greek CoI how to write the algorithm and he 
eventually created a new widget (transformation mechanism = hybridization, daughter resource). He 
thus played a role of broker looking for knowledge in another CoI (community). 

Conclusion 
The analysis of the process of design of the c-book “ski” shows that some rules impacted positively 
social creativity among the c-book designers. One of such rules applies to the constitution of the 
designers’ community that should be as diversified as possible. The diversity should be understood 
in terms of complementary expertise of its members (pedagogical, mathematical and especially 
technical) broadening the discussion meaning, but also in terms of roles to be assigned (moderator, 
designer and reviewer, division of labour). Indeed, the reviewer fostered a divergent phase and the 
moderator facilitated a convergent phase, supporting creativity cycle. In addition, the use of CoICode 
to communicate during brainstorming seemed also to enhance SC. 

In addition, we noticed that some words (e.g., turtle) allowed the designers to propose various ideas 
in different perspectives from other contexts, from other cultures. Such words became boundary 
objects widening the CoI perspective. Therefore, within a CoI that designs c-books, we can say that 
potential boundary objects are malleable, transformable objects, compatible with the object of the 
design and belonging to the designers’ common frame of reference. Boundary objects helped to 
extend the common frame of reference between the designers (coordination) by enlarging their 
perspectives. 

We found that the brokers, who were members of the CoI, were able to identify the missing 
knowledge for the c-book design, to look for it and then, to share this new knowledge within the 
French CoI. Thus, in our context, we can say that a broker is a member of the CoI who identifies 
missing knowledge within the CoI, then can find it in another related professional world in order to 
bring it to the CoI. Thus, the broker acts as a coordination mechanism allowing the CoI members to 
extend their common frame of reference with new knowledge. 
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In this paper, we investigate three examples from two articles written by lower-secondary students in 
which they identify school mathematics used in workplaces. Their articles are written as part of a 
project aiming to help students find mathematics relevant. The students provide documentation on 
advanced use of graphs, mean values, calculations, and formulas in two occupations, music 
management and physiotherapy. By using Evans’ (1999) approach to transfer, we identify similarities 
and differences between school mathematics and workplace mathematics. In line with Evans’ 
approach, we aim at building bridges between school mathematics and workplace mathematics. 

Keywords: Workplace mathematics, school mathematics, building bridges, transfer, relevance. 

Introduction 
When doing research and following up student teachers in school practice, we hear students say 
“maths has nothing to do with my life”, “I don’t need maths”, and “maths is something we do in 
school”. These statements are in line with Masingila’s (2002, p. 37) study in which a majority of the 
students “think mathematics is synonymous with school mathematics”. Wager (2012, p. 10) built on 
this by saying that students often do not see “the connection between the mathematics in which they 
engage in school and the mathematics they experience out-of-school”. The national curriculum in 
Norway and other countries, e.g. the US common core state standards, specify that students should 
be able to apply the mathematics learnt in school to the workplace. However, as English (2010, p. 36) 
argued, “we need further knowledge on why students have difficulties in applying the mathematical 
concepts and abilities … outside of school”. 

When doing mathematics in school, students often ask “why do I have to learn this?” (Hernandez-
Martinez & Vos, 2018, p. 245) or “when will I use this?” (Willoughby, 2017, p. 877). Answers like 
“you are going to have mathematics next year as well, you know” and “because we have a test coming 
up” (cf. Onion, 2004), do not address the core of the questions. On the contrary, they might explain 
the student statements in the first paragraph. Alrø, Skovsmose, and Valero (2009, p. 15) asked eighth 
grade students what they used mathematics for outside school, and the most frequent answer was “to 
do homework”. If the only purpose of learning mathematics is to do homework or to be prepared for 
future teaching and tests, then it is easy to understand from such circular reasoning why students 
question the relevance of mathematics. Hernandez-Martinez and Vos (2018) argued that students 
need answers regarding how, why, where, and what mathematics will be relevant because it is so 
closely related to their motivation to learn and to what extent they see the usefulness of what they 
learn. Hernandez-Martinez and Vos see usefulness as a property of the mathematics being learnt, and 
relevance as the potential connection between the mathematics learnt, its usefulness, and the student. 

It might seem odd that mathematics, a field of knowledge so vital for today’s society, has difficulties 
being regarded as relevant. However, being able to give qualified answers regarding the relevance of 
mathematics involves detailed knowledge of the mathematics required to perform an occupation. One 
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cannot expect teachers to investigate a range of different workplaces in order to always have an 
answer when students question the relevance of a mathematical topic. Gaining insight into what extent 
the mathematics learnt in school is relevant to life outside school is a challenge for teachers and 
educators, like FitzSimons and Boistrup (2017) and Nicol (2002) found in their studies. This 
relevance challenge and the importance of connecting ideas and building on students’ out-of-school 
experiences and understanding when working with mathematics in school, constitute the rationale 
behind the Workplace mathematics project referred to in this paper. About 60 lower-secondary 
students, three of their teachers, and a researcher (the first author of this paper) investigated what 
mathematics their parents/guardians needed in order to perform their work. The students then wrote 
articles about their findings with the help from their teachers and in collaboration with the researcher. 

By investigating two of the student articles, this paper addresses the following research question: 
What school mathematics are the students able to identify in the workplaces? The analysis focuses 
on identifying and discussing similarities and differences between mathematics at school and at 
workplaces and provide a foundation for discussing potential transfer and relevance of school 
mathematics. We do this by presenting and extending the mathematics the students identified in two 
workplaces, music management and physiotherapy. 

Theoretical perspectives and previous research 
In the following, we clarify how the national curriculum links school mathematics with the working 
life and give a brief overview of perspectives and terms for out-of-school mathematics. We elaborate 
on the concept of workplace mathematics and on the gaps and potential transfer between school 
mathematics and workplace mathematics. 

Links between school mathematics and working life in the national curriculum 

In the Norwegian mathematics curriculum, mathematical competence is considered important for 
understanding and influencing what happens in society and for “pursuing further education and for 
participation in working life and recreational activities” (Ministry of Education and Research, 2010, 
p. 2). Problem solving and modelling are emphasised, and rich experiences with mathematics are 
regarded as an important foundation for lifelong learning. In addition, the ability to work with 
mathematical concepts, methods, and strategies to solve problems also “involves learning to pinpoint 
and describe situations where mathematics is involved” (p. 5). This is defined as an important part of 
mathematical competence. Thus, being able to identify the use of mathematics is considered as vital 
for strong mathematical competence in the national curriculum. The workplaces investigated in the 
project serve as rich contexts for identifying and making sense of the mathematics used. 

Perspectives and terms for out-of-school mathematics 

There are multiple perspectives and terms in mathematics education research regarding the 
contextualization of school mathematics and links between school mathematics and out-of-school 
experiences. Realistic mathematics is used to focus on creating meaningful and realistic situations in 
which students can learn mathematics (Freudenthal, 1991). Genuine or authentic mathematics 
concerns real-life situations brought into the mathematics classroom, strongly, but not necessarily, 
linked to mathematical modelling (e.g. Palm, 2008). Everyday mathematics focuses on identifying 
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everyday situations where mathematics is used (e.g. Nunes, Schliemann, & Carraher, 1993; 
Masingila, 2002). Workplace mathematics is used by researchers who study the mathematical 
knowledge and skills required to do certain work processes (e.g. Hoyles, Wolf, Molyneux-Hodgson, 
& Kent, 2002; Wake & Williams, 2001; Wedege, 2006). The perspectives presented have a key aspect 
in common – they study the potential links between school mathematics and out-of-school 
mathematics. The project presented in this paper takes the workplace mathematics perspective. 

Workplace mathematics and transfer 

In UK, two groups of researchers have investigated mathematics in workplaces from different points 
of view. Hoyles et al. (2002) studied seven different workplaces focusing on the mathematical 
knowledge and skills required of the employees and identified several mathematical skills as 
important in different occupations. Wake and Williams (2001) identified general mathematical 
competences applied in many occupations that also could be incorporated in the mathematics 
curriculum. Summarized, the competences and skills identified by the two groups of researchers were 
using proportions and percentages, handling data, using graphs, diagrams, and other tools and 
interpret them, modelling and solving problems, calculating and using formulas, recognizing 
anomalous phenomena, and doing extrapolations. 

On the other hand, there are also hindrances for identifying the use of mathematics outside school. 
Workplace mathematics is situated and has to be combined with knowledge about the work to perform 
required tasks (Hoyles et al., 2002). It can be hidden caused by automation of processes and division 
of labour, and the nature of school mathematics can cause challenges as well (Williams & Wake, 
2007). There are several differences between school and workplace mathematics that can hinder 
students recognizing mathematics in workplaces, Wedege (2006) argued. She identified seven 
categories that describe a gap several adults had experienced between workplace mathematics and 
school mathematics. The differences start at the number level. In the workplace, numbers have units 
of measurement, calculations have to be constructed, and there are often multiple solutions. In school, 
numbers often occur without units, the numbers as well as calculations are given, and there is only 
one correct solution. Solving tasks in the workplace requires collaboration and dealing with disturbing 
factors, it offers opportunities to use mathematics, and solutions have consequences. Solving tasks in 
school is often individual work without disturbing factors, and real-life contexts are used merely to 
create a need for using mathematics and solutions have therefore no practical consequences. 

However, the hindrances are surmountable. Wake (2013, p. 315) proposed a new mathematics 
curriculum to overcome the challenge of transfer “by placing the study of how mathematics models 
reality at the core of the curriculum”. This curriculum should give students the possibility to make 
sense of, and develop further, the models of others. Wake considered the research done in workplace 
mathematics as rich initial contexts to be used by teachers who support inquiry in the classroom. 
Evans (1999, p. 23), when writing about transfer between mathematics in school and everyday life, 
linked relevance with transfer by arguing that “if schooling is to be relevant … we need some account 
of how learning from the school can be … ‘transferred’, to other contexts”. He emphasised the 
importance of building bridges for transfer between school and out-of-school activities by identifying 
fruitful overlapping and inter-relations, and by analysing similarities and differences. 
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Method 
The background for the students articles: the Workplace mathematics project 

The project was a collaboration among the teachers, the students, the students’ parents/guardians, and 
the researcher. The teachers contacted the researcher because they wanted to do a project that could 
help their students see the relevance of mathematics. The teachers’ idea of visiting parents/guardians’ 
workplaces to document the use of mathematics was embraced by the students, and more than twenty 
parents/guardians attended an information/kick-off meeting. The parents/guardians were excited by 
the idea, they expressed a positive attitude towards mathematics, and agreed to be visited and 
interviewed. The meeting tuned them into the project and was important in order to go beyond Hoyles, 
Noss, Kent, and Bakker’s (2013) finding that visible workplace mathematics tends to be fragmented, 
routine-based, and mostly simple calculations. 

The students were trained to interview, document, and do pre-investigations by the researcher and the 
teachers. They were encouraged to gather information about the occupation, the particular workplace, 
and the interviewee’s duties, and identify concrete examples of mathematics being used. The students 
were grouped in pairs and triads, they decided their approach and interview questions, and then they 
interviewed, observed, and collected documents and photos. One of the teachers or the researcher 
joined most of the groups. Many of the parents/guardians had prepared information and examples 
when the students came. In 2017, after working with data handling, collecting supplementary data, 
and editing articles according to feedback from the teachers, the researcher, and the parents/guardians, 
the first student articles were published in a national journal for mathematics teaching. The researcher 
finished the articles, extended some of the examples, and added reflections on links between the 
students’ examples and the competency aims in the national curriculum. 

Analytical approach 

Evans’ (1999) approach to transfer, in terms of similarities and differences, is used as analytical lens 
to investigate what school mathematics the students were able to identify in the work done by the 
physiotherapist and the music management duo. The identification of similarities are discussed 
according to the skills identified by Hoyles et al. (2002) and Wake and Williams (2001), and the 
identification of differences are discussed according to Wedege (2006). These similarities and 
differences are used to shed light on a potential transfer of mathematics between school and 
workplaces. The examples in this paper are chosen because they are interesting and contain 
mathematical details that make it possible to identify links to school mathematics. 

Description and analysis of workplace examples from students’ articles 
We now present three examples and discuss the mathematics involved. The first two examples come 
from a music management duo (Tronstad, Graff, & Herheim, 2017). They work with several artists, 
and one of their main tasks is to help artists make a living of music. An essential question concerns 
deciding where artists should sell their music: streaming, CD, or both? Figure 1, made by the 
researcher based on information collected by the students, shows the sales in Norway for CDs and 
streaming. In 2011, the graphs intersected, and streamed music generated for the first time more 
money than CDs. The CD sales continued to drop, but in 2014, there seems to be a trend change. 
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To make a qualified decision on this requires 
critical reflections based on mathematical 
understanding by the music managers. In line 
with Hoyles et al. (2002) and Wake and 
Williams’ (2001) findings, they have to 
handle data, understand and interpret a graph, 
and understand the point of intersection of 
the two curves in terms of income. They have 
to predict a trend and make a decision based 
on past data – typical tasks within predictive 
modelling. Based on these reflections, they 
can make knowledge-based decisions of 
where to sell their artist’s music. However, in 
line with Wedege’s (2006) findings on 
differences between mathematics in school 
and in workplaces, this workplace example 
includes disturbing factors and the use of measurement units. Furthermore, it actually requires use of 
mathematics, and it is a decision that has potentially huge economic consequences. 

Another aspect is the income generated from having a song played on the radio. In one of the radio 
channels in Norway, artists earn 60 NOK/minute. If a song lasts three minutes and 23 seconds, you 
get the following calculation: 3 × 60 + (23/60) × 60 = 203 NOK. If the song is played 200 times/ 
month, it provides an income of 200 × 203 = 40600 NOK. This resemble common calculations in 
school. However, there are also several differences. The managers have to find many of the numbers 
themselves, set up an expression including fractions, calculate it correctly in order to know the 
potential profit, manage different measurement units such as seconds and minutes in the same 
formula, and deal with practical unit rates such as NOK/minute and times/month. Again, there is an 
extensive use of measurement units. To summarize, in these two examples, the music managers have 
to apply all the competences and skills on Hoyles et al. and Wake and Williams’ list. In addition, they 
need to gain an overview of these elements as parts of a complex system where several factors can 
influence their decisions such as where to sell the music, marketing, and arranging tours. 

The third example comes from a physiotherapist’s work with elderly and their walking ability 
(Berrefjord, Haugland, Nilssen, & Herheim, 2018). When a patient walks across a mat with sensors 
connected to a computer, a range of functional walking data is registered. The students identified a 
need for the physiotherapist to integrate mathematics and ICT skills as Hoyles et al. (2002) did. One 
issue is walking variability, arrhythmic or twitchy walk, and in order to investigate this one needs 
step times in seconds (see table 1): 

Step no. 1 2 3 4 5 6 7 8 9 10 Mean SD 
Left 0,8  0,79  0,8  0,83  0,88  0,82 0,033 
Right  0,86  0,82  0,81  0,81  0,77 0,81 0,029 

Table 1: Step times 

Figure 1: The sales in Norway for CDs (graph I) 
and streaming (graph II) in million NOK 
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Collecting the ten step times in seconds, five for each foot, makes it possible to calculate the mean 
values and standard deviations (the physiotherapist and the researcher calculated the standard 
deviation because this is not part of the students’ curriculum): 

�̅�𝑥 =
0,8 + 0,79 + 0,8 + 0,83 + 0,88

5
=

4,1
5

= 0,82

𝑠𝑠 = �(𝑥𝑥 − �̅�𝑥)2

5
= �(0,8 − 0,82)2 + (0,79 − 0,82)2 + (0,8 − 0,82)2 + (0,83− 0,82)2 + (0,88− 0,82)2)

5
= �0,0011 = 0,033

This example shows the need for dealing with decimal numbers, for setting up formulas and calculate 
correctly, for systematizing and presenting data, and for using statistical concepts such as mean and 
standard deviation. Standard deviation is frequently used by researchers to quantify the amount of 
variation of a set of data. Here, it gives the physiotherapist vital information about the extent to which 
a person’s walk is unstable and influences how the physiotherapist should proceed with the physical 
treatment. Such use of standard deviation exemplifies that mathematics has practical and concrete 
consequences. The importance of correctly knowing and using mathematics becomes more visible 
for the students, and can help them find answers to their relevance questions. 

Discussion and concluding comments 
Building bridges between school mathematics and workplace mathematics, helping students see the 
relevance of mathematics as something more than just being able to do homework and prepare for 
tests, is a challenge documented by several researchers (e.g. Alrø et al., 2009; Onion, 2004). Students 
struggle to see connections between school mathematics and out of school mathematic (Hoyles et al., 
2002; Nicol, 2002; Wager, 2012; Williams & Wake, 2007), and they find it difficult to apply 
mathematics outside school (e.g. English, 2010). Teachers have difficulties answering questions from 
students on why they “have to learn this” and when they will ever need it (Hernandez-Martinez & 
Vos, 2018). A possible remedy is to include genuine real life tasks, e.g. tasks situated in workplace 
contexts, as resources more often in the mathematics curriculum. This is one way of overcoming the 
differences between workplace mathematics and school mathematics identified by Wedege (2006). 

In contrast to the above-mentioned challenges, the Workplace Mathematics project generated 
multiple examples of how school mathematics is necessary in several workplaces, e.g. the use of 
tables, graphs, units, mean values, calculations, and formulas. This is emphasised by the national 
curriculum as important for developing mathematical competence. Connections between school 
mathematics and its usefulness in real life were documented, including information about what kind 
of mathematics was used, where and how it was used, in addition to why it was needed in the 
workplaces. 

By searching for similarities, the students also identified differences between school and workplace 
mathematics. The workplace tasks were more complex, had numerous units of measurement, there 
were several potential useful methods and not one definitive answer, and finally yet importantly, 
doing mathematics wrong could have severe consequences. Although Wedege argued that such 
differences can create a gap between school and workplace mathematics, they can also help students 
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develop a more flexible, nuanced view on mathematics. Identifying similarities and differences makes 
it possible to build bridges between school mathematics and workplace mathematics, as Evans (1999) 
suggested, and through this explicate the relevance of school mathematics. 

The parents/guardians took part in a kick-off meeting, they were enthusiastic, and several of them 
were prepared when the students came. This was important for the documentation of numerous 
examples on how school mathematics is used in different workplaces. The students experienced that 
school mathematics was used and had practical consequences. Such outcomes can be used to 
positively influence students in viewing mathematics as relevant, and this constitutes a valuable 
contribution to their learning and motivation for school mathematics (Hernandez & Vos, 2018). 
Including links between school and workplaces in the mathematics curriculum can provide fruitful, 
joint reference points for students and teachers when doing tasks and make working with mathematics 
more meaningful. Furthermore, the examples can be used to build bridges between school and 
workplace mathematics by discussing e.g. the importance of choosing appropriate representations for 
mathematical concepts in a specific situation and moving flexibly between different representations. 
We therefore argue that engaging students to identify workplace mathematics is worthwhile. 
However, further research is needed to find ways to help students “explore how mathematics can be 
transformed to meet the needs of a range of diverse situations” (Wake, 2013, p. 315). 
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Tasks are an important part of the education in mathematics. In an ongoing study, an analytic 
framework for identifying challenges in students mathematical task solving has been developed, and 
the conceptual and the creative challenge has been defined. Preliminary results indicate that 
considerations are needed to include these challenges in mathematical tasks. This paper takes off 
from there to describe a structure for selection and (re)design of tasks. The aim is to be able to discuss 
the basis for the structure. A further aim is to develop a support for teachers, test designers, textbook 
authors and others, in creating tasks with specific learning goals.   

Keywords: Task design, challenges, mathematical concept.  

Introduction 
Tasks are a central aspect of the teaching and learning of mathematics. They may offer students an 
opportunity to learn and to gain understanding. One way of defining understanding is to manage 
different mathematical tasks and thereby also overcome obstacles (Sierpinska, 1994). Sriraman, 
Haavold and Lee (2013) however describe the concept of task difficulty as hard to define and to 
operationalize. One way of gaining insight into this may be to regard a task as possibly including 
different types of difficulties, with unique definitions. This also supports the idea of having clear 
intentions of what learning goals may be reached by solving a task, and to include criterion for success 
in line with these goals as important aspects of teaching (Brousseau, 1997; Brousseau & Warfield, 
2014; Simon, 1995). The opportunities to learn depends on the design of the task and the cumulative 
effect of certain kinds of tasks is important to consider (Stein & Lane, 1996). Different learning goals 
imply the use of different kinds of tasks. The definition of two challenges, the conceptual and the 
creative challenge has, in an ongoing study, been developed from Lithner (2017), and an analytic 
framework has been developed to be able to identify and characterize these challenges. With a better 
understanding of tasks, their solutions, and the challenges included, a nuanced discussion of students’ 
opportunities to learn is in focus. Central to the study has been to make it possible to make a 
distinction between the two challenges. However, the results also indicate that the two challenges 
exist together and possibly also interplay. One of the important ideas of the framework is that 
discrepancy between students prior understanding and experiences and what a task requires them to 
do, is what creates a challenge. Earlier research has indicated that students benefit from working on 
tasks where they are challenged to go beyond using routine procedures (Jonsson et al., 2014), solving 
mathematical problems, and struggling with mathematical ideas (Hiebert & Grouws, 2007). 
However, unfortunately, students in their task solving often use imitative approaches rather than deal 
with challenges (Sidenvall, Lithner, Jäder, 2015). Preliminary results from the ongoing study indicate 
that the sum of challenges, conceptual and creative ones, affects students’ approach to the task 
solving. The students in the study, when overcoming conceptual challenges also overcame creative 
ones. There are however tasks with creative challenges, but no conceptual challenges.   
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This paper therefore, and supported by the framework and definitions previously developed, suggests 
a task design structure to include conceptual challenges to a greater extent in tasks, and specifically 
mathematical problems.  

Background 
Tasks used as artifacts in the teaching and learning of mathematics 

A task in this paper is seen as an exercise intended to support the students’ learning (Halldén, Scheja 
& Haglund, 2008). There is a clear distinction between mathematical problem solving, and other work 
on mathematical tasks, where a problem is a task to which the individual has no obvious method for 
solution (Schoenfeld, 1985). In contrast to mathematical problems, are tasks of routine character 
where the solution method is available to the solver as she identifies the type of question and what is 
a suitable, corresponding solution method. The use of mathematical tasks in the teaching and learning 
of mathematics highlights the relationship between task, student, teacher and the subject matter, 
mathematics. In this paper, the focus is on the design of the task. Brousseau (1997) suggests the 
arrangement of adidactical learning situations, where students get to connect with specific 
mathematical ideas according to the learning goals of the task. The teacher, for a while, delegates the 
responsibility of taking actions on the task, to the student. So, the teacher acts on the student through 
an activity, in this case a mathematical task. It has been shown that a textbooks and its tasks is 
important when teachers structure their teaching (Mullis, Martin, Foy, & Arora, 2012).  It seems like 
a common way of approaching the textbook and its tasks, at least in a Swedish context, is by working 
from the beginning of each chapter and finish up when time has run out (Sidenvall et al., 2015). 
However, this may lead to students meeting few challenging tasks (Jäder, Lithner & Sidenvall, 2015). 
Simon and Tzur (2004) describe a relation between an activity, and the effects of performing the 
activity, to explain how thoughtfully designed tasks can contribute to the development of a student’s 
conceptual understanding. To actively address specific learning goals, the selection, evaluation and 
possibly redesign of tasks is important. 

Conceptual challenges 

Mathematical concepts can be regarded as cognitive objects with different pieces of information 
attached to them. An ongoing encapsulation develops an elaborated picture of the concept within a 
person (Tall & Vinner, 1981). Conceptual understanding can be defined as the relationship between 
different pieces of information into an internal, mental network (Hiebert & Carpenter, 1992). Thus, 
the development of a conceptual understanding must have a student’s current understanding as a basis 
(Simon & Tzur, 2004). Relationships are based on similarities and differences and, in a hierarchical 
way, on general and special cases, where a piece of information may include parts of another piece 
of information (Hiebert & Carpenter, 1992).  

Tall and Vinner (1981) describe a difference between a person’s concept image, and the formal 
concept definition. A person’s concept image is the cognitive structure associated with a specific 
concept. It is a mental picture of properties and processes related to the concept (Tall & Vinner, 1981). 
The concept image develops over time, and with new experiences. The concept image, to a great deal, 
depends on the specific examples of the concept that a person has been presented to. Thus, a possible 
discrepancy between concept image and concept definition may occur with, for example, tasks 
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covering only a limited part of the aspects related to the concept (Niss, 2006). The part of the concept 
image that a student activates in a specific situation can be called the evoked concept image (Tall & 
Vinner, 1981). At times, a student’s concept image will be challenged in some way. It may be either 
by meeting a situation where the mental picture is not covering enough or is not clear enough in 
relation to the demands of the situation. The new ideas are thus assimilated (Piaget, 1952) with what 
the student already knows, adding to the concept image. It may also be that the concept image is in 
contrast with new experiences, and requires the student to change the mental picture in some way to 
incorporate the new ideas. This is what Piaget (1952) describes as accommodation, which may be 
seen as a two-step process, where the first step is the adjustment of the existing concept image, and 
the second step is an assimilation of the new ideas.  

For the purpose of this paper, a conceptual challenge is to make the necessary considerations of, and 
to properly use the (non-trivial) mathematical concepts, required in order to solve the task. For a task 
to include a conceptual challenge, there needs to be some kind of discrepancy between students’ 
current (and evoked) concept image and a suitable concept image for the task. 

Creative challenges 

Creativity is defined as “the use of the imagination or original ideas to create something” (Creativity, 
n.d.). In a school setting, and relating to mathematical problem solving, mathematical creativity can 
be defined as a process resulting in what is, to the solver, a new solution (Sriraman et al., 2013). 
Hence, the solver, rather than using an available template has to create her new solution method. The 
definition does not contradict the idea that problem solving skills can be achieved at a basic level, as 
well as at a more advanced level. However, as problem solving does not mean following a given 
algorithm, the problem solving process is hard to predict. Explorations, and hypothesizing may well 
be part of a problem solving process. To argue that a familiar method is reasonable to apply in a new 
situation may also be defined as creating a substantial part of a solution method. The characteristics 
of tasks are important in catering for a learning environment where problem solving is made easily 
available to the students (e.g. Jonsson et al., 2014; Stein & Lane, 1996). 

The definition of a creative challenge used in this research, is that the challenge is involved in the 
creation of what is to students, a new solution method, or the selection and modification of a familiar 
method in a new situation where the choice of method is not obvious. This can be either the creation 
of an overall method, sequencing a number of well-known and/or new sub-methods. Or it can be the 
creation of a new sub-method, as part of an overall solution method. Thus, for it to be a creative 
challenge, there needs to be a discrepancy between students’ prior experiences and a conceivable 
method.  

Task selection and (re)design to reach learning goals 
The discrepancy between task requirements and students’ concept image and previous experiences is 
here used as an indicator of the challenges of a task. Considering (reasonable) task challenges to be 
valuable to students’ learning (Hiebert & Grouws, 2007; Jonsson et al., 2014), the discrepancy also 
refers to the opportunities to learn. Depending on the selection and the (re)design of tasks, different 
learning goals may be possible to obtain (Stein & Lane, 1996). Specific learning goals, and students’ 
current state of knowledge are important factors for teachers when making informed teaching 
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decisions (Simon & Tzur, 2004). The decisions made in a selection and (re)design process can gain 
strength if informed by possible discrepancies and students’ approaches to tasks.  

Purpose 
The purpose of this paper is to present and discuss a structure for the selection and (re)design of tasks, 
to include conceptual as well as creative challenges in a task. The aim of this is to empirically study 
the effects of the design structure with both students and teachers. A further aim is thus that the 
structure will be of help to teachers, but possibly also test designers, textbook authors and others 
participating in the selection and (re)design of tasks used for the teaching and learning of 
mathematics.  

A structure for task selection and (re)design 
This study, in line with the development of the framework for identifying conceptual and creative 
challenge, has a focus on discrepancies between students’ concept image and their experiences with 
different methods, and what is required of them to solve a task. The discrepancy is a way to describe 
the opportunities to learn. By selecting and (re)designing tasks to fit a discrepancy to a specific 
learning goal, the opportunities to learn can be enhanced. There are assumptions about a student’s 
knowledge, concept image, mathematical background and way of approaching a task, but may as well 
be assumptions of a (rather homogenous) group of students (Simon, 1995). The effects of a solution 
process depend on the learners’ goal with the activity, possibly not tightly related to a learning goal, 
but for example to solve the task. Considering the importance of textbook tasks in mathematics 
classrooms, the structure makes use of existing tasks, gives support to an evaluation and suggests a 
direction for modification to these tasks. 

1. The starting point of the structure is the learning goal. A well-defined learning goal is
important to create a suitable task (Brousseau, 1997; Brousseau & Warfield, 2014, Simon,
1995). The learning goal is here described as aspects of a desired concept image. The
description is focused on the concept(s) included in the learning goal, but also assumes that
the learning goal is a clear widening of the understanding of a concept or the addition of a
new concept (or property thereof).
Example: The learning goal is to develop a concept image including that unknowns can be
represented as variables, and two unknowns can be related to each other through different
relations and represented algebraically. An unknown can be part of several relations.
Through such a system of relations each of the unknowns can possibly be determined.

2. The student’s current state of knowledge (Simon & Tzur, 2004) is described in terms of a
concept image and of experiences with solution methods linked to the mathematics in focus.
Example: The student’s concept image is assumed to include that unknowns can be
determined through the use of equations, where the unknown is represented by a variable and
related to constants and coefficients in an equality. Methods for solving equations
algebraically are familiar, as are trial and error approaches to tasks.

3. A candidate for a task in the area of the learning goal is found in the textbook.
Example: A group of friends visit a coffee bar. Some order coffee at the price of 16 kr per cup
and some order caffé latte at the price of 24 kr per cup. When the bill arrives the total cost is
296 kr. How many had a cup of coffee and how many had caffé latte if there were 15 friends?
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To be able to perform an evaluation of the suggested task a conceivable solution method and the 
possible creative and conceptual challenges related to these solutions are needed. The evaluation is 
based on the definitions of the challenges presented above. 

4. Conceivable solution methods are proposed. Conceivable in this sense makes it necessary to 
also consider that the learners’ goal is possibly not primarily the initially defined learning 
goal, but rather solving the task.  
Example: The task can be solved in several way. Here, two example are presented. 
a) The task can be solved by setting up and solving a system of equations  
b) The task can also be solved by a trial and error approach.  

5. Possible creative and conceptual challenges are visualized. The discrepancy between the 
proposed methods and students’ prior experiences gives indications of creative challenges. 
The discrepancy between a, for each solution method suitable concept image, and an assumed 
concept images indicates possible conceptual challenges included in the task.  
Example, creative challenge: a) Setting up a system of equations, and solving this is not 
familiar to the student and will thus be a creative challenge.  
b) The student has experience with using trial and error to find the value of an unknown. In 
other context she has also experienced two unknowns, such as when suggesting a format for 
a rectangle a specific area. This will not be a creative challenge to the student. 
Example, conceptual challenge: a) Not included in the student’s concept image is how two 
variables can be represented in two relations. Further, the contexts, with relations based on 
two different quantities (number of cups and cost) requires the student to use the concept of 
unknowns and their relation to each other in a more flexible way. Thus, this is a conceptual 
challenge 
b) When using a trial and error approach to solve the task, the student does not have to 
consider the relations of the two unknowns and how to represent them algebraically to the 
same extent. The approach is deemed to include no (or a low) conceptual challenge.  

6. The possible challenges of the task are compared to the learning goal. The comparisons 
indicate in what way a task can be redesigned. If there are more than one conceivable solution 
method to the task, it is also important to consider all of these.  
I) If the solution method avoids addressing the learning goal and the desired concept image, 
the task design should make the approach less favorable. Similarly, if the challenges is too 
small to address the learning goal, the design needs to consider this. 
II) If the challenge related to the solution method is deemed to be too high, modifications to 
the task can be made if the learning goal can still be reached. 
Example: I) The use of the method of trial and error in this case might not contribute to a 
conceptual challenge in a desired way, and might be possible prevent.  
II) It is possible that the conceptual challenge, including a flexible use of unknowns related 
to two different quantities is too high. It might be possible to redesign the task so that this 
aspect is not included, however, still including a conceptual challenge addressing the learning 
goal.  

7. Suggestions for adjustments of the task to meet the requests of the evaluations. 
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Example: II) Change the requirements to possibly lower the conceptual challenge of setting 
up and solving a system of equations: “Two families visit a coffee bar. Some order coffee and 
some order caffé latte. The Simpsons order 3 coffee and 2 latte, and the total cost is 96 kr, 
while the Bundys order 1 coffee and 3 latte, and their total cost is 88 kr. How much does a 
cup of coffe cost, and how much does a cup of caffé latte cost?”  
I) Change the numbers of the task (and therefor also the context) so that trial and error is 
made less attractive to use: “Two families are building a shed each. For the exterior they 
need panel boards of different dimensions. They need thin panel boards and wide panel 
boards. The Simpsons buy 171,5 meters of thin panel boards and 39,5 meters of  wide panel 
boards, and the total cost is 3692 kr, while the Bundys buy 48,2 meters of thin panel boards 
and 149,7 meters of wide panel boards, and their total cost is 4364 kr. How much does each 
of the different panel boards cost per meter?” 

A redesign of the task takes into consideration all the information from the evaluation. A process of 
evaluating and redesigning may iterate until a desirable task where the discrepancy between the 
suitable concept image and the current concept image coincides with the learning goal.  

Discussion 
Following this theoretical paper are empirical studies of how the proposed structure for task design 
works in relation to both students and teachers. The next step is to try the structure, and to redesign a 
number of tasks starting with a specific learning goal. Yet another aspect to examine is the way 
teachers make use of the structure, and the way they understand the included terminology to enhance 
the opportunities for learning for students through task solving. There may be aspects where the 
theoretical construct does not oblige to the circumstances. On the other hand, the structure may 
possibly serve as a foundation for task design and for further elaboration on how this can be done.  

One aspect to consider is how tasks work in a social context. Solving tasks and overcoming challenges 
together with others implies that, along with reconfiguring ones concept image, it may prove 
necessary to also create meaning within the group (Hiebert & Grouws, 2007). Included in such work 
should be considerations regarding how homogenous the concept images of a group of students really 
are. 

The reflexive relationship between, for example a teacher’s considerations of a student’s work with 
a task and the design of the task, is likely to continue as the task is in use. As well as redesigning the 
task after the lesson, a teacher may also act in the moment to answer to a new evaluation of the 
situation. For example, as a teacher, it may not at all times be possible to fully capture what 
understanding of a concept implies. It is therefore important to let the task design structure and the 
evaluation phase continue during and after the task is used in the classroom. As one way of looking 
at understanding is to consider the difficulties a student encounters, the discrepancy between the 
suitable and evoked concept image may be possible to reformulate as the task is used in the classroom 
(Sierpinska, 1994; Simon, 1995). 
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The issues concerning the use of curriculum resources such as teacher guides and textbooks are 
important because they can promote a teacher's pedagogical design capacity, or a teacher’s ability to 
use personal resources to adapt the curriculum materials and to achieve productive and beneficial 
instructional episodes in the classroom (Davis & Krajcik, 2005).  

From the idea of teaching as design, Brown (2009) built a Design Capacity for Enactment Framework 
(DCE) which represents the idea that the curriculum resources and a teacher's personal resources both 
affect the designing and enacting of classroom instruction. Viewed together, the factors of the 
curriculum resources and teachers’ resources provide a basis for understanding teachers’ use of 
curriculum resources in terms of offloading, adapting, and improvising. These three concepts are 
different types of mobilization of curriculum resources and are best understood as a spectrum of 
agency or responsibility for guiding instruction (Brown, 2009). The voice of the curriculum resource 
refers to how the authors or designers of the materials are represented and how they communicate 
with the teacher (Remillard, 2012). Remillard (ibid) distinguishes between talking through the teacher 
and speaking to the teacher. Most curriculum resources place primary emphasis on what the teacher 
should do and this is denoted as talking through teachers. When the resource communicates with 
teachers about central ideas in the curriculum, this denotes speaking to the teacher. Some authors 
have argued that speaking to teachers is one way that curriculum resources can be designed to be 
educative for teachers (Davis & Krajcik, 2005). In this way, a curriculum resource offers transparent 
and direct guidance related to the reasons and purposes underlying task selections (design rationale) 
or in anticipating student responses (Stein & Kim, 2009).  

Previous results on the utilization of resources in mathematics instruction in Croatia (Glasnović 
Gracin, 2011) show that the textbook is the primary resource in teachers’ lesson preparation; the next 
most frequently used resource is the accompanying teacher guide. In 2014, new school textbooks 
were approved by the Croatian Ministry of Education for the subsequent four-year school cycle. Since 
the planned curriculum had not been changed, the new editions of the most frequently used 
mathematics textbook series did not undergo significant changes. However, in line with 
recommendations from the Ministry of Education, the teacher guides that accompany the textbooks 
were revised to include, for example, opportunities for discovery learning.  

This situation, whereby the teacher guides were revised in 2014, while the planned curriculum and 
the textbook content remained the same, prompted us to conduct an investigation into the influence 
of teacher guides on teachers’ practice. The study encompassed the following questions: 1) What are 
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the differences in the structure, textbook mobilization and voice between the two editions of the 
teacher guide? 2) How does the teacher guide influence the use of the textbook in the observed 
mathematics lessons? Do the changes in the content of the new edition of the teacher guide cause a 
change in teacher practice? 

The study was conducted in two time spots, in 2013 and 2017. It encompassed analysis of the two 
editions of the teacher guide for grade six (published before and after 2014), classroom observations, 
and interviews with two experienced mathematics teachers in Croatia. Both of the teachers chosen 
for this study used the same textbook series in 2017 as they did in 2013. The analysis of the transcribed 
interviews, observation notes and teacher guide content focused on the different mobilizations of 
resources (offloading, adapting, improvising). The interviews also provided an opportunity for the 
teachers to explain why a particular type of resource mobilization was used. 

The results show the relative stability of teaching practice, but suggest, however, that the teacher 
guide can have an influence on the instruction. The analysis of the teacher guides showed that both 
editions have the same structure. The voice of the guides can be described as talking through the 
teacher, but the design of the activities in the new edition can be defined as transparent. Moreover, 
the new edition contains additional activities and approaches such as discovery learning. While for 
most lessons the old teacher guide encourages offloading, the new guide additionally suggests 
numerous activities that do not use the textbook as a mediator, which promotes adapting and 
improvising with curriculum resources. In terms of the teachers’ practice, the results show that the 
new edition of the teacher guide inspired the participants to design their own inquiry-based learning 
activities and that offloading is utilized less often. This indicates that the teacher guide can have an 
educative impact on teachers, supporting their use of active teaching methods in the classroom. 
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In this paper we describe the process of designing and implementing inquiry-based tasks relating 
mathematics and workplace context, through the collaboration of four teachers from different 
schools. Our focus is on the factors that influence the forms of inquiry integrated in community 
documentation. A common open task took different forms of inquiry during the implementation 
depending on factors such as the students’ mathematical abilities, the specificities of the different 
school contexts and the prerequisite mathematical knowledge. The process of teachers observing 
each other’s classroom implementations (hetero-observation) became the incentive for subsequent 
transformations of the shared resources, favoring the shifts from one form of inquiry to another.  

Keywords: Inquiry-Based Learning, Workplace context, Community documentation. 

Introduction  
The reported study took place in the context of the European-funded project Mascil (www.mascil-
project.eu) that targeted mathematics and science teachers’ professional development (PD) through 
the integration of inquiry-based learning (IBL) and workplace contexts into their teaching. In this 
paper, we study the process of design and implementation of resources by a group of mathematics 
teachers from different schools who collaborated to conceive IBL tasks stemming from the ‘Kite 
making industry’ that was selected by them as the workplace context to develop their design. The 
importance of introducing inquiry into the teaching and learning process has been recognized by the 
existing research (Boaler, 1998) and constitutes a main aim of many mathematics curricula and 
teacher education programmes. Also, there is a growing interest concerning the nature of resources 
and contexts facilitating the integration of inquiry into classroom teaching (Doorman, 2011). This 
integration increases the complexity of teaching as it brings to the fore issues such as the nature of 
the designed tasks, the teaching management and the students’ learning (Artigue & Blomjoi, 2013), 
thus teachers are reluctant to use IBL in their everyday practices (Bruder & Prescott, 2013). At the 
same time, it has been indicated that workplace contexts may offer rich opportunities for teachers to 
introduce authentic situations into their teaching (Wake, 2014) through open problems. The design 
and implementation of resources for mathematics linking IBL and workplace contexts constitutes an 
innovation since existing curricula rarely include this type of materials, so teachers’ collaboration in 
this direction is crucial. Existing literature indicates the facilitative role of teachers’ participation in 
communities in their professional development and more specifically when introducing educational 
innovations (Lerman & Zehetmeier, 2008) such as the one targeted by Mascil. However, how 
teachers collaborate to design and implement innovative tasks linking IBL and workplace is an area 
that requires further study. Under this perspective, in this paper, we explore the factors that 
influence the design/implementation of IBL tasks relating mathematics and workplace contexts 
during collaboration among teachers from different schools.  

Thematic Working Group 22

Proceedings of CERME11 4244



Theoretical framework 
The integration of IBL into the mathematics classrooms presupposes the transformation of the 
traditional teaching practices. Doorman (2011) indicates the shift in the teachers’ roles from telling 
to supporting, scaffolding and fostering students’ reasoning, while students pose questions, inquire, 
explain, extend, evaluate and collaborate. He highlights the need for new classroom norms and 
learning environments incorporating open problems with multiple solutions through the use of tools 
and resources. Artigue and Blomjoi (2013) also indicate the ‘authenticity’ of questions and 
students’ activity that requires connection with real life and out-of-school questions fostering the 
experimental dimension of mathematics. Inquiry can take three forms (ibid): (a) Structured: The 
teacher provides the students with the appropriate method/materials to solve the given problem. (b) 
Guided: The teacher provides the students with the necessary materials and the students have to find 
the appropriate strategies for solving the given problem. (c) Open: The students have to find 
problems or questions they would like to solve and chose the methods/materials for solving them.  

The crucial role of resources has been discussed in terms of the documentational approach of 
didactics (DAD, Gueudet & Trouche, 2009) focusing on teachers’ interactions with resources as a 
way to capture teachers’ professional development. The term resource describes a variety of 
artifacts such as a textbook, a piece of software, discussions with colleagues etc. An integral part of 
teachers’ professional activity is the search, selection and modification of resources as well as their 
implementation in class working individually or collectively with colleagues. This process – called 
documentational genesis - results to a document after classroom implementations. Through a class 
of professional situations and teachers’ experience, the existing resources are modified as 
documents that can be further transformed to new documents over time. The process of gathering, 
creating and sharing resources to achieve the teaching goals in the context of a community is called 
community documentational genesis resulting in the community documentation composed of “the 
shared repertoire of resources and shared associated knowledge (what teachers learn from 
conceiving, implementing, discussing resources)” (Gueudet & Trouche, 2012, p. 309). In this study, 
the group of participating teachers is considered as a community of practice (Wenger, 1998) 
characterized by mutual engagement (collaborative norms and relationships), joint enterprise 
(common goals) and shared repertoire (collaborative production of resources). IBL has been studied 
in relation to different theoretical frameworks (Artigue & Blomjoi, 2013) but not in relation to DAD 
and community documentation. Linking IBL and workplace contexts is a challenging research area 
(Triantafillou et al., 2016) in terms of the factors that influence teachers’ collaborative work. In this 
paper, we explore the community documentation aiming to link IBL and workplace contexts by the 
following research question: Which factors influence the forms of inquiry integrated in community 
documentation of IBL tasks relating mathematics and workplace contexts? 

Methodology 
Context and participants 

The implementation of Mascil in Greece included thirteen groups of 8-12 practicing teachers from 
mathematics, science and technology. In each group, the teachers collaborated in two cycles of 
design→implementation→hetero-observation→redesign with reflection as a core element, for a 
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school year with the support of a teacher educator. PD meetings took place before and after each 
implementation. In the first two PD meetings, teachers were introduced to the project rationale as 
well as to the main principles of IBL and workplace mathematics. In the next meetings, teachers 
collaborated in subgroups to transform existing Mascil tasks or design new ones in the same spirit 
and reflect on their experiences from the implementations. In the end of the project, the 
participating teachers were interviewed so as to address the impact of the PD program on their 
professional development. In this paper, we focus on a subgroup of four qualified mathematics 
teachers: tA (PhD), tB (Master 
degree, teacher educator), tC (Master 
degree) and tD (teacher educator). 
They collaborated in the design and 
implementation of two tasks (Stairs 
and Kites). Here we study the case of 
Kites. Implementation took place in 
different grades (Figure 1) in four 
public secondary schools of Athens. 
tB’s school is experimental, i.e. it is 
connected to the university, it 
supports experimental teaching 
methods and students are selected 
after examination. Hetero-
observation informed the subsequent transformations of the initially shared resources.  

The task 

The task was formulated gradually through discussions among the four teachers having as a starting 
point the idea of kite making. Factors that influenced the task design were the multiplicity of issues 
inherent in the construction of kites, the targeted mathematical content and its connection to the 
curriculum as well as the need to leave space for the students to become partners in the formulation 
of the problem. The initial common assumptions were: (i) The initial idea: Students’ adopt the role 
of employees in a small kite making industry aiming to optimize the amount of paper used. (ii) 
Preparing the implementation: Students work in groups, search for the following information in 
real-life sources and upload it in an e-class folder: (a) the kind of paper used for kites (dimensions, 
package, cost); (b) shapes/dimensions of kites with a focus on: regular hexagon of diameters 80cm, 
100cm and 120cm respectively that can be consisted of 6 equilateral triangles, or 2 isosceles 
trapezoids, or 4 right trapezoids with different colors; regular octagon of diameters 80cm, 100cm 
and 120cm respectively consisted of 8 isosceles triangles; and rhomboid. (iii) Integrating IBL: 
Based on the students’ collected information, the regular octagon and the rhomboid were excluded.  

Data collection and analysis 

The collected data consisted of: (1) teachers’ e-mail messages; (2) transcripts of PD meetings; (3) 
teachers’ resources (lesson plans, worksheets, ppts, digital files); (4) teachers’ notes from hetero-
observation; (5) teachers’ activity reports; (6) teachers’ interviews; (7) videos from classroom 

Figure 1: The process of implementation 
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implementations. Following DAD methodology (Gueudet & Trouche, 2012): (a) we analyze 
teachers’ work in time periods in and out-of-class (reflexive investigation principle); (b) we address 
their decisions taken in order to formulate their design through its use (design-in-use principle); and 
(c) we consider their work embedded in and influenced by different collectives such as the PD
meetings (collective principle). We used data from different time periods: excerpts from their
hetero-observation notes that took place before and after their own implementation, the developed
materials and their transformations over time including the arguments with which they documented
their options and presented in the PD meetings and in their activity reports.

Results 
Preparation and initial designs 

In this phase, the teachers worked on the initial idea aiming to formulate and orient the problem. 
Their documents included preparatory activities for hexagonal kites of 80cm diameter (since they 
were the most common type) aiming to help students understand that: (1) this kind of kite cannot be 
constructed by a single rectangular sheet of paper, thus the hexagon has to be divided in smaller 
different geometrical shapes; (2) hemming is necessary (i.e. each sheet edge is creased and rolled 
over onto itself) in order to make the kite robust; (3) companies save paper by using the remnants 
for the tail; (4) paper cost depends on the type of package and paper size. The initial document of tA 
for the 9th grade included an open task and it was further refined collectively by the group of 
teachers as follows: “We are workers in a kite making company. Our director suggests reducing the 
waste of paper. So today we will work in groups focusing on the case of regular hexagon kites of 
80cm diameter to explore the ways by which a hexagonal kite can be composed by different 
geometrical figures and the amount of paper needed. The dimensions of the paper we use are 
70×100, the package includes 46 pieces and costs 23€. In order to reduce the paper, our company 
decided to construct the kite tail with newspapers instead of the 
remnants (as we used to do). Thus, our aim is to minimize the 
remnants of the paper by exploring how to combine different 
geometrical figures. These figures can be: (a) 2 isosceles 
trapeziums; (b) 4 rectangular trapeziums; (c) 3 rhombs; (d) 2 
rectangles and 2 isosceles triangles; (e) 6 equilateral triangles. For 
gluing the internal figures, we use adhesive tape while for the 
external segments comprising the perimeter of the hexagon we use 
hemming. The hem is an isosceles trapezium of 4cm height”. 
Students work in groups and study one of the above five cases. 
Below, we provide a brief description of the corresponding 
activities: (1) Students are given an 8×3 table (Figure 2). The first 
row includes two rectangles representing respectively a real sheet of 
paper (with known dimensions) and a 1:4 scale one. The students 
have to compute the dimensions of the 1:4 scale rectangle. The next 
six rows correspond to the above mentioned five combinations by 
which hexagonal kites can be constructed. In the second and the third column, regular hexagons are 
given representing respectively a real kite and a 1:4 scale one. For each combination of shapes the 

Figure 2: A completed
worksheet of activity 1  

Thematic Working Group 22

Proceedings of CERME11 4247



 

 

students have to divide the given regular hexagon in corresponding parts and compute both the 
dimensions of the real kite and the ones of the 1:4 scale. In the last row, the students are asked to 
compute the dimensions of two given isosceles trapezoids representing the hems of the real kite and 
of the 1:4 scale respectively. (2) Each group announces the results to the whole class. (3) In a 
millimeter paper and in a 1:4 scale each group represents the real rectangular sheet and explores if a 
regular hexagon with peripheral hems fits within it. Then, they confirm that this construction is not 
possible through the use of a given Geogebra file. (4) The students cut with scissors the geometrical 
figures they worked on in the first activity (including their peripheral hems), put them down on 
millimeter papers (1:4 scale of the real paper) and glue them when achieving the best coverage 
(minimizing gaps). In this activity, students experiment to achieve the best coverage by combining 
their own geometrical figures with other groups’ figures. They confirm their findings through the 
Geogebra file. (5) The groups exchange their cut geometrical figures to optimize their coverage.  

The computations mentioned above, required the knowledge of properties of 
regular polygons, Pythagorean Theorem and trigonometry taught in 8th 
grade. The four teachers planned to implement the task as follows: tA and tC 
in 9th grade, tB in a 7th grade and tD in 8th grade. So, they adapted the initial 
design taking into account the respective curriculum and their different 
contexts. tC, for instance, whose class included many low achievers, 
expressed her concerns about her students’ required knowledge. Thus, she 
designed a preparatory lesson aiming to remind the properties of the basic 
geometrical figures embedded in the kite construction as well as the steps for 
constructing a regular hexagon with ruler/compass. Then, the students were 
asked to divide given regular hexagons in corresponding parts (see a 
filled worksheet in Figure 3). At the same time, tB excluded the 
computations of the given figures’ dimensions, since the 7th grade 
students do not have the required knowledge. His emphasis was on 
the concepts of scale and symmetry. In his design the regular 
hexagons and their geometrical components (both with peripheral 
hems) were given (Figure 4) and the students were asked to 
reproduce them in a sheet of paper (1:4 scale) and cut their 
components with scissors. He targeted the exchange of geometrical 
figures among the groups and the exploration of the best coverage 
with different combinations by using more than one sheets of 
papers. Finally, tD exploited the initial collective design for 
teaching the properties of regular hexagons in the 8th grade. 
Summarizing, community documentation in this phase revolved 
around a common body of activities of the initial design. Besides, they concentrate mainly on 
adaptations related to the curriculum and to their students’ mathematical abilities/weaknesses. 

Implementations and redesigns 

The first implementation took place in a 9th grade classroom of tA. Despite the fact that the whole 
process fascinated the students, but it was time consuming since: (1) Mistakes in the calculations 

Figure 3: Dividing 
a regular hexagon   

Figure 4: Hems and 
geometrical components  
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and wrong application of geometric properties were noticed. (2) Each group undertook the 
calculations of a specific combination of geometrical components and communicated the results to 
the others. This process has been time consuming and students of one group may did not understand 
the calculations of the other groups. (3) The construction of the 1:4 scale hexagon on a millimeter 
paper and the cutting of its components based on the previous calculations were also time 
consuming. These difficulties resulted in the limitation of students’ exploratory activity (e.g., there 
was no time left for exchanging the cut geometrical figures across the groups) and the failure to 
complete the lesson in the foreseen two hours. 

The process of hetero-observation allowed the rest of the teachers to modify 
their initial designs by giving students ready-made materials (i.e. rectangles 
17.5×25cm representing the real sheet for kites and regular hexagons of 
diameter 20cm with hems representing a real kite, all in a 1:4 scale) so as to 
have more time for exploration. The lesson of tB in a 7th grade classroom of 
his experimental school (where exploration and group work constitute 
common practices) embodied elements of both guided and open inquiry. He 
prioritized the use of manipulatives and digital representations (Geogebra) as a 
main element of IBL. After experimentation with different combinations for 
covering the 17.5×25 sheet, two groups of students decided that the optimal 
coverage of a sheet was achieved by the use of 2 rhombs and 2 equilateral triangles (Figure 5). 
Thus, 3 sheets include 6 rhombs and 6 equilateral triangles and allow the construction of 3 kites (2 
kites with rhombs, 1 kite with equilateral triangles). This way the numbers of equilateral triangles 
and rhombs needed should be multiples of 6 and 3 respectively. Since each package includes 46 
pieces, the students reached the notion of Least Common Multiple (LCM) as appropriate for finding 
the best solution (we note that LCM was not explicitly part of the teachers’ design). Therefore, with 
three packages (138 sheets=LCM (3, 6, 46)) they could construct 138 kites (46 with equilateral 
triangles and 92 with rhombs).This finding provided an incentive for other groups to optimize the 
final solution. The lesson closed with a whole class discussion where the best solution was chosen 
and the connections to the realistic context (kite making industry) became explicit.  

The emergence of the notion of LCM was not taken into account in the initial design and challenged 
further the teachers’ reflection. Thus, the second implementations of tA and tC were characterized 
by a more conscious attempt of the two teachers to bring to the fore the notion of LCM. However, 
while tA’s students’ exploration resulted in better solutions in terms of paper save and diversity of 
combinations, tC’s students faced a lot of difficulties. For instance, one group of tA used 4 sheets to 
construct 4 kites with three different combinations (i.e. 2 kites with trapeziums, 1 with equilateral 
triangles, and 1 with 2 isosceles triangles and 2 rectangles). Through the use of LCM, these students 
concluded that with the use of 92 sheets they can construct 92 kites of the above three different 
combinations. During her implementation (9th grade), tC faced the difficulties of tA’s first lesson 
and also many students did not understand the role of hemming. As a result, the notion of LCM was 
not exploited to offer multiple solutions. tC in her activity report mentioned “I should have engaged 
them in the construction of a real kite with the use of paper and wooden straws”. A comparison of 
the two implementations shows that tA followed an open form of inquiry taking more time than 

Figure 5: the 
combination of 

two groups 
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expected (3 teaching hours instead of 2), while tC - due to her students’ low mathematical abilities - 
followed a structured form of inquiry downgrading the demands of the task.  

The last implementation was carried out by tD in a 7th grade classroom. By observing the other 
teachers’ teaching, she realized that many problems stemmed not only from the calculations but 
mainly by obstacles in the process of groups’ exchange of geometrical components. Thus, she 
decided to support the communication among the groups by taking the role of ‘crier’, ‘circulating’ 
around and showing different geometrical figures so as to facilitate the choice of other groups’ 
figures that minimize the free space in their sheets (i.e. she showed specific groups’ solutions to the 
other groups highlighting the free parts of the sheet and motivating them to conceive its best 
coverage or its reconstruction by using some of their own geometrical figures). Besides, this choice 
was also related to the fact that the students’ initial attempts left uncovered big parts of the sheet. In 
her activity report, tD considers that “A real kite construction in the classroom would have revealed 
to the students that a large amount of paper is lost”. Her implementation embodied both guided and 
open inquiry: the first part of the worksheet offered guidance to the students in the introduction of 
the corresponding notions in the realistic context while in the second part of the lesson tD 
emphasized the importance of communication among the groups keeping a mediating role for her.  

Discussion and concluding remarks 
In the preparation and initial design phase, the main issue was the orientation of the task consisted 
of: (i) the openness of the task; (ii) the embodied mathematical concepts; (iii) the specificities of 
constructing a real kite (kinds, dimensions, hemming, paper packages, costs); (iv) the complexity of 
mathematical exploration (geometrical figures and their properties, multiplicity of solutions); (v) the 
connection to the workplace context (cost, constrains in the use of paper) and the need of students’ 
engagement in collecting relevant information; (vi) the roles of teachers and students; and (vii) the 
teaching management. The data collected by the students revealed the specificities of kite 
construction and the teachers’ documents were adapted to their different school grades/contexts.  

In the implementation phase, the initial open task took different forms of inquiry. The initial open 
approach of tA, brought to the fore issues that took time from inquiry. The open inquiry increased 
the level of uncertainty and resulted in not having a solution by the end of the first lesson. The 
process of hetero-observation was critical since: (1) tB adopted guided and open inquiry bypassing 
the time-consuming elements of tA’s teaching and including ready-made materials to ensure more 
time for inquiry. This choice facilitated the emergence of concepts not initially anticipated by the 
teachers (i.e. LCM) and left space for unexpected solutions to emerge. (2) tA (in her second lesson) 
and tD followed guided inquiry aiming to facilitate students to approach gradually the notion of 
LCM and help them to find as many solutions as possible. They used ready-made manipulatives 
and their teaching management was aligned to support IBL and communication between the groups 
(i.e. tD acting as crier) targeting intentionally the emergence of different solutions through the 
notion of LCM. This kind of activity strengthened the connections to the workplace context and led 
to the extension of the mathematical inquiry (i.e. multiple solutions from tA’s students). Finally, the 
tC’s belief concerning her students’ low mathematical abilities resulted in a structured form of 
inquiry. She tended to decrease the level of uncertainty by providing resources aiming to remind 
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students the properties of the basic geometrical figures embedded in the kite construction. However, 
the low mathematical abilities of tC’s and tD’s students were again a factor that limited the 
emergence of multiple solutions. Another factor was students’ difficulties in understanding the role 
of specific parts of kite construction (e.g. hemming). This was indicated in tC’s and tD’s reflections 
where they stressed the importance of engaging students in the construction of a real kite.  

Summarizing, the factors that influenced the adopted forms of inquiry were: teachers’ conceptions 
of their students’ mathematical knowledge; the different school contexts (e.g., differences in 
students’ prior mathematical experience, classroom norms, familiarization with IBL approaches); 
and the range of the prerequisite knowledge. The connection to the workplace context favored the 
emergence of mathematical concepts but the limited available time led teachers to structured or 
guided forms of inquiry. Hetero-observation facilitated the sharing of teachers’ associated 
knowledge by promoting awareness of the above factors and became the incentive for subsequent 
modifications of the shared repertoire of resources, favoring shifts from one form of inquiry to 
another. In conclusion, these factors influenced the community documentation indicating hetero-
observation as a catalyst mediating in a dynamic way the evolution of design and implementation.   
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The aim of this pilot study is to test the usefulness of variation theory as a theoretical framework in 
guiding the researcher to design the main study of developing students’ deep learning in mathematics. 
Both Marton’s variation theory of learning and Gu’s theory of teaching with variation were used in 
the design-based pilot study. Two teachers and 106 Grade four students from an elementary school 
in a large north-west city in Ethiopia participated in the pilot study. The pilot study data included 
transcripts of audio-recording of preparatory meetings (the first author with the two teachers) and 
students’ interview, video-recording of lesson observation, and pre and post-tests. The pilot study 
topic was of learning concepts of area and perimeter of rectangles. We find that the theoretical 
framework of variation helped us to address the systematic use of patterns of variation and invariance 
in the problem-based task design and to analyze the three patterns of variation in the problem-based 
tasks implementation in the classroom learning. 

Keywords: Variation theory, patterns of variation and invariance, problem-based task design. 

Introduction 
School mathematics curriculum has been significantly reformed from kindergarten to upper 
secondary school in Ethiopia. Consequently, school mathematics is now viewed from a dynamic and 
experimental perspective rather than only as a body of strict and logical knowledge already in 
existence (MOE, 2013). However, the national learning assessments have constantly shown that 
students have achieved poor results in all areas, and their achievement in mathematics is the least 
(MOE, 2013). For example, the fourth national learning assessment (FNLA) result has shown that 
the overall test performance of grade 8 students in 2013 was far below the national minimum 
achievement standard of 50%, and their achievement in mathematics is the lowest (the composite 
average became 25.65%), where 50% of the students scored at or below a score of 22.5% similar in 
both sampled grades 4 and 8 (MOE, 2013). According to the FNLA reports in 2013, the education of 
mathematics should receive special emphasis in all deliberations, for example, the use of teaching 
and learning resources, and professional development of teachers about innovative pedagogies. 

The overall objective of this study is therefore to make a contribution to developing the quality of 
mathematics teaching and learning in Ethiopia. This pilot study is to test the usefulness of the 
variation theory as a theoretical framework in guiding the researcher to design and implement 
problem-based tasks to improve students learning in mathematics. In this paper, we mainly focus on 
the following two research questions: (1) to what extent does the theoretical framework help to design 
the instruction of problem-based tasks? (2) to what extent does the theoretical framework help to 
analyze the implementation of such design in the classroom? 
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Literature Review and Theoretical Framework 
Marton’s Variation Theory of Learning (VToL) 

Ference Marton and his colleagues in Sweden and Hong Kong have developed Variation Theory of 
Learning (VToL) to describe how a learner might come to see, understand, or experience a given 
phenomenon in a certain way (Marton, 2015; Marton & Booth, 1997; Marton & Pang, 2006; Marton 
& Tsui, 2004). For instance, Marton and Booth (1997) emphasized that one cannot become aware of 
new aspects without becoming aware of differences. If certain aspects of a phenomenon are varied 
while its other aspects are kept constant, then those that vary will be noticed. Every concept, situation 
or phenomenon has particular or critical aspects, and it is important to identify the critical aspects and 
the focus of students’ attention should always be directed to the critical aspects (Lo, 2012). In order 
for students to discern the critical aspects of a concept(s), they need to experience different forms of 
variation in which the critical aspects of the concept(s) will be varied and not varied. Moreover, VToL 
addresses that for learning to occur, some critical aspects of the object of learning must vary while 
other aspects remain constant.  According to VToL, the specific knowledge/content or capability to 
be gained through learning is called the object of learning (Lo, 2012; Marton & Pang, 2006; Marton 
& Tsui, 2004). VToL takes the object of learning as the point of departure and claims that what is 
being learned is highly influenced by what actually comes to the forefront of students’ attention. 
Kullberg, Runesson and Marton (2017, p. 561) explained that “when analyzing how the object of 
learning is handled during teaching, the ‘intended’, the ‘enacted’, and the ‘lived’ objects of learning 
are used to differentiate between the teacher’s particular goal regarding what the students should 
learn, what is made possible to learn in the lesson, and what the learners actually learn”. The theory 
further suggests that how students perceive a specific object of learning depends on what pattern of 
variation and invariance is provided by the teacher. Four patterns of variation and invariance are 
identified: contrast (i.e., recognizing differences between two values of an aspect), generalization 
(i.e., keeping the focused feature invariant and varying other out of focus aspects), separation (i.e., 
separating aspects with varying values from invariant aspects), and fusion (i.e., experiencing several 
critical aspects simultaneously) (Leung, 2012; Lo, 2012; Marton & Tsui, 2004). Marton (2015) 
further proposed a new pattern of variation in which only three of the four patterns, i.e., contrast, 
generalization, and fusion exist as the basic ones, which are observed by learners. 

Gu’s Teaching with Variation (TwV) 

In parallel with Marton’s theory of variation, a theory of mathematics teaching and learning, called 
Teaching with Variation (TwV) (bianshi jiaoxue in Chinese), has been developed by Gu Ling-yuan 
and his colleagues through a series of longitudinal mathematics teaching experiments in China (Gu, 
1994). According to Gu’s theory, which was highly inspired by the theory of cognitive 
constructivism, meaningful learning empowers learners to establish a significant and non-arbitrary 
connection between their new knowledge and their previous knowledge (Gu, Huang, & Marton, 
2004). Classroom activities can be designed to help students to create this kind of connection by 
experiencing certain dimensions of variation. Gu’s theory of TwV suggests that two types of variation 
are helpful for meaningful learning. One is called “conceptual variation”, and the other is “procedural 
variation” (Gu et al., 2004). Conceptual variation refers to understanding concepts from multiple 
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perspectives. Procedural variation is progressively unfolding mathematics activities. That is, teaching 
process-oriented knowledge by enhancing the formation of concepts step-by-step, and experiencing 
problem-solving from simple problems to complicated problems (Gu et al., 2004).   

Based on the above literature, we formed an initial analytical framework (see Table 1) to guide us in 
designing an instruction and implementing such design in the pilot study. 

Theories Theoretical terms  The use of the theoretical terms in both design and 
implementation of an instruction of problem-based 
tasks in the pilot study 

Gu’s 
TwV 
(Gu et al., 
2004) 

· conceptual variation 
· procedural variation 
· non-arbitrary 

connection b/n new and 
prior knowledge 

· systematic and step-by 
step way of problem-
solving 

1. Design of the instruction of the problem-based tasks:  
· Conceptual variation (concept and non-concept 

variation). 
· Procedural variation (varying methods, problem 

transformations, connection within and between the 
problems) (for details see finding one below). 

 

Marton’s 
VToL  
(Marton, 
2015; 
Marton & 
Tsui, 
2004) 

· object of learning 
(intended, enacted and 
lived object of learning) 

· critical aspects of the 
object of learning  

· variation and invariance 
· Three patterns of 

variation (contrast, 
generalization, and 
fusion) 

2. Implementation of such design 
· The analysis focused on how the designed tasks 

are planned (intended), taught (enacted), and 
learned(lived) (explained in the findings section). 

· Two critical aspects of an object of learning were 
designed (see Table 2). 

· Each critical aspect was brought into focal 
awareness through the systematic use of variance 
and invariance of values of each aspect, and all 
were experienced and discerned simultaneously 
(for details see finding two below). 

Table 1: The analytical framework of Gu’s and Marton’s work of ‘variation’ 

Methodology  
Research Design 

This study was based on the principles of design research (Cobb, Jackson, & Dunlap, 2016). 
According to Cobb et al. (2016), design research is a research approach that has been increasingly 
appreciated in mathematics education research. It can help to construct the instructional ways of 
promoting learning of a particular concept, while regularly studying the development of that learning, 
considering all components of the instructional ways, including the context in which it is carried on. 
According to Cobb et al. (2016), some of the main characteristics of design research approach is its 
highly interventionist nature, iterative design and cyclic nature. Each cycle progresses in three phases: 
(i) preparation and design of teaching experiments; (ii) implementation of teaching experiments; and 
(iii) retrospective analysis that can lead to revisions and a new cycle (Cobb et al., 2016). In this pilot 
study, two teaching experiments, in two fourth grade classes of 106 students, were conducted in their 
regular classes, during a 45 minutes period for each class. The two classes were taught by the same 
teachers and the study design is illustrated in Figure 1. 
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Figure 1: The research process in the pilot study 

Data Collection  

106 fourth-grade students from a governmental elementary school in a city in the north-west of 
Ethiopia participated in this pilot study. There are four mathematics teachers teaching in Grades 1- 4 
(1 male, 3 females) in the school. The researcher (first author), together with one experienced teacher 
and one beginner teacher, formed the pilot study group. In this study, the study group collected data 
through preparatory meetings, pre-tests and post-tests, lesson observations and video-recordings of 
lessons, students’ worksheets and students’ interview (See Figure 1).  

Data Analysis Procedure 

We followed the three phases of each cycle progresses (Cobb et al., 2016) in our data analysis. The 
data analysis mainly focused on how the object of learning was designed and implemented in terms 
of patterns of variation and invariance of critical aspects of the object of learning within and between 
units of teaching, such as the problem-based tasks (for details see the analytical framework in Table 
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1). The analyses were made by watching the video recorded lessons and meetings, repeatedly 
focusing on what was planned (the intended), what was possible for students to discern (the enacted) 
and what the students actually learned (the lived object of learning). In addition, pre and posttests, 
students’ worksheets and students’ interview were also analyzed to find out students’ discernment of 
the object of learning. The analysis of the first class (see the intervention cycle 1 in Figure 1) is based 
on the data of the study group’s initial lesson plan, namely the problem-based task design and 
implementation in the class. The analysis of the second class (see the intervention cycle 2 in Figure 
1) concerns more on the usefulness of the redesign of tasks, the effective design and use of tools, and 
the impact on students learning. Given the space of this paper, we will chiefly focus on our research 
questions in the analysis of the first class. 

Findings 
Finding one and two below focus on reporting our retrospective analysis of the problem-based task 
design (namely the stage of the preparation and design of teaching experiments of the first lesson); 
and classroom implementation of such design in the first lesson.  

Finding one: The usefulness of the variation theory in designing the problem-based tasks  

In this pilot study, we focused on designing problem-based tasks for improving students’ 
mathematical understanding of the concept of area and perimeter of rectangles. The problem-based 
tasks were designed by referring to both Gu’s terms of conceptual and procedural variations and 
Marton’s terms of variation/invariance (see Table 1). The sequence of tasks used in the classroom 
instruction were designed with reference to the two problems and critical aspects shown in Table 2. 

Object of 
learning 

Critical aspects  Problems used to design sequences of tasks in the lesson 

The 
relationship 
between 
area and 
perimeter 
of 
rectangles 

(1) If the perimeter of 
rectangles is the 
same, then the area 
does not have to be 
the same. 

(1) The figures below are two bars of 
biscuits. If the price of these biscuit 
bars is the same, which biscuit do you 
want to buy? Why do you choose that 
biscuit? What is your strategy for 
choosing the biscuit you want to buy? 
Explain your answer. Use the given 
grid paper to help you compare the shapes. 

(2) A rectangle with 
dimensions closest 
together or the same 
(square) is the largest.  

(2) A farmer has a 16 meters long fence and he plans to 
enclose a rectangular grazing field with it.  Can you help the 
farmer to think of a way to enclose the largest grazing field? 
At what condition is the field smallest? 

Table 2: The link between the problems and critical aspects of the object of learning 

Conceptual variation was carried out to firstly emphasize certain concepts of rectangle such as its 
area and perimeter and hence the concepts could be more readily picked up for use in finding the 
relationship between area and perimeter of rectangles. In terms of procedural variation, the problems 
were transformed into simpler problems, so that students could solve them step by step in a 
progressive way, using different methods and that helped them to answer the original problem. In 
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addition, the second more advanced problem was designed to scale up the methods/solution 
techniques used by students in the first problem (connecting new and prior knowledge).  Students 
were also used their prior measurement techniques as a procedure to find area and perimeter of 
rectangles. Both procedural and conceptual variation was also carried out in connecting the abstract 
concept, for example, mathematical formula of area (A = length x width), directly to its concrete 
correspondence (counting unit squares). 

Marton’s theoretical notion ‘the object of learning’ (Marton et al., 2004) was also used in the pilot 
study in that the study group aimed to develop students’ learning of the relationship between the 
concepts of area and perimeter of rectangles. Moreover, the study group also applied the critical 
aspects of the object of learning to further understand students’ learning (see Table 2). The two 
problems shown in Table 2 were designed to bring the two critical aspects into the focal awareness 
of learners so that they could discern them step by step. The two problems were also used to guide 
the design of the sequence of tasks in the classroom instruction. 

Finding two: The usefulness of the theories of variation in analyzing the implementation of the 
designed tasks. 

The implementation of the designed instruction was guided by both Marton’s VToL and Gu’s TwV. 
For example, the teacher used procedurally varied approaches in implementing each of the designed 
tasks, in a systematic and progressive way. At the beginning of each task, the teacher asked students 
to conjecture the answers to each problem individually and then to compare it with their colleague’s 
work. The teacher then conducted a discussion with students on their answers without giving any hint 
on the correctness of students’ suggestions and did not give them the correct answers. The teacher 
then asked students to start a group investigation of the posed problems in a small group. Students 
were also encouraged to use the different tailor-made resources made available by the teacher to 
discover patterns in their answering. Each task was finally concluded by a whole class discussion 
followed by summary given by the teacher.  

Marton’s (2015) term of ‘contrast’ (i.e., recognizing differences between two values of an aspect) 
was used to guide the task implementation.  For example, students were asked to draw rectangles by 
fixing one dimension of the rectangle (say, length) and varying the other (width) and vice versa to 
find the area and perimeter of each using resources such as strings and unit square tiles. At this stage 
the concepts of perimeter and area of rectangles were discerned as area is the amount of surface of a 
region, and perimeter is the distance around the region. In addition, students were able to realize the 
change in area/perimeter due to the change in length/width of rectangles. 

Secondly, Marton’s (2015) term of ‘generalization’ (i.e., keeping the focused aspects invariant and 
varying other out of focus aspects) was focused in the classroom. The analysis of students recording 
sheet showed that most students discovered the formula for finding the area and perimeter of 
rectangles easily, and they were also able to understand how area formula is related to counting unit 
squares covering the rectangular region. Some of students’ correct findings and generalizations 
presented in class and written in the record sheet were: the perimeter of a rectangle equals the sum of 
all of its sides and this can be calculated as: perimeter of a rectangle = (2 x length + 2 x width); the 
area of a rectangle is the total number of unit grid-squares inside the rectangles and this can be 
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calculated as: area of a rectangle = length x width. Students were also able to compare rectangular 
shapes with fixed perimeter. At this stage students discerned the first critical aspect, that is, if the 
perimeter of rectangles is the same, then the area does not have to be the same. Most students were 
able to change their conjecture for problem one that the biscuit with largest side (the first one) was 
chosen to buy. In the recording sheet, most students wrote a generalization that rectangles with the 
same perimeter can have different area and vice versa. 

Finally, Marton’s (2015) term of ‘fusion’ (i.e., experiencing several critical aspects simultaneously) 
was highlighted. For instance, the relationship between the two concepts was shown by varying 
certain aspects (length and width) while keeping an aspect fixed (perimeter of rectangles). At this 
stage students were able to identify the largest/smallest rectangle among all rectangles with the given 
fixed perimeter. Most students were also changed their conjecture on identifying the largest grazing 
field with the given fixed length fencing material in problem two.  In the recording sheet, most 
students wrote a generalization that a rectangle with a fixed perimeter would have the largest area 
when its length and width are equal (a square).  

Discussions and Conclusions 
In this paper, we reported our retrospective analysis (Cobb et al., 2016) of using the theory of variation 
in both the designed instruction and the implementation of such design in the pilot study (see Table 
1 & Figure 1). Our data analysis shows that the joint consideration of the two different but compatible 
frameworks of variation (see Table 1) helped the study group to focus on the systematic use of 
patterns of variation and invariance in the design and analysis of the implementation of the problem-
based tasks in the classroom learning. In particular, it enables the researcher to analyze the 
implementation of such design to see how the students may experience and discern the critical aspects 
of the object of learning and to improve their learning in mathematics. The retrospective analysis of 
the pilot study would lead the researcher to revisions and new cycles for the main study. In particular, 
we aim to develop a more sufficient understanding of interrelationship of Marton’s terms of ‘the 
critical aspects of the object of learning’, and the patterns of variation and invariance (Marton, 2015) 
and Gu’s terms of conceptual and procedural variation (Gu et al., 2004) with the design-based 
approach (Cobb et al., 2016), to enable us to design and implement the problem-based tasks in the 
main study for engaging students in mathematical learning in a systematic process and at the same 
time to develop their own learning in mathematics. 

The analysis of the pilot study also showed that the implementation of problem-based tasks with 
patterns of variation and invariance helped students to improve their understanding of the critical 
aspects of the object of learning (the relationships between area and perimeter of rectangles) 
significantly. After the implementation of the first lesson, as can be evident from the researcher’s 
observation and video recording of lessons, most students were actively engaged in individual and 
group discussions and some students were able to grasp the concept quickly and began to make 
interesting conjectures from experiencing variations in the tasks. For example, most students showed 
progress in answering each question of the post-test with correct explanations. It was found that there 
were percentage increases of students understanding in discerning all the critical aspects (49% and 
26.4% of students provided correct explanations, 47.2% and 56.6% of students provided partially 
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correct answers, in posttest questions related to the first and second critical aspects respectively), and 
paired-samples t-test result informed that it was statistically significant (with the sig. level, 0.01) 
when it is compared with their pre-test results. In addition to their significant progress in the post-
test, during the post-lesson interview students said that they had achieved a better understanding of 
area and perimeter of rectangles by actively involving in the tasks. However, there are also few 
students who do not discern the critical aspects (3.8% and 17% of students were not able to answer 
the first and second questions of the posttest respectively). This is supported by the researcher’s 
qualitative analysis result that the intended, enacted and lived object of learning sometimes did not 
coincide. According to Kullberg et al. (2017), well-designed tasks and examples, and patterns of 
variation (differences) and invariance(sameness) in teaching, however, are insufficient and does not 
guarantee learning, it can, at best, make it possible for learning to happen. From our analysis, the two 
theories can, however, offered tools that the study group can use to focus on the mathematical content 
taught, students’ understanding of it and how to enable possibilities for learning.  
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Goal, Context and Methodology 
The poster presented the basic concepts and a sample of the web of problem threads (WPT), the 
core element of a theoretical framework under development, and a tool for task-design in 
mathematics education, based on the qualitative analysis of the Pósa-method for inquiry-based 
learning mathematics. The WPT is the result of the research aiming at, on the one hand, theorizing 
the ‘intuitively’ developed Pósa method, a ‘good practice’ as it is widely used in Hungarian talent 
care education, and on the other hand, providing theoretical background for the development and 
reconstruction of the method to be applied in public education. 

The term Pósa method refers to the nationally well-reputed three-decade-long teaching practice of 
Lajos Pósa, in Hungarian out-of-school weekend mathematics camps for highly talented 12-18 
years old students, who form a study group for 6 years. They solve connected mathematical 
problems (tasks) of various kinds (regarding content area), but the focus is on discovering and 
discussing the mathematical ideas connecting the problems and the corresponding ‘ways of 
thinking’, or kernels, according to our WPT framework. The Pósa-method was developed “based in 
teaching as craft knowledge” (Watson & Ohtani, 2015, p. 5), lacking the construction of, or 
building on any theoretical framework. There is also a demand (by the Hungarian Academy of 
Sciences) for the re-design of the method to be applied in public education, based on a theoretical 
background to be built. The main goal of the research is to subsequently (re)construct the theoretical 
frame and the tools of the task-design of the Pósa method. The term ‘reverse didactic engineering’ 
is suggested for this research methodology (also based on the discussion in TWG 17 of CERME11). 

Theoretical Background, Steps of Theorizing and some Results 
Based on mathematical content analysis, the web of problem threads has been theorized as the first 
step of theorizing, focusing on specific kinds of connections, common features (called the kernels) 
between the mathematical tasks (problems). According to this theorization, a set of connected tasks, 
in a partially fixed order, creates a thread of the problems. Kernel is the manifestation of a kind of 
connection (common feature) that creates the thread (that can actually have multiple kernels). As 
some problems belong to several threads, threads cross each other, forming a web, the WPT. The 
problems are selected and created (partially) for giving birth to the kernels, and not (usually) for 
their own sake.  

In the 2nd chapter of the 22nd ICMI study (Watson & Ohtani, 2015), C. Kieran, M. Doorman and M. 
Ohtani categorize theoretical frames into grand, intermediate-level, and domain-specific frames. 
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Our study aims at (re)constructing an intermediate-level framework, which we call the Theory of 
WPTs (TWPT), and links this to already established frameworks, such as the anthropological 
theory of the didactic (ATD) and its application, known as study and research paths (SRP) 
(Chevallard, 2007; Bosch & Gascón, 2014; Watson & Ohtani, 2015, pp. 260–272). The first step of 
theorizing will in a second step be analyzed through the lenses of ATD, where WPT is considered 
as part of the technology and theory elements of the studied praxeologies (Bosch & Gascón, 2014), 
which, similarly to SRPs, focuses on the connections between tasks (or questions). Therefore, 
considering ‘distribution as a dilemma’ in the categorization of design elements of tasks along 5 
dilemmas by P. Sullivan, L. Knott and Y. Yang in the 3rd chapter of the 22nd ICMI study, both task-
design approaches favour creating “doing mathematics” tasks (Watson & Ohtani, 2015, pp. 91–94). 

The poster is to present a sample of a WPT (see Figure 1 below) linked preliminarily to the ATD, 
with tasks, solutions, and the analysis of the highlighted ‘kernels’ yieldingness and invariant 
(quantities). In Task B (Can you tell a power of 3 that ends with 127?), we do not need to consider 
divisions by 103, it is enough (yieldingness) by it’s divisor, 8, as any power of 3 divided by 8 gives 
1 or 3 as the remainder. 

Figure 1: A sample of the Pósa WPT 

Some other kernels in the TWPT are experimentation, bounds (upper and lower), recursion 
(recursive thinking), induction, and proof of impossibility. The collection and analysis of a (more) 
complete set of kernels is one of the main future goals of the present research. 
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Introduction 
Secondary school mathematics teachers rely on multiple resources to select materials for classroom 
use, prepare  lessons, and design their curriculum. These include traditional curriculum resources 
(e.g. textbooks), social resources (e.g. discussions with colleagues) and various digital resources, such 
as mathematics apps, e-textbooks (Pepin, Choppin, Ruthven, & Sinclair, 2017), and online platforms 
for sharing digital materials, and constructing lesson series and curricula  (Gueudet, 2018). A plethora 
of digital resources have become available for teachers (Pepin & Gueudet, 2018). Understanding the 
role of resources in mathematics teachers’ work may inform the design of (digital) resources and 
platforms. To foster this understanding knowledge about the actual use of the various resources is 
important. In the Netherland, a survey on the use of learning materials has taken place periodically 
(Blockhuis, Fisser, Grievink, & Ten Voorde, 2016). However, this general survey does not focus on 
mathematics teachers and the specific combinations of resources they select. 

In this exploratory survey study, we focused on the resources selected and used by secondary school 
mathematics teachers to prepare their lessons, including resources they use to find materials for 
classroom use (e.g. student tasks). The research question was: which kinds of resources are selected 
by secondary school mathematics teachers for lesson preparation, and what do they use them for? 

Theoretical framework: the lens of resources 
In line with the documentational approach to didactics (Trouche, Gueudet, & Pepin, 2018)  we assume 
that teachers’ use of resources has an impact on their teaching. Teachers look for resources, adapt 
them to their needs and arrange selected resources into learning sequences for their students. This 
documentation work is an essential characteristic of a teacher’s work and takes place at the different 
levels:  curriculum, lesson series, and (parts of)  individual lessons. The types of resources used by 
teachers fall into different categories.  Pepin and Gueudet (2018) distinguish (1) curriculum resources, 
(2) social resources, and (3) cognitive resources. Curriculum resources are “developed and used by 
teachers and students in their interaction with mathematics in/for teaching and learning, inside and 
outside the classroom”. They are further categorized as (a) text resources (e.g. textbooks, syllabi, 
websites), (b) digital curriculum resources (e.g. e-textbooks, educational platforms), and other 
material resources (e.g. calculators, digital instructional technology). What distinguished digital 
curriculum resources from digital instructional technology is the possibility of arranging content and 
activities in line with the curriculum requirements. Social resources refer to human interactions, for 
example conversations with colleagues, or feedback from students. Cognitive resources refer, for 
example, to the mathematical frames and routines used by teachers, and are not considered in this 
study. By use of resources, we denote the selection of resources, their appropriation, and eventually 
modification by teachers to fulfill particular educational goals (e.g. determining mathematics content, 
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designing classroom activities or homework tasks). The results of a recent Dutch learning material 
survey show that textbooks and related materials have still been among the most important resources 
used by secondary school teachers independent of the subject, although teachers and school managers 
expect their importance to go down with time (Blockhuis et al., 2016). The most important digital 
resources for teachers are interactive student exercises. Teachers have indicated that they need 
guidance, particularly in selecting digital resources. 

Method 
A survey was administered in June/July 2018 to secondary school mathematics teachers, who were 
invited to participate by means of a brief text and a link in an electronic newsletter1. We received 78 
complete responses from mathematics teachers. The survey consisted of 14 questions and was partly 
based on a survey on digital resources for teachers in France (Gueudet, 2018). Items included, among 
others, teacher background information; (digital) resources selected to prepare lessons; the purpose 
of the selected resources; and classroom material retrieved or adopted from digital resources.  

Results and conclusion 
The survey results indicate that the most widely used resources for lesson preparation were national 
documents (e.g. syllabi), teachers’ own notes, interactions with colleagues, mathematics apps, and 
the website belonging to the textbook. General educational platforms and social media were 
mentioned least often. Resources were mostly consulted to find materials for classroom activities, 
although interactions with colleagues covered all aspects of lesson preparation,. In terms of digital 
resources, Geogebra was mentioned most often, followed by a digital version of the textbook with its 
associated website, and online video clips. Least often, general educational platforms were used, in 
which teacher could create and share materials, in spite of efforts to promote these platforms and their 
transformative potential (Pepin et al., 2017). It appears that the mathematics teachers were mostly led 
by the school’s mathematics textbook and its associated (digital) materials.  
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Introduction 
The aim of this poster is to present the development of a synthetic landscape of multiplicative 
reasoning constructed by student teachers. It explores the implications of working in a way that 
integrates literature from three different perspectives: maths recovery (MR), cognitively guided 
instruction (CGI) and realistic mathematics education (RME). The aim is to better understand how 
working in this way affects the way student teachers interact with learners, the questions they ask, the 
tasks they design: their capacity to value diversity in literature and develop their flexibility in practice.  

There is a pattern of superficial adoption of findings from research in teaching mathematics in 
Scottish schools that often relies on dissemination of a product where teachers have not been a part 
of the process of constructing understanding. This often leads to a series of short lived interventions 
that rarely produce the positive effects expected. In which case, what can we use within teacher 
education to inform ourselves, our student teachers, our professional colleagues that accepts the 
natural dilemmas of teaching and might improve professional and ethical decision-making in an ever-
increasing political world of curriculum design and change? 

To address this question the author alongside a teaching colleague developed and have redeveloped 
a year 3 undergraduate mathematics education course over the past four years to consider how to 
better support student teachers entering this environment. They need to be able to adapt quickly to 
changing priorities using informed professional decision-making. To create the space and time to 
think more slowly, the course focuses on the key shift in thinking from additive to multiplicative 
reasoning. The first semester explores additive reasoning working with children aged 4−7 years old 
and the second semester focuses on multiplicative reasoning working with children aged 8−12 years 
old. Each semester consists of six 3-hour sessions followed by five weeks in a school. This poster 
uses the second semester course where the assignment requires student teachers to report on their 
analysis of the children’s multiplicative reasoning.  

Theoretical Background 
Rather than taking one piece of major research and focusing on this to the exclusion of others we 
looked at using several significant studies. In this study, alongside the formal curricular guidelines in 
Scotland, Curriculum for Excellence (Scottish Government, 2009), three different theoretical 
perspectives are used: Realistic Mathematics Education (Fosnot & Dolk, 2001), Cognitively Guided 
Instruction (Carpenter, Fennema, Franke, Levi & Empson, 2015) and Maths Recovery (Wright, 
Ellemor-Collins & Tabor, 2012). The course is designed to consider the benefits and limitations of 
each in a complementary rather than a competitive manner. It is by synthesizing ideas from different 
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perspectives that have different foci that student teachers can become much more aware of the 
similarities and differences: complementary strengths and non- overlapping weaknesses. Similarly, 
the sessions include tasks focused on student teachers as learners of mathematics, researchers and 
teachers of mathematics to build a sense of themselves as mathematicians, researchers and teachers. 

Methods 

This design research (Gravemeijer & Cobb, 2006) takes an iterative approach to studying and refining 
task design within a mathematics education classroom: to develop our understanding of the embodied 
process of developing theory through practice and the means that are designed to support that 
learning. The design principles are based on mathematics as a constructive activity (Watson & Mason, 
2005) with an emphasis on mathematical practices and a more participatory view of learning and 
teaching mathematics.  

This poster will illustrate the latest cycle of this design research using multimodal data provided by 
the most recent cohort of 38 students during academic session 2017/18: student teacher’s 
assignments, planning documents, videos and transcripts of task-based interviews with children and 
images of child jottings to better understand how the design of the course influences the tasks 
designed by student teachers. 

Findings 
Preliminary findings indicate that most student teachers have shifted their focus to a more 
participatory view of learning mathematics, discussing a range of strategies and models used by the 
children. Some of the student teachers take informed risks, experiment with different pedagogical 
approaches and are beginning to design their own tasks however very few student teachers understood 
the underlying structure of number strings (Fosnot & Dolk, 2001). 
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Empirical research indicates that students, when solving tasks, frequently use superficial similarities 
to find the right algorithm. Furthermore, mathematics textbooks continue to use a teaching design 
that supports rote learning. This kind of approach creates difficulties in terms of promoting 
proportional reasoning as well as other mathematical skills. The purpose of this study is to examine 
the extent to which selected Grade 7 Japanese and Turkish textbooks provide opportunities to use 
creative mathematical reasoning, in terms of proportion topics. The results imply that proportion 
topics in the selected Turkish textbook mostly design opportunities for students to use algorithmic 
mathematical reasoning. However, Japanese textbook provides more creative mathematical 
reasoning opportunities.  

Keywords: Mathematical creative reasoning, proportional reasoning, textbook analysis. 

Introduction 
Proportional reasoning is a very important skill that students must acquire in middle school. The 
National Council of Teachers of Mathematics (NCTM) (2000) has highlighted that proportional 
reasoning should be “an integrative theme in the middle grades mathematics program” (p. 212). Being 
able to reason proportionally, on the one hand, plays a key role in the meaning of many mathematical 
content areas (e.g. similarity, trigonometry, probability), while at the same time constituting the basis 
of the concepts (e.g. speed, density) often encountered in real life (Lesh, Post, & Behr, 1988). 
However, most students struggle with developing proportional reasoning, and one of the reasons for 
this failure is related to weak teaching-design methods. Typically, a textbook on the subject of ratio 
and proportion starts by showing the different ways of writing the ratio, and the proportion is defined 
as two equal ratios. Then, students usually focus on finding answers to similar questions in the cross-
multiplication algorithm. Students frequently decide that a task involves a proportion following 
superficial cues such as, “the problem gives 3 numbers, and 1 other number is missing”. When solving 
this type of proportion task, students only need to recognise the task, insert the relevant numbers, and 
perform the calculation (Labato & Ellis, 2010). In this process, only the result is important; students 
do not usually concern themselves with proportional reasoning. The correct solution to this kind of 
example or task used by students is insufficient to show that a degree of proportional thinking has 
occurred at the desired level. The repetition of similar questions will allow for more practice of 
multiplication and division rather than improving proportional thinking. Furthermore, the 
continuance of such algorithmic questions will result in the student not being sufficiently educated 
about the multiplicative relationship required for proportional thinking. Instead, situations in which 
students create their own solutions will provide opportunities for them to connect with previous 
information and, in particular, allow them to improve multiplicative thinking (Labato & Ellis, 2010). 

Unfortunately, this kind of instructional design that uses highly algorithmic tasks is presented in the 
textbooks. Textbooks frequently provide questions that are similar to each other, and students are 
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expected to engage in solving them (Boesen, Lithner, & Palm, 2010; Hiebert, 2003). Studies also 
show that students who decide on which algorithm to use when solving a problem with superficial 
evidence usually try to remember the algorithm and then try to find the result (McNeal, 1995; Kamii 
& Dominick, 1997). This situation is similar to proportional reasoning in Turkish and other countries’ 
textbooks. The research indicates that proportional reasoning tasks in various countries’ textbooks 
are mostly low-level and contain highly familiar routine problems (da Ponte & Marques, 2007; 
İncikabı & Tjoe, 2013). Learning to reason proportionally takes effort and time, and in addition to 
routine problems, non-routine problems are also needed to help students develop. The algorithms 
presented without letting students create the ideas they need will not provide them with opportunities 
to improve their proportional reasoning skills (Labato & Ellis, 2010). 

Textbooks play a key role in many important areas, such as teaching design and student achievement. 
Since mathematics textbooks are a bridge between students and teachers, it could be said that 
textbooks are effective tools that offer students learning opportunities (Rezat, 2006). Due to this 
important role of the textbook, it could be considered as a mediator between the intended and the 
implemented curriculum (Schmidt, McKnight, & Raizen, 1997), and therefore, textbooks are 
important research areas in terms of mathematics education. Due to the important roles of textbooks 
and proportional reasoning, it is possible to find both national (Bayazıt, 2013; Dole & Shield, 2008) 
and cross-national studies (da Ponte & Marques 2007; İncikabı & Tjoe, 2013). Although there are 
studies on how the Turkish reform curriculum handles mathematics education, studies about how to 
design the contents of proportional reasoning in textbooks are very limited. For this reason, this cross-
national study will make an important contribution to those who prepare education programmes, as 
well as textbook authors.  

The aim of this research is to compare the extent to which selected Grade 7 Japanese and Turkish 
textbooks provide opportunities for creative mathematical reasoning in terms of proportion. 

The two central research questions in this investigation are as follows: 

1. To what extent does the teaching design of selected Japanese and Turkish textbooks support
the development of creative reasoning in the chapters on proportion?

2. What kind of reasoning is expected from students for solving the tasks presented in the
textbooks?

Conceptual framework 
Algorithms are important components in mathematics education; however, algorithms presented to 
students without preparing an adequate background prevent the development of mathematical skills. 
The students will use the algorithms they have learnt to solve the questions that they classify as 
superficial. This process, like any mathematical skill, will prevent the development of the desired 
level of proportional thinking (Labato & Ellis, 2010). Lithner’s framework of mathematical reasoning 
types sets apart algorithmic and creative reasoning, and so it could present a different perspective that 
examines the extent to which textbooks promote the development of proportional reasoning. 

In this study, Lithner’s framework of mathematical reasoning types will be used (Lithner, 2008), 
which was first created as a result of empirical studies in the field (Bergqvist et al., 2007; Lithner, 
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2004, 2008). Throughout those studies, reasoning was defined as “the line of thought adopted to 
produce assertions and reach conclusions in task-solving” (Lithner, 2008, p. 257).   

Lithner (2008) identified two main reasoning types: Imitative Reasoning (IR) and Creative Reasoning 
(CR). The main distinction between these two reasoning types is that IR can be identified as copying 
a solution process or as using an algorithm directly from a source example or from a textbook 
narrative, whilst CR creates a product from a creative mathematical thinking process (Figure 1).  

                              

Figure 1: An overview of Lithner’s (2008) mathematical reasoning framework 

There are two other forms of reasoning that fall under the category of IR, which are Memorised 
Reasoning (MR) and Algorithmic Reasoning (AR). 

MR is characterised by the idea that “the strategy choice is founded on recalling a complete answer, 
the strategy implementation consists only of writing it down” (Lithner, 2008, p.258). An example of 
this is writing a proof step that has already been memorised. The AR sequence should function as 
follows: “the strategy choice is to recall a solution algorithm. The remaining reasoning parts of the 
strategy implementation are trivial for the reasoner, only a careless mistake can prevent an answer 
from being reached” (Lithner, 2008, p. 259).  

CR can also be separated into two sub-categories: Local Creative Reasoning (LCR) and Global 
Creative Reasoning (GCR).  

LCR contains major parts of IR (e.g. recalling facts and using algorithmic sub-procedures), and minor 
parts of CMR. This means that a LCR task solution is always based on algorithms, although the 
student needs to modify the algorithm locally in a “non-trivial” way. A GCR task does not have a 
solution that is based on an algorithm, and therefore requires CR throughout the whole task-solving 
process. GCR may contain construction of an example, proof of something new, or modelling 
(Bergqvist et al., 2007).   

CR fulfils the following three properties:  

1. “Novelty: a new (to the reasoner) reasoning sequence is created or a forgotten one is re-
created”.  

2. “Plausibility: there are arguments supporting the strategy choice and/or strategy 
implementation motivating why the conclusions are true or plausible”.  
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3. “Mathematical foundation: the arguments are anchored in intrinsic mathematical properties of 
the components involved in the reasoning” (Lithner, 2008, p. 266). 

For the analysis of this study, textbooks will be examined as having two main parts: the tasks and 
examples provided to the students. In this study, a mathematical task is defined as a question that 
requires a solution from students, whilst an example is defined as a question that is given with an 
appropriate solution or solution process. 

Method 
Japanese and Turkish textbooks were selected for this study. The reason for this choice is primarily 
the success of Japanese students in international examinations, such as Trends in International 
Mathematics and Science Study (TIMSS). The 2015 TIMSS results saw 15-yearold Japanese students 
ranked 5th, and Turkish students ranked 40th, in terms of mathematics performance. The results of the 
2015 TIMMS for Grade 8 students on the topics of “ratio, proportion and percent” emphasised the 
difference between the achievements of students from these countries. In response to questions within 
this study, 67% of Japanese students got the correct answers, compared with just 34% of Turkish 
students. 

The textbooks that have been chosen for analysis in this study are Mathematics International Grade 
7 (Fujii & Matano, 2012), published by Tokyo Shoseki, and Mathematics Textbook Grade 7 (Bilen, 
2017), published by Gizem in Turkey. These two textbooks were passed through an approval process 
by their respective governments for use in classrooms in these two countries. The Tokyo Shoseki 
series, which has been translated into English, has a big market in Japan (Miyakawa, 2017). For the 
purpose of this study, only the proportion chapter was examined. The proportion topic is included in 
the Grade 7 textbook in both countries. In the Grade 7 Turkish textbook, the chapter on proportion is 
presented with two subdivisions, including nine examples and ten tasks. In the Grade 7 Japanese 
textbook, there were only three examples and 18 tasks in the proportion chapter. 

The examples and tasks were examined for analysis and were classified according to mathematical 
reasoning frameworks. Although the CR process is similar to the solution structure of non-routine 
problems, the framework is more focussed on the distinction between imitation and creation (Lithner, 
2017). For this reason, templates and solutions were considered. If the example/task could be solved 
with previous algorithms without any modification, they were classified as AR, whilst if the 
example/task could be solved with previous solution processes yet needed some modification to this 
process, they were classified as LCR. However, if the example/task did not have a solution that was 
based on an already-given algorithm and required CR throughout the whole solution process, it was 
classified as GCR. 

Figure 2 shows two examples from the Grade 7 Turkish textbook in the proportion chapter. These 
examples were classified as AR, as they present a teaching design that simply requires replacing the 
appropriate numbers in the template solutions in order to do the calculations correctly. 
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1. You need 2 cups of rice and 3 cups of water to 
cook rice. In this case, how much water is 
needed for 1 cup of rice?  

2. 12 small bottles of 50ml cologne costs 15 TL. 
If you want to buy 1 small bottle of 50ml 
cologne, how much would it cost? 

Figure 2:  Grade 7 Turkish textbook examples (p.127) 

There are five tasks at the end of the chapter, which students are required to solve. However, to 
complete these tasks, they only need to remember the previous solution process. Students need to 
replace the numbers in the template and perform basic calculations to obtain the solution. For this 
reason, the task below (in Figure 3) is classified as AR. 

 1) If 3 buses have 132 seats, how many seats are there 
in 1 bus? 

Figure 3: Grade 7 Turkish textbook task (p.128) 

The task below (in Figure 4), taken from the Japanese textbook, was determined to be of the LCR 
type. There are no similar tasks from previous examples, and so students cannot solve them by directly 
using cross multiplication algorithms (a:b=c:d); instead, they need to carry out local modifications to 
the previous solution methods (160+4x:60+3x=2:1). 

 

Figure 4:  Grade 7 Japanese textbook task (p.112) 

The example below (in Figure 5), taken from the Japanese textbook, was determined to be GCR. This 
example investigates whether “3: 4 = 6: 8” is true. There is an argument given that “if a: b = m: n 
then a. n = b. m”, and it is then proved using mathematical foundations. Finally, the example presents 
a generalisation, which provides the student with a totally new creative process with regards to the 
proofing argumentation. 
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Figure 5: Grade 7 Japanese textbook simple example (p.99) 

Results 
In this chapter, the pilot study results of the classified mathematical reasoning types in the proportion 
chapters in Turkish and Japanese textbooks are presented (Tables 1 and 2). 

Example Task Total 
MR 0 0 0 
AR 9 10 19 
LCR 1 0 1 
GCR 0 0 0 
IR (MR + AR) 9 10 19 
CR (LCR + GCR) 1 0 1 

Table 1: Classification of tasks and examples in the Turkish textbook 

Table 2: Classification of tasks and examples in the Japanese textbook 

The first conclusion drawn from the report of the study is that the Turkish textbook features no GCR-
type tasks or examples, and furthermore, ten of the tasks within the chapter do not even require any 
CR reasoning. These results show that the Turkish textbook only provides limited and weak 
opportunities for students to perform CR. In addition, the Turkish textbook’s teaching style mostly 
shows the necessary algorithm for solving a specific task within the examples, which means that when 
the students are solving the tasks at the end of the chapters, these algorithms can be used directly. 
This type of teaching style mostly supports IR, especially AR. In contrast, within the Japanese 
textbook’s proportion chapter, there is a total of three examples. Two of these examples are classified 
as AR, and the other example is classified as GCR. There are 18 tasks for the students to solve, with 
seven of these tasks requiring CR. This result reveals that the Japanese textbook provides more, and 
stronger, opportunities for CR than the Turkish textbook in the proportion chapter. 

Example Task Total 
MR 0 0 0 
AR 2 11 13 
LCR 0 6 6 
GCR 1 1 2 
IR (MR + AR) 2 11 13 
 CR (LCR + GCR) 1 7 8 
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Discussion  
The development of proportional thinking is a milestone for students, especially for those who take 
many years to progress. In this process, students will be supported by different problem-solving 
situations as much as possible, to support healthy development. The mathematical reasoning 
framework has shown that the Grade 7 Turkish textbook mostly provides opportunities for AR only 
in terms of learning proportion, in contrast to the Grade 7 Japanese textbook. 

Algorithms have an important place in mathematics, as they are an effective solution to a general 
class task. There are short-term gains and benefits, such as the ‘quick response to tasks’; however, 
AR can be a barrier to obtaining effective skills that can be used in the long term. Using algorithms 
in proportional reasoning can create the same problem. A teaching design based solely on using 
algorithms will, in the long term, allow students to solve familiar tasks that they recognise as only 
being superficial. The fact that students are engaged in different problem situations that require CR 
will lead them to understand the components of proportionality (multiplicative thinking, absolute 
thinking, etc.) in greater depth. Proper use of CR in the textbooks would contribute to the solution of 
this problem and should enable further development of students’ mathematical ability. The results of 
this study offer useful information on content design for educators, especially textbook authors. 
Applying the process should provide teachers with insights into the strengths and weaknesses of the 
textbooks being employed and enable them to make effective decisions about the selection and use 
of textbooks. In future studies, the comparison of different book series from different countries will 
provide new data that could be used to evaluate the results of the study in a wider context. 
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Introduction 
Despite its importance, mathematics is often perceived as boring and difficult. The demand for 
exciting mathematical experiences resulted in the Netherlands in a yearly event called the ‘Big Maths 
Day’ (Abels et al., 2016). During such a day, pupils are not taught their usual curriculum: instead, 
they are involved in playful mathematical activities. In this report, we present selected results from a 
study that involved the design and implementation of a ‘Maths Day’ (‘MD’) in a Greece.    

Theoretical Background 
The MD activities were designed drawing on ‘Realistic Mathematics Education’ (‘RME’) and 
‘Inquiry Based Learning’ (‘IBL’). According to RME, teaching mathematics should be a process of 
‘guided reinventing’ (Freudental, 1991). Pupils, guided by their teacher, reinvent and construct 
mathematics concepts from meaningful situations. Such reinvention can be successful, when it is 
based on ‘inquiry’. ‘Inquiry based learning’ is an educational approach, which is ‘driven more by a 
learner’s questions than by a teacher’s lessons’ (p. 1, EDC, 2016). Pupils try to find the answers they 
are looking for, by working in groups, on meaningful activities guided by their teachers. 

Methodology 
The Greek MD took place in a primary school located in the capital of Greece, Athens. Different 
mathematical activities were planned for different classes. This report focuses on the 3rd and 4th year 
classes, which consisted of 34 pupils with an age span of 8-10 years. Their day was labelled                       
‘Amusement Park’ and consisted of three parts: the ‘Introduction’, the ‘Circuit Form’ and the ‘Open 
Problem’ activities. The pupils were divided in six groups and were guided by four 
researchers/teachers. Data were collected from observations and interviews. Results from one group 
of pupils working and on a ‘Circuit Form’ activity called the ‘Fear Room’ will be presented below. 

Results  
The ‘Fear Room’ activity is essentially a variation of the board game ‘Snakes and Ladders’. A giant 
board is set up on the floor, made of A4 paper sheets with the numbers 1 to 40 written on them (Figure 
1). There are ‘traps’ (the sheets with the plastic snake, bat and spider on them) and ‘bonuses’ (the 
sheets with small colourful papers on them). Two opponent teams would play the game each time. 
One member from each team would be chosen as a ‘pawn’.  There was a stack of cards from which 
each team had to choose one every time they played. Each card ‘ordered’ the players to perform a 
combination of mathematical operations. The players had to choose numbers for the selected 
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operations. The aim of the game was to come up with a result that would lead them to a ‘bonus’ rather 
than a ‘trap’. The learning objective of this activity was ‘tackling mental calculations with numbers 
up to 100’. 

                                       
Figure 1: A team playing in the ‘Fear Room’ 

Initially, the group that we focus on, encountered difficulties with the calculations. Nevertheless, as 
the game went on, they got used to the procedure of finding the right operations and the right results. 
All the pupils emphasised that they liked this game and that the funniest part of it was ‘being a pawn’. 

Conclusion 
The ‘Fear Room’ activity provoked ‘inquiry based learning’ and on the same time the pupils 
perceived it as ‘a very funny game’. Such findings indicate that mathematics-despite its ‘bad’ 
reputation as a difficult and boring subject can become interesting and appealing when it is enriched 
by ideas from RME and IBL. 
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This paper present findings from a study which aimed at examining mathematical opportunities 
available in Malawian grade 1 textbook and their ability to enhance learners’ understanding of 
number concept through outcome based education (OBE). Two elements (examples and tasks) of the 
Mathematics Discourse in Instructional analytic framework for Textbook Analysis (MDITx) were 
used to guide analysis of the textbook. The results show that the textbook has provided learners with 
mathematical opportunities to understand the number concept using different levels of examples 
which are presented with real life graphics. However, lack of variety in terms of the tasks provided 
in the textbooks is viewed as a limiting factor to enhancing learners’ understanding of number 
concepts through independent practice and critical thinking, hence not achieving some of the goals 
of OBE.   

Keywords: Mathematics textbook, number concept, examples, tasks, outcome based education. 

Introduction and background. 
The results of Southern and Eastern Africa Consortium for Monitoring Education Quality 
(SACMEQ) show that Malawian pupils consistently perform very poorly on primary mathematics 
especially in number concept and operations (SACMEQ, 2011). For example SACMEQ 1 and 3 
project results showed that Malawian grade 6 learners achieved poorly in numeracy, specifically in 
number concept and operation as compared to the other Southern African Countries (SACMEQ, 
2011). Kasoka, Jacobsen and Kazima (2017) bemoans the Malawi SACMEQ results as worrisome 
because number concept and operations define numeracy. This implies that it might be difficult for 
Malawi to improve numeracy levels which are very low among its citizens if the causes of leaners’ 
inability to understand number concept and operation are not addressed.  

As one way of addressing the problem of learners’ low achievements in mathematics and science, the 
Government of Malawi through the ministry of education proposed a shift from objective education 
model (OEM) to outcome based education model (OBE). The underlying argument for the shift was 
that OEM was teacher centred, hence teacher played a more active role in achieving learning 
objectives than the learners. As such, OBE was assumed to be a major solution to improving and 
promoting leaners’ active participation and performance in all school subjects including mathematics 
(Malawi Institute of Education [MIE], 2006). The Malawi OBE curriculum emphasises learners’ 
achievement through active participation in classroom and out of classroom activities which promote 
independent learning and critical thinking.  In OBE, the content and focus of the curriculum 
determines the content and structure of curriculum material including textbooks, hence the value of 
a textbook is determined by the degree to which it contributes to students’ achievement of the learning 
outcomes (Chang & Salalahi, 2017). This means that the goals of OBE curriculum are expected to be 
highlighted and achieved through the textbook. As Fujita, Jones and Kunimune (2009) argue, 
textbooks constitute much to curriculum implementation, hence they are widely used due to their 
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potential in mediating between the intended and the implemented curriculum. This implies that 
studying of textbooks is important because of their influence to both teachers and learners. However, 
since the implementation of OBE curriculum in Malawian primary education, no study has been 
conducted to analyse the content of the textbooks and their affordances in learners’ achievement of 
the learning outcomes and OBE goals. As such, the purpose of this study was to analyse the 
effectiveness of the content of grade 1 primary mathematics textbooks in helping the learners to 
achieve intended learning outcomes. Specifically, the study aimed to answer the following questions: 

1. What opportunities are available for Malawian grade 1 leaners to learn number concept 
 from primary school mathematics textbook? 

2. How do opportunities to learn number concept in the textbooks relate to the goals of 
outcome based education curriculum? 

This study is timely in Malawian context for effective achievement of OBE curriculum goals. The 
study also makes relevant contribution to global literature on textbooks as there are fewer topic 
specific studies on mathematics textbooks analysis (Chang & Salalahi, 2017). 

Theoretical framework  
Ronda and Adler (2016) proposed a framework for analysing mathematics textbooks which is known 
as Mathematics Discourse in Instructional analytic framework for Textbook analysis (MDITx). The 
MDITx tool was adapted from Mathematical Discourse in Instruction (MDI) framework which was 
developed to analyse opportunities available for learners to learn mathematics (Ronda & Adler, 
2016). MDITx is rooted from the sociocultural perspective that foregrounds the importance of 
mathematics in a coherent manner. MDITx comprises of five key elements; object of learning, 
examples, tasks, naming/word use and legitimations.  The object of learning is the main focus of the 
lesson (Adler & Ronda, 2015). The object of learning might contain the key content (mathematical 
concept) as well as the expected capability (like simplifying, solving or proving). Examples are 
particular case of a larger class used for drawing reasoning and generalisations (Ronda & Adler, 
2016). Learners’ textbooks are expected to contain examples which would enable learners to attend 
to understand a particular object of learning. The examples might be worked (to illustrate the 
procedure), or not worked (as learners’ exercise). Tasks are what learners are asked to do with the 
examples like solving or drawing (Ronda & Adler, 2016). Different examples and tasks offer learners 
different opportunities to learn mathematics. Naming/word use is the way of naming mathematical 
concepts and procedures. Ronda and Adler (2016) argue that the way we name mathematical concepts 
and procedures might affect learners’ focus during the lesson. Legitimations are the mathematical 
concepts and mathematical criteria communicated to legitimise or justify key moves or steps in a 
procedure.  

Analysis of the textbooks focused on two elements of MDITx which are examples and tasks. The 
study focused on examples and tasks because it is commonly assumed that examples and tasks play 
a central role in the development of mathematics as a discipline (Olteanu, 2018). The second reason 
for choosing examples and tasks  was that at this level, the leaners have not reached the level of 
reading, as such, there would be little naming/word use and legitimation in the grade 1 textbook. 
MDITx framework was suitable for analysing number and operations topic because its elements are 
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similar to characteristics of OBE. As already explained, OBE emphasises on achievement of learning 
outcomes and measures the learners’ achievement using examples and tasks. Furthermore, OBE 
defines learning outcomes as what learners are supposed to learn. This definition is similar to that of 
object of learning in the MDITx framework.  

Methodology 

I analysed grade 1 mathematics textbook for learners by the Malawi Institute of Education publisher. 
This is the only textbook available for use by Malawian grade 1 learners. The minimum age for grade 
1 learners in Malawi is 6 years. According to the OBE mathematics curriculum, learning outcomes 
for the units of number and operation in grade 1 are; count up to 9, identify and write numbers up to 
9, add numbers with sum not exceeding 9, subtracting of numbers within the range of 0 to 9, apply 
number concept in daily life. In my textbook analysis, I only focused on Unit 1 and Unit 4 which are 
about counting and writing of numbers 0 to 9. This is because ability to count and write these numbers 
is a foundation for understanding other mathematical operations. As Aunio and Niemivirta (2010) 
argues, learners understanding of number concept is very  important in the learning of mathematics, 
hence learners without sound understanding of number concept skills struggle to excel in learning 
mathematics. Table 1 presents a summary of the codes that I used to analyse the examples and the 
tasks as adapted from Ronda and Adler (2016).  

Examples  Tasks 

Level 1-at least one of the pattern 
of variation (C-Contrast, G-
Generalisation, F-Fusion). 

Level 1-carry out the known procedure or use known 
concepts related to the object of learning (KPF only). 

Level 2- any two of C, G, or F Level 2-carry out procedures involving the object of 
learning (includes current topic procedure-CTP). 

Level 3-all the patterns of 
variations. 

Level 3-Carry out level 2 tasks plus tasks that involve 
multiple concepts and connections (includes CTP ad 
Application/making connections-AMC) 

Table 1: codes for analysing textbook examples and tasks 

Example space belonged to Level 1 if only one pattern of variation is used throughout (the examples 
were the same), or Level 2 if there was contrasting (there was variations which signified two aspects 
of object of learning), or Level 3 if there was fusion of more than one aspect of the object of learning 
(single pattern as well as contrasting examples present). A task belonged to Level 1 if it only involved 
Known Procedure Facts (KPF) from previously learned knowledge, or to Level 2 if it involved the 
current topic procedure (CTP) or required learners to apply the procedure that is being introduced in 
the current lesson, or to Level 3 if it included the current topic procedure as well as Applications/ 
Making Connections (AMC) among different concepts. 

Results and discussion 
Table 2 presents a summary of the findings from analysis of the examples and tasks from unit 1 to 
unit 4 of the grade 1 learners’ mathematics textbook. 
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Unit Object of 
learning 

Examples Tasks 

1 Counting and 
writing numbers 
up to 5 (25 
example spaces) 

G (11 example spaces) 

C (8 example spaces) 

F (6 example spaces) 

KPF (5 tasks) 

CTP (18 tasks) 

AMC (2 tasks) 

4 Counting and 
writing numbers 
up to 9 (15 
example spaces) 

G (6 example spaces) 

C (4 example spaces) 

F (5 example spaces) 

KPF (4 tasks) 

CTP (9 tasks) 

AMC (2 tasks) 

Legend G: generalisation 

C: Contrast 

F: Fusion 

KPF: Known procedure and facts 

CT: Current topic and Procedures 

AMC: Application/making connections 

Table 2: summary of nature of examples and tasks in grade 1 learners’ mathematics textbook 

Column 1 indicates textbook units where learners are introduced to number concept in the grade 1 
learners’ textbook. Column 2 indicates the objects of learning under each of these units. Column 3 
indicates codes assigned to example spaces under each unit. Column 4 indicates the codes assigned 
to learners’ tasks against each unit. The table shows that out of the 40 example spaces, 17 example 
spaces belonged to level 1 (G) as they required same ways of either counting or identifying numbers. 
This implies that more examples leaned toward generality of numbers through noticing of similarity. 
12 examples belonged to level 2 (C) as they required different demands like identifying what a 
particular number concept is and what it is not. 11 example spaces belonged to level 3 (F) because 
they contained examples which required understanding of different learning outcomes like counting, 
identifying numbers and writing numbers. This implies that most example spaces contained one 
pattern of variation (generalisation or contrasting) and few had a combination of different patterns of 
variation (fusion). This means that the textbook offers few opportunities for learners to achieve 
several outcomes in a single example space.  

Analysis of the tasks showed that out of the 40 tasks, 27 tasks were under CTP as they required 
learners to use knowledge of the number concept that was being learnt. 9 tasks were under KPF as 
they required learners to use their previous knowledge of counting. 4 tasks were under AMC as they 
involved comparing the magnitude of different numbers (ordering of numbers in either ascending or 
descending order). This shows that the 2 units mainly contained level 2 (CTP) tasks. This implies that 
most of the tasks aimed at mediating learners’ capabilities with respect to the current topic (Ronda & 
Adler, 2016). Table 3 present figures which show example spaces and tasks presented in the textbook 
with an aim of mediating meaning of number 1 concept. 
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Example space  Description of the task 

 
Figure 1: counting number of objects 

Count the number of objects in each box. 

 
Figure 2: identifying of boxes with 1 object 

Identify boxes containing 1 object. 
 

 

Figure 3: drawing number 1 using a model 

Drawing number 1 using a model. 

 
Figure 4: counting and writing number 1 

Counting  and writing the number of 
objects in each box 

Table 3: examples spaces and tasks 
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Discussion on the example spaces 

The figures in table 3 provide a general layout on example spaces and tasks provided in units 1 and 4 
of the textbook. These are the units which introduce learners to number concepts from 0 to 9. The 
task and the object of learning for learners textbooks for grade 1 to 4 are in local language as per the 
education system in Malawi. The study found that both units introduced the numbers in a similar 
manner. Firstly, each unit started with an example space for counting of objects. Secondly the unit 
presented an example space for identifying objects of a specific number. Thirdly the unit presented 
an example space for drawing number 1 using drawing materials. Lastly the unit presented example 
space for counting and writing number of objects.  

I coded example space in figure 1 under generalisation (G) because there is one object in each box, 
hence representing number 1. As such the examples in figure 1 were coded under generalisation 
because they enable leaners to generalise that number 1 represent single object. This also implies that 
the example space only focused on single outcome of counting number of objects, hence it is at low 
level (level 1). I coded example space in figure 2 under contrasting (C) because there are different 
numbers of objects in each box. This means that the learner has to make similarities and contrasts 
between or among number and objects when identifying boxes containing only 1 object. In so doing 
the learners understand the difference between objects used to represent the number 1 and those which 
do not represent the number 1. This shows that example space in figure 2 is at medium level (level 
2). I coded an example in figure 3 under G because it was only about drawing a number 1. This means 
that the aim of the example in figure 3 was to help learners to have a general picture of how the 
number 1 can be drawn. As such the example in figure 3 is at low level (level 1). I coded example 
space in figure 4 under Fusion (F) because it contained 2 learning outcomes which are counting 
number of objects and writing number 1. This means that the example space in figure 4 is at higher 
level (level 3). 

I found that example spaces in units 1 and 4 provided learners with opportunities to understand 
number concepts properly because they mediate the learning outcome and real life visual features. 
For example, example spaces in figures 1, 2 and 4 contain pictures of a girl, book, bicycle, fish, house, 
money, tomato, pencil and so on. These are real like features which are familiar and used by the 
learners in their daily life. This implies that these features would enhance learners’ understanding of 
the number concept. Therefore the most important feature in both units of the textbook is that they 
are dominated by real life graphics, hence they can help the learners to understand the number 
concepts. As Olteanu (20180 argues, learners’ understanding of mathematical concepts is visually 
mediated through diagrams, graphs, and drawings.   

Discussion on the tasks 

The learning outcome for figure 1 task is counting number 1, and the accompanying task is about 
counting the number of objects in each box. I coded this task under current topic procedures (CTP) 
because it is mainly related to the current learning outcome. The learning outcome for figure 2 is 
identifying number 1 concept and the accompanying task is to identify boxes containing 1 object. I 
coded this task under applications/making connections as it offers leaners opportunities to further 
understand the number 1 concept through making of judgment about what it should contain and what 
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it should not contain. The task for figure 2 also offer learners opportunities to justify their choices 
regarding the chosen boxes in relation to those that are not chosen. The learning outcome for figure 
3 is drawing number 1 and the accompanying task is to draw number 1 using a drawing number 
pattern tool. I coded the task in figure 3 under CTP because it mediates leaners’ capabilities in writing 
or representing number 1 concept symbolically. The learning outcomes for the task in figure 4 are 
counting and writing number 1. I coded the task in figure 4 under AMC because it is about counting 
objects and writing their corresponding number which is 1 using free hand. This shows that the task 
provides learners with opportunities for further understanding of the number concept through making 
connections between quantities of objects, the number concept as well as writing its symbol.  

I found that the tasks under units 1 and 4 would provide learners with mathematical opportunities to 
make their own judgments in terms of the meaning of a specific number concept and in representing 
quantity using numbers (Ronda & Adler, 2016). This is because the tasks are achievement based, 
activity based, hence they are learner centred. This implies that these example spaces and tasks can 
foster OBE to some extent because they are achievement oriented and activity based. I however found 
that the AMC tasks which mediate learners’ capabilities in counting and writing are very few in both 
units 1 and 4.  Although there is demonstration of how numbers from 0 to 9 can be written (for 
example task in figure 4), the textbook does not provide more opportunities for learners to practice 
writing the numbers.  Furthermore, it is unlikely that the learners can manage to write the numbers 
without first attempting to trace these numbers on dotted number patterns. As such it would be better 
if learners were first given an example space where they could trace out the numbers. Provision of 
more dotted number patterns would also increase learners’ capabilities in number concept by fostering 
learners’ active interaction with the numbers through independent practice as demanded by the OBE 
curriculum (MIE, 2006).  

The other limitation is that there are no tasks which provide learners with opportunities to represent 
number with objects to increase their masterly level of the number concept. For example, there are 
no tasks which require learners to draw a given quantity of objects to represent a number or to colour 
objects based on given number. This implies that there is lack of variety in terms of tasks provided to 
the learners through the textbook. Provision of little opportunities for writing numbers and 
representing them might limit learners’ understanding of the number concept due to lack of practice, 
creativity and application. 

Conclusion 
This paper has presented findings from textbook analysis study which aimed at examining 
mathematical opportunities available for grade 1 learners to understand number concept through OBE 
curriculum. The study has found that the textbook has provided learners with different levels of 
example spaces ranging from low to high level. However, the high level examples which would help 
learners to engage with various thinking patterns simultaneously are few.  In terms of tasks, the study 
has found that the textbook has provided learners with opportunities to understand number concept 
mainly through counting objects but not through writing or representations. As a result, the textbook 
might not foster learners’ active involvement and independent learning as required by the OBE 
curriculum goals. As these findings are only based on textbook analysis, there is need for further 
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studies to focus on how learners engage with this textbook in classroom to find out how these 
opportunities materialise. 
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India introduced a new National Curriculum framework in 2005, which included reformed goals for 
primary school mathematics in an attempt to make them more inclusive and student-centred. One of 
the efforts towards operationalizing the framework was to create new primary mathematics 
textbooks. In a context where textbooks are seen as the basis of all curricular activity – from 
sequencing, to teaching, to examination, it becomes important to understand how such reform-based 
textbooks are used by teachers. Drawing from a multiple case study in the context of government- 
run primary schools in Delhi, this paper reports that teachers seem to primarily reject these reform-
based textbooks. Further it shows that while using the textbook, teachers have varied levels of design 
capacities to productively interpret the textbook tasks. The findings imply that curriculum and policy 
makers need to develop materials that teachers are firstly willing to engage with, and also provide 
space for teachers’ design capacity to develop.  

Keywords: Mathematics curriculum, primary teacher, pedagogic design capacity  

Introduction 
India, much like the rest of the world and especially the Global South, is attempting to improve 
teaching and learning practices in mathematics not just to increase learning outcomes, but also to 
ensure equity in its processes. In post-colonial India, quality and equity have remained fundamental 
to its Education system. These ideals are explicitly reflected in the National Curriculum Framework 
– 2005 (NCF 2005), which forefronts “processes” in mathematical activities as well as connecting
mathematics to the lives of children (NCERT, 2005, p. 9). Another important feature of the Indian
education system which is recurring in the literature is its ‘textbook culture’ (Kumar, 2005). The
textbook continues to be the only resource in the classroom; and for state-run schools, prescribed and
made available to students free. Kumar (2005) even claims that textbooks act as “de facto curriculum”
(p. 67), despite an official curriculum framework and syllabus. Thus, it was not surprising that the
textbook series (NCERT Math-Magic) was chosen as the first (and only) point of intervention to
operationalize the visions of NCF 2005. Yet very little is known in India about how the textbook is
navigated in classrooms. In this paper, which comes from a larger PhD study, I focus on the following
research question:

In what ways do teachers use reform-based textbooks in their mathematics classrooms? 

Theoretical framework 
Keeping the context in mind, as we explore the Anglophone literature in Mathematics education on 
the relationship between the teacher and the textbook (or other curricular resources), we see various 
developments. Different frameworks are used by researchers to make sense of these aspects based on 
how they conceptualise the teacher-textbook relationship as well as textbook as a resource. In this 
paper, I use Brown’s (2003) framework of “design capacity for enactment” (p. 4), to explore how 
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teachers in the Indian context use textbooks. Central to Brown’s idea is that teachers design textbook 
use by offloading-adapting-improvising based on the degree of responsibility they share with the 
textbook and their own resources. Thus, while using the textbooks, teachers may place agency 
primarily on the textbook (offloading), or change the activity based on their own needs (adapting), or 
change the course of the work altogether, making it very different from the textbooks (improvising) 
(Brown, 2003). While there is no prescribed hierarchy to their choice of offloading-adapting-
modifying (one is not better than the other), these indicate the relevance and priority given to the 
textbook as a resource in teaching. Furthermore, this use is a function of both textbook affordance 
(textbooks’ own attributes) and teachers’ pedagogical design capacity. The notion of pedagogical 
design capacity – “teacher’s capacity to perceive and mobilize existing resources in order to craft 
instructional episodes” (Brown, 2011, p. 29) – is evaluative in nature signifying teachers’ capacity to 
use the textbook in productive ways. More recently Pepin, et al. (2017) have further described 
‘teachers’ design’ as a “deliberate/conscious act” of “creating something new” (p. 801); thus, bringing 
dimensions of intentionality and genesis to the fore. They further distinguish between ‘design’ 
(during planning); and ‘design-in-use’ (during enactment). This exploratory paper, only focuses 
on teachers’ ‘design-in-use’, as they mobilise textbooks’ affordances and create lessons (without 
considering teachers’ intentions). By doing so, I examine limited yet crucial facets of the notion 
of teachers’ pedagogical design capacity.  

Methodology 
Sample: The larger study (a part of which is presented in this paper) is a multiple case study of ten 
teachers in four government-run municipality schools using Math-Magic textbooks. Delhi 
government schools, mandated to use these textbooks, were the site for the study. Importantly, these 
schools are low resourced both in terms of infrastructural resources, as well as teaching and learning 
resources. Getting permission to conduct my field work in these under-studied sites was particularly 
difficult. The ten primary school teachers were thus chosen based on convenience sampling, in 
schools which allowed me to conduct my study. However, I ensured that all the teachers had more 
than eight years of experience, including experience of using the textbook from the time of its 
introduction. Also, I focused on grades 4 and 5 teachers, where these textbooks were being used.   

Data collection: Keeping the theoretical framing in mind, I focused on the three parts of the design 
capacity framework, and collected data on textbook affordances (the textbooks themselves), teachers’ 
textbook use and thinking (through classroom observation and teacher interviews). While collecting 
classroom observation data (which is the data that I am analysing in this paper), I was given 
permission only to audio-record the classrooms, which was sufficient to capture the textbook use 
dimensions of teachers’ teaching. The audio-recording was supplemented by observation notes, 
where I noted how the textbook was treated in the classroom (were the teachers reading it before 
starting the lesson, were they showing the textbook to students, did they provide time for students to 
read the text etc). In total, for each of ten teachers, I observed 3-4 lessons.  

Data analysis: After transcribing and translating the audio recordings, the lessons were categorised 
into episodes which were defined on the basis of the tasks that teachers chose, so that an equivalent 
unit of analysis could be used to compare the textbook tasks with the teachers’ chosen tasks. A total 
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of 34 lesson observations from the ten teachers, were categorised into 152 episodes (each episode 
corresponding to a task from the textbook analysis). These episodes were coded based on Brown’s 
notion of offload-adapt-improvise. However, while doing so, two differences arose. First, teachers 
seemed to be using tasks of their own (or with the help of some other resource material) which were 
completely unrelated to tasks in the textbook. Thus, a notion of ‘insertion’ was necessary which 
accounted for such episodes, as done by Leshota and Adler (2018) in their adaptation of Brown’s 
framework. Moreover, a second difficulty arose in defining the difference between adaptation and 
improvisation. One of the findings of the textbook analysis was that clearly stated goals for the tasks 
were missing, often leaving the tasks open to interpretation (perhaps even purposefully so) (e.g. 
Rampal & Subramanian, 2012). Thus, any modification to the tasks in the textbooks was coded as 
adapted use, without attempting to code episodes as being closer to the goals of the textbook task or 
not. As a result, a suitable adaptation to the ‘offload-adaptation-improvisation’ framework was made 
by identifying textbook task use in terms of ‘direct use-adapted use-inserted use’ which closely 
supported my data.  

Overall findings 
Teacher acceptance or rejection of the textbook: Figure 1 below shows details of the textbook use of 
each of the ten teachers. There are two notable results from this analysis. Firstly, we can see that four 
teachers are using the textbook directly for majority of their teaching, and the remaining six teachers 
are using their own insertions for more than half of their episodes. This is a clear indication that the 
textbook is not being used most of the teachers in my sample, who are rejecting them.  

Direct use of textbook tasks: While analysing the episodes of ‘direct textbook use’, there were two 
ways in which teachers used tasks. One was by following each sentence in the book, (often teachers 
would read the text, or ask students to read it out), thus addressing every aspect of the book as a script. 
The second way of using which seemed more flexible was to pick and choose tasks (or elements of 
them) as the teacher felt suitable. These two kinds of approaches to directly using the tasks were 
especially exemplified by teachers Jagdeesh and Kamala, discussed in the next section.   

Figure 1: Per cent of episodes observed categorised as direct, adapted or inserted textbook use 

Contrasting cases of teacher design capacity 
As discussed in my theoretical framework, the use patterns analysed above do not indicate the 
evaluative aspect of use; i.e teachers’ pedagogical design capacities. Design capacities can be 
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explored within each of these three types of textbook engagements. For this paper, I look at two 
frequent direct users and their contrasting interpretations and mobilisations of the textbook 
affordances; i.e. their design-in-use. Jagdeesh and Kamala, both have eight years of teaching 
experience and both teach grade 4 in the same school. Jagdeesh tended to follow every task given in 
the textbook, while Kamala was pickier in terms of what she chose to include in her class. In the 
following section, I analyse how two focus tasks (Figure 2, 3) were used by Jagdeesh and Kamala; as 
they designed two very different lessons. While Jagdeesh used the textbooks’ affordances in 
productive ways (as afforded by the textbook), Kamala does not do so.  

Focus tasks chosen for analysis and its affordances 

The task in Figure 2 has two kinds of questions – ‘Have you heard about marathon races?’ invites 
students to engage with the context of the problem which follows. Such questions which were posed 
to students encouraging them to talk about their thinking, life experiences and feelings were coded as 
expression tasks. The following two questions are specified tasks (fill the blanks) where students are 
expected to answer the pre-formulated question. It is crucial to note that the text breaks down 
(possibly for support) the specified tasks into two stages, first asking students to find distance covered 
in 10 rounds (laps), and indicate its use to find the number of rounds for the 40 km.  

Figure 2: Expression task and Specified task within Book 4 chapter 2 

In the second task shown below (Figure 3), we see another typical problem from the textbook which 
I refer to generation tasks. Here, the task is not pre-formulated, and to answer all these questions 
students have to bring in information from their own experiences or surrounding to answer the 
question. These particular aspects are viewed as task ‘affordances’, which are also aligned with the 
NCF reforms aiming to make mathematics process oriented and linked with everyday life.  

Figure 3: Generation task within Book 4 chapter 4  
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Comparison of teacher use of focus tasks:  

Table 1 below, shows the different approaches taken by Jagdeesh and Kamala, while attempting these 
tasks.  To provide some context, these teachers teach all the subjects for their class and are free to 
allot any time for each of the subjects, including for mathematics. Thus, the amount of time for each 
task or subject depends on the teachers’ own goals for the lesson (there are institutional time 
limitations due to administrative work which are not discussed in this paper).  

Teacher Expression task Specified task Generation task 

Jagdeesh 

(productive design) 

Expanded 
discussion 

Explanatory 
approach  

Opening the task 

Kamala 

(unproductive design) 

Omitted Direct approach Closing the task 

Table 1: Comparison of teacher use of focus tasks 

Omitting versus expanding the expression task: Jagdeesh, instead of approaching the first expression 
task as a yes or no response, spends 10 minutes discussing different aspects of the context – what is 
a marathon, how a stadium looks like, what sports can be played in a stadium. He even encourages 
students to bring forth their own understandings, by listing the different sports they have heard being 
played in a stadium. He thus expands this expression task further creating his own probing questions 
supporting the task. On the other hand, Kamala omits this question all together, and only focuses on 
the specified tasks.  

Direct versus explanatory approach to specified task: In his approach to the specified tasks, as 
possibly intended by the task, Jagdeesh uses the first question as the first step to the solution of the 
second question. That is, first finding distance travelled in 10 rounds and then discussing how many 
10 rounds would be needed for 40 km. Throughout these stages he focuses on a detailed explanation 
of the solution procedure (spending 20 minutes), by breaking down the bigger question into smaller 
parts, which are more easily answered by the students. For example: 

T: [We have to run] 40 kilometres. Now in 10 rounds, [we covered] 4000 meters that is 4 
kilometres. In the next 10 rounds, how much will it be? In the next 10, if we add more, then how 
much is it adding 4 and 4? 8 km. After that another 10 rounds if we add? 

Thus, Jagdeesh focuses more on the process of the solution (with some support from the structure of 
the specified task) rather than presenting formal operations for solutions – such as multiplication.  

Kamala on the other hand only spends 10 minutes in total on the task. She introduces the stadium 
with circumference 400 m at the beginning of the lesson and draws it on the blackboard to help model 
the stadium. Consequently, she only focuses on the first questions of the given task unlike Jagdeesh’s 
use of the both the questions to explain the process of the solution. Instead of an elaborate explanation, 
we see Kamala giving direct procedures.  
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T: Now, this is given in your book. If you take 10 rounds of this stadium, then what will you get? 
[] If you take one round of this stadium, then how much will it be? 400. You will multiply 400 
with 10 rounds, then we will get how many metres we have run.  

As we can see above, she directly tells the students that 400 needs to be ‘multiplied’ by 10 and 
consequently she writes the solution on the blackboard using the standard column algorithm form of 
multiplication. It is also important to note here, that Kamala was using an unofficial privately 
published guidebook while discussing this chapter alongside the textbook. The guidebook (see Figure 
4) which acts like an answer book, provides a solution to each task in the textbook which just like her
approach are also direct and formalised rather than process oriented (interestingly the guidebook even
has a calculation error). Thus, instead of using the affordance within the textbook task (two questions
as support for process explanation), Kamala takes a direct approach as given in the guidebook.

Figure 4: Page C-10, Apollo guidebook 

Opening versus closing the generation task: While attempting the generation task (shown in Figure 
3), we again see two very different approaches by Jagdeesh and Kamala. Jagdeesh while addressing 
this question (See Figure 3: How long does your assembly take?), tries to bring to fore the fact that 
the answer will vary based on the activity conducted during the assembly: 

T: Hmm. Sometimes it is 15 minutes and sometimes it is 30 minutes. Sometimes, when there is a 
children’s meeting, it may take longer, otherwise the time for prayer meeting is about 20 minutes 
which includes the national song. 

This shows that the Jagdeesh is open to the possibility that generation tasks can have many answers 
and the aim is to keep that in mind while answering. In contrast, Kamala gives definite answers which 
the students have to write down.  

T: Who said it is 30 minutes? It is only 20 minutes. Write down 20 minutes.  

As we can see above, in Kamala’s approach to the generation tasks, no openness is accommodated. 
Instead she renders the answer ‘30 minutes’ given by a student wrong and goes on to give a ‘correct’ 
answer to the student. Thus, despite the question being open (depending on the student’s perspective), 
she closes the kind of answers it can have.  

If we look back at Table 1, along with the description of these episodes, we can see that while 
Jagdeesh seemed to interpret the key affordances within the tasks in alignment with the task’s 
rationale; Kamala’s interpretations contradict them. We can thus say that Jagdeesh seems to have a 
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higher pedagogical design capacity with respect to these textbooks; compared to Kamala. It is 
important to note that here I have not included evidence from teachers’ own thinking which will 
enhance our understanding of the dimension of ‘intentionality’ motivating these designs-in-use. 
Furthermore, this does not imply that Jagdeesh and Kamala will always teach in these ways, and thus 
these are not fixed labels for teachers rather helpful indicators to help situate teachers’ work in relation 
to the textbooks.  

Conclusion 
In this paper, I have discussed primary school teachers’ relationship with mathematics textbooks, in 
the context of Delhi, a city where there is hardly any research in understanding how teachers interact 
with textbooks. Especially the perspective of viewing teachers as designers (and not just 
‘implementers’), actively participating while using the textbooks, is completely missing from the 
Indian policy discourse. Although the need for reforming curriculum and textbook has been 
articulated strongly in the last 15 years, there is a need to now put teachers at the centre of the 
discussion. In such a context, using this approach to study Indian teachers is a novel idea (even though 
in other parts of the world this idea has been developed in innovative ways). By focusing on such a 
framework, with some adaptation in terms of categories and unit of analysis, this paper reports two 
findings.  

Firstly, the finding that majority of the teachers in my sample are rejecting the textbooks, is a common 
finding across the globe when teachers encounter reforms. Yet this finding has severe consequences 
in a context where officially, this is the only textbook provided to teachers, and the schools are not 
resourced to provide supplementary materials. As we have seen, this might mean that teachers rely 
on unofficial privately published guidebooks which often have contradictory pedagogical 
suggestions. Or teachers might rely on their own traditional notions of teaching, thus reforms miss 
the opportunity of using the textbook’s potential of becoming ‘educative material’ (Davis & Krajkic, 
2005).  

Secondly, within the group of teachers who were primarily accepting and directly using textbook 
tasks, by focusing on two teachers we were able to more closely investigate teachers’ design 
capacities as they engaged with the textbook’s affordances. In case of the two teachers we clearly see 
two different ways of perceiving and mobilizing the resource around the tasks; ie their pedagogical 
design capacity. Jagdeesh is attempting to approach the tasks more openly, attempting to engage 
students with the contexts integrated in the text and also giving more explanatory solutions. On the 
other hand, Kamala does not pick up the opportunity of engaging children with the context, and tends 
to give direct formulaic solutions and closes tasks which are more open. While Jagdeesh seemed to 
interpret the key affordance within the textbook productively, Kamala does not. Recognising that 
teachers’ design capacities are not homogenous is important in terms of not just curriculum designing 
but also the accompanying teacher support. Small scale initiatives are starting in science education, 
such as Ramadas (2017) – where teachers’ varied experiences with curriculum feeds back into 
curriculum design. Yet, these are almost absent in primary Mathematics. Developing partnerships of 
designing needs to be the next step for the Indian curricular context; which extends the view of 
teachers as designers and integrates that into curriculum designing (at national, state, school or 
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classroom level) (Jones & Pepin, 2017). After more than 10 years of introduction of reform-based 
textbooks such as Math-magic, conceptualising ways of developing design capacities needs to 
become central.    

In this paper, I have explored different designs-in-use of the teachers, yet not discussed notions of 
intentionality: Are teachers consciously making these design choices? What are their intentions and 
goals behind them? By exploring designs-in-use across the three levels of textbook use: direct use-
adapted use-inserted use, along with teachers’ rationales for those choices, my larger study aims to 
develop this notion of ‘pedagogical design capacity’ further.   
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Background  
As mathematics teachers and course planners, we have hands on experience, negotiating learning 
objectives with our colleagues and students. One important challenge we have noticed in this process 
has been overviewing and disambiguating potential learning objectives (Hansen, 2018). We have 
attempted to address this challenge by drawing what we call ability maps – network representations 
of potential learning goals. The ability maps have the purpose of structurally relating knowledge and 
skills within a certain field – a subset of this would then be the curriculum. The notation involves a 
simple syntax. Any potential learning objective, no matter how small, is considered an ability and is 
represented by a node. Whenever we agree that one ability includes another ability, we represent this 
with an arc pointing from the including ability to the included ability. There are additional rules about 
redundancy and layout to make these networks easier to explore. 

Our experience from initial workshops is that these maps help co-located participants to identify and 
discuss potential learning goals. Furthermore, implemented digitally, the above is aided by interactive 
support, dynamic layout, and remote participation. More ambitiously it supports a process of online 
social evaluation of individual includes arcs to enable emerging consensus on what is considered 
important. We have developed a basic prototype and are currently considering a number of research 
and design questions involving ability maps. These workshops were held with mathematics teachers, 
but we think of ability maps as context independent both regarding subject and nationality. An 
additional challenge we have noticed in the process of negotiating learning objectives, and when 
introducing new users to ability maps, has to do with the proper (although often implicit) purposes of 
curriculum development. With this in mind, we ask: Which foundational perspectives in curriculum 
research explain the disagreement and how do ability maps fit into these perspectives? This question 
thereby investigates the different perspectives among researchers not practitioners. 

Method 
Our approach is to orient ourselves in the literature to identify positions on curriculum research before 
considering how ability maps could be characterized by the perspectives. By reviewing the 
perspectives in the literature, we intend to discuss how and to what extent ability maps can address 
the challenges from the existing knowledge and discussions in curriculum research. In our search for 
literature we used the snowballing procedure. Snowballing is an approach in which a reference list, 
citations keywords in one or several papers are used to identify additional papers (Wohlin, 2014). 
The snowball methods often begin by identifying a tentative start set of papers. We began our search 
with the keywords: “Rationalistic”, “Tyler”, “Approach”, Curriculum”, “Education”, which we 
searched for in Google and Google Scholar. We read 15 abstracts and 10 full papers. As the work 
presented in this poster is early stage research, we use the initial insights retrieved from the start set.  
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Within this process we found a framework for categorizing the role of curriculum, based on few 
authors which proved to be helpful in pinpointing the differences in the above literature and the 
potential role of ability map. The literature we read suggest two ways of approaching curriculum 
development referred to as a rationalistic and a dialogical approach. The rationalistic approach, 
represented by Tyler (1949), is described as technical and linear and focuses on structuring specific 
learning content. The dialogical approach is on the other hand dynamic and focuses on interactivity 
and flexibility (John, 2006). We adopt the distinction between these approaches as central. 

Preliminary results from the review 
The two perspectives seem to explain much of the disagreement when negotiating learning objectives, 
however it was not so straightforward to place ability maps in either of these perspectives. At first 
glance, ability maps may seem to epitomize a rationalistic approach as it involves a high degree of 
structuring, detailed breakdown of objectives and has ambitions of technical implementations. 
However, the structure is not linear, but captures rich relations that are the result of negotiation and 
collaboration. Also, the structure does not dictate how teachers teach but only provides a map within 
which they can navigate. Furthermore, the identified abilities are not necessarily objectives. Deciding 
on which abilities to consider as objectives are an independent step from working with the maps and 
may not even happen until in the classroom. Finally, the ambition of technical implementation must 
not be interpreted as enforcing a mechanistic approach.  

Ability maps thereby seem to transcend the dichotomy of a rationalistic approach and a dialogical 
approach. Although the division of rationalistic and dialogical approaches are beneficial in 
segregating views on curriculum, it is not helpful in categorizing ability maps. On the contrary, the 
dichotomy between these notions can represent a barrier in developing novel approaches to 
curriculum development. In this respect, ability maps seem to contribute with nuances that can 
support the practical aspects of curriculum development.  

Further exploration 
To further explore and qualify these findings, a more comprehensive literature review is needed. This 
will contribute in nuancing and better understanding ongoing discussions in curriculum research and 
development and the potential contribution of ability maps. Further, ability maps are still at an early 
stage and experiments on its usage and usability is needed.  
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Tasks that require students to construct examples that meet certain constraints are known to be used 
in mathematics education. It is also well established that while examples are not proofs (for general 
statements), they have a supporting role in the preliminary stages of making sense of a certain 
mathematical phenomenon. In this study we examine a task design in which students are required to 
submit a supporting example to their explanation negating an existential statement. We introduce the 
idea of limit confirming examples and present their use in an analytical geometry task in a 10th grade 
class in Italy, along with the explanations they support in negating an existential statement. The 
results show that the design was effective in fostering the construction of limit confirming examples 
that could be considered as means of argumentation in the initial parts of proof construction. 

Keywords: Reasoning with examples, limit confirming examples, automatic online assessment,  

Theoretical Background 
Alongside with computerized environments in mathematics education recent developments of online 
assessment platforms enable students to submit open ended tasks that are automatically assessed 
(Olsher, Yerushalmy, & Chazan, 2016). One challenge in designing tasks for these environments is 
to design means of mathematical argumentation that could be automatically analyzed (Yerushalmy, 
Nagari-Haddif, & Olsher, 2017).  

One form of open ended that elicits different characteristics in student answers, and serves means of 
argumentation about them is by providing examples (Buchbinder & Zaslavsky, 2009). Examples 
could serve as inductive of general example-based arguments (Dreyfus, Nardi, & Leikin, 2012), thus 
providing an initial step in the proving process. Although there are limitations to the use of empirical 
examples as proof (Zaslavsky, 2018), research recognizes merit in arguing why characteristics of a 
certain example would work for any other one as well (ibid). 

Students use at times systematic exploration of examples as a proving strategy, referring to their 
examples as cases, and then prove by cases (Buchbinder, 2018). When constructing cases, the 
literature recognizes several strategies that could lead to constructing refutations. One of these 
strategies, generating limit cases, might be constructed by creating an auxiliary problem in which the 
condition of the initial problem is transitioned to the limit (Balk, 1971), and is also referred to as 
extreme cases (Clement, 1991) or boundary cases (Ellis, Lockwood, Williams, Dogan, & Knuth, 
2013).  

In this paper, we present a task design aimed at fostering students’ construction of a specific type of 
examples - limit confirming examples. We introduce this term as a theoretical result of our a-priori 
analysis of the task (for this reason, we will define and exemplify this concept after presenting the 
task). Our hypothesis is that limit confirming examples represent possible effective means of 
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argumentation (Stylianides, Beida, & Morselli, 2016) towards persuasion that certain characteristics 
could not co-exist in a specific mathematical context. This study is part of a wider collaboration for 
studying the design and use of online formative assessment activities using the STEP platform1 
(Olsher, et al., 2016).  

Methodology 
We adopted a design-based research approach (Cobb, et al., 2003), characterized by cycles of design, 
enactment, analysis and redesign. The pilot study on which this paper is focused has been developed 
within the first cycle of design. In particular, here we present aspects of both the design phase and the 
analysis phase. 

The participants were 25 secondary Italian students, from a 10th grade class (students aged 15-16) of 
a scientific lyceum, in Italy. We focus on the students’ resolution of a task that is part of an online 
activity within the context of analytical geometry, specifically lines intersecting a segment. The online 
activity was proposed to the group of students at the end of the school year, when they had already 
studied some basis of analytic geometry (in particular, coordinates of point, equations of lines, 
conditions of perpendicularity and parallelism).  

The activity comprised three tasks designed as interactive diagrams describing a geometrical context 
on a Cartesian axis, using the STEP platform. The interactive diagrams were constructed using 
GeoGebra, and enabled the participants to construct or drag a set of elements in the diagram, 
according to the predefined characteristics determined by the designers of the task. The context was 
described in the task. The participants needed to submit examples satisfying different conditions. 
Students had to complete the whole activity within one hour. 

The task 

The task requires the students to consider the segment connecting the points A(2,4) and B(-3,2) and 
the family of lines y=mx (see figure 1), and addresses the following existential statement: “There are 
two lines of the family perpendicular to each other and both intersecting the segment AB”. The 
students are asked to state if the statement is true or false, then, in case they think it is true, to submit 
the equations of two lines that satisfy it, or, in case they think it is false, to explain why and submit a 
screenshot that supports their choice. 

Figure 1: Applet accompanying task requiring an explanation and a supporting example 

1 Seeing the Entire Picture - STEP – is a formative assessment platform developed at the University of Haifa’s Center for 
Mathematics Education Research and Innovation (MERI). For more detail about this platform, see www.visustep.com. 
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The existential statement could be formulated as follows: “There are two lines that satisfy all of the 
following three properties: (A) the two lines belong to the family y=mx; (B) the two lines are 
perpendicular to each other; (C) the two lines intersect the segment AB”. Therefore, it could be 
thought as 𝐴𝐴 ∧ 𝐵𝐵 ∧ 𝐶𝐶, that is an intersection of three conditions. Proving that this statement is false 
requires to prove that the universal statement ¬(𝐴𝐴 ∧ 𝐵𝐵 ∧ 𝐶𝐶) is true, which is logically equivalent to 
each of the following statements: (𝐴𝐴 ∧ 𝐵𝐵) → ¬𝐶𝐶; (𝐵𝐵 ∧ 𝐶𝐶) → ¬𝐴𝐴; (𝐴𝐴 ∧ 𝐶𝐶) → ¬𝐵𝐵 

So, in order to prove that the existential statement “There are two lines of the family perpendicular 
to each other and both intersecting the segment AB” is false, it is enough to prove one of the following 
universal statements: 

1) “If two lines belong to the family y=mx and are perpendicular to each other, then they do not both 
intersect the segment AB” ((𝐴𝐴 ∧ 𝐵𝐵) → ¬𝐶𝐶) 

2) “If two lines belong to the family y=mx and both intersect the segment AB, then they are not 
perpendicular to each other” ((𝐴𝐴 ∧ 𝐶𝐶) → ¬𝐵𝐵) 

3) “If two lines both intersect the segment AB and are perpendicular to each other, then they do not 
both belong to the family y=mx” ((𝐵𝐵 ∧ 𝐶𝐶) → ¬𝐴𝐴) 

Students should be aware of the fact that identifying a confirming example for each of the universal 
statements 1, 2, and 3 is not enough to prove them. Yet, students’ choice of the examples that should 
support their claim that an existential statement is false could represent an important sign to highlight 
their awareness about what kind of examples could be the starting point for the construction of 
argumentations.  

Limit confirming examples 

We define limit confirming examples (for a universal statement) as specific limit, or boundary 
examples that incorporate within them all other possible confirming examples. The characteristic of 
incorporating all possible confirming examples makes limit confirming examples effective supports 
for construction of complete argumentation about the truthfulness of a universal statement because 
they foster the activation of a “domino effect”, enabling students to highlight why all the other 
possible examples that can be constructed will confirm the statement (in the following, we refer to 
the confirming examples that are not limit confirming examples as not-limit confirming examples). 

a)  b)  c)      

Figure 2: Limit confirming examples (a, b) and a not-limit confirming example (c) for statement 1 
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We refer to the task introduced in the previous paragraph to exemplify this idea. There are two limit 
confirming examples (Figure 2, a and b) for statement 1 (“If two lines belong to the family y=mx and 
are perpendicular to each other, then they do not both intersect the segment AB”). 

These two examples are characterized by the fact that one of the two lines intersects the segment at 
one of its edges. They are limit confirming examples because, if we consider other examples 
constructed in the same way (two lines passing through the origin and perpendicular to each other), 
if one line intersects the segment in a point that is not an extreme for AB, the other line certainly does 
not intersect AB, as highlighted in Figure 2 (c), a screenshot submitted by a student. 

As regards statement 2 (“If two lines belong to the family y=mx and both intersect the segment AB, 
then they are not perpendicular to each other”), there is one limit confirming example (Figure 3a) 
characterized by the fact that the two lines considered are those that intersect the segment in its 
extreme points. We can consider it a limit confirming example because all the other couples of lines 
intersecting the segment and belonging to the family (Figure 3b) form an angle that is smaller than 
the one highlighted in figure 3a, meaning that the two lines are not perpendicular. 

a) b)  

Figure 3: Limit and non-limit confirming example for statement 2 

The limit confirming example (Figure 4a) for statement 3 (“If two lines both intersect the segment AB 
and are perpendicular to each other, then they do not both belong to the family y=mx”) is 
characterized by the fact that the two lines considered are perpendicular to each other, intersect the 
segment AB in its edges and intersect each other in the point that is at a minimal distance from the 
origin (that is the point of intersection between the circumference whose diameter is AB and the line 
passing through the origin and the center of this circumference). This is a limit confirming example 
because all the other possible couples of lines perpendicular to each other and intersecting the segment 
AB intersect each other in a point of the circumference that is at a greater distance from the origin 
(Figure 4b) or in a point inside the circumference whose diameter is AB (Figure 4c), so they do not 
belong to the family y=mx. 

a)  b) c)  

Figure 4: The limit confirming example for statement 3 (a) and two not-limit confirming example 
incorporated within it (b, c) 
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Methodology of analysis 

Some important elements of the context must be added before presenting the methodology of analysis 
and the results. First of all, we did not share with students the logical analysis of the statement, that 
is the identification of A, B , C and the reflection on the logical equivalence of ¬(𝑨𝑨 ∧ 𝑩𝑩 ∧ 𝑪𝑪) and 
each of the statements (𝑨𝑨 ∧ 𝑩𝑩) → ¬𝑪𝑪; (𝑩𝑩 ∧ 𝑪𝑪) → ¬𝑨𝑨; (𝑨𝑨 ∧ 𝑪𝑪) → ¬𝑩𝑩. Moreover, we did not explain 
what limit-confirming examples are, neither we asked them to find out examples with specific 
characteristics.  

The aim of our analysis was, on one side, to highlight if the design of the task was effective in 
fostering students’ construction of limit-confirming examples and, on the other side, to detect, in 
students’ answers, elements that could contribute to the construction of complete argumentations. 
Our units of analysis were the answers given by students to the task, including three main aspects: 
(1) students’ claims about the truthfulness of the statement (level 1); (2) students’ choices of the 
examples to be sent to support their claims (level 2); (3) students’ verbal arguments to justify their 
claims (level 3)..  

As regards the second level of analysis, we: (a) initially distinguished between the answers 
characterized by the submission of a limit confirming example and the answers characterized by the 
submission of a not-limit confirming example; and (b) subsequently distinguished, among the limit 
confirming examples sent by students, between the categories of limit confirming examples presented 
in the previous paragraph (that is those referred to statement 1, or 2, or 3).  

The analysis of the verbal arguments sent by students to support their claims (level 3) was developed 
at a qualitative level, focusing on: (a) the reference to the chosen example and the 
coherence/incoherence between the choice of the example and the content of the verbal argument; (b) 
hints of students’ awareness about the role that the examples they chose could play to support the 
construction of a complete argumentation to justify their claim. 

Results 
As regards level 1 of analysis, all students correctly stated that the statement is false.  

Focusing on the examples they sent (level 2 of analysis), most of them (22 out of 25) submitted a 
limit confirming example. Among the 3 remaining students, two submitted a not-limit confirming 
example, while the third one did not submit any example. Further analysis of students’ choice of limit 
confirming examples shows that most of them (17) submitted the limit confirming example related 
to statement 2 (Figure 3a); 3 students submitted a limit confirming example related to statement 1 
(Figure 2); one student sent the limit confirming example referred to statement 3 (Figure 4a); one 
student sent a limit confirming example related to statement 1, containing also the sketch of the 
circumference whose diameter is AB. 

In the following, we present some results of the analysis of students’ verbal arguments (level 3). 

Among the 17 students submitting a limit confirming example related to statement 2 (Figure 3a), 7 
show some form of consideration to the fact that their example incorporates all other possible 
examples. Some of the students explicitly refer to the other possible examples incorporated into the 
limit confirming example, as shown in Figure 5. 
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It is impossible that two lines of equation y=mx, perpendicular to each 
other, intersect the segment AB because the value of m for the line that 
intersects the segment in B is -3/2, while the value of m for the line that 
intersects the segment in A is ½. If the two lines were perpendicular, 
the product between the two values of m should be -1, but it is -1/3. 
And no other lines that satisfy these conditions exist, because the other 
lines that intersect the segment AB form an angle that is even smaller 
than the one formed by the lines that intersect AB in the extreme points. 

Figure 5: The screenshot submitted by S8 and the corresponding argumentation 

Other answers show an implicit reference to the set of examples that can be generated starting from 
the submitted limit confirming example. For example, the argument proposed by S9 (Figure 6) refers 
to the idea of “widest angle”, making an implicit reference to the set of possible couples of lines 
passing through the origin and intersecting AB.  

Since the lines should pass through the origin, and since the 
lines that pass through the extreme points of the segment (AB) 
form the widest angle, and since this angle, referring to the 
formula of perpendicularity, is not right, the claim is false. 

Figure 6: The screenshot submitted by S9 and the corresponding explanation 

The other 10 students that submitted a limit confirming example related to statement 2 either did not 
submit an explanation (1 student), or submitted explanations with no evidence about of the role of a 
limit confirming example. These incomplete argumentations included either a repeated statement 
about the claim not being true, or an additional verbal description of the submitted example, or 
referred to aspects not directly linked to the provided example. 

The choice of the limit confirming example to be submitted seems to influence the construction of 
the related argumentation. In fact, none of the three students who sent a limit confirming example 
referred to statement 1 (figure 2) show some form of consideration to the fact that their example 
incorporates all other possible examples: One of them do not submit an explanation. The second 
student reformulated the claim about the initial statement not being true, and the third student (S16, 
Figure 7) referred to the relation between the slopes of two perpendicular lines, without focusing on 
the possibility of creating other examples starting from the limit confirming one. 

In order that a line is perpendicular, the values of m should be anti-
reciprocal. That is: it is impossible, according to the data. The line 
passing through the origin and A has equation y=2x. So its 
perpendicular must have equation y=-0.5x (passing through the origin) 
and it has to pass through B. It is easy to verify that it is not true. 

Figure 7: The screenshot submitted by S16 and the corresponding explanation 
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The single explanation submitted along with a limit confirming example referred to statement 3 (S18, 
Figure 8) does not highlight a consideration to the fact that their example incorporates all other 
possible examples.  

 

The two lines of the family that intersect the segment AB, are 
perpendicular to each other but they do not pass through the 
origin. Considering the circumference whose diameter is AB, the 
angle D is right, for a known theorem. 

Figure 8: The screenshot submitted by S18 and the corresponding explanation 

Conclusions 
The most unambiguous outcome of this limited study is that 22 out of 25 students (88 percent) 
submitted limit confirming examples to support an explanation that disproves an existential statement 
in the form 𝐴𝐴 ∧ 𝐵𝐵 ∧ 𝐶𝐶 . Disproving this statement is equivalent to proving one of the universal 
statements (𝐴𝐴 ∧ 𝐵𝐵) → ¬𝐶𝐶; (𝐵𝐵 ∧ 𝐶𝐶) → ¬𝐴𝐴; (𝐴𝐴 ∧ 𝐶𝐶) → ¬𝐵𝐵. The students provided the limit 
confirming examples without being previously introduced to these ideas, mostly since students should 
be aware that a confirming example is not enough for a proof (Buchbinder & Zaslavsky, 2009; 
Zaslavsky, 2018), in the same way in which a non-confirming example for the existential statement 
is not enough to disprove it. Yet, identifying limit confirming examples for one of the statements (𝐴𝐴 ∧
𝐵𝐵) → ¬𝐶𝐶; (𝐵𝐵 ∧ 𝐶𝐶) → ¬𝐴𝐴; (𝐴𝐴 ∧ 𝐶𝐶) → ¬𝐵𝐵 was something that most students could come up with on 
their own as a supporting example. This result supports the notion that these examples might be an 
easier starting point in the argumentation process, opening the way to the construction of a complete 
argumentation somewhat aligned with example-based arguments (Dreyfus, Nardi, & Leikin, 2012) 
as means of argumentation (Stylianides, Beida, & Morselli, 2016) in an initial stage of the proving 
process. 

Since many students that submitted a limit confirming example were not able to construct rich 
argumentations, our study also shows that, although choosing to submit a limit confirming example 
could be promising in fostering students’ construction of complete argumentations, it is not sufficient. 
While the topic of the tasks in this study is analytical geometry, and used 3 properties, we believe 
that additional mathematical strands could be explored, while not necessarily limiting the number of 
properties to 3, but our final conclusions in terms of task design are driven straight from the finding 
of this study and the tasks studied: We suggest the following criteria for the creation of effective tasks 
aimed at developing learners’ abilities in creating and using limit confirming examples: (a) analysis 
of complex false existential statements involving at least 3 properties to be satisfied by the elements 
of a precise domain; (b) possible deconstruction of the statement to corresponding universal 
statements to be proven; (c) requirement of argumentation and a supporting example about the 
truthfulness of one of these universal statements. 
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Limitations and future steps of the research 

This research included a single task and a small sample of students. In order to further investigate and 
reaffirm the findings more tasks should be developed using this design, and tested in different settings. 
Furthermore, the use of the STEP environment could support the teacher in automatically having the 
student submissions categorized, thus providing grounds for research about teacher use. 
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Towards improving teaching and learning of algorithmics by means of 
resources design: a case of primary school education in France  
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This article is devoted to the problem of design of resources in algorithmics for teachers of primary 
school in France. We investigate what elements should contain such resource in order to support the 
learning intended by authors of the resource, during its implementation by teachers who works in 
different contexts. To contribute to this question, we study the design principles of a particular 
resource in algorithmics. We follow this resource from the moment of its creation by a researcher 
and an experienced teacher to its appropriation and usage by three ordinary teachers. Paper 
describes how the results of analysis of lessons observations, interviews and collective discussions 
with teachers pointed to missing elements of the resource and, hence, contributed in its enhancement. 
The results of the study aim to bring some elements for improving the teaching of algorithmics by 
means of resources and, as a result, to support the learning of the involved concepts.  

Keywords: Algorithms, resources, primary education, teacher.  

Introduction 
Algorithmics (Lagrange, 2014) is more and more present in school education of different countries. 
In France, the elements of algorithmics and programming were introduced in primary and middle 
school curricula in 2016. In our previous work, we analysed the didactical transposition (Chevallard, 
1985) of the main concepts of algorithmics in French curriculum of cycle 4 (grades 7-9) and showed 
its partial nature with a focus on the effectiveness aspect of algorithm and on the usage of algorithm 
as a tool (Modeste & Rafalska, 2017). The following analysis of didactical transposition of concepts 
of algorithmics in French curriculum resources for cycle 3 (grades 4-6) showed the existence of the 
same orientations.  

In French curriculum of cycle 3, content related to algorithmics and programming is included in the 
chapters “Mathematics” and “Sciences and technologies”. For example, in the theme “Space and 
geometry”, it is suggested to make an introduction to programming by using activities of spotting and 
displacement (coding the movement of a robot or a character on the screen) as well as geometrical 
activities (construction of simple figures and figures composed of simple figures). In the theme 
“Materials and technical objects”, it is mentioned that the notion “algorithm” could be discovered by 
pupils using “visual applications”. Curriculum guidelines for teachers (published by Ministry of 
education of France) highlight the importance of development of pupils’ knowledge of “the basic 
principles of algorithmics and software design” and indicate that the usage of unplugged activities 
could be the first step for introducing pupils to the notion of algorithm. However, the concept of 
algorithm is not defined and it seems that the main learning objectives of such activities is the 
development of rigor. Most of given examples present algorithm through programming tasks, using 
robots or different environments (like Scratch, Scratch JR, Géotortue, etc.). Analysed textbooks for 
cycle 3 (in particular, collections Nathan and iParcours for grade 5, Delta for grade 6) follow the 
recommendations of the curriculum and teacher’s guides, and propose mostly programming tasks 
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(usually about drawing figures on the screen) and games in Scratch without distinguishing the notions 
of algorithm and program. Such focus on programming leaves out other important aspects of 
algorithm, for example, the role of algorithms for problem solving.  

Interviews with teachers of primary school revealed that many of them have never been trained either 
in algorithmics or in programming, and don’t understand completely the goals and relation of the new 
topic to other parts of the curriculum. To prepare their lessons, they tend to use curriculum texts, 
teachers’ guides, textbooks and existing online resources (that also propose mostly tasks of 
programming in Scratch). In spite of changes in French curriculum made in 2016, there are still many 
teachers of primary school who have not yet made lessons in this topic. This leads to the situations 
when in the same class of grade 6 (the first year of middle school) there are pupils with different 
levels of knowledge in algorithmics and programming.  

We make the hypothesis that one of the ways to overcome the institutional constrains, to improve the 
teaching and, in consequence, learning of algorithmics, is the development of resources for teachers 
that takes into account different aspects of the notion of algorithm. However, the existed studies, like 
Aldon et al. (2017), showed that a teacher in interactions with a resource can interpret it in different 
ways. Sometimes, the didactical situation designed by a teacher on the base of a resource has different 
intentions comparing to the intentions of the authors of the resource. Thus, the elaboration of 
resources in algorithmics requires the design of tasks as well as the development of resources design 
principles that could “assure” their distribution and following usage with the relevance to initial 
learning goals. The research question that we investigate in this article is the following: 

What elements should contain a resource in algorithmics in order to support the learning 
intended by the authors of the resource, during its implementation by teachers who works in 
different contexts?  

To contribute to this question, we investigate the design principles of a particular resource in 
algorithmics. In the next sections, we present the theoretical framework, the methodology choices 
and the project framework in which our study is anchored. Then, we propose some elements of data 
analysis and the corresponding results. In the last section, we answer the research question and draw 
our conclusions.  

Theoretical framework 

This study refers to the documentational approach to didactics (Trouche et al., 2018), which proposes 
a holistic approach to teachers’ work, taking into account the new universe of resources to teacher 
use, design and re-design. The central role in this approach is given to the notion of resource that is 
used in the sense of a tool that “re-source” the teacher’s work (Adler, 2000). In addition to the material 
resources (like textbooks, curriculum materials, etc.), this approach also takes into consideration such 
resources as discussions with colleagues and researchers, students’ answers, etc. Teacher integrate 
resources in their system of resources and design on their base his/her documents related to a certain 
class of situations. In Pepin, Gueudet, & Trouche (2017), the notion of document is presented as a 
combination of the resources adapted and re-combined, the ways the teacher uses them (which include 
the stable organisations of associated activities and particular usages), and contain the ‘knowledge’ 
guiding the usages.  
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The documentational approach to didactics provides the tools for following the evolution of a 
resource during its adaptation and usage by a teacher. As in this study we are also interested in the 
results of resource implementation in class, we refer to the theoretical framework of the structuring 
of the milieu as well (Brousseau (1998); Margolinas (1995, 2002); Bloch & Gibel (2011)). It allows 
to analyze both a teacher’s and pupils’ positions in a didactical situation. Thus, taking the pupils’ 
point of view leads to bottom-up or ascending analysis starting from the moment when a generic pupil 
is confronted with a material environment (milieu), i.e. without a priori didactical intentions, to the 
institutionalization of knowledge, including the phases of experience or action during which the 
knowledge at stake is encountered. Top-down or descending analysis corresponds to the teacher’s 
point of view. It starts from the confrontation of a teacher with a construction milieu in an unfinalized 
situation, includes the phases of development of teacher’s global project (concerning a theme of study 
that involves one or several lessons) and local project (concerning a particular lesson), and ends with 
the devolution and observation of pupils’ activities in a-didactical situation.  

In our paper, we also use the notion of didactical bifurcation proposed by Margolinas (2005) for 
modelling the case when pupils confronted with a material milieu, invest themselves in a situation 
that is different from the one intended by a teacher. Margolinas distinguishes two types of marginal 
branches of a situation: a-didactical marginal branch (when pupils acquire new knowledge that is not 
in the teacher’s project) and nildidactical marginal branch (when pupils don’t acquire new 
knowledge). In analogy with the notion of didactical bifurcation, Aldon et al. (2017) proposed the 
notion of bifurcation of construction: when the construction situation (in which a teacher confronts 
with a resource and interprets its intentions for constructing his/her own project) carries the intentions 
distinct from those of the resource and, in consequence, it leads to a didactical situation different from 
the didactical situations potentially carried by the resource.    

Methodology  

Our study is anchored in the French PREMaTT project1. The objective of the project is to stimulate 
the collaborative design of resources for teaching, in a network of schools, supported by researchers 
and a monthly meeting in a “laboratory for innovative design” (Trouche, 2019). In particular, in frame 
of the project the teachers and researchers worked on the design of tasks and resources for teaching 
of algorithmics aiming to make them useful for other teachers. Collaboration between researchers 
and practitioners is widely used in design-based research for bringing solutions to problems of 
practice (in particular, by producing new artefacts) and for contributing in the research by 
identification of design principles. 

Our methodology is based on the confrontation of a priori analysis (built around the intentions of 
authors of the resource’s, analysis of the resource and situations carried by it) with a posteriori 
analysis (built on the observation and analysis of implemented situations by ordinary teachers) as 
well as on the analysis of revealed dysfunctions, if any.  

                                                 
1 PREMaTT: thinking the resources of mathematics teachers in a time of transitions (http://ife.ens-
lyon.fr/ife/recherche/groupes-de-travail/prematt) 
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For our study, we constituted two teams. The first one involved a researcher and an experienced 
teacher who had been working part-time at a research laboratory and part-time in a primary school in 
the city centre for many years. The team worked on the design of didactical situations aimed to 
familiarize pupils with different properties of the notion «algorithm» and to show the role of 
algorithms in problem solving. The effectiveness of the developed tasks for supporting the intended 
learning was validated in result of confrontation of a priori analysis with a posteriori analysis of 
situations implemented in a class of grade 5 (10 years old pupils) by the experienced teacher. 

The scenario of lessons developed by the team was chosen as the first version of the resource to 
transmit to the ordinary teachers. This choice was based on the hypothesis that this scenario, which 
takes into account both learning constraints and constraints of teacher practice, would constitute a 
sufficient support for teachers in order to design their own lessons project that will foster the intended 
learning. It included the description of the developed tasks (in particular, necessary material support, 
problems for pupils to solve, guidelines for teachers concerning implementation of the situations in 
class) and information about managing the lessons (timing, forms of class organization of pupils, 
etc.).  

The second team involved three teachers (Natalie, Victor, Ida) who had been working together at a 
primary school in a socially disadvantaged part of the city for more than 5 years. The teachers 
obtained their initial education in different subjects2: Natalie in biology, Victor in literature and Ida 
in informatics. All of them at the time of the study taught in class of grade 5. Except Ida, who worked 
at the beginning of her career as a database operator for 10 years, the teachers have never been trained 
either in algorithmics or in programming. Natalie made a few lessons in programming in Scratch, 
while the others have never taught this topic. The teachers’ mission was to prepare lessons using the 
scenario and to make them in their classes as well as to give the reflexive feedbacks during interviews 
and collective meetings with the first team. Ida, Natalie and Victor were also asked to elaborate a 
scenario that could be a possible continuation of the proposed one. The members of the first team 
didn’t intervene in the work of the teachers (except a short presentation of the elaborated tasks by the 
researcher).  

Collected data and their exploitation 

For our study we collected the following data: answers of teachers to the questionnaire about their 
education, professional path, teaching experience, system of resources in mathematics and 
participation in collective work; video of collective work of Ida, Natalie and Victor before the 
implementation of the scenario in their classes; videos of the lessons of three teachers; pupils’ written 
production; interviews with Ida, Natalie, Victor after the lessons; scenario proposed by three teachers 
as a possible continuation of the first one; videos of two collective meetings of the members of both 
teams (the first one, concerning the results of the implementation of the scenario in three classes; the 
second one – a collective discussion about a possible continuation of the first scenario).  

2 In France, in order to enter a teacher training program, candidates must have at least a Bachelor degree in any speciality. 
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We used the lessons videos to make the a posteriori ascending analysis of didactical situations 
implemented by each teacher and confronted it with the a priori analysis. We were particularly 
interested in the episodes that show existence of pupils’ activities that were not expected. In such 
cases we questioned the reasons of appearance of didactical bifurcations and identified the type of 
marginal branches (regarding the didactical project of the authors of the scenario). We used the video 
of class observations to analyse teachers’ actions in the class (particularly, the devolution of the 
situations made by the teachers) and their possible influence on the appearance of alternative pupils’ 
projections of a-didactical situation based on the material milieu. In the video of collective discussions 
of the teachers before and after experimentations as well as in the interviews with them, we were 
looking for episodes that could bring to light the logic of their actions in class and their choices made 
during the construction of the situations on the base of the scenario. To understand teachers’ 
considerations about the role and possible place of constructed didactical situations in their global 
project of teaching algorithmics and programming, we analysed the scenario developed by Ida, 
Natalie and Victor as a possible continuation of the first one as well as the video of its collective 
discussion. The revealed dysfunctions in construction of didactical situations (bifurcations of 
constructions) as well as in their implementation in class allowed to revise the design choices made 
a priori and to identify what elements were missing in the resource.   

Analysis of lessons observations  
Due to space restrictions, we present in this section the elements of the analysis of Ida’s, Natalie’s 
and Victor’s lessons and show how it contributed to the identification of missing elements of the 
resource. We start from a short description of the first two situations proposed in the scenario. Then, 
we show how Natalie, Ida and Victor made the devolution of the second situation in their classes and 
the corresponding pupils’ activities.  

The proposed scenario included the sequence of situations with a-didactical dimension (Bloch, 2000) 
during the work on which pupils “re-invent” sorting algorithms. Implementation of the situations 
doesn’t require a computer and propose the following material support: playing cards and grid with 
defined places for putting cards on it in an aligned list.  

In the first situation of the sequence, pupils choose randomly 7 cards from 13 cards of one colour and 
put them face down on the grid. The goal is to sort the cards by returning only two cards at a time. 
The situation is used to introduce the material milieu (cards, grid and three allowed operations: “to 
take two cards”, “to put them in the right order”, “to place them on an empty place of the grid”) and 
prepare pupils for the following tasks. The target knowledge includes the understanding that at a time 
one can put two cards in “local” but not necessarily in “global” (between all cards) order, as well as 
the comprehension of the possibility to sort the cards in a finite number of permutations using the 
defined operations. The results of experimentations in the class of the teacher from the first team 
showed that most of pupils’ procedures in this situation are based on the usage of the memory.  

In the second situation, one pupil should sort the cards of another one by giving him instructions with 
respect to the allowed operations. The pupil, who has cards, doesn’t show their values to the pupil 
who gives instructions. All cards could be turned over only after the “pupil-speaker” says “stop”.  The 
objective of the task (that imitate, in some sense, the relation between a human and a machine) is to 
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foster the development by pupils of sorting strategies that will be generalised in the following 
situations.   

Natalie made devolution of the second situation, emphasizing on the phrases that pupils can use for 
giving instructions to their classmates: “take card number … and number … ”, “put them in the right 
order”, “place them on the grid”, “stop”. She highlighted that the use of other sentences is not allowed. 
The observation of pupils’ activities in this class showed that all pupils invested themselves in the 
main branch (regarding the didactical project of the authors of the scenario) and were working on the 
development of sorting strategies.  

Ida and Victor, while explaining the challenge of the second situation, mentioned only that pupils 
“will do the same thing like in the first task, but this time, there is one pupil who gives instructions 
and another one who executes them”. They didn’t discuss with pupils the phrases that they are allowed 
to use for giving instructions, emphasising only on the necessity that “the ‘executor’ have to do 
exactly what the speaker says” and “that it is very important to be precise in the language”. Victor 
gave in his class the following criterion of success in the task: “if the cards are in the right order, it 
means that ‘the speaker’ was very good”. Such devolution of the situation led to its different 
interpretations by pupils and evoked pupils’ activities which were not intended by the authors of the 
scenario. For example, part of pupils in the class of Ida, for whom it was not evident which phrases 
to use, invested themselves in the nildidactic branch. They used the commands “exchange the cards” 
or “put back without exchanging”, factually trying to guess if the cards, they claimed to take, are in 
the right order or not. In the class of Victor, we observed one pupil who was searching for the optimal 
formulation of the sentence for sorting the cards of his classmate. He proposed the following solution: 
“you take two cards that you want, sort them and put them on the grid, and you continue like this 
until all cards will not be in the right order”. This answer was not accepted by Victor which produced 
a protest from the pupil who was sure of the correctness of his answer.  

Thus, in the classes of Ida and Victor we identified the marginal branches that were not expected by 
a priori analysis. It happened due to the way chosen by the teachers for the devolution of the situation. 
The following analysis of collected data showed the differences between Ida’s and Victor’s 
interpretations of the objectives of the first two situations with those intended by the authors of the 
scenario. For example, Victor, expecting that pupils would find the sorting strategies during the work 
on the first situation, saw the goal of the second one in the development of pupils’ competencies to 
verbalise the solving procedures. This explains his choice of devolution for the second situation, when 
he left open the possibility of different formulations of pupils’ strategies.  

The obtained results of the analysis contributed to improve the resource. More specifically, the 
identified bifurcations of construction showed the necessity to describe the expected pupils’ 
procedures in the first situation and the target knowledge in the second one as well as to provide the 
help for the devolution of the second situation (to insist on the “authorised” sentences for giving 
instructions with a link to the property of feasibility of algorithm).      

Discussion and conclusion 

Our study puts the light on certain difficulties that teachers of primary school could have in 
interactions with resources in algorithmics (and, more generally, with resources that involves the 
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concepts in which teachers don’t have enough knowledge) and their influence on pupils’ learning. In 
the case of Victor, flaws in a priori analysis of the proposed situations (in particular, wrong 
anticipation of possible pupils’ procedure and identification of target knowledge) led to the 
construction of a didactical situation distinct from the one supposed by the authors of the resource. In 
consequence, the evoked learning activities of pupils didn’t comply with intended ones.  

It seems, that more pertinent choice of devolution of the second situation made by Natalie could be 
explained by the fact that she had taught a few lessons in Scratch before the experimentations took 
place and, as she said, “the usage of the given phrases for sorting cards is similar to the usage of blocs 
in Scratch for constructing a program”. However, we also identified a few dysfunctions in her class 
that could influent on the learning outcomes. For example, Natalie didn’t recognise in the pupils’ 
answers the “germs” of the sorting algorithm with which she was not familiarized before. Hence, she 
didn’t take them into account in the validation phase. Another example, which is common for the 
lessons of three teachers, is the lack of decontextualization in the phases of conclusion.  

From the interview with Ida, Natalie and Victor as well as the analysis of the scenario proposed by 
them as a possible continuation of the first one, we draw the conclusion that they don’t see all 
didactical potentiality of the resource proposed by the first team, focusing mostly on the effectiveness 
aspect of algorithm (Modeste, S., 2012). Moreover, analysis of the collective discussion about the 
possible prolongation of the first scenario showed that the situations, even didactically pertinent, 
could be discarded by the teachers if they don’t see the connection between the target knowledge and 
curriculum requirements.       

Revealed dysfunctions pointed to key elements to transmit to teachers by means of a resource in 
algorithmics in order to support the intended learning: a priori didactical analysis of situations 
proposed by a resource; target knowledge and ways of its gradual decontextualization in class; 
principal results of experimentations carried out in class (e.g. the examples of pupils’ procedures, 
frequent errors, etc.); information regarding the basic theoretical and epistemological aspects of 
concepts involved in a resource; possible place of a resource in learning progression with link to 
curriculum requirements. Due to the fact that the transmission of the mentioned elements by means 
of a particular resource could make it too long and, in a result, not usable by teachers, the question of 
the structure of a resource in algorithmics need to be addressed.  

Results presented in this paper, concerned only the first cycle of experimentation with the resource. 
The next step is to refine the design principles of a resource in algorithmics via the following cycles 
of experimentations with the revised resource as well as with other resources. Future work is also 
likely to investigate the impact of the resources designed on the base of the results of the study, on 
teaching and learning algorithmics at primary school.    
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Length measurement plays a prominent role in most countries. The purpose of this study was to 
examine similarities and differences in Taiwanese and German elementary written textbooks 
concerning the treatment of length understanding, measurement, and estimation. Our analysis 
showed that procedural affordances dominate the conceptual learning situations in both countries, 
even more in Germany than in Taiwan. Although ‘units can be converted’, ‘reasoning and 
justification’ and ‘benchmark learning’ were the most common conceptual elements in both 
countries, their importance differed. The comparison of procedural elements showed that both 
countries mainly focused on ‘unit conversion’, ‘measuring with a ruler’, and ‘addition and 
subtraction of length’. The Taiwanese textbooks concentrated more on concrete actions, whereas 
the German textbooks focused on more abstract and mental procedures.  

Keywords: length measurement, textbook analysis, binational comparison, primary school 

Introduction 
Length measurement plays a prominent role in measurement education in most countries (Buys & 
de Moor, 2008, Clements & Bright, 2003). Nevertheless, researchers all over the world continuously 
report poor learning outcomes especially concerning the underlying measurement concepts behind 
the measurement procedures (Smith III, van den Heuvel-Panhuizen, & Treppo, 2011). Although 
there seems to be a great consistency about the aspects of those concepts (Barrett, Sarama, & 
Clements, 2017; Lehrer, 2003; Clarke, Cheeseman, McDonough, & Clarke, 2003), differences in 
the curricula and teaching practice are assumed as well (Lee & Smith III, 2011).  

Being interested in cross-cultural differences and similarities in length estimation, we’re looking 
closer to Taiwan and Germany as first examples, motivated by two aspects: Taiwan and Germany 
are two examples of very different cultural backgrounds—one Asian and one European country, and 
both with an official language different from English—and the learning outcomes in both countries 
differ enormously at 4th grade.1 In contrast to the international results, the preliminary findings of 
our pilot study on length estimation did not show these differences in the overall estimation 
abilities. Looking closer to the answers we considered specific differences, which, perhaps, may be 
explained by different learning opportunities on length learning. Therefore, this textbook analysis 
serves as a basis for looking to the learning opportunities on length learning in both countries. 

                                                 
1  Although TIMSS 2015 reported significant above average scores for German fourth-graders (overall score: 522, s.e. 

2.0; ‘geometric shapes and measures’ score: 531, s.e. 2.5), Taiwanese fourth-graders performed much better (overall 
score: 597, s.e. 1.9; ‘geometric shapes and measures’ score: 597, s.e. 3.0)  

 [for details see: https://nces.ed.gov/timss/timss2015/ [last check: 21-11-2018] 
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Theoretical background 
Core concept of lengths and its measurement 

Length understanding, length measurement, and length estimation are thought to be a complex 
concept with different conceptual underpinnings as well as concrete actions. According to Lehrer 
(2003), Clarke et al. (2003), Stephan and Clements (2003), and others the most important 
foundations are 

(1) Understanding of the attribute and its relation to the units used to measure with.  
A length must be understood as the distance between two points in the space. The length of 
an object can be found by quantifying the distance between its endpoints.  

(2) Logical operations: conservation and transitivity. 
The length of a given object isn’t dependent on its location, nor is it variant under special 
transformations, whereas other transformations don’t conserve the length. The transitivity of 
the equivalence and order relation are one basis for the comparisons of lengths. 

(3) Mental partitioning into parts.  
Being able to partition the length of an object mentally and being sure that adding the 
measures of the parts will give the length of the whole.  

(4) Iterative tiling with identical units and counting them. 
The measuring process consists of using a unit (standardized or non-standardized) iteratively 
by placing it end to end without gaps or overlaps. Whether a subdivision of the unit is 
necessary depends on the precision the measurer looks for.  

(5) Numerical interpretation of the iteration process.  
Either every iteration-step has to be counted during the process, or the number of different 
identical units can be counted at the end of the tiling-process. The counted number has to be 
understood as the measure.  

(6) Understanding of measurement tools. 
The children need not only the procedural knowledge how to measure and draw with a ruler, 
but they need to understand the scaling itself. Crucial is the difference between a point on 
the scale and the length measured, being asserted to the distance between two scale-points.  

(7) Measures as the relation between unit and number. 
The relation between the unit and the number of units needed to tile a length is inversely 
proportional. Besides this children have to learn the conventional conversions between 
different standardized units, including fractions and decimals.  

Conceptual and procedural knowledge in length measurement 

In the literature, it has been stated since a long time that measurement learning is much more 
concentrated on superficial procedural aspects than on the underlying concepts (e.g. Lehrer, 2003; 
Stephan & Clements, 2003). In sharpening the meaning of conceptual and procedural knowledge in 
measurement learning, the STEM research group at Michigan State University (e.g. Lee & Smith III, 
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2011, Smith III, Males, Dietiker, Lee, & Mosier, 2013) developed iteratively a coding scheme with 
conceptual, procedural, and conventional codes. They included all measurement actions children are 
ask to carry out into the term ‘procedures’ and ‘procedural knowledge’, whereas they use ‘concepts’ 
and ‘conceptual knowledge’ “to designate the general principles that underlie and justify 
procedures” (Smith et al., 2013, 399). The third category, ‘conventional knowledge’ was used to 
code aspects, which are contingent and culturally defined, like the metric of units or aspects of 
rulers etc.  

Their analysis of three US and one Singapore textbook series showed strong emphasize on 
procedural aspects in all grades and both countries (Lee & Smith III, 2011). If concepts are focused 
and explicitly addressed, they are not in line with the procedures but appear much later in the 
curriculum (Smith III et al., 2013).  

Length estimation 

In the sense of Bright (1976) we consider length estimation as being a mental process of 
determining a length for an attribute without the aid of measurement tools. Although children’ 
estimates in length are more accurate than in other measurement areas (Joram, Subrahmanyam, & 
Gelman, 1998), children are even worse in estimating than in measuring lengths. Researchers stress 
the importance of strategies (Jones, Taylor, & Broadwell, 2009; Huang, 2015) and their conjectures 
to the underlying measurement concepts and procedures. Different learning environments based on 
different curricula might lead to different knowledge (e.g., different estimation strategies). Since 
most studies on estimation focus on one country with the underlying assumption that the curriculum 
for measurement estimation will be similar across countries (Jones et al., 2009; Ruwisch, Heid, & 
Weiher, 2017), we try to get deeper insights into similarities and differences in the lengths 
curriculum and its focus on learning length estimation. The study of the STEM-project only referred 
to length estimation at the edge. Nevertheless, they reported great differences in the frequencies 
among the three US textbook series, and concluded that “despite the frequent calls to estimate 
lengths, little attention was given in any curriculum to specify the estimation process” (Smith III et 
al., 2013, 416).  

Research questions 
The purpose of this study was to examine similarities and differences in Taiwanese and German 
elementary written textbooks concerning the treatment of length understanding, measurement, and 
estimation. Specifically, we were interested in those aspects which may lead to different 
understandings of length estimation.  

Q1: On a coarse and organizational level: Are there differences in the main syllabus—number of 
units, instructional time—on length learning between Taiwan and Germany?  

Q2: Do procedural aspects also dominate the Taiwanese and the German curriculum as it has been 
reported from the USA and Singapore?  

Q3: Which concrete differences in the opportunities to learn length understanding, measurement, 
and estimation can be observed between Taiwan and Germany?  
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Method 
Choice of written curricula and scope of analysis 

In both countries, elementary school mathematics textbooks were developed on the curriculum 
guidelines for compulsory mathematics education mandated by the responsible ministry that has 
them licensed (Lan 2005 in Chinese for the Taiwanese procedure; Stöber 2010 in German for the 
German procedure). We examined four German elementary textbook series and three from Taiwan 
which were chosen by the ranking of publishers (see Ruwisch 2017).  

A primary textbook series in both countries normally includes a package for each grade.  Since the 
additional materials differ from series to series and are optional for a teacher, the only materials 
included in our analysis are the main textbooks for each grade.  

Locating the length content 

For the purpose of this comparison, we focused on those pages of the textbooks that were 
designated as length measurement units by the authors, excluding the units involving perimeters of 
shapes. So our analysis was a first step to come to a deeper analysis as such of Lee and Smith III 
(2011).  

Coding process of the length content 

For coding the different aspects of length content we adopted the coding scheme of Lee and Smith 
III (2011, 689). We also differentiated between conceptual and procedural knowledge. The analysis 
presented here is coarser than the very fine one of Lee and Smith III in one sense and broader in 
another one: The coding unit was not the sentence or question but normally the task, which could 
contain more than one sentence. Sometimes, there were two different requests in only one sentence. 
As a consequence, some tasks got more than one code, although normally we tried to decide which 
element is more important in a special situation. Therefore, we restricted ourselves to tendencies 
here. In applying the scheme to our data, we also needed to extend the coding scheme. BL was 
added as a conceptual element for tasks that ask students for exploration and learning the measures 
of benchmarks or personal reference objects for estimation. CS is a conceptual code for the 
definitions of curve versus straight line. A category for reasoning and justification was added (RJ), 
which we think is a linking category between conception, procedure, metacognition, and language.  

Exemplary for our differentiation between the procedure and the underlying concept we look closer 
to “unit conversion”. If the task asked the child to “write the measures given in mm”, this was coded 
with the procedural code “unit conversion”. If a short description or definition of conversion was 
given—“Sometimes the unit centimeter is too rough. We then need the finer unit millimeter. 1 cm = 
10 mm; 1 m = 1,000 mm.” — we coded this with the conceptual code “units can be converted”. 

Results 
Syllabus, units and time 

In Taiwan, the learning of length measurement starts at the first semester of grade 1 in all textbook 
series. In every grade, length measurement units are included in the textbooks. Whereas in grades 1 
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and 2, two length measurement units are allocated in every textbook series—one per semester—, 
only one unit is included in all series for grade 3 and 4, respectively.  

Most schools in Germany start length learning in second grade. Only Das Zahlenbuch gives an 
opportunity for learning length measurement in grade one, but only by one page in a book of 132 
pages. Nearly every textbook contains one special unit about length learning per grade—with the 
exception of Das Zahlenbuch, which offers two units in grade three and none in grade four.  

Table 1 gives detailed information about both countries. On the one hand, the total numbers of 
pages on length measurement in the Taiwanese textbooks are more than three times of those 
contained in the German textbooks. On the other hand, comparing the intended instructional time in 
both countries does not reflect this great difference. German teachers seemed to be asked to refer for 
a longer period of teaching time to the same page of the textbook. 

 German textbook series  Taiwanese textbook series 

Grade Denken und 
Rechnen Flex & Flo Welt der Zahl Zahlenbuch  Han-Lin Kuang-Hsuan Nan-I 

1 — — — 1/132 = 0.75% 
(no time given) 

 14/224 = 6.25%   
6 (240 min.) 

15/218 = 6.9% 
   7 (280 min.) 

15/238 = 6.3%   
6 (240 min.) 

2 10/133 = 7.5% 
~10 (450 min.)  

6/148 = 4% 
~10 (450 min.)  

2/133 = 1.5% 
~5 (225 min.) 

3/132 = 2.3% 
(no time given) 

 22/256 = 8.6% 
10 (400 min.) 

19/219 = 8.7%  
10 (400 min.) 

21/246 = 8.5% 
10 (400 min.) 

3 7/117 = 6% 
~ 8 (360 min.) 

8/156 = 5% 
~ 8 (360 min.) 

9/125 = 7.2% 
~ 8 (360 min.)  

7/132 = 5.3% 
(no time given) 

 13/268 = 4.85% 
5 (200 min.) 

 8/260 = 3.1% 
4 (160 min.) 

9/258 = 3.5%   
5 (200 min.) 

4 3/117 = 2.6% 
~ 8 (360 min.) 

5/144 = 3.5% 
~ 4 (180 min.) 

4/125 = 3.2% 
~ 8 (360 min.) —  7/276 = 2.5%   

2 (80 min.) 
 9/256 = 3.5% 
5 (200 min.) 

 11/278 = 4%  
6 (240 min.) 

Total 20/500 = 4% 
~ 26 (1170 min.) 

19/596 = 3.2% 
~ 22 (990 min.) 

15/416 = 3.6% 
~ 21 (945 min.) 

11/528 = 2.1% 
(no time given) 

 56/1024 = 5.5% 
23 (920 min.) 

51/953 = 5.4%  
26 (1040 min.) 

56/1020 = 5.5%  
27 (1080 min.) 

 Note: The first row gives the proportion by the number of pages: Pages of the length measurement unit in proportion to the whole number of pages. The second row 
gives the intended teaching time for the units. 

Table 1: The opportunities for learning length measurement  

In both countries, most time for learning length is spent in second grade. The comparison between 
both countries suggests that length learning in Germany seems to be more concentrated than in 
Taiwan: starting in second grade and offering only one unit per grade.  

Conceptual versus procedural affordances 

In the German textbooks, the total numbers of conceptual codes were nearly the same in all four 
series, whereas the number of procedural codes differed. Das Zahlenbuch and Welt der Zahl got 
twice as many procedural codes than conceptual ones, Denken und Rechnen and Flex & Flo got 
three times as many procedural as conceptual codes. 

The Taiwanese textbook series showed little differences in the total numbers of procedural 
elements, but differed in the number of conceptual codes. Whereas Kuang-Hsuan and Nan-I were 
about close in the number of conceptual codes, the third series, Han-Lin, only contained about 60 % 
of the number of Kuang-Hsuan, the series with the most conceptual elements. Therefore, this 
textbook series (Han-Lin) contained more than twice as many procedural than conceptual elements. 
The other two have about one third more procedural than conceptual elements.  

Thus, in the German and the Taiwanese curriculum also the procedural affordances dominate, a 
tendency which is stronger for the German than the Taiwanese textbook series.  
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Main categories of conceptual and procedural affordances 

The main concepts in all German textbook series are benchmark learning and reasoning and 
justification. The latter normally is combined with benchmark learning (more conceptual) or with 
proportional reasoning as in distance-time-relationships and scale (more procedural). The third most 
common conceptual category is units can be converted, normally at the top of a page, on which the 
students are asked to convert units in the following tasks. 

The main concept involved in all Taiwanese textbook series is units can be converted. It occurs 
about twice as often as reasoning and justification, which is the second important conceptual 
element. Although benchmark learning occurs as the third often coded element of conceptual 
categories in Taiwanese textbooks, it is much rarer than the other two.  

Looking to the procedural elements, the most common one in all series of both countries is 
conversion of units.  

We differentiated between those procedures that ask for a concrete measurement action, and more 
abstract procedures, which are presented on the symbolic level. In German textbooks only about one 
third of the tasks asks for concrete procedures, another third for the conversion of units, and the last 
third for other symbolically presented procedures. In Taiwan nearly one half of the coded tasks ask 
for concrete and the other half for more abstract procedures, if conversion of units is included in the 
latter one.  

Concerning the concrete procedures the most common one in both countries was measure with a 
ruler, when the object is shorter than the ruler. In Germany draw with a ruler (also objects shorter 
than the ruler) and visual estimation were the second and third common ones, whereas in the 
Taiwanese textbooks measuring with sufficient non-standard units and visual estimation and 
different kinds of direct and visual comparisons were found more often than drawing activities. No 
direct comparison was coded in the German textbooks. 

The most common abstract procedures in the Taiwanese textbook series were generating the sum 
and differences of length given through word descriptions and representations, and doing so given 
word descriptions only. In Germany, word problems with lengths, sometimes with the aid of a 
representation, also dominate the abstract procedures—besides the conversion of units—, followed 
by the comparison or order of length which were given in a symbolic.  

Discussion and conclusion 
The analysis showed similarities and differences between the countries as well as between the 
textbook series concerning the opportunities for learning length understanding, measurement, and 
estimation. 

Although all textbooks show a dominance of procedural aspects over conceptual elements, this 
tendency is stronger in the German textbooks. The Taiwanese textbooks focus much more on 
conceptual elements than the German did. If this difference in the frequency of the opportunities to 
understand length measurement is crucial for better results in international comparative studies, 
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needs further investigation. As a first step, our analysis itself can be deepened insofar that we will 
look, if and how the procedural and underlying conceptual knowledge elements are temporally 
interlocked or decoupled like in the US textbooks (Smith III et al., 2013). 

Although units can be converted, reasoning and justification and benchmark learning are the most 
common conceptual elements in both countries, their importance differs. The Taiwanese textbooks 
mainly stress the idea of conversion, whereas the German textbooks focus more on benchmark 
learning. Although there were only a few problems involving ‘visual estimation’ as a procedure, we 
did not yet deepen our analysis in this point to get to know, if the content of this request differs in 
both countries: Is the procedure itself specified? And if so, how? Is a specific strategy shown? 
Benchmark knowledge and estimation strategies are seen as crucial elements for good length 
estimation (Jones et al., 2009; Joram et al., 1998; Huang, 2015).  

The comparison of procedural elements showed that both countries very often focus on unit 
conversion, measuring with a ruler, and addition and subtraction of length. In the Taiwanese 
textbooks more tasks ask for direct comparison and measurement with nonstandard units, whereas 
the German textbooks stress visual estimation. Overall, the Taiwanese textbooks ask much more for 
concrete actions, whereas the German textbooks stress more abstract and mental procedures. How 
are these results connected to length understanding and estimation abilities?  

In concluding these preliminary findings we have to point out that we ourselves are examples of 
cultural differences. Up to now, every person coded the textbooks of her own country. So the coding 
procedure has to be done vice versa or perhaps with a person who can translate Chinese directly to 
German. We also want to broaden and deepen our analysis to get a better understanding of the 
differences. If we take a broader corpus besides the textbooks, we may get a deeper insight in the 
differences how teachers and students work with the textbooks in both countries, and how the 
denser curriculum in the German textbooks is implemented differently from the Taiwanese in 
classrooms. A much deeper analysis with regard to the coding scheme of Lee and Smith III (2011) 
as well as qualitative analyses may help to get a better understanding of the so far superficial 
suggestion that German length learning is more abstract and mental than the Taiwanese one and 
may result in other length estimation abilities. 
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In this paper, we first outline a Hypothetical Learning Trajectory (HLT), which aims at a formal 
understanding of the rules for manipulating integers. The HLT is based on task formats, which 
promote algebraic thinking in terms of generalizing rules from the analysis of patterns and should be 
familiar to students from their mathematics education experiences in elementary school. Second, we 
analyze two students’ actual learning process based on Peircean semiotics. The analysis shows that 
the actual learning process diverges from the hypothesized learning process in that the students do 
not relate the diagrams on the different levels of the task sequences in a way that allows them to 
extrapolate the rule for the subtraction of negative numbers. Based on this finding, we point out 
consequences for the design of the tasks.  

Keywords: integers, negative numbers, permanence principle, induction extrapolatory method, 
hypothetical learning trajectory, semiotics, diagrammatic reasoning 

Introduction 
The difficulties and obstacles related to the concept of negative number and their operations are well 
documented in the history of mathematics (Hefendehl-Hebeker, 1991) and a growing body of recent 
research (e.g. Schindler, Hußmann, Nilsson, & Bakker, 2017).  

According to Steinbring (1994, p. 279) the notion of negative numbers and the related understanding 
of their manipulations require autonomous and formal rules, which are comparable to the rules of 
algebra. He argues that the consistent system of rules for manipulating negative numbers is neither 
deduced from reality nor is it directly applicable to real world contexts, in which numbers represent 
magnitudes. According to Hefendehl-Hebeker (1991, p. 30), it was not until the 19th century that 
these obstacles were overcome in the history of mathematics by a shift of view:  

The change consisted in the transition from the concrete to the formal viewpoint. Subsequently, 
the concept of number could be introduced in a purely formal manner without consideration of the 
concept of magnitude. 

Therefore, a full understanding of the rules for manipulating negative numbers might be not 
achievable by referring to real world contexts, such as assets and debts or temperature, in which 
negative numbers are easily perceived as magnitudes. The introduction of negative numbers might 
also require a shift from the concrete to the formal viewpoint.  

Our overarching aim is to understand how students make sense of negative numbers and their 
manipulation rules in a Hypothetical Learning Trajectory (HLT), which aims at such a mathematical 
understanding of these rules from a formal viewpoint. The different meanings of the minus sign as 
unary, binary or symmetrical present a particular obstacle for students (Vlassis, 2004), which 
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becomes most evident related to the subtraction of negative numbers. Therefore, we focus on the 
question how students can develop a formal understanding of the rule for subtracting negative integers 
in this paper.   

We first outline a HLT for the learning of the rules for manipulating integers, which aims at such a 
mathematical understanding of these rules from a formal viewpoint. Second, we give a first insight 
into students‘ actual learning processes related to subtracting negative numbers.   

Theoretical Framework 
According to the seminal definition by Simon (1995) a Hypothetical Learning Trajectory (HLT) 
“consists of the goal for the students’ learning, the mathematical tasks that will be used to promote 
student learning, and hypotheses about the process of the students’ learning” (Simon & Tzur, 2004, 
p. 93). A HLT “is based on the understanding of the current knowledge of the students involved”
(Simon & Tzur, 2004, p. 93).

The goal of our learning trajectory is that students develop an understanding of the rules for 
manipulating integers from a formal viewpoint, i.e. to understand that the calculation laws for integers 
are defined the way they are, because they “are uniquely determined as extensions of certain laws 
governing the positive numbers” (Freudenthal, 1983, p. 434). Freudenthal called this the “algebraic 
permanence principle” and propagates the “induction extrapolatory method” (Freudenthal, 1983, p. 
435) in order to introduce the negative numbers. Our HLT draws on this method. The tasks we used
to implement this method relate to students’ prior experiences, because we use task formats that are
familiar to students from the learning of arithmetic in elementary school. As pointed out earlier, we
do not use real-world contexts, since the rules for manipulating integers are not deducible from them.
Therefore, our notion of understanding refers to what Wittgenstein has termed the sign game, in which
“the meaning of the signs, symbols, and diagrams does not come from outside of mathematics but is
created by a great variety of activities with the signs within mathematics” (Dörfler, 2016, p. 27). In
our case, the meaning of the signs is explored in what Pierce (1976) calls “diagrammatic reasoning”.

According to Dörfler (2005, p. 58) diagrams in the sense of Pierce are inscriptions, which have a 
specific structure depending on the relationships among their parts and elements. Based on their 
structure diagrams are the objects of rule governed operations. These operations allow to transform, 
compose, decompose, and combine the inscriptions and can be called the “internal meaning of the 
respective diagram” (Dörfler, 2016, p. 25). Diagrammatic reasoning according to Peirce then is 

reasoning which constructs a diagram according to a percept expressed in general terms, performs 
experiments upon this diagram, notes their results, assures itself that similar experiments 
performed upon any diagram constructed according to the same percept would have the same 
results, and expresses this in general terms. (Peirce, 1976, pp. 47-48) 

Summarized, it “is a rule-based but inventive and constructive manipulation of diagrams for 
investigating their properties and relationships” (Dörfler, 2016, p. 26). Though they are rule-based 
the manipulations are still imaginative and creative and not just mechanic or purely algorithmic 
(Dörfler, 2016, p. 26). 
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A HLT for the learning of manipulating negative numbers 
The learning trajectory is structured into six parts: 1. introduction of negative numbers, 2. ordering 
of negative numbers, 3. subtraction with a positive subtrahend, 4. addition of negative numbers, 5. 
subtraction with a negative subtrahend, and 6. multiplication of negative numbers. Each part of the 
learning trajectory has the same structure. It starts with sequences of tasks using the induction 
extrapolatory method (Figure 1) in order to foster students’ diagrammatic reasoning. Every sequence 
consists of six to eight tasks and shows a pattern that the learners are supposed to identify. The 
learners know these task sequences from learning arithmetic in primary school. Therefore, they know 
that the sequences have patterns and they are familiar with completing these patterns. For every 
sequence of tasks, the learners have to work on three tasks: The first task is to describe the identified 
pattern verbally using phrases like ‘the 
minuend/subtrahend/difference remains constant/increases/decreases 
by one/two/…’.  Thereafter, the learners have to complete the 
sequence of tasks according to the identified pattern The last task is to 
transfer the tasks into a table, where they can further explore task 
relations. Based on the insights from their explorations, the learners 
either have to formulate a rule and consolidate this rule by working on 
further examples or they have to verify the given rule. These activities 
are based on Pierce’s notion of diagrammatic reasoning. Students’ 
need to manipulate diagrams according to rules that they perceive by 
exploring the structure of the diagrams. By formulating rules, they 
have to express the result of their explorations in general terms.  

In this paper, we focus on the subtraction of negatives (part 5 of the HLT). The first sequence of tasks 
in this section is shown in Figure 1. In this sequence, there are different diagrams in the sense of 
Pierce, which are on two different levels of the task sequence. On the first level, every task is a 
diagram in itself, because it represents the relation of the minuend, the subtrahend and the result. On 
the second level, the whole sequence is also a diagram because the single tasks are related and exhibit 
a particular pattern. In the case of the task sequence in Figure 1, the minuend of all the tasks is fixed 
(3) and the subtrahend is reduced by one from one task to the next. Consequently, the results increase 
by one from one task to the next. 

In terms of the students’ learning process, we hypothesize that the students have to work on diagrams 
on both levels when solving the tasks. First, they can solve tasks one to three in the sequence, which 
should be familiar to them from natural number arithmetic. Referring to the ideas of diagrammatic 
reasoning, these are manipulations on diagrams on the first level. In the next step, they need to explore 
the structure of the sequence on the second level. In other words, they have to investigate the 
properties and relationships of the second level diagram. After exploring the structure, they can 
complete the tasks four to six, which are new to them, by referring to the structure. These are also 
manipulations on diagrams on the second level. For learning, how to subtract a negative number from 
an integer, it is important to switch in between the diagrams on the different levels and relate to them 
once again as described above. The students have to recognize how the calculations of the tasks 

Figure 1: Sequence of Tasks 
at the beginning of the section 

Thematic Working Group 22

Proceedings of CERME11 4320



 

 

including the subtraction of negative numbers are carried out. Relating to the idea of diagrammatic 
reasoning, this is the investigation of properties and relationships of the diagrams on the first level. 

In summary, we hypothesize that the students’ learning process related to the subtraction of negatives 
involves an interaction between the diagrams on two different levels. The students need to operate on 
diagrams on the first level, then refer to the structure of the diagram on the second level and get back 
to the diagrams on the first level in order to solve the tasks. By deriving the results of tasks that 
involve the subtraction of negatives from the structure of the diagram, they are able to get an insight 
into the algebraic permanence principle and thus could develop a formal understanding of the rule for 
subtracting negatives.  

Methodology 
Data was collected in five 6th-grade classrooms in a German secondary school. The students worked 
on the HLT in pairs in a separate room. Altogether, we videorecorded eight pairs of students while 
working on the HLT.  

In order to reconstruct the diagrammatic reasoning of the students, we use Toulmin’s (2003)  “pattern 
of an argument” as an analytic tool. Toulmin’s core structure – or “first skeleton” as he puts it – of 
an argument has been used productively in mathematics education research to analyse students’ 
reasoning (e.g. Fetzer, 2003; Reid, et al. 2008). The core structure of an argument is composed of 
three components: The data are the facts, which are the basis of the conclusion, “whose merrits we 
are seeking to establish” (Toulmin, 2003, p. 90). Warrants are propositions like rules, principles and 
inference licenses. They are used “to show that, taking these data as a starting point, the step to the 
original claim or conclusion is an appropriate and legitimate one” (Toulmin, 2003, p. 91). 

Arguments and diagrammatic reasoning are linked by the role of rules. Diagrams are embeded in a 
system which has rules and the manipulation of diagrams in the sense of diagrammatic reasoning is 
rule-based. The warrants in students arguments related to relationships and properties of a diagram 
should explicate the rules of the diagram as the students explored them. Therefore, the analysis of 
students’ reasoning based on Toulmin’s scheme provides an analytic tool to reconstruct the rules on 
which their diagrammatic reasoning is based. 

In a first step, we reconstruct students’ argumentation based on Toulmin’s pattern of an argument. 
We further frame each argument in terms of the level of diagrams it relates to: level 1 or level 2. 
Finally, we draw conclusions about students’ diagrammatic reasoning based on an interpretation of 
their arguementation.  

An example analysis of students’ actual learning process 
In this exemplary analysis, we focus on the learning process of two girls, Mia and Marlen. They are 
working together on the HLT. We are focusing on the beginning of the section “We subtract negative 
numbers” and especially on their work on the sequence of tasks shown in Figure 1. Due to space 
limitations, we can only analyze two short episodes from the whole learning process. 

The episode in Table 1 starts at the beginning of the students’ work. Their task is to describe the 
pattern of the sequence: 
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  level 1 level 2 

8 Mia:  It’s decreasing in a). In a) the first [points on the 
minuends] remains constant and the second [points on 
the subtrahends] decreases by one. 

 D1 

9 Marlen:  But we also have to describe the … The result decreases 
o… No… 

 C1a 

 

 10 Mia:  Heh?  

11 Marlen:  … increases by one.  

12 Mia:  No.   

13 Marlen:  Sure, the result always increases by one.   

14 Mia:  Decreases … by one. There are negative numbers, 
Marlen. 

 C1b/ 
W1b 

15 Marlen:  No, look. Three minus two is one. Three minus one is 
two. Three minus zero is three. … 

 W1c 

15a Marlen:  … Three minus one … D2 

16 Mia:  … minus one …  

17 Marlen:  … minus minus one. That would be … two …  C2 

17a Marlen:  … Then it’s decreasing. Well, the difference first 
increases and then decreases, right? 

 C1c 

Table 1: First episode from the transcript 6b_Subtraktion2_1 

In line 8, students express data (D1), which is the starting point of their argument (The minuend 
remains constant and the subtrahend decreases by one). From this data they draw three different 
conclusions. The first conclusion (C1a) is that the results increase by one. This argument is not 
explicitly supported by a warrant. According to Fetzer (2003, p. 33), this is a simple inference, which 
has only data and a conclusion and no legitimation through a warrant. Their second conclusion (C1b) 
is that the results in the sequence of tasks decrease by one. It is legitimated by the warrant “There are 
negative numbers” (W1b). The last conclusion Marlen draws from (D1) in this episode is that the 
results first increase and then decrease (C1c). The warrant (W1c) is the calculation of tasks one to 
four in this sequence.  

All arguments based on D1 in this episode are on the level of the sequence, i.e. on the diagram on the 
second level. Additionally, there is a simple inference on the task level, i.e. on level 1 (lines 15a and 
17) with the task 3 – (-1) as data (D2) the result “2” as the conclusion (C2). This simple inference is 
important, because it is one essential part of warrant (W1c), which supports to the conclusion (C1c) 
that the results first increase and then decrease. 
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Following the episode in Table 1, the teacher asks the students to reason, why the results first increase 
and then decrease. He further asks them to fill in the blanks in the task sequence. After they finished 
filling in the blanks, the following episode starts. 

level 1 level 2 

27 Teacher: […] Well, and if you recognize, after you have got up to 
the three. Did we have sequences of tasks, in which the 
results first increase and then decrease or vice versa? 

D5 

28 Both: No. 

29 Teacher: And what’s the next result? 

30 Mia: Probably it goes on and on. … C5b 

31 Marlen: Probably four. C5a 

32 Teacher: Right. 

33 Mia: … Because here (points at another sequence) it is the 
same, but here the first summand changes. 

W5b 

34 Teacher: Yes …. It means, when continuing the pattern, the next 
result is … 

C5a 

35 Marlen: … four. 

36 Teacher: Right. 

37 Mia: Heh? It decreases by one. It decreases, Marlen. 

38 Marlen: But we didn’t have a sequence so far, in which the results 
first increase and then decrease suddenly. It is a kind of 
pattern, but I don’t understand why it is. 

W5a 

Table 2: Second episode from the transcript 6b_Subtraktion2_1 

In this episode, the data of all conclusions is given in line 27: The results of the first three tasks in the 
sequence are “1”, “2” and “3”. The first conclusion (C5a) based on this data (line 31) is that the next 
result is (probably) four. This is a simple inference without a warrant. The second conclusion (C5b) 
in line 30 is justified by warrant (W5b) in line 33, which refers to another sequence of tasks on the 
same page. In line 34, the teacher repeats the conclusion (C5a), but now Marlen provides a warrant 
(W5a): She refers to other known sequences of tasks. There it never occurred that the results of the 
tasks first increase and then decrease or vice versa. 

Discussion and Conclusion 
In our description of the hypothesized learning process, we argued that diagrammatic reasoning, 
which relates diagrams on two levels of the task sequence in Figure 1, is crucial for students’ formal 
understanding of the rule for subtracting negative integers. The students have to work on diagrams 
on the first level to see the pattern of the diagrams on the second level. Referring to the pattern of the 
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diagram on the second level, they can solve the tasks (diagrams on the first level) which include 
manipulations on the new mathematical objects, i.e. negative numbers. Comparing the eight pairs of 
students reveals that most of them actually follow this hypothesized learning process. Only two pairs 
struggle with the sequence shown in Figure 1. Both of them are only working on the diagrams on the 
first level, i.e. they try to solve all the tasks before referring to the structure of the task sequence. As 
opposed to the pair of students described in this paper, the other pair is not sticking as consequent to 
the idea that instead of subtracting a negative number they can subtract the additive inverse. 

However, the reconstruction of Mia’s and Marlen’s argumentation in the two columns behind the 
transcript reveals that the students work on diagrams on both levels, but not in the hypothesized way. 
The crucial point in their diagrammatic reasoning occurs in lines 15-17. We hypothesized that for a 
formal understanding, it is important to refer to the structure of the task sequence in order to derive 
the result of the task 3 – (-1). The analysis shows that the students conclude that the result of this task 
is 2 (C2 in line 17). Because of the missing warrant in this argument, it is not possible to reconstruct 
the rule of their manipulation on the diagram on level one. According to their reasoning, the inner 
relationship of this diagram on the first level is, that the difference of “3” and “-1” is “2”. As opposed 
to our hypothesized learning process, the students do no infer the result of the task from the 
relationships of the diagram on level two, but vice versa. Their further reasoning reveals that the 
simple inference D2 à C2 (lines 14-17) is part of the warrant for the conclusion that the results first 
increase and then decrease, which relates to the inner relationship of the level 2 diagram. 
Consequently, instead of inferring the rule for manipulating the level one diagram 3 – (-1) from the 
relationships of the level two diagram, they do it the other way around.  

With the intervention of the teacher they get the correct results for the ‘new’ tasks, but as a result of 
lines 15-17 the students do not understand why the results are correct (lines 29-30). From the point 
of view of diagrammatic reasoning, the students use the structure of the sequence to complete the 
tasks, but they are not able to recognize the rules for manipulating tasks comprising the subtraction 
of negative numbers.  

The comparison between the hypothesized and the actual learning process shows that it is very 
important how students relate to diagrams on the different levels in their diagrammatic reasoning in 
order to develop a formal understanding of the rule for subtracting negative integers. The analysis of 
two students’ reasoning revealed that relating the diagrams on the two levels other than in the 
hypothesized way might lead to inferences that violate the permanence principle. Therefore, students 
might need support in our HLT in order to relate the diagrams on the two levels in productive ways. 
As in our case, the support could be provided by the teacher. A different option is to redesign the task 
in a way that it will guide students more closely to consider the relation of the diagrams on the two 
levels. This could be achieved by splitting the task sequence into two parts, a familiar part (tasks one 
to three of the sequence) and a ‘new’ part (tasks four to six in the sequence). After solving the tasks 
in the familiar part, students are asked to analyze the structure of the task sequence and continue the 
task sequence accordingly. Based on their analysis they are asked to draw conclusions about the 
results of tasks four to six.   
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In our analysis, the theory of diagrammatic reasoning helped to identify the crucial obstacle in both, 
the hypothesized and the actual learning process. The in-depth analysis has proven to be very fruitful 
in order to better understand students learning processes related to particular task types. Based on the 
findings, it was possible to derive substantiated ideas for the redesign and the implementation of the 
task and thus, the inductive extrapolatory method. However, the analysis carried out in this paper 
does not provide evidence that a formal perspective rather than one focused on real-world scenarios 
is helpful in developing understanding in this area. 
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Professional development activity with a secondary school mathematics department in England 
aimed to further teachers’ knowledge of their resource options in order to better inform the 
resource choices they make and support their ability to use resources to design effective instruction. 
Participants conceptualized individual resources as representatives of resource types, drafted a 
model to represent types, and compared types using indices (exponents) as a focal topic. This paper 
reports on a study of that activity. Findings suggest that learning more about resource options 
assists and interests teachers and that using a focal topic to explore, characterize, and compare 
resources has merit. Organizing resources by type for use as a tool for finding resources and 
coordinating their use in a resource system appears beneficial, but would require work over time. 

Keywords: Mathematics education, resources, curriculum resources, resource system, resource 
selection 

Introduction 
Resource options for teachers are burgeoning. However, despite calls for providing opportunities to 
develop teachers’ resourcing skills (e.g., Rolando, Salvador, & Luz, 2013), and the recognition that 
teachers choose to use multiple resource types even in countries where prepared curriculum 
materials such as textbooks have dominated (e.g., Webel, Krupa & McManus, 2015), little is known 
as yet about how to help mathematics teachers select resources advantageously on behalf of student 
learning. One question that arises is whether teachers are familiar enough with the full range of 
available resources to make well-informed selections. In order to select and use a resource, a 
teacher must first know that it exists, as suggested by the quote from a secondary mathematics 
teacher in England in the title of this paper. Unknown resources are effectively inaccessible.  

Siedel and Stylianides (2018), in a study of secondary mathematics teachers in England, found that 
teachers with considerable autonomy and responsibility for resource selection did not know about 
or were not selecting several potentially useful types of resources. To investigate further, the 
authors introduced a construct called “the pool of possibilities” (p. 121) to represent all instructional 
resource options for a teacher population, including human, cultural, social, material and digital 
resources. Teachers in the study discussed here, the Resource Types study, had an opportunity to 
learn more about their resource options by exploring their pool of possibilities.  

Although the pool of possibilities and the work teachers undertake to find resources in a pool of 
possibilities have received limited attention in studies of teacher-resource interactions, literature 
about teachers’ selection, adjustment and construction of resources was pertinent to the Resource 

Thematic Working Group 22

Proceedings of CERME11 4326



 

 

Types study (e.g., Pepin, Gueudet, & Trouche, 2017). One premise for the study was that 
knowledge of resource options, including familiarity with the range of resource types, supports 
what is described as teachers’ “mathematics-didactical design capacity” (Pepin, Gueudet, & 
Trouche, 2016, p. 2), that is, their ability to use or construct resources to plan effective instruction. 
The “focal topic approach” introduced in this paper, for example, illustrates that examining and 
comparing a variety of resource types for a particular mathematical topic might augment teachers’ 
knowledge of mathematics, of teaching, of student learning, or of resource features. Knowledge of 
options can thus support the development of other resources, regardless of whether a teacher 
chooses the options for further use.    

The idea of “resource system,” an “evolving notion” in mathematics education (Ruthven, 2018, 
slide 2), framed the study. When teachers interact with various resources in various ways, they 
typically acquire a collection of individual resources to support their work. As described by 
Ruthven (2018), a collection of resources becomes a resource system by application of an 
organizing principle intended to make the collection function more effectively. Often the organizers 
are teachers, who may seek to unite stand-alone resources in some way to produce a coherent 
whole, a resource system. Teachers in the Resource Types study were invited to organize resources 
using the principle that individual resources are representatives of resource types that can be 
usefully classified and related. Participants applied this principle to a wide range of individual 
resources and types of resources from their pool of possibilities, not all of which were familiar. The 
supposition was that identifying types of resources and classifying by types could, first, enable and 
motivate teachers to select from a wider range of options in their pool of possibilities by increasing 
the number of resources familiar to and thus accessible to them. Second, regardless of how teachers 
prefer to use or construct resources, knowing more about a variety of types, and comparing types, 
might support more advantageous resource selection and ultimately a stronger resource system.  

The research question for this study was:  

 What sorts of professional development activities enable secondary mathematics teachers to 
 draw on a wider range of resources when developing their resource system? 

Methods 
The two-hour Resource Types session occurred in the final month of a nine-month pilot study about 
the mathematical symbol known as the minus sign, conducted with the mathematics department for 
11 to 16 year olds at a state secondary school in the South East Region of England. All eight 
teachers in the department were present for the Resource Types session. At the inaugural session of 
the overall pilot, teachers were introduced to instructional resources as a topic of interest for their 
department that would be folded into the minus sign exploration; they also completed surveys about 
their resource use. Indices (exponents), the mathematical topic for the Resource Types session, was 
included in the pilot as one of the topics where the minus sign is known to be problematic. 

The Resource Types session had two parts. Part 1 introduced the idea of classifying resources by 
type. In Part 2, using the “focal topic approach,” indices (exponents) was a focal topic for 
comparing diverse resource types featuring content specific to that topic. Both parts included guided 
discussion. The full session was audiotaped using two recorders; slides used during the session were 
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posted afterwards. At the department meeting one week after the Resource Types session, 
participants completed a follow-up survey and had an opportunity to sketch their thinking about a 
typology for resource types. Participants were encouraged to add comments.  

In Part 1, using the “list approach,” teachers worked in pairs to brainstorm categories for types of 
resources and began to organize the types, first using a list of sixteen familiar resources, then a list 
of twenty-two others, less familiar, and thirdly a proposed list of categories for resource types 
accompanied by commentary and questions. The department head, also a teacher participant, led 
discussion after the group had time with each list. Part 1 was open-ended and fast-paced, not 
intended to lead conclusively to any well-developed classification by types. Part 1 concluded with 
the group’s first attempt to graphically organize “types of resources.”  

In Part 2, participants reviewed the treatment of indices in a researcher-selected set of resources 
representing types, in order to examine, characterize, and compare types. The set of types included 
two contrasting blogs, a research article, traditional curriculum materials, a site to design 
assessments, a book with rationale for mathematics procedures, a mathematics information site, and 
a mathematics educator’s website with teaching suggestions for numerous topics. These represent 
some types of resources not mentioned by most teachers in the Siedel and Stylianides study (2018). 

Part 2 initially focused on two blog posts by Dan Meyer (dy/dan, 2015; dy/dan, 2016) because these 
exemplified the value of searching for resources using non-British mathematical terms (“exponents” 
rather than “indices”), contained rich user discussion that mentioned other resource types, included 
a “research into practice” example, and included a variety of teaching strategies and activities. 
Those posts and the research article (Cangelosi, et al., 2013) were characterized and compared as 
types. Due to time constraints, examination of the remaining types was brief. 

The follow-up survey was administered at the department meeting a week post-session. Drawing on 
Guskeys’s (2016) levels of evaluation for professional development, which also informed data 
collection and analysis for the session itself, the survey was designed to determine participants’ 
affective response to the Resource Types session, their learning about individual resources or about 
the idea of resource types, and whether as individuals or as a department they were likely to use 
what they learned. At that post-session meeting, as part of a separate activity, teachers were also 
invited to diagram or otherwise describe their current thinking of how types might relate.  

Results 
Data were identified by researcher observation of the session, review of the audiotapes, and 
teachers’ written responses in the follow-up activity. Data from conversations in Parts 1 and 2 of the 
session were qualitative. Teachers appeared fully engaged throughout the session; there was 
evidence they were learning about individual resources and about resources as exemplars of types. 
Quantitative survey data (Table 1) and teachers’ written comments (Table 2) supported this.  

During Part I, resources in the first of three lists participants worked with were familiar to most. 
They were asked to use the list to generate categories for resources from the new perspective of 
resources as types. They quickly generated categories that appeared to be based on what a resource 
facilitates, such as “problem-solving,” “worksheets and homework,” “develops ideas,” “direct 
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teaching.” With the second list, however, the resources were less familiar; much of that 
conversation consisted of teachers trying to learn about a resource in order to identify it by type. For 
example, someone familiar with a resource could describe it to others. This was an opportunity for 
participants to learn about the existence of a resource. Categories for types from this list included 
“technology” and “what level it addresses.” These were broader categories, less activity specific. 
The third list, a proposition of types, surprised teachers because there were many (twenty) types.  

As teachers worked with the 3rd list, teachers remarked about some they had not thought of, such as 
“books.” Later, in Part 2, reviewing types of resources for indices, the group decided to purchase a 
book that was mentioned; they had not known about the book.  Such incidents were evidence that 
participants were learning about previously unknown resources or broadening their range of types.  

During Part 2, participants had an opportunity to evaluate the pre-selected set of individual 
resources representing a variety of types for the topic indices. Teachers thus learned about these 
individual resources, while other individual resources were mentioned in the discussion. For 
example, a discussion about an assessment site prompted mention of a forthcoming resource for UK 
educators associated with the assessment site. Most participants had not known of its existence.  

Results from the follow-up survey, shown in Tables 1 and 2, indicate that as a result of the session, 
some teachers were already visiting online resources in the following week. One teacher, for 
example, went to a site providing information about mathematics to look up definitions.  In the last 
comment of Table 2 (Teacher 8) the participant expresses an interest in using as wide a range of 
resources as possible, which would likely involve searching for new resources.  

The tables indicate teachers were likely to use ideas about “types of resources” to organize their 
own interactions with resources or to consider relationships among resource types.  The data in 
Table 1, from the follow-up survey, attest to interest in, ongoing thinking about, and discussion of 
resource types. Most teachers found the session useful; some had been actively engaged afterwards. 
Table 2 suggests that some teachers will continue using the teacher-student dichotomy they 
generated as the basis for a typology (Teacher 2). Comments in response to a question about what 
stayed with them after the session suggest that these teachers are likely to think about the benefits of 
classifying resources (Teacher 4), but are aware that there are many types (Teacher 3). Thinking of 
types promotes learning about their work with resources (Teachers 5 and 8) and, for some, relating 
them. It also indicates awareness of the difficulty of organizing by type (Teacher 6), with fewer 
categories a possible objective. Some want to pursue this further (Teacher 7).  

Teachers’ attempts to graphically organize resources as types also contributed data. Asked to 
diagram the categories for resource types during the session itself, one pair proposed two unlinked 
central categories, labeled “teacher resources” and “student resources.” The group accepted this. 
They began to place other categories they generated from the first list as subcategories. At this point 
the visual resembled a pair of main idea webs. One teacher noted that a resource could also be 
“mixed,” with provisions for both teachers and students. A week later, at the department meeting 
where participants completed the follow-up survey, but as part of activity apart from the survey, 
teachers were asked to diagram or discuss their current thinking about how to diagram the 
relationship of resource types. Five teachers responded. Four used the teacher-student dichotomy, 
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however one of these drew an arrow from teacher to student, linking the two. Another drew three 
intersecting circles, as in a Venn diagram. These were labeled “teacher,” “students,” and “online;” 
directional arrows indicated two-way interaction. The teacher who did not use the teacher-student 
dichotomy instead began a main idea web with “resource” at the center and two ideas as 
subcategories. One was labeled “needed for”; the other was not yet labeled. 

 Table 1: Affirmative responses to post-session survey items (N=8) 

Frequency of “Yes” 
responses to 14 
questions 

Statements to which they were responding 

8 Found the session interesting 

8 Learned something about resources 

8 Thought about resource types later 

6 Found the session useful 

6 Looked for information as a result of something in the session 

5 Thought about doing something different with learners as a result of the session 

5 Noticed resources more explicitly 

4 Discussed the session with colleagues 

4 Went to a resource directly as a result of the session 

4 Noticed the minus sign more explicitly 

3 Learned some mathematics 

3 Noticed indices more explicitly 

2 Learned strategies for teaching 

1 Did something differently with learners as a result of the session 

 Table 2: Selection of teacher comments from post-session survey (N=8) 

Teacher 2 (Mentioned a site she went to) “I like this site as being a useful resource for teaching but it is 
not necessarily so for learning.” 

Teacher 3 (What took root?) “The wide range of resources available” 

Teacher 4 (What took root?) “It’s easier when resources are in categories and you know where to go 
for what” 

Teacher 5 (What took root?) “Made me think about what resources I was using for what reason” 

Teacher 6 (What took root?) “The difficulty in classifying resources” 

Teacher 7 (What she planned to do) “Look online for resource categories & how to ‘type’ them” 
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Teacher 8 (What took root?) “Types of resources and how we use them in planning and teaching” 

Teacher 8 (What took root?)“The need to include all categories including research” 

Discussion 
This small study represents a first step towards explicit investigation of a pool of possibilities as a 
way to enhance teachers’ work with instructional resources. Results suggest that opportunities to 
classify resources by type can amplify teachers’ knowledge of their resource options, thus making 
more resources in their pool of possibilities available to them. Results also point to the complexity 
of organizing resources by type. More time would have been necessary for participants to fully 
classify resources and link the classification to the development of a resource system.  

With respect to the research question, results seem to imply that the activities developed for the 
session were responsible for favorable results. However, other factors might account for what 
occurred with this particular group, who, as colleagues, represent an important resource in their 
pool of possibilities. These factors include: (1) participant teachers were a team who worked 
together daily with the same student population, were accustomed to and enjoyed working together 
on the types of activity in the Resource Types session; (2) two mathematical topics for the session, 
indices and the minus sign, were important to this group, and possibly a motivating factor; (3) the 
larger pilot in which the Resource Types session was embedded featured a monthly topic and 
accompanying materials that tacitly, but consistently, evidenced the idea that there are a variety of 
resources to explore for any topic, including resources not specifically for student activity. 
Participants were accustomed to exploring multiple types of resources for a topic.  

Despite this, participants’ reactions to the activities in Parts 1 and 2 suggest that the “list approach” 
and the “focal topic approach” have the potential to influence teacher thinking in ways that support 
more deliberate selection from a wider range of resources. During Part 1, participant thinking 
evolved. With the first list, it seemed straightforward to organize resources by pedagogical activity, 
but the second list seemed to indicate that resources could be conceptualized various ways, and that 
organizing by type could be challenging. In response to the third list, of resource types, teachers 
were not in favor of having too many categories for types, even when, or perhaps especially when, 
they saw how many types there could be. Part 1 discussion showed that teachers’ thinking about the 
merits of classifying by types varied. Like many mathematics departments in England, this 
department had not adopted a textbook (e.g., Siedel & Stylianides, 2018); guided by the national 
curriculum, they were responsible for their own curriculum development and resources. One teacher 
wanted to use as many resource types as possible to guide searches, so that the department would 
not miss knowing about important ideas, new developments, or any potentially useful resources; the 
teacher also emphasized the importance of finding “research-based” resources. Another teacher was 
less interested in broad-based searching by types; this teacher was motivated by “what you do with 
it” or “what you want it for.” In a later session, this teacher defined a high quality resource as one 
where, “You stop looking! No need to look … again as it does the job perfectly.” 

As a result of the comparison of types for indices, a participant visited a resource she uses regularly 
to check its treatment of indices, particularly of zero as a superscript, exemplifying that the “focal 
topic approach” may influence teachers’ work with resources they already have. When one variable 
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that characterizes resources, the mathematical topic, is controlled for, it is easier to compare and 
comprehend other characteristics, such as the affordances and constraints of each as a type. At the 
same time, because each resource features the same topic, this activity may augment teachers’ 
knowledge of the topic.  

One way in which a typology of resource types for developing a resource system might affect 
student learning is by possibly reducing the variation in teachers’ individual resource collections. 
Siedel and Stylianides referred to the existence of variable collections of resources within the same 
school as “plurality and variation” (2018, p. 130). If teachers’ individual sets of resources include 
multiple resources, with sets varying considerably even among teachers at the same school, there 
may also be variation in opportunities for children to learn mathematics, known to be problematic in 
education (e.g., Morris & Hiebert, 2011). The question of whether or not they should all be using 
the same resources for a topic was posed to this group, but limited time did not allow discussion.  

Two related questions for the mathematics education community emerged from this Resource 
Types study. The first concerns teachers’ understanding of the expression “evidence-based.” What 
types of resource can be considered evidence-based and how can teachers weigh these for resource 
selection? When comparing blog postings and the Cangelosi et al. (2011) research study, one 
teacher said the research article was evidence-based but the blog was characterized by opinions. 
The implication was that the research article had more worth. Would this mean that ideas developed 
from experience, such as long-term practice, are less trustworthy? What about the work of 
influential educators who guide mathematics teachers but may not be conducting systematic 
research? For their work to be trustworthy is formal review by other educators necessary? Teachers 
might benefit from opportunities to identify types but also to weight them.  

The second, related question deserving attention in studies of teachers’ resource skills is how to 
help mathematics teachers find research articles such as Cangelosi et al. (2011) that contain 
valuable information for mathematics teachers. Cangelosi et al. (2011) describes misconceptions 
about indices held by university students. The article includes activity that secondary mathematics 
teachers could readily implement to forestall similar misconceptions among their own students.  
Unfortunately, the inclusion of material in Search Engine Results Pages (SERP) seems to change 
over time. Cangelosi et al. (2011), for example, at one time appeared in the results of an online 
search for “negative exponents” and seemed to be openly accessible, but that no longer seems to be 
the case. Familiarity with the notion of open access articles and pre-publication copies may not aid 
teachers. Potentially helpful resources may be inaccessible, even when teachers know they are “out 
there.” This becomes significant for questions about whether a resource exists for teachers.  

Overall, the results of this study advocate for repeating the activities in a context outside of the pilot 
study, with more time to pursue the proposition that these activities might strengthen resource 
systems on behalf of student learning. The results suggest that in the process of classifying types of 
resources to develop a professional model for improving their resource systems, teachers can extend 
their knowledge of resource options in ways that benefit all of their work with resources.   
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Alignment of mathematics curriculum to standards at high schools in 
Colombia 

Silvia Solano1, Pedro Gómez1 and María José González2 
1Universidad de Los Andes, Faculty of Education, Bogotá, Colombia; 

sp.solano10@uniandes.edu.co; argeifontes@gmail.com 
2Universitdad de Cantabria, Spain; mariaj.gonzalez@unican.es  

The design of Mathematic curriculum in Colombia has been influenced by the curricular guidelines 
(MEN, 1998) and Basic Standards of Competence (MEN, 2006). These official documents have been 
the baseline to decide how to conduct the math curriculum parameters in schools. Specially, the basic 
standards of competence document provides teachers with a set of guidelines for what students are 
expected to know and be able to do, defining the intended curriculum. However, there is a lack of 
coherence between these parameters and what the teachers design in their school curricula. We 
analyzed the alignment between the mathematics curriculum of a sample of Colombian schools and 
the document of basic standards of competences at high schools in Colombia. We found an 
inadequate alignment between the schools’ mathematics curriculum and the official document of 
basic standards of competence. 

Keywords: Alignment, Mathematics curriculum, Standards 

Law 115 of 1994 and curricular autonomy 
The curriculum in Colombia has suffered many different changes or transformations based on 
political parameters or requirements. In 1994, the Ministry of National Education (MEN) stated the 
Law 115. This law organized the educational services in Colombia, through general rules. In this law, 
the government established the curricular autonomy of schools. This means that schools have 
autonomy to make and adapt their curricula. Also, the Ministry of National Education has proposed 
some guidelines in terms of learning expectations called Basic Standards of Competence (MEN, 
2006).  

Basic Standards of Competence (2006) 

Mathematical competences are related to mathematical thinking and mathematical systems. The 
standards are based on these mathematical thinking and systems. These guidelines contemplate the 
competences that a student must achieve when a cycle of two school years ends.  

Alignment to standards 

In the past, the most common educational use of the concept of alignment referred to the match 
between an assessment instrument (or instruments) and a curriculum (Webb, 1997). Alignment does 
not only refer to a comparison between one assessments instruments with a curriculum, but extends 
to a set of assessment instruments or the assessment system. However, Webb has defined the 
alignment as “the degree to which expectations and assessments are in agreement and serve in 
conjunction with one another to guide the system toward students learning what they are expected to 
know and do” (1997, p. 12). An area plan is a curricular document that has the objectives, the 
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methodology, the distribution of time, and the evaluation criteria for a subject, in our case, the area 
of mathematics. The area plan becomes the roadmap that guides the implementation of the 
mathematics curriculum within schools. The alignment with standards is a characteristic of 
Colombian area plans. We assume the alignment with the standards as the measure to which the 
mathematics area plans approach the contents proposed in the standards. With this attribute, we seek 
to determine how much is covered of the subjects in the area plans according to what it is stated in 
the official document of the standards. For a specific syllabi and specific topics, the alignment should 
indicate to what extent that area plan meets the standards proposed to these issues.  

Methodology  

We collected a sample of 212 syllabi throughout the country taking into account three main variables: 
geographical area (rural and urban), type of institution (public and private) and type of secondary 
education (academic and technical). In addition, we built code trees based on the didactic analysis 
carried out on three subjects of school mathematics. The topics chosen are the conic sections, the 
derivative and the descriptive statistics. The process of coding the 212 area plans consisted in 
identifying the text segments that allude to the proposed topics. Once these text segments were 
identified, they were assigned to label each one with a code of the code tree in N-Vivo program. 
Similarly, we coded the standards document as if this document were an area plan. After coding the 
documents, we proceeded to make a comparison between each area plan and the standards. Once the 
sources were compared, we proceeded to count the codes that each syllabi document shares with the 
standards document. We constructed a statistical variable with this measure. The value of this variable 
for an area plan is equal to the quotient between the number of codes that the area plan shares with 
the standards document and the total number of codes assigned to the standards document.  

Results 

We found that the sample mean of the variable is 29,19%, with a standard deviation of 13,36% which 
means that there is a low alignment and a great variability in the alignment percentage of the area 
plans and the standards document. At 95% confidence, we found a confidence interval of the 
population mean of Colombian area plans of (27.31%, 31.07%). The area plans should be aligned to 
the curricular parameters and standards; however, we found evidence that these plans do not fit what 
the Law established causing a gap on secondary education, mainly on tenth and eleventh grades.  
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The purpose of this paper is to analyse how functions have been taught throughout 22 secondary 
school textbooks over the last 50 years. We have adopted a temporal perspective, as the books 
examined were published from 1953 to 2010. Firstly, the definition of concept (situation, meaning, 
system of representation) was the one proposed in the theory of conceptual fields, in order to analyse 
the concept of "function" taught in each book. Secondly, the books were categorized according to a 
focus on Sets, Analytical - Graphic or Hybrid. Finally, the meaning of function emphasized in each 
approach was analysed according to the representational system. The analysis showed that the 
meaning changed over time, as well as the difference in each representational system. 

Keywords: Mathematics teacher resources, textbooks, high school teachers, Theory of Conceptual 
Fields. 

Introduction 

The conceptual field of functions is taught from the first up to the sixth grade of high school. Its 
importance lies in its increasingly broad field of application.  

In high school, the knowledge that the teacher selects for his teaching practice is the knowledge that 
is in his textbooks. Thus, the book is an unavoidable framework for both, the teacher and the student, 
and generates much of the mathematical discourse manifested in the teacher's practice. 

The analyses of the 23 books were divided in two parts. In the first part, the teaching of functions was 
classified in three categories, proposed by Sureda and Otero (2007): Approach of Sets, Analytical 
Graph and Hybrid. Then, we analysed the proposal through the term of "Concept" taking into account 
the Theory of Conceptual Fields (Vergnaud, 1990). Accordingly, the situations used in the books to 
propose the functions were analysed along with the tasks and their resolutions, inferring from them 
the set of Operational Invariants presented in each representational system. The Operational 
Invariants can be inferred as the textbook proposed the tasks simultaneously with the correct 
resolutions, its definitions, and explanations. 

Literature Review 
Due to the variety of investigations related to functions, we only mention those analysed in books, or 
those focused on in the analysis of representational systems. The latter can be found in the work of 
Lavaque, Méndez, and Villarroel (2006), who analysed the instruction of the notion of function 
through a coherent articulation of Duval's representational registers. 

With regards to the research related to the secondary level textbooks, the work of Cordero, Cen Che 
and Téllez (2010) is worth mentioning, who proposed the use of graphic representations presented in 
school books, in order to use them to understand the institutionalization of the concept of function. 
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(𝑦𝑦 = 2𝑥𝑥2 + 4). RS Second Order Algebraic: Algebraic procedure in which parameters are not 
initialized (𝑦𝑦 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏. RS Analytical-graphic: Graph on Cartesian Axes. RS Verbal Written: 
written linguistic forms. RS Pictorial: Refers to the construction of schematic drawings such as the 
Venn Diagrams. 

This analysis allowed us to classify them in the three mentioned approaches (Sureda & Otero, 2007). 
Approach of Sets: It is a teaching of the concept of function centred on the Theory of Sets. The study 
of the functions includes the teaching of ordered pair, Cartesian product, relations, equivalences, 
functions, set of departure and arrival, domain, image, etc. In this way, this approach is more precise 
and does not present ambiguities in the development of the concept of function. In the Analytical-
Graphic Approach, the concept of function is determined through the graphical representation in 
Cartesian axes of a problem or concrete situation, in which a functional relation between variables is 
established. The analysis of the function and its properties is performed from the graph: domain, 
image, notable points, asymptotes, increasing or decreasing, etc. The Hybrid Approach has 
characteristics of the two already mentioned organizations. It establishes a relationship between 
variables, and also uses a set concepts such as set of departure and arrival, and allocation rules. 
However, it is problematic when giving meaning to the concepts it borrows from set theory. 

These three approaches allowed textbooks to be classified into three disjoint and exhaustive 
categories, since those textbooks which did not correspond to the approach of sets, nor to the 
analytical-graphic, were a combination of both. 

Data Analysis and Results 
Approach of Sets: The books analysed which fit in the Approach of Sets are: 1) Arithmetic and 
Algebra 3, Publisher Estrada (1953); 2) Mathematics 4 Commercial Course, Eds. Estrada (1961); 3) 
Elements of Calculus Difference and Integral, Eds. Alsina (1970); 4) Mathematics 3, Eds. Estrada 
(1980); 5) Mathematics 3, Eds. Plus Ultra (1987); 6) Mathematics II For the Aula Taller, Eds. Plus 
Ultra (1988); 7) Modern Mathematics 2, Eds. Stella (1970); 8) Directed study of mathematics 3, Eds. 
A-Z (1989). These books were published between 1950 and 1989. The analysis is similar to the one
made to the book Mathematical 4 Commercial Course published in 1961 (from Eds. Estrada),
presented below.

The reference [S]: The textbook introduces the concept of function (figure 1) through the definition: 
"Any binary relation between two sets – or just in one set- that corresponds each element of the 
domain to a single element of the counter domain is called function, application, or transformation". 

Then, various Venn diagrams are presented, in which three examples of relationships are indicated. 
In the example 1) the relation "x was born in y" is proposed (figure 1), indicated as a function. In 
example 2) the relation "a x corresponds to the desk y" is proposed, indicated as a function. In example 
3) the relation "x is a multiple of y" is proposed, indicated as a non-function. Each example is
accompanied by a Venn diagram in which the output sets 𝐴𝐴  domain of 𝑅𝑅 the arrival set 𝐷𝐷  codomain
of 𝑅𝑅; and the relationship by the arrow 𝑥𝑥 𝑅𝑅 𝑦𝑦. Finally, the ordered pairs of the function are indicated.
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Figure 1: Definition of Function - Mathematics 4 Commercial Course, Publisher Estrada 1961 

The signifier [Γ]: The textbook uses the RS Verbal Written for the definition of Function; the Second 
Order Algebraic RS to define the sets and relationships of the example, and the Pictorial RP for the 
representation in Venn diagrams. 

In short, the textbooks with this approach present the concept of function from the notions of ordered 
pair, cartesian product, and relationships. The sequence that these textbooks follow to accomplish it, 
is: theory - example - exercise. The Representation Systems used are: Verbal Written, Algebraic of 
Second Order and Pictorial. Thus, we can determine that another characteristic of the set theory is the 
relevance given to mathematical notation. 
The meaning [I]: The Theorems and Concepts in Action that emerge from the concept of Function 
in this approach are the following. RS Verbal Written: A Function is a binary relation between two 
sets that corresponds to each element of the domain in a single element of the codomain - If a 
Relationship complies with the uniqueness and existence, it is a Function - The Domain of a Function 
is included in the Reach set - The Image is included in the Range of a Function. RS Second Order 
Algebraic: The expression of a function is 𝑦𝑦 =  𝑓𝑓 (𝑥𝑥) - Given the sets 𝐴𝐴 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒} and 𝐵𝐵 =
 {𝐴𝐴,𝐵𝐵,𝐶𝐶}, the relationship formed by the pairs (𝑎𝑎;  𝐴𝐴) (𝑏𝑏;  𝐵𝐵) (𝑐𝑐;  𝐵𝐵) (𝑑𝑑;  𝐵𝐵) (𝑒𝑒;  𝐶𝐶) is a function of 𝐴𝐴 
in 𝐵𝐵 - The Domain of a Function is included in the Scope set - The Image is included in the Range of 
a Function. RS Pictorial: Functions can be represented by Venn diagrams - From each element of 
the set called Domain, a single arrow appears towards an element of the set called Codomain. 
These Theorems-in-Action propitiate a static idea of the concept of Function. This can be seen in the 
examples and activities proposed. For example, the textbook presents the sets A and B by extension, 
and then defines the relationship between both sets. That is, the function can be defined by extension 
and there is no rule for assigning the variables. 

Analytical - Graphical Approach: The textbooks analysed included in the Analytical - Graphical 
Approach are the following six: 1) Mathematics Bachillerato 2, Eds. Anaya (1987); 2) Mathematics 
II, Eds. Anaya (1989); 3) Mathematics 9, Eds. A-Z (1997); 4) Mathematics 1, Eds. Kapeluz (2004); 
5) Mathematics 9, Eds. McGraw Hill (1998); 6) Mathematics 3, Eds. Puerto de Palos (2009). These
textbooks were published between 1987 and 1998, yet there is one exception of 2009. The analysis
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is similar to the one made in the textbook Mathematics 3 published in 2009 by Puerto de Palos, 
presented below. 

The reference [S]: The textbook introduces the concept of function (figure 2) by means of the 
definition: "A function is a relation between two variables in which each value of the first corresponds 
to a single value of the second". 

Then, it presents a graph that represents the users of the Web worldwide, and interprets it. Thus, the 
textbook indicates that for each value of time (independent variable) there is a unique number of users 
(dependent variable). That is, 1574 million users are the image of the year 2008, and 2008 is the 
preimage of 1574. Then, the textbook defines the domain as all the values that can be taken by the 
independent variable, in this case all the years greater or equal than 1989 and less than or equal to 
2008; and all the values that the independent variable can take as the image set, formed by all users 
greater than 0 or less than or equal to 1574 million. 

The signifier [Γ]: The textbook uses the RS Written Verbal for the definition of Function and domain 
and image set; and the RS Analytical - Graph to represent the function. 

Figure 2: Function Definition Book "Mathematics 3" - 2009, Edited by Puerto de Palos 

The meaning [I]: The Theorems and Concepts in Act that we reconstruct from the concept in this 
approach are the following. RS Verbal Written: A Function is a Relationship between two variables 
in which each value of the independent variable corresponds to a single value of the dependent 
variable - The independent variable is x, which is represented on the abscissa axis - The dependent 
variable is y, which is represented on the ordinate axis - To find the characteristics of a Function, the 
problematic situation it represents must be taken into account. RS Analytical – Graph: A Function 
is represented through a graph in the Cartesian Axes – It is a Function if a single element of the 
vertical axis corresponds to each point of the horizontal axis - It is not a Function if the drawing of 
a vertical line from any point of the horizontal axis cuts the graph in more than one point. 

These Theorems-in-Action give a dynamic idea of the concept of Function. In short, the books of this 
approach propose some situations of everyday life through a graph in Cartesian axes, describing the 
relationship between variables as a function, and then analyse its characteristics such as the analysis 
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of variables, growth and decrease, maximum and minimum points, constant function, periodic 
function and zeros. In all cases, the definition is made in the RS Verbal Write and refers to a relation 
between variables that meet certain characteristics.  

Hybrid Approach: The books analysed framed in the Hybrid Approach are the following: 1) 
Mathematics 2, Eds. Santillana (1989); 2) Mathematics 3, Eds. Santillana (1995); 3) Mathematics 8, 
Eds. Santillana (2002); 4) Pythagoras 8, Eds. SM (2004); 5) Mathematics, functions and Statistics, 
Eds. A-Z (2005); 6) Functions 1, Eds. Longseller (2002); 7) Mathematics I, Eds. Estrada (2004), 8) 
Elementary Functions to construct mathematical models, Eds. Inet (2010); 9) Mathematics 4, Eds. 
Estrada (2010). These textbooks were published between 1995 and 2010, yet there is one exception 
in 1989. The analysis is similar to the one made in the book Mathematics 3 published in 1995 by 
Santillana, presented below. 

The reference [S]: The textbook introduces the concept of function by means of a real-life problem 
relative to the rate of a taxi according to the kilometres travelled, and then solves it. Based on the 
problem, it stablishes the following (figure 3): "In this real-life problem, we observe the presence two 
sets; set D, formed by the distances that can be covered in a taxi, and another set P, which is the price 
corresponding to those distances. As seen above, each distance D corresponds to a single price of the 
set P. In mathematics, we call this correspondence function of D in P ". 

Figure 3: Definition of Function, Book "Mathematics 3" - 1995, Publisher Santillana 

Then, the formal definition of function is written, as well as the image and preimage, using elements 
of the set theory. 

The signifier [Γ]: The textbook uses the Written Verbal Representation Systems, Numeric, 
Analytical - Graphic and Pictorial to define and represent the function and concepts of image, 
preimage and domain. 

The meaning [I]: The Theorems and Concepts in Act reconstructed from the concept in this 
approach, are the following. RS Verbal Written: A Function is a specific relationship between two 
variables - The variable x is the independent variable - The variable y is the dependent - Each value 
of “𝑥𝑥” corresponds to a single value of “𝑦𝑦”- Th e Do main is  th e se t of al l th e va lues th at th e 
independent variable "𝑥𝑥" can take - The Image is the set of all the values that the dependent variable 
"𝑦𝑦" can take - The Image is obtained by applying the Function to the elements of the Domain. RS 
Numeric: A function can be represented by a table - In the first column the values of the 
independent 
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variable are located - In the second column the values of the dependent variable are located. RS 
Analytical – Graphic: A Function can be represented in Cartesian axes - The values of x are 
exemplified by the horizontal axis - The values of y are located on the vertical axis - The graph 
represents the points (𝑥𝑥,𝑦𝑦), to draw the figure that represents the function - When drawing lines 
parallel to the y axis, they must cut the graph at a single point to be Function. RS Pictorial: Functions 
can be represented by Venn diagrams - From each element of the set called Domain, a single arrow 
appears towards an element of the set called Codomain. 

These Theorems-in-Action give a dynamic idea of the concept of Function, yet they preserve elements 
of the Sets approach. In synthesis, in these books, the proposed situations correspond to a situation 
directly connected to a certain context, with its formula or chart and analysis, using elements of the 
two previous approaches. 

Conclusion 
The analyses of the concept of function showed that - except for some few exceptions- the approaches 
usually corresponded to a particular set of years, and that the changes in the textbooks coincided with 
the dates in which national laws on education were sanctioned in the country. The Approach of Sets 
(1953-1990) prevailed in the period of Law 1420 of Education. Then, the Graphic Analytical 
Approach (1993-2006) was consolidated during the Federal Education Law (24.195), passed in 1993. 
Finally, the Hybrid Approach corresponds to the current period, coinciding with the last National 
Education Law 26.206 enacted in 2006. At the same time, the analyses of the textbooks showed that 
the Operational Invariants, about function changes according to the approach. 

The Approach of Sets emphasizes the idea of a binary relation between sets that complies with 
existence and uniqueness (for example "𝑥𝑥 was born in 𝑦𝑦"), but relegates the dependence between 
variables. However, the positive aspect of this approach is the fact that it uses a lot of the RS Second 
Order Algebraic, which allows to have the symbolic notation and rigor characteristic of Mathematics. 
In the Analytical - Graphical Approach, the idea of the function is built on the system of graphic 
representation, in which the written verbal language explains that a Function is a Relationship 
between two variables, and that each value of the independent variable corresponds to a single value 
of the dependent variable. The independent variable is 𝑥𝑥, represented on the abscissa axis, and the 
dependent variable is 𝑦𝑦, represented on the ordinate axis. This approach manages to link the use of 
functions with everyday life but loses mathematics in the process. Finally, the Hybrid Approach 
presents the functions as a relation between two variables, but tries to recover elements from the focus 
of the approach of sets, such as Range, ordered pair, etc. Likewise, this approach tries to make sense 
of the functions by linking them with everyday life, while at the same time there is an effort to recover 
the proper notations of mathematics. However, this effort is limited by the lack of elements typical of 
set theory, conditioned by its use. 

Finally, the analysis of the reconstructed theorems-in-action for each RS showed that, as affirmed by 
Sureda and Otero (2013), the meaning of function changes according to the representational system. 
For it is not the same to think of functions as a relation that achieves "from each element of the set 
called Domain a single arrow goes to an element of the set called Codomain", to think of a Function 
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as a relation in which "each point of the axis horizontal corresponds to a single element of the vertical 
axis", or that can be represented by a formula. Moreover, not only there is a change in meaning, but 
also a change in the operative invariants linked to them that are characteristic of the RS. For example, 
RS Graph has a number of operative invariants linked to the scale, and to the location of the points in 
the plan, which the Venn diagram lacks. The meaning of a concept is much more than the systems of 
representation; however, it is impossible to conceptualize complex concepts without any 
representation system. Particularly in secondary school, it is essential to foster situations that demand 
the use of the different representation systems which constitute the concept. 
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Introduction 
Capturing teachers’ principles and working methods in instructional design can pose some challenges, 
as well as its representation and dissemination. In this work in progress, we suggest a new 
representation tool, the Problem Graph, that has the potential to reveal some of the Teacher 
Knowledge embedded in series of problems and task sequences. Problem Graphs are developed with 
dual purpose: as an analytical tool to explore the structure of existing resources through a priori 
analysis, and as a design tool that can help teachers plan their instructional sequences and long term 
learning trajectories. The potential of Problem Graphs in developing teachers’ design capacity were 
also investigated in two pilot experiments with the objective of introducing them in teacher education 
and PD programs. 

Initially, this work is strongly rooted in the Hungarian Mathematics Education tradition, but both the 
approach in question and the representation tool is relevant to the international community for its 
special handling of Mathematical Knowledge for Teaching (Ball et al., 2008). 

Background 
My present and prospective work with Problem Graphs is a part of a large scale research project 
launched by the Hungarian Academy of Sciences.1 The project focuses on the Hungarian “Guided 
Discovery” approach, that was experimentally implemented nationwide by a reform movement led 
by Tamás Varga in the 1960s and 70s (see Gosztonyi et al., available in pre-Proceedings of ICMI 24; 
Varga, 1988). This approach is highly recognized among Hungarian experts. The research project is 
assigned to describe the approach and examine its background as reflected in the recent theoretical 
frameworks as well as revisiting the reform and communicating it to both national and international 
audiences. 

In a preliminary study, Gosztonyi identified Series of Problems as a characteristic aspect of teachers’ 
work in the Guided Discovery approach. The research group started to analyze Series of Problems as 
a special type of resource, using the frames of the Documentational approach (Gosztonyi, 2018; 
Gueudet, Pepin, & Trouche, 2012). In this course of work, a need emerged for an efficient visual 
representation of the inner structure of Series of Problems, to which the graph representation came 

                                                 
1The poster is made with the financial support of the MTA-ELTE Complex Mathematics Education Research Group, 
working in the frame of the Content Pedagogy Research Program of the Hungarian Academy of Sciences (ID number: 
471028).  
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up quite naturally as one of the possible answers. Problem Graphs were built to some of the examined 
Series of Problems and discussed in details with experts. In these structures, nodes represent the 
individual problems, while edges show the explored connections. The connections reflects 
Mathematical Knowledge for Teaching, one-way arrows show precedent-consequence relations. For 
the standards of further classification, the domains suggested by Ball et al. might be a good starting 
point, but this work is only at its first steps at the moment. 

The poster will demonstrate that the name Series of Problems covers a notion that is more complex 
than a task sequence, and seems to be indigenous in the Hungarian tradition. Nevertheless, the graph 
representation can be an effective tool to support the analysis of other learning sequences independent 
from this cultural context. 

Dealing with problem Graphs led to the idea that this type of work on set of problems could benefit 
teachers’ professional development greatly, especially if conducted in groupwork. Planning on 
investigating this opportunity, we conducted two pilot experiments with 10 and 18 participating 
teachers. In both experiments, teachers worked in groups on the same subset of a Problem Field which 
was examined previously by the research group. During the sessions, the teachers built a Problem 
Graph from the selected problems, followed by a whole group discussion and a questionnaire in the 
second experiment. 

Poster Content 
The poster will summarize some major principles of the Guided Discovery approach as a context. It 
will also give a working definition for Series of Problems. Limitations in space will not allow to 
provide full examples for Series of Problems, but some key problems will be highlighted. In the main 
part, Problems Graphs will be displayed, with one extensive example representing a Series of 
Problems from the field of Elementary Geometry in the center, with some specification of the 
connections. Graphs built by teachers from the same problems will also be presented, accompanied 
with some teacher responses from the questionnaires. This will allow us to draw some conclusion 
from the pilot experiment regarding the potential usage of the Problem Graph. 
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With an interest on curriculum resources of mathematics teachers, this study works as part of an 
emerging research program of analyzing teachers’ resource systems through their naming systems of 
resources in contrasting contexts. This study presents the preliminary analysis results of two cases 
from China and Mexico. Using a conceptual framework drawn on Documentational Approach to 
Didactics (DAD) and Cultural-Historical Activity Theory (CHAT), we explored teachers’ resources 
within a linguistic and cultural background. Three key resources of each case were selected and 
analyzed for finding their features and links with the teachers’ resource system. By contrasting the 
two cases, we find that naming system provides us a lens on teachers’ resource system (both the 
content and structure), and evidences the influences from linguistic and culture contexts.  

Keywords: Curriculum resources, mathematics teachers, resource system, naming system, 
international comparison 

Introduction and research questions 
In 2018, the Re(s)sources 2018 International Conference1 was hold, dedicated to teachers’ resources 
work analysis with reflections on DAD for the past ten years. A young researcher workshop session 
was organized (Gitirana et al., 2018, p. 373) specifically for exploring secondary teachers’ resource 
work by analyzing their lexicons in naming and describing their resources and their documentation 
work (Trouche, to be published). A name is a syntactic entity denoting an object, and “a naming 
system resembles a restricted database system that infers the object(s) referenced by a name” 
(Bowman, 1993, p. 795). In addition, considering the views of the teachers, and the influences from 
their own languages, cultural and institutional contexts, we refer to two cross-cultural comparative 
projects: the Lexicon Project (Clarke et al., 2017), which investigates the pedagogical naming 
systems used by different research communities speaking different languages to describe the 
phenomena of the mathematics classroom; and the project of Remillard et al. (2014), which addresses 
the influences from cultural contexts and educational traditions. 

We situated our study as part of the research program “contrasting naming systems used by teachers 
in describing their resources and documentation work: towards a deeper analysis of teachers’ 
resource systems” (Trouche, to be published). Holding a similar concern of Lexicon Project on the 
cultural contexts and educational traditions through cross-cultural analysis, this program involves 
researchers from eight languages/cultural contexts (Algerian, Brazilian, Chinese, Dutch, French, 
Mexican, Turkish and Ukrainian) for a better understanding of teachers’ resource work through 
documenting lexicons (naming systems) on resources employed by teachers. Particularly in this 

                                                 
1 https://resources-2018.sciencesconf.org 
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study, to deepen the understanding of teachers’ resource systems, two contrasting cases (Chinese and 
Mexican) are analyzed from two research questions: (1) How understanding teachers’ resource 
system  through their naming systems? (2) To what extent each case can illuminate the other one?  

Conceptual framework 
The resource concerned in the project is from Adler (2000), anything with potential “to source again 
or differently” (p. 207) teachers’ activities, “encompassing materials and also all elements 
intervening ‘upstream’ of teaching” (Gueudet, Pepin & Trouche, 2013, p. 1003). However in this 
study we focus more on the curriculum resources from Pepin and Gueudet (online first): all the 
material resources that are developed and used by teachers and students in their interactions with 
mathematics in/for teaching and learning, inside and outside the classroom.  

This study is situated in the theoretical field of Documentational Approach to Didactics (DAD) and 
Culture-History Activity Theory (CHAT). DAD is an empirical approach to teachers’ work and 
professional development through a lens of resource. The creative work of mathematics teachers’ 
interactions with resources in their daily work is coined as documentation work (Trouche, Gueudet, 
& Pepin, online first). As a process of appropriation and transformation of resources, the interaction 
includes selecting, modifying and creating new resources, by individual or by a group of teachers 
working together, in- and out-of-class (Gueudet & Trouche, 2009). During these interactions, 
teachers develop schemes of usage that are attached to the resources for a same class of situations, and 
generate a document as outcome (resources + scheme of usage = document). A resource is never 
isolated, “each resource must be viewed as a part of wider ‘set of resources” (ibid, p. 200), and the 
“set of resources” is named as his/her resource system. Originated from Vygotsky (1978), CHAT 
(Engeström, 2001) emphasizes that the dynamic of consciousness is essentially subjective and shaped 
historically by social and cultural experiences. The structure and development of human 
psychological processes emerge through cultural mediation, historical development, practical activity, 
and the three are interrelated (Cole, 1996). CHAT inspires us that individual teacher’ documentation 
work could be situated into the cultural/social/linguistic contexts where they work in. Tools inspired 
by these two theories will be introduced in the following methodology part.  

Methodology 
The naming system project adapts the methodology of reflective investigation from DAD, 
emphasizing the involvement of teachers throughout research with five principles: (1) long-term 
follow up; (2) in- and out-of-class follow up; (3) broad collection of resources; (4) reflective 
follow-up; and (5) confronting teacher’s views on his/her documentation work (Trouche et al., online 
first). As a priliminary work, this study mainly takes the fifth principle. To differ the views of teachers 
from the researchers’, we use the methodological  tool of Reflective Mapping of the Resource System 
(RMRS) (Wang, 2018), where the teacher is invited to draw a RMRS by reflecting on his/her 
resources, and linking them into a structured way with his/her own naming and category of resources. 
RMRS emphasizes the teacher’s views through his/her continuous reflections: the namings of 
resources and the structure of RMRS are all from teachers, and it could be incomplete with different 
versions, and improved along with the development of teacher’s resource system, and teacher’s 
deeper understanding on it. 
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This is a qualitative study performed through cases study. For feasibility and convenience reasons, we 
chose the teachers from schools associated to the authors’ universities (in China and Mexico), which 
allows us to do further research with them. The criteria of the cases are: middle career mathematics 
teachers; from secondary schools in big cities (not from rural areas); with willingness to join our 
research and improve his/her teaching; “open minded” towards new resources.  

Gao graduated in 1993, majored in education management (bachelor), then she started to teach 
mathematics in middle schools. She was the ex leader of mathematics Teaching Research Group 
(TRG) in her school, a school-based non-administrational professional group composed by teachers 
who teach the same discipline, where the leader is usually the most experienced teacher and in charge 
of organizing teachers’ collective teaching research activities (Pepin et al., 2016). She had two classes 
in grade 8 and 5 lessons for each class per week. In China, curriculum program is national. There are 
a limited number of textbooks edited under the control of the national government. Teachers cannot 
decide which textbooks to use, but they have diverse learning-aid materials as supplementary 
resources to choose. 

For the Mexican part, Brenda is a high school mathematics teacher majored in mathematics (bachelor) 
and Earth sciences (master). During her bachelor study, she attended a mathematics teaching seminar. 
Then after graduated, she started to work as a volunteer in elementary schools teacher training. Till 
the interview, she worked as coordinator of mathematics in a primary school. In Mexico, private high 
schools can use the national curriculum -coordinated by the government- or the curriculum of the 
autonomous (public) university of the state where the school is located. Brenda works in a private 
high school, which follows (with some adjustments made by the school) the curriculum of an 
autonomous university. 

Both of Gao and Brenda were interviewed concerning: (1) their working experience, current work 
and the teaching equipment conditions of their school; (2) their resources used in daily teaching, 
including the name, the content, the usage, the source, and the way to maintain and organize these 
resources; (3) an example of resources integration for a lesson preparation  about functions (or 
algebra); (4) a RMRS by reflecting on her/his resources mentioned. The analysis of the interview was 
made following a common grid: with the interview transcription texts, we selected out the names of 
the resources most frequently mentioned by the teacher with personal features/preferences, and 
analyzed them combining the language and culture with the teacher’s description on the usages, then 
situated these resources into the RMRS to infer the structure of teacher’s resource system. 

Results 
This section presents the results of each case.  

Selected resources from resource system in the Chinese case of Gao 

In the Chinese case of Gao, a most frequently mentioned character is “题(tí)”. In Chinese language 
morphology, word is formed by a combination of characters. In Gao’s interview, by combining with 
other characters, “题 (tí)” forms into words like “习题 (xí  tí)” (exercise), “试题 (shì  tí)” 
(examination/test question), “例题(lì tí)”(example), “问题(wèn tí)” (question/ problem) etc. In 
Gao’s case, the three selected resources (see in Table 1) are the sources of the “题(tí)”. 
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Naming in 
Chinese 

Translated 
name in 
English 

Description in English Transcriptions examples 

教辅材料

(jiào fǔ cái 
liào) 

Learning-a
id 
materials 

The commercial textual materials (e.g. 
books) for students, with exercises or 
exam questions or knowledge 
explanations (available in bookstore). 

“Before the new semester, I 
will go (to the bookstore) to 
check the new learning-aid 
materials.” 

习题笔记
(xí tí bǐ jì) 

Exercise 
note 

The personal notes of Gao, in which 
she used for collecting the exercises she 
considered as valuable. 

“I keep notes when I find 
valuable exercises, I made 
four (notebooks) last year.” 

校本习题

册 (xiào bě
n xí tí cè) 

School-bas
ed exercise 
booklet 

Booklet with exercises for the students, 
developed collectively by all the 
mathematics teachers inside Gao’s 
school (not for sell) 

“This school-based exercise 
booklet was developed by 
me...which selected from my 
exercise notes.” 

Table 1: Three typical expressions on resource naming by Gao 

(1) Learning-aid materials (教辅材料, jiào fǔ cái liào) is a kind of printed and bound materials sold
in bookstores, to “aid” learning. It generally contains examples, knowledge explanations and
exercises. Gao knew the learning-aide material market well due to her experiences working as an
author of a learning-aid book some years ago: “The learning-materials also have life-cycle, and have
to be updated regularly”, so she visited the bookstore almost before new academic year, to see if there
is anything new in the materials that she was following. She bought lots of learning-aid materials as
her self-owned resources, and she had an awareness of following the trends of the learning-aid
material markets, selecting and accumulating the valuable ones.

(2) Exercise note (习题笔记, xí tí bǐ jì) is a personal paper-pencil notes of Gao. She kept such habits
for several years: after a whole day’s work, she liked to do exercises (e.g. from the learning-aid
materials), and keeps the notes of the valuable ones. She also did the category of these exercises
according to the contents (e.g. functions) or types (e.g. drawing). The source of the exercises is not
limited to the learning-aid materials, but also from Internet. Many big professional websites/forums
for mathematics teaching propose their enterprise applications with the popularization of smart
mobile phone. Besides these apps, Gao used a social communication application “Wechat”, with
which she can discuss and share resources (as file or picture) with colleagues, receive articles about
exercises explanation, analysis on knowledge, information about exams, or even videos of other
teachers’ lessons. She kept all the valuable information in her notes.

(3) School-based exercise booklet (校本习题册, xiào běn xí tí cè) is a series booklets developed
collectively by the mathematics TRG in her school. As a teacher of grade 8, Gao was in charge of the
two booklets in her grade. The booklets are sent to students as homework, consisted mainly with
exercises, as Gao explained, “most of them were selected from my exercise notes.”

Crossing the three resources, there appears a chain: the learning-aid materials nourish her exercise 
notes (self-owned resource), which in return “re-source” her exercise booklets (self-developed 
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resource). This evidenced a kind of “resource cycle” in her resource system (Figure 1 left, the red 
circiles and arrows were marked by the author according to Gao’s explanation in the interview). 

  
Figure 1: Part of RMRS of Gao (original left, and digital transposition by the researcher right) 

When situating these resources in Gao’s RMRS, we find the different roles of resources as “input”, 
“output” and “hub” (evidenced by the arrows). For the inputs, Gao had resources from learning-aid 
materials, feedbacks from students in their homework; for the output, she developed her self-owned 
resources into self-developed resources: her personal exercise notes worked as a hub. Gao selected 
exercises carefully for students, and kept their feedbacks as  important resources. This could be 
referred to her education background (education management): “I pay much attention on students, 
and try to maintain good relationship with them, they will like mathematics if they like me.” 

Selected resources from resource system in the Mexican case of Brenda 

Three selected resources of the Mexican case were presented in Table 2. 

Naming in 
Spanish 

Translated 
name in 
English 

Description in English Transcriptions examples 

Manual 
(Versions 
for teacher/ 
student) 

Textbook 
 
 

School textbook produced by the 
school, adjusted and improved by 
the teachers every year.  

“Then we [teachers] use a manual, 
where we all see the same 
[contents].” 

Diagramas 
(Figure 2a) / 
esquemas 
(Figure 2b) 

Diagrams 
 
 
 

A geometric drawing with which 
one gets the resolution of a 
problem, the relationships 
between different parts of a set or 
a system. 

"I make diagrams to see what is my 
objective and what do they need."  
“Then [at the end] those schemes, I 
give them copies of the scheme or I 
give them blank to be filled.”  

Calendario 
escolar 

School 
calendar 

Teaching schedule designed 
institutionally to mark dates of 
activities at school. It is a 
reference for planning lessons. 

“I need a calendar, because the time 
is very important; [we have] the 
normal calendar, the school 
calendar…” 

Table 2: Three typical expressions on resource naming by Brenda 

 (1) Textbook (manual) is the resource that guides the development of the different topics that are 
addressed throughout the school year. The elaboration of each textbook (for each of the three 
secondary degrees) is based on the curriculum (another important resource not analyzed in this study) 
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of the largest university in the country and to which the school where the interview was conducted is 
incorporated. The work of (re)elaboration of the textbooks is directed by a coordinator of 
mathematics (who is also the teacher of the school). However, teachers are free to suggest and 
contribute any concerns or observations they may have. Table 2 shows how collaborative work 
guides the activity of teachers in a particular way: “...we all see the same”. In the use of the textbook 
as a resource, all stages of Brenda's documentation work (review, analysis of resources, adaptation, 
reorganization, implementation and reflection) are involved. It is also interesting to notice that in 
Spanish, “manual” refers to something “we have in hands” and something related and available to the 
usage, whereas quite different with textbooks. The translation makes one lose the 
meaning-production universe around. 

(2) Two resources (diagramas/esquemas) in which Brenda emphasized its use, during the interview,
were the use of diagrams/schemes. It is important to note that both words (diagram and scheme) were
used by indistinctly to refer to the same resource: diagram (Figure 2). However, the term “scheme” is
incorporated to show how the teachers name their resources in relation to their teaching activities.
Brenda elaborated the diagrams according to her teaching contents. The diagramas were initially used
as a way of learning by Brenda when she was a student. This stage is closely related to the analysis of
the textbook (manual), as she pointed out: “I make diagrams to see what my objective is and what
they [students] need to know for reaching that goal” (see in Table 2). Then, during the lessons, Brenda
incorporated the resource as learning material for the students: “I give them copies of the scheme, or
blank ones to be filled.”

Figure 2: Part of RMRS of Brenda (original left, and digital transposition by the researcher right) 

(3) School calendar (Calendario escolar). In relation to the resources selected from the interview, the
use of the textbook and the elaboration of diagrams are closely related to the teaching plan and lesson
design. This includes both the textbook that will be addressed in each class and the elaboration of
diagrams for each topic. These two resources are organized from a school calendar.

Crossing the three resources within her RMRS (Figure 2), they are all resources for her “lesson”. 
Brenda did not draw her RMRS centered on “resource” like the Chinese case. However, considering 
the particularity of the textbook she used, we can still infer that the textbook bridges Brenda’s 
individual documentation work with her collective work with others: The textbook is developed 
based on the university curriculum with the involvement of the school teachers, and as a teacher, 
Benda worked as both user and usage feedbacks provider; To implement the curriculum and textbook, 
she adapted her personal learning strategy (diagram) into classroom teaching, and diffused it with 
other teachers through resources related to school calendar (teaching plan). 
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Discussion and perspectives 
Resource system is not easy to be inferred from or interviews. In this paper, we took a method of 
combining teacher’s naming system and her/his RMRS, with two contrasting cases from different 
cultural contexts, China and Mexico, to have more elements (theoretical and methodological) to 
analyze teacher’s resource system. Far more work need to be done for a deeper understanding on their 
resource systems. Although Gao and Brenda are two very different cases -in terms of their teaching 
activity and their sociocultural context-, one from public middle school and using national curriculum, 
and one from private high school using a university curriculum. However, by documenting the 
name/content/usage as well as their positions in RMRS, we can still find some features that allow us 
to develop and deepen our further analysis works. 

Related to research question (1): In the Chinese case, the resource naming system showed an 
emphasis on “tí(exercise in English)”, and the three selected resources evidenced its position of 
central element in the teacher’s resource system, linking both the teacher's personal working habits 
(taking notes) and the cultural context (exams-emphasized culture and huge learning-aid material 
markets) of mathematics education. In the Mexican case, the resource naming system evoked an 
adaption of personal choices (e.g. diagram adapted from learning teaching) and consideration on 
others’ work (e.g. school calendar), mediated by a collective used/developped/revised manuel 
(textbook). For research question (2): Crossing the two cases, they are both following a fixed 
curriculum (national curriculum and local unified textbook in Chinese case, unified curriculum and 
textbooks produced by the university in Mexican case); they are both trying to integrated the 
supportive resources (learning-aid materials in Chinese case, disciplinary academic books in 
Mexican case); they are both organizing their resource work centered on students (selecting exercises 
from diverse sources and paying attention on their feedbacks in the Chinese case, adapting her own 
learning strategy, diagram, into classroom teaching in the Mexican case). Additionally, there are 
school-based resources involving the two teachers in both two cases: the school-based exercises 
booklets collectively developed by the mathematics TRG in the Chinese case, and the 
university-curriculum based textbooks developed and revised by the school mathematics teachers in 
the Mexican case. In the case of Gao, the different terms related to “tí(exercise) reveal a potential 
resource category from the teacher’s view. In the case of the Mexican teacher, the ambiguity of 
naming the same resource in two different ways infers a more individual work of the teacher.  

To summarize, analyzing teacher’ naming systems on resources by actuating it within specific 
cultural contexts could be a promising method for us researchers to deepen the understanding on 
teacher’s resource system. Due to the limited space, we were not able to analyze the mathemtics 
components of their resource system. As a beginning of this exploration, we hope that involving other 
cases  and crossing with other projects will help us to go further in this direction. 

References 

Adler, J. (2000). Conceptualizing resources as a theme for teacher education. Journal of Mathematics 
Teacher Education, 3(3), 205–224. 

Bowman, M., Debray, S. K., & Peterson, L. L. (1993). Reasoning about naming systems. ACM 
Transactions on Programming Languages and Systems, 15(5), 795-825. 

Thematic Working Group 22

Proceedings of CERME11 4352



Clarke, D., Mesiti, C., Cao, Y., & Novotna, J. (2017). The lexicon project: examining the 
consequences for international comparative research of pedagogical naming systems from 
different cultures, In T. Dooley, & G. Gueudet (Eds.) . Proceedings of the Tenth Congress of the 
European Society for Research in Mathematics Education (CERME 10, February 1–5, 2017) 
(pp. 1610–1617). Dublin, Ireland: DCU Institute of Education and ERME. 

Cole, M. (1996). Cultural psychology: A once and future discipline. Cambridge: MA: Harvard 
University Press. 

Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical 
reconceptualization. Journal of Education and Work, 14(1), 133–156. 

Gitirana, V., Miyakawa, T., Rafalska, M., Soury-Lavergne, S., & Trouche, L. (Eds.) (2018). 
Proceedings of the Re(s)sources 2018 international conference. ENS de Lyon, 
https://hal.archives-ouvertes.fr/hal-01764563  

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? 
Educational Studies in Mathematics, 71(3), 199–218. 

Gueudet, G., Pepin, B., & Trouche, L. (2013). Collective work with resources: an essential dimension 
for teacher documentation. ZDM - Mathematics Education, 45(7), 1003–1016. 

Pepin, B., & Gueudet, G. (online first). Curriculum resources and textbooks in mathematics education. 
In S. Lerman (Ed.), Encyclopedia of Mathematics Education. New York: Springer. 

Pepin, B., Xu, B., Trouche, L., & Wang, C. (2016). Developing a deeper understanding of 
mathematics teaching expertise: Chinese mathematics teachers’ resource systems as windows into 
their work and expertise. Educational studies in Mathematics, 94(3), 257–274, 
http://rdcu.be/koXk 

Remillard, J.T., Van Steenbrugge, H., & Bergqvist, T. (2014). A cross-cultural analysis of the voice 
of curriculum materials. In K. Jones, C. Bokhove, G. Howson, & L. Fan (Eds.), Proceedings of the 
International Conference on Mathematics Textbook Research and Development (ICMT–2014) 
(pp. 395–400). Southampton: University of Southampton. 

Trouche, L. (to be published). Evidencing missing resources of the documentational approach to 
didactics. Towards ten programs of research and development for enriching this approach. In L. 
Trouche, G. Gueudet, & B. Pepin (Eds.). The ‘resource’ approach to mathematics education. 
Springer. 

Trouche, L., Gueudet, G., & Pepin, B. (online first). The documentational approach to didactics. In S. 
Lerman (Ed.), Encyclopedia of Mathematics Education. New York: Springer. 

Vygotsky, L. S. (1978). Thought and language. Cambridge: MIT Press. 

Wang, C. (2018). Mathematics teachers’ expertise in resources work and its development in 
collectives. A French and a Chinese Cases. In L. Fan, L., Trouche, C. Qi, S. Rezat, & J. Visnovska 
(Eds.), Research on Mathematics Textbooks and Teachers’ Resources: Advances and issues (pp. 
193–213). Cham: Springer. 

Thematic Working Group 22

Proceedings of CERME11 4353



TWG23: Implementation of 
research findings in mathematics 

education

Thematic Working Group 23

Proceedings of CERME11 4354



Introduction to the papers of TWG23: Implementation of research 
findings in mathematics education 

Mario Sánchez Aguilar1, Ana Kuzle2, Kjersti Wæge3 and Morten Misfeldt4 
1Instituto Politécnico Nacional, CICATA Legaria, Mexico; mosanchez@ipn.mx 

2University of Potsdam, Germany; kuzle@uni-potsdam.de  
3Norwegian Centre for Mathematics Education, Norwegian University of Science and Technology 

(NTNU), Norway; kjersti.wage@matematikksenteret.no  
4Aalborg University, Denmark; misfeldt@learning.aau.dk 

In this introduction, we briefly present the origin of a young Thematic Working Group 23 (TWG23) 
on implementation of research findings in mathematics education, and its development from CERME 
10 to CERME 11. We then address the construct “implementation research” by looking at the model 
proposed by Century and Cassata (2016). Drawing from this model, we attempt to categorize the 
papers and posters of TWG23. In addition, we report on the results from two thematic discussions 
that focused on the topic of “Methodology in implementation research” and “Replication studies”. 
Lastly, we offer a collective, still in-progress definition of implementation research as a result of the 
summarizing discussion in the TWG23 during CERME 11. 

Keywords: Implementation research, research findings, replication studies, innovation, change. 

Origin of the Thematic Working Group 23 
During five decades, the field of mathematics education research has generated a multitude of 
products, such as theoretical frameworks, concepts, didactic designs, solid findings, etc. Although the 
research community has always been concerned with the theory-practice relationship, it remains an 
open and a challenging problem how such products could be used and applied in practice. Many 
mathematics education researchers work on (large) developmental projects that rely heavily on 
previously documented research results. However, reporting on these projects in mathematics 
education scientific outlets have proven to be challenging, since such projects do not necessarily fall 
under the usual paradigms of research in mathematics education. Before CERME 10, this issue was 
identified. More concretely, there was no forum to discuss important issues related to implementation 
of research findings. For that reason, TWG23 was founded with the idea of being a forum dedicated 
to presenting and discussing empirical and theoretical studies focused on elucidating the enablers and 
general conditions that favor or inhibit the implementation of research products generated in our field 
in practice as well as reporting on research-based designs themselves. The original concern of the 
group was “How can we apply and implement stable research findings in «real life»?” and “How can 
we bring the accumulated research knowledge into practice?” 

These questions remained to be in the focus of TWG23 also at CERME 11. We were embracing for 
papers and poster proposals addressing, from both empirical and theoretical perspectives, issues 
related to the implementation of research findings. In particular, we wanted to focus on a wide variety 

Thematic Working Group 23

Proceedings of CERME11 4355



of “good examples” of implementation of research findings and products into practice, aiming at 
improving the teaching and learning of mathematics at all educational levels. Moreover, we were 
interested in empirical research and theoretical discussions that address the challenges and 
possibilities of “implementation research”, as well as in-depth literature reviews that provide general 
and updated views of the state of development of this type of research in the field of mathematics 
education. Thus, the work of the group was organized around the idea of closing the identified “gap” 
and acting as a bridge between research and practice by focusing on multiple perspectives of 
implementation research.  

Evolution of the TWG 23 
At CERME 10, the working group undertook initial attempts to make sense of the construct of 
implementation. In the call for papers for the TWG23 at CERME 10, the construct “implementation 
research” was operationalized rather broadly, as a wide range of different kinds of didactical design, 
from task design, (model) lesson design, teaching modules and courses to design of entire programs 
at all educational levels. Furthermore, “implementation research” was inclusively treated as research 
on aspects of developmental projects, intervention projects, as well as research on aspects of the 
development and use of educational media, such as textbooks, apps, software and learning platforms. 
However, the call for papers required to make explicit connections between the reported designs and 
findings or insights from mathematics education research. As a result, many examples of 
implementation of research findings in mathematics education were presented, including process 
models, determinant frameworks, classic theories, implementation theories and evaluation 
frameworks (Jankvist, Aguilar, Bergman Ärlebäck, & Wæge, 2017). Many examples had been 
presented also at CERME 11, however, a new general theme in considering them have gradually 
emerged. At CERME 11, both the papers and posters as well as our discussions, reflected an effort to 
articulate more clearly what implementation research in mathematics education actually is, as well as 
the growing interest in theorizing it.  

Understanding our emerging “paradigm” and its blind-spots and tacit 
assumptions 
It was apparent at CERME 11 that many of the contributions shared certain ideas of what 
implementation in educational situations is. The ideas were shared both in terms of terminology and 
in terms of key references. Two key concepts apart from implementation are worth mentioning, 
namely innovation as described by Rogers (1962) and his famous work on the diffusion of 
innovations, and central factors of “implementation” as proposed by Century and Cassata (2016). 
This means that many of us considered “implementation” as innovation that causes a change when 
enacted in ordinary practice, and that the change is stipulated by relationships between the nature of 
the innovation, influential factors and key stakeholders.  

Furthermore, we internalized the Rogers (1962) idea that innovations spread through different user 
segments, from innovators that participate in developing and realizing the innovation, over early 
adopters to a majority who instantly or relatively soon take up the innovation, and then to the late 
majority – taking the innovation up late – and laggards who might never change practice.  
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The five factors that influence innovation proposed by Century and Cassata (2016), were actively 
used in a number of the contributions in the group, as a lens to study the implementation and 
implementability of initiatives. These five factors are: characteristics of the individual users, 
organizational and environmental factors, attributes of the innovation, implementation support 
strategies, and implementation over time.    

Apart from referring to the Rogers’ and Century and Cassata’s (2016) “standard models” for 
implementation (as something that causes a purposeful change, related to factors and stakeholders) 
in the group discussions, we also spent some time investigating the downsides of looking at changes 
in the educational sector through this lens.  

First of all, we observed that the “standard models” tend to fetishize the “manifestation” of a change 
as an innovation. Change in the educational sector is typically not caused by one “thing”. Rather, it 
is better studied as an interplay between many factors and forces. The constant focus on “innovation” 
in our work and discussions might have a problematic downside here. Another problem with the term 
“implementation as enactment of innovation” is that it overplays the intentional aspects of educational 
change. Many changes come as organic developments rather than as purposeful implementations. 

We also began understanding the implementation paradigm by drawing a parallel to Stein, Remillard, 
and Smith’s (2007) phases of curriculum, which was brought to the discussion by Boris Koichu. In 
Stein et al.’s (2007) model, the curriculum can be seen as consisting of different categories, namely 
written, intended, enacted, and attained curriculum based on what phase of the teaching and learning 
process one is focusing on. If we replace the written curriculum with (stable) research findings, a new 
model emerges (see Figure 1). Thus, in this new model published research refers to the research 
findings available to the teachers. Intended implications refer to the set of objectives to be 
accomplished in practice on the basis of research findings. Enacted implications refer to various 
learning activities or experiences of the learners on the basis of research findings in order to achieve 
the intended implications. Lastly, attained implications refer to the implementation outcomes with 
respect to student learning on the basis of the intended and enacted implications.  

 
Figure 1: Phases of implementation of research findings into practice 

Introduction to the papers and posters presented at the TWG23 
Twelve papers and two posters were presented at CERME 11, all of them addressing a wide variety 
of topics and using different approaches. In this section we use the five categories proposed by 
Century and Cassata (2016) in order to present an overview of the works discussed in this thematic 
working group. Although not mutually exclusive, to some extent these categories allow us to group 
the works presented in the TWG23 according to their interests and perspectives. 
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Inform innovation design and development 

The research study by Ioannis Papadopoulos and Nafsika Patsiala falls into this category. They 
describe a pilot study, aiming at capturing the landscape of problem posing in a Greek grade four 
classroom. It is intended that the information produced by this pilot study informs and helps to setup 
a year-long intervention in the classroom aiming to develop the problem posing abilities of the 
students.  

Understand whether (and to what extent) the innovation achieves desired outcomes for the 
target population 

Two papers belong to this category. The first work, by Inga Gebel and Ana Kuzle, presents a problem-
solving innovation for students in grades 4-6 has been designed and evaluated. During the evaluation 
phase, the researchers analyze students’ problem-solving solutions with respect to their fluency and 
flexibility, and present the (dis-)advantages of the innovation in regular mathematics lessons. 

The second work is by Helena Gil Guerreiro, Cristina Morais, Lurdes Serrazina, and João Pedro da 
Ponte. These authors try to understand, in a context of teachers’ collaborative group, how 
emphasizing multiple representations can contribute to the learning of the rational numbers by 
elementary school students.  

Understand relationships between influential factors, innovation enactment, and outcomes 

Three of the papers presented in the TWG23 focus on identifying factors that influence innovation 
enactment. One of them was developed by Rikke Maagaard Gregersen, Sine Duedahl Lauridsen, and 
Uffe Thomas Jankvist, who focus on identifying the enablers and barriers for the implementation of 
the so-called Swedish Boost for Mathematics, which is one of the largest initiatives on improving 
mathematics teaching and learning in the Nordic countries in recent times. 

The paper presented by Johan Prytz also analyzes the implementation of the Boost for Mathematics 
initiative, but this paper adopts a historical and comparative approaches. Through this perspective, 
the author shows the role that research and models of governance played in the New Math project in 
the 1960s and 1970s, and later in the Boost for Mathematics project. 

Finally, the paper by Dorte Moeskær Larsen, Mette Hjelmborg, Bent Lindhart, Jonas Dreyøe, Claus 
Michelsen, and Morten Misfeldt describes a recent attempt to implement on a large-scale an inquiry-
based mathematics teaching in Danish compulsory school. In their analysis, they identify critical 
factors for this large-scale implementation.  

Improve innovation design, use, and support in practice settings 

Most of the works presented fall into this category. For instance, Tomas Højgaard and Jan Sølberg 
refer to a longitudinal project called KOMPIS (a Danish acronym that stands for “Competency Goals 
in Practice”). In particular, they present a two-dimensional content model derived from the KOMPIS 
project that aims at supporting competence-based curriculum development and teacher planning. 

In turn, Morten Elkjær discusses the design of a dynamic online diagnostic tool aimed at assessing 
students’ mathematical misconceptions in lower secondary school. The design of such online tool is 
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based on the application of research findings on mathematical misconceptions in algebra and 
numeracy when working with equations. 

The implementation of notions from the inquiry-based mathematics teaching perspective (IBMT) is 
the focus of the work presented by Per Øystein Haavold and Morten Blomhøj. In particular, they 
discuss how the design of a four-year professional development project called SUM (A Norwegian 
acronym that stands for “Coherence through inquiry based mathematics teaching”), can support the 
implementation of research findings related to the IBMT approach.  

The large-scale implementation of alternative models for multiplication is the focus the paper by 
Anna Ida Säfström, Ola Helenius, and Linda Marie Ahl. They make use of Vergnaud’s theory of 
conceptual fields to produce a teaching design where models in the form of iconic representations 
serve as a means for creating patterns that make multiplicative invariants and structures visible.  

The work by Nina Ullsten Granlund reports on a professional development project where preschool 
teachers are offered theoretical tools – in particular Bishop’s theory of mathematical activity – so that 
they can think about their teaching in a structured and explicit way, but respecting the play-based 
tradition on which Swedish preschool education is based. 

The last article located in this category is the one presented by Boris Koichu and Alon Pinto. They 
report on the TRAIL project (Teacher-Researcher Alliance for Investigating Learning), which is a 
co-learning project between mathematics teachers and mathematics education researchers. They 
illustrate how this project favors teachers’ adaptation of research procedures and ideas in their 
classrooms as part of participation in community educational research.  

Develop theory 

The main emphasis of the works included in this category is in the conceptualization of the 
implementation of research findings. This focus is clearly reflected in the work of Uffe Thomas 
Jankvist, Mario Sánchez Aguilar, Jonas Dreyøe, and Morten Misfeldt. Taking as a reference 
implementation research frameworks from outside the field of mathematics education, they try to 
outline what an implementation research framework in mathematics education could encompass. 

Finally, Andreas Lindenskov Tamborg argues in his paper that in order to synthesize the research 
results in implementation research as an independent sub-field in mathematics education research, 
there is a need for a consistent vocabulary. He then proposes to combine Century and Cassata’s (2016) 
definition of implementation research with theoretical notions developed in the realm of the 
documentational approach to didactics.  

Results of the thematic group discussions 
During our sessions, we organized two thematic discussions. The first thematic discussion focused 
on the topic of “Methodology in implementation research”, while the second one concentrated on 
“Replication studies”. Below we mention the main ideas that were addressed during those group 
discussions. 
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Methodology in implementation research 

As of 2017, we as a community of mathematics educators interested in implementation research, got 
a forum to talk about and publish our “implementation” research, while analyzing our data from 
multiple perspectives. Here, different dependent variables can be considered: climate variables, 
learning variables, system variables or independent variables. Yet, in the wider community this type 
of research does not necessarily fall under the usual paradigm of “research in mathematics education”. 
As a consequence, it is not highly-recognized and often is not considered for publishing in high 
ranking peer-reviewed articles, due to different factors. That said, the following question naturally 
arises: “What would count as a high-quality implementation research (recognized by the community 
and having impact in high-ranked journals)?” In order to answer this question, we had small group 
discussions organized around the following questions:  

1. What perspective of implementation research does each project follow? Ones identified, what 
is the purpose of one’s perspective?  

2. How is innovation within each project measured and analyzed? What are methodological 
challenges faced by each “implementation” project? 

3. Which of perspectives and purposes from (1) are closely aligned with the usual paradigm of 
“research in mathematics education”? 

4. Which of these perspectives would count as high-quality implementation research? If so, 
why? If not, why not? 

5. What implications would the decision from (4) have with respect to our methodology (e.g., 
instruments, units of analysis, such as products, processes, evaluation of particular factors, 
analysis)?  

6. What challenges do arise in implementation research (e.g., related to data analysis, to ethical 
issues) and how could one go about them? 

The discussions have shown that TWG23 is at its early stage where many fundamental issues are not 
yet completely clear. Both thematic discussions as well as the paper discussions made us enter a 
pathway towards formulating a more precise collective definition of the construct “implementation 
research in mathematics education” (see last section of this paper). Another issue identified was the 
complexity of implementation research, which consequently implies the variety of theories needed in 
order to inform it. Given the length limitation of publications in most of the high-ranked journals, it 
makes is extremely difficult to report on implementation research in its full complexity – although 
this is also the case for other types of research. Lastly, in our community implementation of research 
findings is still not highly recognized by many colleagues. Hence, we discussed the need of a 
community building and raising awareness with respect to potential of implementation research for 
the field mathematics education.  

Replication studies 

The interest in replicating didactic designs and empirical studies has been present in the community 
of mathematics educators for several years. In the 1970s Phillip M. Eastman (1975) wondered why 
there were no more studies of replication in our field, while arguing for relevance of such studies. 
During the 1980s several reproducibility studies were carried out – mainly in the French teaching 
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community – focused on understanding the conditions that allowed a didactic design to be 
implemented with enough fidelity in different scenarios, preserving the effects in student learning.  

Simply put, a replication study can be seen as the attempted repetition of a study or an experiment 
that has been published in a peer-reviewed journal or book. However, since in the social sciences 
there cannot be two identical qualitative studies (i.e., there is no duplication), the development of 
qualitative replication studies involves maintaining certain variables similar to the original design, 
such as investigating a similar population, using the same didactic design, or applying the same modes 
and categories of analysis or coding. This kind of replication is known as conceptual replication 
(Hüffmeier, Mazei, & Schultze, 2016). Yet, this characterization does not exclude the possibility of 
developing quantitative approaches to replication studies. 

Lately, replication studies are gaining the attention of the mathematics education community (and 
beyond). An example of this is the working group on replication in mathematics education, which 
met for the first time at the PME 42 conference in Umeå, Sweden. Another indicator is that some 
specialized journals are beginning to receive and publish replication studies, for example the Journal 
for Research in Mathematics Education (JRME). However, despite its apparent importance, 
replication studies have found some obstacles to establishing themselves as an “accepted” type of 
study in our field. As expressed by Hugh Burkhardt (2013) “Replication, a key element in scientific 
research, is simply not sexy” (p. 225).  

There are several arguments for this lack of “sexiness”. One is that the academic system privileges 
the publication of original and innovative works, and devalues works that are not perceived as novel. 
Additionally, some published research does not provide sufficient methodological and empirical 
details that allow them to be replicated (Schoenfeld, 2018).  

With these ideas in mind, the second thematic group discussions revolved around the following 
questions:  

1. Can replication studies be useful for the development of implementation research in 
mathematics education? If yes, in what way? If not, why not? 

2. What characteristics should a replication study have in order to be useful for the development 
of implementation research in mathematics education? 

Although there was no definitive answer to these questions, it did appear a feeling in the group that 
replication studies could help us identify conditions that allow (or prevent) certain innovations to be 
reproducible in different scenarios, or even help us investigate the effects of a particular treatment 
under different conditions or populations, which in turn would allow us to advance the 
implementation of research results. However, it was also acknowledged that for this type of 
development to happen in the field of educational mathematics different conditions must be in place. 
For example, it would be necessary to promote a culture of data sharing where the research protocols, 
data sets, and other elements on which the research is based are not only public, but also shared among 
researchers through data repositories. 
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Toward a new definition of implementation research in mathematics education 
In TSG23, we feel that we are witnessing the emergence of a new and vibrant research area within 
the field of mathematics education. In plan to continue looking for a common ground on what do we 
understand as implementation research in our future work, because once we have a more precise 
understanding of what implementation research is, we be able to think more precisely about what its 
methodological implications and challenges are. A first collective attempt to formulate a chain of 
definitions of the key concepts of “implementation” and “implementation research in mathematics 
education” was led by Boris Koichu at the last meeting of the group.  At the end of this discussion, 
the group formulated the following proposal.  

Implementation is a change-oriented process of adapting and enacting a particular resource (e.g., 
an idea, a tool, an innovation, a framework, a theory, an action plan, a curriculum, a policy) that 
occurs in partnership of two communities, a community of the resource proponents (CRP) and a 
community of the resource adapters (CRA). These communities differ but can intersect. At the 
beginning of the process, the CRP has the ultimate agency over the resource. The process of 
adapting a resource by CRA includes some of the following: (1) constructing an agency over the 
resource, (2) changes in ways of communicating, and (3) changes in practice. Accordingly, 
implementation research in mathematics education is research that focuses on aspects of 
implementation, as specified above, in the context of mathematics education.  

As we progress in our work, we will certainly refine our working definition. However, we feel that 
the above proposal adequately captures many ideas and concerns discussed in the group at CERME 
11 and that the journey aimed at further theorizing and characterizing implementation research in our 
field is worth taking. 
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This poster aims to present the ideas behind the design of a dynamic online tool to assess students’ 
mathematical misconceptions in lower secondary school. These ideas and this tool are part of an 
industrial PhD project, which is a collaboration between the Danish School of Education, the doctoral 
candidate, and the company Edulab. 

Edulab is a Danish private company that has developed an online mathematical learning platform for 
the Danish elementary school. In Denmark, 75% of elementary schools subscribe to this platform. In 
fact, every day Danish school students answer 1.5 million tasks on this online platform. This creates 
a unique opportunity to implement didactical research results regarding mathematical misconceptions 
directly into practice. The industrial PhD project aims to provide Edulab with an evidence-based tool 
to capture students’ misconceptions, understood as concept images differing from the formal concept 
definition (Tall & Vinner, 1981). Thereby providing the teachers in lower secondary school with 
easily accessible formative assessment of their students in the fields of algebra and numeracy in 
working with equations. Cai et al. (2017) claimed that linking intervention with implementation 
through iterations of design research is a strong way for researchers to have an impact on practice.  

From reviewing the literature on misconceptions, it concludes that the community knows a great deal 
about mathematical misconceptions and learning difficulties related to algebra, equations and 
numeracy in lower secondary school (e.g., Booth, McGinn, Barbieri & Young, 2017). Such research-
based findings in combination with an online mathematics platform that communicates directly to the 
end user (i.e., the students) provides a unique opportunity to shorten the implementation time span 
between the research findings and the end user as was pointed out by Century and Cassata (2016). 
The project goal is to investigate: How can an online diagnostic tool for lower secondary school be 
designed, utilizing existing research findings on mathematical misconceptions in algebra and 
numeracy when working with equations? 

To answer the question the aim is to design, and develop an online diagnostic test. Designing an 
online diagnostic test aimed at lower secondary school students is going to be an iterative process. 
The literature review will give rise to a categorization of algebraic misconceptions. The idea is to use 
the ‘Concepts in Secondary Mathematics and Science’ projects diagnostic tests (Hart, Brown, 
Kerslake, Küchemann & Ruddock, 1985) in algebra and number operations in a modernized, digital 
version in order to locate students holding misconceptions fitting this categorization. Based on the 
algebraic tasks the students have interacted with on the platform, it should be possible for machine 
learning algorithms to create a “platform behavior” fitting the categorization. It is worth noting that 
students having greater usage of the platform are a preferable choice for diagnosis in order to create 
a more precise platform behavior for the different categories of misconceptions. Design-Based 
Research (e.g., Barab & Squire, 2004; diSessa & Cobb, 2004) will pave the way for the knowledge 

Thematic Working Group 23

Proceedings of CERME11 4363



 

 

generated through iterations of the work with the diagnostic tests and the machine learning 
algorithms. The projects hypothesis is that math teachers in Denmark, based on collected data, have 
a unique opportunity to organize, plan and complete their teaching. The point of the continuous 
diagnosis of all students using Edulab’s platform is to catch if students are using the platform as if 
they are is holding one or more misconception(s). The teachers are provided with a formative 
assessment report, generated for each student that possibly holds misconceptions, describing the 
student’s behavior and the misconceptions present. Thereby, providing an in-depth explanation of 
which algebraic concepts and processes in which the students’ concept image is conflicting with the 
concept definition may give the teacher the opportunity to aid the student avoid further progress in 
constructing a deeper rooted and conflicting concept image. Lucariello, Tine and Ganley (2014) 
emphasize the importance of teachers having access to formative assessment regarding individual 
student’s misconceptions in order not to impede the student’s future learning. This formative 
assessment report should contain ideas and guidelines for how the teacher further teaches the student 
in the form of literature-based explanations of the origin of the diagnosed misconceptions, and how 
the concept image may be changed.  

Ultimately, the industrial PhD project is looking to generate knowledge and perspectives on how 
mathematical online diagnostic testing together with mathematical online formative assessment can 
be implemented in order to help teachers, and thereby students in Danish lower secondary school. 
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Problem solving is a binding process standard that is often neglected in school mathematics, and 
generally reserved for motivated and gifted students only. Researchers also call for the development 
of problem-solving competences, starting already in primary school to promote the habits of mind, 
that can be applicable in situations varying from challenges in school to those in life. Different 
questions emerge in this context. What tasks are suitable to reach all students? What might a 
differentiated problem-solving classroom look like that would attain to individual student needs? In 
this article, we present a problem-solving implementation research project. For this purpose, a 
problem-solving teaching concept with an accompanying type of task for primary education was 
developed based on both theory and projects on problem solving. The first results indicate positive 
outcomes with respect to meeting the requirements of practical suitability, and sustainability.  

Keywords: Implementation research, problem solving, differentiation, primary education. 

Introduction 
New implementations in schools often involve different protagonists (e.g., teachers, students, 
researchers, policy makers), each contributing different expertise, but also having their own demands. 
Design-Based-Research (DBR) is a flexible methodology that aims to improve learning and teaching 
in naturalistic settings through iterative cycles of design, implementation, analysis and re-design, 
where both researchers and practitioners collaborate towards a common goal. Over time, this can lead 
to changes in the implementation, such as target group, material, teaching concept, which are then re-
evaluated in the next cycle (e.g., Wang & Hannafin, 2005). 

DBR is the basis for two research projects, namely SymPa and DiPa1, that focus on implementation 
of problem solving in school settings. In both projects, problem solving is regarded as an educational 
goal, namely development of students’ problem-solving competences in a targeted manner by 
learning heuristics. In the context of the SymPa project, theory-based and practice-oriented materials 
were developed for motivated students in grades 4-6 (Kuzle & Gebel, 2016). Even though Kuzle and 
Gebel (2016) reported on variables, and conditions that favored and hindered the implementation of 
the material on the basis of two DBR cycles using the feedback from the students and the teachers, 
several crucial inhibiting factors unraveled once researchers themselves observed the 
implementation, and planned the lessons with the preservice teachers (Gebel & Kuzle, 2019). In 
particular, the teaching concept focused around systematical introduction of different problem-
                                                 
1 SymPa stands for Systematic and material-based development of problem-solving competences; DiPa stands for 
Differentiated development of problem-solving competences. In German: Systematischer und materialgestützter 
Problemlösekompetenzaufbau and Differenzierter Problemlösekompetenzaufbau, respectively. 

Thematic Working Group 23

Proceedings of CERME11 4365



solving heuristics, which inhibited individual problem-solving processes of the students. Though the 
problem-solving tasks allowed students to choose different problem-solving paths, the teacher guided 
the students to use a particular heuristic in focus. Consequently, these factors impacted student 
motivation. In addition, the teaching concept was not aligned with the typical lesson structure, which 
resulted in preservice teachers needing support when planning their lessons. Even though one could 
expect that motivated students are a homogeneous group, we experienced that the tasks did not 
necessarily invoke problem-solving behaviors. Thus, the problem tasks need to offer more freedom 
with respect to a problem-solving approach (e.g., subtasks with different levels of difficulty), but on 
the other hand challenge students to use their knowledge in a complex way. 

Based on the above listed inhibiting factors, the SymPa project was further developed into the DiPa 
project. The main goal of the project is to make implementation of problem solving in primary school 
mathematics suitable, and sustainable by developing a problem-solving teaching concept aligned with 
the typical lesson structure, and a type of tasks that would address the individual needs of each student 
(Gebel & Kuzle, 2019). In the following sections, we outline relevant theoretical foundation used to 
develop criteria for differentiated problem-solving tasks, and the teaching concept for primary 
education, before showing how these got implemented, and report on the evaluation of the pilot study 
(initial DBR cycle). Leading questions for the evaluation are: To what extent does the teaching 
concept consider necessary differentiating approaches to problem solving? What are the differences 
depending on the level of performance comparing to fluency and flexibility? What are the (dis-) 
advantages of the innovation in regular mathematics lessons? As a result of the evaluation, we discuss 
the findings with respect to possibilities, and limitations of the teaching concept and the nature of the 
problem-solving task in the context of grade 5 mathematics. With regard to implementation research, 
this article provides an overview of the development of our innovation (i.e., problem-solving teaching 
concept and task), and the identification of the first core elements of the innovation (e.g., Century & 
Cassata, 2016). Detailed answers are not delivered at this time, but rather an insight into the first DBR 
cycle is given.  

Theoretical foundation guiding the design process 
A plethora of research on problem solving undergoing since the 1970s identified several pivotal areas 
for a problem-solving curriculum. Here, we outline only a small portion of this research that was 
crucial for the project based on German standards’ conception of problem solving (KMK, 2004).  

Learning problem solving 

Problem-solving competence relates to cognitive (here heuristic), motivational and volitional 
knowledge, skills and actions of an individual required to overcome a personal barrier in unfamiliar 
situations (e.g., Bruder & Collet, 2011; Schoenfeld, 1985). Thus, routine procedures are not sufficient 
to solve a problem, but rather heuristics may be helpful. Heuristics can be defined as  

kinds of information, available to students in making decisions during problem solving, that are 
aids to the generation of a solution, plausible in nature rather than prescriptive, seldom providing 
infallible guidance, and variable in results. (Wilson, Hernandez, & Hadaway, 1993, p. 63) 
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In the field of problem solving there are two different approaches to learning heuristics. In an implicit 
heuristic training, it is assumed that the students internalize and unconsciously apply strategies they 
have learned through imitating practices of the teacher, and through sufficient practice. On the other 
hand, explicit heuristic training refers to making a given heuristic a learning goal, which is practiced 
step by step (e.g., Schoenfeld, 1985). For instance, Bruder and Collet (2011) pursued an explicit 
problem-solving training focusing around Lompscher’s (1975) idea of “flexibility of thought”. 
Flexibility of thought is expressed by manifestations of mental agility, namely reduction, reversibility, 
minding of aspects, change of aspects, and transferring. Untrained problem solvers are often unable 
to consciously access the above outlined flexibility qualities. In their research at lower secondary 
level, Bruder and Collet (2011) were able to show that less flexible students (e.g., students with 
difficulties in reversing thought processes or transferring an acquired procedure into another context) 
profit from explicit problem-solving training. Concretely, they were able to solve the problems just 
as well as more flexible students, who solved the problems intuitively. Thus, problem solving can be 
trained by learning heuristics corresponding to these aspects of intellectual flexibility in combination 
with self-regulation (e.g., Bruder & Collet, 2011; Schoenfeld, 1985). 

Criteria for differentiated problem solving tasks 

In addition to the choice of the teaching approach, the problem selection is also a key factor for a 
successful development in problem-solving competences (e.g., Pehkonen, 2014). In the SymPa 
project we used different types of problems (i.e., open-ended, closed, subtasks with different levels 
of difficulty) (Kuzle & Gebel, 2016), but always oriented on the specific mathematical content as 
outlined by the mathematics curriculum (KMK, 2004). During the implementation, it became 
apparent that the subjective barriers of the students were very different: some tasks represented a 
challenge for some students, and for others there were routine tasks (Gebel & Kuzle, 2019).  

Since differentiation is the core idea of the DiPa project, we developed specific criteria for our type 
of a problem-solving task, namely Problem-based Learning Environments (PLE), that address the 
previously mentioned drawbacks2 and fit the framework of the DiPa project. In addition to the criteria 
of general learning environments (Wälti & Hirt, 2010), a heuristic core is the key aspect of the PLE, 
whereas the mathematical content is present, but not in the foreground. With a PLE, we refer to a 
collection of related problems, that are linked by certain guiding principles based on an intra-
mathematical and heuristic structure, and fulfill the following criteria: accessible to all learners, 
variety of possible solutions and ways of thinking (use of different heuristics), high cognitive 
activation potential, independent activity by means of enactive or iconic representations, implicit 
mathematical content, and social exchange. In itself they offer more freedom; each student can decide 
independently in what depth he or she works on the PLE. With each subtask the students are 
compelled to use their knowledge in a more complex way. During this process they may use enactive 
or iconic material to support their problem-solving process. 

                                                 
2 For the sake of completeness, it should be said that there are already problem-solving task formats in the literature that 
also consider individual approaches. For example, Pehkonen (2014) showed the potential of using problem fields to 
engage all students in problem solving. 
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Problem-solving teaching concepts  

A few teaching concepts exist that focus on a longitudinal development of problem-solving 
competences. Here, we report on the teaching concepts of Bruder and Collet (2011), Rasch (2001), 
and Sturm (2018), and their limitations for everyday implementation in primary school mathematics. 
The five-phase teaching concept of Bruder and Collet (2011) has been successfully implemented in 
the context of lower secondary school. The core idea of the teaching concept lies upon a long term 
systematical, and explicit training of heuristics through the phases of familiarization, explicit strategy 
acquisition, productive practice phases, context expansion, and awareness of the own problem-
solving model. Even though this teaching concept has been empirically evaluated, its implementation 
in primary grades showed some limitations (Gebel & Kuzle, 2019), as was noted earlier. For that 
reason, we follow Rasch (2001) and argue for a less specific step-to-step teaching concept. Hence, 
we need a teaching concept, that would first allow all students (in primary school) access to problem 
solving in an intuitive manner, before explication of particular heuristics is initiated. 

Sturm (2018) conducted a problem-solving training in primary school focusing on external 
representations. The teaching concept included three phases that spread over two mathematics 
lessons. During the first lesson the students solved a given problem intuitively, whereas the students’ 
solutions with respect to used heuristics were made explicit during the second lesson, after the teacher 
gained insight into students’ solutions between the two lessons (Rasch, 2001; Sturm, 2018). Taken 
the extensive analysis of students’ solution, we find this structure difficult to implement in practice. 
Although the implicit (intuitive procedures) and explicit ideas (reflection of the solution path) of 
heuristic trainings were taken into account, we assume that due to implementation once per month, 
the students have difficulties recalling their problem-solving processes and therefore, the reflection 
process may be too abstract. Here, a 90-minute lesson, focusing on several different heuristics – and 
not just on external representations – may be more plausible. 

Based on this limitations, and the results from the SymPa project (Gebel & Kuzle, 2019), the DiPa 
project pursues an alternative teaching concept (see Table 1), in which both implicit and explicit 
heuristic training are combined. Furthermore, its structure corresponds with a typical lesson structure, 
which may unburden teachers when planning their lessons. In addition, the second exploration phase 
represents a novelty. Other problem-solving teaching models (e.g., Rasch, 2001; Sturm, 2018) 
terminate after the third phase (explicit strategy acquisition), so that heuristic strategies are only 
transferred in the case of structurally similar tasks, which could represent an additional hurdle. 
Alternatively, in our proposed problem-solving teaching concept (see Table 1), the students have the 
opportunity to apply the heuristics even to the same subtask. 

1. Introduction The basic problem is presented. Comprehension questions are discussed in plenum.  

2. Exploration I The students work independently, and intuitively on a given PLE. They document their work on their 
worksheets. Teaching material on an enactive or iconic level creates differentiation opportunities. 

3. Explicit strategy 
acquisition 

The students gain an insight into the procedures of their fellow students. Relevant heuristics are discussed 
in plenum, and documented on a strategy poster. 

4. Exploration II The students continue working on the PLE, and apply the heuristics that were discussed in the phase 3. 

5. Reflection Students reflect on their problem-solving process by analyzing the heuristics they used, and changes in 
their approach. If necessary, new heuristics mathematical ideas are discussed in plenum.  

Table 1: Teaching concept for problem-solving lessons in the DiPa project 
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Evaluation: Data sample, instruments and procedure 
The evaluation of the pilot study had several objectives: (1) to evaluate the teaching concept with 
respect to differentiation during problem solving, (2) to analyze students’ problem-solving solutions 
with respect to their fluency (creating a large number of ideas) and flexibility (changing perspective 
and using different strategies) and in contrast to their level of performance, and (3) to present the  
(dis-)advantages of the innovation in regular mathematics lessons.  

For this study, an exploratory qualitative research design was chosen. The study participants were 
two fifth grade classes (n = 40) from one urban school in the federal state of Brandenburg (Germany) 
(Gebel & Kuzle, 2018). Main sources of data were student worksheets, and a semi-structured 
interview with the teacher. 

Figure 1: Problem-based Learning Environment “Paper squares” 

The research data were collected in a school setting during a 90-minutes lesson. The first author of 
the paper taught the lesson structured around the teaching concept, whilst the class teacher observed 
the lesson. The students were first introduced to the PLE “Paper squares” (see Figure 1). The students 
read introduction to the problem, and misunderstandings were discussed (phase 1). Afterwards, they 
worked individually on its different subtasks. Each student received its own working sheet with grids, 
and enactive material (e.g., matches and paper squares) (phase 2). In phase 3 a museum exposition 
took place; the students laid their worksheets on the table and got insight into the solutions of their 
classmates. Afterwards, we discussed clever strategies and noted them on a strategy poster. Before 
working on further subtasks or working again on the same subtasks using the newly noted strategies 
on the strategy poster (phase 4), they drew a red line to denote their work in the second exploration 
phase. At the end of the lesson, students’ solutions were discussed in plenum. In addition, new 
strategies were noted on the strategy poster, and their mathematical discoveries were discussed (phase 
5). The same procedure was used with the second fifth grade class. A semi-structured interview with 
the class teacher took place, and lasted about 45 minutes. It was used to assess the teaching concept, 
and the individual problem-solving behaviors of the students compared to regular mathematics lesson.  

The student work on subtasks a) and b) was analyzed after all the data had been collected. As 
suggested by Patton (2002), multiple stages of the analysis were performed. For the within analysis 
each student was treated as a comprehensive case. The analysis procedure for both classes consisted 

PLE: Paper squares 
Tina has 12 matches and some paper 
squares. The side length of one square is as 
long as one match:  

Here you can see a figure with 12 matches 
and 9 paper squares.  

 

 

The squares must meet at the sides.  
Therefore, the following does not apply: 

Task a)  
Can Tina lay a figure with 12 matches that 
includes 5 paper squares? 

Task b)  
How many different figures can you find, which 
are laid out of 12 matches and include 5 paper 
squares? 

Task c) 
Can Tina also lay figures with 12 matches that 
include 6/7/8 paper squares? Which figures can 
you find? 

Task d)  
Which figure includes the most and which figure 
includes the least paper squares? (Use 12 matches.) 

Task e)  
What is the minimum number of matches to 
enclose 10/11/12/… paper squares? 

Task f)  
What is the highest number of matches to enclose 
10/11/12/… paper squares?  

Task g) 
Can you find a relation between the count of 
paper squares and the highest number of matches? 
What is the minimal number of matches to 
enclose 100 squares? 

Task h) 
Invent further tasks. 
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of counting the number of basic figures (see Figure 2), and their duplicates3 on the basis of each 
student’s worksheet, which provided an insight into their fluency. For the cross analysis the students 
were clustered into three groups based on their mathematical performance: high (grade 1), average 
(grade 2) and low (grade 3/4) achieving students, in order to compare the particular performance 
groups against each other. Both researchers coded the student data independently. Adjustments were 
subsequently made after which the interrater reliability was 100%.  

Results 
Table 2 gives an overview of students’ results during the first and the second exploration phase when 
working on the first two subtasks of the PLE. What is particularly striking here, is that the students 
from the group of low achievers (n3/4 = 6), who again worked on subtasks a) and b), had a particular 
increase in the number of solutions in the second exploration phase (from 2,83 solutions to 9,5 
solutions). Even though the sample size, and the orientation towards the mathematics grade represent 
limitations of the pilot phase, it can be assumed that especially low achievers profited from the explicit 
strategy acquisition phase. Those, who were less able to develop strategies on their own in the first 
exploration phase, were able to produce many different solutions in the second exploration phase due 
to insight into their classmates’ solution, and discussion in plenum (Gebel & Kuzle, 2018). 

 n1 n2 n3/4 

Data sample 11 19 10 

Absolute frequencies of solutions (tasks a and b) 12,27 8,11 8,2 

Students, who worked further on task b in exploration II  4 (3) 9 6 

Absolute frequencies of solutions in exploration I 6 (7,67) 4,44 2,83 

Absolute frequencies of solutions in exploration II 12,5 (10,3) 9,11 9,5 

Table 2: Results of the pilot study 

 

Figure 2: Basic solution figures of the PLE “Paper squares” 

The analysis of the strategies used during the problem-solving process has shown to be a big 
challenge. The majority of the students were not able to describe their solution behavior in writing. 
Here, alternative research instruments are needed to discern student thinking when problem solving. 
Nevertheless, we recognized huge differences in the solutions between the sample groups. For 
example, figure “staircase” was found by average and high-achieving students only (see yellow figure 
in Figure 2). In addition, the students had lively discussions about the permission of reflected and 
rotated figures. The worksheets of the high- and average-achieving students showed tendencies 
towards systematical rotations, and reflections of basic figures. In the semi-structured interview, the 
teacher particularly emphasized that all pupils had access to problem solving. Moreover, they were 
able to work on the PLE at different levels: she observed different forms of representation, such as 
                                                 
3 It was left to the student if reflected/rotated figures were to be documented, as this was not explicitly given in the PLE. 
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enactive material, iconic representations, written descriptions. Students’ pervasiveness and 
perseverance during the lesson were also positively evaluated. In addition, she mentioned that – in 
contrast to SymPa teaching concept – the strategies emerged from the students’ solutions and were 
not given by the teacher. Thus, the students started solving the problem intuitively followed by 
explicit strategy naming based on students’ solutions. Her assessment of the second exploration phase 
is consistent with the analysis of the students’ solutions. She saw a great benefit of it for the low-
achieving students by getting insight into their classmates’ solutions. Nevertheless, she stated that the 
students had difficulties describing their problem-solving processes in writing. Last but not least, the 
teacher asserted that all students had fun doing mathematics when solving the given PLE.  

Conclusion 
Despite different endorsements for making problem solving a vital part of school mathematics (e.g., 
KMK, 2004), problem solving has not yet been fully implemented in school mathematics. In order to 
reach this goal, we need to understand what variables and conditions, such as tasks, teaching concepts 
support and/or inhibit a sustainable implementation in school settings. In the DiPa project we have 
consciously decided to establish problem solving in regular mathematics lessons in order to 
simultaneously (1) develop suitable practice-oriented materials, (2) to develop a sustainable problem-
solving teaching concept for all students, and (3) to gain realistic insights into individual students’ 
learning processes. The results have shown that a synergy of the teaching concept, and the PLE allows 
all students access to problem solving. Low-achieving students benefited the most, especially through 
the use of concrete material, the nature of the task, and the insight into classmates’ solutions. With 
respect to fluency, difference between the high and average/low-achieving students was minimal. 
However, student flexibility was rather difficult to measure. So far, we used one PLE with two fifth 
grade classes from one school. Hence, the evaluation of our innovation is limited to these conditions. 
Nevertheless, they suggest the next step in our research, namely to conduct a study with a larger data 
sample using several PLEs over a longer period of time in a wider variety of settings. Our goal is to 
examine the development of the students’ problem-solving competences as well as factors affecting 
this development. Here, we plan to videotape students during problem solving in order to obtain a 
holistic view of their problem-solving learning. This process will then guide our focus with respect 
to teaching and learning problem solving from both theoretical and practical points of view. 

References 
Bruder, R., & Collet, C. (2011). Problemlösen lernen im Mathematikunterricht [Learning problem 

solving in mathematics]. Berlin, Germany: Cornelsen.  

Century, J., & Cassata, A. (2016). Implementation research: Finding common ground on what, how, 
why, where, and who. Review of Research in Education, 40(1), 169–215. 

Gebel, I., & Kuzle, A. (2018). Problem solving for all: Evaluation of a problem solving teaching 
concept for primary education. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), 
Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics 
(Vol. 5, p. 234). Umeå, Sweden: PME. 

Thematic Working Group 23

Proceedings of CERME11 4371



Gebel, I., & Kuzle, A. (2019). Problemlösen lernen und unterrichten im SymPa-Projekt: Darstellung 
einer Projektentwicklung im Rahmen eines Campusschulen-Netzwerkes [Learning and teaching 
problem solving in the SymPa project: Presentation of a project development within the campus 
school network]. In K. Kleemann, J. Jennek, & M. Vock (Eds.), Kooperation von Universität und 
Schule fördern. Schulen stärken, Lehrerbildung verbessern (pp. 183–207). Opladen, Berlin, 
Toronto, Germany: Budrich. 

Kultusministerkonferenz [KMK] (2004). Bildungsstandards im Fach Mathematik für den mittleren 
Schulabschluss [Educational standards in mathematics for the middle school]. Bonn, Germany: 
KMK. 

Kuzle, A., & Gebel, I. (2016). Development of materials for problem solving instruction in the context 
of lessons for promoting and improving specific mathematical competences using design based 
research. In T. Fritzlar, D. Assmuss, K. Bräuning, A. Kuzle, & B. Rott (Hrsg.), Problem solving 
in mathematics education. Proceedings of the 2015 Joint Conference of ProMath and the GDM 
Working Group on Problem Solving. Ars Inveniendi et Dejudicandi 6 (S. 159–172). Münster: 
WTM-Verlag. 

Lompscher, J. (1976). Verlaufsqualitäten der geistigen Tätigkeit [course of mental activity]. Berlin, 
Germany: Volk und Wissen. 

Patton, M. Q. (2002). Qualitative research and evaluation methods. Thousand Oaks, CA: Sage. 

Pehkonen, E. (2014). Open problems as means for promoting mathematical thinking and 
understanding. In A. Ambrus & É. Vásárhelyi (Eds.), Proceedings of the 15th ProMath conference 
(pp. 152–162). Eger, Hungary: Mathematics Teaching and Education Center.  

Rasch, R. (2001). Zur Arbeit mit problemhaltigen Textaufgaben im Mathematikunterricht der 
Grundschule [On working with problem-based word problems in primary school mathematics]. 
Hildesheim, Germany: Franzbecker. 

Schoenfeld, A. H. (1985). Mathematical problem solving. London, England: Academic Press. 

Sturm, N. (2018). Problemhaltige Textaufgaben lösen. Einfluss eines Repräsentationstrainings auf 
den Lösungsprozess von Drittklässlern [Solving problem-based word problems. Influence of a 
representation training on the solution process of third graders]. Wiesbaden, Germany: Springer. 

Wälti, U., & Hirt, B. (2010). Lernumgebungen im Mathematikunterricht [Learning environments in 
mathematics teaching]. Seelze-Velber, Germany: Kallmeyer. 

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning 
environments. Educational Technology Research and Development, 53(4), 5–23. 

Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Mathematical problem solving. In P. S. 
Wilson (Ed.), Research ideas for the classroom: High school mathematics (pp. 57–77). New York, 
NY: Macmillan. 

Thematic Working Group 23

Proceedings of CERME11 4372



 

 

   
 

Operationalizing implementation theory in mathematics education 
research - identifying enablers and barriers in the Swedish “Boost for 

Mathematics” 
Rikke Maagaard Gregersen1, Sine Duedahl Lauridsen2 and Uffe Thomas Jankvist3 

1Danish School of Education, Aarhus University, Denmark; rmg@edu.au.dk  
2VIA University College, Denmark; sidl@via.dk  

3Danish School of Education, Aarhus University, Denmark; utj@edu.au.dk  

In this paper, we identify a number of implementation enablers and barriers in the Swedish ‘Boost 
for Mathematics’ (BM). Through an analysis of two selected BM modules’ use of sensitizing and 
prescriptive theoretical constructs from mathematics education research, we attempt to link the 
existence of enablers and barriers to identified policy dimensions of the BM. Besides the two modules 
on the web portal (the Lärportal), the study’s empirical data also consist of surveys of four involved 
teachers and interviews with two involved researchers and module designers. The analyses also make 
use of the innovation’s novelty and value, the degree of merit in how it is imparted and Rogers’ three 
determinant factors of an innovation. 

Keywords: Implementation research, enablers and barriers, policy dimensions, degree of merit. 

Introduction 
This paper looks at one of the largest initiatives on improving mathematics teaching and learning in 
the Nordic countries in recent times, namely the Swedish Boost for Mathematics (from now on 
referred to as BM), which was implemented from 2012 to 2016. The BM was a national professional 
development initiative with the goal of enhancing students’ mathematics performance in Swedish 
primary and secondary school. The initiative was a reaction to continuously disappointing result in 
international tests, such as TIMSS (Bentley, 2008) and PISA (Utbildningsdepartementet, 2012). BM 
was designed and developed as a collaboration between the Ministry of Education and Research, the 
Swedish National Agency for Education, and the Swedish national resource centre for mathematics. 
The BM involved 260 municipalities, 37,000 mathematics teachers, and had a cost of Skr. 
649,000,000 (Nyström, 2018). The BM has been evaluated in a handful of reports (e.g., Österholm, 
Bergqvist, Liljekvist, & Bommel, 2016; Ramböll, 2016). In this paper, however, we consider the BM 
from an implementation research perspective, meaning that we apply theoretical constructs from 
implementation research to address selected aspects of the implementation. process. From such 
theory, it is well known that the success of an implementation process to some extent depends on its 
enablers and barriers, i.e., people or factors that either enhance aspects of the implementation or 
somehow diminishes them (e.g., Nilsen, 2015). Like many other initiatives concerning the 
improvement of mathematics instruction and learning, the BM drew on and sought to implement 
research results and findings from mathematics education research. We thus consider the BM as an 
implementation program in a mathematics education context. The research question that we ask is: 
What enablers and barriers for implementing mathematics education research results and findings 
in practice can be determined in the Swedish Boost for Mathematics initiative? The study reported in 
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this paper and the empirical data that it builds upon stem from a master’s thesis in mathematics 
education at the Danish School of Education, Aarhus University (Lauridsen & Gregersen, 2017). 

Theoretical constructs related to implementation research 
First, we elaborate on our understanding of implementation and innovations, and then we introduce 
the terms and constructs applied in the analysis. 

“Implementation takes place when an individual puts an innovation into use” (Rogers, 2003, p. 20). 
But what is an innovation in the context of mathematics education? If we view the BM as an 
implementation process, mathematics education research results are the innovations. Hence, a 
clarification of innovation is in order. In the original definition by Schumpeter (1934/1961), an 
innovation entails a valuable change in practice. According to Rogers (2003), an innovation, on the 
other hand, has to be considered novel, not necessarily in common understanding, but for the 
individual doing the implementation. We shall draw on both positions and define an innovation in the 
context of mathematics education as: Mathematics education research results that are subjectively 
novel and bring valuable changes into practice once implemented (Lauridsen & Gregersen, 2017) – 
taking into account that what is to be considered valuable is of course also to some extent subjective. 

To determine enablers and barriers (see Nilsen, 2015) within the implementation program, we draw 
upon parts of Rogers’ (2003) theory of diffusion of innovations. Rogers claims that there are three 
determinant factors for an innovation to be implemented: the awareness-knowledge of the existence 
of the innovation; how-to knowledge, which is knowing how to apply the innovation; and experience 
of relevance of the innovation. Each factor is influenced by an undefined number of variables, which 
either enable or barricade the implementation (Nilsen, 2015). The aim of analyzing enablers and 
barriers is to obtain insight, nuance and challenge the determinant factors. We also use Rogers’ (2003) 
term principles-knowledge, which refers to understanding how and why the innovation works. 
Principles-knowledge is not a determinant factor but is seen as a valuable contributor to a successful 
implementation, hence in this context it can be seen as an enabler for implementation. To gain further 
insight into barriers and enablers, the BM’s theoretical content is viewed as either prescriptive or 
sensitizing (Nilsson, Ryve, & Larsson, 2017). Prescriptive theories supply the teacher with actions 
that should be applied in practice, whereas sensitizing theories supply insights into learning processes. 
Sensitizing theories can be seen as a way to obtain theoretical principles-knowledge, and the 
prescriptive theories as a way to obtain theoretical how-to knowledge. This comparison allows us to 
connect theoretical content to the knowledge framework from implementation theory. 

To classify the BM, we adopt the notion of policy dimensions by Trouche, Drijvers, Gueudet, and 
Sacristán (2013). They use this notion to classify the policies concerning implementations of 
technological developments in mathematics education. Our use differs slightly, however, as we 
consider implementations of mathematics education research results. Trouche et al. (2013) define 
three policy dimensions: top-down/bottom-up referring to the origin of the implementation process 
initiative; offering access/supporting integration referring to the extent to which the implementation 
process is supported beyond supplying access to the research results; and collective/individual 
referring to whether the process of implementation is conducted with colleagues or not. Trouche et 
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al. (2013) claim that bottom-up, supporting and collective policies promote implementation, yet in 
our understanding it must be the variables connected to a policy that act as enablers/barriers. 

Educational background, research methods and empirical data 
In the BM, groups of mathematics education researches and mathematics teacher educators were 
asked to author modules for an online open-access resource platform, the so-called Lärportal 
(https://larportalen.skolverket.se/#/), which now contains more than 30 modules. A module contains 
eight segments, each working through a four-phase process: (A) individual preparation, where 
participating teachers read texts and watch videos; (B) collegial work, discussing text and preparing 
lessons/activities; (C) individual execution of lessons/activities; and (D) collegial evaluation of 
learnings and classroom experiences. Four didactical perspectives are common to all modules: 
Classroom norms/socio-mathematical norms; teaching by the mathematical competences, assessment 
of learning and teaching in mathematics; and routines and interaction in the classroom (Österholm et 
al., 2016). School leaders and counsellors were educated to support and guide teachers in the process 
(Skolverket, 2017). All Swedish mathematics teachers were granted attendance of two modules. After 
that, it was up to the individual schools to finance further participation. 

The method of the paper is a case study of two selected modules within the BM program: “Algebra 
module grades 7-9” and the “Problem solving module, grades 7-9” (Skolverket, 2017). The main 
theoretical construct behind the algebra module is that of variation theory (Marton, 1981), although 
it also contains a range of topic specific constructs concerning the learning and teaching of equations, 
variables and formulas. The main theoretical constructs of the problem solving module are the “five 
step model” (Stein, Engle, Smith, & Hughes, 2008) for planning and conducting problem solving 
lessons and the “four phased problem solving process” (Skolverket, 2017) for organizing students’ 
problem solving. 

The empirical data on which this study relies was gathered as part of the previously mentioned 
master’s thesis (Lauridsen & Gregersen, 2017). The data was obtained by three different methods: 

· Coding of the module content in regard to whether texts and videos were communicated primarily 
in a prescriptive or sensitizing manner (Nilsson et al., 2017). 

· Interviews with two representative researchers who participated in the development of the algebra 
module (Researcher 1) and problem solving module (Researcher 2), respectively.  

· A questionnaire answered by four available teachers, three who had completed the problem 
solving module (Teachers 1, 2, 3), and one who had completed the algebra module (Teacher 4). 

Policy analysis and coding of module content 
In regards to the three policy dimensions (Trouche et al., 2013) the dominant policies of the BM are 
top-down, supportive, and collective, which of the top-down policy is not considered favourable in 
an implementation process. Despite the top-down policy, the teachers’ workflow has been highly 
organized in consideration to teachers’ needs, in terms of influence and practical relevance. We also 
see this in the developers’ (Researcher 1 and 2) awareness on imparting content in the modules 
towards teachers. This indicates that a top-down policy under certain conditions can support and 
organize several enablers. The supportive policy of the BM appears, for example, in the financial 
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contribution to participating schools and in the teachers’ access to counsellors. The financial support 
is limited to two modules, which lessens the extent of the support dimensions of the future use of the 
Lärportal. The BM was primarily influenced by a collective policy, which was central to the design 
of the Lärportal, with a few individual elements (Lauridsen & Gregersen, 2017).  

The coding of the content in the algebra module determines that it mainly contained sensitizing 
theoretical constructs and only a few elements of prescriptive theoretical constructs. On the contrary, 
the problem solving module mainly contained prescriptive theoretical constructs and only a few 
sensitizing constructs. These conclusions were confirmed by Researchers 1 and 2 (Lauridsen & 
Gregersen, 2017). Please note that the article ‘Programming and programming process’ has been 
added to the Algebra module April 2018 and is not included in the coding. When comparing the 
questionnaires answered by the teachers, some interesting statements about their learning outcomes 
become apparent. Teacher 4 stated that she mainly developed how she teaches the concept of equality 
and the meaning of the equality sign. This is particularly notable as the main theory in the algebra 
module was variation theory (Marton, 1981). For this reason, we analyzed the algebra module for 
content on the equality sign and the conformity of the presented and used theoretical constructs. We 
found that there were only a few mentions of actual research results on students’ difficulties and 
misconception on the concept of equality (Lauridsen & Gregersen, 2017). Kieran (1992) is cited, but 
the key findings on the need for experiences of complex arithmetic of the form ax + b = cx + d is left 
out. This fact leaves you wondering to what extent the changes in Teacher 4’s practice may have been 
supporting her students’ concept formation of equality. It thus becomes a question of merit concerning 
the accuracy in which research results are imparted to teachers, with which the definite findings and 
conclusions of the research are referenced in the text. 

Implementation analysis – enablers and barriers 
In this section, we analyze the BM for influential variables related to the three determinant factors of 
considering them as enablers or barriers, and further relate them to the policy dimensions as well as 
the categorized module content. 

Firstly, we analyze for enablers and barriers in relation to awareness-knowledge. Following Rogers 
(2003), access to mass media is a certain source to knowledge of the existence of the innovations. In 
the BM, the Lärportal represented a mass media where the teachers were able to achieve awareness-
knowledge on a range of mathematics education research. In continuation of this, it may be of a 
certain importance that the content was conveyed to teachers in a way that was understandable and 
therefore also accessible. Both Researchers 1 and 2 stressed that it had been an important part in the 
development of the modules that communication was targeted the teachers as receivers in the 
Lärportal. This indicates that the ways in which innovations are imparted to the receiver may be 
considered an enabler of awareness-knowledge. In the section above, we noticed the importance of 
imparting innovations with a certain degree of merit, to support guidance of teachers. The question is 
whether the teachers really do achieve awareness-knowledge, if the presentation of the innovation is 
not communicated with a certain degree of merit, e.g., that the key findings are stressed when research 
is referred. Hence, the lack of merit of the innovation conveyed, may be regarded as a barrier of the 
awareness-knowledge and hereby also the following implementation process in the BM. 
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Secondly, concerning how-to knowledge, teachers may obtain such throughout the implementation 
process. The Lärportal is a major source of how-to knowledge. Teacher 1, 2 and 4 described using 
the Lärportal, as they searched for videos and written suggestions for classroom activities to find 
inspiration during and after the BM. Consequently, the access to a mass media, containing how-to 
knowledge, can be considered an enabler in the BM. When comparing the types of knowledge in the 
algebra and the problem solving modules, the latter module mainly contains how-to knowledge (cf. 
above). Teacher 1 and 2 both implied that they now use the five-step model (Stein et al., 2008) as 
well as the four-phased process (Skolverket, 2017) in their practice (cf. above), i.e., the main 
theoretical constructs of the module. This suggests that mass-media access to how-to knowledge such 
as task suggestions and videos of classroom examples may be considered enablers. Teacher 4 had 
not, in the same manner, implemented the main theory, variation theory (Marton, 1981), in the algebra 
module, but she had gained a new perspective on planning classroom presentations focusing on 
students’ misconception. This implies that the teacher had gained some how-to knowledge through 
the planning and execution of the experimental practice in phase B and C as a way of implementing 
the principles-knowledge gained in phase A (cf. above). On this account, the experimental practice 
can also be understood as an enabler for how-to knowledge about the gained principles-knowledge 
and hereby for implementation. According to Rogers (2003), the more complex an innovation is, the 
more how-to knowledge is needed. This might be the case for Teacher 4. Complex theoretical 
constructs, such as variation theory, may become a barrier, when not supported with sufficient how-
to knowledge. Another example of this is found in the lack of development of socio-mathematical 
norms (Yackel & Cobb, 1996), which is documented in an evaluation of the BM (Österholm et al., 
2016). Researcher 2 confirms this: 

Researcher 2: [...] it is very easy to say that these norms are important, but how should you act as 
a teacher to change them? The norms are not something you can get to grips with. 
My guess is that teachers have been presented with too few concrete examples on 
how to work with these norms. 

Recall that the BM can be characterized as a collective policy. This entails that for the majority of the 
process, the teacher has access to an interpersonal source of how-to knowledge. This gives teachers 
access to colleagues’ experimental how-to knowledge. Trouche et al. (2013) argue that collective 
policies can be a support for implementing a technology. The same argument seems to withstand 
when it comes to implementing research findings in mathematics education into practice. The 
collective processes in the BM may, therefore, be viewed as enablers for how-to knowledge.  

Thirdly, we analyze enablers and barriers regarding the last determinant factor for implementation 
(Rogers, 2003), i.e., the subject’s experience of relevance of the innovation. We do so based on two 
examples of the teachers’ work with the two modules. The first example is based on that we 
previously made it clear how Teacher 4 continued the use of her new knowledge of the equality sign 
after having ended her work with the BM. Following Rogers (2003), this continuous use of the 
mathematics didactical knowledge is a sign of a successful implementation. In relation to relevance 
of the theoretical constructs, Teacher 4 expressed her experience of relevance of the didactical 
research concerning the equal sign: “...as it is so important and frequently used in mathematics” (our 
translation). Our second example is from Teacher 3, who verbalized: 
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Teacher 3: I do not think the Boost for Mathematics was a good “boost”. The information it 
provided was for example the kind of material that we had used in our school for 
several years [...]. There was no new and inspiring tasks to use, which was sad in 
the view of it all. (our translation) 

We regard this as an expression of a lack of experience of relevance. Teacher 3 was already aware of 
the presented strategies and theories in her current practice. This is of course not the same as her 
considering the content of the problem solving module irrelevant, only it was not relevant to her. This 
indicates that if the teachers are not presented with anything new, i.e., no innovation, it can become 
a barrier for their experience of relevance of the BM. In our further analyses of Teacher 3’s 
questionnaire answers, we see no indication of a use of theories from the BM. Hence, for Teacher 3 
the BM must be considered an unsuccessful implementation.  

To understand the enablers and barriers of the teachers’ possibilities of having an experience of 
relevance, we examine the primary differences at the two modules. Recall from the previous section 
that the theoretical content in the algebra module was mainly sensitizing while it was mainly 
prescriptive in the problem solving module. It is relevant to consider the extent to which this might 
influence enablers or barriers in the teachers’ experience of relevance. Previously we illustrated the 
connection between prescriptive theory and how-to knowledge and sensitizing theory and principles-
knowledge, respectively. In the second example, Teacher 3 primarily met prescriptive theoretical 
constructs in the module and thereby descriptions of phases and steps about how to teach problem 
solving. ‘Unfortunately’ Teacher 3 already had an existing practice built on these phases and steps. 
According to Rogers (2003), a principles-knowledge can contribute to a better understanding of why 
something works. This understanding of ‘why’ can qualify ‘how’ one does things in practice. 
Therefore, a sensitizing theory might possibly have contributed with an understanding as to why 
Teacher 3 already did as she did in her practice, and thus support further development. In this way, 
the principles-knowledge can become an enabler of the teachers’ experiences of relevance in the BM. 
In the first example, Teacher 4 primarily met principles-knowledge. This gave her an opportunity to 
understand why the teaching of the concept of equality is important and not just how she should teach 
it. This again indicates that principles-knowledge is an enabler for the teachers’ experience of 
relevance in the BM. As mentioned earlier, one of the policies of the BM was a top-down policy. In 
contrast to a bottom-up policy, this increases the probability of one encountering already known 
innovations that might already part of one’s daily practice. Based on the analyses of Teachers 3 and 
4 and in the context of BM’s top-down approach, it might be an advantage that the teachers also 
acquire principle-knowledge, since principles-knowledge may act as an enabler of experience of 
relevance in the top-down policy context. 

Conclusion  
In the analysis, we have identified a number of enablers and barriers in the BM and we have attempted 
to link the existence of these to the identified policy dimensions of the BM as well as the modules’ 
use of sensitizing and prescriptive theoretical constructs from mathematics education research. 

In particular, the main findings concern implementation programs with a top-down policy. Within 
this policy we see that the experience of relevance is challenged if the content is mainly how-to 
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knowledge. We support this claim by the example of Teacher 3 not experiencing anything new in the 
BM. To accommodate this we argue that principles-knowledge can support the teachers’ further 
insight into the innovation. Such understanding of ‘why’ may upgrade the quality of ‘how’ the 
teachers do things in practice, and make the content relevant for the teachers. Following this 
argument, we find that principles-knowledge enables the experience of relevance, which is 
determinant for implementation. With this in mind, we suggest that future mathematical education 
implementation programs with a top-down policy consider the content balance of how to-knowledge 
and principles-knowledge. Furthermore, it could be an object of investigation in the research 
community to understand the balance and synergy of knowledge-types in implementation programs.  

In addition, the degree of merit that innovations are imparted with influence all three determinant 
factors. It can be argued that the importance of selecting relevant innovations and how they are 
conveyed is fundamental to avoid misguidance of teachers’ practice. It becomes clear that success of 
implementation in a mathematics education context is not limited to Rogers’ (2003) definition of an 
innovation merely being put into use; the implementation of the innovation must lead to a change for 
the better – not least as perceived by the end uses, in our case the teachers. We must take into account 
Schumpeter’s (1934/1961) claim that an innovation should entail a valuable change in practice. This 
supports the need for defining innovations as subjectively novel, which bring about valuable changes 
in practice when dealing with implementation processes in mathematics education. Before 
determining content knowledge in implementation programs, conducting reviews and using solid 
findings (Education Committee of EMS, 2011), may be one feasible way to accommodate valuable 
changes. 
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Abstract. In this paper, we aim to understand, in a context of teachers’ collaborative group, how 
emphasizing multiple representations can contribute to the learning of the rational numbers by 
elementary school students. We report part of a Design Based Research, within which a learning 
path for rational numbers was constructed and implemented in grade 3 classes. Data was collected 
through audio recordings of the collaborative group sessions, written records of the teachers’ and 
students’ interactions, as well as photo records of classroom work. We analyse two tasks focusing 
on students’ rational number learning of two classes, through discussion and reflection in the 
collaborative group. The results show that enactive and iconic representations, used as models in a 
recurrent way, support an intertwined understanding of symbolic representations. We conclude that 
the collaborative group work was essential to bring research into the classroom. 

Keywords: Rational numbers, representations, elementary school, collaborative work. 

 
Introduction  

In mathematics education research, learning and understanding rational numbers is a very important 
and complex topic (Behr, Lesh, Post, & Silver, 1983; Tian & Siegler, 2018). This complexity 
relates to the multiple representations and meanings that rational numbers can assume. Although 
research provides clues about how different representations can be articulated, with understanding, 
at an early stage of students’ learning (e.g., Moss & Case, 1999), its effective implementation in the 
work carried out in the classroom seems hard to reach. Thus, we seek to implement mathematics 
education innovations into practice within an implementation research perspective (Century & 
Cassata, 2016). In this paper, we aim to understand, in the context of the collaborative work of a 
group of teachers, how research-based ideas on emphasizing multiple representations and models 
(Guerreiro, Serrazina, & Ponte, 2018; Morais, Serrazina, & Ponte, 2018) may contribute to the 
learning of the rational numbers, by elementary school students. 

Multiple representations in learning rational numbers 

When learning rational numbers1, students should realize that the same rational number might be 
expressed in different symbolic representations, such as decimal number, percentage or fraction. 
                                                           
1 We use the term “rational numbers” to designate non-negative rational numbers. 
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Besides these, enactive and iconic representations (Bruner, 1999), actions and images, respectively, 
and oral and written language (Ponte & Serrazina, 2000), a supporting mode of representation at the 
early grades, should also be considered. These types of representations are considered useful in the 
development of students’ conceptual understanding as they help them to track ideas and inferences 
when reflecting and structuring a problem. 

Moving across different types of representations is essential for the recognition that each 
representation presents a different perspective of rational numbers, and students’ understanding 
develops as the number of perspectives increases (Ponte & Quaresma, 2011; Tripathi, 2008). 
Gravemeijer (1999) reinforces that a model emerges when it is underpinned by representations. In 
this emergent modelling process, representations become models, as they allow a direct modelling 
of a contextualized situation and support the development of more formal mathematical knowledge 
(Gravemeijer, 1999). Consequently, learning rational numbers through models, at the elementary 
grades, may be a dynamic process required to co-develop representation and conceptual understanding.  

Contexts, within which representations can be perceived as models, are fundamental to understand 
and establish complex and meaningful relations (Brocardo, 2010). The number line, with an implied 
measure meaning, and the decimat (Roche, 2010) that emphasizes a part-whole meaning, are useful 
representations that highlight the multiplicative structure of rational numbers. Post, Cramer, Behr, 
Lesh, and Harel (1993) highlight the role of representations in understanding rational numbers, 
relating it to the flexibility with transformations between and within rational number 
representations. Thus, students’ flexibility in making transformations involving different 
representations can show their understanding of the rational numbers involved (Post, Wachsmuth, 
Lesh, & Behr, 1985).  

Recognizing the same rational number across different representations is an outcome of a global 
coordination of representations, which in turn empowers mathematical reasoning (Duval, 2006). 
The transformations of representations, which support translation between different representations 
of rational numbers, are central in the mathematical activity (Duval, 2006), and the analysis of these 
transformations provides a lens to access students’ mathematical reasoning processes, as solving 
strategies and justification (Mata-Pereira & Ponte, 2017).  

Methodology 
This study follows a design-based research approach (Cobb, Jackson, & Dunlap, 2016). It focuses 
on two grade 3 classes (8 years old) students’ learning. These classes belong to two teachers that 
participate on a collaborative group of five teachers, with the first author as a regular member. The 
group has been meeting weekly for about ten years to plan classes lessons together. In different 
ways, all teachers have connections to the research field, in which they seek to support their 
professional practice. 

To face the demand of learning rational numbers in grade 3 (a national curriculum determination) 
with understanding, the group decided to construct a learning path, a trajectory for learning rational 
numbers, that promoted an active engagement of students in the construction of knowledge through 
meaningful tasks. Thus, along with the first author, the second author also integrated the group as 
invited researcher, with the purpose of sharing key ideas of ongoing studies to be discussed in the 
group (Guerreiro, Serrazina, & Ponte, 2018; Morais, Serrazina, & Ponte, 2018) and support the 
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construction, implementation and reflection of tasks. Together, teachers and researchers, 
collaborated for developing the learning path, meeting those students, with the aim of implementing 
theoretical ideas identified as key in the learning of rational numbers, understood as innovations 
(Century & Cassata, 2016). All the three teachers put the learning path into action, but only two, 
Hélia and Sandra, actively participated in all the sessions of collaborative group, thus being 
participants in this research. These sessions were held once a week, according to the school 
calendar, between February and June of 2018. 

The need to intertwine different symbolic representations of rational numbers, supported by several 
representations used as models, like common batteries icons or status bars, but also the multibase 
arithmetic blocks (MAB) or the decimat, which make explicit the “ten-ness” of the base ten place 
value system (Roche, 2010). This was one of the guiding principles of the learning path constructed 
and implemented, within this design-based research. This path privileged the symbolic 
representations of percentage (Phase 1), decimal number (Phase 2 and 3), and fraction (Phase 4), 
using part-whole and measure meanings, according to the sequence presented in Figure 1. 

PHASE 1 PHASE 2 PHASE 3 PHASE 4 

Percentage 
Decimal number 
Fraction 

Percentage 
Decimal number 
(hundredth) 
Fraction (decimal) 

Percentage 
Decimal number 
Fraction (decimal) 
 

Percentage 
Decimal number 
Fraction 
 

Status bar 
Batteries 
Number line (double and 
simple) 
 

Status bar 
Bottles 
Number line (double 
and simple) 
 

Number line (double 
and simple) 
MAB 
10x10 grid 
Decimat 

Number line (double and 
simple) 
Without models 

 

Figure 1: Implemented learning path of rational numbers 

Data was collected through audio recordings of the group sessions, collection of written records of 
the teachers, the written works of students (brought by the teachers for the sessions), as well as 
photo records made by teachers during classroom work. 

We focus the analysis on two tasks, Task A and Task B, solved by students, which were carried out 
in Phase 3 of the learning path. Data analysis is centered on students’ use of representations as 
models, and on how they use and relate different symbolic representations.  

Results 
Task A 

Before task A, students were asked to fill and empty five bottles in order to establish relationships 
between their capacities, and associate labels written in decimal numbers to each bottle (Figure 2). 

 

 

 
 

Task A 
 
 
 
  

Task B 
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Figure 2: Labeling bottles task 

Two bottles had the same capacity, and two labels represented the same quantity: 0.5 l and 0.50 l. 
At the group session when the work carried out in this task was discussed, the teachers identified 
the need to lead students to justify the equality between the representations 0.5 and 0.50: 

Hélia:  Now that we have finished [the task] the filling of the bottles and they realized 
that five tenths are equal to fifty hundredths but they don’t know why. . . So, we 
could go from there...  

Helena:  To the equivalence with different representations.  

. . .  

Hélia:  So, I will ask why fifty hundredths are the same as five tenths, because I want 
them to be able to justify... 

Although Sandra suggested that the status bar could be used as a support representation for task A, 
the group discussed that it would be important to promote the use of the number line, recognizing 
the need to evolve to a more formal representation. 

Sandra, referring to her students, suggested that the double number line could be presented with 
marks corresponding to tenths and, eventually, to hundredths: 

Sandra:  In my class... I usually focus their [students] attention on “Into how many [parts] 
is [the unit] divided? So, they are how many of how many?” That’s why we came 
to this [suggested way to divide the number line] . . . 

This suggestion stems from the fact that Sandra acknowledges that her students had already 
explored rational numbers mainly with a part-whole meaning, which had been associated with the 
fraction representation. Hélia recalls that her students used, above all, the decimal fraction with 
denominator one hundred, because percentage was a reference for them: 

Hélia:  When I call upon fraction it’s always decimal fraction with hundredths . . . 
Because for them percentage is... Is their guiding line! 

Thus, in anticipating how her students would relate 0.5 and 0.50, Hélia suggests that 50% should be 
already presented in the double number line: 

Hélia:  Let’s just start by asking. They will realize that fifty is because it is divided... The 
percentages here... I think that it should be 50% already represented... 

However, the group discussed that by dividing the number line in that way, in order to include other 
symbolic representations, could restrain students when choosing a representation to justify. 
Therefore, the group decided to present only the representation in decimal number to, on one hand, 
focus the question in this specific equivalence and, on the other hand, to allow the students to 
mobilize representations on their own. 

The task implementation showed that the students used different kinds of justifications. Sandra 
mentioned that her students justified the equality between 0.5 and 0.50 by presenting arguments 
based on an enactive representation, related to what they had experienced in the labeling bottles 
task: 
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Sandra:  They concluded that five tenths are equal to fifty hundredths because these bottles 
had the same capacity… 

These arguments seem to show that, in this task, the students understood the symbolic 
representation of a decimal number as a label that identifies a certain amount of water, an 
understanding that is strongly linked to the context. The meaning that the students give to the 
decimal number symbolic representation was based on an enactive representation. 

The arguments used by Hélia’s students show an understanding of the symbolic representations 
involved without needing to refer to their experience in the task of labeling bottles. 

Hélia:  Almost all the groups [of students] concluded that in five tenths we have the unit 
divided in ten parts, and that in fifty hundredths we have the unit divided in one 
hundred parts… 

The meaning that the students assign to the symbolic representation in decimals is supported by the 
interpretation of the number line and other representations, such as the decimal fraction (Figure 3). 

 

Explain why 0.5 is equal to 0.50, 
considering the number line: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.5 is divided in 10. 5/10 

0.50 is divided in 100. 50/100 

Figure 3: Written record of a student from Hélia’s class – Task A 

In this way, the students seem to recognize the same number in different representations, which 
they mobilize to justify the equivalence between 0.5 and 0.50. In this phase of the learning path, in 
addition to the enactive representation of the bottles and the number line iconic representation, the 
decimat was another important representation for the understanding of the decimal number 
representation. 

Task B 

In Task B, the students were asked to represent the shaded areas of the decimat, in percent, decimal 
number and fraction. The written record presented in Figure 4 illustrates how a student from 
Sandra’s class used the decimat as a model, as the student gives meaning to this representation, 
using percentage to keep track of the relations established. 

  

10%, half 5% [rectangle A] 
1%, I have divided into 10 the 100 

[hundredth, rectangle B]  

1000 [rectangle C] 

Larger rectangle = 100% 
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Figure 4: Written record of a student from Sandra’s class – Task B 

The student interpreted the decimat that she named as the larger rectangle, as 100%, associating 
each rectangle A to 10%. She identified half of 10% as 5%, which she justified by tracing half of a 
rectangle A. She interpreted rectangle B as 1%, justifying it with the division of 100, which she 
seems to relate to one hundredth, by 10. She also pointed rectangle C as “1000”, which seems to 
show that the student identified the relation 1/1000 of this rectangle with the larger one. Thus, the 
student seemed to have understood the relationship between each shaded area in the decimat. 

Hélia agreed that this model allowed her students to visualize and mobilize different symbolic 
representations, facilitating their interrelation. This is evident when Hélia reflected on another task 
involving the decimat: 

Hélia:  For my students it was a systematization… This construction was essential. For 
example, my students looked at the decimat and most of them said that it was 
[shaded] 30%. 

The use of this iconic representation was highly valued by the teachers as a “systematization 
representation”, as Hélia mentioned, considering the phase of the learning path in which it was 
used. Although the decimat representation is usually perceived as related to the decimal number 
representation, it supported and triggered other representations such as percentage.  

Final remarks 
Considering that the aim of this study was to understand how emphasizing multiple representations 
could contribute to the learning of rational numbers in the elementary school, this study shows that 
a work involving the interrelation of percentage, decimal number and fraction, is very promising in 
the initial approach of the learning of rational numbers. 

We emphasize that the understanding of these symbolic representations, and their relations, is 
supported by the use of enactive and iconic representations (Webb, Boswinkel, & Dekker, 2008), in 
a recurrent way. Enactive and iconic representations were used as models, leading students into the 
establishment of relationships (Gravemeijer, 2004), between and within the same type of 
representation. Therefore, enactive and iconic representations allowed the emergence of symbolic 
representations with understanding. 

Even though the learning path was constructed according to the sequence of symbolic 
representations, percentage – decimal number – fraction, the students mobilized the representation 
that they considered most appropriate to justify the equivalence relation. This ability shows an 
apparent confidence in working with rational numbers, considering the initial stage of these 
students’ learning of this concept. In this way, a work focused on the understanding that the same 
number can assume different representations, not only symbolic, but also enactive and iconic, 
contributed to the students’ conceptualization of rational number. 

The fact that the Portuguese curriculum does not emphasize percentage at grade 3, as a rational 
number representation, could be considered an obstacle to the implementation of the intervention. 
However, the fact that the collaborative group was willing to develop a learning path comprised by 
key research findings overcame this obstacle. The teacher group already had a joint work routine 
prior to this study facilitated the sharing environment created. This was a factor that influenced the 
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effectiveness of this intervention. Those teachers used to plan and reflect together and, with 
researchers, they got confidence in constructing and implementing the learning path, a common aim 
that provided a desirable gateway for implementing research in the classroom. A discussion about 
how to echo this experience on a larger scale is still much needed to enhance its beneficial effects in 
new contexts (Century & Cassata, 2016). 

We highlight the relationship between theory and practice in this study: theory found a way to 
support practice, identifying the guiding principles of this intervention, and practice provided clues 
for problematizing theory, necessarily refining those principles. On one hand, the learning path of 
rational numbers was constructed based on previous research, which emphasizes the crucial 
articulation among symbolic representations of rational numbers (e.g., Moss & Case, 1999; Ponte & 
Quaresma, 2011; Tripathi, 2008). On the other hand, the practice informed that not only this 
articulation is possible at the elementary school grades, but also that it benefits from a continuous 
work that embeds other types of representations. 
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SUM is a four-year research and developmental project with the aim of contributing to coherence in 
children’s and students’ motivation for, activities in, and learning of mathematics throughout the 
educational system from kindergarten to higher education. The concept of inquiry is key in the 
project, and it involves the implementation of different types of theories and methods related to 
inquiry based mathematics teaching (IBMT) at three systemic levels: (1) The students’ inquiry in and 
with mathematics. (2) The teachers’ use of inquiry based mathematics teaching as a means for 
supporting the students’ learning and inquiry into their own practice across a particular transition. 
(3) Inquiry into the interplay between the development of teaching practice and research in IBMT. In 
this paper, based on the project design and preliminary findings from the implementation, we discuss 
the project as an implementation of theory at these three levels, with a particular focus on level 2.   

Keywords: Professional development, teacher collaboration, inquiry, mathematics.    

Introduction 
In this paper, we present and discuss how the design of a four-year professional development project 
called SUM can facilitate the implementation of research findings related to Inquiry Based 
Mathematics Teaching (IBMT) as a means for creating better coherence across important transitions 
in the educational system. Strategically, the project focuses on five transitions in the educational 
system where particular challenges with developing and retaining students’ motivation for and 
learning of mathematics are evident in teaching practice and in research. The principles behind the 
design of the project are based on research findings in the mathematics education literature 
specifically related to IBMT. Therefore, this paper can be seen as a case study on how professional 
developmental projects can be a vehicle for implementation of theories in the practice of mathematics 
teaching.  
The project design is based on a broad understanding of IBMT going back to the educational 
philosophy of Dewey (Artigue & Blomhøj, 2013). More specifically, in SUM we conceptualize and 
operationalize the inquiry concept at three different systemic levels developed by Jaworski (2004, p. 
24): (1) the children’s and students’ inquiry in and with mathematics; (2) the teachers’ inquiry into 
their own practice and their use of IBMT as a means for supporting students as learners; (3) inquiry 
into the interplay between the development of teaching practice and research in IBMT. These three 
levels of inquiry have formed the project design and structured the application. In that sense, as a 
research and professional development project, SUM is an implementation of a general theory of 
inquiry also used in other projects (Bjuland & Jaworski, 2009).  
Coherence is another key concept in the project. In SUM, the fundamental premise and proposition 
is that we can help create and sustain coherence at each of the three levels through inquiry. However, 
as with the term inquiry, the term coherence takes different meanings at each of the three systemic 
levels. At level 1, the focus is on children’s and students’ motivation for, activities in, and learning 
of mathematics. The term coherence here refers to how students can make sense of mathematics, 
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maintain their joy of, and develop a deep understanding of mathematics. In other words, coherence 
means that students’ experience mathematics as a meaningful, relevant, and consistent subject. 
However, we cannot expect students to develop these desirable characteristics on their own. Students 
need opportunities to develop productive habits and deep conceptual knowledge for creating and 
maintaining a joy of and to make sense of mathematics (Schoenfeld, 2014). This leads us to level 2.  
At level 2, coherence refers to the teacher’s practices and their knowledge and beliefs about IBMT 
and challenges related to students’ learning in general, and across the particular transitions in the 
system of mathematics teaching in particular. For students to experience mathematics as a meaningful 
endeavor both in general and across transitions, teachers have to, among many things, create a 
learning environment that involves inquiry through investigative activities such as experiments, 
problem solving, and modelling. The aim of the project is that the teachers can develop mathematical 
and didactical competences, through inquiry into their own practice and IBMT, for a practice of 
teaching that provide students with these types of learning environments. 
At level 3, the focus is on the coherence between the development of practices of teaching and 
research in mathematics education. Nearly all professional practitioners, including teachers, 
experience a gap between theory and practice (Schön, 1983). This dilemma is also closely related to 
what Nilsen (2015) calls determinant frameworks. Determinant frameworks describe and help 
identify types of determinants, which act as barriers and enablers that influence implementation 
outcomes. Determining barriers and enablers, both at a systemic and individual level, is a key element 
in creating coherence between research in IBMT and development of teaching practice 
At each of the three systemic levels, coherence also refers to the issues related to academic transitions 
in mathematics. As students move through the school system, the mathematics instruction, 
opportunities to engage, expectations, mathematical concepts and ideas, classroom norms etc. are all 
likely to change – in particular in transitions between key academic levels. These transitions are a 
potential risk to students’ academic progress, unless they are managed well (McGee, Ward, Gibbons 
& Harlow, 2003). 
The basic premise of the SUM project, and central claim of this paper, is that IBMT has a potential 
for meeting these demands at the three systemic levels. In this paper we address the following research 
question with a particular emphasize on the implementation of inquiry at level 2:  
In what way does the design of the SUM project support the implementation of IBMT as a means for 
creating better coherence? 
To answer this question, we will explain how research related to IBMT has been implemented in the 
design of the project, and report on some preliminary findings that show how this design of the SUM 
project has helped create better coherence. In this paper we explain how inquiry is implemented – i.e. 
conceptualized and operationalized – in the design of the project at each of the three systemic levels, 
and how it can help create better coherence across academic transitions. Due to the limited scope of 
this paper, we then focus more closely on one of the systemic levels, and provide an example of how 
theory related to IBMT has been implemented at level 2. We highlight in particular a 3-phased 
didactical model that has been developed to help organize and design IBMT lessons. Finally, we 
present some preliminary findings from the project, and discuss how this implementation of inquiry 
at level 2 in the design of the project has helped teachers incorporate investigative activities in their 
own practice – and thus helped create a better coherence between teachers’ practice of teaching and 
the intentions for the development of students’ beliefs about mathematics and their mathematical 
learning.  
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The organizational structure of SUM 
However, a quick description of the project is needed. SUM is the acronym in Norwegian for 
“Sammenheng gjennom Undersøkende Matematikkundervisning”. In English, the title is “Coherence 
through inquiry based mathematics teaching”. The project is based at the Artic University of Norway 
in Tromsø (UiT), and financed by The Norwegian Research Council for the period 2017- 2021. The 
SUM project is organized around five transitions in the educational system where students typically 
experience a discontinuity in their mathematics teaching: 

Kindergarten (T1) ® Primary school (T2) ® Middle school (T3) ® 
Lower secondary (T4) ® Upper secondary (T5) ® University 

The organizational structure of SUM is in accordance with what we know about effective professional 
development (PD). Research has shown that effective high-quality PD possesses a robust content 
focus, features active learning, is collaborative and job embedded, aligned with relevant curricula and 
policies, and provides sufficient learning time for participants (Desimone, 2009). 
The SUM project has a robust content focus that is also aligned with current curriculum reforms in 
Norway. An important part of the work in the transition groups is to identify challenges related to the 
transition in question. These challenges are related to the learning of key mathematical concepts such 
as for example the number line as a model for natural, whole and rational numbers at the transitions 
T1-T3, or on how to support the coherence and progression across a transition with regard to 
particular mathematical competences such as for example mathematical reasoning or modelling 
competence. Such competences and deep learning of key concepts are playing a dominant role in an 
ongoing curriculum reform for mathematics teaching from primary to upper secondary level in 
Norway (Kunnskapsdepartementet, 2016). 
The SUM project also has a clear focus on active learning, job-embedded collaboration, and sufficient 
learning time. For each of the mentioned transitions, a group of 8-14 mathematics teachers from 
school and/or kindergarten (as for T1) is formed. There are at least two teachers from each 
participating school. Each group is led by two or three mathematics educators from the project team 
at the university. Currently, around 55 teachers are participating in the project. For three consecutive 
school years each group work together on identifying and discussing challenges regarding students’ 
learning of mathematics across a particular transition. In collaboration and with support from the 
group leaders the teachers develop, implement and evaluate IBMT with the explicit aim of helping 
the students to overcome the identified challenges and to contribute to a better coherence across the 
transition in focus for the group.  
It should be mentioned that SUM includes a particular focus on IBMT as a means for developing a 
cultural responsive approach for supporting the coherence in mathematics teaching for Sámi children. 
One of the transition groups consist of teachers at a Sámi school working at both T1 and T2.  

Implementing IBMT in the SUM project 
As mentioned, the inquiry concept is coming into play differently at the three systemic levels. At 
level 1 and 2 it is in the form of IBMT, while at level 3 it is inquiry as part of the research process. 
The implementation of inquiry at each of the three systemic levels consists of a further 
conceptualization and operationalization, which is discussed below.   
At level 1, inquiry means that students are learning mathematics through exploration in tasks and 
problems in the classroom. The aim is to help students develop and maintain the joy of, motivation 
for, and coherence in their learning. For students to experience mathematics as a meaningful 
endeavor, they need to, among other things, struggle with “important mathematics”. The term struggle 
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does not mean that students should waste time on extreme levels of challenges that lead to needless 
frustration. Struggle, in this context, means that students should expend effort, explore, investigate 
and make sense of problems and situations that are not immediately apparent (Hiebert & Grouws, 
2007). This view of learning as a result of reflective inquiry and meaningful struggle is a key aspect 
of IBMT. In the SUM project, we put special emphasis on IBMT as a means for developing and 
maintaining the students’ interests for and joy of working with mathematics, both in general and 
across the transitions. Through problem oriented activities the students should have the opportunity 
to experience the joy of solving problems, which they to begin with find challenging.  
At level 2, inquiry means that teachers explore and reflect on the design and implementation of tasks, 
problems and activity in classrooms. The teachers use inquiry as a tool to explore teaching, alongside 
researchers and other teachers who offer both theoretical and practical support. The teachers also 
develop their practice through successive cycles of inquiry, working in their own classroom, 
interpreting a design they have produced in collaboration with researchers and other teachers 
(Jaworski, 2004). Through this inquiry into their own practice and IBMT, the aim of the SUM project 
is that the teachers can develop mathematical and didactical competences for a practice of teaching 
that provide students with learning opportunities that help them develop and maintain the joy of, 
motivation for, and coherence in their learning of mathematics – with a particular focus on challenges 
related to academic transitions. In the transition groups we present and discuss with the teachers a 
number of different activities spanning the options of IBMT at that particular transition, Together 
with the didactical structure presented below, these examples and the related discussion help the 
teachers in developing their own inquiry based activities.    
At level 3, the focus is on how to facilitate interplay between developments of practice and research 
of IBMT. Here, inquiry is a tool used by both researchers and teachers for understanding the 
relationship between theory and practice. This is primarily accomplished through co-learning 
partnerships, in which researchers and practitioners are both participants in processes of using inquiry 
as a tool for understanding the relationship between theory and practice. Through a close 
collaboration in designing, implementing, and reflecting on IBMT, both teachers and researchers can 
develop a better understanding of each other’s’ worlds (Jaworski, 2004). The SUM project is designed 
for providing exactly such opportunities for collaboration over three school years between teachers 
representing different grade levels, and in some cases also different institutions, and researchers in 
mathematics education. In close collaboration the groups will go through the process of designing, 
testing and evaluating inquiry based courses three times each school year and nine times during the  
project. In that sense the design of SUM builds on what is known about developing IBMT in interplay 
with research (Boaler, 2008; Artigue & Blomhøj, 2013). 

Implementing IBMT at level 2: The teachers’ development of IBMT in their practice 
In the beginning, the work in the transition groups focus on level 2. The teachers need support for 
seeing IBMT as a didactical means for engaging the students in formulating and solving mathematical 
problems and using mathematics to describe and analyze real life situations. In addition, it is 
important for the teachers to see that such activities can motivate students and, at the same time, help 
them understand mathematical concepts and ideas that are essential for their mathematical learning 
across a particular transition.      
The teachers need support for developing and teaching IBMT in their own classes. To that effect at 
the first seminar in the transition group, the teachers were introduced to a 3-phased didactical model 
for structuring inquiry based activities or courses. The model was exemplified with different types of 
inquiry based activities and courses relevant for the particular transition. The examples variated with 
respect to duration from one-lesson activities to 5-8 lessons courses, the degree of freedom given to 
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the students, and the degree to which the activities was stirred by a mathematical focus or by an extra 
mathematical problem or situation.            
The 3-phased didactical model for structuring IBMT includes these elements: 
Phase1: Setting the scene for the students’ inquiry work. This phase could involve: telling a story, 
refer to or create student experiences to motivate the inquiry work; establishing a challenge or a 
problem in a context that makes sense for the students; creating classroom dialogues about the 
meaning of the situation; motivating the activity or problem—how could this be fun or interesting 
and important for life and/or mathematics?; establishing and communicating the didactic environment 
for the students’ work, i.e. the temporal and practical conditions of the work; and presenting and 
arguing for the product requirements and assessment format. 
Phase 2: The students’ independent (of the teacher) investigative work. In this phase the students’ 
should have: sufficient time, freedom, resources and support for their investigative work; support 
through dialogues with the dominant questions to groups or individual students being: What are you 
thinking?, How did you find out?, Why is it right?, What if ..? 
Phase 3: Supporting the students’ learning of mathematics through sheared reflections in class. In 
this phase the teacher should: let the students shear their experiences and results and related 
reflections; organize the students’ presentation of their working process, products and results; 
facilitate classroom dialogues focused on the mathematical elements in the work; help systematizing 
the results for the class; pinpoint key ideas, concepts and methods in the students’ work; try to build 
sheared mathematical knowledge in the class rooted in the students’ work; use multiple mathematical 
representations and make connections to the students’ previous mathematical knowledge.  
This 3-phased model provide a good starting point for the collaboration among the teachers and 
between teachers and the researchers in the transition groups. The model was presented in the 
transition groups together with lists of essential student and teacher activities in each of the three 
phases. In addition, in each group some examples of inquiry based activities relevant for the transition 
in question were presented and discussed. The examples variated from relatively closed mathematical 
or practical problems over systems of connected problems forming a landscape of investigation to 
more open thematic investigations and modelling activities as illustrated in (Artigue & Blomhøj, 
2013). Together, these elements supported the teachers in developing and planning inquiry based 
activities in their own teaching. At the transition groups meetings, the model structured the 
discussions and made it possible to focus on specific issues of IBMT at the transition in question. For 
instance, at the first meeting, the focus was on establishing a challenge or a problem in a context that 
makes sense for the students, and to set scene for the students’ inquiry activities. This is in line with 
several other development projects on IBMT (see vol. 45, issue 6 of ZDM, 2013), where this or 
similar models has shown to be instrumental for the teachers’ operationalization of IBMT.  
A short example illustrates how the teachers used the 3-phased model. In this example, taken from 
upper secondary school, both the teacher and the students had little experience with IBMT. The 
students had been working on quadratic equations for a few weeks, and the teacher wanted to use 
IBMT in order for the students to get a better understanding of what each term in the equations meant. 
In one of the lessons, the teacher first set the scene by showing the students a visual proof of the 
identity (𝑎𝑎 + 𝑏𝑏)2 = 𝑎𝑎2 + 2𝑎𝑎𝑏𝑏 + 𝑏𝑏2. She then asked the students to make a visual proof of 
(𝑎𝑎 − 𝑏𝑏)2 = 𝑎𝑎2 + 2𝑎𝑎𝑏𝑏 + 𝑏𝑏2. During the second phase, the students’ investigative work, she tried to 
provide constructive feedback that led the students in a productive direction. At the end of the lesson, 
the students were asked to present their solutions, and their findings were tied into how they could 
solve quadratic equations by completing the square.  
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This example illustrates how one of the teachers used the 3-phase model to implement, gradually, 
IBMT into her own teaching. Although this particular lesson is a structured and strongly guided 
example of IBMT, it is an example of how the 3-phased model helped the teachers to gradually 
include IBMT in their own teaching. The teacher expressed that the 3-phased model had helped her 
plan and implement IBMT when she first joined the project, as it had reduced the larger and more 
complex task of developing IBMT lessons into smaller sub-tasks in each of the 3 phases. In particular, 
the 3-phased model had helped clarify her role during an IBMT lesson.    

Research context and methods 
The main research goal of the SUM project is to contribute to the further theoretical development of 
IBMT and researching its potentials and limitations for overcoming challenges in the practice of 
mathematics teaching related in particular to the five transitions. In order to fulfill this and other sub-
objectives, several methods of data collection have been, and will be, employed. In this paper we 
report on some preliminary findings specifically related to the implementation of IBMT at level 2. 
More detailed analyses will be presented in later papers, with more specific scopes. The findings in 
this paper are based on preliminary analyses of focus group interviews and recordings of transition 
group meetings throughout the first year in transition group five (TG5).   
TG5 consists of six mathematics teachers from three upper secondary schools, three mathematics 
instructors who teach mathematics at tertiary level, and two mathematics education researchers. Each 
meeting of TG5 during the first year of the project was recorded. The participants of TG5 was also 
interviewed in focus groups at the end of the first year of the project. These transition group meeting 
recordings and focus group interviews covered a large set of subjects and themes, but for the purpose 
of this paper we focused only on statements and discussions related to the teachers’ exploration and 
reflections on the design and implementation of IBMT in their classrooms.  
Both the transition group meeting recordings and focus group interviews were first transcribed, and 
then analyzed using an inductive qualitative content approach. For each interview and transition 
group meeting, we extracted all text components that captured some aspects of the design and 
implementation of IBMT in the teachers’ own classrooms. We then formed categories, across the 
interviews and transition group meetings, which summarized the teachers’ experiences and 
reflections. In the next section we report on some of the key findings from this analysis. 

Findings 
We found that the 3-phased model, and the design of the SUM project in terms of inquiry at level 2, 
in general helped the teachers design and implement IBMT in their own lessons. There were several 
reasons for this, most of which were tied to specific challenges in designing or implementing IBMT.  
One of the strongest findings was related to the design of IBMT. All of the teachers said they had 
little experience with open-ended activities and problems, and therefore found it difficult to design 
such activities themselves. One teacher said for instance that she “didn’t know how to come up with 
problems and activities like the examples they were given in TG5”. Other teachers expressed similar 
thoughts, and said it was difficult coming up with good tasks or activities that were open-ended, 
relevant for the content-specific syllabus, and also interesting for the students.  
There were also several issues related to the implementation of IBMT lessons and tasks. The teachers 
found it slightly uncomfortable to give up control of the lessons, and allow the students to investigate 
and explore more freely. A majority of the teachers said that it was difficult to let students work on 
tasks and problems, without correcting the students. Three of the teachers even said that this lack of 
clear instructions and corrections could lead to students developing content-related misconceptions. 
They explained further that misconceptions had to be dealt with early and resolutely. Another 
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challenge, was the large difference in terms of skills and knowledge between the students. Some 
students struggled with even the most basic aspects of the IBMT lessons, while other students solved 
the more difficult tasks with a fair bit of ease.  
However, in spite of the challenges related to the design and implementation of IBMT, all of the 
teachers in TG5 expressed that the 3-phased didactical model alleviated to some extent these 
challenges. The teachers agreed that it provided them with a more structured approach for designing 
IBMT for their own practice. Instead of tackling a large and intimidating challenge of designing full 
lessons of IBMT, the 3-phased model reduced a large and complex task to several smaller less 
complex tasks. Together with the examples of IBMT provided in the TG5 meetings, the 3-phased 
model simplified a large and abstract task into a set of smaller and more concrete sub-tasks. 
Furthermore, the teachers said that the 3-phased model helped them remind them about their and their 
students’ role at each phase of IBMT. As one teacher said, “it was a nice reminder of what she should 
do and what the students should do, and it gave a nice partition of the lesson”.  
We also noticed that the teachers seemed to find the collaborative and job-embedded structure, and 
inquiry-focus, of SUM to be meaningful and productive. The teachers said that developing, 
implementing, and reflecting on IBMT, in collaboration with other teachers, provided them with a 
better understanding of what IBMT is and how IBMT lessons can be developed. The teachers 
expressed in particular that implementing IBMT in their own classes, made the activities more 
important and relevant as the teachers had an “ownership” of the lessons. Furthermore, a majority of 
the teachers said that discussing both the model and the examples of IBMT in the TG5 meetings 
helped them to better understand the key characteristics of IBMT and the purpose of it. 
Summing up in relation to our research question, at level 2, the 3-phased model with concrete 
examples and the organization for the work in the transition groups seem to be instrumental for 
implementing IBMT in order to help creating better coherence in the participating teachers’ practice 
across the respective transitions. Within implementation theory the 3-phased model for IBMT 
together with the organization of the transition groups can be considered as an innovation for 
implementing IBMT in the practice of mathematics teaching. Rogers (2003) identify three levels of 
knowledge, which has to be developed among practitioners—here teachers—as a necessary condition 
for a successful implementation of an innovation in relation a problematic in an existing practice. 
Concretized in relation to the SUM, these are (1) knowledge of and experiences with challenges 
regarding the students’ motivation and learning in mathematics teaching across the transitions; (2) 
knowledge about how to use the 3-phased model for planning, conducting and evaluating IBMT; (3) 
knowledge about and experiences with cases where the 3-phased model has been effective as a 
didactical means for supporting students’ investigative activities and their learning of mathematical 
concepts and methods. So far, we have some evidence that the transition group meetings have enabled 
the teachers to shear experiences with and to reflect about challenges regarding coherence in the 
students’ motivation for and learning of mathematics across the transition in question. The 3-phased 
model has been instrumental for structuring the presentations and discussions of IBMT in the 
transition groups. Also, the model has shown to be a tool for the teachers in designing and 
implementing IBMT in their own practice. It is still to be seen if the teachers will reach the third level 
of knowledge and experience IBMT as an effective didactical means for improving the students’ 
motivation for and learning of mathematics across the transitions. 
Large developmental projects running over several years and with funds for establishing close 
collaboration between selected teachers and researchers is one very important way in which theories 
can come into play in the development of teaching practice – as support by Rogers (2003). Therefore, 
it is relevant to analyze the role and function of theories from mathematics education research in the 
design of such research based developmental projects. In this paper, we have analyzed how elements 
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of theory related to IBMT come into play in the SUM project at the systemic level focusing on the 
teachers’ experimental practice and their related reflections.      
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Curricula around the world make more and more use of goals trying to capture different kind of 
processes for the students to master. In Denmark, these ambitions have most recently been described 
in terms of subject specific competencies. However, bringing such ambitions into the actual teaching 
practices has proved challenging. KOMPIS was a longitudinal project aimed at developing and 
examining ways of dealing with some of these challenges in lower secondary Danish classrooms in 
collaboration with teachers. In this paper, we present aspects relevant to mathematics curricula. As 
a key point of this analysis, we present a two-dimensional content model derived from KOMPIS that 
proved useful in supporting competence-based curriculum development and teacher planning. We 
argue that curriculum descriptions of competency objectives need to be clear and distinct as well as 
independent of subject matter to be operational. 

Keywords: Competence, mathematical competencies, the KOMPIS project, two-dimensional content 
framework. 

Introduction 
KOMPIS is an acronym for KOmpetenceMål i PraksIS, which is Danish for “Competency Goals in 
Practice”. It was a longitudinal research and development project conducted in the years 2009-2012. 
The project was based on collaboration between teachers, teacher educators and researchers working 
to implement competency-oriented teaching in mathematics, science and Danish language classes for 
grades 7-9. A number of these model and concepts were subsequently incorporated into the national 
curriculum (Undervisningsministeriet, 2014). 

In this paper, we focus on the curricular aspects of the KOMPIS project within mathematics by 
analyzing the following question: How can we describe curriculum in a way that enables teachers to 
structure their planning in a manner that focusses on competency development? Firstly, the 
background for KOMPIS is briefly described. Secondly, we describe the two-dimensional content 
model for mathematics education that was developed for and challenged by the experimental teaching 
conducted during the KOMPIS project. Finally, we describe the experiences regarding planning and 
organizing of teaching and the conclusions drawn from these experiences regarding curriculum 
development. 

Background 
In Denmark, as well as in many other countries, competencies are used more and more to describe 
curriculum goals. Internationally this is partly due to the initiation of what has since been called the 
Bologna process, aimed at making transfer of educational merits between countries of the EU easier 
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(European Ministry of Education, 1999). To accomplish this a unified description of educational 
standards was needed, and it was decided to describe these standards in terms of competencies. 

Alongside this political process, there has been theoretical and practical development of competencies 
as an educational concept. One of the most significant developments was the appointment of a 
workgroup called Description and Selection of Competencies (DeSeCo). In their final report, they 
formulated a well-conceived and holistic definition of the term and presented their recommendations 
for “key competencies for the good life and the well-functioning society” (Rychen & Salganik, 2003). 

Syllabusitis 

Analytically, another educational approach to the concept of competence can arise from asking the 
question (cf. Blomhøj & Jensen, 2007, pp. 46-47, which this and the next section is based on): What 
constitutes a subject, e.g. mathematics? “Mathematics is the subject dealing with numbers, geometry, 
functions, calculations, etc.” is not a rare type of answer. 

What, then, does it mean to master a subject? With reference to the above, it is tempting to identify 
mastering mathematics with proficiency in mathematical subject matter. However, this belief if 
transformed into educational practice is severely debilitating for students’ ability to make reason of 
the subjects and to apply them in future contexts. The debilitating effect is potentially severe enough 
that the phenomena has been given a name that evokes images of a disease, namely syllabusitis 
(Jensen, 1995; Lewis, 1972). A curriculum infected by syllabusitis tends to focus only on the ability 
to reproduce subject matter and therefore fails to set an appropriate level of ambition and puts the 
teachers in a position where they struggle to cover the prescribed subject matter. 

The KOM project, competency and mathematical competencies 

The issue of syllabusitis was one of the main issues to be addressed by the Danish so-called KOM 
project, running from 2000-2002. The core of the project was to identify, explicitly formulate and 
exemplify a set of mathematical competencies as independent dimensions in the spanning of 
mathematical competence (see Figure 1) (Niss & Højgaard (to appear) provides a presentation and 
analysis of the project and an English translation of the original report). 

Figure 1: A visual representation – the “KOM flower” – of the eight mathematical competencies 
presented and exemplified in the KOM report (Niss & Højgaard, to appear) 
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Such a set of mathematical competencies has the potential of replacing the syllabus as the focus of 
attention when working with the development of mathematics education, simply because it offers a 
vocabulary for a focused discussion of what it means to master mathematics (Jensen, 2007). Often 
when a syllabus attracts all the attention in a developmental process, it is because the traditional 
specificity of the syllabus makes us feel comfortable in the discussion. 

The definition of the term “competence” in the KOM report (Niss & Jensen, 2002, p. 43) was 
semantically identical to the one we use: Competence is someone’s insightful readiness to act in 
response to the challenges of a given situation (cf. Blomhøj & Jensen, 2003). In definite form, a 
mathematical competency is consequently defined as someone’s insightful readiness to act in 
response to a certain kind of mathematical challenge of a given situation. 

The initial KOMPIS analysis 
Following the approach of the KOM project, the endeavour to incorporate subject specific 
descriptions of competencies in mathematics curricula should primarily be guided by an attempt to 
fight syllabusitis. In this perspective, it was important to focus on the interplay between subject 
specific competencies and the subject matter traditionally described in the syllabus. 

A two-dimensional content model 

In the KOM report the proposal for such an interplay is to separate subject specific competencies and 
subject matter areas as two independent dimensions of content (Niss & Højgaard, to appear). 
Subsequent research and development work prior to the KOMPIS project (Jensen, 2007) supported 
the importance of such an approach to curriculum development, and added the general hypothesis 
that a goal oriented (yearly) planning is supported by a curriculum that is systematically developed 
for enhancement of transparency, offering itself as a thinking tool for the teachers. The model in 
Figure 2 was a proposal for such a transparent representation of the core of the by then (2009) newly 
revised National Standards for mathematics (Undervisningsministeriet, 2009). 

In a curricular perspective, the defining point of such two-dimensional content models is that the 
subject specific competencies can function as “the missing link” between the overarching purpose of 
an education and a concrete syllabus, by pointing out what types of challenges the students must be 
able to act in relation to. 

    Subject matter area 
Competency 

Numbers and 
algebra 

Geometry Statistics and 
probability 

Math. thinking comp.  
Math. problem handling comp. 
Math. modelling comp. 
Math. reasoning comp. 
Math. representation comp. 
Math. symbols and form. comp. 
Math. communication comp. 
Math. aids and tools comp. 

Figure 2: A two-dimensional model for description of the content of grade K-9 mathematics teaching 
(Højgaard et al., 2010, p. 15) 
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The KOMPIS project and the methodological approach chosen here 
The experimental teaching included 16 teachers from four schools together with three university 
researchers and three teacher educators split into three subject groups—math, science and Danish. 
The groups had three-hour meetings at alternating schools once every month to discuss the teachers’ 
experience and reflections regarding their competency-based lesson plans and the teaching they tried 
out between meetings. Furthermore, all participants met (including representatives from the 
municipality) twice a year for full-day seminars to exchange experiences across subjects. 

Our participation in this longitudinal experimental process gave us access to knowledge and ideas 
from the different participants, and to follow the developmental processes among the teachers on an 
ethnographic basis. In this paper we report on our analysis of how the two-dimensional content 
framing influenced two aspects of these processes; planning and organization of teaching. 

Hence, the “implementation element” of the paper in the sense described by Century & Cassata 
(2016) is the two-dimensional model displayed in Figure 2, used as a tool for helping teachers to plan 
and organize a teaching focused on the development of certain mathematical competencies. 

KOMPIS experiences regarding planning and organization of teaching 
The common distinction between planning and organization of teaching is useful for describing some 
of the results of the KOMPIS project. Following Larsen (1969) we consider planning of teaching as 
the process of making decisions regarding the content of the teaching, whereas organization of 
teaching deals with selecting appropriate (relative to the content and the learning ambitions associated 
with it) teaching methods and making decisions regarding the course of the teaching. 

Planning competency-oriented teaching 

In this sense of the phrase, planning of teaching inevitably boils down to an endeavor with one 
dominating dimension: Time. Since time is a scarce resource when teaching takes place within a 
formal educational system like compulsory schooling, it is of little surprise that the two-dimensional 
content model in figure 2 acted as a systematically induced challenge to the planning of the teaching. 
One of the consequences of this approach is that it makes didactical considerations necessary when 
planning from a two-dimensional content structure to a one-dimensional yearly teaching plan. 
Planning of competency-oriented teaching is ideally about creating a connection between the two 
dimensions in such a way that the work with a given subject matter area can be explained and 
motivated by development of competencies, which make the students able to handle new types of 
situations or known situations in a more competent way. This often requires more prolonged and 
successive teaching time making it necessary to plan teaching in modules wherein the students get to 
build a chosen competency. 

This approach can be modelled by dividing the year up into modules and deciding early on which 
areas of subject matter, competencies or combination of the two to focus on, cf. the modelling of this 
approach in figure 3. This model can function as a planning and reflection tool for teachers as well as 
a model that teachers can use when they discuss what the objectives of a given teaching session is 
with colleagues and students (Højgaard, 2010). 
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Figure 3: The two-dimensional model used as a tool for planning of teaching by creating modules of 

some weeks in duration, each appointed with explicitly stated learning objectives consisting of subject 
specific competencies and/or objectives related to specific subject matter 

Hence, an important part of implementing competency objectives in teaching turned out to be linked 
to planning for extended periods of time, where students and teachers could focus on a few selected 
competency objectives. KOMPIS was designed to ensure that teachers included such periods in their 
yearly planning from year two of the project. When the mathematics teachers involved were 
interviewed subsequently, they assessed the explicit use of the model in figure 3 as a planning tool as 
both challenging, constructive and meaningful. Challenging because the representation of the 
competencies as a separate dimension in the model forced them to be explicit about their ways of 
thinking and working with this new kind of objectives. Constructive because the model turned out to 
be a comprehensible thinking tool when planning their teaching, not least by explicating the role of 
the competencies in their answer to the fundamental planning question posed above: When are the 
students to learn what? Meaningful because they experienced the mathematical competencies as a 
way of making some of their more fundamental ambitions as mathematics teachers explicit. 

Organizing competency-oriented teaching 

Following the planning approach by dividing the year up into modules, the dominant organizational 
approach used by the teachers in the KOMPIS project was project work where the students could 
concentrate on a selected competency objective. In the mathematics group, Tomas followed one 
teacher closely. She deliberately and explicitly organized the project work modules with the following 
general characteristics: 

a) The teacher decided on a given mathematical competency objective to focus on for the project 
period.  
Six projects were oriented towards the mathematical modelling competency and two towards 
mathematical reasoning competency. 

b) Approximately, one week was spent on helping students develop an understanding of the 
given competency objective. 
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An example of this was that in the first project focusing on mathematical reasoning, where 
the teacher let the students spend the first week gaining different experiences with 
mathematical reasoning by alternating between short tasks that required students to use 
mathematical reasoning and group discussions about their reflections. This led to the 
development of a model that presented the students ideas about central elements involved in 
mathematical reasoning (Sølberg, Bundsgaard, & Højgaard, 2015). 

c) Once the class had reached a common understanding of the given competency, each project
group was required to come up with relevant problems involving the given competency. They
then spent the rest of the allotted time—most often two weeks—working on problems through
which they developed the given mathematical competency.
For example, one group of students chose to work on the mathematical reasoning involved in
solving and producing Sudokus, while another group worked on developing simple
mathematical proofs.

The process ensured that students and teacher reached a mutual understanding of a competency 
objective before the students were challenged to find ways of developing it. Such an approach turned 
out to be supported by choosing one and only one competency as the guiding learning objective for 
each project work. From this perspective, the important attribute of the two-dimensional content 
model is the separation of competencies and subject matter areas, so it is for the teacher to decide 
whether the learning objectives for a given module should come from a mathematical competency, a 
mathematical concept or a combination of the two. In previous one-dimensional Danish curricula a 
mixing of the two types of learning objectives were the dominant approach chosen. 

Another advantage of employing a set structure was that the students became familiar with the 
template. After the first couple of projects, they did not need as much instruction during the project 
work and gradually gained significant ownership of the process. 

Curricular perspectives 
Applying a teachers’ perspective on curriculum, there are at least two important perspectives 
regarding the use of competency objectives to be derived from KOMPIS. Firstly, the project 
confirmed that teachers require help in formulating learning objectives to be able to plan teaching 
explicitly aimed at building student competence. To formulate such more specific learning objectives, 
however, there is a need for clear and distinct competency descriptions in the curriculum. At the same 
time, to avoid syllabusitis it is necessary to be able to distinguish between competencies and subject 
matter as two independent dimensions of content descriptions. The model in figure 2 demonstrates 
how this could be achieved for mathematics, and we propose that similar two-dimensional models of 
content could be generated for other subjects. 

Secondly, being able to formulate competency-oriented learning objectives can help teachers plan 
their school year in a way that allows them to maintain focus on a few key subject specific 
competencies and thereby create the necessary conditions for sustained development of both teacher 
and student competencies. In addition, being able to focus on a few learning objectives at a time 
enables the students to better understand the meaning behind the learning objectives which in turn 
enables the students to pursue them more independently. 
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Final remarks 
One of the goals behind the KOMPIS project was to experiment with curriculum development from 
a teacher’s perspective. We wanted to engage teachers in developing an approach to competency-
oriented teaching that was not only meaningful but also practical for teaching. To make a long story 
short, our experience from this longitudinal study is twofold (Højgaard, 2012): Firstly, one of the 
main advantages of using a two-dimensionally structured competency perspective is that it inherently 
fosters reflections among teachers about the essence of the competencies involved. Secondly, such 
reflections promote the implementation of the more ambitious kind of work processes that 
mathematics education aims for as long as the teachers involved (as has been the case in the KOMPIS 
project) get the necessary time and support to learn how to use the two-dimensional structure as a 
developmental tool. Hence, KOMPIS indicates that there is significant promise from a teachers’ 
perspective in applying the two-dimensional model presented here for mathematics teaching. 

The experiences from KOMPIS have come to influence the subsequent national curriculum revisions. 
The two-dimensional model has been incorporated into the current curriculum for mathematics 
(Undervisningsministeriet, 2014), and at the time of writing (2018) it is being revised to emphasize 
this approach even more. Thus, Danish mathematics teachers are now officially encouraged to use 
the two-dimensional model in planning their teaching. 
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Although there have always been investigations in the field of mathematics education that concern 
implementation research, it is not yet clear how to structure such a research area. In this paper, we 
take a step towards this. Taking as reference frameworks elaborated in other fields where 
implementation research is more advanced, we attempt to outline what an implementation research 
framework in mathematics education could encompass. We illustrate this with an example of 
implementing the Danish innovation of the mathematics competency framework (KOM). 
Keywords: Implementation research; innovation; theory of change; value. 

Introduction 
Implementation research has received an increase in attention within mathematics education during 
the last few years (e.g. Cai et al., 2017; Jankvist, Aguilar, Ärlebäck, and Wæge, 2017). But the 
discussion of implementation is neither new in educational research in general, nor in mathematics 
education in particular. Already Fullan and Pomfret (1977) remarked that “implementation is not 
simply an extension of planning and adoption processes. It is a phenomenon it its own right.” (p. 
336). Even if the discussion of implementation has been around for some time, both the work 
presented and carried out during CERME 10 and the recent discussions in JRME (e.g. Cai et al., 
2017) illustrate clearly that there is still a large potential indeed in addressing initiatives within 
mathematics education from an implementation research point of view. However, it is not at all 
clear how exactly to do this. Hence, we first need to ask ourselves which existing implementation 
research frameworks that are applicable to which initiatives in mathematics education as well as 
how and why? The purpose of this paper is to take some initial steps towards addressing this big 
question. As a reference point we take implementation frameworks from other research fields to try 
to sketch an implementation research framework in mathematics education. Then we “test” it on an 
illustrative example of the decentralized implementations of the Danish mathematical competencies 
framework—KOM—in selected mathematics programs of the Danish educational system.  

Implementation research frameworks 
Within the context of health science, Nilsen (2015) proposed a taxonomy of three aims for the use 
of theoretical approaches in implementation science, and five categories of theories, models and 
frameworks. The first aim of theoretical approaches is to describe and/or guide the process of 
translating research into practice. Process models lay out specific steps to implement research into 
practice, and thus provides practical guidance in planning and carrying out implementation. The 
second aim concerns understanding and/or explaining what influences implementation outcomes. 
Three different types of frameworks and theories are found to supports this aim. The first type is the 
determinant frameworks that identifies barriers and enablers, which influence the implementation 
outcomes as well as specifying the relationships between barriers and enablers. The second type is 
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the classic theories, which are theories that originate from fields outside of implementation science, 
but may be applied to understand some aspects of implementation. The last type related to this aim 
are actual implementation theories, which are those developed with the sole purpose of explaining 
aspects of implementation. The third and last aim concerns evaluating implementation. This aim 
can be supported by the category of evaluation frameworks that may provide a structure for 
evaluating implementation. 
In their review of implementation research within education, Century and Cassata (2016) offer the 
following (working) definition: 

Implementation research, by our working definition, is the systematic inquiry of innovations 
enacted in controlled settings or in ordinary practice, the factors that influence innovation 
enactment, and relationships between innovations, influential factors, and outcomes. Thus, 
frameworks that inform the organization of implementation research address two main 
concerns—how to conceptualize and describe the innovation itself, and how to identify and 
organize the contexts, conditions, and characteristics that influence innovation enactment 
(influential factors). These two fundamental concepts—(a) characteristics of the innovation and 
(b) influential factors—are basic elements of varied theories of change and a key part of most 
recent research syntheses or metaframeworks depicting innovations in context. (p. 181) 

This definition builds on two other terms, the meaning of which will have to be explained as well; 
namely those of innovation and change. Century and Cassata (2016) operate with a definition of 
innovations as “programs, interventions, technologies, processes, approaches, methods, strategies, 
or policies that involve a change (e.g., in behavior or practice) for the individuals (end users) 
enacting them” (p. 170). More traditionally, an innovation is oftentimes considered to be new ideas 
creating economic value (Darsø, 2012), or as the middle part of the CIE (Creativity, Innovation and 
Entrepreneurship) model for value creation and change (Paulsen and Harnow, 2012). However, the 
dependence on economic bottom line thinking makes this definition difficult to apply to educational 
situations. Nevertheless, if we instead consider innovation as changes of practices and technologies 
for the better, then we set ourselves free from the problem of economy as the core goal for 
innovation. This however leaves open what kind of normative change for the better that we should 
value in innovation. We should ask what (kind of) value and for whom. The definition of 
educational innovations provided by Century and Cassata (2016) focuses on the change for end 
users (e.g. teachers and students) and simply views innovations as the object of implementation 
research. While this is indeed an important perspective, we suggest that the notions of value and 
stakeholders are critical; an innovation is only an innovation if it creates value for some 
stakeholders (Krainer, 2014), but the stakeholders do not necessarily have to be the end users. Value 
can be for the society in general, for educational administrations, school management, etc. We thus 
define educational innovations as change in educational practice that are valued by some 
stakeholders. However, in order to conceptualize any change, it is necessary to acknowledge that 
change may take place at different levels (at the individual level, classroom level, school level, etc.), 
but also that change is mediated by people and institutions who can adopt, modify or even reject the 
intended innovation implementation. Thus, as pointed out by Century and Cassata (2016), a 
question that lies at the heart of the implementation research is: “what does it take for people, 
organizations, and systems to change?” (p. 178). 
To address a question like that in the context of mathematics education, we need to draw on a wide 
range of conceptual and methodological tools from within and outside the field. For example, to try 
to identify and organize the conditions that influence innovation enactment at the classroom level, it 
would be important to understand the intentions and individual motives that a mathematics teacher 
has to adopt or not an educational innovation. Research on curricular implementation in 
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mathematics education has shed some light on this type of issues (e.g. Remillard and Heck, 2014). 
If we refer to change beyond the classroom and on a larger scale, say at the institutional level, it 
could be useful to resort to studies on organizational change from different disciplines such as 
medicine (Rohrbach, Grana, Sussman and Valente, 2006) and management science (Burnes, 2005), 
which can provide us with theories and methodological approaches to help us understand how to 
produce large-scale change behaviors in school systems. Here studies on mathematics education 
with an institutional perspective could also be useful (e.g. Castela, 2004). On a wider scale, Rogers 
(1962) has developed a frequently cited theory describing how innovations are spread across a 
social group (see for example Koichu and Keller, 2017). He distinguishes several groups of 
adopters; innovators (adopting a new technology instantly), early adopters, early majority, late 
majority and laggards (who adopts very late). Rogers shows that the distribution of adoption is 
similar to a normal distribution with the bulk of people in the early and late majority category. 
Implementation is obviously related to how people adopt. If you aim for mainstream 
implementation of an innovation, when it is only adopted by innovators, you are bound to fail. 

Five factors that influence implementations 
The identification of the factors that influence innovation enactment is a fundamental component of 
implementation research. For years educational researchers have tried to identify the variables that 
influence the implementation of educational innovations; these variables can be classified in the 
following five spheres of influence (Century and Cassata, 2016). 
Characteristics of the individual users: The change that an educational innovation is aimed at 
generate, it is mediated by the people involved in the implementation process. Hence, it is important 
to know their individual characteristics. We distinguish between (a) characteristics of the individual 
in relation to the innovation (mathematical background, experience using the materials or resources 
involved in the innovation, etc,) and (b) characteristics of the individual that exist independently of 
the innovation (willingness to try new teaching methods, attitudes towards new artefacts in the 
classroom, etc.). 
Organizational and environmental factors: In the case of an innovation implemented in a 
mathematics classroom, organizational factors refer, on the one hand, to the characteristics of the 
setting itself (number of students, characteristics of the physical space, access to material resources, 
etc.), and on the other hand to the collective beliefs and behaviors of the members of the class 
(identity, sociomathematical norms, didactic contract, etc.). Environmental factors refer to those 
outside the organization, but which have an influence on how an innovation is adopted and 
implemented (economic conditions, educational policies, priorities of government agencies, etc.). 
Attributes of the innovation: The attributes of the innovation can influence its implementation, 
however, it is important to distinguish between the actual attributes of the innovation (objective 
characteristics) and the perceived attributes of the innovation (subjective characteristics perceived 
by the user). Of course, the perceived attributes may vary from user to user. 
Implementation support strategies: It is important that an innovation initiative comes accompanied 
by an intentional and planned support for the final users and their institutions. Such support 
strategies can be professional development, specific resources, etc. 
Implementation over time: Another factor that influences the implementation of an innovation is 
time. Thus, it becomes relevant to study innovation endurance over time: how can we promote that 
an innovation, besides being adopted, is preserved over time until it is routinized? It is in this 
branch of the implementation research where longitudinal studies will become essential to answer 
questions like the one previously stated. 
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The KOM framework - an “implementation story” 
As an illustrative example of an implementation, we take a historical and chronological look at the 
Danish mathematics competency framework, referred to as KOM, which was first published in 
Danish (Niss and Jensen, 2002), and later in an English translation (Niss and Højgaard, 2011). This 
framework has heavily influenced mathematics education in Denmark, where it has been 
implemented in primary and lower secondary school through the so-called “Fælles Mål” (common 
goals) (Undervisningsministeriet, 2014), and in both the technical stream (htx) and business stream 
(hhx) of upper secondary school—to a lesser extent in the classical stream (stx)—in the 
mathematics teacher education program as well as in some of the mathematics-related programs in 
tertiary education. On an international level, KOM’s competencies descriptions were an integral 
part of the PISA assessment framework for mathematics from approx. year 2000 through 2018. The 
description has also been influential in mathematics programs in several countries’ (see Niss and 
Højgaard, in progress). Now, in itself the KOM framework constitutes a normative text, which is 
not directly translationable/implementable in the various mathematics programs. But KOM’s 
competencies description, with its eight distinct yet interconnected mathematical competencies, was 
never meant as a standalone. It must be implemented together with a curriculum for the 
mathematics program at a given educational level. One distinct feature of the KOM approach is its 
matrix thinking that links specific competencies to various mathematical areas, i.e. competencies in 
the rows and mathematical areas, e.g. algebra, geometry, in the columns of a matrix. From an 
implementation perspective, however, KOM makes up an interesting case. 
When published in 2002, KOM was supplemented with an implementation support strategy of 
meetings and seminars debating specificities of the framework and the value of placing 
development of mathematical competencies as the key feature. But besides this, the implementation 
support strategies must be characterized as ad hoc and rather scattered. Still, KOM’s competency 
description was adopted by a large part of the teacher educators in Denmark. It was implemented in 
the national standards for compulsory school, partly between 2003 and 2006 and more thoroughly 
in 2009. Furthermore, it was implemented in the teacher education standards in 2012 and in upper 
secondary school in 2013 and again in 2017. In 2012 the impact of the competencies framework 
was evaluated as part of a general evaluation of the national standards (Danmarks 
Evalueringsinstitut, 2012), showing that teachers were neither using the standards nor the eight 
competencies to a very large extent. In 2014 the K-9 curriculum was reformed towards an outcome-
oriented curriculum, and the competencies were now embedded in this structure (“Fælles Mål”). 
Furthermore, the number of competencies was changed from eight to six. A transformation that was 
heavily criticized by the people behind KOM (see e.g. Niss, 2016). As of now, the overall structure 
of the output-oriented curriculum is being debated again and will be partly rolled back. 
Nevertheless, for the eight competencies this transformation actually appears to have increased their 
impact and the outreach of the KOM framework. These days more teachers do seem to know more 
about the competencies than before; partly due to timing in terms of adoption and partly because the 
2010 reform made everyone aware of the curriculum/standards and hence the competencies. As 
mentioned above, such awareness concerning KOM does not seem to be present at the classical 
stream of upper secondary school, stx, which is by far the largest of the three upper secondary 
school programs. Why is this? The answer to this question—we believe—is to do with 
environmental (and institutional) factors as well as the characteristics of the different individual 
users. 
The characteristics of the individual users in the various institutions are quite different. Danish K-9 
mathematics teacher educators are mainly educated at the Danish School of Education, where they 
are exposed to and thus become accustomed to an educational approach that relies heavily on the 
competency framework (e.g. Højgaard and Jankvist, 2015). In their future professions at the 
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university colleges, these teacher educators thus often come to act as enablers for the 
implementation of KOM, not least in relation to the teachers that they educate. The K-9 
mathematics educational system, however, is a big ship to turn since it is comprised of teachers of 
all ages educated under various different educational paradigms and reforms. Hence, as mentioned 
above, the prevalence of awareness of the eight competencies was a lengthy process. One indicator 
of this is the fact that many teachers reacted negatively against the PISA 2012 assessment in 
mathematics, despite the fact that the 2012 PISA mathematics framework was perfectly aligned 
with KOM and thus also the national standards of 2009. Yet, as part of these standards, an explicit 
matrix structure between the competencies and mathematical areas was developed for each grade 
level. This has played a major role in the implementation of KOM in K-9. 
When it comes to the upper secondary stx mathematics teachers, they oftentimes hold a master’s 
degree in mathematics from a university mathematics program. Their teachers at the university 
typically hold a PhD in some area of mathematics, and hence are not necessarily very well versed in 
the area of mathematics education research, including the competency approach. This of course 
serves as a barrier for the implementation of KOM in stx. The reason that the situation is a bit 
different in the two other streams of upper secondary school, as mentioned above, is most likely to 
do with the fact that the mathematics teacher population there has a more varied background, e.g. at 
htx several teachers have a background as engineers. Another identified barrier is to do with the 
lack a matrix structure in the stx curricular documents. Although these do mention a selection of 
KOM’s eight competencies, then mainly do so on a rhetorical level, i.e. the various competencies 
are not linked to actual mathematical areas and concepts. To a much larger extent this is done in the 
curricular documents of both htx and hhx (for a further discussion, see Niss and Højgaard, in 
preparation). 
Implementing the KOM framework has taken time. As described above different stakeholders have 
adopted the framework to different degrees. Even though all these stakeholder groups are 
distributed across Rogers’ (1962) different adoption-types, it is still possible to distinguish groups 
that overall are moving faster than others. The teacher educators, for instance, have adopted KOM 
much faster than the K-9 teachers. However, in the case of the K-9 teachers time seems to work for 
the implementation of KOM, even though adoption is slow. The 2014 K-9 reform was timewise in a 
place where the innovators and early adopters was already using the competencies framework. This 
is to say that the timing was working for the competencies, and the curriculum reform thus acted as 
a catalyst for the early and late adopters to embrace the framework. In the case of the stx teachers, 
we are less sure to what extent the adoption and implementation will progress over time. KOM has 
the learning of mathematics at its core, and hence it should be relevant for this population of 
teachers as well. Still, the lack of an implemented matrix structure in the curricular documents of 
stx, which, as described above, is an essential attribute of the innovation, does not hold a lot of 
promise. Due to the stx curricular documents’ use of the competency terms only on a rhetorical 
level, the actual attributes of KOM and the stx teachers’ perceived attributes may simply not be 
aligned. 

Discussion and analysis 
Referring back to Nilsen’s framework as presented above, the analysis of the implementation of 
KOM in Denmark mainly addresses the second aim of understanding and explaining what 
influences implementation outcomes. Here both aspects of what Nilsen refers to as determinant 
frameworks are in play, as the project identified certain barriers and enablers which influence the 
implementation outcome. Century and Cassata’s (2016) description of factors that influence 
implementation (see above) was useful alongside Rogers’ (1962) focus on stakeholders’ adoption. 
Hence, these implementation research frameworks have provided us with some general perspectives 
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of where to look and focus our attention, but in themselves they are not detailed enough for cases 
such as KOM - or any case of mathematics education, we predict. In particular in relation to 
Nilsen’s first and third aim, the description of the implementation process and the evaluation of 
implementation, one thing that the general frameworks often cannot supply us with is a theory of 
change. Which on one hand can guide the process of implementation and on the other hand is used 
to evaluate the success of an implementation. The parameters on which to measure change may 
oftentimes be found within theoretical constructs from mathematics education itself. Let’s 
exemplify. 
In mathematics education there are of course many different kinds of innovations, but for the sake 
of simplicity let us distinguish two. One type concerns that of implementing normative frameworks 
such as KOM, which in a sense call for a philosophical or cultural change in mathematics programs 
as to what it means to master the subject. Another type are the grand scale initiatives as for example 
the Swedish Boost for Mathematics (BM), which offered a further education program to the 
majority of Swedish mathematics teachers. Although the BM did include a framework, involving 
e.g. didactical contract, socio-mathematical norms, etc., it was in itself not a framework such as 
KOM is. This means that when assessing qualitative aspects of the implementation of the 
innovation, KOM becomes its own theory of change, whereas BM does not. We are not claiming 
that this necessarily is a problem; only that we should be aware of this when discussing 
implementations in mathematics education. Another difference is that the implementation of the 
BM was top-down, whereas many of the local implementations of KOM were more bottom-up. 
Also, the difference in scale of the two implies that the evaluations of them may be of different 
nature. While the BM was often evaluated on quantitative terms, e.g. how many schools and 
teachers participated, etc., KOM to a larger extent was only evaluated on qualitative terms. The 
qualitative theory of change parameters of both KOM’s and BM’s evaluative frameworks come 
from within mathematics education research, while the quantitative parameters of BM’s evaluation 
do not necessarily do so. Nilsen’s (2015) framework also includes theories which focus on change 
from other fields than implementation science, the category of classic theories. However, this 
category concerns something different than what we call a theory of change, since we regard a 
theory of change to be something that is locally developed in conjunction with the framework being 
implemented. The benefits of the close relation between innovation and evaluative framework is 
that we set us free from binary and simple evaluative categories. In a sense, it is like choosing 
between relevance and accuracy/circular inference (begging the question/circular argument) in the 
evaluative frameworks. 

Concluding remarks 
Century and Cassata (2016) provided us with a definition of implementation research that has been 
useful in our effort to begin to explore how implementation research in the field of mathematics 
education might look. However, this conceptualization of implementation research is not exempt 
from criticism, nor from competing visions in the conceptualization of this area of research. For 
instance, one could point out the fact that the conceptualization made by Century and Cassata does 
not take into consideration—at least explicitly—the role of adopters in the implementation process 
of an innovation. A conceptualization like this runs at risk of positioning innovation as an 
imposition for the adopters, who may perceive it as an external element and alien to their own 
didactical ecosystems. To address this issue, we could consider complementing such 
conceptualization with other already existing theoretical frameworks from the field of mathematics 
education. For example, a documentational approach could help us to consider the process through 
which an innovation can be reshaped and transformed by the adopters. 
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Thus, although implementation frameworks can be useful to focus our attention on key elements of 
an implementation process and even to conceptualize them, in the case of mathematics education 
some of these key elements will be of a general nature, while others may be of a more specific 
nature and connected to mathematics education. Thus, it is feasible to suggest that the 
implementation research in mathematics education needs to be based on a bricolage of different 
constructs and theoretical frameworks typical of research in mathematics education, in combination 
with constructs from implementation of research in other disciplines with a longer research tradition 
in this regard. However, there is a lot of work to be done to achieve such integration of theoretical 
frameworks and constructs. A natural step in this effort may be to begin to identify and organize the 
already accumulated research in the field of mathematics education that addresses aspects of 
implementation. 
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This paper explores a particular model of implementation of research: teacher adaption of research 
procedures and ideas in their classrooms as part of participation in community educational research. 
The TRAIL (Teacher-Researcher Alliance for Investigating Learning) project seeks to guide the 
design and conduct of co-learning partnerships between mathematics teachers and mathematics 
education researchers. In TRAIL, mathematics teachers actively participate in formulating research 
goals and designing research tools, and then collect data in their classrooms and analyze together 
the shared data corpus. In the first part of the paper, we present theoretical underpinnings of 
implementation through participation in TRAIL. In the second part, we examine implementation 
through participation in an illustrative case, in which a group of teachers designed and explored 
classroom situations aimed at promoting student questions in the classrooms.   

Keywords: Co-learning partnerships, student questions, design and implementation. 

Introduction 
Implementation of educational research in practice is tricky. On one hand, it is customary to conclude 
a research paper with suggestions regarding possible implications for practice. For example, when a 
study includes an intervention component, the researchers may recommend teachers to implement 
the intervention principles or activities in their classrooms. Or, when a study results in identification 
of strategies that students engage with, in the context of a mathematical task, the researchers may 
invite teachers to get acquainted with these strategies in order to better prepare themselves to possible 
scenarios while enacting similar tasks with their students. On the other hand, it is widely recognized 
that existing strategies for applying research-based suggestions in practice are far from being 
satisfactory (Burkhardt & Schoenfeld, 2003). As Kieran, Krainer and Shaughnessy (2012) point out, 
“[t]he primary responsibility of teachers is to teach their students, not to read research papers, and 
there is some evidence that most teachers don't read such papers very often” (p. 366, emphasis in the 
original). The scholars then review prevalent strategies by which researchers attempt to familiarize 
teachers with research findings in various professional development settings and conclude that these 
strategies, as widespread as they are, have their significant limitations, partly due to the implied view 
of teachers as recipients or alumni of educational research.  

An alternative approach for bridging between research and practice builds on the notions of teachers 
as stakeholders in educational research, co-producers of professional knowledge, or potential co-
producers of scientific knowledge (Kieran et al., 2012; Krainer, 2014). The rationale for this approach 
stems from in-depth analyses of what teachers may be expected to take to their own practice from 
mathematics education research. For example, Bishop (1977, cited in Kilpatrick, 1981) points out 
that teachers can borrow from researchers their procedures, the data and some of research-produced 
theoretical constructs and models. Even (2003) suggests that mathematics education research is 
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relevant for teachers as means for gaining insights into teaching and learning that might not be gained 
through practice, such as: “mathematical knowledge is constructed in ways that do not necessarily 
mirror instruction” or “knowing is a 'slippery' notion” (p. 38). Teachers are more likely to gain access 
to these kinds of ‘products’ of research as participants in research. Additionally, viewing teachers as 
co-producers of professional and scientific knowledge rather than recipients of research findings is 
well aligned with the notion of learning as an active process. It is well documented that students are 
more likely to succeed in implementing new knowledge when they are actively engaged in co-
constructing it. By the same principle, teachers are more likely to implement new knowledge of 
mathematics education if they are actively engaged in producing it (Taylor, 2017; Wagner, 1997). 

The goal of this paper is to draw on the view of teachers as active participants in educational research 
and present a particular mechanism of research implementation, in which teachers act as partners of 
mathematics education researchers. In what follows, we unpack this mechanism, first theoretically 
and then by means of an illustrative example of an authentic study aimed at findings ways to promote 
meaningful student questions in mathematics lessons. This example demonstrates how teachers can 
adapt methods and ideas from past research as tools for inquiring into and reflecting on their practice.   

Theoretical considerations 
To conceptualize and study implementation through participation, we developed a theoretical-
organizational framework called TRAIL - Teacher-Researcher Alliance for Investigating Learning. 
TRAIL consists of a system of theoretical premises and heuristics for guiding the design and conduct 
of research-practice co-learning partnerships aimed at generating and implementing new knowledge 
in mathematics education. In this section, we provide a concise outline of the TRAIL framework (for 
a more detailed discussion, see Koichu & Pinto, 2018). 

Underpinnings 

The TRAIL framework draws on theoretical constructs and ideas developed in three bodies of the 
professional literature: the literature on mathematics teacher inquiry, the literature on modes of 
research-practice partnership and the literature on Citizen Science. 

The literature on mathematics teacher inquiry tells us that different types of inquiry are (or at least 
should be) inseparable parts of teaching as a professional occupation (Menter, Elliot, Hulme, Lewin, 
& Lowden, 2011; Watson & Barton, 2011). We learn from the literature that the term teacher inquiry 
is used broadly, so that it embraces mathematical modes of inquiry, practitioner educational research, 
and other forms of inquiry that teachers engage with in their daily work, when preparing to the 
lessons, conducting them or reflecting on them. For the purposes of this study, we draw on Menter et 
al.’s (2011) in conceptualizing teacher inquiry as a systematic effort to develop and disseminate new 
knowledge or understanding in an educational setting carried out by someone working in that setting, 
in collaboration with practitioners working in similar settings and with education researchers. 

The literature on research-practice partnerships tells us that different forms of interactions between 
teachers and researchers have different pragmatic, moral and political expectations and implications 
for the involved parties. Particularly relevant for this article is a co-learning partnership, as described 
by Wagner (1997). In co-learning partnerships, researchers and practitioners join forces to inquire 
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together and aid one another in order to learn something new and worthwhile about their worlds and 
themselves. The goals, methods and principles of inquiry are negotiated openly to maximize the 
learning and professional growth of both sides. Therefore, co-learning agreements essentially reduce 
asymmetry in the roles of the researchers and practitioners. Such agreements make the border between 
conducting research and implementing it somewhat blurred.   

Finally, the TRAIL framework is informed by the literature on Citizen Science (CS). CS is a rapidly 
growing form of conducting scientific research that involves members of the public in association 
with scientists to collectively gather, categorize or analyze large quantities of data in order to address 
real-world problems (Bonney et al., 2009). We learn from Bonney et al. (2009) that an option to 
engage different participants in the same study at different levels of participation should be thought 
through when planning a CS project. We also learn, from Wiggins and Crowston (2011), that CS 
projects can be conducted by local communities that collaborate with researchers as consultants who 
assist the members of the community to turn their concerns into researchable questions and to 
construct feasible procedures for pursuing the questions and disseminating the results.   

In the case of interest, the teachers were engaged in a research cycle that included design and 
implementation of classroom activities inspired by past research and by the participants' experiences. 
The teachers were encouraged to participate in research not only for personal professional growth 
and improvement of their practices, but also for the joy of being part in producing new knowledge. 
Likewise, the researchers (the authors of the paper) were interested not only in pursuing their research 
agenda with the help of the teachers, but also in refining the agenda so that it would be aligned with 
the teacher-participants agendas.    

The TRIAL framework 

Based on the described underpinnings, we have formulated, in Koichu and Pinto (2018), the TRAIL 
premises and heuristics. Four premises are particularly relevant to the concerns of this article.  

Professional Growth through Involvement in Research premise: Active involvement in the various 
stages of educational research generates opportunities for teachers to enhance their abilities to engage 
effectively in inquiry, noticing and reflection as part of the day-to-day practice.    

Authenticity premise: Teachers’ engagement in research is more likely to produce positive effects if 
conducted in the context of an authentic educational research rather than an exercise in doing research.  
Accordingly, it is advantageous for teachers and researchers to take part in research that is drawn by 
questions of potential importance to both communities. 

Choice premise: Teacher participation in educational research can be stable and productive if the 
teachers can choose in which research projects to take part, in what capacity and to which extent.  

Shared Agency premise:  Alliance of the communities of teachers and education researchers can be 
stable and productive if the opportunity to share the agency over the partnership is available for both 
communities. This means that individual members of each community are to be involved in the 
partnership in ways that can advance their peculiar goals and needs, including the needs to contribute, 
develop professionally and have room for expressing personal creativity. 

A relevant subset of TRAIL design heuristics is as follows. 
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- The research goals and questions that underlie TRAIL partnerships are openly negotiated and deal
with issues that have the potential to resonate with dilemmas and challenges that mathematics
teachers encounter in their daily work at the level of a class, a small group or an individual student.

- TRAIL partnership must have “clear utility” for practitioners that can be convincingly
communicated without heavily relying on the scientific literature in which the research is situated. In
a similar vein, a TRAIL partnership must have “clear utility” for researchers, that is, have the potential
to yield insights of importance to the education research community at large.

- TRAIL partnerships enable teachers to be involved as research assistants or researchers, but not as
objects of research. However, both teacher-participants and researcher-participants can be objects of
a study about aspects of TRAIL.

- TRAIL partnerships employ accessible data-collection and data-analysis procedures. We call a
research procedure accessible if it can be mastered by an interested individual with no background in
education research after a brief training period, and if its use requires reasonable time and effort.
Examples include: conducting a questionnaire in a classroom, writing a reflective summary of a
lesson, or responding to a summary by another participant.

- TRAIL partnerships offer channels of interaction among the participants as well as channels for
providing feedback on contributions of the participants. For example, a teacher who contributes a
summary of her lesson to the shared database of the project will obtain structured feedback on his or
her contribution from the fellow participants and from the researchers.

- TRAIL partnerships comply with the ethics codes for conducting educational research. In particular,
the shared databased of a TRAIL partnership should consist only of properly anonymized data.

An illustrative case 
A group of 25 experienced high-school mathematics teachers participated in a 60-hour professional 
development program (PD hereafter) during the 2017-18 school year. Broadly speaking, the PD’s 
goals were to enhance their participants as leaders of their school communities. About 1/3 of the PD’s 
time, and the final assignment, were devoted to designing and conducting a pilot TRAIL study.   

From researchers’ perspective 

At the first meeting with the participants, we briefly introduced the project and offered the group the 
following question: Suppose your school hires a professional mathematics education researcher in 
order to help you improve your practice, what questions about your teaching or your students' learning 
would you like to ask him or her to explore? The teacher responses were highly diverse. For example: 
“What can mathematics education research offer for my teaching?”; “How can I help my students to 
deal with the stress of matriculation exams?”; “How to teach in a heterogeneous class?”; “What is 
the validity and reliability of the tests that I offer in my classes?”; “How can I encourage my students 
to be more independent?”; “How can I know if my students really understand me?”; “Which questions 
do I ask in my lessons and how these questions affect student learning?”; "How can technology help 
me in teaching trigo?” The rest of the meeting consisted of the negotiation towards a short list of 
research topics that would be researchable and of interest for both the teacher-participants and the 
researcher-participants. We chose to inquire into two topics: (1) the roles of questions asked during 

Thematic Working Group 23

Proceedings of CERME11 4416



 

 

the lessons and (2) indicators of student “understanding”. By the end of the meeting, each teacher-
participant enlisted herself in one of two sub-groups that corresponded to the two chosen topics. 

The second meeting was conducted in two sub-groups. We prepared for each group a three-page 
document for orienting the teachers of how the chosen topic can be explored. Each file consisted of 
a brief literature review and elaborated summaries of two studies chosen by us as examples. A study 
used in both documents, by Leikin, Koichu, Berman and Dinur (2017), discerned different types of 
questions (e.g., elaboration questions and clarification questions). The study also exemplified how 
transcripts of task-based classroom discussions can be analyzed according to the types of the 
questions students ask in order to gain insight into the understandings students develop. The paper 
contained four classroom episodes; two episodes in the context of proving in geometry, and two – in 
the context of exploration of functions. A common characteristic of the episodes was that the student 
questions have not been elicited but arose spontaneously. The feasibility of designing such situations 
in the teacher-participants classes was discussed. The discussions in sub-group (1) converged to the 
realization that teachers ask much more questions than students do and that creating situations rich 
with the student questions is a challenge that can be handled in a variety of ways. The discussion in 
sub-group (2) resulted in realization that students' understanding cannot be assessed directly but ways 
of understanding can sometimes be induced from student questions and responses. An additional 
discussion at that meeting was about data-collection tools. We considered a videotaped episode from 
VIDEO-LM study (Karsenty & Arcavi, 2017) and discussed affordances and limitations of 
videotaping, audiotaping and making notes.    

For the third meeting, we prepared a draft of a research program based on the inputs from the second 
meeting. The sub-groups were reunited. The document included the following questions:  

RQ1: How do experienced mathematics teachers construct in their lessons situations that are rich 
with student questions? What are characteristics of these situations?  

RQ2: What types of questions do students ask in these situations? 

RQ3: How can student questions be used as indicators of their ways of understanding of the 
material taught? 

The document also included our suggestions for the next steps, including a time schedule. The first 
stage was to refine and agree upon the research program. At the second stage, each teacher was 
required to plan one or more classroom activities that would be appropriate for addressing the above 
research questions and discuss her ideas with peers in an online forum. The third stage consisted of 
the individual data collection: each teacher was required to enact his or her ideas in a classroom and 
document three classroom episodes. It was up to each teacher either to try the same activity in three 
classes or enact three different activities in the same class. The fourth stage was planned as a group 
discussion, at the next meeting, of the classroom experiences. It was also planned to discuss at that 
meeting how to create the shared database of the study and how to conduct data analysis. The last 
two stages consisted the data analysis and writing final reports.  

This plan was fully realized. Each stage was supported by a corresponding document prepared by us 
and shared with the teacher-participants. Of note is that the program was devised so that it left room 
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for teacher choices. In particular, it left room for choosing individually appropriate mathematical 
content and context. The teachers were also encouraged to choose two out of three research questions 
to address and two out of three data-collection tools. It is also of note that the agreed program left 
room as to whether to implement the research procedures from the studies considered as examples or 
to devise their own procedures in spirit of the considered examples.    

From teacher-participants’ perspective  

The concluding task of the PD was a term-paper assignment in which the participating teachers 
presented findings and conclusions from their analysis of data collected in one lesson activity they 
designed, and one lesson activity designed by another participant. An analysis of the teachers’ 
products is beyond the scope of this paper, yet in this section we provide a glimpse into one aspect of 
research implementation, as reflected in the reports of two teachers: Michelle and Libby.   

Both Michelle and Libby included in their reports elaborated reflections on their goals, dilemmas and 
decisions while enacting the research program. Michelle noted in her introduction that she was always 
curious to find out to what extent teachers’ professed values and beliefs, including her own, actually 
shape teaching practices and learning environments in the classroom. Accordingly, she chose to 
explore RQ1 and RQ3, recognizing an opportunity to investigate this issue in the context of a belief 
that was collectively endorsed by the PD teachers: students would gain a deeper understanding of the 
material taught if they ask more questions in lessons. She specifically looked to examine whether 
other teachers’ reflections on their practices and on student learning will be aligned with this 
professed belief. To this end, she chose to analyze interventions of a teacher who was teaching at the 
same grade level she was teaching, believing she would be more sensitive to implicit considerations 
and assumptions guiding the other teacher as she was designing and conducting the intervention. 
Similarly, while analyzing her own intervention, Michelle discussed in length her own considerations 
and assumptions. Thus, Michelle drew on the research literature and the research questions to reflect 
on and inquire into her practice and her colleagues’ practice in accordance with her own agenda.  

In the introduction of her term paper, Libby notes that she generally agrees with Leikin et al. (2017) 
that student questions are instrumental in the development of understanding, but that after reading the 
paper she was left wondering whether “silence […] could also be considered as a form of student-
teacher interaction”, and what would silence afford in terms of student questions. In her assignment, 
Libby wanted to investigate this issue by comparing the affordances of different teaching approaches 
to student questions. Accordingly, she designed three lesson episodes, one in which she would 
“restrain as much as possible from intervening in the classroom discussion”, one in which she would 
“try to guide students towards answers […] without providing the solution”, and one where she would 
“take up the reins” and “be the center of discussion”. While presenting her analysis of these episodes, 
Libby noted that she found the categorization between elaboration questions and clarification 
questions proposed by Leikin et al. (2017) was insufficient for distinguishing student questions in the 
data she collected. Accordingly, she suggested refining the category elaboration questions into two 
sub categories, and illustrated this refinement in her analysis.  

Michelle and Libby’s reflections on their decisions throughout the term-paper assignment indicate 
that they drew on research methods and constructs in their inquiries. They interpreted the agreed in 
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the group research questions in light of their own goals for professional growth, and made consequent 
decisions regarding data collection and analysis. We consider this a particular case of implementation 
through participation, as discussed in the next section.  

Concluding remarks 
In the literature on implementation research in education (e.g., Century & Cassata, 2016), the word 
“implementation” is sometimes paired with such objects as “innovation”, “program” or “reform” (as 
in “implementation of an innovation”). Such collocations frequently imply co-existence of two 
distinctly different agencies, creators of an innovation or a program and those who put it into practice. 
Tensions and issues related to alignment and coordination between these agencies are repeatedly 
pointed out (e.g., Penuel, Fishman, Cheng, & Sabelli, 2011). Simultaneously, there are voices (e.g., 
Century & Cassata, 2016; Penuel et al., 2011) that treat implementation of an innovative idea as a 
multiparty enterprise. We join these voices by presenting and illustrating the TRAIL framework.   

TRAIL is a theoretical-organizational tool for devising and conducting co-learning partnerships 
between teachers and researchers. As illustrated, teacher-participants in a TRAIL study typically 
consider the products of past studies critically, and draw on them mainly as a resource supporting 
reflection on and inquiry into their practice. Thus, in TRAIL, the distinction between practitioner 
inquiry and implementation of research in practice is blurred, and teachers act as co-producers of new 
knowledge rather than as consumers of the existing knowledge (Kieran et al., 2012). Of note is that 
while only a few of the participating teachers referred explicitly in their works to the research 
literature they had been exposed to, many teachers stressed in their feedbacks the importance of 
exposure to and active participation in educational research to their professional growth.  

In summary, this paper illustrates some of the theoretical and practical considerations underlying 
implementation of research products through teacher participation in research. More precisely, we 
treat implementation of research as active adaptation of research ideas and procedures by practicing 
mathematics teachers while being involved in doing authentic educational research, in collaboration 
with mathematics education researchers. We put forward an idea that past research products are likely 
to influence practice (also) when they are adapted rather than adopted, and when implementation is 
not the goal but a means on the way to resolving pedagogical problems of importance to the teachers. 
To this end, the implementation of research products can be seen as intertwining ideas developed by 
others with one's own experiences and ideas.   
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In this paper, we describe and discuss a recent attempt to implement inquiry-based mathematics 
teaching in Danish compulsory school. After a description of the project and an example of the 
teaching sequences involved, we will introduce a framework for understanding implementation issues 
in mathematics education, and use this framework to discuss the problems and potential that our 
project might encounter when it is considered part of a larger implementation of inquiry-based 
teaching in Danish mathematics education. We found at least three critical factors for 
implementation: stakeholders, teacher resources, and the balance between well-prepared and more 
open teaching materials. 

Keywords: Implementation, inquiry-based mathematics, teacher development. 

Introduction: Implementation and inquiry – a story of potential without impact 
This paper addresses the implementation of inquiry-based teaching in mathematics. The idea of 
developing an investigative and problem-oriented approach to teaching mathematics is not new. Even 
though the discourse around inquiry-based mathematics teaching only dates back to the late 1990s 
(National Research Council, 1996), the goal of refocusing mathematics education to practice where 
students are actively investigating and developing mathematical content at play dates back much 
further (e.g., Dewey, 1938; Freudenthal, 1991; Papert, 1980). Crucial for bringing about changes to 
mathematics education is dissemination of experiences and processes to a larger group of schools and 
teachers. This calls for large scale and long-term capacity building providing pedagogical support for 
teachers so that they can develop the repertoire of skills and understandings required to teach for 
inquiry-based mathematics. Furthermore, a sustainable impact depends on a good balance of internal 
and external resources and support (Krainer & Zehetmeier, 2013; Schoenfeld & Kilpatrick, 2013). 

More recently, several European development projects have focused on articulating, testing, and 
implementing inquiry-based approaches to teaching mathematics, science, and engineering 
(http://www.primasproject.eu, http://www.fibonacci-project.eu).  

These projects have generally reported positive results showing the potential of inquiry-based 
approaches to teaching mathematics. However, despite the fact that Denmark participated in a number 
of these projects, the findings have not given rise to significant changes in the teaching of mathematics 
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at scale (Mogensen, 2011; Østergaard, Sillasen, Hagelskjær, & Bavnhøj, 2010). With this in mind, 
the Danish government has initiated a three-year project called KiDM (Quality in Danish and 
Mathematics Education) focused on developing the quality of teaching in both mathematics and first 
language (Danish). 

One of the goals in the KiDM project is to identify and investigate the enablers and constraints for a 
large-scale implementation of inquiry-based mathematics teaching. This will be addressed in the 
present paper, where we describe the inquiry-based activities from KiDM and report on how they are 
received by the teachers, in order to plan and support the implementation. Using a framework for 
implementation research (Century & Cassata, 2016), we then try to pinpoint important stakeholders 
and factors that support, hinder, and alter the implementation of the activities of KiDM. In order to 
discuss problems, potentials, and relevant foci for KiDM as a large-scale implementation project.  

Description of “Better Quality in Danish and Mathematics” (KiDM) 
KiDM is a three-year, design-based research and development program named “Kvalitet i Dansk og 
Matematik” (Better Quality in Danish [first language] and Mathematics); its aim is to make the 
teaching in Danish compulsory school more inquiry-based. The program involves (1) surveying the 
literature on inquiry in teaching mathematics and Danish, (2) developing inquiry-based teaching 
activities for a four-month mathematics teaching approach for 4th and/or 5th grade implemented at 
107 schools, and (3) testing the effect of the intervention with a Random Controlled Trial. The control 
schools and intervention schools are randomly selected with respect to geography, size and ethnicity. 
They participated with 2-4 classes each, the intervention concerns all lessons in mathematics for a 
whole semester. The control schools only participated in the tests. 

Initial investigations and design principles  

The literature survey (Dreyøe, Larsen, Hjelmborg, Michelsen, & Misfeldt, 2018) as a preliminary 
investigation of KiDM, was conducted to gain insight into the most important issues and main 
concerns associated with Inquiry Based Mathematics Education (IBME). A systematic search of six 
of the highest-ranked journals led to five important themes/issues: 1) The literature survey stresses 
that communication in the mathematics classroom should be facilitated as open, inquiring, and related 
to the students’ activities with a starting point in the students’ prior knowledge. 2) Mathematical skills 
and competences are critical to participation in inquiry-based teaching. The modeling view of 
problem activities especially holds the greatest learning potential for students in inquiry-based 
teaching. Inquiry-based teaching has a positive impact on students’ mathematical creativity. 3) The 
students should be allowed to move in and out of the mathematical domain, and hence it is important 
to use a wide spectrum of activities in teaching. This requires students to be flexible thinkers and 
prepares them to cope with situations outside of school. Furthermore, the literature survey contained 
examples of and knowledge about both 4) tools and resources for planning and implementing inquiry-
based learning, and 5) professional development and collaboration. In relation to planning (4), the 
literature survey suggested that teachers should try to predict the students’ answers and prepare 
general and specific questions to scaffold, extend, and promote the students’ ability to generalize 
mathematical ideas. Regarding development and collaboration (5), it is worth noting that any change 
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to a teacher’s approach is a lengthy process. By utilizing pre-planned teaching units, one can 
contribute to a teacher’s ability to reflect on how IBME differs from his/her own approach to teaching. 

Apart from surveying the literature, we also interviewed six supervisors in mathematics prior to 
developing the specific designs in KiDM (Michelsen et al., 2017). Diplomas (60 ECTS) in 
mathematics supervision have been available since 2009, and many schools have a local supervisor 
in mathematics who initiates changes and supervises fellow teachers. The supervisors are organized 
in a national network. The interviews revolved around similar themes and to the need for supporting 
teacher-teacher and student-student collaboration – “We need time to cooperate inventing and 
exploring”.  

From the above, we formulated three principles which implications were important for the didactical 
intervention of the design for KiDM:  

· Principle 1: An exploratory, dialogical, and application-oriented teaching method with room 
for student participation increases the effect of the student’s understanding of mathematical 
concepts and develops appropriate ways of working. 

· Principle 2: In order to enhance motivation and learning, we prioritize that the students’ 
experience of the teaching and the content should be meaningful both from an internal 
mathematical perspective and from the perspective of the situation of application/inquiry. 

· Principle 3: An exploratory, dialogical, and application-oriented teaching approach with room 
for student participation increases the possibility of implementing mathematical 
competences.1 

To assess the students’ development of mathematical concepts and mathematical competences related 
to inquiry-based teaching, a pre- and post-test was used in intervention schools and control schools; 
student and teacher surveys were also conducted focusing on changes in the students’ motivation and 
experiences and the teachers’ extent of implementation and experiences, respectively. 

The intervention  

The inquiry-based mathematics intervention was developed in collaboration with school teachers, 
supervisors in mathematics, teacher educators, researchers, and professors in an iterative process 
during which the intervention was tested in a number of cycles in special development schools. The 
intervention was then tested in a pilot study in 14 schools and adjusted before the actual program 
began. The program runs for three subsequent semesters in the years 2017-2018. The results for the 
entire program are expected in 2019. 

The KiDM intervention consists of a website that contains a detailed teacher’s guide and 
accompanying student pages with various student activities that take into consideration students’ prior 
experiences, students’ opportunity for participation and appropriate ways of working with 
exploration, applications and mathematical competences especially communication, reasoning, and 

                                                 
1 Mathematical competences (Niss & Højgaard, 2011) is a key concept in the Danish curricular standards. 
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modeling (principle 1, 2 and 3). In addition to activity descriptions, the teacher’s guide also contains 
specific instructions on how the activities should be introduced, what hints can be given along the 
way, and how the collective discussion should be designed. The activities are designed to be open for 
the pupils o engage in mathematizations on a number of different levels. One example of such an 
activity is to count the number of books in the local library, where the pupils are invited to develop 
strategies for addressing this question in a structured manner. In Figure 1 we see the activity “How 
many knots?”, where students produce their own data sets by tying knots on a string. The students 
start by tying as many knots as they can in one minute. Afterwards, every student must count how 
many knots each have made. In groups of 3–4, students must make charts of the numbers. The 
assignment is: “If a man comes through the door and asks how many knots a student in this class can 
tie in one minute, what could you tell him?” 

 
Figure 1: Strings from the activity “How many Knots?” 

In the above example, the students’ participation is crucial; they create and use their own data. In a 
meaningful, explorative way of working they get the opportunity to reason about the data, 
communicate their result by developing their own model.  

All supervisors and teachers in the intervention are required to participate in three project meetings 
during the semester; they are also required to participate in three group meetings with all school 
mathematics teachers. All the meetings are clearly facilitated in detail on the website, where short 
video clips are viewed and discussed in the group meetings. Finally, there is an evaluation sheet that 
must be completed after each meeting. The group meeting focuses on the establishment of IBME 
teaching, the action phase in IBME teaching, and the validation phase in IBME education. For 
instance, the teachers and the supervisors reflected on the validation phase of the lessons they have 
tried out. The supervisor in mathematics is essential for the implementation by arranging, facilitating 
and evaluating these structured meetings. Lastly, the intervention teachers, supervisors, and, if 
possible, the headmasters participate in an all-day introductory meeting focused on the intervention, 
including both didactical and practical organization of the project, and an all-day evaluation meeting 
at the regional university. During the intervention, one teacher educator or one researcher will visit 
the school; this visit may focus either on observation of lessons or participation in a group meeting 
or project team meeting. The schools receive a stipend for each class participating in the project to 
cover expenses. 

KiDM as an implementation project 
In the following section, we will provide some concepts from implementation research and try to use 
them as a lens to investigate KiDM as an implementation project. We build on the definition of 
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implementation research from the work of Century and Cassata (2016,) as: “systematic inquiry 
regarding innovations enacted in controlled settings or in ordinary practice, the factors that influence 
innovation enactment, and the relationships between innovations, influential factors, and outcomes” 
(p. 170). Century and Cassata (2016) provided a description of important factors for the 
implementation of educational innovations. These factors are related to (1) the users, (2) the broader 
organization, (3) the actual innovation, (4) the strategies supporting its implementation, and (5) the 
timewise dimension of the implementation. In relation to the individual end users, we should be aware 
that the changes that educational innovation aims for are mediated by the people involved in the 
implementation process and aimed at their “change”. Century and Cassata (2016) distinguished the 
characteristics of individuals that build on their relation to the innovation (such as prior experience 
with the approach) from the characteristics of individuals that exist independently of the innovation 
(such as willingness to try new things). What Century and Cassata (2016) referred to as organizational 
and environmental factors are both characteristics of the specific setting (e.g., the classroom, the 
colleagues at the school) and to the broader ecology it sits in (e.g., the municipality or school district). 
Furthermore, these factors can also be completely outside the specific school or district (e.g., national 
policies). We can also distinguish between the actual and the perceived attributes of the innovation. 
This distinction highlights the difference between the explicit blueprints and detailed plans and the 
subjective (and often diverse) experiences of using these plans. The last factor that Century and 
Cassata (2016) discussed is implementation over time. Time is always a factor in the implementation 
and diffusion of practices and innovations.  

Methods and data  

The supervisors where responsible for the local implementation of the KiDM project and they were 
in charge for the evaluation sheets developed by the project, concerns implementation of KiDM, e.g. 
the explication of the teacher guide and inquiry-based teaching in general, e.g., key issues and 
challenges. To understand the status and challenges of KIDM as an implementation project we use 
the lens from Century and Cassata (2016). In the following section, we use the five factors from above 
to analyze our project. By reviving and coding the free-text information from the supervisors’ 
evaluation sheets that the local supervisors wrote as part of the documentation of the group meetings 
and project meetings. The sentences (i.e., citations) where categorized first individually by the first 
and second author of this paper according to the five factors but also in connection to enablers and 
constrains in implementation. Afterwards the coding was discussed in the whole group.  

Characteristics of individual end users of KiDM 

The end users of the KiDM project are teachers of mathematics, supervisors in mathematics at the 
participating schools, and students. Intervention schools were randomly selected according to a 
number of parameters, and therefore, we assume that we consider all types of mathematics teachers. 
However, there was a request that teachers had mathematics as their main subject and teaching 
experience in mathematics. This request was not met for all schools. Another request was that the 
school provide a coordinator who is a supervisor in mathematics. Some schools were unable to fulfill 
this, and their coordinators were participating teachers or the headmaster. We take into consideration 
the heterogeneity of the teachers by being very explicit with detailed plans in the teacher’s guide. 
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However, in terms of explication, there were still challenges, “It is very hard for a teacher who doesn’t 
have math as their main subject to read the teacher’s guide”. In a similar vein, “Preparation of the 
activities is hard work. We are only two educated math teachers in a group of six teachers, so we have 
to do most of the work”. Others found the material to be very explicit, “The didactic description is 
very thorough. A teacher who doesn’t have math as their main subject would be able to teach if he 
had the time and opportunity to read the description”. 

The teachers are a critical part of the end users and the data we currently have suggest that one 
important aspect of the project’s ability to satisfy this group is to provide enough information so that 
the instructions are clear (since inquiry-based approaches are new to some of the teachers) while not 
providing so much information that the workload becomes too great.  

Organizational and environmental factors 

The project is funded by the Danish Ministry of Education and supported by the Danish Union of 
Teachers. The school receives a stipend, which covers extra time for preparation and participation in 
meetings; this is important for the participants, “We have spent a lot of time reading the teacher’s 
guide. If there had been no extra time given in the project, we would not be able to use such an 
extensive teacher’s guide”. 

The intervention is planned in accordance with the national curriculum, yet some of the participants 
questioned the extent of this, “Do we meet the needs for the National Test?” and “Are the curriculum 
in play equivalent to half a year’s work?” 

As described above, the supervisors play an important role at most of the participating schools since 
they organize the meetings and local progress in the project. The project meetings are important for 
cooperation and for shift in collective attitudes: “We have cooperated far more than we have ever 
done”, “Wonderful to ‘nerd’ with mathematics at the meetings”, and “It has been liberating to be able 
to engage in discussions about mathematics and didactics at the group meetings”.  

The important organizational factors are economic resources/time, legislative support, and 
collaborative structures. Furthermore, we can see that the supervisors in mathematics becomes critical 
as the person who plans and facilitates the activities.  

Attributes of the innovation 

The degree of specification of what teachers and students must do in KiDM is high. The 
operationalization is not left to the teachers to perform by themselves. This tight scaffolding can be 
seen as critical to the success of KiDM. On the homepage, the teachers have access to a teacher guide 
that includes specific questions to ask in all phases of the activities, the aims of the activities, and 
agendas for all project meetings and group meetings. The agenda includes questions for discussion, 
links to short videos to watch and discuss, and tasks to solve and discuss. The teacher’s guide has 
some flexibility in the material, for example, to differentiate between 4th and 5th grade or to include 
students who are especially talented in mathematics.  

The teachers in the project have varying attitudes toward this detailed and tight operationalization; 
some teachers said that having a very strict teacher manual helped them in the beginning, but at the 
end of the intervention, some of the teachers did not follow the manual entirely.  
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Implementation support strategies 

The implementation strategies in KiDM are very broad. One important strategy is the meetings held 
at the local schools, where the focus is on discussion, operational planning, and professional 
development among mathematics teachers at the school. There were various comments about the idea 
that the teachers in the project must present their work at the larger mathematical group meeting at 
the local schools – “It does not work. You cannot involve the entire school in something that three 
teachers participate in” – but most of the teachers responded very positively about these meetings –
“We have discussed teaching and reflected about teaching and learning much more than we usually 
do. We hardly ever say, ‘How about page 87?’” The supervisor has an important role in these 
meetings because he/she must facilitate these meetings. If these meeting are not successful, it will 
affect the implementation at the school. The supervisor in mathematics can therefore be seen as a 
change agent. In addition, the KiDM teachers are given more time than usual for their lesson 
preparation and their extra meetings, which can also be considered an implementation strategy in the 
hopes that this additional resource can support further development of teachers.  

Implementation over time 

It is not yet possible to determine whether the teachers’ methods of inquiry-based teaching have been 
implemented, as the project is still ongoing. At this point, it is not possible to determine whether the 
teachers are at a specific developmental stage (from awareness to initial adoption to sophisticated 
innovation), but some teachers have stated that they already have ideas for how they will implement 
an inquiry-based approach in the future: “We have applied for a workday where all the math teachers 
will try to formulate a strategy for how to implement inquiry-based mathematics” and “All classes 
from the 1st  to the 5th  grade receive one extra hour per week. This hour must be used for inquiry-
based mathematics”. However, there are other variables that also come into play, such as the 
involvement of school leadership: “It is a turning point, the head of school is interested”, or “We 
don’t have a final agreement for the continuation of the work with the head of school yet”. The 
involvement of the mathematics group at the school is also important over time: “Despite the 
skepticism at the start (from the teachers not participating in the project), everybody is much more 
positive about the project as well as discussing didactics topics at the meetings”. 

Implementation as core stakeholders, resources, and an act of balancing 
In answering our question about enablers and constraints for KiDM considered as a large-scale 
inquiry-based project in Denmark, we see at least three factors that are critical, namely core 
stakeholders, balance, and resources. The first is the existence of core stakeholders in this change; 
Denmark is lucky to have a relatively newly educated group of supervisors in mathematics that can 
act as such. In a survey initiated by the Danish Ministry of Education (Mogensen, Rask, Lindhardt, 
Østergaard, & Rostgaard, n.d.), supervisors seem to be very influential in implementing government 
initiatives. The supervisors and group meetings are crucial organizational factors in KiDM. Hence, 
the supervisors in mathematics have the potential to act as change agents in future large-scale 
implementations. The second factor that we see as critical is the existence of time and money to 
support the work. This is stressed repeatedly by the participants. However, rather than just providing 
more money to the schools, we can see that the visibility of the project resources for the teachers 
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involved is critical, at least in our case. Therefore, necessary resources should be available to the end 
users (in this case, the teachers). The last factor is that of balance between well-prepared 
material/structures and the freedom to change and modify. In this project, we have been quite precise 
about what has been prepared, and this has worked particularly well when teachers and supervisors 
adopted the approach and made it their own.  

These three themes have been in the way that we describe the envisioned output and evaluation 
criteria of the project and hence as a part of the theory of change of the project.  
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Introduction and aim 
By reading the papers from TWG 23 in CERME 10, implementation research in mathematics 
education research appears to integrate diverse sub-fields from the community such as students’ 
proportional reasoning, teachers’ professional development, and curriculum design (Jankvist, Aguilar 
& Wæge & Ärlebäck, 2017). Often, these fields are defined by different research objects, core 
questions, ongoing discussions and mainstream theoretical and methodological approaches. This is 
also evident in the papers where the research object being studied is reflected in the choice of 
theoretical framework, for example, a study of the implementation of proportional reasoning draws 
on theory of proportional reasoning (Ahl, 2017). This characteristic has several substantial benefits. 
Firstly, the domain-specific theories developed within sub-areas of mathematics education research 
have been refined for decades to study the specific objects or processes for which they are developed. 
Secondly, whether implicit or explicit, domain-specific theories within mathematics education 
research often involve concepts and a vocabulary to investigate and articulate implementation matters 
(Jankvist, Aguilar, M. S., Wæge, K., & Ärlebäck, 2017). The use of different theories originating 
from diverse sub-fields, however, represents a threat in accumulating a solid foundation of 
knowledge. The aim of this poster is to show that explicitly relating domains-specific theories to 
implementation research can contribute in overcoming this potential pitfall while simultaneously 
preserving the advantages of using domain-specific and well-established frameworks. For this poster, 
I will illustrate how the documentational approach to didactics’ (DAD) (Gueudet & Trouche, 2009) 
perspective on implementation can be articulated by taking an outset in Century and Cassata’s (2016) 
definition of implementation research.  

Theoretical frameworks  
Century and Cassata (2016) define implementation research as:  

(…) the systematic inquiry regarding innovations enacted in controlled settings or in ordinary 
practice, the factors that influence innovation enactment, and the relationships between 
innovations, influential factors, and outcomes. (Century & Cassata, 2016, p. 170) 

This definition involves four central elements, namely enactment, factors of influence, innovation 
and outcome. Enactment refers to a given end user’s usages of what is being implemented. The 
innovation is what is being implemented, and it might appear in the form of a concept, training 
program, technology, etc. Factors of influence are what affects the enactment and may be attributes 
of the end user, organizational/environmental factors etc. Finally, the outcome is the result of 
implementation. It is a central point of Century and Cassata (2016) that these four elements are 
conceptualized and investigated differently in implementation research, as the aim, context and 
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theoretical approach of a given research question shapes the understanding of these concepts 
differently.  

Central concepts in a framework called DAD can be considered an interpretation of the four elements 
in this definition of implementation. DAD is developed to study mathematics teachers’ appropriation 
and usage of resources and considers the result of teachers’ combination of resources, usages, and 
knowledge a document (Gueudet & Trouche, 2009). The framework draws on an understanding of 
resources as “a range of (…) human and material resources, as well as mathematical, cultural, and 
social resources” (p. 210). Teachers’ work with resources is considered dialectic, where usages and 
resources mutually affect each other (Gueudet & Trouche, 2009). A document is defined as the 
combination of resources, usages, and knowledge. In DAD, teachers’ enactment of digital learning 
platforms are goal-oriented appropriation and usage of resources. The innovation may be the resource, 
which a teacher use. The outcome may be considered the documents that are produced, and the 
implications that these might have for teachers’ teaching and pedagogical work. In DAD, the 
influencing factors can be considered emerging instrumentations and instrumentalizations, which 
may be caused by resources, students, and teachers’ interpretation of the learning platform or the like. 
Moreover, implementations of innovations are considered a bidirectional process where the user may 
affect the innovations, but the innovation may also affect the user. To synthesize the research results 
in implementation research as an independent sub-field in mathematics education research there is a 
need for a consistent vocabulary. In this poster, I have suggested using Century and Cassata’s 
definition of implementation research to create common grounds. Using such an approach can 
synthesize results generated from diverse frameworks that are otherwise difficult to integrate.     
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In this pilot study, grade-4 students in a Greek primary school are invited to pose problems in three 
different situations (no feedback, peers’ feedback, teacher’s suggestions). The aim was to capture the 
problem posing landscape of the classroom in terms of the complexity of the problems the student 
pose in these situations. The posed problems were examined in terms (a) of mathematical complexity 
in the sense of the number of semantic relations they involve, and (b) of linguistic complexity. The 
findings give evidence that as the students become progressively aware of the initial problem’s 
attributes, they start to pose more complex problems by increasing both the number of problems that 
involve at least 2 semantic relations and the number of linguistic instances.     
 
Keywords: Problem posing, primary school, mathematical complexity. 
 

Introduction 
Problem posing has been recognized as an important intellectual activity in school mathematics and 
integral part of a balanced mathematics curriculum (Hansen & Hana, 2015). The truth is however, 
that in the school setting students are merely asked to solve problems rather than pose (Stoyanova, 
2003), and therefore they often face difficulties in posing mathematical problems (Silver & Cai, 
1996). Even though research findings support that students are capable of posing interesting and 
important mathematical problems (Cai, Hwang, Jiang & Silber, 2015) most of these problems are 
mainly cognitive undemanding and textbook-like (Crespo & Sinclair, 2008). This contradiction 
makes apparent the potential role of an intervention and many research studies (Crespo, 2003; 
English, 1998) seem to agree that a proper intervention might help students to learn posing problems 
given that they already have experience in solving problems similar to those they are asked to pose 
and actually this highlights also the teacher’s role in this process.     

In this paper, we make a preliminary effort to capture the problem posing landscape in a Greek grade-
4 classroom in terms of the complexity (mathematical and/or linguistic) of the generated problems in 
a variety of situations. The findings will feed the design of a year-long intervention aiming to foster 
the students’ problem posing abilities. Thus, our research question is: How the level of complexity in 
the problems posed by primary school students varies according to the setting in which the problem 
posing takes place? 

Literature Review and Theoretical Framework 
‘Are students able to learn to pose problems?’ If yes, what is the proper way to achieve that? Brown 
and Walter (1983) claim that problem posing can be taught. For each problem students can ask what 
kind of information the problem gives us (known), what kind of information is unknown and what 
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kinds of restrictions are placed on the answer. Then many new problems can be generated if the 
solvers remove, change or loosen the restrictions. In essence, solvers are asked to list the attributes of 
the problem, to take an attribute and ask “What-If-Not” that attribute.  

Exploring students’ problem posing performance is not new (English, 1998; Silver & Cai, 1996). 
Research findings reveal that even primary school students are able to pose good/meaningful 
mathematical problems. Lowrie (2002) claims that through a supportive and motivating learning 
environment, grade-1 students increasingly generated more sophisticated problems that were open-
ended in nature. Gade and Blomqvist (2015) worked with grade-4 and grade-5 students who posed 
problems in three different stages (formulating written questions, problem posing in dyads and posing 
problems to one another) using slips of papers. Through these three stages, remarkable progress was 
made so as in the problems posed by the students as well as in the way they used the slips of papers. 
Chen, Van Dooren and Verschaffel (2015) implemented a training program aiming to develop grade-
4 Chinese students’ problem-posing abilities. After the implementation, the problems generated from 
the students were significantly better proving that elementary students can be taught to pose better 
and meaningful problems. Cifarelli and Sevim (2015) connect the development of the problem posing 
abilities with successful problem solving. By focusing on episodes of two grade-4 students they 
explain how both problem posing and solving coevolve during the solution activity and also how the 
development of problem posing abilities contributed beneficially in the students’ problem-solving 
abilities, too. 

According to the literature the problems posed by students can be more interesting when they have 
been previously solving similar problems themselves, when the posed problems are addressed to 
people outside the classroom and when they are prompted by informal instead of formal symbolic 
contexts (Crespo, 2003; English, 1998). Winograd (1997) working with fifth-grade students found 
that they were highly motivated to pose problems that their classmates would find interesting or 
difficult without losing their interest during the process of sharing posed problems. Problem posing 
is rather redefining the way students learn mathematics since they are actively engaged in the learning 
process by being encouraged to set questions and generate problems instead of being passive receivers 
of knowledge (Brown & Walter, 1983).  

The problems posed by the students can be evaluated on the basis of three criteria (Silver & Cai, 
2005): Quantity, Originality and Complexity. Quantity refers to the number of the generated 
problems. More specifically, the number of the mathematically correct problems may be indicative 
of the progress the students accomplished. Originality refers to the number of unusual responses and 
thus rareness is a way to measure it (they refer to these answers as atypical or original). The third 
criterion, complexity, can be examined at least from two different perspectives: the mathematical and 
linguistic complexity. Linguistic complexity focuses on linguistic structures (presence of an 
assignment, relational and conditional propositions in the statement of the problem). Mathematical 
complexity is related to the mathematical structure found in the posed problems and one plausible 
way to measure it is by enumerating distinct semantic relations using a classifications scheme of 
arithmetic word problems developed by Marshall (1995). This includes five categories of relations: 
Change, Group, Compare, Restate, and Vary. The Change schema applies when an initial quantity 
changes over time (increase or decrease). The Group schema relates to a situation where a number of 
small quantities are combined into a larger one. The Compare schema involves situations where two 
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things are contrasted with an emphasis on the relation between them (greater, smaller, more, less, 
etc.). Restate schema involve situations where there is a relation between two variables at a given 
frame only (e.g., exchange rates). Finally, Vary schema involves a fixed relationship between two 
variables that persists over time (e.g., relation between euros and cents). 

Mathematical complexity has attracted the interest of several researchers on problem posing. 
According to Silver and Cai (1996) the complexity of the problems posed by the students tend to 
increase when students generate sequences of chained problems using the results of the simpler 
problems to pose more complicated ones. Ellerton (1986) comparing the problem posing abilities of 
high- and low-ability students found that high-ability students generated more complex problems. 
Finally, it seems that certain interventions influence the quality of the generated problems (Crespo, 
2003; English, 1998). English (1997) conducted an intervention to grade-5 students and found that 
after the program the students posed a greater number of problems that were also more complex. 

Design of the study 
This study is the first in a series of small pilot studies aiming to capture the landscape of Greek 
primary students’ problem posing abilities. The students were asked to pose problems in three 
different settings to compare the variation on the complexity of the problems posed in each setting. 
Apart from the first setting, the following two settings were developed during the implementation 
taking into consideration the students’ answers. Eighteen grade-4 students from a private school 
participated in this study. The intervention took place in parallel to the normal teaching of 
mathematics in the sense that an hour per week is dedicated in math tasks aiming to develop students’ 
mathematical thinking. The students had no prior experience on relevant problem posing activities. 

In the first phase, the students were given the starting sentence of a potential problem: “Peter has 75 
cents…” and they were asked to complete the problem in as many as possible different ways without 
having to solve their problems afterwards. Silver and Cai (2005) consider this kind of activities 
appropriate for assessing students’ problem posing abilities. The teacher did not give any clue about 
the operations or the mathematical concepts the students could involve in the produced problems. 
This session was followed by a whole class discussion and the students had the chance to present 
their examples. One of the students presented an example that initiated the second phase of the study. 
In his example he actually dropped an attribute of the problem using a “What-If” approach and 
produced a problem that attracted the attention of his peers. The attribute was the kind of currency 
and his question was “What if instead of euros the currency was lev?” (the currency of the adjacent 
country of Bulgaria).  

Based on his suggestion the students were asked to pose new problems in the same spirit using the 
same “What-if” technique of their classmate even though they did not have similar experience before 
(2nd phase). No discussion on the notion of listing and dropping attributes took place. Again, a whole 
discussion followed the session and the students presented their problems.  

Finally, during the third phase, certain attributes were explicitly provided to the students by the 
teacher. More precisely, the teacher asked them to pose problems by considering certain attributes 
such as the total number of coins, the kind of the coins/currency and the value of coins. 
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The problem in its incomplete form makes apparent one attribute in an explicit way: the total amount 
of money. Therefore, students are left to involve and negate more attributes that could potentially be 
part of the problem such as the number or the kind of coins. 

The students’ worksheets with the problems they generated during the three phases constituted the 
data for this study. The written responses were analyzed based on the assessment tools developed by 
Silver & Cai (2005) and Marshall (1995). According to these tools, the responses are organized in 
three major categories depending on whether the questions included in the problem were 
mathematical, nonmathematical or whether there was merely a statement in the problem rather than 
a question. Then, the mathematical questions were evaluated on their solvability (solvable and 
nonsolvable). Finally, the solvable ones were examined for indications of mathematical and/or 
linguistic complexity. We determined how many of the five semantic structural relations (Marshall. 
1995) co-existed in each problem. Problems that involved a larger number of semantic relations are 
considered more mathematically complex compared to those that involve less relations. A comparison 
followed across all the three phases. All the responses were evaluated independently by the two 
authors and validity and reliability were established by comparing sets of independent results, 
clarifying categories until agreement. 

Results and Discussion 
Phase One 

As already mentioned, during the first phase of the study, the students were given the first sentence 
of a problem and were asked to pose as many as possible problems without feedback neither from 
their classmates nor their teacher. Each student posed one or two problems. Table 1 summarizes the 
results of the first phase. All the mathematically complex problems are distributed further according 
to whether they involved 1, 2 or 3 semantic relations. Moreover, sometimes linguistic and 
mathematical complexity might co-exist in the same problem and this explains why the partial sums 
in Table 1 are not in agreement with the total number of solvable problems.   
 

Total number of Responses: 23 
Nonmath 

Questions:  
0 

Math Questions:  
22 

Statements:  
1 

 Solvable:  
19 

Nonsolvable: 
          3        

 

 Math Complex. 
19 

Ling Complex. 
           2 

  

 1 relation 2 relations 3 relations    

8 8 3 

Table 1: Results of Phase-1 

As it can be seen, in this phase most of the responses (19 out of 23) were solvable problems exhibiting 
to a certain degree mathematical and/or linguistic complexity. The problems more or less copy the 
problems the students are familiar with and are included in their mathematics textbooks. Mainly they 
were problems including 1 or 2 relations that could be solved in one or two steps using more the 
addition and/or subtraction operations (instead of multiplication or division). One example with 1 
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relation was: Peter has 75 cents. He gave 30c to one poor child and later he gave 7c to another. How 
much are left? (1 relation, Change). Another example including 2 relations was: Peter had 75c. His 
grandmother gave him 95c but later took 25c from him. His grandfather gave him two more euros 
but took 125c from him. How many euros will Peter have? (Change, Vary). This problem combines 
addition/subtraction to find partial results (Change) but at the same time the concurrent use of cents 
and euros involves converting cents to euros and vice versa (Vary) which means that multiplication 
and/or division (depended on how the problem will be solved) are also necessary. Another example 
of mathematically complex problem which exhibited three semantic relations (change, group and 
vary) exhibiting at the same time linguistic complexity was: Peter has 75c. At New Year’s Eve his 
dad gave him 87€ and 46c. In March he bought 8 gums per 27c each. In April he bought an ice cream 
for 36€. Two weeks ago, he bought a skateboard for 19€ and 29c. a) How much money did he spend 
on February in order to have 75c now? b) How much € did all the gums cost? and c) How much did 
he spend for all of them? The solver has now to interpret the existing information. ‘New Year’ refers 
to January and the chain of expenses refer to the period from January to May (the ‘two weeks’ is 
related to the time the session took place in school. It was during May). However, February is not 
mentioned. The initial amount of money is interpreted as the money Peter owns and the end. So, it is 
a multistep problem involving almost all the four operations and requires thought and interpretation 
of the information provided by the statement of the task.  

There was finally an instance (1 out of 22) the students made a statement. That was: Peter had 75 
cents. He wants to buy a toy for 100€. It is obvious that the student did not pose any question. During 
the whole classroom discussion one student posed the question (addressing it rather to the teacher 
than his classmates): ‘What if instead of euros the currency was lev? Would you be able to solve the 
problem?’. As already has been mentioned this question initiated the next phase.   
Phase Two 

During Phase 2 the students were invited to generate new problems in the spirit of the ‘What-if’ 
approach exhibited by their classmate in the previous phase. There was not any explicit reference to 
the list of the problem’s attributes and their negation. The results of this phase are summarized in 
Table 2. 

Total number of Responses: 21 
Nonmath 

Questions:  
1 

Math Questions:  
18 

Statements:  
2 

 Solvable:  
16 

Nonsolvable: 
          2        

 

 Math Complex 
16 

Ling Complex 
           0 

  

 1 relation 2 relations 3 relations    

8 7 1 

Table 2: Results of Phase-2 

Most of the students’ responses were solvable problems (16 out of 21). There was only one problem 
asking a question that was considered nonmathematical: Peter has 75 cents. What if he loses all of 
his money and cannot buy anything? Furthermore, no linguistic complexity was detected in the 
students’ responses in this phase.  
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What is interesting is that almost all the students followed the instruction to use the ‘What-If” 
approach but actually they copied the problem of their classmate in the sense that they just focused 
and/or negated the attribute of currency. For example: Peter has 75 cents. What if Peter had a friend 
from Japan and he wanted to trade yen with 75c? (restate). Or in another example: Peter has 75 cents. 
What if his money was alien money. If an alien cent has the same value as 9€ and wants to buy a 
wallet which costs 49€, how much change will he get? (restate and change). In these responses, the 
students engage the potential solver with currency conversions (which means true statements for a 
short period of time), and the solution of the posed problem relies heavily on the relationships between 
the two currencies. During the whole classroom discussion, the teacher shifted the focus on 
identifying and negating more attributes of the problem and this initiated the third phase of the study.  

Phase 3 

During this phase of the study, certain problem’s attributes were provided to the students such as the 
number, value and kind of the coins and they were asked to consider them in order to pose new 
problems. The results of this phase are summarized in Table 3. An example of a ‘What-If’ approach 
considering the kind of coins was: Peter has 75 cents. If he only has 5c coins, how many coins are in 
his pocket? (vary). It looks like a common problem. However, the choice of division as the necessary 
operation to solve the problem is not met frequently in the students’ responses. An example of a 
moderate complex problem in this phase is: What if there were also 7€ and 16€ coins and Peter has 
in his pocket sixteen 7€ coins and three 16€ coins. He spent 5.27€ and then lost 3.25€? How many 
euros are left? How many cents are they? (Change, Vary, Group). The solver must be familiar with 
this new element of the weird coins that is not common at our linguistic repertoire and then must 
relate euros with these new coins and depending on the strategy there will be necessary to use 
multiplications and/or divisions for the interplay between euros and cents.  

Total number of Responses: 32 
Nonmath 

Questions: 
1 

Math Questions: 
31 

Statements: 
0 

Solvable: 
29 

Nonsolvable: 
          2      

Math Complex 
29 

Ling Complex 
          8  

1 relation 2 relations 3 relations 

9 16 4 
Table 3: Results of Phase-3 

The students’ awareness of the attributes of the problems seems to stimulate both the number and the 
quality of the posed problems. There was a noticeable increase in the number of the problems (almost 
1,5 times more). More precisely, the number of problems that include at least 2 relations was 20 out 
of 29 problems. This increased number of semantic relations (Silver & Cai, 1996) indicate the 
presence of mathematical complexity.  Furthermore, in this phase, there was a significant number of 
instances (8 problems) exhibiting a sense of linguistic complexity: Peter has 75 cents. Is it possible 
to have only 2c coins? The linguistic element in this problem is that its question differs significantly 
from the ones posed in the first two phases. The word “possible” must be interpreted correctly given 
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that the participants are grade-4 students and a certain language competency is required to negotiate 
phrases such as “at least”, “possible”, “the more” that are included in mathematical problems.  
 

Conclusion 
The purpose of this (first among others that will follow) pilot study was to capture the landscape of 
problem posing in a Greek grade-4 classroom in order to setup a year-long intervention in the 
classroom aiming to develop the problem posing abilities of the students. The students were invited 
to pose their problems in three different setting and the results give evidence that given certain 
circumstances grade-4 students can pose interesting mathematical problems. Almost all the students 
were able to pose mathematical questions. Only a couple of statements or nonmathematical questions 
were identified. Moreover, the complexity and the sophistication of the generated problems tend to 
increase along with the evolution of the sessions.  

During the first phase of the study, students posed without any external influence a series of solvable 
problems. Most of these solvable problems included one or two semantic relations resembling 
textbook like problems dealing with the four operations and specifically addition and subtraction 
which is in accordance with Crespo and Sinclair (2008). There were also a few instances of three 
relations or linguistic complexity signs that were identified in some of the answers. 

In the next phase of the study, a “What-if” technique was used by one of the students who negated 
the currency attribute of the problem. This was an opportunity to invite students posing new problems 
under the light of this new approach. The situation was more or less similar to the previous one, and 
the posed problems were merely mimicking the one posed by their classmate. So, the students did 
actually drop the attribute of currency not as an action of negating the structural elements of the task 
but as a way to follow an example that seemed to be successful. No signs of problems’ linguistic 
complexity were identified. 

During the final phase of the study, the students became aware of certain attributes that were 
highlighted by the teacher. This awareness seemingly helped the students to increase the number of 
posed problems increasing at the same time the number of the involved semantic relations per 
problem. Also, more evidence of linguistic complexity emerged.  

Given the lack of any relevant experience on problem posing and its strategies the students were able 
to take advantage of the feedback provided during the whole classroom discussion either from their 
peers or their teacher. This feedback actually shifted their attention to specific attributes of the task. 
It is very interesting that the students’ answers determined the design of the next two phases. This 
study, being a pilot one, feeds the design of a future intervention aiming to create a class environment 
that will encourage students to raise questions and pose problems.  This small-scale study encourages 
the idea that a systematic teaching on problem posing may develop students’ posing abilities which 
is in alignment with English (1997).  
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This paper concern the role of research and models of governance in two Swedish reform 
programs: the New Math project in the 1960s and 70s and the Boost for Mathematics project in the 
2010s. This historical comparison study aims to deepen our understanding of how research results 
in mathematics education are implemented in Swedish schools today. Theory and results from 
implementation research are used to pinpoint and justify the choice of the object of analysis. The 
analysis focuses on the role of research and the researcher in the preparation of the two projects. 
The main sources are reports and governmental decisions concerning the two projects, but sources 
also include material used in these projects.  

Keywords: Governance, Educational change, Educational research, Innovation, Implementation.  

Introduction 
Between 1960 and 2018, the policy of governance of Swedish schools has shifted from being 
primarily centralised to being primarily decentralised (Prytz, 2017). To a great degree, this shift 
meant that teachers had more autonomy to choose what teaching methods and teaching materials to 
use. For example, since 1994, the national curriculum does not provide guidelines about teaching 
methods. About the same time, the review of textbooks was abolished. However, little is known 
about how this overall change in governing policy has influenced how research findings are 
implemented in schools. 

In Sweden, the development of research on mathematics education has paralleled the change from 
centralisation to decentralisation. The number of researchers has increased greatly and mathematics 
education has become an established field of research at most Swedish universities. However, this 
does not entail that research in mathematics education did not exist in the 1960s – it did. However, 
in the 1960s research was conducted to a large extent by the central school authorities rather than by 
researchers in universities. Perhaps it is not entirely correct to refer to this enterprise as research, but 
there was cooperation with researchers and the methodologies were similar to those found in 
educational research today.  

The study presented in this paper deepens our understanding of how research results in mathematics 
education are implemented in Swedish schools today. To this end, this paper compares two 
historical cases: The New Math project (1960–1975) and The Boost for Mathematics project 
(Matematiklyftet) (2011–2016). The two projects differ in many respects, but they also share some 
characteristics: both projects were run by central school authorities and both emphasised teachers 
using research findings to develop teaching strategies. The analysis is descriptive and concerns how 
the implementation of these projects was prepared. The analysis and the research question address 
the function of educational science as a base of knowledge for designing teaching innovations. 
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More precisely, I describe different phases in the preparation process and the role of research in this 
process. Further details are presented in the section ‘Theory and method’. 

The paper contains five sections: ‘Theory and method’, ‘Contribution to previous research’, ‘The 
New Math project’, ‘The Boost project’, and ‘Conclusions and discussion’. ‘The New Math project’ 
and ‘The Boost project’ sections include a short background of each project as well as a more 
detailed description of the role of research in each project. In ‘Conclusions and discussion’, the two 
projects are compared with each other and I discuss the role of research and modes of governance. 

Theory and method 
Innovation is a key concept in research about implementation as it is the innovation that is to be 
implemented (cf. Century & Cassata, 2016; Fullan & Pomfret, 1977). This paper concerns the 
preparation of the innovation. In an early overview on research about implementation and 
education, Fullan and Pomfret (1977) note that this phase can be determinant for the rest of the 
implementation process.  

In a more recent overview, Century and Cassata (2016) discuss research about implementation and 
education and how innovation relates to knowledge. In an educational setting, knowledge can come 
from two sources: research and practice. This paper focuses on how educational research or science 
has functioned as a base of knowledge when innovations were designed; in brief, I call this the 
function of research. 

In comparative historical studies in education and other subjects, it is imperative to have a common 
unit of comparison (Bray et al., 2007). In my analysis of the function of research in the two projects, 
the common unit is the researcher. The basic question of this paper is formulated as follows: How 
did researchers prepare the innovations? For example, the researchers can design the innovation by 
compiling results from other researchers outside of the project or the researchers can design the 
innovation by doing their own experiments or trials.  

This analysis relies on official reports about the New Math project and the Boost project and 
teaching materials. However, when discussing the New Math project, I do not refer to the original 
sources but to a previous study, Prytz (2017), which includes an analysis of the New Math project 
in Sweden.  

In addition, I analyse the organisational factors influencing the function of research. According to 
Century and Cassata (2016), these factors can influence the implementation of an innovation. In 
particular, I am interested in how policies of governance (centralisation or decentralisation) and 
scientific policies influenced the role of the researchers: How extensively have researchers been 
pursuing policies of governance and science?  

As to the historical context of governance of each case, I have not done my own analysis but have 
relied on extensive previous research. Of course, there are different views on certain aspects, but 
there is strong agreement about the overall narrative: from about the mid-1970s up to about 2000, 
the policy of governance of the Swedish school system changed from mainly centralised to mainly 
decentralised. In all three areas of governance (economical, judicial, and ideological), the general 
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ambition was to give local actors the power to make decisions (e.g., local politicians, headmasters, 
or teachers). We also find this overall narrative in university textbooks and in research papers (see 
Prytz 2017 for an overview).   

Contribution to previous research 
Focusing on methodology, this paper shows how historical studies can be used in research about 
implementation and education. Historical comparison is a rarely used methodology in research 
about implementation and education as evident in its lack of mention in quite old as well as more 
recent international overviews (cf. Century & Cassata, 2016; Fullan & Pomfret, 1977). The lack of 
historical comparisons is also evident in the field of mathematics education, where implementation 
research is a fairly new topic. For example, historical studies about implementation have not been 
an issue at the previous CERMEs. 

A principal argument of doing historical comparisons is that they provide perspectives on contem-
porary phenomenon, a view that cannot be attained through the study of contemporary sources 
alone. Typically, historical comparisons help bring into relief what is stable and what is not (cf. 
Tosh, 2000). This study found that the role of educational research and the researchers preparing 
reforms co-vary with basic policies of governance. This co-variance can be a problem if we believe 
that research should be autonomous and follow its own logic.  

This paper also contributes to the research about the Boost project. As with this study, Boesen et al. 
(2015) focused on design and planning to examine how the project was informed by research. 
However, Boesen et al. considered how references were made to different types of research publi-
cations, whereas my study focuses on the role of researchers. Another difference is my historical 
perspective and my comparisons of policies of governance. The Boost project has also been 
evaluated two times and a third is on the way. One of the evaluations (Österholm et al., 2016) uses a 
scientific approach. Not in any of the evaluations, the preparation of the program and the role of re-
searchers are considered; the focus is on the outcome. 

The New Math project 
The New Math can be seen as an international reform movement that aimed to innovate and 
improve school mathematics from year 1 to 12. The innovations were supposed to be based on 
contemporary science: The content of the teaching should be updated to reflect the advancement of 
the scientific discipline of mathematics, and teaching methods should be based on modern 
psychological and pedagogical research. By the end of the 1950s, the movement had accumulated 
great momentum. Internationally prominent researchers supported the project, including the 
mathematician Jean Dieudonné and the psychologists Jean Piaget and Jerome Bruner. In addition, 
international organizations such as OECD and UNESCO contributed by funding conferences and 
publishing reports (Prytz, 2017). 

Quite early, Sweden became part of the movement. In the late 1950s, representatives from Sweden 
attended the international conferences on the New Math. In the early 1960s and in cooperation with 
other Nordic countries, except Iceland, development began on a new curriculum based on New 
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Math. The project was initiated, financed, and driven by central school authorities. These 
preparations lasted until 1968 (Prytz, 2017).  

The role of the researchers during the preparations of New Math in Sweden was to lead and work in 
a research-like enterprise gathering and analysing extensive empirical data. The development of the 
innovations, which largely concerned the development of textbooks, was an extensive enterprise. 
The testing of new textbooks involved thousands of students in the Nordic countries. In addition, 
teachers completed questionnaires that addressed how teaching had progressed and how the 
material could be improved. In one part of the project, a new type of textbook based on New Math 
went through five rounds of development and trials. At the end of another part of the project, trials 
with experimental groups and control groups were conducted that lasted for two or three years. 
These trials ended with knowledge testing. The tests indicated that the new material was functional 
and which groups of students were served best by the new material (Prytz, 2017). 

A central component of the New Math was set theory. The idea was that set theory, already from 
year one, should form the basis of all other areas of school mathematics, such as arithmetic, 
geometry, algebra, and statistics. The inspiration came from the scientific discipline of mathematics, 
where set theory functioned as a basis for other parts of mathematics. In school mathematics, 
however, it was not just a question of adding a common ground for the content of the courses; set 
theory also had an educational or methodological purpose. It was supposed to create clearer 
connections between the various topics, both for teachers and for students. In addition, explanations 
and illustrations should be based on concepts from set theory. Interestingly, concepts from set 
theory alone did not fill this role. The 1969 curriculum also emphasised the number line and images 
of numbers as positions on a number line (Prytz, 2017). Thus, the New Math project brought not 
only a general theory about teaching and learning, but also detailed guidelines about how teachers 
should communicate with students. 

It was in connection with the methodological ideas about set theory that Piaget and Bruner were of 
particular significance. They argued that there are similarities between mental structures and 
mathematical structures, which they thought should be used in teaching. The idea was that a 
stronger focus on structures would provide better understanding, which in turn would result in 
better learning. Set theory, but also the number line, would provide a structure to create better 
learning. For this reason, set theory, along with the number line, should primarily be seen as a 
methodological innovation that concerned all parts of school mathematics (Prytz 2017). 

However, Piaget’s and Bruner’s theories should be considered hypothetical guidelines. Few studies 
provided specific guidelines for how to design teaching. In the final report about the Nordic New 
Math project, we see only a few examples of these types of studies. A centre piece of that report is 
the development phase and the trials of new types of textbooks (Prytz, 2017). 

In the 1970s, the reform was being implemented. The new curriculum based on the New Math was 
ready in 1969 and it took effect in 1970. By and large, all teachers in mathematics in year 1–9 
received further education in New Math. A large majority of the textbooks followed the new 
curriculum (Prytz, 2017).  

Thematic Working Group 23

Proceedings of CERME11 4442



 

 

 

 

The Boost project 
The Boost project was an in-service training program for teachers and was prepared between 2011 
and 2012 and was launched in 2013. The final decision about launching the program was taken in 
2012. It ended in 2016 although much of the material is still accessible through the central school 
authority’s website. It was a major program as 76% of all mathematics teachers (1–12) followed the 
program (Source B). At this point, we can spot a great difference in comparison with the New Math 
project: the time allotted for preparations. 

Unlike the international New Math movement, the Boost project was an all Swedish enterprise. The 
justification of the project was that the results of the Swedish students had decreased for about 15 
years, according to national as well as international evaluations. This was clearly stated in the final 
government decision to start the Boost project (Source A). The results in PISA and TIMSS had 
indeed decreased significantly, especially in the ten years before the Boost project. In fact, the 
decrease was greater than in any other country. 

The same government document identified the cause of the problems. On the basis of several 
investigations, the document concluded that students mainly worked alone with the textbook and 
too little of the teaching were led by teachers, limiting the possibilities to learn about reasoning and 
argumentation (Source A). This view of the problem was reflected in the overall aims of the project. 
The aims were to change the culture of teaching and develop a new in-service training culture 
(Source B). Neither the justification nor the aims of the project had any direct connections to the 
new curriculum that was launched in 2011. 

The Boost project was administered by the central school authorities in co-operation with the 
national centre for mathematics education at Gothenburg University (Source A). To ensure 
scientific quality, the work to develop the educational material, so-called modules, was distributed 
among several university departments with research in mathematics education (Source B). 

The basic principle for organizing the program was peer learning among teachers with support from 
external experts. Experts in this case were researchers at the university departments. However, 
experienced and highly skilled teachers led the peer learning sessions with the teachers (Source A). 
These experienced and highly skilled teachers received special training at the university 
departments for eight or nine days. As I understand it, the researchers’ main responsibility was the 
teaching material and the special training of the highly skilled teachers. 

The choice of a peer learning program was justified by a reference to a report issued by the Ministry 
of Finance (Åman, 2010). In turn, the author of that report referred to another report (Timperley, 
2007) issued by the Ministry of Education in New Zealand, an international overview of research on 
teacher training. The report clearly recommended peer learning, but it provides no explicit 
recommendations about how researchers, or experts, and teachers should interact. However, the 
report implied that this relationship is crucial since it emphasised the importance of the content of 
the teacher training program; in fact, this was considered more important than anything else. 

This leads us to the teaching material and how it was developed by the researchers. The material, or 
modules, comprised scientific articles in mathematics education along with films, audio clips, web 
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texts with instructions, and questions for lesson activities and peer learning (Source B). Each 
module covered one topic (arithmetic, geometry, etc.) in the curriculum. In addition, each module 
focused on four areas: abilities, formative assessment, interaction, and socio-mathematical norms. 

The scientific articles in the modules included different types of texts: an international overview of 
each topic and the four areas mentioned above and articles about Swedish mathematics education. 
The later type of texts was by no means dominant (Source C). My point here is that the research re-
sults presented to the teachers largely did not stem from research on Swedish students and teachers.  

One major role of the researcher was to use information from previous research to produce the 
modules. To secure high quality material, each module was also reviewed by several other 
researchers. According to the final report about the project, there were no trials of the modules with 
teachers before they were published and used (Source B). However, in the same report, it is stated 
that there were follow-ups (school visits, interviews, and surveys) after the publication and these 
resulted in revisions of the modules (Source B). To what extent and for how long these follow-ups 
lasted is unclear. Another report noted that there was a test round with 300 teachers in the autumn 
of 2012. The program was then launched in the autumn of 2013 (Source B). Thus, it appears there 
was only one round of trials where the teachers could provide the researchers with feedback. 

Conclusions and discussion 
The role of the researchers in the New Math project and the Boost project fits the narrative of an 
educational system that changed from a centralised to a decentralised system. In the New Math 
project, the state-financed researchers applied one specific theory about cognition and learning to 
find out what is efficient teaching in all subtopics for all school years. This research ended in 
detailed guidelines about how to teach all parts of mathematics such as how to explain new 
concepts and what type of illustrations or pictures should be used. These guidelines were then 
dispersed through the national curriculum. Thus, the decision about what is good teaching was 
centralised and the researchers were supposed to deliver detailed guidelines about teaching that all 
teachers were to apply. In the Boost project, much of the decisions related to learning and teaching 
were decentralised. The researchers did not have to apply one specific theory on cognition and 
learning. Moreover, the role of the researchers was not to provide more definitive answers, for 
example, through guidelines in the national curriculum about what is an efficient teaching practice. 
Moreover, the idea of peer learning theory, which was the overarching theory of the Boost project, 
is that teachers, with support from researchers, should develop their own teaching strategies. 
Another aspect of decentralisation was that the teachers choose to study two of several modules. 
Thus, the teachers decided which part of their teaching needed most development. As I see it, the 
role of the researchers in the Boost project was to gather a smorgasbord of teaching solutions the 
teachers could choose from. Thus, in both projects, the researchers were operating according to the 
policy of governance of each period.  

Now we turn to the issue of pursuing scientific policies. The New Math project was driven accor-
ding to one explicit general theory about cognition and learning mathematics. However, this theory 
was hypothetical as it did not deliver concrete solutions about how to teach. In practice, this meant 
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developing and testing teaching and support material, not the least of which were textbooks, for six 
years. During this time, new material was tried in five development cycles. The project involved 
thousands of teachers and students, and the material was also tested with experimental and control 
groups after two or three years of teaching. Important to notice is that the many years of testing 
were relevant from a scientific point of view since little empirical research results were available to 
develop the New Math project. In the Boost project, the situation was different. Time for develop-
ment was brief, about a year, and the material given to the teachers, the modules, was tested just 
once and with few teachers. That is, rather than relying on results from trials (i.e., applying a more 
empirical and inductive mode of reasoning), the researchers had to work in a more deductive 
fashion (i.e., take and derive solutions from previous research results). 

I am not saying the Boost way of preparing materials for teachers is unscientific or ineffective, but I 
am questioning if it is optimal. Are we today in the position to replace or drastically reduce the type 
of preparations we see in the New Math project? The methods applied in the New Math 
preparations still are relevant for development projects and they are a part of normal research 
methodology. Moreover, is it possible to derive functional material, both with respect to design and 
content, in a brief period from research results that in many cases do not stem from studies on 
Swedish students and teachers? If we consider the overview on implementation research by Century 
and Cassata (2016), their view seems not to include positive answers to these questions:  

It is not uncommon for developers to be unsure about which elements are indeed most 
critical […], and there is a tendency for innovation creators to identify the majority of 
components as “very important” […] and to hold holistic views of their innovations (i.e., as 
“packages”), leading to component descriptions that lack specificity. […] For these reasons, 
researchers are encouraged to use multifaceted approaches to identifying innovation 
components that combine information from developers and other experts, from end users, 
from observations of innovations in practice, and from reviews of artefacts, such as practice 
guides and other program materials. (Century & Cassata, 2016, p. 182) 

This passage indicates that the development of the innovation should take some time to identify and 
develop core components in different ways. In fact, the preparations of the New Math reform fits 
this passage quite well since it combined information from developers, experts, and users as well as 
observations of innovations in practice.  

So, why was the Boost project prepared in this way? Why was not more time and resources allo-
cated to researchers and the development of the material? I suggest this decision, at least in part, 
was related to a policy of governance – i.e., decentralisation. This policy does not fit the idea of 
researchers in a central position deciding what is good material for all teachers. Moreover, the 
absence of more precise material, which Century and Cassata (2016) are asking for, is less of a 
problem if teachers are supposed to make decisions on their own. Here it is important to notice that 
the scientific report referred to in the planning of the Boost project that recommended peer learning 
(Timperley, 2007) gave no explicit recommendations about how researchers and teachers should 
interact. However, the report did imply that this relation is crucial since it emphasised the 
importance of the content of the teacher training program. 
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In the future, I think researchers as well as politicians and school administrators should consider the 
relation between governance and research more closely as they plan major development projects. 
To a great degree, they are probably interested in the same goal: to change the behaviour of teachers 
and students. However, their means to achieve the goal may or should not always be the same. 
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A. Regeringsbeslut I:44, 2012-03-29, Uppdrag att svara för utbildning [Government decision I:44, 
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The research literature provides plenty of examples of epistemological analyses of multiplication 
and descriptions of the complexity of the conceptual field of multiplication. Nevertheless, 
multiplication is often introduced as repeated addition, although decades of research have 
identified this pedagogical choice as leading to persistent problems in students’ conceptualisation 
of multiplication. In this paper, we describe a teaching design that aims to implement theoretical 
and empirical research results regarding multiplication in classroom practice. Within our design, 
models in the form of iconic representations serve as a means for creating patterns that make 
multiplicative invariants and structures visible. The teaching we have designed is currently tested in 
a mid-scale randomized controlled trial and in a large-scale professional development project.  

Keywords: Multiplication, primary school, models, implementation. 

Introduction 
Multiplicative structures constitute a vast part of compulsory school mathematics. The importance 
of the concept of multiplication for students’ possibilities to develop mathematical competence 
cannot be overstated. When multiplication is introduced in school mathematics, children start a 
journey that should take them to advanced mathematical knowledge about fractions, ratio, rate, 
slope, similarity, trigonometry, probability and vector spaces. In addition, physics and social 
science are heavily reliant on multiplicative reasoning and proportional relationships, e.g., 
statements of equality of ratios a/b = c/d. Hence, multiplication is a fundamental concept, and it is 
therefore crucial to learn from educational research and to implement gained insights into classroom 
practice. 

Up until today, research has gathered extensive knowledge on students’ understanding of 
multiplication (e.g., Clark & Kamii, 1996; Fischbein, Deri, Nello & Marino, 1985; Harel & 
Confrey, 1994; Larsson, 2016; Thompson & Saldanha, 2003). We know that concepts preferably 
develop over long periods, through experience of a large number of situations (Vergnaud, 1988). 
We also know that the “whole number bias” leads students to a solid belief that multiplication 
makes bigger and that multiplication is synonymous with repeated addition. However, we do not 
yet know how to transform research results about students’ understanding of the properties of 
multiplication into classroom practice in order to obviate the whole number bias. In this paper, we 
will describe an ongoing project, aiming to bridge the gap between research findings and teaching 
practice through an innovation (Century & Cassata, 2016): a carefully designed teaching sequence 
implementing alternative models for the introduction of multiplication. The implementation is 
carried out in Sweden, where multiplication traditionally is introduced in school year 2, at age 8–9 
years. Research on the effects of the implementation is an integral part of the project.  
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The whole number bias 

The whole number bias is “a tendency to use the single-unit counting scheme applied to whole 
numbers to interpret instructional data on fractions” (Ni & Zhou, 2005, p. 27). This bias may be a 
result of an unchallenged presentation of multiplication as repeated addition with whole numbers. 
The consequences of a biased conceptualisation have been long known. Bachelard (1938) 
concluded that knowledge that has been formed and tested for validity in action tends to form a 
consolidated belief concerning the nature of the concept. When the concept is later challenged in 
new situations, assimilation might be more complex than if initial knowledge was absent. This is 
why an introduction of multiplication as repeated addition may become an epistemological obstacle 
for students. Fischbein et al. (1985) conclude that:  

The initial didactical models seem to become so deeply rooted in the learner’s mind that they 
continue to exert control over mental behavior even after the learner has acquired formal 
mathematical notions that are solid. (p. 16) 

There are two misconceptions of the properties of multiplication specifically linked to the whole 
number bias: conceptualising multiplication as an additive relation rather than a multiplicative 
relation, and a belief that a product will always be bigger than each of its factors. As long as 
multiplication is limited to whole numbers, these misconceptions will not constrain children’s 
reasoning, and are therefore unlikely to be challenged. However, as soon as children are introduced 
to multiplication with fractions and decimals their conceptualisation will no longer be sufficient. 
Products such as ½ times 5 cannot be calculated as repeated addition, and the law of commutativity, 
which could be helpful in this situation, is difficult to explain in terms of repeated addition. 
Furthermore, a firm belief that multiplication makes bigger will undermine the children’s 
possibilities to interpret situations with operations like 0.22 · 1.20 (Bell, Swan & Taylor, 1981), 
since the answer is less than 1.20, which is not compatible with a conceptualisation of 
multiplication built on additive reasoning with whole numbers. In summary, conceptualising 
multiplication as repeated addition works when dealing with whole numbers but will become a 
misunderstanding of multiplicative properties when extended to rational and real numbers. This is a 
strong argument for finding alternative ways to introduce multiplication, and thereby avoiding the 
whole number bias.   

Alternative models for introducing multiplication 

The complexity of multiplication is reflected in the body of research, and might be one reason why 
innovative designs are scarce in both research and practice. The efforts to describe dimensions and 
aspects of multiplicative knowledge are diverse, and show less agreement than, for example, the 
literature on additive knowledge (Nunes & Bryant, 1996). In Vergnaud’s (1988) terms, 
multiplicative structures can be seen as a conceptual field, consisting of situations, invariants and 
symbolic representations. Compared to additive structures, multiplication embraces a much more 
diverse family of situations. Already in the simplest case, with two factors, multiplication unifies 
qualitatively different situations, which can be both one-dimensional, like scaling, and two-
dimensional, like one-to-many correspondence, area, intensity and Cartesian products (Harel & 
Confrey, 1994; Nunes & Bryant, 1996; Vergnaud, 1988). In line with the theory of conceptual 
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fields, our teaching design comprises both activities focused on situations and activities focused on 
invariants, with care taken to link established symbolic notation to both types of activities (see 
Table 1).  

Week 1 

 

Factorization (multiplicative grouping) of 
numbers with lattice models. Regrouping of 
lattices. 

Week 2 

 

Connecting lattices to symbolic notation for 
multiplication and division. Constructing the 
multiplication table by sorting lattices by 
factors. 

Week 3 

 

Placing numbers on number lines by measuring 
with skips and cubes. Discovering proportional 
relationships. 

Week 4 

 

Measuring number lines with halves. Equating 
different numeric expressions for multiple 
halves. 

Week 5 

 

Regrouping lattices by halving and doubling. 
Multiplication with half-integers. 

Week 6 

 

Exponential relationships and associativity in 
the context of repeated folding (inspired by 
Empson & Turner, 2006). 

Week 7 

 

Equal grouping situations: partition, quotation 
and one-to-many correspondences. 

Week 8 

 

Proportions: double, half, times four and fourth. 

Table 1: Overview of the sequence of multiplicative activities. Week 1–5 focus on investigating 
multiplicative patterns and structure, while week 6–8 focus on modelling multiplicative situations 

However, since classifications of multiplicative situations, including examples of classroom 
activities, have been thoroughly described elsewhere, we will focus this paper on the use of models 
in the form of iconic representations, and how such models may aid the discovery of invariants. 
Since multiplicative situations can be both one- and two-dimensional, we have chosen to use both 
one-dimensional number lines and two-dimensional lattices as models. 
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A coherent conceptualisation of multiplication requires an appreciation of multiplicative invariants 
across situations. In other words, one has to recognise patterns in different situations as 
manifestations of the same structure. Within the implementation, patterns and structure (Mulligan & 
Mitchelmore, 2013) has proven to be a useful terminology for conveying the importance of 
invariants to teachers, and for describing the purpose of activities where patterns are created and 
described. Seeing patterns calls for experience of a breadth of cases, rather than focusing on one 
particular situation at the time. Therefore, the first five weeks focus on exploring specific models of 
numbers (see Table 1). 

From the perspective of embodied cognition, Lakoff and Núñez (2000) argue that arithmetic is a 
conceptual blend, resting on four conceptual mappings from concrete situations. These mappings, 
or metaphors, each contribute to the concepts of number and arithmetic in their own way, implying 
that no single metaphor can reflect these concepts in full. Our lattice models are related to the first 
two of the grounding metaphors: object collection and object construction, while number lines are 
related to the latter two: measuring with a stick and movement along a path. There is a particularly 
close relationship between multiplication and measuring. Both simple proportions and area build on 
two important ideas: unitizing and norming (Lamon, 1994). Unitizing is described as the ability to 
construct a reference unit or a unit whole, and norming is then to interpret a situation in terms of 
that unit. In other words: creating a measure and then using it for measurement. This idea is also 
mirrored in verbal expressions on the form “two threes”, where the number three becomes the unit 
six is measured in.  

We will now describe how lattices, number lines and verbal expressions are used as models in our 
teaching design. In particular, we will detail how these models convey important properties of 
multiplication.  

Lattice models 

Lattice models are in many situations exchangeable with arrays, but they do have some advantages. 
In arrays, each unit is separated from the others and pictured as indivisible. In lattices, the units are 
placed in a continuum, which makes the idea of dividing units by adding new lines attainable. 
Furthermore, open arrays are visually closer to lattices than arrays. Within our teaching design, both 
interlocking cubes and drawn grids are used to create lattice models. The activities using 
interlocking cubes could often be done in the same way with arrays of tickers or other objects, but 
that would make the step to drawn grids larger. By using cubes and grids of the same size (2 · 2 
cm), the two representations are easily compared, and lattices of both kinds can be used in the same 
systematic arrangements.  

Lattices can be seen as ‘bar models for multiplication’, in that they provide a way to represent 
different multiplicative groupings of numbers, just as bars can represent different additive 
groupings. Within the design, the class has previously worked with finding number bonds to ten by 
building ten bars and naming them “_ + _”. Multiplication can then be seen as a different way to 
group numbers (see Figure 1). Our choice of introducing multiplication by lattices hence introduce 
multiplication not as an additive relation, but as something different than addition. The criteria for 
multiplicative groupings are easily established by discussion in class, distinguishing proper lattices 
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from other shapes. The existence of different lattices for a number calls for expressions of the form 
“_ · _” to be introduced as names for lattices. Finding different lattices for each number then 
becomes an explorative activity, leading to discussions of which lattices are the same 
(commutativity), and why some numbers have more lattices than others (primes and composite 
numbers) (Week 1, Table 1). Hence, important multiplicative invariants, which are hidden when 
multiplication is conceptualised as repeated addition, are made visible already in the first activity. 

 
Figure 1: Bars and lattices as two different ways of grouping numbers  

Arranging lattices according to products reveal that multiplicative groupings do not form a pattern 
as simple as for additive groupings. Finding patterns in lattices therefore requires more careful 
instruction. Directing attention to lattices of twos leads to the discovery of even numbers and could 
be generalised to multiples of other numbers. This idea will inspire to a different arrangement of the 
lattices, focusing on factors rather than products. Building lattices of twos, threes, fours, etc. and 
ordering them in rows will result in the multiplication table (Week 2, Table 1). The table will spark 
a new exploration of patterns in the products, and the lattices will provide a means for explaining 
those patterns. For example, you can see two copies of the product in the second row in the 
corresponding product in the fourth row (a basis for the distributive law and powers), and that the 
products in the second column are the same as the products in the second row, because the lattices 
in the column are just rotated versions of the lattices in the row (commutativity). 

Using interlocking cubes facilitate successive adding and subtracting of columns and rows, which 
are mainly additive strategies. However, they also allow for multiplicative regrouping of numbers. 
When comparing the two twelve lattices 6 · 2 and 3 · 4, you can split one of the lattices and 
rearrange the parts, in order to see how one lattice can be regrouped into the other (Week 1, Table 
1). Paper grids enable generalisation of such multiplicative regroupings to half-integers (numbers of 
the form n + ½), since paper can be cut and arranged to illustrate e.g., 2 · 5 = 4 · 2.5. This 
immediately gives rise to multiplications where the product is smaller than one of the factors, such 
as 4 = 8 · 0.5 (Week 5, Table 1). The model hence enables the discovery of cases where 
multiplication does not make bigger, within the first weeks of introducing multiplication. 

Number lines 

Number lines are important tools for arithmetic reasoning. Approximate use of empty number lines 
can both aid and communicate reasoning even in complex arithmetic problems. However, for empty 
number lines to be meaningful, one needs to be aware of the properties of linearity, closely linked to 
multiplication. Within our design, the class will use a variation of number lines, which put different 
properties of linearity in the fore.  

During choral counting, a number line with markings and numbers, placed on the wall, is often used 
for pointing at numbers while skip counting (e.g., 0, 2, 4, 6, etc.). In some activities, a floor number 
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line is used. This number line has evenly spaced markings, with every fifth marking a little longer 
than the others, and a collection of number cards which can be placed in different ways in different 
activities. Every placement of two numbers raises the question of where other numbers should be 
and leads to discussions of equal spacing of numbers. In week 3 this is done with 0, and 1 or 2 in 
different positions (see Table 1). When starting with 1, the situation is a pure one-to-many 
correspondence, while starting with 2 requires more complex proportional reasoning. When 
justifying a proposed placement of numbers, or figuring out a placement, the children walk along 
the line, taking e.g., two-steps or three-steps. When documenting the work, teachers use verbal 
expressions and symbolic notation e.g., “you take three two-steps, so it’s three twos, we write 3 · 
2”. A similar activity is done with semi-empty number lines on paper, where only markings for 
specific numbers are present, e.g., 0 and 3. The task is to place markings for the missing numbers 
between 0 and 6, using interlocking cubes as a measuring tool. This activity is also provided at 
different levels, with some restricted to pure one-to-many correspondences. 

As in the case with the lattice model, these activities are easily extended to fractions, starting with 
halves. Walking in regular or half-steps to different numbers creates an opportunity to introduce 
multiplication of fractions in an intuitive context. Since multiple double or triple steps were called 
twos or threes and represented as n · 2 or n · 3, it makes perfect sense to call multiple half-steps 
halves and represent them as n · ½. Documenting the number of each type of step it takes to reach 
different numbers will result in a pattern with a proportional structure: the number of half-steps is 
always twice the number of regular steps (Week 4, Table 1). After whole class exploration of these 
patterns on the floor number line, children work in pairs to place half-integers on empty number 
lines, using interlocking cubes as a measuring tool, this time with 1 cube = ½. 

Verbal expressions 

In relation to both lattices and the number line, care is taken to use sustainable verbal expressions of 
the form “two threes” and “five halves”. As emphasized by Thompson and Saldanha (2003), there 
is a principal difference between “two threes” and “add three two times”. It is possible to generalise 
the first expression beyond integers, to e.g., “one and a half threes” or “one and a half third”, while 
“adding three one and a half time” is harder to conceptualise. Phrases of the first form mimic 
phrases used in measurement, making a number the measuring unit: “one and a half threes” – “one 
and a half meter”. While such phrases are used to discuss both models, they relate to each model a 
bit differently. Each phrase, e.g., “three twos”, labels a certain way of walking to a number or a 
series of skips to a number, which is different from what “two threes” labels. In contrast, both 
expressions can be linked to the same lattice, and the corresponding ways of seeing the lattice are 
made explicit, pointing out the three twos and the two threes in this six lattice. 

Implementation of the alternative models for multiplication 
Taken together, our design covers a variety of advanced aspects and properties within the first 
weeks of the introduction of multiplication. The handling of advanced content is made possible by 
the highly structured material organising the teaching of each week in a cycle with six phases, 
including whole class discussions as well as pair work and individual documentation. This cyclic 
teaching structure has been previously described and tested in preschool (Sterner & Helenius, 
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2015). The material developed for the implementation of the design includes explicit instructions on 
what the teacher should do and say in each phase, and in reaction to different student actions and 
reasoning. Each activity also contains a detailed description of the mathematical concepts and 
procedures involved, as well as the purpose of each activity in relation to children’s learning. 
Activities, as well as instructions, were tried and evaluated by small groups of teachers during the 
development of the material, increasing the quality and functionality of the design. Thorough 
testing of the activities is important for the teachers’ trust in the material, which is particularly 
important due to the high level of prescription in the design. 

The teaching design has been implemented in an intervention research project covering 15 weeks in 
grade 2, where the multiplicative part covers 8–9 weeks. The project is a randomized controlled 
trial with 28 participating teachers in grade 2 (14 using our material, 14 in a control group). Data 
from the pre- and post-tests are currently being analysed. In a parallel project we are developing 
similar teaching sequences for grades 1 and 3. Including sequences dealing with additive structures 
and number, the complete material will cover most of the area of number and operations for grades 
1–3. These sequences will also be tried and evaluated by small groups of teachers during 
development, together with auxiliary professional development material. In collaboration with 5 
municipalities, we will implement the teaching design together with professional development for 
around 500 teachers starting in the fall of 2020. 

Closing reflection 

The literature on the downsides of relying on multiplication as repeated addition is substantial. Still, 
teaching experiments with alternative models for multiplication are sparse, one example being 
Nunes, Bryant, Evans, and Bell (2010), who report on two studies covering only a few sessions. 
Also among teachers and textbook authors the dominance of repeated addition as the model for 
introducing multiplication persists. Fishbein et al. (1985) suggest that this model is chosen because 
it fits the mental requirements of children in the first years of schooling. It is simply hard for 
teachers to resist building on addition, since it is a concept that children are already familiar with at 
the time when multiplication is introduced. However, as seen above, multiplication in fact has 
several complementary roots that are not additive, such as measuring and one-to-many 
correspondence (Lamon, 1994; Nunes & Bryant, 1996). Many of these roots are intuitive for 
children and can hence be used as alternative bases for introducing multiplication.  

According to Century and Cassata (2016), there are three key foci for implementation research: the 
innovation, the aligned outcomes, and the influential factors. This paper has described the 
innovation of an ongoing, large scale implementation project: a teaching sequence introducing 
multiplication by means of deliberately chosen models for making multiplicative patterns visible 
and comparable, which in turn inspire discussions where multiplicative structures are explicated. 
The analysis of test results in the randomised controlled trial will reveal to what extent this 
innovation achieves the desired outcomes, while the grade 1–3 project will provide opportunities to 
study the influential factors, as well as to further develop the innovation.  
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Implementing theories for preschool teaching with play-based 
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The play-based Swedish preschool is facing new challenges due to demands from the Swedish Schools 
Inspectorate to evaluate how the teaching of mathematics is carried out in practice. This demand has 
evoked a dilemma for the preschool teachers that find it unclear what teaching in a preschool means. 
A professional development project was set up, aiming to implement theoretical tools from research 
into preschool mathematics teaching. The project started in 2016 with 45 teachers over a duration of 
seven months. An integral part of the project is to conduct research on the impact of the preschool 
teachers’ conceptualization of mathematics as a subject, and what counts as a mathematical 
situation. The participating preschool teachers collected video recordings of mathematical situations 
from their respective practice. The professional development is an ongoing project, the impact of the 
implementation of theories are currently being researched.  
Keywords: Preschool mathematics teaching, play-based environment, professional development. 

Introduction 

The Swedish preschool is facing new challenges, it has a tradition of caring and educating and is built 
upon a playful custom of will on behalf of the child. The preschool is not organized in formal lessons 
and its curriculum does not define any subjects like mathematics or biology, but suggests a thematic 
way of arranging the practice so that the learning goals found in the curriculum can be met in line 
with the principles of social pedagogy (Bennet, 2005). Yet, since the national curriculum for 
preschools was introduced in 1998, some of the goals have been obviously concerned with 
mathematical matters and these goals were sharpened in 2010 and has now again in 2018 been slightly 
revised (Skolverket, 2018, valid from 2019).  
Having particular goals for mathematics means that the children’s learning cannot just be expected 
to happen through general everyday activities, but must be planned for by the preschool teachers. In 
previous national curricula, there has been no explicit mentioning of teaching, despite that teaching 
has been the overarching term used in the Education Act to describe the goal directed processes 
aiming for learning and development. Since 2018 however, teaching is an explicitly mentioned 
concept in the revised curricula (Skolverket, 2018). The changes in terminology, and perhaps also 
policy, came after the Swedish Schools Inspectorate expressed that there is a problem with an overall 
unclarity about what teaching in preschool means and how it should be done (Skolinspektionen, 
2016). The dilemma is that in the play-based tradition, the organization of learning is quite different 
from a typical school setting. For example, children’s own initiatives are much more foregrounded 
than the time children spend in situations that are guided by a teacher (Helenius, 2018). When the 
concept of teaching is imported from school to preschool, the play-based tradition is endangered. 
Voices have been raised, indicating that the teaching of mathematics might be particularly prone to 
act as a trojan horse for importing values and beliefs on teaching from school that might not 
necessarily fit very well in a play-based preschool practice (Fosse, Lange, Hope Lossius & Meaney, 
2018).  
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The present paper reports on a professional development (PD) project aiming to offer the preschool 
teachers1 theoretical tools for how they can think about the mathematics taught and how to think 
about the teaching in a structured and explicit way, that still respects the play-based tradition. 
Research on the effects on the teachers is an integral part of the project. 

Implemented theories in the PD project 
When the play-based pedagogy of Swedish preschool works at its best, it integrates a play-based 
pedagogy with learning of mathematics in accordance with the curriculum goals. This can not only 
be done by planning regular teaching activities, since it would affect the preschool activities in a 
direction away from play in favor of formal schooling. Teaching must thus also be organized by 
means of planning the environment and using spontaneous situations in deliberate ways. A theory of 
play-based preschool teaching must account for that. At the same time, preschool teachers have 
difficulties verbalizing what constitutes teaching acts. Preschool teachers tend to not regard 
themselves as teaching teachers (Skolinspektionen, 2016). Therefore, a theory for play-based 
teaching should help the teachers to structure the type of work that is involved in play-based teaching 
by explicating particular components of such teaching (Helenius, 2018). A structured way of thinking 
about teaching can be a tool for teaching in a more deliberate way. This is a way to give teachers 
concepts and words for discussing with colleagues and plan their teaching in a play-based 
environment.  
Theorizing preschool teaching 
A structured way of viewing the complexity of mathematics preschool pedagogy is through defining 
three dimensions of teacher action, with respect to mathematical pedagogy: pedagogical explication, 
teacher participation and situational planning (for more information see Helenius, 2018). They are 
not suggestions of normative categories, but examples of how the complex pedagogical practice of 
teaching preschool mathematics could be explicated.  
First, in a dimension of pedagogic explication of the teaching and learning of mathematics, two 
different ways of including mathematics can be identified. One way is a classical teaching situation, 
where the participants know that the activity concerns the learning of some specific mathematical 
content. Following Walkerdine (1988), such situations are called pedagogical with respect to the 
mathematical content (Helenius et al., 2015; Walkerdine, 1988). The other way is when the situation 
is fundamentally about something else, but some mathematical activity is included in the situation. 
Such situations are called instrumental. In this theorization the child’s experience of a situation as 
instrumental rather than pedagogical does not mean there are not pedagogical intentions from the 
teacher's point of view. For example, as exemplified in Helenius (2018), a teacher’s decision to make 
a robot available to children have pedagogical intentions, but children playing with it are not thinking 
of it as a situation which they are supposed to learn mathematics. Teachers can make an active choice 
of explicating the mathematical content of a situation or not. This choice can be made beforehand, in 
planning, or on the fly, when a teacher observes a mathematical situation that she chooses to either 
act on by shifting the children’s focus to the learning of some mathematics, or not. Similarly, when 
children act on their own, with no teacher involvement, in a situation that contain mathematics, the 
learning may or may not be visible for the children. Thus, when the children perceive the situation as 
being about learning something mathematical, that situation is ‘pedagogical’. 

1 We include all employees who work with teaching in the participating preschools, although not everyone has a formal 
teacher education.  
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Second, a dimension of teacher participation is quite obvious for children in preschool because they 
spend a lot of time conducting activities without any teachers involved. They know when the teacher 
is arranging activities, or not. The unarranged situations can provide children with opportunities to 
use mathematical knowledge and participate in mathematical activities. Therefore, time spent in 
preschool with no pedagogue involved can contribute to children’s mathematical development in 
important ways. The same is true for time spent outside preschool, but the difference is that teachers 
can influence the mathematical content as well as children’s experience of mathematics in situations 
in the preschool environment. One obvious example is planning specific activities that the teachers 
ask the children to do. But, there are also more subtle ways, such as planning and modifying the 
environment, in and around the preschool facilities so that it stimulates mathematical activities. For 
example, children can play with a programmable toy robot, only available to children for their free 
play.  
This third dimension of situational planning relates to what Ginsburg, Lee and Boyd (2008) calls 
“teaching moments” or “acting in the moment”, in contrast to formally planning learning situations 
in Swedish preschool mathematics pedagogic discourse. It is of course important for teachers to use 
the option to plan situations where they participate themselves. Planning has a distinct advantage in 
giving the teachers time to predict what may happen in a situation, and prepare for different 
possibilities. But mathematically interesting situations can also occur outside planning. It is important 
to acknowledge that situations that are not directed by the teacher also allow for play in situations 
where children may use mathematics. Moreover, preschool teachers can affect what happens during 
“free time” in many ways. This is also a part of the planning. However, preschool teachers have 
choices concerning what situations they want to plan and which to deliberately leave unplanned. 
The Schools Inspectorate evaluation of the preschool 2015-2017 points out that preschools see that 
children learn a lot from playing but they also found that teachers have a strong belief that children 
should not be disturbed when playing. This can lead to overlooking possibilities for learning and 
development. The evaluation also observes that mathematics mainly occurs in planned activities lead 
by an adult. The theory presented above attends to this dilemma by using the tool of documentation. 
If a teacher notices interesting activities in free play, these can be noted and documented and the 
teacher can later plan for how the experiences gained in the documented situations can be reused 
later. This can be done either by retrospectively challenging the children that were in the original 
situation, but also by using ideas from the documented situation for a planned activity with other 
children.  
Theorizing mathematical activities 
One aspect of the theory above is using mathematics instrumentally. Therefore there is a need for a 
conceptualization of mathematics that views mathematics as something that can come out of practical 
problem situations, that is, a conceptualization that does not only view applications of mathematics 
as something you do with mathematics that is already learned or known. Moreover, a 
conceptualization of mathematics that is to be useful for preschool also needs to bridge everyday 
mathematics with formal mathematics, preferably in a rather seamless way. It has previously been 
argued that one theory that fulfils these requirements is Bishop’s theory of mathematical activity 
(Bishop, 1988b; Helenius, 2018; Helenius et al., 2015; Johansson, 2015).  
The background for Bishop’s work is anthropological. By studying the use of mathematics in different 
cultures, he concluded that mathematics, just like rituals and cooking, occurs in all cultures. He also 
found that mathematics is different depending on where and in which culture it is evolved. And yet, 
certain regularities also occur in these studies and Bishop (1988a; 1988b) characterizes these in terms 
of six distinct mathematical activities that he claims are found in every culture and can be seen as the 
roots of mathematical thinking. The descriptions below are from Bishop (1988a; 1988b): 
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· Counting: The use of a systematic way to compare and order discrete phenomena.
· Measuring: Quantifying qualities for the purposes of comparison and ordering, using objects
or tokens as measuring devices with associated units or ‘measure-words’.
· Locating: Exploring one’s spatial environment and conceptualizing and symbolizing that
environment, with models, diagrams, drawings, words or other means.
· Designing: Creating a shape or design for an object or for any part of one’s spatial
environment. It may involve making the object, as a ‘mental template’, or symbolizing it in some
conventionalized way.
· Playing: Devising, and engaging in, games and pastimes, with more or less formalized rules
that all players must abide by.
· Explaining: Finding ways to account for the existence of phenomena, be they religious,
animistic or scientific.

The purpose of basing the view of mathematics on a theory is that through an increased awareness 
and knowledge about the role of mathematics in everyday context, the teacher can in a more deliberate 
way consider several options when planning for situations where children can develop knowledge in 
mathematics. This may lead to using a wider class of situations in a more systematically way, adapted 
to children’s interests, needs, experiences and qualifications. 
The project's theoretical framework is focused on a mathematics based on the six mathematical 
activities of Bishop (1988a; 1988b), which is well established in the curriculum (Skolverket, 2018).  

Implementation of the theories through professional development 
The project is now running for the third time in a medium-sized Swedish city, where you can find 
approximately 40 preschools for children aged 1-5 years. The first round was carried out from May 
to December 2016. Two preschools participated. The participants were 45 teachers, with different 
educational backgrounds. The second round run with four preschools during August 2017 to March 
2018.  
Both theories that the PD is built on have the potential to be normative in the sense of putting 
restrictions on what preschool teachers believe are the sanctioned ways of teaching mathematics. This 
is a dilemma from an implementation point of view, because if a point of both the theories and the 
PD is that it should be helpful for describing and improving existing preschool practice rather than to 
introduce normative ways of thinking about this practice.  
To avoid such normativity, we tried to make the PD itself very tightly tied to the existing practice of 
the participating teachers by using videos produced by the participants of their practice as a basis for 
discussion. The recordings were done as a response to loosely formulated tasks concerning, for 
example, what mathematics might mean or what type of mathematics the teachers should focus on. 
As an example, one of the early tasks was: Videotape one planned mathematical situation and one 
situation that is not planned but where you think there is some mathematics going on. The recording 
from this task was then analyzed by a researcher before the next session with the aim of explicating 
examples of Bishop’s activities as well as examples of the three dimensions of preschool teaching 
described above. The submitted material represented choices made by the teachers themselves. 
Moreover, the loose phrasing also created a large variation in the interpretations of what was 
considered interesting mathematical activities to submit. This variation was intended, and when the 
videos were discussed at the next session, the discussion leader (the researcher involved in the project) 
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could ground the presentation of Bishop’s six activities in the variety of mathematical activities 
already present in current preschool practice (even if all of the activities did not show up in the videos, 
and some therefore had to be pulled out of Bishop’s hat).  
Moreover, the set of videos could also be used as a basis for discussion when planned and unplanned 
situations were good, if the mathematics was pedagogical or instrumental and how teacher 
participation might have affected the situations. In other words, even these first set of videos could 
be used as an introduction to all three dimensions in the theory of play-based teaching.  
In subsequent assignments, the teachers were asked to do more and more pedagogically complex 
things, like planning for a situation that characterized by a particular combination of the dimensions 
in the theory of play-based teaching.  
Other questions that were discussed in the sessions concerned progression: Watch a videotaped 
situation and analyze what mathematics occurred in the situations. Think about this in terms of 
progression. Are there more basic ways of dealing with the mathematical ideas and concepts that are 
visible in the situation? What would constitute a more advanced way of dealing with those concepts? 
How an activity that would bring children toward a more advanced way of dealing with the same 
mathematical ideas could look? 
In total, for each PD group, the PD included three such sessions and associated tasks distributed for 
half a year. This is not much, but it has to be taken into account that preschool teachers have much 
less time for both planning and competence development than school teachers. In addition to the PD-
pedagogy described above, in between the sessions with the researcher, the preschools also got 
support from a local school developer and the teachers were also given time to discuss the different 
issues of the project on every workplace meeting (approximately once a month).  

Researching the effect of the implemented educational theories 
Discussions with the teachers indicate that they find the six activities of Bishop to be both easy to 
understand and helpful for identifying different mathematical activities. The framing of activities as 
planned and unplanned, but still being mathematical situations, may at a first glance be a relief for 
the teachers. The project is all about creating mathematical situations that stimulate and challenge the 
children with different kind of questions and it is built on the curiosity and interest of the children. 
The teachers seem to be happily provided with teaching tools for framing their profession. 
Still, these indications must be consolidated in a proper study. To investigate if the teachers’ 
perception of teaching and mathematical activities has been improved by the project, a systematic 
data collection was carried out during the fall of 2018. The methodology is built upon using 
documentation from the PD rounds, new submitted video material, and interviews with teachers that 
will be analyzed in relation to the theoretical perspectives used in the PD. During the first two rounds 
of the PD project, we have collected data in the form of videotapes from planned and unplanned 
mathematical activities that the teachers encounter between the monthly meetings. We are now about 
to analyze the impact of the implementation of theories for theorizing preschool teaching and for 
theorizing mathematical activities. Because the objective of the PD was to help the teachers develop 
an elaborate and structured way to view (think and talk about, analyze, plan, etc.) the play-based 
mathematics teaching in preschool, the research question I ask is: Do the teachers that have completed 
the PD display an elaborate way of discussing mathematics learning activities in preschool? The term 
‘elaborate’ will here be taken to mean using concepts (though not necessarily terminology) from the 
two theories that form the basis of the PD when discussing preschool activities. To evaluate this 
question, the following method will be used. A sample of five teachers will be asked to submit new 
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videos and documentation responding to the same set of tasks that were given during the PD. Using 
a stimulated recall methodology, the teachers will be asked to discuss both the old and new videos. 
Stimulated recall is a method very well suited for situations where you record the activity, using sound 
or video (Calderhead, 1981). The participants are given the chance to see or listen to what was 
recorded and are given the chance to make comments, either freely or guided by interview questions. 
The recorded material is a way of stimulating, or challenging, the respondent’s way of thinking when 
it comes to the filmed or recorded episode (Haglund, 2003). By using the pedagogical documentation 
from the project, which consists of the filmed planned and unplanned educational activities, as well 
as notes taken during the activities, the purpose is to go back and investigate teachers’ own perception 
of their conceptualization about mathematics, and the teaching of mathematics in preschool. By also 
including new material, teachers are given the chance to also reflect on developments of their practice. 
Progress will be coded both in terms of if teachers after the program can analyze and talk about a 
depicted situation in a deliberate way in line with the theories used in the PD, and in terms of if 
teachers can suggest a larger and more relevant spectrum of alternate teacher actions, or ways of 
challenging the children in depicted situations. This part of the methodology has previously been 
suggested by Lembrér, Kacerja and Meaney (2018). 

Concluding reflection 
The quality of the pedagogy is of great importance for the learning of children. Pedagogical quality 
depends on how the teachers structure their work. By clarifying the special ingredients of the 
mathematics in Swedish preschools, as well as the role of the preschool teacher, I claim that quality 
can be improved. This is the intention of the described PD project.  
In the PD project, participating preschools teachers can work with how to think about teaching and 
how to think about mathematics as a subject to be taught in preschool. The hypothesis is that an 
increased awareness of what mathematics is and what can be categorized as mathematical situations 
will be used by the preschool teachers for developing the teaching. As described above, the 
implemented theoretical tool for framing teaching preschool mathematics is the six mathematical 
activities of Bishop (1988a; 1988b), for sorting, planning and connecting different elements in the 
different activities. A theoretical tool for framing the planned and unplanned situations is given by 
Helenius’ (2018) three dimensions for theorizing preschool teaching.  
This paper has described a project aiming to implementing theories from research into preschool 
teaching practice. Next, we will evaluate the impact of our PD project by conducting research on the 
participating preschool teachers’ conceptualization of mathematics as a subject, and mathematical 
situations as planned or unplanned activities. Data will be collected after the third round of the PD 
project, making research on the implementation of theories an integral part. By the time of the 
conference CERME 11, we will be able to report on the impact of the project. 
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Introduction 
This Thematic Working Group explicitly welcomed papers from a variety of different theoretical 
approaches and methodological frameworks addressing the role of representations of different types 
in teaching and learning processes, in particular those involving visualization (considered here as 
defined by Arcavi (2003)). From its first appearance at CERME10 when it was made up of 24 
participants from 13 countries with 16 accepted papers and 2 posters, at CERME11 TWG24 grew: 
there were 31 participants (authors, co-authors, and some other participants), from 16 countries with 
18 accepted papers and 4 accepted posters. The structure of the working sessions allocated for 
discussion of each paper or poster was designed to stimulate interaction and collaboration among 
participants: each paper or poster was allocated to a working session in which a same or similar theme 
was addressed (to the extent possible); all participants were asked to read all papers ahead of time, 
concentrating on those they found most appealing; presenting authors were asked to prepare a short 
presentation, followed by open questions and a brief analysis of how the work presented contributed 
to the open questions in the TWG’s call for proposals. After the short presentation by the presenting 
author, a general discussion was initiated and conducted for a total of 30 minutes for papers and 15 
minutes for posters. The last session was completely devoted to summing up the main issues that had 
emerged from the group discussions. The four themes are: 1) theories, language and categorizations 
used to study representations (theories, language and categorization), 2) embodied and enactive 
perspectives on the use of representations in mathematics education (embodied and enactive 
perspectives), 3) forms of representation implemented through technological approaches 
(technological approaches), 4) pedagogical implications in the choice and use of representations in 
the teaching and learning of mathematics (pedagogical implications). 

Theories, language, categorization 
The researchers in TWG24 did not share a common theoretical framework for the use of the term 
representations. We see the diversity as a source of strength of our community, as different theoretical 
emphasis may illuminate various aspects of teaching and learning mathematics. We do share the need 
for having an explicit theoretical stance towards what is representation in our research.  

The role of theory for the researchers in the group varied. Some articulated a theoretical perspective 
for designing tasks (e.g., Günster; Johnson et al.; Tabach & Koichu), while others view theory as a 
tool to guide their data analysis (e.g., Miragliotta; Lisarelli, Antonini & Baccaglini-Frank). 

Some of us consider as representation what is accepted as such by the mathematical community (e.g., 
Duijzer et al.), while others see them as a collection of inscriptions produced by students for a given 
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mathematical situation (e.g., what Dahl called ‘self-invented representations’). We discussed tensions 
that might arise, during the learning process, between students’ unique-created representations and 
the need for students to be familiar and work with classical representations.  

The group also discussed the issue of internal/external representations: we cannot directly access 
internal representations, hence it is difficult to assess; across papers and posters there was variation 
in the extent to which internal versus external representation was theorized. This methodological-
theoretical issue is important to acknowledge, even if we do not see a direct way to resolve it.  

Moreover, discussions highlighted a general move away from dichotomous categories of 
representation towards continuous spectrums, in both research design and analysis of data. 

The advance of technological tools and our ability to design complex and dynamic learning 
environments seems to be increasing. Our theoretical language, however, is not yet well-enough 
developed to allow consistent “talking about” dynamism in representations. This might be a challenge 
to handle in the coming years. For example, do we have a theoretical language allows us to 
differentiate between representing a mathematical phenomenon with dragging a finger over a touch 
screen, versus representing the same mathematical phenomenon with ones’ whole body? 

Embodied and enactive perspectives 
In our call for papers we explicitly noted that ‘representations’ should be interpreted broadly to 
encompass pictures, gestures, sounds, stories, metaphors and more (as well as more conventional 
classroom formats). Several presenters included material on the embodied and enactive 
representations employed by diverse participants (children and adults, from very high to very low 
mathematical attainment, with and without disabilities) within a wide variety of mathematical topics 
and contexts (educational, professional and recreational).  

Several papers considered the salience of how hands, in particular, are used in embodied 
mathematical thinking. Miragliotta’s work on geometrical predictions analysed both discursive and 
gestural aspects of older school and university students’ geometrical problem-solving activity, 
highlighting the interplay both between language and motion, and perception and reasoning 
processes. One of the foci of Finesilver’s microgenetic case study of a teenager with severe numeracy 
difficulties was the significance of the regular pattern of hand movements in ‘dealing’ out units into 
equal groups. In keeping with the emerging theme of continua, this motion aspect, along with mixed-
mode representation, enabled transition from concrete to graphic representation. In contrast, Wille 
and Schreiber focused not on informal gesture but the communication of mathematics in sign 
language, with a comparison of how explanations of geometrical terminology function in a visual 
signed language versus a spoken mode of communication. The subsequent discussion clarified that 
while sign language should be considered distinct from gesture, it may be productive to consider a 
continuum between them. 

The intertwining of enaction and language was also considered by Arnoux and Soto-Andrade, with a 
focus on the significance of metaphor in understanding and representing mathematics. Their paper on 
moving between concrete and abstract forms also addressed affective concerns, and highlighted the 
way that metaphors may be particular to communities based on local phenomena and experiences. 
Meanwhile, O’Brien and de Freitas presented research from one particular community; that of those 
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engaged in textile arts who, while they may not consider themselves to be ‘doing mathematics’, are 
creating complex haptic and visual representations of mathematical patterns. Their fibre mathematics 
includes technical-aesthetic considerations of topological dimension and connectivity as well as 
space, mechanics and computation. 

This year’s working group took a particular interest in the relationships between different 
representational forms, and discussion of enactive aspects also arose in the various discussions on 
graphical representations of time (Lisarelli et al.), motion (Duijzer, Van den Heuvel-Panhuizen, 
Veldhuis & Doorman), and relationships between quantities (Johnson, McClintock & Gardner). The 
discussions considered the different characteristics, affordances and limitations of creating moving 
representations with one’s hands, manipulating external physical objects, and elements displayed on 
a screen. There was particular interest in how changing the subject of operation (objects, the 
environment, oneself) could affect perception of mathematical relationships. 

The embodiment and enaction of mathematics can work in many different ways. However, being so 
fundamental to human experience, it may particularly help learners to ground concepts and form 
connections between mathematical ideas that they tend to see as isolated. 

Technological approaches 
A number of contributions presented studies in which different forms of technology were used to 
create or interact with representations of mathematical concept. Indeed, through technological 
artifacts, representations can become both dynamic and interactive. For example, Duijzer, Van den 
Heuvel-Panhuizen, Veldhuis and Doorman studied students creating distance-time graphs by 
describing their own movements in front of a motion sensor; Lisarelli, Antonini and Baccaglini-Frank 
analyzed students’ written discourse about an experience in a dynamic interactive digital environment 
in which functions were represented in one dimension, as dynagraphs; and Johnson McClintock and 
Gardner explore students’ transfer of covariational reasoning intertwined with their creation and 
interpretation of dynamic graphs on the Cartesian plane. Dynamism – seen as interactive, controlled 
motion – can be very useful for learning about particular mathematical concepts related to functions: 
covariation, input-output relationship, effect of parameters. 

The studies also suggested that dynamical software influence students’ practice and, afterwards, their 
drawings and verbal representations. This seems to be the case both when the whole body in involved 
and when only some parts of the body are used to interact with the technological artifact. For example, 
when a student walks in front of motion sensors and software captures and represents whole body 
movement, new expressions emerge such as “walking the graph” (e.g., Duijzer et al.). However, also 
after experiencing covariation in one-dimensional dynagraphs students use arrows in their drawing 
to describe movement, and words such as ‘motion’, ‘then’, ‘before’, ‘dragging’ (e.g., Lisarelli et al.). 
Futhermore, studies suggested that interacting with technological artifacts that produce dynamical 
interactive representations may also change the way students think of mathematical concepts (Duijzer 
et al.; Lisarelli et al.; Johnson et al.; Miragliotta; Tabach & Koichu). The group discussed how these 
could eventually become psychological tools as in the case of “dragging” (e.g. Baccaglini-Frank & 
Antonini, 2016). 

The use of dynamic representations was also discussed within the proposal of a theoretical framework 
providing the foundation to design tasks aimed at promoting students’ functional thinking (Günster). 
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Finally, a different technological approach to representations was provided by O’Brien and de Freitas 
who used the loom to unpack the relationship between making, mathematics, and technology. 

Much work remains to be done regarding how to employ technology’s full potential in learning 
trajectories (including those for other topics than the ones discussed), and on how to foster the 
development of these experiences into formal mathematics.  

Pedagogical implications 
Representations play a vital role in mathematics teaching and learning. However, as researchers, we 
experience a constraint in communicating our findings in ‘snapshots’ –  we noticed how many studies 
begin as small scale endeavors. Thus, researchers need ways to scale up from small scale studies and 
to bring what we are learning to teachers and their students. During the presentations and discussions, 
the group attempted to establish connections between representations and the pedagogical 
implications in the choice and use of such representations. For example, Milinkovic, Mihajlovic and 
Dejic found that students who managed to solve mathematical problems were able to connect 
different mathematical representations. However, in mathematics classrooms, teachers generally 
stimulate algebraic/symbolic representations to solve mathematical problems more than other types. 
Pressures may exist for teachers to move quickly to help students have swift ways to solve problems 
and represent processes promoting one of the representations more than others, and these pressures 
may prematurely curtail students’ intuitive approaches when engaging in problem solving. 

Some discussions focused on how teachers should be able to use incorrect answers as an opportunity 
for mathematical investigation. While some teachers may prefer to ignore or dismiss an incorrect 
answer and focus on teaching correct ways to represent mathematical problems, others decide to use 
an incorrect strategy to engage in a class discussion. Tabach and Koichu used the potential of incorrect 
strategies for the solution of a problem with a novel method, namely in a “who is right” form in which 
students are given scenarios and asked to pick their sides (if any) for the correct solution of a problem. 
Okumus and Dede introduced students misleading representations without letting them know that 
graphs tweaked information. Alternatively, some may prefer to be more explicit and provide specific 
representations (e.g., Hough et al.; Böcherer-Linder et al.). Teachers pedagogical decisions will 
influence how these tasks move students’ thinking forward or how they will hinder their learning. 
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We are interested in exploring from an enactivist perspective the role of metaphor and representation 
in the emergence of the abstract from the concrete and also in sense making of abstract mathematical 
notions. After introducing our theoretical framework, we present and comment on some illustrative 
examples, explored with several cohorts of learners, which include both prospective mathematics 
secondary teachers and first year university students studying science and the humanities.     

Keywords:  Metaphor, Representation, Enaction, Concrete, Abstract.  

Introduction 
We claim that representation and metaphor (between which we distinguish, see below) play a key 
role in the teaching and learning of mathematics. More precisely, in this paper we focus on the ways 
in which metaphorising and representing can foster the emergence of abstract concepts from concrete 
a-didactic situations (Brousseau, 1998) and backwards, making (concrete) sense of abstract concepts.
We argue, moreover, that taking advantage of such concrete situations can afford insights and
motivations for classical abstract mathematical notions, which are friendlier to the learners than the
traditional approach where such notions are quite often “parachuted from Olympus”.  Indeed, many
mathematical concepts emerge as procedural computations, which are not supposed to take a meaning
by themselves. Every time a new representation, or metaphor, is found for such a “procedural”
concept, this results in a deeper understanding, and quite often in new questions and results. A very
famous example is that of complex numbers, invented as “impossible” numbers to solve cubic
equations, whose now classical geometric representation via the complex plane was only found two
centuries later. Other examples, like the metaphor of “arithmetic geometry,” are now at the base of
important mathematical research programs. We argue that it is important to help students develop
such representations explicitly, rather than treating them as trivial side-products of teaching. It is
however a big challenge to figure out under which conditions representing and metaphorising foster
mathematical thinking processes as hypothesised above.

We intend here to pursue our recent research on metaphorising, representing and enacting (Arnoux 
& Finkel, 2010; Diaz-Rojas & Soto-Andrade, 2015; Soto-Andrade, 2007, 2014, 2018), by presenting 
and commenting some non-obvious examples of enactive metaphors and representations of 
mathematical concepts and their use in a-didactic situations (Brousseau,1998). The contextual 
background of our examples involves several cohorts of learners in Chile and France, mainly 
prospective secondary mathematics teachers.   

Research questions  
We single out a couple of research questions, among those involved in our research: 
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1. Which sorts of metaphorising and representing can foster the emergence of abstract notions from 
concrete situations and convey a better grasp of them for the students?   

2. How can teachers support, in a friendly manner, learners in developing their representational and 
metaphorical competences?   

Theoretical background 
Metaphorising and Representing in cognitive science and mathematics education 

Metaphorising and Representing nowadays play undoubtedly a key role in cognitive science and 
mathematics education. See Goldin (2014) and Soto-Andrade (2014) for related comprehensive 
surveys. Notice that we prefer to focus in on metaphorising, a verb denoting a process, rather than on 
metaphor, a noun denoting an object. Indeed, what is a metaphor for someone may not be a metaphor 
for someone else, and for yet another person it could be a representation instead (see below). What 
we observe is actually the process of metaphorising carried out by someone, a cognitive subject.  
Regarding metaphorising (“looking at something and seeing something else”, in metaphorical terms), 
widespread agreement has arisen in cognitive science that our ordinary conceptual system, in terms 
of which we both think and act, is fundamentally metaphorical in nature (Gibbs, 2008; Johnson & 
Lakoff, 2003). In mathematics education metaphor typically appears not just as a rhetorical device, 
but as a powerful cognitive tool, that helps us in grasping or constructing new concepts, as well as in 
solving problems in an efficient way and user-friendly way (English, 1997; Lakoff & Núñez, 2000; 
Sfard, 2009; Soto-Andrade, 2007, 2014).     

Although in the literature the same object is sometimes described either as a representation or as a 
metaphor, here we draw a distinction: we re-present something given beforehand, usually to explain 
concepts already constructed, but we metaphorise to try to fathom something unknown or to construct 
a concept. Recall that Lakoff and Núñez (2000) highlight the intensive use we make of conceptual 
metaphors that appear – metaphorically – such as inference-preserving mappings (arrows) “going 
upwards” from a rather concrete ‘source domain’ into a more abstract ‘target domain’, enabling us to 
fathom the latter in terms of the former. Then representations naturally appear as arrows going the 
other way around, downwards from the more abstract domain to the more concrete one (Soto-
Andrade, 2014).  

Indeed, our approach to the learning of mathematics emphasises the poietic (from the Greek poiesis 
= creation, production) role of metaphorising, which brings concepts into existence. For instance, we 
bring the concept of probability into existence when, while studying a symmetric random walk on the 
integers, we look at the walker (a frog jumping on a row of stones in a pond, say) and we see it 
splitting into two equal halves that go right and left instead of being equally likely to jump right or 
left (Diaz-Rojas & Soto-Andrade, 2015). This ‘metaphoric sleight of hand’ which turns a random 
process into a deterministic one, allows us to reduce probabilistic calculations to deterministic ones, 
where we just need to keep track of the walker’s splitting into pieces: The probability of finding the 
walker at a given location after n jumps is just the portion of the walker landing there after n splittings.    

In the same vein, imagine that one is trying to figure a struggle between two producers A and B for a 
consumer market, who each month – as a consequence of intensive marketing strategies – entice 
consumers of the other brand to change their choice, say 20% of consumers of A going to B but only 
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10% conversely. If one is familiar with jumping frogs, one could metaphorise the evolution of the 
market as the random walk of a frog between two rocks, tagged A and B, with corresponding 
transition probabilities. However, someone who is more familiar with market struggles would rather 
metaphorise the frog’s random walk as a market evolution, to benefit of his/her economic intuition. 

It can be argued that we often introduce new concepts via metaphor, but giving a new meaning (and 
often, just meaning) to a concept that has already been taught involves a representation. We may have 
internal representations (Goldin & Janvier, 1998; Goldin, 2014) which are operationally equivalent 
to metaphors, as the ways a cognitive subject has of figuring out concepts unfamiliar or still opaque.   

Methodology and experimental background      
Our methodology relies mainly on qualitative approaches like participant observation techniques and 
ethnographic methods (Brewer & Firmin, 2006; Spradley, 1980).   

Regarding our experimental background, several cohorts of students have participated in preliminary 
tests at the University of Aix-Marseille, France: 60 first year university students majoring in science 
and humanities in a mathematics course in 2015-2018 (usually organized in 10 groups of 6) and 40 
fifth year teacher students in 2 mathematics courses, of 20 students each, in 2016-2018 (usually 
organized in 5 groups of 4 each).        

At the University of Chile, in Santiago, three cohorts of prospective secondary school mathematics 
and physics teachers (45 students each, on the average), in a one-semester yearly course in elementary 
number theory, have been involved in our teaching and learning following a metaphoric and enactivist 
approach, from 2016 to 2018. Working most of the time in random groups of 3 to 4, (defined by blind 
picking of coloured Lego cubes from a bag) they were observed and monitored by the teacher and an 
assistant as participant observer or ethnographer (Spradley, 1980; Brewer & Firmin, 2006).   

Since we were especially interested in evaluating the impact of our approach on the student’s 
engagement and problem solving and problem posing abilities, we observed mainly:  their level of 
participation and horizontal (peer) interaction, the emergence of “research questions”, i.e. questions  
they ask themselves, to be tackled by themselves (not questions addressed to the teacher to ask for a 
clarification or explanation) and (idiosyncratic) metaphors, arising spontaneously or under 
prompting, accompanying gestural language of learners and teacher, expression and explicit 
acknowledgement of affective reactions. Snapshots of their written products in problem solving 
activities were taken and processed in a worksheet, also for evaluation purposes, and some videos of 
their enacting moments were recorded. 

Illustrative examples and case studies   
We present and discuss here a couple of paradigmatic examples, regarding concrete ways to introduce 
and motivate in a friendly way Pythagorean triples as well as arithmetical congruences. In fact, we 
could describe them under the same roof as arithmetic in a discrete “modular universe”: a 2D pixeled, 
grid-like one (the lattice ℤ2) in the first case, and a 1D cyclic one (the polygon ℤ/𝑚𝑚ℤ formed by the 
integers modulo m) in the second case. For other examples, related to computer science (finite 
automata) and probability, see Arnoux and Finkel (2010), Diaz-Rojas and Soto-Andrade (2015) and 
Soto-Andrade (2018).   
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Example 1: Pythagorean triples, with Lego bricks 

This activity has been carried out at the University of Aix-Marseille, in several contexts, with the 
cohorts described above: first year science and humanities students and fifth year teacher students 
(last year of teacher initial formation in mathematics).  

It has been tested informally in the last two years, using qualitative monitoring by an assistant, and 
posterior evaluation by the participants; we are setting up now an interdisciplinary team 
(mathematicians, didacticians and cognitive scientists) to study it more in depth in the framework of 
a methodology unit next year. 

We give to groups of 4 to 6 science and humanities students or teacher students one 16 ́  16 horizontal 
plaque, two elementary 1 ´ 1 bricks, and one 1 ´ 16 brick. The question is: for which positions on the 
plaque can the small bricks be connected by the long one? See Figure 1, showing a 8 ´ 8 plaque, two 
1 ´ 1 bricks in a good position, and a 1 ´ 8 brick superposed on them; it is of course cumbersome to 
explain this in writing, but the real model leaves no room for hesitation.  

 

 

 

Figure 1: Linking brick for Pythagorean triples 

By construction, the plaque is endowed with a discrete grid (a metaphor for ℤ2 with the canonical 
metric, points being the centres of the small circles and 1 ´ 1 bricks playing the role of dots); no 
explanation of this is needed. But some time is needed to understand that the long brick can only be 
set on the pair of small bricks if the distance between these two bricks is an integer multiple of the 
unit distance: after half an hour, most groups discover the concept of Pythagorean triples as implied 
by this situation (they all know the Pythagorean Theorem, but not Pythagorean triples). This exercise 
is very rich. It works well, because all the distances are quadratic numbers, hence, if they are not 
integers, they are quite far from an integer: at small distance, there are only exact solutions, no “near-
solutions”. It is also very engaging for students, because it is concrete. It evolves naturally into finding 
the classical Babylonian solutions (it may be pertinent at that point to present the famous Plimpton 
322 tablet). One can then ask to find non-trivial rational points on the unit circle; students usually 
start by trial and error, and come first to the conjecture that there are no such points. It takes some 
time to make the relation with the previous question; this can be continued with a geometric 
parametrisation by the rational lines through the point (-1,0), which makes the link with the quadratic 
equation, and, via elementary geometry, with the formula for sine and cosine as a function of the 
tangent of the half-angle: these formulas appear as a reformulation of the Babylonian formula. Most 
students seem surprised to see that there can be links between very different domains of mathematics. 
This can be taken to much more elaborate questions, like the number of triples within a bounded 
distance, and in fact to difficult research questions. One remark is that, in our experience, it is not 
important whether or not the students have already studied these notions: in the case of prospective 
teachers, they are always surprised by the exercises, and do not immediately link them to notions they 
know quite well, but in an abstract way. 
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Example 2:  Congruence mod m and dynamical systems   

We report on some developments of our metaphoric enactive approach to arithmetic congruences, 
with third year prospective maths and physics secondary teachers taking a one semester course in 
elementary number theory, in 2016, 2017 and 2018, at the University of Chile.  Since congruences 
mod m are unavoidable in this course, we wanted to motivate them or make their study friendlier. To 
this end, following a radical enactivist approach (Proulx & Maheux, 2017; Soto-Andrade, 2018), we 
just proposed a situational seed first and let the action emerge freely.   

From our theoretical perspective, taking into account the previous mathematical training of our 
teacher students, at secondary school and also in most courses of their initial formation, we could 
predict a “metaphoric deficit” in their understanding of arithmetical congruences. Eventually they 
will be able to recite the definition and calculate, but without having a favourite metaphor (or 
representation) for them, and also with no appreciation of their usefulness. Notice that if they 
metaphorise the integers mod m as a finite “shadow” of the integers, they might easily have the idea 
that a necessary condition for a property to hold for the integers is that it holds for its projection onto 
their arithmetical shadows, something much easier to investigate. So, if a Diophantine equation is 
solvable (in the integers) its shadow should be solvable in the shadow integers mod m. In this way, 
they get necessary conditions for a Diophantine equation to be solvable, which allows them to prove 
unsolvability in several cases.       

Indeed, we found that although our prospective teachers know by heart the definition of congruence 
mod m in the integers, when we ask them how they imagine, metaphorise or visualise congruence 
mod m or which are their internal representations for it in the sense of Goldin (2014), they are at a 
loss. After a while, some of them think of kangaroos, rabbits, frogs, jumping on the integer line, or 
they begin to paint the integers in different colours (five colours for congruence mod 5). Slowly the 
metaphor emerges in several groups, of winding the integer number line on a polygon, e. g. a pentagon 
for congruence mod 5.  They naturally carry out a spiral-like winding on the plane to begin with. If 
nobody suggests a different way, we ask them what they do when they want to wind up a long garden 
hose. They realise then that it is smarter to wind it in 3D, cylinder like. From there they come to 
visualise congruence mod 5, say, as a helical winding of the integer line above a regular pentagon. 
They metaphorise then this congruence relation as a covering space! Typically, however, this helix 
does not remind them of the intuitive construction of the imaginary exponential that they were 
exposed to in Calculus 1, where the real line was wound around or above the unit circle. Our enactivist 
theoretical perspective emphasises processes and dynamics more than (the more traditional) objects 
and static structures. So setting the integers mod m as a stage, for instance m = 12 (or even m = 6 or 
7, for simpler examples of different nature), we prompt the students to wonder what interesting 
phenomena may arise in these universes with just 6, 7 or 12 sites, where they can add and multiply.  

Among other ideas, they can look at the transformation M2 given by multiplying by 2, for example, 
which when iterated launches a dynamical system in the integers mod 12.  The students try then to 
study the generated dynamics, something more natural for those who have developed a systemic 
perspective on phenomena, more often biology and physics students or humanistic students than 
mathematics students. Working for an hour, in random groups of 3 to 4 (defined by blind picking of 
coloured Lego cubes from a bag), a class of 30 to 40 students dutifully iterates M2 and tries to 
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represent the phenomenon. They explore then M3 and so on. See Figure 2, which shows some 
drawings by the students, for m = 7 and m = 12. More generally, they investigate the dynamics 
spawned by the multiplication by an integer k in the integers mod m, discovering its variegated 
(forward) orbit structure. They metaphorise idiosyncratically these orbits as forward trajectories and 
they see fixed points, sinks, attractors, 2 – cycles, 3-cycles, etc., and become able to figure out the 
“fate” of different integers mod m.  They begin to conjecture on the number of orbits, or the number 
of n-cycles for a given n. Level of engagement and participation is high, as well as their horizontal 
interaction, where several ideas and approaches meet. Some of them want to find an arithmetical 
explanation of this dynamic geometric behaviour. Others do not. But we suggest everyone to look at 
this geometric phenomenon with arithmetical eyes and vice versa. Most of them draw pictures, but 
others just write down numbers and tables, and compare. We prompt them to exert some 
hermeneutical effort (Isoda & Katagiri, 2012), so that all try to understand other’s viewpoints. In this 
way, some predict the existence of an “ubiquitous orbit” for some k for prime m. The students are 
quite excited and motivated by this challenge when working in small random groups, where 
horizontal interaction is fostered. Quite often some groups want absolutely to show the teacher and 
assistant their progress so far. Each group summarises its findings in a report on a sheet of their 
notebooks, which is photographed by the teacher and assistant. Samples of their work are shown in 
Figure 2. These reports are evaluated, and a huge worksheet is set up with the corresponding grades. 

 

 

 

  

 

Figure 2: Orbit structure for Mk (k = 2, 3, 4, 5) in the integers mod 7 and mod 12 

At the end of the course each student gets a grade in group work which is only taken into account if 
it is higher than the average the grades in the usual compulsory traditional tests taken by the student 
during the course. Interestingly, in our courses the percentage of (the non-compulsory) student 
attendance is much higher than the average (80 to 85% against 50%). 

Overall, we see that students previously exposed to traditional teaching show a severe metaphorical 
and dynamical deficit, remaining confined in the arithmetic-algebraic realm. However, progressively, 
most of them turn out to be able to open up to geometric and dynamical insights, even though initially 
they remain tied to the purely arithmetical approach that they are more familiar with. At the end of 
the work session consensus arises on the importance of being able to “change register” and move 
seamlessly between the arithmetic-algebraic realm and the geometric-visual one. Most students seem 
surprised to discover, in this way, links between domains of mathematics usually perceived as being 
far apart, like arithmetic and dynamical systems.     

Discussion and open ends   
We have shown how Pythagorean triples can be concretely embodied and enactively explored and 
also how a dynamical systems approach can make the arithmetic modulo m more lively, visual and 
motivating.  
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Our examples show that concrete embodiment of abstract mathematical notions and properties, before 
or instead of their “abstract parachuting”, may bear a dramatic impact on the level of participation 
and engagement of the students in otherwise unappealing tasks. Such impact is also seen on their 
mathematical performance and their ability to put forth their own research questions, like 
investigating the “fate” of various numbers mod m or wondering about an arithmetical explanation 
of the dynamical phenomena observed in the universe of integers mod m.  

Our didactic activities are not staircases to climb sequentially but a rather highly intertwined space to 
explore, where moving flexibly among several representations or metaphors is a must for a 
meaningful and fruitful mathematical experience. 

Our examples also show that representations and metaphors appear sometimes deeply intertwined in 
a circular relationship, so that it may be somewhat artificial to try to separate them. If we focus in on 
metaphorising and representing it may very well happen that in a class, some students are 
metaphorising while others are representing.  

Also, quite often the teacher will be striving to represent – in a friendly way for the students – a notion 
that she is familiar with (maybe in a rather abstract way though), while students will be metaphorising 
the same notion, which they hardly fathom. This is visible in our preliminary example of the frog’s 
random walk: the teacher will be eventually representing the probability of finding the frog in a given 
stone after m jumps by the portion of the frog landing there, while the students will be metaphorically 
just constructing this probability as the frog’s portion landing in this stone. 

The same holds for Pythagorean triples and arithmetical congruences. Some arithmetically minded 
students may realise for the first time that Pythagorean triples may be embodied as an integer fitting 
phenomenon on a grid and that congruence modulo 5 may be represented by winding the integer 
number line over a regular pentagon. Other students may discover arithmetical congruences, which 
they ignored or felt to be an esoteric notion, with the help of this enactive geometric winding.  Notice 
here the emerging connection between arithmetical congruences and geometric congruences.  

A recurring observation in all our examples, is the surprise that arises among the learners when they 
realise hitherto hidden connections between realms of mathematics which seemed to lie far apart. 
Furthermore, it appears that usual problem solving, as found in the literature, tends to neglect the 
important role of metaphorisation and representation, as a learner’s first reaction when tackling a 
problem that looks opaque to him or her. Not only because this may allow him or her to solve an 
otherwise unyielding problem but also because it may allow him or her to “see” a solution, turning a 
hitherto blind calculation into pellucid insight.  

The various metaphors we have presented here are only a sample; there are many others, in analysis, 
probability, computer science, etc. Invariably, when these metaphors are presented or emerge, they 
attract the attention of students, and make for a motivating and meaningful classroom experience. 
They may be however hard to find, so a systematic “catalogue” of them would be most commendable.  
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“He’s so fast at drawing” – Children’s use of drawings as a tool to 
solve word problems in multiplication and division 

Heidi Dahl 
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This paper examines how young pupils (age 8–9) use drawings as a tool in exploring multiplicative 
situations. Analysis shows that drawings play an important role in their problem-solving process. 
Drawings are mainly used as information holders and as a tool to organise calculations for problems 
with a relatively easy structure; in problems with a more complex structure, drawings are more 
frequently used as a tool for reasoning. The results show no connection between the degree of 
abstraction in the drawing and the sophistication of the calculation strategy.  

Keywords: Mathematical representations, Drawings, Word problems, Elementary school students. 

Introduction 
Representations are central to all mathematical activity and are needed both to construct 
understanding and to communicate mathematical ideas. Throughout the history of mathematics, 
conventional notation, symbols, figures and diagrams have been developed and agreed upon by the 
mathematical community in order to serve these purposes in an efficient manner. However, Greeno 
and Hall (1997) claim that, when a child is about to explore a mathematical concept for the first time, 
nonstandard representations can be more useful than formal ones. Self-invented representations can 
help pupils to keep track of ideas and connections they have already discovered, and can assist them 
in organising their work. Moreover, encouraging pupils to create their own representations will 
provide opportunities to consider the advantages and disadvantages of different forms of 
representation, and to use those representations as tools to build conceptual understanding.  

When entering a new mathematical domain, such as multiplication and division, a simple word 
problem will be a mathematical problem for a pupil. Carpenter, Ansell, Franke, Fennema and 
Weisbeck (1993) claim that modelling, either through the use of counters or by drawing, is a natural 
problem-solving strategy for most kindergarten and primary-grade children. However, older pupils 
seem to abandon these meaningful approaches in favour of more mechanical and algorithmic ones, 
and may even consider arguments based on drawings as a form of cheating (Crespo & Kyriakides, 
2007). To help pupils build upon and extend their intuitive modelling skills, it is worthwhile to look 
more closely at how primary-grade pupils use self-invented representations in problem solving in 
different content areas. The research question for this paper is thus: What kind of drawings do third-
graders produce when they explore a multiplicative context, and what are the function(s) of these 
drawings in the problem-solving process? 

Background 
Young children’s knowledge of multiplication and division 

Multiplicative thinking is fundamental for understanding more complex concepts such as ratios, 
fractions and linear functions. According to Steffe (1994), a multiplicative situation is characterised 
as one where “it is necessary to at least coordinate two composite units in such a way that one of the 
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composite units is distributed over the elements of the other composite unit” (p. 19). Depending on 
the situation, at least four different multiplicative structures can be distinguished: equal groups, 
multiplicative comparison, rectangular area and Cartesian product (Greer, 1992). Each structure gives 
rise to problems in both multiplication and division. Multiplication is often introduced prior to 
division, but research shows that young children spontaneously relate them and do not necessarily 
find division more difficult than multiplication (Bakker, van den Heuvel-Panhuizen & Robitzsch, 
2014; Carpenter et al., 1993; Mulligan & Mitchelmore, 1997). However, multiplicative reasoning 
differs significantly from additive reasoning in terms of complexity. It is therefore not surprising that 
multiplicative thinking takes time to develop (Clark & Kamii, 1996). Despite this, it is widely 
documented that children are able to solve word problems in multiplication and division long before 
they receive any formal instruction in this domain. Mulligan (1992) found that most third-grade pupils 
are able to solve multiplicative word problems using a wide variety of strategies, and Carpenter et al. 
(1993) established that this is the case even for kindergarten children who have been exposed to such 
problems over some time. In a more recent study, these findings were sustained and extended by 
Bakker et al. (2014), who found that first-grade pupils are not only able to solve word problems, but 
to some extent are also successful in solving bare-number problems.  

Young children’s strategies for solving multiplicative word problems can be classified as calculation 
strategies and modelling strategies (Mulligan & Watson, 1998). Calculation strategies involve 
increasingly sophisticated counting methods such as direct counting, rhythmic counting and skip 
counting, additive strategies based on repeated addition, and multiplicative strategies. Modelling 
strategies involve the use of physical objects or drawings. Kindergarten children almost always use 
direct modelling (Carpenter et al., 1993), while primary-grade children tend to use calculation 
strategies for small-number problems, but revert to modelling for problems involving larger numbers 
(Mulligan, 1992). Teachers need to assist pupils in widening their repertoire of calculation strategies. 
Mulligan and Mitchelmore (1997) suggest that a first step to achieve this is to help pupils to model 
different semantic structures so that they successfully can apply direct counting. Thereafter, pupils 
can be encouraged to use the equal-group structure to develop more efficient addition strategies, 
before these strategies are transferred to other structures. When pupils are able to use repeated 
addition across different semantic structures, the idea of a multiplicative operation can evolve. 

Problem solving and the use of drawings 

Polya (1985) describes a four-step approach to problem solving: understand the problem, devise a 
plan, carry out the plan and look back. Pupils might, of course, move back and forth between these 
phases before they reach a solution to the problem. The use of representations in general, and 
drawings in particular, has been highlighted as a tool in the problem-solving process (e.g. van Essen 
& Hamaker, 1990; Polya, 1985). Van Essen and Hamaker (1990) claim that by translating a word 
problem into a picture, pupils are forced to pay attention to the given relationships in the problem. 
Furthermore, some problem characteristics may be more easily inferred from a drawing because they 
become more explicit, while drawings also relieve working memory. Yet, research on children’s use 
of drawings in early-years mathematics is still limited (Bakar, Way & Bobis, 2016). Some studies 
focus on drawings as a product, and look for (possible) relationships between the abstractness of 
pupils’ drawings and their success in mathematical problem solving. The findings of these studies are 
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mixed, but there seems to be a tendency towards stating that pupils using iconic (or schematic) 
drawings are more successful than pupils using pictographic drawings (e.g. Crespo & Kyriakides, 
2007; Veles & da Ponte, 2013). Bakar et al. (2016), however, found no such trend in their study. An 
iconic drawing contains only simple lines and shapes to embody the intended object, while a 
pictographic drawing has realistic depictions of the objects involved in the problem (Bakar et al., 
2016). It is also important to determine the mathematical matching; that is, to what extent are the 
word problem and the drawing informationally equivalent? (Ott, 2017) 

When it comes to viewing drawing as a process, Stylianou and Silver (2004) examined the use of 
representations by expert mathematicians in problem solving. They found that mathematicians 
consider drawings as a legitimate tool for reasoning and argumentation, and they use visual 
representations actively and for different purposes during the problem-solving process. Drawings can 
be means to understand information, recoding tools, tools that facilitate exploration, and monitoring 
and evaluation devices (Stylianou, 2011, p. 271). In a follow-up investigation involving middle-
school pupils, Stylianou (2011) detected that pupils’ use of representations resemble the experts’ use 
in many ways. However, the use of representations as a monitoring tool is fairly limited and not very 
sophisticated. She recommends that teachers make pupils explicitly aware of the purposes of the 
representations they use, and that pupils are given opportunities to discuss and negotiate the meaning 
of various representations. In addition, pupils need to “develop the habit of exploring [a 
representation], generalising and abstracting from it, and using it as a springboard for connections 
among tasks and content in mathematics” (p. 277).  

Methodology  
Context and data collection 

This study is part of a larger project entitled “Language Use and Development in the Mathematics 
Classroom” (LaUDiM), a video-based intervention project where two teachers from different primary 
schools and university researchers work together on planning and discussing teaching sequences. The 
empirical data for this particular study is drawn from a teaching sequence in one of the schools where 
the aim was to provide pupils with experience of different multiplicative situations. The teaching 
sequence consisted of two consecutive sessions, two days apart, and took place when the pupils had 
just entered third grade (age 8–9). In the Norwegian curriculum, multiplication and division are 
introduced and formalised during grades three and four, meaning the pupils in this study had not 
received any formal teaching on these subjects prior to this particular teaching sequence.  

The pupils worked in pairs to solve word problems in multiplication and division. The context for all 
tasks was preparation work for a fictional school party. The teacher encouraged the pupils to write 
arithmetic problems or to produce drawings, but she gave no examples of what to write or draw. On 
the first day, two randomly chosen pairs of pupils were videotaped. In addition, a hand-held camera 
was used to capture glimpses of the pupils’ work. On the second day, three pairs of pupils were 
videotaped. There was a partial overlap in terms of the pupils videotaped on the first and second day. 
The pupils’ written work was also collected.  
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Data analysis 

As the research question for this paper focuses on how children use drawings in their problem-solving 
process, only video recordings showing the entire process of solving a given problem were considered 
data material. When looking through the recordings, 15 episodes were identified, where an episode 
is defined as “one pair of children working on a particular task, from the time they read the problem 
until they move on to the next task”. These episodes, together with the corresponding written work, 
constitute the data material for this study.  

The first stage of the data analysis involved watching and transcribing all episodes. The drawings 
were categorised as mainly iconic or mainly pictorial (Bakar, 2016), the mathematical matching (Ott, 
2017) was examined and the solution strategy (Mulligan & Watson, 1998) was identified. In the next 
step, the episodes were re-watched several times with the purpose of identifying the functions of the 
drawings. A more detailed description of the production and use of drawings, in the form of pointing, 
making additional markings and so on, was added to the transcripts, and an inductive analysis was 
conducted. Examples of questions asked about the material are “in what phases of the problem solving 
is the drawing produced and/or used?” and “how is the making and the use of the drawing linked to 
the solution strategy?”. Polya’s (1985) description of the four phases of a problem-solving process 
served as a tool for structuring this work. The analysis yielded several parameters, such as problem 
structure, abstractness, mathematical matching, solution strategy and different uses of drawings. The 
analyses of the 15 episodes were compared and contrasted with regard to these parameters to look for 
possible interrelationships.  

Findings  
Pupils’ drawings 

One or more drawings are produced in all 15 episodes. Two of the drawings can be seen as mainly 
decorative as they do not resemble the mathematical structure. Figure 1 provides an example of a 
decorative drawing related to the problem of how many eggs one needs to make twelve portions of 
muffins, given that one needs four eggs for one portion. The pupils begin by drawing three rows of 
four eggs, which seems to resemble the equal-group structure of the problem, but then they add three 
more eggs to each row. After counting a total of 21 eggs, the pupils erase the additional eggs and 
decide to draw the entire baking process, from the beating of the eggs to ready baked muffins.    

 

Figure 1: A decorative drawing 
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Of the thirteen remaining drawings, three are categorised as pictographic, and the rest as iconic. 
Figure 2 provides examples of both a pictographic and an iconic drawing of the problem of how many 
tables are needed for twenty-four people if there can be six at each table.  

Figure 2: A pictographic and an iconic drawing of the table problem 

All of the pictographic drawings are produced by the same male pupil. One girl initially starts to draw 
pictographically (using coloured pencils), but is encouraged by the teacher and her peer to change to 
an iconic drawing: 

Teacher: Stop for a while. This is very nice, and it works well, but can it be done in a different 
way so that you don’t have to draw every one? There is still a lot remaining.  

Peer: Draw circles. 

Girl: Can write 6. 

The drawing produced in this episode is seen as the drawing on the right-hand side in Figure 3. 

The iconic drawings still relate to the given context, as eggs, muffins and cookies are drawn as circles 
or dots, tables and trays drawn as circles or quadrilaterals, and pencils drawn as tally marks. This 
might suggest that classifying drawings from pictographic to iconic on a continuum, is more fruitful 
than seeing it as a dichotomy. All drawings, apart from the purely decorative ones, are considered to 
have a high degree of mathematical matching. As one can see in Figure 2, both drawings show the 
right number of people for each table, and twenty-four people in total. Three of the drawings involve 
number symbols as an important element. Figure 3 shows two of those, both produced in relation to 
the problem of how many pencils there are in twenty boxes, given that there are six pencils in each 
box. The pupils are successful in solving the word problems, barring minor counting errors, in all but 
two of the episodes. The two episodes where the pupils fail to solve the problem are the ones where 
only a decorative drawing is produced.  

Figure 3: Drawings with number symbols for the pencil problem 
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Pupils’ strategies and use of drawings 

The pupils’ solution strategies are dominated by direct counting. For the multiplication tasks, there 
are only two examples of more advanced strategies. One is seen in the drawing on the left in Figure 
3, where a strategy based on doubling is used; for the other drawing in Figure 3, the pupils count by 
ones, tapping a finger rhythmically six times for each box of pencils. The other example of a more 
advanced strategy is seen when a pair of pupils work on the problem of how many muffins there are 
on seven trays if there are ten muffins on each tray. They draw an iconic picture of all the trays and 
all the muffins, before they count ten muffins on each tray, simultaneously writing 10+10+10+… on 
the paper. They reach the answer of 70 muffins with no further counting or visible reasoning.  

For the multiplication problems, the drawing is usually produced immediately after the pupils have 
read the text. This indicates that they instantly visualise the problem situation and use the drawing as 
an information holder. In cases where the pupils struggle to understand the problem, they call for a 
teacher to help them re-read the text and explain particular words. When the drawing of all objects is 
completed, the pupils use the drawing as a calculation tool. Usually, the drawing is used to execute a 
counting plan, but in one case it acts as a means to develop a more advanced doubling strategy, as 
seen in Figure 3. There are instances where the pupils count one by one, even though the video 
recordings reveal that they master more advanced strategies. We see this, for example, in connection 
to the problem of finding the total number of muffins on a tray consisting of five rows with seven 
muffins in each row. The pupils first find the answer by direct counting, but later they write the 
addition problem 5+5+5+5+5+5+5 and skip count to 35.  

For the division problems involving smaller numbers, such as the table problem (see Figure 2), all 
pairs use direct counting in groups of six. For the division problems involving larger numbers – 48 
cookies being distributed equally between four tables – one pair use direct counting to distribute one 
cookie at a time until there are no cookies left. In the other two episodes involving this task, the pupils 
state that there will be ten cookies for each table and then divide the remaining eight cookies. One of 
these pairs draw all the cookies (first ten on each table, then adding two more), while the other pair 
write number symbols after performing calculations in their heads. Figure 4 shows the corresponding 
drawings for this problem.  

 

 
 

Figure 4: Drawings of the cookie problem 

The use of drawings in solving division problems differs somewhat from the use of drawings for 
multiplication. The actual calculations are more often made based on the numbers, not on the drawing. 
Nevertheless, the drawing is important for reasoning and for devising and executing a calculation 
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plan. This is exemplified by the following short extract from an episode related to the cookie problem. 
A pack of cookies has been drawn, with the number 48 above, as we enter the situation (drawing is 
seen to the far right in Figure 4):  

Pupil 1:  You have to draw four tables with people. No, just four tables without any people. 
(P2 draws four tables)  

Pupil 2:  We have to divide those by four. (P2 points to the pack of cookies) 

Pupil 1: Yes, that is what I plan to do. Ten. (P1 points to each of the tables) 11, 11, 11, 11. 
(P1 points to each of the tables) 12, 12, 12, 12. (P1 points to each of the tables) 

This extract demonstrates how the drawing offers a visual support for the mental calculations by 
giving meaning to the numbers and the operation.  

Discussion and implications  
It is not surprising that the pupils successfully solve word problems, as this result has emerged in 
previous research (e.g. Bakker et al., 2014). Somewhat more surprising is that there is no evidence in 
the material showing that iconic drawings are used in a more sophisticated way than pictographic 
drawings; rather, the opposite is true, but the data material in this study is rather limited.  

When it comes to pupils’ strategies and use of drawings, the amount of drawing and counting is 
striking. The pupils are not discouraged by higher numbers, such as 20⋅6; as one girl exclaims about 
her partner in relation to the pencil problem: “He’s so fast at drawing”. This supports the impression 
that even though the pupils are capable of using more advanced strategies, they prefer drawing and 
direct counting. One hypothesis is that the pupils in this particular class are used to showing their 
thinking, and that they consider drawings more suitable for this purpose than number symbols. 
Overall, they appear to regard drawing as a legitimate way to reason and argue, a view that needs to 
be acknowledged and nurtured by the teacher (Crespo & Kyriakides, 2007). Another hypothesis is 
that drawing serves as a form of confirmation for the pupils. Because multiplication and division are 
a new school topic for them, they need to model the situations in order to fully grasp the meaning of 
the numbers and the relations between them. There is therefore no rush for the teacher to push for 
more advanced strategies at this point; instead, they can use the pupils’ work to discuss, compare and 
contrast the different multiplicative situations and possible ways to represent them. As claimed by 
Carpenter et al. (1993), children who are taught to approach problem solving as an effort to make 
sense out of problem situations, may come to believe that learning and doing mathematics involves 
the solution of problems in ways that always make sense. (p. 440)  
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This article is about student understanding processes during their introduction to the concept of 
derivative that were constructed as part of a doctoral dissertation. The observation of these 
understanding processes is made from the standpoint of representations in the sense of Duval (1993) 
and Hitt (2006). More specifically, two aspects of the models of the comprehension process are 
underlined. First, the fact that students can sometimes work well in different registers, but that they 
can not necessarily do a proper coordination of these representations is put forward. In addition, the 
particular role played by the verbal register is also discussed. 

Keywords: Understanding process, derivatives, representations, teaching experiment. 

Introduction 
The concept of derivative is the subject of many scientific studies in the field of teaching and learning 
mathematics. The work of Biza and Zacharides (2010) on the concept of tangent is an example of 
documented difficulties that students in the calculus course may encounter. Or the work of Sierpinska 
(1985) around the concept of limit is also a landmark for all those who are interested in the learning 
and teaching of concepts in differential calculus. Other researchers shed light on factors that may 
explain these difficulties and have proposed possible solutions to help students overcome these 
difficulties. For example, Zerr (2010), Haciomerogolu, Aspinwall, and Presmeg (2010), among 
others, provide insights into the elements that lead to a so-called “conceptual” understanding of the 
concepts of differential calculus. Among these authors, Zandieh, at the turn of the 2000s, proposes a 
theoretical framework for the analysis of students’ understanding of the concept of derivatives. But, 
as Zandieh (2000) mentions, this schema does not comment on how and why students are approaching 
the concept of derivative in a certain way. In addition, Hähkiöniemi (2006) also proposes a diagram 
that identifies elements that can allow students to deepen their understanding of the derivative. 
However, this schema is based on the observation of the students after they have seen the concept in 
class. The observation of students in action, engaged into a process of understanding the concept of 
derivative, which is new for them, could allow to add a new dimension to these models. 

This article, based on Dufour’s PhD (2018), reports on a study that aims to model the students’ 
understanding of derivative with regard to the process aspect of this understanding and the 
implementation of an analytical framework to observe and describe these processes. It is not possible 
to detail the models obtained in the thesis in this paper. However, this article exemplifies two elements 
in relation with the representations used by students, that seems for us, key moments in the 
understanding processes of students of the derivative.  
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Theoretical Framework 
An orientation on the concept of understanding must be taken in order to accurately model one or 
more understanding processes. Among the studies about differential calculus, some mentions the 
different representations of mathematical concepts as part of a solution or as a possible explanation 
to the students’ difficulties (Eisenberg and Dreyfus, 1991; Biza and Zachariades, 2010). By insisting 
on this particular aspect of representations, it was possible to detail the model in depth in this sense. 
Two visions on the representations, one in continuity with the other, are gathered. First, Duval’s 
theory of registers of semiotic representations (1993, 2006) puts forward important cognitive 
activities related to representations in different semiotic registers. Actions on and with 
representations, which are essentials, especially in the case where we are interested in introducing a 
new concept to students, are described by Duval. These actions are recognition, treatment (to process 
or manipulate), production, conversion and articulation (coordination). Recognition makes it possible 
to recognize a concept by a given representation. Processing makes it possible to modify a 
representation within the same register in order to obtain a new representation. Production produces 
a representation related to a certain concept. The conversion makes it possible, from a given 
representation, to produce a new representation in a different register from the one of departure. This 
action is more complex than the others since it requires to recognize the rules of two registers. Finally, 
the articulation (coordination) between representations in different registers is, for Duval, a cognitive 
activity related to the conceptual apprehension of a mathematical object. Beyond being able to 
produce a representation in a register or to convert a representation to a new register, it is a question 
of being able to go back and forth in different registers according to what is recognized as necessary 
(Duval, 2006) to carry out a mathematical activity. 

The representations described by Duval are part of different semiotic registers which are described 
by a set of rules of conformity (Duval, 1993), and which are the subject of a certain consensus in the 
mathematical community. By this rather strict definition, we place Duval’s representations in the 
category of institutional representations. However, as the objective of the research presented here is 
to learn about the “process” aspect of student understanding, a vision of representations that 
particularly considers intuitive representations of students is necessary. The concept of functional 
representations of Hitt (2003) describes intuitive representations in construction. Functional 
representations make it possible to associate representations produced or manipulated by students to 
a certain register, although the latter do not completely respect the rules established in this register. 

Thus, along with the theoretical framework, an analytical framework is drawn up to describe the 
students’ processes of understanding when they are introduced to a new mathematical concept into 
the classroom. Indeed, we can now describe these processes by the actions taken by the students on 
and with representations belonging to different registers of representations and having a certain 
nature: institutional or functional. On the other hand, it is advisable to specify the different registers 
likely to be encountered during the observation of the mathematical activity of the students. Due to 
the nature of the targeted concept, the derivative, which belongs to the mathematical domain of 
analysis, the registers of representations are: graphic, tabular, verbal (whether written or oral), 
algebraic and numerical. 
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Methodology 
Two key elements were taken into account in the choice of a methodology for this study. First, the 
observation of students understanding processes will be in the form of constructing one or more 
models of these processes. The chosen methodology must therefore be consistent with this central 
objective. In addition, the goal also installs the research in a particular context of teaching sessions 
designed to encourage the use of different representations. The Teaching Experiment (TE) was ideal 
for this project. Indeed, this methodology aims to document, through the production of a model, the 
mathematical development of students by observing, among other things, their learning process and 
their conceptions in a teaching context (Steffe and Thompson, 2000). 
The theoretical position on understanding of this research, in particular Hitt’s (2003) perspective 
suggesting these student’s representations evolve through interactions with the teacher and other 
students, sets a particular context for the TE. It is therefore inspired by the position of Cobb (2000), 
among others, that the TE took its shape in this project. Cobb supports the need to conduct a TE in 
the classroom through the individual and social aspects of learning, which is consistent with the 
position taken in this research. However, a completely natural classroom context would have made 
the fine observation of the different representations used difficult. A “hybrid” form that lies between 
the individual interview outside the classroom and the natural classroom context is used. A TE with 
a small group of six students, which allows for individual, team or large groups work with the teacher-
researcher and spans over five sessions, has been put in place. 

The teaching sessions were videotaped and a journal was written before and after each session. The 
videotapes were translated into transcripts that were analysed with specific regard on the 
representations produced and used by students. The analysis of the transcripts and students’ 
productions took place in four steps, or iterations, inspired by Powell, Francisco and Maher 
(2003)’analysis model. Table 1 resumes the different layers of analysis.  

Layer of 
analysis 

Description 

First · Identify key moments in the student's understanding process in order to use these moments as a basis
for building the other sessions.

· Record the privileged or used  registers of representations in the session.
Second From the transcripts (coding) : 

· Identify the different representations used, produced or processed by the students.
· Identify some actions on these representations by the students.
· Add comments on the transcripts.

Third From the coded and commented transcripts: 
· Write, as a story, the development of the session by dividing it into key moments.
· For each of these moments, identify and interpret, from the perspective of the theoretical framework,

the representations used or produced by the students and the actions taken on these representations.
· Support these interpretations with excerpts from transcripts of the sessions or figures from students’

productions.
Fourth From the story written before: 

· Identify the moments that are directly related to the concept of derivative.
· Highlight from these moments the elements that can be part of the description of the process of

understanding students.
· Support this analysis with excerpts of transcripts of the sessions or figures from students’ productions.

Table 1: Layers of analysis 
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Results and Discussion 
The TE put in place and the many layers of analysis allowed us to build two collective models (for 
two teams of three students) of understanding processes of the concept of derivative during its 
introduction to students around 18 years old. Since the models take the form of a follow-up text 
revealing the different representations produced and used by the students and especially the way in 
which they have used and modified them during the different interactions between them and with the 
teacher-researcher, it is impossible to report the whole of them in this article. We will instead offer 
some excerpts that seem particularly rich to better understand the understanding processes of students 
with a particular focus on the necessity of a coordination between different registers. The first excerpt 
illustrates the ability of students to produce and process representations of a concept in different 
registers without being able to demonstrate a real coordination between the registers. The second 
emphases the particular role of the verbal register in the understanding processes of students.  

Production of Representations in Different Registers Without Achieving Coordination 

First, during the fourth session, a problem of bacterial proliferation was proposed to students through 
a scenario in words and a table of values. The question posed in this problem was to identify when 
an antibiotic administered to a patient allows the reduction of the bacterial population present in the 
patient. We are particularly interested here in the work of Guillaume, Jérémie and Antoine’s team 
(see figure 1 showing Jeremie’s work).  

 
Figure 1: Treatment of the Table of Values and Numerical Representations (Dufour, 2018, p. 152) 

The three students were able to produce, from a few treatments on the table of values, verbal 
representations of the situation that are related to the concept of derivative (see Table 2, translated 
from Dufour, 2018). Table 2 shows the representations and actions made by the three students during 
their work on this problem. These representations and actions are also interpreted in this table. 

Although these functional representations are incomplete or even erroneous, the students associated 
them with the concept of derivative. They could thus had used the recognition of this concept 
(derivative) to produce algebraic representations implying the concept of derivative at a point which 
would be null and which could had allowed them to solve the problem. Unfortunately, this conversion 
did not take place and the students finally found another way to answer the question, but this solution 
is not what interests us here. 
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Type of representations and actions on 

these representations Student  Interpretations 

Conversion from TR→ NR (Tabular 
representation → Numerical 
Representation) 
From a table of value, calculations of 
different average rates of change. 
(see figure 1) 

Jérémie Jérémie makes a good use of the data in the given table to 
calculate the rate of change on different intervals. However, 
he doesn’t go further on the interpretation of what he could 
do with this new information.  

Conversion NR→VR (verbal 
representation) 
Because I asked, he produces a VR for 
his calculations (average rate of 
change) which is “means” (VR).  

Jérémie Although this VR is incomplete, Jeremy is not wrong. 
Indeed, his various calculations can be associated with the 
concept of mean in the sense that he obtains a number of 
bacteria produced/dead for each hour in this interval, that is 
to say, a number of bacteria produced each hour if the same 
number of bacteria was produced every hour over this 
interval. 
This is an incomplete VR in the sense that it does not identify 
NRs as “rates of change” (VR), which is an important 
conversion for the rest of the problem and especially for the 
process of understanding the derivative.  

Conversion NR + VR → VR + VR 
Conversion from the average rate of 
change calculated (NR) and the verbal 
representation “mean” (VR) to the 
verbal representations “slope” (VR) 
and “variation” (VR).  

Guillaume Guillaume uses the representation “slope” to talk about what 
Jérémie calculated (average rate of change). These two VRs 
can indeed designate the same concept. It can be emphasized 
that the term “slope” is more often used with reference to the 
graphic register which is not necessarily the case here, 
although some links with the graphical register are formed 
later. 

Conversion NR + VRs → VR 
Conversion from the average rate of 
change calculated (NR) and the verbal 
representations “mean” (VR), “slope” 
(VR) and “variation” (VR) to the 
verbal representation “derivative” 
(VR) 
 

Antoine Antoine continues the discussion by introducing the term 
“derivative”. It is true that what Jérémie calculates (average 
rate of change) is not very far from the concept of derivative 
(instantaneous rate of change). Recall that what distinguishes 
these two concepts is that the average rate of change is related 
to a given interval or secant line to the function involved. 
Whereas the instantaneous rate of change (derivative at a 
point) is related to the rate of change for a value of the 
independent variable in particular or the rate of change of a 
tangent line at a point of a function. Therefore, the use of the 
RV “derivative” is erroneous in this case. 

Conversion NR +VR → VR + VR 
Conversion from the average rate of 
change calculated (NR) and the verbal 
representation “derivative” to two 
verbal representations:  
“The derivative between 12 and 14” 
(VR) and “the tangent between 12 
and 14” (VR) 
 

Antoine Antoine goes further by producing the VR “the derivative 
between 12 and 14” and the VR “the tangent between 12 and 
14”. For the same reasons as those raised above, these two 
VRs are erroneous. Indeed, a derivative or a tangent line can’t 
be associated with an interval of this kind. In this case, 
Antoine should have used the representations “average rate of 
change” or “secant line between 12 and 14”, for example, so 
that the different representations in this discussion are 
coordinated coherently. 

Table 2: Representations Produced by Students and Our Interpretations (Dufour, 2018, p. 157) 

Later, the teacher-researcher directly suggested to the team to use the concept of derivative to solve 
this problem. At this point, the three students produced algebraic representations of the derivative at 
a point such that the derivative at this point would be zero (see Figure 2 for an example). They even 
managed to manipulate these representations to find that famous moment when one can observe a 
change of growth of the function. 
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Figure 2: Treatment of an algebraic representation of the derivative of a function by Guillaume 

(Dufour, 2018, p. 166) 

What is interesting to observe here is the completely parallel use of the different registers. Indeed, 
their work in “closed vases” did not allow them to coordinate coherently the different representations 
they can produce and thus achieve a better understanding of the concept of derivative. However, their 
use of the derivative in the algebraic register to solve the problem might suggested that once the 
concept was identified, which they had done verbally before (see Table 2), they could had completed 
the problem by processing an algebraic representation. Although their functional verbal 
representations were not completely adequate, the students identified them as the derivative. They 
could had allowed them to move to an algebraic representation as they did later at the request of the 
teacher. 

The Particular Role of the Verbal Register in the Coordination of Different Representations  

According to the position on the understanding adopted in this article, to understand, one must 
coordinate different representations of various registers. However, beyond this necessity, the models 
constructed make it possible to identify the verbal register as being a central element of this 
coordination. In fact, the register is at least a mirror that can reflect the understanding of students. 
Indeed, it was often when the students were brought to produce such type of representations that we 
can observed if the coordination between the representations was coherent or not. The representations 
in this register sometimes revealed to students themselves that they cannot articulated representations 
in different registers. 

As an example, some of the functional verbal representations showed in table 1 are not coherent with 
the concept of derivation such as “the derivative between [an interval]”. Other functional verbal 
representations produced by the same student later such as “the slope of a derivative is a tangent” and 
“the derivative line is the slope of a tangent” are also examples of incoherent representations of the 
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derivative. This kind of functional verbal representations let us realized that, even if some 
representations were coherent and complete in their own register (algebraic for example), the concept 
of derivative still provoked a confusion to the observed students. Even more important, when the 
students were asked, by the teacher-researcher or by their colleagues to explain what they were doing 
in a certain register (often algebraic), they, themselves, realized that they often cannot explained or 
justified the representations they produced or used. This was, then, a key moment for them in their 
understanding process.  

Another example appeared when the students had to identify in different registers the concept of rate 
of change to be able to go through their idea of using derivative to solve a problem. Some examples 
of this difficulty were observed during the TE sessions. One of them was when we proposed a problem 
from Selden, Mason and Selden (1989) (see figure 3).  

Find values of a and b so that the line 2x+3y=a is tangent to the graph of 𝑓𝑓(𝑥𝑥) = 𝑏𝑏𝑥𝑥2 at the point 
where x=3.  

Figure 3: Problem proposed to the students during the fifth session 

The students, in both team of three participants, were able to identify in the verbal register the need 
to equal the rate of change of the given linear function and the derivative of the given function f for 
x=3. However, they were not able to articulate the verbal representation to a coherent algebraic 
representation. It needed some interventions from the teacher-researcher to finally be able to 
coordinate these representations. In this case too, the verbal representation was important for two 
reasons. First, it sheds light on the fact that the students were able to recognize the usefulness of the 
derivative. Second, it helped to determine that the problem was not directly the concept of derivative, 
in that case, but that it was the concept of rate of change. This coordination of different representations 
of the concept of rate of change seemed to be confusing for students. We must precise that if the 
concept of derivative is new for them, they work with the concept of rate of change since at least three 
school years. However, it seemed that this concept in particular still is of high importance in the 
understanding process of the derivative. 

Conclusion 
The few examples given above are only some of the important elements that the construction of 
models of understanding processes of the concept of derivative made it possible to underline. The use 
of representations in different registers in a rather parallel way than in a coordinated way had been 
observed several times during the construction of the understanding processes models. Certainly, this 
step, working in close vases, may be inevitable and part of a deep understanding process of the 
concept. However, it must certainly be considered in teaching by attempting to provoke, not only 
representations in a variety of registers, but treating them in a coordinated manner. It's about 
emphasizing how these various registers are related to each other. The verbal register seems 
appropriate to allow such disclosure of the links between the registers. 
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Making connections between variables and proficiently constructing graphical representations is key 
to higher-order thinking activities within mathematics and science education. In our research, we 
make use of a learning environment informed by embodied cognition theory to promote students’ 
graphical understanding. In the teaching sequence offered to fifth graders, students created distance-
time graphs describing their own movements in front of a motion sensor. In a pretest-intervention-
posttest design, we investigated whether task-related bodily movements enhanced students’ 
understanding of graphs of motion, as reflected in their competence in interpreting and constructing 
graphs. Preliminary results point to important links between students’ motion experiences and their 
ability to reason about the relationship between distance and time as represented in graphs. 

Keywords: Graphs, primary mathematics education, embodied cognition, motion, modelling.  

Introduction 
Students’ difficulties with understanding graphs is a much-studied topic. Such difficulties become 
especially apparent when graphs include a time-dependent variable, as for example in distance-time 
or speed-time graphs. Then, students can be prone to focus on surface characteristics of the graphs, 
such as the slope and interpreting it as an indication of moving up or the height and viewing it as an 
indication of highest point (e.g., Glazer, 2011). However, good understanding requires that students 
discover the deeper connections underlying the represented data and start to think about the 
relationship between multiple variables and “their pattern of covariation” (e.g., Leinhardt Zaslavsky, 
& Stein, 1990, p. 11). According to Friel et al. (2001) students have to develop graph sense, which 
“develops gradually as a result of one’s creating graphs and using already designed graphs in a variety 
of problem contexts that require making sense of data” (Friel, Curcio, & Bright, 2001, p. 145)”.  

Developing graph sense can be seen as higher-order thinking. It implies reasoning about graphs, 
including interpreting, constructing, changing, combining, and comparing graphs (e.g., Boote, 2014). 
In order to foster students’ understanding of graphs and related reasoning, we designed a teaching 
sequence in which students are given ample opportunities to experience firsthand how their own 
bodily movements are represented as a graph. The idea that bodily experiences can be beneficial for 
learning, is captured within the theory of embodied cognition. 

Theoretical background 
Embodied cognition theory states that when we interact with our physical environment valuable 
perceptual-motor experiences are acquired through which our cognition is shaped. This makes our 
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acting body one of the most important factors for learning (e.g., Wilson, 2002). According to 
embodied cognition theory this learning does not only include the acquisition of lower-level cognition 
(e.g., motor development) but it also incorporates the acquisition of higher-level cognitive processes 
(e.g., language and mathematics) (e.g., Barsalou, 2010). Evidence for the idea that thinking and 
learning are embodied has inspired researchers to incorporate bodily movements in educational 
environments in order to improve student learning. Often this involves activities in which students 
are instructed to make whole- (or part-)bodily movements, or to observe movements (e.g., Ruiter, 
Loyens & Paas, 2015). Whereas all these bodily experiences are considered to be embodied, some 
researchers argue that activities in which the whole body partakes have some additional benefits. For 
example, the body might become a mathematical object itself (e.g., being a number, being the graph) 
and, in a more collaborative vein, the body might become an object for collective sense-making 
(Kelton & Ma, 2018; Ma, 2017).  

Embodied learning environments supporting students’ understanding of graphing change are based 
on the premise that providing students with valuable bodily experiences that are immediately linked 
to the target concepts could alleviate students’ difficulties with graphs representing change over time 
(e.g., distance-time graphs). In the context of modelling motion, this would imply a strong grounding 
of the concept of change in experienced (own) motion. For a recently carried out literature review 
(Duijzer, Van den Heuvel-Panhuizen, Veldhuis, Doorman, & Leseman, 2019), embodied learning 
environments supporting students’ understanding of how to graph change were characterized on the 
degree of bodily involvement (own and others/objects’ motion) and immediacy (immediate and non-
immediate). Immediacy refers to whether a learning environment deals with on- or off-line cognitive 
activities. Off-line cognitive activities become grounded through embodied mechanisms such as 
mental simulation or imaginative activities (e.g., Barsalou, 2010). For example, when students walk 
in front of a motion sensor and see the graph of their own movements appear in real-time on the 
screen of the computer, the activity is “on-line” and the experience immediate. When students obtain 
this graph of their own movements at a later stage, the activity is “off-line” and hence the experience 
non-immediate. The review unveiled that learning environments making use of students’ own 
movements immediately linked to their representation were most effective in terms of learning 
outcomes. These learning environments often made use of motion sensor technologies to immediately 
track a dynamic event as a line in a graph. This immediate link between one’s own movement and a 
graphical representation of this movement was found to be an important mediating factor of these 
embodied learning environments.  

Although over the past couple of decades much research has been published showing that one’s own 
motion experiences might be helpful in learning motion graphs, practical applications are still scarce. 
Most of the research investigating the role of perceptual-motor activities on primary school students’ 
understanding of graphical representations of motion has been done with individual students, looking 
at micro processes of development (e.g., Ferrara, 2014). We wanted to shift this accentuation a bit 
and investigate how the use of embodied learning environments translates to whole classrooms. In 
doing so we built on work done by others. For example, Deniz and Dulger (2012), showed positive 
effects of an inquiry-based instruction condition enriched with real-time graphing technology in 
which fourth graders were asked to replicate given motion situations. The other instruction condition 
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used traditional laboratory equipment (i.e., a bottle of water with a hole and measuring tape). In the 
traditional laboratory condition students were allowed to move as well, but the immediate real-time 
link between motion and graph was missing. Considering these findings, it could be argued that 
having the opportunity to move, as well as immediately seeing your movements reflected as a 
graphical representation is helpful for learning about graphs of motion for students of this age. 
Therefore, we further explored this issue by contrasting a group of students participating in classroom 
activities including immediate whole-bodily movements with a group of students participating in 
regular classroom activities, without having the experience of moving yourself. 

Current study 

In this study, we investigated the effects of an intervention, comprising a teaching sequence including 
immediate task-related whole-bodily movements, on students’ understanding of graphing change. 
Our research question was: What is the effect of a classroom intervention including students’ own 
whole-bodily movements on students’ ability to interpret and construct motion graphs? We 
hypothesized that an intervention in which task-relevant bodily movements were made, would result 
in better learning and test performance on interpreting and constructing graphs than an intervention 
in which students were not given this opportunity.  

Method 
To answer the research question, we set up a quasi-experiment in a classroom setting with a pretest-
intervention-posttest design containing two experimental conditions in which students were offered 
a teaching sequence on graphing change in motion and a control condition in which the students did 
not get this teaching sequence. Instead these students received a teaching sequence (similar in 
intervention duration and time of intervention) on probability to take into account the effect of having 
an intervention on students’ learning gains. The first experimental condition was embodied, meaning 
that the students were allowed to move around freely, while in the second experimental condition, 
the non-embodied one, the students did not have this opportunity. Therefore, the main difference 
between both conditions was the dynamicity of the movement presented to the students as well as the 
opportunity to physically experience the target concept of graphically represented motion.  

Participants  

Participants were 218 fifth-grade students (94 female, mean age = 10.29 years, SD = 1.46) from 9 
classes of 8 Dutch elementary schools. The classes were randomly divided over three conditions: 
embodied experimental condition (n = 70), non-embodied experimental condition (n = 68), and 
control condition (n = 80). The research was conducted in accordance to the ethical guidelines of the 
Institutional Review Board of the faculty of Social and Behavioral Sciences at Utrecht University. 

Procedure 

The participants in the experimental conditions participated in a teaching sequence of six lessons on 
graphing change in motion, participants in the control condition participated in a teaching sequence 
of six lessons on probability. The students received the teaching sequence at different time periods 
throughout the year, see Figure 1. All participants took four identical macro tests at fixed time points 
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spread over the year and six micro tests which were administered after each lesson. All lessons on 
graphing change were given by the same teacher, the first author of this paper. 

 

 
Figure 1: Research design 

Teaching sequence 

The main learning objective of the teaching sequence was to foster students’ understanding of motion 
graphs. In the lessons we focused on graphs representing dynamic situations, where distance changes 
over time. The teaching sequence started with an activity in which students were asked to develop 
their own representation of a familiar motion event (i.e., their journey from home to school). After 
this, students received motion situations involving the representation of motion as discrete graphs, 
followed by the representation of motion as continuous graphs. Throughout the remaining part of the 
teaching sequence students were asked to draw graphs of given motion situations and reconstruct 
possible events from continuous graphs. See Figure 2 for an overview of the instructional sequence. 

 
Informal graphs Discrete graphs Continuous graphs 
ò──────────ò ò─────────ò ò──────────────────────────────────────────────────ò 

LESSON 1 LESSON 2 LESSON3 LESSON 4 LESSON 5 LESSON 6 
Motion: reflecting 
and representing 
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continuous graphs 

Continuous graphs 
of ‘distance to’ (1) 

Continuous graphs 
of ‘distance to’ (2) 

Scaling on the 
graphs’ axes 

Multiple 
movements and 
their graphical 
representation 

      

Figure 2: Overview teaching sequence 

In the embodied experimental condition, the teaching sequence was enriched with students’ own 
motion experiences. These motion experiences varied in extent and duration over the different 
lessons. In the first lesson, students had to enact two slightly differing motion situations by walking 
along a straight line. The non-embodied experimental condition practiced this exercise differently. 
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They received the motion situations on the digital blackboard, as well as on paper, and had to discuss 
these in small groups without enacting them. From the second lesson onwards, motion sensor 
technology was used in the embodied experimental condition. In the second and the sixth lesson the 
whole classroom was involved in these activities, whilst in the third till the fifth lesson students 
worked together in smaller groups. This gave each student the opportunity to physically experience 
how their movements related to the line in the graphical representation. Again, students in the non-
embodied experimental condition performed the same tasks, but without enacting the movements 
themselves. 

Motion sensor technology 

In order to provide the students with an immediate link between a dynamic situation (moving in 
space) and its graphical representation (restricted to distance to a point over time) we included two 
€Motion sensors, developed by CMA, in conjunction with Coach6 Software (Heck, Kedzierska, & 
Ellermeijer, 2009). The tool was connected to the digital blackboard (Lesson 2 and Lesson 6) or to 
laptop computers (Lesson 3-5). The motion sensor was set to provide a single graph representing the 
distance between the sensor and the nearest object over a 30 second period. Moving backwards in 
front of the sensor, resulted in an increase of distance between the sensor and the student, while 
moving forwards resulted in a decrease of distance between the sensor and the student. To familiarize 
students with the motion sensor they were asked to replicate a distance-time graph of a back-and-
forth movement (see Figure 3 on the left), which resulted in student created graphs (see Figure 3 on 
the right). In Lesson 3 till Lesson 5, students had many individual opportunities to move in front of 
the sensor. In Lesson 2 and Lesson 6, most students observed other students who were walking. 

 

  

Figure 3: Given graph of a back-and-forth movement (left) and graph produced by a student in front 
of the motion sensor (right)  

Measures 

The paper-and-pencil macro test was administered to the students in order to measure their 
understanding of motion graphs as an indication of domain-specific mathematical higher-order 
thinking. Students completed five problems that assessed their knowledge of graphing. The test 
consisted of three graph interpretation items and two graph construction items. Two example items 
are shown in Figure 4. Four items could be answered correctly or incorrectly (i.e., a score of 1, 0). 
One item could be answered correctly, partially correctly, or incorrectly (i.e., a score of 1, 0.5, 0). 
This resulted in a possible maximum score of 5 and a minimum score of 0. We also coded students’ 
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answers on their level of reasoning. We included four levels of reasoning. For this paper, we only 
look into students’ correct or incorrect answers.  

 

Example item 1 Example item 2 
A car drives through town A train ride.  

A train travels twice as fast between 10:00 
and 11:00 o’clock than between 11:00 and 
12:00 o’clock. The train stands still from 12:00 
to 13:00 o’clock.  

  

  
1a. Between which points does the car goes fastest? 
1b. How do you know? 

2a. Draw a graph that fits the description above. 
2b. How do you know? 

Score: correct (1), incorrect (0) Score: correct (1), incorrect (0) 

Figure 4: Items macro test 

Analysis 

A mixed 3 (condition: embodied experimental, non-embodied experimental, control) x 4 (time of 
testing; pre-, post, and/or follow-up) staged comparison design with repeated measures was used. For 
now, we will focus on the tests administered before and after taking part in the intervention, see 
Figure 1. Our dependent variable was students’ achievement on the mathematical higher-order 
thinking test. 

Results 
In this paper we only provide the descriptive statistics of student’ scores on the graphing motion test 
based on the correctness of the students’ answers. Table 1 shows the pre- and post-test graphing 
motion scores for students in each of the three research conditions. On average the students in the 
intervention conditions increased in their understanding of motion graphs, regardless of whether 
they received an intervention on motion graphs. However, the embodied experimental condition 
showed higher gains from pre- to posttest (Mdif = 1.33), when compared to the non-embodied 
experimental condition (Mdif = 0.62), and the control condition (Mdif = 0.25).  
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Phase Intervention condition     Macro test    
     Pre-test    Post-test    Gain score   
     M   SD    M   SD    Mdif   
1 Embodied experimental    1.21  0.94   3.20  1.15      1.99     
2 Embodied experimental    2.70  1.38   3.73  1.17      1.03     
3 Embodied experimental    2.65  1.60   3.70  1.37      1.05     
 Total    2.24  1.50   3.57  1.25      1.33     
                      
1 Non-embodied experimental    1.88  1.26   3.31  1.04      1.43     
2 Non-embodied experimental    3.50  1.11   3.52  1.29      0.02     
3 Non-embodied experimental    2.90  1.39   3.40  1.28      0.50     
 Total    2.74  1.42   3.36  1.25      0.62     
                      
1 Control condition    1.58  1.03   1.74  1.36      0.16     
2 Control condition    2.50  1.51   2.70  1.41      0.20     
3 Control condition    2.02  1.51   2.46  1.45      0.44     
 Total    2.06  1.41   2.31  1.45      0.25     

Table 1: Descriptive statistics of the students’ macro test scores for the three conditions 

Discussion 
Based on the descriptive statistics of students’ scores on the macro test we found that students who 
participated in a six-lesson embodied teaching sequence on graphing motion showed higher gains in 
their understanding of motion graphs than students in the non-embodied experimental condition or in 
the control condition. Moreover, students’ dynamic interaction with the, by motion sensor technology 
created, graphical representation of their own movements indicates that the embodied learning 
environment contributed to their understanding. In particular, this is in line with studies which have 
found that immediate own motion experiences are effective for learning (e.g., Duijzer et al., 2018). 
Moreover, our results do not only support the findings of previous research that incorporated motion 
sensor technology, but they also add to our knowledge of using embodied learning environments in 
whole classroom settings. As such, our results extend earlier findings of Deniz and Dulger (2012).  

Classic theories of cognitive science assume the creation of mental structures to guide or develop 
mathematical understanding. Another perspective is the embodied perspective taken in the current 
study. According to Nemirovsky, Kelton and Rhodehamel (2013), mathematical understanding is 
constituted on the basis of perceptual and motor experiences. In line with this, we assume that the 
mathematical understanding that arose in our students was strengthened by the graphical 
representation of their own movements immediately created by the motion sensor. Hence, students’ 
mathematical understanding of motion graphs became grounded in their sensorimotor experiences 
(i.e., continuous transformations of whole-bodily activity) that they gained when moving in front of 
the motion sensor, while sharing and discussing their experiences with other students.  
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Recent research yielded empirical evidence for a unit square being a useful visualization of Bayesi-
an situations. However, most of the studies in the research field of visualizing Bayesian problem 
situations were conducted in well-controlled experimental settings with university students as parti-
cipants. Therefore, we focus in this paper on a training study with 38 eleventh graders in school 
about visualizing statistical data with a unit square for coping with Bayesian problem situations. 
Firstly, we outline some theoretical and empirical basics concerning research about Bayesian situ-
ations and a unit square as a facilitating visualization tool. Afterwards, we present a short training 
sequence in using the unit square effectively. We report on methods, implementation and results of 
a pilot study in school. The promising results were discussed at the end.   

Keywords: Bayesian reasoning, visualization of statistical data, unit square, school training study.  

Introduction 
According to Arcavi (2003) it is an important task of mathematics education research to investigate 
visualizations as specific graphical representations of mathematical objects in a theoretical and em-
pirical way. Thus, we focus in our ongoing research about the unit square as a powerful visualiza-
tion of Bayes’ formula on theoretical and empirical insights. The unit square is shown in Figure 1 
visualizing a Bayesian situation which are situations where the Bayes’ formula could be applied. 
After travelling to a far country, you learn that on average 
10% of the travelers contracted a new kind of disease 
during their trip. The disease proceeds initially without 
any clear symptoms, therefore you don’t know whether 
you had been infected or not. 

You learn that a medical test was developed which has the 
following characteristics: 

80% of infected people (I) get a positive test result (sensi-
tivity of the test; +). 

15% of not infected people (I)̅ get also a positive test re-
sult (specificity of the test, +). 

Finally, you decide to carry out the test and get a positive 
test result. What is the probability that you had been 
infected actually? 

 

Figure 1: Bayesian situation and visualization with the unit square 

Given for example a Bayesian situation as described in Figure 1 the unit square would look like as 
displayed in Figure 1 in the right side. All essential information is represented in a numerical and a 
geometrical way. Thus, a unit square facilitates via different strategies the computation of the essen-
tial probability, that is, the probability of being infected given a positive test result 𝑃𝑃(𝐼𝐼|+) =

80% ∙10%
80%∙10%+15%∙90%

≈ 37,2%.    
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Focusing on facilitating strategies in Bayesian situations in detail is the main goal of this paper: We 
refer to certain visualization features of a unit square which makes it an effective facilitator for cop-
ing with Bayesian situations and for adequately applying Bayes’ rule which is a fundamental model 
for dealing with risk in situations of uncertainty. For this we provide first a brief literature review to 
discuss the advantages of the unit square in comparison to further visualizations of Bayesian situa-
tions. Afterwards we refer to the design and the results of a quasi-experimental training study with 
38 students in grade 11 which compares the performance of a treatment group vs. a control group. 
Our question for this step in an ongoing research project was whether it is possible to improve stu-
dents’ dealing with Bayesian situations by a brief training that is based on representing Bayesian 
situations by natural frequencies and by a unit square. Implications and conclusions are discussed at 
the end of the paper.  

The unit square as facilitator of Bayesian situations 
Despite the Bayes’ rule’s relevance for real life situations, psychological and educational research 
gained evidence that people often fail when applying Bayes’ rule (Diaz, Batanero, & Contreras, 
2010; Gigerenzer & Hoffrage, 1995; Kahneman, Slovic, & Tversky, 1982). In their meta-analysis 
McDowell and Jacobs (2017) concluded that only about 5% of participants in various studies were 
able to solve a problem as exemplarily given in Figure 1 without any facilitating strategy.  

A widely accepted strategy to increase people’s performance in Bayesian situations is representing 
the statistical information via natural frequencies instead of using percentages (e.g. Gigerenzer 
& Hoffrage, 1995). In Figure 2, the Bayesian situation given in Figure 1 is displayed by using natu-
ral frequencies. The meta-analysis of McDowell and Jacobs (2017) provides empirical evidence that 
by using natural frequencies as the only information format people’s performance in coping with 
Bayesian situations increases from about 5% to about 25%. 
After travelling to a far country, you learn that on average 100 out of 
1000 travelers contracted a new kind of disease during their trip. The 
disease proceeds initially without any clear symptoms, therefore you 
don’t know whether you had been infected or not. 

You learn that a medical test was developed which has the following 
characteristics: 

80 out of 100 infected people (I) get a positive test result (sensitivity of 
the test; +). 

135 out of 900 not infected people (I)̅ get a positive test result (specifici-
ty of the test, +). 

Finally, you decide to carry out the test and 
get a positive test result. What is the pro-
portion that you actually have the disease? 

 

Figure 2: Bayesian situation with natural frequencies 

A further facilitating strategy is to provide additional visualizations (e.g. Brase, 2009; McDowell 
& Jacobs, 2017). However, there are ambiguous research findings about which visualization proper-
ties could effectively facilitate dealing with Bayesian situations.  

From a theoretical point of view, three properties could be suggested to have a facilitating effect. 
The first is to use icons as “real, discrete and countable” objects (Cosmides & Tooby, 1996, p. 33). 
However, from a practical point of view (in terms of time costs) this strategy turns out to be hardly 
realizable in regular classroom instruction where students have to create visualizations. Further-
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more, results of our own research suggest that icons actually have an additional, but small facilitat-
ing effect compared to a unit square as shown in Figure 2 (Böcherer-Linder & Eichler, 2019).  

The second facilitating strategy is to make the nested-sets structure transparent which constitutes 
fundamentally every Bayesian situation (Oldford, 2003). Sloman, Over, Slovak, and Stibel (2003, 
p. 302) stated that “any manipulation that increases the transparency of the nested-sets relation 
should increase correct responding”. Actually, our own research revealed empirical facts that the 
unit square allows exactly for such a manipulation (Böcherer-Linder & Eichler, 2017, 2019). The 
subsets that have to be identified for successfully solving a task with the Bayes’ formula are directly 
neighboured in the unit square (cf. Figure 1) and, by this means, they are transparently visualized. 
In particular, in different experimental studies, we yielded empirical evidence that the unit square 
makes the nested sets-structure of a Bayesian situation more transparent than the commonly used 
tree diagram and showed further that the unit square is more effective to facilitate dealing with 
Bayesian situations (Böcherer-Linder & Eichler, 2017). Actually, compared to only using natural 
frequencies the additional use of a unit square could further increase people’s performance in cop-
ing with Bayesian situations from about 25% (cf. above) to about 65%-70%.  

A third facilitating strategy is to use area-proportional representations of statistical information (e.g. 
Talboy & Schneider, 2017). Going beyond pure numerical information a unit square provides addi-
tionally the statistical information by displaying exact graphical proportions of the rectangular sub-
plots. When comparing a unit square with a 2x2-table which differs from a unit square regarding the 
missing area-proportionality we found evidence for the effectiveness of the area-proportionality 
(Böcherer-Linder & Eichler, 2019). Nevertheless, understanding Bayesian situations is not fully 
reached by only solving tasks as shown in Figure 1 (Borovcnik, 2012). Moreover, understanding 
also includes the adequate influence-judging of parameters in these Bayesian situations, that is, the 
base rate or the conditional probabilities that are called sensitivity and specificity in a medical diag-
nosis situation. For this purpose, we also investigated the facilitating effect of a unit square com-
pared to a tree diagram by regarding the influence of changing parameter values in Bayesian situa-
tions (Böcherer-Linder, Eichler, & Vogel, 2017). In this research, we found a significant supremacy 
of a unit square compared to a tree diagram. Although we have not yet compared a 2x2-table and a 
unit square concerning these kinds of changing parameter tasks in Bayesian situations, we hypothe-
size based on theory (Eichler & Vogel, 2010) that a unit square is of advantage by means of addi-
tional visualizing changing proportions. 

The research discussed so far is mostly conducted in well controlled studies without a systematic 
training. However, training should be understood as a fourth strategy which provides facilitating 
effects additional to the effective strategies mentioned before. However, these very few training 
studies reported so far were not focused on facilitating properties of visualizations and, they were 
mostly carried out with university students as participants (e.g. Sedlmeier & Gigerenzer, 2001; Tal-
boy & Schneider, 2017). For this reason, we conducted a training study that addressed learning how 
to adequately deal with Bayesian situations based on using natural frequencies and, in addition, on 
using a unit square. Referring to a sample of university students, the results of a pilot study suggest 
a positive effect of the training with a unit square (Böcherer-Linder, Eichler, & Vogel, 2018). In this 
paper, we present a training study with students of grade 11. The main question in this study was 
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whether students’ performance in Bayesian situations as well as students’ understanding of Bayesi-
an situations in terms of judging the influence of changed parameters could be improved in a brief 
training based on representing Bayesian situations by natural frequencies and a unit square. 

The training 
Step 1: Choice of the sample size 
For solving the problem, we first consider the question of what the probabilities 
mentioned in the text imply for a concrete group of travelling people. We choose a 
sample size of 1000 people. 

We represent the group of 1000 people by drawing a unit square.  
Step 2: Construction of the frequency representation 
Since 10% of the travelling people contracted the disease during their trip, 100 out 
of the 1000 people are expected to be infected. 900 out of the 1000 people are 
expected to be uninfected. 

Thus, we divide the unit square in vertical direction for “infected” and “uninfected” 
at the ratio of 100 to 900. At the bottom of the narrow rectangle we write “100” 
and at the bottom of the broader rectangle we write “900”.  
Since 80% of the infected people get a positive test result, 80 out of the 100 infect-
ed people are positively tested. Accordingly, 20 out of the 100 infected people are 
tested and result negative. 

Therefore, we subdivide the narrow rectangle horizontally into two parts and write 
“80” and “20” into the resulting areas. 

      
Since 15% of the uninfected people get a positive test result, 135 out of 900 unin-
fected people get a positive result after testing (because 15% of 900 is 135). Ac-
cordingly, the other 765 uninfected people get a negative test result. 

Therefore, we subdivide the broader rectangle horizontally into two parts for “posi-
tive” and “negative” and write the numbers into the resulting areas.  

 
What needs to be found is the probability that a person with a positive test result is 
actually infected. Thus, we have to calculate which proportion of the people result-
ing positive is actually infected. For this aim, we surround all positive people with 
a dashed line in the unit square and emphasize with grey color all of them, that are 
infected.  

We read out the following numbers: 

Number of infected and positive to the test: 80 

Number of all positive to the tested: 80+135=215 

We calculate:  
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖 =
80

80 + 135 ≈ 0,37 

This proportion corresponds to the requested probability of 37%.  

Figure 3: First intervention in the training study (“picture-formula”, cf. Eichler & Vogel, 2010)  

Due to an ecological validity, we presented the problems in the probability-text-version (see Figure 
1) and trained the students to translate the probabilities into natural frequencies and, secondly, to 
graphically represent the statistical information in the process of problem solving. The training had 

                                                         ≈ 0,37 

                   “picture formula” 
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two phases: phase 1 (10 minutes) contained three steps. It was a worked example showing how to 
solve the problem of Figure 1 with the help of the unit square (Figure 3; translated from German). 

Phase 2 (10 minutes) included an exercise that was structurally identical to the worked out example 
(Figure 2 and Figure 3) but had another context (Trisomy). An oral explanation and a presentation 
of the correct solution were given. Even though it was possible to draw a unit square true to scale in 
this case, we only showed a rough drawing of a unit square, since we wanted to enable the partici-
pants to work with the visualization as a thinking tool for problem solving which did not necessarily 
imply a precise drawing.  

Finally, we added a brief exercise (5 minutes) on the change of parameters. For this, we only show 
the instruction referring to the change of the base rate (Figure 4). 

3. Change of the base rate

The base rate indicates the proportion of an individual having trisomy (5% of 
the children of women of age 45). An increase of the base rate results in an in-
crease of the area of the thin rectangle on the upper left side of the unit square 
and, accordingly, a decrease of the area of the rectangle on the upper right side. 

If the base rate increases to 10%, there would be 90 true-positive people and 90 
false-positive people. The change of the base rate changes the proportion as 
shown below: 

90
90 + 90 =

90
180 ≈ 50 % 

Actually, the result shows a considerable change of the probability. 

Figure 4: Part of the training to changed parameters 

Method 
Our sample included 38 students in grade 11, from two classes. By choosing two different classes of 
students which were not grouped randomly we conducted a quasi-experiment. The class to which 
we administered the training included 22 students. The class that represented the control group con-
sisted of 16 students.  

Figure 5: Design of the training study 

The design of the quasi-experiment is shown in Figure 5. Since there were not all of the students 
present in the three phases shown in Figure 5, our analysis is based on 16 students (treatment group) 
and 13 students (control group). 

Both the pre-test and post-test consisted of two Bayesian situations. One of the situations in both 
tests was the same, the other situation differed to prove whether repeating a task has an effect on 
performance in Bayesian situations. In the pre-test, one situation included only a performance-task 
and the second situation included both a performance task and a task in which the influence of 
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changed parameters was to be estimated. In Figure 6 we show the task that was identical in both 
tests and include both forms of tasks (translated from German). 
There are tests for diagnosing people if they have infectious diseases like measles or scarlet. Concerning such an infec-
tious disease and the corresponding test the following information is given: 

The probability of having the infectious disease is 2%. Given there is a patient having the disease, the test yields in 
90% of all cases a “positive” result, which means it indicates correctly the infectious disease. Given there is a non-
infected patient, the test shows in 5% of all cases also a “positive” result, which means it indicates the infectious dis-
ease by mistake. 

a) What is the probability of a patient having actually the disease given a “positive” test result? 

b) How changes the probability of section a) if the probability of having the disease is higher? 

Figure 6: A test item (translated from German) 

Results 
Regarding the few items the values of Cronbach’s alpha of 0.63 (pre-test) and 0.85 (post-test) ap-
pear to be good. Thus, we summarized the scores in each test referring to the performance test-items 
a).  

 Mean Std-dev n 

Control Pre .08 .277 13 

Treatment Pre .19 .544 16 

Sum .14 .441 29 

Control post .38 .768 13 

Treatment Post 1.75 .577 16 

Sum 1.14 .953 29 
 

 

Figure 7: Descriptive results of the training concerning item a) 

We applied a mixed ANOVA (within-factor: performance in the pre-test and post-test; between 
factor: group) to investigate the training effect in the treatment group compared to the control 
group. According to the robustness of an ANOVA (Schmider, Ziegler, Danay, Beyer and Bühner, 
2010), we did not regard non-normality and differences in variances. In a descriptive way, Figure 7 
(left) reports the results referring to the pre-test and the post-test. Figure 7 (right) visualizes a clear 
effect of the treatment referring the means. 

 Mean Std-dev n 

Control Pre .38 .506 13 

Treatment Pre .44 .512 16 

Sum .41 .501 29 

Control post .77 .388 13 

Treatment Post .94 .171 16 

Sum .86 .296 29 
 

 

Figure 8: Descriptive results of the training concerning item b) 
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As expected, the ANOVA yields a significant effect (𝐹𝐹=20,733, 𝑝𝑝=0,000) of the treatment with a 
strong effect (𝜂𝜂𝑝𝑝2=0,434). Regarding item b) the results were not as expected (Figure 8). Actually, 
also the control group has an increased average of correct solutions and the differences between the 
treatment group and the control group are not significant concerning the ANOVA (𝐹𝐹=0,424, 
𝑝𝑝=0,520, 𝜂𝜂𝑝𝑝2=0,015). By contrast, there is a significant main effect for both groups regarding the 
difference between the pre-test and the post-test (𝐹𝐹=24,938, 𝑝𝑝=0,000, 𝜂𝜂𝑝𝑝2=0,480).  

Discussion 
Regarding the results of the performance tasks it could be stated that a training with the unit square 
turns out to be helpful for students in school. This finding is in line with the results of our recent 
study in school investigating the effect of the visualization (cf. Vogel & Böcherer-Linder, 2018). 
Furthermore, this is particularly emphasized within a practical point of view, a unit square’s effec-
tive use can be trained within a very short time (in Germany 45 minutes corresponds to one lesson). 
Regarding the tasks of estimating the effect of changing parameters it should be mentioned that 
these kinds of tasks were estimated to be more difficult by going beyond the demand of only build-
ing a ratio as the Bayes problem’s solution. However, most of the students in both groups were able 
to find the correct solution, even in the control group and, thus, the significant difference between 
pre- and posttest indicates a learning progress. Particularly the missing difference between the 
treatment group and the control group could firstly be explained by the high guessing probability of 
one third, or even one half, if the question “How changes” is interpreted as either increasing or de-
creasing. Moreover, maybe the students intuitively guessed that the conditional probability would 
be higher if the base rate increased without analyzing the parameter dependence. However, we ex-
pect tasks which necessitate an analysis of the parameter dependency to be trainable as successfully 
as the performance tasks. This effect is focused on in subsequent studies being conducted currently. 
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Learning to ‘deal’: A microgenetic case study of a struggling student’s 
representational strategies for partitive division 

Carla Finesilver 
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This paper focuses on the arithmetical understandings and behaviours of one fifteen-year old student 
with very low attainment in mathematics, as she worked on a sequence of scenario-based partitive 
division (sharing) tasks with individually-tailored verbal and visuospatial support. The student’s 
independent and co-created visuospatial representations of arithmetical structures, along with her 
verbal comments, were analysed qualitatively using a multimodal microgenetic approach. This paper 
focuses on three particular excerpts which illustrate the fundamentally componential nature of the 
concept and practice of division, some difficulties that may be experienced when modelling ‘sharing’ 
tasks, and the pedagogical importance of spatial structuring when a learner is moving between 
different kinds of representation. 

Keywords: Visuospatial representation, multiplicative thinking, numeracy, low attainment, special 
education. 

Introduction 
I encountered Paula during a larger project investigating low-attaining students’ representational 
strategies for multiplicative structures. Attending a comprehensive school in inner London, she turned 
fifteen during the study; however, in certain respects her quantitative reasoning more resembled that 
of a pre-school child. Her particular stage of arithmetical thinking (struggling with the move from 
additive to multiplicative reasoning) has been of particular interest to researchers, and her reliance on 
unitary counting-based strategies is a well-known phenomenon. Atypical for Paula’s age, but 
common in younger learners, was her heavy use of enactive representation with physical media such 
as cubes. These several factors, along with the slow progress, provided an excellent opportunity for 
microanalytic case study: to examine this individual’s arithmetical-representational strategies in fine 
detail, and note even very small changes taking place. Thus, I focused on an arithmetical concept 
which the participant did not yet comprehend (division), building on an activity in which she was 
comfortable (counting), within scenario tasks that allowed for multiple representational variations. 
This paper presents and discusses some brief but illuminative excerpts from my work with her. 

Theoretical background 
There is a strong tradition of research into various aspects of early numeracy, such as counting-based 
arithmetical strategies, taking place in naturalistic teaching/learning environments. Those which 
focus on children’s own representations of number are often quasi-ethnographic in nature, where 
(usually very young) children are observed in their mark-making (e.g. Atkinson, 1992) or block-play 
(e.g. Gura, 1993), and their representations analysed for ‘emergent’ mathematics. Key to this body of 
work is that it focuses on children’s own, often non-standard, representational strategies; this is in the 
pedagogical tradition of “de-centring” (Donaldson, 1978), i.e. to shift from an adult perspective and 
imagine what a scenario, phrase or object might mean to a child. While the details and exact 
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terminology can vary, in psychological research paradigms some kind of representational progression 
is also generally assumed, moving from the most intuitive/enactive/concrete models of arithmetical 
relationships, through iconic/pictorial/drawn forms, to the incorporation of abstract symbols and 
eventual full formal symbolic notation (e.g. Bruner, 1973). The development of mathematical 
concepts has also been linked to increasing awareness of pattern, and the ability to make connections 
between one mathematical representation and another, i.e. to notice similarities and differences, is 
important for a learner’s developing relational thinking. Low attaining students often lack  
visualisation skills and flexibility, and may indeed find it difficult to replicate and organise 
representations of groups and patterns (Mulligan, 2011). 

Nunes & Bryant (1996), among many others stretching all the way back to Piaget, suggest that to 
understand multiplication/division represents a significant qualitative change in children's thinking 
(compared to addition/subtraction) – and so is deserving of particular attention. Regarding the 
increased complexity, Anghileri (1997) points out that a counting strategy in a multiplication or 
division task requires three distinct counts: the number in each set, the number of sets, and the total 
number of items. The second of these – tallying sets rather than units – may be particularly unintuitive 
for some. Notwithstanding, Carpenter et al.'s (1993) study of kindergarten students (i.e. age 5-6, with 
<1 year of formal schooling) demonstrated that they could carry out a wider range of division tasks, 
with greater success, than had formerly been realised – provided the tasks were presented in the form 
of scenarios which could be directly modelled. Furthermore, they argued that many older students 
abandon their fundamentally sound problem-solving approaches for the mechanical application of 
formal arithmetic procedures, and would make fewer errors if they applied some of the intuitive 
modelling skills of their younger counterparts. 

Given this, it is appropriate to combine a subject focus of early division with an analytical focus on 
informal, nonstandard, and intuitive representational strategies. A previous example is Saundry and 
Nicol’s (2006) investigation of the drawings young children used in division-based tasks, including 
a ‘sharing biscuits’ scenario, as used in this study; they describe students manipulating pictures on 
the page, moving, eliminating, sharing and distributing them, in some cases with patterns of 
movement resembling the use of physical manipulatives. This is in contrast to much prior research 
which has analysed visuospatial representations more simply, by organising them into broad 
categories. However, a third way is possible: considering students’ changing representations via an 
analytical framework of multiple interrelating aspects (Finesilver, 2014). 

Research questions 
1. What arithmetical-representational strategies does the student use in division tasks? 
2. What do the strategies tell us about their particular weaknesses and capabilities? 
3. How do the student’s arithmetical-representational strategies change over time and input? 

Methodology 
The dataset for this study is taken from a series of four 1:1 problem-solving interviews, each lasting 
45 minutes, carried out by the author. While some sessions did include other types of multiplication- 
and division-based activity (reported elsewhere), a significant proportion of this particular student’s 
time was given over to the ‘sharing’ tasks described here. It employs microgenetic methods, which 
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were developed for the study of the transition processes of cognitive development (Siegler & 
Crowley, 1991). They have been widely used in studies of children's arithmetical strategies and 
particularly in case studies of individuals with difficulties in mathematics (e.g. Fletcher et al., 1998).  

Paula had been described in a past Educational Psychologist’s report as having “particularly severe” 
difficulties with numeracy. This was confirmed through classroom observation by the author, 
discussion with her mathematics teacher, and a 1:1 qualitative assessment of arithmetical and 
representational capabilities (see Finesilver, 2014). She demonstrated confident ascending counting 
and writing of two-digit numbers, and appeared to understand the principles of addition and 
subtraction well (although made frequent errors in practice). This information was used formatively 
in devising appropriate in situ tasks and support for developing a basic understanding of division. 

In each session, Paula was set a series of partitive divisions expressed via the scenario of a given 
number of biscuits to be shared between a given number of people. The quantities used were two-
digit numbers under 30 that divided exactly by 3, 4 or 5. Numbers were chosen in situ, depending on 
her arithmetical-representational functioning that day and in previous sessions. Representational 
media were a particular concern to Paula’s teacher, as she was approaching high-stakes national 
examinations where concrete manipulatives would be unavailable. Thus, scenarios and representation 
types were chosen that allowed working on first with enactive concrete models, then translation of 
these visuospatial configurations to graphic form. I gave verbal and visuospatial prompts whenever 
independent activity came to a halt, up to and including co-creating representations with her.  

All sessions were audio recorded, all markings on paper collated, and (when it would not interfere 
with her work) photographs of concrete representations taken. All markings in purple ink are by the 
researcher. Each task attempt was considered in terms of the thirteen-aspect analytical framework 
developed in Finesilver (2014), which covers the type of representation created (media, mode, 
resemblance), the relationships between representation and calculation (motion, unitariness, spatial 
structuring, consistency, completeness, enumeration, errors, success), and teacher-student 
interactions (verbal and visuospatial prompts). Particular attention was paid to any attempts where 
change in one or more of the aspects was observed; these are considered microgenetic ‘snapshots’.  

Data (selected excerpts) 
Due to restrictions of space, only a small sample of data may be reproduced in these proceedings; 
more are included in the accompanying presentation and other publications by the author. 

Excerpt 1: Difficulties co-ordinating division requirements, Session 1: 15 ÷ 3 (Figure 1) 

Paula having made no independent attempt at the task “fifteen biscuits shared between three people”, 
I give her a pile of 15 cubes. She first pushes them into two roughly but not exactly equal groups. I 
restate that three equal groups are required, and she distributes them into groups of three. I then draw 
three unit containers, and she pushes three cubes into each. I restate the requirement to share out all 
the cubes, and she adds 1-3 more (unequally) to each circle. I ask if the groups are equal, and she 
counts each group, then adjusts, re-counting, until she can present me with three groups of five. She 
appears to understand my individual comments, but have difficulty co-ordinating the requirements. 
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Later in this session, I demonstrate the ‘dealing’ process, emphasising the regular repeating motion. 
Paula is able to replicate this procedure without error, but does not seem confident that the groups 
will be equal, and counts each to check. 

 

Excerpt 2: Moving from modelling to drawing, Session 2: 15 ÷ 3, 15 ÷ 5 (Figure 2) 

Paula had been given three drawn circles (as previously) and asked to try to complete the sharing 
without using cubes. Here she first makes 13 dots in each circle (likely intending 15). I draw new 
circles, and draw 15 dots above (as a non-concrete analogue for the initial pile of cubes in previous 
tasks). I demonstrate ‘taking’ dots from the ‘pile’ (by crossing them out) and ‘moving’ them (by 
redrawing them) into the circles. After watching four dots being dealt out in this way, Paula takes 
over and continues the pattern of motion, successfully adding dots to the circles in a cyclic sequence 
(apart from one error in the form of an extra dot, subsequently crossed out). She completes the 
following task independently and without errors. 

 

Excerpt 3: Confidence in the ‘dealing’ procedure, Session 4: 24 ÷ 4  

Paula counts out 24 cubes for herself, and deals them cyclically into four circles. However, she pauses 
in confusion when almost finished. She places her last cube, counts that group and the one next to it, 
finds them unequal, and twice moves a cube then re-counts (each time finding three groups of six and 
one group of five) with dissatisfaction. She looks around and finds the last cube (hidden in her sleeve), 
allowing her to complete the final group. She verbally states “six each” as her solution. 

 

  

(no photo) 

First attempt: “15” 
“shared” equally 
between 3 

Second attempt: “15” 
“shared” “equally” 
between “3” 

Third attempt: 15 
“shared” “equally” 
“between 3” 

Fourth attempt: 
“15” “shared” 
equally “between 3” 

Figure 1: Sequence of task attempts; change in spatial structuring to introduce unit containers 

 
  

First attempt: 15 
(miscounted) shared 
between “3” 

Second and third attempts: “15” 
“shared between” “3” with an 
extra dot (corrected) 

First attempt: 15 shared into 5 
groups of 3 

Figure 2: New mode/media, retaining previous spatial structuring and motion 
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These three ‘snapshot’ excerpts are selected to illustrate particular points for discussion regarding 
components of division and arithmetical-representational strategies. 

Discussion 
What representational and arithmetical strategies does the student use? 

Paula did not initially have any working representation of her own for use in sharing tasks, and 
exhibited a ‘helpless’ non-response. While she could read and write number symbols, she could not 
use them for multiplicative reasoning. However, with a relatively small amount of teacherly input 
and encouragement, she proved capable of successfully using visuospatial representational strategies 
to represent equal-groups structures and solve tasks that had previously seemed impossible to her.  

Paula’s initial preference was for simple modelling with cubes. However, mixed-media/mixed-mode 
representations (concrete units in drawn containers) were actually most successful, due to the 
enhanced spatial structuring of the groups provided by the container forms. At first, she distributed 
and pushed cubes between groups unsystematically, counting to check for equality, adjusting, and 
recounting. Later, she adopted the more structured ‘dealing’ procedure. 

Paula was willing to move from physical modelling to using fully-drawn representations, with some 
success. Key to this was keeping both the spatial structuring (i.e. the initial ‘pile’ and container 
circles) and the dealing motion (repeating hand movement back and forth between the pile and each 
of the containers in turn) the same as it had been when modelling with cubes, and emphasising this 
similarity. 

What do the strategies tell us about their particular weaknesses and capabilities? 

Initially it could be stated with certainty only that Paula knew the division operation required starting 
with an initial quantity and separating it into a number of smaller quantities (as this was a consistent 
response in all attempts). This may seem trivial; however, it is not only a necessary component of 
division, but may be seen as the most fundamental meaning of ‘divide’, prior to any notions of 
dividends, divisors, quotients, or equality. 

Paula made two types of error of particular interest in our sessions on partitive division. On eight 
occasions she broke the rule that groups must be equal (e.g. Excerpt 1, first attempt), and on seven 
that the initial number of units must be preserved, i.e. no cubes left over, and no increase through 
taking extra cubes or drawing extra dots (e.g. Excerpt 1, third attempt). Generally either one or the 
other of these errors occurred, and sometimes correcting one caused the other to occur. This indicates 
she experienced a tension in trying to satisfy these apparently-competing demands at the same time.  

Paula’s producing of unequal groups implies either that she did not see it as important for groups to 
contain an equal number, and/or that she did not know a reliable method for distributing them fairly. 
The latter is indicated, as when reminded, she counted each individual group and took action to even 
them up. When group sizes were unequal, they only varied by one or two cubes: it is possible that she 
considered these groups sufficiently equal. For students who struggle significantly with number, it 
may seem quite reasonable to treat, say, 20 cubes as a continuous rather than a discrete quantity, and 
thus to perform an approximate rather than an exact division. 

Thematic Working Group 24

Proceedings of CERME11 4511



 

 

Paula’s non-preservation of total units implies either that she did not initially see it as important that 
all of the initial quantity should be distributed, that she believed that including them in the groups 
already created would conflict with another requirement of the task, and/or that she had simply 
forgotten about them. The second interpretation seems most likely, as she distributed the remainder 
when asked, and then re-counted the group sizes to check for equality. There is a small but highly 
significant difference in Excerpt 3 (compared to previous task attempts): she realises independently 
that it is impossible to adjust the groups to make them equal, and deduces there is something wrong 
– I had specified equal groups, and this is impossible unless there is a missing cube. 

These observations together suggest that Paula had a three-part conception of division, corresponding 
to three independent requirements: separation of the initial quantity into groups, that the groups are 
of equal size, and that all of the initial quantity have been distributed. The priority relationship 
between the second two requirements was not constant. For most students using a unit-based concrete 
model, these three stages would be subsumed into one through ‘dealing’ units cyclically into groups 
until all of the initial quantity is gone. It is notable that Paula did not initially do this, instead using 
an unsystematic distribution process. It seems inconceivable that a 15-year-old in mainstream 
education has never encountered dealing; however, Paula initially did not independently think to use 
it in these situations. Furthermore, when first trying dealing, she seemed unconvinced of its reliability 
in delivering ‘fair shares’; this implies not initially connecting the structure of the physical dealing 
action with the numerical structure, visual pattern, or arithmetical operation. The observation that she 
later stopped checking by counting (when the deal worked out as expected) implies increasing 
acceptance of it incorporating the structure of, and thus ensuring, equal groups. 

Paula’s extreme focus on individual countable units, taken with the instances of her sharing into an 
incorrect number of groups, indicate the possibility (in line with Anghileri, 1997) that she may have 
difficulty with the very idea of groups being countable objects, i.e. with shifting her focus from unit-
level to group-level. This interpretation is consistent with both the fact that my drawn containers were 
helpful to her (through visually reinforcing groups-as-units), and the fact that, despite this, she was 
somewhat disinclined to draw them independently. 

How do the student’s arithmetical-representational strategies change over time and input? 

Given the level of support required for working with Paula, it is more helpful to consider the overall 
content of my input and its effect on Paula, rather than individual instances. In summary, I emphasised 
the three requirements for 'fair sharing', and introduced a practical method for accomplishing this: 
dealing. I explicitly encouraged visuospatial unitary representation, and introduced an alternative 
mode (drawing). These were both influential on Paula's ongoing task strategy choices and behaviours.  

Although there was a high number of ‘teacher-student’ interactions, I followed the principle of 
keeping each teacherly input minimal. Verbal prompts each related to a specific rule that was broken 
(e.g. unequal sharing) or a single aspect of the task that was misunderstood (e.g. number of groups). 
In each case, Paula immediately corrected her error (although sometimes making another while doing 
so). My visuospatial interactions consisted of drawing containers and demonstration or miming of 
dealing; in each case, Paula was able to take over, complete the representation and use it to obtain an 
answer to the division task, and then eventually use the same strategy independently. These kinds of 
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mimicking behaviours may seem trivial to the casual observer, but I argue that for this kind of student 
it is a significant achievement and important development just to carry out replicatory-structured 
pattern creation successfully. 

While within individual sessions Paula switched from modelling with cubes to drawing, in each 
subsequent session this temporary confidence had been lost somewhat, and it was necessary to return 
to the cubes. However, progressively less time was spent in concrete mode, and she also began to 
draw her own container forms in which to distribute units (examples not included in this paper). It is 
reasonable to speculate that with further experience, the connections might be strengthened, and the 
drawn forms regained more quickly and retained for longer. 

After I had explicitly demonstrated the dealing process, Paula began increasingly to use this method. 
While it is true that she required reminding of it in each of the subsequent sessions, she could be 
observed carrying out the action with increasingly sure and efficient movements. It may be inferred 
that the repeated success of dealing strengthened her belief in its reliability as a means of fair sharing.  

Early on, where Paula had distributed cubes or dots in a disordered way, she often looked at her 
representation and made adjustments to it via visual approximation, which nevertheless often still 
resulted in unequal groups. She also presented many incorrect solution representations to me without 
any attempt to check her work, and simply waited for my response. However, in later sessions, she 
made attempts to co-ordinate the division requirements herself, for example, checking that all 
cubes/dots had been distributed and that the resulting groups were equal, addressing these issues if 
not (e.g. Excerpt 3). Additionally, rather than simply performing a sharing procedure and presenting 
the representation, she also started to state the group size as her ‘answer’. 

Concluding comments 
A microgenetic level of analysis of this student’s arithmetical struggles illuminates certain specific 
difficulties in conceptualising and carrying out division-based tasks which may be unexpected and 
go unrecognised in classrooms. It also demonstrates the possibility of improvement even in such 
severe cases, and has pedagogical implications.  

Regarding the concept of division, a three-part deconstruction may be seen: (a) the separation of a 
quantity into a given number of parts, where (b) those parts are equal, and (c) the original quantity is 
preserved. Also highlighted is the interplay, and potential for tension, between those requirements, or 
the overriding of one or the other by partial fragmentary understandings. Where there is difficulty 
considering more than one ‘rule’ at a time, what would have been a simple one-stage calculation thus 
becomes a complex multi-stage process. 

Regarding representational modes, the ease with which Paula switched from concrete to graphic 
representations of numeric relationships is also significant. Translation between representational 
modes is commonly considered difficult to achieve, particularly for low-attaining students. It was 
managed here thanks to carefully-designed scenario tasks and representations that maximised and 
emphasised correspondences and similarities in visuospatial form and structure, and in hand motion.  

The nature and degree of Paula's individual difficulties made progress not only extremely slow and 
effortful, but uneven and unstable; nevertheless, these excerpts indicate changes, however small when 
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measured against the progress of typically-attaining teenagers. These changes may be considered 
microprogressions in arithmetical and multiplicative thinking. While it is true that children may 
sometimes carry out action sequences without understanding their significance, Paula’s insecure start 
but increasingly confident use of dealing – combined with changes in representational mode and 
accompanying enumeration – indicate a strengthening understanding of the links between the 
repeated distribution action and the partitioning of quantities into exactly-equal groups. While 
meaningful symbolic thinking about multiplicative structures may have still been a long way off for 
Paula, her efforts and achievements in ‘learning to deal’ deserve appreciation. 

References  

Anghileri, J. (1997). Uses of counting in multiplication and division. In I. Thompson, (Ed.), Teaching 
and learning early number (pp. 41–51). Maidenhead: Open University Press. 

Atkinson, S. (1992). Mathematics with reason: the emergent approach to primary maths. London: 
Hodder & Stoughton. 

Bruner, J. S. (1973). The growth of representational processes in childhood. In Beyond the 
information given: Studies in the psychology of knowing (pp. 313–324). W. W. Norton & 
Company. 

Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem 
solving: A study of kindergarten children’s problem-solving processes. Journal for Research in 
Mathematics Education, 24(5), 428–441. doi:10.2307/749152 

Donaldson, M. (1978). Children’s minds. London: Fontana. 

Finesilver, C. (2014). Drawing division: emerging and developing multiplicative structure in low-
attaining students’ representational strategies (PhD). Institute of Education, London. Retrieved 
from http://eprints.ioe.ac.uk/20816/ 

Fletcher, K. L., Huffman, L. F., Bray, N. W., & Grupe, L. A. (1998). The use of the microgenetic 
method with children with disabilities: Discovering competence. Early Education & Development, 
9(4), 357. doi:10.1207/s15566935eed0904_3 

Gura, P. (1993). Becoming connoisseurs and critics: making sense of blockplay. Early Child 
Development and Care, 92(1), 69–81. doi:10.1080/0030443930920109 

Mulligan, J. (2011). Towards understanding the origins of children’s difficulties in mathematics 
learning. Australian Journal of Learning Difficulties, 16(1), 19–39. 

Nunes, T., & Bryant, P. (1996). Children doing mathematics. Oxford: Blackwell. 

Schoenfeld, A. H., Smith, J. P., & Arcavi, A. (1993). Learning: The microgenetic analysis of one 
student’s evolving understanding of a complex subject matter domain. In Advances in instructional 
psychology (Vol. 4, pp. 55–175). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Siegler, R. S., & Crowley, K. (1991). The microgenetic method : A direct means for studying 
cognitive development. American Psychologist, 46(6), 606–620. 

 

Thematic Working Group 24

Proceedings of CERME11 4514



 

 

Utilizing dynamic representations to foster functional thinking  
Stephan Michael Günster 
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This article proposes a theoretical framework concerned with fostering functional thinking in Grade 
8 students in relation to dynamic representations. To explore how functional thinking can be 
promoted through dynamic representations, tasks were varied systematically for the implementation 
in the classroom – as evidenced by two exemplar problems presented in this paper. Students’ 
perceptions of engaging with these tasks were ascertained through interviews conducted with Grade 
8 students using tablet technology as part of an evaluation of the study. The focus of this evaluation 
was the effectiveness of the designed tasks for the development of functional thinking and students’ 
skills when dealing with interactive dynamic representations.  

Keywords: Functional thinking, dynamic representation, variation, tablet. 

Introduction 
The development of the concept of function is an important part of a mathematical education. 
Working with representations of functions and how to translate between different forms are core skills 
in this area of learning (Duval, 2006; Höfer, 2008). While there is considerable research concerning 
the understanding of functions and especially the associated difficulties (e.g. Nitsch, 2015), the 
increasing availability of digital tools provides the possibility for working with interactive, dynamic 
and multiple representations. The way students use these representations when developing an 
understanding of functions has been the focus of substantial research, for example, studies that  
investigated how students use dynamic representations in connection with different dragging 
modalities in geometry (Baccaglini-Frank & Mariotti, 2010) or when students explore functional 
dependence through the use of a dynamic algebra and geometry environment (Lisarelli, 2016). While 
the benefit of dynamic representations to students  is not yet resolved, there is evidence that in certain 
learning arrangements they are advantageous compared to static representations for the development 
of functional thinking (Rolfes, 2018) and that computer-simulations are more beneficial than 
material-based experiments (Scheuring & Roth, 2017).  

However, even though interactive, dynamic and multiple digital representations are available, the 
main goal in mathematics teaching and learning is to develop appropriate mental representations 
(Weigand, 2014). In this paper, a theoretical framework is proposed as the foundation to design tasks 
aimed at promoting students’ functional thinking through the use of dynamic representations. To this 
end tasks are designed to support moving from visual to mental representations and foster functional 
thinking. Insight into this process is provided via the implementation of sample tasks within a Grade 
8 classroom. This paper presents the initial findings of this study exemplified through the analysis of 
two interview protocols. 

Theoretical Framework 
This section describes the theoretical framework which was applied to design tasks to foster 
functional thinking by utilizing interactive dynamic representations. 
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Functional Thinking  

The teaching and learning of functional thinking have been widely discussed. Usually three 
characteristic aspects are distinguished (e.g. Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012; 
Dubinsky & Harel, 1992; Vollrath, 1989). In the framework utilized in this study, Vollrath’s notion 
is used: 

- Assignment aspect: a function creates a relation between two variables. For a given input, an 
output is calculated. The level of understanding can be determined by how relations are 
recognized and worked with in different forms of representation. 

- Co-variation aspect: a function describes how changes of the independent affect the dependent 
variable. Typical activities for this aspect are to plan, execute or analyze variations of the 
independent variable and the resulting covariations. 

- Object aspect: a function can be seen as a whole and therefore be dealt with as a mathematical 
object. This means that attributes can be used to describe a function as a whole (e.g. high 
points, slope) but can also be derived from it. Furthermore, one can treat functions like 
mathematical objects in their own right that can be operated on (e.g. add or substitute). 

All aspects can be visualized and analyzed if typical representations are seen under a special 
perspective. However, some representations are more suitable for certain aspects than others. For 
example, graphs offer the opportunity to display a wide range of pairs of values. This is helpful to 
view the function as a whole whereas a table only shows a limited number of values. A learner should 
therefore be able to not only work with but also choose a suitable representation flexibly (Acevedo 
Nistal, van Dooren, & Verschaffel, 2012). 

The operative principle to develop functional thinking 

According to Dubinsky et al. understanding a concept starts with an action as “an action is a repeatable 
mental or physical manipulation of objects”  (Dubinsky & Harel, 1992, p. 85). As actions are repeated 
and reflected, they may be interiorized as mental processes and later encapsulated into new objects 
to which then actions can be applied (for details see Arnon et al., 2014, pp. 17–26). Those mental 
processes are also called operations. Operations can be characterized as reversible, associative and 
that they can be composed (Piaget, 1967, 47 ff.). However, actions as well as operations cannot be 
viewed on their own but must be considered as they act on an object. The changes caused to the object 
by these actions and operations and its properties and relations are to be evaluated. As Wittmann 
comments “to comprehend objects means to investigate how they were constructed and how they 
behave when operations are applied on them” (transl. by author from Wittmann, 1985, p. 9). In order 
to use an investigative approach in the learning process, one should adapt tasks by varying the 
involved objects, operations or the relations between them to find interesting effects or invariants. 
Such an approach is referred to as the operative principle (Wittmann, 1985). 

The operative principle is useful for developing functional thinking utilizing interactive dynamic 
representations via digital tools for various reasons. Actions can be performed directly on the given 
objects, for example, by dragging points or using sliders and the changes can be viewed accordingly. 
Thereby one can investigate invariances and variations. Relations between different variables can be 
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studied by varying one variable and examining the changes caused to a dependent one. This can be 
viewed from all aspects of functional thinking.  

To use the operative principle in the classroom, tasks need to be developed which guide the learner 
to view the problem’s different aspects by varying relevant ones. Usually there is a starting condition 
provided to which operations must be applied to get a target configuration. It seems, therefore, 
constructive to begin by varying one of those attributes. 

In this article we try to answer the following research questions:  

1. What is the form of a theoretical framework that describes the relationship between the aspects 
of functional thinking and the operative principle? 

2. How can interactive and dynamic tasks be developed and implemented in order to develop a 
relationship between aspects of functional thinking and the operative principle?  

3. How do students utilize dynamic representations in the context of the developed tasks and 
how do they reflect and elaborate on their functional thinking? 

The Function-operation-matrix (FOM) 

In figure 1 these three aspects of tasks and the three aspects of functional thinking are arranged in a 
grid – the function-operation-matrix (FOM). To create tasks the problem definition has to first be 
analyzed regarding which aspect of functional thinking is of interest and its setting (e.g. what is given, 
what is the target). The FOM is meant to serve as a guide for developing meaningful tasks by selecting 
cells and varying the problem accordingly.  

Figure 1: Function-operation-matrix (FOM) as a guide to create meaningful tasks using dynamic 
representations for the development of functional thinking 

Sample tasks 

To illustrate this concept two sample sequences of tasks are presented. One typical change of 
representation which is practiced repeatedly in the beginning of learning about functions is from 
symbolic formula to a corresponding graph. A coordinate system and a formula are provided, and the 
learner is required to sketch the graph. One possibility could be to vary the starting condition: Instead 
of the coordinate system a line is provided and the task is to adjust the coordinate system in such a 
way that the line represents the given formula (Herget, 2017, p. 9). Using a GeoGebra learning 
arrangement the coordinate system can be stretched, shrunk, rotated about the origin or shifted as a 
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whole by dragging the blue points (see figure 2a). Afterwards the result can be checked by comparing 
the resulting function equation with the given one. The task is described as follows: “A line is given. 
Adjust the coordinate system in such a way that the line corresponds to the function f(x) = 2 ⋅ x +
1.” This task would be categorized in the FOM within the cell starting condition – object, as the 
learner has to operate with the function as a whole and use its attributes to find the proper 
configuration. In varying this task further, operations can be restricted, which means moving to the 
cell operations – object (Günster, 2017). For this variation the wording of the task is: “Revisit task 1, 
with the following restriction. Do not use a) rotation b) shrinking/stretching of the axis.” 

A task concerning proportional functions reads as follows: “There is a square ABCD with a side 
length of 2 cm given. How much does the perimeter of the square change when the side becomes 1 
cm longer?” In the FOM, this variation would be located at starting condition – co-variation because 
the change of the dependent variable, the perimeter, under the influence of the starting condition, the 
length of the side, should be evaluated. As a second subtask one could ask by how much the side must 
be lengthened to get a perimeter which is 6 cm longer, therefore varying the task according to the cell 
target configuration – co-variation. Subsequently, it can be discussed whether this depends on the 
initial length of the side of the square or how the problem changes if, rather than a square, a triangle 
or hexagon is treated. The task then reads as: “For comparison consider an equilateral triangle and 
regular hexagon. For which figure do you need to change the length of the side the most, to obtain 
the same change of the perimeter. Explain your answer!” This means extending the task with respect 
to the cell target configuration – object. A dynamic representation is a powerful tool in this case, as 
the variation of the side can be realized and the relation between the length of the side and the 
perimeter viewed as a whole by using the trace facility (see figure 2b). 

  
Figure 2: (a) possible solution (𝒚𝒚 = 𝟐𝟐 ⋅ 𝒙𝒙 + 𝟏𝟏 ) by shifting the coordinate system and stretching the x-

axis (b) studying the relation between the length of the side and the perimeter of regular polygons 

Methods of the empirical investigation 
The interviews presented in the following section were conducted as part of a study at four German 
Gymnasien (grammar schools) where students are offered the choice of joining a tablet class. Two of 
the schools made use of iPads, one utilized Android tablets and one used Microsoft Surface devices. 
In total, five grade 8 classes without and five with tablets were included – a total of n = 216 
participants. Teachers were given access to tasks designed according to the FOM described above to 
use them freely in regular class. 
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Students were administered a pen-and-paper test at the beginning and at the end of the school year to 
examine their knowledge regarding functional thinking. Additionally, selected students of different 
skill levels were interviewed in pairs after half and the full year. Questionnaires evaluated the general 
usage in school as well as at home through teachers, parents and students. As the study was conducted 
in the school year 2017/18, only preliminary results are available at this point. 

In this paper parts of two interviews are discussed which were run after half a year of working with 
the tablet in the classroom. The first two students were both female and rated as mathematically 
capable by the teacher. For the second interview, student 3 was female and student 4 was male while 
both were estimated to be average students. The students already studied linear functions in class. 
Both interviews featured first some general questions about the usage of the tablets in class and at 
home, a few pen-and-paper tasks and, most importantly, two tasks to be solved using GeoGebra for 
which the screen was recorded using screen capture. The first problem was the one already described 
above as a sample task to adjust a coordinate system in such a way that a given line corresponds to 
the function equation 𝑦𝑦 = 2 ⋅ 𝑥𝑥 − 1.  

The interviews are analyzed and categorized via qualitative content analysis regarding three guiding 
questions: how did the students adopt their practiced routines in this scenario? In what way did 
students use the given dynamic representation? Which aspects of functional thinking did students 
show? While for the first two questions categories are extracted inductively from the transcripts, the 
aspects of functional thinking – assignment, covariation and object – are set deductively from the 
theoretical framework. 

Findings 
The presentation of the initial findings is structured according to the three guiding analysis questions. 

Application of routines 

First, both student groups adjusted the coordinate system in order to get the correct y-axis intercept. 
This is in line with their practiced procedure as it is always the first step to draw in the y-axis intercept. 
For the first group it was possible to just rotate the coordinate system as they rearranged it while 
testing a number of options, the second one used the shift-option by dragging the origin. This was 
followed by attempts to try to match the slope. 

Again, the students tried to follow their routine implementing the slope by calculating Δ𝑦𝑦 and Δ𝑥𝑥 and 
thereby finding a second point the line must pass through. They then adjusted the coordinate system 
accordingly (see figure 3.1). In their first attempt, they made the careless mistake of selecting (1,2) 
instead of (1,1) since the slope is Δ𝑦𝑦

Δ𝑥𝑥
= 2

1
 but were able to correct it on their own while at the same 

time explaining their thinking processes. The second group determined the slope by gradually turning 
and shifting it to make the line pass through to two calculated points. However, they made the 
common mistake of mixing up Δ𝑦𝑦 and Δ𝑥𝑥 (see figure 3.3) (Nitsch, 2015). Checking their result with 
the function equation and a little help from the interviewer, the students were able correct the error.  

In summary, three possible steps can be identified in students’ solution processes: draw in the y-axis 
intercept; identify Δ𝑦𝑦 and Δ𝑥𝑥 and calculate the slope from the y-axis intercept; or calculate two points 
and make the line run through those. 
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Use of dynamic representation 

In implementing these steps using the given dynamic representation, students used similar strategies. 
For the y-intercept they used whichever tool was available to move the point to the intended position 
making no difference between them. To make the line run through two calculated points however, 
they gradually shifted and rotated the coordinate system, e.g.: 

Student 2:  First, I looked for the y-axis intercept and then I tried to use the rotate turn … with 
the slope 2, to pass through this point. And then the y-intercept moved again and 
again, but then one just has to readjust. 

As for implementing Δ𝑦𝑦 and Δ𝑥𝑥 it seemed to the students more appropriate to use the shrink and 
stretch feature. The second group even adjusted the slope with the line running through the origin and 
then shifted the coordinate system to match the y-intercept (see figure 3.4.) 

  

  

Figure 3: Screenshots taken during the solving process to adapt the coordinate system so that the line 
corresponds to the function equation 𝒚𝒚 = 𝟐𝟐 ⋅ 𝒙𝒙 − 𝟏𝟏 

Aspects of functional thinking 

The students show only the assignment – through calculating points – or at times the co-variation 
aspect of functional thinking. For example, when asked about the changes they caused by varying the 
x-axis, they answer: 

Interviewer: What changed, when you were varying the axis?  
Student 3: The boxes got larger, when one was at 1 the boxes got like longer. 

2 1 

3 4 
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Interviewer: When we are talking about linear functions, did the y-axis intercept change? Did 
the slope change? 

Student 3:  No, because it’s still 1 to the right and 2 up. 
Interviewer:  And regarding this line, which is here…what changes when one varies the x-axis? 

Does the y-axis intercept change? 
 Students are shrinking and stretching the x-axis. 
Student 3: Mhm. No. 
Interviewer: What does change, though? 
Student 4: Actually, it is only getting more precise.  
Student 3: Only the slope? […] 

The students are able to describe the dynamic representation as they used it, stating that the boxes got 
larger as well as that it seemed like the coordinate system was getting more precise because of this, 
since visually it resembles zooming in. However, they have difficulties relating it to the line and the 
changes which arise through it. They are therefore not able to view the line as a function as a whole. 

Conclusion 
This paper describes and illustrates a framework – the function-operation-matrix (FOM) – utilised 
for the design of tasks used to foster functional thinking via dynamic representations. The FOM 
combines the operative principle and three aspects of functional thinking. The goal behind this is to 
develop appropriate tasks for the development of mental representations of functional thinking. 
Interactive dynamic representations are capitalised upon by visualizing situations and associated 
mathematical connections and to change these representations through performing actions related to 
the different aspects of functional thinking.  

Two sample tasks demonstrate how the FOM can be used to develop tasks related to different cells 
within the framework. One can also vary a single problem regarding multiple cells of the FOM. This 
offers the opportunity to inspect different aspects of the problem and of functional thinking. Thereby, 
it can also serve as an intuitive way to prepare the focus on the object aspect of functional thinking. 

The analysis of the students’ solution processes shows that the students had few problems using the 
given dynamic representations. They adopted their practiced routines for drawing the graph of a linear 
function according to the available tools. However, they seem to lack the ability to view the changes 
they made to the representation in respect to the function as a whole – the object aspect of functional 
thinking. Nevertheless, the task offered a situation in which this aspect could be discussed based on 
the interactions of the students with the graphical representation. Future research will include 
additional analysis of other interviews and concerning other tasks in order to confirm the preliminary 
finds presented in this paper. 
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Use of the bar model has gained momentum in England in recent years through the introduction of 
Singapore maths. Yet bar models originating from the Dutch approach known as Realistic 
Mathematics Education (RME), such as the fraction bar, the percentage bar and the double number 
line, have been available since the late 1990s. In this paper, we discuss the use of the bar in an 
intervention with low-attaining students in which we employed the RME approach. RME bases 
understanding in the everyday, where the role of the bar is to sustain modelling across multiple 
contexts, building on students’ informal models. We argue that this context-driven ‘bottom up’ use of 
the bar is crucial in supporting progress towards formal mathematics, highlighting important issues 
to consider in the use of bar modelling, particularly with low attaining students. We suggest a 
consequent need for caution in use of the Singapore bar as a potential ‘top down’ model. 

Keywords: Bar model, realistic mathematics education, singapore bar, low attainers. 

Background: different versions of the bar model 
The Singapore bar 

The success of the Pacific Rim countries in international tests such as PISA (OECD, 2016) has led to 
the promotion of approaches from Shanghai and Singapore in England, with ‘Singapore maths’ 
gaining considerable popularity. Drawing on the work of a number of theorists, but in particular on 
Bruner’s enactive, iconic and symbolic modes of representation (Bruner, 1966), Singapore maths’ 
Concrete, Pictorial, Abstract (CPA) framework  focuses on the shift from concrete to abstract via 
pictorial representations, and features bar modelling as a means of analyzing and solving arithmetic 
and algebraic word problems. 

Figure 1: Comparison bar model with arithmetic form on the left, algebraic form on the right (from 
Ng & Lee, pp. 287-8) 

Children in Singapore are taught the method in first or second grade, beginning with the introduction 
of pictorial representations of quantities using familiar objects such as teddy bears before moving to 
rectangles in the bar model (Ng & Lee, 2009). Students are taught to recognize a problem type (part-
whole, comparison, before-after) and then apply the bar model procedure to find the solution (Ban 
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Har, 2010). Figure 1 shows the basic comparison bar model. Taken up by the influential National 
Centre for Excellence in Teaching Mathematics (NCETM) in England, bar modelling ‘is introduced 
within the context of part/whole relationships… It exposes the relationships within the structure of 
the mathematics, which are used to find the unknown elements and thus supports the development of 
algebraic thinking’ (Griffin, nd). Presented in this way, bar modelling focuses on applying a model 
once the problem structure has been analysed, or as part of the process of its analysis, with the teacher 
supplying the model and its associated method.  

The RME use of the bar 

In RME, bar models – including the fraction bar, the percentage bar, the double number line and the 
ratio table – also take the role of bridging the gap between the learner’s informal understanding of 
‘reality’ on the one hand, and the understanding of more formal systems on the other. However, the 
connection between reality and formal mathematics differs quite fundamentally, in that models are 
generated from students’ understandings of the context, rather than being offered by the teacher. 
Mathematical activity emerges from students’ informal models, in contrast to the Singapore use of 
the bar model which focuses from the outset on the structure of the mathematical problem and the 
relationships between the numbers involved. This emergent characteristic of RME models means that 
context plays a crucial role in the process of formalization, supporting extended discussion of models 
which are then generated as mathematizations of reality rather than being presented as tools for 
solving particular types of problems1.  

RME materials expose students to multiple contextual situations which can be represented by a 
‘model of’ each particular situation. Designers deliberately choose contexts with potential for 
developing mathematical thinking; for example, asked to depict how to share a subway sandwich, 
students may begin by making ‘realistic’ drawings, showing round ends and fillings, but in time will 
move to a rectangular bar ‘model of’ a sandwich with the ends squared off. Producing a drawing to 
show how to share the sandwich fairly, marking cuts on the rectangular representation and labelling 
the pieces with fractions, leads to a bar model picture - a fraction bar. Other contexts such as shading 
in a rectangular cinema layout to represent the number of seats sold would lead to a percentage bar 
type of bar model. For some contexts such as marking bottle stops on a race route, it may be more 
appropriate to draw a line showing distance on one side and bottle stop positions on the other. This is 
sometimes described as a ‘double number line’ but would still be classed as a type of bar model, 
where the bar has been flattened to look like a line. Overall, models in RME “should ‘behave’ in a 
natural, self-evident way. They should fit with the students’ informal strategies – as if they could have 
been invented by them…” (Van den Heuvel-Panhuizen, 2003, p. 14).  

Conceptualising progress and the role of the bar model 

How models are used in teaching has implications for the conceptualisation of progress. Whereas the 
Singapore model is based on Bruner’s enactive-iconic-symbolic framework as a progression 
heuristic, in RME, progress is indicated when students start to see the similarities between ‘models 
                                                 
1 It is important to note that in RME ‘real’ means imaginable (Van den Heuvel-Panhuizen, 2003, pp. 9-10).   
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of’ situations, and are consequently able to generalise the use of these models and apply them to other 
problems. At this point they are able to make a shift towards using a bar to represent a situation which 
is not obviously ‘bar like’, using a bar as a ‘model for’ solving a problem. Thus progress is defined 
in terms of formalisation of models (Van den Heuvel-Panhuizen, 2003), and in particular the 
progression from ‘model of’ to ‘model for’ (Streefland, 1985).  So, for example, students may begin 
to see how they can use a bar to represent survey data, and to develop connections between segmented 
bars, pie charts and fractions, ultimately using a bar to compare and add fractions. This shift is also 
described as vertical mathematisation (Treffers, 1987), where students recognise the mathematical 
similarity between different problems and are able to choose an appropriate model to solve a problem.  
Models, in this view, are far more than given strategies for solving problems; they are central to 
building the understanding needed to deconstruct a problem. In particular, models in RME depend 
on a ‘bottom-up’ process in contrast to a ‘top down’ approach which offers the model ready-made, to 
be overlaid onto the problem. 

The contrasts between the use of models in RME and the Singapore method raise some questions 
regarding the current popularity of the Singapore bar – in particular, “what is being modelled, and by 
who?” The Singapore bar appears to be introduced by the teacher as a ready-made model for a 
mathematical problem rather than being generated by the learner from a context that will support the 
development of a situated model of that has meaning for them, and on which they can build to generate 
a model for which they genuinely own. In this paper, we explore how a group of low-attaining 
students worked with the bar in an RME-based intervention which aimed to support them to progress 
beyond poorly learned algorithms towards a deeper understanding of mathematics which is based on 
their own informal models.  Thus, we ask the following research questions:    

1. How do students use the bar within an RME context?  
2. To what extent do students make progress in terms of moving towards ‘model for’?   
We consider the implications for the widespread adoption of Singapore bar modelling in the English 
context of pressure to move quickly towards formal mathematics and algorithmic approaches.  

Methodology 
In England, a large percentage (around 30%) of students fail to gain an acceptable pass grade in 
mathematics in national examinations (GCSE) at the age of 16 each year, and resit success rates are 
poor (DFE, 2017). Resit courses tend to be short (around 8 months) and focus on revising the same 
methods which students have already failed to learn and remember, hence the larger study of which 
this is a part investigated the impact of materials based on RME in four GCSE resit classes across 
three different sites in the North-West of England, during 2014-15. The research team developed and 
delivered two short modules focusing on number (12 hours) and algebra (9 hours), employing a quasi-
experimental design. For reasons of space, we focus on the number module in this paper. Number 
teaching materials were designed to draw on contexts that supported students in producing situation-
dependant bar-type representations and solutions, thus enabling the natural emergence of the bar as a 
‘model of’.  For example, fair sharing problems required students to share out candy strips, pizzas 
and ribbon, all of which were chosen for their rectangular and hence bar-like properties. Lessons were 
delivered by three members of the research team, all experienced RME teachers. They followed the 
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RME practice of emphasis on discussion of the context, moving from students’ informal (and life-
like) representations of the context (e.g. buying ribbon, mapping water stops on a fun run, sharing a 
subway sandwich) to discussion of their various strategies for problem solution, and finally to bar 
models produced by the students. 

One of the questions for this intervention is whether students can recognise the potential of the bar 
model and associated strategies as ‘models for’ tackling problems where use of the bar is not 
suggested by situation-specific imagery (see Van den Heuvel-Panhuizen, 2003, pp 17-29). All 
students took a short test prior to and at the end of each module. The number test problems were 
chosen to reflect a range of topics in proportional reasoning, and covered ratio, proportion, finding a 
percentage of an amount, finding a fraction of an amount, comparing two rates and a reverse 
percentage calculation. Each question made reference to a context, but unlike in the teaching 
materials, the contexts were not suggestive of a bar-like representation. Questions were designed to 
reflect typical GCSE questions on the target subject matter, but students were additionally asked to 
explain their answers in order to reveal differences in levels of conceptual understanding. 

Seventy-five students participated in the intervention classes and 72 in control classes. In the main 
study, independent evaluators found small but significant gains for the intervention group on the 
number post-test (F1,93=4.55, p=0.035, Cohen's d = 0.26).  They also found a significant correlation 
between students’ improvement from pre- to post-test and the extent to which they used an RME 
approach (use of the bar or ratio table to solve the problem) (r = .258, n = 86, p = .016) (see Hough 
et al, 2017, Appendix 8.5). Here, we investigate these findings further through qualitative analysis of 
the number pre- and post-test scripts in order to identify how students used the bar and its contribution 
to their learning. Our analysis involved comparing pre-test and post-test solutions by categorising 
responses given in terms of:  

(1) use of the bar or ratio table versus standard methods/trial and error;  
(2) correct labelling/division of bar parts, and scaling accuracy;  
(3) the bar strategies employed, for instance partitioning/ adding;  
(4) error types: inappropriate halving, incorrect adding, incorrect bar representation; and  
(5) evidence of progress. 

Findings 
The extent to which students could vertically mathematise their use of the bar 

In post-test scripts, 73 % of intervention students chose to draw a bar-type model for at least one of 
the questions. In contrast, methods used in their pre-test scripts referred to operations denoted purely 
by numbers and symbols. Control group students were highly unlikely to draw a pictorial 
representation in order to solve a problem. These overall statistics suggest that the intervention led 
many students to recognise the potential of the bar model as a model for tackling a variety of 
problems, and in that sense to vertically mathematize.  

However, it is not enough for students to simply apply the bar model method to the problem. One of 
the factors which distinguishes RME models is whether the learner perceives the model to be 
‘emergent’ or ‘imposed’. Emergent models are described by Gravemeijer and Stephan (2002) as one 
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of the key design heuristics of RME: models are grounded in reality, they make sense to the learner 
and even when the model progresses to a more formal version, the learner can always fall back on 
the original meaning in order to make sense – they are ‘bottom up’ (p. 146). But although the designer 
may intend engagement with the model to be ‘bottom up’, this does not necessarily guarantee the 
model will be experienced in this way. Hence, there may be cases where a learner’s experience of 
working with RME-based models results in a classical ‘top down’ engagement whereby the model is 
imposed by the teacher in the traditional sense of demonstrating formal procedures. In the next two 
sections, we look at examples of students using the RME bar model from both a ‘bottom up’ and ‘top 
down’ perspective.     

The bar model as a ‘bottom up’ sense making strategy / model  

For many post-16 GCSE resit students, their experience of learning mathematics involves being 
shown formal procedures which they can make little sense of, and which they are rarely able to 
accurately reproduce. The pre-test scripts contained numerous mis-representations of formal 
procedures, for example writing 17% of £3300 as  3300

17
  ×100, calculating   5

8
  of £600 by replacing  5

8
  

with 0.58, and incorrect additive strategies for two proportionally related quantities.   However, 
analysis of the post-test scripts revealed several examples of sense-making through use of an RME 
bar model, as in the following three examples.  

  

Figure 2: Student A pre-test (left) and post-test (right) 

Student A’s pre-test solution (Figure 2, left) may be interpreted as an example of a half-remembered 
procedure - multiply something by 2 and something by 5.  In the post-test (Figure 2, right), in an 
answer typical of 33% of scripts, she has drawn a bar split into 7 parts and labelled as a continuum 
from 0 to £140, and she has used shading to distinguish the portions on £140 allocated to Pat and 
Julie. Here, the student has created a bar model representation which correctly depicts the required 
sharing processes.  

In the next example, Student B demonstrates knowledge of the standard formal procedure used to 
find a fraction of an amount in her pre-test, but is unable to go any further, commenting that she is 
does not know how to calculate the division 600 ÷ 8 (Figure 3, left). In the post-test, and in common 
with 20% of scripts, she was able to work out an alternative strategy, targeting the values of  4

8
,  2
8
,  1
8
  

of £600 and combining these to find  5
8
 (Figure 3, right). Her successful modelling of the problem on 

a bar enabled her to employ informal approaches to see the relationships between the numbers. 
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Figure 3: Student B pre-test (left) and post-test (right) 

The third example concerns a question requiring students to find the original price of a car, when the 
current price of £6820 is 20% less than the original. Although none of the control students were able 
to answer this question in either the pre- or the post-test, 18% of intervention students used a bar to 
model and solve the problem (Figure 4).  

 

Figure 4: Representing reverse percentage on the bar 

Reverse percentage problems of this type are notoriously difficult for students to access, not least 
because the standard method involves setting up an equation in one unknown. Representing the 
information on a bar enables further sense-making in terms of providing opportunities for filling in 
what else the student knows, and enabling them to build up to the required percentage amount. 

The bar model as yet another ‘top down’ procedure/model 

We have seen examples above where students used the bar as a model for, enabling them to represent 
the question and link it to mathematical strategies which they could make sense of and therefore use 
effectively. However, in the next two examples, we see students able to operate with the bar model, 
but their subsequent strategies suggest that they are unable to connect the model with meaningful 
mathematical activity. For example, the student in Figure 5 (left) applied several cycles of halving 
and combining chunks to fill in as far as the  1

16
th way point on his bar, but given that the bar is split 

into 7 pieces, these calculations served no purpose in finding one part. Some students – around 10% 
- always marked the half- and quarter- way points of their bars, even when the divisor was an odd 
amount, suggesting a top down use of the strategy. Figure 5 (right) shows a bar model being used to 
solve a question which asks how long a photocopier takes to produce 30 copies if it takes 18 seconds 
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to produce 12 copies.  The student has used a bar to model the situation for 24 copies, marking up the 
bar in one second segments, but has then simply extended the bar by 6 segments to reach 30 copies, 
omitting to realise that the model shows that one copy takes 1.5 seconds. The error of adding one 
second for every copy implies that drawing the bar has not provided this student with genuine insight 
into the underlying structure of this problem. Rather, the bar model has been used as a ‘top down’ 
model, here, applied without real linkage to the context.  

 

 
 

 

Figure 5: Top down use of the halving strategy (left) and Using the bar in top-down fashion (right) 

Discussion 
These findings show that the bar has the potential to enable progress.  Drawing a bar-type model 
enabled students to represent problems in helpful ways, allowing some to engage with informal sense-
making strategies. The model enabled them to fill in other quantities in order to provide a more 
complete and detailed representation of the problem. Many students applied an RME method to 
several post-test questions, suggesting that they were beginning to recognise the unifying potential of 
the models as a strategy for answering questions across a range of topics in number, and that they 
were beginning to vertically mathematise and see how to apply their context-specific models to a 
range of problems.  

However, the transition to using a bar model is not unproblematic, and it does not provide an instant 
solution. Indeed, the issue of inappropriate halving suggests that students can move towards treating 
the bar as yet another algorithmic method. The intervention was short and as such represented an 
over-simplification of the RME process, but this served to expose the fragility of these particular 
students with regard to number sense and their ability to make connections. The complexity of their 
response to the bar, and the importance of its use for sense-making and not just method raises 
questions for the Singapore approach to bar-modelling. The significance of this issue is highlighted 
by Ng and Lee’s (2009) analysis of Singapore 5th-graders’ solutions to a variety of problems, in which 
high achievers scored well, but mid-level achievers’ strategies often showed erroneous use of the 
model. Incorrect solutions involved the omission or misrepresentation of crucial information, 
changing unit generators mid-solution, failure to keep the overall goal in mind, or lack of necessary 
conceptual knowledge (of fractions, for example) - children were using the method algorithmically, 
failing to monitor what they were doing. Arguing for the importance of discussion in the classroom 
about different strategies for solution and the development of meta-cognition in problem 
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representation, Ng and Lee (2009) note that the bar model must be used ‘as a problem-solving 
heuristic that requires children to reflect on how they would accurately represent the information 
presented in word problems …. This art of representation has to be taught, but it is then the children’s 
responsibility how they choose to use this heuristic effectively’ (pp.311-2). Ng and Lee’s warning 
underlines the potential danger in the Singapore bar’s reliance on formal conventions in terms of 
which bar model is required to solve a problem and how the bars should be labelled. From an RME 
perspective, we would ask what are the contextual mediums that enable struggling students to gain 
access to these conventions. The model offers learners a way to represent algebraic word problems, 
but how do students lacking number sense negotiate meaning once the bars can no longer be drawn 
to scale, or when, as Ng and Lee (2009, p. 308) note, they are challenged by the concept of fraction 
and represent the relationship between rectangles erroneously? We suggest that these considerations 
need to be taken into account in the adoption of Singapore bar modelling, where students, not the 
teacher, need to own the model.  
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Visualization of fractions – a challenge for pre-service teachers? 
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Most pre-service teachers (PSTs) are familiar with the algorithm for addition of fractions. The work 
for teacher education is to help PSTs to "unpack" the algorithm in order to gain breadth and depth 
in their understanding. In this paper, we investigate which representations PSTs prefer to use when 
asked to visualize and explain addition of fractions on a national exam in Norway. We discuss in 
which ways they demonstrate why and how the standard algorithm works. Our analysis shows that 
the PSTs prefer to illustrate the sum of two fractions using the sub-construct part-whole in a rectangle 
shaped area model. 

Keywords: Visualization, explanation, fractions, pre-service teachers. 

Introduction 
There is a widespread agreement that teachers need a certain understanding of mathematics in order 
to explain not only how, but also why different approaches work.  Therefore, in teacher education by 
focusing on different methods of representation in the learning of mathematics topics, PSTs will be 
better able to analyse and understand their pupils’ mathematical thinking and thereby be able to 
provide the best possible support and help in their teaching (Ma, 2010; Lovin, Stevens, Siegfried, 
Wilkins, & Norton, 2016). Through a national exam, PSTs at all of Norway’s teacher education 
institutions are tested to find out whether they possess such knowledge, for example of fractions. 

We will investigate which methods Norwegian PSTs undertaking the national exam, choose to use 
when asked to illustrate and explain addition of fraction to pupils in school. Our research questions 
are: Which representations do the PSTs prefer to use? In which ways do they demonstrate why and 
how the algorithm works?   

Research background and theoretical underpinnings 
There is broad agreement that many pupils find the concept of fractions and calculations with 
fractions problematic. “Fractions are without doubt the most problematic area in mathematics 
education”. (Streefland, 1991, p. 6). One reason for this could be the great conceptual leap from whole 
numbers to fractions (Ni & Zhou, 2005; Lamon, 2012). Another reason may be the introduction of 
algorithms without understanding (Mack, 1993), or too little variation in forms of representation 
(Sowder, 1998). A third reason for pupils’ difficulties could be the complexity of the concept of 
fractions. 

Fractions can be interpreted in different ways. In conceptual terms, fractions can be seen as both the 
ratio between two whole numbers and as one number. Behr, Lesh, Post, and Silver (1983) describe 
five sub-constructs: part-whole, ratio, quotient, operator and measure. A too narrow focus on only 
one sub-construct of fractions can lead to inadequate understanding (Behr et al., 1983). Although 
fractions as a part-whole seems more concrete than, for example, fractions as a measure, this sub-
construct has its limitations, particularly when the fraction is greater than one (Mack, 1993).  
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It is possible to use individual forms of representation or a combination of several. When teachers 
present fractions to their pupils, it is important that they are aware of the strengths of different 
representations and how they can work together to reinforce each other. Lesh, Post, and Behr (1987) 
propose five different forms of representation: manipulative models, static pictures, real scripts, 
spoken language and written symbols. These forms of representations apply to all sub-constructs of 
the fraction concept. A single focus on the sub-construct part-whole can lead teachers to use solely 
representations such as rectangles, circle sectors or other variants of area models. From naming 
fractions as parts of areas to identifying fractions as points on the number line is a significant turning 
point for pupils. They have to understand that, on the number line, the whole is defined as the interval 
from 0 to 1 (Ball, 2017). Freudenthal (1973) describes the number line as “the most valuable tool (…) 
it can be an excellent means of visualizing the four main arithmetical operations”.  

How teachers choose to teach can vary greatly from teacher to teacher. Ma (2010) states that it is 
important for teachers to have what she describes as a “profound understanding of fundamental 
mathematics (PUFM)”. A teacher with PUFM can present different and varied approaches to a 
solution, in addition to seeing the advantages and disadvantages of the approaches and is able to offer 
different explanations to the pupils, focusing on basic concepts and principles of mathematics, and 
demonstrating horizontal knowledge. A teacher with such qualities shows understanding and sees 
connections in mathematics in a thorough manner, which can result in greater understanding both in 
breadth and in depth for the pupils.  

In the article “Toward a theory of proficiency in teaching mathematics”, Schoenfeld and Kilpatrick 
(2008) present a provisional framework for proficiency in the profession, where “Knowing school 
mathematics in depth and breadth” is the first category. Breadth refers to teachers being able to 
provide multiple ways of conceptualising relevant subject matter knowledge, knowing varied forms 
of representation, understanding key aspects of the different topics and seeing connections with other 
topics at the same level. Depth refers to knowledge about the basis for and further development of 
the curriculum in the subject and knowledge of how mathematical ideas are conceptually developed.  

Method 
We have collected our material from 114 PSTs’ answers on the national exam in fractions in spring 
2017. The exam is compulsory and is held by all institutions during the semester in which the primary 
and lower secondary teacher education programmes have fractions on their course plan. The exam 
consists of 20 tasks, we have focused on one of the tasks. 

The exam question we have analysed: Draw an illustration with an explanation that can be used in 
primary and lower secondary schools to show the solution to the problem 3

5
+ 1

2
 .  

It is important that the examiners grade the papers as similarly as possible. For this reason, a team of 
examiners from different institutions was established. They made grading guidelines pointing out 
which answers should give two, one or zero points:  

To be awarded two points, the candidate must include an illustration with a good explanation 
either by using fractions or by converting to decimal numbers and arrive at the correct 
solution. If the answer is greater than 1, it is most appropriate to use a length/number line 
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model, but other models for fractions can also be used. To be awarded one point, the candidate 
must find the correct solution to the problem but provide an illustration or explanation with 
shortcomings. Answers that only include algorithmic calculations are awarded zero points. 
(Our translation) (NOKUT, 2017).  

Additionally, all answers were graded by two examiners chosen by the Norwegian Agency for Quality 
Assurance in Education (NOKUT). 

We have analysed 114 answers, which constitutes approximately 10% of all the answers in the exam. 
The answers are anonymised with respect to both the PSTs identity and what institution they are 
affiliated to. This was done before the answers were coded. The 114 answers are therefore randomly 
selected and can be said to represent primary and lower secondary PSTs in Norway. 

We coded the answers in two rounds (shown in Table 1 and 2). The codes were entered in SPSS 
together with the points awarded by the examiners and analysed. We were both involved in grading 
the submissions in the national exam. Experience from this work, combined with the grading 
guidelines and Lesh et al.’s (1987) five different forms of representation formed the basis for our 
initial codes (Table 1). In the first round of coding, we used three different codes for the models: Area 
model rectangle, area model sector and number line. The code “good explanations of transition to a 
common denominator” is used for a written text that explains the transition to the common 
denominator by combining the static picture of the models with the calculation. The initial coding 
revealed a need for a more detailed coding of the methods of explanation, particularly the use of 
illustrations, language and how they worked together. In the second round of coding, we therefore 
reviewed all answers that had been awarded one or two points (Table 2). 

Results and analysis 
We started the analysis by looking at all the 114 answers. Of these, 65 candidates were awarded two 
points by the sensor team from NOKUT, 34 were awarded one point and 15 got zero points. The 
answers that were awarded zero points contained purely algorithmic calculations or had arrived at the 
wrong answer and were for that reason left out for the rest of the analysis, leaving us with 99 answers. 
In the first phase of coding, we focused on different illustration methods and solution strategies.  
Using the codes given in Table 1 we wanted to see how the different models/forms of representation 
were distributed. In Table 1, we distinguish between those who were awarded two and those awarded 
one point by the examiners chosen by NOKUT. We wanted to see if there were any evident 
differences. 

Strategies, models and representations used  Two points (65) One point (34) 
Changing to common denominator  51 (79%) 29 (85%) 
Changing to decimal numbers 1 0 
Number line 2  1 
Area model rectangle  58 (89%) 27 (79%) 
Area model sector 4 4 
Draws one tenth as part of the whole 44 (68%) 10 (29%) 
Good explanation of transition to a common denominator  36 (55%) 4 (12%) 

Table 1: Coding results – first round  
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Table 1 shows that some of the main differences between those awarded two points and those awarded 
one point are whether they have included a good explanation of how to find the common denominator 
and whether they illustrate one tenth as part-whole. This indicates that the PSTs rewarded two points 
show a depth and breadth in their understanding of this particular task (Schoenfeld & Kilpatrick, 
2008). The form of representation preferred by most of the PSTs, regardless of the points they 
received, is the rectangle. Very few PSTs choose to use sectors and even fewer use a number line.  

As many as 51 of the 65 answers that were awarded two points, have been coded with a good 
explanation of how to find the common denominator. 25 of the 51 answers are coded for both a good 
explanation of how to find the common denominator and the conversion to the common denominator. 
This shows that many PSTs find the common denominator without linking it to a good contextual or 
visual explanation of the conversion itself. Nearly all the answers (33 of 36) that were coded for a 
good explanation of how to find the common denominator use a rectangle to illustrate this. This could 
indicate that this way of illustrating the problem is regarded as a suitable way of explaining the need 
for a common denominator. Rectangles are easy to divide into equally sized congruent parts that can 
then be added together. 

Amongst the PSTs awarded one point, 85% find the common denominator. This could be due to the 
fact that PSTs who use a visual explanation of the addition without proceeding through the calculation 
of the common denominator are awarded two points (for an example of such an answer, see Figure 
4). The exam text does not require them to find the common denominator. Here as well, we see that 
the four PSTs (Table 1) who have been coded for a good explanation of how to find the common 
denominator have used a rectangle. One explanation for them, nonetheless only being awarded one 
point, could be that they do not draw the proper fraction part of the mixed number in the correct way. 
Instead, they choose to draw a separate part without linking it to the whole. 

During the first round of coding (show in Table 1), we saw that many PSTs use illustrations to show 
the calculations they have made, rather than the other way around. For example, some use illustrations 
to show the need to divide the rectangles into equal parts to be able to perform the addition. After 
analysing the answers based on which strategies and models/forms of representation are used, we saw 
a need to further examine whether the PSTs based their answer on an arithmetic calculation and how 
they choose to illustrate the algorithm. During the second round of analysis, we therefore looked more 
closely at the connections in the explanations, whether algorithms are generated or only presented 
and what role the illustrations and textual explanations play. By algorithm, we mean the following 
calculation method: 

3
5

+
1
2

=
3 ∙ 2
5 ∙ 2

+
1 ∙ 5
2 ∙ 5

=
6

10
+

5
10

=
11
10

 

 
Codes Explanation of the codes  Number of respondents 
A1 Illustrates the whole calculation 20 
A2 Illustrates the common denominator and the answer 19 
A3 Illustrates only the answer 3 
A4 Good written explanation of the calculation 17 
A5 Illustrates the calculation, not the answer 3 
A6 Illustrates the task and the answer 10 
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A7 Illustrates only the task 4 
B Generates the algorithm 7 
C Good visual and written explanation. Without 

arithmetic calculation 
19 

C2 No good explanation, no arithmetic calculation 19 

Table 2: Coding results – second round 

Table 2 shows that there is variation in the methods of explanation among the 99 answers, where we 
see that different variants of code A are the most common. These PSTs have calculated the common 
denominator by using the algorithm and have illustrated the whole or some of the steps of the 
algorithm. Figure 1 shows an example where all the steps are illustrated. This PST has first shown 
detailed arithmetic calculations and repeated them under the rectangles. The PST has also included a 
good written explanation. This is an example of the three different representations working together. 
According to Ma (2010), different approaches such as arithmetic, illustration and a good explanation 
of how to solve the problem are important. The drawings and text underline and confirm the 
calculation without deriving the calculation method. 

Figure 1: Answer paper coded A1 

In the second round of analysis, we saw that some PSTs illustrated the calculation and answer, but 
not the problem, before expanding the fractions. Figure 2 shows an answer where the ‘last part’ of 
the algorithm is illustrated. There is no visual generation of the algorithm itself, it does however give 
a good illustration of the answer. The PST manages to convey that it is more than a whole.  The 
problem with choosing an area model in the illustration of a task where the answer is an improper 
fraction, is to illustrate it in a way that makes it easy for the pupils to see that it is 1/10, and that the 
tenths are clearly shown in the illustration. This PST has also used a real-life context in the written 
explanation, as described by Lesh, Post and Behr (1987). 

Figure 2: Illustration showing the common denominator and solution, coded A2 

Text: What I have done is to draw big 'boxes' of equal size 
divided into 3

5
 and 1

2
. To solve this, we must first find the 

common denominator and I have therefore drawn up two 
boxes and divided them into 10 sections, as this is the 
common denominator of both fractions. We then shade the 
number of sections that are in the nominator and add these 
to find out that the answer will be 1 1

10
. 

Text: Ola has 6/10 of a bar of 
chocolate. He gets 5/10 of a bar of 
chocolate from Kari. He is then left 
with 11/10, which is a whole bar of 
chocolate plus 1/10. 
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As shown in Table 1, most PSTs choose to use rectangles in their illustrations. We find some 
interesting differences in those answers who drew rectangles divided into equal sized smaller 
rectangles. As shown in Table 2, different steps of the calculation are illustrated. During our work on 
the analysis, we also saw examples of lack of clarity in relation to equivalent fractions. An example 
is shown in Figure 3, two rectangles, described as fifths and halves, are divided into 10 parts.  Ma 
(2010) emphasises that it is important to work thoroughly on connections with breadth and depth. For 
pupils, it is difficult to see this connection if they do not know that 6/10 is equivalent to 3/5. Then the 
illustration in Figure 3 will be hard to understand. 

 
Figure 3: Example of tenths being referred to as fifths and halves 

The task in this national exam does not specifically ask for the algorithm and we used the codes C 
and C2 for the answers without the algorithm (C or C2 depending on how good the 
explanation/illustration is). Figure 4 shows an answer where the PST illustrates and explains well 
without showing the algorithm arithmetically (Code C). The answer, together with the explanation, 
demonstrates a breadth and depth of understanding, highlighting how the PST can vary the forms of 
representation used, and use them to complement each other. Both Ma (2010) and Schoenfeld and 
Kilpatrick (2008) describe these as important elements in showing good understanding.  

  
 

 

 

Figure 4: Good explanation of the steps of the calculation, coded C  

Very few students choose to interpret the task in such a way that there is a need to generate the 
algorithm, for example using an inductive approach where the need for the algorithm ‘makes itself 
known’. Such an approach has been coded B. This code has been difficult to use since most students 
start their written response by showing the algorithmic calculation. 

Concluding remarks 
These analyses show that PSTs in Norwegian teacher education programmes prefer to illustrate the 
sum of two fractions using rectangles and the sub-construct part-whole. This finding is in conflict 
with what the grading guidelines suggest as most natural, namely using a length/number line model. 
The PSTs prefer to use an arithmetical representation and a written text in addition to the illustration. 

Text: First, I draw a rectangle, then I divide it into 10 
equal parts and shade 3

5
 of them, which is 6 of the parts. 

Then I draw a similar rectangle, with just as many and 
equally large parts and shade ½ of these, i.e. 5 parts. 
When I add the shaded parts, I find that I get a full 
rectangle where all 10 parts are shaded and a rectangle 
with the same amount of parts of equal size, where only 
one is shaded. The answer will then be 1 1

10
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Most of them starts with the arithmetical calculation before they explain the steps further with the 
other two representations.  

The fact that so few PSTs chose other forms of representation than the area model rectangle could be 
because the PSTs as a group have not developed the qualities that Ma (2010) describes as important 
for becoming a teacher with PUFM, namely the ability to vary approaches to solving a problem. It 
could well be the case that the PSTs are familiar with the different sub-constructs of fractions, but 
that many of them regard the area-model rectangle as the best illustration for explaining addition of 
fractions with different denominators to pupils. The rectangle model is easier to divide efficiently 
than for example the area model sector. We see that many PSTs point out that they divide the 
rectangles into equal parts (Figure 1 and Figure 4). As seen in Figures 1 – 4 the examination paper 
delivered from NOKUT to all PSTs during the exam has grid lines. This might also have led some of 
the PSTs to the use rectangles. Although most PSTs use the rectangle as an illustration, the analysis 
shows great differences in how this is done. Some of them illustrate all the steps, from the calculation 
to the answer, while others only illustrate how they find the common denominator or only illustrate 
the task (Table 2).  

There were also major variations in the ways the PSTs show how and why the algorithm works, not 
only between PSTs awarded one or two points for this particular task in the national exam, but also 
within the group that received two points. In teacher education, the PSTs encounter concepts such as 
forms of representation and solution strategies, and they work on examples where they combine these 
in order to help pupils understand fractions. If you calculate the common denominator and then 
illustrate this calculation with a rectangle, it will be possible to see that they work together because 
the illustration underpins the calculation and provides a visual expression of the calculation. 

Because of the way in which this particular task is worded, it could be understood to mean that the 
illustration should generate the algorithm (Code B), and that the need for a common denominator can 
be apparent from an illustration. This approach could entail an interpretation of the illustration as a 
tool for helping pupils discover the need of equal parts before the algorithm is presented. Very few 
PSTs interpreted the task in this way. This suggests that they currently lack the mathematical 
understanding that breadth and depth proficiency in school mathematics entails (Schoenfeld & 
Kilpatrick, 2008). At the same time, some of those who start to show the calculation of the answer 
have good illustrations and good explanations (Code A4, Table 2) and are close to generating an 
algorithm. Many of the answers contain strategies and representations that can serve as support for 
pupils who are working on the addition of fractions with different denominators, which is after all 
promising for the teachers of the future. On the other hand, maybe the reason that so many PSTs 
respond in a similar way to this task is that they see it as an algorithm for “illustration with an 
explanation”. 

Our material is collected from a written school exam, which has its limitations when it comes to 
identifying breadth and depth in the PSTs knowledge. Among other things various forms of 
representation like the oral explanation, and the gesticulation and dialogue that are part of a teaching 
situation are lost. It is also important to emphasise that the PSTs in our study are halfway through a 
learning process and that they still have several years to go before they are qualified teachers. 
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Leveraging difference to promote students’ conceptions of graphs as 
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By creating different Cartesian graphs to represent the same relationship between quantities, 
students can expand their conceptions of what graphs represent. Interweaving Marton’s variation 
theory and Thompson’s theory of quantitative reasoning, we designed digital task sequences to 
promote students’ conceptions of graphs as representing relationships between quantities. In the 
tasks, which link animations and dynamic graphs, students created different graphs to represent the 
same relationship between quantities. We report results of a qualitative study (n=13) investigating 
secondary students’ interactions with the digital tasks in an individual interview setting. We found 
that the digital tasks were viable for promoting students’ creation of graphs to represent relationships 
between quantities. Our findings have implications for task design. Namely, students should have 
opportunities to create different graphs to represent the same relationship between quantities. 

Keywords: Graphs, Computer Simulation, Instructional Design, Learning Theories, Secondary 
school mathematics 

The term representation can have many meanings (e.g., Kaput, 1998). We use representation as both 
a noun and a verb. Employing the term representation as a noun, a student can conceive of a graph as 
a representation of a relationship between quantities. Employing the term representation as a verb, a 
student can engage in representation by creating a Cartesian graph to represent a relationship between 
quantities. Interweaving Thompson’s theory of quantitative reasoning (Thompson, 1993; 2002) and 
Marton’s variation theory (Kullberg, Kempe, and Marton, 2017; Marton, 2015), we designed digital 
task sequences linking dynamic animations and graphs to engender secondary students’ creation of 
Cartesian graphs to represent relationships between quantities. In this study, using individual clinical 
interviews, we investigated what secondary students (n=13) intended to represent when interacting 
with digital tasks linking Cartesian graphs and dynamic animations.  

Theoretical and conceptual framing 
Representation and intention 

We distinguish a representation from an inscription, the latter of which refers to some observable 
artefact (e.g., Kaput, 1998). From our perspective, an inscription can only be a representation if that 
inscription represents something for an individual or group. When we claim that a student is 
“representing,” we interpret that the student did something more than just creating some observable 
artefact (e.g., a graph). We mean that the student intended to represent some “thing” with that graph, 
and that we have evidence to support our claim.  

We aim to study what students intend to represent when working on digital tasks linking Cartesian 
graphs and dynamic animations. In any task setting, there are tensions between the intentions of the 
task designers/researchers and the intentions of the students engaging with the tasks (Johnson, Coles, 
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& Clarke, 2017). Theoretically, we acknowledge that we cannot know the intentions of others. We 
can only infer those intentions based on observable evidence. Furthermore, we do not assume that 
students will share a stated task aim with that of the designer/researcher. For example, we intended 
to provide students multiple opportunities to create different Cartesian graphs to represent the same 
relationship between quantities, and we did not assume that students interacting with the tasks would 
share our intentions. 

Interweaving Marton’s variation theory and Thompson’s theory of quantitative reasoning 

To frame our study, we interweave two theories: Thompson’s theory of quantitative reasoning 
(Thompson, 1993; 2002) and Marton’s variation theory (Kullberg et al., 2017; Marton, 2015). In his 
theory of quantitative reasoning, Thompson explains students’ mathematical thinking in terms of 
students’ conceptions of attributes. Thompson (1993) posited that quantities were something different 
from units of measure. Rather, quantities depend on students’ conceptions. If a student can conceive 
of the possibility of measuring some attribute, then that attribute is a quantity for the student. For 
example, a student may view an animation of a “Cannon Man,” who is shot vertically into the air, 
then comes back down to the ground. In this situation, there are many different attributes. Cannon 
Man’s total distance traveled—both up and down—would be a quantity for that student only if she 
can conceive of the possibility of measuring Cannon Man’s total distance.  

Difference, rather than sameness, forms the essence of variation theory (e.g., Kullberg et al., 2017; 
Marton, 2015). With variation theory, Marton and colleagues explain how designers can develop 
instructional sequences to promote students’ discernment of critical aspects of objects of learning. 
Kullberg et al. (2017, p. 560) link discernment and variation, core components of variation theory, 
positing “Discernment cannot happen without the learner having experienced variation.” 
Furthermore, the type of variation matters. If a designer intends for students to discern critical aspects 
of an object of learning, students should have opportunities to experience variation (difference) in 
those critical aspects (Marton, 2015).  

In designing our study, we intended to provide opportunities for students to conceive of a graph as 
representing a relationship between quantities. Drawing on Marton’s variation theory, we argue that 
students’ conceptions of what is possible for Cartesian graphs to represent is inseparable from their 
experiences with different Cartesian graphs. Drawing on Thompson’s theory of quantitative 
reasoning, we argue that designers’ choices of attributes can impact students’ opportunities to 
conceive of Cartesian graphs as representing relationships between quantities. 

Students’ conceptions of what Cartesian graphs can represent 

It is useful for students to have opportunities to conceive of graphs as representing relationships 
between quantities (e.g., Bell & Janvier, 1981; Johnson & McClintock, 2018; Kerslake, 1977; 
Leinhardt, Zaslavsky, & Stein, 1990; Moore, Silverman, Paoletti, & LaForest, 2014; Thompson, 
2002). Yet, researchers have documented secondary students’ challenges with creating and 
interpreting Cartesian graphs (Bell & Janvier, 1981; Johnson & McClintock, 2018; Kerslake, 1977; 
Leinhardt, Zaslavsky, & Stein, 1990). We identify three key challenges. First, students may interpret 
graphs as needing to share characteristics with a physical object, such as a hill (Bell & Janvier, 1981; 
Leinhardt et al., 1990). Second, students may interpret graphs as sharing physical characteristics with 
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the physical path of an object, such as a person’s walk from one location to another (Bell & Janvier, 
1981; Kerslake, 1977). Third, students may interpret graphs as representing a single varying quantity, 
rather than as a relationship between quantities (Johnson & McClintock, 2018). 

To engender opportunities for students to interpret graphs as relationships between quantities, 
designers can incorporate variation in individual attributes within a single graph and variation across 
different graphs incorporating the same attributes. Thompson (2002) argued that students could use 
their fingers as tools, sliding them along each axis of a graph, to represent change in individual 
attributes. In a study investigating prospective secondary teachers’ reasoning, Moore et al. (2014) 
incorporated different graphs representing the same attributes on different axes. When making 
choices about the kinds of variation to incorporate within and across our digital task sequences, we 
drew inspiration from the work of Thompson and Moore. 

The digital task sequences 
We report on two digital task sequences: The Cannon Man and the Toy Car. In each digital task 
sequence, students engaged in five main tasks, shown in Table 1. We drew on Thompson’s theory of 
quantitative reasoning and Marton’s variation theory to design and sequence the tasks in each 
situation. First, students had opportunities to discern and conceive of measuring attributes (Tasks V, 
A1). Second, students had opportunities to represent change in individual attributes (Task A2). Third, 
students had opportunities to represent attributes changing together (Task G1). In Task G2, we 
introduced a difference, against a background of invariance—a different Cartesian graph, with the 
same attributes represented on different axes. Across the digital task sequences, the Cannon Man and 
Toy Car situations served as different backgrounds. 

Task  Description 

V View video animation. Students viewed a video animation of a situation depicting an object in motion, 
identified attributes in the situation, and discussed how they might measure those attributes. 

A1 Identify task attributes. Johnson stated attributes on which that task would focus. If students had not 
already identified those attributes, they then discussed how they might measure the task attributes. 

A2 Represent individual attributes. Students dragged dynamic segments along the axes of a Cartesian 
plane to represent change in individual attributes. Then, students viewed a computer-generated video 
of the dynamic segments changing together. 

G1 Represent attributes changing together. Students sketched a single Cartesian graph relating both 
attributes. Students discussed how their graphs showed (or did not show) both attributes at the same 
time. Then, students viewed a computer-generated graph. 

G2 Re-represent attributes in a new Cartesian plane. In a new Cartesian plane, with the same attributes 
represented on different axes, students re-represented individual attributes, then attributes changing 
together (Repeat tasks A2, G1). 

Table 1: Descriptions of tasks in the Cannon Man and Toy Car digital task sequences 
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Methods 
Setting/participants 

We implemented the digital task sequences with 13 high school students in a high performing 
suburban high school in the metropolitan area of a large US city. Five students were in ninth grade 
(~15 years), and currently enrolled in an Algebra I course. Eight students were in eleventh grade (~17 
years), and currently enrolled in an Algebra II course. At the school, 52% of students identified as 
students of color, and 36% of students qualified for free or reduced lunch (an indicator of low 
socioeconomic status).  

We conducted the study over a 4 week time period near the end of the school year. Students 
volunteered to participate in the study. Johnson conducted a series of three clinical interviews with 
individual students (39 interviews). Interviews occurred once or twice per week, with at least one day 
between interviews. Students who participated in all three interviews received a graphing calculator, 
which they could use for exams and classwork at their school. We conjecture that students who 
participated in the study were motivated, in part, by the opportunity to receive a graphing calculator. 

Research methods: Clinical interviews, exploratory teaching 

During the clinical interviews, Johnson engaged in exploratory teaching (Steffe & Thompson, 2000) 
to investigate the viability of the digital tasks for promoting students’ conceptions of graphs as 
representing relationships between quantities. In the interview design, Johnson included questions to 
gather evidence of what students were intending to represent when sketching a graph. These questions 
included: “What you are trying to graph?”; “Can (How does) your graph show both __ and __ (the 
task attributes)?”; “Look at a point on your graph, can (how does) this point give you information 
about __ and __ (the task attributes)?” 

The first interview, which served as a preassessment, involved a Ferris wheel situation. In the Ferris 
wheel situation, students engaged in tasks V, A1, and G1 in the digital task sequence (See Table 1). 
The second and third interviews, which incorporated the digital task sequences described in this 
paper, involved a Cannon Man and a Toy Car situation, respectively. In all interviews, students 
worked on a digital tablet (an iPad). 

Ongoing and retrospective data analysis 

All interviews were video recorded. During each interview, either McClintock or Gardner wrote field 
notes. To promote consistency, we used a field note template, which broke down each interview into 
sub tasks, to write field notes for each student in each interview. Field notes included evidence of 
students’ conceptions of task attributes as possible to measure and capable of varying, as well as 
evidence of students’ intentions to use a graph to represent a relationship between quantities.  

We focused retrospective analysis on students’ responses to the Cartesian graphing tasks (Tasks G1 
and G2, see Table 1). Across the set of three interviews, students had opportunities to sketch five 
Cartesian graphs. Johnson and McClintock viewed video of each student’s work on each of the 
Cartesian graphing tasks. In the first pass, we described three aspects of students’ work: Sketches of 
(or attempts to sketch) a viable graph; Explanations of their graph (or attempt) in terms of both 
attributes; Gestures related to their graphs. In the second pass, we made inferences about students’ 
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representing. We used different codes to characterize students’ representing. Table 2 provides 
descriptions of each code. In the third pass, we examined students’ shifts in representing across the 
Cartesian graphing tasks in each interview, building from observable evidence to develop 
explanations to account for students’ shifts. 

Code Description of code 

Relationships between 
quantities 

Students sketched (or attempted to sketch) a single graph. Students described or showed 
how a single graph could represent a relationship between two quantities. 

Individual quantities Students sketched two separate graphs. Students described each graph in terms of only one 
quantity (e.g., the “height” graph). 

Motion of objects Students sketched a graph that showed the motion of an object in the situation (e.g., a toy 
car moving along a path). Students described the graph in terms of motion. 

Iconic/Familiar objects Student sketched a graph that looked like an iconic object or familiar graph. Students 
described the graph in terms of its physical characteristics. 

Table 2: Descriptions of codes characterizing students’ representing 

Viewing video alphabetically by students’ pseudonyms, we completed the first and second passes for 
each Cartesian graph task in the Ferris wheel and Cannon Man situations. Next, we analyzed the Toy 
Car situation, which resulted in refinements to our codes. In particular, we expanded the code for 
relationships between quantities to include attempts to represent quantities not explicitly represented 
(e.g., time). In each pass, we first coded individually, then vetted codes as a team.  

Although some students demonstrated evidence of more than one form of representing within a task, 
we elected to use a single code for students’ representing within that task. When we coded a form of 
representing for a task, a student may have shifted to engaging in that form of representing after an 
“aha” moment or engaged in that form of representing throughout their work on the task. If a student 
demonstrated partial evidence of one form of representing, but engaged more consistently in another 
form of representing, we weighed the evidence, then coded the form of representing that we 
interpreted to best characterize the students’ reasoning in that task. 

Results 
We found that the digital task sequences were viable for promoting students’ creation of Cartesian 
graphs to represent relationships between quantities. Table 3 shows the numbers of students engaging 
in each type of representing across the Ferris Wheel, Cannon Man, and Toy Car graphing tasks. In 
the Ferris Wheel preassessment graphing task (Ferris Wheel G1, see Table 3), four students (two 
ninth grade; two eleventh grade) created graphs to represent relationships between quantities. All four 
of these students continued to represent relationships between quantities in the Cannon Man and Toy 
Car graphing tasks (Cannon Man G1 and G2, Toy Car G1 and G2, see Table 3). We share results 
from the nine students who, in the Ferris wheel preassessment graphing task (Ferris Wheel G1), 
demonstrated forms of representing other than relationships between quantities. By the end of the 
Cannon Man and Toy Car task sequences, four of these nine students shifted to representing 
relationships between quantities (Harun, Aisha, David, and Amanda). Five of these nine students 
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(Kara, Gemma, Carmen, Keshia, and Eliza) continued to represent (or shifted to representing) the 
motion of objects. 

Code Ferris 
Wheel G1 

Cannon 
Man G1 

Cannon Man 
G2 

Toy Car 
G1 

Toy Car 
G2 

Relationships between quantities 4 6 9 7 8 

Individual quantities 2 2 2 1 0 

Motion of Objects 4 5 2 5 5 

Iconic objects /familiar graphs 3 0 0 0 0 

Table 3: Students engaging in each type of representing across tasks 

Shifts to representing relationships between quantities 

The two students (Harun, eleventh grade; Aisha, ninth grade) who represented individual quantities 
on the Ferris Wheel preassessment graphing task (Ferris Wheel G1) represented relationships 
between quantities by the end of the interview sequence. Harun shifted to representing relationships 
between quantities on the first Cannon Man graphing task (Cannon Man G1). Across the Cannon 
Man and Toy Car task sequences, Aisha continued to represent individual quantities for the first 
graphing tasks (Cannon Man G1, Toy Car G1). It was only on the second graphing task in each 
sequence (Cannon Man G2, Toy Car G2), that Aisha shifted to representing relationships between 
quantities. 

The three students who represented iconic objects/ familiar graphs on the Ferris Wheel preassessment 
graphing task (Ferris Wheel G1) were in eleventh grade. Two of those students, David and Amanda, 
shifted to representing relationships between quantities in the Cannon Man task sequence. Amanda 
shifted in the first graphing task (Cannon Man G1), relating directions of change in Cannon Man’s 
height and distance. In contrast, in the first graphing task (Cannon Man G1), David represented the 
path of Cannon Man. It was not until the second graphing task (Cannon Man G2) that David worked 
to represent relationships between Cannon Man’s height and distance. Notably, David was the only 
student who shifted from representing motion of objects to representing relationships between 
quantities. 

Two of the four students (Kara, eleventh grade; Gemma, ninth grade) who represented motion of 
objects on the Ferris Wheel preassessment graphing task (Ferris Wheel G1) demonstrated partial 
evidence of representing relationships between quantities on the Cannon Man graphing tasks (Cannon 
Man G1, G2). In the second Cannon Man graphing task (Cannon Man G2), both Kara and Gemma 
explained how their graphs represented Cannon Man’s height and distance. Yet, in both Toy Car 
graphing tasks (Toy Car G1, G2), they attempted to represent the physical path of the toy car. 

Shifts to other forms of representing 

Two of the four students (Carmen, eleventh grade; Keshia, ninth grade) who represented motion of 
objects on the Ferris Wheel preassessment graphing task (Ferris Wheel G1) shifted to representing 
change in individual attributes on at least one of the Cannon Man graphing tasks. In the second 
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Cannon Man graphing task (Cannon Man G2), both Carmen and Keshia attempted to represent 
change in Cannon Man’s height and distance. Yet, in both Toy Car graphing tasks (Toy Car G1, G2), 
they attempted to represent the physical path of the toy car. Furthermore, one of the students who 
represented iconic objects/ familiar graphs (Eliza, eleventh grade) shifted to representing the motion 
of objects in the first Cannon Man graphing task (Cannon Man G1). Once shifting to representing the 
physical path of Cannon Man, Eliza continued to represent motion of objects in the rest of the tasks. 

Discussion 
We aimed to leverage difference to promote students’ conceptions of graphs as representing 
relationships between quantities. By interweaving Marton’s variation theory and Thompson’s theory 
of quantitative reasoning, we worked to achieve our aim. Drawing on Marton’s variation theory, we 
incorporated difference within and across task sequences. Within each task sequence, students had 
opportunities to create different graphs to represent the same relationship between quantities. Across 
task sequences, we incorporated different backgrounds (Cannon Man/Toy Car), as well as different 
kinds of graphs (linear/nonlinear). Thompson’s theory of quantitative reasoning informed our choices 
about the kinds of differences that might engender students’ quantitative reasoning. Because 
Cartesian graphs represent relationships between quantities, students had opportunities to vary each 
quantity represented in a graph. Furthermore, we argue that variation within a graph is insufficient to 
foster students’ conceptions of a graph as some “thing” capable of representing a relationship between 
quantities. Drawing inspiration in part from the tasks reported in Moore et al. (2014), we incorporated 
different graphs representing the same relationship between quantities. 

We posit that our descriptions of codes indicate increasing levels of sophistication in students’ 
representing with Cartesian graphs; however, we do not claim that each of these levels is a necessary 
step in a progression of reasoning. When representing iconic objects/familiar graphs or the literal path 
of an object in motion, students are representing physical phenomena in a situation. When 
representing quantities, or relationships between quantities, students are mathematizing a situation in 
terms of attributes they can conceive of as possible to measure. We argue that engendering students’ 
shifts from representing iconic objects/familiar graphs or motion of objects to representing individual 
quantities and relationships between quantities is important for expanding students’ conceptions of 
what graphs can represent.  

Students’ conceptions of the direction and nature of the motion of objects in a situation can impact 
their opportunities for representing relationships between quantities. The Toy Car situation proved 
useful for investigating the stability of students’ representing relationships between quantities, in part 
because the graphs did not share physical characteristics with the literal path of the toy car (e.g., a 
graph moving up and down as did the Cannon Man). To promote students’ creation of Cartesian 
graphs to represent relationships between quantities, task designers should incorporate graphs that do 
not share physical characteristics with motion of the objects in task situations. 
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Introduction 
Noble, Nemirovsky, Wright, and Tierney (2001) provide multiple references regarding the “strong 
support in the mathematics education community for the view that students should encounter 
mathematical concepts in multiple mathematical environments” (Noble et al., 2001, p. 85) and be 
able to connect these. This poster explores, via a case study, some of the related challenges for the 
restricted setting of using diagrammatic or graphical representations for arithmetic and algebraic 
problems. It uses a framing of ‘lived-in spaces’ (Nemirovsky, Tierney, & Wright, 1998) and the 
underlying research question is, “how can we support the use of diagrammatic or graphical 
representations becoming a ‘lived-in space’ for users?”  

The case study is structured around a particular problem, set out as follows. There are three circular 
cardboard discs. A number is written on the top of each disc: (6), (7), (8). There is also a number (not 
necessarily the same) written on the reverse side of each disc. Throwing the discs in the air, and then 
adding the numbers on the faces, I have produced the following eight totals: 15, 16, 17, 18, 20, 21, 
22, 23. Can you work out what numbers are written on the reverse side of each disc? (Association of 
Teachers of Mathematics (ATM), 1977).   

In at least two instances, one – a professional development workshop with a group of 40 secondary 
mathematics teachers in England, and two – an online discussion group of mathematics educators, 
none of the initial shared approaches used a graphical representation of the problem, even when 
unknown variables were denoted by x, y and z, and could have suggested 3-D Cartesian space. This 
is striking as a graphical analysis of the problem can help bring to the fore much of the underlying 
structure. To clarify this, in our case study, two mathematicians, one who had solved the problem 
graphically and one who had solved it non-graphically, worked on it together for an hour. This was 
captured and analysed using multimodal microanalysis as by Nemirovsky and Smith (2013).  

Theoretical Background 
Those working on the above problem had access to graphical representations but what seemed absent 
is the creation of a graphical space (Nemirovsky et al., 1998) – a ‘common place’ where symbols 
and their referents are made accessible and sensible. Nemirovsky et al. (1998) develop three themes: 
tool perspectives, fusion, and graphical spaces to analyze students’ use of a computer-based motion 
detector in the context of graphing. These three themes are not dependent on the technological nature 
of the tool and, we propose, apply equally to our setting, with graphical representation being the tool. 
Indeed, as Nemirovsky et al. (1998) observe, “Tool perspectives look at development of graphical 
space through simultaneously exploring the qualities of the tool and relation between actions and 
symbols. Fusion is about the blending of action and symbol in discourse within the graphical space” 
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(Nemirovsky et al., 1998, p. 124). The growing familiarisation with a graphical space as it is 
populated with experiences and actions, which make it a space for purposeful and creative activity, 
is encapsulated by the notion of lived-in space. Noble et al. (2001) propose that “the mathematics that 
students learn from working in a given environment emerges from their process of making that 
environment into a lived-in space for themselves” (Noble et al., 2001, p. 86). Our work aims to draw 
out how the use of graphical representations can become a lived-in space. 

Methodology and results 
This case study uses a conversation between two mathematicians to investigate what actions and 
experiences contribute to fluid and effective approaches to solve the problem and how this can enable 
the fostering of a related lived-in space. Audio and video data were captured and analysed using 
constructs from the above referenced papers. The findings have two aspects: (i) an analysis of 
graphical and non-graphical solutions of the problem and (ii) observations on how the relevant lived-
in space can be fostered, and related conclusions. We briefly outline the graphical approach: 

1. The chosen number on a disc is independent of the other discs so choices can be modelled in 3-D 
space, one dimension for each disc. A choice of numbers, e.g., (6,7,8) gives a point in this space. 

2. Flipping a disc results in a fixed addition or subtraction – representable by a translation vector. 

3. It follows that there are eight choices of 3-tuples and these correspond to vertices of a cuboid. 

4. The resulting constraints on the possible sums enable all possible solutions to be determined. 

In relation to lived-in spaces, moving to-and-fro between different representations, translating 
expressions that are clear or articulable in one realm to the other, considering their affordances and 
constraints, and reflecting on these, provides opportunities for learners to make the graphical space a 
more familiar lived-in space. This also enables learners to experience and exercise graphical 
representation in ways which move it from being a representational tool to a more expressive tool.  

References 
Nemirovsky, R., & Smith, M. (2013). Diagram-Use and the emergence of mathematical objects.  In 

B. Brizuela & B. Gravel (Eds.) "Show me what you know" Exploring representations across STEM 
disciplines (pp. 143–162). New York, NY: Teachers College Press. 

Noble, T., Nemirovsky, R., Wright, T., & Tierney, C. (2001). Experiencing change: The mathematics 
of change in multiple environments. Journal of Research in Mathematics Education, 32(1), 85–
108. 

Nemirovsky, R., Tierney, C., & Wright T. (1998). Body motion and graphing. Cognition and 
Instruction, 16(2),119–172. 

Association of Teachers of Mathematics (ATM). (1977). Points of Departure 1. Derby: ATM. 

Thematic Working Group 24

Proceedings of CERME11 4548
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We study high school students’ written discourse about an experience in a dynamic interactive digital 
environment in which functions were represented in one dimension, as dynagraphs. In a dynagraph 
of a real function one variable can be acted upon while the other varies as a consequence of the 
movement induced on the independent variable. Students were asked to write about their experience 
with the dynagraphs, and their written productions were collected and analyzed using a 
classification, that emerged a posteriori, in “snapshots, live-photos and scenes”. This classification 
is presented as a tool of analysis that allows to put discourse about dynagraphs in relation with 
discourse about functions. Examples of excerpts analyzed through this tool are given. 

Keywords: Covariation, dynagraph, dynamism, function, time. 

Functions, covariation, graphs, and dynagraphs 
Functions and their graphs have always had a leading role in mathematical practice, including school 
practices. Being able to interpret the Cartesian graph of a function and to construct a graph starting 
from the function’s properties are essential processes in mathematical thinking. However, these 
processes include an understanding of the meaning of variable and of the relation between variations 
of the variables, that is covariation; and several kinds of difficulties that students encounter when 
grappling with these ideas are widely reported in the literature (e.g.: Tall, 1992, 2009; Kaput, 1992; 
Monk & Nemirovsky, 1994; Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Thompson & Carlson, 2017). 

A Cartesian graph is defined as the set of points (x, f(x)) with real coordinates on the Cartesian plane, 
where x belongs to the domain of the function and f(x) is its image; these constitute a curve 
incorporating the functional relation between the two variables. Students encounter various 
difficulties when dealing with graphs, one being in recognizing that each point on the graph is a 
coordinated presentation of two pieces of information (Colacicco, Lisarelli & Antonini, 2017). This 
leads them to consider the curve to be the function itself and to identify a point on the curve only as 
its f(x) value. Both the asymmetric relation between the variables and their covariation are lost. 

In this paper we focus on the use of a particular technological artifact to represent functions, realized 
through a dynamic interactive environment (DIE). Many research studies support the use of 
technology in the teaching of functions (Healy & Sinclair, 2007; Falcade, Laborde & Mariotti, 2007). 
Here we are interested in representing functions through DynaGraphs (Goldenberg, Lewis & 
O’Keefe, 1992), dynamic representations in which the domain variable is dynamically draggable on 
a line and it is presented separately from its image. Both the x- and y-axes are horizontal; originally, 
they were referred to as “the x Line” and “the f(x) Line”. DynaGraphs cannot be constructed without 
using a DIE, where objects can be moved on the screen.  
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The independence of the x variable is realized by the possibility of freely dragging a point, bound to 
a line (the x Line), and the resulting movement visually mediates the variation of the point within a 
specific domain. Whereas the dependence of the f(x) variable is realized by an indirect motion: the 
dragging of the independent variable along its axis causes the motion of a point, bound to another 
line (the f(x) Line), that cannot be directly dragged. The use of dragging can visually mediate the 
discourse on functional dependency, since it can help students interpret the exploration in terms of 
logical dependency between two different types of motion: direct and indirect motion. 

 

Figure 1: Screenshot of a dynagraph used in this study 

The authors, together with Nathalie Sinclair, built on the original idea of DynaGraphs to realize 
functions as in Figure 1, within the dynamic geometry software Sketchpad (a similar design was 
adopted also in Lisarelli, 2018) which will be called dynagraphs (no capitals, to distinguish them for 
the original ones) in this paper. Many properties of a function can be recognized in a dynagraph. For 
example, looking at the movements of the two variables that either follow the same direction or move 
in opposite directions, an expert can recognize when a function is increasing – if both variables have 
the same direction of movement – or when it is decreasing – if the variables move in opposite 
directions. The movement and the identification of invariants are central in the exploration of 
dynagraphs, since the DIE enables students to deal with the dependence relation in terms of possible 
or impossible movements; we are interested in how this dynamic and temporal experience can be 
narrated on a static sheet of paper – a process that is frequent in mathematics. 

Many researchers have described the relations between movement, time and mathematics, in 
particular in calculus. Tall (2009) describes calculus as the mathematical field that begins with the 
desire to quantify how things change, the function, the rate at which they change, the derivative, and 
the way in which they accumulate, the integral. So, this field is fundamentally dynamic: even the 
calculation of static quantities, such as areas or volumes, involves dynamic processes of adding up a 
large number of very tiny elements. At a certain historical moment, a transformation took place and 
calculus turned into rigorous definitions, developing into the formal theory of mathematical analysis 
which is used today by textbooks and by many teachers. This transformation led to the teaching of 
calculus based on the definition of limits, which satisfies mathematicians’ logical needs, but it proves 
to be rather complicated for students (Tall, 1992). However, even if formal mathematical discourse 
aims at eliminating time and dynamism, this does not imply that mathematicians engage in purely a-
temporal modes of thinking. Indeed, they seem to frequently communicate in ways that suggest they 
think of mathematical objects in motion (Sinclair & Gol Tabaghi, 2010). 

Theoretical background and research focus 
For this study we make use of discourse analysis; in particular, we adopt the commognitive theoretical 
perspective (Sfard, 2008). According to Sfard, communication and cognition are two manifestations 
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of a same phenomenon and mathematics can be considered as a special type of discourse, or 
communication. Mathematical learning is the process by which students become able to communicate 
about mathematical objects, that, unlike others, are purely discursive objects that can have different 
realizations (p. 165). Moreover, mathematical discourse, as a particular kind of discourse, involves a 
frequent use of visual mediators, visible objects realizing the object of the discourse (p. 133). 

In this study, we use dynagraphs as particular realizations of the mathematical object ‘function’ within 
a DIE, in order to allow students to experience the dependency between two covarying quantities in 
terms of motion. This approach brings temporality into play. We intend to study how students deal 
with the temporal dimension that characterizes their experience in the DIE, when they are asked to 
describe it through a written explanation. Moreover, we are interested in the mathematical aspects 
expressed in these written explanations, especially in how variation of variables and covariation – the 
relation between variations – are conveyed.  

The research question that led the design and the development of this study is the following: 

What are characteristics of students’ written discourse on dynagraphs related to their management of 
the movement and time experienced during the exploration that can be put in relation with discourse 
about functions (as mathematical objects)? 

Methodology 
We designed 7 dynagraphs of functions to be explored. The markers realizing the two variables had 
no labels, because we wanted to allow students to decide which words or symbols to use. We consider 
this to be an important process related to distinguishing the two variables and the asymmetric relation 
between them. The two points 0 and 1 were marked on the lines with ticks in order to provide the unit 
segment and to highlight that the lines visually realize two copies of the real numbers. 

Students belonging to four different 10th grade classes of Canadian high schools worked in pairs on 
as many dynagraphs as they had time for during one lesson (60 minutes). Their task was to “explore 
the dynagraphs on the iPad and write down their observations about them” on the whiteboard and/or 
on paper. We collected these written productions. This task was designed to “force” the students to 
describe in writing an experience which was completely time-and-motion-immersed. 

Tools of analysis: snapshots, live-photos, and scenes 

From analyses of the high school students’ written productions we reached a characterization that 
was later refined through further rounds of analysis of the excerpts. Coherently with our research 
interest in gaining insight into how movement (the variation of position in time) enters students’ 
written discourse we introduced a first possible characterization of written accounts of the experiences 
in the DIE, using a terminology that refers to images in the context of photos and videos. In Table 1 
we define the main types of accounts and describe characteristics of the discourse it characterizes, 
both in the case in which the discourse is about the dynagraph (which may or may not be related to 
the notion of function for the students) and when it is about the function realized through the 
dynagraph. 
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Type of account of the DIE 
experience 

Discourse about dynagraph  Discourse about 
function 

snapshot snapshot: photo at a 
certain position showing 
one or more properties 

provides an instantaneous shot in which 
movement is stopped at a certain position 

pointwise properties 

snapshot-album: set of 
snapshots, each showing 
something in particular 

expresses properties in selected positions; 
these constitute a finite discrete set; each 
property is shown in one snapshot 

pointwise properties 
at a particular set of 
points 

snapshot-cluster: set of 
snapshots showing 
relationships between 
them 

one or more properties are described 
through a comparison of snapshots of the 
dynagraph; the focus is on the relationships 
between snapshots; it may be in a sequence 
coherent with the order on the line or not. 

properties that refer 
to variation and/or to 
invariants in specific 
intervals identified by 
analyzing and 
comparing different 
points 

live-
photo 

live-photo: animated 
photo showing what 
happens a bit before and a 
bit after a certain instant. 

one or more properties that depend on the 
nearby positions are described at a certain 
position; certain positions of the dynagraph 
are shown close to a specific position 

local properties of 
functions, at a 
specific point and the 
variations in any 
neighborhood of the 
point.  

scene scene: video showing 
movement over a period 
of time; it can be realized 
through snapshots, or 
live-photos, in an album 
or cluster. 

 

description of one or more properties of the 
movement over an arc of time, in an 
interval of real numbers, or in the space 
covered by the point moving along the line; 
it includes various positions. The intervals 
can be limited or unlimited; the scene can 
be described statically or dynamically 

properties of 
functions that are 
global, general, or 
present in a whole 
interval 

Table 1: Characterization of students’ written discourse 

Table 1 shows the main types of accounts (snapshot, live-photo and scene) and their further 
characterization with respect to ways in which more than one could be used (as albums or clusters) 
in the excerpts of written discourse that we will now analyze. 

We observe that live-photos may also be found in albums and in clusters. A live-photo album is set 
of live-photos, each showing something in particular; it expresses properties in selected positions, 
which constitute a finite discrete set; each property is shown in one live-photo. From a mathematical 
point of view, these correspond to local properties in neighborhoods of a particular set of points. A 
live-photo cluster is a set of live-photos showing relationships between them. 

Analysis of students’ written products 
This section contains examples of analyses of students’ written products using the characterization. 
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Excerpt 1: Scene of snapshots depicted through written words and diagrams 

 

 
Figure 1a,b: Scene of snapshots 

“When the top number was 
zero, the bottom number was 
between 4 and 5. When the 
top was at 1, the bottom was 
about 5 or 6. I’m guessing 
that the equation would be 
b(t)=t+5.” 

Excerpt 1 contains discourse about the dynagraph of the function f(x) = x+5; Figure 2a and 2b depict 
a scene through snapshots presented using written text and visual mediators. The first property in 
Figure 2a is described through a snapshot taken ‘when the top number was zero’. The first drawing 
in Figure 2b presents this specific instance. The second property is described analogously as a 
snapshot taken “when the top number was at 1”; the second drawing in Figure 2b presents this specific 
instance. The third property in the scene is described through the algebraic formula “b(t) = t+5”. 

Excerpt 2: Live-photo depicted through two snapshots showing ‘initial’ and ‘final’ states 

 
Figure 2: Live-photo 

“There’s a limited 
distance between 
points A & B. After 
point A is dragged a 
certain fixed distance, 
the red line jumps 
another 1 point.” 

The dynagraph in excerpt 2 realizes the nearest integer function. The students describe the jumping 
of the red line as A is dragged across the midpoint of the interval [0,1]. This part of their discourse 
appears to be a live-photo depicted through two visual mediators that are particular snapshots showing 
an ‘initial’ and a ‘final’ state of the dynagraph as A moves in a neighborhood of 0.5. 
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Excerpt 3: Album of live-photos 

 
Figure 3: Album of live-photos 

“Whenever you move point A .5 in any 
direction point B makes a sudden 
change, goes up by 1.” 

The dynagraph in excerpt 3 realizes the nearest integer function. The students produce a single visual 
drawing realizing the dynagraph’s interval [-1,3] on both axes (Figure 4), and describe its behavior 
written in words. Each live photo shows A near the midpoint of a unit interval. We see these as live-
photos because each ‘sudden change’ is shown by a position of the segment AB immediately before 
and immediately after the transition of A across the midpoints (the ones realized are -0.5, 0.5, 1.5, 
2.5) of the unit intervals. 

Excerpt 4: Scene depicted through a cluster of snapshots 

 
Figure 4: Scene 

“No matter what direction you move 
point A it’s the same distance from 
point B. From the other graph when 
you move any point the points move 
further from each other.” 

The dynagraph discussed in Figure 5 realizes the function f(x)=x+5. The students who author the 
discourse in excerpt 4 emphasize the invariance of the distance of A from B, conveyed through the 
words “no matter what direction” and through the visual mediation of two congruent parallel 
segments in the drawing with in between a double-headed arrow and two arrows pointing to the words 
“same distance”. The written text and the visual mediators appear to be a cluster of snapshots 
depicting the invariant property identified. 

Excerpt 5: Scene album depicting two properties of a dynagraph 

 
Figure 5: Scene album 

“ When you move A (top) forward on the 
number line above 0, B is always ahead and 
gaining. When you move A backwards on the 
number line, B is behind and keeps falling 
behind.” 

In excerpt 5 (Figure 6) the students use only written words to outline the behavior of dynagraph of 
f(x)=2x. They consider a whole interval of time (and space): this is suggested by their use of the 
adverb “always”, and by the fact that they make several references to possible movements and to the 
reciprocal position of the two variables (“forwards”, “ahead”, “backwards”, “behind”). Moreover, the 
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students start with the present tense of the verb “to be” (“B is always ahead […] B is behind”), which 
gives their statements the form of an absolute observable truth, but then they add details on the quality 
of movement, passing to the “–ing form” of other verbs, indicating spatial dynamic features (“always 
[…] gaining”, “keeps falling behind”). This could suggest that the students see the movement as not 
ending even when it cannot be seen anymore within a large interval. 

Conclusions 
The analytical tool we have introduced to describe written accounts of the DIE experience allows to 
characterize different ways used by students to realize movement and time experienced during the 
exploration of dynagraphs, and puts them in relation with mathematical discourse about functions. In 
particular, it highlights how the choice of the time interval being described, that can be identified in 
students’ discourse by looking at the verb tenses, adverbs and at their use of visual mediators to realize 
movement, corresponds from a mathematical point of view to different properties of the functions 
realized through the dynagraph. The classification has value at the cognitive, didactical and 
epistemological levels. From a cognitive point of view, the tool is important because the classification 
proposed was identified a posteriori, through empirical analysis of the data collected, and it seems to 
be a powerful tool for analyzing all the data collected. Epistemologically, the types of accounts can 
be put in relation with different mathematical properties of functions in formal mathematical 
discourse, as shown in Table 1. 

Thinking about properties that are pointwise, local or global, the discourse – even that of experts – 
that can emerge about these may have characteristics such as those we have found in students’ 
discourses, focusing on “instants” that capture the behavior of isolated points, systems of points, 
sequences, neighborhoods of points, points as limits, intervals… Moreover, experts’ discourse can 
capture properties at certain points, variations and invariants. For example, a description of what 
happens in a neighborhood of a point can be conveyed through a live-photo, while the behavior at 
infinity requires a scene, since a neighborhood of infinity can be seen as a scene “from a certain point 
on”, that is, as a live-photo at infinity. 

From a didactical point of view the classification is important, assuming that we value promoting 
various forms of students’ discourse, and therefore students’ flexibility in constructing such 
discourse. The teacher can interpret students’ discourse from a mathematical point of view, seeing it 
as a ‘mirrored image’ (with some possible distortions) of experts’ discourse about pointwise 
properties, local or global properties, variations, and invariants. Doing this, the teacher can then 
promote these forms of discourse through appropriate tasks (e.g., by using the behavior of dynagraphs 
in certain positions, intervals, etc.), knowing what to expect and how to gradually foster the transition 
to more formal mathematical discourse. One particularly fruitful type of discourse seems to be that 
involving transitions from pointwise to local properties, and thus discourse involving live-photos. 
However, this needs to be studied in future research currently under development. 
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This paper investigates the types of representations used by high-achieving eleven-year-old pupils in 
their argumentation in the process of mathematical problem solving. The literature review addresses 
pedagogical and psychological aspects of knowing representations and using them in the process of 
problem solving. In our empirical study we examine a sample of 109 eleven-year-old pupils who took 
part in the final round of a national mathematical competition in Serbia. A total of 656 problem 
solutions was analyzed. The results show that these pupils used and often combined inventive iconic 
and conventional numerical/symbolical representations in their argumentation. We discuss pupils’ 
choice of representations which lead to correct solutions and adjusted representations corresponding 
to the type of problem (algebraic or logical-combinatorial).  The aim of the paper is to draw attention 
to the importance of studying representational approaches pupils take when solving problems.   

Keywords: Representations, problem solving, argumentation, solution representation. 

Introduction 
There has been rising interest among mathematics educators in the usefulness of representations in 
the process of learning and problem solving. Competent use of representations in problem solving 
appears to be a significant indicator of level of mathematics literacy (De Lange, 2003).  Then, it is a 
plausible assumption that investigations on how high-achieving pupils use representations in problem 
solving could lead to the development of strategies for choosing adequate representations in problem 
solving process. 

Some of the principal objectives of mathematics education are to enable pupils to be good problem 
solvers (Schoenfeld, 1992). Solving problems in various ways on one hand and “decoding, encoding, 
translating, distinguishing between, and interpreting different forms of representations of 
mathematical objects and situation”  on the other hand are recognized as some of the key competences 
needed for mathematical literacy as it is defined by national curriculums worldwide (De Lange, 2003, 
p.77). Representations, as tools for presenting problems, are considered to be means for 
understanding.  It is also advocated that using multiple representations in problems may contribute to 
higher achievement (Cai, 2013). Role of representations in problem solving is recognized as 
important issue (Janvier, 1987; Cuoaco & Curcio, 2003; Shoenfeld, 1992). Two important issues are 
1) which representations pupils invent when solving non-routine tasks and 2) which representations 
more often assure successful argumentation. 

Theoretical background 
In numerous conceptualizations of mathematical competences and mathematical thinking, ability to 
use representations (symbolic, numerical, visual, or verbal expressions) is identified as important 
parameter of mathematical abilities. Tchoshanov (2002) discusses types of representations on the 
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concrete to abstract continuum as they reflect different modes of representation: concrete (real object, 
physical model, manipulative), pictorial (photograph, picture, drawing, sketch, graph), abstract (sign, 
symbol, written, verbal language).  Matteson (2007) identified five categories of mathematical 
representations in problem solving: numerical, iconic, verbal, symbolic, and dual. Numerical 
representation focuses on specific numerical values in a variety of formats, such as decimal, fraction, 
percentage, or a numerical list (such as a list of numbers appearing as outcomes of probability). 
According to Matteson, iconic representations encompass different visual representations, from 
pictorial, (realistic) models, horizontal charts, vertical charts to graphs and coordinates graphs.  
Pictorial representations are pictures of real-world objects such as toys, dice, etc. As we slightly 
depart from Matteson’s classification, we will consider iconic representation as distinct from pictorial 
(which closely resembles real world objects).  For example, an apple may be “iconically” represented 
as a dot. Verbal representations require application of written (or spoken) language to express 
understanding, to describe, analyze, explain, or reflect upon numerical, algebraic, or graphic 
representation (which does not include brief phrases such as directions for solving the problem). 
Symbolic representations involve symbolic notation and include usage of variables and formulas such 
as: equation, expression, algebraic equation, algebraic expression, and formula (Matteson, 2007). Yet 
pupils may not use only one representation in problem solving. Under the term “dual representation” 
Matteson considers dealing with two categories of representations in problem solving (e.g. numerical 
and verbal). Matteson claims that “problems’ (solutions) incorporating multiple representations 
generally result in more incorrect solutions” (Matteson, 2007, p. 60). 

Some researchers pointed out that visual representations play an important role in supporting 
reflection and as a tool of communicating mathematical ideas (Arcavi, 2003; Gagatsis et. all, 2010; 
Sfard, 1991). The main functions of visual representation are to illustrate   symbolic representation 
and to resolve conflict between intuition and symbolic solution. Successfully arriving at solutions to 
mathematical problems utilizes a combination of problem representation skills and symbol 
manipulation skills (Brenner et al., 1997). The first mentioned function involves skills which “include 
constructing and using mathematical representations in words, graphs, tables, and equations” (ibid). 
Lesh and colleagues argue that besides the significance of each representational system, attention 
should be directed toward translation among representational systems as well as to transformation 
within them (Lesh et al, 1987). They point their research shows that the act of representing tends to 
be “plural, unstable and evolving”. Along the line, Duval discusses changes of register of 
representation in terms of cognitive operations: 1) transformations within the same register, like for 
example in case of algebraic operations or numerical computation, 2) translation of representation 
into different register, which is more cognitively challenging (Duval, 1999, 2003).  

Several researchers attended to multiple representations in problem solving (Lowrie, 2001; Hegarty 
and Kozhevnikov, 1999; Matteson, 2007).  Lowrie (2001), in a study of the relationship between 
different forms of problem representation and pupils’ performance in problem solving, has found that 
high-achieving middle school pupils tend to use nonvisual methods when solving problems.  He 
pointed out that most studies examining representational preferences along a visual-nonvisual 
continuum have considered preference alone and did not attend to effectiveness of method (ibid).  
Lowrie found that  those “pupils’ who were able to use visual representations regularly and in an 
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efficient manner, were able to solve mathematics problems in a more effective manner than pupils’ 
who were more inclined to use nonvisual aids on a regular basis” (Lowrie, 2001, p. 360). 

Stylianou and Silver (2004) examined differences in using representations between mathematicians 
and undergraduate students (as novices). They found that experts construct visual representations 
more frequently and use qualitatively better way to understand problem situation. School teachers are 
traditionally inclined to rely on symbolic, analytical representations. Consequently, pupils tend to do 
the same.  The role of different types of representation in problem solving, particularly the effects of 
the usage of multiple representations is not fully explored. 

Methodology 
We investigated types of representations used by high-achieving eleven-year-old pupils in solving 
problems. The main research questions were: 1. what representations pupils most frequently use when 
solving problems; 2. what representations are associated with correct solutions; and 3. how many 
representations used at the same time in argumentation are most often associated correct 
argumentation. Our questions were proposed based on previous research from Matteson, Lowrie, and 
Brenner and colleagues.   

The data was collected in the final round of a national mathematics competition “Mislisa”, similar to 
“Kangaroo without borders” In this competition, mathematics relevant for solving problems is not 
strictly limited to the national curriculum. Successful problem solving in this competition requires 
critical thinking and applying knowledge in non-standardized situations. The problems range from 
the simplest computation problems, to algebraic, logical, and combinatorial problems most often set 
in realistic context. The competition promotes the value of mathematics literacy in pupils. 

The study sample consists of 109 pupils who qualified for the finals of the competition by achieving 
the maximum score in the preliminary round of competition. We examined problem solutions from 
all finalists. The subset of 8 problems in which competitors were explicitly asked to provide 
explanation was analyzed in our study. Descriptive statistics was done for those eight problems. 

 Solutions for two of the problems are analyzed qualitatively in greater details. Our preliminary 
analysis of all solutions, resulted in selection of The Bottle problem and The Castle problem as 
exemplars for the points we make. They are the following: 

The Bottle problem There is three times more milk in the first bottle than in the second one. If 3l of 
milk is added in the first bottle, and 5l of milk in the second, than there would be two times more 
milk in the first bottle than in the second one. How many litres of milk has been in the bottles at the 
beginning? Explain your answer.   

The Castle problem A Castle has 6 towers. Each tower has a room. Each room has one door. Each 
door has a lock. All rooms are locked and keys are mixed up.  What is the maximum number of trials 
a guard needs to check, in order to open the doors? 
In the Bottle problem, finding way(s) to represent relationships between amount of milk in the first 
and the second bottles is the key for finding the solution. Problems similar to this are commonly 
solved in schools with the strategy of forming an algebraic expression (symbolic representation).  But 
there are alternative strategies for solving this problem such as 1) the “method of segments” which 
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relies on expressing relationships between quantities on line segments (iconic representation) or 2) 
the “method of trials” (involving number representation) or 3) simply explaining the solution in words 
(verbal representation) or 4) some other creative approach. 

The Castle problem is logical-combinatorial. The maximum number of trials in the first cycle to get 
to the door that can be unlocked is obviously equal to the number of rooms. In the following cycle of 
trials, one door is already unlocked so five doors remained to be checked in. There is no one “school” 
strategy for solving this problem.    

Results and Discussion 
Here we present descriptive analysis of pupils’ solutions. A total of 656 problem solutions are taken 
as units of analyses. Out of them, 355 items were solutions to algebraic problems and 301 items 
solutions to logical-combinatorial problems.  

Table 1 shows that choice of representations for algebraic problems did not match representations 
used in combinatorial problems. Since pupils often used more than one representation, the 
percentages in each column do not add to 100. 

Type of representation Algebraic problems Logical-combinatorial problems 

Numerical 31,9% 57,8% 

Iconic 22% 20,8% 

Verbal 21,8% 61,2% 

Symbolical 45,9% 8,3% 

Table 1: Percentages of problem solutions with particular type of representation  

In accordance to Duval’s claim, pupils tended to use non-visual representations. To explain algebraic 
problem solutions, pupils most frequently used symbolical representation. It is not surprising since 
traditionally solving algebraic problems in a way other than writing down equivalent equations is 
undervalued in classrooms. In contrast, the logical-combinatorial problem solutions pupils primarily 
relayed on verbal and numerical representations. Particularly, verbal representations were often used 
for argumentation in solving logical combinatorial tasks, rarely for algebraic problems.  

We examined whether there is an association between number of used representations (1, 2 or 3) and 
correctness of solution (False/Partially correct/Correct). The percentages are presented in the Table 
2. Percentage of correct solutions including more representation, were bigger than of correct solutions 
with smaller number of representations used. We performed the χ2 test of independence for variables 
Number of used representations (1, 2 or 3) and Correctness of solution (False/Partially 
correct/Correct) on problems. There is a significant relationship between “number of used 
representations (1,2,3)” and “Correctness of solution (false, partially correct, correct)”.  (χ2=67,478, 

df=4, N=656, p<0,001). Cramers’s V coefficient of 0,227, p<0,001 suggests moderate correlations. 
Thus, successful problem solvers constructed significantly more representations than unsuccessful 
problem solvers. Our finding confirm Lesh’s observation about plural and evolving nature of the act 
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of representing. The finding does not reinforce Matteson’s statement that “multiple representations 
result in more incorrect solutions” (Matteson, 2007)  

Number of representations False solution Partially correct solution Correct solution 

1 35,4% 23,7% 40,9% 

2 20,7% 10,4% 68,9% 

3 4,5% 9,1% 86,4% 

Total 27,3% 17,2% 55,5% 

Table 2: Percentages of number of used representations according to correctness of solution 

Iconic representations are considered to be more intuitively comprehensible and closer to reality than 
symbolic representations which involve abstraction and generalization in mathematics domain (Liu, 
2012). Yet sufficient experience with such representations is a prerequisite for their’ appreciation.  
The high-achieving pupils in our study had a tendency to use symbolic representations in algebraic 
problems. Almost half of the solutions involved using of symbolic representation in those problems. 
The test of independence showed that there is significant association between correctness of problem 
solution and use of symbolic representation (c2=62,417, df=2, p<0,001). The strength of relationship 
is medium (Cramer’s V=0,419, p<0,001).   
Many pupils obviously assumed that they were expected to use pictures when explaining their 
solutions. But often pictures were neither sufficient nor effective aid in argumentation. Some pupils 
combined pictorial with numerical representation (e.g. counting up number of attempts in the Castle 
problem). The others combined pictorial with symbolic and verbal representations by creating number 
sentences and written explanations of steps. 

Prototypical representations in pupil’s solutions 
Pupils created diverse representations for their argumentation. In the Castle problem a significant 
number of pupils used numerical representation. Yet, others supported argumentation with pictorial 
representation in combination with other representations. Figure 1 shows an example of 
argumentation based on dual representation (pictorial and numerical). 

 

Figure 1: Dual representation - pictorial and numerical (left) 
Figure 2: Dual representation - number line and algebraic expressions) (right) 

When using iconic representation, most commonly the pupils relied on number line and the method 
of segments. This method is commonly taught in Serbian schools. Figure 2 illustrates an example of 
argumentation based on number line representation in solving the Bottle problem. In her problem 
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solution, Ana used the method of segments (number line representation) to show the relationship 
between elements in the initial state and the final state (so this pupil represented how the situation 
changed by drawing two pairs of number line segments).  Ana switched from the number line 
representation to symbolic ones as she wrote a chain of equivalent equations.  

An example of the solution of the Castle problem, solely based on iconic representation is presented 
in Figure 3. Marko put a key for his iconic presented argumentation on the right, where “x” meant 
unsuccessful attempt, “🗸🗸”, successful attempt, and”-“  that  the door cannot be opened. 

 

Figure 3:  Iconic representation  

Figure 4 shows Sara’s solution, assessed to be a creative argumentation involving Roman and Arabic 
numerals in solving the Castle problem. The solution consisted of five equalities.  Sara counted the 
cycle of attempts by Roman numerals. She used Arabic numerals to show number of attempts in the 
particular cycle. Formally, without (absent) supplementary explanation the record was not 
mathematically correct as it stated e.g. I = 6 and V = 1. Sara used different numeration to distinguish 
between number of attempts and number of trials in the cycle, overlooking meaning of the equality 
sign. Her solution was assessed to be too sketchy and although the answer was correct, she did not 
earn points for argumentation. 

Pupils often combined different representations in solving problems. In those cases they usually 
started with pictorial representation, than they turned to verbal or symbolic representation. Using 
pictorial representation, enabled them to provide simpler explanation. An effective presentation of 
thought process with no verbal explanation is presented in Figure 1.  

    
Figure 4: Combined numerical representations (left) 

Figure 5:  Multiple representations - pictorial, verbal and numerical (right) 

In Figure 5 is Luka’s solution of The Castle problem with multiple representations. He initially used 
pictorial and numerical representations along with verbal explanation and finalized the solution with 
numerical calculation. The realistic picture of doors itself hardly helped in solving the problem. 
Nevertheless Luka used it as a tool in argumentation.  He probably meant to indicate with that picture 
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that all 6 doors were checked with one key. The other cycles of tries were not visually presented in 
Luka’s solution. But his verbal explanation presented on the right side of the picture was accurate. 
Luka wrote: “Since there were 6 keys and 6 doors, with the first key there could be no more than five 
failed attempts, in the next step 4, than 3, and so on, in each successive step 1 less”.  

Conclusion 
Successful problem solvers construct significantly more representations than unsuccessful problem 
solvers. Our results do not endorse previous arguments that multiple representations are associated 
with more incorrect solutions. Using combined representations often results in correct solution. 
Typically, pupil’s argumentation starts with pictures, than turns to verbal or symbolic representation. 
Using pictures frequently enables pupils to provide sound explanation.  

We found that talented pupils had a tendency to use symbolic representations. Pupils’ choice of 
representation could be a consequence of limited experience in using different representations in the 
past. Ultimately teachers need to help pupils to develop flexibility in using different representations 
and ability to combine representations (or move in argumentation from one to another one).  

In particular, future research should test whether pupils should be encouraged to provide 
argumentation by 1) combining numerical and verbal representations in the case of logical 
combinatorial problems and 2) numerical pictorial and iconic representations in the case of algebraic 
problems.  More generally, we need to focus on developing methods for improving pupils ‘abilities 
to visualize and verbalize thought process and to be flexible in combining representations in the 
process of problem solving.  
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Geometric prediction: proposing a theoretical construct to analyze 
students’ thinking in geometrical problem-solving 
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We consider geometric prediction (GP) as a mental process through which a figure is manipulated, 
and its change imagined, while certain properties are maintained invariant. In this paper, we explain 
our interest in this process and how we define it. Furthermore, we describe a tool for analyzing 
students’ productions. In particular, we present brief analyses of students’ interviews while they are 
solving a geometric open problem explicitly designed to elicit processes of GP. Finally, we summarize 
some preliminary results about the features of this construct. These results are part of a doctoral 
project aimed at gaining insight into the process of GP. 
Keywords: Spatial reasoning, visualization, intuition, figural concepts.  

Introduction 
It is well known that spatial reasoning and visualization are topics of interest for mathematics 
educators (e.g. Duval, 1995; Presmeg, 2006) to the extent that Cuoco, Goldenberg and Mark (1996) 
have proposed to organize curriculum around mathematical habits of mind, which include 
visualization and tinkering. These are described as being at the heart of mathematical research and, 
therefore, crucial for helping students learn to think like mathematicians. These habits are particularly 
involved in geometrical problem-solving. Indeed, when solvers approach a geometrical task they can 
interact with visual or mental images in several ways. Cognitive Psychology explains this interaction 
by the intervention of several visuo-spatial abilities such as imagery generation ability and imagery 
manipulation ability (Cornoldi & Vecchi, 2004). 

In a previous study (Miragliotta & Baccaglini-Frank, 2017) we tried to analyze students’ solution 
processes when solving a geometrical task, but found shortcomings in using the visuo-spatial abilities 
for at least two reasons: much effort goes into establishing which abilities are used during each 
analyzed process, and interpretation plays a large role and is not consistent across researchers; none 
of the abilities explicitly deal with the Theory of Euclidean Geometry within which figures and their 
properties are defined, when the reasoning is carried out in this context. This is because as 
mathematicians we know that, when we solve a geometrical task, we can imagine consequences of 
(mental) transformations on a geometrical object which are consistent with theoretical constraints, 
given or induced by a particular construction. Indeed, mathematical objects have a particular nature, 
the investigation of which usually requires theoretical elements which refer to a domain different 
from the one of perception. In line with Neisser (1989), we consider perceiving and thinking as 
different cognitive activities. Perception “is immediate, effortless, and veridical” in one word 
“direct”; thinking is “indirect”, because it “may not depend on the immediate environment at all, it is 
often anything but effortless or immediate, and frequently goes astray” (Neisser, 1989, p. 11).  

In the specific domain of 2D Euclidean Geometry, in order to cope with the difficulties listed above, 
we defined a new theoretical construct called geometric prediction (GP). Although at the moment, 
we are working towards a finer operative definition, it seems to be an interesting construct to use in 
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order to shed light onto problem solving processes in geometry. Furthermore we expect it to be 
trainable, that is to ameliorate through appropriate educational practices. The aim of our research is 
to gain insight into the process of GP. So we set out to observe and analyze what happens during the 
resolution of particular open problems, focusing on instances of geometric prediction in solvers’ 
discourse, gestures, drawings, and dragging modalities used in a second phase of the resolution of the 
given problem in a Dynamic Geometry Environment (DGE). Because of what we present in this 
paper, in which the role of the DGE is marginal, and since the space limited, we will not discuss this 
second phase. In this paper, we present the construct of GP and describe a tool used for analyzing its 
emerging features in students’ data that are collected in task-based interviews.  

Theoretical framework 
In the specific domain of Mathematics Education, under the umbrella of spatial reasoning literature 
collects a large set of definitions, which share the reference to the activity of imagining objects and 
interact with them through mental transformations (rotation, stretch, reflection, etc.). Among these 
definitions, we have considered spatial reasoning as defined by the Spatial Reasoning Study Group: 
“the ability to recognize and (mentally) manipulate the spatial properties of objects and the spatial 
relations among objects” (Bruce et al., 2017, p. 146). We considered visualization, according to 
Presmeg’s (2006) description, as “taken to include processes of constructing and transforming both 
visual mental imagery and all of the inscriptions of a spatial nature that may be implicated in doing 
mathematics” (p. 206). Here visualization is considered to be explicitly linked to mathematical 
activity, and it could involve mental images.  

Geometric prediction 

Previous research on visualization informs us that when solvers face a geometrical task, they can 
interact with mental images; they can imagine the consequence of (mental) manipulation of the 
geometrical figure. Moreover, it seems that in this process the theoretical elements play an important 
role. With “theoretical elements” we mean those related to the Theory of Euclidean Geometry (TEG). 
The process of geometric prediction is “a mental process through which a figure is manipulated, and 
its change imagined, while certain properties are maintained invariant” (Mariotti & Baccaglini-Frank, 
2018, p. 157). 

Products of GP may or may not be coherent with theoretical constraints. Indeed, in order to take into 
account all theoretical constraints, the solver must theoretically control the figure, that is “mentally 
impose on a figure theoretical elements that are coherent in the Theory of Euclidean Geometry” 
(Mariotti & Baccaglini-Frank, 2018, p. 156).  

Fischbein’s Theory of Figural Concepts and Intuitive knowledge 

In order to explain the nature of geometrical objects, we refer to the Theory of Figural Concepts 
(Fischbein, 1993), according to which they have a dual nature. Geometrical objects are completely 
described and controlled by an axiomatic system of definition and theorems, but at the same time 
they maintain certain figural aspects of images. Fischbein (1993) thinks of a figural concept as a 
complex mental entity (different from pure concepts and pure images) “which simultaneously 
possesses both conceptual and figural properties” (p. 144), realizing a fusion between the conceptual 
and the figural components.  
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A construct which seems to be involved in GP is intuition (Fischbein, 1987). It is a kind of cognition, 
characterized by self-evidence and immediacy, different from perception, and implying an 
extrapolation of information beyond that directly accessible. Intuitions can have an anticipatory role. 
Indeed, anticipatory is a kind of intuition, which belongs explicitly to problem-solving activity; it 
provides a global view of a solution, which precedes the analytical one. 

Research questions and methodology 
The data we present are part of a doctoral research project on GP for which 6 geometrical problems 
were designed and proposed to 37 Italian high school students (ages 14-18), undergraduates, graduate 
and Ph.D. students in mathematics (ages 19-33), during the months of February and April 2018. The 
problems were designed to elicit processes of GP and they were used within task-based interviews 
(Goldin, 2000). We decided to use a semi-structured type of interview: the first question is always 
the same; then there is a sequence of questions defined a priori and a set of stimuli in order to elicit 
students’ comments. 

Consistently with our purposes, we designed a particular kind of open problems (Arsac, Germain, 
Mante, 1998; Silver, 1995), prediction open problems, in which the solver is asked to describe 
possible alternative arrangements of a geometric configuration (imagined, given by a drawing and/or 
by a step-by-step construction) maintaining given properties. Predictions could be asked for explicitly 
or not.  

Although all data have not yet been thoroughly analyzed, we use some of the data to present a 
preliminary report on the following questions: (a) How can we characterize GP processes (in the case 
of the prediction open problems given)? (b) In solving a prediction open problem, what kind of 
gestures, words and drawings are performed by solvers? What do these allow us to infer about the 
GP processes? 

In the following section we report on an example of the task used during interviews.  

The “locus of P” problem 

The task used in this study is composed of two parts. The first one is:  

Read and perform the following step-by-step construction: fix two points A and B; connect them 
with a segment AB; choose a point P on the plane; connect A and P with a segment AP; construct 
M as the midpoint of AP; construct the segment MB and name its length d. A and B are fixed, and 
the length of MB has to always be d. 

Then the interviewer asks: “What can you say about the point P?” 

 
Figure 1: Instance of figure obtained by step-by-step construction 

The step-by-step construction could be accomplished with paper and pencil (obtaining a construction 
like the one in Figure 1). Once the solver had proposed a solution or stated that s/he was not able to 
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find one, part two of the task was given: the interviewer opened a dynamic geometry sketch and she 
asked the solver to move P in the figure, consistently with her/his prediction, or else to explore the 
figure to help reach a solution. As highlighted before, in this paper we will not focus on this second 
phase.  

Construction of a new tool for data analyses 

In our data analyses, we have been highlighting instances of GP by spotting and analyzing students’ 
gestures, drawings and discourse. In particular, we are trying to identify elements which belong to 
the students’ conceptual component and their figural component of the geometrical objects in focus. 
In order to analyze solvers’ GPs, we collect these elements in a sort of “funnel” (Figure 2) which 
shows a product of GP in gestural and/or discursive form.  

 
Figure 2: Elements collected in the funnel and its product 

The tool, as shown in Table 1 and sketched out in Figure 2, is composed of 3 columns. In the first 
and in the third there are, respectively, theoretical elements and figural elements, referred by solvers 
in gestural or discursive way or inferred by us (in square brackets). These two constructs are defined 
and identified according to Fischbein’s (1993) distinction between conceptual and figural 
components of geometrical objects. In the center column, we used two different colors to highlight 
which element of the two columns is expressed by the solver at a specific moment. Indeed, the vertical 
order of boxes follows the chronological sequence in which solvers made elements explicit. 
Furthermore, we added an “X” when the element is mathematically incorrect or incoherent with 
respect to the given geometrical construction. At the end of the funnel, there is the product of the GP. 
Each funnel represents the sequence of the observable steps of a new GP.  

As an example, here we show the construction of the funnel referred to an excerpt of Student A’s 
interview. She is solving the “locus of P” problem. This excerpt begins right after the interviewer 
asked the first question. 

Student A: The point P…meanwhile is part…of the straight line in which…on which there 
is also…AM and is outside the triangle AMB. 

Student A: In this case – but I think it is a particular case – perpendicular to…not the point P! 
It is a straight line on which there is the point P that is perpendicular to MB, but 
it is a particular case, I think! 

Interviewer: Ok. Make a prediction. Do you think that the point P can have other positions? 
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Student A: If I draw again…if the length of MB must always be d, it could be like a mirror, 
so it could take the place…the same position, only on the other side of the 
segment. 

In this excerpt, we recognize some figural elements (and underlined them), like segment AM and 
triangle AMB. We use bold type to highlight the identifiable theoretical elements, like 
perpendicularity and (line) symmetry. We recognize a product of a GP in the last student’s statement: 
P takes a symmetric position with respect to AB. The GP is both discursive and gestural (the student 
shows the expected position of P using a pen (Figure 3a)). Then, she undertakes another GP, strictly 
connected with the figural elements observed before. Indeed, she claims: 

Student: Yes, it [point P] moves along the segment M…along the half-line MP and then 
etcetera, etcetera… along the half-line that would continue, because it does not 
interfere with the triangle. 

(a)              (b)              (c)   

Figure 3: Gestures performed by (a) Student A (b) Student C (c) Student D 

We collected all elements in two funnels, as shown in Table 1 (see Student A). The blue arrow 
highlights how the product of the second GP (named GP2) is directly connected with and derives 
from the product of the first GP (named GP1). 

Preliminary findings 
Funnels as a tool to gain insight into solvers’ processes of GP   

At the moment we have analyzed 15 interviews during which the “locus of P” problem was proposed. 
Here we show only four examples of funnels (Table 1): Student A is a 9th grade student (15 years 
old); Student B is a 13th grade student (18 years old); Student C is an undergraduate student and 
Student D had just completed a master’s degree in mathematics. The chosen funnels summarize some 
of the solvers’ common behaviors during the resolution of the first part of the task and highlight how 
this tool can be used to gain insight into the process of GP. 

The first funnel (Student A) represents an example of a mathematically incorrect GP during which 
the student focuses on particular figural elements of the given configuration. Indeed, Student A 
explicitly mentioned the triangle ABM and then the segment MP. Our analyses reveal that in all cases 
in which the triangle is mentioned (5 interviewees), the solvers seem to have considered the 
configuration as made up of two completely independent figural elements: a triangle and a segment. 
This hypothesis is consistent with the solvers’ stated predictions about the behavior of the 
configuration and it is confirmed by instances of surprise observed during the subsequent exploration 
in a DGE. The relation between figural elements induces Student A to speak of moving P along a 
half-line, maintaining MB not only constant in length, but also in the same position. Possibly, it is the 
lack of theoretical control that induces the solver to infer the necessity of maintaining invariant so 
many properties. In this case, the invariance of the length is maintained by the invariance of the whole 
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triangle. Furthermore, we notice that our analytical tool allows us to notice that during the second GP 
the student mostly referred to figural elements.      

On the contrary, Student C and Student D provide examples of GPs that explicitly make use of 
theoretical elements. In particular, in the funnel of Student C, we observe an ongoing dialectic 
between figural and theoretical elements. In this case, we notice another common phenomenon: 
observing the development of the fourth GP (whose outcome is GP4), Student C recalls the prototype 
of circle (defined as the locus of points at a given distance from a given point); she reproduces its 
construction using her fingers as a compass (Figure 3b), making the circle (or some parts of it) into a 
figural element, even if it was not actually drawn on paper. 

Student A  

 
Student C 

 
 

Student B 

 
Student D 

 

Table 1: Four examples of solvers’ funnels 

Such a phenomenon is evident also in Student D’s production. First of all, she produces a GP about 
P. Suddenly, the point constructed as a symmetric point of P becomes in its own right one of the 
figural elements involved in the subsequent GP. We can see this effect also in the last funnel. Student 
D imagines to construct some points by rotating MB (Figure 3c). These points become part of the 
configuration, even if they are not visible on the drawing.  

These findings allow us to highlight two features of GP processes. They are independent of each 
other, but they come in a sort of flow or chain of predictions. Furthermore, often their products seem 
to “freeze” for the student (see Student C and Student D), becoming integral parts of the configuration 
even if they are not drawn, and they become starting points for new GPs.  

We stress how important is the role of the theoretical elements. Although Student D and Student A 
start from a similar product of GP regarding point P, Student D’s GP is accompanied by more detailed 
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and coherent (with the TEG) theoretical elements. Moreover, she does not mention triangles, but she 
focuses only on segments and points. This seems to allow her to refine the first product of her first 
GP and, finally, to reach the last one (point M on a circle).   

Student D’s processes of GP highlight another emergent feature of GPs: often they are accompanied 
by intuitions. In particular, we observe a kind of intuition which appears during a solution process 
and that expresses an immediate and global view of a solution: anticipatory intuition. The occurrence 
of this kind of intuition could explain what happens in short chains of GP, like the one performed by 
Student B. His funnel shows a chain of GP in which most rows contain theoretical elements and no 
other elements could be recognized between the two products of GP: GP1 and GP2. This could be 
explained by his resorting to intuitive knowledge.   

Conclusion 
The analyses of students’ videos and transcripts reveal that GP is a process involving an interplay 
between perception and reasoning processes. Indeed, GP seems strictly related to figural components. 
In the case of the problem analyzed, it seems that students who see the configuration as a triangle and 
an independent segment do not reach a mathematically correct (or coherent with the TEG) product of 
GP. The notion seems to be in line with Duval’s (1995) findings related to perceptual apprehensions 
of a geometric configuration and dimensional change. Nevertheless, GP also involves theoretical 
elements which belong to the TEG, and it has a strong relation with the idea of students’ theoretical 
control over a figure. Indeed, theoretical control that is coherent with the TEG should lead to correct 
predictions (see Student C and D). Moreover, GP is related to conceptual components to the extent 
that in the case of Student B the discursive element “the length of MB must always be constant” 
fostered recollection of the definition of circle, leading to immediate recognition of the locus of M. 
So, it seems that theoretical elements play an important role in the immediacy and correctness of GPs. 
Student B reveals how for an “expert” solver GP can become an immediate and automatic process. 
This finding is promising for the trainability of GP through appropriate educational practices.  

Furthermore, we notice that often GP is coupled with anticipatory intuition (see Student B and 
Student D). Nevertheless, the two constructs are not identifiable. Indeed, in other cases (see Student 
C) correct products of GPs are produced without any recognizable intuitive knowledge.   

In conclusion, processes of GP seem to be observable through the solver’s productions; funnels are 
useful tools for shedding light onto this process, but they must be accompanied by qualitative analyses 
of transcriptions for gaining deeper insight into the GP. Moreover, GP seems to be an interesting 
construct in order to shed light onto problem solving processes in geometry. 

We believe that this kind of research can provide new insights into students’ difficulties in learning 
geometry. Moreover, awareness of prediction processes could be very helpful for teachers. Outcomes 
of GPs seem to be windows onto students’ mental images and processes generating them. Such 
knowledge could help in guiding mathematical teaching and learning, because teachers could know 
which properties students are imposing on a given configuration by asking them to make explicit their 
GPs. If students are imposing on a figure too many or incorrect properties, the teacher can intervene 
appropriately. Moreover, geometrical activities to strengthen students’ theoretical control by fostering 
awareness of their conceived invariants can be designed.  
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Through its focus on “fibre mathematics,” this paper contributes to discussions of how mathematical 
representations entail complex mixtures of matter and form. Drawing on inclusive materialism (de 
Freitas & Sinclair, 2014) as a way of rethinking the material labour of mathematics, we analyze data 
collected in a two-week weaving workshop, focusing on how participants worked with the 
mathematical concepts of dimension and connectivity in problems that were at once topological and 
material. Focusing on one student’s work, “Akari’s Problem,” we explore how the loom operates as 
a rich experimental field for the (re)creation of mathematical concepts. This paper takes up issues 
associated with mathematical representations by focusing on the haptic, visual, and material way 
that mathematical forms come to life through making processes.  

Keywords: Textile art, dimension, topology, materiality. 

Introduction 
The term fibre mathematics refers to the mathematical activity entailed in textile arts. Studies of fibre 
mathematics have been pursued within ethnomathematics – for instance, research on the weaving 
practices in the Bedouin culture of the Negev desert (Katsap & Silverman, 2016) and Quechua 
speaking communities in Peru and Bolivia (Ascher & Ascher, 1981; Urton & Llanos, 1997). These 
studies point to how these practices are not (only) representations of Western mathematical concepts, 
but entail innovative ways of doing mathematics through various maker processes. The challenge is 
then to study material practices of various kinds, no matter their location, for how they engender 
distinctive mathematical concepts. We argue that different modalities and representations entail 
distinctive meaning, precisely because they involve different materialities. Our shared earthbound 
status means that humans are likely to work with similar mathematical concepts and materials across 
the planet, although these will be bound up with the particular corporeal habits valued in different 
localities. Our approach thus questions theories of representation which treat the concept-matter 
relationship as one which assumes concept as form-shaper and matter as passive form-taker.   

Our research indicates that students learning textile arts are often also learning complex mathematical 
concepts and exploring challenging mathematical problems. We show how one student’s work 
(“Akari’s problem”) entailed creative interventions that were both technical (associated with the loom 
and other materials) and mathematical (associated with formal and aesthetic goals). Through analysis 
of video footage and interview data, we show how problem solving in such cases involves the loom 
as an “open machine” with a distinctive “technicity” – two terms defined by the philosopher of 
technology, Gilbert Simondon (1958/2017). We explore how a technical “hack” of a traditional craft 
tool opened up new conceptual space, allowing research participants to invent new fibrous forms and 
explore complex geometric shapes that broke with classically Euclidean representations of space. 
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The research questions we explore in this paper are: (1) How do problems in the textile arts offer 
opportunities to explore rich mathematical thinking? (2) How does weaving as a material practice 
entail the mathematical concepts of dimension and connectivity? (3) In studying maker processes as 
mathematical, does representation best describe the relationship between concept and materiality? 

Theoretical Framework 
Simondon (1958/2017) defines the “technicity” of a technical object as that which concerns its 
fundamental structure rather than its use. Attending to technicity is a way of better understanding the 
mode of being of the technical object, across various situations. This requires a genetic history of the 
technical object (in this case the loom), so that we can compare different manifestations and identify 
key elements of its structure. We do this to better understand how technology and mathematical 
practices are linked, and how material media are essential in mathematics, be they writing surfaces, 
touch screens, or paper and pencil. The work of Simondon offers us new materialist ways of thinking 
about how mathematics is made and performed outside of mainstream mathematical representations. 

This philosophical framing of our approach sets the stage for a study of mathematical practices in 
contemporary textile arts. Following Simondon, who advocates for historical and philosophical 
studies of technology, we see technology as more than a tool that enhances human interests, more 
than a device for representing concepts conceived in the mind. Our relationship with technics is more 
complicated and we benefit from considering more nuanced ways of understanding the force of the 
technical object in our cultural practices (including mathematics). Writing just at dawn of cybernetics 
and the “information age,” Simondon argues we must examine our technologies to understand how 
our concepts are implicated in them, not as representations, but in a more direct assemblage.  

We consider mathematical behavior as an ontogenerative practice (a making practice) that brings new 
concepts into the world, and in so doing reshapes the world. Learning mathematics becomes “an 
indeterminate act of assembling various kinds of agencies rather than a trajectory that ends in the 
acquiring of fixed objects of knowledge” (de Freitas & Sinclair, 2014, p. 52). This implies an 
understanding that mathematics takes no definite or final form, but rather it continually (re)emerges 
within the material practices of the workshop or the classroom. Our non-dualist approach argues that 
representations of mathematical ideas cannot be isolated from the phenomenon to which they are 
wedded. In particular, this paper focuses on technological interventions/actions that enable new 
formal and aesthetic choices that mobilize new conceptions of dimension and connectivity.  

Weaving is performed with an ancient but ever-changing technology, called a loom. The loom creates 
a problem space for exploring pattern, texture, dimensionality, connectivity and number. The loom is 
both an “open machine” and an “associated milieu” for the technical-aesthetic activity of weaving 
(Simondon, 1958/2017). As an open machine, the loom itself can be undone and remade, maintaining 
its structural integrity while allowing for inventive alterations that enable students to build complex 
topological shapes. Indeed, weaving of all kinds, be it planar cloth or a three-dimensional objects, 
operates through the relationship between the discrete and the continuous, using thread, yarn or other 
continuous matter to create patterns that often achieve their aesthetic impact through discretization of 
and contrast between individuated units of color or texture. Many weaving practices operate through 
this pixelated effect, with links to the history of computing and digital image making (Plant, 1995; 
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Bachmann, 1998). Given this aesthetic aspect, and the pivotal role of the relationship between discrete 
and continuous magnitude in fueling mathematical invention (de Freitas, 2017), we consider weaving 
an excellent case study for examining the material labour of mathematics, and for rethinking the role 
of representation in mathematical behaviour. This perspective supplements research that has explored 
the aesthetic aspect of mathematics (Coles & Sinclair, 2019), the sensory capacity of the body (de 
Freitas, 2016), and the more-than-human and ontological nature of mathematics (Gutiérrez, 2017). 

Methods and Data 
Research data was generated through participant observation and informal interviews conducted in 
the weaving studio of a craft school in the eastern United States, during a two-week weaving 
workshop called: “Weaving Origami and Other Dimensional Possibilities.” Twelve students 
(including the first author), motivated by personal interest in the proposed course, applied and were 
accepted into the class by the craft school selection committee. Most of the twelve participants – who 
spent at least eight hours/day weaving during the workshop – had more than five years of weaving 
experience. Data consisted of field observation writing and sketching, video recording during studio 
sessions, and interviews of nine participants. Cameras were both fixed (to walls and looms) and worn 
on persons, to obtain diverse perspectives on the material and ritual practices entailed in weaving. 
Interviews focused on artifacts and instruments from the studio, and questions targeted participants’ 
manner of describing the various problems they encountered during the two-week course.  

The workshop focused on a distinctive challenge – how to weave “dimensional” cloth. The 
workshop’s title, “Weaving Origami,” describes a specific technique developed by the workshop 
instructor, Sue Taylor, which involves weaving short bands of cloth that jut out from the classically 
two-dimensional woven plane. These bands can fold into various origami forms (Figure 1). The 
technique for generating these three-dimensional bands derives from a common weaving trick used 
to repair broken warp strings. The instructor showed students how to use the free weights employed 
in this technique to alter how the loom distributes tension. Students began by directly imitating the 
instructor’s work. After two days, many in the classroom quickly moved to innovate on this thinking.   

In this paper, we describe the work of one participant (Akari), by looking at the way that “Akari’s 
Problem” involved complex topological forms and became a gathering point for workshop 
participants. To illustrate, we discuss two woven objects Akari produced during the workshop 
(Figures 2 & 3). These woven forms offer a snapshot of a generative material-mathematical challenge. 
In our analysis, we draw on video from a chest-mounted GoPro video camera Akari wore while she 
worked on her first weaving and a loom-side interview with Akari, as she made her second sample. 
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Figure 1: Susie Taylor Figure 2: Akari’s first sample Figure 3: Akari’s second sample 

Discussion 
Dimension is a hugely important mathematical concept on which our ideas about measurement and 
space depend. Mathematicians in different specialized fields define dimension in many different ways 
(Pearse, 2003). The concept, however, proved problematic in the late 19th century, when various 
mathematicians (Cantor, Peano, Brouwer) paradoxically demonstrated how to map the interval to the 
plane (Pearse, 2003). New theories of dimensionality emerged in the 20th century from Lebesgue, 
Hausdorff, and others, alongside the study of fractals and fractional dimensions. Plugging into our 
intuitions of space as it crisscrosses mathematical domains, the concept of dimension is multiple. 
Freudenthal (1983) suggests we consider dimension within three frameworks: Euclidean (an integer 
property of objects and spaces), Analytic (determined by the number of variables needed to describe 
an object), and Topological (pertaining to freedom of movement and boundary relationships).  

Panorkou and Pratt (2016) contend that mathematics classrooms rarely address dimension directly. 
Skordoulis, Vitsas, Dafermos, and Koleza (2009) argue that a Euclidean notion of dimension is 
typically assumed and sometimes in conflict with an Analytic framework. Most mathematics students 
will not interrogate the concept of dimension, despite its incredibly opaque and open-ended nature. 
In the workshop, however, dimension was an incredibly common buzzword. Participants struggling 
to invent dimensional cloth on the loom engaged with the concept directly. Moreover, they each had 
distinctive aesthetic problems to solve, which allowed for an open and diverse group inquiry.  

Due to the technical requirements of the loom and soft pliable nature of cloth, the working of woven 
form into three dimensions already involves the kind of contortions conceptualized mathematically 
by topology. Topology is a field of mathematics that investigates how objects remain unchanged after 
stretching, bending and twisting. It is often referred to as “rubber sheet geometry” (O’Shea, 2007) 
because objects studied by topologists can be pulled and stretched without changing their topological 
properties. Topology lends itself to the study of non-rigid forms, as in the case of weaving. Although 
weaving requires the heavy use of counting and anticipatory calculation in planning projects, the 
production of cloth is an essentially connective process in which lines of fibre fuse according to a 
systematic relationship to produce planar cloth. Weaving techniques developed to double the 
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capacities of the human arm span further enhance the complex connective possibilities of the loom. 
These techniques allow one to interconnect several layers of cloth in a manner limited only by the 
scope of the loom itself and the amount of time a weaver wishes to commit to her project.  

To explore how fibre mathematics and topological concepts of dimension can be productively 
entangled, we begin by articulating Akari’s original problem and analyzing her two weavings from a 
topological perspective. After experimenting at length with paper models, Akari planned a complex 
folded weave involving five parallel bands of cloth that emerge a ground cloth (Figure 4). Akari 
hoped to fold and twist these bands to reveal and conceal the colorful underside of each band. 
Because, in weaving, color forms through interlacing warp and weft, Akari planned a complex 
structure in which she would weave a cylindrical form made up of two intersecting planes (Figure 5, 
where these planes are colored pink and purple). This would allow two distinctive colors to alternate 
in prominence, depending on the pattern of folding. Looking to analyze the weaving topologically, 
we began by imagining the weaving as made up of a ground cloth with five pinched tori. (The pinched 
torus (Figure 6a) is called a pseudomanifold because there is a singularity at the pinch, creating an 
obstacle that cannot be traversed continuously. Pseudomanifolds are, however, still orientable.) 
However, further examination of the weaving revealed that there was not a singular pinch but rather 
a crease at the end of each tube (Figure 6b). Akari’s cloth had five protrusions, which were neither 
manifold nor pseudomanifold, but something else altogether (Figure 6c).  

  
  Figure 4: Paper models of the cloth         Figure 5: A diagram of Akari’s layers 

These moments of creasing, where the weaving branches to form five bands, make this artifact 
complex in both the making and the mathematics. The creases represent a fundamental break in the 
object’s basic Euclidean texture. If we select one such crease, and zoom in far enough, to see what is 
going on, we find four planar cloths all intersecting in the line (Figure 6d). If we keep zooming in, 
further and further, in search of the basic Euclidean plane, we will never be able to find it. No matter 
how close we get, every point on that line will belong to neighborhoods in four planes, breaking 
Euclidean rules, and making the crease singularity quite problematic. Akari’s problem, in other 
words, involved making a mathematical form with yarn that exceeded conventional Euclidean 
geometry, and indeed exceeded conventional rules of behavior for manifolds and pseudomanifolds. 
Although ostensibly her weaving is made of two-dimensional surfaces, topologically it cannot be 
modelled as a two-dimensional manifold. This is because the cloth is not “locally Euclidean” 
precisely at these creases. Hacking the loom allowed Akari to break with the planar grid in regulated 
but inventive ways. At these intersections, no matter how closely you stretch and examine the 
material, Akari’s cloth will never behave like a flat two dimensional plane. 
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Figure 6: a) Pinched torus, b) Akari’s tube, c) Rendering Akari’s cloth, d) Four planes of cloth  

Akari came to know the properties of this shape not through this mathematical vocabulary or 
instruction but through an elaborate pattern of passes, which she developed to construct each of the 
five tubes. She noted in her interview how difficult this was: “My head was like wait! Wait! Wait!” 
Watching her activity on video, we see that Akari taps into a rhythm measured out by gestures made 
with and towards the loom. To keep her place in a 22-step progression of movements, she neatly 
organizes her threads to mark out visually her place in the pattern. 

Despite her best efforts to plan her work, the materiality of Akari’s concept broke away from the 
representation she had generated in her paper model. About 20cm into her project, Akari discovered 
that her double-layered tubes of cloth are structurally too dense to fold according to her plans. Video 
footage from the chest-mounted GoPro shows Akari pausing to examine her work. Sensing this break, 
six workshop participants gather around to observe and comment on her work. In the video footage, 
Akari shares her thinking aloud, while manipulating the cloth. A key conversation ensues about how 
to best explore the new freedoms opened up by the technological transformations that all participants 
have performed on their looms. At a climactic moment, three participants point to the loom’s new 
tensioning system and exclaim in chorus “’Cause they’re weighted! They’re weighted separately!” 
They point out that the new distribution of tension, now controlled by water bottles swinging off the 
back of the loom, works as a third dimensional coordinate in Akari’s cloth. This marks a collective 
realization about the dimensional possibilities opened up by the redistribution of tension on the loom. 
Analysis of this episode reveals how the coupling of tension with dimension was not simply the 
representing of an immaterial concept (dimension) in a material form (a thread under tension), but 
was instead a matter of delving deeper into the potentiality of mathematical concepts as they inhere 
and mutate within matter. 

Concluding Comments 
This paper builds on previous work on topological thinking in mathematics education, and the 
challenges of representing (or enlivening) complex manifolds in material form (de Freitas & 
McCarthy, 2014; Strohecker, 1991). It seeks to contribute to a growing body of literature on the role 
of technology in developing mathematical aspects of spatial sense (de Freitas, 2017; Ferrara & 
Mammana, 2014; Panorkou & Pratt, 2016) and it offers new possibilities for exploring mathematics 
in informal learning settings (Nemirovsky, Kelton, & Rhodehamel, 2013), pointing to the importance 
of aesthetically structured activities in mathematics teaching and learning (Coles & Sinclair, 2019).  
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Our study shows how maker and craft practices are an important site for innovative and 
unconventional representations of mathematical concepts. Although the usual question posed to those 
studying informal mathematics is “where is the mathematics?,” we suggest that mathematics is found 
in the material practices embodied by the weavers. These weavers are not mathematicians (and they 
might be the first to admit that!) and although there was no direct instruction as to how to use 
topological concepts to build the dimensional cloth, the problem space created an opportunity for 
doing mathematics through direct engagement with technical objects (the loom, the threads, etc.). 
These problem spaces are engendered by the loom, but the solutions paths are not scripted by the 
loom, especially in this case, where the loom is an open machine and literally modified by individual 
participants (hacked with weighting) as they each explored their own problem space, driven by their 
aesthetic goal. The loom thus operates as a kind of generative problematics. The various goals of the 
weavers entailed different mathematical relationships, which had to be mobilized in order to create 
the desired patterns and asymmetries. The specific technicity of the loom has particular structural 
features that create opportunities to work with particular mathematical concepts.  

When educators speak of mathematical representations, they typically point to an object or diagram 
or symbol as that which stands in for (or refers to) an immaterial mathematical concept. Does it make 
sense to speak of Akari’s cloth as a representation of a mathematical concept? Our case study shows 
how a weaving problem can engender a very complex mathematical form, indeed a form so complex 
it might be deemed the sort of “monster” that Lakatos wrote about when he discussed the intellectual 
labour of mathematical invention. Mathematical monsters are initially barred, but then you realize 
you want to play with them, and the rules need to change so that you can. Akari’s cloth is the result 
of a weaving process that played with the conventional tension of the loom, in order to dive into the 
indeterminacy of the concept of dimension. Once we attend more carefully to the way material media 
play a big role in mathematical labour, and perhaps rethink the nature of representation in terms of 
making processes, the question “where is the mathematics?” becomes even more interesting. Of 
course, one needs to attend to the differences between the material labour of a mathematician working 
with chalk or software and the material labour of a weaver at the loom. Our claim is that more 
attention to these material media will open up our understanding of mathematics in all its diversity, 
demonstrating how representation is entangled in making processes.  
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This study investigates prospective mathematics teachers’ (PSTs) reasoning about magnitudes in 
misleading bar graphs. We report results from three student teachers who worked in a group. 
They made sense of vertically-oriented bar graphs whose vertical axis was not equi-spaced or y-
axis did not start with zero. We analyze PSTs’ extrapolative reasoning that refers to the ways 
they identified implicit relationships in graphs. The results demonstrated that PSTs modified or 
re-produced the bar graphs to overcome the misleading information, and re-labeled the 
numerical values of the categorical variables. They focused on arithmetic calculations and used 
them as a checking tool when they modified the bar graphs. They changed the location of the 
zero baseline and tended to keep the lengths of the bars invariant. 

Keywords: Prospective mathematics teachers, misleading bar graphs, magnitude, extrapolation. 

Introduction 
Huff (1993) emphasizes that we are often exposed to misleading statistics in daily life. Scaling is 
one of the most common types of misleading statistics. In most cases, large increments of data 
display could compress the graph vertically. However, if the increments get smaller, the vertical 
graph could seem curved or the graph could have zigzags (Huff, 1993). It is also common to put 
a break in the scale on the vertical axis. This change places the different intervals for the axes to 
represent the variables, which shows different relationships between the variables other than they 
actually have. Graphs that incorporate a third dimension are most often confusing for the graph 
reader, particularly when comparing two or more values. In this sense, the height of neighboring 
bars affects the accuracy of measuring one value (Huff, 1993).  

When students learn to recognize misleading statistics, they develop a new understanding of 
presenting data. Even in classroom environments and in textbooks, it is possible to encounter 
misleading or incorrect examples. In particular, statistical studies may be misleading and “at the 
heart of the matter lurks a black box, the fuzzy and multifaceted ‘context’ or ‘personal factors’ or 
‘subjective meaning’, which cast doubt on both simple counts and causal explanations” (Wolf, 
2007, p.26). 

Bar graphs represent categorical data with rectangular bars that signify measured values. Also, 
bar graphs show frequency or proportion of categorical data. They highlight relative magnitudes 
and allow for encoding absolute values of discrete data (Friel, Curcio, & Bright, 2001; Curcio, 
2010). Friel, O’Connor, and Mamer (2006) emphasize that “a bar’s height is not the value of an 
individual case but rather the number (frequency) of cases all have that value” (p.125). Although 
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previous research studies have highlighted students’ difficulties reading bar graphs (see Shah & 
Hoeffner, 2002), there is little research that indicates how students reason about magnitudes in 
bar graphs with a misleading representation. The purpose of this study is to investigate 
prospective mathematics teachers’ reasoning about magnitudes in bar graphs when they modify 
or re-produce the graphs to overcome the misleading information. The research question of this 
study is: “In what ways do prospective mathematics teachers reason about the magnitudes in 
misleading bar graphs while they go beyond the data?” 

Theoretical framework: Graph comprehension 
Friel et al. (2001) describe graph comprehension as “graph readers’ abilities to derive meaning 
from graphs created by others or themselves” (p.132). The researchers identified three important 
components of graph comprehension. According to the first component, the graph reader “must 
understand the conventions of the graph design” (p.152) to be able to obtain information from 
the graph. For example, “a bar graph highlights relative magnitudes, which are considered analog 
information; numerical values can be approximated only through scale interpolation” (p.140). In 
this sense, the graph reader should be able to read the specifiers and labels on bar graphs. 
Specifiers are visual representations that signify the data values (e.g., bars on bar graphs) or 
marks that indicate relationships between the data values on a graph (e.g., the box in a box plot 
that signifies the interquartile range). Curcio (2010) refers to the level of graph comprehension 
that “requires a literal reading of the graph” as reading the data. The background information 
(coloring, grid, etc.) may help the reader identify the specifiers in the graph (Friel et al., 2001). 
Also, Friel et al. (2001) refer to the axes, scales, grids and reference markings as the framework 
of a graph. 

The second component of graph comprehension emphasizes manipulating “the information read 
from a graph” (Friel et al., 2001, p.152). Manipulation of the obtained information from 
specifiers in a graph requires making comparisons (e.g., quantities) and calculations (e.g., 
addition, division) to combine and integrate the data – that is also known as interpolation. For 
example, one may compare the relative heights or lengths on a vertically- or horizontally-
oriented bar graph, and find the proportional relationship between the values of individual 
specifiers. Curcio (2010) associates this level of graph comprehension with reading between the 
data.  

The third component of graph comprehension emphasizes processing the information in the 
graph taking into consideration the context of the data “to generalize, predict or identify trends” 
(Friel et al., 2001, p.152) – that is also known as extrapolation. In extrapolative reasoning, 
students read beyond the data and find patterns or relations that go beyond values already 
displayed or known. As Curcio (2010) highlights, “whereas reading between the data might 
require that the reader make an inference that is based on the data presented in the graph, reading 
beyond the data requires that the inference be made on the basis of information in the reader’s 
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head, not in the graph” (p.9). Extrapolative reasoning ability may require modifying or re-
producing a graph to present and demonstrate new information that is not found in the graph.  

Methods 
The participants of this research study were selected from a group of prospective middle school 
mathematics teachers who were enrolled in a methods course about teaching mathematics with 
technology. The class met two hours per week and the first author was the instructor. The 
participants were in their third year of the program. One week prior to the study, prospective 
mathematics teachers (PSTs) learned about making graphs (e.g., bar graphs, histograms, etc.) in 
Microsoft Excel and GeoGebra. However, the instructions for making graphs aimed to develop 
PSTs’ technological knowledge. The data were collected from nine PSTs (four female, five 
male) outside the regular class hours. The PSTs were not taught how to make misleading graphs 
in the computer programs. The participants worked in groups of three. For this study, we report 
on results from one of the groups. The group members were Nese, Sevgi, and Umut (all names 
are pseudonyms). Nese and Sevgi are female, and Umut is male. 

The participants solved three tasks, and worksheets guided them to investigate vertically-oriented 
bar graphs. The PSTs were not informed that the graphical displays were misleading. Also, the 
worksheet questions did not ask the participants to modify or re-produce the bar graphs. For each 
task, they were given a color-printed worksheet with four additional black and white copies. 
After the completion of the three tasks, a whole-class discussion was generated. In the first 
worksheet, the vertical axis of the bar graph was not equi-spaced (see Figure 2a). The graph with 
some data labels indicated the amount of money a child was given by his family members. The 
PSTs used the horizontal lines on the graph to identify the missing data labels on the y-axis. We 
asked them to find the relative ratios of money of the child’s family members (e.g., the ratio of 
money with grandfather and uncle). In the second worksheet, the 2015 PISA scores of three 
countries (USA: 470, Croatia: 464 and Greece: 454) were represented with a bar graph whose y-
axis did not start with zero (see Figure 3). In this task, The PSTs most often reasoned about 
counter examples. For example, they were asked how they would respond to a child who claimed 
that the score of Croatia was 6 times of the score of Greece. The third worksheet asked the 
participants to compare the number of singles a music recording studio sold using the 
information from a bar graph that incorporated a third dimension. However, in this study, results 
from the third task were not reported.  

While the participants were solving the tasks, the first author monitored them. Also, he became 
involved in group discussions, gave prompts, and asked follow-up questions. A video camera for 
each group was placed at a fixed view. Also, the second author videotaped the interactions 
among the PSTs while the instructor was monitoring their progress. The PSTs’ gestures were 
captured from the video recordings. After the study, the researchers constructed verbatim 
transcripts coordinated with gestures and written responses of the participants.  
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In this study, we did not focus on the PSTs’ literal reading of the graphs. Rather, we were 
interested in identifying moments when the PSTs made sense of information that was not 
provided directly in the graphs. The participants’ reasoning about the graphs to obtain 
information was categorized into two: interpolative and extrapolative. On the one hand, the 
PSTs’ use of specifiers (e.g., horizontal lines on the graphs) to find an unknown value, 
comparison/manipulation of information in the graphs and arithmetic calculations were identified 
as their interpolative reasoning. On the other hand, we categorized the PSTs’ strategies for 
rescuing the graphs from misleading information as their explorative reasoning, in particular 
when they modified or re-produced the graphs. We focused on in what ways they took into 
consideration the magnitudes of the bar graphs and estimated a value following a pattern in their 
new data displays. For example, we identified whether they preserved the lengths of the bars 
when they modified the graphs. The central focus of the results was on the PSTs’ extrapolative 
reasoning in the process in which they rescued the graphs from misleading information. We also 
analyzed the PSTs’ interpolation process to show how they laid the foundations for their 
explorative reasoning.  In other words, the interpolation process was helpful in identifying how 
they linked their modified/re-produced graphs with their interpolative reasoning to indicate the 
true relationships between the categorical variables.  

Results 
In the first task, the graph indicated the amount of money a child was given by his family 
members. The PSTs found the missing specifiers on the y-axis counting the lines between two 
known numeral values using them as reference markings using their interpolative reasoning. 
Then, they focused on the arithmetic calculations as asked in the worksheet. When they were 
asked if they could identify the relationships between the categorical variables without making 
any calculations, they considered the magnitudes of the bars. The researcher’s prompt 
encouraged them to modify the graph. For example, Sevgi measured the length of the 
grandfather’s bar placing her thumb and index fingers on the bottom and top of it as shown in 
Figure 1a. Then, she kept the same distance between her fingers and made a part-to-part 
comparison between the lengths of bars of uncle and grandfather (Figure 1b). Finally, she figured 
out that the length of the grandfather was two and a half times of the uncle’s. However, in their 
earlier arithmetic calculation, they found the ratio of money with grandfather and uncle was 3.  

 
(a) 

 
(b) 

 
(c) 

Figure 1: (a) Sevgi takes the length of the bar of the uncle as a reference, (b) She makes a part-to-
part comparison between the lengths of the bars of the uncle and the grandfather, (c) She notices 
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the length of the grandfather is two and a half times of the uncle’s 

Then, using explorative reasoning, they modified the bar graph to be able to use the lengths of 
the bars and to check whether the ratios between the categorical variables were consistent with 
their calculations.  

The PSTs equalized the scale of the axis and increased the numeral values of the y-axis by 2. 
However, this modification gave rise to changing the amount of money given by the family 
members. For example, the numeral value of the mother changed from 28 to 16. Then, they cut 
off the bars from the value of 2, and added the cut-outs onto the corresponding bars as shown in 
Figure 2a. This strategy allowed them to make the intervals increasing by 4. They located the 
cut-outs onto each bar by adding 2, and preserved the lengths of the bars. Then, they referred to 
the intervals between the horizontal lines as units and counted them (Figure 2a). Umut said: 
“Then, if we look at the amount of the money the grandfather and father gave: 1-2-3-4-5-8-9 
[pauses]. Isn’t it one half [means 9.5]? If we count the father’s: 1-2-3-4 and a half. 9.5 and 4.5.” 
Using interpolative reasoning, the PSTs noticed that the re-labeled specifiers (increments) did 
not match with their arithmetic calculations. The strategy of adding cut-outs onto the 
corresponding bars did not satisfy the participants. They investigated new strategies to overcome 
the misleading information. 

 
(a) 

 
(b) 

Figure 2: (a) PSTs cut off the bars from the value of 2 and added the cut-out bars onto the 
corresponding ones, (b) They quit adding the cut-out bars onto the corresponding bars 

Nese noticed that if they canceled out the cut-outs (Figure 2b) and counted the intervals between 
the horizontal lines, the ratios between the categorical variables were the same as those in their 
earlier calculations. Nese’s strategy made the graph equi-spaced and allowed them to count the 
intervals between the horizontal lines. Then, the PSTs compared the magnitudes of the 
grandmother and the aunt in their new strategy. For example, in their earlier calculation, they 
found the ratio of money with aunt and grandmother as 2.5 (20/8), and Nese used this 
information to support her claim. The below excerpt indicates Nese’s approach to the problem. 
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Nese:  For example, let’s do not think of that portion [the cut-out] as if it was not 
there. Let’s write zero here and when we count the intervals [between the 
horizontal lines], we find the same ratios. 

Umut:  Let’s check aunt’s and grandmother’s. Let me check the aunt’s. 

Nese:  5 is for the aunt, and 2 for the grandmother. 

Umut:  2.5 [the ratio]. Exactly [the same]. 

Sevgi: Yes. Give me a high five! 

In the second task, the participants most often talked about a child’s claim that the PISA score of 
Croatia was six times of the score of Greece. The PSTs read the specifiers and concluded that the 
claim of the child in the problem context was false. However, Sevgi emphasized that, in the first 
task, they changed the location of the zero baseline and used the intervals between the horizontal 
lines. She suggested re-labeling the zero baseline, as it was 452 in the original. In other words, 
she considered the relative magnitude 452, and subtracted it from the numerical values of the 
bars. Accordingly, she revised the numeral values of the countries as shown in Figure 3 (USA: 
18, Croatia: 12, Greece: 2). Nese and Umut did not agree with Sevgi, and they convinced her by 
saying: 

Umut:  We can compare proportionally as they have equal intervals [in the first task], 
can’t we? But, the student [child] is misled here because the graph [y-axis] 
does not start with zero. It [the child’s claim] would count right if this [Figure 
3] started with zero… 

Sevgi:  We removed [the cut-outs] here in this bar graph [refers to the first task]. We 
removed the same values from all. We can think of it “6” [the ratio of scores 
with Croatia and Greece] when we take away the same numeral values from 
all. 

Umut:  Since it asks for the total score, I think we should not take them away. 
Especially, we will consider it 470 (for USA) and they [the scores] cannot be 
reduced. 

 
Figure 3: Sevgi re-labels the numeral values of the countries 

The PSTs made a decision to start the graph at zero, in order to be able to show the true 
relationships between the scores of the countries. They extended the magnitudes of the bars to 
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the zero baseline (Figure 4a). When the instructor became involved in the group discussion, 
Umut made a gesture as shown in Figure 4b to demonstrate that they extended the zero baseline. 
He said: 

Umut:  To able to show the actual magnitudes. The graph shows the score of Greece 
with an increment of 2, but it actually earned a high score, 452. Namely, there 
is not much difference [in magnitudes] between 452 and 470. It shows only the 
upper section [of the bar graph] with an increment of 2. It looks like it [the 
graph] conceals the actual graph in the background. So, we wanted to make it 
clear that it [the ratio of scores with Croatia and Greece] is not 6. Eventually, 
the child numerically sees that 464 is not six times of 454. 

 
(a) 

 
(b) 

Figure 4: (a) PSTs extend the magnitudes of the bars to the zero baseline, (b) Umut makes a 
gesture that signifies the extension of the bars 

Concluding remarks and implications 
The results of this research suggest that the PSTs focused on performing arithmetic calculations 
in their early reasoning about the task without considering the graphical displays were 
misleading. They performed arithmetic calculations to find the proportional relationships 
between the variables. When the instructor gave a prompt about finding the relationships without 
making any arithmetic calculations, the PSTs stressed the misleading information. They 
identified the proportional relationships taking into consideration the lengths of the magnitudes 
of the bars, and figured out that the relative ratios did not match with their earlier arithmetic 
calculations. Then, they became more interested in modifying or re-producing the graphs to 
show the true relationships between the variables. They used their calculations as a checking tool 
when they modified or re-produced the bar graphs, and re-labeled the numeral values of the 
variables to overcome the misleading information. The PSTs modified the zero baseline to make 
the y-axis equi-spaced, cut off the bars from specifiers, and added the cut-outs onto the 
corresponding bars. They tended to preserve the lengths of the bars invariant when they modified 
the location of the zero baseline. After they checked their arithmetic calculations, the PSTs 
noticed that the relationships between the categorical variables were not consistent with their 
calculations. In this sense, their arithmetical calculations (interpolative reasoning) laid the 
foundations for their explorative reasoning. 
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We observed differences in graph comprehension abilities of the participants. For example, 
Sevgi focused on the magnitudes of the bar graphs when she made an inference. On the other 
hand, Nese and Umut took into account the arithmetic calculations as a checking tool. As Friel et 
al. (2001) state, graph comprehension requires spatial judgments or modifications in specifiers 
and labels in graphs. Future research may indicate how individual differences may affect graph 
comprehension of students when they make sense of misleading graphs.  

One of the limitations of our study was that the PSTs reasoned about vertically-oriented bar 
graphs. However, the affordances of vertically- and horizontally-oriented bar graphs differ (Shah 
& Hoeffner, 2002). For example, “horizontally oriented bars may be better for other dimensions 
for which the horizontal dimension is more meaningful, such as in depicting data about the 
distance traveled (p.51)”. Researchers may investigate how students’ making sense of misleading 
graphs differs in vertically- and horizontally-oriented bar graphs. 

It is important to examine not only the axes of bar graphs and check whether they are starting 
with zero (when graphing positive values) but also if the axes are equi-spaced. If the y-axis is not 
equi-spaced or does not start with zero, the graph may cause misleading information for the 
reader. However, a bar graph with a zero baseline may also give rise to missing the relevant 
information of data. For example, suppose we measure the body temperature of a person with 
fever in Fahrenheit for a day, at intervals of an hour. If we show the body temperature of the 
person using a zero baseline in a line graph, it may indicate almost a straight line and conceal the 
jumps between the neighboring hours. In this sense, the context of the data matters. 
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Introduction and theoretical background 
The use of drawings when working with geometry word problems will emerge naturally in students; 
however, the strategic use of representations to solve the problem does not. The contribution of 
visualisation to mathematics education, and especially in geometry, is undeniable; however, it is 
worth noting that to make effective use of this tool in the solution of word problems, the student 
will need specific prior knowledge and certain cognitive skills (Schnotz, 2002). Mathematics relies 
heavily on visualisation because it deals with abstract objects (Arcavi, 2003), the possibility to "see" 
the mathematical objects and express numerical information through graphical representations helps 
students understand concepts and solve problems (Edens & Potter, 2007). 

Although the drawings with pictorial characteristics do not seem to be related to performance in 
mathematical modelling and the correct solution, they can serve as a preliminary step to more 
schematic representations (Rellensmann, Schukajlow, & Leopold, 2016). This sequential process 
from pictorial to schematic drawings contributes mainly to the understanding of the situation and 
the task, which has shown to be particularly useful for students who have more difficulty making 
the transition between the real world and the mathematical world. 

Method 
Research question: What is the role of the drawing that students do when they solve a problem of 
geometry in which they are asked to find the area of a figure that is not presented explicitly but 
results from the relationship of the elements? 

Participants: 20 students of the 9th grade from a public school in Mexico (12 girls and 8 boys) with 
an average age of 14 years. 

Procedure 

For the research, a worksheet was developed including one area problem: A dog is tied to a chain 
that allows a maximum range of 2 metres, attached to a ring that moves in a bar in the shape of a 
right angle whose sides measure 2 metres and 4 metres. What is the area of the region that the dog 
can cover? 

The worksheet was applied in a single session with all the participants without any previous 
intervention. This study only considered the analysis of the drawings made by the students on the 
worksheet to solve the problem. 

Thematic Working Group 24

Proceedings of CERME11 4589



 

 

In the analysis of the representations, two processes were carried out: a classification process and a 
qualitative analysis of the drawings. Three levels of classification of the drawings were made 
considering (1) level of abstraction, (2) relationship with the statement of the problem and (3) the 
explicit inclusion of information in the drawing that is mathematically relevant to solve the 
problem. The qualitative analysis consisted of a finer revision of the characteristics of the 
representations considering the students’ proposed figure; the information included; the 
proportionality of the presented elements; and the transitions between pictorial, schematic, 
operations and result domains. 

Results 
None of the participants was able to draw the expected figure or reach the correct result. Most of the 
students showed some difficulties, inadequately representing the proportions of the objects in the 
situation and paying excessive attention to mathematically irrelevant details, such as flowers, clouds 
and the dog's house. 

The analysis of the drawings showed how the students carry out the transition between the real 
domain posed by the problem and the mathematical domain. Some students make a gradual 
transition, while others move directly from the representation of the situation to mathematical 
operations. Given the above, we can classify the transitions into three groups: (1) pictorial to 
pictorial with data, (2) pictorial to schematic, and (3) pictorial to numerical. 

Conclusion 
Although the use of drawings in solving geometry problems emerges naturally in students, effective 
use of graphic representations must be worked on through activities in the classroom. If the drawing 
activity is kept away from mathematics classes, it is very likely that the students may assign a 
purely decorative function to the drawings. The representations generated by the students can be a 
handy tool for observing their reasoning in such a way that allows us to understand better what they 
know and how they know it. 
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Introduction 
In Chile, mathematical problem solving has been incorporated in the school curriculum. However, it 
has been shown that problem solving activities are practically absent in the classrooms (Felmer & 
Perdomo-Díaz, 2016). Furthermore, despite an emphasis on problem solving in the new curriculum 
for grades 1-8 (MINEDUC, 2012), teachers appear reluctant or unable to incorporate rich problem 
solving practices in their classrooms. Cai and Nei (2007) suggested that students’ performance in 
problem solving is affected by the cultural context, teachers’ beliefs and their practices. In another 
study, we found a mismatch between Chilean mathematics teachers’ beliefs and practices (Saadati, 
Cerda, Giaconi, Reyes, & Felmer, 2018). Teachers have sort of reformed beliefs about problem 
solving, however in classrooms, problem solving is predominantly seen as a set of concrete 
techniques, and teachers focus on the repeated practice of procedures. These conditions and 
circumstances can obviously have an impact on students’ problem-solving ability and on their 
mathematical thinking. In this study, we are going to explore Chilean students’ representation 
strategies to solve the problem on sharing chocolates:  

3 boys share 2 bars of chocolate equally and 8 girls share 6 bars of chocolate equally. Who 
gets more chocolate, the boys or the girls? Explain or show how you found your answer. 

This problem is a process-constrained problem categorized as a non-routine problem for Chilean 
elementary students since they are not familiar with this type of problem. To solve this problem, they 
might fail to consider all of the information presented in the problem, or “compute first and think 
later” (Hegarty, Mayer, & Monk, 1995). Students’ representation might be directed towards using 
division because of the presence of the term “share” and the numbers. It can be represented as 3/2 or 
2/3. We refer to this form of representation as direct-translation. The students could also try to 
construct a representation of the situation being described in the problem (Hegarty et al., 1995). The 
representation constructed based on this approach is usually a more meaningful and concrete way that 
involves the construction of a mental model. We call it a meaning-making representation strategy 
which can become a basis for construction of a solution plan. In this study, we explore the dominant 
and most accurate representation strategies and the rate of success among students. 

Methodology and Results 
The students were asked to solve three problems presented by Cai (2000). Here we discuss the 
problem “sharing chocolates”. Participants were 143 students from several public schools; 72 girls, 
and 71 boys, included 52 sixth graders, 52 seventh graders, and 39 eighth graders.  

There were 74 students who had a plan to solve the problem by following the three-step process. In 
contrast, 52 students did not devise any plan to solve the problem. These students skipped the first 

Thematic Working Group 24

Proceedings of CERME11 4591



 

 

two steps and tried to answer only the third part of the problem which was the sense-making question. 
The rest of the students (17) did not try to solve the problem and left it blank. The results revealed 
that 46 out of 74 (32% of students who followed the three-step process) were able to finish it, and 28 
students stopped before reaching the third part or sense-making question. Among the students who 
followed the process, 17 students out of 74 showed a direct-translation representation – correctly or 
incorrectly – to solve the problem. The rest of the students used a meaning-making strategy. By using 
the meaning-making strategy, 45 students pictorially represented their solution (drawing only or 
mixed with a verbal explanation), the other 12 students just verbally explained their solutions. Finally, 
only 9 students could solve the problem completely without any mistakes; 3 students used a direct-
translation and 6 got the answer by using the meaning-making representation strategy. 

Discussion 
The results of the Chilean grade 6th to 8th students revealed that using the meaning-making 
representation was more prevalent among them. The students’ performance was comparable with 
U.S. students in a similar study done by Cai (2000). However, there was a large rate of failures among 
these students and just a few of them (about 6%) could solve the problem successfully. We believe, 
the mismatch between teachers’ beliefs and practice can explain the gap between their tendency of 
using meaning-making strategies and their failure. The teachers’ reformed beliefs may lead them to 
put more value on meaning-making representation strategies, while their traditional teaching 
approach explain their students’ lack of skills and inexperience with non-routine problems. In fact, 
the failure highlights the necessity of a shift of instruction towards more student-centered practices 
in order to give students more space to develop their mathematical thinking while working with those 
non-routine problems. Therefore, we suggest changing school practices and organizing effective and 
related teachers’ professional development programs.   
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A theoretical discussion of possible connections between some non-conventional external 
representations (i.e., textual tasks of a particular format) and their corresponding internal 
representations (i.e., perceptions of these tasks by mathematics learners) is presented in this paper. 
Our goal is to analyze the interplay between external and internal representations in relation to non-
conventional textual tasks of "who-is-right?" format. Such tasks involve a relatively long textual story 
introducing a situation that can be interpreted in (at least) two contradictory ways, which are 
explicitly given. The solvers of the task are required deciding which interpretation is correct and 
support their decision by an argument that would convince their peers. The presented theoretical 
analysis in terms of representations can serve as a tool for teachers and teacher educators in 
designing tasks specifically tailored to their students' needs. 

Keywords: Experientially real representations, socially shared representation, task design, 
controversy.  

Introduction 
Ways in which mathematical ideas are represented are fundamental for how people learn and use 
these ideas (Heinze, Star, & Verschaffel, 2009). Goldin and Kaput (1996) refer to representation as 
a configuration of some kind that corresponds to, or is referentially associated with, or symbolizes 
something else. According to the National Council of Teachers in Mathematics (NCTM, 2000), 
representation refers "to the act of capturing a mathematical concept or relationship in some form 
and to the form itself" (p. 4). In other words, representations refer to both processes and products of 
learning and doing mathematics.  

Goldin and Kaput (1996) differentiate between internal and external representations. Internal 
representations allude to possible mental configurations of individuals. As such, they cannot be 
observed directly. Rather, they can be inferred based on theoretical analysis, and when appropriate – 
based on behavioral clues, like gestures, speech and acts. In contrast, external representations allude 
to physically embodied, observable configurations such as texts, graphs, pictures, or mathematical 
symbols. These are in principle accessible to observation.    

The theoretical discussion of possible connections between some non-conventional external 
representations (i.e., textual tasks of a particular format) and their corresponding internal 
representations (i.e., perceptions of these tasks by mathematics learners) in this paper corresponds 
with the Call for Papers of CERME11 TWG24 in the following way. We concern with creation, 
interpretation and reflection on external representations in learners' minds, with the purpose of 
depicting and communicating information, thinking about and developing mathematical ideas, and 
advancing understandings. Hence, we address the following question posed in the Call: "How can 
non-conventional representational activity contribute to mathematical thinking?" Specifically, our 
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goal in this paper is to analyze the interplay between external and internal representations in relation 
to non-conventional textual tasks of "who-is-right?" format. 

In the sections below, we present a "who-is-right?" task format, followed by analysis of examples in 
the contexts of algebra and geometry, with particular focus on conjectured internal representations. 
The conjectures, though theoretical, are supported by our experiences of enacting the presented tasks 
with various audiences. The concluding discussion is related to aspects of designing tasks of "who-
is-right?" format, specifically to taking some conventional mathematical tasks and turning them into 
un-conventional ones.  

The "who-is-right?" task format  
An external representation of "who-is-right?" format (henceforth, WIR task) involves a relatively 
long textual story introducing a situation that can be interpreted in (at least) two contradictory ways. 
Rather than asking students to interpret the situation, the contradictory interpretations are explicitly 
given in the voices of two or more virtual characters. As a rule, each interpretation involves argument 
based on attention to some aspects of the story; otherwise, the argument supporting the interpretation 
must be revealed by actual solvers of the task. The actual solvers of the task are required deciding 
which interpretation is correct and support their decision by a convincing argument. 

Such tasks have several representational characteristics. First, the textually presented situation alludes 
to experientially real world of the potential solvers of the task (Gravemeijer & Doorman, 1999). That 
is, the situation is rooted in solvers' perception of experientially real, everyday-life phenomena. 
Second, the task is presented in everyday language, which might be ambiguous once referring to 
mathematical objects or mathematical objects in disguise. Third, the task does not require solving a 
textbook-like mathematical problem, at least not explicitly. Instead, two contradictory claims about 
the situation are presented. The learners are asked to take a stance and defend it. In order to be able 
to do so, the learners need to build two internal representations of the situation by taking into account 
each of two contradictory claims. This activity has the potential to advance their ability to overcome 
the limitations of the experientially real (but subjective) representations, towards building a shared 
representation based on mathematically valid argument that can convince the other learners when 
non-mathematical argument fails to do so. Fourth, the mathematically valid answer to the question 
"who is right?" may be not only of the "one of the characters is right" format but also of non-
conventional formats such as "both are right", or "both are wrong", or "it depends". Such options 
potentially add an element of surprise to the task. Fifth, WIR tasks can be sequenced so that dealing 
with the next task requires not only a comparison between two interpretations of the given situation 
but also comparison of a new situation with the previous one. 

Several WIR tasks have been used in previous studies as research instruments. For example, 
researchers (Buchbinder, 2010; Buchbinder & Zaslavsky, 2013; Healy & Hoyles, 2000) have used 
such tasks for revealing the student conceptions of proof and examples. In particular, Buchbinder and 
Zaslavsky (2013) designed a WIR task based on a claim "For every natural 𝑛𝑛,𝑛𝑛2 + 𝑛𝑛 + 17 is a prime 
number" plus two responses to this claim by virtual student-characters. The first student-character 
argued that the claim is correct because she checked its validity for the first 10 integers, and the 
second student-character claimed that the statement is false because 𝑛𝑛2 + 𝑛𝑛 + 17 is not prime for 
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 𝑛𝑛 = 16. Then 12 high-school students were exposed to the task and asked to determine who was 
right and explain why. All students exhibited indicators of understanding that for a universal 
statement to be true it has to hold for all cases. At the same time, some of these students remained 
convinced that a statement can be 'proven' through examination of several confirming examples.  

Another WIR task was used in a teaching experiment conducted by Koichu (2012) with a group of 
pre-service teachers. The teachers were exposed to two pictures: a picture of the famous Penrose 
triangle and a picture representing a sculpture of the Penrose triangle taken from an angle that created 
an impression that the Penrose triangle can be made as a real 3D object. The students were required 
deciding whether the Penrose triangle indeed could be a 3D object or proof otherwise. This study 
resulted in a description of a particular set of instructional conditions in which mathematical defining 
and proving could be intellectually necessitated for the students.  

In spite of the fact that in both tasks one of the included responses was intuitively more appealing 
than the other one, the tasks proved themselves as triggers for evoking uncertainty in their solvers, as 
well as useful tools for revealing the students' (mis)conceptions and reasoning. These tasks stimulated 
our interest in further developing WIR representational activities as research and teaching tools that 
would correspond to curriculum-determined mathematical topics. In the next section, we present two 
WIR activities, one in algebra and another in geometry, and discuss their common features as well as 
subtle differences inherited in their design. 

Examples and analysis  
The WIR tasks presented in this section are designed for the use with middle-school students. The 
forthcoming discussion of internal representations associated with these tasks is based on our 
experience of enacting and discussing the tasks with two groups of in-service teachers.   

Example 1: Subtle matters related to percentages 

Figure 1 presents the first task in the sequence of three tasks.    

Towards the end of the summer holidays, suitcases are sold with a 30% discount. The final price 
of a suitcase includes VAT of 17%. 

In calculation of the price, one can first take into account the discount and then calculate VAT or 
otherwise. It appears that a buyer and a tax collector have different opinions on this matter.  

Advice from Buyer: I think that one needs 
first to calculate the price including VAT and 
then the discounted price. In this way, the 
discount would apply to a greater number and 
the final price would be lower.   

Advice from Tax Collector: I think that one 
needs first to calculate the discounted price and 
then to add VAT. In this way, the sum of VAT 
would not be influenced by the discount and the 
final price would be higher.   

1. What do you think? 
2. How would you convince a peer who disagrees with you? 
3. How can we decide who is right? 

Figure 1: The first task (discount and tax) 
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We now outline a conjectured scenario of dealing with this task. The student reads the story and 
decides who is right (a buyer or a tax collector) based on the mainly emotionally loaded process of 
taking the perspective of a buyer or of an authority. It was our intention to make the buyer's and the 
tax collector's responses more or less equally plausible for the solver. The process of the task 
comprehending requires the students to create competing internal representations of the situation, but 
at the individual level, one of two internal representation eventually prevails, and the student 
convinces herself that "a buyer is right" or "a tax collector is right". At the collective level, the class 
splits (always worked in our teaching), so that each student can see that his or her opinion is not the 
only possible one. At this stage, many students cannot think of an argument in support of the opposite 
opinion, so the split is perceived as a surprise. When asked by the teacher to convince the opponents, 
the students attempt to explicate their internal representation and produce explanations in everyday 
language often accompanied by gestures. Then, the students are surprised even more when they find 
out that these explanations are incomprehensible or perceived as too vague for their counterparts in 
order to be convincing. A collectively shared need to find a way of getting to the common ground 
arises. At this stage, an option to employ mathematical apparatus emerges, usually as a spontaneous 
suggestion of one of the participants. This is probably because of the general context: after all, the 
discussion occurs at a mathematics lesson. Some meta-level questions arise with the help of the 
teacher. For example, what argument can be convincing? How can the buyer’s or the tax collector’s 
argument be expressed mathematically?  

Next, the teacher suggests the students to attempt to mathematize the situation, in the hope to construct 
a shared (external) representation that would be convincing for all. The students begin using 
mathematical language, first in order to test the correctness of their initial claims; then in order to 
assess their claims as well their opponents' claims. In this process, the classroom map of agency 
changes, and the teacher does not act as a source of knowledge about the correct solution but as a 
facilitator of establishing the new discursive rules (Sfard, 2002), and as a mediator of the discussion. 
In this way, the teacher stops being an authority whose role is to approve or disapprove the student 
solutions, but becomes an authority who can support or disregard (for example, by re-voicing) types 
of arguments produced by the students. This situation promotes the individual student argumentative 
talk based on gradually established rules (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014).  

Eventually, the surprising to many students resolution of the given situation – the buyer method and 
the tax collector method lead to the same final price – may ease the emotional tension in class. This 
would be a good moment to present the next task of the sequence (Figure 2). 

Presenting this task second, one cannot but compare it with the first task. In this context, the individual 
may create an internal representation of the task by attending to the following parallels: decreasing 
the length of one side is the counterpart of the discount, and increasing the length of the other side is 
the counterpart of the VAT. This may overshadow for the students an important difference between 
the external representations of the tasks. It is now not about the multiplication operations performed 
sequentially, where the second operation is applied on the result of the first operation, hence the final 
answer does not depend on the order. In the second task, each of two multiplication operations is 
applied to the same initial number, and then the results of these two operations are multiplied to find 
the area of a new shape, hence the final result may change.     
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The area of any square equals to the area of a rectangle built from that square by increasing 
one side by 10% and decreasing the perpendicular side by 10%. Is it so? 

Michael: Yes.  

The square sides are of equal length. 
Therefore, adding 10% and cutting 10% of 
the side lengths imply that what you add and 
what you cut is the same.   

Josef: No.  

If the side length is 10 cm, the area is 100 cm2.  
The rectangle will have 9 and 11 as side lengths, 
and the area will be 99 cm2.  

1. What do you think? 
2. How would you convince your peer who disagrees with you? 
3. How can we decide who is right? 

Figure 2: The second task (changing the area) 

In this case, using the same 10% change for the adjusted sides of the square may add to the internal 
representation that leads to the (wrong) conclusion that "nothing changes". For these reasons, reading 
Josef's explanation may serve as an eye-opener, in line with the counterexample for 𝑛𝑛 = 16  in the 
task from the Buchbinder and Zaslavsky’s (2013) study, as presented above. The calculations of Josef 
are easy to follow and validate. Hence, we expect that the discussion of the WIR question would 
rather be quick, and that the discussion of the question "how are the first and the second tasks 
different?" would be longer. Then, the discussion might develop, again, with the help of the teacher, 
in an epistemological direction. Namely, the class may discuss what can be concluded from just one 
counterexample and what argument can be made about whether the Josef example more convincing.  

Our suggested sequence does not stop here. The third task is ready to be presented (Figure 3). 

The perimeter of any squares equals to the perimeter of a rectangle built from that square by 
increasing one side by 10% and decreasing the perpendicular side by 10%. Is this correct? 

Ron: No. 

We just solve this problem and saw that 
it would not be the same.   

Gal: Yes. 

Two sides became larger and two become smaller. The 
additions and cut-outs are of the same size; hence, the 
perimeter will not change.  

1. What do you think? 
2. How would you convince your peer who disagrees with you? 
3. How can we decide who is right? 

Figure 3: The third task (changing the perimeter) 

Reading the third tasks may immediately raise a déjà-vu feeling of we have already solved this one, 
and, indeed, Ron's claim gives room for this feeling. Yet, reading Gal's argument may lead the 
learners to re-consideration of Ron's stance. We believe that for this task to be the third in the 
sequence, middle school students may turn to the search for (external) mathematical representations 
of the situation quicker than in the previous two tasks. And once more, a surprise would await them 
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(after all, Gal is right!), which may evoke a hot discussion of how this task is different from the 
previous one. From our experience, elaboration on the differences between the external 
representations of all three tasks in tacit association with students' internal representations, which 
gradually emerge in the classroom discourse, is a non-trivial endeavor. This was true even for the in-
service mathematics teachers, who were exposed to the sequence, and even for those of them who 
were familiar with a variation of the first task. All the teachers acknowledged the plausibility of the 
above scenarios and expressed the wish to use the sequence with their students.   

Example 2: Dynamic loci of points  

A task presented in Figure 4 follows the WIR format, but it differs from the previous example in (at 
least) three important aspects: (1) it concerns geometry; (2) it requires reconstruction of two different 
arguments rather than comprehending the given arguments, hence the questions to the solvers are not 
as in Example 1; (3) the answer to the task is of "it depends" format.      

Einat and Sarah like touring and exploring. One day they found an old wooden box containing a 
note, written, apparently, by pirates.  The note said: "There is no choice, we retreat. The treasure 
is too heavy and we are forced to hide it. The treasure is in 200 steps from a segment connecting 
the tallest eucalyptus tree and the tallest maple tree of this area, and in 300 steps from the midpoint 
of this segment." 

Einat and Sarah found the eucalyptus and maple trees, but then argue what to do next.  

Einat: There is no chance to find the treasure. 
It just does not exist.  

Sarah: Let's try. With small effort, we have a 
chance to find the treasure. 

1. What might be the Sarah argument?  
2. What might be the Einat argument?  
3. Unver which conditions could Einat or Sarah be right?  

Figure 4: The treasure task 

With no exception, the solvers begin from drawing a sketch (external representation), as the one 
presented in Figure 5.  

 
Figure 5: A sketch for treasure task (E stands for the eucalyptus, M stands for the maple) 

Thematic Working Group 24

Proceedings of CERME11 4598



 

 

At first glance, the sketch supports Sarah's opinion, because the stadium-like shape (represents the 
locus of points at the distance of 200 steps from segment 𝐸𝐸𝐸𝐸) and the circle (represents the locus of 
points at the distance of 300 steps from the middle of 𝐸𝐸𝐸𝐸) intersect in exactly four points. Therefore, 
according to the sketch, the treasure must be located in one of these points, and checking only four 
points is a feasible task. Of note is that creating the above sketch has been proven as difficult for the 
solvers.  With in-service teachers, the most interesting discussions revolved around two questions: 
How can the distance between a point and a segment be defined?" and "What is the locus of points?" 

The most challenging part of the task is to re-construct the argument that may underlie the Einat’s 
opinion. The tentative (but supported by practice) scenario of doing the task relies on the following 
assumption: Any external representation of the task situation by means of a drawing relies on an 
internal representation that includes an assumption about the length of line segment 𝐸𝐸𝐸𝐸. Most of the 
learners intuitively assume that it is longer than 200 steps, as in Figure 5. However, if 𝐸𝐸𝐸𝐸 = 200, the 
locus of points described in the situation would consist of exactly two points. Furthermore, if 𝐸𝐸𝐸𝐸 is 
less than 200 steps, the locus becomes an empty set, and in this case Einat is right. Since the story 
does not include information about the length of 𝐸𝐸𝐸𝐸, but only the information that Einat and Sarah 
found the trees, each of them can be right. Hence, the answer to the task is "it depends". 

The readers are invited to explore the situation by means of a dynamic GeoGebra applet at 
https://www.geogebra.org/m/n5mRrtMf (consider varying the position of point B at the applet).  

Of note is that whether or not a dynamic external representation of the task by means of GeoGebra is 
used, dealing with the task requires the learner to create a dynamic internal representation of the 
situation. This is an additional point of difference: in Example 2, the dynamic representation might 
be continuous, and dealing with the change in Example 1 might require creation of a discrete series 
of static representations.      

Discussion 
On the face of it, turning "conventional" tasks into WIR tasks is simple. Instead of concluding a 
textual description of a situation by an open-ended question (e.g., "would the price change?" or "make 
a map and denote the treasure"), an additional layer of two contradictory arguments by virtual 
characters is added. Yet, we seek arguments that can be perceived by the learners as plausible, so that 
the class would split between favoring one argument over the other.  Hence, designing worthy WIR 
tasks is not as simple as it may seem.  

As mentioned in the introduction, any analysis in terms of internal representation cannot be 
conclusive just because these are not directly accessible. Accordingly, we do not assume that the 
above-presented scenarios are realistic or that we can realistically describe what is going in the minds 
of the solvers. Yet, the value of our analysis is in that it can serve as a design heuristic for teachers 
and teacher educators, like in thought experimentation, when designing WIR tasks.   

Our hypothetical analysis of the interplay between internal and external representations was mostly 
at the level of an individual solver, and thus is in line with the claim made by Rittle-Johnson and Star 
(2011): “comparison is a fundamental part of human cognition and a powerful learning mechanism" 
(p. 221). In addition, we approached the interplay between the individual and the social in 
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implementation of the WIR tasks. In sum, we have argued that a WIR task can present students 
opportunities to engage with classroom-level argumentative talk based on an emerging need to 
resolve conflicting opinions expressed by individuals, and hence to be a step towards constructing 
some socially shared internal representations of the task.  
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In this paper we analyze the practice of a grade 3 teacher. We focus our analysis on teacher-pupils 
interaction in the classroom, aiming to understand how she strives to promote her pupils’ use of 
representations. Data were collected through video recording of lessons and were analyzed in the 
introduction of a task, during pupils’ autonomous work, and in a whole class discussion. The results 
show that the teacher’s actions change according to her pupils’ activity and difficulties and also vary 
depending on the moment of the classroom work. To promote her pupils’ use of representations, the 
teacher adapts the type of questioning and her actions to the difficulties of her pupils. 

Keywords: Representations, elementary school teachers, teacher’s practice, questioning. 

Introduction 
Pupils’ understanding of representations constitutes a fundamental basis for their mathematics 
learning, making it very important to know the way teachers deal with representations in their practice 
(Stylianou, 2010). A representation may be defined as a mental or physical construct that stands for 
a concept and enables to relate it to other concepts (Goldin, 2008). The fact that mathematical 
representations are related to each other in different ways creates difficulties for pupils’ understanding 
and learning of representations (Goldin, 2008). Tripathi (2008) indicates that, in order to facilitate 
pupils’ understanding of a given concept, teachers must use different kinds of representation. Some 
researchers, like Acevedo Nistal, Doreen, Clarebout and Verchaffel (2009), suggest that, as a starting 
point for learning symbolic representations, teachers must encourage pupils to create their own 
informal representations. In this study we aim to understand how an elementary school teacher 
explores a task with her pupils in the classroom, with special attention to the way she strives to 
promote the use of representations. 

Teachers’ practice, representations and questioning 
An important aspect of teaching practice is the way teachers explore tasks in the classroom (Ponte & 
Chapman, 2006). Pupils’ activity on a task is determined by the actions of teachers, the role that 
teachers assume, how they introduce the task, the questions that they ask, and the way how they lead 
whole class discussions (Swan, 2007). Ponte (2005) indicates that the classroom work on a task may 
involve three main moments: (i) introduction of the task which may involve negotiations of meaning 
(Bishop & Goffree, 1986), (ii) pupils’ autonomous work, (individually, in pairs or groups), and (iii) 
whole class discussion. 

Representations play an important role in mathematics. Their understanding is a complex process 
because a representation may have different meanings and in turn, a meaning may have several 
representations (Goldin, 2008). For example, the representation “5” may mean the 5th floor, 5 pm, or 
5 as a quantity and, in turn the meaning of 5 as a quantity, can be represented as “|||||”, “5” or “V”. 
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For that matter, Duval (2006) indicates that, to understand the features of a mathematical object, we 
need to be able to make changes within a representation (treatment) or to change a representation in 
another representation (conversion). 

To support pupils’ learning of concepts, procedures and problem solving processes, the teacher may 
introduce new representations, linking them to pupils’ previous knowledge (Stylianou, 2010). As 
Bishop and Goffree (1986) indicate, teachers must facilitate the interpretation of representations and 
encourage the establishment of connections among representations.  

As pupils work on a task, the teacher’s actions can be analyzed regarding how they promote the 
understanding of representations (Table 1). We defined four categories for pupils’ activity that are 
related to teachers’ actions: (i) support the pupils’ design or selection of a representation; (ii) promote 
the use of a given representation; (iii) promote the transformation of a given representation; and (iv) 
promote pupils’ reflection about representations. In table 1 we assume that there is a mutual influence 
between pupil’s activity and teachers’ actions. This way, pupils’ activity can affect teachers’ actions 
and teachers’ actions promote pupils’ activity. This framework about teacher actions is a specification 
of the general framework indicated in Ponte and Quaresma (2016). 

Pupils’ activity regarding 
representations Teachers’ actions 

Choosing/ Designing 

Promoting the free choice of a representation 
Challenging to choose a different representation 
Guiding about an adequate representation 
Providing explicit suggestions or examples 

Using 

Challenging to use a representation 
Asking to interpret a representation 

Guiding about the use or interpretation of a representation 

Informing pupils about how to interpret or how to use a representation 

(In)validating a representation chosen by pupils 

Transforming 

Challenging to establish treatments, conversions and connections 

Guiding to establish connections 
Guiding to identify possible treatments and conversions  
Inform about treatments and conversions 

Reflecting 
Challenging to systematizations  
Leading to systematizations  
Informing about systematizations  

Table 1: Teachers’ actions in different moments of the pupils’ activity 

Each teacher communicates in a different way with his/her pupils and how and when they do it. To 
Purdum et al. (2015), pupils’ knowledge is influenced by teachers’ questioning. Mason (2000) 
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indicates three different aims in teachers’ questioning: (i) focusing, that is when the teacher question 
pupils through a funneling effect in order to focus them in a certain aspect; (ii) testing, in which the 
teacher analyses pupils’ comprehension, and how they articulate ideas and stablish connections and 
(iii) inquiring, in which the teacher questions pupils to understand what they are thinking. Regarding 
questioning, Blosser (1975) identifies four main categories or question types: (i) managerial, to give 
operating instructions; (ii) rhetorical, used to emphasize an idea; (iii) closed, with a limited number 
of possible answers (iv) open, with a large variety of possible answers, a type of questions used to 
promote a class discussion or pupils’ interactions. In this way, we considered three different types of 
questions, with some subtypes (Table 2). 

Type Subtype Examples 

Focusing Rhetorical We saw this already, didn't we? 

 

Processual 
Could you open your books on page 58? 

What if we look back into the task? 
 

Orienting 
What if you sum it all? 

    
Confirmation Closed How many will we have if you add 10? 

Inquiring Open Do you agree with your colleagues' answer? 
Why? 

Table 2: Different types of teachers’ questions 

Research methodology 
This paper is a part of a wider research about teachers’ practices regarding mathematical 
representations. The participant of this study is a grade 3 teacher, Sónia, from a school cluster in the 
surroundings of Lisbon (where she has been for the last 10 years) and her 20 pupils (teacher and 
pupils’ names are pseudonyms) who have been together since grade 1. During the research, Sónia 
was a member of a team of four teachers with whom she worked regularly, preparing and analyzing 
their teaching. The group indicated that the pupils were used to solve problems similar to the one 
reported on this paper, however, they chose this task taking into account their perception that it could 
be solved using a diversity of representations. Although the main research includes the analysis of 
pre and post classroom sessions, in this paper we only present and analyze teacher-pupils interactions 
during the classroom work, showing how Sónia promotes pupils’ use of representation as they work 
on the following task: “In a theatre play performed by grade 3 pupils, João, Pedro and Ulisses wanted 
to be the King. On the other hand, Ana, Inês and Estrela wanted to play the Queen. How many pairs 
King/Queen may be formed?”. Data was gathered by video recording during class observations and 
through collecting pupils’ written work. It was analyzed through content analysis in the moments of 
introduction of the task, pupils’ autonomous work and whole class discussion. Teacher’s actions were 
categorized according to teachers’ actions indicated in Table 1 and to teachers’ questioning presented 
in Table 2. 
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Sónia’s Class 
Introduction of the task 

To introduce the task, Sónia starts reading the statement of the problem and asks a pupil to go on 
reading it. Then, she guides pupils about the interpretation of the task (she focuses on number of boys 
and girls and the awareness that a problem may have more than one answer) and questions pupils 
through confirming questions about the conditions of the problem. At a certain point, a negotiation 
of meaning took place, since the pupils did not know what a “pair” was. Sónia challenges them to 
interpret this meaning through inquiring questioning (“Can I have two pairs and a half?”, “What is a 
pair?”), but the pupils remain silent. Then she decides to question them through confirmation 
questions (“How many persons do I have in a pair?”), getting the interpretation from a pupil as “A 
group of two!” 

Pupils’ autonomous work 

The pupils work autonomously for ten minutes, but Sónia notices that some of them struggle to 
understand what to do and she decides to discuss their difficulties collectively. She questions the 
pupils with confirming questions in order to guide them about the interpretation the statement of the 
problem (“Who can be the King and Queen?”, “Only a boy can be the King”, “Who are they?”). She 
suggests a specific representation to help the pupils to interpret the statement of the problem, by using 
an active representation, referring to the pupils’ reality as if they were, at the time, involved in the 
school theatre play (“Imagine that . . . I am going to pick the King and Queen!… These three girls 
would raise their arms . . . And these three boys wanted to be the King… And now… Which are the 
possibilities?”). At the end of the discussion she challenges the pupils to use an adequate 
representation through inquiring questioning (“Let us discover!?”).  

A pupil, Angelo, says that it is possible to get three different pairs (Figure 1a). Sónia challenges him 
to interpret his representation through inquiring questioning (“Can you explain me what this is…?”). 
The pupil says that he made a “table” picking the boys and girls randomly. Sónia guides him about 
the use of his representation through inquiring questioning (“Why João does not like Inês or Estrela? 
Is he angry with them?”). As Angelo does not understand that his answer is incomplete, Sónia changes 
her actions again and informs Angelo that he did not consider that each boy could be paired with three 
different girls (“How many are the possibilities? It does not say: ‘Tell me three [possibilities]…’”). 
When the pupil acknowledges that he has an incomplete answer she lets him continue working. Later 
Sónia comes back to see his work (figure 1b) and she challenges him to interpret the chosen 
representation through inquiring questioning (“What are you doing?”, “What are you repeating 
here?”). Angelo then explains why he considers nine pairs as he describes his representation (“If the 
first [group] is made… It has three [pairs]! Other [group]… It has one pair, another pair, another 
pair… They are three [groups]! (pointing to the third group) One pair, another pair, another pair… 
Three [more pairs]!”). 

Thematic Working Group 24

Proceedings of CERME11 4604



 

 

     
Figure 1 (a and b): Angelo’s representations before and after Sónia actions 

Later, another pupil, Joaquim, begins to complain loudly, because he feels that he is spending too 
much time on his representation (he drew every Queen and King in detail). Assuming he had to draw, 
Joaquim questions Sónia. Noticing that more pupils are using similar representations, she decides to 
guide pupils with confirming questioning (“Did anyone told you: Spend a lot of time on drawings!? 
Or to draw all the Kings and Queens?). Another pupil, Fernando answers (“No! Why [should we 
draw]?! They have names!”) and fulfils the aim of Sónia. Then, she reinforces the pupils’ free choice 
of a proper representation (“If you think that you are taking too much time… Don’t do it…”. A few 
moments later, she returns to see his work) (figure 2). 

 
Figure 2: Joaquim’s representation 

Sónia challenges Joaquim to interpret his representation using inquiring questioning (“What are you 
doing?”) and he responds correctly (“I made the first group! Then I draw a line and divided the first 
group from the second! João, Inês. Pedro, Ana. Ulisses, Inês… And João, Estrela. Pedro, Estrela. 
Ulisses and Ana! And there are no more [pairs]!”). At a certain point most of pupils had solved or 
tried to solve the task and Sónia decides to begin the whole class discussion. 

Whole class discussion 

During the pupils’ autonomous work Sónia noticed that many of them had trouble in choosing a 
proper representation and in identifying the number of possible pairs. She decides to begin the whole 
class discussion by inviting Luís to present his solution (he has an incomplete answer). She asks him 
to interpret his representation using confirming questions (“Why did you not consider João and 
Estrela?”). Based on the representation of Luís she suggests another representation – a scheme with 
circles, arrows and crosses (Figure 3a), and the pupils acknowledge that it was an incomplete answer 
(Luís: “Ah! He can [also be paired] with Ana!”).  

a b 
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Figure 3 (a and b): Sónia’s representations 

During the remaining of the discussion, Sónia actions vary greatly. Sometimes she challenges pupils 
to systematize through inquiring questioning (“Why have not you done that?”, “Are there more 
possibilities?”) but when they do not respond, she leads the pupils to establish connections and to 
identify conversions and she informs the class about systematizations. 

This task had a follow up question “During the rehearsals, Inês decided that she wanted to drop out 
of the play. How many pairs are now possible?” During the moment of autonomous work, only the 
fastest pupils got to solve this question. However, faced with the class difficulties in the whole class 
discussion, Sónia decides to solve it in whole class and she challenges the pupils:  

Sónia: How many pairs are there right now? (some pupils answer “six” loudly) Why? 

Laura: Because João can be [a pair with] Ana and Estrela. . . Pedro can be with Ana and Estrela 
. . . And Ulisses can make [a pair] with Ana and Estrela… It’s six!! 

Sónia: So Laura says that João can be a pair with Ana or Inês (she writes the names on the board 
and she connects João with Ana and Estrela as she speaks)… So… Two possibilities 
for João (she writes the number “two” on the left of the first representation)… Pedro 
can be a pair with Ana and Estrela… [He has as well] two possibilities and Ulisses 
with Ana and Estrela (she continues both representations as she speaks) (figure 4)! 
So… All together (she transforms the “two” into a vertical calculus)… 

Pupils: Six!!!! (the teacher writes “six” below the vertical column of 2s) 

 
Figure 4: Teacher’s diagram and symbolic representations 

As Sónia challenges her pupils to interpret the question, Laura explains easily to the class how she 
thought. Sónia transforms Laura’s explanation into a written representation (figure 4), in order to lead 
her pupils to establish connections between representations. Afterwards, Sónia leads them to make 
connections between all representations (figures 2a, 2b and 3). She ends the discussion by suggesting 
the multiplication sign (“If we have… Three boys [she writes “3” below the boys’ names] and three 
girls ([she writes “3” below the girls’ names]… I have (she puts the × sign writing 3×3)… Nine! Nine 
possibilities!”). 

a b 
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Conclusion 
During the introduction of the task, most of Sónia’s actions were focused in promoting pupils’ 
understanding of the statement of the problem, by guiding them through confirming questions (Who? 
How? How many?). As several pupils had trouble with the meaning of the word “pair”, Sónia handled 
this problem leading a negotiation of meaning, challenging the class through inquiring and guiding 
questioning. In that way, Sónia’s actions begun by addressing the understanding of the statement of 
the problem, so that pupils could think about how to solve it and figure out what type of representation 
is more adequate. 

During the moment of autonomous work, Sónia led the pupils to write their answers and 
representations and to justify them. She made the pupils to convert their mental representations into 
written ones. While interacting with the pupils, .Sónia used challenging actions through inquiry 
questions (“Explain me that…”, “I am not understanding…”). When this did not work, she changed 
her actions and questioned pupils with confirming questions, leading them to explain their 
representation. Usually, she seemed to re-evaluate her pupils’ activity and shifted between actions in 
order to take them to use adequate representations. At the beginning of pupils autonomous’ work, 
Sónia promoted pupils’ free choice of representations and did not influence her pupils’ work. Later, 
while pupils were using and transforming their representations, she did not suggest alternatives nor 
guided them to find conversions or treatments, even when they were struggling. In that way, her 
actions (i) enabled the emergence of a large variety of representations to be considered during the 
whole class discussion, (ii) supported the establishment of connections; and (iii) promoted pupils’ 
reflective activity about their own representations.  

In the whole class discussion, most actions of Sónia were informing about new representations and 
informing and guiding the pupils to figure out the connections and transformations that they could 
do. Due to her pupils’ difficulties during their autonomous work, she felt compelled to systematize 
all the information and to act with more guiding actions. As in McClain (2000), the pupils’ 
representations had less relevance. In fact, Sónia used pupils’ representations as a starting point for 
discussion, and then she introduced her own representations. At the end of the discussion, she 
suggested the sum and multiplication signs as adequate representations and connected them to her 
first representation (that she made from a pupil’s explanation). However, since there was no further 
discussion, it is unclear what understanding pupils made of that.  

In summary, during the three phases of the work, Sónia’s actions tended to change according to her 
pupils’ answers and difficulties. At the introduction of the task, Sónia considered necessary to support 
the conversion of the statement of the problem into a different representation. Although pupils knew 
the multiplication sign, this did not mean that they knew how it can be used to model situations as in 
this problem (Acevedo Nistal et al., 2009). In that way, at the end of the discussion, the teacher felt 
the need to guide her pupils about the use and interpretation of the multiplication sign. Only in future 
classes, one may know if this led the pupils to understand the use of symbolic representation in this 
kind of situations. In this study, we see that Sónia changed her actions according to pupils’ activity 
in order to promote their use of representations. When pupils had an organized strategy and an 
adequate but incomplete representation, she questioned them, so they could review their strategies 
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and representation and find out how they could finish the task. When pupils had a disorganized 
strategy and an adequate but incomplete representation she tried to help them to understand why the 
representation was incomplete, focusing in the need of using a more organized strategy. And when 
the pupils had an inadequate representation she questioned them, guiding the pupils to choose a 
different representation and strategy. 
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The explaining of mathematical terms is part of both learning and teaching mathematics. In this 
study, explanations, in the forms of a video in sign language, a video and an audio recording in 
spoken language (all on the subject of quadrilaterals), are compared. Therewith, the explanation 
process is understood as semiotic mediation, as proposed by Hasan (2002, 2005). The question 
regarding which role the modality plays in transitioning from specific geometric forms to general 
statements of the geometric forms is also pursued. 

Keywords: Semiotic mediation, sign language, spoken language, use of representations.  

Introduction 
The explaining of mathematical terms is part of both learning and teaching mathematics. With this, 
the process of explanation can be understood as semiotic mediation (Hasan, 2002, 2005), which refers 
to a “mediation by means of the modality of language” (Hasan, 2002, p. 112) This study focuses on 
the modality of language, or to be more specific, on the differences in explanations in sign language 
and in spoken language. For the subject matter of the ‘House of Quadrilaterals’ (a hierarchic structure 
of different quadrilaterals; see figure 1), three medially different explanations were developed along 
the lines of the same subject analysis: one video and one audio product, both in German spoken 
language, along with one video in Austrian Sign Language (ÖGS1). Thus, this study focuses on the 
question: What roles do modalities of spoken and sign language play in transitioning from specific 
geometric forms to general statements of the geometric forms? 

Semiotic mediation of a geometrical concept 
Hasan (2002, 2005) considers ‘semiotic mediation’ as a process, in which a mediator mediates 
something to a mediatee, the addressee. Though, the details of the mediation, regarding modality and 
where it took place, can differ (cf. Hasan, 2005). For the process of mediation, Hasan (2002, p. 115) 
distinguishes between acting by doing and acting by saying, which she defines as material action and 
verbal action, respectively. In the context of this paper, for example, material action includes writing 
down or pointing at mathematical inscriptions on blackboard or on pinboard (see Figure 2). Both 
forms of action can take place independently, though possibly in the same place or even 
simultaneously. In the last case, Hasan differentiates between ancillary verbal action, where “verbal 
action is assisting in the conduct of the ongoing material activity” (p. 116) and constitutive verbal 
action, where the verbal action is not “running in parallel” (p. 116) with the material action, but is 
pivotal for the topic of a discussion. Hasan primarily considers daily conversations, wherein a 

                                                 
1 ÖGS stands for “Österreichische Gebärdensprache“. 
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physical action is commented on and, after a shift from ancillary to constitutive verbal action, the 
discussion then distanced from the physical level to then focus on topics, which go beyond the 
physical level. Hasan considers this shift to be of importance because, after such a change, an 
additional invisible mediation can take place in which habits of mind can be communicated.  

Mathematical inscriptions (on paper, on the chalkboard, etc.) and experimentation with these is a 
fundamental part of mathematical activity (cf. Dörfler, 2016), which is principally of material nature. 
With the help of inscriptions, one can not only provide for concrete propositions, but can also 
generalize these. This is especially visible in geometry when, for example, quadrilaterals are 
compared and general propositions are made. Dörfler (1991) describes this as an “empirical 
generalization”, though the “basic process is to find a common quality or property among several or 
many objects or situations (mostly from sense perceptions) and to notice and record these qualities as 
being common and general to these objects or situations” (p. 65). For example, the figurative forms 
of geometric inscriptions can be compared and then generalizations can be made. For instance: ‘Every 
square is a rectangle, but not every rectangle is a square.’ 

How can an explanation, which leads to a generalization, differ with different language modalities 
such as sign language and spoken languages? Sign languages are natural languages, just like spoken 
languages. Though, these are visual, in contrast to auditory spoken languages. The consequence of 
this is that different visual levels can be processed simultaneously (cf. Grote & Linz, 2003). 
Particularly, signs utilize space in a distinct manner: Often times, in narratives, a “singular aspect” is 
focused on and located in the sign space. This point of focus is referred back to throughout the 
narration (cf. Grote, 2016, p. 144). One example is the description of a picture: In spoken language, 
a picture is typically described in a linear fashion, for example, from left to right. Contrasting to this, 
in sign language, a central object is described and all other objects are then related to it.  

A further central characteristic of sign language is the iconicity and indexicality of many signs, 
especially in terms of mathematical signs (cp. Krause, 2017; Wille, submitted). An icon, understood 
in the sense of Peirce, represents relations (cp. Hoffmann, 2007, p. 3; Peirce EP II 13). Mathematical 
signs rather frequently picture either the apparent relational structure of mathematical inscriptions or 
are similar to operations with the inscriptions. This is not limited to geometric forms only (cp. Wille, 
submitted), even if such are the focus of this study. To provide for an example, in Austrian Sign 
Language (ÖGS), the sign RECTANGLE2 is communicated by tracing the geometrical form of a 
rectangle with the fingers. The sign ROTATION, on the other hand, resembles the actual operation of 
rotating a geometric form (cf. Schreiber & Wille, submitted). This principally means that 
mathematical ÖGS signs often look like concrete inscriptions. Although signs are used symbolically, 
just as often as words in spoken languages, this “does not imply that the iconic dimension of a 
linguistic sign becomes completely blended out or deleted” (Grote & Linz, 2003, p. 35). In the 
following, the question regarding how the transition from specific forms to general propositions can 
take place in sign language is compared to spoken language. 

                                                 
2 In this study, ÖGS signs are written in gloss with capital letters as is common in sign language literature. (cf. Skant et 
al., 2002). 
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Three different explanations regarding quadrilaterals 
Three medially different explanations on how a square is related to other quadrilaterals were 
developed on the basis of the same subject analysis at the universities of Giessen and Klagenfurt: 

For the video in spoken language, based on the subject analysis, a script was prepared with different 
scenes, containing the action of the students, the spoken text and material to use in the video (see the 
example below). This script was critically discussed with the students and optimized. In the video, 
reproductions of the geometrical figures were successively pinned to the board. These figures were 
discussed and relationships between the figures were identified and explained. 

For the audio recordings, the script dialogue was developed so that a pair of both male and female 
speakers reciprocally demonstrated the relationships between the quadrilaterals, which, in this case, 
are not presented in the form of a picture. 

The realization into Austrian Sign Language (ÖGS) took place in cooperation with a deaf colleague 
from the center for sign language and hearing-impaired communication of University Klagenfurt. For 
this, a script in German written language served as the basis for a discussion in sign language, 
concerning how this text could be properly realized. This was then transferred to a teleprompter, in 
gloss, which was signed with slight variation in the video. Geometrical forms were also attached to a 
bulletin board. For the spoken language realizations, in the forms of both audio and video, scripts also 
served as the foundation. Though, these scripts were not changed, due to the fact that there was only 
a shift from “writtenness” to “orality” (see Schreiber, 2013, p. 1598).  

These videos and the audio do not have the purpose of replacing lessons, but were rather developed 
with the intention of comparing various modalities of the mathematical explanation. For this reason, 
the influence of such explanations on students is not being focused upon. 

Analysis of videos in sign language from the standpoint of Hasan’s theoretical 
perspective 
In contrast to mathematical terminology in spoken language, mathematical signs feature an inherent 
form of materiality. In ÖGS, forms such as the square, rectangle and rhombus are traced with the 
fingers. The sign ROTATION not only depicts that something is being rotated, but one can also see the 
type of object. Furthermore, for the sign PARALLELOGRAM, a right-angled parallelogram is 
transformed into a non-right-angled parallelogram (see Figure 1). This means that in ÖGS, the 
difference between material action and verbal action is not as distinguishable as in German spoken 
language. 

 
Figure 1: The ÖGS signs SQUARE, RECTANGLE, PARALLELOGRAM and ROTATION 
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Which shifts from ancillary to constitutive verbal action are thus discernable in the ÖGS video? At 
first, the ÖGS video will be compared to the corresponding script. In the next section, a comparison 
to the spoken language video and audio follows.  

When comparing the script text for the ÖGS video with the actual transcript for the ÖGS video in 
gloss, it can be seen that in the ÖGS video, ancillary verbal action increases and, simultaneously, 
constitutive verbal action decreases. The following section demonstrates this noticeably. 

The following text is an excerpt of the script of line 42 to 47: 

Script Text in German English Translation 
42  Also: Dieses Rechteck ist kein Quadrat. So, this rectangle is not a square. 
43 Es besitzt nicht alle Eigenschaften, die das 

Quadrat hat. 
It does not possess all the properties of the 
square. 

44  Aber wie sieht es andersherum aus? But, what about the other way around? 
45  Ist ein Quadrat ein Rechteck? – Ja! Is a square a rectangle? – Yes! 
46  Jedes Quadrat ist ein Rechteck. Es ist ein 

besonderes Rechteck. 
Each square is a rectangle. It is a specific 
rectangle. 

47  Es besitzt alle Eigenschaften eines 
Rechtecks. 

It has all the properties of a rectangle. 

The corresponding transcript (in gloss) for the ÖGS videos is the following: 

Transcript for the ÖGS videos in gloss Translation in English 
42  IX RECHTECK NICHT INHALT QUADRAT This rectangle is not a square 
43  NICHT ALLE EIGENSCHAFT because it does not have all the properties. 
44  IX QUADRAT INHALT JA  RECHTECK This square is indeed a rectangle. 
45  AUFPASSEN QUADRAT IX BESONDERS INHALT 

ALLE EIGENSCHAFT DA DA DA   
It should be noted that this square is a 
specific one (a special rectangle), since 
all properties are fulfilled. 

46  ABER RECHTECK NICHT IMMER QUADRAT But a rectangle is not always a square. 
47  BEISPIEL IX RECHTECK INHALT KEIN 

QUADRAT 
For example, this rectangle is not a 
square. 

In the section above, there is a shift to constitutive verbal action. First, in lines 42 and 43, it states: 
“So, this rectangle is not a square. It does not possess all the properties of the square.” This refers to 
the specific rectangle, which is attached to the bulletin board in the background and was used to speak 
about reflections, rotations, parallel sides and right angles. After this, at line 44, there is a transfer to 
constitutive verbal action, since all squares are now being talked about in a general way: “But, what 
about the other way around? Is a square a rectangle? – Yes!” Instead of speaking about “this square”, 
it is now called “a square”. Thus, the verbal action changes from speaking about the concrete forms 
to then speaking about forms of one type in general. 

In contrast to this, the verbal action in the corresponding part of the ÖGS video is, with the exception 
of line 5, ancillary. The ÖGS sign IX is an indexical sign, with which the pointer finger signs. It can 
be translated with “this”. It is noticeable that only in line 46 there is constitutive verbal action. This 
means that only one shift from ancillary to constitutive verbal action is between lines 46 and 47. The 
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expression “a rectangle is not always a square” can be described in no other manner than generally. 
All other sentences concretely reference the rectangle on the bulletin board. 

A second thing is noticeable in this section, when comparing the ÖGS video with the script text: In 
the script, a concrete rectangle is at first discussed and then the discussion moves to only generally 
talk about squares. In contrast to this, “IX RECHTECK” (this rectangle) seems to act as an anchor in the 
ÖGS video. This occurs at both the beginning and the end and acts as the central point to which the 
rest then references. Such concurs with the observations, noted above, stating that sign language 
narratives often place something singular in the focus of attention, which is then referenced back to. 
In this section it’s “this rectangle”. In the context of the whole ÖGS video, however, “IX QUADRAT” 
(this square) takes on this role. 

For example, such can be seen in the following excerpt (line 63 to 65), concerning the relationship 
between the rhombus and the square. In the script, solely constitutive verbal action can be observed: 

Script Text in German English Translation 
63  Ist eine Raute ein Quadrat? – Nein! Sie 

besitzt nicht alle Eigenschaften des 
Quadrats.  

Is a rhombus a square? - No! It doesn't 
possess all the properties of a square. 

64  Ist ein Quadrat eine Raute? – Ja! Jedes 
Quadrat ist eine besondere Raute.  

Is a square a rhombus? - Yes! Each square 
is a special rhombus. 

65 Alle Eigenschaften der Raute sind erfüllt. All properties of a rhombus are fulfilled. 
Whereas one can observe the following in the ÖGS video segment:  

Transcript for the ÖGS videos in gloss Translation in English 
63  IX RAUTE INHALT QUADRAT? NEIN Is this rhombus a square? No! 
64  ABER AUFPASSEN IX QUADRAT INHALT 

RAUTE? JA  
But watch out! Is this square a rhombus? 
Yes. 

65  WARUM? IX ALLE EIGENSCHAFT RAUTE DA DA 
DA  

Why is that so? All properties – are 
fulfilled – those discussed earlier 

a  IX QUADRAT BESONDERS RAUTE This square is a special rhombus. 
The script’s linear-constructed text in the ÖGS video is once again changed. In the last part, “IX 

QUADRAT” (this square) is referred to multiple times.  

In addition, it seems as if this is all ancillary verbal action. Nevertheless, there is something here, 
which cannot be equally expressed in spoken language. The ÖGS sign “IX” in line 64, is signed toward 
the bulletin board (see Figure 2, left-hand side). Here, a reference is being made to the concrete 
square. Though, later in line a3, “IX” is signed to the front, toward the audience (see Figure 2, right-
hand side). This can be understood as an intermediate step for generalization, respectively as an 
intermediate shift between ancillary and constitutive verbal action. In this case the second phrase “IX 

QUADRAT” (this square) in line a not only refers to the concrete square, but also to the square as a 
paradigmatic example, which stands for the general case. 

                                                 
3 This line in the transcript does not correspond to a line in the script. Therefore, this additional line is marked with “a”. 
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Figure 2: The ÖGS sign “IX” in line 64 (left-hand side) and line a (right-hand side) 

In comparison: ancillary and constitutive verbal action of spoken language in 
video and audio 
Due to a lack of space for this study, both the spoken language video and the audio recording can 
only be briefly outlined, in order to substantiate the indications. More detailed examples can be found 
in Schreiber & Wille (submitted).  

The explanations in the video, in spoken language, are categorized as verbal action, while the material 
action takes place through either pointing at the constituting properties of the forms, drawing in 
properties or by drawing in arrows to indicate relationships between the quadrilaterals. For example, 
this is apparent in the excerpt of the script, example a: 

Scene Action Spoken Text Depiction 
2 The person points to the 

angles and the sides. 
 

It’s directly noticeable that there are 
four equally long sides. The sides are 
in a certain position in respect to each 
other. Adjacent sides build a right 
angle and opposite sides are parallel.  

In this video, concrete forms are referred to in the sense of ancillary verbal action (see example a). 
Forms are recurrently referred to in a general sense, utilizing constitutive verbal action to illustrate 
general relationships, like in example b: 

Scene Action Spoken Text Depiction 
4 The camera zooms out so 

that all figures are visible. 
 
 
 
 

The person draws an arrow 
between the square and 
rhombus. 

It’s also noticeable that this rhombus 
has properties similar to the square. 
Both have four equally long sides but 
different angles and, because of this, 
different symmetries. We are 
drawing an arrow from the square to 
this rhombus. The square is a special 
form of the rhombus, actually a 
rhombus, which has four right angles. 

 

Initially, the concrete rhombus is referred to, which is located on the bulletin board. It is directly 
compared to “the square”, though this does not necessarily refer to the concrete square, which is 
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located on the board. “The square is a specific kind of rhombus” is already formulated in a general 
sense, which is emphasized by referring to the properties, a “rhombus, which has four right angles”.  

In the audio, exclusively general cases are described. One can only speak of forms in general, due to 
the absence of the visual mode of presentation. Thus, constitutive verbal action is utilized throughout 
this special setting. Such can be seen with student 1’s initially posed question and student 2’s 
corresponding answer: 

s1  Honestly, what is actually so special about a square? It’s really just a very basic quadrilateral. 
s2  The square combines the properties of all the other quadrilateral.  

No specific square is being referred to, even though the square is noted. In particular, this square can 
readily be compared to all quadrilaterals. Such is also the case at a later point, when student 2 
compares the general rhombus with the general square and when student 1 explains the general 
rhombus more in-depth: 

s2:  That’s right. For the rhombus, the difference to a square is that the four angles mustn’t be 
right angles, right?  

s1:  Yes, the angles don’t have to be right angles for the rhombus. 
The utilization of material action is omitted and, in the here-discussed example, ancillary verbal 
action is not present. 

Conclusion 
A comparison of the three medially different explanations shows that the prevalence of ancillary to 
constitutive verbal actions differ. In the ÖGS video, concrete forms are recurrently referred to. As 
previously discussed, when the ÖGS sign “IX” (this) is signed toward the front, this can be interpreted 
as a reference to a paradigmatic example.  

Hasan (2002) explains that, in terms of constitutive verbal action, habits of mind can be mediated. 
She calls this invisible mediation. A typical mathematical “habit”, in the sense of empirical 
generalization, is that of considering concrete mathematical forms, equations, structures, etc., to reach 
generalizations. It can be observed that the modality of a visual language changes an explanation, in 
relation to spoken language.  
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Research topic and theoretical framework 
Norwegian preservice teachers (PSTs) produce lower scores on tests of prerequisite mathematical 
knowledge than other student groups, and fractions is a particularly difficult topic (Bjerke et al., 2013; 
Ånestad et al., 2014). The low mathematical competence in turn poses a hindrance to acquiring 
didactical competence from courses in mathematics education.  

Several theoretical frameworks for mathematical competence emphasize the role of representations 
and transformations between representations (e.g. Niss & Højgaard, 2011). If the target and source 
representation are the same, this transformation is called a treatment, whereas it is called a conversion 
if they are different (Duval, 2006). For example, a calculation in the symbolic representation is a 
treatment of the mathematical object, while graphing a function from a table is a conversion. 
Conversions between representations have been suggested to be a common source of 
incomprehension for students, where the direction of the conversion could substantially affect the 
perceived difficulty of a mathematical problem (Duval, 2006). As a step towards understanding and 
strengthening PSTs’ competence with mathematical representations, we ask: 

What characterizes PSTs’ competence in representations of fraction addition as they enter 
mathematics education, and how does their competence develop through teacher training?  

In this poster, we report on the development of a Rasch measurement scale for answering these 
questions, and present quantitative and qualitative results from a group of PSTs at the beginning of 
their teacher training. By using Rasch analysis we will obtain an invariant measurement scale 
ensuring that the results can be compared confidently over a time period. Furthermore, this approach 
provides insight into the dimensionality of competence in representations of fraction addition. 

Method 
A Rasch instrument including 18 items on fraction addition was developed. The items concerned the 
transformation between symbolic and two kinds of diagrammatic (area and number line) 
representations of fraction addition. Data was collected from a group of 98 first-year PSTs who had 
not yet had instruction in fractions in their mathematics education courses. The group therefore 
reflects a wide range of experiences with fraction representations from classrooms across the country. 
The student answers were analysed qualitatively and scored according to pre-defined criteria 
developed in a pilot study.  
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Result and discussion 
First-year PSTs were highly competent at solving fraction addition problems in the symbolic 
representation register. At the same time, there was large variability in the PSTs’ competence in 
converting addition problems between the symbolic and diagrammatic representation registers, where 
conversion from symbolic to diagrammatic form was the most challenging.  

Principal Component Analysis (PCA) of the instrument indicated two potential dimensions, or 
contrasts, in the data. The first contrast separated items according to which diagrammatic 
representation was involved (linear vs area model). The second contrast separated the items according 
to the direction of conversion between symbolic and diagrammatic representations, which could be 
considered a subdimension of the instrument. This can be interpreted as saying that competence in 
representation of fraction addition should be measured using more than one variable. 

We conclude that competence in fraction addition was a multidimensional construct for the group of 
first-year PSTs. The PSTs’ high level of competence in the fraction addition procedures did not 
necessarily transfer to representing fraction addition in a diagrammatic model, and producing 
diagrammatic representations was more difficult than interpreting diagrammatic representations, 
likely reflecting a difference in experience with the different kinds of conversion. These quantitative 
results were reflected in the qualitative analysis. The coding and scoring process showed that although 
many of the students that performed well on the area model tasks tended to apply part-whole 
interpretations to the number line. These results lend support to the theory that different aspects of 
competence in a single concept can be developed independently (Usiskin, 2015). 

The present study provides a foundation for investigating whether different representation registers 
of fraction addition, and transformations between these, become increasingly associated towards a 
coherent concept as PSTs progress through the teacher education program.  
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Introduction 
For CERME11, a new TWG about inclusive mathematics education has been established, with its 
first meeting at CERME11. This group was created due to an arising need for a forum to discuss 
issues of inclusion in the light of special needs in mathematics (SEM) in educational research. This 
branch of research has been developed in relation to general educational research about special 
educational needs (SEN) over the last decades, and has come to include not only disability and 
psychological issues, but also social, cultural and educational issues (Magne, 2006) Hence, the 
notion of SEM covers different epistemological fields as well as touching upon issues of normality 
(Skovsmose, 2019). 

The scope and focus of TWG25 is hence SEM and inclusion, in the intersection of mathematics 
education research and special education research. Since this scope is broad, the TWG-papers 
compromised grades 1-12, teacher professionalization and teacher education programs, types of 
inclusive settings in mathematics, concepts and models for instruction and subject matter didactics, 
special educational needs and child characteristics, and content related decisions for inclusive 
mathematics education.  

During CERME11 there were 17 participants in TWG 25 from 10 countries – colleagues from 
Europe, and also from Canada and Hong Kong. 10 papers and 2 posters were presented during the 
week, and the thematic schedule was oriented towards the topics of the submitted papers and 
posters (presenting authors below). The first session was spent on a discussion about the aims and 
objectives of this new TWG and an exchange of overarching issues of the situation of SEM in the 
different represented countries. In the following TWG-sessions, two or three papers were presented 
each time, under an overarching theme. The themes were: (1) Development of materials, tools, 
learning arrangements, settings, etc. (2) Research on classroom situations, out-of school situations 
(3) Research on teacher education (pre-service and in-service).
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The themes were discussed in the initial session in order to include all participants.  

(1)  Development of materials, tools, learning arrangements, settings, etc.  

This theme includes discussions of how to develop tools to identify students in SEM, but also how 
to promote their learning, including the research aims: for example, seeking to know the place of 
mathematics education in dyscalculia research, how to reconcile approaches to reach a better 
understanding of the disorder and provide professional development activities for both, pre-service 
and in-service teachers, regarding the multicultural education and presenting all attributes of a 
designed learning software. 

Florence Peteers: Diagnosis tools of dyscalculia – contribution of didactics of mathematics to 
numerical cognition 

Janka Medová: Designing Mathematical Computer Games for Migrant Students 

(2)  Research on classroom situations, out-of school situations 

This theme includes discussions of inclusion in relation to SEM students, mathematics classrooms 
and out-of school situations, where the focus lied in the challenges and possibilities in mathematics 
education. Examples of research questions within this theme are: How are inclusion and disability 
constructed in the discourses of teaching staff and pupils in mainstream mathematics classrooms? 
(paper Stylianidou & Nardi) How do SEM-students perceive their participation in terms of learning 
and teaching in an inclusive mathematics classroom to have optimal opportunities to learn? (paper 
Roos). 

Helena Roos: I just don’t like math, or I think it is interesting, but difficult … Mathematics 
classroom setting influencing inclusion 

Laurie Bergeron & Audrey Perreault: Strategies that promote the mathematical activity of 
students with language disorders: an analysis of language interactions 

Kinga Szücs: Do hearing-impaired students learn mathematics in a different way than their 
hearing peers? Challenges and possibilities of cognitive enrichment in inclusive mathematics 
classrooms – a review 

Angeliki Stylianidou: Mathematical discourses of a teacher and a visually impaired student on 
number sequences: Divergence, convergence or both? 

(3)  Research on teacher education (pre-service and in-service) 

This theme includes discussions of inclusive education and SEM in relation to teacher education 
and teachers’ views. How are teacher education programmes related to inclusion and what are 
adequate strategies for teachers to develop inclusive mathematical settings. Examples of 
research questions within this theme are: How should didactical courses in teacher education be 
designed to address the topic ‘inclusive mathematics’? (paper Scherer). What challenges do 
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mathematics teachers experience when teaching students with mathematics learning difficulties 
in an inclusive classroom and what potential measure do they use? (paper Hamukwaya) What 
is the effect of improving the knowledge of braille display and Text-To-Speech synthesizer 
support of mathematics teachers on braille reader’s achievement in mathematics? (paper Van 
Leendert) 

Petra Scherer: The potential of substantial learning environments for inclusive mathematics – 
student teachers’ explorations with special needs students 

Laura Korten: An in-service training to support teachers of different professions in the 
implementation of ‘inclusive education’ in the mathematics classroom 

Chun-ip Fung & Dichen Wang: Teaching mathematics to students with intellectual disability: 
What support do teachers need? 

Sarah Buró & Susanne Prediger: Low entrance or reaching the goals? Mathematics teachers’ 
categories for differentiating with open-ended tasks in inclusive classrooms 

Annemiek van Leendert: Supporting braille readers in reading and comprehending mathematical 
expressions and equations 

Shemunyenge Taleiko Hamukwaya: K-12 Namibian Teachers’ Views on Learning Difficulties 
in Mathematics: Some reflections on teachers’ perceptions 

Introductory discussion – overarching issues of the situation of SEM 
The world is changing very fast and so are the demands on teachers. School classrooms are growing 
increasingly heterogeneous – with respect to language, culture and abilities. This requires 
differentiation with regards to learning goals, instruction strategies and individual tasks, to 
accommodate the classroom to enhance every students learning (Bishop, Tan, & Barkatsas, 2015).  

Internationally, a trend is visible towards inclusion, a comprehensive school for all, where students 
with very different levels of abilities and different skills are educated together (Bishop et al., 2015). 
Some European countries have a very long tradition of inclusion, while in other countries it is 
relatively new, since students with more marked disabilities used to be educated in special schools. 
The change in the system generated a passionate discussion on the advantages and disadvantages 
that inclusive education brings, which reflects the negative attitudes that teachers might have 
towards inclusion (e.g. De Boer, Pijl, & Minnaert, 2011).  

Inclusive education brings many challenges to schools. Often it is connected to a lot of 
administrative load in many countries. For example, some school systems and governments require 
detailed and individualized progress reports and education plans to include every student, and this 
has to be done in so-called multi-professional teams for which they might not be prepared (see 
Ritter, Wehner, Lohaus, & Krämer, 2018). All this applies to mathematics education, too. A 
mathematics teacher is expected to cope with the demands within the inclusive classroom, to plan 
lessons where all students will receive appropriate support and challenge. At the same time, they 
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often have to deal with more administration, and often with more rules and monitoring from the 
management or government. This could even lead to teachers feeling stressed and opposing the 
whole idea of inclusive education. Although large differences between countries exist, the 
problems are recognized to a smaller or larger extent in all countries. The work in TWG25 showed 
that there are ways that can help pre-service and in-service teachers and teacher educators to 
support these processes. If teachers are better trained for teaching in a heterogeneous classroom 
and have adequate tools, methods and techniques to make it work, they will be much more 
motivated and willing to support the system. 

During almost all sessions in TWG25, one big question was circling, namely how do we understand 
inclusion in mathematics? Is it static? Is it depending on national and cultural settings? How do the 
teachers, the learners and/or the researchers describe and understand it? Do they understand it the 
same, or differently? Is the way, inclusion is understood affected by the perception of students in 
need, or with need? Is it dependent on the perception of the student? These questions are immersed 
and reflected (implicitly or explicitly) in the overarching themes that emerged from the discussions 
of TWG25, and described below. 

Overarching issues of TWG25 
Research in the field of inclusive mathematics covers a wide range. This can be seen in the 
directions taken in research covering disability, psycological, pedagogical and didactical issues. It 
can also be seen in how research covers aspects on either societal level or classroom level working 
with notions such as equity and diversity (Roos, 2019; Kollosche, Marcone, Knigge, Godoy 
Penteado, & Skovsmose, 2019), and several trends in mathematics instruction were presented in 
the papers of TWG25. All papers focus on some aspects of mathematics teaching and learning in 
relation to SEM and deserve due attention. During the TWG-sessions based on the paper 
presentations, the following points were discussed, especially how they are linked with each other.  

Inclusive system or special schools? 

As stated in the introductory part, there are countries where special schools have a relatively long 
tradition (e.g. more than 100 years in the Netherlands) (Evans, 2004). Their clear advantage is that 
the staff has a specialized knowledge to work with and help special needs children. The number of 
students in classes is relatively low and thus the teacher has the time to individualize work. These 
schools have been criticized in the past by the EU for their exclusive nature, and many countries 
extended or built up inclusive systems according to the realization of the UN conventions (see UN, 
2006). Inclusive education means each child has the right to be educated in the local school. 
However, in some countries, there is still a debate whether this is for the benefit of the student. 

Teacher education in relation to SEM 

Depending on the tradition of inclusive education, SEM is taken into concideration to a greater or 
lesser degree in the mathematics classroom. In countries with a longer tradition the system has 
more experience and mathematics teachers are more experienced to take SEM into consideration 
in their teaching.  
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Without any doubt the education must adapt to the situation and much more attention has to be 
paid to special needs in mathematics – taking children with mental or physical disabilities, students 
in great access to mathematics or second language learners into account. These different directions 
are discussed in the TWG-papers by van Leendert et al., Hamukwaya, Stylianidou & Nardi, Roos, 
Szücs and Bergeron & Perreault. Also teacher education needs to prepare fresh graduates to know 
possible methods, techniques, and activities that will enable them to differentiate and individualize 
lessons. Teachers must have the theoretical background knowledge about different disabilities, in 
addition to practical examples of how to manage the classroom, what activities to use are essential. 
With all these special competences, the different forms of knowledge, subject specific knowledge 
included, is essential (cf. Shulman, 1986). Teacher education should reflect the findings of current 
research on work with special needs children as this is a fast developing area. This is discussed in 
the TWG-papers by Scherer, Korten et al. and Fung & Wang. 

Change of teaching and learning strategies? 

Does SEM imply using new teaching and learning strategies? Taking an inclusive standpoint in the 
classroom asks for differentiation and individualization of work and take the individual student as 
a point of departure as discussed in the TWG-paper by Roos. Then the teacher’s role is changing 
to the role of a facilitator, to the role of the person who plans the lesson and activities and then 
monitors students’ work and helps wherever is needed. One of the ways of allowing inclusive 
classes to learn is to focus on how tasks can be designed and used to differentiate between students 
of different levels, like the paper by Buró & Prediger shows. Teachers are not always aware what 
kind of adjustments are needed for the different levels amongst theirs students. 

Another point of discussion is whether constructivist approaches could help as all students build 
their own knowledge in a way that is suitable for their needs. However, there is no clear empirical 
evidence that this is the best way to teach students in SEM as the research result might be 
contradictory (e.g. Chodura, Kuhn, & Holling, 2015; Scherer, 1997). 

How can mathematics teachers be motivated to work with SEM? 

The issue of motivating teachers to work with SEM is essential. Inclusive education is reality and 
teachers must be ready to face it. If they are well motivated, they are more likely to cope with the 
situation well. This, and how to work with teachers and different methods to use is discussed in the 
TWG-papers by Scherer, Fung & Wang and Korten et al.  

One way to motivate teachers is to equip them with such tools that they will feel confident enough 
when facing a heterogeneous classroom with students with very diverse educational needs. Having 
diverse teaching methods and techniques that enable differentiation and motivation will help. Also 
having experience with managing a classroom where an assistant is present will help and will give 
the teacher the needed self-confidence. Not everyone is happy with having a “critical” eye in all 
lessons.  

Another way to increase teachers’ motivation is providing them enough opportunities to improve 
their knowledge and skills in the area. Pre-service teacher programs must pay enough attention to 
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the issue, and high quality in-service teacher training programs should be available. If possible they 
should be designed and run by a number of specialists from different areas (special pedagogues, 
psychologists, but especially experienced teachers of a particular subject). 

Once methodology and techniques of work with special needs students become more widespread 
and results will be tangible, motivation of teachers will become easier. 

Who is in SEM? 

The large heterogeneity of the students with special needs in mathematics was discussed in 
TWG25, ranging from low IQ to gifted, from specific learning disabilities like dyscalculia 
(discussed in the TWG-paper by Peteers & Ouvrier-Buffet) to behavioral and developmental 
disorders, including students with different cultural backgrounds (as discussed in the TWG-paper 
by Medová et al.). Also teachers’ views on special needs as presented in the TWG-paper by 
Hamukwaya was discussed. The question arose why we use the term special, and what is perceived 
as ‘normal’ (see Skovsmose, 2019). Wouldn’t it be better to talk about heterogeneity and take the 
individual differences as norm? 

Conclusion and further directions of TWG25 
Reflecting back on the arguments made in the papers of TWG25 and on the discussions, there are, 
as prior discussed, diverse issues concerning inclusion in mathematics education and challenges 
for students with special needs in mathematics. In the TWG-papers about development of 
materials, tools, learning arangements and settings, arguments are made for both developing 
sustainable ways of identifying dyscalculia in mathematics education (paper Peteers & Ouvrier-
Buffet) and developing learning software for both, pre-service and in-service teachers (paper 
Medová et al.).  

In the TWG-papers about research on classroom situations and out-of school situations the focus 
was on challenges and posiblities in the classroom from different perspectives. Strategies 
promoting mathematical activities in relation to students with language disorders were discussed: 
Too often teachers tend to reduce learning opportunities within mathematical tasks by focusing on 
their cognitive characteristics and behavior, although the reported research shows that if a teacher 
offers space for dialogue with students and questions them in order to trigger their mathematical 
activity it becomes a powerful driver of student activities in a classroom context where the teacher 
offers a space where all voices are legitimized (paper Bergeron & Perreault). Another issue in 
relation to how to work in classroom was how a classroom setting influences inclusion in 
mathematics, and the importance to consider how to plan the classroom to include everybody 
(paper Roos). In relation to work in the classroom, mathematical discourses of a teacher and a 
visually impaired student were investigated highlighting the interaction teacher – student (paper 
Stylianidou & Nardi). Also a review highlighting the learning of hearing-impaired students and the 
challenges and possibilities of cognitive enrichment (paper Szücs) was discussed within this theme.  

In the TWG-papers about research on teacher education the focus was on how teachers view 
inclusion and SEM, and how teacher education can work to help teachers work inclusively. The 
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potential of substantial learning environments (Wittmann, 2001) for inclusive mathematics in 
relation to student teachers’ explorations with special needs students were reflected upon with the 
conclusion of the importance to include such type of explorations and reflections of inclusion in 
the teacher education (paper Scherer). In relation to this, it was discussed how in-service training 
can support teachers of different professions in the implementation of ‘inclusive education’ in the 
mathematics classroom (paper Korten et al.). Support to teachers was also discussed in relation to 
teaching mathematics to students with severe intellectual disability (paper Fung & Wang), with the 
conclusion that it is mathematics that must be in the centre of attention when discussing SEM, 
something that may sound too trivial to consider, yet often too easy to overlook. The development, 
testing, and refinement of didactical action plans involves studying various phenomena and their 
corresponding mathematical meanings, which can only be done from within mathematics Support 
to students by supporting teachers in relation to braille readers in reading and comprehending 
mathematical expressions and equations through specific instructions was problematised (paper 
van Leendert et al.).When looking into mathematics teachers in relation to inclusion and SEM the 
way teachers catagorise for differentiating in inclusive classrooms were highlighted, 
problematising low entrance (paper Buró & Prediger). Also teachers’ perceptions in relation to 
learning difficulities in mathematics was problematised (paper Hamukwaya).  

The major question, still left to be answered, is how we understand inclusion in mathematics, and 
how we can have a common ground in research despite the diversity of research directions and 
cultural and national differences. Still, it is interesting to see that even if there are very diverse 
issues concerning inclusion in mathematics education, there are similarities too. This can be seen 
in the themes of the TWG-papers. Hence, there seem to be opportunities to build a common ground 
regarding inclusive mathematics teaching and challenges for students with special needs. 
enrichment in inclusive mathematics classrooms. 

Looking forward to CERME12 the community got a challenge to build further on the work at 
CERME11 and build a common ground to address issues within the scope of TWG25. 
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This article outlines the methods of a teacher of mathematics who works with a class of students 
with language disorders related to autism. By adopting the theoretical framework of the Dual 
Approach (ergonomics and didactics) and Maturanian epistemology, we show how an analysis of 
language interactions allows for a better understanding of teaching practices and their influence on 
the mathematical activity of students. We explore the nature of the language interactions, both 
verbal and non-verbal, within a specific learning project, when it comes to reinvesting, in a non-
explicit way, basic mathematical objects. Our analysis highlights the richness of a practice in which 
the teacher proposes different types of help to trigger the mathematical activity of her students. 

Keywords: Language interactions, mathematical activity, teaching practice, language difficulties. 

Problematic 
In Quebec, approximately 15 000 students have an autism spectrum disorder. In general, these 
students present difficulties related to language, communication and social interaction with their 
peers (MSSS, 2017). Moreover, since language interactions are an integral part of the teaching 
practice, finding ways to carry out a project represents a significant challenge in the context of a 
special class for students with autism (Odier-Guedj & Gombert, 2014). For the teaching of 
mathematics, this phenomenon is particularly problematic given the difference in the meaning of 
words in everyday language and those used in mathematical language. Although the Ministry of 
Education prescribes guidelines encouraging teachers in Quebec to adapt their practice according to 
their students’ characteristics (MELS, 1999), operational means are not proposed. Thus, teachers 
are required to determine and implement their own means of adaptation. In this context, research in 
psychology of ergonomics and didactics (Robert & Rogalski, 2002) has led us to question the way 
that teachers adapt their practice in order to meet the specific needs of their students, and to inquire 
whether these adaptations and this help contributes to the mathematical activity of their students.  

This paper focuses on the richness of the language interactions and the types of help offered by a 
teacher to trigger the mathematical activity of her students. In this article, we present a part of our 
analysis of the practices of a teacher within the context of a project requiring students with autism 
spectrum disorder to build a birdhouse to reinvest basic mathematical notions. We begin by 
outlining our epistemological stance, our conceptions of language and mathematical activity, as 
well as the types of help offered by the teacher to trigger the students’ activity. After highlighting 
our framework for the analysis of teaching practices, we reveal an overview of our results.  

Thematic Working Group 25

Proceedings of CERME11 4628



 

 

Epistemological foundation and theoretical context 
What is mathematical activity 

Mathematical activity accounts for the process of appropriation and reasoning required to answer or 
mathematize a given problem or situation (e.g. Freudenthal, 2012; Proulx, 2015). Within the 
framework of our research, mathematical activity exists as a process of “coordinations of 
coordinations of doings” (Maturana & Verden-Zöller, 2008). In this process, teacher and student 
actions take place within an ethical space where their legitimacy is mutually recognized. Their 
immediate actions and their respective historical and cultural experiences (Radford, 2010) are 
interrelated to their representation of mathematics and shared by and through different forms of 
language (Barrera-Curin, Bergeron, & Perreault, in press). According to Maturana and Verden-
Zöller (2008), interactions emerge within and through language as a way of coexisting in the 
coordination of coordinations of actions. Language, in all its forms, becomes a fundamental element 
to consider when studying interactions within an educational context. 

Language and the specificity of teaching practices   

Many recent studies in the fields of didactics of mathematics and mathematical education have 
focused on the link between language interactions, language and mathematics (e.g. Bulf, Mithalal, 
& Mathé, 2015; Morgan, 2013; Moschkovich, 2010; Sfard, 2008). Within the framework of our 
research (Barrera-Curin, Bulf, & Venant, 2016), the language of mathematical activity is considered 
as a dialogical and situated activity involving not only language with its written and verbal codes, 
but also the diversity of its manifestations. The appropriation of mathematical objects, “does not 
necessarily result in the same consequences for all persons, because it is a historical, situated and 
individual process” (Bauersfeld, 1995). As Bauersfeld (1995) raises it: “only across social 
interaction and permanent negotiations of meaning can “consensual domains” emerge” (p. 275). 

In order to study language interactions where students’ language difficulties are added to the 
already existing constraints influencing teaching practices, it is necessary to observe these practices 
in a localized way. In studies that articulate didactic, psychological and ergonomic concepts (Robert 
& Rogalski, 2002; Roditi, 2013) the teacher’s task is viewed as the management of a diverse, 
dynamic and complex environment where interventions focus on knowledge acquisition and on 
students, while considering that students progress according to their participation and interactions in 
the classroom. The mediating and cognitive components of a teacher’s practice are central to the 
didactical organization of the mathematical tasks proposed by the teacher and adapted through 
interactions with the students. Thus, a teacher’s practice includes the targeted mathematical content, 
the choice of tasks and their organization, the types of help offered, classroom management, the 
language forms chosen by the teacher, and the different forms of student work. As we enrich the 
dual approach with Maturana and Varela’s framework as seen below in Figure 1, the teacher’s 
activity is viewed as a process of adaptation resulting from the coordination of the coordinations of 
actions between a teacher, their students and the environment.  
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Figure 1: Modeling teaching activity (Barrera-Curin, Bergeron, & Perreault, 2018) 

The teaching activity can be grasped by analysing beyond the immediate observation of interactions 
in the classroom: institutional constraints, historical background, action logics of the teacher and 
personal beliefs, didactical implication and interaction in context. Therefore, analysing this activity 
must take into account different components of the action in situ.  To identify those components, the 
Dual Approach (Robert & Rogalski, 2002) propose the observables concept, which take place 
within the language interactions between the students and their teacher. The observable categories 
consist in types of helps, task enrollment attempts and interaction surrounding mathematical objects 
(Barrera-Curin et al., in press). Procedural helps act directly on the initial task by dividing it in a 
series of simpler ones. Constructive helps focuses on questioning the student in order to serve his 
knowledge construction. Compensatory helps aim to compensate a disorder of the student that could 
slow down or prevent his mathematical activity. 

In the present work, we focus on the articulation of these types of help with the mathematical tasks 
proposed to the students in order to observe in which ways mathematical actions are brought forth. 
In other words, we study how different types of help within language interactions carried on by the 
teacher trigger the mathematical activity of the students in the context of a specialized class. 

Analyzing the articulation of language and mathematics 
Five teaching sessions were observed and videotaped with focus on language and interactions 
surrounding mathematical objects. Interviews were conducted with the teacher before and after each 
observations and focused on the teacher’s choices (before) and her explanations about the progress 
of the session (after). In this paper, we focus on the first session and the corresponding interviews. 

First, we analyzed the interviews to conduct a didactical analysis of the mathematical tasks and 
objects (Robert & Rogalski, 2002) planned for the session as well as the teacher’s chosen form of 
teaching (action logics and constraints). Secondly, we identified episodes in the first session 
according to the richness of language and social situated interactions surrounding a mathematical 
object. Those episodes were then described according to the observable categories (types of help). 
Finally, we analyzed how those interactions trigger the mathematical activity of the students. 
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Hélène’s Project 
Hélène teaches in a class for students with autism spectrum disorder designed to prepare them with 
skills for the workforce. The students are between 16 and 20 years of age and their mathematical 
knowledge varies from sixth grade of primary school to the second year of high school. 

The project to build a birdhouse 

The teacher’s focus was for students to reinvest geometrical concepts through a project of 
constructing birdhouses. Project based teaching of mathematics is not the usual approach within the 
context of special education. In special needs classes, teachers seek to respond to institutional 
expectations by conventional methods, in particular the evidence based model. In this case, Hélène 
plans to focus her sessions on dialogue and on the problematization of her students’ questions. She 
proposes to her students to design their own birdhouse. During the session, she brings sheets of 
white paper and milk cartons. She wants each student to make a 2D model of their birdhouse using 
a set of 3D objects.  She anticipates that the students would use these objects as points of reference 
for measuring the faces of the birdhouse. She plans 4 sessions to allow time for students to: design 
the paper plan, reproduce the plan with drawing software, perform laser cutting, and assemble a 
wooden birdhouse. To carry out this project, students must understand the relationship between the 
faces of the solid (incidence relations) and anticipate the operationalization of the solid as it passes 
from 2D to 3D. In this paper, we focus on the first session, particularly on some interactions that 
has led Hélène to add an unexpected session in order to work on the incidence relations. 

Creating conditions that trigger language interactions: help that becomes constructive 

During her interactions with students, Hélène realized that she had not anticipated certain 
difficulties related to the 2D modeling of a 3D object. In fact, during the first session, she noticed 
that several students had designed a plan that did not include incidence relations. Up until that point, 
her questioning of students regarding the feasibility of their respective plans had not led to 
adjustments desired. Therefore, printing on wood without anticipating results was not possible. She 
decided to add a session in which students would cut out the development of their solid in paper 
form, build it and modify it as needed. At the end of the first session, the teacher decided to involve 
her students in a process of reflection regarding their final product. In the following excerpt, the 
questions raised by Hélène help to build her students’ knowledge collectively as they are focusing 
on the students and the task at hand (constructive help). 

Hélène:  If we ever cut it in the wood and it doesn’t work? What happens (pointing the 
plan), once cut, it will make a birdhouse? 

Student 1:  We’ll make a simulation. 

Hélène:  We’ll make a simulation with what? 

Student 2:   With the computer? 

Hélène:  We will have to ask the technician, but what if we don’t have a computer, a bit 
like what we did with Phil and his roof? 

Student 1:  We make the sketch and we will cut out? 
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By analyzing language interactions, we notice that the teacher allows her students to reflect on a 
real issue related to the construction of the birdhouses. She does not present herself to the students 
as having the solution to their problem, but instead, she offers them a space to reflect where the end 
product of the task remains their responsibility, because “at any stage the child is an informant child 
as the teacher is an informed expert” (Bauersfeld, 1995, p. 278). When the teacher speaks, she 
considers the student’s proposal repeating the words that they used, while guiding them by 
reframing her questioning towards the more precise elaboration of a solution. In doing so, she 
creates an ethical space where her students’ legitimacy is recognized and where classmates listen to 
each other. Hélène’s place in the interaction remains central, but the context of the project and the 
way that she engages her students by raising questions promotes the expression of their ideas and 
encourages their participation in the collective reflection. Through a superficial analysis of this 
session, we could attribute to Hélène the status of a teacher who puts into place compensatory and 
procedural helps, but a more in-depth analysis of language interactions reveals that the help is 
constructive because of the importance given to dialogue as well as the activity it triggered. 

Another moment during the first session reveals students seeking to validate their product by their 
teacher before continuing their work. But the teacher does not respond by answering or refusing her 
students’ request. Instead, she questions them. This management of the process is particularly 
important in terms of its mediating and cognitive components (Figure 2) because the task remains 
the responsibility of the students while Hélène presents herself as a trigger of their mathematical 
activity. At that particular moment in the session, the mathematical task at hand required identifying 
the appropriate measurements in order to optimize the production of the pieces of the birdhouse. 

Student 3:  So far, my floor is done. 

Hélène:  Yes, what's missing after the floor ... we said? 

Student 3:  Ummm... The sides! 

Hélène:  What measurements are they going to have? [...] 

Student 3:  Ummm, the height of my side ... Wait! If that ..., if we counted 25 cm, that's it? 

Hélène: Hum, hum. (she agrees) 

Student 3:  Maybe 25 too? 

Hélène:  25 ... how much is your floor? 

Student 3:  Ummm ... 20 cm! 

Hélène:  So ... does it ... have to be wider or more narrow than your floor... your side? Your 
wall is going to go like this. (She takes a pint of milk to show it to the student on 
his sheet.) Here I will ... We'll go up like this. You want the wall to come to 
where? 

Student 3:  Maybe equal? 

Hélène:  Equal? So how much would it be? 

Student 3:  Uh 20 ...? 
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Hélène:  20. With a height of how much? 

Student 3: ... ummm ... 

Hélène:  There will be the floor like that 20, and… a height of? 

Student 3:  25. (hesitates a little) 

Hélène:  So, two walls of? 

Student 3:  25 cm! [...] 

Hélène:  And with a width of? 

Student 3:  ... 20 ... 

Hélène:  Two times 20 by 25. (She mimes two times the width and then the height.) 

Student 3:  Wait, kind of like... 20 here, 25, 20? (He shows the sides with his hands.) 

The teacher addresses the student’s questions, but procedural help is suggested by the new 
questions that she raises - she helps the student to organize the steps for developing his plan without 
giving him the answers. The student, in turn, adapts in a flow of interactions by trying to answer her 
questions. When he experiences difficulty formulating his answers, the teacher proposes 
compensatory help, in this case, modeling the incidence relation between the floor and the wall with 
the help of material. At the language level, the teacher models the measurements with the help of 
gestures that the student will repeat afterwards in order to appropriate them (Figure 2). 

 
Figure 2: Teacher and student's gestures to model and appropriate measurement 

However, the help that the teacher puts into place does not change the mathematical objectives of 
the task. She triggers mathematical activity by putting in place different types of help (procedural 
and compensatory) in the form of questions that promote explanations from the student. Therefore, 
Hélène’s help becomes constructive regarding the mathematical activity of this student. 

Discussion 
To sum up, the proposed approach for making meaning of teaching practices allows us to reveal the 
influence of language interactions in a classroom where a teacher offers space for dialogue with 
students and questions them in order to trigger their mathematical activity. Through the preceding 
examples, we have the opportunity to see in a new light how different types of help, that may 
modify the task or the mathematical object, can become a powerful drivers of student activity in a 
classroom context when the teacher offers a space where all voices are legitimized. The Dual 
Approach combined with the Maturanian foundation allows us to investigate the teachers practice at 
a macrostructural level as well as microstructural. Those two dimensions help us understand some 
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reasons for the action of the teacher but also to analyze how those action logics (in reference to the 
teacher beliefs about his practice and his students) and institutional constraints come to act. If 
Hélène can promote language interactions that enable students to socially build their knowledge, it’s 
because, among others, few institutional constraints represent obstacles in terms of planning the 
delivery of her courses and her choices in terms of content and form of teaching. This teacher shares 
with researchers that she appreciates that a rigid educational program is not imposed on her. This 
greater professional freedom allows Hélène to consider broader possibilities for the mathematical 
activity of her students by seeking to maximize the usage of the tasks proposed and to be in sync 
with her conception of teaching. According to our analysis, Hélène prioritizes open and authentic 
questioning that encourages her students to engage in a process of reflection regarding the tasks at 
hand. Thus, it is both the supple institutional framework and the teacher’s conception of the 
importance of student dialogue that promote the emergence of the language interactions observed. 

As a final reflection, we want to underscore that the interactions we witnessed in this classroom 
diverge from the usual expectations for the behavior of students on the autism spectrum. Hence, we 
hypothesize that the importance that Hélène places on the collective dimension of her classroom 
promotes the emergence of language interactions, which may not be possible in a special class with 
a more prescriptive environment. Those results lead us to reconsider dominant teaching practices in 
Québec and to place in the foreground the richness of mathematical reflections possible among all 
students, even those with a language disorder, when the classroom environment encourages 
authentic language interactions. What we witnessed in this class of students with language disorders 
related to autism, in terms of interactions around a mathematical object, is not so different of what 
we can observe in an “ordinary class”. Unfortunately, Hélène’s case is an isolated one. What we 
observed in other “special classes” within this research is merely comparable. In fact, other teachers 
tend to reduce learning opportunities within mathematical tasks (see Buro & Prediger, 2019, in this 
volume) by focusing on their cognitive characteristics and behavior. Thus, our analysis leads us to 
question the learning environment provided for students with language disorder. Therefore, we must 
reconsider the teachers’ formation in an institution that promotes differentiated instruction and the 
impact of this instruction model on the inclusion of students with a language disorder. 
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for differentiating with open-ended tasks in inclusive classrooms 
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Open-ended inquiry tasks are considered a powerful approach for addressing the diversity of inclu-
sive mathematics classrooms due to their potential for natural differentiation. However, this potential 
can only unfold when the teachers know how to work with the tasks. This article investigates teachers’ 
personal categories for differentiating with an open-ended task, especially with respect to providing 
support for students with special needs. In a qualitative case study, a category-eliciting activity was 
conducted within a professional development session. Data gathering comprised 14 secondary math-
ematics teachers’ and special needs teachers’ video-taped group discussions and written answers, 
which were analyzed qualitatively. The results show that most teachers’ ideas for support provided 
for the students with mathematical learning disabilities only addressed the low entrance, but not the 
core learning goals and the required basic conceptual knowledge.  

Keywords: Inclusive education, natural differentiation, professional development, teacher 
knowledge. 

Most German secondary schools only recently shifted to an inclusive system, so many secondary 
mathematics teachers and special needs teachers currently learn how to differentiate in inclusive 
mathematics classrooms. As effective PD programs need to take into account teachers’ typical start-
ing points, we investigate teachers’ perspectives to deal with various differentiated teaching ap-
proaches, here specifically with respect to differentiating with open-ended inquiry tasks (Scherer, 
Beswick, DeBlois, Healy, & Moser Opitz, 2016).  

The paper starts with presenting the teaching approach of open-ended tasks and its potential for nat-
ural differentiation (Scherer & Krauthausen, 2010). The necessary teacher expertise for differentiat-
ing with open-ended tasks is conceptualized in the framework of Bromme (1992). The qualitative 
case study based on this conceptual framework uses category-eliciting activities for pursuing the fol-
lowing research question in the empirical part of the paper:  

Which categories and self-reported practices do teachers activate for differentiating in inclusive 
mathematics classrooms with an open-ended task? And how can this be supported by facilitation? 

 

Background on classroom level:  
Open-ended inquiry tasks for natural differentiation  
Inclusive mathematics classrooms call for differentiated instruction with joint whole-class experi-
ences and specific support for students with special needs (Lawrence-Brown, 2004; Tomlinson et al., 
2003). One of the teaching approaches which have proven useful (Scherer et al., 2016), applies rich 
open-ended inquiry tasks with the potential of so-called natural differentiation: 
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Open-ended tasks with a low entrance and 
high ceiling provide the potential for natural 
differentiation if they allow for multiple rep-
resentations, diverse solution pathways and 
different cognitive activities along the trajec-
tory of discoveries (Scherer & Krauthausen, 
2010).  

One example for such an open-ended task for 
Grade 5 is printed in Figure 1. It aims at dis-
covering the multiplicative structure of the 
volume of cuboids, and has a wide differenti-
ating potential (see Figure 2). The task has a 
low entrance as all students succeed in find-
ing at least one cuboid. The task’s core goal 
is to discover that counting in rows and layers 
leads to a multiplicative structure of the vol-
ume. The high ceiling for students with 
strong mathematical potentials covers the 
combinatorial challenge to find all cuboids, 
usually by considering the multiplicative de-
composition of 24 in three factors. 

 

  

Diverse ways of using material and structures 
· longer or shorter use of hands-on material 
· later or earlier discovery of structures 
· more or less systematic search for all cuboids 
· more or less strive for justifying completeness 

Multiple representations for the documentation 

 

Possible steps in the trajectory of discoveries 
Step 1 Build with the cubes and count separately 
Step 2 Build with the cubes and count rows and / or layers 

and sum up these partial results 
Step 3a Build with the cubes, multiply for areas in each layer 

and add layers (partly use multiplicative structure)  
(OR Step 3b Build the cuboid, decompose it in layers and 

discover their multiplicative structure) 
Step 4 Build only parts and mentally imagine the rest  

and / or partly use multiplicative structures 
Step 5 Mentally imagine the cuboid and use multiplicative 

structures for rows and layers 
Step 6 Purely use multiplicative structures for rows and layers 

Necessary basic mathematical concepts  
· entry level: definition of cuboid as shape with rec-

tangular faces 
· access to goal: mental model of multiplication  

as counting in groups 

Figure 2: Differentiating potential of the open-ended cuboid task as empirically identified by Prediger (2009) 

Open-ended task: Build many cuboids  
Here, you have 24 wooden cubes. Which cuboids can you 
build with them? Document all cuboids which you have 
found. How many do you find? 

  
Possible differentiating prompts:  
· Do you find one cuboid?  
· Do you find many cuboids? 
· Do you find all cuboids?  
· How can you be sure that you have found all? 

All possible cuboids: 
1×1×24, 1×2×12, 1×3×8, 1×4×6, 2×3×4, 2×2×6.   

 

Figure 1: Open-ended task for discovering the multi- 
plicative structure of volumes (Prediger, 2009) 
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Teacher expertise for differentiating with open-ended tasks 
The degree to which rich and differentiating tasks are really productive for inclusive mathematics 
classrooms depends on the teacher’s expertise for really ensuring responsiveness, not only in a reac-
tive way (i.e. ad hoc repairing occurring obstacles), but also proactively in preparing specific support 
for students in need for it (Tomlinson et al., 2003). Especially, low expectations have often been 
problematized (Büscher, submitted) as research shows that students with mathematical learning dis-
abilities can reach more than often expected if responsive, proactive support is provided (Peltenburg, 
2012). That is why the teachers must be prepared for these challenges. In order to base professional 
development offers on teachers’ starting points, the study presented in this paper aims at capturing 
the teachers’ current categories for differentiating with open-ended tasks.   

Personal categories are a crucial part of Bromme’s (1992) conceptualization of teacher expertise. He 
defines teacher expertise as the teacher’s capability to cope with complex situations in subject matter 
classrooms, comprising (a) the teacher’s practices by which they cope with situational demands (the 
so-called jobs), (b) the orientations, e.g. the (content-specific or content-independent) attitudes guid-
ing the prioritization and interpretation of the jobs and (c) the categories which implicitly or explicitly 
guide their perception and practices (see Prediger, 2019 for a more general discussion of this concep-
tualization). Especially, Bromme suggests a powerful “heuristic to search for the ‘natural’ categories 
in expert knowledge” (Bromme, 1992, p. 88, translated by the authors) by analyzing the situational 
demands with respect to the relevant practices and their underlying implicit categories.  

Based on the large literature on differentiating in inclusive mathematics classrooms (Tomlinson et 
al., 2003; Lawrence-Brown, 2004; Scherer et al., 2016), we identified three sub-jobs for the larger 
job of differentiating with open-ended tasks:  

(1) analyzing tasks with respect to students’ potentially diverse solution pathways and approaches 
(2) identifying differentiating potential in a task and possible obstacles for reaching the core goals 
(3) providing support for students with specific needs for reaching the core goals. 

Job 1 is a preliminary job for Job 2 and 3, which is necessary in order to unpack the mathematical 
structure and the possible steps on the trajectory of discovery (see Figure 2). The differentiating po-
tential identified in Job 2 can refer to these steps and the multiple ways or representations, but also to 
possible obstacles, mainly those lying in required basis concepts. The later is crucial for proactively 
providing support in Job 3, especially for students with specific needs (in our case, students with 
mathematical learning disabilities, with or without the official status of having special needs).  

Taking into account that effective differentiation is always knowledge-centered (Tomlinson et al., 
2003), the teachers should have a focus on the six steps of the trajectory of the discovery as well as 
on the required basic knowledge in understanding the underlying mathematical concepts (as Scherer 
et al., 2016 emphasize). In the concrete task, this concerns the concept definition of cuboid and, even 
more importantly, the mental model of multiplication as counting in groups which is required for the 
transition of counting separately (Step 1) to counting in rows or layers by multiplication (Step 2-4). 
Providing support for students with specific needs should not only guarantee the low entrance of the 
task, but also the possibility of reaching the core goal, here the multiplicative structure of the volume. 
At the same time, the high ceiling (finding all cuboids with 24 cubes) provides challenges for the 
students with strong mathematical potentials.  
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Methods of the qualitative study for investigating teachers’ starting points 
Given that teachers’ expertise is often implicit in their practices, the research question (Which cate-
gories and self-reported practices do teachers activate for differentiating in inclusive mathematics 
classrooms with an open-ended task? And how can this be supported by facilitation?) was pursued in 
a qualitative study based on a category-eliciting activity.  

Methods for data gathering by a category-eliciting activity on three jobs 

Sample. The sample consisted of 14 secondary math teachers who participated in their first session 
of a volunteer professional development series on inclusive mathematics classrooms. They had be-
tween 2 and 20 years of experiences in math teaching. 8 of them held a teacher degree as mathematics 
teachers (PCK+SNK-, i.e. with a formal qualification in pedagogical content knowledge in mathemat-
ics education, abbreviated PCK+, but no formal qualification in special needs knowledge on specific 
needs of students with learning disabilities, abbreviated SNK-), 1 of them was special needs teacher 
without a degree in mathematics education (PCK-SNK+), and 5 of them were special needs teachers 
with a degree in mathematics education (PCK+SNK+). 

Category-eliciting activity. For eliciting teach-
ers’ personal categories and self-reported prac-
tices for differentiating with the open-ended 
task, the teachers’ activity in Figure 3 was struc-
tured according to the jobs introduced in the next 
section. The teachers were asked to write down 
their ideas and discuss them in small groups dur-
ing the PD session. The group discussions were 
video-taped and partly transcribed.  

 
Methods for qualitative data analysis 

The qualitative data analysis was based on deductive-inductive procedures (Mayring, 2015), starting 
from the prospective analysis of differential potential and possible obstacles (see Figure 2), but open 
for teachers’ further personal categories. The articulated personal categories were inductively sub-
sumed under the most relevant categories (results listed in Table 2). The elicited categories along the 
three jobs were compared between the three subsamples PCK+SNK+, PCK+SNK-, PCK-SNK+.  

The video data was analyzed qualitatively with respect to the inductively developed categories and 
their emergence in the discussions. The video data was of specific importance for determining not 
only what teachers miss, but also how the facilitator could activate inert knowledge after a while.  

 

Insights into teachers’ practices and categories for differentiating 
Main focus on low entrance in Step 1 instead of learning goals and basic concepts 

Table 1 shows exemplary answers written by three teachers, together with the category assigned to 
the answers in the data analysis. Table 2 embeds these three cases into the complete group of 14 
teachers (if only 13 teacher occur, one has not answered this part).  

Students’ task: Build many cuboids  
Here, you have 24 wooden cubes. Which  
cuboids can you build with them? Document which  
one you have found. How many do you find? 
Questions for teachers:  
(1) Which solution pathways and approaches would  

you expect from your students for this task?  
(2) Which potential for differentiation does the  

task provide?  
(3) How would you support students with  

mathematical learning disabilities? 

Figure 3: Category-eliciting activity for three jobs 
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Table 1: Examples of teachers’ written answers and the assigned categories 

In Job 1 (Analyzing the task), Dieter and Hayat only focused on Step 1 of the trajectory of discovery 
(see Figure 2), only Melanie also considered further steps (even if condensed in one line without 
unpacking the necessary steps). Within the group of all teachers (see Table 2), Melanie was an ex-
ception, whereas many teachers (6 of 13 teachers) only focused on Step 1 of students’ trajectory, but 
not how to reach the core goal of the task, discovering the multiplicative structure of the volume. 
Other categories teachers activated in Job 1 concerned social and affective factors, many of the teach-
ers expressed low expectations like Dieter and two of them even expect that students get no possibility 
to build a cuboid. 

In Job 2, it is interesting to see that Dieter (and with him three other teachers) could not identify the 
potential for natural differentiation and immediately started to provide specific support for weaker 
students. Those who identified potential for natural differentiation like Melanie and Hayat focused 
on the steps (7 of 13), the students’ diverse ways of using material and structures (2 of 13), or on 
multiple representations for documentation (2 of 13). Teachers with PCK+SNK+ could identify more 
potential for natural differentiation then the teachers with PCK+SNK-. The teacher with PCK-SNK+ 
found none. The required basic concepts (cuboid, multiplying as counting in groups) were only ad-
dressed by one teacher in Job 2. With respect to Job 3, most teachers have some resources for plan-
ning support for students with mathematical disabilities, this is shown by the fact that only three 
teachers planned their support exclusively on surface levels of grouping strategies or taking larger 
wooden cubes.  

However, as a consequence of the strong focus on Step 1 in Job 1, the planned support in Job 3 
mainly focused on Step 1/2 again. That means, 2 of 5 teachers with PCK+SNK+ and 4 of 8 with 

PCK+SNK- only provide support for guaranteeing the low entrance. By this focus, they miss the core 
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goal of the task, which was discovering the multiplicative structure of the volume. As a consequence 
of the limited view on the necessary basic concepts, only three teachers with PCK+SNK+, provided 
support for overcoming limitations in the basic concepts, and none of PCK+SNK- did. Among the 
three who took care of basic concepts, two made sure that the definition of cuboid as shape with 
rectangular faces is accessible also for students with mathematical learning disabilities, and only one 
single teacher’s support addressed the potentially missing mental model for multiplication as counting 
in groups. 
 Subsample 

PCK+SNK+ (n=5) 
Subsample  
PCK-SNK+ (n=1) 

Subsample 
PCK+SNK- (n=8) 

Job 1: Elicited categories for analyzing the task    
   Sole focus on Step 1 1 out of 4 1 out of 1 4 out of 8 
   Also focus on Step 2/3  
   Also focus on Step 5/6 (not on Step 4)  
   Affective / social factors 

0 
3 out of 4 
0 

0 
0 
1 out of 1 

2 out of 8 
2 out of 8 
0 

   Low expectations on students 0 1 out of 1 3 out of 8 
Job 2: Elicited categories for unfolding differential potential  
  Natural differentiation identified along steps 
  Natural differentiation identified re diverse ways 
  Natural differentiation identified re representations 
  No natural differentiation identified 

3 out of 5 
1 out of 5 
2 out of 5 
1 out of 5 

0 
0 
0 
1 out of 1 

4 out of 7 
1 out of 7 
0 
2 out of 7 

  Focus on necessary basic knowledge 1 out of 5 0 0 
  Affective / social factors 0 0 1 out of 7 
Job 3: Elicited categories for planning specific support for students with mathematical disabilities 
  No support required due to natural differentiation 
  Focus on basic knowledge 
  Reducing complexity by presetting the first sub-step 
  Reducing complexity by reducing from 24 to 12 cubes 
  Support only for Step 1 / 2 
  Support for Step 3 
  Support for Step 4-6 
  Support for documentation 
  Support only on surface level (grouping, material)     

1 out of 5 
3 out of 5 
2 out of 5 
0 
2 out of 5 
0 
0 
3 out of 5 
1 out of 5 

0 
0 
0 
1 out of 1 
1 out of 1 
0 
0 
0 
0 

1 out of 8 
0 
2 out of 8 
1 out of 8 
4 out of 8 
1 out of 8 
0 
3 out of 8 
2 out of 8 

Table 2: Quantitative overview on elicited categories 

 
Shifting teachers’ categories by prompts to further steps 

In order to avoid a deficit-oriented inventorization of teachers’ perspectives, it is crucial to consider 
how the teachers’ activation of categories can be supported by facilitation in the PD session.  

When the facilitator collected teachers’ ideas of the aspects of natural differentiation and for support-
ing students with mathematical learning disabilities after the first group discussions in the PD session, 
she became aware of the exclusiveness of teachers’ focus to the first steps of the trajectory. After 
acknowledging all teachers’ efforts for guaranteeing low entrance for everybody and collecting the 
diverse aspects of potential for natural differentiation, she shifted the focus to the central learning 
goal, emphasizing the multiplicative structures of counting in rows and layers for determining the 
volume. She sent the teachers back into their group discussions with the following prompt which 
started an interesting process of eliciting further categories:  

143 Facilitator What do we do know [means for the students with learning disabilities] that they 
can really…? So what kind of support can we give so that they can learn - not 
only what to calculate, but also understand why to use multiplication?  

How to come 
to Step 2-5? 
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144 Melanie The levels while layering, there are the layers [shows the layers with her hands] Step 2 
…   

Step 2+3a 149 Melanie And then coloring, well anyway, really draw the picture as three-dimensional and 
mark the layers and reflect, how many cubes are in one layer 

150 Hayat I mean, when you have worked adequately, then they know this, this with 
lying the dot plates [she refers to rectangular arrays such as printed here]  

Basic concept 
multiplication 

151 Carmen I was just gonna say, the point system and with it, you can take the cuboids of one 
layer.  

Step 3a 

152 Hayat Yeah.  
153 Carmen And then the point system behind, then they will get it, length times width. Step 4, High 

expectation 
154 Hayat  Exactly, I have first..#  
155 Carmen                                  #That is then, the remediation of the rectangle  […] basic concept 
157 Christiane Yes.  
158 Carmen Area, isn’t it  […]  
160 Melanie And then the rectangle. Step 4 
161 Carmen And then the multiplication […] You have the dot frames and the rectangle –  basic concept 
- 165 
 
… 

that is what I would remediate here, and then there are the layers, though. […] 
And then, if you color that, you are, easy peasy, in multiplication. 

 
Step 4 

169 Christiane You mean, decomposing it, actually, after it, decompose into the same forms. Step 3b 
…   
173 Melanie But then, of course, you are still in the hands-on, and you have to anyway, ehm. Step 5 
174  Carmen 
-177 

Or you come into the multiplication. […] 
IF you have remediated it thoroughly, before. 

relevance of 
basic concept 

 

The analysis of the transcript with respect to the implicitly or explicitly addressed categories from 
Table 2 shows that after the facilitator-initiated shift of attention from the low entrance to reaching 
the core goal, the group discussion at the observed table quickly turns to carefully thinking through 
all steps of the trajectory of discovering multiplicative structures (as marked next to the transcript). 
During this reflection, the teachers also identify the most important basic concept, the mental model 
of multiplication in the rectangular array (addressed by the teachers with different idiosyncratic terms 
– the dot plates, the point system, etc. – but exactly that meaning).  

It is only now that the teachers discover an important form of differentiating with the open-ended 
task: When planning how to provide support for students with mathematical disabilities, the basic 
concepts required for reaching the learning goals of the task must be identified and possibilities for 
integrated remediations of these basic concepts have to be searched. In addition, teachers can express 
higher expectations.  

Discussion and outlook 
Although the sample of 14 teachers is much too small to take the quantitative comparisons of teach-
ers’ different backgrounds as statistically representative, these first insights into an ongoing project 
can already point to teachers’ resources and blind spots for differentiating with open-ended tasks: 

· Open-ended tasks can only unfold their potential of natural differentiation if teachers can unpack 
this potential. In our sample, 9 teachers started to unpack it, which is a good starting point.  

· Their focus is mainly on the start of the trajectory of discovery, and as a consequence, the provided 
support for students with mathematical learning disability is concentrated on the first steps, but 
not on the steps towards reaching the learning goal. As a consequence, also the support is not yet 
concentrated on the core goals. 
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· The observation that only three teachers provide support for overcoming obstacles posed by po-
tentially missing basic conceptual knowledge is a very strong concern as students cannot reach the 
learning goals without getting access to the basic mathematical concepts.  

· Within the PD session, the facilitator succeeded to shift the participants’ focus from the low en-
trance to possible supports for reaching the core goals, so with adequate prompts, the teachers can 
activate categories in their PCK that help them. These include especially the basic concepts. 

· Further questions: Which other blind spots for differentiation can be identified and how can they 
be processed? 
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Abstract: Mathematics teachers in Hong Kong find they have no confidence in designing effective 
instructional plans for students with intellectual disability (ID). Based on our four-year experience 
of dealing with mathematics teaching problems faced by teachers of students with ID, we claim that 
an understanding of mathematics knowledge structure is the pre-condition of generating hypothetical 
learning trajectories. To illustrate this point, a study on developing a progressive learning framework 
for teaching mental objects to students with moderate or severe ID is presented here.  

Keywords: Design science, intellectual disability, mathematics teaching, teacher professional 
development. 

Introduction 
Over the last four years, we have been engaged in a professional development programme for 
supporting mathematics teachers of students with intellectual disability (ID). ID is a disability 
characterized by significant limitation in intellectual functioning and daily adaptive behaviors 
(AAIDD, 2010). Students with ID face serious obstacles in abstract thinking, reasoning, 
comprehension, and communication (Taylor, Richard, & Brady, 2005), which greatly influence their 
learning performance in mathematics. The cognitive limitation suggests that the mathematics learning 
trajectory for students with ID cannot possibly be the same as those for students with normal 
intelligence.  

In the local community where we are working, the government provides teachers with a total of 250 
hours of training for support students with special educational needs (SEN), including students with 
ID (Education Bureau, 2018). The majority of time is spent on developing teachers’ skills and 
strategies in supporting students learning and instilling teachers’ knowledge in handling students’ 
cognition, behavioral, emotional, sensory, communication, and physical needs. Subject content (such 
as mathematics or science) is rarely covered. It seems that policymakers regard the enhancement of 
teachers’ knowledge for teaching mathematics to students with SEN as just adding generic 
pedagogical knowledge to whatever mathematics specific preparation teachers have already acquired 
in previous training.  

Similarly, in the research community, the importance of mathematical knowledge for teaching SEN 
students has not received much attention. Allsopp and Haley (2015) conducted a synthesis of research 
and found that, during 2004 to 2014, only 16 studies included the criteria of teacher education, 
mathematics, and students with learning disabilities. On the topic of intervention studies for ID 
students’ mathematics education, only 16 papers were found to have been published between 1989 to 
1998 (Butler, Miller, Lee, & Pierce, 2001), and 7 papers were found to have been published between 
1999 to 2010 (Hord & Bouck, 2012). After a glance of the very limited literature on mathematics 
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education for students with SEN, it is easy to discover that studies on intervention based on a 
mathematics-specific perspective are rare. 

The pedagogical content knowledge (cf. Shulman, 1986) for teaching mathematics to SEN students 
is an under-addressed area. Is mathematics for teaching SEN students the same, in both content and 
form, as mathematics for teaching students without SEN? Or how different are the two? To what 
extent do generic knowledge and skills about SEN students’ learning enable teachers to carry out 
mathematics teaching that is effective to SEN students? We attempt to discuss these questions based 
on our experience with teacher development in recent years.  

The paper describes data from a study in which we collaborate with school teachers to develop an 
instructional framework for students with moderate (IQ from 35 to 50) or severe ID (IQ below 35). 
We use this study to illustrate teachers of students with moderate and severe ID need support for 
designing appropriate mathematical experiences for their students, a point that is overlooked by most 
teacher training programmes of special education. 

Fourteen teachers from five special schools in Hong Kong participated in this study, six of whom 
teach students with moderate ID, and eight teach students with severe ID. Qualitative data are 
collected, approved by participating schools, teachers, and students’ parents, including written notes 
of the meetings, video recording of teaching experiments, and audio recording of interviews with 
three teachers who took part in the teaching experiment. 

Generating a hypothetical learning trajectory 
In each of the participating schools, teachers have been trying hard to find ways to expand their 
students' possibilities in mathematics learning. When teachers were asked about their difficulties in 
teaching, the following comment, made by Teacher 1, was common among the teachers: 

When I prepare to teach a piece of mathematics content, I think that I learned that content by this 
way, but for children with ID, how do they learn? 

It shows that teachers understand that the learning trajectories of ID students are different from what 
they experienced themselves in schools during their years as students, but they have no experience of 
what it is like to learn mathematics with the limitation that their students have. Given all this, teachers 
usually are left alone to make up the details of their teaching – extrapolating from whatever 
mathematics textbooks or other learning resources might offer. However, most of the available 
materials are designed for students without ID, and teachers would easily find themselves being left 
in the unknown area of teaching.  

In what follows, we outline general steps by which we help teachers to arrive at a hypothetical 
learning trajectory for students with ID. The procedure resembles the French approach of didactical 
engineering (Artigue, 1994), in which a serious analysis of the teaching contents and constrains at 
epistemological, cognitive, and didactical levels constitutes an essential component.  
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Step 1  

We listen to the teachers talk about the teaching problem they are confronted with and have an 
observation about the target student groups, during which, we try to answer the following questions 
as far as we can: 

- What is the teaching problem?  

- What is the goal that the target students need to achieve?  

- Is there any constraint that need to be considered? 

The answers to these questions provide us with a general picture of our mission. 

Step 2  

Before we start designing a hypothetical learning trajectory of a topic, we carry out an epistemological 
analysis of the content structure, which aims to portray a longitudinal picture of knowledge 
acquisition. During the process, we try to reconstruct a path of knowledge development that on the 
one hand links up well with prior learning experiences, and on the other hand, contributes to effective 
subsequent learning. The structures identified in this stage underpin a skeleton of the hypothetical 
learning trajectory, which ensures the resulting trajectory will be mathematically sound.  

Step 3 

The skeleton of the hypothetical learning trajectory provides teachers with a direction for generating 
an instructional plan. In the third step, we need to work with teachers to insert various intermediate 
stages, with attention paid to characteristics of students, classroom constraints, curriculum constraints 
etc. With teachers' input, we begin with a thought experiment (cf. Freudenthal, 1991), imagining how 
the teaching-learning processes will proceed and spotting out the gaps in the proposed learning 
trajectory that will impede students' knowledge construction. 

Step 4 

Lastly, teachers, with some help from the researchers perhaps, fill in the fine details to arrive at a 
detailed instructional action plan for their own students. Afterwards, it will be field-tested and open 
to amendment based on implementation evidence.  

An illustrative example: developing a framework to teach mental objects to 
students with moderate or severe ID 
The learning of mathematics involves creating mental objects (Freudenthal, 1991). Number, length, 
angle, circle, square, weight, straight line, ... are mental objects commonly encountered in 
mathematics lessons. They, being intuitively clear among children with normal IQ, are often found 
to be very difficult for students with moderate or severe ID. Unfortunately, these difficulties are 
usually unknown to their teachers who were once children with normal IQ in their younger days. 

When teachers try to communicate the meaning of mental objects, how can they convey those 
messages to students with ID? And, how can they check if students indeed acquire what their teachers 
intend to communicate? The situation becomes worse for students with specific language impairment. 
When verbal communication fails, is there any possibility of conveying abstract mental objects to 
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students? In short, how can we draw students’ attention to mental objects without relying on 
language? This is the situation we were confronted with in Step 1 after discussions with teachers. The 
main teaching problem is how to convey the meaning of a mathematical concept (which is, in essence, 
a mental object) to students with moderate or severe ID? As these students often do not have 
satisfactory verbal communication skills, teaching is constrained to using a minimal amount of verbal 
communication. The goal to achieve is that students can identify the mental object from among others 
in a multiple-choice question.  

In Step 2, we proceeded to analyze the knowledge structure concerned. Indeed, a mathematical term 
sometimes refers to a relation, as in the case of ‘being less’, an operation, as in the case of ‘subtract’, 
or a class of objects, as in the case of ‘straight line’. For example, in Figure 5, we will say “This is a 
straight line” when we point to each of the three different straight lines. In essence, the term ‘straight 
line’ refers to the class of figures in which no two of them are indeed identical. Teaching involves 
conveying a class of objects that shares certain properties without ever going explicitly into those 
properties in detail. When language is not the vehicle of communication, we are left with the scenario 
that students can only ‘sense’ the meaning through examining a large number of examples and non-
examples. This understanding forms the basis of the Pick the Odd One (POO) framework. 

POO is a framework for designing a series of multiple-choice activities under which a student could 
progressively develop a sense of a mental object without relying too much on verbal communication. 
Although the teacher is free to employ any verbal explanation during its execution, the main thrust 
that drives students to the target mental object comes from the teacher's confirmation of the 
correctness of a student's choice, which may well be done using body language or facial expression.  

In Step 3, we had to portray various intermediate stages of the POO. These stages should encompass 
sufficient variation across examples and non-examples of the mental object to be conveyed. To begin 
with, there should be a key concept, or a focus mental object, that will appear in the series of multiple-
choice activities. Going through the series of multiple-choice activities, the student will 
systematically visualize or experience these variations. Each multiple-choice item includes a total of 
four or five choices, with at least one choice corresponding to the focus mental object, and at least 
one choice corresponding to the other. The student should indicate (by pointing or other means) the 
odd one out. Through systematically varying these choices, the student's attention is drawn to the 
focus mental object. Timely feedback from the teacher serves to shape how the mental object is 
developed, and hence is an indispensable component of the activities. 

There are four stages of the POO. In Stage 1, each item consists of exactly one choice corresponding 
to the focus mental object (straight line in this case), while the remaining are identical choices in 
identical orientation (Figure 1). In Stage 2, each item consists of exactly one choice not corresponding 
to the focus mental object, while the remaining are identical choices corresponding to the focus 
mental object, in identical orientation (Figure 2). Variations of the forms of the mental object and the 
otherwise across items should strive for comprehensive coverage as far as possible (see Figure 3 and 
Figure 4). In Stage 3, each item consists of exactly one choice not corresponding to the focus mental 
object, while the remaining choices correspond to the focus mental object in different forms (Figure 
5). Up to this point, the student should have seen or experienced a large number of examples and non-
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examples of the focus mental object. The teacher could now reveal relevant terminology in written 
or oral form. In Stage 4, no specific restriction is imposed on the choices and the student is required 
to pick out the unique choice corresponding to the focus mental object by its name (Figure 6). In other 
words, the student tackles multiple-choice questions commonly found in regular mathematics class 
only at Stage 4. All the previous activities are designed to fill the gap before the student is capable of 
handling this. 

                                
        Figure 1: POO stage 1                     Figure 2: POO stage 2                 Figure 3: Variations of stage 1 

                        

Figure 4 Variations of stage 2                 Figure 5: POO stage 3                     Figure 6: POO stage 4  

In principle, this framework can be applied to teach a variety of mathematical mental objects or 
informal notions such as straight line, circle, emptiness, being long, inner part, being heavy, many, 
etc. 

In Step 4, teachers proceed to design the details of the series of multiple-choice activities. Pilot tests 
carried out by teachers indicated that there should be a preparatory stage (see Figure 7 and 8) to 
confirm that the student is capable of matching object or picture at hand with a group of identical 
objects or pictures not necessarily in the same orientation.  

                                                                         
Figure 7: Exactly identical objects                              Figure 8: Identical objects in different orientations                                               

After inserting the preparatory stage, the second round of teaching experiments was conducted. The 
progress in moderate schools was very obvious, in which most students could correctly choose the 
unique straight line among the four choices after two weeks’ training, and some of them could classify 
straight lines and curves (in the form of physical objects and printed figures) in the third week. 
Teaching experiments were also conducted with four students (S1, S2, S3, and S4) with severe ID 
who have little ability of communication. One of the students, S4, is with autism spectrum disorder, 
and he always exhibits restricted and repetitive behaviours. The learning pace of the students was 
slow, but progress was still observable as shown in Table 1. 
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Student 1st video recorded lesson 2nd video recorded lesson (after 6 weeks) 

S1 Able to choose the straight line from four 
choices (POO Stage 4) 

Able to classify straight line and curves 

S2 Cannot choose the straight line from four 
choices (POO Stage 1) 

Can choose the curve from four choices 
(POO Stage 2) 

S3 Cannot classify the straight line and 
curves 

Able to classify straight line and curves 

S4 Cannot give teacher an identical object Able to put two identical objects into a 
group 

Table 1: Severe ID students’ learning performance in two video recorded lessons 

Students’ learning progress was also observed by the interviewed teachers. They all agreed that the 
framework helped their students learning mental objects. Teacher 1 who applied the framework to 
teaching her students with moderate ID the mental object ‘being less’, told us:  

For example, I would like to teach them the concept of ‘being less’. During the activity, ‘being 
less’ will be the different one among the choices. If you directly point to the group with less objects 
and tell the student “this is being less” [without drawing their attention to the difference in amount], 
they will mistakenly name the objects they see ‘being less’. Actually, they do not get what you 
mean, and they haven’t even compared them [the quantity]. However, in this framework, they need 
to identify the difference first and then, we teach them the difference is ‘being less’. Before we 
applied this framework in teaching, our students’ performance of ‘being less’ was not stable, but 
through the framework, I pointed to the difference and told them it is ‘being less’, they soon have 
a grasp of the concept.  

Teacher 1 found the framework provided a way for teachers to communicate with moderate ID 
students. She had never thought that POO could be an effective starting point to learn a mental object.  

Teacher 2, who was in her second year of teaching students with severe ID, found that POO not only 
assisted her students’ learning but also enhanced her professional competence in teaching students 
with severe ID.  

Interviewer: What changes have you had after participating in this teaching experiment? 

Teacher 2: Before this teaching experiment, I didn’t know what content I should teach [to 
students with severe ID]. Now, when I teach mathematics, I have something to 
follow. I can make a reference to the framework. There are many levels and steps, 
so I can evaluate what level a student has achieved and know what learning 
activities should be assigned to the child in the next level. This makes lesson 
planning easier because the framework enables me to plan my teaching for each 
individual student. 

Interviewer:  What changes do your students exhibit? 
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Teacher 2:  One student could pick the odd one only when it differs from the others significantly, 
now she is able to do it with even a small difference. I found that when they are 
familiar with the learning activity, they can make progress much faster. It is good 
for them to learn different topics under one progressive learning framework. Before 
this teaching experiment, I included a variety of learning activities in my class 
because I believed it would make a fruitful lesson. However, from the perspective 
of students with severe ID, this is not the case. They cannot handle a frequent switch 
of contents and learning methods, and consequently make little progress.  

Interviewer: Did your students perform up to your expectation? 

Teacher 2: More than half of the students performed better than I expected.  

Interviewer: What was your expectation before? 

Teacher 2: Before? I didn’t expect much. I just gave them some manipulatives related to 
mathematics and hoped they could explore by themselves. I was satisfied if they 
could touch and play with them. But now, I expect more. I hope they can make 
some mathematical sense out of the activity instead of just playing. 

Teacher 3, who has more than twenty years of experience in teaching moderate ID students, also 
mentioned: 

We have learned more about mathematics. This is because that part of mathematics falls onto the 
blind spot of our knowledge. We were not able to see them because we skipped them quickly when 
we learned. As our starting point [of learning] was not that low, it is natural that we missed all the 
steps that our students need to have. Therefore, we would not think of these steps in our teaching. 
Fortunately, the learning trajectory developed explicitly lists those steps out, reminding us of what 
we missed in our teaching.  

Concluding remarks 
Our experience with the framework POO reveals the following observation that deserves serious 
attention. Teachers need support on creating a knowledge structure for understanding and planning 
for students' progress. Such a structure should enable teachers to divide teaching into small steps that 
can possibly engage students with moderate or severe ID. This is especially important when teachers 
cannot possibly draw on their own previous learning experience where those intermediate learning 
stages were virtually absent. To produce such a knowledge structure and subsequent action plan 
constitutes the design science of mathematics education (Wittmann, 1995, 2001). It involves studying 
various phenomena and their corresponding mathematical meanings, which can only be done from 
within mathematics (Freudenthal, 1983). Judging from students' performance and teachers' feedback, 
this approach is seen to have a positive impact on improving the quality of learning of ID students. It 
re-confirms the importance of mathematics in mathematics education (Akinwunmi, Höveler, & 
Schnell, 2014), something that may sound too trivial to consider, yet often too easy to overlook.  
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K-12 Namibian teachers’ beliefs on learning difficulties in 
mathematics: Reflections on teachers’ practice 
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This paper explores K-12 Namibian mathematics teachers’ beliefs on difficulties associated with 
learning mathematics in school and examines their perceptions of problems affecting Mathematics 
Learning Difficulties (MLD). 231 teachers (100 primary and 131 secondary teachers) completed the 
survey. The findings reveal that teachers frequently frame students’ difficulties within a deficit 
framework seeing students’ difficulties as emanating from cognitive disabilities. Teachers’ 
identification of potential causes of MLD is discussed. The paper concludes by considering the 
pedagogical implications of providing additional support to students with MLD and by providing 
recommendations for future research on changing teachers’ negative perceptions towards students 
with MLD to optimize students’ performance.  

Keywords: Learning difficulties, teachers’ perceptions, mathematics learning difficulties, beliefs. 

Introduction  
Many countries across Africa have reported poor mathematics performance among their students 
(International Mathematics Union Report, 2014). According to the Organization for Economic Co-
Operation and Development (OECD), mathematics becomes a stumbling-block for the majority of 
students (OECD, 2014). In Namibia, like many other countries, mathematics is a compulsory subject 
in the K-12 curriculum because of its significance and practical value in everyday applications 
(Tjikuua, 2000). However, in the last three decades, since Namibia’s independence in 1990, majority 
of students perform poorly in mathematics. Literature on mathematics education highlighted 
numerous factors leading to poor performance including students’ difficulties in learning 
mathematics (e.g. Siyepu, 2013). To better understand students’ difficulties in Namibia from the 
teachers’ perspective, this study examines Namibian mathematics teachers’ perceptions on 
Mathematics Learning Difficulties (MLD) and challenges experienced in teaching students with 
learning difficulties. Preliminary research shows that little is known about Namibian mathematics 
teachers’ perspectives on MLD, rather past studies have focused on learning and teaching of specific 
content in mathematics, instead of understanding MLD. Therefore, the study’s aim is twofold: 
contribute to the research on mathematics teachers’ beliefs and mathematics education in terms of 
how teachers cater diverse learning needs of students with MLD and suggest potential ways for 
teachers’ intervention starting by changing teachers’ beliefs to improve the academic performance of 
Namibian students. 

Theoretical background 
Mathematics education researchers describe MLD in different ways. Morgan, Farka and Wu (2009) 
associate MLD to risks in mathematics proficiency. Karagiannakis, Baccaglini-Frank and Papadatos 
(2014) describe MLD as a variety of obstacles that lead to difficulties in processing numbers. While 
some researchers claim that MLD is the result of sociocultural norms around developing 
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mathematical skills or comprehending arithmetic relations (Kaufmann & von Aster, 2012, p. 767), 
other researchers assert MLD is related to cognitive functions (Mazzocco, 2007). All students with 
MLD work slowly in mathematics (Wang, Du, & Liu, 2009) and perform poor academically (Jitendra 
et al., 2013). Building on the previous literature, this study considered MLD as any limitations or 
constraints that are believed have negative effect on students’ achievement, and leads to difficulties 
in learning and poor performance of mathematics. 

Several reasons and factors that might cause the learning problems in teaching students with MLD 
have been identified, including poor foundation in content knowledge, unwillingness to learn, and 
teachers’ incompetency (Siyepu, 2013). The literature also reveals several causes that teachers 
attribute to mathematical difficulties, which include the lack of student motivation and the medium 
of instruction (Wang et al., 2009; Siyepu, 2013). Students tend to develop positive attitudes towards 
mathematics in early grades; however, some lose interest in mathematics as they move to higher 
grades (Lee, 2009) and experience difficulties in mathematics and perform poorly due to lack of 
interest in the subject (Tella, 2007). 

To address the needs of students with MLD, Torbeyns, Verschaffel, and Ghesquire (2004) suggest 
that teachers pay special attention to effective teaching techniques at a slower pace, as this will 
improve student performance. However, such implementation requires understanding teachers’ 
perspectives of MLD which has not been investigated before. Thus, this study explores Namibian 
teachers’ beliefs about the difficulties associated with learning mathematics and how they perceive 
MLD. The perceptions of teachers are important in the identification of difficulties and factors 
involved in MLD and ultimately have a significant influence in changing practices (Kasanda, 2015) 
towards a more inclusive mathematics teaching.  

Mathematics teachers’ beliefs and practice 

Mathematics teachers have a wide set of beliefs regarding mathematics content and the nature of 
mathematics, but also on effective teaching and learning of mathematics. These beliefs are often 
based on a teacher’s own knowledge base, or his or her own experiences acquired through his or her 
adapted teaching practice (Maab & Schlöglmann, 2009). This study has adopted the definition of 
beliefs from Ajzen and Fishbein (1980), who define beliefs as whatever a person regards as true in a 
certain situation. These beliefs include thoughts, attitudes and principles adopted by individuals 
through a shared environment. Researchers on mathematics teachers’ beliefs agree that beliefs play a 
critical role in determining how teachers teach and what they do (Thompson, 1992). Research also 
suggests more studies on beliefs on teaching and learning mathematics as well mathematics itself as 
a subject (Perry, Tracey, & Howard, 1999, p. 39). Also, Haser and Star (2009) suggest more belief 
studies are needed in different educational contexts to better understand how teachers deal with 
different situations. The present paper extends the work of Perry (1970), who explored mathematics 
teachers’ epistemology beliefs – whereby the study will look at beliefs based on the experiences of 
teaching students with MLD to determine their notion of an inclusive setting. This perspective 
acknowledges that the personal beliefs of teachers might influence their teaching practice. According 
to Ernest (1991), a teacher’s perspective is an individual belief system about the nature of 
mathematics. Ernest (1991) further found that mathematics teachers’ perspectives, which are regarded 
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as beliefs or thoughts, influence a teacher’s social context of teaching and the level of teacher’s 
thought. Furthermore, educational researchers emphasize that teachers’ beliefs and the social context 
affect the nature of how mathematics is taught or learned (Ernest, 1991). Thus, educational programs 
need to reshape those beliefs that may hinder effective mathematics teaching (Maasepp & Bobis, 
2015). Researchers suggest that teachers’ beliefs regarding teaching and learning affect their own 
practices (Thompson, 1992). It has been found that there is a strong relation between teachers’ 
perspective of teaching and their perspective of students’ mathematical knowledge (Sosniak, 
Ethington, & Varelas, 1991). Ernest (1991) concluded that to change the nature of teaching and 
learning of mathematics, changes in a teacher’s belief structure is needed, while acknowledging that 
belief change is difficult. On account of this, the present study intends to answer the following 
questions: 

1. What are Namibian mathematics teachers’ beliefs about mathematics learning difficulties? 

2. What challenges do mathematics teachers experience when teaching students with mathematics 
learning difficulty in an inclusive classroom and what potential measure do they use? 

Methodology 
Instrument  

A survey with closed (teaching experience, education background) and open-ended questions 
(Kelley, Clark, Brown, & Sitzia, 2003), was administered, to get the perspectives of mathematics 
teachers’ on MLD by asking the following questions: (i) What do you understand by ‘learning 
difficulties’ in mathematics? (ii) What challenges do you experience in teaching students with 
learning difficulties in mathematics? (iii) How do you deal with such challenges? The instrument also 
collected information on teachers’ views about challenging topics to students as well as their 
estimation on difficulty among mathematics students as they move from primary to secondary level 
which are not reported in this paper because of limited space. The design process followed the 
recommendation of Zhanga and Zhou (2016) about the design of the questionnaire, that it should 
allow participants flexibility to provide rich data. The survey was designed by the author and revised 
by two experienced researchers in the field in terms of wording as well as its content for validity.  

Participants and procedure 

A total of 231 primary and secondary (100 and 131 respectively) teachers voluntarily completed the 
survey. Participants’ teaching experience ranged from one to twenty years, and their educational 
backgrounds varied. Only five of the participants did not have the minimum teaching requirements, 
a diploma as per Namibian teaching requirements, and the majority taught at rural public schools. 

The survey was given to teachers during an annual Namibian mathematics teachers’ congress in 2017 
where 232 teachers teaching at both primary and secondary phases participated. This congress is a 
venue where mathematics teachers across the country come together to share their experience and 
challenges encountered in teaching mathematics. This was a better platform for the author to obtain 
representatives from all fourteen educational regions to contribute to the study. Permission to conduct 
the survey was obtained from the conference coordinator. Teachers were briefed about the research 
objective and they were informed that their participation was anonymous and confidential. Teachers 
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were told to base their answers to what they experienced. Completion of the survey was done at the 
same time, about 30 minutes. One hundred and six teachers opted to submit the survey through 
Google Drive while one hundred and twenty-five placed the surveys in a drop box that was allotted 
for this purpose at a conference venue.  

Data analysis 

Responses to closed-ended questions were for comment on participants’ background information. A 
qualitative approach was most appropriate to understand and interpret the data of the study, which 
were the respondents’ answers to the open-ended questions. Data were analyzed using a thematic 
analysis (Ritchie & Lewis, 2003) based on the research questions mentioned earlier. According to 
Braun and Clarke (2006), descriptive themes enhance meaningful insights of data with deeper 
understanding. Every individual statement was considered for data analysis and all related features 
of the data were coded after data familiarization. Key words used in coding include “disabilities”, 
“unable”, “less ability”, “lack of interest”, and “struggling”. Categories were identified and refined 
to make descriptions of the data understandable. The coding process generated three themes. Some 
of the descriptions are illustrated as direct quotes to support claims and to have a coherent conclusion.  

Findings and discussions 
The findings reveal that teachers have a wide range of beliefs. In general, the study reveals that 
teachers’ beliefs illustrate that they are unaware of the causes of MLD. Three themes emerge from 
this study: Difficulties as the result of learning competency, students’ low interest in mathematics, 
and insufficient mathematics learning foundation. However, this paper will only address competency 
in learning and students’ low interest in mathematics. 

Difficulties as a results of learning competency  

The most interesting and emergent finding is related to teachers’ perceptions on students’ ability to 
learn mathematics. Data analysis showed that Namibian teachers are pessimistic about the ability of 
students to learn mathematics. They believed that students are unable to perform, they cannot learn 
in certain settings, or that students’ potential to learn mathematics is limited. These teachers’ 
perceptions revealed that Namibian teachers tend to associate MLD to a student’s cognitive ability. 
These beliefs are shared by Mazzocco (2007) in her study as she described that student’s ability to 
learn mathematics is cognitive-based, focused on what students cannot do, instead of what they can 
do or know. This belief is illustrated by the data, which identifies common key words in the data set, 
such as: “unable”, “inability”, “lack”, “slower”, “struggle”, “not achieve”, “cannot do”, “not able”, 
“poorly”, “obstacles”, or “hardly catch up”. The analysis indicates Namibian teachers consider 
students to have learning difficulties if they cannot acquire certain skills or have difficulties meeting 
the learning objectives. Similar findings were addressed by Wang et al. (2009), where teachers stated 
that students with MLD develop a poor sense of numbers, they have low competency in learning 
mathematics and need individual support. Moreover, the data report that students with MLD are 
hardly able to catch-up as they exhibit disabilities when trying to meet the required skills and are 
unable to function at base level. One teacher reported that, “students struggle[d] to use acquired 
mathematics skills.” While another teacher who based his/her remarks on student arithmetic skills 
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stated that, “learners demonstrate slow or inaccurate recall of basic arithmetic facts”. Teachers’ 
beliefs about MLD are illustrated below:  

These are challenges that learners face in the classroom setting which contribute [...] to poor 
performance and misunderstanding of mathematics [..]. Remedial is needed.  

I consider a learner to have learning difficulties if they cannot acquire certain skills or have 
difficulties meeting the learning objectives. 

As illustrated in the above quotations, teachers’ perceptions indicate that MLD are regarded as 
problems that hinder a students’ learning process, they negatively affect students’ academic 
performance, and consequently cause students to perform poorly in mathematics. Teachers further 
disagree on the performance levels of students in relation to the competency to be achieved at a certain 
stage or level. Teachers believe students with MLD cannot master the skills one is expected to attain 
at a certain level or in a certain learning area. Hence, one teacher mentioned additional learning 
support for students with MLD:  

… [If a] learner is unable to master 40% of the competencies a learner will need special attention 
apart from [the] normal allocated time for the period. So, such a learner will be given some extra 
classes for improvement. 

Further, majority of teachers reported that by offering a variety of teaching methods, students with 
MLD could improve their performance in mathematics. Teachers’ seem to believe that not only 
students with MLD experience difficulty, but even the gifted ones, too. They believe that every 
individual has some specific learning difficulties, as reported in the previous studies (Eisenberg, 
2002). Further, the identification of learning support strategies was helpful in improving student 
performance across the board. This indicates that learning support can be explored to remedy 
challenges facing students with MLD as stated below: 

With learning difficulties, I do understand that not only the slow learners experience learning 
difficulties, but the gifted learners can also experience learning difficulties [and …] compulsory 
teaching/support can remedy the situation. 

Another teacher who stressed the use of learning support materials reported that she used array of 
teaching methods, including the use of, “concrete materials, remedial teaching and learning support, 
games [..], opportunities to work together and practical examples.” These examples would require a 
demonstration of the correction between those techniques/methods and higher student performance. 
Moreover, a handful of participants believed that regular learning activities and those that 
accommodate all student abilities might improve overall student performance.  

Students’ low interest in mathematics  

Additionally, the survey results indicate that teachers believe learning difficulties are associated with 
a student’s low interest in the subject. Mathematics education literature stresses that the promotion of 
students’ interest enables greater student success (Hulleman & Harackiewicz, 2009). The data 
analysis reveal that MLD is often identified to be the cause when students are “not academically 
good” in mathematics, as a results of “low enthusiasm” in the subject. Findings indicate that students 
with MLD “lose interest” in the subject, are considered “not serious,” and “usually [do] not participate 
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in math class.” However, teachers report that despite learning difficulties, some of these students are 
willing to learn mathematics, particularly if they receive support, and are given positive 
reinforcement. These responses are similar to those reported by (Zakaria, Chin, & Daud, 2010) as 
they found that, individual students’ needs should be supported with effective teaching and learning. 
As one teacher reported, “these are learners who are willing to learn but they have difficulties in the 
learning process.” As another teacher stated, students with MLD need positive reinforcement, so for 
“those who lose interest, [that teacher…] gave them positive feedback.” Similarly, another teacher 
said, “I used to buy them sweets when they did better in a test and also do remedial teaching in the 
afternoon.” This shared belief by teachers was summarized by another teacher:  

Learners must be encouraged by means of positive feedback, such as ‘very good,’ ‘excellent,’ [or] 
‘you are doing well.’ Learners […] experience success by giving them classwork and by giving 
them immediate feedback. The more success learners […]experience, the more they become 
confident and hence learning will take place. 

Conclusions and future perspectives 
The survey results show that the personal beliefs of the participants may have a negative influence 
on their teaching practices related to students with MLD. According to the personal beliefs of the 
participants, and Karagiannakis et al. (2014), mathematics learning difficulties are seen as obstacles 
that hinder the learning of mathematics, including learning environments and social contexts. 
Participants indicated they believe these obstacles result in shortcomings in mathematics 
comprehension, and result in a student’s inadequate development of a mathematics foundation in 
certain topics or the subject area as a whole. According to the findings, Namibian teachers also believe 
that MLD delay the learning process and negatively affect students’ academic performance. 
Responsive statements from the survey show that some of the negative views teachers had might 
affect their perceptions of students with learning difficulties, and have the potential influence their 
teaching process (Kasanda, 2015; Thompson, 1992). Further, the majority of participants frame 
learning difficulties to intellectual aptitude but they did not connect these beliefs to lack of interest or 
lack of math knowledge though it is mentioned in the literature (Siyepu, 2013; Tella, 2007). Thus, to 
improve performance outcomes for students experiencing MLD, there is a need of belief change 
among mathematics teachers, as suggested by Ernest (1991). However, the question remains: How to 
change teachers’ negative perceptions towards students with MLD? This could be a direction for 
future research in order to optimize the current study’s outcomes. Furthermore, problems persist as 
identified by teachers for students with MLD, as these students not only perform poorly in the 
classroom, but they present low participation and demonstrate little interest in the subject, among 
others factors. Yet, the majority of Namibian teachers, participated in this study believe that MLD 
result from an inadequate mathematics foundation, as stressed by Siyepu (2013). However, this 
current study shows negative connotations of students with MLD, though they may acquire 
mathematics skills through extra learning support as highlighted in the findings.  
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Introduction 
In the German project “GLUE – Gemeinsame LernUmgebungen Entwickeln” (‘developing 
collaborative learning environments’), an in-service program was developed with the aim to support 
teachers of different professions (special needs teachers, school teachers) in the implementation of 
inclusive mathematics education. The program is based on a German website (pikas-mi.dzlm.de), 
which provides teaching resources and instructional materials for an inclusive mathematics 
classroom. These materials enhance existing conceptions of mathematics teaching (e.g. Scherer, 
Beswick, DeBlois, Healy, & Moser Opitz, 2017). In the focus is the development of ‘collaborative 
learning environments’ for diverse learners to enable every child to participate in mathematical 
activities, as these are main characteristics of the definition of ‘inclusive education’ in this project. 

The main features of the in-service program: 

1) Self-directed web-based learning is combined with workshop activities (blended learning). 
2) The workshops include theoretical inputs as well as practical examples of ‘collaborative 

learning environments’ for diverse learners in an inclusive mathematics classroom. 
3) During the workshops participants will adapt, develop, explore and reflect ‘collaborative 

learning environments’ for their own classes (transfer from theory to practice). 

Well-founded design elements for in-service trainings for teachers will be taken into account (Barzel 
& Selter, 2015; Borko, 2004). 

Research design 
The GLUE-project faces research interests on the level of design – with the aim of designing an 
effective in-service training – and on the level of research to evaluate the effectiveness. 

All together one-hundred teachers will participate in the study. One half of these participants are 
special needs teachers, the other half are primary and lower secondary school teachers, to encourage 
collegial support and reflection between different professions (Bräuning & Nührenbörger, 2010; 
Wember, 2013). All participants are split in two groups: treatment group and control group. 
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A pre-post-follow-up-test design includes standardized questionnaires (quantitative) and interviews 
(qualitative) to gain information about the participants’ self-efficacies, adaptive mathematical 
didactical competencies and their attitudes towards inclusive education before and after their 
participation, to evaluate the effectiveness of the program. Also, the acceptance towards the 
developed in-service program gets surveyed (see exemplary items below).  

First results 
Until now, the in-service program of the treatment group and the analyses of first pre- and post-tests 
have started. The first results indicate some high effect sizes concerning the perceived self-efficacy 
by the target group, as the following questionnaire-items show. 
Exemplary item 1: I know instruments for the diagnostically founded support of mathematical 
competences (e. g. four-phases model). 

before participation: after participation: 

Figure 1: Results of item 1 (paired sample: p-value <0,00; d = 1,500758; effect size high) 

Exemplary item 2: I can adapt instruments for the diagnostically founded support of mathematical 
competences (e. g. four-phases model) to plan my lessons for the inclusive mathematics classroom. 

before participation: after participation: 

Figure 2: Results of item 2 (paired sample: p-value <0,001; d = 1,001214; effect size high) 
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In recent years a high percentage of students are (first or second generation) immigrants not only due 
to the open labour market in the European Union. The current affairs regarding immigrants might 
indicate the future increment of this ratio. Lot of research has been conducted with the aim at 
influencing the formal education in the language which is not the mother tongue of students (e.g. 
Meyer, Prediger, César, & Norén, 2016). According to teachers experienced in working with 
immigrant-students, the materials suitable for students with a limited knowledge of the language of 
instruction should be based on symbolic and visual features and elements, implicitly using only a 
restricted amount of text elements (Kijácová, 2018).  

Other crucial factors influencing the school performance are the different personal cultures of 
immigrant-students. The contexts of problems are suitable when they are part of students’ everyday 
life, familiar to the learner, up to date, and do not focus too much on any social issues (Rossouw, 
Hacker, & de Vries, 2011). Intercultural teaching materials can be beneficial for all students, not only 
for immigrants. Materials should be built on the culture-related context, respecting the background 
of every individual student.  

The educational computer games have the potential to motivate students to learn mathematics 
(Papastergiou, 2009), hopefully also under difficult circumstances. Despite of it that there are plenty 
of electronic materials available for mathematics classrooms, however, there is only a limited amount 
developed for multicultural learning situations, especially for the specific situation of immigrant-
students. 

The main aim of this poster is to promote the project Innovative Mathematics Learning Software 
for Migrant Students – immiMATH supported by the Erasmus+ programme and to describe the 
principles leading the design of the educational software for a specific group of students.  

Principle 1: Designed software should minimize the amount of text. 

Principle 2: Designed software should relate to the everyday life of students. 

Principle 3: Dividing into levels should allow students to monitor their progress.  

Two kinds of games were designed (see Table 1): (i) motivational games showing students the role 
of mathematics in their everyday life; (ii) games for revising the acquired knowledge in the manner 
decreasing the anxiety and increasing students’ self-confidence in solving mathematics tasks. The 
project team consists of university teachers (mathematics teacher educators), school teachers and 
software-company experts experienced in designing educational software. The designed software will 
be evaluated by project partners and piloted in selected schools. Each piece of software will be tested 
twice. The software will be adjusted according to the first pilot trial that will be carried out with future 
mathematics teachers with special focus on migrant students. The second version will be piloted by 
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regular students, including immigrant-students. The second objective of the project is to provide 
professional development activities for both, pre-service and in-service teachers, regarding the 
multicultural education and presenting all attributes of the designed learning software.  

Software for motivation  Software for practice 

Name Topic Grade  Name Topic Grade 

Trip through 
Europe Linear Functions 9 to 10  Journey around 

the World 
Linear 
Functions 9 to 10 

The Algebraic 
Garden 

Algebraic 
Expressions 8 to 10  Penny Bank Financial 

Literacy 4 to 6 

Save Europe! Percentage 8 to 11  Geometria Land Planimetry 9 to 11 
The Math 
Princess’ Tower 

Number Sense 
(Integers) 4 to 5  The Little 

Architect 
Spatial 
Geometry 4 to 6 

Multicultural 
Logic Train Logic 4 to 6  Building a city Functions and 

Graphs 9 to 11 

Deli Shop Fractions 4 to 8  Birthday Party Measurements 4 to 6 

Table 1: List of the designed software 
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Research about dyscalculia must still be developed. The dominant perspective focuses on the 
individual’s cognitive characteristics. We seek to know the place of mathematics education in this 
research and how to reconcile approaches to reach a better understanding of the disorder. We 
present here a methodology of analysis for tests which are designed to evaluate basic mathematics 
skills with various theoretical frameworks (cognitive sciences, psychology or didactics). We 
highlight some biases in tests from numerical cognition thanks to didactic frameworks and open 
perspectives to build a mathematical difficulties detection tool to facilitate the exchanges between 
teachers and speech therapists by providing a common inventory of the child’s difficulties. 

Keywords: Dyscalculia, mathematical learning disabilities, tests, numerical cognition. 

Context  
These last decades are clearly marked by an increase of the research and a better understanding of 
learning disabilities. While some disorders are now well identified and managed (dyslexia for 
example), others remain more complex and less studied (Lewis & Fisher, 2016). That is the case for 
the mathematical learning disabilities (MLD) which would affect 5 to 8% of students (Geary, 
2011). There is currently no consensus about the definition of this trouble (Lewis & Fisher, 2016). 
MLD are often reduced to difficulties in processing numerical quantities and arithmetic calculation 
(thus the use of the term of dyscalculia). But an increasing number of studies indicate that MLD are 
heterogeneous (Fias, Menon, & Szũcs, 2013) and affect several aspects of mathematical skills 
(Kaufmann & al., 2013). These definition problems make the diagnosis and its methodological 
validity debatable (Lewis & Fisher, 2016). From the educational point of view, politics are 
concerned by the difficulties in the learning of mathematics and the processes of “inclusion” (e.g. 
“Loi pour la Refondation de l'École”, since 2013 in France). We claim that specific studies should 
be structured and developed in mathematics education regarding MLD in order to improve the 
identification and the remediation of MLD in an educational context. In particular, that implies a 
better knowledge of the existing research dealing with MLD. In fact, MLD are studied by different 
disciplinary fields and each of them develops its own models and hypothesis (Giroux, 2011). We 
can highlight two distinct approaches: the cognitive sciences approach is centered on the cognitive 
functioning and individual characteristics (Wilson & Dehaene, 2007), while the mathematics 
education approach focuses on knowledge specificities as well as the didactic characteristics of 
learning situations. The difficulties are not only due to an individual’s dysfunction: it is also 
necessary to look for what prevents or stimulates the learning in the interaction between the student, 
the knowledge and the didactic situations. This compartmentalization of approaches is not without 
consequences. Indeed, many professionals who surround children with and are not leaning on the 
same approaches of the disorder: cognitive sciences for the paramedical professionals and 
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mathematics education for the teachers. The dialogue between these actors is therefore sometimes 
difficult, especially as medical confidentiality prevents the dissemination of some information. This 
is particularly problematic in the case of the exchanges between teachers and speech therapists. 

Objectives 
Research about MLD are mainly focused on the cognitive approach so we question the place of 
mathematics education and the way to reconcile the different points of view to a better 
understanding of MLD. We consider more precisely the reconciliation of approaches through the 
creation of a mathematical difficulties detection tool that can be used both by teachers and speech 
therapists. This device should facilitate the exchanges between these two types of professionals by 
proposing a common inventory of child’s difficulties that can be used by each of them (for a 
diagnosis and for pedagogical adaptations). To develop this tool, we conducted an analysis of 
existing tests designed to evaluate mathematical basic skills at the end of kindergarten or at the 
entry to elementary school. To ensure the diversity of the theoretical foundations, we selected 
diagnostic tests used by medical professionals (for the most part from research in numerical 
cognition), but also tests used to evaluate the child in school (from mathematics education area). 
The final selection contains Francophone diagnostic tests (MathEval, Examath, ECPN and UDN-II) 
and school tests (grade 1) (a numerical skills test of basic school program, ERMEL, and the device 
“Quatre étapes”). We also selected an Anglophone diagnostic test (Woodcock-Johnson) and 
diagnostic tests translated into several languages used internationally (Zareki-R and Tedi-Math). 
Figure 1 points out the main backgrounds of these tests and their distribution into the research areas. 

Cognitive Sciences Developmental 
Psychology 

Didactics of Mathematics 
Neuropsychology Cognitive Psychology 

Study of mental 
functions (brain) 

Study of cognitive processes / 
constructing of knowledge 

Study of the child’s 
cognitive development 

Study of the teaching and the 
learning of mathematics 

Cognitive functioning 
Symbolic processing 

Individual characteristics  
 

  Knowledge  
Subject/knowledge/milieu 

interactions 

Zareki-R (2006) Woodcock-Johnson (2005)  Quatre étapes (1996) 
  UDN-II (1999) ECPN (1995) 

MathEval (2007)  ERMEL (2016) 
Tedi-Math (2001); Examath (2016)  

Figure 1: Analyzed tests in numerical cognition and didactics of mathematics (following the 
organization of research areas studying mathematical learning difficulties of Giroux (2011, p. 152)) 

Methodology 
In order to define our analysis criteria, we made a state of the art about number construction and 
first number learning in didactics of mathematics and in numerical cognition. Thus, we highlight 
different number tasks and the variables that can affect the complexity of these tasks or the 
resolution strategies. These variables constitute our analysis criteria. In mathematics education, 
Brousseau’s Theory of Didactical Situations (1997) allowed us to identify situations giving 
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meaning to number as well as their didactic variables. Moreover, thanks to Vergnaud’s Theory of 
Conceptual Fields (1996), we could identify criteria for analyzing additive problems. In numerical 
cognition, we identified characteristics of numerical representations according to the different 
number processing models (especially the Dehaene’s triple code model, 1992, the McCloskey’s 
model, 1985, and the Von Aster’s developmental model, 2007). We have also drawn analysis 
criteria for cognitive functioning of mathematical activities, based on the calculation model of 
Shrager and Siegler’s strategy choice model (1998) or the transcoding’s model of Barrouillet, 
Camos, Perruchet and Seron (2004). Finally, we studied the impact of some underlying cognitive 
functions like working memory, attentional functions, visuo-spatial abilities or digital gnosis in 
mathematical activities. Indeed, it has been shown that problems with these cognitive functions are 
generally associated with low mathematical performance (see Finnane (2006) for example). To 
articulate our criteria within a functional analysis table, we identified four categories of task based 
on our state of art (tasks where the number is used to express a quantity or a position, operation 
resolution tasks, digital code and transcoding tasks and tasks used to evaluate mental representation 
of numbers). Then we listed the tasks related to these four categories in the tests and used the 
criteria identified in state of art to analyze them. For this article, we choose to describe the analysis 
tables and to illustrate them with some examples. The whole analysis is available in Peteers (2018).  

Tasks where the number is used to express a quantity or a position 

Numbers allow us to express quantities (cardinal aspect) and positions (ordinal aspect). We 
therefore searched in each test if these two functions were present. For the use of numbers to 
express quantities, we analyzed in detail the four quantification procedures identified in our states 
of art (didactics of mathematics and numerical cognition): term-to-term correspondence, counting, 
estimation and subitizing. Figure 2 summarizes the criteria used to analyze these types of tasks. 

For example, the Tedi-Math (Van Nieuwenhoven, Grégoire, & Noël, 2001) does not contain tasks 
in which numbers are used in their ordinal aspect. For the quantification procedures, only counting 
is evaluated through different items. Some evaluate the procedure itself (Gelman and Gallistel’s 
principles) and others evaluate the spontaneous use of counting (construction of an equipotent 
collection to a given one). If we analyze more precisely these tasks, we can notice that the 
collections used in counting tasks are always composed of non-manipulable objects, which makes 
the “enumeration”1 more difficult (Briand quoted by Ouvrier-Buffet, 2013). For the construction of 
an equipotent collection, the model collection remains accessible, which does not stimulate the use 
of counting procedures because the term-to-term correspondence remains possible. However, the 
task will be considered successful only if the child uses counting. 

                                                 
1 Briand (1999) has underscored several preliminary steps in the learning of counting. In the series of actions required 
for counting, the pupils have to look over all the elements of a finite collection one time and only one. This task 
characterizes a non-taught knowledge, called by Briand “enumeration”. Enumeration is clearly linked to the one-to-one 
principle (Gelman & Gallistel, 1978). The number word is a tag (and such a tag is a convention) but a tag is not 
necessarily a number word. Learning “enumeration” is not an explicit part of teaching. The research of Briand (1999) 
proves the necessity of activities involving “enumeration” in the pre-numerical domain. 
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Figure 2: Analysis criteria for tasks regarding number use (quantity or position) 

Tasks used to evaluate mental representation of number 

There are different theories in numerical cognition about the nature of representations of numbers 
magnitude (Noël, 2005). In each test, we therefore looked for the two types of representation 
(decimal or analogical) evaluated and how these representations are evaluated. We identified three 
types of tasks that can be used to evaluate analogical representations: analogical comparison tasks, 
comparison tasks involving oral or arabic code and tasks consisting in positioning numbers on a 
number line. For the evaluation of decimal representations and the comprehension of our number 
system, we considered two types of tasks: tasks related to writing numbers and tasks involving 
material collections. Figure 3 shows the criteria used for the analysis of these types of tasks. 

 
Figure 3: Analysis criteria for number representations tasks 

Digital code and transcoding tasks 

We identified in the tests the tasks used to determine the mastery of oral code (extension of the 
stable and conventional part of the verbal number sequence and its organization). We also made an 
inventory of other tasks designed to evaluate the mastery of oral code and we did the same for the 
written code. For the transition from one code to another, we chose the following criteria (Figure 4). 
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Figure 4: Analysis criteria for transcoding tasks 

For example, here are two transcoding tasks (Table 1, from oral to arabic code), one from the 
Zareki-R (Dellatolas & Von Aster, 2006) and the other from the UDN-II (Meljac & Lemmel, 1999). 

Dictated numbers in Zareki-R Dictated numbers in UDN-II 
14 – 38 – 1200 – 503 – 169 – 4658 – 756 – 689 3 – 5 – 9 – 15 – 18 – 27 – 54 – 76 – 89 – 93 – 138 – 

272 – 605 – 1061 – 4396 – 7042 – 10001 

Table 1: Transcoding tasks from the Zareki-R and UDN-II 

We can see that, in both tests, the writing of numbers containing zeros is well evaluated. However, 
unlike the task proposed in UDN-II, we find in Zareki-R only few complex tens and lexical 
primitives. The numbers proposed in this test are relatively large and their transcoding strongly 
solicits working memory. This type of task does not allow us to precisely identify the source of 
errors. The task proposed in UDN-II makes a more precise characterization of the difficulties. 

Operation resolution tasks 

Finally, we identified among the tasks proposed in the tests, three categories of tasks requiring the 
resolution of an operation: analogical operations involving a material support, symbolic operations 
involving written or oral code and operations with verbal wording consisting in resolving a problem 
involving an operation. The criteria used to analyze these types of tasks are summarized in Figure 5. 

 
Figure 5: Analysis criteria for operation resolution tasks 

Results 
Based on our analysis table, we wrote a descriptive analysis of each test. We present here some 
general results (see Peteers (2018) for more details). We can note that all the tests are different in 
terms of the knowledge and skills evaluated. The differences are particularly marked for the 
numerical cognition tests, which is not surprising since these tests are based on different models. 
Then, we can notice that some types of tasks are specific to theoretical frameworks. In other words, 
there are tasks specific to the numerical cognition tests (estimation or subitizing tasks, analogical 
comparison tasks, …) and others specific to the didactic tests (tasks in which the number is used to 
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express a position, tasks in which the child must extract a given number of elements from a 
collection, …). We can also find some types of tasks in every test regardless of their theoretical 
foundation (numerical cognition or mathematics education). This is the case for the counting tasks, 
the evaluation of the numerical verbal sequence, the transcoding tasks, the analogical operation 
resolution tasks, … However, the variables of these tasks change depending on the tests. In 
counting tasks for example, the number of objects in the collection and their disposition vary in 
each test. There are also differences depending on the theoretical foundations. In our example of 
counting, the tasks proposed in the cognition tests focused more on the counting procedure (with 
statements like “how many elements are there?”). In the didactic tests, the focus is on the types of 
situations in which the child can use a resolution procedure based on counting. The manipulability 
of the objects also differs according to the theoretical foundations of the tests considered. The 
cognition tests propose only counting tasks with non-manipulable objects unlike the didactic tests. 
From a didactic point of view, two elements can be underlined. We note that some knowledge and 
skills highlighted in our state of art in mathematics education are not evaluated in any of the tests 
(in both cognitive or didactic tests). This is the case of “enumeration” for example (Briand quoted 
by Ouvrier-Buffet, 2013). However, the choice of variables used in the counting tasks in the 
cognition tests does not always facilitate enumeration. Indeed, the objects used in this type of task 
are not manipulable (like our example with Tedi-Math), so, the separation between counted and not 
counted objects must be done mentally. Enumeration difficulties can therefore impact the resolution 
of counting tasks and are not identified because any task allows the evaluation of this specific skill. 
We can also notice that the choices of variables used in the tests are not always appropriate. Indeed, 
if we take again the example of the equipotent collection construction task in the Tedi-Math, the 
model collection is always accessible during the construction of the equipotent collection which 
does not stimulate the use of counting because the tasks can be resolved without using the number 
(using term-to-term correspondence for example). 

Conclusion and perspectives – towards a detection tool 
We have shown in this article a part of the results of our PhD thesis. We can point out that the 
mobilized didactic frameworks (Theory of Didactical Situations and Theory of Conceptual Fields) 
allow us to structure our analysis table, and also bring us another perspective about numerical 
cognition tests which are not used for school environment. They provide us a framework for critical 
analysis to highlight some biases of these tests in relation to what is taught and to mathematics 
education knowledge (non-evaluated elements such as enumeration or questioning of the choices of 
variables in some tasks). These elements confirm the interest of didactics of mathematics in 
research about MLD, in particular regarding the diagnosis. We have identified a set of tasks and 
variables that can be used by the different professionals involved (especially teachers and speech 
therapists). We now have bases (theoretical tools from didactics of mathematics and numerical 
cognition frameworks and analysis of the most frequently used tests) to build a mathematical 
difficulties detection tool (presented in Peteers, 2018). This device uses digital technologies 
environment but also concrete manipulations for tasks like equipotent collection construction in 
order to avoid visuo-spatial difficulties for instance. This tool is made of four units (Prerequisites; 
Cardinal and ordinal aspects; Representations of number; Operations). Each unit is composed by 
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tasks coming both from numerical cognition and didactics of mathematics. For each task, variables 
are chosen depending on the age of the pupils (three levels of difficulty are defined) and the well-
known learners’ difficulties identified in didactics of mathematics. The “Prerequisites” unit deals 
with: analogical comparison, subitizing and estimation, enumeration, term-to-term correspondence, 
verbal number sequence. The “Cardinal and ordinal aspects” unit explores the spontaneous use of 
counting, the Gelman & Gallistel’s principles, the counting up process, and the identification of the 
position of a number (ordinal aspect). The “Representations of number” unit takes into account 
transcoding tasks, number line and numbers’ comparison tasks, and situations requiring decimal 
positional principle. Finally, the “Operations” unit proposes tasks involving analogical operations, 
symbolic operations and problems. For each task, we define a coloring code (green, orange, red) to 
evaluate the success or the failure. A synthesis is then automatically generated for the teacher: it 
helps her/him build remedial interventions. After such interventions, the teacher can reuse some 
tasks of the test in order to evaluate the impact of them. In case there are no benefits, the whole 
synthesis of the test can help teacher to orientate the child to a paramedical professional and inform 
the speech therapist. We have conducted a first experiment to test our detection tool. Considering 
the results of this experiment, our tool is currently the subject of a new development (exclusion of 
some tasks and inclusion of new ones; improvement of the coding process and the synthesis etc.). 
We still have to normalize it. We will give more details about this device during the conference. 
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I just don’t like math, or I think it is interesting, but difficult … 
Mathematics classroom setting influencing inclusion 
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This research reports on a study investigating how three students perceived as being in special 
educational needs in mathematics (SEM), either as students in access to mathematics or as students 
in struggle to get access, talk about participation in mathematics education. Discourse analysis is 
used as a theory and a tool to investigate the students’ own stories of learning and teaching in an 
inclusive mathematics classroom. The results show that students’ participation in mathematics 
education is influenced by how the mathematics education is set up. That is, how the organisation of 
the mathematics classroom and students being in a small group influence students’ participation. The 
results also show that even though the same issues of the organisation influence the three students, 
there is a diversity within the issues, calling for a critical question, is the inclusive classroom setting 
really inclusive in terms of participation and access to mathematics?  

Keywords: Discourse analysis, inclusion, participation, special educational needs in mathematics. 

Introduction 
How to set up mathematics lessons to facilitate participation for every student within an inclusive 
classroom is not an easy task. Nevertheless, it is a particularly important educational task in order to 
promote an equitable mathematics education and create opportunities for every student to learn 
(Moschkovich, 2013; Askew, 2015). The setup of the mathematics classroom, including didactical 
choices of the mathematics teacher(s), is influenced by many different aspects. For example, Askew 
(2015) identifies a Western way of teaching mathematics with a one-size-fits-all approach, 
influencing the setting of the mathematics classroom. Hence, the set-up of the mathematics education 
is not in full an actual choice of the teacher, but a choice of the school, or even a choice of the society. 
This implies there are cultural, social, and institutional factors, such as social patterns, strongly 
impacting mathematics education settings. For example, patterns of advantage and disadvantage 
(Civil & Planas, 2004). Then, the awareness and the ability of the teacher to know how to act and 
care in the moment in order to promote learning of every student (Mason & Spence, 1999) becomes 
even more of importance. This implies, the awareness of factors, external of the actual classroom 
interaction, influencing the mathematics education, the set up, and enactment of the teaching inside 
the classroom is of importance to promote participation and learning. So, if defining inclusion in 
mathematics as processes of participation for every student (Roos, 2015), inclusion is strongly 
connected to the promotion of equitable mathematics education in terms of how the mathematics 
education is set up (Moschkovich, 2013). Moreover, since inclusive mathematics classrooms are 
diverse in terms of students’ backgrounds (gender, ethnicity, culture, achievement etc.), the 
mathematics education needs to provide a diverse education (Roos, 2017). This suggests a diverse 
setting of the mathematics classroom considering every students’ needs. Within the research field of 
mathematics education, the notion of inclusion is often connected to special educational needs in 
mathematics (SEM) (Roos, 2019a). Often when discussing SEM, the student in mind is a low 
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achiever, struggling to get access to mathematics education. However, a high achiever can also be in 
SEM even though she or he has access to the mathematics education, because she or he might need 
specific solutions in order to have optimal opportunities to learn. Accordingly, the notion of SEM can 
work in two directions, one direction towards mathematics difficulties, and one direction towards 
mathematics facility, showing differences in access to mathematics education. Inclusion in 
mathematics education for both ends of the SEM-continuum can be provided by the promotion of 
participation focusing on teaching practices and intervention strategies taking off from learning 
situations enabling meetings among differences (Scherer, Beswick, DeBlois, Healy, & Moser Opitz, 
2016). Hence, setting up teaching promoting participation becomes an important challenge. To take 
on this challenge, we need to know the meaning(s) of students regarding participation in the inclusive 
mathematics classroom. Hence, the aim of this paper is to describe SEM-students meaning(s) of 
inclusion in their talk about learning and teaching in an inclusive mathematics classroom to have the 
best opportunities to learn.  

Methodology  
In this section the site and the participants of the study are described, as well as the theoretical and 
analytical approach and the data analysis.  

The site and participants 

A lower secondary school in an urban area in Sweden that has set out to implement inclusive work 
was chosen for this investigation. The inclusive work at the school aims at including all students in 
the ordinary teaching in every school subject, and integrate the special education into the ordinary 
teaching. A grade 7 and a grade 8 classroom at the school were observed during one semester. At 
least one approximately 50 minutes long mathematics lesson each week for each class was observed. 
After each observation student interviews were carried out. The selection of students for the 
interviews was made in cooperation with the students, parents and teachers and took ethical and 
organisational issues into consideration. The mathematics teachers suggested students they perceived 
as being in some kind of SEM. Thereafter, if the students and parents gave their consent, they were 
offered to take part in this study. Six students took part in the study. The interviews were conducted 
when the organisation and students allowed it. The interviews took place in a small room familiar to 
the students once a week and were based on the observations made the same week. Hence, open 
questions about situations and content of the mathematics education were asked in a discussion type 
of manor. This paper focuses on three students: Veronica in grade 7, Ronaldo and Edward in grade 
8. Veronica says that “math is pretty hard” and she states “I don’t like math”. The mathematics 
teachers perceive her as a student who struggles to get access to mathematics. Ronaldo describes 
himself as a student with learning difficulties “I have difficulties within all subjects, and it’s like 
concentration and all that.” He also experiences that he forgets stuff “I don’t remember, I have to 
repeat a lot”. The mathematics teachers perceive him as a student who struggles to get access to 
mathematics. Both Veronica and Ronaldo have just about a passing grade. Edward describes himself 
as a person that thinks mathematics is really easy and does not need much help at all. He does not 
have to make any effort, mathematics works “automatically” for him and he “already knows” most 

Thematic Working Group 25

Proceedings of CERME11 4673



 

 

of what they are doing in math class. The mathematics teachers perceive him as a student with access 
to mathematics, and he has the highest grade possible in mathematics (grade A1).  

Theoretical and analytical approach  

When investigating students’ stories of their own participation in mathematics education, there is a 
need to identify critical aspects of learning and teaching in the stories. In this research this 
identification is made by using Discourse Analysis (DA). DA is a helpful tool since the focus of DA 
is the study beyond text, and because DA has an explanatory power of social contexts. Thus, by 
analysing the use of language in a certain type of situation we can say something about the social 
world. When going beyond the text in this particular study, construed discourses of what influences 
students’ participation in mathematics education makes it possible to describe the social world from 
the students’ perspective. In this study, the perspective of Gee (2014a, 2014b) is used, since Gee’s 
focus on DA is descriptive and this study aims at describing students’ view of participation in an 
inclusive mathematics classroom to have optimal opportunities to learn. 

Big and small discourses (henceforth Discourse with capital D and discourse with lowercase d) are 
used by Gee (2014a, 2014b) as theoretical notions in the use of DA. Here Discourse(s) are describing 
a social and political context and are always embedded in many various social institutions at the same 
time. For example, a Discourse can be “school mathematics”. Discourses are language plus “other 
stuff” (Gee, 2014a, p. 52), such as actions, interactions, values, beliefs, symbols, objects, tools and 
places. Small d discourse has a focus on written and spoken language in use, what stretches of 
languages are visible in the stories we investigate (Gee, 2014a). Stretches of languages is Gee’s notion 
to describe small conversations within the stories. In this study, big and small discourses will be the 
theoretical perspective. Gee provides a toolkit for analysing different forms of language, both spoken 
and written. These tools highlight the communication and pose questions to the text to investigate 
what is beyond the text in terms of Discourses and discourses. In this paper, the toolkit is used as a 
methodological tool and is exemplified in the section data analysis. Summarising, DA is used both as 
a theory and an analytical tool and provides a set of theoretical lenses in this study. 

Data analysis 

In this paper seventeen interviews, five with Veronica, six with Ronaldo and six with Edward and 
eight classroom observations have been analysed. The observations were used as contextualisation 
for the interviews as well as for supporting construction of Discourse(s). The analysis of the data was 
guided by questions asked to the text. These questions were adapted from Gee’s (2014b) toolkit, and 
with their help both small and big discourses could be constructed. That is, the questions were posed 
to the text and the answers made stretches of language(s) visible, indicating small discourses. When 
adding analysis of the data from the observations, such as text on the blackboard and events in the 
classroom, big Discourses could be construed. The analysis opened up for the construction of three 
Discourses, the Discourse of assessment (described in Roos, 2018), the Discourse of accessibility 

                                                 
1 In the Swedish grading system A is the highest grade, then B, C, D, E and F. E is the lowest acceptable grade and F is 
the grade you get when you don’t pass. 

Thematic Working Group 25

Proceedings of CERME11 4674



 

 

(described in Roos, 2019b) in mathematics education and the Discourse of mathematics classroom 
setting. In this paper the Discourse of mathematics classroom setting is in focus.  

The Discourse of mathematics classroom setting 
From the stretches of language identified in the texts from interviews with Ronaldo, Edward and 
Veronica, three (d)iscourses were construed, indicating a (D)iscourse of mathematics classroom 
setting influencing the students’ participation. The three small discourses are described below.  

The discourse of classroom organisation  

This discourse is construed by stretches of language where the students highlight how the organisation 
of the education influences their participation.  

A topic visible in the talk of all three of the students was the use of the textbooks. The textbook used 
in mathematics in both classes has six chapters divided into sections with specific mathematical areas. 
Each section has four levels, where “level one is easy tasks and level four gives real challenges”. 
Veronica says “I start at level one or two [in the textbook]. Well, it is easier to start, so that you don’t 
start with something difficult right away, that you don’t master. Because it is a little easier. So, I don’t 
make mistakes later on. I usually work by myself”. She mentions the textbook in relation to preparing 
for tests “Before a test, we have the mixed tasks that sum up what we have done in the whole chapter.” 
Also how to write in her notebook “well, it’s like these small squares in it, so I usually try to write in 
them, so it doesn’t get too big so you have space”. Even Ronaldo mentions the notebook, and it seems 
like he struggles with the writing of the tasks “well it gets, if I write it often gets bloody smudgy, it 
gets so bloody messy [in the notebook]”. Edward mentions the textbook as the one deciding the 
severity “It is the book that chooses what level you want”. He also talks about the levels in the book. 
“I skip it [skip the first out of four levels in each chapter of the text book], it is too easy (laughing). 
To have a soft start in the specific area [he starts with level two]”. For Edward the textbook also 
guides him in solving tasks, this is visible when he says that “I look in the key first, or I test first, then 
I look in the key and then I can see how it should be”. Even Edward talks about the notebook in terms 
of what he doesn’t write “when I just calculate ordinary in my book, in the textbook, then it’s mostly 
mental calculations”. […] “It is more convenient not to write everything down”. In the observation 
notes it is visible that teaching by the textbook, where the students sit and work separately or in pairs, 
is the most common way the mathematics education is organised in both classes. Ronaldo talks about 
the textbook in terms of sections he feels secure or insecure of as well as levels in the textbook: “Well, 
I start, I think that number one has become easier now [level one in the textbook], because it feels 
like I have become better at math now, so I sort of starting with number two.   

Another topic regarding organisation influencing the students’ participation being visible in the talk 
of all three students was to talk, discuss and work with peers in the classroom. Veronica talks about 
this as a hinder in her participation “Well, I have always been like afraid of that if I raise the hand, I 
am wrong and everybody thinks like.. that you are.. like… […] I get unsure of myself, if I am right 
or wrong, and don’t dare…” She also feels insecure when having discussions with peers in the 
classroom “Well, I have trouble with explaining… I don’t know why. I don’t know what to say, so 
they (the peers) get it. Ronaldo sees discussions both as a hinder and as a help for his participation. 
When he talks about discussion, he says that he can discuss “in groups, but not as much in the whole 
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class. Or I can, but I don’t want to.” He says that the reason is that he is uncomfortable, but in a group 
situation he perceives it as a help “I like to cooperate. It is fun to be with others, like Edward or Leo, 
because they are really good at math and they can explain really well. So you get it more”.  Though, 
it depends on whom he cooperates with, “I feel comfortable with everybody in the group sort of … 
well some I can trust, or I know better than others. So it depends on whom you have in the group”. 
Also for Edward it´s an issue of with whom to discuss. “It’s not super easy… because often I have 
come a lot further, so I have to explain to them … it never happens that I discuss … I mean with 
somebody else, that we discuss like that.. […] It depends on whom I sit next to”. When Edward gets 
the question if there is somebody in the class that he feels that can challenge him, he says that there 
are two, but he does not sit next to them, but he would like to “I think I would get more out of it”. 

Going through2 was yet another topic all of the three students discussed. Veronica reflected on when 
she thinks she learns the best by saying “I think it is when it is going through and when I work by 
myself actually”. Describing what’s good with going through, she says that “I don’t really know 
(laughs), it’s just nice when he [the teacher] stands there and talks, shows and explains”. Ronaldo 
talks about going through in relation to him forgetting and implies that others think he should have 
more going through by saying: “I was supposed to have an extra going through like this, it is just as 
well, so that I don’t forget that, too”. He refers to going through in a negative way “it is so bloody 
much of going through now. It is so boring, you can’t stand listening” and he says that “going through 
does not matter that much I think”. Although, he thinks that “sometimes it [going through] can be 
good, but well, if you are entering a new area, you are supposed to work with, it’s good to have a 
going through. But then, like we have now, a going through each lesson, about the same thing. It is 
… well I do know it´s just to repeat and all that, but it is so damn hard”. This implies going through 
is a challenge for Ronaldo’s participation. Edward says that he listens and learns from going through, 
but not always. He thinks they have a lot of going through, but that they aren’t always good, and when 
they interfere with his previous way of solving, it gets messy. “I think it gets messy when you have 
to mix in a lot of stuff to think, because I have my own way of thinking, so it only gets messy to mix 
in something else”. He also thinks the tasks in the going through are basic “it is not really that 
advanced up on the blackboard, but, well, it´s enough that I get the basics, then I can work from there” 
implying he would like more challenges, and that he is left alone to work further. Edward mentions 
that he liked the going through of a substitute teacher “I thought it was good when we had that 
secondary teacher, then I learned a lot in the going through. […] I learned a lot, because it was kind 
of on another level. It feels like it was a much higher level than the regular teachers”. 

Yet another topic talked about by all the students was teaching approaches. Veronica talks about the 
need of hearing stuff, “it is good to listen [to the teacher], like I always learn a little more when we 
have going through”. She likes it when the teachers “talk”.  She also states that when she is working 
by herself, she learns the best. Also, she likes problem solving, because “you can choose what you 

                                                 
2 In Swedish mathematics education, it is common for the lesson to start or end with a “going-through” (in Swedish, genomgång). Andrews and Nosrati 
(2018) point out three instances of what can be considered “going-through”: when the teachers inform the students of what to work with, when presenting 
new models, and when demonstrating solutions to problems the students find difficult. 
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want to use, and, like which way you [can] think. […] It is really fun!” Ronaldo on the other hand 
talks about problem solving as something he “despises more than anything” as he finds it hard to 
”connect the text to the task, it is too much”. When asked how the mathematics education could be 
more fun for him, he says that he doesn’t know and “I just don’t like math, or I think it´s interesting, 
but difficult”. When he elaborates on teaching approaches he likes, he says “[…] you should have 
more math games or something”. In another interview he elaborates on how he learns best and says 
“not just sit down and work, but like be more active also, you might do some math outdoors, or like 
do math games or something, not just sit down with the text book all the time, it gets so bloody trite, 
or like really boring in the end. So, vary things”. Here, Ronaldo indicates that he would like variations 
of ways of working to enhance his participation. This is emphasized in another interview when 
Ronaldo contrasts variations with working in the textbook. “It is a bloody lot of [work in the textbook] 
… you could play more math games or stuff like that”. Even Edward highlights this contrast when he 
states “when you are doing more practical stuff, then it is fun, instead of having the nose in the 
textbook all the time.” “Instead of keeping turning pages, drawing lines and writing the number of 
the task and all that, these things takes such a long time”, he would like “those whiteboards in front 
of you, and sit and sketch and experiment. Because then it’s much faster. I want to spend the time on 
the math”. Hence, Edward thinks that the work with the textbook and notebook hinders him from 
spending time on math, consequently it hinders him from participation.  

The discourse of being in a small group outside the classroom 

This discourse focuses students’ talk about being outside the classroom in a small group. This is 
mostly mentioned by the students struggling to get access in mathematics, Ronaldo and Veronica. 
Both Veronica and Ronaldo address feelings when they talk about being in a small group sometimes.  

When Veronica was asked if she has been outside the classroom during lessons, she answers “Yes, 
god yes!” and laughs. Veronica often talks about being in a small group outside the classroom and 
often says that it “feels good”, and that she feels secure in the small group. The reason why she feels 
good is that “you get help right away and doesn’t have to sit and wait (for help) so long” and “it is an 
extra time, so if you didn’t get it when Oliver [the ordinary mathematics teacher] did the going 
through, you get it [the going through] once more”, “It’s like you get an extra occasion. If you don’t 
get it the first time, you can get one more time”. Also she says that she feels good because “It´s less 
people, it like just three or four persons”. Ronaldo says that “I dare to say stuff to, it feels like I am 
developing more” and “when you are in smaller groups, you dare to say more”, when he talks about 
being outside the classroom. He contrasts it with the way it was before and says that “it has become 
a lot better now, we have started to be outside [the classroom] in small group, which we didn’t do 
before, and it is much better now. I concentrate better and it is peaceful and quiet”. This implies he 
needs a place where he can feel secure and a place where it is calm to be able to concentrate. Also, 
he connects being in a small group to the level of security in relation to the mathematical content “But 
if I feel in between [of being sure or unsure], or a bit insecure like don’t really know, then I go [to the 
small group]”. Even Edward talks about the small group, but in a different way. When he gets the 
question if he is in the small group sometimes, he laughs and says “No, but she [the special teacher] 
takes the ones who wants to go through the basics, she usually takes [them] with her and does some 
going through and stuff like that. […] I don’t think I would get something out of it, I don’t.” Here 
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Edward talks about “them”, as the ones who want to go through the basics” and he does not include 
himself in that group. The observation notes show that on several occasions the special teacher brings 
a few students with her out into a small room beside the classroom. Often it is Ronaldo and Veronica.  

Discussion  
The Discourse of mathematics classroom setting pinpoints critical issues for the three students’ 
participation in the mathematics education in terms of the organisation and being in a small group. It 
seems like the Western way of teaching with a one-size-fits-all mathematics education (Askew, 2015) 
influences the setting of the mathematics classroom, which is visible in the students’ description of 
the use of the textbook, the mathematical discussions and the going through. This certainly “turns 
diversity into a problem” (Askew, 2015, p. 129), since there seem to be contradictions in the students’ 
stories, even though they talk about the same issue, it’s not in the same way. For instance, Veronica 
thinks she learns best when listening at going through, but Ronaldo seems mostly frustrated, and 
Edward thinks they are too basic. Also, when Ronaldo talks about going through in relation to him 
forgetting, he is placing the struggle getting access to mathematics within himself, creating 
frustration. Hence, how to realize going through in the classroom is a critical issue. The “problem 
with diversity” is also seen in the way the students describe discussions. Veronica feels insecure and 
does not know how to explain her thinking to her peers. Ronaldo on one hand feels the same as 
Veronica, insecurity when it comes to whole class discussions, but on the other hand he really likes 
discussions with peers, mostly because they can explain well to him. Hence, it is not him discussing, 
but using the peers, for instance Edward, as tutors. Edward recognises this, that he has “to explain to 
them”, and he feels that most often he does not get any challenges in the discussions. In this study, 
textbooks and the work the students do in the notebooks, seem to govern the mathematics education, 
and is an important factor for participation. This can be seen in the way the students describe how the 
different levels in the textbook affect their participation, and how they are supposed to write in the 
notebooks. Thus, it is not just the decisions of the teachers influencing the setting, but also the 
textbook and the mathematical norms that are established, play a crucial role. This makes the 
textbook, how it is organized and how it provides access to knowledge, as well as how to write in the 
notebook important factors to consider, which is also seen internationally (Fan, Zhu, & Miao, 2013). 
Is being in a small group outside the classroom including or excluding the students? Both students 
struggling to get access talk about the small group as a secure space and the classroom as an insecure 
space. Edward on the other hand laughs and does not think he would gain anything from the small 
group. Veronica answers “Yes, god yes!” and laughs when she is asked if she has gone out of the 
classroom sometimes. The laughter can be an indication of roles taken by the students as either 
students in access or in struggle to get access, and the roles seem to influence the students’ 
participation. This is indicated by the fact that the struggling students feel insecure in the classroom 
situation. This is in line with the finding of Civil and Planas (2004), that participation is influenced 
by organizational structures. Consequently, the result in this study calls for a critical question: Is the 
inclusive classroom really inclusive for the students in terms of participation and access to 
mathematics?  
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Although in Germany there exists a long research tradition concerning common instruction and 
inclusive education, more research is needed concerning the subject-matter specific programs for 
inclusive teacher education. The paper reports on the project ProViel (‘Professionalisierung für 
Vielfalt’ – ‘professionalisation for diversity’). Within the project inclusion is pursued as a common 
objective for all subjects and disciplines. In addition, sub-projects concentrate on selected subjects 
as ‘Mathematics Inclusive’. For this sub-project concepts and modules for teacher education will be 
developed, tried out and reflected with respect to inclusive mathematics. The paper presents the 
mathematics project’s aims and objectives, followed by data concerning the concrete course 
‘Learning Mathematics with Substantial Learning Environments (SLEs)’ and primary teacher 
students’ practical experiences and reflections. 

Keywords: Pre-service teacher education, special needs students, inclusive education, substantial 
learning environments, field studies. 

 

Introduction 
In Germany students with special needs either visit special schools for handicapped children or 
regular schools in inclusive settings (cf. Klemm, 2015). According to the realization of the UN 
conventions (see UN, 2006), the proportion of students with special needs in inclusive settings has 
increased continuously over the years. In Germany, for the school year 2013/14 about 50 % of the 
students with special needs on the primary level visited regular schools (Klemm, 2015). But actually 
a decrease or stagnations can be observed in some states (Klemm, 2018). Inclusive settings show 
extremely heterogeneous groups in classrooms, so that a high degree of differentiation is needed. 

Teacher education programs preparing for an inclusive school system are in the state of development 
at the moment, and corresponding research is done. As an important field for research the subject-
matter specific preparation of teachers has been pointed out (see Heinrich, Urban, & Werning, 2013). 
The paper presents first results of a study that aims at implementing substantial mathematics for all. 

The project ‘Mathematics Inclusive’ within the project ProViel 
The project ProViel ‘Professionalisierung für Vielfalt’ (‘Professionalisation for Diversity’; 
https://www.uni-due.de/proviel/) at the University of Duisburg-Essen is funded by the Federal 
Ministry of Education within the frame of a program for teacher education (1st phase: 2016–2019; 2nd 
phase: 2019–2023). Numerous university departments are involved to ensure the development of a 
coherent conceptual program for teacher education. One field of action is ‘Diversity & Inclusion’, 
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and numerous sub-projects might cover the wide facets and dimensions in this field (cf. Bishop, Tan, 
& Barkatsas, 2015; Good & Brophy, 2008). 

Following a design based research approach, the sub-project ‘Mathematics Inclusive’ aims at 
implementing subject-specific concepts and modules for inclusive mathematics education. The 
central research questions are the following: 

(1) How should didactical courses in teacher education be designed to address the topic ‘inclusive 
mathematics’? (firstly, for the primary BA-/MA-program, later on for the secondary BA-
/MA-program) 

(2) What are student teachers’ prerequisites concerning inclusive mathematics? 

2a) experiences with mathematics instruction 2b) existing attitudes and beliefs 

(3) Which changes of student teachers’ attitudes and beliefs and competence developments can 
be identified after they had completed a course that addresses inclusive mathematics? 

(4) Which modifications for the didactical courses arise from experiences and results of the 
empirical testing (based on research question 1 to 3)? 

Research questions 2 and 3 will be answered on the basis of quantitative as well as qualitative data, 
whereas the questions 1 and 4 concentrate on qualitative data and methods. 

Concept and objectives of the course ‘Learning Mathematics with SLEs’ 

The developmental work to answer research question 1 firstly concentrates on the course ‘Learning 
Mathematics with Substantial Learning Environments (SLEs)’ (3rd year, BA-program for primary 
mathematics). The didactical concept of working with SLEs, and by this realizing a natural 
differentiation is in line with a constructivist understanding of teaching and learning, and has been 
proved to be suitable for heterogeneous learning groups in primary mathematics (cf. Hirt & Wälti, 
2008; Krauthausen & Scherer, 2013; Scherer & Krauthausen, 2010). These projects also focused on 
the realization in in-service courses whereas the current paper concentrates on pre-service teacher 
education, especially with regard to inclusive mathematics. 

The design process started in 2016, and the first course has been running during the winter semester 
2016/17, followed by the second and third one during the winter semester 2017/18 and 2018/19. 

Competencies the student teachers should develop within this course, as formulated in the BA-
curriculum for primary, are the following: 

• The student teachers are able to design a mathematical learning environment on the basis of 
mathematical und didactical foundation according to a particular focal point. 

•  The student teachers are able to carry out and analyze an interview with primary students 
including subject-specific perspectives (according to a particular focal point). 

The course concept is as follows: The course contains a weekly 90-minute lecture combined with a 
weekly 90-minute seminar. The lecture should be attended by the whole cohort of student teachers, 
and it covers the theoretical background of SLEs and the concept of natural differentiation in contrast 
to more traditional concepts of differentiation. 
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SLEs can be defined by the following four constituting demands (Wittmann, 2001; Krauthausen & 
Scherer, 2013; Scherer & Krauthausen, 2010): (1) They represent central objectives, contents and 
principles of teaching mathematics at a certain level. (2) They are related to significant mathematical 
contents, processes and procedures beyond this level, and so they are a rich source of mathematical 
activities. (3) They are flexible and easily adaptable to special conditions of a classroom. (4) They 
integrate mathematical, psychological and pedagogical aspects of teaching mathematics, and so they 
form a rich field for empirical research. 

In addition, the constituent characteristics of the concept of natural differentiation are: All students 
get the same learning offer, and this offer must be holistic, and may not fall below a specific extent 
of complexity and mathematical substance. Holistic contexts in that sense by nature contain various 
levels of demands which must not be determined in advance. In addition to the level the students 
decide to work on, they can freely make their own decisions concerning the ways of solution, use of 
manipulatives and facilities, kinds of notation, etc. The postulate of social learning from and with 
each other is fulfilled in a natural way as well (cf. Wittmann, 2001; Krauthausen & Scherer, 2013; 
Scherer & Krauthausen, 2010). 

During the lecture not only the theoretical background is given, but also examples for planning and 
designing concrete learning arrangements as well the analyses of concrete interview or classroom 
situations for various SLEs and various mathematical contents, for example taken from former studies 
(see Scherer & Krauthausen, 2010). 

For the corresponding seminars, the cohort is distributed in groups of about 15 student teachers. The 
seminars are related to different focal points like differentiation, difficulties in language or inclusive 
mathematics. The latter one is part of the sub-project ‘Mathematics Inclusive’. During the whole 
semester, in the seminars the student teachers have to work in small groups up to four persons. They 
have to design and carry out clinical interviews with pupils from primary school working on selected 
SLEs. For the seminar focusing on ‘inclusive mathematics’ each student teacher has to interview two 
ore more children with and without special needs. The student teachers should offer one and the same 
substantial learning environment and tasks to the different pupils and videotape the interviews. Within 
their small group as well as in the seminar group they have to analyze and reflect on the interviews 
in general, the concrete learning processes and pupils’ existing competences as well as existing 
difficulties. 

The course should enable student teachers to design common learning situations and learning within 
a common topic and mathematical content. The course concept cannot cover all dimensions of 
effective instruction but focuses on the dimensions teacher, students and teaching approaches (cf. 
Hattie, 2009). 

Questionnaire and interviews with student teachers 

Pre-post questionnaire: To answer research questions 2 and 3 a standardized questionnaire was used 
in a pre-post-design. The initial questionnaire contains items concerning experiences as well attitudes 
and beliefs with respect to inclusion and inclusive mathematics (cf. Meyer, 2011). The latter ones are 
also included in the post-test. The relevance of beliefs and attitudes can be assumed (cf. Sullivan, 
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Clarke, & Clarke, 2013, p. 18 f.), and with the pre-post-design one of the questions will be, if and 
how student teachers’ attitudes and beliefs changed after completing the course.  

Retrospective self-assessment: Moreover, to answer research question 3 for the post-test six items for 
a retrospective self-assessment for the development of individual competencies were added (cf. 
Nimon, Zigarmi, & Allen, 2011), and the student teachers had to rate their competencies before the 
course and at the end of the course. These items were designed according to the curriculum objectives 
focusing on substantial learning environments, clinical interviews and analyses of students’ thinking 
and learning processes (see section 2.1). The student teachers had to rate their competencies for these 
three aspects on the one hand in general, on the other hand concerning the relevance for inclusive 
mathematics. For example, the two statements referring to clinical interviews were (see section 3): 

General: I know the relevance of clinical interviews for mathematics teaching. 

Relevance for inclusive mathematics: The use of of clinical interviews seems relevant to me to support 
special needs students in inclusive classrooms. 

Additional interviews: For deeper analyses, additional interviews with selected student teachers were 
carried out. The interviews comprised selected items of the questionnaire (attitudes and beliefs), and 
asked for more detailed explanations of the student teachers’ experiences before the course. 
Moreover, the interview focused on the concrete experiences the student teachers hade made during 
the course (example: In what way could you gain experiences for inclusive mathematics?) as well as 
perspectives for their future teaching (example: In what way can you imagine to use your insights for 
your future teaching of mathematics?). 
Results 
In the following section exemplary results will be reported. Firstly, student teachers’ pre-experiences 
with inclusive mathematics (data from pre-test), and secondly, the retrospective self-assessment for 
the development of individual competencies with respect to substantial learning environments (data 
from post-test and selected interviews). 

Pre-experiences: For detailed results concerning student teachers’ individual pre-experiences with 
inclusive mathematics (research question 2a; open item: Which experiences have you made so far 
with inclusion in mathematics instruction?) see Scherer (2019). For the here reported course, the 
following results are relevant: Although the participating student teachers had completed in their BA-
program at least one or two practical phases at school of about 5 weeks in total before, it showed that 
only about 50 % of the student teachers have made school-related-experiences whereas the others had 
no experiences or made experiences out of school or in other fields. The school-related-experiences 
cover a wide spectrum of aspects: Apart from organizational or personal requirements of inclusive 
settings, the statements could be specific for mathematics education or be more general. 

One could identify main categories for mathematics that are of great importance for the course 
concept ‘Learning Mathematics with SLEs’, namely differentiated learning offers and forms of inner 
or outer differentiation. The student teachers’ school-related-experiences most frequently could be 
assigned to these categories. Looking in more detail at the category differentiated learning offers one 
could identify a wide range of aspects: offering more time, more/less number of tasks, different 
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worksheets or tasks on different levels of difficulty, different textbooks or mathematical topics, 
additional materials and manipulatives, additional help, learning step-by-step, more repetitions. 

Although a questionnaire does not allow in-depth analyses of the underlying concepts of teaching and 
learning or of the underlying concept of differentiation, one might assume that the classroom 
situations the student teachers have experienced did not follow the concept of a natural differentiation 
and the children did not work on common subjects, problems and tasks, as the student teachers rarely 
report situations that pupils work on common topics or SLEs. Some of the student teachers’ 
statements might lead to the conclusion that the teaching and learning setting more or less represents 
an exclusive setting with separate learning situations than inclusive education (see also Scherer, 
Beswick, DeBlois, Healy, & Moser Opitz, 2016, p. 640 ff.). In contrast, the course ‘Learning 
Mathematics with SLEs’ focuses on common learning situations for all students, enabling individual 
as well as cooperative learning situations, for example by realizing the concept of a natural 
differentiation (cf. Krauthausen & Scherer, 2013; Scherer & Krauthausen, 2010; section 2.1). 

Retrospective self-assessment: So one interesting question would be how the student teachers rate the 
development of their competencies concerning SLEs, especially the relevance for inclusive 
mathematics (research question 3). On a Likert scale from 1 to 6 (1 = not at all true; 6 = extremely 
true) the student teachers had to rate the following statements referring to SLEs: 

General: I know the characteristics of substantial learning environments for mathematics teaching. 

Relevance for inclusive mathematics: The use of substantial learning environments seems relevant to 
me to support special needs students in inclusive classrooms. 

Figure 1a, b and Figure 2a, b show the results (N = 90, missings in Figure 2a): Before the course, 
many student teachers already know the characteristics of SLEs (Figure 1a) as about 45 % agree to 
this statement (M = 3.32, SD = 1.22). This result is plausible as the topic is touched in different 
courses in the 1st and 2nd year of the BA-program. Nevertheless, the self-assessed development of 
competencies is obvious and shows a significant effect (Figure 1b; M = 4.98, SD =.66), as after the 
course nearly all student teachers agree to the statement. A similar result occurs with respect to 
inclusive mathematics (Figure 2a: M = 3.91, SD = 1.06; Figure 2b: M = 4.98, SD = .85; significant 
effects). This shows an important development, as the student teachers’ pre-experiences had shown 
quite different classroom situations they had observed. 

 
Figure 1a, b: Results for the self-assessment item with respect to SLEs (general) 
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Figure 2a, b: Results for the self-assessment item with respect to SLEs (relevance for inclusive 
mathematics) 

Interviews: For a deeper analysis of these outcomes, one can refer to the interviews, and two 
exemplary statements are cited: 

Transcript 1 (student teacher 1 – ST1): 

54 ST1: Well. What I knew before, just as a term and not put into action, were the substantial 
learning environments. And, well, what I didn’t know either before, that you meet 
the needs of all students with these substantial learning environments. … I did not 
know that you can find a task format that students work on for oneself and that 
differentiation takes place in a natural way. That became clear in my mind by the 
course. Before, I was aware that you have to work individually but not that you can 
work with the students on a common topic. 

Transcript 2 (student teacher 2 – ST2): 

32 ST2:  Well, to be honest, before, I had no idea how inclusive education in mathematics 
should look like. And, well, it did help me that the different learning environments 
were presented and that it was also said what a learning environment should contain 
that I can use them for inclusive classrooms. 

Whereas ST1 refers strongly to the potential of SLEs concerning inclusive settings, ST2 also links 
this relevance to the design of SLEs and their characteristics. Both statements focus on the 
constituting demand of didactical flexibility (see section 2.1), and the mathematical substance or 
central objectives or principles for teaching and learning mathematics are not named explicitly. It 
might be that this is too obvious for the student teachers and that the own planning, the fact that those 
SLEs might fit for all students and the practical experience dominate and might be impressive. 
Nevertheless, the content related objectives will be stressed in further courses. 

Conclusions 
The first results of the course show that the underlying didactical concept of using SLEs and realizing 
a natural differentiation, is suitable for inclusive classrooms. Moreover, the course concept with the 
combination of theoretical elements, concrete video examples and pupils’ documents (lecture) and 
practical experiences (interviews at school) with a common reflection (seminar) could reach the above 
mentioned project objectives. As a consequence, for the overall structure and concept of the course 
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no changes were necessary. But setting SLEs into practice of this more or less new field of inclusive 
mathematics is a great challenge for student teachers. However, the value of SLEs became obvious.  

Analyses and reflections on videos, materials and examples given in the lecture have a high value. 
Extended by the student teachers’ own experiences and common reflections in a seminar can increase 
their knowledge and teaching repertoire for the future. The above mentioned aspects are important 
for all kind of teaching situations, but seem to be more challenging in inclusive settings. On the one 
hand, student teachers have to cope with the mathematical content and be flexible in reacting to 
different students with their variety of strategies and ways of thinking. On the other hand, student 
teachers have to be aware of a variety of difficulties. When being confronted with those difficulties, 
a tendency of reproducing some of the patterns they experienced at school could be observed, for 
example more traditional forms of differentiation that special needs students need different learning 
offers, different tasks and materials on different levels or a prescribed program. These concrete 
experiences have to be made a subject of discussion to widen the repertoire of student teachers (cf. 
Scherer & Steinbring, 2006). This was already done when repeating the course, and will be 
strengthened in the future running of the course. 

Moreover, the student teachers’ pre-experiences have to be considered. As reported, many of their 
observed classroom situations did not represent common learning situations but exclusive settings 
with the separation of students with special needs. Those experiences have to be discussed and 
reflected in the lecture as well as in the seminars and practical experiences. 

The next steps in the project will be the data analyses concerning the specific focal points of the 
seminars. One of the questions is whether the specific focal point ‘inclusive mathematics’ shows 
specific results concerning attitudes and beliefs as well as competence development. In the long-term 
the connection of mathematics educations modules – like ‘Learning Mathematics with SLEs’ – with 
mathematics modules will be addressed, so that a coherent program will be developed, as terms and 
theoretical aspects have to be put into action. 
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Research on the inclusion of visually impaired (VI) pupils in mainstream classrooms is 
underdeveloped in mathematics education. This paper investigates mathematical discourses of a 
teacher and a VI pupil in a classroom episode on number sequences. We see that, while the teacher 
considers the pupil’s enthusiastically demonstrated mathematical contribution which differs from the 
institutional one, she draws on it to guide him in responding within the institutional mathematical 
discourse. We then see the pupil responding within the teacher’s expectations but less 
enthusiastically. We explore the teacher’s reaction in terms of whether it evidences valuing of the 
pupil’s initial mathematical contribution and whether it is potentially excluding. We propose an 
alternative, more explicitly inclusive way forward in which the teacher can play along with non-
prevalent mathematical contributions and bring these also to the whole class, to the benefit of all. 

Keywords: Discourse, inclusion, VI pupils. 

Introduction 
Inclusive education has been an issue of international consideration especially since the Convention 
on the Rights of Persons with Disabilities (CRPD) (United Nations, 2006). According to Article 24 
of the CRPD, the signatory countries are committed to ensuring the right of persons with disabilities 
to education within an inclusive education system. Educational benefits from inclusive education are 
not limited to persons with disabilities though: “[T]here are educational benefits for all children 
inherent in providing inclusive education” (UNICEF, 2012, p. 11). But is this good intent 
implemented in the classroom? And if so, how – and, how is it experienced by staff and pupils? 

In the study we draw from in this paper – part of the first author’s doctoral thesis – we focus on the 
inclusion of VI pupils in mathematics lessons. We see inclusive education as occurring when the VI 
pupils are invited to participate in a lesson activity on an equal basis with everyone else in class, albeit 
not necessarily with the same sensory, material and semiotic tools. Apart from equitable participation, 
we consider equitable value as an equally important element of inclusive education. With the latter, 
we denote the value attributed to VI pupils, even in those contributions which differ from the 
prevalent, institutional ones, potentially as a result of the different tools through which VI pupils may 
construct and convey mathematical meaning. Reference to participation and value as contributors to 
inclusive education is present in international documents (e.g. United Nations, 2006) as well as in 
research studies (e.g. Nardi, Healy, Biza, & Fernandes, 2018). We consider equitable participation 
and equitable value as interrelated elements of inclusive education: our study’s rationale is that one 
element exclusive of the other does not suffice for implementation of inclusive education. Our 
discussion of the data we present in this paper evidences the necessity of both elements for what we 
call “inclusive education”.  
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In this paper, we first discuss key developments in the inclusion of VI pupils in mathematics 
classrooms. We then zoom in on the study’s focus and research questions and present the study’s 
theoretical framework and methodology. Finally, we sample from the study’s data and analysis with 
an episode from a Year 1 (Y1) class. 

Literature review and theoretical framework 
A limited number of studies have been conducted in the area of inclusion of VI pupils in mathematics 
classrooms. The existing literature focuses mainly on the following themes: VI pupils’ experiences 
in mainstream mathematics classrooms (e.g. Bayram, Corlu, Aydın, Ortaçtepe, & Alapala, 2015); VI 
pupils’ forms of accessing, expressing mathematics and development of inclusive teaching strategies 
(e.g. Nardi et al., 2018); and, design of inclusive mathematics teaching and learning materials to be 
used by VI and sighted pupils (e.g. Leuders, 2016). While the existing literature has certainly set the 
foundations towards more inclusive mathematics classrooms, research studies that investigate how 
VI pupils are included in the classroom are sparse. We argue that an investigation of VI pupils’ 
inclusion in mainstream mathematics classrooms combined with the existing foundations for such an 
inclusion can lead to even more inclusive mathematics classrooms. As our study explores (e.g. in the 
episode sampled in this paper), there may be significant gaps between inclusive education policy and 
practice: while appropriate inclusive education aspirations may appear in international and national 
policy documents, institutional, curricular and attitudinal constraints may lead to these gaps. Our 
study aims to investigate these and eventually contribute towards their reduction. 

Our study has two phases and investigates: (a) how inclusion and disability are constructed in the 
discourses of teaching staff and pupils in mainstream mathematics classrooms (both phases); (b) how 
collaboratively designed mathematics lessons impact upon teaching staff’s and pupils’ discourses on 
inclusion and disability (Phase 2). We endorse a sociocultural theoretical framework that draws upon: 
Vygotskian sociocultural theory of learning (Vygotskii, 1978); Sfard’s discursive perspective, known 
as the theory of commognition (Sfard, 2007); the social model of disability (Oliver, 2009); and, the 
theory of embodied cognition (Gallese & Lakoff, 2005). We discuss such use briefly in Stylianidou 
and Nardi (2018) and exemplify this use in this paper. 

In the episode we present in this paper, we focus on the discursive activity of a teacher and a VI pupil, 
in interaction concerning number sequences. Our Vygotskian influence is evidenced in our focus on: 
the semiotic and sensory tools used by the two interlocutors in the setting of the school classroom; 
and, the mathematical meaning each interlocutor conveys as a result of using the particular tools. We 
show how particular elements from Sfard’s discursive perspective – word use and visual mediators – 
are played out in the mathematical discourse of each interlocutor and we examine a case of 
commognitive conflict (Sfard, 2007) arising as a result of the teacher’s and the pupil’s different, 
incommensurable discourses. The visual mediators in the particular episode constitute the gestures, 
made by both the teacher and the pupil. Apart from speech, the gestures act too as a vital tool for 
mathematical communication and the construction, and conveying, of mathematical meaning. This 
role of gestures makes the theory of embodied cognition (Gallese & Lakoff, 2005) pertinent in our 
analysis of the episode. 
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In what follows, we present the study’s context, participants and methods. We then sample from the 
data with an episode from a Y1 lesson on number sequences. We conclude with implications that this 
episode has for our ongoing analyses, particularly those included in the first author’s doctoral thesis. 

Methodology: the context, participants and methods of the study 
Data collection was conducted in four UK mainstream primary mathematics classrooms (Y1, Y3 and 
two Y5 classes; pupils’ ages: 6-10). The VI pupils’ presence and the willingness of teaching staff and 
pupils to participate in the study constituted our criteria for the selection of the classrooms. We 
collected data after securing ethical approval by our institution’s Research Ethics Committee and 
ensuring participant anonymity, confidentiality and right to withdraw from the study. 

We collected data through observations of 29 mathematics lessons (33.5 hours in total); individual 
interviews with 5 class teachers (6 interviews, 2 hours and 10 minutes in total); individual interviews 
with 4 teaching assistants (6 interviews, 2 hours and 15 minutes in total); focussed-group interviews 
with 35 pupils (16 interviews, 2 hours in total); 2 ten-minute individual interviews with one pupil; 
written transcripts of the teaching staff’s contributions in the design of the three Phase 2 lessons; 
photographs of the pupils’ work in the three Phase 2 classes; and, pupils’ evaluation forms of the 
Phase 2 lesson in two classes. During observations, written notes were kept in all lessons. 21 lessons 
were audio-recorded and 14 lessons were also video-recorded. All interviews were audio-recorded, 
except four, following interviewee requests. For these, written notes were kept instead. 

Data collection for Phase 1 was completed in March 2018 and for Phase 2 in July 2018. Data analysis 
is ongoing. While a major rationale for Phase 2 is to explore the impact of the co-designed 
mathematics lessons upon the participating teaching staff and pupils, we note that the Phase 2 episode 
we have selected to discuss in this paper does not stress the elements of co-design and its impact upon 
the participants. Instead, our emphasis here is on the mathematical discourses of a teacher and a VI 
pupil in a classroom incident in which we discern a genuine mathematical contribution by the pupil 
that diverges from the one expected by the teacher. We discuss the different mathematical discourses 
of the teacher and the pupil and explore the challenges of implementing inclusion. We first present a 
factual account – and then a preliminary analysis – of the episode. We conclude with a discussion of 
the episode in the context of the entire study. 

A Y1 episode 
A factual account of the episode 

The episode is from a lesson on number sequences in a Y1 class. Ned is the VI pupil of this class and 
has severe, congenital visual impairment in both his eyes. The class has two general teaching 
assistants who support pupils that need help at particular instances and their role does not focus on 
supporting the VI pupil specifically. The class was asked to find the next number in a number 
sequence, which was on a worksheet that each pupil had in front of them. The number sequence was 
8  10  12  14  16. The following dialogue occurs between the teacher and Ned: 

1 Teacher: Is it increasing or decreasing? 
2 Ned, happily: Creasing. Ned puts his hand straight up, doing a similar gesture to the one 

the teacher had done when, earlier, she explained “increase”. 
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3 Teacher: Increasing or decreasing? “Increase” means it gets bigger, or is it getting 
smaller. Whilst saying “bigger”, the teacher does a similar gesture to the one 
Ned had just done. Whilst saying “smaller”, she does a gesture, too, pointing 
down. 

4 Ned:         Increasing. He says this with less enthusiasm than before and without doing 
any gestures this time. 

5 Teacher:  Yeah. You are right. 
A preliminary analytical account of the episode 

Ned’s reaction to the teacher’s question (2) 

Ned responds to the teacher’s question in (1) by resorting to verbal and gestural discourse. His word 
“creasing” may suggest that he does not recall the difference in the meanings of the words 
“increasing” and “decreasing”. Ned uses the root word, “crease”1, of both verbs to show, possibly, 
that he refers to one of the two verbs, although it is unclear from his speech per se whether he means 
“increasing” or “decreasing”, thus whether he answers the teacher’s question correctly. 

His gesture, which accompanies his speech, makes it clear that Ned refers to the term “increasing”. 
Here, the gesture is vital in Ned’s conveying the mathematical meaning he has constructed of what 
an increasing sequence of numbers is. Ned’s re-enacting of the teacher’s gesture for the term 
“increasing” resonates with the theory of embodied cognition, according to which concepts are 
embodied (Gallese & Lakoff, 2005): “the sensory-motor system can characterise a sensory-motor 
concept, not just an action or a perception, but a concept with all that that requires” (p. 468). 

As mentioned above, Ned’s speech alone does not suffice for our understanding as to whether Ned 
refers to “increasing” or “decreasing”. Similarly, we can argue that his gesture alone does not suffice 
either for our understanding of Ned’s mathematical expression. His gesture, isolated from his speech, 
may signify a variety of things, one of which is the term “increasing”. The combination of Ned’s 
speech and gesture, though, strengthens our speculation that Ned refers to the term “increasing”.  

The contribution of both speech and gesture in Ned’s mathematical expression, and in our 
interpretation of it, demonstrates how merging Vygotskian (1978) sociocultural theory of learning 
and the theory of embodied cognition (Gallese & Lakoff, 2005) is important in our analysis.  Take, 
for example, Ned’s response in (2) where we need both his speech and his gesture to grasp how he 
conveys what he means by “increasing”. Both theories – speech as the vital tool for mathematical 
meaning making and expression (Vygotskii, 1978) and the embodied nature of concepts (Gallese & 
Lakoff, 2005) – are combined to help us analyse Ned’s response in (2). One theory, deployed 
exclusively, would not suffice for our interpretation of Ned’s response. 

In (2), we mention the adverb “happily”. With our use of an adverb that indicates emotion, we aim to 
show that we are interested not only in what our participants utter but also in how they feel as they 
do so. The ‘how’ part may be expressed with tone of voice, facial expressions and gestures and it 
provides us with information that frequently adds to, and further illustrates, the ‘what’ part. Ned’s 

                                                 
1 “crease” originates from the latin word “crescere” [“grow”, Oxford English Dictionary (http://www.oed.com/)]. 
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happiness is evidenced in his tone of voice and facial expression – when he says “creasing” – as well 
as in his gesture – we see excitement in the way he gestures. We attribute his happiness to a sense of 
fulfilment he may derive from the correctness of his answer. Later, we see that this correctness is cast 
into doubt, if not disapproved, by the teacher. Our exploration of the relation between emotion and 
cognition resonates with discussions in the literature of the relation among mathematical 
achievement, enjoyment and self-efficacy in mathematics. For example, we agree with Goldin, 
Epstein, Schorr, & Warner (2011, p. 553) that “affect, cognition and motivation interact to influence 
students’ mathematical engagement in classroom social environments”. Another reason why we have 
included a reference to Ned’s emotion is to later compare this emotion to that in his second answer, 
in (4), and associate the fluctuation between the two with the teacher’s reactions in the two cases. 

Teacher’s reaction to Ned’s response (3) 

The teacher does not explicitly react to Ned’s response, either by approving it or by disapproving it. 
We see in her response, though, implicit dissatisfaction: Ned’s answer does not include any of the 
two terms that the teacher expects to hear. Hence, the teacher repeats her previous question, albeit 
with a different sentence and tone of voice.  

Her omission of the part “Is it”, which is in (1), and her direct use of the verbs separated with “or” 
show her emphasis on these two verbs, which she seems to expect from her interlocutor too. She 
pronounces the underlined prefixes “in” and “de” in (3) in a different tone of voice. This may indicate 
some concern about Ned’s wording, which does not include any of the two prefixes.  

We interpret the teacher’s explanation of each of the two terms in (3) as showing her interpretation 
that Ned may not recall the meaning of the two terms. As with her question, her explanations suggest, 
too, her emphasis on the two mathematical words, which she expects to hear from Ned. 

While the teacher’s mathematical discourse is mostly verbal-institutional and the teacher expects such 
kind of discourse from Ned, too, in this part of the episode, the teacher accompanies her speech with 
gestures. Thus, she creates a verbal-institutional and gestural mathematical discourse, with each of 
its components – speech and gesture – serving the same purpose: that of explaining the meaning of 
the key terms. We interpret the teacher’s use of a similar gesture to Ned’s one as a manifestation of 
“attuning” (in the sense of Nardi et al., 2018) to the gestural part of her pupil’s mathematical 
contribution and of her approval of gesturing as a form of mathematical expression, albeit not 
independently from ‘approved’ speech. Through her gesture, we see that the teacher considers Ned’s 
gesture, too, but – alongside speech – she draws on it to guide him in responding within the 
mathematical discourse which she, and the educational institution she represents too, approves. 
Therefore, the teacher seems to be concerned about Ned’s wording but she seems to partially approve 
his gesture. Her expectation is of an answer within the verbal discourse aligned with institutional (the 
National Curriculum’s) standards. The teacher’s attuning to Ned’s gesture resonates with the first 
camp of participants in (Nardi et al., 2018, p. 157): that of using the VI pupil’s contribution to focus 
on a more conventional contribution. 

Drawing upon Sfard’s (2007) theory of commognition, we see evidence of commognitive conflict in 
the exchange between the teacher and Ned. We define commognitive conflict as the situation 
occurring when seemingly conflicting narratives originate in different, incommensurable discourses 
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(Sfard, 2007). We see the different mathematical discourses of two interlocutors, both of whom aim 
to convey their mathematical meaning of an increasing sequence of numbers. We see the 
commognitive conflict in the teacher’s non-playing by the meta-discursive rules set by Ned: she 
considers Ned’s speech in isolation from his gesture and vice versa. Indeed, as discussed in (1), Ned’s 
speech isolated from his gesture – and Ned’s gesture isolated from his speech – do not suffice for 
conveying the meaning he seems to have constructed of an increasing number sequence. We see that 
the commognitive conflict arose as a result of the teacher’s consideration of Ned’s mathematical 
discourse as consisting of two separate, unrelated elements: speech and gesture. We argue that, had 
the teacher considered Ned’s verbal-gestural discourse as an entity, commognitive conflict might 
have been avoided: instead, an acknowledgement of two different, but equally acceptable, 
mathematical discourses might have occurred. 

Ned’s reaction to the teacher’s response on his answer (4) 

We then see that Ned changes communicational mode from verbal-non-institutional – which was seen 
as problematic by the teacher (3) – and gestural – which was partially accepted by the teacher (3) – 
to verbal-institutional – which, as he knows from (3), is accepted by the teacher. Here, Ned responds 
to the teacher’s question by playing by the meta-discursive rules set by the teacher, which, as 
discussed in (3), puts the emphasis on endorsed forms of speech. However, his shift in 
communicational mode does not seem to be a pleasant experience. His tone of voice and his facial 
expression evidence this reduced enthusiasm. This raises issues on how included Ned feels his 
mathematical contribution in (2) is. We see that in (3) the teacher’s non-developing of Ned’s 
mathematical contribution in its own right – the camp of teachers’ developing of VI pupils’ 
contributions in their own right is the second camp discussed by Nardi et al. (2018, p. 158) – is 
excluding. The teacher restricts Ned to responding within the boundaries of an institutionally 
endorsed mathematical discourse and this limitation seems to dissatisfy Ned. Drawing upon the 
relation between affect and cognition, we associate Ned’s apparently reduced enthusiasm with the 
teacher’s concern over his initial contribution and her expectation of his responding in one, particular 
way. Ned’s non-gesturing here may be attributed to several reasons. It may be attributed to the non-
contribution of a gesture to his conveying of his mathematical construction of an increasing number 
sequence, since his use of speech suffices as an answer to the teacher’s question, unlike in (2). It may 
also be attributed to Ned’s interpretation from (3) that gesturing is not a necessary, or even 
appropriate, form of mathematical communication. 

Teacher’s reaction to Ned’s response (5) 

We then see that the teacher clearly approves Ned’s response: his response in (4) resonates with the 
teacher’s expectations, in which speech seems to dominate over gestures. 

Discussion of the episode in the context of the entire study 

This episode is selected to evidence mathematical discourses of a teacher and a VI pupil in a 
mainstream classroom and discusses the extent to which mathematical communication is achieved 
between the two interlocutors.  
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Zooming out to the entire study, we see that, despite the invitation towards VI pupils to participate in 
the mathematics lesson on an equal basis with their peers, their mathematical contributions – which 
may differ from the ones expected by the teacher – may not always be as valued as they could. In 
other words, we see evidence of equitable participation but not equitable value in the mathematics 
classroom. We see this discrepancy as a hurdle to implementing inclusion. We are unsure whether 
this discrepancy arises as a result of undervaluing of the mathematical discourses of VI pupils, as a 
result of a persistent adherence to the institutional mathematical discourse, as a result of both and/or 
other influences. In the episode we discuss here, though, we do not consider the teacher’s concern 
with the VI pupil’s initial mathematical contribution as ableist2 and we note that there was hardly any 
evidence of ableism in the observation and interview data from this teacher. We attribute her concern 
to this contribution’s divergence from the prevalent one and we thus stress that her concern in similar 
cases is likely to occur with every pupil, not just with a VI one. 

In the episode, we see the reported interaction as associated – but possibly not limited – to visual 
impairment. We argue that the pupil’s contribution may be seen through existing findings on visual 
impairment: for example, VI pupils use their hands to construct and convey mathematical meaning 
(Nardi et al., 2018). We also argue that the teacher’s response in (3) was specific to the pupil’s genuine 
mathematical contribution. 

Regardless of the reason attributed to the teacher’s concern with Ned’s mathematical contribution, 
we set the following questions. Do we, as educators, need to accept only those mathematical 
contributions that resonate with the institutional ones? Or, do we need to reflect upon the different 
contributions of our pupils, discern whether they are mathematically valid too and act accordingly to 
include them in the lesson? Without ignoring the necessity for the pupils’ familiarisation with, and 
endorsement of, established mathematical discourse, we propose that we should heed the reactions of 
our pupils, even in cases when we, either explicitly or implicitly, have concerns about mathematical 
contributions which differ from the institutional ones: different pupils construct different meanings 
of mathematics. This is how we see inclusive education implemented in the classroom: through 
equitable participation and equitable value. We argue that our valuing, attuning and integrating of 
pupils’ non-prevalent mathematical contributions into lessons may not only encourage participation 
in the mathematics lesson but may also benefit all pupils in class, who may experience mathematics 
from a different, and potentially enriching, point of view.  
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2 Ableism is defined as “a network of beliefs, processes and practices that produce a particular kind of self and body (the 
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then, is cast as a diminished state of being human” (Campbell, 2001, p. 44). 
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Do hearing-impaired students learn mathematics in a different way 
than their hearing peers? – A review 
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In the last few years, the concept of inclusion has become more and more prevalent in school 
education. Accordingly, teachers in mathematics classrooms have to face not just a wide range of 
heterogeneity related to social background, language skills and performance abilities, but also 
various impairments like physical, sensory and mental disabilities. To facilitate gainful inclusive 
mathematics education, it is important to understand the aspects of mathematical concept formation 
and of mathematics performance which differ between disabled and not-disabled children. The main 
focus in the current paper is on the differences between hearing and hearing-impaired students when 
doing mathematics. Empirical studies from the last two decades are summarized and some guidelines 
for inclusive mathematics settings with hearing and hearing-impaired children are derived. 

Keywords: Inclusive education, hearing impairments, concept formation, mathematics education. 

Background 
There is an overwhelming amount of literature related to deaf children’s learning, a significant part 
of which discusses aspects of mathematics performance. Even if it is not possible to seek 
completeness, a short overview on some well-selected articles can give a useful insight into the main 
research questions and already ascertained results. For this reason, 24 articles (mainly from two 
highly relevant journals, the Educational Studies in Mathematics and Journal of Deaf Studies and 
Deaf Education) regarding hearing-impaired students’ learning in mathematics (mainly reports on 
empirical studies about differences between the performance of hearing and hearing-impaired 
students) were chosen predominantly from the last two decades, such that all education levels from 
kindergarten to college are represented. Additionally, some of the papers discuss adults’ mathematical 
performance long after completing school education. The main goal in this paper is to identify 
relevant differences between hearing and hearing-impaired students when doing mathematics and to 
derive their possible influence on an inclusive classroom. According to Ziemen (2017), the term 
inclusion will be used in the current paper as overcoming of all kind of marginalization, 
discrimination and stigmatization, which includes especially the respect and appreciation of 
handicapped students in co-educated classrooms.  

There is a common agreement in the relevant literature, that hearing-impaired students’ performance 
in school mathematics is on average far below the average performance of their hearing peers and 
that this delay corresponds to a disadvantage of 2 to 4 school years. However, there is no consensus 
regarding when this delay first appears, or which parts of the language skills and cognitive abilities 
are affected. Three different areas of related research can be identified: Studies that mainly focus on 
detecting and describing cognitive differences between hearing and hearing-impaired pupils, studies 
that look for reasons for those disadvantages, and studies that suggest interventions for hearing-
impaired students and measure their effectiveness. Table 1 shows an overview of all reviewed papers, 
categorized according to the main focus and the examined educational level. Please note that some 
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of the papers include more than one study and therefore more than one of these aspects; it also 
happens, that a study was carried out on more than one education level. Thus, several papers are 
registered more than once. In the next sections, research results in the identified three areas 
(differences, reasons and interventions) will be summarized. 

main focus differences reasons for differences intervention 

preschool Ansell & Pagliaro, 2006; 

Kritzer, 2009; 

Pagliaro & Kritzer, 2013; 

Zarfaty, Nunes, & Bryant, 
2004  

Kritzer, 2008  

primary school Ansell & Pagliaro, 2006; 

Frostad & Ahlberg, 1999; 

Nunes et al., 2009 

Pagliaro & Ansell, 2002 Nunes & 
Moreno, 1998; 

Nunes & 
Moreno, 2002; 

Nunes et al., 
2009 

Frostad, 1999; Zevenbergen, Hyde, & Power, 2001 

secondary school  Blatto-Vallee et al., 2007; 

Searle, Lorton, & Suppes, 
1974 

Kelly, Lang & Pagliaro, 
2003; Lang et al., 2007 

 

Zevenbergen et al., 2001 

college, 
university 

Blatto-Vallee, Kelly, 
Gaustad, Porter, & Fonzi, 
2007 

Kelly & Gaustad, 2007 Marshall, 
Carrano, & 
Dannels, 2016 

Bull, Blatto-Vallee, & Fabich, 2006; 
Kelly, Lang, Mousley, & Davis, 2003; 

Marschark et al., 2015 

adults Korvorst, Nuerk, & Willmes, 2007; Kramer & Grote, 
2009  
Masataka, 2006 

 

Table 1: Main focus of the reviewed articles categorized by education level 

Before looking into the content of the papers it is important to remark that, although the term ´deaf´ 
is commonly taken to mean profound hearing loss, most of the papers use the term in a wider sense. 
For example, Nunes et al. (2009) examine the performance of children with moderate to profound 
hearing loss in their first study and the performance of children with mild to profound hearing loss in 
their second reported study. In Frostad’s (1999) case study the pupils have moderately severe to 
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profound hearing loss, and Zarfaty, Nunes and Bryant (2004) also work with children with moderate 
to profound hearing loss. All these papers use the term ´deaf´. Others, for example Pagliaro and 
Kritzer (2013) emphasize the difference between partial and complete hearing loss and make use of 
the term ´deaf and hard-of-hearing´. Because of this inconsistent and confusing use of terms, in this 
paper the term ´hearing-impaired´ will be employed and used in the sense which incorporates all the 
meanings of related terms in the reviewed papers. So, by hearing-impaired will be meant all kinds of 
hearing loss, which exceed the threshold of normal hearing (hearing loss 15 dB at the most). 

Differences between hearing and hearing-impaired students when doing 
mathematics 
Because of the main consensus about the delayed performance of hearing-impaired students in school 
mathematics, researchers started to pay more attention to preschool mathematics in order to answer 
the question of whether those differences are already present before starting school. A surprising and 
also promising result from Zarfaty, Nunes and Bryant (2004) with children in the age range of 3 to 4 
years, is that they could remember and reproduce numbers as well as their hearing peers when the 
task was offered in a sequence, but they outperformed the hearing children, when the task was 
organized spatially. Contradictory to these findings, hearing-impaired children did not benefit from 
the visual-spatial problem presentation in the study of Ansell and Pagliaro (2006). With respect to 
arithmetic story problems, preschool and primary school hearing-impaired children do not use 
linguistic markers in the story, instead reacting more to the assumed mathematics operation (Ansell 
& Pagliaro, 2006). Similarly, not only do 4- to 6-year-old hearing-impaired children already present 
a developmental delay in both informal and formal mathematics tasks relative to hearing peers, but 
also, not even participants with high mathematical ability could make relationships between the 
numbers and the story in a word problem (Kritzer, 2009). The results from Pagliaro and Kritzer (2013) 
can further differentiate the picture: In their study, 3- to 5-year-old hearing-impaired children showed 
strength especially in geometry. 

In accordance with the results of Ansell and Pagliaro (2006), Frostad and Ahlberg (1999) found that 
hearing-impaired primary school children typically approach word problems as numbers and 
procedures without reflecting on the semantic relations in the text. Frostad (1999) found additionally 
that primary school hearing-impaired children do not use their knowledge base for deriving the 
answer, instead reverting to counting. Similarly, hearing-impaired primary and secondary school 
students rely on trigger words in the text as well as ignore key words in decontextualized problems 
(Zevenberger et al., 2001). In the study of Nunes et al. (2009), hearing-impaired primary school 
children under-performed their hearing peers in multiplicative reasoning tasks. 

At the secondary school level, the findings of Zevenberger et al. (2001) are already reported above. 
In contrast to that, Searle, Lorton and Suppes (1974) found among grade 4-6 deaf and deprived 
students that terse and story-free problems are especially difficult for them to solve. Another relevant 
result in this study was that the length of the word problems did not affect the mathematical 
performance. Blatto-Vallee, Kelly, Gaustad, Porter and Fonzi (2007) examined the use of visual-
spatial schematic and visual-spatial pictorial representations among secondary school and college 
students when solving word problems. Hearing-impaired students tended to utilize more visual-
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spatial pictorial representations, which encode only the visual appearance of objects described in the 
problem and are therefore on a lower cognitive level than visual-spatial schematic representations, 
which encode the spatial relationships described in the problem.  

Kelly, Lang, Mousley and Davis (2003) examined the consistency hypothesis during solving 
arithmetic word problems among hearing-impaired college students. The hypothesis postulates that 
students perform better on word problems in which the order of the information is consistent with the 
order of the corresponding mathematical operation; supporting evidence has been found previously 
among hearing students. The results of the Kelly et al. (2003) study support the consistency 
hypothesis: Hearing-impaired students performed similarly. On the other hand, they made – 
regardless of reading ability – more goal monitoring mistakes than hearing peers. Bull, Blatto-Vallee 
and Fabich (2006) found that on subitizing tasks (instantaneous recognition of the cardinality of small 
sets), both hearing and hearing-impaired college students’ performance have a similar pattern. 
Surprisingly, hearing-impaired students did not perform better on a special skew dot format, even if 
this was anticipated due to their assumed better visual-spatial skills. Accordingly, Marschark et al. 
(2015) report that hearing university students outperformed their hearing-impaired peers in visual-
spatial tasks. Note, that this contradicts to the findings of Zarfaty et al. (2004) on the preschool level. 

Masataka (2006) investigated the number sense of hearing-impaired adults and their hearing peers. 
In this study the hearing-impaired participants outperformed the hearing peers on tasks which used 
non-symbolic numerosity, but they did worse, when the same tasks were offered in a formal 
mathematical way. Kramer and Grote (2009) compared the performance of hearing-impaired adults 
on basic mathematics operations with that of hearing peers. Even if the performance of hearing-
impaired adults is far below the performance of people with the lowest level certificate of secondary 
school in Germany, the two groups showed in a language-free test almost the same cognitive ability. 
The authors also found a performance benefit for deaf adults with deaf parents and concluded that the 
language (not exclusively sign language) used in mathematics classrooms has a negative effect on 
their learning. In accordance with this, Korvorst, Nuerk and Willmes (2007) found hearing-impaired 
adults’ performance on complex numerical information-extracting tasks was quite similar to the 
performance of their hearing peers, when the tasks were offered in sign language.  

Possible reasons for differences in mathematical performance 
At the primary level, Pagliaro and Kritzer (2013) conclude that the detected delayed development of 
hearing-impaired children related to basic concepts in mathematics can be caused by absent, 
inappropriate, or misguided learning opportunities. Similarly, Kritzer (2008) found in a qualitatively 
analyzed case study with hearing-impaired 4- to 6-year-old children and their parents, that the four 
mathematically based concepts (numbers, quantity, time and/or sequence, categorization) were used 
more frequently by the parents of children with high mathematical ability than by parents of children 
with lower mathematical ability. The first group of children was also exposed to mathematically based 
concepts in a way that was more purposeful and meaningful.  

Even if sign language number symbols have many of the characteristics of analogue representations, 
the efficiency of those numbers for counting can delay the development of conceptual knowledge in 
hearing-impaired primary school children (Forstad, 1999). So, the use of sign language is beneficial, 

Thematic Working Group 25

Proceedings of CERME11 4699



 

 

but can also lead to disadvantages. Zevenbergen et al. (2001) described a similar dilemma: If the 
teacher reorganizes the word problems so as to make them more accessible for hearing-impaired 
pupils, students are not challenged cognitively and do not get access to the highly specific register of 
the discipline. Totally in accordance with these findings, Pagliaro and Ansell (2002) concluded based 
on a questionnaire with teachers of third-grade hearing-impaired students, that they do not encounter 
story problems early enough and often enough, so they are not provided sufficient opportunities to 
form problem-solving strategies.  

Because the study of Zevenbergen et al. (2001) was made with first- to seventh-grade hearing-
impaired children, the statement above is also valid for the secondary school level. Additionally, 
Kelly, Lang and Pagliaro (2003) found that not only do teachers of hearing-impaired students not 
challenge them cognitively in solving mathematics word problems, but also that they have low 
perceptions and expectations about the students’ abilities and therefore do not offer them meaningful 
problem-solving situations. Also, the teachers associated limited English skills with a primary barrier 
to learn, and thus emphasized comprehension strategies rather than problem-solving strategies. 
However, difficulties can also be caused by other factors: In a case study with teachers, Lang et al. 
(2007) determined that visual representations of science concepts (among others technical science 
signs) may lead to misconceptions, but also, that for the majority of science terms there is no 
published or recorded sign.  

There is some evidence that mathematics performance is affected by language abilities, especially at 
higher levels of education. Kelly et al. (2003) found that, even if the rate of goal-monitoring errors 
was much higher among hearing-impaired college students than among hearing peers, this rate 
nevertheless decreased with increasing reading ability. Marschark et al. (2015) examined the 
executive functioning behaviors (such as comprehension and conceptual learning, factual memory, 
attention and so on) of hearing and hearing-impaired first-year university students in everyday life 
with a self-report questionnaire. They found better scores for the hearing than for the hearing-
impaired students, but also, that difficulties in executive functioning among participants with cochlear 
implant are the result of both, language delay and auditory deprivation. In accordance with this, Kelly 
and Gaustad (2007) could demonstrate, that specific morphological competencies in English in 
addition to reading ability level, are significantly related to mathematics performance. Bull et al. 
(2006) concluded that hearing and hearing-impaired students do not differ from each other in the 
format of numerical representation and the level of automatic activation of magnitude information. 
Thus, this aspect cannot be the reason for later difficulties with arithmetic. 

Based on his study with hearing and hearing-impaired adults, Masataka (2005) concluded that, 
difficulties in mathematics are related to the formal, symbolic side of the discipline, and that this is 
modulated by the environment and the culture. Kramer and Grote (2009) came to a similar 
conclusion: They found the language used in mathematics classrooms to be responsible for the 
mathematics difficulties of deaf (native sign-language user) individuals, but they also mention 
missing and deficient opportunities for developing language skills and everyday-life-knowledge. In 
accordance with this and also with the findings of Bull et al. (2006) above, Korvorst et al. (2007) did 
not find evidence for core differences between hearing and hearing-impaired adults in solving 
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bisection tasks, which require the extraction of complex numeric information, when hearing-impaired 
participants used (their native) sign language.  

Interventional methods and their effectiveness 
Nunes and Moreno (1998) applied a non-traditional method for calculating, namely the signed 
algorithm, in a mathematics classroom with solely hearing-impaired primary school children. While 
solving addition and subtraction problems, the pupils showed systematic errors similar to the ones in 
written computation related to place value understanding and the mechanics of written algorithms. 
Thus, the authors suggest to try out this method as an alternative and make use of the systematic 
errors to optimize teachers’ instruction. Nunes and Moreno (2002) also developed an interventional 
program for hearing-impaired students in primary school which involved two main aspects: Giving 
opportunities to learn basic mathematical concepts, which can be learnt informally by hearing 
students, and promoting connections between informal and formal mathematical concepts. The 
interventional group performed significantly better in the posttest not just in comparison with the 
baseline group, but also with their own previously estimated performance. The intervention led also 
to motivational benefits. Furthermore, Nunes et al. (2009) adapted an intervention program on 
multiplicative reasoning – originally developed for hearing children at risk for difficulties in learning 
mathematics – for hearing-impaired students. However, the intervention was also applied to a hearing 
experimental group. Both hearing and hearing-impaired children benefited significantly from the 
intervention, but in a delayed posttest the performance of the hearing-impaired children decreased. A 
possible reason for this fact could be the long-term poorer problem-solving environment for hearing-
impaired pupils.  

Responding to missing everyday opportunities and problem-solving strategies of hearing-impaired 
students, Marshall, Carrano and Dannels (2016) developed an intervention program based on the 
concept of experimental learning, on best-practice experiments and on the concept of plan-do-check-
act. During the lessons, hearing-impaired students become more and more familiar with the solving 
of real, work-related problems. The sessions featured sign-supported explanatory videos. Significant 
improvements were found between the performance in the pre- and posttest for the long term. 

Conclusions for inclusive mathematics classrooms 
According to Pagliaro and Kritzer (2013), Kritzer (2008) and also to Kramer and Grote (2009), the 
main focus in the preschool education should be on offering opportunities primarily to develop 
informal mathematics knowledge such as numbers, quantity, time, events in a sequence, 
categorization and to improve language skills.  

In primary and secondary school, word problems seem to be the most challenging for hearing-
impaired students. Intervention programs such as suggested by Nunes and Moreno (2002) and Nunes 
et al. (2009) could and should be implemented and extended for other areas and for secondary level, 
for the following reasons: (1) Hearing-impaired students could compensate their deficient informal 
mathematics knowledge and language skills (2) both hearing-impaired and hearing students could 
develop high-level problem-solving strategies (3) these activities could also be beneficial for 
socioeconomically disadvantaged pupils and students at a risk for difficulties in learning mathematics. 
It is also important to make use of visual-spatial schematic representations when solving word 
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problems (Blatto-Vallee et al., 2007) and to discuss story-free word problems (Searle et al., 1974). 
Children with profound hearing loss could use the sign algorithm as an alternative (Nunes & Moreno, 
1998) and should use their native language (sign language) (Kramer & Grote, 2009; Korvorst et al., 
2007), perhaps with the help of a native sign-user translator. At college and university education level, 
the support of language skills – including technical (sign) language – is recommended. 
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Braille readers create an overview of an expression by reading one braille character after another 
or listening to a voice saying the expression or equation aloud. The specific skills and knowledge that 
mathematics teachers need to assist this complicated process are often lacking. The purpose of this 
study was to investigate the effect of an intervention consisting of a course focused on braille display 
support in combination with Text-To-Speech synthesizer for mathematics teachers on the 
mathematical performances of braille readers. A quasi-experimental approach was taken to answer 
this question. Five teachers of an experimental group received the intervention whereas the teacher 
of the control group did not. Both the experimental group, consisting of 10 braille readers, and the 
control group, consisting of five braille readers, took a pre- and post-test. The results indicated that 
there was a very small positive effect of the intervention.  

Keywords: Braille display, braille reader, algebra, speech synthesizer, TPACK model. 

Introduction 
Reading and comprehending mathematical expression and equations has always been difficult for 
students who use braille or braille in combination with speech synthesis as their primary reading 
medium (hereafter braille readers). Mathematics teachers need to have specific skills and knowledge 
to assist this complicated process. Braille readers read and comprehend mathematical expressions and 
equations by touching or hearing in a sequential pattern (Millar, 1994, 1997). They need to build an 
overview by reading one braille character after another or listening to a voice saying the expression 
or equation aloud. Expressions and equations have to be represented in a linear notation because 
braille and speech are both linear output modalities (Stöger & Miesenberger, 2015). Hence, braille 
readers have a small perceptual view and have to read expressions in a linear notation. This means 
that they can’t benefit from the layout of an expression that helps the sighted student to understand 
the structure of an expression at a glance (Karshmer & Bledsoe, 2002).  

In many countries, braille readers in secondary and higher education use a laptop in mathematics 
class. Screen Reader software sends the mathematical text on the screen to a refreshable braille 
display, which is connected to the keyboard of the laptop, or to a Text-To-Speech (TTS) synthesizer. 
Consider, for example, the next expression:  

2𝑥𝑥2+1
3

     (1) 
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In this representation, the expression can’t be sent to the braille display or TTS synthesizer.  It must 
first be converted to a linear representation (hereinafter pre-braille notation), e.g. (2x^2 + 1)/3.  

The notation on the braille display is to a certain degree static. This allows for at least a limited spatial 
overview (Archambault, Stöger, Batusic, Fahrengruber, & Miesenberger, 2007). On the other hand, 
every character on the braille display has to be read individually and sequentially which makes braille 
reading exhaustive rather than selective (Hughes, 2011; Hughes, McClelland, & Henare, 2014). That 
makes it rather difficult to get an overview over an expression or equation (Van Leendert, Doorman, 
Drijvers, Pel, & van der Steen, 2019). Moreover, braille characters have a low redundancy, which 
means that the characters are hard to distinguish from each other (Tobin & Hill, 2015). This can lead 
to errors in decoding the braille characters into correct elements of the expression or equation.  

In addition to the braille display, the TTS synthesizer is a useful screen reader device for reading 
mathematical expressions and equations. The Screen Reader that controls the speech and that we used 
in this study is JAWS, which stands for Job Access With Speech. An advantage of speech over braille 
is the pace of reading because spoken language can be much quicker comprehended then braille 
characters. Mathematical expressions and equations can be spelled or read aloud. When an expression 
is spelled, each element in the expression is approached separately. When an expression is read, a 
speech dictionary determines the spoken text. This dictionary can be extended with a mathematics 
vocabulary (also influencing how non-mathematical text is read) and can be further extended with 
mathematical symbols on so-called verbosity levels. The way in which an expression is spoken aloud 
depends on the content of the dictionary and the verbosity levels and on the verbosity level at which 
the braille reader reads. For example, “2(x^2 + 4)” can result in “two x squared plus four” when using 
a low verbosity level and in “two open bracket x squared plus four closed bracket” when using a high 
verbosity level. In this case, the meaning is lost when the braille reader uses a low verbosity level. In 
general, braille readers (should) use a low verbosity level for reading non-mathematical text and a 
high verbosity level for mathematical text. By default, the settings are not adjusted to mathematical 
text. In that case, choosing a high verbosity level doesn’t help.    

In summary, the Screen Reader’s software can be adjusted in such a way that (almost) all expressions 
are spelled and read in mathematical vocabulary. This supports the braille reader in learning the 
mathematical vocabulary, which is vital for the development of mathematical skills (Riccomini, 
Smith, Hughes, & Fries, 2015). Moreover, this vocabulary corresponds to the vocabulary used by the 
mathematics teacher in the classroom. This is particularly useful for braille readers in inclusive 
classrooms, because individual support is not always available.  

Both assistive devices, the braille display as well as the TTS synthesizer, have their strengths and 
weaknesses. Ideally, using both devices one combines their individual strengths to overcome the 
weakness of each of the two methods (Bernsen, 2008). For example, uncertainties in braille can be 
verified or checked by spelling aloud.  

The previous sections demonstrate that reading and comprehending mathematical expressions and 
equations while using the braille display or the TTS synthesizer is not easy. Teachers often don’t 
know how to guide this complicated process. To map out the qualifications of mathematics teachers, 
the TPACK model can be used. TPACK includes knowledge of technology (TK), pedagogy (PK) and 
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content (CK), as well as insight into the complex interaction between these knowledge components 
(Mishra & Koehler, 2006). The idea behind TPACK is that the pedagogical use of (assistive) 
technology devices is strongly influenced by the content domains on which these devices are situated 
(Graham, Burgoyne, Cantrell, Smith, St Clair, & Harris, 2009). For example, the teacher knowledge 
required to effectively integrate technology in a mathematics classroom may be very different from 
that required for a language classroom. 

This study aims at improving the integration of the braille display and the TTS synthesizer in the 
mathematics classroom. We addressed the following research question:  

What is the effect of improving the knowledge of braille display and Text-To-Speech synthesizer 
support of mathematics teachers on braille reader’s achievement in mathematics?  

We expected that braille readers will better perform in mathematics because the adjusted settings of 
the Screen Reader software are more appropriate for reading mathematical text and the mathematics 
teachers have the knowledge to teach the braille readers how to use the braille display and the TTS 
synthesizer in mathematics lessons. 

Methods 
Design 

In this study, the braille readers’ mathematics teachers took part in a professional development (PD) 
course on integrating the braille display and the TTS synthesizer into mathematics lessons. The first 
part of the course was aimed at assisting each teacher in adjusting the settings of the Screen Reader 
software. As a result, the braille readers were able to listen to how expressions and equations were 
spelled and read aloud in mathematical vocabulary. The second part of the course was aimed at 
improving the knowledge to teach the braille readers how to use the braille display and the TTS 
synthesizer in mathematics lessons. In order to answer the proposed research question, a quasi-
experimental approach was taken, using a pre- and post-test. The experimental group consisted of 10 
braille readers whose teachers took part in the PD course. The control group consisted of five braille 
readers whose teacher did not participate in this course. 

Context and participants  

In the Netherlands, more than 50% of all braille readers in secondary education go to special schools 
for students with a visual impairment. Organization A and B provide education for these students. 
The first author was affiliated with organization A. Therefore, five mathematics teachers from two 
different schools of organization A participated in the PD course, while the teacher who worked at 
the school of organization B did not. None of the teachers ever received any training in teaching 
mathematics to braille readers. The mathematics teachers who worked at organization A were 
qualified teachers, but they were not, with the exception of one, qualified to teach mathematics. In 
contrast, the mathematics teacher who worked at organization B was a qualified mathematics teacher. 
The braille readers of organization A were assigned to the experimental group and the braille readers 
of organization B were assigned to the control group. This resulted in an experimental group of 10 
and a control group of five braille readers. The three schools were very similar in terms of 
demographic characteristics of students and the degree of educational performance. The braille 
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readers were all in seventh to twelfth grade in secondary education. They differed in their 
mathematical skills and in their ability to use the braille display and the TTS synthesizer.  

Intervention: a professional development course  

Part of the intervention consisted of the adjustments of the settings of the Screen Reader software. 
The control group worked with the “old” settings, and (often) used one verbosity level when reading. 
As a result, too few symbols and punctuation marks were read aloud in mathematical text, or too 
many punctuation marks were read aloud in non-mathematical text. Moreover, (almost) no 
mathematical vocabulary was used. For the experimental group, the verbosity settings of the Screen 
Reader were adjusted. The speech dictionary was extended with a mathematical vocabulary and all 
punctuation marks and symbols, used in pre-braille notation, could be spelled aloud in mathematical 
vocabulary. The braille readers could choose a verbosity level with which they could read the whole 
expression aloud in mathematical vocabulary, without missing elements.  

The face-to-face PD course consisted of four sessions of three hours each, which lasted over a period 
of four months. The design of the course was based on TPACK. Much attention has been paid on 
how to integrate the braille display and the TTS synthesizer into the mathematics lessons. For the first 
homework task, the mathematics teachers were asked to support a braille reader in obtaining an 
overview over an expression or equation. For the second homework task, they were asked to write 
down their experiences with the adjustments of the Screen Reader software and to discuss this with 
their braille readers. For the third task, they were asked to do an activity to provoke collaborative 
work and mathematical communication between students.  

Pre- and post-test  

We decided that we could use identical pre- and post-tests because the time interval was more than 
four months. The braille readers were asked to answer the two tasks orally, because that would save 
time and be less tiring for them.  

The tasks were not too complex but required careful reading skills due to the use of various operations 
and brackets. In the first task, “synthetic speech comprehension”, the braille readers had to select 
information from expressions or equations that were spoken aloud. The items could be spoken aloud 
several times at the request of the braille reader. The items were:  

a) 1/7 + 7 - 2/5 + 8  = ..    What are the fractions in this expression? 
b) 4 - (5 + -(6 + 3)) = ..     Where do you start calculating? 
c) 4 * (.. - 5) = 8                Solve this equation.  

In the second task, “mathematical braille reading skills”, the braille readers were asked to read the 
mathematical text on the braille display and verbalize this text in mathematical vocabulary. With item 
b we expected to be able to investigate whether they were supported by context. The items were:  

a) y = 2 1/2  * 3   
b) The volume is 12 m^3 
c) y = sqrt(2/(x + 3)^2) 
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(2 1/2 is a mixed number, a combination of a whole number and a proper fraction). Before the start 
of the pre- and post-tests, the braille readers were interviewed about their visual impairment, their 
assistive devices and the support they receive in mathematics lessons. This information helped to 
interpret the results of the tests.  

Procedure  

The research followed this order: pre-interview, pretest, intervention, post-interview, posttest, all 
within a maximum of five months. The interviews and the pre- and post-tests took place at the schools 
of the braille readers. All sessions, consisting of an interview and a pre- or post-test, were scheduled 
for 25 minutes but sometimes lasted longer due to technological problems with the braille readers’ 
laptops. Within two weeks of completing the pretests, the Screen Reader software of the experimental 
group was adjusted and the mathematics teachers’ development course started. Within a month after 
the end of the course, the braille readers did the posttest. The control group received the same 
interviews and pre- and post-tests in the same period but without intervention.  

Data collection and analysis   

For investigating the research question data was collected during the pre- and post-test through audio 
and video recordings. For “synthetic speech comprehension”, data were collected on whether the 
braille readers gave a correct answer and on how much time they needed to give this answer. For each 
group, the average time was calculated. For “mathematical braille reading skills”, data were collected 
on whether the braille readers could verbalize the expression, how much time they needed to give a 
correct answer and on the kind of errors they made.  For each group, the average time was calculated. 

Results  
The results in Table 1 show that for synthetic speech comprehension, the pretest percentage of correct 
answers was 57% for the experimental and 47% for the control group. For the posttest, the percentage 
of correct answers was (again) 57% for the experimental and 80% for the control group. The 
experimental group needed in the pretest, on average 46.1 seconds (SD = 27.0) and in the posttest, on 
average, 34.1 seconds (SD = 16.0) to give the correct answers. The control group needed in the pretest, 
on average, 45.4 seconds (SD = 25.1) and in the posttest, on average, 32.4 seconds (SD = 14.3) to 
give the correct answers. For both groups, the standard deviations were high.    

For mathematical braille reading skills, the pretest percentage of correct answers was 20% for the 
experimental and 53% for the control group. In the posttest, the percentage of correct answers was 
37% for the experimental and 60% for the control group. The experimental group needed in the 
pretest, on average, 18.2 seconds (SD = 26.8) and in the posttest, on average, 15.3 seconds (SD = 8.7) 
to give the correct answers. The control group needed in the pretest, on average, 9.0 seconds (SD = 
3.1) and, in the posttest, on average 9.8 seconds (SD = 8.4) to give the correct answers. Also for this 
task, the standard deviations were high. The errors were categorized. E(d) is an error made due to 
difficulties with decoding the braille characters. This could be ascribed to difficulties with 
recognizing the location of the raised dots or to difficulties with decoding the braille characters into 
correct elements of a mathematical expression (e.g., “x” “^” “2”). E(v) is an error due to difficulties 
in recognizing and verbalizing the whole expression (e.g. “x squared”) and E(b) is an error due to 
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malfunctioning of one of the technology devices.  For both groups and for all tests, almost all errors 
were decoding errors. For both groups, most decoding errors occurred at decoding symmetric or 
translated characters (e.g.    and   ) and mixing up six dot braille with eight dot braille. The E(b) 
error occurred only, two times, in the pretest of the experimental group.  

Table 1: Results from pretest and posttest for synthetic speech comprehension and mathematical 
braille reading skills  

  Pretest Posttest 

Condition Number 
of 

students 

Percentage of 
correct 
answers 

Average time on 
correct answers 

(s.) 

Percentage of 
correct 
answers 

Average time on 
correct answers 

(s.) 

Synthetic 
speech 

comprehension 

E (10)  57% 46.1 (SD = 27.0) 57% 34.1 (SD = 16.0) 

C (5) 47% 45.4  (SD = 25.1) 80% 32.4 (SD = 14.3) 

Mathematical 
braille reading 

skills 

E (10) 20% 18.2  (SD = 26.8)  37% 15.3 (SD = 8.7) 

C (5) 53% 9.0  (SD = 3.1 ) 60% 9.8 (SD = 8.4) 

E denotes experimental and C control group  

Finally, we illustrate the decoding practices of two braille readers of the experimental group reading 
“The volume is 12 m^3” on the braille display (see Table 2). In this example, I. tried to read 12 m^3 
as one number “2393”. He did not recognize the “^” character in braille and stopped. F. also started 
with reading 12 m as one number, but corrected the error. Both braille readers mixed up “m” with 
“3”.  and spent a lot of time reading "12 m^3" compared to reading "The volume is". 

Table 2:  Results of two individual braille readers on mathematical braille reading skills 

Braille reader I. (pretest) Braille reader F. (posttest) 

Time (s) Utterances Time (s)   Utterances 

00– 04  
04 – 17                              
          
17 – 22  
22 – 40 

The volume is                                        
Two thousand three hundred ninety-three  
Wait two thousand What should this be?   
The volume is  
 one, two three no wait a two m s three I 
do not know if that is an s. It looks a bit 
strange ... {stop}  

00 – 01 
01 – 19   

The volume is  
Eh hundred three and 
twenty No no twelve I 
think this is cubic 12 cubic 
meters 

 

Conclusions and discussion 
This study aims at improving the integration of the braille display and the TTS synthesizer in the 
mathematics classroom. For “synthetic speech comprehension”, the percentage of correct answers for 
the experimental group (57%) did not change during the intervention. This means that, for this the 
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task, there was no evidence that the intervention was successful. For the control group, this percentage 
was 47% in the pretest and 80% in the posttest. It is remarkable that this group achieved much better 
on the posttest. For “mathematical braille reading skills”, the experimental group improved more than 
the control group. It is remarkable that the pretest percentage of correct answers of the experimental 
group (20%) was much lower than that of the control group (53%). In the posttest, the percentage 
was 37% for the experimental and 60% for the control group. For both groups, most errors were errors 
in decoding the braille characters showing that braille readers already stumble in the first phase of the 
solving process. Table 2 shows that braille reader I. and F. needed more time and made more errors 
when reading mathematical text (“12 m^3”) compared to reading non-mathematical text (“The 
volume is”). Both braille readers mixed the symmetric characters “3” and “m”, which is a common 
mistake (Tobin & Hill, 2015). In summary, the results of the tasks on mathematical braille reading 
show a very small positive effect of the intervention. We expected a greater effect. Finally, the high 
values for standard deviation, in all tests, showed that the individual differences were large.    

This study had some limitations. A first limitation was the small number of braille readers that 
participated in this study, especially the number of participants in the control group. A second 
limitation was the limited information we had of the braille readers about the frequency that they used 
the adjustments of the Screen Reader software in the period between the two tests. From a teacher’s 
point of view, we don’t know, exactly, if and how they changed their daily practice. This feedback 
was asked during the second interview, yet the braille readers found it difficult to reflect on this.   

Moreover, there were differences between the experimental and control group that may have affected 
the results. Firstly, the braille readers of the control group were obliged to use the braille display, 
whether or not in combination with the TTS synthesizer, during their mathematics lessons. This was 
not obligated for the braille readers of the experimental group. Secondly, the mathematics teacher of 
the braille readers of the control group was a qualified mathematics teacher. This was not the case for 
the mathematics teachers, with the exception of one,  of the experimental group. 

We did not anticipate that braille readers would make so many decoding errors while reading 
mathematical text. Overall, the control group performed better on both tasks than the experimental 
group. This may be due to the strict rules for the use of the braille display and the differences in 
background of the mathematics teachers. This could be examined in more detail in future studies.  
Overall, this study adds to the small number of studies into ways to support braille readers in 
mathematics (e.g. Figueiras & Arcavi, 2014). Findings from this type of research should enable 
teachers to better support braille readers in doing mathematics.  
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TWG26 (Mathematics in the Context of STEM Education) was introduced in the CERME 11 in 
recognition of its importance in mathematics education. Science, Technology, Engineering and 
Mathematics (STEM) education merges a variety of subjects in the fields of science, technology, 
engineering and mathematics to solve real world problems (Sanders, 2012). Since the discrete 
subjects of science, technology, engineering, and mathematics were conjoined into the ubiquitous 
STEM acronym teachers, researchers, policy makers, and funders have worked to integrate the 
discrete subjects. The process of integration begins with the introduction of new instructional 
materials and practices, typically through curriculum development, publication of supporting 
materials, and professional development (Sanders, 2012). The challenge of integrating STEM lies at 
the nexus of teacher preparation and in-service teacher professional development (deMora & Wood 
2014). Teaching STEM in a more connected manner, especially in the context of real-world issues, 
can make the STEM subjects more relevant to students and teachers (Honey, Pearson, & 
Schweingruber, 2014). This in turn can enhance motivation for learning and improve student 
interest, achievement, and persistence (Honey, Pearson, & Schweingruber, 2014). 

What level of integration should be strived for, however, is not undisputed. Especially, if and how 
mathematics fits such an integrated approach is debatable. A specific point of attention concerns the 
fact that mathematics education asks for careful vertical planning, which might be compromised in 
an integrated approach. Mathematics encompasses more fields of application than science, 
technology, and engineering alone. So, real-life applications involving modeling, engineering 
design and the integration of various disciplines has to be taken into account in mathematics as it 
prepares students for the future. 

This working group particularly aimed at addressing mathematics in the context of STEM 
education. Mathematics encompasses more fields of application than science, technology, and 
engineering alone. So, the integration of a broader variety of disciplines has to be taken into account 
in mathematics to prepare students for the future. Papers and posters submitted to the group focused 
on tasks, courses, curriculum, students, and in-service teachers mainly using qualitative 
methodology and interpretative approach. The issues and ideas emerged are discussed in reference 
to seven central themes. The mathematical contents concerned various topics (e.g., Numbers and 
Operations, Geometry (i.e., angles, parallel lines), and Data Organisation and Processing, second-
order differential equations, matrices, linear equations). 
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Thematic areas 
Here we present the issues and ideas that emerged in reference to the seven central themes. 

Mathematical preparedness and value 

Within this theme two papers were presented. First paper by Lave and Walshe concerned the 
preparedness of high-school students for tackling the mathematical aspects of STEM courses in 
tertiary education. The second paper by Nelleke den Braber and et al centered on the value of 
mathematics for an inter-disciplinary STEM course. 

The first paper within this theme concerned the high non-completion/dropout rates in STEM 
courses at tertiary level in Ireland. It was noticed that even students with good marks might struggle 
with the mathematical aspects of third-level science and engineering courses. Lave and Walshe 
therefore searched for other factors that might affect the preparedness of the students. They 
investigated the perceptions of three stakeholders, teachers, students and lecturers with 
questionnaires. They further aimed to clarify what teachers and students themselves currently 
understand by interdisciplinary STEM education.  

Factors that were taken into account are,  

- students have to know how to use math knowledge in other subjects;  

- mathematics has to be taught in an integrated way; 

- high-school teachers should teach with students’ future third-level degrees in mind; 

- teachers are unaware of the benefits of integration.  

In the reaction, it was argued that an alternative explanation might be in how mathematics is taught. 
In this respect a reference was made to Freudenthal, who argued that mathematics should be taught 
as to be useful. He argued that, “In an objective sense the most abstract mathematics is without 
doubt also the most flexible. But not subjectively, since it is wasted on individuals who are not able 
to avail themselves of this flexibility” (Freudenthal, 1968, p.5). Another remark was that next to 
benefits of integration of STEM subjects, there are also costs. These concern sustained facilities at 
school level (time, funding, schedule, room), teacher commitment, professional development and 
teacher support (Gresnigt, Taconis, van Keulen, Gravemeijer, & Baartman, 2014).  

The second paper elaborated on the value of mathematics in an interdisciplinary STEM course. The 
key concept in this paper was that of disciplinary perspectives. It was argued the problems we face 
in today’s world in the context of STEM call for perspectives and knowledge from many different 
areas. Against this background the researchers tried to get a handle on the value of mathematics in 
the context of a successful interdisciplinary STEM course in the Netherlands. With open questions 
Nelleke den Braber and et al investigated how students and teachers think about the value of 
mathematics. They introduced a model for the value of mathematics for interdisciplinary STEM 
courses. This encompassed, an overall sense of what mathematics is, ways of working and thinking, 
modeling, reasoning and problem solving. This model was used to analyze answers of students and 
teachers on an open questionnaire. It showed that both teachers and students had little awareness of 
the value of mathematics as a discipline. If the students mentioned mathematics, it was mainly that 
it was used. It seemed that the role of mathematics was not really noticed by them.  
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In the reaction in was noticed that the value of mathematics appeared to be equated with its 
usefulness. Which appeared not to be the intent. It was further argued that in practice the use of 
mathematics by workers was limited. As the actual mathematical work would be delegated to 
experts or machines. Therefore, being able to communicate about the mathematics might be more 
important. Following Kaput (1997) it was further argued that one should understand the key 
underlying ideas and mechanisms. Freudenthal was quoted again to make a distinction between 
mathematical activity as “organizing subject matter in reality and organizing mathematical subject 
matter”. The latter seemed to be missing in the model of the value of mathematics. It was further 
noticed that Freudenthal would not be surprised about the lack of awareness of the role of 
mathematics. In 1977 he predicted that, “In 2000 mathematics will have been gone as a separate 
subject in education. Mathematics is there to be experienced, and lived, just like reading, writing, 
tinkering, drawing, singing, breathing, in integrated education.” 

Product and STEM 

In this theme two papers were presented. The first one by Wohak and Frank revolved around the 
value of inverse problems in making students aware of the role of mathematics in applications. The 
second one by Bock, Bracke and Capraro aimed at such awareness but tried to realize this with 
product-oriented tasks. 

The first paper made a case for the development of interactive, problem-oriented material for high 
school students, in order to make students see the potential of mathematics for solving real life 
problems. The example in the paper concerned so-called inverse problems. The concrete case being 
the problem of computer tomography. Computer tomography is used to establish the internal 
structure of an object—such as a human body—on the basis of the entry and exit intensity of the X-
ray radiation. The objects are irradiated with parallel beams at different fixed angle settings, and the 
challenge is to infer the structure of the object from the patterns of the imprint the X-ray make after 
passing through the object. This is an inverse problem as it is the inverse of predicting what the 
imprint would be when the structure of the object is known. Where the latter is rather 
straightforward, the former is complex and not always possible as small variations may cause big 
errors. Wohak and Frank show that the mathematics for solving a simplified version of this type of 
problem is doable for high school students. They argue that by working on this problem, students 
will come to see the potential of mathematics to solve real-life problems.  

One of the points of critique was on the strong focus on the mathematical solution of the problem. It 
was argued that today mathematics is done by computers and that the remaining mathematical work 
resides in the translation of the practical problem into a mathematical problem. It was further noted 
that there was little attention for the capabilities that are needed for mathematical modeling. In this 
respect the detailed list of capabilities that the PISA Mathematics framework offers (OECD, 2017) 
was mentioned. 

The second paper focused on product-oriented modeling. The starting point being the task of 
making a product brings with it unique characteristics—which are lacking in school problems. For, 
the success criteria are dictated by whether the solution is actually working and feasible, often 
decisions have to be made, and restrictions apply. Two product-oriented modeling tasks were 
discussed. Both were aiming at showing the usefulness of Fourier analysis. The first concerned the 
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task of making a musical fountain. Two sub-groups decided not to solve the original task but 
focused on loudness & rhythm instead. So, there was no need for Fourier analysis. One sub-group 
did find mathematical techniques to smooth the highly irregular amplitude-time-function. The other 
sub-group worked on an algorithm that could find an underlying rhythm in a song. The second task 
involved building a light organ. Here also two sub-groups emerged. One worked with electronic 
frequency filters, and thus did not need Fourier analysis. The other group wanted to use 
mathematics and was supported in using Fourier analysis (in a piece-by-piece manner).  

One of the questions that was brought up by the discussing was whether the students of the last 
group really understood the Fourier analysis in terms of the underlying concepts and mechanisms. 
Further similar remarks could be made about the intended use of Fourier analysis as were made on 
the reverse-problems paper. In this case, however, part of the students was involved in translating 
practical problems into mathematical problems. As was the case with the loudness and rhythm-
problems. Doubts were expressed about the feasibility of upscaling such projects.  

Engineering design and mathematical modelling processes 

Three papers were presented in this thematic area. The first paper by Abou-Hayt, Dahl and Rump 
concerned with the exemplification of the integration of the engineering design process (EDP) and 
the mathematical modelling process in two university students’ projects. Abou-Hayt, Dahl and 
Rump used the characteristics of engineering design process (Tayal, 2013) and mathematical 
modelling process (Blomhøj & Jensen, 2003) to analyze the projects. Their conclusion was that the 
both processes were visible in the projects. This paper led to raising some further questions: What is 
the sign for showing student learn best when they are actively participate and apply theory?; What 
is students learning in this context?; How is the interaction between the lecturer and students?; How 
can we compare traditional and this form of teaching outcome?; and What is the meaning of 
mathematics in abstract and real world?  

The second paper by Costa and Domingos elaborated on the development and the implementation 
of mathematical interdisciplinary task related to STEM integration, in the context of a collaborative 
Continuing Professional Development (PD) Program targeted at primary school teachers. Costa and 
Domingos concluded that a PD program can only be successful if teachers can implement the task 
developed with their students. The following questions led the discussion regarding to this paper: 
What is the meaning of STEM integration in the context of a collaborative Continuing Professional 
Development Program targeted to primary school teachers?; How can teacher educators help 
teachers to develop mathematical interdisciplinary tasks related to STEM integration? Are they 
different for prospective teachers´ education and in-service teachers?; What are the expectations 
from the teachers while developing mathematical interdisciplinary tasks related to STEM 
integration?; What are the expectations from the teachers while implementing mathematical 
interdisciplinary tasks related to STEM integration?; How could different types of knowledge and 
skills regarding the integration of STEM be promoted in pre- and in-service teacher education?  

In the third paper, Ubuz used the characteristics of EDP outlined by Berland, Steingut, and Ko 
(2014) to analyze the curriculum learning outcome of a Technology and Design course offered to 
7th grade students in Turkey. By identifying the most common verbs and objects contained within 
the learning outcomes of the curricular documents guiding the 7th grade course, Ubuz found that 23 
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of the learning outcomes contained EDP knowledge and 29 of them concerned EDP skills. The 
conclusion is that the EDP knowledge and skills recommended by Berland et al.  (2014) are largely 
present in the 7th grade curriculum. Ubuz suggests that these findings can help teachers integrate 
similar EDP knowledge and skills in science and mathematics curriculum in middle school. 

Design research 

A paper by Pugalenthi, Stephan, and Pugalee was presented in this thematic area. This paper sought 
to capture the students’ conception of angles and parallel lines in order to design engineering 
context based instructional sequences for middle grades (7th grade) mathematics classroom. This 
research was comprised of a pre-interview to assess the existing conceptions of angles and parallel 
lines, design and implementation of engineering-based instructional sequences and a post-interview 
to assess the changes in conceptions of angles and parallel lines. This research paper, however, 
focused mainly on the analysis of the pre-interview questions dealing with angles and parallel lines 
along with preliminary discussion of the design of the instructional sequence regarding designing a 
residential community. The students’ conceptions of angles and parallel lines were traced under 
three themes: Prototypes or reference images, tracing of the lines, and decoupling versus 
decomposing. This paper leads to raising some further questions: What is mathematical 
instructional task with an engineering problem?; How the difficulties identified could be prevented 
through mathematical instructional tasks with an engineering problem?; How mathematical 
instructional tasks with an engineering problem let to dive deeply into a topic and use mathematics 
to create a solution?; How the difficulties identified do lead us to develop mathematical 
instructional tasks with an engineering problem such as designing a residential community?; How 
could the mathematical difficulties identified be prevented through designing a residential 
community?; What is effective STEM integration?; How could we provide training or prior skills 
regarding engineering content and principles to the teachers?  

Statistics in STEM 

Under this theme one paper was presented. The paper written by Oliveira, Henriques, and Batista 
dealt with the preservice teachers (PT) perspectives about the role of statistics in a learning scenario 
with one 8th grade class, fostering the integration of physics and statistics. It was claimed that 
successful STEM integration depends on teachers’ perspectives and their competence to choose 
learning materials which are suitable in this context. Previous studies showed that teachers had a 
negative perception of STEM education based on the feeling that they were unprepared to teach 
within an interdisciplinary curriculum. 

The data (group lesson plans and PT’s reflections regarding planning and enacting learning 
scenario) were analysed with a focus on the dimensions of the model of authentic integration 
(Treacy & O’Donoghue, 2014): Application to real-world scenarios, high order thinking processes, 
and knowledge development, synthesis and application. According to the paper the PTs concluded 
that the mathematical content (in this case statistics) was not only incidental to the STEM context, 
but had a great centrality in the learning scenario. Mathematics did not only appear in the sense of 
calculation methods, since high order thinking processes took place that were supported by 
statistics. Furthermore, the role of technology, in this case with statistical software, was pointed out. 
The collaboration with colleagues of other subjects was perceived as beneficial for the PTs. 
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Questions raised during the discussion were: If teachers gain experience with interdisciplinary 
classroom activities, do they perform better in a future approach, even if the topic is different? Is it a 
lack of knowledge from other disciplines or rather a lack of experience that makes teachers feel 
underprepared? 

Approaches to introduce STEM 

In this theme two papers were presented. Both had in common that they used game-like structures 
to enhance the students’ motivation in their particular learning environment. One paper written by 
Viamonte and Figueiredo was about gamification in an e-learning tool for university students. In 
that paper dropout rates as well as the personal opinion of the students who used the e-learning tool 
were examined. A significantly lower dropout rate compared to earlier years could be measured, 
which supports the claim that gamification can be used to stimulate motivation. Also, the students’ 
responses concerning the competitive elements seemed to confirm the expected influence, although 
not all reactions of the students had been positive. The issues raised to be discussed were: 

· Although the statistical data concerning dropout rates show a significant impact, it could be 
possible that there are effects involved that can’t be measured easily (e.g. a new teaching 
concept increases motivation, but the effect decreases over a longer period of time). One 
could think about examining further iterations, maybe with slight variations. 

· Similarly, could the effect be decreasing if gamification was used in a broader extent (i.e. not 
only one lecture, but all lectures the students attend during the same semester)? 

· The data are probably not representative for the whole university population. The participants 
were engineering students only, and furthermore most of them (93%) were male. Is it possible 
to transfer the conclusions to a broader range of students? 

In the other paper written by Abboud, Hoppenot, and Rollinde a classroom situation was analysed, 
where students experienced the orbits of astronomical objects from our solar system in a role-
playing activity. The aim was to enhance activity theory (Abboud et al. 2018; Vandebrouck 2012) 
by the notion of bodily perception. Several implementations of the Human Orrery project were 
analysed qualitatively with questionnaires and interviews. It was suggested that participating 
students experience STEM-related concepts from an emotional perspective and describe them as 
“more real”. With regard to this paper the issues raised to be discussed were: 

· How can we measure the impact of bodily perception on the motivation at a quantitative 
level? 

· How is it possible, after a certain STEM-related concept was experienced in this framework, 
to have a smooth transition to a more theoretical approach to the topic? This might be 
interesting when working with older students. 

STEM teacher preparation 

In this theme, one collaborative team consisting of mathematics and physics educators from 
Vietnam and Germany aimed to create a teacher preparation program that invited mathematics and 
physics teachers to participate in classes that utilize both theoretical and practical aspects of 
teaching these two disciplines. The theoretical part would provide opportunities for physics and 
mathematics teachers to compare and contrast epistemological foundations of each discipline, 

Thematic Working Group 26

Proceedings of CERME11 4718



thereby illuminating the differences and similarities in the mathematics and physics. In particular, 
teachers would explore the meaning and practices of modelling from mathematics and physics 
perspectives. These theoretical foundations would then support teachers to create lessons that 
potentially integrate physics and mathematics that they would then use in their classrooms. 
Although the project is still in development, Krause and et al intend to videotape the 
implementation of these lessons by project teachers and determine to what extent physics teachers 
focused on mathematics in their class and how much mathematics teachers integrated physics into 
their class. The critical issues raised by this paper harken back to earlier papers in which questions 
about the extent to which modelling from different disciplines can be mutually supportive. It also 
calls to the forefront what it means to genuinely integrate science and mathematics. Finally, the 
crucial problem that Krause and et al attempt to solve is how to design appropriate instruction for 
teachers who are knowledgeable about physics and mathematics separately so that they are 
knowledgeable about the means of integrating the two. 

Critical issues 
We would like to close our introduction by including some critical issues that the participants 
expressed during the sessions. 

· Experts within and across the STEM disciplines model for different purposes and, thus, in 
different ways; given this diversity of modeling, how do we characterize modeling in STEM? 

· Teachers are not experts in all STEM disciplines. In the real world, there is also no such thing 
as a STEM expert. Rather, discipline-specific experts are invited into a project when there is a 
need for their expertise. This implies that teachers should work collaboratively to design and 
implement STEM units. Does this change the goal of STEM education from STEM 
integration to STEM collaboration? 

· How do we design curriculum so that mathematics is not just a tool for doing the other three 
content areas? And what is really meant by technology use in curriculum? 

· What kinds of research experiments are needed to understand STEM education? While 
creating nice STEM lessons has potential, there is a need to go beyond studies that make 
claims about the success of these lessons that are based upon one student. Rather, future 
research on effective STEM curricula should involve collective student learning. 
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We present in this paper an innovative approach to introduce STEM topics in the classroom through 
the context of the Solar System. Our pedagogical tool consists in a Human Orrery modeling at a 
human scale the Solar System dynamics. While learners walk along planetary orbits, they enact 
different mathematical and scientific notions. Previous experimentations were centered on science 
concepts and have shown an enhanced motivation and well-being and a better understanding. We 
discuss here the connection with the cognitive science theory of enactivism and with the activity 
theory, both already used in the field of mathematics education. New pedagogical sequences are 
proposed that deeply combine mathematics and science contents. Those will be set up in a classroom 
context before the CERME conference. 

Keywords: Astronomy, enactivism, instructional innovation, STEM education.  

Introduction 
STEM literacy is a crucial issue for European educational policies today as emphasized by successive 
trans-European studies since the Rocard report (2006). Numerous difficulties have been revealed by 
science and mathematics education researchers in knowledge acquisition of scientific notions of 
movements, velocity, proportionality and functions. Many of them arise from the gap between 
children’s sensorial or everyday life experiences and the abstract scientific explanations.  

The study presented in this paper explores the use of astronomy to teach mathematics and physics. 
We consider that astronomy should not be taught and considered in education science as an 
independent subject but as a specific application of general laws of physics and of application of 
mathematics concepts. The European ROSE project (Sjoberg & Schreiner, 2010) has shown that the 
subject that interests both girls and boys was found to be life outside earth. We confirm in our 
experiments that the study of the Solar System motivates students to do sciences, while a large number 
of mathematical subjects may be easily introduced through the observation and understanding of 
planets’ motion. The tool that we use to this purpose is a Human Orrery modeling at a human scale 
the Solar System dynamics in ways that can enhance the learner's perception of mathematics and 
physics concepts in a real world apparatus.  

In the following sections, we will provide a description of this tool and its affordance and the 
potentials within a STEM approach. We will also present our theoretical frame and the outcomes of 
first preliminary experiments. This background presentation enables us then to introduce a large scale 
project in progress and to give some examples of settings that are being currently designed in order 
to be implemented, observed and evaluated in several European countries. 
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The Human Orrery 
An Orrery is a mechanical instrument showing circular orbits of the planets. The first Orrery to be 
created at a human scale was done in Japan (Dynic Astropark) and then at the Armagh Observatory 
(Asher, Bailey, Christou, & Popescu, 2007). The design of a Human Orrery is made such that users 
may walk along orbits of different bodies around the Sun that is located at the center of the design. 
The Human Orrery that we use is printed in a large map of 12m by 12m (see Figure 1). It allows one 
to follow the orbits of the inner planets (Mercury, Venus, Earth and Mars) and Jupiter; the inner 
planets are located inside the asteroid belt that is materialized with a grey color together with the orbit 
of the largest asteroid known, Cérès. The highly eccentric orbits of two comets are also used: Encke 
(the smallest elliptical orbit) and Chury. This choice of objects illustrates different type of movements 
while keeping the size of the Orrery reasonable. Earth is at one meter from the Sun, while Jupiter’s 
orbit has a diameter of 10,5m. The orbits of all bodies are materialized by dots at constant intervals 
of times, with accurate elliptical shapes. Note that, orbits are near-circular for the five planets and 
Ceres. 

  
Figure 1 – Left: The map of the Human Orrery (inner planets and one comet only, see text for 

details). Right: Pupils walking along the different orbits up to Jupiter.  

The interval of time may be different for each orbit, but is always a multiple of 16 terrestrial days: 
For Earth, there are 23 dots separated by 16 days, which would make a period of 368 days. For Jupiter, 
there are 54 dots separated by 80 days, which makes a period of 4320 days instead of the real period 
of 4332,59 days. A sound (either a clock or hand claps) is heard regularly. The interval of time 
between two sounds corresponds to 16 terrestrial days. Every user makes one step during this time 
interval. Then, the person that enacts Earth walks from one point to the next (distance) in one step 
(duration), while “Jupiter” has to do five steps (five times 16 days) to reach the next point. All rules 
are described in details in Rollinde (2017). By acting according to those rules, the movements on the 
Human Orrery illustrate the correct relative velocities of all Solar System bodies.  

Both constructing and enacting on Human Orrery involve topics from mathematics and science and 
enhance a STEM approach of scientific notions usually perceived as abstract concepts by students. 
We shall discuss in more details the use of the Human Orrery and its future perspective for STEM 
education after a discussion of the theoretical framework underlying this innovative pedagogy. 

Theoretical framework 
The use of a Human Orrery in education is based on the assumption that bodily perceptions help the 
learning of abstract concepts. In other words, “abstract symbols used in formal education—words and 
syntax in reading, numbers and operators in math—need to be grounded in bodily experience” 
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(Glenberg, 2010). In the context of the Solar System, the objects under scrutiny can neither be touched 
nor seen directly in the classroom, duration is very long, and very little is expected to happen in the 
classroom situation. By physically enacting the objects and their movements, the situation changes 
completely: dynamic properties are revealed and experienced; the invisible and impalpable acquire a 
certain degree of “palpability” allowing learners to deeply understand them as walking along the 
Human Orrery.  

The cognitive science theory of enaction (Varela, Thompson, & Rosch, 1991) may provide a 
theoretical foundation to those assumptions. Torrance (2005) describes enactivism as the nature of 
the mind, defined by its relation to the world: “(…) the organism’s world is “enacted”, brought forth 
by sensorimotor activity: world and organism are co-determined, they co-emerge. [For the mind], 
awareness of its self and of its world is a central feature of its lived embodiment in the world.” 
Transposed into Mathematics Education (we refer the reader to the review by Reid, 2014), enactivism 
theory has been used successfully, for example to explain the emergence of formal mathematical 
thought from pre-mathematical experiences in the course of a lesson sequence on three-dimensional 
geometry for 6-year-old children (Roth, 2011). Similarly, in the context of a numerical sequence, 
Radford (2014) shows that, “through an intense interplay between various sensorial modalities and 
different signs, the students’ perception and the concomitant mathematical thinking have gained a 
theoretical dimension that they did not have before”. More generally, learning can be facilitated to 
the extent that lessons are created that map to and activate sensorimotor systems (see for example 
Johnson-Glenberg, Megowan-Romanowicz, Birchfield, & Savio-Ramos, 2016 in the context of 
digital platforms).  

This line of argument may sound contrary to early researches in science education that rather tend to 
show that our observations and interactions with the world often produce naïve conceptions in conflict 
with formal physical laws (e.g. Hestenes, Wells, & Swackhamer, 1992). Difficulties in knowledge 
acquisition in science seem to arise from the gap between children’s sensorial experiences and the 
abstract scientific explanations. We make here the assumption that it is necessary to promote a 
“mindful attention to perception” (Varela et al., 1991). In the context of the Human Orrery, our goal 
is to build a complex learning world filled by metaphors: a simple map becomes the empty 
interplanetary space; series of dots become the elliptical structure of an orbit; peers become planets 
with different velocities; duration is heard while distance is felt… The Human Orrery (a human-
scaled technological object) acquires a meaning through the learner’s cognition and his/her mindful 
perception of this world and thus activates new cognition. 

To theoretically ground our observations, analyses of teaching and learning within the Human Orrery 
context we plan to make use of Activity Theory as used today in Mathematics education (Abboud et 
al., 2018; Vandebrouck, 2012). Roth and Jornet (2013) acknowledge that original works on Activity 
Theory by “Soviet social psychologists explicitly ground their ideas in theories in which thinking, 
acting and environment are part of the same analytic unit.” Indeed, the Activity Theory, in particular 
the notion of subject-object interactions mediated by an instrument enables to study the activities of 
subjects (teachers and learners) using tools (the Orrery itself but also the set of technological tools 
involved) and their impact on the processes of learning physical and mathematical concepts at stake 
when experiencing the Human Orrery. Yet, current use of Activity Theory in education does not 
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mention the role of bodily perception. “Mental processes (speaking, thinking, reading or writing) 
need to be understood in terms of complex ecologies: neuromuscular and physiological processes 
AND cultural historical origin and nature” (Roth & Jornet, 2013). Our intention is thus to work 
towards an “Embodied Activity Theory” which would be a framework adapted to our research and 
that would develop over time in a dynamic interaction between analyses of data and design and use 
of theoretical tools.  

Outcomes from first experiments 
The main use of Human Orrery in the literature has been the introduction of astronomy in open 
schooling contexts (e.g. Asher et al., 2007; Francis, 2005; LoPresto, 2010). Since 2014, our team 
focuses on the use of a “human Orrery” to learn science rather than astronomy only in different 
pedagogical context, from primary school to University. Through our initiative, seven Human 
Orreries were built in France (one for a science center, one in a public place in Paris, five in primary 
or secondary schools), one was drawn in a Lebanon school and one map was purchased by a science 
center in Vietnam. Human Orreries are used thereafter by different teachers (physics, mathematics, 
technology and sports) in those seven places plus about five other schools who use our trap only. 
Questionnaires and interviews were used to quantify the amount of learning and the students’ 
motivation. The sequences are discussed and improved after each application. They have also been 
used in teacher education for two years, and may be obtained upon request to the authors. More details 
on these first experiments and derived conclusions as described here may be found in Rollinde (2017). 

The implemented sequences have focused on the one side on the motivation and interests of the 
learners and on the other side on specific scientific notions. Among the key concepts introduced 
through the Human Orrery are kinematic ones. The embodiment of duration and length allows to 
alleviate the confusion related to the use of those concepts in the common language. The manipulation 
of those two concepts to compute the velocity requires to deal with three variables, which is known 
to be source of cognitive overload. As an example, almost every groups express a confusion between 
large velocity and small orbital period, or between small period and small perimeter; they all reduce 
the reasoning to a simple comparison between two variables. The enaction is expected to lighten the 
abstract mathematical task by providing diverse sensory-motor experiences as proposed in the 
sequence described in the next section. Additional difficulties encountered regularly include: the 
Moon that cannot be seen given the scale used (she would be behind the disc of the Earth); the 
confusion between 24h and one year for one orbital period of Earth (which is strengthened by the 23 
dots used for the orbit of Earth); the very low speed of Jupiter is also a source of astonishment. 
Comments made by undergraduate students actually showed their surprise that so much may be learnt 
with this tool. For instance, one student declares: “There was joy, emotions. Here, it is wonderful 
what is going on’. She continues then: ‘Universe is not made of mathematics numbers and equation 
of physics, this is something else, and it has to be understood in another way.” Another student 
suggested that “illustrating a concept with a movement makes it more real. We feel that we live it.”.  

Project and examples of settings 
The authors of this paper aim at incorporating more STEM contents into future works. We propose 
in the following an example of such settings, that we are currently designing, tackling the study of 
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speed’s meaning and proportionality factor. More examples could be given particularly concerning 
the construction of the Human Orrery and associated mathematical notions at play, but this goes 
beyond the scope of these proceedings. 

A detailed enacted sequence on speed 

In the science class, speed is understood as the length of a displacement for a given time unit (e.g. 
year or second). This sequence will provide a way to enact three concepts (time, distance and speed) 
using bodily perceptions and tools. In the mathematic class, speed is understood as the proportionality 
factor in the relationship between distance and duration. Ayan and Bostan (2018) have shown that 
proportionality relationship is often approached by superficial characteristics of the problems, namely 
the monotonous relation expected between two variables, and lack clear, quantitative, arguments. 
Modestou and Gagatsis (2010) express the metacognitive aspect that underlines the awareness of 
(non)-proportionality and may explain this lack of coherence in reasoning about proportionality. 
There is thus an obvious need for a renewed approach to proportionality and speed.  

The sequence we designed uses the Human Orrery, a clock that sounds regularly (each sound is called 
a clap) with a given tempo, blue ropes and red ropes and markers (to materialize different positions 
along the ropes). There are four stages: (i) Enaction of space and time while walking freely on the 
Orrery under spatial and time constraints. (ii) Following a right planetary walk to enact different 
displacements for different durations. (iii) Enaction of the speed of the planets and the proportionality 
relationship. (iv) Determination of the speed of the planets (optional). The first two stages can easily 
be implemented in primary school; the second two are more adapted to lower secondary school. 

Enact space and time 

The initial proposed goal is to invent a coherent way to walk on the Human Orrery. The action is then 
to walk, while focusing on two perceptions: looking and hearing. The students’ task explained by the 
teacher may be: “you have to find a way to walk coherently while accounting for dots on the map and 
claps. At the end, you will have to explain your choices.” We expect that different rules may be 
proposed. For instance, each step should last the duration between two claps or each step should go 
from one dot to the next one, whether the students focus on what they hear or what they see. 
According to the rules proposed, we seek for answers to questions such as: Are they going to make a 
connection with speed too? Are they going to use local rules (their steps only) or global rules (the 
entire orbits or their relation with each other)? Are they going to describe what they are doing or 
global observations (who is going faster or when to end)? All those possible and expected actions (or 
wording here) will be useful to understand what is enacted and how. 

According to the effective actions, different proximity-in-action (Abboud et al., 2018) may be 
foreseen to ensure coherence among the group. The students’ activity could either remains on a 
minima level e.g. by proposing to focus on one set of dots that follow one orbit or at on a maxima 
level, e.g. by going faster or slower and to propose different ways to use the rhythm or the dots  

Enact the planets’ movement 

The first action will probably end up with different solutions for a coherent walk. In the process, most 
learners should have noticed that the drawing is related to the Solar System. The teacher confirms 
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and describes the different orbits. The learners want to know and understand their own role in this 
planetary walk. The next goal is then to measure their movement while walking as planets.  

The associated task requires organisation and mathematical skills: “You will work by groups of 3. 
Each group chooses either Earth or Jupiter. You start to walk when you hear one sound and continue 
to walk until you hear “n” additional sounds. You must then find a way to show to the entire class the 
length of your displacement in order to compare or combine the different measures”. The number “n” 
is explicitly given but is different for each group. For Earth, some group will work with 3 claps, some 
with 7 claps. For Jupiter, some will work with 5 and some with 9. Those numbers are chosen so that 
none is a simple combination of others by the use of addition, in order to favour the use of 
multiplication later on. To achieve this task, each group has a rope (blue for Earth and red for Jupiter) 
and markers that can be attached to the rope. 

Due to the complexity of the task (follow the rules, do not measure the line but the circular length, 
keep record of the measured length for comparison), specific proximity-in-action are required to go 
through it. First, every group has to respect the planetary rules. Then, the length of a circular 
displacement will be measured with the rope and some markers. For groups that have completed the 
first task, the teacher may propose to measure the distance while starting from another point in the 
same orbit or to do the same measurement for another orbit with a different rope. It is important to 
ask them to walk and measure simultaneously, in order to enact the displacement together with the 
duration. 

Enact the proportionality relationship between length of displacement and duration  

To keep the learners focused on the subject of planets, the next goal is directly related to planets while 
the action will be made on ropes only. By this shift, the reasoning is made slightly more abstract. The 
required task is not a physical action but a reasoning one in order to answer the question: “how do 
the speeds of Jupiter and Earth compare?” This may sound like a simple task if it was a simple account 
of what they have played. Indeed, it is to compare the speed of Jupiter and Earth during the planetary 
walk. To avoid this shortcut, the teacher asks for a material, or visual, proof using the ropes. This 
reformulated task becomes complex and fully associate science and mathematics skills and concepts. 

A first prediction may be searched for: How should the length of the rope of the faster planet compare 
to the slower one (a minima)?  Such a comparison requires using a common duration, or the same 
number of sounds. This is our first sub-task. Let’s call N the common number of claps associated to 
this common duration. N may be equal to 10 (this number may be obtained with the available lengths 
through the sum of 7+3 for Earth and the product 2 times 5 for Jupiter). 

The next sub-task is then to derive the length that would have had the rope of the two planets for this 
common duration. The teacher proposes then to measure the length of the displacement after one clap 
only. To realise this task, one has to divide the rope in N parts and then use the ruler… or use the 
ruler for the full length of the rope and divide by N! 

Enact a non-proportionality relationship 

Exposing learners to a non-proportional situation is a way to face the well-known bias of 
proportionality and to encourage students to develop a critical mind. The Human Orrery provides us 
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with an interesting situation: the case of a comet. Unlike the planets’ orbits which are near-circular, 
the orbit of the comet Encke is a highly eccentric ellipse. During the movement on its orbit, the speed 
of the comet varies strongly: learners have to make either very large steps near the Sun or cannot even 
put one feet between two dots far away from the Sun. This usually creates either laugh or stress but 
never leave the learners insensitive in that case, duration and travelled distance are thus related 
monotonously, but are not proportionally linked. Using the same methodology as for Earth and 
Jupiter, learners will discover that the length of the rope measured for different initial position and 
different duration is not proportional to the duration. 

The examples of pedagogical sequence that we presented above are the first of a set of settings that 
will be designed and implemented in several countries and in different cultural contexts as part of a 
European project we are currently setting up. We note that activities on the Human Orrery may also 
be used as an introduction to more formal mathematical activities; for example, on the derivation of 
Kepler laws using power laws and interpolation or on the understanding of Newton laws using 
differential equations. 

Conclusion and perspectives 
The perspective that we adopt in our project is that of STEM being taught through an interdisciplinary 
approach that incorporates an embodied dimension and draws on real-world modeling. The use of the 
Human Orrery enables students to enact or “experience” scientific concepts and the dynamics of their 
properties by evolving in an adapted environment. Until recently, we only focused on the 
dissemination of Human Orreries and on a proof-of-concepts in terms of motivation and interest. 
Different sequences have been co-constructed by teachers and researchers and have led to preliminary 
positive results on learning too. The current dynamic of the project is to motivate more classes from 
different levels and teachers from subjects other than mathematics and physics such as art, 
technology, music, languages (native or foreign), physical education and sport. In 2018-2019, four 
additional classes have decided to join the project in France: two primary schools in the context of 
interdisciplinary projects and one secondary school through a project on Mars involving science and 
technology. At the European level, we are expecting to submit a H2020 project involving research in 
mathematics and science didactics together with science centers (museum, observatories and 
associations). Our next objective is then to design sequences that fit into the STEAM approach and 
that will be used as experimental situations for the theoretical framework of enactivism, 
complemented with the framework of Activity Theory in the context of science education. Our focus 
will be as much on the didactical learning as on the motivation and awareness of the learners during 
the activity.  
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In this paper, we show how an integration of the engineering design method and the mathematical 
modelling method can be applied in engineering. This is exemplified through two student projects in 
the first-year modules ‘Dynamics and Vibrations’ and ‘Models, Mechanics and Materials’, which 
are compulsory in the Sustainable Design engineering programme at Aalborg University, Denmark. 
We first describe and discuss the definitions of the two methods and argue that they have many 
similarities and that the differences appear to vanish once they are combined in an introductory 
engineering project. We argue that when students experience how the two methods are applied in a 
project, they may develop a better holistic understanding of the problems they may encounter as 
future engineers. They are thus better equipped to solve future real-life problems by having applied 
mathematics and engineering sciences as integrated activities. 
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Introduction 
One of the major functions of design engineers is to solve problems for the society in which they 
live. Design engineers work on products and systems that involve adapting and using engineering 
and mathematical techniques and they usually work with a team of engineers and other designers to 
develop conceptual and detailed designs that ensure a product works and is suitable for its purpose. 
In this paper, we will describe and discuss an example of how the engineering design process, 
mathematical modelling, and problem-solving activity are integrated through introductory first-year 
projects in the Sustainable Design engineering programme at Aalborg University (AAU) in 
Copenhagen, Denmark. Underlying the example is an assumption that by combining the 
engineering design process and the mathematical modelling process in an engineering context, 
students will be much more prepared to tackle the real-life problems that they might encounter in 
their future profession as engineers. 

As we will show in this paper, the integration of the two methods conforms to the method of 
Problem-Based Learning (PBL) that AAU has adopted since it was founded in 1974. As argued by 
Kolmos, Holgaard, and Dahl (2013), there is not one single AAU PBL model, but nevertheless, the 
programmes at AAU are all organized around shared PBL principles described by Barge (2010) and 
Askehave et al. (2015). These principles are problem orientation, project organization, integration 
of theory and practice, participant direction, a team-based approach, and collaboration and 
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feedback. The students therefore work in teams on open problems and the work includes all the 
steps from problem identification and problem analysis to problem solving. PBL is thus a student-
centred learning method that uses real problems as a stimulus or starting point for the acquisition 
and integration of new knowledge. The teacher acts as an initiator and facilitator in the collaborative 
process of knowledge transfer and development. Parallel to the projects, the students also undertake 
modules which typically follow a more traditional style with lectures and exercises. The major 
characteristics of PBL projects include adaption to students’ prior knowledge and experience, 
integration of knowledge, and teaching in relevant contexts.  

The purpose of this paper is to show how to integrate the teaching of mathematics and engineering 
mechanics within the framework of PBL in order to enhance the students’ understanding of both 
subjects as well as to introduce them to real-life situations, where the real problems they meet are 
mostly combinations of engineering, technology, and mathematics. When working on such 
problems in the real world, engineers, designers and applied mathematicians work together as a 
team to create new products. We aim to “transfer” these situations to the classrooms so that the 
students can develop an early acquaintance with the “real thing”. This requires carefully designed 
teaching scenarios that help make both mathematics and engineering interesting to learn.  

The main research questions of this paper are therefore: Can we design didactical situations that 
integrate mathematics and engineering mechanics through design projects that resemble practical 
problems? Is it possible to teach mathematics in connection with engineering courses so that the 
students can capture the essence of both subjects through design projects? To answer these 
questions, we investigate mathematics teaching through design projects, using mathematical 
modelling as a didactic tool. The problem that we address here is the lack of interest in mathematics 
courses among engineering students (Härterich et al., 2012). This issue may eventually lead to poor 
understanding and performance on engineering science courses that depend on the mathematical 
concepts taught in traditional mathematics modules. The significance of the paper is therefore that it 
suggests a method that might solve this problem by offering teaching experiments that integrate 
some real-life problems with some central concepts in engineering mathematics. The aim of the 
student projects is to make mathematics more interesting for engineering students and to improve 
their understanding of engineering and mathematics courses.  

The processes of mathematical modelling and engineering design 
Mathematical modelling as a design process 

Mathematical modelling is used in a variety of disciplines. A mathematical modelling competence 
is considered central in both engineering and mathematics education. When doing mathematical 
modelling, a part of reality is encoded into a set of mathematical rules and equations. There are in 
fact many “models” or descriptions of the mathematical modelling process. Due to page 
restrictions, we show only one example of such a model (Blomhøj & Jensen, 2003). The one chosen 
was developed for use in education and is thus relevant. Every mathematical modelling process 
must begin with a problem or an observation, which is a process that fits well with a PBL project 
which also starts with open problems that require a solution. The problem can be either a well-
defined physical question requiring a mathematical solution or a loosely described technical 
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problem requiring a solution but with no obvious choice of mathematical model. However, since a 
mathematical model is an abstraction and mathematics itself is an abstract discipline, the starting 
point of the modelling process is to decide which aspects of the “real world” to observe and which 
to ignore.  

The mathematical modelling process is as creative as the engineering design process, as engineers 
need to model devices and processes if they want to design these devices and processes. Just like 
the design of a certain product, a model of a specific physical situation may be good or bad, 
simplistic or sophisticated, aesthetic or ugly, useful or useless, but a model or design cannot be 
considered true or false. A mathematical model is therefore designed to correspond to a prototype, 
which may be a physical, biological, social, or psychological entity or yet another conceptual one. 
According to Tayal (2013), the engineering design process is a sequence of steps that a designer 
takes to go from identifying a problem or need to developing a solution that solves the problem or 
satisfies the need. If we just replace the words “design” and “designer” with “modelling” and 
“modeller”, we arrive at a definition of mathematical modelling that is close to the one described 
above by Blomhøj and Jensen (2003). The engineering modelling process is therefore the set of 
steps that a modeller takes to go from first identifying a problem or need to ultimately creating and 
developing a solution that solves the problem or meets the need. Thus, the two processes have 
identical objectives and, in fact, can be broken down into a series of similar steps, as seen in Table 
1. The table constitutes the theoretical framework of this article. Both processes are different from 
the scientific method although they also have some things in common. As argued by Dowling, 
Carew, and Hadgraft (2013), the two processes begin with an open task, but while the engineering 
process begins with a problem or a need, the scientific method begins with a question. Furthermore, 
engineers look for suitable solutions while scientists look for suitable hypotheses to answer the 
question, that is, ultimately some generalized knowledge. Thus, engineers create new products 
using a more pragmatic modelling approach in which the models are convenient approximations to 
specific parts of reality.  

Table 1: A comparison of the modelling and design processes 

The mathematical modelling process The engineering design process 

1a) Begins with a problem 1b) Begins with a problem 

2a) Select relevant objects, relations, and data and idealize 
these 

2b) Do background research to define suitable criteria and 
constraints for problem solution 

3a) Translate the objects into a mathematical representation 3b) Specify requirements for solutions 

4a) Use mathematical methods to arrive at results 4b) Evaluate the solutions against the criteria. Are there 
alternative solutions? 

5a) Interpret the results in relation to the initial question 5b) Choose a suitable solution and build a prototype 

6a) Evaluate the model 6b) Make recommendations; test and redesign as 
necessary 

7a) Communicate the results 7b) Communicate the results 
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The table shows that the mathematical modelling process and the engineering design process are 
quite analogous. Below, we design two teaching situations that can provide some justification for 
Table 1 as these situations integrate mathematics and engineering mechanics in realistic design 
projects. 

Mathematics in an engineering context: An example 

The study of differential equations has always been a major part of the mathematics curriculum in 
engineering education. This is expected as many engineering problems involve equations that relate 
the changes in some key variables to each other. Therefore, differential equations are used to 
investigate a wide variety of problems in sciences and engineering.  

Below we present a classical problem from engineering dynamics that illustrates the use of Table 1 
in differential equations, specifically second-order differential equations. The mechanical system is 
shown in Figure 1. Besides being a standard textbook problem, it is also seen in real-life problems 
such as modelling the suspension system of a car or the vibration of a wind turbine blade. Such real-
life problems fit a PBL education model well as they can be quite open and can thus be approached 
by a problem-based strategy. At the same time, they also fit the framework shown in Table 1, as 
items 1a and 1b in Table 1 indicates that the starting point is a problem. The problems require 
analysis and simulation before a solution is reached. The analysis and simulation can be identified 
as items 2–5 for both processes in Table 1: 

· Create the idealization and formulate constraints (items 2a and 2b) 
· Encode the system into mathematical language, specify the requirements (items 3a and 3b) 
· Solve the resulting equation(s) and check the results (items 4a and 4b) 
· Interpret the results and build a prototype (items 5a and 5b) 

To apply Table 1, we begin by assuming constant parameters for the spring and the damper (items 
2a and 2b). Using Newton’s second law, the mechanical system can be described by the second-
order linear differential equation with constant coefficients (items 3a and 3b): 

 
Figure 1: A mechanical system  

  

 𝑚𝑚�̈�𝑥 + 𝑏𝑏�̇�𝑥 + 𝑘𝑘𝑥𝑥 = 𝑓𝑓(𝑡𝑡)  (1) 

Here 𝑥𝑥(𝑡𝑡) is the position of the mass 𝑚𝑚, b is the damping constant, k is the spring constant, and 
𝑓𝑓(𝑡𝑡) is the force applied on the mass. The students have already completed a mathematics module 
involving linear second-order differential equations. The purpose is to illustrate the different 
solutions of Equation (1) by changing the values of the constants 𝑏𝑏 and 𝑘𝑘. By plotting the response 
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𝑥𝑥(𝑡𝑡) for some chosen values of 𝑏𝑏 and 𝑘𝑘 (items 4a and 4b), students can see the different behaviours 
of the system and gain a better understanding of the underlying mathematics of the mechanical 
system, thus accomplish items 5a and 5b. To choose appropriate values of b and k requires that tests 
and a redesign be carried out, thus accomplishing items 6a and 6b. It is therefore pedagogically 
sound to base the teaching of linear second-order differential equations on systems whose 
behaviour students already intuitively understand. This illustrates that PBL, through working with 
open problems, can help the students achieve a better understanding of mathematics by using 
mathematical modelling as a didactic principle in teaching engineering mechanics and mathematics 
itself through the process illustrated in Table 1. Finally, the students accomplish items 7a and 7b 
through communicating the results to their peers and teachers as part of the module. 

The students’ ability to solve linear differential equations by using standard methods or formulas is 
therefore insufficient to understand fully the link between the mathematics learned and the other 
modules and projects. Students may eventually ask how we know that the parameters of the spring 
and the damper are constants. There are typically two different answers, we can give the students: 

· Real springs and dampers have approximately linear behaviour. 

· By assuming constant parameter values for the spring and damper, we can use the standard 
methods to solve linear differential equations, as we have a complete theory of linear 
differential equations, and not, e.g., a complete theory of nonlinear differential equations. 

These answers can, however, be disputed by the fact “almost all systems are nonlinear to some 
extent” (Hilborn, 2000). Besides, many of the student projects in which the first author was 
involved as a supervisor involve nonlinear phenomena. However, as the students were only 
introduced to linear second-order differential equations in their mathematics module and are still in 
their first year of study, we will at this point assume linear behaviour of the systems involved. 

Mathematical modelling in action 
Model of a Lego van and a caravan: Example 1 

In a project in the second-semester module “Dynamics and Vibrations” for the Sustainable Design 
engineering programme, the students should construct a mathematical model of the popular van and 
caravan playset by the Danish company Lego. In the context of Table 1, the problem of the project 
is to determine the response of the caravan if the van moves on a straight road with a constant 
acceleration a. This corresponds to items 1a and 1b in Table 1. Ideally, the caravan should follow 
the kinematics of the van as closely as possible. The project can illustrate the use of PBL as a 
framework in teaching an engineering mechanics module, where mathematics and mechanics are 
integrated in a realistic project through the process of mathematical modelling. The PBL project 
thus conforms to Table 1, as it starts with a problem that requires mathematical tools to arrive at 
acceptable results. A simplified model of the system is shown in Figure 2. Many students 
immediately see the similarity of this concrete system with the ideal one in Figure 1: The constant 
acceleration of the van gives rise to a constant force on the caravan. Some also realize that the 
flexible linkage between the van and the caravan can be modelled as a spring and a damper.  
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Figure 2: A model of the Lego project 

If we let 𝑥𝑥1(𝑡𝑡)  and 𝑥𝑥2(𝑡𝑡) denote the positions of the van and the caravan respectively, Newton’s 
second law (Hibbeler, 2017) leads to the differential equation of the model: 

 𝑚𝑚�̈�𝑥2 + 𝑏𝑏(�̇�𝑥2 − �̇�𝑥1) + 𝑘𝑘(𝑥𝑥2 − 𝑥𝑥1) = 0 (2) 

As the van’s acceleration is constant, we have �̇�𝑥1 = 𝑎𝑎𝑡𝑡 and 𝑥𝑥1 = 1
2
𝑎𝑎𝑡𝑡2, where the initial conditions 

are assumed to be zero. Equation (2) can finally be written as 

 𝑚𝑚�̈�𝑥2 + 𝑏𝑏�̇�𝑥2 + 𝑘𝑘𝑥𝑥2 = 𝑎𝑎𝑏𝑏𝑡𝑡 + 1
2
𝑎𝑎𝑘𝑘𝑡𝑡2  (3) 

Comparing Equations (3) and (1), the students see that 𝑏𝑏𝑎𝑎𝑡𝑡 + 1
2
𝑘𝑘𝑎𝑎𝑡𝑡2 corresponds to the force 𝑓𝑓(𝑡𝑡). 

We are led to a second-order non-homogeneous differential equation where the unknown function 
is 𝑥𝑥2(𝑡𝑡). This is exactly the type of differential equation, which the students have met in their 
mathematics module; they now meet it in an engineering context. Thus, Table 1’s items 2a, 2b, 3a, 
and 3b are now satisfied. The students now see an old friend in action! Thus, we anticipate that this 
will offer some justifications to the students in answer to their eternal question “Why do we need to 
study differential equations?” in the context of their experience.  

Student simulation of the model 

The students were given the values 𝑚𝑚 = 0.50 kg and 𝑎𝑎 = 1 m/s2 for which they ran a simulation of 
the model for two different combinations of the spring constant 𝑘𝑘 and the damping constant 𝑏𝑏: 

· 𝑘𝑘 = 10 N/m and 𝑏𝑏 = 0  (no damping) 

· 𝑘𝑘 = 10 N/m and 𝑏𝑏 = 0.50 N ⋅ s/m (with damping) 

The students used MATLAB to plot the position 𝑥𝑥2(𝑡𝑡) of the caravan in the two cases (Figure 3). 

  

Figure 3: Response of the caravan. Left: no damping; Right: with damping  
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The case without damping obviously leads to an unacceptable model of the system. In contrast, the 
presence of damping ensures a smooth response of the caravan. Many students now realize why a 
damper should be included as a part of modelling the linkage, even though it is not out there! Thus, 
by changing the value of 𝑏𝑏 (and of 𝑘𝑘 for that matter) we get two different designs and that will 
result in two different mathematical models. By referring to items 4 to 6 for both processes in Table 
1, we see that these are accomplished, as we are testing the models and comparing designs. The 
design process and the mathematical modelling process are therefore closely related to the extent 
that, in real-life engineering practice, separating the two processes would not be easy. It is therefore 
artificial to separate modules in mathematical modelling and engineering design in teaching 
situations, as engineering programmes ought to correspond to and be compatible with realistic 
situations that the future engineers might encounter. 

The connection between mathematical modelling and engineering design: Example 2 

To further illustrate the relation between the mathematical design process and the engineering 
design process, we mention here an example taken from a project by the first author introduced in 
the first-semester module “Models, Mechanics and Materials”. Briefly, the problem is to find the 
internal forces in the three cables of the hanging lamp (see Figure 4) and to redesign it if possible. 
The students themselves should provide realistic values for the weight and dimensions of the 
hanging lamp. They should also measure the lengths and diameters of the wires. The students 
should first make a model of the hanging lamp and then try to redesign it. This is an open problem 
with several solutions.  

 
Figure 4: A hanging lamp 

The modelling process consists of writing the equilibrium equations of the lamp using statics. The 
students discovered that they could not find the internal forces in the three wires: They got two 
equations with three unknowns. By arriving at an indeterminate system of equations, the students 
then had a justification for why the middle wire was redundant. Some other students added the 
extra equation using deformation theory in the topic of strength of materials. In that way, they could 
determine the internal forces in the three wires by writing them down in matrix form. Changing the 
geometry and materials of the wires (i.e., design) leads to another system of equations (i.e., a new 
model). Other students chose to remove the middle wire, thus arriving at a consistent system of 
equations with a unique solution. Thus, the design the students choose will affect the mathematical 
model of the lamp. Conversely, the mathematical model of the lamp will influence its design and 
redesign. Here, we can see that the items of each pair in Table 1 interact together in a fusion process 
to produce a solution to the problem. The main purpose of this course project is to relate topics from 
mathematics, specifically matrices and linear equations, to engineering mechanics and materials in 
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the framework of Table 1. We believe that through these kinds of course projects, mathematics 
teaching will be more motivating for the students, so they can see the relevance of the mathematical 
topics they encounter in their study programme. 

Discussion and conclusion 
In the paper, we have used Table 1, which incorporates the engineering design and mathematical 
modelling processes as a theoretical framework for two student projects. The items in the table can 
be identified in the processes the students go through in two design projects. Here we also saw that 
the items in both the mathematical modelling process and the engineering design process became 
visible. We believe that this identification strengthens the argument that engineering mathematics 
should be taught in an engineering context, through well-designed teaching situations that allow 
engineering students to work with real-life problems. As stated in the introduction, design engineers 
work on projects that involve adapting and using engineering and mathematical techniques, and in 
reality, these are intertwined. We also believe that this strategy can be generalized to other 
situations where STEM integration is involved.  
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Introduction 
This research aims to analyze how the relationship between art and mathematics is established in 
the Spanish primary education. We analyze the art-mathematics connections in school textbooks, as 
this is the educational tool most widely used by teachers. In recent years, the educative community 
has become increasingly aware of the impact of modern art on society and the emergence of new 
forms of artistic expression. In fact, official documents promote interdisciplinary learning through a 
STEM approach that incorporates the creative and aesthetic dimension of Art into the so-called 
STEAM education. According to Holland (2017) students who follow a learning process based on 
STEAM develop creative skills, becoming better problem solvers and critical thinkers. The Spanish 
curriculum (MEC, 2014) specially connects Mathematics and Visual Arts. The Mathematics 
curriculum emphasis a competency-based learning grounded on the applicability of mathematics 
into daily life contexts, and aiming to connect this subject with the science, technology and art 
disciplines. Similarly, the Visual Arts subject offers a valuable opportunity to interact with other 
school subjects in particular, with mathematics (Brezovnik, 2015), through the analysis of different 
art forms including drawing, painting, sculpture, and photography (Freedman, 2003).  

Method 
The present study was undertaken under a documentary analysis approach (Bardin, 1991), adopting 
a simplified version of Diego-Mantecón et al.’s (2018) framework which lays down six dimensions 
that we turned out into four: (1) the use of ‘artistic representations’ and ‘mathematical objects’ with 
an ornamental purpose; (2) the use of art and mathematics as a context to carry out activities; (3) 
the use of art as a way of learning mathematical concepts and the use of mathematics to illustrate 
artistic concepts; and (4) the creation of art through mathematics. The data were collected from a 
purposive sample of 72 Mathematics and 24 Visual Art school textbooks, being the one most often 
used in the Spanish primary education. The textbooks analyzed cover all six years of compulsory 
primary education (6 to12 years old). Textbooks were released between 2009 and 2015. The 
analysis focused on identifying ‘artistic representations’ (e.g. sculpture, drawings, and mosaics) and 
‘mathematical objects’ (e.g. identification of types of lines and proportion relations) in the 
Mathematics and Visual Art textbooks and analyzing how the art-mathematics connection is 
established in the textbooks. 

Results and conclusions 
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As Figure 1 shows, the analysis revealed that in both the Mathematics and Visual Arts textbooks the 
ornamental dimension (1) prevails (81,18% in Mathematics and 40,74% in Visual Arts Education 
textbooks) over the remaining dimensions. In Mathematics textbooks Art works fundamentally as a 
purely illustrative and decorative element, without any reference to the name of the artistic work nor 
to its author. In Visual Arts textbooks, Mathematics plays a more active role, expanding part of the 
artistic content with geometric concepts and measurement procedures which contextualize the 
exercise (39,81%%, contextual dimension (2)). In Mathematics textbooks, this dimension has one 
much lower percentage (16,85%). By other side, in Mathematics and Visual Arts only 5,94% and 
13,89% respectively of the artistic manifestations and mathematical objects are included in the 
conceptual dimension (3). Creative dimension (4) is non-existent in Mathematics textbooks, and it 
has a very limited presence in the Visual Arts books (15,74%).  

 
Figure 1: Percentage of dimensions in textbooks 

From this, preliminary results, we can conclude that the textbooks analysed do not reflect the art-
mathematics connection, at the level suggested in the Spanish curriculum. 
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We discuss a modeling project, in which students have to build a device that acts simultaneously to 
music – either a musical fountain or a light organ. We show how the incorporated university level 
mathematics can be reduced to the level of secondary education. Being product oriented, the 
modeling activity has a strong interdisciplinary character. We focus on two implementations of the 
project with high school students and discuss their results. Here we draw the attention to the role of 
mathematics in a STEM project, where the presence of programming and engineering seems more 
obvious than the mathematical content. 

Keywords: Interdisciplinarity, modeling, product orientation. 

Introduction 
Some of the most important real-life applications of mathematical modeling we find in engineering 
and related activities, where products are developed and improved. At the university of 
Kaiserslautern industrial mathematics plays an important role in research and teaching. It also had 
an influence in mathematical modeling activities with high school students (see Bock & Bracke, 
2015). In these cases, the process of mathematical modeling is closely connected to the product that 
should be developed. 

In Kotler et.al. (2006), p. 230, the term product is defined from an economical point of view as 
“anything that can be offered to a market that might satisfy a want or need”. Hence a product can 
take various forms, it can be a device that is actually being assembled, it can be a computer software 
or just the answer to a question. Here the production process closely affects the modeling activity. 
Even a sophisticated mathematical model has its flaws, if it can’t be applied in the desired situation 
or if it doesn’t solve the given problem adequately. Furthermore, the more production steps are 
needed to advance from the mathematical model to the product, the more impact the production 
process has on the mathematical model (compare to Bock, Bracke & Capraro, 2017). 

Product oriented mathematical modeling immediately calls for high interdisciplinarity and involves 
all aspects of STEM, especially if the product is not only a theoretical concept, but the 
implementation of the solution actually takes place (Bock, Bracke, Capraro & Lantau, 2017). 

In our technology driven world, complex computations can easily be done by computers and other 
electronic devices. Often there is no need for the programmer (or engineer) to know all the details 
of the involved mathematical tools. Here the question arises, if product oriented mathematical 
modeling and engineering in general can be done with a minimum of mathematical activity (see 
also Tosmour-Bayazit & Ubuz, 2013). 
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Here we present a modeling project, in which students have to build a musical fountain or a light 
organ. Both projects contain similar mathematics at a university level (Fourier analysis), which can 
be hidden in numeric tools and used by students with a basic mathematical knowledge at a 
secondary school level. The project has a strong interdisciplinary character, since programming is 
essential for data processing, and building a working model of the product or at least creating a 
simulation is requested. 

We have a look at two implementations of the project. We find that even if the computer is used in 
a large extent, there still are enough mathematical challenges for students. 

The modeling task and mathematical background 
The students are given the task of modeling the regulation of a musical fountain or a light organ 
(both lead to similar mathematical problems). The students get a short introduction in a 
programming language to be able to read audio files and get access to the raw data. Furthermore we 
teach basic ideas of Fourier analysis to enable the students to compute frequency spectra and 
analyze them. 

Listing 1: A code example 
in python. The program 
reads a wav-file and plots 
the frequency spectrum. 

Fundamental is the Fourier series, that states that a T-periodic function g (with certain conditions to 
integrability or Lipschitz-continuity) can be decomposed to a series of trigonometric functions 

where the coefficients An, Bn give the amplitude of the corresponding frequency nf. By the 
orthogonality of trigonometric functions, we can derive formulae for the coefficients 

From this the Fourier transform (3.1) arises, which gives the frequency spectrum G of the function 
g. If we process the data g on a computer, it isn’t given as a function but rather as a vector with
finitely many entries. In this case we have the discrete Fourier transform (3.2), where the integral
becomes a sum

Two more results about discrete Fourier transform are substantial when the spectra are going to be 
interpreted. For a data vector g with n real valued entries, we have Gm=Gn+1-m*, i.e. the second half 
of the spectrum is just a (complex conjugate) copy of the first. Furthermore, we have the sampling 
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theorem, which states that for a data sample g with frame rate Fr, the spectrum can be computed for 
frequencies up to Fr/2. For a data set of n samples, the value Gn/2 corresponds to the frequency Fr/2. 

Breaking down Fourier analysis to high school level 
Fourier analysis involves mathematical concepts that are located at the final years of high school 
education or even at university level, like integrals, complex numbers and convergence of functions. 
Nevertheless, if we see Fourier analysis as a numerical tool, the barriers to implement it in school 
are quite low. Fourier transform can be introduced as a black box. Certainly, for all well known 
programming languages there already exists an implementation of the code and that’s all we need to 
know. On the other hand, if there is enough time to do so, the discrete Fourier transform (equation 
3.2) can easily be understood and applied as soon as the students know the concept of trigonometric 
functions. 

Understanding overtones and the Fourier series 

The Fourier series is strongly connected to instruments and the concept of overtones: If we play a 
tone on an instrument, we do not only produce the fundamental frequency f of the tone itself, but 
also overtones with frequencies 2f, 3f, 4f, etc. From a mathematical point of view this is obvious, 
since acoustic waves are represented by periodic functions. The period of the acoustic wave is the 
same as the period of the fundamental frequency. Hence the overtones do not disturb the pitch of 
the observed tone. 

The characteristic sound of an instrument is strongly 
determined by the relative intensities of these 
overtones. This real-life phenomenon can be used as a 
motivation to understand and use the ideas of Fourier 
series. 

If the students do not know the concept of overtones, 
we could create and analyze frequency spectra (e.g. by 
playing tones on instruments, recording them and 
using computer software to obtain the spectra, compare 
to Fig. 1). The pattern in the graphs that are created 
could motivate a further investigation of the 
mathematical concepts behind. This could also be the 
starting point for an interdisciplinary project between 
mathematics, music and physics classes. 

How to deal with complex numbers? 

Fourier transform involves complex numbers and the complex exponential function. As we know, 
the exponential function with imaginary exponent decomposes in real and imaginary parts with 
trigonometric functions and real valued arguments. Hence, we have the interpretation, that the 
vector entries in G take 2-dimensional real values 

Figure 1: The frequency spectrum of a 
violin. The fundamental frequency is 440 
Hz. The peaks around 0 Hz are possibly due 
to edge effects or noise. 
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The intensity of the frequency represented by Gm is then given by the length of the vector. 

Deriving formulae for the Fourier coefficients 

Equation (2) is a consequence of the orthogonality relations of trigonometric functions 

 
Older students who know the concept of integrals can prove these identities. The basic idea is to use 
integration by parts two times, until right hand side and left-hand side show the same integral (with 
a prefactor and an additive constant). 

With equation (2) the definition of the Fourier transform can easily be understood. Hence in this 
case there is no need to see the Fourier transform as a black box tool or a formula given by the 
teacher without any theoretical background. 

Sampling theorem 

If the students are using a discrete Fourier transform to obtain frequency spectra, they surely will 
encounter two questions: Why is there an axial symmetry in the spectrum? And how can we read 
the frequencies on our axes? To answer these questions, we can give the students the above 
mentioned results about the Fourier transformed data vector G. A quantitative discussion why these 
results are true is omitted due to the complexity of the involved mathematics. 

Two examples for interdisciplinary modeling projects 
In Kaiserslautern, mathematical modeling activities involving acoustic phenomena have been 
implemented in various situations with high school students and university students. Here we 
present two cases. 

Modeling of a musical fountain with a time frame of 15 hours 

This implementation was done in August 2018 with 6 high school students who participated at a 
Fraunhofer math talent school for girls. The participating students (upper secondary level) came 
from different schools in Germany and worked on 4 different projects at the Fraunhofer institute for 
industrial mathematics in Kaiserslautern. The students had the opportunity to vote for their 
preferred projects. In the musical fountain project 5 of 6 students told us that they had a strong 
connection to music (all 5 played an instrument) and therefore chose this project. Also, the sixth 
student voted for the project as her first choice. Some of the students had programming experience, 
some of them didn’t. The group was supervised by two university members. 

There were 4 working phases (3 hours each) at the first two days. At the third day, there were 3 
hours for preparation and execution of the presentations. Due to the restricted time frame, the 
students were given selected mathematical input at the beginning of the course. 

First working phase: Introduction to Fourier analysis (frontal instruction); reading audio files and 
plotting spectra with python (frontal instruction and exercise); after a strongly teacher driven 
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opening, the students had the chance to create audio files and analyze them with python or other 
computer software, like audacity. They did this in groups of 2 students. 

Second working phase: The students were asked to develop mathematical criteria that could be used 
for the regulation of the fountain, but had no further instructions. They chose to stay in the 
previously formed groups and analyze different aspects of the graphs they could create (group 
work). After first ideas were established, an additional programming course in python was given 
(frontal instruction and exercise). 

Third working phase: The ideas of the second working phase were implemented in python code. 
Some ideas were dropped, others could be improved. One group found mathematical techniques to 
smooth the highly irregular amplitude-time-function, another one worked on an algorithm that 
could find an underlying rhythm in a song. 

Fourth working phase: It was discussed, if the students wished to build a real-life model of a small 
fountain with 4 solenoid valves. The students preferred to do a computer visualization of their 
mathematical results instead. The students used the remaining time to further develop their python 
code and to decide how their result should be used to regulate the fountain. They also started to 
work on the visualization. 

Presentation day: The students had 2 hours to prepare their presentations and finish the work on the 
visualization of the fountain regulation. Each of the 4 project groups had 15 min. for their 
presentation. 

In the simulation, the analyzed song and the visualization of the processed data where replayed 
simultaneously. It became apparent that the data and the perceived sound matched adequately. 

 

 

 

 

 

 

 

Figure 2: Loudness of a song vs. time. The students wanted to use increasing and decreasing loudness to 
control the fountain. Since the irregularity of the sample data caused problems, they found methods to 
smooth the data (left: first iteration of the smoothing process, right: second iteration). 

Modeling of a light organ with a time frame of 5 days 

The light organ was one of 8 projects at a mathematical modeling week in February 2018. At a 
modeling week the students (upper secondary level) spend 5 days at a youth hostel and work on 
their own responsibility for 4 days (from 9 am to 18:30 pm with several breaks for lunch and coffee 
as well as an excursion on one afternoon). On the 5th day the presentations are given. 
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The students can choose their preferred project. There were 4 students working on the light organ. 
They chose the project with different motivations, concentrating on different aspects of STEM. 
They were supervised by one university member and by 2 teachers. For the teachers, the 
participation was part of a teacher training. 

With a rather generous time frame, the projects at the modeling week are open to a great extent. The 
students were asked to build a light organ that would work without a microphone. Instead they 
should get the data directly from the electronic device, where the song is played, or use digital 
information. They were provided with electronic components such as a Raspberry Pi, Arduino 
microcontrollers, LEDs, cables, resistors, etc. 

One of the students immediately took the initiative and started to work on his idea of building 
electric circuits that would work as frequency filters. He started with some first experiments 
involving the Arduino microcontroller and the question how to record the audio signal. The other 
students helped him but didn’t participate in the creative process. 

During the last hours of the first day the group experienced a crisis: 2 of the students were 
unsatisfied with the progress that was mainly based on ideas from physics and electrical 
engineering. Both wanted to focus on mathematical and computational aspects of the project. They 
discussed their ideas with the supervisor. Together a solution was worked out that would be based 
on the audio information that is stored in music files. From this point on the students worked on two 
different solutions. 

At the second day, the students with the mathematical and computational focus asked for some 
mathematical background about frequencies. They were given the same information as in the 
musical fountain project. Only this time not as frontal instructions, but rather in a piece by piece 
manner. The students were given some mathematical input and had the chance to do some 

experiments or online research. When they asked deeper questions, 
they received further details. 

Later they were able to implement a Fourier transform in python and 
run the program on a Raspberry Pi. At this point the students worked 
on 2 tasks simultaneously, one improving the python program, the 
other controlling an RGB LED on the Raspberry Pi. Questions to the 
supervisor were mainly about the involved programming languages 
and the operating system of the Raspberry Pi. At the end, they could 
split a piece of music in time intervals, compare the intensity of 
different frequency intervals and assign color and brightness of the 
LED to the frequency values. 

From a mathematical point of view, the students had to deal with 
problems related to esthetical questions: How should the frequencies 
be assigned to different colors, such that the light effects won’t be 
too monotonous? If the brightness of the lights is going to be related 
to the loudness of the music, which level of loudness should be 
defined as 100%? Are these thoughts independent of the music 

Figure 3: The light organ. The 
yellow LED is controlled by the 
loudness, the RGB LED by the 
frequency-spectrum.  

Thematic Working Group 26

Proceedings of CERME11 4744



 

 

genre? Is it sufficient to analyze the song locally (i.e. each time frame individually) or do we need 
global data? 

To questions like these there is no right answer, but rather a wide range of possible approaches. 
Here mathematical experience helps us to give a structure to our problems and quantize the vague 
questions asked above. Mathematical skills help us to evaluate the information that is hidden in the 
given data 

The other group with the focus on electrical engineering worked almost without supervision. Their 
main problem was the lack of capacitors with a suitable capacity. This could be solved when one of 
the supervising teachers asked at a nearby school if she could borrow some material. 

In this group mathematical activities took place on a rather basic level, e.g. when the students had to 
choose the threshold of their frequency filters and compute the resistance and capacity of the 
electric components that were needed. 

Misconceptions of the students about algorithms and computers 
When confronted with a subject that most people know very well from their everyday life (like 
music in our case), the students come up rather quickly with interesting ideas. Some of them are 
based on the misconception that computers can do complicated tasks on their own, while the 
programmer doesn’t need to fully understand the situation. 

In the musical fountain project, there were ideas about recognizing different instruments in the 
music or finding certain patterns in the rhythm automatically. Those tasks are difficult to implement 
in an algorithm. The students were surprised how complicated their mathematical model had to be 
to find a quite simple rhythm in their song (and they didn’t even elaborate further steps to make the 
algorithm work for arbitrary music). In the light organ project, similar situations took place. 

The project clearly helped the students to get a better idea of what algorithms are capable of and 
where the limitations could be. One of the main consequences in the project was that if we want an 
automated solution to a problem we have to provide a detailed mathematical description. 

Conclusion 
Using acoustic phenomena in terms of mathematical modeling is a rich field for interdisciplinary 
activities. It naturally includes physics and music. The link between both topics we find in Fourier 
analysis, where concepts of music theory, like overtones, become obvious in the mathematical 
description of waves. 

Computer science (or rather programming) is not only helpful, but essential to manage huge 
amounts of data and extensive computations. Technical aspects can be included by posing a product 
oriented problem. Hence all aspects of STEM can be addressed. 

If all calculations are done by computers, one might fear that the mathematical aspects of such a 
project will only appear in theory lessons, but won’t be applied by the students. In our examples, we 
have seen that there still is a strong potential to include mathematical aspects that go beyond the 
computational part. The raw data could be in a bad state for data processing (compare to Figure 2), 
where elaborate mathematical ideas are needed to overcome the problems. On the other hand, like 
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in the case of the light organ, assumptions have to be made and decisions have to be taken, where 
an intuitive evaluation of the given data is necessary. 

Of course, with a modeling task that is openly posed, there always is the possibility that students 
find another way of solving the problem. One part of the light organ group used a completely 
technology based approach, where no mathematics beyond basic arithmetic was needed. On the 
other hand, from our experience it is essential to let the students choose their approach with the least 
amount of regulation. Otherwise, if the teacher tries to force certain solutions and mathematical 
tools, this could have a devastating impact on the students’ motivation. 

This can lead to serious difficulties for the teacher, since he or she must be able to adapt the ideas of 
the students quite fast and try to figure out possible outcomes or obstacles for an approach that 
wasn’t considered beforehand. If this new approach requires expert knowledge from another 
discipline, either the teacher has to have that knowledge (or acquire it fast enough). If this isn’t the 
case, the teacher must be confident that the students can work on their solution relying on their own 
expertise (why would they have chosen this approach if they don’t have any knowledge about the 
topic?). Additionally, not knowing all the details of a solution for a given problem is an unfamiliar 
situation for most teachers. It requires a certain amount of self-confidence to let the students 
proceed anyway. 
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The I SEE ERASMUS+ Project  
The EU ERASMUS+ project I SEE (inclusive STEM Education to enhance the capacity to aspire 
and imagine future careers) stems from the awareness that one of the main challenges for mankind 
today, above all for the young, is to recover a good relationship with time, merely with the future.  
We live in a multi-speed society in which the capacity to predict sudden changes are decreasing and 
this causes a compulsive search for opportunities. The educational system is not able to keep up 
with social acceleration. This project bet on STEM education as a breeding ground for preparing 
young people for uncertainty and making them developing future scaffolding skills, i.e. skills that 
enhance their capacity to aspire, envisage themselves as agents of change, and push their 
imagination towards future careers in STEM (Branchetti, Cutler, Laherto, Levrini, Palmgren, 
Tasquier & Wilson, 2018). STEM education can give two main contributions in this direction, one 
epistemological and the other technical. From the epistemological point of view, the issue of 
uncertainty related to future predictions is intrinsic to science: the perspective of complexity values 
uncertainty and probability as sources of a non-deterministic and non-linear paradigm which opens 
horizons of possibilities, instead of a unique inescapable path and ground the discourses about 
possibilities on a rational basis. On the technical side, STEM disciplines investigate potentialities, 
limits and applications of innovations in the present, hypothesizing their possible impact on the 
future; this enlarges students’ and teachers’ imagination towards future challenges and careers.   

The structure of I SEE modules and the case of Artificial Intelligence  

Among the results of the first two years of research within the project, there are concrete 
teaching/learning modules for high-school, already tested in real contexts with 18-19 years old 
students. Although the issues addressed are very different (e.g. climate change, artificial 
intelligence, quantum computing), all the modules have a common structure in which the students 
are encouraged to: i) encounter the focal issue; ii) engage with the interaction between scientific 
ideas and future; iii) synthesise the ideas and put them into practice (Branchetti et al., 2018). The 
design and implementation of the Italian module about Artificial Intelligence (AI) were carried out 
by a team of researchers in Mathematics, Physics and Informatics education, together with high 
school teachers and experts in engineering, applied physics, epistemology of science and complex 
systems. The students encounter the focal issue thanks to a group activity, about AI applications in 
many fields, and two seminars, about: i. the relationship between AI and complexity science; ii. the 
history of AI. In the second phase, they are showed different approaches to AI (imperative, 
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logical/declarative, machine learning) applied to the Tic-Tac-Toe game; then, they are introduced to 
applications of AI in STEM research and to the future-relevant concepts of complexity (system, 
feedback, projection, scenario, non-linearity, agent/model-based simulations). In the last phase, 
students are involved in group activities about the imagination of a future ideal city, more or less 
influenced by AI, and are asked to design actions to do in the present with an eye to desirable 
futures, thinking about future careers, also in the STEM fields.   

STEM analysis of the I SEE module on AI: Integration and “Big Ideas” 
Since the project aims to propose guidelines and examples of inclusive and future-oriented STEM 
education, we wondered what aspects of our research could be relevant for contributing to the 
emerging debate about how STEM education should be conceived and concretely realised. As 
framework we chose the STEM “big ideas”, defined as key ideas that link various discipline 
understandings into coherent wholes, mediating the construction of in-depth knowledge (Chalmers, 
Carter, Cooper & Nason, 2017). We analysed our module separating its S-T-E-M components, 
discussing their integration and searching for different kinds of big ideas underlying it 
(encompassing, cross-disciplines, and within-disciplines big ideas). 

The STEM disciplines are all included and structurally integrated within the module, since the topic 
allows to show the dialectic relationship between the technology/engineering and pure 
scientific/mathematical issues. Mathematics is relevant, not only in terms of concept and methods 
technically necessary, but also of thinking tools and skills. As content encompassing big ideas, we 
recognised AI and Future. As conceptual encompassing big ideas, we identified paradigms like 
linearity/complexity or practices like problem posing and solving. The cross-discipline big ideas we 
used are the concepts like algorithm, which are transversal to the STEM domains. There also 
within-disciplines big ideas that have an application in the other disciplines, like cost function, 
which is a mathematical optimization concept relevant to other STEM disciplines.  

Results and conclusions  
The main results of our analysis are three: a) the lens of the “big ideas” is effective to flesh out the 
connections among the S-T-E-M disciplines within our module on AI; b) the analytic separation of 
the contributions of the different disciplines and the search for their integration allows to emphasise 
the specificity of each of them; c) our module can be considered an example of a meaningful 
integration between disciplines, with STEM “big ideas” connecting them. 
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A growing number of studies and reports all over the world refer to the importance of integrating 
Science, Technology, Engineering and Mathematics (STEM), in order to meet the increasing 
challenges of the 21st Century. In particular, STEM education can be an innovative way of learning 
and teaching mathematics. But, despite recommendations to relate these subjects, there is lack of 
research about STEM integration and there is the need of more empirical research about this 
subject. This paper presents an empirical study about the development and implementation of 
mathematical interdisciplinary tasks related to STEM integration in the context of primary school 
teachers Continuing Professional Development. With a qualitative methodology and an 
interpretative approach based on a case study, findings of our research show that it is possible to 
promote the teaching of mathematics in the framework of STEM integration by supporting teachers 
in the development and implementation of interdisciplinary tasks. 

Keywords: Hands-on, mathematics education, primary school, professional development, STEM 
education. 

Introduction 
A growing number of studies and reports, all over the world, refer to the importance of integrating 
Science, Technology, Engineering and Mathematics (STEM) in order to meet the increasing 
challenges of the 21st Century (Baker & Galanti, 2017; Rocard et al., 2007). In addition, integrative 
approaches among STEM subjects have positive effects on student attainment, with better results in 
elementary school (Becker & Park, 2011). In particular, “Integration of mathematics with Science, 
Technology and Engineering (STE) provides students with the context in which they can make 
meaningful connections between mathematics and STE subjects” (Becker & Park, 2011, p.25). 

This paper aims to contribute to research by presenting an empirical study about the development 
and implementation of mathematical interdisciplinary tasks related to STEM integration, in the 
context of a collaborative Continuing Professional Development Program (CPDP) targeted to 
primary school teachers. In this regard, our research question is: how to promote the teaching of 
mathematics in the framework of STEM integration? In our STEM integration framework, we refer 
to tasks related to all the STEM subjects, i.e., tasks that integrate Science, Technology, Engineering 
and Mathematics. In these tasks, we intend to emphasize Mathematics. Based on the case study of a 
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primary teacher, who participated in the CPDP, we analyse the STEM tasks designed and 
implemented by the teacher. 

Literature Review 
Despite the increasing calls for the promotion of STEM education, there is no agreement about a 
definition. In this regard, Baker and Galanti (2017) refer that the academic community “struggle to 
define STEM integration” (p. 2). For example, several authors refer to STEM by only integrating 
two disciplines (Ríordáin, Johnston, & Walshe, 2016; Treacy & O’Donoghue, 2014). Concerning 
this matter, Stohlmann (2018) refers different interpretations of several authors and claims that 
mathematics should be more emphasized in STEM integration. In this sense, STEM education can 
be a form of innovation for teaching mathematics (Fitzallen, 2015) and to increase mathematical 
performance (Stohlmann, 2018). 

However, despite relating STEM subjects has been widely advocated by several authors, there is 
lack of research about STEM integration and there is a need for more empirical research about this 
subject (Becker & Park, 2011). Also, there is the need to develop research to understand how STEM 
integration can promote mathematics education (Baker & Galanti, 2017). In particular, there is lack 
of research about science and mathematics integration (Treacy & O’Donoghue, 2014), mainly 
concerning in-service teachers (Ríordáin et al., 2016). 

Kim and Bolger (2017) sustain the creation of a curriculum that integrates STEM, being crucial to 
involve teachers into interdisciplinary lessons adequate to this approach. In this regard, there is the 
need to promote their Professional Development (PD) by providing mentoring and support to face 
the multiple challenges related to sustainable STEM pedagogy (Baker & Galanti, 2017). Also, 
resources are crucial for teachers and they shape them according to their individual preferences, this 
being a process of interpretation and design of the resources (Pepin, Gueudet & Trouche, 2013). For 
Gimeno Sacristán (2000), tasks are teaching and learning activities, carried out in school 
environments, being inserted into the curriculum in action. The way how tasks are introduced and 
conducted by the teacher in the classroom is essential for teaching effectiveness (Ponte, 2005). 

To improve teaching and learning, it is crucial to develop a partnership between researchers and 
designers, in order to develop appropriate pedagogical approaches to integrate tasks in the 
classroom (Geiger, Goos, Dole, Forgasz, & Bennison, 2014). Also, it is fundamental to create a 
network that motivates teachers and contributes to the sustainability of their professional 
development (Hewson, 2007; Rocard et al., 2007). A PD program will only be successful if teachers 
can apply in their classrooms what they learned and experienced during training (Buczynski & 
Hansen, 2010). In fact, a PD only achieve real effects if innovation is appropriated by the teachers 
and transformed into their own practice (Zehetmeier, Andreitz, Erlacher, & Rauch, 2015). 

Methodology 
Based on the literature review recommendations, a partnership amongst university teacher’s 
educators, local schools and a Continuing Training Centre was established, in 2015, in order to 
develop a CPDP that is adequate to local primary school teachers’ needs (Costa & Domingos, 2017, 
2018). With a total duration of 26 hours, the program lasts an entire school year (September to June) 
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and includes STEM related workshops with a 2-3 hours duration. By the end of each school year 
teachers present a portfolio with a critical account on the CPDP and their proposals and 
implementation of innovative practices. In this context, teachers may choose a science theme to 
develop in the classroom with their students by integrating with the other STEM topics. So far, 
more than 70 teachers participated in the CPDP from 2015/2016 to 2017/2018 school year. 

In this research, we use a qualitative methodology and an interpretative approach by resorting to a 
case study. According to Yin (2005), a case study is an empirical investigation that looks at a 
contemporary phenomenon within its real-life context, allowing a generalization of the obtained 
results. Data collected include participant observation (first author of the paper is a participant 
observer) and portfolios compiled by the teachers (Cohen, Lawrence, & Keith, 2007). Participant 
observation takes place in the workshops with the teachers (to learn and practice what they are 
expected to implement) and at their classrooms (to support and observe them in action). When 
necessary, some semi-structured interviews are conducted to better interpret the case. In a first stage 
documental analysis was performed in teachers’ portfolios in order to look for evidence of STEM 
contents. It was verified that most teachers chose astronomy or sound to implement in the 
classroom, and electricity is always at the bottom of their choices. This is the main reason why we 
decided to present the case study of Josefina (fictitious name) who chose electricity experiments to 
develop mathematical interdisciplinary tasks. 

Teacher Josefina (42 years old, 18 years of service, in charge of a 3rd and 4th grade class) 
participated in the CPDP during the school year 2016/2017 and decided to conduct electricity 
experiments in her classroom with the educators help. The teacher’s educators visited her class for 
two afternoons to observe and/or to help her implement some hands-on tasks. At the end of the 
CPDP, teacher Josefina (like all the other teachers) presented a portfolio with a critical account 
about the CPDP and documentary evidence of the activities that she performed with her students. 

Data analysis, results and discussion 
In this section, we begin by analyzing the case study of teacher Josefina that shows the development 
and implementation of mathematical tasks within the context of STEM integration, in particular 
related to electricity. 

Josefina’s case study 

Based on classroom observations, semi-structured interviews and the teacher’s portfolio, we 
realized that, in the first session, Josefina introduced the electrical current topic by calling students’ 
attention to sustainable development using videos and information from the Internet. After, she 
asked the students to bring to class batteries that they had at home and that did not work.  

In a second class, using the batteries, she asked the students to organise them according to their 
sizes and models (Figure 1). Next, they counted the different types of batteries and with this data, 
students produced graphics and diagrams, amongst other mathematical tasks. 

In another class, with the educators’ help, the teacher introduced concepts like potential difference 
(p.d.) and asked the students to verify if the batteries still had “energy” using multimeters. The 
students were organised in groups, and each group used a multimeter to measure the p.d. of each 

Thematic Working Group 26

Proceedings of CERME11 4751



battery. After measuring they registered the p.d. (in volts) in a table. The batteries with more p.d. 
were saved to be used in future hands-on experiments. 

Figure 1: Collection, organisation and processing of data from the batteries 

In a third session, teacher Josefina organised her students in groups of two or three, in order to 
implement several hands-on tasks. After training how to create electrical circuits to light one or two 
lamps (some of them used the batteries they saved in the previous class) the teacher decided to work 
mathematics. She gave a battery to each group and asked the students to measure and register the 
battery p.d. in volts (V). Then, she introduced biological batteries using fruit or vegetables and 
asked to measure their p.d., amongst other measurements (Figure 2). 

Figure 2: Potential difference and intensity measurements from fruit and vegetables 

The following excerpt of a dialogue shows how the teacher conducted the hands-on tasks using 
inquiry: 

Josefina: What is the potential difference (p.d.) of the orange? 

Student: It is 0,51 volts. 

Josefina: How much p.d. does the lamp need to light up? 

Student: It needs 1,5 volts. Look! It’s almost the triple! 

Josefina: Then … how many oranges do you need to light up the lamp? 

Student: Three. 
Josefina: If you cut the orange in two pieces, what is the p.d. of each piece? 
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Student: It will be about half of the orange. 

Josefina: Cut the orange in two pieces and measure the p.d. of each piece! 

Student: No! It´s not right! It gave almost the same as the orange! 

Josefina: Cut those two pieces in another two pieces and measure again! What do you think 
it will happen? 

Student: Maybe it will happen the same! Yes! The size of the fruit doesn’t count! 

Josefina: Do you need three oranges to light the lamp? 

Student: No! Let’s see ... I think three pieces are enough. Let’s see what happens…It 
worked! 

After an explanation and discussion about the experiments, the teacher continued the inquiry. Each 
group had different pieces of fruit or vegetables at their table. 

Josefina: Each group is going to choose different pieces of fruit or vegetable and measure 
its potential difference and give me the result! 

While students told the results, the teachers registered them on the black board. After having all the 
results registered, she continued the inquiry: 

Josefina: Which is the fruit with the bigger potential difference? 

Student: The tomato! 

Josefina: Which biological battery has the least potential difference? 

Student: The mushroom! 

The teacher continued asking questions while introducing the concepts. For another section, she 
created a worksheet to perform more mathematical tasks such as organisation and processing of data 
from the measurements obtained in the last class. She also created problems to be solved by 
students. The above dialogue shows that she was able to perform mathematical tasks from the 
hands-on experiments, in particular mathematical tasks in the framework of STEM integration. 

Indeed, Josefina developed hands-on tasks based on concepts and procedures from mathematics and 
science while incorporating the design methodology of engineering and using appropriate 
technology (Shaughnessy, 2013). In particular, mathematics was worked in all the tasks, namely 
“Numbers and Operations” when students organized and counted the old batteries; “Geometry” 
when they organized the batteries according to their patterns and sizes and draw the different types 
of batteries; and “Data Organisation and Processing” when building tables to register and work the 
collected data from the batteries (Figure 1). Also, Josefina was able to introduce biological batteries 
and to teach the students to perform several measurements such as the p.d. in volts (V) and to 
develop the hands-on tasks using inquiry to lead the students to reflect on the performed 
experiments and discuss in order to obtain conclusions. 

Concerning the way teacher Josefina introduced and implemented the tasks, we consider these are 
exploratory, investigative tasks. In this regard, students performed the tasks guided by the teacher 
who asked questions to lead them to search for answers. One example is related to the question 
“How much potential difference does the lamp need to light up?” and “Do you need three oranges to 
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light the lamp?” To answer the questions students developed several activities in order to 
understand and gain knowledge about this theme. 

Table 1 shows the contents of the STEM tasks developed and implemented by teacher Josefina. 

Table 1. Contents of the tasks implemented by teacher Josefina 
Science Technology Engineering Mathematics 

Electricity. Computer 

Internet 

Video 

Multimeters,  

Lamps, interrupters, 
etc. 

Planning, 
designing and 
performing 
electrical 
circuits. 
 

Measuring the p.d. of the batteries in volts. 

“Numbers and Operations” when students organized and counted batteries. 

“Geometry” when they organized the batteries according to their patterns and 
sizes and draw the different types of batteries. 

Data Organisation and Processing” when building tables to register and work 
the collected data from the batteries. 

Next, we present some excerpts of the teacher’s reflections that she wrote in her final report. 

I was able to apply some new practices and methodologies in the context of the classroom, 
incorporating mathematics and science experiments (Josefina final report, June 2017). 

The overall results of this training workshop are clearly positive: (…) enabled me to acquire / 
apply new knowledge in the context of the classroom (…); as well as collaboration including the 
sharing of good practices and the difficulties experienced (Josefina final report, June 2017). 

In summary, teacher Josefina recognised that she gained skills to innovate her practices by 
highlighting the collaborative context of the CPDP. In addition, she developed exploratory, 
investigative tasks to work mathematics topics related to STEM. 

Final considerations 
This paper aims to contribute to existing literature by presenting an empirical study about the 
development and implementation of mathematical tasks in the framework of STEM integration. To 
face challenges related to STEM integration it is recommended to develop an adequate teachers’ PD 
context (Baker & Galanti, 2017; Treacy & O’Donoghue, 2014), being crucial to provide a 
collaborative environment that supports the teachers to innovate their practices (Capps & Crawford, 
2013; Costa & Domingos, 2017). According to Buczynski and Hansen (2010), a PD program will 
only be successful if teachers can implement, in practice, with their students, what they learned and 
experienced during their training. Also, Zehetmeier et al. (2015) sustain that innovations should be 
appropriated by those who implement them and transformed into their practice to have real effects. 
We believe this is what happened to teacher Josefina who designed and implemented 
interdisciplinary tasks that are not part of teachers’ traditional practices. In fact, Josefina was able to 
introduce commercial and biological batteries and to teach the students to perform several 
measurements such as the p.d. in volts (V). She also developed several hands-on tasks using inquiry 
to lead the students to reflect on the performed experiments and obtain conclusions. 

Based on Josefina’s case study, it was verified that she implemented several mathematical tasks in 
the framework of STEM integration (Table 1). Indeed, Josefina developed hands-on tasks based on 
concepts and procedures from mathematics and science while incorporating the design methodology 
of engineering and using appropriate technology (Shaughnessy, 2013). 
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Josefina’s example shows how to develop exploratory and investigative mathematical tasks from 
hands-on STEM experiments. Mathematical tasks proposed by the teacher and performed by the 
students included problems and exercises related to several topics of the Portuguese curriculum 
such as “Numbers and Operations”, “Geometry”, and “Data Organisation and Processing”, 
including tables, graphics and diagrams. 

We observed that teacher Josefina promoted mathematics teaching in the framework of STEM 
integration by developing and implementing several interdisciplinary tasks in the classroom related 
to these subjects. Teacher Josefina’s example shows that it is possible to work mathematics while 
performing several hands-on STEM tasks in class. We conclude that to promote mathematics’ 
teaching in the framework of STEM integration it is necessary to provide teachers with a 
collaborative professional development context that supports them in the development and 
implementation of interdisciplinary tasks. 
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Rationales for interdisciplinary STEM courses are often based on the fact that the problems we face 
in today’s world call for perspectives and knowledge from many different areas. In many cases this 
includes mathematics because it is used in many research fields and because it is part of everyday 
life. At the same time interdisciplinary literature suggests that mathematics gains the least from 
integration. In this paper we use a successful interdisciplinary STEM course in the Netherlands to 
illustrate how students and teachers think about the value of mathematics. To analyse teacher and 
student statements concerning the value of mathematics a model is introduced for a disciplinary 
mathematics perspective for interdisciplinary STEM courses and the opportunities this model can 
provide are discussed.  

Keywords: Mathematics in STEM, secondary education, value of mathematics, perspective taking 

Introduction 
While studying epithelia tissue and the shapes of the epithelium cells in animals, biologists had 
questions about the shapes of densely packed cells in curved layers. Sharing their questions with 
mathematicians, these formalised it as a precisely defined new shape. Computer scientists then 
programmed the shape as a computer model, which was analysed by physicists, who confirmed the 
shape would be stable packed at the scale of epithelial cells. Knowing what to look for, biologists 
then found the modelled shape (Parker, 2018). 

This example of the finding of the new mathematical shape called the scutoid is an example of how 
disciplines work together to solve a problem. Looking specifically at the role of mathematics it 
became clear that mathematical knowledge was used to model and predict a possible shape and that 
it therefore played a valuable role in the research process. 

In general, mathematics is used in many research fields and is part of everyday life. According to the 
National Research Council (2013, p.2) the mathematical sciences are “becoming an increasingly 
integral and essential component of a growing array of areas of investigation in biology, medicine, 
social sciences, business, advanced design, climate, finance, advanced materials, and many more”. 
The Dutch branch of Deloitte tried to quantify the contribution of mathematics to the Dutch economy 
(Deloitte, 2013). They found that the full time equivalent of about 900,000 highly educated 
employees use mathematical sciences in the Netherlands, 11% of total employment and 35% of 
higher education employment in the Netherlands. “They include scientists, who use mathematics all 
the time, as well as bankers, who spend some of their time computing the value of assets, and 
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physicians, who use maths to interpret medical tests” (p.5). These examples indicate that mathematics 
is seen as valuable for society because of its frequent use.   

In both reports recommendations are made about mathematics education, stating that it should reflect 
the development and stature of the field to have “more and better usage of mathematical sciences” 
(Deloitte, 2013, p.21). One way to show the use of mathematics is through interdisciplinary 
educational courses that require mathematics and other disciplinary knowledge to solve real-life 
problems, such as the epithelia problem. 

In literature, such as that mentioned above, we keep coming across phrases that contain the words 
‘use' of mathematics and the ‘value’ of using mathematics. These two concepts ‘using’ and ‘valuing’ 
mathematics seem connected and therefore worth a closer look. In this paper we examine the 
distinction and the relationship between these concepts and we use the interdisciplinary STEM course 
NLT in the Netherlands as a case study to illustrate a model of disciplinary perspective. 

Background of NLT 
The Dutch curriculum for upper secondary education contains a course called ‘Nature, life and 
technology’ (NLT). Since its introduction in 2007 at pre-university and higher general level, the 
general aims of this elective interdisciplinary STEM course are to let students experience the 
importance of interdisciplinary coherence in the development of science and technology and to 
increase the attractiveness of science education for students (Stuurgroep NLT, 2007). The course is 
intended as a supplement to the existing disciplines in the Dutch curriculum: physics, chemistry, 
mathematics, biology and physical geography. It aims to offer both a broader and more in-depth 
educational programme for science and mathematics and is not meant as a replacement of other 
courses. 

Within the boundaries of an examination programme teachers construct their own curriculum and can 
select teaching materials from a wide range of small booklets, called modules. Each module 
introduces a contemporary, context-oriented science problem that can only be solved by involving 
different (disciplinary) perspectives. As a consequence, it is preferred that the course is taught by a 
team of teachers, preferably representing the relevant disciplines. In the Netherlands such a team is 
called a NLT-team.  

In the examination programme of NLT the nature of the course is made explicit by formulating four 
characteristics which should be visible throughout the curriculum (Krüger & Eijkelhof, 2010). The 
nature of NLT is characterized by attention to ‘interdisciplinarity’, ‘the relationship between science 
and technology’, ‘the orientation on higher education and occupations’ and ‘the role of mathematics 
in science’. Concerning the ‘role of mathematics in science’ it is said that NLT shows how 
mathematics is used in the sciences. However, how this should manifest itself is not clear (den Braber, 
Krüger, Mazereeuw & Kuiper, 2019). Our study shows that more than 20% of students doesn’t 
mention mathematics when asked about the disciplines that play a role in NLT. When asked why 
mathematics is not a part of NLT some say that only low-level mathematics is required, or that it is 
not similar to what they do in mathematics class. Besides this, the research shows that mathematics 
teachers seem to struggle more with their role in NLT than science teachers. Besides this, the added 
value of having mathematics teachers in an NLT-team is not always clear. When it comes to 
mathematics in the NLT course, the question arises, how to equip future (mathematics) teachers so 
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that they can help their students recognize the value of mathematics in NLT and other 
interdisciplinary courses. 

NLT experts elaborated on the concept of interdisciplinarity by describing learning goals that state 
that students should have knowledge and appreciation of the different disciplines and their ways of 
working and thinking and how they contribute to solving a real-life problem (Eijkelhof, Boerwinkel 
& Krüger, 2017).  

This is in accordance with Repko, Szostak and Buchberger (2017) who state that “an important step 
towards developing competence in interdisciplinary studies is to understand the concept of 
disciplinary perspective and the role of perspective taking” (p.124). 

Conceptual framework 
Ng and Stillman (2007) provided a framework in which the value of mathematics, mathematical 
confidence, and the interconnectedness of mathematics are three affective domains directly associated 
with interdisciplinary learning involving mathematics. In turn, they divided the domain of the value 
of mathematics in three categories: current relevance or usefulness of mathematics, importance of 
mathematics for further education and career choice, and value of mathematics in society.  

In literature we see more categorizations of the value of mathematics where usefulness or current 
relevance of mathematics is one of the categories. Williams (2012), for instance, makes the distinction 
between exchange-value, enjoyment and use-value of mathematics, where the latter is viewed as a 
means to understand or practise competently, e.g. in engineering or science.  

Ernest (2010) states that useful or necessary mathematics is primarily relevant in view of the benefit 
for employment and functioning in society. He declares functional numeracy or ways of thinking as 
being useful, but what exactly constitutes the usefulness is not made explicit. The definition of 
mathematical literacy from the PISA mathematical framework provides another perspective on what 
is needed to be functional in society: 

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathematics 
in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, 
procedures, facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognize the role that mathematics plays in the world and to make the well-founded judgments 
and decisions needed by constructive, engaged and reflective citizens. (OECD, 2016, p. 5)  

The role that mathematics plays in the world brings us back to the idea of disciplinary perspective as 
described by Repko et al. (2017). When solving a problem requires different perspectives a 
mathematical perspective may well be one of them. A disciplinary perspective includes knowledge 
of the studied phenomena, the assumptions, the epistemology and the ways of acquiring knowledge 
which are characteristic to the discipline (Repko et al., 2017). To translate these ideas to secondary 
education we define disciplinary perspective as ways of looking at the world and ways of working 
and thinking that are characteristic to the field (Janssen, Hulshof & van Veen, 2018).  

To specify the way mathematics looks at the world, the perspective on reality or the ‘overall sense’ 
(Repko et al., 2017), we look at the phenomena studied in mathematics. Defining mathematics as the 
science of patterns (Devlin, 1998), mathematics studies patterns or abstracts structures. A symbolic 
notation evolved to facilitate universal communication. The study of patterns requires abstracting and 
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structuring. In addition to these two, manipulating formulas, modelling, problem solving, and 
reasoning are formulated as mathematical thinking activities that conjoin key concepts in the Dutch 
mathematics school curriculum (cTWO, 2012). These six activities belong to the disciplinary 
perspective shown in table 1. In NLT mathematical concepts are used, but in general no new concepts 
are introduced. Consequently, if we compare the mathematics curriculum with the NLT examination 
program, abstracting and structuring seem less relevant. Further, manipulating formulas, will be taken 
as part of modelling. We will elaborate on the three remaining activities.  

Table 1: Description of disciplinary perspective in real-life interdisciplinary context 

Ways of looking at the world 

Overall sense Maths contributes to understanding the world (to describe, explain and predict 
phenomena) 

Maths is the study of patterns and abstract structures (with structuring, 
generalizing, abstracting, symbolizing) 

Maths uses a symbolic, formal and technical way to communicate  

Ways of working and thinking 

Modelling Modelling processes: Formulate, Employ (working mathematically), 
Interpret/Evaluate 

Reasoning (logical) reasoning, argumentation and proofing 

Problem solving  Devising strategies, heuristics use 

The motivation for creating and interpreting mathematical models in real-life situations is to 
mathematize a realistic situation for the purpose of answering a practical question (Gravemeijer, 
Stephan, Julie, Lin & Ohtani, 2017). These authors therefore argue the importance of modelling in 
education as something that prepares students for the digital society of the future. There are many 
models that describe the modelling process (Borromeo Ferri, 2006). The PISA framework (OECD, 
2015) mentions three processes, namely formulate, employ and interpret/evaluate to capture the 
complexity of the modelling cycle in real-life situations. Employ refers to the use of mathematical 
concepts, facts or procedure, also known as working mathematically (Blum & Ferri, 2009). It includes 
applying mathematical facts, rules, algorithms, and structures when finding solutions, manipulating 
formulas and using mathematical tools,  including technology, to help find and approximate solutions 
with given models.   

Problem solving can play an important role in working in real-life problems when we see problem 
solving as the activity of using a heuristic approach (van Streun, 2001) or devising strategies as 
mentioned in the PISA framework. Reasoning is a way of thinking that can be of use in an 
interdisciplinary context (Eijkelhof, Boerwinkel, & Krüger, 2017). For instance, to critique 
arguments, to identify weaknesses and flaws in logic, to revise arguments, and to submit to peers 
review (Mayes & Koballa, 2012). It is a supporting process throughout the modelling process, e.g. to 
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check a justification that is given, or provide a justification of statements or solutions to problems 
(OECD, 2015).   

Summarizing, we describe the disciplinary perspective of mathematics in an interdisciplinary STEM 
course as shown in table 1. The model describes the contribution mathematics can make to 
interdisciplinary real-life problems, specifically in secondary education. It does not include the 
knowledge or ability required to use this disciplinary perspective even though we recognise 
mathematical confidence as an important domain in interdisciplinary mathematics education as also 
stated by Ng and Stillman (2007). 

Data collection and analysis 
To study how mathematics manifests itself in NLT (den Braber et al., 2019), data was collected 
through interviews, document analysis and teacher and student surveys over three years. The surveys 
in 2017 contained several additional questions related to the relevance or usefulness of mathematics 
to provide an insight in students and teachers perceptions of the value of mathematics in the sciences. 
For this paper we analysed student answers to one question and teacher answers to a related question, 
see table 2. The students were in their final year of secondary education and had studied NLT for two 
or three years. The teachers were NLT teachers with different disciplinary backgrounds.  

 Table 2: Analysed survey questions and number of answers  

 Question Type Completed surveys 

Teachers What do you discuss with your students about the 
role of mathematics in the sciences? 

open 84 

Students According to you, what is the importance of 
mathematics to the science? 

open 416 

We used table 1 to code the answers of students and teachers. Categories were ‘overall sense’, 
‘modelling’, ‘reasoning’ and ‘problem solving’. For answers not fitting to any of the categories we 
used the category ‘other’. As subcategories of modelling we used ‘formulate’, ‘employ’ and 
‘interpret’. The code ‘general’ was related when -part of- the answer reflected the process of 
modelling in general. If an answer contained more than one statement that could be in different 
categories the statements were coded accordingly, 445 coded student answers and 95 teacher answers. 
An example is shown in table 3. A single code was assigned to 389 student and 75 teacher answers. 

Table 3: Example of coded student statements from one student answer  

Highlighted statements category subcategory 

The way of thinking (problem solving) and dealing with and 
converting numbers and formulas 

Problem 
solving 

 

The way of thinking (problem-solving) and dealing with and 
converting numbers and formulas 

Modelling employ 
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Results 
The data shows that not all answers referred to the posed questions, for both teachers and students. 
Instead they might express an opinion about the course, the level of mathematics or what modules 
were taught. These were coded as ‘other’, as were students’ statements like ‘don’t know’ or ‘don’t 
care’. This category was also used to code general opinions like ‘great importance’ or ‘not a lot’ and 
29 students who gave general statements claiming the importance of mathematics as ‘the basis of 
sciences’ or other synonyms as ‘the foundation’. Also 14 teachers used general statements, using 
words such as ‘supportive science’ or a ‘tool’. The number of coded statements is seen in table 4. 

Table 4:Number of coded statements in the categories from student and teacher answers 

  Students Teachers 

Category subcategory Number of 
statements 
(n=445) 

Percentage 
of students 
(n=416) 

Number of 
statements 
(n=95) 

Percentage 
of teachers 
(n=84) 

Overall sense   36 9 6 7 

Modelling 
processes 

General 4 1 4 5 

Formulate 8 2 3 4 

Employ  212 51 9 11 

Interpret/evaluate 14 3 4 5 

Reasoning  14 3 0 0 

Problem solving   8 2 2 2 

Other  148 36 65 77 

 

In the category ‘other’ we find 35 teacher statements, all science teachers, reflecting that they say 
nothing or little about the role of mathematics and there is no teacher answer mentioning reasoning 
or proving something. Even though we find students answers in all categories, almost half of the 
students reflect on the aspect of working mathematical with many statements containing the words 
calculate or formulas. 

Inter- rater reliability with three raters was 0.79 using Fleiss Kappa. 

Discussion 
Rationales for interdisciplinary STEM courses are often based on the fact that the problems we face 
in today’s world call for perspectives and knowledge from many different areas. The possibilities for 
mathematics in such a course is described by Williams et al (2016) as: 
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interdisciplinary mathematics education offers mathematics to the wider world in the form of 
added value (e.g. in problem solving), but on the other hand also offers to mathematics the added 
value of the wider world. (p.13) 

For students, however, it is not self-evident what the added value of mathematics is. For almost one 
third of the students it is hard to give a description of what the relevance of mathematics is or they 
refer to general terms as ‘great’ or ‘mathematics is the basis of the sciences’. When they do refer to 
categories of disciplinary perspective it is mostly ‘working mathematically’ by doing calculations 
and using formulas. This is in accordance with Wolfram (2010) conclusion that not all phases of a 
modelling cycles are equally visible in mathematics education. We can argue that the same goes for 
interdisciplinary education. This might also indicate that in the current NLT course, of all disciplinary 
perspectives the value of the mathematical perspective is recognized the least and has a lot to gain.  

We see students who say that mathematics is not very important to the sciences or student who don’t 
acknowledge the relevance of it. Here the role of teachers becomes even more apparent. If they don’t 
address perspectives it seems logical that for students this remains hidden and the benefits of 
perspective taking in interdisciplinary situations withheld. For teachers it requires knowledge and an 
attitude that might be different from what they are used to since a part of interdisciplinary perspective 
taking is “that when taking on other perspectives often involves temporarily setting aside your own 
beliefs, opinions, and attitudes” (Repko et al., 2017, p. 125). This means that the metaphors of 
mathematics as a servant or as the queen of other disciplines are irrelevant. The goal of disciplinary 
perspective is not to marginalise one discipline or to promote another but the goal is to value each 
discipline and use the possibilities each discipline brings to the table in a real-life situation (Braber et 
al, 2019). 

In this paper we provided a conceptual framework for the disciplinary perspective in STEM education 
which can be used as a conceptual tool that may help future teachers with explicating the role or 
usefulness of mathematics in an interdisciplinary course.The warrants and backing in our reasoning 
need further elaboration. Such as reasons to include elements of the PISA framework or the statement 
that modelling is the most important process in the disciplinary perspective and that other processes 
(reasoning and problem solving) are mainly supporting the modelling process. Thereby also making 
a distinction between an overall sense of what mathematics is about and which processes contribute 
to answering an interdisciplinary question.  
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Introduction 
Mathematics is at the core of many areas of everyday life in our society, in science, technology, and 
the economy. According to the PISA study, the aim of mathematical education is to develop an 
understanding of the relevance of mathematics in these areas. This should enable high school 
students to deal with and explain mathematical questions and problems with respect to real world 
life so that they can act as responsible citizens (cf. OECD, 2014). But process-oriented competences 
which belong to the educational standards of mathematics are often neglected due to the fact that 
mathematics lessons are often strongly content-oriented. Therefore, it is essential that the tasks are 
open, complex, realistic, authentic, problem-oriented and can be solved by carrying out a modeling 
process (cf. Maaß, 2006, p. 115). This is where the project Computational And Mathematical 
Modeling Program (CAMMP) intervenes: It offers extra-curricular possibilities for students to 
participate in modeling events which last between one day and one week. These events show the 
close connection of several subjects such as engineering, mathematics and computer science. By 
integrating such questions into interdisciplinary project teaching, mathematical modeling is 
extended by the dimension of independent experience and practical application. Students solve 
problems from everyday life or scientific research by using mathematical modeling. Thus, we 
understand CAMMP as a chance for students to solve real problems by mathematical modeling 
independently and to develop important future-oriented competencies. Our experiences show that 
by participating in CAMMP events students discover, among other things, the role of maths in our 
everyday life. Since the students should not use the modeling cycle as an abstract entity, but as a 
concrete help for the modeling process, CAMMP presents a simplified variant of Blum’s modeling 
cycle with the four steps simplifying, describing mathematically, computing and interpreting (cf. 
Blum & Borromeo-Ferri , 2009, p. 46). As an example, a workshop lasting one day (CAMMP day) 
on the topic climate research is introduced. 

Didactic reduction and realization of Climate Change Analysis in a CAMMP 
day 
There are various simulations that predict a warming of the average temperature of the earth's 
surface by up to four degrees Celsius by 2100. Such warming would lead to further effects, from the 
emergence of deserts to rising sea levels and the disappearance of entire countries. However, many 
people ignore or deny climate change or the dramatic consequences that inaction would have. The 
report of the Intergovernmental Panel on Climate Change (IPCC) distinguishes various indicators 
that point to a climate change. Since climate change is a complex research field with many different 
forces affecting each other, a good didactical reduction is needed for teaching mathematical models 
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representing earth climate to high school students. Therefore, the CAMMP day – which we are 
currently designing – focuses on temperature analysis, an everyday parameter used to describe 
climate and often used in the media as a yardstick for climate change. 

 
Figure 1: Global average surface temperature 

The first step of modeling “Does a climate change exist?” we ask “Has the temperature increased 
significantly?” To answer this, the global average surface temperature from 1850 to 2018 is 
examined (see Figure 1). Furthermore, a linear trend is used to describe the trend since it is assumed 
in the IPCC report (see IPCC, 2013). For this purpose, the students first develop the methodology of 
regression analysis independently. One possible mathematical description is first to calculate the 
sum of least squares of the difference between the measured temperature function and the 
regression, called 𝑒𝑒(𝑌𝑌𝑗𝑗) for each year 𝑌𝑌𝑗𝑗 = 1900, … , 2018. In a second step the sum of the least 
squares is minimized. The mathematical problem can be written as ∑ 𝑒𝑒�𝑌𝑌𝑗𝑗�

2
=𝑛𝑛

𝑗𝑗=0 ∑ �𝑇𝑇�𝑌𝑌𝑗𝑗� −𝑛𝑛
𝑗𝑗=0

𝑇𝑇��𝑌𝑌𝑗𝑗��
2
→ min, where 𝑇𝑇(𝑌𝑌𝑗𝑗) the measured temperature and 𝑇𝑇��𝑌𝑌𝑗𝑗� ≔ 𝑚𝑚𝑌𝑌𝑗𝑗 + 𝑏𝑏 the modeled 

temperature value of the regression function with the unknown parameters 𝑚𝑚 and 𝑏𝑏 in the years 𝑌𝑌𝑗𝑗 
are. Here the concept of differentiation is needed. It becomes obvious why the least square method 
is used: It is easier on high school level to differentiate a polynomial of grade 2; otherwise the 
absolute value function would be needed. Using real data this results in a linear trend function of 
𝑇𝑇�(𝑌𝑌) = 0.008℃ 𝑦𝑦𝑒𝑒𝑦𝑦𝑦𝑦⁄ − 15.578℃ which needs to be interpreted with respect to the real-world 
problem. Here the question of the quality of the adjustment for the data arises. The coefficient of 
determination is introduced and computed for the given data as 𝑅𝑅2 = 0.8. As an additional exercise, 
interested students can prove that in all cases 𝑅𝑅2 ∈ [0,1] holds and find out which 𝑅𝑅2 indicates a 
good adjustment. These results lead to the presumption that 𝑇𝑇�(𝑌𝑌) approximates the data well and 
that the temperature rises by 0.008℃ 𝑦𝑦𝑒𝑒𝑦𝑦𝑦𝑦⁄ . In order to investigate whether the temperature rises 
significantly in the last century, the coefficients of the regression function are tested with a so-called 
t-test. The high school students formulate the null hypothesis (𝐻𝐻0: the temperature does not rise 
significantly) on the basis of the question as well as the test statistics. Inserting the corresponding 
values leads to the acceptance of 𝐻𝐻1. Further steps are to evaluate the influence of human being in 
this increase. These results do not only lead to a well-founded view on the topic of climate change, 
but also show the relevance of mathematics in society. 
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The benefits of interdisciplinary teaching and learning in school have been discussed for some time, 
but to make it be more than the additive juxtaposition of elements of knowledge from different 
disciplines, the universities should implement holistic concepts for integrative teacher education. In 
the first phase of the teacher training should clarify the advantages and tackle the challenges of an 
interdisciplinary education. The Inter TeTra project is a DAAD subject-related partnership between 
the University of Siegen (Germany) and the Hanoi National University of Education (HNUE, 
Vietnam). The primary outcome of this project is the design of a permanent module for the subjects 
mathematics and physics at the HNUE and to perform interdisciplinary on the job teacher training 
with the subjects mathematics and physics.  
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Motivation of the Inter TeTra-project 
A primary goal of the OECD and the educational capacities in Vietnam is to reform their educational 
policy by developing a more competency-oriented curriculum (Communist Party of Vietnam, 2013). 
Germany has two decades of experiences with these types of reforms. The adjustments of the 
curricula since the mediocre results of German students in the TIMSS and PISA study show the 
opportunities and challenges such reforms can present (KMK, 2004) and the importance of teacher 
training for the success of school reforms (Hattie & Beywl, 2013). The cooperation between German 
and Vietnamese educators offers the opportunity to avoid well-known problems in implementing 
such reforms. In addition, it can generate new knowledge out of the cultural and structural 
differences between the two societies, allowing the further development and implementation of novel 
and distinctive curricula. Consequently, the DAAD (German Academic Exchange Service) endorses 
the Inter Tetra-project (the name of the project is a short form for Interdisciplinary Teacher 
Training), a subject-related partnership established between the University of Siegen and the Hanoi 
National University of Education (HNUE). The outcomes of this project are the design of a 
permanent module for the subjects mathematics and physics at the HNUE and the performance of an 
interdisciplinary pre-service and in-service teacher training. One of the distinguishing features of this 
course is the view beyond the subject boundaries of mathematics and physics. Since 2000, the 
advantages of interdisciplinary work in teaching and learning in schools have been emphasized, 
mostly in the form of problem-based and cross-disciplinary teaching that is organized in projects 
(Labudde, 2014 or Moegling, 2010). In order to achieve the greatest educational benefits, numerous 
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variants of these demanding and complex learning concepts have been developed (Caviola, 2012; 
Labudde, 2008).  The ability to systematically combine, apply and reflect knowledge from different 
disciplines is the goal of this project. However, in spite of all the educational advantages, 
interdisciplinary work also reveals many challenges. The combination of different methods of the 
participating subjects, overcoming communication difficulties, the identification of common research 
subjects, the handling of prejudices as well as the handling of group dynamic processes are only 
some of the problems of interdisciplinary cooperation (Defila & Di Giulio, 2002, 24). The didactic 
potential of subject-linking teaching and learning has been discussed for some time, especially in 
mathematics, natural sciences and technology (English, 2017; Kelley & Knowles, 2016; La Force, 
2016; Michelsen, 1998). 

Despite the many benefits of interdisciplinary teaching and learning at school, the teacher training at 
German as well as Vietnamese universities is still largely organized in a discipline-oriented manner. 
The first phase of the teacher training should clarify the advantages and tackle the challenges of an 
interdisciplinary education. To make interdisciplinary teaching and learning in schools be more than 
the additive juxtaposition of elements of knowledge from different disciplines (Wellensiek, 2002), 
the universities should implement holistic concepts for integrative teacher education. The inadequate 
fit of non-integrated teacher education with the requirements of interdisciplinary teaching (Bröll & 
Friedrich, 2012) is repeatedly cited by teachers in schools as an objection to integrated instruction 
(Jürgensen, 2012; Rehm, 2008). If interdisciplinary teaching at school is to succeed, teacher training 
must also be adequately designed (Brown & Bogiages, 2017; Cormas, 2017). Studies show the 
importance of the preservice teachers’ knowledge of interdisciplinary pedagogy (An, 2017). 
However, it has become apparent that experienced teachers in particular have reservations about 
interdisciplinary teaching (Thibaut 2018). For this reason, the Inter TeTra project is planning an 
interdisciplinary master course and in-service teacher training. Appropriate didactic concepts have 
already been developed at some universities (Krause & Witzke, 2017; Witzke, 2015). The University 
of Siegen works currently on interdisciplinary education projects such as MINTUS, FäMaPDi and 
InForM PLUS (Holten & Witzke, 2017; Krause, 2017). For this purpose, the subjects of mathematics 
and physics seem to be the most appropriate, since these subjects have numerous epistemological 
parallels (Krause, 2016). First approaches for establishing subject-linking lessons already exist in 
Vietnam (Nguyen, 2015). In contrast, the present project does not initially focus on interdisciplinary 
teaching in Vietnamese schools but starts earlier by adding an interdisciplinary module to teacher 
education. In this way, the connecting element in the subject-linking lessons of the future is not only 
the common subject of instruction (which is viewed from the perspective of different subjects) but 
rather the embedding of lessons in the comparative discussion of didactic theories in the participating 
subjects from the very beginning, with the goal of concretization and implementation in the 
Vietnamese curricula. This approach is an innovation especially for Vietnam, where teacher training 
is currently very isolated and compartmentalized. While the modern application-oriented teaching of 
mathematics looks to physics didactic concepts for experimentation, modern physics teaching also 
requires mathematical didactic knowledge to deal with technical problems via mathematics 
(Schwarz, 2016). Consequently, the repertoire of future teachers will become richer by incorporating 
the didactics of neighboring subjects. So this project aims to make a meaningful and lasting impact 
through teacher training, combining classroom teaching with practical instructions. The aim is the 
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development of a competence-oriented curriculum for teacher training in Hanoi. The Vietnamese 
partner university is the authoritative body of educational policy reforms within the country, ensuring 
later dissemination of the developed module. The previously mentioned projects at the University of 
Siegen have demonstrated that interdisciplinary teaching in teacher education provides a deeper 
insight into the didactics (Witzke, 2015). The combination of didactical theory and teaching practice 
is particularly important to our approach. 

Concept of the courses in the Inter TeTra-project 
General information 

The duration of the Inter TeTra-project will be four years. In the first year (2018) the colleagues from 
Vietnam have joined the referring projects in Siegen - the FäMaPDi and InForM PLUS projects 
(Krause & Holten, 2018) and both sides discussed the theoretical framework of the project. The 
courses for the HNUE will be designed in the year 2019 and will take place in Hanoi in 2020 and 
will be repeated in 2021. The idea is the implementation of an interdisciplinary course for pre-service 
teachers in the teacher training curriculum at the HNUE and the offering of an interdisciplinary 
course for in-service teachers with the subjects mathematics and physics. These courses will be 
composed of a theoretical and a practical part.  

Theoretical part 

The aim of the courses is to enable students to compare the didactical theories of their own 
discipline, which they have come to know during their studies, with the didactical theories of the 
other subject. Since only a limited number of sessions are available for the theoretical part, only a 
selection of topics can be found that is relevant for both subjects. In order to combine subjects in a 
meaningful way, one should compare the common “Big Ideas” of the subjects (c.f. Chalmers, 2017). 
One research desideratum that the Inter TeTra Project focuses on is to explicate topics, which are 
relevant for mathematics and physics education. For this reason, handbooks and conference-
proceedings of mathematics and physics education will be compared systematically to identify 
intersections. Even if this research is still in process an exemplary selection of topics, which are 
suitable for an exchange between mathematics and physics education, can be listed: 

Nature of science vs. beliefs of mathematics: What is physics? What role does the experiment play 
in physics? To what extent does a physical theory depict reality? Because questions of this kind are 
crucial for teaching-learning processes, the didactics of physics has been dealing with them for some 
time under the heading “nature of sciences” (Aydeniz et al., 2013; Dass, 2005, Hötticke & Rieß, 
2007; Kahana & Tal, 2014; Kartal et al., 2018). Likewise also the mathematics didactics researches 
on the different views on mathematics (e.g. Grigutsch et. al, 1998; Witzke & Spieß, 2016), because 
the individual conceptions determine our concrete activities in science. What similarities can be 
identified between perceptual research in mathematics didactics and NoS research in physics 
didactics? What are the differences? Interesting approaches can be found in the literature: Lawson 
(2008) talks about Nature of Science and mathematics.  Rolka and Halverscheid (2011) talk about 
mathematical worldviews of students.  

Modelling: Modeling is considered in some publications to be a linking element between disciplines. 
(Blum & Niss, 1991; English, 2009; Michelsen, 2006). In physics, models (such as atomic models) 
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are an integral part of the theory canon. Accordingly physics education has to clarify how to deal 
with models in the teaching-learning process (Gilbert, 2004; Oh & Oh, 2017). It is not so common to 
stress that models should not just be taken over, but rather to emphasize the process of creating 
models. In mathematics education modeling has been discussed for many years (Burkhardt, 2006; 
Frejd & Bergsten, 2016; Guerro-Ortiz et al., 2018; Kaiser & Schwarz, 2006). Several models for 
modeling - so-called modeling cycles - have been developed. So it seems that physics education 
focuses on the general product while mathematics education is more interested in the process of 
individual modelling. It is obvious that both sides can learn from each other in this matter, even if it 
is more laborious than it seems (Neumann et. al, 2011). 

Preconceptions: In physics didactics preconceptions are treated to different physical contents. They 
are often negatively connoted as misconceptions. In mathematics education one rarely speaks about 
misconceptions, trying to highlight positive pre-theories among learners. The term 
"Grundvorstellung" (vom Hofe, 1992) is certainly prominent in this context in Germany. At the same 
time, mathematics educators have developed more general theories on context-related learning, 
which can also be applied to other subjects. For example, the approach of Heinrich Bauersfeld to 
“Subjektive Erfahrungsbereiche” should be mentioned (Bauersfeld, 1983). Krause has sketched the 
transfer of this theory to physics and discussed the question of how on the other hand mathematical 
didactics can be fertilized by approaches of physics didactics (Krause, 2015).  

Practical part 

In addition to the theoretical sections the courses mentioned and planned in this project will also 
include lessons at schools. The fact that the didactics of a neighboring subject can be relevant to 
one's own subject should be clarified by the conception, implementation, and reflection of lessons 
that try to combine school mathematics and physics in a meaningful way. For this purpose, the 
interdisciplinary comparison of theories on learning and teaching mathematics and physics in schools 
will be used to develop research questions in the seminar, which will be examined in the course of 
the lesson designs developed in the seminar and tested at the cooperation school. These lessons will 
be videotaped and incorporated into the previously discussed theory. This combination of theoretical 
lessons and review is established in North Rhine-Westphalia during the practical semester in teacher 
training (Hoffart & Helmerich, 2016). Such a theory-based classroom reflection research is not yet 
part of teacher education in Vietnam. However, evaluation criteria do not refer primarily to how the 
lessons themselves succeeded, but to how the teaching process can be analyzed and classified on the 
basis of the theoretical sessions. At this stage of the seminar, students should be able to evaluate and 
justify didactic decisions based on theory. 

Research 
Explication of relevant content 

The selection of topics in the theoretical part should not be made ad hoc but should reflect the 
intersection of mathematics and physics education research in terms of content and points of contact. 
The contents presented in Chapter 2 were determined by the lecturers themselves during the pilot 
phase in Germany. For the realization of the teaching interventions in Vietnam (which is to take 
place for the first time in 2020), the theoretical topics are to be systematically selected. For this 
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purpose, the project participants will carry out a qualitative content analysis (Mayring, 2010) of 
current manuals and proceedings with the question: Which contents are relevant for an 
interdisciplinary exchange of mathematics and physics didactics? Results of this analysis are still 
pending. 

Evaluation of the teaching interventions 

The evaluation of the Master's course and the teacher training should contribute to answering the 
following research question: How aware are the participants of the relevance of didactic theory of the 
other subject for their subject? Especially in Vietnam, where teachers are only trained in one subject, 
it is important to raise the awareness that mathematics didactics is important for physics teaching and 
that physics didactics is also important for teaching mathematics. The participants will be 
interviewed at the beginning and end of the theoretical part with an open questionnaire (which is still 
in the conception phase). What is special about the Inter TeTra project is, that in the practical part the 
participants are to hold a lesson which will be be evaluated video-based. This evaluation also takes 
place exclusively under the question at which points of the lesson the didactics of the other subject 
are relevant. This approach was also used in the pilot implementation in Germany. First results may 
be found in Holten and Krause (2018). 

Conclusion 
The project’s research goals are to clarify relevant topics for an interdisciplinary exchange between 
mathematics and physics didactics, to design and implement a corresponding course in the teacher 
training curriculum and a course for in-service teachers at HNUE. The performance of the courses 
will be evaluated in order to assess the effectiveness of interdisciplinary teaching in the subjects 
mathematics and physics during the training of preservice teachers. 

In this project, an intellectual exchange between four institutes is taking place. Each institute will be 
focusing primarily on the mathematics and physics disciplines in Hanoi and Siegen as well as four 
components of teacher training and further education, hence the derivation of the name Inter-Tetra 
from the Latin “Inter” (between) and Greek “Tetra” (four) and its dual connotation for 
Interdisciplinary Teacher Training. 
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This paper describes a novel study that aims to explore students’ mathematical preparedness for 
STEM education at tertiary level in the Irish context. The study addresses the issue of student 
retention in STEM degrees by investigating the perceptions of three stakeholders – teachers, 
students and lecturers – on the mathematical preparedness of students for studying science and 
engineering at tertiary level. The study also examines the existence and perception of 
interdisciplinary STEM education in preparing students for the transition to tertiary level STEM 
learning. In this paper, we describe the rational and design of this pilot study at an Irish university, 
including the development of questionnaire instruments for teachers, students and lecturers. 
Further advancement of the study is also discussed, as well as the intention to design targeted 
support for first year students of science degrees. 

Keywords: Interdisciplinary approach, mathematics, science, student attrition, STEM education. 

Introduction 
Internationally, there has been increased emphasis on Science, Technology, Engineering and 
Mathematics (STEM) education and the exigent need to provide quality STEM education at 
primary, secondary and tertiary levels, in order to increase the number and quality of STEM 
graduates (DES, 2017; Friedman, 2005; Sanders, 2009). With augmented political and economic 
focus in the last 20 years, STEM education and integration has come to the forefront of national and 
global policies. While recommendations have been made for integrative STEM education (see e.g. 
Breiner et al., 2012; Kennedy & Odell, 2014; Sanders, 2009), there remains some hesitancy about 
how exactly STEM should be integrated in an educational context (Blackley & Howell, 2015). In 
Ireland, there is a particular concern that students entering higher education are under-prepared to 
engage effectively with learning in STEM courses (DES, 2011). Mathematics and science 
especially are central to many STEM courses at tertiary level, with first year undergraduates often 
lacking the skills and knowledge in these subjects to successfully engage with their STEM degree. 
This paper describes a pilot study of students’ mathematical preparedness for learning science and 
engineering at tertiary level in the Irish context. The authors aim to investigate the students’ 
mathematical preparedness from three perspectives: first year students enrolled in science and 
engineering degrees at an Irish university; science and engineering lecturers teaching first year 
modules at the university; and senior cycle post-primary (second-level) mathematics and science 
teachers; as well as the existence and perceptions of interdisciplinary STEM teaching and learning. 
In addition, the way in which these groups use social media to develop informal networks between 
second and tertiary level education will be analysed. As data collection through questionnaire 
surveys is in process, this paper describes the rationale and design of the study.  
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Study rationale 
Concerns about student retention in higher education is an international phenomenon, because of 
the very high drop-out rate from first year, and because Higher Education Institutes (HEIs) are held 
more accountable for students’ success (Coertjens et al., 2016). In New Zealand, Jia and Maloney 
(2015) found that students enrolled in STEM degrees had the highest course non-completion rates. 
This is consistent with Rask (2010) and Chen and Soldner’s (2013) findings in the US that grades 
and student retention rates are systematically lower in the STEM subjects of Sciences, Computing, 
Mathematics and Engineering. Similarly Malm et al. (2012) report that at the School of Engineering 
at Lund University, Sweden, the percentage of matriculating students who successfully complete 
their MSc engineering degree is about 60%. Most of the students who drop out do so during the first 
year, with a 21% attrition rate found in one particular year. Student progression and retention is now 
a national priority in Irish Higher Education, and is a major focus of national policy in recent years 
(HEA 2016). There has been a steady increase in student enrolments in higher education in Ireland 
over recent decades, with an increase of 7% between 2011 and 2016 of full-time undergraduate new 
entrants (HEA 2016). A report from the Higher Education Authority in Ireland found that the 
overall rate of non-progression (from year one to year two) was 11% for level 8 degrees in 
universities in the year 2012/13 (HEA 2016). Notably, prior academic achievement has been found 
to be the strongest predictor of non-progression in higher education (HEA, 2018). Therefore, there 
is a strong rationale for investigating students’ transition to university, particularly for students 
enrolled in STEM degrees.  

While several factors may impact on student progression, for science and engineering students, their 
level of mathematical knowledge is crucially important (HEA 2016), but even students with good 
marks in school mathematics can struggle with the mathematical aspects of third-level science and 
engineering courses. It is important to have good mathematical knowledge, but even more so to 
know how to use that knowledge in other subjects. However, very often mathematics is not taught 
in an integrated/interdisciplinary fashion at second level. Science and mathematics can be very 
separate as school subjects even where they share overlapping content (Czerniak & Johnson, 2014). 
It has been found that school mathematics teachers are often unfamiliar with the science subjects, 
and vice versa for science teachers (Walshe, Johnston, & McClelland, 2017). It is possible also that 
second level teachers are not teaching mathematics with students’ future third-level STEM degrees 
in mind. Thus, the authors aim to address the following research questions in their study: 

1. What are teachers, lecturers and first year students’ perspectives on the level of 
mathematical preparedness of students for science and engineering degrees? 

2. What understanding do teachers, lecturers and students have of STEM education, and in 
particular, integrated approaches to teaching STEM subjects? 

3. Does social media indicate that networks exist that connect various actors across second and 
third level, such that the students’ process of mathematical preparedness might be 
enhanced? 
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These research questions will be addressed in the first exploratory phase of the research. The 
authors aim to design and implement a pilot intervention for students at risk of failing their first-
year science modules in the second phase which will be informed by the findings of this study. 

Interdisciplinary education in STEM 
Both in Ireland and internationally, education initiatives have often focused on improving 
individual disciplines in STEM (discipline silos) rather than integrating the collective. These efforts 
aim to enhance students’ learning in each of the STEM disciplines through a focus on inquiry, 
problem solving and constructivist learning, which are essential skills for the 21st century. However, 
researchers have argued that for students to be fully prepared for future STEM careers in the real 
world, there needs to be an emphasis on interdisciplinary thinking (Asghar et al., 2012; Breiner et 
al., 2012). In conceptualizing what STEM means, many people do not have an interdisciplinary 
understanding of STEM (Breiner et al., 2012). “Everybody who knows what it means knows what it 
means, and everybody else doesn’t” (Angier, 2010). In their study of faculty members’ 
conceptualization of STEM, Breiner et al. (2012) found diverging views from both STEM and non-
STEM disciplines. Becker and Park (2011) conducted a meta-analysis of STEM integration studies 
and found that STEM teachers are often unaware of the benefits of integration and school 
administrators often do not support integrative approaches as a means to motivate students’ learning 
in STEM. Teachers’ self-efficacy plays a vital role in successful teaching (Stohlmann et al., 2012) 
and teachers’ content and pedagogical knowledge can influence their teaching self-efficacy. 
Stohlmann et al. noted that teachers’ comfort with teaching integrated STEM lessons was also 
affected by their commitment to future integrative STEM teaching. Laboy-Rush (2011) avers that 
the success of integrative STEM initiatives is very much dependent on teachers’ attitudes to 
changes in their teaching practice, and these attitudes can be influenced by teaching efficacy (De 
Mesquita & Drake, 1994). Teachers’ attitudes to adopting an integrative STEM teaching approach 
can affect their commitment to such initiatives as well as influence their students’ interest and 
motivation in STEM (Al Salami et al., 2017).  In analysing the conceptual changes of teachers 
towards interdisciplinary STEM teaching, Al Salami et al. found that a year-long professional 
development programme elicited little or no change which is consistent with previous studies on 
teacher change. Findings did indicate however, a significant positive association between teachers’ 
attitudes towards interdisciplinary teaching and attitudes to teamwork, and also between attitudes 
towards interdisciplinary teaching and teaching satisfaction. It should be acknowledged that while 
there are benefits to integrating STEM subjects, there are also costs to teachers and schools in terms 
of time, resources and developing expertise (Gresnigt, Taconis, van Keulen, Gravemeijer, & 
Baartman, 2014). 

There are many definitions of interdisciplinary teaching and learning or integration, and many 
approaches and models suggested for how it can be applied in teaching (Hurley, 2001, Pang & 
Good, 2000). Terms used in the literature to describe integration include: interdisciplinary; 
multidisciplinary; transdisciplinary; thematic; integrated; connected; nested; sequenced; shared; 
webbed; threaded; immersed; networked; blended; fused; correlated, coordinated, and unified 
curricula (Berlin & Lee, 2005; Czerniak & Johnson, 2014). A common definition of integration 
does not exist, and this ambiguity is inherent in the sheer number of terms used to describe it. 
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Moreover, these terms can mean different things to different researchers (Czerniak & Johnson, 
2014; Kysilka, 1998). Berlin and Lee note in their analysis of the literature on science and 
mathematics integration from 1990 to 2001 that while many theoretical models have been proposed; 
there is a ‘critical need for careful conceptualization and additional research on integrated science 
and mathematics teaching and learning’ (2005, p. 22). As part of this study, the authors aim to 
clarify what teachers, lecturers and students currently understand by interdisciplinary STEM 
education, with a view to developing interventions that could address any gaps or shortcomings that 
are found to exist in their current conceptualisations and practice.  

Study design 
The methodology for this study is Educational Design Research, characterized by iterative design 
and formative evaluation of interventions in complex real-world settings. Working with all 
stakeholders, i.e. practitioners and end-users, to inform, design, pilot and refine the elements of an 
educational intervention is an essential part of this methodology (Plomp & Nieveen, 2013). This 
paper describes the first phase of our study which is chiefly designed as exploratory, inductive 
research. Exploratory research aims to apply “new words, concepts, explanations, theories and 
hypotheses to reality with the expectation of offering new ways of seeing and perceiving how this 
segment of reality works, how it is organized, and more specifically how and in what way different 
factors relate to each other causally.” (Reiter, 2017, p. 139). This understanding of exploratory 
research frames our phase 1 study design in investigating students’ mathematical preparedness for 
learning science and engineering in first year of university. Our study is underpinned by the 
constructivist position that people construct knowledge and its meaning from their experiences 
(Driscoll, 2000). The authors hypothesize that university students’ learning of science and 
engineering is affected by their knowledge of mathematics and their experience of learning 
mathematics/science in post-primary education. The authors further hypothesize that students’ 
exposure to integrative, interdisciplinary-based learning in mathematics and science at post-primary 
level affects their mathematical preparedness for studying science and engineering at university. 
These hypotheses led to the formation of our four research questions in the introduction section of 
this paper.  To answer our research questions, three questionnaires were designed, aimed at first 
year university students in science/engineering degrees, science/engineering lecturers and post-
primary teachers teaching science and mathematics at senior cycle (the final 2 years of post-primary 
education in Ireland). Both quantitative, fixed-response items and qualitative, open-ended questions 
are employed in all questionnaires. To aid in comparative analysis, questionnaires contain similar 
sections and items, adapted where necessary to suit the intended participant. 

All three questionnaires aim to determine the target groups’ understanding of STEM education and 
interdisciplinary teaching. Items were adapted from Bayer (2009) to suit the Irish context, and to 
suit the target audience (teachers, lecturers or students). Each questionnaire also had items specific 
to the target group. For example, the teacher questionnaire addressed participants’ team-teaching 
and collaborative planning experience, as research has suggested a link between teachers’ attitudes 
to interdisciplinary teaching and attitudes to teamwork (Al Salami et al., 2017). Relevant parts are 
adapted for mathematics or science teachers. They are also asked about their use of specific 
teaching practices which have been highlighted in the literature as optimal in science and 
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mathematics teaching, and which may also be useful for interdisciplinary teaching (Stohlmann et 
al., 2012; Zemelman et al., 2005). Teachers’ views on their role preparing students for third level 
education, and their familiarity with third-level STEM courses is also investigated. For the lecturer 
questionnaire, respondents are asked to rate their level of knowledge of Senior Cycle science and 
mathematics subject curricula, as well as the relevance of mathematics to the first year module(s) 
they teach. An important aspect of the lecturer questionnaire is to investigate their perceptions of 
the mathematical gaps that new university students may have in terms of learning 
science/engineering at third-level. It has long been reported that students experience difficulties 
with transitioning into third-level for a variety of reasons, including the very different style of 
learning and teaching compared to school  (Harvey et al., 2006; Lovatt & Finlayson, 2013). The 
student questionnaire therefore investigates student perceptions of their preparedness for learning at 
university generally, for example in terms of time management issues, critical thinking and 
conducting independent research (National Forum, 2015), as well as their preparedness for 
(understanding of and attitudes towards) utilizing their school mathematics within third-level 
science/engineering modules.  

The second phase of our study involves distribution of the questionnaires with a sample of first year 
science/engineering students, science/engineering lecturers and post-primary teachers teaching 
senior cycle mathematics/science (currently in process). The student and teacher questionnaires are 
being distributed in paper form and the lecturer questionnaire will be an online version 
(SurveyMonkey). Once the questionnaires have been returned, the data will be analysed. Fixed-
response items will be analysed statistically using the Statistical Package for the Social Sciences 
(SPSS). Analysis will include descriptive statistics, reliability testing and correlation of items and 
variables. Comparative analysis will be performed within and between participant groups. Open-
ended items will be analysed using inductive content analysis to derive themes relating to the 
research questions. A search of social media sites such as Facebook, Twitter and Instagram will be 
conducted to examine existing networks between second and tertiary level in relation to student 
preparedness for STEM degrees. 

Findings will be used to design an intervention aimed at supporting students at risk of failing first 
year science modules. It is intended that a more in-depth study on the issue of students’ 
mathematical preparedness for studying science and engineering degrees as well as the existence 
and perceptions of interdisciplinary STEM teaching and learning will be conducted in light of the 
findings of this pilot study. A limitation of the pilot study is that the teachers who participate in the 
survey are not sourced as the prior teachers of the first year students participating in the study. As 
such, in the subsequent study the authors will aim to survey teachers from the post-primary schools 
previously attended by the first year students to enhance insight into the issue of transition to 
science and engineering degrees. Further study will also involve the implementation and evaluation 
of the designed intervention for first year science degree students.  

Conclusion 
This paper has described an innovative pilot study in the Irish context. The study aims to address 
two issues of utmost importance to STEM education interests on a national and international level. 

Thematic Working Group 26

Proceedings of CERME11 4779



 

 

The first issue, relating to student transition to STEM degrees and student retention in STEM 
degrees, is a priority not only for educators, but also for policy makers and industry. The authors 
seek to gain new insight into the preparedness of first year students in science and engineering 
courses, with a particular focus on students’ mathematical preparedness. This insight will be 
enhanced through the perceptions of three stakeholders in the student transition process; post-
primary teachers, university lecturers and students in first year of university. Our findings in this 
study will also be used to develop targeted support for these students. The second issue we address 
is perceptions and understanding of interdisciplinary STEM education, which has received 
increasing attention from researchers internationally, but little research exists in the Irish context. 
Our study seeks to fill this gap and contribute to the international research. In particular, we take a 
novel approach in examining the role of interdisciplinary STEM learning in student preparedness 
for STEM education at tertiary level. 
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This paper reports on a teacher education project aiming to prepare pre-service teachers (PTs) of 
mathematics and of physics for developing STEM integration activities in school. In this study we 
aim to analyze pre-service teachers’ perspectives about the role of statistics in one interdisciplinary 
learning scenario to foster the integration of physics and statistics using technology, enacted with 
8th grade students. Data collected from the group lesson plans and the written individual reflections 
of the 10 PTs enrolled in the project, qualitatively analysed, reveal that PTs of both subject areas 
recognize the central role of statistics in the learning scenario in relation with the three considered 
dimensions of the model of Authentic Integration adopted. However, they also document that the 
knowledge synthesis of the two areas involves a high level of complexity, and identify several 
challenges they faced concerning that process. 

Keywords: Pre-service teachers, teacher education, statistics, STEM. 

Introduction 
A successful STEM integration depends on teachers’ perspectives and knowledge to adopt this 
pedagogical practice, namely to choose effective learning materials and topics suitable for that 
integration and feel confident in adopting teaching methods beyond traditional ones (Kim & Bolger, 
2017; Ní Ríordáin, Johnston, & Walshe, 2016). Thus, it is fundamental that, in their initial teacher 
education, future teachers have the opportunity to experience interdisciplinary situations to fill their 
lack of knowledge to develop experiences of articulation between diverse disciplines (Ní Ríordáin 
et al., 2016). However, in the case of mathematics, some studies show that this is the subject with 
less benefits in the STEM context (Becker & Parker, 2011) and that quite often mathematics is 
incidental to the purpose of the integration activities (Fitzallen, 2015). Emerging from a teacher 
education project with mathematics and physics secondary pre-service teachers (PTs), this study 
intends to contribute to the debate concerning the preparation of future mathematics teachers for 
STEM context. We formulated the following research question: what are PTs’ perspectives about 
the role of statistics in a learning scenario with one 8th grade class fostering the integration of 
physics and statistics?  

Theoretical framework 
Pre-service teacher education on STEM integration 

One of the main reasons for teachers’ negative perception of STEM education is that they feel 
underprepared to teach within an interdisciplinary curriculum, due to the targeted scope of their 
own education (Frykholm & Glasson, 2005). In answer to that, several studies suggest introducing 
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pre-service teachers to curriculum integration during their teacher education programs by engaging 
them, for example, in developing STEM lesson plans as course work and including hands-on 
activities and inquiry-based strategies, in order to improve teacher effectiveness and confidence 
(Kim & Bolger 2017; Koirala & Bowman, 2003). The results of prior studies (e.g. Kim & Bolger, 
2017) have shown that the experience of developing STEM lesson plans within the methods course 
had a positive influence on elementary prospective teachers’ attitudes toward STEM. Specifically, 
the authors saw significant gain on: subject awareness; prospective teachers’ perceived ability to 
create materials for STEM education, confidence and commitment to enact such lessons in their 
future classroom; their perception of the potential of integration for helping students learn in a fun 
and interesting way that makes learning meaningful, allowing them to see the connection between 
science and mathematics and its use in their lives; their perception of the necessity for using team 
work to accomplish that integration. Other studies (Koirala & Bowman, 2003; Ní Riordan et al., 
2016) reported on how PTs viewed the challenges and benefits of firsthand experience developing 
STEM lesson plans. Many preservice teachers appreciated the emphasis on integration used in the 
course, which develop their understanding of key aspects of practice that need to be taken into 
consideration when planning such type of initiatives. 

Despite the benefits of engaging PTs in STEM lesson planning within teacher education courses, 
this is a challenging activity as most of the teachers are unsure of the extent of individual topics that 
could be integrated within their lesson plans and of the breadth in their own content knowledge 
needed for teaching in multiple subject areas, due to their limited understanding of both science and 
mathematics concepts they are expected to teach (Brown & Bogiages, 2019). The same authors 
emphasized that, in order to be effective on mathematics and science integration, mathematics 
teachers need to be aware of the potential of science to provide meaningful contexts within which to 
set, for example, statistical investigations. Similarly, science teachers, who are developing methods 
for implementing investigations and scientific argumentation in their classrooms, need to be aware 
of the close ties of statistical tools with decision-making. 

To explore authentic integration of science and mathematics, various authors suggest collaboration 
between mathematics teachers and science teachers as a way to develop their content and 
pedagogical content knowledge (Frykholm & Glasson, 2005). Though in many teacher education 
programs prospective mathematics and science teachers get to attend some pedagogy courses 
together, it is not usual having them discussing interdisciplinary issues of both scientific areas or 
cooperating in interdisciplinary projects, foreseeing their future teaching practice. 

The model of “Authentic Integration” 

Research has suggested diverse pedagogical approaches to meet the specific needs in the integration 
of mathematics and science in classrooms. Such suggestions offer important elements regarding the 
nature of the lessons that would provide opportunities to students to experience the recognized 
benefits of integrating mathematics and science. Several studies recommend that the lessons content 
should be contextualized and taught in an authentic manner involving hands-on, group work, 
inquiry, and discussion (Frykholm & Glasson, 2005; Treacy & O’Donoghue, 2014). Based on 
research, Treacy and O’Donoghue (2014) developed a teaching model for integrating mathematics 
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and science entitled “Authentic Integration” that is rooted in constructivism and requires lessons to 
be based on rich tasks, which relates to the real world and ensure that group work, inquiry and 
discussions play a central role in the classroom. The model embodies four characteristics that are 
considered to be fundamental for allowing that integration. The first characteristic – knowledge 
development, synthesis and application – is related to the integration of knowledge from diverse 
fields of Mathematics and Sciences, in which students must be able to apply knowledge of both 
areas to solve a problem in a real context. Another key feature of the integration model is focused 
inquiry, as a means of enabling students to develop higher-level thinking processes. Inquiry, in this 
study, it is understood as the work around multifaceted tasks that involve in an active way students 
in: making observations, posing questions, searching in diverse sources of information, planning 
research, reviewing what is already known about the experiment, using tools to analyze and 
interpret data, exploring, making predictions to answer the question, and communicating the results 
(Lederman, 2006). In this type of activity, students are encouraged to use evidence to answer 
questions and develop their arguments by linking them to scientific knowledge (Lederman, 2006). 
This kind of activities place students at the center of their learning, promote understanding of 
phenomena, support argumentation and communication, as well as their reasoning processes and 
critical thinking (Carlson, Humphrey, & Reinhardt, 2003). Another characteristic of the model is its 
application to real-world scenarios, allowing students to solve problems related to everyday life 
and to better understand phenomena that are familiar to them. Finally, the model requires lessons to 
be based on rich tasks, that is, these must entail challenges based on problems that are 
transdisciplinary. This model has proven to be effective in sense that, when the Authentic 
Instruction model was applied in the classroom, the learning which took place was relevant (Treacy 
& O’Donoghue, 2014). 

Context and methods 
This study is based on an innovative preservice teacher education project aiming to assist 10 
Portuguese prospective teachers, enrolled in the first year of master’s programs in the teaching of 
Mathematics (n=6) and of Physics and Chemistry (n=4) at middle and secondary school levels, in 
developing knowledge about how to develop integrated STEM activities in school. The project 
involved one Didactics of Mathematics course and one Practical Preparation course of each 
program and was developed collaboratively by three teacher educators (the authors) who were 
responsible for co-teaching these courses. The Didactics of Mathematics course used an inquiry 
based pedagogical approach with a focus on pedagogical content knowledge to facilitate effective 
mathematics teaching and to help PTs to understand how to appropriately engage children in 
learning mathematics, particularly statistics. During one semester, the PTs attended the Practical 
Preparation courses together, having the opportunity to discuss interdisciplinary issues in these 
scientific areas and to cooperate among them (working in interdisciplinary small groups of three or 
four) in planning and enacting an interdisciplinary learning scenario. This learning scenario 
included a sequence of three lessons to be taught with one 8th grade low achievers class, based on a 
perspective of articulation of the two scientific areas, around an inquiry task (Thaw in Alaska) using 
technology. The task was created by the teacher educators in collaboration with the PTs and physics 
cooperating teacher of the class, aiming to promote students’ understanding of the physical 
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phenomenon of ice breaking by integrating statistical and physical concepts, and working 
autonomous and collaboratively. The context of the task is realistic as it is based on a contest that 
occurs every year in Nenana city, Alaska (Nenana Ice Classic – www.nenanaakiceclassic.com). The 
task asks 8th grade students to formulate conjectures on the most probable day of the year and 
moment of the day to occur the river’s thaw, based on statistical data over the last 100 years that 
were available and explored by them using TinkerPlotsTM software (Konold & Miller, 2005). 
Simultaneously, these students were required to use their knowledge from physics, to interpret the 
icebreaking phenomenon in that river and to give scientific arguments that could explain the 
moment when it occurs. Therefore, this inquiry task motivates students to mobilize and connect 
knowledge from statistics and physics. 

For this study we collected the group lesson plans and the individual assignments of the 10 PTs 
(mentioned by fictitious names) written after they taught the planned lessons to the 8th grade class, 
where they were asked to reflect about their experience of planning and enacting the learning 
scenario in school. The qualitative data analysis carried out focuses on three dimensions of the 
Authentic Integration model: application to real-world scenarios, high order thinking processes; 
and knowledge development, synthesis and application. For data analyses purpose we searched in 
the PTs’ individual assignments for instances where they explicitly mention elements concerning 
statistics present in the task or in students’ intended or actual activity with the task, for each of the 
three dimensions of the model. Additionally we read all lesson plans as complementary information 
to the PTs’ written reflections. 

Results 
Application to real-world scenarios 

There is a shared recognition on part of these PTs that the task has a strong connection with a real-
world scenario. For instance, the PTs value the fact that the situation proposed to students is related 
to a contest that actually occurs every year. The learning scenario is seen by the PTs as an 
opportunity for showing students that the statistics and physics they learn at school can be 
applicable to real life. From the point of view of some PTs, and due to its interdisciplinary nature, 
the task helps students to perceive that concepts of these two areas are not “only vague concepts and 
useless in the real world” (Elsa). 

The specific role of statistics in the task, in relation to its context, is also recognized by the PTs. The 
fact that students are asked to analyse real world data is seen as an opportunity to develop new 
knowledge about the world and not just something they have to do to give an answer to the 
questions included in the task: 

This task gave students the opportunity to develop their knowledge about the real meaning of 
statistical data and also about physical processes that occur in nature (…); this allows students to 
gain knowledge about the tangible world. (Carlota) 

Some PTs also mention that students can explore a large amount of data by using Tinkerplots 
software, which contributes to a deeper understanding of the situation. The software potentiality to 
help students in the interpretation of data and to establish relationship with the real-world situation 
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is highlighted by some PTs: “[The software] by facilitating the interpretation of the data allows 
students to draw better conclusions about them and also to assign more meaning to them in the 
context in which they belong” (Daniela). Therefore they acknowledge the centrality of statistics in 
the task by the exploration students are asked to do of real data. 

An aspect that is less mentioned by PTs is that the learning carried out around a real context, in this 
case a contest, can be mobilized in other situations. However, one of these PTs mentions that 
students may face challenges in the future: 

that require skills and competences developed here. In fact, it is important to have the capacity to 
look at data and to observe how they can provide important information for future challenges, as 
the students looked at provided data and tried to understand how they could help them make the 
best bet. (Madalena) 

High order thinking processes 

During the work carried out in designing the learning scenario with the PTs, the teacher educators 
emphasized the intention that students could be involved in inquiry processes. Therefore, it is not 
surprising that, in their reflections, PTs’ classify the task as an inquiry and describe some high order 
thinking processes related to statistics present in students’ activity, such as, to make predictions and 
conjectures, explore and interpret data and draw conclusions, and present scientific arguments and 
counter-arguments. For instance, one PT recognizes several processes according to the different 
parts of the task as they had different features:  

if an inquiry perspective is adopted for the task; in the section “My idea is ...” students have to 
formulate hypothesis and to investigate the veracity of these hypotheses by integrating the 
technology (in the section “The data collected indicate that ...”), and finally to draw conclusions, 
communicate the results obtained and justify them on the basis of their investigations. (Carlota) 

As PTs reflect about students’ work with statistics around the exploration of data with the software, 
they describe high order statistical processes fostered by the task always in that context. They 
recognise that technology has a central role in supporting students in analysing variables in different 
representations to draw conclusions: 

The study of the variables related to the moment of day and moment of month (…) allows 
clarifying the analysis done, and promotes not only a greater diversity of graphical 
representations and the consequent development of the capacities of reading and graphic 
interpretation, as well as a deepening of the conclusions obtained from these. (Madalena) 

Some PTs also recognize the important role of technology in association with the inquiry task to 
promote other thinking processes such as interpretation and reflection: “Technology allows 
differentiated contact with statistics and learning is promoted by the fact that the task requires 
students’ interpretation and reflection and not only a mechanical work” (Elsa). By high lightening 
these processes, these PTs show that they ascribe an important and central role to statistics in the 
learning scenario. 

The experience of task enactment in the classroom made it possible to recognize that the involved 
processes are very demanding for many students. PTs relate the difficulties they have noticed in 
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students both with their knowledge of mathematics and physics and their unfamiliarity with this 
type of proposal. For example, one PT mentioned that: 

the students also showed some difficulties in being able to justify their ideas (…) and to present a 
scientific justification for the conclusions written from the analysis of the data, using the 
technological resource. (Cristina) 

Also the software’s potentiality of generating multiple representations has represented a difficulty 
for students, as they have to find out the representations that best support them in interpreting the 
data and drawing conclusions.  

Knowledge development, synthesis and application 

Within the learning scenario that has been designed there was no intention of teaching new topics in 
statistics or physics but to create a situation where students could mobilise their knowledge from 
those two subjects to support their thinking. PTs seem to have well understood that perspective and 
as such they have identified certain statistical topics in students’ activity with the task, such as 
treatment and analysis of data, measures of central tendency or the concept of probability. This last 
concept has been mentioned by one of the Physics PTs, which is something interesting in this 
context: “By analyzing the students’ answers, it is possible to verify that there are students who 
have managed to apprehend the probabilistic meaning [of the required answer] when they refer at 
15h it will be more likely to occur the thaw” (Micaela). 

The knowledge synthesis of the two areas is a key aspect in the adopted model of “authentic 
integration” but at the same time it encompasses a high level of complexity. When reflecting on the 
planning of these lessons, the PTs recognize that they haven’t given the necessary attention to this 
process in order to support students:  

I also stress the [students’] difficulty in relating the data obtained in TinkerPlots with the 
physical explanation. Some students had a tendency to respond that the temperature was 
responsible for the thaw, however, they did not relate the months obtained in TinkerPlots and the 
particular case of Nenana [river]. (António) 

Some PTs point out the structure of the task as a limitation but also their planning and enactment of 
these lessons, where they could have promoted a systematization of ideas in order to help student to 
make connections between the reasoning they have developed within each of the two scientific 
areas. In fact, some PTs recognize they have conducted the whole class discussion of students’ 
work in a way that did not provoke the intended knowledge synthesis: 

We also failed in the discussion moment as we did not make a projection [to the whole class] of 
the students’ solutions using TinkerPlots (…) that would have allowed debating in depth the 
topic of central tendency measures and (…) to give a scientific explanation for the obtained 
results. (Matilde) 

Additionally, PTs have admitted that has been quite challenging to them to work with topics from 
the other subject. Their content knowledge preparation in only one of the areas was also felt by 
some of them as a constraint to be able to promote the synthesis of knowledge:  
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there is no doubt that it is a big challenge to integrate the two subjects in a single task, as during 
our academic trajectory we only had contact with the design of tasks that only making use of 
mathematics. (Cristina) 

However, every PT mention the opportunity to work in small groups with colleagues from the other 
area which represented from their point of view an essential contribution to design and enact the 
learning scenario in the classroom: “some statistical concepts that I could no longer remember, the 
colleagues in my group helped me to remember them, and I tried to help them with some physical 
concepts that would be necessary to solve the task” (Carlos). 

Conclusions 
The design and enactment of a learning scenario within statistics and physics, adopting the model of 
“authentic integration” (Treacy & O’Donoghue, 2014), has proven to be an opportunity for these 
PTs to acquire real experience of STEM practice, which they highly value. When reflecting on this 
one semester experience, PTs show an awareness of the role of statistics in different activities that 
have been carried out in relation with the three considered dimensions of the model. In opposition 
to other studies where mathematics tends to be incidental to the STEM context (Fitzallen, 2015), 
both groups of PTs in this study considered that statistics assumes great centrality in the learning 
scenario that has been developed. One reason for the recognized visibility of statistics may be 
related to the features of the task itself as it requires students to analyse real world data (the 1st 
dimension considered in the model). These PTs highly value this dimension of the task in the sense 
of making learning meaningful and showing the usefulness of statistics (and also physics) to 
students, results also present in the study by Kim and Bolger (2017). 

PTs also perceive that the task demanded high order thinking processes (the 2nd dimension) that 
were supported by statistics. The inquiry nature of the task required the exploration and 
interpretation of statistical data in order to make conjectures and draw conclusions, something that 
put into evidence the role of statistical tools for decision-making in STEM contexts (Brown & 
Bogiages, 2019). PTs also stress the important role of technology for promoting inquiry processes 
(Lederman, 2006), in this case with the statistical software. 

From the formative point of view, it is also relevant that PTs show a critical stance regarding the 
effective opportunities provided for knowledge synthesis of the two subject areas (part of the 3rd 
dimension). Acknowledging that this process involves a high level of complexity, PTs recognize the 
challenges they faced and the need to give particular attention to this aspect when planning the 
lessons (Koirala & Bowman, 2003; Ní Riordan et al., 2016).  

This study shows the feasibility of developing an interdisciplinary learning scenario in a pre-service 
teacher education program with two distinct areas, using a specific model. However, as this is a 
time consuming activity in its different aspects (Brown & Bogiages, 2019), from designing the task 
to the elaboration of the lesson plan, it needs to be reflected when designing the courses. 
Collaboration among peers from two different subject areas has revealed to be quite beneficial for 
these PTs and of significance in supporting an integrative approach to teaching mathematics and 
physics. Therefore the model of “authentic integration” seems to be adequate to support teachers 
from diverse subjects to work together in a STEM context. 
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As a result of focused efforts to promote STEM education, there is an increased interest in 
understanding the use of engineering and technology contexts to teach mathematics in K-12 
classrooms. This design research was conducted in a grade 7 classroom of a suburban school. 
Analysis of student interviews revealed that the students possess a rudimentary understanding of 
parallel lines and lack a conceptual understanding of angles. These notions were used to design 
and develop mathematical instructional tasks with an engineering problem as the context in order 
to motivate students understanding to more sophisticated notions of angles and parallel lines. 

Keywords: Design research, engineering contexts, geometry, middle school, STEM integration. 

Introduction 
The intricacies of today’s technologically advanced world have pushed educators to rethink the set 
of core skills and knowledge that current students should learn. Included among these skills is 
problem solving, gathering data, evaluating evidence, making sense of information and 
communicating findings with others. Science, Technology, Engineering, and Mathematics (STEM) 
education provides students with opportunities to develop such skills and knowledge and also the 
application of that knowledge (Mahoney, 2010). STEM education started as a way of providing 
additional rigor and depth for gifted students, but over the years it has proven effective with a range 
of students and, in fact, has improved disadvantaged students’ motivation and performance (Kim & 
Law, 2012). This understanding of the importance and necessity of student-centered approaches has 
pushed researchers and policymakers’ work towards increasing student-learning opportunities in 
United States (Brown, 2012). Given the emphasis, there is no surprise that there is a huge push for 
educational standards reforms by organizations such as National Council of Teachers of 
Mathematics, the National Research Council, and the International Technology Education 
Association. Recent educational standards reforms such as Next Generation Science Standards 
(NGSS) and Common Core State Standards for Mathematics (CCSSM) encourage integration of 
engineering and technology in science and mathematics classrooms (Kuenzi, 2008). 

The underlying intent of these mathematics standards is to enculturate students into the 
mathematical practices that will encourage deeper understanding of the concepts (cf. Standards for 
Mathematical Practices, CCSSM) and help students apply mathematics to the world around them 
(Brown, 2012). STEM-based mathematics learning, at its heart, is an investigative process that 
allows the learner to dive deeply into a topic and use mathematics to create a solution. A student 
centric approach like STEM-based learning becomes not only a viable method of teaching and 
learning, but possibly a highly effective method as well (Bybee, 2010). The central idea with STEM 
education is promoting pedagogical practices that are student centric. That is, teachers play the role 
of facilitators as opposed to the traditional knowledge provider.  
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Teachers employ several instructional strategies including student-led presentations, problem-based 
learning, brainstorming sessions, small group discussions, simulations, student-led experiments and 
engineering designs and so on (Fairweather, 2008). In the world of mathematics, STEM-based 
learning allows students to use mathematics within the context of other subject areas to solve 
problems. This process requires students to learn math to apply to the formation of a solution or 
solutions. The math is never separated from other disciplines, thereby making the construction and 
the application of knowledge easier (Fairweather, 2008). STEM-based learning accesses the 
students’ knowledge and engages students to be part of a community collaborating together on 
activities (Blumenfeld, Krajcik, Marx, & Soloway, 1994). Thus, students share what they already 
know with other students in the group toward finding solutions for the tasks at hand.  Students 
discuss, justify, and argue about the mathematics as part of this collaboration. This research paper is 
a part of a larger research study that aimed to contribute to the ongoing dialogue regarding the 
efficacy of genuine STEM integration. Specifically, this study explored the process of design and 
implementation of a classroom-learning trajectory (Stephan, 2014) that integrated mathematics and 
engineering in an authentic manner to evoke STEM practices more generally. Our goal was to 
explore the feasibility of using engineering contexts to teach mathematics and to develop a 
conceptual framework for effective STEM integration. The rationale behind choosing a design 
based research approach was the ability to contribute to development of theory and educational 
practices together given that the inter-relation between them is complex and dynamic (Plomp & 
Nieveen, 2007). 

Literature review 
This review highlights the research on two notions that form the core of the arguments presented 
throughout the paper. The first section encompasses the present nature and understanding of STEM 
integration in K-12 education and the subsection on student conception of angles and parallel lines 
summarizes the framework for the analysis of the related student interviews. 

STEM integration 

While there has been a nationwide push to increase STEM in secondary schools, the debate 
regarding the best practices for integrating STEM across multiple subjects still exists (Stephan, 
Pugalee, Cline, & Cline, 2016). Therefore, new theories of best integration practices in STEM are 
still being conceptualized and pursued. One of the greatest challenges facing secondary STEM 
teachers today is seamlessly and effectively integrating STEM content as well as the related 
processes into their core classes. A common barrier for this integration is accurately navigating the 
multiple static components of a STEM curriculum. The introduction of engineering as a critical 
component of STEM education is especially problematic for educators who have little training or 
prior skills with engineering content and principles. When STEM integrated lessons are based in 
systems thinking, the teaching of multiple subjects becomes less rigid. Kelley and Knowels (2016) 
conceptual framework for integrated STEM education alludes to this idea with their pulley system 
model. However they place the emphasis heavily on engineering design and scientific inquiry, 
which can lead to fewer instances for mathematics and technology to be a central part of the STEM 
system. Wang, Moore, Roehrig and Park (2011) showed that successful STEM integration is 
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possible using their case study of three middle school teachers. Their important findings included 
that teachers need more content knowledge especially in engineering and technology and that their 
STEM classroom practices depend on their perception of the use of STEM integration, which is 
influenced by their primary discipline. Also, typically mathematics is taught first to solve an 
engineering challenge whereas our in our approach instructional sequences are designed to use an 
engineering challenge to motivate students thinking of mathematics. 

Student conception of angles and parallel lines 

In this research, students’ current conceptions of angles and parallel lines are explored through their 
concept image. Tall and Vinner (1981) defines concept image as “…the total cognitive structure 
that is associated with the concept, which includes all the mental pictures and associated properties 
and processes” (p.152). Keiser, Klee, and Fitch (2003), in their action-based research with 77 sixth 
grade students, highlighted the limitation posed by definitions of mathematical concepts as, “the 
truth is that all definitions, by their very nature, tend to limit concepts because they establish 
boundaries” (p.117). The idea is that a definition can focus on one aspect of the concept, which may 
lead to students not having a well-developed concept image. Keiser (2004) further expands this 
notion of angle as a concept: What exactly is being measured when referring to the size of angles?, 
Can angles contain curves?, and difficulties with conceiving of 0°, 180°, and 360° angles. Fyhn 
(2008) summarized the research on cognition of angles and the key ideas of angles: Angle as a 
static geometric shape, dynamic notion, and as measure; and Angle without arc (as linked line), 
with arc (angle space), with arrow (part of a plane) and with rotation arrow (creation can be a 
described by rotation of a ray). Happs and Mansfield (1989) identified the following as the common 
misconceptions about parallel lines that student bring to lessons: parallel segments must be aligned; 
and presence of arrows or dots on the ends of lines affects whether or not those lines are parallel. 

Methodology 
The research reported in this paper aims to capture the students’ conception of angles and parallel 
lines in order to design the engineering context based instructional sequences for a middle grades 
mathematics classroom. The research was conducted in a 7th grade mathematics classroom of a 
STEM middle school in a suburban school district in the southeast region of United States. The 
classroom teacher was part of the design team along with faculty specializing in mathematics 
education, chemistry, and engineering at a large urban university and a mathematics education 
faculty member from an international university. This research is comprised of a pre-interview to 
assess the existing conceptions of angles and parallel lines, design and implementation of 
engineering-based instructional sequences and a post-interview to assess the changes in conceptions 
of angles and parallel lines. This research paper focuses mainly on the analysis of the pre-interview 
questions dealing with angles and parallel lines along with preliminary discussion of the design of 
the instructional sequence.   

Before developing the instructional sequences, 4 students (2 male and 2 female students) at 
different academic performance levels (as identified by the classroom teacher) were interviewed. 
The student’s cumulative performance on prior assessments in their current classroom was used as 
the criteria to classify the four academic performance levels as high, above average, average and 
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low. These four students engaged in a pre-interview with questions designed to probe their 
understanding of angles and parallel lines and an engineering problem. The purpose of these 
interviews was to learn the students’ current conceptions of these mathematical and engineering 
ideas and design the instructional sequences appropriately for the entire classroom. The interview 
questions probed for the students’ conceptual understanding of angles, parallel lines and their 
strategies in solving the engineering problem. The first angles question prompted the students to 
identify the biggest and smallest angle from a set of angles represented diagrammatically (Figure 1). 
The second set of angles questions asked the students to identify the number of angles in various 
diagrams such as a triangle (Figure 1) and validate their solution with a mathematical argument. 
Similarly, the parallel lines questions asked students to identify if the given lines, curves and 
geometric shapes (e.g., Figure 1) have anything parallel in them and validate their solution with a 
mathematical argument.  

 
Figure 1: Sample questions from the pre-interview questionnaire 

In analyzing the student responses, the constant comparative method (Glaser, 1965) was utilized in 
order to identify themes that are grounded within the data. The student justifications were broken 
down into discrete incidents. Researchers simultaneously coded and analyzed these specific 
incidents to inductively reason the categories for codes and their properties. Three researchers met 
and analyzed the student responses from the videos and identified emerging categories as the 
students communicated his/her mathematical arguments. The analysis also took into account the 
hand gestures of the students. Select portions of the videos were transcribed later for inclusion in 
the research. Constantly identifying and comparing the relationships between these categories led to 
the final themes. Once a theme emerged, data analyses were continued to either support or refute 
the theme until all the student responses were analyzed. This process was the same for both the 
angles and parallel lines questions, but analysis for each topic was performed separately. 

Findings and discussion 
This analysis of the students’ conceptions of angles and parallel lines comes from the pre-interview 
data, before instruction with an engineering context to teach the same mathematical concepts. The 
following three themes emerged from the angles questionnaire analysis: Using Prototypes or 
Reference Images, Tracing of the Lines, and Decoupling versus Decomposing.    

Theme one: Using prototypes or reference images 

The first theme that emerged from the data analysis was the idea of using prototypes or reference 
images of angles to identify and define angles. All of the students shared this notion where they 
used reference images such as 90°-, 180°- and 360°-angles or used the definitions of acute and 
obtuse angles. The students associated the word 90° or 180° with the diagrammatic representation 
of the same without any understanding of what it means that a right angle is 90°. For instance, the 
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student below expressed their confusion with straight angle and straight line, likely, as they had 
seen a straight line referred to as both a straight angle and a straight line in the past. 

Student: This is a straight... 

Interviewer: Straight what? 

Student: It is either a straight line or a straight angle because this is a whole 180. 

Theme two: Tracing of the lines 

A second theme that emerged from the data analysis was the idea of tracing the line to see if it 
changes direction as a rationale to identify if there is an angle. For instance, the student below, 
when asked to identify the number of angles in the given diagrammatic representation of the right 
triangle in Figure 1, reasoned that there was one angle because there was a corner which makes the 
line go in two different directions. The student viewed the rays of the angle dynamically in that a 
dot could be used to trace along one ray and then change direction to follow the other ray, thus, 
producing an angle. A different student traced the line as well, but the conception of angle was not 
as dynamic. The student viewed the two lines as two static entities connected at a point to form an 
angle. 

Student: So here's the main line and then it's starting to go up as in 90 degrees. 

Interviewer: The main line is going this way (horizontal), then the other line this way (vertical) 

Student: Yes, in a 90 degree angle. 

Theme three: Decoupling versus decomposing 

A third theme was the idea of dissociating the original angle from the two new angles when the 
original angle is split into two by a new ray. In other words, the students counted the whole angle as 
an angle and the two new split angles; each as one but they did not worry to check if the sum of the 
two new angles equals the original angle when they were asked to estimate the angles.  

 
Figure 2: Decoupling of angles 

In Figure 2, the student estimated the three angles of the equilateral triangle to be 75° and then the 
two split angles on the top to be 25° each. We also observed another case, where the student 
expressed that the original angle is no longer available when it is split and only the two new angles 
are left. In other words, they view the new right-angled triangles as a decoupled shape as opposed to 
decomposing the angle from the equilateral triangle into two right-angled triangles. 

The following two themes emerged from the parallel line questionnaire analysis: Never Touch and 
Same Shape Pattern. 
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Theme one: Never touch 

The first theme that emerged from the data analysis was the idea that something is parallel if they 
never touch. This is evident in one student’s use of railroad tracks as an example. The questionnaire 
began with sets of lines oriented in different angles and were misaligned the reasoning that they will 
never touch was predominately used by all students for these questions with lines. 

Interviewer: How about these? 

Student: Parallel, I see this mainly because they still won't touch. 

Theme two: Same shape pattern 

Another theme that emerged from the data analysis was the idea that for two lines or curves to be 
parallel they must have the same shape pattern and align in the same direction. This reasoning of 
having the same shape pattern emerged only when curves were introduced in the questions.  

Interviewer: How do you know that they are never going to touch each other? 

Student: As long as this pattern is maintained, they're never going to touch. 

However, two of the students extended the curves into a line to show that either the two lines/curves 
touch or not touch to justify their argument of whether they are or are not parallel. For instance, in 
Figure 3, the student extended the curve at the bottom as a line to touch the straight line on the top 
instead of following the pattern of the curve at the bottom. This shows that the students preferred 
the never touch rule over the same shape pattern when justifying their argument as to whether they 
are or are not parallel.  

Figure 3: Parallel lines/curves never touch 

From our analysis of students’ existing notions of parallel lines, the students’ mathematical 
arguments were rudimentary and based on their prior experiences of parallel lines either in 
mathematics or other subject areas. This is evident in the classic railroad track example followed by 
the justification that the two tracks never touch. Students demonstrated difficulty in extending the 
notion of the lines that never touch to more sophisticated notions such as that the lines are 
equidistant from each other. This exploration of student’s understanding of angles and parallel lines 
combined with perspectives from the literature was utilized to design the context of the engineering 
based instructional sequence for the classroom.   

Design of engineering problem based instructional sequences 
Gravemeijer and Doorman (1999) highlight the role of context problems as, “...context problems 
are intended for supporting a reinvention process that enables students to come to grips with formal 
mathematics” (p. 111). Combining this notion with the understanding of the students’ concept 
images of angles and parallel lines which is rudimentary as revealed in the findings above, the 
instructional sequences of building parallel roads in a residential community and constructing 3D 
models of two-story homes was developed. The problems within the sequences were designed to 
capitalize on students’ current conceptions of angles and parallel lines (as revealed in the 
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interviews), yet utilizing contextual features to revise those conceptions. The instructional activities 
were designed to develop students’ understanding of measuring angles as the degree of turn and 
parallel lines as the same distance apart. Designing a residential community is the engineering 
problem used to provide context for the mathematical task where the students identified the design 
constraints from an architect’s brief. In essence, the students played the role of an architect and 
were asked to develop the Phase II of an existing residential community given a map of Phase I.  

One of the constraints was to build a road parallel to the existing road on Phase I for aesthetic 
reasons, the context for the first mathematical instructional sequence. Student groups explored the 
possibility of using pre-drawn, existing parallel roads in Phase I and measuring the distance 
between the two existing roads to create new parallel roads. This led to the discussion of the 
concept of equidistance in parallel lines. Similar instructional sequences were used to develop the 
notions of parallel lines using angles. A post-interview was conducted to study if the engineering 
based instructional sequence, which was designed based on the pre-interview questionnaire analysis 
helped the students improve their understanding of the mathematical concepts related to angles and 
parallel lines. Due to page limitations, the analysis of the post-interview and additional instructional 
sequences are not discussed here and instead was discussed in detailed at the congress during the 
presentation. Post-interview analysis revealed that there was an overall improvement in conceptual 
understanding of angles and parallel lines among the four students.  

Current in-service mathematics teachers are asked to design and teach in STEM integrated 
classrooms, yet most of them are not academically trained in engineering and technology. This 
study is part of a larger investigation focused on a research-based framework for STEM integration. 
The analysis of student thinking relative to angles and parallel lines is important to this study as a 
foundation for informing the larger design research process. The analysis of student thinking 
revealed several limitations in students’ current conceptualization of angles and parallel lines, both 
of which are critical components in the target instructional tasks embedded within the engineering 
context of planning the roads and houses in a community. The students’ current perspectives with 
limited understanding of angles and parallel lines inform the larger design research study by setting 
up instructional tasks that specifically address these issues. This study underscores the role of 
visiting and revisiting student thinking as a necessary step in the design research process.  
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Opportunities to engage in STEM practices: Technology and design 
course  
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Technology and design courses hold a potential to contribute to the STEM agenda. In this study I 
seek to explore the nature of STEM education across the courses, particularly examining 7th grade 
intended curriculum in Turkey in terms of engineering design process and knowledge base. By 
extensive examination and coding of learning outcomes together with explanation provided under 
each one I identified instances of engineering design process and knowledge by learning areas. 52 
learning outcomes (27 with emphasis on knowledge and 25 with engineering design) were identified 
in the intended curriculum.  

Keywords: Engineering design process, knowledge, STEM, technology and design course. 

Introduction 
Technology and Design (T & D) courses, or similar forms, have been taught in many countries 
around the world. T & D courses hold potential to contribute to the Science, Technology, 
Engineering and Mathematics (STEM) education agenda, however currently this is not wholly 
examined how. The purpose of this study was to explore the way T & D course in Turkey 
contributes to the STEM education agenda. Specifically, the aim was to explore how existing 7th 
grade T & D course intended curriculum (Milli Eğitim Bakanlığı, 2017) concretize engineering 
design process (EDP) together with knowledge base combined with it, with the ultimate purpose of 
providing direction in understanding STEM education. EDP combines knowledge and skills from a 
variety of fields with the application of values and understanding of societal needs to create 
systems, components, or processes to meet human needs (NAE, 2009, p.9). The research questions 
of the study were: 

1. To what extent is engineering design process present in the 7th grade T & D course intended 
curriculum in Turkey? 

2. What are the central knowledge of engineering and technology that are present in existing 
curriculum? 

3. What are the central knowledge of mathematics and science that are present in existing 
curriculum? 

This study provided a window into the nature of STEM education across T & D courses. This 
information provided educational researchers, policy makers, and K-12 teachers with a detailed 
picture of what STEM education is, especially when that vision of STEM education includes 
engineering and technology.  This study was significant in order to demonstrate possibilities for a 
systematic integrated framework for engineering and technology in K-12. 

What is the engineering design process? 
EDP is the iterative process for creation and manipulation of the human-made world. It is one of the 
six tenets for successful STEM education (Moore et al., 2014). A number of core characteristics of 
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EDP are (1) the design process begins with problem definition; (2) design problems have many 
possible solutions and engineers must find systematic approaches to choosing between these; (3) 
design requires modeling and analysis; and (4) the design process is iterative (Berland, Steingut, & 
Ko, 2014, p.706). Figure 1 summarizes these four characteristics of engineering design, articulating 
the key aspects of each characteristic and highlighting the aspects that create the most opportunity 
for mathematics and science integration.  

Characteristic of design process                      Key aspects of the characteristic as identified in the 
literature 

Defining the problem Interviewing users and stake holders 
 Identifying the need that will be solved 
 Identifying sub-problems and goals 
 Exploring existing solutions 
 Describing the need in terms of quantifiable success criteria 
 Understanding key math and science principles 
Generating and selecting between 

multiple possible solutions 
Identifying multiple possible solution 

 Developing systematic approach for choosing between 
solutions by balancing different goals of the project 

Modeling and analysis Modeling parts of the existing system into which the solution 
must fit 

 Collecting, modeling, and analyzing performance data 
Iteration Revisiting previously completed steps in order to improve 

designs (some steps may require revision of math and 
science use previously completed) 

Note: Italics indicate the quantitative aspects that create the strongest opportunities for integration of traditional math 
and science content. Taken from Berland, Steingut, and Ko (2014, p.708) 

Figure 1:  Summary of the four characteristics of engineering design 

Methodology 
T & D course is a school subject offered as a compulsory course at the 7th and 8th grades in Turkey 
for two hours a week. In this context, individuals who complete the T & D course can observe and 
interpret objects, events, and facts in their surrounding in an analytical perspective, can develop 
creative and original alternative suggestions to the problems identified, and can make evaluations of 
these suggestions and decide on the appropriate one.   T & D course intended curriculum was 
created according to the learning area approach. Learning areas are (A) Technology and Design 
Basics, (B) Design Process and Introduction (promotion), (C) Built Environment and Product, (Ç) 
Needs and Innovations; and (D) Design and Technological Solution.  

To accomplish the aim of the study, I examined the 7th grade T & D course intended curriculum 
learning outcomes together with the explanations provided under each one. Learning outcomes 
helps to identify assumptions about what knowledge and skills the students need to bring to 
succeed. Although learning outcomes might differ in the ways they are written, they all express the 
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same idea and that is what the learner should know, do, or feel. Explanations provided under each 
learning outcomes assists teachers in building knowledge and skills in accordance with learning 
outcomes. Content analysis of learning outcomes was conducted using line-by-line analysis. The 
operational definitions of EDP (see Figure 1) and the five components of learning outcomes 
proposed by Gagné and Briggs (1974) guided the initial open coding of the outcomes. The unit of 
analysis during all phases of coding was the phrase. While coding the learning outcomes 
individually as phrases, a word analysis was deemed helpful in locating and portraying the big ideas 
of EDP and knowledge base. The most common verbs (see Figure 2) and objects (see Figure 3) 
found in the learning outcomes regarding EDP and knowledge base are provided below. 

EDP Knowledge 
Apply Compare 
Create Describe 
Design Provide 
Evaluate State 
Prepare  
Present  
Reinterpret  
Restructure  
Show  
Tell  

Figure 2: Most found verbs in EDP and knowledge 

All outcomes were coded using the following two primary categories: EDP, or knowledge. 
Outcomes that fit the category of EDP went into one of the four categories of EDP provided in 
Figure 1 as well as a new category labelled as presentation. Outcomes that fit the category of 
knowledge went into one of the three categories: Design, technology, or design and technology. An 
example learning outcome was: “7.A.2.1. State the elements of art/design”. This statement implies 
knowledge as “state” refers to capability verb pointing out verbal information and “the elements of 
art/design” refers to object that the learner will produce as a result of action. Additionally, the 
opportunities for using or integrating mathematics and science in these two main categories were 
also examined.  Inter-rater reliability verified consistency among two individuals through 
descriptive statistical measures. 

EDP Knowledge 
Design Design concepts 
Model Design principles 
Prototype Elements of art/design 
Product Examples 
 Technology concepts 
 Technological developments 

Figure 3: Most found objects in EDP and knowledge 
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Results 

A close analysis of the 7th grade T & D course intended curriculum reveals EDP together with 
knowledge base in technology and design. 52 learning outcomes (27 with emphasis on knowledge 
and 25 with EDP) (see Table 1) were identified in the intended curriculum. Core characteristics of 
the EDP and knowledge base are presented in Figure 4 and 5, respectively. Some explanations were 
found to have explicit references to mathematics and science. Regarding mathematics, two-three 
dimensional space appeared for producing or demonstrating a design, ratio-proportion as one of the 
design principle, measurement for analyzing physical dimensions of architectural structures or 
buildings, and graphing for representing a design. Explicit references to science were about energy, 
force, pressure, durability, resistance, balance, corrosion, or geography (geographical and climate 
conditions).  

Table 1: Number of learning outcomes at the 7th grade on knowledge and EDP by learning area 

 Learning Areas  
 A B C Ç D Total 

Knowledge       
Design 3 10 7 - - 20 
Technology 2 - - 1 - 3 
 Both 2 1 - 1 - 4 

EDP       
Defining the problem 1 1 - 1 1 4 
Generating and selecting between 
multiple possible solutions 

 1   2 3 

Modeling and analysis 1 2 4 2 1 10 
Iteration 1 1 1  2 5 
Presentation  1  1 1 3 

    Total 10 17 12 6 7 52 

Because of the space restriction, learning outcomes together with their coding are given only 
regarding to the two learning areas (see Figure 6 and 7).  

Conclusion 
This investigation provided a window into what STEM education look like in a T & D course 
within middle school. This curriculum could support teachers’ integration of STEM disciplines, 
particularly an understanding of the nature of EDP skills that would develop their ability to 
effectively integrate EDP into their science and mathematics instruction. This has great implications 
if integrated STEM is to include EDP. The degree of integration, however, would be related to the 
teachers’ awareness of how to make explicit and meaningful connections between the disciplines. 

This study also showed that the ideas expressed by Berland, Steingut, and Ko (2014) related to 
characteristics of EDP were present in the document analyzed together with the new additional 
characteristic named as presentation and key aspects of them. This will provide opportunity to 
compare the results found here with what courses offered in other countries. 

 

Thematic Working Group 26

Proceedings of CERME11 4802



 

 

 

Characteristic of design process                      Key aspects of the characteristics as identified in the 
curriculum 

Defining the problem Investigation of examples according to different criteria based 
on venue, lighting, colour, texture, physical measurements, 
geographical conditions, forms of life, manufacturing 
processes, necessary resources, security measures, 
environmental factors, user, applications, material 

 Following and reading published public spots, visual-print 
media news, and scientific research 

Generating and selecting between 
multiple possible solutions 

Developing solution alternatives and choosing the appropriate 
one based on the criteria pointed out in defining problem 

Modeling and analysis Creating model, prototype, drawings, or maquette of the 
design 

Iteration Revisiting previously completed steps in order to re-interpret 
or restructure designs based on the predetermined criteria or 
evaluation 

Presentation Short films, computer aided presentations, promotional card, 
poster, flyer 

Figure 4:  Summary of the five characteristics of EDP identified in the curriculum 

 Knowledge  
Design Technology Design and Technology 

Industrial design Invention, discovery, science, 
techniques, technology, industry, 
industry 4 

Relation between them and how they 
affect each other  

Graphic design Historical development of 
technology 

Positive and negative contributions 
of them to daily flow of life 

Architectural design Technologies to acquire energy The importance of them to solve 
problems 

Environmental design   
Elements of art/design   
Ergonomics   
Mechanical properties 
of design 

  

Figure 5:  Summary of the knowledge on design and technology identified in the curriculum 
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7.A. Technology and design basics 

Subjects Learning outcomes and explanations STEM 

7.A.1. 
Learning 
technology 
and design 

7. A. 1. 1. State the technology concept 
 
The concepts of invention, discovery, science, technique, 
technology, industry, and industry 4 are emphasized. 

Knowledge 
Technology 
 

 7. A. 1. 2. State the design concept 
 
Design concept which consists of industrial design, graphic design, 
architectural design, and environmental design areas are 
emphasized. 

Knowledge  
Design 
 

 7.A.1.3.  State the relation between technology and design 
 
Based on a product, relation between technology and design and 
how they affect each other are emphasized. 

Knowledge 
Technology 
and Design 
 

 7.A.1.4. Provide examples for technology and design from the real 
life 
The positive and negative contribution of technology and design to 
the daily flow of life are emphasized. The importance of the design 
and technology in solving problems faced in daily life are focused. 

Knowledge  
Technology 
and Design 
 

 7.A.1.5. Compare the technological developments in Turkey and 
other countries 
Based on a product, historical development of technologies (e.g. 
white goods, automobile, telephone, ship construction, agricultural 
machinery) is focused. 

Knowledge 
Technology 
 

Figure 6: The characteristics of the 7th grade curriculum technology and design basics area 
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7.A. Technology and design basics 

Subjects Learning outcomes and explanations STEM 

7.A.2. Basic 
Design  

7.A.2.1. State the elements of art/design 
 
How to use elements (line, color, texture, space form)   of 
Art/Design while expressing ideas are shown on examples. 

Knowledge 
Design 
 

 7.A.2.2. Show the elements of art/design on a product. 
 
A two or three dimensional design product might be investigated. 
While investigating, for example banner designs, environmental 
awareness and economy issues are focused. 

EDP  
Defining the 
problem 
 

 7.A.2.3. Describe design principles on a product 
 
Design principles including balance, rhythm, intonation, 
movement, unity, diversity, and ratio-proportion are given. 

Knowledge 
Design 
 

 7.A.2.4.Reinterpret a design product around 
 
After the product analysis and idea development process, a design 
product is re-interpreted as a drawing 

EDP 
Iteration 
 

 7.A.2.5. Create a design using art/design elements and design 
principles. 

 
Create a design using methods such as drawing, painting, cutting, 
folding, combining, tearing, gluing with emphasis on recycling 
and the production of product from waste materials 

EDP 
Modeling 
and analysis 
 

Figure 6 continued 
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7.D. Design and technological solution 

Subjects Learning outcomes and explanations STEM 

7.D.1. I am 
designing 
my original 
product 

7.D.1.1. Tells the design problem EDP 
Defining the 
problem 

 7.D.1.2. Apply the research steps to solve the design problem 
 
Discussing multiple possible solutions to a problem via 
investigating similar examples, using right data sources, and 
developing the idea of an original design are emphasized. 

EDP 
Generating 
and selecting 
between 
multiple 
possible 
solutions 

 7.D.1.3. Prepare a design plan 
 
User, material, application and environmental factors to be taken 
into account; investigation of methods and techniques to solve 
problems, development of solution alternatives, chose one of the 
solution alternatives under the guidance of the teacher, decide on 
the tools and materials that are appropriate to the design 

EDP 
Generating 
and selecting 
between 
multiple 
possible 
solutions 

 7.D.1.4. Create the model or prototype of the design 
 
Investigation of manufacturing processes of the sample products 
and necessary resources; visualisation of the model via maquette 
and drawings; creating the model or the prototype of the design 
using appropriate tools and materials 

EDP 
Modeling and 
analysis 

 7.D.1.5. Evaluate the design according to the determined criteria. 
 
Evaluating the designed product based on the determined criteria 
(aesthetic, original, functional, feasibility, and sustainable). In the 
process of evaluation self-assessment and peer assessment are 
used. 

EDP 
Iteration 
 

 7.D.1.6. Restructures the designed product according to the 
evaluation results. 

EDP 
Iteration 

7.D.2. I did 
this 

7.D.2.1. Present the products 
 
Promotional materials (short film, computer-aided presentation, 
promotional card, poster, flyer, etc.) are prepared for product(s)  

EDP 
Presentation  
 

Figure 7: The characteristics of the 7th grade curriculum design and technological solution area 
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Gamification with Moodle in higher education 
Ana Júlia Viamonte1 and Isabel Perdigão Figueiredo2 
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Today, although teachers continuously seek novel pedagogical approaches, it is largely agreed that 
schools face major problems around student motivation and engagement. In this context, gamification 
can have good effects, since the gamification, when used as a teaching strategy, favors learning and 
the motivation. Though the gamification is a subject that is very discussed in the educational field, 
still's little implemented, especially in higher education. In this work we present one gamification 
experience with first year and first semester students in a mathematical curricular unit. The goal was 
reduced school dropouts, which have a traditionally very high rate in these curricular units and 
increase the motivation to empower students for better learning and a higher passing rate. Although 
this experience does not allow for conclusions, it can be verified that the students were more 
motivated, the dropout rate was lower, and the approval rate was good. 

Keywords: Gamification, higher education, pedagogy. 

Introduction  
Traditional schooling is perceived as ineffective and tedious by many students and in a special way a 
large group of students in the first year of engineering courses, does not like math classes which leads 
to high dropout and failure rates.  At a time when most of the young audience plays computer and 
video games, the gamification can be a good help, because gamification tries to harness the 
motivational power of games and apply them to real-world problems, in our case, students' 
motivational problems. 

A lot of papers reporting experiences with gamification have appeared in the last years, but the idea 
of using thought and game mechanics to solve problems is old (Viamonte, 2018). According to 
Zichermann and Cunningham (2011), was the Scottish philosopher David Hume who first laid the 
groundwork for understanding the player's motivations at three hundred years ago. But Gamification 
is not only about introducing game elements, such as the distribution of rewards and medals for a 
given product, but it requires an in-depth approach to decide which elements will be incorporated and 
their conformity with the context of the goal. According Gurjanow and Ludwig (2017), prior to 
implementing game elements, recommend analyzing the projects target group, the conditions and the 
inherent activities. The result of the analysis is the definition of goals that gamification should 
achieve. The next step is to design and implement game elements based on the defined goals. Finally, 
evaluation and monitoring are useful to make further improvements (Gurjanow & Ludwig, 2017). 

There is no consensus about gamification, for example, while some authors highlight the following 
elements of games to be observed in gamification: objective, rules and voluntary participation, 
Werbach and Hunter define the PBL Triad: Points, Badges, Leaderboards (Franco et al., 2015). But 
we can see that when we use the 'gamification' in the classroom, some transformations always occur, 
such as, students who become players, more challenging classes, students working autonomously 
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and/or in groups and working to earn points, receive medals, achieve the highest scores and enter the 
leaderboard... 

In this work we pretended study the question: Is gamification effective in reducing dropout? 

Gamification 
According to Iosup and Epema (2014), gamification may have originated in the early-Communist 
thought and matured in the Soviet era, as a substitute for monetary incentives to perform at work and 
saw a reemergence in the U.S. in the early 1980s. More recently, in the 2000s gamification received 
various definitions, and was used with promising results in various curricular and organizational 
settings. For Espíndola (2014) the gamification is the use of game mechanics and dynamics to engage 
people, solve problems and improve learning, motivating actions and behaviors in environments 
outside the context of games.  

According to Kapp (2015) gamification is a tool with advantages and disadvantages in different 
situations and environments. Gamification only uses a few game elements. Learners don’t play an 
entire game from start to finish; they participate in activities that include video or mobile game 
elements such as earning points, overcoming a challenge or receiving badges for accomplishing tasks. 

McGonigal (2011) highlights the following elements of games to be observed in gamification: 
objective, rules and voluntary participation. Werbach and Hunter (2012) define the PBL Triad 
(Points, Badges, Leaderboards) as an initial parameter consisting of the following elements: points, 
medals and rankings. The authors of this work also divided the main elements into three categories, 
dynamics: constraints (imposed limitations), emotions, narrative, progression and social relation; 
mechanical - elements that stimulate actions and involve the player: challenges, competition, 
feedback (performance), randomness, cooperation (teamwork), rewards and victory and components: 
medals (visual representation), rankings (visual representation of evolution), points (numerical 
representation), levels of progression, team formation, final challenge, collections and unlocking 
content after accomplishing the mission. (Viamonte, 2018) 

Methodology 
In this work we present one gamification experience that we did in a Linear Algebra course. 
Gamification was used in the students evaluation, and for this the classification were replaced by 
points that were attributed to the students as they went doing the tasks in the classes or online. The 
students could have earned points for completing a lesson or for doing extra research about the lesson. 
At the beginning of the semester, all students had a hundred starting points, and after classes started, 
all they did or did not, was giving them or taking them points. Each hundred points corresponded to 
one level and there were twenty levels corresponding to grades from zero to twenty.During the 
semester there were several evaluation moments, such as Moodle’s tests, challenges and individual 
tests, that corresponded to tasks that the students had to do and there were also some medals or bombs. 
The medals were rewards attributed to the students for doing certain tasks, such as participating in 
forums, solving challenges, among others. Obtaining a medal rewarded the student with a 
predetermined amount of points. The bombs were penalties attributed to the students for not doing 
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certain required tasks such as homework, Moodle tests, among others. Bombs penalized students by 
taking a predetermined amount of points from them. One task that was proposed to each student at 
the end of each topic was the resolution of a problem related with his course and where he needed the 
concepts he had just learned for his solution. These problems were often suggested by the professors 
of engineering disciplines. Other component of the evaluation were the Moodle's tests. The students 
took these tests biweekly and on the weekend. During the semester, the student had to do six tests in 
Moodle. When he opened the test, the student chose the level he wanted to do, easy or difficult, 
knowing that the difficult level allowed him to get double the points he could reach with the easy 
level. But each student had to do at least one test of each level. In each test to perform in Moodle the 
student always had the possibility to make two attempts, but he knew that his classification in this 
test was the one obtained in the last attempt. The purpose of allowing two attempts was, when the 
first attempt had gone wrong, lead the student to reflect on what had not gone well on the first try, so 
he goes to study or look for information to solve correctly this test. So, when he tried the second time, 
he would be better prepared to do the test. To force this reflection, between the first and second 
attempts the student had to wait at least sixty minutes between the two attempts. The second attempt 
was optional, but if the student chose to do it, it had to be of the same level as the first. 

An easy level test involved only operations with real matrices, and a difficult level test involved 
operations with matrices of complex numbers and matrix properties. A difficult level test could be, 
for example, the one presented below. 

1. If 𝐴𝐴 = �
1 𝑖𝑖 0

1 + 𝑖𝑖 −1 1
2𝑖𝑖 2 1

�, 𝐵𝐵 = �
−𝑖𝑖 1 + 𝑖𝑖 0
1 −𝑖𝑖 2𝑖𝑖
2 1 − 𝑖𝑖 −2𝑖𝑖

� and 𝐶𝐶 = �
2 −2 1
0 1 0
1 −1 0

�,  

then 𝐵𝐵� + 𝐴𝐴𝑡𝑡C 

 ÿ  �
𝑖𝑖 5 + 2𝑖𝑖 1
2 −1 + 𝑖𝑖 2 + 𝑖𝑖
−𝑖𝑖 1 − 𝑖𝑖 −1 + 2𝑖𝑖

�                  ÿ  �
2 + 3𝑖𝑖 −2𝑖𝑖 1
3 + 2𝑖𝑖 −3 − 𝑖𝑖 −𝑖𝑖

3 1 + 𝑖𝑖 2𝑖𝑖
� 

 ÿ  �
2 + 3𝑖𝑖 −𝑖𝑖 3
3 + 𝑖𝑖 −3 − 𝑖𝑖 1 + 2𝑖𝑖

1 −2𝑖𝑖 2𝑖𝑖
�               ÿ  None of the others is correct. 

2. The statement: 

"If A and B are idempotent and permutable matrices, then AB is also an idempotent matrix." 

  It’s  True                                                      False 

Challenges were another component of evaluation. Each challenge had multiple choice questions 
related to the subjects taught from the beginning of the semester up to that time and had three levels, 
easy, medium, and difficult. The students started at the easy level and went up the level. To level up, 
the student needed to correctly solve all questions at that level. If he missed a question, he would lose 
a life, but he could try a new challenge of the same level again. At each challenge, the student had 
three lives that he could use. The final number of points depended on the number of lives he used and 
the level at which the student arrived. During the semester, the student met three challenges. 
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In the easiest level the students needed to do 3 questions that were about the subjects taught in the 
class. In the medium level the students needed to do 2 questions that were about the subjects taught 
in this class but related to a subject taught in another class of the same year and the same course. And 
in the difficult level the students needed to do 2 questions that were related with another subject. As 
they were students of Electrotechnical Engineering, a question of the medium level was, for example 
the one presented below. 

1. Consider the electrical circuit shown in Figure 1. 

 
Figure 1: electrical circuit 

The potential difference between the battery terminals, measured in volts (V), produces a current that 
leaves the positive pole of the battery (indicated by the side containing the longest vertical line). The 
capital letters represent the nodes of the electric circuit. 

The letter i represents the current between the nodes and the arrows indicate the direction of flow, but 
if i is negative then the current flows in the opposite direction to the indicated one. The currents are 
measured in amperes and the resistors in ohms.  

Based on Kirchhoff's laws for electrical circuits, determine the currents in the meshes. 

During the semester students performed 2 individual exams, the first in the middle of the semester 
and the second at the end of the semester, but with the gamification, exams were the biggest missions 
to perform. The grades were the result of the number of points earned through the accomplishment 
of the missions, and two types of missions were planned: individual and group. Students could choose 
to do the challenges individually or in groups. If they chose to do as a group, the group would be 
chosen by them, would have between 3 and 5 students and all the challenges in the semester would 
have to be made by the same group. Thus, each student earned points based on their individual 
performance and the performance of his group, which stimulated the collaborative character of the 
process. Each group had good and weak students and it was noted that the best students were pulling 
the weak so that the group performed well. Group tasks generally involved group competitions, which 
potentiated the competitive side of the games, but interacted with the cooperative aspect because each 
group functioned as a whole. A list of activities to be carried out was published weekly in Moodle 
and this list also indicated the medals available this week and what students would have to do to reach 
them. It was also published weekly in the Moodle the Leadership Chart in the form of a list, arranged 
in descending order of number of points, indicating the points of each student and the level of each 
student, and were highlighted the students placed in the first 15 places. There was a lot of competition 
and it was also discovered that the students made a great effort to be in the first places of the list. 

At the end of the semester, students completed an inquiry into the use of gamification and how they 
felt in the game. The questionnaire, which was answered anonymously and via Moodle, was 
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developed with open and closed questions and aimed to collect data to identify a brief profile of the 
participants. It was intended to listen to students' opinions about the advantages and disadvantages 
they felt about motivation and learning. 

Results  
We worked with all students enrolled in the first year of the first semester of this engineering course 
(two hundred and ninety-four). As for sex, as one would expect in an Electrotechnical Engineering 
course, the majority were men, two hundred and seventy-four (93%) and only twenty (7%) of these 
students were women. 

When gamification was introduced, classes became a more challenging experience due to the new 
method used. For each class in which the student was present and participated, the student earned a 
small amount of points until reaching the maximum stipulated, there being a large increase in the 
number of classes that each student went. Traditionally, in mathematics subjects from the first years 
of an engineering course, the percentage of students per class is small, principally in theoretical 
classes, this year there was a considerable increase of student’s number in theoretical and practical 
classes. We also found that this year the rate of students who dropped out was much lower than in 
previous years as can be seen in Figure 2. 

 
Figure 2: percentage of students who dropped out in the last years 

As they wanted to “win” the game, winning all possible medals, overcoming all the challenges to 
reach the last level, they worked harder during the semester and this was reflected in the learning and 
consequently the Final Approval Rate. The percentage of students leaving the course was very low 
(17%) compared to usual in previous years (31% to 36%) and the rate of failed students was also 
lower (33%).  

The survey to listen to students' opinions about the advantages and disadvantages was answered by 
most students (97%) and 95% said they were more motivated and worked harder, which was reflected 
in the average frequency and passing rate. Of the students who answered, 38% considered the 
experience of using gamification excellent, 42% very good and 20% good. Although some students 
said that the gamification experience was very laborious, none of them rated it as bad or very bad, 
see Figure 3. 

36%
33% 31% 32% 32%

17%

2012-2013 2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
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Figure 3: The feeling about gamification experience 

In the questionnaire that was placed in Moodle at the end of the semester, the last question asked each 
student to identify which were in their opinion the positive and negative aspects of the gamification 
experience that they had done. The positive points more presented were 

§ motivation and stimulation of learning; 
§ playful and dynamic way of learning; 
§ self-improvement and persistence. 

And negative points more presented were 
§ harder than in previous years; 
§ over-competitiveness; 
§ mechanization: the student plays for playing and not for learning. 

In this questionnaire they were placed other following questions: 

Q2 - Which type of evaluation do you prefer  

Q3 - Gamification was useful for my learning  

Q4 - The gamification didn’t help me anything 

Q5 - The gamification helped me in studying  

Q6 - The gamification didn’t promote my self-motivation 

According their opinion the students filled for Q2 (only assessment, assessment with gamification) 
and for remain questions they filled (Strongly agree, Agree, Neither agree nor disagree, Disagree, 
Strongly disagree). 

In order to verify the effect of type of evaluation, we performed a Chi-square test who revealed 
significant difference between two categories from question 2, as shown in table below by p-values 
results (<0.05* and 0.01**) 

 Q3 Q4 Q5 Q6 
Q2 0.010* 0.016* 0.002** 0.008** 

        Table 1: The effect of type of evaluation 

The gamification had a significant contribution in motivation for doing the assessment. We detail in 
below the process. We assigned 100 points to each student at the beginning of the gamification 
process. The students had been subjected at 7 moments of evaluation corresponding to 6 moments to 

38%

42%

20%

0%

0%

0%

Excellent

Very Good

Good

Bad

Very Bad

No opinion
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Moodle actions and the other one, on the first assessment. The scores obtained by students had also 
a significant performance along the process of gamification.  

We observed a great enthusiasm between at the beginning of the process, showed by graph, figure 4. 
Until the 3rd moment (before the first assessment) these good results went on, but the remains didn’t 
give the previous impression. We observed some outliers in some moments, explained by the 
penalties according to the rules of the game. The outlier’s presence caused a negative impact in 
general results which provoked the existence of significant mean differences as we can observe in 
Table 2. 

 
Figure 4: Scores Game 

 M1 M2 M3 M4 M5 M6 Final 
Mean 17.21 16.43 15.69 14.20 13.90 12.54 13.45 
S.d. 0.30 0.33 0.33 0.33 0.34 0.33 0.31 

Table 2: Means of Scores Game 

The table above show difference significant between all moment´s means (t-test, p<0.001). We 
observed higher results at the first three moments followed by a significant break in four last 
moments. However, the variability has not suffered a significant changing along the gamification 
process.  

Conclusion 
During this semester, we realized that the elements of the game are valuable tools, but we need to use 
them with care and knowledge to get the expected results. Nowadays, most people play electronic 
games, so games have a strong psychological effect on people's behavior. Gamification becomes then 
a valid alternative to arouse emotions and, particularly in education, the gamification contributes to 
the student's motivation during the execution of tasks. In the learning scenario, this proposal allows 
a more active and practical participation of the students. But to obtain its potential benefits and reduce 
the risk of the student to be interested only extrinsically by the approach, aiming only rewards, fun 
and entertainment. It is necessary to plan the educational objectives, discuss the strategies to be used 
and analyze the experiences already promoted. In this work we did not do a quantitative approach 
because it is not possible to compare the results of this year's educational success with those of 
previous years because the students are different, and it is also difficult to compare with the results 
of other curricular units of same year because the degree difficulty is also different. To use a 
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quantitative approach, we would have to have a test group to make comparisons and this was not 
possible. However, in this semester the dropout rate was low, and the students were very involved in 
the classes and in the activities of the curricular unit. These facts may indicate that the impact of 
gamification on learning has been successful. 

The positive and negative points pointed out by the students at the end of the semester were very 
interesting, presenting diverse and yet very coherent opinions. The listed positive points outweighed 
the negative ones, with motivation being a very prominent aspect.  They found too the applying 
problems difficult but interesting as they helped them to better understand the usefulness of learning 
mathematics in an engineering course. The main negative point presented by the students was the fact 
that the curricular unit this semester was more work, which in our opinion is not negative, and was 
reflected in the good approval rate. Although evaluating activities as laborious, students reported 
feeling more motivated and interested and it may be noted that no student considered this experience 
to be bad or very bad. 
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How does an autonomous vehicle recognize a traffic sign? How can seismic measurements be used 
to determine the origin of an earthquake? How do you get a three-dimensional tomographic 
reconstruction of a body part from a medical scanner? The methods used to answer all these 
questions come from the field of so-called inverse problems and are central to our society. They are 
omnipresent in technology, science and in everyday life and include mathematics without any people 
being aware. The process of mathematical modeling is used to solve inverse problems. Complex 
problems are simplified in such a way that mathematical models are developed and then accurate 
solutions can be calculated. The question now arises as to whether high school students are able to 
independently and accurately solve these kind of questions while only using their mathematical school 
knowledge and the computer. An approach to show how this could be done is given in this paper. 

Keywords: High school mathematics, inverse problems, mathematical modeling, MATLAB, problem-
solving. 

Introduction  
When taking a look at maths classes in school you often find students asking: “Why do I need to 
study this?” Schoolbooks are very method-oriented which has the effect that students can use certain 
algorithms and formulas but do not recognize the usefulness of mathematics for everyday life. This 
is why the development of interactive, problem-oriented material for high school students should be 
increased. Using this kind of material as an addition to the existing units students see the potential of 
mathematics to solve real life problems1. 

The project presented here will be part of the CAMMP (Computational and mathematical modeling 
program) project of the Karlsruhe Institute of Technology2 and the RWTH in Aachen3. For several 
years, similar projects have been carried out in one-week and one-day formats with students of 
different ages in Aachen (One example can be found in Greefrath & Siller, 2018, p. 137-163). Until 
now over 400 students have participated in a modeling week and over 2900 in a modeling day. Since 
the beginning of 2018 the project is also being realized in Karlsruhe. 

CAMMP wants to offer ways to innovative mathematics teaching in terms of content, didactics and 
methodology. Concepts for this were developed and tested. CAMMP is not only involved in 
mathematical modelling projects with pupils and teachers, but also in research and teaching in the 
                                                 
1 We understand the word problems in the sence of Heinrich, Bruder and Bauer (2015). 

2 http://www.scc.kit.edu/forschung/CAMMP 

3 https://blog.rwth-aachen.de/cammp/ 
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field of mathematical modelling didactics. The goal is a didactics of problem-oriented mathematical 
research, in particular a creative handling of mathematics. Tasks and projects are always as problem-
oriented as possible and actively dealt with by the students. Adapted to the given framework 
conditions (e.g. modeling week, -day, regular school lessons), innovative concepts are developed to 
balance the dimensions active-passive and method-oriented4 problem-oriented. 

These projects are needed because a change in teaching mathematics must take place. Many graduated 
students do not know a lot about mathematical modeling even though it is one of the process-related 
competencies of the core curriculum. And according to the educational standards of the Conference 
of Education Ministers, all students should be able to model mathematically by the end of their school 
career. That means they should be able to go through the elementary steps of the mathematical 
modeling cycle independently (Kultusministerkonferenz der Länder in der Bundesrepublik, 2012). 
Real life is not about calculating as much as possible to exercise a certain algorithm (Maaß, 2015, p. 
70). Mathematics should not be used for its own sake, but rather as a tool for solving problems 
(Consortium for Mathematics and Its Applications, 2016). It is clear that the necessary competence 
for the creation of models can only be built up if the pupils carry out their own modeling 
independently and regularly during their school years (Maaß, 2011, p. 8).  However, modeling is new 
and unknown to many teachers and learners. Each step of the modeling cycle represents a cognitive 
hurdle for the students (Heiliö & Pohjolainen 2016). On the one hand they find it difficult to 
understand the real situation, on the other they expect teachers to evaluate the correctness of their 
solution, neglecting the validation step. If teachers face each of these challenges, studies have shown 
that the treatment of authentic modelling has a significant positive impact on their opinion of 
mathematics (Borromeo Ferri, Greefrath & Kaiser (Hrsg.), 2013, p. 30-34). 

The project presented in this paper makes an important contribution to developing interactive, 
problem-oriented material by presenting a way to include computer tomography as an example of 
inverse problems into maths classes. It shows that the abilities of students should not be 
underestimated. The basics needed to understand inverse problems are already taught during school 
mathematics. 

Inverse problems in school and everyday life 
When having a look at cause-effect relationships one can either calculate the effect with given causes 
or turn the problem around and draw conclusions from given effects on the cause. If you have a look 
at image processing you can ask yourself what a clear image would look like if the camera were 
focused incorrectly. When turning the problem around you get the inverse problem, which means 
trying to deblur an image that was taken by an incorrectly focused camera. In both cases you have to 
solve a system of equations, but in mathematics there is a difference between the equations you use 
for the two problems. In real life you never have flawless data, which means that by using some kind 
of measuring tool you get errors in your data. If the error stays in the same magnitude while computing 

4 By method-oriented we mean the application and practice of mathematical methods to solve purely mathematical 
problems without reference to application. In the problem-oriented treatment of tasks, certain mathematical methods are 
only applied when they are needed to solve a real extra-mathematical problem (Heinrich, Bruder & Bauer. 2015). 
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the solution, everything is perfectly fine. However, what happens if a tiny error in the given data leads 
to enormous errors in the solution? 

These problems are so called ill-posed inverse problems. Jaques Hadamard described three conditions 
through which one can determine whether the problem at hand is well or ill-posed (Engl, Hanke & 
Neubauer, 2000, p. 31): There must be at least one solution (existence). There may be no more than 
one solution (uniqueness). The solution must depend continuously on the data (stability). 

At the moment schools mainly deal with tasks in which direct problems occur. Data is presented and 
a function must be applied to it. This means that you start with the cause and calculate the 
consequence (Lasanen, 2014). This type of task only requires students to perform prescribed 
operations. Students are therefore often limited in their mathematical thinking (Gardiner, 2016). In 
the long term, however, the inverse problems are important, since through them students learn to 
work more freely, flexibly, playfully and application-oriented with the mathematics they have learned 
(Gardiner, 2016). From the teacher’s point of view it is more challenging to discuss inverse problems 
in school because the approaches of students to inverse problems are far more open and are therefore 
not well predictable. These open tasks make it more difficult to have a joint discussion in class since 
there are many different calculations that lead to a correct solution. On top inverse problems are a lot 
more complex to grade in an exam. Eventually, due to the lack of discussion, confrontation and 
exercise, students achieve results a lot worse when having to solve inverse problems than when 
dealing with direct problems (Gardiner, 2016). Thus to prepare their students and give them the 
opportunity to think freely in terms of mathematics, teachers should include more inverse problems 
into their classes especially ones that are similar to the one presented in the following.  

Perspectives of a project day about computer tomography 
The aim of the project day for one is to show the working principle of computer tomography, but 
moreover it should also show the relevance of mathematics and simulation sciences in society in 
general. The students should realize that already with their knowledge they can understand and 
compute the basic methods behind complex processes. The material is formulated in a way that 
different approaches are possible and welcome. By using the software MATLAB the requirements 
regarding programming are set very low. The students are given a prepared code in the form of a gap 
text in which they only have to enter missing formulas or equations, which are then checked as they 
run the code. This means that students receive feedback on their considerations at all times. On top it 
is possible to include worksheets into MATLAB, so that the surface looks rather like a digital working 
sheet with code lines in between than a programming software. Through all of this, one hope of the 
developer is that students become more involved with mathematics. 

Computer tomography 

For computer tomography, the internal structure of an object is determined depending on the entry 
and exit intensity of the X-ray radiation and conclusively depicted (Grumme, Kluge, Lange, Meese 
& Ringel, 1988). The objects are irradiated with parallel beams at different fixed angle settings to 
determine the absorption coefficients 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) of the different materials of the object (Mueller & 
Siltanen, 2012). Depending on the material the intensity of the incoming X-ray beam decreases 
differently. Thus, the out coming intensity depends on the absorption property 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) but also on 
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the layer thickness 𝑧𝑧 of the material through which the X-ray beam passes. If a single layer is 
penetrated by a beam with the intensity 𝐼𝐼0, the output intensity is calculated by the following equation: 

𝐼𝐼(𝑧𝑧) = 𝐼𝐼0 ∙ exp(−𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) ∙ 𝑧𝑧). 
With the help of the a transformation, the parallel beams passing through 
the object are described mathematically as straight lines. By doing so, the 
function that was originally dependent on the Cartesian coordinates 𝑥𝑥1 
and 𝑥𝑥2 is transformed so that the function is now described along a 
straight line with the angle 𝜃𝜃 and the distance to the origin 𝑠𝑠 (see Figure 
1). The points lying on the beams are described with �⃗�𝑥 ∙ �⃗�𝜃 = 𝑠𝑠, with �⃗�𝜃 =

�cos(𝜃𝜃)
sin(𝜃𝜃)�. 

If you now look at different distances 𝑠𝑠𝜐𝜐 from the line to the origin, the straight line moves to the 
right for 𝑠𝑠𝜐𝜐  >  𝑠𝑠 (see Figure 1, blue line) and to the left for 𝑠𝑠𝜐𝜐  <  𝑠𝑠 (see Figure 1, red line). This is 
of great importance since an object gets scanned by parallel beams. So the mathematical model also 
has to include several beams with a constant distance between one another. In addition, the X-ray 
tube is rotated around the object so that the beams are sent through the object at different angles. Due 
to the symmetry, it is sufficient to only look at the angles between 0° and 180° and therefore only to 
run a semicircle. Considering both factors one gets 𝑁𝑁 ∙ 𝐽𝐽 beams and therefore 𝑁𝑁 ∙ 𝐽𝐽 equations in total 
when having 𝑁𝑁 parallel beams and 𝐽𝐽 angle positions. 

Assumptions and simplifications 

Before the students establish a system of equations and have a look at its 
solubility and the reconstructed inner structure of the scanned object, 
simplifications must be made. Strictly speaking, an object, like a human 
body, consists of an infinite number of different absorption coefficients. For 
a first model however, it firstly is sufficient to approximate the cross-section 
of an object as a square and secondly to allow only a small number of 
different absorption coefficients. The idea is to cut the square into smaller 
squares called pixels and to assume that each pixel only consists of one 
particular material and therefore only has one absorption coefficient 𝑓𝑓𝑖𝑖, see Figure 2. In addition, the 
absorption law is simplified. Instead of looking at the influences of the absorption coefficients, where 
the integral would have to be used, the object is described by gray values and these are weighted and 
added along one beam. Thus, the measured values, depicted as 𝑚𝑚𝑖𝑖 with 𝑖𝑖 = 1, … ,5 in Figure 2, do not 
represent intensities but simply weighted and added gray values 𝑓𝑓𝑖𝑖, 𝑖𝑖 = 1, … ,4, which must be 
correctly distributed to the respective pixels for the reconstruction of the object. 

Worksheet 1: First radiography of a simplified object 

With the first worksheet the students get familiar with what actually happens during computer 
tomography. The students start into the task, where they try to reconstruct the gray values of the pixels 
for the first time. Because of the simplifications and assumptions that were made beforehand the 
students have a first impression of how the gray values of the pixels can be reconstructed, namely 
simply to solve a linear system of equations. So the students are given four values for 𝑚𝑚𝑖𝑖 with 𝑖𝑖 =

Figure 1: Illustration of the 
radon transformation 

Figure 2: Five beams 
through four pixels 
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1, … ,4. By doing so a lot of questions arise: Can numerical values for the pixels be found so that the 
row and column sums are satisfied? If there are such entries, how are they determined and can they 
be determined in a unique way? If they do not exist, why not?  

With the help of these questions, the students can independently work out the conditions of the 
concepts of existence and uniqueness and work out connections for solubility. They notice that with 
these values they do not have enough information to uniquely determine the gray values for the 
reconstruction of the object even though the students have four equations and four variables. The 
solution is not unique because the equations are not linearly independent. This first approximation to 
the mathematical description of the problem is done without formulas but instead using examples of 
possible gray values that the pixels could have with the given values 𝑚𝑚𝑖𝑖. Students should find a gray 
scale distribution and then either by comparing their own solution with other groups of students or 
by realizing mathematical considerations recognize that their distribution is not a unique solution. 
After this realization, the students are faced with the challenge of extending the problem in such a 
way that the gray values of the pixels can be explicitly solved. To do this, they must transmit a further 
beam through the object and determine the measured values of these new beams. For example it is 
possible to add a diagonal beam (see Figure 2), which leads to the system of equations (1) which has 
a unique solution.  

⎝

⎜
⎛

𝑚𝑚1
𝑚𝑚2
𝑚𝑚3
𝑚𝑚4
𝑚𝑚5⎠

⎟
⎞

=

⎝

⎜
⎛

1  1  0  0
 0 0 1 1
1 0 1 0
0 1 0 1
√2 0 0 √2⎠

⎟
⎞
∙ �

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4

�                  (1) 

When you increase the number of pixels you keep having the same 
problem. Looking at the object subdivided into nine pixels (see Figure 
3) it is again not enough to send nine beams through the object. The 
problem why this system of equations also is not uniquely solvable is 
that you only have eight linearly independent equations. So even more 
beams have to be used. Since the system of equations keeps growing it 
makes sense to write an algorithm that describes the beams 
mathematically and creates the matrix one needs to solve the system of 
equations. At this point of the project the algorithm can be developed, 
as the students have now completely penetrated the problem. In 
addition, the number of equations is still manageable, which also means that drawings of the object 
and the beams can be made without being confusing.  This way errors and new solutions can be found 
more easily. 

Worksheet 2: Mathematical description of the beams 

The main goal of this worksheet is to find a mathematical model to describe the beams more generally 
for any number of parallel beams and angle settings, since so far the students only had the situation 
shown in Figure 3. The idea is to describe the beams as straight lines in ℝ2 and then come up with an 
algorithm that calculates the length that a beam spends in each pixel. The last important step then is 
to not only get the individual lengths but to know where in the matrix the value has to be written.  

Figure 3: Nine beams 
through nine pixels 
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For this task the students get the starting vectors (𝑋𝑋1,𝑆𝑆 𝑋𝑋2,𝑆𝑆)𝑇𝑇 of the points where the beams enter the 
object including the value of the associated angle 𝜃𝜃 for a given number of parallel beams and different 

angles. The standardized direction of the beam is described through the vector 𝑟𝑟 = �
cos (𝜃𝜃)
sin (𝜃𝜃)�. 

Therefore the beam itself can be described as �𝑋𝑋1𝑋𝑋2
� = �

𝑋𝑋1,𝑆𝑆
𝑋𝑋2,𝑆𝑆

� + 𝑠𝑠 ∙ �
cos (𝜃𝜃)
sin (𝜃𝜃)�. Students know this way 

of writing straight line equations from school. Nevertheless, help cards are also available to the 
students as support, since they may have difficulties, for example, with the use of the cosine and sine. 

The points of interest are always those where either the 𝑥𝑥1 or 𝑥𝑥2 coordinates are equal to one of the 
pixel borders, namely −1.5,−0.5, 0.5 or 1.5 (see Figure 3). Thus to determine the interceptions the 
equation for the beam needs to be separated coordinate wise and 
solved for 𝑠𝑠 = �

𝑠𝑠1
𝑠𝑠2�: 

𝑠𝑠1 =
𝑋𝑋1 − 𝑋𝑋1,𝑆𝑆

cos (𝜃𝜃)
,               𝑠𝑠2 =

𝑋𝑋2 − 𝑋𝑋2,𝑆𝑆

sin (𝜃𝜃)
. 

Again at this point the students have the possibility of using help 
cards, since they have to think of separating the coordinates and 
solving the equations. Some students have difficulties with 
deformation calculation steps. As feedback and an output of 
MATLAB the students get a depiction of their description of the 
beams through the object, so that they themselves can see whether 
the result seems to be consistent.  

Once the students achieved this task they can easily calculate the length between two neighboring 
interceptions which is the length a beam spends in a pixel. The hard part is to figure out in which 
column and row of the matrix the length has to be written. One approach is to calculate the distance 
between the center of the pixels and the middle of the considered distance (see Figure 4). The center 
to which the distance is smallest is the pixel in which the beam spends the particular length. A second 
approach would be to have a look at the the 𝑥𝑥1 or 𝑥𝑥2 coordinates of both interception points. After 
having numbered the pixels and defined the possible values for the 𝑥𝑥1 and 𝑥𝑥2 one can check to which 
both points belong and therefore determine the pixel number. While defining the pixels you have to 
include the border of the pixels each time.  

Worksheet 3: Reconstruction of an object 
After this mathematical model for the beams the students get the chance to reconstruct an image such 
as the first one in Figure 5. To get this first reconstruction the students have to find the gray values 𝑓𝑓𝑖𝑖 
so that the difference between 𝐴𝐴 ∙ 𝑓𝑓 and the measured values get minimized. To make it a little less 
complicated for the students they calculate with a small matrix 𝐴𝐴 and small vectors 𝑓𝑓 and 𝑚𝑚��⃗ : 

ℎ�𝑓𝑓� = �𝐴𝐴 ∙ 𝑓𝑓 − 𝑚𝑚��⃗ �
2

= (𝐴𝐴1,1 ∙  𝑓𝑓1 + 𝐴𝐴1,2 ∙ 𝑓𝑓2 − 𝑚𝑚1)2 + (𝐴𝐴2,1 ∙ 𝑓𝑓1 + 𝐴𝐴2,2 ∙ 𝑓𝑓2 − 𝑚𝑚2)2 

Figure 4: Illustration of the pixel 
number determination 
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From school they know that they have to differentiate ℎ�𝑓𝑓� after 𝑓𝑓1 and 𝑓𝑓2 which leads the students 
to the gradient of ℎ�𝑓𝑓�. They then have to set the gradient to zero to find the 𝑓𝑓 that minimizes the 
equation: 

∇𝑓𝑓ℎ�𝑓𝑓� = 2 ∙  𝐴𝐴𝑇𝑇 ∙  𝐴𝐴 ∙ 𝑓𝑓 − 2𝐴𝐴𝑇𝑇 ∙ 𝑚𝑚��⃗ = 0. 

The formula that results for the gray values that is, when multiplied with 𝐴𝐴, closest to the measured 
data, is the following: 

𝑓𝑓 = (𝐴𝐴𝑇𝑇 ∙ 𝐴𝐴)−1 ∙ 𝐴𝐴𝑇𝑇 ∙ 𝑚𝑚��⃗  

If one uses data without errors the reconstruction is perfect. However, using flawless data does not 
depict reality. Every measuring device creates some kind of error so that you have to use data with a 
small error. Besides that in reality the scanned objects consist of more than nine different materials 
and therefore more than nine different absorption coefficients or in our case gray values. So on top 
of adding noise one has to increase the number of rows and columns in the object, which also leads 
to a higher number of parallel beams and more angles. If one adds 5 % noise one can already no 
longer recognize the original object (see Figure 5, picture 3). This is due to the fact that the problem 
is not stable since the matrices are singular and therefore badly conditioned. Thus the problem has to 
be slightly modified, so that one gets a more stable problem. This can be achieved by different 
mathematical methods which deliver results that come very close to the original picture (see Figure 
5, picture 4 and 5). 

     
Figure 5: The object and different forms of reconstructions with 5 % noise 

The aim is that the students should be guided as little as possible during the project. It would be 
optimal if they could independently develop a method to improve the reconstruction. At the moment 
this seems very hard to achieve but will be improved once the project has been realized with students. 

Outlook 
In the future, the existing material will be realized with high school students. Furthermore the 
workshop will be evaluated in order to assess what the students learned and how the material could 
be changed. The material will then be iteratively improved. Moreover material will be developed so 
that the implementation of the project can be adapted to school hours and thus be carried out in units. 
In addition, a draft of the described problem for an exam task will be developed. 

In conclusion this project shows a possibility to treat authentic and relevant problems with the help 
of mathematical modeling in such a way that students are not only able to understand them but can 
also solve these. This should show that it is also possible to treat modelling competence in such open 
questions at school. The students' knowledge of mathematics is sufficient to understand the basics of 
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these problems from their everyday life. This example should encourage teachers to address more 
complex problems in class in order to train and further develop their students' mathematical modeling 
skills. For example, parts of this workshop can be incorporated into the classroom, allowing students 
to directly see an authentic application of mathematics. 
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This paper analyses two grade 4 mathematics lessons given in Switzerland and in Japan by student 

teachers (pre-service teachers) in the context of a project-based international exchange program. 

The lesson, initially planned together by the nine student teachers of the two countries, was finally 

realised in quite different ways in Switzerland and in Japan. Using the notion of levels of didactical 

codetermination, the analysis makes explicit the differences of the two lessons and identify cultural 

elements that shape such lessons. 

Keywords: Comparative education, lesson study, levels of codetermination, cultural context. 

Introduction 

International comparative studies have been carried out so far on different aspects of mathematics 

education. Large-scale studies such as PISA, TIMSS, and TALIS provide extensive information on 

the education, while small-scale studies carried out by individual researchers complement the 

large-scale studies and allow understanding in-depth on the specific aspect (Cai, Mok, Reddy, & 

Stacey, 2016). We are interested in the small-scale comparative studies on the mathematics lessons. 

Previous comparative studies on mathematics teaching have shown the large differences between 

Asian and other countries (Cai & Wang, 2010; Clarke, Emanuelsson, Jablonka, & Mok, 2006; Clarke 

et al., 2007; Stigler & Hiebert, 1999; Stigler & Perry, 1988). One of the complexities of classroom 

comparative studies is to have comparable data. Mathematics teaching one may observe in the 

classroom may vary from one lesson to another under the effects of so many different factors inside 

and outside classroom. 

We recently obtained data in the context of an international exchange of student teachers and their 

educators. The student teachers from Switzerland and Japan prepared a lesson together and realised it 

separately in each country. As the lesson is developed collaboratively, the differences we may 

identify in the implemented lessons would be deeply rooted in the educational culture of each country. 

We think that such data allows an interesting comparative study on mathematics lessons. The aim of 

our study is thus to advance understanding of mathematics teaching and learning of different 

countries, what are the characteristics and what elements shape such characteristics, through an 

analysis of the data collected in the project-based international exchange program. 

Theoretical frameworks 

One issue on the methodology of international comparative studies of mathematics classroom is to set 

up a common criterion to analyse the data collected from two countries. It is not necessarily easy to 

decide what to compare, because it would vary according to how we characterise the classroom 

activities and what we consider important with mathematics lessons. The lesson structure is one of 

aspects which has been compared in the previous studies (Clarke et al., 2007; Stigler & Hiebert, 
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1999). In such studies, it is important to find out a lesson structure of reference which includes 

significant phases in terms of mathematics learning. 

In our study, we draw attention to the lesson called mondai kaiketsugata jugyō in Japan (structured 

problem solving lesson in English; see Stigler & Hiebert, 1999) and to the theory of didactical 

situations (TDS hereafter; Brousseau, 1997). The former lesson usually consists of four or five 

phases: introduction of a problem, individual work and/or group work, neriage (whole class 

collective work), and matome (synthesis) (see also Shimizu, 1999). The latter characterises the 

process of mathematics teaching and learning, in terms of the states of mathematical 

knowledge—situation of action, situation of formulation, and situation of validation—as well as the 

process the teacher concerns—devolution and institutionalisation. For the analysis of lessons in our 

comparative study, we adopt the characterisations of these previous studies with some adaptations in 

order to take into account the specificities of Japanese lesson as well as the different states of 

mathematical knowledge during learning. 

While these frameworks provide us with the aspects of classroom activities to be compared, they do 

not allow us to characterise the exterior factors that shape the lesson. To deal with this issue, we rely 

on the anthropological theory of the didactic (ATD hereafter) which directs us to investigate the 

factors beyond the classroom (Bosch & Gascón, 2006; Chevallard, 2002). In this theory, the lesson 

implemented in the classroom is considered as a result of didactic transposition which is under the 

influences of the conditions that support the realisation of such lesson and the constraints that hinder 

it. ATD implies that these conditions and constraints may have the different nature beyond those 

identifiable in the classroom, and proposes a classification called the levels of didactic 

codetermination: civilisation – society – school – pedagogy – discipline – domain – sector – theme – 

subject (Bosch & Gascón, 2006; Chevallard, 2002). The study by Artigue & Winsløw (2010) shows 

that this perspective allows us to capture, in the context of international comparative study, the 

extensive factors that affects mathematics education. We also consider that such perspective helps us 

to identify different cultural effects that shape the lessons of our project. 

Context of this study 

Our principal methodology of comparative studies is based on the collaborative development of a 

mathematics lesson by Swiss and Japanese student teachers. This happened in the more general 

context of students and professors exchange program, called PEERS (Projet d'Étudiants et 

d'Enseignants-chercheurs en Réseaux Sociaux, Student and Researcher Social Networks Project) 

carried out by Lausanne University of Teacher Education (HEP Vaud). This project articulated 

student exchanges around a jointly defined research project by a group of students from the HEP 

Vaud in association with a group of students from the partner university. Each PEERS is supervised 

by a teacher-researcher of each institution, combining face-to-face (one week in fall and another week 

in spring) with distance collaborative work phases. PEERS with Joetsu University of Education was 

supervised by the two authors of this paper. 

The group first met through Skype meetings organised three times in fall 2017, and decided the 

general theme of PEERS and the mathematical theme: the collaborative development of a problem 

solving geometry lesson for grade 4 pupils, like the lesson study process (Hart, Alston, & Murata, 
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2011). The group spent one week in Joetsu in October 2017 for designing a task, studying the topic 

and planning the lesson together. At the end of this week, a first draft of lesson plan was ready. 

During the winter, the two groups developed their lesson separately and taught them several times. 

For the Japanese group, the lesson was taught two times as a mock lesson and two times in grade 4 

classes with about 35 pupils in the attached school. For the Swiss group, the lesson was taught by each 

Swiss student in her/his practicum classroom of about 20 pupils with the observation by the rest of the 

group, and followed by a post lesson discussion. This discussion led to changes in the lesson plan for 

the next lesson. After three Skype meetings, the Japanese group spent one week in Lausanne in 

February 2018. During this week, the group observed the last Swiss lesson, watched the video of the 

last Japanese lesson, and discussed the differences and commonalities. 

The problem the group selected was the one in the Swiss textbook (Danalet, Dumas, Studer, & 

Villars-Kneubühler, 1999). The question is: “Divide a square into several squares, but not more than 

20. Find as many solutions as possible”. The lesson plan by the Swiss students is available on the 

websites of Lausanne Laboratory Lesson Study (www.hepl.ch/3LS). 

       

Figure 1: Some of the possible solutions for 4, 6 and 7 

Methodology: data collection and analytical tools 

The data were collected from the above-mentioned exchange project. We videotaped most of the 

activities related to the collaborative development of mathematics lesson and its implementation: 

Skype meetings, discussions in the face-to-face meetings, preparatory lessons, implementation of 

lessons, post lesson discussion, etc. In this paper, we principally analyse, for the comparative study, 

the last versions of lesson plan and the video data of the last lesson from the two countries. The first 

draft of lesson plan was collaboratively written in English. Then, the detailed lesson plans were 

written separately in both sides in students’ own languages (Japanese and French) and revised several 

times after the lessons. They were translated later in English for sharing in the project. The Japanese 

video data was transcribed first and then translated into English, while the Swiss data was transcribed 

in French and then only the parts necessary for writing this article was translated in English, because 

both authors understand French. 

For the comparison of lessons, we characterise the process and structure of lesson by identifying the 

modes of students’ and teacher’s works in the classroom from two aspects of teaching and learning 

activities. The first is the interaction among pupils and teacher that implies three kinds of works: 

individual work, group work, and collective or whole class work. This aspect allows us to describe 

the overall activities in the classroom as well as the roles played by teacher and pupils. The second 

aspect is the mode of working in terms of the process or phases of problem solving: introduction, 

research, sharing, and synthesis. In this way, we are able to capture the structure of the lesson with the 

description of overall classroom activities. These two aspects are consistent with the structure of 

Japanese problem solving lesson. 
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Further, we investigate the characteristics of activities throughout different phases of the lesson. 

Adopting the viewpoint of TDS that characterises the evolution of mathematical knowledge, we 

analyse the devolution process—how the responsibility on the given task moves to the pupils—, the 

validation—how the teacher validates pupil’s answer; how the teacher makes pupils find the validity 

of their answer—, and the institutionalisation process—what kind of knowledge is institutionalised as 

an object to be learnt. 

While the student teachers designed a single task together, their implementation should be under the 

several implicit constraints of each country, and it is expected that we may identify several 

differences between the implemented lessons, due to the factors which are deeply rooted in the 

teaching culture they are belonging to. We try to identify these factors according to the levels of 

didactic codetermination, by focusing on the differences identified in the comparative analysis and by 

exploiting all available resources at our disposition. 

Comparative study of Swiss and Japanese lessons 

Even though the task was designed collaboratively in the face-to-face workshops organised in Japan, 

its implementations in Switzerland and Japan were very different. We found the differences between 

the two countries in different phases, both between the structures of the lessons (see Figure 2) and 

between each of these parts. In what follows, we focus on the differences of the validation during the 

research phase and the sharing phase. 
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Figure 2: Structure of the two lessons 

The issue of validation is at the heart of mathematics (Balacheff, 1987; Lakatos, 1976) and it was the 

principal and recurring difficulties for Swiss students as well as Japanese students when designing, 

teaching and discussing the lesson. When finalising the planification in their own languages, Japanese 

and Swiss students are not specific about validation. Japanese lesson plan says: 

When an incorrect answer is given, the teacher takes it up to the whole class when necessary and 

checks why it is wrong. 

The Swiss lesson plan is not more precise about the criteria for validity, but it is more specific about a 

list of incorrect solutions. 

Show on the board correct and [...] incorrect solutions (diagonal, cut in half). Define the criteria for 

a correct solution together with the pupils, write them down on the blackboard to make a check-list 
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[of incorrect solutions] to which the pupils will have to refer before coming to show a solution to 

the teacher. 

This list reflects the main preoccupation of the Swiss team to deal with many pupils coming to the 

teacher during the group research phase (in orange in Figure 2) to ask him/her: “is this correct?”. In 

fact, during the research phase, the Swiss teacher takes care of pupils one by one in front of the board 

and tells if the solution is correct or not:  

Pupil: Teacher, is it okay? 

Teacher: Ah, a box inside the square. […] unfortunately, [first name], your solution, I cannot 

accept it, because squares in the square, in the square ... 

In comparison, the Japanese teacher moves from one group to another and asks questions: 

Teacher: This one, are they really all squares? Could you think about it? 

Pupil: Okay. [Teacher leaving] 

In fact, the way of validation of the solutions by the Japanese team is close to the definition of 

validation by Margolinas (2004): “the pupil decides by himself about the validity of his work [...] 

thank to the interactions with the milieu (p. 24)”. In contrast, the Swiss team is making an evaluation: 

“the validity of the pupil’s work is evaluated by the teacher in the form of an irrevocable judgement 

(p. 24)”. 

This characteristic can also be found in the sharing phase (in bronze colour in Figure 2), usually 

called mise en commun (putting in common) in French and neriage in Japanese. This can be seen in 

the transcription of the lessons and the student teachers are aware of these differences. After 

observing together the Swiss lesson and watching the video of the Japanese lesson, they write in 

English in their collective reflections: 

Validation of answers during “neriage”: JP = others students / CH = the teacher mostly. 

In Japan [it] is very important to exercise the students/children to think about HOW they find a 

solution. By explaining from peers to peers (and not the adult explaining), other students will 

understand it more because it comes from another student like them. It also helps the students to 

confirm that he understood well the problem and it’s induce a discussion and deep-thinking on the 

topic. (Notes of workshop, PEERS week in Lausanne) 

The student teachers’ sharp and concise description of the difference between who is validating the 

solutions in the two lessons comes quickly to the search of more general reasons. The differences 

concerning the validation between Japanese and Swiss lessons here could be summarised in the 

differences of two aspects of mathematics lesson which are mutually related. The first aspect is the 

overall form of mathematics teaching: collective teaching and individualistic teaching. In Japanese 

lesson, the neriage is a moment for the whole class, including pupils and teacher (actually it was the 

teacher who manages this phase), to validate pupil’s answer and further develop their ideas, and even 

in other phases, the teacher often tries to control the whole class (see the duration of collective work 

of Japanese lesson in Figure 2), while in the Swiss lesson the teacher individually validates pupils’ 

answers in both research and sharing phases. The second aspect is the didactical contract (Brousseau, 
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1997) that determines what can be done by pupils and teacher: the teacher may directly validate 

pupils’ answers in the Swiss lesson, while not in the Japanese lesson; the pupils may ask the teacher to 

validate their answer in the Swiss lesson, while not in the Japanese lesson. In the actual lesson, the 

Japanese teacher might not always play well her role as she was still a student, but she was trying to 

leave the responsibility of validation to the individual pupils or group in the research phase and to the 

whole class in the neriage phase. The question we ask is: what makes such differences? We 

investigate and discuss the cultural effects on these two aspects in the next section. 

Cultural effects on mathematics lessons  

Collective teaching or individualistic teaching  

One obvious factor that supports, or even requires to carry out, the collective teaching in Japanese 

class is the number of pupils. In the classroom of 35 pupils (about 20 pupils in Swiss case), it is 

difficult for the teacher to take care of them one by one individually. The whole class validation in the 

neriage phase is a solution for this constraint. In addition, the Japanese classroom is equipped so that 

the teacher can control the whole class: the blackboard in front in addition to the large display at the 

side (see Figure 3). These are the conditions or constraints that afford or hinder collective teaching at 

the school level in terms of the codetermination. 

 

Figure 3: The blackboard and the large display in a Japanese classroom. 

Another factor that supports collective teaching is the homogeneity or the idea of equality at the 

society level. In Japan in general, the teacher tries to control the whole class, so that every pupil could 

learn in the same way. The teaching should not be for a particular learner in the classroom. This is 

why the teacher shared pupil’s solutions even in the research phase in the classroom. The phases, 

neriage and matome, as a whole class is presumably the effect of such factor
1
. In contrast, in 

Switzerland, or even in Europe, there is an idea of individualism and “differentiation” seen as a way 

of promoting equity. What is necessary for each learner is different, and therefore teacher’s 

individualised intervention is necessary. 

Teacher’s roles and pupil’s roles 

At the levels of pedagogy and probably discipline, we consider that the idea on teaching shared in the 

teachers’ community in each country is one of crucial factors that shapes the teacher’s role related to 

                                                

1 Highly developed teacher’s skill of bansho (board writing, see Tan, Fukaya, & Nozaki, 2018) would be also a result of 

this factor. 
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the validation in the classroom
2
. In Japan, the national curriculum emphasises students’ autonomous 

and independent learning (MEXT, 2008). And in general, Japanese teachers share more or less the 

idea that in the problem solving lesson, the teacher should not directly validate pupil’s answer, and it 

is rather the role of other pupils. The pupils in our lesson knew well this contract, and there were a few 

pupils who asked the teacher to validate their answers. In contrast in Swiss teachers’ community, the 

problem solving tradition is shared. The important is put more on the solving process than its 

products. This effect is obvious in the Swiss mathematics textbook (Danalet et al., 1999) which 

includes only the problem-situations, and no explicit concepts or ideas for pupils to learn. In the Swiss 

lesson of our project, there was almost no synthesis phase, and the teacher did not take much time for 

introducing the problem and did not intervene often while solving the problem, since it is important 

for pupils to manage by themselves autonomously according to the problem solving tradition. What is 

interesting here is that, the problem solving is a shared idea in both countries. The problem solving 

lesson is often considered as an effective lesson and recommended to the teachers in Japan, and our 

Japanese lesson was also following more or less the process of such lesson. As the name suggests, the 

idea of problem solving was involved in the development of lesson organisation in Japan (Hino, 

2007). However, the lessons in the two countries are very different in their realisations. The 

interpretation of problem solving and its further development are therefore very different. 

Conclusion 

Our research shows that teacher education is under the strong effect of cultural factors. We use a 

project-based international exchange program as a methodological tool for uncovering cultural 

factors (conditions and constraints) that shape ordinary lessons of a specific country. These factors 

can particularly be detected in pre-service teachers' efforts of improving the lesson. Pre-service 

teachers have a conception of an ideal mathematics lesson developed through their learning 

experience as a pupil, as a student and also during their pre-service teacher training. Levels of 

didactical codetermination allow us to identify conditions and constraints of higher levels which are 

often taken for granted and rarely discussed within the country. 
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Introduction and research interest 
According to recent studies, high dropout rates in STEM subjects at university can be explained at 
least in part by a lack of basic knowledge and comprehension of secondary school mathematics 
(Blömeke, 2016), among which specific secondary arithmetic areas like fractions, and especially 
other areas such as powers or logarithms need to be subsumed. Therefore, many universities provide 
so-called “bridging courses” for students beginning a STEM subject at their institution. Sometimes, 
the tasks for diagnostic and supporting measures rely on theoretical frameworks outside mathematics 
(e.g. Bloom’s taxonomy), sometimes the theoretical base is not made explicit but seems to follow 
expectations as expressed in local coursebooks. 

Hence, for diagnosing basic knowledge and comprehension in secondary school arithmetic, a 
comprehensive yet concise overview of the important aspects of this area is needed. While there is 
extensive educational literature on the formation of basic arithmetic skills in elementary operations 
or fractions, we do not focus on the formative, but on a summative view on how students should 
master the various fields of secondary arithmetic at the transition from school to university. Thus, our 
research question is: Which central aspects of knowledge and comprehension in secondary school 
arithmetic can be identified in relevant literature and how can these be summarized for diagnostic 
and supportive measures at university entry level? 

The methodological base is a systematic literature review (Durach, Kembro, & Wieland, 2017). 
Hereby, relevant didactic literature as well as formative literature about formation of concepts in 
secondary school arithmetic as mentioned above is considered. A qualitative content analysis of the 
literature found and subsequent clustering gives the aspects of the frame of reference.  

Following Pinkernell, Düsi, & Vogel (2017) two a priori settings are given: contents (answering the 
question: Which are the basic elements of secondary school arithmetic?) and understanding. 
Understanding is subdivided into knowing in the sense of declarative knowledge (Anderson, 1996) 
and acting, broken down into structuring as a meaningful reading of area-specific expressions 
(Musgrave, Hatfield, & Thompson, 2015: substitutional equivalence), transforming as restructuring 
the area-specific expressions into equivalent forms (ibid: transformational equivalence) and 
interpreting as coherent change between different forms of representation or possible extra-
mathematical contextualization of the same mathematical object (Duval, 2006).  
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A theoretical framework for analyzing and constructing tasks in secondary school 
arithmetic – a first draft 
The outcome of this research takes on a tabular form, in which the various findings in literature have 
been clustered into nine aspects of knowledge and comprehension of secondary school arithmetic. 
Out of these we mention two here. As contents or basic elements of secondary school arithmetic 
numbers and quantities as well as terms arise in the frame of reference. Variables appear too, but are 
only used in the sense of the generalized number. 

- “to change within the same numerical representation” – A numeric number or quantity is
converted into another, equivalent numeric number or quantity.

- “to switch between different forms of representation” – A coherent change between numerical
and other inner-mathematical forms of representation as well as verbal representations.

The model is still subject to further development. As it is planned for the German project optes+ 
(www.optes.de) it will – in its final stage – serve as both a reference for analyzing existing tasks and 
constructing new ones and a conceptual base for discussion about what is considered necessary for 
successful studies in STEM subjects at university entry level.  
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In this paper we analyzed a mathematician’s journals of 5-day teaching episodes on eigenvalues and 
eigenvectors in a first-year linear algebra course, as well as his students’ responses to a survey. We 
employed Tall’s (2013) three world model, to follow the mathematician’s and his students’ 
movements between the three worlds. The study revealed that despite the mathematician’s efforts in 
demonstrating a more holistic view of the concepts, many students found linear algebra very abstract 
and gravitated more toward symbolic thinking. 

Keywords: three worlds of mathematical thinking, eigentheory, concept images, reflections.  

Theoretical Background 
Building on Tall and Vinner’s (1981) notions of concept images and concept definitions, Vinner 
(1991, p. 69) added that, “We assume that to acquire a concept means to form a concept image for it. 
To know by heart a concept definition does not guarantee understanding of the concept. To 
understand, so we believe, means to have a concept image”. Developing these two notions further, 
Tall’s (2010; 2013) three-world model of mathematical thinking (embodied, symbolic, and formal) 
endeavored to lay out an individual’s mathematical journey from childhood to research 
mathematician. According to Tall (2010), the embodied world is based on “our operation as biological 
creatures, with gestures that convey meaning, perception of objects that recognize properties and 
patterns…and other forms of figures and diagrams” (p. 22). In Tall’s (2010, p. 22) words, “The world 
of operational symbolism involves practicing sequences of actions until we can perform them 
accurately with little conscious effort. It develops beyond the learning of procedures to carry out a 
given process (such as counting) to the concept created by that process (such as number)”. Tall defines 
thinking in the formal world as that which “builds from lists of axioms expressed formally through 
sequences of theorems proved deductively with the intention of building a coherent formal knowledge 
structure” (p. 22). The overall goal of the first author’s research program is to: (a) Examine the three-
world model of mathematical thinking as a possible lens for understanding how mathematical content 
is conveyed by a mathematician-teacher with a view toward serving students’ learning; (b) Develop 
and extend the three-world model further. In this study we are focusing on goal (a). 

Many researchers have maintained that reflection is an essential part of teaching. For example, 
according to Dewey (1933), reflection is “active, persistent, and careful consideration of any belief 
or form of knowledge in the light of the grounds that support it and the further conclusions to which 
it tends” (p. 9). Using Tall’s (2013) model, Stewart, Thompson, and Brady (2017) investigated a 
mathematician’s (and co-author) movements between the three worlds while teaching algebraic 
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topology. The instructor reported that students experienced the most difficulty in moving from the 
embodied world into the formal world. Believing the struggle would stimulate mathematical growth 
in his students, this instructor “refused to give students proofs that were pre-packaged. More 
specifically, he desired to provide students with intuitions and pictures that would help them 
understand the conceptual nature of the proof and ultimately lead them to it” (p. 2262). In a similar 
study, Stewart, Troup, and Plaxco (2018) examined a mathematics educator’s (and co-author) 
movements as well as decision making moments while teaching linear algebra. In a different study, 
Stewart (2018) created a set of linear algebra tasks designed to help students move between the three 
worlds. These studies indicate that movements between the worlds is worthy of ongoing investigation. 

Since the present study was focused on eigentheory, naturally recent literature on students’ reasoning 
with eigentheory is acknowledged. While several studies have highlighted students’ difficulties 
learning the eigenvalue and eigenvector concept, they have also provided methods whereby these 
difficulties can be alleviated. For example, Thomas and Stewart (2011) investigated students’ 
conceptual understanding of eigenvalues and eigenvectors. They discovered that students appeared 
confident with symbolic procedures (i.e., calculating the characteristic polynomial), but not embodied 
ones (linking diagrams and eigenvector properties). While the students referred to “being stretched,” 
or “unchanging direction,” when describing eigenvectors, it appeared very few were able to 
implement this definition in context. Thomas and Stewart (2011) also noted that despite their relative 
strength in symbolic manipulation, the students were not able to give justifications for the change of 
the equation 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙 into the equivalent equation (𝐴𝐴− 𝜆𝜆𝜆𝜆)𝒙𝒙 = 𝟎𝟎. They claimed that thinking about 
eigenvectors as invariant appeared to be a useful embodied concept for the students, even while they 
operated within the symbolic world. Gol Tabaghi and Sinclair (2013), and Caglayan (2015), reported 
that usage of dynamic geometric environments (DGEs) appeared to help students learn the 
eigenvectors and eigenvalues concepts, perhaps by encouraging related embodied thought as Thomas 
and Stewart (2011) suggested. Salgado and Trigueros (2015) claimed that via a model designed to 
capture student interest, the students constructed an object conception of eigenvalues and 
eigenvectors. They presented modeling as a powerful tool that can elucidate the problems students 
are having with the associated concepts, make learning the concepts easier and more approachable 
for the students, and supply students with a broader range of strategies with which to approach 
problems. These studies suggested that learning eigenvalues and eigenvectors requires students to be 
able to consider multiple aspects of the concept: geometric, algebraic, and structural. The presentation 
of eigenvectors and eigenvalues geometrically as a stretching direction and a stretching factor seems 
to be considered particularly useful. Thus, the research questions guiding this study were:  

(a) When and why did the teacher decide to move between the three worlds? (b) Were the students
willing to move with him and what were their challenges? (c) What were some of the challenges for
the mathematician-teacher in moving the class to the formal world?

Methods 
This qualitative narrative study is intended to examine a linear algebra instructor’s and his students’ 
mathematical thought processes using Tall’s (2013) model. The study took place over the course of 
a semester at a Southwestern research university in the US. The research team consisted of a 
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mathematician specializing in differential geometry (the instructor, postdoctoral fellow, and co-
author), two mathematics educators, and an undergraduate research assistant. The analysis of the data 
focused on the instructor’s observations, as recorded through journal entries, over a five-day period, 
while implementing tasks from the Inquiry-Oriented Linear Algebra (IOLA) curriculum (Wawro et. 
al, 2013). These 50-minute classes were structured around a sequence of four IOLA tasks using the 
ideas of “stretch direction” and “stretch factor” of a linear transformation to develop the formal 
notions of eigenvector and eigenvalue. Several of the requisite concepts, such as bases, coordinates 
and matrix representations of linear transformations, were covered earlier, so that the IOLA sequence 
could be used. The instructor was introduced to the three-world model, but taught the class as he 
originally planned and the research team never made any comments on how or what to teach. 
Introducing the three worlds was done to help him articulate his thoughts and to provide a language 
for reflection in his teaching journals. His dual role as a teacher as well as a researcher was 
indispensable in every aspect of this research.  In addition, the instructor presented Tall’s (2013) 
framework to his class. Throughout the semester, the instructor recorded his thought processes as 
well as observations on how his class reacted to his teaching. He also met with the research team 
regularly throughout the 
semester and the following 
summer to discuss these 
experiences and reflections. This 
allowed the research team to 
triangulate data via member 
checking with the instructor 
directly and additionally 
afforded him ample time to share a wide variety of teaching experiences, as well as his reasoning 
while making these decisions. To collect additional data on the student’s perspective, the research 
team administered a survey (see Figure 1), and provided some excerpts defining the three worlds. 
The students (16 from a class of 30) were mainly engineering students and were already familiar with 
the notions of embodied, symbolic and formal. To analyze the instructor’s journal, in line with a 
narrative study, the research team performed a retrospective analysis of the journal (Creswell, 2013) 
by iteratively coding the data. The team started with a combination of themes developed from the 
previous study (Stewart, Troup, & Plaxco, 2018) and an open coding (Strauss & Corbin, 1998) 
scheme to allow for the possibility of discovering new themes unique to this study. The themes were: 
Teaching, Students, Class Activities, Math (instructor’s math, students’ math), Reflection, and the 
Three Worlds. By instructor’s math, we mean the math he was doing and talking about, and by 
students’ math, we mean his reflections on students’ mathematical abilities, and mathematical 
conversations in class. Under each theme we considered further fine-grained ideas and assigned 
codes. For Teaching, we considered IOLA tasks (TtIOLA); other tasks (TtOther); pedagogical 
decisions (Tpd); responses (Tr); lecture style (Tsl); group work style (Tsgw); and class discussion 
style (Tscd). The themes that emerged from students’ survey were, movements between the three 
worlds as well as static presence in each world. Other themes were students’ elaboration on the 
worlds’ appearance in their own line of thinking, or the course itself, as well as the connections 
between the concepts.  

Figure 1: The Survey
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Results 
In analyzing his 5-day teaching segments, we examined the instructor’s (a) movements between 
Tall’s (2013) worlds, (b) pedagogical decisions, and (c) reflections on self and students. In the 
students’ survey we examined (a) their views and preferences on each world, and (b) their thoughts 
on eigenvalues and eigenvectors and their connections to other concepts. The IOLA unit on 
eigentheory consists of four one-page worksheets designed to introduce the notions of eigenvalue and 
eigenvector through the ideas of “stretching factor” and “stretching direction” for a linear 
transformation. 

An analysis of the instructor’s journals on teaching eigenvalues and eigenvectors 

Day 1: Blending embodiment and symbolism. The first IOLA task started by describing a linear 
transformation geometrically (see Figure 2), in terms of “stretch directions” and “stretch factors”. 
First, the students were asked to sketch the image of a figure “Z” centered at the origin. Next, they 
were asked to sketch the image of two 
vectors and then compute the images 
numerically. Lastly, they were asked to 
produce a matrix representation of the linear 
transformation. This task is primarily 
situated in the embodied and symbolic 
worlds. The students must grapple with the 
action of the linear transformation before 
considering a matrix representation. 

The instructor noted that “They had a lot of trouble with this. 
So, after a few minutes, we went through the exercise 
collectively.” Among the concepts that he recalled were “for 
every linear transformation the zero vectors gets sent to the zero 
vector,” and “points are identified with vectors.” In order to 
show how the image of any vector can be computed, “we 
converted the two vectors into linear combinations of vectors 
in the stretching direction. Then used the linearity of the 
transformation to find their images. I’m not sure if this made 
sense to them.”  

Day 2: Embodied, symbolic and formal thinking. The 
second IOLA task continued with the same linear transformation 
introduced in task 1. It presents R2 with the standard coordinate grid (referred to as the “black” 
coordinates)   overlaid on the one determined by the stretch directions (referred to as “blue” 
coordinates) together with a discrete collection of points (see Figure 3). The students were asked to 
1) label each point with its “black” and “blue” coordinates, 2) determine two matrices that will
systematically rename points from the blue coordinate system as points in the black coordinate system
and vice versa, and 3) compute the images of new points in the black and blue coordinate systems.
The instructor quickly noted that “most students don’t have a facility with coordinate vectors. Even

Figure 2: IOLA Task 1 

Figure 3: IOLA Task 2
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if they remembered how to compute the coordinates of a vector, they have not connected that to the 
picture of a grid determined by a basis.” After expressing some frustration that “Even after the class, 
another student asked…how was I finding the ‘blue’ coordinates,” he related that “his follow-up 
question was very good: what does the symbol ‘a’ represent when we write [a]_{blue}. This indicated 
that he was starting to abstract the notion of a vector and separate it from its various coordinate 
representations.” Prior to the class, the instructor made the pedagogical decision to present the formal 
definitions of eigenvalue and eigenvector after this task, and the last sentence of the journal entry for 
this day is, “Finally, I was able to define eigenvalue and eigenvector.” 

Day 3: Reinforcing Day 2. The instructor made the pedagogical decision to use day 3 to recap and 
consolidate the various embodied, symbolic and formal aspects of eigentheory that the students have 
thus far encountered. His journal entries for this day contain almost no mention of the students, but 
instead focused on the mathematical connections that he aimed to convey to the students. First, he 
showed how the two matrix representations of the linear transformations are related by conjugation 
by the change of coordinates matrix. Then, to demonstrate how “The ‘stretch factors’ and ‘stretch 
directions’ correspond to eigenvalues and eigenvectors, respectively,” he used GeoGebra to show 
“how you can spot the stretch directions by moving around a vector, or by looking at what happens 
to the unit circle. Through several examples, he “presented the definition of eigenvalue/vector as a 
way to find the stretch factors and directions.” He even pushed these ideas into the realm of infinite 
dimensional vector spaces by considering differentiation operators on function spaces. 

Day 4: Symbolic and formal thinking. He returned to the IOLA sequence with task 3 (a standard 
textbook exercise). For three distinct two-by-two matrices, the students were asked to 1) find the 
stretch factors given the stretch directions 2) find the stretch directions given the stretch factors, and 
3) find both the stretch factors and directions. The instructor “expected most students launch
themselves into finding the eigenvalues and eigenvectors.” But, “Instead, I was surprised to see how
many were unsure where to start.” He made the pedagogical decision to guide the class and used the
opportunity to present several connections.

Day 5: Symbolic and formal thinking. The fourth IOLA task considers a single linear 
transformation of R3, presented as a matrix. It is found that a certain stretch factor has two stretch 
directions, i.e. the corresponding eigenspace is two-dimensional. The third and final part posed a 
rather provocative question: given that 2 and 3 are stretch factors and the former has two distinct 
stretch directions, could there be additional stretch factors? He observed that “every student's work 
that I saw was the same. To decide if there was another eigenvalue or stretch direction they all 
computed the characteristic polynomial to see if there was another root.” Although this was a valid 
approach he was eager to present a more sophisticated approach that connected to earlier concepts. 
“I then presented a solution that crucially uses the fact that all three eigenvectors form a basis for R3. 
I did not get very much feedback from the class on whether they were internalizing this.”  In summary, 
the instructor used four IOLA tasks, supplementing with lecture where necessary. His goal was to 
build a concept image of eigentheory by presenting the fundamental notions via all three worlds of 
mathematical thinking.  Moreover, he emphasized the formal definition of eigenvalues. For activities 
situated in the embodied and symbolic worlds the students were encouraged to explore independently, 
while the active guidance provided by the instructor was primarily to connect those worlds back to 
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the formal. Although, many of his pedagogical decisions were dictated by time pressure, he made 
sure each day to bring the class closer and closer to the formal world.   

An analysis of the student survey 

In response to describing the meaning of eigenvalues and eigenvectors most students gave a symbolic 
view of the concepts (9/16). Most students also included a symbolic representation, namely the 
equation 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙, with the exception of S14 and S16, who only used words. We noticed that their 
reasoning within this world (symbolic) were mostly reasonable. 

S11: det(λI-A) = 0. An eigenvalue is the variable λ in the equations det (λI - A) = 0 or in 
the equation Lx = λx. Eigenvector is the variable x in Lx = λx. 
Eigenvector of L associated to the eigenvalue λ. 

S16: An eigenvector is a vector associated with a matrix. An eigenvector multiplied by 
this matrix equals a scalar multiple of the eigenvector. The values that eigenvector 
is scaled by are called eigenvalues. 

The symbolic world seemed the most comfortable world for students in which to express their 
thoughts, and some even felt that moving from the formal world to the symbolic world “solves most 
problems” (S10). In general students used more positive language in describing this world. For 
example one students wrote, I feel as though I thrive in the symbolic world. For linear algebra, the 
matrices and vectors make the most sense to me in symbolic form (S14). The students’ views on the 
usefulness of the embodied world were mixed. For example, one student wrote, “I am able to 
understand easier if I can visualize something” (S15). “The embodied world really does not help me 
understand what is going on in problems” (S14). At one end of the spectrum, a student wrote, “my 
actions in the symbolic world are determined by understanding in embodied world. I refer to the 
embodied world to initially understand the formal world, but usually don't go back.” (S10). Another 
student claimed that “the embodied world is useful for getting the big idea” (S12) and understanding 
the question before moving to the symbolic. In agreement another student wrote: “we took complex 
problems and simplified them to embody and represent a bigger picture” (S9). At the other end of the 
spectrum, one student went so far as to isolate the embodied world completely, writing that the 
“embodied and symbolic worlds” (S16), seldom interacted in her/his viewpoint. Students did not 
elaborate as much on the formal world. One student believed that the formal world is useful, or at 
least prevalent in class, but difficult to work with (S12). Others believed that “most of the class was 
abstract proofs” (S8), “learning concepts required a lot of formal proofs” (S13), and “linear algebra 
relies on a formal understanding” (S16). As for moving between the worlds, one student wrote: “I 
start in symbolic and move to formal for proofs” (S14). Although, most comments were directed 
toward the class or the course in general, one student conveyed her/his thoughts as, “Formal is the 
worst that I have a problem with” (S15). In connecting between the concepts, students referred to 
determinants, linear operators, linear transformations, basis, special solutions, system response, 
system stability, and even music. 
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Discussion and concluding remarks 
The mathematician-teacher in this study has negotiated the mathematical journey himself, and knows 
the path well. He viewed the formal world as the destination and wished to bring his students there. 
However, this was not straightforward and required time and perseverance. Since the instructor’s 
objective was a mathematical treatment of eigentheory, he used IOLA tasks to present a web of 
connections surrounding the formal definitions. Although, he valued the embodied and symbolic 
worlds as part of the concept image, the instructor’s goal of reaching the formal world became 
apparent in many of his journal writings. For example, his decision to present the definitions of 
eigenvalue and eigenvector at precisely the midpoint of the unit reflected their significance, 
representing a single idea uniting the various notions from all three worlds. A mathematical 
understanding of eigentheory (to him) involved primarily the definitions and how those definitions 
manifested themselves in the embodied, symbolic, and formal worlds. For example, he was able to 
think of a definition of eigenvector in symbols as described by the equation 𝐴𝐴𝒙𝒙 = 𝜆𝜆𝒙𝒙, in the embodied 
world as a picture of an image vector collinear with its preimage, and additionally various properties 
related to eigenvalues and eigenvectors in the formal world. The instructor believed the more 
connections between eigentheory and other linear algebraic concepts that he can convey to the 
students, the more robust their concept image. In Tall’s (2013) view “formal mathematics is more 
powerful than the mathematics of embodiment and symbolism, which are constrained by the context 
in which the mathematics is used” (p. 18). It was interesting to notice that even a mathematician that 
values all three worlds of mathematical thinking, still gravitates toward the formal world as the most 
important part of a mathematical concept. He seemed to consider them complementary to the formal 
world. Also, what appears “rote” and part of his “everyday” mode of thinking is completely foreign 
to the typical undergraduate linear algebra student. Hence the connections between the formal 
definitions and surrounding concepts that appeared so strong to the instructor were quite tenuous with 
the students. Although the IOLA curriculum was utilized to highlight the embodied world and draw 
out its connections to the other two worlds of mathematical thinking, nonetheless, the students 
gravitated toward symbolic thinking. We speculate on two reasons for this. First, living comfortably 
in all three worlds and moving between them is a big hurdle for most novice students of mathematics. 
Second, a significant part of students’ motivation is derived from “answering the question”. As such, 
students may value the world that seems most helpful in doing so. From the mathematician-
instructor’s point of view the world most amenable to evaluation is the symbolic world. Hence the 
class setting establishes an incentive for students to remain safely in the symbolic world, and any 
desire to branch out must be internally motivated.  

Our study suggests exploring ways of motivating students to achieve a more holistic understanding 
of linear algebra concepts across the three worlds. The three-world model gave the mathematician-
instructor a language that he felt accurately reflected his own thought processes. It also empowered 
the students by providing them a language to express their mathematical thought processes. 
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In this paper, we investigate the mathematical discourse of undergraduate biology students 
when working on biology tasks. Our data consists of students’ and the lecturer’s discussion 
when working on two tasks in an Evolutionary Biology course. In our analysis we make use of 
the commognitive framework and focus on the use of mathematical routines. We observed that 
although the overall aim of students’ engagement with routines was exploratory, the way they 
engaged with mathematical routines when working on biology tasks was ritualized. However, 
students were aware of the need of using construction routines when trying to mathematize a 
biological phenomenon although the lack of familiarity with relevant construction routines 
constrained their ability to deal with certain task situations.  

Keywords: Commognitive perspective, mathematical discourse, mathematics in biology, 
routines, rituals and explorations. 

Introduction 
In the last four decades, the role of mathematics in the science of Biology has greatly increased. 
This has influenced undergraduate and graduate biology students who need to be 
mathematically capable to meet the demands of this science (i.e. Labov, Reid & Yamamoto, 
2010). Students need to understand and work with contemporary mathematical models and 
frameworks that are applicable in analysing the overwhelming flow of biological data. 
However, various studies have shown that biology students face many challenges and 
difficulties in their biology courses when mathematics is used as an analytical tool (i.e., Speth 
et al., 2010; Brewer & Smith, 2011). These difficulties can be partly explained by a prevalent 
epistemological perspective on the connection between mathematics and other disciplines that 
Barquero, Bosch and Gascón (2011) have called “applicationism”. According to this view, 
common at the university level, “first mathematical tools are built within the field of 
mathematics and then they are ‘applied’ to solve problematic questions from other disciplines, 
but this application does not cause any relevant change, neither in mathematics nor in the rest 
of disciplines where the questions to study appeared” (ibid, p. 1940). Barquero, Bosch and 
Gascón argue that such a perspective has problematic effects particularly on mathematical 
modelling practices, since these require a solid understanding of the connection between the 
mathematical tools and the context in which they will be used. 

This paper, which is based on the pilot study of a doctoral research project aimed at exploring 
and characterizing the mathematical discourses of undergraduate and graduate biology 
students, investigates students’ group-work in a biology course in a Norwegian university when 
engaging with biology tasks that use mathematics as an analytical tool. Taking a discursive 
approach, we analyse students’ and the lecturer’s mathematical discourse when working on 
two tasks aiming to explore the routines that students engage with and the character of this 
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engagement, and to provide insights into the kind of mathematical discourse that the lecturer 
expected students to engage with.  

Commognitive framework  
This study is grounded in the commognitive framework (Sfard, 2008). In this framework, 
mathematical knowledge is conceived through a community’s established modes of 
communication called discourses. A discourse is defined as a “specific type of communication 
made distinct by its repertoire of admissible actions and the way these actions are paired with 
re-actions” (ibid., p. 297). In other words, discourses are different types of communication set 
apart by certain characteristic features. In particular, mathematical discourse is described by 
four features: word use, visual mediators, endorsed narratives and routines.  

Our focus in this paper is on the students’ use of routines. Sfard (2008) originally defined 
routines as “repetitive patterns characteristic of the given discourse” (ibid., p. 134). However, 
recent work by, for instance, Lavie, Steiner and Sfard (2019) elaborates further of the notion 
of routine. They define routines using the notions of task situation, task and procedure. First, 
task situation is understood as a setting in which “a person considers herself bound to act – to 
do something” (ibid., p. 7). Second, a task is “the set of all the characteristics of the precedent 
events that she (the person) considers as requiring replication” (ibid., p. 9). The task refers to a 
person’s interpretation of a given task situation; and, by precedent event, the authors mean all 
that happened in the precedent task situation. Third, a procedure is “the prescription for action 
that fits both the present performance and those on which it was modelled” (ibid., p. 9). The 
procedure is implemented by the task performer in response to a given task situation. Lastly, a 
routine which is performed in a given task situation by a given person is the task, as seen by 
the performer, together with the procedure the person executes to perform the task. Routines 
are distinguished as practical if the person interprets the task situation as requiring a change, 
re-organizing or re-positioning of objects; or discursive if the person interprets the task 
situation as requiring a communicational action (Lavie, Steiner & Sfard, 2019). Moreover, a 
routine is characterized as exploration if it is oriented towards the outcome; and, as ritual if it 
is a process-oriented performance. Thus, while an explorative task aims at producing a new 
“historical” fact about mathematical objects, a ritual is appreciated for its performance and not 
for its product. Explorations according to Sfard (2008) are divided into three categories: 
construction (a process resulting in a new endorsable narrative), substantiation (deciding 
whether to endorse previously constructed narratives) and recall (the process of citing a 
narrative that was endorsed in the past). According to Lavie, Steiner and Sfard (2019), students 
participate in unfamiliar discourse in a ritualized way. However, in further learning, their 
routines are expected to “undergo gradual de-ritualization until they eventually turn into full-
fledged explorations” (ibid., p. 2). A person performs a certain mathematical routine in the 
present task situation because of its “precedents – to past situations which she (the person) 
interpret as sufficiently similar to the present one to justify repeating what was done then, 
whether it was done by herself or by another person” (ibid., p. 8). The precedents are chosen 
with the help of “precedent identifiers – to those features of the current task situation that a 
person considers as sufficient to view a task situation from the past as a precedent” (ibid., p.8). 
The analysis in this paper examines this relation focusing particularly on the following research 
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questions: “What characterizes students’ mathematical discourse when engaging with biology 
tasks?” and “How does students’ mathematical discourse relate to the lecturer’s intended 
solutions of the tasks?” 

Method 
This research is a case study of the course Evolutionary Biology, an undergraduate biology 
course at a large Norwegian university. The study was conducted during the spring semester 
of 2018. All students enrolled in the course were required to have taken at least one course in 
Calculus and one in Statistics. The aim of this course is to provide students with a deeper insight 
into the evolutionary processes that can explain the genetic composition of populations, form, 
behaviour and distribution of organisms, and to acquaint students with the basic methods of 
analysing evolutionary relationships between species. Moreover, students are introduced to 
different mathematical models of evolution. During the course, three sessions are dedicated to 
students’ group-work. In these sessions, students are asked to work on different questions 
related to the topics that have been presented by the lecturer in the lecturing sessions. In this 
paper, we present data from one of these group-work sessions. In this particular session, 
students were asked to work in groups on a quiz with multi-choice questions. Students had 30 
minutes available to finish the quiz. They were first to work individually for 10 minutes, then 
discuss their answers in small groups. The lecturer also handed out an answer sheet, enabling 
the students to check if the proposed alternative was the right one. After the small group 
discussion, the group had to agree upon a correct answer, which was then evaluated using the 
answer sheet. As students were working on the quiz, the lecturer circulated among the groups, 
providing help if needed.  At the end of students’ group-work, the lecturer discussed each 
question of the quiz in front of the class. 

In our analysis, we focus on two questions: Heritability Equation and Genetic Correlation. The 
first question (see Figure 1) requires students to find the correct formula of heritability (ℎ2) 
which is given as a proportion of response (R) to selection (S).1 This formula derives from the 
definition of heritability as the degree to which a certain trait in individuals is genetically (rather 
than environmentally) determined when the genetic construction of an individual and the 
environmental factors have a normal distribution. This equation had been introduced in a 
previous lecture. The second question (see Figure 2) requires students to reason about negative 
and positive correlation between variables. Although this specific question had not been 
previously discussed, the lecturer had previously introduced the theoretic background on 
genetic correlation between variables.  

For the purpose of this study, we video and audio-recorded two groups of five students each 
(in total there were 32 students in the class, divided into groups of five or six) and the lecturer’s 
discussion afterwards. The two groups of students were chosen randomly. All collected data 
was transcribed. Students’ and lecturer’s discussions were conducted in English. When 
analysing the data, we focused on the identification of students’ and lecturer’s mathematical 
routines. We analysed separately the transcripts of each students’ group-work and the lecturer’s 
discussion, looking for instances where they were engaged in mathematical routines. Then we 

1𝑅𝑅- is the response to selection for certain trait, 𝑆𝑆- is the selection differential, defined as the mean phenotypic 
difference between selected individuals and the population mean (see, Falconer and Mackay, 1996).  
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compared the findings from each students’ group work with the lecturer’s discourse. In the 
process of data analysis, we also looked for signs of exploratory or ritualized engagement, for 
instance, whether students’ routine use was aimed at producing or justifying mathematical 
claims, or if they appeared to be engaging in routines without a regard for their relevance for 
the task at hand. 

Results  
In this section, we will analyse each question separately, considering both the students’ group-
work and the lecturer discussion where he presented his expected solutions.  

 
Figure 1: Heritability equation 

Analyzing students’ work on the Heritability Equation task, we observed that as the first step 
toward finding the correct response, students would engage with recall routines – trying to 
recall the equation given during the lectures or written in their textbook. Of the two groups of 
students that we video-recorded, only one student was able to remember the correct form of 
the equation, and she still expressed some doubt concerning her choice: “I think the right 
answer is 𝑏𝑏). I’m just trying to remember what was written in the book but I’m not sure about 
it”. After failing to recall the correct equation, students tried engaging in construction routines. 
They started discussing what the variables in the equation stood for and how they were defined. 
Although students were able to identify them biologically, they could not recall the meaning 
behind these variables: ‘I think ℎ is everything that is heritable, and R is of course response and 
S the selection, but I don’t remember what they mean or how you actually use them’. Being 
unable to explain what these variables represent biologically urged students to look for other 
solutions. They tried reasoning mathematically using the properties of ratio and squared 
numbers. As shown in the dialogue below, through the use of these mathematical routines, the 
students tried to construct a new endorsable narrative (the equation of heritability).  

Student1: I’m guessing b) or d) … because that would be response squared divided by 
selection, so the higher the response, the higher is the heritability; the higher 
the selection, less heritability. 

Student2: Yeah, but you can also see that there is only one answer where is the opposite 
which leads to one of these to be right.  

Student1: Yeah, but the question is which one should we square? 

Student2: They can both be squared.  

 ……………….. 

Student3: Why would you have it squared? 

Student2: To negate the possibility of a negative answer. Just square something and it 
cannot be negative.   
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Despite engaging in construction routines, the students in the first group were unable to come 
up with an answer, since these routines were not helpful enough for justifying any of the 
proposed alternatives. Thus, they decided to postpone the question. They had a further reason 
for this: since the following question was directly asking for the definition of heritability, they 
believed that the alternatives given there would help them to find the expected definition of 
heritability. After students had spent some minutes working on the quiz, the lecturer asked 
them if they needed help with the questions. He suggested using another definition of 
heritability given during lectures, but the group still felt lost and, in the end, the group gave up 
and just skipped the question. Meanwhile, the second group, after some discussion, agreed 
upon alternative (𝑑𝑑), arguing that i f y ou have a  higher selection in the numerator then the 
response is higher in the denominator, although without explaining why that would make sense 
biologically. Checking the answer sheet and realizing that they had selected the wrong answer, 
they merely exchanged this for the correct answer. Thus, we can observe that in this exercise, 
although students used construction routines with the overall aim of formulating a new 
endorsable narrative, they engaged with the mathematical routines in a ritualized way – 
employing the routines without much regard to their relevance for the problem at hand, and 
consequently failing to come up with a meaningful narrative. 

In the follow-up discussion of the first question, the lecturer began by saying: “I told you, you 
have to learn these equations and some of you didn’t”. Although the lecturer was laughing as 
he said this, suggesting that he was perhaps not entirely serious, it still implies that he was not 
really expecting students to come up with the correct alternative from scratch. Rather, he just 
expected them to remember it. In other words, he expected them to use recalling routines 
rather than construction routines. However, he also explained how the model could be 
constructed and how the form of the equation could be justified using the graph of normal 
distribution which describes the relation of differential selection and response. Hence, during 
his explanation of the task, he used construction routines that differed from the ones the 
students used in their solution attempts. Neither normal distribution nor the alternative 
definition suggested by the lecturer to the first group, were mentioned by any of the students.

Figure 2: Genetic Correlation
The second question (see Figure 2) focused on genetic correlations of three different 
variables. This question, unlike the first one, could not be solved using only recalling 
routines. Since the task required actions for deciding whether to endorse previously 
constructed narratives, the solution will involve substantiation routines. Working on this task,
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both groups struggled with the same issue as in the first question: converting variables into 
their biological context. However, in this case, students were able to come up with the 
meaning of genetic correlation, but as shown in the dialogue below, they struggled with 
making sense of the biological interpretation of their result. 

Student2: But if there is a negative ratio between fat and days to market, that means 
that if fat increases then days to market decrease, right? … Then, that would 
mean that less fat, more days to market? And if we apply the same logic to 
the first one, then fat decreases, then we need less food. 

Student3: Yeah, I thought that when I read it. I thought it was the amount of fat 
correlates to the Days to Market so that means that the percentage of fat…the 
amount of days at the market would lower the percentage of fat by a factor 
of 0.2.  

Student2: Which does not make sense. 

……………….. 

Student4: I understand your point. I just guessed something because I was thinking 
about what is the effect of selecting leaner pork on feeding costs. If you think 
logically, then it would take shorter time to get a leaner pork than a fat pork 
which means lower feeding costs, right? So, I just kind of started thinking 
without the mathematics.  

After some discussion, both groups came up with the right answer. Still, the second group first 
tried drawing a conclusion through reasoning biologically, rather than considering the 
quantitative relations between variables. However, due to a mistake in their biological 
reasoning, they ended up with the wrong answer. Realizing that, they started re-examining the 
correlation between the variables, noticing that just considering the relation between variables 
would lead to the right answer. In his discussion of the solution to this question, the lecturer 
suggested that it should have been based on the meaning of genetic (negative or positive) 
correlation, which fits with what the students did. Thus, his expectation on the kind of routines 
that students should have used during the exercise were fulfilled (despite the fact that the 
second group failed in their first attempt).  

Discussion 
In this paper we have analysed students’ and the lecturer’s discourse when working on two 
biology tasks involving mathematical elements: Heritability Equation and 
Genetic Correlation. These two tasks set by the lecturer in a group-work session differ from 
each other concerning the expected routines that students were required to use when solving 
them. In the second question, the mathematization of the problem had already been done, 
meaning that the relation between variables was given, and the students just needed to use that 
relation. Thus, they were expected to use substantiation routines in order to endorse 
previously constructed narratives. In the first question, on the other hand, the mathematization 
of the problem was not given. Students had two possibilities in this case – use recall routines
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to remember the correct form of the equation from previous lectures or use construction 
routines to construct a mathematical model for the problem.  

Working on Heritability Equation, when the students were unable to remember the correct 
equation, they used construction routines. However, considering that they did not remember 
the biological meaning of any of the variables, students were not left with many choices other 
than identifying other features of their current task situation that would allow them to repeat 
precedents from their past situations. The choice to use properties of ratio and squared 
numbers as a step to overcome the constraints of the task, shows that they were trying to 
apply familiar routines in unfamiliar task situations aiming at innovation. However, we 
observed that students employed these mathematical routines – by identifying precedents 
that allowed them to use properties of ratio and squared numbers – without any apparent 
regard for their relevance for their task situation. Rather, they appeared to engage in familiar 
routines in a purely process-oriented manner and not towards a specific goal. This is in 
accordance with the findings of Viirman and Nardi (2019) where biology students were seen 
to employ mathematical routines in a ritualized way, even when their engagement with the 
biological content of the tasks was exploratory. 

On the other hand, from the lecturer’s discourse we can observe that his expected solutions to 
the task build primarily on recall routines. This fits with the aims of the course, which 
focused on learning how to use mathematical models rather than constructing them (although 
he did show the construction of the models during his discussion). Still, we do not exclude 
the possibility that the lecturer expected students to explore the exercise mathematically 
using construction routines since he gave a hint on how the problem can be modelled using 
the alternative definition of heritability. We note that when the lecturer gave the hint to the 
first group, he assumed that students knew the meaning of variables (ℎ2, 𝑅𝑅  and 𝑆𝑆 ), which 
was not the case. However, as Lavie, Steiner and Sfard (2019) suggest, although the 
lecturer’s own mathematical discourse can be a model for the students to follow, it is 
necessary to put a conscious effort into establishing whether the explorative nature of the task 
gets through to the students clearly enough (ibid., p. 20). We suggest that helping students 
with the biological meaning of the variables might have supported their engagement with 
construction routines. This being said, the lecturer was unaware of the students’ difficulties 
since they did not mention that they were struggling with understanding the variables. 
Concerning Genetic Correlation, despite some struggles in the beginning, students were able 
to use substantiation routines in accordance with the lecturer’s expectations. It is worth 
emphasizing that, contrary to the second task, the nature of the Heritability equation 
encouraged students to engage in explorative participation. The mathematization of the first 
task required engagement with an unfamiliar task situation, as suggested by the students’ 
inability to use the hint that the lecturer gave them during group-work, and by the absence in 
the students’ discourse of any of the routines used by the lecturer in his construction of the 
heritability model.

Proceedings of CERME11 4849



Barquero, B., Bosch, M., & Gascón, J. (2011). ‘Applicationism’ as the dominant
   epistemology at university level. In M. Pytlak, T. Rowland & E. Swoboda (Eds.),
    Proceedings of the 7th Conference of European Research in Mathematics Education
      (CERME). (pp. 1938-1948). Rzeszów, Poland: ERME 

Brewer, C., & Smith, D. (2011). Vision and change in undergraduate biology education: A call 
to action. Washington DC: American Association for the Advancement of Science. 

Falconer, D., & Mackay, T. (1996). Introduction to Quantitative Genetics. Burnt Mill, Harlow, 
Essex, England: Pearson.  

Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2010). Integrated biology and undergraduate 
science education: A new biology education for twenty-first century? CBE- Life Sciences 
Education, 9, 10-16. 

Lavie, I., Steiner, A., & Sfard, A. (2019). Routines we live by: from ritual to exploration. 
Educational Studies in Mathematics, 101, 153-176.  

Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourse, 
and mathematizing. New York, NY: Cambridge University Press. 

Speth, E., Moyerbrailen, G., Ebert-May, D., Long, T., Wyse, S., & Linton, D. (2010). 1,2,3,4: 
Infusing Quantitative Literacy Into Introductory Biology. CBE- Life Sciences Education, 9, 
323-332.

Viirman, O., & Nardi, E. (2019). Negotiating different disciplinary discourses: Biology 
students’ ritualized and exploratory participation in Mathematical Modelling activities. 
Educational Studies in Mathematics, 101, 233-252. 

Addendum Thematic Working Groups

We are aware of the limitations of our study, and that the limited amount of data does not 
allow us to draw any general conclusions. Still, we find it noteworthy how the students’ 
engagement with the tasks corresponded well with the lecturer’s expectations, and that 
difficulties mainly occurred when they failed in invoking the kind of routines he had 
expected. We claim that relying purely on recall routines can be potentially problematic for 
students. We suggest that providing students with some opportunities for working with 
construction routines can be helpful for their learning. In the continuation of this doctoral 
project, it is our intention to observe a greater number of biology students’ over a longer 
period of time, investigating what happens to their mathematical discourse as they participate 
in a course more closely connecting mathematical modelling with biology. 
References 
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Recall and substantiation routines in exam scripts: injective and 
surjective functions 
Athina Thoma, Elena Nardi 
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In this paper, we focus on first-year university students’ engagement with university mathematics 
discourse in the context of a final examination question on injective and surjective functions. The 
data consists of twenty-two responses as well as excerpts from an interview with the exam-setting 
lecturer. Our commognitive analysis focuses on student engagement with recall and substantiation 
routines: how they recall and provide relevant definitions, and how they substantiate whether a 
function is injective or surjective. We identify three issues that are exemplified with samples from the 
data: ambivalent word use, and visual mediation, relating to equivalence; partial justifications 
regarding the injectivity of h(n) = 3n; and, conflation of justifications for a function’s surjectivity in 
ℤ with those used for functions in ℝ. We conclude by discussing the notion of precedent events as 
evident in students’ engagement with routines in a range of mathematical topics. 

Keywords: Substantiation, recall, routines, injective, surjective function. 

From secondary to university mathematics 
Transition from secondary school to university mathematics is a topic of growing interest (Gueudet, 
2008). While differences between secondary school and university mathematics vary across 
countries, there are aspects of this transition which seem to be common in different contexts. In the 
larger study from which this paper stems (Thoma, 2018), we explore this transition through analyses 
of Year 1 examination questions, lecturers’ perspectives on designing and using these and students’ 
responses. Functions, one of the topics examined in these questions, have been identified as a key 
mathematical topic in the transition from secondary to university mathematics (Winsløw, Gueudet, 
Hochmuth, & Nardi, 2018) and research has reported issues around students’ learning about functions 
for a long time (Bansilal, Brijlall & Trigueros, 2017). Analogous attention has been given by 
researchers to students’ deployment of formal definitions and proofs (Selden, 2011), their use of 
mathematical notation (e.g. Mamolo, 2010) and their difficulties with mathematical objects that have 
different meanings in various mathematical areas (Kontorovich, 2018). Here, we focus on one aspect 
of learning about functions that has received relatively little attention: what students think a surjective 
and an injective function is and how they decide whether a function is injective or surjective.  

In this paper1, we focus on twenty-two students’ responses to a Year 1 examination question on 
injective and surjective functions. We take a discursive approach, the theory of commognition (Sfard, 
2008), in analysing the data, and we aim to characterise the routines that students engage in when 
answering the questions. Building on previously reported work (Thoma & Nardi, 2018a; 2018b), we 
examine the relevant definitions students provide and the procedures they use when substantiating 
that a given function is (or is not) injective or surjective. 

1 An earlier version of this paper was presented as a PME42 Oral Communication (Thoma & Nardi, 2018b). 
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Commognitive routines: recall and substantiation 
A discursive perspective which is being increasingly used in university mathematics education 
research is Sfard’s (2008) theory of commognition (Nardi, Ryve, Stadler & Viirman, 2014). In this 
perspective, mathematics is defined as a discourse (Sfard, 2008) which can be described in terms of 
the following four characteristics: word use (e.g. injective), visual mediators (e.g. algebraic and 
logical symbols), endorsed narratives (e.g. definitions) and routines (e.g. proving). Sfard (2008) 
describes three types of routines: deeds (“an action resulting in a physical change in objects”, p. 236), 
rituals (“creating and sustaining a bond with other people”, p. 241) and explorations (“producing 
endorsed narratives”, p. 259) with the exploration routines further categorised as recall (e.g. recalling 
the definition of an injective function), substantiation (examining whether a given function is 
injective) and construction (e.g. constructing a function that is injective). Of relevance to our analysis 
here, are exploration routines, which often develop from rituals. This process has been described 
through the notion of task-situation in which an individual feels a need to act and which is taken as 
“the set of all the characteristics of the precedent events that she considers as requiring replication” 
(Lavie, Steiner & Sfard, 2018, p. 9). Thus, explorations can emerge as changes in the way learners 
search for precedents in task situations. In our study, we deploy task to mean a part of an examination 
question which the students are asked to engage with. These task situations are interpreted by the 
students, who draw on precedent events, which include previous examples or exercises each student 
has engaged with before and which they see as relevant to the present task. Sfard (2008) describes 
the procedure (or course of action) and the when of a routine, with the latter further described in 
terms of its applicability and closing conditions (pp. 208-209). The applicability conditions are 
“circumstances in which the routine course of action is likely to be evoked by the person” (p. 209, 
ibid) and closing conditions “[signal] a successful completion of performance” (p. 209, ibid). 

Here, we explore how students recall the definitions of an injective and surjective function and how 
they engage in substantiation routines, in order to examine whether functions defined on the integers 
are (or are not) injective or surjective. Previous research has documented “how lack of flexibility in 
working across different representations influences students’ encounter with the concept of function” 
(Nardi, 2008, p. 161) and has posited that students’ prior experience with functions and sets may have 
contributed to this lack of flexibility (Bansilal et al., 2017). However, there is little insight from prior 
research into students’ engagement with injective and surjective functions in various numerical 
domains (e.g. reals and integers). In the UK educational context of the study we report in this paper, 
engagement with various numerical domains is different in school and university mathematics. In 
school mathematics, students are initially introduced to the domain of integers. Later, they are 
introduced to real numbers and discursive activity with integers is subsumed within that of the reals. 
The tasks they engage with here are in the context of real numbers. At university, students are 
expected to engage with various numerical domains, often within the same task. Being aware of this 
variety and of the various restrictions within each domain is therefore crucial. 

Our study aims to provide some insight into this through exploring the following research question: 

What engagement in mathematical routines can we observe in students’ scripts when they examine 
whether given functions are injective or surjective? 
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To answer this research question, we examine students’ use of mathematical terminology and notation 
which may be incompatible with the mathematical discourses they are expected to engage with when 
responding to the task at hand. We also examine the closing and applicability conditions of the 
routines, in which the students are required to engage in when solving the question within the various 
mathematics discourses present in the question (e.g. discourse of functions, integers, reals). We 
examine the written scripts of the students which capture the output of students’ engagement with 
these mathematical discourses.  

The exam question, the participating students and the exam-setter’s intentions 
The data on which we focus are examination scripts from 22 students taking an exam on a Sets, 
Numbers and Probability Year 1 module. In this module, the focus is on Sets, Numbers and Theory 
in the first semester and on Probability in the second semester. The final examination consists of six 
questions, three coming from each part of the module, one compulsory and two optional from each 
of the two parts of the module. Here, we focus on one sub question of one of the optional questions 
from Sets, Numbers and Theory, on surjective and injective functions. During the year, the students 
were asked to engage with the properties of injectivity and surjectivity in exercise sheets and 
coursework with functions defined in different numerical domains. In this paper, we discuss students’ 
responses to this examination sub question:  

Suppose 𝐴𝐴 and 𝐵𝐵 are sets and 𝑓𝑓:𝐴𝐴 → 𝐵𝐵 is a function. Define what is meant by 𝑓𝑓 being surjective 
and what is meant by 𝑓𝑓 being injective. For each of the following functions decide whether it is 
injective, surjective (or both, or neither). Give brief reasons for your answers.  

(a) 𝑔𝑔: ℝ → ℝ  where 𝑔𝑔(𝑥𝑥) = 1/(1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑥𝑥)) for 𝑥𝑥 ∈ ℝ. 

(b) ℎ: ℤ → ℤ  where ℎ(𝑠𝑠) = 3𝑠𝑠 for 𝑠𝑠 ∈ ℤ. 

Fifty-four students took part in the final examination and the marks of their responses to the whole 
question (the first sub question is given above and the second dealt with modular arithmetic) ranged 
from 0 to 20 marks with an average of 14.31. The scripts of 22 students were selected by the first 
author to represent a variety of marks (for more information on the selection process, see Thoma, and 
Nardi, 2017, Fig. 3 on p. 2269). We analyse students’ scripts according to the definitions they recall 
for injective and surjective functions, and their substantiations that the given functions are (or are not) 
surjective or injective. In our discussion of the students’ scripts, we bear in mind also the following 
selected quote from an interview, conducted soon after the exam, with the lecturer who taught the 
module and set the examination task. This quote illustrates the lecturer’s concern with a perceived 
discrepancy between “knowing how to write down” a definition for injectivity and knowing what 
injectivity “means”. We return to this quote towards the end of paper. 

“somehow they know what injective means, they just don’t know how to write down the definition 
(...) it is a very strange experience to see that a student knows what injective means but can’t write 
down what it means, it’s something about maybe not even about mathematics, it’s about language 
and about logic (…) They need to see this transition between (…) the symbols and the meaning 
and the logic of things and it’s one of the most important things and it is one of the hardest things 
to teach” 
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Recall and substantiation routines in students’ scripts 
In the sub question under consideration, students are first asked to provide the definition of injective 
and surjective function (recall); then, to determine whether two functions are injective or surjective 
and provide brief explanations for their choices (substantiation). Here, we highlight three issues that 
emerged from the analysis of the scripts: ambivalent word use, and visual mediation, relating to the 
object of equivalence (⇔) instead of implication (⇒) in the definition of injective function; partial 
justification of the injectivity of h(n) = 3n; and, conflation of justifications for a function’s surjectivity 
in ℤ with those used for functions in ℝ. We discuss each case providing also examples from students’ 
scripts.  

Ambivalent word-use and visual mediation relating to the object of equivalence  

In the scripts of four students, there is ambivalent word use and visual mediation relating to 
equivalence (either using the logical symbol ⇔ or phrases that signal equivalence) in the definition 
of injective function, illustrating confusion between the definition of injective function and the 
definition of a function. In the definition for an injective function, student [02] writes “one to one 
relationship” and comments on the relationship between the elements of the domain and the codomain 

of the function (Figure 1). However, later, 
the student, in trying to clarify what this 
“one to one relationship” is, writes 
“f(a)=b and vice versa”. This phrase is not 
further explained and is also used when 
the student examines whether the given 
function h is injective, signaling a 
confusion between the definition of a 
function (which must be single valued) 

and the definition of an injective function. Additionally, we note that the logical quantifiers “for every 
b” and “there exists a” in the definitions of injectivity and surjectivity are missing from student [02]’s 
response. This absence of logical quantifiers and the ambivalent use of logical phrases (“vice versa”) 
highlights a difficulty with the logical connections between the various mathematical objects that are 
part of the definitions. Furthermore, we observe the difficulty to state the definition formally. The 
phrases used by the student (e.g. “only one value”) are ambiguous and are not clearly showcasing 
whether the student discusses injectivity, which would be “at most one value” or bijectivity (“there 
exists one and only one value”). The 
ambiguity between the single valued 
function and the injective function is also 
illustrated in definitions given by student 
[06] (Figure 2) and two more students. 

This use of equivalence (either in the form of the symbol (Figure 2) or using the phrase “vice versa” 
(Figure 1)) in the definition of injective function highlights difficulties in students’ engagement when 
recalling and writing the definitions. This may lead to difficulties in the substantiation part of the 
question, illustrating the close connection between definitions of the properties of the functions and 

Figure 1: Student [02]’s definitions 

Figure 2: Student [06]’s definitions 
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the substantiation routines. This ambivalence between definitions and substantiation routines could 
be explained by considering students’ precedent events. The focus in secondary school is on the 
properties of a mathematical object. However, the students are rarely required to provide a set of 
conditions to serve as a definition of a mathematical object. In that occasion providing more 
conditions and properties is not considered incorrect. This is not the case at university level. The 
expectation at university mathematics is to provide a minimal set of conditions which suffices for the 
function to be injective without reiterating the definition of function. The examples from the students’ 
scripts discussed above, highlight the need to alert the students to the characteristics of the routine in 
the context of university mathematics.  

We now turn to students’ engagement with substantiation routines in examining whether the function 
which is defined in integers is injective or surjective. 

Partial justifications regarding injectivity of h(n) = 3n  

In the scripts of ten students, we have partial justifications regarding the injectivity of the function h 
defined in ℤ. One of these scripts is in Figure 3. Student [22] claims that h(n) is not surjective by 
providing a counterexample and then tries to prove that h(n) is injective. We note here that [22] writes 
“surjective” instead of “injective” in the second part of the script. When discussing why the function 

is injective s/he says that “no two 
numbers which are also integers can be 
made by 3n” and provides a graph to 
support this claim. In the graph produced 
by the student, and from their answer 
regarding surjectivity, we can see that 
[22] sees h(n) as a discrete function.
However, the argument accompanying
the graph (“h is surjective because …
can be made by 3n”) is not sufficient.
The relationship between two elements
of the codomain and the corresponding
elements of the domain is not clear. We
note, that the difficulty here is in the
closing conditions of the routine.

Conflation of justifications for a functions’ surjectivity in ℤ and in ℝ 

In seven student scripts, the procedure of substantiation that an integer function is or is not surjective 
is conflated with procedures that could be used when a function is defined in ℝ, not in ℤ. One such 
example is shown in Figure 4. When substantiating, the student does not use the definition of the 
injective function but relies on other procedures. S/he talks about “turning points on this continuous 
function” and “continuously increasing”. These properties of the function are describing functions 
which are continuous and defined in ℝ. This conflation of functions in ℝ and ℤ is also illustrated in 
the graph produced by student [11]. We observe that the arguments are based on the graph of the 

Figure 3: Student [22]’s response to (b) 
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function, even though there is a symbol n at the x-axis, the values in the x-axis, y-axis and the line 
showing the function is a straight line without gaps. This engagement is ritualistic as the students 
seem to be drawing on familiar precedents: in the past, the majority of the tasks the students engaged 
with were dealing with functions in ℝ. The students are examining the function but do not take into 
account the domain as a significant precedent identifier regarding the routine that they should follow. 
This suggests that the student does not consider the integers as the domain of this function but thinks 
of the function as a function in the reals, highlighting that the applicability conditions of the 
substantiation routine are not being examined and thus a routine being used typically for a continuous 
function is used here for a discrete one. We should note that there is a relationship between properties 

of functions in ℝ which are 
restricted in ℤ. However, if 
this relationship is used, then 
this relationship between the 
real function and its 
restriction to integers should 
be examined as part of the 
justification provided by the 
student. 

 

Returning to the lecturer’s quote, it seems that the phrase “they know what it means” indicates the 
students’ ability to decide whether a function is injective or surjective. This routine of deciding 
whether an object has certain properties has precedents in secondary school mathematics. However, 
in university mathematics, the substantiation routine is at least as important as deciding on the 
properties of a mathematical object, and the lecturer would like to see the substantiation of students’ 
decisions relying on an accurately recalled definition, which often was not the case. This new routine 
of substantiation is challenging for students for many reasons; in the precedent space acquired in 
secondary school, decision tasks do not typically require the recall or reconstruction of definitions, 
nor do they require substantiation based on a definition. At university level, the students must become 
familiar with recalling and providing definitions, focusing on a minimal set of conditions rather than 
providing all the properties that they can recall relating to the mathematical object in question. In the 
definition of injective function, they must identify the domain and the codomain of the function, 
engage with different elements in the domain and with logical quantifiers that connect statements 
with elements from the domain and the codomain, and use all these in their substantiation. 

The potency of a commognitive lens: Routines and precedent events 
Our analysis suggests that, in these exam scripts, students face difficulties when they recall the 
definition of an injective function, particularly in relation to word use and visual mediation relating 
to the object of equivalence pertaining to the definition of injectivity and to conflating injective 
functions and the fact that a function is single valued. Furthermore, the closing conditions of the 
substantiation routines are not met. This may relate to differences between secondary and university 
mathematics in the UK context of our study. While in the context of secondary mathematics, students 

Figure 4: Student [11]’s script to (b) 
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have engaged with examining whether a mathematical object has a property or not; they have not 
necessarily done so with the explicit requirements for rigour and logical connectedness expected in a 
Year 1 examination at university. Finally, students’ ways of exploring whether function h(n) is 
surjective indicate that they base their responses on their prior experiences which are usually with 
functions defined in the reals. However, these procedures are not necessarily applicable in the context 
of the integers and this results in conflating the discourses on the two. We see the students’ responses 
as underlain by a commognitive conflict: integers are seen as a subset of reals and not as a domain in 
which there is no closure for the operation of division. 

The analysed students’ scripts and the comment from the lecturer illustrate the importance of the 
precedent events. In aiming to deritualise students’ engagement with these routines, a more nuanced 
search for the precedent events is needed – and one which focuses clearly on the identifiers of the 
precedent events. This is illustrated in the comments of the lecturer as well as those student scripts 
which showcase ambivalent word use and visual mediation. Both of these cases highlight the 
difference with the precedent events in secondary school regarding the definition of a mathematical 
object. Then, the scripts illustrating partial justifications are also showing that students’ engagement 
with precedent events at secondary school, where the justification whether an object satisfies a given 
identity does not necessarily require the depth of justification needed at university level. Finally, in 
the last category, the importance of the identifiers regarding the precedent events is further elaborated, 
as it showcases that the focus should not only be on the object (the function) but also on the domain 
of the function which is a substantial precedent identifier in terms of the routine required.  

Our results offer further insight into students’ engagement with routines of proving and recalling 
definitions, and the relationship of the two in the context of a question on injective and surjective 
functions. While previous research regards students’ prior experience with functions and sets 
(Bansilal et al., 2017), our results highlight the importance of examining the applicability conditions 
of substantiation routines in different mathematical contexts (e.g. integers and reals). These results 
illuminate instances where the lecturers could highlight more explicitly the differences between 
university and secondary school discourses; and, discourses of reals and integers. Similar results to 
the ones reported in the paper with students’ engagement with recall and substantiation routines are 
visible to students’ responses to other examination questions (Thoma, 2018) relating to: the 
definitions of reflexive, symmetric, and transitive relations and the substantiation of these properties; 
and, recalling Fermat’s Little Theorem and applying it to find the remainder of a power (e.g., 27313) 
divided by a prime number. We credit the commognitive lens for the insights into the student scripts 
that our analysis allows, and particularly the recent efforts (Lavie et al, 2018) to associate task 
situations, precedent events and the ways students engage with mathematical routines. 
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We report on a collaborative project at university level involving students as partners in task design 
for a bridging mathematics module (known in the UK as a Foundation module) which is part of 
gaining access to first year degree studies. Three teacher-researchers met regularly with four 
student partners who developed a set of tasks on matrices and on complex numbers which were 
trialled with students on this Foundation module. We show the mediational processes by which the 
tasks developed from ‘static’ designs to more ‘dynamic’ designs using the software Autograph. Our 
analyses highlighted various tools in the mediation of the learning of mathematics, in the mediation 
of task development and in the mediation of the engagement of all team members in collaboration. 

Keywords: Student-partner, computer-based task design, mediation and tool use, collaborative 
research, developmental research. 

Background and literature 
In 2011/12 findings from the ESUM project (Jaworski & Matthews, 2011; Jaworski, Robinson, 
Matthews & Croft, 2012) pointed to a problematic difference between teacher culture and 
expectations and those of students when researching students’ use of mathematical tasks in a 
computer environment – when those tasks were designed for students by their teacher. In the current 
project we are trying to address this difference by engaging students in the design process and 
studying the emergent learning for the students and the researchers. The project was designed by 
three teacher-researchers (TRs, authors of this paper) to engage four students as partners in the 
design of mathematical tasks in a computer environment. Thus, the project is a collaboration 
between students (we refer to them as student-partners, SPs) and teacher-researchers (TRs) in the 
design of tasks. Several aspects were explored within this project: the development of mathematical 
tasks in a computer environment, SPs’ perspectives on task design and participation in a research 
team, and the use of the tasks with current students studying on a Foundation module.  

While there is research into the engagement of students as partners in course design at university 
level (see Mercer-Mapstone et al., 2017), few of these are within mathematics education (see 
however, Duah, Croft & Inglis, 2014; Fayowski & MacMillan, 2008). Our project builds on the 
work of Duah and Croft (2011) who involved student interns in the design of resources for two 2nd 
year mathematics modules experienced as difficult by students. Both the lecturer of the module and 
student interns learned considerably from this collaboration (Duah, 2017). 

Our aim for initiating this project and recruiting SPs was to foster and study a deeper understanding 
of mathematics in a Foundation mathematics module, specifically the two topics of complex 
numbers and matrices. The Foundation Studies Programme is a one-year course intended for 
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students who wish to study for a STEM subject at our university but do not satisfy the entry 
requirements for their chosen degree. All must take a Foundation mathematics module as part of 
their programme. 

We focus on complex number tasks for this paper. The decision to use dynamic software in task 
design was taken by the TRs in order to connect algebraic and geometric representations of the 
arithmetic operations on complex numbers. We consider geometry and algebra as fundamental to all 
mathematics (Atiyah, 2001) and hence to its teaching and learning. While we are aware that 
providing geometric insights can potentially be problematic (it can both help and hinder, see 
Gueudet-Chartier, 2004), we align ourselves with those who value these as a means of connecting 
with students’ more intuitive notions of a concept (Stewart & Thomas, 2009; Uhlig, 2003). 

Theoretical and Methodological Perspectives 
We take a socio-cultural perspective on teaching and learning. Central are the Vygotskian notions 
of mediation and tool use – the idea that attaining an object of activity is achieved better through the 
mediation of some tool, artefact, person or process (Vygotsky, 1978, Wertsch, 1991). All members 
of the project were learners: the SPs learned how to design mathematical tasks and work with the 
other members in a research environment; the TRs learned about student perspectives and the 
process of involving students in task development. Mediation was similarly diverse: all participants 
mediated the learning of others through the collaborative process. There were various tools: 
computer-based resources in the form of Autograph1 files that were accessed by Foundation 
students in the tutorials; paper-based resources such as lecture notes and problem sheets, additional 
instructions on the use of Autograph, and questions in relation to the Autograph files. We return to 
mediation and tools later.  

The research team consisted of nine people: three teacher-researchers (TR1, TR2 and TR3, the first 
three authors), two doctoral students (the last two authors who helped with data collection and 
analyses) and four SPs. All were engaged in developmental research within a community of inquiry, 
seeking to create knowledge, improve practice and the mathematical learning experience of students 
(see Jaworski, 2006). All participants took part in design meetings and were involved in an iterative 
design-research approach where participants inquire into the processes in which they engage. The 
SPs learned mathematics through inquiry into task design. They particularly learned task design 
through several iterations of the design process (inherently an inquiry process) in which drafts of 
their tasks were critiqued by other members of the team. 

Our approach used ethnographic methods with data collected that could help answer our research 
question. Data collected included (1) audio-recordings of project design meetings, (2) written 
reports by SPs reflecting on their experience of task design, (3) interviews with SPs, (4) computer-
based tasks (Autograph files), (5) various field notes. We took a grounded approach to data 
analyses. As part of this process data reductions were made of all design meetings. For a data 

1 Autograph https://www.autograph-maths.com is a piece of software which dynamically links ‘objects’. This allows the 
user to ‘see’ the result of moving/changing one object – other objects are linked and move/change with the first object. 
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reduction one of the researchers listened to the audio-recording while simultaneously making time-
related factual notes on the content. This resulted in a factual summary in tabular form with 
interpretative comments written in a separate column alongside suggestions for areas of 
transcription. With these summaries we aimed to capture key points of the task design in order to 
chart their development, written reports were read and used to support the analysis in respect of the 
recordings; interview data were partially transcribed and key points summarised; computer-based 
tasks were recorded as screenshots; field notes were read and integrated into summaries.  

In this paper, we focus on the SPs’ design of tasks in complex numbers and specifically on their 
transition from thinking in terms of the nature of tasks with which they were familiar from their past 
mathematical experience, to developing more dynamic forms of the tasks. We ask:  

What was the process by which SPs’ generation of tasks developed?   

The development of the complex number tasks 
The tasks were developed for use with students taking a mathematics module in their Foundation 
Studies Programme. The SPs were recruited from former Foundation students via an interview 
process. The four students, chosen from the sixteen who applied, were those who had achieved a 
good grade in their Foundation mathematics module and who showed interest and initiative in 
thinking about their potential involvement. All had begun their first year of an Engineering or 
Science degree (Chemistry, Physics, Mechanical and Chemical Engineering).  

The SPs’ first task in the project was to review their notes from the Foundation module on two 
topics, matrices and complex numbers. To initiate the project, the whole team met for an 
introduction to the computer environment (Autograph) by an expert in its design and use. The SPs 
knew TR2, the lecturer of the Foundation mathematics module and were introduced to the other 
project members. Audio data from the meeting shows that SPs participated in a discussion on the 
use of Autograph and expressed views on experiences from their Foundation studies. These were of 
particular value and interest to the TRs, who gained insight into student perspectives on teaching 
and mathematical learning. Following this initial meeting, SPs engaged in designing tasks and 
bringing their current designs to successive ‘design meetings’ (DMs) where designs were discussed 
and modifications suggested.  

The computer environment, Autograph, can be seen as a tool in two ways: first, it was to be a tool 
for the design of tasks as we discuss below. Second, and more immediate in the initial meeting, it 
became a catalyst for drawing the SPs into a discussion with the team in a non-threatening way. The 
team was relatively new to Autograph and so all could ask questions and talk about the use of the 
software. TRs engaged in a mediational process of drawing the SPs into the team via questions to 
the expert about how to use Autograph and the dynamic nature of its commands. The SPs were 
asked to use Autograph to produce first (and successive) drafts of tasks to be used with the new 
cohort of Foundation students.  Gradually, roles and relationships were established, with the 
researchers taking the lead initially and the SPs showing a growing confidence in participation in 
the project.  

Design of tasks and the Design Meetings – an iterative process 
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The first design meeting (DM1) was a significant staging post in the developmental process. It 
involved the team and the expert in a discussion of the tasks which the SPs had brought to the 
meeting. Each task had a mathematical element and an Autograph element. The SPs presented their 
initial ideas, one of which involved a multiple-choice style task on addition of complex numbers 
based on the type of questions that they were used to on problem sheets, such as ‘If z1=2+5i and 
z2=3-6i, what is z1+z2?’ The Autograph file displayed the complex numbers as vectors including 
also the correct answer (one variation was to include some incorrect answers with Foundation 
students asked to choose the correct one). The initial task made use of the commands within 
Autograph such as ‘hiding’ and ‘unhiding’ lines and objects and ‘dragging’ a complex number z to 
see what happened to a linked object such as z1+z2, z1z2 or z3.  

In SPs’ initial designs, the mathematical element came first and the Autograph element followed. 
The SPs’ expectation was for Foundation students to work out solutions on paper first and then use 
the software to view complex numbers in an Argand diagram and verify their results. Thus, the 
Autograph element was a tool to illustrate the mathematical relationship but it was left up to 
Foundation students to make the link. In the meetings the whole team discussed the tasks. In DM2, 
one member (TR1) commented that a task seemed rather “static”. Discussion followed as to what 
aspects contributed to the task being static, and what a task that was more dynamic and exploratory 
might look like. TR1 wrote in a reflection afterwards: “So far, we are seeing quite ‘static’ tasks – 
tasks in which there is something to find, with a right answer.” In this sense, the initial tasks 
mirrored typical questions on problem sheets that the SPs had been used to. TR1 continued writing, 
“A challenge now is to use the power of the software to offer more interactive, open-ended, 
exploratory tasks”.  

The word “static” acted as a tool in the mediational process. It was used briefly in DM2 with TR1 
commenting that tasks might follow a “sequence from straightforward ‘How do you work out 
this…?’, straightforward questions like that, … but work towards something that is more open-
ended and more exploratory, so that they [the Foundation students] have to actually do something 
themselves, to explore a situation” (DM2, 40:08). Discussions in the subsequent design meetings 
ensued. As team members expressed their view on a ‘dynamic’ task, a sense emerged of the 
mathematics of the task becoming more integrated with its representation(s) in Autograph and 
Foundation students engaging with these representations and the computer environment. In an end-
of-project interview when reflecting on the early design process, one of the SPs (SP1) recalled how 
the word “static” had been a catalyst for new ways of thinking about the tasks. He said that, as a 
Foundation student, he had been familiar with procedural tasks on the problem sheets. He and his 
partner (SP2) started from such a point of view to represent the tasks in Autograph with lecture 
notes and associated problem sheets acting as mediational tools, guiding their initial perceptions. 

Working on the complex number tasks and communicating electronically, the two SPs had shared 
potential examples of dynamic tasks. As they exchanged ideas, they said, a clearer sense of 
possibilities emerged. These exchanges were themselves mediational; we interpret the oral and 
written words of the SPs as saying that different versions of the tasks acted as tools to promote new 
thinking and subsequent modifications. Discussion of static versus dynamic tasks in design 
meetings opened up new ideas and dimensions, again a mediational process. For example, the first 
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iteration of the design process produced procedural tasks with expected answers while subsequent 
iterations shifted the nature of tasks to involve SPs in inquiry processes as they explored the 
questions asked. Team members expressed their ideas in different ways, encouraging a group 
perception of the nature of dynamical tasks (exemplified below). We see here a significantly new 
mode of mediation. The discussion of tasks allowed team members to question and share their own 
views with the SPs contributing alongside the other members of the team. 

Finalising the tasks 

The SPs developed six complex numbers tasks: adding and subtracting two complex numbers, 
multiplying together two complex numbers, multiplying a complex number and its complex 
conjugate and raising a complex number to a power. All final designs had their genesis in the ideas 
presented in DM1. SPs undertook major revisions of the tasks between the first and the second 
design meeting. Critiquing the tasks in the second design meeting, team members spent a lot of time 
discussing mathematical ideas, ways of viewing complex numbers (as a number, a point or a vector) 
and ways of solving. Thus in discussions involving all member of the team, the tasks were tools that 
mediated SPs’ mathematical learning as part of the iterative design methodology and the mode of 
inquiry in our project. SPs offered Autograph files and mathematical explanations that gave insights 
into their development of mathematical sophistication – for example, working fluently with vector 
representations in constructing complex number addition geometrically – with the teacher-
researchers learning from this activity about student expectations and culture. TRs saw the tasks as 
designed to mediate Foundation students’ learning of mathematics in tutorials and, to this end, 
constructed written instructions to accompany the Autograph files for the Foundation students.  

In subsequent design meetings the team focussed almost entirely on technical aspects for improving 
the Autograph files. All tasks presented after DM2 had a ‘dynamic’ element such as ‘dragging’ a 
complex number around the screen until ‘it fitted’ a desired location, or exploring the relationship 
between the complex numbers by varying one or more of the linked objects. We provide examples 
of two tasks in more detail below.  

  

Figure 1: Task 1 Figure 2: Task 1 with z2 moved 

The first task centred on the addition of complex numbers. SPs designed the initial addition task by 
following closely the type of question they had encountered on problem sheets: Given z1 and z2, 
find z1+z2 and (making explicit the Autograph element) use Autograph to check that your answer is 
correct. After receiving feedback in DM1 the SPs set about ‘reverse-engineering’ the questions 
which SP1 described as looking at the answer and working backwards in order to design the task 
with the visualisation (Autograph) providing the information. Hence, for addition of complex 
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numbers, the final task was set out to display three complex numbers, z1, z2 and z where z was equal 
to z1+z2 (see Figure 1). The instruction for Foundation students was to keep z1 fixed and to move z2 
until z reached the position 6+5i (see Figure 2). At this point several lines on the screen moved as 
the linked object z1+z2 moved dynamically with the movement of z2. The task was to find z2 and 
determine the (arithmetic) relationship between z1 and z2 (addition) and its geometric representation 
(parallelogram law). Foundation students followed instructions on a separate hand-out on how to 
proceed with the Autograph files and could ‘check’ final answers by using the ‘Unhide All’ 
command in Autograph. 

  

Figure 3: Task 4 Figure 4: Task 4 with z2 moved 

The task in our second example centred on the multiplication of a complex number by its complex 
conjugate. Presenting their ideas in DM2 one of the SPs (SP2) said that “there are some [of our 
tasks] that are quite similar. [But] we purposely put some in to try and be tricky” (DM2, 54:07). He 
was referring to the complex conjugate task. The idea originating from the design meeting was to 
display a complex number and its complex conjugate together on one screen as well as their 
product. One of the researchers (TR2) commented how nice this task was exclaiming “Oooh, I like 
that!” (DM2, 55:10) because you could see the angles cancelling out – one angle taking a positive 
value while the other (while equal in size) was negative. Foundation students were asked to explore 
and comment on this task with TR1 suggesting to use the polar grid representation because “it 
would be quite nice to show the angles there” (DM2, 55:32). Hence, in the final design there were 
three complex numbers, z1, z2 and z where z was equal to z1z2 (see Figure 3). The task was to notice 
what happened to z when z2 was moved into the position of the complex conjugate of z1 (see Figure 
4). In this task design the SPs made no reference to any numerical value for z1 or for z2, or their 
product. This task has a very different character and is more general, inviting exploration.  

In the end-of-project interview, one of the SPs (SP1) suggested that “these tasks invited a deeper 
understanding than standard [problem] sheets” and that while many students may know that the 
multiplication of a complex number and its complex conjugate results in a real number, they, as 
partners in the project – knew ‘why’ that was the case.  

All six tasks were trialled with Foundation students over a two-year period with two different 
cohorts of students. Tasks were integral to the syllabus and formed part of the Foundation students' 
undergraduate learning experience. Analyses of these data are ongoing.  

Summary of the project collaboration 
The project involved students as partners in the design of tasks in complex numbers (as well as 
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matrices – not reported here). Few examples in the literature exist but those that do point to the 
benefit of such a collaboration for both staff and students (see Bovill, Cook-Sather & Felten, 2011). 
Duah & Croft, (2011) found as we did that the SPs gained a deeper understanding of the 
mathematics studied, in our case the mathematics of complex numbers. For example, SP1 recalled 
that “When I came across complex numbers in my third year [of degree study]…, it was 
immediately clear to me why the solutions appeared as complex conjugate pairs while many 
students had to spend time revising the principal.” In our analyses we see multi-layered mediational 
actions. One layer relates to the mathematical learning of the SPs mediated by tools. These are the 
tasks themselves, the software used to create the tasks, the SPs’ discussions when working together 
as a pair, and the inquiry mode in design meetings when all members of the team discussed drafts of 
the tasks.  

A second layer relates to the work of the research team as a community of inquiry where we 
inquired into the design of computer-based tasks and into the learning processes of SPs and other 
team members. The SPs were drawn into the inquiry-based activity of designing dynamic tasks 
through the mediational nature of becoming familiar with Autograph and discussing its use together 
with other members of the team. Autograph acted as a tool for stimulating thinking and sharing of 
mathematical ideas and possibilities; it also acted as a tool for integrating SPs as partners in the task 
design process within the team.  

We observed how the response of a team member using the word “static” was mediational in 
exerting a shift in SPs’ perception of mathematics tasks: from static forms towards consideration of 
more dynamic forms of tasks using Autograph. Thus ‘static’ itself acted as a tool to promote a new 
perception of the nature of tasks. The word “static” was not planned. It emerged through the 
interactivity, and resulted in a stimulus for the SPs towards more dynamic forms of tasks. 

At a third level, our engagement in research led to additional data being collected outside the design 
meetings. Interviews with SPs, where they were encouraged to reflect on their activity and learning 
at different stages in the project were revealing for the researchers. The interview process itself was 
mediational in allowing the researchers to perceive the stages in development of the SPs’ thinking 
and perception – from their experiences with questions on problem sheets towards their design of 
dynamic tasks to engage Foundation students in mathematical inquiry. 

In summary, we have characterised learning as a mediational process involving a variety of tools. 
Our analyses contributed to our understanding of the task design process where we see a new way 
of mediation that drew SPs into the collaboration as partners. Our project and analyses are 
contributing new knowledge in the field of students as partners in curriculum and course design and 
to the scarce body of literature in this area. 
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This paper draws from year one of a 5-year research study that seeks to examine how post-
secondary mathematics students learn to use programming as a computational thinking instrument 
for mathematics. It focuses on how post-secondary mathematics students’ identities as mathematics 
learners are enacted as they engage in a programming-based mathematical investigations and 
applications learning environment. Specifically, the paper offers a discussion of a case of one 
student’s enactment of his identity while simultaneously learning to program and to use it for this 
kind of mathematical work. This paper highlights the importance of identity in learning 
mathematics and its role in the development of productive dispositions in learning to program for 
mathematics investigation and modeling. 

Keywords: post-secondary, identity, appropriation, community of practice. 

Introduction 
The Canadian federal government predicted that jobs in STEM fields will grow by 12% between 
2013 and 2022, and that 35% of such jobs will be computer science-related (“Back to School”, 
2015). Few academic institutions attempt to prepare their graduates for the STEM workforce by 
integrating “Computational Thinking” (CT) in their programs. This integration of CT in STEM 
studies points to the need for research on what Healy and Kynigos (2010) describe as, “the 
complexities associated with the appropriation by the user of tools [such as programming]” (p. 66). 
This paper draws from year one of a five-year ongoing research study, funded by the Canadian 
Social Sciences and Humanities Research Council (SSHRC), entitled “Educating for the 21st 
century: Post-secondary students’ learning to use computer programming for mathematical 
investigation, simulation, and real-world modeling” (referred to onward as ‘progmatics’). The 
research addresses the need to better understand how post-secondary mathematics students come to 
appropriate programming as an instrument for mathematics investigations and applications. It is a 
naturalistic study that takes place in a sequence of three programming-based mathematics courses 
called Mathematics Integrated with Computers and Applications (MICA I–III), implemented in the 
mathematics department at a Canadian university in Ontario since 2001. In these courses, future 
mathematics teachers and undergraduate students majoring in mathematics learn to design, 
program, and use interactive computer environments to investigate mathematics conjectures, 
concepts, theorems, or real-world applications (Muller, Buteau, Ralph, & Mgombelo, 2009).  The 
research project is framed by interrelated theories and concepts in mathematics education that 
articulate the complex mutual shaping of the learner (user) and artefact (programming) (Buteau, 
Muller, Mgombelo, & Sacristán, 2018), including Lave and Wenger’s social theory of learning and 
theory of situated learning. Lave and Wenger’s (1991) analysis of situated learning is embodied in 
their productive concept of "legitimate peripheral participation." Legitimate peripheral participation 
is supported by systems of relationship in community between newcomers and old-timers, as well 
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as relationships with outside communities and with other newcomers. Legitimate peripheral 
participation offers a two-way bridge: between the development of knowledgeable skills and 
identity—the production of persons—and the production and reproduction of communities of 
practice. In this sense, the newcomers become old-timers through a social process of increasingly 
centripetal participation, which depends on legitimate access to ongoing community practice. This 
paper focuses on identity. We are interested in exploring how post-secondary students (newcomers) 
enact their identities during their process of appropriation of programming as a mathematical 
instrument as mathematicians (old-timers) would do, as they engage (i.e., legitimately peripherally 
participate) in ‘progmatics’ tasks. Specifically, the paper offers a preliminary discussion of student 
enactment of identity while learning ‘progmatics’ in a first year MICA course through a case of one 
student, Roy (pseudonym). 

Conceptual Framework  
In this paper, the concept of identity is further articulated from three perspectives, namely self-
efficacy, environment, and four faces of learner's identity, developed in our previous work (Toor & 
Mgombelo, 2013); see Figure 1. Researchers in the field believe that self-efficacy is learned, and 
that self-efficacy expectations are acquired through various sources including accomplishment, 
vicarious learning, verbal persuasion, and emotional arousal (Bandura, 1977). Accomplishment as a 
source of self-efficacy refers to the way in which one’s successful or unsuccessful experience on a 
given task increases or decreases the self-efficacy connected to that task. Another source, vicarious 
learning, can affect one’s self-efficacy where one sees others—peers and classmates—succeed or 
fail on a given task, assessment, or course. Other sources of self-efficacy are verbal persuasion and 
emotional arousal. In verbal persuasion, beliefs about one’s self are influenced by the messages 
conveyed by others. Emotional arousal refers to the stress and anxiety in a given task and its effect 
on self-efficacy. 

 
Figure 1: Conceptual framework: Mathematical identity as capable mathematics learners (Toor & 

Mgombelo, 2013, p. 2458) 
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Identity is influenced by one’s environment. In other words, identity is greatly formed by 
individuals’ relationships with others from the past to present, stretching into the future (Wenger, 
1998). As individuals progress through the post-secondary level, they develop a stronger sense of 
who they are as mathematics learners through their mathematics experiences, such as in lectures, 
classrooms, and seminars, interactions with teachers and peers, and in relation to their anticipated 
future (Sfard & Prusack, 2005). In addition to self-efficacy and environment, mathematical identity 
can also be explored from Anderson’s (2007) four faces of learning mathematics—engagement, 
relativity/imagination, alignment, and nature. Engagement looks at one’s direct experience and 
active involvement of others within their environment and/or with the world around them. 
Relativity/imagination focuses on the images one has of him/herself and of how mathematics fits 
into the broader experience of life. The alignment face of learning mathematics refers to how one 
aligns their energies within given boundaries and requirements in response to their imagination 
face. Nature looks at the connection one makes of their natural characteristics. These characteristics 
refer to what nature provided one with from birth and over which one has no control.  

Methodology  
A mixed methodology approach is being used throughout the five-year ongoing study. The study 
uses an iterative design to refine and develop the research tools for yearly data collection and 
analysis. This paper draws from data that was collected in year one of the study, where six 
participants were recruited from the MICA I course. Data collected included each of the 
participants’ four ‘progmatics’ project assignments (referred to as Exploratory Objects or EO), and 
reports, and semi-structured interviews with each of the participants after completing each of the 
four assignments (referred to as A1–A4). In addition, data collected included post-laboratory 
session reflections and a questionnaire. After each of the 10 weekly two-hour MICA lab sessions, 
participants recorded online their reflections on their learning during the lab session, L1–L10 
(guiding questions were provided). All participants filled an online questionnaire (Q0) before the 
beginning of the MICA I course. This was followed by interviews where participants were asked to 
elaborate upon their questionnaire responses. The purpose of this questionnaire (and the first 
interview) is to serve as baseline information about participants’ background of mathematics 
learning with technology. 

Data analysis followed Cresswell’s (2008) general principles of qualitative data analysis: preparing 
and organizing data, exploring data, describing and developing themes from the data. To begin the 
data analysis, codes were developed according to categories informed by our theoretical framework 
(Buteau et al., 2018). Each participant’s qualitative data were coded individually by two 
researchers, who then jointly completed a thematic analysis of the data. Themes were consolidated 
among six participants’ analyses, leading to the development of sixteen overall themes. These 
themes were further regrouped into five meta-themes, one of which was identity. The first author 
was assigned to analyze one of the six participants’ data, which was later further analyzed in order 
to explore the identity meta-theme specifically through the lenses of self-efficacy, environment, and 
four faces (see Figure 1) of learners. In this paper, we present and discuss the findings of the case of 
this participant, Roy’s, enactment of identity in the MICA I course.  
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Findings and Discussion  
Description of the case: Roy 

Roy was in his first year of the Bachelor of Science in Mathematics program when he enrolled in 
MICA I. Prior to MICA I, Roy’s experience with programming included programming in Julia (just 
the basics), R (just the basics), Maple, Wolfram, and Python, as well as HTML. In the first 
questionnaire (Q0), Roy noted that he did not have any prior knowledge of Vb.net (programming 
language used in MICA I), as he had, “never really heard about it” (Q0, 4). When asked to complete 
a statement about his feelings regarding the fact that the significant component in MICA I is 
computer programming, Roy responded “Very confident” (Q0, 5). When asked for his reason for 
his response, Roy said, “[m]ost languages have the same components just different syntax” (Q0, 5). 
Roy indicated that learning to program for mathematical activities is very useful because “it can be 
used in almost every area of science or just for figuring out proof that would take years for a human 
mind to do” (Q0, 6).  According to Roy, students learn mathematics by learning how to derive the 
“equations of the proof and learning how to use the equations”. He personally learns mathematics 
by, “teaching it to someone else” (Q0, 9). When asked, “What does ‘doing mathematics’ mean to 
you?”, he responded, “It means solving a problem in the most logical way” (Q0, 10). 

As part of the first MICA I assignment (A1), Roy was asked to select or state a conjecture, and to 
create and use his EO to explore it. When asked to describe his conjecture, Roy said:  

Opperman’s conjecture, [for every integer x > 1, there is at least one prime number between x (x 
− 1) and x2, and at least another prime between x2 and x (x + 1)] I did and that has to do with 
every real number greater than two…if you square it and then you minus that number and plus 
that number, in between those two zones there is at least one prime. (A1, 3) 

In the second assignment, Roy implemented the RSA encryption algorithm, including encoding, 
decoding, and randomly generating keys. In the third assignment, Roy created an EO to explore the 
dynamical system based on a cubic (two parameters involved) and describe its behaviour. For the 
fourth EO, students choose a topic of their interest and work individually or in groups of two or 
three. Roy worked with a partner on the idea of trying to predict human population.  

Roy’s enactment of identity 

Analysis of data from Roy indicates two ways in which Roy enacted his identity while learning 
‘progmatics’ in MICA I: through ideal images and through his direct personal experiences (Toor, 
2013). Roy describes his perception of an ideal image of a mathematics learner in MICA I by 
describing his experiences in other non-MICA courses. When asked about his plan regarding taking 
the MICA II course, he responded that he was not planning to continue with MICA II as he did not 
find it engaging. When asked about the reason why he thought the course was not engaging, he 
responded: 

With my straight math course, there were some things…Like being able to prove the volume of a 
sphere just through calculus. I find that very interesting cause then it’s just like something you 
show people or… I found that interesting, whereas I didn’t have that feeling with MICA I. (A4, 
31) 
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It is clear from above that Roy’s idea of a learner in MICA I is based on an ideal image of a learner 
in other non-MICA traditional courses, such as calculus. This ideal image of a learner in traditional 
courses manifests in a tension Roy experiences between how MICA courses are designed to engage 
students and how he perceives an ideal image of a learner in non-MICA courses. In Lab 10 of the 
course, students were asked to use their programs to explore the dynamical system based on the 
logistic function. When asked to reflect on his experience in the lab session, he noted:  

The last class covered all of what I needed to start my project. This class didn't do much for me. 
This class should have been more about the assignment. I got some help with my project that I 
had almost finished but at times they refused to help since they were supposed to focus on the 
program we had to make to get 5% on the assignment. I understood the concept of a dynamical 
system but I never got why it was important. (L8–10, 10)  

It is interesting to note that Roy did not take the opportunity to learn through inquiry. He struggles 
with the learning experience in the lab session because his ideal image informs him that, as a 
learner, the important thing is to complete the assignment and get a good grade. 

Roy’s self-efficacy 

Roy’s self-efficacy in terms of accomplishment in the MICA I course is influenced by his 
perception of his mathematics and programming ability. In terms of mathematics ability, Roy seems 
to perceive himself as someone who is better than his peers: “I wouldn’t ask my peers, normally..., 
[I’m] ahead of them” (A3, 5.3). This perception seems to show Roy’s hesitance to work or 
collaborate with peers. In addition, Roy’s perception of his ability in mathematics separates his 
ability in mathematics and his ability in programming when he encounters a difficulty in a 
‘progmatics’ task. For example, he states:  

The first two codes we had to do were easy, the third left out too much information. The lab 
was to help us understand RSA and by the end I still didn't have a strong understanding of it. 
I didn't like that we were told to get into groups to test out our program...The most 
challenging part was understanding the RSA encryption. When the math is broken into parts 
none of it was very challenging or hard to understand. It was the major concept I still didn't 
get at the end. (L5–7, 6)   

The experience of mastery influences one’s perception of one’s ability, where success and/or failure 
on a task have a direct impact (Bandura, 1977). Roy’s failure to deal with the third part of the lab 
due to the challenge it presented may influence his perception of his ability in programming. This 
part of Roy’s self-efficacy in terms of accomplishment is also connected with his self-efficacy in 
terms of vicarious learning. On one hand, Roy perceives his mathematics ability as ahead of his 
peers, but on the other hand he perceives others’ programming ability as more advanced than his 
own. In the interview, he said: No, it only worked…mine only works with numbers.  Um, uh, the 
girl that I was sitting next to the previous one she did uh numbers she's like super advanced in 
computer science though (A2, 30). In other words, Roy’s vicarious learning, a part of his self-
efficacy, consists of him comparing his performance with others’ and reflecting on his ability in 
mathematics and programming. Roy’s self- efficacy in terms of emotional arousal could be seen in 
the choices that he made, the effort he expended, the perseverance he exerted in the face of 
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difficulties, and the thought patterns and emotional reactions he experienced in MICA I tasks. When 
he was asked about why he was not planning to take MICA II, Roy said: 

I like the in-class learning about the RSA and how different number theories, chaos theory and 
that kind of stuff. I didn’t like doing the programming. Whenever I got an assignment, I did not 
find it fun or engaging to do, which I found in my math class. I really like doing the equations in 
the programming or in chemistry. I like doing that stuff but in this I didn’t have much enjoyment 
in doing the programming. Whenever I got a problem…it just didn’t…it just sucks. (A4, 29) 

When Roy was given the freedom to select the topic for a task in the final assignment, he displayed 
excitement and satisfaction, which in turn allowed him to invest himself emotionally with the 
learning goal of the task. When asked about the outcomes of his final project, Roy said: “Really 
awesome. It was cool that we actually got the same result [as the World Infant Mortality Rate], I 
thought.”  

Roy’s environment 

One's environment is an essential element in building the identity of an individual as a member of 
the environment. Solomon, Croft and Duncan (2010) claim that peer-group relations play an 
important role in the educational success of the individual at the post-secondary mathematics level. 
As we have previously discussed, Roy seems to not like to ask his peers for help. This could be due 
to the fact that he views himself as “ahead” of others. Interestingly, Roy seems to be okay 
supporting others: “I did help another person with his conjecture by letting him see my code” (A1, 
7). Also, he seemed to find it frustrating to work collaboratively with his partner in the final 
assignment. When asked about what was frustrating about working on his project, Roy answered:  

Working with my partner, I guess. He wasn’t a very independent partner, so he wanted us to sit 
beside each other while we do the project. I was busy doing other stuff, so I ended up doing the 
first part of the project but then he still wants to do the write up, which the write up only took 
two hours and I ended up doing the write up myself as well. (A4, 21) 

Roy’s relationship with faculty consisted of getting help from his professor and/or TA whenever he 
got stuck with a task.  

Roy’s four faces of learning mathematics 

Identity in terms of each of the four faces of leaning mathematics exists as a way in which one 
comes to understand their practices and membership within the community of mathematics learners 
(Anderson, 2007). Roy’s enactment of identity in the MICA I course seems to be strongly 
influenced by his engagement. Anderson (2007) states; “much of what students know about 
learning mathematics comes from their engagement in mathematics classrooms” (p. 8).  This 
enactment of Roy’s identity in terms of the engagement face could be seen in the tension that Roy 
experienced in terms of the timing of when a task was assigned, which did not align with the timing 
of when some of the concepts needed to complete the task were taught in the class (even though 
they were eventually taught before the deadline): I had to do some research because in class we 
didn't, there was some of the stuff that were key concepts that we didn't actually, finish [before 
reading week] … one of the last concepts before the due date, was then given it was very key. (A2, 
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2). It seems that Roy has developed this identity from his experience of engagement in many 
mathematics classrooms where assignments are normally given after the required concepts or skills 
are covered. Another way Roy’s identity in terms of his engagement with the MICA I course could 
be seen is in his perception of the computer language used in the tasks:  

The program language itself isn’t very good. [Visual] Basic [is] pretty outdated—more or less 
obsolete. The only thing that [Visual] basic is used for is functions in Excel, like doing macros, 
which it’s useful but it is not. It’s getting outdated so I think the only part that was useful for me 
learning was the math that was taught in class and a little bit of how to implement that math into 
programming. But it’s not going to be super useful in a job because I am not going to use 
[Visual] basic after I learn an entirely different programming language. (A4, 25) 

This perception of the programming language seems to lead Roy to not identify with the MICA I 
environment and come to see himself as only marginally part of the MICA I community. In fact, 
when he was asked if he would take MICA II, he said no. Additionally, Roy’s engagement with the 
programming language displays his identity in terms of his relativity/imagination face when he 
envisions how the computer language fits in with his future career goals. Further, when asked if he 
thought that doing mathematics in a programming setting was beneficial, Roy responded: 

I think it would have to be more complex programming like when we were using Maple because 
that already has built-in functions, whereas this one, it just all, you have to do every bit of math 
yourself. When even today’s time programming, you have to use other people’s work to do more 
complex work. I think that eventually you would have to get to it. I think it’s good for teachers 
but like for pure math students, that I don’t think I got much out of it. (A4, 24) 

This shows Roy’s identity in terms of the alignment face of learning mathematics, where he chooses 
to align his energy toward a “progmatics” task that displays “more complex work” based on his 
perception of himself as a pure mathematics student. It is interesting to note that Roy’s identity in 
terms of the nature face does not come forward in any of his interviews. 

Conclusion 
This paper draws from research that addresses the need to better understand how post-secondary 
mathematics students come to appropriate programming as an instrument for mathematics 
investigations and applications. Papert (1980) proposes that every learner should program 
computers for personalizing learning and knowledge. He notes that at the heart of learning is 
‘appropriation’ in the sense of making it ‘yours.’ This idea of taking the learning, and integrating it 
into one’s way of being, thinking, and seeing necessitates an exploration of how one’s identity plays 
a role in students’ appropriation of programming (in the sense of transforming it as an instrument) 
for mathematics inquiry. This paper provides a beginning of this kind of exploration through a 
preliminary analysis of a case of one participant, Roy’s enactment of identity in a first year MICA 
course. Roy came into MICA I with a perception of a learner in MICA I course based on his ideal 
image of a learner in traditional mathematics courses. Consequently, Roy’s perception of this ideal 
image created a tension between the creative, inquiry-based expectations in MICA and his 
expectations of what the course should be. His perception of learning mathematics created a tension 
between his learning goals and the learning goals of MICA I—which are to learn to design, 
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program, and use interactive computer environments to investigate mathematics conjectures, 
concepts, theorems, or real-world applications. This paper highlights the idea that learning to 
program for mathematics investigation and modeling requires not just developing skills and 
knowledge, but also developing an identity of a learner who engages in the inquiry-based tasks 
(peripherally) as mathematicians would do.  

References 
Anderson, R. (2007). Being a mathematics learner: Four faces of identity. The Mathematics 

Educator, 17, 7–14.  

Back to school: Canada lagging in push to teach kids computer coding (2015, September 1), CBC 
News. Retrieved from http://www.cbc.ca/m/news/topstories/back-to-school-canada-lagging-in-
push-to-teach-kids-computer-coding-1.3185926 

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological 
Review, 84, 191–215.  

Buteau, C., Muller, E., Mgombelo, J., & Sacristán, A. (2018). Computational thinking in university 
mathematics education: A theoretical framework. Proceedings of Research in Undergraduate 
Mathematics Education conference, San Diego, CA. 

Creswell, J. W. (2008). Education research: Planning, conducting, and evaluating qualitative and 
qualitative research (3rd ed.). NJ: Pearson Education.  

Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: Design and 
construction in mathematics education. ZDM, 42(1), 63–76.  

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, 
NY: Cambridge University Press. 

Muller, E., Buteau, C., Ralph, B., & Mgombelo, J. (2009). Learning mathematics through the 
design and implementation of exploratory and learning objects. International Journal for 
Technology in Mathematics Education, 63(2), 63–73.  

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic 
Books.  

Toor, A., & Mgombelo, J. (2013). Undergraduate students’ perceptions of themselves as capable 
mathematics learners. In B. Ubuz, C. Haser & M.A. Mariotti (Eds.), Proceedings of the Eighth 
Congress of the European Mathematical Society for Research in Mathematics Education (pp. 
2456–2465). Ankara, Turkey: Middle East Technical University and ERME. 

Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytic tool for investigating 
learning as a culturally shaped activity. Educational Researcher, 34(4), 14–22. 

Solomon, Y., Croft, T., & Duncan, L. (2010). Safety in numbers: Mathematics support centres and 
their derivatives as social learning spaces. Studies in Higher Education, 35(4), 421–431.  

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge, UK: 
Cambridge University Press. 

Addendum Thematic Working Groups

Proceedings of CERME11 4874

http://www.cbc.ca/m/news/topstories/back-to-school-canada-lagging-in-push-to-teach-kids-computer-coding-1.3185926
http://www.cbc.ca/m/news/topstories/back-to-school-canada-lagging-in-push-to-teach-kids-computer-coding-1.3185926


Using history of mathematics to inform the transition from school to 
university: Affective and mathematical dimensions 

Seyda Uysal1 and Kathleen M. Clark2  
1Florida State University, Tallahassee, Florida, USA; su17b@my.fsu.edu  

2Florida State University, Tallahassee, Florida, USA; kclark@fsu.edu 

In this paper, we briefly describe an intervention that addressed the transition from school 
mathematics to university mathematics by making students aware of concept changes in the history 
of geometry. We provide a description of the intervention (called the ÜberPro Seminar), the context 
and setting for the study, and the data sources that informed our work. Then, we focus on one 
particular data source and describe initial stages of our analysis and sample findings. In our findings, 
we share only a small glimpse into the affective experience students described when reflecting on the 
transition from school to university. We conclude with a discussion of some of the patterns that began 
to emerge from our analysis and we propose connections to current work on the transition from 
school to university mathematics and future direction for our research. 

Keywords: Transition from school to university, emotions, affective dimensions, history of geometry. 

Introduction 
The transition from school mathematics to university mathematics has received increased attention 
in recent years in a variety of contexts (Clark & Lovric, 2009; Gueudet, 2008; Kosiol, Rach, & Ufer, 
2018). On the one hand, several research efforts have focused on “the” transition; that is, examining 
undergraduate students taking courses at the moment they transition to university (see for example, 
Kosiol et al., 2018). Some studies focus on questions of whether or why students persist in either 
mathematics or other STEM-related fields (e.g., Di Martino & Gregorio, 2019) and others may 
approach the transition problem from a deficit model perspective. That is, there may be an emphasis 
on the lack of sufficient background knowledge on the part of students who move from secondary 
mathematics to tertiary mathematics. On the other hand, examples in the literature examine specific 
junctures that prove to be obstacles for students transitioning to university mathematics, such as 
students beginning coursework that focuses primarily on proof (e.g., courses in Analysis, Abstract 
Algebra, etc.). From either of these two perspectives, the transition may seem more discrete; that is, 
at one particularly time point – e.g., the change from the last mathematics course taken in high school 
to the first course at university, or, the change from courses to be considered more computational at 
university (e.g., Precalculus or Calculus) to more proof-oriented (such as Abstract Algebra). In our 
work, the transition problem, or, in German, ÜbergangsProblematik, is considered as a continuous 
phenomenon. That is, we do not consider the transition occurring at one particular moment in time. 
Instead, students may experience aspects of transition throughout their time at university. In this 
context, it may be more appropriate to consider a (as opposed to the) transition problem or multiple 
transition problems. 
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The research described in this paper originates from an experiment conducted in 2015, when we1 
began work on the design, development, and implementation of a seminar for undergraduate 
mathematics students who were preparing to teach mathematics. The theoretical foundation of the 
seminar included the hypothesis that: 

The change from an empirical-object oriented to a formal-abstract belief system of mathematics 
constitutes a crucial obstacle for the transition from school to university. On epistemological 
grounds, similar changes regarding different natures of mathematics can be described for the 
history of mathematics (e.g., in the development of geometry). Student analysis of the historical 
belief change can support them on their individual transition from school to university and back 
to school again. (Witzke, Clark, Struve, & Stoffels, 2016) 

In this paper, we share a very brief overview of research literature focused on transition from school 
mathematics to mathematics at university, describe the evolution of the seminar that began in 2015, 
and provide a description of a study conducted on the most recent implementation of it. Finally, we 
share selected findings for the research question: In what ways do seminar students, when confronted 
with the historical development of mathematics, recognize their own transition? 

The study 
The seminar 

The seminar, “Addressing the Transition Problem from School to University Mathematics” (or, the 
ÜberPro (taken from the German term) Seminar), was first implemented as a three-day intensive 
seminar in Spring 2015. Readings and seminar activities were designed and piloted with 20 pre-
service mathematics teachers at a medium-sized university in Western Germany. We used geometry 
as the topic of the seminar’s mathematical content and the seminar activities included engaging 
students in reading and discussing excerpts from student task transcripts, textbooks, learning 
standards documents, and historical resources, as well as working on various tasks prompted by 
historical sources and content. From its inception, the aim of the ÜberPro Seminar was to promote 
students’ awareness of the changes regarding the nature of mathematics from school to university as 
means to support their own transition from the changing mathematical and institutional context in 
high school to those at university. This was accomplished through the sequence of seminar sessions 
on examining beliefs about mathematics promoted in school and university mathematics textbooks, 
the nature of Euclidean Geometry (with an in-depth examination of proofs of the Pythagorean 
Theorem), the development of projective geometry, the failure of the parallel postulate (leading to 
the development of non-Euclidean geometry), and the formalism of Hilbert’s geometry. Additionally, 
students were reminded of the hypothesis (given above) during each session so that explicit 
connections between it and seminar content could be drawn. Gueudet and colleagues (2017), in 
literature focused on the transition from school to university mathematics contexts,  have described 
certain boundary objects which may play a significant role in helping students to “make this 

1 The original research was conducted by the second author with colleagues Witzke, Struve, and Stoffels (see also Witzke, 
Clark, Struve, & Stoffels, 2018). 
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transition” (p. 108).2 However, we share the same view as described by Gueudet, Bosch, diSessa, 
Kwon, and Verschaffel (2016), that the transition problem cannot be easily “smoothed out” and that 
it probably should not be smoothed out, because it gives the opportunity to reflect on one’s own 
beliefs, knowledge, and affect in mathematics during the transition. A unique attribute of the ÜberPro 
seminar course is in the potential of utilizing the case of the historical development of geometry to 
provide a means of support as students consider their own beliefs about mathematics in light of the 
changes in beliefs (e.g., nature) of mathematics that have occurred over time. The description of the 
first implementation of the ÜberPro Seminar (Spring 2015) has appeared elsewhere (Witzke et al., 
2016), as well as the modifications to extend the initial intensive seminar into a semester-long seminar 
experience that was implemented in Summer 2016 (Witzke, Clark, Struve, & Stoffels, 2018). We 
propose that in light of the instructional materials (e.g., textbooks) that students face in school 
mathematics, they are more likely to acquire an empirical belief system. Yet, at university, students 
are likely to obtain a formalistic belief system based upon the instructional materials found there. 
Epistemologically, both of these experiences provide parallels to specific historical conceptions of 
mathematics, which we sought to highlight as the fundamental components for the design of our 
“transition problem” seminar for students. Yet, we wish to emphasize that we do not propose that the 
formal-abstract approach is exclusive to learning mathematics at university. Instead, the development 
of our hypothesis and the intervention we developed is based on survey and interview experience, as 
well as support from literature that there are certainly differences in the discourse, tasks, and nature 
of mathematics at university when compared to school, and this difference often materializes as 
empirical-object (school) versus formal-abstract (university). 

Setting and context 

The research described here took place during the Summer 2017 semester at the same institution as 
the pilot seminar and the first semester-long version of the seminar. The seminar course was offered 
to pre-service mathematics teachers and these students also had the opportunity to take a similarly-
designed seminar on probability (Stoffels, 2018).  

Data sources and participants 

There are several data sources that informed our research on the Summer 2017 ÜberPro Seminar, 
including audio recordings and observer-participant notes from each seminar session (taken by the 
second author), all course materials used with seminar participants (designed by the instructor-
researchers involved with each of the three implementations of the ÜberPro Seminar), and weekly 
submissions of reflection journals by the seminar participants. In this paper, we focus on the student 
participants’ reflection journals. Over the course of the 12-week semester, students were asked to 
respond to 59 reflection journal prompts. The reflection journal prompts were varied, with some 
focused purely on the transition from school to university mathematics and others focused on topics 
in geometry, on the historical development of geometry, or related to the participants’ future teaching 

2 It is important to note that we do not subscribe to the notion that such a transition can be “made.” That is, students 
experience a personal trajectory through the transition, and there are interventions (e.g., the ÜberPro Seminar) which may 
be enacted that aid in supporting students during this trajectory. 
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of mathematics. In summer 2017, 19 students participated in the ÜberPro Seminar. However, for this 
paper we consider the data for 14 of the 19, for whom we have responses to the reflection journal 
prompts. The mean age of these 14 students (8 male and 6 female) was 23 years and the mean 
semester at university was 6. It is also important to note that three of the students (1 male, 2 female) 
were considered as “expert” students because they had previously completed the ÜberPro Seminar 
on probability. In the reflection journal excerpts that follow, these students are identified with an “E” 
at the end of their code number. 

Data analysis 

In order to prepare the reflection journal prompt responses for coding, student responses were first 
translated from German into English through the assistance of Google Translate. Then, responses 
were revised for grammatical accuracy by the second author, who has some German language 
proficiency. Of the 59 reflection journal prompts, we focused on a subset of eight that provided us 
with student responses that reflected more affective dimensions of students’ experiences in the 
transition from school to university mathematics. Based on these criteria and for the purposes of this 
paper we narrowed the set of reflection journal prompts further from eight to two, as prompts of 
interest for this paper. In doing so, we ensured that sufficient data remained and we were able to pay 
attention to the principle of theoretical saturation (Merriam & Tisdell, 2016). Next, we reviewed all 
14 students’ responses to the reflection journal prompts of interest and we approached the coding of 
students’ responses to the journal reflection prompts using aspects of Grounded Theory (Strauss & 
Corbin, 1990). We first completed line-by-line coding to determine aspects of recognition of their 
own transition from school to university mathematics (e.g., difficulties with content; differences in 
content, structure, or environment; reference to formal versus abstract belief systems). During line-
by-line coding we also made analytical notes on each response, to assist with the next stage of coding 
in which we sought to determine themes. In the second stage of the data analysis, we focused on the 
two specific prompts (prompts 4.1 and 12.6, given in the “Initial findings” section) that explicitly 
asked student participants about the recognition and awareness of the transition problem during their 
undergraduate mathematics studies. We were most interested in coding words and expressions within 
students’ responses which might potentially reflect emotional aspects of the transition (e.g., 
emotionally-charged phrases and expressions) and these were noted by the two authors 
independently. We then met to discuss controversial interpretations for the purpose of establishing 
trustworthiness which contributes to the credibility of the study (Creswell, 2013; Lincoln & Guba, 
1985). Ultimately, the purpose of the second stage of the data analysis was to identify and categorize 
repetitive and similar expressions and to highlight the themes in participants’ reflections. 

Initial findings 
The focus for this paper was to highlight participants’ experience in the ÜberPro Seminar relative to 
their recognition – e.g., emotionally, mathematically – of their own positioning in transitioning from 
school to university mathematics. We purposefully selected the two reflection journal prompts 
because they asked for participants to explicitly reflect on their own transition early in the semester 
(prompt 4.1 from week 4) and at the end (prompt 12.6 from week 12). Thus, we were able to examine 
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the ways in which participants described aspects of the transition, both early in the seminar 
experience, and after having engaged with seminar content designed to make explicit the beliefs 
changes in students (over their mathematical trajectory) and in mathematics (using the example of 
the historical development of geometry).  The two prompts are: 

Q4.1: Think about your own transition from school to university and reflect this on the basis of 
the transition problem hypothesis presented in the seminar. 

Q12.6: Explain the transition problem referring to the completed seminar. What consequences can 
be derived for university and school? Include what you have learned on your personal transition 
experience and how to deal with it in the future. You can also refer back to the seminar’s 
underlying hypothesis on transition issues. 

Investigating patterns: How do students recognize their transition? 

As described, 14 students’ responses to the reflection prompts (prompts 4.1 and 12.6) were analyzed 
based on semester of enrollment, gender and age of the participants, and the general frequency of 
some expressions such as “change of viewpoint,” “rapid,” “difficulty,” and “new ways of dealing 
with mathematics.” For the purpose of this paper, we share only a brief collection of the type of 
affective experience students described when reflecting on the transition from school to university. 
In general, students felt confronted by the view of formal, abstract mathematics at university. Twelve 
of 14 students either implied or explicitly articulated that mathematics taught in school was a quite 
different experience from university mathematics, which refers to the gap between school and 
university mathematics. For example, Student 7360 described the following: 

As part of my transition from school to college, I was confronted with a new way of dealing with 
mathematics: While I met mathematics in school mostly in the context of concrete computing tasks 
and applications, and only met a little proof, I was confronted with a definition-theorem-proof-
example-mathematics, which was based on a strict formal approach and an axiomatic structure. 
The procedure was strictly axiomatic and I knew little until now. A special change was also in the 
now much higher value of proof. While there was hardly a lesson in school without examples 
(tasks) and hardly any lesson with proof, the picture was now the other way around: in the 
university, there was hardly a lecture with sample exercises and hardly a lecture without proof 
[…] (Response to journal reflection prompt 4.1) 

Similar to Student 7360, other seminar students emphasized that more empirical examples were 
encountered in high school mathematics whereas university mathematics included more formal 
definitions and abstract proofs. Moreover, the students believed that they needed to change their view 
of mathematics to be able to comprehend formal abstract university mathematics. According to their 
responses, the ways in which students expressed their emotions toward this transition between school 
to university was fairly intense. Students who had or experienced an unpleasant transition frequently 
used descriptors such as “bumpy,” “big hurdle,” “very bad transition,” “incredibly challenging,” 
“struggling,” “sudden” and “rapid change,” and these terms capture the magnitude of the emotions 
that students associated with the transition from school to university. Some students mentioned the 
high drop-out rates of peers due to the change of view from empirical to formal mathematics as a 
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consequence of a difficult transition. One of the “expert” students (Student 1612E) expressed his 
experience as: 

My own transition to university confirms the hypothesis of the seminar. It was a big hurdle and 
took some time to get used to the formalism and the level of abstraction of academic mathematics. 
I myself have finally mastered the transition; however, I know some who found the hurdle to be 
too high and have quit their studies. (Response to journal reflection prompt 4.1) 

Another participant, Student 1609, identified the “rapid change” in views of mathematics as a 
defining feature of the transition, but he also compared the transition that students endure with the 
change in views that occurred in the development of geometry:  

The rapid change from an empirical-object view or view of mathematics to a formal-abstract one 
is one of the most influential reasons that the transition problem is such an important issue today. 
I assert as well that every student must [go] through this phase of ignorance and acquire new 
knowledge, in order to first understand what is being conveyed in the lectures at university. In my 
opinion, there is a great deal in common between the transition from school to university and the 
historical development of geometry. This has developed from an empirical-objective conception 
to a formal-abstract one. As with the transition problem, there is added complexity in the evolution 
of geometry and it becomes more in-depth as time passes. (Response to journal reflection prompt 
12.6) 

In a similar way, Student 1905 drew upon the seminar content (i.e., the historical development of 
geometry) to situate her view of the transition problem, and to note a key difference for her experience 
at university (e.g., “a rigid conception is used”): 

In the historical development of geometry, one finds mathematicians who represent an empirical-
object view and mathematicians who represent a formal-abstract view.  So, there are different 
views of geometry in the past.  Here I see a difference [in views] to the transition from school to 
university. While [at university] only a rigid conception is used, in the history one finds a 
multiplicity of geometrical conceptions.  I see a commonality in the transition. The conceptions 
that we find today between school and university can also be found in the development of 
geometry. (Response to journal reflection prompt 12.6) 

As a final example, we present the characterization that Student 7536E (another “expert” student) 
offered in her response to journal reflection prompt 12.6: 

The transition problem from school to university is clearly recognizable, especially in 
mathematics. Geometry also has a strong evolution behind it and is based on different views. The 
biggest difference is probably between Euclidean and non-Euclidean geometry, which also 
differentiates the school material and the university material.  In these different views, the 
relationship to reality and truth always plays a decisive role. 

Discussion 
Gueudet (2008) observed that “[u]niversity is seen as a new world, or at least a new country, with a 
new language and new laws that make the novice student feel like a foreigner” (pp. 242–243). Indeed, 
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ÜberPro Seminar students’ responses revealed that they experienced palpable difficulty in dealing 
with a new way of mathematical thinking, which might be analogous to learning a new language. The 
expression of “change of viewpoint” was referred to either explicitly or implicitly by the seminar 
students, which we found interesting in our analysis. The change in students’ viewpoint also gives us 
cues concerning historically different views in mathematics. On the other hand, the repetitive use of 
expressions regarding the change of viewpoint from empirical to formal validates the inconsistency 
between secondary and university mathematics, which makes it harder to initiate a schema 
(Rumelhart, 1980) to make cognitive connections between prior knowledge and abstract/theoretical 
mathematics. Failing to adjust to the change of viewpoint is most likely to affect students’ dispositions 
toward formal mathematics in terms of attitude, emotion and belief, which is examined as “affective 
factors” by Di Martino and Gregorio (2019). Therefore, the severe difficulties which potentially lead 
to dropout of students from STEM-related undergraduate programs without obtaining a degree seem 
to be problematic due to their connection to psychological strain from an individual standpoint (Di 
Martino & Gregorio, 2019). In our future work we plan to design interventions for our local context 
(Florida State University), in which we will continue to use the context of history of mathematics as 
a means to bridge the gap between secondary and university mathematics. Additionally, we will 
explicitly address student dispositions and emotional response to the transition to investigate whether 
such supporting features assist students in avoiding the most severe aspects of the transition. We 
believe that from the educational perspective, keeping the impact of affective factors in mind could 
contribute to students’ weathering of transition problems (particularly in STEM-related fields) and 
hence, positively impact student achievement. Therefore, in our continuing open-ended analysis, we 
seek to investigate additional methods of data collection and analysis that will enable us to further 
contribute the growing body of research on students’ transition from school to university mathematics 
in ways that highlight and honor the emotional and affective aspects of transition, and ways in which 
they may be mediated and remedied by interventions such as the ÜberPro Seminar. 

Conclusion 
We determined that a need to address and reflect on students’ emotional dispositions emerged when 
students were prompted to articulate how they recognized their own transition during the ÜberPro 
Seminar. Furthermore, this intervention may have contributed to the promotion of metacognitive 
thinking about students’ own transition and gave them agency in partially managing the remainder of 
their transition process. 
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There are many factors influencing the didactical choices made by university mathematics lecturers 
in course design. We focus on one of these: the inherent structure of the mathematical domain to be 
taught. Adopting an institutional perspective, the Anthropological Theory of the Didactic, we 
conduct an epistemological analysis of two courses aimed at second and third year mathematics 
students, Basic Topology (BT) and Differential Geometry (DG), showing how their different 
epistemological characters affect these didactical choices. We argue that the main differences stem 
from their aims and objects of study: where BT aims to develop the theory of topological spaces, 
and providing a categorization of them, DG aims at producing tools for analyzing geometrical 
properties of surfaces. In other words, where BT is theory-driven, DG is praxis-driven. We show 
how this and other differences relate to the course design, and argue this as a case of domain 
influencing pedagogy. 

Keywords: University mathematics, course design, epistemological analysis, mathematical and 
didactic praxeologies, didactic co-determination. 

What influences university mathematics teachers’ didactical choices? 
University mathematics education (UME) research is increasingly engaged with questions 
concerning teaching, and university mathematics teachers’ (UMTs) teaching practices, as seen, for 
instance, in the growing amount of research investigating factors influencing UMTs’ didactical 
choices when planning and preparing courses or individual lectures. Some of these factors are 
individual, depending upon the UMT’s own educational background, research practice, and beliefs 
about mathematics and students (e.g. Hernandes-Gomes & González-Martín, 2016; Tabchi, 2018). 
Some concern more general pedagogical issues, such as the specialisms of different student groups 
(Bingolbali & Ozmantar, 2009), available textbooks and other educational resources (Mesa & 
Griffiths, 2012), or the choice to adhere to particular instructional design principles (Andrade-
Aréchiga, López & López-Morteo, 2012). Others again are institutional, such as imposed reform 
initiatives (Stieha, Shadle & Paterson, 2016) or the dominant epistemology of the institution 
(Barquero, Bosch & Gascon, 2013). Here, however, we will consider a different factor that we 
believe deserves further study: the inherent structure of the particular mathematical domain covered 
by the course. This paper grew out of conversations between the first author, a UME researcher, and 
the second author, a research mathematician at a large Swedish university. His research is in 
topology and geometry and he has been teaching university mathematics for twenty years, at all 
levels from beginning undergraduate to doctoral courses. While planning and conducting two 
different courses, Basic Topology (BT) and Differential Geometry (DG), both aimed at second or 
third year mathematics majors, he was struck by the extent to which the character of the two topics 
influenced the way he chose to design and teach the courses. To study the particularities of this 
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influence, we adopt an institutional perspective, the Anthropological Theory of the Didactic (ATD) 
(e.g. Bosch, 2015). In what follows, we will present an epistemological analysis of the topics, aimed 
at describing how their different epistemological characters affected the didactical choices made 
during course design. First, however, we introduce the aspects of the ATD pertinent to the analyses 
in this paper. 

A praxeological perspective on mathematics teaching 
ATD “offers a general epistemological model of mathematical knowledge where mathematics is 
seen as a human activity of study of types of problems” (Barbé, Bosch, Espinoza & Gascon, 2005, 
p. 236). This activity consists of, on the one hand, the practical block (or praxis) of tasks to be 
solved and techniques for solving them and, on the other hand, the knowledge block (or logos) 
providing “the mathematical discourse necessary to justify and interpret the practical block” (ibid, 
p. 237). This block consists of technologies referring directly to the techniques used and theory 
justifying the technology and organizing the discourse. An example of a task could be finding the 
instantaneous rate of change of a certain function at a given point. This task can be solved using 
different techniques, for instance, calculating the slope of the tangent line to the function at the 
point. This technique can be justified, for instance, using the definition of the derivative using 
difference quotients, a technology in turn part of a theory of differential calculus. Together the 
tasks, techniques, technologies and theories form mathematical praxeological organisations (MO’s) 
or simply praxeologies. In fact, ATD “considers that the notion of praxeological organisation can be 
applied to any form of human activity, and not only to mathematics” (ibid, p. 239). Hence, the 
practice of teaching (and learning, for that matter) can be described using didactic praxeological 
organisations (DO’s). The teacher’s didactic praxeology is used to help students engage with a 
particular MO. As any praxeology, it consists of a practical block composed of types of didactic 
tasks and didactic techniques, and a knowledge block formed by “a didactic technological–
theoretical environment” (ibid, p. 239). Praxeologies develop within institutions. Indeed, it is a 
basic tenet of ATD that “human practices and human knowledge are entities arising in institutional 
settings. (…) As institutions are made of people, institutional praxeologies evolve because of the 
changes introduced by their subjects” (Bosch, 2015, p. 52). Such evolution is subject to conditions 
that enable or facilitate the development of a certain praxeology in a given institutional 
environment, and constraints hindering or impeding its development. “The notions of condition and 
constraint are relative to the position assumed by a person in a given institution. A condition 
becomes a constraint when it cannot be modified by the person in this position, at least not in the 
short run.” (Barquero, Bosch & Gascón, 2013, p. 313) These conditions and constraints occur at 
different levels of didactic co-determination (ibid, p. 314): 

Civilisation↔Society↔School↔Pedagogy↔Discipline↔Domain↔Sector↔Theme↔Question 

The levels from Discipline to Question concern the particularities of the specific discipline and the 
way it is structured, while the levels from Pedagogy to Civilisation concern how societies organise 
the study of disciplines (ibid.). Barbé et al (2005) use the case of the teaching of limits of functions 
in Spanish high schools to show how teachers’ practices are conditioned by various restrictions, 
both mathematical and didactical. At the university level, Bosch, Gascón and Nicolas (2016) use the 
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case of the teaching of Group Theory “to illustrate two different ways of questioning the 
mathematical content to be taught: a first one based leaving the global structuring of the content 
untouched; and a second one requiring a complete deconstruction and reconstruction of the 
knowledge to be taught” (ibid, p. 256). In light of the above, we aim to investigate possible 
relationships between the Mathematical Organisations and the development of the Didactic 
Organisations in the courses Basic Topology and Differential Geometry. Before presenting an 
epistemological analysis of the two domains, we will briefly describe the context in which the study 
took place. 

Epistemological analysis and didactical considerations 
Both the BT and the DG courses are included in a mathematics program, typically attracting about 
30 students each year. Additionally, the courses also attract some students from other programs, for 
instance, engineering and physics. Prerequisites for both courses include Introductory Algebra, 
Calculus in one and several variables, and Linear Algebra. When planning the courses, the second 
author worked with already determined syllabi, although he had control over the choice of textbook 
(Munkres (2000) for BT, and Do Carmo (2016) for DG). At the department where he works, the 
more advanced courses are usually taught in a Definition-Theorem-Proof (DTP) format (Weber, 
2004), and although this is not enforced, there are few institutional incentives for radical changes in 
the teaching format. Hence, the courses discussed here were also taught in this format. The analysis 
that follows developed through conversations between the authors, and hence reflects the way the 
second author thinks about and chose to teach the courses. Still, this largely corresponds with how 
the courses are typically taught, as suggested for instance by the fact that already established syllabi 
were used.  

The main object of study in BT is the class of topological spaces and continuous maps. The course 
introduces the notions of point-set topology, for instance, compactness, connectedness, and 
separation properties, in a systematic axiomatic fashion. The main object of study in DG, on the 
other hand, is the (mostly local) geometry of (curves and) surfaces. It starts with the geometry of 
surfaces in 3-space and proceeds via the fundamental forms and Gauss' Theorema Egregium (Gauss 
curvature is preserved under isometric transformations) to the notion of abstract surface geometry 
with examples such as the flat torus and the hyperbolic plane, which have no isometric embeddings 
into 3-space. The aim of BT is to structure the class of topological spaces, which is vast and mostly 
unknown to the students beforehand, into tractable subcategories introducing a comprehensive (and 
traditional) set of definitions. In contrast, DG concerns itself largely with the production of tools for 
the analysis of geometric properties of the intuitively relatively accessible collection of all surfaces, 
building on the students’ knowledge of curves and surfaces (in 3-space) from previous courses in 
the calculus of several variables. DG thus works its way from a concrete setting towards the 
beginning of a more abstract theory, while BT may be said to go in the other direction. Definitions 
serve largely different purposes in the two courses. In BT, their main purpose is to establish a 
vocabulary for the class of topological spaces, which allows for effectively breaking it down into 
more tractable subclasses. Compactness, separation properties, connectedness and countability 
properties are all definitions of this type. Few interesting things can be said about all topological 
spaces. The notions above allow for the study of subclasses (e.g. locally compact Hausdorff spaces) 
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about which interesting theorems can be proved. In DG, on the other hand, definitions establish the 
tools to make precise distinctions in a setting where the object of study is well known. The first and 
second fundamental forms, various curvatures and the Gauss map are all examples of this; with 
their help, it becomes possible to analyse the geometric properties of the surface quantitatively. The 
particularities of definitions in the BT course have consequences for the use of examples as well. 
The first role of examples in BT is to show how the few topological spaces that the student has 
already encountered in earlier courses fit into the general framework that the course provides. For 
instance, ℝ𝑛𝑛 is an example of a Hausdorff space. The second role is to expand the known collection 
of topological spaces, and in particular, to show that new definitions are not empty. For instance, 
ℂ𝑛𝑛 equipped with the Zariski topology is an example of a 𝑇𝑇1-space which is not Hausdorff. It is 
unlikely that the student has heard of the Zariski topology before. Moreover, in the context of the 
BT course its relevance in other mathematical domains (e.g. algebraic geometry) cannot be properly 
discussed. Instead, its presence in the course serves to motivate the definition. In this context, the 
role of the concept is primary and the example secondary. In fact, one might say that the topic of the 
BT course is as much the established ways of rendering the category of topological spaces 
understandable, as it is the topological spaces themselves. On the contrary, in the DG course the 
role of the examples is mainly to illustrate the different mathematical techniques involved. Hence, 
examples mostly consist of concrete calculations, much as in earlier calculus courses (e.g. explicitly 
computing geodesics on a surface of revolution by solving the appropriate differential equation). 
With a slight exaggeration, one might say that in DG the examples precede the definitions, which 
are there for the sake of understanding the examples, whereas in BT the definitions precede the 
examples, which serve the purpose of understanding the definitions. The aim of the BT course, that 
is, structuring the class of topological spaces and developing a vocabulary for this purpose, has 
implications also for the type of theorems the course contains. In a sense, most of the theorems are 
of a technical nature; clarifying the definitions and the properties of the spaces that satisfy them. At 
least in the beginning of the course they are very elementary, and could easily be given as exercises 
to students, even at this level. Indeed, we are aware of at least one textbook where the theory is 
developed with most proofs given as exercises for the reader (Viro, Ivanov, Netsvetaev & 
Kharlamov, 2008). Most of the course is introductory and the theorems proved are thus reasonably 
easy for the students to follow, with a few exceptions, which (unsurprisingly) occur in the more 
structured areas, notably in the part concerning metric spaces. The DG course, on the other hand, 
with its aim of analyzing the geometric properties of surfaces, contains more complex theorems 
requiring more advanced proof techniques from analysis (relying on relatively advanced theorems, 
e.g. the implicit function theorem). Where the BT course has mostly technical theorems, The DG 
course has at least two central, historically and philosophically significant theorems which can 
provide structure for the course to be built around – the Theorema Egregium and the Gauss-Bonnet 
Theorem (which connects the curvature of a compact surface with its Euler characteristic). The 
above differences have direct consequences for the way the material is presented to the students. BT 
is presented in a strictly axiomatic fashion. The whole course unfolds deductively from the 
definition of topological space. This is a consequence of the extreme generality of this notion and 
the fact that very few examples are known beforehand. The course requires no prerequisites apart 
from basic set theory, although a certain degree of mathematical maturity is necessary, due to the 
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degree of abstraction involved. Proofs consist of set theoretical arguments to show that a certain 
class of spaces or maps has certain properties, while examples consist of the same, but for specific 
spaces or maps. As mentioned above, the vocabulary is as much an object of study as the particular 
examples of spaces the course includes. In fact, one reason for developing this vast general theory 
without much prior knowledge of the objects it describes is that this vocabulary in itself is so useful, 
that once mastered (even if only through toy examples of little independent value) it is applicable as 
soon as the student happens upon a topological space in their later studies.  

DG, in contrast, admits a looser structure, since it is possible to rely on students' previous 
knowledge and intuition in the presentation of the material and since the course is about closer 
analysis of a known class of objects. Indeed, it has clear prerequisites of Calculus of several 
variables and Linear Algebra, which are both necessary and sufficient. This implies that the rich 
collection of tools of infinitesimal calculus and linear algebra are available for use. Hence, the 
arguments used in proofs have a very different flavour from those in BT, more akin to standard 
basic calculus. In DG, definitions are typically motivated by conceptual arguments, relying to a 
large extent on the student's preconceptions and intuitions. The conceptual meaning of the central 
definitions can usually be (and often is) explained even without concrete examples, relying on the 
students' grasp of earlier courses. For instance, the relevance of the geodesic concept can be argued 
by the wish to generalize the meaning of `straight line' (or motion with zero resultant force). 
Similarly, just by sketching some pictures the ideas behind principal curvatures or the Gauss map 
can be conveyed. In contrast, the explanation of definitions in BT cannot rely very much on pre-
established intuition, since there are very few examples that the students are familiar with 
beforehand. Instead, the definitions in BT are presented as a fixed vocabulary to be digested and 
understood. The point of many of the definitions is seen only in hindsight, when they prove 
themselves useful in proving theorems. For example, few students immediately understand the 
definition of first countability of spaces. The relevance becomes clearer when the connection with 
sequences in the space is explored in more detail. In praxeological terms, the MO underlying the 
DG course takes its starting point in the praxis, in tasks aimed at understanding the behaviour of 
surfaces, as objects already familiar to the students, and in techniques used to carry out these tasks. 
The course develops technology justifying the techniques but the idea of a general theory of abstract 
Riemannian manifolds is presented only toward the end of the course and is not extensively 
developed. From a didactical perspective, the fact that students are already familiar with the objects 
and techniques of the course enables the lecturer to build on this familiarity when presenting 
arguments and explanations. The MO underlying BT, on the other hand, is structured much more 
around the logos. A theory of topological spaces, with an elaborate set of technologies, is developed 
around one main task, namely, classifying topological spaces, and using techniques mostly taken 
from set theory. In a sense, the BT course is all about logos. The tasks of the taught MO are to a 
large extent “toy examples”, developed in order to support the learning of the theory, rather than 
being of interest in their own right. Indeed, the BT course is largely about developing technologies 
that can then be applied elsewhere, to justify techniques for dealing with topological spaces in other 
settings. In conclusion, we suggest characterizing the DG course as praxis-driven, whereas the BT 
course is logos-driven. 
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Conclusions and discussion 
In this paper, we have analyzed the epistemological characteristics of two university courses aimed 
at second and third year mathematics students: Basic Topology and Differential Geometry. We have 
shown how the different theoretical starting points of the courses, with BT being logos-driven and 
DG praxis-driven, had consequences for the design of the courses. Here, however, a caveat is 
needed. We are aware that the MO’s that we have described above to some extent are mixtures of 
the scholarly MO’s underlying the courses and the transposed MO’s actually taught in the 
classroom. However, preserving a strict separation is difficult, and we believe that the mixture does 
not significantly alter the gist of our argument. In fact, the difficulty of adequately separating the 
two might go some way towards explaining the observation made by Florensa, Bosch, Cuadros and 
Gascón (2018), that when university lecturers reflect upon their own practice, content-related 
didactic considerations often seem to be lacking. We see this paper as a small step towards such 
content-related didactic reflection. In terms of didactic co-determination, we have presented an 
example of how the domain, and thus the discipline, influences pedagogy. If content of the type 
included in the BT course is to be presented to students, this poses constraints on the type of 
pedagogy available. It makes it more difficult, for instance, to make use of students’ previous 
experience and knowledge, and to provide motivation through showing applications of the theory. 
On the other hand, the mostly self-contained nature of the material, its axiomatic structure, and the 
relative accessibility of the proof techniques employed, makes a course such as BT suitable for a 
form of teaching that inducts students into the practices of formal proof. Through use of the DTP 
format, the lecturer can model this part of mathematical practice (see for instance Viirman, 2014) 
and can provide students with tasks that lets them engage in such practice in a manageable setting. 
A course such as DG is less suitable for this, since the proof techniques required are much more 
complex. However, the way it takes its starting point in relatively accessible, practical problems 
invites an inquiry-oriented approach, where these problems serve as starting points for the handling 
of content. This approach appears to be less suitable for the BT course, although one might 
conceive of a course taking as its starting point the overall question of how to categorize topological 
spaces. Still, even from this starting point, the course would probably enfold in much the same 
manner as the course discussed in the present paper. Moreover, we wish to emphasize that the 
differences in the MO’s underlying the two courses should not be seen as mainly influencing the 
temporal organisation of the material. One could imagine another instance of DG, consistent with 
the course syllabus but maybe not didactically ideal for the intended students, where the starting 
point is an abstract definition of Riemannian surface and the extrinsic geometry of surfaces in 3-
space would appear as embedding theory. However, the course would still be praxis-driven, focused 
mainly on developing the technology for justifying techniques used for solving geometrical 
problems. Similarly, BT could be set in the opposite order, starting with several examples of 
topological and metric spaces arising in natural contexts, and only then introducing suitable notions 
to understand their similarities and differences. This would be an interesting but likely somewhat 
ineffective way of teaching the same material, consistent with the course syllabus. Still, the course 
would be logos-driven in that the main purpose of the examples would be the development of the 
theory. In other words, the temporal order of definitions and examples could be inverted, but this 
does not alter their different epistemological status in the courses. 
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The analysis we have presented here should be seen only as a first step. For instance, one might ask 
whether other mathematics courses taught at university fit within the two patterns described here. 
One example of a type of course that does not seem to do so is the Calculus of Variations course at 
the second author’s department. Roughly speaking, it consists of showing how a single central 
technique (the variational principle) can be applied in a large variety of settings in different areas of 
mathematics and the applied sciences. At first glance, it would seem as if the logos block would 
play a very different role in such a course compared to the ones under scrutiny in this paper, and it 
might be enlightening to examine this case further. Moreover, a more detailed analysis of the 
interplay between the DO and the scholarly and taught MO in a particular course would require data 
analysis that we did not engage with in the writing of this paper. This could involve, for instance, an 
examination of the role of textbooks and other didactic resources on the development of the DO as 
well as analysis of tasks given to students and of the potentially constraining role played by 
established assessment practices. Moreover, a deeper understanding of the DO would require 
empirical data on the teacher’s and students’ practices. The work presented in this paper is not 
intended as the type of more radical rethinking of the organization of content suggested, for 
instance, by Bosch, Gascón and Nicolas (2016). We have done some thinking on alternative ways 
of course design, cutting “against the grain”, so to speak, of the established structuring practices 
according to mathematical domain. One might consider, for instance, a course on “classification”, 
looking at various ways of structuring classes of mathematical objects in different domains. 
However, any such radical rethinking would risk encountering major difficulties because of 
institutional constraints, particularly in early courses taken by students from many different 
programs, and would thus, at least at first, probably only be possible in relatively high-level courses 
aimed at future research mathematicians. Still, just thinking about such alternative ways of 
organizing content may aid in the content-related didactical reflection requested by Florensa et al 
(2018), by forcing us to question established ways of structuring content, and how this structuring 
might influence the ways in which we can teach. 
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Calculus is often an essential milestone during a students’ time at university and can be especially 
impactful for students wishing to pursue a math or science field. Given its relative importance, the 
ways in which calculus courses are delivered can have a lasting impact on a student’s trajectory 
and relationship with mathematics. In this study we document the ways in which three calculus 
course variations at the same university operate to promote different mathematics identities for 
students. Drawing on the framework of figured worlds (Holland et al., 1998), we showcase the 
ways in which these course variations act as if they are different calculus worlds that constitute 
socially organized and produced realms of being. We highlight the ways in which these figured 
worlds position or fail to position students with the opportunity to refigure themselves and others.  

Keywords: Calculus, mathematical identity, figured worlds, course variations. 

In the United States (US) there is a need to increase the number of students in science, technology, 
engineering, and mathematics (STEM) to address the nearly 1 million additional STEM degrees 
needed to support the nation’s growing research and technology economy (PCAST, 2012). To 
address this need, the PCAST report recommended the adoption of empirically validated teaching 
practices, replacing standard lab courses with discovery-based research courses, addressing the 
mathematics-preparation gap, and diversify pathways to STEM degrees. Additionally, any efforts to 
improve the quality of undergraduate STEM education must also attend to fostering an environment 
that promotes diversity and inclusion in STEM classrooms (NASEM, 2017).  

The vision and enactment of creating an equitable robust STEM education is a complex and 
multifaceted endeavor that will require continued research; however, one such approach in 
undergraduate mathematics in the US is the tailoring of calculus courses to meet the needs of 
individual students, which we refer to as course variations. Course variations have the potential for 
addressing the recommendations from the PCAST report since they can specifically address the 
preparation gap for students by incorporating prerequisite material in courses, by stretching out the 
course content, or by infusing labs and standard based teaching in courses tailored for science 
majors1. Such course variations can even provide diverse pathways into STEM for those that have 
taken a non-traditional math background through transition courses. Rasmussen et al. (in press) 
documented how these variations to the standard course across the US have been associated with 
greater rates of passing calculus and put forth a call for future research to examine the ways that 
these courses may help promote a sense of community and identity development among students in 
the different course variations. We take up this call for future research by addressing the following 

1 Major refers to the academic discipline or program of study to which an undergraduate student formally commits 
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research question: How do the structures and activities of three different calculus courses at one 
university impact the types of possible mathematical identities that emerge for students from those 
contexts? 

Theoretical Background and Literature Review 
Mathematical identity is a powerful concept in the analysis of mathematical learning, in part due to 
the recent social and political turn in education (Adiredja & Andrews-Larson, 2017). Identity 
frameworks in math education have drawn largely from sociocultural perspectives that link identity 
and learning to one another and arise from social practices. Additionally, this research often utilizes 
positioning theory to account for identity as constructed through social interactions to construct 
storylines about who a person is in relation to others in a social context (Langer-Osuna & Esmonde, 
2017). Holland, Lachicotte Jr., Skinner, and Cain (1998) demonstrate how the sociocultural theory 
of identity and self, known as figured worlds, is a useful perspective for studying identity 
production in education, and how the context of education allows or does not allow the emergence 
of certain identities. Figured worlds are “socially and culturally constructed realms of interpretation 
in which particular characters and actors are recognized, significance is assigned to certain acts, and 
particular outcomes are valued over others” (Holland et al., 1998, p. 52). Figured worlds are 
dynamic. They are constantly formed and re-formed in relation to the everyday activities and events 
that occur within the realm of possible “as if” worlds. Figured worlds are thus situated in a social 
context and time period and represent a reflexive relationship and negotiation of the possible 
identities that can be constructed and affirmed in the figured world. 

Boaler and Greeno (2000) utilize the perspective of figured worlds to illustrate how two different 
types of secondary school classrooms afforded students different identities and storylines as 
mathematical learners. One such figured world drew on what they referred to as “received 
knowing”, which promoted the belief of doing mathematics as memorization and being able to 
quickly recall information. In contrast, the other figured world promoted “connected knowing”, 
which emphasized the belief of doing mathematics as making sense of mathematical concepts and 
procedures and a sense of agency among the learners. This study highlights how the context of 
education setting and approach to teaching can impact students’ identity production as learners and 
doers of mathematics, which can impact their decision to continue (or not) in a STEM program.  

In related work, Solomon, Croft and Lawson (2010) examined how mathematics support centres, 
which were intended to support skill development for engineering students, were dynamically co-
opted by the students to support the development of group learning strategies which promoted a 
strong community identity among the participants. This study highlights the way this STEM 
community of practice, which can often be highly competitive and individualistic, can refigure 
itself by reflecting on the positional identities that can be challenged in that space by drawing on the 
physical resources and artifacts to disrupt the available storylines. For instance, the physical space 
of the tutoring center, allowed students to refigure their relational identity to mathematics as a 
social endeavor of helping each other succeed.  
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Methods 
The analysis presented draws on student focus group data from one University, which we refer to as 
Tree Line University (TLU). TLU offers three different calculus courses. In addition to the standard 
offering, TLU has a coordinated calculus-physics course for advanced students and a life science 
course, which includes a focus on biology. For each of the calculus offerings (standard, honors 
studio physics, life sciences), we conducted a single focus group during week 13 of 16 with three to 
five students currently enrolled in each of the respective courses. We used student focus groups (as 
opposed to individual interviews) since they offer opportunities to understand the nature of 
students’ socially constructed figured worlds. Students for the focus group were sent an email 
invitation as well as recruiting efforts done in-person during the course. As such the students who 
participated represent a self-selected sample of students willing to participate in the focus group, 
and while this may not be representative of the entire course they highlight the realm of possible 
mathematical identities afforded in each of the courses. The focus group conversations centered on 
topics such as who they are, their experiences in the course, how and why they chose this particular 
course, what happens during a typical class period, how they relate to others in this course as well 
as to students in different calculus courses. Each of the focus groups utilized the same interview 
protocol but the extent to which each topic was discussed was driven by the engagement and 
discussion of the participants. 

All focus group interviews were audio recorded and transcribed for subsequent, thematic analysis 
(Braun & Clarke, 2006). Guided by our theoretical framing of figured worlds, we developed 
narrative accounts in a collaborative endeavor among the researchers by first producing a 
descriptive account of the focus group and then using within and cross-case comparison to develop 
themes related to the research focus. These narrative accounts centered around the themes of 
students’ emerging mathematical identities, sense of community or belonging, and positional 
relationship to calculus as (ir)relevant to their major and career goals. We present how these themes 
are enacted as figured worlds in the three calculus courses along with illustrative quotations from 
the narrative accounts.  

Results 
Calculus for Life Sciences: A refiguring of productive mathematical identities 
Calculus for Life Sciences at TLU functions as a combined differential and integral calculus course 
without topics in trigonometry. The course was originally designed at the request of the college of 
life sciences and agriculture for students majoring in the life sciences. The content remains fairly 
similar to the standard calculus course but has what faculty described as a “lighter approach” that 
emphasizes concepts and some application of topics. Our focus group in this course included five 
students enrolled with the same instructor (Dr. B) for the lecture session but who had different 
teaching assistants for the twice weekly recitation sections.  

Students in the focus group conveyed that prior to enrolling in this course they had identities as 
poor performers in mathematics, which made them anxious to take a university calculus course. 
One student shared that they had taken precalculus and had gotten a C- in the course, and stated that 
it, “was the lowest grade I had ever gotten for a college class,” and as a result was worried about 
how well they would do in this class. All of the students in the focus group concurred with this 
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sentiment, with one student stating, “I did so poorly in that class, and I just thought like I am not 
meant to pass calculus.” Other students discussed how the gap between their last math course in 
secondary school and taking this calculus course made them less prepared, and that they were 
“nervous going into calculus.” Students in the focus group had a personal social history (history-in-
person) that positioned them outside of the world of learners and doers of mathematics. For 
example, one student stated that they were, “someone who is not naturally inclined to math,” while 
another stated, “I am not meant to pass calculus.” However, as we will show, the students conveyed 
that through their experiences in this course, they were able to refigure their identities as productive 
mathematical learners largely as a result from positive interactions with their instructor. 

Students in the focus group conveyed that as a result of this course they now viewed themselves as 
someone who was capable of learning and doing mathematics. One student said that “I feel like I'm 
not completely hopeless at all in math anymore.” This sentiment was supported by two other 
students who recognized a shift from their prior conceptions and experience in mathematics. For 
example, one student said, “I can actually do this, rather than like, in many past courses where I 
really have no idea what's going on." Students discussed how they were really “understanding” 
what they were doing rather than memorizing formulas, which aligned with the goal and vision of 
the course from the faculty perspective. As a result, students were able to refigure their positionality 
towards learning mathematics, as exemplified in the following quotes: “I’ll be able to succeed in 
other math heavy courses” and it “boosts my confidence in that regard.”  

One of the contributing factors that helped students refigure their mathematical identities was their 
relationship with the instructor. “I can't say enough about our professor, this is probably the only 
math class that's really felt like it made sense in my life.” Students described instructional practice 
that contributed to their positive experience such as the teacher breaking down concepts in a way 
that made sense, using anonymous polling to see how they were feeling about course concepts, and 
providing prerequisite information such as the quadratic formula without assuming the students had 
memorized this information. These practices seemed to convey to the students that the instructor 
cared about them and their learning, allowing for them to acknowledge their past mathematical 
identity while being supported in the negotiation of productive mathematical identities. The impact 
of the individual instructor versus other features cannot be isolated in this study; however, the 
instructor through pedagogical techniques such as group work and anonymous polling (both on 
content and affective issues) allowed for the enactment of a figured world that aligned with the 
goals of the course to have students focus on understanding and connected knowing. 

There were also ways in which the enactment of the course variation positioned the students outside 
the world of mathematics learners. For instance, while one of the students mentioned that they were 
unaware of the difference between calculus for life sciences and the standard calculus course, three 
of the students mentioned the ways in which it was “low base calculus” or “more basic algebra” 
compared to “real calculus.” One student even described how their friend who was studying physics 
teased them saying, “you're not taking calculus, calc for life sciences is just like classical math.” 
Additionally, all but one of the students felt that the stated goal of the course to serve life sciences 
students was too broad. This resulted in students feeling that the course was not tailored to their 
specific discipline identities, “I'm either getting pushed aside or pushed under the rug with 
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everybody else by just saying, “Oh well, you're in the life sciences major, you got to do this.” In 
this figured world of calculus for life sciences, students were maintaining a strong discipline 
identity (equine science, zoology) which they viewed as not needing calculus. 

Honors Calculus: A collaborative community of academically-minded students 

Honors calculus at TLU is a unique course that it is designed to integrate topics in physics and 
calculus and takes a theoretical approach to the material. It is a two-course sequence that is co-
taught in a studio laboratory by a math instructor and a physics instructor. The math instructor for 
this course was teaching it for the second time. Our focus group consisted of three students 
majoring in mathematics. Students emphasized the difficulty of this course by the fact that they 
often have to rely on one another to finish the homework and study for exams. For example, an 
agreed upon sentiment is that “Collaboration is actually one of the strengths of the class…you know 
everyone in the class, you feel like you can trust that they're going to put in the effort, and you're 
going to put in the effort, and you're going to come together if you need to.” The word “trust” was 
often used by the students in this focus group interview. They felt that there was a need to trust each 
other in order to do well. It is important to note that the objective for these students was clear; it 
was not to just pass the class, but to do well in the course together. 

All of the students in this focus group entered with AP calculus credit2. They entered into a world 
where they viewed their peers as equals who enjoyed learning and doing mathematics as much as 
they did. From the start they described a course that positioned them in the figured world of 
calculus where they felt accepted and academically challenged. This is reflected by the students’ 
frequent reference to being surrounded by people who are the “same.” One student in the focus 
group reinforced this idea as follows: “In my calculus class, we have students who are all STEM. 
They are students who have the same mindset”. These students are in a space where they are 
comfortable to acknowledge that they are joined by, “intelligent people who have the same 
common objective”. This highlights how mathematical identity of high-ability and like-mindedness 
is socially formed and reproduced (Holland et al., 1998).  

Students were able to relate to each other and work together based on the fact that they are all 
coming in with similar interests, similar class objectives and career goals. During lecture, they were 
required to work in groups, which was a point of contention at the beginning of the semester. There 
was reluctance from some students to work with one another because they wanted to “motor 
through” the activities. However, they came to view group work positively once they created a 
world where they were able to openly share their ideas. As one focus group member put it, “I get to 
share my perspective, I get to hear their perspective,” which they felt created a class that was more 
enjoyable. The figured world of honors calculus that the students created for themselves allowed 
them to grow and form a mathematical identity that centers around succeeding, understanding the 
material, and supporting others. 

2 AP Calculus is a first course in differential calculus offered through the advanced placement system, which is a 
program in the US and Canada that offers university level curricula and examinations to secondary school students. 
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The students in the focus group also reported having an extremely strong sense of community that 
was supported through the development of their figured world, full of high achieving STEM majors. 
One student explained how close knit they are as follows: “If I have a concern about anything 
really, I feel like I can go and find someone from the class and talk to them about it and ask them 
what they think. And, you know, that’s something that I think might be more exclusive to the 
[Honors Calculus].” There was something special about this particular experience compared to their 
other honors classes. The figured world that they created for themselves, with the help of their 
instructors, strengthened their identities as capable mathematicians. These high achieving students 
created a space where they are comfortable to admit when they need help and trust that their peers 
can support them in their learning process.  

Standard Calculus: A realm of disconnected knowing and isolation 

The standard calculus sequence at TLU is primarily a service course for engineering majors. The 
two-course sequence is taught on a rotating basis by experienced instructors. The focus group 
consisted of three men, with majors in ocean engineering, mechanical engineering, and chemical 
engineering. The students in the focus group had varied secondary school mathematics experiences 
where one student took a non-AP calculus course, one took an AP calculus course, and the third 
student did not take calculus in secondary school.  

Although each of the students entered with different levels of math preparation, they each expressed 
a similar experience in the course – it was fast-paced and disconnected. The one student who had 
not taken calculus in secondary school described Calculus 1 as fast-paced and not well-organized. 
He also expressed some personal disconnect with the material when he said, “I didn't know what a 
derivative, like what is the definition of a derivative, till like two weeks after we had started them.” 
The other two students who had taken calculus in secondary school also felt that the course was 
fast-paced but were less concerned with the material. In general, the three students positioned 
themselves as external to calculus, where calculus was something they had to do, as opposed to 
something that they were excited about learning. For example, one student said, “it's a class and I 
have to do work for it. That's just normal college stuff” and another student said calculus was a 
course “they had to take.” Thus, upon entering calculus as first year students, none of the three 
positioned themselves as particularly excited about mathematics or very interested in mathematics. 
As they progressed from Calculus 1 to Calculus 2, this feeling of being disconnected from 
mathematics was not refigured, but rather seemed to become entrenched and reified.  

In both Calculus 1 and 2, the three students had similar experiences in the lecture portion of the 
course. One student explained that he felt so disconnected that he stopped going to his assigned 
lecture and attended a different lecture instead. He recounted that in class he felt, “nobody knows 
what's going on because you're just up there writing, and you won't answer the questions. So, this is 
very frustrating.” Another student chimed in that “Everything that he just said that happens this 
semester, happened for me last semester.” The feeling of being personally disconnected from their 
instructors and the course content was amplified in Calculus 2. In contrast to Calculus 1 where they 
felt the material was more applicable and useful, their experiences in Calculus 2 was on 
memorization. For example, one student contrasted his experience in Calculus 1 and 2 as follows: 
“The expectation [in Calculus 1] was that there would be understanding. The latter [Calculus 2] is 
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memorization without any expectation of understanding.” This was a common sentiment for all 
three students. In fact, one student explained that he was told that Calculus 2 is “really advanced 
math” and so there they are not expected to “understand what we are doing.” Even his teaching 
assistant (TA) positioned the content as something that was not within their reach for 
understanding. “And like my TA has dropped a line similar to just saying like, ‘You don't need to 
know further, this is what you need in order to do this. So, this is what you're given.’” Thus, their 
experience in calculus at TLU resonates with the figured world of “received knowing” described by 
Boaler and Greeno (2000).  

TLU’s no calculator policy seemed to further figure calculus as something that is disconnected from 
their interests and previous experiences. For example, one student explained that in secondary 
school their exams had calculator and no calculator parts and he liked the calculator part because 
“you could actually like finish the problem.” The no calculator policy in calculus stood in contrast 
to how he imagined his future self in the workplace as an engineer. “You're not going to be working 
in a laboratory somewhere and they're just having you do calculations of derivatives and integrals 
like, in your head. Like you're going to have a calculator. Especially if you want to do real-world 
problems.” They also contrasted their calculator experience in calculus with that in physics and 
chemistry, where calculators are used all the time. This positioned mathematics for them as outside 
the realm of connection with other disciplines. 

When asked about the extent to which they felt they had formed bonds or connections with their 
classmates, the three students agreed that any relationships they formed were not the result of how 
class was structured or due to any effort on the part of their instructors. Instead, those that they do 
homework with are either friends or live in the same residence hall. Their ability to work with a 
wide range of students from different lectures was made possible because TLU has tightly 
coordinated curriculum, homework, and assessments. As these three students explained, “there's a 
lot of behind the scenes learning from kids explaining, or students explaining stuff to one another” 
and “there's a lot of, frankly, bonding over freaking out.” Thus, at a system level, the course 
coordination allowed for considerable peer to peer bonding that otherwise might not have happened 
and allowed these three students to refigure their relational identities as helping residence hallmates 
survive calculus. 

Discussion 
Given the exploratory nature of this work we did not posit any hypothesis regarding how the 
different course variations would impact student mathematical identities, and instead our aim was to 
capture the salient features described by the students and how those related to their beliefs about 
knowing and doing mathematics. The enactment of these figured worlds considers the totality of the 
lived experience such as the role of the instructor, calculator policies, discipline-based problems, 
and the structures surrounding entry and pathways into the courses These elements cannot be 
separated since they are fundamental to the construction of the figured world. For instance, 
instructors for the calculus for life sciences are selected knowing the course should emphasize 
mathematical understanding and are aware that most of the students have had negative experiences 
with mathematics prior to starting the course. This results in assigning instructors who often are 
more student-centered in their teaching approach. The selection of instructors for the standard 

Addendum Thematic Working Groups

Proceedings of CERME11 4897



calculus is less intentional, but not random. Experienced instructors with good teaching reputations 
are typically tapped to teach this course because it is a core requirement for all STEM majors.   

We also want to stress that the three different figured worlds are not consequences of the course 
variations themselves, but rather lie in the possibilities that the different course variations offer for 
how it is enacted and experienced. For example, the role of the instructor to either express care for 
their learning, to encourage peer collaboration, or to lecture the material at a quick pace was a 
paramount factor in how the students described their beliefs about being able to learn and do 
mathematics. The way the instructors approached teaching we speculate is tied with the 
programmatic features of the course variation. Whereby the standard course is content heavy and 
puts pressure on instructors to cover the material through lecture, the honors course has more 
contact hours and was designed with collaborative labs, and the life science course focus on 
understanding and less on computation which promotes instructor inquiry into student thinking.  
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